
Decomposing and Regenerating
Syntactic Trees

Federico Sangati

Decomposing and Regenerating
Syntactic Trees

ILLC Dissertation Series DS-2012-01

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Decomposing and Regenerating
Syntactic Trees

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. D. C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op donderdag 12 januari 2012, te 10.00 uur

door

Federico Sangati

geboren te Abano Terme, Italië.

Promotiecommissie:

Promotor:
prof. dr. L.W.M. Bod
Co-promotor:
dr. W.H. Zuidema

Overige leden:
prof. dr. P.W. Adriaans
dr. T. Cohn
prof. dr. S. Kahane
prof. dr. R.J.H. Scha
dr. K. Sima’an

Faculteit der Geesteswetenschappen
Universiteit van Amsterdam

The research reported in this thesis was supported through a Vici-grant “Integrat-
ing Cognition” (nr. 277.70.006) to Rens Bod by the Netherlands Organization
for Scientific Research (NWO).

Copyright © 2012 by Federico Sangati

Printed and bound by Ipskamp Drukkers

ISBN: 978–90–5776–234–5

all’Italia del dopo Berlusconi
perché si possa finalmente risvegliare dal lungo sonno

v

Contents

Acknowledgments xi

1 Introduction 1
1.1 Learning Language Structures . 2

1.1.1 The hidden structure of language 2
1.1.2 Different perspectives on language 3

1.2 Syntactic structures of language . 4
1.2.1 Syntactic representation and generative processes 4
1.2.2 Different representations . 5
1.2.3 Phrase-Structure . 5
1.2.4 Dependency-Structure . 6
1.2.5 Relations between PS and DS 7

1.3 Generative models of syntactic structures 7
1.3.1 Context-Free Grammars . 8
1.3.2 Generalized models . 8
1.3.3 Probabilistic generative models 10

1.4 Computational models of syntax . 11
1.5 Thesis overview . 14

2 Generalized Tree-Generating Grammars 17
2.1 Introduction . 18

2.1.1 Symbolic and Probabilistic models 18
2.1.2 Tree structures . 20

2.2 Symbolic Generative Models for Trees 22
2.2.1 The event space . 22
2.2.2 The conditioning context . 23
2.2.3 Context-Free Grammar . 24
2.2.4 The generative process . 25
2.2.5 Extracting a symbolic grammar from a treebank 30

vii

2.2.6 Examples of generative tree grammars 30
2.3 Probabilistic Generative Models for Trees 38

2.3.1 Resolving the syntactic ambiguity 38
2.3.2 The probability of a tree . 39
2.3.3 Estimating Probability Distributions 39

2.4 Parsing through Reranking . 43
2.5 Discriminative and Generative models 44
2.6 Conclusions . 47

3 Recycling Phrase-Structure Constructions 49
3.1 Introduction to Phrase-Structure . 50
3.2 Review of existing PS models . 51

3.2.1 Head-driven models . 51
3.2.2 State-Splitting Models . 53

3.3 Data-Oriented Parsing . 54
3.3.1 Introduction . 55

3.4 The symbolic backbone . 56
3.4.1 Explicit vs. Implicit Grammars 56

3.5 Finding Recurring Fragments . 58
3.5.1 The search algorithm . 59
3.5.2 A case study on the Penn WSJ 60

3.6 The probability model . 66
3.6.1 Parsing . 67
3.6.2 Inducing probability distributions 69
3.6.3 Maximizing Objectives . 70

3.7 Implementation . 73
3.8 Annotated Resources . 75
3.9 Evaluation Metrics . 76
3.10 Results . 76
3.11 Conclusions . 83

3.11.1 Future Directions . 83
3.11.2 Next steps . 84

4 Learning Dependency-Structures 85
4.1 Introduction . 86
4.2 Dependency-Structure . 87
4.3 Comparing PS with DS . 88

4.3.1 Structural relations between PS and DS 88
4.3.2 Relations between PS and DS grammars 90

4.4 Other related syntactic theories . 92
4.5 Models for parsing DS . 95

4.5.1 Probabilistic Generative models 95
4.5.2 Discriminative models . 99

viii

4.6 Reranking generative models . 100
4.6.1 Experiment Setup . 102
4.6.2 Comparing the Eisner models 102
4.6.3 A new generative model . 103
4.6.4 Results . 105

4.7 Conclusions . 107
4.8 Future Directions . 108

5 Tesnière Dependency-Structure 109
5.1 Introduction . 110
5.2 Dependency-Structures à la Tesnière 111

5.2.1 The dependency relation . 111
5.2.2 Words, blocks and categories 111
5.2.3 Junction . 112
5.2.4 Transference . 113

5.3 Comparing TDS with DS . 114
5.3.1 Choosing the correct heads 116
5.3.2 Categories and Blocks . 116
5.3.3 Coordination . 117

5.4 Converting the Penn WSJ in TDS notation 118
5.4.1 Elements of a TDS . 118
5.4.2 The conversion procedure . 119

5.5 A probabilistic Model for TDS . 121
5.5.1 Model description . 121
5.5.2 Experimental Setup . 123
5.5.3 Evaluation Metrics for TDS 124
5.5.4 Results . 125

5.6 Other representations of the WSJ Treebank 126
5.6.1 Prague English dependency treebank 128
5.6.2 Stanford Typed Dependency Representation 128
5.6.3 Bubble Trees . 131
5.6.4 The CCG-bank . 131

5.7 Assessment of the converted treebank 133
5.8 Conclusion . 134
5.9 Future directions . 134

6 Conclusions 137

A Phrase-Structure Models 141
A.1 Models parameters . 141
A.2 Evaluation procedure . 142
A.3 Comparing Double-DOP and Berkeley parser 144

ix

B Dependency-Structure Models 145
B.1 DS to PS . 145
B.2 Smoothing details . 147

C TDS model 149
C.1 Head annotation . 149
C.2 Coordination . 151
C.3 Smoothing in the TDS model . 155
C.4 Examples of TDS trees . 155

Bibliography 160

Index 183

Samenvatting 185

Abstract 187

x

Acknowledgments

I am very grateful to Rens Bod and Jelle Zuidema for their supervision. Their
complementary roles were fundamental for the development of my research. Since
the beginning of my PhD, Rens has shown lot of trust and confidence in my ca-
pabilities and has let me total freedom in exploring various research paths, yet
providing me solid guidance in moments of need. This has allowed me to learn
how to work independently and understand my real research interests. Jelle’s
presence was also indispensable throughout the whole project: he has great pa-
tience as a listener, and a remarkable ability to quickly understand a problem
and formulate brilliant solutions. But above all his intellectual honesty, and his
ability to relativize things within and outside academia made him one of the most
relevant guiding figures in all these years.

I am thankful to a number of people who have accompanied me during the
last four years. In particular the PhD members of the LaCo group: Gideon
Borensztajn with whom I’ve shared the whole PhD adventure, including many
moments of intense discussions, big struggles, exciting ping-pong challenges, and
other fun activities; Markos Mylonakis great hiking companion as well as irre-
placeable machine learning advisor; Gideon Maillette de Buy Wenniger for the
nice discussions and his big courage in taking over and extending my GUI code;
and Barend Beekhuizen for his great passion and for his invaluable help in anno-
tating hundreds of sentences.

I am in debt with Yoav Seginer one of the most significant teachers who have
inspired me during the beginning of my PhD, and accepted to go through the
pre-final draft of my thesis (long after having left academia) providing extremely
valuable feedbacks. Many thanks to Chiara Mazza for the fruitful collaboration
started during the summer 2009 which has lead to the joint work on Tesnière
Dependency Structures; and to Andreas van Cranenburgh, for the intense inter-
action towards the end of my project, and for the effort of proof-reading the thesis
and translating the abstract into Dutch.

Special thanks to Pieter Adriaans, Remko Scha, Khalil Sima’an, and Henk

xi

Zeevat from whom I’ve learned a lot since I came to Amsterdam for the MSc.
In the last few years they have continued supporting my work and frequently
provided me with valuable feedbacks in dedicated meetings and dry runs. Many
thanks also to the external members of the PhD committee Trevor Cohn and
Sylvain Kahane for their numerous comments and suggestions on the thesis.

I am grateful to other colleagues with whom I had the pleasure to build fruitful
discussions in Amsterdam and abroad: Tejaswini Deoskar, Yoav Goldberg, Gerold
Schneider, Djamé Seddah, and Reut Tsarfaty.

Next, I would like to express profound gratitude to my paranymphs Inés
Crespo and Umberto Grandi for their assistance in completing all the procedures
surrounding the end of my PhD, but above all for having represented solid figures
of support in times of struggle, and great companions in several activities we have
gone through the last few years.

A collective thank you to all the other colleagues at the ILLC, with whom
I have shared interesting conversations, coffees, and many laughs: Stéphane
Airiau, Sophie Arnoult, Cédric Dégremont, Ulle Endriss, Maŕıa Esteban Garcia,
Vanessa Ferdinand, Stefan Frank, Pietro Galliani, Nina Gierasimczuk, Davide
Grossi, Aline Honingh, Tikitu de Jager, Yurii Khomskii, Lena Kurzen, Daniele
Porello, Michael Repplinger, Raul Leal Rodriguez, Raquel Fernández Rovira, San-
chit Saraf, Mehrnoosh Sadrzadeh, Maria Spychalska, Jakub Szymanik, Joel and
Sara Uckelman, Fernando Raymundo Velazquez-Quesada, and Jacob Vosmaer.

I would like to also thank the ILLC administrators for their indispensable sup-
port: Karin Gigengack, Tanja Kassenaar, Ingrid van Loon, Peter van Ormondt,
and Marco Vervoort.

A big thank you to the Nuts Ultimate Frisbee teammates, for having shared
lot of fun practices and games throughout the last two years.

Finally I intend to express my affection and gratitude to all those people
who have continuously supported me during all these years and contributed to
enrich my life: my parents, Andrea and Marco Sangati, Irene Bertazzo, Paipin
Cheng, Winnie & Renée, Chiara Brachini, Daniil Umanski, Lisa Kollwelter, Mar-
got Colinet, Pablo Seban, Giulia Soravia, Martina Deana, Ermanno Miotto, Sara
Sambin, Tino Ginestri, and the Pablo Neruda group.

It is extremely difficult to give full acknowledgments to all the people who have
directly or indirectly contributed to the completion of my PhD, so I apologize if
someone has been accidentally omitted or hasn’t been given the appropriate rel-
evance.

Edinburgh Federico Sangati
November, 2011.

xii

The word of man is the most durable of all material.

Arthur Schopenhauer

Chapter 1
Introduction

1

2 Chapter 1. Introduction

1.1 Learning Language Structures
During the last decades, research in Natural Language Processing (NLP) seems
to have increasingly lost contact with linguistic theory, as Mark Steedman has
stated:

“[...] while from the 1950s to the 1980s, the information theoreticians and
statistical modelers among us used to make common cause with the linguists, we
have subsequently drifted apart.” (Steedman, 2008, p. 139)

The current thesis can be seen as a reaction to this observation: it aims at
building computational models of syntax based on a number of basic linguistic
theories showing that, contrary to common wisdom, their notions and concepts
can be highly beneficial to NLP. This work is not meant to provide any final
assessment for the validity of the theories under consideration, but should rather
be seen as an attempt to formalize and understand them better. A second goal
of this thesis is to contribute to the development of computer systems which aim
at solving linguistic tasks, for which syntax plays an important role.

In this introductory chapter we will provide some background to the ongoing
quest of discovering the hidden structures of language, and the role that compu-
tational models can play in accomplishing this goal.

1.1.1 The hidden structure of language
Language is one of the most acknowledged traits of human beings: it pervades in
everyday life, and it has existed across all cultures for thousands of generations.
Nevertheless, language remains one of the most controversial subjects of inquiry.
Language is in fact a vague concept, hard to map to a precise entity which can
be scientifically investigated. It is dynamic, as it changes in time and across
linguistic communities, and there is no way to isolate it as a whole: even if we
could sample all human utterances for the next 100 years we would only cover a
very small fraction of all possible language productions.

Moreover, language exists in different modalities, i.e., oral, gestural, and writ-
ten. Within each of these modalities, an external observer has access only to the
surface manifestation of language, i.e., sound, gestures, and text. But surface
information cannot fully account for what we describe as language: as in other
cognitive abilities, external manifestations are only the tip of the iceberg. The
structures1 underlying language productions remain well hidden,2 and although

1A language structure, in general, describes how the parts of a language production are
related and built into a whole.

2Although there is also some dispute about the actual existence of underlying structures in
language, we decided not to enter into this debate. It should suffice to say that language as
other complex dynamical systems is constantly shaped by many forces, and the regularity it

1.1. Learning Language Structures 3

regular patterns in the surface layer may provide useful clues for building hy-
potheses on the hidden ones, there is no precise way to verify if the linguistic
analysis matches the representation used by the speaker. This observation was
already made by Ferdinand de Saussure, who wrote about word categories (nouns,
adjectives, etc.):

“All these things exist in language, but as abstract entities; their study is
difficult because we never know exactly whether or not the awareness of speakers
goes as far as the analyses of the grammarian.” (de Saussure, 1915, p. 190)

1.1.2 Different perspectives on language
Language can be studied using a wide variety of methodologies. In theoretical
linguistics one of the most dominant modus operandi is the introspective approach
(Tesnière 1959, p. 37; Chomsky 1984, p. 44). Under this perspective, any person
who attempts to investigate language is not only seen as an external observer, but
also as an active language user. He/she is therefore able to construct hypotheses
on language structures based on internal intuitions, and assess how well they
generalize, relying on internal judgements.

In contrast to this approach, the investigation of language has included much
experimental research, whose objective is to validate hypotheses about the struc-
ture of language, based on experimental data obtained from language users per-
formance in specific tasks, such as sentence processing (Hale, 2006; Levy, 2007;
Frank and Bod, 2011), or acquisition of phonology and morphology (Boersma
and Hayes, 2001; Goldwater et al., 2007), as well as from brain activations on
linguistic stimuli (Bachrach, 2008).

But ultimately, both introspective and experimental approaches could provide
only a partial description of the investigated phenomenon. Language, in fact, is
a means of communication, and as such it is not confined to any specific organ
or individual. It is a dynamic system whose behavior can be explained only
when considering the system as a whole, including the speaking community, the
communicative interactions established between its members, and the external
environment they share. Fortunately, there are other approaches to language
which try to give accounts for its dynamic aspects. These include fields such as
language evolution (Lieberman, 1975; Zuidema, 2005), sociolinguistics (Labov,
1972; Wardhaugh, 2006), historical linguistics, and language change (Lass, 1997).

The abundance of perspectives on the study of language reflects the enormous
complexity of this phenomenon. As all of these theories are small pieces of the
same puzzle, it is important to develop methodologies which attempt to integrate
them in order to build a basis for a unified theory. Unfortunately, in the current

exhibits is a strong evidence for the existence of underlying structures.

4 Chapter 1. Introduction

state of affairs, there is a tendency for each perspective to develop independently
from the others.

The current work is not entirely excluded from this critique, as the models
which will be presented are all based on static perspectives on language and
they only focus on syntax. However, one of the primary goals of this work is to
provide a bridge between computational models and traditional syntactic theories
of language, two approaches which are increasingly diverging from each other.
We are strongly in favor of a more shared agenda between syntacticians and
computational linguists and in §1.4 we illustrate a possible way to achieve this.

1.2 Syntactic structures of language
In this thesis we will focus on a number of syntactic models of language. Syntax
is the study of the rules governing the construction of phrases and sentences
in natural languages. Most existing syntactic theories analyze language at an
intermediate level: they assume words as the elementary units of production, and
sentences as the largest elements under investigation. This is a strong simplifying
assumption, as there are processes both below word level and above sentence level,
which cannot be considered entirely independent from syntax. This separation
is justified as the first step for isolating the phenomenon under study, i.e., the
rules for describing how words are put together to form sentences. Ultimately,
any syntactic theory should still define bridges to other levels of analysis, such as
phonetics, phonology and morphology (below word level), as well as pragmatics,
prosody and discourse-processing (above word and sentence level).

Semantics is another linguistic field which studies the meaning of language
productions. Similarly to syntax, semantics typically analyzes language at the
intermediate level between word and sentence boundaries. As there is a great
amount of overlapping concepts between the two fields, their separation is some-
how artificial, and varies upon the definition of the linguistic theories within the
two domains.

1.2.1 Syntactic representation and generative processes
Although the tradition of investigating language syntax can be dated back to
Panini’s work (circa 5th century BC), the discussion about which theory we should
use is still open. Any syntactic theory presupposes a certain type of structure
beyond the directly observable utterances, and attempts to explain how to map
the surface form, i.e., the sequence of words in the sentence, into the hidden
representation. It is therefore important to distinguish between the syntactic
representation of a theory, i.e., the type of syntactic structures it presupposes, and
its generative model, i.e., the description of the way to construct them. Certain
theories may remain incomplete in this respect, typically focusing only on the

1.2. Syntactic structures of language 5

representation (e.g., Tesnière, 1959). A complete syntactic theory should aim
at describing both aspects as formally as possible, in order to be unambiguous.
We will start by introducing the representational part of syntax, and further on
(in §1.3) proceed to describe its generative account.

1.2.2 Different representations
In this thesis we will adopt two main classes of syntactic theories, characterized by
two different representations: phrase-structure (PS, also known as constituency
structures), and dependency-structure (DS). Historically, these two theories have
emerged around the same time during the 1950s: PS in the U.S. with Noam
Chomsky (1957), and DS in continental Europe with the somewhat lesser known
Lucien Tesnière (1959). Neither Chomsky nor Tesnière formulated their respec-
tive theories from scratch, but owed a lot to previous work: Chomsky inherited
the notion of (Immediate) Constituency from Wundt (1900), Bloomfield (1933),
Wells (1947), and Harris (1951), while Tesnière borrowed several concepts and
methods from de Saussure (1915).

In parallel and after the foundational work of Chomsky and Tesnière, a vast
number of other syntactic theories have been developed, considered more deep
than either PS or DS, such as Categorial Grammars (Ajdukiewicz, 1935; Bar-
Hillel, 1953), LFG (Bresnan, 2000; Dalrymple, 2001), HPSG (Pollard et al., 1994),
TAG (Joshi, 1985), Word Grammars (Sugayama and Hudson, 2005), Meaning
Text Theory (Mel’čuk, 1988) and many others (we will review some of them
in §4.4 and §5.6). Our choice to focus on DS and PS is justified by the need
to compromise between the possibility of defining data-driven parsing algorithms
on the one hand, and using linguistically adequate representations on the other.
Although there is continuous effort to parse with deep linguistic analyses (e.g.,
Riezler et al., 2002; Bod and Kaplan, 2003), it is not easy to translate these
formalisms into data-driven parsing models, both for their complexity, and for
the shortage of corpora directly annotated with these representations.

However, in our approach, rather than committing to a single syntactic analy-
sis, we are interested in taking several approaches in parallel. We are in fact quite
agnostic about what is the “correct representation”, and we therefore advocate
for the integration of different perspectives as a way to obtain a more complete
syntactic description. In the remaining part of this section we will introduce and
compare the PS and DS representations.

1.2.3 Phrase-Structure
In a phrase-structure (PS) representation, the words of a sentence are grouped
in hierarchical constituents (or phrases): a sequence of words, functioning as a
single unit, is grouped into a basic constituent; adjacent constituents are grouped
into higher phrases forming a hierarchical structure, whose highest level spans

6 Chapter 1. Introduction

all the words in the sentence. For instance, the sentence “My old friend sang
this nice song” can be mapped into the PS reported in figure 1.1. A more typical
(yet isomorphic) tree representation for this structure is shown in figure 1.2, where
every non-terminal node uniquely maps to a box in the representation of figure 1.1.
The non-terminal nodes in a PS tree are usually assigned categorial labels, such
as NP (noun phrase), and VP (verb phrase). A version of the same tree with
such labels is illustrated in figure 1.4 (left), and will become more relevant when
we will introduce a generative account for PS.

My old friend sang this nice song

Figure 1.1: Structure of the sentence “My old friend sang this nice song”, accord-
ing to a phrase-structure (PS) representation.

My old friend sang

this nice song

Figure 1.2: Example of the PS in figure 1.1 in an equivalent tree representation:
each box in the former representation corresponds to a non-terminal node of this
tree.

1.2.4 Dependency-Structure
In a dependency-structure (DS) representation, words of a sentence are related to
one another (instead of being grouped together as in PS). For every two words
A and B in the sentence, there can be a dependency relation. If this relation
exists, we say that one of the two words, say B, is a dependent or modifier of A,
while A is the governor or head of B. Roughly speaking, B is a dependent of A
if its presence is only justified by the presence of A, and only if B modifies the
meaning of A. All words in a sentence should be connected directly or indirectly
by dependency relations forming a dependency tree, having a single word as the
root of the structure (usually the main verb of the sentence), which governs
directly or indirectly all other words.

The same example sentence introduced in figure 1.1 can be assigned the DS
in figure 1.3. The highest element of the sentence is the verb (sang), which

1.3. Generative models of syntactic structures 7

has two direct dependents: the actor of the singing (friend) and what has been
sung (song). Moreover, the noun ‘friend’ is modified by two dependents (my, old),
which specify further qualities of the noun. Analogously ‘song’ is modified by two
other dependents (this, nice). It is important to remark that in this simplified
DS representation the order of the words is not preserved, but in the DS trees we
will employ, word order will be specified (see §2.1.2 and chapter 4).

sang

friend

my old

song

this nice

Figure 1.3: Dependency-Structure of the sentence “My old friend sang this nice
song”, according to Tesnière notation (Tesnière, 1959, p. 14).

1.2.5 Relations between PS and DS
PS and DS are based on different types of structure. PS assumes the notion of
hierarchical phrases as abstract entities at intermediate levels of the tree structure.
No such grouping is postulated in DS, as words are placed in all the nodes of the
tree, and relations between words are the only assumed abstract entities. But we
argue that there is no reason to claim the exclusive validity of PS or DS, since
each notation focuses on a specific aspect of syntax, viz. grouping vs. relations.

There are, however, more similarities between PS and DS than apparent from
a first look. In fact, as will become more clear in later chapters, the two sys-
tems are not incompatible with one another, as it is possible to define specific
transformations for converting one representation into the other (see §4.3.1), and
even define syntactic structures which include both notions of constituents and
dependencies (see chapter 5).

1.3 Generative models of syntactic structures
After defining the structural representation of sentences, a syntactic theory should
provide a rigorous account for how sentence structures are constructed. The
seminal work of Chomsky (1956, 1957) has represented a major turning point in
modern linguistics in this sense, as it was the first successful attempt of deriving a
formal theory of syntax, characterized by the introduction of generative models,3
which can be described as algebraic machineries for deriving sentence structures.

3The work of Harris (1951) includes the first description of generative grammars for syntax,
but Chomsky’s formulation is more complete and formal.

8 Chapter 1. Introduction

1.3.1 Context-Free Grammars
Chomsky (1957, ch.4) assumes labeled phrase-structures as the underlying repre-
sentation of language syntax, such as the one illustrated in the tree of figure 1.4
(left), and describes a system for generating them, also known as Context-Free
Grammar (CFG). A CFG is defined4 as a finite set of rewriting rules, such as the
ones illustrated in figure 1.4 (right), each characterized by a single non-terminal
on the left-hand side of the arrow, which rewrites to any number of non-terminals
and words on the right-hand side of the arrow. Each CFG has a unique starting
non-terminal symbol (typically S) which constitutes the root category of all PS
trees the grammar can generate.

A generative model based on a CFG gives an account for how to generate
all sentence structures which are compatible with the grammar. The generative
process starts with the starting symbol S in the grammar, and chooses a rule
rS with S as the left-hand side. This rule will constitute the starting branching
at the root (top) of the tree. Afterwards, for any non-terminal symbol X at
the frontier of the partially constructed tree, the model chooses a rule rX for
extending it. This last step is iterated until all the nodes at the bottom of the
tree are words (also called terminals, as they cannot rewrite to anything else).

S

NP

My old friend

V P

sang NP

this nice song

S Ð→ NP V P
NP Ð→ My old friend
V P Ð→ sang NP
NP Ð→ this nice song

Figure 1.4: Left: the labeled version of the PS tree in figure 1.2. Right: the
Context-Free Grammar for generating the PS tree.

1.3.2 Generalized models
So far, we have described generative models only as unidirectional processes:
given a grammar, the model can produce all structures compatible with it. But
the process can be easily reversed: given a set of sentence structures (i.e., a
treebank), it is possible to extract a grammar which can generate all observed
trees, and, if general enough, other unobserved ones.

4For a more formal definition of CFGs see §2.2.2.

1.3. Generative models of syntactic structures 9

In the central chapters of this thesis (3, 4, 5), we will take this reverse perspec-
tive and make use of hand-annotated treebanks for extracting several generative
grammars.

Models for PS Besides Context-Free Grammars, there is an infinity of other
generative models for PS that we could take into account. In particular, there
are several limitations implicit in a CFG we would like to solve. A CFG is in
fact subject to an under-generation problem: the nodes in the right-hand side of
a rule are inseparable from each other, as they are all attached to the derived
tree at the same time, once the rule is applied; a grammar can therefore not
generalize over its rules. But the CFG rules needed to describe natural sentences
can get arbitrarily long,5 and it is impossible to define them all as the number of
possible combinations is infinite. At the same time, the derivation process makes
a strong independence assumption when combining the rules, as every choice is
only determined by a single node, i.e., the left-hand side of the rule.6 This leads to
an over-generation problem: a CFG usually produces, for a given sentence, many
syntactic structures which are not acceptable according to human judgement.

In chapter 2 we will explore a range of different generative models which try to
solve such limitations: for instance we will consider models which generate a PS
tree one node at a time (instead of attaching all symbols in the right-hand side of
a CFG rule at once) and conditioning every decision on more than a single node
present in the partially derived tree, as initially proposed by Magerman (1995),
Collins (1997), and Charniak (1997). For each different model, we will need to
define specific elementary units (fragments), and specific operations to combine
them into trees. According to the reversed perspective, for each combinatory
operation there must be a corresponding deconstruction operation. Given a tree-
bank we can therefore decompose all the trees into a set of fragments in order to
derive our grammar.

In particular, in chapter 3 we will focus on one specific generative grammar
based on the Data-Oriented Parsing framework (Bod et al., 2003), in which the
elementary units are subtrees of unrestricted size extracted from a treebank.

Models for DS More generally, we can also come up with generative models
for dependency-structures introduced in §1.2.4. The work of Tesnière (1959), is
neither formal nor generative, since it does not provide any algebraic machinery
for describing how to combine words into a sentence structure. This does not
mean that it is not possible to derive a formal-generative model based on this
theory. Like PS, in fact, DS can be described as well-formed trees, and this

5There is in principle no upper-bound on the number of nodes in the right-hand side. For
instance a coordination structure can have an unlimited number of elements which are coordi-
nated.

6The severity of this independence assumption can be reduced by including contextual in-
formation into the non-terminal labels of the grammar, as discussed in §3.2.2.

10 Chapter 1. Introduction

can allow us to define specific generative models for this representation. In the
last two decades, as the DS representation has become more widely studied in
computational linguistics, several generative models have been proposed (e.g.,
Eisner, 1996a,b). In chapter 4 we will review some of these and describe a novel
model for parsing DS.

However, in order to build a supervised model for dependency-structure, we
need to have access to a collection of consistently annotated DS trees. As there
is no significant manually annotated treebank for the DS representation, we will
make use of standard methodology for automatically converting PS treebanks
into DS notation (see §4.3.1).

However, the resulting DS representation misses several of the fundamental
features which were proposed in the original work of Tesnière (1959), for instance,
it does not have a proper way to represent coordination constructions (e.g., “John
and Mary”). The main contribution of chapter 5 is to propose a more elaborated
version of dependency-structure which we believe to be more complete with re-
spect to Tesnière’s work, and therefore named Tesnière Dependency-Structure
(TDS). In particular we will define a conversion procedure for transforming a PS
tree into a TDS, and propose a generative model for this representation.

1.3.3 Probabilistic generative models
So far we have described generative processes which are purely symbolic. A sym-
bolic grammar assigns equal degree of grammaticality7 to a set of sentences, i.e.,
the ones it can generate. This is in line with Chomsky’s competence paradigm
(Chomsky, 1965), according to which native speakers have the internal ability to
decide whether a sentence is grammatical or not. This binary perspective has
raised much debate in the last few decades, leading to a performance approach
which targets the external nature of language communication (Levelt, 1974; Scha,
1990; Abney, 1996): language users produce all sort of utterances including those
which are not judged entirely sound, but nonetheless constitute real language pro-
ductions. According to this perspective the grammaticality of a sentence should
range on a continuum rather than discretely.8

There are several possible ways to provide a generative model with a notion of
grammatical continuity over the generated sentences (and sentence structures).
The most commonly adopted strategy, which is followed in this thesis, is to aug-
ment the model with a probabilistic component: at each step of the derivation
process, all available alternative decisions admitted by the grammar are placed

7The notion of grammaticality of a sentence is here tightly related to the notion of accept-
ability.

8This graded notion of grammaticality should account for all the factors which make certain
sentences more plausible than others. It is in fact common that between two equally sound
sentences differing in length, the shorter one is regarded as more acceptable (grammatical)
than the other.

1.4. Computational models of syntax 11

in a probabilistic distribution. This gives the means to favor certain choices over
others (if the distribution is not uniform). Constructing and validating a prob-
abilistic generative model is nevertheless a difficult task which requires a careful
analysis for the delicate decisions belonging to both symbolic and statistical do-
mains as Klavans and Resnik have stated:

“[...] combining symbolic and statistical approaches to language is a kind of
balancing act in which the symbolic and the statistical are properly thought of
as parts, both essential, of a unified whole.” (Klavans and Resnik, 1996, p. x)

One of the major benefits of adopting probabilistic models on top of sym-
bolic ones is that they allow for solving grammatical ambiguities. In fact, the
grammars which will be extracted from large treebanks easily become extremely
productive: they generate many novel trees, and many different structures yield-
ing the same sentence (see §2.1.1). A probabilistic model implicitly defines a
probability distribution over sentence structures it can generate (obtained from
the probability of each single decision in the derivation process), and hence it
can place the various alternative structures for a certain sentence in a continuous
scale of grammaticality. This can enable us to select the most plausible structure
according to the model as the most grammatical one.

The process of disambiguating between possible valid structures of the same
sentence is essential for two main reasons. First of all we want to be able to
evaluate the syntactic theory under investigation, and we can do this only if we
have a single correct analysis (or a restricted set of analyses) for a given sentence.
Second, syntactic disambiguation is considered one of the most important tasks
for developing natural language processing applications.

1.4 Computational models of syntax
As this thesis aims at building computational models of syntax, it is worth reflect-
ing what we mean by them and what is their relevance in the study of language
structures.

Given any formal theory about a real-world phenomenon, we can build a
computational model (CM) for implementing and testing it. The theory needs
to be formally defined in order to be integrated into the CM, viz. it needs to
describe precisely how the CM should map any set of partial information to some
informative counterpart. For each experiment, we provide the CM with partial
information of the observed system, and ask the CM to return novel information
about the system. Finally, we can quantify in how far the predicted outcome
differs from the observation.

During the last few decades computer models have been adopted in all sci-
entific fields: from physics, to astronomy, chemistry and biology, computational

12 Chapter 1. Introduction

approaches are currently used to validate a full range of scientific theories. One
of the historical examples of computational models in chemistry is DENDRAL
(Lindsay et al., 1980), a computer system which aims at determining the molec-
ular structure of an organic chemical sample, given its spectroscopic data. The
system has strong background knowledge about chemistry laws, i.e., how atoms
combine with each other. For instance, it knows that carbon atoms have valence
four, nitrogen valence three or five, oxygen valence two, and so on. According to
these chemistry laws, the system could combine, for example, six carbon atoms,
thirteen hydrogen, one nitrogen, and two oxygen atoms into over 10,000 different
(C6H13NO2) structural descriptions (Buchanan, 1982, p.135). All the CM has to
do is to acquire the surface information of the chemical sample (i.e., the spectro-
scopic data), and derive what is the most likely chemical structure according to
the theory.

In our case a computational models needs to implement some syntactic the-
ory, both in its representational and generative aspect, and be able to derive the
most likely structure of an input sentence given its surface form. There is, how-
ever, a striking analogy with the DENDRAL project illustrated before: where in
chemistry a model attempts to predict how atoms connect with one another, a
syntactic model does the same with words as elementary blocks. It is no coin-
cidence that terms like valence have been adopted in linguistic theories, as the
combinatorial nature of words strongly resembles that of chemical elements.9 But
there is also a major difference between the two approaches: while in chemistry
there is a wide consensus about the molecular description of organic material and
the methodology to determine it, in syntax there is no agreement on underlying
structures, and no ultimate way to verify them.

What is then the role of computational models of syntax? We believe that a
CM of syntax (and more generally of language) can provide a major contribution
to linguistic theories. The possibility of implementing a number of syntactic
theories into a CM gives us the means to effectively predict the “behavior” of those
theories, and although it will not provide any final judgement for their validity, it
would enable us to create a common ground for comparing and evaluating them.

Building a computational model of syntax involves interdependent efforts be-
tween syntacticians and computational linguists. The role of the syntacticians is,
as we see it, to define the linguistic theory under enquiry. This includes i) the
formulation of the guidelines for annotating a big set of sentences into the as-
sumed representation (the treebank), ii) the description of the generative process
for constructing such structures according to the theory (implicitly defining a way
to extract a grammar from the treebank) and iii) the definition of the evaluation

9The analogy between language syntax and chemistry is not new: it has been mentioned by
several linguists including Jespersen (1937, p. 3), Tesnière (1959, p. 238), who imported the
notion of valence (see p. 109 and §5.2.2), and Chomsky (1957, p. 44).

1.4. Computational models of syntax 13

criteria.
The role of a computational linguist is to implement the linguistic theory into a

computational model. This includes i) the definition of a consistent data structure
for representing syntactic constructions, ii) the implementation of an algorithm
for extracting the fragments underlying the grammar from the training treebank,
iii) the implementation of a statistical parser (or any alternative disambiguation
machinery) for obtaining the most likely structure of novel sentences according to
the (probabilistic) model, and iv) the automatization of the evaluation procedure.

In practice, such division of tasks does not need to be sharply defined, and
it is even desirable that all points from either side are discussed from both per-
spectives (and, of course, an individual researcher can be both a linguist and
a computational linguist). It is unfortunately the case, however, that there is
relatively little collaboration between people working in the two fields (see Kla-
vans and Resnik, 1996), as linguists do not typically rely on quantitative methods
for evaluating their hypotheses, and computational linguists are usually more at-
tracted by the performance of a model rather than by its linguistic implications.
This description is of course rather simplistic and in many respects imprecise, as
there are several exceptions to this view (see for instance Baldwin and Kordoni,
2009), but it is nonetheless a widely recognized tendency.

We believe that CL is currently facing the challenge to bridge the gap between
theoretical and computational research on language. Regarding parsing, the need
to integrate the two perspectives is well illustrated by Mark Johnson:

“[...]statistical parsers define the probability of a parse in terms of its (statis-
tical) features or properties, and a parser designer needs to choose which features
their parser will use, and many of these features reflect at least an intuitive un-
derstanding of linguistic dependencies.” (Johnson, 2009)

We hope that the current thesis could help at least in small part to meet those
challenges: in particular we hope that our effort to formulate theory-independent
(probabilistic) generative models (chapter 2) and our attempt to explore differ-
ent syntactic representations would encourage more discussion, especially with
syntacticians. They could in fact greatly contribute to improving computational
models by becoming principal actors in the definition of the syntactic models and
formulating more sound evaluation criteria.

14 Chapter 1. Introduction

1.5 Thesis overview
In the following, we present a short overview of the remaining chapters of this
thesis.

Chapter 2 In this chapter we illustrate a general paradigm for the formal
definition of generative models based on generic tree structure representations.
This chapter is rather technical but is intended to present the general methodology
which is adopted in the specific models proposed in the rest of the thesis. All
the specific models which are presented in later chapters (3, 4, 5), can be in fact
seen as instantiations of this general methodology. It is however possible for the
reader to skip this chapter, as its content is not indispensable for understanding
the rest of the thesis. The chapter is divided in two parts: the first part focuses on
the definition of symbolic tree-generating models, and presents several grammar
examples, including some which will be used in the rest of the thesis. The second
part explains how to extend a symbolic model with a probabilistic component,
and it introduces a general reranking technique for simulating the behavior of a
parser based on a given probabilistic tree-generating grammar.

Chapter 3 In the third chapter we focus on the PS representation and present
a probabilistic generative model based on the Data-Oriented Parsing framework
(Bod et al., 2003). We first define a novel way for extracting a large set of repre-
sentative fragments from the training corpus, which will constitute the symbolic
grammatical backbone of the model. We then show how to define several proba-
bilistic instantiations of such a symbolic grammar. We test the system on differ-
ent treebanks (for several languages) using a standard CYK parser, via a specific
grammar transformation. The content of this chapter is partially extracted from
the following publications:

Sangati et al. (2010) : Federico Sangati, Willem Zuidema, and Rens Bod. Ef-
ficiently extract recurring tree fragments from large treebanks. In Proceed-
ings of the Seventh conference on International Language Resources and
Evaluation (LREC), Valletta, Malta, May 2010.

Sangati and Zuidema (2011) : Federico Sangati and Willem Zuidema. Ac-
curate Parsing with Compact Tree-Substitution Grammars: Double-DOP.
In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 84–95, Edinburgh, July 2011.

Chapter 4 In this chapter we focus on the DS representation. In the intro-
ductory part we present the main differences and commonalities between PS and
DS. In the rest of the chapter we explain in depth how to use a reranking tech-
nique for testing a number of probabilistic models of DSs, based on bi-lexical

1.5. Thesis overview 15

grammars (Eisner, 1996a,b). We finally test how the proposed models perform
on the standard dependency parsing task for the English WSJ treebank (Marcus
et al., 1999). The content of this chapter is partially extracted from the following
publication:

Sangati et al. (2009) : Federico Sangati, Willem Zuidema, and Rens Bod. A
generative reranking model for dependency parsing. In Proceedings of the
11th International Conference on Parsing Technologies (IWPT), pages 238–
241, Paris, France, October 2009.

Chapter 5 In this chapter, we introduce a novel syntactic representation, i.e.,
the Tesnière Dependency-Structure (TDS). This representation is the result of
a formalization effort of the dependency-structure scheme proposed by Tesnière
(1959). In order to obtain a large corpus of TDS trees, we define an automatic
procedure for converting the English Penn WSJ treebank into this novel represen-
tation. We introduce a generative model for parsing TDS trees, and evaluate it
using a reranking methodology on three new proposed metrics. Finally we discuss
the main advantages of the TDS scheme with respect to the original PS format, to
the standardly adopted DS representation, and other proposed treebanks which
have resulted from manual or automatic conversion of the same treebank. The
content of this chapter is partially extracted from the following publications:

Sangati and Mazza (2009) : Federico Sangati and Chiara Mazza. An English
Dependency Treebank à la Tesnière. In The 8th International Workshop on
Treebanks and Linguistic Theories (TLT), pages 173–184, Milan, Italy, 2009.

Sangati (2010) : Federico Sangati. A probabilistic generative model for an
intermediate constituency-dependency representation. In Proceedings of the
ACL Student Research Workshop, pages 19–24, Uppsala, Sweden, July 2010.

Chapter 6 The concluding chapter is dedicated to the final remarks about this
thesis, and summarizes its main contributions.

Velvet imperative – “Name the sentence
Parts in ‘He did give us fish to eat.’ ”
Echoes, seeking in syntax of synapse, sense.
They sit before me in the present, tense,
Except for those who, vaulting to the feat,
Sit convicted (subject, “He” – and complete;
“Us” the object, indirectly; recompense
Of fish, the direct object; “fish to eat”
Shows the infinitive can modify.)
Despair for him who cannot comprehend?
Who cannot in the pattern codify
For wonder that objective case can bend
To subject? We who know our truth react,
And never see the substance of the fact.

Bernard Tanner, 1963

Chapter 2
Generalized Tree-Generating Grammars

17

18 Chapter 2. Generalized Tree-Generating Grammars

2.1 Introduction
This chapter is intended to provide the reader with a general description of prob-
abilistic models for learning syntactic tree structures. The learning methods
adopted in this thesis are purely supervised, meaning that each system under
consideration is initially presented with a large number of syntactically anno-
tated natural language sentences (the training treebank), and the task is to learn
how to produce novel syntactic tree structures for unobserved sentences. This
methodology is complementary to unsupervised approaches which aim at deriv-
ing syntactic structures from unannotated sentences (e.g., Klein, 2005; Bod, 2006;
Seginer, 2007; Blunsom and Cohn, 2010).

As in this thesis we will be dealing with a number of different syntactic tree
structures, and each representation can be instantiated in several generative mod-
els,1 we are interested in presenting a general methodology which is applicable
to them all. The possibility of working with a general paradigm introduces a
number of advantages: i) it allows for comparing more easily the various models
as they can be presented with a unified notation; ii) it facilitates the process
of implementing novel generative models by reducing the effort required for the
actual definition of the model, as the representation of the event space is unique
within the whole framework; iii) together with the introduction of a reranking
methodology, all the models can share a single evaluation procedure.

The main contributions of this chapter are: the introduction of symbolic tree-
generating grammars (§2.2), their probabilistic extension (§2.3), and the descrip-
tion of a reranking methodology for parsing (§2.4). This general perspective on
parsing tree structures is reminiscent of other formalisms such as the Simulate
Annealing framework (Sampson et al., 1989), the Probabilistic Feature Gram-
mars (Goodman, 1998, p.185), and the Polarized Unification Grammars (Kahane,
2006).

2.1.1 Symbolic and Probabilistic models
The process of defining a computational model of syntax can be divided into two
steps which can be treated in large measure separately. In the first phase we have
the extraction of a symbolic grammar (§2.2) from the treebank, and in the second
one its stochastic instantiation (§2.3).

A symbolic grammar refers to the algebraic machinery used to derive a sen-
tence tree structure by combining elementary syntactic units. It is generally

1The terms generative model and generative grammar will be often used in this chapter.
The two terms are often interchangeable, although there is a subtle difference: while a model
refers to an abstract machinery to generate syntactic structures, a grammar is a more specific
instantiation. For instance we could have two separate grammars extracted from different
treebanks, instantiating the same model.

2.1. Introduction 19

composed of two primitives: a set of atomic fragments2 (the lexico-syntactic
units defined over a set of symbols), and a set of recombining operations over
the fragments. The system uses these two primitives to generate the observed
tree structures, and, if general enough, novel tree structures for unobserved sen-
tences.

It is often the case that, when a grammar succeeds in covering a big set of
sentences, it also increases in ambiguity, so that it generates many different struc-
tures for a given sentence. A certain degree of ambiguity is in general necessary,
since there are plenty of cases where the same sentence allows for different in-
terpretations which map to separate syntactic analyses. Frazier (1979) gives the
following example (2.1) with two interpretations (2.2, 2.3).

(2.1) They told the girl that Bill liked the story.

(2.2) They told the girl [that Bill liked the story].

(2.3) They told [the girl that Bill liked] the story.

A more problematic type of ambiguity is encountered when the chosen sym-
bolic grammar tends to over-generalize, and allows for a variety of analyses which
are rejected with high confidence by human judgment. A typical example is pre-
sented in example 2.4 (Martin et al., 1987). In this example, even when imposing
how to group the words in the sentence into the correct chunks3 and assigning
the exact categories to these chunks (as in example 2.5), there is a combinatorial
explosion of (very unlikely) syntactic analyses that are licensed by commonly used
symbolic grammars. Figure 2.1 shows some of the ambiguous relations typically
licensed by such grammars.

(2.4) List the sales of products produced in 1973 with the products produced in
1972.

(2.5) [List]V [the sales]NP [of products]PP [produced]V [in 1973]PP [with the
products]PP [produced]V [in 1972]PP.4

In order to resolve this type of ambiguity, a stochastic component is introduced
in the second phase of the definition of our models. A stochastic model, in fact,
defines a probability distribution over the possible structures yielding a specific
sentence, and allows us to select the most probable one as the one that has highest
chance to be correct according to the model. In §2.3 we will illustrate possible

2We will use the general term ‘fragment’ to indicate a lexico-syntactic unit of a grammar.
Depending on the specific model, a fragment can refer to an abstract grammatical rule or a
production including lexical items.

3A chunk includes a content word and any number of functional words. See also §5.2.2.
4V stands for verb, NP for noun phrase, and PP for prepositional phrase.

20 Chapter 2. Generalized Tree-Generating Grammars

V

List

NP

the
sales

PP

of
products

V

produced

PP

in
1973

PP

with
the

products

V

produced

PP

in
1972

Figure 2.1: Example of an ambiguous sentence. Each edge indicates a possible
syntactic relation between two chunks. For instance ‘in 1973’ could refer to ‘pro-
duced’ (as in something produced in 1973) or to ‘List’ (as in List something in
1973). Dashed lines indicate unambiguous relations. The combinatorial explo-
sion of syntactic analysis derives from the presence of four prepositional phrases
(PP), each being a possible argument of any preceding verb.

ways of estimating the probability distribution of sentence structures given an
underlying symbolic grammar.

