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Chapter 1

Introduction

Logics of imperfect information are extensions of First Order Logic1 in which

very general patterns of dependence and independence between logical opera-

tions and/or between variables are allowed. Among these logics, Dependence

Logic is particularly suitable for the study of the very notion of dependence, be-

cause it represents dependence of variables directly by means of special atomic

formulas. After the introduction of Dependence Logic in 2007, a considerable

amount of results (some of which we will summarize in Chapter 2) have been ob-

tained about it and its extensions. In this thesis we solve several open problems

of the area and suggest new ways to think about this family of logics.

Logics of imperfect information admit a Game Theoretic Semantics, an im-

perfect information generalization of the Game Theoretic Semantics for First

Order Logic; and furthermore, they also admit an equivalent Team Semantics

(also referred to in the literature as Hodges Semantics or Trump Semantics),

which instead generalizes Tarski’s semantics for First Order Logic. Team Se-

mantics extends Tarski’s semantics by defining the satisfaction relation not in

terms of single assignments but in terms of sets of assignments, called teams.

This thesis is a Team Semantics-centered exploration of the properties of

variants and extensions of Dependence Logic. Our two principal claims, for

which we will build gradually support through this whole work and which will

find their most general formulations in Chapters 6 and 7, are the following:

1. Teams represent information states;

2. Formulas in Dependence Logic and its variants can be interpreted in terms

of transitions between information states.

1Or, more rarely, of other logics: see for example the Modal Dependence Logic of [67], or
the Independence-Friendly Modal Logic(s) of [64, 6].

1



2 Chapter 1. Introduction

The first claim is not new, and in a way it is already implicit in Hodges’ proof

of the equivalence between Team Semantics and Game Theoretic Semantics.

However, what is (to the knowledge of the author) new is the idea that the

teams-as-information-states interpretation of Team Semantics can (and, in the

opinion of the author, should) be used as the main driving impulse towards the

further development of this fascinating area of research, as we try to do in this

work.

Chapter 2 The second chapter is a brief introduction to the study of logics

of imperfect information. First, in Section 2.1, we recall the history of the

development of such logics, from the early days of Branching Quantifiers Logic

until the creation of Dependence Logic. This account is neither complete nor

impartial: more could certainly be said about the development of Independence

Friendly Logic, for example, during which many of the salient peculiarities of

logics of imperfect information were first isolated. Furthermore, we will say

nothing about modal logics of imperfect information such as IF Modal Logic or

Modal Dependence Logic: indeed, even though such formalisms are certainly

of no small interest, the present work will be exclusively concerned with first

order logics of imperfect information.

Then, in Section 2.2, we introduce formally Dependence Logic, its Team

Semantics, its Game Theoretic Semantics, and some of its main properties.

Our presentation here is essentially a summarized and updated version of the

introduction to Dependence Logic contained in [65]. The principal differences

between our approach and the one of Väänänen’s book (to which we encourage

the reader to refer for a more in-depth introduction to the field) are the following:

1. We assume that all formulas are in negation normal form, and hence we

do not take the “dual negation” ¬φ as a primitive of our language. It

is easy to recover it inductively, of course, by defining ¬(φ [∨ | ∧] ψ) :=

(¬φ) [∧ | ∨] (¬ψ), ¬([∃v | ∀v] ψ) := [∀v | ∃v] (¬ψ), and so on; but as

[7, 51] show, in Dependence Logic not much can be inferred about the

satisfaction conditions of a formula from the satisfaction conditions of its

negation. Furthermore, having the dual negation as one of our primitives

would have forced us to add the (in the opinion of the author, rather

counterintuitive) rule stating that the negation of a dependence atom is

true only in the empty team.

2. When introducing the Team Semantics in Subsection 2.2.1, we give the

rule for existential quantification in both the strict version TS-∃-strict
and in the lax version TS-∃-lax. For the case of Dependence Logic,
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these two variants are easily seen to be equivalent, and the strict version

(which is adopted in Väänänen’s work, and more in general in the study

of Dependence Logic and of other downwards closed2 logics of imperfect

information) has the advantage of being terser; however, as we will argue

in Subsection 4.3.2, in the cases of some interesting non downwards-closed

logics of imperfect information only the lax existential quantifiers satisfy

the (very useful and natural) property of locality in the sense of Proposi-

tion 2.2.8.

3. In Subsection 2.2.2, we mention the characterization of definability in De-

pendence Logic of Kontinen and Väänänen (Theorem 2.2.14 here), which

will be of fundamental importance in a number of parts of our work and

which is certainly among the most important model-theoretic results in

the field of Dependence Logic.

4. Our treatment of Game Theoretic Semantics in Subsection 2.2.3 differs in

some details from the standard one: in particular, we only take in con-

sideration positional, or memoryless, strategies. This technically simpler

choice will allow us to extend and adapt more easily this game theoretic

semantics to extensions or variants of Dependence Logic.

5. In Section 2.3, we present a very general result by Cameron and Hodges

about the combinatorial properties of semantics for logics of imperfect in-

formation, as well as the author’s generalization of this discovery to the

case of infinite models. Cameron and Hodges’ theorem, which we report

in Subsection 2.3.1, is a highly abstract result about the question of which

semantics may capture the behaviour of a logic of imperfect information:

and, in particular, one of its consequences is that no compositional se-

mantics for IF Logic or Dependence Logic may send formulas with one

free variable into sets of tuples of elements (as Tarski’s semantics does for

First Order Logic). Cameron and Hodges’ theorem, however, fails over

infinite models, as an easy counting argument demonstrates; and in their

paper [8], they suggest that even in this case no “sensible” semantics for

a logic of imperfect information may have that property. In Subsection

2.3.2, which corresponds to the publication [28], we introduce a precise

definition of “sensible semantics”, argue that it is a natural one, and prove

Cameron and Hodges’ conjecture with respect to it.

2A logic of imperfect information is said to be downwards closed if it satisfies an analogue
of Proposition 2.2.7.
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Finally, in Section 2.4, we introduce some of the most important known exten-

sions and variants of Dependence Logic:

1. Independence Logic3 adds to the language of First Order Logic indepen-

dence atoms ~t2 ⊥~t1 ~t3, with the intended meaning of “~t2 and ~t3 are infor-

mationally independent given ~t1.” As Grädel and Väänänen show in [33],

this logic is equivalent to Dependence Logic with respect to sentences but

is more expressive than it when it comes to open formulas and definabil-

ity of classes of teams. In Chapter 4, we will answer a question asked

by Grädel and Väänänen in their paper, by characterizing definability in

Independence Logic and hence finding the analogue of Theorem 2.2.14 for

Independence Logic.

2. Linear and Intuitionistic Dependence Logics add to the language of De-

pendence Logic a linear implication φ ⊸ ψ or an intuitionistic implication

φ → ψ, respectively, as the downwards-closed adjoints of the disjunction

or conjunction of Dependence Logic. These formalisms are known to be

more powerful than Dependence Logic proper; and in Section 7.4, we will

show that intuitionistic and linear implication have very natural interpre-

tations in terms of predictions about the outcomes of belief updates.

3. Team Logic adds to Dependence Logic a contradictory negation ∼φ. It is

a remarkably powerful and expressive formalism, which is roughly equiv-

alent – as Kontinen and Nurmi’s result in [49] shows – to Second Order

Logic; and in Chapter 7, we will develop a notational variant of it and

examine its doxastic significance.

Chapter 3 The third chapter is an adaptation of the author’s publications

[26, 27]. We add announcement operators to the language of Dependence Logic

and examine their properties, showing how they may be employed to decom-

pose dependence atoms (and also the ∀1 quantifier introduced by Kontinen and

Väänänen in [50]). Furthermore, we show that as the name suggests, these

operators can be interpreted in Game Theoretic Semantics in terms of public

announcements, and we illustrate how the Ehrenfeucht-Fräıssé game for Depen-

dence Logic may be adapted to the ∀1 quantifier and its variants. Finally, we

solve an open problem of [50] by proving that the ∀1 quantifier is not uniformly

definable in Dependence Logic, in the sense that there exists no context Φ[·]
such that Φ[ψ] is equivalent to ∀1vψ for all Dependence Logic formulas ψ.

3Independence Logic is not to be confused with Independence Friendly (IF) Logic, which
is historically antecedent to Dependence or Independence Logic and which we will briefly
discuss in Subsection 2.1.2.
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Chapter 4 The fourth chapter is a study of some variants of Dependence

Logic obtained by considering non-functional, Database Theory-inspired notions

of dependence, and it is a revised and expanded version of the publication

[30]. We show that Constancy Logic, that is, the fragment of Dependence

Logic containing only constancy atoms4, is equivalent to First Order Logic with

respect to sentences; and furthermore, we prove that Engström’s Multivalued

Dependence Logic is, in fact, equivalent to Independence Logic. We then define

Inclusion Logic, Equiextension Logic, Exclusion Logic and Inclusion/Exclusion

Logic by examining various notions of non-functional dependence, and we prove

that

1. Inclusion Logic and Equiextension Logic are equivalent, are contained in

Independence Logic, and are neither contained in Dependence Logic nor

contain it;

2. Exclusion Logic is equivalent to Dependence Logic;

3. Inclusion/Exclusion Logic is equivalent to Independence Logic.

We then adapt the Game Theoretic Semantics of Dependence Logic to the case

of Inclusion/Exclusion Logic. This is unproblematic; however, an interesting

peculiarity of our treatment is that, in order to obtain the lax interpretations

of the existential quantifiers, we need to consider nondeterministic strategies.

We then use the results found so far to prove that all NP properties of teams

are expressible in Independence Logic (or, equivalently, in Inclusion/Exclusion

Logic), thus solving an open problem of [33]; and finally, we show that, just

as dependence atoms can be decomposed in terms of constancy logic and an-

nouncement operators, independence atoms can be decomposed in terms of con-

stancy atoms, inconstancy atoms, announcement operators, and other connec-

tives. This highlights the value of announcement operators as tools for reducing

complex dependence or independence notions to simpler ones.

Chapter 5 The fifth chapter, which corresponds to the publication [29], is

concerned with proof-theoretic issues. With respect to their standard Team Se-

mantics, Dependence Logic and its extensions are non-axiomatizable; however,

we can introduce general models and a General Semantics over them which per-

mits only a limited form of quantification over teams, much in the same sense in

which Henkin’s semantics for Second Order Logic permits only a limited form

of quantification over sets. We will see that for Inclusion/Exclusion Logic or

4A constancy atom is simply a dependence atoms which states that a given variable term
or variable depends on nothing.



6 Chapter 1. Introduction

Independence Logic, it suffices to examine some very special kinds of general

models; and furthermore, that in these models it is possible to represent teams

syntactically as first order formulas with parameters. We will then introduce

a proof system and verify its soundness and completeness with respect to our

semantics. The intellectual debt of the author to Väänänen is, for this chap-

ter, even greater than for the rest of the work: the idea of studying general

semantics for logics of imperfect information comes from a direct suggestion of

him, and our treatment is very much inspired by the course on Second Order

Logic which Väänänen taught at the University of Helsinki in 2011 and which

the author followed.

Chapter 6 The sixth chapter is an examination of the dynamics of informa-

tion change which lies underneath the Team Semantics of Dependence Logic.

After recalling van Benthem’s mutual embedding result between First Order

Logic and Dynamic Game Logic, we develop an imperfect-information, player-

versus-Nature variant of Dynamic Game Logic and prove the existence of a mu-

tual embedding between it and Dependence Logic. We use the insights arising

from this construction to create two variants of Dependence Logic: Transition

Dependence Logic, in which formulas are interpreted as assertions about games

against Nature, and Dynamic Dependence Logic, a Dynamic Semantics-inspired

variant in which formulas are interpreted as games against Nature. From a

technical point of view, the study of these variants requires the development

of Team Transition Semantics, a variant of Team Semantics in which formulas

are interpreted as transition systems between teams: and Hodges’ equivalence

proof between Team Logic and Game Theoretic Semantics, adapted to this new

formalism, shows that satisfaction conditions in Team Transition Semantics

correspond precisely to reachability conditions in Game Theoretic Semantics.

Chapter 7 In the last chapter, we gradually develop a notational variant

of Team Logic which contains many of the operators and concepts which we

discussed in the rest of the work. The resulting system has no pretence of

being of independent interest; rather, we use it as a means for highlighting and

emphasizing the doxastic interpretation of Team Semantics. In particular, we

show that quantifiers, the “tensorial” disjunction φ ⊗ ψ and the implications

all have natural interpretations in terms of belief updates, and that first order

expressions and dependence atoms have natural interpretations in terms of belief

descriptions. Together with the other results of this work, this lends strong

support to our claim that the doxastic interpretation of Team Semantics is

1. A solid, comprehensive point of view under which to understand Team
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Semantics;

2. A useful testing ground for the development of further extensions and

variants of our logics;

3. A highly promising area of application for logics of dependence and inde-

pendence.





Chapter 2

Logics of Imperfect Information

This chapter is a brief, and neither comprehensive nor impartial, introduction

to the field of logics of imperfect information. In Section 2.1, we will recall the

history of the development of these logics, from Branching Quantifier Logic to

Dependence Logic; and then, in Section 2.2, we will discuss in some detail the

definition and the known properties of Dependence Logic and of its variants.

Our treatment of Game Theoretic Semantics in Subsection 2.2.3 is somewhat

different from the usual one in that we only consider memory-free strategies for

our agents; but apart from this, the first two sections of this chapter can be

seen as little more than a very condensed and somewhat updated exposition of

[65].

Section 2.3, instead, contains novel results. Subsection 2.3.1 is a summary

of the main theorem of [8], in which Cameron and Hodges proved, through

a combinatorial argument, that no Tarski-like semantics exists for a logic of

imperfect information; and Subsection 2.3.2 contains a generalization of this

result developed by the author and published in [28].

Finally, this chapter ends with Section 2.4, in which we briefly introduce

some of the most important variants and extensions of Dependence Logic.

2.1 From Branching Quantifiers to Dependence

Logic

2.1.1 Branching Quantifiers

One aspect of First Order Logic which accounts for much of its expressive power

is the fact that this formalism permits nested quantification, and, in particular,

alternation between existential and universal quantifiers. Through this device, it

9
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is possible to specify complex patterns of dependence and independence between

variables: for example, in the sentence

∀x∃y∀z∃wR(x, y, z, w), (2.1)

the existential variable w is a function of both x and z, whereas the existential

variable y is a function of x alone.

As Skolem’s normal form for (2.1) illustrates, nested quantification can be

understood as a restricted form of second-order existential quantification: in-

deed, the above sentence can be seen to be equivalent to

∃f∃g∀x∀zR(x, f(x), z, g(x, z)). (2.2)

In First Order Logic, the notion of quantifier dependence or independence is

intrinsically tied to the notion of scope: an existential quantifier ∃y depends on

an universal quantifier ∀x if and only if the former is in the scope of the latter.

As observed by Henkin in [36], these patterns can be made more general. In

particular, one may consider branching quantifier expressions of the form





Q11x11 . . . Q1mx1m

. . .

Qn1xn1 . . . Qnmxnm



 , (2.3)

where each Qij is ∃ or ∀ and all xij are distinct. The intended interpretation

of such an expression is that each xij may depend on all xij′ for j′ < j, but not

on any xi′j′ for i′ 6= i: for example, in the sentence

( ∀x ∃y
∀z ∃w

)

R(x, y, z, w) (2.4)

the variable y depends on x but not on z, and the variable w depends on z but

not on x, and hence the corresponding Skolem expression is

∃f∃g∀x∀zR(x, f(x), z, g(z)) (2.5)

If, as we said, quantifier alternation in First Order Logic can be understood as

a restricted form of second order existential quantification, then, as a compari-

son between (2.2) and (2.5) makes clear, allowing branching quantifiers can be

understood as a weakening of these restrictions.

How restricted is second order existential quantification in Branching Quan-

tifier Logic, that is, in First Order Logic extended with branching quantifiers
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As proved by Enderton and Walkoe in [18] and [73], the answer is not re-

stricted at all ! Branching Quantifier Logic is precisely as expressive as Exis-

tential Second Order Logic (Σ1
1). Hence, Branching Quantifier Logic can be

understood as an alternative approach to the study of Σ1
1, of its fragments and

of its extensions; and indeed, much of the research done on the subject (as well

as on the formalisms which we will describe in the next sections) can be seen as

an attempt to study Σ1
1 through the lens of these variants of first-order logic.

2.1.2 Independence Friendly Logic

One striking aspect of the history of logics of imperfect information is how, in

many cases, apparently minor modifications to the syntax of a formalism can

bring forward profound consequences and insights.

The development of Independence Friendly Logic [39, 37, 54], also called

IF Logic, is a clear example of this phenomenon. On a superficial level, the

language of IF Logic is a straightforward linearization of the one of Branching

Quantifier Logic: rather than dealing the unwieldy quantifier matrices of (2.3),

Hintikka and Sandu introduced slashed quantifiers ∃v/V with the intended in-

terpretation of “there exists a v, chosen independently from the variables in V ”.

For example, the sentence (2.4) can be translated in IF Logic as

∀x∃y∀z(∃w/{x, y})R(x, y, z, w) (2.6)

This – at first sight entirely unproblematic – modification led to a number of

important innovations on the semantical side.

Game-theoretical explanations for the semantics of branching quantifiers

predate the development of IF Logic; but it is with IF Logic that the Game

Theoretic Semantics [40] for First Order Logic was extended and adapted to

a logic of imperfect information in a formal way. In Subsection 2.2.3, we will

present in detail a successor of the Game Theoretic Semantics for IF Logic; but

for now, we will limit ourselves to saying that, in the Game Theoretic Semantics

for IF Logic, slashed quantifiers correspond to imperfect information moves in

which the corresponding player has to select a value for the quantified variable

without having access to the values of the slashed variables.

One interesting phenomenon that IF Logic brings in evidence is signalling.

Even if a quantified variable is specified to be independent from a previous

variable, it is possible to use other quantifiers occurring between the two in

order to encode the value of the supposedly “invisible” variable. For example,
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it is easy to see that the sentence

∀x(∃y/{x})(x = y), (2.7)

corresponding to the Branching Quantifier expression

( ∀x
∃y

)

(x = y), (2.8)

is not true in any model with at least two elements: indeed, it is not possible

for y to be chosen independently from x and still be equal to x in all possible

cases.

However, the variant of (2.7) given by

∀x∃z(∃y/{x})(x = y), (2.9)

which may be represented in Branching Quantifier Logic as

( ∀x ∃z
∀z′ ∃y

)

(z = z′ → x = y), (2.10)

is instead valid: even if the value of y is to be chosen independently of the value

of x, it is possible to let z = x and then choose y = z (or y = z′, in the case of

the Branching Quantifier formulation).

Signalling, at first, was considered a problematic phenomenon: for example,

the variant of IF Logic presented in [38] attempts to prevent it by requiring

existential variables to be always independent on previous existential variables.

However, such attempts are not without drawbacks (Janssen’s paper [47] con-

tains an in-depth discussion of this topic), and most of the modern work on IF

Logic tends instead to treat signalling as a useful, if subtle, property of IF Logic

([54]).

Although the Game Theoretic Semantics for IF Logic is a relatively straight-

forward generalization of the Game Theoretic Semantics for First Order Logic,

there is no obvious way of extending Tarski’s compositional semantics to the

case of IF Logic. In [42], however, Hodges succeeded in finding such a gener-

alization, the Team Semantics which we will describe in Subsection 2.2.1.1 In

Team Semantics, satisfaction is predicated over sets of assignments (which, fol-

lowing [65], we will call teams), and not over single assignments; and the notion

of informational independence contained in the game-theoretical interpretation

1The name “Team Semantics” originates from Väänänen’s work on Dependence Logic [65],
and is now the most common name for this semantical framework.
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of slashed quantifiers is now represented as

TS-∃-slash: M |=X (∃x/V )φ if and only if there exists a function F : X →
Dom(M) such that

1. If s, s′ ∈ X assign the same values to all variables other than those

in V then F (s) = F (s′);

2. For X [F/v] = {s[F (s)/v] : s ∈ X}, it holds that M |=X[F/v] ψ.

As we will see in Subsection 2.3.1, Cameron and Hodges proved in [8] that

it is not possible to create a compositional semantics for IF Logic in which,

over finite models, the satisfaction is predicated in terms of single assignments;

and, as we will see in Section 2.3.2, this result can be extended to the infinite

case if we add a further, natural requirement to our semantics. So, in a sense,

Team Semantics is the optimal compositional semantics for logics of imperfect

information.

2.1.3 Dependence Logic

In Branching Quantifier Logic and IF Logic both, independence and indepen-

dence are predicated about quantifiers. We can say that a given quantifier ∃y
is dependent, or independent, on another quantifier ∀x: but neither of these

languages offers any instrument to assert that a variable y is dependent, or

independent, on another variable x.

Väänänen’s Dependence Logic (which we will abbreviate as D) arises from

the observation that this need not be the case: in the framework of Team

Semantics, one may certainly ask whether, with respect to a team X , y is

functionally dependent on x, in the sense that

∀s, s′ ∈ X, s(x) = s′(x) ⇒ s(y) = s′(y). (2.11)

This notion of functional dependence is one of the central concepts of Database

theory, and has been studied extensively in this context[58, 13]. On the level of

sentences, Dependence Logic is equivalent to IF Logic or Branching Quantifier

Logic; and the same can be said even about open formulas, as long as the set

Var of all relevant variables is known and finite (see [65] for the details). How-

ever, the possibility of enquiring directly about dependencies or independencies

between free variables is no small advantage.

In Dependence Logic, the assertion that y is functionally dependent on x

is written as = (x, y), and, analogously, the assertion that y is functionally

dependent on an empty sequence of variables (that is, that y is constant) is
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written =(y). It may be instructive to attempt to reproduce the example of

signalling of the previous section in this language: whereas (2.7) is translated

as

∀x∃y(=(y) ∧ x = y), (2.12)

(2.9) is translated as

∀x∃z∃y(=(z, y) ∧ x = y) (2.13)

Differently from the case of IF Logic, the functional dependency of y from

z is now explicitly declared; and that cannot be avoided, because the Locality

Theorem (Proposition 2.2.8 here) states that only the variables which occur free

in a Dependence Logic subformula are relevant for its interpretation. Hence,

Dependence Logic makes the phenomenon of signalling far less mysterious than

it is in IF Logic: instead of a “spooky action at a distance” of a variable z over

a subformula (∃y/{x})(x = y) in which such variable does not occur, we now

have the perfectly plain fact that if y is a function of z and z can be a function

of x then y can be a function of x.2

In Section 2.2, we will discuss the language and the semantics of Depen-

dence Logic in more detail. For now, it will suffice to point out out that the

development of Dependence Logic has led to a wealth of model-theoretic results,

some of which we will recall in Subsection 2.2.2, which advanced significantly

our understanding of this class of logics; and that, furthermore, this formalism

proved itself highly amenable to the development of variants and extensions,

some of which we will describe in Section 2.4.

2.2 Dependence Logic and its Extensions

2.2.1 Team Semantics

Hodges’ Team Semantics [42, 65] is the fundamental semantical framework for

Dependence Logic, and its interpretation in terms of doxastic states lies at the

root of much of its work. In this subsection, we will recall its definition; then in

Subsection 2.2.2 we will point out some useful properties of Dependence Logic,

and in Subsection 2.2.3 we will define an equivalent Game Theoretic Semantics.

As is common in the study of Dependence Logic, we will assume that all

formulas are in Negation Normal Form3. Hence, the language of Dependence

2This is, in essence, nothing more than William Ward Armstrong’s axiom of transitivity

for functional dependence ([4]).
3The reason for this choice, in brief, is that dual negation in Dependence Logic is not a

semantic operation, in the sense that not much can be inferred about the falsity conditions
of a sentence from its truth conditions. See [7] for the formal statement and proof, and [51]
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Logic will be defined as follows:

Definition 2.2.1. Let Σ be a first order signature. The Dependence Logic

formulas over this signature are given by

φ ::= R~t | ¬R~t | =(t1 . . . tn) | φ ∨ φ | φ ∧ φ | ∃vφ | ∀vφ

where R ranges over all relation symbols of our signature, ~t ranges over all tuples

of terms of the required lengths, n ranges over N, t1 . . . tn range over the terms

of our signature, and v ranges over the set Var of all variables of our language.4

As can be seen from this definition, the language of Dependence Logic ex-

tends the one of First Order Logic with dependence atoms =(t1 . . . tn), whose in-

tended interpretation is “the value of tn is a function of the values of t1 . . . tn−1”.

The set Free(φ) of all free variables of a formula φ is defined precisely as in

First Order Logic, with the additional condition that all variables occurring in

a dependence atom =(t1 . . . tn) are free in it; and as usual, a formula with no

free variables will be called a sentence.

As we said, a team is a set of assignments:

Definition 2.2.2. LetM be a first order model and let ~v be a tuple of variables.

A team X over M with domain Dom(X) = ~v is a set of variable assignments

from ~v to Dom(M).5

Given a team X and a tuple ~w ⊆ Dom(X), we define Rel~w(X) as the relation

{s(~w) : s ∈ X}. The relation corresponding to a team X will be Rel(X) =

RelDom(X)(X) = {s(Dom(X)) : s ∈ X}.
We now have all the ingredients to give the formal definition of the Team

Semantics of Dependence Logic.

Definition 2.2.3. Let M be a first-order model. Then, for all teams X over

M and all Dependence Logic formulas φ over the same signature of M and with

Free(φ) ⊆ Dom(X), we write M |=X φ if and only if the team X satisfies φ in

M . This satisfaction relation respect the following rules:

TS-lit: For all first-order literals α, M |=X α if and only if for all s ∈ X ,

M |=s α in the usual first order sense;

for the extension of this result to open formulas.
4Expressions of the form =(t1 . . . tn) are usually written =(t1, . . . , tn), with commas sepa-

rating the terms. In this work, we will be quite free in omitting or using commas depending
on which choice is more readable.

5Hence, the domain of a team is only defined up to permutations and repeated elements.
This is entirely unproblematic; but if one wishes to avoid this, there is no harm assuming that
the set of all variables is linearly ordered. Also, we will be quite free in using set-theoretical
terminology when referring to tuples of variables.



16 Chapter 2. Logics of Imperfect Information

TS-dep: For all n ∈ N and all terms t1 . . . tn, M |=X=(t1 . . . tn) if and only if

any two s, s′ ∈ X which assign the same values to t1 . . . tn−1 also assign

the same value to tn;

TS-∨: For all ψ1 and ψ2, M |=X ψ1 ∨ ψ2 if and only if X = X1 ∪X2 for two

subteams X1 and X2 such that M |=X1
ψ1 and M |=X2

ψ2;

TS-∧: For all ψ1 and ψ2, M |=X ψ1∧ψ2 if and only ifM |=X ψ1 andM |=X ψ2;

TS-∃-strict: For all variables v and formulas ψ, M |=X ∃vψ if and only if there

exists a function F : X → Dom(M) such that M |=X[F/v] ψ, where

X [F/v] = {s[F (s)/v] : s ∈ X};

TS-∀: For all variables v and formulas ψ, M |=X ∀vψ if and only if M |=X[M/v]

ψ, where

X [M/v] = {s[m/v] : s ∈ X,m ∈ Dom(M)}.

If φ is a sentence, we say that a model M satisfies φ, and we write M |= φ, if

and only if M |={∅} φ.6

There exists an alternative semantics for existential quantification, which

arises naturally from Engström’s treatment of generalized quantifiers in Depen-

dence Logic ([19]) and which allows one to select more than one new variable

value for assignment. We will call it the lax semantics for existential quantifi-

cation, in comparison to the strict semantics TS-∃-strict which we described

above; and we will define it formally as

TS-∃-lax: For all variables v and formulas ψ, M |=X ∃vψ if and only if7 there

exists a function H : X → Parts(Dom(M))\{∅} such that M |=X[H/v] ψ,

where

X [H/v] = {s[m/v] : s ∈ X,m ∈ H(s)}.

For logics satisfying the Downwards Closure Property (Proposition 2.2.7 here),

the two formulations are equivalent modulo the Axiom of Choice, and TS-∃-
strict has the advantage of being terser; but as we will see in Chapter 4, for such

formalisms as Independence Logic (Subsection 2.4.1) or Inclusion/Exclusion

6The choice of {∅} as the initial team is entirely arbitrary. Because of Propositions 2.2.6
and 2.2.8, a Dependence Logic sentence is either satisfied by all assignments or only by the
empty one.

7Here, and through all of this work, we will write Parts(A) for the set of all subsets of A.
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Logic (Chapter 4) only TS-∃-lax respects the property of locality (Proposition

2.2.8 here).

We end this section by introducing a family of derived connectives which

will be useful for some parts of the rest of this work.

Definition 2.2.4. Let ψ1 and ψ2 be two Dependence Logic formulas, let ~t be

a tuple of terms, and let u1 and u2 be two variables not occurring in ~t, in ψ1 or

in ψ2. Then we write ψ1 ⊔~t ψ2 as a shorthand for

∃u1∃u2(=(~t, u1)∧ =(~t, u2) ∧ ((u1 = u2 ∧ ψ1) ∨ (u1 6= u2 ∧ ψ2))).

Proposition 2.2.5. For all formulas ψ1 and ψ2, all tuples ~t of terms, all models

M with at least two elements8 whose signature contains that of ψ1 and ψ2 and all

teams X whose domain contains the free variables of ψ1 and ψ2, M |=X ψ1⊔~tψ2

if and only if X = X1∪X2 for two X1 and X2 such that M |=X1
ψ1, M |=X2

ψ2,

and furthermore

s ∈ Xi,~t〈s〉 = ~t〈s′〉 ⇒ s′ ∈ Xi

for all s, s′ ∈ X and all i ∈ {1, 2}.

As a special case of “dependent disjunction”, we have the classical disjunc-

tion ψ1 ⊔ ψ2 := ψ1 ⊔∅ ψ2: and by the above proposition, it is easy to see that

M |=X ψ1 ⊔ ψ2 ⇔M |=X ψ1 or M |=X ψ2

as expected.

2.2.2 Some Known Results

In this section, we will recall some properties Dependence Logic. All results are

from Väänänen’s book [65] unless specified otherwise.

The following four propositions hold for all first-order models M with at

least two elements, all formulas φ over the signature of M and all teams X , and

can be proved by structural induction on φ:

Proposition 2.2.6 ([65], §3.9). M |=∅ φ.

Proposition 2.2.7 (Downwards Closure: [65], §3.10). If M |=X φ and Y ⊆ X

then M |=Y φ.

8In general, we will assume through this whole work that all first-order models which we
are considering have at least two elements. As one-element models are trivial, this is not a
very onerous restriction.
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Proposition 2.2.8 (Locality: [65], §3.27). If Y is the restriction of X to the

free variables of φ then

M |=X φ⇔M |=Y φ.

Proposition 2.2.9 ([65], §3.30 and §3.31). If φ is a first-order formula,

M |=X φ if and only if for all s ∈ X, M |=s φ in the usual first order sense.

The next theorem relates Dependence Logic to Σ1
1 on the level of sentences:

Theorem 2.2.10 ([65], §6.3 and §6.15). For any Dependence Logic sentence φ

there exists a Σ1
1 sentence Φ such that M |= φ if and only if M |= Φ. Conversely,

for any Σ1
1 sentence Φ there exists a Dependence Logic sentence φ which is

satisfied if and only if Φ is satisfied.

Exploiting the equivalence between Dependence Logic and Σ1
1, Väänänen

then proved a number of model-theoretic properties of Dependence Logic. Here

we report the Compactness Theorem and the Löwenheim-Skolem Theorem for

Dependence Logic:

Theorem 2.2.11 ([65], §6.4). If T is a set of Dependence Logic sentences over

a finite vocabulary and all finite T ′ ⊆ T are satisfiable then T itself is satisfiable.

Theorem 2.2.12 ([65], §6.5). If φ is a Dependence Logic sentence that has an

infinite model or arbitrarily large finite models then it has models of all infinite

cardinalities.

What about open formulas? Given a Dependence Logic formula, it is pos-

sible to consider the family of all teams which satisfy it; but which families

of teams correspond to the satisfaction condition of some Dependence Logic

formula?

Because of Proposition 2.2.7, it is clear that not all families of teams which

correspond to Σ1
1-definable relations are expressible in terms of the satisfac-

tion conditions of Dependence Logic formulas. However, [65] has the following

result:9

Theorem 2.2.13 ([65], §6.2). Let Σ be a first order signature, let φ(~v) be a

Dependence Logic formula with free variables in φ, and let R be a relation symbol

not in Σ with arity |~v|. Then there exists a Σ1
1 sentence Φ(R), over the signature

of Σ ∪ {R}, such that

M |=X φ⇔M |= Φ(Rel(X))10

9An analogous result was found in [43] with respect to IF Logic.
10Here we write M |= Φ(Rel(X)) to say that if M ′ is the unique extension of M to Σ∪{R}

such that RM′
= Rel(X) then M ′ |= Φ.
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for all models M with signature Σ and all team X with domain ~v.

Furthermore, R occurs only negatively in Φ.

In [50], Kontinen and Väänänen proved a converse of this result:

Theorem 2.2.14. Let Σ be a first order signature, let R be a relation symbol

not in Σ, let ~v be a tuple of distinct variables with |~v| equal to the arity of R,

and let Φ(R) be a Σ1
1 sentence over Σ∪ {R} in which R occurs only negatively.

Then there exists a Dependence Logic formula φ(~v), with free variables in ~v,

such that

M |=X φ⇔M |= Φ(Rel(X))

for all models M with signature Σ and all nonempty teams X with domain ~v.

We finish this subsection by mentioning an easy corollary of this result which

will be of some use in Chapter 6:

Corollary 2.2.15. Let P be any predicate symbol and let φ(~v, P ) be any Depen-

dence Logic formula with Free(φ) = ~v. Then there exists a Dependence Logic

formula φ′(~v) such that

M |=X φ′(~v) ⇔ ∃P s.t. M |=X φ(~v, P )

for all suitable models M and for all teams X whose domain contains ~v.

Proof. By Theorem 2.2.13, there exists a Σ1
1 sentence Φ(R,P ), in which R

occurs only negatively, such that

M |=X φ(~v, P ) ⇔M |= Φ(X(~v), P )

for all M and all nonempty X with domain Free(φ) = ~v.

Now consider Φ′(R) := ∃PΦ(R,P ): by Theorem 2.2.14, there exists a for-

mula φ′(~v) such that, for allM and all nonemptyX with domain ~v, M |=X φ′(~v)

if and only if M |= Φ′(X(~v)).

By Proposition 2.2.8, the same holds for teams whose domains contain prop-

erly ~v; and if X is empty then by Proposition 2.2.6 we have that M |=X φ(~v, P )

andM |=X φ′(~v). Therefore, φ′(~v) is the formula which we were looking for.

Definition 2.2.16. Let φ(~v, P ) be any Dependence Logic formula. Then we

write ∃Pφ(~v, P ) for the Dependence Logic formula, whose existence follows from

Corollary 2.2.15, such that

M |=X ∃Pφ(~v, P ) ⇔ ∃P s.t. M |=X φ(~v, P )
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for all suitable models M and all (empty or nonempty) teams X .

Also worth recalling in this subsection is Jarmo Kontinen’s PhD thesis [48],

which contains a number of results about the finite model theory of Dependence

Logic and of fragments thereof. We will not summarize such results here; but we

will mention that in that work Jarmo Kontinen proved that the model checking

problems for even very simple fragments of Dependence Logic are already NP-

complete, and that even relatively small fragments of it do not admit a 0-1

law. We will not make use of these results in the remainder of this work; but

the techniques that have been employed in that thesis, and in particular the

notion of k-coherence that was defined in it, appear to hold no small promise

for further clarifying the finite model theory of Dependence Logic and of its

extensions.

2.2.3 Game Theoretic Semantics

As we mentioned, the Game Theoretic Semantics for logics of imperfect infor-

mation predates the Team Semantics which we discussed in the previous section.

Dependence Logic and the other formalisms which we will examine here take

Team Semantics as their starting point11: however, the role of the interplay

between Team Semantics and Game Theoretic Semantics in the study of logics

of imperfect information is not to be underestimated.

The Game Theoretic Semantics which we describe here differs in some details

from the one defined in [65]: most importantly, here we will only admit memory-

free strategies, which do not look at the past history of the play in order to select

the next position. For the purpose of Dependence Logic, or of any other logic

of imperfect information satisfying the principle of locality, this will not be

problematic: but this should be taken in consideration if one wished to adapt

the results of this work of such a logic such as IF Logic, in which locality fails.12

Definition 2.2.17. Let φ be any Dependence Logic formula. Then Player(φ) ∈
{E, A} is defined as follows:

1. If φ is a first-order literal or a dependence atom, Player(φ) = E;

2. If φ is of the form ψ1 ∨ ψ2 or ∃vψ then Player(φ) = E;

11This differs from the case of IF Logic, in whose study Game Theoretic Semantics is instead
generally taken as the fundamental semantical formalism and Team Semantics is treated as a
sometimes useful technical device.

12The failure of locality in IF Logic is easily seen. Consider any model M with two elements
0 and 1, consider the two teams X = {(x := 0, z := 0), (x := 1, z := 1)} and let φ be
(∃y/{x})(x = y). Then clearly M |=X φ, but for the restriction X′ = {(x := 0), (x := 1)} of
X to Free(φ) it holds that M 6|=X′ φ.



2.2. Dependence Logic and its Extensions 21

3. If φ is of the form ψ1 ∧ ψ2 or ∀vψ then Player(φ) = A.

The positions of our game are pairs (ψ, s), where ψ is a formula and s is an

assignment. The successors of a given position are defined as follows:

Definition 2.2.18. Let M be a first order model, let ψ be a formula and let

s be an assignment over M . Then the set SuccM (ψ, s) of the successors of the

position (ψ, s) is defined as follows:

1. If ψ is a first order literal α then

SuccM (ψ, s) =

{ {(λ, s)} if M |=s α in First Order Logic;

∅ otherwise,

where λ stands for the empty string;

2. If ψ is a dependence atom then SuccM (ψ, s) = {(λ, s)};

3. If ψ is of the form ∃vθ or ∀vθ then SuccM (ψ, s) = {(θ, s[m/v]) : m ∈
Dom(M)};

4. If ψ is of the form θ1 ∨ θ2 or θ1 ∧ θ2 then SuccM (ψ, s) = {(θ1, s), (θ2, s)}.

We can now define formally the semantic games associated to Dependence

Logic formulas:

Definition 2.2.19. Let M be a first-order model, let φ be a Dynamic Depen-

dence Logic formula, and let X be a team. Then the game GMX (φ) is defined as

follows:

• The set I of the initial positions of the game is {(φ, s) : s ∈ X};

• The set W of the winning positions of the game is {(λ, s′) : s′ is an assignment};

• For any position (ψ, s′), the active player is Player(ψ) and the set of

successors is SuccM (ψ, s′).

Definition 2.2.20. Let GMX (φ) be as in the above definition. Then a play of

this game is a finite sequence ~p = p1 . . . pn of positions of the game such that

1. p1 ∈ I is an initial position of the game;

2. For every i ∈ 1 . . . n− 1, pi+1 ∈ SuccM (p1).

If furthermore SuccM (pn) = ∅, we say that ~p is complete; and if pn ∈ W is a

winning position, we say that ~p is winning.
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So far, we did not deal with the satisfaction conditions of dependence atoms

at all. Such conditions are made to correspond as uniformity conditions over

sets of plays:

Definition 2.2.21. Let GMX (φ) be a game, and let P be a set of plays in it.

Then P is uniform if and only if for all ~p, ~q ∈ P and for all i, j ∈ N such that

pi = (=(t1 . . . tn), s) and qj = (=(t1 . . . tn), s′) for the same instance of the

dependence atom =(t1 . . . tn),

(t1 . . . tn−1)〈s〉 = (t1 . . . tn−1)〈s′〉 ⇒ tn〈s〉 = tn〈s′〉.

It is not difficult to see that, due to the structure of Dependence Logic

formulas, the above condition only needs to be verified for |~p| = |~q| and i = j.

We will only consider positional strategies, that is, strategies that depend

only on the current position.

Definition 2.2.22. Let GMX (φ) be as above, and let ψ be any expression such

that (ψ, s′) is a possible position of the game for some s′. Then a local strategy

for ψ is a function fψ sending each s′ into a (θ, s′′) ∈ SuccM (ψ, s′).

Definition 2.2.23. Let GMX (φ) be as above, let ~p = p1 . . . pn be a play in it,

and let fψ be a local strategy for some ψ. Then ~p is said to follow fψ if and

only if for all i ∈ 1 . . . n− 1 and all s′,

pi = (ψ, s′) ⇒ pi+1 = fψ(s′).

Definition 2.2.24. Let GMX (φ) be as above. Then a global strategy (for E) in

this game is a function f associating to each expression ψ occurring in some

nonterminal position of the game and such that Player(ψ) = E with some local

strategy fψ for ψ.

Definition 2.2.25. A play ~p of a gameGMX (φ) is said to follow a global strategy

f if and only if it follows fψ for all subformulas ψ of φ with Player(ψ) = E.

Definition 2.2.26. A global strategy f for a game GMX (φ) is said to be winning

if and only if all complete plays which follow f are winning.

Definition 2.2.27. A global strategy f for a game GMX (φ) is said to be uniform

if and only if the set of all complete plays which follow f respects the uniformity

condition of Definition 2.2.21.

The following result then connects the Game Theoretic Semantics and the

Team Semantics for Dependence Logic:
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Theorem 2.2.28. Let M be a first-order model, let X be a team, and let φ

be any Dependence Logic formula. Then M |=X φ if and only if the existential

player E has a uniform winning strategy for GMX (φ).

The proof of this result is essentially identical to the corresponding proof

of [65]. However, since the Game Theoretic Semantics which we just defined

is slightly different from the one of that book and since this proof will be the

model for a number of similar results of later chapters, it will be useful to report

it in full.

Proof. The proof is by structural induction on φ.

1. If φ is a first-order literal and M |=X φ then M |=s φ for all s ∈ X . But

then the only strategy available to E in GMX (φ) is winning for this game,

and it is trivially uniform.

Conversely, suppose that M 6|=s φ for some s ∈ X . Then the initial

position (φ, s) is not winning and has no successors, and hence E does not

have a winning strategy for this game.

2. If φ is a dependence atom =(t1 . . . tn) then the only strategy available

to E for this game sends each initial position (=(t1 . . . tn), s) (for s ∈ X)

into the winning terminal position (λ, s). This strategy is uniform if and

only if any two assignments s, s′ ∈ X which coincide over t1 . . . tn−1 also

coincide over tn, that is, if and only if M |=X=(t1 . . . tn).

3. If φ is a disjunction ψ1∨ψ2 and M |=X φ then X = X1∪X2 for two teams

X1 and X2 such that M |=X1
ψ1 and M |=X2

ψ2. Then, by induction

hypothesis, there exist two winning uniform strategies f1 and f2 for E in

GMX1
(ψ1) and GMX2

(ψ2) respectively. Then define the strategy f for E in

GMX (ψ1 ∨ ψ2) as follows:

• If θ is part of ψ1 then fθ = (f1)θ;

• If θ is part of ψ2 then fθ = (f2)θ;

• If θ is the initial formula ψ1∨ψ2 then fθ(s) =

{
(ψ1, s) if s ∈ X1;

(ψ2, s) if s ∈ X2\X1.

This strategy is clearly uniform, as any violation of the uniformity con-

dition would be a violation for f1 or f2 too. Furthermore, it is winning:

indeed, any play of GMX (ψ1 ∨ ψ2) in which E follows f strictly contains a

play of GMX1
(ψ1) in which E follows f1 or a play of GMX2

(ψ2) in which E

follows f2, and in either case the game ends in a winning position.
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Conversely, suppose that f is a uniform winning strategy for E in GMX (φ).

Now let X1 = {s ∈ X : fφ(s) = (ψ1, s)}, let X2 = {s ∈ X : fφ(s) =

(ψ2, s)}, and let f1 and f2 be the restrictions of f to the subgames cor-

responding to ψ1 and ψ2 respectively. Then f1 and f2 are uniform and

winning for GMX1
(ψ1) and GMX2

(ψ2) respectively, and hence by induction

hypothesis M |=X1
ψ1 and M |=X2

ψ2. But X = X1 ∪X2, and hence this

implies that M |=X φ.

4. If φ is ψ1∧ψ2 for some ψ1 and ψ2 and M |=X ψ1∧ψ2, then M |=X ψ1 and

M |=X ψ2. By induction hypothesis, this implies that E has two uniform

winning strategies f1 and f2 for GMX (ψ1) and GMX (ψ2) respectively. Now

let f be the strategy for GMX (ψ1 ∧ ψ2) which behaves like f1 over the

subgame corresponding to ψ1 and like f2 over the subgame corresponding

to ψ2 (it is not up to E to choose the successors of the initial positions

(ψ1 ∧ ψ2, s), so she needs not specify a strategy for those). This strategy

is winning and uniform, as required, because ψ1 and ψ2 are so.

Conversely, suppose that E has a uniform winning strategy f for GMX (ψ1∧
ψ2). Since the opponent A chooses the successor of the initial positions

{(ψ1 ∧ ψ2, s) : s ∈ X}, any element of {(ψ1, s) : s ∈ X} and of {(ψ2, s) :

s ∈ X} can occur as part of a play in which E follows f . Now, let f1
and f2 be the restrictions of f to the subgames corresponding to ψ1 and

ψ2 respectively: then f1 and f2 are uniform, because f is so, and they

are winning for GMX (ψ1) and GMX (ψ2) respectively, because every play of

these games in which E follows f1 (resp. f2) starting from a position (ψ1, s)

(resp. (ψ2, s)) for s ∈ X can be transformed into a play of GMX (ψ1 ∧ ψ2)

in which E follows f simply by appending the initial position (ψ1 ∧ ψ2, s)

at the beginning.

5. If φ is ∃vψ for some ψ and variable v ∈ Var and M |=X φ then there exists

a F : X → Dom(M) such that M |=X[F/v] ψ. By induction hypothesis,

this implies that E has a uniform winning strategy g for GMX[F/v](ψ). Now

define the strategy f for E in GMX (∃vψ) as

• If θ is part of ψ then fθ = gθ;

• fφ(∃vψ, s) = (ψ, s[F (s)/v]).

Then any play ofGMX (φ) in which E follows f contains a play ofGMX[F/v](ψ)

in which E follows g, and hence f is uniform and winning.

Conversely, suppose that E has a uniform winning strategy f forGMX (∃vψ).

Then define the function F : X → Dom(M) so that for all s ∈ X ,
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fφ(∃vψ, s) = (ψ, s[F (s)/v]), and let g be the restriction of f to ψ. Then g

is winning and uniform for GMX[F/v](ψ), and hence by induction hypothesis

M |=X[F/v] ψ, and finally M |=X ∃vψ.

6. If φ is ∀vψ for some ψ and variable v ∈ Var and M |=X φ then M |=X[M/v]

ψ. By induction hypothesis, this implies that E has a uniform winning

strategy f for GMX[M/v](ψ). But then the same f is a uniform winning

strategy for E for GMX (φ), since Player(φ) = A and any play of GMX (φ)

in which E follows f contains a play of GMX[M/v](ψ) in which E follows f .

Conversely, suppose that E has a uniform winning strategy f for GMX (φ).

Then the same f is a uniform strategy for E in GMX[M/v](ψ), and hence by

induction hypothesis M |=X[M/v] ψ, and therefore M |=X φ.

As this theorem illustrates, a team X satisfies a formula φ in a model M if

and only if E has a strategy which is winning and uniform for the corresponding

semantic game and for any initial assignment in X . This can be seen a first

hint of the doxastic interpretation of Team Semantics: indeed, M |=X φ if and

only if a hypothetical agent, who believes that the initial assignment (state of

things) s belongs in X , can be confident that they will win the semantic game

GM (φ).

