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Chapter 1

Introduction

Human languages are highly structured both from a syntactic and from a semantic
point of view. This fundamental property makes it possible to efficiently convey
an unlimited number of semantic concepts through natural language sentences.
Crucially, multilingual data created by translation involve an additional layer of
structure, which pivots between the syntactic and semantic patterns that appear
in the different manifestations of human language.

In this thesis, we present methods to automatically learn phrase-based Statis-
tical Machine Translation (SMT) models that assume a latent bilingual structure
as their central modelling variable. Acknowledging that each language is strongly
characterised by its individual structural properties, we aim to learn a bilingual
structure that augments and supersedes its monolingual counterparts to bridge
the gap between them. This structure is a latent one, because the translation
data that we use to discover it do not explicitly identify it. The parallel corpora
we use, consist of source sentences in the language we wish to translate from,
paired with an existing human translation in the target language, but without
any information on why the particular translation was chosen.

The goal of uncovering the hidden structure of translation is not new. On the
contrary, it has formed the spearhead of Machine Translation (MT) research, right
from the first steps of this field and up to this day. Already in the early days of
MT, researchers strove to manually identify the latent patterns of translation, and
encode them as a set of rules that governs the translation process. However, it was
gradually recognised that the level of complexity of cross-language communication
rendered this effort extremely difficult. Statistical Machine Translation aims to
overcome the limitations of rule-based systems, through automatically learning
bilingual correspondences between the source and target sentences from parallel
corpora. All SMT models also assume an explicit or implicit latent structure in
translation data, and one of the central problems in SMT is learning this bilingual
structure using a parallel corpus.

Crucially, SMT research, in its large majority, has been fairly modest in the

1



2 Chapter 1. Introduction

kinds of structure assumed in its models, not daring to explore the complexity and
richness of bilingual data. SMT models mostly stay close to the lexical surface to
model translation from strings to strings, greatly trivialising the syntactic aspects
of language. These oversimplifying assumptions allowed to avoid the learning
challenges posed by more complex models of translation.

In this work, we move further than this and contribute methods to model
and learn the latent structure of translation. We choose to face the problems
that plagued previous efforts in this direction and propose solutions. We find
that, to a large extent, these problems can be attributed to the sparse nature of
translation data. As the models become more complex, näıve learning algorithms
are increasingly exposed to the danger of fixating on the particularities and the
inherent noise of training data, crucially missing the opportunity to identify the
underlying patterns.

We contribute a learning framework that addresses these issues, based on a
long-established Machine Learning method: Cross-Validation. We show how this
can be fused with the well-understood Maximum Likelihood Estimation (MLE)
approach, to formulate a Cross-Validated MLE (CV-MLE) learning objective that
directly aims to discover latent patterns that generalise well. We further provide
the Cross-Validated EM algorithm, an instance of the equally well-understood
Expectation-Maximization algorithm, to optimise parameters of models employ-
ing latent variables according to the CV-MLE criterion.

We subsequently apply our learning framework to induce, for the first time
using a clear learning objective, translation models which capture the hierarchical,
recursive structure of translation. Our method learns how to exploit monolingual
syntactic structure to discover linguistically motivated translation patterns. We
empirically show that our learnt models compare favourably to the state-of-the-
art across multiple language pairs. In this way, we showcase how learning the
structural aspects of translation can aid in delivering tangible improvement in
translation performance.

In the rest of this chapter, we briefly introduce the three concepts which
underlie this thesis.

1. We highlight the latent character of bilingual correspondence and consider
what this implies for methods aspiring to automatically learn it.

2. We discuss different approaches to modelling translation structure and in-
troduce the translation paradigms that we will employ in later chapters.

3. We consider the task of learning models assuming latent translation struc-
ture variables and discuss some of the challenges that we address in the rest
of the thesis.

We close the introduction to this work with an overview of each of the chapters
that follow.



1.1. The Latent Nature of Translation 3

1.1 The Latent Nature of Translation

We regard as translation structure the bilingual patterns that describe the cor-
respondences between pairs of sentences in two languages, with each considered
as the translation of the other. This structure identifies how the components
of each sentence map to those of its translation counterpart. As such sentence
components we might for example consider words, contiguous or discontiguous
phrases, linguistic constituents or semantic units. Translation structures describe
how these components correspond to each other, explaining the transformations
taking place during the translation process.

In an SMT model trained from parallel corpora, the model variables corre-
sponding to the translation structure are latent. The training corpora consist of
whole source sentences each paired with their target language translations, with-
out further annotation regarding how their sub-strings relate to each other. Even
though sometimes, as is the case in this thesis, these training sentence-pairs might
also be word-aligned1, we still cannot directly identify in the data other bilingual
patterns, such as the clustering of words into phrase-pairs or the hierarchical
correspondences between bilingual spans. A model assuming latent translation
structure considers the values of the latent structure variables as missing from the
training data; the problem of modelling them involves learning from incomplete
data.

The training data provide no explicit clues on the form or properties of the
hidden translation structure. It is the task of the modeller to define these by set-
ting up the parts of the translation model space relating to the latent structural
variables. Modelling options include choosing a word or phrase-based approach,
assuming a flat structure directly over the lexical surface or a multilevel hierar-
chical structure, establishing a link between syntactic and translation analyses
etc.

We believe that good choices related to the assumptions on the form of the
latent translation structure, are those that lead to learning translation models
which generalise well and translate adequately. This entails that the appropri-
ateness of a model assuming a certain flavour of hidden translation structure
must be evaluated in relation to the data that it will first train upon and those
that it will later process, as well as the algorithmic context within which it will
be employed. The learning algorithms which are used to train it, as well as the
translation (decoding) apparatus that will be used to select translations for source
sentences given the trained model, can also have a significant impact on the ac-
tual translation performance of the model. Furthermore, some translation models
perform better in practice for certain language pairs, even for certain translation
directions between them.

1Word-aligned sentence-pairs include the word to word correspondences between the source
and target sentences. These correspondences can be automatically identified by trained word-
alignment models.
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Language Sparsity Irrespective of the particular choices involved, translation
structure modelling seeks to take advantage of the inherent structural proper-
ties of monolingual source and target data to better model the correspondences
between them. One might argue that in the face of the increasing availabil-
ity of parallel training data, aiming to understand these correspondences is not
necessary. As the size of the training data grows, there is a higher chance of
retrieving from them the translations for large segments of test source sentences,
eliminating the need to analyse how smaller fragments combine. However, such a
view disregards the sparse nature of language. While extracting the translations
of multi-word fragments from the training data has been shown to significantly
raise translation quality (Och and Ney, 2004; Koehn et al., 2003; Chiang, 2005a)
and the empirical part of this thesis uses solely such models, there is a limit on
the extent that this can be applied to avoid modelling how these fragments com-
bine. Even if we had access to a parallel corpus consisting of all the sentences on
the world wide web and their translations, we would find it hard to match longer
segments of yet unseen source sentences. This hardly relates solely to rare uses
of language, but also for seemingly ‘normal’ segments of sentences such as the
first four words of this sentence2. Irrespective of the size of our training data,
the sparsity of natural language makes modelling the latent structural aspects of
translation necessary, in order to produce fluent translations that convey meaning
accurately.

1.2 Modelling Translation Structure

The development of translation models in the literature has proceeded in a step-
wise fashion. Right from the beginning of SMT, the seminal work on the IBM
Statistical Machine Translation models (Brown et al., 1993) was presented as a
succession of translation models of increasing complexity. Formulating translation
models is challenging and involves weighing together the perceived expressiveness
of the models on the one hand, with the complexity of the computations involved
and the machine learning challenges on the other.

From a probabilistic point of view, any translation model assumes a certain
amount of structure between sentence-pairs, by preferring translations with cer-
tain properties (e.g. monotone translations that largely keep the word-order
intact) over alternative ones. In this thesis, we focus on models assuming transla-

2Searching the web for the phrase ‘this hardly relates solely’ returns zero matches on Google,
while ‘this hardly’ and ‘relates solely’ returns hundreds of thousands of matches. To be able
to translate the original four-word phrase adequately, a system having access to a hypothetical
parallel corpus with the size of the web must still know how to combine together the translations
of its two-word sub-phrases. The same applies for other phrases from this paragraph such
as ‘web and their translations’, ‘translations of multi-word fragments’, ‘while extracting the
translations’, ‘view disregards the sparse’ and many others. A lot of relatively short phrases
from this thesis, like in any other natural language text, have never been formulated before.
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tion structures based on contiguous and discontiguous multi-word units (phrases).
The value of such multi-word units had been already recognised in the original
IBM SMT models (Brown et al., 1993). While these early models are widely
referred to as ‘word-based’, a subset of them3 considers how single words produce
multiple words as their translation, and models their tendency to cluster together
as a phrase in the translated sentence. However, it was Phrase-Based SMT (Och
et al., 1999; Koehn et al., 2003) that introduced modelling the phrase to phrase
(i.e. many-to-many words), mapping between the source and target sentences.

A Phrase-Based Approach In this thesis we also follow a phrase-based ap-
proach to translation, considering the correspondences between both contiguous
and discontiguous multi-word segments of sentences. Under this view, the trans-
lation structure for a sentence-pair, consisting of a source sentence and its target
language translation, involves the following aspects:

Phrase Segmentation The structure must describe how the sentence-pair is
segmented in phrase-pairs, where each target phrase in a phrase-pair is the
translation of its source counterpart. These phrase-pairs can be contiguous
(e.g. in lowercased English-French 〈i am / je suis〉), or discontiguous (e.g.
〈not / ne . . . pas〉). Each phrase-pair is considered atomic, i.e. it cannot
be further analysed in terms of combining together smaller phrase or word-
pairs.

Reordering The target parts of phrase-pairs are frequently reordered in relation
to the order of the source phrases they are paired with. The translation
structure must specify how the source and target parts of phrase-pairs are
positioned in the source and target sentences respectively.

Abstract Hierarchical Structure Some of the models explored in this thesis
explain the correspondence between the phrase-pairs of a sentence-pair in
terms of an abstract hierarchical structure. This makes use of abstract
(unlexicalised) categories, possibly linguistically motivated, which are com-
bined together to form a hierarchical, recursive structure spanning across
the sentence-pair. This structure might also describe the reordering pat-
terns between the phrase-pairs.

Hierarchical Modelling As the thesis progresses, we focus on models assum-
ing an abstract hierarchical translation structure that progressively gets more
involved. These models will be based on the probabilistic Synchronous Context-
Free Grammar formalism and its Inversion-Transduction Grammar subset (Wu,

3IBM Model 3 introduces a ‘word fertility’ variable tracking the number of words produced
as the translation of a single word. Models 4 and 5 further model the tendency of these multiple
words originating as translations of the same word to cluster together.
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1997). This formalism extends the familiar concept of probabilistic Context-Free
Grammars from the monolingual to the bilingual domain, to model pairs of strings
instead of single sentences. It allows to both model discontiguous phrase-pairs as
well as a hierarchical bilingual structure making use of abstract categories that
are recursively expanded to derive a sentence-pair.

The introduction of synchronous grammars for SMT (Wu, 1997; Chiang,
2005a) cleared the way to take advantage of the inherent hierarchical structure of
language in Machine Translation. This created the conditions to bring together
the hierarchical, phrase-based modelling of MT with the existing thread of re-
search exploring linguistic syntax-based SMT (Yamada and Knight, 2001; Galley
et al., 2004). The result is work which explores hierarchical translation models
driven by linguistic syntax for monolingual data.

This thesis concerns itself with all of the above models of translation struc-
ture. A comprehensive presentation of these models can be found in Chapter 2,
while Chapters 4 to 6 examine our empirical work on learning progressively more
complex models assuming a latent translation structure.

1.3 Learning Phrase-Based Translation Struc-

ture

Expectation-Maximization After establishing a certain translation model
space, the next step involves estimating its parameters from the parallel training
data. The introduction of SMT methods in terms of the IBM SMT models was
based on employing the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) to estimate translation model parameters according to a Maximum
Likelihood Estimation (MLE) learning objective. Translation models are typi-
cally too complex to compute an MLE estimate analytically. Instead, the EM
algorithm iteratively climbs the training data likelihood function producing a se-
ries of estimates, each further raising the data likelihood until convergence to a
local optimum. The same methodology has been applied to other word-based
SMT models such as the HMM alignment model (Vogel et al., 1996). However,
as the translation models became more complex and especially after the introduc-
tion of Phrase-Based SMT, the weaknesses of näıve applications of EM became
evident, and researchers turned to heuristic, ad hoc estimators.

Learning Fragment Models The transition to phrase-based models brought
with it new learning challenges. As we discuss in detail in Chapter 3, phrase-
based SMT models belong to the wider family of Fragment Models (FMs), which
was first introduced in the context of Data Oriented Processing (Scha, 1990; Bod,
1992; Bod et al., 2003). FMs model complex data by considering how these are
composed from data fragments of arbitrary sizes, up to regarding a complete data
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point as a single fragment. This modelling approach of FMs is extremely powerful,
allowing to learn models with an arbitrary level of abstraction from the training
data instances, leaving it to the learning algorithm to select the abstraction level
which better generalises.

However, arriving at an abstraction level which will perform well when ap-
plying the model on yet unseen data is, almost by definition, extremely difficult
for any learning objective or training algorithm based on the notion of ‘fitting’
the training data. The model space of FMs includes estimates which fit the
training data so well that they essentially memorise them, while at the same
time failing to anticipate novel data instances. Learning algorithms fitting the
training set will return such degenerate estimates, leading to poor generalisation
performance. Maximum Likelihood estimation and the EM algorithm fall in this
category and for this reason, when applied straightforwardly, are of little use to
estimate phrase-based SMT models and Fragment Models on the whole.

These issues led to the current trend of training phrase-based SMT models
heuristically. Interestingly, these learning challenges are hardly new in the field
of Natural Language Processing. They have been encountered before in the lit-
erature on the estimation of a natural language parsing model: Data Oriented
Parsing (Prescher et al., 2004; Zollmann and Sima’an, 2006). In this thesis, we
show how phrase-based SMT modelling is related to this prior literature and
Fragment Modelling in general, and how all these models can benefit from the
application of more appropriate learning approaches.

Learning to Generalise with CV-EM In order to formulate a solution, we
will consider how these learning challenges touch upon a foundational problem in
Machine Learning: addressing overfitting and estimating the potential of mod-
els to generalise, frequently understood in terms of the well-known bias-variance
trade-off. Increasing the complexity of a model typically increases its ability to fit
the training data, but also entails the danger of adapting to their particularities
too closely, missing the underlying patterns. There has been a host of solutions
proposed to alleviate this problem and find a good balance between fit and gen-
eralisation capacity. These include data-driven methods such as validation and
cross-validation, methods employing Bayesian priors to counter overfitting or in-
formation theoretic approaches such as the Bayesian (Schwarz, 1978) and Akaike
(Akaike, 1974) Information Criteria.

In this work, we revisit the problem of employing the EM algorithm for phrase-
based and hierarchical translation models. We show that a heuristic solution to
the estimation problems is not necessary and aim to unlock the potential of EM
as an estimator for modern SMT models, by directly addressing the learning chal-
lenges involved. To do this, we opt for the data-driven Cross-Validation method.
We integrate Cross-Validation within the Expectation-Maximization algorithmic
framework to arrive at Cross-Validated EM (CV-EM): an instance of the EM al-
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gorithm which optimises model parameters according to a Cross-Validated Max-
imum Likelihood Estimation (CV-MLE) objective. The application of the CV-
EM algorithm, which we present in Chapter 3, will have a crucial role in our
empirical work. It will contribute in leading estimation away from the overfit-
ting hypotheses over the value of the latent translation structure variables, and
towards regions of the parameter space which appear to generalise well according
to a cross-validation criterion.

Other chapters consider the development of learning methodologies centred
around the CV-EM algorithm for a series of latent translation structure models of
increasing complexity. Learning contiguous Phrase-Based SMT models in Chap-
ter 4 addresses the challenges of disambiguating the segmentation of sentence-
pairs in phrase-pairs. Chapter 5 builds upon this to proceed to learn phrase-based
models assuming a relatively simple hierarchical translation structure. Finally,
Chapter 6 introduces a methodology to induce models using a linguistically mo-
tivated abstract translation structure, taking advantage of cues related to the
syntactic structure of language to explain the correspondences between the two
sides of bilingual data.

1.4 Thesis Overview

We close this introductory chapter with an overview of the rest of the thesis.
For each chapter, we describe the relevant research context and delineate our
contributions, our key empirical findings and conclusions.

Chapter 2: The Crossroads Between Machine Translation
and Machine Learning

In this chapter, we follow the crossing paths of Statistical Machine Translation
and Machine Learning. We start by examining some of the modelling paradigms
that have been influential on SMT research, such as the noisy-channel approach of
Shannon (Shannon, 1948), and examine the contrast between generative and dis-
criminative modelling of translation. We also consider a categorisation of transla-
tion modelling frameworks, according to their approach on abstracting away from
the lexical surface, the nature of the assumed latent variables and the learning
methodology applied.

We continue with a presentation of the SMT modelling frameworks that are
relevant to this work, such as the IBM word-based SMT models (Brown et al.,
1993), Phrase-Based SMT models (Och et al., 1999; Koehn et al., 2003; Marcu and
Wong, 2002) and Hierarchical SMT (Wu, 1997; Chiang, 2005a). We pay particular
attention to the modelling concepts behind the latent translation variables that
each of these models assumes, such as word and phrase alignments, segmentation,
reordering and translation hierarchical structure. For every modelling framework,
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we highlight its impact in the SMT literature and describe the learning challenges
it introduced and how these were treated. In this way, we trace the progression
of Machine Learning use in SMT research, which starts from the employment of
well-founded estimation methods such as the EM algorithm, only to gradually
resort to heuristic ad hoc solutions as the learning challenges mounted.

This thesis aspires to reconnect the learning methodology for modern phrase-
based and hierarchical SMT models with the principled learning approaches em-
ployed in early work on SMT, in order to overcome the limits of the heuristic
training methods. In the second part of the chapter, we build the theoretical
background that will allow us to gain insights in the problems involved and that
will provide the foundations for the learning methodology we propose to address
them. We present the Expectation-Maximization algorithm, together with its
crucial algorithmic and estimation properties. We proceed to examine the Bias-
Variance decomposition of the Generalisation Error produced by a model and
discuss the application of the Cross-Validation method to estimate it. The EM
algorithm and Cross-Validation will form the two theoretical pillars under the
novel learning algorithm we introduce in the next chapter: Cross-Validated EM.

Chapter 3: Fragment Models Estimation with the CV-EM
Algorithm

The assumptions behind many modelling paradigms for complex, structured data,
such as Markovian modelling or Bayesian Networks, can be understood to model
data by examining how these are derived by combining together fixed-size data
fragments. The Data Oriented Processing (DOP) paradigm (Scha, 1990; Bod and
Scha, 1996) introduced the concept of Fragment Modelling: the derivation of data
points from data fragments of arbitrary sizes, up to considering full data points
themselves as single fragments. This is a modelling approach which is highly
interesting for phrase-based SMT models assuming a latent translation structure.
These too belong to the family of Fragment Models, with the data fragments for
these models being contiguous or non-contiguous phrase-pairs, and the rest of the
latent structure describing how these combine together.

In Chapter 3 we begin by examining the fragment-based DOP paradigm and
its well-known implementation for natural language parsing, Data Oriented Pars-
ing (Bod et al., 2003). We then abstract away from particular applications of
DOP, to examine the implications of training Fragment Models using estimators
which maximise model fit, such as Maximum Likelihood Estimation, extending
earlier findings (Prescher et al., 2004; Zollmann and Sima’an, 2006). We consider
why such training methods fail to produce estimates that generalise and discuss
some of the alternatives proposed in prior literature.

In the second part of the chapter, we contribute a novel learning algorithm for
Fragment Models: Cross-Validated Expectation-Maximization (CV-EM). Firstly,
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we examine the pitfalls related to the step of formulating a Fragment Model from
the training corpus. During this step, copies of large segments of the training
corpus are essentially integrated in the model space. This makes trivial and
useless the crucial learning step of disambiguating between our hypotheses over
the values of latent model variables by fitting the training data, as the hypotheses
that will be preferred do nothing more than memorise the training corpus.

To address this, we introduce Cross-Validated Maximum Likelihood Estima-
tion (CV-MLE), an estimation objective which cross-validates the hypotheses
over the missing part of incomplete data to safeguard against hypotheses which
do not generalise. We show how CV-MLE crucially retains many of the desirable
estimation properties of plain MLE. We then contribute a practical implementa-
tion of the CV-MLE optimisation in terms of the CV-EM algorithm. We show
that CV-EM is a true instance of the Expectation-Maximization algorithm and
discuss its algorithmic and estimation properties and guarantees. We close with a
comparison of CV-EM to prior research in model estimation and with an overview
of what CV-EM has to offer for Fragment Model estimation.

Chapter 4: Learning Phrase-Pair Segmentation

Chapter 4 is the first of a series of three chapters which make up the second part of
this thesis. They present our contributions on the learning of three distinct SMT
model families of increasing complexity, each considering different assumptions
on the form of the hidden latent translation structure.

In this chapter, we begin by contributing a method to learn the conditional
translation probabilities of Phrase-Based SMT (PBSMT) models employing con-
tiguous phrase-pairs, as a replacement for the heuristic estimators that are typi-
cally used. These probabilities are the central probabilistic component of PBSMT
models and estimating their values essentially boils down to disambiguating how
sentence-pairs segment into contiguous phrase-pairs.

Prior research had shown that a Maximum-Likelihood estimation objective as
optimised by the EM algorithm performs considerably worse than the heuristic
estimators (DeNero et al., 2006). We argue that this is not surprising, by showing
that PBSMT models are instances of Fragments Models, and for this reason
inherit the estimation problems that plague this model family. Even though
the heuristic estimators already provide reasonable translation performance, we
motivate the need for a better founded estimation methodology and describe how
CV-EM can be applied instead to estimate the PBSMT model parameters.

Our approach is based on using the CV-EM algorithm to disambiguate sentence-
pair segmentation by maximising the Cross-Validated conditional likelihood of
each sentence in a sentence-pair given its counterpart, across both translation di-
rections. Our algorithm explores a binary segmentation space where each phrase-
pair either combines monotonically or swaps in relation to the neighbouring ones.
Cross-validating this hypothesis space over segmentations using CV-MLE and
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CV-EM contributes in overcoming the overfitting tendency of MLE and arrive at
estimates which generalise well.

We evaluate our approach against a baseline employing a heuristic estimator
for translation from French and German on one side, to English on the other. We
find that our estimator performs at least on a par with the heuristic one, with
some configurations even performing slightly better. These experiments showcase
how the theoretically appealing properties of CV-MLE and CV-EM translate in
competitive empirical results. This finding essentially invalidates the need for a
heuristic estimator, as previously justified in the face of no access to alternatives
which perform at least equally well.

Chapter 5: Learning Stochastic Synchronous Grammars

The previous chapter already introduced the use of a binary segmentation space.
However, as our aim was to estimate the parameters of a PBSMT model, the
models we examined did not venture further than the lexical surface. In this
thesis, Chapter 5 marks the transition from such models assuming a flat latent
translation structure, towards models which consider translation as a recursive
process. The models we will examine are centred around a hierarchical latent
translation structure variable. Their formulation is based on the binary subset of
the stochastic Synchronous Context-Free Grammars (SCFGs), an extension of the
Context-Free Grammars for parallel strings, where every production’s right-hand
side employs up to two bilingual non-terminals. These grammars combine the
availability of algorithms to process them with a reasonable polynomial complex-
ity, together with a high coverage of translation phenomena (Wu, 1997; Huang
et al., 2009), with both features underlining their potential as foundations for
formulating translation models.

Modelling with a synchronous grammar aims to take advantage of the recur-
sive nature of language, as described by monolingual grammars, to capture the
bilingual translation patterns. Still, the expressiveness of these models introduces
new modelling and learning challenges.

Firstly, while the SCFG formalism seems superficially highly similar to its
monolingual predecessor, by linking together the recursive structures of the source
and target sentences, the result is more than the ‘sum’ of the two. It also specifies
the syntactic element correspondences and the reordering patterns between the
syntactic structures of the two languages. In this chapter, we discuss this, argue
that an SCFG grammar must be designed with these issues in mind and contribute
a design which addresses this, the ‘switch’ SCFG.

Secondly, the latent variable of stochastic SCFG models encapsulates sev-
eral aspects of translation which previous models considered separately. While
PBSMT models separate phrase segmentation from reordering, the latent hierar-
chical structure assumed by SCFG-based models must not only capture both of
these core parts of the translation processes, but also their interdependence. As
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an example, such a latent variable must regulate the trade-off between a detailed
multi-level hierarchical structure and the memorisation of longer phrase-pairs: a
sentence-pair segmented in few, long phrase-pairs necessitates a relatively shallow
hierarchical structure to explain how these combine together.

Chapter 5 considers if the CV-EM algorithm is able to effectively learn such
latent variables despite these issues. First, we describe how models employing
a phrase-based SCFG as their backbone fall into the Fragment Models fam-
ily, motivating the use of the CV-EM algorithm for their estimation, and then
describe an implementation of CV-EM for SCFGs. We then consider learning
stochastic grammars based on two SCFG designs, a simple one reminiscent of
the abstract structure employed by standard hierarchical SMT implementations
(Chiang, 2005a), as well as one employing our ‘switch’ SCFG design. We test the
CV-EM induced grammars for both designs against a standard hierarchical trans-
lation baseline on a translation task from French to English. We find that both
designs offer translation performance on a par with the heuristically estimated
baseline, with the ‘switch’ SCFG scoring better than the simpler variation.

Chapter 5 is crucial in examining the potential of the CV-EM algorithm to
learn translation models that assume a latent translation structure which, in
contrast to Chapter 4 is not directly attached to the observed lexical surface.
By confirming that our learning methodology is able to also learn such latent
variables, we prepare the grounds for the next chapter. There, we transition from
the simple hierarchical structures examined in Chapter 5 towards a significantly
more complex, linguistically motivated latent translation structure.

Chapter 6: Learning Linguistically Motivated Latent Trans-
lation Structure

While structure can be found in natural language when examining it at different
syntactic and semantic levels, linguistic syntax is widely considered as one of
its most salient properties. For this reason, the linguistic structure of sentences
has been targeted for more than a decade as an informative data source that can
lead to better translations. This has further turned the spotlight towards methods
which take a syntactic but not necessarily linguistic approach to translation, such
as SCFG-based approaches, as promising devices to model the dependence of the
translation process on linguistic notions of natural language structure.

Nevertheless, even though a host of translation phenomena can be described in
linguistic terms, it must be recognised that, overall, linguistic structure correlates
with a mere subset of the transformations that take place between the two sides of
a language pair (Dorr, 1994; Fox, 2002; Koehn et al., 2003). As a result, methods
which assume that translation can be fully explained in terms of correspondences
and transformations that are solely driven by the linguistic structure of sentences,
frequently fail to deliver competitive translation performance, due to imposing
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unnecessary constraints on the translation process. The challenge is to find ways
to take advantage of linguistic analyses when they are relevant for translation,
while avoiding to be overly constrained by them when they are not.

In Chapter 6, we contribute a method to learn a linguistically motivated hier-
archical translation model, by identifying the linguistic patterns which are infor-
mative for translation. We begin by constructing, for each training data sentence-
pair, a chart covering with multiple linguistically motivated labels each aligned
bilingual span. These labels are extracted from linguistic parses of the source
sentence, where each of the multiple labels covering every span describes it from
different linguistic perspectives and at varying levels of granularity. We then
consider all binary structures which employ these labels to analyse the parallel
training data, and use a translation-centric learning objective to disambiguate be-
tween them, according to their ability to explain the translation correspondences.
This allows us to learn a model which is able to recursively analyse in linguistic
terms the translation process across the whole sentence.

Our methodology builds on the foundations laid in the previous chapters. The
synchronous recursive structure we consider, the Hierarchical-Reordering SCFG
(HR-SCFG), is based on the principles behind the ‘switch’ SCFG of Chapter
5. The learning algorithm is an implementation of the Cross-Validated EM al-
gorithm, as introduced in Chapter 3. In Chapters 4 and 5 we applied CV-EM
for simpler translation models with most of their parameters directly relating to
the lexical surface. Here, we separate the estimation of the lexical part of the
model from the part related to the higher-level abstract hierarchical structure,
and apply CV-EM to learn the latter: a linguistically motivated recursive struc-
ture which explains the correspondences and transformations between source and
target sentences.

Crucially, contrary to other syntax-driven approaches (Way, 1999; Poutsma,
2000; Yamada and Knight, 2001; Galley et al., 2006; Huang et al., 2006; Liu et al.,
2006), our method is linguistically motivated but not constrained. A translation-
centric CV-MLE learning objective makes sure that only linguistically informed
structures that help to explain translation are preferred, while the use of Cross-
Validation aids in discovering those structures which are likely to generalise.

Other work (Marton and Resnik, 2008; Venugopal et al., 2009; Chiang et al.,
2009) takes a more flexible approach, which is more similar to our own efforts.
They opt to influence translation output using linguistically motivated features,
or features based on source-side linguistically-guided latent syntactic categories
(Huang et al., 2010). However, the features employed by these methods are
local in nature, considering the linguistic plausibility of applying individual syn-
chronous rules. As a result, these efforts totally lack the concept of a linguistically
motivated hierarchical abstract structure reaching across the whole sentence-pair,
which is exactly the focus of our own methodology.

The work of (Hassan et al., 2009) stands somewhat in the middle in compar-
ison with fully syntax-driven SMT on the one hand and approaches using local
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syntax-based features on the other. Their system extends the Direct Transla-
tion Model of Ittycheriah and Roukos (2007) with dependency-grammar based
syntactic features, and takes under account an incrementally built target lan-
guage dependency structure. However, their system solely considers minimal
phrase-pairs which translate single source words, and, while they reach further
than other feature-based systems, their target-side syntactic analyses are eagerly
constructed without reference to a globally optimal structure. In contrast, we
specifically focus on the challenges involved with training phrase-based systems
with many-to-many phrase correspondences, and search for the bilingual struc-
tures that best explain sentence-pairs in their entirety.

We complete the picture, by contributing a set of decoding techniques to
efficiently and effectively translate using the latent translation structure model
learnt by CV-EM. We find that the learnt models and our translation system
provides statistically significant translation improvements, up to +1.92 BLEU
score points, for four different empirical tasks, translating from English to French,
German, Dutch and Chinese.

The results of Chapter 6 complete those of Chapters 4 and 5, to provide con-
siderable evidence to back the key hypothesis of this thesis: models assuming
a latent translation structure can be learnt under a clear learning objective, as
implemented in terms of a well-understood optimisation framework and learning
algorithm. The learnt models are able to provide real-world, competitive transla-
tion performance in comparison to heuristic training regimes, rendering the use
of the latter unnecessary. Still, we believe that the true potential of our method-
ology is not in providing a reliable and effective substitute for these heuristic
estimators. On the contrary, it lies in carving a path to the future, by making
possible the estimation of powerful translation models that uncover the latent
side of translation, and whose estimation under ad hoc algorithms would have
been hardly possible.
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Chapter 2

Machine Translation and Machine
Learning Concepts

Machine Translation (MT) on the one hand and Artificial Intelligence (AI) and
Machine Learning (ML) on the other, have always followed crossing paths. MT
has constantly figured as one of the most prominent fields of AI research, with the
progress and disillusions on MT strongly affecting the appeal of AI, as highlighted
during the period before and after the ALPAC report (Pierce et al., 1966).

The last two decades, MT has flourished as a result of the availability of
more and cheaper computing power and the introduction of statistical models
for Natural Language Processing (NLP). Most of the MT systems before this
were based on translation lexica and fixed predefined rules which would ‘fire’
for a host of translation phenomena. In contrast, the statistical approach is
centred around the formulation of stochastic translation models and training these
models on corpora. The transition towards explaining the translation process
through a statistical model crucially allowed tapping into the wealth of Machine
Learning research in statistical estimation. Furthermore, it also contributed to the
introduction of novel Machine Learning approaches motivated by the challenges
posed by the MT models, such as the large number of parameters, the interplay
between memorising and generalising, dealing with yet unseen events and others.
This thesis follows this trend by contributing MT solutions through exploring and
proposing novel approaches on fundamental learning problems.

The pioneering work on Statistical Machine Translation (SMT) in the IBM
labs (Brown et al., 1990) introduced word-based statistical translation models.
From there on, the major steps in the SMT literature involve models translat-
ing contiguous phrases together (Och et al., 1999; Koehn et al., 2003) and later
recursive translation employing phrasal patterns with gaps (Chiang, 2005a). Re-
cent developments focus on employing hierarchical structure for MT, often taking
advantage of monolingual syntactic analyses, e.g. (Galley et al., 2004; Zollmann
and Venugopal, 2006; Mylonakis and Sima’an, 2011).

As the MT models become more complex however, the stress on the associated

17



18 Chapter 2. Machine Translation and Machine Learning Concepts

ML methods used to train them and translate with them is increased. Training
the IBM models already relied on approximations for the more complicated mod-
els. The subsequent step towards models employing phrases, hierarchical or not,
was also marked by a transition to heuristic estimation, making less clear how
the estimates relate to the training corpus. This is not without reason: it is
notoriously difficult to estimate such models. We believe however that moving
away from relying on hand-crafted arbitrary heuristics and towards well-founded
estimation is fundamental when progressing to even more complex models involv-
ing rich latent MT structure, in the same way that leaving behind hand-crafted
translation rules was important in the early years of statistical MT. This has re-
cently proved a very vibrant research direction and part of the work in this thesis
is occupied with this topic.

In this chapter we will first present the basic concepts of the key frameworks
and models for Machine Translation that play a role in this thesis. We begin by
presenting the IBM word-based SMT models, and continue with a discussion of
phrase-based and hierarchical SMT. In the second part, we will focus on the two
Machine Learning methods which form the backbone of the learning approach
contributed by this work. We will first examine the basics of the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977), a key and powerful statis-
tical estimation algorithm that has already been widely and successfully employed
for MT (Brown et al., 1993). Nevertheless, the application of EM on phrase-based
models exposed their strong tendency to overfit the training data and generalise
poorly. Keeping this in mind, we subsequently close the chapter by introducing
Cross-Validation (CV), a well-understood method to estimate the generalisation
error of model estimates. In the following chapter we will show how EM and
CV can be combined towards MT model estimation specifically aiming towards
strong generalisation over yet unseen data.

2.1 Modelling Machine Translation

The branch of Machine Translation where a high proportion of current MT re-
search is directed and on which this work focuses is Statistical MT. Given a
source language sentence f , the fundamental problem in MT is to produce its tar-
get language translation e by means of a computer program. Output e must both
sufficiently convey the meaning of the original sentence f , as well as enjoy target
language fluency. SMT aims to achieve this through the application of statistical
models. By introducing a probability distribution p(e|f), assigning to every tar-
get sentence e a probability of being the translation of source input f , an SMT
system outputs the target sentence ê with the highest conditional probability:

ê = arg max
e

p(e|f) (2.1)
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Building an SMT system can be mostly divided in three parts. Firstly, it
involves designing the model p(e|f). Some of the questions here might be what
kind of translation phenomena does it capture and how does it capture them,
what are the parameters and which latent variables are assumed. Model design
plays a crucial role in SMT, as it defines the rules of the game: what needs to be
learnt from the training corpora and later applied to actually translate, according
to the modellers view of translation. After the model is set, we need to train it,
select the model instance which is best according to some learning objective, by
employing training data possibly coupled with prior knowledge. This entails the
usage of a statistical estimator. The final step, decoding , employs the trained
model estimate to actually translate by selecting for every input f the translation
ê according to equation (2.1).

2.1.1 The Noisy Channel Approach

Shannon’s noisy channel (Shannon, 1948) has been an influential paradigm for
SMT (Brown et al., 1990). Instead of directly modelling target sentences given
source input, we consider the target sentence as a message which got corrupted
while being transmitted through a translation communication channel, resulting
in the source sentence. Our objective is to retrieve this original message. We
use Bayes law to rewrite the search objective of (2.1) in the equivalent formu-
lation below, separately modelling the language of the target sentences and the
corruption of these sentences when translated from target to source.

ê = arg max
e

p(e|f)

= arg max
e

translation model︷ ︸︸ ︷
p(f |e)

language model︷︸︸︷
p(e) (2.2)

This crucially splits the modelling effort in a stochastic component focused
on translation correspondence, the Translation Model (TM), and a component
exclusively occupied with output well-formedness, the Language Model (LM).
Each of these models is then occupied with one of the two key objectives of the
translation system’s output outlined above: meaning correspondence and fluency.
Considering these two notions apart avoids modelling all aspects of translation
at once, letting the TM focus on the transformations that take place during
translation while the LM attends to output fluency. In addition, it also allows
employing different resources for training. While the translation model usually
requires more expensive bilingual data to train, language model training only
demands monolingual data which are cheaper to assemble in large quantities.

Early SMT work, such as the IBM models later discussed in this chapter,
applied the Noisy Channel paradigm in a relatively literal fashion. However,
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translation adequacy and fluency can in practice hardly be considered separate.
Malformed target output cannot appropriately convey the meaning of the source
sentence; an adequate translation would probably be expected to also be relatively
well-formed. Subsequent SMT research deviated from a strict reading of the
Noisy Channel approach, regarding the language model probability of the target
sentence as just one of the elements considered to assess the overall translation
probability, together with other, more bilingual in nature, translation features.

2.1.2 Generative and Discriminative Models

Generative translation models capture the stochastic joint generation of source
and target sentence pairs. They can also straightforwardly be employed to select
the translation e with the highest probability given f , as with f fixed we have:

ê = arg max
e

p(e|f) = arg max
e

p(e, f) (2.3)

These models are usually based on a generative process tracking the steps to
emit the tuple 〈e, f〉. For example, we might begin by considering the generation
of corresponding source and target word-pairs following the word order of the
source language, subsequently reordering the target language words to form the
target sentence. Each of the generative steps is modelled by a separate distri-
bution conditioned on the previous steps, often under independence assumptions
which simplify the modelling effort. Some conditional translation models p(e|f)
are formulated in a similar fashion, emitting e from f under a generative process
(Brown et al., 1993).

Generative models require extensive effort to consider all the steps and trans-
formations that take place during translation, as well as to introduce indepen-
dence assumptions taking into account the available training data (e.g. to avoid
overfitting) or computational limitations etc. In contrast, discriminative mod-
elling directly models the conditional distribution p(e|f), instead of putting effort
towards formulating a full generative process emitting samples 〈e, f〉. For MT,
this typically happens through employing feature functions φi(e, f), each assign-
ing a non-negative score examining the two sentences from a different perspective,
e.g. word or phrase correspondence, output fluency (frequently the LM score),
target word reordering and others. The modeller does not need to consider a
coherent generative story but only what kind of features could be useful in dis-
criminating between strong and weak translations. These scores are weighted
together log-linearly with weights λi and normalised to obtain the conditional
translation model (Och and Ney, 2004).

p(e|f) =
1

Zλ(f)
exp

(∑
i

λiφi(e, f)

)
(2.4)
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Figure 2.1: The Machine Translation pyramid

The step of estimating the feature weights is crucial. Possible training objec-
tives are constrained entropy maximisation (Berger et al., 1996) and error rate
minimisation according to a translation quality metric (Och, 2003).

Crucially, if we consider selecting the translation e with the highest probability
as a classification task, while for many machine learning tasks the class space is
relatively constrained, in MT (and NLP in general) the class space is very large
or even countably infinite. For this, frequently a generative process is still needed
as part of a translation system based on a discriminative model, to supply the set
of target sentence translations that will be scored by the model to select the most
probable one, sometimes producing also a score embedded as a feature function
of (2.4). The latter is the case for all phrase-based and hierarchical translation
approaches later discussed in this chapter.

One disadvantage of discriminative MT models is that it is more difficult to
introduce and train the parameters for latent variables in the model, such as
latent structure which is not part of the observed training data. In this thesis
we take a hybrid approach. We first train a generative model employing latent
translation variables, which is afterwards included as both a feature function and
a generative process backbone for a discriminative translation model.

2.1.3 Model Categorisation

Apart from the probabilistic formalisation approach that they follow as discussed
above (e.g. generative, discriminative, hybrid), MT models can be also cate-
gorised according to the, often latent, abstraction from the lexical level that they
employ. The familiar MT pyramid in Figure 2.1 (Vauquois, 1968) presents a view
on the different levels of abstraction. At the most basic level, MT models op-
erate directly on the lexical surface, translating and reordering based on lexical
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Figure 2.2: 3-axes categorisation of Machine Translation models

cues. Moving up the pyramid we find models which utilise syntactic and semantic
categorisations and representations, with a transfer step modelling the transfor-
mation of this representation from source to target form. Finally, at the top
of the pyramid stands the Interlingua approach, which is based on constructing
an internal, natural language independent abstraction of the full meaning of the
source sentence and subsequently building the target language from it.

Historically, MT research has followed an interesting pattern exploring the
MT pyramid. The early approaches on MT, starting already from the IBM-
Georgetown demonstration, emphasised the employment of grammatical abstrac-
tions and rule-based transfer steps between source and target language, while at
the same period the Interlingua approach was quite influential. Since the advent
of Statistical MT from the late 80’s and onwards, most state-of-the-art MT sys-
tems (e.g. (Brown et al., 1993; Och et al., 1999; Koehn et al., 2003)) directly
modelled translation on the lexical level, with this trend lasting for almost two
decades. Recently, there have been considerable research efforts of increasing so-
phistication on syntactical approaches on SMT (e.g. (Chiang, 2005a; Zollmann
and Venugopal, 2006)), finally delivering state-of-the-art performance, particu-
larly for language pairs with heavy reordering such as English-Chinese.

Wu (2005) introduces a 3-axes system to categorise MT models, presented in
Figure 2.2. Axis (a) examines if the model is mostly based on mathematical logic,
or if it makes substantial use of statistics and probabilities. All the models we
examine in this thesis are statistical MT models. The second axis (b) relates to
the degree of recursion in the model. At the bottom stand lexical-based models
like the IBM models, while moving up the axis we find collocational models such
as those employed in phrase-based SMT and finally fully compositional models
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such as those backed by Synchronous Context Free Grammars. The models con-
tributed in later chapters of this work fall in these last two categories along axis
(b).

Axis (c) considers if the model is based on abstracting versus memorising the
training data. In the first case, an abstraction such as a generative translation
model is built during training, which is later employed during test time to trans-
late. In contrast, example-based MT (Nagao, 1984) relies on memorising the
training data (examples) and reusing these to translate by breaking them down,
adapting and recombining them according to the input source sentence. Recent
SMT systems blur the line between statistical model estimation (schema-based
MT) and memorisation (example-based MT). For example, while Data Oriented
Translation (Poutsma, 2000) memorises aligned fragments of syntactic trees of
source and target sentences, it also learns a probabilistic model that describes
how to combine them together to derive sentence-pairs. Instead of training a
hierarchical translation model prior to test time, (Lopez, 2007) memorises the
training parallel corpus and extracts and scores recursive translation rules sep-
arately for every input sentence during test time. Furthermore, phrase-based
models, whether they are recursive in nature or not, memorise parts of the train-
ing data. In this thesis, inspired by Data Oriented Processing (Bod and Scha,
1996), we take this further by opting for an all phrase-pairs approach, extracting
and memorising all corresponding phrases of the training parallel corpus, up to
the whole sentence-pair.

2.2 Word-Based Translation

Statistical MT was introduced by researchers from the IBM T.J. Watson research
centre in the late 80’s (Brown et al., 1990). This first attempt at SMT was fur-
ther refined in the formulation of a succession of word-based translation models
of increasing complexity, the IBM translation models (Brown et al., 1993). The
models are founded on a Noisy-Channel approach to translation, as discussed
in section 2.1.1 above. The translation process that is being modelled is in-
verted, so that we introduce a target-to-source translation model p(f |e), as well
as a language model component p(e) over the target language. This relieves the
translation model from the task of concentrating probability mass on well-formed
output sentences, as would be required by a direct translation model p(e|f). This
task is assigned to the language model instead.

The authors recognise the three foundational problems in SMT: (a) estimat-
ing the language model probabilities p(e) over target language sentences e, (b)
estimating the translation model probabilities p(f |e) from target to source and
(c) decoding , i.e. searching for ê which maximises the product of the two as in
equation (2.2). SMT took advantage of the existing research on language mod-
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this   is   not   a   blue   box   .

ce   n   '   est   pas   une   boîte   bleue   .

Figure 2.3: An alignment between English and French

elling by the speech processing community1. Hence, attention was drawn to the
translation model, while the highly non-trivial task of decoding efficiently forms
a research direction of its own which we do not treat extensively in this thesis.

2.2.1 Alignments

The key concept introduced by the IBM models are word alignments , links be-
tween words which are considered translations of each other. For the parallel
sentence pair 〈e, f〉, A(e, f) is the set of word-position pairs of aligned words be-
tween the two sentences. Using French to English examples, these links can in
general connect a single source and target word (the - le), a single source to mul-
tiple target words (pick up - ramasser), a single target to multiple source words
(implemented - mis en application); or, considering every source word aligned to
every target word, multiple source to multiple target words (e.g. idioms such as
take the trouble - prendre la peine). The commonly aligned words need not be
contiguous (e.g. not - ne pas). An example of an aligned sentence pair can
be seen in Figure 2.3.

To simplify matters, the IBM models considered only alignments where every
source word f is at most aligned to a single target word e. As in Figure 2.3, this
can nevertheless result in multiple target words being aligned to the same source
word. For a source sentence f = fm

1 of length m and a target sentence e = el
1 of

length l, the alignment variable is then defined as the vector a := am
1 , with aj the

position of the target word that fj is aligned to. A source word is also allowed to
remain unaligned, in which case we consider it aligned with an additional empty
token at target word-position zero.