A probabilistic model can be implemented by a parser which can be used
to obtain the most likely syntactic structure of a given sentence according to the
model. However, a parser is usually tied to a specific model and a specific syntactic
representation. As the aim of this chapter is to describe a general methodology,
we will propose a reranking framework (cf. §2.4) which can allow us to evaluate
different probabilistic models across various syntactic tree representations.

This generalization will become extremely useful in the later chapters where
we will study how to model different syntactic schemes (DS in chapter 4, and TDS
in chapter 5). Although each representation imposes its idiosyncratic constraints
on the implementation of a specific learning model, we will show how it will
be possible to instantiate the general reranking paradigm to each of these cases
with relatively little effort. Regarding PS, in chapter 3 we will describe how to
implement a full parser model to implement the specific probabilistic grammar
under investigation.

2.1.2 Tree structures
In the current chapter, in line with the goal of having a general treatment of mod-
els of syntax, we will choose to generalize from any syntactic tree representation.
A tree structure is defined as a connected acyclic graph, with a single vertex as a
root, and a defined ordering among the children of each node.

Using a general notion of tree structure allows us to abstract over the details of

2.1. Introduction 21

the syntactic tree representations which we are going to describe in the following
chapters. There is only one important structural difference between PS trees
and (T)DS trees: because in (T)DS trees all internal nodes are also words, all
children of a node are also ordered with respect to the parent node (according
to the linear order of the words in the sentence).5,6 Two examples of generic tree
structures with and without ordering between each node and its parent are shown
in figures 2.2 and 2.3. In these examples we have explicitly chosen to use abstract
node labels and avoid any difference between terminals {B,F,G,H, I,K,L} and
non-terminals {A,C,D,J}. In the current chapter the non-ordered tree version
(figure 2.2) will be mainly adopted.

A

B C

F G H

D

I

A

J

K L

Figure 2.2: A generic tree structures without ordering between a node and its
parent. This structure defines a partial order between the nodes.

A

B⪦ C⪦ D⪧ A⪧

F⪦ G⪧ H⪧ I⪦ J⪧

K⪦ L⪧

Figure 2.3: A generic tree structures with ordering between a node and its parent.
The order between any node (excluding the root) and its parent is marked by
means of ⪦ (preceding relation) or ⪧ (following relation). This structure defines
a linear order (total order) between all the nodes.

5In the original formulation of dependency-structures (Tesnière, 1959) the linear order of the
words was not taken into consideration. See also §5.2.1.

6TDS trees are also a bit different structurally from DS, since each node can be expanded to
multiple tree structures by means of coordination (see §5.2.3). Although this will add a certain
degree of complexity in the structure, the overall learning scheme will remain the same as in
PS and DS.

22 Chapter 2. Generalized Tree-Generating Grammars

2.2 Symbolic Generative Models for Trees
A symbolic tree-generating grammar can be defined as follows:

2.2.1. Definition. A symbolic tree-generating grammar G is a tuple:

G = ⟨N ,A,⊙,⊕,⊘,⍟,m,F1, . . . , Fm,C1, . . . ,Cm,O1, . . . ,Om⟩

where N is a finite set of symbols (or nodes), A ⊂ N a set of artificial symbols,
⊙ ∈ A the start symbol, ⊕ ∈ A the stop symbol, ⊘ ∈ A the null symbol, ⍟ ∈ A
the wild-card symbol, m ∈ N≥1 the number of operations allowed in the grammar,
Fi (i ∈ {1, . . .m}) a finite list (or class7) of elementary fragments, Ci a finite list
(or class) of conditioning contexts such that ∣Fi∣ = ∣Ci∣, and Oi a compositional
operation that can apply only to fragments in Fi and conditioning contexts in Ci.

A generative model implementing a symbolic grammar is able to derive a
tree structure through a series of generative events. Each generative event mod-
ifies a partially derived structure by means of a specific compositional operation
introducing a new elementary fragment. In order for the operation to apply,
some specific part of the generated structure, i.e., the conditioning context, must
uniquely specify the site where the fragment is introduced. Given a model, each
fragment fi,j ∈ Fi is uniquely mapped to a specific conditioning context ci,j ∈ Ci.

2.2.1 The event space
An elementary fragment represents a new piece of the tree introduced by a gener-
ative event. It is defined in the general case as a multiset of nodes; if empty, the
corresponding operation is a transformation8 of the current tree: no novel nodes
are introduced in the structure. Figure 2.4 presents 5 examples of generally valid
fragments.

Every class of fragments Fi must characterize the topology of each of its mem-
bers fi,j, i.e., the pairwise relations between the nodes in fi,j. When the nodes
form a tree structure, the edges implicitly define these relations. In other cases
the relations need to be clearly specified. For instance the fragment (b) in figure
2.4 represents a sequence of nodes which do not form a tree structure.9 Such
a list of nodes is often used (without dotted edges) in later examples to define
a sequence of adjacent siblings, which will share the same parent node already
present in the partially derived tree. It is important to specify that such relations

7We will generally use the term list to refer to an enumeration of elements (duplicates
allowed), while class will be used to refer to the set of the elements in the list. We have chosen
this convention to allow a unique mapping between each fi,j ∈ Fi and ci,j ∈ Ci specified by the
index j.

8For an example of a transformation see example 2.2.8 at page 36.
9In order to be a tree structure the four daughters would need a parent node.

2.2. Symbolic Generative Models for Trees 23

should hold right after the operation is applied, but not necessarily after the tree
structure is completed. In fact other generative events might break these rela-
tions by introducing novel nodes in the structure. The class Fi can characterize
its members imposing a set of properties. For instance a fragment class might
specify that no more than 2 nodes are allowed, or that all its fragments are trees.

⊕ B C D A

⊙

A

B

⊕

A

B C

F G H

(a) (b) (c) (d) (e)

Figure 2.4: Examples of 5 elementary fragments.

2.2.2 The conditioning context
A conditioning context (in short context) describes a part of the structure which
has been previously generated (therefore also sometimes referred to as a history).

Differently from fragments, each context is defined as a multiset containing
one or more nodes (no empty contexts are allowed) connected in a tree structure.
As for Fi, a model may define for a class Ci of contexts possible constraints on the
structure, while the topology (relations between the nodes) is always implicitly
defined by the tree structure.

Figure 2.5 shows 6 possible conditioning contexts. When defining a context, a
model can introduce an arbitrary number of check conditions, which are shown in
the contexts by means of two artificial nodes: the null symbol ⊘ which represent
the absence of a node, and the wild-card node ⍟ with represent the presence of
an unspecified node. For instance one could enforce that in a certain context, a
certain node A does not have any daughters (figure 2.5-b); that nodes B and D are
daughters of an unspecified parent node10 (figure 2.5-c); that A is A’s rightmost
daughter (figure 2.5-d); that C and D are adjacent daughters of A, without any
node in between (figure 2.5-e); and finally that F and H are daughters of A with
one unspecified daughter in between (figure 2.5-f).

10It is important to understand that in this example the context specifies that B and D are
siblings, with B preceding D, but not necessarily immediately (see difference with figure 2.5-e).

24 Chapter 2. Generalized Tree-Generating Grammars

In a model it is possible that two context tokens are equivalent, i.e., ci,j =
ci,q with j ≠ q. In this case ci,j and ci,q are the same context type since they
represent the same structure, but different context tokens as they map to different
fragments. It is in fact assumed that grammars are not redundant, so that ci,j =
ci,q → fi,j ≠ fi,q with j ≠ q.

⊙

A

⊘

⍟

B D

A

A ⊘

A

C ⊘ D

C

F ⊘ ⍟ ⊘ H

(a) (b) (c) (d) (e) (f)

Figure 2.5: Examples of 6 conditioning contexts (or histories).

2.2.3 Context-Free Grammar
In order to clarify the notation introduced so far we will now describe an example
of Context-Free Grammar (Chomsky, 1956).

2.2.2. Example. [Context Free Grammar] According to definition 2.2.1, we
have m = 1 (one single fragment and context class and a single operation), each
f1,j ∈ F1 is a list of adjacent daughters (the right hand side of each production
rule), each c1,j ∈ C1 a single node (the corresponding left hand side of the same
production) such that c1,j is the parent node of the nodes in f1,j, and O1 the
operation of attaching the daughters in f1,j, to c1,j (substitution operation). As
a check condition the node in c1,j should have no daughter nodes, i.e., it must be
a frontier node in the tree structure before the operation is applied. Figure 2.6
(right) shows the contexts and the elementary fragments for the CFG extracted
from the tree in figure 2.2, also reported in the left-side of the same figure for
convenience.

When using this grammar to generate a structure T , we begin with the start
symbol⊙ identifying T0 in all the models. At this point only the first conditioning
context in the grammar (⊙ Ð ⊘) can apply, and therefore T1 is obtained by
attaching A as the unique daughter node of the initial symbol. At this point
there are 2 identical conditioning contexts which are applicable (AÐ⊘, at indices
j = 2,3), and there are therefore two possible ways of continuing the generation
of a structure.11

11See also the section on multiple derivations in §2.2.4

2.2. Symbolic Generative Models for Trees 25

A

B C

F G H

D

I

A

J

K L

j C1 F 1

1 ⊙Ð⊘ A
2 AÐ⊘ B C D A
3 AÐ⊘ J
4 CÐ⊘ F G H
5 DÐ⊘ I
6 JÐ⊘ K L
7 BÐ⊘ ⊕
8 FÐ⊘ ⊕
9 GÐ⊘ ⊕

10 HÐ⊘ ⊕
11 I Ð⊘ ⊕
12 KÐ⊘ ⊕
13 LÐ⊘ ⊕

Figure 2.6: Left: the PS tree from figure 2.2. Right: the CFG extracted from the
left tree. C1 identifies the left-hand side of the CFG rules, F1 the right-hand side.

The first 4 steps of a possible derivation of this grammar are illustrated in
figure 2.7. At every step the left-most non-terminal node at the frontier of the
intermediate structure is the context for the following generative step.12 This
partial derivation can be completed to return the original structure in figure 2.2.
The remaining steps are shown in figure 2.8(a) using indices in nodes to refer to the
stages of the derivation process in which the nodes are introduced. Figure 2.8(b)
reports an alternative derivation licensed by the same grammar. According to
this grammar, a tree is complete when all the nodes at the frontier are the stop
symbol ⊕.

2.2.4 The generative process
The role of a context ci,j is essential in a generative process. If its corresponding
fragment fi,j is empty, it specifies where the transformation takes place (specified
by the operation Oi). Otherwise, it locates where the corresponding fragment
needs to be placed within the current incomplete structure via the associated
compositional operation Oi. In this case it is necessary to define the relation
between each class of conditioning contexts Ci and the corresponding class of

12See also the section on locating a single context at a time in §2.2.4

26 Chapter 2. Generalized Tree-Generating Grammars

⊙ ⊙

A

⊙

A

B C D A

⊙

A

B

⊕

C D A

⊙

A

B

⊕

C

F G H

D A

T0 T1 T2 T3 T4

Figure 2.7: The first 5 steps in deriving a tree structure with the CFG in figure 2.6.

fragments Fi. For this it is sufficient to define the relation between a specific
node in fi,j, and a specific node in ci,j, since all the other relations can be derived
from it.13 In the example 2.2.2 just illustrated, the node in c1,j is the parent node
of the list of nodes in f1,j.

Given an intermediate tree structure Tt obtained after t generative events, a
context ci,j might be present in Tt iff its structure (including the check conditions
specified by the artificial nodes) are matched in Tt. If this is the case, the cor-
responding operation Oi is eligible to apply, introducing the fragment fi,j. After
the operation is performed, Tt+1 is produced. The presence of a certain context
in an intermediate tree must be verified before the operation is applied, and need
not hold in later stages of the generation process. In case no more conditioning
contexts defined by the model are present in the tree structure, the generation
process has reached termination, and the generated tree is a complete structure
derived from the grammar.

Ranking the operations and the context classes

Every generative model must define at least one operation, i.e., O1. If m > 1 multi-
ple operations can apply in the same model (e.g., the substitution and adjunction
operations in TAG). In such a case it might happen that different operations can
apply on the same intermediate structure Tt, i.e., there are at least two contexts
ci,j and cp,q (with i ≠ p) which are present in Tt. When defining a generative
model it is sometimes convenient to define a ranking over the operations (and
consequently over the corresponding context classes): rank ∶m→ N≥1, where 1 is

13Not all the nodes of the fragment need to be introduced in the tree, as there can be possible
overlaps between nodes in the fragment and those in the corresponding context.

2.2. Symbolic Generative Models for Trees 27

⊙0

A1

B2

⊕3

C2

F4

⊕5

G4

⊕6

H4

⊕7

D2

I8

⊕9

A2

J10

K11

⊕12

L11

⊕13

⊙0

A1

J2

K3

⊕4

L3

⊕5

(a) (b)

Figure 2.8: Two complete trees which can be derived from the CFG in figure 2.6.

the highest rank.14 If not specified otherwise, rank is the identity function: the
first operation (conditioning context class) has priority over the second, which
has priority over the third, and so on. At each stage we retain only the context
tokens present in the current tree with highest rank. If no ranking is adopted in
a specific model, all the operations can apply at a given stage.

Locate a single context at a time

It can happen that at a given stage t of the generation process, a context type15 is
present in Tt at different locations, or that two different context types are present
in Tt each at a different location. For instance in the intermediate tree T2 in
figure 2.7 all four nodes B,C,D,A at the frontier of the intermediate structure
are possible contexts in which O1 can apply. In general this can be problematic,
as the same sequence of operations applied in different locations might result in
different emerging structures. Therefore at every stage of the derivation process
we want to ensure that every model defines a way to deterministically locate
in Tt a single context type on which to apply the corresponding compositional
operation.

14If no rank is defined, multiple operations might apply at the same time. In the probabilistic
extensions of symbolic tree-generating grammars (§2.3), we will always assume the definition
of a ranking function.

15Remember the distinction between context type and context token specified at the end of
§2.2.2.

28 Chapter 2. Generalized Tree-Generating Grammars

A1

B2 C3

F4 G5 H6

D7

I8

A9

J10

B11 D12

Figure 2.9: A depth-first ordering of the nodes in a tree.

For CFGs the solution is to impose the left-most substitution to apply (as
shown in the indices of figure 2.8). In the general case, we define a location
function L (c, Tt) returning the location of a context type c in Tt. If n = ∣c∣ is
the number of nodes in c, we define L (c, Tt)={`1(c, Tt), `2(c, Tt), . . . , `r(c, Tt)}
with r ≥ 1 being the number of times c is present in Tt, and `i(c, Tt) ∈ Nn the ith
location of c in Tt, i.e., a set of indices identifying the positions of c’s nodes in Tt.
The indices of the nodes in Tt are assigned according to a pre-establish ordering,
conventionally a depth-first ordering as shown in figure 2.9. To give an example
let us consider context in figure 2.5-c, and assume that the tree in figure 2.9 is
our Tt. We then have L (c, Tt) = {`1(c, Tt) = {1,2,7}, `2(c, Tt) = {10,11,12}}.

Every model must ensure that for every two context types c ≠ c′ that can
apply16 in Tt there exist no i, j ∈ N≥1 such that `i(c, Tt) = `j(c′, Tt). In other words,
different contexts should be always mutually exclusive, if one applies at a certain
location in Tt the other should not be present or its location should differ, and vice
versa. This is to ensure that in every model a given sequence of generative events
produces a unique structure. We can therefore define an ordering of the locations
of all contexts present in Tt, in order to localize a unique context at a time. If
A = `i(a,Tt) and B = `j(b, Tt), with A ≠ B, we have A < B⇔ A ⊂ B ∨ min(A ∖
B) < min(B ∖ A). For example, the contexts c, d, e, f in figure 2.5 are present
in tree Tt of figure 2.9 at locations: `1(c, Tt) = {1,2,7} < `1(e, Tt) = {1,3,7} <
`1(d, Tt) = {1,9} < `1(f, Tt) = {3,4,5,6} < `2(c, Tt) = {10,11,12}. Context c would
therefore apply.

Multiple derivations

Given that the model has successfully selected a single context type c in the
intermediate tree Tt at location `i(c, Tt), for most non-trivial grammars there

16Remember that in order for c and c′ to apply, they must have the same rank.

2.2. Symbolic Generative Models for Trees 29

might be multiple context tokens instantiating c, e.g., ci,j = cp,q = c, with i ≠
p ∨ j ≠ q ∧ rank(i) = rank(p). Trivially all context tokens apply at the same
location `i(c, Tt).

When this circumstance arises, multiple distinct fragments are associated with
the same type of context, and are therefore eligible to apply. For instance in
example 2.2.2 when A is the selected context both rules A → B C D E and A →
J can apply.

In this case the model must allow for all corresponding fragments to apply, but
in parallel: each fragment is applied on an identical copy of the current partial
tree Tt. In other words the current derivation splits in multiple derivations, one for
every distinct context tokens which applies. This generates novel derivations of
the grammar that will potentially differ in all following steps, producing different
complete trees. But it can also happen that some of these derivations eventually
produce the same complete structure. When this occurs, the grammar is said
to have spurious ambiguities.17 Context-free grammars do not show this type of
ambiguity, but TSG grammars do (see example 2.2.3 and chapter 3).

Artificial symbols

The artificial symbols thus far introduced are the symbols in the set A = {⊙,⊕,⊘,
⍟}. In addition, a model can introduce an arbitrary number of artificial symbols,
which usually serve as placeholders to represent specific choices which are made
along the way in the generative process. All the artificial symbols need to be
removed after the termination of the generative process in order to obtained a
cleaned complete structure.

The start symbol ⊙ represents the only symbol which is present in the tree
structure T0, before any generation event takes place. In general, the start symbol
may be present in fragment fi,j, but only as a reference node as no operation Oi

can insert a second start symbol into the tree.
The stop symbol ⊕ represents a node in the tree which signals the termination

of a specific generation sub-process, but a derivation does not necessarily need to
employ ⊕ in order to terminate.18

The null symbol ⊘ represents the absence of a certain node. It can only
be used within contexts, typically to define specific check conditions that need
to be present in the current incomplete structure for a certain context to apply
(see figure 2.5).

Finally, the wild-card symbol ⍟, like ⊘, can be only used for contexts. It
matches any possible non-artificial node (N ∖A).

17This should not be confused with the standard notion of ambiguity of the grammar, for
which there exist multiple structures associated to the same sentence.

18As explained in §2.2.4, it is sufficient that no conditioning context is present in the derived
structure for the generative process to terminate.

30 Chapter 2. Generalized Tree-Generating Grammars

2.2.5 Extracting a symbolic grammar from a treebank
Symbolic grammars can be written manually or they can be extracted from a
collection of annotated parse trees, the training treebank T . We are mainly
interested in pursuing the second option, but in either case we have to choose what
the model behind the grammar looks like, i.e., what its composition operations
are, and how each fragment and context class is defined. After describing the
primitives of the model, we take each structure one by one in the training treebank
T and simulate how it can be derived according to the model under consideration.
This procedure can be seen as a decomposition of the structure into elementary
fragments, each linked to a conditioning context. During this decomposition, we
equip the grammar with the fragments and conditioning contexts pairs which are
employed. After iterating the same procedure for all the trees in T , we have
derived a symbolic grammar. This in turn will be capable of deriving all the tree
structures in T , and possibly many other structures which are a generalization
of the observed ones in the treebank.

2.2.6 Examples of generative tree grammars
To demonstrate the generality of the notions just described, we will now describe
6 examples of generative grammars. All the grammars are extracted from the PS
in figure 2.2, except for the grammar in example 2.2.5 which is extracted from
the DS in figure 2.3.

2.2.3. Example. [Tree-Substitution Grammar] In this example we present
a TSG grammar which employs subtrees of arbitrarily large size as fragments for
the generative operations. This formalism was first implemented in Bod (1992),
and will be used in chapter 3 for phrase-structure parsing. For this grammar we
choose m = 1, f1,j ∈ F1 is a tree structure, c1,j ∈ C1 the root node of f1,j exactly as
in CFG (example 2.2.2), and O1 the operation of introducing the full fragment f1,j
in the tree by substituting c1,j with the root of f1,j. Figure 2.10 (a) shows a TSG
grammar which is able to derive the same tree structure as in the CFG example
(§2.2.3) with two different derivations as shown in figure 2.10 (a,b). Moreover,
this grammar can derive an infinite number of tree structures, and exactly those
produced by the previous CFG.

2.2. Symbolic Generative Models for Trees 31

C1 F 1

⊙

⊘
⊙

A
A

⊘

A

B C D A

A

⊘

A

B C

F G H

D A

A

⊘

A

J
C

⊘

C

F G H
D

⊘

D

I
J

⊘

J

K L

{B,F,G,H,I,K,L}

⊘

{B,F,G,H,I,K,L}

⊕

⊙0

A1

B2

⊕3

C2

F4

⊕5

G4

⊕6

H4

⊕7

D2

I8

⊕9

A2

J10

K11

⊕12

L11

⊕13

(a)

⊙0

A1

B2

⊕3

C2

F2

⊕3

G2

⊕4

H2

⊕5

D2

I6

⊕7

A2

J8

K9

⊕10

L9

⊕11

(b)

Figure 2.10: An instantiation of a tree-substitution grammar (left), generating
the same tree structure with 2 different derivations (a,b). The last line in the
grammar, is a short notation to represent 7 different contexts and corresponding
fragments.

32 Chapter 2. Generalized Tree-Generating Grammars

2.2.4. Example. [Right Sister Insertion Grammar (PS)] This grammar is
a simplification of previous work (Magerman, 1995; Collins, 1996), and demon-
strates that our formalisms is general enough to model rule markovization without
relying on a special-purpose grammar representation.

The basic operation behind this grammar is to introduce a single daughter
to a node in the tree, conditioned on its parent node and its left sister. We
choose m = 1, f1,j is a single node (the new daughter), c1,j contains the root
node of f1,j and its right-most daughter (⊘ if no daughters are present), O1 the
operation of attaching f1,j as the new right-most daughter of the parent node in
c1,j. Figure 2.11 shows this example in more detail.

C1 F 1

⊙
⊘ A
⊙

A ⊘ ⊕
A

⊘ B
A

B ⊘ C
A

C ⊘ D
A

D ⊘ A
A

A ⊘ ⊕
B

⊘ ⊕
C

⊘ F

C1 F 1

C

F ⊘ G
F

G ⊘ H
G

H ⊘ ⊕
D

⊘ I
D

I ⊘ ⊕
A

⊘ J
F

⊘ ⊕
G

⊘ ⊕

C1 F 1

H

⊘ ⊕
I

⊘ ⊕
J

⊘ ⊕
J

K ⊘ K
J

L ⊘ L
J

⊘ ⊕
K

⊘ ⊕
L

⊘ ⊕

⊙
0

A
1

B 3 ⊕
8

C
4

F 9 ⊕
13

G
10

⊕
14

H
11

⊕
15

⊕
12

D
5

I 1
6

⊕
18

⊕
17

A
6

J 1
9

K
21

⊕
24

L 2
2

⊕
25

⊕
23

⊕
20

⊕
7

⊕
2

Figure 2.11: A Right Sister Insertion Grammar (left) for PS, generating a tree
structure (right) by introducing a new rightmost daughter of a node at every step.

2.2. Symbolic Generative Models for Trees 33

2.2.5. Example. [Right Sister Insertion Grammar (DS)] This grammar is
similar to the previous one except that it is adapted to the DS representation (Eis-
ner, 1996b). As before a single node is introduced at each step, conditioned on
its parent node and its left sister. We set m = 1, f1,j is a fragment partially
overlapping with the respective context, c1,j contains the root node of f1,j and its
right-most daughter (⊘ if no daughters are present), O1 the operation of attach-
ing the rightmost daughter in f1,j as the new right-most daughter of the parent
node in c1,j. Left and right daughters of every node are filled in as two separate
processes. Figure 2.12 shows this example in more detail.

C1 F 1

X

⊘

X

⊘ Z

for (X,Z) ∈ {(⊙,A),
(A,B), (B,⊕),
(C,F), (D,I),
(A,⊕), (F,⊕),
(G,⊕), (H,⊕),
(I,⊕), (J,K),
(K,⊕), (L,⊕)}

X

Y

X

Y Z

for (X,Y,Z) ∈
{(⊙,A,⊕),
(A,B,C), (A,C,⊕),
(C,F,⊕), (D,I,⊕),
(J,K,⊕)}

C1 F 1

X

⊘

X

⊘ Z

for (X,Z) ∈ {(⊙,⊕),
(A,D), (B,⊕),
(C,G), (D,⊕),
(A,J), (F,⊕),
(G,⊕), (H,⊕),
(I,⊕), (J,L),
(K,⊕), (L,⊕)}

X

Y

X

Y Z

for (X,Y,Z) ∈
{(A,D,A), (A,A,⊕),
(C,G,H), (C,H,⊕),
(A,J,⊕), (J,L,⊕)}

⊙
0

A
1
⊕

2
⊕

3

B
4

C
5

⊕
6

D
7

A
8

⊕
9

⊕
10

⊕
11

F
12

⊕
13

G
14

H
15

⊕
16

I 1
7

⊕
18

⊕
19
⊕

20
J

21
⊕

22

⊕
23

⊕
24

⊕
25

⊕
26
⊕

27
⊕

28
⊕

29
⊕

30
K

31
⊕

32
L

33
⊕

34

⊕
35

⊕
36

⊕
37

⊕
38

Figure 2.12: A Right Sister Insertion Grammar (left), generating the DS tree
structure in figure 2.3 (right).

34 Chapter 2. Generalized Tree-Generating Grammars

2.2.6. Example. [Sandwich Insertion Grammar] This example presents an-
other insertion grammar on PS which allows two different operations: the first is
the one encountered in the CFG (example 2.2.2), while the second is a “sandwich”
insertion operation. In this case we have m = 2. F1, C1, and O1 are as in the
CFG. On the other side, c2,j is a tree structure with 3 nodes: a parent node P
(with at least two daughters), and two of its adjacent daughters D1 and D2, while
f2,j is a single node; finally O2 is the operation of inserting f2,j as a daughter of
P in between D1 and D2. This grammar could be suitable at modeling a gener-
ative process where the arguments of a node are generated at once (O1), while
the adjuncts are inserted one at a time in more restricted contexts. Figure 2.13
shows an instantiation of this grammar in more detail.

C1 F 1

⊙Ð⊘ A
AÐ⊘ B D A
CÐ⊘ F G H
DÐ⊘ I
AÐ⊘ J
JÐ⊘ K L
BÐ⊘ ⊕
FÐ⊘ ⊕
GÐ⊘ ⊕
HÐ⊘ ⊕
I Ð⊘ ⊕
KÐ⊘ ⊕
LÐ⊘ ⊕

C2 F 2

A

B ⊘ D C
A

B ⊘ C ⊕
A

C ⊘ D ⊕
A

D ⊘ A ⊕
C

F ⊘ G ⊕
C

G ⊘ H ⊕
J

K ⊘ L ⊕

⊙
0

A
1

B 2 ⊕
3

⊕
15

C
10

F 1
1

⊕
12

⊕
16

G
11

⊕
13

⊕
19

H
11

⊕
14

⊕
18

D
2 I 4 ⊕
5

⊕
17

A
2 J 6

K
7

⊕
8

⊕
20

L 7 ⊕
9

Figure 2.13: An instantiation of a sandwich insertion grammar (left) deriving a
tree structure (right) by means of standard CFG productions (as in figure 2.6),
and in addition an insertion operation.

2.2. Symbolic Generative Models for Trees 35

2.2.7. Example. [Tree-Adjoining Grammar] In this example we describe a
grammar which is based on previous work on TAGs (Joshi, 1985; Joshi and Sch-
abes, 1991). In this case we have m = 2. F1, C1, and O1 are as in the CFG
described before. O2 is an operation which allows to adjoin a full subtree f2,j at
a specific site of the current tree according to the location of c2,j (a single node
having at least one daughter node). Each fragment in F2 is such that one of its
frontier nodes should have the same label as its root node X; since multiple X
can be present at the frontier, we will mark one as X* (the foot node). The oper-
ation O2 excises the subtree rooted in c2,j from the tree, and puts in its place f2,j.
Moreover the excised subtree is substituted to the foot node. Both the root node
X and the foot X* cannot be used as locations for other adjunction operations.
To ensure this, the two node are marked as X̄ (this could be achieved also by
adding special purpose artificial nodes, but we have chosen a shorter notation for
simplicity). Figure 2.14 presents an instance of this grammar.

C1 F 1

⊙Ð⊘ A
AÐ⊘ J
DÐ⊘ I
JÐ⊘ K L
BÐ⊘ ⊕
FÐ⊘ ⊕
GÐ⊘ ⊕
HÐ⊘ ⊕
I Ð⊘ ⊕
KÐ⊘ ⊕
LÐ⊘ ⊕

C2 F 2

A

⍟

Ā

B C

F G H

D Ā*

⊙0

A1

J2

K3

⊕4

L3

⊕5

⊙0

Ā6

B6 C6

F6 G6 H6

D6 Ā1

J2

K3

⊕4

L3

⊕5

⊙0

Ā6

B6

⊕7

C6

F6

⊕8

G6

⊕9

H6

⊕10

D6

I11

⊕12

Ā1

J2

K3

⊕4

L3

⊕5

(a) (b) (c)

Figure 2.14: An example of a tree-adjoining grammar (above), and one of its
derivations (below): after 5 steps (a), after 6 steps (b), after completion (c).

36 Chapter 2. Generalized Tree-Generating Grammars

2.2.8. Example. [Bottom-Up Grammar] The last example is inspired by the
work of Ratnaparkhi (1997). Similar ideas are described in shift-reduced ap-
proaches such as in Aho and Johnson (1974), and Shieber (1983). This example
demonstrates that our formalism is general enough to model a wide range of
generative models including those based on a bottom-up generation process.

According to this generative model, structures are generated starting from the
leaf-nodes, and going upwards until reaching the root of the tree. One way to do
this is to introduce internal nodes, level after level.

A bottom-up grammar is described as follows: m = 3, O1 is the operation
which adds each leaf node of the tree structure (represented by f1,j), as the last
daughter of the starting node given its current rightmost leaf (c1,j). The second
(O2) and third operation (O3) have the same context which have equal priorities:
c2,j = c3,j is found in the current tree when the right-most leaf Y of the starting
node, immediately following X, is completed (it contains the stop symbol ⊕ as
its rightmost daughter).

If context c2,j is present in the current tree, and O2 is applied, the operation
‘opens’ a new constituent, i.e., it inserts a new node (Z = f2) as the parent of Y
and the right-sister of X. This operation is explicitly marked with a new artificial
node↗, inserted in between Z and Y . In addition↗ is followed by a new artificial
symbol → to indicate that the newly open constituent Z needs at least one other
daughter, or alternatively by ⊕ to indicate that it is completed.

If context c3,j is present and O3 is applied, a transformation takes place: Y
is attached as the new rightmost daughter of X. This operation is explicitly
marked with a new artificial node ↑, inserted in between X and Y . In addition
↑ is followed by a new artificial symbol → to indicate that X needs at least one
other daughter, or alternatively by ⊕ to indicate that it is completed.

Figure 2.15 instantiates a bottom-up grammar which can derive the tree in
figure 2.2. In the derivation process, O1 is used in steps 1-8; in the remaining
cases, O2 is used when ↗ is inserted (in steps 9,10,14,16,18), and O3 is used when
↑ is inserted (in steps 11,12,13,15,17,19).

2.2. Symbolic Generative Models for Trees 37

C1 F 1 O1

⊙
⊘

B
⊕

⊙
B

⊙
X ⊘

Y

⊕
⊙

X Y

for (X,Y) ∈
{(B,F), (F,G),
(G,H), (H,I),
(I,K), (K,L)}

⊙
L ⊘ ⊕

⊙
L ⊕

C2 F 2 O2

⊙
X Y

⊕ ⊘
⊘

Z

⊙
X Z

↗
Y

⊕

→

for (X,Y,Z) ∈
{(⊘,B,A), (A,F,C), (A,K,J)}

⊙
X Y

⊕ ⊘
⊘

Z

⊙
X Z

↗
Y

⊕

⊕

for (X,Y,Z) ∈ {(A, I,D), (A,J,A)}

C3 O3

⊙
X Y

⊕ ⊘
⊘

⊙
X

↑
Y

⊕

→

for (X,Y) ∈
{(C,G), (A,C), (A,D)}

⊙
X Y

⊕ ⊘
⊘

⊙
X

↑
Y

⊕

⊕

for (X,Y) ∈
{(C,H), (J,L), (A,A)}

⊙0

A9

↗9

B1

⊕1

→9 ↑13

C10

↗10

F2

⊕2

→10 ↑11

G3

⊕3

→11 ↑12

H4

⊕4

⊕12

→13 ↑15

D14

↗14

I5

⊕5

⊕14

→15 ↑19

A18

↗18

J16

↗16

K6

⊕6

→16 ↑17

L7

⊕7

⊕17

⊕18

⊕19

⊕8

Figure 2.15: A bottom-up grammar (left) and one of its derivation. All the nodes
in the structure are introduced one level at a time.

38 Chapter 2. Generalized Tree-Generating Grammars

2.3 Probabilistic Generative Models for Trees
The symbolic formalism developed so far allows for a straightforward probabilistic
extension. For simplicity we assume that the underlying symbolic model always
defines a ranking function over the operations (when multiple are present). This
ensures that there is a unique operation which applies at a given stage of the
derivation process (see 2.2.4). A probabilistic tree-generating grammar is defined
as follows:

2.3.1. Definition. A probabilistic tree-generating grammar Gp extends the def-
inition 2.2.1 of a symbolic tree-generating grammar with a function p(fi,j ∣ci,j),
which returns the probability of a generative event, i.e., employing a fragment
fi,j in an intermediate tree where context ci,j applies, by means of operation Oi.
The two indices i, j are such that 1 ≤ i ≤m and 1 ≤ j ≤ ∣Fi∣ = ∣Ci∣. The index i will
be always fixed as it specifies the operation which is deterministically selected by
the rank according to the symbolic model. We maintain this index in order to be
consistent with the previous notation of the underlying symbolic grammar (§2.2).

The function p must correspond to a proper probability distribution over the
fragments sharing the same conditioning context type. This means that for every
i, j the following equation should be satisfied:

∑
q s.t.

ci,j=ci,q

p(fi,q ∣ci,j) = 1 (2.6)

2.3.1 Resolving the syntactic ambiguity
As mentioned in §2.1.1 a symbolic generative grammar can be extended with a
stochastic component to resolve cases of syntactic ambiguities. In fact, for any
non-trivial symbolic grammar, there are many possible tree structures yielding a
given sentence s. We therefore need to define a way to induce probabilities over
the trees generated from the grammar whose yield is s, and select the one with
maximum probability. This is equivalent to say that we want to obtain the parse
tree T̂ such that:

T̂ = arg max
T

p(T ∣s) (2.7)

= arg max
T

p(T, s)
P (s) (2.8)

= arg max
T

p(T, s) (2.9)

2.3. Probabilistic Generative Models for Trees 39

2.3.2 The probability of a tree
Given a probabilistic tree-generating grammar Gp, and a tree structure T it can
generate, we want to obtain P (T ∣Gp): the probability of T according to Gp. In
the following explanation we assume an underlying probabilistic grammar Gp and
we therefore use the simpler notation P (T).

We start by decomposing T into a sequence of independent generative events,
forming the first derivation of T : δ1(T) = (e1, e2, . . . , en) producing a sequence of
intermediate structures (T1, T2, . . . , Tn−1) and terminates with the complete tree
Tn = T . Each event e = ⟨fi,j, ci,j⟩ is characterized by an elementary fragment
fi,j and a corresponding conditioning context ci,j which are present in Gp. The
probability of each event p(e) is given by the function p(fi,j ∣ci,j) introduced before
(in definition 2.3.1).

Since the generative events are defined to be independent, we can compute
the probability of a derivation by multiplying the probabilities of its events.

P (δi(T)) = ∏
e∈δi(T)

p(e) = ∏
e∈δi(T)

p(e) (2.10)

If the model generates m different derivations for T , we obtain them all, i.e.,
D(T) = {δ1(T), δ2(T), . . . , δm(T)}. The probability of T is then obtained by
summing the probabilities of all possible derivations in D(T):

P (T) = ∑
δi∈D(T)

δi(T) = ∑
δi∈D(T)

∏
e∈δi(T)

p(e) (2.11)

2.3.3 Estimating Probability Distributions
The function p in definition 2.3.1 is the only function needed to characterize
a probabilistic tree-generating grammar. The possible choices for p (satisfying
equation 2.6) are unlimited, and there is not a single one which is “correct” in
any principled way. Nevertheless, choosing a probability distribution at random is
also not a recommended strategy. More viable solutions are obtained by defining
specific heuristics to guide the choice. Alternatively it is possible to define an
independent objective function and find the distribution p̂ which maximizes it.
Again there is not a single heuristic or objective function which is more correct.
A standard way to compare these strategies is by analyzing their differences based
on empirical testing.

Following different guiding strategies, we will now introduce two well stud-
ied probability estimates to infer p: the Relative Frequency Estimate, and the
Maximum Likelihood Estimate. Finally, we also discuss an alternative general
methodology to induce a probabilistic grammar Gp: Bayesian Inference.

40 Chapter 2. Generalized Tree-Generating Grammars

Relative Frequency Estimate

The Relative Frequency Estimate (RFE) is the simplest heuristic to derive a
probability distribution pRFE over the fragments. It is widely used in statistical
models, as for many formalisms there are theoretical and empirical proves of its
stability. RFE makes use of two count functions ⟨countf , countc⟩, which corre-
spond to the frequencies with which fragments and contexts occur in deriving the
tree structures in the training treebank T :
countf(fi,j) : returns the frequency of fragment token fi,j in T , when occurring

in context ci,j.

countc(ci,j) : returns the frequency of context types ci,j in T .
While countf is defined over fragment tokens, countc is defined over context types.
This implies that for any j and q such that ci,j = ci,q the following equation should
hold:

countc(ci,j) = countc(ci,q) (2.12)
Moreover, the sum of the counts of all fragments sharing the same context type
must equal the count of that context:

∑
q s.t.

ci,j=ci,q

countf(fi,q) = countc(ci,j) (2.13)

The probability pRFE is defined following the intuition that a fragment fi,j
must be used in a certain context ci,j proportionally to the fraction of times it
has been extracted in that context:

pRFE(fi,j ∣ci,j) =
countf(fi,j)
countc(ci,j)

(2.14)

This estimate infers a proper probability distribution. In fact for every j
equation 2.6 is satisfied:

∑
q s.t.

ci,q=ci,j

p(fi,q ∣ci,q) = ∑
q s.t.

ci,q=ci,j

countf(fi,q)
countc(ci,q)

(2.15)

= 1
countc(ci,j)

⋅ ∑
q s.t.

ci,q=ci,j

countf(fi,q) (2.16)

= countc(ci,j)
countc(ci,j)

(2.17)

= 1 (2.18)
where equation 2.16 is derived from equation 2.12, and 2.16 from 2.13.

2.3. Probabilistic Generative Models for Trees 41

Maximum Likelihood Estimate

The Maximum Likelihood Estimate (MLE) uses an objective function to guide
the selection of the probability distribution p of the probabilistic grammar Gp.
This objective function is the likelihood of the training treebank T according to
Gp, in notation P (T ∣Gp), which is computed as the product of the probability of
each tree19 in T according to Gp.

P (T ∣Gp) = ∏
T ∈T

P (T ∣Gp) (2.19)

= ∏
T ∈T

∑
δi∈D(T)

∏
e∈δi(T)

p(e) (2.20)

where equation 2.20 is obtained from equation 2.11. According to this criterion
we want to find the probability distribution pMLE which maximizes the likelihood
of T :

pMLE = arg max
p

(P (T ∣Gp)) (2.21)

Although for many grammar formalisms (e.g., CFG) RFE induces a probabil-
ity distribution over the tree structures in the observed treebank which maximizes
its likelihood, this is not true in the general case (e.g., it is not the case for TSG
and other formalisms presenting spurious ambiguities, as will be discussed in
§3.6.2). In fact, as equation 2.20 is in the general case a sum of products,20 it
is not possible to maximize the likelihood analytically, i.e., there is no algorithm
which is guaranteed to derive such distribution pMLE for a given model. Nev-
ertheless, there exist algorithms that given an initial distribution p0 are able to
re-estimate a sequence of new probability distributions p1, p2, . . . , pm for which it
is guaranteed that the likelihood of the corpus monotonically increases:

P (T ∣Gp0) ≤ P (T ∣Gp1) ≤ P (T ∣Gp2) ≤ . . . ≤ P (T ∣Gpm) (2.22)
The best known techniques to re-estimate this sequence of probability distri-

butions are EM, i.e., the Expectation-Maximization algorithm (Wu, 1983), and
IO, i.e., the Inside-Outside algorithm (Lari and Young, 1990; Pereira and Sch-
abes, 1992; Prescher, 2003). Prescher (2004) gives formal proof that for string
rewriting PCFG, IO is a dynamic-programming variant of EM. These techniques
are commonly studied on string rewriting, meaning that the training material
refers to a multiset of flat sentences, which are not trees as in our tree rewriting

19In fact the model is assumed to generate all the sentences in the training corpus indepen-
dently of each other. This is of course another approximation, since in reality a sentence is
often related to the previous one.

20It is a simple product of terms when the model uses a single derivation for every tree, such
as in the case of PCFG.

42 Chapter 2. Generalized Tree-Generating Grammars

case.21 In string rewriting PCFG, MLE aims at maximizing the likelihood of
the training sentences when varying the probabilities of the CFG rules. There
is a striking parallelism between the two approaches; in fact, in MLE for string
rewriting PCFG, there are multiple CFG derivations for every training sentence,
while in our general case there are multiple derivations for every tree in T . We
will discuss in more detail one instance of MLE for TSG in §3.6.2.

Bayesian Inference

Bayesian Inference is a framework that derives its methodology from Bayes’ rule.

P (Gp∣T) = P (Gp,T)
P (T) (2.23)

= P (T ∣Gp)P (Gp)
P (T) (2.24)

= P (T ∣Gp)P (Gp)
∑G′p P (T ∣G′p)P (G′p)

(2.25)

In the last two equations, P (T ∣Gp) is the likelihood, the one defined in the
previous section, while P (Gp) is called the prior and specifies how good a chosen
probabilistic grammar is, before having observed any data.

In Bayesian inference we are often interested in obtaining the maximum a
posteriori distribution GMAP

p which is defined as:

GMAP
p = arg max

Gp

P (Gp∣T) (2.26)

= arg max
Gp

P (T ∣Gp)P (Gp)
∑G′p P (T ∣G′p)P (G′p)

(2.27)

= arg max
Gp

P (T ∣Gp)P (Gp) (2.28)

Goldwater et al. (2009) claim that unconstrained maximum-likelihood estima-
tion is a poor way to choose among probabilistic grammars, and that Bayesian
inference provides a more principled approach. In Bayesian modeling, the effect
of the likelihood is counter-balanced by choosing a prior distribution that favors
for instance simpler grammars. In this case the posterior probability can be seen
as a compromise between the likelihood and the simplicity of the grammar, pro-
ducing a probabilistic grammar which will adequately fit the training data while
avoiding over-fitting; in addition the chosen hypothesis will tend to generalize
more successfully to novel data.

21Similarly to our approach, treebank-based MLE is used in Prescher (2005a) and Petrov
(2009).

2.4. Parsing through Reranking 43

Previous work describes how to approximate GMAP
p for different formalisms (see

Johnson et al., 2007a; Post and Gildea, 2009; O’Donnell et al., 2009; Cohn et al.,
2009, 2010). The difference between our approach and these models is that in
our approach we always build a probabilistic instantiation on top of a symbolic
grammar, while (the mentioned) Bayesian models do not separate the two pro-
cesses. This can be in general considered a point of strength of the methodology,
since the two processes are bound together using a single objective function. On
the other hand, like EM, this methodology uses approximate techniques to find a
sequence of grammars that increase in a posteriori probability. These approxima-
tions often rely on sampling over the symbolic space. For this reason, we believe
that for models having a large symbolic event space (for instance TSG) these
sampling techniques will have difficulties reaching an optimal grammars.