2.3 Sensible Semantics

This section contains Cameron and Hodges’ result about the combinatorics of

imperfect information ([8]) and their generalization to the infinite case developed

by the author in [28].

The significance of these two results for the purpose of this work is the

following: by observing that there exists no natural semantics for Dependence

Logic in which the satisfaction relation is predicated over single assignments,

we obtain some justification for our choice of Team Semantics as the natural

framework for the study of logics of imperfect information.

2.3.1 The Combinatorics of Imperfect Information

As we recalled in Subsections 2.2.1 and 2.2.2, Team Semantics is a compositional

semantics for logics of imperfect information in which Dependence Logic or
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IF Logic formulas are interpreted as downwards-closed13 sets of teams, which,

following Hodges, we will call suits.14

As Hodges showed in [45], the choice of these kinds of objects comes, in

a very natural way, from a careful analysis of the Game Theoretic Semantics

for IF-Logic; but is it possible to find an equivalent semantics whose meaning-

carrying entities are simpler? In particular, is it possible to find such a semantics

in which meanings are sets of assignments, as in the case of Tarski’s semantics

for First Order Logic?

In [8], a negative answer to this question was found, and the corresponding

argument will now be briefly reported. In that paper, Cameron and Hodges

introduced the concept of “adequate semantics” for IF-Logic, which can be

easily adapted to Dependence Logic:

Definition 2.3.1. An adequate semantics for Dependence Logic is a function

µ that associates to each pair (φ,M), where φ is a formula and M is a model

whose signature includes that of φ, a value µM (φ), and that furthermore satisfies

the following two properties:

1. There exists a value TRUE such that, for all sentences φ and all modelsM ,

µM (φ) = TRUE if and only if M |= φ (according to the Game Theoretic

Semantics);

2. For any two formulas φ, ψ and for any sentence χ and any model M

such that µM (φ) = µM (ψ), if χ′ is obtained from χ by substituting an

occurrence of φ in χ with one occurrence of ψ then

µM (χ) = TRUE ⇔ µM (χ′) = TRUE.

The first condition states that the semantics µ coincides with the Game

Theoretic Semantics on sentences, and the second one is a very weak notion

of compositionality (which is easily verified to be implied by compositionality

in the frameworks of both [44] and [46], the latter of whom can be seen as a

descendant of that of [56]).

They also proved the following result:

13Because of Proposition 2.2.7, which is easily seen to hold for IF Logic too.
14More precisely, in Cameron and Hodges’ paper formulas are interpreted as double suits,

that is, pairs of downward-closed sets of sets of assignments which intersect only in the empty
set of assignment. This is because their logic admits a “dual negation” ¬φ as a primitive
operator, and hence their semantics has to keep track explicitly of the truth and the falsity

conditions of formulas. For our purposes, this difference is not significant: indeed, as Cameron
and Hodges proved in Proposition 5.2 of their paper, the number of double suits has the same
asymptotic behaviour of the number of suits modulo a factor of two.
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Definition 2.3.2. Let M be a first order model, and let k ∈ N. The a k-suit

over M is a set R of k-ary relations over Dom(M) which is downwards closed, in

the sense that

R ∈ R, S ⊆ R⇒ S ∈ R

for all R,S ∈ Dom(M)k.

Proposition 2.3.3. Let f(n) be the number of 1-suits over a model M with n

elements. Then

f(n) ∈ Ω
(

22n/(
√
π⌊n/2⌋)

)

Cameron and Hodges then verified that there exist finite models in which

every 1-suit corresponds to the interpretation of a formula with one free variable,

and hence that15

Proposition 2.3.4. Let µ be an adequate semantics for Dependence Logic, let

x be any variable, and let n ∈ N. Then there exists a model An with n elements,

such that

|{µAn
(φ(x)) : FV (φ) = {x}}| ≥ f(n).

Furthermore, the signature of An contains only relations.

From this and from the previous proposition, they were able to conclude

at once that, for any k ∈ N, there exists no adequate semantics (and, as a

consequence, no compositional semantics) µ such that µM (φ) is a set of k-tuples

whenever FV (φ) = {x}: indeed, the number of sets of k-tuples of assignments

in a model with n elements is 2(nk), and there exists a n0 ∈ N such that

f(n0) > 2(nk

0). Then, since µ is adequate we must have that |{µAn0
(φ(x)) :

FV (φ) = {x}}| ≥ f(n0) > 2n
k

0 , and this contradicts the hypothesis that µ

interprets formulas with one free variables as k-tuples.

However, as Cameron and Hodges observe, this argument does not carry over

if we let M range only over infinite structures: indeed, in Dependence Logic (or

in IF-Logic) there only exist countably many classes of formulas modulo choice

of predicate symbols16, and therefore for every model A of cardinality κ ≥ ℵ0

there exist at most ω · 2κ = 2κ distinct interpretations of IF-Logic formulas

in A. Hence, there exists an injective function from the equivalence classes of

formulas in A to 1-tuples of elements of A, and in conclusion there exists a

semantics which encodes each such congruence class as a 1-tuple.

15Again, Cameron and Hodges’ results refer to double suits and to IF-Logic rather than to
Dependence Logic, but it is easy to see that their arguments are still valid in the Dependence
Logic case.

16This is not the same of countably many formulas, of course, since the signature might
contain uncountably many relation symbols.
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Cameron and Hodges then conjectured that there exists no reasonable way

to turn this mapping into a semantics for IF-Logic:

Common sense suggests that there is no sensible semantics for [IF-

Logic] on infinite structures A, using subsets of the domain of A

as interpretations for formulas with one free variable. But we don’t

know a sensible theorem along these lines.

What I will attempt to do in the rest of this section is to give a precise, natu-

ral definition of “sensible semantics” according to which Cameron and Hodges’

conjecture may be turned into a formal proof: even though, by the cardinality

argument described above, it is possible to find a compositional semantics for

IF-Logic assigning sets of elements to formulas with one free variable, it will be

proved that it is not possible for such a semantics to be also “sensible” according

to this definition.

Furthermore, we will also verify that this property is satisfied by Team Se-

mantics, by Tarski’s semantics for First Order Logic and by Kripke’s semantics

for Modal Logic: this, in addition to the naturalness (at least, according to the

author’s intuitions) of this condition, will go some way in suggesting that this

is a property that we may wish to require any formal semantics to satisfy.

2.3.2 Sensible Semantics of Imperfect Information

Two striking features of Definition 2.3.1. are that

1. The class M of all first order models is not used in any way other than as

an index class for the semantic relation: no matter what relation exists

between two models M and N , no relation is imposed between the func-

tions µM and µN . Even if M and N were isomorphic, nothing could be

said in principle about the relationship between µM (φ) and µN (φ)!

2. The second part of the definition of adequate semantics does not describe

a property of the semantics µ itself, but rather a property of the synonymy

modulo models relation that it induces. This also holds for the notion of

compositionality of [44], albeit not for that of [46]; in any case, in neither

of these two formalisms morphisms between models are required to induce

morphisms between the corresponding “meaning sets”, and in particular

isomorphic models may well correspond to non-isomorphic meaning sets.

These observations justify the following definition:
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Definition 2.3.5. Let L be a partial algebra representing the syntax of our

logic17 for some fixed signature18 and let M be the category of the models of L

for the same signature19. Then a sensible semantics for it is a triple (S,Me, µ),

where

• S is a subcategory of the category Set of all sets;

• Me is a functor from M to S;

• For every M ∈ M, µM is a function from L to SM = Me(M) ∈ S, called

the meaning set for L in S

and such that

1. For all φ, ψ, χ ∈ L and for all M ∈ M, if µM (φ) = µM (ψ) and χ′ is

obtained from χ by substituting an occurrence of φ as a subterm of χ

with an occurrence of ψ, then χ′ ∈ L and µM (χ) = µM (χ′);

2. If f : M → N is an isomorphism between two models M,N ∈ M, then

µN = µM ◦ Me(f) for all formulas φ ∈ L.

The first condition is, again, a weak variant of compositionality, plus a ver-

sion of the Husserl Property of [44]: if two formulas have the same interpretation

in a model M then the operation of substituting one for the other sends gram-

matical expressions into grammatical expressions with the same interpretation

in M . One could strengthen this notion of compositionality after the fashion

of [46], by imposing an algebraic structure over each set SM with respect to

the same signature of L and by requiring each µM to be an homomorphism

between L and M , but as this is not necessary for the purpose of this work we

will content ourselves with this simpler statement.

The second condition, instead, tells us something about the way in which

isomorphisms between models induce isomorphisms between formula meanings,

that is, that the diagram of Figure 2.3.2. commutes whenever f is an iso-

morphism: if M and N are isomorphic through f then the interpretation

µN (φ) of any formula φ in the model N can be obtained by taking the in-

terpretation µM (φ) ∈ SM of φ in M and applying the “lifted isomorphism”

Me(f) : SM → SN .

17That is, the objects of L are the well-formed formulas of our logic and the operations of
L are its formation rules.

18If the notion of signature is applicable to the logic we are studying; otherwise, we implicitly
assume that all models and formulas have the same empty signature.

19The choice of morphisms in M is supposed to be given, and to be part of our notion of
model for the semantics which is being considered.
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M

N

f

M

SM

SN

Me(f)

S

L

µM

µN

Me

Figure 2.1: Diagram representation of Condition 2 of Definition 2.3.5 (sensible seman-
tics): if f : M → N is an isomorphism then µN (φ) = Me(f)(µN (φ)) for all formulas
φ ∈ L.

Before applying this definition to the case of Dependence Logic, let us verify

its naturality by checking that it applies to a couple of very well-known logics

with their usual semantics, as well as to Dependence Logic with team semantics:

Proposition 2.3.6. Let FO be the language of First Order Logic (for some

signature Σ which we presume fixed), and let M be the category of all first

order models for the same signature.

Furthermore, for every M ∈ M let SM be the disjoint union, for k ranging

over N, of all sets of k-tuples of elements of M20 and let Me be such that

Me(M) = SM for all M ∈ M and

Me(f)(H) = f↑(H) = {(f(m1) . . . f(mk)) : (m1 . . .mk) ∈ H} (2.14)

for all f : M → N and all H ∈ SM .

Now, let µ be the usual Tarski semantics, that is, for every model M and

formula φ(x1 . . . xk) with FV (φ) = {x1 . . . xk} let

µM (φ(x1 . . . xk)) = {(m1 . . .mk) ∈MK : M |=(x1:m1...xk:mk) φ(x1 . . . xk)}.

Then (S,Me, µ) is a sensible semantics for the logic (FO,M).

20In particular, this definition implies that SM contains distinct “empty sets of k-tuples”
for all k ∈ N.
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Proof. The first condition is an obvious consequence of the compositionality of

Tarski’s semantics: if Φ[φ] is a well-formed formula, φ is equivalent to ψ in the

model M and FV (φ) = FV (ψ) then Φ[ψ] is also a well-formed formula and it

is equivalent to Φ[φ] in M .

For the second one, it suffices to observe that if f : M → N is an isomor-

phism then

M |=s φ⇔ N |=f◦s φ (2.15)

for all assignments s and all First Order formulas φ.

Mutatis mutandis, the same holds for Kripke’s semantics for Modal Logic:

Proposition 2.3.7. Let ML be the language of modal logic and let M be the

category of all Kripke models M = (W,R, V ), where W is the set of possible

worlds, R is a binary relation over W and V is a valutation function from

atomic propositions to subsets of W . Furthermore, for any M = (W,R, V ) ∈ M
let SM be the powerset P(W ) of W , and, for every f : M → N , let Me(f) :

SM → SN be such that

Me(f)(X) = {f(w) : w ∈ X}

for all X ⊆W .

Finally, let µ be Kripke’s semantics choosing, for each model M = (W,R, V )

and each modal formula φ, the set µM (φ) = {w ∈ W : M |=w φ}: then

(S,Me, µ) is a sensible semantics for (ML,M).

Proof. Again, the first part of the definition is an easy consequence of the com-

positionality of µ. For the second part, it suffices to observe that, if f : M → N

is an isomorphism between Kripke models,

M |=w φ⇔ N |=f(w) φ

for all w in the domain of M , as required.

Finally, Hodges’ Team Semantics for Dependence Logic, whose meaning

sets are the disjoint unions over k ∈ N of the sets of all k-suits, is also sensible:

indeed, for all isomorphisms f : M → N , all sets of k-tuples X and all formulas

φ(x1 . . . xk), M |=X φ(x1 . . . xk) if and only if N |=f↑(X) φ(x1 . . . xk), where f↑
is defined as in Equation 2.14.

Let us now get to the main result of this work. First, we need a simple

lemma:
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Lemma 2.3.8. Let (S,Me, µ) be a sensible semantics for (D,M), where D
is the language of Dependence Logic (seen as a partial algebra) and M is the

category of all First Order models. Suppose, furthermore, that TRUE is a dis-

tinguished value such that µM (φ) = TRUE if and only if M |= φ for all models

M and sentences φ. Then µ is an adequate semantics for Dependence Logic.

Proof. Obvious from Definition 2.3.1. and Definition 2.3.5.

Theorem 2.3.9. Let M be the class of all infinite models for a fixed signature,

let SM be the set of all sets of k-tuples of elements of M (for all k), and for

every f : M → N let Me(f) be defined as

Me(f)(X) = {f↑(s) : s ∈ X}.

for all sets of tuples X ∈ SM .

Then, for every k ∈ N, there exists no function µ such that

1. For all models M and formulas φ(x) with only one free variable, µM (S)

is a set of k-tuples;

2. M |= φ ⇔ µM (φ) = TRUE for all M ∈ M, for all φ ∈ D and for some

fixed value TRUE;

3. (S,Me, µ) is a sensible semantics for Dependence Logic with respect to

M.

Proof. Suppose that such a µ exists for some k ∈ N: then, by Lemma 2.3.8, µ

is an adequate semantics for Dependence Logic.

Let f(n) be the number of suits in a finite model M with n elements, let

h(n) = 22(nk)k

, and let n0 be the least number (whose existence follows from

Proposition 2.3.3.) such that f(n0) > h(n0). Furthermore, let An0
be the

relational model with n0 elements, defined as in Proposition 2.3.4., for which

Cameron and Hodges proved that any compositional semantics for Dependence

Logic must assign at least f(n0) distinct interpretations to formulas with exactly

one free variable x.

Now, let the infinite model Bn0
be obtained by adding countably many

new elements {bi : i ∈ N} to An0
, by letting RBn0 = RAn0 for all relations

R in the signature of An0
and by introducing a new unary relation P with

PBn0 = Dom(An0
).

It is then easy to see that, with respect to Bn0
, our semantics must assign

at least f(n0) different meanings to formulas φ with FV (φ) = {x}: indeed, if
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φ(P ) is the relativization of φ with respect to the predicate P we have that

µAn0
(φ) = µAn0

(ψ) ⇔ µBn0
(φ(P )) = µBn0

(ψ(P )),

and we already know that |{µAn0
(φ) : FV (φ) = {x}}| = f(n0).

Now, suppose that µ is sensible and µBn0
(φ) is a set of k-tuples for every

formula φ(x): then, since every permutation π : Bn0
→ Bn0

that pointwise fixes

the element of An0
is an automorphism of Bn0

, we have that

Me(π)(µBn0
(φ)) = µBn0

(φ)

for all such π.

But then |µBn0
(φ) : FV (φ) = {x}| ≤ h(n0), since there exist at most 22(n0k)

k

equivalence classes of tuples with respect to the relation

b ≡ b
′ ⇔ ∃f : Bn0

→ Bn0
, f automorphism, s.t. f↑b = c.

Indeed, one may represent such an equivalence class by first specifying

whether it contains any element of An0
, then listing without repetition all el-

ements of An0
occurring in b, padding this into a list m to a length of k by

repeating the last element, and finally encoding each item bi of b as an integer

ti in 1 . . . k in such a way that

• If bi ∈ An0
, mti = bi and mti−1 6= mti whenever ti > 0;

• If bi 6∈ An0
, mti = mti−1 whenever ti > 0;

• ti = tj if and only if bi = bj .

In total, this requires 1 + k log(n0) + k log(k) bits, and therefore there exist at

most 2(n0k)
k such equivalence classes; and since each µBn0

(φ) is an union of

these equivalence classes, there are at most 22(n0k)
k

possible interpretations of

formulas with one free variable.

But this contradicts the fact that f(n0) > h(n0), and hence no such seman-

tics exists.

2.4 Extensions of Dependence Logic

In this last section of the chapter, we will briefly describe some variants of

Dependence Logic. We make no pretence of completeness: in particular, we

will not discuss Modal Dependence Logic [67] and its variants here, nor in any

other part of this thesis.
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2.4.1 Independence Logic

Independence Logic (I) is a formalism, developed by Grädel and Väänänen

([33]), which replaces the dependence atoms =(t1 . . . tn) of Dependence Logic

with21 independence atoms ~t2 ⊥~t1 ~t3, where the ~ti are tuples of terms not

necessarily of the same lengths and where

TS-indep: M |=X ~t2 ⊥~t1 ~t3 if and only if any for any two s1, s2 ∈ X with
~t1〈s1〉 = ~t1〈s2〉 there exists a s3 ∈ X with (~t1~t2)〈s1〉 = (~t1~t2)〈s3〉 and

(~t1~t3)〈s2〉 = (~t1~t3)〈s3〉.

This condition is best understood in terms of informational independence: in

brief, M |=X ~t2 ⊥~t1 ~t3 if and only if, in X , all the information about the value

of ~t3 which can be inferred by the values of ~t1 and ~t2 can already be inferred by

the value of ~t1 alone.

The downwards closure property of Proposition 2.2.7 does not transfer to

the case of Independence Logic: for example, the team

X =

x y

s1 0 0

s2 0 1

s3 1 0

s4 1 1

satisfies the independence statement x ⊥∅ y,
22, but the same cannot be said of

its subset

Y =

x y

s1 0 0

s4 1 1

in which, as it is easy to see, x and y are not informationally independent.

As pointed out in [33], a dependence atom =(t1 . . . tn) can be expressed

in Independence Logic as tn ⊥t1...tn−1
tn; and moreover, Theorems 2.2.10 and

2.2.13 can be adapted to the case of Independence Logic, although in the case of

the second one we lose the condition that R occurs only negatively, and hence

we have that

Theorem 2.4.1. Any Dependence Logic sentence is equivalent to some Inde-

pendence Logic sentence, and any Independence Logic sentence is equivalent to

21In this, Independence Logic can be thought of as a variant of Dependence Logic through
generalized dependence atoms, in the sense suggested by Jarmo Kontinen in the conclusion of
[48] and made explicit by Kuusisto in [53].

22As a shorthand, we will occasionally write ~t1 ⊥ ~t2 instead of ~t1 ⊥∅
~t2.
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some Dependence Logic sentence.

However, the problem of finding the equivalent of Theorem 2.2.14 for the

case of Independence Logic in order to characterize the definable classes of teams

of this logic was mentioned in [33] as an open problem:

The main open question raised by the above discussion is the follow-

ing, formulated for finite structures:

Open Problem: Characterize the NP properties of teams that cor-

respond to formulas of independence logic.

In Chapter 4, we will answer this question by proving that all Σ1
1 properties

(and hence, by Fagin’s Theorem, all NP properties) of teams corresponds to

formulas of Independence Logic.23

2.4.2 Intuitionistic and Linear Dependence Logic

In [3], Abramsky and Väänänen examined the adjoints of Dependence Logic

conjunction and disjunction. In other words, they introduced two downwards

closed connectives ψ1 → ψ2 and ψ1 ⊸ ψ2 such that

φ ∧ ψ |= θ ⇔ φ |= ψ → θ

and

φ ∨ ψ |= θ ⇔ φ |= ψ ⊸ θ

respectively.

The satisfaction conditions corresponding to these two requirements are:

TS-→: M |=X ψ → θ if and only if for all Y ⊆ X , M |=Y ψ ⇒ M |=Y θ;

TS-⊸: M |=X ψ ⊸ θ if and only if for all Y such that M |=Y ψ, M |=X∪Y θ.

Because of the similarity between these two rules and the semantics for impli-

cation in intuitionistic and linear logic respectively, the → operator has been

dubbed the “intuitionistic implication” and the ⊸ operator has been dubbed

the “linear implication”, and the languagesD(→) and D(⊸) obtained by adding

them to Dependence Logic have been dubbed Intuitionistic Dependence Logic

and Linear Dependence Logic respectively.

23This result, as well as all the content of that chapter except Section 4.6, has been published
by the author in [30].



36 Chapter 2. Logics of Imperfect Information

One interesting aspect of the linear implication operator, mentioned in [3],

is that it can be used to decompose a dependence atom in terms of constancy

atoms: indeed, for all models M , teams X , integers n ∈ N and terms t1 . . . tn,

one can verify that

M |=X=(t1 . . . tn) ⇔M |=X=(t1) → (. . .→ (=(tn−1) →=(tn)) . . .).

Intuitionistic and Linear Dependence Logic are strictly more expressive than

Dependence Logic: in particular, the set of sentences of these languages is closed

by contradictory negation, since for any model M and sentence φ

M |={∅} φ→ ⊥ ⇔ M |={∅} φ ⊸ ⊥ ⇔M 6|={∅} φ,

and therefore Intuitionistic Dependence Logic and Linear Dependence Logic

both contain Σ1
1 ∪ Π1

1. In [74], Yang proved that Intuitionistic Dependence

Logic is, in fact, equivalent to full Second Order Logic.

2.4.3 Team Logic

Team Logic T [66, 65] extends Dependence Logic with a contradictory negation

operator ∼ φ whose semantics is given by

TS-∼: M |=X∼ φ if and only if M 6|=X φ.

It is a very expressive formalism, which is equivalent to full Second Order Logic

over sentences; and furthermore, as Kontinen and Nurmi proved in [49], all

second-order relations which are definable in Second Order Logic correspond to

classes of teams which are definable in Team Logic.

The language of Team Logic is somewhat different from that of Dependence

Logic or of most other logics of imperfect information. The disjunction φ∨ψ of

Dependence Logic, with the corresponding rule TS-∨, is written in Team Logic

as φ⊗ ψ; instead, φ ∨ ψ in Team Logic represents ∼ ((∼ φ) ∨ (∼ ψ)), which is

easily seen to be equivalent to the “classical” disjunction which we defined as

φ⊔ψ in Subsection 2.2.1. Similarly, the universal quantifier ∀xφ of Dependence

Logic is written in Team Logic as !xφ, and ∀xφ is instead taken as a shorthand

for ∼ (∃x(∼ φ)). One surprising aspect of Team Logic is that a sentence φ ∈ T
can have four possible truth values:

⊥: No team satisfies φ;

⊤: Both ∅ and {∅} satisfy φ;

1: {∅} satisfies φ, but ∅ does not;
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0: ∅ satisfies φ, but {∅} does not.

Team Logic is the most expressive logic of imperfect information which we

will discuss in this work. It is a remarkably powerful formalism, about which

much is not known yet; and while this work is mostly concerned with more

treatable sublogics, it is the hope of the author that the ideas discussed here

(and, in particular, the doxastic interpretation of Chapter 7) may provide some

incentive for the study of this intriguing and powerful logic.





Chapter 3

Announcement Operators

In this chapter, we will examine and generalize an operator defined by Kontinen

and Väänänen in [50]. As we will see, this operator has a natural game-theoretic

interpretation in terms of announcements. This will be our first hint towards

the doxastic interpretation of Team Semantics which will be one of the main

themes of this thesis.

3.1 Some Strange Operators

3.1.1 ∃1, ∀1 and δ1

In [50], the ∃1 and ∀1 quantifiers were defined as

TS-∃1: M |=X ∃1xφ if and only if there exists a m ∈ Dom(M) such that

M |=X[m/x] φ;

TS-∀1: M |=X ∀1xφ if and only if for all m ∈ Dom(M), M |=X[m/x] φ

where X [m/x] is the team {s[m/x] : s ∈ X}.
Kontinen and Väänänen then observed that, for any variable x and formula

φ, ∃1xφ is equivalent to ∃x(= (x) ∧ φ); and, furthermore, that – because of

Theorem 2.2.14 – adding the ∀1 quantifiers to the language of Dependence Logic

does not increase its expressive power, even with respect to open formulas.

However, this left open the problem of whether it is possible to define the

∀1 quantifier in terms of the connectives of Dependence Logic: and at the end

of that paper, Kontinen and Väänänen mentioned that

It remains open whether the quantifier ∀1 is “uniformly” definable

in the logic D.

39
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We will answer this question later in this chapter, in Subection 3.3.2.

In this subsection, instead, we will begin our study of the ∀1x quantifier by

introducing a new operator, which will be shown to be strictly related to it:1

Definition 3.1.1. For any formula φ and variable x, let δ1xφ be a formula

with Free(δ1xφ) = Free(φ) ∪ {x} and such that

TS-δ1: M |=X δ1xφ if and only if for all m ∈ Dom(M), M |=X(x=m) φ,

where X(x = m) is the team {s ∈ X : s(x) = m}.

We write D(δ1) for the logic obtained by adding the δ1 operator to Depen-

dence Logic.

The following result shows that δ1 and ∀1 are reciprocally definable:

Proposition 3.1.2. For any formula φ of Dependence Logic, ∀1xφ ≡ ∀xδ1xφ
and δ1xφ ≡ ∀1y(x 6= y ∨ φ), where y is a variable which does not occur in

Free(φ).

Proof. Let M be any first-order model, let X be any team, and let φ be any

formula with y 6∈ Free(φ). Then, for all X with Free(φ) ⊆ Dom(X) ∪ {x},

M |=X ∀xδ1xφ⇔M |=X[M/x] δ
1xφ⇔ for all m ∈ Dom(M),M |=X[M/x](x=m) φ⇔

⇔ for all m ∈ Dom(M),M |=X[m/x] φ⇔M |=X ∀1xφ.

and for all X with Free(φ) ⊆ Dom(X),

M |=X ∀1y(x 6= y ∨ φ) ⇔ for all m ∈ Dom(M),M |=X[m/y] x 6= y ∨ φ⇔
⇔ for all m ∈ Dom(M) ∃ Ym, Zm such that X [m/y] = Ym ∪ Zm,

if s ∈ Ym then s(x) 6= m and M |=Zm
φ⇔

⇔ for all m ∈ Dom(M),M |=X[m/y](x=m) φ⇔
⇔ for all m ∈ Dom(M),M |=X(x=m) φ⇔M |=X δ1xφ

where we used the fact that y 6∈ Free(φ).

Since Kontinen and Väänänen proved that the ∀1x quantifier does not in-

crease the expressive power of Dependence Logic, from the previous proposition

it follows immediately that the δ1x operator does not increase it either.

1An interesting application of these δ1 operators can be found in Dotlačil’s paper [16], in
which they are used to formalize the distributive interpretation of nominal predicates in the
framework of Team Logic.
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However, as the next result shows, it is possible to give a simpler, and con-

structive, proof that each formula of D(δ1) can be translated into Dependence

Logic:

Proposition 3.1.3. Let φ be any Dependence Logic formula. Then there exists

a Dependence Logic formula φ∗ such that φ∗ ≡ δ1xφ.

Proof. The proof is a simple structural induction on φ:

1. If φ is a first order literal then let φ∗ = φ. Indeed,

M |=X δ1xφ⇔ ∀m ∈ Dom(M),M |=X(x=m) φ⇔
⇔ ∀m ∈ Dom(M), ∀s ∈ X(x = m),M |={s} φ⇔ ∀s ∈ X,M |={s} φ⇔ X |= φ.

2. If φ is an atomic dependence atom =(t1 . . . tn), let φ∗ be =(x, t1 . . . tn).

Indeed,

M |=X δ1x =(t1 . . . tn) ⇔ ∀m ∈ Dom(M),M |=X(x=m)=(t1 . . . tn) ⇔
⇔ ∀m ∈ Dom(M), ∀s, s′ ∈ X(x = m), if ti〈s〉 = ti〈s′〉 for i = 1 . . . n− 1 then

tn〈s〉 = tn〈s′〉 ⇔
⇔ ∀s, s′ ∈ X, if s(x) = s′(x), ti〈s〉 = ti〈s′〉 for i = 1 . . . n− 1 then

tn〈s〉 = tn〈s′〉 ⇔M |=X=(x, t1 . . . tn).

3. If φ = ψ ∨ θ, let φ∗ = ψ∗ ∨ θ∗: indeed,

M |=X δ1x(ψ ∨ θ) ⇔ ∀m ∈ Dom(M),M |=X(x=m) ψ ∨ θ ⇔
⇔ ∀m ∈ Dom(M) ∃Ym, Zm such that X(x = m) = Ym ∪ Zm,M |=Ym

ψ and

M |=Zm
θ ⇔

⇔ ∃Y, Z such that X = Y ∪ Z and ∀m ∈ Dom(M),M |=Yx=m
ψ and

M |=Zx=m
θ ⇔

⇔ ∃Y, Z such that X = Y ∪ Z,M |=Y δ1xψ and M |=Z δ
1xθ ⇔

⇔M |=X ψ∗ ∨ θ∗

where for the passage from the second line to the third one we take Y =
⋃

m∈Dom(M) Ym and Z =
⋃

m∈Dom(M) Zm, and for the passage from the third

line to the second one we take Ym = Yx=m and Zm = Zx=m.
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4. If φ = ψ ∧ θ, let φ∗ = ψ∗ ∧ θ∗: indeed,

M |=X δ1x(ψ ∧ θ) ⇔ ∀m ∈ Dom(M),M |=X(x=m) ψ ∧ θ ⇔
⇔ ∀m ∈ Dom(M),M |=X(x=m) ψ and M |=X(x=m) θ ⇔
⇔M |=X δ1xψ and M |=X δ1xθ ⇔
⇔M |=X ψ∗ ∧ θ∗.

5. If φ = ∃yψ for some variable y 6= x,2 we let φ∗ = ∃yψ∗: indeed,

M |=X δ1x∃yψ ⇔ ∀m ∈ Dom(M),M |=X(x=m) ∃yψ ⇔
⇔ ∀m ∈ Dom(M) ∃Fm : X(x = m) → M s.t. M |=X(x=m)[Fm/y] ψ ⇔
⇔ ∃F : X →M s.t. ∀m ∈ Dom(M),M |=X[F/y](x=m) ψ ⇔
⇔ ∃F : X →M s.t. M |=X[F/y] δ

1xψ ⇔M |=X ∃yψ∗

where, for the passage from the second line to the third one, we take the

function F defined as

∀s ∈ X,F (s) = Fs(x)(s)

and, for the passage from the third line to the second one, we take for

each Fm the restriction of F to X(x = m).

6. If φ = ∀yψ for some variable y 6= x, we let φ∗ = ∀yψ∗. Indeed,

M |=X δ1x∀yψ ⇔
⇔ ∀m ∈ Dom(M),M |=X(x=m) ∀yψ ⇔ ∀m ∈ Dom(M),M |=X(x=m)[M/y] ψ ⇔
⇔ ∀m ∈ Dom(M),M |=X[M/y](x=m) ψ ⇔M |=X[M/y] δ

1xψ ⇔M |=X ∀yψ∗.

Therefore, the logics D, D(∀1) and D(δ1) define exactly the same classes of

teams over all models and all signatures.

The δ1 operators – and, hence, the ∀1 quantifiers – are uniformly definable

in Intuitionistic Dependence Logic: indeed, for all formulas φ, models M and

2If y = x, we define (∃xψ)∗ := (∃zψ[z/x])∗ and (∀xψ)∗ := (∀zψ[z/x])∗ for some new
variable z.
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all teams X it holds that

M |=X=(x) → φ⇔ for all Y ⊆ X, if M |=X=(x) then M |=X φ⇔
⇔ for all m ∈ Dom(M),M |=X(x=m) φ⇔M |=X δ1xφ.

This suggests that, as for the case of intuitionistic implication, the δ1 oper-

ators may be used to reduce dependency atoms =(t1 . . . tn) to constancy atoms

=(ti). This is indeed the case:

Proposition 3.1.4. Let x1 . . . xn be variables. Then

=(x1 . . . xn) ≡ δ1x1 . . . δ
1xn−1 =(xn).

Proof.

M |=X δ1x1 . . . δ
1xn−1 =(xn) ⇔

⇔ ∀m1 . . .mn−1 ∈ Dom(M),M |=X(x1=m1...xn−1=mn−1)=(xn) ⇔
⇔ ∀m1 . . .mn−1 ∈ Dom(M), s, s′ ∈ X, if s(x1) = s′(x1) = m1, . . .

. . . , s(xn−1) = s′(xn−1) = mn−1 then s(xn) = s′(xn) ⇔
⇔M |=X=(x1 . . . xn).

In the same way, one may decompose dependency atoms of the form

=(t1 . . . tn) as

∃x1 . . . xn−1

((
n−1∧

i=1

xi = ti

)

∧ δ1x1 . . . δ
1xn−1 =(tn)

)

or introduce operators δ1(t) with the obvious semantics; hence, by removing

non-constant dependency atoms from Dependence Logic and adding the δ1 op-

erators, one may obtain a formalism with the same expressive power of Depen-

dence Logic, but in which constancy takes the place of functional dependency.

3.1.2 ∀κ and δκ

∀1 and δ1 can be seen as representatives of a proper class of operators {∃κ, ∀κ, δκ :

κ ∈ Card}:

Definition 3.1.5. For any (finite or infinite) cardinal κ, for every formula φ

and for every variable x, let δκxφ and ∀κxφ be formulas with Free(δκxφ) =
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Free(φ) ∪ {x}, Free(∀κxφ) = Free(φ)\{x}, and satisfaction conditions

TS-∀κ: M |=X ∀κxφ if and only if for all A ⊆ Dom(M) such that |A| ≤ κ,

M |=X[A/x] φ.

TS-δκ: M |=X δκxφ if and only if for all A ⊆ Dom(M) such that |A| ≤ κ,

M |=X(x∈A) φ;

where X(x ∈ A) = {s ∈ X : s(x) ∈ A} and X [A/x] = {s[m/x] : s ∈ X,m ∈ A}.

Again, we can define uniformly δκ by means of ∀κ and vice versa:

Proposition 3.1.6. For all cardinals κ, formulas φ ∈ D, variables x and teams

X,

∀κxφ ≡ ∀xδκxφ.

Furthermore, if y 6∈ Free(φ) then

δκxφ ≡ ∀κy(y 6= x ∨ φ).

Proof.

M |=X ∀xδκxφ⇔M |=X[M/x] δ
κx⇔ ∀A ⊆κ Dom(M),M |=X[M/x](x∈A) φ⇔

⇔ ∀A ⊆κ Dom(M),M |=X[A/x]⇔M |=X ∀κxφ

and

M |=X ∀κy(y 6= x ∨ φ) ⇔ ∀A ⊆κ Dom(M),M |=X[A/y] (y 6= x ∨ φ) ⇔
⇔ ∀A ⊆κ Dom(M),M |=X[A/y](y=x) φ⇔ ∀A ⊆κ Dom(M),M |=X(x∈A) φ⇔
⇔M |=X δκxφ,

where we used the fact that y 6∈ Free(φ) and we used A ⊆κ Dom(M) as a

shorthand for “A ⊆ Dom(M) and |A| ≤ κ”.

For every n ∈ N0, the quantifier ∀n can be uniformly defined in terms of ∀1

and the operator δ1 can be uniformly defined in terms of δn:

Proposition 3.1.7. For every n ∈ N0 and for all φ ∈ D such that Free(φ) ∩
{x1 . . . xn} = ∅,

∀nxφ ≡ ∀1x1 . . . ∀1xn∀x
(

n∧

i=1

(x 6= xi) ∨ φ
)

.
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Proof.

M |=X ∀1x1 . . . ∀1xn∀x
(

n∧

i=1

(x 6= xi) ∨ φ
)

⇔

⇔ ∀m ∈ Dom(M)n,M |=X[M/x][m/x]

n∧

i=1

(x 6= xi) ∨ φ⇔

⇔ ∀m1 . . .mn ∈ Dom(M),M |=X[M/x](x∈{m1...mn}) φ⇔
⇔ ∀A ⊆n B,M |=X[A/x] φ⇔M |=X ∀nxφ.

Proposition 3.1.8. For every n ∈ N0 and for every formula φ ∈ D,

δ1xφ ≡ δnx((=(x) ∧ φ) ∨ . . . ∨ (=(x) ∧ φ)
︸ ︷︷ ︸

n times

).

Proof.

M |=X δnx((=(x) ∧ φ) ∨ . . . ∨ (=(x) ∧ φ)
︸ ︷︷ ︸

n times

) ⇔

⇔ ∀A ⊆n Dom(M),M |=X(x∈A) ((=(x) ∧ φ) ∨ . . . ∨ (=(x) ∧ φ)
︸ ︷︷ ︸

n times

) ⇔

⇔ ∀A ⊆n Dom(M), X(x ∈ A) = X1 ∪ . . . ∪Xn s.t. M |=Xi
=(x) ∧ φ for i = 1 . . . n⇔

⇔ ∀m1 . . .mn ∈ Dom(M),M |=X(x=mi) φ for all i = 1 . . . n⇔M |=X δ1xφ

However, this changes if we consider operators of the form ∀κxφ, where κ is

an infinite cardinal:

Proposition 3.1.9. For any infinite κ, D(∀κ) is strictly more expressive than

D.

Proof. For every model M , M |={∅} ∀κx∃y(=(y)∧x 6= y) if and only if |M | > κ.

But D and all logics semantically equivalent to it satisfy the Löwenheim-

Skolem Theorem (Theorem 2.2.12 in this work), and therefore the above formula

is not expressible in Dependence Logic.
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3.2 A Game Theoretic Semantics for Announce-

ment Operators

As we saw in Subsection 2.2.3, Dependence Logic has also a Game Theoretic

Semantics, which is equivalent to its usual Team Semantics in the sense that a

team X satisfies a formula φ if and only if the existential player E has a uniform

winning strategy for the game GMX (φ).

In this section, we will adapt this Game Theoretic Semantics to the case

of the δκ operators; and as we will see, this will allow us to find a natural

interpretation of these operators in terms of public announcements.

3.2.1 Game Theoretic Semantics for D(δ1)

In this subsection, we will extend the Game Theoretic Semantics for Dependence

Logic to D(δ1).

Definition 3.2.1. Let φ be a formula in D(δ1). Then Player(φ) and SuccM (φ)

are defined precisely as in Definitions 2.2.17 and 2.2.18 respectively, with the

additional conditions that if φ is of the form δ1xψ for some variable x and some

formula ψ then Player(φ) = A and SuccM (φ, s) = {(ψ, s)}.

As we mentioned, the δ1x operator will be interpreted as a public announce-

ment of the value of the variable x. Such an announcement corresponds to a

weakening of the uniformity condition for our games: more precisely, as the

proof of Proposition 3.1.3 illustrates, after such an announcement E’s strategy

may depend on the value of x even where dependence atoms forbid it.

More formally, we will weaken Definition 2.2.21 in the following way:

Definition 3.2.2. Let GMX (φ) be a game for φ ∈ D(δ1), and let ~p and ~q be two

plays of it. Then ~p and ~q are δ1-similar if and only if for all i, j ∈ N such that

pi = (δ1xψ, s) and qj = (δ1xψ, s′) for the same instance of δ1xψ it holds that

s(x) = s′(x).

Definition 3.2.3. Let GMX (φ) be a game for φ ∈ D(δ1), and let P be a set of

plays of it. Then P is uniform if and only if for all δ1-similar plays ~p, ~q ∈ P of the

same length n and for all i, j ∈ N pi = (=(t1 . . . tn), s) and qj = (=(t1 . . . tn), s
′)

for the same instance of =(t1 . . . tn) it holds that

(t1 . . . tn−1)〈s′1〉 = (t1 . . . tn−1)〈s′2〉 ⇒ tn〈s′1〉 = tn〈s′2〉.

As before, a strategy f is uniform if and only if the set of all plays in which E

follows f is uniform.
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Apart from these minor modifications, our semantic games are defined pre-

cisely as in Subsection 2.2.3.

All that is left for us to do is to prove the equivalence between this Game

Theoretic Semantics and the Team Semantics for D(δ1):

Theorem 3.2.4. Let M be a first-order model, let X be a team, and let φ be

any D(δ1) formula. Then M |=X φ if and only if the existential player E has a

uniform winning strategy for GMX (φ).

Proof. The proof is by structural induction over φ. All cases except δ1 are

treated precisely as in Theorem 2.2.28, so we will only describe how to deal

with this new one.

Suppose that M |=X δ1xψ. Then, by definition, for all m ∈ Dom(M) we

have that M |=X(x=m) ψ. By induction hypothesis, this implies that for every

m ∈ M there exists an uniform winning strategy fm for E in GMX(x=m)(ψ);

and furthermore, without loss of generality, we can assume that if ψ contains a

subformula of the form ∀xθ or ∃xθ for the same θ then all fm behave exactly

in the same way over the subgame corresponding to this subformula.3

Then define the strategy f for Player II in GMX (δ1xψ) as4

• For all subformulas θ of ψ and all assignments s, fθ(s) = f
s(x)
θ (s).

This strategy is winning, since any complete play ~p = p1 . . . pn of GMX (δ1xψ)

in which E follows f contains, for some m ∈ Dom(M), a play of GMX(x=m)(ψ) in

which E follows fm; and it is also uniform, since any two δ1-similar complete

plays assign the same value to the variable x, and hence are played according

to the same fm, and hence respect the uniformity condition.

Conversely, suppose that E has a uniform winning strategy f for GMX (δ1xψ),

let m ∈ M , and define the strategy fm for GMX(x=m)(ψ) as the restriction of f

to the positions of this game.

Then each fm is a winning strategy for GMX(x=m)(ψ), because f itself is

winning and each complete play ofGMX(x=m)(ψ) in which E follows fm is included

in a complete play for GMX (δ1xψ) in which E follows f ; and furthermore, it is

uniform, because any two plays ~p0 and ~q0 of GMX(x=m)(ψ) in which E follows

fm are included in two complete plays ~p and ~q of GMX (δ1xψ) in which E follows

f and in which the initial positions assign the value m to x. Hence, if ~p0 and

~q0 are δ1-similar over GMX(x=m)(ψ) then ~p and ~q are δ1-similar over GMX (δ1xψ),

and in conclusion they satisfy the uniformity condition.

3In brief, this follows from the fact that Locality (Proposition 2.2.8) also holds for D(δ1),
and hence the value of the variable x is entirely irrelevant as far as the winning conditions of
∀xθ or ∃xθ are concerned.

4Since Player(δ1xψ) = A, there is no need to specify a successor for the initial position.



48 Chapter 3. Announcement Operators

Thus, by induction hypothesis, M |=X(x=m) ψ for all m ∈ Dom(M), and

therefore M |=X δ1xψ.

Because of this Game Theoretic Semantics, δ1 may be called a “announce-

ment operator”: anthropomorphizing somewhat the two agents of the game,

one can think of δ1xφ as the subgame in which first the value of x is announced

from A to E and then the game corresponding to φ is played.

3.2.2 Game Theoretic Semantics for δκ

In order to generalize the above approach to δκ operators for κ > 1, we need

to make a few additional modifications to our games. As before, we will set

Player(δκx, s) = A; but now, game positions will not be pairs (ψ, s) but triples

(ψ, s, ~ρ) where ~ρ is a annotation sequence representing the public announcements

made by A:

Definition 3.2.5. Let M be a first-order model and let v be a variable. An

annotation ρ for v is an expression (v ∈ A) where A ⊆ Dom(M). An annotation

sequence ~ρ is simply a tuple of annotations ρ1 . . . ρn.

The initial positions of a game GMX (φ) will be of the form (φ, s, ∅) for s ∈ X

where ∅ represents the empty annotation sequence. The winning positions will

be those of the form (λ, s, ~ρ) for any assignment s and annotation sequence

~ρ. Furthermore, the set of the successors of a given position will be given as

follows:

Definition 3.2.6. Let M be a first order model, let ψ be a formula of D(δκ),

let s be an assignment over M and let ~ρ be an annotation. Then the set

SuccM (ψ, s, ~ρ) of the successors of the position (ψ, s,A) is defined as follows:

1. If ψ is a first order literal κ then

SuccM (ψ, s, ~ρ) =

{ {(λ, s, ~ρ)} if M |=s κ in First Order Logic;

∅ otherwise

where λ stands for the empty string;

2. If ψ is a dependence atom then SuccM (ψ, s, ~ρ) = {(λ, s, ~ρ)};

3. If ψ is of the form ∃vθ or ∀vθ then SuccM (ψ, s, ~ρ) = {(θ, s[m/v], ~ρ) : m ∈
Dom(M)};

4. If ψ is of the form θ1∨θ2 or θ1∧θ2 then SuccM (ψ, s, ~ρ) = {(θ1, s, ~ρ), (θ2, s, ~ρ)};
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5. If ψ is of the form δκxθ then SuccM (ψ, s, ~ρ) = {(θ, s, ~ρ(x ∈ A) : s(x) ∈
A ⊆ Dom(M), |A| ≤ κ}.

Again, the definition of uniform strategy requires some modifications:

Definition 3.2.7. Let GMX (φ) be a game for φ ∈ D(δκ), and let ~p and ~q be two

plays of it. Then ~p and ~q are δκ-similar if and only if for all i, j ∈ N such that

pi = (ψ, s, ~ρ) and qj = (ψ, s′, ~ν) for the same instance of ψ then ~ρ = ~ν.

Definition 3.2.8. Let GMX (φ) be a game for φ ∈ D(δκ), and let P be a set of

plays of it. Then P is uniform if and only if for all δκ-similar plays ~p, ~q ∈ P

of the same length n and for all i, j ∈ N pi = (=(t1 . . . tn), s, ~ρ) and qj = (=

(t1 . . . tn), s
′, ~ν) for the same instance of =(t1 . . . tn) it holds that

(t1 . . . tn−1)〈s′1〉 = (t1 . . . tn−1)〈s′2〉 ⇒ tn〈s′1〉 = tn〈s′2〉.

As usual, a strategy f is uniform if and only if the set of all plays in which E

follows f is uniform.

Once again, we can prove that this Game Theoretic Semantics is equivalent

to the Team Semantics for D(δκ):

Theorem 3.2.9. Let M be a first-order model, let X be a team, and let φ be

any D(δ1) formula. Then M |=X φ if and only if the existential player E has a

uniform winning strategy for GMX (φ).

Proof. We only describe how to deal with the new case.

Suppose that M |=X δκxψ. Then, by definition, we have that for all subsets

A ⊆κ Dom(M) it holds that M |=X(x∈A) ψ. Therefore, by induction hypothesis,

for each such A there exists a uniform winning strategy fA for E in GMX(x∈A)(ψ).

Let us define the strategy f for E in GMX (δκxφ) in such a way that

• fθ(s, (x ∈ A)~ρ) = fAθ (s, ~ρ)

for all subformulas θ, all assignments s, all A ⊆κ Dom(M) and all annotation

sequences ~ρ.

This strategy is winning, because each play of GMX (δκxψ) in which E follows

it contains, for some A ⊆κ Dom(M), a play of GMX(x∈A)(ψ) in which E follows

fA; and it is uniform, as any two δκ-similar plays must have the same initial

annotation for x and therefore must be played according to the same fA, which

we know by hypothesis to be uniform.
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Conversely, suppose that E has a uniform winning strategy for GMX (δκxψ):

then for each A ⊆κ Dom(M) such that {s(x) : s ∈ X} ∩ A 6= ∅ E has a

uniform winning strategy for GMX(x∈A)(ψ), and hence by induction hypothe-

sis M |=X(x∈A) ψ for all such A. If instead |A| ≤ κ and {s(x) : s ∈ X} ∩A = ∅
then M |=X(x∈A) ψ trivially, and thereforeM |=X(x∈A) ψ for all A with |A| ≤ κ.