The alignment a between 〈e, f〉 is a latent variable, given that such information
is not normally part of a parallel training corpus. The translation probability must
thus sum over all values of a.

p(f |e) =
∑
a

p(f , a|e) (2.5)

1See (Chen and Goodman, 1998) for an overview of most models employed up to this day.
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2.2.2 Translation Models

With the help of the alignment variable and without loss of generality, we can
write employing the chain rule:

p(f , a|e) =

source length︷ ︸︸ ︷
p(m|e)

m∏
j=1

current alignment point︷ ︸︸ ︷
p(aj|aj−1

1 , f j−1
1 , m, e)

current lexical choice︷ ︸︸ ︷
p(fj|aj

1, f
j−1
1 , m, e) (2.6)

In the generative process of the equation above, first the length of the f
sentence is sampled from p(m|e). Subsequently, in series from left to right in
the order of f , the alignment point for the current source position is established
given the previous alignments and source words, as well as m and the e sentence.
Finally, the current source word is generated given a similar conditioning variable
set with the addition of the current alignment point established in the previous
step.

Working with such detailed conditioning contexts as in (2.6) leads to compu-
tational difficulties in estimation and can be prone to overfitting. The succession
of models in (Brown et al., 1993) are the result of applying different sets of as-
sumptions simplifying equation (2.6).

IBM Model 1 In the simplest of the translation models, p(m|e) is assumed
to be independent of both m and e and thus equal to a constant ε. For every fj

word, its alignment is sampled uniformly from the l word positions of e plus the
option of aligning to empty and is therefore (l + 1)−1. Finally, lexical selection
takes place conditioning only on the eaj

target word that fj is aligned to. Given
these assumptions, (2.6) can be rewritten as:

p(f , a|e) =
ε

(l + 1)m

m∏
j=1

p(fj|eaj
) (2.7)

Equation (2.7) establishes a foundational parameter set in MT models, the
conditional translation probabilities p(f |e), as well as a key data structure of MT
systems: the translation table holding these probabilities for every 〈e, f〉 pair.

IBM Model 2 Model 1 does not occupy itself with the word order in the two
strings as dictated by the alignment points and any reordering of the f words
is assigned an equal translation probability. Model 2 introduces non-uniform
alignment probabilities p(aj|j, m, l), by conditioning each alignment point on the
word position of the word being aligned. This allows preferring when translating
from French to English similar word positions between the two languages, as is
often the case in human translations. Under the assumptions of Model 2, (2.6)
becomes:
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p(f , a|e) =
ε

(l + 1)m

m∏
j=1

p(aj|j, m, l)p(fj|eaj
) (2.8)

Model 2 introduces a further prominent component of MT models, namely
a non-trivial reordering model aiming at distinguishing between good and weak
reorderings of translated, in this case lexical, sentence components.

IBM Models 3 to 5 Even though the IBM models are founded on a word-based
view of translation, many translation phenomena involve more than single words
in each of the two languages, with some examples already discussed in section
2.2.1. Models 3 to 5 venture to capture the translation of single target words e
into multiple source words. The tendency of certain e words to align to more
than a single source word is modelled through target word fertility distributions,
providing the probability of a given number of alignments leading to e. The
reordering models then allow capturing a preference for these commonly aligned
f words to be clustered together in the word order of sentence f .

HMM Alignment Model A different approach to the same problem is found
in (Vogel et al., 1996). The Hidden Markov Model (HMM) for word alignment
treats the clustering of translated words by modelling alignment as a Hidden
Markov process.

p(f , a|e) =
m∏

j=1

p(aj|aj−1, l)p(fj|eaj
) (2.9)

The latent alignment variable is modelled in a Markovian fashion, with every
alignment point conditioned on that of the previous source word under distri-
bution p(aj|aj−1, l). Target words are then emitted conditioned on the source
word that they are aligned to, as in the IBM models. This allows modelling in a
simpler fashion the movement of clusters of translated target words in the source
sentence than the IBM models.

While a detailed examination of these last models is beyond the scope of this
thesis, it is important to note that the need to model phrasal translations was
already recognised in word-based approaches, attempting to address this problem
through word-based modelling steps. Phrase-based translation, discussed later in
this chapter, capitalises on the advancements in word-based MT to directly model
phrasal translation phenomena.

2.2.3 Estimation

The parameters θ for these word-based translation models are trained with Maximum-
Likelihood Estimation (MLE) on a training parallel corpus X of sentence pairs
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〈e, f〉. Maximising the likelihood L of the corpus to retrieve MLE estimate θ̂, boils
down to maximising the conditional translation probability of independently emit-
ting source sentences given target sentences, as the language model probabilities
are constants given the sentence pairs.

L(X ; θ) =
∏
〈e,f〉

p(e, f ; θ) =
∏
〈e,f〉

p(e)p(f |e; θ) (2.10)

θ̂ = arg max
θ

L(X ; θ) = arg max
θ

∏
〈e,f〉

p(e)p(f |e; θ) = arg max
θ

∏
〈e,f〉

p(f |e; θ) (2.11)

All the word-based translation models of this section interpret translation as
the latent alignment variable a. Using equation (2.5), we rewrite the search for
the MLE estimate as:

θ̂ = arg max
θ

∏
〈e,f〉

∑
a

p(f , a|e; θ) (2.12)

For all the models discussed, solving this optimisation problem cannot be
addressed analytically. Instead, after initialising the parameter set, an instance of
the Expectation Maximisation algorithm iteratively climbs the likelihood function
returning a series of estimates, each increasing the training data likelihood until a
local maximum is reached. The models presented here largely succeed each other
by refining the parameter set. For this, they are usually trained in a pipeline
with the more complicated models initialising some of their parameters using the
estimates of simpler models.

Even though EM does not usually manage to find the global maximum of the
likelihood function with respect to the model parameters, the word-based trans-
lation models were noted for employing a clear learning objective during training.
This is a property not shared by the latter, phrase-based models discussed next.

2.2.4 The Word-Alignment Task

Overall, despite the fact that the word-based models are complete translation
models, they were little used for translation proper. Instead, they were repurposed
to word-align parallel corpora, i.e. retrieving for every sentence pair the alignment
â which maximises p(f , a|e). Since all the models discussed are based on the
assumption that every f aligns to a single e word, more complicated alignment
patterns can be attained by aligning across both translation directions, computing
â1 for target to source and â2 for source to target. A function of â1 and â2 can then
be employed to arrive at a hopefully more comprehensive alignment set, which
needs not obey the constraints imposed on the alignment space by the IBM models
(one alignment point per source word). Choices for this are the intersection of the
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two alignment sets, their union, or heuristic functions to retrieve an alignment
set between intersection and union (Och et al., 1999; Och and Ney, 2004).

The usage of word-based models for word-alignment was and still remains
crucial for the development of improved translation models . All but one (the
Joint Translation Model (Marcu and Wong, 2002)) of the MT models presented in
the rest of this chapter utilise training methods which assume the word-alignments
given, which in practice relates to alignments induced from the parallel corpus
using word-based translation models.

2.3 Phrase-Based Translation

Many translation phenomena span across multiple words. Examples include id-
iomatic expressions, agreement between words, meaning differences according to
the surrounding context and local reordering. Modelling such occurrences through
word-based means often leads to awkward models that are difficult to train and
decode with.

This motivated modelling phrasal translations directly, by means of memoris-
ing phrasal translation fragments and learning a model employing them to trans-
late. In this section we will restrict ourselves to approaches based on contiguous
phrases, while the next section treats hierarchical phrasal translation through a
recursive process. We first discuss conditional probability phrase-based models,
whose estimation is largely based on heuristics. We then subsequently present a
method that has been proposed to estimate phrase translation probabilities with
a clearer objective function: a joint probability phrase-based model.

2.3.1 Conditional Log-Linear Models

While phrase-based models were already introduced in earlier work such as (Wang
and Waibel, 1998; Och and Weber, 1998), modern Phrase-Based SMT (PBSMT)
traces its origins in the alignment template approach (Och et al., 1999; Och and
Ney, 2004). This original formulation was also based on bilingual word classes
(Och, 1999). As this feature is not widely adopted today as part of phrase-based
models, we drop it from the presentation below for clarity reasons.

Alignment Templates Assuming an already word-aligned corpus, an Align-
ment Template (AT) is a triple z = 〈ẽ, f̃ , ã〉, corresponding to a bilingual phrase-
pair together with the alignment points between the phrases’ words. In other
words, an alignment template is memorising a contiguous bilingual phrase-pair
together with the internal word-alignment between the two phrases. Some ex-
amples of ATs, covering a few of the phrasal translation phenomena mentioned
earlier such as local reorderings and multi-word expressions, can be seen in the
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Figure 2.4: Examples of alignment templates

matrices of Figure 2.4, where blocks indicate an alignment point between the
words on the two axes.

To arrive at translation e given source f employing ATs as building blocks,
we need three latent variables, each governing source sentence segmentation, AT
application and target sentence reordering, as can be seen in Figure 2.5. Firstly,
the source sentence is split in K contiguous phrases according to the value of
the segmentation variable σ, choosing from the set of all possible segmentations
Σ(f). Then, for each phrase f̃ of the segmented input, a sequence z = zK

1 of ATs
is applied. Each AT zi = 〈ẽ, f̃ , ã〉 has f̃i as its source phrase and leads to the
phrase’s translation ẽ as well as establishes the alignment points ã between them.
Finally, a reordering π = πK

1 of the ATs’ target sides positions with respect to
the source determines the word order of the output. The conditional translation
probability of an aligned sentence-pair within the AT model could then be written
as a conditional generative process.

p(e, a|f) =
∑

σ∈Σ(f)

segmentation︷ ︸︸ ︷
p(σ|f)

AT application︷ ︸︸ ︷
p(z|σ, f)

reordering︷ ︸︸ ︷
p(π|z, σ, f) (2.13)

If we assume that the AT corresponding to each of the phrases of the seg-
mented f sentence is applied independently, we have:

p(z = zK
1 |σ, f) =

K∏
k=1

p(zk = 〈ẽk, f̃k, ãk〉|f̃k) (2.14)

Heuristic Estimation An important point is that, in order to estimate the
parameters of p(z|f̃) above and those of the distributions in equation (2.13) in
general, the training corpus must either be already segmented in phrase-pairs
or we must disambiguate between the possible segmentations of each sentence-
pair. However, parallel corpora are normally not segmented and, as discussed in
(DeNero et al., 2006; Mylonakis and Sima’an, 2010), estimation of the AT model’s
distributions is prone to overfitting. For this, parameter estimation for the AT
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Ik ga morgen naar om mijn kinderen te zien .

Ik ga morgen om mijn kinderen te zien .

segmentation σ

alignment template application z

I am going hometomorrow to seemy kids .

reordering π

huis

naar huis

Ik ga morgen om mijn kinderen te zien .naar huis

I am going home tomorrow to see my kids .

Ik ga morgen om mijn kinderen te zien .naar huis

Figure 2.5: The alignment template approach latent variables

model takes place heuristically, disregarding the latent segmentation variable σ.

A multiset of ATs is constructed from the word-aligned parallel corpus, by
extracting ATs under the following heuristic rule: an alignment template is ex-
tracted once for every pair of 〈ẽ, f̃〉 phrases with (a) at least one alignment point
between words of the phrases and (b) all alignment points are contained within
the phrase-pair, i.e. there are no alignment points from words of the phrase-pair
leading to words outside the phrase pair. With C(z) counting the number of
times a particular AT was extracted, the conditional probability of the template
given its source phrase is defined as:

p(z = 〈ẽ, f̃ , ã〉|f̃) =
C(z)∑

ẽ′,ã′

C(〈ẽ′, f̃ , ã′〉)
(2.15)

Crucially, the above is not the MLE estimate when training on the parallel
corpus, but one that uses the counts in the heuristically extracted ATs multiset.
As a consequence of its heuristic nature, this estimate is not known to optimise
any meaningful function of the training parallel corpus itself. As these estimates
have little to do with the formulation of equation (2.13), they are instead employed
as features in a log-linear conditional translation model
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Log-Linear Model Formulating the AT model as a log-linear, feature-based
model allows for the easier integration of additional translation features examining
translation quality from different perspectives. Each feature φ(e, f , z, π) assigns a
non-negative score to the construction of e from f , using ATs z under reordering
π. The features are weighted together log-linearly under weights λ, arriving at the
following conditional translation model, with Z(f) as the normalisation constant:

p(e, z, π|f) =
1

Z(f)
exp

∑
i

λi φi(e, f , z, π) (2.16)

While in principle marginalising out the latent variables z, π is needed to
arrive at the conditional translation probability p(e|f), this is in practice compu-
tationally prohibitive. Decoding is instead recast as a Viterbi search for the AT
application and reordering which maximises the probability of (2.16):

〈ê, ẑ, π̂〉 = arg max
e,z,π

∑
i

λi φi(e, f , z, π) (2.17)

A key feature employed in the AT model (Och and Ney, 2004) is the loga-
rithm of the conditional probability of independently selecting each alignment
template as in equation (2.14), according to the heuristic scores of (2.15). This
is complemented by features examining word correspondence within every tem-
plate through the template’s alignment pattern, as well as a word penalty feature
counting the number of target words produced, regulating target output length.
A simple target phrase-reordering model based on word-position movement of
target phrases provides the means to prefer mostly monotonic phrase alignments,
which largely preserve the order of the source sentence as is the case for many
European language pairs. Finally, the language model score of the target output
e is added as an additional feature focusing on target sentence well-formedness.

Phrase-based SMT The original formulation of the alignment template mod-
els in (Och et al., 1999; Och and Ney, 2004) put an emphasis on the alignment
between phrase-pairs being an integral part of the memorised fragments extracted
from the word-aligned training corpus. Zens et al. (2002) and (Koehn et al., 2003)
depart from this view, to formulate a phrase-based SMT model. Founded on a
simplified version of the assumptions of the alignment template approach, it ex-
tracts only phrase-pairs 〈ẽ, f̃〉 where the AT approach would extract full phrasal
alignment templates. The conditional phrase translation probabilities p(ẽ|f̃) as
well as p(f̃ |ẽ) are trained under a similar extraction heuristic as in (2.15).

p(ẽ|f̃) =
C(〈ẽ, f̃〉)∑
ẽ′ C(〈ẽ′, f̃〉)

p(f̃ |ẽ) =
C(〈ẽ, f̃〉)∑
f̃ ′ C(〈ẽ, f̃ ′〉)

(2.18)
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This leads again to a log-linear translation model as in (2.16), this time em-
ploying features φ(e, f , ẽK

1 , f̃K
1 , π). Translating f under the model is performed

through a Viterbi search on the space of all constructions of target sentences by
applying and reordering phrase-pairs to a segmentation of f , similarly to (2.17).

〈ê, ̂̃eK
1 , ̂̃fK

1 , π̂〉 = arg max
e,ẽK

1 ,f̃K
1 ,π

∑
i

λi φi(e, f , ẽK
1 , f̃K

1 , π) (2.19)

Model Features While equations (2.16), (2.17) and (2.19) allow integrating an
arbitrary set of translation features in the model, the following is a list of basic
features often included in PBSMT systems.

• Conditional phrase translation probabilities: A score based on the logarithm
of the conditional probability of independently translating each phrase, ac-
cording to the heuristic scores of (2.18). Interestingly, two scores are em-

ployed, φ
e|f
PHR examining conditional translation of phrases from target to

source and φ
f |e
PHR treating the opposite translation direction.

φ
e|f
PHR = log

K∏
k=1

p(ẽk|f̃k) φ
f |e
PHR = log

K∏
k=1

p(f̃k|ẽk) (2.20)

• Lexical smoothing features: These features consider the quality of phrasal
translations on the lexical level. They serve as a smoothing conditional
phrase translation probability value, which is particularly helpful for phrase-
pairs extracted only a few times from the training corpus and for which the
phrase translation probability values above are set using sparse evidence.
They are based on a model similar to IBM Model 1 of equation (2.7),
employing lexical translation probabilities w(e|f), w(f |e) estimated under
relative frequency from the word-aligned training parallel corpus, with the
unaligned words treated as being aligned to an additional EMPTY token.
The contribution of multiply aligned words is averaged and if a phrase-pair
appears with multiple alignment patterns, the maximum alignment score is
used. One feature per translation direction (φ

e|f
LEX, φ

f |e
LEX) is also employed

for this feature category.

The equations arriving at φ
e|f
LEX are shown below, while the values of φ

f |e
LEX

are similarly computed based on w(f |e) instead. For the phrase-pair of
target phrase ẽ of length l̃ and source phrase f̃ of length m̃, with alignment
points 〈i, j〉 ∈ ã between them, we have:
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w(e|f) =
C(e, f)∑
e′ C(e′, f)

(2.21)

pw(ẽ|f̃ , ã) =
l̃∏

i=1

1

|{j|〈i, j〉 ∈ ã}|
∑
〈i,j〉∈ã

w(ei|fj) (2.22)

p̂w(ẽ|f̃) = max
ã

pw(ẽ|f̃ , ã) (2.23)

φ
e|f
LEX = log

∏
i

p̂w(ẽ|f̃) (2.24)

• Phrase reordering feature: This feature φRE examines the reordering pat-
tern of the phrasal translations. A choice employed in earlier PBSMT sys-
tems was based on distance-based scores. For example (Koehn et al., 2003)
captured the movement of phrasal translations in the target sentence by
providing a score proportional to the sum of the distances of each phrase’s
first word to the previous phrase’s last word.

A different approach was followed by (Tillman, 2004; Koehn et al., 2005).
For each phrase-pair in the training corpus, a monotone, swapping or discon-
tinuous reordering event was recorded based on the target phrase’s relative
position in regard to the previous source phrase’s translation. A simple
model built around relative frequency estimates from these heuristic counts
is used to compute the reordering feature score. This lexicalised model al-
lows learning for example that between French and English, grande usually
translates monotonically, while bleue frequently swaps in relation to the
noun before it.

• Word and phrase penalties: A feature counting how many target words
are produced helps tune output length. An additional feature counting
how many phrase-pairs were used in the derivation of a translation can be
employed to prefer less (i.e. larger) or more (i.e. smaller) phrase-pairs.

• Language model: Finally, a language model feature φLM is one of the most
crucial features of PBSMT models, examining output well-formedness. This
is typically the logarithm of the probability p(e) assigned to the target
sentence by an already trained language model.

The state-of-the-art Markovian language models employed for MT consider
the target output across phrase-pair boundaries, often providing essential
input to the model towards preferring overall well-formed target sentences.
However, for the same reason the LM feature is also one of the most difficult
to integrate in decoder implementations. A comprehensive presentation of
LMs frequently used for MT can be found in (Chen and Goodman, 1998).
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Feature Weights Training Log-linear models combine a multitude of feature
functions together. Each of these features focuses on a different aspect of transla-
tion, while their typical value ranges often differ. A crucial part of training such a
model is setting the feature weights λ, to optimally combine all the feature outputs
together so that strong translations score higher. There is a growing literature of
approaches and related learning objectives to perform this, including constrained
entropy maximisation (Berger et al., 1996) and the Margin Infused Relaxed Al-
gorithm (MIRA) (Crammer et al., 2006), that have been proven appealing also
for SMT. Nevertheless, for the majority of phrase-based model applications in-
cluding the relevant parts of this thesis, the feature weights are trained employing
Minimum Error Rate Training (MERT) (Och, 2003).

Relying on optimising some information theoretical value such as test data
likelihood or perplexity under the model often assumes a zero-one loss function.
This ignores that apart from exact matches, there exists an ordering of alternative
translations according to their appeal for humans. MT evaluation metrics such as
BLEU (Papineni et al., 2002), TER (Snover et al., 2006) and METEOR (Banerjee
and Lavie, 2005) try to address this deficiency by providing a numeric assessment
of MT output quality which aims to correlate with human judgement. MERT
focuses on optimising model parameters with respect to the quality of the model’s
output as measured by an MT evaluation metric, most frequently BLEU.

Let us assume a development set of source sentences fS
1 and target reference

translations rS
1 . We further assume a set Cs = {es,1, . . . , es,K} of K candidate

translations for each fs input sentence. Let the number of errors of a translation e
in relation to reference r according to the metric in use be E(r, e) and assume the
total errors over the development corpus is the sum of the errors of the individual
sentences, i.e. E(rS

1 , eS
1 ) =

∑S
s=1 E(rs, es). MERT is centred around optimising

the feature weights λM
1 by minimising the error of the best candidate translations

ê(fs; λ
M
1 ) between every set Cs according to the model.

ê(fs; λ
M
1 ) = arg max

e∈Cs

M∑
m=1

λmφm(e|fs) (2.25)

λ̂M
1 = arg min

λM
1

S∑
s=1

E(rs, ê(fs; λ
M
1 )) (2.26)

As the criterion of (2.26) is difficult to solve analytically, (Och, 2003) pro-
poses an approximation of it and an optimisation algorithm operating on this
approximation. This is used in practice as follows. The log-linear model is used
to produce an N-best list of candidate translations for each development source
sentence. The optimisation algorithm is run to arrive at the feature weights which
promote (i.e. assign greater probability to) the best candidate translations. How-
ever, as the new model parameters might change not only the ordering but also
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the sentences present in the N-best list, a new N-best list is generated with the
current best weights. These new candidate translations are added to the existing
set produced during the previous steps and the optimisation algorithm is run on
this expanded set of translation candidates. The process iterates until there are
no novel candidate translations produced with the latest feature weights setting.

Impact of Phrase-Based models The introduction and adoption by the SMT
community of the phrase-based and log-linear modelling approach had a profound
impact on modern SMT, even though many of the implications did not become
initially apparent. One of the most visible novelties was the generalisation of the
word translation table to the new central data-structure of PBSMT systems: the
phrase-table. While it seems this might have been initially conceived as merely
increasing the minimal translation units set to include phrase-pairs in addition
to word-pairs, it gradually became evident that this memorisation of training
corpus fragments significantly changes the nature of these models and brings
with it fundamental challenges in training and applying them. This crucial issue
will be further discussed in Chapter 3.

PBSMT modelling also takes a distance from the noisy-channel, generative
process modelling approach of the IBM models, opting instead for discriminative,
feature based models. Probabilistic conditional models that examine candidate
translations across both translation directions are combined together, as part of an
array of different translation features. However, while these conditional transla-
tion probability models form the backbone of the log-linear PBSMT models, they
are still estimated heuristically, disregarding the latent segmentation of sentence-
pairs into phrase-pairs. This issue is touched upon by the Joint Translation Model
discussed below.

Finally, training the PBSMT log-linear model parameters mostly abandons di-
rectly fitting the training or development data. Instead, most PBSMT implemen-
tations opt for translation metric (e.g. BLEU) score optimisation, as evidenced
by the prevalence of the MERT method for tuning feature weights.

2.3.2 Joint Probability Model

While both the Alignment Template approach and its later development into
Phrase-Based SMT directly model phrase-pairs, their training is largely based
on an already word-aligned parallel corpus. Moreover, to estimate a phrasal
translation model they rely on various heuristics. These range from establishing
what constitutes a phrase-pair given a word-aligned sentence-pair to estimation
based on normalising heuristic phrase-pair extraction counts.

Marcu and Wong (2002) propose a joint, purely phrase-based SMT model,
which directly models the generation of sentence-pairs from phrase-pairs, without
assuming a word-alignment variable. Instead, they generalise word-alignments in
phrasal alignments, which also include phrases of length one. They then draw
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from the estimation literature related to word-alignment models (such as the IBM
models) to estimate the model parameters by maximising the likelihood of the
training set.

In more detail, the Joint Probability Translation Model (JPTM) generative
process is based on drawing a bag of phrase-pairs 〈ẽ, f̃〉 from a joint distribution
with probability p(ẽ, f̃). Subsequently, the phrases of both source and target are
ordered according to a position-based distortion distribution d(pos(ẽK

1 ), pos(f̃K
1 )),

employing the word positions pos of the phrases for a particular phrase ordering.
With C the bag of phrase-pairs ci = 〈ẽ, f̃〉, L(e, f) the set of all such bags of
phrase-pairs from whose reordering and concatenation the sentence pair 〈e, f〉 can
be formed and assuming that each phrase-pair is independently sampled from the
joint distribution, we have:

p(e, f) =
∑

C∈L(e,f)

{∏
ci∈C

p(ẽ, f̃)

}
× d(pos(ẽK

1 ), pos(f̃K
1 )) (2.27)

Distortion models Two models were derived from equation (2.27), employing
different distortion distributions. Model 1 assumes a uniform distortion distribu-
tion, effectively modelling jointly phrases under similar assumptions as those used
by IBM Model 1 to model words conditionally. While Model 1 is shown to be
able to induce reasonable phrasal alignments, it can hardly be used to translate
with, given that it imposes no constraints on phrase positioning. For this reason,
Model 2 introduces a distortion distribution based on absolute word positions in
a manner reminiscent of IBM model 2.

Parameter Estimation The JPTM follows the estimation principles estab-
lished with the IBM models and estimates model parameters using Maximum
Likelihood Estimation under the EM algorithm. However, this poses significant
computational challenges. A corpus of length N with sentence pairs of length n
each contains O(Nn4) phrase-pairs. For typical values of N = 1M, n = 40 this
amounts to a number of phrase-pairs in the order of trillions. Moreover, each
such sentence pair has

∑n
k=1 k!S2(n, k) different phrase-alignment patterns where

S(n, k) is the Stirling number of the second kind, amounting to a number in the
order of 1083 for n = 40. Even though this number represents an overestimation
as it includes pairs of non-contiguous phrases not covered by the JPTM, it serves
as a gross indication of the computational challenges involved.

These computational challenges are addressed as follows. Firstly, only the
probability for phrase-pairs that appear at least 5 times in the training corpus
and are of at most length 6 is tracked, greatly reducing the size of the phrase-table.
A formula employing the Stirling number estimate of phrase-pair segmentations
discussed above is employed to arrive at an estimate of the expected counts of
phrase-pairs given the corpus and an initial uniform joint distribution p(ẽ, f̃).
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The joint distribution is initialised using these expected counts, approximating a
single step of the EM algorithm initialised with uniform p(ẽ, f̃). These choices
both restrict the number of phrase-pairs considered and provide a reasonable
initial estimate for their probability.

In addition, as it is not feasible during the expectation step of the EM algo-
rithm2 to consider all phrasal segmentations and alignments, the most probable
Viterbi alignment is found and fractional expected counts are computed by ex-
ploring neighbouring phrasal alignments. This approximation of the expectation
step had already been used successfully in the training of the IBM Models 3 to
5. Later work such as (Cherry and Lin, 2007) tries to estimate the parameters
of the JPTM by limiting the phrase-alignment search space, using the Inversion
Transduction Grammar and the assumptions behind it as a modelling vehicle.

Under these constraints and approximations, the parameters for the joint
phrase-pair distribution p(ẽ, f̃) and the distortion distribution d(pos(ẽK

1 ), pos(f̃K
1 ))

are estimated. Both are employed to derive conditional distributions p(f̃ |ẽ) and
d(pos(f̃K

1 )|pos(ẽK
1 )), which are used in a Noisy Channel decoder, which also uses

a language model over the target sentences e. Overall, in (Marcu and Wong,
2002) it is shown that for a corpus of 100K sentence-pairs the JPTM performs
significantly better than translating with the word-based IBM Model 4.

Impact of the JPTM The Joint Probability Translation Model still provides
inspiration for phrase-based translation research as a successful attempt to esti-
mate model parameters under a clear learning objective such as Maximum Like-
lihood, in contrast to the heuristics employed by the PBSMT models discussed
earlier in this chapter. It builds on the prior work on estimation for word-based
models to propose solutions for the computational challenges involved and high-
lights the feasibility of better understood learning objectives for phrase-based
SMT. This thesis proceeds along similar lines to also contribute in later chapters
well-understood estimators for phrase-based models.

As with PBSMT models, an MLE estimator such as that approximated in
(Marcu and Wong, 2002) can be shown to heavily overfit the training data, as-
signing non-zero probability only to full sentence-pairs. While the authors man-
age to arrive at usable estimates due to the particular constraints posed during
estimation, this issue remains a crucial weakness of MLE estimators for phrase-
based models, including the joint-probability model. It makes little sense to aim
at replacing heuristic estimation with a better understood estimator when we
still have to rely on dubious constraints to arrive at estimates which generalise
well. In this work, we address this overfitting behaviour of MLE estimators for
phrase-based models to formulate a robust training framework with no need of
artificial constraints.

Furthermore, the work on the JPTM showed how a generative, joint-probability

2The steps of the EM algorithm are discussed later in this chapter, in section 2.6.
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model over sentence-pairs can provide translation performance related to that at-
tained using conditional models. However, the JPTM as implemented above did
not prove in the long run to be competitive in terms of translation performance in
comparison to the discriminative PBSMT models, as the log-linear formulation of
the latter makes integrating diverse translation features easier. This established
the understanding that conditional-probability models are superior in terms of
performance to joint-probability models, a perception strengthened by the fact
that Marcu and Wong (2002) as well converted their joint-probability estimates
to conditional distributions prior to decoding. In later chapters of this thesis, we
provide evidence that a joint-probability model can provide strong performance
as the backbone of a log-linear model employing additional features.

While the JPTM modelled contiguous phrase-pairs, the authors note the pos-
sible extension to models using non-contiguous phrases. The following section
explores how synchronous grammars, modelling the generation of strings across
two languages, can be employed to translate with non-contiguous phrase-pairs.

2.4 Hierarchical SMT

At the same time as contiguous phrase-based SMT models dominated the state-
of-the-art in the first half of the past decade, three influential desiderata on SMT
research were established. The first and most straightforward, although by no
means trivial, was translating with non-contiguous phrase-pairs. As we mention
above, this was already proposed at a desired extension of the JPTM by the time
of its publication. However, the theoretical and practical challenges involved in
training and decoding with such models delayed their introduction. The second
issue was employing a syntactic approach for MT. Inspired by the advances in
monolingual syntactic parsing, this line of research aimed at applying grammatical
formalisms on the bilingual string-pairs involved in MT. The final desideratum
concerned taking advantage of linguistic syntactic annotations in MT modelling.
These can be used for example to constrain existing models that are not otherwise
linguistically motivated or as integral parts of syntactic MT approaches. The
application of Synchronous Context Free Grammars on MT has interestingly
provided the foundations to pursue all three goals above.

2.4.1 Synchronous CFG Grammars

Synchronous grammars in the general sense are formal grammars whose language
is a set of string-pairs. Monolingual syntactic approaches have long been extended
to generate, recognise and process bilingual strings. These include the syntax-
directed translation (Aho and Ullman, 1969) and syntax-directed transduction
(Lewis and Stearns, 1968) approaches , as well as the more recent Multiple CFGs
(Seki et al., 1991) and Multitext Grammars (Melamed, 2003), all stemming from
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monolingual Context Free Grammars (CFGs). CFGs are not the only formalism
to be extended to parallel strings, as we also find Synchronous Tree-Adjoining
Grammars (TAGs) (Shieber and Schabes, 1990) extending monolingual TAGs for
bilingual parsing, as well as Synchronous Tree-Substitution Grammars (Poutsma,
2000; Eisner, 2003) generating string-pairs by combining pairs of linked syntactic
subtrees.

In this work we will confine ourselves to what is currently covered by the term
Synchronous Context Free Grammars (SCFGs). While these grammars trace
their foundations back to (Lewis and Stearns, 1968; Aho and Ullman, 1969), they
have more recently been established as syntactic formalisms for MT after the
introduction of a computationally and linguistically appealing subset of SCFGs,
the Inversion Transduction Grammars (Wu, 1997) and its phrase-based extension
(Chiang, 2005a).

SCFGs provide an appealing formalism to describe the translation process,
which explains the generation of parallel strings recursively and allows capturing
long-range reordering phenomena. Formally, an SCFG G is defined as the tuple
〈N, E, F, R, S〉, where N is the finite set of non-terminals with S ∈ N the start
symbol, F and E are finite sets of words for the source and target language and
R is a finite set of rewrite rules. Every rule expands a left-hand side non-terminal
to a right-hand side pair of strings, a source language string over the vocabulary
F ∪N and a target language string over E ∪N . The number of non-terminals in
the two strings is equal and the rule is complemented with a mapping between
them.

String pairs in the language of the SCFG are those with a valid derivation,
consisting of a sequence of rule applications, starting from S and recursively
expanding the linked non-terminals at the right-hand side of rules. Probabilistic
SCFGs augment every rule in R with a probability, under the constraint that
probabilities of rules with the same left-hand side sum up to one. The probability
of each derived string pair is then the product of the probabilities of rules used
in the derivation. Unless otherwise stated, for the rest of this work when we refer
to SCFGs we will be pointing to their stochastic extension.

The recursive nature of languages can be extended to the relation between
them that a translation process establishes. SCFGs can crucially express both
the recursive nature of translation and the reordering patterns that emerge. An
example of a small grammar capturing Subject-Verb-Object (SVO) to Subject-
Object-Verb (SOV) reordering and recursive construction of questions between
English and Japanese can be seen in Figure 2.6.

Binary SCFGs The rank of an SCFG is defined as the maximum number of
non-terminals in a grammar rule’s right-hand side. The grammar in Figure 2.6
would be of rank 3. Contrary to monolingual Context Free Grammars, there does
not always exist a conversion of an SCFG of a higher rank to one of a lower rank
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S → X 1 / X 1

S → Do X 1 ? / X 1 ka ?

X → NP 1 V B 2 NP 3 / NP 1 NP 3 V B 2

NP → I / watashi ga

V B → open / akemasu

NP → the book / hako o

Figure 2.6: An SCFG rule set for SVO to SOV reordering and question construc-
tion from English to (romanised) Japanese

with the same language of string pairs. For example, even though all SCFGs of
rank 3 can be converted to an equivalent one (i.e. defining the same language of
string-pairs) of rank 2, the same does not apply for some SCFGs with rank 4 and
above. We can convert the grammar of Figure 2.6 to one of rank 2, by replacing
the third rule with the following 2 rules:

X → NP 1 Z 2 / NP 1 Z 2

Z → V B 1 NP 2 / NP 2 V B 1

However, the following rule involving 4 non-terminals on its right-hand side
cannot be binarised.

X → X 1 X 2 X 3 X 4 / X 3 X 1 X 4 X 2

The computational complexity and memory demands of algorithms parsing
or decoding with SCFGs increases with the rank of the grammar. For this, most
machine translation applications focus on SCFGs of rank two, binary SCFGs
(bSCFGs) (Wu, 1997), as well as SCFGs which are binarisable. These are Syn-
chronous CFGs of any rank for which a conversion to an equivalent binary SCFG
exists. Fortunately, binarisable SCFGs seem to be able to cover most of the re-
ordering patterns encountered in natural language pairs (Wu, 1997; Huang et al.,
2009). This feature, coupled with the relative computational efficiency of algo-
rithms employing bSCFGs makes the latter an appealing formalism to describe
translation phenomena.



2.4. Hierarchical SMT 41

Inversion Transduction Grammars Binary SCFGs were brought to promi-
nence by the introduction of the Inversion Transduction Grammars (ITGs) of
(Wu, 1997). ITGs are a subset of SCFGs as we defined them above, where the
right-hand side of rules of arbitrary length either keeps its order between the two
strings or this order is inverted. Wu (1997) shows that all of these grammars
can be converted to a normal form, involving either two non-terminals B, C or a
word-pair 〈e, f〉. Rules leading to two non-terminals on the right-hand side can
either map the two to translate monotonically across the two languages keeping
the order intact, or swap the two non-terminals inverting the strings covered by
them. For these grammars, we can switch to a simpler notation than that of
Figure 2.6, denoting with [ ] monotone and with 〈 〉 swapping reordering. Using
this notation, grammars in the ITG normal form contain only rules of the forms3:

A → [B C] A → 〈B C〉 A → e / f (2.28)

SCFG Algorithms While SCFGs are closely related to the monolingual Con-
text Free Grammar formalism, performing tasks such as parsing with an arbitrary
SCFG can be notoriously hard, with (Satta and Peserico, 2005) showing that both
parsing and decoding are NP-hard. Nevertheless, while the results above apply in
the general case, binary SCFGs can still be processed in polynomial time, making
them an ideal candidate for practical applications. The algorithms involved then
for the most usual tasks are an extension of algorithms employed for monolingual
CFGs.

Parsing Parsing string-pairs using bSCFGs can be performed in polynomial time
employing a modified version of the CYK algorithm (Cocke, 1969; Younger,
1967; Kasami, 1965). Running time is then O(n6|G|), polynomial in both
the length of each string n and the size of the grammar |G|. However,
the higher exponent makes parsing with SCFGs with the computational
resources available nowadays significantly more challenging than monolin-
gual parsing, with applications frequently having to resort to constraints or
approximations.

Decoding Finding all target strings e for a given source f that belong in the
language {〈e, f〉} of G, or e belonging to the most probable 〈e, f〉 according
to a stochastic SCFG has interestingly a lower complexity O(n3) in respect
to the sentence size. Decoding can be performed by modified versions of
Earley-style parsers (Earley, 1970), such as synchronous adaptations of the
CYK+ algorithm (Chappelier and Rajman, 1998). However, as we will
discuss later in this chapter, state-of-the-art applications of bSCFGs for
translation include the usage of a language model over the target language

3We skip productions involving an empty token in one of the two strings.
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output during decoding, which complicates computations and demands non-
trivial hypothesis search and pruning strategies.

Expectation-Maximization Estimating the parameters of a synchronous CFG
given a corpus of parallel sentences can be performed using the EM algo-
rithm. The Expectation step of the algorithm demands the computation of
expected usage counts for all rules of the bSCFG given the current estimate.
This can be performed with a modified version of the Inside-Outside algo-
rithm (Baker, 1979; Lari and Young, 1990), running in the same complexity
as SCFG parsing, namely O(n6|G|).

2.4.2 The Hiero Translation System

SCFGs were initially introduced for machine translation as a stochastic word-
based translation process in the form of the Inversion-Transduction Grammar.
Simultaneously, progress in phrase-based translation showcased how translating
with phrases significantly improves translation quality in comparison with word-
based models. The advances in syntactic modelling of translation on the one
hand and those in phrase-based translation and the related methods such as
log-linear modelling for MT and MERT estimation on the other, converge with
the introduction of Hierarchical Phrase-based SMT (HPBSMT) and the Hiero
translation system (Chiang, 2005a; Chiang, 2007).

A key practical consideration in extending word-based ITG to the SCFG em-
ployed by Chiang is that SCFGs including phrases in the right-hand side of rules
can make use of similar efficient decoding algorithms as ITGs, as long as they are
binary SCFGs employing up to two non-terminals on rule expansions. Chiang
takes advantage of this feature to propose an SMT system capable of employing
non-contiguous phrase-pairs.

Synchronous Grammar Hiero is based on a synchronous grammar with a
single, general-use non-terminal X covering all learnt phrase-pairs. Beginning
from the start symbol S, an initial phrase-span structure is constructed mono-
tonically using a simple ‘glue grammar’, which in practice constitutes the only
rules allowed to be applied to spans larger than a predefined cut-off length4.

S →S 1 X 2 / S 1 X 2

S →X 1 / X 1

The true power of the system lies in expanding these initial phrase-spans with
a set of recursive translation rules expanding towards non-contiguous phrase-
pairs, such as those of Figure 2.7. Similarly to ITG grammars, the gaps in

4A usual setting of this is 10.
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X → do not X 1 / ne X 1 pas

X → financial X 1 / X 1 économiques

X → this X 1 X 2 / cette X 1 de X 2

X → X 1 ’ s common X 2 policy /

politique X 2 commune de X 1

Figure 2.7: Hiero SCFG rules for English and French

the two sides of these phrase-pairs, as expressed by the X non-terminals in the
synchronous productions, are mapped to each other so that the linked spans
translate either monotonically or swap. However, long-range reordering is handled
by the glue rules, limiting these reorderings to translating monotonically. This,
together with the use of a single non-terminal X apart from the start symbol
highlights that employing an SCFG grammar for the Hiero system is more of a
vehicle to model and decode with non-contiguous phrase-pairs, than an attempt
to learn and exploit the hierarchical structure of parallel data.

Nevertheless, non-contiguous phrase-pairs with binary reordering greatly in-
crease the descriptive power of the phrase-table. In the first place, they allow
memorising phrase patterns whose words might lie far apart in the training cor-
pus, without the need to couple them to the particular in-between context that
they appear with. Secondly, they provide the means to learn context-driven re-
ordering patterns, some examples of which can be seen in Figure 2.7. This reduces
the need for a separate reordering model such as those employed for PBSMT,
with the original Hiero system relying solely on the non-contiguous phrase-pairs
to reorder during decoding.

Even more crucially, non-contiguous phrase-pairs offer a generalisation of the
phrase-table that reduces the effect of data sparsity. Taking the famous ‘ne . . . pas’
negation construction in French as an example, PBSMT models can memorise and
reuse during decoding only translations of instances of it appearing in the training
data with particular verbs, such as ‘ne veux pas’ or ‘ne peux pas’. Phrase-tables
that employ non-contiguous phrase-pairs such as Hiero’s are able to successfully
generalise these instances to ‘ne X pas’, greatly expanding the generalisation
power of the phrase-table.

This power does not come without its challenges. As the space of possi-
ble contiguous phrase-pairs that the rules of the synchronous grammar can lead
to increases, so does the need to avoid generalising towards erroneous phrase
translations. For example we would like to somehow consider as more probable
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expanding the non-terminal X of ‘ne X pas’ towards a verb than a noun. The
grammar of the HPBSMT does not consider this and instead relies on additional
features and most prominently on the language model feature to disambiguate
between stronger and weaker expansions.

Finally, restricting the right hand side of the SCFG rules to two non-terminals
also limits the descriptive power of bSCFG grammars as they can only cover
binary reordering patterns. However, given the evidence that most of the actual
reordering taking place in natural language pairs does follow these constraints
as discussed in (Huang et al., 2009), it might well be that this shortcoming is
actually a strength of bSCFGs. Namely, that they greatly decrease the size of the
search space in a manner that not only improves computational efficiency, but
also correlates with the transformations found in natural language translation,
avoiding search errors and preventing distributing probability to translations that
have little to do with natural language correspondences.

Translation Model and Training Establishing the form of the translation
model and training follows the same pattern as PBSMT models. Firstly, the gram-
mar is built by complementing the fixed glue-grammar rules with non-contiguous
phrase-pair rules like those of Figure 2.7, which are extracted from the training
corpus. Non-contiguous phrase-pair extraction from a word-aligned parallel cor-
pus follows the same heuristics in regard to what constitutes a phrase-pair as
contiguous phrase-pair extraction in alignment template and PBSMT systems.
In addition however to pairs of contiguous phrases, Hiero extracts also phrase-
pairs with ‘gaps’, from those which include internal spans that are themselves
considered phrase-pairs. This process continues recursively, extracting rules that
include up to two ‘gaps’ on the right hand side. The phrasal alignment pattern
between the internal phrase-pairs is preserved by the mapping of the X non-
terminals in the rule’s right-hand side. All grammar rules created in this process
have again the single non-terminal X as their left-hand side.

The grammar extracted is further augmented to become a weighted bSCFG
by assigning weights to the extracted rules using similar heuristics based on ex-
traction counts as these used in PBSMT, for example by normalising extraction
counts per source or target right-hand side. The weighted bSCFG provides a
score for a derivation as the product of the weights of the rules taking part in
it. This score is used as a feature to form part of a log-linear, feature-based
translation model. For every derivation D with f as the source string, p(D) is
proportional to a log-linear function of a language model feature and a number
of additional features examining each rule application r independently from the
rest of the derivation.

p(D) ∝ φλLM
LM ×

∏
r∈D

∏
i6=LM

φλi
i (r) (2.29)
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The feature weights λ are trained by Minimum Error Rate Training, in the
same way as the similar log-linear models employed for phrase-based translation.

Equation (2.29) can be misleading, given that the bSCFG could be considered
as merely providing the scores for a handful of features among a multitude of
these. On the contrary, the bSCFG functions as the backbone of the log-linear
model, as the space of translations e considered for the input sentence f are exactly
those which take part in string pairs 〈e, f〉 in the language of the bSCFG. In
addition, the importance of the weighted bSCFG scores is central, given that the
rest of the features are either monolingual (as the LM feature) or are smoothing
features similar to those used in PBSMT models.

Impact of the Hiero system At first sight, Hiero introduces a hierarchical
phrase based translation system capable of employing non-contiguous phrase-
pairs. This allows to generalise the PBSMT phrase-table and address training
data sparsity by enabling the memorisation and reuse of non-contiguous phrase
patterns, disentangled from their particular application in the parallel corpus.

More importantly though, Hiero showcased a syntactic approach for SMT
that was both computationally scalable and offered state-of-the-art performance.
The fact that Hiero offered a simple instantiation of such an approach stimulated
further research in a number of open questions.

• As is the case with PBSMT’s phrase translation probabilities, the weights
assigned to bSCFG rules play a central role in discerning strong from weak
translations. How can we estimate these crucial model parameters with a
more meaningful learning objective than heuristic estimation ?

• The hierarchical and compositional nature of syntactic SMT can lead to
weak generalisations if the structural part of the synchronous grammars
does not focus on productions which make linguistic sense. How can we
learn a richer syntactic MT structure, possibly taking advantage of linguistic
syntax, which better models the hierarchical nature of natural language
translation ?

These questions will be the central themes of chapters 5 and 6 of this thesis.

2.4.3 Linguistically Augmented Hierarchical Translation

While the Hiero system exhibited a syntactic approach to MT it stopped short
of employing linguistic syntax. The latter provides linguistic annotations to sen-
tences which are generally understood to correlate with translation transforma-
tions up to a certain extent. Even more, these annotations are recursive, a feature
which promotes them as prominent candidates to be integrated in a hierarchical
translation system.
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We may categorise MT systems employing linguistic syntax in two categories.
The first brings together systems where linguistic syntax is the primary vehicle
to describe the translation process. An example could be models which explain
translation through transformations on the source parse tree or which build the
target sentence through combining target parse fragments, such as (Yamada and
Knight, 2001; Galley et al., 2006). The second category includes systems which,
recognising their informative value for translation, take advantage of linguistic
annotations while not strictly adhering to them to explain the translation pro-
cess. For example, in (Venugopal et al., 2009; Chiang et al., 2009) the linguistic
plausibility of translations is assessed through additional features in an otherwise
non-contiguous phrase-based system. Below we focus on SAMT, a linguistically
enriched extension of the Hiero system.