2.4 Parsing through Reranking
Given a probabilistic tree-generating grammar Gp, a naive way to find the most
probable candidate structure for a given sentence (which maximizes the function
in equation 2.9) is to implement the following three steps:

1. Enumerate all possible trees yielding s according to Gp.

2. For every tree T yielding s compute its probability according to Gp.

3. Select the tree with maximum probability.

The naiveness of this approach is located in step 1. In fact, in commonly used
generative grammars, the number of trees yielding a certain sentence s grows
exponentially with the number of words in s, so it is impossible to list all possible
parses for long sentences. The most elegant solution to this problem is to rely
on an efficient parser, which uses a compact representation of the possible trees
in the grammar (the parse forest) and efficiently select the most probable one.
The main drawback of this approach is that the parser needs to be specific to the
model. Moreover for certain models it is not guaranteed that the most probable
tree can be derived efficiently, i.e., in polynomial time (see also Sima’an, 1996,
and §3.6.3).

Alternatively it is possible to restrict the search space by considering only a
subset of trees yielding s, and to select the one with maximum probability. This is
the approach followed in the reranking methodology that will be now introduced.

Given a probabilistic grammar, the reranking methodology aims at calculating
the probability the grammar assigns to a given subset of k different tree structures
that yield the same sentence. Such a methodology is able to approximate what
a parser implementing the exact same probabilistic grammar would output when
presented with the same test sentence. In fact, the chosen structure will tend to

44 Chapter 2. Generalized Tree-Generating Grammars

match the best analysis obtained with the parser, as the number k of alternatives
increases. For this reason we can consider a reranking system a parser simulator.

The main shortcoming of a reranking methodology is that it relies on a sep-
arate parser to obtain k-best candidates for every test sentence. We will refer to
this step as the first phase of the reranking procedure. The parser does not need
to be extremely accurate. Ideally, one should let the parser draw structures of a
given sentence from a uniform distribution over the space of all possible struc-
tures yielding the sentence. This requirement will be relaxed for practical reason
of keeping k reasonably small.

One important thing to emphasize is the two-way relation that exists between
decomposing a given structure into elementary fragments and recomposing them
to generate the same structure. This fact is essential for understanding that a
reranking framework is in fact conceptually identical to the process of extracting
fragments and conditioning contexts from the training treebank. In other words,
in the reranking framework we compute the probability of an unobserved structure
by decomposing it into elementary fragments and simulating the reversed process
of recomposing them into the original structure.

2.5 Discriminative and Generative models
Generative models of language have characterized earlier approaches in computa-
tional linguistics. In more recent times, another class of models, namely discrim-
inative models, has been widely employed in the field. The difference between
discriminative and generative models has been exhaustively discussed on both
theoretical and empirical grounds (Vapnik, 1998; Ng and Jordan, 2001; Xue and
Titterington, 2008).

In parsing, the distinction lies in the way the model generalizes from the
observed annotated sentences in order to obtain the best structures for a novel
sentence. A discriminative model conceives each possible structure of a given sen-
tence as a multitude of features. A feature is generally defined as a binary-valued
function, signaling its absence or presence in a given structure. A discriminative
model is able to learn from a training treebank, by means of a machine learn-
ing classifier. This refers to a family of powerful statistical tools that learn the
importance of every feature, or feature combination present in a candidate struc-
ture, to judge its level of correctness. A trained classifier is then able to assign
a score to every candidate according to the features it contains. In the majority
of the implemented discriminative parsers, a machine learning classifier can be
employed in a full chart based implementation, where for every test sentence the
entire set of possible tree structures is inspected, and allows the one with highest
score to be efficiently selected. For instance Collins and Roark (2004), make use of
the perceptron algorithm (Rosenblatt, 1958) on the full phrase-structure parsing
forest, and McDonald (2006) employs a Support Vector Machine Classifier (Boser

2.5. Discriminative and Generative models 45

et al., 1992) for dependency parsing.22

A generative approach, in contrast, attempts to model the process of generat-
ing the structure underlying a sentence, starting from a given set of building ele-
ments and compositional operations (as described in this chapter). In this thesis
we will only focus on generative models as we are mainly interested in simulating
the full process behind the emergence of a sentence together with its underly-
ing structure according to a given model. This process offers the opportunity to
better investigate linguistic hypotheses on the generation of tree structures.

The use of reranking methodology in combination with a machine learning
classifier is often referred to as discriminative reranking. As in our generative
reranking approach, a discriminative reranker makes use of another parser in the
first phase to produce the k-best candidates for each sentence to parse. This type
of approach is common in computational linguistics, although it has been mostly
explored for PS parsing (Collins, 2000; Collins and Duffy, 2002; Shen et al., 2003;
Daumé III and Marcu, 2004; Collins and Koo, 2005; Charniak and Johnson, 2005;
McClosky et al., 2006; Huang, 2008; Fraser et al., 2009; Johnson and Ural, 2010).
There are few other studies adopting reranking on other representations (Hall
et al., 2007; White and Rajkumar, 2009) and other CL tasks (Shen et al., 2004;
Dinarelli et al., 2009).

All these systems differ substantially from the reranking methodology intro-
duced in §2.4: besides being discriminative models, they differ in the training
phase: for each training sentence, they are presented with the gold structure
together with the set of k-best candidates the support parser provides for the
same sentence (including other relevant information serving as extra-features,
e.g., position in the k-best list, probability). In this way discriminative parsers
are able to learn how to “draw a line” between correct and incorrect decisions
of the first-phase parser, keeping the good choices of the parser, while repairing
its mistakes. In our approach, instead, reranking is seen as a way to mimick the
generative process behind the model, and therefore in the training phase only the
gold structures are provided as input to the system.

To summarize the different approaches illustrated so far, and to place in con-
text the contribution of this thesis, Table 2.1 shows how the main parsing models
in the CL literature are situated with respect to the learning approach (discrim-
inative, generative), the syntactic representation (PS, DS, TDS), and the search
space (chart based, reranking).

22The description of machine learning classifiers and discriminative models in general is be-
yond the scope of this thesis. A more complete discussion on this topic is presented in Smith
(2011).

46 Chapter 2. Generalized Tree-Generating Grammars

D
iscrim

inative
G

enerative
PS

D
S

PS
D

S
T

D
S

C
hart

Based
C

ollins
and

R
oark

(2004)

Yam
ada

and
M

atsum
oto

(2003);N
ivre

(2003);
M

cD
onald

(2006);H
allet

al.
(2006)

Bod
(1993);

C
ollins

(1996,
1997);C

harniak
(1996);

M
atsuzakiet

al.
(2005);Petrov

etal.(2006);this
w

ork
(ch.

3)

Eisner
(1996a,b)

R
eranking

C
ollins

(2000);
C

ollins
and

D
uffy

(2002);
C

harniak
and

Johnson
(2005)

H
allet

al.(2007)
Bod

(2003) †;
Borensztajn

and
Zuidem

a
(2011)

this
w

ork
(ch.4)

this
w

ork
(ch.5)

Table
2.1:C

om
parison

ofthe
m

ain
parsing

m
odelsin

the
C

L
literature

in
relation

to
the

currentwork,w
ith

respectto
the

learning
approach

(discrim
inative,generative),the

syntactic
representation

(PS,D
S,T

D
S),and

the
search

space
(chart

based,reranking).
†Bod

m
akes

use
ofreranking

w
hen

selecting
the

shortest
derivation

from
the

k
m

ost
probable

parses.

2.6. Conclusions 47

2.6 Conclusions
In this chapter we have presented a unified formalism for describing probabilistic
generative models of syntactic tree structures. This approach has allowed us to
illustrate a number of known models for parsing syntactic structures within both
the phrase-structure and dependency-structure representation, as well as easily
defining new ones (e.g., the “Sandwich Insertion Grammar” in example 2.2.6).

This general methodology will allow us to experiment with a number of vari-
ous generative models of dependency-structure in chapter 4 which are evaluated
through the reranking procedure (illustrated in §2.4) as well as defining a com-
pletely new generative model for a new tree structure representation (TDS) in
chapter 5.

In the following chapter we introduce a novel Data-Oriented Parsing model
for phrase-structure, an instantiation of the TSG example 2.2.3 (p. 30).

Though a tree grows so high,
the falling leaves return to the root.

Malay proverb

Chapter 3
Recycling Phrase-Structure Constructions

49

50 Chapter 3. Recycling Phrase-Structure Constructions

3.1 Introduction to Phrase-Structure
In this chapter we will deal with phrase-structure (PS) trees. An example of
a PS tree is shown in figure 3.1. A PS tree can be formally defined as the
repeated partitioning of adjacent words in a sentence into equivalence classes
(Hays 1960, p.259; see also figure 1.1). Edges in the PS trees represent dominance
relations or equivalently part-whole relations, in line with modern theories of
syntax, first formalized in the work of Chomsky (1956, 1957) (see also §1.2.3).
In this example tree, the sentence node S dominates nodes NP (noun phrase)
and VP (verb phrase), meaning that NP and VP are part of S (sentence), and
equivalently that the whole sentence is partitioned in two parts (NP and VP). We
will say that NP and VP are child nodes of the parent node S, with NP preceding
VP. As previously illustrated (see the difference between figure 2.2 and 2.3) PS
trees do not define precedence relations between parent and child nodes.

S

NP

DT

The

NNP

Free

NNP

French

VP

VBD

wore

NP

JJ

black

NN

arm

NNS

bands

Figure 3.1: Example of a phrase-structure (PS) tree.

One of the main quests in syntax is the identification of the building blocks
in natural language sentences (Fillmore et al., 1988; Goldberg, 1995; Kay and
Fillmore, 1997). Although standard CFG rewriting rules (see §1.3.1) are often
used as a standard choice for practical purposes, it is important to realize that
there is a number of ways to decompose a PS tree into its constituent parts. The
various alternative range from models generating a CFG rule in several steps,
as in head-driven lexicalized models (Magerman, 1995; Collins, 1999), to others
utilizing arbitrary large constructions (Bod et al., 2003). In this chapter we
will address this last hypothesis, and propose a way to automatically detect the
most linguistically relevant syntactic constructions in PS trees. Our methodology
follows the basic principle of accepting a syntactic construction as linguistically
relevant if there is evidence about its reusability in a representative corpus of
annotated trees. We can therefore see our work as a study on construction-
recycling, viz. formulating an hypothesis on how syntactic constructions are built
using ‘bits and pieces’ borrowed from observed sentence structures.

3.2. Review of existing PS models 51

In the following section we will review previously proposed PS models which
are related to our work. Afterwards we will describe our main contributions:
first we will present the methodology to efficiently extract reusable constructions
from large PS treebanks, and provide qualitative analysis of their features. Sec-
ondly, we will present a Data-Oriented Parsing model (Bod et al., 2003) using
the extracted constructions for parsing.

3.2 Review of existing PS models
In §1.3.1 and §2.2.3 we have introduced the Probabilistic Context-Free Grammar
formalism (PCFG), which represent one of the most basic models for constructing
PS trees. As explained in §1.3.2, such grammars impose heavy limitations, as they
suffer from both under-generation and over-generation problems. In the past
decades novel probabilistic extenstions of CFGs were proposed to overcome such
limitations. In the following sections we will review some of the most successful
models.

3.2.1 Head-driven models
One of the main innovation in PS parsing was the employment of head infor-
mation to impose lexicalized conditioning on parsing decisions. The head of a
phrasal constituent is a central concept in most current grammatical theories
(Zwicky, 1985; Hudson, 1987; Corbett et al., 2006) and many syntax-based NLP
techniques (e.g., Magerman, 1995; Collins, 1999). The term is used to mark,
for any nonterminal node in a PS tree, the specific daughter node that fulfills a
special role. Figure 3.2 shows the tree in figure 3.1 with extra head labels (-H).

S(wore)

NP(French)

DT(The)

The

NNP(Free)

Free

NNP-H(French)

French

VP-H(wore)

VBD-H(wore)

wore

NP(bands)

JJ(black)

black

NN(arm)

arm

NNS-H(bands)

bands

Figure 3.2: Head enrichment (-H) of the tree structure in figure 3.1, and perco-
lation of lexical information (in parenthesis).

As shown in the same figure, internal nodes of the PS tree can be enriched
with lexical information which percolates up from the leaves following head an-

52 Chapter 3. Recycling Phrase-Structure Constructions

notations. Head-enrichment is usually done through compact heuristic tables as
initially proposed by Magerman (1994, 1995). Similar heuristics are used in state
of the art head-driven parses (Collins, 1997, 1999; Charniak, 1997).

Collins’ models

Collins (1997, 1999) developed three generative parsing models, based on head
lexicalization techniques initially proposed by Magerman (1995). Head lexical-
ization, as introduced above, consists of enriching the internal nodes of a tree
with lexical information based on head annotation. This serves to constrain the
lexical content on which the probability of a production should depend on, and
is therefore fundamental to preventing the over-generation problems of standard
PCFG models. The success of Collins’ models can be ascribed to the combination
of two further innovative techniques: rule factorization, and back-off probability
smoothing techniques.

Rule factorization refers to the technique of generating a parse tree attaching
one daughter of a node at a time (horizontal markovization). More specifically,
the head daughter is generated first, conditioned on the parent node; afterwards
left and right siblings are produced conditioned on the head sibling, the parent
node, and a certain number of previously generated daughters.1 This is similar
to the model illustrated in example 2.2.4, where each CFG production rule is
factorized in several steps according to an nth order markovian assumption. So
for instance if we want to compute the probability to generate the top rule S(wore)
→ NP(French) VP(wore) of the tree in figure 3.2, with n = 1 we will have:

head daughter Ph(V P (wore)∣S,wore) ×
first left sibling Pl(NP (French)∣S,V P,wore,⊘) ×
no more left siblings Pl(⊕ ∣S,V P,wore,NP (French)) ×
no more right siblings Pr(⊕ ∣S,V P,wore,⊘)

where ⊘ is the null symbol and ⊕ the stop symbol as defined in 2.2. Rule
factorization is very effective to solve the under-generation problems of standard
PCFG models, as the new model is capable of producing CFG rules not observed
in the training set.

Back-off probability smoothing techniques are used in order to reduce com-
plex probabilistic events estimations involving a large number of elements in the
conditioning context (as above), to a sequence of more simple and general for-
mulas. This is done in order to handle a great number of cases in which the
complex events were not observed in the training corpus. For instance if we

1Collins introduces other elements in the conditioning context, such as a notion of distance
between a node and the head sibling (model 1), whether a node is an argument or an adjunction
(model 2), gaps for expression involving wh-movement (model 3). These advanced features are
not illustrated here for simplicity reasons.

3.2. Review of existing PS models 53

have a probabilistic model estimating event e given conditioning context c as
P (e∣c) = P (A∣BCDE) we could simplify it imposing 3 backing-off levels (l1, l2,
l3) in which we ignore an increasingly big number of elements in the conditioning
context, e.g., we might choose to ignore B and D first, and C in a second step:

l1 = P (A∣BCDE)
l2 = P (A∣CE)
l3 = P (A∣E)

The three distributions are estimated via relative frequency from the training cor-
pus and then interpolated to obtain a smoothed probability estimation: P (e∣c) =
λ1l1 + (1−λ1)(λ2l2 + (1−λ2)l3), with λi chosen empirically to maximize accuracy,
imposing 0 ≤ λi ≤ 1. This smoothing technique is also refer to as deleted interpo-
lation (for more details see also Eisner 1996a; Bikel 2004a and Appendix B).

Charniak’s models

The model in Charniak (1997) is similar to Collins (1997, 1999) except that
it uses slightly different generative models. In particular the generation of a
constituent is decomposed in two parts: initially the lexical head of the constituent
is determined based on the dependency relations with its parent node; as a second
step, non-lexicalized part of a rule is predicted (the category of the constituent
together with its CFG expansion) conditioned on the parent node and its head-
word. Moreover, the implementation of deleted estimation makes use of statistics
over clustering of words instead of single words. A more advanced parser is
presented in Charniak (1999). The model is still generative, and conceptually
similar to the previous model. The main difference is in the definition of a much
larger set of features in the history of each generative event, and the use of a model
inspired by the maximum-entropy framework (Berger et al., 1996; Ratnaparkhi,
1999), which makes it more robust and easier to train.

3.2.2 State-Splitting Models
With state-splitting approaches we refer to recent techniques (Matsuzaki et al.,
2005; Prescher, 2005b; Petrov et al., 2006; Petrov, 2009) which automatically re-
fine standard PCFG by introducing new artificial rules obtained by splitting each
internal category A to a certain number of artificial subcategories A1,A2, . . . ,An,
and estimating a new probability distribution over trees. In a broad sense, other
node-enrichment techniques (Goodman, 1997; Johnson, 1998; Klein and Man-
ning, 2003) can be also considered as instances of state splitting models, because
each node in every tree is split into more refined categories based on contex-
tual features (e.g., head, parent information). Nevertheless we would like here
to draw some separation between the two approaches. In fact, recent state-
splitting models strongly rely on automatic methods of enrichment rather than

54 Chapter 3. Recycling Phrase-Structure Constructions

using manual annotations or pre-defined contextual features. The other impor-
tant difference is that while in manual or feature-based enrichment models each
parse tree is mapped into a specific enriched structure, in state-splitting models,
such as Petrov (2009), each parse tree is mapped to multiple enriched structures.
As a result, the probability of a given parse tree for a test sentence is the sum
of the probabilities of all the refined structures allowed by the grammar for that
parse tree. As we will see it in the later section, this characteristic is shared with
Data-Oriented Parsing Models.

Although there exist a number of automatically induced state-splitting mod-
els, we will only present the work of Petrov (2009) as it is methodologically simpler
(with respect to e.g., Matsuzaki et al., 2005) and the one achieving better results.

Berkeley parser

Petrov (2009) developed a fast and accurate parser based on state-splitting. The
learning of the refined grammar is done automatically and incrementally, alter-
nating splitting and merging phases. In a split phase every category is forked in
two subcategories and a re-estimation of the probabilities of rules is performed in
order to maximize the probability of the training corpus using the Expectation-
Maximization algorithm. In the merge phase, the model checks to which extent
each splitting contributes to increase the likelihood of the data; a certain splitting
is undone if its contribution is found to be negligible. Figure 3.3 shows the tree
in figure 3.1 with the refined categories after the 6th iteration of the Berkeley
model.

The use of refined categories effectively helps the model in solving the over-
generation problem of the underlying PCFG, as it imposes stronger constraints
on the possible ways of extending each internal node of a parse tree. The
under-generation problem is solved by using artificial binarization of the treebank
(marked in the tree in figure 3.3 with ‘@’), which is a way to implicitly encode
horizontal markovization in the model as in Collins (1997, 1999) (see also §3.7).

3.3 Data-Oriented Parsing
In this section we present a novel approach to Data-Oriented Parsing (DOP).
As in previous DOP models (Bod, 2001b; Bansal and Klein, 2010), our parser
utilizes syntactic fragments of arbitrary size from a treebank to analyze new sen-
tences. As the number of fragments which can be extracted from a large treebank
is extremely large, previous approaches have resorted to explicitly extracting a
random sample of fragments (e.g., Bod, 2001b), or implicitly representing them
all in a compact grammar (e.g., Bansal and Klein, 2010).

The main contribution of our work is to propose a more principled-based
approach for explicitly extracting a relatively small but representative set of

3.3. Data-Oriented Parsing 55

S-4

NP-44

@NP-43

DT-17

The

NNP-63

Free

NNP-26

French

VP-7

VBD-11

wore

NP-7

@NP-51

JJ-2

black

NN-3

arm

NNS-0

bands

Category Words
DT-17 The, A
NNP-26 Commission, Com-

mittee, Association,
Department, Mu-
seum, Revolution,
Office, ...

VBD-11 sent, exercised, re-
ceived, retained,
completed, followed,
made, ...

JJ-2 ceramic, young, daily,
imperial, full, ...

Figure 3.3: Example of a phrase-structure (PS) tree according to Berkeley model,
including binarization nodes marked with ‘@’ (left), and a sample of the set of
words yielded by some of the refined categories used in the tree.

fragments from a treebank, i.e., those which are encountered at least twice in
the treebank, for which there is evidence about their reusability. The extracted
fragment-grammar can be employed as the symbolic backbone of several proba-
bilistic generative models.

3.3.1 Introduction
Data-Oriented Parsing (DOP) is an approach to wide-coverage parsing based
on assigning structures to new sentences using fragments of variable size from a
treebank (see example 2.2.3). It was first proposed by Remko Scha in 1990 and
formalized by Bod (1992), and preceded many developments in statistical parsing
(e.g., the “treebank grammars” of Charniak 1997). It is related to the linguistic
theory of construction-grammars (Fillmore et al., 1988), in which constructions
are not limited to single CFG productions but may span over several nested
syntactic phrases.

A rich literature on DOP has emerged since, yielding state-of-the-art results
on the Penn treebank benchmark test (Bod, 2001b; Bansal and Klein, 2010)
and inspiring developments in related frameworks including tree kernels (Collins
and Duffy, 2001, 2002), reranking (Charniak and Johnson, 2005) and Bayesian
adaptor and fragment grammars (e.g., Johnson et al., 2007b; O’Donnell et al.,
2009; Cohn et al., 2010).

By formalizing the idea of using large fragments of earlier language experience
to analyze new sentences, DOP captures an important property of language cog-
nition that has shaped natural language (Lieven et al., 2003; Arnon, 2009; Arnon
and Snider, 2010). It therefore complements approaches that have focused on

56 Chapter 3. Recycling Phrase-Structure Constructions

properties like lexicalization or incrementality, and might bring supplementary
strengths into other NLP tasks.

In this section we present a novel DOP model (Double-DOP) in which we
extract a restricted yet representative subset of fragments: those recurring at
least twice in the treebank. The explicit representation of the fragments allows
us to derive simple ways of estimating probabilistic models on top of the symbolic
grammar. This and other implementation choices aim at making the methodology
transparent and easily replicable. The accuracy of Double-DOP is well within the
range of state-of-the-art parsers currently used in other NLP-tasks, while offering
the additional benefits of a simple generative probability model and an explicit
representation of grammatical constructions.

We present a number of technical contributions: (i) a way to restrict the
set of fragments to only those that occur multiple times in the train set, (ii)
a transform-backtransform approach that allows us to use off-the-shelf PCFG
parsing techniques, and (iii) a way to integrate DOP with recent state-splitting
approaches (Petrov et al., 2006), yielding an even more accurate parser and a
better understanding of the relation between DOP and state-splitting.

In line with the symbolic/probabilistic separation conducted in the previous
chapter we will first introduce the symbolic backbone of our DOP model (§3.4)
and later on describe its stochastic instantiation (§3.6).

3.4 The symbolic backbone
The basic idea behind DOP is to allow arbitrarily large fragments from a treebank
to be the elementary units of production of the grammar.

A fragment can be formally described as a subtree of a PS tree, where for
each node in the fragment either all or none of its child nodes are present in the
subtree. Fragments can be combined through the substitution operation to obtain
the PS tree of a new sentence. Figure 3.4 shows an example of how to obtain the
complete syntactic tree in figure 3.1 by combining three elementary fragments.
As in previous work, two fragments fi and fj can be combined (fi ○fj) only if the
leftmost substitution site X↓ in fi has the same label as the root node of fj; in
this case the resulting tree will correspond to fi with fj replacing X. The DOP
formalism is discussed in detail in e.g., Bod et al. (2003).

3.4.1 Explicit vs. Implicit Grammars
The first step to build a DOP model is to define its symbolic grammar, i.e., the set
of elementary fragments in the model. Early versions of DOP (e.g., Bod et al.,
2003) aimed at extracting all subtrees of all trees in the treebank. The total
number of subtrees, however, is prohibitively large for non-trivial treebanks: it
grows exponentially with the length of the sentences, yielding the astronomically

3.4. The symbolic backbone 57

S

NP↓ VP

VBD

wore

NP↓
○

NP

DT

The

NNP

Free

NNP

French

○

NP

JJ

black

NN

arm

NNS

bands

Figure 3.4: An example of a derivation of the syntactic structure in figure 3.1
obtained combining three elementary fragments by means of the substitution
operation ○. Substitution sites are marked with the symbol ↓.

large number of approximately 1046 for section 2-21 of the Penn WSJ treebank
(see §3.5.2). DOP models that work with an explicit extraction of subtrees (Bod,
1992, 2001b; Zuidema, 2007), thus resorted to random sampling or to specific
heuristics to filter fragments based on their features (e.g., depth, number of lexical
or nonterminal elements in frontier). But, as we will show in section 3.5.2, the
majority of the constructions extracted by most of these sampling techniques
occur only once in the training corpus. For instance the chance that a randomly
extracted large fragment is reusable in a different structure is, for all practical
purposes, 0. At the same time, any sampling technique will most likely fail to
extract many relevant syntactic productions.

Goodman transformation Later DOP models have used the Goodman trans-
formation (Goodman, 1996, 2003) to obtain a compact representation of all frag-
ments in the treebank (Bod, 2003; Bansal and Klein, 2010). The transformation
was defined for some versions of DOP to an equivalent PCFG-based model, with
the number of rules extracted from each parse tree being linear in the size of the
trees.

This is possible by means of enriching the treebank with a unique index i
for every node N (becoming Ni) in the trees. Assuming that the treebank is
binarized, for every PCFG rule Aj → BkCl, 8 rules are extracted:

Aj → BC A → BC
Aj → BkC A → BkC
Aj → BCl A → BCl
Aj → BkCl A → BkCl

Here we have reported only the symbolic part of the conversion. Goodman
defines also specific weights for each transformed rule, so that the model generates

58 Chapter 3. Recycling Phrase-Structure Constructions

subderivations with the same probabilities as various probabilistic DOP models.
This transform, is used in most recent DOP parsers (e.g., Bod, 2003; Bansal and
Klein, 2010). The grammar represents larger fragments only implicitly, by means
of the unique indices which function as locks, constraining every indexed node Ni

to the CFG production where it occurs in the training corpus.
Bod has argued for the Goodman transform as the solution to the computa-

tional challenges of DOP (e.g., Bod, 2003); it is important to realize, however,
that the resulting grammars are still very large: WSJ sections 2-21 yield about
7.8 × 106 rules in the basic version of Goodman’s transform.2 Moreover, the
transformed grammars differ from untransformed DOP grammars in that larger
fragments are no longer explicitly represented. Rather, information about their
frequency is distributed over many CFG-rules: if a construction occurs n times
and contains m context-free productions, Goodman’s transform uses the weights
of 7nm +m rules to encode this fact. Thus, the information that the idiomatic
fragment (PP (IN “out”) (PP (IN “of”) (NP (NN “town”))))) occurs 3 times in
WSJ sections 2-21, is distributed over 132 rules. This way, an attractive feature
of DOP, viz. the explicit representation of the ‘productive units’ of language, is
lost.3

3.5 Finding Recurring Fragments
In the current work we return to the first approach, and explicitly extract a
subset of fragments from the training treebank. We believe that an explicit
representation of fragments in a grammar could provide great advantages for
better understanding the model, since it allows us to reproduce the process by
which syntactic pieces are combined to form sentential structures. Moreover
in several applications it is conceptually easier to deal with explicit grammar
productions, as for instance in machine translation systems which need to resolve
a mapping between syntactic productions of two distinct languages.

Unfortunately, as explained above, explicit fragment grammars can grow ex-
tremely large in size. To limit the fragment set size, we use a simple but heretofore
unexplored constraint: we extract only those fragments that occur two or more
times in the treebank. This intuition follows the natural assumption, common
in many current linguistic theories, to consider a construction linguistically rele-
vant if there is empirical evidence about its reusability in a representative corpus.
Thus with Double-DOP we hope to overcome some of the limitations of pre-
vious probabilistic extensions of CFGs as well as the problem of efficiency and

2About 106 lexical and 6.8 × 106 internal rules. This has been calculated from the treebank
which was binarized as in our experiments.

3Bansal and Klein (2010) address this issue for contiguous constructions by extending the
Goodman transform with a ‘Packed Graph Encoding’ for fragments that “bottom out in termi-
nals”. However, constructions with variable slots, such as whether S or not, are left unchanged.

3.5. Finding Recurring Fragments 59

reproducibility of previous DOP models based on the extraction of an explicit
fragment-grammars.

The idea of working with fragments occurring two or more times in the tree-
bank, can be seen as related to the held-out estimation procedure used in DOP*
(Zollmann and Sima’an, 2005). In this work, fragments are extracted from a
subset of the training treebank (the extraction corpus, EC) and their weights are
estimated on the remaining part (the held-out corpus, HC) in order to maximize
its likelihood. As a result, the fragments which obtain non-zero weights in the
final grammar are those occurring both in EC and HC. If HC consists of a single
tree (leave-one-out), and by repeating the procedure such that each tree in the
training corpus is used once as the held-out data (K-fold cross-validation), the
final grammar will contain exactly those fragments occurring at least twice in the
training corpus.

In the remaining of this section we describe the algorithm for extracting the
set of recurring fragments from a treebank, which will constitute our symbolic
grammar, and illustrate some properties of the selected constructions. In §3.6 and
§3.7 we will propose a number of probabilistic instantiations of the underlying
symbolic model.

3.5.1 The search algorithm
Extracting recurring fragments in a large treebank is not a trivial task: a naive
approach that filters a complete table of fragments together with their frequencies
would fail because that set, in a reasonably sized treebank, is astronomically large.
Instead, we use an efficient kernel-based algorithm, which is conceptually similar
to previously proposed methods using this technique (Collins and Duffy, 2001,
2002; Moschitti, 2006). The main difference, however, is that, while in previous
studies kernels are mainly used to numerically quantify the similarity between two
trees, in the current work we are interested in identifying the actual constructions
they share, i.e., the common largest (or maximal) fragments.

Our search algorithm4 iterates over every pair of trees in the treebank and
looks for common maximal fragments. More precisely we extract only the largest
shared fragments for all pairs of trees in the treebank. All subtrees of these ex-
tracted fragments necessarily also occur at least twice, but they are only explicitly
represented in our extracted set if they happen to form a largest shared fragment
from another pair of trees. Hence, if a large tree occurs twice in the treebank the
algorithm will extract from this pair only the full tree as a fragment and not all
its (exponentially many) subtrees.

Figure 3.5 shows an example of a pair of trees ⟨α,β⟩ being compared. All the
non-terminal nodes of the two trees are indexed following a depth-first ordering

4The implemented software for extracting recurring fragments (FragmentSeeker) is available
at http://staff.science.uva.nl/˜fsangati/.

60 Chapter 3. Recycling Phrase-Structure Constructions

(as in figure 2.9). The algorithm builds a chart M with one column for every
indexed non-terminal node αi in α, and one row for every indexed non-terminal
node βj in β. Each cell M⟨i, j⟩ identifies a set of indices corresponding to the
largest fragment in common between the two trees starting from αi and βj. This
set is empty if αi and βj differ in their labels, or they do not have the same list
of child nodes. Otherwise (if both the labels and the lists of children match) the
set is computed recursively as follows:

M⟨i, j⟩ = {αi} ⋃
⎛
⎝ ⋃
c={1,2,...,∣ch(α)∣}

M⟨ch(αi, c), ch(βj, c)⟩
⎞
⎠

(3.1)

where ch(α) returns the indices of α’s children, and ch(α, c) the index of its
cth child. The procedure to recursively compute the maximal shared fragments
between two nodes (Ni,Nj) of a pair of PS trees is described in the algorithm in
figure 3.5.

After filling the chart, the algorithm extracts the set of recurring fragments,
and stores them in a table to keep track of their counts. This is done by converting
back each fragment implicitly defined in every cell-set,5 and filtering out those
that are properly contained in others.6

The time complexity of the overall procedure, is O(n2 ⋅m2) where n is the size
of the treebank and m the number of nodes in the biggest tree of the corpus.7 In
terms of space the number of maximal fragments which are extracted for every
pair of trees is in the worst case m2.

3.5.2 A case study on the Penn WSJ
In this section we describe some statistics derived from testing our extraction
procedure on the Penn WSJ corpus Marcus et al. (1993). We have restricted the
treebank to the 39,832 structures of sections 2-21 after removing null productions
and traces. Differently from the preprocessing in later experiments the treebank
here is not binarized and functional tags (SBJ, TMP, etc...) are kept.

Figure 3.6 reports some statistics on the set of all maximal fragments which
are extracted from the treebank. The total number of extracted fragments types

5A cell-set containing a single index corresponds to the fragment including the node with
that index together with all its children.

6In a second pass over the treebank, exact counts can be obtained for each fragment in
the extracted set. However, the approximate counts returned by the extraction algorithm are
extremely close to the exact values.

7In terms of empirical computation time, using a 2.5 GHz processor machine, our program
takes about around 50-CPU hours for WSJ (sections 2-21). Although our code could still be
optimized further, it does already allow for running the job on N CPUs in parallel, reducing
the time required by a factor N (less than 3 hours with 16-CPUs). Computing time of course
becomes problematic for very large treebanks, but we are optimistic about the effectiveness of
approximate strategies when training sets becomes very large.

3.5. Finding Recurring Fragments 61

S

NP

PRP

I

VP

VBP

say

SBAR

S

NP

PRP

they

VP

VBP

are

ADJP

JJ

ready

.

.

S

NP

NNS

Analysts

VP

VBP

say

SBAR

S

NP

NNP

USAir

VP

VBZ

has

NP

JJ

great

NN

promise

.

.

S N
P

PR
P

V
P

V
B

P
SB

A
R

S N
P

PR
P

V
P

V
B

P
A

D
JP

JJ .

S × ×
NP × ×

NNS
VP × ×

VBP × ×
SBAR ×

S × ×
NP × ×

NNP
VP ×

VBZ
NP

JJ ×
NN

. ×α β

Figure 2: Left: example of two trees sharing a single maximum fragment, circled in the two trees. Right: the chart
M which is used in the dynamic algorithm to extract all maximum fragments shared between the two trees. The
highlighted cells in the chart are the ones which contribute to extract the shared fragment. The marked cells are those
for which the corresponding nodes in the two tree have equivalent labels but differ in their lists of child nodes.

the treebank to look for common fragments. Fig-
ure 2 shows an example of a pair of trees �α,β� be-
ing compared. The algorithm builds a chart M with
one column for every indexed non-terminal node αi

in α, and one row for every indexed non-terminal
node βj in β. Each cell M�i, j� identifies a set of in-
dices corresponding to the largest fragment in com-
mon between the two trees starting from αi and βj .
This set is empty if αi and βj differ in their labels,
or they don’t have the same list of child nodes. Oth-
erwise (if both the labels and the lists of children
match) the set is computed recursively as follows:

M�i, j� = {αi} ∪
 �

c={1,2,...,|ch(α)|}
M�ch(αi, c), ch(βj , c)�

 (1)

where ch(α) returns the indices of α’s children, and
ch(α, c) the index of its cth child.

After filling the chart, the algorithm extracts the
set of recurring fragments, and stores them in a ta-
ble to keep track of their counts. This is done by
converting back each fragment implicitly defined in
every cell-set2, and filtering out those that are prop-
erly contained in others.

In a second pass over the treebank, exact counts
are obtained for each fragment in the extracted set.

2A cell-set containing a single index corresponds to the frag-
ment including the node with that index together with all its
children.

Parse trees in the training corpus are not necessarily
covered entirely by recurring fragments; to ensure
coverage, we also include in the symbolic backbone
of our Double-DOP model all PCFG-productions
not included in the set of extracted fragments.

2.2 Comparison with previous DOP work

Explicit grammars The number of recurring frag-
ments in our symbolic grammar, extracted from
the training sections of the Penn WSJ treebank3, is
around 1 million, and thus is significantly lower than
previous work extracting explicit fragments (e.g.,
Bod, 2001, used more than 5 million fragments up
to depth 14).

When looking at the extracted fragments we ask
if we could have predicted which fragments occur
twice or more. Figure 3 attempts to tackle this ques-
tion by reporting some statistics on the extracted
fragments. The majority of fragments are rather
small with a limited number of words or substitution
sites in the frontier. Yet, there is a significant por-
tion of fragments, in the tail of the distribution, with
more than 10 words or substitution sites. Since the
space of all fragments with such characteristics is
enormously large, selecting big recurring fragments
using random sampling technique is like finding a
needle in a haystack. Hence, random sampling pro-
cesses (like Bod, 2001), will tend to represent fre-

3This is after the treebank has been preprocessed. See also
section 4.

S

NP

PRP

I

VP

VBP

say

SBAR

S

NP

PRP

they

VP

VBP

are

ADJP

JJ

ready

.

.

S

NP

NNS

Analysts

VP

VBP

say

SBAR

S

NP

NNP

USAir

VP

VBZ

has

NP

JJ

great

NN

promise

.

.

S N
P

PR
P

V
P

V
B

P
SB

A
R

S N
P

PR
P

V
P

V
B

P
A

D
JP

JJ .

S × ×
NP × ×

NNS
VP × ×

VBP × ×
SBAR ×

S × ×
NP × ×

NNP
VP ×

VBZ
NP
JJ ×

NN
. ×α β

Figure 2: Left: example of two trees sharing a single maximum fragment, circled in the two trees. Right: the chart
M which is used in the dynamic algorithm to extract all maximum fragments shared between the two trees. The
highlighted cells in the chart are the ones which contribute to extract the shared fragment. The marked cells are those
for which the corresponding nodes in the two tree have equivalent labels but differ in their lists of child nodes.

the treebank to look for common fragments. Fig-
ure 2 shows an example of a pair of trees �α,β� be-
ing compared. The algorithm builds a chart M with
one column for every indexed non-terminal node αi

in α, and one row for every indexed non-terminal
node βj in β. Each cell M�i, j� identifies a set of in-
dices corresponding to the largest fragment in com-
mon between the two trees starting from αi and βj .
This set is empty if αi and βj differ in their labels,
or they don’t have the same list of child nodes. Oth-
erwise (if both the labels and the lists of children
match) the set is computed recursively as follows:

M�i, j� = {αi} ∪
 �

c={1,2,...,|ch(α)|}
M�ch(αi, c), ch(βj , c)�

 (1)

where ch(α) returns the indices of α’s children, and
ch(α, c) the index of its cth child.

After filling the chart, the algorithm extracts the
set of recurring fragments, and stores them in a ta-
ble to keep track of their counts. This is done by
converting back each fragment implicitly defined in
every cell-set2, and filtering out those that are prop-
erly contained in others.

In a second pass over the treebank, exact counts
are obtained for each fragment in the extracted set.

2A cell-set containing a single index corresponds to the frag-
ment including the node with that index together with all its
children.

Parse trees in the training corpus are not necessarily
covered entirely by recurring fragments; to ensure
coverage, we also include in the symbolic backbone
of our Double-DOP model all PCFG-productions
not included in the set of extracted fragments.

2.2 Comparison with previous DOP work

Explicit grammars The number of recurring frag-
ments in our symbolic grammar, extracted from
the training sections of the Penn WSJ treebank3, is
around 1 million, and thus is significantly lower than
previous work extracting explicit fragments (e.g.,
Bod, 2001, used more than 5 million fragments up
to depth 14).

When looking at the extracted fragments we ask
if we could have predicted which fragments occur
twice or more. Figure 3 attempts to tackle this ques-
tion by reporting some statistics on the extracted
fragments. The majority of fragments are rather
small with a limited number of words or substitution
sites in the frontier. Yet, there is a significant por-
tion of fragments, in the tail of the distribution, with
more than 10 words or substitution sites. Since the
space of all fragments with such characteristics is
enormously large, selecting big recurring fragments
using random sampling technique is like finding a
needle in a haystack. Hence, random sampling pro-
cesses (like Bod, 2001), will tend to represent fre-

3This is after the treebank has been preprocessed. See also
section 4.

α β

S N
P

PR
P

V
P

V
BP

SB
A

R
S N
P

PR
P

V
P

V
BP

A
D

JP JJ .

S × ×
NP × ×

NNS
VP × ×

VBP × ×
SBAR ×

S × ×
NP × ×

NNP
VP ×

VBZ
NP
JJ ×

NN
. ×

Algorithm: ExtractMaxFragment(Ni,Nj)
Input: two PS nodes (Ni,Nj)
Output: a set of nodes representing the largest

fragment rooted in Ni and Nj

begin
if Ni ≠ Nj then return {};
NodeSet← {Ni};
if Ni.daughters = Nj.daughters then
for d ∈ (1,2, . . . ,Ni.daughters.size) do
Di ← Ni[d];
Dj ← Nj[d];
NodeSetD ←
ExtractMaxFragment(Di,Dj);
NodeSet.union(NodeSetD);

return NodeSet;

Figure 3.5: Above: example of two trees sharing a single maximum fragment,
highlighted in the two trees. Below: the chart used in the algorithm to extract
all maximum fragments shared between the two trees, and the pseudocode of
the algorithm used for extracting the largest fragment rooted in two nodes of
two PS trees. In the chart, the highlighted cells are the ones which contribute
to extracting the shared fragment. The cells marked with a cross are those for
which the corresponding nodes in the two tree have equivalent labels.

62 Chapter 3. Recycling Phrase-Structure Constructions

is 527,217, and their distribution with respect to their depths, reported on the
graph of the same figure, shows that fragments of depth 3 and 4 are the most
abundant recurring fragments in the corpus. Their frequency distribution follows
Zipf’s law as shown in figure 3.7.

Figure 3.8 shows the distribution of the total number of fragments tokens
which are present in the same treebank, with respect to their depths and max-
imum branching. The maximum branching of a fragment corresponds to the
maximum number of daughters of the most prolific node. From the figure we
can see that this variable is the primary factor to affect the number of subtrees
present in a tree structure. The total number of fragments without any restriction
in depth and branching, is estimated to be 8.7 ⋅ 1046.8 It follows that the portion
of fragment tokens which are recurring in the treebank (the shaded area in the
graph) is an extremely small fraction9 of all possible fragments.

When looking at the extracted fragments we ask if we could have predicted
which fragments occur twice or more. Figure 3.10 attempts to tackle this question
by reporting some statistics on the extracted fragments. In particular it shows the
distribution of the recurrent fragments types according to several features: depth,
number of words, and number of substitution sites. Not surprisingly most of the
frequent recurring fragments have low values for these features: the majority of
fragments are rather small with a limited number of words or substitution sites
in the frontier. Nevertheless there is still a significant portion of fragments, in the
tail of the distribution, with more than 10 words (or substitution sites). Since
the space of all fragments with such characteristics is enormously large, selecting
big recurring fragments using random sampling technique is like finding a needle
in a haystack. Hence, random sampling processes (like Bod, 2001b), will tend
to represent frequent recurring constructions such as from NP to NP or whether
S or not, together with infrequent overspecialized fragments like from Houston
to NP, while missing large generic constructions such as everything you always
wanted to know about NP but were afraid to ask. These large constructions are
excluded completely by models that only allow elementary trees up to a certain
depth (typically 4 or 5) into the symbolic grammar (Zollmann and Sima’an, 2005;
Zuidema, 2007; Borensztajn et al., 2009), or only elementary trees with exactly
one lexical anchor (Sangati and Zuidema, 2009).

Finally, in figure 3.9 we have reported the most frequently recurring fragments
in the WSJ containing the verb “say” (when it is a present tense verb). This kind
of statistics, can give an insight on the specific template constructions of this
particular verb.

8This number is calculated by summing the number of subtrees ω(Ni) rooted in every node
Ni of every tree in the treebank. ω(Ni) is calculated recursively: ω(Ni) =∏D∈d(Ni) (ω(D) + 1),
where d(Ni) returns the list of daughter nodes of Ni. If N is a terminal node ω(N) = 0.

9In the graph, the shaded area representing this tiny fraction (7.1 ⋅ 10−41), is visible because
of the logarithmic scale in the y-axes.

3.5. Finding Recurring Fragments 63

Depth Types Tokens
1 27,893 1,570,869
2 86,512 1,549,523
3 138,709 1,428,777
4 128,927 923,315
5 83,218 455,448
6 40,524 179,548
7 14,849 52,424
8 4,677 14,133
9 1,343 3,692
10 398 951
11 96 213
12 39 95
13 14 28
14 6 16
15 4 8
16 3 8
17 2 5
18 2 4
20 1 2

Total 527,217 6,179,059

0	

250,000	

500,000	

750,000	

1,000,000	

1,250,000	

1,500,000	

1,750,000	

2,000,000	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

1	 2	 3	 4	 5	 6	 7	 8	 9	

N
um

be
r	
of
	 T
ok
en

s	

N
um

be
r	
of
	 T
yp
es
	

Depth	

	 	 Types	

	 	 Tokens	

Figure 3.6: Distribution of the types and tokens frequencies of the recurring
maximal fragment with respect to their depths. Fragments are extracted from
sections 2-21 of the Penn WSJ Treebank.

Figure 3.7: Zipf distribution of the recurring fragments extracted from section
02-21 of the Penn WSJ Treebank.

64 Chapter 3. Recycling Phrase-Structure Constructions

0	 5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0	
1	

2	
3	

4	
5	

6	
7	

8	
9	

10	
11	

12	
13	

14	
15	

16	
17	

18	
19	

20	
21	

22	
23	

24	
25	

26	
27	

28	
29	

30	
31	

32	
33	

34	
35	

36	

LOG10	 FREQUENCY	 (TOKENS)	

D
EPTH

	

1	

2	 (binary	 branching)	

3	

4	

5	
6	

7	

8	

9-‐11	 13-‐15	

16-‐50	

51	 R1	
R2	

12	

R3	

Figure
3.8:D

istribution
ofthe

totalnum
beroffragm

entstokensw
hich

are
presentin

the
treesofsections2-21

ofthe
Penn

W
SJ

Treebank,w
ith

respect
to

the
fragm

ent
depths

(horizontalaxes,w
ith

depth=
1

standing
for

single
tree

nodes,and
depth=

2
forC

FG
-rules).Every

line
correspondsto

the
totalnum

beroffragm
entsatdifferentdepth

values,w
hen

lim
iting

the
m

axim
um

branching
ofthe

fragm
ents

to
a

certain
constant

(the
num

ber
reported

close
to

the
line).

