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Abstract

The starting point of this dissertation is a central question in epistemology and epis-
temic logic, statable roughly as follows: is it a necessary condition of an agent’s know-
ing some propositions P1, . . . , Pn that she has done enough empirical investigation of
the world so that she could know any logical consequence of {P1, . . . , Pn} without
further empirical investigation? An affirmative answer amounts to a claim of full
epistemic closure: the set of propositions that an agent knows or could know without
further empirical investigation is closed under multi-premise logical consequence.

The idea of full epistemic closure creates a tension with an attractive idea of
fallibilism about knowledge. According to fallibilism, for an agent to know a true em-
pirical proposition P , it is not required that her evidence rules out every possible way
in which P could be false and some incompatible alternative hypothesis could obtain.
If such a feat were required, agents would know almost nothing. Yet full epistemic
closure requires for knowledge of P that an agent does know—or could know without
further empirical investigation—the negation of every such alternative hypothesis,
assuming she knows that these hypotheses are incompatible with P . Although not a
formal contradiction between closure and fallibilism, this is a tension to say the least.

In this dissertation, I explore the extent to which it is possible to make fallibil-
ism compatible with closure. I begin by formalizing a family of fallibilist theories of
knowledge in models for epistemic logic. Model-theoretic methods are used to char-
acterize the closure properties of knowledge according to different fallibilist pictures,
identify the structural features of these pictures that correspond to closure properties,
transform models of one theory into models of another, prove impossibility results,
and ultimately find a middle way between full closure and no closure for fallibilism.
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I argue that the standard versions of “Fallibilism 1.0” each face one of three serious
problems related to closure: the Problem of Vacuous Knowledge, the Problem of
Containment, and the Problem of Knowledge Inflation. To solve these problems, I
propose a new framework for Fallibilism 2.0: the Multipath Picture of Knowledge.
This picture is based on taking seriously the idea that there can be multiple paths to
knowing a complex claim about the world. An overlooked consequence of fallibilism
is that these multiple paths to knowledge may involve ruling out different sets of
alternatives, which should be represented in our picture of knowledge. I argue that
the Multipath Picture of Knowledge is a better picture for all fallibilists, whether for
or against full closure. Yet I also argue that only by accepting less than full closure
can we solve the closure-related problems that plague previous versions of fallibilism.
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1

Introduction

If knowledge required the elimination of all logically possible alternatives,
there would be no knowledge (at least of contingent truths).

– Alvin I. Goldman [1976, 775]

There are always, it seems, possibilities that our evidence is powerless to
eliminate... If knowledge...requires the elimination of all competing possibil-
ities (possibilities that contrast with what is known), then, clearly we seldom,
if ever, satisfy the conditions for applying the concept.

– Fred I. Dretske [1981, 365]

Epistemic closure has been the subject of “one of the most significant disputes
in epistemology over the last forty years” [Kvanvig, 2006, 256]. The starting point
of the dispute is typically some version of the claim that knowledge is closed under
known implication (see Dretske 2005). At its simplest, this is the claim that if an
agent knows ϕ and knows that ϕ implies ψ, then the agent knows ψ:

(Kϕ ∧K(ϕ→ ψ))→ Kψ

in the language of basic epistemic logic.

1



1. INTRODUCTION 2

An obvious objection to the simple version of closure under known implication
is that an agent with bounded rationality may know ϕ and know that ϕ implies ψ,
without “putting two and two together” and drawing a conclusion about ψ. Such an
agent may not even believe ψ, let alone know it. The challenge of the much-discussed
“problem of logical omniscience” (see, e.g., Stalnaker 1991, Halpern and Pucella 2011)
is to develop a good theoretical model of the knowledge of such agents.

According to a different objection, made famous in epistemology by Dretske [1970]
and Nozick [1981] (and applicable to more sophisticated closure claims), knowledge
would not be closed under known implication even for “ideally astute logicians”
[Dretske, 1970, 1010] who always put two and two together and believe all the conse-
quences of what they know, based on what they know. This objection, rather than
the logical omniscience objection, will be a focal point of what follows.1

One way to see the problem of epistemic closure is as a tension between closure
under known implication and a widely held kind of fallibilism about knowledge. As
the quotations from Goldman and Dretske at the beginning suggest, many epistemol-
ogists agree that if it were a general requirement on knowing a contingent truth ϕ

that one rule out every last way in which ϕ could be false, then there would be little
or no knowledge of contingent truths. As Lewis [1996, 549] colorfully explains:

Let your paranoid fantasies rip—CIA plots, hallucinogens in the tap water,
conspiracies to deceive, old Nick himself—and soon you find that unelimi-
nated possibilities of error are everywhere. Those possibilities of error are
far-fetched, of course, but possibilities all the same. They bite into even
our most everyday knowledge. We never have infallible knowledge.

Fallibilism, in the Lewisian sense of the term, is the view that agents can know truths
about the world even if they never rule out all possibilities of error or deception. To
build up to the tension between fallibilism and closure, let us consider two examples.

Example 1.1 (Medical Diagnosis). Two medical students, A and B, are subjected to
a test. Their professor introduces them to the same patient, who presents various

1Other epistemologists who have denied closure under known implication in the relevant sense
include McGinn [1984], Goldman [1986], Audi [1988], Heller [1999a], Harman and Sherman [2004,
2011], Lawlor [2005], Becker [2007], and Adams et al. [2012].



1. INTRODUCTION 3

symptoms, and they are to make a diagnosis of the patient’s condition. After some
independent investigation, A and B conclude that the patient has a common condition
c. In fact, they are correct. Yet only student A passes the test. For the professor
wished to see if the students would check for another common condition c′ that causes
the same visible symptoms as c. While A ran laboratory tests to rule out c′ before
making the diagnosis of c, B made the diagnosis of c after only a physical exam.

In evaluating the students, the professor concludes that although both gave the
correct diagnosis of c, student B did not know that the patient’s condition was c, since
B did not rule out the alternative of c′. Had the patient’s condition been c′, B might
still have made the diagnosis of c, since the physical exam would not have revealed a
difference. Student B was lucky. The condition B associated with the patient’s visible
symptoms happened to be the condition the patient had, but if the professor had
chosen a patient with c′, student B might have made a misdiagnosis. By contrast,
student A secured against this possibility of error by running the lab tests. For this
reason, the professor judges that A knew the patient’s condition and passed the test.

Of course, A did not secure against every possibility of error. Suppose there is an
extremely rare disease2 x such that people with x appear to have c on lab tests given
for c and c′, even though people with x are immune to c, and only extensive further
testing can detect x in its early stages. Should we say that A did not know that
the patient had c after all, since A did not rule out x? As a fallibilist, the professor
recognizes that the requirement that one rule out all possibilities of error would make
knowledge impossible, since there are always some possibilities of error—however
remote and far-fetched—that are uneliminated by one’s evidence and experience. Yet
if no one had any special reason to think that the patient may have had x instead
of c, then it should not have been necessary to rule out such a remote possibility in
order to know that the patient has the common condition (cf. Austin 1946, 156ff).

The second example is from Dretske 1981, 368-370, which I will quote at length.

Example 1.2 (Bird Watching). “An amateur bird watcher spots a duck on his favorite
Wisconsin pond. He quickly notes its familiar silhouette and markings and makes a

2Perhaps it has never been documented, but it is a possibility of medical theory.
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mental note to tell his friends that he saw a Gadwall, a rather unusual bird in that part
of the midwest. Since the Gadwall has a distinctive set of markings (black rump, white
patch on the hind edge of the wing, etc.), markings that no other North American duck
exhibits, and these markings were all perfectly visible, it seems reasonable enough to
say that the bird-watcher knows that yonder bird is a Gadwall. He can see that it is.

Nevertheless, a concerned ornithologist is poking around in the vicinity, not far
from where our bird-watcher spotted his Gadwall, looking for some trace of Siberian
Grebes. Grebes are duck-like water birds, and the Siberian version of this creature
is, when it is in the water, very hard to distinguish from a Gadwall duck. Accurate
identification requires seeing the birds in flight since the Gadwall has a white belly and
the Grebe a red belly—features that are not visible when the birds are in the water.
The ornithologist has a hypothesis that some Siberian Grebes have been migrating
to the midwest from their home in Siberia, and he and his research assistants are
combing the midwest in search of confirmation.

Once we embellish our simple story in this way, intuitions start to diverge on
whether our amateur bird-watcher does indeed know that yonder bird is a Gadwall
duck (we are assuming, of course, that it is a Gadwall). Most people (I assume) would
say that he did not know the bird to be a Gadwall if there actually were Siberian
Grebes in the vicinity.... But what if the ornithologist’s suspicions are unfounded.
None of the Grebes have migrated. Does the bird-watcher still not know what he
takes himself to know. Is, then, the simple presence of an ornithologist, with his false
hypothesis, enough to rob the bird-watcher of his knowledge that the bird on the pond
is a Gadwall duck? What if we suppose that the Siberian Grebes, because of certain
geographical barriers, cannot migrate. Or suppose that there really are no Siberian
Grebes—the existence of such a bird being a delusion of a crackpot ornithologist. We
may even suppose that, in addition to there being no grebes, there is no ornithologist
of the sort I described, but that people in the area believe that there is.... Or, finally,
though no one believes any of this, some of the locals are interested in whether or not
our birdwatcher knows that there are no look-alike migrant grebes in the area.

Somewhere in this progression philosophers, most of them anyway, will dig in
their heels and say that the bird-watcher really does know that the bird he sees is a
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Gadwall, and that he knows this despite his inability to justifiably rule out certain
alternative possibilities.... He needn’t be able to rule out the possibility that there
are, somewhere in the world, look-alike grebes that have migrated to the midwest in
order to know that the bird he saw was a Gadwall duck. These other possibilities are
(whether the bird-watcher realizes it or not) simply too remote.

Most philosophers will dig in their heels here because they realize that if they
don’t, they are on the slippery slope to skepticism with nothing left to hang onto.”

We can now pinpoint the tension between the fallibilist conclusions at the end
of the examples and closure under known implication. In the case of Example 1.1,
suppose for ease of exposition that student A is an ideally astute logician as described
above. Further suppose that she knows that if her patient has c, then he does not
have x (because x confers immunity to c), which we write as

(1) K (c→ ¬x).3

Since A did not run any of the tests that could detect the presence or absence of x,
arguably she does not know that the patient does not have x,

(2) ¬K¬x.

Given the professor’s judgment that A knows that the patient has condition c,

(3) Kc,

together (1) - (3) violate the following instance of closure under known implication:

(4) (Kc ∧K (c→ ¬x))→ K¬x.

To maintain (4), one must say either that A does not know that the patient has condi-
tion c after all (having not excluded x), or else that A can know that a patient does not
have a disease x without running any of the specialized tests for the disease (having
learned instead that the patient has c, but from lab results consistent with x).4 While

3For convenience, I use ‘c’, ‘c′’, and ‘x’ not only as names of conditions, but also as symbols for
atomic sentences with the obvious intended meanings—that the patient has condition c, c′, and x,
respectively. Also for convenience, I will not add quotes when mentioning symbolic expressions.

4I have presented the argument so far without mentioning the concerns of epistemic contextualists.
However, I will discuss contextualism at length in later chatpers, starting in §2.11.
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the second option leads to what I will call the Problem of Vacuous Knowledge (or
else the Problem of Knowledge Inflation), the first option leads to Radical Skepticism
about knowledge, given the inevitability of uneliminated possibilities of error. We are
lead to the same dilemma when we try to apply closure in Example 1.2. Either way,
closure under known implication leads to problems for fallibilism.

This dissertation is a study of epistemic closure for fallibilists. As will quickly
become apparent, in this study of closure I use epistemic-logical (especially model-
theoretic) methods extensively, in addition to traditional epistemological ones. For
modal logicians, I hope this study presents epistemology as an area of sophisticated
theorizing in which modal-logical tools can help to clarify and systematize parts of
the philosophical landscape. Doing so also benefits modal logic by broadening its
scope, bringing interesting new structures and systems under its purview.

I conclude this brief introduction with an overview of the chapters to follow:

• Chapter 2 formalizes a family of relevant alternatives (RA) and subjunctivist
theories of knowledge. The main result, the Closure Theorem, completely char-
acterizes the valid epistemic closure principles according to these theories.

• Chapter 3 presents a unifying framework in which all of the RA and subjunc-
tivist theories from Chapter 2 fit as special cases of what I call Fallibilism 1.0.
The new framework also allows a finer-grained analysis of closure properties.

• Chapter 4 argues that any theory developed in the framework of Fallibilism 1.0
faces one of three serious problems, dubbed the Problem of Vacuous Knowledge,
the Problem of Containment, and the Problem of Knowledge Inflation.

• Chapter 5 proposes a new framework for Fallibilism 2.0 based on what I call the
Multipath Picture of Knowledge and the Transfer Picture of Deduction. These
new pictures solve the problems raised in Chapter 4 for Fallibilism 1.0.

• Chapter 6 answers several objections according to which my fallibilist position
on epistemic closure from Chapter 5—endorsing single-premise but not multi-
premise logical closure—admits either not enough closure or too much.



2

Relevant Alternatives and

Subjunctivism

In Chapter 1, I took the starting point of the debate over epistemic closure to be
the principle of closure under known implication, written in its simplest form as
(Kϕ∧K(ϕ→ ψ))→ Kψ in the language of basic epistemic logic. As noted, Dretske
[1970], Nozick [1981] and others have rejected the validity of this principle on fallibilist
grounds, even when applied only to ideally astute logicians who always “put two and
two together” and believe all the consequences of what they know, based on what
they know. In this chapter, we will analyze why closure under known implication
fails according to their theories of knowledge, using Example 1.1 as our case study.

The closure of knowledge under known implication, henceforth referred to as ‘K’
after the modal axiom given above, is one closure principle among infinitely many.
Although Dretske [1970] denied K, he accepted other closure principles, such as clo-
sure under conjunction elimination, K(ϕ ∧ ψ)→ Kϕ, and closure under disjunction
introduction, Kϕ → K(ϕ ∨ ψ) (1009). By contrast, Nozick [1981] was prepared to
give up the first of those principles (228), although not the second (230n64, 692).

Dretske and Nozick not only provided examples in which they claimed K fails,
but also proposed theories of knowledge that they claimed would explain the failures,
as discussed below. Given such a theory, one may ask: is the theory committed to
the failure of other, weaker closure principles, such as those mentioned above? Is it

7
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committed to closure failures in situations other than those originally envisioned as
counterexamples to K? The concern is that closure failures may spread, and they may
spread to where no one wants them.

Pressing such a Problem of Containment has an advantage over other approaches
to the debate over K. It appeals to considerations that both sides of the debate are
likely to accept, rather than merely insisting on the plausibility of K (or of one of its
more sophisticated versions). A clear illustration of this approach is Kripke’s [2011]
barrage of examples and arguments to the effect that closure failures are ubiquitous
given Nozick’s theory of knowledge. In a different way, Hawthorne [2004a, 41] presses
the first part of the containment problem against Dretske and Nozick, as I critically
discuss in §6.1.2.1

In this chapter, I formally assess the problem of containment for a family of
prominent “modal” theories of knowledge (see, e.g., Pritchard 2008, Black 2010). In
particular, I introduce formal models of the following: the relevant alternatives (RA)
theories of Lewis [1996] and Heller [1989, 1999a]; one way of developing the RA theory
of Dretske [1981] (based on Heller); the basic tracking theory of Nozick [1981]; and
the basic safety theory of Sosa [1999]. A common feature of the theories of Heller,
Nozick, and Sosa, which they share with those of Dretske [1971], Goldman [1976], and
others, is some subjunctive or counterfactual-like condition(s) on knowledge, relating
what an agent knows to what holds in selected counterfactual possibilities or epistemic
alternatives.

Vogel [2007] characterizes subjunctivism as “the doctrine that what is distinctive
about knowledge is essentially modal in character, and thus is captured by certain sub-
junctive conditionals” (73), and some versions of the RA theory have a similar flavor.2

I will call this family of theories subjunctivist flavored. Reflecting their commonality,
1Lawlor [2005, 44] makes the methodological point about the advantage of raising the containment

problem. It is noteworthy that Hawthorne takes a kind of proof-theoretic approach; he argues that
a certain set of closure principles, not including K, suffices to derive the consequences that those
who deny K wish to avoid, in which case they must give up a principle in the set. By contrast,
our approach will be model-theoretic; we will study models of particular theories to identify those
structural features that lead to closure failures.

2The view that knowledge has a modal character and the view that it is captured by subjunctive
conditionals are different views. For example, Lewis [1996] adopts the modal view but not the
subjunctive view. For more on subjunctivism, see Comesaña 2007.
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my formal framework is based on the formal semantics for subjunctive conditionals in
the style of Lewis 1973 and Stalnaker 1968. As a result, the epistemic logics studied
here behave very differently than traditional epistemic logics in the style of Hintikka
1962 (Appendix §2.A contains a comparison).

One of the main result of this chapter is an exact characterization in propositional
epistemic logic of the closure properties of knowledge according to the RA, tracking,
and safety theories, as formalized. Below I preview some of the epistemological and
logical highlights of this and other results. In later chapters, I further discuss the
epistemological repercussions of these results.

Epistemological points. The extent to which subjunctivist-flavored theories
of knowledge preserve closure is currently a topic of active discussion (see, e.g.,
Alspector-Kelly 2011, Adams et al. 2012). I show (in §2.6) that in contrast to Lewis’s
(non-subjunctive) theory, the other RA, tracking, and safety theories cited suffer from
essentially the same widespread closure failures, far beyond the failure of K, which few
if any proponents of these theories would welcome.3 The theories’ structural features
responsible for these closure failures also lead (in §2.9) to serious problems of higher-
order knowledge, including the possibility of knowing Fitch-paradoxical propositions
[Fitch, 1963].

Analysis of these results reveals (in §2.10) that two parameters of a modal theory
of knowledge affect whether it preserves closure. Each parameter has two values, for
four possible parameter settings with respect to which each theory can be classified
(Table 2.2). Of the theories mentioned, only Lewis’s, with its unique parameter
setting, fully preserves closure for a fixed context. (In §2.9 I clarify an issue, raised by
Williamson [2001, 2009], about whether Lewis’s theory validates strong principles of
higher-order knowledge.) Finally, I formalize Lewis’s view of the dynamics of context
change (in §2.11), leading to the result that for every closure principle that fails for
the other theories with respect to a fixed context, an “inter-context” version of that

3While closure failures for these subjunctivist-flavored theories go too far in some directions, in
other directions they do not go far enough for the purposes of Dretske and Nozick: all of these
theories validate closure principles (see §2.6) that appear about as dangerous as K in arguments for
radical skepticism about knowledge. This fact undermines the force of responding to skepticism by
rejecting K on subjunctivist grounds, as Nozick does.
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closure principle fails for Lewis’s contextualist theory.
In the terminology of Dretske [1970], the knowledge operator for Lewis’s theory is

fully penetrating for a fixed context. For all of the other theories, the knowledge op-
erator lacks the basic closure properties that Dretske wanted from a semi-penetrating
operator. Contrary to common assumptions in the literature (perhaps due to neglect
of the second theory parameter in §2.10), serious closure failures are not avoided by
modified subjunctivist theories, such as DeRose’s [1995] modified tracking theory or
the modified safety theory with bases, which I treat formally in §2.D. For those seek-
ing a balance of closure properties between full closure and not enough closure, it
appears necessary to abandon essential elements of the standard theories. I will show
how to do just that Chapter 5, but there is much ground to cover before then.

While I take the results of this chapter to be negative for subjunctivist-flavored
theories qua theories of knowledge, we can also take them to be neutral results about
other desirable epistemic properties, viz., the properties of having ruled out the rel-
evant alternatives to a proposition, of having a belief that tracks the truth of a
proposition, of having a safe belief in a proposition, etc., even if these are neither
necessary nor sufficient for knowledge (see §2.6 and §2.8).

Logical points. This chapter demonstrates the effectiveness of an alternative ap-
proach to proving modal completeness theorems, illustrated by van Benthem [2010,
§4.3] for the normal modal logic K, in a case that presents difficulties for a stan-
dard canonical model construction. The key element of the alternative approach is a
“modal decomposition” result. By proving such results (Theorem 2.1), we will obtain
completeness (Corollary 2.4) of two non-normal modal logics with respect to new se-
mantics mixing elements of ordering semantics [Lewis, 1981] and relational semantics
[Kripke, 1963]. One of these logics, dubbed the logic of ranked relevant alternatives,
appears not to have been previously identified in the modal logic literature. Further
results on decidability (Corollary 2.1), finite models (Corollary 2.2), and complexity
(Corollary 2.3) follow from the proof of the modal decomposition results.

In addition to these technical points, this chapter—indeed, this dissertation—aims
to show that for modal logicians, epistemology represents an area of sophisticated
theorizing in which modal-logical tools can help to clarify and systematize parts of
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the philosophical landscape. Doing so also benefits modal logic by broadening its
scope, bringing interesting new structures and systems under its purview.

In §2.1, I begin by reviewing some relevant background of the epistemic closure
debate. After introducing our formal epistemic language in §2.2, I introduce the for-
mal framework for the study of closure in RA and subjunctivist theories in §2.4 and
§2.5. With this setup, I state and prove the main theorems in §2.6 and §2.8, with an
interlude on relations between RA and subjunctivist models in §2.7. Finally, I inves-
tigate higher-order knowledge in §2.9, discuss the relation between theory parameters
and closure failures in §2.10, and model the dynamics of context in §2.11.

2.1 Background

In this chapter, we will use Example 1.1 as our running case study. Recall how the
problem of closure arises in this case. As before, suppose that student A knows that
if her patient has c, then he does not have x (because x confers immunity to c),

(1) K (c→ ¬x).

Since A did not run any of the tests that could detect the presence or absence of x,
arguably she does not know that the patient does not have x,

(2) ¬K¬x.

Given the professor’s judgment that A knows that the patient has condition c,

(3) Kc,

together (1) - (3) violate the following instance of closure under known implication:

(4) (Kc ∧K (c→ ¬x))→ K¬x.

To maintain (4), one must say either that A does not know that the patient has condi-
tion c after all (having not excluded x), or else that A can know that a patient does not
have a disease x without running any of the specialized tests for the disease (having
learned instead that the patient has c, but from lab results consistent with x). While
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the second option leads to what I will call the Problem of Vacuous Knowledge (or
else the Problem of Knowledge Inflation), the first option leads to Radical Skepticism
about knowledge, given the inevitability of uneliminated possibilities of error. Either
way, closure under known implication leads to problems.

Dretske [1970] and Nozick [1981] propose to resolve the inconsistency of (1) - (4),
a version of the now standard “skeptical paradox” [Cohen, 1988, DeRose, 1995], by
denying the validity of K in general and its instance (4) in particular. This denial
has nothing to do with the “putting two and two together” problem noted in §1. The
claim is that K would fail even for Dretske’s [1970] “ideally astute logicians” (1010).
I will characterize an ideally astute logician (IAL) in terms of two properties.

• Validity omniscience: the IAL knows all classically valid logical principles.4

• Full doxastic closure: the IAL believes all the classical logical consequences of
the set of propositions she believes.5

Dretske’s explanation for why K fails even for such agents is in terms of the RA
theory. (We turn to Nozick’s view in §2.5.) For this theory, to know p is (to truly
believe p and) to have ruled out the relevant alternatives to p. In coming to know c

and c → ¬x, the agent rules out certain relevant alternatives. In order to know ¬x,
the agent must rule out certain relevant alternatives. But the relevant alternatives
in the two cases are not the same. According to our earlier reasoning, x is not an
alternative that must be ruled out in order for Kc to hold. But x is an alternative
that must be ruled out in order for K¬x to hold (cf. Remark 2.3 in §2.4). It is
because the relevant alternatives may be different for what is in the antecedent of K
and what is in the consequent that instances like (iv) can fail.

In an influential objection to Dretske, Stine [1976] claimed that to allow for the
relevant alternatives to be different for the premises and conclusion of an argument

4Note the distinction with a stronger property of consequence omniscience (standardly “logical
omniscience”), that one knows all the logical consequences of what one knows.

5We may add that such an agent has come to believe these logical consequences by “competent
deduction,” rather than (only) by some other means, but we will not explicitly represent methods
or bases of beliefs until §2.D (see Remark 2.1). By “all the logical consequences” I mean all of those
involving concepts that the agent grasps. Otherwise one might believe p and yet fail to believe p ∨ q
because one does not grasp q (see Williamson 2000, 283). Assume that the agent grasps all of the
atomic p, q, r, . . . of Definition 2.1.
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about knowledge “would be to commit some logical sin akin to equivocation” (256).
Yet as Heller [1999a] points out in Dretske’s defence, a similar charge of equivocation
could be made (incorrectly) against accepted counterexamples to the principles of
transitivity or antecedent strengthening for counterfactuals. If we take a counterfac-
tual ϕ � ψ to be true iff the “closest” ϕ-worlds are ψ-worlds, then the inference
from ϕ� ψ to (ϕ ∧ χ)� ψ is invalid because the closest (ϕ ∧ χ)-worlds may not
be among the closest ϕ-worlds. Heller argues that there is no equivocation in such
counterexamples since we use the same, fixed similarity ordering of worlds to evalu-
ate the different conditionals. Similarly, in the example of closure failure, the most
relevant ¬c-worlds may differ from the most relevant x-worlds—so one can rule out
the former without ruling out the latter—even assuming a fixed relevance ordering of
worlds. In this defense of Dretske, Heller brings the RA theory closer to subjunctivist
theories that place counterfactual conditions on knowledge, an important theme that
will return.

