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Chapter 1

Introduction

Every organised society of individuals calls for procedures to stage collective deci-
sions. Since the first democracies to the advent of social networks and interactive
software agents, the interest in the development of efficient procedures for collec-
tive decision making has only been increasing.

This dissertation provides a systematic study of a particular class of collective
decision making problems, in which several individuals each need to make a yes/no
choice regarding a number of issues and these choices then need to be aggregated
into a collective choice. Inspired by potential applications in Artificial Intelligence,
we put forward a systematic and flexible framework that aims to account for the
wide variety of situations that can be encountered when dealing with the problem
of collective choice.

1.1 Background

The literature on Economic Theory, in particular its branches of Welfare Eco-
nomics, Public Choice and Social Choice Theory, comprises a centuries-old tra-
dition of studies of the problem of collective decision making. Dating back as far
as the 18th century, the work of Condorcet initiated a line of research in which
renowned scholars such as Charles Dodgson (also known as Lewis Carroll) have
contributed to the design and the analysis of voting procedures to be used in pub-
lic elections or committee decisions (McLean and Urken, |1995). In more recent
times, starting from the seminal work of |Arrow| (1963), Social Choice Theory has
become a well-established formalism for the study of collective decision making.

Today’s world is not quite similar to the one in which Condorcet and his
colleagues carried out their research. The rise of new information technologies has
endowed society with the possibility of taking collective decisions between large
groups of people in a network, and novel theoretical problems have originated from
the design of systems of autonomous software agents. Researchers in Artificial
Intelligence, particularly from the field of Multiagent Systems (Sandholm) |1999;
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2 Chapter 1. Introduction

Shoham and Leyton-Brown, 2009; Wooldridge, |2009), soon became interested in
the work of social choice theorists, and started to borrow techniques from the
literature on Economic Theory to analyse and study problems of collective choice
in a new light.

Notable examples include the analysis of ranking systems carried out by Alt-
man and Tennenholtz (2008, 2010), in which problems related to the design of
a search engine are given a formal axiomatic treatment using tools from Social
Choice Theory. Similar techniques have also been used to compare and evaluate
the design of online recommender systems (Pennock et al., 2000), and to formalise
the problem of aggregating the result of different search engines (Dwork et al.,
2001). This line of research has proved useful not only for the study of the in-
teraction of automatic software agents, but also for the implementation and the
enhancement of existing procedures for collective decision making. As an exam-
ple, Duke University in the U.S. has implemented a complex ranking procedure
known as the Kemeny rule (Kemeny, 1959) to rank Ph.D. applicants, exploiting
efficient heuristics developed by computer scientists (Conitzer, 2010).

Growing collaboration between Artificial Intelligence and Social Choice The-
ory has led to the creation of an entirely new research agenda under the name of
Computational Social Choice (Chevaleyre et al. |2007; Procaccia, 2011; Brandt
et al., Forthcoming). One particular problem of interest for this new community
is the case of social choice in combinatorial domains, in which the space of al-
ternatives from which individuals have to choose has a multi-attribute structure
(Chevaleyre et al., 2008). Classical examples include voting in multiple referenda,
in which individuals are asked to decide which propositions in a given set they
accept; or electing a committee, in which a number of seats need to be filled with
a set of possible candidates. The problem of decision making in combinatorial
domains was first pointed out by political scientists (Brams et al., 1998; |Lacy and
Niou, 2000) and is now also receiving attention from researchers in Economic The-
ory (Ahn and Oliveros, 2012). In Artificial Intelligence such questions have been
the subject of numerous publications. Starting from the work of |Lang (2004)), to
a series of more recent developments (Lang, 2007; Xia et al., 2010; Xia, [2011),
there have been several attempts to tackle the high complexity that arises in this
context by using tools from Artificial Intelligence, such as methods for modelling
preferences inspired by knowledge representation (Rossi et al., 2004; Lang and
Xiaj, 2009; Li et al., 2011} |Airiau et al., 2011]).