So, in conclusion, M |=X δκxψ, as required.

Again, the intuition is that of an announcement, but this time it is a partial

one: in the subgame corresponding to δκxψ, A does not allow E full access to

the value of x, but he chooses a set A of cardinality (at most) κ and gives her

the (true) information that x ∈ A.

3.3 Some Properties of Public Announcements

In this section, we will examine a little more in-depth the properties of Depen-

dence Logic augmented with the announcement operators. First, we will adapt

to this framework the Ehrenfeucht-Fräıssé games for Dependence Logic devel-

oped by Jouko Väänänen ([65]); then we will prove that the announcement

operator δ1 and the ∀1 quantifier are not uniformly definable in Dependence

Logic, thus solving an open problem mentioned at the end of [50].

3.3.1 An Ehrenfeucht-Fräıssé game for D(⊔, ∀κ)
In ([65], §6.6), the following semiequivalence relation between models and teams

was introduced:

Definition 3.3.1. Let M , N be two models, and let X , Y be teams over M

and N respectively. Then (M,X) ⇛ (N,Y ) if and only if

M |=X φ⇒ N |=Y φ

for all Dependence Logic formulas φ.

In this section, I will adapt the Ehrenfeucht-Fräıssé game for Dependence

Logic to D(⊔, ∀κ), where ⊔ is the classical disjunction of Definition 2.2.4 which,

for the purposes of this section, will be taken as a basic connective of our

language.

The following definitions are the obvious modifications of those of ([65],

§6.6):

Definition 3.3.2. Let φ ∈ D(⊔, ∀κ). Then its rank qr(φ) is defined inductively

as follows:
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• If φ is a literal, qr(φ) = 0;

• qr(φ ∨ ψ) = max(qr(φ), qr(ψ)) + 1;

• qr(φ ∧ ψ) = max(qr(φ), qr(ψ));

• qr(φ ⊔ ψ) = max(qr(φ), qr(ψ));

• qr(∃xψ) = qr(ψ) + 1;

• qr(∀xψ) = qr(ψ) + 1;

• qr(∀κxψ) = qr(ψ) + 1.

Definition 3.3.3.

Dn(⊔, ∀κ) = {φ : φ is a formula of D(⊔, ∀κ) and qr(φ) ≤ n}.

Definition 3.3.4. Let M , N be two models, and let X , Y be teams over M

and N respectively. Then (M,X) ⇛κ (N,Y ) if and only if

M |=X φ⇒ N |=Y φ

for all formulas φ ∈ D(⊔, ∀κ).

Definition 3.3.5. Let M , N be two models, and let X , Y be teams over M

and N respectively. Then (M,X) ⇛κ
n (N,Y ) if and only if

M |=X φ⇒ N |=Y φ

for all formulas φ ∈ Dn(∀κ,⊔).

Lemma 3.3.6. Let M , N , X and Y be as above. Then (M,X) ⇛κ (N,Y ) if

and only if (M,X) ⇛κ
n (N,Y ) for all n ∈ N.

The following proposition is proved analogously to the corresponding result

for Dependence Logic ([65], Proposition 6.48):

Proposition 3.3.7. A class K of models (over the same, finite, signature Σ)

with teams in a fixed domain V is definable in Dn(⊔, δκ) if and only if it is

closed under ⇛κ
n.

Proof. Suppose that K is {(M,X) : Dom(X) = V,M |=X φ} for some formula

φ ∈ Dn(⊔, δκ). If (M,X) ∈ K and (M,X) ⇛κ
n (N,Y ) then N |=Y φ too and

hence (N,Y ) ∈ K, and therefore K is closed under the ⇛κ
n relation.
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Conversely, suppose that K is closed under the ⇛κ relation: then for every

model (M,X) ∈ K and for every (N,Y ) 6∈ K there exists a formula φMX,NY

of rank ≤ n such that M |=X φMX,NY but N 6|=Y φMX,NY . Then consider the

formula

φ :=
⊔

(M,X)∈K

∧

(N,Y ) 6∈K

φMX,NY .

As there exist only finitely many logically different formulas

ψ ∈ Dn(⊔, δκ)

with Free(ψ) ⊆ V , the conjunction and the classical disjunction in φ are finite

and φ ∈ Dn(⊔, δκ).

Furthermore, K = {(M,X) : M |=X φ}. Indeed, if (M,X) ∈ K then

for all (N,Y ) 6∈ K it holds that M |=X φMX,NY , and if (N,Y ) 6∈ K then

N 6|=Y φMX,NY for any (M,X) ∈ K.

Then, for n ∈ N, we can define the EFκn (M,X,N, Y ) game as follows:

Definition 3.3.8. Let M , N be two models, let X , Y be teams with the same

domain over M and N respectively, let κ be any (finite or infinite) cardinal and

let n ∈ N. Then the game EFκn (M,X,N, Y ) is defined as follows:

• There are two players, which we will once again call A (Abelard) and E

(Eloise);

• x1 . . . xn are variables which do not occur in Dom(X) = Dom(Y ).

• The set P of all positions of the game is

{(X i, Y i, i) : X i is a team on M,Y i is a team on N and i ∈ 0 . . . n};

• The starting position is (X,Y, 0);

• For each position (X i, Y i, i) with i < n, A decides which kind of move to

play among the following possibilities:

Splitting: A chooses teams X ′ and X ′′ with X ′ ∪ X ′′ = X i. Then E

chooses teams Y ′ and Y ′′ with Y ′ ∪Y ′′ = Y i, and A decides whether

the next position is (X ′, Y ′, i+ 1) or (X ′′, Y ′′, i+ 1);
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Supplementation: A chooses a function F : X i → Dom(M). Then E

chooses a function G : Y i → Dom(N), and the next position is

(X i[F/xi], Y
i[G/xi], i+ 1);

Duplication: The next position is (X i[M/xi], Y
i[N/xi], i+ 1);

Right-κ-duplication: A chooses a set of elements B ⊆κ Dom(N). Then

E chooses a set of elements A ⊆κ Dom(M), and the next position is

(X i[A/xi], Y
i[B/xi], i+ 1).

• The set W of all winning positions for E is

{(Xn, Yn, n) : (M,Xn) ⇛
κ
0 (N,Yn)}.

The concepts of play, complete play, strategy and winning strategy are de-

fined in the obvious way, and there is no uniformity condition for this game.

Theorem 3.3.9. Let M , N , X and Y as above, and let n ∈ N. Then (M,X) ⇛κ
n

(N,Y ) if and only if Player ∃ has a winning strategy for

EFκn (M,X,N, Y ).

Proof. The left to right direction is proved by induction over n, and by con-

sidering all possible first moves of A. As the only new case compared to ([65],

Theorem 6.44) is the right-κ-duplication, we will only take care of this one:

• Suppose that (M,X) ⇛κ
n (N,Y ), and let Player A make a right-κ-duplication

move and choose a set B ⊆κ Dom(N). Then there exists a set A ⊆κ
Dom(M) such that (M,X [A/xi]) ⇛κ

n−1 (N,Y [B/xi]): indeed, suppose in-

stead that for each such set A there exists a formula φA of rank ≤ n− 1

such that M |=X[A/xi] φ
A but N 6|=Y [B/xi] φ

A, and consider

φ =
⊔

A⊆M,|A|≤κ

φA.

Then we would have that qr(∀κxiφ) ≤ n and M |=X ∀κxiφ; but since

(M,X) ⇛κ
n (N,Y ) this implies that M ′ |=Y ∀κxiφ, and thus in particular

M ′ |=X[B/xi] φ and hence N |=X[B/xi] φ
A for some A. But this is not

possible, and therefore there exists an A0 such that (M,X [A0/xi]) ⇛κ
n−1

(N,Y [B/xi]). By induction hypothesis, this implies that Player E has a

winning strategy in EFκn−1(M,X [A0/xi], N, Y [B/xi]), and thus she can
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win the current play by choosing this A0 and then playing according to

this winning strategy.

For the right to left direction, we assume that Player E has a winning strategy

in EFκn (M,X,N, Y ) and we prove, by structural induction on φ, that if qr(φ) ≤
n and M |=X φ then N |=Y φ too. The only cases which we will consider will

be the new ones, corresponding to classical disjunction and ∀κ quantification;

for the others, once again, we refer to ([65], Theorem 6.44).

• Suppose that φ is of the form ψ ⊔ θ, where qr(φ) = max(qr(ψ), qr(θ)) ≤ n

andM |=X φ. Then by the definition of the classical disjunction, M |=X ψ

or M |=X θ: let us assume, without loss of generality, that M |=X ψ.

Then, by our induction hypothesis5, N |=Y ψ, and hence N |=Y ψ⊔θ too.

• If φ is of the form ∀κxiψ and M |=X φ then, by definition, for all subsets

A ⊆ Dom(M) such that |A| ≤ κ we have that M |=X[A/xi] ψ. Suppose now

that for some subset B0 ⊆ Dom(N) such that |B0| ≤ κ, N 6|=X[B0/xi] ψ:

then, as qr(ψ) ≤ n−1 and by induction hypothesis, Player A has a winning

strategy in EFκn−1(M,X [A/xi], N, Y [B0/xi]) for all sets A as above.6 But

then A can win EFκn (M,X [A/xi], N, Y [B0/xi]) by selecting this B0 and

playing the strategy corresponding to the A picked in answer by Player

E. This contradicts our assumption: therefore, there is no such B0 and

for all B ⊆κ N it holds that N |=Y [B/xi] ψ, so in conclusion B |= ∀κψ, as

required.

One may wonder if there exists an Ehrenfeucht-Fräıssé game for D(⊔, δκ).
It turns out that such a game exists, and it is obtained simply changing the

right-κ-duplication of EFκn (M,X,N, Y ) into the following right-κ-selection rule:

Right-κ-selection: E chooses a variable x ∈ Dom(X) = Dom(Y ) and a set of

elements B ⊆ N such that |B| ≤ κ. Then E chooses a set of elements

A ⊆ Dom(M) with |A| ≤ κ, and the next position is (X i
xi∈A

, Y ixi∈B
, i+ 1).

The proof that this rule captures correctly the δκ connective is entirely analo-

gous to the previous one.

5As here we are working by structural induction on φ rather than by induction on qr(φ),
the fact that qr(ψ) is not necessarily smaller than qr(φ) is not an issue.

6As the EF games are finite games of perfect information which do not allow for
draws, by Zermelo’s Theorem ([76]) one of the two players has a winning strategy in
EFn−1(M,X[A/xi], N, Y [B/xi]). As (M,X[A/xi]) 6⇛U

n−1
(N, Y [B0/xi]), by induction hy-

pothesis Player E does not have a winning strategy. Hence, Player A does.
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One may also wonder which connectives correspond to the

left-κ-duplications and left-κ-selection rules:

Left-κ-duplication: A chooses a set of elements A ⊆ M such that |A| ≤ κ.

Then E chooses a set of elements B ⊆ N with |B| ≤ κ, and the next

position is (X i[A/xi], Y
i[B/xi], i+ 1).

Left-κ-selection: A chooses a variable x ∈ Dom(X) = Dom(Y ) and a set of

elements A ⊆ M such that |A| ≤ κ. Then E chooses a set of elements

B ⊆ N with |B| ≤ κ, and the next position is (X i
xi∈A

, Y ixi∈B
, i+ 1).

However, these rules do not correspond to anything interesting: indeed, if A uses

them then, since (M,X) ⇛κ
n (N, ∅) for all n, M and X , Player E can always

win the play choosing B = ∅.

3.3.2 Uniform Definability

In this subsection, we will clarify and answer (negatively) the problem of the

uniform definability of the ∀1 quantifier which we mentioned in Subsection 3.1.1.

Definition 3.3.10. Let Σ be a signature and let n ∈ N. Then a context of

signature Σ is a Dependence Logic formula Ψ[Ξ] and type7 〈n〉 over the signature

Σ ∪ {Ξ}, where Ξ is a new n-ary relation symbol which occurs only positively

in Ψ.

Given a context Φ[Ξ] and a formula ψ, Φ[ψ] is defined in the obvious way:

Definition 3.3.11. Let Φ[Ξ] be a context of signature Σ and type 〈n〉, let

ψ(x1 . . . xn) be a Dependence Logic formula, and let x = (x1 . . . xn) be a fixed

ordering of the free variables of ψ. Then Φ[ψ(x)] is the formula obtained from

Φ[Ξ] by substituting each atomic subformula of the form Ξ(t1 . . . tn) with the

subformula ψ(t1/v1 . . . tn/vn).

Given these definitions, we will prove that

Theorem 3.3.12. There exists no Dependence Logic context Φ[Ξ] such that

Φ(ψ(x)) is logically equivalent to ∀1xψ(x) for all Dependence Logic formulas

ψ(x) with Free(ψ) = {x}.

The following lemma will give us a necessary condition for definability of

operators as contexts:

7It is possible to define contexts of type 〈n1 . . . nk〉, which take k formulas as inputs, in
the obvious way. But as we have no need for such contexts here, we will limit ourselves to
contexts taking only one formula as input.
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Lemma 3.3.13. Let Φ[Ξ] be a positive context of type 〈n〉, and let {x1 . . . xn}
be a set of n variables. Then there exists an integer k such that, for every model

M and team X, there is a function WM,X,Φ from k-tuples of teams to {0, 1}
such that, for all formulas ψ(x1 . . . xn), M |=X Φ[ψ] if and only if there exist

teams Y1 . . . Yk with domain {x1 . . . xn} such that WM,X,Φ(Y1 . . . Yn) = 1 and,

for all i = 1 . . . n, M |=Yi
ψ.

Proof. The proof is a straightforward induction over the form of the context

Φ[Ξ]:

• If Φ[Ξ] is Ξt1 . . . tn, let k = 1 and let WM,X,Φ be such that WM,X,Φ(Y ) = 1

if and only if, for all s ∈ X , the assignment (x1 : t1〈s〉, . . . , xn : tn〈s〉) is

in Y ;

• If the variable Ξ does not occur in Φ[Ξ] and Φ is a literal, let k = 0 and

let

WM,X,Φ() =

{
1 if M |=X Φ,

0 otherwise;

• If Φ[Ξ] is Ψ1[Ξ] ∨ Ψ2[Ξ], by induction hypothesis we have that, for all

teams Z, there exist functions WM,Z,Ψ1
(Y1 . . . Yk1) and

WM,Z,Ψ2
(Y ′

1 . . . Y
′
k2

) with the required property. Then, let k = k1+k2 and

let WM,X,Ψ1∨Ψ2
(Y1 . . . Yk1 , Y

′
1 . . . Y

′
k2

) = 1 if and only if there exist teams

X1, X2 such that X = X1 ∪X2 and

WM,X1,Ψ1
(Y1 . . . Yk1) = WM,X1,Ψ2

(Y ′
1 . . . Y

′
k2 ) = 1;

• If Φ[Ξ] is Ψ1[Ξ] ∧ Ψ2[Ξ], again, by induction hypothesis there exist func-

tions WM,X,Ψ1
(Y1 . . . Yk1) and WM,X,Ψ2

(Y ′
1 . . . Y

′
k2

) as required. Then, let

k = k1 + k2 and let WM,X,Ψ1∧Ψ2
(Y1 . . . Yk1 , Y

′
1 . . . Y

′
k2

) = 1 if and only if

WM,X,Ψ1
(Y1 . . . Yk1) = WM,X,Ψ2

(Y ′
1 . . . Y

′
k2) = 1;

• If Φ[Ξ] is ∃xΨ1[Ξ] and, by induction hypothesis, there is a k1 ∈ N such that

for each F : X → Dom(M) there exists a function WM,X[F/x],Ψ1
(Y1 . . . Yk1)

with the required property, let k = k1 and let WM,X,Ψ(Y1 . . . Yk) = 1 if

and only if

∃F : X → Dom(M) s.t. WM,X[F/x],Ψ(Y1 . . . Yk) = 1;

• If Φ[Ξ] is ∀xΨ1[Ξ] and, by induction hypothesis, there exists a function
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WM,X[M/x],Ψ1
(Y1 . . . Yk1) as required, let k = k1 and let

WM,X,Φ(Y1 . . . Yk) = WM,X[M/x],Ψ1
(Y1 . . . Yk).

Finally, we can give a proof of Theorem 3.3.12.

Proof. Suppose that there existed a context Φ[Ξ], of type 〈1〉, such that

M |=X Φ[ψ] ⇔ for all m ∈ Dom(M),M |=X[m/x] ψ

for all suitable models M , teams X and formulas ψ(x).

Then, in particular, we have that

N |={∅} Φ[ψ(x)] ⇔ for all m ∈ N,M |={(x:m)} ψ(x)

where N is the model whose domain is the set of all natural numbers, and whose

signature contains a constant for every natural number n.

By the lemma, there are an integer k and a function WN,{∅},Φ such that

N |={∅} Φ[ψ] if and only if there exist teams Y1 . . . Yk with domain {x} such

that WN,{∅},Φ(Y1 . . . Yk) = 1 and N |=Yi
ψ(x) for all i = 1 . . . n.

Now, since for all m ∈ N it holds that N |={(x:m)}=(x), there exist Y1 . . . Yk
such that N |=Yi

=(x) for all i and WN,{∅},Φ(Y1 . . . Yk) = 1. But then the value

of x must be constant in each team Yi, and therefore there is a natural number

m0 such that N |=Yi
(x 6= m0).

Hence, we would have that N |={∅} Φ[x 6= m0]; but this contradicts our

hypothesis, and hence no context Φ[Ξ] representing the ∀1x operator exists.

As an aside, it is easy to see that Lemma 3.3.13 holds, with essentially the

same proof, also for Independence Logic (Subsection 2.4.1) or for the variants

of Dependence Logic through other forms of dependencies of Chapter 4: and

hence, the ∀1 operator is not uniformly definable in any of these logics either.

This concludes the proof of Theorem 3.3.12, which answers negatively the

question about the uniform definability of the ∀1 quantifier asked in [50]. But

perhaps even more significant than the result itself is the manner in which we

arrived at it: Lemma 3.3.13, the main ingredient of our proof, is a statement

about the dynamics of Dependence Logic contexts, or, more precisely, about

the ways in which such contexts affect the meanings of formulas. This idea will
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be at the root of the systems of dynamic semantics for Dependence Logic which

we will examine in Chapter 6.



Chapter 4

Dependencies in Team Semantics

This chapter is dedicated to the study of various forms of dependency in the

framework of Team Semantics. In this, it can be thought of as an examination

of the properties of some “generalized atoms” in the sense mentioned by Antti

Kuusisto in [53].

First, in Section 4.1, we will examine the fragment of Dependence Logic

which only contains constancy atoms =(x) and prove that it is equivalent to

First Order Logic. Then, in Section 4.2, we will bring into focus the multivalued

dependence atoms of [19], and prove that the resulting Multivalued Dependence

Logic is equivalent to Independence Logic. After this, in Section 4.3, we will ex-

amine the logics obtained by considering inclusion and exclusion dependencies,

or variants thereof; and in Section 4.5, we will characterize the expressive powers

of Multivalued Dependence Logic, Independence Logic and Inclusion/Exclusion

Logic with respect to open formulas.

Finally, in Section 4.6, we will use many of the results developed in the

previous sections to decompose Inclusion Logic and Inclusion/Exclusion Logic

in terms of the announcement operators of Chapter 3, of constancy atoms and

of a kind of inconstancy atoms 6=(x).

4.1 Constancy Logic

In this section, we will present and examine a simple fragment of Dependence

Logic. This fragment, which we will call Constancy Logic, consists of all the

formulas of Dependence Logic in which only dependence atoms of the form

=(t) occur; or, equivalently, it can be defined as the extension of First Order

Logic obtained by adding constancy atoms to it, with the semantics given by

the following definition:

59
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Definition 4.1.1. Let M be a first order model, let X be a team over it, and

let t be a term over the signature of M and with variables in Dom(X). Then

TS-const: M |=X=(t) if and only if, for all s, s′ ∈ X , t〈s〉 = t〈s′〉.

Clearly, Constancy Logic is contained in Dependence Logic.

Constancy atoms are not expressible in First Order Logic: indeed, by Propo-

sition 2.2.9, the satisfaction conditions of any first-order φ are closed by union

in the sense that

M |=X φ and M |=Y φ⇒M |=X∪Y φ

whereas this is clearly not the case for =(x).

The question then arises whether, with respect to sentences, Constancy

Logic is properly contained in Dependence Logic or coincides with it. This

will be answered through the following results:

Proposition 4.1.2. Let φ be a Constancy Logic formula, let z be a variable

not occurring in φ, and let φ′ be obtained from φ by substituting one instance

of =(t) with the expression z = t.

Then M |=X φ⇔M |=X ∃z(=(z) ∧ φ′).

Proof. The proof is by induction on φ.

1. If the expression =(t) does not occur in φ, then φ′ = φ and we trivially

have that φ ≡ ∃z(=(z) ∧ φ), as required.

2. If φ is =(t) itself then φ′ is z = t, and

M |=X ∃z(=(z) ∧ z = t) ⇔ ∃m ∈ Dom(M) s.t. M |=X[m/z] z = t⇔
⇔ ∃m ∈ Dom(M) s.t. t〈s〉 = m for all s ∈ X ⇔M |=X=(t)

as required, where we used X [m/z] as a shorthand for {s(m/z) : s ∈ X}.

3. If φ is ψ1 ∨ ψ2, let us assume without loss of generality that the instance

of =(t) that we are considering is in ψ1. Then ψ′
2 = ψ2, and since z does
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not occur in ψ2

M |=X ∃z(=(z) ∧ (ψ′
1 ∨ ψ2)) ⇔ ∃m s.t. M |=X[m/z] ψ

′
1 ∨ ψ2 ⇔

⇔ ∃m,X1, X2 s.t. X1 ∪X2 = X,M |=X1[m/z] ψ
′
1 and M |=X2[m/z] ψ2 ⇔

⇔ ∃m,X1, X2 s.t. X1 ∪X2 = X,M |=X1[m/z] ψ
′
1 and M |=X2

ψ2 ⇔
⇔ X1, X2 s.t. X1 ∪X2 = X,M |=X1

∃z(=(z) ∧ ψ′
1) and M |=X2

ψ2 ⇔
⇔ X1, X2 s.t. X1 ∪X2 = X,M |=X1

ψ1 and M |=X2
ψ2 ⇔

⇔M |=X ψ1 ∨ ψ2

as required.

4. If φ is ψ1 ∧ ψ2, let us assume again that the instance of =(t) that we are

considering is in ψ1. Then ψ′
2 = ψ2, and

M |=X ∃z(=(z) ∧ ψ′
1 ∧ ψ2) ⇔

⇔ ∃m s.t. M |=X[m/z] ψ
′
1 and M |=X[m/z] ψ2 ⇔

⇔M |=X ∃z(=(z) ∧ ψ′
1) and M |=X ψ2 ⇔

⇔M |=X ψ1 and M |=X ψ2 ⇔
⇔M |=X ψ1 ∧ ψ2.

5. If φ is ∃xψ,

M |=X ∃z(=(z) ∧ ∃xψ′) ⇔
⇔ ∃m s.t. M |=X[m/z] ∃xψ′ ⇔
⇔ ∃m, ∃H : X [m/z] → Parts(Dom(M))\{∅} s.t. M |=X[m/z][H/x] ψ

′ ⇔
⇔ ∃H ′ : X → Parts(Dom(M))\{∅}, ∃m s.t. M |=X[H′/x][m/z] ψ

′ ⇔
⇔ ∃H ′ : X → Parts(Dom(M))\{∅} s.t. M |=X[H′/x] ∃z(=(z) ∧ ψ′) ⇔
⇔ ∃H ′ : X → Parts(Dom(M))\{∅}, s.t. M |=X[H′/x] ψ ⇔
⇔M |=X ∃xψ.
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6. If φ is ∀xψ,

M |=X ∃z(=(z) ∧ ∀xψ′) ⇔
⇔ ∃m s.t. M |=X[m/z] ∀xψ′ ⇔
⇔ ∃m s.t. M |=X[m/z][M/x] ψ

′ ⇔
⇔ ∃m s.t. M |=X[M/x][m/z] ψ

′ ⇔
⇔M |=X[M/x] ∃z(=(z) ∧ ψ′) ⇔
⇔M |=X[M/x] ψ ⇔
⇔M |=X ∀xψ.

As a corollary of this result, we get the following normal form theorem for

Constancy Logic:1

Corollary 4.1.3. Let φ be a Constancy Logic formula. Then φ is logically

equivalent to a Constancy Logic formula of the form

∃z1 . . . zn
(

n∧

i=1

=(zi) ∧ ψ(z1 . . . zn)

)

for some tuple of variables ~z = z1 . . . zn and some first order formula ψ.

Proof. Repeatedly apply Proposition 4.1.2 to “push out” all constancy atoms

from φ, thus obtaining a formula, equivalent to it, of the form

∃z1(=(z1) ∧ ∃z2(=(z2) ∧ . . . ∧ ∃zn(=(zn) ∧ ψ(z1 . . . zn)))

for some first order formula ψ(z1 . . . zn). It is then easy to see, from the seman-

tics of our logic, that this is equivalent to

∃z1 . . . zn(=(z1) ∧ . . .∧ =(zn) ∧ ψ(z1 . . . zn))

as required.

The following result shows that, over sentences, Constancy Logic is precisely

as expressive as First Order Logic:

1This normal form theorem is very similar to the one of Dependence Logic proper found
in [65]. See also [17] for a similar, but not identical result, developed independently, which
Durand and Kontinen use in that paper in order to characterize the expressive powers of
subclasses of Dependence Logic in terms of the maximum allowed width of their dependence
atoms.
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Corollary 4.1.4. Let φ = ∃~z (
∧

i =(zi) ∧ ψ(~z)) be a Constancy Logic sentence

in normal form.

Then φ is logically equivalent to ∃~zψ(~z).

Proof. By the rules of our semantics, M |={∅} ψ if and only if there exists a

family A1 . . . An of nonempty sets of elements in Dom(M) such that, for

X = {(z1 := m1 . . . zn := mn) : (m1 . . .mn) ∈ A1 × . . .×An},

it holds that M |=X ψ. But ψ is first-order, and therefore, by Proposition

2.2.9, this is the case if and only if for all m1 ∈ A1, . . . ,mn ∈ An it holds that

M |={(z1:m1,...zn:mn)} ψ.

But then M |={∅} φ is and only if there exist m1 . . .mn such that this holds;2

and therefore, M |={∅} φ if and only if M |=∅ ∃z1 . . . znψ(z1 . . . zn) according to

Tarski’s semantics, or equivalently, if and only if M |={∅} ∃z1 . . . znψ(z1 . . . zn)

according to Team Semantics.

Since Dependence Logic is strictly stronger than First Order Logic over

sentences, this implies that Constancy Logic is strictly weaker than Dependence

Logic over sentences (and, since sentences are a particular kind of formulas, over

formulas too).

The relation between First Order Logic and Constancy Logic, in conclusion,

appears somewhat similar to that between Dependence Logic and Independence

Logic – that is, in both cases we have a pair of logics which are reciprocally

translatable on the level of sentences, but such that one of them is strictly weaker

than the other on the level of formulas. This discrepancy between translatability

on the level of sentences and translatability on the level of formulas is, in the

opinion of the author, one of the most intriguing aspects of logics of imperfect

information, and it deserves further investigation.

4.2 Multivalued Dependence Logic is Indepen-

dence Logic

In [19], Engström introduced the following multivalued dependence atoms, based

on the multivalued dependencies of Database Theory [21]:

2Indeed, if this is the case we can just choose A1 = {m1}, . . . , An = {mn}, and conversely
if A1 . . . An exist with the required properties we can simply select arbitrary elements of them
for m1 . . .mn.
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TS-multidep : M |=X ~x ։ ~y if and only if, for ~z listing all variables in the

domain of X but not in ~x~y and for all s, s′ ∈ X with s(~x) = s′(~x), there

exists a s′′ ∈ X with s′′(~x~y) = s(~x~y) and s′′(~x~z) = s′(~x~z);

This rule violates our locality principle: indeed, by definition, whether an atom

~x ։ ~y holds in a team depends also on the values of variables which are not

among ~x and ~y.3 However, it is a very natural concept which is widely used in

the study of databases [58, 13].

In this section, we will prove that the “Multivalued Dependence Logic”

obtanined by adding multivalued dependence atoms to First Order Logic is, in

fact, equivalent to Independence Logic.

One direction is easy to show: indeed, the truth condition for the Multival-

ued Dependence Logic is expressible in Σ1
1, and hence any class of teams (wrt

a fixed domain) which is definable through one Multivalued Dependence Logic

formulas is also definable through some Independence Logic formula. We can

even give an explicit translation: if ~z = Dom(X)\{~x, ~y} then it is not difficult to

see that

M |=X ~x ։ ~y if and only if M |=X ~y ⊥~x ~z.

The other direction is slightly more delicate, and in order to prove it we will

first need a definition and a couple of lemmas:

Definition 4.2.1. An Independence Logic atom ~t2 ⊥~t1 ~t3 is said to be normal

if and only if

1. ~t1, ~t2 and ~t3 are tuples of variables, and not just tuples of terms;

2. ~t1, ~t2 and ~t3 are pairwise disjoint.

Lemma 4.2.2. Any independence atom is expressible in terms of normal in-

dependence atoms.

Proof. Let ~t2 ⊥~t1 ~t3 be any independence atom, and let ~x1, ~x2 and ~x3 be three

tuples of new variables, of the same lengths of ~t1, ~t2 and ~t3 respectively. Then

~t2 ⊥~t1 ~t3 ≡ ∃~x1~x2~x3(~x1 = ~t1 ∧ ~x2 = ~t2 ∧ ~x3 = ~t3 ∧ ~x2 ⊥~x1
~x3).

Indeed, suppose that M |=X ~t2 ⊥~t1 ~t3: then, choose the functions Fi so that

Fi(s) = {~ti〈s〉} and let Y = X [F1F2F3/~x1~x2~x3]. Then M |=Y ~x1 = ~t1 ∧ ~x2 =
~t2∧~x3 = ~t3, trivially, and furthermore M |=Y ~x2 ⊥~x1

~x3, since M |=X ~t2 ⊥~t1 ~t3.

3For example, compare the values of x ։ y in X = {(x := 0, y := 0, z := 0), (x := 1, y :=
1, z := 1)} and in Y = {(x := 0, y := 0, z := 0), (x := 1, y := 1, z := 0)}.
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Conversely, suppose that M |=X[F1F2F3/~x1~x2~x3] (~x1 = ~t1 ∧ ~x2 = ~t2 ∧ ~x3 =
~t3 ∧ ~x2 ⊥~x1

~x3). Then, again for Y = X [F1F2F3/~x1~x2~x3] and all i = 1 . . . 3, it

must hold that Y (~xi) = {ti〈s〉}. But then, since M |=Y ~x2 ⊥~x1
~x3, we have

that M |=Y ~t2 ⊥~t1 ~t3 too. But all variables occurring in ~t1~t2~t3 are already in

Dom(X), and therefore

M |=X ~t2 ⊥~t1 ~t3

Lemma 4.2.3. Let ~y ⊥~x ~z be a normal independence atom, let X be a team

whose domain includes ~x, ~y and ~z, and let ~w = Dom(X)\{~x, ~y, ~z}. Then

M |=X ~y ⊥~x ~z ⇔M |=X ∀~w(~x ։ ~y).

Proof. Suppose that M |=X ~y ⊥~x ~z: then, by definition, for all s, s′ ∈ X with

s(~x) = s′(~x) there exists a s′′ ∈ X with s′′(~x~y) = s(~x~y) and s′′(~x~z) = s′(~x~z).

Now consider any two assignments h, h′ ∈ X [M/~w] with h(~x) = h′(~x): by

definition, there exist s, s′ ∈ X and ~m1, ~m2 ∈ Dom(M)|~w| such that h = s[~m1/~w]

and h′ = s′[~m2/~w]. But s(~x) = s′(~x), so by hypothesis there exists a s′′ with

s′′(~x~y) = s(~x~y) and s′′(~x~z) = s′(~x~z). Then consider h′′ = s′′[~m2/~w]: we have

that h′′ ∈ X [M/~w], since s′′ ∈ X , and furthermore

h′′(~x~y) = s′′(~x~y) = s(~x~y) = h(~x~y);

h′′(~x~z ~w) = s′′(~x~z)~m2 = s′(~x~z)h′(~w) = h′(~x~z ~w).

Therefore M |=X[M/~w] ~x ։ ~y and M |=X ∀~w(~x ։ ~y), as required.

Conversely, suppose that M |=X[M/~w] ~x ։ ~y, and let s, s′ ∈ X be such that

s(~x) = s′(~x). Then take any tuple ~m ∈ Dom(M)|~w|, and consider

h = s[~m/~w];

h′ = s′[~m/~w].

Now, Dom(X)\{~x~y} is precisely ~z ~w: therefore, by the definition of the multival-

ued dependence atom there exists a h′′ ∈ X [M/~w] with h′′(~x~y) = h(~x~y) and

h′′(~x~z ~w) = h′(~x~z ~w). Since h′′ ∈ X [M/~w], we must have that h′′ = s′′[~m/~w] for

some s′′ ∈ X ; and for this s′′, we have that

s′′(~x~y) = h′′(~x~y) = h(~x~y) = s(~x~y)

and that

s′′(~x~z) = h′′(~x~z) = h′(~x~z) = s′(~x~z).
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Theorem 4.2.4. Multivalued Dependence Logic is precisely as expressive as

Independence Logic, over sentences and over open formulas considered in teams

with finite domain.

Proof. Obvious from the previous results.

As an aside, this result is independent on the choice between the usual

semantics for the existential quantifier and the “lax” one TS-∃-lax described

at the end of Subsection 2.2.1: indeed, in Lemma 4.2.2 nothing can be gained

by selecting more than one possible value per existentially quantified formula

and assignment, and no existential quantifier is needed for Lemma 4.2.3. Hence,

the equivalence between these logics holds even if, as we will suggest in the next

section, Rule TS-∃-lax is to be preferred to Rule TS-∃ for non downwards-

closed logics such as Independence Logic.

4.3 Inclusion and Exclusion in Logic

This section is the central part of the present chapter. We will begin it by

recalling some forms of non-functional dependency which have been studied in

Database Theory, and some of their known properties. Then we will briefly

discuss their relevance in the framework of logics of imperfect information, and

then, in Subsection 4.3.2, we will examine the properties of the logic obtained

by adding atoms corresponding to the first sort of non-functional dependency

to the basic language of Team Semantics. Afterward, in Subsection 4.3.3 we

will see that nothing is lost if we only consider a simpler variant of this kind of

dependency: in either case, we obtain essentially the same logic, which – as we

will see – is strictly more expressive than First Order Logic, strictly weaker than

Independence Logic, but incomparable with Dependence Logic. In Subsection

4.3.4, we will then study the other notion of non-functional dependency that we

are considering, and see that the corresponding logic is instead equivalent, in a

very strong sense, to Dependence Logic; and finally, in Subsection 4.3.5 we will

examine the logic obtained by adding both forms of non-functional dependency

to our language, and see that it is equivalent to Independence Logic.

4.3.1 Inclusion and Exclusion Dependencies

Functional dependencies are the forms of dependency which attracted the most

interest from database theorists, but they certainly are not the only ones ever
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considered in that field. Therefore, studying the effect of substituting the de-

pendence atoms with ones corresponding to other forms of dependency, and ex-

amining the relationship between the resulting logics, may be – in the author’s

opinion, at least – a very promising, and hitherto not sufficiently explored, di-

rection of research in the field of logics of imperfect information. First of all, as

we will discuss in more detail in Chapter 7 but as the Game Theoretic Seman-

tics of Subsection 2.2.3 and the interpretation of the announcement operators of

Chapter 3 already suggest, teams correspond to states of knowledge. But often,

relations obtained from a database correspond precisely to information states

of this kind;4 and therefore, some of the dependencies studied in Database The-

ory may correspond to constraints over the agent’s beliefs which often occur in

practice, as is certainly the case for functional dependencies.5

Moreover, and perhaps more pragmatically, database researchers have al-

ready performed a vast amount of research about the properties of many of

these non-functional dependencies, and it does not seem unreasonable to hope

that this might allow us to derive, with little additional effort of our own, some

useful results about the corresponding logics.

This chapter will, for the most part, focus on inclusion ([22], [9]) and ex-

clusion ([10]) dependencies and on the properties of the corresponding logics

of imperfect information. Let us start by recalling and briefly discussing these

dependencies:

Definition 4.3.1. Let R be a relation, and let ~x, ~y be tuples of attributes of

R of the same length. Then R |= ~x ⊆ ~y if and only if R(~x) ⊆ R(~y), where

R(~z) = {r(~z) : r is a tuple in R}.

In other words, an inclusion dependency ~x ⊆ ~y states that all values taken

by the attributes ~x are also taken by the attributes ~y. It is easy to think

of practical examples of inclusion dependencies: one might for instance think

of the database consisting of the relations (Person, Date of Birth), (Father,

Child of Father) and (Mother, Child of Mother).6 Then, in order to express

4As a somewhat naive example, let us consider the problem of finding a spy, knowing that
yesterday he took a plane from London’s Heathrow airport and that he had at most 100 EUR
available to buy his plane ticket. We might then decide to obtain, from the airport systems,
the list of the destinations of all the planes which left Heathrow yesterday and whose ticket
the spy could have afforded; and this list – that is, the list of all the places that the spy might
have reached – would be a state of information of the type which we are discussing.

5For example, our system should be able to represent the assertion that the flight code
always determines the destination of the flight.

6Equivalently, one may consider the Cartesian product of these relations, as per the uni-
versal relation model ([23]).
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the statement that every father, every mother and every child in our knowledge

base are people and have a date of birth, we may impose the restrictions

{
Father ⊆ Person, Mother ⊆ Person,

Child of Father ⊆ Person, Child of Mother ⊆ Person

}

.

Furthermore, inclusion dependencies can be used to represent the assertion that

every child has a father and a mother, or, in other words, that the attributes

Child of Father and Child of Mother take the same values:

{Child of Father ⊆ Child of Mother, Child of Mother ⊆ Child of Father}.

Note, however, that inclusion dependencies do not allow us to express all “nat-

ural” dependencies of our example. For instance, we need to use functional

dependencies in order to assert that everyone has exactly one birth date, one

father and one mother:7

{
Person → Date of Birth, Child of Father → Father,

Child of Mother → Mother

}

.

In [9], a sound and complete axiom system for the implication problem

of inclusion dependencies was developed. This system consists of the three

following rules:

I1: For all ~x, ⊢ ~x ⊆ ~x;

I2: If |~x| = |~y| = n then, for all m ∈ N and all π : 1 . . .m→ 1 . . . n,

~x ⊆ ~y ⊢ xπ(1) . . . xπ(m) ⊆ yπ(1) . . . yπ(m);

I3: For all tuples of attributes of the same length ~x, ~y, and ~z,

~x ⊆ ~y, ~y ⊆ ~z ⊢ ~x ⊆ ~z.

Theorem 4.3.2 (Soundness and completeness of inclusion axioms [9]). Let Γ

be a set of inclusion dependencies and let ~x, ~y be tuples of relations of the same

length. Then

Γ ⊢ ~x ⊆ ~y

7The simplest way to verify that these conditions are not expressible in terms of inclusion
dependencies is probably to observe that inclusion dependencies are closed under unions: if
the relations R and S respect ~x ⊆ ~y, so does R ∪ S. Since functional dependencies as the
above ones are clearly not closed under unions, they cannot be represented by inclusions.
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can be derived from the axioms I1, I2 and I3 if and only if all relations which

respect all dependencies of Γ also respect ~x ⊆ ~y.

However, the combined implication problem for inclusion and functional de-

pendencies is undecidable ([55], [11]).

Whereas inclusion dependencies state that all values of a given tuple of

attributes also occur as values of another tuple of attributes, exclusion depen-

dencies state that two tuples of attributes have no values in common:

Definition 4.3.3. Let R be a relation, and let ~x, ~y be tuples of attributes of

R of the same length. Then R |= ~x | ~y if and only if R(~x) ∩R(~y) = ∅, where

R(~z) = {r(~z) : r is a tuple in R}.

Exclusion dependencies can be thought of as a way of partitioning the ele-

ments of our domain into data types, and of specifying which type corresponds

to each attribute. For instance, in the example

(Person, Date of birth)×(Father, Child of Father)×(Mother, Child of Mother)

considered above we have two types, corresponding respectively to people (for

the attributes Person, Father, Mother, Child of Father and Child of Mother)

and dates (for the attribute Date of birth). The requirement that no date of

birth should be accepted as a name of person, nor vice versa, can then be

expressed by the set of exclusion dependencies

{A | Date of birth : A = Person,Father,Mother, . . .}.

Other uses of exclusion dependencies are less common, but they still exist:

for example, the statement that no one is both a father and a mother might be

expressed as Father | Mother.

In [10], the axiom system for inclusion dependencies was extended to deal

with both inclusion and exclusion dependencies as follows:

1. Axioms for inclusion dependencies:

I1: For all ~x, ⊢ ~x ⊆ ~x;

I2: If |~x| = |~y| = n then, for all m ∈ N and all π : 1 . . .m→ 1 . . . n,

~x ⊆ ~y ⊢ xπ(1) . . . xπ(m) ⊆ yπ(1) . . . yπ(m);
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I3: For all tuples of attributes of the same length ~x, ~y and ~z,

~x ⊆ ~y, ~y ⊆ ~z ⊢ ~x ⊆ ~z;

2. Axioms for exclusion dependencies:

E1: For all ~x and ~y of the same length, ~x | ~y ⊢ ~y | ~x;
E2: If |~x| = |~y| = n then, for all m ∈ N and all π : 1 . . .m→ 1 . . . n,

xπ(1) . . . xπ(m) | yπ(1) . . . yπ(m) ⊢ ~x | ~y;

E3: For all ~x, ~y and ~z such that |~y| = |~z|, ~x | ~x ⊢ ~y | ~z;

3. Axioms for inclusion/exclusion interaction:

IE1: For all ~x, ~y and ~z such that |~y| = |~z|, ~x | ~x ⊢ ~y ⊆ ~z;

IE2: For all ~x, ~y, ~z, ~w of the same length, ~x | ~y, ~z ⊆ ~x, ~w ⊆ ~y ⊢ ~z | ~w.

Theorem 4.3.4 ([10]). The above system is sound and complete for the impli-

cation problem for inclusion and exclusion dependencies.

It is not difficult to transfer the definitions of inclusion and exclusion de-

pendencies to Team Semantics, thus obtaining inclusion atoms and exclusion

atoms :

Definition 4.3.5. Let M be a first order model, let ~t1 and ~t2 be two finite

tuples of terms of the same length over the signature of M , and let X be a team

whose domain contains all variables occurring in ~t1 and ~t2. Then

TS-inc: M |=X ~t1 ⊆ ~t2 if and only if for every s ∈ X there exists a s′ ∈ X

such that ~t1〈s〉 = ~t2〈s′〉;

TS-exc: M |=X ~t1 | ~t2 if and only if for all s, s′ ∈ X , ~t1〈s〉 6= ~t2〈s′〉.

Returning for a moment to the agent metaphor, the interpretation of these

conditions is as follows.

A team X satisfies ~t1 ⊆ ~t2 if and only if all possible values that the agent

believes possible for ~t1 are also believed by him or her as possible for ~t2 – or, by

contraposition, that the agent cannot exclude any value for ~t2 which he cannot

also exclude as a possible value for ~t1. In other words, from this point of view

an inclusion atom is a way of specify a state of ignorance of the agent: for

example, if the agent is a chess player who is participating to a tournament, we

may want to represent the assertion that the agent does not know whether he
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will play against a given opponent using the black pieces or the white ones. In

other words, if he believes that he might play against a given opponent when

using the white pieces, he should also consider it possible that he played against

him or her using the black ones, and vice versa; or, in our formalism, that his

belief set satisfies the conditions

Opponent as White ⊆ Opponent as Black,

Opponent as Black ⊆ Opponent as White.

This very example can be used to introduce a new dependency atom ~t1 ⊲⊳ ~t2,

which might perhaps be called an equiextension atom, with the following rule:

Definition 4.3.6. Let M be a first order model, let ~t1 and ~t2 be two finite

tuples of terms of the same length over the signature of M , and let X be a team

whose domain contains all variables occurring in ~t1 and ~t2. Then

TS-equ: M |=X ~t1 ⊲⊳ ~t2 if and only if X(~t1) = X(~t2).

It is easy to see that this atom is different, and strictly weaker, from the

first order formula
~t1 = ~t2 :=

∧

i

((~t1)i = (~t2)i).

Indeed, the former only requires that the sets of all possible values for ~t1 and for
~t2 are the same, while the latter requires that ~t1 and ~t2 coincide in all possible

states of things: and hence, for example, the team X = {(x : 0, y : 1), (x : 1, y :

0)} satisfies x ⊲⊳ y but not x = y.

As we will see later, it is possible to recover inclusion atoms from equiex-

tension atoms and the connectives of our logics.

Conversely, an exclusion atom describes a state of knowledge. More precisely,

a team X satisfies ~t1 | ~t2 if and only if the agent can confidently exclude all

values that he believes possible for ~t1 from the list of the possible values for
~t2. For example, let us suppose that our agent is also aware that a boxing

match will be had at the same time of the chess tournament, and that he knows

that no one of the participants to the match will have the time to play in the

tournament too – he has seen the lists of the participants to the two events,

and they are disjoint. Then, in particular, our agent knows that no potential

winner of the boxing match is also a potential winner of the chess tournament,

even though he is not aware of who these winners will be. In our framework,

this can be represented by stating our agent’s beliefs respect the exclusion atom

Winner Boxing | Winner Chess.
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This is a different, and stronger, condition than the first order expression

Winner Boxing 6= Winner Chess: indeed, the latter merely requires that, in

any possible state of things, the winners of the boxing match and of the chess

tournament are different, while the former requires that no possible winner

of the boxing match is a potential winner for the chess tournament. So, for

example, only the first condition excludes the scenario in which our agent does

not know whether T. Dovramadjiev, a Bulgarian chessboxing8 champion, will

play in the chess tournament or in the boxing match, represented by the team

of the form

X =

Winner Boxing Winner Chess

s0 T. Dovramadjiev V. Anand

s1 T. Woolgar T. Dovramadijev

. . . . . . . . .

4.3.2 Inclusion Logic

In this section, we will begin to examine the properties of Inclusion Logic –

that is, the logic obtained by adding to the language of First Order Logic the

inclusion atoms ~t1 ⊆ ~t2 with the semantics of Definition 4.3.5.

A first, easy observation is that this logic does not respect the downwards

closure property. For example, consider the two assignments s0 = (x : 0, y : 1)

and s1 = (x : 1, y : 0): then, for X = {s0, s1} and Y = {s0}, it is easy to see by

rule TS-inc that M |=X x ⊆ y but M 6|=Y x ⊆ y.

Hence, the question arises whether the “strict” and the “lax” semantics for

the existential quantifier discussed in Subsection 2.2.1 are equivalent for the

case of Inclusion Logic, and, if they are not, which one should be preferred.

As the next proposition shows, lax and strict semantics are indeed different

for this logic:

Proposition 4.3.7. There exist a model M , a team X and a formula φ of

Inclusion Logic such that M |=X ∃xφ according to the lax semantics of Rule

TS-∃-Lax but not according to the strict semantics of Rule TS-∃.

Proof. Let Dom(M) = {0, 1}, let X be the team

X =
y z

s0 0 1

and let φ be y ⊆ x ∧ z ⊆ x.

8Chessboxing is a hybrid sport, in which chess and boxing rounds are alternated.
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• M |=X ∃xφ according to the lax semantics:

Let H : X → Parts(Dom(M)) be such that H(s0) = {0, 1}.
Then

X [H/x] =

y z x

s′0 0 1 0

s′1 0 1 1

and hence X [H/x](y), X [H/x](z) ⊆ X [H/x](x), as required.