T
he

m
axim

um
branching

ofa
fragm

ent
is

defined
to

be
the

m
axim

um
num

ber
ofdaughters

in
the

m
ost

prolific
node

ofthe
fragm

ent.
T

he
shaded

area
at

the
bottom

of
the

graph
represents

the
portion

of
recurring

fragm
ents

w
hich

we
extract

from
the

treebank
(the

m
axim

alfragm
entsshared

between
atleasttwo

trees).R
1

isthe
sub-portion

including
fragm

entsw
ith

only
unary

branching
(alm

ostallare
recurring

fragm
ents),and

sim
ilarly

R
2

and
R

3
representsub-portionsw

ith
fragm

entsw
ith

m
axim

um
branching

2
and

3.

3.5. Finding Recurring Fragments 65

VBP

“say”

VP

VBP

“say”

SBAR

VP

VBP

“say”

SBAR

S

VP

VBP

“say”

SBAR

S

NP-SBJ VP

525 342 293 249

S

NP-SBJ VP

VBP

“say”

SBAR

.

“.”

VP

VBP

“say”

S

NP-SBJ VP

VBP

“say”

SBAR

S

.

“.”

S

NP-SBJ VP

VBP

“say”

SBAR

S

NP-SBJ VP

.

“.”

173 157 140 120

S

S-TPC ,

“,”

NP-SBJ VP

VBP

“say”

.

“.”

VP

VBP

“say”

SBAR

S

NP-SBJ

PRP

VP

S

NP-SBJ VP

VBP

“say”

VP

VBP

“say”

SBAR

S

NP-SBJ VP

MD VP

74 73 55 47

PRN

,

“,”

S

NP-SBJ VP

VBP

“say”

,

“,”

VP

VBP

“say”

SBAR

S

NP-SBJ

PRP

“they”

VP

S

NP-SBJ VP

VBP

“say”

SBAR

VP

VBP

“say”

SBAR

IN

“that”

S

47 46 46 45

Figure 3.9: The most frequent fragments containing the verb say, when it is a
present tense verb (VBP). Below each fragment we report the exact frequency
with which it occurs in the WSJ sec 02-21. For example, the second fragment
at the top of the figure (occurring 342 times) illustrates a specific template con-
struction of the verb, which requires a relative or subordinate clause (SBAR) as
first and only argument to its right; this specific construction accounts for 65%
of the occurrences of “say”.

66 Chapter 3. Recycling Phrase-Structure Constructions

100

101

102

103

104

105

106

 0 10 20 30 40 50 60

N
um

be
r

of
 F

ra
gm

en
ts

 (
ty

pe
s)

Depth / Words / Substitution Sites

Depth
Words

Substitution Sites

Figure 3.10: Distribution of the recurring fragments types according to several
features: depth, number of words, and number of substitution sites. Their corre-
sponding curves peak at 3 (depth), 1 (words), and 3 (substitution sites).

3.6 The probability model
The set of recurring fragments can be used as the symbolic backbone of a prob-
abilistic parser. Like CFGs, our symbolic model produces extremely many parse
trees for a given test sentence.10 We therefore need to disambiguate between
the possible parses by means of a probability model that assigns probabilities to
fragments, and defines a proper distribution over the set of possible full parse
trees.

For every nonterminal X in our grammar we want to have (see also equa-
tion 2.6):

∑
f∈FX

p(f) = 1 (3.2)

where FX is the set of fragments in our symbolic grammar rooted in X. Adding
probabilities turns our grammars into probabilistic tree substitution grammars
(PTSGs).

10In particular our Double-DOP grammar extracted from a treebank has the same strong
generative power of the subsuming CFG: it generate the same tree structures of the CFG
extracted from the same treebank.

3.6. The probability model 67

A derivation d = f1, f2, . . . , fn of T is a sequence of fragments that through
left-most substitution produces T . The probability of a derivation is computed
as the product of the probabilities of each of its fragments.

P (d) =∏
f∈d
p(f) (3.3)

In §3.6.2 we describe ways of obtaining different probability distributions over
the fragments in our grammar, but we first illustrate how to use standard PCFG
parsing techniques given a probabilistic model.

3.6.1 Parsing
It is possible to define a simple transform of our probabilistic fragment grammar,
such that off-the-shelf parsers can be used. In order to perform the PTSG/PCFG
conversion, every fragment in our grammar must be mapped to a CFG rule which
will keep the same probability as the original fragment. The corresponding rule
will have as the left hand side the root of the fragment and as the right hand side
its yield, i.e., a sequence of terminals and non-terminals (substitution sites).

It might occur that several fragments are mapped to the same CFG rule.11

These are interesting cases of syntactic ambiguity as shown in figure 3.11. In
order to resolve this problem we need to map each ambiguous fragment to two
unique CFG rules chained by a unique artificial node, as shown at the bottom
of the same figure. To the first CFG rule in the chain we assign the probability
of the fragment, while the second will receive probability 1, so the product gives
back the original probability. The ambiguous and unambiguous PTSG/PCFG
mappings need to be stored in a table, in order to convert back the compressed
CFG derivations to the original PTSG model after parsing.

Such a transformed PCFG will generate the same derivations as the original
PTSG grammar with identical probabilities. The resulting grammar is more eco-
nomic than previously proposed transformations: it needs only one PCFG rules
per elementary tree, and two for the ambiguous fragment. Previous approaches
(e.g., Zuidema, 2007, and others) use a separate rule for each CFG-production
inside an elementary tree.

In our experiment we use a standard PCFG parser to produce a list of k-best
Viterbi derivations. These, in turn, will be used to maximize possible objectives
as described in section 3.6.3.

11In our binarized treebank we have 31,465 fragments types that are ambiguous in this sense
(about 6% of the total number of extracted fragments). On average 2.05 ambiguous fragments
map to the same CFG rule.

68 Chapter 3. Recycling Phrase-Structure Constructions

VP

VBD NP

NP

DT NN

PP

IN

“with”

NP

VP

VBD NP

DT NN

PP

IN

“with”

NP

⇕ ⇕
VP

NODE@7276

VP

NODE@7277

NODE@7276

VBD DT NN “with” NP

NODE@7277

VBD DT NN “with” NP

Figure 3.11: Above: example of 2 ambiguous fragments which would map to
the same CFG rule VP → VBD DT NN “with” NP. The first fragment occurs
5 times in the training treebank, (e.g., in the sentence was an executive with a
manufacturing concern) while the second fragment occurs 4 times (e.g., in the
sentence began this campaign with such high hopes). Below: the two pairs of CFG
rules that are used to map the two fragments to separate CFG derivations.

5
10

102
103

105

1010

1020

1050

0 1⋅104 2⋅104 3⋅104 4⋅104

N
um

be
r

of
 f

ra
gm

en
ts

Rank of tree from train set

Recurring fragments
All fragments

Figure 3.12: Number of fragments extracted from each tree in sections 2-21 of
the WSJ treebank, when considering all-fragments (dotted line) and recurring-
fragments (solid line). Trees on the x-axis are ranked according to the number of
fragments. Note the double logarithmic scale on the y-axis.

3.6. The probability model 69

3.6.2 Inducing probability distributions
Relative Frequency Estimate (RFE) The simplest way to assign probabil-
ities to fragments is to make them proportional to their counts12 in the training
set. When enforcing equation 3.2, that gives the Relative Frequency Estimate
(RFE):

pRFE(f) =
count(f)

∑f ′∈Froot(f) count(f ′)
(3.4)

Unlike RFE for PCFGs, however, the RFE for PTSGs has no clear probabilis-
tic interpretation. In particular, it does not yield the maximum likelihood solu-
tion, and when used as an estimate for an all-fragments grammar, it is strongly
biased since it assigns the great majority of the probability mass to big frag-
ments (Bonnema et al., 1999): grammars that implicitly encode all fragments
found in a treebank are strongly biased to over-represent big fragments found in
the largest constructions in the treebank.13 DOP models relying on Goodman’s
transform, need therefore to counteract this tendency. Bansal and Klein (2010),
for instance, rely on a sophisticated tuning technique to correctly adjust the
weights of the rules in the grammar. In our Double-DOP approach, instead, this
bias is much weaker as the number of fragments extracted from each tree varies
much less (it ranges between 4 and 1,759) as shown in figure 3.12. Although this
does not solve all theoretical issues, it makes RFE a reasonable choice.

Equal Weights Estimate (EWE) Various other ways of choosing the weights
of a DOP grammar have been worked out. The best empirical results have been
reported by Bod (2003) with the EWE proposed by Goodman (2003). Goodman
defined it for grammars in the Goodman transform, but for explicit grammars it
becomes:

wEWE(f) = ∑
T ∈T

count(f, T)
∣{f ′ ∈ T}∣ (3.5)

pEWE(f) = wEWE(f)
∑f ′∈Froot(f) wEWE(f ′)

(3.6)

where the first sum is over all parse trees T in the treebank (T), count(f, T)
gives the number of times fragment f occurs in T , and ∣{f ′ ∈ T}∣ is the total
number of subtrees of T that were included in the symbolic grammar.

Maximum Likelihood Estimate (MLE) As an alternative estimate, we also
try to find the probability distribution which maximizes the likelihood of the

12We refer to the counts of each fragment as returned by our extraction procedure described
in §3.5.1.

13In fact, the number of extracted fragments increase exponentially with the size of the tree,
and the great majority of the entire set of fragments belongs to the largest tree in the treebank

70 Chapter 3. Recycling Phrase-Structure Constructions

training treebank. For this we apply the Inside-Outside algorithm (Lari and
Young, 1990), an instance of the Expectation-Maximization algorithm (EM, see
also Prescher, 2003). The original version of IO is defined over string rewriting
PCFGs, and maximizes the likelihood of the training set consisting of plain sen-
tences. Reestimation shifts probability mass between alternative parse trees for
a sentence. In contrast, our grammars consist of fragments of various sizes, and
our training set of parse trees. Reestimation here shifts probability mass between
alternative derivations for a parse tree (see also section 2.3.3).

In our EM experiments, we utilize a special-purpose implementation of IO for
TSG as illustrate in algorithm 1 (p. 72). We start from an initial probability
distribution14 p0 over the fragments in F . The expectation step is done in step
A and B, which compute the inside and outside probabilities respectively. More
specifically, for each parse tree T in the treebank, there are 3 different quantities
that we keep track of in the algorithm, which are also illustrated in figure 3.13:

• InsideNode(n): the inside probability of node n in T . It is computed as
the sum of all the sub-derivations generating the subtree of T starting from
n and ending in the lexical nodes under n.

• InsideFrag(f, n): the inside probability of all sub-derivations starting with
fragment fn and generating the same subtree starting from n and ending in
the lexical nodes under n (as above).

• OutsideNode(n): the outside probability of node n in T . It is computed as
the sum of all the derivations generating the subtree of T starting on the
root node, and including in its yield n as the only substitution site, and all
lexical nodes outside n.

In step C of algorithm 1 the maximization step is performed, reestimating the
probabilities of the fragments. The algorithm is guaranteed to produce a sequence
of reestimated probabilities p1, p2, . . . , pn for which the likelihood of the training
corpus monotonically increases (see also equation 2.22).

3.6.3 Maximizing Objectives
MPD The easiest objective in parsing, is to select the most probable derivation
(MPD), obtained by maximizing equation 3.3. This can be done efficiently by
computing the best Viterbi derivation.

14In our EM experiments we used the RFE from section 3.6 to obtain the initial probability
distribution for the IO algorithm.

3.6. The probability model 71

S

A

D

d

E

e

B

F

f

G

g

C

H

h

I

i

Outside(B)

Inside(B)

Figure 3.13: Illustration of the inside and outside probabilities of node B in a
parse tree, as defined in algorithm 1. The contribution of the dashed fragment f
to the inside probability is defined as InsideFrag(f).

MPP A DOP grammar can often generate the same parse tree T through dif-
ferent derivations D(T) = d1, d2, . . . dm. The probability of T is therefore obtained
by summing the probabilities of all its possible derivations.

P (T) = ∑
d∈D(T)

p(d) = ∑
d∈D(T)

∏
f∈d
p(f) (3.7)

An intuitive objective for a parser is to select, for a given sentence, the parse
tree with highest probability according to equation 3.7, i.e., the most prob-
able parse (MPP): unfortunately, identifying the MPP is computationally in-
tractable (Sima’an, 1996). However, we can approximate the MPP by deriving a
list of k-best derivations, summing up the probabilities of those resulting in the
same parse tree, and select the tree with maximum probability.

MCP, MRS Following Goodman (1998), Sima’an (1999, 2003), and others, we
also consider other objectives, in particular, the max constituent parse (MCP),
and the max rule sum (MRS), which are all instances of the minimum Bayes risk
decoding (see Smith 2011, p. 163).

MCP maximizes a weighted average of the expected labeled recall L/NC and
(approximated) labeled precision L/NG under the given posterior distribution,
where L is the number of correctly labeled constituents, NC the number of con-
stituents in the correct tree, and NG the number of constituents in the guessed

72 Chapter 3. Recycling Phrase-Structure Constructions

Algorithm: IOTSG(T , F, p0, ε)
Input: T :treebank; F : fragments; p0: initial prob. distr. over F ; ε: stop threshold
Output: p⃗ = {p1, p2, . . . , pn} : reestimated probabilities over F
begin
PreviousLikelihood←Ð 0;
CurrentLikelihood←Ð 1;
iter ←Ð 0;
while true do
for fragment f ∈ F do count(f)←Ð 0;
for parsetree T ∈ T do
for node n ∈ t do
{OutsideNode(n), InsideNode(n)}←Ð 0;
for fragment f ∈ F , f ∈ T , f rooted in n do
InsideFragment(f, n)←Ð 0;

// A) Compute Inside Probabilities
for non-lexical node n ∈ T (bottom-up) do
for fragment f ∈ F , f ∈ T , f rooted in n do
InsideFrag(f, n)←Ð piter(f);
for node s ∈ subSites(f, T) do
InsideFrag(f, n)∗ = InsideNode(s);
InsideNode(n)+ = InsideFrag(f, n);

// B) Compute Outside Probabilities
OutsideNode(root(T))←Ð 1;
for non-lexical node n ∈ T (top-down) do
for fragment f ∈ F , f ∈ T , f rooted in n do
for node s ∈ subSites(f, T) do

OutsideNode(s)+ = OutsideNode(n) ∗ InsideFrag(f, n)
InsideNode(s) ;

// C) Reestimate Fragments Probabilities
ProbTree←Ð InsideNode(root(T));
for non-lexical node n ∈ T do
for fragment f ∈ F , f ∈ T , f rooted in n do

count(f)+ = OutsideNode(n) ∗ InsideFrag(f, n)
ProbTree

;

CurrentLikelihood∗ = ProbTree;

for fragment f ∈ F do piter+1(f)←Ð
count(f)

∑f ′∈F, root(f ′)=root(f) count(f ′)
;

if CurrentLikelihood − PreviousLikelihood < ε then return p⃗ ;
PreviousLikelihood←Ð CurrentLikelihood;
iter ←Ð iter + 1;

Algorithm 1: Pseudocode for the Inside-Outside algorithm reestimating the probability
distributions of the TSG fragments, in order to maximize the probability of the training
treebank.

3.7. Implementation 73

tree.15 Recall is easy to maximize since the estimated NC is constant. L/NC can
be in fact maximized in:

T̂ = arg max
T

∑
lc∈T

P (lc) (3.8)

where lc ranges over all labeled constituents in T and P (lc) is the marginalized
probability of all the derivation trees in the grammar yielding the sentence under
consideration which contains lc.

Precision, instead, is harder because the denominator NG depends on the
chosen guessed tree. Goodman (1998) proposes to look at another metric which
is strongly correlated with precision, which is the mistake rate (NG − L)/NC

that we want to minimize. We combine recall with mistake rate through linear
interpolation:

T̂ = arg max
T

E(L
NC

− λNG −L
NC

) (3.9)

= arg max
T

∑
lc∈T

P (lc) − λ(1 − P (lc)) (3.10)

where 3.10 is obtained from 3.9 assuming NC constant, and the optimal level for
λ has to be evaluated empirically.

Unlike MPP, the MCP can be calculated efficiently using dynamic program-
ming techniques over the parse forest. However, in line with the aims of this
chapter to produce an easily reproducible implementation of DOP, we developed
an accurate approximation of the MCP using a list of k-best derivations, such as
those that can be obtained with an off-the-shelf PCFG parser.

We do so by building a standard CYK chart, where every cell corresponds
to a specific span in the test sentence. We store in each cell the approximated
probability of seeing every label in the grammar yielding the corresponding span,
by marginalizing the probabilities of all the parse trees in the obtained k-best
derivations that contains that label covering the same span. We then compute
the Viterbi-best parse maximizing equation 3.10.

We implement max rule sum (MRS) in a similar way, but do not only keep
track of labels in every cell, but of each CFG rule that span the specific yield (see
also Sima’an, 1999, 2003). We have not implemented the max rule product (MRP)
where marginal posterior probabilities are multiplied instead of added (Petrov and
Klein, 2007; Bansal and Klein, 2010).

3.7 Implementation
In order to build and test our Double-DOP model, we employ the Penn WSJ
Treebank (Marcus et al., 1993), and other treebanks of various languages (see

15For a definition of recall and precision see also §3.9.

74 Chapter 3. Recycling Phrase-Structure Constructions

for more details §3.8). The software produced for running our model is publicly
available at http://staff.science.uva.nl/˜fsangati.

Despite the fact that very many different DOP-parsers have been described in
the literature, only one such parser has been made available for use by other
researchers: the dopdis parser16 (Sima’an, 1995). Zuidema (2007) describes
a transform-backtransform approach that allows the use of a standard PCFG
parser, but for efficiency issues he needs to restrict his experiments on Penn WSJ
to sentences up to length 20. The only state-of-the-art published DOP results on
Penn WSJ have been obtained with special purpose parsers that use the Good-
man transform and have not yet been publicly released (Bod, 2001b; Bansal and
Klein, 2010). Also for iterative re-estimation techniques such as EM, no standard
software has been used. Magerman (1993, unpublished) is cited by Bod (2001a)
and others as working out an EM algorithm for DOP, but the original report is
not publicly available.

Treebank binarization

We start with some preprocessing of the treebank, following standard practice in
WSJ parsing. We remove traces and functional tags. We apply a left binarization
of the training treebank as in Matsuzaki et al. (2005) and Klein and Manning
(2003), setting the horizontal history H=1 and the parent labeling P=1.17 This
means that when a node has more than 2 children, the generation of the ith child
(for i ≥ 3) is conditioned on child i − 1. Moreover the labels of all non-lexical
nodes are enriched with the labels of their parent node. Figure 3.14 shows the
binarized version of the tree structure in figure 3.1. We have tried several different
binarization variations, including one based on head enrichment as done in Klein
and Manning (2003), and found that this is the one which works best on the WSJ
development set (section 22).

Unknown words

We replace words appearing less than 5 times by one of 50 unknown word cate-
gories based on the presence of lexical features as implemented by Petrov (2009).
In some of the experiments we also perform a smoothing over the lexical elements
assigning low counts (ε = 0.01) to open-class ⟨ word, PoS-tag ⟩ pairs not encoun-
tered in the training corpus. A PoS-tag is an open class if it rewrites to at least 50
different words in the training corpus. A word is an open class word if it has been
seen only with open-class PoS-tags. For more details on the used parameters for
the various languages see also Appendix A.

16The parser is available at http://staff.science.uva.nl/˜simaan/dopdis/.
17For a more thorough discussion on horizontal Markovization (a more general technique than

binarization) see Sima’an (2000).

3.8. Annotated Resources 75

S

NP∣S

NP∣S@NNP∣NP

DT∣NP

The

NNP∣NP

Free

NNP∣NP

French

VP∣S

VBD∣VP

wore

NP∣VP

NP∣VP@NN∣NP

JJ∣NP

black

NN∣NP

arm

NNS∣NP

bands

Figure 3.14: The binarized version of the tree in figure 3.4, with H=1 and P=1.

Fragment extraction and Parsing

We extract the symbolic grammar and fragment frequencies from this prepro-
cessed treebank as explained in section 3.4. This is the most time-consuming
step (around 160 CPU hours for the binarized treebank).

Parse trees in the training corpus are not necessarily covered entirely by recur-
ring fragments; to ensure better coverage, we also extract all PCFG-productions
not included in the set of recurring fragments.

In the extracted grammar from the Penn WSJ treebank we have in total
1,029,342 recurring fragments and 17,768 unseen CFG rules. We test several
probability distributions over the fragments (§3.6.2) and various maximization
objectives (§3.6.3).

We convert our PTSG into a PCFG (section 3.6.1) and use Bitpar18 for
parsing. The grammar extracted from the Penn WSJ treebank after smoothing
consists of 1,476,941 PCFG rules.

For approximating MPP and other objectives we marginalize probabilities
from the 1,000 best derivations.

3.8 Annotated Resources
In the current thesis we will adopt the English Wall Street Journal (WSJ) section
of the Penn 3 treebank (Marcus et al., 1999), as the main resource for training and
testing our models. The WSJ treebank, was developed in 10 years (1989-1999)

18http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

76 Chapter 3. Recycling Phrase-Structure Constructions

through a series of incremental annotation improvements and refinements (Marcus
et al., 1993; Taylor et al., 2003; Marcus et al., 1994). The resource has quickly
become the leading corpus for the evaluation of PS syntactic parsers. Recently,
other research groups spent great efforts to develop similar resources for other
languages (Bosco et al., 2000; Sima’an et al., 2001; Brants et al., 2002; Abeillé
et al., 2003; Oflazer et al., 2003). In §3.10 we will test our Double-DOP model on
these treebanks.19 In table 3.1 we present the references to the material together
with the details about the training, development, and test section for replicability
purpose.

3.9 Evaluation Metrics
As in previous work on PS parsing we rely on parseval scores (Back et al., 1991)
as the standard metric for evaluating our models. In particular we report Labeled
Recall, Labeled Precision, F1 score (the harmonic mean between the two), and
Exact Match score (EX). These metrics are reported in equations 3.11-3.14. We
compute this metrics using EvalB20 (Sekine and Collins, 1997) using parameter
file new.prm (see also more details in Appendix A.2). We have also used EvalC21

to obtain more detailed results, in particular, per category accuracy.

Labeled Recall = # correct labeled brackets
of brackets in gold (3.11)

Labeled Precision = # correct labeled brackets
of brackets in guess (3.12)

F1 = 2 ⋅ Labeled Recall ⋅ Labeled Precision
Labeled Recall + Labeled (3.13)

EX = # correct parse trees
total parse trees (3.14)

3.10 Results
Maximizing Objectives We start by presenting the results we obtain with
the extracted DOP grammar on the development set of the WSJ. Initially we
compare the maximizing objectives presented in section 3.6.3, over the different

19Many thanks to Djamé Seddah and Benoit Crabbé for providing us useful advice when
testing on the French treebank, and to Yoav Goldberg and Reut Tsarfaty for the Hebrew
treebank.

20http://nlp.cs.nyu.edu/evalb/
21http://staff.science.uva.nl/˜fsangati/

3.10. Results 77

L
an

gu
ag

e
T

re
eb

an
k

R
ef

er
en

ce
T

ra
in

in
g

Se
t

D
ev

el
op

m
en

t
Se

t
T

es
t

Se
t

En
gl

ish
W

SJ
M

ar
cu

se
ta

l.
19

99
Se

ct
io

ns
02

-2
1

[3
9,

83
2

in
to

ta
l]

Se
ct

io
n

24
[1

,3
46

in
to

ta
l]

Se
ct

io
n

23
[2

,4
16

in
to

ta
l]

En
gl

ish
Br

ow
n

M
ar

cu
se

ta
l.

19
99

A
ll

be
sid

es
te

st
[2

1,
81

8
in

to
ta

l]
N

on
e

Tr
ee

in
di

ce
s

1,
11

,
21

,
31

,
...

,
24

1
[2

,4
25

in
to

-
ta

l]

G
er

m
an

N
eg

ra
Sk

ut
et

al
.1

99
7

Tr
ee

in
di

ce
s

1-
18

,6
02

[1
8,

60
2

in
to

ta
l]

Tr
ee

in
di

ce
s

18
,6

03
-1

9,
60

2
[1

,0
00

in
to

ta
l]

Tr
ee

in
di

ce
s

19
,6

03
-2

0,
60

2
[1

,0
00

in
to

ta
l]

Fr
en

ch
FT

B
A

be
ill

é
et

al
.2

00
3

Fi
le

ftb
1.

m
rg

[9
,8

81
in

to
ta

l]
Fi

le
ftb

2.
m

rg
[1

,2
35

in
to

ta
l]

Fi
le

ftb
3.

m
rg

[1
,2

35
in

to
ta

l]

C
hi

ne
se

C
T

B
3.

0
X

ue
et

al
.2

00
2

A
rt

ic
le

s
1-

27
0,

40
0-

11
51

[1
8,

10
4

in
to

ta
l]

A
rt

ic
le

s
30

1-
32

5
[3

52
in

to
ta

l]
A

rt
ic

le
s

27
1-

30
0

[3
48

in
to

ta
l]

H
eb

re
w

H
T

B
Si

m
a’

an
et

al
.

20
01

Tr
ee

in
di

ce
s

50
1-

60
00

(p
la

in
tb

m
in

f.t
ra

in
)

[5
,2

41
in

to
ta

l]

Tr
ee

in
di

ce
s

1-
50

0
(p

la
in

tb
m

in
f.d

ev
)

[4
83

in
to

ta
l]

Tr
ee

in
di

ce
s

60
01

-6
50

1
pl

ai
nt

b
m

in
f.t

es
t

[4
96

in
to

ta
l]

Ta
bl

e
3.

1:
D

et
ai

ls
of

th
e

tr
ee

ba
nk

s
us

ed
in

th
e

pa
rs

in
g

re
su

lts
(t

re
e

in
di

ce
s

1
st

an
ds

fo
r

th
e

fir
st

tr
ee

in
th

e
tr

ee
ba

nk
).

78 Chapter 3. Recycling Phrase-Structure Constructions

probability estimates over the fragments (RFE, EWE, MLE). We conclude that,
empirically, MCP for the optimale choice of λ, is the best objective to maximize
F1, followed by MRS, MPP, and MPD. In figure 3.15 we show the comparison
of the various objectives for RFE where MCP reaches maximum performance for
λ = 1.15.

86.0

86.5

87.0

87.5

88.0

 0 0.5 1 1.15 1.5 2

F1
 /

R
ec

al
l /

 P
re

ci
si

on
 (

%
)

λ

Max Const. Parse

Max Rule Sum
Max Probable Parse

Max Probable Derivation

Precision (MCP)
F1 score (MCP)

Recall (MCP)

Figure 3.15: DOP results on the development section (≤ 40) with different maxi-
mizing objectives.

Probability Estimates We also compare the various estimates presented in
§3.6.2, on the same development set. We find that RFE is the best estimate (87.2
with MCP for λ = 1.15) followed by EWE (86.8 with MCP for λ = 0.55), and
MLE (86.7 with MCP for λ = 0.95). Our best results with MLE are obtained
when removing fragments occurring less than 5 times (apart from CFG-rules)
and when stopping at the second iteration. This filtering is done in order to
limit the number of big fragments in the grammar. It is well known that MLE
for DOP tends to assign most of the probability mass to big fragments, quickly
overfitting the training data. We find surprising that EWE performs worse than
RFE, contrary to previous work (Bod, 2003).

Fragments Selection We also investigate how a further restriction on the set
of extracted fragments influences the performance of our model. In figure 3.16
we illustrate the performance of Double-DOP when restricting the grammar to

3.10. Results 79

fragments having frequencies greater than 1,2, . . . ,100. We can notice a rather
sharp decrease in performance as the grammar becomes more and more compact.

 80

 81

 82

 83

 84

 85

 86

 87

 88

 1 10 20 50 100
104

105

106

107
F1

N
um

be
r

of
 f

ra
gm

en
ts

Fragment frequency threshold

F1
Double-DOP grammar size

Number of PCFG rules

Figure 3.16: Performance (on the development set) and size of Double-DOP when
considering only fragments whose occurring frequency in the training treebank
is above a specific threshold (x-axis). In all cases, all PCFG-rules are included
in the grammars. For instance, at the right-hand side of the plot a grammar is
evaluated which included only 6,754 fragments with a frequency greater than 100
as well as 39,227 PCFG rules.

Grammar Refinement Next, we present some results on various Double-DOP
grammars extracted from the same training treebank after refining it using the
Berkeley state-splitting model22 (Petrov et al., 2006; Petrov and Klein, 2007). In
total we have 6 increasingly refined versions of the treebank, corresponding to the
6 cycles of the Berkeley model. We observe in figure 3.17 that our grammar is
able to benefit from the state splits for the first four levels of refinement, reaching
the maximum score at cycle 4, where we improve over our base model. For the
last two data points, the treebank gets too refined, and using Double-DOP model
on top of it, no longer improves accuracy.

We have also compared our best Double-DOP base model and the Berke-
ley parser on per-category performance. Here we observe an interesting trend:
the Berkeley parser outperforms Double-DOP on very frequent categories, while

22We use the Berkeley grammar labeler following the base settings for the WSJ: trees are
right-binarized, H=0, and P=0. Berkeley parser package is available at http://code.google.
com/p/berkeleyparser/

80 Chapter 3. Recycling Phrase-Structure Constructions

Double-DOP performs better on infrequent ones. A detailed comparison is in-
cluded in table A.2 (Appendix A).

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 1 2 3 4 5 6

F1

Berkeley grammar/treebank refinement level

Berkeley MRP
Berkeley MPD

Double-DOP
Double-DOP Lex smooth

Figure 3.17: Comparison on section 24 between the performance of Double-DOP
(using RFE and MCP with λ = 1.15, H=0, P=0) and Berkeley parser on different
stages of refinement of the treebank/grammar.

Final WSJ Results In table 3.2 we present our results on the test set (section
23) of the WSJ. Our best model (according to the best settings on the development
set) performs slightly worse than the one by Bansal and Klein (2010) when trained
on the original corpus, but outperforms it (and the version of their model with
additional refinements) when trained on the refined version, in particular for the
exact match score.

Multilingual Results Apart from the WSJ treebank we have tested our Double-
DOP model on 5 other corpora (see §3.8). Results are presented in table 3.3. For
more details on the parameters used for these experiments see table A.1 (Ap-
pendix A). Results for the PCFG, Berkeley and Double-DOP were all trained
and evaluated locally and therefore mutually comparable. Other reported results
might have been run on other versions of the treebanks. Double-DOP consis-
tently outperforms the baseline PCFG model and earlier parsing results, but it
is consistently outperformed by the Berkeley parser.

3.10. Results 81

test (≤ 40) test (all)
Parsing Model F1 EX F1 EX

PCFG Baseline
PCFG (H=1, P=1) 77.6 17.2 76.5 15.9
PCFG (H=1, P=1) Lex smooth. 78.5 17.2 77.4 16.0

FRAGMENT-BASED PARSERS
Zuidema (2007)* 83.8 26.9 - -
Cohn et al. (2010) MRS 85.4 27.2 84.7 25.8
Post and Gildea (2009) 82.6 - - -
Bansal and Klein (2010) MCP 88.5 33.0 87.6 30.8
Bansal and Klein (2010) MCP 88.7 33.8 88.1 31.7
+ Additional Refinement

THIS WORK
Double-DOP 87.7 33.1 86.8 31.0
Double-DOP Lex smooth. 87.9 33.7 87.0 31.5
Double-DOP-Sp 88.8 35.9 88.2 33.8
Double-DOP-Sp Lex smooth. 89.7 38.3 89.1 36.1

REFINEMENT-BASED PARSERS
Collins (1999) 88.6 - 88.2 -
Petrov and Klein (2007) 90.6 39.1 90.1 37.1

Table 3.2: Summary of the results of different parsers on the test set (sec 23).
Double-DOP experiments use RFE, MCP with λ = 1.15, H=1, P=1; those
on state-splitting (Double-DOP-Sp) use Berkeley cycle 4, H=0, P=0. Results
from Petrov and Klein (2007) already include smoothing which is performed sim-
ilarly to our smoothing technique (see §3.7). (* Results on a development set,
with sentences up to length 20.)

82 Chapter 3. Recycling Phrase-Structure Constructions

test (≤ 40) test (all)
Treebank Parsing Model F1 EX F1 EX
Brown PCFG 80.6 27.0 77.8 24.5

Berkeley Cycle 5 88.5 43.6 87.3 41.2
Double-DOP 86.4 38.4 84.6 36.2

Negra PCFG 71.6 33.3 71.3 32.7
Dubey (2005) 76.3 - - -
Berkeley Cycle 4 78.9 42.3 78.5 41.6
Double-DOP 76.5 40.2 76.0 39.5

FTB PCFG 76.0 16.3 72.7 12.8
Arun and Keller (2005) 79.1 21.2 75.6 16.4
Berkeley Cycle 5 84.2 26.1 82.2 20.8
Double-DOP 81.5 21.1 78.7 16.6

CTB 3.0 PCFG 65.2 23.4 62.6 20.1
Bikel (2004b) 81.2 - 79.0 -
Berkeley Cycle 5 86.0 40.5 83.0 34.8
Double-DOP 82.1 20.7 81.1 17.8

HTB PCFG 73.2 9.0 71.3 7.9
Berkeley Cycle 5 81.4 15.7 80.0 13.9
Double-DOP 77.9 13.8 75.8 12.1

Table 3.3: Parsing results on different treebanks: Brown (English), Negra (Ger-
man), FTB (French), CTB (Chinese), and HTB (Hebrew).

3.11. Conclusions 83

3.11 Conclusions
We have described Double-DOP, a novel DOP approach for parsing, which uses all
constructions recurring at least twice in a treebank. This methodology is driven
by the linguistic intuition that constructions included in the grammar should
prove to be reusable in a representative corpus of annotated productions. The
extracted set of fragments is significantly smaller than in previous approaches.
Moreover constructions are explicitly represented, which makes them potentially
good candidates as semantic or translation units to be used in other applications.

Despite earlier reported excellent results with DOP parsers, they are almost
never used in other NLP tasks: where other successful parsers often feature as
components of machine translation, semantic role labeling, question-answering or
speech recognition systems, DOP is conspicuously absent in these neighboring
fields (but for possible applications of closely related formalisms see, e.g., Bon-
nema et al., 1997; Hearne and Way, 2006; Yamangil and Shieber, 2010). The
reasons for this are many, but most important are probably the computational
inefficiency of many instances of the approach, the lack of downloadable software
and the difficulties with replicating some of the key results.

In this chapter we have addressed all three obstacles: our efficient algorithm
for identifying the recurrent fragments in a treebank runs in polynomial time, and
the transformation to PCFGs that we define allows us to use a standard PCFG
parser, while retaining the benefit of explicitly representing larger fragments.
Finally, the availability of our programs, as well as the third party software that
we use, also addresses the replicability issue. Where some researchers in the
field have been skeptical of the DOP approach to parsing, we believe that our
independent development of a DOP parser adds credibility to the idea that an
approach that uses very many large subtrees, can lead to very accurate parsers.

3.11.1 Future Directions
There is a number of extensions of the current model that are left unexplored.
The set of recurring fragments used for parsing is rather big. Nevertheless there
is still a certain amount of fragments that occur only once in the training set
which reoccur for the second time only in the development set. Some of these are
still relatively small fragments. It is then possible to augment our model with all
or a random sample of small fragments that occurred only once in the training
corpus; this strategy might improve performance, while harming efficiency.

A more methodological variation of the model could come from the prepro-
cessing of the treebank. One of the steps that were essential for the success of the
model was the binarization procedure. Binarization is particularly important for
generative models like DOP and PCFGs, where all the daughters of an internal
node are produced at once. Binarization, in fact, provides a way to generalize
flat rules, by splitting it in multiple generation steps. In initial unpublished ex-

84 Chapter 3. Recycling Phrase-Structure Constructions

periments, our DOP model trained on an unbinarized treebank performed rather
poorly because of the abundance of flat rules. However, our current model uses
a strict left binarization (see §3.7). Although the practice of resorting to bi-
narization techniques is often considered a mere heuristic for achieving higher
parsing results, we would like to stress the fact that it is fundamental for solving
the under-generation limitation of the underlying PCFG model; we believe more
effort should be put into validating ways to perform this step.

Moreover, there is a number of probabilistic estimates that are left unexplored
in our study. In particular, while our version of EM (see §3.6.3) tends to over-fit
the data as it tries to maximizes the likelihood of the training treebank, a more
sensible approach would be to follow a cross-validation (CV) instantiation of EM
(Zollmann and Sima’an, 2005; Mylonakis and Sima’an, 2008). According to EM-
CV the training treebank is partitioned in several parts and EM is run on each of
the partitions separately, although the frequency estimates of the fragments are
averaged over the EM-rounds to prevent over-fitting on the various partitions.

Finally, we believe that our algorithm for extracting recurring fragments could
be beneficial in solving a number of linguistic tasks automatically, such as the
distinction between argument and adjuncts in a PS treebank (Villavicencio, 2002;
Abend and Rappoport, 2010). In particular, a variation of our algorithm (Sangati
et al., 2010) is able to detect recurring partial-fragments, which are less restrictive
than the type of fragments used in this chapter: a partial-fragment can in fact
include any connected subset of nodes of the original tree, which allows to discard
in a production any number of daughters. The use of partial-fragments could
give also rise to yet another interesting parsing framework, where the argument
daughters of a node (which are usually no more than 3) are produced in a single
step, while adjuncts are inserted one at a time with a special-purpose insertion
operation (Schabes and Waters, 1995; Hwa, 1998; Bangalore et al., 2009) which is
constrained to apply on more restricted contexts (see also the “Sandwich Insertion
Grammar” in example 2.2.6).

3.11.2 Next steps
After having described a novel DOP model for learning phrase-structure trees,
in the next chapter we will turn our attention to dependency-based syntax. As
described in §1.2.5 PS and DS are complementary representations focusing on
two fundamental aspect of syntax, i.e., grouping and relations respectively. The
fragment-grammar we use in the Double-DOP model is able to capture a large
part of the relevant syntactic constructions, such as the argument structure of
many lexical items, as well as a number of idiomatic expressions, but it is strongly
based on the notion of substitutability of internal phrasal categories. In the
dependency-structure models, instead, we will focus on the direct relations ex-
isting between words in a sentence, which Double-DOP is not able to capture
consistently.

Like the body that is made up of different limbs and organs,
all words must depend on each other to exist.

Adaptation of an Hindu proverb

Chapter 4
Learning Dependency-Structures

85

86 Chapter 4. Learning Dependency-Structures

4.1 Introduction
The aim of this chapter is to introduce syntactic dependency-structures (DS), and
compare a number of computational models for obtaining the correct analysis of
natural language sentences according to this representation.

We have decided to investigate dependency-structure, since it is a comple-
mentary scheme with respect to phrase-structure representation employed in the
previous chapter. While PS trees are centered on abstract syntactic categories,
and assign a rather marginal role to lexical productions, DS trees focus on words
and on the direct dependency relations conntecting them.

Historically, the modern theoretical tradition of dependency-structures was
started by Lucien Tesnière (1959), who formulated this theory long before the
formal notion of phrase-structure was proposed by Chomsky (1957).1 Never-
theless, most of the initial formal studies on dependency-structure (Hays, 1960;
Gaifman, 1965) were conducted only after phrase-structure was introduced, and
were presented mainly in relation to it.

We will dedicate chapter 5 to the description of a syntactic representation
which is closer to the one described by Tesnière. There, we will show how
Tesnière’s theory incorporates aspects from both constituency and dependency
theories, and makes use of special constructions for handling common linguistic
phenomena such as coordination, often neglected in other representations.

In the current chapter, we will limit our analysis to the description of sim-
ple dependency-structure, where dependency is the only relation to link words in
a sentence. This notion of DS is the one which was commonly adopted in the
computational linguistics community in the ’90s, also thanks to the emergence of
hybrid models such as head-driven formalisms (Magerman, 1994; Collins, 1997,
see also §3.2.1), which have strengthened the role that the lexicon plays in syn-
tactic theories. Since then, DS received an increasing interest as an alternative
representation to the traditional PS.

After introducing the general notion of dependency-structure, we will describe
the relation that exists between PS and DS, and how it is possible to transform
one representation into the other. Finally we will present a family of generative
models for learning DS, and show some results when parsing the Wall Street
Journal treebank using a reranking approach. The main motivation for using
a reranking approach is that it allows for efficiently evaluating many generative
models, differing from one another on the hypothesis for how to derive the most
probable structure for a given sentence. Although efficient algorithms exist to
calculate parse forests (e.g., Eisner and Satta, 1999), each choice gives rise to a
different parser instantiation, while in our approach we can mimic the steps of
each specific parser and employ a unique evaluation procedure (see also §2.4).

1In fact Eléments de syntaxe structurale (Tesnière, 1959) was published posthumously
(Tesnière died in 1954).

4.2. Dependency-Structure 87

4.2 Dependency-Structure
A dependency-structure of a sentence is a tree structure whose nodes are the
words in the sentence. Differently from PS trees, where the order relation is only
defined for a subset of nodes in the tree (e.g., the children of each node), all the
nodes of a DS tree are in precedence relation to one-another (see the difference
between figure 2.2 and 2.3). Precedence is implicitly defined by the order of the
words in the sentence.

Figure 4.1 shows an example2 of a DS. Edges indicate a dependency relation
between the upper word, the governor (or head or parent) and the lower word,
the dependent (or child). In figure 4.2 we report the same structure using an
equivalent flat representation in which head-dependent relations are marked with
directed edges. The tree structure must be connected, and each must have exactly
one governor, except for the root node which has none.

VBD
wore

NNP
French

NNS
bands

DT
The

NNP
Free

JJ
black

NN
arm

Figure 4.1: Example of a dependency-structure according to the DS representa-
tion used in this thesis.

DT NNP NNP VBD JJ NN NNS
The Free French wore black arm bands

Figure 4.2: Example of the dependency-structure in figure 4.1 using an equiva-
lent flat representation. For every arc the arrow points at the dependent of the
governor-dependent relation.

2In our DS trees we always report part-of-speech tags together with words, since both are
used for parsing, and they should therefore be considered a unique entity (tagged word). In
PS, instead, pos-tags rewrite to words at the bottom of each tree. See for comparison the PS
of the same sentence in figure 3.1.

88 Chapter 4. Learning Dependency-Structures

The main conceptual difference between PS and DS is that a PS describes
part-whole relations between constituents of a sentence, while a DS specifies the
interconnections between words, viz. the governing-dependency relations (see
also the discussion in §1.2.5).

In this chapter we will be focusing on projective DS, since our models will
be tested on the English WSJ treebank converted to projective DS.3 A DS is
projective iff for every word, the set including the word and all its direct and
indirect dependents forms a continuous span of the sentence (without any hole).

Moreover, we will only consider unlabeled DS. A labeled DS, presents spe-
cific tags on its arcs (e.g., subject, object, determiner, etc...) denominating the
functional role that the dependent has with respect to the governor. These la-
bels are useful as a further differentiation of the dependents of a certain word,
and they can be used, for instance, for detecting the argument structure of verbs
(who did what to whom) in parsing-related tasks (e.g., semantic role labeling).
In our formalization we ignore these extra labels because we are mainly focusing
on learning the bare structure of the sentence and for all the models we will deal
with, functional labels do not add any contribution for solving this task.

4.3 Comparing PS with DS
In this section we present a review some of the past studies that have attempted
to formally compare PS with DS. While in §4.3.1 we focus on the structural
relations between the two representations, in §4.3.2 we describe previous attempts
of defining comparisons over grammar formalisms for the two schemes.

4.3.1 Structural relations between PS and DS
Hays (1960) presents a first comparison between PS and DS. In particular, he
formalizes a correspondence between the two types of structure: each PS maps
to multiple DS, and each DS to one or more PS. Figure 4.3 shows these mappings
for a generic sentence of 3 words. Here we have adopted a simplified notation:
we omit the labels in the internal nodes of the PS and unary chains are avoided.
In both representations part-of-speech tags are collapsed with words.

From the same figure it is immediately clear that there are more projective
DS than PS for a given sentence. In both cases the number of structures grows
exponentially in the length of the sentence,4 with DS consistently outnumbering

3Although non-projective conversion of the same treebank exists (Johansson and Nugues,
2007) we have preferred to use more standard conversion procedures. It is commonly known
that, compared to other languages, non-projective constructions in English are quite rare
and mainly pertaining long-distance relations (e.g., wh-movement). For more details on non-
projective DS and ways to parse them see Kuhlmann (2007).