1.2 Research Question

A central problem in Social Choice Theory, and, in view of our previous discussion,
in all of its applications to Artificial Intelligence, is the problem of aggregation:
Suppose a group of agents each supply a particular piece of information regarding
a common problem and we want to aggregate this information into a collective
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view to obtain a summary of the individual views provided. A classical example is
that of preferences (Arrow, 1963): each agent declares their individual preferences
over a set of alternatives by providing an ordering over this set, and we are
asked to amalgamate this information into a collective ranking that represents
the individual preferences provided. The same methodology has also been applied
more recently to a number of other types of information, among others beliefs
(Maynard-Zhang and Lehmann, 2003; Konieczny and Pino Pérez, 2002, 2011)
and judgments (List and Pettit, 2002).

One of the main features of the study of aggregation is the problem of collective
rationality: given a rationality assumption that binds the choices of individuals,
we ask whether the output of an aggregator still satisfies the same rationality
assumption. Consider the following example:

Example 1.2.1. Three autonomous agents need to decide on whether to perform
a collective action. This action is performed if two parameters are estimated to
exceed a certain threshold. We can model the choice situation with a multi-
attribute domain in which there are three issues at stake: “the first parameter is
above the threshold” (77), “the second parameter is above the threshold” (73),
and “the action should be performed” (A). The rationality assumption that links
the three issues together can be modelled using a simple propositional formula,
namely T3 ATy — A. Consider now the following situation, in which the individual
views on the three issues are aggregated using the majority rule, accepting an issue
if a majority of the individual agents do:

T, A

Agent 1  Yes Yes Yes
Agent 2 No Yes No
Agent 3 Yes No No

Majority Yes Yes No

In this situation the collective action A is not performed, even though a major-
ity of the individuals think that the first parameter exceeds the threshold and a
(different) majority agree that also the second parameter exceeds the threshold.
Situations like the one above are often considered paradoxical: even if each indi-
vidual agent is rational (i.e., each of them satisfies the rationality assumption),
the collective view derived using the majority rule is not. That is, the majority
rule fails to lift the integrity constraint 77 A Ty — A from the individual to the
collective level. This example shows that the majority rule violates collective
rationality in certain specific cases.

In this dissertation we put forward a general framework that encompasses most
of the classical studies of collective rationality in Social Choice Theory, and that
can prove useful to diverse research areas in Artificial Intelligence. We base our
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framework on binary aggregation, in which individuals are required to choose
from a multi-issue domain in which issues represent different binary choices. We
model rationality assumptions using a simple propositional language, and we
give a precise definition of collective rationality with respect to a given rational-
ity assumption. Classical work in Social Choice Theory has studied aggregation
procedures with the axiomatic method, using axioms to express desirable prop-
erties of a procedure. For example, the principle that all individuals should be
given equal weight is formalised in the axiom of anonymity, and the axiom of neu-
trality expresses a similar requirement of impartiality between issues. We classify
rationality assumptions with respect to their syntactic properties, and we give a
systematic treatment of the question of how we can relate collective rationality
with respect to a syntactically defined sublanguage on the one hand, to classical
axiomatic properties from Social Choice Theory on the other. For instance, Ex-
ample shows that the majority rule is not collectively rational with respect
to the integrity constraint 73 A Ty, — A, which formalises the rationality assump-
tion in the example. A similar phenomenon can be observed when considering
the 3-clause T7 VT3 V A as rationality assumption: to see this, consider a scenario
in which each of three agents accepts exactly one issue, and no two agents accept
the same issue. On the other hand, any 2-clause (i.e., disjunctions of size 2) will
always be lifted, i.e., the majority rule is collectively rational with respect to the
language of 2-clauses. We will then be able to describe the majority rule in terms
of classical axioms from Social Choice Theory or in terms of the languages for
integrity constraints it lifts. It is results of this kind that we shall explore in depth
in this dissertation.

Research in Computational Social Choice have mainly focused on the study of
voting procedures (Brandt et al., Forthcoming), i.e., mechanisms for the selection
of candidates depending on the preferences of a set of individuals (Brams and
Fishburn, 2002)). The study of voting procedures is strongly related to the problem
of aggregation, since the selection of candidates can take place by aggregating
individual preferences into a collective one. However, we shall not treat the
problem of voting in this dissertation, referring to our conclusions for a discussion
of the impact of our results on voting theory.