• M 6|=X ∃xψ according to the strict semantics:

Let F be any function from X to Dom(M). Then

X [F/x] =
y z x

s′′0 0 1 F (s0)

But F (s0) 6= 0 or F (s0) 6= 1; and in the first case M 6|=X[F/x] y ⊆ x, while

in the second one M 6|=X[F/x] z ⊆ x.

Therefore, when studying the properties Inclusion Logic it is necessary to

specify whether we are are using the strict or the lax semantics for existential

quantification. However, only one of these choices preserves locality in the sense

of Proposition 2.2.7, as the two following results show:

Proposition 4.3.8. The strict semantics does not respect locality in Inclusion

Logic (or in any extension thereof). In other words, with respect to it there

exists a model M , a team X and a formula ξ such that M |=X ∃xξ, but for

X ′ = X↾Free(∃xξ) we have that M 6|=X′ ∃xξ instead.

Proof. Let Dom(M) = {0, 1}, let ξ be y ⊆ x ∧ z ⊆ x, and let

X =

y z u

s0 0 1 0

s1 0 1 1

Then M |=X ∃xξ: indeed, for F : X → Dom(M) defined as

F (s0) = 0;

F (s1) = 1;
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we have that

X [F/x] =

y z u x

s′0 0 1 0 0

s′1 0 1 1 1

and it is easy to check that this team satisfies ξ. However, the restriction X ′

of X to Free(∃xξ) = {y, z} is the team considered in the proof of Proposition

4.3.7, and – again, as shown in that proof – M 6|=X ∃xξ.

Theorem 4.3.9 (Inclusion Logic with lax semantics is local). Let M be a first

order model, let φ be any Inclusion Logic formula, and let V be a set of variables

with Free(φ) ⊆ V . Then, for all suitable teams X,

M |=X φ⇔M |=X↾V
φ

with respect to the lax interpretation of existential quantification.

Proof. The proof is by structural induction on φ.

In Section 4.3.5, Theorem 4.3.23, we will prove the same result for an ex-

tension of Inclusion Logic; so we refer to that theorem for the details of the

proof.

Because of these results, for the rest of this chapter we will exclusively

concern ourselves with the lax semantics for existential quantification.

Since, as we saw, Inclusion Logic is not downwards closed, by Proposition

2.2.7 it is not contained in Dependence Logic. It is then natural to ask whether

Dependence Logic is contained in Inclusion Logic, or if Dependence and Inclu-

sion Logic are two incomparable extensions of First Order Logic.

This is answered by the following result, and by its corollary:

Theorem 4.3.10. Let φ be any Inclusion Logic formula, let M be a first order

model and let (Xi)i∈I be a family of teams with the same domain such that

M |=Xi
φ for all i ∈ I. Then, for X =

⋃

i∈I Xi, we have that M |=X φ.

Proof. By structural induction on φ.

1. If φ is a first order literal, this is obvious.

2. Suppose that M |=Xi
~t1 ⊆ ~t2 for all i ∈ I. Then M |=X ~t1 ⊆ ~t2. Indeed,

let s ∈ X : then s ∈ Xi for some i ∈ I, and hence there exists another

s′ ∈ Xi with s′(~t2) = s(~t1). Since Xi ⊆ X we then have that s′ ∈ X , as

required.
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3. Suppose that M |=Xi
ψ ∨ θ for all i ∈ I. Then each Xi can be split

into two subteams Yi and Zi with M |=Yi
ψ and M |=Zi

θ. Now, let

Y =
⋃

i∈I Yi and Z =
⋃

i∈I Zi: by induction hypothesis, M |=Y ψ and

M |=Z θ. Furthermore, Y ∪Z =
⋃

i∈I Yi ∪
⋃

i∈I Zi =
⋃

i∈I(Yi∪Zi) = X ,

and hence M |=X ψ ∨ θ, as required.

4. Suppose that M |=Xi
ψ ∧ θ for all i ∈ I. Then for all such i, M |=Xi

ψ

and M |=Xi
θ; but then, by induction hypothesis, M |=X ψ and M |=X θ,

and therefore M |=X ψ ∧ θ.

5. Suppose that M |=Xi
∃xψ for all i ∈ I, that is, that for all such i there

exists a function Hi : Xi → Parts(Dom(M))\{∅} such that M |=Xi[Hi/x]

ψ. Then define the function H : X → Parts(Dom(M))\{∅} so that, for all

s ∈ X , H(s) =
⋃{Hi(s) : s ∈ Xi}. Now, X [H/x] =

⋃

i∈I(Xi[Hi/x]), and

hence by induction hypothesis M |=X[H/x] ψ, and therefore M |=X ∃xψ.

6. Suppose that M |=Xi
∀xψ for all i ∈ I, that is, that M |=Xi[M/x] ψ for

all such i. Then, since
⋃

i∈I(Xi[M/x]) =
(⋃

i∈I Xi

)
[M/x] = X [M/x],

by induction hypothesis M |=X[M/x] ψ and therefore M |=X ∀xψ, as

required.

Corollary 4.3.11. There exist Constancy Logic formulas which are not equiv-

alent to any Inclusion Logic formula.

Proof. This follows at once from the fact that the constancy atom =(x) is not

closed under unions.

Indeed, let M be any model with two elements 0 and 1 in its domain, and

consider the two teams X0 = {(x : 0)} and X1 = {(x : 1)}: then M |=X0
=(x)

and M |=X1
=(x), but M 6|=X0∪X1

=(x).

Therefore, not only Inclusion Logic does not contain Dependence Logic, it

does not even contain Constancy Logic!

As discussed in Subsection 2.4.1, it is known that Dependence Logic is prop-

erly contained in Independence Logic. As the following result shows, Inclusion

Logic is also (properly, because dependence atoms are expressible in Indepen-

dence Logic) contained in Independence Logic:

Theorem 4.3.12. Inclusion atoms are expressible in terms of Independence

Logic formulas. More precisely, an inclusion atom ~t1 ⊆ ~t2 is equivalent to the

Independence Logic formula

φ := ∀v1v2~z((~z 6= ~t1∧~z 6= ~t2)∨(v1 6= v2∧~z 6= ~t2)∨((v1 = v2∨~z = ~t2)∧~z ⊥ v1v2)).
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where v1, v2 and ~z do not occur in ~t1 or ~t2 and where ~z ⊥ v1v2 is a shorthand

for ~z ⊥∅ v1v2.

Proof. Suppose that M |=X ~t1 ⊆ ~t2. Then split the team X ′ = X [M/v1v2~z]

into three teams Y , Z and W as follows:

• Y = {s ∈ X ′ : s(~z) 6= ~t1〈s〉 and s(~z) 6= ~t2〈s〉};

• Z = {s ∈ X ′ : s(v1) 6= s(v2) and s(~z) 6= ~t2〈s〉};

• W = X ′\(Y ∪ Z) = {s ∈ X ′ : s(~z) = ~t2〈s〉 or (s(~z) = ~t1〈s〉 and s(v1) =

s(v2))}.

Clearly, X ′ = Y ∪ Z ∪W , M |=Y z 6= t1 ∧ z 6= t2 and M |=Z v1 6= v2 ∧ z 6= t2;

hence, if we can prove that

M |=W ((v1 = v2 ∨ ~z = ~t2)) ∧ ~z ⊥ v1v2

we can conclude that M |=X φ, as required.

Now, suppose that s ∈ W and s(v1) 6= s(v2): then necessarily s(~z) = ~t2,

since otherwise we would have that s ∈ Z instead. Hence, the first conjunct

v1 = v2 ∨ ~z = ~t2 is satisfied by W .

Now, consider two assignments s and s′ in W : in order to conclude this

direction of the proof, we need to show that there exists a s′′ ∈ W such that

s′′(~z) = s(~z) and s′′(v1v2) = s′(v1v2). There are two distinct cases to examine:

1. If s(~z) = ~t2〈s〉, consider the assignment

s′′ = s[s′(v1)/v1][s
′(v2)/v2] :

by construction, s′′ ∈ X ′. Furthermore, since s′′(~z) = ~t2〈s〉 = ~t2〈s′′〉, s′′
is neither in Y nor in Z. Hence, it is in W , as required.

2. If s(~z) 6= ~t2〈s〉 and s ∈W , then necessarily s(~z) = ~t1〈s〉 and s(v1) = s(v2).

Since s ∈W ⊆ X [M/v1v2~z], there exists an assignment o ∈ X such that

~t1〈o〉 = ~t1〈s〉 = s(~z);

and since M |=X ~t1 ⊆ ~t2, there also exist an assignment o′ ∈ X such that

~t2〈o′〉 = ~t1〈o〉 = s(~z).
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Now consider the assignment s′′ = o′[s′(v1)/v1][s
′(v2)/v2][s(~z)/~z]: by con-

struction, s′′ ∈ X ′, and since

s′′(~z) = s(~z) = ~t2〈o′〉 = ~t2〈s′′〉

we have that s′′ ∈ W , that s′′(~z) = s(~z) and that s′′(v1v2) = s′(v1v2), as

required.

Conversely, suppose that M |=X φ, let 0 and 1 be two distinct elements of

the domain of M , and let s ∈ X .

By the definition of φ, the fact thatM |=X φ implies that the teamX [M/v1v2~z]

can be split into three teams Y , Z and W such that

M |=Y ~z 6= ~t1 ∧ ~z 6= ~t2;

M |=Z v1 6= v2 ∧ ~z 6= ~t2;

M |=W (v1 = v2 ∨ ~z = ~t2) ∧ ~z ⊥ v1v2.

Then consider the assignments

h = s[0/v1][0/v2][~t1〈s〉/~z]

and

h′ = s[0/v1][1/v2][~t2〈s〉/~z]

Clearly, h and h′ are in X [M/v1v2~z]. However, neither of them is in Y , since

h(~z) = ~t1〈h〉 and h′(~z) = ~t2〈h′〉, nor in Z, since h(v1) = h(v2) and, again, since

h′(~z) = ~t2〈h′〉. Hence, both of them are in W .

But we know that M |=W ~z ⊥ v1v2, and thus there exists an assignment

h′′ ∈W with

h′′(~z) = h(~z) = ~t1〈s〉

and

h′′(v1v2) = h′(v1v2) = 01.

Now, since h′′(v1) 6= h′′(v2), since h′′ ∈W and since

M |=W v1 = v2 ∨ ~z = ~t2,

it must be the case that h′′(~z) = ~t2〈h′′〉.
Finally, this h′′ corresponds to some s′′ ∈ X ; and for this s′′,

~t2〈s′′〉 = ~t2〈h′′〉 = h′′(~z) = h(~z) = ~t1〈s〉.
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First Order (Team) Logic

Inclusion
Logic

Dependence
Logic

Constancy
Logic

Independence Logic
Multivalued Dependence Logic

⊂
⊃

⊃
⊂

∪

Figure 4.1: Translatability relations between logics (wrt formulas)

This concludes the proof.

The relations between First Order Logic with Team Semantics, Constancy

Logic, Dependence Logic, Inclusion Logic and Independence Logic discovered

so far are then represented by Figure 4.1.

However, things change if we take in consideration the the expressive power

of these logics with respect to their sentences only. Then, as we saw, First

Order Logic and Constancy Logic have the same expressive power, in the sense

that every Constancy Logic formula is equivalent to some first order formula

and vice versa, and so do Dependence and Independence Logic. What about

Inclusion Logic sentences?

At the moment, relatively little is known by the author about this. In

essence, all that we know is the following result:

Proposition 4.3.13. Let ψ(~x, ~y) be any first order formula, where ~x and ~y

are tuples of disjoint variables of the same arity. Furthermore, let ψ′(~x, ~y) be

the result of writing ¬ψ(~x, ~y) in negation normal form. Then, for all suitable
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models M and all suitable pairs ~a, ~b of constant terms of the model,

M |={∅} ∃~z(~a ⊆ ~z ∧ ~z 6= ~b ∧ ∀~w(ψ′(~z, ~w) ∨ ~w ⊆ ~z))

if and only if M |= ¬[TC~x,~y ψ](~a,~b), that is, if and only if the pair of tuples of

elements corresponding to (~a,~b) is not in the transitive closure of {(~m1, ~m2) :

M |= ψ(~m1, ~m2)}.

Proof. Suppose that M |={∅} ∃~z(~a ⊆ ~z ∧ ~z 6= ~b ∧ ∀~w(ψ′(~z, ~w) ∨ ~w ⊆ ~z)). Then,

by definition, there exists a tuple of functions ~H = H1 . . . Hn such that

1. M |={∅}[ ~H/~z] ~a ⊆ ~z, that is, ~a ∈ ~H({∅});

2. M |={∅}[ ~H/~z] ~z 6= ~b, and therefore ~b 6∈ ~H({∅});

3. M |={∅}[ ~H/~z][ ~M/~w] ψ
′(~z, ~w) ∨ ~w ⊆ ~z.

Now, the third condition implies that whenever M |= ψ(~m1, ~m2) and ~m1 is in
~H({∅}), ~m2 is in ~H({∅}) too. Indeed, let Y = {∅}[ ~H/~z][ ~M/~w]: then, by the

semantics of our logic, we know that Y = Y1 ∪ Y2 for two subteams Y1 and Y2

such that M |=Y1
ψ′(~z, ~w) and M |=Y2

~w ⊆ ~z. But ψ′ is logically equivalent to

the negation of ψ, and therefore we know that, for all s ∈ Y1, M 6|= ψ(s(~z), s(~w))

in the usual Tarskian semantics.

Suppose now that ~m1 ∈ ~H({∅}) and that M |= ψ(~m1, ~m2). Then s = (~z :=

~m1, ~w := ~m2) is in Y ; but it cannot be in Y1, as we saw, and hence it must belong

to Y2. But M |=Y2
~w ⊆ ~z, and therefore there exists another assignment s′ ∈ Y2

such that s′(~z) = s(~w) = ~m2. But we necessarily have that s′(~z) ∈ ~H({∅}), and

therefore ~m2 ∈ ~H({∅}), as required.

So, ~H({∅}) is an set of tuples of elements of our models which contains the

interpretation of ~a but not that of ~b and such that

~m1 ∈ H({∅}),M |= ψ(~m1), ~M2 ⇒ ~m2 ∈ H({∅}).

This implies that M |= ¬[TC~x,~y ψ](~a,~b), as required.

Conversely, suppose that M |= ¬[TC~x,~y ψ](~a,~b): then there exists a set A

of tuples of elements of the domain of M which contains the interpretation of

~a but not that of ~b, and such that it is closed by transitive closure for ψ(~x, ~y).

Then, by choosing the functions ~H so that ~h({∅}) = A, it is easy to verify that

M satisfies our Inclusion Logic sentence.

As a corollary, we have that Inclusion Logic is strictly more expressive than

First Order Logic over sentences: for example, for all finite linear orders M =
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(Dom(M), <, S, 0, e), where S is the successor function, 0 is the first element of

the linear order and e is the last one, we have that

M |= ∃z(0 ⊆ z ∧ z 6= e ∧ ∀w(w 6= S(S(z)) ∨ w ⊆ z))

if and only if |M | is odd. It is not difficult to see, for example through the

Ehrenfeucht-Fräıssé method ([41]), that this property is not expressible in First

Order Logic.

4.3.3 Equiextension Logic

Let us now consider Equiextension Logic, that is, the logic obtained by adding to

First Order Logic equiextension atoms ~t1 ⊲⊳ ~t2 with the semantics of Definition

4.3.6.

It is easy to see that Equiextension Logic is contained in Inclusion Logic:

Proposition 4.3.14. Let ~t1 and ~t2 be any two tuples of terms of the same

length. Then, for all suitable models M and teams X,

M |=X ~t1 ⊲⊳ ~t2 ⇔M |=X ~t1 ⊆ ~t2 ∧ ~t2 ⊆ ~t1.

Proof. Obvious.

Translating in the other direction, however, requires a little more care:

Proposition 4.3.15. Let ~t1 and ~t2 be any two tuples of terms of the same

length. Then, for all suitable models M and teams X, M |=X ~t1 ⊆ ~t2 if and

only if

M |=X ∀u1u2∃~z(~t2 ⊲⊳ ~z ∧ (u1 6= u2 ∨ ~z = ~t1))

where u1, u2 and ~z do not occur in ~t1 and ~t2.

Proof. Suppose that M |=X ~t1 ⊆ ~t2. Then let X ′ = X [M/u1u2], and pick the

tuple of functions ~H used to choose ~z so that

~H(s) =

{ {~t1〈s〉}, if s(~u1) = s(~u2);

{~t2〈s〉}, otherwise

for all s ∈ X ′.

Then, for Y = X ′[ ~H/~z], by definition we have that M |=Y u1 6= u2 ∨~z = ~t1,

and it only remains to verify that M |=Y ~t2 ⊲⊳ ~z, that is, that Y (~t2) = Y (~z).

• Y (~t2) ⊆ Y (~z):

Let h ∈ Y . Then there exists an assignment s ∈ X with ~t2〈s〉 = ~t2〈h〉.
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Now let 0 and 1 be two distinct elements of M , and consider the assign-

ment h′ = s[0/u1][1/u2][ ~H/~z]. By construction, h′ ∈ Y ; and furthermore,

by the definition of ~H we have that h′(~z) = ~t2〈s〉 = ~t2〈h〉, as required.

• Y (~z) ⊆ Y (~t2):

Let h ∈ Y . Then, by construction, h(~z) is ~t1〈h〉 or ~t2〈h〉. But since

X(~t1) ⊆ X(~t2), in either case there exists an assignment s ∈ X such
~t2〈s〉 = h(~z). Now consider h′ = s[0/u1][1/u2][ ~H/~z]: again, h′ ∈ Y and

h′(~z) = ~t2〈h′〉 = ~t2〈s〉 = h(~z), as required.

Conversely, suppose that M |=X ∀u1u2∃~z(~t2 ⊲⊳ ~z ∧ (u1 6= u2 ∨ ~z = ~t1)),

and that therefore there exists a tuple of functions ~H such that, for Y =

X [M/u1u2][ ~H/~z], M |=Y ~t2 ⊲⊳ ~z∧(u1 6= u2∨~z = ~t1). Then consider any assign-

ment s ∈ X , and let h = s[0/u1][0/u2][ ~H/~z]. Now, h ∈ Y and h(~z) = ~t1〈s〉; but

since M |=Y ~t2 ⊲⊳ ~z, this implies that there exists an assignment h′ ∈ Y such

that ~t2〈h′〉 = h(~z) = ~t1〈s〉. Finally, h′ derives from some assignment s′ ∈ X ,

and for this assignment we have that ~t2〈s〉 = ~t2〈h′〉 = ~t1〈s〉 as required.

As a consequence, Inclusion Logic is precisely as expressive as Equiextension

Logic:

Corollary 4.3.16. Any formula of Inclusion Logic is equivalent to some for-

mula of Equiextension Logic, and vice versa.

4.3.4 Exclusion Logic

With the name of Exclusion Logic we refer to First Order Logic supplemented

with the exclusion atoms ~t1 | ~t2, with the satisfaction condition given in Defi-

nition 4.3.5.

As the following results show Exclusion Logic is, in a very strong sense,

equivalent to Dependence Logic:

Theorem 4.3.17. For all tuples of terms ~t1 and ~t2, of the same length, there

exists a Dependence Logic formula φ such that

M |=X φ⇔M |=X ~t1 | ~t2

for all suitable models M and teams X.

Proof. This follows immediately from Theorem 2.2.14, since the satisfaction

condition for the exclusion atom is downwards monotone and expressible in Σ1
1.
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For the sake of completeness, let us write a direct translation of exclusion

atoms into Dependence Logic anyway.

Let ~t1 and ~t2 be as in our hypothesis, let ~z be a tuple of new variables, of

the same length of ~t1 and ~t2, and let u1, u2 be two further unused variables.

Then M |=X ~t1 | ~t2 if and only if

M |=X ∀~z∃u1u2(=(~z, u1)∧ =(~z, u2)∧ ((u1 = u2 ∧ ~z 6= ~t1)∨ (u1 6= u2 ∧ ~z 6= ~t2))).

Indeed, suppose that M |=X ~t1 | ~t2, let X ′ = X [M/~z], and let 0, 1 be two

distinct elements in Dom(M).

Then define the functions H1 and H2 as follows:

• For all s′ ∈ X ′, H1(s
′) = {0};

• For all s′′ ∈ X ′[H1/u1], H2(s
′′) =

{ {0} if s′′(~z) 6∈ X(~t1);

{1} if s′′(~z) ∈ X(~t1).

Then, for Y = X ′[H1H2/u1u2], we have that M |=Y =(~z, u1) and that M |=Y =

(~z, u2), since the value of u1 is constant in Y and the value of u2 in Y is

functionally determined by the value of ~z.

Now split Y into the two subteams Y1 and Y2 defined as

Y1 = {s ∈ Y : s(u2) = 0};
Y2 = {s ∈ Y : s(u2) = 1}.

Clearly, M |=Y1
u1 = u2 and M |=Y2

u1 6= u2; hence, we only need to verify

that M |=Y1
~z 6= ~t1 and that M |=Y2

~z 6= ~t2.

For the first case, let h be any assignment in Y1: then, by definition, h(~z) 6=
~t1〈s〉 for all s ∈ X . But then h(~z) 6= ~t1〈h′〉 for all h′ ∈ Y1, and since this is true

for all h ∈ Y1 we have that M |=Y1
~z 6= ~t1, as required.

For the second case, let h be in Y2 instead: then, again by definition, h(~z) =
~t1〈s〉 for some s ∈ X . But M |=X ~t1 | ~t2, and hence h(~z) 6= ~t2〈s′〉 for all s′ ∈ X ;

and as in the previous case, this implies that h(~z) 6= ~t2(h
′) for all h′ ∈ Y2 and,

since this argument can be made for all h ∈ Y2, M |=Y2
~z 6= ~t2.

Conversely, suppose that

M |=X ∀~z∃u1u2(=(~z, u1)∧ =(~z, u2)∧ ((u1 = u2 ∧ ~z 6= ~t1)∨ (u1 6= u2 ∧ ~z 6= ~t2))).

Then there exist two functionsH1 andH2 such that, for Y = X [M/~z][H1H2/u1u2],

M |=Y =(~z, u1)∧ =(~z, u2) ∧ ((u1 = u2 ∧ ~z 6= ~t1) ∨ (u1 6= u2 ∧ ~z 6= ~t2)).
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Now, let s1 and s2 be any two assignments in X : in order to conclude

the proof, I only need to show that ~t1〈s1〉 6= ~t2〈s2〉. Suppose instead that
~t1〈s1〉 = ~t2〈s2〉 = ~m for some tuple of elements ~m, and consider two assignments

h1, h2 such that

h1 ∈ {s1[~m/~z]}[H1H2/u1u2];
9

and

h2 ∈ {s2[~m/~z]}[H1H2/u1u2].

Then h1, h2 ∈ Y ; and furthermore, since h1(~z) = h2(~z) and M |==(~z, u1)∧ =

(~z, u2), it must hold that h1(~u1) = h2(~u1) and h1(~u2) = h2(~u2).

Moreover, M |=Y (u1 = u2 ∧ ~z 6= ~t1) ∨ (u1 6= u2 ∧ ~z 6= ~t2), and therefore Y

can be split into two subteams Y1 and Y2 such that

M |=Y1
(u1 = u2 ∧ ~z 6= ~t1)

and

M |=Y2
(u1 6= u2 ∧ ~z 6= ~t2).

Now, as we saw, the assignments h1 and h2 coincide over u1 and u2, and

hence either {h1, h2} ⊆ Y1 or {h1, h2} ⊆ Y2. But neither case is possible,

because

h1(~z) = ~m = ~t1〈s1〉 = ~t1〈h1〉

and therefore h1 cannot be in Y1, and because

h2(~z) = ~m = ~t2〈s2〉 = ~t2〈h2〉

and therefore h2 cannot be in Y2.

So we reached a contradiction, and this concludes the proof.

Theorem 4.3.18. Let t1 . . . tn be terms, and let z be a variable not occurring

in any of them. Then the dependence atom =(t1 . . . tn) is equivalent to the

Exclusion Logic expression

φ = ∀z(z = tn ∨ (t1 . . . tn−1z | t1 . . . tn−1tn)),

for all suitable models M and teams X.

Proof. Suppose that M |=X=(t1 . . . tn), and consider the team X [M/z]. Now,

let Y = {s ∈ X [M/z] : s(z) = tn〈s〉} and let Z = X [M/z]\Y .

9This team and the next one are actually singletons, because H1 and H2 must satisfy the
dependency conditions.
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Clearly, Y ∪ Z = X [M/x] and M |=Y z = tn; hence, if we show that

Z |= t1 . . . tn−1z | t1 . . . tn−1tn we can conclude that M |=X φ, as required.

Now, consider any two s, s′ ∈ Z, and suppose that ti〈s〉 = ti〈s′〉 for all

i = 1 . . . n− 1. But then s(z) 6= tn〈s′〉: indeed, since M |=X=(t1 . . . tn), by the

locality of Dependence Logic and by the downwards closure property we have

that M |=Z=(t1 . . . tn) and hence that tn〈s〉 = tn〈s′〉.
Therefore, if we had that s(z) = tn〈s′〉, it would follow that s(z) = tn〈s′〉 =

tn〈s〉 and s would be in Y instead.

So s(z) 6= tn〈s′〉, and since this holds for all s and s′ in Z which coincide

over t1 . . . tn−1 we have that

M |=Z t1 . . . tn−1z | t1 . . . tn−1tn,

as required.

Conversely, suppose that M |=X φ, and let s, s′ ∈ X assign the same values

to t1 . . . tn−1. Now, by the definition of φ, X [M/z] can be split into two sub-

teams Y and Z such that M |=Y z = tn and

M |=Z (t1 . . . tn−1z | t1 . . . tn−1tn).

Now, suppose that tn〈s〉 = m and tn〈s′〉 = m′, and that m 6= m′: then

s[m′/z] and s′[m/z] are in s[M/z] but not in Y , and hence they are both in Z.

But then, since ~ti〈s〉 = ~ti〈s′〉 for all i = 1 . . . n− 1,

tn〈s′〉 = m′ = s[m′/z](z) 6= tn〈s′[m/z]〉 = tn〈s′〉

which is a contradiction. Therefore, m = m′, as required.

Corollary 4.3.19. Dependence Logic is precisely as expressive as Exclusion

Logic, both with respect to definability of sets of teams and with respect to sen-

tences.

4.3.5 Inclusion/Exclusion Logic

Now that we have some information about Inclusion Logic and about Exclusion

Logic, let us study Inclusion/Exclusion Logic (I/E logic for short), that is,

the formalism obtained by adding both inclusion and exclusion atoms to the

language of First Order Logic.

By the results of the previous sections, we already know that inclusion atoms

are expressible in Independence Logic and that exclusion atoms are expressible

in Dependence Logic; furthermore, as we saw in Subsection 2.4.1, dependence

atoms are expressible in Independence Logic.
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Then it follows at once that I/E Logic is contained in Independence Logic:

Corollary 4.3.20. For every I/E Logic formula φ there exists an Independence

Logic formula φ∗ such that

M |=X φ⇔M |=X φ∗

for all suitable models M and teams X.

Now, is I/E Logic properly contained in Independence Logic?

As the following result illustrates, this is not the case:

Theorem 4.3.21. Let ~t2 ⊥~t1 ~t3 be an independence atom, and let φ be the

formula

∀~p~q~r ∃u1u2u3u4

(
4∧

i=1

=(~p~q~r, ui) ∧ ((u1 6= u2 ∧ (~p~q | ~t1~t2))∨

∨(u1 = u2 ∧ u3 6= u4 ∧ (~p~r | ~t1~t3)) ∨ (u1 = u2 ∧ u3 = u4 ∧ (~p~q~r ⊆ ~t1~t2~t3)))
)

where the dependence atoms are used as shorthands for the corresponding Ex-

clusion Logic expressions, which exist because of Theorem 4.3.18, and where all

the quantified variables are new.

Then, for all suitable models M and teams X,

M |=X ~t2 ⊥~t1 ~t3 ⇔M |=X φ.

Proof. Suppose that M |=X ~t2 ⊥~t1 ~t3, and consider the team X ′ = X [M/~p~q~r].

Now, let 0 and 1 be two distinct elements of the domain of M , and let the

functions H1 . . .H4 be defined as follows:

• For all s ∈ X ′, H1(s) = {0};

• For all s ∈ X ′[H1/u1],

H2(s) =

{ {0} if there exists a s′ ∈ X such that ~t1〈s′〉~t2〈s′〉 = s(~p)s(~q);

{1} otherwise;

• For all s ∈ X ′[H1/u1][H2/u2], H3(s) = {0};

• For all s ∈ X ′[H1/u1][H2/u2][H3/u3],

H4(s) =

{ {0} if there exists a s′ ∈ X such that ~t1〈s′〉~t3〈s′〉 = s(~p)s(~r);

{1} otherwise.
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Now, let Y = X ′[H1/u1][H2/u2][H3/u3][H4/u4]: by the definitions ofH1 . . . H4,

it holds that all dependencies are respected. Let then Y be split into Y1, Y2 and

Y3 according to:

• Y1 = {s ∈ Y : s(u1) 6= s(u2)};

• Y2 = {s ∈ Y : s(u3) 6= s(u4)}\Y1;

• Y3 = Y \(Y1 ∪ Y2).

Now, let s be any assignment of Y1: then, since s(u1) 6= s(u2), by the

definitions of H1 and H2 we have that

∀s′ ∈ Y, s(~p)s(~q) 6= ~t1〈s′〉~t2〈s′〉

and, in particular, that the same holds for all the s′ ∈ Y1. Hence,

M |=Y1
u1 6= u2 ∧ (~p~q | ~t1~t2),

as required.

Analogously, let s be any assignment of Y2: then s(u1) = s(u2), since oth-

erwise s would be in Y1, s(u3) 6= s(u4) and

∀s′ ∈ Y, s(~p)s(~r) 6= ~t1〈s′〉~t3〈s′〉

and therefore

M |=Y2
u1 = u2 ∧ u3 6= u4 ∧ (~p~r | ~t1~t3).

Finally, suppose that s ∈ Y3: then, by definition, s(u1) = s(u2) and s(u3) =

s(u4). Therefore, there exist two assignments s′ and s′′ in X such that

~t1〈s′〉~t2〈s′〉 = s(~p)s(~q)

and
~t1〈s′′〉~t3〈s′′〉 = s(~p)s(~r)

But by hypothesis we know that M |=X ~t2 ⊥~t1 ~t3, and s′ and s′′ coincide over
~t1, and therefore there exists a new assignment h ∈ X such that

~t1〈h〉~t2〈h〉~t3〈h〉 = s(~p)s(~q)s(~r).

Now, let o be the assignment of Y given by

o = h[~t1〈h〉~t2〈h〉~t3〈h〉/~p~q~r][H1 . . . H4/u1 . . . u4] :
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by the definitions of H1 . . . H4 and by the construction of o, we then get that

o(u1) = o(u2) = o(u3) = o(u4) = 0

and therefore that o ∈ Y3.

But by construction,

~t1〈o〉~t2〈o〉~t3〈o〉 = ~t1〈h〉~t2〈h〉~t3〈h〉 = s(~p)s(~q)s(~r),

and hence

M |=Y3
~p~q~r ⊆ ~t1~t2~t3

as required.

Conversely, suppose that M |=X φ, and let s, s′ ∈ X be such that ~t1〈s〉 =
~t1〈s′〉. Now, consider the two assignments h, h′ ∈ X ′ = X [M/~p~q~r] given by

h = s[~t1〈s〉/~p][~t2〈s〉/~q][~t3〈s′〉/~r]

and

h′ = s′[~t1〈s〉/~p][~t2〈s〉/~q][~t3〈s′〉/~r].

Now, since M |=X φ, there exist functions H1 . . . H4, depending only on ~p, ~q

and ~r, such that Y = X ′[H1/u1][H2/u2][H3/u3][H4/u4] can be split into three

subteams Y1, Y2 and Y3 and

M |=Y1
(u1 6= u2 ∧ (~p~q | ~t1~t2));

M |=Y2
(u1 = u2 ∧ u3 6= u4 ∧ (~p~r | ~t1~t3));

M |=Y3
(u1 = u2 ∧ u3 = u4 ∧ (~p~q~r ⊆ ~t1~t2~t3)).

Now, let

o ∈ h[H1/u1][H2/u2][H3/u3][H4/u4]

and

o′ ∈ h′[H1/u1][H2/u2][H3/u3][H4/u4] :

since the Hi are functionally dependent on ~p~q~r and the values of these variables

are the same for h and for h′, we have that o and o′ have the same values for

u1 . . . u4, and therefore that they belong to the same Yi.

But they cannot be in Y1 nor in Y2, since

o(~p)o(~q) = o′(~p)o′(~q) = ~t1〈s〉~t2〈s〉 = ~t1〈o〉~t2〈o〉
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and

o(~p)o(~r) = o′(~p)o′(~r) = ~t1〈s′〉~t3〈s′〉 = ~t1〈o′〉~t3〈o′〉;

therefore, o and o′ are in Y3, and there exists an assignment o′′ ∈ Y3 with

~t1〈o′′〉~t2〈o′′〉~t3〈o′′〉 = o(~p)o(~q)o(~r) = ~t1〈s〉~t2〈s〉~t3〈s′〉

and, finally, there exists a s′′ ∈ X such that ~t1〈s′′〉~t2〈s′′〉~t3〈s′′〉 = ~t1〈s〉~t2〈s〉~t3〈s′〉,
as required.

Independence Logic and I/E Logic are therefore equivalent:

Corollary 4.3.22. Any Independence Logic formula is equivalent to some I/E

Logic formula, and any I/E Logic formula is equivalent to some Independence

Logic formula.

Figure 4.2 summarizes the translatability10 relations between the logics of

imperfect information which have been considered in this work.

Let us finish this section verifying that I/E Logic (and, as a consequence,

also Inclusion Logic, Equiextension Logic and Independence Logic) with the lax

semantics is local:

Theorem 4.3.23. Let M be a first order model, let φ be any I/E Logic formula

and let V be a set of variables such that Free(φ) ⊆ V . Then, for all suitable

teams X,

M |=X φ⇔M |=X↾V
φ

Proof. The proof is by structural induction on φ.

1. If φ is a first order literal, an inclusion atom or an exclusion atom then

the statement follows trivially from the corresponding semantic rule;

2. Let φ be of the form ψ ∨ θ, and suppose that M |=X ψ ∨ θ. Then, by

definition, X = Y ∪Z for two subteams Y and Z such that M |=Y ψ and

M |=Z θ. Then, by induction hypothesis, M |=Y↾V
ψ and M |=Z↾V

θ. But

X↾V = Y↾V ∪Z↾V : indeed, s ∈ X if and only if s ∈ Y or s ∈ Z, and hence

s↾V ∈ X↾V if and only if it is in Y↾V or in Z↾V . Hence, M |=X↾V
ψ ∨ θ, as

required.

Conversely, suppose that M |=X↾V
ψ ∨ θ, that is, that X↾V = Y ′ ∪ Z ′

for two subteams Y ′ and Z ′ such that M |=Y ′ ψ and M |=Z′ θ. Then

10To be more accurate, Figure 4.2 represents the translatability relations between the logics
which we considered, with respect to all formulas. Considering sentences only would lead to
a different graph.
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Figure 4.2: Relations between logics of imperfect information (wrt formulas)
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define Y = {s ∈ X : s↾V ∈ Y ′} and Z = {s ∈ X : s↾V ∈ Z ′}. Now,

X = Y ∪ Z: indeed, if s ∈ X then s↾V is in X↾V , and hence it is in

Y ′ or in Z ′, and on the other hand if s is in Y or in Z then it is in X

by definition. Furthermore, Y↾V = Y ′ and Z↾V = Z ′,11 and hence by

induction hypothesis M |=Y ψ and M |=Z θ, and finally M |=X ψ ∨ θ.

3. Let φ be of the form ψ∧θ. Then M |=X ψ∧θ if and only if M |=X ψ and

M |=X θ, that is, by induction hypothesis, if and only if M |=X↾V
ψ and

M |=X↾V
θ. But this is the case if and only if M |=X↾V

ψ ∧ θ, as required.

4. Let φ be of the form ∃xψ, and suppose that M |=X ∃xψ. Then there

exists a function H : X → Parts(Dom(M))\{∅} such that M |=X[H/x] ψ.

Then, by induction hypothesis, M |=(X[H/x])↾V ∪{x}
ψ.

Now consider the function H ′ : X↾V → Parts(Dom(M))\∅ which assigns

to every s′ ∈ X↾V the set

H ′(s′) =
⋃

{H(s) : s ∈ X, s′ = s↾V }.

Then H ′ assigns a nonempty set to every s′ ∈ X↾V , as required; and fur-

thermore, X↾V [H ′/x] is precisely (X [H/x])↾V ∪{x}.
12 Therefore, M |=X↾V

∃xψ, as required.

Conversely, suppose that M |=X↾V
∃xψ, that is, that M |=X↾V [H′/x] ψ for

some H ′. Then define the function H : X → Parts(Dom(M))\{x} so that

H(s) = H ′(s↾V ) for all s ∈ X ; now, X↾V [H ′/x] = (X [H/x])↾V ∪{x},
13 and

hence by induction hypothesis M |=X ∃xψ.

5. For all suitable teamsX ,X [M/x]↾V ∪{x} = X↾V [M/x]; and hence,M |=X↾V

∀xψ ⇔M |=X[M/x]↾V ∪{x}
ψ ⇔M |=X[M/x] ψ ⇔ M |=X ∀xψ, as required.

11By definition, Y↾V ⊆ Y ′ and Z↾V ⊆ Z′. On the other hand, if s′ ∈ Y ′ then s′ ∈ X↾V ,
and hence s′ is of the form s↾V for some s ∈ X, and therefore this s is in Y too, and finally
s′ = s↾V ∈ Y↾V . The same argument shows that Z′ ⊆ Z↾V .

12Indeed, suppose that s′ ∈ X[H/x]: then there exists a s ∈ X such that s′ = s[m/x] for
some m ∈ H(s). Then s↾V ∈ X↾V , and moreover m ∈ H′(s↾V ) by the definition of H′, and
hence s′

↾V ∪{x}
= s↾V [m/x] ∈ X↾V [H′/x].

Conversely, suppose that h′ ∈ X↾V [H′/x]: then there exists a h ∈ X↾V such that h′ =
h[m/x] for some m ∈ H′(h). But then there exists a s ∈ X such that h = s↾V and such that
m ∈ H(s); and therefore, s[m/x] ∈ X[H/x], and finally h′ = h[m/x] = (s[m/x])↾V ∪{x} ∈
(X[H/x])↾V ∪{x}.

13In brief, for all s ∈ X and all m ∈ Dom(M) we have that m ∈ H′(s↾V ) if and only if
m ∈ H(s), by definition. Hence, for all such s and m, s↾V [m/x] ∈ X↾V [H′/x] if and only if
s[m/x] ∈ X[H/x].



4.4. Game Theoretic Semantics for I/E Logic 91

4.4 Game Theoretic Semantics for I/E Logic

In this section, we will adapt the Game Theoretic Semantics of Subsection 2.2.3

to the case of Inclusion/Exclusion Logic.

As for the case of dependence atoms, we will fix

Player(~t1 ⊆ ~t2) = Player(~t1 | ~t2, s) = E;

Succ(~t1 ⊆ ~t2) = Succ(~t1 | ~t2, s) = (λ, s).

The uniformity condition will be changed in the obvious way:

Definition 4.4.1. Let GMX (φ) be a game, and let P be a set of plays in it.

Then P is uniform if and only if

1. For all ~p ∈ P and for all i ∈ N such that pi = (~t1 ⊆ ~t2, s) there exists a

~q ∈ P and a j ∈ N such that qj = (~t1 ⊆ ~t2, s
′) for the same instance of

the inclusion atom and ~t1〈s〉 = ~t2〈s′〉;

2. For all ~p, ~q ∈ P and for all i, j ∈ N such that pi = (~t1 | ~t2, s) and pj =

(~t1 | ~t2, s′) for the same instance of the exclusion atom, ~t1〈s〉 6= ~t2〈s′〉.

The other modification which we need to make, in order to account for

the TS-∃-lax rule, is that we must now be able to consider nondeterministic

strategies:

Definition 4.4.2. Let GMX (φ) be a semantic game and let ψ be any expression

such that (ψ, s′) is a possible position for some s′. Then a nondeterministic

local strategy for ψ is a function fψ sending each s′ into a nonempty subset of

SuccM (ψ, s′).

Definition 4.4.3. Let GMX (φ) be a semantic game, let ~p = p1 . . . pn be a play

in it, and let fψ be a local strategy for some ψ. Then ~p is said to follow fψ if

and only if for all i ∈ 1 . . . n− 1 and all s′,

pi = (ψ, s′) ⇒ pi+1 ∈ fψ(s′).

A global nondeterministic strategy for a game is simply a collection of local

nondeterministic strategies for all positions of the game in which E moves, and

such a strategy is said to be uniform or winning if and only if the set of all

complete plays in which E follows it is so.

Once these modifications are made, we can easily generalize Theorem 2.2.28

to I/E Logic:
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Theorem 4.4.4. Let M be a first-order model, let X be a team, and let φ be

any I/E Logic formula. Then M |=X φ if and only if the existential player E

has a uniform winning strategy for GMX (φ).

Proof. The proof is by structural induction on φ, and follows exactly the same

pattern of the proof of Theorem 2.2.28.

We report here only the cases in which some modification is necessary:

2. If φ is an inclusion atom ~t1 ⊆ ~t2 then the only strategy available to E sends

each initial position (~t1 ⊆ ~t2, s) into the winning terminal position (λ, s).

This strategy is uniform if and only if the set X of all initial assignments

satisfies the inclusion atom, as required.

The case of the exclusion atom is entirely analogous.

3. If φ is a disjunction ψ1∨ψ2 and M |=X φ then X = X1∪X2 for two teams

X1 and X2 such that M |=X1
ψ1 and M |=X2

ψ2. Then, by induction

hypothesis, there exist two nondeterministic, winning uniform strategies

f1 and f2 for E in GMX1
(ψ1) and GMX2

(ψ2) respectively. Then define the

strategy f for E in GMX (ψ1 ∨ ψ2) as follows:

• If θ is part of ψ1 then fθ = (f1)θ;

• If θ is part of ψ2 then fθ = (f2)θ;

• If θ is the initial formula ψ1 ∨ ψ2 then

fθ(s) =







{(ψ1, s), (ψ2, s)} if s ∈ X1 ∩X2;

{(ψ1, s)} if s ∈ X1\X2;

{(ψ2, s)} if s ∈ X2\X1;

This strategy is clearly uniform, as any violation of the uniformity condi-

tion would be a violation for f1 or f2 too.14 Furthermore, it is winning:

indeed, any play of GMX (ψ1 ∨ ψ2) in which E follows f strictly contains a

play of GMX1
(ψ1) in which E follows f1 or a play of GMX2

(ψ2) in which E

follows f2, and in either case the game ends in a winning position.

Conversely, suppose that f is a nondeterministic uniform winning strategy

for E in GMX (φ). Now let X1 = {s ∈ X : (ψ1, s) ∈ fφ(s)}, let X2 = {s ∈ X :

(ψ2, s) ∈ fφ(s)}, and let f1 and f2 be the restrictions of f to the subgames

corresponding to ψ1 and ψ2 respectively. Then f1 and f2 are uniform and

14Note that here it is vital that all possible plays of GM
Xi

(ψi) in which E follows fi are part

of some possible play of GM
X (ψ) in which E follows f. Otherwise, it would not be guaranteed

that the uniformity conditions corresponding to inclusion atoms are respected.
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winning for GMX1
(ψ1) and GMX2

(ψ2) respectively, and hence by induction

hypothesis M |=X1
ψ1 and M |=X2

ψ2. But X = X1 ∪X2, and hence this

implies that M |=X φ.

5. If φ is ∃vψ for some ψ and variable v ∈ Var and M |=X φ then there exists

a H : X → Parts(Dom(M))\{∅} such that M |=X[H/v] ψ. By induction

hypothesis, this implies that E has a nondeterministic uniform winning

strategy g for GMX[H/v](ψ). Now define the strategy f for E in GMX (∃vψ) as

• If θ is part of ψ then fθ = gθ;

• fφ(∃vψ, s) = {(ψ, s[m/v]) : m ∈ H(s)}.

Then any play of GMX (φ) in which E follows f contains a play of GMX[H/v](ψ)

in which E follows g, and every such play is contained in some play fol-

lowing f as above; and hence, f is uniform and winning.

Conversely, suppose that E has a nondeterministic uniform winning strat-

egy f forGMX (∃vψ). Then define the functionH : X → Parts(Dom(M))\{∅}
so that for all s ∈ X , fφ(∃vψ, s) = {(ψ, s[m/v]) : m ∈ H(s)}, and let g be

the restriction of f to ψ. Then g is winning and uniform for GMX[H/v](ψ),

and hence by induction hypothesis M |=X[H/v] ψ, and finally M |=X ∃vψ.

In [24], Forster considers the distinction between deterministic and nonde-

terministic strategies for the case of the logic of branching quantifiers and points

out that, in the absence of the Axiom of Choice, different truth conditions are

obtained for these two cases. In the same paper, he then suggests that

Perhaps advocates of branching quantifier logics and their descen-

dents will tell us which semantics [that is, the deterministic or

nondeterministic one] they have in mind.

Dependence Logic, Inclusion Logic, Inclusion/Exclusion Logic and Indepen-

dence Logic can certainly be seen as descendents of Branching Quantifier Logic,

and the present work strongly suggests that the semantics that we “have in

mind” is the nondeterministic one. As we have just seen, the determinis-

tic/nondeterministic distinction in Game Theoretic Semantics corresponds pre-

cisely to the strict/lax distinction in Team Semantics; and indeed, for Depen-

dence Logic proper (which is expressively equivalent to branching quantifier

logic), the lax and strict semantics are equivalent modulo the Axiom of Choice.

But for Inclusion Logic and its extensions, we have that lax and strict (and,

hence, nondeterministic and deterministic) semantics are not equivalent, even
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in the presence of the Axiom of Choice (Proposition 4.3.7), and that only the

lax one satisfies Locality in the sense of Proposition 2.2.7 (see Proposition 4.3.8

and Theorems 4.3.9, 4.3.23 for the proof).

Furthermore, as stated before, Engström showed in [19] that the lax seman-

tics for existential quantification arises naturally from his treatment of general-

ized quantifiers in Dependence Logic.

All of this, in the opinion of the author at least, makes a convincing case for

the adoption of the nondeterministic semantics (or, in terms of Team Semantics,

of the lax one) as the natural semantics for the study of logics of imperfect

information, thus suggesting an answer to Forster’s question.

4.5 Definability in I/E Logic (and in Indepen-

dence Logic)

As we wrote in Subsection 2.2.2, in [50] Kontinen and Väänänen characterized

the expressive power of dependence Logic formulas, and, in [49], Kontinen and

Nurmi used a similar technique to prove that a class of teams is definable in

Team Logic (Subsection 2.4.3) if and only if it is expressible in full Second Order

Logic.

In this section, I will attempt to find an analogous result for I/E Logic (and

hence, through Corollary 4.3.22, for Independence Logic). One direction of the

intended result is straightforward:

Theorem 4.5.1. Let φ(~v) be a formula of I/E Logic with free variables in ~v.

Then there exists an existential second order Logic formula Φ(A), where A is a

second order variable with arity |~v|, such that

M |=X φ(~v) ⇔M |= Φ(Rel~v(X))

for all suitable models M and teams X.

Proof. The proof is an unproblematic induction over the formula φ, and fol-

lows closely the proof of the analogous results for dependence Logic ([65]) or

independence Logic ([33]).