In another influential objection to Dretske (with origins in Stine 1976), Lewis
[1996] and others [Cohen, 1988, DeRose, 1995] attempt to explain away apparent
closure failures by appeal to epistemic contextualism, the thesis that the truth values
of knowledge attributions are context sensitive. According to Lewis’s contextualist
RA theory, in the context C of our conversation before we raised the possibility of
the rare disease x, that possibility was irrelevant; so although A had not eliminated
the possibility of x, we could truly say in C that A knew (at time t) that the patient’s
condition was c (Kc). However, by raising the possibility of x in our conversation,
we changed the context to a new C ′ in which the uneliminated possibility of x was
relevant. Hence we could truly say in C ′ that A did not know that the patient did not
have x (¬K¬x), although A knew that x confers immunity to c (K(c→ ¬x)), which
did not require ruling out x. Is this a violation of K in context C ′? It is not, because
in C ′, unlike C, we could no longer truly say that A knew (at t) that the patient’s
condition was c (Kc), given that A had not eliminated the newly relevant possibility
of x. Moreover, Lewis argues that there is no violation of K in context C either:

Knowledge is closed under implication.... Implication preserves truth—
that is, it preserves truth in any given, fixed context. But if we switch
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contexts, all bets are off.... Dretske gets the phenomenon right...it is
just that he misclassifies what he sees. He thinks it is a phenomenon
of logic, when really it is a phenomenon of pragmatics. Closure, rightly
understood, survives the rest. If we evaluate the conclusion for truth not
with respect to the context in which it was uttered, but instead with
respect to the different context in which the premise was uttered, then
truth is preserved. (564)

In other words, Lewis claims that if we evaluate the consequent of (4), K¬x, with
respect to the context C of our conversation before we raised the possibility of x, then
it should come out true—despite the fact that A had not eliminated the possibility of
x through any special tests—because the possibility of x was irrelevant in C. If this is
correct, then there is no violation of K in either context C ′ or C. But how significant
is it to “preserve closure” for a fixed context by claiming that when we try to reason
in real time with K, we end up changing the context in the process so K does not
apply? This is a question that bothered Dretske [2005], and we will return to it later.

In addition to the two objections to Dretske stated above, there is the worry stated
at the beginning—that denying closure under known implication may commit one to
giving up other, weaker closure principles, what I called the Problem of Containment.
In what follows, I develop a formal framework to study these issues systematically.

2.2 Epistemic Language

With the background of §2.1, let us formulate the question of closure to be studied.
We begin with the official definition of our (first) propositional epistemic language.
The framework of §2.4 - 2.5 could be extended for quantified epistemic logic, but
there is already plenty to investigate in the propositional case.6

6It is not difficult to extend the framework of §2.4 - 2.5 to study closure principles of the form
shown below Definition 2.1 where the ϕ’s and ψ’s may contain first-order quantifiers, provided that
no free variables are allowed within the scope of any K operator. The closure behavior of K with
respect to ∀ and ∃ can be anticipated on the basis of the closure behavior of K with respect to ∧ and
∨ shown in Theorem 2.1. Of course, interesting complications arise whenever we allow quantification
into the scope of a K operator (see Holliday and Perry 2013).
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Definition 2.1 (Epistemic Language). Let At = {p, q, r, . . . } be a countable set of
atomic sentences. The epistemic language is defined inductively by

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ,

where p ∈ At. As usual, expressions containing ∨, →, and ↔ are abbreviations, and
by convention ∧ and ∨ bind more strongly than→ or↔ in the absence of parentheses;
we take > to be an arbitrary tautology (e.g., p ∨ ¬p), and ⊥ to be ¬>. The modal
degree of a formula ϕ is defined recursively as follows:

d(p) = 0

d(¬ϕ) = d(ϕ)

d(ϕ ∧ ψ) = max(d(ϕ), d(ψ))

d(Kϕ) = d(ϕ) + 1.

A formula ϕ is propositional iff d(ϕ) = 0 and flat iff d(ϕ) ≤ 1.

The flat fragment has a special place in the study of closure, which need not
involve higher-order knowledge. In the most basic case we are interested in whether
for a valid propositional formula ϕ1 ∧ · · · ∧ϕn → ψ, the associated “closure principle”
Kϕ1∧· · ·∧Kϕn → Kψ is valid, according to some semantics for theK operator. More
generally, we will consider principles of the form Kϕ1∧· · ·∧Kϕn → Kψ1∨· · ·∨Kψm,
allowing each ϕi and ψj to be of arbitrary modal degree. As above, we ask whether
such principles hold for ideally astute logicians. The question can be understood in
two ways, depending on whether we have in mind what may be called pure, empirical,
or deductive closure principles.

Remark 2.1 (Types of Closure). For example, if we understand the principle K(ϕ∧
ψ) → Kψ as a pure closure principle, then its validity means that an agent cannot
know ϕ∧ψ without knowing ψ—regardless of whether the agent came to believe ψ by
“competent deduction” from ϕ∧ψ.7 (Perhaps she came to believe ψ from perception,

7Harman and Sherman [2004] criticize Williamson’s [2000] talk of “deduction” as extending knowl-
edge for its “presupposition that deduction is a kind of inference, something one does” (495). I will
return to this issue in §5.4.
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ϕ from testimony, and ϕ∧ψ by competent deduction from ϕ and ψ.) More generally,
if we understandKϕ1∧· · ·∧Kϕn → Kψ as a pure closure principle, its validity means
that an agent cannot know ϕ1, . . . , ϕn without knowing ψ. Understood as an empirical
closure principle, its validity means that an agent who has done enough empirical
investigation to know ϕ1, . . . , ϕn has done enough to know ψ. Finally, understood
as a deductive closure principle, its validity means that if the agent came to believe
ψ from ϕ1, . . . , ϕn by competent deduction, all the while knowing ϕ1, . . . , ϕn, then
she knows ψ. As suggested by Williamson [2000, 282f], it is highly plausible that
K(ϕ ∧ ψ) → Kψ is a pure (and hence empirical and deductive) closure principle.
By contrast, closure under known implication is typically understood as only an
empirical or deductive closure principle.8 We will not explicitly explicitly represent
in our language or models the idea of deductive closure until Appendix 2.D, where I
formalize versions of the tracking and safety theories that take into account methods
or bases of beliefs. It is first necessary to understand the structural reasons for why
the basic RA, tracking, and safety conditions are not purely or empirically closed, in
order to understand whether the refined theories solve all the problems of epistemic
closure. As shown in §2.D, there are failures of pure and deductive closure for the
tracking theory with methods, for the structural reasons identified here. The safety
theory with bases arguably supports deductive closure, but also has problems with
pure closure for the structural reasons identified here.

2.3 Three Distinctions

Before giving RA semantics for the epistemic language of Definition 2.1, let us observe
several distinctions between different versions of the RA theory.

The first concerns the nature of the “alternatives” that one must rule out to know
p. Are they possibilities (or ways the world could/might be) in which p is false?9

8Deductive closure principles belong to a more general category of “active” closure principles,
which are conditional on the agent performing some action, of which deduction is one example.
As Johan van Benthem (personal communication) suggests, the active analogue of K has the form
Kϕ ∧K(ϕ→ ψ)→ [a]Kψ, where [a] stands for after action a.

9In order to deal with self-locating knowledge, one may take the alternatives to be “centered”
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Or are they propositions that entail the negation of p? Both views are common in
the literature, sometimes within a single author. Although earlier I wrote in a way
suggestive of the second view, in what follows I adopt the first view, familiar in the
epistemic logic tradition since Hintikka, since it fits the theories I will formalize. In
§4.A, I show how to treat views that take alternatives to be propositions.

The second distinction concerns the structure of relevant alternatives. On one
hand, Dretske [1981] states the following definition in developing his RA theory: “call
the set of possible alternatives that a person must be in an evidential position to
exclude (when he knows P ) the Relevancy Set (RS)” (371). On the other hand,
Heller [1999a] considers (and rejects) an interpretation of the RA theory in which
“there is a certain set of worlds selected as relevant, and S must be able to rule out
the not-p worlds within that set” (197).

According to Dretske, for every proposition P , there is a relevancy set for that
P . Let us translate this into Heller’s talk of worlds. Where P is the set of all worlds
in which P is false, let r(P ) be the relevancy set for P , so r(P ) ⊆ P . To be more
precise, since objective features of an agent’s situation in world w may affect what
alternatives are relevant and therefore what it takes to know P in w (see Dretske
1981, 377 and DeRose 2009, 30f on “subject factors”), let us write ‘r(P,w)’ for the
relevancy set for P in world w, so r(P,w) may differ from r(P, v) for a distinct world v
in which the agent’s situation is different. Finally, if we allow (unlike Dretske) that the
conversational context C of those attributing knowledge to the agent can also affect
what alternatives are relevant in a given situation w and therefore what it takes to
count as knowing P in w relative to C (see DeRose 2009, 30f on “attributor factors”),
then we should write ‘rC(P,w)’ to make the relativization to context explicit.

The quote from Dretske suggests the following definition:

According to a RS∀∃ theory, for every context C, for every world w, and for
every (∀) proposition P , there is (∃) a set of relevant (in w) not-P worlds,
rC(P,w) ⊆ P , such that in order to know P in w (relative to C) one must rule

worlds or possible individuals (see Lewis 1986, §1.4 and references therein). Another question is
whether we should think of what is ruled out by knowledge as including ways the world could not
be (metaphysically “impossible worlds” or even logically impossible worlds), in addition to ways the
world could be. I discuss this question in §5.1.3.
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out the worlds in rC(P,w).

By contrast, the quote from Heller suggests the following definition:

According to a RS∃∀ theory, for every context C and for every world w, there is
(∃) a set of relevant (in w) worlds, RC(w), such that for every (∀) proposition
P , in order to know P in w (relative to C) one must rule out the not-P worlds
in that set, i.e., the worlds in RC(w) ∩ P .

As a simple logical observation, every RS∃∀ theory is a RS∀∃ theory (take rC(P,w) =

RC(w) ∩ P ), but not necessarily vice versa. From now on, when I refer to RS∀∃

theories, I have in mind theories that are not also RS∃∀ theories. This distinction is
at the heart of the disagreement about epistemic closure between Dretske and Lewis
[1996], as Lewis clearly adopts an RS∃∀ theory.

In a contextualist RS∃∀ theory, such as Lewis’s, the set of relevant worlds may
change as context changes. Still, for any given context C, there is a set RC(w) of rele-
vant (at w) worlds, which does not depend on the particular proposition in question.
The RS∀∃ vs. RS∃∀ distinction is about how theories view the relevant alternatives
with respect to a fixed context. In the following sections we will study which closure
principles hold for different theories with respect to a fixed context. In §2.11, we will
extend the framework to context change.

A third distinction between versions of the RA theory concerns different notions
of ruling out or eliminating alternatives (possibilities or propositions). On one hand,
Lewis [1996] proposes that “a possibility . . . [v] . . . is uneliminated iff the subject’s
perceptual experience and memory in . . . [v] . . . exactly match his perceptual expe-
rience and memory in actuality” (553). On the other hand, Heller [1999a] proposes
that “S’s ability to rule out not-p be understood thus: S does not believe p in any of
the relevant not-p worlds” (98). First, we model the RA theory with a Lewis-style
notion of elimination. By ‘Lewis-style’, I do not mean a notion that involves experi-
ence or memory; I mean any notion of elimination that allows us to decide whether
a possibility v is eliminated by an agent in w independently of any proposition P in
question, as Lewis’s notion does. In §2.5, we turn to Heller’s notion, which is closely
related to Nozick’s [1981] tracking theory. We compare the two notions in §2.10.
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2.4 Relevant Alternatives (RA) Models

In this section we define our first class of models, following Heller’s RA picture of
“worlds surrounding the actual world ordered according to how realistic they are, so
that those worlds that are more realistic are closer to the actual world than the less
realistic ones” [1989, 25] with “those that are too far away from the actual world
being irrelevant” [1999a, 199]. These models represent the epistemic state of an agent
from a third-person perspective. We should not assume that anything in the model is
something that the agent has in mind. Contextualists should think of the modelM
as associated with a fixed context of knowledge attribution, so a change in context
corresponds to a change in models from M to M′, an idea developed formally in
§2.11. Just as the model is not something that the agent has in mind, it is not
something that particular speakers attributing knowledge to the agent have in mind
either. For possibilities may be relevant and hence should be included in our model,
even if the attributors are not considering them (see DeRose 2009, 33).

Finally, for simplicity (and in line with Lewis 1996) we will not represent in our
RA models an agent’s beliefs separately from her knowledge. Adding the doxastic
machinery of §2.5 (which guarantees doxastic closure) would be easy, but if the only
point were to add believing ϕ as a necessary condition for knowing ϕ, this would not
change any of our results about RA knowledge.10

Definition 2.2 (RA Model). A relevant alternatives model is a tupleM of the form
〈W,_,�, V 〉 where:

1. W is a non-empty set;

2. _ is a reflexive binary relation on W ;

3. � assigns to each w ∈ W a binary relation �w on some Ww ⊆ W ;

(a) �w is reflexive and transitive;
10If one were to also adopt a variant of Lewis’s [1996] Rule of Belief according to which any world

v doxastically accessible for the agent in w must be relevant and uneliminated for the agent in w
(i.e., using notation introduced below, wDv implies v ∈ Min�w(W ) and w _ v), then belief would
already follow from the knowledge condition of Definition 2.4.
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(b) w ∈ Ww, and for all v ∈ Ww, w �w v;

4. V assigns to each p ∈ At a set V (p) ⊆ W .

For w ∈ W , the pairM, w is a pointed model.

I refer to elements of W as “worlds” or “possibilities” interchangeably.11 As usual,
think of V (p) as the set of worlds where the atomic sentence p holds.

Take w _ v to mean that v is an uneliminated possibility for the agent in w.12

For generality, I assume only that _ is reflexive, reflecting the fact that an agent
can never eliminate her actual world as a possibility. According to Lewis’s [1996]
notion of elimination, _ is an equivalence relation. However, whether we assume
transitivity and symmetry in addition to reflexivity does not affect our main results
(see Remark 2.8). This choice only matters if we make further assumptions about
the �w relations, which we discuss in §2.9.

Take u �w v to mean that u is at least as relevant (at w) as v is.13 A relation
satisfying Definition 2.2.3a is a preorder. The family of preorders in an RA model is
like one of Lewis’s (weakly centered) comparative similarity systems [1973, §2.3] or
standard γ-models [1971], but without his assumption that each �w is total on its
field Ww (see Definition 2.3.3). Condition 3b, that w is at least as relevant at w as
any other world is, corresponds to Lewis’s [1996] Rule of Actuality, that “actuality is
always a relevant alternative” (554).

By allowing �w and �v to be different for distinct worlds w and v, we allow the
world-relativity of comparative relevance (based on differences in “subject factors”)

11Lewis [1996] is neutral on whether the possibilities referred to in his definition of knowledge
must be “maximally specific” (552), as worlds are often thought to be. It should be clear that the
examples in this chapter do not depend on taking possibilities to be maximally specific either.

12Those who have used standard Kripke models for epistemic modeling should note an important
difference in how we use W and _. We include in W not only possibilities that the agent has not
eliminated, but also possibilities that the agent has eliminated, including possibilities v such that
w 6_ v for all w distinct from v. While in standard Kripke semantics for the (single-agent) epistemic
language, such a possibility v can always be deleted from W without changing the truth value of
any formula at w (given the invariance of truth under _-generated submodels), this will not be the
case for one of our semantics below (D-semantics). So if we want to indicate that an agent in w has
eliminated a possibility v, we do not leave it out of W ; instead, we include it in W and set w 6_ v.

13One might expect u �w v to mean that v is at least as relevant (at w) as u is, by analogy with
x ≤ y in arithmetic, but Lewis’s [1973, §2.3] convention is now standard.
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discussed above. A fixed context may help to determine not only which possibilities
are relevant, given the way things actually are, but also which possibilities would be
relevant were things different. Importantly, we also allow �w and �v to be different
when v is an uneliminated possibility for the agent in w, so w _ v. In other words,
we do not assume that in w the agent can eliminate any v for which �v 6=�w. As
Lewis [1996] put it, “the subject himself may not be able to tell what is properly
ignored” (554). We will return to these points in §2.9 in our discussion of higher-
order knowledge.

Notation 2.1 (Derived Relations, Min). Where w, v, u ∈ W and S ⊆ W ,

• u ≺w v iff u �w v and not v �w u; and u 'w v iff u �w v and v �w u;

• Min�w(S) = {v ∈ S ∩Ww | there is no u ∈ S such that u ≺w v}.

Hence u ≺w v means that possibility u is more relevant (at w) than possibility v
is, while u 'w v means that they are equally relevant. Min�w(S) is the set of most
relevant (at w) possibilities out of those in S that are ordered by �w, in the sense
that there are no other possibilities that are more relevant (at w).

Definition 2.3 (Types of Orderings). Consider an RA model M = 〈W,_,�, V 〉
with w ∈ W .

1. �w is well-founded iff for every non-empty S ⊆ Ww, Min�w(S) 6= ∅;

2. �w is linear iff for all u, v ∈ Ww, either u ≺w v, v ≺w u, or u = v;

3. �w is total iff for all u, v ∈ Ww, u �w v or v �w u;

4. �w has a universal field iff Ww = W ;

5. �w is centered (weakly centered) iff Min�w(W ) = {w} (w ∈ Min�w(W )).

If a property holds of �v for all v ∈ W , then we say thatM has the property.

Well-foundedness is a (language-independent) version of the “Limit Assumption”
discussed by Lewis [1973, §1.4]. Together well-foundedness and linearity amount to
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“Stalnaker’s Assumption” (ibid., §3.4). Totality says that any worlds in the field of �w
are comparable in relevance. So a total preorder �w is a relevance ranking of worlds
in Ww. Universality (ibid., §5.1) says that all worlds are assessed for relevance at w.
Finally, (with Def. 2.2.3b) centering (ibid., §1.3) says that w is the most relevant
world at w, while weak centering (ibid., §1.7) (implied by Def. 2.2.3b) says that w is
among the most relevant.

I assume well-foundedness (always satisfied in finite models) in what follows, since
it allows us to state more perspicuous truth definitions. However, this assumption
does not affect our results (see Remark 2.7). By contrast, totality does make a
difference in valid closure principles for one of our theories (see Fact 2.6), while the
addition of universality does not (see Prop. 2.3). I comment on linearity and centering
vs. weak centering after Definition 2.5.

We now interpret the epistemic language of Definition 2.1 in RA models, consid-
ering three semantics for the K operator. I call these C-semantics, for Cartesian,
D-semantics, for Dretske, and L-semantics, for Lewis. C-semantics is not intended to
capture Descartes’ view of knowledge. Rather, it is supposed to reflect a high stan-
dard for the truth of knowledge claims—knowledge requires ruling out all possibilities
of error, however remote—in the spirit of Descartes’ worries about error in the First
Meditation; formally, C-semantics is just the standard semantics for epistemic logic
in the tradition of Hintikka [1962], but I reserve ‘H-semantics’ for later. D-semantics
is one way (but not the only way) of understanding Dretske’s [1981] RS∀∃ theory,
using Heller’s [1989, 1999a] picture of relevance orderings over possibilities.14 Finally,
L-semantics follows Lewis’s [1996] RS∃∀ theory (for a fixed context).

Definition 2.4 (Truth in an RA Model). Given a well-founded RA model M =

〈W,_,�, V 〉 with w ∈ W and a formula ϕ in the epistemic language, we define
14Later I argue that there is a better way of understanding Dretske’s [1981] RS∀∃ theory, without

the familiar world-ordering picture. Hence I take the ‘D’ for D-semantics as loosely as the ‘C’ for
C-semantics. Nonetheless, it is a helpful mnemonic for remembering that D-semantics formalizes an
RA theory that allows closure failure, as Dretske’s does, while L-semantics formalizes an RA theory
that does not, like Lewis’s.
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M, w �x ϕ (ϕ is true at w inM according to X-semantics) as follows:

M, w �x p iff w ∈ V (p);

M, w �x ¬ϕ iff M, w 2x ϕ;

M, w �x (ϕ ∧ ψ) iff M, w �x ϕ andM, w �x ψ.

For the K operator, the C-semantics clause is that of standard modal logic:

M, w �c Kϕ iff ∀v ∈ W : if w _ v thenM, v �c ϕ,

which states that ϕ is known at w iff ϕ is true in all possibilities uneliminated at w.
I will write this clause in another, equivalent way below, for comparison with the D-
and L-semantics clauses. First, we need two pieces of notation.

Notation 2.2 (Extension and Complement). WhereM = 〈W,_,�, V 〉,

• JϕKMx = {v ∈ W | M, v �x ϕ} is the set of worlds where ϕ is true inM according
to X-semantics; ifM and x are clear from context, I write ‘JϕK’.

• For S ⊆ W , S = {v ∈ W | v 6∈ S} is the complement of S in W . When W may
not be clear from context, I write ‘W \ S’ instead of ‘S’.

Definition 2.5 (Truth in an RA Model cont.). For C-, D-, and L-semantics, the
clauses for the K operator are:15

M, w �c Kϕ iff ∀v ∈ JϕKc : w 6_ v;

M, w �d Kϕ iff ∀v ∈ Min�w
(
JϕKd

)
: w 6_ v;

M, w �l Kϕ iff ∀v ∈ Min�w (W ) ∩ JϕKl : w 6_ v.

According to C-semantics, in order for an agent to know ϕ in world w, all of the
¬ϕ-possibilities must be eliminated by the agent in w. According to D-semantics, for

15Instead of thinking in terms of three different satisfaction relations, �c, �d, and �l, some readers
may prefer to think in terms of one satisfaction relation, �, and three different operators, Kc, Kd,
and Kl. I choose to subscript the turnstile instead of the operator in order to avoid proliferating
subscripts in formulas. One should not read anything more into this practical choice of notation.
(However, note that epistemologists typically take themselves to be proposing different accounts
of the conditions under which an agent has knowledge, rather than proposing different epistemic
notions of knowledge1, knowledge2, etc.)
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any ϕ there is a set Min�w
(
JϕKd

)
of most relevant (at w) ¬ϕ-possibilities that the

agent must eliminate in order to know ϕ. Finally, according to L-semantics, there is
a set of relevant possibilities, Min�w (W ), such that for any ϕ, in order to know ϕ the
agent must eliminate the ¬ϕ-possibilities within that set. Recall the RS∀∃ vs. RS∃∀

distinction above.
If ϕ is true at all pointed models according to X-semantics, then ϕ is X-valid,

written ‘�x ϕ’. Since the semantics do not differ with respect to propositional formulas
ϕ, I sometimes omit the subscript in ‘�x’ and simply write ‘M, w � ϕ’. These
conventions also apply to the semantics in Definition 2.7.

Since for L-semantics we think of Min�w(W ) as the set of simply relevant worlds,
ignoring the rest of �w, we allow Min�w(W ) to contain multiple worlds. Hence with
L-semantics we assume neither centering nor linearity, which implies centering by
Definition 2.2.3b. For D-semantics, whether we assume centering/linearity does not
affect our results (as shown in §2.6.2).

It is easy to check that according to C/D/L-semantics, whatever is known is true.
For D- and L-semantics, Fact 2.1 reflects Lewis’s [1996, 554] observation that the
veridicality of knowledge follows from his Rule of Actuality, given that an agent can
never eliminate her actual world as a possibility. Formally, veridicality follows from
the fact that w is minimal in �w and w _ w.

Fact 2.1 (Veridicality). Kϕ→ ϕ is C/D/L-valid.

c

w1

'w1 c′

w2

≺w1 x

w3

≺w1
c, x

w4

Figure 2.1: RA model for Example 1.1 (partially drawn, reflexive loops omitted)

Consider the model in Fig. 2.1, drawn for student A in Example 1.1. An arrow
from w to v indicates that w _ v, i.e., v is uneliminated by the agent in w. (For all
v ∈ W , v _ v, but we omit all reflexive loops.) The ordering of the worlds by their
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relevance at w1, which we take to be the actual world, is indicated between worlds.16

In w1, the patient has the common condition c, represented by the atomic sentence c
true at w1.17 Possibility w2, in which the patient has the other common condition c′

instead of c, is just as relevant as w1. Since the model is for student A, who ran the
lab tests to rule out c′, A has eliminated w2 in w1. A more remote possibility than
w2 is w3, in which the patient has the rare disease x. Since A has not run any tests
to rule out x, A has not eliminated w3 in w1. Finally, the most remote possibility of
all is w4, in which the patient has both c and x. We assume that A has learned from
textbooks that x confers immunity to c, so A has eliminated w4 in w1.