Nevertheless, two frameworks for the study of aggregation have been consid-
ered in Computational Social Choice, namely preference and judgment aggrega-
tion. Of the two, the former has received the most attention, being the subject
of a growing number of papers (Conitzer, [2006; |Pini, 2007; |(Gonzales et al., 2008;
Endriss et al., 2009; Betzler et al.; 2009; |[Pini et al.; 2009; [Hudry, 2010; Pini et al.,
2011; Rossi et al.; 2011). On the other hand, the framework of judgment aggre-
gation, which was recently established as a central topic in Social Choice Theory
(List and Pettit, |2002; List and Puppe, 2009), has to date given rise to only a
small amount of publications in Artificial Intelligence, most of which focus on
investigating the the computational complexity of the framework (Endriss et al.,
2010a,b; Baumeister et al., 2011; Lang et al., 2011).
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Both the framework of preference and the framework of judgment aggrega-
tion can be embedded into binary aggregation by devising suitable integrity con-
straints. An ordering over three alternatives, for instance, can be represented in
binary aggregation with a binary ballot over three issues, one for each pair of
alternatives. If P,~j, Py~. and P,-. are three binary issues, with their natural
interpretation, then we can represent the ordering a > ¢ > b with ballot (1,0, 1),
signifying that both issues P,~; and P,-. are accepted and issue P, is rejected.
The rationality assumption of transitivity can be represented with formulas like
the following: P,~y A Py~ — P,~.. The embedding is less straightforward for the
case of judgment aggregation, and can be achieved by explicitly representing the
logical correlations between the propositional formulas that constitute the object
of judgment.

The problem of collective rationality is central to both preference and judg-
ment aggregation, and theoretical results in these frameworks can thus be com-
pared with our findings in binary aggregation. Inspired by situations like the one
presented in the introductory Example [1.2.1] we provide a general definition of
paradox in binary aggregation to account for situations in which the collective
outcome does not fulfill the integrity constraint which is satisfied by all indi-
viduals. Making use of the embeddings of aggregation frameworks into binary
aggregation, we are able to show that most paradoxes in aggregation theory, such
as the Condorcet paradox (1785) and the discursive dilemma (List and Pettit,
2002)), can be seen as instances of our general definition. Moreover, we analyse in
depth the relation between our characterisation results and known impossibility
theorems in both preference and judgment aggregation, putting forward a new
proof method which attempts to identify the source of impossibilities in a clash
between axiomatic properties and particular requirements of collective rationality.

All the results achieved in this dissertation are of a theoretical kind, and
their presentation aims at proposing a theory of collective rationality in binary
aggregation rather than developing solutions which are specific to a certain class
of applications. This dissertation aims at providing sound foundations to more
domain specific research, building a framework that takes into account the variety
of new problems that may be encountered by researchers in Artificial Intelligence.

1.3 Chapter Overview

The structure of this dissertation is summarised in Figure In Chapter 2| we
give the basic definitions of the framework of binary aggregation with integrity
constraints, which is the principal object of study of this dissertation. The two
crucial definitions of paradox and of collective rationality are presented in the
same chapter, as well as several axiomatic properties for the study of aggrega-
tion procedures. Chapter |4/ constitutes the mathematical core of the dissertation,
providing a number of characterisation results in binary aggregation that link clas-
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sical axiomatic properties from Social Choice Theory with collective rationality.
The generality of the framework of binary aggregation with integrity constraints
is investigated along two lines of argument. First, by concentrating on the study
of paradoxical situations, in Chapter |3| we show that our definition of paradox
accounts for many of the classical occurrences of paradoxes in aggregation theory.
Second, we show how characterisation results in binary aggregation can serve as
a starting point for the investigation of new results in other frameworks of aggre-
gation. Chapter [5| focuses on preference aggregation and Chapter [6] on judgment
aggregation. In Chapter 7| we bring together the two lines of work by defining and
analysing practical aggregation procedures for collectively rational aggregation.
Chapter |§ concludes and contains a list of directions for future research.

Binary Aggregation with Integrity Constraints
Chapter

-

R
Lifting Integrity Constraints
L Chapter
R — ~
Unifying Paradoxes Unifying Proofs
Chapter Chapters [5| and @
~ —
Collectively Rational Aggregation

Chapter

Figure 1.1: Structure of the dissertation.

The remaining part of this introduction provides a brief overview of the results
presented in the dissertation following the structure in Figure [I.1. As shown in
Figure [1.1, Chapters [2] and [4] constitute the core of the dissertation. However,
Chapter 4l may be skipped by following the dashed line in Figure[I.] forming a co-
herent presentation of aggregation paradoxes and possible escape routes towards
collectively rational aggregation.