Syntax Augmented MT The Syntax Augmented MT (SAMT) system (Zoll-
mann and Venugopal, 2006) can be classified in the latter category. It extends
HPBSMT by extracting linguistically augmented hierarchical translation rules.
For this it utilises constituency parse trees of the target sentences. Whenever a
rule like those in Figure 2.7 is extracted, if the spans substituted by the generic
non-terminal X are also covered by a constituent non-terminal NT in the target
sentence parse, additional rules substituting X with NT are extracted. This leads
to SCFG rules enriched with the use of a linguistically augmented non-terminal
set, such as those in Figure 2.8. The rest of the SAMT model details mostly
follow those of the Hiero system. A log-linear model employs features based on
heuristic extraction counts and feature weights are optimised by MERT.

The rules of Figure 2.8 delineate how linguistic annotations are used towards
an SCFG grammar which is, depending on the assigned rule scores and fea-
ture weights, possibly more selective in the recursive expansion of non-contiguous
phrase-pairs. This is performed without completely committing to the linguistic
structure itself. This is further exemplified by an additional set of rules em-
ployed by SAMT, which are augmented by SCFG non-terminals crossing linguis-
tic constituent brackets. These may substitute X in the extracted rules when
the underlying phrase-pair is a concatenation NT1 + NT2 of two or more con-
stituents. They can also constitute a partial syntactic category NT1 missing a
non-terminal NT2 on its right NT1/NT2 or its left NT1\NT2, as in Catego-
rial Grammar (Bar-Hillel, 1953). Examples of rules utilising these non-terminal
categories appear in Figure 2.9

Overall, SAMT highlights a flexible approach on how to utilise linguistic syn-
tax of the target language for MT. Decoding with a SAMT model results in
the construction of target syntactic analyses which are able to take advantage of
SCFG rules that are more linguistically aware than Hiero, hopefully producing
translations which are more grammatically sound.
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X → do not X 1 / ne X 1 pas

X → do not V B 1 / ne V B 1 pas

V P → do not V B 1 / ne V B 1 pas

X → financial X 1 / X 1 économiques

NP → financial NN 1 / NN 1 économiques

X → X 1 ’ s common X 2 policy /

politique X 2 commune de X 1

X → X 1 ’ s common JJ 2 policy /

politique JJ 2 commune de X 1

NP → X 1 ’ s common JJ 2 policy /

politique JJ 2 commune de X 1

Figure 2.8: SAMT SCFG rules for English and French, extending Hiero’s X-rules

DT + NN → DT 1 NN 1 / DT 1 NN 1

NP\DT → financial NN 1 / NN 1 économiques

S/V P → financial NN 1 / NN 1 économiques

V P\V B → DT + NN 1 ’ s common X 2 policy /

politique X 2 commune de DT + NN 1

Figure 2.9: SAMT rules with compound non-terminals
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2.5 Limits of Estimation Heuristics

SAMT also serves to exemplify the limits of heuristic rule scores based on rule ex-
traction heuristics. Their usage was already debatable when counting contiguous
or non-contiguous phrase-pairs in PBSMT and its hierarchical extension, given
that this ignores the latent segmentation variable splitting sentence-pairs down
to phrase-pairs. We might argue that this issue is somehow mitigated by the
fact that at least we are counting events (phrase-pairs) in the observed part of
the data (sentence-pairs), even though we skip explaining how we arrived there
(segmentation).

In approaches like SAMT, we, somehow silently but still crucially, move for-
ward to heuristically extract counts from the latent structure itself: the Syn-
chronous CFG parse of the sentence-pair. This parse, for the linguistically aug-
mented rules of SAMT, goes a long way past a simple segmentation in non-
contiguous phrase pairs. While extracting event surface counts without com-
pletely disambiguating the latent structure underlying them might already feel
uncomfortable, relying on artificial counts over the unobserved variables can com-
pletely undermine our confidence in the scores derived from them.

This issue is shared by all MT approaches employing a richer syntactic struc-
ture to explain the translation process (generative models) or discriminate be-
tween strong and weak translations (discriminative models). As the latent struc-
tures involved in these models become more complex, the risks from heuristi-
cally estimating the parameters of these structures increase. Crucially, this also
increases the possible gains from learning these latent structures from parallel
data.

2.6 Expectation-Maximization Algorithm

A popular and widely successful method to estimate the parameters of generative
models using training data X = {x1, . . . ,xN} is Maximum Likelihood Estimation.
Under MLE, we seek to find the parameter set θ̂ for a stochastic model p(X = x; θ)
which maximises the likelihood of observing the training set X . Assuming all
samples x are independent and identically distributed (i.i.d), we have:

θ̂ = arg max
θ

L(X ; θ) = arg max
θ

∏
x∈X

p(x; θ) (2.30)

For a number of modelling problems, we might be fortuitous enough to possess
training data which include the outcomes of all the random variables the model
assumes for every data point, i.e. we can infer the model from complete data.
For example, for a straightforward stochastic model over a loaded dice, complete
data can refer to a number of rolling outcomes for it. If we interpret the model
as a generative process, we might say that we then have, for every training data
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point, access to all the generative steps involved in their emission. Training a
PCFG from a parsed sentence corpus (a treebank) falls under this case.

In these cases, MLE boils down to Relative Frequency Estimation (RFE), i.e.
assigning to the model parameters the relative frequencies of the model’s random
variable outcomes in the observed data. While a straightforward RFE estimate
is generally speaking readily computable, arriving at estimates which generalise
well, i.e. predict unseen data accurately, is highly non-trivial. The additional
estimation efforts are then mostly directed to smoothing : accounting for data
sparsity, the fact that our training data provides but a limited glimpse in the
distribution of outcomes of random variable X.

In other cases however, we might assume a model with latent variables , i.e.
involving random variables whose outcome is not observed in the training data.
One motivation towards formulating such a model could be aiming to uncover
hidden patterns in the data, such as the word-alignments between sentence pairs
of Figure 2.3. An additional objective might plainly be to better model the un-
known data distribution, hoping that the assumptions behind our model can aid
to better describe the data. An example might be using a mixture model to fit
data, when a single standard distribution such as the Gaussian is not considered
to be enough to accurately describe the underlying distribution. In these cases
we have to estimate model parameters using what we then consider as incomplete
data with missing values. The missing information in two aforementioned exam-
ples would be respectively the word-alignments for the parallel sentences and the
indication of each data point’s origin among the mixture’s distributions.

Machine Translation is a prominent ML field where estimating model pa-
rameters from incomplete data is a central issue. In most experimental settings
training data are merely sentence-aligned, with no further information on how,
starting from the source sentence, we arrived at the target language output. The
only model for which these are considered complete data is one which tracks the
translation of whole sentences as a single unit, which has very limited applicability
given the sparsity of the training data. Any meaningful generative SMT model
which aspires to generalise well is thus bound to employ latent variables. We
have already considered such cases in this chapter, such as the word-alignments
for the IBM models, phrase segmentation for PBSMT models and the hierarchical
translation structure for SCFG-based models.

In this section we will examine the challenges of estimating model parame-
ters with MLE using incomplete data and how the Expectation-Maximization
algorithm can address these, focusing on discrete distributions.

MLE with Incomplete Data Let us consider a model, parametrised by vector
θ, over random variable Z = 〈X, Y 〉, whose values z are tuples consisting of values
x of the observed data variable X and values y of missing data variable Y . We use
these names for X and Y , because the incomplete training data X = {x1, . . . ,xN}
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that we possess present only the values for X, while information over the value
of Y for each data point is missing.

Given this setting, we have to rewrite the MLE criterion of (2.30) so that the
unobserved variable is marginalised. For this we will need a function Z(x) which
maps every observed data point x to the set of all possible complete data from
which it could descend from.

Z(x) = {z1 = 〈x,y1〉, z2 = 〈x,y2〉, . . . } (2.31)

The Maximum-Likelihood Estimate of a model over complete data can then
be computed from incomplete data as follows.

θ̂ = arg max
θ

∏
x∈X

p(x; θ)

= arg max
θ

∏
x∈X

∑
z=〈x,y〉∈Z(x)

p(x,y; θ) (2.32)

The problem is that, in most non-trivial cases, the optimisation above in-
volving a product of sums cannot be solved analytically. We may however still
iteratively arrive at increasingly better fitting parameter settings, by means of
the EM algorithm.

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977)5 pro-
vides a method to iteratively arrive at a local optimum of the likelihood function
of (2.32), many times in a computationally appealing way. It stands out from
superficially similar looking iterative algorithms, as it provides theoretical guar-
antees over its operation and its output.

Initialisation We begin by initialising the model’s parameter set by an initial
setting θ̂0. Parameter initialisation can be crucial as EM can only climb towards
a local optimum of the data likelihood function. For complex likelihood functions
with more than one local maximum, the initialisation point determines towards
which of these we will converge. As a result, a weak initialisation can result in a
globally suboptimal estimate.

However, as in most cases we are not aware of the likelihood function’s exact
form and there is usually no clear way to judge the quality of an initialisation
point, popular initialisation choices are uniform distributions or a randomly set
parameter set. If practically possible, it makes also sense to run the EM algorithm
multiple times, each one starting from a different initialisation point (random
restarts). Hopefully, each will climb towards a different local optimum and we
can select the estimate which corresponds to the best local optimum reached.

5(Prescher, 2004) and (Bilmes, 1997) provide interesting tutorials of the EM algorithm.
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Figure 2.10: The two steps of the EM algorithm, adapted from (Prescher, 2004).

Iterative Procedure The initialisation point θ̂0 together with the incomplete
data training corpus X and function Z(x) form the input of the EM algorithm.
The basic operating principle behind EM can be described along the following
lines.

If we apply function Z(x) to every x ∈ X , we can build from the incomplete-
data corpus X a complete-data corpus Z(X ), extending each x to all its possible
complete data expansions. For example, if the incomplete corpus consists of
aligned sentence-pairs, we can expand each unaligned sentence-pair to multiple
aligned ones, considering all possible alignments between the words of the two
strings. The problem is that we do not know how to distribute the unit count
of each observed data point among all its complete-data expansions; e.g. we do
not know what the count of a particular alignment pattern would be given that
it’s sentence pair has been observed once. If we had that information and could
thus disambiguate corpus Z(X ), MLE would boil down to relative frequency
estimation.

The EM algorithm breaks out of this impasse following a two steps procedure.
First, it uses in each iteration r the previous parameter estimate θ̂r−1 (starting
with θ̂0) to disambiguate the complete-data corpus. This is performed by comput-
ing the expected counts of each complete-data expansion z ∈ Z(x) with respect
to θ̂r−1 (E-step). In the word-alignment example, we would compute for every
sentence the expected counts of each possible word-alignment, as if it was pro-
duced from a model parametrised by θ̂r−1. Subsequently, putting then θ̂r−1 aside,
EM moves on to compute a new estimate θ̂i by MLE on this disambiguated com-
plete corpus (M-step). As this concerns maximising the likelihood of a corpus
where for every data point all values of the model’s variables are observed, this
optimisation is in most cases feasible, and many times is equivalent to RFE.

Remarkably, this new estimate is guaranteed to better fit the training data.
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The process then continues iteratively, each time using the previous estimate to
arrive at a better one until convergence, as illustrated in Figure 2.10.

Let us now more thoroughly describe the two steps that each EM iteration
consists of. We switch to the equivalent optimisation criterion of log-likelihood
maximisation which is sometimes easier to formulate and solve. Also, to simplify
the exposition, we describe the two steps for a single data point x. The relevant
equations easily extend to the full training corpus by summing6 through all the
i.i.d sampled data points of the corpus X .

Expectation Step In the Expectation step (E-step), we formulate the expected
log-likelihood Q(θ|θ̂r−1) of the complete-data z = 〈x,y〉, given the observed
incomplete-data point x and the parameter estimate from the previous iteration
θ̂r−1.

Q(θ|θ̂r−1) = E
[
log p(z|θ)|x, θ̂r−1

]
=

∑
〈x,y〉∈Z(x)

log {p(x,y|θ)} p(y|x, θ̂r−1) (2.33)

In the somewhat abstract equation above, it is crucial to notice that p(y|x, θ̂r−1),
the expected counts of the complete-data expansions of x given θ̂r−1, can be read-
ily computed and will function as a constant in the M-step that follows. Substi-
tuting it with q(x,y|θ̂r−1) to denote this, we have:

q(x,y|θ̂r−1) =
p(y|x, θ̂r−1)∑

〈x,y′〉∈Z(x) p(y′|x, θ̂r−1)
(2.34)

In practice, E-step implementations involve computing these expected counts.
While it involves going through all possible complete-data expansions of x which
can be exponential in number, for many practical applications dynamic program-
ming algorithms allow them to be efficiently computed.

Maximization Step With the q(x,y|θ̂r−1) counts already computed in the E-
step, the Maximization step (M-step) of the EM algorithm involves maximising
Q(θ|θ̂r−1) with respect to θ to retrieve the next parameter estimate θ̂r.

θ̂r = arg max
θ

Q(θ|θ̂r−1) = arg max
θ

∑
〈x,y〉∈Z(x)

log {p(x,y|θ)} q(x,y|θ̂r−1) (2.35)

Equation (2.35) involves optimising the model parameters from what is now,
with the help of the counts computed during the E-step, a complete-data corpus.
This is usually much easier than the original incomplete-data optimisation prob-
lem of (2.32) and many times translates to the usually easy to implement and
compute Relative-Frequency Estimation.

6We are employing log-likelihood optimisation.
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Theoretical Guarantees The EM algorithm’s appeal is strengthened, by the
fact that it is coupled with theoretical guarantees concerning its operation and
output. Dempster et al. (1977) show7 that the iterations of the EM algorithm
provide:

Guarantee to Non-Decrease Likelihood After every iteration, the new es-
timate raises or leaves equal the likelihood of the incomplete-data train-
ing corpus in comparison with the estimate of the previous iteration, i.e.
L(X ; θ̂r) ≥ L(X ; θ̂r−1).

Guarantee to Converge The iterative process will converge to a local maxi-
mum of the likelihood function.

These guarantees distinguish EM as a well-understood and powerful optimisa-
tion algorithm for MLE using incomplete data. While other heuristic optimisation
procedures might somehow work for specific tasks, we are still left unsure of the
exact pre-conditions that favour their use, as well as over the quality of their
output for various input data. In contrast, the two guarantees discussed above
clearly delineate what EM can do for the modeller. Namely, given a starting
point it will climb and converge to the ‘nearest’ local maximum of the incomplete
data’s likelihood under the model.

Discussion In addition to being well-understood, the EM algorithm has proven
its effectiveness as an essential estimation tool for various machine learning tasks
for more than three decades. Its popularity however has sometimes led to the for-
mulation of iterative estimation procedures, which are then casually presented as
‘EM’-algorithms. This confusion is further increased by the fact that EM is more
of an algorithmic framework, which still needs to be applied for every estimation
problem, than a concrete set of instructions. However, only true instances of the
Expectation-Maximization algorithm, following the principles described in this
section, inherit the algorithmic guarantees associated with EM. It is important
for the Machine Learning practitioner to distinguish between EM and ‘EM-like’
algorithm instantiations.

EM’s magnificent ability to fit latent variables over observed data has in the
past sometimes led to its promotion as an omnipotent out-of-the-box tool to
perform unsupervised induction of hidden patterns in data, like parses, part-
of-speech tag sequences and others. EM is certainly effective in this task, as
showcased in its application for the induction of word-alignments under the IBM
Models discussed in this chapter. However, EM merely provides us with a tool to
fit models involving latent variables to incomplete data. The extent to which this
will be helpful in inducing interesting latent patterns is linked to the following
factors:

7Somewhat more accessible proofs of EM’s algorithmic properties can be found in (Beal,
2003; Chen and Gupta, 2010).
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Model We need to consider the model’s ability to effectively describe the data
through latent variables. The increasingly more refined IBM Models again
showcase how better models induce better latent patterns.

Maximum Likelihood Objective As EM performs MLE, we must assess the
appropriateness of the ML objective for our problem. For models using
more parameters than necessary to capture the regularities underlying the
data, MLE might overfit the data producing degenerate estimates, as we
further discuss in Chapter 3. Also MLE coupled with the model at hand
might reveal latent patterns that have little to do with what we were after,
e.g. sentence bracketings similar to human-derived references.

Initialisation Point EM converges towards a local maximum beginning from
the initialisation parameters setting, which, depending on the form of the
likelihood function, can greatly affect the algorithm’s output (e.g. see (Gold-
berg et al., 2008)).

Number of Iterations Depending on the application, sometimes it is better to
stop the algorithm well before convergence to avoid overfitting, as is usually
performed during word-alignment with the IBM Models. Other times, EM
needs surprisingly many iterations to arrive at a good estimate, as discussed
in (Johnson, 2007).

Overall, Expectation-Maximization stands out as a highly potent estimation
algorithm, whose careful empirical application can lead to discovering latent pat-
terns that go well beyond the surface of the observed training data.

2.7 Generalisation Error and Cross-Validation

Most statistical estimators for parametric models, including Maximum-Likelihood
Estimation with which we are primarily occupied in this thesis, select model
parameters by fitting the model to the training data. That entails optimising
the parameters so that training data error, as computed according to an error
function8, is minimised. In general however, our interest in the model estimate
goes well beyond the training data, as our primary concern relates to its prediction
capability on independent test data. The problem is that frequently, minimising
loss on the training data does not necessarily translate to reducing error on test
data. Below we try to localise the reasons for this, by distinguishing between two
sources of estimator errors, bias and variance.

In addition, we discuss Cross-Validation (CV), a method to arrive at an es-
timate of the Generalisation Error (GE) of a model estimate, i.e. the expected
error over all the independently drawn test sets. As for most applications GE

8Also sometimes called a loss function.
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is exactly the error we would like to minimise, CV can aid in model assessment,
evaluating the expected performance of a particular model estimate derived from
the training data on yet unseen data. In the next chapter we will also present
how CV can be used directly for model estimation, finding the model estimate
which is most expected to perform well with future data.

2.7.1 Estimator Bias and Variance

An estimator can be defined as a function of the data which, for a particular data
set, returns an estimate of a given quantity. This quantity can be for example
a number, like an estimate of the true average of a random variable, but it can
also be our estimate of the true distribution from which we are sampling. Two
characteristics of estimators that relate to their generalisation error are estimator
bias and variance.

Estimator bias is the accuracy of our average estimate (as measured by our
error function), when we average over all training sets X that we can sample.
Asymptotically unbiased estimators converge to the true value of the quantity es-
timated as the training set size approaches infinity. This is an appealing property
as it guarantees that an estimator will ultimately arrive at an accurate estimate
given enough data.

However, we never possess training data of sizes close to infinite. Somewhat
surprisingly, an unbiased estimator for smaller training sample sizes frequently
produces a large generalisation error. Bias relates to the strength of prior assump-
tions employed by the estimator, with an unbiased estimator enforcing no such
assumptions over the quantity estimated, opting instead to completely rely on
the training input. The estimates may become then too sensitive to the training
input.

This can lead to increased variance between them for different training sets,
which entails that many of them will deviate significantly from the true value,
leading to generalisation errors. Lowering GE due to estimate variance usually
entails increasing our assumptions over the quantity estimated and in this way
abstracting away from the training data, i.e. increasing the estimator’s bias. Still,
at the other extreme, an estimator with zero GE due to estimate variance always
outputs the same estimate irrespective of the training data. Unless our strict
assumptions behind this estimate are somehow correctly guessed, this is bound
to lead to a large GE.

This establishes a trade-off between errors due to estimator bias and those due
to variance, where decreasing errors due to bias increases errors due to variance
and vice versa. The curve-fitting example of Figure 2.119 showcases this trade-
off. Both low bias as well as low variance estimators return estimates which
widely deviate from the true function f(x) = x2 behind the three noisy samples.

9Adapted version of a similar example in (Duda et al., 2001).
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Low Bias ⇐ Trade-off ⇒ Low Variance
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Figure 2.11: A low bias estimator (9-th degree polynomial) precisely fits each
sample, but is penalised in terms of estimate variance. A low variance estimator
(fixed linear) has zero estimate variance, but its high inherent bias results in a
bad estimate of the underlying function. A trade-off between bias and variance
(cubic) is needed to lower the Generalisation Error.
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The challenge then lies in finding the correct balance between estimator bias and
variance which minimises generalisation errors overall, as is the case in the second
column in the figure.

Bias-Variance Decomposition We may gain additional understanding in the
source of an estimator’s errors using the GE’s bias-variance decomposition, break-
ing down the GE into terms attributed to estimator bias and variance respectively.
This decomposition relies on the kind of the estimation and the error function
used. In the context of this thesis, it is interesting to consider estimators where
the target of our estimation efforts is the distribution generating the data we
model.

Assume that we wish to recover the target distribution q by means of an
estimator p̂ returning the probability estimate p̂(X ) when trained on training set
X . A sensible error function in this setting can be the Kullback-Leibler (KL)
divergence between the target q and estimate p̂. For the distinct random variable
case this is:

KL(q, p̂(X )) =
∑
x

q(x) log
q(x)

p̂(x;X )
(2.36)

Denoting with EX the expectation over all training samples, generalisation
error is then the expected KL-divergence between q and p̂.

Err = EXKL(q, p̂) = E [KL(q, p̂(X ))|X ] (2.37)

Heskes (1998) shows that the GE Err can then be decomposed in bias and
variance terms. The bias term is the KL-divergence between q and the mean
estimate over all training data p̄ = EX p̂(X ). Variance is the expected divergence
between the average estimate and the estimator’s actual choice for each training
input X .

Err =

bias︷ ︸︸ ︷
KL(q, p̄) +

variance︷ ︸︸ ︷
EXKL(p̄, p̂) (2.38)

An example of an unbiased estimator in this setting would be one which only
predicts the training data according to their frequency in the training set. It
is easy to show that the average over all sampled training sets p̄ would then
coincide with the target distribution q leading to a zero bias term. However,
excluding random variables taking only a handful of values or having access to
extremely large training sets, the variance term of an unbiased estimator becomes
unboundedly large, leading to a large GE. In Chapter 3, we shall revisit the bias-
variance decomposition in the context of Fragment Models.
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Figure 2.12: K-fold Cross-Validation.

2.7.2 Cross-Validation

The Bias-Variance analysis of estimator Generalisation Error highlights that low
training data error alone does not always translate to low GE, due to training data
overfitting. While providing low training set error remains an intuitive model se-
lection criterion, we need to discriminate between model-estimator combinations
which are able to capture the underlying random variable’s statistical properties
and those which fixate on the training sample’s peculiarities.

Given enough data, we could set aside a validation set, the error on which can
aid in assessing GE. Nevertheless, reserving data for the validation set reduces
the size of the training set. This is further aggravated from the fact that often,
in order to attain a reasonable estimate of the GE, the size of the validation
set must be substantial. Validating thus on a reserved data set is inefficient in
employing training data and its use is often prohibitive when assembling training
sets is particularly costly.

A simple but highly effective method to arrive at an estimate of the GE
without sacrificing possibly scarce training data is K-fold Cross-Validation (CV)
(Hastie et al., 2001; Duda et al., 2001). The basic concept is using part of the
training data to fit our models and a different holdout part to test them, while
rotating which part functions as the holdout set. This allows a more efficient
usage of our data, as in the end we allow all data points to take part in both
fitting the model as well as validating its generalisation capacity over new data.

More precisely, we begin by splitting the data in K roughly equal-sized parts
X1 . . . XK . For every 1 ≤ k ≤ K, we test against part Xk a model trained on the
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rest of the data X−k. In this manner, K estimates of the generalisation error are
computed, which we can further combine together to output an overall estimate
of the GE, for example by averaging them together. This process is depicted in
Figure 2.12.

Usual settings for K which have been shown to work well for a range of
modelling problems (Kohavi, 1995) are in the range of 5 to 20, with 10 a popular
choice. The case when K is equal to the size of the training set X is referred
to as leave-one-out CV, as in each CV-round we hold out a single training data
point.

CV as an Estimator of GE Cross-Validation is itself an estimator of the Gen-
eralisation Error of model-estimator combinations. Due to the No-Free-Lunch
Theorem (Wolpert, 1996), which is applicable to all estimators, we cannot of
course prove that CV is an overall superior estimator of the GE under all circum-
stances.

Nevertheless, it has been shown (Kohavi, 1995) that, under some assumptions,
CV is both an unbiased as well as low-variance estimator of the Generalisation
Error, promoting CV as a highly accurate estimator of GE. The key assumption
for this to hold is that the estimators tested under CV are stable under the
perturbations of the training data set during CV. In other words, that their
predictions do not change when trained on the training set with a CV holdout
part removed. While this assumption does not strictly hold for most estimators
and experimental settings, this result exhibits that CV is expected to be a good
estimator of prediction error when for the estimator, training data and number
of CV-folds chosen, the predictions of the estimator do not greatly change when
presented with the CV holdout parts removed.

Practical Applications Apart from these theoretical properties, CV has been
also shown to provide a low-bias, low-variance estimator of GE for a host of ‘real-
life’ problems (see e.g. (Kohavi, 1995; Schaffer, 1993)). In addition, CV has also
found numerous applications for NLP problems. Examples include estimating
back-off parameters of Language Models (Jelinek and Mercer, 1980; Kneser and
Ney, 1995), as well as estimating the parameters of Data-Oriented Parsing models
(Zollmann and Sima’an, 2006) and selecting the feature set of a discriminative
parsing model (Collins, 2000).

Cross-Validation is mostly applied in the context of model selection, picking
out the model which the best prediction properties. In the next chapter, we take
advantage of the theoretical and practical appealingness of CV as an estimator of
Generalisation Error to formulate a model parameter estimation objective, which
aims at increased generalisation over yet unseen data. We find that this learning
objective is a preferred alternative to plain Maximum-Likelihood Estimation for
models with a strong tendency to overfit training data. We then discuss this in
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detail for Fragment Models: a family of models which has already been employed
with success for syntactic parsing and machine translation.



Chapter 3

Fragment Models Estimation with the
CV-EM Algorithm

Machine Learning problems frequently involve data with an unobserved hidden
structure, and these data typically cannot be described by a mere low-dimensional
vector. Examples include face and character recognition that work with matrices
of image pixel values, financial fraud detection operating on sequences of finan-
cial transactions, and automated medical diagnosis systems accepting as input
vectors of patient medical variables. In the same category fall many of the prob-
lems in NLP like language modelling, speech recognition, parsing and machine
translation.

In the first part of this chapter we occupy ourselves with modelling such com-
plex data. We begin by a discussion of the overall challenges involved, examining
in more detail the interesting case posed by natural language data. We further
concentrate on generative models and treat the case of Fragment Models. These
define distributions over the data modelled, by specifying how fragments of arbi-
trary sizes extracted from the training data can be combined together to produce
novel data instances.

The highly expressive Fragment Models are nevertheless notoriously difficult
to train, as they are known to have a strong tendency to overfit training data.
Motivated by this, we propose a Cross-Validated MLE (CV-MLE) estimation ob-
jective and contribute the Cross-Validated Expectation-Maximization (CV-EM)
algorithm. This is a general estimation algorithm, which employs the Cross-
Validation criterion to induce models generalising well on yet unseen data. We
show that CV-EM enjoys an array of appealing algorithmic properties, preparing
the grounds for its application in the following chapters of this thesis.

61
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3.1 Fragment Models

3.1.1 Modelling Complex Data

We employ the term ‘complex data’ to refer to instances whose representation
demands a large number of numerical values, with complex patterns between
these that cannot trivially be captured in a low-dimensional space. We contrast
these to simpler data involving a handful of values per data point, like temperature
readings from a single sensor, a collection of basic measurements of people like
height and weight or a country’s key financial variables. While working with
simpler data can also be highly non-trivial, modelling problems involving complex
data share a number of common challenges.

Perhaps the most fundamental issue with regard to complex data modelling
is that we can never hope to have access to enough training instances to model
the data straightforwardly as atomic data points. For example, one can consider
the height, width and weight of various animals in a 3-dimensional space and dis-
tinguish humans among them using a Gaussian model or the k-Nearest-Neighbor
algorithm. In contrast, the same approaches cannot be routinely applied for the
much higher-dimensional spaces of complex data such as the pixels of an image.

We may respond to this challenge by moving past the surface of the data to
take advantage of their internal structure and the relations between the data’s
variables. In contrast to random data where modelling efforts are in any case
futile, real-life data related to ML applications often exhibit such internal organ-
isation. Models or learning algorithms which introduce the right assumptions
over these internal interdependencies are able to overcome data sparsity and ad-
equately describe or classify the data when trained on the limited amount of
available training instances.

There are multiple methods we might follow to take advantage of these inter-
nal data patterns. For example, to perform face recognition we may exploit
the correlations between the pixel values to map the image data in a much
lower-dimensional space using Principal Component Analysis (Turk and Pent-
land, 1991). In financial fraud detection we might classify transactions as fraud-
ulent by establishing a hierarchy over the transaction’s variables using a decision
tree. Medical variables are often related by encoding conditional independence
assumptions between them in a Bayesian Network. Notwithstanding the differ-
ences, all of the aforementioned methods coincide in viewing the data as instances
whose internal organisation can be exploited to model them from reasonably-sized
training sets.

Complex Data in NLP Most of the Natural Language Processing tasks accept
as input complex data, e.g. natural language sentences, and in this way are
susceptible to the issues highlighted above. The space of possible values is so large
that even billions of training instances are not enough to cover a substantial part
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of it. An interesting experiment to exemplify data sparseness when working with
NLP data is searching for an exact match of medium length, well-formed sentences
or even phrases against all the content of the web using a search engine, resulting
in most cases in zero matches. Fortunately, despite all the talking we have only
explored a small fraction of what can be stated through natural language.

However, this does render modelling NLP data challenging. For example,
due to this data sparsity a language model based on the relative frequency of
whole sentences in the training data can hardly be effective at all, assigning zero
probability to most of the yet unseen well-formed sentences. In the same way, for
parsing we cannot escape by merely learning the conditional distributions of full
parse-trees for every training sentence.

One way to overcome this is to introduce independence assumptions between
the variables of the data in a generative model, or employ features based on
patterns between the values of these variables in a featured-based approach. For
a generative parsing model, we might for example assume that expansions of
parse-tree non-terminals are independent of the rest of the previous derivation
steps given the non-terminal being expanded, as in Probabilistic Context-Free
Grammars.

A typical solution for the purpose of language modelling is to assume a Marko-
vian LM. For example, in a second-order LM, every new word wi generated is
independent of the previous ones given the last two words wi−2, wi−1 before it,
as in equation (3.2) below. With w1 = 〈s〉 and wN = 〈/s〉 the start and stop
symbols delimiting a sentence, we can write:

p(w1w2w3 . . . wN) = p(w1)p(w2|w1)
N∏

i=3

p(wi|wi−1
1 ) (3.1)

' p(w1)p(w2|w1)
N∏

i=3

p(wi|wi−1
i−2) (3.2)

Modelling with Data Fragments The case of Markovian LMs exemplifies
how we can address the challenges of modelling complex NLP data by breaking
through their surface and considering assumptions over their internal organisa-
tion. The exact chain-rule application of equation (3.1) above is associated with
an opaque, rigid view of data generated as one piece. In contrast, imposing in the
context of generative models independence assumptions like those of a second-
order Markovian model, allows us to take advantage of the local nature of many
linguistic phenomena to disentangle, as conditionally independent, the words of
the sentence that are longer than 2 words apart.

These assumptions, aside from their probabilistic modelling impact on sim-
plifying (3.1) in (3.2), crucially establish tri-grams, word sequences of length 3,
as the partially overlapping building blocks of sentences. The result is that, since
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gathering statistics over tri-grams is less affected by data sparsity than doing so
for full sentences, a tri-gram based language model generalises much better.

Along the same lines, we can visualise the generative process of a model
employing conditional independence assumptions between the data variables as
building the data from partially overlapping data fragment, data, with the over-
lapping part matching the conditioning context between them. The size of these
fragments and the way that they are combined depends on the assumptions of the
model, with second order Markov LMs employing tri-grams, third order models
employing four-grams etc. When training such models over data whose variables
are discrete, as is the case for most NLP problems, training often consists of
extracting such fragments and their associated statistics from the training data.
Apart from the n-grams of Markov LMs, further examples include subtrees of
depth one for PCFG models trained from treebanks, word-pairs for the IBM
SMT models (Brown et al., 1990), contiguous phrase-pairs for the phrase-based
SMT models (Och et al., 1999; Koehn et al., 2003) and synchronous subtrees
of depth one for Synchronous CFG hierarchical translation models (Wu, 1997;
Chiang, 2005a).

Fixed-size and Arbitrary Fragments As discussed above, a lot of the models
employed in NLP are based on extracting and learning to recombine fragments
of the training data. A common trait of the majority of these models is that they
employ elementary fragments of fixed sizes, such as tri-grams, subtrees of depth
one or word-pairs. They then define probability distributions over derivations
combining these fragments together to generate the data being modelled.

In contrast, a particularly interesting family of models is characterised by the
utilisation of fragments of arbitrary sizes. For example, the Data-Oriented Parsing
models (Bod et al., 2003) are based on subtrees of arbitrary depth, while phrase-
based and hierarchical SMT employs phrases, contiguous and non-contiguous
respectively, of arbitrary length. In principle, the size of the fragments combined
to generate the modelled data can vary up to the full size of the data points,
allowing derivations generating a data point as a single fragment and in a single
generative step. We refer to these models in the rest of this work using the term
Fragment Models (FMs).

3.1.2 Data-Oriented Processing

Studying the Data-Oriented Processing paradigm (Scha, 1990; Bod, 1992), one
of the earliest frameworks leading to the formulation of Fragment Models, is in-
teresting both to highlight the potential of FMs as well as discuss the challenges
involved in their training. Data-Oriented Processing was initially applied to the
supervised learning of natural language parsing and later employed for unsuper-
vised parsing (Bod, 2006) as well as translation (Poutsma, 2000; Way, 1999)
among others. The application of this paradigm for NLP tasks stems from the
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basic assumption that human language perception and production works with
representations of concrete past language experiences rather than with abstract
linguistic rules. These are maintained in the form of memorised fragments of
arbitrary sizes from previous language utterances that a language user has been
exposed. New linguistic input can be analysed or novel linguistic output can be
produced by combining these fragments together.

The same assumptions can be employed in Artificial Intelligence terms to ar-
rive at a Fragment Modelling approach. Here, the role of the human language user
is substituted by an empirically estimated probabilistic model, with prior linguis-
tic experiences embodied in the training corpus. From this corpus arbitrarily-sized
fragments of data points are extracted, which a generative process can combine
together to arrive at new data. A stochastic model instance over this process pro-
vides a distribution over these novel combinations, distinguishing between highly
probable and less probable ones. In total, a framework to define such Fragment
Models, along the lines it was first developed for Data-Oriented Parsing can be
drawn in terms of the following components (Bod, 1995).

• A definition of a formal representation for data analyses.

• A definition of the fragments of the analyses that may be used as units in
constructing an analysis of a new data point. The size of the fragments
varies up to covering the full data point analysis as a single fragment. This
last property crucially distinguishes FMs from other modelling paradigms.

• A definition of the operations that may be used in combining fragments.

• A probabilistic model over the derivations of data points through the com-
bination of fragments.

Data-Oriented Parsing The first application of the Data-Oriented Processing
framework was in the context of Data-Oriented Parsing (DOP) (Bod et al., 2003)
which can also function as an interesting example of a Fragment Model. In
DOP we are interested in modelling the constituency parsing analyses of natural
language sentences.

The more traditional approach in modelling the latter is through Probabilistic
Context-Free Grammars (PCFGs). Each PCFG G is a 5-tuple 〈V, T, S, R, P 〉: a
finite set of Non-Terminal (NT) symbols V , a finite set of terminal symbols T , a
designated ‘start’ symbol S ∈ V and a finite set of rewrite rules R expanding a
left-hand side (a single NT) to a right-hand side string of terminals and NTs. P is
a set of probabilities {p(r|LHS(r))}, one for each rule in R, with the probabilities
of all rules with the same left-hand side summing up to one.

The PCFG explains the derivation of a parse tree starting from the start
symbol S, by recursively rewriting NTs using rules of the grammar. Each time,
the rewriting operation is applied to the left-most NT which has not yet been



66 Chapter 3. Fragment Models Estimation with the CV-EM Algorithm

S

NP

John

VP

V

likes

NP

Mary

r1 : S → NP VP

r2 : NP → John

r3 : VP → V NP

r4 : V → likes

r5 : NP → Mary

p(T ) =
5∏

i=1

p(ri|LHS(ri))

Figure 3.1: Constituency parse tree T with the PCFG rules r of its derivation.
The probability p(T ) of the parse tree is the product of the derivation’s rule
probabilities.

expanded, to avoid the spurious ambiguity between derivations employing the
same rules in a different order. The rule applications are considered independent
of the rest of the derivation given the NT that they expand. The probability of a
full derivation is the product of the probabilities of the rules that were employed,
with these probabilities summing up to one for all rules with the same NT as their
left-hand side, as dictated by the aforementioned independence assumptions. An
example of a constituency parse tree together with the PCFG rules taking part
in its derivation and the computation of its probability can be seen in Figure 3.1.

We already discussed in the previous section that PCFG derivations can be
seen as combining together parse fragments to derive a full parse tree, albeit of a
fixed size: subtrees of depth one. In DOP, we move past this constraint to extract
tree fragments of arbitrary sizes from the training corpus of sentence constituency
parses and learn how to combine them together in derivations of novel sentence
instances. As fragments we consider subtrees (i.e. tree fragments with a single
root) of arbitrary depths, with the conditioning context remaining as in the case
of the PCFGs the root of the subtree. Considering subtrees of arbitrary depth
implies also including the complete parse tree in the set of subtrees. Figure 3.2
lists a subset of the subtrees that can be extracted from the tree of Figure 3.1.

More formally, a DOP probabilistic grammar is again defined as a 5-tuple
〈V, T, S, R, P 〉 along the same lines as a PCFG. However, each rule r ∈ R replaces
a left-hand side single NT, to a right-hand side sub-tree of terminals and NTs
having the left-hand side as root, in contrast with PCFGs where expansions lead
to terminal and NT strings. For this, DOP grammars are categorised in the
literature in the family of Tree-Substitution Grammars.

Each rule has an associated probability attached to it, with these probabilities
again summing up to one for all rules with the same left-hand side NT. Each
derivation, starting from the start symbol S, rewrites left-to-right non-terminals
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Figure 3.2: Some of the subtrees that can be extracted from the constituency
parse in Figure 3.1. The first row depicts subtrees of depth one that are also the
units of PCFG derivations. However, DOP extracts and reuses in derivations also
subtrees of arbitrary depth, up to the complete parse tree.
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to their subtree expansion, by applying a rule with the current leftmost NT as
its left-hand side. The probability of a derivation D is, along the same lines as
PCFGs, equal to the product of the probabilities of the rules r taking part in it.

p(D) =
∏
r∈D

p(r|LHS(r)) (3.3)

Three derivations of a novel sentence based on a subset of the fragments of
Figure 3.2 are listed in Figure 3.3. The first derivation reuses the same frag-
ments as a PCFG derivation of the parse would employ, highlighting that PCFG
derivations with elementary fragments is also part of the space of derivations
that DOP considers. The second and third derivations however employ a subtree
reaching down to depth two, which in the second derivation encodes the dominant
Subject-Verb-Object sentence structure of English, while the third one memorises
the argument structure of the verb ‘likes’.

Latent Segmentation The introduction of Data-Oriented Parsing, apart from
showcasing the descriptive power of Fragment Models, also gradually revealed the
challenges involved into estimating such models from training data. Context-Free
Grammars provide only a single derivation for each parse tree, if we agree to only
substitute NTs in a left-to-right fashion as mentioned above. This is a crucial
point, as it allows us to relate a training parse tree to a single derivation behind
it and in this way translate the observation of the tree to the observation of the
unique sequence of CFG rules taking part in its derivation. For the purpose of
PCFG training, this enables us to treat a corpus of training parse trees (a tree-
bank) as complete data1, which simplifies training under a Maximum-Likelihood
objective to an instance of Relative Frequency Estimation.

However, while the same left-to-right constraint allows us to avoid spurious
ambiguity between DOP derivations employing the same subtrees, as Figure 3.3
reveals under DOP we can still arrive at the same parse tree under multiple
derivations, each employing a different set of fragments for this purpose. The
probability of a full parse T is then the sum of all derivations D

∗⇒ T leading to
T .

p(T ) =
∑
D

∗⇒T

p(D) (3.4)

Most importantly, DOP and Fragment Models in general introduce in this
manner a latent segmentation variable. This dictates how a data point is seg-
mented into fragments, as there is more than a single way to do this. While in
DOP latent segmentation is not explicitly encoded in a separate model variable,
it still is embedded in the model in the form of subtree expansion probabilities,
which indicate preferences for substitution of NTs by larger or smaller fragments.

1For a discussion of complete vs. incomplete data please refer to section 2.6.



3.1. Fragment Models 69

S

NP VP

◦ NP

Mary

◦ VP

V NP

◦ V

likes

◦ NP

John

= S

NP

Mary

VP

V

likes

NP

John

S

NP VP

V NP

◦ NP

Mary

◦ V

likes

◦ NP

John

= S

NP

Mary

VP

V

likes

NP

John

S

NP VP

V

likes

NP

◦ NP

Mary

◦ NP

John

= S

NP

Mary

VP

V

likes

NP

John

Figure 3.3: Three DOP derivations of the same parse tree.
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Because of the latent segmentation, the treebank training set must be consid-
ered as incomplete data, as it does not contain information on the segmentation
of parse trees into DOP subtrees. For parameter estimation, we need thus to
disambiguate between the segmentations of data points into fragments.

3.1.3 DOP Estimation

At first sight, one could apply Maximum Likelihood Estimation for DOP, as it
is successfully applied for PCFGs in the form of Relative Frequency Estimation.
The fact that treebanks are incomplete data for the purpose of estimating the
parameters of a DOP model, disallows the application of the relatively easy RFE.
Nonetheless, we can still formulate an MLE estimation objective, as we already
discussed in section 2.6, and maximise the likelihood L(T ) of the training data
T by summing through the alternative derivations of each training instance T .

L(T ) =
∏
T∈T

∑
D

∗⇒T

p(D) (3.5)

However, this vanilla MLE objective is of little use to estimate the parameters
of DOP models, as we discuss in more detail in the wider context of Fragment
Models in the next section. In rough terms, the problem is that the MLE objective
of fitting the training data leads to allocating all probability mass to full training
parse trees, as these are also part of the subtrees extracted from the training
set (Prescher et al., 2004). Doing so allows the model to exactly predict the
training treebank. Crucially, while it seems superficially desirable to arrive at
parameters which fit well the training data, in this case it completely defeats the
purpose of learning such a model, as it assigns no probability mass to any analyses
of sentences past those included in the training parses (Zollmann and Sima’an,
2006). The MLE estimate of DOP probabilistic grammars has an extremely
limited ability to generalise to yet unseen data instances.

In the face of this, right from the introduction of DOP, there has been a barrage
of work on estimating DOP models, resulting in a fair amount of progress and
increased understanding of the issues involved, but still failing to decisively resolve
the problem of estimation for DOP models. We briefly examine the key points
of such estimation approaches, as an interesting overview of possible solutions to
Fragment Model estimation that have already been tried.

DOP1 Estimator The introduction of the DOP model for parsing was coupled
with the DOP1 estimator (Bod, 1995). Under DOP1, the probability of a DOP
subtree is set to the relative frequency of its ‘appearance’ in the training treebank.
More accurately, this estimator belongs to the family of estimators employing
extraction heuristics, that we discuss in the next section. Namely, we compute
the DOP1 estimate of a treebank by first extracting all DOP subtrees of the
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training parses, counting how many times each fragment can be extracted. The
DOP1 estimate is then set to the relative frequency of the subtree fragments in
this multiset of subtrees constructed in the previous step.

A somewhat subtle but crucial point is that the DOP1 estimate has no con-
nection to the relative frequency of any events in the training data, as the training
treebank does not contain any information relating to the segmentation of parses
into fragments as we already mentioned. As the extraction step lacks any clear
link to the training data by means of an optimisation objective, the DOP1 esti-
mate is a heuristic estimator, with an appealingness relating only to the strength
of the results from its empirical application. Its arbitrary nature from a theoreti-
cal standpoint is further highlighted by (Johnson, 2002) who shows that DOP1 is
a biased and inconsistent estimator. Additionally, (Bonnema et al., 1999) notice
that the DOP1 extraction heuristic in practice favours larger extracted subtrees
over smaller ones.

Bonnema et al. Estimator Bonnema et al. (1999) propose instead an alterna-
tive estimator which assigns to every appearance of a subtree in the training data,
a count equal to the fraction of the number of possible DOP derivations using the
subtree fragment, against the total number of DOP derivations of the parse where
it appears. Essentially, this boils down to Maximum Likelihood estimation on a
treebank whose segmentation of every parse tree in DOP subtree fragments has
already been disambiguated by the strong assumption that all segmentations are
equally likely. Sima’an and Buratto (2003) show that this estimator is inconsis-
tent and discuss that it is biased towards smaller subtrees and does not perform
well in practice.

Back-Off Estimator Starting from the DOP1 estimate, (Sima’an and Buratto,
2003) propose a back-off estimator based on Katz smoothing technique (Katz,
1987) to discount probability mass from the larger subtrees towards smaller ones.
As (Zollmann and Sima’an, 2006) discuss, this estimator both inherits the weak-
nesses of the DOP1 estimate, as well as loses some of the appealing properties of
Katz smoothing through problems related to the estimator’s practical implemen-
tation.