Now consider C-semantics. In discussing Example 1.1, we held that student A

knows that the patient’s condition is c, despite the fact that A did not rule out the
remote possibility of the patient’s having x. C-semantics issues the opposite verdict.
According to C-semantics, Kc is true at w1 iff all ¬c-worlds, regardless of their
relevance, are ruled out by the agent in w1. However, w3 is not ruled out by A in w1,
so Kc is false at w1. Nonetheless, A has some knowledge in w1. For example, one can
check that K(¬x→ c) is true at w1.

Remark 2.2 (Skepticism). A skeptic might argue, however, that we have failed to
include in our model a particular possibility, far-fetched but uneliminated, in which
the patient has neither x nor c, the inclusion of which would make even K(¬x→ c)

false at w1 according to C-semantics. In this way, C-semantics plays into the hands of
skeptics. By contrast, L- and D-semantics help to avoid skepticism by not requiring
the elimination of every far-fetched possibility.

Consider the model in Fig. 2.1 from the perspective of L-semantics. According
to L-semantics, student A does know that the patient has condition c. Kc is true
at w1, because c is true in all of the most relevant and uneliminated (at w1) worlds,
namely w1 itself. Moreover, although A has not ruled out the possibility w3 in which
the patient has disease x, according to L-semantics she nonetheless knows that the

16We ignore the relevance orderings for the other worlds. We also ignore which possibilities are
ruled out at worlds other than w1, since we are not concerned here with student A’s higher-order
knowledge at w1. If we were, then we would include other worlds in the model.

17Recall the double use of ‘c’, ‘c′’, and ‘x’ explained in footnote 3 in Chapter 1.
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patient does not have x. K¬x is true at w1, because ¬x is true in all of the most
relevant (at w1) worlds: w1 and w2. Indeed, note that K¬x would be true at w1 no
matter how we defined the _ relation.

Remark 2.3 (Vacuous Knowledge). What this example shows is that according to
L-semantics, in some cases an agent can know some ϕ with no requirement of ruling
out possibilities, i.e., with no requirement on _, simply because none of the accessible
¬ϕ-possibilities are relevant at w, i.e., because they are not in Min�w(W ). This is
the position of Stine [1976, 257] and Rysiew [2006, 265], who hold that one can know
that skeptical hypotheses do not obtain, without any evidence, simply because the
skeptical possibilities are not relevant in the context (also see Lewis 1996, 561f). In
general, on the kind of RS∃∀ view represented by L-semantics, an agent can know
a contingent empirical truth ϕ with no requirement of empirically eliminating any
possibilities. Heller [1999a, 207] rejects such “vacuous knowledge,” and in §4.1 I
discuss this Problem of Vacuous Knowledge at length (also see Cohen 1988, 99; Vogel
1999, 158f; and Remark 2.5 below). By contrast, on the kind of RS∀∃ view represented
by D-semantics, as long as there is an accessible ¬ϕ-possibility, there will be some
most relevant (at w) ¬ϕ-possibility that the agent must rule out in order to know ϕ

in w. Hence D-semantics avoids vacuous knowledge.

D-semantics avoids the skepticism of C-semantics and the vacuous knowledge of
L-semantics, but at a cost for closure. Consider the model in Fig. 2.1 from the
perspective of D-semantics. First observe that D-semantics issues our original verdict
that student A knows the patient’s condition is c. Kc is true at w1 since the most
relevant (at w1) ¬c-world, w2, is ruled out by A in w1. K(c→ ¬x) is also true at w1,
since the most relevant (at w1) ¬(c→ ¬x)-world, w4, is ruled out by A in w1. Not only
that, but K(c↔ ¬x) is true at w1, since the most relevant (at w1) ¬(c↔ ¬x)-world,
w2, is ruled out by A in w1. However, the most relevant (at w1) x-world, w3, is not
ruled out by A in w1, so K¬x is false at w1. Hence A does not know that the patient
does not have disease x. We have just established the second part of the following
fact, which matches Dretske’s [1970] view. The first part, which follows directly from
the truth definition, matches Lewis’s [1996, 563n21] view.
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Fact 2.2 (Known Implication). The principles Kϕ ∧ K (ϕ→ ψ) → Kψ and Kϕ ∧
K (ϕ↔ ψ)→ Kψ are C/L-valid, but not D-valid.18

In Dretske’s [1970, 1007] terminology, Fact 2.2 shows that the knowledge operator
in D-semantics is not fully penetrating, since it does not penetrate to all of the logical
consequence of what is known. Yet Dretske claims that the knowledge operator is
semi-penetrating, since it does penetrate to some logical consequences: “it seems to
me fairly obvious that if someone knows that P and Q, he thereby knows that Q”
and “If he knows that P is the case, he knows that P or Q is the case” (1009). This is
supposed to be the “trivial side” of Dretske’s thesis (ibid.). However, if we understand
the RA theory according to D-semantics, then even these monotonicity principles fail
(as they famously do for Nozick’s theory, discussed in §2.5, for the same structural
reasons).

Fact 2.3 (Distribution & Addition). The principles K (ϕ ∧ ψ) → Kϕ ∧ Kψ and
Kϕ→ K (ϕ ∨ ψ) are C/L-valid, but not D-valid.

Proof. The proof of C/L-validity is routine. For D-semantics, the pointed model
M, w1 in Fig. 2.1 falsifies K(c ∧ ¬x)→ K¬x and Kc→ K(c ∨ ¬x). These principle
are of the form Kα→ Kβ. In both cases, the most relevant (at w1) ¬α-world inM
is w2, which is eliminated by the agent in w1, so Kα is true at w1. However, in both
cases, the most relevant (at w1) ¬β-world inM is w3, which is uneliminated by the
agent in w1, so Kβ is false at w1.

Fact 2.3 is only the tip of the iceberg, the full extent of which is revealed in §2.6.
But it already points to a dilemma. On the one hand, if we understand the RA
theory according to D-semantics, then the knowledge operator lacks even the basic
closure properties that Dretske wanted from a semi-penetrating operator, contrary to
the “trivial side” of his thesis; here we have an example of what I called the Problem
of Containment. On the other hand, if we understand the RA theory according to L-
semantics, then the knowledge operator is a fully-penetrating operator, contrary to the

18It is easy to see that for D-semantics (and H/N/S-semantics in §2.5), knowledge fails to be closed
not only under known material implication, but even under known strict implication: Kϕ∧K�(ϕ→
ψ)→ Kψ, with the � in Definition 2.12 (or even the universal modality).
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non-trivial side of Dretske’s thesis; and we have the Problem of Vacuous Knowledge.
It is difficult to escape this dilemma while retaining something like Heller’s [1989,
1999a] world-ordering picture with which we started before Definition 2.2. However,
Dretske’s [1981] discussion of relevancy sets leaves open whether the RA theory should
be developed along the lines of this world-ordering picture, so we have not foreclosed
other ways around the dilemma. The search for something beyond the world-ordering
picture will play a major role in later chapters.

2.5 Counterfactual Belief (CB) Models

In this section, I introduce the formalizations of Heller’s [1989, 1999a] RA theory,
Nozick’s [1981] tracking theory, and Sosa’s [1999] safety theory. Let us begin by
defining another class of models, closely related to RA models.

Definition 2.6 (CB Model). A counterfactual belief model is a tupleM of the form
〈W,D,6, V 〉 where W , 6, and V are defined in the same way as W , �, and V for
RA models in Definition 2.2, and D is a serial binary relation on W .

Notation 2.1 and Definition 2.3 apply to CB models as for RA models, but with
6w in place of �w, <w in place of ≺w, and ≡w in place of 'w.

Think of D as a doxastic accessibility relation, so that wDv indicates that every-
thing the agent believes in w is true in v [Lewis, 1986, §1.4]. For convenience, let us
extend the epistemic language of Definition 2.1 to an epistemic-doxastic language with
a belief operator B for the D relation. We do so in order to state perspicuous truth
definitions for the K operator, which could be equivalently stated in a more direct
(though cumbersome) way in terms of the D relation. Our main result concerning
closure will be given for the pure epistemic language without B.

Think of 6w either as a relevance relation as in §2.4 (for Heller) or as a relation
of comparative similarity with respect to world w, used for assessing counterfactuals
as in Lewis 1973.19 With the latter interpretation, we can capture the following

19Heller [1989] argues that the orderings for relevance and similarity are the same, only the bound-
ary of the relevant worlds that one must rule out in order to know extends beyond that of the most
similar worlds. See the remarks in §2.B below, which apply here as well.
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well-known counterfactual conditions on an agent’s belief that ϕ:

• if ϕ were false, the agent would not believe ϕ (sensitivity);

• if ϕ were true, the agent would believe ϕ (adherence);

• the agent would believe ϕ only if ϕ were true (safety).

Nozick [1981] argued that sensitivity and adherence—the conjunction of which
is tracking—are necessary and sufficient for one’s belief to constitute knowledge,20

while Sosa [1999] argued that safety is necessary. (In §2.D, I will consider the revised
sensitivity and safety conditions that take into account methods and bases of belief.)
Following Nozick and Sosa, I interpret sensitivity as the counterfactual ¬ϕ� ¬Bϕ,
adherence as ϕ� Bϕ, and safety as Bϕ� ϕ, with the caveat in Observation 2.1
below. I will understand the truth of counterfactuals following Lewis [1973, 20],21

such that ϕ� ψ is true at a world w iff the closest ϕ-worlds to w according to 6w
are ψ-worlds, subject to the same caveat.22 As I explain in §2.B, the formalization
is also compatible with the view that the conditions above should be understood in
terms of “close enough” rather than closest worlds.

We are now prepared to define three more semantics for the K operator: H-
semantics for Heller, N-semantics for Nozick, and S-semantics for Sosa.

Remark 2.4 (Necessary Conditions). In defining these semantics, I assume that
each theory proposes necessary and sufficient conditions for knowledge. This is true
of Nozick’s [1981] theory, as it was of Lewis’s [1996], but Sosa [1999] and Heller
[1999a] propose only necessary conditions. Hence one may choose to read Kϕ as “the
agent safely believes ϕ/has ruled out the relevant alternatives to ϕ” for S/H-semantics.
Our results for S/H-semantics can then be viewed as results about the logic of safe
belief/the logic of relevant alternatives. However, for reasons similar to those given

20Nozick used the term ‘variation’ for what I call ‘sensitivity’ and used ‘sensitivity’ to cover both
variation and adherence; but the narrower use of ‘sensitivity’ is now standard.

21Unlike Lewis, I assume 6w is well-founded and only weakly centered on w (Definition 2.3).
22Nozick [1981, 680n8] tentatively proposes alternative truth conditions for counterfactuals. How-

ever, he also indicates that his theory may be understood in terms of Lewis’s semantics for coun-
terfactuals (but see Observation 2.1). This has become the standard practice in the literature. For
example, see Vogel 1987, Comesaña 2007, and Alspector-Kelly 2011.
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by Brueckner [2004] and Murphy [2006], I argue in §2.C that if the subjunctivist or
RA conditions are treated as necessary for knowledge, then closure failures for these
conditions threaten closure for knowledge itself. It is up to defenders of these theories
to explain why knowledge is closed in ways their conditions on knowledge are not.

Definition 2.7 (Truth in a CB Model). Given a well-founded CB model M =

〈W,D,6, V 〉 with w ∈ W and ϕ in the epistemic-doxastic language, defineM, w �x ϕ

as follows (with propositional cases as in Definition 2.4):

M, w �x Bϕ iff ∀v ∈ W : if wDv thenM, v �x ϕ;

M, w �h Kϕ iff M, w �h Bϕ and
(sensitivity) ∀v ∈ Min6w

(
JϕKh

)
:M, v 2h Bϕ;

M, w �n Kϕ iff M, w �n Bϕ and
(sensitivity) ∀v ∈ Min6w

(
JϕKn

)
:M, v 2n Bϕ,

(adherence) ∀v ∈ Min6w
(
JϕKn

)
:M, v �n Bϕ;

M, w �s Kϕ iff M, w �s Bϕ and
(safety) ∀v ∈ Min6w

(
JBϕKs

)
:M, v �s ϕ.

Note that the truth clause for Bϕ guarantees doxastic closure (see Fact 2.7).23

It is easy to check that the belief and subjunctive conditions of H/N/S-semantics
together ensure Fact 2.4 (cf. Heller 1999b, 126; Kripke 2011, 164).

23 It is not essential that we model belief with a doxastic accessibility relation. When we show that
a given closure principle is H/N/S-valid, we use the fact that the truth clause for Bϕ in Definition
2.7 guarantees some doxastic closure (see Fact 2.7); but when we show that a closure principle is
not H/N/S-valid, we do not use any facts about doxastic closure, as one can verify by inspection of
the proofs. For the purpose of demonstrating closure failures, we could simply associate with each
w ∈ W a set of formulas Σw such that M, w � Bϕ iff ϕ ∈ Σw. However, if we were to assume no
doxastic closure properties for Σw, then there would be no valid epistemic closure principles (except
Kϕ→ Kϕ), assuming knowledge requires belief. As a modeling choice, this may be realistic, but it
throws away information about the reasons for closure failures. For we would no longer be able to
tell whether an epistemic closure principle such as Kϕ→ K(ϕ∨ψ) is not valid for the (interesting)
reason that the special conditions for knowledge posited by a theory are not preserved in the required
way, or whether the principle is not valid for the (uninteresting) reason that there is some agent who
knows ϕ but happened not to form a belief in ϕ ∨ ψ.
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Fact 2.4 (Veridicality). Kϕ→ ϕ is H/N/S-valid.

Observation 2.1 (Adherence and Safety). The adherence condition in the N-semantics
clause may be equivalently replaced by

∀v ∈ Min6w(W ):M, v �n ϕ→ Bϕ;

the safety condition in the S-semantics clause may be equivalently replaced by

∀v ∈ Min6w(W ):M, v �s Bϕ→ ϕ.

This observation has two important consequences. The first is that in centered models
(Def. 2.3.5), adherence (ϕ � Bϕ) and safety (Bϕ � ϕ) add nothing to belief
and true belief, respectively, given standard Lewisian semantics for counterfactuals.
DeRose [1995, 27n27] takes adherence to be redundant apparently for this reason.
But since we only assume weak centering, adherence as above makes a difference—
obviously for truth in a model, but also for validity (see Fact 2.9). Nozick [1981,
680n8] suggests another way of understanding adherence so that it is non-trivial,
but here I will settle on its simple interpretation with weak centering in standard
semantics. Whether or not weak centering is right for counterfactuals, adherence and
safety can be—and safety typically is—understood directly in terms of what holds in
a set of close worlds including the actual world, our Min6w(W ) (see note 2.B), rather
than as ϕ� Bϕ and Bϕ� ϕ.24 (Adherence is typically ignored.) For sensitivity
alone, centering vs. weak centering makes no difference for valid principles.

The second consequence is that safety is a ∃∀ condition as in §2.4, where Min6w(W )

24Alternatively, the sphere of worlds for adherence could be independent of the relation 6w for
sensitivity, i.e., distinct from Min6w

(W ) (see Remark 3.2), so 6w could be centered without trivi-
alizing adherence. But this would allow cases in which an agent knows ϕ even though she believes
ϕ in a ¬ϕ-world that is “close enough” to w to be in its adherence sphere (provided there is a closer
¬ϕ-world according to 6w in which she does not believe ϕ). Nozick [1981, 680n8] suggests interpret-
ing adherence counterfactuals ϕ� Bϕ with true antecedents in such a way that the sphere over
which ϕ → Bϕ must hold may differ for different ϕ. By contrast, Observation 2.1 shows that we
are interpreting adherence as a kind of ∃∀ condition in a sense that generalizes that of §2.4 to cover
a requirement that one meet an epistemic success condition in all P -worlds in RC (w) (see §3.3.2). A
∀∃ interpretation of adherence that, e.g., allows the adherence sphere for ϕ ∨ ψ to go beyond that
of ϕ, would create another source of closure failure (see §2.6.5 and §2.10).
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serves as the set RC(w) that is independent of the particular proposition in question
(cf. Alspector-Kelly 2011, 129n6). By contrast, sensitivity is obviously a ∀∃ condition,
analogous to the D-semantics clause. Viewed this way, in the “subjunctivist-flavored”
family of D/H/N/S-semantics, S-semantics is the odd member of the family, since by
only looking at the fixed set Min6w(W ) in the safety clause, it never uses the rest of
the world-ordering.25

Fig. 2.2 displays a CB model for Example 1.1. The dotted arrows represent the
doxastic relation D. That the only arrow from w1 goes to itself indicates that in w1,
student A believes that the actual world is w1, where the patient has c and not x. (We
do not require that D be functional, but in Fig. 2.2 it is.) HenceM, w1 � B(c∧¬x).
That the only arrow from w3 goes to w1 indicates that in w3, A believes that w1 is
the actual world; since w3 is the closest (to w1) x-world, we take this to mean that if
the patient’s condition were x, A would still believe it was c and not x (because A did
not run any of the tests necessary to detect x).26 Hence M, w1 2h,n K¬x, because
the sensitivity condition is violated. However, one can check thatM, w1 �h,n Kc.

If we were to draw the model for student B, we would replace the arrow from w2

to w2 by one from w2 to w1, reflecting that if the patient’s condition were c′, B would
still believe it was c (because B made the diagnosis of c after only a physical exam,
and c and c′ have the same visible symptoms). HenceM′, w1 2h,n Kc, whereM′ is
the model with w2Dw1 instead of w2Dw2.

When we consider S-semantics, we get a different verdict on whether A knows
that the patient does not have disease x. Observe that M, w1 �s K¬x, because
student A believes ¬x in w1 and at the closest worlds to w1, namely w1 and w2, ¬x is
true. Therefore, A safely believes ¬x in w1. SimilarlyM, w1 �s Kc, because A safely

25Note that safety and tracking theorists may draw different models, with different 6w relations
and Min6w

(W ) sets, to represent the epistemic situation of the same agent.
26What about w4? In §2.4, we assumed that A learned from textbooks that x confers immunity

to c, so she had eliminated w4 at w1. In Fig. 2.2, that the only arrow from w4 goes to w4 indicates
that if (contrary to biological law) x did not confer immunity to c and the patient had both c and
x, then A would believe that he had both c and x, perhaps because the textbooks and tests would
be different in such a world. However, all we need to assume for the example to work is that if the
patient had both c and x, then it would be compatible with what A believes that the patient had
both c and x, reflected by the reflexive loop. We can have other outgoing arrows from w4 as well.
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c

w1

≡w1 c′

w2

<w1 x

w3

<w1
c, x

w4

Figure 2.2: CB model for Example 1.1 (partially drawn)

believes c in w1. Yet if we add the arrow from w2 to w1 for B, one can check that B
does not safely believe c at w1, soM′, w1 2s Kc.

Remark 2.5 (Vacuous Knowledge Again). The fact that M, w1 �s K¬x reflects
the idea that the safety theory leads to a neo-Moorean response to skepticism [Sosa,
1999], according to which agents can know that skeptical possibilities do not obtain. In
general, a point parallel to that of Remark 2.3 holds for the RS∃∀ safety theory: if the
¬ϕ-worlds are not among the close worlds, then one’s belief in ϕ is automatically safe,
no matter how poorly one’s beliefs match the facts in possible worlds (cf. Alspector-
Kelly’s [2011] distinction between near-safe and far-safe beliefs). This is the version
of the Problem of Vacuous Knowledge for the safety theory (see §4.1.4). By contrast,
on the kind of RS∀∃ theory represented by H/N-semantics, if ¬ϕ is possible, then
knowledge requires that one not falsely believe ϕ in the closest ¬ϕ-worlds.

Like D-semantics, H/N-semantics avoid the skepticism of C-semantics and the
vacuous knowledge of L/S-semantics, but at a cost for closure. All of the closure prin-
ciples shown in Facts 2.2 and 2.3 to be falsifiable in RA models under D-semantics
are also falsifiable in CB models under H/N-semantics, as one can check at w1 in
Fig. 2.2. After embracing the “nonclosure” of knowledge under known implication,
Nozick [1981, 231ff] tried to distinguish successful from unsuccessful cases of knowl-
edge transmission by whether extra subjunctive conditions hold;27 but doing so does

27Roughly, Nozick [1981, 231ff] proposes than an agent knows ψ via inference from ϕ iff (1) Kϕ,
(2) she infers the true conclusion ψ from premise ϕ, (3) ¬ψ� ¬Bϕ, and (4) ψ� Bϕ. Whether
this proposal is consistent with the rest of Nozick’s theory depends on whether (1) - (4) ensure that
the agent tracks ψ, which is still necessary for her to know ψ (234); and that depends on what kind
of modal connection between Bϕ and Bψ is supposed to follow from (2), because (1), (3), and (4)
together do not ensure that she tracks ψ.
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not eliminate the unsuccessful cases, which go far beyond nonclosure under known
implication, as shown in §2.6.

Nozick was well aware that K(ϕ ∧ ψ) → Kϕ ∧ Kψ fails on his theory, and his
explanation (beginning “S’s belief that p&q . . . ” on 228) is similar to a proof in
our framework. He resisted the idea that Kϕ → K(ϕ ∨ ψ) fails, but he is clearly
committed to it.28 Vogel’s [2007, 76] explanation of why it fails for Nozick is also
similar to a proof in our framework, as are Kripke’s [2011] many demonstrations of
closure failure for Nozick’s theory. Partly in response to these problems, Roush [2005,
2012] proposes a recursive tracking view of knowledge, in a probabilistic framework,
with an additional recursion clause to support closure (see §2.C). For discussion of
the relation between probabilistic and subjunctivist versions of tracking, see §2.E.

All of the closure principles noted fail for S-semantics as well. For example, it is
easy to construct a model in which B(ϕ∧ψ) and hence Bϕ are true at a world w, all
worlds close to w satisfy B(ϕ ∧ ψ) → ϕ ∧ ψ, and yet some worlds close to w do not
satisfy Bϕ→ ϕ, resulting in a failure of K(ϕ∧ψ)→ Kϕ at w. Murphy’s [2005, 2006,
§4.3] intuitive examples of closure failure for safety have exactly this structure.29 We
return to this problem for safety in §2.10.

Now it is time to go beyond case-by-case assessment of closure principles. In the
following sections, we will turn to results of a more general nature.

2.6 The Closure Theorem and Its Consequences

In this section, I state the main result of the chapter, Theorem 2.1, which character-
izes the closure properties of knowledge for the theories we have formalized. Despite

28While Nozick [1981] admits that such a closure failure “surely carries things too far” (230n64,
692), he also says that an agent can know p and yet fail to know ¬(¬p ∧ SK) (228). But the latter
is logically equivalent to p ∨ ¬SK, and Nozick accepts closure under (known) logical equivalence
(229). Nozick suggests (236) that closure under deducing a disjunction from a disjunct should hold,
provided methods of belief formation are taken into account. However, §2.D shows that taking
methods into account does not help here.

29For Murphy’s [2006, §4.3] “Lying Larry” example, take ϕ to be Larry is married and ψ to be
Larry is married to Pat. For Murphy’s [2005, 333] variation on Kripke’s red barn example, take ϕ
to be the structure is a barn and ψ to be the structure is red.
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the differences between the RA, tracking, and safety theories of knowledge as for-
malized by D/H/N/S-semantics, Theorem 2.1 provides a unifying perspective: the
valid epistemic closure principles are essentially the same for these different theories,
except for a twist with the theory of total RA models. For comparison, I also include
C/L-semantics, which fully support closure.

Formally, Theorem 2.1 is the same type of result as the “modal decomposition”
results of van Benthem [2010, §4.3, §10.4] for the weakest normal modal logic K

and the weakest monotonic modal logic M (see Chellas 1980, §8.2). From Theorem
2.1 we obtain decidability (Corollary 2.1) and completeness (Corollary 2.4) results
as corollaries. From the proof of the theorem, we obtain results on finite models
(Corollary 2.2) and complexity (Corollary 2.3).

The following notation will be convenient throughout this section.

Notation 2.3 (Closure Notation). Given (possibly empty) sequences of formulas
ϕ1, . . . , ϕn and ψ1, . . . , ψm in the epistemic language and a propositional conjunction
ϕ0, we use the notation

χn,m := ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → Kψ1 ∨ · · · ∨Kψm.

Call such a χn,m a closure principle.30

Hence a closure principle states that if the agent knows each of ϕ1 through ϕn

(and the world satisfies a non-epistemic ϕ0), then the agent knows at least one of ψ1

through ψm. Our question is: which closure principles are valid?
Theorem 2.1 is the answer. Its statement refers to a “T-unpacked” closure prin-

ciple, a notion I have not yet introduced. For the first reading of the theorem, this
can be ignored. Think only of flat formulas without nesting of the K operator (Def.
2.1), which are T-unpacked if ϕ1 ∧ · · · ∧ ϕn is a conjunct of ϕ0. Or we can ignore
T-unpacking for flat χn,m and replace condition (a) of the theorem by

(a)′ ϕ0 ∧ · · · ∧ ϕn → ⊥ is valid.
30Following standard convention, we take an empty disjunction to be ⊥, so a closure principle

χn,0 with no Kψ formulas is of the form ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → ⊥.
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Example 2.1 will show the need for T-unpacking, defined in general in §2.6.2.