4For a sentence of length n = {1, 2, 3, 4, 5, 6} we have {1, 1, 3, 11, 45, 197} PS trees and
{1, 2, 7, 30, 143, 728} DS trees. The number of PS trees is given by the super catalan number

4.3. Comparing PS with DS 89

PS.

1 2

3
1 2 3

1

2 3

1

2

3

1

3

2

3

2

1

3

1

2

2

1 3

3

1 2

1

2 3

A B C D E F G

α β γ

Figure 4.3: Mappings between DS (in rectangles) and PS (in circles) with 3 words.
Dashed lines indicate the mappings for which the number of constituents in the
PS is equal to the number of the governors in the DS.

PS to DS For English, there is no significant treebank annotated in dependency
format. In later experiments we will therefore resort to a transformation from
the WSJ treebank into projective dependency representation. In order to perform
such transform we need to use the notion of head5 as introduced in section 3.2.1:
for every non-terminal node in a PS we need to select a single daughter as the
head of the constituent. The following recursive procedure takes as input an
head-enriched PS tree rooted in node N and outputs the corresponding DS:

1. If N is a terminal PS node, it is transformed into a single terminal DS node
with no dependents.

2. If N is a non-terminal node, all its daughters are transformed into DS
trees (recursive step); those obtained from the non-head daughters become
dependent of the root of the DS obtained from the head daughter, following
the same order as in the PS. For instance in figure 4.3 the leftmost PS (α)
is mapped into the leftmost DS (A) if node 2 is chosen as the head of the
constituent (2 3) and 1 as the head of the whole tree.

sequence P (n) = 3(2n−3)P (n−1)−(n−3)P (n−2)/n, while the number of DS trees is obtained
as D(n) = C(3n + 1, n)/(n + 1), where C is the binomial coefficient, C(n, k) = n!/(k!(n − k)!).

5Interestingly, Hays (1960) does not refer to the notion of head in his formulation, but he
indirectly refers to it as “the chosen” constituent for the transformation to apply.

90 Chapter 4. Learning Dependency-Structures

According to this conversion procedure, the number of DS trees that corre-
spond to a given PS is determined by the different ways of assigning heads to
the internal nodes in the PS. This can be easily computed as the product of the
number of daughters of each non-terminal node in the PS.

The reversed transformation (DS to PS) is more elaborate and less discussed
in the literature. We report this procedure in Appendix B.1.

4.3.2 Relations between PS and DS grammars
Context-Free Grammars Gaifman (1965) defines a way to construct a DS
tree via Context Free Grammar rules (DS-CFG). This is similar to CFGs defined
for PS (see §1.3.1 and §2.2.2), except that, instead of using the rewriting sym-
bol (→), parenthesis are used to distinguish the governor from the dependents.6
Moreover, in order to preserve the linear order of words, rules use the star symbol
(∗) to separate left and right dependents of a governing word.

In the general case, the system represents a word w with all its dependents
d1, d2, . . . , dk (k ≥ 1) as a single rule, i.e., w(d1, . . . , di,∗, di+1 . . . , dk), where word
w occurs in the sentence after word di and before di+1 (0 ≤ i ≤ k). If w has
no dependent (k = 0), it is represented as t(∗). Finally, if w is the root of the
sentence, the rule ∗(w) is used. This notation has been adopted as a way to
compactly represent DS trees (see also Hays, 1964). For instance trees B, D, and
F in figure 4.3 can be represented with the expression ∗(1(∗3(2∗))), ∗(2(1∗ 3)),
and ∗(3(1(∗2)∗)) respectively.

In the same paper, Gaifman (1965) investigated the correspondences between
PS-CFG and DS-CFG (see also Heringer, 1967; Schneider, 1998; Nivre, 2006).
The work has been later on reformulated and extended by Robinson (1967). The
main result of these papers is the proof that for every PS-CFG there exists a
weakly equivalent DS-CFG, and vice versa, i.e., the two grammars yield the same
set of sentences.7 Moreover two equivalent grammars would produce pairwise cor-
responding trees according to the definition originally proposed by Hays (1960).

The idea of transforming a PS-CFG into an equivalent DS-CFG, although
methodologically sound, has never been adopted in real systems. One of the
major problems is that the resulting DS-CFGs are usually bigger than the original
one, especially for non-trivial PS-CFG presenting recursive rules.8 An example
that shows this is presented in figure 4.4: while PS-CFG can compactly represent
recursive rules, DS-CFG needs to encode all possible combinations explicitly.

6In fact, while in PS a node is made of (rewrites to) different daughter nodes, in DS a word
cannot be substituted by its dependents.

7An important condition for the mapping to exist is that the PS-CFG should be of finite
degree, i.e., for every category there must be an upper bound to the smallest number of successive
rule applications in order to reach a terminal symbol.

8We are not aware of any formal or empirical study attempting to quantify such differences.

4.3. Comparing PS with DS 91

S

S

A B-H

S-H

C D-H

D

B C

A

PS-CFG DS-CFG

S→ S S
S→ A B
S→ C D

*(D)
D(B C ∗)
B(A ∗)
A(*)
C(*)
*(B)
B(D A ∗)
D(C ∗)
D(D C ∗)
B(B A ∗)

(a) (b) (c)

Figure 4.4: Example of a PS (a) and a corresponding DS (b), according to the
specific head assignment marked with -H in (a). The table in (c) lists in the first
column the PS-CFG rules extracted from the PS (a), and in the second column
the weakly equivalent DS-CFG. In this example the DS-CFG rules are about
three times more numerous than the PS-CFG rules: the DS-CFG rules above the
line are the ones necessary to encode the tree in (b), while the ones below the line
are needed to encode other trees, yielding for instance ABAB, CDCD, ABABCD.

In general, the application of CFG-rules and PS methodologies to dependency-
structures had the unfortunate effect of overlooking most of the peculiarities which
are typical of dependency-structure. In particular, while PS notation defines an
elegant way to compactly represent abstract syntactic rules (internal rewriting
rules) that can be easily extended in a second moment to a particular choice of
a lexicon (terminal rules), DS cannot easily capture the notion of abstract rules,
since the whole structure is defined at the lexicon level.

Projective Bilexical Dependency Grammars In the DS-CFG described
above, all dependents of each word are produced at once. In a Projective Bilexi-
cal Dependency Grammar (PBDG), instead, each dependency relation is treated
individually. In this way the problem of finding a DS for a given sentence can
be formulated as finding the governor of each word, and assuring that the final
structure is connected and projective. This approach has been shown to be more
suitable for learning dependency-structures, and will constitute the basic formal-
ism when investigating generative models for DS in §4.5. PBDGs allow for a
greater generalization with respect to DS-CFG. In fact, each word can be at-

92 Chapter 4. Learning Dependency-Structures

tached to any available governor,9 irrespectively of any other dependent attached
to it. This can be problematic for it allows, for instance, two objects to attach
to a simple transitive verb. More sophisticated models define specific constraints
to alleviate this problem: usually, the choice of attaching a specific word as a
dependent of a certain node is conditioned on its previous dependents and on an-
cestral information. PBDGs can be easily extracted from a corpus of annotated
DS trees. For instance in figure 4.5 we show the PBDG extracted from DS tree
in figure 4.1.

root

VBD
wore

VBD
wore

NNP
French

VBD
wore

NNS
bands

NNP
French

DT
The

NNP
French

NNP
Free

NNS
bands

JJ
black

NNS
bands

NN
arm

Figure 4.5: An example of Bilexical Dependency Grammar extracted from the
DS tree in figure 4.1.

A study which clarifies the grammatical relations between PBDG and PS is
the work of Johnson (2007). It describes a series of Unfold-Fold procedures
to transform a Projective Bilexical Dependency Grammar (PBDG) into weakly
equivalent Context-Free Grammars. The main motivation behind this work is to
make available all known techniques developed for CFGs to PBDGs, including
the possibility to use the standard CYK algorithm for parsing DSs according to a
projective bilexical generative model. These transformations are shown to mimic
the chart-parsing algorithm defined for PBDG in Eisner and Satta (1999).

4.4 Other related syntactic theories
In this section we briefly summarize some of the other existing syntactic theories.
These, compared to standard DS, are characterized by having deeper and more

9A word should always look for an available governor to ensure projectivity. If, for instance,
a model assigns governors of each word in the sentence in sequential order, G turns out to be
an available governor for the current word W , if the span constituted by G and all its direct
and indirect dependents is adjacent to W .

4.4. Other related syntactic theories 93

complex representations, for which there is no significant amount of annotated
material; they are therefore harder to study empirically. Other formalisms (e.g.,
CCG) which have significant annotated resources derived either manually or au-
tomatically from existing corpora are presented in §5.6, where we will compare
them with our TDS annotation scheme.

Lexical Functional Grammar (LFG)

Lexical Functional Grammar (Kaplan and Bresnan, 1982; Bresnan, 2000; Dal-
rymple, 2001) is a linguistic theory that in contrast to other approaches assumes
two different levels of syntactic representation. It postulates a unique constituent
structure (c-structure), corresponding to the superficial phrase-structure tree. In
addition it defines a functional level (f-structure) which is lexicalized and can bet-
ter represent the argument structure of the sentence including possible variation
in the surface position of the arguments. The two representations are related to
the PS and DS representations that are discussed in this thesis. However, LFG
representation is usually considered more deep and therefore harder to be derived
with a computational model. Previous studies that have tested LFG for pars-
ing have restricted the model to a manually defined LFG grammar (e.g., Riezler
et al., 2002) or trained on a restricted treebank (e.g., Bod and Kaplan, 2003).

Head-driven Phrase-Structure Grammar (HPSG)

Head-driven Phrase-Structure Grammar (Pollard et al., 1994) is a formal linguis-
tic theory based uniquely on feature structures (differently for instance from LFG
which uses feature structure only within the functional representation). Each
feature consists of an attribute and a value, where values can themselves be sub-
features in a nested structure. Feature structures are used to represent grammar
rules, principles, and lexical entries. As in LFG, HPSG is strongly lexicalized as
there is a small number of principles and grammar rules, while the lexicon is rich
and complex.

X-bar theory

X-bar theory (Harris, 1951; Chomsky, 1970; Jackendoff, 1977) is a theory for
describing the relations between lexical and phrasal expressions of the same type
(e.g., verb and verbal phrase). It can be seen as a hybrid approach between PS and
DS as it captures the notion of head within phrase-structure.10 In his formulation,
Chomsky (1970) proposes the phrase-structure scheme of figure 4.6, where X
ranges among the main categories (Nouns, Verbs, Adjectives, Prepositions).

10See also Covington (1992) for more details on the interrelation between X-bar theory and
dependency-structure.

94 Chapter 4. Learning Dependency-Structures

X”

Specifier X’

X Complement

Figure 4.6: X-bar scheme

According to this scheme every main phrasal category NX is defined as a
continuous projection from a word belonging to the base category X to its maximal
projection (NX”) passing through a sequence of one or more single-bar projections
(X’). Moreover every projected category contains a unique head being the same
category with one fewer bar level (e.g., X’ is the head of X”), and non-head
daughters have to be maximal projections. Finally, complements are attached as
daughters of the X’ levels, while the specifier is attached to the X” level.

Word Grammar (WG)

Word Grammar (Hudson, 1991; Sugayama and Hudson, 2005; Hudson, 2010) is a
theory of language structure based on dependency relations between single words.
Hudson has spent great effort to affirm the validity of dependency-structures over
phrase-structure. One of the strongest arguments is that while dependencies well
represent the selectional preferences of a word (e.g., verb with preposition as in
depend on and ought to), in PS the relation is less direct as there is always at least
an abstract node (e.g, prepositional phrase) between the two words. Differently
from standard DS illustrated in this chapter, in WG one word is allowed to be
a dependent of more than one other word, non-projectivity is permitted and
coordinated structure are treated separately (grouping the conjuncts as a list
of entities), allowing to represent both deep and surface information in a single
structure.

Meaning Text Theory (MTT)

Meaning Text Theory (Mel’čuk, 1979, 1988, 2003; Polguère and Mel’čuk, 2009) is
a theoretical linguistic framework put forward by Alexander K. Zholkovsky and
Igor Mel’čuk, and it is strongly inspired by the work of Tesnière (1959).11 MTT
distinguishes three main facets of a linguistic event: meaning (the content), text

11Mel’čuk was one of the few linguists who attempted to promote the work of Tesnière outside
France (especially in Russia, Canada, and United States).

4.5. Models for parsing DS 95

(the form), and a mapping between the set of meanings and the set of texts. It
incorporates several representation layers including semantics, syntax, morphol-
ogy, and phonology. In the syntactic layer, MTT makes use of dependency trees
in two different forms, i.e., deep and surface representation. The first specifies
the organization of a sentence considered from the meaning frame of reference,
while the latter is more connected to the surface form and therefore the actual
linear order of the words. While the inventory of the relations in the deep syn-
tactic representation is supposed to be language-independent and related to the
argument structure of the sentence (subject, object, complements), in the surface
syntactic representation the relations are language specific, and the inventory
is established empirically. MTT deal with coordination structures by putting
each element in the coordination (conjunction or conjunct) as the governor of the
following element (see also §5.3.3).

4.5 Models for parsing DS
In the following sections we will review some of the most relevant works on de-
pendency parsing, distinguishing two main classes of models, i.e., generative and
discriminative (see also section 2.5). Probabilistic generative dependency models
define probability distributions over all valid dependency-structures. Discrimi-
native models, instead, treat the problem of assigning the correct structure to a
given sentence as a classification task.

In recent evaluations of supervised dependency parsing (Buchholz and Marsi,
2006; Nivre et al., 2007), generative approaches are consistently outperformed
by discriminative models, on standard parsing evaluation metrics. On the other
hand, generative models provide a better way to investigate linguistic hypotheses
on the derivation of syntactic structures.

4.5.1 Probabilistic Generative models
Probabilistic Generative models for DS have played a minor role in computational
linguistics compared to their impact in PS representation. We believe that they
are still the most intuitive way to provide a formal account on how dependency-
structures can be derived.

One of the most relevant existing studies concerning probabilistic generative
models for DS is the work of Eisner (1996a,b), in which he proposes 4 probabilistic
models (A, B, C, D) for DS parsing. The author makes use of a very efficient
chart parsing algorithm (Eisner, 1997; Eisner and Satta, 1999; Eisner, 2000) for
projective dependency parsing whose complexity is O(n3) (where n is the length
of the sentence), and it has a strict correspondence to the CKY algorithm applied
to the special transformation defined in Johnson (2007) (see §4.3.2).

Instead of relying on a chart parser, in our approach we decide to compare the

96 Chapter 4. Learning Dependency-Structures

4 generative models proposed by Eisner (1996a,b) using a reranking methodology
(introduced in §2.4). In section 4.6 we will implement a more elaborated model
inspired by model C, and evaluate its performance on a standard evaluation
benchmark.

All the models (A,B,C,D) make use of two Markovian processes to generate the
left and right dependents of each node. In this process, dependents are generated
inside-outwards: those which are closer to the governor node are generated first.
In order to make the model consistent, the two sequences of dependents need to
terminate with a special symbol, i.e., the stop symbol ⊕ introduced in chapter 2
(see also Collins models in §3.2.1). When the first left (or right) dependent is
generated, the missing previously generated sibling is indicated with the null
symbol ⊘. In three of the four models (A,B,D), a tagged sentence is generated in
the first phase as a sequence of ⟨word,pos-tag⟩ pairs. This sequence is generated
as a 2nd order Markovian process where every word (and its tag) is generated with
probabilities that depend on previous 2 words (and their tags). In our illustration
of those models we will skip the first phase and assume that a tagged sentence is
already given.

When describing the 4 models (A,C,B,D), we will refer to the example struc-
ture illustrated in figure 4.7. The DS is rooted at the artificial node EOS (end of
sentence), conventionally put at the end of the sentence.

EOS

V
won

N
Obama

N
election

D
the

J
presidential

Figure 4.7: Dependency tree of the sentence “Obama won the presidential elec-
tion”.

Model A For every word P in the sentence (from left to right), the model decides
what are its left and right dependents, out of the list of the other tagged
words in the sentence. More specifically, for each word D present to the
left of P , the model decides whether or not D is a left dependent of P ,

4.5. Models for parsing DS 97

conditioned on the previously chosen dependent S (situated on the same
side). The same mechanism is done for the right dependents. For both
left and right dependents, words in the sentence are examined from the
one which is closest to P to the most remote one (inside-outwards). More
concisely the derivation of a structure can be described as a multiset of
⟨event, conditioning-context⟩ pairs. A generic pair is described as follows:

⟨ YES/NO,D,left/right,P ,S , D,left/right,P ,S ⟩

Event: P has D as a left (right) dependent after S.
Conditioning-context: D is to the left (right) of P in the sentence, and

S (or ⊘) is the previously chosen left (right) daughter of P .

Example: considering the structure in figure 4.7, the choice the model
performs to decide that Obama-N is a left dependent of won-V is encoded
in the ⟨event, conditioning-context⟩ pair

⟨ YES,Obama-N,left,won-V,⊘ , Obama-N,left,won-V,⊘ ⟩

where ⊘ specifies that there was no other left dependent of won-V before
Obama-N. Moreover, the fact that EOS is not a right dependent of won-V
is encoded as

⟨ NO,EOS,right,won-V,election-N , EOS,right,won-V,election-N ⟩

Model C According to this model, words are generated top-down starting from
the artificial EOS symbol. For each node P under consideration, the model
decides the full set of its left and right dependents as a Markovian process:
each dependent D of P is chosen conditioned on P and on the previously
chosen left (right) dependent S. A generic ⟨event, conditioning-context⟩ pair
can be described as:

⟨ D,left/right,P ,S , left/right,P ,S ⟩

Event: D is chosen as the left (right) dependent of P , and S (or ⊘) was
the previously chosen left (right) dependent of P .

Conditioning-context: S (or ⊘) is the last chosen left (right) dependent
of D and it has a following sister (or ⊕).

Example: in the structure of figure 4.7, the choice that Obama-N is a left
dependent of won-V is encoded as

98 Chapter 4. Learning Dependency-Structures

⟨ Obama-N, left, won-V,⊘ , left, won-V,⊘ ⟩

while the fact that election-N has no more left dependents after the-D is
encoded as follows:

⟨ ⊕, left, election-N,the-D , left, election-N,the-D ⟩

Model B This model is identical to model C in defining the list of dependents
of each node. In addition, the model defines a further set of constraints
to allow each node to specify certain preferences on the node that governs
it. Apart from the events generated from model C the new multiset of
⟨event, conditioning-context⟩ pairs can be generically described as:

⟨ P ,D , D ⟩

Event: P is the parent node of D.
Conditioning-context: D needs a parent node.

Example: in the structure of figure 4.7, the choice that Obama-N wants
as governor node won-V is encoded as

⟨ won-V,Obama-N , Obama-N ⟩

Model D The last model is again similar to model C, except that this time each
dependentD of a node P is selected from the words available in the sentence,
conditioned on the previously chosen dependent S. More specifically D is
chosen among the words which are to the left (right) of S in the sentence
(plus the artificial node ⊕), or to the left (right) of P if S is ⊘ (no depen-
dents have been chosen yet). This is substantially different from model C,
since there the choice of D is made among the entire set of words including
the ones not present in the sentence. A generic ⟨event, conditioning-context⟩
pair can be generically described as:

⟨ D,left/right,P ,S , D,left/right,P ,S ⟩

Event: D is chosen as the left (right) dependent of P , following S (or ⊘).
Conditioning-context: S is the last chosen left (right) dependent of P ,

and D is the ⊕ node or it is situated to the left (right) of S (or P if
S is ⊘) in the current sentence.

4.5. Models for parsing DS 99

Example: in the structure of figure 4.7, the choice that Obama-N is a left
dependent of won-V is encoded as

⟨ Obama-N, left, won-V,⊘ , Obama-N, left, won-V,⊘ ⟩

while the fact that election-N has no more left dependents after the-D is
encoded as follows:

⟨ ⊕, left, election-N,the-D , ⊕,left, election-N,the-D ⟩

4.5.2 Discriminative models
In this section we will briefly review two standard approaches for dependency pars-
ing using discriminative models: Maximum Spanning Tree (MST) and Transition-
based models.

Maximum Spanning Tree

Maximum Spanning Tree (MST) models (McDonald et al., 2005; McDonald, 2006)
efficiently keep track of all possible projective dependency-structures of a given
sentence, and choose the one which maximizes a specific global function.

MST treats every dependency-structure as a multi-set of governor-dependent
relations. Each edge is described as an high dimensional feature vector. For
instance, if in a certain DS word i is the governor of word j, v⃗(i, j) is the vector
describing all the features of this relation (i.e., labels of the two words, their pos-
tags, and other information including e.g., words in between them, and ancestral
nodes). During the training phase the model learns a weight vector w⃗ (having the
same dimension as v⃗) which is then used to find the best dependency-structure y
for a given test sentence x. The score that needs to be maximized is defined as
∑(i,j)∈y w⃗ ⋅ v⃗(i, j), and the best candidate is called the Maximum Spanning Tree.

During the training phase the weight vector w⃗ is calculated in order to optimize
the scores of the tree structures in the training corpus. Roughly speaking, the
algorithm starts with a random weight vector, and iteratively updates the current
vector to a new one in order to reduce the number of errors it performs on
predicting the MST for each sentence in the training treebank, until an optimal
weight is found. More specifically, the algorithm employs a large-margin classifier,
which, for every structure y in the training treebank, tries to keep the score of y
above the scores of other incorrect structures of the same sentence by an amount
which is proportional to how much they differ in accuracy.

For projective DS, both the training and parsing phase make use of a compact
representation of the tree forest. For this representation it is possible to use
efficient dynamic programming algorithms for computing the best structure in

100 Chapter 4. Learning Dependency-Structures

cubic time as discovered by Eisner (1997, 2000). This also holds for a more
advanced and accurate second-order model, in which two consecutive edges are
taken into consideration for each parsing decision, as opposed to a single edge in
the base case.

MST can also deal with labeled DS, but, in this case, labels are added on
top of the most probable DS of a given sentence as a separate task (also using a
discriminative classifier). Attempts of adding labels as features of the structural
model did not enhance performance on unlabeled dependency parsing. This is
an important finding that justifies our choice of ignoring functional labels for
detecting the bare structure of a sentence.

Transition-based models

Transition-based models (Nivre, 2003; Yamada and Matsumoto, 2003), decom-
pose the problem of obtaining the best dependency-structure of a given sentence,
as a sequence of local decisions. An input sentence is read in one word at a time,
and at each step a specific operation is performed.

These models are inspired by shift-reduce parsers, where a stack is used to
keep previously encountered words (partially connected) in a specific order. The
exact set of operations vary from model to model, but generally, it includes the
reduce operation, to pop out a word from the stack, the shift operation, to push
the current word onto the stack, and the attach operation, to draw dependency
relations between the current word and the word on the top of the stack (in either
directions). Each operation can be applied only if certain conditions are met, to
ensure that the final DS is connected and projective.

In order to deal with non-projective structures, some transition-based models
make use of graph transformation (Nivre and Nilsson, 2005) as a second step or
they allow permutation operations over the words in the stack (Nivre, 2009).

Transition-based parser usually employ discriminative classifiers (e.g., SVM)
in order to decide what is the best transition or sequence of transitions to apply.
Each transition is described by a big set of feature, and the model parameters
are learned from the training corpus using standard techniques.

The main difference with respect to the MST approach is that Shift-Reduce
parsers are incremental (they accept one word at a time) and therefore attempt
to learn optimal local decisions, while MST has a bigger scope since it aims at
finding the optimal structure as a whole.

4.6 Reranking generative models
In this section, we describe a reranking approach that combines a generative and
a discriminative model and tries to retain the strengths of both. The idea of
combining these two types of models through reranking is not new (see §2.5),

4.6. Reranking generative models 101

although it has been mostly explored in constituency parsing (Collins and Duffy,
2002). This earlier work, however, used the generative model in the first step, and
trained the discriminative model over its k-best candidates. In our framework we
reverse the usual order of the two models, by employing a generative model to
re-score the k-best candidates provided by a discriminative model. Moreover, the
generative model of the second phase uses frequency counts from the training set
but is not trained on the k-best parses of the discriminative model.

The reranking approach allows for efficiently evaluating many generative mod-
els, differing from one another on (i) the choice of the linguistic units that are gen-
erated (words, pairs of words, word graphs), (ii) the generation process (Markov
process, top-down, bottom-up), and (iii) the features that are considered to build
the event space (pos-tags/words, distance).

In our reranking perspective, all the generative model has to do is to compute
the probability of k pre-generated structures, and select the one with maximum
probability. In a generative model, every structure can be decomposed into a
series of independent events, each mapped to a corresponding conditioning event.
As an example, if a generative model chooses D as the right dependent of a certain
word H, conditioned uniquely on their relative position, we can define the event
as D is the right dependent of H, and the conditioning event as H has a right
dependent.

As a preprocessing step, every sentence structure in the training corpus is
decomposed into a series of independent events, with their corresponding condi-
tioning events. During this process, our model updates two tables containing the
frequency of events and their conditioning counterparts.

In the reranking phase, a given candidate structure can be decomposed into
independent events (e1, e2, . . . , en) and corresponding conditioning events (c1, c2,
. . . , cn) as in the training phase. The probability of the structure can then be
calculated as

n

∏
i=1

f(ei)
f(ci)

(4.1)

where f(x) returns the frequency of x previously stored in the tables.12

It is important to stress the point that the only specificity each generative
model introduces is in the way sentence structures are decomposed into events;
provided a generic representation for the (conditioning) event space, both training
phase and probability calculation of candidate structures can be implemented
independently from the specific generative model, through the implementation of
generic tables of (conditioning) events.

In this way the probabilities of candidate structures are exact probabilities,
and do not suffer from possible approximation techniques that parsers often utilize
(i.e., pruning). On the other hand the most probable parse is selected from the

12This probability estimate is the RFE introduced in §2.3.3.

102 Chapter 4. Learning Dependency-Structures

set of the k candidates generated by the discriminative model, and it will equal
the most probable parse among all possible structures, only for sufficiently high
k.

4.6.1 Experiment Setup
Parser In order to generate a set of k-candidate structures for every test sen-
tence, we use a state-of-the-art MST discriminative model13 (McDonald, 2006).
The MST parser was provided with the gold standard pos-tags of the words in
the test set, and it was run in second-order and projective mode.

Treebank In our investigation, we have tested our model on the Wall Street
Journal corpus Marcus et al. (1993) with sentences up to 40 words in length,
converted to dependency-structures. Although several algorithms exist to per-
form such a conversion (e.g., Johansson and Nugues, 2007), we have followed
the scheme in Collins (1999). Section 2-21 was used as training, section 22 as
development set, and section 23 as test set.

Evaluation Metrics As the only evaluation metric for dependency parsing we
have adopted the Unlabeled Attachment Score (UAS) (see Lin, 1995; Nivre et al.,
2007), computed as:

UAS = # words with correct governor
words (4.2)

The root word of each parsed structure is considered to have the correct
governor iff it is also the root of the sentence in the gold DS. The final UAS score
is a macro-average over all the sentences in the test corpus.

4.6.2 Comparing the Eisner models
We have used the reranking framework just illustrated to compare the 4 generative
models proposed by Eisner (1996a,b) presented in §4.5.1 on the development set
of the WSJ. The results are shown in figure 4.8. All models show a progressive
decrease in performance as the number of best candidates increases. The results
for models B, C, and D are rather similar and consistently better than model A.
This trend is consistent to the original results of Eisner (1996a,b) although model
C in our evaluation slightly outperforms the other two (in the original work model
D was the best performing one).

13The MST parser is available at http://sourceforge.net/projects/mstparser/.

4.6. Reranking generative models 103

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 1 10 100 1000

U
A

S

Number of best candidates

Model A
Model B
Model C
Model D

Figure 4.8: Comparison of the 4 generative models (A,B,C,D) illustrated in §4.5.1.
The results for the first value in the x-axes (1) corresponds to the performance of
the MST-parser (McDonald, 2006).

4.6.3 A new generative model
As a novel generative framework we have chosen to use a variation of model C.
In this approach nodes are generated recursively in a top-down manner starting
from the special symbol EOS (end of sentence). At any given node, left and right
children are generated as two separate Markov chain sequences of nodes, each
conditioned on ancestral and sibling information (which, for now, we will simply
refer to as context). Every sequence ends with the stop symbol ⊕.

One of the relevant variations with respect to the original model is that in our
version the direction of the Markov chain sequence is strictly left to right, instead
of the usual inside outwards.

More formally, given a dependency-structure T , and any of its node N , the
probability of generating the subtree T (N) of the dependency-structure rooted
in N is defined as:

P (T (N)) =
L

∏
l=1
P (N⪦l∣context) ⋅ P (T (N⪦l))

×
R

∏
r=1
P (N⪧r∣context) ⋅ P (T (N⪧r)) (4.3)

104 Chapter 4. Learning Dependency-Structures

where L and R are the number of left and right children of N in T (L,R > 0), N⪦l
is the left daughter of N at position l in T (analogously N⪧r for right daughters).
The probability of the entire dependency-structure T is computed as P (T (EOS)).

In order to illustrate how a dependency-structure can be decomposed into
events, we present in table 4.1 the list of events and the corresponding condition-
ing events extracted from a toy treebank with two DS trees including the one in
figure 4.7. In this simple example, each node is identified with its word, and the
context is composed of the direction with respect to the governor, the governor,
and the previously chosen daughter (or ⊘ if it is the first). While during the
training phase the event tables are updated with these events, in the test phase
they are looked-up to compute the structure probability, as in equation 4.1.

Events Freq. Conditioning Events Freq.
won L EOS ⊘ 1 L EOS ⊘ 2
⊕ L EOS won 1 L EOS won 1
⊕ R EOS ⊘ 2 R EOS ⊘ 2
Obama L won ⊘ 1 L won ⊘ 1
⊕ L won Obama 1 L won Obama 1
election R won ⊘ 1 R won ⊘ 1
⊕ R won election 1 R won election 1
⊕ L Obama ⊘ 2 L Obama ⊘ 2
⊕ R Obama ⊘ 2 R Obama ⊘ 2
the L election ⊘ 2 L election ⊘ 2
presidential L election the 1 L election the 2
⊕ L election presidential 1 L election presidential 1
⊕ R election ⊘ 2 R election ⊘ 2
⊕ L the ⊘ 2 L the ⊘ 2
⊕ R the ⊘ 2 R the ⊘ 2
⊕ L presidential ⊘ 1 L presidential ⊘ 1
⊕ R presidential ⊘ 1 R presidential ⊘ 1

Table 4.1: Events occurring when generating the dependency-structure in fig-
ure 4.7, for the event space (dependent ∣ direction, governor, sister). The counts
are extracted from a two-sentence corpus which also includes “Obama lost the
election”. According to the reported frequency counts, the structure has a asso-
ciated probability of 1/4.

Model extension

In addition we have extended the model by including more contextual features
and proper smoothing techniques for handling infrequent events and conditioning
context.

In equation 4.3 we have generically defined the probability of choosing a
daughter D based on specific features associated with D and the context in which

4.6. Reranking generative models 105

it occurs. In our implementation, this probability is instantiated as in equa-
tion 4.4. The specific features associated with D are: the distance14 dist(H,D)
between D and its governor H, the flag term(D) which specifies whether D has
more dependents, and the lexical and postag representation of D. The context in
which D occurs is defined by features of the governor H, the previously chosen
sister S, the grandparent G, and the direction dir (left or right).

In order to implement smoothing, equation 4.4 is factorized in four terms, each
employing an appropriate backoff reduction list reported in descending priority.
In the reduction lists, wt(N) stands for the string incorporating both the pos-tag
and the word of N , and t(N) stands for its pos-tag. This second reduction is
never applied to closed class words. All the notation and backoff parameters are
identical to Eisner (1996a), and described in more details in Appendix B.2.

P (D∣context) = (4.4)
P (dist(H,D), term(D),word(D), tag(D)∣H,S,G, dir) =
P (tag(D)∣H,S,G, dir)

reduction list:

wt(H),wt(S),wt(G), dir
wt(H),wt(S), t(G), dir

{ wt(H), t(S), t(G), dir
t(H),wt(S), t(G), dir

t(H), t(S), t(G), dir
× P (word(D)∣tag(D),H,S,G, dir)

reduction list: wt(H), t(S), dir
t(H), t(S), dir

× P (term(D)∣word(D), tag(D),H,S,G, dir)

reduction list: tag(D),wt(H), t(S), dir
tag(D), t(H), t(S), dir

× P (dist(P,D)∣term(D),word(D), tag(D),H,S,G, dir)

reduction list: word(D), tag(D), t(H), t(S), dir
tag(D), t(H), t(S), dir

4.6.4 Results
Results for the development set are reported in table 4.9, as unlabeled attach-
ment score (UAS). The MST dependency parser obtains very high results when
employed alone (92.58%), and generates a list of k-best-candidates which can
potentially achieve much better results (an oracle would score above 95% when

14In our implementation distance values are grouped in 4 categories: 1, 2, 3 − 6, 7 −∞.

106 Chapter 4. Learning Dependency-Structures

k-best Oracle best Oracle worst Reranked
1 92.58 92.58 92.58
2 94.22 88.66 92.89
3 95.05 87.04 93.02
4 95.51 85.82 93.02
5 95.78 84.96 93.02
6 96.02 84.20 93.06
7 96.23 83.62 93.09
8 96.40 83.06 93.02
9 96.54 82.57 92.97
10 96.64 82.21 92.96
100 98.48 73.30 92.32
1000 99.34 64.86 91.47

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

1 2 3 4 5 6 7 8 9 10 100 1000

Oracle-Best

Reranked

MST

Figure 4.9: UAS accuracy of the MST discriminative and reranking parser on
section 22 of the WSJ. Oracle best: always choosing the best result in the k-best,
Oracle worst: always choosing the worst, Reranked: choosing the most probable
candidate according to the generative model.

Error reduction analysis between the reranked 7-best

and the MST 1-best

N
N

N
N
P

IN

D
T

N
N
S

JJ

,

. V
B
D

C
D

R
B

C
C

V
B

V
B
N

T
O

V
B
Z

P
R
P

V
B
G

P
O
S

V
B
P

$

M
D

P
R
P
$

`
` '

: W
D
T

JJ
R

R
P

R
B
R

W
R
B W
P

JJ
S

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

N
N

N
N
P

IN D
T

N
N
S JJ

, .

V
B
D

C
D

R
B

C
C

V
B

V
B
N

T
O

V
B
Z

P
R
P

V
B
G

P
O
S

V
B
P $

M
D

P
R
P
$

`
` ' :

W
D
T

JJ
R

R
P

R
B
R

W
R
B

W
P

JJ
S

E
r
r
o

r
 R

e
d

u
c
ti

o
n

0%

3%

6%

9%

12%

15%

18%

21%

24%

27%

30%

R
e
la

ti
v
e
 f

r
e
q

u
e
n

c
y

0%

3%

6%

9%

12%

15%

Figure 4.10: Error reduction analysis between the reranked 7-best and the MST
1-best on the different pos-tags (above), and relative frequencies of the various
pos-tags in the test set (below).

4.7. Conclusions 107

selecting from the first 5-best, and above 99% from the first 1000-best). The
decrease in performance of the generative model, as the number of the candidate
increases, suggests that its performance would be lower than a discriminative
model if used alone. On the other hand, our generative model is able to select
better candidates than the MST parser, when their number is limited to a few
dozens, yielding a maximum accuracy for k = 7 where it improves accuracy on the
discriminative model by a 0.51% (around 7% error reduction). In figure 4.10 we
present a per-category analysis on the error reduction of our best results compared
to those of the MST parser.

We have evaluated the performance of the same model on the test set of
the WSJ (sec 23), when reranking the 7-best candidates provided by the MST
parser. The improvement here is smaller (0.11%: from 92.42% of the MST parser
to 92.53%) but proves that the model is robust when reranking a restricted set
of candidates.

4.7 Conclusions
In this chapter we have presented the notion of dependency-structure, and com-
pared it with phrase-structure representation. Overall, the two representations
can be considered as two ways to represent syntactic structures from two different
perspectives: while PS defines a recursive way to group words of a sentence into
constituents, DS specifies what are the dependency relations between words in a
sentence.

The main contribution of this chapter was to propose a general framework
for dependency parsing based on a combination of discriminative and generative
models. We have used this framework to evaluate and compare several gener-
ative models, including those of Eisner (1996b) and some of their variations.
Consistently with earlier results, none of these models performs better than the
discriminative baseline when used alone. We have presented an instantiation of
this framework in which our newly defined generative model leads to an improve-
ment of the state-of-the-art parsing results, when provided with a limited num-
ber of best candidates. This result suggests that discriminative and generative
model are complementary: the discriminative model is successfully at filtering
out “bad” candidates, while the generative model is able to further refine the
selection among the few best candidates. In our set-up it is now possible to ef-
ficiently evaluate many other generative models and identify the most promising
ones for further investigation. Given the abundance of discriminative models for
dependency parsing (Nivre, 2003; McDonald, 2006), our promising results show
that generative models can still produce competitive results and therefore the
pessimism about the prospects of probabilistic generative dependency models is
premature.

108 Chapter 4. Learning Dependency-Structures

4.8 Future Directions
In §1.2 we have illustrated how the syntactic domain, which is the main focus of
the thesis, does not account for the full spectrum of phenomena which should be
regarded when processing natural language expressions. In particular, although
much work has supported the independence between syntax and semantic process-
ing (Jackendoff, 2002), there is empirical evidence about the benefit of combined
models for obtaining better disambiguation (Mitchell and Lapata, 2009). In par-
ticular, many mistakes of state-of-the-art parsers are on preposition attachment,
and relying on semantical preferences of verbs and nouns could help to solve a big
number of those ambiguities. The possibility of combining syntactic and seman-
tics models could also contribute to shedding light on the opposite interconnection
between the two domains. Current distributional semantics models are usually
uninformed about the syntax underlying the set of sentences used for training.
It would be therefore interesting to study how syntax can provide useful clues to
obtain better semantic space models.

All parsing models that we have developed in this chapter were trained on
the WSJ treebank which is relative small and domain-specific. The main short-
coming for this is that, although our DS models heavily rely on direct dependency
relations between lexical items, they are quite restricted to work with a rather
concise vocabulary. Possible extensions of our models could attempts to overcome
this limitation by relying on semi-supervised learning techniques, in which the
models can obtain additional information from surface counts extracted from
large unannotated corpora such as the web (Lapata and Keller, 2004; Bansal and
Klein, 2011).

Finally, in chapter 3 we have described an efficient algorithm for extract-
ing all arbitrarily large syntactic constructions which occur multiple times in a
large treebank. Although our implementation is specific for PS treebanks, it
would not be difficult to extend it to the DS representations. In particular in
a dependency-structure treebank it would be interesting to detect all recurring
partial-fragments, i.e., any connected subset of nodes recurring in several trees of
a treebank (Sangati et al., 2010). These constructs could be useful for deriving
novel generative models for parsing DS.

On peut ainsi comparer le verbe à une sorte d’atome crochu
susceptible d’exercer son attraction sur un nombre plus ou
moins élevé d’actants, selon qui’il comporte un nombre plus ou
moins élevé de crochets pour les maintenir dans sa dépendance.
Le nombre de crochets que présente un verbe et par conséquent
le nombre d’actants qu’il est susceptible de régir, constitue ce
que nous appellerons la valence du verbe.

We can also compare the verb to a sort of atom with hooks
capable of exerting an attraction force on a certain number of
elements, by means of an equal number of hooks which allow the
atom to keep them under its dependence. The number of hooks
of a verb and consequently the number of elements it is able to
govern, constitute what we will call the valence of the verb.

Lucien Tesnière (1959, p.238)

Chapter 5
Tesnière Dependency-Structure

109

110 Chapter 5. Tesnière Dependency-Structure

5.1 Introduction
After having described in the previous two chapters syntactic models for learn-
ing phrase-structure and dependency-structure, in this chapter we introduce a
novel syntactic representation that includes aspects from both PS and DS. The
new representation was strongly inspired by the general theory of dependency
syntax formulated by Lucien Tesnière (1959). Recent projects aiming at rein-
forcing the role of DS representation in computational linguistics (e.g., Yamada
and Matsumoto, 2003; Forst et al., 2004; Johansson and Nugues, 2007) typically
refer to Tesnière as the father of dependency syntax, but little attempt has been
made to explain how the chosen dependency representation relates to the original
work. A careful comparison reveals substantial differences: modern DS retains
only the main idea proposed by Tesnière, namely the relation of dependency be-
tween words (§5.2.1), while other operations and features of the original theory
are discarded or not overtly represented.

In this chapter we propose a formalization of Tesnière’s theory, and derive an
automatic conversion of the English Wall Street Journal Treebank into a novel
representation: the Tesnière Dependency-Structure (TDS). This work is based on
a joint collaboration with Chiara Mazza (i.e., Sangati and Mazza, 2009).

The current chapter is structured as follows: In §5.2 we retrace the original
work by Tesnière and introduce the newly proposed TDS representation. In par-
ticular we reintroduce three key concepts: the division of a sentence into blocks
of words, which act as intermediate linguistic units (§5.2.2), the junction oper-
ation, to handle coordination and other types of conjoined structures (§5.2.3),
and the operation of transference, to generalize over the categories of the lin-
guistic elements (§5.2.4).1 In §5.3 we give empirical evidence that shows how
this representation can incorporate all main advantages of modern PS and DS,
while avoiding well known problems concerning the choice of heads and better
representing common linguistic phenomena such as coordination. In §5.4 we de-
scribe the procedure used to convert the WSJ into TDS notation, and in §5.5
we propose a novel generative model for parsing the TDS treebank, and utilize a
reranking framework for testing it. We also introduce a novel evaluation scheme
for measuring the accuracy of the generated parse trees, focusing on the 3 main
components of the TDS scheme: blocks, dependency, and coordination. Finally,
in §5.6 we compare the TDS conversion with other proposed conversions of the
WSJ treebank. In particular in §5.7 we report on a detail comparison between
the TDS-bank and the CCG-bank (Hockenmaier and Steedman, 2007) focusing
on the detection of coordination constructions.

1See in Tesnière (1959) part I ch. 22 on nucléus, part II on jonction, and part III on
translation. We choose transference for the original French word translation to avoid any mis-
understanding with the other meaning of the word translation in English. Unfortunately, 50
years after its publication, there is still no English translation of the author’s work, yet there
is for Russian, German, and Italian.

5.2. Dependency-Structures à la Tesnière 111

5.2 Dependency-Structures à la Tesnière

5.2.1 The dependency relation
The main idea behind Tesnière’s model is the notion of dependency, which identi-
fies the syntactic relation existing between two elements within a sentence, one of
them taking the role of governor (or head) and the other of dependent (régissant
and subordonné in the original terminology). Dependency is the only main feature
of Tesnière’s formalism used in standard dependency representations as explained
in chapter 4.

Tesnière schematizes dependency relation using a graphical representation,
the stemma, placing the governors above the dependents, as exemplified in the
left diagram of figure 5.1. On the right side of the figure we present the same
sentence using our notation, incorporating all the main features introduced by
Tesnière, which we will explain in the following sections. The main divergence
with respect to the original representation, is that in our trees we explicitly express
the linear order of the words in the sentence, while in original stemmas Tesnière
only represents the structural order : the dependents of a node follow a canonical
order which might differ from their linear order in the sentence (for instance a
verb has always the subject as the leftmost dependent).

is singing

friend song

my old this nice my old

friend

is singing

this nice

song

J

J

J

J

N

N

V

V

J

J

J

J

N

N

Figure 5.1: TDS of the sentence “My old friend singed this nice song”, in Tesnière
notation (left) and in our TDS representation (right).

5.2.2 Words, blocks and categories
In TDS, all words are divided into two classes: content words (e.g., nouns, verbs,
adjectives, etc.), and functional words (e.g., determiners, prepositions, etc.). Each
content word forms a block2 which may additionally include one or more func-
tional words, and it is on blocks that relations3 are established. In our diagrams
blocks are represented as black boxes, and functional words are written in grey
to distinguish them from content words.

2Tesnière in (Tesnière, 1959, ch. 22) uses the term nucléus, and explains that it is important
in order to define, among other things, the transference operation (see §5.2.4).

3We here refer to the dependency relation and the junction operation.

112 Chapter 5. Tesnière Dependency-Structure

Tesnière distinguishes four block categories (or functional labels4), here listed
together with the color and single letter notation, as reported in our diagrams:
nouns (blue, N), adjectives (green, J), verbs (red, V), and adverbs (yellow, A).

Dependency relations are defined upon blocks. The verbal block represents
the process expressed by the clause, and each of its arguments, representing a
participant in the process, functions as a single noun. Arguments are usually
compulsory within the clause, and their number is determined by the verb’s va-
lence. On the other hand the verb’s adjuncts (or circonstants), represent the
circumstances under which the process is taking place, i.e., time, manner, loca-
tion, etc., and function as adverbs.