Parsimonious-DOP Estimator Starting from the PCFG relative-frequency
estimate of the training treebank, which employs minimal subtrees of depth one,
(Zuidema, 2007) propose an estimator which distributes probability mass to larger
subtrees by evaluating their extraction frequency against its expectation. It also
includes a counter-balancing bias against large trees to avoid completely overfit-
ting the treebank. While the Parsimonious-DOP estimator works in the oppo-
site manner than the Back-Off estimator, moving overall probability mass from
smaller to larger subtree fragments instead, it shares with it the weakness of being
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based on the DOP1 heuristic, as it compares model subtree extraction expecta-
tions against the DOP1 extraction counts.

Shortest Derivation Parsing While not involving the estimation of a model,
an alternative approach to the problems related to estimating DOP model param-
eters is brought forward by (Bod, 2000): shortest derivation parsing. It abandons
probabilistic modelling altogether, in favour of parsing by recovering the shortest
DOP derivation of a parse tree covering a test sentence, by employing subtree
fragments extracted from the training treebank. This parsing heuristic objective
favours large subtrees as does the DOP1 estimator and, perhaps for exactly this
reason, it is shown to perform competitively against the latter.

DOP* Estimator The DOP* estimator proposed in Zollmann and Sima’an
(2006) is of particular interest to this work. The authors briefly consider the
possible use of Cross-Validation (CV) to avoid overfitting towards a Maximum
Likelihood estimate of a DOP model’s parameters which fails to generalise. How-
ever, they do not pursue this approach. They argue that while such a learning
objective might be theoretically appealing, in practice it involves employing hill-
climbing algorithms such as the Expectation-Maximization algorithm, which do
not guarantee arriving at the overall ML estimate but only at a local likelihood
optimum.

With a primary objective of arriving at a consistent estimator, the DOP* esti-
mator instead couples the shortest derivation principle with CV to disambiguate
the segmentation of the treebank parses in DOP derivations: after partitioning
the treebank in 10 parts, for every part they consider the shortest DOP deriva-
tion(s) of each parse utilising exclusively subtree fragments from the remaining
parts of the treebank. From this subtree-segmented treebank they arrive at a
DOP estimate by ML estimation which, operating on DOP derivations in place
of unsegmented parse trees, boils down to relative frequency estimation. This
estimation approach is shown to be consistent, i.e. to arrive with a probability
approaching one at an accurate estimate of the true distribution of parse trees
when the training treebank size grows towards infinity.

Despite the asymptotic consistency properties of the DOP* estimator, its ap-
plication on treebanks of real-life sizes still demands a ‘leap-of-faith’ concerning
the use of the shortest derivation principle. In contrast, in this thesis we draw
inspiration from certain aspects of the work on the DOP* estimator to pursue and
study the implications of a Cross-Validated Maximum-Likelihood learning objec-
tive, implemented in the form of our Cross-Validating Expectation-Maximization
algorithm.
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3.1.4 Modelling with Fragment Models

In the previous section we reviewed in some detail the developments in employ-
ing a Fragment Model for natural language parsing in the form of the DOP
framework. However, models which can be categorised as FMs have been also
introduced for other tasks, with contiguous and non-contiguous phrase-based Sta-
tistical Machine Translation being the most relevant in respect to this work. Ir-
respective of the particularities linked to every kind of data or process that needs
to be modelled, FMs enjoy certain common properties which we will now discuss.

A Fragment Model can be considered a hybrid between more traditional gener-
ative models on the one hand and example-based models on the other. Typically,
generative models describe the derivation of data points through generative steps
involving minimal, usually fixed-size, units. Defining what constitutes such a unit
rests with the modeller: for example, a language model can operate at the word,
morpheme or even letter level. Still, the crucial property of these units is that
they are considered atomic, as they cannot be in turn constructed from other
such modelling units. Furthermore, learning and applying a generative model is
usually a two-step process. First, generative models are induced from the train-
ing data according to a learning objective or using a training algorithm, and the
learnt model is subsequently applied to process the test data.

In contrast, frameworks categorised as memory-based or example-based pro-
cess novel data by reusing memorised training examples. For instance, Example-
Based Translation (EMBT) (Nagao, 1984) strives to employ these to translate
novel sentences by recombining translation fragments from the memorised ex-
amples. These fragments can be of arbitrary sizes, with the larger fragments
preferred (Sato and Nagao, 1990). Part of an EBMT system is the process of
choosing which translation fragments to use and how to recombine them. Typ-
ically, this process does not depend on a prior model induction step, accepting
the entire training data as input and outputting a model describing translation
by means of such fragments, as is usually the case with generative models. On
the contrary, the related decisions are considered and scored for every test data
point.

Fragment Models stand in the middle, aiming to pick the ‘best of both worlds’.
On the one side, in comparison to traditional generative models employing min-
imal atomic units, they crucially consider generating data from units whose in-
volvement in the derivation of a data point can be replaced by an alternative
analysis employing other, smaller units. As examples, a parse analysis involving
a larger DOP subtree can be substituted by an analysis which arrives at the same
constituency structure by a combination of smaller subtree fragments; a transla-
tion phrase-pair can be constructed as a combination of smaller phrase-pairs or
even word-pairs. On the other side, in comparison to memory-based frameworks,
their formulation by means of a stochastic generative process, allows us to en-
code the construction of novel data instances from fragments extracted from the
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training corpus, by means of the perhaps better-founded and easier to understand
probabilistic models.

By moving past atomic units to larger fragments, while crucially remaining
within the context of a generative framework, Fragment Models have a chance to
overcome the inherent weaknesses due to the blanket independence assumptions
behind traditional generative models. An interesting example of when this is
desirable is the modelling of the translation of idiomatic expressions in natural
language such as ‘kick the bucket’. Such expressions typically exhibit correlations
between their words and their translations that severely violate the independence
assumptions behind word-based models; word-to-word translation statistics are
not enough to direct us toward an adequate translation for the aforementioned
example phrase. An FM enjoys the ability to reserve some probability mass from
more fine-grained analyses that assume some degree of conditional independence
between their generative steps. It can then assign this mass to directly model
the translation of such idiomatic expressions as single units, in this case translate
‘kick the bucket’ as a single contiguous phrase.

3.1.5 MLE and Fragment Models

As already highlighted above through following the development of the literature
on DOP estimation, using a Fragment Model does not come without disadvan-
tages. The central issue is that due to the introduction of the latent segmentation
variable, estimating the parameters of FMs is far from straightforward. In addi-
tion, FMs ability to bypass the independence assumptions of models employing
smaller fragments allows it to fit the training data arbitrarily well. This is a
blessing that, unless properly treated, can easily develop into a curse in the form
of overfitting.

For example it is easy to see that the often successful Maximum Likelihood
Estimation objective completely overfits the training data when applied to esti-
mate FMs, as discussed in (Prescher et al., 2004). The MLE objective of equation
(2.30) can be interpreted as minimising the Kullback-Leibler divergence between
the empirical relative-frequency distribution p̃(x) of values of the data variable
X in the training data X , and the model estimate p(x; θ) parameterised by θ.

θ̂ = arg max
θ

L(X ; θ) = arg max
θ

∏
x∈X

p(x; θ)

= arg min
θ

KL(p̃(x) || p(x; θ)) = arg min
θ

∑
x∈X

p̃(x) log
p̃(x)

p(x; θ)
(3.6)

We already mentioned that we considered a key feature of FMs to be able
to model the training data with fragments of arbitrary sizes, up to considering a
data point as a single fragment emitted in a single generative step. This entails
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that there exists a parameter setting θ̃ for which all values x of random variable
X are emitted in a single generative step, according to their relative frequency
in training data X . As these relative frequencies sum up to one, this leaves
no probability mass for analyses employing smaller fragments than whole data
points.

But for θ = θ̃ we have KL(p̃(x) || p(x; θ̃)) = 0 and since the KL divergence
between any two distributions is always larger or equal to zero, θ̃ is the ML
estimate of θ as it minimises (3.6). Overall, the MLE estimate of Fragment
Models completely overfits the training data by predicting nothing more than the
training points according to their empirical relative frequency.

3.1.6 Expected Error of MLE for Fragment Models

Taking the result of the previous section into account allows to shed some light on
the source of the generalisation error incurred by the MLE estimates of FMs, as
analysed in terms of estimator bias and variance. In section 2.7.1 we discussed how
the expected generalisation error for an estimator of a distribution p̂(X ) trained on
data X , can be analysed in estimator bias and variance terms. Let us measure the
estimator’s expected error Err(p̂) in terms of the expected Kullback-Leibler (KL)
EXKL(q, p̂) divergence between the estimator’s output and the target distribution
q. Then, the error Err(p̂) can be analysed in a bias and a variance term according
to equation (2.38), which we repeat here for the reader’s convenience.

Err(p̂) := EXKL(q, p̂) =

bias︷ ︸︸ ︷
KL(q, p̄) +

variance︷ ︸︸ ︷
EXKL(p̄, p̂)

The bias term is the KL-divergence between q and the mean estimate over
all training data p̄ = EX p̂(X ). Variance is the expected divergence between the
average estimate and the estimator’s actual choice for each training input X .

The fact that the MLE estimate p̂(X ) in the case of FMs predicts exactly the
training data according to their empirical relative frequency, has consequences for
both terms of the estimator’s error. On one hand, MLE is a zero-bias estimator
for FMs: The average estimate p̄ will coincide with the target distribution q when
we average over all training sets X , which themselves are sampled from q. On
the other hand, since every estimate assigns zero probability to any value not
appearing in the training data X , in all but trivial cases the variance term will
be unboundedly large.

The end result is that the expected error of the MLE estimate is extremely
large even though the estimator is zero-biased. This is a typical instance of the
estimator bias-variance trade-off, when merely aiming to minimise one of the two
error terms severely increases the other. To arrive at an overall low expected
error, we need to trade bias error by relaxing how closely our estimator fits the
training data, in order to reduce the error attributed to the variance between
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the estimates. For Fragment Models this translates to shifting probability mass
from excessively large fragments to smaller, more reusable ones, according to our
expectation for them to appear in further samples from the target distribution
than the training data we currently have at hand.

3.1.7 Fragment Models and Generalisation

The overfitting behaviour of MLE estimators for FMs should not discourage us
from employing them. Part of the model space of FMs are also estimates which
solely employ atomic fragments in their analyses. This means that an FM always
includes an estimate which fits the data as well as models employing atomic, fixed-
size fragments. Combining this with the result above, what we essentially learn is
that FMs have the ability to provide model estimates which cover the continuum
between the best data fit provided by their traditional generative counterparts
and completely overfitting the training data, by shifting probability mass from
more generic explanations of the data to more specific ones. FMs should be thus
seen as very versatile models which can accurately describe any training data
set. Our focus should then be directed towards employing this ability to also
accurately model yet unseen data.

Choosing how closely the training data should be fit is, as is often the case
in Machine Learning, a data-centric issue. The more training data we have at
hand, the larger the probability mass we can reserve for larger fragments, with
the overfitting unconstrained MLE estimate we discuss above being the optimal
choice as data grows towards infinity and p̃(x) converges towards the true data
distribution. Smaller training data sizes demand focusing probability mass on
derivations which employ smaller fragments which we hope will generalise better.
But not all fragments of the same size are equally good at generalising: some of
them might come forward in data as noise, other as particular instantiations in-
volving combinations of smaller fragments which roughly follow the independence
assumptions assumed, while others might signify a departure from the same as-
sumptions that needs to be captured. We believe that navigating this treacherous
field demands a data-driven approach, as the one we propose in the form of the
CV-EM algorithm later in this chapter and apply empirically in the rest of this
work.

3.1.8 Inducing Fragment Models

A direct application of Maximum Likelihood Estimation, apart from the uncon-
strained case, has also been empirically shown to perform poorly even when the
size of the fragments is constrained so that complete overfitting is avoided (DeNe-
ro et al., 2006). Given the difficulties of establishing an ML objective that leads
to estimates which generalise well, there has been an array of research direc-
tions towards alternative FM estimation approaches. We discuss below two of



3.1. Fragment Models 77

these: the extraction heuristic, which despite its heuristic nature is still applied
in most state-of-the-art implementations of FMs, and Bayesian induction of FMs
which employs probabilistic priors to arrive at reasonable FM estimates in a more
principled manner.

The Extraction Heuristic The Extraction Heuristic estimates the parameters
of a Fragment Model in two steps. Firstly, a corpus of extracted fragments is
constructed from the training data, extracting all fragments assumed from the
FM from every training data point and assigning them a frequency equal to the
number of times they were extracted. Then, we arrive at an FM estimate by
applying Relative Frequency Estimation on this fragments corpus. This leaves
the estimate only related to the original training corpus of complete data points
by means of the heuristic extraction process. As we have already commented, the
Extraction Heuristic has nothing to do with RFE on the training corpus itself,
as the latter does not provide information on any events that are related to its
segmentation in fragments. We cannot then just ‘count’ fragment appearances
on the corpus, as the segmentation variable is hidden.

Nevertheless, while it remains difficult to understand what the Extraction
Heuristic optimises, its straightforward implementation and the relatively strong
results obtained through its employment resulted in it being the estimator pro-
posed during the introduction of both DOP (Bod, 1995), as well as phrase-based
translation by means of both contiguous (Och et al., 1999; Koehn et al., 2003)
and non-contiguous phrase-pairs (Chiang, 2005a). Going further, the Extraction
Heuristic remains a competitive estimator for state-of-the-art systems up to this
day.

However, due to their heuristic nature, these estimates have limited theoretical
appeal and leave open the question how much better an estimate that maximises
some meaningful objective function can do. Also, as they operate on the surface
of the training data ignoring the latent variables of FM models, the risks involved
in their application grow as the latent variable of the proposed Fragment Models
becomes more involved, as we have discussed when examining the Syntax Aug-
mented MT models in section 2.4.3. For this, there has been a significant amount
of work on alternative, better founded and understood approaches to induce FMs,
such as a large part of this work, as well as the work on the Bayesian induction
of FMs which we discuss next.

Bayesian Induction One way to address the inherent tendency of Fragment
Models to overfit the training data is by means of a Bayesian prior over the model
space. This allows us to encode in the prior a certain preference over parts of the
model space which we believe might better generalise. The actual parameteri-
sation of the model is then typically marginalised out. Two practical Bayesian
inference approaches that have been applied to induce FMs are Variational Bayes
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and Gibbs sampling. Variational Bayesian EM (also named Variational Bayes)2

provides an iterative algorithm to arrive at a local maximum of the marginal
likelihood:

p(X ) =

∫
θ

p(θ) p(X ; θ) (3.7)

A Gibbs sampler (Geman and Geman, 1984) is a Markov Chain Monte Carlo
method to sample from the model distribution where the model parameters have
also been marginalised out.

There is no doubt that prior knowledge reaching past the training data can
often prove highly successful. However, in this case there is no ‘expert’ to consult
on which fragments or which parts of the model space to prefer and no clear
reason to favour one model estimate over the other prior to observing the train-
ing data, apart from our experience that models which favour extremely large
fragments tend to overfit and do not generalise well. There have been two main
directions on choosing such priors, both of which aim to avoid models reserving
too much probability mass for overly large fragments: preferring sparse fragment
distributions and preferring smaller fragments.

The first direction is employing priors preferring sparse fragment distributions
which assign most probability to a small subset of the data fragments, favour-
ing more parsimonious model formulations. For example, this can be achieved
by means of a sparse Dirichlet prior, with (Zhang et al., 2008a) employing such
sparse prior in a Variational Bayesian approach to disambiguate the segmentation
of sentence pairs in contiguous phrase-pairs. The second direction is priors prefer-
ring smaller fragments. For example, (Blunsom et al., 2009) employ a Dirichlet
Process prior with a base distribution with a preference for smaller phrase-pairs
in a hierarchical translation model.

However, the strong overfitting behaviour of FMs employing large fragments
entails that they can assign extremely large likelihood values to the training data.
Examining equation (3.7) above where we marginalise over the product of data
likelihood and prior probability, reveals that for a Bayesian prior to counter this it
needs to penalise models employing large fragments equally strongly. Zhang et al.
(2008a) find that a good choice for the Dirichlet hyperparameter α (which must
satisfy α > 0) is the extremely low value α = 10−100. Blunsom et al. (2009) use
a base distribution including a Poisson distribution over the phrase-pair length
with unit mean.

Overall, for both prior designs, small fragments are strongly preferred, with
larger fragments having a higher chance to be sampled only when they appear very
frequently in the data. While this approach does allow to expand to fragments
past the minimal set without overfitting, imposing a blanket preference for small
fragments is a bias which might prevent discovering larger fragments that could

2An overview of Variational Bayesian approaches and applications can be found in (Beal,
2003).
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be nevertheless useful to better model yet unseen data.

In the next section, we introduce the CV-EM algorithm, a data-driven ap-
proach towards estimation which explicitly aims at model estimates which gen-
eralise well. In later chapters, we see how the CV-EM can be applied to arrive
at Fragment Model estimates for Machine Translation which perform well on
test data, with both a clear optimisation criterion (in contrast to the Extrac-
tion Heuristic) and a data-driven approach to avoid overfitting (in contrast to
enforcing an external prior).

3.2 Cross-Validated Expectation-Maximization

The central problem in Machine Learning is bridging the gap between the limited
sample that makes up our training data and the yet unseen test data. This
necessarily involves abstracting away from the actual training sample to capture
the general properties of the data being modelled, so that what is learnt from the
training set can hopefully extend to novel data instances. If no abstraction from
the training data is necessary to solve a problem and merely looking them up is
sufficient, then this falls more into the realm of databases and could hardly be
considered an ML problem. The art of Machine Learning then lies in successfully
choosing the level of abstraction from the training points and sorting out the
characteristics of the underlying data distribution from the peculiarities of the
training instances. Cross-Validation (CV) provides a simple yet powerful method
to evaluate how well a learner does in this respect.

As we presented in more detail in section 2.7, given a model for the random
variable behind the training data and an estimator for its parameters, K-fold
Cross-Validation (CV) provides a method to estimate the Generalisation Error
(GE), the error over yet unseen data of the model instances selected by the
estimator, by employing the training data itself. It is able to do so, by first
partitioning the training data in K parts. Then, in K rounds, each time a different
part from the training data is held out, to assess on it the prediction error of the
model instance selected by training on the rest of the data. The outcomes of these
K rounds are then combined together to arrive at a single estimate of the GE.
Notably, as we discussed in the previous chapter, CV is a low bias, low variance
estimator of the GE, allowing a fairly accurate prediction of how useful a learner
applied on the training data at hand is expected to be for yet unseen data points.

These features have established CV as a widely used approach for model se-
lection, i.e. choosing which model, out of a limited set of possible options, is
best suited for a particular learning problem, by picking the model which offers
the lowest GE as estimated by CV. Here in this work, we move further to de-
scribe how Cross-Validation can be employed for parameter estimation of models
employing latent variables.

We begin by discussing how the training data themselves are used in practice
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during the modelling process to define which hypotheses over the values of the
model latent variables we will consider, with the risk of overfitting the training
corpus. To avoid this, we formulate a Cross-Validated MLE (CV-MLE) learning
objective, aiming at model estimates which generalise better. CV for GE esti-
mation considers the error on each part of the training data of a model trained
by excluding that part. In the same way, CV-MLE seeks the estimate which
maximises the likelihood of each training data part, by excluding hypotheses over
the values that the latent variables take for it, and which we would not consider
if we excluded this part from the training data.

As for plain MLE, it is frequently not possible to compute the CV-MLE esti-
mate analytically for models with latent variables. With this in mind, we propose
CV-EM, a Cross-Validated instance of the EM algorithm to allow CV-MLE pa-
rameter optimisation from incomplete data. In the rest of this chapter, we present
both the CV-MLE estimation criterion and the CV-EM algorithm that allows us
to optimise parameters according to it. We compare our framework with re-
lated approaches on estimation towards increased generalisation and discuss how
CV-EM can be applied to estimate the parameters of Fragment Models.

3.2.1 Pitfalls of Model Extraction

Maximum Likelihood Estimation, estimating the parameters of statistical mod-
els so as to maximise the likelihood of the training data, is one of the most
widely applied estimators in the Machine Learning literature. When a model
with no latent variables is trained from complete data, MLE boils down to the
familiar Relative Frequency Estimation. However the MLE estimation objective
can also be applied to train models with latent variables from incomplete data.
In these cases, an MLE estimator is frequently implemented as an instance of
the Expectation-Maximization algorithm, which allows us to climb the likelihood
with respect to the model parameters until a local maximum is reached. Pairing
the MLE optimisation objective with the EM-algorithm in this way allows us to
discover latent data patterns, such as the word-alignments between sentence pairs
in Statistical Machine Translation (see section 2.2).

Crucially, for many models explaining complex data, the parameter estimation
process where MLE is applicable is preceded by an implicit step, where the train-
ing data are used to establish the model parameter space. A particular modelling
framework, for example Phrase-Based Statistical Machine Translation, can be
seen as a function which when applied on the training data returns a parametric
model, using the training data in this way to set up the model’s parameter space.
For our example, the output of this function would be the space of conditional
distributions between source phrases and their possible target phrase translations,
as they appear on a word-aligned training parallel corpus. We will refer to this
as the model extraction step.

A model extracted in this way establishes a set of hypotheses over the target
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distribution q(x) we are trying to model, with every parameter setting mapping
to one such hypothesis. Interestingly, all of these hypotheses can be considered
to be suggested by the training data themselves, as these are employed to set the
model parameter space during the model extraction step. This renders choosing
between these hypotheses during estimation by fitting the training data (as we do
in MLE) dangerous, as we might be testing hypotheses suggested by the data. In
this way, we risk arriving at estimates which succeed in little more than predicting
the particular instances contained in the training data, missing the chance to
discover the underlying patterns.

In the case of models with latent variables, each such hypothesis over the
model parameter space also leads to an expectation over the values of these hidden
variables for the training data points. Since the values for the hidden variables
that we will consider in practice frequently arise from examining the training data,
we need to make sure that our estimators are not misled into preferring hypotheses
over the values of the latent variables which overly fit the training material. For
example, if we assume a generative model where the derivation of each training
data point is (partially) hidden, every parameter setting disambiguates between
all the different derivations of a data point by establishing a distribution over
them. For such a model extracted using the training data, the danger then lies at
erroneously preferring derivations which overfit the training data points, such as
derivations which generate the data by combining large data fragments instead
of smaller, more reusable ones.

These are issues that apply in various extents to the training of most models
of complex data. For example, the large majority of models in NLP, such as
probabilistic CFGs, language models etc, are extracted from training data which
are also used to estimate their parameters. The actual extent that the pitfalls
discussed above affects empirical work relates to the level that the model extracted
from the training data abstracts from them. As we move from coarse-grained
models to more fine-grained models (e.g. as we increase the maximum history
size of an interpolated Markovian LM), the risk of overfitting the training data
increases, with Fragment Models standing at the far end of this continuum.

FMs are based on analyses of the data of arbitrary granularity, and for these
models estimation by fitting the training data leads to degenerate estimates which
fail to generalise. This is not surprising, given that an extracted FM includes
hypotheses over the data distribution which closely predict the training corpus,
as we discussed in sections 3.1.5 and 3.1.6. When these degenerate hypotheses are
then tested against the same data they were extracted from, they easily emerge
as the strongest (best fitting) ones. For many modelling frameworks, such as
the Fragment Models family or interpolations of models of different granularities,
straightforwardly maximising the likelihood of the training data as an estimation
criterion fails to arrive at model parameter values which generalise well.
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3.2.2 Cross-Validated MLE

The issues highlighted above render the application of the training data Maximum
Likelihood optimisation objective problematic for models (or the relevant part of
the model parameters) whose estimation needs to also establish how closely they
should predict the training data. Nevertheless, we need not abandon ML esti-
mation altogether, as it is a well-understood, widely applied estimator enjoying
desirable statistical properties. In contrary, we will formulate here an alterna-
tive, Cross-Validated Maximum-Likelihood estimation objective, which avoids
the problems arising from establishing model hypotheses from the training data.

Deleted Estimation Some of the issues and core principles behind the solution
we propose here are long established in NLP research, as exemplified by the
literature on LM parameter estimation. Jelinek and Mercer (1985) observe that
the n-gram relative frequencies of the training data can diverge from those in
test data, especially as the length of the n-grams increases. Furthermore, the
MLE estimate of the interpolation weights for a linear interpolation of Markovian
language models of different orders does not generalise well (Jelinek and Mercer,
1980).

In both cases, validation or Cross-Validation, with the application of the lat-
ter often referred to as ‘Deleted Estimation’ in LM literature, are successfully
employed to address the problems related to the skewed n-gram distributions
suggested by the training data. Jelinek and Mercer (1985) cross-validate the n-
gram LM, extracting in each CV-round the model from one part of the data while
estimating its parameters from the held-out part. Additionally, the interpolation
weights of interpolated LMs are trained by maximising the likelihood of a held-out
corpus or by means of cross-validation, so as to avoid training both the n-gram
models and the interpolation weights from the same part of the corpus. Below,
we base ourselves on these approaches to formulate a comprehensive CV-MLE
optimisation criterion.

Re-examining MLE on Incomplete Data Let us now examine how we can
formulate a Cross-Validated Maximum Likelihood Estimation objective for gen-
erative models estimated from an incomplete data corpus X made of observed
data points x. As a first step however, it is interesting to begin by revisiting MLE
in this setting (see also section 2.6).

This time however, we make explicit the use of training data to establishing
the hypotheses Z(x) over how each observed data point x can be completed with
its unobserved part y to arrive at a complete data point z = 〈x,y〉. Towards this
aim, as part of the input of the function Z which maps incomplete to complete
data, we will include the training data X which are implicitly employed by this
function, using the notation Z(x;X ). We can then rewrite equation 2.32, this
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time highlighting the role of the training corpus itself as part of the process to
arrive at the hypotheses over the missing information y.

θ̂ = arg max
θ

∏
x∈X

∑
z=〈x,y〉∈Z(x;X )

p(x,y; θ) (3.8)

For example, in the case of Phrase-Based SMT, the incomplete data corpus X
refers to the parallel training data, a corpus of observed word-aligned sentence-
pairs x, where each x misses the hidden phrase-pair segmentation y. To train the
PBSMT model, which assumes a segmentation in phrase-pairs, we must establish
hypotheses Z(x;X ) over the phrase-segmentation, by considering which phrases
can be translations of each other. Crucially, these hypotheses are constructed by
examining during the model extraction step the training corpus X in its entirety
and extracting all phrase-pairs according to the phrase-extraction heuristic, as
presented in section 2.3. As discussed in section 3.2.1 above, for some model
frameworks and in particular for fragment models such as those employed in
PBSMT, this entails the danger of favouring hypotheses suggested by the training
data itself, leading to estimates which overfit the training corpus.

Cross-Validated Likelihood To avoid this pitfall, we will employ K-fold
Cross-Validation during the process of establishing the hypotheses Z(x;X ) on the
complete data z = 〈x,y〉 from which the incomplete observations x might stem.
In more detail, we begin by splitting the training corpus X in K roughly equal-
sized parts X 1 . . .XK . For every 1 ≤ k ≤ K, we consider for the data points x be-
longing to part X k only hypotheses Z(x;X−k) over the completion of the observed
data which stem from the rest of the data X−k = {X1 . . .X k−1,X k+1 . . .XK}. For
the example of Phrase-Based SMT, this would translate into considering for ev-
ery x ∈ X k only phrase-pair segmentations Z(x;X−k) which employ phrase-pairs
extracted from the rest of the training corpus X−k, excluding the part where the
data point which we currently examine belongs. We will refer to the likelihood
of the incomplete corpus according to the model when only the cross-validated
hypotheses over the unobserved data are considered, as the cross-validated likeli-
hood LCV .

LCV (X ; K, θ) =
K∏

k=1

∏
x∈Xk

∑
z=〈x,y〉∈Z(x;X−k)

p(x,y; θ) (3.9)

Cross-Validated MLE Cross-Validated MLE aims at arriving at the param-
eter set which maximises the likelihood of the incomplete training data just as
plain MLE does. However, by maximising the cross-validated incomplete data
likelihood during CV-MLE we are more selective when choosing which hypothe-
ses over the hidden part of the data to consider, by cross-validating the set of
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these hypotheses as just described. The CV-MLE estimate θ̂CV is then computed
according to the following equation.

θ̂CV = arg max
θ

LCV (X ; K, θ)

θ̂CV = arg max
θ

K∏
k=1

∏
x∈Xk

∑
z=〈x,y〉∈Z(x;X−k)

p(x,y; θ) (3.10)

Properties of CV-MLE On the one hand, CV-MLE deviates from standard
applications of MLE little enough so as to retain the well-understood and desirable
properties of MLE as an estimator. Firstly and most importantly, the estimation
objective is still likelihood maximisation, albeit operating on a more constrained
space of hypotheses Z(x;X−k) on how the complete training corpus might look
like. When working with incomplete data, choosing which such hypotheses to
consider is a modelling choice and after this choice is made, CV-MLE proceeds
as plain MLE would.

Moreover, let us assume that the incomplete to complete data mapping func-
tion Z(x;X ) utilises only the set of training points {x1,x2, . . . ,xN} ∈ X and not
their frequencies in X . This assumption holds for all models discussed in later
chapters of this thesis and makes sense as the mapping function Z must output
only which hypotheses must be considered and not how probable these are, the
latter task assigned to the estimator.

For these mapping functions Z, CV-MLE likewise with plain MLE can be
shown to be asymptotically consistent, following similar steps as the related proof
in (Zollmann and Sima’an, 2006) for the asymptotic consistency of the DOP* es-
timator which also employs Cross-Validation. Intuitively, this property holds be-
cause, as the size of the training corpus grows, the probability that every training
point in X k is also in X−k, rendering equal the outputs of Z(x;X ) and Z(x;X−k),
increases towards one. In that case the estimate of CV-MLE in equation (3.10)
converges towards the consistent estimate of plain MLE of equation (3.8).

On the other hand, the crucial step of cross-validating the hypotheses over
the unobserved part of the data avoids overfitting towards hypotheses which do
not generalise well. On the contrary, CV-MLE favours estimates that prefer such
hypotheses which, according to the cross-validation criterion, are similar to those
that can be employed to model yet unseen data. These properties promote CV-
MLE as a well-understood estimator with good statistical properties that directly
aims towards estimates which generalise well.

3.2.3 Cross-Validated EM

Similarly to the estimate of equation (3.8) for plain MLE using incomplete data,
we are in most cases not able to analytically compute the CV-MLE estimate



3.2. Cross-Validated Expectation-Maximization 85

θ̂CV of equation (3.10). For this, in this work we formulate the Cross-Validated
Expectation Maximization (CV-EM) algorithm, which iteratively maximises the
cross-validated likelihood of the incomplete data until convergence towards a local
optimum. CV-EM is a true instance of the EM algorithm, fully enjoying the same
algorithmic and statistical estimation properties as those presented in section 2.6.
In a nutshell, we could say that CV-EM is for CV-MLE the equivalent of EM
for MLE: an iterative algorithmic optimisation framework with a well-understood
operation and favourable properties.

The CV-EM algorithm as an instance of the EM algorithm follows the same al-
gorithmic workflow of initialisation, followed by iterations between an E-step and
an M-step until convergence. The crucial difference with a standard application
of EM is that, as we are now climbing the cross-validated likelihood of the incom-
plete training data as defined above; we will only consider the cross-validated set
of complete data hypotheses for every training point.

In the description of the algorithm below, we will follow the same notation as
we used already for the CV-MLE in section 3.2.2. Namely, to employ K-fold cross
validation during CV-EM, we begin by splitting again the training corpus in K
equal sized parts X 1,X 2, . . . ,XK . An essential part of an application of the EM
algorithm is establishing the ambiguous complete data hypotheses by employing
the incomplete to complete data mapping function Z. Since CV-EM optimises
the parameters according to the CV-MLE estimation criterion, we will employ
for every data point x ∈ X k, the cross-validating mapping function Z(x;X−k),
returning complete data hypotheses from the rest of the training data after X k

has been excluded.

Along the same lines as for standard EM in section 2.6, the iterative procedure
of CV-EM is as follows.

Initialisation We begin by initialising the model’s parameter set by an initial
setting θ̂CV

0 . As for all instances of the EM algorithm, initialisation can some-
times crucially determine the outcome of CV-EM’s output, given that the latter
climbs towards a local optimum of the cross-validated likelihood starting from
the initialisation point. In cases where the shape of the CV-likelihood function
in respect to the model parameters is complex, random restarts might provide a
solution to the sensitivity of CV-EM to the initial parameter set.

After initialisation, the algorithm proceeds to iteratively compute estimates
which raise the CV-likelihood of (3.9) (or equivalently its logarithm) until con-
vergence. Every iteration r entails two steps, the E-step and the M-step.

E-step In the Expectation step (E-step), we formulate the expected cross-
validated log-likelihood QCV (θ|θ̂CV

r−1) of the incomplete corpus X given the pa-

rameter estimate from the previous iteration θ̂CV
r−1, by marginalising out the cross-

validated set of complete data hypotheses z = 〈x,y〉 provided by Z(x;X−k).
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QCV (θ|θ̂CV
r−1) = E

[
logLCV (X ; K, θ)|X , K, θ̂CV

r−1

]
=

K∑
k=1

∑
x∈Xk

∑
〈x,y〉∈Z(x;X−k)

log {p(x,y|θ)} p(y|x, θ̂CV
r−1) (3.11)

If from a mathematical point of view the E-step involves formulating the
expectation over the CV log-likelihood in (3.11), from an implementation one, as
for standard EM, it relates to computing the expected counts qCV of the cross-
validated complete data hypotheses given θ̂CV

r−1.

qCV (x,y|θ̂CV
r−1) =

p(y|x, θ̂CV
r−1)∑

〈x,y′〉∈Z(x;X−k) p(y′|x, θ̂CV
r−1)

(3.12)

The expected counts qCV disambiguate between the complete data expansions
of each incomplete training point employing the current parameter estimate θ̂CV

r−1

and their computation prepares the ground for the M-step that follows.

Maximization Step In the Maximization step (M-step) of the CV-EM algo-
rithm, we maximise the objective function QCV (θ|θ̂CV

r−1) of (3.11) with respect to

θ to retrieve the next parameter estimate θ̂CV
r .

θ̂CV
r = arg max

θ
QCV (θ|θ̂CV

r−1)

= arg max
θ

K∑
k=1

∑
x∈XK

∑
〈x,y〉∈Z(x;X−k)

log {p(x,y|θ)} qCV (x,y|θ̂r−1) (3.13)

The optimisation step of equation (3.13) above is much easier than that of
(3.10), given the expected counts qCV computed during the E-step and which are
kept constant during the arg max operation in (3.13). In many applications, as is
the case in all of our own work using CV-EM in later chapters of this thesis, the
M-step of the CV-EM framework will translate in Relative-Frequency Estimation
over the disambiguated corpus of complete data hypotheses.

In any case, the new current estimate θ̂CV
r computed in (3.13) is then fed as

input to the E-step of the following iteration, similarly to the the workflow of
Figure 2.10.

Convergence Given that CV-EM is an instance of the EM algorithm as we
discuss in more detail below, its application is paired with the guarantee that the
iterative process will converge when a local optimum of the CV log-likelihood is
reached. A stop condition can then terminate the algorithm when the parameters
have sufficiently converged or when the increment of the CV log-likelihood is
smaller than a predefined value.
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CV-EM as an instance of EM A comparison of the algorithmic workflow
and the equations related to the E-steps and M-steps of the CV-EM algorithm
presented in this section and the EM algorithm discussed in section 2.6 easily
reveals that the two are closely related. However, a crucial point is that CV-EM
is not an EM-like algorithm, somehow reminiscent of EM because of its iterative
nature. On the contrary, CV-EM is an instance of the EM algorithm and as such
inherits all the algorithmic and statistical estimation properties of the latter.

The single but essential difference between standard MLE and CV-MLE is
that the latter employs a different, cross-validated set of hypotheses over the
complete data z = 〈x,y〉 that every observed data point x stems from. After
splitting the training data in K parts, we arrive at this new set of hypotheses
by making sure that the mapping function Z(x;X−k) between incomplete and
complete data excludes the training data part X k for every x ∈ X k to compute
its output, but rather relies on the rest of the training data X−k.

Similarly, the single but again essential difference between CV-EM and EM
is that the latter employs a mapping function Z(x;X ) examining all the training
data to output complete data hypotheses, while CV-EM replaces this with the
cross-validating function Z(x;X−k). Employing Z(x;X−k) as a mapping function
in place of Z(x;X ), leads from the formulation of the EM algorithm in section
2.6 to that of CV-EM here.

Crucially, the mapping function Z is not part of the EM algorithm’s internals
but part of its input. For this reason, CV-EM is a true EM-instance, where we
alter the EM algorithm’s input so as to maximise the CV-likelihood of (3.9).
This is far from an observation of a purely theoretical nature. On the contrary,
it guarantees the Machine Learning practitioner that CV-EM inherits the highly
desirable properties of the EM algorithm as set out in section 2.6. In our case,
this translates to:

Guarantee to Non-Decrease Cross-Validated Likelihood After every iter-
ation, the new estimate raises or leaves equal the Cross-Validated likelihood
of the incomplete-data training corpus in comparison with the estimate of
the previous iteration, i.e. LCV (X ; K, θ̂CV

r ) ≥ LCV (X ; K, θ̂CV
r−1).

Guarantee to Converge The iterative process will converge to a local maxi-
mum of the Cross-Validated likelihood function LCV (X ; K, θ).

Overall, these features promote CV-EM as an algorithm with both a clear ob-
jective and a well-understood operation. The objective of CV-EM is to discover
parameter estimates for generative models with latent variables, which maximise
the likelihood of an incomplete data corpus when the set of complete data hy-
potheses for it is cross-validated. During the iterative operation of CV-EM a
series of such estimates is output, each increasing this cross-validated likelihood
until a guaranteed convergence towards a local optimum is reached. The combina-
tion of Maximum Likelihood Estimation and a Cross-Validated space of complete
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data hypotheses, as practically implemented in terms of the CV-EM algorithm,
aims towards strong parameter estimates which generalise well, something that
we empirically validate successfully in the following chapters of this thesis.

3.2.4 Related Approaches

Cross-Validation Based As we have already discussed in section 3.2.2, we
trace the origins of our work in the applications of Deleted Estimation for esti-
mating Language Model parameters. Jelinek and Mercer (1985) employ CV in
the process of estimating the parameters of an LM under Maximum Likelihood
Estimation. However their model has no hidden variables and the use of CV
is confined in identifying n-grams and estimating their conditional probabilities
from different parts of the data. After the n-grams participating in the language
model have been identified in one part of the training data, the LM estimate is
computed analytically from the rest of the data under Relative Frequency Esti-
mation, i.e. complete-data estimation.

Jelinek and Mercer (1980) use CV and an instance of the EM algorithm,
the Baum-Welch algorithm (Baum et al., 1970), to estimate model interpolation
weights while other model parameters remain constant. Here we describe in gen-
eral terms both a CV-MLE estimation objective and a Cross-Validated instance
of the EM algorithm aiming to estimate all parameters of a model with latent
variables. This is of particular importance for cases like the Fragment Models,
which do not employ a distinct set of parameters which regulate the balance
between fitting the training data and generalising over yet unseen data.

The possibility to employ cross-validation in an iterative estimation proce-
dure has also been explored in (Shinozaki and Ostendorf, 2008). The authors
propose an EM-like iterative procedure which keeps a separate model estimate
for each of the K parts of the training data X k, which is specifically estimated
from and applied on different parts of the training data. The end result is a
heuristic estimation algorithm which, while somehow inspired by the workflow
of the Expectation Maximization algorithm, is not an instance of the latter and
does not inherit its properties. The authors acknowledge this and observe that
the training data likelihood can decrease after some iterations and that there is
no guarantee for convergence. In contrast, the Cross-Validated EM presented in
this chapter is based on a clear learning objective and enjoys desirable properties
inherited from EM by being an instance of the latter.

Information Theoretical Apart from solutions employing Cross-Validation,
the problem of avoiding overfitting the training data has been widely addressed in
the context of model selection: selecting among a host of models the one which,
taking the training data that we have available in consideration, is most likely
to generalise well. Of particular interest in the context of this thesis are model
selection approaches which examine models belonging in the same model family
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which differ in their complexity (e.g. as measured by the number of parameters),
which usually intuitively translates to how fine or coarse grained is the view that
they take on data.

Examples of such approaches are the Akaike Information Criterion (AIC)
(Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 1978).
Both model selection criteria are derived starting from information theoretical
arguments and penalise models with a large number of parameters. Typically,
increasing the number of free parameters in a model leads to estimates which fur-
ther increase the likelihood of the training data. When selecting a model, both
AIC and BIC add a penalising term for the number of parameters in the model in
addition to the likelihood that their estimates assign to the training data, aiming
to mitigate the danger of overfitting them.

A further model selection criterion that also aims to balance how closely a
model fits the training data with the model’s complexity is the Minimum De-
scription Length (MDL) (Rissanen, 1978; Rissanen, 1983). MDL evaluates the
description length of a model as an indication of its complexity together with
the length of the description it assigns to the training data, which relates to how
closely it predicts them, and it selects the model which minimises the sum of
the two. Model selection criteria such as these have found applications in NLP
such as (Grünwald, 1996; Goldsmith, 2001; Adriaans and Jacobs, 2006; Poon et
al., 2009), either by being directly applied or by inspiring approaches which try
to counterbalance the increasingly better fit of the training data offered by large
models, aiming towards larger generalisation capacity. Nevertheless, the applica-
tion of such criteria is often challenging (Adriaans and Vitanyi, 2007), and the
difficulties mount up when applying MDL learning for the frequently complex
models employed in NLP.

Regularisation A wider framework that, from a technical and a formalisation
perspective, encompasses the AIC and BIC criteria as well some applications of
the MLD principle (e.g. ‘crude’, two-part MDL (Grünwald, 2007)), is regular-
isation. The regularisation of the log-likelihood optimisation objective involves
adding a penalty term R(θ), whose role is to penalise models of increased com-
plexity or model instances which overfit the training data. The impact of the
penalty term in the optimisation criterion is weighted by a parameter α, which
allows us to adjust the tradeoff between data fit and model complexity.

θ̂ = arg max
θ

logL(X ; θ)− αR(θ) (3.14)

The frequently applied Lp-norm regularisation involves using the Lp-norms
||θ||p of the parameter vector θ in the regularisation term R(θ).
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||θ||p =

(∑
i

|θi|p
) 1

p

(3.15)

A member of this family that has been widely applied in Machine Learning
literature is L1-norm regularisation, which uses a penalty term equal to the sum of
the parameter values. This has been shown to prefer in practice model instances
with many parameters equal to zero (Tibshirani, 1996); when this happens, an
L1-norm optimisation objective essentially performs model selection and model
smoothing at the same time. The AIC and BIC criteria can be interpreted as
instances of L0-“norm” regularisation; ||θ||0, as p approaches zero and under cer-
tain simplifying assumptions, merely counts the number of non-zero parameters
in vector θ.

Bayesian Instead of penalising whole model spaces, as the model selection cri-
teria do based on their complexity as measured by their number of parameters
or description length, the use of Bayesian inference allows us to employ exter-
nal preferences over the structure and the parameter space of a model. These
are stated in terms of probabilistic priors which allow preferring certain model
structures, or parts of the parameter space for which the modeller hopes that
estimates situated there generalise better. Frequently used choices for such priors
for models employing multinomial distributions, such as is commonly the case in
NLP, are the Dirichlet distribution (Johnson et al., 2007; Zhang et al., 2008a)
and the Dirichlet Process (Liang et al., 2007; DeNero et al., 2008; Blunsom et
al., 2009), which can both be tuned with the help of hyperparameters to prefer
more compact model estimates, as discussed for the case of Fragment Models
in section 3.1.8. Inference with Bayesian priors such as these typically involves
marginalising out the model parameters given the training data.

While Bayesian inference provides an interesting theoretical framework to em-
ploy external biases to arrive at models and model estimates which generalising
better, its practical application does not come without shortcomings. Bayesian
methods are centred around the modelling step of introducing external knowledge,
which while it can prove beneficial in many cases, still entails the dangers of arriv-
ing at suboptimal solutions and overwhelming the empirical evidence under the
strength of the external prior imposed. Furthermore, in practice Bayesian ap-
proaches are frequently sensitive to the choices involved in approximating model
parameter marginalisation using sampling or variational methods, as well as in
the selection of the prior’s hyperparameters.

Overall, CV-EM takes a data-driven approach on the problem of finding es-
timates which generalise well, focusing on avoiding formulating and validating
hypotheses using the same data set. In contrast to CV-EM’s concentration on
the empirical evidence, most of the approaches mentioned above either empha-
sise employing external knowledge for the task, or take an information theoretic
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view on the problem. It is interesting to note that CV-EM is not mutually ex-
clusive with these alternative approaches. While we believe that on one hand
the data-driven nature of CV-EM safeguards against arbitrary modelling choices,
we still find interesting investigating the crossroads between ours and alternative
approaches on the problem of model estimation for increased generalisation.

3.2.5 CV-EM for Fragment Models

In the next chapters of this thesis, we will experiment with applying the CV-MLE
optimisation criterion as implemented through the CV-EM algorithm for an array
of Statistical Machine Translation models, all of which belong to the family of
Fragment Models. Before we delve into the details of applying CV-EM for each
particular problem, we close this section by discussing what we might expect from
employing our methods for the estimation of Fragment Models in more abstract
terms.

Balancing MLE Bias and Variance In section 3.1.6, we showed that the
large expected error of the MLE estimator for Fragment Models can be attributed
to an unbalanced correspondence between errors attributed to estimator bias and
variance. The generalisation error due to estimator bias is zero, or very low in
case we constrain the size of the fragments, which however gives rise to a large
error due to the variance of the estimates in respect to the training data. CV-
EM reduces the overall expected test error by increasing the estimator’s bias in
a targeted manner.

For Fragment Models, hypotheses over the value of the unobserved data vari-
ables relate to the segmentation of training instances in data fragments and the
generative steps that are followed to arrive at the observed data points. CV-EM
cross-validates this hypothesis space, so that all the hypotheses that will be con-
sidered employ both reusable fragments and reusable derivational steps according
to the cross-validation criterion. This brings about an increase in estimator bias
error due to moving away probability mass from the largest fragments, most of
which will fail to survive the application of CV.