Theorem 2.1 (Closure Theorem). Let

χn,m := ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → Kψ1 ∨ · · · ∨Kψm

be a T-unpacked closure principle.

1. χn,m is C/L-valid over relevant alternatives models iff

(a) ϕ0 → ⊥ is valid or

(b) for some ψ ∈ {ψ1, . . . , ψm},

ϕ1 ∧ · · · ∧ ϕn → ψ is valid;

2. χn,m is D-valid over total relevant alternatives models iff (a) or

(c) for some Φ ⊆ {ϕ1, . . . , ϕn} and nonempty Ψ ⊆ {ψ1, . . . , ψm},31

∧
ϕ∈Φ

ϕ↔
∧
ψ∈Ψ

ψ is valid;

3. χn,m is D-valid over all relevant alternatives models iff (a) or

(d) for some Φ ⊆ {ϕ1, . . . , ϕn} and ψ ∈ {ψ1, . . . , ψm},∧
ϕ∈Φ

ϕ↔ ψ is valid;

4. χn,m is H/N/S-valid over counterfactual belief models if (a) or (d);32 and a flat
χn,m is H/N/S-valid over such models only if (a) or (d).

31Following standard convention, if Φ = ∅, we take
∧

ϕ∈Φ

ϕ to be >.
32When I refer to (d) from part 4, I mean the condition that

∧
ϕ∈Φ

ϕ↔ ψ is H/N/S-valid.
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The remarkable fact established by Theorem 2.1 that D/H/N/S-semantics validate
essentially the same closure principles, except for the twist of totality in (c), further
supports talk of their representing a “family” of subjunctivist-flavored theories of
knowledge. Although results in §2.9.2 (Facts 2.9.4, 2.9.5, and 2.11.1) show that the
‘only if’ direction of part 4 does not hold for some principles involving higher-order
knowledge, the agreement between D/H/N/S-semantics on the validity of flat closure
principles is striking.

Remark 2.6 (Independence from Assumptions). Recalling the types of orderings in
Definition 2.3, it is noteworthy that parts 1 and 4 of Theorem 2.1 are independent of
whether we assume totality (or universality), while parts 2 and 3 are independent of
whether we assume centering, linearity (see §2.6.2), or universality (see Prop. 2.3).
For parts 1 - 4, we can drop our running assumption of well-foundedness, provided
we modify the truth definitions accordingly (see Remark 2.7). Finally, part 1 for
L-semantics (but not C-semantics) and parts 2 - 3 for D-semantics are independent
of additional properties of _ such as transitivity and symmetry (see Remark 2.8 and
Example 2.3).

To apply the theorem, observe that Kp∧K(p→ q)→ Kq is not D/H/N/S-valid,
because p ∧ (p→ q)→ ⊥ is not valid, so (a)′ fails, and none of

p ∧ (p→ q)↔ q, p↔ q, (p→ q)↔ q, or > ↔ q

are valid, so there are no Φ and Ψ/ψ as described. Hence (c)/(d) fails.
On the other hand, we now see that Kp ∧ Kq → K(p ∧ q) is D/H/N/S-valid,

because p∧q ↔ p∧q is valid, so we can take Φ = {p, q} and Ψ = {p∧q} or ψ = p∧q.
Besides Kϕ→ ϕ (Facts 2.1 and 2.4), this is the first valid principle we have identified
for D/H/N/S-semantics, to which we will return in §2.8.

Fact 2.5 (C Axiom). The principle Kϕ ∧Kψ → K(ϕ ∧ ψ), known as the C axiom,
is D/H/N/S-valid.

To get a feel for Theorem 2.1, it helps to test a variety of closure principles.
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Exercise 2.1 (Testing Closure). Using Theorem 2.1, verify that neither K(p ∧ q) →
K(p∨q) nor Kp∧Kq → K(p∨q) are D/H/N/S-valid; verify that K(p∧q)→ Kp∨Kq
is only D-valid over total RA models; verify that K(p ∨ q) ∧ K(p → q) → Kq and
Kp ∧K(p→ q)→ K(p ∧ q) are D/H/N/S-valid.

As if the closure failures of Fact 2.3 were not bad enough, the first three of Exercise
2.1 are also highly counterintuitive. Recall from §2.1 that the Dretske-Nozick case
against full closure under known implication, K, had two parts: examples in which K
purportedly fails, such as Example 1.1, and theories of knowledge that purportedly
explain the failures. For the other principles, we can see why they fail according to the
subjunctivist-flavored theories; but without some intuitive examples in which, e.g.,
arguably an ideally astute logician knows two propositions but not their disjunction,
the failure of such weak closure principles according to a theory of knowledge seems
to be strong evidence against the theory—even for those sympathetic to the denial
of K.

While the closure failures permitted by subjunctivist-flavored theories go too far,
in another way they do not go far enough for some purposes. Reflection on the last
two principles of Exercise 2.1 suggests they are about as dangerous as K in arguments
for radical skepticism about knowledge. The fact that one’s theory validates these
principles seems to undermine the force of one’s denying K in response to skepticism,
as Nozick [1981] uses his subjunctivism to do.

Notwithstanding these negative points against subjunctivist-flavored theories of
knowledge, simply replace the K symbol in our language by a neutral � and Theorem
2.1 can be viewed as a neutral result about the logic of relevant alternatives, of
sensitive/truth-tracking belief, and of safe belief (see §2.8).

Parts 3 and 4 of Theorem 2.1 reflect that D-semantics over RA models and H/N/S-
semantics over CB models have the following separation property.

Proposition 2.1 (Separation). For D-semantics (resp. H/N/S-semantics), a closure
principle χn,m (resp. a flat χn,m) as in Notation 2.3 with m ≥ 1 is valid iff there is
some j ≤ m such that ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → Kψj is valid.

The reason for this separation property comes out clearly in the proofs in §2.6.3
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and §2.6.4. In essence, if the principles with single disjunct consequents are all invalid,
then we can glue their falsifying models together to obtain a falsifying model for χn,m.
However, this is not the case for D-semantics over total RA models. The following
fact demonstrates the nonequivalence of D-semantics over total RA models and D-
semantics over all RA models (as well as H/N/S-semantics over total/all CB models)
with an interesting new axiom.

Fact 2.6 (X Axiom). The principle K(ϕ ∧ ψ) → Kϕ ∨ Kψ, hereafter called the
“X axiom” (see §2.8), is D-valid over total RA models, but not D-valid over all RA
models or H/N/S-valid over (total) CB models.

Proof. I leave D-validity over total RA models to the reader. Fig. 2.3 displays
a non-total RA model that falsifies K(p ∧ q) → Kp ∨ Kq in D-semantics. Since
Min�w(Jp ∧ qK) = {v, x}, w 6_ v, and w 6_ x, M, w �d K(p ∧ q). Since u and x

are incomparable according to �w, as are y and v, we have u ∈ Min�w(JpK) and
y ∈ Min�w(JqK), which with w _ u and w _ y implies M, w 2d Kp ∨ Kq. The
counterexample for H/N/S-semantics is in Fig. 2.10, discussed in §2.10.

u

�w p

v

�w p, q

w

≺w q

x

≺w
y

Figure 2.3: non-total RA countermodel for K(p ∧ q)→ Kp ∨Kq in D-semantics
(partially drawn, reflexive loops omitted)

In §2.8, we will see the role that the X axiom plays in a complete deductive system
for D-semantics over total RA models, as well as the role that the C axiom plays in
complete deductive systems for D/H/N/S-semantics.

Given the separation property, the proof of the ‘only if’ direction of Theorem 2.1.3
for flat closure principles can be explained roughly as follows.

Proof sketch. Let us try to falsify a flat ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → Kψj. Construct
a pointed model M, w with a valuation such that the propositional part ϕ0 is true
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at w.33 To make Kψj false while keeping all Kϕi true at w, we want to add an une-
liminated ¬ψj-world v such that (A) there is no ¬ψj-world more relevant than v and
(B) for any ¬ϕi true at v, there is a more relevant ¬ϕi-world that is eliminated at w.
This is possible if there is a propositional valuation such that ¬ψj is true at v and for
all ¬ϕi true at v, ψj ∧ ¬ϕi is satisfiable; for then we can add a satisfying world for
each conjunction and make them eliminated and more relevant than v, which gives
(A) and (B). If there is no such valuation, then every valuation that satisfies ¬ψj also
satisfies some ¬ϕi for which ψj → ϕi is valid. Then where Φ is the set of all such ϕi,
¬ψj →

∨
ϕ∈Φ

¬ϕ and ψj →
∧
ϕ∈Φ

ϕ are valid, which means
∧
ϕ∈Φ

ϕ↔ ψj is valid. �

In §2.6.2 - 2.6.3 we give a more precise and general form of the above argument.
We conclude this subsection with an example of why Theorem 2.1 requires the notion
of T-unpacking, which is defined in general in Definition 2.9.

Example 2.1 (T-unpacking). As noted before Theorem 2.1, if we consider only
flat formulas, then we can ignore T-unpacking, provided we replace condition (a) of
Theorem 2.1 by the condition: (a)′ ϕ1 ∧ · · · ∧ ϕn → ⊥ is valid. Let us see why
T-unpacking is necessary for non-flat formulas. For example, the formula

KKp ∧KKq → K(p ∧ q) (2.1)

is D/H/N/S-valid. Yet none of the following are valid: Kp∧Kq → ⊥,Kp∧Kq ↔ p∧q,
Kp↔ p∧ q, Kq ↔ p∧ q, and > ↔ p∧ q. Hence (2.1) does not satisfy (a)′, (c), or (d)
in Theorem 2.1. However, if we T-unpack (2.1) by repeatedly applying the T axiom,
Kϕ→ ϕ, to the antecedent, we obtain

(p ∧ q ∧Kp ∧Kq ∧KKp ∧KKq)→ K(p ∧ q), (2.2)

which satisfies (b), (c), and (d) with Φ = {p, q} and Ψ = {p ∧ q} or ψ = p ∧ q.
Hence (2.2) is valid according to Theorem 2.1. Given the validity of the T axiom over
RA/CB models (Facts 2.1 and 2.4), (2.1) and (2.2) are equivalent, so (2.1) is valid

33In the following argument, ‘relevant’ means relevant at w (i.e., according to �w) and ‘unelimi-
nated’/‘eliminated’ means uneliminated/eliminated at w (i.e., w _ v or w 6_ v).
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as well. This example shows the essential idea of T-unpacking, defined formally in
§2.6.2 and demonstrate again in Example 2.2.

As shown by Proposition 2.2 below, any epistemic formula can be effectively trans-
formed into an equivalent conjunction, each conjunct of which is a T-unpacked for-
mula χn,m as in Notation 2.3. Using Theorem 2.1, the validity of each conjunct can
be reduced to the validity of finitely many formulas of lesser modal depth (Def. 2.1).
By repeating this process, we eventually obtain a finite set of propositional formulas,
whose validity we can decide by truth tables. Thus, Theorem 2.1 yields the following
decidability results.

Corollary 2.1 (Decidability). The problem of checking whether an arbitrary formula
is C/L/D-valid or whether a flat formula is H/N/S-valid over (total or all) RA/CB
models is decidable.

In addition, Theorem 2.1 will yield axiomatization results in Corollary 2.4. As
Corollary 2.4 will show, the ‘if’ direction of each ‘iff’ statement in Theorem 2.1 is
a soundness result, while the ‘only if’ direction is a completeness result. We prove
soundness in §2.6.1 and completeness in §2.6.2 - 2.6.4.

2.6.1 Soundness

In the ‘if’ direction, part 1 of Theorem 2.1 is a simple application of the C/L-truth
definitions, which we skip. For parts 2 - 4, we use the following lemma.

Lemma 2.1 (Min Inclusion).

1. If condition (c) of Theorem 2.1 holds, then for any well-founded and total
pointed RA/CB modelM, w,34 there is some ψ ∈ Ψ such that

Min≤w(JψK) ⊆
⋃
ϕ∈Φ

Min≤w(JϕK).

34When dealing with both RA and CB models, I use ≤w to stand for �w or 6w.



2. RELEVANT ALTERNATIVES AND SUBJUNCTIVISM 42

2. If condition (d) of Theorem 2.1 holds, then for any well-founded pointed RA/CB
modelM, w,

Min≤w(JψK) ⊆
⋃
ϕ∈Φ

Min≤w(JϕK).

Proof. For part 1, assume for reductio that (c) holds and there is some well-founded
and totalM, w such that for all ψ ∈ Ψ there is some uψ with

uψ ∈ Min≤w(JψK) (2.3)

and
uψ 6∈

⋃
ϕ∈Φ

Min≤w(JϕK). (2.4)

Given (c), (2.3) implies uψ ∈ JϕψK for some ϕψ ∈ Φ. Since ≤w is well-founded, there
is some

v ∈ Min≤w(
⋃
ϕ∈Φ

JϕK). (2.5)

Given (c), (2.5) implies v ∈ JψK for some ψ ∈ Ψ. Hence uψ ≤w v by (2.3) and the
totality of ≤w. Together uψ ≤w v, uψ ∈ JϕψK, (2.5), and the transitivity of ≤w imply

uψ ∈ Min≤w(
⋃
ϕ∈Φ

JϕK), (2.6)

which contradicts (2.4) by basic set theory.
For part 2, assume for reductio that (d) holds and there is some well-foundedM, w

and uψ such that (2.3) and (2.4) hold for ψ. Given (d), (2.3) implies uψ ∈ JϕψK for
some ϕψ ∈ Φ. Hence by the well-foundedness of ≤w and (2.4) there is some v ∈ JϕψK
such that v <w uψ. Given (d), v ∈ JϕψK implies v ∈ JψK, which with v <w uψ

contradicts (2.3).

For the H/N/S-semantics cases, we will also use a basic fact of normal modal logic
(see Theorem 3.3(2) of Chellas 1980), namely that the truth clause for B in Definition
2.7 guarantees Fact 2.7 below. Note that we do not require full doxastic closure, but
only as much doxastic closure as needed to support the limited forms of epistemic
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closure that are valid for H/N/S-semantics.

Fact 2.7 (Partial Doxastic Closure). For x ∈ {h, n, s}, if �x
∧
ϕ∈Φ

ϕ ↔ ψ, then �x∧
ϕ∈Φ

Bϕ↔ Bψ.

For convenience, we will use the following notation throughout this section.

Notation 2.4 (Relational Image). GivenM = 〈W,_,�, V 〉, the image of {w} under
the relation _ is _(w) = {v ∈ W | w _ v}.

Hence _(w) is the set of uneliminated possibilities for the agent in w.
We are now ready to prove the ‘if’ directions of Theorem 2.1.2-4.

Claim 2.1. If (a) or (c) holds, then χn,m is D-valid over total RA models; if (a) or (d)
holds, then it is D-valid over RA models and H/N/S-valid over CB models.

Proof. If (a) holds, then it is immediate that χn,m is D/H/N/S-valid, since its an-
tecedent is always false. For (c) and (d), we consider each of the D/H/N/S-semantics
in turn, assuming for an arbitrary pointed RA/CB modelM, w that

M, w �x
∧
ϕ∈Φ

Kϕ. (2.7)

To showM, w �x χn,m, it suffices to showM, w �x Kψj for some j ≤ m.
If (2.7) holds for x := d, then by the truth definition (Def. 2.5),

⋃
ϕ∈Φ

Min�w(JϕK)∩_(w) = ∅. (2.8)

If M is a total (resp. any) RA model, then by (c) and Lemma 2.1.1 (resp. by (d)
and Lemma 2.1.2), (2.8) implies that there is some ψ ∈ Ψ (resp. that the ψ in (d) is)
such that Min≤w(JψK)∩_(w) = ∅, whenceM, w �d Kψ.

For the cases of H/N/S-semantics, it follows from (d) and Fact 2.7 that

⋂
ϕ∈Φ

JBϕK = JBψK and
⋃
ϕ∈Φ

JBϕK = JBψK. (2.9)
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If (2.7) holds for x := h, then by the truth definition (Def. 2.7),

M, w �h
∧
ϕ∈Φ

Bϕ and
⋃
ϕ∈Φ

Min6w(JϕK) ⊆
⋃
ϕ∈Φ

JBϕK. (2.10)

By (2.9), the first conjunct of (2.10) impliesM, w �h Bψ. By (d), Lemma 2.1.2, and
(2.9), the second conjunct implies the sensitivity condition that Min6w(JψK) ⊆ JBψK.
HenceM, w �h Kψ.

If (2.7) holds for x := n, then by the truth definition (Def. 2.7), (2.10) holds with
n in place of h. So by the same argument as before, sensitivity holds for ψ at w,
which with M, w �n Bψ and w ∈ Min6w(W ) (Def. 2.2.3b) implies M, w �n ψ. It
follows that Min6w(JψK) ⊆ Min6w(W ), which with (d) implies

Min6w(JψK) ⊆
⋂
ϕ∈Φ

Min6w(JϕK). (2.11)

Since the adherence condition must hold for each ϕ ∈ Φ at w,

⋂
ϕ∈Φ

Min6w(JϕK) ⊆
⋂
ϕ∈Φ

JBϕK, (2.12)

which with (2.11) and (2.9) implies Min6w(JψK) ⊆ JBψK. Thus, adherence and sensi-
tivity hold for ψ at w, soM, w �n Kψ givenM, w �n Bψ.

If (2.7) holds for x := s, then by the truth definition (Def. 2.7),

M, w �s
∧
ϕ∈Φ

Bϕ and
⋂
ϕ∈Φ

Min6w(JBϕK) ⊆
⋂
ϕ∈Φ

JϕK. (2.13)

By (2.9), the first conjunct of (2.13) implies M, w �s Bψ. Given w ∈ Min6w(W )

(Def. 2.2.3b), it follows that Min6w(JBψK) ⊆ Min6w(W ) and therefore

Min6w(JBψK) ⊆
⋂
ϕ∈Φ

Min6w(JBϕK) (2.14)
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by (2.9). Finally, from (d) we have

⋂
ϕ∈Φ

JϕK ⊆ JψK, (2.15)

which with (3.3.2) and the second conjunct of (2.13) implies the safety condition that
Min6w(JBψK) ⊆ JψK, soM, w �s Kψ givenM, w �s Bψ.

Remark 2.7 (Dropping Well-Foundedness). We can drop the assumption of well-
foundedness used in the above proofs, provided we modify the truth definitions ac-
cordingly. For example (cf. Lewis 1973, §2.3), we may define

M, w �d′ Kϕ iff

JϕKd′ = Ww or

∃v ∈ JϕKd′ ∩Ww ∀u ∈ JϕKd′ : if u �w v then w 6_ u,
(2.16)

which is equivalent to the clause in Definition 2.5 over total well-founded models. I
will give the proof for Theorem 2.1.2 that (c) implies the validity of χn,m over total
RA models according to (2.16). Assume that (2.7) holds for x := d′. If JϕK = Ww for
all ϕ ∈ Φ, then by (c), JψK = Ww and henceM, w �d′ Kψ for all ψ ∈ Ψ. Otherwise,
for every ϕ ∈ Φ for which the second case of (2.16) holds, let vϕ be a witness to the
existential quantifier. Since {vϕ | ϕ ∈ Φ} is finite and nonempty, Min�w({vϕ | ϕ ∈ Φ})
is nonempty. Consider some v ∈ Min�w({vϕ | ϕ ∈ Φ}). Given that �w is a total
preorder,

∀u ∈
⋃
ϕ∈Φ

JϕKd′ : if u �w v then w 6_ u. (2.17)

Since v ∈ JϕK for some ϕ ∈ Φ, by (c) it follows that v ∈ JψK for some ψ ∈ Ψ. Now
observe that for all u ∈ JψK, u �w v implies w 6_ u. For if u ∈ JψK, then by (c),
u ∈ JϕK for some ϕ ∈ Φ, in which case u �w v implies w 6_ u by (2.17). Hence v is a
witness to the existential in (2.16) for Kψ, whenceM, w �d′ Kψ.

We leave the other cases without well-foundedness to the reader.35

35For H-semantics without well-foundedness (but with totality), define a new �h′ relation as in
(2.16) but withM, u 2h′ Bϕ in place of w 6_ u and with the belief condition for knowledge. Then the
proof of the ‘if’ direction of Theorem 2.1.4 for �h′ is similar to the proof above for �d′ , but replacing
(c) by (d) and replacing w 6_ u in (2.17) by M, u 2h′ Bψ, which follows from M, u 2h′ Bϕ for
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If we do not assume totality, then for D-semantics we modify the right hand side
of (2.16) as follows:

∀x(x ∈ JϕKd′′ ⇒ ∃v ∈ JϕKd′′(v �w x & ∀u ∈ JϕKd′′(u �w v ⇒ w 6_ u))). (2.18)

I will now give the proof for Theorem 2.1.3 that (d) implies the validity of χn,m over
RA models according to this modified D′′-semantics. For simplicity, let us work out
the case where �d′′ ϕ1 ∧ϕ2 ↔ ψ, which shows the pattern for the general case. Given
M, w �d′′ Kϕ1 ∧Kϕ2, by the truth definition we have:

∀x(x ∈ Jϕ1Kd′′ ⇒ ∃v ∈ Jϕ1Kd′′(v �w x & ∀u ∈ Jϕ1Kd′′(u �w v ⇒ w 6_ u)));

(2.19)

∀x(x ∈ Jϕ2Kd′′ ⇒ ∃v ∈ Jϕ2Kd′′(v �w x & ∀u ∈ Jϕ2Kd′′(u �w v ⇒ w 6_ u))).

(2.20)

Suppose for contradiction thatM, w 2d′′ Kψ, so by the truth definition,

∃x ∈ JψKd′′∀v ∈ JψKd′′(v �w x⇒ ∃u ∈ JψKd′′(u �w v & w _ u)). (2.21)

Given x ∈ JψKd′′ and �d′′ ϕ1 ∧ ϕ2 ↔ ψ, we have x ∈ JϕiKd′′ for some i ∈ {1, 2}.
Without loss of generality, suppose i = 1. Thus, by (2.19),

∃v ∈ Jϕ1Kd′′(v �w x & ∀u ∈ Jϕ1Kd′′(u �w v ⇒ w 6_ u)). (2.22)

Given v ∈ Jϕ1Kd′′ and �d′′ ϕ1 ∧ ϕ2 ↔ ψ, we have v ∈ JψKd′′ . It follows by (2.21) that

∃u ∈ JψKd′′(u �w v & w _ u). (2.23)

Since u �w v and w _ u, it follows by (2.22) that u 6∈ Jϕ1Kd′′ . Then given u ∈ JψKd′′
any ϕ ∈ Φ by (d) and Fact 2.7. Finally, since Definition 2.2.3b implies that Min6w

(W ) 6= ∅ even if
6w is not well-founded, it follows from Observation 2.1 that the adherence and safety conditions of
N/S-semantics do not require well-foundedness.
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and �d′′ ϕ1 ∧ ϕ2 ↔ ψ, we have u ∈ Jϕ2Kd′′ . Thus, by (2.20),

∃v′ ∈ Jϕ2Kd′′(v′ �w u & ∀u′ ∈ Jϕ2Kd′′(u′ �w v′ ⇒ w 6_ u′)). (2.24)

Given v′ ∈ Jϕ2Kd′′ and �d′′ ϕ1 ∧ ϕ2 ↔ ψ, we have v′ ∈ JψKd′′ ; and given v′ �w u �w
v �w x and the transitivity of �w, v′ �w x. It follows by (2.21) that

∃u′ ∈ JψKd′′(u′ �w v′ & w _ u′). (2.25)

Since u′ �w v′ and w _ u′, it follows by (2.24) that u′ 6∈ Jϕ2Kd′′ . Given u′ �w v′ �w
u �w v and the transitivity of �w, u′ �w v. Then since u′ �w v and w _ u′, it follows
by (2.22) that u′ 6∈ Jϕ1Kd′′ . But together u′ ∈ JψKd′′ , u′ 6∈ Jϕ2Kd′′ , and u′ 6∈ Jϕ2Kd′′
contradict the assumption that �d′′ ϕ1 ∧ ϕ2 ↔ ψ. HenceM, w �d′′ Kψ.

For H-semantics without totality, we modify the right hand side of (2.16) as fol-
lows: M, w �h′′ Bϕ and

∀x(x ∈ JϕKh′′ ⇒ ∃v ∈ JϕKh′′(v �w x & ∀u ∈ Jϕ1Kh′′(u �w v ⇒M, u 2h′′ Bϕ))).

(2.26)
The proof for Theorem 2.1.4 that (d) implies the validity of χn,m over CB models
according to this modified H′′-semantics follows the same pattern as the proof for
D′′-semantics above, only with the additional use of Fact 2.7.

2.6.2 Completeness for Total RA Models

We turn now to the ‘only if’ directions of Theorem 2.1. The proof for part 1 of the
theorem, which we omit, is a much simpler application of the general approach used
for the other parts. In this section, we treat the ‘only if’ direction of part 2. This is
the most involved part of the proof and takes us most of the way toward the ‘only if’
direction of part 3, treated in §2.6.3. It may help at times to recall the proof sketch
given after Fact 2.6 above.