1.3.1 Binary Aggregation with Integrity Constraints

Chapter |2 is devoted to introducing the framework of binary aggregation with
integrity constraints, which we put forward as a general framework for the study
of aggregation problems. The chapter provides basic definitions for this setting,
including the two crucial notions of paradox and of collective rationality, as well as
a list of axiomatic properties that shall be used to study aggregation procedures.
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Binary Aggregation

The ingredients of a decision problem are a set of individuals (possibly one) and
a set of alternatives from which to make a choice. In this work, we concentrate on
decision problems in which there are at least two individuals (a collective choice
problem), and where the set of alternatives has a binary combinatorial structure,
i.e., it is a product space of several binary domains associated with a set of issues,
or attributes. We assume that each individual submits a yes/no choice for each
of the issues and these choices are then aggregated into a collective one.

In Section 2.1.3|we provide several motivating examples showing the generality
of this setting. The most natural example is that of collective decisions over
multiple issues, e.g., multiple referenda and situations such as the one presented
in Example [1.2.1 More complex objects such as preferences and judgments can
also be modelled as elements of specific binary combinatorial domains.

At a very abstract level, virtually every individual expression has the potential
to be described using a finite number of binary parameters. This is a common as-
sumption when, for instance, the focus is on describing the diversity of elements
in a set of alternatives (Nehring and Puppe, 2002), or distinguishing between
possible worlds in an epistemic framework (Hintikka, 1962)). Binary aggrega-
tion can therefore be summarised as the study of the aggregation of
individual expressions described by means of binary variables.

Rationality Assumptions/Integrity Constraints

Individuals can be rational in many different ways. When they express preferences
over a set of alternatives, like in the case of preference aggregation (Gaertner,
2006)), a common assumption is to assume the transitivity of such preferences.
Thus, if an alternative a is preferred to a second one b, and this is in turn preferred
to a third alternative ¢, then the individual is also assumed to prefer a to c.
Different assumptions are made in the field of judgment aggregation (List and
Puppe, 2009), in which individuals express judgments over a set of correlated
propositions. In that case, the rationality of a judging agent relates to the logical
consistency of the set of propositions she accepted.

As shown by our initial Example [1.2.1], rationality assumptions in binary ag-
gregation can be expressed by means of formulas in a simple propositional lan-
guage. Rationality assumptions characteristic for other settings can also be for-
malised in this language, exploiting the embedding of the different frameworks
into binary aggregation. We call a propositional formula enforcing a rationality
assumption in binary aggregation an integrity constraint. An individual expres-
sion, i.e., a binary ballot, is called rational if it satisfies the formula in question.

This fact represents our first crucial observation: rationality assumptions
can be represented as propositional formulas, and can thus be classi-
fied and analysed in terms of their syntactic properties. This is where
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mathematical logic will play a small but very important role.

Collective Rationality

Given a set of individuals each expressing a rational ballot, the natural question
that arises is whether the collective outcome will be rational as well. As testified
by the introductory Example [I.2.1] this is not always the case, even when one of
the most natural aggregation procedures like the majority rule is being used.

We call a situation in which all individual ballots satisfy a given rationality
assumption, but the aggregation results in an irrational outcome a paradoz (see
Definition . Chapter |3|is devoted to showing how most paradoxes of aggre-
gation that are traditionally studied in the literature on Social Choice Theory can
be seen as instances of our general definition of paradox in binary aggregation.

We call an aggregation procedure collectively rational for a given rationality
assumption if, whenever all the ballots submitted by the individuals are rational,
so is the outcome of aggregation (see Definition . The majority rule, for
instance, is not collectively rational with respect to the integrity constraint 77 A
T, — A, as shown by our Example [[.2.1] Thus, an aggregation procedure
is collectively rational with respect to an integrity constraint if it lifts
the rationality assumption given by the integrity constraint from the
individual to the collective level. In Chapter 4 we analyse how the notion of
collective rationality varies depending on the syntactic structure of the integrity
constraint at hand, and we look for axiomatic conditions that guarantee collective
rationality of a given procedure.