However, in contrast to arbitrary constraints such as fragment length cut-off
points, increasing the generalisation error’s bias term in this way directly aims to
greatly reduce the error due to estimate variance. The CV-MLE estimates, focus-
ing on reusable fragments and derivation steps, will differ with each other much
less than the MLE estimates, each of which only predicts each different sampled
training data set. The end result is a better trade-off between the expected test
error’s bias and variance terms3, which lowers the overall generalisation error of
CV-EM Fragment Model estimates.

3See section 2.7.1 for more details on the trade-off between bias and variance.
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Model Selection and Estimation A further interesting facet of CV-EM es-
timation that is relevant to FM estimation, is that it combines features of both
model selection and model estimation. This property of CV-EM is highly applica-
ble to Fragment Model estimation, where parameters related to the model’s level
of abstraction from the training data are not clearly separated from the rest of the
model parameters, as is for example the case for mixture models. Easy solutions
such as separating FMs into an array of models which each employs fragments
of a certain size are not working either, as some larger fragments capture data
regularities while others simply overfit training data particularities. This makes
it difficult for FMs to precede estimation with a clearly separated model selec-
tion step. CV-EM addresses it by applying features of model selection during
estimation of the model’s parameters.

On the one hand, the cross-validated complete data hypothesis space which
CV-EM considers is a subset of that employed in standard applications of EM.
Assuming this hypothesis space when maximising training data likelihood as CV-
EM does, effectively shapes the model set that will be considered, by not consid-
ering models leading to hypotheses which do not survive cross-validation. While
no single model is selected, models employing fragments which do not appear to
generalise well according to CV are either eliminated or penalised, depending on
the smoothing choices made in each application of CV-EM. On the other hand,
when the extent of the model space and the preferences over it have been set,
estimating model parameters by maximising training data likelihood allows us to
discover which estimate seems to better capture the latent patterns of the training
data, cross-validating our hypotheses over them to safeguard against overfitting.

In total, these features of CV-EM together with the algorithmic and statistical
estimation properties inherited by the Expectation-Maximisation algorithm pro-
mote it as a well-founded and highly suitable estimation framework for Fragment
Models. In the next chapters of this thesis, we empirically evaluate CV-EM for
Fragment Model estimation, for three Statistical Machine Translation models of
increasing sophistication belonging to this family.



Chapter 4

Phrase Translation Probabilities
Estimation

The introduction of phrase-based Statistical Machine Translation (SMT) took
advantage of the foundations laid by the work on word-based translation models
to bringing about a forward leap for SMT. The registered improvement was both
in terms of translation performance as well as of its acceptance by the research
and business communities. Importantly, moving from word-based towards phrase-
based translation marked the transition of SMT into the realm of the Fragment
Models (FMs) family, to which Phrase-Based SMT (PBSMT) models belong. The
fragments in the case of PBSMT correspond to contiguous phrase-pairs. These
are considered as our translation units and modelling the correspondence between
their phrases allows SMT to tap into the modelling potential of FMs. This allows
PBSMT models to combine the generalisation capacity of word-based translation
models, with the ability to forego the independence assumptions behind them
when translating certain phrases.

However, translating with phrasal fragments also exposed SMT to the estima-
tion problems faced by FMs. Direct application of trusted and well-understood
approaches such as Maximum Likelihood Estimation (MLE) and the Expectation-
Maximization (EM) algorithm is almost useless for PBSMT, turning researchers
into employing heuristic estimators instead. While these estimators do perform
relatively well, their heuristic nature leaves open the question of whether alterna-
tive estimators can deliver competitive performance from premises that are better
understood.

In this chapter, we will apply the CV-EM algorithm for the estimation of the
conditional phrase translation probabilities that form the core of PBSMT mod-
els, based on work first presented in (Mylonakis and Sima’an, 2008). We do this
by employing CV-EM to estimate the parameters of a phrase-based translation
model. Our model directly addresses the latent segmentation of sentence-pairs
in phrase-pairs, which the heuristic estimators fail to take into account. It con-
siders a restricted binary segmentation space with a prior over the segmentation
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variable, based on linguistic as well as computational premises.

In the context of this thesis, this empirical investigation serves two aims:
(a) to propose an estimation algorithm for phrase-based models with both a
clear learning objective, in the form of CV-MLE as well as a well-understood
implementation like CV-EM and (b) to empirically evaluate applying the CV-
EM algorithm to estimate the parameters of a state-of-the-art Fragment Model.

4.1 Problem Setting

The Phrase-Based SMT modelling framework (Och et al., 1999; Koehn et al.,
2003), which we introduce in section 2.3, is based on the notion of establishing
phrases instead of words as the basic translation units. Given an input source
sentence f , the key intuitive assumption is that, after f has been segmented into
K source phrases f̃K

1 , each source phrase f̃i is translated independently of the
rest into a target phrase ẽi. The resulting set of target phrases ẽK

1 is then further
reordered according to a reordering pattern π between the indexes of the source
and target phrase vectors f̃K

1 and ẽK
1 to arrive at the target output e, similarly

to the process in Figure 2.5.

Crucially, even though the concept of phrase segmentation is central to the
assumptions behind phrase-based translation, most of the Phrase-Based SMT
systems fail to account for it. Instead, they are based around translation models
which assign probabilities to translations of already segmented source sentences.
These models are log-linear interpolations of Φ feature functions φ, whose feature
scores are interpolated together under feature weights λ and normalised by Z(f).

p(e, ẽK
1 , π|f , f̃K

1 ) =
1

Z(f)

Φ∑
i=1

λi φi(e, f , ẽK
1 , f̃K

1 , π) (4.1)

During decoding, a PBSMT system selects the output translation ê through
a Viterbi search on the space of all source phrase segmentations f̃K

1 and subse-
quent constructions of target sentences from phrase translations and reordering
operations.

〈ê, ̂̃eK
1 , ̂̃fK

1 , π̂〉 = arg max
e,ẽK

1 ,f̃K
1 ,π

Φ∑
i=1

λi φi(e, f , ẽK
1 , f̃K

1 , π) (4.2)

In the model of (Koehn et al., 2003), which will form the baseline for the
experiments we present later in this chapter, the feature set includes an array of
features examining the correspondence between f and e from different perspec-
tives. These features range from those that examine the translation of phrases
and reordering, to others which consider target sentence well-formedness using a
monolingual target language modelling feature. They are further complemented
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by additional smoothing features, with the overall feature set described in detail
in section 2.3.

While all members of the feature set contribute in recovering ê in equation
(4.2), the backbone of a Phrase-Based SMT model is formed by the conditional

phrase translation features φ
e|f
PHR and φ

f |e
PHR.

φ
e|f
PHR = log

K∏
k=1

p(ẽk|f̃k) φ
f |e
PHR = log

K∏
k=1

p(f̃k|ẽk) (4.3)

These examine the correspondence between f and e under the assumption
that each phrase is translated independently from the rest of the input, with each
of the two features examining one of the two translation directions (f to e, as well
as e to f). Their score is computed based on the conditional phrase translation
distributions: p(ẽ|f̃) for each source phrase f̃ , and p(f̃ |ẽ) for each target phrase
ẽ. Estimating these distributions is thus an essential step of training a PBSMT
model and this will be the focus of this chapter.

4.1.1 PBSMT and Fragment Models

Phrase-Based SMT models employing conditional distributions p(e, ẽK
1 , π|f , f̃K

1 ),
belong in the Fragment Models family along the following lines, in correspondence
with how FMs were defined in section 3.1.2:

Data A target sentence e can be analysed given a source sentence f and a seg-
mentation of the latter in source phrases f̃K

1 , through the reordering π of
target phrases ẽK

1 . Each such target phrase ẽi emerges as the translation of
the corresponding source phrase f̃i.

Fragments The model employs contiguous phrase-pairs as data fragments ex-
tracted from a word-aligned parallel corpus. These are extracted following
simple heuristics, the most important of which is that word alignments orig-
inating in either the source or target phrase of the pair must be contained
within the phrase-pair. These fragments vary in size as measured by the
length of the phrases that comprise every such pair. This fragment size
can grow up to the full sentence lengths of training points, so that whole
sentence-pairs are also conceived as phrase-pairs.

Derivations Every phrase-pair fragment 〈ẽ, f̃〉 can be employed to supply the
target phrase translation ẽ for a source phrase f̃ ∈ f̃K

1 . The resulting
target phrase vector ẽK

1 is reordered according to the reordering variable π
to derive e.

Model Each such derivation of e from f̃K
1 is assigned a probability by the model

of equation (4.1).
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A phrase-based Fragment Model for translation memorises and recombines
extracted contiguous phrase-pairs from the training data. This allows it to mem-
orise and reuse instances of local translation phenomena like local reordering, as
well as encompass correlations between the translations of adjacent words as in
the case of translating idioms. However, these models are now also exposed to the
same overfitting issues plaguing the estimation of all Fragment Models according
to the frequently used MLE estimation objective. Attempts to train the condi-
tional phrase translation probabilities p(ẽ|f̃) as part of a generative translation
model and estimating their parameters so as to maximise training data likelihood,
lead to degenerate estimates which perform poorly (DeNero et al., 2006).

For this reason, right from the initial introduction of PBSMT, model parame-
ters are set to heuristic estimates, a practice still used in state-of-the-art systems
up to this day.

4.1.2 Heuristic Estimation

The heuristic estimates for the conditional phrase translation probabilities p(ẽ|f̃)
and p(f̃ |ẽ) used in the feature functions of (4.3) are set to values based on the
counts C(〈ẽ, f̃〉), which register how many times each phrase-pair can be extracted
from the training data.

p(ẽ|f̃) =
C(〈ẽ, f̃〉)∑
ẽ′ C(〈ẽ′, f̃〉)

p(f̃ |ẽ) =
C(〈ẽ, f̃〉)∑
f̃ ′ C(〈ẽ, f̃ ′〉)

(4.4)

This heuristic solution to the estimation problem of PBSMT models is rem-
iniscent of the DOP-1 estimator, the first estimator proposed for Data Oriented
Parsing (DOP) models, which also belong in the family of Fragment Models (see
section 3.1.2). Similarly to the PBSMT heuristic, under DOP-1, tree fragments
are assigned probabilities in proportion to their extraction counts from the train-
ing corpus. However, this heuristic choice leads to estimates which overfit towards
large tree fragments, leading to both weak statistical properties and weaker per-
formance in relation to later proposed estimators.

Examining the relation of the estimates in equations (4.4) to the training
corpus reveals their heuristic nature. While these estimates are sometimes infor-
mally referred to as relative frequencies, it is important to understand that they
are totally unrelated to the frequency of events in the training data (word-aligned
sentence-pairs). Indeed, the segmentation of sentence-pairs into phrase-pairs is
not observed in the training corpus, as the latter is composed of incomplete-data
in this respect. Instead, the heuristic estimates are relative frequencies of phrase
translations in the multiset of extracted phrase-pairs, which is related to the train-
ing corpus only by means of the arbitrary extraction step. As a consequence of
this, the heuristic estimates are not known to optimise any meaningful function
of the training parallel corpus itself.
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Despite these shortcomings of the heuristic estimator, the mounting number
of efforts attacking the problem of PBSMT model estimation over the last few
years (DeNero et al., 2006; Marcu and Wong, 2002; Birch et al., 2006; Moore and
Quirk, 2007; Zhang et al., 2008a) exhibits its difficulty. So far, none has lead to
an alternative method that performs as well as the heuristic on reasonably sized
data.

4.1.3 Motivating an Intuitive Estimation Approach

In the face of the difficulty of coming up with an alternative estimation approach
for PBSMT models, the heuristic estimates have long been dominant in state-
of-the-art implementations of phrase-based translation systems. Still, there are
multiple arguments motivating research in that direction.

Firstly, estimators which employ a clearer optimisation objective allow us to
better understand how the estimates relate to the training data, which is by no
means an argument of a merely theoretical nature. On the contrary, employing
a well-founded estimator makes it easier to evaluate its statistical properties and
pinpoint the source of its errors, or the conditions under which it performs well.

Further, estimating phrase-based models, as is the case with Fragment Models
in general, allows us to fine-tune how closely the training corpus will be fit during
estimation, something which will reflect in the generalisation capacity of the esti-
mates. On one hand, smaller phrase-pairs provide in general higher coverage, but
are difficult to combine together due to the strong independence assumptions of
the models. On the other, larger phrase-pairs many times offer a relatively trusted
translation for a large span of the input source sentence, but at the cost of low
coverage and less flexibility in adapting their fixed translation to the surrounding
context. While this results in a parameter space that can prove treacherous for
estimators, it also makes PBSMT model estimation highly interesting by provid-
ing the chance to learn how to combine memorisation with re-use to perform well
on novel source sentences.

Finally, employing alternative well-founded estimators for phrase-based mod-
els, apart from the chance to perhaps offer equivalent or better translation per-
formance from better understood foundations, even more importantly lays the
path to the future. Heuristics, being arbitrary in nature, can hardly be evolved
to something more meaningful. Also, as they are ad hoc solutions with an ap-
plicability based only on empirical grounds. The implications of extending their
use to novel models, or for translation between language pairs enjoying differ-
ent properties, are far from being clear. Proposing estimators based on stronger
principles builds both a better trusted estimation platform for novel and refined
models, as well as allows the estimator itself to function as a starting point for
further research.
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4.2 Related Work

Marcu and Wong (2002) realise that the problem of extracting phrase pairs should
be intertwined with the method of probability estimation. They formulate a joint
phrase-based model in which a source-target sentence pair is generated jointly.
However, the huge number of possible phrase-alignments prohibits scaling up the
estimation by Expectation-Maximization to large corpora. Birch et al. (2006)
provide soft measures for including word-alignments in the estimation process
and obtain improved results, but only on small data sets.

More recently, (Blunsom et al., 2008a) attempt a related estimation problem
to (Marcu and Wong, 2002), using the expanded phrase pair set of (Chiang,
2005a), working with an exponential model and concentrating on marginalising
out the latent segmentation variable. In addition, (Zhang et al., 2008a) report on
a multi-stage model, without a latent segmentation variable, but with a strong
prior preferring sparse estimates. This prior is embedded in a Variational Bayes
(VB) estimator and the authors concentrate their efforts on pruning both the
space of phrase pairs and the space of (ITG) analyses. Blunsom et al. (2008a)
and (Zhang et al., 2008a) report improved performance, albeit again on a limited
training set (approx. 140K-170K sentences with sentence length constraints).

DeNero et al (DeNero et al., 2006) have explored estimation using EM of
phrase pair probabilities under a conditional translation model based on the
original source-channel formulation. This model involves a hidden segmenta-
tion variable that is set uniformly (or to prefer shorter phrases over longer ones).
Furthermore, the model involves a reordering component akin to the one used
in IBM Model-3. Despite this, the heuristic estimator remains superior because
“EM learns overly determinized segmentations and translation parameters, over-
fitting the training data and failing to generalize”. Moore and Quirk (2007) devise
an estimator working with a model that does not include a hidden segmentation
variable but works with a heuristic iterative procedure (rather than MLE or EM).
The translation results remain inferior to the heuristic, but the authors note an
interesting trade-off between decoding speed and the various settings of this es-
timator.

Our work expands on the general approach taken by (DeNero et al., 2006;
Moore and Quirk, 2007) but arrives at insights concerning the value of binary
phrase-pair segmentations similar to those of (Zhang et al., 2006), albeit in a
completely different manner. The present work differs from all preceding work in
that it employs the set of all phrase pairs during training. It differs from (Zhang et
al., 2008a) in that, while it does postulate a latent segmentation variable as well,
it puts the prior directly over that variable rather than over the ITG synchronous
rule estimates. Our method neither excludes phrase pairs before estimation nor
does it prune the space of possible segmentations/analyses during training. As
well as smoothing, we find (in the same vein as (Zhang et al., 2008a)) that setting
effective priors and smoothing is crucial for EM to arrive at better estimates.
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4.3 Our approach

In this chapter, we start out from a standard phrase extraction procedure based on
word-alignment and aim solely at estimating the conditional probabilities for the
phrase pairs in both translation directions. Unlike preceding work, we extract
all phrase pairs from the training corpus and estimate their probabilities, i.e.
without limit on length. After training, we can still limit the set of phrase pairs
to those selected by a cut-off on phrase length. The reason for using all phrase
pairs during training is that it gives a clear point of reference for an estimator,
without implicit, accidental biases that might emerge due to length cut-off.

We employ a novel formulation of a conditional translation model that works
with a prior over bilingual segmentations and a bag of conditional phrase pairs.
We use binary Synchronous Context-Free Grammar (bSCFG) based on the In-
version Transduction Grammar (ITG) (Wu, 1997; Chiang, 2005a), to define the
set of eligible segmentations for an aligned sentence pair. We also show how the
number of spurious derivations per segmentation in this bSCFG can be used for
devising a prior probability over the space of segmentations, capturing the bias
in the data towards monotone1 translation.

At the heart of the estimation process lies an instance of the Cross-Validating
EM algorithm. Apart from a direct application of the CV-EM framework for
this estimation problem, we also experiment with a Jackknife inspired variation
of it, which averages the temporary probability estimates of multiple parallel EM
processes at each joint iteration.

We evaluate against a state-of-the-art baseline system (Moses) (Hoang and
Koehn, 2008), which works with the log-linear interpolation of feature functions
of equation (4.2), with interpolation weights optimised by Minimum Error Rate
Training (Och, 2003). We simply substitute our own estimates for the heuris-
tic phrase translation estimates of (4.4) and compare the two within the Moses
decoder. While our estimates differ substantially from the heuristic, their perfor-
mance is on par with the heuristic estimates. This is remarkable given the fact
that comparable previous work (DeNero et al., 2006; Moore and Quirk, 2007) did
not match the performance of the heuristic estimator using large training sets.
We believe that using CV-EM for the estimation of the model’s parameters is the
vital choice which allows to avoid overfitting while disambiguating the phrase-pair
segmentation of the word-aligned training corpus, arriving in this way at strong
estimates of the conditional translation probabilities.

4.3.1 The Translation Model

Heuristically estimated PBSMT systems mostly treat the latent segmentation of
training sentence-pairs into phrase-pairs as an unnecessary nuisance. In contrast,

1Monotone translation produces target output which follows the word or phrase order of the
source sentence.
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I am going home tomorrow to see my kids .

Ik ga morgen om mijn kinderen te zien .naar huis
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10

Figure 4.1: A bilingual segment σk = 〈lf , rf , le, re〉, covering source span 〈lf , rf〉 =
〈3, 5〉 and target span 〈le, re〉 = 〈3, 4〉
.

our model makes this part of the translation process explicit by incorporating a
latent bilingual segmentation variable σ. This takes values from a constrained
binary space of segmentations, while a non-uniform prior p(σ; a) over the seg-
mentations enforces a preference for more productive segmentation patterns.

We couple this modelling component with the conditional phrase translation
probabilities, to arrive at a conditional phrase-based translation model. Esti-
mating the parameters of this model by using CV-EM will lead us to phrase
translation distribution estimates which enjoy a clear relation to the training
corpus as local optima of the Cross-Validated Likelihood of the latter.

4.3.2 Generative Process

Given a word-aligned source-target sentence-pair 〈e, f , a〉, the generative story
underlying our model goes as follows:

1. Abiding by the word-alignments in a, segment the source-target sentence-
pair 〈e, f〉 into a sequence of K non-overlapping containers σ = σK

1 . Each
container σk = 〈lf , rf , le, re〉 consists of the start lf and end rf positions for
a phrase in f , and the start le and end re positions for an aligned phrase in
e, as in Figure 4.1.

2. For a given segmentation σK
1 , for every container σk = 〈lf , rf , le, re〉 with

1 ≤ k ≤ K, select a phrase ẽk for the output span 〈le, re〉 as a translation
of the source phrase f̃k corresponding to the span 〈lf , rf〉, independently
from the rest of the source input and according to the conditional phrase
translation distribution p(ẽ|f̃j).

This conditional translation process is depicted in Figure 4.2 and leads to the
following probabilistic model:

p(e|f ; a) =
∑

σK
1 ∈Σ(a)

p(σK
1 ; a)

∏
σk∈σK

1

p(ẽk|f̃k) (4.5)
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Ik ga morgen om mijn kinderen te zien .naar huis

Ik ga morgen om mijn kinderen te zien .naar huis

bilingual segmentation σ

I am going home tomorrow to see my kids .

Ik ga morgen om mijn kinderen te zien .naar huis

phrase translation e | f~ ~

Figure 4.2: The conditional translation process for the model of equation (4.5).

In equation (4.5) above, Σ(a) is the set of binary segmentations (defined
next) that are eligible according to the word-alignments a between f and e; i.e.
which only employ containers which delineate phrase pairs according to the usual
PBSMT rules2.

These segmentations into bilingual containers are different from the monolin-
gual latent segmentation in phrases implied by Phrase-Based SMT models. They
also differ from the segmentation variable used in earlier comparable conditional
models (e.g., (DeNero et al., 2006)), which must generate the alignment on top of
the segmentations. Our bilingual segmentations encompass both the process of
partitioning the source sentence into phrase pairs, as well as establish the reorder-
ing pattern between the source phrases and their translations, as each container
of the segmentation defines the position of the target translation in the output.

The process of formulating our model will be complete after we define the
space of binary segmentations Σ(a) that we consider and discuss our choice of
prior probability p(σK

1 ) over these segmentations.

4.3.3 Binary Segmentations Space

Considering the unconstrained space of all segmentations σ between a sentence
pair in our training data leads to an NP-hard problem, as it was shown for

2At least one alignment point between the two spans 〈lf , rf 〉 and 〈le, re〉, no alignment points
crossing the container’s boundaries.



102 Chapter 4. Phrase Translation Probabilities Estimation

the similar Fragment Model of DOP (Sima’an, 1996). Given this, working with
phrase-based models necessarily involves considering a certain subset of the seg-
mentation space. For example, this can be done by imposing length constraints
on the phrases which make up phrase-pairs, as well as by employing approxi-
mative search, such as the beam search algorithms which are frequently used in
PBSMT decoder implementations.

Instead of using arbitrary cut-off lengths to constrain the segmentation space,
models based on binary Synchronous Context Free Grammars (bSCFGs), in the
form of Inversion Transduction Grammars (ITG) (Wu, 1997), take an alternative
approach which is motivated by both computational and linguistic arguments.
bSCFGs occupy a part of the space of all SCFGs which is highly interesting to
MT practitioners, as we discussed in section 2.4.1. Exploring the space of all
derivations which can be described by a bSCFGs, can be usually performed using
algorithms with polynomial computational complexities in respect to the length
of the sentence-pairs. At the same time, as has been first identified by (Wu, 1997)
and further confirmed empirically by (Huang et al., 2009) , bSCFGs seem to be
able to cover most of the reordering patterns encountered in natural language
pairs.

For these reasons, we will consider in the work in this chapter the space
of binary segmentations. We thus denote as Σ(a) in equation (4.5) above the
space of segmentations that can be produced from a binary phrase-based SCFG,
which employs phrase-pair spans that abide by the alignments a. This SCFG
has two binary synchronous rules that correspond respectively to the contiguous
monotone and inverted alignments, denoting with [ ] monotone and with 〈 〉
swapping reordering of the target phrase translations.

XP → [XP XP]

XP → 〈XP XP〉 (4.6)

These two synchronous rules are coupled in our grammar with a set of lexical,
phrase-pair emitting rules {XP → ẽ / f̃ | 〈ẽ, f̃〉 is a phrase pair}. In this bSCFG,
every derivation corresponds to a phrase segmentation of the input and a binary
re-ordering pattern for the translations of the source phrases according to the
rules in (4.6).

Binarisable Reordering Patterns Following (Zhang et al., 2006; Huang et
al., 2009), in phrase-based translation every sequence of alignments between K
source and target phrases can be viewed as a sequence of integers 1, . . . K together
with a permuted version of this sequence π(1), . . . , π(I), where the two copies of an
integer in the two sequences are assumed aligned/paired together. For example,
possible permutations of {1, 2, 3, 4} are {2, 1, 3, 4} and {2, 4, 1, 3}. Permutations
such as these can be used to describe the reordering pattern of a segmentation
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Figure 4.3: Multiple ways to binarise the reordering pattern {2, 1, 3, 4}.

σK
1 for a sentence-pair, by indicating the order of the target phrases in relation

to the source phrase that each originates from.

Binarisable reordering patterns are those which can be captured by binary
SCFGs employing rules such as those in (4.6). Huang et al. (2009) describe a
linear-time algorithm to find binarisations : derivations of reordering patterns
π(1), . . . , π(I) from 1, . . . K, employing binary reordering steps which swap or
keep intact the order of two adjacent spans in the sequence of integers, as the rules
of (4.6) do. For most reordering patterns there is more than one way to binarise
them. The number of possible binarisations of a binarisable permutation is a
recursive function which reaches its maximum for fully monotone permutations.
It is equal to the number all binary trees, which is a factorial function of the
length of the permutation. Each such binarisation corresponds to a different way
to derive the reordering pattern in terms of a bSCFG, with Figure 4.3 listing two
such derivations for the reordering pattern {2, 1, 3, 4}.

Accordingly, for a given reordering pattern as indicated by the word align-
ments a, the bSCFG of (4.6) which constraints the space of segmentations Σ(a)
produces multiple derivations for every segmentation σ ∈ Σ(a). It is possible
to constrain this bSCFG such that it generates a single, canonical derivation per
segmentation (Wu, 1997). However, in the next section we show that the number
of such derivations is a good measure of phrase pair productivity, a feature we
take advantage of to formulate a prior over the segmentation space.

Finally, while there is evidence that most of the reordering patterns for many
natural language pairs are binarisable (Huang et al., 2009), there still exist non-
binarisable reorderings which might be present in the training data, either as a
result of less frequent translation phenomena or noise such as misaligned words.
Segmentations which correspond to such reordering patterns (e.g. {2, 4, 1, 3})
are non-binarisable and are not included in Σ(a). Nevertheless, our Fragment
Model of (4.5) takes an all phrase-pairs approach, including segmentations em-
ploying phrase-pairs of unconstrained lengths. This enables always finding a
segmentation for a word-aligned sentence-pair in Σ(a), as we may encompass the
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Figure 4.4: Two segmentations of an alignment/permutation. Both segmenta-
tions have the same number of binarisations despite differences in container sizes.

non-binarisable parts of the reordering pattern in longer phrase-pairs, if needed
up to the full sentence-pair length.

4.3.4 Prior over Segmentations

As it has been found out by (DeNero et al., 2006), it is not easy to come up with
a simple, effective prior distribution over segmentations that allows for improved
phrase pair estimates. Within a Maximum-Likelihood estimator, preference for
segmentations σI

1 consisting of longer containers could lead to overfitting, as is the
case for all Fragment Models. Alternatively, it is tempting to have a preference for
segmentations σI

1 that consist of shorter containers, because (generally speaking)
shorter containers have higher expected coverage of new sentence pairs. However,
mere bias for shorter containers will not give better estimates as observed by
(DeNero et al., 2006). One case where this bias clearly fails is the case of a
contiguous sequence of containers with a complex alignment structure (crossing
alignments). For example as seen in Figure 4.4, for the word-alignment pattern
{1, 3, 4, 2, 5} there is a segmentation into five containers {1; 3; 4; 2; 5}, as well as
a further one into three {1; 3, 4, 2; 5}. The first segmentation involves shorter
containers that have crossing brackets among them, while the second one consists
of three containers including a longer container {3, 4, 2}.

In the first segmentation, due to their crossing alignments, each of the con-
tainers {3}, {4} and {2} will not combine with the surrounding context ({1}
and {5}) on its own, i.e., without the other two containers. Furthermore, there is
only a single binarisation of {3, 4, 2}. Hence, while the first segmentation involves
shorter containers than the second one, these shorter containers are as productive
as the large container {3, 4, 2}, i.e., they combine with surrounding containers in
the same number of ways as the large container. In such and similar cases, there
are no grounds for the bias towards shorter phrases/containers.
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The notion of container productivity (the number of ways in which it com-
bines with surrounding containers during training) seems to correlate with the
expected number of ways a container can be used during decoding, which should
be correlated with expected coverage. During training, containers that are of-
ten surrounded by other monotonically aligned containers, are expected to be
more productive than alternative containers that are often surrounded by cross-
ing alignments. Hence, the number of binarisations that a segmentation has under
the bSCFG is a direct function of the ways in which the containers combine among
themselves (monotone vs. swapping) within segmentations and provides a more
accurate measure of container productivity than container length.

On these grounds we formulate a prior distribution over segmentations p(σK
1 ; a)

of a word-aligned sentence-pair as follows:

p(σK
1 ; a) =

N(σK
1 )

Z(Σ(a))
(4.7)

Above, N(σK
1 ) is the number of binary derivations that σK

1 has in the binary
SCFG (bSCFG) and Z(Σ(a)) =

∑
σJ
1 ∈Σ(a) N(σJ

1 ). In total, this prior is the ratio

of the number of bSCFG derivations of σK
1 to the total number of derivations

that 〈e, f , a〉 has under the bSCFG.
Hence, the final model we employ is the following:

p(e|f ; a) =
∑

σK
1 ∈Σ(a)

N(σK
1 )

Z(Σ(a))

∏
σk∈σK

1

p(ẽk|f̃k) (4.8)

4.3.5 Contrast with Similar Models

In contrast with the model of (DeNero et al., 2006), who define the segmen-
tations over the source sentence f alone, our model employs bilingual containers
thereby segmenting both source and target sides simultaneously. Therefore, unlike
(DeNero et al., 2006), our model does not need to generate the word-alignments
explicitly, as the latter are embedded in the segmentations. Similarly, our model
does not include explicit penalty terms for reordering/inversion but includes a
related bias in the prior probabilities over segmentations p(σK

1 ; a).
In a way, the segmentations and bilingual containers we use can be viewed as

similar to the concepts used in the Joint Model of Marcu and Wong (Marcu and
Wong, 2002). Unlike (Marcu and Wong, 2002) however, our model works with
conditional probabilities and starts out from the word-alignments.

The novel aspects of our model are three: (a) it defines the set of segmen-
tations using a bSCFG, (b) it includes a novel, refined prior probability over
segmentations, and (c) it employs all phrase pairs that can be extracted from a
word-aligned training parallel corpus. For these novel elements to produce rea-
sonable estimates, we employ CV-EM for this Fragment Model for conditional
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phrase-based translation.

4.4 Estimation with CV-EM

The translation model of equation (4.8) coupled with the all-phrase pairs principle
that we employ result in a conditional Fragment Model for translation. Directly
applying MLE estimation with it is bound to overfit the training data, as we
have both discussed from a theoretical perspective here in section 3.1.5, and as
considered empirically in (DeNero et al., 2006). In our experiments, where we
do not enforce a phrase-pair length cut-off value, plain EM strongly overfits to-
wards considering the sentence-pair as a single large phrase-pair fragment. Other
hypotheses receive fractional expected counts close to zero, merely as a result of
stopping EM short of full convergence.

Avoiding the degenerate MLE estimates can take the form of: (a) employ-
ing probabilistic priors over the segmentation space which prefer more reusable
fragments, or (b) smoothing the learning objective itself so that we are led to
estimates which generalise better. In this work, we employ both solutions in tan-
dem. The general-purpose, smoothing learning objective of Cross-Validated MLE
is complemented by a model and application specific smoothing prior.

This prior over segmentations p(σK
1 ; a), defined in section 4.3.4, counters over-

fitting by preferring segments which are more productive, in the sense of tak-
ing part together with their context in more derivations of the target sentence.
Our formulation for this prior in (4.7) prefers shorter fragments that participate
in monotone translations and is less inclined towards the preference for smaller
phrase-pairs when these participate in complex reordering patterns as shown in
Figure 4.4. While this prior counters overfitting up to a certain extent, in our
experiments we find that it is not enough to avoid the degenerate EM estimates.

For this, we couple it with the Cross-Validated Expectation-Maximization al-
gorithm we formulated in section 3.2. The Cross-Validated MLE estimation ob-
jective that our algorithm is based on, will help to avoid considering overfitting
segmentation hypotheses which arise from single training instances and explore
instead a segmentation space which favours reusable phrase-pairs. Apart from a
standard application of the CV-EM framework, we further examine a variation
of the algorithm which further cross-validates the parameter values themselves
instead of only applying CV for the latent segmentation variable. After exam-
ining both CV-EM variations we discuss smoothing and implementation issues,
preparing the grounds for our empirical evaluation.

4.4.1 Applying the CV-EM Framework

We begin the process of applying the CV-EM framework for the estimation of the
parameters of the phrase-based conditional translation model in (4.8), by relating
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the concepts and notation of the problem to their more abstract counterparts
in section 3.2.3. In relation to the estimation problem at hand, the available
training data X are incomplete. These are made up of observed word-aligned
sentence-pairs x = 〈e, f , a〉, while the segmentation y = σ of each sentence-pair
in phrase-pairs remains unobserved.

Cross-Validated Segmentation We prepare the ground for Cross-Validating
during estimation by splitting the corpus X in J parts X 1, . . . ,X J of approxi-
mately equal sizes. The crucial difference between CV-EM and a direct appli-
cation of EM is employing a mapping function Z(x;X−j) from incomplete to
complete data, which safeguards against overfitting by returning only hypotheses
which arise from the rest of the training corpus X−j for x ∈ X j. In our case,
this translates to substituting the unconstrained binary segmentations set σ(a)
for each training point 〈e, f , a〉 ∈ X j, with the set of hypotheses over the seg-
mentation σ(e, f , a;X−j). The latter is equal to the subset of σ(a), for which for
every σK

1 ∈ σ(a) which segments the sentence pair 〈e, f〉 in phrase-pair segments
σk = 〈ẽ, f̃〉 (1 ≤ k ≤ K), the phrase-pair 〈ẽ, f̃〉 can be extracted from X−j. This
cross-validated segmentation set allows us to avoid considering segmentations
which demand from us to supply for the source phrases f̃ , target translations ẽ
which are solely suggested by the currently examined part of the corpus alone.

Optimisation Objective Following a Cross-Validated Maximum Likelihood
Estimation (CV-MLE) objective, we wish to find the estimate θ̂CV which max-
imises the Cross-Validated conditional likelihood of the training corpus X which
we have split in J parts, considering only hypotheses over the segmentation of
the word-aligned sentence-pairs supplied by Σ(e, f , a;X−j).

LCV (X ; J, θ) =
J∏

j=1

∏
〈e,f ,a〉∈X j

p(e|f , a)

=
J∏

j=1

∏
〈e,f ,a〉∈X j

∑
σK
1 ∈Σ(e,f ,a;X−j)

p(σK
1 ; a)

∏
σk∈σK

1

p(ẽk|f̃k) (4.9)

As usual with estimation from incomplete data, finding the CV-MLE estimate
which maximises (4.9) above cannot be solved analytically and we resort to finding
iteratively a local optimum of the likelihood function using an implementation of
the EM algorithm, in this case CV-EM. The algorithmic steps of CV-EM from
section 3.2.3 take the following form for this estimation problem.

Parameter Initialisation Before the iterative CV-EM process initiates, we
first establish the model parameter set for the conditional phrase translation dis-
tributions p(ẽ|f̃), by extracting all phrase-pairs from the parallel training corpus
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X which abide by the alignments. We then initialise the model parameters to an
initial estimate θ̂CV

0 , with all distributions p(ẽ|f̃) set to uniform. After initiali-
sation, the two steps which comprise the iterative part of the CV-EM algorithm
take over.

Expectation Step In each iteration r, during the E-step of the CV-EM algo-
rithm we set up the expected CV log-likelihood of the training data, in respect to
the parameters θ̂r−1 that were output after the previous iteration r − 1, starting
from θ̂CV

0 .

QCV (θ|θ̂CV
r−1) = E

[
logLCV (X ; K, θ)|X , K, θ̂CV

r−1

]
=

J∑
j=1

∑
〈e,f ,a〉∈X j

∑
σK
1 ∈Σ(e,f ,a;X−j)

log

p(σK
1 ; a)

∏
σk∈σK

1

p(ẽk|f̃k)

 qCV (σK
1 |e, f , a, θ̂CV

r−1)

(4.10)

In preparation of optimising QCV in the next step, we compute the expected
fractional counts qCV of each segmentation as follows, employing the parameter
estimates for the conditional translation probabilities p(ẽ|f̃ ; θ̂CV

r−1) from iteration
r − 1.

qCV (σK
1 |e, f , a; θ̂CV

r−1) =

p(σK
1 ; a)

∏
σk∈σK

1

p(ẽk|f̃k; θ̂
CV
r−1)∑

σ′K
′

1 ∈Σ(e,f ,a;X−j)

p(σ′K′

1 ; a)
∏

σ′k′∈σ′K
′

1

p(ẽ′k′|f̃ ′
k′ ; θ̂

CV
r−1)

(4.11)

Maximization Step In the M-step of the CV-EM algorithm, we maximise
(4.10) in respect to θ to retrieve the next parameter estimate θ̂CV

r .

θ̂CV
r = arg max

θ
QCV (θ|θ̂CV

r−1) (4.12)

Solving the optimisation problem of (4.12) results in each parameter taking a
value pr(ẽ|f̃) proportional to the fractional counts q(〈ẽ, f̃〉) of the appearance of
phrase-pair 〈ẽ, f̃〉 in the segmentations of the training data, as these are counted
according to the θ̂CV

r−1. With δ the Kronecker delta function, we have:

q(〈ẽ, f̃〉; θ̂CV
r−1) =

J∑
j=1

∑
〈e,f ,a〉∈X j

∑
σK
1 ∈Σ(e,f ,a;X−j)

qCV (σK
1 |e, f , a; θ̂CV

r−1)
K∑

k=1

δ(ẽk, ẽ)δ(f̃k, f̃) (4.13)
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INPUT: Word-aligned parallel training data X
OUTPUT: Estimates θ̂CV for all p(ẽ|f̃)

Partition training data X into J equal parts X 1, . . . ,X J

Initialise θ̂CV
0 =

{
p0(ẽ|f̃)

}
to uniform conditional probabilities

Let r = 0 // EM iteration counter
Repeat

Let r = r + 1
E-step:

For 1 ≤ j ≤ J do
calculate expected counts for segmentations Σ(e, f , a;X−j)

of each 〈e, f , a〉 ∈ X j using θ̂CV
r−1 =

{
pr−1(ẽ|f̃)

}
M-step: calculate probabilities θ̂CV

r = pr(ẽ|f̃)
from the expected counts of the E-step

Until θ̂CV
r has converged

Figure 4.5: CV-EM implementation pseudocode.

pr(ẽ|f̃) =
q(〈ẽ, f̃〉; θ̂CV

r−1)∑
ẽ′ q(〈ẽ′, f̃〉; θ̂CV

r−1)
(4.14)

The new set of parameters θ̂CV
r is fed into the next iteration and the process

continues until convergence. Figure 4.5 summarises in pseudocode the application
of CV-EM for the estimation of this phrase-based translation model.

4.4.2 Jackknife Averaging

In addition to the standard application of CV-EM that we present above, we also
formulate and employ in our empirical experiments a variation of it inspired by
the Jackknife re-estimation method (Quenouille, 1949; Tukey, 1958)3. Similarly
to CV, the Jackknife estimate is equal to the average of the estimator output
when applied on different parts of a partition of the training data, when each
time a single part is excluded from the estimator’s input. As with CV, Jackknife
estimation also aims at trading estimator bias to reduce the error due to variance
of the estimates in relation to the input training sample.

We employ the Jackknife approach to arrive at a variation of the CV-EM which
aims to reduce the variance error of our estimates. While CV-EM focuses on
the cross-validation of the segmentation hypothesis space, which has an indirect

3An up-to-date presentation of the Jackknife can be found in (Duda et al., 2001).
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smoothing effect on the resulting estimates, our application of Jackknife directly
applies smoothing on the temporary parameter estimates themselves during every
iteration.

Namely, during every iteration’s E-step, instead of collecting a single expected
counts value q(〈ẽ, f̃〉; θ̂CV

r−1), we compute and store the expected counts of each
phrase-pair in the segmentations of each part of the corpus X j separately.

qj(〈ẽ, f̃〉; θ̂CV
r−1) =∑
〈e,f ,a〉∈X j

∑
σK
1 ∈Σ(e,f ,a;X−j)

qCV (σK
1 |e, f , a; θ̂CV

r−1)
K∑

k=1

δ(ẽk, ẽ)δ(f̃k, f̃) (4.15)

From these counts, we compute during the M-step a separate estimate pj
r(ẽ|f̃)

of each parameter value p(ẽ|f̃) from every part of the training data. The Jackknife
estimate pr(ẽ|f̃) for each iteration is then computed by averaging together the
respective J estimates, one from each training data part. These values comprise
the temporary estimate θ̂CV

r for iteration r, which is then fed to the following
iteration of the algorithm.

pj
r(ẽ|f̃) =

qj(〈ẽ, f̃〉; θ̂CV
r−1)∑

ẽ′ q
j(〈ẽ′, f̃〉; θ̂CV

r−1)
(4.16)

pr(ẽ|f̃) =

∑J
j=1 pj

r(ẽ|f̃)

J
(4.17)

This averaging of the estimates has a smoothing effect on the final output
θ̂CV

r of each iteration. It reduces the impact of observations or hypotheses over
latent variables whose appearance in the training data is characterised by a large
variance. In contrast, parameter values relating to events or hidden values (e.g.
use of phrase-pairs in segmentations) whose frequencies are similar across the
different parts X j, will stay largely unaffected by averaging through the data
partition.

The disadvantage of applying this averaging operation between the estimates
from the different parts of the data is that, by tampering with the workflow of the
EM algorithm, we cannot lay claim anymore to the important algorithmic prop-
erties that CV-EM inherits from EM. It is not clear from a theoretical perspective
that the Jackknife variation of CV-EM that we present here converges towards
an estimate that satisfies a specific condition, as it is the case with the direct CV-
EM implementation of section 4.4.1. Nevertheless, in all the experiments that we
present later in this chapter, this variation of CV-EM always converged and the
estimates produced were relatively strong in relation to both the direct CV-EM
estimates as well as those of the baseline.
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4.4.3 Smoothing and Implementation Details

There are two special boundary cases which demand our attention during esti-
mation.

Completing the Derivations Enforcing the segmentation space Σ(e, f , a;X−j)
strictly will not allow us to find segmentations for many sentence pairs. A striking
example is any sentence-pair with a source or target word that appears only once
in our training corpus. In order to avoid this, in practice we allow all binary seg-
mentations Σ(a) to be considered, while strongly penalising segmentations which
are not included in Σ(e, f , a;X−j).

In more detail, while our primary estimation target are parameters p(ẽ|f̃)
for phrase-pairs 〈ẽ, f̃〉 which survive cross-validation by appearing in at least two
different parts of the data, we also allow the rest of the phrase-pairs to take part in
sentence-pair derivations with a fixed conditional translation probability. This is
set to 10−5∗m̃, where m̃ is the length of the source phrase f̃ , in essence employing a
word-level conditional translation model with a fixed word translation probability
equal to 10−5.

This choice puts at a severe disadvantage derivations of a sentence-pair us-
ing long penalised phrase-pairs, strongly promoting derivations which employ
the cross-validated phrase-pairs as much as possible. The role of the smoothing
phrase-pairs is then to merely complete derivations for the synchronous spans
which could not be otherwise covered.

Zero distributions In the case of the Jackknife CV-EM variation, when a
phrase f̃ does not occur in X j, all its pairs ẽ in the phrase table will amass zero
counts from this part of the training data. Its CV-MLE estimate from X j is then
undefined, since it is irrelevant for computing the likelihood of X j. This creates
a problem during each iteration when the estimates from each X j are averaged
together to compute the Jackknife estimate. While in this case any choice of a
distribution P (·|f̃) will constitute an MLE solution for X j, we choose to set this
case to the minimally informed uniform distribution when averaging.

Algorithmic Implementation Since our model is formulated within the bi-
nary SCFG framework, we employ a bilingual CYK parser (Younger, 1967). This
parser uses a grammar which includes the rules in (4.6), complemented with
the phrase emitting productions. It builds for every input 〈e, f , a〉 all binarisa-
tions/derivations for every segmentation in σ(a). For implementing CV-EM, we
employ the bilingual extension of the Inside-Outside algorithm (Lari and Young,
1990; Goodman, 1998) on top of the parser. During estimation, because the
input, output and word-alignment are known in advance, the time and space
requirements remain manageable despite the worst-case complexity O(n6) for
sentence-pair length n.
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4.5 Experiments

To evaluate the strength of our CV-EM estimates computed according to the
CV-MLE optimisation objective in comparison to their heuristic counterparts,
we integrate these in turn in a Phrase-Based SMT decoder. We use French
to English translation as our primary language pair to test the performance of
an array of estimation and decoding configurations. We then further evaluate
our best performing configurations against the baseline for a German to English
translation task.

4.5.1 Decoding and Baseline Model

In this work, we compare against a state-of-the-art PBSMT baseline, based on the
feature-based model of equation (4.1). The feature functions φ employed are: a 5-
gram target language model, the standard reordering scores, the word and phrase
penalty scores, the conditional lexical estimates obtained from the word-alignment
in both directions and the conditional phrase translation heuristic estimates of
equations (4.3) in both directions p(ẽ|f̃) and p(f̃ |ẽ). The feature weights λ are
optimised by Minimum Error-Rate Training (MERT) (Och, 2003). For decoding
according to (4.2) we use the Moses decoder (Hoang and Koehn, 2008).

We compare our estimates of p(ẽ|f̃) and p(f̃ |ẽ) to the commonly used heuristic
estimates, by substituting the latter with the values obtained through CV-MLE
estimation and decoding while keeping the rest of the feature functions fixed.
Even though the exposition in this chapter follows the estimation of translation
probabilities p(ẽ|f̃) of target phrases given the source phrases, the estimates for
the opposite translation direction can be readily computed by reversing the roles
of the two languages in the language-pair. We use estimates computed using both
variations of the CV-EM algorithm: the standard application of it (CV-EM) and
the Jackknife variation (J-CV). Before we decode with each translation model
parameter set, we recompute the feature weights with MERT.