The other direction, by contrast, requires some care:15

Theorem 4.5.2. Let Φ(A) be a formula in Σ1
1 such that Free(Φ) = {A}, and

let ~v be a tuple of distinct variables with |~v| = Arity(A). Then there exists an

15The details of this proof are similar to the ones of [50] and [49].
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I/E Logic formula φ(~v) such that

M |=X φ(~v) ⇔M |= Φ(Rel~v(X))

for all suitable models M and nonempty teams X.

Proof. It is easy to see that any Φ(A) as in our hypothesis is equivalent to the

formula

Φ∗(A) = ∃B(∀~x(A~x↔ B~x) ∧ Φ(B)),

in which the variable A occurs only in the conjunct ∀~x(A~x↔ B~x). Then, as in

[50], it is possible to write Φ∗(A) in the form

∃~f ∀~x~y((A~x↔ f1(~x) = f2(~x)) ∧ ψ(~x, ~y, ~f)),

where ~f = f1f2 . . . fn, ψ(~f, x, y) is a quantifier-free formula in which A does

not appear, and each fi occurs only as f(~wi) for some fixed tuple of variables

~wi ⊆ ~x~y.

Now define the formula φ(~v) as

∀~x~y ∃~z
(
∧

i

=(~wi, zi) ∧ (((~v ⊆ ~x ∧ z1 = z2) ∨ (~v | ~x ∧ z1 6= z2)) ∧ ψ′(~x, ~y, ~z))

)

,

where ψ′(~x, ~y, ~z) is obtained from ψ(~x, ~y, ~f) by substituting each fi(~wi) with

zi, and the dependence atoms are used as shorthands for the corresponding

expressions of I/E Logic.

Now we have that M |=X φ(~v) ⇔M |= Φ∗(Rel~v(X)):

Indeed, suppose thatM |=X φ(~v). Then, by construction, for each i = 1 . . . n

there exists a function Hi, choosing precisely one element for possible value of

~wi, such that for Y = X [M/~x~y][ ~H/~z]

M |=Y ((~v ⊆ ~x ∧ z1 = z2) ∨ (~v | ~x ∧ z1 6= z2)) ∧ ψ′(~x, ~y, ~z).

Therefore, we can split Y into two subteams Y1 and Y2 such that M |=Y1

~v ⊆ ~x ∧ z1 = z2 and M |=Y2
~v | ~x ∧ z1 6= z2.

Now, for each i define the function fi so that, for every tuple ~m of the

required arity, fi(~m) corresponds to the only element of Hi(s) for an arbitrary

s ∈ X [M/~x~y] with s(~wi) = ~m, and let o be any assignment with domain ~x~y.

Thus, if we can prove that M |=o ((Rel~v(X))~x↔ f1(~x) = f2(~x))∧ψ(~x, ~y, ~f)

then the left-to-right direction of our proof is done.

First of all, suppose that M |=o (Rel~v(X))~x, that is, that o(~x) = ~m = s(~v)
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for some s ∈ X .

Then choose an arbitrary tuple of elements ~r and consider the assignment

h = s[~m/~x][~r/~y][ ~H/~z] ∈ Y . This h cannot belong to Y2, since h(~v) = s(~v) =

~m = h(~x), and therefore it is in Y1 and h(z1) = h(z2).

By the definition of the fi, this implies that f1(~m) = f2(~m), as required.

Analogously, suppose that M, 6|=o (Rel~v(X))~x, that is, that o(~x) = ~m 6= s(~v)

for all s ∈ X . Then pick an arbitrary such s ∈ X and an arbitrary tuple of

elements ~r, and consider the assignment

h = s[~m/~x][~r/~y][ ~H/~z] ∈ Y.

If h were in Y1, there would exist an assignment h′ ∈ Y1 such that h′(~v) =

h(~x) = ~m; but this is impossible, and therefore h ∈ Y2. Hence h(z1) 6= h(z2),

and therefore f1(~m) 6= f2(~m).

Putting everything together, we just proved that

M |=o R~x⇔ f1(~x) = f2(~x)

for all assignments o with domain ~x~y, and we still need to verify that M |=o

ψ(~x, ~y, f) for all such o.

But this is immediate: indeed, let s be an arbitrary assignment of X , and

construct the assignment

h = s[o(~x~y)/~x~y][ ~H/~z] ∈ X [M/~x~y][ ~H/~z].

Then, sinceM |=X[M/~x~y][ ~H/~z] ψ
′(~x, ~y, ~z) and ψ′(~x, ~y, ~z) is first order,M |={h}

ψ′(~x, ~y, ~z); but ψ′(~x, ~y, ~f(~x~y)) is equivalent to ψ(~x, ~y, ~f) and h(zi) = f(h(~wi)) =

f(o(~wi)), and therefore

M |=o ψ(~x, ~y, ~f)

as required.

Conversely, suppose that M |=s (Rel~v(X))~x ↔ (f1(~x) = f2(~x)) ∧ ψ(~x, ~y, ~f)

for all assignments s with domain ~x~y and for some fixed choice of the tuple of

functions ~f .

Then let ~H be such that, for all assignments h and for all i,

Hi(h) = {fi(h(~wi))}

and consider Y = X [M/~x~y][H/~z].

Clearly, Y satisfies the dependency conditions; furthermore, it satisfies ψ′(~x, ~y, ~z),
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because for every assignment h ∈ Y and every i ∈ 1 . . . n we have that Hi(h) =

{h(zi)} = {fi(h(~wi))}.
Finally, we can split Y into two subteams Y1 and Y2 as follows:

Y1 = {o ∈ Y : o(~z1) = o(~z2)};
Y2 = {o ∈ Y : o(~z1) 6= o(~z2)}.

It is then trivially true that M |=Y1
z1 = z2 and M |=Y2

z1 6= z2, and all

that is left to do is proving that M |=Y1
~v ⊆ ~x and M |=Y2

~v | ~x.
As for the former, let o ∈ Y1: then, since o(z1) = o(z2), f1(o(~x)) = f2(o(~x)).

This implies that o(~x) ∈ Rel~v(X), and hence that there exists an assignment

s′ ∈ X with s′(~v) = o(~x).

Now consider the assignment

o′ = s′[o(~x~y)/~x~y][ ~H/~z] :

since in Y the values of ~z depend only on the values of ~x~y and since o(z1) = o(z2),

we have that o′(z1) = o′(z2) and hence o′ ∈ Y1 too. But o′(~v) = s′(~v) = o(~x),

and since o was an arbitrary assignment of Y1, this implies that M |=Y1
~v ⊆ ~x.

Finally, suppose that o ∈ Y2. Then, since o(z1) 6= o(z2), we have that

f1(o(~x)) 6= f2(o(~x)); and therefore, o(~x) 6∈ Rel~v(X), that is, for all assignments

s ∈ X it holds that s(~v) 6= o(~x). Then the same holds for all o′ ∈ Y2.

This concludes the proof.

Since by Corollary 4.3.22 we already know Independence Logic and I/E Logic

have the same expressive power, this has the following corollary:

Corollary 4.5.3. Let Φ(A) be an existential second order formula with Free(Φ)

= A, and let ~v be any set of variables such that |~v| = Arity(A). Then there exists

an Independence Logic formula φ(~v) such that

M |=X φ(~v) ⇔M |= Φ(Rel~v(X))

for all suitable models M and teams X.

Finally, by Fagin’s Theorem ([20]) this gives an answer to Grädel and

Väänänen’s question:

Corollary 4.5.4. All NP properties of teams are expressible in Independence

Logic.

This result has far-reaching consequences. First of all, it implies that In-

dependence Logic (or, equivalently, I/E Logic) is the most expressive logic of



98 Chapter 4. Dependencies in Team Semantics

imperfect information which only deals with existential second order properties.

Extensions of Independence Logic can of course be defined; but unless they are

capable of expressing some property which is not existential second order (as,

for example, is the case for the Intuitionistic Dependence Logic of [74], or for the

BID Logic of [3]), they will be expressively equivalent to Independence Logic

proper. As (Jouko Väänänen, private communication) pointed out, this means

that Independence Logic is maximal among the logics of imperfect information

which always generate existential second order properties of teams. In partic-

ular, any dependency condition which is expressible as an existential second

order property over teams can be expressed in Independence Logic: and as we

will see in the next section, this entails that such a logic is capable of expressing

a great amount of the notions of dependency considered by database theorists.
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4.6 Announcements, Constancy Atoms, and In-

constancy Atoms

In the previous sections, we examined the relationship between Independence

Logic and a number of other logics of imperfect information; and through this

analysis, we succeeded in characterizing the expressive power of Independence

Logic.

However, all of these logics add relatively complicated notions of depen-

dence to the language of Dependence Logic. As we saw in Chapter 3, De-

pendence Logic D is equivalent to FO(δ1,=(·)), that is, to First Order Logic

(with Team Semantics) augmented with announcement operators and constancy

atoms: indeed, a dependence atom =(x1 . . . xn) can easily be decomposed as

δ1x1 . . . δ
1xn−1 = (xn), and on the other hand, as either of Theorem 2.2.14

or Proposition 3.1.3 demonstrate, announcement operators do not increase the

expressive power of Dependence Logic.

In this last section, we will attempt to adapt this reduction to the cases of

Inclusion Logic and Independence Logic. As we will see, this will be remarkably

easy: using the results of the previous sections, it will be unproblematic to show

that, in order to obtain Independence Logic, it suffices to add to the language

of FO(δ1,=(·)) the following inconstancy atoms :

TS-inconst: For all terms t, M |=X 6=(t) if and only if for any s ∈ X there

exists an s′ ∈ X with t〈s〉 6= t〈s′〉.

In other words, a nonempty team X satisfies 6=(t) if and only if X = ∅ or the

value of t is not constant in X . Hence, an inconstancy atom =(t) is equivalent

to the Team Logic expression 0∨ ∼=(t), where 0 represents the false formula

(which holds only in the empty assignment).

The satisfaction conditions for inconstancy atoms are easily expressible in

First Order Logic: and therefore, it follows at once from Theorem 4.5.2 and

from the fact that inconstancy atoms satisfy the locality principle that

FO(δ1,=(·), 6=(·)) is contained in Independence Logic, in the sense that any

formula of this logic is equivalent to some Independence Logic formula.

Does the opposite hold? Well, we already saw that dependence atoms are

expressible in this logic; and therefore, by Theorem 4.3.17, we know that exclu-

sion atoms are also expressible in it. If we could prove that inclusion atoms are

expressible in FO(δ1,=(·), 6=(·)), we could apply Theorem 4.3.21 and conclude

at once that this logic is equivalent to Independence Logic.

First of all, let us define a couple of simple abbreviations:
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Definition 4.6.1. Let x1 . . . xn be variables, and let t be a term. Then we will

write 6=(x1 . . . xn, t) for δ1x1 . . . δ
1xn 6=(t).

Furthermore, let t1 . . . tn, t
′ be terms, and let v1 . . . vn be variables not oc-

curring in them. Then we will write 6=(t1 . . . tn, t
′) for

∃v1 . . . vn
(

n∧

i=1

(vi = ti)∧ 6=(v1 . . . vn, t)

)

.

Proposition 4.6.2. For all models M , teams X, tuples of terms ~t and terms

t′, M |=X 6=(~t, t′) if and only if for any s ∈ X there exists a s′ ∈ X which

coincides with s over ~t, but not over t′.

Proof. Trivial.

It is worth observing that 6=(~t, t′) is not equivalent to the contradictory

negation ∼=(~t, t′) of =(~t, t′). Indeed, a team X satisfies the latter only if there

exist two assignments s, s′ ∈ X which coincide on ~t but not on t′, and this is

clearly different from the condition of Proposition 4.6.2. This semantic condition

was mentioned in an informal discussion between the author and Fausto Barbero

on the different possible ways of “negating” a dependence atom; and the author

thanks Barbero for drawing his attention to this interesting notion of non-

dependence.

Now, it is easy enough to see that “non-dependencies” 6=(t1 . . . tn, t
′) are

expressible in Inclusion Logic:

Proposition 4.6.3. Let ~t be a tuple of terms, let t′ be a term, and let v be a

new variable. Then 6=(~t, t′) is equivalent to ∃v(v 6= t′ ∧ ~tv ⊆ ~tt′).

Proof. Obvious.

What about the converse?

We can rewrite the equiextension atoms of Subsection 4.3.3 in terms of

nondependence atoms:

Proposition 4.6.4. Let ~t1 and ~t2 be tuples of terms of the same length, let ~u

be a tuple of new variables of this length, and let v1, v2, v3 be three additional

new variables. Then ~t1 ⊲⊳ ~t2 is equivalent to

∀v1v2v3((v1 = v2) ∨ (v1 6= v2 ∧ v1 6= v3 ∧ v2 6= v3) ∨ (((v3 = v1 ∧ v3 6= v2)∨
(v3 6= v1 ∧ v3 = v2)) ∧ ∃~u((v3 6= v1 ∨ ~u = ~t1) ∧ (v3 6= v2 ∨ ~u = ~t2)∧
6=(~uv1v2v3)))).
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Proof. Suppose that M |=X ~t1 ⊲⊳ ~t2, that is, that X(~t1) = X(~t2), let Y =

X [M/v1v2v3], and let

• Y1 = {s ∈ Y : s(v1) = s(v2)};

• Y2 = {s ∈ Y : s(v1), s(v2), and s(v3) are all different};

• Y3 = Y \(Y1 ∪ Y2).

Clearly, M |=Y1
v1 = v2, M |=Y2

v1 6= v2 ∧ v1 6= v3 ∧ v2 6= v3 and M |=Y3
(v3 =

v1 ∧ v3 6= v2) ∨ (v3 6= v1 ∧ v3 = v2).

Furthermore, let ~H be such that

~H(s) =

{ {~t1〈s〉} if s(v3) = s(v1);

{~t2〈s〉} if s(v3) = s(v2)

and consider Z = Y3[ ~H/~u]. By construction, we have that M |=Z (v3 6= v1∨~u =
~t1) ∧ (v3 6= v2 ∨ ~u = ~t2). Furthermore, let h ∈ Z. There are two possibilities:

1. If h(v3) = h(v1), then h(~u) = ~t1〈h〉 = ~t1〈s〉 for some s ∈ X . Since

X(~t1) = X(~t2), there exists a s′ ∈ X with ~t1〈s〉 = ~t2〈s′〉 Now consider

h′ = s′[h(v1)/v1][h(v2)/v2][h(v2)/v3][ ~H/~u] ∈ Z:16 by the definition of ~H ,

h′(~u) = ~t2〈h′〉 = ~t1〈h〉 = h(~u), and furthermore h and h′ coincide over v1
and v2, but they do not coincide over v3.

2. Similarly, if h(v3) = h(v2) then h(~u) = ~t2〈h〉 = ~t2〈s〉 for some s ∈ X . Since

X(~t1) = X(~t2), there exists a s′ ∈ X with ~t1〈s〉 = ~t2〈s′〉 Now consider

h′ = s′[h(v1)/v1][h(v2)/v2][h(v1)/v3][ ~H/~u] ∈ Z: by the definition of ~H ,

h′(~u) = ~t1〈h′〉 = ~t2〈h〉 = h(~u), and furthermore h and h′ coincide over v1
and v2, but they do not coincide over v3.

Therefore, M |=Z 6=(~uv1v2v3), as required.

Conversely, suppose that a team X satisfies our expression. Then Y =

X [M/v1v2v3] can be split into three teams Y1, Y2 and Y3 satisfying v1 = v2,

v1 6= v2 ∧ v1 6= v3 ∧ v2 6= v3 and (v3 = v1 ∧ v3 6= v2) ∨ (v3 = v2 ∧ v3 6= v1)

respectively, and it is easy to see that the only way to do that is to use the

definitions of Y1, Y2 and Y3 which we gave above. Furthermore, there exists a
~H such that, for Z = Y3[ ~H/~u], M |=Z (v3 6= v1∨~u = ~t1)∧(v3 6= v2∨~u = ~t2)∧ 6=
(~uv1v2v3), and this implies that ~H is also necessarily as we stated before. Now

pick any s ∈ X , and let a, b ∈ Dom(M) be such that a 6= b.

16Strictly speaking, this expression defines a set of assignments of size one. The as-
signment h′ is then chosen as its unique element; and it is in Z because, by definition,
s′[h(v1)/v1][h(v2)/v2][h(v2)/v3] is in Y3.
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1. Consider h = s[a/v1][b/v2][a/v3][~t1〈s〉/~u] ∈ Z. Since M |=Z 6=(~uv1v2v3),

there exists a h′ ∈ Z which coincides with h over ~uv1v2 but not over

v3. Since h′ ∈ Z, this implies that h′(v3) = h′(v2) and that h′(~u) =
~t2〈h′〉 = ~t2〈s′〉 for some s′ ∈ X . Hence, there exists a s′ ∈ X with
~t2〈s′〉 = h′(~u) = h(~u) = ~t1〈s〉.

2. Consider h = s[a/v1][b/v2][b/v3][~t2〈s〉/~u] ∈ Z. By a similar argument,

we have that there exists a h′ ∈ Z such that h′(~u) = h(~u) = ~t2〈s〉 and

h′(~u) = ~t1〈s′〉 for some s′ ∈ X .

Hence, M |=X ~t1 ⊲⊳ ~t2, and this concludes the proof.

From these results, Corollary 4.3.16 and Theorems 4.3.17, 4.3.21 it follows

at once that

Theorem 4.6.5. FO(δ1, 6=(·)) is logically equivalent to Inclusion Logic and

Equiextension Logic, even with respect to open formulas.

Theorem 4.6.6. FO(δ1,= (·), 6= (·)) is logically equivalent to Independence

Logic and Inclusion/Exclusion Logic, even with respect to open formulas.

As a consequence of these results dependence and independence atoms, as

well as inclusion and exclusion atoms, are unnecessary as primitives of our lan-

guage if we already have constancy atoms, inconstancy atoms, and announce-

ment operators. This is surprising, since constancy/inconstancy atoms and

announcement operators are extremely simple; and in a way, the decomposi-

tion of dependence and independence atoms into such atoms and operators can

be seen as analogous to the known decomposition of dependence atoms into

constancy atoms and intuitionistic implication of [3].

However, we certainly did not exhaust the argument of reductions between

non-functional dependencies here. First of all, the problem of the expressive

power of Inclusion Logic is still, to the knowledge of the author, open; and

moreover, it is not difficult to define additional, and yet unclassified, fragments

or variants of these logics.17 The contents of this chapter can be thought of

as a first attempt to provide a (partial) description of the lattice of reductions

between logics of imperfect information; and we conclude it by expressing the

hope that this description will be further expanded.

17One of the most interesting such ones is, in the opinion of the author, the variant of
Independence Logic which only admits “pure” independence atoms ~t1 ⊥ ~t2. Another one
might be Constancy/Inconstancy Logic without the announcement operators.



Chapter 5

Proof Theory

The validity problem for Dependence Logic (as well as for many of its variants

examined in the previous chapters) is not decidable, as it follows at once by

its equivalence to Σ1
1 over sentences. One can develop axiomatic systems for

fragments of these logics, as Kontinen and Väänänen did in [52] for the first

order consequences of Dependence Logic formulas;1 but it is not possible to

generalize these results to full Dependence Logic under its usual semantics while

preserving semidecidability.

However, Henkin developed in [35] a General Semantics for Second Order

Logic, in which second order quantifiers range over an universe of discourse

which is not necessarily the whole powerset; and furthermore, in the same paper,

he developed a sound and complete axiom system for this logic.

In this chapter, we will first build a similar General Team Semantics in

which not all teams belong to the universe of discourse; and afterwards, we

will develop a proof system for Independence/Inclusion/Exclusion Logic I(⊆, |)
which is sound and complete with respect to it. As we will see, the fact that

our this formalism is contained in Existential Second Order Logic will be a big

advantage for us, as it will allow us to focus exclusively on the least general

models of our class.

5.1 General Models

Definition 5.1.1. Let Σ be a first order signature. A general model with

signature Σ is a pair (M,G), where M is a first order model with signature Σ

1Another proof system for a fragment of Dependence Logic is the one developed by Ville
Nurmi in [57]. However, it is not known if Nurmi’s system is complete for the corresponding
fragment.
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and G is a set of teams over finite – but not necessarily identical, nor of the

same size – domains, respecting the condition

• If n ∈ N and φ(x1 . . . xn, ~m, ~R) is a first order formula, where ~m is a tuple

of constant parameters in Dom(M) and where ~R is a tuple of “relation

parameters” corresponding to teams in G, in the sense that each Ri is of

the form

Ri = Rel(Xi) = {s(~z) : s ∈ Xi}

for some Xi ∈ G, then for

‖φ(x1 . . . xn, ~m, ~R)‖M = {s : Dom(s) = {x1 . . . xn},M |=s φ(x1 . . . xn, ~m, ~R)}

it holds that ‖φ(x1 . . . xn, ~m, ~R)‖M ∈ G.

Lemma 5.1.2. Let Σ be a first order signature and let (M,G) be a general

model with signature Σ. Then for all X ∈ G and all variables y, X [M/y] ∈ G.

Proof. Let Dom(X) = ~x, let R = Rel(X), and consider the formula φ(~x, y) =

∃yR(~x). Then take any assignment s with domain ~xy: by construction, M |=s

φ(~x, y) ⇔ ∃m s.t. s[m/y]|~x ∈ X ⇔ s ∈ X [M/y], as required.2

We can easily adapt the standard Team Semantics to general models. We

will report all the rules here, for ease of reference; but the only differences

between this semantics and the previous one are in the cases GMS-∨ and

GMS-∃.

In the case of the rule of the existential quantifier, a formulation somewhat

different from the usual one will prove to be more conventient here:

Definition 5.1.3. Let X and X ′ be two teams on the same domain, and let

x ∈ Var be a variable. Then we write X [x]X ′ if and only if

1. Dom(X ′) = Dom(X) ∪ {x};

2. RelDom(X)(X
′) = Rel(X).

Definition 5.1.4. Let (M,G) be a general model and let X be a team over it.

Then

GMS-lit: For all first order literals α, (M,G) |=X α if and only if s ∈ X ,

M |=s α in the usual first order sense;

2Here by s[m/y]|~x we intend the restriction of s[m/y] to the domain {x1 . . . xn}. If y is
among x1 . . . xn, then this is the same of s[m/y] itself; otherwise, it is simply s.
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GMS-inc, GMS-exc, GMS-ind: For all inclusion atoms, exclusion atoms or

independence atoms β, (M,G) |=X β if and only if M |=X β in the usual

Team Semantics sense;

GMS-∨: For all ψ1 and ψ2, (M,G) |=X ψ1 ∨ ψ2 if and only if X = Y ∪ Z for

some two teams Y, Z ∈ G such that (M,G) |=Y ψ1 and (M,G) |=Z ψ2;

GMS-∧: For all ψ1 and ψ2, (M,G) |=X ψ1 ∧ ψ2 if and only if (M,G) |=X ψ1

and (M,G) |=X ψ2;

GMS-∃: For all ψ and all x ∈ Var, M |=X ∃xψ if and only if there exists a

X ′ ∈ G such that X [x]X ′ and (M,G) |=X′ ψ;

GMS-∀: For all ψ and all x ∈ Var, M |=X ∀xψ if and only if (M,G) |=X[M/x] ψ.

Let us verify that the the same holds for General Model Semantics:

Lemma 5.1.5. Let (M,G) be a general model, and let X ∈ G be such that

Dom(X) = ~x~y. Then X|~x = {s : Dom(s) = ~x, ∃~m s.t. s[~m/~y] ∈ X} is in G.

Furthermore, let Y ⊆ X|G be such that Y ∈ G. Then the team

X(~x ∈ Y ) = {s ∈ X : s|~x ∈ Y }

is in G.

Proof. By definition, X|~x is ‖φ(~x,R)‖M , where φ is ∃~y(R~x~y) and R = Rel(X).

Therefore, X|~x ∈ G.

Similarly, X(~x ∈ Y ) is ‖φ(~x~y,R1, R2)‖M , where φ is R1~x~y ∧ R2~x, R1 is

Rel(X) and R2 is Rel(Y ).

Theorem 5.1.6 (Locality). Let (M,G) be a general model, let X ∈ G and let

φ be a formula over the signature of M with Free(φ) = ~z ⊆ Dom(X). Then

(M,G) |=X φ if and only if (M,G) |=X|~z
φ.

Proof. The proof is by structural induction on φ. We present only the passages

corresponding to disjunction and existential quantification, as the others are

trivial:

• Suppose that (M,G) |=X ψ1 ∨ ψ2. Then, by definition, there exist teams

Y and Z in G such that X = Y ∪ Z, (M,G) |=Y ψ1 and M |=Z ψ2. By

induction hypothesis, this means that (M,G) |=Y|~z
ψ1 and (M,G) |=Z|~z

ψ2.

But Y|~z ∪ Z|~z = X|~z, and hence (M,G) |=X|~z
ψ1 ∨ ψ2.
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Conversely, suppose that (M,G) |=X|~z
ψ1 ∨ ψ2. Then there exist teams

Y ′, Z ′ in G such that (M,G) |=Y ′ ψ1, (M,G) |=Z′ ψ2 and X|~z = X ′ ∪ Y ′.

Now let Y be X(~z ∈ Y ′) and Z be X(~z ∈ Z ′); by construction, Y ∪Z = X ,

and furthermore Y ′ = Y|~z and Z ′ = Z|~z, and, by the lemma, Y and Z are

in G. Thus, by induction hypothesis, (M,G) |=Y ψ1 and (M,G) |=Z ψ2,

and finally (M,G) |=X ψ1 ∨ ψ2, as required.

• Suppose that (M,G) |=X ∃xψ. Then there exists a team Y ∈ G such

that X [x]Y and (M,G) |=Y ψ. By induction hypothesis, this means that

(M,G) |=Y|~zx
ψ too; and since X|~z[x]Y|~zx, this implies that M |=X|~z

∃xψ,

as required.

Conversely, suppose that (M,G) |=X|~z
∃xψ. Then there exists a team

Y ′, with domain ~zx, such that M |=Y ′ ψ and X|~z[x]Y
′. Now let Y be

(X [M/x])(~zx ∈ Y ′). By the lemma, Y ∈ G; furthermore, Y|~zx = Y ′, and

hence by induction hypothesis (M,G) |=Y ψ. Finally, X [x]Y : indeed, if

s ∈ X then s~z[m/x] ∈ Y ′ for some m ∈ Dom(M), and hence s[m/x] ∈ Y

for the same m, and on the other hand, Y is contained in X [M/x], and

hence if s[m/x] ∈ Y it follows that s ∈ X .

Therefore (M,G) |=X ∃xψ, as required.

As in the case of Second Order Logic, first-order models can be represented

as a special kind of general model:

Definition 5.1.7. Let (M,G) be a general model. Then it is said to be full if

and only if G contains all teams over M .

The following result is then trivial.

Proposition 5.1.8. Let (M,G) be a full model. Then for all suitable teams

X and formulas φ, (M,G) |=X φ in General Team Semantics if and only if

M |=X φ in the usual Team Semantics.

Proof. Follows at once by comparing the rules of Team Semantics and General

Team Semantics for the case that G contains all teams.

How does the satisfaction relation in General Team Semantics change if we

vary the set G? The following definition and result give us some information

about this:
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Definition 5.1.9. Let (M,G) and (M,G′) be two general models. Then we say

that (M,G′) is a refinement of (M,G), and we write (M,G) ⊆ (M,G′), if and

only if G ⊆ G′.

Intuitively speaking, a refinement of a general model is another general

model with more teams in it than the former. The following result shows that

refinements preserve satisfaction relations:

Theorem 5.1.10. Let (M,G) and (M,G′) be two general models with

(M,G) ⊆ (M,G′), let X ∈ G, and let φ be a formula over the signature of M

with Free(φ) ⊆ Dom(X). Then

(M,G) |=X φ⇒ (M,G′) |=X φ.

Proof. The proof is an easy induction on φ.

1. If φ is a first order literal or a non-first-order atom, the result is obvious,

as the choice of the set of teams G (or G′) does not enter into the definition

of its satisfaction condition.

2. If (M,G) |=X ψ1 ∨ ψ2 then there exist two teams Y, Z ∈ G such that

X = Y ∪ Z, (M,G) |=Y ψ1 and (M,G) |=Z ψ2. But Y and Z are also

in G′, and by induction hypothesis we have that (M,G′) |=Y ψ1 and

(M,G′) |=Z ψ2, and therefore (M,G′) |=X ψ1 ∨ ψ2.

3. If (M,G) |=X ψ1 ∧ ψ2 then (M,G) |=X ψ1 and (M,G) |=X ψ2. Then,

by induction hypothesis, (M,G′) |=X ψ1 and (M,G′) |=X ψ2, and finally

(M,G′) |=X ψ1 ∧ ψ2.

4. If (M,G) |=X ∃xψ then there exists a X ′ ∈ G such that X [x]X ′ and

(M,G) |=X′ ψ. But then X ′ is also in G′, and by induction hypothesis

(M,G′) |=X′ ψ, and finally (M,G′) |=X ∃xψ.

5. If (M,G) |=X ∀xψ then (M,G) |=X[M/x] ψ. Then, by induction hypothe-

sis, (M,G′) |=X[M/x] ψ, and finally (M,G′) |=X ∀xψ.

This result shows us that, as was to be expected from the equivalence be-

tween independence logic and existential second order logic, if we are interested

in formulas which hold in all general models over a certain first-order model we

only need to pay attention to the smallest (in the sense of the refinement rela-

tion) ones. But do such “least general models” exist? As the following result

shows, this is indeed the case:
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Proposition 5.1.11. Let {(M,Gi) : i ∈ I} be a family of general models with

signature Σ and over the same first order model M . Then (M,
⋂

i∈I Gi) is also

a general model.

Proof. Let φ(x1 . . . xn, ~m, ~R) be a first order formula with parameters, where

each Ri is of the form Rel(X) for some X ∈ ∩iGi. Then ‖φ(x1 . . . xn, ~m, ~R)‖M
is in Gi for all i ∈ I, and therefore it is in

⋂

i∈I G, as required.

Therefore, it is indeed possible to talk about the least general model over a

first order model.

Definition 5.1.12. Let M be a first order model. Then the least general model

over M is the (M,L), where

L =
⋂

{G : (M,G) is a general model.}

As an example of a least general model, let n ∈ N, and let Mn be a model

with empty signature and domain {1 . . . n}. Then the least general model over

Mn is actually the full general model (Mn,Gn), where Gn contains all teams

over Mn. Indeed, let {v1 . . . vk} be a finite set of variables and let

X = {s1 . . . sq} =

v1 . . . vk
s1 a11 . . . a1k

. . . . . . . . . . . .

sq aq1 . . . aqk

be any team over Mn with domain {v1 . . . vk}, where si(vj) = aij for all

i ∈ 1 . . . q and all j ∈ 1 . . . k. Then clearly q ≤ nk, and furthermore, for

φ(v1 . . . vk) =
∨q
i=1

∧k
j=1 vi = aqi we have that

‖φ(v1 . . . vk, a11 . . . aqk)‖M = {s : Dom(s) = {v1 . . . vk},M |=s φ‖ = X

as required.

As this example shows, if M is finite then the least (and only) general model

over it is the full one. Hence, if we are only interested in finite models, General

Model Semantics is equivalent to the standard Team Semantics, and the same

can be said about the Entailment Semantics which we will develop later in this

chapter.

What is the purpose of least general models? The answer comes as a conse-

quence of Theorem 5.1.10, and can be summarized by the following corollary:

Corollary 5.1.13. Let Σ be a first order signature, let M be a first order model

over it and let (M,L) be the least general model over it. Then, for all teams
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X ∈ L and all formulas φ with signature Σ and with free variables in Dom(X),

(M,L) |=X φ⇔ (M,G) |=X φ for all general models (M,G) over M.

Proof. Suppose that (M,L) |=X φ. Then take any general model (M,G): by

definition, we have that (M,L) ⊆ (M,G), and hence by Theorem 5.1.10 we have

that (M,G) |=X φ.

Conversely, suppose that (M,G) |=X φ for all general models (M,G); then

in particular (M,L) |=X φ, as required.

We can also find a more practical characterization of this “least general

model”.

Proposition 5.1.14. Let M be a first order model. Then the least general

model over it is (M,L), where L is the set of all ‖φ(~x, ~m)‖M , where φ ranges

over all first order formulas and ~m ranges over all tuples of variables of suitable

length.

Proof. If (M,G) is a general model then L ⊆ G by definition; therefore, we only

need to prove that (M,L) is a general model.

Now, let φ(~x, ~m, ~R) be a first order formula, and let each Ri be Rel(Xi)

for some Xi ∈ L. So for each Ri, any assignment s and any suitable tuple of

terms t, M |=s Ri~t if and only if M |=s ψi(~t, ~ni) for some first order formula ψi
with parameters ~ni. Now let φ′(~x, ~m,~n1, ~n2, . . .) be the expression obtained by

replacing, in φ, each instance of Ri~t by ψi(~t, ~ni); by construction, we have that

M |=s φ(~x, ~m, ~R) if and only if M |=s φ
′(~x, ~m,~n1, . . .), and therefore

‖φ(~x, ~m, ~R)‖M = ‖φ′(~x, ~m,~n1, ~n2, . . .)‖M ∈ L

as required.

Definition 5.1.15. Let Σ be a first order signature, let V be a finite set of

variables, and let φ be a formula of our language with free variables in V .

Then φ is valid with respect to general models if and only if (M,G) |=X φ

for all general models (M,G) with signature Σ and for all teams X ∈ G with

Dom(X) ⊇ Free(φ). If this is the case, we write GMS |= φ.

Definition 5.1.16. Let Σ be a first order signature, let V be a finite set of

variables, and let φ be a formula of our language over this signature with free

variables in V . Then φ is valid with respect to least general models if and only

if (M,L) |=X φ for all least general models (M,L) with signature Σ and for all

teams X ∈ L with Dom(X) ⊇ Free(φ). If this is the case, we write LMS |= φ.
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Lemma 5.1.17. Let M be a first order model with signature Σ, and let M ′ be

another first order model with signature Σ′ ⊇ Σ such that the restriction of M ′

to Σ is precisely M . Then for all general models G for M ′, for all formulas φ

with signature Σ and for all X ∈ G,

(M,G) |=X φ⇔ (M ′,G) |=X φ.

Proof. First of all, if (M ′,G) is a general model then (M,G) is also a general

model. Then, the result is proved by observing that the truth conditions of our

semantics depend only on the interpretations of the symbols in the signature of

the formula (and on the choice of G, of course).

Lemma 5.1.18. Let (M,G) be a general model with signature Σ, let S 6∈ Σ be

a new relation symbol and let X ∈ G. Furthermore, let M ′ = M [Rel(X)/S] be

the extension of M to the signature Σ ∪ {S} such that SM
′

= Rel(X). Then

(M ′,G) is a general model.

Proof. Let φ(~x, ~m, ~R) be a first order formula with signature Σ ∪ {S} and pa-

rameters ~m and ~R, where each Ri is Rel(Xi) for some Xi ∈ G. Then let

φ′(~x, ~m, ~R, S) be the first order formula with signature Σ, where S now stands

for the relation Rel(X). Now clearly

‖φ(~x, ~m, ~R)‖M ′ = ‖φ′(~x, ~m, ~R, S)‖M ∈ G,

as required.

Theorem 5.1.19. A formula φ is valid wrt general models if and only if it is

valid wrt least general models.

Proof. The left to right direction is obvious. For the right to left direction,

suppose that LMS |= φ, let (M,G) be a general model whose signature contains

the signature of φ, and let X ∈ G be a team whose domain {x1 . . . xn} contains

all free variables of φ. Then consider the first order model M ′ = M [Rel(X)/S],

where S is a new relation symbol, and take the least general model (M ′,L) over

it. We clearly have that X ∈ L, since

X = {s : Dom(s) = {x1 . . . xn},M ′ |=s Sx1 . . . xn}

and, therefore, (M ′,L) |=X φ by hypothesis. Now, by Lemma 5.1.18, (M ′,G)

is a general model, and therefore by definition L ⊆ G, and hence by Theorem

5.1.10 (M ′,G) |=X φ too. Finally, the relation symbol S does not occur in φ,

and therefore by Lemma 5.1.17 (M,G) |=X φ, as required.
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In the next section, we will develop another, more syntactic way of reasoning

about least general models.

5.2 Entailment Semantics

Let M be a first order structure and let (M,L) be the least general model

over it. Then, as we saw, L is the set of all teams corresponding to first order

formulas with parameters. Therefore, in order to reason about satisfaction in

a least general model, there is no need to carry around the teams themselves:

rather, we can use the corresponding first order formulas. In this section, we

will develop this idea, building up a new “Entailment Semantics” and proving

its correspondence with General Model Semantics over least general models.

We will then construct a proof system and prove its soundness and complete-

ness with respect to this semantics. Then, since – as we saw already – validity

with respect to least general models is equivalent to validity with respect to

general models, this proof system will also seen to be sound and complete with

respect to General Model Semantics.

For the purposes of this chapter, Entailment Semantics acts as a bridge

between General Model Semantics and our proof system: by allowing us to ab-

stract away from higher-order objects such as teams, it will make it significantly

easier for us to establish a connection between semantics and proof theory.

Furthermore, the semantics which we will build, with its more syntactic

flavor, is of independent interest. The phenomena of dependence and inde-

pendence whose study is among the principal reasons of being of dependence

logic and independence logic are present in it, but the intrinsically higher-order

nature of the usual Team Semantics is not. Entailment Semantics, in other

words, can be seen as an attempt of examining the content of the notions of

dependence and independence from a first-order perspective, rather than from

the higher-order perspective implicit in the formulation of Team Semantics.

Definition 5.2.1. Let VP = {p1 . . . pn, . . .} and VT = {x, y, z, . . .} be fixed,

disjoint, countably infinite sets of variables. We will call any p ∈ VP a parameter

variable, and we will call any x ∈ VT a team variable. Furthermore, we will

assume that any variable which occurs in any of our formulas is a team variable

or a parameter variable.

Definition 5.2.2. Let φ be any formula. Then FreeP (φ) = Free(φ)∩VP and

FreeT (φ) = Free(φ) ∩ VT .

Parameter variables clarify the interpretation of such expressions such as

M |=s γ(~x, ~m): this is simply a shorthand for M |=h∪s γ(~x, ~p), where h is
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a parameter assignment with domain ~p and with h(~p) = ~m. Team variables,

instead, are going to be used in order to describe the variables in the domain

of the team corresponding to a given first order expression: for any first order

γ(~x, ~p), where ~x are team variables and ~p are parameter variables, and for any

h with domain ~p, we will therefore have ‖γ(~x, ~p)‖M,h = ‖γ(~x, h(~p))‖M = {s :

Dom(s) = ~x,M |=h∪s γ}. For this reason, parameter variables will never occur

in the domain of a team, and, hence, from this point on we will always assume

that parameter variables never occur in independence logic formulas, but only

in the first order team definitions.

After these preliminaries, we can now give our main definition for this sec-

tion:

Definition 5.2.3. For all first order models M , all first order formulas γ(~x, ~p)

with FreeT (γ) = ~x and FreeP (γ) = ~p, and all parameter assignments h with

domain ~p

ES-lit: For all first order literals α, M |=γ(h) α if and only if for all assignments

s with domain FreeT (γ) ∪ FreeT (α) such that M |=h∪s γ it holds that

M |=s α;

ES-inc, ES-exc, ES-ind: For all inclusion, exclusion or independence atoms

β, M |=γ(h) β if and only if the team {s : Dom(s) = FreeT (β),M |=s∪h γ}
satisfies β in the usual sense;

ES-∨: For all ψ1 and ψ2, M |=γ(h) ψ1∨ψ2 if and only if there exists a parameter

assignment h′ extending3 h and there exist first order formulas γ1 and γ2

such that

• FreeP (γ1), FreeP (γ2) ⊆ Dom(h′);

• M |=γ1(h′) ψ1;

• M |=γ2(h′) ψ2;

• M |=h′ ∀~v(γ ↔ γ1∨γ2), where ~v is FreeT (γ)∪FreeT (γ1)∪FreeT (γ2);

ES-∧: For all ψ1 and ψ2, M |=γ(h) ψ1 ∧ ψ2 if and only if M |=γ(h) ψ1 and

M |=γ(h) ψ2;

ES-∃: For all xn ∈ VarT and all ψ, M |=γ(h) ∃xnψ if and only if there exist

a parameter assignment h′ extending h and a first order formula γ′ with

FreeP (γ′) ⊆ Dom(h′) such that

• M |=γ′(h′) ψ;

3That is, Dom(h′) ⊇ Dom(h), and h′(~p) = h(~p).
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• M |=h′ ∀~v(∃xnγ′ ↔ ∃xnγ), where ~v is FreeT (γ) ∪ FreeT (γ′);

ES-∀: For all xn ∈ VarT and all ψ, M |=γ(h) ∀xnψ if and only if there exists

a parameter assignment h′ extending h and a first order formula γ′ with

FreeP (γ′) ⊆ Dom(h′) such that

• M |=γ′(h′) ψ;

• M |=h′ ∀~v(γ′ ↔ ∃xnγ), where ~v is FreeT (γ) ∪ FreeT (γ′).

The reason why the above semantics is called “Entailment Semantics” is

because its satisfaction relation describes a sort of entailment relation between

a first order formula with parameters, which takes the role that teams have in

the usual Team Semantics, and an independence logic formula. In particular,

it is easy to see that according to our rule ES-lit, for all first order literals

φ(~x, ~y), first order formulas with parameters γ(~x) and parameter assignments

h, M |=γ(h) φ if and only if M |=h ∀~x~y(γ(~x) → φ(~x, ~y)).

Furthermore, one can notice some analogies between Entailment Semantics

and Database Theory: in particular, the role of γ in an expression M |=γ(h) φ

is to specify a relation in terms of a first order formula, much as in the Tuple

Relational Calculus expression {〈x1 . . . xn〉 : M |= γ(x1 . . . xn, h(~p))}.

Proposition 5.2.4. Let M be a first order model with signature Σ, let γ(~x, ~p)

be a first order formula with FreeP (γ) = ~p and let h, h′ be two parameter

assignments with domains containing ~p such that h(~p) = h′(~p). Then, for all

formulas φ,

M |=γ(h) φ⇔M |=γ(h′) φ.

Proof. The proof is a straightforward induction over φ.

As the next result shows, Entailment Semantics is entirely equivalent to

Least General Model Semantics:

Theorem 5.2.5. Let Σ be a first order model, let γ(~x, ~p) be a first order for-

mula with FreeP (γ) = ~p, let h be a parameter assignment with domain ~p and

let φ be a formula over this signature and with free variables in ~x.

Furthermore, let (M,L) be the least general model over M , and let X =

‖γ(~x, ~p)‖M,h = {s : Dom(s) = ~x,M |=h∪s γ(~x, ~m)}. Then

(M,L) |=X φ⇔M |=γ(h) φ.

Proof. The proof is by structural induction on φ, and presents no difficulties.
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1. If φ is a first order literal, (M,L) |=X φ if and only if, for all s ∈ X , it

holds that M |=s φ. But s ∈ X if and only if M |=s γ(~x, h(~p)), and hence

(M,L) |=X φ if and only if M |=γ φ, as required.

2. If φ is an inclusion, exclusion or independence atom, the result is also

obvious, and follows at once from a comparison of the rules GMS-inc

(GMS-exc, GMS-ind) and ES-inc (ES-exc, ES-ind).

3. If φ is ψ1 ∨ ψ2,

(M,L) |=X ψ1 ∨ ψ2 ⇔
⇔ ∃Y, Z ∈ L s.t. X = Y ∪ Z, (M,L) |=Y ψ1 and (M,L) |=Z ψ2 ⇔
⇔ ∃h′ = h[~m/~q] extending h and ∃γ1γ2 s.t., for Y = ‖γ1(~x, ~p~q)‖M,h′ ,

Z = ‖γ2(~x, ~p~q)‖M,h′ , X = ‖γ(~x, ~p)‖M,h = ‖γ(~x, ~p)‖M,h′ = Y ∪ Z,
(M,L) |=Y ψ1 and (M,L) |=Z ψ2 ⇔

⇔ ∃h′ = h[~m/~q] extending h and ∃γ1γ2 s.t. M |=h′ ∀~v(γ ↔ γ1 ∨ γ2),

M |=γ1(h′) ψ and M |=γ2(h′) θ ⇔
⇔ M |=γ(h) ψ ∨ θ.

4. If φ is ψ ∧ θ,

(M,L) |=X ψ ∧ θ ⇔ (M,L) |=X ψ and (M,L) |=X θ ⇔
⇔M |=γ(h) ψ and M |=γ(h) θ ⇔M |=γ(h) ψ ∧ θ.

5. If φ is ∃xnψ,

(M,L) |=X ∃xnψ ⇔ ∃X ′ ∈ L s.t. X [xn]X
′ and (M,L) |=X′ ψ ⇔

⇔ ∃h′ = h[~m/~q] extending h and ∃γ′ s.t., for X ′ = ‖γ′(~x, ~p~q)‖M,h′ ,

X [xn]X
′ and (M,L) |=X′ ψ ⇔

⇔ ∃h′ = h[~m/~q] extending h and ∃γ′ s.t. M |=h′ ∀~v(∃xnγ ↔ ∃xnγ′)
and M |=γ′(h′) ψ ⇔

⇔ M |=γ(h) ∃xnψ;
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6. If φ is ∀xnψ,

(M,L) |=X ∀xnψ ⇔ ∃X ′ ∈ L s.t. X ′ = X [M/xn] and (M,L) |=X′ ψ ⇔
⇔ ∃h′ = h[~m/~q] extending h and ∃γ′ s.t., for X ′ = ‖γ′(~x, ~pq)‖M,h′ ,

X ′ = X [M/xn] and (M,L) |=X′ ψ ⇔
⇔ ∃h′ = h[~m/~q] extending h and ∃γ′ s.t. M |=h′ ∀~v(γ′ ↔ ∃xnγ)

and M |=γ′(h′) ψ ⇔
⇔M |=γ(h) ∀xnψ.

Definition 5.2.6. Let φ be a formula. Then φ is valid in Entailment Semantics

if and only if M |=γ(h) φ for all first order models M with signature containing

that of φ, for all first order formulas γ(~x, ~p) over the signature of M and for all

parameter assignments h with domain ~p. If this is the case, we write ENS |= φ.

Corollary 5.2.7. For all formulas φ, ENS |= φ if and only if LMS |= φ if and

only if GMS |= φ

It will also be useful to have a slightly more general notion of validity in

Entailment Semantics:

Definition 5.2.8. Let γ(~x, ~p) be a first order formula and let φ be a formula.

Then φ is valid with respect to γ if and only if M |=γ(h) φ for all first order

models M with signature containing those of γ and φ and for all parameter

assignments h with domain ~p. If this is the case, we write |=γ φ.

Proposition 5.2.9. Let φ be a formula with FreeT (φ) = {x1 . . . xk}, let ~x =

x1 . . . xk, and let R be a k-ary relation symbol not occurring in γ. Then ENS |=
φ if and only if |=R~x φ.

Proof. Suppose that ENS |= φ. Then in particular, for any model M whose

signature contains that of φ and R we have that M |=R~x φ, and hence |=R~x φ.

Conversely, suppose that |=R~x φ, let M be a first order model4, and let

X ∈ L be any team with domain {x1 . . . xk}. Let us then consider the model

M ′ obtained by adding to M the k-ary symbol R with RM
′

= Rel(X). By

hypothesis, M ′ |=R~x φ, and furthermore since RM
′

is in L already the least

general model over M ′ is (M ′,L) for the same L.