1.3.2 Unifying Paradoxes

The observation of paradoxical situations has traditionally been the starting point
of most theoretical work in Social Choice Theory. One of the most striking
example was observed by Condorcet (1785) when analysing the use of majority
aggregation for preferences. Consider for instance the following toy example,
in which three colleagues are helping in choosing a colour for the cover of this
dissertation:

Joel Orange > Red > Green
Daniele Red > Green > Orange
Stéphane Green > Orange > Red

Majority Orange > Red > Green > Orange

Table 1.1: A cyclical majority outcome.

In spite of the fact that all colleagues have rational (in this case, transitive)
preferences, in the situation described by Table the conclusion of the majority
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rule is that orange is both the best and the worst colour for the cover of this
dissertation! Thus, we obtain an irrational majoritarian outcome starting from a
profile of rational ballots.

In Chapter [3| we analyse the most important paradoxes arising from the use
of the majority rule in different settings. Our analysis focuses on the Condorcet
paradox (1785), the discursive dilemma in judgment aggregation (List and Pettit,
2002), the Ostrogorski paradox (1902)) and the more recent work of Brams et al.
(1998) on multiple election paradoxes. The purpose of Chapter |3|is to show that
most paradoxes in aggregation theory can be seen as instances of our definition of
paradox in binary aggregation (see Definition . Hence, we provide a unified
treatment of aggregation paradoxes that enables us to analyse the syntactical
properties of paradoxical rationality assumptions.

We can thus make in Section our second important observation: when
the majority rule is concerned, all paradoxical integrity constraints
feature a clause (i.e., a disjunction) of size at least 3. For instance, our
introductory Example describes a paradoxical situation with respect to the
integrity constraint Ty ATy — A, which is equivalent to the 3-clause =77V -1,V A.

This observation can be formalised into a general result: in Theorem we
show that the majority rule is collectively rational (i.e., it does not generate a
paradox) if and only if the integrity constraint under consideration is equivalent
to a conjunction of clauses of size at most 2.

1.3.3 Lifting Integrity Constraints

The observation of paradoxical situations is usually generalised into impossibility
theorems, proving that aggregation is unfeasible under certain axiomatic condi-
tions. Classical work in Social Choice Theory was restricted to particular studies
of collective rationality in a given aggregation situation, and for given classes of
aggregation procedures. The aim was to identify the appropriate set of axiomatic
properties (e.g., to model real-word economies, specific moral ideals, etc.) and
then to prove a characterisation (or impossibility) result for those axioms. Given
the wide variety of potential applications in Artificial Intelligence, on the other
hand, in this context we require a systematic study that, depending on the sit-
uation at hand, can give answers to the problem of collective rationality. With
every new application the principles underlying a system may change, so we may
be more interested in devising languages for expressing a range of different ax-
iomatic properties rather than identifying the “right” set of axioms. Furthermore,
we may be more interested in developing methods that will help us to understand
the dynamics of a range of different social choice scenarios rather than in technical
results for a specific such scenario.

We group integrity constraints into syntactically defined fragments of the
propositional language, e.g., the set of conjunctions, or the set of disjunctions
of limited size, and we study the class of procedures that are collectively ratio-
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nal with respect to all integrity constraints in a given language. We discover
that requiring collective rationality with respect to certain natural syn-
tactically defined languages corresponds to known classical axiomatic
properties from Social Choice Theory.

Formally, we define classes of aggregation procedures in two ways. On the one
hand, given a language £, we define the class CR[L] as the set of procedures that
are collectively rational with respect to all integrity constraints in £. On the other
hand, given a set of axiomatic properties AX and a language £, we define the
class F,[AX] as the set of procedures satisfying axioms AX on domains defined
by £. What we seek are characterisation results of the following form, providing
necessary and sufficient axiomatic conditions for an aggregation to be collectively
rational with respect to a given language L:

CRIL] = F.]AX].

In Section 4.2 we prove a series of characterisation results for several fragments of
the propositional language. A simple example can be obtained by considering the
language of literals, i.e., propositional atoms together with their negation. We
prove that a necessary and sufficient condition for an aggregation procedure to
be collectively rational with respect to any literal is that the procedure be unan-
imous, i.e., it accepts/rejects an issue when all individuals agree to accept/reject
it (Theorem [4.2.1]).