Because our model employs a latent segmentation variable, this variable should
be marginalised out during decoding to allow selecting the highest probability
translation given the input. This could turn out crucial for improved results, as
noted by (Blunsom et al., 2008a). However, such a marginalisation can be NP-
Complete, in analogy to the similar problem in Data-Oriented Parsing (Sima’an,
2002). Since we do not have access to a decoder that can approximate this
marginalisation efficiently, we employ the standard Moses decoder for this work
which searches for the highest scoring phrase-based derivation.

4.5.2 Experimental Setup

The training, development and test data all come from the French-English trans-
lation shared task of the ACL 2007 Second Workshop on Statistical Machine



4.5. Experiments 113

Phrase Length System BLEU
≤ 7 Baseline 33.03
≤ 10 Baseline 33.03
All Baseline 33.00

≤ 7 EM + ITG Prior 32.50
≤ 7 CV-EM 32.67
≤ 7 CV-EM + ITG Prior 32.73
≤ 7 J-CV + ITG Prior 33.02
≤ 10 J-CV + ITG Prior 33.14
All J-CV + ITG Prior 32.98

Table 4.1: French to English Translation: A comparison of the the heuristic
estimates (Baseline) with estimates of the CV-EM algorithm and its Jackknife
variation (J-CV). BLEU scores are computed by integrating each parameter set
in the feature-based Moses decoder with weights trained by MERT.

Translation 4. After pruning sentence pairs with word length more than 40 on ei-
ther side, we are left with 949K sentence pairs for training. The development and
test data are composed of 2K sentence pairs each. All data sets are lower-cased.

For both the baseline system and our method, we produce word-level align-
ments for the parallel training corpus using GIZA++. We use 5 iterations of
each IBM Model 1 and HMM alignment models, followed by 3 iterations of each
Model 3 and Model 4. From this aligned training corpus, we extract the phrase
pairs according to the heuristics in (Koehn et al., 2003). The baseline system ex-
tracts all phrase-pairs up to a maximum length 7 on both sides and employs the
heuristic estimator. The language model used in all systems is a 5-gram language
model trained on the English side of the parallel corpus. Minimum-Error Rate
Training (MERT) is applied on the development set to obtain optimal log-linear
interpolation weights for all systems. Performance is measured by computing the
BLEU scores (Papineni et al., 2002) of the system’s translations, when compared
against a single reference translation per sentence.

4.5.3 Results

We compare different versions of our system against the baseline system using
the heuristic estimator. We observe the effects of the ITG segmentation prior in
the translation model as well as the method of estimation: (a) direct application
of CV-EM vs. (b) using Jackknife averaging during CV-EM’s iterations (J-CV).

Table 4.1 exhibits the BLEU scores for the systems. Our own system (with
ITG segmentation prior and J-CV estimation with a maximum phrase-length

4http://www.statmt.org/wmt07
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Phrase Length System BLEU
≤ 7 Baseline 28.18
≤ 10 Baseline 28.34
All Baseline 28.27

≤ 10 J-CV + ITG Prior 28.46
All J-CV + ITG Prior 28.30

Table 4.2: German to English Translation.

used during decoding of ten words) scores (33.14), slightly outperforming the
best baseline system (33.03). When using straight CV-EM, this leads to a lower
score (32.73). When also the ITG prior is excluded (by having a single derivation
per segmentation) this leads to a further score reduction (32.67). By directly
applying EM with an ITG prior (turning off the cross-validation of the segmenta-
tion hypotheses space), performance goes down to 32.50. Estimation in this last
case severely overfits. The only reason that the BLEU score does not completely
collapse is that Moses falls back on the rest of the feature functions, such as the
lexical smoothing translation probabilities. We did not explore mere EM without
any smoothing or ITG prior, as we expect it will directly overfit the training data
as reported by (DeNero et al., 2006). Overall, these results exhibit the crucial
role of the estimation by smoothing, with CV-EM estimation and the ITG seg-
mentation prior clearly emerging as key components behind the improved phrase
translation estimates.

As table 4.1 shows we also varied the phrase length cut-off (seven, ten or
none={all phrase pairs}) during decoding, with this cut-off value pertaining to
both sides of a phrase-pair. It is important to distinguish this decoding-time
cut-off from what applies during estimation-time for our model. We always
train all phrase-pairs and apply the length cut-off only during decoding (no re-
normalisation is applied at that point).

Interestingly, we find out that in this case the heuristic estimator cannot
benefit performance by including longer phrase pairs. Our estimator does benefit
performance by including phrase pairs of length up to ten words, but then it
degrades again when including all phrase pairs. We take the latter finding to
signal remaining overfitting that proved resistant to the smoothing applied by
our estimator. The heuristic estimator exhibits a similar degradation.

German to English Translation After comparing in detail the baseline sys-
tem against different estimation algorithms and decoding-time phrase length lim-
its for French to English translation, we perform further experiments on the
German to English translation direction. In this way we wish to confirm the ap-
plicability of our estimation methods to translate between languages characterised
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by more pronounced differences than our primary French-English language-pair.
The parallel training data are again part of the ACL 2007 Second Workshop on
Statistical Machine Translation and after similar pre-processing as for French to
English, we are left with 996K training sentence-pairs. The development and test
sets are made also in this case from 2K sentence-pairs each.

We follow the same methodology to train our estimates and decode, resulting
in the BLEU scores listed in Table 4.2 as first presented in (Sima’an and Mylon-
akis, 2008). Examining the results reveals that the combination of the Jackknife
CV-EM process with the ITG segmentation prior, scores better than the best
performing baseline system, although the margin between them is small. The
best configuration in relation to the decoding-time phrase length cut-off value is
10 for both the baseline system as well as when using our estimates. Nevertheless,
the performance of both systems degrades after the phrase-pair length constraint
is removed altogether. These results indicate that the default length cut-off value
of 7 might be sub-optimal for some language-pairs. Even though completely re-
moving this constraint is not the optimal choice, investigating empirically what
is a good choice for it could pay off.

4.6 Discussion

In this chapter, we explored training phrase-based translation models which ex-
plicitly employ phrase-pair segmentation variables. This is in contrast with most
work on PBSMT which chooses to bypass the problem of disambiguating the
segmentation of sentence-pairs into phrase-pairs and opts for heuristic estimates
instead. The most similar efforts to ours, mainly (DeNero et al., 2006), conclude
that segmentation variables in the generative translation model lead to overfitting
while attaining higher likelihood of the training data than the heuristic estimator.

In this work we also start out from a generative model with latent segmen-
tation variables. However, we find out that concentrating the learning effort on
increasing the generalisation capacity of our estimates is crucial for good perfor-
mance. While we do find employing probabilistic priors as our ITG segmentation
prior useful, we do not centre our method on employing external knowledge in
the form of priors over the parameter space neither we switch to a Bayesian for-
mulation of the learning problem as in (Blunsom et al., 2008a). Following this
research path is a choice which, while promising, still poses significant issues and
challenges as we discuss in 3.2.4, as well as demands a significant departure from
approaches such as MLE and EM which have long proven themselves successful
in both NLP as well as SMT in particular. Instead, here we choose to remain in
the domain of the Maximum Likelihood Estimation, while taking a data-driven
approach to address the issues of MLE application for Fragment Models such as
those employed in phrase-based translation.

Our approach is centred around the application of CV-EM which aims to max-
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imise the likelihood of the training data while considering a cross-validated set
of hypotheses over the missing phrase-pair segmentation of the training sentence-
pairs. This application of cross-validation allows us to employ the training data
itself to essentially simulate maximising the likelihood of yet unseen data instances
and directly aim at increased generalisation. Pursuing this objective takes place
within a well-founded and clear learning framework whose implementation is ap-
pealing computationally. The fact that our results (at least) match the heuristic
estimates on a reasonably sized data set (947k parallel sentence pairs) is rather
encouraging.

Another aspect of the work presented in this chapter is the employment of
the the binary segmentation space considered by phrasal Inversion Transduction
Grammars. This greatly reduces the number of segmentations considered and
allows to efficiently pack together using dynamic programming the derivations
of sentence-pairs from phrase-pairs. Our results indicate that constricting the
segmentation space in this way is a reasonable choice when learning phrase-based
translation models, connecting under a different perspective with the work of
(Wu, 1997; Huang et al., 2009) and others.

While the best scoring estimates were computed by augmenting CV-EM with
a Jackknife estimation step which further smooths the parameter estimates during
every iteration, in the following chapters we opt to rely on the standard applica-
tion of CV-EM for each learning problem. Our primary aim in this thesis from
a learning perspective is understanding the impact of the learning framework of
CV-MLE under CV-EM rather than tweaking for maximum performance. Since
the implications of combining Jackknife with CV-EM to the algorithmic and sta-
tistical estimation properties of the latter are not clear, an issue which is further
aggravated as our models become more complex, we choose to focus further on
CV-EM proper in the following chapters. Nevertheless, the results in this chapter
indicate that solutions such as Jackknife to complement the effort of CV-EM to
increase the generalisation capacity of our estimates should be empirically evalu-
ated when applying CV-EM for particular estimation problems.

Overall, the results in this chapter signify in the context of this thesis the
establishment of a first set of empirical evidence highlighting the merits of CV-EM
for Fragment Model estimation in the context of SMT. Estimates computed with
CV-EM can substitute successfully the heuristically estimated ones without loss of
translation performance, for two different language pairs and when training on a
reasonably sized corpus. These positive results motivate the work in the following
chapters, where we employ CV-EM for a pair of translation models where the
focus gradually shifts towards the latent structure of phrase-based translation.
Based on the success of binary SCFGs to efficiently constrict the segmentation
space for PBSMT, we move on to explore syntactic approaches to SMT, where
we employ probabilistic synchronous grammars as the central component of our
translation models.



Chapter 5

Learning Stochastic Synchronous
Grammars

In this chapter we build on the results of Chapter 4 to extend our method to the
estimation of syntactically driven translation models, using binary Synchronous
Context-Free Grammars (SCFGs) as our formalism of choice. As part of our
work on estimating the parameters of phrase-based translation models, we already
focused on the space of binary phrase reorderings to constrain successfully the
segmentation space and define a prior over it. Now, we move further to bring the
recursive nature of binary SCFGs at the centre of our attention, formulating a
probabilistic SCFG joint model to describe translation.

Increasing the modelling stress on the latent translation structure necessitates
a closer examination of its role and possible deficiencies. For this reason, we em-
pirically consider alternatives in order to identify a translation structure strong
enough to function as the backbone holding together the source and target sides
of our modelling problem. Noting certain deficiencies of the independence as-
sumptions behind SCFGs, we contribute a lexically sensitive reordering structure
which propagates reordering decisions to higher and lower levels of a derivation,
in order to widen the role of the abstract recursive translation structure past the
rudimentary use that it finds in (Chiang, 2005a).

In comparison with the state-of-the-art, this work as first presented in (Mylon-
akis and Sima’an, 2010) contributes a method to learn phrase-based synchronous
grammars for machine translation, aiming to discover reusable lexical and struc-
tural translation patterns which generalise well. We further contribute a partic-
ular grammar formalism which puts the focus on orchestrating phrase reordering
across the full length of the sentence-pair.

We do not explore synchronous grammars which enrich synchronous produc-
tions with lexical context and which allow modelling translation with discon-
tiguous phrases. While these grammars have been shown to offer competitive
translation performance (Chiang, 2005a), in this chapter we choose to focus on
the implications of learning the unlexicalised recursive structure of synchronous
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grammars. Nevertheless, our learning objective and implementation based on
CV-EM, together with the grammar design we contribute, allows us to reach the
same level of performance as our hierarchical phrase-based translation baseline
which does use lexicalised recursive reordering.

In the context of the thesis, in this chapter we move further than merely
estimating phrase translation probabilities as we did in Chapter 4, and integrate
them as part of a more comprehensive model which handles all other aspects of
translation such as reordering. We proceed towards learning a full translation
model capturing both phrase translation and reordering patterns, which will be
the key component taking care of the lexical and structural transfer from source
to target during decoding. We consider the implications of describing the latent
translation structure using the synchronous grammar formalism and take the first
step in formulating a learning environment for a relatively simple grammar design.
Our findings form a crucial step before proceeding in the following chapter towards
discovering intricate, linguistically motivated grammatical structures capturing
the translation process.

5.1 Focusing on Translation Structure

Probabilistic phrase-based synchronous grammars are currently considered promis-
ing devices for Statistical Machine Translation (SMT), with systems based on this
formalism achieving state-of-the-art translation performance. This is especially
true when these models are applied to translate between languages with signif-
icant differences in their syntax such as Chinese-English. Modelling translation
using phrase-based Synchronous Context-Free Grammars (Wu, 1997; Chiang,
2005a) builds upon the strengths of Phrase-Based SMT (PBSMT) (Och et al.,
1999; Koehn et al., 2003), while bringing together and extending the different
components of a phrase-based system under a single modelling component.

On the one hand, probabilistic SCFGs inherit from the PBSMT models the
ability to build models that can reuse memorised multi-word fragments and their
translations. This is a powerful feature that essentially allows forfeiting for certain
translation patterns the strong independence assumptions posed by word-based
models. On the other hand, using synchronous grammars for SMT recasts the
reordering problem in terms of establishing a syntactic correspondence between
the two languages, unifying the usually separately conceived phrase translation
and reordering components of PBSMT systems in a single grammatical formalism
(Wu, 1997). In addition, the recursive nature of SCFGs coupled with the concept
of modelling translation on the phrase level allows the formulation of hierarchical
phrase-based models (Chiang, 2005a) making use of recursive lexical translation
patterns, sometimes colloquially referred to as phrase-pairs with ‘gaps’.

In general, discontiguous phrase translation patterns need not necessarily
be modelled through a synchronous grammar formalism. This is exhibited by
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(Simard et al., 2005), where a standard contiguous PBSMT framework is extended
to allow non-contiguous phrase-pairs with missing word placeholders. Still, the
recursive nature of SCFGs, apart from the mechanics to allow modelling trans-
lation with discontiguous phrase-pairs, puts in place the necessary descriptive
power to capture the impact of the hierarchical nature of language in translation.

Nevertheless, following their introduction, the focus on applying hierarchical
SCFG-based models was mostly concentrated on the ability to model translation
using discontiguous phrase-pairs, leaving the capacity of the model to handle short
and long-range syntactic constraints in abstract terms mostly unexploited. This
has been largely handled in lexical terms, through the use of recursive phrases
with gaps which can trigger certain reorderings in relation with lexical context
patterns. However, developments over the last few years have shifted the attention
of the research community towards the ability of SCFGs to describe the structural
aspects of translation on a level further afield than the lexical surface.

Crucially, the transition from PBSMT to SCFG-based translation was not
marked by a similar step towards a better-founded learning framework, leaving the
stochastic part of hierarchical models to be founded on the same heuristic methods
used in PBSMT. Estimation based on the extraction counts of phrase-pairs was
extended to their discontiguous counterparts (Chiang, 2005a), sometimes reaching
past the lexical surface and up to the structural part of SCFG analyses (Zollmann
and Venugopal, 2006). Some of the reasons behind opting for heuristic estimation
in syntax-driven, phrase-based SMT approaches are similar to those encountered
in their Phrase-Based SMT forerunners. Embedding the concept of modelling
with multi-word fragments of arbitrary lengths in a syntactic framework does not
make us any less liable to the same estimation challenges related to contiguous
phrase-based models.

Even though the issues related to learning phrase-based models alone are
daunting enough, learning synchronous grammars brings in additional aspects
to the learning problem. Apart from lexical choice, it also involves training a
structural component which takes over the reordering task from the reordering
models of PBSMT. This modelling component is concerned with the syntactic
well-formedness of the whole sentence, matching long-range syntactic preferences
that the reordering models of PBSMT do not usually consider. In addition, the
lexical and the structural parts of synchronous grammars can be tightly inter-
locked together, with the syntactic structure affecting the corresponding lexical
choice and vice versa.

As a result of this interplay between the lexical and the structural aspect of
synchronous grammars, the estimation challenges of phrase-based models reach
out to the structural part as well. The tendency to overfit guides the estimator
towards hypotheses translating as much of the source sentence as possible as
part of long discontiguous phrase-pairs. This prohibits learning how to combine
smaller fragments together and results in models which support only a trivial
structure reaching up to the largest fragments allowed by the training constraints.
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Avoiding such degenerate hypotheses will allow the estimator to discover not only
reasonable phrase correspondences which we hope will be useful to analyse yet
unseen data, but also to learn how to combine together these reusable building
blocks recursively. The learning environment we will use to work towards this
aim will again be the Cross-Validated EM algorithm of section 3.2.

5.2 Synchronous Grammars for SMT

Synchronous grammars extend the descriptive power of formal grammars from
single strings to tuples of strings. They can be used to define a language over pairs
of strings and are highly interesting for machine translation, as they can capture
the correspondences between source sentences and their target language transla-
tions. Furthermore, each particular grammar formalism may offer an explanation
of the compositional mechanics of translation which allows us to describe com-
pactly the correspondences between a countably infinite set of sentence-pairs.
While we may consider a wide range of such formalisms1, the one which enjoys
the widest acceptance in the MT community are the Synchronous Context-Free
Grammars (SCFGs) of (Wu, 1997) and (Chiang, 2005a).

As we discuss in more detail in section 2.4, an SCFG defines a language over
string-pairs by means of a recursive rewrite process. In a monolingual Context-
Free Grammar, starting from a start symbol S we recursively expand left-hand
side non-terminals according to the right-hand side of grammar production rules,
rewriting each non-terminal as a string of terminals and novel non-terminals which
need to be further expanded. This process continues until we end up with a
string of terminal symbols, which then by definition belongs to the language of
the grammar. In SCFGs, this rewrite process is synchronous, operating on a pair
of strings of terminals and pair-wise linked non-terminals, expanding at every
rewrite step a single such pair of non-terminals in both sides of the string-pair
according to the grammar rules. These rules map a left-hand side of a single
non-terminal pair towards a right-hand side consisting of a pair of strings of
terminals and non-terminals, with the latter paired together across both sides of
the right-hand side expansion.

An example on how the synchronous rewrite process can be employed to cap-
ture translation phenomena between language-pairs, repeated here from Chapter
2 for the reader’s convenience, is presented in Figure 5.1. There, we denote linked
non-terminals across both parts of the right-hand sides of the synchronous rules
by attaching the same subscript indexes, while, to simplify notation, we assume
without loss of generality that each linked pair involves non-terminals of the same
type. The handful of rules in this small grammar already showcases how SCFG
rewrite rules have the potential to encode the abstract syntactical transformations

1Some of the other formalisms to describe bilingual data are listed in section 2.4.1.
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S → X 1 / X 1

S → Do X 1 ? / X 1 ka ?

X → NP 1 V B 2 NP 3 / NP 1 NP 3 V B 2

NP → I / watashi ga

V B → open / akemasu

NP → the book / hako o

Figure 5.1: An SCFG rule set for SVO to SOV reordering and question construc-
tion from English to (romanised) Japanese, adapted from (Chiang, 2005b)

and reordering patterns as well as the lexical correspondences between the lan-
guage pair, possibly combining both abstract and lexical aspects in single rewrite
operations (rule 2).

5.2.1 Grammar Design

Approaches considering the use of recursive structure and formal grammars for
MT draw inspiration from the related monolingual task of natural language pars-
ing. Superficially, the flavour of syntactic MT that is relevant for this thesis seems
highly related to the majority of research on natural language parsing, as they
are both occupied with analysing human language manifestations drawing from a
common pool of resources, i.e. formal grammars and the related algorithms and
learning frameworks. Nevertheless, while a certain link and influence between the
two fields undeniably exists, there are fundamental differences with respect to the
role of syntax in the learning problems behind syntactic MT and parsing.

Firstly, the structure of Machine Translation is latent, rendering the problem
of identifying it as an instance of unsupervised learning. On the contrary, the
majority of research on natural language parsing is occupied with the supervised
learning of a predefined flavour of language structure, using labelled corpora such
as the Penn Treebank (Marcus et al., 1993). While all kinds of learning share
common problems such as overfitting and treating yet unseen instances, the unsu-
pervised nature of learning syntactic models for MT brings in the novel challenge
of learning from incomplete data, in comparison to supervised monolingual pars-
ing.

Still, one could argue perhaps that syntactic MT is more reminiscent then
of the field of unsupervised parsing (van Zaanen, 2000; Clark, 2001; Klein and
Manning, 2004; Bod, 2007), which considers the unsupervised learning of lan-
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guage structure from unlabelled corpora. However, while in both cases the task
is to learn latent natural language structure training merely on the lexical sur-
face, there is a crucial difference between the two in relation to the role of the
latent structure in respect to the overall NLP system. It has been recognised (e.g.
(Bod, 2007)) that, in the long term, attention in evaluating unsupervised pars-
ing must be shifted towards more high-level tasks taking advantage of syntactic
analyses, such as sense disambiguation and MT itself. Nevertheless, for the time
being, most work on unsupervised parsing is fixated and evaluated on replicating
certain linguistic annotations, like those (derived from) the aforementioned Penn
Treebank. As long as discovering the syntactic structure of language remains the
final aim of unsupervised parsing, it will boil down to discovering a certain kind
of syntax, as otherwise a meaningful comparison between the different approaches
seems impossible.

In contrast, in Machine Translation any latent variable assumed by a model is
usually not interesting on its own, and is evaluated instead in the context of how
well it captures the correspondence between the sentences of the language-pair.
This extends to the syntactic variables used in MT models, such as those backed
by SCFGs. Our aim is to raise the translation performance, by integrating as
part of an MT model syntactic formalisms and annotations. The extent to which
we will be successfull in this relies on our capacity to learn these latent variables
from the incomplete parallel corpus and subsequently translate better employing
them. While towards this end features of linguistic syntax as they evolved for
monolingual parsing can be useful, overall syntax-based MT is not bound to a
particular annotation scheme.

This leaves substantial space to consider different synchronous grammar de-
signs to explain the translation process, and we venture to explore part of this
space in this thesis. Figures 5.2 and 5.3 showcase two different views on a syntac-
tic analysis of the translation of secondary clauses between English and German,
using the sentence fragment pair ‘which is the solution / der die Lösung ist ’ as
a particular example. The grammar of Figure 5.2 uses the linguistic structure
of the English sentence to pivot between the two languages, while that of Figure
5.3 focuses on lexical cues to signal the characteristic reordering of verbs in these
sentence-pairs. Finally, Figure 5.4 takes a hybrid approach, reducing the ambi-
guity when applying the lexically grounded rules of Figure 5.3 using linguistic
constituency information.

One may argue about the merits of each grammar design on linguistic, cogni-
tive or other grounds and these arguments are valid as long as we wish to move
further than the machine translation task, e.g. by aiming to discover how the
human brain translates and so forth. Still, as long as translating automatically is
what we aim for and systems are evaluated on the quality of translations that they
offer, establishing different grammar designs and choosing between them remains
an empirical task. It involves assessing not only the descriptive powers of each
synchronous grammar family, but also our ability to learn an effective synchronous
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SBAR → WHNP 1 V P 2 / WHNP 1 V P 2

V P → V BZ 1 NP 2 / NP 2 V BZ 1

WHNP → which / der

V BZ → is / ist

NP → the solution / die Lösung

Figure 5.2: An SCFG rule set for secondary clause verb reordering between En-
glish to German based on abstract linguistic structure.

X → which is X 1 / der X 1 ist

X → the solution / die Lösung

Figure 5.3: An SCFG rule set for secondary clause verb reordering between En-
glish to German based on lexical context.

SBAR → which is NP 1 / der NP 1 ist

NP → the solution / die Lösung

Figure 5.4: An SCFG hybrid rule set for secondary clause verb reordering be-
tween English to German, combining lexical context with linguistic constituency
information.
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grammar belonging to it from the available training data and determining the ex-
tent to which the grammars induced actually lead to strong translations during
decoding.

In the end, a strong synchronous grammar design is the one which pairs well
with the learning approach that we employ to learn from data and the decoding
schemes in which we embed our grammars to translate. Evaluating the strengths
and weaknesses of a grammar design should only be performed within the context
of a specific MT system implementation, or even a particular language pair or
training and test data domain. The synchronous grammar formalisms we employ
here, when trained with plain MLE lead to degenerate models that translate
extremely poorly yet unseen source sentences, as we discussed in the wider context
of Fragment Models in section 3.1.5. The exact same synchronous grammar
designs provide state-of-the-art results when trained with CV-MLE as we show
later in this chapter.

5.2.2 SCFG Modelling & Its Pitfalls

Probabilistic SCFGs extend the synchronous grammar rules to arrive at a stochas-
tic joint model over string pairs. A probability value is attached to every grammar
rule, so that these probabilities sum up to one for all rules having the same left-
hand side. The key assumption behind this SCFG model is, similarly to the case
of monolingual CFGs, that each non-terminal pair rewrite operation is indepen-
dent of the rest of the derivation of the string-pair, given this non-terminal pair
that we currently expand. The probability of a derivation D of a string-pair 〈e, f〉
is then the product of the probabilities of all rules r used in D, and the probability
of the string-pair itself is the sum of the probabilities of all derivations D

∗⇒ 〈e, f〉
leading to it.

p(D) =
∏
r∈D

p(r) (5.1)

p(e, f) =
∑

D
∗⇒〈e,f〉

p(D) (5.2)

This basic independence assumption behind SCFG models generalises the con-
cept of a constituent from monolingual CFGs to their bilingual version. Right-
hand side expansions covered by the same left-hand side non-terminal pair can
be considered interchangeable, with the rule probabilities indicating how prob-
able it is that they can be applied to rewrite this left-hand side non-terminal
pair. For every right-hand side taking part in a synchronous rule, it is solely
the left-hand side of the rule that will determine how the bilingual span covered
by it will combine with the higher levels of the derivation. Accordingly, further
expansions of the still abstract parts of the right-hand side are conditioned only
on the non-terminal pairs that still need to be rewritten.
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NP → JJ 1 NN 2 / NN 2 JJ 1 r1 : p(r1)

NP → JJ 1 NN 2 / JJ 1 NN 2 r2 : p(r2)

NN → box / bôıte r3 : p(r3)

JJ → blue / bleue r4 : p(r4)

JJ → beautiful / belle r5 : p(r5)

Figure 5.5: An SCFG grammar rule-set categorising both word-pairs ‘blue / bleue’
and ‘beautiful / belle’ under the same non-terminal JJ , failing to take into account
the different reordering patterns that these participate in. For p(r1) > p(r2), the
model will prefer to translate the input ‘beautiful box ’ wrongly as ‘bôıte belle’.

Crucially, this leaves one of the most important components of the syn-
chronous rule unaccounted for, when SCFG rules are combined to form a deriva-
tion. The reordering pattern between the non-terminals of the right-hand side is
not an explicit part of the conditioning context in SCFG models, which is limited
to the identity of the non-terminal pairs that function as left-hand sides. This
may constitute a modelling pitfall that has received surprisingly little attention
in the syntax-based MT community.

The concept of a constituent in monolingual CFGs describes strings of ter-
minals and non-terminals which can substitute for each other as alternative ex-
pansions of the same covering left-hand side. This implied interchangeability in
the monolingual case is justified by the ability of expansions covered by the same
non-terminal to combine with similar surrounding contexts. For example, in En-
glish, noun phrases can combine to the left or to the right with verb clusters as
subjects or objects of a sentence respectively, and nouns occur frequently after
determiners or close to adjectives.

Importantly, when we move from monolingual to bilingual (or multi-lingual)
grammars, the concept of a synchronous constituent and that of substitution
must move further than taking into account the surrounding context in the two
languages being modelled, for each of the two parts of the right-hand side ex-
pansions. An SCFG non-terminal pair must cover not only bilingual constituents
whose two parts combine together similarly within each of the two languages of
the language-pair, but they must also take part in similar reordering patterns.

A simple example illustrating this for translation between English and French
can be seen in Figure 5.5. The word-pairs ‘blue / bleue’ and ‘beautiful / belle’
are both assigned the same non-terminal category JJ . This decision can be
based on the observation that ‘blue’ and ‘beautiful ’ can frequently substitute
syntactically each other in English sentences and similarly ‘bleue’ and ‘belle’ do
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so in French sentences. However, this fails to take under account that while the
monolingual parts of the two bilingual constituents behave similarly in each of the
two languages, when joined as word-pairs they combine quite differently in regard
to how they reorder in sentence-pairs. The result is that according to the SCFG
model, translations of adjective-noun English phrases will always be swapped if
the first more common reordering pattern in rule r1 is correctly assigned a larger
probability than the more infrequent r2, even when encountering exceptions such
as ‘beautiful / belle’.

As we see next, in practice SCFG-based models of translation are comple-
mented in state-of-the-art syntax-based SMT systems such as (Chiang, 2005a)
with an array of additional features including a target language model, which can
counter to a certain extent this modelling weakness. However, these systems make
limited use of the abstract recursive structure offered by SCFGs, based mostly on
reordering based on lexical context. We believe that, when learning SCFG gram-
mars which rely on a syntactical bilingual analysis of the sentence-pairs which
investigates the structural aspects of the translation process, it is important to
take the issues highlighted in this section into consideration. Later in this chap-
ter we do so, by evaluating a grammar design which uses non-terminals which
relate to the reordering behaviour of the string-pairs that they cover, propagating
reordering decisions across the synchronous derivation.

5.2.3 The Hiero Baseline

The Hiero SMT system (Chiang, 2007) significantly popularised syntax-based MT
and remains the yardstick that most other syntax-based models and implementa-
tions compare to. Hiero, which we introduce in detail in section 2.4.2, employs an
SCFG as the backbone of a log-linear conditional translation model. The SCFG
score is combined together with multiple other features φ, using weights λ to
evaluate the quality of SCFG derivations D employing rules r ∈ D and leading
to translations e for input f .

p(D
∗⇒ 〈e, f〉) ∝ φλLM

LM (e) ×
∏
r∈D

∏
i6=LM

φλi
i (r) (5.3)

The SCFG grammar that Hiero employs treats translation as a hierarchical
process, similar to the example of Figure 5.3. Namely, it focuses on lexicalised
recursive translation rules, each of which translates a discontiguous source phrase-
pair with ‘gaps’, while at the same time indicating the reordering pattern between
the gaps on each side. However, as it covers all such discontiguous phrase-pairs
under a single non-terminal X, the grammar employed by Hiero does not offer
an abstract recursive explanation of the translation process and remains itself
indiscriminate against the strings that each gap will be filled with.

An example of such rules can be seen in Figure 5.6. These rules are in practice
allowed to recursively build sentence-segments up to a certain cut-off length (usu-



5.2. Synchronous Grammars for SMT 127

X → do not X 1 / ne X 1 pas

X → financial X 1 / X 1 économiques

X → this X 1 X 2 / cette X 1 de X 2

X → X 1 ’ s common X 2 policy /

politique X 2 commune de X 1

Figure 5.6: Hiero SCFG rules for English and French.

S →S 1 X 2 / S 1 X 2

S →X 1 / X 1

Figure 5.7: Hiero SCFG glue rules.

ally 10), which are later combined monotonically using the glue rules of Figure
5.7. This constraint together with the complementing features φ in the model of
equation (5.3), and most importantly the target language model feature φLM(e),
aid in avoiding errors due to the absence of a less ambiguous recursive structure
than that offered by the rules of Figure 5.6.

The list of features φ includes lexical translation scores judging translation on
the word level, as well as scores considering the number of words in the target
language output and the number of discontiguous phrase-pairs used in the SCFG
derivation. Nevertheless, the core modelling elements related to the hierarchical
phrase-based interpretation of translation assumed by the model are those em-
ploying conditional discontiguous phrase translation probabilities. These extend
the similar concept of features based on conditional phrase translation probabil-
ities, from the PBSMT models which employ contiguous phrases, to the Hiero
models which use phrase-pairs with gaps.

Crucially, these discontiguous phrase translation probabilities for the rules like
those in (5.6) are estimated with a heuristic rule of thumb, similarly to how the
probabilities for the contiguous phrase-pairs in PBSMT models are set. Namely,
they are set based on the extraction counts of contiguous phrase translation pat-
terns from a training word-aligned parallel corpus. These extraction counts are
distributed evenly across all discontiguous phrase translation patterns that can
be formed by substituting aligned subphrase-pairs of a contiguous phrase-pair for
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the non-terminal X. The rule weights are computed after normalising these as-
signed extraction counts for each target part of each rule right-hand side. These
scores do provide relatively strong translation performance for some language
pairs. However, like their PBSMT analogues, their relation in statistical terms
with the training corpus remains obscure.

Even though the impact of depending on surface extraction counts might be
limited when computing such estimates for the largely lexically-grounded rules of
Hiero, this approach can hardly extend to the estimation of more involved gram-
mars including notions of abstract recursive translation structure. In that case,
heuristic estimation would demand counting extraction events on the unobserved
latent part of the translation process. This would seem exceedingly arbitrary as
the assumed latent structure abstracts more from the observed lexical surface,
as we already discussed in section 2.5. While the heuristic estimation of the key
parameters of the Hiero translation system might have offered a solid starting
point for the emergence of hierarchical translation, it may be a bottleneck in the
process of extending syntax-based systems towards grammars abstracting more
from the lexical surface.

Zollmann and Venugopal (2006) move in this direction by extending the Hi-
ero system through the introduction of target-side linguistic information in the
grammar design along the lines of Figure 5.4. Nevertheless, they also offer no
advancements on the learning aspects of the problem, applying instead the same
heuristic estimation regime as Hiero, while supporting the simple heuristic esti-
mates with an array of further additional features.

Overall, Hiero introduces the employment of an SCFG as the backbone of a
hierarchical translation system focusing on translating with discontiguous phrase-
pairs with gaps. However, the SCFG’s main contribution in Hiero implementa-
tions is to provide hierarchical derivations of target translations which are then
scored by a feature-based model, while the ability of stochastic synchronous gram-
mars to function as probabilistic models of translation as in equations (5.1) and
(5.2) is not explored. In the rest of this chapter we follow this direction, and con-
sider the learning of simple stochastic SCFGs as joint translation models. This
features as a crucial intermediate step before moving on to induce the much more
intricate linguistically motivated grammars of Chapter 6.

5.2.4 The Learning Problem

The Hiero system exemplifies the gains to be had by combining phrase-based
translation (Och and Ney, 2004) with the hierarchical reordering capabilities of
SCFGs, particularly originating from the binary Inversion Transduction Gram-
mars (ITG) (Wu, 1997). Yet, the bulk of existing empirical work is largely based
on the aforementioned heuristic techniques, and the learning of SCFGs remains
an unsolved problem.
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The difficulty of this problem stems from the need for simultaneous learning
of many kinds of preferences under a single stochastic component.

• The translation of the lexical surface, either as part of dedicated phrase-
emitting rules as those employed by our grammars later in this chapter or
as part of lexicalised reordering rules as in the Hiero SCFGs.

• The reordering of phrase spans between the two languages.

• The overall translation structure as a mapping between the structure of
both sides of the language pair.

The phrase-based analysis of the lexical correspondences between the source
and target languages and the modelling of the reordering process have already
been addressed in PBSMT models and the related translation systems with rel-
ative success, even if it was done only in relation to contiguous string elements.
This leaves the modelling of the translation structure as the new exciting element
in syntax-based MT. While the concept of a translation structure also includes
the reordering patterns between segments of translated sentence-pairs, it moves
further than this. It also considers the mapping between abstract syntactic ele-
ments of the source and target languages that can aid in explaining the transla-
tion process, and which do not necessarily coincide with the syntactic elements
of monolingual linguistic analyses.

Crucially, it is exactly this novel aspect of syntax-based MT that learning
through rule-of-thumb surface heuristics cannot support, due to the latent nature
of translation structure. The approach of Chiang (2005a) however continued
to base estimation of model parameters on extraction heuristics, mitigating the
related issues by relying on the lexical, observable part of SCFGs, shunning at
that time a richer syntactic analysis of the translation process while noting its
importance as a future development.

Some efforts to learn a synchronous grammar for SMT concentrate on a part
of the three translation preferences listed above. The problem of learning the
hierarchical, synchronous grammar reordering rules is oftentimes addressed as
a learning problem in its own right assuming all the rest is given (Blunsom et
al., 2008b). A small number of efforts has been dedicated to the simultaneous
learning of the probabilities of phrase translation pairs as well as hierarchical re-
ordering, e.g., (DeNero et al., 2008; Zhang et al., 2008a; Blunsom et al., 2009).
Of these, some concentrate on evaluating word-alignment, either directly such
as (Zhang et al., 2008a), or indirectly by evaluating a heuristically trained hi-
erarchical translation system from sampled phrasal alignments (Blunsom et al.,
2009). However, very few evaluate on actual translation performance of induced
synchronous grammars (DeNero et al., 2008). In the majority of cases, the Hiero
system, which usually provides the baseline against which hierarchical systems
are measured, remains superior in translation performance, see e.g. (DeNero et
al., 2008).
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5.3 Synchronous Grammar Learning

In the rest of the chapter, we tackle the problem of learning generative phrase-
based ITG models as translation models assuming latent phrase segmentation and
latent reordering: this setting is most similar to the training of Hiero. Unlike all
other work that heuristically selects a subset of phrase-pairs, we start out from
an SCFG that works with all phrase-pairs in the training set and concentrate on
the aspects of learning. This problem is fraught with the risks of overfitting and
can easily result in inadequate reordering preferences (DeNero et al., 2006).

We find that the translation performance of all-phrase probabilistic SCFGs
induced in this setting crucially depends on the interplay between two aspects of
learning:

• Defining a more constrained parameter space, where the reordering produc-
tions are phrase-lexicalised and made sensitive to neighbouring reorderings.

• Defining an objective function that effectively smoothes the maximum-
likelihood criterion.

One of our contributions is in deploying the Cross-Validated EM algorithm
implementing an effective, data-driven smoothed Maximum-Likelihood, which
can cope with a model working with all phrase-pair SCFGs, building upon the
work presented in Chapter 4. However, on top of the challenges already discussed
there in the context of the application of CV-EM on PBSMTs, learning SCFGs
poses significant novel challenges, the core of which lies in the hierarchical na-
ture of a stochastic SCFG translation model and the relevant additional layer
of latent structure. We address these issues in this chapter. Another impor-
tant contribution is in defining a lexicalised reordering component within ITG
that captures order divergences orthogonal to those tracked by the Hiero SCFG,
but somewhat akin to PBSMT ‘monotone-swap-discontinuous’ reordering models
(Tillman, 2004). Our best system exhibits Hiero-level performance on French-
English Europarl data using an SCFG-based decoder. Our findings should be
insightful for others attempting to make the leap from shallow phrase-based sys-
tems to hierarchical SCFG-based translation models that use learning methods,
as opposed to heuristics.

5.3.1 Fragment Modelling Aspects

The Synchronous Context-Free Grammars which we consider here, both in the
case of the Hiero baseline as well as for our own grammar designs presented in
the next section, are phrase-based SCFGs. Unlike the Inversion Transduction
Grammar as it was originally introduced as a word-based model in (Wu, 1997),
these grammars allow synchronous rules with right-hand sides which include a
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lexicalised part of arbitrary length. Such rules can describe contiguous or dis-
contiguous aligned sentence-pair fragments of the training word-aligned parallel
corpus. Under the assumption that we do not impose any arbitrary constraints
on the length of these lexicalised rule segments, such phrase-based SCFGs can
then be categorised under the Fragment Model family. In this context, the ab-
stract part of the SCFG together with the rule probabilities provide the necessary
stochastic generative machinery combining the lexical (dis)contiguous fragments
to form sentence-pairs.

As in the case of PBSMT, this powerful modelling feature exposes the learning
of these grammars under a Maximum Likelihood objective to the same overfitting
issues as other all-fragment models such as Phrase-Based SMT (Marcu and Wong,
2002; DeNero et al., 2006) and Data-Oriented Parsing (Bod et al., 2003; Zollmann
and Sima’an, 2006). Maximum Likelihood Estimation (MLE) returns degenerate
grammar estimates that memorise well the parallel training corpus but generalise
poorly to unseen data. As for the other fragment models, also in the case of
SCFGs, this overfitting tendency leads towards an MLE estimate which effectively
memorises whole sentence-pairs, using merely a trivial abstract structure leading
directly towards the emission of whole training sentence-pairs, like for example
S → X → 〈e, f〉.

Such degenerate MLE estimates essentially memorise the empirical frequency
of sentence-pairs in the parallel corpus but generalise extremely poorly as they
also predict nothing more past what is included in the training data, as explained
in section 3.1.5. The failure of straightforward applications of MLE to arrive at
estimates which generalise well can be also attributed to a trade-off effect on the
bias-variance decomposition of the expected Generalisation Error. The zero GE
due to estimator bias is counter-balanced by a very high GE due to estimate
variance, as we discuss for Fragment Models in general in section 3.1.6.

Independently of the aspect that it is being considered, the overfitting ten-
dency of MLE estimators is encumbering the learning of SCFGs in all the aspects
of the translation process that they are modelling, posing further challenges than
those encountered while learning PBSMT phrase-table parameters in Chapter 4.
On one hand, similarly to the estimation of PBSMT models, it does not allow us
to identify and shift probability mass towards reusable lexical fragments. In the
case of SCFGs however, this is complemented by the inability to learn any non-
trivial translation structure, as the MLE solution overfits towards the minimal
syntactic elements necessary to construct sentences from the largest memorised
bilingual fragments. In order for the learning of SCFGs under a likelihood opti-
misation objective to arrive at any meaningful results, both in terms of reusable
lexical components as well as abstract syntactic constructions, this strong ten-
dency of the MLE estimator to memorise the training parallel corpus must first
be addressed.
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INPUT: Word-aligned parallel training data X
Grammar extractor G
The number of parts J to partition X

OUTPUT: SCFG G with estimates θ̂CV = {p(r)} for all grammar rules r

Partition training data in J equal parts X 1, . . . ,X J

For 1 ≤ j ≤ J do
Extract grammar rules set Gj = G(X j)

Initialise G = ∪jGj, θ̂CV
0 = {p0(r) : r ∈ G} uniform per rule LHS

Let r = 0 // EM iteration counter
Repeat

Let r = r + 1
E-step:

For 1 ≤ j ≤ J do

Calculate expected counts given G, θ̂CV
r−1,

for derivations D−j of X j

using rules from ∪k 6=jGk

M-step: set θ̂CV
r to ML estimate given expected counts

Until θ̂CV
r has converged

Figure 5.8: The CV Expectation-Maximization algorithm for SCFG learning.

5.3.2 CV-EM SCFG Estimation

In order to avoid the overfitting solution of plain MLE, we opt instead for a
Cross-Validated MLE learning objective, which we implement using the Cross-
Validated EM algorithm presented in section 3.2. Here we use Cross-Validation
to leverage the bias-variance trade-off for learning stochastic all-phrase SCFGs.
Given an input all-phrase SCFG grammar with phrase-pairs extracted from the
training data, we maximise training data likelihood subject to CV smoothing.
Splitting the word-aligned parallel training data X in J roughly equally-sized
parts X 1, . . . ,X J , for each data part X j we consider only derivations D−j which
employ grammar rules extracted from the rest of the data X−j. An essential part
then of the learning process involves choosing the grammar extractor G(X ), a
function from data to an all-phrase SCFG under a particular grammar design,
which we discuss in section 5.4 below.

A summary of the CV-EM algorithm for the learning of SCFG joint translation
models such as those of equations (5.1) and (5.2) can be seen in Figure 5.8.
As in all applications of CV-EM, being an EM instance guarantees convergence
and a non-decreasing CV-smoothed training data likelihood after each iteration.
Our practical implementation is based on a synchronous version of the Inside-
Outside algorithm. This takes care during the E-step of the efficient computation
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of expected counts of rule applications in derivations according to the current
parameter set and is a straightforward adaptation of the monolingual version,
considering bilingual instead of monolingual spans. The running time is O(n6),
where n is the input’s length, but by considering only derivation spans which do
not cross word-alignment points, our implementation runs in reasonable times for
relatively large corpora.

Beside being an estimator of the SCFG probability parameter set θ̂, the CV-
MLE learning algorithm has the added value of being a grammar learner focusing
on reducing generalisation error, in the sense that probabilities of grammar pro-
ductions should reflect the frequency with which these productions are expected
to be used for translating future data. Since the CV criterion prohibits for every
data point derivations that use rules that can only be extracted from the same
data part, such rules are assigned zero probabilities in the final estimate and are
effectively excluded from the grammar. In this way, the algorithm ‘shapes’ the
input grammar, concentrating probability mass on productions that are likely to
be used with future data.

In this chapter we do not pursue the use of grammar extractors outputting
complex abstract structures, even though we do move further than a plain Hiero-
like grammar totally lacking this aspect. For this reason, the effect of restricting
the grammar mentioned above relates more to the lexical part of the grammar
designs that we experiment with. Nevertheless, concentrating on lexical units
which are expected to generalise by applying CV-smoothing on the lexical level
is crucial in allowing us to estimate the parameters related to the higher-level
syntactical components, as well as to learn how to combine these reusable lexical
building blocks together.

The number of abstract syntactic rules used in the grammars that we present
below is limited and their design is a generic one without any reference to the
training data. This allows us to consider these as included in every extracted
rule-set G(X j) and allow them to survive the CV-smoothing in their entirety.
However, as we increase the complexity of the higher-level syntax in the syn-
chronous grammars that we consider and especially if this part of the grammar
is constructed in reference to the training data, we believe it is important to also
address the possible overfitting of the abstract part of the grammar. We consider
this issue in Chapter 6.