4Without loss of generality, we can assume that the signature of M does not contain the
symbol R.
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Now (M ′,L) |=X φ, and therefore, as R occurs nowhere in φ, (M,L) |=X φ

too. This holds for all X with domains {x1 . . . xk}; therefore by the Locality

Theorem (Theorem 5.1.6), the same holds for all domains containing FreeT (φ),

and hence LMS |= φ. This implies that ENS |= φ, as required.

In the next section, we will develop a sound and complete proof system for

this notion of validity with respect to a team definition.

5.3 The Proof System

In this section, we will develop a proof system for I(⊆, |) and prove its soundness

and completeness.

Definition 5.3.1. Let Γ be a finite first order theory with only parameter

variables among its free ones, let γ(~x, ~p) be a first order formula and let φ be a

formula with free variables in VarT . Then the expression

Γ | γ ⊢ φ

is a sequent.

The intended semantics of a sequent is the following one:

Definition 5.3.2. Let Γ | γ ⊢ φ be a sequent. Then Γ | γ ⊢ φ is valid if

and only if for all models M and all parameter assignments h with domain

FreeP (Γ) ∪ FreeP (γ) such that M |=h Γ it holds that M |=γ(h) φ.

For example, the sequent ∅ | y = f(x) ⊢=(x, y) is valid, as any team in which

y is f(x) satisfies the condition corresponding to =(x, y) (or, equivalently, to

the independence atom y ⊥x y); and similarly, the sequent ∃qr∀u(Rpu→ (u =

q ∨ u = r)) | Rpx ⊢=(x)∨ =(x) is valid, because if |{m ∈ Dom(M) : M |=h

Rpm}| ≤ 2 then the team (Rpx)(h) = {s : M |=h Rpx} assigns no more than

two different values for x and hence satisfies =(x)∨ =(x).

However, ∅ | Rpx ⊢=(x)∨ =(x) is not valid: indeed, let Dom(M) = {1, 2, 3},
let RM be Dom(M)× Dom(M), and let h be such that h(p) = 1. Then (Rpx)(h)

is exactly Dom(M) = {1, 2, 3}, which does not satisfy =(x)∨ =(x).

The following result is then clear:

Proposition 5.3.3. For all γ and φ, |=γ φ if and only if ∅ | γ ⊢ φ is valid.
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Now, all we need to do is develop some syntactic rules for finding valid

sequents.

We can do this as follows:

Definition 5.3.4. The axioms of our proof system are

PS-lit: If φ is a first order literal with no free parameter variables (that is,

FreeP (φ) = ∅) then

∀~v(γ → φ) | γ ⊢ φ

for all first order formulas γ, where ~v = FreeT (γ) ∪ FreeT (φ);

PS-inc: If ~t1 and ~t2 are tuples of terms of the same length with no parameter

variables then

∀~v1(γ(~v1) → ∃~v2(γ(~v2) ∧ ~t1(~v1) = ~t2(~v2))) | γ ⊢ ~t1 ⊆ ~t2

for all γ, where ~v1 and ~v2 are tuples of variables of the same lengths of

~v = FreeT (γ) ∪ FreeT (~t1~t2), ~ti(~vi) is the tuple obtained by substituting

~vi for ~v in ~ti, and the same holds for γ(~vi);

PS-exc: If ~t1 and ~t2 are tuples of terms of the same length with no parameter

variables then

∀~v1∀~v2((γ(~v1) ∧ γ(~v2)) → ~t1(~v1) 6= ~t2(~v2)) | γ ⊢ ~t1 | ~t2;

PS-ind: If ~t1, ~t2 and ~t3 are tuples of terms with no parameter variables then

∀~v1~v2((γ(~v1) ∧ γ(~v2) ∧ ~t1(~v1) = ~t1(~v2)) → ∃~v3(γ(v3) ∧ ~t1~t2(~v3) = ~t1~t2(~v1)∧
~t1~t3(~v3) = ~t1~t3(~v2))) | γ ⊢ ~t2 ⊥~t1 ~t3.

The rules of our proof system are

PS-∨: If Γ1 | γ1 ⊢ φ1 and Γ2 | γ2 ⊢ φ2 then, for all γ, we have

Γ1,Γ2, ∀~v(γ ↔ (γ1 ∨ γ2)) | γ ⊢ φ1 ∨ φ2

where ~v is FreeT (γ) ∪ FreeT (γ1) ∪ FreeT (γ2);

PS-∧: If Γ1 | γ ⊢ φ1 and Γ2 | γ ⊢ φ2 then Γ1,Γ2 | γ ⊢ φ1 ∧ φ2;

PS-∃: If Γ | γ′ ⊢ φ and x is a team variable then, for all γ,

Γ, ∀~v(∃xγ′ ↔ ∃xγ) | γ ⊢ ∃xφ
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where ~v = FreeT (γ) ∪ FreeT (γ′);

PS-∀: If Γ | γ′ ⊢ φ and x is a team variable then, for all γ,

Γ, ∀~v(γ′ ↔ ∃xγ) | γ ⊢ ∀xφ

where, as in the previous case, ~v = FreeT (γ) ∪ FreeT (γ′);

PS-ent: If Γ | γ ⊢ φ and
∧

Γ′ |= ∧Γ holds in First Order Logic then Γ′ | γ ⊢ φ;

PS-depar: If Γ | γ ⊢ φ and p is a parameter variable which does not occur free

in γ then ∃p∧Γ | γ ⊢ φ;

PS-split: If Γ1 | γ ⊢ φ and Γ2 | γ ⊢ φ then (
∧

Γ1) ∨ (
∧

Γ2) | γ ⊢ φ.

Definition 5.3.5. Let Γ | γ ⊢ φ be a sequent. A proof of this sequent is a

finite list of sequents

(Γ1 | γ1 ⊢ φ1), . . . , (Γn | γn ⊢ φn) = (Γ | γ ⊢ φ)

such that, for all i = 1 . . . n, Γi | γi ⊢ φi is either an instance of PS-lit, PS-

inc, PS-exc, PS-ind or it follows from {Γj | γj ⊢ φj : j < i} through one

application of the rules of our proof system.

Given a proof P = S1 . . . Sn, where each Si is a sequent, we define its length

|P | as n− 1, that is, as the number of sequents in the proof minus one.

Before examining soundness and completeness for this proof system, it will

be useful to derive a general rule for first order formulas.

Proposition 5.3.6. PS-FO: If φ is a first order formula with no free pa-

rameter variables, ∀~v(γ → φ) | γ ⊢ φ is provable for all γ, where ~v =

FreeT (γ) ∪ FreeT (φ);

Proof. The proof is by structural induction on φ.

1. If φ is a first order literal, this follows at once from rule PS-lit.

2. If φ is ψ1 ∨ ψ2, by induction hypothesis we have that

∀~v((γ ∧ ψ1) → ψ1) | γ ∧ ψ1 ⊢ ψ1 and ∀~v((γ ∧ ψ2) → ψ2) | γ ∧ ψ2 ⊢ ψ2 are

provable. But then we can prove ∀~v(γ → φ1 ∨ φ2) | γ ⊢ φ as follows:

(a) ∀~v((γ ∧ ψ1) → ψ1) | γ ∧ ψ1 ⊢ ψ1 (Derived before)

(b) ∀~v((γ ∧ ψ2) → ψ2) | γ ∧ ψ2 ⊢ ψ2 (Derived before)
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(c) | γ ∧ ψ1 ⊢ ψ1 (PS-ent, from (a), because |= ∀~v((γ ∧ ψ1) → ψ1) in

First Order Logic)

(d) | γ ∧ ψ2 ⊢ ψ2 (PS-ent, from (b), because |= ∀~v((γ ∧ ψ2) → ψ2) in

First Order Logic)

(e) ∀~v(γ ↔ (γ ∧ ψ1) ∨ (γ ∧ ψ2)) | γ ⊢ ψ1 ∨ ψ2 (PS-∨, from (c) and (d))

(f) ∀~v(γ → (ψ1 ∨ψ2)) | γ ⊢ ψ1 ∨ψ2 (PS-ent: from (e), because ∀~v(γ →
(ψ1 ∨ψ2)) entails ∀~v(γ ↔ (γ ∧ψ1)∨ (γ ∧ψ2)) in First Order Logic).

3. If φ is ψ1 ∧ψ2, by induction hypothesis we have that ∀~v(γ → ψ1) | γ ⊢ ψ1

and ∀~v(γ → ψ2) | γ ⊢ ψ2 are provable. But then

(a) ∀~v(γ → ψ1) | γ ⊢ ψ1 (derived before)

(b) ∀~v(γ → ψ2) | γ ⊢ ψ2 (derived before)

(c) ∀~v(γ → ψ1), ∀~v(γ → ψ2) | γ ⊢ ψ1 ∧ ψ2 (PS-∧, (a), (b))

(d) ∀~v(γ → ψ1 ∧ ψ2) | γ ⊢ ψ1 ∧ ψ2 (PS-ent, (c))

as required.

4. If φ is ∃xψ, by induction hypothesis we have that

∀~v∀x(((∃xγ) ∧ ψ) → ψ) | (∃xγ) ∧ ψ ⊢ ψ is provable. But then

(a) ∀~v∀x(((∃xγ) ∧ ψ) → ψ) | (∃xγ) ∧ ψ ⊢ ψ (derived before)

(b) | (∃xγ) ∧ ψ ⊢ ψ (PS-ent, from (a))

(c) ∀~v(∃x((∃xγ) ∧ ψ) ↔ ∃xγ) | γ ⊢ ∃xψ (PS-∃, from (b))

(d) ∀~v(((∃xγ) ∧ (∃xψ)) ↔ ∃xγ) | γ ⊢ ∃xψ (PS-ent, from (c))

(e) ∀~v(γ → ∃xψ) | γ ⊢ ψ (PS-ent, from (d))

as required, where the last passage uses the fact that

∀~v(γ → ∃xψ) |= ∀~v(((∃xγ) ∧ (∃xψ)) ↔ ∃xγ) in First Order Logic.

5. If φ is ∀xψ, by induction hypothesis we have that

∀~v∀x((∃xγ) → ψ) | ∃xγ ⊢ ψ is provable. But then

(a) ∀~v∀x((∃xγ) → ψ) | ∃xγ ⊢ ψ (derived before)

(b) ∀~v∀x((∃xγ) → ψ), ∀~v(∃xγ ↔ ∃xγ) | γ ⊢ ∀xψ (PS-∀, from (a))

(c) ∀~v∀x((∃xγ) → ψ) | γ ⊢ ∀xψ (PS-ent, from (c))

(d) ∀~v(γ → ∀xψ) | γ ⊢ ∀xψ (PS-ent, from (d))
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where the last two passages hold because ∀~v(∃xγ ↔ ∃xγ) is valid and

because ∀~v(γ → ∀xψ) entails ∀~v∀x((∃xγ) → ψ) in first order logic, where

~v = FreeT (γ) ∪ FreeT (ψ) (and, therefore, if x is free in γ then x is in ~v).

Theorem 5.3.7 (Soundness). Suppose that Γ | γ ⊢ φ is provable. Then it is

valid.

Proof. If S is a provable sequent then there exists a proof S1 . . . SnS for it.

Then we go by induction of the length n of this proof:

Base case: Suppose that the proof has length 0. Then S is an instance of

PS-lit, of PS-inc, of PS-exc or of PS-ind. Assume first that it is the

former, that is, that

S = ∀~v(γ → φ) | γ ⊢ φ

for some first order γ and some first order literal φ, where

~v = FreeT (γ) ∪ FreeT (φ) and φ has no parameter variables. Now sup-

pose that M |=h ∀~x(γ → φ); then, by definition, if s is an assignment over

team variables such that M |=h∪s γ then M |=s φ. Therefore, by ES-lit,

M |=γ(s) φ in Entailment Semantics, as required.

The other cases are treated in an entirely similar manner.

Induction case: Let S1S2 . . . SnS be our proof. For each i ≤ n we have that

S1 . . . Si is a valid proof for Si, and hence by induction hypothesis that Si
is valid. Now let us consider which rule r was been used to derive S from

S1 . . . Sn:

1. If r was PS-lit or PS-ind then (S) is a proof for S already, and

hence by our base case S is valid;

2. If r was PS-∨ then S is Γ1,Γ2, ∀~v(γ ↔ (γ1 ∨ γ2)) | γ ⊢ φ1 ∨ φ2,

and there exist two i, j ≤ n such that Si = (Γ1 | γ1 ⊢ φ1) and

Sj = (Γ2 | γ2 ⊢ φ2). By induction hypothesis, these sequents are

valid.

Now suppose that M |=h Γ1,Γ2, ∀~v(γ ↔ (γ1 ∨ γ2)). Then, since

M |=h Γ1, we have that M |=γ1(h) φ1, and, analogously, since M |=h

Γ2 we have that M |=γ2(h) φ2. Furthermore, M |=h ∀~v(γ ↔ γ1 ∨γ2),

and therefore by rule ES-∨ we have that M |=γ φ1 ∨φ2, as required.
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3. If r was PS-∧ then Sn is of the form Γ1,Γ2 | γ ⊢ φ1 ∧ φ2 and, by

induction hypothesis, Γ1 | γ ⊢ φ1 and Γ2 | γ ⊢ φ2 are valid. Now

suppose that M |=h Γ1,Γ2; then M |=γ(h) φ1 and M |=γ(h) φ2, and

therefore M |=γ(h) φ1 ∧ φ2 by ES-∧.

4. If r was PS-∃ then Sn is of the form Γ, ∀~v(∃xγ′ ↔ ∃xγ) | γ ⊢ ∃xφ,

where Γ | γ′ ⊢ φ is valid by induction hypothesis. Now suppose that

M |=h Γ, ∀~v(∃xγ ↔ ∃xγ′); then M |=γ′(h) φ and M |=h ∀~v(∃xγ ↔
∃xγ′), and therefore M |=γ(h) ∃xφ by rule ES-∃.

5. If r was PS-∀ then Sn is of the form Γ, ∀~v(γ′ ↔ ∃xγ) | γ ⊢ ∀xφ,

where Γ | γ′ ⊢ φ is valid by induction hypothesis. Now, suppose

that M |=h Γ, ∀~v(γ′ ↔ ∃xγ). Then M |=γ′(h) φ, and furthermore

M |=h ∀~v(γ′ ↔ ∃xγ). Therefore, by rule ES-∀, M |=γ(h) ∀xφ, as

required.

6. If r was PS-ent then Sn is of the form Γ′ | γ ⊢ φ, where Γ | γ ⊢ φ

is valid by induction hypothesis and where
∧

Γ |= ∧Γ′ holds in first

order logic. Now suppose that M |=h Γ′; then M |=h Γ, and hence

M |=γ(h) φ, as required.

7. If r was PS-depar then Sn is of the form ∃p∧Γ | γ ⊢ φ, where

Γ | γ ⊢ φ holds by induction hypothesis and where the parameter

variable p does not occur free in γ. Now suppose that M |=h ∃p∧Γ;

then there exists an element m ∈ Dom(M) such that, for h′ = h[m/p],

M |=h′ Γ. Then M |=γ(h′) φ; but as p does not occur free in γ we

then have, by Proposition 5.2.4, that M |=γ(h) φ as required.

8. If r was PS-split then Sn is of the form (
∧

Γ1) ∨ (
∧

Γ2) | γ ⊢ φ,

where Γ1 | γ ⊢ φ and Γ2 | γ ⊢ φ by induction hypothesis. Now

suppose that M |=h (
∧

Γ1) ∨ (
∧

Γ2). Then M |=h Γ1 or M |=h Γ2;

and in either case, M |=γ(h) φ, as required.

In order to prove completeness, we first need a lemma:

Lemma 5.3.8. Suppose that M |=γ(h) φ. Then there exists a finite Γ such that

Γ | γ ⊢ φ is provable and such that M |=h Γ.

Proof. The proof is by structural induction on φ.

1. If φ is a first order literal or an inclusion/exclusion/independence atom,

this follows immediately.
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2. If φ is ψ1 ∨ ψ2 and M |=γ(h) φ then, by definition, there exists an as-

signment h′ extending h and two first order formulas γ1, γ2 such that

M |=γ1(h′) ψ1, M |=γ2(h′) ψ2 and M |=h′ ∀~v(γ ↔ γ1 ∨ γ2). Let ~p be the

tuple of parameters in Dom(h′)\Dom(h); now, by induction hypothesis we

have that there exist Γ1 and Γ2 such that Γ1 | γ1 ⊢ ψ1 and Γ2 | γ2 ⊢ ψ2

are provable, and such that furthermore M |=h′ Γ1 and M |=h′ Γ2.

But then the following is a correct proof:

(a) Γ1 | γ1 ⊢ ψ1 (Derived before)

(b) Γ2 | γ2 ⊢ ψ2 (Derived before)

(c) Γ1,Γ2, ∀~v(γ ↔ γ1 ∨ γ2) | γ ⊢ φ (PS-∨, (a), (b))

(d) ∃~p(∧Γ1 ∧
∧

Γ2 ∧ ∀~v(γ ↔ γ1 ∨ γ2)) | γ ⊢ φ (PS-depar, (c))5

Finally, M |=h ∃~p(∧Γ1 ∧∧Γ2 ∧ ∀~v(γ ↔ γ1 ∨ γ2)), as required, because

there exists a tuple of elements ~m such that h[~m/~p] = h′.

3. If φ is ψ1 ∧ψ2 and M |=γ(h) φ, then M |=γ(h) ψ1 and M |=γ(h) ψ2. Then,

by induction hypothesis, there exist Γ1 and Γ2 such that Γ1 | γ ⊢ ψ1 and

Γ2 | γ ⊢ ψ2 are provable and such that M |=h Γ1Γ2. Then by rule PS-∧,

Γ1Γ2 | γ ⊢ ψ1 ∧ ψ2, as required.

4. If φ is ∃xψ and M |=γ(h) φ, then there exists a tuple ~p of parameter

variables not in the domain of h, a tuple ~m of elements of the model

and a formula γ′ such that, for h′ = h[~m/~p], M |=γ′(h′) ψ and M |=h′

∀~v(∃xγ′ ↔ ∃xγ). By induction hypothesis, we then have a Γ′ such that

Γ′ | γ′ ⊢ ψ and M |=h′ Γ′.

Then the following is a valid proof:

(a) Γ′ | γ′ ⊢ ψ (Derived before)

(b) Γ′, ∀~v(∃xγ′ ↔ ∃xγ) | γ ⊢ ∃xψ (PS-∃)

(c) ∃~p(∧Γ′ ∧ ∀~v(∃xγ′ ↔ ∃xγ)) | γ ⊢ ∃xψ (PS-depar)

Furthermore, M |=h ∃~p(∧Γ′ ∧ ∀~v(∃xγ′ ↔ ∃xγ)), as required.

5. If φ is ∀xψ and M |=γ(h) φ, then there exists a tuple ~p of parameter

variables not in the domain of h, a tuple ~m of elements of the model and

a formula γ′ such that M |=γ′(h′) ψ and M |=h′ ∀~v(γ′ ↔ ∃xγ), where

5To be entirely formal, this passage consists of |~p| distinct applications of PS-depar, all
of which are correct because none of the parameters in ~p appear in γ.
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h′ = h[~m/~p]. By induction hypothesis, we can then find a Γ′ such that

Γ′ | γ′ ⊢ ψ is provable and M |=h′ Γ′.

Then the following is a valid proof:

(a) Γ′ | γ′ ⊢ ψ (Derived before)

(b) Γ′, ∀~v(γ′ ↔ ∃xγ) | γ ⊢ ∀xψ (PS-∀)

(c) ∃~p(∧Γ′ ∧ ∀~v(γ′ ↔ ∃xγ)) | γ ⊢ ∀xψ (PS-depar)

And, once again, the assignment h satisfies the antecedent of the last

sequent, as required.

The completeness of our proof system follows from the above lemma and

from the compactness and the Löwenheim-Skolem theorem for First Order

Logic:

Theorem 5.3.9 (Completeness). Suppose that Γ | γ ⊢ φ is valid, where Γ is

finite. Then it is provable.

Proof. Since Γ | γ ⊢ φ is valid, for any first order model M over the signature of

Γ, γ and φ and for all h such that M |=h Γ we have that M |=γ(h) φ, and hence

by the lemma that M |=h ΓM,h for some finite ΓM,h such that ΓM,h | γ ⊢ φ is

provable.

Then consider the first order, countable6 theory

T = {
∧

Γ} ∪ {¬
∧

ΓM,h :M is a countable model,

h is an assignment s.t. M |=h Γ}.

This theory is unsatisfiable. Indeed, suppose that M0 is a model that satisfies
∧

Γ under the assignment h0: then, by the Löwenheim-Skolem theorem, there

exists a countable elementary submodel (M ′
0, h

′
0) of (M0, h0).

Now, M ′
0 |=h′

0
Γ and M ′

0 is countable, and hence by definition M ′
0 |=h′

0

ΓM ′
0
,h′

0
.

But then M0 |=h0
ΓM ′

0
,h′

0
too, and therefore M0 is not a model of T .

By the compactness theorem, this implies that there exists a finite subset

T0 = {¬∧ΓM1,h1
, . . . ,¬∧ΓMn,hn

} of T such that {∧Γ} ∪ T0 is unsatisfiable,

6The fact that it is countable follows at once from the fact that it is a first order theory
over a countable vocabulary.
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that is, such that

Γ |= (
∧

ΓM1,h1
) ∨ . . . ∨ (

∧

ΓMn,hn
).

Now, for each i, ΓMi,hi
| γ ⊢ φ can be proved. Therefore, by rule PS-split,

we have that (
∧

ΓM1,s1) ∨ . . . ∨ (
∧

ΓMn,sn
) | γ ⊢ φ is also provable; and finally,

by rule PS-ent we can prove that Γ | γ ⊢ φ, as required.

Thus, we succeeded in designing a proof system which is sound and complete

with respect to our semantics; and as we saw, with respect to finite models our

semantics is identical to the standard one, and furthermore even with respect

to infinite models it is a natural generalization of Team Semantics.

Using essentially the same method, it is also possible to prove a “compact-

ness” result for our semantics:

Theorem 5.3.10. Suppose that Γ | γ ⊢ φ is valid. Then there exists a finite

Γ0 ⊆ Γ such that Γ0 | γ ⊢ φ is provable (and valid).

Proof. Let κ = max(|Γ|,ℵ0), and consider the theory

T = Γ ∪ {¬
∧

ΓM,h : |M | ≤ κ,M |=h Γ}

where, as in the previous proof, ΓM,h is a finite theory such that M |=h ΓM,h

and such that ΓM,h | γ ⊢ φ is provable in our system.

Then T is unsatisfiable: indeed, if T had a model then it would have a model

(M,h) of cardinality at most κ, and since that model would satisfy Γ it would

satisfy ΓM,h too, which contradicts our hypothesis.

Hence, by the compactness theorem, there exists a finite set

{∧ΓM1,h1
, . . . ,

∧
ΓMn,hn

} and a finite Γ0 ⊆ Γ such that

Γ0 |=
∧

ΓM1,h1
∨ . . . ∨

∧

ΓMn,hn
.

But by rule PS-split, we have that
∧

ΓM1,h1
∨. . .∨∧ΓMn,hn

| γ ⊢ φ is provable,

and hence by rule PS-ent Γ0 | γ ⊢ φ is also provable, as required.

5.4 Adding More Teams

The proof system that we developed in the previous section is, as we saw, sound

and complete with respect to its intended semantics. However, this semantics
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is perhaps rather weak: all that we know is that the teams which correspond

to parametrized first order formulas belong in our general models.

Rather than adding more and more axioms to our proof system in order

to guarantee the existence of more teams, in this section we will attempt to

separate our assumptions about team existence from our main proof system.

This will allow us to make our formalism modular : depending on our needs, we

may want to assume the existence of more or of less teams in our general model.

The natural language for describing assertions about the existence of rela-

tions is of course, existential second order logic. The following definitions show

how it can be used for our purposes:

Definition 5.4.1. A relation existence theory Θ is a set of existential second

order sentences of the form ∃~Rφ(~R), where φ is first order.

Definition 5.4.2. Let (M,G) be a general model, and let Θ be a relation

existence theory. Then (M,G) is Θ-closed if and only if for all ∃~Rφ(~R) in Θ

there exists a tuple of teams ~X ∈ G such that M |= φ[ ~Rel( ~X)/ ~R].

Definition 5.4.3. Let Γ | γ ⊢ φ be a sequent and let Θ be a relation existence

theory. Then Γ|γ ⊢ φ is valid if and only if for all Θ-closed models (M.G) and all

parameter assignments h with domain FreeP (Γ)∪FreeP (γ) such that M |=h Γ

it holds that

(M,G) |=‖γ‖h
φ.

Our proof system for Θ-closed general models can then be obtained by

adding the following rule to our system:

PS-Θ: If Γ1(~S),Γ2 | γ ⊢ φ is provable, where the relation symbols ~S do not

occur in Γ2, in γ or in φ, and ∃~R∧Γ1(~R) is in Θ for some ~R then Γ2 | γ ⊢ φ
is provable.

Theorem 5.4.4 (Soundness). Let Γ | γ ⊢ φ be a sequent which is provable in

our proof system plus PS-Θ. Then it is Θ-valid.

Proof. The proof is by induction on the length of the proof, and follows very

closely the one given already. Hence, we only examine the case in which the

last rule used in the proof is PS-Θ. Then, by induction hypothesis, we have

that Γ1(~S),Γ | γ ⊢ φ is Θ-valid for some Γ1 and some ~S which does not occur

in Γ, in γ or in φ, and moreover ∃~R∧Γ1(~R) is in Θ.

Now, let (M,G) be any Θ-closed general model, and let us assume without

loss of generality that the relation symbols in ~S are not part of its signature.

Furthermore, let h be a parameter assignment (with domain Free(Γ)∪Free(γ))
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such that M |=h Γ. By definition, there exists a tuple of teams ~X ∈ G such

that M |= ∧
Γ1[ ~Rel( ~X)/~S]. Now let M ′ be M [ ~Rel( ~X)/~S]: since ~X is in G,

it is not difficult to see that (M ′,G) is a general model. Furthermore, it is Θ-

closed, M ′ |= Γ1, and M ′ |=h Γ. Hence, (M ′,G) |=‖γ‖h
φ; but since the relation

symbols ~S do not occur in γ or in φ, this implies that (M,G) |=‖γ‖h
φ.

In order to prove completeness, we first need a definition and a simple lemma.

Definition 5.4.5. Let Θ be a relation existence theory. Then ΘFO is the theory

{θi[~Si/ ~R] : ∃~Rθi(~R) ∈ Θ}, where the tuples of symbols ~Si are all disjoint and

otherwise unused.

Lemma 5.4.6. Let Θ be a relation existence theory and let M be a model such

that M |= ΘFO. Then the least general model (M,L) over it is Θ-closed.

Proof. Consider any ∃~Rθ(~R) ∈ Θ. Then M |= θ(~Si), for some tuple of relation

symbols ~Si in the signature of M . Then, the teams ~X associated to the corre-

sponding relations are in L, and for these teams we have thatM |= θ[ ~Rel( ~X)/ ~R],

as required.

Theorem 5.4.7 (Completeness). Suppose that Γ | γ ⊢ φ is Θ-valid. Then it is

provable in our proof system plus PS-Θ.

Proof. Let M be any first order model satisfying ΘFO, where we assume that

the relation symbols used in the construction of ΘFO do not occur in Γ, in γ

or in φ. Then, by the lemma, (M,L) is Θ-closed, and this implies that, for all

assignments h such that M |=h Γ, M |=‖γ‖h
φ.

Therefore, ΘFO,Γ | γ ⊢ φ is valid; and hence, for some finite ∆ ⊆ ΘFO it

holds that ∆,Γ | γ ⊢ φ is provable. Now we can get rid of ∆ through repeated

applications of rule PS-Θ and, therefore, prove that Γ | γ ⊢ φ, as required.

5.5 Conclusions

We began this chapter by defining a general semantics for a logic of imperfect

information. Then we proved that – owing to the relationships between it and

existential second order logic – in order to study validity with respect to this

semantics it suffices to examine least general models. We then showed that,

because of the correspondence between teams in least general models and first

order formulas with parameters, we could limit ourselves to study entailments

between first-order team-defining formulas and independence logic formulas.

Finally, we developed a sound and complete proof system for this semantics,
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and we showed that this system can easily be strengthened by assuming the

existence of more teams.

As we said, the correspondence between our logic and existential second

order logic is of essential importance for the construction which we described:

extending our approach to such logics as team logic or intuitionistic dependence

logic promises to be nontrivial, although certainly not impossible. The relation-

ship between our approach and the one developed by Kontinen and Väänänen

in [52] is also certainly worth investigating.

Furthermore, Entailment Semantics – the key ingredient of our construction,

and our “bridge” between General Model Semantics and the proof system – is,

as we wrote, of independent interest for a more syntactic approach to the study

of dependence and independence, and more in general to the study of this

interesting family of logics.





Chapter 6

Transition Dynamics

In this chapter, we will extend the mutual embedding relation between Dynamic

Game Logic and First Order Logic proved by van Benthem (and presented here

in Section 6.1) to a relation between Dependence Logic and a suitable imperfect-

information, player-versus-Nature variant of Dynamic Game Logic, which we

will call Transition Logic (Section 6.2).

This will allow us to reinterpret Dependence Logic as a logic for modeling

decision problems under imperfect information; and in Section 6.3, we will ex-

ploit this intuition to develop a dynamic version of Dependence Logic in which

formulas are interpreted in terms of transitions from information states (teams)

to information states.

6.1 On Dynamic Game Logic and First Order

Logic

6.1.1 Dynamic Game Logic

Game logics are logical formalisms which contain two different kinds of expres-

sions:

1. Game terms, which are descriptions of games in terms of compositions of

atomic games ;

2. Formulas, which, in general, correspond to assertions about the abilities

of players in games.

129
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In this subsection, we are going to summarize the definition of a variant of

Dynamic Game Logic [59].1 Then, in the next subsection, we will discuss a

remarkable connection between First-Order Logic and Dynamic Game Logic

discovered by Johan van Benthem in [69].

One of the fundamental semantic concepts of Dynamic Game Logic is the

notion of forcing relation:

Definition 6.1.1. Let S be a nonempty set of states. A forcing relation over

S is a set ρ ⊆ S × Parts(S).

In brief, a forcing relation specifies the abilities of a player in a perfect-

information game: (s,X) ∈ ρ if and only if the player has a strategy that

guarantees that, whenever the initial position of the game is s, the terminal

position of the game will be in X .

A (two-player) game is then defined as a pair of forcing relations satisfying

some axioms:

Definition 6.1.2. Let S be a nonempty set of states. A game over S is a pair

(ρE , ρA) of forcing relations over S satisfying the following conditions for all

i ∈ {E,A}, all s ∈ S and all X,Y ⊆ S:

Monotonicity: If (s,X) ∈ ρi and X ⊆ Y then (s, Y ) ∈ ρi;

Consistency: If (s,X) ∈ ρE and (s, Y ) ∈ ρA then X ∩ Y 6= ∅;

Non-triviality: (s, ∅) 6∈ ρi.

Determinacy: If (s,X) 6∈ ρi then (s, S\X) ∈ ρj, where j ∈ {E,A}\{i}.

Definition 6.1.3. Let S be a nonempty set of states, let Φ be a nonempty set

of atomic propositions and let Γ be a nonempty set of atomic game symbols.

Then a game model over S, Φ and Γ is a triple (S, {(ρEg , ρAg ) : g ∈ Γ}, V ), where

(ρEg , ρ
A
g ) is a game over S for all g ∈ Γ and where V is a valutation function

associating each p ∈ Φ to a subset V (p) ⊆ S.

The language of Dynamic Game Logic, as we already mentioned, consists of

game terms, built up from atomic games, and of formulas, built up from atomic

proposition. The connection between these two parts of the language is given

by the test operation φ?, which turns any formula φ into a test game, and the

diamond operation, which combines a game term γ and a formula φ into a new

1The main difference between this version and the one of Parikh’s original paper lies in
the absence of the iteration operator γ∗ from our formalism. In this, we follow [69, 71].
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formula 〈γ, i〉φ which asserts that agent i can guarantee that the game γ will

end in a state satisfying φ.

Definition 6.1.4. Let Φ be a nonempty set of atomic propositions and let Γ

be a nonempty set of atomic game formulas. Then the sets of all game terms γ

and formulas φ are defined as

γ ::= g | φ? | γ; γ | γ ∪ γ | γd

φ ::= ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ

for p ranging over Φ, g ranging over Γ, and i ranging over {E,A}.

We already mentioned the intended interpretations of the test connective φ?

and of the diamond connective 〈γ, i〉φ. The interpretations of the other game

connectives should be clear: γd is obtained by swapping the roles of the players

in γ, γ1∪γ2 is a game in which the existential player E chooses whether to play

γ1 or γ2, and γ1; γ2 is the concatenation of the two games corresponding to γ1

and γ2 respectively.

Definition 6.1.5. Let G = (S, {(ρEg , ρAg ) : g ∈ Γ, V ) be a game model over S,

Γ and Φ. Then for all game terms γ and all formulas φ of Dynamic Game Logic

over Γ and Φ we define a game ‖γ‖G and a set ‖φ‖G ⊆ S as follows:

DGL-atomic-game: For all g ∈ G, ‖g‖G = (ρEg , ρ
A
g );

DGL-test: For all formulas φ, ‖φ?‖G = (ρE , ρA), where

• sρEX iff s ∈ ‖φ‖G and s ∈ X ;

• sρAX iff s 6∈ ‖φ‖G or s ∈ X

for all s ∈ S and all X with ∅ 6= X ⊆ S;

DGL-concat: For all game terms γ1 and γ2, ‖γ1; γ2‖G = (ρE , ρA), where, for

all i ∈ {E,A} and for ‖γ1‖G = (ρE1 , ρ
A
1 ), ‖γ2‖G = (ρE2 , ρ

A
2 ),

• sρiX if and only if there exists a Z such that sρi1Z and for each

z ∈ Z there exists a set Xz satisfying zρi2X1 such that

X =
⋃

z∈Z

Xz;

DGL-∪: For all game terms γ1 and γ2, ‖γ1 ∪ γ2‖G = (ρE , ρA), where
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• sρEX if and only if sρE1 X or sρE2 X , and

• sρAX if and only if sρA1 X and sρA2 X

where, as before, ‖γ1‖G = (ρE1 , ρ
A
1 ) and ‖γ2‖G = (ρE2 , ρ

A
2 );2

DGL-dual: If ‖γ‖G = (ρE , ρA) then ‖γd‖G = (ρA, ρE);

DGL-⊥: ‖⊥‖G = ∅;

DGL-atomic-pr: ‖p‖G = V (p);

DGL-¬: ‖¬φ‖G = S\‖φ‖G;

DGL-∨: ‖φ1 ∨ φ2‖G = ‖φ1‖G ∪ ‖φ2‖G;

DGL-⋄: If ‖γ‖G = (ρE , ρA) then for all φ,

‖〈γ, i〉φ‖G = {s ∈ S : ∃Xs ⊆ ‖φ‖G s.t. sρiXs}.

If s ∈ ‖φ‖G, we say that φ is satisfied by s in G and we write M |=s φ.

We will not discuss here the properties of this logic, or the vast amount of

variants and extensions of it which have been developed and studied. It is worth

pointing out, however, that [71] introduced a Concurrent Dynamic Game Logic

that can be considered one of the main sources of inspiration for the Transition

Logic that we will develop in Subsection 6.2.3.

6.1.2 The Representation Theorem

In this subsection, we will briefly recall a remarkable result from [69] which

establishes a connection between Dynamic Game Logic and First-Order Logic.

In brief, as the following two theorems demonstrate, either of these logics

can be seen as a special case of the other, in the sense that models and formulas

of the one can be uniformly translated into models the other in a way which

preserves satisfiability and truth:

Theorem 6.1.6. Let G = (S, {(ρEg , ρAg ) : g ∈ Γ}, V ) be any game model, let φ

be any game formula for the same language, and let s ∈ S. Then it is possible

2[71] gives the following alternative condition for the powers of the universal player:

• sρAX if and only if X = Z1 ∪ Z2 for two Z1 and Z2 such that sρA
1
Z1 and sρA

2
Z2.

It is trivial to see that, if our games satisfy the monotonicity condition, this rules is equivalent
to the one we presented.
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to uniformly construct a first-order model GFO, a first-order formula φFO and

an assignment sFO of GFO such that

G |=s φ⇔ GFO |=sF O φFO.

Theorem 6.1.7. Let M be any first order model, let φ be any first-order formula

for the signature of M , and let s be an assignment of M . Then it is possible

to uniformly construct a game model GDGL, a game formula φDGL and a state

sDGL such that

M |=s φ⇔ GDGL |=sDGL φDGL.

We will not discuss here the proofs of these two results. Their significance,

however, is something about which is necessary to spend a few words. In brief,

what this back-and-forth representation between First Order Logic and Dy-

namic Game Logic tells us is that it is possible to understand First Order Logic

as a logic for reasoning about determined games!

In the next sections, we will attempt to develop a similar result for the case

of Dependence Logic.

6.2 Transition Logic

6.2.1 A Logic for Imperfect Information Games Against

Nature

We will now define a variant of Dynamic Game Logic, which we will call Tran-

sition Logic. It deviates from the basic framework of Dynamic Game Logic in

two fundamental ways:

1. It considers one-player games against Nature, instead of two-player games

as is usual in Dynamic Game Logic;

2. It allows for uncertainty about the initial position of the game.

Hence, Transition Logic can be seen as a decision-theoretic logic, rather than

a game-theoretic one: Transition Logic formulas, as we will see, correspond to

assertions about the abilities of a single agent acting under uncertainty, instead

of assertions about the abilities of agents interacting which each other.

In principle, it is certainly possible to generalize the approach discussed here

to multiple agents acting in situations of imperfect information, and doing so

might cause interesting phenomena to surface; but for the time being, we will
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content ourselves with developing this formalism and proving the analogue of

van Benthem’s above mentioned results.

Our first definition is a fairly straightforward generalization of the concept

of forcing relation:

Definition 6.2.1. Let S be a nonempty set of states. A transition system over

S is a nonempty relation θ ⊆ Parts(S) × Parts(S) satisfying the following

requirements:

Downwards Closure: If (X,Y ) ∈ θ and X ′ ⊆ X then (X ′, Y ) ∈ θ;

Monotonicity: If (X,Y ) ∈ θ and Y ⊆ Y ′ then (X,Y ′) ∈ θ;

Non-creation: (∅, Y ) ∈ θ for all Y ⊆ S;

Non-triviality: If X 6= ∅ then (X, ∅) 6∈ θ.

Informally speaking, a transition system specifies the abilities of an agent:

for allX,Y ⊆ S such that (X,Y ) ∈ θ, the agent has a strategy which guarantees

that the output of the transition will be in Y whenever the input of the transition

is in X .

The four axioms which we gave capture precisely this intended meaning, as

we will see:

Definition 6.2.2. A decision game is a triple Γ = (S,E,O), where S is a

nonempty set of states, E is a nonempty set of strategies and O is an outcome

function from S × E to Parts(S).

If s′ ∈ O(s, e), we say that s′ is a possible outcome of s under e; if O(s, e) = ∅,
we say that e fails on input s.

Definition 6.2.3. Let Γ = (S,E,O) be a decision game, and let X,Y ⊆ S.

Then we say that Γ allows the transition X → Y , and we write Γ : X → Y , if

and only if there exists a e ∈ E such that ∅ 6= O(s, e) ⊆ Y for all s ∈ X .3

Theorem 6.2.4 (Transition Systems and Abilities). A set θ ⊆ Parts(S) ×
Parts(S) is a transition system if and only if there exists a decision game

Γ = (S,E,O) such that

(X,Y ) ∈ θ ⇔ Γ : X → Y.

3That is, if and only if our agent has a strategy which guarantees that the outcome will
be in Y whenever the input is in X.
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Proof. Let θ = {(Xi, Yi) : i ∈ I)} be a transition system, and let Γ = (S, I,O)

for

O(s, i) =

{
Yi if s ∈ Xi;

∅ otherwise.

Suppose that (X,Y ) ∈ θ. If X = ∅, then Γ : X → Y follows at once by

definition. If instead X 6= ∅, by non-triviality we have that Y is nonempty

too, and furthermore (X,Y ) = (Xi, Yi) for some i ∈ I. Then O(s, i) = Yi 6= ∅
for all s ∈ Xi, as required.

Now suppose that Γ : X → Y . Then there exists a i ∈ I such that ∅ 6=
O(s, i) ⊆ Y for all s ∈ X . If X 6= ∅, this implies that X ⊆ Xi and Yi ⊆ Y .

Hence, by monotonicity and downwards closure, (X,Y ) ∈ θ, as required.

If instead X = ∅, then by non-creation we have again that (X,Y ) ∈ θ.

Conversely, consider a decision game Γ = (S,E,O). Then the set of its

abilities satisfies our four axioms:

Downwards Closure: Suppose that Γ : X → Y and that X ′ ⊆ X . By

definition, there exists a e ∈ E such that ∅ 6= O(s, e) ⊆ Y for all s ∈ X .

But then the same holds for all s ∈ X ′, and hence Γ : X ′ → Y .

Monotonicity: Suppose that Γ : X → Y and that Y ⊆ Y ′. By definition,

there exists a e ∈ E such that ∅ 6= O(s, e) ⊆ Y for all s ∈ X . But then,

for all such s, O(s, e) ⊆ Y ′ too, and hence Γ : X → Y ′.

Non-creation: Let Y ⊆ S and let e ∈ E be any strategy. Then trivially

∅ 6= O(s, e) ⊆ Y for all s ∈ ∅, and hence Γ : ∅ → Y .

Non-triviality: Let s0 ∈ X , and suppose that Γ : X → Y . Then there exists

a e such that ∅ 6= O(s, e) ⊆ Y for all s ∈ X , and hence in particular

∅ 6= O(s0, e) ⊆ Y . Therefore, Y is nonempty.

Definition 6.2.5. Let S be a nonempty set of states. A trump over S is a

nonempty, downwards closed family of subsets of S.

Whereas a transition system describes the abilities of an agent to transition

from a set of possible initial states to a set of possible terminal states, a trump

describes the agent’s abilities to reach some terminal state from a set of possible

initial states:4

4The term “trump” is taken from [42], where it is used to describe the set of all teams
which satisfy a given formula.
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Proposition 6.2.6. Let θ be a transition system and let Y ⊆ S 6= ∅. Then

reach(θ, Y ) = {X | (X,Y ) ∈ θ} forms a trump. Conversely, for any trump X
over S there exists a transition system θ such that X = reach(θ, Y ) for any

nonempty Y ⊆ S.

Proof. Let θ be a transition system. Then if (X,Y ) ∈ θ and X ′ ⊆ X , by

downwards closure we have at once that (X ′, Y ) ∈ θ. Furthermore, (∅, Y ) ∈ θ

for any Y . Hence, reach(θ, Y ) is a trump, as required.

Conversely, let X = {Xi : i ∈ I} be a trump. Then define θ as

θ = {(A,B) : ∅ 6= B ⊆ S, ∃i ∈ I s.t. A ⊆ Xi} ∪ {(∅, ∅)}

It is easy to see that θ is a transition system; and by construction, for Y 6= ∅
we have that (A, Y ) ∈ θ ⇔ ∃i s.t. A ⊆ Xi ⇔ A ∈ X , where we used the fact

that X is downwards closed.

We can now define the syntax and semantics of Transition Logic:

Definition 6.2.7. Let Φ be a set of atomic propositional symbols and let Θ

be a set of atomic transition symbols. Then a transition model is a tuple T =

(S, {θt : t ∈ Θ}, V ), where S is a nonempty set of states, θt is a transition

system over S for any t ∈ Θ, and V is a function sending each p ∈ Φ into a

trump of S.

Definition 6.2.8. Let Φ be a set of atomic propositions and let Θ be a set of

atomic transitions. Then the transition terms and formulas of our language are

defined respectively as

τ ::= t | φ? | τ ⊗ τ | τ ∩ τ | τ ; τ
φ ::= ⊤ | p | φ ∨ φ | φ ∧ φ | 〈τ〉φ

where t ranges over Θ and p ranges over Φ.

Definition 6.2.9. Let T = (S, {θt : t ∈ Θ), V ) be a transition model, let τ be

a transition term, and let X,Y ⊆ S. Then we say that τ allows the transition

from X to Y , and we write T |=X→Y τ , if and only if

TL-atomic-tr: τ = t for some t ∈ Θ and (X,Y ) ∈ θt;

TL-test: τ = φ? for some transition formula φ such that T |=X φ, andX ⊆ Y ;

TL-⊗: τ = τ1⊗τ2, andX = X1∪X2 for twoX1 andX2 such that T |=X1→Y τ1
and T |=X2→Y τ2;



6.2. Transition Logic 137

TL-∩: τ = τ1 ∩ τ2, T |=X→Y τ1 and T |=X→Y τ2;

TL-concat: τ = τ1; τ2 and there exists a Z ⊆ S such that T |=X→Z τ1 and

T |=Z→Y τ2.

Analogously, let φ be a transition formula, and let X ⊆ S. Then we say that

X satisfies φ, and we write T |=X φ, if and only if

TL-⊤: φ = ⊤;

TL-atomic-pr: φ = p for some p ∈ Φ and X ∈ V (p);

TL-∨: φ = ψ1 ∨ ψ2 and T |=X ψ1 or T |=X ψ2;

TL-∧: φ = ψ1 ∧ ψ2, T |=X ψ1 and T |=X ψ2;

TL-⋄: φ = 〈τ〉ψ and there exists a Y such that T |=X→Y τ and T |=Y ψ.

Proposition 6.2.10. For any transition model T , transition term τ and tran-

sition formula φ, the set

‖τ‖T = {(X,Y ) : T |=X→Y τ}

is a transition system and the set

‖φ‖T = {X : T |=X φ}

is a trump.

Proof. By induction.

We end this subsection with a few simple observations about this logic.

First of all, we did not take the negation as one of the primitive connectives.

Indeed, Transition Logic, much like Dependence Logic, has an intrinsically ex-

istential character: it can be used to reason about which sets of possible states

an agent may reach, but not to reason about which ones such an agent must

reach. There is of course no reason, in principle, why a negation could not be

added to the language, just as there is no reason why a negation cannot be

added to Dependence Logic, thus obtaining the far more powerful Team Logic

[66, 49]: however, this possible extension will not be studied in this work.

The connectives of Transition Logic are, for the most part, very similar to

those of Dynamic Game Logic, and their interpretation should pose no difficul-

ties. The exception is the tensor operator τ1⊗τ2, which replaces the game union

operator γ1 ∪ γ2 and which, while sharing roughly the same informal meaning,
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behaves in a very different way from the semantic point of view (for example,

it is not in general idempotent!)

The decision game corresponding to τ1⊗τ2 can be described as follows: first

the agent chooses an index i ∈ {1, 2}, then he or she picks a strategy for τi and

plays accordingly. However, the choice of i may be a function of the initial state:

hence, the agent can guarantee that the output state will be in Y whenever the

input state is in X only if he or she can split X into two subsets X1 and X2

and guarantee that the state in Y will be reached from any state in X1 when

τ1 is played, and from any state in X2 when τ2 is played.

It is also of course possible to introduce a “true” choice operator τ1 ∪ τ2,

with semantical condition

TL-∪: T |=X→Y τ1 ∪ τ2 iff T |=X→Y τ1 or T |=X→Y τ2;

but we will not explore this possibility any further in this work, nor we will con-

sider any other possible connectives such as, for example, the iteration operator

TL-∗: T |=X→Y τ∗ iff there exist n ∈ N and Z0 . . . Zn such that Z0 = X ,

Zn = Y and T |=Zi→Zi+1
τ for all i ∈ 1 . . . n− 1.

6.2.2 A Representation Theorem for Dependence Logic

This subsection contains the central result of this chapter, that is, an analogue

of van Benthem’s results (Theorems 6.1.6 and 6.1.7 here) for Dependence Logic

and Transition Logic.