In §2.6.2, I define what it is for the χn,m in Theorem 2.1 to be T-unpacked. In
§2.6.2, I show that if a T-unpacked χn,m does not satisfy (a) or (c) of Theorem 2.1,
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then it is falsified by a finite total RA model according to D-semantics. In fact, it is
falsified by a finite linear RA model with the universal field property (Def. 2.3.4).
Finally, in §2.6.2 we give upper bounds on the size of and complexity of finding
falsifying models in Corollaries 2.2 and 2.3.

T-unpacking Formulas

Toward defining what it is for χn,m (Notation 2.3) to be T-unpacked, let us first define
a normal form for the ϕ1, . . . , ϕn in χn,m. For our purposes, we need only define the
normal form for the top (propositional) level of each ϕi.

Definition 2.8 (DNF). A formula in the epistemic language is in (propositional)
disjunctive normal form (DNF) iff it is of the form

∨
(α ∧

∧
Kβ ∧

∧
¬Kγ),

where α is propositional (a conjunction of literals, but it will not matter here), and
β and γ are any formulas.

Roughly speaking, we T-unpack a conditional χn,m by using the T axiom, Kϕi →
ϕi, to replace Kϕi in the antecedent with the equivalent ϕi ∧ Kϕi and then use
propositional logic to put ϕi in its appropriate place; e.g., if ϕi is ¬Kγ, then we
move Kγ to the consequent to become one of the Kψ’s. After the following general
definition and result, we work out a concrete example.

Definition 2.9 (T-unpacked). For any (possibly empty) sequence of formulas ψ1, . . . , ψm,
a formula of the form χ0,m is T-unpacked; and for ϕn+1 in DNF, a formula of the form
χn+1,m is T-unpacked iff χn,m is T-unpacked and there is a disjunct δ of ϕn+1 such
that:

1. the α conjunct in δ is a conjunct of ϕ0;

2. for all Kβ conjuncts in δ, there is some i ≤ n such that ϕi = β;

3. for all ¬Kγ conjuncts in δ, there is some j ≤ m such that ψj = γ.
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The following proposition will be used to prove several later results.

Proposition 2.2 (T-unpacking). Every formula in the epistemic language is equiva-
lent over RA models in C/D/L-semantics (and over CB models in H/N/S-semantics)
to a conjunction of T-unpacked formulas of the form χn,m.

Proof. By propositional logic, every formula θ is equivalent to a conjunction of for-
mulas of the conditional (disjunctive) form χn,m. Also by propositional logic, every
ϕi in the antecedent of χn,m can be converted into an equivalent ϕ∨i in DNF; and
since ϕi and ϕ∨i are equivalent, so are Kϕi and Kϕ∨i by the semantics. To obtain
an equivalent of θ in which each χn,m is T-unpacked, we repeatedly use the following
equivalences, easily derived using propositional logic and the valid T axiom, Kψ → ψ.
Where ζ and η are any formulas,

ζ ∧K
(∨
k≤l
δk
)
→ η

⇔ ζ ∧
(∨
k≤l
δk
)
∧K

(∨
k≤l
δk
)
→ η

⇔ ∧
k≤l

(
ζ ∧ δk ∧K

(∨
k≤l
δk
)
→ η

)
⇔ ∧

k≤l

(
ζ ∧ αk ∧∧Kβk ∧K

(∨
k≤l
δk
)
→ η ∨∨Kγk

)
,

where each δk is of the form αk ∧ ∧Kβk ∧ ∧¬Kγk. Compare conditions 1 - 3 of
Definition 2.9 to the relation of δk to the k-th conjunct in the last line.

Example 2.2 (T-unpacking cont.). Let us T-unpack the following formula:

K((K(Kp ∨ q)
β1
1

∧K¬Kq
β1
2

∧ ¬KKr γ11 )
δ1

∨K¬Kr β2
1 δ2

)

ϕ

→ Kψ.

No matter what we substitute for ψ, the form of the final result will be the same,
since T-unpacking does nothing to formulas already in the consequent.

As in the proof of Proposition 2.2, we derive a string of equivalences, obtain-
ing formulas in boldface by applications of the T axiom and otherwise using only
propositional logic:

Kϕ→ Kψ ⇔ ϕ ∧Kϕ→ Kψ;
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then since ϕ is a disjunction, we split into two conjuncts:

⇔ (δ1 ∧Kϕ→ Kψ) ∧ (δ2 ∧Kϕ→ Kψ);

then we move the negated Kγ1
1 in δ1 to the first consequent and rewrite as

⇔ (Kβ1
1 ∧Kβ1

2 ∧Kϕ→ Kψ ∨Kγ1
1) ∧ (Kβ2

1 ∧Kϕ→ Kψ);

then we apply the T axiom to the Kβ formulas:

⇔ (β1
1 ∧ β1

2 ∧Kβ1
1 ∧Kβ1

2 ∧Kϕ→ Kψ ∨Kγ1
1) ∧ (β2

1 ∧Kβ2
1 ∧Kϕ→ Kψ);

then we move the negated Kq in β1
2 and Kr in β2

1 to the consequents:

⇔ (β1
1 ∧Kβ1

1 ∧Kβ1
2 ∧Kϕ→ Kψ ∨Kγ1

1 ∨Kq) ∧ (Kβ2
1 ∧Kϕ→ Kψ ∨Kr);

since β1
1 is another disjunction, we split the first conjunct into two:

⇔ (Kp ∧Kβ1
1 ∧Kβ1

2 ∧Kϕ→ Kψ ∨Kγ1
1 ∨Kq) ∧

(q ∧Kβ1
1 ∧Kβ1

2 ∧Kϕ→ Kψ ∨Kγ1
1 ∨Kq) ∧

(Kβ2
1 ∧Kϕ→ Kψ ∨Kr);

finally, we apply the T axiom to Kp and rewrite as:

⇔ (p
ϕ0
∧Kp

ϕ1
∧K(Kp ∨ q)

ϕ2
∧K ¬Kq

ϕ3
∧K ϕ

ϕ4
→ Kψ

ψ1
∨KKr ψ2

∨Kq
ψ3

)

∧ (q
ϕ′0
∧K(Kp ∨ q)

ϕ′1
∧K¬Kq

ϕ′2
∧Kϕ

ϕ′3
→ Kψ

ψ′1
∨KKr ψ′2 ∨Kq ψ′3)

∧ (K¬Kr ϕ′′1 ∧Kϕϕ′′2
→ Kψ

ψ′′1
∨Kr ψ′′2 ).

Observe that the three conjuncts are T-unpacked according to Definition 2.9.

Countermodel Construction

Our approach to proving the ‘only if’ direction of Theorem 2.1.2 is to assume that (a)
and (c) fail, from which we infer the existence of models that can be “glued together”
to construct a countermodel for χn,m. For a clear illustration of this approach applied
to basic modal models with arbitrary accessibility relations, see van Benthem 2010,
§4.3. There are two important differences in what we must do here. First, since we are
dealing with reflexive models in which Kϕ → ϕ is valid, we must use T-unpacking.
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Second, since we are dealing with a hybrid of relational and ordering semantics, we
cannot simply glue all of the relevant models together at once, as in the basic modal
case; instead, we must put them in the right order, which we do inductively.

The construction has two main parts. First, we inductively build up a kind of
“pre-model” that falsifies χn,m. Second, assuming that χn,m is T-unpacked, we can
then convert the pre-model into an RA model that falsifies χn,m.

Definition 2.10 (Pre-Model). A pointed pre-model is a pair M, v, with M =

〈W,_,�, V 〉 and v ∈ W , where W , _, �w for w ∈ W \ {v}, and V are as in
Definition 2.2; �v satisfies Definition 2.2.3a, but for all w ∈ W , v 6∈ Ww.

Hence a pointed pre-model is not a pointed RA model, since Definition 2.2.3b
requires that v ∈ Wv for an RA model. However, truth at a pointed pre-model is
defined in the same way as truth at a pointed RA model in Definition 2.5.

The following lemma shows how we will build up our model in the inductive
construction of Lemma 2.3. It is important to note that Lemmas 2.2 and 2.3 hold for
any χn,m as in Notation 2.3, whether or not it is T-unpacked.

Lemma 2.2 (Pre-Model Extension). Assume there is a linear pointed pre-model
M, w such thatM, w 2d χn,m.

1. If ψ1 ∧ · · · ∧ ψm → ϕn+1 is not D-valid over linear RA models, then there is a
linear pointed pre-modelM], w such thatM], w 2d χn+1,m.

2. If ϕ1 ∧ · · · ∧ ϕn → ψm+1 is not D-valid over linear RA models, then there is a
linear pointed pre-modelM[, w such thatM[, w 2d χn,m+1.

Proof. For part 1, let N = 〈N,_N ,�N , V N 〉 with v ∈ N be a linear RA model
such that N , v 2d ψ1 ∧ · · · ∧ ψm → ϕn+1. By assumption, there is a linear pre-
modelM = 〈M,_M,�M, VM〉 with point w ∈ M such thatM, w 2d χn,m. Define
M] = 〈W ],_],�], V ]〉 as follows (see Fig. 2.4):

W ] = M ∪N (we can assume M ∩N = ∅); _] = _M ∪ _N ;

�]w =�Mw ∪{〈v, x〉 | x = v or x ∈Mw}, where Mw is the field of �Mw ;
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�]x =�Mx for all x ∈M \ {w}; �]y =�Ny for all y ∈ N ;

V ](p) = VM(p) ∪ V N (p).

Observe thatM], w is a linear pointed pre-model.
It is easy to verify that for all formulas ξ and x ∈M \ {w},

M], x �d ξ iffM, x �d ξ ; andM], v �d ξ iff N , v �d ξ. (2.27)

w

ψ1, . . . , ψm,¬ϕn+1

v

≺
v

...

≺w . . .

Figure 2.4: part of the extended pre-modelM] for Lemma 2.2.1

GivenM, w 2d χn,m and the truth definition (Def. 2.5),

⋃
1≤i≤n

Min�Mw (JϕiK
M

)∩_M(w) = ∅. (2.28)

It follows by the construction ofM] and (2.27) that

⋃
1≤i≤n+1

Min�]w(JϕiK
M]

)∩_](w) = ∅, (2.29)

which is equivalent to M], w �d Kϕ1 ∧ · · · ∧ Kϕn+1 by the truth definition. The
construction ofM] and (2.27) also guarantee that for all k ≤ m,

Min�Mw (JψkK
M

)∩_M(w) ⊆ Min�]w(JψkK
M]

)∩_](w). (2.30)

Given M, w 2d χn,m, for all k ≤ m the left side of (2.30) is nonempty, so the right



2. RELEVANT ALTERNATIVES AND SUBJUNCTIVISM 53

side is nonempty. Hence by the truth definition,M], w 2d Kψ1∨ · · · ∨Kϕm. Finally,
since ϕ0 is propositional,M, w � ϕ0 impliesM], w � ϕ0 by definition of V ]. It follows
from the preceding facts thatM], w 2d χn+1,m.

For part 2, let O = 〈O,_O,�O, V O〉 with u ∈ O be a linear RA model such that
O, u 2d ϕ1∧· · ·∧ϕn → ψm+1. GivenM, w as in part 1, defineM[ = 〈W [,_[,�[, V [〉
fromM and O in the same way as we definedM] fromM and N for part 1, except
that _[ = _M ∪ _O ∪ {w, u} (see Fig. 2.5). Observe thatM[, w is a linear pointed
pre-model.

It is easy to verify that for all formulas ξ and x ∈M \ {w},

M[, x �d ξ iffM, x �d ξ ; andM[, u �d ξ iff O, u �d ξ. (2.31)

w

ϕ1, . . . , ϕn,¬ψm+1

u

≺
u

...

≺w . . .

Figure 2.5: part of the extended pre-modelM[ for Lemma 2.2.2

As in the proof of part 1, (2.28) holds for M. It follows by the construction of
M[ and (2.31) that (2.28) also holds for M[ and _[ in place of M and _M, so
M[, w �d Kϕ1 ∧ · · · ∧ Kϕn by the truth definition. Also as in the proof of part 1,
Min�Mw (JψkK

M
)∩_M (w) is nonempty for all k ≤ m. It follows by the construction

of M[ and (2.31) that Min�[w(JψkK
M[

)∩ _[ (w) is nonempty for all k ≤ m + 1, so
M[, w 2 Kψ1∨· · ·∨Kψm+1 by the truth definition. Finally, since ϕ0 is propositional,
M, w � ϕ0 impliesM[, w � ϕ0 by definition of V [. It follows from the preceding facts
thatM[, u 2d χn,m+1.

Remark 2.8 (Properties of _). Lemma 2.2 also holds for the class of RA models/
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pre-models in which _ is an equivalence relation, so that Theorem 2.1.2-3 will as well.
For part 1, if M and N are in this class, so is M], since the union of two disjoint
equivalence relations is an equivalence relation. For part 2, supposeM and O are in
the class. Since we have added an arrow from w to u,M[ may not be in the class. In
this case, let _+ be the minimal extension of _[ that is an equivalence relation. One
can check that by construction ofM[, for all w ∈ W [, (_+ (w)\ _[ (w)) ∩Ww = ∅.
It follows thatM[ andM+ = 〈W [,_+,�[, V [〉 satisfy the same formulas according
to D-semantics.

Using Lemma 2.2, we can now carry out our inductive construction.

Lemma 2.3 (Pre-Model Construction). If neither (a) nor (c) of Theorem 2.1 holds
for χn,m, then there is a linear pointed pre-modelM, w such thatM, w 2d χn,m.

Proof. The proof is by induction on m with a subsidiary induction on n.
Base case for m. Assume that neither (a) nor (c) holds for χn,0.36 Let M =

〈W,_,�, V 〉 be such that W = {w}, _ = {〈w,w〉}, �w = ∅, and V is any valuation
such thatM, w � ϕ0, which exists since (a) does not hold for χn,0. ThenM, w is a
linear pointed pre-model such thatM, w 2d χn,0.

Inductive step for m. Assume for induction on m that for any β1, . . . , βm and any
n, if neither (a) nor (c) holds for χ := ϕ0∧Kϕ1∧· · ·∧Kϕn → Kβ1∨· · ·∨Kβm, then
there is a linear pointed pre-model M, w with M, w 2d χ. Assume that for some
ψ1, . . . , ψm+1, neither (a) nor (c) holds for χn,m+1. We prove by induction on n that
there a linearM′, w withM′, w 2d χn,m+1.

Base case for n. Assume neither (a) nor (c) holds for χ0,m+1. Since (c) does not
hold, for all j ≤ m+1, 2d > ↔ ψj and hence 2d > → ψj. Starting withM, w defined
as in the base case for m such thatM, w 2 χ0,0, apply Lemma 2.2.2 m + 1 times to
obtain anM′, w withM′, w 2 χ0,m+1.

Inductive step for n. Assume for induction on n that for any α0, . . . , αn, if neither
(a) nor (c) holds for χ := α0∧Kα1∧· · ·∧Kαn → Kψ1∨· · ·∨Kψm+1, then there is a
linear pointed pre-modelM, w withM, w 2d χ. Assume that for some ϕ0, . . . , ϕn+1,
neither (a) nor (c) holds for χn+1,m+1.

36Recall that χn,0 is of the form ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → ⊥.
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Case 1 : �d ϕ1 ∧ · · · ∧ ϕn+1 → ψ1 ∧ · · · ∧ ψm+1. Then since (c) does not hold for
χn+1,m+1, 2d ψ1∧ · · ·∧ψm+1 → ϕ1∧ · · ·∧ϕn+1, in which case 2d ψ1∧ · · ·∧ψm+1 → ϕi

for some i ≤ n+ 1. Without loss of generality, assume

2d ψ1 ∧ · · · ∧ ψm+1 → ϕn+1. (2.32)

Since neither (a) nor (c) holds for χn+1,m+1, neither holds for χn,m+1. Hence by
the inductive hypothesis for n there is a linear pointed pre-model M, w such that
M, w 2d χn,m+1, which with (2.32) and Lemma 2.2.1 implies that there is a linear
pointed pre-modelM], w such thatM], w 2d χn+1,m+1.

Case 2 : 2d ϕ1 ∧ · · · ∧ ϕn+1 → ψ1 ∧ · · · ∧ ψm+1. Then for some j ≤ m + 1,
2 ϕ1 ∧ · · · ∧ ϕn+1 → ψj. Without loss of generality, assume

2d ϕ1 ∧ · · · ∧ ϕn+1 → ψm+1. (2.33)

Since neither (a) nor (c) holds for χn+1,m+1, neither holds for χn+1,m. Hence by
the inductive hypothesis for m there is a linear pointed pre-model M, w such that
M, w 2d χn+1,m, which with (2.33) and Lemma 2.2.2 implies that there is a linear
pointed pre-modelM[, w such thatM[, w 2d χn+1,m+1.

Finally, if χn,m is T-unpacked (Def. 2.9), then we can convert the falsifying pre-
model obtained from Lemma 2.3 into a falsifying RA model.

Lemma 2.4 (Pre-Model to Model Conversion). Given a linear pointed pre-model
M, w and a T-unpacked χn,m such thatM, w 2d χn,m, there is a linear pointed RA
modelMc, w such thatMc, w 2d χn,m.

Proof. Where M = 〈W,_,�, V 〉, define Mc = 〈W,_,�c, V 〉 such that for all v ∈
W \ {w}, �cv =�v, and �cw =�w ∪{〈w, v〉 | v ∈ {w} ∪Ww}, where Ww is the field
of �w. Since w is strictly minimal in �cw,Mc is a linear RA model. (Note, however,
that w is still not in the field of �cv for any v ∈ W \ {w}.) By construction ofMc,
togetherM, w 2d Kψ1 ∨ · · · ∨Kψm and w _ w imply

Mc, w 2d Kψ1 ∨ · · · ∨Kψm. (2.34)
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We prove by induction that for all k ≤ n,

Mc, w �d ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕk. (2.35)

The base case of k = 0 is immediate since ϕ0 is propositional, M, w � ϕ0, and M
andMc have the same valuations. Assuming (2.35) holds for k < n, we must show
Mc, w �d Kϕk+1. Since χn,m is T-unpacked, together Definition 2.9, (2.34), and
(2.35) implyMc, w �d ϕk+1. SinceM, w �d Kϕk+1, we have Min�w(Jϕk+1K

M
)∩ _

(w) = ∅ by the truth definition (Def. 2.5). It follows, given the construction ofMc

and the fact that Mc, w �d ϕk+1, that Min�cw(Jϕk+1K
Mc

)∩ _ (w) = ∅, which gives
Mc, w �d Kϕk+1, as desired.

The proof of the ‘only if’ direction of Theorem 2.1.2 is complete. By Lemmas 2.3
and 2.4, if a T-unpacked χn,m does not satisfy (a) or (c) of Theorem 2.1, then it is
falsified by a linear—and hence total—RA model according to D-semantics. Indeed,
as the next proposition and Corollary 2.2 together show, it is falsified by an RA model
with the universal field property (Def. 2.3.4).

Proposition 2.3 (Universalization). WhereM = 〈W,_,�, V 〉 is a finite RA model,
there is a finite RA modelMu = 〈W u,_u,�u, V u〉 with the universal field property,
such that W ⊆ W u and for all w ∈ W and all ϕ,

M, w �d ϕ iffMu, w �d ϕ.

IfM is total,Mu is also total. IfM is linear,Mu is also linear.

Proof. Given M = 〈W,_,�, V 〉, suppose that for some w, v ∈ W , v 6∈ Ww, so
v 6= w. Define M′ = 〈W ′,_′,�′, V ′〉 such that W ′ = W ; _′= _ \{〈w, v〉}; �′w =

�w ∪{〈x, v〉 | x ∈ Ww ∪ {v}}; �′y =�y for y ∈ W \ {w}; and V ′ = V . In other
words, v becomes the least relevant world at w and eliminated at w in M′. Given
v 6∈ Ww, one can show by induction on ϕ that for all x ∈ W ,M, x �d ϕ iffM′, x �d ϕ.
Applying the transformation M 7→ M′ successively no more than |W |2 times with
other pairs of worlds like w and v yields a modelMu with the universal field property.
IfM is total/linear, so isMu.
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If we require that _ be an equivalence relation, then the transformation above
will not work in general, since we may lose transitivity or symmetry by setting w 6_′

v. To solve this problem, we first make an isomorphic copy of M, labeled M? =

〈W ?,_?,�?, V ?〉. For every w ∈ W , let w? be its isomorphic copy in W ?. Define
N = 〈WN ,_N ,�N , V N 〉 as follows: WN = W ∪ W ?; _N = _ ∪ _?; V N (p) =

V (p) ∪ V ?(p); for all w ∈ W , �Nw =�w ∪{〈v, u〉 | v ∈ WN and u ∈ W ?}; for all
w? ∈ W ?, �Nw? =�w? ∪{〈v, u〉 | v ∈ WN and u ∈ W}. In other words, N is the
result of first taking the disjoint union of M and M? (so there are no v ∈ W and
u ∈ W ? such that v _N u or u _N v) and then making all worlds in W ? the least
relevant worlds from the perspective of all worlds in W , and vice versa.37 Given this
construction, it is easy to prove by induction that for all w ∈ W and formulas ϕ,
M, w �d ϕ iff N , w �d ϕ iff N , w? �d ϕ. Moreover, _N is an equivalence relation if
_ is.

Next we turnN into a model with universal fields, without changing _N . Suppose
that for w, v ∈ W , v is not in the field of �Nw , which is the case iff v? is not in the
field of �Nw? . (Remember that for all w ∈ W and u ∈ W ?, u is in the field of
�Nw and vice versa.) Let N ′ = 〈W ′,_′,�′, V ′〉 be such that: W ′ = WN ; _′= _N ;
V ′ = V N ; for all u ∈ W ′\{w,w?}, �′u =�Nu ; �′w=�Nw ∪{〈x, v〉 | x ∈ WN

w ∪{v}}; and
�′w?=�Nw? ∪{〈x, v?〉 | x ∈ WN

w?∪{v?}}. It follows that for all x ∈ WN
w , x �′w v? ≺′w v;

and for all x ∈ WN
w? , x �′w? v ≺′w? v?. Since w 6_′ v? and w? 6_′ v, one can prove by

induction that for all ϕ and u ∈ W , N , u �d ϕ iff N ′, u �d ϕ iff N ′, u? �d ϕ. The
key is that although we put v in the field of �′w, this cannot make any Kψ formula
that is true at N , w false at N ′, w, for if N ′, v 2d ψ, then by the inductive hypothesis
N ′, v? 2d ψ, and v? is more relevant than v and eliminated at w; similarly, although
we put v? in the field of �′w? , this cannot make any Kψ formula that is true at N , w?
false at N ′, w?. Applying the transformation N 7→ N ′ successively no more than
|WN |2 times with other worlds like w and v yields a universalizedMu.

37If we want to stay within the class of linear models, then we must change the definition of �Nw
so that it extends the linear order �w with an arbitrary linear order on W ? that makes all worlds
in W ? less relevant than all worlds in W , and similarly for �Nw? .
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Finite Models and Complexity

From the proofs of §2.6.2, we obtain results on finite models and the complexity of
satisfiability for D-semantics over total (linear, universal) RA models.

Corollary 2.2 (Effective Finite Model Property). For any formula ϕ of the epistemic
language, if ϕ is satisfiable in a total RA model according to D-semantics, then ϕ is
satisfiable in a total RA modelM with |M| ≤ |ϕ|d(ϕ).

Proof. By strong induction on d(ϕ). Since ϕ is satisfiable iff ¬ϕ is falsifiable, consider
the latter. By Proposition 2.2, ¬ϕ is equivalent to a conjunction of T-unpacked
formulas of the form χn,m, which is falsifiable iff one of its conjuncts χn,m is falsifiable.
By Lemmas 2.2 - 2.4, if χn,m is falsifiable, then it is falsifiable in a model M that
combines at most k other models (and one root world), where k is the number of
top-level K operators in χn,m, which is bounded by |ϕ|. Each of the these models is
selected as a model of a formula of lesser modal depth than χn,m, so by the inductive
hypothesis we can assume that each is of size at most |ϕ|d(ϕ)−1. Hence |M| ≤ |ϕ| ×
|ϕ|d(ϕ)−1 = |ϕ|d(ϕ).

Corollary 2.3 (Complexity of Satisfiability).

1. The problem of deciding whether an epistemic formula is satisfiable in the class
of total RA models according to D-semantics is in PSPACE;

2. For any k, the problem of deciding whether an epistemic formula ϕ with d(ϕ) ≤
k is satisfiable in the class of total RA models according to D-semantics is
NP-complete.