Tesnière was the first linguist borrowing the term valency from chemistry, to
indicate the number of ‘empty slots’ that a verb should fulfill. So for instance
intransitive verbs such as to sleep has valency 1 in ‘the dog sleeps’, since the
subject is the only compulsory argument, while to give has valency 3 in ‘he gives
her a book’.

Nouns are always modified by blocks that function as adjectives, and adjectives
by blocks that function as adverbs.

We will now introduce two operations, junction and transference, which allow
to construct more complex clauses from simple ones.

5.2.3 Junction
The first operation is the junction and it is used to group elements that are
coordinated in a sentence. As in the dependency relation, junction acts over
blocks. In this case blocks are called the conjuncts, and are grouped into a
unique entity which has the status of a block (a junction block). The conjuncts
are horizontally connected in the TDS, belong to the same category, and are
optionally connected by means of functional words, the conjunctions. In our
TDS diagrams junction blocks are displayed in yellow to distinguish them from
standard block (black). Conjunction words (or punctuation marks functioning as
such) are also displayed in yellow.

Figure 5.2 displays three coordinated structures: in the first case, two nouns,
subject of the same verb, are coordinated; in the second case, two adjectives,
modifying the same noun, are coordinated; in the last case, two verbs, having
the same subject, are coordinated. As in Tesnière’s formulation, we use junction
to represent standard coordination as well as apposition (e.g., [the US president],
[Obama]). Moreover, the junction operation can work recursively: a junction
block can be a conjunct of a bigger junction block (e.g., [Mary and [either Mark
or John]]).

4We will use both terms interchangeably. Categories can be roughly seen as a simplification
of both PoS tags and dependency relations in DS’s. See also §5.3.2.

5.2. Dependency-Structures à la Tesnière 113

fall

Alfred and Bernard

a lunch

good but expensive

laugh and sing

children

Alfred and Bernard

fall

N

N

N

N

N

N

V

V

a lunch

good but expensive

N

N

J

J

J

J

J

J children

laugh and sing

N

N

V

V

V

V

V

V

Figure 5.2: Examples of coordination. Tesnière’s original notation is on top, and
our notation at the bottom (we represent the junction with a yellow box).

5.2.4 Transference
The other operation is named transference. There are two types of transference.
The first degree transference is a shifting process which makes a block change
from the original category of the content word, to another. This process often
(but not always) occurs by means of one or more functional words belonging to
the same block, called transferrers. Figure 5.3 (left) shows an example of first
degree transference. The word Peter is transferred from the word class noun and
takes the functional label of an adjective via the possessive clitic ’s which acts as
a transferrer. In our representation (bottom), every block has two little colored
boxes: the one at the bottom indicates the original category of the content word,
and the one at the top indicates the category of the block after all transferences
are applied.

The second degree transference occurs when a simple clause becomes an ar-
gument or an adjunct of another clause5, maintaining all its previous lower con-
nections, but changing its functional label within the main clause. The sentences
below represent some examples of second degree transference:

(5.1) She believes that he knows

(5.2) The man I saw yesterday is here today

(5.3) You will see him when he comes

5In other words, the verb of the embedded clause becomes a dependent of another verb.
This should not be confused with the case of compound verbs, which are represented as a single
block, where auxiliaries are labeled as functional words (see for instance the TDS in figure 5.1).

114 Chapter 5. Tesnière Dependency-Structure

book

Peter
J
's

he

believes

She N
that knows

You A
when comes

he

him

will see

Peter 's

book

J

N

N

N She

believes

that

he

knows

N

N

V

V
N

V
N

N

You

will see

him when

he

comes

N

N

V

V
N

N

A

V
N

N

Figure 5.3: An example of first degree transference of the phrase “Peter’s book”
(left), and two examples of second degree transference of the sentence “She believes
that he knows” (center) and the sentence “You will see him when he comes”
(right).

In the first sentence, we have a transference verb-to-noun by means of the
transferrer that. The embedded clause in italics takes the function of a noun,
and becomes the object of the verb. Figure 5.3 (center) shows the corresponding
TDS. The embedded clause in the second example functions as an adjective: it
is a transference verb-to-adjective without any transferrer. The third sentence is
an example of transference verb-to-adverb: the clause in italics has the functional
role of a temporal adverb through the transferrer when. Figure 5.3 (right) shows
the corresponding TDS.

5.3 Comparing TDS with DS
In this section we will describe three main advantages of using TDS notation as an
alternative of DS representations (see chapter 4). In particular we will discuss the
issue of choosing the linguistic heads in PS trees (§5.3.1), compare how the two
models categorize dependency relations (§5.3.2), and how they treat coordination
(§5.3.3).

In order to compare the different representations, Figure 5.4 illustrates three
structures of an English sentence: the original Penn WSJ PS tree, the same
structure converted to DS as in Johansson and Nugues (2007), and the TDS our
conversion algorithm generates.

5.3. Comparing TDS with DS 115

S

NP-SBJ

NNP-H

Japan

VP-H

CONJP

RB-H

not

RB

only

VP

VBZ-H

outstrips

NP

DT

the

NNP-H

U.S.

PP-LOC

IN-H

in

NP

NN

investment

NNS-H

flows

CONJP-H

CC-H

but

RB

also

VP

VBZ-H

outranks

NP

PRP-H

it

PP-LOC

IN-H

in

NP

NP-H

NN-H

trade

PP-CLR

IN-H

with

NP

JJS

most

JJP

JJ

Southeast

JJ-H

Asian

NNS-H

countries

.

.

SBJ
NNP
Japan

CC
RB
not

DEP
RB

only

COORD
VBZ

outstrips

NMOD
DT
the

OBJ
NNP
U.S.

ADV
IN
in

NMOD
NN

investment

PMOD
NNS
flows

ROOT
CC
but

COORD
RB
also

COORD
VBZ

outranks

OBJ
PRP

it

ADV
IN
in

PMOD
NN

trade

ADV
IN

with

NMOD
JJS

most

AMOD
JJ

Southeast

NMOD
JJ

Asian

PMOD
NNS

countries

P
.
.

Japan

not only outstrips

the U.S. in

investment

flows

but also outranks

it in trade

with

most

Southeast

Asian

countries

.

N

N

V

V

V

V
N

N

A

N
J

N

V

V
N

N

A

N
J

N
J

J
A

J

J

J

Figure 5.4: Comparison between different representations of an English sentence.
Top: original WSJ PS taken from the WSJ sec-00 (#666). Null productions and
traces have been removed. The red labels are the heads according to the DS below.
Center: DS according to Johansson and Nugues (2007) using the pennconverter
script in conll2007 mode. Every word in the DS is presented together with its
PoS and the label of the dependency relation with its governor. Bottom: TDS
our conversion algorithm generates.

116 Chapter 5. Tesnière Dependency-Structure

5.3.1 Choosing the correct heads
As for DS, the easiest way to construct a TDS tree is to derive it automatically
from a PS tree. A fundamental operation that both DS and TDS transformation
have in common is the annotation of the original PS tree with head labels (see
also §3.2.1 and §4.3.1). This procedure has been initially proposed by Magerman
(1994) and then slightly modified by others (e.g., Collins, 1999; Johansson and
Nugues, 2007). If exactly one unique head is chosen for every constituent of the
PS, the enriched tree can be shown to be homomorphic to a single projective
DS (Hays, 1960; Nivre, 2006). For example, in figure 5.4, the DS in the center is
derived from the heads marked with suffix -H in the PS at the top of the same
figure.

Choosing heads in a PS tree is a critical operation: although much linguistic
literature is present on this issue (cf. Corbett et al., 2006), in NLP there have
been only few attempts to empirically evaluate different heads assignments (i.e.,
Chiang and Bikel, 2002; Sangati and Zuidema, 2009). While certain choices are
less disputed (e.g., the verb is unequivocally the head of simple clauses), the
majority of the decisions are more controversial and they are usually between
functional and content words. The most frequent cases are listed here:

• Determiner vs. noun in nominal phrases (e.g., the man).

• Preposition vs. noun in prepositional phrases (e.g., on paper).

• Complementizer vs. verb in sub-clauses (e.g., I believe that it is raining).

In TDS, all these choices become irrelevant: since every functional word is
included in the block together with the content word it belongs to, both decisions
lead to the same TDS representation. Nevertheless, in TDS, head assignment
remains essential when two or more content words are sister nodes of the same
constituent, such as in “the song which I like”. For these cases there is more
consensus about the choice of the heads: in the example the verb is consistently
marked as the head of the subclause,6 and in our representation we follow this
convention.

5.3.2 Categories and Blocks
Currently used DS representations make use of labels to identify the dependencies
between words. For example SBJ and OBJ are used to mark the relation between
a verb and its subject and direct object respectively, while NMOD is used to
identify the role of a noun modifier (i.e., adjective). These labels are only partially

6For these cases few people, such as Bauer (1979), have proposed that the subject could
also be the head of the sentence. For more discussion on this issue see also Anderson (1971)
and Vater (1975).

5.3. Comparing TDS with DS 117

overlapping with the four categories proposed by Tesnière as for instance noun-
phrases are marked as nouns regardless of their role with respect to the verb of
the sentence (e.g., subject or object). Moreover, while DS uses around a dozen of
different labels, TDS uses only four. This turns out to be beneficial for a more
simplified and generalized analysis.

The other difference is more subtle. In DS every word is a node, and therefore,
for every node (except for the root) there is the need to identify the label of the
dependency relation with its governor. The problem here is related to the above
discussion about the choice of heads. If we take the example in figure 5.3 (center),
one has to choose whether the complementizer or the verb is the direct object of
the main verb. TDS better represents these cases, by including both elements in
the same block. This choice is justified by the fact that both elements contribute
to making the node an argument or an adjunct of the verb.

5.3.3 Coordination
Coordination is a very productive phenomenon in language. In the WSJ almost
every other sentence presents a coordination structure. Unfortunately coordi-
nation represents one of the major problems in standard DS representation (see
Nivre, 2006, p. 49). If dependency7 is the only operation available to relate words,
two main strategies are adopted, leading to 4 possible annotation schemes:

1. One conjunction (or conjunct) is the head of the other elements.

2. Each element (conjunction or conjunct) is the head of the adjacent element
which follows.

The first solution is the one which is more commonly adopted in current PS-
to-DS conversions. The second one is proposed by Igor Mel’čuk (1988). Both
solutions are problematic in circumstances such as the one of figure 5.4 (see
also figure 5.9). If the coordination includes multiple conjunctions, assigning the
head to either one of the conjuncts or one of the conjunctions, leads to a strong
asymmetry in the structure: either the conjuncts are not all at the same level, or
the set of dependents includes both conjunctions and conjuncts. Moreover, if the
coordination phrase is coordinating verbs at the top of the sentence structure,
other potential blocks, e.g., the subject Japan in the example, will also appear in
the set of dependents, at the same level with the verbs they depend on.8 Finally
the conjunction phrase, i.e., a group of words forming a single conjunction (e.g.,

7We only consider the case of single headed DS, i.e., each word should have exactly one
governor.

8The labels of the dependency relations, such as the ones in the DS of figure 5.4, can often
help to differentiate between dependents which have the same head, but differ in their functional
labels. However they cannot be considered an optimal solution, since they do not eliminate the
structural asymmetry.

118 Chapter 5. Tesnière Dependency-Structure

not only in the example), is also poorly represented in DS representations, since
it is not grouped into a unique entity.

Tesnière’s choice of adding a special operation to handle coordination is jus-
tified if we consider how well it represents all the cases DS fails to describe con-
sistently. Coordination in TDS can be seen as a borrowing of the notion of
constituency from PS notation: the different blocks being conjoined have equal
status, they govern all the blocks being dominated by the coordination block, and
are dependents of all blocks the coordination structure depends on.

5.4 Converting the Penn WSJ in TDS notation
We will now present our attempt of converting the Penn WSJ treebank (Marcus
et al., 1993) into TDS notation. In §5.4.1 we will introduce the elements com-
posing each generated TDS, in §5.4.2 we will describe the conversion procedure,
and in §5.6 we will compare the obtain treebank to other formalisms.

5.4.1 Elements of a TDS
Figure 5.5 illustrates the main elements, introduced in §5.2, which we need to
define in order to construct TDS trees. Words are divided into content and
functional words,9 and blocks are either standard or junction blocks. A generic
block contains a list of functional words, and a list of dependent blocks. In
addition a standard block has to contain a unique content word,10 while a junction
block needs to specify a list of conjunction words and a list of conjunct blocks.

Word { {
Standard Block

- Content Word (CW)

Junction Block

- Conjunctions (FW)	

- Conjuncts (Block)

Block
- Functional Words (FW)	

- Dependents (Block)	

Functional Word (FW)

Content Word (CW)

Figure 5.5: Hierarchical definition of words and block types in the TDS represen-
tation.

9A word is functional if its PoS is one of the following: punctuation marks, CC, DT, EX,
IN, MD, POS, RP, SYM, TO, WDT, WRB. Moreover special pairs of words are marked as
functional (e.g., more like, more than, even though, such as, many of, most of, rather than).

10As the only exception, contiguous proper nouns (e.g., first and last names) are parts of the
same block.

5.4. Converting the Penn WSJ in TDS notation 119

5.4.2 The conversion procedure
In order to derive TDS trees from the Penn WSJ, we have decided to start from
the original PS annotation, instead of using already converted DS trees. The main
reason for this choice is that PS annotation of the WSJ is richer than currently
available DS representations. This concerns in particular coordination structures,
which would be much harder to reconstruct from DS notation (see §5.3.3).

Each PS in the corpus is preprocessed using the procedure described in Vadas
and Curran (2007), in order to add a more refined bracketing structure to noun
and adjectival phrases. Moreover, we remove null productions and traces from
all trees, and enrich them with head labels. This last step is performed using
a variation of the head-rules table defined in Magerman (1994) as reported in
Appendix C.1.

Conversion

The pseudocode reported in algorithm 2, contains the procedure which is applied
to each PS of the corpus, in order to generate the respective TDS. The algorithm
recursively traverses from top to bottom each node of a PS tree, and outputs
either a junction block (part A of the algorithm) or a standard block (part B).
A constituent is identified as a junction structure when it presents conjunctions
elements (i.e., CC, CONJP), or when it is composed of subconstituents with the
same labels, such as in the cases of appositions.

For instance, in the PS tree of figure 5.4, the conversion procedures detects
that the highest verbal phrase (VP) is a coordination block, as it includes in
its daughter nodes two conjunction phrases (CONJP). As the same VP is the
head of the whole structure, the junction block becomes the root of the TDS
tree; in addition, the siblings of VP (i.e., the noun phrase ‘Japan’) will become a
dependent of the whole coordination block.

Post-processing

For each converted TDS, several post-processing steps are applied:

1. Join together all compound verbs into a unique block (e.g., [is eating], [has
been running]). All verbs except the last are marked as functional words
(auxiliaries).

2. Unify in a unique standard block all contiguous proper nouns.

3. Define the original category of each block. This category is specified by
the PoS of its content word if it is a standard block, and by the original
category of the first conjunct block, if it is a junction structure.

120 Chapter 5. Tesnière Dependency-Structure

Algorithm: Convert(NPS)
Input: A node NPS of a PS tree
Output: A block NTDS of a TDS tree
begin
instantiate NTDS as a generic block;
if NPS is a junction then
// A) Coordination: output a junction block
instantiate NTDS as a junction block;
foreach node D in children of NPS do
if D is a conjunct then
DTDS ← Convert(D);
add DTDS as a conjunct block in NTDS;

else
Dlex ← lexical yield of D;
if Dlex is a conjunction then
add Dlex as a conjunction in NTDS;

else
add Dlex as a functional word(s) in NTDS;

else
// B) No coordination: output a standard block
Nh ← head daughter node of NPS;
if Nh yield only one word wh then
instantiate NTDS as a standard block with wh as its content word;

else NTDS ← Convert(Nh);
foreach node D in children of NPS do
if D == Nh then
continue;
Dlex ← lexical yield of D;
if Dlex are only functional words then
add Dlex as a functional word(s) in NTDS;

else
DTDS ← Convert(D);
add DTDS as a dependent of NTDS;

return NTDS;

Algorithm 2: Pseudocode of the conversion algorithm from PS to TDS.

5.5. A probabilistic Model for TDS 121

4. Define the derived category after transferences are applied. This category
is specified by the original category of the governing block (if the current
block is the root of the structure the category coincides with its original
category). If the governing block is a noun or an adjective, the current
block is an adjective or an adverb, respectively. If the governing block is
a verb, the current block is either a noun or an adverb. This last decision
depends on whether the original PS node, from which the current block
derives, has a circumstantial label, i.e., it contains one of the following tags:
ADVP, PP, PRN, RB, RBR, RBS, ADV, BNF, CLR, DIR, EXT, LOC,
MNR, PRP, TMP, VOC.

The conversion procedure just described has been employed to generate a first
TDS conversion of the Penn WSJ treebank. At current time a third revision of
the conversion procedure has been released (version 1.2). The conversion and
visualization tool, together with its technical documentation, is publicly available
at http://staff.science.uva.nl/˜fsangati/TDS.

In the following section we will describe and evaluate a generative model for
parsing TDS constructions, while in §5.6 we will provide more qualitative analyses
on the TDS treebank by comparing it with other proposed conversion of the WSJ
treebank.

5.5 A probabilistic Model for TDS
This section describes the probabilistic generative model which was implemented
in order to disambiguate TDS structures. Since no parser currently exists for
the TDS representation, we have chosen the same strategy we have described
in §2.4 and adopted for evaluating DS models in §4.6. The idea consists of
utilizing a state of the art parser to compute a list of k-best candidates of a test
sentence, and evaluate the new model by using it as a re-ranker, selecting the
most probable structure among the given candidates. In order to obtain the list
of k-best candidates, we utilize a state of the art parser for PS trees (Charniak,
1999), and transform each candidate to TDS.

5.5.1 Model description
In order to compute the probability of a given TDS structure, we make use of three
separate probabilistic generative models, each responsible for a specific aspect of
the structure being generated. The probability of a TDS structure (S) is obtained
by multiplying its probabilities in the three models, as reported in equation 5.4.

The first model (equation 5.5) is the Block Generation Model (BGM).
It describes the event of generating a block B as a dependent of its parent block
(governor). The dependent block B is identified with its categories (both original
and derived), and its functional words, while the parent block is characterized

122 Chapter 5. Tesnière Dependency-Structure

P (S) = PBGM(S) ⋅ PBEM(S) ⋅ PWFM(S) (5.4)

PBGM(S) = ∏
B ∈ depBlocks(S)

P (B∣parent(B), direction(B), leftSibling(B)) (5.5)

PBEM(S) = ∏
B ∈ blocks(S)

P (elements(B)∣derivedCat(B)) (5.6)

PWFM(S) = ∏
B ∈ stdBlocks(S)

P (cw(B)∣cw(parent(B)), cats(B), fw(B), context(B))

(5.7)

Table 5.1: Equation 5.4 gives the likelihood of a structure S as the product of
the likelihoods of generating three aspects of the structure, according to the three
models (BGM, BEM, WFM) specified in equations 5.5-5.7 and explained in the
main text.

by the original category only. Moreover, in the conditioning context we specify
the direction of the dependent with respect to the parent,11 and its adjacent left
sister (null if not present) specified with the same level of details of B. The model
applies only to standard blocks.

The second model (equation 5.6) is the Block Expansion Model (BEM).
It computes the probability of a generic block B of known derived category, to
expand to the list of elements it is composed of. The list includes the category
of the content word, in case the expansion leads to a standard block. In case of
a junction structure, it contains the conjunctions and the conjunct blocks (each
identified with its categories and its functional words) in the order they appear.
Moreover, all functional words in the block are added to the list.12 The model
applies to all blocks.

The third model (equation 5.7) is the Word Filling Model (WFM), which
applies to each standard block B of the structure. It describes the event of filling
B with a content word (cw), given the content word of the governing block, the
categories (cats) and functional words (fw) of B, and further information about
the context13 in which B occurs. This model becomes particularly interesting

11A dependent block can have three different positions with respect to the parent block: left,
right, inner. The first two are self-explanatory. The inner case occurs when the dependent
block starts after the beginning of the parent block but ends before it (e.g., a nice dog).

12The attentive reader might notice that the functional words are generated twice (in BGM
and BEM). This decision, although not fully justified from a statistical viewpoint, seems to
drive the model towards a better disambiguation.

13context(B) comprises information about the grandparent block (original category), the
adjacent left sibling block (derived category), the direction of the content word with respect to

5.5. A probabilistic Model for TDS 123

when a standard block is a dependent of a junction block (such as ‘abortion’ in
Figure 5.9). In this case, the model needs to capture the dependency relation
between the content word of the dependent block and each of the content words
belonging to the junction block.14

The conditional probabilities of the three models are smoothed using deleted
interpolation as in the models for DS (see §4.6.3). More details are provided in
Appendix C.3.

PoS & Block tagging None of the previous 3 models take into account the
linear order of the words for deciding the locations of the block boundaries within
a sentence. In order to improve robustness, we define 2 additional models for
computing the probability of a given sequence of PoS-tags15 and block-tags for
the sequence of words of a given TDS structure. Both models are implemented
as a tagging task with n-gram models as in chunking (Buchholz et al., 1999;
Daelemans et al., 1999) and are shown in equations 5.8 and 5.9. In our case
the possible block-tags are: N (new block independent from the previous block),
I (continue the previous block), -N (new block inside the previous block), C
(coordination word), and +I (continue the parent block of the previous block).
An example of a pos-tagging and block-tagging is illustrated in figure 5.6.

PPoS-tags(S) =
n

∏
i=1
P (word(i), pos(i)∣wordi−1, posi−1, posi−2) (5.8)

PBlock-tags(S) =
n

∏
i=1
P (block-tag(i)∣wordi, posi, posi−1, posi−2, posi+1) (5.9)

5.5.2 Experimental Setup
We have tested our model on the WSJ section of Penn Treebank Marcus et al.
(1993), using sections 2-21 as training and section 22 for testing. We employ
the Max-Ent parser implemented by Charniak (1999), to generate a list of k-
best PS candidates for the test sentences, which are then converted into TDS
representation.

Instead of using Charniak’s parser in its original settings, we train it on a
version of the corpus in which we add a special suffix to constituents which have
circumstantial role.16 This decision is based on the observation that the TDS
its governor (in this case only left and right), and the absolute distance between the two words.

14In order to derive the probability of this multi-event we compute the average between the
probabilities of the single events which compose it.

15Although PoS-tags are not represented in the graphical version of TDS trees, they are kept
in the internal representation from the original PS.

16Those which have certain function tags (e.g., ADV, LOC, TMP). The full list is reported
in the post-processing procedure in §5.4.2. We were surprised to notice that the performance

124 Chapter 5. Tesnière Dependency-Structure

Mary

is singing

an

old and beautiful

song

N

N

V

V
N

N

J

J

J

J

J

J

Words Mary is singing an old and beautiful song
PoS-tags NNP VBZ VBG DT JJ CC JJ NN
Block-tags N N I N -N C N +I

Figure 5.6: Above: example of a TDS structure. Below: PoS-tags and block-
tags associated to each word in the structure.

formalism captures the argument structure of verbs well, and we believe that this
additional information might benefit our model.

We then applied our probabilistic model to re-rank the list of available k-best
TDS, and evaluate the selected candidates using several metrics which will be
introduced next.

5.5.3 Evaluation Metrics for TDS
The reranking framework described above, allows us to keep track of the original
PS of each TDS candidate. This provides an implicit advantage for evaluating
our system, viz. it allows us to evaluate the re-ranked structures both in terms
of the standard evaluation benchmark on the original PS (F-score) as well as on
more refined metrics derived from the converted TDS representation. In addition,
the specific head assignment that the TDS conversion procedure performs on the
original PS, allows us to convert every PS candidate to a standard projective DS,
and from this representation we can in turn compute the benchmark evaluation
for DS used in §4.6.1, i.e., the unlabeled attachment score (UAS).

Concerning the TDS representation, we have formulated 3 evaluation metrics
which reflect the accuracy of the chosen structure with respect to the gold struc-
ture (the one derived from the manually annotated PS), regarding the different
components of the representation:

(in terms of F-score) of the parser on this modified treebank is only slightly lower than the one
obtained with standard settings (0.13%).

5.5. A probabilistic Model for TDS 125

Block Detection Score (BDS): the accuracy of detecting the correct bound-
aries of the blocks in the structure.17

Block Attachment Score (BAS): the accuracy of detecting the correct gov-
erning block of each block in the structure.18

Junction Detection Score (JDS): the accuracy of detecting the correct list
of content-words composing each junction block in the structure.19

Beam F1 UAS BDS BAS JDS
Charniak k = 1 89.4 92.5 95.0 89.5 77.6
PCFG-reranker k = 5 89.0 92.4 95.1 89.2 77.5
PCFG-reranker k = 1000 83.5 88.4 92.9 83.6 71.8
TDS-reranker k = 5 89.6 92.4 95.0 89.4 77.7
TDS-reranker + PoS&Block-tags k = 5 89.6 92.5 95.2 89.5 77.6
TDS-reranker k = 10 89.0 92.1 94.7 88.9 76.5
TDS-reranker k = 100 86.6 90.4 93.7 86.6 72.1
TDS-reranker k = 1000 84.0 88.1 92.0 84.0 67.7
TDS-reranker + PoS&Block-tags k = 1000 84.8 89.3 93.5 84.9 69.7

Table 5.2: Results of Charniak’s parser, the TDS-reranker, and the PCFG-
reranker according to several evaluation metrics, when the number k of best-
candidates increases.

5.5.4 Results
Table 5.2 reports the results we obtain when reranking with our model an increas-
ing number of k-best candidates provided by Charniak’s parser (the same results
are shown in the left graph of Figure 5.7). We also report the results relative to a
PCFG-reranker obtained by computing the probability of the k-best candidates
using a standard vanilla-PCFG model derived from the same training corpus.
Moreover, we evaluate, by means of an oracle, the upper and lower bound of the

17It is calculated as the harmonic mean between recall and precision between the test and
gold set of blocks, where each block is identified with two numerical values representing the
start and the end position (punctuation words are discarded).

18It is computed as the percentage of words (both functional and content words, excluding
punctuation) having the correct governing block. The governing block of a word, is defined
as the governor of the block it belongs to. If the block is a conjunct, its governing block is
computed recursively as the governing block of the junction block it belongs to.

19It is calculated as the harmonic mean between recall and precision between the test and
gold set of junction blocks expansions, where each expansion is identified with the list of content
words belonging to the junction block. A recursive junction structure expands to a list of lists
of content-words.

126 Chapter 5. Tesnière Dependency-Structure

Figure 5.7: Left: results of the TDS-reranking model according to several eval-
uation metrics as in Table 5.2. Right: comparison between the F-scores of the
TDS-reranker and a standard PCFG-reranker (together with the lower and the
upper bound), with the increase of the number of best candidates. Results refer
to the development section (22) of the WSJ.

F-Score and JDS metric, by selecting the structures which maximizes/minimizes
the results.

Our reranking model performs rather well for a limited number of candidate
structures. In particular, for k = 5, it is in par or slightly outperforms Charniak’s
model for all evaluation metrics. In general, we notice that our extended model
including PoS-tagging and Block-tagging is more robust than our basic model,
especially when reranking an high number of candidates.

The right graph in Figure 5.7 compares the F-score performance of the TDS-
reranker against the PCFG-reranker. Our system consistently outperforms the
PCFG model on this metric, as well as for UAS, BDS, and BAS. Concerning
the JDS metric, as the number of k-best candidates increases, the PCFG model
outperforms the TDS-reranker.

5.6 Other representations of the WSJ Treebank
In this section we illustrate other proposed representations of the Penn WSJ
treebank. Some of these are obtained fully automatically, while others have made
used of human annotators. In order to compare them and clarify better the
contribution of each representation we will take into consideration an example
tree from the WSJ treebank illustrate in figure 5.8. The corresponding TDS tree
is presented in figure 5.9.

5.6. Other representations of the WSJ Treebank 127

S

NP-SBJ

DT

The

NN

rule

ADVP

RB

also

VP

VBZ

prohibits

NP

NP

NN

funding

PP

IN

for

NP

NP

NNS

activities

SBAR

WHNP

WDT

that

S

VP

VBP

encourage

,

,

VBP

promote

CC

or

VBP

advocate

NP

NN

abortion

Figure 5.8: Example of a PS tree of the WSJ treebank (section 0, #977).

Sentence # 1

The rule also

prohibits

funding

for activities

that encourage , promote or advocate

abortion

N

N

A

A

V

V
N

N
J

N
J

V

J

V

J

V

J

V

N

N

Figure 5.9: TDS tree converted from the PS tree in figure 5.8.

128 Chapter 5. Tesnière Dependency-Structure

5.6.1 Prague English dependency treebank
The Prague English Dependency Treebank (Cinková et al., 2008, 2009), in short
PEDT, consists of a semi-automatic conversion of a subset of the WSJ treebank
into a dependency representation which follows the scheme of the Prague Depen-
dency Treebank (Hajič et al., 2000). Every sentence has two annotation layers:
the analytical layer which captures the dependency surface-syntax, and the tec-
togrammatical annotation, which encodes semantic relations between the content
words in the sentence (the relations between content and functional words are
only included in the analytical layer). While the former is very similar to stan-
dard labeled dependency grammar, the latter constitutes the main contribution of
the proposed representation. The tectogrammatical representation derives from
the Functional Generative Description tradition (Sgall et al., 1986), and aims at
capturing the linguistic meaning of the sentence, with special focus on the commu-
nication role of language; for instance it includes underspecified elements which
can be reconstructed from the context (e.g., in I told you last night, the verb has
an hidden argument to indicate that something has been told.). This represen-
tation explicitly represents the argument structure of the sentence, and has been
used to automatically extract the valency frames of English verbs (Semecký and
Cinková, 2006).

Figure 5.10 shows the tectogrammatical representation20 of the PS tree in
figure 5.8. As in the TDS representation functional words (i.e., The, for) are
represented together with the content words they refer to (i.e., rule, activity).

PDT representation employs only dependency relations to connect words.21

As in standard labeled dependency treebanks, this creates some problem when
dealing with complex coordination (involving multiple conjuncts and shared ar-
guments). In the same figure, we can in fact notice that there is no explicit
relation between any of the verbs in the coordinated structure (i.e., encourage,
promote, advocate) and their arguments (i.e., that, abortion). This relations can
be retrieved only indirectly from the labels (i.e., RSTR.member, ACT, PAT).

5.6.2 Stanford Typed Dependency Representation
The Stanford typed dependency representation (De Marneffe et al., 2006; De Mar-
neffe and Manning, 2008) was developed with the aim of providing a suitable
representation for relation extraction and language understanding tasks. The
conversion is based on a completely automatic procedure which is part of the
Stanford parser software.22 The procedure takes as input any Penn-style PS tree-

20The PDT 2.0 treebank (both analytical and tectogrammatical layers) and visualization
software are publicly available at http://ufal.mff.cuni.cz/pdt2.0. Many thanks to Jan
Stepanek for technical assistance.

21Apart from standard governor-dependent relations it also encode anaphoric relations as
shown in the same figure between that and activity.

22http://nlp.stanford.edu/software/

5.6. Other representations of the WSJ Treebank 129
EnglishT-wsj_0049-s57
root

rule
ACT

also
RHEM

prohibit
PRED

funding
PAT

activity
BEN

that
ACT

encourage
RSTR member

promote
RSTR member

or
CONJ

advocate
RSTR member

abortion
PAT

rule The also

prohibits . ''

funding

activities for

that
.

encourage
.

promote

or

.
advocate abortion

File: wsj_0049.t.gz, tree 57 of 76

The rule also prohibits funding for activities that `` *T*-137 encourage, promote or advocate abortion. ''
Nařízení rovněž zakazuje financování činností, které "podporují, propagují nebo obhajují potraty".

Figure 5.10: Tectogrammatical annotation of the PS tree in figure 5.8 according
to the Prague English Dependency Treebank.

bank and can output dependency-structures in various formats, among which the
base format, and the collapsed format which are reported in figure 5.11. The
former is very similar to standard labeled dependency-structures, while in the
latter most of the relations between the content words and the functional words
are collapsed into the labels of the relations.23 For instance in figure 5.11 the
preposition for in founding for activities is collapsed and put into the label of
the dependency relation between founding and activities. The collapsed repre-
sentation in this respect is very similar to the PEDT; the two representations
mainly diverge in the choice of the label hierarchy: the PEDT is more oriented
towards argument structure relations, while the Stanford representation follows
more traditional grammatical relations.

This representation has the same limitation as other dependency formalisms
(e.g., PEDT) when dealing with coordination structures. The only main difference
with respect to the PEDT, is that Stanford dependency-structures choose the first
conjunct as the governor of a coordination construction.

23Not all the relations are collapsed. For instance prepositions are collapsed, while determin-
ers are not.

130 Chapter 5. Tesnière Dependency-Structure

det
DT
The

nsubj
NN
rule

advmod
RB
also

root
VBZ

prohibits

dobj
NN

funding

prep
IN
for

pobj
NNS

activities

nsubj
WDT
that

rcmod
VBP

encourage

punct
,
,

conj
VBP

promote

cc
CC
or

conj
VBP

advocate

dobj
NN

abortion

det
DT
The

nsubj
NN
rule

advmod
RB
also

root
VBZ

prohibits

dobj
NN

funding

prep_for
NNS

activities

rcmod
VBP

encourage

conj_or
VBP

promote

conj_or
VBP

advocate

dobj
NN

abortion

nsubj
WDT
that

Figure 5.11: Stanford Dependency representation of part of the PS tree in fig-
ure 5.8, in basic format (above) and collapsed format (below).

5.6. Other representations of the WSJ Treebank 131

5.6.3 Bubble Trees
Kahane (1997) described a general transformation of PS trees enriched with head
labels to a novel representations called bubble trees. A bubble tree incorporates
information from the original PS tree as well as the dependency relations implicit
in the head annotation. Differently from standard PS to DS transforms (§4.3.1),
the formalism allows to select more than a single daughter as head of a constituent.
Figure 5.12 shows part of the bubble tree derived from PS tree in figure 5.8. In
this representation every constituent is represented as a bubble (rectangles in
the figure). If constituent D is the head daughter of constituent P, D is placed
inside P as a sub-bubble; otherwise it is a dependent of P (indicated with an
arrow going from D to P). Therefore, as in the TDS representation, dependency
relations are not between words but between bubbles (blocks in TDS). If multiple
daughters are co-heads of the same constituent P, they are all placed inside P as
sub-bubbles. This allows to represent conjuncts of a coordination as sister node
of the same bubble, as originally proposed by Tesnière. For instance in figure 5.12
the three VBP of the rightmost VP are co-heads and positioned as daughters of
the VP bubble.24 The use of both constituency relation and dependency relation,
and the handling of coordination makes this formalism particularly similar to the
TDS framework we have proposed. Although this transformation is insightful yet
simple to derive, it was unfortunately never applied to any treebank, nor used for
building parsing models.

5.6.4 The CCG-bank
Hockenmaier and Steedman (2007) developed a semi-automatic conversion of the
WSJ treebank into Combinatory Categorial Grammar representation: the CCG-
bank. CCG was introduced by Steedman (1996) as a generalization of Catego-
rial Grammar theory (Ajdukiewicz, 1935; Bar-Hillel, 1953). It is a lexicalized
grammar formalism, which can successfully represent a vast range of linguistic
phenomena such as coordination, non local dependencies, control and raising
constructions, without the use of movements and traces. Figure 5.13 represents
part of the CCG-bank tree of the PS in figure 5.8. Internal constituents are as-
signed either basic categories (e.g., S, NP), or complex categories (e.g., S/NP,
NP/NP, (NP/NP)/NP)). In general, a complex category of the form X/Y expects
an argument Y to its right to produce a constituent of category X (forward com-
position), while those of type X/Y expect Y to their left to produce X (backward
composition). For instance in the example tree of figure 5.13, NP/NP indicates a
prepositional phrase which combined with an NP to its left produces an NP. For-
ward/backward composition are somewhat similar to the transference operation

24The same formalism allows to represent blocks of words and transference as in TDS
(see §5.2.4) by assigning heads to both the functional part and the content part of a constituent
(e.g., in the same figure, WHNP and S can be co-heads of SBAR).

132 Chapter 5. Tesnière Dependency-Structure

activities

that

encourage

,

promote

or

advocate

abortion

NNS NP
NP

NN
NP

VBPVBPVBP

CC,

WDT
WHNP

SBAR

VP
S

Figure 5.12: Bubble tree converted from the PS tree in figure 5.8.

in our TDS formalism (see §5.2.4). For instance in the TDS tree of figure 5.9, the
preposition for combined with the noun activities returns a adjectival block.

The CCG-bank has been successfully used to train statistical parsers (e.g.,
Hockenmaier, 2003; Clark and Curran, 2007b), and it is an important framework
for many natural language applications which need to retrieve the semantic struc-
ture of a sentence such as textual entailment and question-answering systems. In
fact every CCG derivation of a sentence can be uniquely mapped into a logi-
cal form which represents the meaning of the sentence (given the correct lexical
categories).

The CCG-bank follows a binary branching annotation. When dealing with a
coordination of multiple conjuncts, such as the tree in figure 5.13, the construc-
tion is transformed into a right-branching structure. The intermediate categories
being created are assigned the same categories of the conjuncts with an extra
feature [conj]. Nevertheless, we conjecture that this representation of coordina-
tion might introduce some difficulties for parsing: it is very hard to capture the
relation between ‘advocate’ and ‘abortion’ since they are several levels away in
the structure. This discussion is related to the contrast between iterative pro-
cesses, as in flat coordination structures, and recursive processes, as in embedding
phrases within sentences (see also Hurford, 2004; Pinker and Jackendoff, 2005).
In our TDS treebank we support the distinction between these two processes, and
prefer to preserve the iterative configuration in coordination constructions.

5.7. Assessment of the converted treebank 133

NP

NP

N

funding

NP/NP

(NP/NP)/NP

for

NP

NP

N

activities

NP/NP

(NP/NP)/(S/NP)

that

S/NP

(S/NP)/NP

(S/NP)/NP

encourage

(S/NP)/NP[conj]

,

,

(S/NP)/NP

(S/NP)/NP

promote

(S/NP)/NP[conj]

conj

or

(S/NP)/NP

advocate

NP

N

abortion

Figure 5.13: CCG representation of part of the PS tree in figure 5.8.

5.7 Assessment of the converted treebank
For a given syntactic representation it is always important to assess how well it is
able to represent a specific linguistic phenomenon in theory and in practice. So far
we have described how both the TDS treebank and the CCG-bank are based on
theoretical formalisms which have one of the main strengths in the representation
of coordination constructions. In order to complete our analysis, we report on
an empirical study which compares the detection of coordination constructions
between the two treebanks.

The automatic detection of coordination in the WSJ treebank is not an easy
task: for instance when conjuncts and modifiers of the coordination are put at
the same level (such as in the PS tree in figure 5.8), arguments can be wrongly
identified as conjuncts. In order to compare the quality of the CCG and TDS
treebank for what concerns the identification of coordination structures, we have
identified all the coordination construction in section 0 of the WSJ treebank for
which the TDS and CCG analyses where not agreeing in the detection of co-
ordination (168 sentences). With the help of an external annotator25 we have
manually annotated the correct coordination structures of those sentence and
detected the mistakes present in the two representations. As a quantitative sum-

25We are very grateful to Barend Beekhuizen for his help on annotating coordination con-
structions.

134 Chapter 5. Tesnière Dependency-Structure

mary of this comparison, CCG presents 135 coordination mistakes,26 TDS only
29, and there are 48 additional cases which are uncertain; more details of this
comparison are illustrated in §C.2, while some examples of coordinated structures
in TDS representation are reported in Appendix C.4.

5.8 Conclusion
In this chapter we have formalized a novel syntactic scheme (TDS) inspired by
the work of Tesnière (1959), and developed a conversion algorithm to transform
the Penn Wall Street Journal treebank into the new representation.

Corpus-based computational linguistics has often valued a good compromise
between adequacy and simplicity in the choice of linguistic representation. The
transition from PS to DS notation has been seen as a useful simplification, but
many people have argued against its adequacy in representing frequent linguistic
phenomena such as coordination. The TDS conversion presented in this chapter,
reintroduces several key features from Tesnière’s work: on one hand the operation
of junction enriches the model with a more adequate system to handle conjoined
structures (e.g., coordination); on the other hand, the blocks, the transference
operation, and the category system further simplify and generalize the model.

We have presented a probabilistic generative model for parsing TDS syntactic
representation of English sentences. For evaluating the parsing performance we
have defined 3 metrics focusing on the different layers of the TDS representation
(blocks, dependencies, coordinations). In particular we have introduced a specific
metric for the detection of coordination construction, a linguistic phenomenon
highly abundant in natural languages, but often neglected when it comes to eval-
uating parsing resources, and hope that other researchers might benefit from it
in the future. Our parsing results are encouraging: the overall system, although
only when the candidates are highly reliable, is in par or slightly improves on
Charniak’s parser on all the evaluation metrics.

Finally we have compared the TDS treebank with other existing conversions
of the WSJ treebank, and assessed the quality of the conversion procedure with
respect to the detection of coordination constructions.

5.9 Future directions
Given the availability of different syntactic representations for the sentences in
the WSJ treebank, one could follow the same manual assessment procedure we
have done for the detection of coordinating construction (see §5.7), while focusing
on other shared linguistic phenomena (as in Rimell et al., 2009). The effort of
comparing independently annotated resources is a stimulating task which brings

26In many case the CCG-bank misses the extra feature [conj].

5.9. Future directions 135

many insights in the investigated phenomena and leads to the corrections of many
mistakes that occur in automatic as well as manual treebank annotations.

Moreover, as there exist a range of different syntactic representations that
available parsers are able to work with, it would be ideal to derive more univer-
sally accepted evaluation criteria which could work across different representa-
tions. Several attempts have been made in the past (Clark and Curran, 2007a;
Rimell et al., 2009), but they are not widely employed as they require substantial
annotation effort. An easier alternative for comparing different representations
on the same metrics, is to rely on transformation techniques. For instance, the
availability of an automatic conversion from Penn-style PS trees to TDS repre-
sentation, could allow us to test the performance of a range of state-of-the-art PS
parsers on the more refined evaluation criteria we have introduced for the TDS
representation, and in particular on the detection of coordination constructions.

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.
The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
”God bless me!-but the Elephant
Is very like a wall!”
The Second, feeling of the tusk,
Cried: ”Ho!-what have we here
So very round and smooth and sharp?
To me’t is mighty clear
This wonder of an Elephant
Is very like a spear!”
The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
”I see,” quoth he, ”the Elephant
Is very like a snake!”
[...]
And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

John Godfrey Saxe

Chapter 6
Conclusions

137

138 Chapter 6. Conclusions

At the beginning of this thesis we have stressed how current computational
linguistic research seems to be drifting away from linguistic theory. One of the
main motivations behind our work was therefore to contribute to reversing this
tendency, by investigating several computational models of syntax while keeping
in mind the original linguistic view on the studied phenomena.

One of the main points of divergence between the two fields is the difficulty to
translate a number of syntactic models over various tree structure representations
into computational models that can be learned and tested empirically. In chapter
2 we have therefore presented a general methodology for simplifying the task of
formalizing theory-independent probabilistic generative models for various tree
structures. One of the main objectives behind this work was to stimulate more
diversification in computational linguistics concerning the syntactic representa-
tion underlying the models and the linguistic theories for generating them. The
proposed methodology is in fact able to generalize over a number of tree-based
theories by providing i) a unique description of the sequence of events charac-
terizing the generation of the syntactic analyses of a given sentence according to
various models, and ii) a way to map a symbolic grammar into a probabilistic
model.

We have applied this methodology to three distinct syntactic representa-
tions: simple phrase-structure (PS), dependency-structure (DS), and Tesnière
dependency-structure (TDS). After comparing PS and DS on theoretical grounds,
we have shown how they can be seen as two complementary representations for
syntax. We have therefore formalized TDS as an intermediate representation be-
tween PS and DS which is better at representing linguistic phenomena such as
coordination. We have experimented on the three schemes empirically, through
the implementation of computational models for generating syntactic analyses
according to the three representations.

For phrase-structure trees, in chapter 3 we have proposed a novel Data-
Oriented Parsing formalism (Double-DOP) based on an explicit representation
of arbitrarily large syntactic fragments. As the number of all possible construc-
tions which can be extracted from a large treebank is extremely large, we need to
resort to a restricted yet representative subset of fragments. We therefore propose
a linguistically motivated methodology to automatically identify those fragments
for which there is evidence about their reusability. We achieved this by means of
a special-purpose application (Fragment-Seeker), based on an efficient tree-kernel
algorithm.