Results of this form can also be interpreted as characterising classical ax-
iomatic properties in terms of collective rationality. While providing a character-
isation for many standard axioms from the literature, in Section we also show
that for some other natural properties such a characterisation is not possible.

A very interesting case is given by the class of aggregation procedures that are
collectively rational with respect to all possible integrity constraints. We prove
that each such procedure copies the ballot of a (possibly different) individual in
every situation (Theorem , and we call these procedures generalised dicta-
torships. In Chapter 7| we argue that a meaningful choice of the individual ballot
that best represents all the other ballots submitted by the individuals may gener-
ate new interesting aggregation procedures. We present one such rule, called the
average voter rule, and we evaluate its axiomatic and computational properties.

1.3.4 Unifying Proofs

Classical frameworks in Social Choice Theory like preference aggregation (Gaert-
ner, 2006) and judgment aggregation (List and Puppe, 2009) can be seen as
instances of binary aggregation by devising suitable integrity constraints. Having
shown in Chapter |3 that paradoxes in these settings can be seen as instances of
a general definition in binary aggregation, in Chapter [5 and [6] we turn to the
analysis of theoretical results.
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We are able to obtain new (im)possibility theorems in both preference and
judgment aggregation, by employing the characterisation results in binary aggre-
gation presented in Chapter 4 More importantly, we devise a new uniform proof
method for theoretical results in aggregation theory that sheds new light on the
problems that lie behind impossibilities. The method consists of three basic steps:

(7) Given an aggregation problem, translate it into binary aggregation, obtain-
ing, first, an integrity constraint that describes the domain of aggregation
and, second, a set of axiomatic properties.

(73) Use a characterisation result from binary aggregation to check whether col-
lective rationality with respect to the given integrity constraint clashes with
the axiomatic requirements.

(7i1) Translate the result back into the original setting to obtain a possibility or
an impossibility result.

Using this method, we look for clashes between the syntactic shape of the integrity
constraints defining an aggregation problem on the one hand, and a given com-
bination of axiomatic postulates on the other. The results that can be obtained
by using this proof method may share similarities or may be weaker than known
results from the literature on Social Choice Theory. However, the focus is not on
the novelty or strength of single results, but rather on the generality and flexibil-
ity of the proof method we put forward. By unifying proofs in aggregation theory
we gain a deeper understanding of the common problem behind many classical
results: impossibilities arise from clashes between axiomatic properties
and requirements of collective rationality.

We employ this methodology in Chapter [5| for the case of preference aggrega-
tion, proving both possibility and impossibility results for various combinations
of axioms and different representations of preferences. We also present an alter-
native proof of Arrow’s Theorem (Arrow, 1963), which focuses on the effect of
collective rationality with respect to preferential integrity constraints on the set
of winning coalitions for an aggregation procedure.

Chapter [0] is devoted to a study of the framework of judgment aggregation
(List and Pettit}, [2002). In particular we focus on the new problem of the safety of
the agenda (Endriss et al., 2010a). An agenda, i.e., a set of formulas, is called safe
with respect to a given class of judgment aggregation procedures if all aggregators
in the class output consistent judgments on all profiles of consistent judgment
sets. For several classes of procedures defined in axiomatic terms, we provide
necessary and sufficient conditions for an agenda to be safe. The resemblance
with the characterisation results presented in Chapter [4] is immediate, and in
Section we compare these findings. We conclude the chapter by analysing
in Section the computational complexity of recognising safe agendas, proving
that it is IT5-complete for all classes we considered (Theorem[6.4.7). Our findings
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thus suggest that this problem is highly intractable for all the classes of procedures
under consideration.

We can therefore conclude, as pictured in Figure that binary aggrega-
tion with integrity constraints constitutes a general framework for the analysis
of collective rationality. It provides a unifying definition of paradox and gen-
eral characterisation results that encompass the other frameworks of aggregation
present in the literature.

Preference Aggregation
Condorcet paradox
Arrow’s Theorem
Binary Aggregation

Judgment Aggregation with Integrity Constraints
Discursive dilemma —— 3  Paradox (Definition [2.1.9)
Agenda properties Characterisation results

/ (Chapter )

Voting in
Combinatorial Domains
Multiple election paradox

Figure 1.2: A general framework for aggregation theory.