Proof. (Sketch) For part 1, given PSPACE = NPSPACE (see Papadimitriou 1994,
§7.3), it suffices to give a non-deterministic algorithm using polynomial space. By
the previous results (including Prop. 2.2), if ϕ is satisfiable, then it is satisfiable
in a model that can be inductively constructed as in the proofs of Lemmas 2.2,
2.3, and 2.4. We want an algorithm to non-deterministically guess such a model.
However, since the size of the model may be exponential in |ϕ|, we cannot necessarily
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store the entire model in memory using only polynomial space. Instead, we non-
deterministically guess the submodels that are combined in the inductive construction,
taking advantage of the following fact from the proof of Lemma 2.2. Once we have
computed the truth values at N , v (or O, u) of all subformulas of ϕ (up to some
modal depth, depending on the stage of the construction), we can label v with the
true subformulas and then erase the rest of N from memory (and similarly for O, u).
The other worlds in N will not be in the field of �x for any world x at which we need
to compute truth values at any later stage of the construction, so it is not necessary
to access those worlds in order to compute later truth values. Given this space-saving
method, we only need to use polynomial space at any given stage of the algorithm. I
leave the details of the algorithm to the reader.38

For part 2, NP-hardness is immediate, since for k = 0 we have all formulas
of propositional logic. For membership in NP, if ϕ is satisfiable and d(ϕ) ≤ k,
then by Corollary 2.2, ϕ satisfiable in a model M with |M| ≤ |ϕ|k. We can non-
deterministically guess such a model, and it is easy to check that evaluating ϕ inM
is in polynomial time given thatM is polynomial-sized.

As explained in Remark 2.9, Corollary 2.3.1 accords with results of Vardi [1989].
Corollary 2.3.2 accords with results of Halpern [1995] on the effect of bounding modal
depth on the complexity of satisfiability for modal logics.

2.6.3 Completeness for All RA Models

Next we prove the ‘only if’ direction of Theorem 2.1.3. In the process we prove the
separation property for D-semantics over all RA models noted in Proposition 2.1.
Interestingly, dropping totality makes things simpler.

Claim 2.2. If neither (a) nor (d) holds for a T-unpacked χn,m, then there is a pointed
RA modelM, w such thatM, w 2d χn,m.

Proof. If m ≤ 1, (d) is the same as (c), covered in §2.6.2. So suppose m > 1. By
Lemma 2.4 and the m = 1 case of the inductive proof of Lemma 2.3, if neither

38Cf. Theorem 4.2 of Friedman and Halpern 1994 for a proof that the complexity of satisfiability
for formulas of conditional logic in similar preorder structures is in PSPACE.
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(a) nor (d) holds for χn,m, then for all 1 ≤ j ≤ m, there is a linear RA model
Mj = 〈Wj,_j,�j, Vj〉 with point wj ∈ Wj such that

Mj, wj 2d ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → Kψj. (2.36)

Recall that Mj is constructed in such a way that for all v ∈ W−
j = Wj \ {wj}, wj

is not in the field of �jv. Without loss of generality, assume that for all j, k ≤ m,
Wj ∩Wk = ∅. Construct M = 〈W,_,�, V 〉 as follows, by first taking the disjoint
union of all of theMj, then “merging” all of the wj into a single new world w (with
the same valuation as some wk), so that the linear models Mj are linked to w like
spokes to the hub of a wheel (recall Fig. 2.3):

W = {w} ∪ ⋃
j≤m

W−
j ; for all j ≤ m and v ∈ W−

j , �v =�jv;

�w = {〈w, v〉 | v = w or ∃ j ≤ m: wj �jwj v} ∪
⋃
j≤m

(�jwj ∩ (W−
j ×W−

j ));

_ = {〈w, v〉 | v = w or ∃ j ≤ m: wj _j v} ∪
⋃
j≤m

(_j ∩ (W−
j ×W−

j ));

V (p) =


⋃
j≤m

(Vj(p) ∩W−
j ) ∪ {w} if w1 ∈ V1(p);⋃

j≤m
(Vj(p) ∩W−

j ) if w1 6∈ V1(p).

It is easy to verify that for all formulas ξ, j ≤ m, and v ∈ W−
j ,

M, v �d ξ iffMj, v �d ξ. (2.37)

It follows from the construction ofM and (2.37) that for all j ≤ m,

Min�jwj (JψjK
Mj

)∩_j (w) ⊆ Min�w(JψjK
M

)∩_(w). (2.38)

For all j ≤ m, givenMj, wj 2d Kψj by assumption, the left side of (2.38) is nonempty,
so the right side is nonempty. Hence by the truth definition,

M, w 2d Kψ1 ∨ · · · ∨Kψm. (2.39)
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By our initial assumption, for all j ≤ m,

⋃
i≤n

Min�jwj (JϕiK
Mj

)∩_j (w) = ∅. (2.40)

We prove by induction that for 1 ≤ i ≤ n,

Min�w(JϕiK
M

)∩_(w) = ∅. (2.41)

Base case. Given M1, w1 � ϕ0 and the fact that w has the same valuation
under V as w1 under V1, we have M, w � ϕ0. Together with (2.39), this implies
M, w 2d χ0,m. Since χ1,m is T-unpacked, it follows by Definition 2.9 thatM, w �d ϕ1,
in which case w 6∈ Min�w(Jϕ1K

M
). By construction ofM, together (2.40), (2.37), and

w 6∈ Min�w(Jϕ1K
M

) imply (2.41) for i = 1.
Inductive step. Assume (2.41) for all k ≤ i (i < n), soM, w �d Kϕ1 ∧ · · · ∧Kϕi,

which with (2.39) gives M, w 2d χi,m. Then since χi+1,m is T-unpacked, M, w �d

ϕi+1, so by reasoning as in the base case, (2.41) holds for i+ 1.
Since (2.41) holds for 1 ≤ i ≤ n, by the truth definition we haveM, w �d Kϕ1 ∧

· · · ∧Kϕn, which withM, w � ϕ0 and (2.39) impliesM, w 2d χn,m.

A remark analogous to Remark 2.8 applies to the above construction: if each
_j is an equivalence relation and we extend _ to the minimal equivalence relation
_+⊇_, then the resulting model will still falsify χn,m. Hence Theorem 2.1.3 holds
for the class of RA models with equivalence relations (and with the universal field
property by Prop. 2.3). Finally, arguments similar to those of Corollaries 2.2 - 2.3
show the finite model property and PSPACE satisfiability without the assumption of
totality (see Remark 2.9).

2.6.4 Completeness for CB Models

Finally, for the ‘only if’ direction of Theorem 2.1.4, there are two ways to try to
falsify some χn,m. For H/N-semantics, we can first construct an RA countermodel for
χn,m under D-semantics, as in §2.6.2, and then transform it into a CB countermodel
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for χn,m under H/N-semantics, as shown in §2.7 below. Alternatively, we can first
construct a CB countermodel under S/H-semantics and then transform it into a CB
countermodel under H/N-semantics as in §2.7. Here we will take the latter route. By
Proposition 2.5 below, for the ‘only if’ direction of Theorem 2.1.4 it suffices to prove
the following.

Claim 2.3. If neither (a) nor (d) holds for a flat, T-unpacked χn,m, then there is a
pointed CB modelM, w such thatM, w 2h,s χn,m.

We begin with some notation used in the proof and in later sections.

Notation 2.5 (Relational Image). Given a CB modelM = 〈W,D,6, V 〉, the image
of {w} under the relation D is D(w) = {v ∈ W | wDv}.

Hence D(w) is the set of doxastically accessible worlds for the agent in w.
Let us now prove the claim.

Proof. For any positive integer z, let Pz = {1, . . . , z}. For all k ∈ Pm, let Sk = {i ∈
Pn | � ψk → ϕi}, and T = {t ∈ Pm | St = Pn}. Since (d) does not hold for χn,m, it
follows that

2
∧
i∈Sk

ϕi → ψk. (2.42)

ConstructM = 〈W,D,6, V 〉 as follows (see Fig. 2.6):

W = {w} ∪ {xt | t ∈ T} ∪ {vk, ukj | k ∈ Pm \ T and j ∈ Pn \ Sk};

D is the union of {〈w,w〉}, {〈w, xt〉, 〈xt, xt〉 | t ∈ T}, and

{〈vk, ukj 〉, 〈ukj , ukj 〉 | k ∈ Pm \ T and j ∈ Pn \ Sk};

6w = {〈w,w〉} ∪ {〈w, vk〉, 〈vk, w〉, 〈vk, vk〉 | k ∈ Pm};39

39The xt and ukj worlds are not in the field of 6w. For a universal field (and total relation), the
proof works with minor additions if we take the union of 6w as defined above with

{〈w, xt〉, 〈w, ukj 〉, 〈vk, xt〉, 〈vk, ukj 〉, 〈xt, xt〉, 〈xt, ukj 〉, 〈ukj , ukj 〉 | t ∈ T , k ∈ Pm \ T , j ∈ Pn \ Sk}.
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For y ∈ W \ {w}, 6y is any relation as in Definition 2.2.3;

V is any valuation function on W such thatM, w � ϕ0 and

• for all t ∈ T ,M, xt �
∧
i∈Pn

ϕi ∧ ¬ψt;

• for all k ∈ Pm \ T ,M, vk �
∧
i∈Sk

ϕi ∧ ¬ψk;

• for all k ∈ Pm \ T and j ∈ Pn \ Sk,M, ukj � ¬ϕj ∧ ψk.

Such a valuation V exists by the assumption that (a) does not hold for χn,m, together
with (2.42) and the definitions of T and Sk.

ϕ0

w

. . .
¬ψs

xs

ϕ1 ∧ · · · ∧ ϕn ¬ψt
xt

≡w ∧
i∈Sk

ϕi ∧ ¬ψk
vk ≡w . . . ≡w ∧

i∈Sl
ϕi ∧ ¬ψl

vl

. . .
¬ϕa, ψk

uka

¬ϕb, ψk
ukb . . .

¬ϕc, ψl
ulc

¬ϕd, ψl
uld

Figure 2.6: countermodel for χn,m in H/S-semantics

Since χn,m is flat and T-unpacked,M, w � ϕ0 impliesM, w � ϕ1∧ · · ·∧ϕn. Then
since D(w) = {w} ∪ {xt | t ∈ T} andM, xt � ϕ1 ∧ · · · ∧ ϕn for all t ∈ T ,

M, w �
∧
i∈Pn

(Bϕi ∧ ϕi). (2.43)

For all k ∈ Pm \ T , we have
M, vk 2

∨
j∈Pn\Sk

Bϕj (2.44)

given vkDukj andM, ukj 2 ϕj, and

M, vk �
∧
i∈Sk

ϕi (2.45)
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by definition of V . It follows from (2.44) and (3.3.2) that for all k ∈ Pm \ T ,

M, vk �
∧
i∈Pn

(Bϕi → ϕi). (2.46)

By construction ofM, (2.43) and (2.46) together imply that for all y ∈ Ww,

M, y �
∧
i∈Pn

(Bϕi → ϕi). (2.47)

Together (2.43) and (2.47) implyM, w �h,s Kϕi for all i ∈ Pn by the truth definitions
(Def. 2.7). Now let us check thatM, w 2h,s Kψi for all i ∈ Pm. On the one hand, for
all t ∈ T , given wDxt andM, xt 2 ψt, we haveM, w 2 Bψt and henceM, w 2h,s Kψt.
On the other hand, for all k ∈ Pm \ T , given D(vk) = {ujk | j ∈ Pn \ Sk} and
M, ukj � ψk, we haveM, vk � Bψk; but then sinceM, vk 2 ψk and vk ∈ Min6w(W ),
it follows that M, w 2h,s Kψk. Together with M, w � ϕ0, the previous facts imply
M, w 2h,s χn,m.

We leave the extension of the ‘only if’ direction of Theorem 2.1.4 to the full
epistemic language for other work (see Problem 2.1). Facts 2.9.4, 2.9.5, and 2.11.1
show that for the full language, this direction must be modified. Yet for our purposes
here, the above proof already helps to reveal the sources of closure failure in H/S-
semantics and in N-semantics by Proposition 2.5 below.

2.6.5 The Sources of Closure Failure

The results of §2.6.2 - 2.6.4 allow us to clearly identify the sources of closure failure in
D/H/N/S-semantics. In D-semantics, the source of closure failure is the orderings—if
we collapse the orderings, then D- is equivalent to L-semantics (see Observation 2.3)
and closure failures disappear. By Proposition 2.4 below, the orderings are also a
source of closure failure in H/N-semantics. However, the proof in §2.6.4 shows that
there is another source of closure failure in H/N/S-semantics: the interpretation of
ruling out in terms belief, as in the quote from Heller in §2.4. This is the sole source
of closure failure in S-semantics, the odd member of the D/H/N/S-family that does
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not use the orderings beyond Min6w(W ) (recall Observation 2.1). Given this source
of closure failure, even if we collapse the orderings, in which case H- is equivalent to
S-semantics (see Prop. 2.6), closure failure persists. We will return to this point in
§2.10.

2.7 Relating RA and CB Models

The discussion in §2.6.4 - 2.6.5 appealed to claims about the relations between
D/H/N/S-semantics. In this short section, we prove these claims. Readers eager
to see how the results of §2.6 lead to complete deductive systems for the RA and
subjunctivist theories should skip ahead to §2.8 and return here later.

One way to see how the RA and subjunctivist theories are related is by transform-
ing models viewed from the perspective of one theory into models that are equivalent,
with respect to what can be expressed in our language, when viewed from the per-
spective of another theory. This also shows that any closure principle that fails for
the first theory also fails for the second.

We first see how to transform any RA model viewed from the perspective of
D-semantics into a CB model that is equivalent, with respect to the flat fragment
of the epistemic language, when viewed from the perspective of H-semantics. The
transformation is intuitive: if, in the RA model, a possibility v is eliminated by the
agent in w, then we construct the CB model such that if the agent were in situation
v instead of w, the agent would notice, i.e., would correctly believe that the true
situation is v rather than w;40 but if, in the RA model, v is uneliminated by the
agent in w, then we construct the CB model such that if the agent were in situation v
instead of w, the agent would not notice, i.e., would incorrectly believe that the true
situation is w rather than v. (The CB model in Fig. 2.2 is obtained from the RA
model in Fig. 2.1 in this way.) Then the agent has eliminated the relevant alternatives
to a flat ϕ at w in the RA model iff the agent sensitively believes ϕ at w in the CB

40In fact, we only need something weaker, namely, that it would be compatible with what the
agent believes that the true situation is v, i.e., vDv. In the w 6_ v case of the definition of D in the
proof of Proposition 2.4, we only need that v ∈ D(v) for the proof to work.
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model.

Proposition 2.4 (D-to-H Transform). For any RA modelM = 〈W,_,�, V 〉 with
w ∈ W , there is a CB model N = 〈W,D,6, V 〉 such that for all flat epistemic
formulas ϕ,

M, w �d ϕ iff N , w �h ϕ.

Proof. Construct N fromM as follows. Let W and V in N be the same as inM; let
6 in N be the same as � inM; construct D in N from _ inM as follows, where
w is the fixed world in the lemma (recall Notation 2.5):

∀v ∈ W : D(v) =

{w} if w _ v;

{v} if w 6_ v.
(2.48)

To prove the ‘iff’ by induction on ϕ, the base case is immediate and the boolean
cases routine. Suppose ϕ is of the form Kψ. Since ϕ is flat, ψ is propositional.
Given that V is the same in N as in M, for all v ∈ W , M, v �d ψ iff N , v �h ψ.
Hence if M, w 2d ψ, then M, w 2d Kψ and N , w 2h Kψ by Facts 2.1 and 2.4.
Suppose M, w �d ψ. Since w _ w, we have D(w) = {w} by construction of N , so
N , w �h Bψ given N , w �h ψ. It only remains to show that M, w �d Kψ iff the
sensitivity condition (Def. 2.7) for Kψ is satisfied at N , w. This is easily seen to be
a consequence of the following, given by the construction of N :

Min�w(JψKMd ) = Min6w(JψKNh ); (2.49)

∀u ∈ Min�w(JψKMd ): w _ u iff N , u �h Bψ. (2.50)

The left-to-right direction of the biconditional in (2.50) follows from the fact that if
w _ u, then D(u) = {w}, and N , w �h ψ. For the right-to-left direction, if w 6_ u,
then D(u) = {u}, in which case N , u 2h Bψ given N , u 2h ψ.

The transformation above does not always preserve all non-flat epistemic formulas,
and by Fact 2.9.4, no transformation does so. However, since the flat fragment of
the language suffices to express all principles of closure with respect to propositional
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logic, Proposition 2.4 has the notable corollary that all such closure principles that
fail in D-semantics also fail in H-semantics.

Next we transform CB models viewed from the perspective of H-semantics into
CB models that are equivalent, with respect to the epistemic-doxastic language, when
viewed from the perspective of N-semantics. (Fact 2.9 in §2.9 shows that there is no
such general transformation in the N-to-H direction.) To do so, we make the models
centered, which (as noted in Observation 2.1) trivializes the adherence condition that
separates N- from H-semantics.

Proposition 2.5 (H-to-N Transform). For any CB model N = 〈W,D,6, V 〉, there
is a CB model N ′ = 〈W,D,6′, V 〉 such that for all w ∈ W and all epistemic-doxastic
formulas ϕ,

N , w �h ϕ iff N ′, w �n ϕ.

Proof. Construct N ′ from N as follows. Let W , D, and V in N ′ be the same as in
N . For all w ∈ W , construct 6′w from 6w by making w strictly minimal in 6′w, but
changing nothing else:

u 6′w v iff

v 6= w and u 6w v, or

u = w.
(2.51)

To prove the proposition by induction on ϕ, the base case is immediate and the
boolean and belief cases routine. Suppose ϕ is Kψ and JψKNh = JψKN ′n . If N , w 2h ψ,
then N , w 2h Kψ and N ′, w 2n Kψ by Fact 2.4. If N , w �h ψ and hence N ′, w �n ψ,
then by construction of 6′w and the inductive hypothesis,

Min6w(JψKNh ) = Min6′w(JψKN
′

n ). (2.52)

Since D is the same in N as in N ′, (2.52) implies that the belief and sensitivity
conditions for Kψ are satisfied at N , w iff they are satisfied at N ′, w. If the belief
condition is satisfied, then Min6′w(JBψKN ′n ) = {w} by construction of 6′w, so the
adherence condition (Def. 2.7) is automatically satisfied at N ′, w. Hence the belief
and sensitivity conditions for Kψ are satisfied at N , w iff the belief, sensitivity, and
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adherence conditions are satisfied for Kψ at N ′, w.41

Our last transformation takes us from models viewed from the perspective of
S-semantics to equivalent models viewed from the perspective of H-semantics—and
hence N-semantics by Proposition 2.5. (Fact 2.8 in §2.9 shows that there can be no
such general transformation in the H-to-S direction.) The idea of the transformation
is that safety is the ∃∀ condition (as in §2.4) obtained by restricting the scope of
sensitivity to a fixed set of worlds, Min6w(W ).

Proposition 2.6 (S-to-H Transform). For any CB model N = 〈W,D,6, V 〉, there
is a CB model N ′ = 〈W,D,6′, V 〉 such that for all w ∈ W and all epistemic-doxastic
formulas ϕ,

N , w �s ϕ iff N ′, w �h ϕ.

Proof. Construct N ′ from N as follows. Let W , D, and V in N ′ be the same as in
N . For all w ∈ W , construct 6′w from 6w by taking Min6w(W ) to be the field of 6′w
and setting u 6′w v for all u and v in the field. It is straightforward to check that N
and N ′ are equivalent with respect to the safety condition and that in N ′ the safety
and sensitivity conditions become equivalent.42

Although I have introduced the propositions above for the purpose of relating
the (in)valid closure principles of one theory to those of another, by transforming
countermodels of one kind into countermodels of another, the interest of this style of
analysis is not just in transferring principles for reasoning about knowledge between
theories; the interest is also in highlighting the structural relations between different
pictures of what knowledge is. In Chapter 3, we will continue our model-theoretic
analysis to illuminate these pictures.

41It is easy to see that even if we forbid centered models, Proposition 2.5 will still hold. For we can
allow any number of worlds in Min6′

w
(W ), provided they do not witness a violation of the adherence

condition at w for any ϕ for which we want N , w �n Kϕ.
42It is easy to see that even if we require Ww \Min6′

w
(W ) 6= ∅, Proposition 2.5 will still hold. For

we can allow any number of worlds in Ww \Min6′
w

(W ), provided they do not witness a violation of
the sensitivity condition at w for any ϕ for which we want N , w �h Kϕ.
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2.8 Deductive Systems

From Theorem 2.1 we obtain complete deductive systems for reasoning about knowl-
edge according to the RA, tracking, and safety theories. Table 2.1 lists all of the
needed schemas and rules, using the nomenclature of Chellas [1980] (except for X,
RAT, and RA, which are new). E is the weakest of the classical modal systems with
PL, MP, and RE. ES1 . . .Sn is the extension of E with every instance of schemas
S1 . . . Sn. EMCN is familiar as the weakest normal modal system K, equivalently
characterized in terms of PL, MP, the K schema, and the necessitation rule for K
(even more simply, by PL, MP, and RK).

Corollary 2.4 (Soundness and Completeness).

1. The system KT (equivalently, ET plus the RK rule) is sound and complete for
C/L-semantics over RA models.

2. (The Logic of Ranked Relevant Alternatives) The system ECNTX (equiva-
lently, ET plus the RAT rule) is sound and complete for D-semantics over total
RA models.

3. The system ECNT (equivalently, ET plus the RA rule) is sound and complete
for D-semantics over RA models.

4. ECNT is sound (with respect to the full epistemic language) and complete
(with respect to the flat fragment) for H/N/S-semantics over CB models.43

The proof of Corollary 2.4 is similar to the alternative completeness proof discussed
by van Benthem [2010, §4.3] for the system K.44

43Corollary 2.4.4 gives an answer, for the flat fragment, to the question posed by van Benthem
[2010, 153] of what is the epistemic logic of Nozick’s notion of knowledge.

44The usual canonical model approach used for K and other normal modal logics seems more
difficult to apply to RA and CB models, since we must use maximally consistent sets of formulas in
the epistemic language only (cf. Remark 2.10) to guide the construction of both the orderings �w

(resp. 6w) and relation _ (resp. D), which must be appropriately related to one another for the
truth lemma to hold. In this situation, our alternative approach performs well.
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PL. all tautologies MP. ϕ→ ψ ϕ

ψ

T. Kϕ→ ϕ N. K> RE. ϕ↔ ψ

Kϕ↔ Kψ

M. K(ϕ ∧ ψ)→ Kϕ ∧Kψ RK. ϕ1 ∧ · · · ∧ ϕn → ψ

Kϕ1 ∧ · · · ∧Kϕn → Kψ
(n≥0)

X. K(ϕ ∧ ψ)→ Kϕ ∨Kψ RAT. ϕ1 ∧ · · · ∧ ϕn ↔ ψ1 ∧ · · · ∧ ψm
Kϕ1 ∧ · · · ∧Kϕn → Kψ1 ∨ · · · ∨Kψm (n≥0,m≥1)

C. Kϕ ∧Kψ → K(ϕ ∧ ψ) RA. ϕ1 ∧ · · · ∧ ϕn ↔ ψ

Kϕ1 ∧ · · · ∧Kϕn → Kψ
(n≥0)

Table 2.1: axiom schemas and rules

Proof. We only give the proof for part 2, since the proofs for the others are similar.
Soundness follows from Theorem 2.1.2. For completeness, we first prove by strong
induction on the modal depth d(ϕ) of ϕ (Def. 2.1) that if ϕ is D-valid over total RA
models, then ϕ is provable in the system combining ET and the RAT rule. If d(ϕ) = 0,
then the claim is immediate, since our deductive system includes propositional logic.
Suppose d(ϕ) = n + 1. By the proof of Proposition 2.2, using PL, MP, T, and RE
(which is a derived rule given RAT, PL, and MP), we can prove that ϕ is equivalent
to a conjunction ϕ′, each of whose conjuncts is a T-unpacked formula (Def. 2.9) of
the form

ϕ0 ∧Kϕ1 ∧ · · · ∧Kϕn → Kψ1 ∨ · · · ∨Kψm. (2.53)

The conjunction ϕ′ is valid iff each conjunct of the form of (2.53) is valid. By Theorem
2.1.2, (2.53) is valid iff either condition (a) or condition (c) of Theorem 2.1.2 holds.
Case 1 : (a) holds, so ϕ0 → ⊥ is valid. By the inductive hypothesis, we can derive
ϕ0 → ⊥, from which we derive (2.53) using PL and MP. Case 2 : (c) holds, so for
some Φ ⊆ {ϕ1, . . . , ϕn} and nonempty Ψ ⊆ {ψ1, . . . , ψm},∧

ϕ∈Φ

ϕ↔
∧
ψ∈Ψ

ψ (2.54)
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is valid. Since (2.54) is of modal depth less than n + 1, by the inductive hypothesis
it is provable. From (2.54), we can derive

∧
ϕ∈Φ

Kϕ→
∨
ψ∈Ψ

Kψ (2.55)

using the RAT rule, from which we can derive (2.53) using PL and MP. Having
derived each conjunct of ϕ′ in one of these ways, we can use PL and MP to derive
the conjunction itself, which by assumption is provably equivalent to ϕ.