Representing Dependence Logic models and formulas in Transition Logic is

fairly simple:

Definition 6.2.11. Let M be a first-order model. Then MTL = (S, {θ∃v, θ∀v :

v ∈ Var}, V ) is the transition model such that

• S is the set of all teams over M ;

• For any variable v, θ∃v = {(X,Y ) : ∃F s.t. X [F/v] ⊆ Y } and θ∀v =

{(X,Y ) : X [M/v] ⊆ Y };

• For any first-order literal or dependence atom α, V (α) = {X : M |=X φ}.

Definition 6.2.12. Let φ be a Dependence Logic formula. Then φTL is the

transition term defined as follows:

1. If φ is a literal or a dependence atom, φTL = φ?;
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2. If φ = ψ1 ∨ ψ2, φ
TL = (ψ1)

TL ⊗ (ψ2)
TL;

3. If φ = ψ1 ∧ ψ2, φ
TL = (ψ1)

TL ∧ (ψ2)
TL;

4. If φ = ∃vψ, φTL = ∃v; (ψ)TL;

5. If φ = ∀vψ, φTL = ∀v; (ψ)TL.

Theorem 6.2.13. For all first-order models M , teams X and formulas φ, the

following are equivalent:

• M |=X φ;

• ∃Y s.t. MTL |=X→Y φTL;

• MTL |=X 〈φTL〉⊤;

• MTL |=X→S φ
TL.

Proof. We show, by structural induction on φ, that the first condition is equiv-

alent to the last one. The equivalences between the last one and the second and

third ones are then trivial.

1. If φ is a literal or a dependence atom, MTL |=X→S φ? if and only if

X ∈ V (φ), that is, if and only if M |=X φ;

2. MTL |=X→S (ψ1)
TL⊗(ψ2)

TL if and only if X = X1∪X2 for two X1, X2 ⊆
S such that MTL |=X1→S (ψ1)

TL andMTL |=X2→S (ψ2)
TL. By induction

hypothesis, this can be the case if and only if M |=X1
ψ1 and M |=X2

ψ2,

that is, if and only if M |=X ψ1 ∨ ψ2.

3. MTL |=X→S (ψ1)
TL ∧ (ψ2)

TL if and only if MTL |=X→S (ψ1)
TL and

MTL |=X→S (ψ2)
TL, that is, by induction hypothesis, if and only ifM |=X

ψ1 ∧ ψ2.

4. MTL |=X→S ∃v; (ψ)TL if and only if there exists a Y such that Y ⊇
X [F/v] for some F and MTL |=Y→S ψ. By induction hypothesis and

downwards closure, this can be the case if and only if M |=X[F/v] ψ for

some F , that is, if and only if M |=X ∃vψ;

5. MTL |=X→S ∀v; (ψ)TL if and only if MTL |=Y→S (ψ)TL for some Y ⊇
X [M/v], that is, if and only if M |=X[M/v] ψ, that is, if and only if

M |=X ∀vψ.
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Representing Transition Models, game terms and formulas in Dependence

Logic is somewhat more complex:

Definition 6.2.14. Let T = (S, (θt : t ∈ Θ), V ) be a transition model. Fur-

thermore, for any t ∈ Θ, let θt = {(Xi, Yi) : i ∈ It}, and, for any p ∈ Φ,

let V (p) = {Xj : j ∈ Jp}. Then TDL is the first-order model with domain5

S ⊎⊎{It : t ∈ Θ} ⊎⊎{Jp : p ∈ Φ} whose signature contains

• For every t ∈ Θ, a ternary relation Rt whose interpretation is {(i, x, y) :

i ∈ It, x ∈ Xi, y ∈ Yi};

• For every p ∈ Φ, a binary relation Vp whose interpretation is {(j, x) : j ∈
Jp, x ∈ Xj}.

Definition 6.2.15. For any formula φ, transition term τ , variable x and unary

relation symbol P the Dependence Logic formulas φDLx and τDLx (P ) are defined

as follows:

1. ⊤DLx is ⊤;

2. For all p ∈ Φ, pDLx is ∃j(=(j) ∧ Vp(j, x));

3. (ψ1 ∨ ψ2)
DL
x is (ψ1)

DL
x ⊔ (ψ2)

DL, where ⊔ is the classical disjunction in-

troduced in Definition 2.2.4;

4. (ψ1 ∧ ψ2)
DL
x is (ψ1)

DL
x ∧ (ψ2)

DL
x ;

5. (〈τ〉ψ)DLx is ∃P ((τ)DLx (P ) ∧ ∀y(¬Py ∨ (ψ)DLy )), where the second-order

existential quantifier is a shorthand for the construction described in Def-

inition 2.2.16 and y is a new and unused variable;

1. For all t ∈ Θ, tDLx (P ) is ∃i(=(i) ∧ ∃y(Rt(i, x, y)) ∧ ∀y(¬Rt(i, x, y) ∨ Py));

2. For all formulas φ, (φ?)DLx (P ) is φDLx ∧ Px;

3. (τ1 ⊗ τ2)
DL
x (P ) = (τ1)

DL
x (P ) ∨ (τ2)

DL
x (P );

4. (τ1 ∩ τ2)DLx (P ) = (τ1)
DL
x (P ) ∧ (τ2)

DL
x (P );

5. (τ1; τ2)
DL
x (P ) = ∃Q((τ1)

DL
x (Q) ∧ ∀y(¬Qy ∨ (τ2)

DL
y (P ))), where y a new

and unused variable.

5Here we write A ⊎ B for the disjoint union of the sets A and B.
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Theorem 6.2.16. For all transition models T = (S, (θt : t ∈ Θ), V ), transition

terms τ , transition formulas φ, variables x, sets P ⊆ S and teams X over TDL,

TDL |=X φDLx ⇔ T |=X(x) φ

and

TDL |=X τDLx (P ) ⇔ T |=X(x)→P τ.

Proof. The proof is by structural induction on terms and formulas.

Let us first consider the cases corresponding to formulas:

1. For all teams X , TDL |=X ⊤ and T |=X(x) ⊤, as required;

2. Suppose that TDL |=X ∃j(= (j) ∧ Vp(j, x)). Then there exists a m ∈
Dom(TDL) such that TDL |=X[m/j] Vp(j, x). Hence, we have that X(x) ⊆
Xm ∈ V (p); and, by downwards closure, this implies that X(x) ∈ V (p),

and hence that T |=X(x) p as required.

Conversely, suppose that T |=X(x) p. Then X(x) ∈ V (p), and hence

X(x) = Xm for somem ∈ Jp. Then we have by definition that TDL |=X[m/j]

Vp(j, x), and finally that TDL |=X Tx(p).

3. By Proposition 2.2.5, TDL |=X (ψ1∨ψ2)
DL
x if and only if TDL |=X (ψ1)

DL
x

or TDL |=X (ψ2)
DL
x . By induction hypothesis, this is the case if and only

if T |=X(x) ψ1 or T |=X(x) ψ2, that is, if and only if T |=X(x) ψ1 ∨ ψ2.

4. TDL |=X (ψ1∧ψ2)
DL
x if and only if TDL |=X (ψ1)

DL
x and TDL |=x (ψ2)

DL
x ,

that is, by induction hypothesis, if and only if T |=X ψ1 ∧ ψ2.

5. TDL |=X (〈τ〉ψ)DLx if and only if there exists a P such that TDL |=X

(τ)DLx (P ) and TDL |=X[TDL/y] ¬Py ∨ (ψ)DLy . By induction hypothesis,

the first condition holds if and only if T |=X(x)→P τ . As for the second

one, it holds if and only if X [TDL/y] = Y1 ∪ Y2 for two Y1, Y2 such

that TDL |=Y1
¬Py and TDL |=Y2

τy(ψ). But then we must have that

T |=Y2(y) ψ and that P ⊆ Y2(y); therefore, by downwards closure, T |=P ψ

and finally T |=X(x) 〈τ〉ψ.

Conversely, suppose that there exists a P such that T |=X(x)→P τ and

T |=P ψ; then by induction hypothesis we have that TDL |=X (τ)DLx (P )

and that TDL |=X[TDL/y] ¬Py ∨ (ψ)DLx , and hence TDL |=X (〈τ〉ψ)DLx .

Now let us consider the cases corresponding to transition terms:
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1. Suppose that TDL |=X ∃i(=(i) ∧ ∃y(Rt(i, x, y)) ∧ ∀y(¬Rt(i, x, y) ∨ Py)).
If X = ∅ then X(x) = ∅, and hence by non-creation we have that

(X(x), P ) = (∅, P ) ∈ θt, as required.

Let us assume instead that X 6= ∅. Then, by hypothesis, there exists a

m ∈ Dom(TDL) such that

• There exists a F such that TDL |=X[m/i][F/y] Rt(i, x, y);

• TDL |=X[m/i][TDL/y] ¬Rt(i, x, y) ∨ Py.

From the first condition it follows that for every p ∈ X(x) there exists a

q such that Rt(m, p, q): therefore, by the definition of Rt, every such p

must be in Xm.

From the second condition it follows that whenever Rt(m, p, q) and p ∈
X(x) ⊆ Xm, q ∈ P ; and, since X(x) 6= ∅, this implies that Ym ⊆ P by

the definition of Rt.

Hence, by monotonicity and downwards closure, (X(x), P ) ∈ θt and

T |=X(x)→P t, as required.

Conversely, suppose that (X(x), P ) = (Xm, Ym) ∈ θt for some m ∈ It.

If X(x) = ∅ then X = ∅, and hence by Proposition 2.2.6 we have that

TDL |=X tDLx (P ), as required. Otherwise, by non-triviality, P = Ym 6=
∅. Let now p ∈ P be any of its elements and let F (s) = p for all p ∈
X [m/i]: then M |=X[m/i][F/y] Rt(i, x, y), as any assignment of this team

sends x to some element of Xm and y to p ∈ Ym. Furthermore, let

s ∈ X(x) = Xm, and let q be such that Rt(m, s(x), q): then q ∈ Ym = P ,

and hence M |=X[m/i][TDL/y] ¬Rt(i, x, y) ∨ Py. So, in conclusion, M |=X

tDLx (P ), as required.

2. TDL |=X φDLx ∧ Px if and only if T |=X(x) φ and X(x) ⊆ P , that is, if

and only if T |=X(x)→P φ?.

3. TDL |=X (τ1)
DL
x (P ) ∨ (τ2)

DL
x (P ) if and only if X = X1 ∪ X2 for two

X1, X2 such that

• X = X1 ∪X2, and therefore X(x) = X1(x) ∪X2(x);

• TDL |=X1
(τ1)

DL
x (P ), that is, by induction hypothesis, T |=X1(x)→P

τ1;

• TDL |=X2
(τ2)

DL
x (P ), that is, by induction hypothesis, T |=X2(x)→P

τ2;
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Hence, if TDL |=X (τ1 ⊗ τ2)
DL
x (P ) then T |=X(x)→P τ1 ⊗ τ2.

Conversely, if X(x) = A ∪ B for two A, B such that T |=A→P τ1 and

T |=B→P τ2, let

X1 = {s ∈ X : s(x) ∈ A}
X2 = {s ∈ X : s(x) ∈ B}.

Clearly X = X1∪X2, and furthermore by induction hypothesis TDL |=X1

(τ1)
DL
x (P ) and TDL |=X2

(τ2)
DL
x (P ). Hence, TDL |=X (τ1 ⊗ τ2)

DL
x (P ), as

required.

4. TDL |=X (τ1 ∩ τ2)DLx (P ) if and only if TDL |=X (τ1)
DL
x (P ) and TDL |=X

(τ2)
DL
x (P ), that is, by induction hypothesis, if and only if T |=X(x)→P

τ1 ∩ τ2.

5. TDL |=X ∃Q((τ1)
DL
x (Q)∧∀y(¬Qy∨(τ2)

DL
y (P ))) if and only if there exists a

Q such that T |=X(x)→Q τ1 and there exists a Q′ ⊇ Q such that T |=Q′→P

τ2. By downwards closure, if this is the case then T |=Q→P τ2 too, and

hence T |=X(x)→P τ1; τ2, as required.

Conversely, suppose that there exists a Q such that T |=X(x)→Q τ1 and

T |=Q→P τ2. Then, by induction hypothesis TDL |=X (τ1)
DL
x (Q); and

furthermore, X [TDL/y] can be split into

Z1 = {s ∈ X [TDL/y] : s(y) 6∈ Q}

and

Z2 = {s ∈ X [TDL/y] : s(y) ∈ Q}

It is trivial to see that TDL |=Z1
¬Qy; and furthermore, since Z2(y) =

Q and T |=Q→P τ2, by induction hypothesis we have that TDL |=Z2

(τ2)
DL
y . Thus TDL |=X[TDL/y] ∀y(¬Qy ∨ (τ2)

DL
y (P )) and finally TDL |=X

(τ1; τ2)
DL
x (P ), and this concludes the proof.

The significance of the results of this subsection is comparable to that of the

corresponding ones about First Order Logic which we recalled in Subsection

6.1.2. In brief, what Theorems 6.2.13 and 6.2.16 tell us is that it is possible

to understand Dependence Logic as a language for reasoning about imperfect

information decision problems!

In the rest of this chapter, we will examine how this insight may be used in

order to further the study of Dependence Logic and its variants.
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6.2.3 Transition Dependence Logic

Just as van Benthem’s theorems, which we recalled in Subsection 6.1.2, allows

one to reinterpret First Order Logic as a logic of perfect information two-player

games, Theorems 6.2.13 and 6.2.16 of Subsection 6.2.2 permit us to understand

Dependence Logic as a logic of imperfect-information decision problems.

However, the language of Dependence Logic, in itself, does very little to

support this interpretation. We may certainly associate a Dependence Logic

sentence such as, for example, ∀x∃y(=(y, f(x)) ∧ Pxy), to a certain game of

imperfect information, and then establish a correspondence between the truth of

the sentence and certain abilities of an agent in this game; but this interpretation

- legitimate though it may be from a semantic perspective - does not appear to

arise entirely naturally from the syntactical structure of the sentence.

But by exploiting of the representation of Dependence Logic inside of Tran-

sition Logic of Definitions 6.2.11 and 6.2.12, it is not difficult to define a variant

of Dependence Logic in which this interpretation is manifested at the syntactical

level itself:

Definition 6.2.17. Let Σ be a first-order signature. Then the sets of all tran-

sition terms and of all formulas of Dependence Transition Logic are given by

the rules

τ ::= ∃v | ∀v | φ? | τ ⊗ τ | τ ∩ τ | τ ; τ
φ ::= R~t | ¬R~t | =(t1 . . . tn) | φ ∨ φ | φ ∧ φ | 〈τ〉φ.

where v ranges over all variables in Var, R ranges over all relation symbols of

the signature, ~t ranges over all tuples of terms of the required arities, n ranges

over N and t1 . . . tn range over the terms of our signature.

Definition 6.2.18. Let M be a first-order model, let τ be a first-order transi-

tion term of the same signature, and let X and Y be teams over M . Then we

say that the transition X → Y is allowed by τ in M , and we write M |=X→Y τ ,

if and only if

TDL-∃: τ is of the form ∃v for some v ∈ Var and there exists a F such that

X [F/v] ⊆ Y ;

TDL-∀: τ is of the form ∀v for some v ∈ Var and X [M/v] ⊆ Y ;

TDL-test: τ is of the form φ?, M |=X φ, and X ⊆ Y ;

TDL-⊗: τ is of the form τ1 ⊗ τ2 and X = X1 ∪X2 for some X1 and X2 such

that M |=X1→Y τ1 and M |=X2→Y τ2;



6.2. Transition Logic 145

TDL-∩: τ is of the form τ1 ∩ τ2, M |=X→Y τ1 and M |=X→Y τ2;

TDL-concat: τ is of the form τ1; τ2 and there exists a team Z such that

M |=X→Z τ1 and M |=Z→Y τ2.

Similarly, if φ is a formula and X is a team with domain Var. Then we say that

X satisfies φ in M , and we write M |=X φ, if and only if

TDL-lit: φ is a first-order literal and M |=s φ in the usual first-order sense

for all s ∈ X ;

TDL-dep: φ is a dependence atom =(t1 . . . tn) and any two s, s′ ∈ X which

assign the same values to t1 . . . tn−1 also assign the same value to tn;

TDL-∨: φ is of the form φ1 ∨ φ2 and M |=X φ1 or M |=X φ2;

TDL-∧: φ is of the form φ1 ∧ φ2, M |=X φ1 and M |=X φ2;

TDL-⋄: φ is of the form 〈τ〉ψ and there exists a Y such that M |=X→Y τ and

M |=Y ψ.

It is not difficult to see, on the basis of the results of the previous section,

that this new variant of Dependence Logic is equivalent to the usual one:

Theorem 6.2.19. For every Dependence Logic formula φ there exists a Tran-

sition Dependence Logic transition term τφ such that

M |=X φ⇔ ∃Y s.t. M |=X→Y τφ ⇔M |=X 〈τφ〉⊤

for all first-order models M and teams X.

Proof. τφ is defined by structural induction on φ, as follows:

1. If φ is a first-order literal or a dependence atom then τφ = φ?;

2. If φ is φ1 ∨ φ2 then τφ = τφ1
⊗ τφ2

;

3. If φ is φ1 ∧ φ2 then τφ = τφ1
∩ τφ2

;

4. If φ is ∃vψ then τφ = ∃v; τψ ;

5. If φ is ∀vψ then τφ = ∀v; τψ .

It is then trivial to verify, again by induction on φ, that M |=X φ if and only if

M |=X 〈τφ〉⊤, as required.
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Theorem 6.2.20. For every Transition Dependence Logic formula φ there ex-

ists a Dependence Logic formula φ′ such that

M |=X φ⇔M |=X φ′

for all first-order models M and teams X.

Proof. (Sketch)

Translate φ into Σ1
1, and then apply Theorem 2.2.14.

However, in a sense, Transition Dependence Logic allows one to consider sub-

tler distinctions than Dependence Logic does. The formula ∀x∃y(=(y, f(x)) ∧
Pxy), for example, could be translated as any of

• 〈∀x; ∃y〉(=(y, f(x)) ∧ Pxy);

• 〈∀x; ∃y〉〈=(y, f(x))?〉Pxy;

• 〈∀x; ∃y〉〈Pxy?〉 =(y, f(x));

• 〈∀x; ∃y〉〈(Pxy?) ∩ (=(y, f(x))?)〉⊤.

The intended interpretations of these formulas are rather different, even though

they happen to be satisfied by the same teams: and for this reason, Transition

Dependence Logic may be thought of as a refinement of Dependence Logic

proper, even though it has exactly the same expressive power.

6.3 Dynamic Semantics

6.3.1 Dynamic Predicate Logic

Dynamic Semantics is an approach to the formal semantics of natural language

which can be summarized by the following motto, from [34]:

The meaning of a sentence does not lie in its truth conditions, but

rather in the way it changes (the representation of) the information

of the interpreter.

Whereas truth-theoretic semantics takes as its primary object of investigation

the conditions under which a hypothetical listener would be willing to accept

a statement as truthful, dynamic semantics takes as its fundamental semantic

objects the informational changes that the utterance of a sentence has on the

contexts under which further statements will be interpreted, as well as on the

states of mind of hypothetical listeners.
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This second approach has some advantages in formal linguistics, for example

with respect to the interpretation of anaphora and “Donkey Sentences”; but as

this work is not concerned with linguistic applications, and – more importantly

– because the author is no linguist, we will not discuss the contribution of

dynamic semantics to formal linguistics any further.

One thing worth pointing out, however, is that the dynamic approach and

the truth-theoretic approach to semantics are not in competition. Rather, they

are complementary: given a dynamic semantics, it is possible to recover the

truth conditions by examining under which circumstances the interpretation of

the formula leads to a state which accepts it, and, conversely, given a truth-

theoretic semantics one can recover the dynamics hidden in it by comparing the

truth conditions of an expression with the ones of its components.

We refer to van Benthem’s book [68], to Dekker’s paper [14] and to van Eijk’s

summary [72] for a more thorough introduction to this interesting approach to

semantics. Here we will just present, as an example of a dynamic semantics,

the Dynamic Predicate Logic introduced in [34]:

Definition 6.3.1. Let M be a first order model, let φ be a first order formula

over its signature, and let s and s′ be two assignments. Then we say that the

transition from s to s′ is allowed by φ in M , and we write M |=s→s′ φ, if and

only if

DPL-atom: φ is an atomic formula, s = s′ and M |=s φ in the usual sense;

DPL-¬: φ is of the form ¬ψ, s = s′ and for all assignments h, M 6|=s→h ψ;

DPL-∧: φ is of the form ψ1 ∧ ψ2 and there exists a h such that M |=s→h ψ1

and M |=h→s′ ψ2;

DPL-∨: φ is of the form ψ1 ∨ ψ2, s = s′ and there exists a h such that

M |=s→h ψ1 or M |=s→h ψ2;

DPL-→: φ is of the form ψ1 → ψ2, s = s′ and for all h it holds that

M |=s→h ψ1 ⇒ ∃h′ s.t. M |=h→h′ ψ2;

DPL-∃: φ is of the form ∃xψ and there exists an element m ∈ Dom(M) such

that M |=s[m/x]→s′ ψ;

DPL-∀: φ is of the form ∀xψ, s = s′ and for all elements m ∈ Dom(M) there

exists a h such that M |=s[m/x]→h ψ.
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A formula φ is satisfied by an assignment s if and only if there exists an assign-

ment s′ such that M |=s→s′ φ; in this case, we will write M |=s φ.

We will not examine in any detail this semantics or its applications, as this

of little relevance for our purposes here. However, what is worth pointing out

is that according to it, formulas are interpreted not as sets of assignments, as

in the case of Tarski’s semantics for First Order Logic, but rather as sets of

transitions from assignments to assignments. For example, an atomic formula

P~t is interpreted as a test, which allows a transition (s, s) if and only if the

assignment s satisfies P~t; and instead, an existential quantification ∃xψ cor-

responds to a transition in which first we change the value of the variable x,

and then we execute ψ. Of special interest is the conjunction ψ1 ∧ ψ2, which is

interpreted as a concatenation of transitions: this, combined with the semantics

for existential quantification, makes it so that (∃xψ) ∧ θ is logically equivalent

to ∃x(ψ ∧ θ), differently from the case of standard First Order Logic.6

Furthermore, satisfaction in this semantics is a derived property, to be un-

derstood in terms of reachability: an assignment s satisfies a formula φ if and

only if there exists some s′ such that φ allows the transition from s to s′, that

is, if and only if s is not a “dead end” for φ.

Even more interestingly, it is not difficult to see that in this approach to

semantics, it is possible to interpret the existential quantifier as an atomic for-

mula! Indeed, if we define

DPL-∃-atom M |=s→s′ ∃x if and only if there exists a m ∈ Dom(M) such that

s′ = s[m/x]

then it is easy to verify that ∃xφ is equivalent to ∃x∧φ. In other words, we can

isolate the semantic contribution of the existential quantifier itself, much as we

did for the case of Transition Dependence Logic!

The same cannot be said, however, for the universal quantifier: it is easy

to see that there exists no semantics for ∀x in this framework which makes

∀xψ equivalent to ∀x ∧ ψ. The problem, of course, is that in order to verify

the truth of ∀xψ, we need to examine ψ with respect to multiple assignments,

while, according to the above rules, a conjunction ∀x ∧ ψ allows a transition

6As an aside, the fact that in Dynamic Predicate Logic existential quantifiers can have an
effect even beyond their syntactic scope was one of the main reasons why this semantics can
be used to interpret natural language statements in which pronouns refer to nouns which lie
beyond their apparent scopes, as in the famous example

(A man)1 walks in the park. (He)1 whistles.

We refer to [34] for further details.
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from s to s′ if and only if there exists at least one s′′ such that ∀x allows the

transition from s to s′′ and ψ allows the transition from s′′ to s′.

The similarity between this semantics and our semantics for transition terms

should be evident. Hence, it seems natural to ask whether we can adopt, for a

suitable variant of Dependence Logic, the following variant of Groenendijk and

Stokhof’s motto:

The meaning of a formula does not lie in its satisfaction conditions,

but rather in the team transitions it allows.

From this point of view, transition terms are the fundamental objects of our

syntax, and formulas can be removed altogether from the language - although,

of course, the tests corresponding to literals and dependence formulas should

still be available. As in Groenendijk and Stokhof’s logic, satisfaction becomes

then a derived concept: in brief, a team X can be said to satisfy a term τ if

and only if there exists a Y such that τ allows the transition from X to Y , or,

in other words, if and only if some set of non-losing outcomes can be reached

from set the initial positions X in the game corresponding to τ .

In the next section, we will make use of these intuitions to develop another,

terser version of Dependence Logic; and finally, in Subsection 6.3.3 we will come

full circle by showing how the semantics of this logic can be interpreted in terms

of reachability conditions in a suitable variant of the Game Theoretic Semantics

for standard Dependence Logic.

6.3.2 Dynamic Dependence Logic

We will now develop a formula-free variant of Transition Dependence Logic,

along the lines of Groenendijk and Stokhof’s Dynamic Predicate Logic.

Apart from Dynamic Predicate Logic, our treatment will be also inspired

by Abramsky’s Game Semantics for multiagent logics of imperfect information

[1, 2]: this will be particularly evident in the next subsection, in which we will

develop a Game Theoretic Semantics for our logic.

Definition 6.3.2. Let Σ be a first-order signature. The set of all transition

formulas of Dynamic Dependence Logic over Σ is given by the rules

τ ::= R~t | ¬R~t | =(t1 . . . tn) | ∃v | ∀v | τ ⊗ τ | τ ∩ τ | τ ; τ

where, as usual, R ranges over all relation symbols of our signature, ~t ranges

over all tuples of terms of the required lengths, n ranges over N, t1 . . . tn range

over all terms, and v ranges over Var.
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The semantical rules associated to this language are precisely as one would

expect:

Definition 6.3.3. Let M be a first-order model, let τ be a transition formula

of Dynamic Dependence Logic over the signature of M , and let X and Y be

two teams over M with domain Var. Then we say that τ allows the transition

X → Y in M , and we write M |=X→Y τ , if and only if

DDL-lit: τ is a first-order literal, M |=s τ in the usual first-order sense for

all s ∈ X , and X ⊆ Y ;

DDL-dep: τ is a dependence atom =(t1 . . . tn), X ⊆ Y , and any two assign-

ments s, s′ ∈ X which coincide over t1 . . . tn−1 also coincide over tn;

DDL-∃: τ is of the form ∃v for some v ∈ Var, and X [F/v] ⊆ Y for some

F : X → Dom(M);

DDL-∀: τ is of the form ∀v for some v ∈ Var, and X [M/v] ⊆ Y ;

DDL-⊗: τ is of the form τ1 ⊗ τ2 and X = X1 ∪X2 for two teams X1 and X2

such that M |=X1→Y τ1 and M |=X2→Y τ2;

DDL-∩: τ is of the form τ1 ∩ τ2, M |=X→Y τ1 and M |=X→Y τ2;

DDL-concat: τ is of the form τ1; τ2, and there exists a Z such that M |=X→Z

τ1 and M |=Z→Y τ2.

A formula τ is said to be satisfied by a team X in a model M if and only if

there exists a Y such that M |=X→Y τ ; and if this is the case, we will write

M |=X τ .

It is not difficult to see that Dynamic Dependence Logic is equivalent to

Transition Dependence Logic (and, therefore, to Dependence Logic).

Proposition 6.3.4. Let φ be a Dependence Logic formula. Then there exists

a term φ′ of Dynamic Dependence Logic which is equivalent to it, in the sense

that

M |=X φ⇔M |=X φ′ ⇔ ∃Y s.t. M |=X→Y φ′

for all suitable teams X and models M

Proof. We build φ′ by structural induction:

1. If φ is a literal or a dependence atom then φ′ = φ;

2. If φ is ψ1 ∨ ψ2 then φ′ = ψ′
1 ⊗ ψ′

2;



6.3. Dynamic Semantics 151

3. If φ is ψ1 ∧ ψ2 then φ′ = ψ′
1 ∩ ψ′

2;

4. If φ is ∃xψ then φ′ = ∃x;ψ′;

5. If φ is ∀xψ then φ′ = ∀x;ψ′.

Proposition 6.3.5. Let τ be a Dynamic Dependence Logic term. Then there

exists a Transition Dependence Logic term τ ′ such that

M |=X→Y τ ⇔M |=X→Y τ ′

for all suitable X, Y and M , and such that hence

M |=X τ ⇔M |=X 〈τ ′〉⊤.

Proof. Build τ ′ by structural induction:

1. If τ is a literal or dependence atom then τ ′ = τ?;

2. If τ is of the form ∃v or ∀v then τ ′ = τ ;

3. If τ is of the form τ1 ⊗ τ2 then τ ′ = τ ′1 ⊗ τ ′2;

4. If τ is of the form τ1 ∩ τ2 then τ ′ = τ ′1 ∩ τ ′2;

5. If τ is of the form τ1; τ2 then τ ′ = τ ′1; τ
′
2.

Corollary 6.3.6. Dynamic Dependence Logic is equivalent to Transition De-

pendence Logic and to Dependence Logic

Proof. Follows from the two previous results and from the equivalence between

Dependence Logic and Transition Dependence Logic.

6.3.3 Game Theoretic Semantics for Dynamic Dependence

Logic

In this subsection, we will adapt the Game Theoretic Semantics of Subsection

2.2.3 to the case of Dynamic Dependence Logic.

Definition 6.3.7. Let τ be any Dynamic Dependence Logic formula. Then

Player(τ) ∈ {E, A} is defined as follows:
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1. If τ is a first-order literal or a dependence atom, Player(τ) = E;

2. If τ is of the form τ1 ⊗ τ2 or ∃v then Player(τ) = E;

3. If τ is of the form τ1 ∩ τ2 or ∀v then Player(τ) = A;

4. If τ is of the form τ1; τ2 then Player(τ) = Player(τ1).

Positions of our game will be pairs (τ, s), where τ is a transition term and s

is an assignment. The successors of a given position are defined as follows:

Definition 6.3.8. Let M be a first order model, let τ be a transition term and

let s be an assignment over M . Then the set SuccM (τ, s) of the successors of

the position (τ, s) is defined as follows:

1. If τ is a first order literal φ then

SuccM (τ, s) =

{ {(λ, s)} if M |=s α in First Order Logic;

∅ otherwise

where λ stands for the empty string;

2. If τ is a dependence atom then SuccM (τ, s) = {(λ, s)};

3. If τ is of the form ∃v or ∀v then Succ(τ, s) = {(λ, s[m/v]) : m ∈ Dom(M)};

4. If τ is of the form τ1 ⊗ τ2 or τ1 ∩ τ2 then SuccM (τ, s) = {(τ1, s), (τ2, s)};

5. If τ is of the form τ1; τ2 then

SuccM (τ, s) = {(τ ′; τ2, s′) : (τ ′, s′) ∈ SuccM (τ1, s)}

where, with an abuse of notation, we assume that λ; τ2 is equal to τ2.

We can now define formally the semantic games associated to Dynamic De-

pendence Logic formulas:

Definition 6.3.9. Let M be a first-order model, let τ be a Dynamic Depen-

dence Logic formula, and let X and Y be teams. Then the game GMX→Y (τ) is

defined as follows:

• The set I of the initial positions of the game is {(τ, s) : s ∈ X};

• The set W of the winning positions of the game is {(λ, s) : s ∈ Y };

• For any position (τ ′, s′), the active player is Player(τ ′) and the set of

successors is SuccM (τ ′, s′).
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Definition 6.3.10. Let GMX→Y (τ) be as in the above definition. Then a play

of this game is a finite sequence ~p = p1 . . . pn of positions of the game such that

1. p1 ∈ I is an initial position of the game;

2. For every i ∈ 1 . . . n− 1, pi+1 ∈ SuccM (p1).

If furthermore SuccM (pn) = ∅, we say that ~p is complete; and if pn ∈ W is a

winning position, we say that ~p is winning.

So far, we did not deal with the satisfaction conditions of dependence atoms

at all. Similarly to the case of Definition 2.2.21, such conditions are made to

correspond as uniformity conditions over sets of plays:

Definition 6.3.11. Let GMX→Y (τ) be a game, and let P be a set of plays

in it. Then P is uniform if and only if for all ~p, ~q ∈ P and for all i, j,

such that pi is of the form7 (((=(t1 . . . tn); τ1); . . . τk), s) and qj is of the form

(((= (t1 . . . tn); τ1); . . . τk), s
′) for the same instance of the dependence atom

=(t1 . . . tn) it holds that

(t1 . . . tn−1)〈s〉 = (t1 . . . tn−1)〈s′〉 ⇒ tn〈s〉 = tn〈s′〉

where, with an abuse of notation, we identify =(t1 . . . tn);λ with =(t1 . . . tn).

As always, we will only consider positional strategies, that is, strategies that

depend only on the current position.

Definition 6.3.12. Let GMX→Y (τ) be as above, and let τ ′ be any expression

such that (τ ′, s′) is a possible position of the game for some s′. Then a local

strategy for τ ′ is a function fτ ′ sending each s′ into a (τ ′′, s′′) ∈ SuccM (τ ′, s′).

Definition 6.3.13. Let GMX→Y (τ) be as above, let ~p = p1 . . . pn be a play in it,

and let fτ ′ be a local strategy for some τ ′. Then ~p is said to follow fτ ′ if and

only if for all i ∈ 1 . . . n− 1 and all s′,

pi = (τ ′, s′) ⇒ pi+1 = fτ ′(s′).

Definition 6.3.14. Let GMX→Y (τ) be as above. Then a global strategy (for E)

in this game is a function f associating to each expression τ ′ occurring in some

nonterminal position of the game and such that Player(τ ′) = E with some local

strategy fτ ′ for τ ′.

7As a limit case for k = 0, this condition also applies to pi = (=(t1 . . . tk), s) and qj = (=
(t1 . . . tk), s′).
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Definition 6.3.15. A play ~p of a game GMX→Y (τ) is said to follow a global

strategy f if and only if it follows fτ ′ for all τ ′.

Definition 6.3.16. A global strategy f for a game GMX→Y (τ) is said to be

winning if and only if all complete plays which follow f are winning.

Definition 6.3.17. A global strategy f for a game GMX→Y (τ) is said to be

uniform if and only if the set of all complete plays which follow f respects the

uniformity condition of Definition 6.3.11.

The following result then connects the Game Theoretic Semantics we just

defined and the Team Transition Semantics for Dynamic Dependence Logic:

Theorem 6.3.18. Let M be a first-order model, let X and Y be teams, and let

τ be any Dynamic Dependence Logic transition term. Then M |=X→Y τ if and

only if the existential player E has a uniform winning strategy for GMX→Y (τ).

Proof. The proof is by structural induction on τ :

1. If τ is a first-order literal andM |=X→Y τ , then X ⊆ Y andM |=s τ in the

usual first-order sense for all s ∈ X . Then there exists only one strategy

f for E in GMX→Y (τ), and for this strategy we have that fτ (s) = (λ, s) for

all s ∈ X . Since X ⊆ Y , this strategy is winning; and furthermore, it is

trivially uniform. Hence, E has a uniform winning strategy in GMX→Y (τ).

Conversely, suppose that E has an uniform winning strategy f inGMX→Y (τ).

If M 6|=s τ for some s ∈ X , then the position (τ, s) is terminal in this game

and it is not winning, which contradicts our hypothesis. Hence M |=s τ

for all s ∈ X , and furthermore - since fτ (s) = (λ, s) for all s ∈ X - we

have that X ⊆ Y . Thus, M |=X→Y τ , as required.

2. If τ is a dependence atom =(t1 . . . tn) andM |=X→Y τ , then X ⊆ Y andX

satisfies the dependency condition associated with the atom. But then the

only strategy f available to player E is winning, as the set of its terminal

position is {(λ, s) : s ∈ X} and X ⊆ Y , and it is also uniform, since the

set of all possible plays of the game is {(=(t1 . . . tn, s))(λ, s) : s ∈ X}.
Conversely, suppose that the only strategy f available to E in GMX→Y (τ)

is uniform and winning. Since it is uniform, it follows at once that X

satisfies the dependency condition; and since it is winning and the set of

all terminal positions is {(λ, s) : s ∈ X}, we have that X ⊆ Y , and hence

that M |=X→Y τ .
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3. If τ is ∃v for some variable v and M |=X→Y τ , then X [F/v] ⊆ Y for some

F : X → Dom(M). Now let f be the strategy for E in GMX→Y (τ) such that

fτ (s) = s[F (s)/v]: this strategy is uniform, and the set of its terminal

positions is {(λ, s[F (s)/v]) : s ∈ X} = {(λ, s′) : s′ ∈ X [F/v]}. Hence, fτ
is also winning, as required.

Conversely, let f be any uniform winning strategy for E in GMX→Y (τ), and

define F : X → Dom(M) so that

fτ (s) = (λ, s[F (s)/v])

for all s ∈ X .

Since f is winning, fτ (s) is a winning position for all s ∈ X , and hence

X [F/v] = {s[F (s)/v] : s ∈ X} ⊆ Y . Hence, M |=X→Y τ , as required.

4. If τ is ∀v for some variable v and M |=X→Y τ , then X [M/v] ⊆ Y . There

exists only one (trivial, and trivially uniform) strategy for E in the game

GMX→Y (τ), as the universal player A moves in all non-terminal positions;

and the set of all possible outcomes of the game for all the initial positions

is {(λ, s[m/v]) : s ∈ X,m ∈ Dom(M)} = {(λ, s′) : s′ ∈ X [M/v]}. Hence

this strategy is winning, as required.

Conversely, suppose that the unique strategy for E in GMX→Y (τ) is winning

for this game. Then, as the set of all possible outcomes is {(λ, s′) : s′ ∈
X [M/v]}, we have that X [M/v] ⊆ Y , and hence that M |=X→Y τ .

5. If τ is τ1⊗τ2 for two transition terms τ1 and τ2 and M |=X→Y τ1⊗τ2, then

X = X1 ∪X2 for two X1 and X2 such that M |=X1→Y τ1 and M |=X2→Y

τ2. By induction hypothesis, this implies that there exist two strategies f1
and f2 for E which are uniform and winning inGMX1→Y (τ1) and GMX2→Y (τ2)

respectively. Now define a strategy f for E in GMX→Y (τ1 ⊗ τ2) as follows:

• If τ ′ is part of τ1 then fτ ′ = (f1)τ ′ ;

• If τ ′ is part of τ2 then fτ ′ = (f2)τ ′ ;

• If τ ′ is τ1 ⊗ τ2 then fτ ′(s) =

{
(τ1, s) if s ∈ X1;

(τ2, s) if s ∈ X2\X1.

This strategy is clearly uniform, as f1 and f2 are uniform. Furthermore,

it is winning: indeed, any play of GMX→Y (τ1 ⊗ τ2) in which E follows it

strictly contains a play of GMX1→Y (τ) in which E follows f1 or a play of

GMX2→Y (τ) in which E follows f2, and in either case the game ends in a

winning position in Y .
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Conversely, suppose that f is a uniform winning strategy for E inGMX→Y (τ).

Now let X1 = {s ∈ X : fτ (s) = (τ1, s)}, let X2 = {s ∈ X : fτ (s) =

(τ2, s)}, and let f1 and f2 be the restrictions of f to the subgames cor-

responding to τ1 and τ2 respectively. Then f1 and f2 are uniform and

winning for GMX1→Y (τ1) and GMX2→Y (τ2) respectively, and hence by induc-

tion hypothesis M |=X1→Y τ1 and M |=X2→Y τ2. But X = X1 ∪X2, and

hence this implies that M |=X→Y τ .

6. If τ is τ1 ∩ τ2 for some τ1 and τ2 and M |=X→Y τ1 ∩ τ2, then M |=X→Y

τ1 and M |=X→Y τ2. By induction hypothesis, this implies that E has

two uniform winning strategies f1 and f2 for GMX→Y (τ1) and GMX→Y (τ2)

respectively. Now let f be the strategy for GMX→Y (τ1 ∩ τ2) which behaves

like f1 over the subgame corresponding to τ1 and like f2 over the subgame

corresponding to τ2 (it is not up to E to choose the successors of the initial

positions (τ1 ∩ τ2, s), so she needs not specify a strategy for those). This

strategy is winning and uniform, as required, because τ1 and τ2 are so.

Conversely, suppose that E has a uniform winning strategy f forGMX→Y (τ1∩
τ2). Since the opponent A chooses the successor of the initial positions

{(τ1 ∩ τ2, s) : s ∈ X}, any element of {(τ1, s) : s ∈ X} and of {(τ2, s) :

s ∈ X} can occur as part of a play in which E follows f . Now, let f1 and

f2 be the restrictions of f to the subgames corresponding to τ1 and τ2
respectively: then f1 and f2 are uniform, because f is so, and they are

winning for GMX→Y (τ1) and GMX→Y (τ2) respectively, because every play of

these games in which E follows f1 (resp f2) starting from a position (τ1, s)

(resp. (τ2, s)) for s ∈ X can be transformed into a play of GMX→Y (τ1 ∩ τ2)
in which E follows f simply by appending the initial position (τ1 ∩ τ2, s)
at the beginning.

7. If τ is τ1; τ2 for some τ1 and τ2 and M |=X→Y τ1; τ2, then there exists a Z

such that M |=X→Z τ1 and M |=Z→Y τ2. By induction hypothesis, this

implies that there exist two strategies f1 and f2 which are winning for E

in GMX→Z(τ1) and in GMZ→Y (τ2) respectively. Now define a strategy f for

E in GMX→Y (τ1; τ2) as

• If (f1)τ ′(s′) = (τ ′′, s′′) then fτ ′;τ2(s
′) = (τ ′′; τ2, s

′′);

• If τ ′ is part of τ2 then fτ2 = (f2)τ2 .

We need to prove that this f is uniform and winning. Now, let us consider

the set of all plays in which E follows f : it is easy to see that they will

be played exactly as a game of GMX→Z(τ1) until a position of the form
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(τ2, s
′) is reached for some s′ ∈ Z, and then they will be played exactly

as a game of GMZ→Y (τ2) until a position of the form (λ, s′′) is reached

for some s′′ ∈ Y . Hence, the strategy is winning, as it will always end

in a winning position for Y , and it is uniform, because any violation of

uniformity would also be a violation for f1 or f2.

Conversely, let f be a uniform winning strategy for E in GMX→Y (τ1; τ2), and

let Z be the set of all assignments s such that the position (τ2, s) occurs as

part of some play of GMX→Y (τ1; τ2) in which E follows f . Furthermore, let

the two strategies f1 and f2 for E in GMX→Z(τ1) and GMZ→Y (τ2) respectively

be defined as

• If fτ ′;τ2(s
′) = (τ ′′; τ2, s

′′) then (f1)τ ′(s) = (τ ′′, s′′);

• If τ ′ is part of τ2 then (f2)τ2 = fτ2 .

By construction and definition, it follows at once that τ1 and τ2 are uni-

form winning strategies for GMX→Z(τ1) and GMZ→Y (τ2) respectively. By in-

duction hypothesis, this implies that M |=X→Z τ1 and that M |=Z→Y τ2,

and finally that M |=X→Y τ1; τ2.

Theorem 6.3.18 shows that Dynamic Dependence Logic can be interpreted

in terms of reachability: M |=X→Y τ if and only if, in the game corresponding

to τ , the existential player can guarantee that the final assignment will be in

Y whenever the initial assignment is in X . This corresponds exactly to the

intuitions behind the notion of transition system which we introduced in Sub-

section 6.2.1, and further confirms that Dependence Logic and its variants are

suitable frameworks for exploring decision-theoretic reasoning under imperfect

information in a first-order setting.





Chapter 7

The Doxastic Interpretation

In this chapter, we will re-examine many of the connectives which we studied

so far and consider their possible interpretation in terms of beliefs and belief

updates. The framework which we will come to gradually develop in this chapter

is, in practice, little more than a notational variant of Team Logic; but in

the process of constructing it, we will develop doxastic interpretations for the

operators and atoms of Dependence Logic and of its variants.

7.1 Belief Models

Let M be a first order model with at least two elements in its domain, let

V ⊆ Var be a set of state variables , and let us consider the set of all first-order

assignments over Dom(M) with domain V .

In Tarski’s semantics for first order logic, such an assignment s represents

a possible state of things : in other words, once the model M is fixed the truth

value of a first order formula in an assignment depends on the elements of the

model that the assignment associates to all the free variables of the formula,

and on nothing else.

Even disregarding First Order Logic, first order assignments are very natural

objects for representing states of things. For example, let us suppose that our

model’s domain contains all the participants to a given contest, and that our

states represent the possible outcomes of the contest – and, in particular, the

players who obtained the first three positions in the final ranking.

Such an outcome can be represented, in an obvious way, as an assignment

s over M with domain {w1, w2, w3}: here, s(w1) would be the identity of the

winner, and so on.

159
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For this particular example, of course, we would need to add a constraint

requiring that no one can be placed in two different positions in the final ranking:

this can be represented easily enough as the first order axiom

φ := ¬∃x((w1 = x ∧w2 = x) ∨ (w2 = x ∧ w3 = x) ∨ (w1 = x ∧ w3 = x)) (7.1)

as a condition that must hold for all possible states of things s, in the sense

that s is an acceptable outcome if and only if M |=s φ.

Once we have added this axiom, there is not much left to do: as long as the

domain of the model is the set of all participants to the contest, any assignment

which satisfies the above formula represents a possible contest outcome.

A special case of this which is of no small interest is when the domain of the

model M consists of only two elements 0 and 1, or “False” and “True”: then

an assignment is easily seen to be equivalent to a possible world in the sense of

Kripke’s Semantics for Modal Logic.

Now, let us return to our example, and let us consider an agent A who has

some – not necessarily true, nor complete – belief about who will reach the first

three places of our tournament. How can we represent this belief?

There are many possible choices here: for example, we could consider a

probability distribution over states, or a possibility distribution [75], or even a

Dempster-Shafer distribution [63, 15].

But let us limit ourselves to a very simple idea, and consider the set XA ⊆
(V 7→ Dom(M)) of all possible states of things (assignments) which our agent be-

lieves to be possible. This idea of representing beliefs as “sets of possible states”

is fairly common in knowledge representation theory, and – even though other

approaches, such as the ones described above, are certainly more sophisticated

– it is a reasonable starting point.

Furthermore, this approach plays on the analogy between our framework

and modal logic: indeed, it is easy to see that, at least for the case of Boolean

models, such a belief set is exactly a set of possible worlds which an agent can

see from the “actual” world. An important difference between our framework

and modal logic, however, is that in our case the agents can reason only about

outcomes, and not about their beliefs or about the beliefs of other agents.

Now, what can we do with beliefs? To begin with, we can describe their

properties in some suitable logical formalism; and, as Section 7.2. will show,

many primitive formulas considered in logics of imperfect information have a

very natural interpretation in these terms.

But we can also update beliefs. In general, a (unary) update operation will

be a function O from belief sets, or, to use the terminology in common use for
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logics of imperfect information, from teams, to sets of belief sets. We will not

require these updates to be deterministic; and we will write O(X) 7→ Y as a

shorthand for Y ∈ O(X), that is, for the statement that Y is a possible outcome

of updating X according to the rule O.

Binary update operators are defined analogously, as functions ⋄ mapping

each pair of teams X and Y to a set X ⋄ Y of possible resulting teams; and

again, we will write X ⋄ Y 7→ Z for Z ∈ (X ⋄ Y ), that is, for stating that the

belief set Z is a possible outcome of updating X with Y according to the rule

⋄.
Ternary or n-ary operators can also be defined in the same way, but we will

not need to consider any of them in the present work.

Once we have belief operators and a language for describing properties of

belief sets we can ask a number of new questions, such as

1. Can a certain belief set be seen as the result of a certain update being

applied between belief sets satisfying certain properties?