Both Fragment-Seeker and the Double-DOP parser are made available to the
linguistic community at large, and we hope they will prove useful in linguistic
research as well as other NLP applications. In particular, as the identification
of syntactic constructions has always represented one of the biggest challenges
in linguistic theory (Fillmore et al., 1988; Goldberg, 1995; Kay and Fillmore,
1997), we believe that further investigation into reusable fragments could provide

139

fruitful insights for studying linguistic phenomena pertaining to the identification
of syntactic constructions such as subcategorization, idiomatic expressions, and
multiword expressions. Regarding NLP applications, we expect that Fragment-
Seeker and Double-DOP could be used as a component for competitive systems
for solving linguistic tasks such as machine translation, semantic role labeling,
question-answering and speech recognition systems.

For DS trees, in chapter 4 we have compared a number of probabilistic gen-
erative bilexical models initially proposed by Eisner (1996a,b) and experimented
with some of their variations. Although the different models greatly differ in their
linguistic hypotheses on the types of rules and features that are considered in the
respective grammars, we were able to efficiently compare them by resorting to the
generalized representation of the event space as presented in chapter 2, and by
relying on a reranking methodology. Reranking can be seen as a useful approach
for easily evaluating a number of generative models of syntax and approximating
the behavior of a full-fledged probabilistic parser which would need to be specif-
ically implemented and optimized for the chosen model. In our implementation,
in fact, the reranking approach can be seen as a parser simulator which mimic
all the choices a model would perform to obtain a certain analysis of a given
sentence. This approach could also be employed as a linguistic tool to better un-
derstand why, under a specific probabilistic model, certain analyses are preferred
over others.

Looking at the last 100 years or so, one of the main aspects of linguistic
research has been the search for more adequate syntactic representations. In
contrast, in computational linguistics, the difficulty of building large manually
annotated treebanks has often represented a major obstacle for empirically inves-
tigating a wide range of syntactic representations. In chapter 5 we contributed
to bridging this gap, by introducing a novel syntactic scheme based on the for-
malization of the original work on dependency syntax of Lucien Tesnière (1959),
and therefore called Tesnière Dependency-Structure (TDS). In our opinion, this
constitutes a very promising formalism for linguistic representation although only
some aspects of it have been used in computational linguistics: modern DS re-
tains only the main idea proposed by Tesnière, namely the relation of dependency
between words, while other operations and features of the original theory are dis-
carded or not overtly represented. More specifically, TDS can be seen as an
intermediate representation between phrase-structure and dependency-structure,
as it uses constituencies to groups adjacent words (chunks) and to represent co-
ordination constructions, while it adopts dependency relations to link together
the syntactic units (chunks and coordination constructions).

In order to investigate such a representation empirically, we have implemented
an automatic procedure for converting the English WSJ treebank into TDS nota-
tion, and used the converted treebank to test a new computational, probabilistic

140 Chapter 6. Conclusions

model for generating TDS analyses of novel sentences. This model was imple-
mented using a reranking framework similar to the one used for testing DS models.

Finally, in order to evaluate this model we have defined three separate metrics
specific to the linguistic features represented in TDS, namely, chunks, dependen-
cies, and coordination. As currently used evaluation metrics for parsing have
often raised skepticism about the extent by which they are able to quantify the
correctness of the derived analyses, we hope that our attempt to define a range
of linguistically motivated evaluation metrics may be useful for the parsing com-
munity.

After the statistical revolution of the ’90s in computational linguistics, most of
the computational models of syntax have been focusing on phrase-structure and
only more recently on dependency-structure. Deep syntactic representations (e.g.,
HPSG, LFG) have had more marginal roles in the parsing community because of
the lack of significant annotated resources and the difficulty of deriving efficient
models. By proposing a novel TDS scheme we have attempted to push forward
the requirements probabilistic parsers should meet, by compromising between
linguistically adequate representations and efficient generative models for parsing.

Appendix A
Phrase-Structure Models

A.1 Models parameters
In table A.1 we report the parameters used to obtain the parsing results in ta-
ble 3.3. These were chosen in order to maximize results on the development
section of the corresponding treebank (for parsing the Brown corpus, for which
there is no standard development section, we have used the same parameters used
for the WSJ). All models use the same binarization (see §3.7) with H=1, P=1.

Unknown Threshold words occurring less than this threshold are substitute
with word-features.

Unknown Word Model the 5 different models as in Berkeley code to specify
how unknown words are converted into word-features (5 is the most specific
to English, 1 is the most generic).

σ Open-class threshold used for smoothing (see §3.7). A PoS-tag is an open class
if it rewrites to at least σ different words in the training corpus. A word is
an open class word if it has been seen only with open-class PoS-tags.

ε Low frequency count assigned to open-class ⟨ word, PoS-tag ⟩ pairs not encoun-
tered in the training corpus.

λ Threshold to maximize F1 score, as illustrated in §3.6.3.

141

142 Appendix A. Phrase-Structure Models

Treebank Parsing Model Unknown
Threshold

Unknown
Word
Model

σ ε λ

WSJ PCFG 4 1 50 0.01 -
Double-DOP 4 5 50 0.01 1.10

Brown PCFG 1 1 50 0.01 -
Double-DOP 1 5 50 0.01 1.10

Negra PCFG 9 4 50 0.01 -
Double-DOP 9 4 50 0.01 0.95

FTB PCFG 1 4 50 0.01 -
Double-DOP 1 4 50 0.01 1.45

CTB 3.0 PCFG 1 4 50 0.01 -
Double-DOP 1 4 50 0.01 1.05

HTB PCFG 1 1 100 0.01 -
Double-DOP 1 1 100 0.01 1.05

Table A.1: Parameters used to obtained the results in table 3.3.

A.2 Evaluation procedure
EvalB discards traces (and semantic tags) but does not remove redundant rules
that result from the elimination of traces (and semantic tags). See for instance
the example structure in figure A.1. For obtaining the cleaned version of the file
i apply the following steps:

• prune traces subtrees (-NONE-)

• remove numbers in labels (e.g., NP-2 or NP=2)

• remove semantic tags (e.g., NP-SBJ)

• remove redundant rules (e.g., NP Ð→ NP)

A.2. Evaluation procedure 143

S-2

NP-SBJ

NP

PRP

It

S

-NONE-

EXP-1

VP

VBZ

is

ADJP-PRD

JJ

easy

S-1

NP-SBJ

-NONE-

*

VP

TO

to

VP

VB

say

SBAR

-NONE-

0

S

NP-SBJ

DT

the

NN

specialist

VP

VBZ

is

RB

n’t

VP

VBG

doing

NP

PRP$

his

NN

job
S

NP

PRP

It

VP

VBZ

is

ADJP

JJ

easy

S

VP

TO

to

VP

VB

say

SBAR

S

NP

DT

the

NN

specialist

VP

VBZ

is

RB

n’t

VP

VBG

doing

NP

PRP$

his

NN

job

Figure A.1: (sec 23, 11th structure)

144 Appendix A. Phrase-Structure Models

A.3 Comparing Double-DOP and Berkeley parser

Category % F1 F1
label in gold Berkeley Double-DOP

NP 41.42 91.4 89.5
VP 20.46 90.6 88.6
S 13.38 90.7 87.6
PP 12.82 85.5 84.1
SBAR 3.47 86.0 82.1
ADVP 3.36 82.4 81.0
ADJP 2.32 68.0 67.3
QP 0.98 82.8 84.6
WHNP 0.88 94.5 92.0
WHADVP 0.33 92.8 91.9
PRN 0.32 83.0 77.9
NX 0.29 9.50 7.70
SINV 0.28 90.3 88.1
SQ 0.14 82.1 79.3
FRAG 0.10 26.4 34.3
SBARQ 0.09 84.2 88.2
X 0.06 72.0 83.3
NAC 0.06 54.6 88.0
WHPP 0.06 91.7 44.4
CONJP 0.04 55.6 66.7
LST 0.03 61.5 33.3
UCP 0.03 30.8 50.0
INTJ 0.02 44.4 57.1

Table A.2: Comparison of the performance (per-category F1 score) on the devel-
opment set of the WSJ (section 24 ≤ 40) between the Berkeley parser and our
Double-DOP model trained on a non-refined treebank (RFE, MCP with λ = 1.00,
H=1, P=1 and lexical smoothing).

Appendix B
Dependency-Structure Models

B.1 DS to PS
The way to transform DS into PS is less discussed in the literature. The procedure
illustrated here is recursive, and takes into consideration a DS rooted in node w.
Three general cases can be encountered:

1. w is a terminal node (it has no dependents): in this case the resulting PS
has a single terminal node W .

2. w has a single dependent. The corresponding PS has two daughter nodes:
the PS obtained by transforming the dependent, and a single-node PS con-
taining the governing word w. The two daughters will keep the same linear
order as in the original DS.

3. w has k dependents d1, d2, . . . , dk (k > 1). In this last case w is mapped into a
single terminal PS node W , and each dependent dj is transformed into a PS
Dj (recursive step). Given that w occurs after the ith dependent we can rep-
resent k+1 trees in a single sequence of nodes as D1, . . . ,Di,W,Di+1, . . . ,Dk.
At this point, we need to choose how to group these k+1 nodes into a series
of hierarchical PS trees P1, P2, . . . , Pm (1 ≤m ≤ k), such that:

- Pj must form a contiguous span (for every 1 ≤ j ≤m).
- P1 must contain as daughter W and at least one other node.1 In order

to form a contiguous span this is either Di or Di+1 (e.g., D1,W,D3 is
not allowed).

- Pj+1 must contain Pj as daughter, together with at least another node
from the initial sequence D1, . . . ,Dk (for every 1 ≤ j < m). The set of
selected daughters should yield a contiguous span of the sentence.

1P1 could contain W alone if we allow unary chains.

145

146 Appendix B. Dependency-Structure Models

- Pm must contain directly (as daughter) or indirectly (daughters of
daughters) all k + 1 nodes in the initial sequence.

The resulting PS is rooted in Pm.

Case 3 of this procedure is the only one which requires a choice to be made. In
fact, as we can see in figure 4.3, DS trees A,B,F,G are mapped into a single PS
because they do not contain any node with more than one dependent. Tree D,
instead, has a node with 2 dependents. Following case 3, we have three choices:

1. (m = 1) group the governor (2) and all the dependents (1,3) in a unique
constituent, resulting in PS tree β;

2. (m = 2) group first the governor (2) with the left dependent (1) and the
resulting constituent to the remaining dependent (3), resulting in PS tree
γ;

3. (m = 2) group first the governor (2) with the right dependent (3) and the
resulting constituent to the remaining dependent (1), resulting in PS tree
α.

The general idea behind the study conducted by Hays (1960) is that PS and
DS are complementary in nature. PS well represents constituents but leaves
the notion of heads underspecified, while DS is based on governing-dependency
relations but does not specify how to group multiple dependents of the same
governor.

Gaifman (1965) claims that a given DS has a “naturally corresponding” PS,
such that every DS maps to a single PS, but not vice versa (a single PS may map
to multiple DS trees). This is a somehow misleading claim since it is based on an
ad-hoc definition of equivalence between PS and DS. According to this definition,
given a DS there exists a unique equivalent PS tree obtained by imposing m = 1
in the procedure above: the PS should contain the same number of constituents
as there are governors in the DS, and each constituent should expand to a set of
words including the associated governor together with all the words that depend
directly or indirectly from it. This mapping is illustrated in figure 4.3 with dashed
lines. According to this mapping we still have some PS mapping to multiple DSs
(remember that DSs are always more in number), but in this case we have more
restrictions than before: the head of each constituent must be chosen among the
daughter node of minimum depth, where the depth of a node is defined as the
length of the longest path connecting the node to one of the terminal node under
its span.

B.2. Smoothing details 147

B.2 Smoothing details
In the final model illustrated in equation 4.4, we have a complex conditional
probability:

P (dist(H,D), term(D),word(D), tag(D)∣H,S,G, dir) (B.1)

For simplicity we will rewrite it as P (A,B,C,D∣E,F,G,H). We decompose
the probability in 4 parts: P (D∣E,F,G,H) × P (C ∣D,E,F,G,H) × P (B∣C,D,E,
F,G,H) × P (A∣B,C,D,E,F,G,H).

As explained in equation 4.1, each of those probabilities are estimated from
the training corpus with the relative frequency estimate. For instance the first
term is obtained in the following way:

P (D∣E,F,G,H) = count(D,E,F,G,H)
count(E,F,G,H) (B.2)

Since this equation involves a big number of terms, it is likely that many
events (and conditioning contexts) encountered during the re-ranking are never
observed in the training treebank. We therefore need to resort on a series of
backoff probabilities for smoothing the count on full contexts with those obtained
from a coarser representation of the contexts. This is obtained by deleted interpo-
lation, i.e., by deleting some elements from the context at each back-off level (see
also Bikel, 2004a).

For instance in equation 4.4 the conditioning context of the first term (H,S,G,
dir) is reduced in 4 incremental steps:

wt(H),wt(S),wt(G), dir
wt(H),wt(S), t(G), dir

{ wt(H), t(S), t(G), dir
t(H),wt(S), t(G), dir

t(H), t(S), t(G), dir

(B.3)

In the first row the full context is specified (recall that wt(N) stands for the
string incorporating both the pos-tag and the word of N). In the second step the
word of G is ignored (only its pos-tag is taken under consideration). In the third
step either the word of S is ignored or the one of H. In the last step all words
are ignored.

We can compute the estimates from the various backoff levels e1, e2, e3, e4
separately as shown in equation B.2. For instance the first one is obtained as:

148 Appendix B. Dependency-Structure Models

e1 = P (tag(D)∣wt(H),wt(S),wt(G), dir)

= count(tag(D),wt(H),wt(S),wt(G), dir)
count(wt(H),wt(S),wt(G), dir) (B.4)

For the third level of backoff the contributions of the two equally reduced
contexts are summed up as follows:

e3 =
count(tag(D),wt(H), t(S), t(G), dir) + count(tag(D), t(H),wt(S), t(G), dir)

count(wt(H), t(S), t(G), dir) + count(t(H),wt(S), t(G), dir)
(B.5)

Following Eisner (1996a), the estimates calculated for all backoff levels except
the last one (in this case i < 4) are interpolated in a recursive fashion:

ẽi =
count(tag(D),wt(H),wt(S),wt(G), dir) + 3 ⋅ ẽi+1

count(wt(H),wt(S),wt(G), dir) + 3 (B.6)

The last backoff level ẽ4 is obtained as:

ẽ4 =
count(tag(D), t(H), t(S), t(G), dir) + 0.005

count(t(H), t(S), t(G), dir) + 0.5 (B.7)

The low count added in equation B.7 is to guarantee that even if none of the
backoff levels were observed, the resulting probability is extremely low but non-
zero. The interpolation illustrated in equation B.6 guarantees higher contribution
for more specific contexts, i.e., if a specific context was frequently observed in the
training corpus it will largely override the other coarser estimations.

Appendix C
TDS model

C.1 Head annotation
We report below the head annotation table used to perform the conversion of
the Penn WSJ Treebank into TDS representation (see section 5.4.2). For a given
CFG rule in the treebank, the table describes which daughter node (in the right
hand-side of the rule) is marked as head. Each parent node in the table (left
hand-side of the rule) is mapped to a list of sub-rules (rows in the table). If
the first sub-rule does not apply the second is considered, if not the third, and
so on. In each sub-rule the daughter nodes in the rule are read according to
the specified start direction in the second column (left/right). The third column
refers to the priority: if it is set to D (daughters), all daughters are checked
against the first element in the list, if none applies, against the second element
the list, the third, and so on; if it is set to L (list) all elements in the list (from
left to right) are checked against the first daughter, if it does not match, against
the second daughter, the third, and so on. The special symbol * matches any
label, and is inserted at the end of the last sub-rule to ensure that there is always
an head-daughter for each rule.

Parent Start Priority List
ADJP left D NNS, QP, NN, NML, $

right D JJ
left D ADVP, VBN, VBG, AUX, AUXG, ADJP,

JJR, JJS, JJP, FW, RBR, RBS, RB, NP,
SBAR, DT, *

ADVP right D RB, RBR, RBS, FW, ADVP, CD, JJR, JJ,
JJP, NP, NML, JJS, NN, TO, IN, *

CONJP right D RB, IN, *
FRAG left D NP, NML, VP, ADJP, PP, *

149

150 Appendix C. TDS model

INTJ left D *
LST right D LS, :, *
NAC left L NN, NNS, NNP, NNPS, NP, NAC, NML,

EX, $, CD, QP, PRP, VBG, AUX, AUXG,
JJ, JJS, JJR, JJP, ADJP, FW, *

NP right L NN, NNS, NX, NNP, NNPS, NML
left L NP

right L $ ADJP, PRN
right L CD
right L JJR, JJ, JJS, JJP, RB, QP
right D *

NML right L NN, NNP, NNPS, NNS, NX, NML, JJR
left L NP

right L $, ADJP, PRN
right L CD
right L JJ, JJS, JJP, RB, QP
right D *

NX right D NP, NX
right L NNPS, NNS, NNP, NN, NML, JJR, JJP, *

JJP right L JJ, JJR, JJS, JJP, VBG, *
PP right D VBG, VBN, AUX, AUXG, RP, FW, NP,

SBAR, S, IN, TO, *
PRN left D VP, NP, PP, *
PRT right D RP, *
QP left D $, NNS, NN, NML, JJ, RB, CD, NCD, QP,

JJR, JJS, JJP, IN, DT, *
RRC right D VP, NP, ADVP, ADJP, PP, *

S left D VP, S, SBAR, ADJP, UCP, NP, TO, IN, *
SBAR left D NN, NML

left D S, SQ, SINV, SBAR, FRAG, WHNP,
WHPP, WHADVP, WHADJP, IN, DT, *

SBARQ left D SQ, S, SINV, SBARQ, FRAG, *
SINV left D VBZ, VBD, VBP, VB, AUX, AUXG, VP, S,

SINV, ADJP, NP, NML, MD, *
SQ left D VBZ, VBD, VBP, VB, AUX, AUXG, VP,

SQ, MD, *
UCP right D *
VP left D VBD, VBN, VBZ, VB, VBG, VBP, AUX,

AUXG, VP, ADJP, NN, NNS, NP, NML,
MD, TO, JJ, JJP, *

WHADJP left D WRB, JJ, JJP, ADJP, *

C.2. Coordination 151

WHADVP right D WRB, *
WHNP left D NNS, NN, WDT, WP, WP$, WHADJP,

WHPP, WHNP, *
WHPP right D IN, TO, FW, *

X left D NN, NNP, NNPS, NNS, NX, NML, JJR, JJP,
*

TOP left D *

C.2 Coordination
We report the result of a manual comparison between the TDS treebank and
the CCG-bank (Hockenmaier and Steedman, 2007), of all coordinated structures
detected in section 0 of the Penn WSJ treebank for which the two analyses differ
(168 sentences). In summary there are 135 mistakes in the CCG-bank, 29 in the
TDS-bank, and 48 cases which are uncertain. The CCG-bank does not annotate
all sentences of the WSJ. For section 0 the following sentence numbers are missing:
114, 269, 323, 465, 1052, 1251, 1295, 1865. The indices below refer only to the
sentences in the CCG bank (e.g., 114 refers to WSJ sentence number 115).

CCG-bank not detected coordination (total 50)
29 (cotton, acetate), 66 (sales, marketing), 67 (sales, service, parts, opera-
tions), 69 (sales, marketing), 131 (electronics, appliances), 133 (current, for-
mer), 168 (Securities, Exchange), 195 (research, development), 218 (movie,
book), 225 (patent, copyright), 304 (Japanese, other), 306 ($, tenth), 337 (Po-
litical, currency), 352 (analysts, managers), 392 (goods, those), 454 (humble,
uncomplaining, obedient), 455 (permitted, welcomed), 516 (exciting, eclectic),
654 (economic, political), 655 (economic, foreign), 705 (Scoring High, Learning
Materials), 726 (run-down, inner city), 834 (pie, bar), 853 (CAT, CTBS), 848
(insurance, financial), 823 (Connecticut, Massachusetts), 947 (judges, Judge)
[see figure C.5], 997 (business, government), 1042 (French, German), 1142
(first, second), 1204 (lap, shoulder), 1233 (metals, materials), 1371 (parts,
controls, electronics), 1410 (government, business), 1424 (U.S., Japanese),
1425 (savings, investment), 1437 (MITI, Department), 1487 (president, of-
ficer), 1574 (Securities, Exchange), 1592 (finance, telecommunications), 1602
(Energy, Commerce), 1605 (peculiar, unintelligible), 1701 (profits, flow), 1730
(software, service), 1732 (Canadian, Kingdom), 1749 (hundreds, thousands),
1790 (change, changing) [not], 1820 (escrow, record-keeping), 1879 (U.S., Lon-
don), 1912 (navigation, targeting).

152 Appendix C. TDS model

CCG-bank wrongly detected conjuncts (total 19)
131 (63, chairman), 200 (47, president), 200 (37, president), 200 (40, pres-
ident), 200 (45, president), 206 (Hatch, 59), 208 (Carney, 45), 308 (March,
1990), 502 (Nov., 1999), 504 (Nov., 1990), 952 (Ramirez, 44), 992 (Bromwich,
35), 1215 (Milne, 65), 1233 (Butler, 64), 1333 (Nov., 1992), 1334 (Nov., 1999),
1156 (York, agency), 1843 (Jr., $).

CCG-bank mismatched conjuncts (wrong / correct) (total 13)
91 (Trade, Ministry) / (Trade, Industry), 308 (aerospace, products) / (steel,
aerospace, products), 648 (business, program) / (business, research), 651
(Public, Affairs) / (Public, Internatonal), 816 (software, worksheets) / (book-
lets, software, worksheets), 962 (TV, industry) / (TV, movie), 995 (manu-
facturing, space) / (office, manufacturing, warehousing) [2 mistakes], 1059
(research, facility) / (research, development), 1547 (Securities, Commission)
/ (Securities, Exchange), 1612 (morning, service) / (morning, evening), 1676
(Growth, Fund) / (Growth, Income), 1798 (Mr., Bush) / (Mr., Mrs.).

CCG-bank missing apposition (total 54)
65 (maker, Corp), 76 (pianist-comedian, Borge), 135 (Judge, Curry), 186
(Three, (Ltd, Corp., Ltd.)), 213 (countries, (China, Thailand, India, Brazil,
Mexico)), 238 (negotiator, Carballo), 287 (founder, shareholder), 308 (March,
period), 310 (giant, S.p.A.), 319 (craze, rash), 321 (President, Aquino), 425
(newcomer, (milk, powder)), 454 (star, Hara), 463 (home, dormitory), 482
(agency, WAFA), 490 (agency, PAP), 502 (million, million), 516 (Composer,
Marder), 536 (maker, Chabrol), 593 (Gov., Wilder), 609 (Rep., Florio), 609
(Rep., Courter), 656 (members, (Thailand, Malaysia, Singapore, Indonesia,
Philippines, Brunei)) [--], 719 (physicist, Townes), 719 (actress, Woodward),
726 (groups, (elite, blacks)), 834 (subskills, (symmetry, measurement, graphs))
931 (attorney, Lefcourt), 947 (Judge, Ramirez), 959 (Cartoonist, Trudeau),
985 (Chairman, Sherwin), 1017 ((semiconductors, supercomputers), prod-
ucts) [--], 1033 (President, Backe), 1052 (million, million), 1118 (entrepreneur,
Poore), 1125 ((foam, polyproplene, film), items) [--], 1156 (Mather, agency),
1244 (superpremiums, wines) [--], 1245 (Bordeaux, Burgundies, Champagnes,
wines), 1245 (classics, (Bordeaux, Burgundies, Champagnes, wines)) [--], 1274
(Schaefer, one), 1423 (Sen., Bentsen), 1448 (products, (one, another)) [--],
1576 (points, equivalent) [--], 1602 (Fifteen, (Dingell, chairman)), 1635 (nov-
elist, Sayers), 1643 (Rev., Hummerstone), 1607 (is, stands) [separator :], 1624
(rounds, scale), 1657 (problem, lack) [separator :], 1709 (slowdowns, environ-
ment) [--], 1758 (dissident, Lizhi), 1793 (Prof, Klein).

C.2. Coordination 153

TDS-bank not detected coordination (total 4)
454 (humble, uncomplaining, obedient), 455 (permitted, welcomed), 516 (ex-
citing, eclectic), 726 (run-down, inner city).

TDS-bank mismatched conjuncts [wrong/correct] (total 9)
67 (sales, service, parts, marketing) / (sales, service, parts, operations), 106
(spent, $) / ($, $) [verb ellipsis], 327 (are, will, listed) / (are, will) [verb
ellipsis], 947 (ease, Judge) / (judges, Judge), 1150 (valued, $) / ($, $) [verb
ellipsis], 1244 (of, with) / (limited, of, with), 1245 growths / Bordeaux, 1315
buy / warrants, 1656 (church, life, experience) / (life, experience), 1906 (pay,
days) / (for, for) [verb ellipsis].

TDS-bank missing appositions (total 8)
65 (maker, Corp), 308 (March, period), 502 (million, million), 556 (ad, pres-
ence) [see figure C.5], 834 (subskills, (symmetry, measurement, graphs)), 1052
(million, million), 1602 (Fifteen, (Dingell, chairman)), 1793 (Prof, Klein).

TDS-bank wrong appositions (total 7)
98 (rival, magazine), 460 (home, dormitory), 996 (rival, Corp.), 1239 (Leap,
Cellars), 1315 ($, amount), 1507 (loan, $), 1577 (1:30, time).

Uncertain [detected in CCG-bank not in TDS-bank] (total 31)
58 (Wickliffe, Ohio), 115 (Westborough, Mass.), 116 (Haven, Conn.), (Hart-
ford, Conn), 117 (Manchester, N.H.), 144 (Rockford, Ill.), 323 (Northamp-
ton, Mass), 409 (Stamford, Conn), 947 (Sacramento, Calif), 993 (Albany,
Ga.), 1041 (Heidelberg, Germany), 1066 (Lake, N.J), 1106 (Providence, R.I.),
(Raleigh, N.C.), (Louisville, Ky.), 1198 (R., Mo), 1212 (Elmhurst, Ill), 1274
(Skokie, Ill.), 1274 (Pratt, director), (Skokie, Ill.), 1320 (Shelby, Ohio), 1345
(Clive, Iowa), 1400 (Westport, Conn.), 1403 (Brunswick, N.J.), 1607 (ASLAC-
TON, England), 1729 (Hills, Calif), 1801 (Birmingham, Ala), 1839 (Killeen,
Texas), (Shores, Fla.), (Heights, Ill.), (Heights, Ill.), (Boulder, Colo.), (Hor-
sham, Pa.), 1840 (Colonsville, Miss.), (Valrico, Fla.), (Canada, Calif.), 1843
(Longwood, Fla.), (Bronx, N.Y.), (Glenham, N.Y.), (Park, N.J.), (Park,
Minn.), (Nesconset, N.Y.), 1844 (Hermitage, Pa.), (Louis, Mo.), (Gaithers-
burg, Md.), Ridgefield, N.J.), (Aloha, Ore.), (Estates, N.Y.), 1845 (Russel,
Dahl), (Hills, Calif.), (Glendale, Calif.), (Valley, Calif.), 1848 (Jackson, Miss.),
(Springs, Colo.), (Rouge, La.), (Midvale, Utah), (Creek, Fla.), (Aurora, Colo.),
(fine, suspension), (Providence, N.J.), (Bridgeville, Pa.), (Aurora, Colo.), (Ve-
gas, Nev.), (City, Nev.), 1898 (D., Mont), 1901 (R., N.J).

154 Appendix C. TDS model

Uncertain [detected in TDS-bank not in CCG-bank] (total 17)
79 (could, welcomed) [so], 167 (is, is) [so], 302 (are, (can, forces)) [--], 455 (’s,
(return, expands, are, must)) [:], 681 (surrendered, protest) [but], 949 (reason,
refusal) [:], 1244 (quality, perceived) [or], 1451 (view, went) [so], 1519 (reason,
margins) [:], 1557 (spend, do) [--], 1567 (Do, needs) [--], 1608 (is, stands) [:],
1624 (rounds, scale) [--], 1672 (breathe, warn) [or], 1685 (say, has) [:], 1800
(we, blacks) [apposition], 1880 (begins, prices) [but].

C.3. Smoothing in the TDS model 155

C.3 Smoothing in the TDS model
In the three conditional probability equations described in §5.5.1 and reported
again below, we have adopted a smoothing techniques based on deleted interpo-
lation (Eisner, 1996a; Collins, 1999), similarly to the smoothing implemented for
the DS model (see §4.6.3 and Appendix B.2).

P (S) = PBGM(S) ⋅ PBEM(S) ⋅ PWFM(S) (C.1)

PBGM(S) = ∏
B ∈ depBlocks(S)

P (B∣parent(B), direction(B), leftSibling(B)) (C.2)

PBEM(S) = ∏
B ∈ blocks(S)

P (elements(B)∣derivedCat(B)) (C.3)

PWFM(S) = ∏
B ∈ stdBlocks(S)

P (cw(B)∣cw(parent(B)), cats(B), fw(B), context(B))

(C.4)

The first two models (equations C.2 and C.3) are smoothed with a simple
additional level of back-off which is a constant value (10−6) to make the overall
probability small but not zero, for unknown events. Recall that in both models all
elements are encoded with only partial information, viz. categories and functional
words, but no lexical information for the content words. This justifies the choice
of avoiding a more refined back-off estimation.

The third model is implemented with three levels of back-off: the last is set
to the same constant value (10−6), the first encodes the dependency event using
both pos-tags and lexical information of the governor and the dependent word,
while the second specifies only pos-tags.

The different back-off levels for each probability, are interpolated with confi-
dence weights derived from the training corpus (except for the last level which
remains the constant 10−6). This is differently from the DS model, where the
interpolating parameters are instead constant. Specifically, each back-off level ob-
tains a confidence weight which decreases with the increase of the diversity of the
context θ(Ci), which is the number of separate events occurring with the context
Ci (see also Bikel, 2004a). More formally if f(Ci) is the frequency of the condition-
ing context of the current event, the weight is obtained as f(Ci)/(f(Ci)⋅µ⋅θ(Ci)).
In our model we have chosen µ to be 5 for the first model, and 50 for the second
and the third.

C.4 Examples of TDS trees
In this section we include some examples of TDS trees with coordination con-
struction, selected from section 0 of the WSJ TDS-bank.

156 Appendix C. TDS model

Mr. Vinken

is

chairman

of Elsevier N.V. , the

Dutch publishing

group

.

N

N

V

V
N

N
J

N

N

N

N

N
J

N

J

V

Figure C.1: TDS tree #2 (apposition construction).

The plant

will produce

control

devices

used

in

motor

vehicles and

household

appliances

.

N

N

V

V

J

N

N

N
J

V
A

N

J

N

N

N
J

N

N

N

Figure C.2: TDS tree #166 (coordination construction with conjuncts modifica-
tion).

``

You either

believe

Seymour

can do

it again

or

you

do

n't

. ''

N

N

A

A

V

V

V

V

N

N

N

V
N

N

A

A

N

N

V

V
A

A

Figure C.3: TDS tree #182 (‘either’ - ‘or’ construction).

C.4. Examples of TDS trees 157

It

in
ve

st
s

he
av

ily
in

do
lla

r-
de

no
m

in
at

ed

se
cu

ri
tie

s
ov

er
se

as

an
d

is

cu
rr

en
tly

w
ai

vi
ng

m
an

ag
em

en
t

fe
es

,

w
hi

ch
bo

os
ts

its

yi
el

d

.

N N

V V

V V

A A

A N
J J

A A

V V
A A

J N

N N

A V

J J

N N

M
os

t

of
th

e
pi

ct
ur

e

is
ta

ke
n

up

w
ith

en
dl

es
s

sc
en

es

of

m
an

y

pe
op

le

ei
th

er
fi

gh
tin

g
or

ea
tin

g
an

d
dr

in
ki

ng

to
ce

le
br

at
e

vi
ct

or
y

.

N J
A N

V V
A N

J J

J V

J J

N N

V V

V V

V V

V V

A V
N N

Fi
gu

re
C

.4
:

A
bo

ve
:

T
D

S
tr

ee
#

48
(c

om
po

un
d

ve
rb

s)
.

Be
lo

w
:

T
D

S
tr

ee
#

55
2

(h
ie

ra
rc

hi
ca

lc
oo

rd
in

at
io

n
co

ns
tr

uc
tio

n)
.

158 Appendix C. TDS model

T
his

is

the
year

the

negative

ad
,

for
years

a

secondary

presence

in

m
ost

political

cam
paigns

,

becam
e

the

m
ain

event

.

NN

VV
NN

NNJJ
JN

JN
JJ

JN
JJ

JJ

JV
NN

JJ

O
ften

,

judges

ease

into

m
ore

lucrative
private

practice
w

ith

little

fanfare

,
but

not

federal

Judge
R

aul
A

.
R

am
irez

in
Sacram

ento
,

C
alif

.

AA

NN

VV

VV

AN

AA

JJ

JJ

AN
JJ

JA

JJ

VN

VN

VN

JN
JN

Figure
C

.5:
A

bove:
T

D
S

tree
#

560
(not

detected
apposition

between
‘ad’and

‘presence’).
Below

:
T

D
S

tree
#

951
(M

ism
atched

coordination,should
have

been
between

‘judges’and
‘Judge’).

C.4. Examples of TDS trees 159

D
er

eg
ul

at
io

n

ha
s

ef
fe

ct
iv

el
y

re
m

ov
ed

al
l

re
st

ri
ct

io
ns

on

w
ha

t
ba

nk
s

ca
n

pa
y

fo
r

de
po

si
ts

,
as

w
el

l
as

op
en

ed
up

th
e

fi
el

d
fo

r

ne
w

pr
od

uc
ts

su
ch

as

hi
gh

-r
at

e

C
D

s

.

N N

V V
A A

V V
N N

J V
N N

N N

A N

V V
N N

A N
J J

J N
J J

T
he

fo
llo

w
in

g

w
er

e
ba

rr
ed

or

,
w

he
re

no
te

d
,

su
sp

en
de

d
an

d
co

ns
en

te
d

to
fi

nd
in

gs
w

ith
ou

t
ad

m
itt

in
g

or
de

ny
in

g

w
ro

ng
do

in
g

:

E
dw

ar
d

L
.

C
ol

e
,

Ja
ck

so
n

,

M
is

s.

,

$

10
,0

00

fi
ne

;
R

ita
R

ae
C

ro
ss

,

D
en

ve
r

,

$

2,
50

0

fi
ne

an
d

30
-d

ay

su
sp

en
si

on

;
T

ho
m

as
R

ic
ha

rd
M

ei
nd

er
s

,

C
ol

or
ad

o
Sp

ri
ng

s
,

C
ol

o.

,

$

2,
00

0

fi
ne

,

fi
ve

-d
ay

su
sp

en
si

on
an

d

ei
gh

t-
m

on
th

su
sp

en
si

on

as
a

pr
in

ci
pa

l

;
R

on
al

d
A

.
C

ut
re

r
,

B
at

on
R

ou
ge

,

L
a.

,

$

15
,0

00

fi
ne

an
d

on
e-

m
on

th

su
sp

en
si

on

;
K

ar
l

G
ra

nt
H

al
e

,

M
id

va
le

,

U
ta

h

,

$

15
,0

00

fi
ne

;
C

lin
to

n
P.

H
ay

ne
,

N
ew

O
rl

ea
ns

,

$

7,
50

0

fi
ne

an
d

on
e-

w
ee

k

su
sp

en
si

on

;
R

ic
ha

rd
M

.
K

an
e

,

C
oc

on
ut

C
re

ek
,

Fl
a.

,

$

25
0,

00
0

fi
ne

;
Jo

hn
B

.
M

er
ri

ck
,

A
ur

or
a

,

C
ol

o.

,

$

1,
00

0

fi
ne

an
d

10
-d

ay

su
sp

en
si

on

;
Jo

hn
P.

M
ill

er
,

B
at

on
R

ou
ge

,

$

2,
00

0

fi
ne

an
d

tw
o-

w
ee

k

su
sp

en
si

on

;
R

an
do

lp
h

K
.

Pa
ce

,

N
ew

Y
or

k

,

$

10
,0

00

fi
ne

an
d

90
-d

ay

su
sp

en
si

on

;
B

ri
an

D
.

Pi
tc

he
r

,

N
ew

Pr
ov

id
en

ce
,

N
.J

.

,

$

30
,0

00

fi
ne

;
W

ay
ne

A
.

R
us

so
,

B
ri

dg
ev

ill
e

,

Pa
.

,

$

4,
00

0

fi
ne

an
d

15
-d

ay

su
sp

en
si

on

;
O

rv
ill

e
L

er
oy

Sa
nd

be
rg

,

A
ur

or
a

,

C
ol

o.

,

$

3,
50

0

fi
ne

an
d

10
-d

ay

su
sp

en
si

on

;
R

ic
ha

rd
T

.
M

ar
ch

es
e

,

L
as

V
eg

as
,

N
ev

.

,

$

5,
00

0

an
d

on
e-

ye
ar

su
sp

en
si

on

;
E

ri
c

G
.

M
on

ch
ec

ou
rt

,

L
as

V
eg

as

,

$

5,
00

0

an
d

on
e-

ye
ar

su
sp

en
si

on

;
an

d
R

ob
er

t
G

er
ha

rd
Sm

ith
,

C
ar

so
n

C
ity

,

N
ev

.

,

tw
o-

ye
ar

su
sp

en
si

on

.

N N

V V

V V

V V
A V

V V

V V
A N

A V

V V

V V

N N

N N

N N

J N
J N

J N
J J

J N

N N
J N

J N
J J

J N

J N

J J

J N

N N
J N

J N

J N
J J

J N

J N

J J

J N
J J

J N
J N

N N
J N

J N

J N
J J

J N

J N

J J

J N

N N
J N

J N

J N
J J

J N

N N
J N

J N
J J

J N

J N

J J

J N

N N
J N

J N

J N
J J

J N

N N
J N

J N

J N
J J

J N

J N

J J

J N

N N
J N

J N
J J

J N

J N

J J

J N

N N
J N

J N
J J

J N

J N

J J

J N

N N
J N

J N

J N
J J

J N

N N
J N

J N

J N
J J

J N

J N

J J

J N

N N
J N

J N

J N
J J

J N

J N

J J

J N

N N
J N

J N

J N

J N

J J

J J

J N

N N
J N

J N

J N

J J

J J

J N

N N
J N

J N

J J

J N

Fi
gu

re
C

.6
:

A
bo

ve
:

T
D

S
tr

ee
#

15
31

(C
om

po
un

d
ve

rb
s

in
co

or
di

na
tio

n
w

he
n

ad
ve

rb
is

in
be

tw
ee

n
au

xi
lia

ry
an

d
fir

st
ve

rb
).

Be
lo

w
:

pa
rt

of
T

D
S

tr
ee

#
18

55
.

Bibliography

Abeillé, Anne. Treebanks: Building and Using Parsed Corpora, volume 20 of Text,
Speech and Language Technology. Kluwer Academic Publishers, 2003.

Abeillé, Anne, Lionel Clément, and François Toussenel. Building a Treebank for
French, pages 165–188. Volume 20 of Text, Speech and Language Technology
Abeillé (2003), 2003.

Abend, Omri and Ari Rappoport. Fully unsupervised core-adjunct argument
classification. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, ACL ’10, pages 226–236, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

Abney, Steven. Statistical Methods and Linguistics. In Klavans, Judith and Philip
Resnik, editors, The Balancing Act: Combining Symbolic and Statistical Ap-
proaches to Language, pages 1–26. The MIT Press, Cambridge, Massachusetts,
1996.

Aho, A. V. and S. C. Johnson. LR Parsing. ACM Comput. Surv., 6(2):99–124,
1974.

Ajdukiewicz, K. Die syntaktische Konnexität. Studia Philosophica, 1:1–27, 1935.

Anderson, John. Dependency and Grammatical Functions. Foundations of Lan-
guage, 7(1):pp. 30–37, 1971.

Arnon, Inbal. Starting big — The role of multi-word phrases in language learning
and use. PhD thesis, Stanford University, 2009.

Arnon, Inbal and Neal Snider. More than words: Frequency effects for multi-word
phrases. Journal of Memory and Language, 62(1):67–82, 2010.

161

162 BIBLIOGRAPHY

Arun, Abhishek and Frank Keller. Lexicalization in crosslinguistic probabilistic
parsing: the case of French. In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, ACL ’05, pages 306–313, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics.

Bachrach, Asaf. Imaging neural correlates of syntactic complexity in a naturalistic
context. PhD thesis, Massachusetts Institute of Technology, 2008.

Back, E., S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P. Harrison, D. Hin-
dle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. A procedure for quantitatively compar-
ing the syntactic coverage of English grammars. In Proceedings of the Fourth
DARPA Speech and Natural Language Workshop, pages 306–311, 1991.

Baldwin, Timothy and Valia Kordoni, editors. Proceedings of the EACL 2009
Workshop on the Interaction between Linguistics and Computational Linguis-
tics: Virtuous, Vicious or Vacuous? Association for Computational Linguis-
tics, Athens, Greece, March 2009.

Bangalore, Srinivas, Pierre Boullier, Alexis Nasr, Owen Rambow, and Benôıt
Sagot. MICA: A Probabilistic Dependency Parser Based on Tree Insertion
Grammars (Application Note). In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, Companion Volume: Short Papers,
pages 185–188, Boulder, Colorado, June 2009. Association for Computational
Linguistics.

Bansal, Mohit and Dan Klein. Simple, Accurate Parsing with an All-Fragments
Grammar. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1098–1107, Uppsala, Sweden, July 2010. As-
sociation for Computational Linguistics.

Bansal, Mohit and Dan Klein. Web-scale features for full-scale parsing. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume 1, HLT ’11, pages 693–702,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

Bar-Hillel, Yehoshua. A quasi-arithmetical notation for syntactic description.
Language, 29(1):47–58, 1953.

Bauer, Laurie. Some thoughts on dependency grammar. Linguistics, 17:301–316,
1979.

Berger, Adam L., Vincent J. Della Pietra, and Stephen A. Della Pietra. A maxi-
mum entropy approach to natural language processing. Comput. Linguist., 22
(1):39–71, 1996.

BIBLIOGRAPHY 163

Bikel, Daniel M. Intricacies of Collins’ Parsing Model. Comput. Linguist., 30(4):
479–511, 2004a.

Bikel, Daniel M. On the parameter space of generative lexicalized statistical pars-
ing models. PhD thesis, University of Pennsylvania, Philadelphia, PA, USA,
2004b. Supervisor-Marcus, Mitchell P.

Bloomfield, Leonard. Language. New York: Holt, 1933.

Blunsom, Phil and Trevor Cohn. Unsupervised induction of tree substitution
grammars for dependency parsing. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’10, pages 1204–
1213, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

Bod, Rens. A Computational Model of Language Performance: Data Oriented
Parsing. In Proceedings COLING’92 (Nantes, France), pages 855–859. Associ-
ation for Computational Linguistics, Morristown, NJ, 1992.

Bod, Rens. Using an Annotated Language Corpus as a Virtual Stochastic Gram-
mar. In AAAI, pages 778–783, 1993.

Bod, Rens. Combining semantic and syntactic structure for language modeling.
CoRR, cs.CL/0110051, 2001a.

Bod, Rens. What is the Minimal Set of Fragments that Achieves Maximal Parse
Accuracy? In Proceedings ACL-2001. Morgan Kaufmann, San Francisco, CA,
2001b.

Bod, Rens. An efficient implementation of a new DOP model. In Proceedings of
the tenth conference on European chapter of the Association for Computational
Linguistics - Volume 1, EACL ’03, pages 19–26, Morristown, NJ, USA, 2003.
Association for Computational Linguistics.

Bod, Rens. Unsupervised parsing with U-DOP. In CoNLL-X ’06: Proceedings
of the Tenth Conference on Computational Natural Language Learning, pages
85–92, Morristown, NJ, USA, 2006. Association for Computational Linguistics.

Bod, Rens and Ronald Kaplan. Data-Oriented Parsing, chapter A Data-Oriented
Parsing Model for Lexical-Functional Grammar. In Bod et al. (2003), 2003.

Bod, Rens, Khalil Sima’an, and Remko Scha. Data-Oriented Parsing. University
of Chicago Press, Chicago, IL, USA, 2003.

Boersma, P. and B. Hayes. Empirical tests of the gradual learning algorithm.
Linguistic Inquiry, 32(1):45–86, 2001.

164 BIBLIOGRAPHY

Bonnema, Remko, Rens Bod, and Remko Scha. A DOP model for semantic
interpretation. In Proceedings of the 35th Annual Meeting of the Association
for Computational Linguistics and Eighth Conference of the European Chap-
ter of the Association for Computational Linguistics, ACL ’98, pages 159–167,
Stroudsburg, PA, USA, 1997. Association for Computational Linguistics.