Next we show by induction on the length of proofs that any proof in the system
combining ET and RAT can be transformed into an ECNTX proof of the same
theorem. Suppose that in the first proof, ϕ1 ∧ · · · ∧ ϕn ↔ ψ1 ∧ · · · ∧ ψm has been
derived, to which the RAT rule is applied. In the second proof, if n > 0, we first
derive Kϕ1 ∧ · · · ∧Kϕn → K(ϕ1 ∧ · · · ∧ ϕn) using C repeatedly (with PL and MP);
next, we derive K(ϕ1 ∧ · · · ∧ ϕn) ↔ K(ψ1 ∧ · · · ∧ ψm) by applying the RE rule to
ϕ1∧· · ·∧ϕn ↔ ψ1∧· · ·∧ψm; we then deriveK(ψ1∧· · ·∧ψm)→ Kψ1∨· · ·∨Kψm using
X repeatedly (with PL and MP); finally, we deriveKϕ1∧· · ·∧Kϕn → Kψ1∨· · ·∨Kψm
using PL, MP, and earlier steps. If n = 0,45 we first derive K> using N, then derive
K> ↔ K(ψ1 ∧ · · · ∧ ψm) by applying the RE rule to > ↔ ψ1 ∧ · · · ∧ ψm, then derive
the conclusion of the RAT application using X, PL, and MP.

For reasons suggested in §2.1, I do not consider the systems of Corollary 2.4.2-.4
to be plausible as epistemic logics, and therefore I do not consider the basic theories
they are based on to be satisfactory theories of knowledge. Nonetheless, we may wish
to reason directly about whether one has ruled out the relevant alternatives, whether
one’s beliefs are sensitive to the truth, etc., and Corollary 2.4 gives principles for
these notions. Simply replace the K symbol by a neutral � and the newly identified
logic ECNTX, which I dub the logic of ranked relevant alternatives, is of significant
independent interest.

With these qualifications in mind, I will make another negative point concerning
knowledge. It is straightforward to derive the K axiom, the star of the epistemic

45If n = 0, we can take the left side of the premise/conclusion of RAT to be >, or we can simply
take the premise to be ψ1 ∨ · · · ∨ ψm and the conclusion to be Kψ1 ∨ · · · ∨Kψm.
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closure debate with its leading role in skeptical arguments, from M, C, RE, and
propositional logic. Hence in order to avoid K one must give up one of the latter
principles. (For RE, recall that we are considering ideally astute logicians as in §2.1.)
What is so strange about subjunctivist-flavored theories is that they validate C but
not M, which seems to get things backwards. Hawthorne [2004a, §4.6, §1.6] discusses
some of the problems and puzzles, related to the Lottery and Preface Paradoxes
[Kyburg, 1961, Makinson, 1965], to which C leads (also see Goldman 1975). M seems
rather harmless by comparison (cf. Williamson 2000, §12.2). Interestingly, C also
leads to computational difficulties.

Remark 2.9 (NP vs. PSPACE). Vardi [1989] proved a PSPACE upper bound for
the complexity of the system ECNT,46 in agreement with our conclusion in §2.6.3.
(Together Corollaries 2.3 and 2.4.2 give a PSPACE upper bound for ECNTX.) Vardi
also conjectured a PSPACE lower bound for ECNT. By contrast, he showed that for
any subset of {T,N,M} added to E, complexity drops to NP-complete. Hence Vardi
conjectured that the C axiom is the culprit behind the jump in complexity of epistemic
logics from NP to PSPACE.47 It appears that not only is C more problematic than M
epistemologically, but also it makes reasoning about knowledge more computationally
costly.48

46Here I mean either the problem of checking provability/validity or that of checking consis-
tency/satisfiability, given that PSPACE is closed under complementation. When I refer to NP-
completeness, I have in mind the consistency/satisfiability problem.

47In fact, Allen [2005] shows that adding any degree of conjunctive closure, however weak, to the
classical modal logic EMN results in a jump from NP- to PSPACE-completeness. Adding the full
strength of C is sufficient, but not necessary. As far as I know, lower bounds for the complexity of
systems with C but without M have not yet been established.

48Whether such complexity facts have any philosophical significance seems to be an open question.
As a cautionary example, one would not want to argue that it counts in favor of the plausibility
of the 5 axiom, ¬Kϕ → K¬Kϕ, that while the complexity of K is PSPACE-complete, for any
extension of K5, complexity drops to NP-complete [Halpern and Rêgo, 2007]. That being said, if
we are forced to give up C for epistemological reasons, then its computational costliness in reasoning
about knowledge may make us miss it less.
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2.9 Higher-Order Knowledge

In this section, we briefly explore how the theories formalized in §2.4 - 2.5 differ with
respect to knowledge about one’s own knowledge and beliefs. The result is a hierarchi-
cal picture (Corollary 2.5) and an open problem for future research. First, we discuss
a subtlety concerning higher-order RA knowledge. Second, we relate properties of
higher-order subjunctivist knowledge to closure failures.

2.9.1 Higher-Order Knowledge and Relevant Alternatives

Theorem 2.1 and Corollary 2.4 show that no non-trivial principles of higher order
knowledge, such as the controversial 4 axiom Kϕ → KKϕ and 5 axiom ¬Kϕ →
K¬Kϕ, are valid over RA models according to either L- or D-semantics. This is so
even if we assume that the relation _ in our RA models is an equivalence relation
(see Remark 2.8), following Lewis [1996].

Example 2.3 (Failure of 4 Axiom). For the modelM in Fig. 2.7, in which _ is an
equivalence relation, observe thatM, w1 2l,d Kp→ KKp. Since Min�w1

(W )∩ JpK =

{w2} and w1 6_ w2, we haveM, w1 �l,d Kp. By contrast, since w4 ∈ Min�w3
(W )∩JpK

and w3 _ w4, we have M, w3 2l,d Kp. It follows that w3 ∈ Min�w1
(W ) ∩ JKpK, in

which caseM, w1 2l,d KKp given w1 _ w3.

p

w1

'w1

w2

'w1 p

w3

≺w1'w3

w4

Figure 2.7: an RA countermodel for Kp→ KKp in L/D-semantics
(partially drawn, reflexive loops omitted)

According to Williamson [2001, 2009], “It is not always appreciated that . . . since
Lewis’s accessibility relation is an equivalence relation, his account validates not only
logical omniscience but the very strong epistemic logic S5” [2009, 23n16]. However,
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Example 2.3 shows that this is not the case if we allow that comparative relevance,
like comparative similarity, is possibility-relative, as seems reasonable for a Lewisian
theory.49 Other RA theorists are explicit that relevance depends on similarity of
worlds (see, e.g., Heller 1989, 1999b), in which case the former should be world-
relative since the latter is. For Williamson’s point to hold, we would have to block
the likes of Example 2.3 with an additional constraint on our models, such as the
following.

Definition 2.11 (Absoluteness). For an RA modelM = 〈W,_,�, V 〉, � is locally
(resp. globally) absolute iff for all w ∈ W and v ∈ Ww (resp. for all w, v ∈ W ),
�w =�v [Lewis, 1973, §6.1].

It is noteworthy that absoluteness leads to a collapse of comparative relevance.

Observation 2.2 (Absoluteness and Collapse). Given condition 3b of Definition 2.2,
if � is locally absolute, then for all w ∈ W and v ∈ Ww,

Min�w(W ) = Ww = Min�v(W ) = Wv.

If � is globally absolute, then for all w ∈ W , Min�w(W ) = W .

Lewis [1973, 99] rejected absoluteness for comparative similarity because it leads
to such a collapse. We note that with the collapse of comparative relevance, the
distinction between L- and D-semantics also collapses.

Observation 2.3 (Absoluteness and Collapse cont.). Over locally absolute RA mod-
els, L- and D-semantics are equivalent.

49It follows from Lewis’s [1996, 556f] Rule of Resemblance that if some ¬p-possibility w2 “saliently
resembles” w1, which is relevant at w1 by the Rule of Actuality, then w2 is relevant at w1, so you
must rule out w2 in order to know p in w1. Lewis is explicit (555) that by ‘actuality’ he means the
actuality of the subject of knowledge attribution. Hence if we consider your counterpart in some w3,
and some ¬p-possibility w4 saliently resembles w3, then your counterpart must rule out w4 in order
to know p in w3. However, if salient resemblance is possibility-relative, as comparative similarity is
for Lewis, then w4 may not saliently resemble w1, in which case you may not need to rule out w4 in
order to know p in w1. (By Lewis’s Rule of Attention (559), our attending to w4 in this way may
shift the context C to a context C′ in which w4 is relevant, but the foregoing points still apply to C.)
This is all that is required for Example 2.3 to be consistent with Lewis’s theory.
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The proof of Proposition 2.7, which clarifies the issue raised by Williamson, is
essentially the same as that of completeness over standard partition models.

Proposition 2.7 (Completeness of S5). S5 is sound and complete with respect to
L/D-semantics over locally absolute RA models in which _ is an equivalence relation.

In general, for locally absolute RA models, the correspondence between properties
of _ and modal axioms is exactly as in basic modal logic.

2.9.2 Higher-Order Knowledge and Subjunctivism

The study of higher-order knowledge becomes more interesting with the subjunctivist
theories, especially in connection with our primary concern of closure. According to
Nozick [1981], the failures of epistemic closure implied by his tracking theory are
something that “we must adjust to” (228). This would be easier if problems ended
with the closure failures themselves. However, as we will see, the structural features
of the subjunctivist theories that lead to these closure failures also lead to problems
of higher-order knowledge.

We begin with a definition necessary for stating Fact 2.8 below.

Definition 2.12 (Outer Necessity). Let us temporarily extend our language with an
outer necessity operator � [Lewis, 1973, §1.5] with the truth clause:

M, w �x �ϕ iff ∀v ∈ Ww :M, v �x ϕ.

We call the language with K, B, and � the epistemic-doxastic-alethic language.
Define the possibility operator by ♦ϕ := ¬�¬ϕ, and let K̂ϕ := ¬K¬ϕ.

Fact 2.8 below shows that if sensitivity (Def. 2.7) is necessary for knowledge, and
if there is any counterfactually accessible world in which an agent believes ϕ but ϕ
is false, then the agent cannot know that her belief that ϕ is not false—even if she
knows that ϕ is true.50 The proof appears in many places [DeRose, 1995, Kripke,
2011, Vogel, 1987, 2000, Sosa, 1996, 1999].

50More precisely, she cannot know that she does not have a false belief that ϕ [Becker, 2006]. As
Becker in effect proves, Kϕ ∧BBϕ→ K(Bϕ ∧ ϕ) is H-valid (and hence S-valid).
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Fact 2.8 (Possibility and Sensitivity). ♦(Bϕ∧¬ϕ)→ K̂(Bϕ∧¬ϕ) is H/N-valid, but
not S-valid.

Since Kp ∧ ♦(Bp ∧ ¬p) is satisfiable, Kp → K¬(Bp ∧ ¬p) is not H/N-valid by
Fact 2.8, so Kp → K(¬Bp ∨ p) is not H/N-valid. Hence Fact 2.8 is related to the
failure of closure under disjunctive addition. Clearly ♦ψ → K̂ψ is not H/N-valid
for all ψ. Related to Fact 2.8, Fact 2.9 (used for Corollary 2.5) shows that limited
forms of closure, including closure under disjunctive addition, hold when higher-order
knowledge of Bϕ→ ϕ or K̂ϕ→ ϕ is involved.

Fact 2.9 (Higher-Order Closure).

1. K(Bϕ→ ϕ)→ K((Bϕ→ ϕ) ∨ ψ) is H/S-valid, but not N-valid;

2. Bϕ ∧K(Bϕ→ ϕ)→ Kϕ is H/S-valid, but not N-valid;

3. Bϕ ∧K(K̂ϕ→ ϕ)→ Kϕ is H/S-valid, but not N-valid;

4. K(ϕ ∧ ψ) ∧K(K̂ϕ→ ϕ)→ Kϕ is H/S-valid, but not D/N-valid;

5. Kϕ ∧ Kψ ∧ K(K̂(ϕ ∨ ψ) → (ϕ ∨ ψ)) → K(ϕ ∨ ψ) is H/N/S-valid, but not
D-valid (over total RA models).

While some consider Fact 2.8 to be a serious problem for sensitivity theories, Fact
2.10 seems even worse for subjunctivist-flavored theories in general: according to the
ones we have studied, it is possible for an agent to know the classic example of an
unknowable sentence, p ∧ ¬Kp [Fitch, 1963]. Williamson [2000, 279] observes that
p ∧ ¬Kp is knowable according to the sensitivity theory. We observe that it is also
knowable according to the safety theory.51

Fact 2.10 (Moore-Fitch Sentences). K(p ∧ ¬Kp) is satisfiable in RA models under
D-semantics and in CB models under H/N/S-semantics.

51One difference between Fact 2.8 and Fact 2.10 is that the former applies to any theory for which
sensitivity is a necessary condition for knowledge, whereas the latter could in principle be blocked by
theories that propose other necessary conditions for knowledge in addition to sensitivity or safety.
What Fact 2.10 shows is that sensitivity and safety theorists have some explaining to do about what
they expect to block such a counterintuitive result.
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Proof. It is immediate from Theorem 2.1 that ¬K(p ∧ ¬Kp) is not D-valid.52

We give a simple satisfying CB modelM for H/N/S-semantics in Fig. 2.8. Assume
that 6w3 is any appropriate preorder such thatM, w3 �h,n,s Kp. It will not matter
whether w1 ≡w1 w2 ≡w1 w3 or w1 ≡w1 w2 <w1 w3 .

p

w1

≡w1

w2

6w1 Kp

w3

Figure 2.8: a CB model satisfying K(p ∧ ¬Kp) in H/N/S-semantics (partially drawn)

p

w1

6w1 Kp

w2

<w1

w3

Figure 2.9: a CB model satisfying K(p ∧ ¬Kp) in H/N-semantics (partially drawn)

Given w2 ∈ Min6w1
(W ) andM, w2 � ¬p∧Bp, the safety condition for Kp fails at

w1, soM, w1 �s p ∧ ¬Kp. Then since D(w1) = {w1} (recall Notation 2.5),M, w1 �s

B(p ∧ ¬Kp), so the belief condition for K(p ∧ ¬Kp) holds at w1. For i ≥ 2, given
M, wi � BKp, we haveM, wi 2 B(p ∧ ¬Kp). It follows that for all v ∈ Min6w1

(W ),
M, v �s B(p ∧ ¬Kp)→ p ∧ ¬Kp. Hence the safety condition for K(p ∧ ¬Kp) holds
at w1, soM, w1 �s K(p∧¬Kp). One can check thatM, w1 �h,n K(p∧¬Kp) as well.
For H/N-semantics, the model N in Fig. 2.9, which has the same basic structure as
Williamson’s [2000, 279] example, also satisfies K(p∧¬Kp) at w1. Assume 6w2 is any
appropriate preorder such that N , w2 �h,n Kp.53 (Whether w1 ≡w1 w2 or w1 <w1 w2

does not matter.)

It is not difficult to tell a story with the structure of Fig. 2.8, illustrating that the
52Rewrite ¬K(p ∧ ¬Kp) as K(p ∧ ¬Kp) → ⊥. T-unpacking gives p ∧ ¬Kp ∧K(p ∧ ¬Kp) → ⊥

and then p ∧K(p ∧ ¬Kp)→ Kp, which fails (a), (c), and (d) of Theorem 2.1.
53One can of course add more worlds to Ww2

than are shown in Fig. 2.9.
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safety theory allows K(p ∧ ¬Kp), just as Williamson tells a story with the structure
of Fig. 2.9, illustrating that the tracking theory allows K(p ∧ ¬Kp).

Fact 2.10 is related to the fact that closure under conjunction elimination is not
valid. OtherwiseK(p∧¬Kp) would be unsatisfiable; for by veridicality,K(p∧¬Kp)→
¬Kp is valid, and given closure under conjunction elimination, K(p ∧ ¬Kp) → Kp

would also be valid. However, Fact 2.11 shows that K does partially distribute over
conjunctions of special forms in S-semantics.

Fact 2.11 (Higher-Order Closure cont.).

1. K(ϕ ∧ ¬Kϕ)→ K¬Kϕ is S-valid, but not D/H/N-valid.

2. K((Bϕ→ ϕ) ∧ (ψ → ϕ))→ K(Bϕ→ ϕ) is S-valid, but not H/N-valid.

What Facts 2.10 and 2.8 show is that in order to fully calculate the costs of closure
failures, one must take into account their ramifications in the realm of higher-order
knowledge. Combining Facts 2.8, 2.9, and 2.11 with results from earlier sections, we
arrive at a picture of the relations between the sets of valid principles according to
D-, H-, N-, and S-semantics, respectively, given by Corollary 2.5 below.54 First we
need the following definition.

Definition 2.13 (Theories and Model Classes). For a class S of models, let ThxL(S) be
the set of formulas in the language L that are valid over S according to X-semantics.
Let RAT be the class of all total RA models, RA the class of all RA models, and CB

the class of all CB models.

Corollary 2.5 (Hierarchies).
54If we require more properties of the D relation, then more principles will be valid in H/N/S-

semantics—obviously for the B operator, but also for the interaction betweenK and B. For example,
if require that D be dense, so BBϕ → Bϕ is valid, then BBϕ → KBϕ is H/S-valid. If we also
require that D be transitive, so Bϕ → BBϕ is valid, then Bϕ → KBϕ is H/N/S-valid. As Kripke
[2011, 183] in effect observes, if Bϕ ↔ BBϕ is valid, then (for propositional ϕ) M, w �h Kϕ
impliesM, w �n K(ϕ∧Bϕ), so wheneverM, w �h Kϕ butM, w 2n Kϕ (because adherence is not
satisfied), K(ϕ ∧Bϕ)→ Kϕ fails according to N-semantics, an extreme closure failure.
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1. For the flat fragment Lf of the epistemic language,

ThnLf (CB) = ThhLf (CB) = ThsLf (CB) = ThdLf (RA) ( ThdLf (RAT).

2. For the epistemic language Le,

ThdLe(RA) ( ThnLe(CB) ( ThhLe(CB) ( ThsLe(CB);

ThdLe(RA) ( ThdLe(RAT) 6⊆ ThsLe(CB); ThnLe(CB) 6⊆ ThdLe(RAT).

3. For the epistemic-doxastic language Ld,

ThnLd(CB) ( ThhLd(CB) ( ThsLd(CB).

4. For the epistemic-doxastic-alethic language La,

ThnLa(CB) ( ThhLa(CB); ThnLa(CB) 6⊆ ThsLa(CB) 6⊆ ThhLa(CB).

Proof. Part 1 follows from Corollary 2.4 and Fact 2.6. Part 2 follows from Corollary
2.4, Propositions 2.5 - 2.6, and Facts 2.9.5, 2.9.4, 2.11.1, and 2.6. Part 3 follows from
Propositions 2.5 - 2.6 and Facts 2.9 and 2.11. Part 4 follows from Proposition 2.5
(which clearly extends to La) and Facts 2.9, 2.8, and 2.11.

In this section we have focused on the implications of D/H/N/S-semantics for
higher-order knowledge, especially in connection with epistemic closure. However, if
we take the point of view suggested earlier (§1, §2.6, §2.8), according to which our
results can be interpreted as results about desirable epistemic properties other than
knowledge, then exploring higher-order phenomena in D/H/N/S-semantics is part of
understanding these other properties. Along these lines, we conclude this section with
an open problem for future research.

Problem 2.1 (Axiomatization). Axiomatize the theory of counterfactual belief mod-
els according to H-, N-, or S-semantics for the full epistemic, epistemic-doxastic, or
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epistemic-doxastic-alethic language.

Remark 2.10 (Easy Axiomatizations). If we extend the language of Definition 2.1 so
that we can describe different parts of our CB models independently, e.g., by adding
the belief operator B for the doxastic relationD or a counterfactual conditional� for
the similarity relations 6w, then the problem of axiomatization becomes easier. For
S-semantics, which does not use the structure of any 6w relation beyond Min6w(W ),
just adding B to the language makes the axiomatization problem easy. As one can
prove by a standard canonical model construction, for completeness it suffices to
combine the logic KD for B with the axiom Kϕ→ Bϕ and the rule

SA (Bϕ1 → ϕ1) ∧ · · · ∧ (Bϕn → ϕn)→ (Bψ → ψ)

Kϕ1 ∧ · · · ∧Kϕn → (Bψ → Kψ)
(n≥0).

For H/N-semantics, adding not only B but also a counterfactual � (with the
Lewisian semantics outlined in §2.5) makes the axiomatization problem easy. For
example, for N-semantics we can combineKD for B with a complete system for coun-
terfactuals (no interaction axioms between B and� are needed), plus Kϕ → Bϕ

and Kϕ ↔ Bϕ ∧ (¬ϕ � ¬Bϕ) ∧ (Bϕ � ϕ). The problem with obtaining easy
axiomatizations by extending the language in this way is that the resulting systems
give us little additional insight. The interesting properties of knowledge are hidden in
the axioms that combine several operators, each with different properties. Although
in a complete system for the extended language we can of course derive all principles
that could appear in any sound system for a restricted language, this fact does not
tell us what those principle are or which set of them is complete with respect to the
restricted language. Corollary 2.4 and Facts 2.8, 2.9, and 2.11 suggest that more
illuminating principles may appear as axioms if we axiomatize the S-theory of CB
models in the epistemic language or the H/N-theory of CB models in the epistemic-
doxastic(-alethic) language.
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2.10 Theory Parameters and Closure

In this section, we return to the issue raised in §2.6.5 about the sources of closure
failure. Analysis of Theorem 2.1 shows that two parameters of a modal theory of
knowledge affect whether closure holds. In §2.4, we identified one: the ∀∃ vs. ∃∀
choice of the relevancy set. Both L- and S-semantics have an ∃∀ setting of this
parameter (recall Observation 2.1). However, closure holds in L-semantics but fails
in S-semantics. The reason for this is the second theory parameter: the notion of
ruling out. With the Lewis-style notion of ruling out in L/D-semantics, a world v is
either ruled out at w or not. By contrast, with the notions of ruling out implicit in
S/H/N-semantics, we cannot say independently of a proposition in question whether
v is ruled out at w.

p

u

≡w
v

≡w p, q

w

≡w
x

≡w q

y

Figure 2.10: a CB countermodel for K(p ∧ q)→ Kp ∨Kq in H/N/S-semantics
(partially drawn)

For example, in the CB model in Fig. 2.10, v is among the closest worlds to the
actual world w. We may say that v is ruled out as an alternative for p ∧ q, in the
sense that while p ∧ q is false at v, the agent does not believe p ∧ q at v (but rather
p ∧ ¬q). However, v is not ruled out as an alternative for p, for p is false at v and
yet the agent believes p at v. This explains the consequence of Theorem 2.1 that
K(p∧ q)→ Kp is not valid in S-semantics, because one may safely believe p∧ q at a
world w even though one does not safely believe p at w. Note that the example also
applies to sensitivity theories, for which we can again only say whether v is ruled out
as an alternative for a given ϕ.

The distinction between the two notions of ruling out (RO) is again that of ∀∃ vs.
∃∀, as in the case of RS∀∃ vs. RS∃∀ in §2.4. Let us state the distinction in terms of
possibilities that are not ruled out, possibilities that are uneliminated :
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According to an RO∀∃ theory, for every context C, world w, and (∀) proposition
P , there is (∃) a set of worlds uC(P,w) ⊆ P uneliminated at w as alternatives
for P , such that if any world in uC(P,w) is relevant (i.e., in rC(P,w)), then the
agent does not know P in w (relative to C).

According to an RO∃∀ theory, for every context C and world w, there is (∃) a
set of worlds UC(w) uneliminated at w, such that for every (∀) proposition P ,
if any world in UC(w)∩ P is relevant (i.e., in rC(P,w)), then the agent does not
know P in w (relative to C).

Every RO∃∀ theory is a RO∀∃ theory (with uC(P,w) = UC(w) ∩ P ), but when I refer
to RO∀∃ theories I have in mind those that are not RO∃∀. As noted, L/D-semantics
formalize RO∃∀ theories, with _(w) (Notation 2.4) in the role of U(w), while S/H/N-
semantics formalize RO∀∃ theories, given the role of belief in their notions of ruling
out, noted above (see §3.3.2).

Consider the parallel between RS∀∃ and RO∀∃ parameter settings: given a ∀∃
setting of the RO (resp. RS) parameter, a (¬ϕ ∧ ¬ψ)-world that is ruled out as an
alternative for ϕ (resp. that must be ruled out in order to know ϕ) may not be ruled
out as an alternative for ψ (resp. may not be such that it must be ruled out in order
to know ψ), because whether the world is ruled out or not (resp. relevant or not)
depends on the proposition in question, as indicated by the ∀ propositions ∃ set of
uneliminated (resp. relevant) worlds quantifier order. As the example of Fig. 2.10
shows, the RO∀∃ setting for safety explains why closure fails in S-semantics, despite
its RS∃∀ setting.