1.3.5 Collectively Rational Aggregation

Having established the importance of the notion of collective rationality, the dis-
sertation is completed with the analysis of some concrete aggregation procedures
that are especially designed to be collectively rational. We propose in Chapter
the definition of three collectively rational rules, and we investigate the compu-
tational complexity of two classical problems: winner determination (WINDET)
and strategic manipulation (MANIP).

The former problem of winner determination for a given aggregation proce-
dure demands to assess how difficult it is to compute the outcome in a given
situation. The latter problem, MANIP, focuses on the incentives that individuals
may have in reporting their vote truthfully. A celebrated theorem by |Gibbard
(1973) and Satterthwaite| (1975) shows that every reasonable voting procedure
can be manipulated, i.e., individuals always have the opportunity to change the
outcome of an election in their favour. The problem MANIP asks how difficult it
is to recognise whether an agent has incentives to deviate from her truthful ballot
in a given situation.
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The first rule we analyse is a generalised dictatorship which selects in each
situation the ballots of those individuals that minimise the amount of disagree-
ment with the other individual ballots. We call this rule the average voter rule
(AVR) and we show that both the problems WINDET and MANIP can be solved
in polynomial time for this rule (Proposition and Theorem .

The second rule we study is the premise-based procedure (PBP) for judgment
aggregation, in which the judgment over a set of independent formulas called
premises is aggregated by using the majority rule, and this collective judgment
is then used to infer the acceptance or rejection of a a set of complex propo-
sitions defined over the premises (see, e.g., List and Puppe, 2009). We prove
that WINDET for the PBP can be solved in polynomial time, while MANIP is
NP-complete (Proposition and Theorem , thus showing the “jump”
in computational complexity between winner determination and manipulability
that is a good indicator of an aggregation rule which resists manipulation.

We end by analysing a well-known rule called the distance-based rule (DBP)
(see, e.g., [Konieczny and Pino Pérez, 2002; Pigozzi, 2006} [Miller and Osherson,
2009). We limit our analysis to the problem of winner determination, showing that
it is already highly unfeasible. We prove that WINDET for the DBP is complete
for the class ©%, which contains those problems that can be solved in polynomial
time using a logarithmic number of queries to an NP oracle (Theorem [7.4.5)).

The results we obtain can be summarised in the following table:

WINDET MANIP
AVR P P
PBP P NP-complete

DBP ©}-complete -

Table 1.2: Complexity of collectively rational aggregation.

1.3.6 Summary

Collective decision making in multi-issues domains is a problem of high interest
to the Artificial Intelligence community, and has recently received considerable
attention in the literature on Computational Social Choice. This dissertation
provides a systematic study of aggregation in binary combinatorial domains, with
particular attention to the problem of collective rationality.
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Chapter 2
Binary Aggregation with Integrity Constraints

In this chapter we provide the basic definitions of the framework of binary aggre-
gation with integrity constraints, which constitutes the main object of study of
this dissertation. In this setting, several individuals each need to make a yes/no
choice regarding a number of issues and these choices then need to be aggregated
into a collective choice. Depending on the application at hand, different combi-
nations of yes/no may be considered rational and we describe such assumptions
with an integrity constraint expressed in a simple logical language. The question
then arises whether or not a given aggregation procedure will /ift the rationality
assumptions from the individual to the collective level, i.e., whether the collective
choice will be rational whenever all individual choices are. We name this problem
collective rationality, and we give it central status throughout this dissertation.

We provide formal definitions for the framework of binary aggregation with in-
tegrity constraints in Section 2.1} including the two crucial definitions of collective
rationality and of paradox. In Section 2.2, we provide a list of desirable properties
for aggregation procedures in the form of axioms. For some classes of procedures
defined axiomatically we provide a mathematical representation in Section [2.3]
and in Section we compare our framework to the existing literature on binary
aggregation.

2.1 Basic Definitions

Many aggregation problems can be modelled using a finite set of binary issues,
whose combinations describe the set of alternatives on which a finite set of indi-
viduals need to make a choice. In this section, we give the basic definitions of
the framework of binary aggregation with integrity constraints, and we define the
two crucial concepts of paradox and of collective rationality. We present several
practical examples of binary aggregation problems, taken from the literature on
Social Choice Theory or inspired by practical cases of collective decision making.