5.3.3 Smoothing the Model

The practical application of CV-EM for SCFGs also demands the treatment of
boundary cases. There will often be sentence-pairs in X j, that cannot be fully
derived by the grammar extracted from the rest of the data X−j. The reason
might be: (a) ‘unknown’ words (i.e. not appearing in other parts of the CV par-
tition) or (b) complicated combinations of adjacent word-alignments. To address
this, we employ external smoothing of the grammar, prior to learning.
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Our solution is to extend the SCFG extracted from X−j with new emission
productions deriving the ‘unknown’ phrase-pairs (i.e., found in X j but not in
X−j). Crucially, the probabilities of these productions are drawn from a fixed
smoothing distribution, i.e. they remain constant throughout estimation. Our
smoothing distribution of phrase-pairs 〈ẽ, f̃〉 for all pre-terminals considers source-
target phrase lengths drawn from a Poisson distribution with unit mean, drawing
subsequently the words of each of the phrases uniformly from the vocabulary of
each language, similar to (Blunsom et al., 2009).

psmooth(〈ẽ, f̃〉) =
ppoisson(|f̃ |; 1) ppoisson(|ẽ|; 1)

V
|f̃ |
f V

|ẽ|
e

(5.4)

Since the smoothing distribution puts stronger preference on shorter phrase-
pairs and avoids competing with the ‘known’ phrase-pairs, it leads the learner to
prefer using as little as possible such smoothing rules, covering only the phrase-
pairs required to complete full derivations.

5.4 Parameter Spaces and Grammar Extractors

As we discussed in 5.2.1, the translation structure is a latent modelling component
and an MT practitioner is free to consider it from different perspectives, which
may be based on machine learning, linguistic or cognitive grounds. However
in the end the synchronous structure is primarily judged empirically, based on
the ability to more closely capture the translation process and lead us towards
better translations. In the context of the learning framework presented in the
previous section, a crucial modelling choice is then establishing the space of latent
synchronous grammatical constructions that our learner will consider against the
empirical observations in the training data.

In our SCFG learning pipeline, the decisions related to the synchronous gram-
mar design are encoded in the Grammar Extractor (GE). A GE is a function
from a word-aligned parallel corpus to a set of Synchronous Context-Free Gram-
mar rules. Together with the constraints that render a proper joint probabilistic
SCFG, i.e. the sum of probabilities for productions that have the same left-hand
side must be one, the GE also serves to define the parameter space of the stochas-
tic model that we establish by extending every rule in the output of the GE with
a probability.

The Grammar Extractors used in this chapter create SCFGs productions of
two different kinds:

1. Abstract hierarchical synchronous productions that define the space of pos-
sible derivations up to the level of SCFG pre-terminals

2. The phrase-pair emission rules that expand the pre-terminals to phrase-
pairs of varying lengths.
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Start S → X / X

Monotone Expansion X → X 1 X 2 /X 1 X 2

Switching Expansion X → X 1 X 2 /X 2 X 1

Phrase-Pair Emission X → ẽ / f̃

Figure 5.9: Single Phrase-Pair NT Grammar.

Computing the GE’s output begins by extracting phrase-pair emitting rules
for the set of all translational equivalents (without length upper-bound) abiding
to the word-alignment, according to the rules of (Och and Ney, 2004; Koehn et
al., 2003). These phrase-pair emitting rules are complemented by the abstract
translation structure rules that cover the distance between the start symbol and
the phrase-pairs. However, while the phrase-pairs that will be the right-hand sides
of the phrase-pair emission rules depend on the parallel corpus, we cannot extract
translation structure rules from it as the latter is not labelled with a synchronous
parse. For this, the translation structure part of the grammar output of the GEs
that we examine in this chapter, does not depend on their input. Since these
rules will be present in the SCFGs extracted from all cross-validation parts, the
CV-EM learning algorithm implementation of Figure 5.8 cannot protect against
overfitting caused by this part of the grammars. For this reason, for this first
examination of SCFG learning with CV-EM discussed in this chapter, we have
elected to employ relatively simple translation structures, to mitigate the risk of
overfitting due to over-specialised abstract structure rules.

Below we present the two grammar extractors employed in our experiments.
We start out from the most generic, ITG-like formulation, and aim at incremental
refinement of the hierarchical productions in order to capture relevant, content-
based phrase-pair reordering preferences in the training data.

5.4.1 Single Phrase-Pair NT SCFG

This is a phrase-based binary SCFG grammar employing a single non-terminal
X covering each extracted phrase-pair. The other two productions consist of
monotone and switching expansions of phrase-pair spans covered by X. Finally,
the whole sentence-pair is considered to be covered by X. We will call this
the ‘plain SCFG’ extractor and the simple abstract translation structure that it
produces serves as a baseline against which more elaborate grammar designs can
be empirically compared. The SCFG produced by the plain SCFG extractor,
given an input corpus X from which phrase-pairs 〈ẽ, f̃〉 can be extracted, is listed
in Figure 5.9.
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Start S → X 1 /X 1

Monotone Expansion
X → X 1 X 2 /X 1 X 2
XL → X 1 X 2 / X 1 X 2
XR → X 1 X 2 /X 1 X 2

Switching Expansion
X → XL

1
XR

2
/XR

2
XL

1
XL → XL

1
XR

2
/XR

2
XL

1
XR → XL

1
XR

2
/XR

2
XL

1

Phrase-Pair Emission
X → ẽ / f̃
XL → ẽ / f̃
XR → ẽ / f̃

Figure 5.10: Lexicalised-Reordering SCFG

5.4.2 Lexicalised Reordering SCFG

One weakness of the ‘plain SCFG’ is that the reordering decisions in the deriva-
tions are made without reference to lexical content of the phrases; this is because
all phrase-pairs are covered by the same non-terminal. As a refinement, we pro-
pose a grammar extractor that aims at modelling the reordering behaviour of
phrase-pairs by taking their content into account. This time, the X non-terminal
is reserved for phrase-pairs and spans which will take part in monotonic produc-
tions only. Two fresh non-terminals, XL and XR, are used for covering phrase-
pairs that participate in order switching reordering operations with other, adja-
cent phrase-pairs. The non-terminal XL covers phrase-pairs which appear first in
the source language order, and the latter those which follow them. The grammar
rules produced by this GE, dubbed ‘switch grammar’, are listed in Figure 5.10.

The reordering information captured by the switch grammar is in a sense or-
thogonal to that of Hiero-like systems utilising rules such as those listed in Figure
5.6. Hiero rules encode hierarchical reordering patterns based on surrounding
context. In contrast, the switch grammar models the reordering preferences of
the phrase-pairs themselves, similarly to the monotone-swap-discontinuous re-
ordering models of Phrase-based SMT models (Tillman, 2004). On top of that, it
strives to match pairs of such preferences, combining together phrase-pairs with
compatible reordering preferences, as well as conditioning the production of every
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X

X

which
der

< X >

XL

is
ist

XR

X

the solution
die Lösung

X

to the problem
für das Problem

Figure 5.11: A sub-tree covering a secondary clause between English and German
using the switch SCFG. < > indicates a switch reordering operation between the
two children of the non-terminal. The application of the rule X → XL XR indi-
cates that the two children (verb and noun phrase) must switch as we translate
between the two languages, while the resulting verb phrase combines monotoni-
cally with the context on its left.
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non-terminal to the reordering behaviour of the span covered by it. In this way,
it addresses the modelling pitfalls described in section 5.2.2. Now the reordering
choices of every synchronous derivation expansion are affected both by the prefer-
ences of the children as well as the parents of every node in the derivation tree, as
encoded by the three specialised non-terminals present in the left and right-hand
side of every production rule.

An example of a derivation subtree for a secondary clause between English
and German can be seen in Figure 5.11. For the switch SCFG that we employ
in this chapter, while the form of the abstract structure in the example can be
explained in linguistic terms, identifying it past the pre-terminals makes use of
a small set of generic rules and their probabilities, which together represent the
overall reordering behaviour of synchronous spans across the training corpus. In
Chapter 6 we will enrich the synchronous grammatical constructions to explicitly
condition such reordering operations on linguistic cues.

5.5 Experiments

Pairing each Grammar Extractor with the CV-EM implementation of section
5.3.2 allows us to learn probabilistic Synchronous Context-Free Grammars and
estimate their parameters from training word-aligned parallel corpora. In this
section we proceed to integrate these synchronous grammars within an SCFG-
based decoder. We subsequently evaluate our performance in relation to the
state-of-the-art Hiero baseline of section 5.2.3 on a French to English translation
task.

5.5.1 Decoding

The joint model of bilingual string derivations provided by the learnt SCFG gram-
mar can be used for translation given a input source sentence, since:

arg max
e

p(e|f) = arg max
e

p(e, f)

We use our learnt stochastic SCFG grammar with the decoding component of
the Joshua SCFG toolkit (Li et al., 2009). The full translation model interpolates
log-linearly the probability of a grammar derivation together with the language
model probability of the target string. The model is further smoothed, similarly
to phrase-based models and the Hiero system, with smoothing features φ such as
the lexical translation scores of the phrase-pairs involved and rule usage penalties
in the same way as our baseline. As usual with statistical translation, we aim for
retrieving the target sentence e corresponding to the most probable derivation
D

∗⇒ 〈e, f〉 for the source side f making use of rules r, with:
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p(D
∗⇒ 〈e, f〉) ∝ φλLM

LM (e) pSCFG(e, f)λSCFG ×
∏
r∈D

∏
i6=LM,SCFG

φλi
i (r) (5.5)

The interpolation weights are tuned using Minimum Error Rate Training (Och,
2003).

5.5.2 Results

We test empirically the learner’s output grammars for translating from French
to English, using J = 5 for the Cross-Validation data partitioning. The train-
ing material is a GIZA++ word-aligned corpus of 200K sentence-pairs from the
Europarl corpus (Koehn, 2005), with our development and test parallel corpora
of 2K sentence-pairs stemming from the same source. Training the grammar pa-
rameters until convergence demands around 6 hours on an 8-core 2.26 GHz Intel
Xeon system. Decoding employs a 4-gram language model, trained on English
Europarl data of 19.5M words smoothed using modified Kneser-Ney discounting
(Chen and Goodman, 1998), and lexical translation smoothing features based on
the GIZA++ alignments.

In a sense, from a learning perspective the real baseline that we might compare
against should be a system employing the plain MLE estimate for the grammar
extracted from the whole training corpus. However, as we have already discussed,
this assigns zero probability to all sentence-pairs outside of the training data and
is subsequently bound to perform extremely poorly, as decoding would then com-
pletely rely on the smoothing features. In addition, we cannot directly compare
the CV-EM estimates for the plain and switch SCFGs against estimates that are
heuristically trained similarly to those employed in Hiero or PBSMT, as it is not
clear how the reordering rule probabilities of a grammar similar to the ones we use
could be trained heuristically based on extraction counts, given that the relevant
structure is unobserved.

Instead, we opt to compare against a hierarchical translation baseline pro-
vided by the Joshua toolkit, trained and tuned on the same data as our learning
algorithm. The grammar used by the baseline is much richer than the ones learnt
by our algorithm, also employing rules which translate with context, as discussed
in section 5.2.3. However, the baseline does not make use of abstract transla-
tion rules without a lexical part, relying on the glue grammar of Figure 5.7 to
monotonically combine the discontiguous phrase-pairs together after they have
been recursively expanded. Relating the performance of our learnt stochastic
SCFG grammars to a hierarchical translation baseline such as this, has the added
advantage of comparing against a system which remains in the state-of-the-art
of SCFG-based translation, evaluating the potential of our approach to deliver
real-world competitive translation performance.
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System
Lexical

BLEU
Smoothing

joshua-baseline No 27.79
plain scfg No 28.04
switch scfg No 28.48

joshua-baseline Yes 29.96
plain scfg Yes 29.75
switch scfg Yes 29.88

Table 5.1: Empirical results, with and without additional lexical translation
smoothing features during decoding

Table 5.1 presents the translation performance results of our systems and the
baseline. On first observation, it is evident that our learning algorithm outputs
stochastic SCFGs which manage to generalise, avoiding the degenerate behaviour
of plain MLE training for these models. Given the notoriety of the estimation
process, this is noteworthy on its own. Having a learning algorithm at hand which
realises to a reasonable extent the potential of each stochastic grammar design (as
implemented in the relevant grammar extractors), we can now compare between
the two grammar extractors used in our experiments. The results table high-
lights the importance of conditioning the reordering process on lexical grounds.
The plain grammar with the single phrase-pair non-terminal cannot accomplish
this and achieves a lower BLEU score. On the other hand, the switch SCFG
allows such conditioning. The learner takes advantage of this feature to output
a grammar which performs better in taking reordering decisions, something that
is reflected in both the actual translations as well as the BLEU score achieved.

Furthermore, our results highlight the importance of the additional smooth-
ing decoding features of equation (5.5). The unsmoothed baseline system itself
scores considerably less when employing solely the heuristic translation score.
Our unsmoothed switch grammar decoding setup improves on the baseline by a
considerable difference of 0.7 BLEU, highlighting the reliance of the heuristic esti-
mates on these additional smoothing features to provide reasonable translations.
Subsequently, when adding the smoothing lexical translation features, both sys-
tems record a significant increase in performance, reaching comparable levels of
performance.

The degenerate behaviour of MLE for SCFGs can be greatly limited by con-
straining ourselves to grammars employing minimal phrase-pairs: phrase-pairs
which cannot be further broken down into smaller ones according to the word-
alignment. One could argue that it is enough to perform plain MLE with such
minimal phrase-pair SCFGs, instead of using our more elaborate learning algo-
rithm with phrase-pairs of all lengths. To investigate this, for our final experi-
ment we used a plain MLE estimate of the switch grammar to translate, limiting
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the grammar’s phrase-pair emission rules to only those which involve minimal
phrase-pairs. The very low score of 17.82 BLEU (without lexical smoothing) not
only highlights the performance gains of using longer phrase-pairs in hierarchical
translation models, but most importantly provides a strong incentive to address
the overfitting behaviour of MLE estimators for such models, instead of avoiding
it.

5.6 Related Work

Most learning of phrase-based models, e.g. (Marcu and Wong, 2002; DeNero
et al., 2006) and the work presented in Chapter 4, works without hierarchical
components such as those employed by ITG/SCFG grammars. These learning
problems pose other kinds of learning challenges than the ones presented by the
explicit learning of SCFGs. While Chiang’s original work (Chiang, 2005a; Chi-
ang, 2007) introduces a particular flavour of phrase-based binary synchronous
grammars, his learning approach keeps almost intact the heuristic estimation of
PBSMT. The learning problem is not expressed in terms of an explicit objective
function and surface heuristic counts are used instead. Nevertheless, it has been
very difficult to match the performance of Hiero-like models without use of these
heuristic counts.

A somewhat related work, (Blunsom et al., 2008b), attempts learning new
non-terminal labels for synchronous productions in order to improve translation.
This work differs substantially from our work because it employs a heuristic esti-
mate for the phrase pair probabilities, thereby concentrating on a different learn-
ing problem: that of refining the grammar symbols. Our approach might also
benefit from such a refinement but we do not attempt this problem here. In con-
trast, (Blunsom et al., 2008a) works with the expanded phrase pair set of (Chiang,
2005a), formulating an exponential model and concentrating on marginalising out
the latent segmentation variables. Again, the learning problem is rather different
from ours. Similarly, the work in (Zhang et al., 2008a) reports on a multi-stage
model, without a latent segmentation variable, but with a strong prior preferring
sparse estimates embedded in a Variational Bayes (VB) estimator. This work
concentrates the efforts on pruning both the space of phrase pairs and the space
of (ITG) analyses.

To the best of our knowledge, the work presented in this chapter based on the
results of (Mylonakis and Sima’an, 2010) was the first to attempt learning proba-
bilistic phrase-based binary SCFGs as translation models, in a setting where both
a phrase segmentation component and a hierarchical reordering component are
assumed as latent variables. Like our approach, (DeNero et al., 2008) also employ
an all-phrases model, however the work presented here complements the results
of Chapter 4 in showing that it is possible to train such large-scale grammars
under iterative algorithms like CV-EM, without need for sampling or pruning.
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5.7 Discussion

Phrase-based stochastic SCFGs provide a rich formalism to express translation
phenomena, which has been shown to offer competitive performance in prac-
tice. Since learning SCFGs for machine translation has proven notoriously diffi-
cult, most successful SCFG models for SMT rely on rules extracted from word-
alignment patterns and heuristically computed rule scores, with the impact and
the limitations imposed by these choices yet unknown.

Some of the reasons behind the challenges of SCFG learning can be traced
back to the introduction of latent variables at different, competing levels: word
and phrase-alignment used side by side with hierarchical reordering structure,
with larger phrase-pairs reducing the need for extensive reordering structure and
vice versa. While imposing priors such as the often used Dirichlet distribution or
the Dirichlet Process provides a method to overcome these pitfalls, we believe that
the data-driven CV-MLE learning objective and the CV-EM algorithm employed
in this chapter provide an effective alternative to them, focusing more on the
data instead of importing generic external human knowledge. Our use of CV-EM
to learn Synchronous CFGs adds additional evidence to the effectiveness of our
algorithm to train models assuming increasingly complex latent variables, moving
from the flat segmentation variables of Chapter 4 to the recursive structures of
SCFGs.

We believe that the work in this chapter makes a significant step towards
learning synchronous grammars for SMT. This is an objective not only worthy
because of promises of increased performance, but, most importantly, also be-
cause it increases the depth of our understanding of SCFGs as vehicles of latent
translation structures. Our usage of the induced grammars directly for transla-
tion, instead of an intermediate task such as phrase-alignment, aims exactly at
this.

While the latent structures that we explored here were relatively simple in
comparison with Hiero-like SCFGs, they take a different, content-driven approach
to learning reordering preferences, rather than the context-driven approach of Hi-
ero. We believe that overall these approaches are not merely orthogonal, but could
also prove complementary. Taking advantage of the possible synergies between
content and context-driven reordering learning is an appealing direction of future
research stemming from this thesis. This is particularly promising for other lan-
guage pairs, such as Chinese to English, where Hiero-like grammars have been
shown to perform particularly well.

In the following chapter, we build on the intuitions gained and the results
presented above to learn a translation model employing a rich, linguistically mo-
tivated latent structure. This moves further than synchronous grammars which
use a handful of abstract categories to describe the translation process, like those
we employed here. Even though we proceed towards using grammars taking ad-
vantage of hundreds of thousands of abstract categories, we retain the design
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principles behind the ‘switch SCFG’ presented here. We use its ability to facili-
tate learning how to combine together the reordering preferences of phrase-pairs
and those of abstract categories, within a translation structure robust enough to
cover whole sentence-pairs. In this way, the successful deployment of CV-EM as
a learning algorithm for the somewhat simpler SCFGs presented in this chap-
ter, as well as our experimentation with different synchronous grammar design
principles, pave the way for the work that follows.





Chapter 6

Learning Linguistically Motivated
Latent Translation Structure

Research efforts towards making use of the syntactic aspects of translation have
been intensified during the past decade. We have already witnessed in this thesis
the build-up from earlier work on translation formalisms driven by formal syntax
such as (Aho and Ullman, 1969; Lewis and Stearns, 1968), to Wu’s introduction
of the Inversion-Transduction Grammar (ITG) (Wu, 1997). The latter, a sub-
set of the Synchronous Context-Free Grammars (SCFGs), seems to combine the
merits of simplicity and computational efficiency with the ability to describe a
multitude of frequently occurring translation phenomena. Chiang (2005a) moved
further by combining in the Hiero system the hierarchical nature of the ITG with
the modelling potential of Phrase-Based Statistical Machine Translation (PB-
SMT), to model translation as a hierarchical process which recursively expands
discontiguous phrase-pairs.

Chiang in the Hiero system itself did not explore the potential of SCFGs to
describe translation in terms of an abstract hierarchical process, choosing as a
first step to focus on the ability of the SCFG formalism to provide the mechan-
ics for a model employing discontiguous phrase-pairs extracted from a parallel
corpus. Nevertheless, its empirical success in translating between languages with
significant syntactic differences such as English and Chinese, triggered a barrage
of work on syntax-aware translation such as (Zollmann and Venugopal, 2006; Liu
et al., 2006; Chiang, 2010), a substantial part of which focuses on SCFG-based
approaches. Many of these approaches aimed to relate the structural aspects
of the translation process to the linguistic syntax of the source and/or target
language, as we discuss in more detail in the next section.

The positive results of these approaches exemplified the gains to be had from
incorporating linguistic syntax elements in a translation system. Overall, it
is widely recognised that many translation phenomena correlate with linguis-
tic structures, and the relative success of work such as that mentioned in the
previous paragraph provides further empirical evidence on this issue. However,
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as showcased by the disappointing early results from seemingly straightforward
approaches to do so (see e.g. (Koehn et al., 2003)), taking advantage of linguistic
annotations is a non-trivial problem that remains open and still strongly attracts
the interest of MT researchers today.

As we discussed in Chapter 5, the transition from phrase-based to hierarchical
SMT already marked a significant increase in the complexity of the latent vari-
ables included in the relevant models. In the general case, training a hierarchical
model involves learning a complex structural hidden variable with a recursive
nature, which the latent variables of the phrase-based models miss. This sig-
nificantly increases the stress on the learning components of hierarchical SMT
systems, as the difficulty of inducing translation structure increases as we move
further away from the observed lexical surface.

The initial introduction of phrase-based SCFGs for SMT in the form of the
Hiero system by (Chiang, 2005a) did not address this Machine Learning chal-
lenge, choosing instead to employ heavily lexicalised synchronous productions,
all but completely avoiding abstract translation structure. This allowed Hiero to
be trained under the same extraction heuristics as PBSMT, based on counting
the number of extractions of discontiguous bilingual patterns with ‘gaps’ in the
same way as PBSMT estimates are based on counts of contiguous phrase-pairs.
This estimator, together with the related PBSMT estimator, is a heuristic one,
given that it is not known to optimise any objective function of the training
data, as well as because the extraction counts that it uses are not related to
any observable events in the data: we know that these discontiguous bilingual
patterns appear in the data but we neither know nor make an effort to find out
how they participate in data constructions. Still, making sure that synchronous
productions are grounded by lexical context, avoiding abstract productions and
employing no more than a pair of synchronous non-terminals, together with the
support provided by additional smoothing features, allows Hiero-like systems to
provide state-of-the-art performance for some language pairs.

Later systems such as (Zollmann and Venugopal, 2006; Liu et al., 2006; Liu
et al., 2009) moved further on the path laid by Hiero. These systems made
use of linguistically motivated abstract categories and a hierarchical translation
structure which reaches higher-up from the lexical surface, by means of recursive
translation patterns extracted from the monolingual syntactic parse trees of the
source and/or target training sentences. Crucially, the trend to employ heuristics
based on bilingual pattern extraction counts to estimate the parameters of SMT
models was also extended to translation models assuming a richer hierarchical
structure, something that applies to all of the three aforementioned systems. This
choice was possibly made in connection with the difficulties of matching state-
of-the-art performance by training syntactic SMT models using better-founded
estimation approaches, such as the Expectation-Maximization algorithm (Galley
et al., 2006) or Bayesian inference (DeNero et al., 2008).

The considerable progress in the direction of employing linguistic syntax in
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the context of hierarchical SMT models has led to systems providing state-of-
the-art performance for many language pairs, especially those with significant
syntactic divergence. Still, there are significant remaining challenges for syntax-
based SMT. Although many of these are related to the additional technical and
computational challenges related to training and decoding that must be tack-
led, we believe that a considerable bottleneck preventing a breakthrough is the
way these methods approach learning hierarchical models from data. Learning
based on heuristics becomes increasingly arbitrary as we move further up from
the observed lexical surface, especially as the recursive building blocks employed
become less lexicalised and more abstract in nature. This is not an issue of a
purely theoretical nature, as it prevents hierarchical SMT systems from realising
the full descriptive and modelling potential of synchronous grammars and the
rest of the bilingual syntax formalisms. Practical implementations are forced to
commit to compromises regarding the grammar families and rules they exploit,
so that the overall model still delivers reasonable performance when trained by
the heuristic rules.

There is another problem with the use of linguistic syntax in a rigid, heuristic
scheme without a clear translation-centric learning objective: we run the risk of
imposing unnecessary linguistic constraints, which might have little to do with
translation and lead to sub-optimal system output. While some of the bilingual,
linguistic patterns that these systems extract do constitute useful translation
building blocks, avoiding to ascertain which of these are actually relevant for
translation and how they can be combined together means that one may end up
with a model which fails to generalise. Instead, we believe we should be aiming
at models which are not linguistically constrained but linguistically motivated, by
learning to take advantage of only those linguistic cues which help translate better
and through determining how to combine together the syntax-based translation
building blocks in an effective ensemble.

In this chapter, we build upon the theoretical discussion and the algorithms
presented in Chapter 3, as well as the empirical findings on applying these meth-
ods to learn translation models provided in Chapters 4 and 5. We use these
to formulate a method to learn linguistically motivated hierarchical translation
models, based on our results first published in (Mylonakis and Sima’an, 2011).

Our efforts are concentrated on learning to take advantage of the interplay
between monolingual structure, which can be considered observed when employ-
ing a syntactic parser, and the hidden, bilingual translation structure we must
induce. The result is a learning approach that aims at discovering effective SCFG-
based models making use of a linguistically-aware abstract hierarchical translation
structure, which focuses on only those syntactic cues which are found to benefit
translation.

We do this by optimising a clear, bilingual learning objective based on Cross-
Validated MLE (CV-MLE), promoting the generalisation capacity of the models.
This objective allows us to induce a probabilistic abstract translation structure
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which is empirically shown to robustly and effectively capture the recursive na-
ture of translation across whole sentence-pairs. We show that this provides signif-
icantly improved translation output on a range of language pairs in comparison
with a state-of-the-art hierarchical translation baseline.

6.1 Linguistically Aware Hierarchical SMT

The efforts to utilise linguistic syntax for Statistical Machine Translation created
a new link between current MT research and its historical roots. In the early
days of MT, it was thought that the translation from one language to another
could be described in terms of a set of rules employing abstract categories, which
were often related to syntactic elements. However, the endeavour to manually
compile and orchestrate together such sets of rules reached its limits well before
producing reasonable translation quality on source language domains which were
not heavily restricted. It was gradually recognised that the level of complexity
of cross-language communication rendered this effort extremely difficult. The
breakthrough on MT initiated by the work on the IBM models (Brown et al.,
1990), brought a surge of research activity on overcoming the limitations of rule-
based systems through learning lexical bilingual correspondences between the
source and target languages, by using corpora of already translated text to build
probabilistic translation models.

Either to keep the learning and engineering challenges manageable, or perhaps
so as to distance itself from their rule-based predecessors, SMT approaches orig-
inally mostly stayed close to the lexical surface, employing word or phrase-based
models directly translating lexical units from source to target. Lexical SMT suc-
ceeded in making a clear step forward both in terms of translation performance
and language-pair coverage, as well as by bringing Machine Translation research
back to the spotlight.

Still, SMT systems employing shallow, mostly lexical translation models are
affected by the sparse nature of natural language. These concerns led towards
a resurgence of syntactic MT approaches. Syntax-driven SMT employs bilingual
rules making use of linguistic or other abstract categories to explain translation
as a recursive process, aiming to generalise better past the training data. The
crucial new ingredients which made feasible what in the past was considered
highly challenging were the advancements in probabilistic models and statistical
learning for Machine Translation.

These efforts have been directed towards SMT models employing linguistic
syntax on either the source or target side of the translation process, or even
across both languages. Each approach enjoys its own strengths and weaknesses.

• Using source-side syntax (Quirk et al., 2005; Liu et al., 2006) allows a model
to condition translation operations, such as lexical choice and reordering,
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on the linguistic structure of the source sentence. Since the source sentence
is the fixed input of a translation system, such a ‘tree to string’ transla-
tion system may condition translation decisions upon a single source parse
tree generated with a natural language parser. In this way, we avoid the
additional task of disambiguating over the translation hypothesis subspace
related to monolingual linguistic syntax.

• Approaches utilising target-side syntax (Yamada and Knight, 2001; Ya-
mada and Knight, 2002; Galley et al., 2004; Galley et al., 2006; Zollmann
and Venugopal, 2006; Hassan et al., 2009) put the focus on increasing the
target output grammaticality, by combining together on the target side the
linguistically augmented rule counterparts of unlabelled lexical source ele-
ments. However, as the target sentence’s linguistic structure is not known,
these ‘string to tree’ systems need to address a significant increase in the
translation hypothesis space.

• A further family of methods, sometimes referred to as ‘tree to tree’ systems,
aims to relate the translation process to linguistic information from both
the source as well as the target side (Poutsma, 2000; Way, 1999; Hearne
and Way, 2003; Eisner, 2003; Zhang et al., 2008b; Liu et al., 2009; Chiang,
2010). While this line of work aspires to reap the ‘best of both worlds’, it
also faces increased sparsity issues as it strives to match together linguistic
structures across both languages. It involves higher computational costs
and is exposed to parsing errors from both source and target sides.

• Some systems belonging to all three cases above extend towards employing
a source and/or target forest instead of a single-best parse tree (Mi et
al., 2008; Liu et al., 2009). Such forest is a packed representation of a
subset of all parse trees of the respective underlying sentence together with
their probabilities. This data structure allows these systems to take into
account more input from the parsing model employed than that offered by
the Viterbi parse.

Interestingly, despite the intuitive advantages of such approaches, early on
(Koehn et al., 2003) exemplified the difficulties of integrating linguistic infor-
mation in translation systems. Syntax-based MT often suffers from inadequate
constraints in the translation rules extracted, or from striving to combine these
rules together towards a full derivation. Recent research tries to address these is-
sues, e.g. by re-structuring training parse trees to better suit syntax-based SMT
training (Wang et al., 2010). Other work moves from linguistically motivated
synchronous grammars to systems where linguistic plausibility of the translation
process is assessed through additional features in a phrase-based system (Venu-
gopal et al., 2009; Chiang et al., 2009), obscuring the impact of higher level
syntactic processes.
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6.2 Our approach

While it is assumed that linguistic structure does correlate with some translation
phenomena, in this work we do not employ it as the backbone of translation.
In place of linguistically constrained translation imposing syntactic parse struc-
ture as the backbone of the pivoting mechanism between the source and target
languages, we opt for linguistically motivated translation. We learn latent hi-
erarchical structure, taking advantage of linguistic annotations but shaped and
trained for translation.

We start by labelling each phrase-pair span in the word-aligned training data
with multiple linguistically motivated categories. These labels are extracted
from single-best syntactic parses of the training source sentences and offer multi-
grained abstractions from the lexical surface of each bilingual span. The label
charts listing the linguistic categories that cover each bilingual span, together
with the training sentence-pairs, are the input of our learning algorithm. Our
algorithm extracts the linguistically motivated rules and estimates the probabil-
ities for a stochastic SCFG, without arbitrary constraints such as phrase or span
sizes.

Estimating such grammars under a Maximum Likelihood criterion is known to
be plagued by strong overfitting leading to degenerate estimates (DeNero et al.,
2006). In contrast, our learning objective not only avoids overfitting the training
data but, most importantly, learns joint stochastic synchronous grammars which
directly aim at generalisation towards yet unseen instances. By advancing from
structures which mimic linguistic syntax, to learning linguistically aware latent
recursive structures targeting translation, we achieve significant improvements
in translation quality for 4 different language pairs in comparison with a strong
hierarchical translation baseline.

Our key contributions are presented in the rest of the chapter. We first intro-
duce a joint translation model which separates hierarchical translation structure
from phrase-pair emission. This model is based on a synchronous grammar design
which takes advantage of our work on conditioning synchronous rules on reorder-
ing operations presented in Chapter 5. We then consider a chart over phrase-pair
spans filled with source-language linguistically motivated labels. We show how
we can employ this crucial input to extract and train a hierarchical translation
structure model with millions of rules. We do this by efficiently examining all
hierarchical structures that can be built taking advantage of these labellings.
Subsequently, we establish which of these describe the data best, according to a
smoothed learning objective based on Cross-Validated MLE and implemented in
terms of the Cross-Validated EM algorithm presented in section 3.2. We continue
by demonstrating how to decode with our model by constraining derivations to
linguistic hints of the source sentence. We present our empirical results and close
the chapter with a discussion of related work and our conclusions.
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SBAR → [WHNP SBAR\WHNP] (a)

SBAR\WHNP →
〈
VP/NPL NPR

〉
(b)

NPR → [NP PP] (c)

WHNP → WHNPP (d)

WHNPP → which / der (e)

VP/NPL → VP/NPL
P (f)

VP/NPL
P → is / ist (g)

NPR → NPR
P (h)

NPR
P → the solution / die Lösung (i)

NP → NPP (j)

NPP → the solution / die Lösung (k)

PP → PPP (l)

PPP → to the problem / für das Problem (m)

Figure 6.1: English-German SCFG rules for the relative clause(s) ‘which is the
solution (to the problem) / der die Lösung (für das Problem) ist’. [ ] signify
monotone translation, 〈 〉 a swap reordering.

6.3 Joint Translation Model

Our model is based on a probabilistic Synchronous Context-Free Grammar (Wu,
1997; Chiang, 2005a). We employ binary SCFGs, i.e. grammars with a maximum
of two non-terminals on the right-hand side. Also, for this work we only used
grammars with either purely lexical or purely abstract rules involving one or two
non-terminal pairs. An example can be seen in Figure 6.1, using the ITG-style
notation and assuming the same non-terminal labels for both sides.

We utilise probabilistic SCFGs, where each rule is assigned a conditional prob-
ability of expanding the left-hand side symbol with the rule’s right-hand side.
Phrase-pairs are emitted jointly and the overall probabilistic SCFG is a joint
model over parallel strings.

6.3.1 Hierarchical Reordering SCFG

In section 5.2.2, we discussed the possible pitfalls of modelling translation under
the SCFG formalism when directly extending monolingual non-terminals to their
bilingual counterparts. The key issue revolves around the need to account for the
fact that synchronous abstract categories must not only capture how the bilingual
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spans they cover combine with their source or target language context, but also
their reordering preferences across the language pair. Effective propagation of
these reordering preferences across the derivations of a linguistically motivated
grammar can be beneficial when a linguistic category alone proves too coarse as
a bilingual class to also capture reordering behaviour.

We address these issues by relying on an SCFG grammar design that is similar
to the ‘Lexicalised Reordering’ grammar of section 5.4.2. As in the rules of Figure
6.1, we separate non-terminals according to the reordering patterns in which they
participate. Non-terminals such as BL, CR take part only in swapping right-hand
sides

〈
BL CR

〉
(with BL swapping from the source side’s left to the target side’s

right, CR swapping in the opposite direction), while non-terminals such as B,
C take part solely in monotone right-hand side expansions [B C]. These non-
terminal categories can appear also on the left-hand side of a rule, as in rule (c)
of Figure 6.1.

However, in contrast with the Lexicalised Reordering grammar of Chapter
5, monotone and swapping non-terminals in this case do not emit phrase-pairs
themselves. Rather, each non-terminal NT is expanded to a dedicated phrase-pair
emitting non-terminal NTP, which generates all phrase-pairs for it and nothing
more. In this way, we explicitly model the preference of non-terminals to either
expand towards a (long) phrase-pair or be further analysed recursively. This is
done through the competition of expansions NT → NTP preparing to emit a
phrase-pair, against the rest of the rules with NT as left-hand side that further
analyse the non-terminal in abstract terms. Furthermore, this set of pre-terminals
allows us to separate the higher order translation structure from the process that
emits phrase-pairs, a feature we employ next to apply a different learning strategy
on each part of our synchronous grammar.

In Chapter 5 this grammar design mainly contributed to model lexical reorder-
ing preferences. While we retain this function, for the rich linguistically-motivated
grammars used in this chapter, this design effectively propagates reordering pref-
erences above and below the current rule application, as in rules (a)-(c) of Figure
6.1, allowing to learn and apply complex reordering patterns. Using these non-
terminals in the right-hand side of synchronous rules allows us to synchronise
together the reordering preferences of adjacent spans, by combining together two
bilingual non-terminals with a preference to reorder monotonically (rules (a) and
(c)) or swap with each other between source and target sentences (rule (b)). In
addition, employing these non-terminals on the left-hand side of synchronous pro-
ductions allows us to propagate reordering preferences higher-up the synchronous
tree derivation from the bottom-up perspective of a decoding algorithm, or to
condition productions on reordering behaviour when we look at it as a top-down
generative process.

The different types of grammar rules are summarised in abstract form in
Figure 6.2, while the reader can find later in this chapter, in section 6.4.2 and
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A → [B C] A →
〈
BL CR

〉
AL → [B C] AL →

〈
BL CR

〉
AR → [B C] AR →

〈
BL CR

〉
A → AP AP → α / β

AL → AL
P AL

P → α / β

AR → AR
P AR

P → α / β

Figure 6.2: Hierarchical Reordering Grammar rule categories; A, B, C non-
terminals; α, β source and target strings respectively.

Figure 6.4, a more concrete example on how this grammar design is applied in
practice. We will subsequently refer to this grammar structure as Hierarchical
Reordering SCFG (HR-SCFG).

6.3.2 Generative Model

We arrive at a probabilistic SCFG model which jointly generates source e and
target f strings, by augmenting each grammar rule with a probability, summing
up to one for every left-hand side. The probability of a derivation D of tuple
〈e, f〉 beginning from start symbol S is equal to the product of the probabilities
of the rules used to recursively generate it.

We separate the structural part of the derivation D, down to the pre-terminals
NTP, from the phrase-emission part. The grammar rules pertaining to the struc-
tural part and their associated probabilities define a model p(σ) over the latent
variable σ. This determines the recursive, reordering and phrase-pair segmenting
structure of translation, as in Figure 6.4. Given σ, the phrase-pair emission part
merely generates the phrase-pairs utilising distributions from every NTP to the
phrase-pairs that it covers, thereby defining a model over all sentence-pairs gen-
erated given each translation structure. The probabilities of a derivation and of
a sentence-pair are then as follows:

p(D) = p(σ) p(e, f |σ) (6.1)

p(e, f) =
∑

D:D
∗⇒〈e,f〉

p(D) (6.2)

By splitting the joint model in a hierarchical structure model and a lexical
emission one we facilitate estimating the two models separately. The following
section discusses this.
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X, SBAR, WHNP+VP, WHNP+VBZ+NP
X, VBZ+NP, VP, SBAR\WHNP

X, SBAR/NN, WHNP+VBZ+DT
X, VBZ+DT, VP/NN

X, WHNP+VBZ, X, NP,
SBAR/NP VP\VBZ

X, WHNP, X, VBZ, X, DT, X, NN,
SBAR/VP VP/NP NP/NN NP\DT

which is the problem

Figure 6.3: The label chart for the source fragment ‘which is the problem’. Only
a sample of the entries is listed.

6.4 Learning Translation Structure

In the previous section we established the SCFG grammar design that we will be
employing as summarised in Figure 6.2, as well as the probabilistic foundations
of the joint translation model we will be learning. We will now describe our
approach towards incorporating linguistic information in our model, so that we
cover the distance from the generic framework of Figure 6.2, to a linguistically
motivated model employing rules such as those of Figure 6.1.

Our first step will be to describe how to encode the linguistic information
contained in automatically generated source sentence parse trees, into a data
structure: a chart covering bilingual spans. Our aim is to label each such span
with linguistically motivated categories which could prove helpful to describe the
translation process and the bilingual correspondences between the source and
target sentences. The next step is to build a linguistically motivated probabilistic
synchronous grammar belonging to the HR-SCFG family, which is able to describe
all SCFG structures that we can build by taking advantage of these labellings.
Finally, we estimate the parameters of this grammar by disambiguating between
all such alternative linguistically motivated explanations of the parallel training
data using the Cross-Validated EM algorithm.

6.4.1 Phrase-Pair Label Chart

The input to our learning algorithm is a word-aligned parallel corpus. We consider
as phrase-pair spans those that obey the word-alignment constraints of (Koehn et
al., 2003). For every training sentence-pair, we also input a chart containing one
or more labels for every synchronous span, such as that of Figure 6.3. Each label
describes different properties of the phrase-pair (syntactic, semantic etc.), possibly
in relation to its context, or supplying varying levels of abstraction (phrase-pair,
determiner with noun, noun-phrase, sentence etc.). We aim to induce a recursive
translation structure that explains the joint generation of the source and target
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sentence taking advantage of these phrase-pair span labels.

For this work, we employ the algorithm for assigning labels to word-aligned
bilingual spans from (Zollmann and Venugopal, 2006). Their algorithm outputs
linguistically motivated labels using a syntactic parse tree covering the target
sentence of a sentence-pair. Crucially, we use their algorithm on parses of source
sentences instead.

An important point is that, contrary to (Zollmann and Venugopal, 2006), we
assign all applicable labels to every span. In this way, each label set captures
the features of the source side’s parse-tree without being bounded by the actual
parse structure, as well as provides a coarse (X, NP) to fine-grained (DT+JJ+NN,
VP\VBZ) view of the source phrase. Furthermore, including all labels for each
span allows us to evaluate their usefulness in taking part in synchronous structures
according to our learning objective, without artificial biases favouring certain
labels over others. In this way, we populate the label charts which, together with
the sentence-pairs, form the input of our learning algorithm.

Overall, given a parse of the source sentence, each span is assigned the follow-
ing kinds of labels:

Phrase-Pair All phrase-pairs are assigned the X label. This conveys no more
information apart from the fact that the underlying bilingual span can be
considered a valid phrase-pair. In this way, it functions as a back-off label,
both when no further specialised linguistic label is applicable, as well as by
competing for probability mass with labels which do cover a span but do
not seem to contribute towards explaining the translation process according
to the learning objective function.

Constituent The source phrase is a constituent A.

Concatenation of Constituents The source phrase is labelled A+B as a con-
catenation of constituents A and B and similarly for 3 constituents. These
labels are oftentimes used for bilingual spans with a source side which vio-
lates the bracketing structure of the source parse tree. Already from work
on Phrase-Based SMT, these non-constituents are known to be useful for
translation, even though they do not correspond to a monolingual con-
stituent span in the linguistic structure of the source sentence (Koehn et
al., 2003).

Partial Constituents Categorial grammar (Bar-Hillel, 1953) inspired labels A/B,
A\B, indicating a partial constituent A missing constituent B right or left re-
spectively. These context-aware linguistic labels have the potential to help
orchestrate translation operations on a bilingual span with the bilingual
context surrounding it, a function they frequently fulfilled in our empirical
work presented later in the chapter.
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SBAR

WHNP

WHNPP

which
der

< SBAR\WHNP >

VP/NPL

VP/NPL
P

is
ist

NPR

NP

NPP

the solution
die Lösung

PP

PPP

to the problem
für das Problem

Figure 6.4: A derivation of a sentence fragment with the grammar of Figure 6.1.

6.4.2 Grammar Extraction

From every word-aligned sentence-pair and its label chart, we extract SCFG rules
as those of Figure 6.2. There are three types of rules extracted:

• Binary rules are extracted from adjoining bilingual spans up to the whole
sentence-pair level. The non-terminals of both left and right-hand side are
derived from the label names plus their reordering function (monotone,
left/right swapping) in the span examined.

• A single unary rule per non-terminal NT generates the phrase-pair emitting
non-terminal NTP. A transition NT → NTP signifies that the bilingual
span will be covered by a single phrase-pair and will not be further analysed
in bilingual sub-constituents.

• Unary rules NTP → α / β generating a phrase-pair are created for all the
labels covering it.

The result is a grammar which can capture a rich array of translation phe-
nomena based on linguistic and lexical grounds. It can also explicitly model the
balance between memorising long phrase-pairs and generalising over yet unseen
ones, as shown in the next example.

The derivation in Figure 6.4 illustrates some of the formalism’s features. A
preference to reorder based on lexical content is applied for is / ist. Noun phrase
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NPR is recursively constructed with a preference to constitute the right branch
of an order swapping non-terminal expansion. This is matched with VP/NPL

which reorders in the opposite direction. The labels VP/NP and SBAR\WHNP
allow linguistic syntax context to influence the lexical and reordering translation
choices. Crucially, all these lexical, attachment and reordering preferences (as
encoded in the model’s rules and probabilities) must be stochastically matched
together to arrive at the analysis in Figure 6.4. This matching takes place ac-
cording to the preferences encoded in the rule’s probabilities and is not enforced
by applying linguistic or other constraints.

While we label the phrase-pairs similarly to (Zollmann and Venugopal, 2006),
the extracted grammar is rather different. We do not employ rules that are
grounded to lexical context (‘gap’ rules). Using such rules would allow the deriva-
tion of the sentence-pair fragment in Figure 6.4 to employ lexically grounded
productions such as:

SBAR → which is NT 1 PP 2 / der NT 1 PP 2 ist

If their right-hand side lexical context is matched in a test sentence, these pro-
ductions allow for a much shallower synchronous derivation tree than our gram-
mar, which emphasises abstract recursive structure and employs synchronous
trees of a larger depth, as can be seen in Figure 6.4. Using such ‘gap’ rules would
probably offer our model the chance to score even higher in terms of translation
performance. However, in this work, the choice not to employ lexicalised ab-
stract productions allows us to clearly separate the lexical and abstract parts of
the synchronous grammar we are learning. This facilitates the separate estima-
tion of their parameters and allows us to focus on the highly interesting challenge
of inducing an effective abstract hierarchical translation structure.

6.4.3 Parameter Estimation

Our joint translation model of equations (6.1) and (6.2) consists of two clearly
separated probabilistic components:

1. A hierarchical translation structure model p(σ) generating the recursive
SCFG structure σ beginning at the start symbol S and down to the HR-
SCFG pre-terminals NTP.

2. The phrase-pair emission model p(e, f |σ) generating the lexical surface 〈e, f〉
given the pre-terminals of structure σ.

We take advantage of the form of our model to apply a different estimation
strategy for the parameters of each of the two components. We draw our moti-
vation for this choice from the observation that the stochastic variables modelled
by each of the two components can be considered to be related in a different
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manner to the training data, which are made of sentence-pairs coupled with their
label charts. The phrase-pair emitting model is constituted of a set of conditional
distributions p(ẽ, f̃ |NTP) of phrase-pairs 〈ẽ, f̃〉 given their covering label NTP,
with each entry corresponding to a phrase-pair emitting rule NTP → α / β. We
make the assumption that these distributions correspond to the observed distri-
bution of phrase-pairs being covered by each label in the label charts of Figure
6.3, rendering the estimation of their parameters a case of learning from complete
data.

However, the model p(σ) over the recursive translation structure is related
to the unobserved variable σ, which describes all aspects of translation apart
from phrase-pair emission. Estimating the parameters of this model necessitates
learning from incomplete data, as our training data does not include information
on the structures that the labels of the bilingual charts participate in.