Bonnema, Remko, Paul Buying, and Remko Scha. A New Probability Model
for Data Oriented Parsing, volume Proceedings of the Twelfth Amsterdam
Colloquium, pages 85–90. 1999.

Borensztajn, Gideon and Willem Zuidema. Episodic grammar: a computational
model of the interaction between episodic and semantic memory in language
processing. In Proceedings of the 33rd Cognitive Science Conference, 2011.

Borensztajn, Gideon, Willem Zuidema, and Rens Bod. Children’s Grammars
Grow More Abstract with Age—Evidence from an Automatic Procedure for
Identifying the Productive Units of Language. Topics in Cognitive Science, 1
(1):175–188, January 2009.

Bosco, Cristina, Vincenzo Lombardo, Daniela Vassallo, and Leonardo Lesmo.
Building a Treebank for Italian: a Data-driven Annotation Schema. In Pro-
ceedings of the Second International Conference on Language Resources and
Evaluation LREC-2000, pages 99–105, 2000.

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In COLT ’92: Proceedings of the fifth
annual workshop on Computational learning theory, pages 144–152, New York,
NY, USA, 1992. ACM.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The TIGER Treebank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, pages 24–41, 2002.

Bresnan, Joan. Lexical-Functional Syntax. Blackwell Textbooks in Linguistics.
Blackwell Publishers, September 2000.

Buchanan, Bruce G. Mechanizing the Search for Explanatory Hypotheses. PSA:
Proceedings of the Biennial Meeting of the Philosophy of Science Association,
1982:pp. 129–146, 1982.

Buchholz, Sabine and Erwin Marsi. CoNLL-X shared task on multilingual de-
pendency parsing. In In Proc. of CoNLL, pages 149–164, 2006.

Buchholz, Sabine, Jorn Veenstra, and Walter Daelemans. Cascaded Grammatical
Relation Assignment. In EMNLP/VLC-99, pages 239–246. ACL, 1999.

BIBLIOGRAPHY 165

Charniak, Eugene. Tree-bank Grammars. In In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 1031–1036, 1996.

Charniak, Eugene. Statistical Parsing with a Context-free Grammar and Word
Statistics. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, pages 598–603. AAAI Press/MIT Press, 1997.

Charniak, Eugene. A Maximum-Entropy-Inspired Parser. Technical report,
Brown University, Providence, RI, USA, 1999.

Charniak, Eugene and Mark Johnson. Coarse-to-Fine n-Best Parsing and MaxEnt
Discriminative Reranking. In Proc. 43nd Meeting of Association for Computa-
tional Linguistics (ACL 2005), 2005.

Chiang, David and Daniel M. Bikel. Recovering latent information in treebanks.
In Proceedings of the 19th international conference on Computational linguis-
tics, pages 1–7, Morristown, NJ, USA, 2002. Association for Computational
Linguistics.

Chomsky, N. Three models for the description of language. Information Theory,
IRE Transactions on, 2(3):113–124, January 1956.

Chomsky, N. Aspects of the theory of syntax. The MIT Press Paperback Series.
M.I.T. Press, 1965.

Chomsky, N. Modular approaches to the study of the mind. Distinguished graduate
research lecture. San Diego State University Press, 1984.

Chomsky, Noam. Syntactic structures. Mouton, Den Haag, 1957.

Chomsky, Noam. Remarks on nominalization. In Jacobs, R. and P. Rosenbaum,
editors, Reading in English Transformational Grammar, pages 184–221. Ginn
and Co., Waltham, 1970.

Cinková, Silvie, Eva Hajičová, Jarmila Panevová, and Petr Sgall. Two Languages
– One Annotation Scenario? Experience from the Prague Dependency Tree-
bank. The Prague Bulletin of Mathematical Linguistics, (89):5—22, June 2008.

Cinková, Silvie, Josef Toman, Jan Hajič, Kristýna Čermáková, Václav Klimeš,
Lucie Mladová, Jana Šindlerová, Kristýna Tomš̊u, and Zdeněk Žabokrtsky.
Tectogrammatical Annotation of the Wall Street Journal. The Prague Bulletin
of Mathematical Linguistics, (92):85—104, December 2009.

Clark, Stephen and James Curran. Formalism-Independent Parser Evaluation
with CCG and DepBank. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 248–255, Prague, Czech Re-
public, June 2007a. Association for Computational Linguistics.

166 BIBLIOGRAPHY

Clark, Stephen and James R. Curran. Wide-coverage efficient statistical parsing
with ccg and log-linear models. Comput. Linguist., 33(4):493–552, 2007b.

Cohn, Trevor, Sharon Goldwater, and Phil Blunsom. Inducing Compact but Ac-
curate Tree-Substitution Grammars. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 548–556, Boulder, Colorado,
June 2009. Association for Computational Linguistics.

Cohn, Trevor, Phil Blunsom, and Sharon Goldwater. Inducing Tree-Substitution
Grammars. Journal of Machine Learning Research, 11:3053–3096, 2010.

Collins, Michael. Three generative, lexicalised models for statistical parsing. In
ACL-35: Proceedings of the 35th Annual Meeting of the Association for Com-
putational Linguistics and Eighth Conference of the European Chapter of the
Association for Computational Linguistics, pages 16–23, Morristown, NJ, USA,
1997. Association for Computational Linguistics.

Collins, Michael. Discriminative Reranking for Natural Language Parsing. In
ICML ’00: Proceedings of the Seventeenth International Conference on Ma-
chine Learning, pages 175–182, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

Collins, Michael and Nigel Duffy. Convolution Kernels for Natural Language.
In Dietterich, Thomas G., Suzanna Becker, and Zoubin Ghahramani, editors,
NIPS, pages 625–632. MIT Press, 2001.

Collins, Michael and Nigel Duffy. New Ranking Algorithms for Parsing and Tag-
ging: Kernels over Discrete Structures, and the Voted Perceptron. In Proceed-
ings of 40th Annual Meeting of the Association for Computational Linguistics,
pages 263–270, Philadelphia, Pennsylvania, USA, July 2002. Association for
Computational Linguistics.

Collins, Michael and Terry Koo. Discriminative Reranking for Natural Language
Parsing. Comput. Linguist., 31(1):25–70, 2005.

Collins, Michael and Brian Roark. Incremental parsing with the perceptron algo-
rithm. In ACL ’04: Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, page 111, Morristown, NJ, USA, 2004. Association
for Computational Linguistics.

Collins, Michael J. Head-Driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania, 1999.

BIBLIOGRAPHY 167

Collins, Michael John. A new statistical parser based on bigram lexical depen-
dencies. In Proceedings of the 34th annual meeting on Association for Compu-
tational Linguistics, pages 184–191, Morristown, NJ, USA, 1996. Association
for Computational Linguistics.

Corbett, Greville G., Norman M. Fraser, and Scott McGlashan. Heads in Gram-
matical Theory. Cambridge University Press, New York, 2006.

Covington, Michael A. GB Theory as Dependency Grammar. Technical Report
AI-1992-03, University of Georgia, Athens, Georgia, 1992.

Daelemans, Walter, Sabine Buchholz, and Jorn Veenstra. Memory-based Shallow
Parsing. In Proceedings of CoNLL-1999, Bergen, Norway, 1999.

Dalrymple, Mary. Lexical-Functional Grammar (Syntax and Semantics). Aca-
demic Press, 2001.

Daumé III, Hal and Daniel Marcu. NP Bracketing by Maximum Entropy Tagging
and SVM Reranking. In The 2004 Conference on Empirical Methods in Natural
Language Processing, pages 254–261, 2004.

De Marneffe, Marie-Catherin, Bill Maccartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In In LREC
2006, 2006.

De Marneffe, Marie-Catherine and Christopher D. Manning. The Stanford Typed
Dependencies Representation. In Coling 2008: Proceedings of the workshop on
Cross-Framework and Cross-Domain Parser Evaluation, pages 1–8, Manch-
ester, UK, August 2008. Coling 2008 Organizing Committee.

de Saussure, Ferdenand. Course in General Linguistics. McGraw Hill, New York,
1915.

Dinarelli, Marco, Alessandro Moschitti, and Giuseppe Riccardi. Re-ranking mod-
els for spoken language understanding. In EACL ’09: Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pages 202–210, Morristown, NJ, USA, 2009. Association for Compu-
tational Linguistics.

Dubey, Amit. What to do when lexicalization fails: parsing German with suffix
analysis and smoothing. In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, ACL ’05, pages 314–321, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics.

Eisner, Jason. Bilexical Grammars And A Cubic-Time Probabilistic Parser. In
In Proceedings of the International Workshop on Parsing Technologies, pages
54–65, 1997.

168 BIBLIOGRAPHY

Eisner, Jason. Bilexical Grammars and Their Cubic-Time Parsing Algorithms. In
Bunt, Harry and Anton Nijholt, editors, Advances in Probabilistic and Other
Parsing Technologies, pages 29–62. Kluwer Academic Publishers, October 2000.

Eisner, Jason and Giorgio Satta. Efficient parsing for bilexical context-free gram-
mars and head automaton grammars. In Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on Computational Linguistics,
ACL ’99, pages 457–464, Stroudsburg, PA, USA, 1999. Association for Com-
putational Linguistics.

Eisner, Jason M. An Empirical Comparison of Probability Models for Dependency
Grammar. Technical Report IRCS-96-11, University of Pennsylvania, 1996a.

Eisner, Jason M. Three new probabilistic models for dependency parsing: an
exploration. In Proceedings of the 16th conference on Computational linguistics,
pages 340–345, Morristown, NJ, USA, 1996b. Association for Computational
Linguistics.

Fillmore, Charles J., Paul Kay, and Mary C. O’Connor. Regularity and Idiomatic-
ity in Grammatical Constructions: The Case of Let Alone. Language, 64(3):
501–538, 1988.

Forst, Martin, Núria Bertomeu, Berthold Crysmann, Frederik Fouvry, Silvia
Hansen-Schirra, and Valia Kordoni. Towards a dependency-based gold stan-
dard for German parsers - The TiGer Dependency Bank, 2004.

Frank, Stefan L and Rens Bod. Insensitivity of the human sentence-processing
system to hierarchical structure. Psychological Science, (May), 2011.

Fraser, Alexander, Renjing Wang, and Hinrich Schütze. Rich bitext projection
features for parse reranking. In EACL ’09: Proceedings of the 12th Confer-
ence of the European Chapter of the Association for Computational Linguistics,
pages 282–290, Morristown, NJ, USA, 2009. Association for Computational
Linguistics.

Frazier, Lyn. On Comprehending Sentences: Syntactic Parsing Strategies. PhD
thesis, University of Massachusetts, Indiana University Linguistics Club, 1979.

Gaifman, Haim. Dependency systems and phrase-structure systems. Information
and Control, 8(3):304 – 337, 1965.

Goldberg, A.E. Constructions: A Construction Grammar Approach to Argument
Structure. University Of Chicago Press, 1995.

BIBLIOGRAPHY 169

Goldwater, Sharon, Thomas L. Griffiths, and Mark Johnson. Distributional Cues
to Word Boundaries: Context is Important. In Bamman, David, Tatiana Mag-
nitskaia, and Colleen Zaller, editors, Proceedings of the 31st Annual Boston
University Conference on Language Development, pages 239—250, 2007.

Goldwater, Sharon, Thomas L. Griffiths, and Mark Johnson. A Bayesian frame-
work for word segmentation: Exploring the effects of context. Cognition, 112
(1):21–54, 2009.

Goodman, Joshua. Efficient algorithms for parsing the DOP model. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing,
pages 143–152, 1996.

Goodman, Joshua. Probabilistic Feature Grammars. In In Proceedings of the
International Workshop on Parsing Technologies, pages 89–100, 1997.

Goodman, Joshua. Data-Oriented Parsing, chapter Efficient Parsing of DOP with
PCFG-Reductions. In Bod et al. (2003), 2003.

Goodman, Joshua T. Parsing inside-out. PhD thesis, Harvard University, Cam-
bridge, MA, USA, 1998. Adviser-Shieber, Stuart.

Hajič, Jan, Alena Böhmová, Eva Hajičová, and Barbora Vidová-Hladká. The
Prague Dependency Treebank: A Three-Level Annotation Scenario. In Abeillé,
A., editor, Treebanks: Building and Using Parsed Corpora, pages 103–127. Am-
sterdam:Kluwer, 2000.

Hale, John. Uncertainty About the Rest of the Sentence. Cognitive Science, 30:
643–672, 2006.

Hall, Johan, Joakim Nivre, and Jens Nilsson. Discriminative Classifiers for De-
terministic Dependency Parsing. In ACL. The Association for Computer Lin-
guistics, 2006.

Hall, Keith, Jiri Havelka, and David A. Smith. Log-Linear Models of Non-
Projective Trees, k-best MST Parsing and Tree-Ranking. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 962–966, Prague,
Czech Republic, June 2007. Association for Computational Linguistics.

Harris, Zelig S. Structural Linguistics. University of Chicago Press, 1951.

Hays, David G. Grouping and dependency theories. In National Symposium on
Machine Translation, pages 258–266, Englewood Cliffs, NY, USA, 1960.

Hays, David G. Dependency Theory: A Formalism and Some Observations.
Language, 40(4):pp. 511–525, 1964.

170 BIBLIOGRAPHY

Hearne, Mary and Andy Way. Disambiguation Strategies for Data-Oriented
Translation. In Proceedings of the 11th Conference of the European Associ-
ation for Machine Translation, pages 59–68, 2006.

Heringer, James T. Review of Gaifman (1965). Ohio State University Working
Papers in Linguistics, 1967.

Hockenmaier, Julia. Data and models for statistical parsing Data and models for
statistical parsing with Combinatory Categorial Grammar. PhD thesis, Univer-
sity of Edinburgh, 2003.

Hockenmaier, Julia and Mark Steedman. CCGbank: A Corpus of CCG Deriva-
tions and Dependency Structures Extracted from the Penn Treebank. Compu-
tational Linguistics, 33(3):355–396, 2007.

Huang, Liang. Forest Reranking: Discriminative Parsing with Non-Local Fea-
tures. In Proceedings of ACL-08: HLT, pages 586–594, Columbus, Ohio, June
2008. Association for Computational Linguistics.

Hudson, R.A. English word grammar. B. Blackwell, 1991.

Hudson, Richard. An Introduction to Word Grammar. Cambridge University
Press, 2010.

Hudson, Rodney. Zwicky on heads. Journal of Linguistics, 23:109–132, 1987.

Hurford, James R. Human uniqueness, learned symbols and recursive thought.
European Review, 12(04):551–565, October 2004.

Hwa, Rebecca. An empirical evaluation of Probabilistic Lexicalized Tree Insertion
Grammars. In Proceedings of the 17th international conference on Computa-
tional linguistics, pages 557–563, Morristown, NJ, USA, 1998. Association for
Computational Linguistics.

Jackendoff, Ray. Foundations of Language. Oxford University Press, Oxford, UK,
2002.

Jackendoff, Ray S. X Syntax: A Study of Phrase Structure. The MIT Press,
Cambridge, MA, 1977.

Jespersen, Otto. Analytic syntax. London, 1937.

Johansson, Richard and Pierre Nugues. Extended Constituent-to-Dependency
Conversion for English. In Proceedings of NODALIDA 2007, Tartu, Estonia,
May 2007.

Johnson, Mark. PCFG models of linguistic tree representations. Comput. Lin-
guist., 24(4):613–632, 1998.

BIBLIOGRAPHY 171

Johnson, Mark. Transforming Projective Bilexical Dependency Grammars into
efficiently-parsable CFGs with Unfold-Fold. In Proceedings of the 45th An-
nual Meeting of the Association of Computational Linguistics, pages 168–175,
Prague, Czech Republic, June 2007. Association for Computational Linguistics.

Johnson, Mark. How the Statistical Revolution Changes (Computational) Lin-
guistics. In Proceedings of the EACL 2009 Workshop on the Interaction be-
tween Linguistics and Computational Linguistics: Virtuous, Vicious or Vacu-
ous?, pages 3–11, Athens, Greece, March 2009. Association for Computational
Linguistics.

Johnson, Mark and Ahmet Engin Ural. Reranking the Berkeley and Brown
Parsers. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 665–668, Los Angeles, California, June 2010. Association for Computa-
tional Linguistics.

Johnson, Mark, Thomas Griffiths, and Sharon Goldwater. Bayesian Inference
for PCFGs via Markov Chain Monte Carlo. In Human Language Technologies
2007: The Conference of the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main Conference, pages 139–146,
Rochester, New York, April 2007a. Association for Computational Linguistics.

Johnson, Mark, Thomas L. Griffiths, and Sharon Goldwater. Adaptor Grammars:
A Framework for Specifying Compositional Nonparametric Bayesian Models.
In Advances in Neural Information Processing Systems, volume 16, pages 641–
648, 2007b.

Joshi, Aravind K. Tree-adjoining grammars: How much context sensitivity is re-
quired to provide reasonable structural descriptions. In Dowty, D. R., L. Kart-
tunen, and A. Zwicky, editors, Natural Language Parsing, chapter 6, pages
206–250. Cambridge University Press, New York, 1985.

Joshi, Aravind K. and Yves Schabes. Tree-adjoining grammars and lexicalized
grammars. In Nivat, Maurice and Andreas Podelski, editors, Definability and
Recognizability of Sets of Trees. Elsevier, 1991.

Kahane, Sylvain. Bubble trees and syntactic representations. In Krieger,
Becker &, editor, Proceedings 5th Meeting of the Mathematics of Language
(MOL5). Saarbrücken: DFKI, 1997.

Kahane, Sylvain. Polarized Unification Grammars. In Proceedings of the 21st In-
ternational Conference on Computational Linguistics and 44th Annual Meeting
of the Association for Computational Linguistics, pages 137–144, Sydney, Aus-
tralia, July 2006. Association for Computational Linguistics.

172 BIBLIOGRAPHY

Kaplan, R. M. and J. Bresnan. Lexical-Functional Grammar: A Formal System
for Grammatical Representation. In Bresnan, J., editor, The Mental Represen-
tation of Grammatical Relations, pages 173–281. MIT Press, Cambridge, MA,
1982.

Kay, Paul and Charles J. Fillmore. Grammatical Constructions and Linguistic
Generalizations: the What’s X Doing Y? Construction. Language, 75:1–33,
1997.

Klavans, Judith L. and Philip Resnik, editors. The Balancing Act: combining
symbolic and statistical approaches to language. MIT Press, Cambridge, MA,
1996.

Klein, Dan. The unsupervised learning of natural language structure. PhD thesis,
Stanford University, Stanford, CA, USA, 2005. Adviser-Manning, Christopher
D.

Klein, Dan and Christopher D. Manning. Accurate unlexicalized parsing. In
ACL ’03: Proceedings of the 41st Annual Meeting on Association for Compu-
tational Linguistics, pages 423–430, Morristown, NJ, USA, 2003. Association
for Computational Linguistics.

Kuhlmann, Marco. Dependency Structures and Lexicalized Grammars. PhD the-
sis, Saarland University, Saarbrücken, Germany, 2007.

Labov, William, editor. Sociolinguistic Patterns. University of Philadelphia Press,
Philadelphia, 1972.

Lapata, Mirella and Frank Keller. The Web as a Baseline: Evaluating the Per-
formance of Unsupervised Web-based Models for a Range of NLP Tasks. In
Susan Dumais, Daniel Marcu and Salim Roukos, editors, HLT-NAACL 2004:
Main Proceedings, pages 121–128, Boston, Massachusetts, USA, May 2 - May
7 2004. Association for Computational Linguistics.

Lari, K. and S. J. Young. The estimation of stochastic context-free grammars
using the Inside-Outside algorithm. Computer Speech and Language, 4:35–56,
1990.

Lass, Roger. Historical Linguistics and Language Change. Cambridge University
Press, New York, 1997.

Levelt, W.J.M. Formal grammars in linguistics and psycholinguistics: Appli-
cations in Linguistic Theory, volume 2 of Janua linguarum: Series minor.
Mouton, 1974.

Levy, Roger. Expectation-based syntactic comprehension. Cognition, July 2007.

BIBLIOGRAPHY 173

Lieberman, P. On the origins of language: an introduction to the evolution of
human speech. Macmillan series in physical anthropology. Macmillan, 1975.

Lieven, Elena, Heike Behrens, Jennifer Speares, and Michael Tomasello. Early
syntactic creativity: a usage-based approach. Journal of Child Language, 30
(2):333–370, 2003.

Lin, Dekang. A Dependency-based Method for Evaluating Broad-Coverage
Parsers. In In Proceedings of IJCAI-95, pages 1420–1425, 1995.

Lindsay, Robert K., Bruce G. Buchanan, E. A. Feigenbaum, and Joshua Leder-
berg. Applications of Artificial Intelligence for Organic Chemistry: The DEN-
DRAL Project. McGraw-Hill Companies, Inc, 1980.

Magerman, David M. Natural Language Parsing as Statistical Pattern Recogni-
tion. PhD thesis, Stanford University, 1994.

Magerman, David M. Statistical Decision-Tree Models for Parsing. In Proceedings
of the 33rd Annual Meeting of the Association for Computational Linguistics,
pages 276–283, Cambridge, Massachusetts, USA, June 1995. Association for
Computational Linguistics.

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The Penn Tree-
bank: annotating predicate argument structure. In HLT ’94: Proceedings of
the workshop on Human Language Technology, pages 114–119, Morristown, NJ,
USA, 1994. Association for Computational Linguistics.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. Building
a Large Annotated Corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

Marcus, Mitchell P., Beatrice Santorini, Mary Ann Marcinkiewicz, and Anns
Taylor. Treebank-3. Linguistic Data Consortium, Philadelphia, 1999.

Martin, William A., Kenneth W. Church, and Ramesh S. Patil. Preliminary anal-
ysis of a breadth-first parsing algorithm: theoretical and experimental results.
Natural language parsing systems, pages 267–328, 1987.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic CFG with
latent annotations. In ACL ’05: Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages 75–82, Morristown, NJ, USA,
2005. Association for Computational Linguistics.

McClosky, David, Eugene Charniak, and Mark Johnson. Reranking and self-
training for parser adaptation. In ACL-44: Proceedings of the 21st International

174 BIBLIOGRAPHY

Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages 337–344, Morristown, NJ,
USA, 2006. Association for Computational Linguistics.

McDonald, Ryan. Discriminative learning and spanning tree algorithms for de-
pendency parsing. PhD thesis, University of Pennsylvania, Philadelphia, PA,
USA, 2006.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective
dependency parsing using spanning tree algorithms. In HLT ’05: Proceedings
of the conference on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 523–530, Morristown, NJ, USA, 2005. As-
sociation for Computational Linguistics.

Mel’čuk, Igor. Dependency Syntax: Theory and Practice. State University of New
York Press, 1988.

Mel’čuk, Igor. Levels of Dependency in Linguistic Description: Concepts and
Problems. Unpublished manuscript, 2003.

Mel’čuk, Igor A. Studies in dependency syntax. Karoma Publishers, Ann Arbor,
1979.

Mitchell, Jeff and Mirella Lapata. Language Models Based on Semantic Compo-
sition. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 430–439, Singapore, 2009.

Moschitti, Alessandro. Efficient Convolution Kernels for Dependency and Con-
stituent Syntactic Trees. In ECML, pages 318–329, Berlin, Germany, Septem-
ber 2006. Machine Learning: ECML 2006, 17th European Conference on Ma-
chine Learning, Proceedings.

Mylonakis, Markos and Khalil Sima’an. Phrase translation probabilities with ITG
priors and smoothing as learning objective. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP ’08, pages 630–
639, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

Ng, Andrew Y. and Michael I. Jordan. On Discriminative vs. Generative Clas-
sifiers: A comparison of logistic regression and naive Bayes. In NIPS, pages
841–848, 2001.

Nivre, Joakim. An Efficient Algorithm for Projective Dependency Parsing. In
Eighth International Workshop on Parsing Technologies, Nancy, France, 2003.

Nivre, Joakim. Inductive Dependency Parsing (Text, Speech and Language Tech-
nology). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

BIBLIOGRAPHY 175

Nivre, Joakim. Non-Projective Dependency Parsing in Expected Linear Time.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, pages 351–359, Suntec, Singapore, August 2009. Association for
Computational Linguistics.

Nivre, Joakim and Jens Nilsson. Pseudo-Projective Dependency Parsing. In ACL.
The Association for Computer Linguistics, 2005.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan Mcdonald, Jens Nilsson, Sebas-
tian Riedel, and Deniz Yuret. The CoNLL 2007 Shared Task on Dependency
Parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 915–932, Prague, Czech Republic, June 2007. Association for Com-
putational Linguistics.

O’Donnell, Timothy J., Noah D. Goodman, and Joshua B. Tenenbaum. Fragment
Grammars: Exploring Computation and Reuse in Language. Technical Report
MIT-CSAIL-TR-2009-013, MIT, 2009.

Oflazer, Kemal, Bilge Say, Dilek Zeynep Hakkani-tür, and Gökhan Tür. Building
A Turkish Treebank. In Abeillé, A., editor, Treebanks: Building and Using
Parsed Corpora, pages 261–277. Kluwer Academic Publishers, 2003.

Pereira, Fernando and Yves Schabes. Inside-outside reestimation from partially
bracketed corpora. In Proceedings of the 30th annual meeting on Association
for Computational Linguistics, pages 128–135, Morristown, NJ, USA, 1992.
Association for Computational Linguistics.

Petrov, Slav. Coarse-to-Fine Natural Language Processing. PhD thesis, University
of California at Bekeley, Berkeley, CA, USA, 2009.

Petrov, Slav and Dan Klein. Improved Inference for Unlexicalized Parsing. In
Human Language Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics; Proceedings of the
Main Conference, pages 404–411, Rochester, New York, April 2007. Association
for Computational Linguistics.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In ACL-44: Proceedings of the
21st International Conference on Computational Linguistics and the 44th an-
nual meeting of the Association for Computational Linguistics, pages 433–440,
Morristown, NJ, USA, 2006. Association for Computational Linguistics.

Pinker, Stephen and Ray Jackendoff. The faculty of language: what’s special
about it? Cognition, 95:201–236, 2005.

176 BIBLIOGRAPHY

Polguère, Alain and Igor A. Mel’čuk, editors. Dependency in Linguistic Descrip-
tion. Studies in Language Companion Series 111. John Benjamins, Philadel-
phia, 2009.

Pollard, Carl, , Carl Pollard, and Ivan A. Sag. Head-driven Phrase Structure
Grammar. University of Chicago Press, 1994.

Post, Matt and Daniel Gildea. Bayesian Learning of a Tree Substitution Gram-
mar. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages
45–48, Suntec, Singapore, August 2009. Association for Computational Lin-
guistics.

Prescher, Detlef. A Tutorial on the Expectation-Maximization Algorithm In-
cluding Maximum-Likelihood Estimation and EM Training of Probabilistic
Context-Free Grammars. In ESSLLI, 2003.

Prescher, Detlef. Inside-Outside Estimation Meets Dynamic EM. CoRR,
abs/cs/0412016, 2004.

Prescher, Detlef. Head-driven PCFGs with latent-head statistics. In Parsing
’05: Proceedings of the Ninth International Workshop on Parsing Technology,
pages 115–124, Morristown, NJ, USA, 2005a. Association for Computational
Linguistics.

Prescher, Detlef. Inducing head-driven PCFGs with latent heads: Refining a
tree-bank grammar for parsing. In In ECML’05, 2005b.

Ratnaparkhi, Adwait. A Linear Observed Time Statistical Parser Based on Max-
imum Entropy Models. CoRR, cmp-lg/9706014, 1997.

Ratnaparkhi, Adwait. Learning to Parse Natural Language with Maximum En-
tropy Models. Mach. Learn., 34(1-3):151–175, 1999.

Riezler, Stefan, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T.
Maxwell, and Mark Johnson. Parsing the Wall Street Journal using a Lexical-
Functional Grammar and Discriminative Estimation Techniques. In Proceed-
ings of the 40th Annual Meeting of the Association for Computational Linguis-
tics (ACL’02), Philadelphia, PA, USA, 2002.

Rimell, Laura, Stephen Clark, and Mark Steedman. Unbounded dependency
recovery for parser evaluation. In EMNLP ’09: Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language Processing, pages 813–821,
Morristown, NJ, USA, 2009. Association for Computational Linguistics.

Robinson, Jane J. Methods for obtaining corresponding phrase structure and
dependency grammars. In Proceedings of the 1967 conference on Computational

BIBLIOGRAPHY 177

linguistics, COLING ’67, pages 1–25, Stroudsburg, PA, USA, 1967. Association
for Computational Linguistics.

Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Reviews, pages 386–408, 1958.

Sampson, Geoffrey, Robin Haigh, and Eric Atwell. Natural language analysis by
stochastic optimization: a progress report on project APRIL. J. Exp. Theor.
Artif. Intell., 1:271–287, October 1989.

Sangati, Federico. A Probabilistic Generative Model for an Intermediate
Constituency-Dependency Representation. In Proceedings of the ACL 2010
Student Research Workshop, pages 19–24, Uppsala, Sweden, July 2010. Asso-
ciation for Computational Linguistics.

Sangati, Federico and Chiara Mazza. An English Dependency Treebank à la
Tesnière. In The 8th International Workshop on Treebanks and Linguistic The-
ories, pages 173–184, Milan, Italy, 2009.

Sangati, Federico and Willem Zuidema. Unsupervised Methods for Head Assign-
ments. In Proceedings of the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 701–709, Athens, Greece, March 2009. Association
for Computational Linguistics.

Sangati, Federico and Willem Zuidema. A Recurring Fragment Model for Accu-
rate Parsing: Double-DOP . In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages 84–95, Edinburgh, Scotland,
UK., July 2011. Association for Computational Linguistics.

Sangati, Federico, Willem Zuidema, and Rens Bod. A generative re-ranking model
for dependency parsing. In Proceedings of the 11th International Conference on
Parsing Technologies (IWPT’09), pages 238–241, Paris, France, October 2009.
Association for Computational Linguistics.

Sangati, Federico, Willem Zuidema, and Rens Bod. Efficiently Extract Recurring
Tree Fragments from Large Treebanks. In Chair), Nicoletta Calzolari (Con-
ference, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios
Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of the Seventh
conference on International Language Resources and Evaluation (LREC’10),
Valletta, Malta, may 2010. European Language Resources Association (ELRA).

Scha, Remko. Taaltheorie en taaltechnologie: competence en performance. In
de Kort, Q. A. M. and G. L. J. Leerdam, editors, Computertoepassingen in de
Neerlandistiek, LVVN-jaarboek, pages 7–22. Landelijke Vereniging van Neer-
landici, Almere, 1990. [Language theory and language technology: Competence
and Performance] in Dutch.

178 BIBLIOGRAPHY

Schabes, Yves and Richard C. Waters. Tree insertion grammar: a cubic-time,
parsable formalism that lexicalizes context-free grammar without changing the
trees produced. Fuzzy Sets Syst., 76(3):309–317, 1995.

Schneider, Gerold. A Linguistic Comparison of Constituency, Dependency and
Link Grammar, 1998. MSc Thesis.

Seginer, Yoav. Learning Syntactic Structure. PhD thesis, Institute for Logic
Language and Computation, University of Amsterdam, 2007.

Sekine, S. and M. J. Collins. EVALB bracket scoring program. http://nlp.cs.
nyu.edu/evalb/, 1997.

Semecký, Jǐŕı and Silvie Cinková. Constructing an English Valency Lexicon In:
Proceedings of Frontiers in Linguistically Annotated Corpora. In The Associ-
ation for Computational Linguistics, pages 111–113, Sydney, Australia, 2006.

Sgall, Petr, Eva Hajičová, and Jarmilla Panevová. The Meaning of the Sentence
in Its Semantic and Pragmatic Aspects. Reidel, Dordrecht, 1986.

Shen, L., A. Sarkar, and F. Och. Discriminative reranking for machine translation,
2004.

Shen, Libin, Anoop Sarkar, and Aravind K. Joshi. Using LTAG based features
in parse reranking. In Proceedings of the 2003 conference on Empirical meth-
ods in natural language processing, pages 89–96, Morristown, NJ, USA, 2003.
Association for Computational Linguistics.

Shieber, Stuart M. Sentence disambiguation by a shift-reduce parsing technique.
In Proceedings of the 21st annual meeting on Association for Computational
Linguistics, pages 113–118, Morristown, NJ, USA, 1983. Association for Com-
putational Linguistics.

Sima’an, K. Tree-gram parsing lexical dependencies and structural relations.
In Proceedings of the 38th Annual Meeting on Association for Computational
Linguistics, ACL ’00, pages 37–44, Stroudsburg, PA, USA, 2000. Association
for Computational Linguistics.

Sima’an, K., A. Itai, Y. Winter, A. Altman, and N. Nativ. Building a Tree-
Bank of Modern Hebrew Text. Journal Traitement Automatique des Langues
(T.A.L.), 2001.

Sima’an, Khalil. An Optimized Algorithm for Data-Oriented Parsing. In In-
ternational Conference on Recent Advances in Natural Language Processing
(RANLP’95), Tzigov Chark, Bulgaria, 1995.

BIBLIOGRAPHY 179

Sima’an, Khalil. Computational complexity of probabilistic disambiguation by
means of tree-grammars. In Proceedings of the 16th conference on Computa-
tional linguistics, pages 1175–1180, Morristown, NJ, USA, 1996. Association
for Computational Linguistics.

Sima’an, Khalil. Learning Efficient Disambiguation. PhD thesis, Utrecht Univer-
sity and University of Amsterdam, 1999.

Sima’an, Khalil. On Maximizing Metrics for Syntactic Disambiguation. In Pro-
ceedings of the International Workshop on Parsing Technologies (IWPT’03),
2003.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. An An-
notation Scheme for Free Word Order Languages. In Proceedings of the Fifth
Conference on Applied Natural Language Processing ANLP-97, Washington,
DC, 1997.

Smith, Noah A. Linguistic Structure Prediction. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, May 2011.

Steedman, Mark. Surface structure and interpretation. Linguistic inquiry mono-
graphs, 30. MIT Press, 1996.

Steedman, Mark. On becoming a discipline. Comput. Linguist., 34:137–144,
March 2008.

Sugayama, Kensei and Richard A. Hudson, editors. Word Grammar: New Per-
spectives on a Theory of Language Structure. Continuum International Pub-
lishing Group Ltd, New York, 2005.

Tanner, Bernard. Parsing. The English Journal, 52(1):67, January 1963.

Taylor, Ann, Mitchell Marcus, and Beatrice Santorini. The Penn Treebank: An
Overview, pages 5–22. Volume 20 of Text, Speech and Language Technology
Abeillé (2003), 2003.

Tesnière, Lucien. Eléments de syntaxe structurale. Editions Klincksieck, Paris,
1959.

Vadas, David and James Curran. Adding Noun Phrase Structure to the Penn
Treebank. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 240–247, Prague, Czech Republic, June 2007.
Association for Computational Linguistics.

Vapnik, Vladimir N. Statistical Learning Theory. Wiley-Interscience, September
1998.

180 BIBLIOGRAPHY

Vater, Heinz. Toward a generative dependency grammar. Lingua, 36(2-3):121 –
145, 1975.

Villavicencio, Aline. Learning to distinguish PP arguments from adjuncts. In
Proceedings of the 6th conference on Natural language learning - Volume 20,
COLING-02, pages 1–7, Stroudsburg, PA, USA, 2002. Association for Compu-
tational Linguistics.

Wardhaugh, R. An introduction to sociolinguistics. Blackwell textbooks in lin-
guistics. Blackwell Pub., 2006.

Wells, Rulon S. Immediate Constituents. Language, 23(2):pp. 81–117, 1947.

White, Michael and Rajakrishnan Rajkumar. Perceptron reranking for CCG
realization. In EMNLP ’09: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 410–419, Morristown, NJ, USA,
2009. Association for Computational Linguistics.

Wu, C. F. Jeff. On the Convergence Properties of the EM Algorithm. The Annals
of Statistics, 11(1):95–103, 1983.

Wundt, W.M. Völkerpsychologie: bd, 1.-2. t. Die Sprache. Völkerpsychologie:
Eine untersuchung der entwicklungsgesetze von sprache, mythus und sitte. W.
Engelmann, 1900.

Xue, Jing-Hao and D. Titterington. Comment on “On Discriminative vs. Genera-
tive Classifiers: A Comparison of Logistic Regression and Naive Bayes”. Neural
Processing Letters, 28:169–187, 2008. 10.1007/s11063-008-9088-7.

Xue, Nianwen, Fu-Dong Chiou, and Martha Palmer. Building a large-scale an-
notated Chinese corpus. In Proceedings of the 19th international conference on
Computational linguistics - Volume 1, COLING ’02, pages 1–8, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics.

Yamada, Hiroyasu and Yuji Matsumoto. Statistical Dependency Analysis with
Support Vector Machines. In Proceedings of IWPT, pages 195–206, 2003.

Yamangil, Elif and Stuart M. Shieber. Bayesian synchronous tree-substitution
grammar induction and its application to sentence compression. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics,
ACL ’10, pages 937–947, Stroudsburg, PA, USA, 2010. Association for Com-
putational Linguistics.

Zollmann, Andreas and Khalil Sima’an. A Consistent and Efficient Estimator for
Data-Oriented Parsing. Journal of Automata, Languages and Combinatorics,
10(2/3):367–388, 2005.

BIBLIOGRAPHY 181

Zuidema, W. The major transitions in the evolution of language. PhD thesis,
University of Edinburgh, 2005.

Zuidema, Willem. Parsimonious Data-Oriented Parsing. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning (EMNLP-CoNLL), pages
551–560, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

Zwicky, Arnold M. Heads. Journal of Linguistics, 21(1):pp. 1–29, 1985.

Index

apposition, 112, 119
artificial symbols (A), 22, 29

back-off, 52
bayesian inference, 42
bilexical dependency grammars, 91
binarization, 74
block category, 112, 116
block of words, 110, 111
bottom-up grammar, 36
bubble trees, 131

CFG, see context-free grammar
check conditions, 23
chunking, 123
conditioning context, 22, 23
conjunct, 112
constituent, 5
content word, 111
context-free grammar, 8, 24, 90
coordination, 112, 117

Data-Oriented Parsing, 54, 55
dependency relation, 86, 111
dependency-structure, 5, 6, 7, 21, 85
dependent, 6, 87
discriminative model, 44, 99
dominance relation, 50
DOP, see Data-Oriented Parsing
Double-DOP, 55, 73, 76, 78, 83
DS, see dependency-structure

DS to PS conversion, 145

Eisner’s models, 95
elementary fragment, 22
EM, see Expectation-Maximization al-

gorithm
equal weights estimate, 69
evaluation, 13, 76, 102, 124, 142
event space, 22
EWE, see equal weights estimate
Expectation-Maximization algorithm,

41, 69

functional categories, 88
functional word, 111

generative events, 22
generative grammar, 18
generative grammar examples, 30
generative model, 4, 18, 44, 95
generative process, 7, 25
Goodman transformation, 57
governor, 6, 87
grammar extraction, 30
grammar symbols (N), 22

head, 6, 51, 87, 89, 93, 116
head-driven models, 50, 51, 86
head-driven phrase-structure grammar,

93
held-out estimation, 59

183

184 Index

history, see conditioning context
horizontal markovization, 52, 54
HPSG, see head-driven phrase-structure

grammar

Inside-Outside algorithm, 41, 69, 72
introspective approach, 3
IO, see Inside-Outside algorithm

junction, 112, 117
junction operation, 110

lexical functional grammar, 93
LFG, see lexical functional grammar93
likelihood, 41

max constituent parse, 71
max rule sum, 71
maximizing objectives, 70
maximum likelihood estimate, 41, 69
maximum spanning tree, 99
MCP, see max constituent parse
meaning text theory, 94
MLE, see maximum likelihood esti-

mate
most probable derivation, 70
most probable parse, 71
MPD, see most probable derivation
MPP, see most probable parse
MRS, see max rule sum

null symbol (⊘), 22, 23, 29

parsing, 67, 95
parsing results, 76, 102, 105, 125
PDT, see Prague Dependency Tree-

bank
phrase-structure, 5, 7, 21, 49
Prague Dependency Treebank, 128
probabilistic model, 10, 66
probabilistic tree-generating grammar,

38
probability distribution, 38
probability distribution estimates, 39
projectivity, 88

PS, see phrase-structure
PS to DS conversion, 89
PS to TDS conversion, 119

recurring fragments, 58
relative frequency estimate, 40, 69
reranking, 43, 100, 125
RFE, see relative frequency estimate
right sister insertion grammar, 32, 33
rule factorization, 52

sandwich insertion grammar, 34
semantics, 4
smoothing, 74, 104, 147
Stanford typed dependency represen-

tation, 128
start symbol (⊙), 22, 29
state-splitting models, 53, 79
stop symbol (⊕), 22, 29
substitution operation, 56
supervised learning, 18
symbolic grammar, 18
symbolic tree-generating grammar, 22
syntactic ambiguity, 19, 20, 38
syntactic representations, 5

TDS, see Tesnière Dependency-Structure
Tesnière Dependency-Structure, 10, 21,

109
The CCG-bank, 131
transference, 110, 113
transition-based model, 100
tree probability, 39
tree structures, 20
tree-adjoining grammar, 35
tree-substitution grammar, 30

unknown words, 74
unsupervised learning, 18

valence, 12, 109, 112

wild-card symbol (⍟), 22, 23, 29
word grammar, 94

X-bar theory, 93

Samenvatting

Deze dissertatie gaat over het leren van syntactische boomstructuren aan de hand
van generalisaties over geannoteerde corpora. Verschillende probabilistische mo-
dellen worden onderzocht, met drie verschillende representaties.

Corpora voor standaard zinsstructuur (phrase-structure) en afhankelijkheids-
structuur (dependency-structure) worden gebruikt om de modellen te trainen en
te testen. Een derde representatie wordt gëıntroduceerd, gebaseerd op een sys-
tematische maar compacte formulering van de originele afhankelijkheidstheorie
zoals gëıntroduceerd door Lucien Tesnière. Deze nieuwe representatie omvat alle
voordelen van zinsstructuren en afhankelijkheidsstructuren, en is een toereikend
compromis tussen adequaatheid en eenvoud van syntactische beschrijving.

Eén van de belangrijkste bijdragen van deze dissertatie is de formulering van
een algemeen kader (‘framework’) voor het definiëren van generatieve modellen
van syntaxis. In elk model vallen de syntactische bomen uiteen in elementaire
constructies welke opnieuw gecombineerd kunnen worden teneinde nieuwe syn-
tactische structuren te genereren door middel van specifieke combinatieoperaties.

Voor het leren van zinsstructuren wordt een nieuwe methode van Data-Georiën-
teerd Ontleden (Data-Oriented Parsing; DOP) gëıntroduceerd. In navolging van
het originele DOP gedachtegoed worden constructies van willekeurige grootte ge-
bruikt als bouwstenen van het model; echter, teneinde de grammatica te beperken
tot een kleine doch representatieve verzameling van constructies worden alleen
constructies die meerdere keren voorkomen gebruikt als verzameling van voor-
beelden (exemplars). Voor het vinden van terugkerende fragmenten is een nieuwe
efficiente “tree-kernel”-algoritme ontworpen.

Wat betreft de andere twee representaties: twee generatieve modellen worden
geformuleerd en geëvalueerd met behulp van een systeem voor herordenen (re-
ranking). Deze simpele methodologie wordt gëıntroduceerd in dit werk en kan
gebruikt worden bij het simuleren van alternatieve automatische ontleders en bij
het (her)definiëren van syntactische modellen.

185

Abstract

The thesis focuses on learning syntactic tree structures by generalizing over an-
notated treebanks. It investigates several probabilistic models for three different
syntactic representations.

Standard phrase-structure and dependency-structure treebanks are used to
train and test the models. A third representation is proposed, based on a sys-
tematic yet concise formulation of the original dependency theory proposed by
Lucien Tesnière (1959). This new representation incorporates all main advantages
of phrase-structure and dependency-structure, and represents a valid compromise
between adequacy and simplicity in syntactic description.

One of the main contributions of the thesis is to formulate a general framework
for defining probabilistic generative models of syntax. In every model syntactic
trees are decomposed in elementary constructs which can be recomposed to gen-
erate novel syntactic structures by means of specific combinatory operations.

For learning phrase-structures, a novel Data-Oriented Parsing approach (Bod
et al., 2003) is proposed. Following the original DOP framework, constructs of
variable size are utilized as building blocks of the model. In order to restrict
the grammar to a small yet representative set of constructions, only those recur-
ring multiple times in the training treebank are utilized. For finding recurring
fragments a novel efficient tree-kernel algorithm is utilized.

Regarding the other two representations, several generative models are for-
mulated and evaluated by means of a re-ranking framework. This represents an
effective methodology, which can function as a parser-simulator, and can guide
the process of (re)defining probabilistic generative models for learning syntactic
structures.

187

Titles in the ILLC Dissertation Series:

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy
and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Re-
trieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

ILLC DS-2011-11: Gideon Borensztajn
The neural basis of structure in language