15
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2.1.1 Binary Aggregation

Let Z = {1,...,m} be a finite set of issues, and let D = D; x --- x D,, be
a boolean combinatorial domain, i.e., |D;| = 2 for all ¢ € Z. Without loss of
generality we assume that D; = {0, 1} for all j. Thus, given a set of issues Z, the
domain associated with it is D = {0,1}%. A ballot B is an element of D.

Let N' = {1,...,n} be a finite set of individuals. Each individual submits a
ballot B; € D to form a profile B = (B, ..., B,). Thus, a profile consists of a
binary matrix of size n x m. We write b; for the jth element of a ballot B, and
b; ; for the jth element of ballot B; within a profile B = (By,..., B,).

Definition 2.1.1. Given a finite set of issues Z and a finite set of individuals N,
an aggregation procedure is a function F : DV — D, mapping each profile of
binary ballots to an element of D. Let F'(B); denote the result of the aggregation
of profile B on issue j.

Aggregation procedures are defined for all possible profiles of binary ballots, a
condition that takes the name of universal domain in the literature on Social
Choice Theory. Aggregation procedures that are defined on a specific restricted
domain, by making use of particular characteristics of the domain at hand, can
always be extended to cover the full boolean combinatorial domain (for instance,
by mapping all remaining profiles to a constant value).

2.1.2 Integrity Constraints

In many applications it is necessary to specify which elements of the domain are
rational and which should not be taken into consideration. Since the domain
of aggregation is a binary combinatorial domain, propositional logic provides a
suitable formal language to express possible restrictions of rationality. In the
sequel we shall assume acquaintance with the basic concepts of propositional
logic. A list of the basic notions of propositional logic that we make use of in this
dissertation can be found in Appendix [A]

If Z is a set of m issues, let PS = {p1,...,pm} be a set of propositional
symbols, one for each issue, and let £ pg be the propositional language constructed
by closing PS under propositional connectives. For any formula ¢ € Lpg, let
Mod(p) be the set of assignments that satisfy .

Definition 2.1.2. An integrity constraint is any formula IC € Lpg.

Integrity constraints can be used to define what tuples in D we consider rational
choices. Any ballot B € D is an assignment to the variables p1, ..., p,, and we
call B a rational ballot if it satisfies the integrity constraint I1C, i.e., if B is an
element of Mod(IC). A rational profile is an element of Mod(IC)V. In the se-
quel we shall use the terms “integrity constraints” and “rationality assumptions”
interchangeably.
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2.1.3 Examples

Let us now consider several examples of aggregation problems that can be mod-
elled in binary aggregation by devising a suitable integrity constraint:

Example 2.1.3. (Multi-issue elections under constraints) A committee N has
to decide on each of the three following issues: (U) financing a new university
building, (S) financing a sports centre, (C') increasing catering facilities. As an
approval of both a new university building and a sports centre would bring an
unsustainable demand on current catering facilities, it is considered irrational to
approve both the first two issues and to reject the third one. We can model
this situation with a set of three issues Z = {U, S, C'}. The integrity constraint
representing this rationality assumption is the following formula: py A ps —
pc. To see an example of a rational profile, consider the situation described in
Table for the case of a committee with three members. All individuals are
rational, the only irrational ballot being B = (1,1,0).

u s cC
g 4 0 10
is 1 0 0
iy 11 1

Table 2.1: A rational profile for py A ps — pc.

The two examples that follow are classical settings from the literature on Social
Choice Theory and will be studied in more detail in later chapters.

Example 2.1.4. (Preference aggregation) A set N of individuals has to agree on
a ranking of three alternatives a, b and ¢. Each individual submits its own ranking
of the alternatives from the most preferred to the least preferred, e.g., b > a > c.
We can model this situation using a binary issue for every pair of alternatives:
issue ab stands for “alternative a is preferred to alternative b”. The set of issues
is therefore Z = {ab, ba, be, cb, ac, ca}. However, not every binary evaluation over
this set of issues corresponds to a preference order. An integrity constraint needs
to be devised to encode the properties of a strict preference relation: transitiv-
ity, completeness and anti-symmetry. This can be done by considering, for each
combination of pairs of issues, the following integrity constraints: pu A Poe — Pac
standing for transitivity, and pu, <> —ppe, encoding the remaining two conditions
of completen