Phrase-Pair Emission Model We estimate the parameters for the phrase-
emission model p(e, f |σ) of equation (6.1) using Relative Frequency Estimation
(RFE) on the label charts induced for the training sentence-pairs, after the labels
have been augmented by the reordering indications. In this RFE estimate, every
rule NTP → α / β receives a probability in proportion with the number of times
that α / β was covered by the NT label.

This is based on the aforementioned assumption that the phrase-pair emission
distributions p(ẽ, f̃ |NTP) correspond to the observed distribution of phrase-pairs
being covered by each label in the label charts. We employ this simplifying
assumption to crucially reduce the set of free parameters during estimation to that
which is most interesting for the work in this chapter: the probability distributions
relating to the unlexicalised, abstract recursive part of the translation process.

Translation Structure Model Estimating the parameters under Maximum-
Likelihood Estimation (MLE) for the latent translation structure model p(σ) is
bound to overfit towards memorising whole sentence-pairs as discussed in sec-
tion 3.1.5, with the resulting grammar estimate not being able to generalise past
the training data. However, apart from overfitting towards long phrase-pairs, a
grammar with millions of structural rules is also liable to overfit towards degen-
erate latent structures which, while fitting the training data well, have limited
applicability to unseen sentences.

We avoid both pitfalls by estimating the grammar probabilities with the Cross-
Validating Expectation-Maximization algorithm (CV-EM) of section 3.2, a cross-
validating instance of the EM algorithm (Dempster et al., 1977). It works itera-
tively on a partition of the training data, climbing the likelihood of the training
data while cross-validating the latent variable values. It does so by considering
for every training data point only those latent variable values which can be pro-
duced by models built from the rest of the data, excluding the current part. As a
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result, the estimation process simulates maximising future data likelihood, using
the training data to directly aim towards strong generalisation of the estimate.

For our probabilistic SCFG-based translation structure variable σ, implement-
ing CV-EM boils down to a synchronous version of the Inside-Outside algorithm,
modified to enforce the CV criterion. In this way we arrive at cross-validated
ML estimate of the σ parameters, while keeping the phrase-emission parameters
of p(e, f |σ) fixed. After the label charts are constructed for each sentence-pair
and source parse tree and the linguistically motivated HR-SCFG is extracted as
described in section 6.4.2, the implementation follows the lines drawn in section
5.3.2 and the workflow of Figure 5.8. The only difference is that in this case,
during the estimation of the parameters of the hierarchical translation structure
model p(σ), we exclude the parameters of the phrase-pair emission model from
estimation, employing in their place the values estimated with RFE from the
label charts. The CV-criterion, apart from avoiding overfitting also results in
discarding the structural rules which are only found in a single part of the train-
ing corpus, leading to a more compact grammar while still retaining millions of
structural rules that are more hopeful to generalise.

Overall, unravelling the joint generative process, by modelling latent hierar-
chical structure separately from phrase-pair emission, allows us to concentrate
our inference efforts towards the hidden, higher-level translation mechanism.

6.5 Decoding Aspects

Up to this point, we have presented how to extract a probabilistic Hierarchical
Reordering SCFG grammar using the word-aligned parallel corpus and the source
parse trees, as well as how to estimate its parameters employing RFE for the
phrase-pair emission part and CV-EM for the part of the grammar generating
the abstract synchronous structure. In the end, what we have is a CV-MLE
estimate of a joint translation model and what we still miss is how to actually
translate with it. In this section we build a translation system around our learnt
model, the Latent Translation System (LTS), and we evaluate empirically its
performance in comparison with a Hiero state-of-the-art baseline.

We begin by integrating the joint model estimate as part of a log-linear, fea-
ture based translation model. While the form of this model is similar to those
frequently employed in Phrase-Based SMT or Hiero-like systems, translating with
it necessitates novel pruning and decoding1 strategies. This is necessary in order
to handle the significant increase in both the grammar size as well as the de-
coding hypothesis space, a subject we treat next. With all the decoding details
sorted out, we move on to evaluate our system against a heuristically estimated

1Decoding refers to the foundational SMT problem of recovering the target language trans-
lation with the highest probability, given a source sentence and a model estimate; see sections
2.1 and 2.2.
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hierarchical translation baseline across four diverse language pairs.

6.5.1 Decoding Model

The induced joint translation model can in general be used to recover arg maxe p(e|f),
as this is equal to arg maxe p(e, f). Nevertheless, instead of using our model
estimate on its own, we employ the induced probabilistic HR-SCFG G as the
backbone of a log-linear, feature based translation model, with the derivation
probability p(D) under the grammar estimate being one of the features. This is
augmented with a small number n of additional smoothing features φi for deriva-
tion rules r. These are:

1. Conditional phrase translation probabilities

2. Lexical phrase translation probabilities

3. A word generation penalty

4. A count of swapping reordering operations

Feature categories (1), (2) and (3) are applicable to phrase-pair emission
rules and we use values for both translation directions, while (4) is only trig-
gered by structural rules. These extra features assess translation quality past the
synchronous grammar derivation and encode general reordering or word emis-
sion preferences for the language pair. As an example, while our probabilistic
HR-SCFG maintains a separate joint phrase-pair emission distribution for every
non-terminal, the smoothing features (1) and (2) above assess the conditional
translation of surface phrases irrespective of any notion of recursive translation
structure. Overall, it is important to note that in this decoding scheme, while the
phrase-pair emission part of the grammar is supported by the usual smoothing
features found in a typical Phrase-Based SMT system, the hierarchical part of the
model’s derivations is completely reliant on the estimates of the previous section,
apart from a mere count of swapping reorderings.

The final feature is the language model score for the target sentence, mounting
up to the following model used at decoding time, with the feature weights λ
trained by Minimum Error Rate Training (MERT) (Och, 2003) on a development
corpus. We use this model to output the translation corresponding to the most
probable derivation.

p(D
∗⇒ 〈e, f〉) ∝ p(e)λlmpG(D)λG

n∏
i=1

∏
r∈D

φi(r)
λi (6.3)
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6.5.2 Pruning Strategies

The HR-SCFG we extract and train from the parsed, word-aligned parallel corpus
contains millions of abstract bilingual rules on top of the millions of phrase-pair
emission productions. In addition, instead of the two non-terminals (S, X) of
Hiero synchronous grammars, our grammar makes use of hundreds of thousands
of non-terminals, capturing linguistic as well as reordering correspondences. Using
such a grammar efficiently during decoding demands the introduction of effective
pruning strategies: (a) to reduce the size of the grammar prior to decoding,
cutting down on the decoder’s memory footprint and the time needed to search
through the grammar and (b) to reduce the number of hypotheses about the
translation structure by taking advantage of automatically generated input parse
trees, while making sure that the remaining hypothesis space is diverse enough
to complete derivations. For these reasons, we apply the following modifications
to the Joshua SCFG decoder (Li et al., 2009), which we use to translate with our
model of equation (6.3):

Expected Counts Rule Pruning To compact the hierarchical structure part
of the grammar prior to decoding, we prune rules that fail to accumulate more
than a number α of expected counts during the last CV-EM iteration. For English
to German and for the value α = 10−8 that we use throughout our experiments,
this brings the structural rules from 15M down to 1.2M.

The phrase-pair emitting rules are not pruned at this stage, allowing all
phrase-pairs extracted from the training data to take part in test data deriva-
tions. If we only need to translate a fixed test set, this lexical part of the syn-
chronous grammar can be reduced in size by discarding entries corresponding to
source phrases that do not appear in the test set. The same however does not
apply to the abstract part of the grammar, for which it is difficult to discard
prior to decoding rules which cannot be applied for a particular test set. This
would require an expensive parsing run through the test set to find out which
rules do not take part in any derivation and is unlikely to reduce considerably the
size of the abstract part of the grammar. This is because while the lexical part
of the grammar can be filtered in respect to the unambiguous source input, the
abstract part relates to the ambiguous hidden hierarchical structure, over which
our model considers a multitude of hypotheses employing thousands of rules per
input sentence.

Overall, we consider pruning based on the expected counts of each rule in the
training set according to our estimate as a much more informed pruning criterion
than those based on probability values or right-hand side counts. Pruning the
grammar based on the estimated probability values is sub-optimal as these are not
comparable across left-hand sides. A low probability right-hand side expansion
of a frequent left-hand side has more chances to actually be employed during
decoding, than a high probability expansion of a very rare left-hand side. In
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addition, pruning based on keeping a fixed number of productions per left-hand
side symbol makes also little sense, as frequent symbols such as X or NP need
many more expansions than highly specialised ones.

Instead of these largely arbitrary pruning approaches, having access to the
cross-validated expected counts of synchronous productions allows us to reduce
the size of the grammar according to the expectation that these will be employed
in derivations under our model, discarding rules that are expected to appear
extremely infrequently. This makes sure that the ensemble of rules which together
form most of the high probability derivations remains in the grammar and we
avoid inadvertently removing a crucial component of frequent derivations.

Source Labels Constraints As for this work the phrase-pair labels used to
extract the grammar are based on the linguistic analysis of the source side, we can
construct the label chart for every input sentence from its single-best syntactic
parse2. We subsequently use it to consider only derivations with synchronous
spans that are covered by non-terminals matching one of the input sentence labels
for those spans. This applies both for the non-terminals covering phrase-pairs as
well as the higher level parts of the derivation.

In this manner we not only constrain the translation hypotheses resulting
in considerably faster decoding time, but, more importantly, we may ground
the hypotheses more closely to the available linguistic information of the source
sentence. This is of particular interest as we move up the derivation tree, where an
initial wrong choice below could propagate towards hypotheses wildly diverging
from the input sentence’s linguistic parse.

Even though for the work presented in this chapter we only employ labels
extracted solely from the source sentence linguistic analysis, these hypotheses
constraints can also be applied to grammars employing non-terminals related
to both the source as well as the target syntactic structure. In this case, the
constraints would apply to the part of the rules related to the source sentence
structure, still allowing a considerable part of the hypotheses to be pruned away.
This would make sure that the remaining hypothesis space at least satisfies the
source side linguistic structure, which may be assumed observed given the single-
best automatically generated parse tree of the test sentence.

Per Non-Terminal Pruning The Joshua decoder uses a combination of beam
and cube-pruning (Huang and Chiang, 2007). As our grammar uses non-terminals
in the hundreds of thousands, it is important not to prune away prematurely non-
terminals covering smaller spans and to leave more options to be considered as
we move up the derivation tree. Apart from producing sub-optimal translations,
pruning according to the locally optimal inside probability and without respect to

2Section 6.4.1 offers more details on how we construct the label charts and the kinds of labels
that we populate them with.
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the surrounding context might even lead to an inability to complete full deriva-
tions for a test sentence.

For this, for every cell in the decoder’s chart, we keep a separate bin per
non-terminal and prune together hypotheses leading to the same non-terminal
covering a cell. This allows full derivations to be found for all input sentences, as
well as avoids aggressive pruning at an early stage. Given the source label con-
straint discussed above, this does not increase running times or memory demands
considerably as we allow only up to a few tens of non-terminals per span.

6.6 Experiments

We evaluate our method on four different language pairs with English as the
source language and French, German, Dutch and Chinese as target. The data
for the first three language pairs are derived from parliament proceedings sourced
from the Europarl corpus (Koehn, 2005), with WMT-07 development and test
data for French and German. The data for the English to Chinese task is com-
posed of parliament proceedings and news articles. For all language pairs we
employ 200K and 400K sentence pairs for training, 2K for development and 2K
for testing (single reference per source sentence). Both the baseline and our
method decode with a 3-gram language model smoothed with modified Knesser-
Ney discounting (Chen and Goodman, 1998), trained on around 1M sentences
per target language. The parses of the source sentences employed by our system
during training and decoding are created with the Charniak parser (Charniak,
2000).

We compare against the state-of-the-art hierarchical translation (Chiang, 2005a)
baseline of section 5.2.3, based on the Joshua translation system under the de-
fault training and decoding settings (josh-base). Apart from evaluating against
a state-of-the-art system, especially for the English-Chinese language pair, the
comparison has an additional interesting aspect. The heuristically trained base-
line takes advantage of ‘gap rules’ to reorder based on lexical context cues, but
makes very limited use of the hierarchical structure above the lexical surface.
In contrast, our method induces a grammar with no such rules, relying on lexi-
cal content and the strength of a higher level translation structure instead. For
this, comparing the two approaches together also evaluates if a grammar with
an emphasis on unlexicalised hierarchical structure as ours is able to provide
state-of-the-art results, something which prior work failed to establish.

6.6.1 Training & Decoding Details

To train our Latent Translation Structure (LTS) system, we used the following
settings. CV-EM cross-validated on a 10-part partition of the training data and
performed 10 iterations. The structural rule probabilities were initialised to uni-
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English-Chinese English-German
josh-base lts josh-base lts

Non-terminals 2 203,650 2 198,204

Abstract rules
- 15,848,032 - 24,316,629

(training)
Abstract rules

2 1,117,974 2 2,192,694
(decoding)

Lexicalised rules
1,759,709 3,154,467 6,160,252 3,729,977

(decoding)

Total rules
1,759,711 4,272,441 6,160,254 5,922,671

(decoding)

Table 6.1: Ruleset sizes for the grammars used in our lts system and the
josh-base baseline extracted from 400K word-aligned English-Chinese and
English-German sentence-pairs.

form per left-hand side, the phrase-emission distributions were kept fixed to their
RFE estimate as discussed in section 6.4.3.

The decoder does not employ any ‘glue grammar’, as is usual with hierarchical
translation systems to limit reordering up to a certain cut-off length. Instead, we
rely on our LTS grammar to reorder and construct the translation output up to
the full sentence length.

In summary, our system’s experimental pipeline is as follows:

1. All source sentences of the training corpus are parsed using Charniak’s
parser (Charniak, 2000), and label charts are created from these parses.

2. The Hierarchical Reordering SCFG is extracted and its parameters are es-
timated employing CV-EM.

3. The structural rules of the estimate are pruned according to their expected
counts and smoothing features are added to all rules.

4. We train the feature weights under MERT.

5. We decode with the resulting log-linear model.

The overall training and decoding setup is appealing also regarding computa-
tional demands. On an 8-core 2.3GHz system, training on 200K sentence-pairs
demands 4.5 hours, while decoding runs on 25 sentences per minute.

Table 6.1 compares the sizes of the abstract and lexicalised parts of the HR-
SCFG used in our LTS system with those of the baseline for two of the language
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pairs: English-Chinese and English-German. The two grammars take a differ-
ent view on modelling hierarchical translation structure. Our system considers
hundreds of thousands of bilingual categories while the baseline employs a single
non-terminal X past the start symbol. Furthermore, the only purely abstract rules
in the baseline are the two glue rules of Figure 5.7 which monotonically concate-
nate the translations produced using the non-contiguous phrase-pair productions
of Figure 5.6. In contrast, our system makes use of million of linguistically mo-
tivated abstract structure rules extracted from the training data label charts,
complemented by purely lexical phrase-pair emission productions.

The lexicalised rules used by the two systems also differ in nature. All but the
two glue rules that the baseline employs are rules with a lexicalised right-hand
side, emitting non-contiguous phrase-pairs from the single X non-terminal. These
rules are extracted from bilingual spans with a length of at most 10 on each side.
In contrast, the lexicalised rules that our LTS system employs, are expanding the
multiple bilingual categories of the HR-SCFG grammar to generate contiguous
phrase-pairs. Such rules are extracted for every label covering a bilingual span in
the label chart we generate for each training sentence. Consistent with the work
presented in Chapters 4 and 5, we extract these rules without any constraint
on the length of the bilingual spans we consider. As can be noted in Table
6.1, the exact proportion of lexicalised rules used by the baseline in comparison
with those used by LTS differs per language-pair, depending on factors such as
the distribution of lengths of sentences and the number of labels covering the
bilingual spans. Still, the number of lexicalised rules used by the two systems
remains in the same order of magnitude.

The number of hierarchical structure rules is reduced prior to decoding: while
we explore derivations using all rules extracted from the training data label charts
during training, to speed up decoding we prune rules which have gathered an
extremely low number of expected counts during training, as explained in section
6.5.2. Overall, the total number of rules employed by our system and the baseline
to decode the test set, are also in the same order of magnitude

6.6.2 Results

LTS vs. Baseline Table 6.2 presents the results for the baseline and our
method for the 4 language pairs, for training sets of both 200K and 400K sentence
pairs. Our system (lts) outperforms the baseline for all 4 language pairs for
both BLEU and NIST scores, by a margin which scales up to +1.92 BLEU points
for English to Chinese translation when training on the 400K set. In addition,
increasing the size of the training data from 200K to 400K sentence pairs widens
the performance margin between the baseline and our system, in some cases
considerably. All but one of the performance improvements are found to be
statistically significant (Koehn, 2004) at the 95% confidence level, most of them
also at the 99% level.
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Training English to
French German

set size BLEU NIST BLEU NIST

200K
josh-base 29.20 7.2123 18.65 5.8047
lts 29.43 7.2611** 19.10** 5.8714**

400K
josh-base 29.58 7.3033 18.86 5.8818
lts 29.83 7.4000** 19.49** 5.9374**

Training English to
Dutch Chinese

set size BLEU NIST BLEU NIST

200K
josh-base 21.97 6.2469 22.34 6.5540
lts 22.31* 6.2903* 23.67** 6.6595**

400K
josh-base 22.25 6.2949 23.24 6.7402
lts 22.92** 6.3727** 25.16** 6.9005**

Table 6.2: Experimental results for training sets of 200K and 400K sentence
pairs. Statistically significant score improvements from the baseline at the 95%
confidence level are labelled with a single star, at the 99% level with two.

English to French German Dutch Chinese

joshua-base 29.20 18.65 21.97 22.34

lts-heuristic 29.03 18.56 22.00 21.46
lts 29.43** 19.10** 22.31** 23.67**

Table 6.3: Comparison of our LTS system (lts) against a system employing
the same HR-SCFG grammar design and decoding options, albeit with heuristic
probability estimates (lts-heuristic), instead of the CV-EM estimates the LTS
system uses. All numbers refer to BLEU scores and two stars reflect a significant
result at the 99% confidence level. The scores of the baseline system are provided
as reference points.
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System 200K 400K

(a)
lts-nolabels 22.50 24.24
lts 23.67** 25.16**

(b)
josh-base-lm4 23.81 24.77
lts-lm4 24.48** 26.35**

Table 6.4: Additional experiments for English to Chinese translation examining
(a) the impact of the linguistic annotations in the LTS system (lts), when com-
pared with an instance not employing such annotations (lts-nolabels) and (b)
decoding with a 4th-order language model (-lm4). BLEU scores for 200K and
400K training sentence pairs.

We selected an array of target languages of increasing reordering complexity
with English as source. Translating to French involves mainly local reordering
phenomena, while German and Dutch call for longer range reordering, especially
for subordinate clauses. English to Chinese translation poses further reordering
challenges with complex, often long-range reordering patterns between the two
languages. Examining the results across the target languages, LTS performance
gains increase the more challenging the sentence structure of the target language
is in relation to the source’s, as highlighted when translating to Chinese. Even for
Dutch and German, which pose additional challenges such as compound words
and morphology which we do not explicitly treat in the current system, LTS still
delivers significant improvements in performance. Additionally, the robustness of
our system is exemplified by delivering significant performance increases for all
language pairs.

CV-EM vs. Heuristic Estimation In our LTS system, we brought together
the HR-SCFG design of section 6.3.1 with the linguistically motivated label chart
of section 6.4.1, to extract an SCFG trained with the CV-EM algorithm of section
3.2 and decode with the pruning methodology of section 6.5.2. In a further line of
experiments, we wish to isolate the contribution of the learning approach in the
system’s performance. We aim to examine the impact of using CV-EM to train
the probabilistic SCFG used by the LTS system, against a heuristic estimator.
For this, we assemble a system that is identical to LTS in both extracting the HR-
SCFG grammar as well as decoding with it, apart from the fact that it employs
heuristic estimates for the production probabilities (lts-heuristic). These are
set similarly to the approach used in the baseline: extraction counts are registered
each time an abstract rule can be extracted from the label chart of a sentence-pair,
or when a phrase-pair can be extracted from the word-aligned sentence-pair.

The heuristic learning of an HR-SCFG extracts a massive number of rules,
with the grammar extracted from 200K of English-German sentence-pairs count-
ing more than 87M rules. Under CV-EM, cross-validating the abstract rules
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and pruning them according to their expected counts reduces the size of the
SCFG used during decoding considerably. We cannot use the exact same pruning
method for the baseline and for this reason we are forced to resort to a differ-
ent pruning strategy that is relatively comparable. The heuristic estimator does
not use expected counts but extraction counts instead, and we use the latter to
prune the heuristically estimated grammar of lts-heuristic prior to decoding.
Removing all abstract rules which are extracted less than 95 times and all phrase-
pair emission rules extracted only once, results in a synchronous grammar of a
comparable size like that employed by lts.

Table 6.3 presents a comparison of the translation performance of our LTS
system against its heuristically estimated variation, across all four language pairs
when training on 200K sentence-pairs. On one hand, the lts-heuristic im-
plementation performs reasonably well, scoring in all but one of the translation
tasks within -0.2 BLEU in comparison to the hierarchical baseline, with English
to Chinese being the exception. We attribute this result to the robustness of our
HR-SCFG grammar design as well as the pruning constraints we employ during
decoding, which make sure that the translation hypotheses do not deviate from
the syntactic structure of the test sentence. Still, the HR-SCFG grammar esti-
mated with CV-EM and pruned according to the expected counts amassed during
estimation, significantly outperforms the heuristically estimated one. CV-EM es-
timates the parameters of the synchronous productions according to how useful
they are in explaining the bilingual correspondences between source and target
training sentences, instead of merely examining how often they can be extracted
from the training data. The results of Table 6.3 indicate that this is not solely a
feature with a strictly theoretical value, but on the contrary also manifests itself
in terms of translation performance.

Effect of Linguistically-Motivated Labels & LM For the English to Chi-
nese translation task, we performed further experiments along two axes. We first
investigate the contribution of the linguistic annotations, by comparing our com-
plete system (lts) with an otherwise identical implementation (lts-nolabels)
which does not employ any linguistically motivated labels. The latter system
then uses a labels chart as that of Figure 6.3, which however labels all phrase-
pair spans solely with the generic X label. The results in Table 6.4(a) indicate
that a large part of the performance improvement can be attributed to the use
of the linguistic annotations extracted from the source parse trees, indicating the
potential of the LTS system to take advantage of such additional annotations to
deliver better translations.

The second additional experiment relates to the impact of employing a stronger
language model during decoding, which may increase performance but slows down
decoding speed. Notably, as can be seen in Table 6.4(b), switching to a 4-gram
LM results in performance gains for both the baseline and our system. While
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the margin between the two systems decreases, our system continues to deliver a
considerable and significant improvement in translation BLEU scores.

6.7 Related Work

In this chapter, we focus on the combination of learning latent structure with
syntax and linguistic annotations, exploring the crossroads of machine learning,
linguistic syntax and machine translation. A first point of comparison with the
existing literature stems from our use of a joint translation model. Training a joint
phrase-based probability model was first discussed in (Marcu and Wong, 2002),
and even though it was trained by maximising the joint likelihood of the training
data, the estimates were still converted to conditional translation distributions
prior to decoding. Even though the work by (Marcu and Wong, 2002) was highly
influential for their efforts to train a phrase-based model under a well-understood
learning criterion as we discuss in section 2.3.2, the vast majority of the state-
of-the-art performing translation models are centred on conditional translation
distributions. In this chapter, we go against the conventional wisdom in the
SMT field to show that a translation system based on such a joint model can
perform competitively in comparison with conditional probability models, when
it is augmented with a rich latent hierarchical structure trained adequately to
avoid overfitting.

Earlier approaches for linguistic syntax-based translation such as (Yamada
and Knight, 2001; Galley et al., 2006; Huang et al., 2006; Liu et al., 2006) focus
on memorising and reusing parts of the structure of the source and/or target
parse trees and constraining decoding by the input parse tree. In contrast to this
approach, we choose to employ linguistic annotations in the form of unambigu-
ous synchronous span labels, while discovering ambiguous translation structure
taking advantage of them. Our approach avoids assuming that translation can
be fully explained through linguistic structure tree correspondences and trans-
formations, an inflexible strong assumption which we consider unnecessary: it
imposes monolingual linguistic structure as the sole pivoting mechanism between
the two languages even though it only partially correlates with translation deci-
sions. Instead, here we focus on making external information based on linguistic
analyses of source sentences available to a learner that optimises model estima-
tion according to a translation learning objective. Then, our learning algorithm
disambiguates which of the linguistic syntax patterns are indeed informative to
explain the bilingual correspondences.

Later work (Marton and Resnik, 2008; Venugopal et al., 2009; Chiang et al.,
2009) takes a more flexible approach which is more similar to our own efforts.
They opt to influence translation output using linguistically motivated features,
or features based on source-side linguistically-guided latent syntactic categories
(Huang et al., 2010). However, the features employed by these methods are
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local in nature, considering the linguistic plausibility of applying individual syn-
chronous rules. As a result, these efforts totally lack the concept of a linguistically
motivated hierarchical abstract structure reaching across the whole sentence-pair,
which is exactly the focus of our own methodology. Putting these crucial differ-
ences aside, a feature-based approach and ours are not mutually exclusive, as we
also employ a limited set of features next to our trained model during decoding.
We find augmenting our system with a more extensive feature set an interesting
research direction for the future.

An array of recent work (Chiang, 2010; Zhang et al., 2008b; Liu et al., 2009)
sets off to utilise source and target syntax for translation. While for this work
we constrain ourselves to source language syntax annotations, our method can be
directly applied to employ labels taking advantage of linguistic annotations from
both sides of translation. The decoding constraints of section 6.5.2 can then still
be applied on the source part of hybrid source-target labels.

For the experiments in this chapter we employ a label set similar to the non-
terminals set of (Zollmann and Venugopal, 2006). However, the synchronous
grammars we learn share few similarities with those that they heuristically ex-
tract, with Figure 6.5 comparing example structures based on the two grammar
designs. The HR-SCFG we adopt allows capturing more complex reordering phe-
nomena and, in contrast to both (Chiang, 2005a; Zollmann and Venugopal, 2006),
is not exposed to the issues highlighted in section 5.2.2. Nevertheless, our results
underline the potential of linguistic annotations similar to those of (Zollmann and
Venugopal, 2006) as part of latent translation variables.

The majority of the aforementioned work does not concentrate on learning
hierarchical, linguistically motivated translation models. Yamada and Knight
(2001) employ the EM algorithm to train a syntax-driven, word-based transla-
tion model, making use of fixed size syntactic and lexical units. However, when
the same model is extended to allow translating with phrase-pairs, a heuristic
estimator is used to train the phrase-emission probabilities (Yamada and Knight,
2002). Galley et al. (2006) employ EM to train a translation model which gener-
ates translations by combining together syntactic units of variable sizes. However,
they mitigate EM’s overfitting behaviour by constraining the size of these units,
so that each encompasses at most four elementary syntactic elements, in contrast
with our approach which does not impose such arbitrary constraints.

Cohn and Blunsom (2009) sample rules of the form proposed in (Galley et
al., 2004) from a Bayesian model, employing Dirichlet Process priors favouring
smaller rules to avoid overfitting. Their grammar is however also based on the
target parse-tree structure, with their system surpassing a weak baseline by a
small margin. In contrast to the Bayesian approach, which imposes external
priors to lead estimation away from degenerate solutions, we take a data-driven
approach to arrive to estimates which generalise well. The rich linguistically
motivated latent variable learnt by our method delivers translation performance
that compares favourably to a state-of-the-art system.
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Figure 6.5: The HR-SCFG structure above is compared against a possible deriva-
tion below of the same synchronous subtree under a grammar extracted by the
SAMT system. Our grammar emphasises abstract hierarchical translation struc-
ture conditioned on reordering behaviour, while the SAMT grammar relies on
lexicalised, linguistically influenced productions.
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Finally, in the previous chapter we also employ the CV-EM algorithm to
estimate the parameters of an SCFG, albeit for a much simpler one based on a
handful of non-terminals. Here we take advantage of some of the grammar design
principles empirically shown in Chapter 5 to aid in inducing robust hierarchical
translation structures covering whole sentence-pairs. However, we do this for an
immensely more complex grammar with millions of hierarchical latent structure
rules and show how such grammar can be learnt and applied taking advantage of
source language linguistic annotations.

6.8 Discussion

This chapter wraps up the progression of work starting from Chapter 4 on learning
phrase-based translation models. All of these learning methods for Statistical
MT were founded upon our contributions on learning models falling under the
Fragment Model family where Phrase-Based SMT and phrase-based hierarchical
SMT models belong, as well as those on Cross-Validated MLE estimation and
the Cross-Validated CV-EM algorithm. Here, building upon the further findings
and empirical observations of Chapters 4 and 5, we contribute a method to learn
and apply a latent, linguistically motivated hierarchical translation structure. To
this end, we take advantage of source-language linguistic annotations to motivate
instead of constrain the translation process. An input chart over phrase-pair
spans, with each cell filled with multiple linguistically motivated labels, is coupled
with the HR-SCFG design to arrive at a rich synchronous grammar with millions
of structural rules and the capacity to capture complex linguistically conditioned
translation phenomena. We address overfitting issues by cross-validating climbing
the likelihood of the training data and propose solutions to increase the efficiency
and accuracy of decoding.

Our existing approach could be additionally fine-tuned to further improve per-
formance, with an interesting direction being smoothing the HR-SCFG grammar
estimates. Learning translation and reordering behaviour with respect to lin-
guistic cues is facilitated in our approach by keeping separate phrase-pair emis-
sion distributions per emitting non-terminal and reordering pattern, while the
employment of the generic X non-terminals already allows backing off to more
coarse-grained rules. Nevertheless, we still believe that further smoothing of these
sparse distributions, e.g. by interpolating them with less sparse ones, could in
the future lead to an additional increase in translation quality.

An interesting aspect of our work is delivering competitive performance for
difficult language pairs such as English-Chinese with a joint probability genera-
tive model and an SCFG without ‘gap rules’. Instead of employing hierarchical
phrase-pairs, we invested in learning the higher-order hierarchical synchronous
structure behind translation, up to the full sentence length. While these choices
and the related results challenge current MT research trends, they are not mutu-
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ally exclusive with them. Future work directions include investigating the impact
of hierarchical phrases for our models as well as any gains from additional features
in the log-linear decoding model.

In Chapter 5, we discussed how our CV-MLE learning approach could be
successfully deployed to estimate the parameters of a hierarchical translation
model. This model, despite its focus on unlexicalised abstract translation struc-
ture, still shared some common features, like the small number of bilingual cate-
gories, with the heuristically estimated Hiero baseline. While achieving competi-
tive performance on real-world translation tasks is highly noteworthy on its own,
the work presented in this chapter goes further than merely providing an alter-
native, better-founded method to estimate the parameters for grammars similar
to those used by the already established, heuristically trained hierarchical SMT
models. Instead, we believe that the true potential of our approach lies in going
past current synchronous grammar designs, allowing SMT practitioners to learn
hierarchical models for which the heuristics seem to provide weaker estimates: the
system we present here is, to our knowledge, the first which provides strong trans-
lation performance using a synchronous grammar emphasising the use of abstract,
un-lexicalised translation structures. We hope that the open-ended character of
our method, which allows the incorporation of further external linguistic, seman-
tic or other cues as well as alternative grammar designs, will provide a potent
framework to progress further in deciphering the recursive nature of translation.





Chapter 7

Conclusions

In this thesis, we contributed a learning framework to uncover the latent structure
that underlies multilingual data. Our methodology was founded on combining
two well-understood learning approaches: Maximum Likelihood Estimation and
the Expectation-Maximization algorithm on the one hand and Cross-Validation
on the other. In this way we formulated the Cross-Validated EM algorithm
(CV-EM), a principled method to cross-validate Maximum Likelihood Estima-
tion (MLE) on incomplete data, which crucially retains the desirable algorithmic
and estimation properties of EM. We used CV-EM as the theoretical founda-
tion upon which we developed learning frameworks for three distinct translation
models, each approaching the hidden structure of translation from a different per-
spective. Our implementations were empirically shown to perform at least on a
par with state-of-the-art, heuristically trained baselines, significantly outperform-
ing the latter as the translation models became more complex and the structural
divergence between source and target languages increased.

Maximum Likelihood Estimation and the Expectation-Maximization algo-
rithm are mainstays in the fields of Machine Learning and Natural Language
Processing. Still, their application for modern, phrase-based translation models
has proven highly challenging. In order to understand the reasons behind this, we
showed that phrase-based models belong to a wider family of models for complex
data: Fragment Models. This allowed us to delineate the source of both their
modelling strength, as well as the pitfalls of estimating their parameters. We ob-
served that, on one hand, the parameter space of a Fragment Model explores the
full spectrum of different levels of abstracting away from the training data, rang-
ing from deriving them from the smallest units to completely memorising them.
At the same time however, this powerful feature is also their weakest point, as it
exposes Fragment Models to a strong tendency to overfit training sets.

The Cross-Validated MLE (CV-MLE) learning objective and the CV-EM al-
gorithm as the implementation of CV-MLE optimisation for incomplete data,
directly address these learning challenges. They both cross-validate the space of
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our hypotheses on the values missing from the training data. For the translation
models we examine, these values relate to the hidden structure of translation.
Applying cross-validation aims to avoid overfitting and learn instead structures
which generalise past the data included in the parallel corpus we are training
on. Estimation within our framework stands out from competing approaches
by combining a familiar and well-understood estimation objective, with a clear
optimisation algorithm offering theoretical guarantees of operation.

Apart from this learning framework, this work contributed a methodology
to learn models taking advantage of the linguistic structure of sentences to bet-
ter translate. A recurring problem in prior work on translation models driven
by linguistic syntax, was imposing unnecessary constraints on the translation
process. The grammatical structure of sentences can explain only a subset of
the translation phenomena, and assuming that all bilingual correspondences and
transformations can be explained in grammatical terms can have a negative effect
on translation performance.

In this thesis, we show how a translation-centric learning objective can be used
to identify those linguistic cues that are useful for translation. We contribute a
method based on the CV-EM algorithm to learn hierarchical translation models
that offer linguistically motivated explanations of the recursive nature of trans-
lation across whole sentence-pairs. This is hardly a theoretical exercise, as our
learnt models are found to significantly outperform a strong hierarchical transla-
tion baseline.

There is a number of interesting directions for future research directly emerg-
ing from this work. Here, following a stepwise approach, we chose to focus on
learning translation models which separate lexical emission from abstract struc-
ture. However, we consider the induction of synchronous grammars which do
not follow this separation, such as those making use of lexically grounded ab-
stract rules (phrase-pairs with ‘gaps’), as a highly interesting problem, involving
a further examination of the interplay between lexical context and hierarchical
structure. Another promissing direction is investigating further grammar designs
and families of bilingual categories that can be effective in describing translation.
As an example, one can explore different syntactic annotation schemes, such as
head-lexicalisation or dependency structures, or move even further to facilitate
synchronous structures based on semantic analyses of the source and target sen-
tences. Finally, in this work we focused on taking advantage of unambiguous,
single-best analyses of the parallel data to learn the latent structure of transla-
tion. It would be interesting to consider how we could exploit in our learning
algorithms the ambiguous output that many natural language analysis systems
provide, such as linguistic parse forests, as has already been done for heuristically
extracted synchronous grammars.

While the empirical part of this work was exclusively focused on modelling
translation, our theoretical contributions are applicable to any problem of mod-
elling complex, structured data using incomplete training sets. The heart of
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our approach lies on addressing foundational problems in Machine Learning: ex-
amining how to disambiguate the composition of data from smaller modelling
components of arbitrary sizes, and how to balance the ability of a model to mem-
orise with its capacity to generalise. For this reason, we believe that our approach
and the algorithms we propose can be applied to further tasks from the Natural
Language Processing and Machine Learning domains. Promising examples are
natural language parsing and the analysis of structured and semi-structured text,
but also image parsing and financial fraud pattern detection.

Before closing this thesis, we turn back to our central theme: learning the
structure of language. Each language is characterised by its own syntactic and
semantic structure. Sampling sentences belonging to it and examining them side-
by-side, can help to identify these latent structural patterns, whether this is
work performed manually by linguists or automatically by Natural Language
Processing models and algorithms. Interestingly, we could also consider natural
languages themselves as data points. In this case, comparing how meaning is
structured and encoded across different languages can point towards uncovering
the patterns underlying natural language as a phenomenon of its own.

Efforts to manually identify such patterns and how they relate back to the
various languages, such as some past interlingual translation approaches, have
made little progress. However, as highlighted by the application of statistical
methods in Machine Translation instead of manually compiled rule-sets, perhaps if
it is difficult for humans to identify these patterns, we can instead try to learn how
to automatically discover them in multilingual data. In this work, we contributed
algorithms which search for this binding material that stands between human
languages. We made small, careful steps, reaching up to examining how the
linguistic structure of source sentences corresponds to the structure of target
strings. Still, the open-ended character of our contributions on learning the latent
structure of multilingual data, allows us to consider this work as a step in the
direction of shedding some light on the patterns behind human language.
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Abstract

This dissertation discusses methods to learn the latent structural patterns that
underlie translation data. It explores different approaches to modelling bilin-
gual structure and presents novel frameworks and algorithms, such as Cross-
Validated Expectation-Maximization (CV-EM), to learn phrase-based, hierarchi-
cal and syntax-driven Statistical Machine Translation (SMT) models from data.

In this thesis, we present methods to automatically learn phrase-based Sta-
tistical Machine Translation models that assume a latent bilingual structure as
their central modelling variable. Acknowledging that each language is strongly
characterised by its individual structural properties, we aim to learn a bilingual
structure that augments and supersedes its monolingual counterparts, to bridge
the gap between them by explaining the transformations taking place when con-
veying meaning across languages. The learning frameworks and algorithms we
present allow us to discover these structural patterns in bilingual data and auto-
matically learn models that take them into account to better translate. We apply
our methodology for a sequence of statistical translation models of increasing
complexity. This leads us to the presentation of a well-founded learning frame-
work for hierarchical, syntactically motivated models that explain the translation
process by taking advantage of the linguistic structure of language.

Chapter 1 offers an introduction to the context and aims of this work. It
introduces the key aspects related to modelling translation structure and discusses
the impact of its latent nature, as well as the challenges involved in learning to
identify it in bilingual data. In Chapter 2, we start by examining some of the
modelling frameworks that have been influential on SMT research, such as word-
based, phrase-based and hierarchical SMT. We then discuss the EM algorithm and
Cross-Validation, the two theoretical pillars under the novel learning algorithm
we introduce in the chapter that follows. Chapter 3 examines the challenges
related to learning phrase-based translation models, by considering the wider
problem of learning Fragment Models: models which describe how to build new
data instances by combining together data fragments extracted from a training
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dataset. We then introduce the Cross-Validated Expectation-Maximization (CV-
EM) algorithm, a novel learning algorithm for Fragment Models which optimises
parameters according to a Cross-Validated Maximum Likelihood Estimation (CV-
MLE) objective.

The next three chapters describe and empirically evaluate learning frame-
works with CV-EM at their core, for three distinct, state-of-the-art SMT models.
Chapter 4 contributes a well-founded method to learn the conditional translation
probabilities of Phrase-Based SMT models employing contiguous phrase-pairs,
centred around disambiguating the latent segmentation of sentence-pairs into
phrase-pairs. This method is shown empirically to perform at least as well as the
heuristic, ad hoc estimators that are typically used for these models. In Chapter
5, we consider the additional challenges involved in modelling translation with
a synchronous grammar, and successfully learn a relatively simple hierarchical
translation model which offers comparable performance with a highly competi-
tive baseline. Chapter 6 moves considerably further, to build around CV-EM a
learning framework that allows learning complex hierarchical translation models
that take advantage of external annotations of source and/or target sentences.
We deploy this framework to contribute a method to learn linguistically moti-
vated hierarchical translation models, by identifying the source-language linguis-
tic patterns which are informative for translation. We subsequently show how our
approach delivers tangible translation improvements across four distinct language
pairs.

The results of Chapter 6 complete those of Chapters 4 and 5, to provide con-
siderable evidence to back the key hypothesis of this thesis: models assuming
a latent translation structure can be learnt under a clear learning objective, as
implemented in terms of a well-understood optimisation framework and learning
algorithm. The learnt models are able to provide real-world, competitive transla-
tion performance in comparison to heuristic training regimes, rendering the use
of the latter unnecessary. Our methodology not only provides a reliable and ef-
fective substitute for these heuristic estimators, but most importantly lays a path
to the future, by making possible the estimation of powerful translation models
that uncover the latent side of translation, and whose estimation under ad hoc
algorithms would have been hardly possible.



Samenvatting

Dit proefschrift behelst nieuwe methodes voor het leren van latente structurele
patronen in vertaaldata. Het proefschrift bestudeert verschillende benaderingen
voor het modelleren van tweetalige structuur, en presenteert een nieuw raamwerk
en algoritmes, zoals Cross-Validated Expectation-Maximization (CV-EM), voor
het leren van frase-gebaseerde, hiërarchische en syntactisch-gedreven statistische
automatische vertaling (SMT) modellen uit data.

In het proefschrift presenteer ik methodes voor het automatisch leren van
frase-gebaseerde SMT modellen die uitgaan van een latente tweetalig structuur
als centrale variabele. Uitgaand van het feit dat iedere taal sterk gekenmerkt
wordt door haar individuele structurele eigenschappen, streven wij ernaar om een
tweetalig structuur te leren die in het verlengde ligt van zijn eentalige tegenhanger,
met het doel de kloof tussen beiden te overbruggen door de transformaties die
plaats vinden in het overbrengen van betekenis tussen talen expliciet te maken.
Het leer-raamwerk en -algoritmes die worden gepresenteerd stellen ons in staat om
deze structurele patronen te ontdekken in tweetalige data met als doel de gevon-
den patronen te gebruiken in vertaalmodellen die beter kunnen vertalen. Dit leidt
to een wel-gefundeerd leerraamwerk voor hiërarchische, syntactisch-gemotiveerde
modellen die het vertaalproces beschrijven middels de lingüıstische structuur van
taal.

Hoofdstuk 1 geeft een introductie voor de context en doeleinden van dit
werk. Het presenteert de hoofdzaken betreffende het modelleren van vertaal-
structuur en bespreekt zowel de impact van zijn latente aard als de uitdagin-
gen in het ontdekken daarvan in tweetalige data. Hoofdstuk 2 begint met een
uiteenzetting van sommige modellen die invloedrijk zijn geweest in SMT onder-
zoek, zoals woord-gebaseerde, frase-gebaseerde en hiërarchische SMT. Daarna
worden de EM en Cross-Validation algoritmes besproken, de twee theoretische
pijlers van het leeralgoritme dat wordt gepresenteerd in het volgende hoofdstuk.
Hoofdstuk 3 bestudeert de uitdagingen van het leren van frase-gebaseerde ver-
taalmodellen, door het bespreken van het algemenere probleem van het leren

197



198 Samenvatting

van Fragment modellen: modellen die nieuwe data instanties bouwen door data
fragmenten te combineren geëxtraheerd uit de training dataset. In het vervolg
wordt het Cross-Validated Expectation-Maximization (CV-EM) algoritme gepre-
senteerd, een nieuwe leeralgoritme voor Fragment modellen dat parameters opti-
maliseert volgens de Cross-Validated Maximum Likelihood (CV-MLE) objectieve
functie.

De drie hoofdstukken die hierop volgen presenteren en evalueren op empirische
wijze drie state-of-the-art SMT modellen en hun leeralgorithmes die gebaseerd zijn
op CV-EM. Hoofdstuk 4 presenteert een wel-gefundeerde methode voor het leren
van conditionele vertaal-waarschijnlijkheden voor frase-gebaseerde SMT modellen
die werken met onafgebroken frase-paren, met nadruk op het desambigueren van
de latente segmentatie van zinsparen in strengen van frase-paren. Deze methode
blijkt minstens even goed empirisch te werken als de huidige ad hoc estimatie
methodes die doorgaans worden gebruikt met dit soort modellen. Hoofdstuk
5 bestudeert de bijkomende uitdagingen van het modelleren van het vertalen
middels synchrone grammatica’s, en laat zien hoe een relatief simpele hiërarchisch
vertaalmodel met succes geleerd kan worden die vergelijkbare prestaties levert als
een zeer concurrerende baseline. Hoofdstuk 6 maakt een significante stap in het
bouwen van leeralgorithmes die extensies vormen van CV-EM, voor het leren van
complexe hierarchische vertaalmodellen die profiteren van externe annotaties van
zinnen in de bron-en/of doel-taal. We zetten deze leeralgorithmes in voor het leren
van linguistisch-gemotiveerde hierarchische vertaalmodellen door het identificeren
van de taalkundige patronen van de brontaal die informatief zijn voor het vertalen.
Vervolgens laten wij zien hoe deze aanpak tastbare verbeteringen levert in vertaal
kwaliteit in vier verschillende taalparen.

Hoofdstuk 6 completeert het werk in Hoofdstukken 4 en 5, en levert aanzien-
lijk bewijs ter ondersteuning van de belangrijkste hypothese van dit proefschrift:
modellen die uitgaan van een latente vertaalstructuur kunnen degelijk worden
geleerd onder een helder leerdoel, en gëımplementeerd middels een goedbegrepen
optimalisatie raamwerk en leeralgorithme. De resulterende leermodellen geven
competitieve vertaalprestaties in verhouding tot de gangbare heuristische training
regimes, en maken het gebruik van deze regimes overbodig. Onze methodologie
biedt niet alleen een betrouwbaar en effectief alternatief voor deze heuristische
schatters, maar opent ook nieuwe wegen voor de toekomst, door het mogelijk
maken van het schatten van krachtige vertaalmodellen die de latente kant van
het vertalen blootleggen, en waarvan de schatting middels ad hoc algoritmes zou
nauwelijks mogelijk geweest.
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