2. If we update a belief set under a certain rule, and the other belief sets

used for the update (if any) satisfy certain properties, can we guarantee

that the resulting belief set will satisfy certain other properties?

This kind of question is of clear practical importance in Artificial Intelligence:

if some intelligent system’s belief state respects a condition φ and our system

interacts with some other system whose belief state respects another condition

ψ, can we guarantee that the resulting belief states will respect some further

condition θ?

The whole discipline of belief revision ([32]), for example, can be understood

as a special case of this, as the fundamental problem of belief revision is to study

and compare the ways of updating a knowledge base K if a new statement φ is

learned which is contradictory to it.

Our framework, in itself, is vastly more general – and, of course, vastly more

computationally expensive – than any system of belief revision; but on the other

hand, the update operations that we will discuss here are all much simpler than

those considered in belief revision. What, in the opinion of the author, logics of

imperfect information can provide to the field of knowledge updating is a very

general logical framework for defining update operations and reasoning about

their properties.

But enough chatter. Beginning with the next section, we will define primi-

tives and operators for a very general logic of imperfect information, containing

most of the connectives which have been studied so far in the context of log-
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ics of imperfect information, and we will discuss their relevance to this kind of

research program.

7.2 Atoms and First Order Formulas

In this section, we will gradually develop a logical formalism – basically, a

fragment of Team Logic – and use it to state properties of belief sets.

Now, what can be said about the beliefs of an agent A, or, to be more

precise, about his belief set XA?

To begin with, we can ask, given a first order1 formula φ, whether our agent

A believes that φ holds. This justifies the following semantic rule:

DI-bel If φ is first order, M |=X B(φ) if and only if M |=s φ for all s ∈ X

where the expression M |=s φ means that the assignment s satisfies φ in M

according to the usual Tarski semantics.

As an example, let us consider again the scenario described in the previous

section and the formula φ of Equation (7.1). Then M |=XA
B(φ) is a sanity

condition for our agent, corresponding to the statement that he believes that

no player will get two distinct positions in the final rankings.

As another, perhaps quite unnecessary, example, suppose that our agent A

believes that the winner of the contest will be female; then, for all s ∈ XA we

will have that M |=s Female(w1), and hence that M |=XA
B(Female(w1)).

In most logics of imperfect information, one would just write M |=X φ for

what we would write here as M |=X B(φ). Furthermore, the above condition

would be given just for first-order literals, and we would rely on the connectives

of our logic in order to build expressions equivalent to B(φ) for complex first-

order formulas φ, as per Proposition 2.2.9.

Here, however, we will not do so, for three different reasons. First of all,

our objective in the present chapter is emphatically not to develop a terse

formalism in which to express everything that can be expressed in a logic of

imperfect information: instead, we want to illustrate a possible interpretation

of logics of imperfect information, and hence it will be useful to examine many

doxastically significant conditions and operators. Furthermore, it is vital for

our purposes to distinguish between the first-order level of our language, which

allows us to summarize the properties of all the assignments of the team, the

more sophisticated kinds of atoms that we will describe later in this section,

1We could also use here any extension or variant of First Order Logic which admits a
Tarski-style semantics, such as Transitive Closure Logic or First Order Logic augmented with
the Härtig quantifier.
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and the update connectives that we will introduce in Sections 7.3-7.6. The fact

that first-order formulas can be decomposed in terms of first-order literals and

update operators will then be, from this point of view, an interesting theorem,

not something built in our definitions. Finally, and perhaps more practically,

we want to be able to express another kind of “first-order” assertion in our

language, and we need to distinguish it from belief statements as those just

considered.

This new kind of first-order assertion is a possibility assertion, which corre-

sponds to our agent believing some first order condition to be possibly the case

in the “true” assignment. We can introduce this kind of assertion as follows:

DI-pos: If φ is first order, M |=X P (φ) if and only if M |=s φ for some s ∈ X

Dependence Logic and IF-Logic, the two most studied logics of imperfect in-

formation, are downwards closed and hence incapable of expressing this sort of

statement. The most known formalism capable of that is Team Logic, where

P (φ) corresponds to ∼ ¬φ, where ¬ is the dual negation and ∼ is the contradic-

tory one. But possibility statements of this kind can also be constructed in Inclu-

sion Logic: if the free variables of φ are x1 . . . xn then it is easy to see that P (φ)

can be written as ∃w1 . . . wn(φ[w1 . . . wn/x1 . . . xn] ∧ (w1 . . . wn ⊆ x1 . . . xn)).

By Theorem 4.3.12, this implies that Independence Logic is also capable of

representing this statement.

From the point of view of the present chapter, possibility statements are very

natural: for example, using them we can express that our agent A considers it

possible that the winner will be female, that is, that M |=XA
P (Female(w1)).

We could also give and justify along similar lines further “first-order” condi-

tions over belief sets: for example, we could state that an expression of the form

Most(φ) holds in a team X if and only if most of the assignments2 in X satisfy

φ. But let us now move to conditions which cannot be verified by examining

the truth value of a first order formula in all assignments of our belief set.

In the example which we are considering, what else could our agent A believe

that we cannot express already? Well, to begin with, our agent could believe

that he knows the identity of the winner.

It is easy enough to assert, using what we already have, that the agent knows

that the winner will be a0 for some a0 ∈ Dom(M): indeed, this is precisely the

condition corresponding to M |=XA
B(w1 = a0). But what we are asking now

is different: we want a formula that specifies that the agent believes that he

knows the winner, but does not specify who this winner will be.

2In order to preserve locality (Proposition 2.2.8), it would be preferable to define an op-
erator Most~x(φ) for some tuple of variables ~x containing all free variables of φ, and have it
hold in X if and only if Most(φ) holds in the restriction of X to ~x.
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An existential quantifier will not do the trick: writing M |=XA
B(∃x(w1 =

x)) corresponds only to asserting that our agent knows that someone will win

the contest, not that he knows the identity of this someone! For example, if

Tom, Bob and Jack are three participants to the tournament, it is easy to see

that for the belief set

XA =

w1 w2 w3

s0 Tom Bob Jack

s1 Bob Tom Jack

corresponding to the belief state in which our agent A knows that Jack will get

third place, but is unsure about who between Tom and Bob will get the second

place and who the first one, satisfies the formula B(∃x(w1 = x)) but it does not

respect the condition we are talking about.

In fact, no expression of the form B(φ) or P (φ) will allow us to express our

intended condition: indeed, those of the former sort are flat in the sense of [65],

and hence hold in a team if and only if they hold in all singleton subteams, and

those of the latter one are upwards closed, in the sense that if M |=X P (φ) and

X ⊆ Y then M |=Y P (φ).

What we seem to need is some way of saying that the value of w1 is the same

for all assignments in our team. This is precisely the semantics for constancy

atoms of Dependence Logic.3

DI-con: For all terms t, M |=X=(t) if and only if, for all s, s′ ∈ X , t〈s〉 = t〈s′〉.

Given this definition, =(w1) characterizes precisely the condition of our example;

and, more in general, it is easy to see that =(t) is satisfied by a team XA if and

only if the corresponding agent A believes that he knows the value of t.

What if our agent instead believes that he knows who will be the first two

placed players, but is not sure of their order? Then he would be able to guess

the name of the winner from the names of the second placed participant. This

corresponds nicely to the dependence atom =(w2, w1), where the rule for de-

pendence atoms is

DI-dep: For all n ∈ N and all terms t1 . . . tn, M |=X=(t1 . . . tn) if and only if,

for all s, s′ ∈ X such that ti〈s〉 = ti〈s′〉 for all i = 1 . . . n−1, tn〈s〉 = tn〈s′〉
too.

3Another reasonable approach could be to define an “external” existential quantifier ∃, and
model the intended condition as ∃xB(x = w1). Later in this section, we will briefly explore
this idea; but we can anticipate that this external existential quantifier is precisely the ∃1

operator of [50], which we briefly mentioned in Chapter 3.
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What else can we say about our agent A’s beliefs? For example, he might

think that everybody who has a chance to make it to first place has also a

chance to make it to second place: then, for all s ∈ XA there exists a s′ ∈ XA

such that s(w1) = s′(w2). This is represented by the inclusion atom w1 ⊆ w2,

where

DI-inc: For all tuples of terms ~t1 and ~t2, of the same length, M |=X ~t1 ⊆ ~t2 if

and only if for every s ∈ X there exists a s′ ∈ X such that ~t1〈s〉 = ~t2〈s′〉.

The meaning of the expression w1 ⊆ w2 is of course different from that of

B(w1 = w2), which would instead state that the agent believes that the first

and second placed players will be the same.

Again, what else? Well, our agent could also think that no one who has

some chance to take first place has also some chance to take third place – only

first or second. This is represented by the exclusion atom w1 | w3, where

DI-exc: For all tuples of terms ~t1 and ~t2 of the same length, M |=X ~t1 | ~t2 if

and only if for all s, s′ ∈ X , ~t1〈s〉 6= ~t2〈s′〉.

Of course, this is different, and stronger, than B(w1 6= w3), which would only

state that the agent believes that the winner and the third placed player will

not be the same.

For the last pair of atoms that we will describe here, we need to modify

slightly our example. Let us suppose that w1, w2 and w3 represent the winners

of three different tournaments in three successive years, so that the same player

could conceivably win more than one of them. Then a possible situation might

be that, in the opinion of the agent, learning the winner of the first year would

not tell him anything about who the winner of the third year that he does

not know already – or, in other words, that the set of all possible third year

winners is the same for each fixed first year winner. This corresponds to the

independence atoms w1 ⊥ w3, where

DI-indC: Let ~t1 and ~t2 be two tuples of terms, not necessarily of the same

length. Then M |=X ~t1 ⊥ ~t2 if and only if for all s, s′ ∈ X there exists a

s′′ ∈ X with ~t1〈s′′〉 = ~t1〈s〉 and ~t2〈s′′〉 = ~t2〈s′〉.

As pointed out in [33], t ⊥ t is logically equivalent to =(t). The reason for this

is clear: in our interpretation, t ⊥ t means that our agent thinks that he would

not learn anything new about t by being told the value of t, and this is possible

only if he believes that he knows it already.

Finally, our agent may think that, for the purpose of learning who will be

the winner in the third year, learning who won in the first and second year
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and knowing who won in the second year alone makes no difference. Perhaps,

according to this agent, learning who won in the second year would give him

valuable information, and so would learning who won in the first year; but once

he learned who won in the second year, learning who won in the first year too

would be quite irrelevant.

As an example of this situation, let us consider the following belief set:

XA =

w1 w2 w3

s0 Bob Tom Tom

s1 Tom Bob Bob

s2 Tom Bob Jack

s3 Jack Bob Bob

s4 Jack Bob Jack

Here our agent believes that if Tom won the second year then he will win the

third year too, and if that if Bob won the second year then either he or Jack

will win the third year. So, learning who won the second year would allow him

to infer something about who will win the third year. Also, he believes that if

Tom won the first year then one of Bob or Jack will win the third year, that

if Jack won the first year then one of Bob or Jack will win the third year and

that if Bob won the first year then Tom will certainly win the third year. So,

learning who won the first year would allow him to infer something about who

will win the third year. However, suppose that Tom is told who won the second

year. Then learning also who won in the first year would tell him nothing new

about who will win the third year: if the winner of the second year is Tom, then

he is also the winner of the third year, and if the winner of the second year is

Bob then, no matter who won the first year, both Bob and Jack are possible

winners for the third year competition.

This is modeled by the following, more general independence atom from [33],

which we recalled in Subsection 2.4.1:

DI-ind: Let ~t1, ~t2 and ~t3 be two tuples of terms, not necessarily of the same

length. Then M |=X ~t2 ⊥~t1 ~t3 if and only if for all s, s′ ∈ X with ~t1〈s〉 =
~t1〈s′〉 there exists a s′′ ∈ X with ~t1~t2〈s′′〉 = ~t1~t2〈s〉 and ~t1~t3〈s′′〉 = ~t1~t3〈s′〉.

In particular, it is not difficult to see that the above team satisfies w1 ⊥w2
w3,

as required.4

It might be of course possible to consider other notions of dependence or

independence, and justify them along similar lines. And indeed, in the opinion

4As observed in [33], we then have that =(x, y) is equivalent to y ⊥x y, and so on. This
can be justified along the same lines in which it was justified that =(x) is equivalent to x ⊥ x.
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of the author at least, one of the main future research directions in the field of

logics of imperfect information will be the search of new, doxastically significant

notions of atom and the study of the relationships between the corresponding

logics of imperfect information.

However, we already have more than enough basic material for the purposes

of this chapter.

Let us now add the classical conjunction and disjunction to our language:

DI-or: M |=X ψ ∨ θ if and only if M |=X φ or M |=X θ.

DI-and: M |=X ψ ∧ θ if and only if M |=X ψ and M |=X θ.

There is not much to say here about these two connectives, as they are simply

a way to join together basic belief constraints into more complex ones.

Can we also add the classical quantifiers at this point? Nicely enough, this

has been already done by Kontinen and Väänänen in [50] by defining the ∃1

and ∀1 quantifiers. These quantifiers have properties which are quite different

from the ones of the “usual” existential and universal quantifiers for logics of

imperfect information, which will be interpreted in Section 7.6 in terms of up-

date operations. Here we will write ∃ and ∀ for the ∃1 and ∀1 of [50]. Their

truth conditions are

DI-exists: M |=X ∃xψ(x) if and only if there exists a m ∈ Dom(M) such that

M |=X ψ(m);

DI-forall: M |=X ∀xψ(x) if and only if for all m ∈ Dom(M), M |=X ψ(m)

where ψ(m) stands for the formula obtained by substituting m (or, to be more

precise, a new constant whose interpretation is the element m) for x in ψ(x).

These new connectives actually allow us to do without our many non first-

order atoms: for example, it is not difficult to see at this point that =(x, y) is

equivalent to ∀u∃vB(u 6= x∨v = y), x ⊆ y is equivalent to ∀u(B(u 6= x)∨P (u =

y)), x | y is equivalent to ∀u(B(u 6= x) ∨B(u 6= y)) and y ⊥x z is equivalent to

∀u1u2u3(B(u1 6= x∧u2 6= y)∨B(u1 6= x∧u3 6= z)∨B(u1 = x∧u2 = y∧u3 = z)).

Examining logics of imperfect information in terms of these quantifiers,

rather than in terms of some classes of non first-order atom, may actually be a

promising – and, at the moment, largely unexplored – avenue of research; but

in this work, we thought it better to begin by describing the atoms that have

been studied so far, and only show their translations in term of basic quantifiers

at a second occasion.

Another connective that we are missing is a negation. We can certainly

negate a first-order formula inside a belief or possibility statement; but can we
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also consider an “external” negation, to go with our external quantifiers and

our classical conjunction and disjunctions?

It turns out that we can, of course, and that such an operator is precisely

the contradictory negation ∼ φ of Team Semantics. Here we call it simply ¬φ,

as there is no “other” negation with which it may be confused. Its semantics is

precisely the one that we would expect:

DI-not: M |=X ¬ψ if and only if M 6|=X ψ.

Given such an operator, we can as usual rewrite φ∧ ψ as ¬(¬φ ∨ ¬ψ) and ∀xψ
as ¬∃x¬ψ.

Furthermore, as in the case of the “diamond” and “box” operators of Modal

Logic, we can remove one of them from our list of primitives: for example, we

could keep only P (φ), and define B(φ) as ¬P (¬φ). Here, however, it must be

noted that the roles of the internal and external negations are quite different:

the former states that something is not true with respect to the whole team,

while the negation of ¬φ states that φ is not true in one specific assignment.

This is rather reminiscent, although not entirely identical, to the distinction

between contradictory negation and dual negation of Team Logic.5

Given such a theory T in the language developed so far and a suitable model

M , one can consider the set BelM (T ) of all belief sets which satisfy T in M :

formally, we can define

BelM (T ) := {X : M |=X T }.

When the choice of the model M is known, we will write Bel(T ) rather than

BelM (T ).

Given two theories T1 and T2 and a suitable model M , we write T1 |=M T2

if BelM (T1) ⊆ BelM (T2), and T1 |= T2 if T1 |=M T2 for all suitable models M .

The significance of these expressions is clear: T1 |=M T2 means that when-

ever our belief set over the model M satisfies all the conditions of T1, it also

describes all those described in T2, and T1 |= T2 means that this is the case

even if we do not know the underlying model M .

5In particular, the Team Logic expression ∼ φ corresponds to our ¬B(φ), while the expres-
sion ¬φ corresponds to our B(¬φ). However, the dual negation can operate over “external”
expressions too, and turns for example a conjunction φ ∧ ψ into the “tensor” operator φ⊗ ψ
that we will define in Section 7.3.
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7.3 Belief Updates

Consider again our agent A with his belief set XA, and suppose that he interacts

with another agent B with a different belief set XB. Then, our first agent could

update his beliefs in many different ways, according to the degree up to which

he trusts his own beliefs, to the degree up to which he trust the other agent’s

beliefs and on a number of other possible factors.

This can be represented by defining update operationsXA⋄XB from pairs of

teams to sets of teams; and, as stated in Section 7.1., we will writeXA⋄XB 7→ Y

for Y ∈ (XA ⋄XB), that is, for the assertion according to which Y is a possible

outcome of a ⋄-interaction between two agents whose beliefs are represented by

XA and XB respectively.

There are many possible choices of update operations of this sort. Here we

will consider four of them which seem, at least at first sight, to be relatively

reasonable choices:

Confident update XA ⊕XB: A trusts his beliefs concerning the true assign-

ment s0, but learns and trusts in the same way the beliefs of B too.

Therefore, XA ⊕XB 7→ Y if and only if Y = XA ∩XB.

Credulous update XA ⊗XB: A is willing to entertain the possibility that he

is wrong and the true state is one that B believes possible and he does

not. Or B may be wrong and he may be right, he does not know. Hence,

XA ⊗XB 7→ Y if and only if Y = XA ∪XB.

Skeptical update XA ⊖XB: A might trust B’s beliefs, but only if B appears

to know more than A – that is, if B does not consider possible anything

that A considers impossible. Otherwise, A refuses to perform the update.

Therefore, XA ⊖XB 7→ Y if and only if XB ⊆ XA and Y = XB.

Openminded update XA ⊙XB: A might trust B’s beliefs, but only if B ap-

pears to know less than A – that is, if he does not consider impossible

anything that A considers possible. Otherwise, A refuses to perform the

update. Therefore, XA ⊙XB 7→ Y if and only if XA ⊆ XB and Y = XB.

Note that the skeptical update and the openminded one can fail, that is, may not

lead to any possible outcome. This is a feature, not a bug: an update operation

does not need to be specified for all possible belief states, and does not need

to be deterministic either – none of the update operations considered here can

lead to more than one possible outcome, but nothing prevents in principle the

definition of such update operators.

Furthermore, these update operators satisfy the three following properties:
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Idempotence: X ⋄X 7→ Y if and only if Y = X ;

Associativity: If X1 ⋄X2 7→ Y and Y ⋄X3 7→ Z, then there exists a W such

that X2 ⋄X3 7→W and X1 ⋄W 7→ Z;

Monotonicity: If X ⋄ Y 7→ Z and Z ⋄W 7→ X then X = Z.

The interpretation of these properties, and the reason why they may be reason-

able properties to require for an update operator, should be clear. An update

X ⋄ Y represents an interaction between two agents whose beliefs correspond

to X and Y : therefore, idempotence states that whenever the two agents have

the exact same beliefs, the interaction does not modify these beliefs, associa-

tivity states that, in group interactions, the order of the individual interactions

is irrelevant, and monotonicity means that an agent who changed idea cannot

“return back” to his previous beliefs through another interaction of the same

kind.

Let us verify that the update operators that we defined satisfy these prop-

erties. For the confident and credulous updates, this is obvious; hence, we will

verify the case of the skeptical update, as the one of the openminded update is

completely analogous.

Idempotence: Since X ⊆ X , it follows at once that X ⊖X 7→ Y if and only

if X = Y .

Associativity: Suppose that X1 ⊖X2 7→ Y and Y ⊖X3 7→ Z. Then, by the

definition of the skeptical update, we have that X1 ⊇ X2 = Y ⊇ X3 = Z.

But then we have that X2 ⊖X3 7→ X3, and that X1 ⊖X3 7→ X3 = Z, as

required.

Monotonicity: If X⊖Y 7→ Z, then Z = Y ⊆ X . Furthermore, if Z⊖W 7→ X

then X = W ⊆ Z. Hence, Z ⊆ X ⊆ Z, and therefore X = Z.

Of course, these are only a possible selection of update properties: it may

well be the case that in the future interesting update operators which do not

respect them will be found, or that other, more important conditions will be

explored.

After this intermezzo, let us reconsider the language of Section 7.2. As we

saw, this language is already capable of describing a number of properties of

belief states. But now we have something new, that is, some ways of updating

beliefs. This allows us to can ask some very natural questions: for example, if

A’s belief state XA satisfies φ, and if B’s belief state XB satisfies ψ, what can

we say about belief state corresponding to some update of XA and XB?
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To answer this, we need to add some way of talking about updates to our

language. A possibility is to consider, for each update ⋄, a connective φ⋄ψ such

that M |=X φ ⋄ ψ if and only if the belief set X can be seen as the result of a

⋄-update between a belief set satisfying φ and a belief set satisfying ψ.

In other words, the semantics of φ ⋄ ψ will be

DI-⋄: M |=X φ ⋄ ψ if and only if there exist teams Y and Z such that

Y ⋄ Z 7→ X , M |=Y φ and M |=Z ψ.

This gives us at once the following operations:

DI-⊕: M |=X φ ⊕ ψ if and only if X = Y ∩ Z for some Y and Z such that

M |=Y φ and M |=Z ψ;

DI-⊗: M |=X φ ⊗ ψ if and only if X = Y ∪ Z for some Y and Z such that

M |=Y φ and M |=Z ψ;

DI-⊖: M |=X φ ⊖ ψ if and only if M |=X ψ and there exists a Y ⊇ X such

that M |=Y φ.

DI-⊙: M |=X φ ⊙ ψ if and only if M |=X ψ and there exists a Y ⊆ X such

that M |=X φ.

The credulous update connective is exactly the tensor connective of Team Logic,

or the disjunction of Dependence Logic. The other ones, to the knowledge of

the author, have not been studied in depth yet, but they do hold some interest;

it is worth noting, in particular, that for downwards closed logics (such as

Dependence Logic or Intuitionistic Dependence Logic, for example) φ ⊕ ψ and

φ⊖ ψ are equivalent and correspond to the classical conjunction φ ∧ ψ.

The intended interpretation of these connectives is better understood by

considering expressions of the form φ ⋄ ψ |= θ. According to what we just

discussed, such an expression corresponds to the statement that

Any possible outcome of ⋄-update between two belief states satisfying

φ and ψ respectively will satisfy θ.

The significance of such a statement, and its relevance for the kind of framework

that we are presenting, is then clear.

An expression of the form φ |= ψ ⋄θ is perhaps a little more difficult to read,

but its meaning is still intuitive enough: such an entailment holds if and only if

any belief state which satisfies φ can be thought of as the result of a ⋄-update

between a belief state such that ψ and a belief state such that θ.
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This allows us to make sense of some properties of logics of imperfect in-

formation. Here we will describe only three examples relative to the credulous

update:

1. It is easy to see that (φ⊗ψ)⊗θ |= φ⊗ (ψ⊗θ) for all φ, ψ and θ. This just

means that the credulous update is associative: if a belief state can be the

result of an agent, whose belief state satisfies φ, performing a credulous

update with some agent whose belief set satisfies ψ and then with some

other one whose belief set satisfies θ , then it can also be the result of an

agent, whose belief state satisfies φ, performing a credulous update with

some agent whose belief state satisfied ψ before he performed a credulous

update with some agent whose belief state satisfied θ.

2. The credulous update is not idempotent: in general, φ⊗φ 6|= φ. This can

be verified easily by letting φ be the constancy atom =(x): if the value of

the variable x is constant in Y and in Z, indeed, it does not necessarily

follow that it is constant in Y ∪ Z.

The reason for this is clear: if an agent who believes that he knows the

value of x performs a credulous update with another agent who also be-

lieves that he knows the value of x, and the two agents disagree on this

value, then our first agent will become unsure about who, between him

and the other agent, was in the right about x.

3. If φ, ψ and θ are downwards closed formulas – for example, if they are

expressible in Intuitionistic Dependence Logic or in Exclusion Logic – then

the following “distributivity property”, first pointed out by Ville Nurmi,

holds:

(φ⊗ ψ) ∧ (φ⊗ θ) |= φ⊗ φ⊗ (ψ ∧ θ).

According to what we just discussed, this entailment can be read as fol-

lows:

If a team X can be seen as the result of a credulous update

between a teams such that φ and one such that ψ, and also as

the result of a credulous update between a team such that φ and

one such that θ, then it is can also be the result of a credulous

update between two teams such that φ and one such that ψ and

θ.

This is a nontrivial – and, at least in the opinion of the author, rather

interesting – property concerning belief updates and their properties.
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As an aside, the last property fails if we consider non-downwards closed formu-

las: for example, consider the team

X =

x y z

s0 0 1 1

s1 1 0 0

in any model M with at least two elements. Then M |=X z = 1 ⊗ x ⊆ y:

indeed, for Y = ∅ and Z = X we have that M |=Y x = 1, M |=Z x ⊆ y, and

X = Y ∪ Z. Furthermore, M |=X z = 1 ⊗ z = 0, as can be easily verified by

splitting X into the two subteams {s0} and {s1}.
However, M 6|=X z = 1 ⊗ z = 1 ⊗ (x ⊆ y ∧ z = 0): indeed, otherwise we

could split X into three subteams X1, X2 and X3 such that M |=X1
z = 1,

M |=X2
z = 1 and M |=X3

x ⊆ y ∧ z = 0. Now, s1(z) = 0 6= 1, and therefore

s1 would necessarily be in X3; but then, since M |=X3
x ⊆ y, there should be

another assignment s ∈ X3 with s(y) = s1(x) = 1. The only such assignment

is s0; but s0(z) = 1, and therefore it would not be the case that M |=X3
z = 0.

This contradicts our hypothesis.

As this example shows, different fragments of our language may have dif-

ferent properties when it comes to the entailment relation. This may be worth

exploring further in the future.

7.4 Adjoints

In the previous section we considered a few update operators, and for each

one of them we defined a connective expressing that a given team X can be

seen the result of an update between some teams Y and Z satisfying certain

properties. This increased substantially the expressive power of our formalism,

and, in fact, by now our language contains the propositional fragment of most

logics of imperfect information.

However, this is not all that we can do with these update operations. In

particular, it may be useful to be able to make conjectures about what would

happen if we updated the team in a certain way. In particular, any update

operator ⋄ induces a corresponding implication
⋄−→ between sets of belief sets,

defined as

DI-
⋄−→: M |=X φ

⋄−→ ψ if and only if for all Y s.t. M |=Y φ and for all Z such

that X ⋄ Y 7→ Z, M |=Z ψ.

The intended interpretation of these new connectives is clear: φ
⋄−→ ψ corre-
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sponds to the statement asserting that any ⋄-update between the beliefs X of

our agent and the beliefs Y of any other agent such that M |=Y φ will always

result in a belief Z such that ψ.

This easily implies that

φ ⋄ ψ |=M θ ⇔ φ |=M ψ
⋄−→ θ

for all φ, ψ and θ and for all models M . In other words, the operator
⋄−→ is the

right adjoint of the operator ⋄.
This notion of adjointness is precisely the one studied in [3], in which it was

one of the motivations given for the definitions of the intuitionistic and linear

implications.

Hence, it should come to no surprise that now our framework will allow us

to recover both these implications, plus two new ones. Indeed, by instantiating

our definition of
⋄−→ with the update operators of the previous section we obtain

the following connectives:

Confident implication: M |=X φ
⊕−→ ψ if and only if for all Y such that

M |=Y φ it holds that M |=X∩Y ψ;

Credulous implication: M |=X φ
⊗−→ ψ if and only if for all Y such that

M |=Y φ it holds that M |=X∪Y ψ;

Skeptical implication: M |=X φ
⊖−→ ψ if and only if for all Y ⊆ X such that

M |=Y ψ it holds that M |=Y θ;

Openminded implication: M |=X φ
⊙−→ ψ if and only if for all Y ⊇ X such

that M |=Y ψ it holds that M |=Y θ.

Skeptical implication and credulous implication are precisely the intuitionistic

and linear implications of [3], which we recalled in Subsection 2.4.2. Moreover,

it is not difficult to see that whenever the antecedent satisfies the downwards

closure property, the confident and the skeptical implications are equivalent (as

would the credulous and the openminded ones in the case of an upwards closed

antecedent). This, in particular, implies that for downwards closed logics (such

as, for example, Intuitionistic Dependence Logic) these two forms of implication

are interchangeable.

However, in general the skeptical and the confident implications are not
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equivalent. For example, consider the team

X =

x y

s0 0 0

s1 1 1

in a model M with two elements 0 and 1. Then M |=X x ⊥ y
⊖−→=(x): indeed,

the only subteams of X in which x is independent on y are {s0} and {s1}, and

in these subteams x is clearly constant.

But M 6|=X x ⊥ y
⊕−→=(x): indeed, for

Y =

x y

s0 0 0

s1 1 1

s2 0 1

s3 1 0

we have that M |=Y x ⊥ y, but that in X∩Y = X the value of x is not constant.

So now we have a new class of formulas which describe beliefs in terms of

how they would change if they interacted with other beliefs; and this is, of

course, of potential significance for a number of practical applications. More in

general, it seems that the problem of deciding, given two formulas φ and ψ of

our language (or of a fragment thereof) and a fixed model M , whether φ |=M ψ,

is of no small relevance for the field of knowledge updating; and that the same

may also be said for the problem of whether φ entails ψ in all models.

The interpretation just discussed also clarifies the fact, already pointed out

in [3], that =(x, y) is logically equivalent to =(x)
⊖−→=(y) (or equivalently, since

constancy atoms are downwards closed, to =(x)
⊕−→=(y)), and that more in

general dependence atoms can be decomposed in terms of constancy atoms and

intuitionistic implication: indeed, a belief set X satisfies =(x)
⊕−→=(y) if and

only if the corresponding agent, by trusting the beliefs Y of some agent who

believes that he knows the value of x, will reach a new belief state X ∩ Y in

which he believes to know the value of y too. This corresponds precisely to the

doxastic interpretation of =(x, y).

7.5 Minimal updates

Let ⋄ be an update operator satisfying the idempotence, associativity and mono-

tonicity conditions described in Section 7.3. Then ⋄ defines a partial order over
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belief sets as follows:

X ≤⋄ Y ⇔ ∃X ′ s.t. X ⋄X ′ = Y.

Indeed, by idempotence we have that X ≤⋄ X ; by the associativity of the

operator, we have that the ≤⋄ relation is transitive; and by the monotonicity of

the operator, we have that if X ≤⋄ Y and Y ≤⋄ X then X = Y .

The interpretation of the ≤⋄ operator in our framework is the following:

X ≤⋄ Y if and only if an agent, whose belief set is X , may reach the belief state

Y through a sequence of ⋄-updates.

Different update operators, of course, may generate the same partial order.

In particular, for the operators that we considered we have that

X ≤⊕ Y ⇔ X ≤⊖ Y ⇔ Y ⊆ X

and

X ≤⊗ Y ⇔ X ≤⊙ Y ⇔ X ⊆ Y.

In other words, a belief state Y can be reached from a state X through a

confident or a skeptical update if and only if Y represents a stricter belief than

X does, and it can be reached through a credulous or an openminded statement

if and only if it represents a looser belief than X does.

By the way, this allows us to give an alternative definition of the skeptical

and openminded updates in terms of the confident and credulous ones as follows:

Skeptical update, v2: X ⊖ Y 7→ Z if and only if X ≤⊕ Y and X ⊕ Y 7→ Z;

Openminded update, v2: X⊙Y 7→ Z if and only ifX ≤⊗ Y andX⊗Y 7→ Z.

This seems to be an instance of a more general phenomenon: given an up-

date operation ⋄ satisfying our three conditions, we can always generate a new

operation ⋄′ as

X ⋄′ Y 7→ Z ⇔ X ≤⋄ Y and X ⋄ Y = Z.

These new update operations ⋄′, in other words, are defined precisely as the

older operations ⋄, except that now our agent – who believes that X – is willing

to perform an update with Y if and only if Y itself is a belief state that he could

possibly reach through a ⋄-update.

Now, let V be any family of belief sets, let X be a belief, and let us define

X ⋄ V as {Z : ∃Y ∈ V s.t. X ⋄ Y 7→ Z}. As usual, we will write X ⋄ V 7→ Z
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for Z ∈ (X ⋄ V): in other words, with X ⋄ V 7→ Z we mean that Z is a possible

outcome of updating X with some Y ∈ V .

Suppose now that our agent can choose which Y ∈ V to pick to update his

beliefs, and also select the resulting Z if more than one exists: which strategy

could he use?

A reasonable choice might be that our agent will attempt to make a ⋄-
minimal update, that is, one that does not commit him any more than nec-

essary: in particular, if he can reach both Z1 and Z2, and he could reach Z2

from Z1 through another ⋄-update, then he should pick Z1 over Z2. This can

be defined formally as the notion of minimal update:

X � V 7→ Z if and only if there is a Y such that X ⋄ Y 7→ Z and Z is

≤⋄-minimal in X ⋄ V .

Here, stating that Z is ≤⋄-minimal in X ⋄ V means simply that there exists no

Z ′ ∈ X ⋄ V with Z ′ <⋄ Z.

Substituting ⋄ with the four update operators considered so far, we get the

following updates:

Minimal confident update: X ⊞ V 7→ Z if and only if there exists a Y ∈ V
such that X ∩ Y = Z, and if for all Z ′ ) Z and all Y ′ ∈ V it holds that

X ∩ Y ′ 6= Z ′;

Minimal credulous update X ⊠ V 7→ Z if and only if there exists a Y ∈ V
such that X ∪ Y = Z, and for all Z ′ ( Z and all Y ′ ∈ V it holds that

X ∪ Y ′ 6= Z ′;

Minimal skeptical update: X ⊟ V 7→ Z if and only Z ⊆ X , Z ∈ V and for

all Z ′ with Z ( Z ′ ⊆ X it holds that Z ′ 6∈ V ;

Minimal openminded update: X ⊡ V 7→ Z if and only if X ⊆ Z, Z ∈ V ,

and for all Z ′ with X ⊆ Z ′ ( Z it holds that Z ′ 6∈ V .

As before, we can at this point define connectives φ � ψ for describing that a

team X is a possible result of a minimal update of this kind, and connectives

φ
�−→ ψ for describing that whenever we perform a minimal update between X

and a the family of teams satisfying φ, the result will satisfy ψ.

The formal definitions would then be

DI-�: M |=X φ � ψ if and only if there exists a Y such that M |=Y φ and

Y � Bel(ψ) 7→ X ;

DI-
�−→: M |=X φ

�−→ ψ if and only if whenever X � Bel(φ) 7→ Z it holds that

M |=Z ψ.
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Here, as usual, Bel(ψ) represents the family of all teams which satisfy ψ in M .

Here we will not give the instantiations of these connectives for the four

updates described above, nor will we discuss their properties.

All that we will point out is that the minimal skeptical implication connective

φ
⊟−→ ψ is precisely the maximal implication φ →֒ ψ mentioned in [49] and

defined as

DI-maximp: M |=X φ →֒ ψ if and only if for all Y ⊆ X such that M |=Y φ

and M 6|=Z φ for all Z with Y ( Z ⊆ X , M |=Y ψ;

Thus, even this connective can be interpreted in this framework. This notion

of minimal update appears to be rather natural, and it probably deserves further

study; however, for the moment we will content ourselves with having defined

it and shown how to recover the →֒ implication through it.

As an aside, this implication allows us to decompose independence atoms:

for example, it is not difficult to see that y ⊥x z is equivalent to =(x) →֒ y ⊥ z.

7.6 Quantifiers

So far, our operators have treated assignments as if they were point-like possible

worlds. This is not the case, of course: for example, our agent may be confi-

dent about the values of certain variables, but not about these of the others.

Furthermore, we have no way so far of adding or removing variables from the

domains of our teams. In this section, we will attempt to remedy this.

Let us begin with a forgetting operator ρx, where x is a variable, which

has the effect of removing the variable x from the domain of our team: more

precisely, for all belief states X we define ρx(X) as X\x, that is, as the team

containing the restrictions of all assignments in X to Dom(X)\{x}. In the case

that x is not in the domain of X to begin with, this operator has no effect.

The doxastic meaning of this operator is the one suggested by its value:

after performing the update (ρx), our agent forgets everything about the value

of the variable x, and even the fact that this variable exists to begin with! This

is not the same as our agent simply professing ignorance about the value of x

– this would be another operator, that we will examine later – as here we are

really erasing the variable from our domain.

As in the case of the binary update operators considered in the previous

sections, this forgetting operator corresponds to two distinct connectives, which

can be formally defined as
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DI-forgotten: M |=X (ρx)φ if and only if there exists a team X ′ such that

X = (ρx)X ′ = X ′
\x and M |=X′ φ.

DI-forgetting: M |=X (ηx)φ if and only if M |=X′ φ, where X ′ = (ρx)X =

X\x;

In other words, (ηx)φ holds in a team X if, starting from X and forgetting the

values of the variable x, we obtain a belief state which satisfies φ, and (ρx)φ

holds in a team X if this team can be obtained by starting from a team X ′

which satisfies φ and forgetting the value of x. As always, these two operators

are adjoints, that is,

(ρx)φ |= ψ ⇔ φ |= (ηx)ψ.

A combination of these two operators which is of particular importance is the

disbelieving operator Dxφ = (ηx)(ρx)φ. The intuition here is that M |=X Dxφ

if, apart from the value of the variable x, the teamX could correspond to a belief

set which satisfies φ. This is compatible with the corresponding semantic rule:

indeed, by combining the semantic rules for the forgetting and remembering

operators, one can see that M |=X Dxφ if and only if there exists a X ′ such

that X\x = X ′
\x and such that M |=X′ φ.

The condition X\x = X ′
\x is easily seen to be equivalent to the existence of

a function H : X → P(Dom(X))\{∅} such that X ′ = X [H/x] = {s[m/x] : s ∈
X,m ∈ H(s)}. Therefore, the Dxφ operator corresponds precisely to the lax

existential quantifier rule TS-∃-lax mentioned in Subsection 2.2.1.

Just like all connectives, Dxφ can also be built directly from some belief

update operator. This is our first true case of a non-deterministic belief update:

more precisely, we can define it as

(Dx)X 7→ Y if and only if X\x = Y\x.

The significance of this operator in our framework should be easy to see: in

brief, we have that (Dx)X 7→ Y if and only if an agent who starts from the

belief X and, disbelieving his previous opinions about the possible values of the

variable x, changes them and nothing else, can possibly reach the belief state

represented by Y .

The quantifier (Dx)φ is then the unary equivalent of the φ ⋄ ψ connectives

considered in the previous sections: in brief, M |=X (Dx)φ if and only if there

exists a team Y with M |=Y φ and (Dx)Y 7→ X .

Of course, we also get another quantifier (Rx)φ, which is satisfied by a belief

state X if and only if for all Y such that (Dx)X 7→ Y we have that M |=Y φ:

in other words, M |=X (Rx)φ corresponds that our agent, whose belief state is
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X , is confident that φ would hold even if his beliefs about the value of x were

wrong. Hence, we may perhaps call it the regardless quantifier. Thus, we have

obtained a new pair of unary connectives:

DI-disbelief: M |=X (Dx)φ if and only if there exists a Y such that Y\x = X\x

and M |=Y φ;

DI-regardless: M |=X (Rx)φ if and only if for all teams Y with Y\x = X\x it

holds that M |=Y φ.

The “regardless” operator is a lax version of the universal quantifier ∼ ∃x ∼ . . .

of Team Semantics; and, as always, these two operators are adjoints, that is,

(Dx)φ |= ψ ⇔ φ |= (Rx)ψ.

Finally, let us consider the following scenario: our agent’s belief is repre-

sented by the team X , which satisfies some property φ, but now the agent

decides that he does not trust at all his own opinion about the value of some

variable x. Then the new belief state is given by

¡xφ = X [M/x] = {s[m/x] : s ∈ X,m ∈ Dom(M)}

that is, the new belief state of our agent is the same as the old one, except

that now our agent knows nothing at all about x. This, once again, represents

a situation in which our agent doubts the validity of his beliefs about x; but

where the disbelief operator Dx corresponds to the agent revising these beliefs

in some arbitrary, nondeterministic way, this new operator ¡x has the agent

taking an agnostic position about the possible values of x and moving to a

belief state in which he knows nothing about it.

As in all previous cases, this allows us to develop two new connectives, that

we will call the doubted and the doubting quantifiers:

DI-doubted: M |=X (¡x)φ if and only if X = Y [M/x] for some Y such that

M |=Y φ.

DI-doubting: M |=X (!x)φ if and only if M |=X[M/x] φ;

The !x connective is exactly the !x operator in Team Logic, or the one written

as ∀x in Dependence Logic or in many other logics of imperfect information.

The other one is, to the knowledge of the author, new, but its interpretation is

clear: M |=X (¡x)φ if the belief X can be seen as the result of taking a belief

state Y which satisfies φ, and doubting its guess about it. As always, we have
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that

¡xφ |= ψ ⇔ φ |= !xψ.

This concludes the chapter. It was perhaps in many regards a bit informal, and

we touched a number of issues without examining them in much depth; however,

our purpose here was not to formulate and study a specific logical formalism,

but rather to illustrate how formulas of logics of imperfect information have

natural interpretations as statements about beliefs and belief updates.

We leave to the reader to decide whether we achieved this objective; but it

is the hope of the author that this discussion, as well as the results presented

in other parts of this thesis, may provide further incentive for the development

and study of this interesting family of logics.
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Conclusions

In this work, we examined the properties of a number of doxastically inspired

variants of Dependence Logic. The author’s aims in pursuing this research

program were

1. To explore the space of the possible variants of Dependence Logic;

2. To achieve, through the above mentioned analysis, a fuller understanding

of the potential and the properties of Team Semantics;

3. To analyze the dynamics of information change which lies underneath this

semantics;

4. To argue that first-order logics of imperfect information provide a natural

framework for reasoning about beliefs and belief updates in a first order

setting.

According to my current doxastic state, all of these objectives have been met

in full.

Sadly, none of the logics considered in this work is capable of expressing

statements about higher-order beliefs; and therefore, I find myself unable to

formulate exactly my hope that the reader’s belief state is now, if not necessarily

in complete agreement with the above evaluation, at least not incompatible

with a certain degree of satisfaction and of interest in the possibilities of Team

Semantics and in its doxastic interpretation.

One research question which I left essentially untouched, and which is related

to the issue of higher-order beliefs, consists in the relationship between our

approach and dynamic modal logics of belief and knowledge [5, 60, 70]. We

studiedly avoided such a comparison, even though many of the notions which we

183
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considered (the announcement operators of Chapter 3, for example, or the team

update operations considered in Chapters 6 and 7) have clear parallels in such

formalisms: indeed, an overeager attempt of establishing connections between

Kripke Semantics and Team Semantics could have risked hiding some of the

peculiarities and possibilities of the latter.1 However, the doxastic interpretation

of Team Semantics is now, in the opinion of the author, more than mature

enough for such comparisons to be opportune: the groundwork for a more

formal study of the connections between these two subjects is more than ready,

and – in particular – the analysis of Chapter 7 appears to be a promising starting

point for such an enterprise.

Another interesting possibility is to consider graded beliefs and finer variants

of Team Semantics. Studying the Nash Equilibria of semantic games, after

[61, 25, 62, 31], is surely an option; but another, perhaps more promising one is

to take Team Semantics as primary, as we did in all of this work, and adapt it to

“probabilistic teams” after the fashion of [25]. But of course, one must also keep

in mind that probability theory is not the only available means for representing

graded beliefs. Another, perhaps even more intriguing in our framework, one is

to consider fuzzy teams (that is, fuzzy sets of assignments), thus developing an

Team Semantics analogue of Cintula and Mayer’s Game Theoretic Semantics

for Fuzzy Logic [12].

Also, the classification of variants of Dependence Logic through generalized

dependence atoms which we begun in Chapter 4 is far from complete. The

most outstanding open problem, in the opinion of the author, consists in the

characterization of the expressive power of Inclusion Logic; but more in general,

it is clear that the space of all semantically interesting dependence notions

is largely unexplored, and that its systematic study promises to hold many

interesting results and surprises.

Finally, the formal properties of the Team Transition Semantics of Chapter

6 are far from entirely known, and definitely deserving of further analysis.

I conclude this work on this note. The field of Dependence Logic and Team

Semantics is in a state of very rapid growth; and I can only express the hope

that the results described in this thesis may be of some utility for the further

development of this fascinating area of research.

1Also, from a practical point of view, it was simpler for the author to mostly focus on a
single semantical framework and its variants.
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Samenvatting

Wij bestuderen de doxastisch gëınspireerde varianten en extensies van afhanke-

lijkheids logica die voortvloeien uit de overweging van aankondigings operatoren

en niet-functionele afhankelijkheids atomen. We lossen verscheidene open vra-

gen in dit gebied op, waaronder de volgende twee:

1. De ∀1 quantifier van (Kontinen and Vaananen, 2009) is niet uniform te

definiëren in Dependence Logic;

2. Alle NP eigenschappen van teams zijn te definiëren in onafhankelijkheids

logica,

Verder, generaliseren we het resultaat van Cameron and Hodges over de com-

binatorische eigenschappen van compositionele semantiek voor de logica van

imperfecte informatie naar de oneindige casus, daardoor introduceren we een

nieuw begrip van verstandige semantiek ; en we ontwikkelen een “algemene” se-

mantiek voor onafhankelijkheids logica (of logicas die hierin bevat zijn, zoals

afhankelijkheids logica) als mede een bewijssysteem en we bewijzen correctheid

en volledigheid.

Vervolgens onderzoeken we de dynamica van informatie-updates die onder

de verschijning van team samantiek ligt, we breiden van Benthems wederzijdse

inbeddings resultaat tussen eerste orde logica en dynamische spel logica (DGL)

uit naar de casussen van afhankelijkheids logica en een niet perfecte informatie

variant van DGL. Tot slot laten we zien dat veel van de operatoren en connec-

tieven die gebruikt worden in team semantiek hebben natuurlijke interpretaties

in termen van geloofs beschrijvingen en geloofs updates en we pleiten voor de

doxastische interpretatie van dit semantische kader.
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Abstract

We examine doxastically inspired variants and extensions of Dependence Logic

which arise from the consideration of announcement operators and non-functional

dependence atoms. We solve several open questions of the area, among them

the following two:

1. The ∀1 quantifier of (Kontinen and Väänänen, 2009) is not uniformly

definable in Dependence Logic;

2. All NP properties of teams are definable in Independence Logic,

Furthermore, we generalize Cameron and Hodges’ result about the combinato-

rial properties of compositional semantics for logics of imperfect information to

the infinite case, thus introducing a new notion of sensible semantics ; and we

develop a “general” semantics for Independence Logic (or logics contained in it,

such as Dependence Logic) as well as a proof system for which we prove sound-

ness and completeness. We then examine the dynamics of information update

which lies beneath the appearance of Team Semantics, extending van Benthem’s

mutual embedding result between First Order Logic and Dynamic Game Logic

(DGL) to the cases of Dependence Logic and an imperfect-information variant

of DGL. We use the insights arising from the embedding to develop dynamic

variants of Dependence Logic and a Team Transition Semantics in which ex-

pressions are interpreted as transition systems over teams. Finally, we show

that many of the operators and connectives considered in Team Semantics have

natural interpretations in terms of belief descriptions and belief updates, and

we argue in favor of the doxastic interpretation of this semantical framework.
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