Table 2.2 summarizes the relationship between the two theory parameters and
closure failures. Not all theories with RS∀∃ or RO∀∃ settings must have the same
closure failures as those described in Theorem 2.1, but these settings are a good
guide for when to expect closure failure, as shown by another example in §2.10.1. In
Chapter 3, I will reanalyze the theories of this chapter in terms of the r and u functions
to obtain a finer-grained understanding of the sources of their closure failures.
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Theory Formalization Relevancy Set Ruling Out Closure Failures

RA L-semantics ∃∀ ∃∀ none
RA D-semantics ∀∃ ∃∀ Theorem 2.1

Safety S-semantics ∃∀ ∀∃ Theorem 2.1
Tracking H/N-semantics ∀∃ ∀∃ Theorem 2.1

Table 2.2: parameter settings and closure failures

2.10.1 Double-Safety

DeRose [1995] proposed an influential modification of Nozick’s tracking theory, one
of the perceived advantages of which was its consistency with epistemic closure. On
DeRose’s view, for any fixed context there is a contextually determined sphere of
“epistemically relevant worlds” centered around the world w (37). To know ϕ at w,
it must be that for any world v in that sphere, one believes ϕ at v iff ϕ is true at v
(see DeRose 1995, 34 and DeRose 2004). This condition, which DeRose [2011] calls
double-safety, is structurally equivalent to the combination of safety and adherence.

We can represent DeRose’s double-safety condition in CB models by taking 6w
to be a relevance ordering, as in RA models, and by taking the epistemically relevant
worlds around w to be those in Min6w

(
W
)
.55 DeRose’s full contextualist view involves

both a set of epistemically relevant worlds and a similarity ordering of worlds for
counterfactuals. When context changes, worlds are added to the set of worlds that are
epistemically relevant at w, based on their distance from w according to the similarity
ordering. However, the point I wish to make here is that closure fails for double-
safety in a fixed context, which we can see without representing the relevance and
similarity orderings separately. To model DeRose’s contextualism formally, we can
use techniques similar to those used to model Lewis’s contextualism in §2.11, applied
to combined RA-CB models that include both relevance and similarity orderings.

55As with safety, the ordering of worlds beyond the (most) relevant worlds will not make a differ-
ence in the truth definition for Kϕ in a fixed context, so we could instead define a function e that
assigns to each world w a set e(w) of epistemically relevant worlds with w ∈ e(w). The result with
e(w) in place of Min6w

(
W
)
would then be equivalent to Definition 2.14 below.
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I call the semantics with the double-safety condition R-semantics for DeRose.

Definition 2.14. Given a CB model M = 〈W,D,6, V 〉 and w ∈ W , we define
M, w �r ϕ as follows (with other clauses as in Definition 2.7):

M, w �r Kϕ iff M, w �r Bϕ and
(double safety) ∀v ∈ Min6w

(
W
)
:M, v �r Bϕ↔ ϕ.

Like safety, double-safety combines an RS∃∀ choice of the relevancy set with a
RO∀∃ notion of ruling out.56 According to the explanation of closure failure above, we
should expect that closure fails in R-semantics. This expectation is in conflict with
the assumption in some of the literature that closure holds for double-safety, which
is perhaps due to the implicit assumption that an RS∃∀ choice of the relevancy set
guarantees closure.57 However, given the RO∀∃ notion of ruling out, closure does fail
in R-semantics. Just as the model in Figure 2.3 shows that one’s belief that p∧ q can
be safe at w even though one’s belief that q is not, the model also shows that one’s
belief that p ∧ q can be double-safe at w even though one’s belief that q is not.

All of the other closure principles we have shown to fail in D/H/N/S-semantics
(Facts 2.2 and 2.3 and Exercise 2.1) also fail in R-semantics, as one can easily check.
Indeed, the double-safety theory suffers from the same major closure failures as Noz-
ick’s theory. Since one of the perceived advantages of double-safety over tracking was
an ability to avoid these closure failures, this is a negative result. Moreover, there are
other problems with double-safety and safety to be discussed in §4.1.

2.11 The Dynamics of Context

In §2.4, I remarked that contextualists should think of an RA modelM as associated
with a fixed context of knowledge attribution, so a change in context corresponds to

56R-semantics is to N-semantics what S-semantics is to H-semantics: just as safety is what one
obtains by restricting sensitivity to a fixed set of worlds (recall §2.7), double-safety is what one
obtain by restricting full tracking (sensitivity plus adherence) to a fixed set of worlds.

57Doubts about whether closure holds for double-safety have been raised by Cohen [1999, 72f] and
Vogel [2007, 87]. However, it seems that the key reason for the failure of closure for double-safety,
explained in the text, was not identified.
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a change in models fromM toM′. In this section, I will make this idea precise.58

In the framework of Lewis [1979], the family � of relevance orderings in an RA
model may be thought of as a component of the conversational score. Changes in this
component of the conversational score, an aspect of what Lewis calls the kinematics
of score, correspond to transformations of RA models. We begin with an RA model
M representing what an agent counts as knowing relative to an initial conversational
context. If some change in the conversation makes the issue of ϕ relevant, then
corresponding to this change the model transforms from M to M↑ϕ. In the new
model, what the agent counts as knowing may be different.

For variety, we will define two types of operations on models, ↑ ϕ and & ϕ.
Roughly speaking, ↑ ϕ changes the model so that the most relevant ϕ-worlds inM
become among the most relevant worlds overall in M↑ϕ. By contrast, & ϕ changes
the model so that any worlds at least as relevant as the most relevant ϕ-worlds in
M become among the most relevant worlds overall inM&ϕ. The following definition
makes these descriptions more precise. For convenience, in this section we assume
that each preorder �w is total on its field Ww, but all of the definitions and results
can be modified to apply to the non-total case.

Definition 2.15 (RA Context Change). Given an RA model M = 〈W,_,�, V 〉,
define the modelsM↑ϕ =

〈
W,_,�↑ϕ, V

〉
andM&ϕ =

〈
W,_,�&ϕ, V

〉
such that for

all w, u, v ∈ W :

1. if u ∈ Min�w
(
JϕKM

)
∪Min�w (W ), then u �↑ϕw v;

2. if u, v /∈ Min�w
(
JϕKM

)
∪Min�w (W ), then u �↑ϕw v iff u �w v;

and

3. if ∃x ∈ Min�w
(
JϕKM

)
such that u �w x, then u �&ϕ

w v;

4. if ∀x ∈ Min�w
(
JϕKM

)
, u 6�w x and v 6�w x, then u �&Φ

w v iff u �w v.
58The material from this section and §2.F is drawn from my “Epistemic Logic, Relevant Alterna-

tives, and the Dynamics of Context” [Holliday, 2012].
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In other words, for ↑ ϕ, the most relevant ϕ-worlds according to �w become among
the most relevant worlds according to �↑ϕw ; the most relevant worlds according to �w
remain among the most relevant worlds according to �↑ϕw ; and for all other worlds,
�↑ϕw agrees with �w. For & ϕ, all worlds at least as relevant as the most relevant
ϕ-worlds according to �w become among the most relevant worlds according to �&ϕ

w ;
and for all other worlds, �&ϕ

w agrees with �w.

Which of these operations is most appropriate for modeling a given context change
is an interesting question, which I leave aside here. Other operations could be defined
as well, but these will suffice as examples of the general method. Fig. 2.11 shows
the application of either ↑ x or & x (denoted +x) to the modelM for Example 1.1,
the result of which is the same for both. Fig. 2.12 shows ↑ x and & x applied to a
different initial model, N , in which case the results are different.
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'w1 c′

w2

≺w1 x

w3

≺w1
c, x

w4

M

c

w1

'w1 c′

w2

'w1 x

w3

≺w1
c, x

w4

M+x

Figure 2.11: result of context change by raising x in Example 1.1

To describe the effect of these context change operations using our formal lan-
guage, we extend the language of Definition 2.1 with dynamic context change oper-
ators of the form [+ϕ] for + ∈ {↑,&}, in the style of dynamic epistemic logic [van
Ditmarsch et al., 2008, Benthem, 2011]. One can read [+ϕ]ψ as “after ϕ becomes
relevant, ψ is the case” or “after ϕ is raised, ψ is the case” or “after context change
by ϕ, ψ is the case,” etc.

Definition 2.16 (Contextualist Epistemic Language). Let At = {p, q, r, . . . } be a
set of atomic sentences. The contextualist epistemic language is generated as follows,
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Figure 2.12: different results of context change by ↑ x and & x

where p ∈ At:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | [π]ϕ

π ::= ↑ ϕ | & ϕ.

We give the truth clauses for the operators [↑ ϕ] and [& ϕ] with the help of Definition
2.15, using + to stand for either ↑ or & in definitions applicable to both.

Definition 2.17 (Truth). The truth clause for the context change operator is:

M, w � [+ϕ]ψ iffM+ϕ, w � ψ.

In other words, “after context change by ϕ, ψ is the case” is true at w in the initial
modelM if and only if ψ is true at w in the new modelM+ϕ.

Having set up this contextualist machinery, there are a number of directions to
explore. For the purposes of my argument, the most important is a comparison
between (non-contextualist) D-semantics and contextualist L-semantics. Appendix
§2.F contains a technical excursion in search of reduction axioms for context change.
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2.11.1 D-Semantics vs. Contextualist L-Semantics

The following fact matches Lewis’s [1996] view on closure and context discussed in
§2.1. (It may be helpful to reread the relevant part of §2.1 before proceeding here.)

Fact 2.12 (Known Implication Cont.). According to D-semantics, closure under
known implication can fail. According to L-semantics, closure under known implica-
tion always holds for a fixed context, but may fail across context changes:

1. 2d Kϕ ∧K(ϕ→ ψ)→ Kψ

2. �l Kϕ ∧K(ϕ→ ψ)→ Kψ

3. 2l Kϕ ∧K(ϕ→ ψ)→ [+¬ψ]Kψ

4. 2l Kϕ→ [+¬ψ](K(ϕ→ ψ)→ Kψ)

Proof. We have already noted part 1 and 2 in §2.4. For 3, its instance

Kc ∧K(c→ ¬x)→ [+x]K¬x (2.56)

is false at M, w1 in Fig. 2.11. As we saw in §2.4, the antecedent is true at M, w1.
To determine whetherM, w1 �l [+x]K¬x, by Definition 2.17 we must check whether
M+x, w1 �l K¬x. Since in M+x there is a most relevant (at w1) world, w3, which
satisfies x and is not ruled out at w1, we haveM+x, w1 2l K¬x. Therefore,M, w1 2l
[+x]K¬x, so (2.56) is false atM, w1. It is also easy to check thatM+x, w1 � K(c→
¬x), so the corresponding instance of 4 is false atM, w1.

We will use the next fact to generalize Fact 2.12 to all kinds of closure failure
(Fact 2.14), not only failures of closure under known implication.

Fact 2.13 (Relation of D- to Contextualist L-semantics). Given an RA modelM =

〈W,_,�, V 〉 with w ∈ W , for any propositional formula ϕ,

M, w �d Kϕ iffM, w �l [+¬ϕ]Kϕ.
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Proof. For the case where + is ↑, by Definition 2.15,

Min�↑¬ϕw
(W ) = Min�w(W ) ∪Min�w(JϕKM), (2.57)

so

Min�↑¬ϕw
(W ) ∩ JϕKM

↑¬ϕ

= (Min�w(W ) ∪Min�w(JϕKM)) ∩ JϕKM
↑¬ϕ

. (2.58)

Since ϕ is propositional, by an easy induction we have

JϕKM
+¬ϕ

= JϕKM, (2.59)

so from (2.58) we have

Min�↑¬ϕw
(W ) ∩ JϕKM

↑¬ϕ

= (Min�w(W ) ∪Min�w(JϕKM)) ∩ JϕKM

= Min�w(JϕKM). (2.60)

It follows from (2.60) that

Min�w(JϕKM)∩_(w) = ∅ (2.61)

is equivalent to
Min�↑¬ϕw

(W ) ∩ JϕKM
↑¬ϕ

∩_(w) = ∅, (2.62)

which by Definition 2.5 means that M, w �d Kϕ is equivalent to M↑¬ϕ, w �l Kϕ,
which by Definition 2.17 is equivalent toM, w �l [↑ ¬ϕ]Kϕ.

The proof for the case where + is & is similar.

Using Fact 2.13, we can now state a generalization of Fact 2.12 as follows.

Fact 2.14 (Inter-context Closure Failure). Let ϕ1, . . . , ϕn and ψ be propositional
formulas. Given an RA modelM = 〈W,_,�, V 〉 with w ∈ W , if

M, w 2d Kϕ1 ∧ · · · ∧Kϕn → Kψ
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then
M, w 2l Kϕ1 ∧ · · · ∧Kϕn → [+¬ψ]Kψ.

Proof. Assume the first line. Since for any formula ϕ,M, w �d Kϕ impliesM, w �l

Kϕ, we have M, w �l Kϕ1 ∧ · · · ∧ Kϕn. Since M, w 2d Kψ, we have M, w 2l
[+¬ψ]Kψ by Fact 2.13, which gives the second line.

Remark 2.11. Most contextualists deny that closure fails in any of the ways allowed
by D-semantics, as described by Theorem 2.1. But Fact 2.14 shows that for every
way in which closure fails for D-semantics, there is a corresponding inter-context
“closure failure” for L-semantics when the context changes with the negation of the
consequent of the closure principle becoming relevant. According to some standard
contextualist views, asserting that the agent knows the consequent has just this effect
on the context. For example, according to DeRose [1995, 37], “When it’s asserted
that S knows (or doesn’t know) that P, then, if necessary, enlarge the sphere of
epistemically relevant worlds so that it at least includes the closest worlds in which
P is false.” According to Lewis [1996, 559], “No matter how far-fetched a certain
possibility may be, no matter how properly we might have ignored it in some other
context, if in this context we are not in fact ignoring it but attending to it, then for
us now it is a relevant alternative.” I will return to these ideas in §4.1.2.

2.12 Conclusion

In this chapter, our model-theoretic approach helped to illuminate the structural
features of RA and subjunctivist theories that lead to closure failure, as well as the
precise extent of their closure failures in Theorem 2.1.

When understood as theories of knowledge, the basic subjunctivist-flavored the-
ories formalized by D/H/N/S-semantics have a bad balance of closure properties,
invalidating very plausible closure principles (recall §2.6) while validating question-
able ones (recall §2.8). The theories formalized by C- and L-semantics also have their
problems. On the one hand, the idea that knowledge requires ruling out all possibili-
ties of error, reflected in C-semantics, makes knowing too hard, giving us the problem
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of skepticism (recall §2.1 - 2.4). On the other hand, the idea that knowledge of con-
tingent empirical truths can be acquired without ruling out any possibilities of error,
reflected in L-semantics (and S-semantics), seems to make knowing too easy, giving
us the problem of vacuous knowledge (recall §2.4 - 2.5). An attraction of D/H/N-
semantics is that they avoid these problems. But they do so at a high cost when it
comes to closure.

In Chapter 3, I will generalize the RA and CB frameworks to obtain an even finer-
grained analysis of their properties. Later, in Chapter 5, I will propose a new picture
of knowledge that avoids the problems of skepticism and vacuous knowledge, without
the high-cost closure failures of the subjunctivist-flavored theories. As we shall see,
the model-theoretic epistemic-logical approach followed here can help us not only to
better understand epistemological problems, but also to discover possible solutions.

The results of this chapter motivate some methodological reflections on our ap-
proach. In epistemology, a key method of theory assessment involves considering the
verdicts issued by different theories about which knowledge claims are true in a par-
ticular scenario. This is akin to considering the verdicts issued by different semantics
about which epistemic formulas are true in a particular model. All of the semantics
we studied can issue different verdicts for the same model. Moreover, theorists who
favor different theories/semantics may represent a scenario with different models in
the first place. Despite these differences, there are systematic relations between the
RA, tracking, and safety perspectives represented by our semantics. In several cases,
we have seen that any model viewed from one perspective can be transformed into
a model that has an equivalent epistemic description from a different perspective
(Propositions 2.4 - 2.6). As we have also seen, when we rise to the level of truth in all
models, of validity, differences may wash away, revealing unity on a higher level. The-
orem 2.1 provided such a view, showing that four different epistemological pictures
validate essentially the same epistemic closure principles. Against this background of
similarity, subtle differences within the RA/subjunctivist family appear more clearly.
The picture offered by total relevant alternatives models lead to a logic of ranked
relevant alternatives, interestingly different from the others (Corollary 2.4). In the
realm of higher-order knowledge, there emerged hierarchies in the strength of different
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theories (Corollary 2.5).
For some philosophers, a source of hesitation about epistemic logic is the degree

of idealization. In basic systems of epistemic logic, agents know all the logical con-
sequences of what they know, raising the “problem of logical omniscience” noted in
§1. However, in our setting, logical omniscience is a feature, not a bug. Although
in our formalizations of the RA and subjunctivist theories, agents do not know all
the logical consequences of what they know, due to failures of epistemic closure, they
are still logically omniscient in another sense. For as “ideally astute logicians” (recall
§2.1), they know all logically valid principles, and they believe all the logical conse-
quences of what they believe. These assumptions allow us to distinguish failures of
epistemic closure that are due to fact that finite agents do not always “put two and
two together” from failures of epistemic closure that are due to the special conditions
on knowledge posited by the RA and subjunctivist theories.59 This shows the positive
role that idealization can play in epistemology, as it does in science.

2.A Comparison with Basic Epistemic Logic

In this Appendix, we compare D- and L-semantics with the standard semantics for
epistemic logic, which is formally the same as C-semantics. Some important distinc-
tions for the conceptual foundations of epistemic logic become clear in the comparison.

We will make two related comparisons: we will compare the RA framework of §2.4
with the framework of basic epistemic logic; and we will compare the notion of an
uneliminated possibility with that of an epistemically accessible possibility and that
of (what I call) an epistemically live possibility.

Models for basic epistemic logic are tuplesM = 〈W,E, V 〉, where W and V are
as in Definition 2.2, and E is a binary relation on W , required to be at least reflexive.
Intuitively, we take wEv to mean that v is epistemically accessible from w, in the
sense that everything the agent knows in w is true in v (see, e.g., Lewis 1986, §1.4,

59Recall note 23. Williamson [2010, 256] makes a similar point, namely that it can be useful
to assume logical omniscience in order to discern the specific epistemic effects of limited powers of
perceptual discrimination, as opposed to limited logical powers.
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Williamson 2000, §8.2, Williamson 2009, 21), which is clearly a reflexive relation. The
truth clause for Kϕ is then given by:

M, w � Kϕ iff ∀v ∈ W : if wEv, thenM, v � ϕ. (2.63)

One might sense some circularity or triviality in defining the truth of Kϕ in terms
of the relation E, given that we take wEv to mean that everything the agent knows
in w is true in v. Technically, there is no circularity, because E is a primitive in the
model, not defined in terms of anything else. Conceptually, one must be clear about
the role of a basic epistemic model when paired with (2.63): its role is to represent
the content of one’s knowledge, what one knows, not to analyze what knowledge is in
terms of something else. Furthermore, (2.63) is not trivial because it is not neutral
with respect to all theories of knowledge. By basic results (see Theorem 3.3(2) of
Chellas 1980), all closure principles are valid according to (2.63), so (2.63) excludes
theories that allow closure failure. The left-to-right direction of (2.63) is neutral, for
it is immediate from our notion of epistemic accessibility that if wEv and ϕ is false
in v, then the agent does not know ϕ in w. However, the right-to-left direction of
(2.63) is not immediate from the notion of epistemic accessibility.

Let us now compare basic epistemic semantics with the RA semantics of §2.4. To
do so, we will define epistemic accessibility relations within RA models.

Definition 2.18 (Accessible). While the E relation in basic epistemic models is a
primitive, given an RA model M = 〈W,_,�, V 〉, we define a derived epistemic
accessibility relation Ex on W as follows:

wExv iff ∀ϕ: ifM, w �x Kϕ, thenM, v �x ϕ.

There are two important observations to be made about this definition. First, as
shown below, the Ed and El relations may be different than the _ relation; hence
the set of epistemically accessible worlds and the set of uneliminated worlds may be
distinct. Second, clause (2.63) applied to Ed and the D-semantics clause of Definition
2.5 may assign different truth values to the same formula Kϕ.
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For example, in the modelM in Figure 2.13, we have w1 _ w3 but not w1Edw3

or w1Elw3, sinceM, w1 �d,l Kc butM, w3 2d,l c. Hence for the RA theory, there can
be uneliminated possibilities that are not epistemically accessible. One can also check
that for all v ∈ W such that w1Edv,M, v � ¬x. HenceM, w1 � K¬x according to
(2.63). Yet as we have seen,M, w1 2d K¬x.

c

w1

'w1 c′

w2

≺w1 x

w3

≺w1
c, x

w4

Figure 2.13: RA model for Example 1.1 (partially drawn, reflexive loops omitted)

Before considering the conceptual significance of these observations, let us intro-
duce one more distinction. I will say that v is epistemically live for the agent in w

iff the agent does not know in w that possibility v does not obtain, where this is
understood as follows. Let us assume that we are dealing with RA models in which
each world u is uniquely definable by a formula ϕu of the epistemic language.

Definition 2.19 (Live). Given an RA model M = 〈W,_,�, V 〉, we can define an
epistemic liveness relation Lx on W as follows:

wLxv iffM, w 2x K¬ϕv.

It may seem that the live worlds should be exactly the accessible worlds or perhaps
the uneliminated worlds. In fact, the relations are more interesting, as illustrated by
the following proposition. I leave the proof to the reader.

Proposition 2.8 (Comparing Accessible, Live, and Uneliminated).

1. For all RA models, Ed ⊆ Ld = _, but there are RA models with Ed ( Ld.

2. For all RA models, El = Ll ⊆_, but there are RA models with Ll ( _.

Proposition 2.8 shows that if we go beyond basic epistemic logic as we have, then we
must keep apart three different notions that are easily conflated.
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For part 1, that Ld = _ shows that a D-semantical theorist can take eliminating
a possibility to be (extensionally) equivalent to knowing that the possibility does not
obtain. However, allowing Ed ( Ld means allowing that in w an agent can know
something that is false in v (so v is not accessible) without knowing that v does not
obtain (so v is live/uneliminated). This is another way of seeing closure failure: at
the pointed model M, w1 in Figure 2.13 for Example 1.1, according to D-semantics
student A knows c, which is false at w3, but she does not know that w3 does not
obtain, because she does not know ¬(x ∧ ¬c), which uniquely defines w3.

For part 2, that El = Ll is another expression of the fact that closure holds in
L-semantics. However, since the semantics allows Ll ( _, an L-semantical theorist
cannot take eliminating a possibility to be equivalent to knowing that the possibil-
ity does not obtain. Pryor [2001, 99] also observes that such an equivalence is not
available to RA theorists who wish to maintain closure. They require an indepen-
dent notion of eliminating or ruling out a possibility, such as Lewis’s notion involving
perceptual experience and memory or the alternative notion that Pryor suggests.

2.B Closest vs. Close Enough

In Definition 2.7, I stated the sensitivity, adherence, and safety conditions using the
Min6w operator, which when applied to a set S of worlds gives the set of “closest”
worlds to w out of those in S. This appears to conflict with the views of Heller [1989,
1999a], who argues for a “close enough worlds” analysis rather than a “closest worlds”
analysis for sensitivity, and of Pritchard [2005, 72], who argues for considering nearby
rather than only nearest worlds for safety and sensitivity. However, the conflict is
merely apparent. For if one judges that the closest worlds in a set S, according to
6w, do not include all of the worlds in S that are close enough, then we can relax 6w
to a coarser preorder 6′w, of which 6w is a refinement, so that the closest worlds in
S according to 6′w are exactly those worlds in S previously judged to be closest or
close enough.

To be precise, given a set CloseEnough(w) ⊆ Ww such that Min6w(W ) ⊆
CloseEnough(w) and such that if y ∈ CloseEnough(w) and x 6w y, then x ∈



2. RELEVANT ALTERNATIVES AND SUBJUNCTIVISM 96

CloseEnough(w), define 6′w as follows: v 6′w u iff either v 6w u or [u 6w v and
v ∈ CloseEnough(w)]. Then Min6′w(S) = Min6w(S) ∪ (CloseEnough(w) ∩ S), so
the close enough S-worlds are included, as desired. For the coarser preorder 6′w,
Min6′w(W ) = CloseEnough(w) would be the set of worlds close enough/nearby to w.
Here we assume, following Heller [1999a, 201f], that whether a world counts as close
enough/nearby may be context dependent, but for a fixed context, whether a world
is close enough/nearby is not relative to the ϕ for which we are assessing Kϕ (cf.
Cross 2008 on counterfactual conditionals and antecedent-relative comparative world
similarity); as discussed in §2.1, the fact that (for a given world) there is a single,
fixed ordering on the set of worlds is what Heller [1999a] uses to reply to Stine’s [1976]
equivocation charge against Dretske. Finally, note that while the coarser preorder 6′w
may not be the appropriate relation for assessing counterfactuals, according to the
Heller/Pritchard view, it would be appropriate for assessing knowledge.

2.C Necessary Conditions and Closure Failures

Let us return to the issue raised in Remark 2.4 about the relation between closure
failures for a necessary condition of knowledge and closure failures for knowledge
itself. Suppose that C is a necessary but insufficient condition for knowledge, and let
Cϕ mean that the agent satisfies C with respect to ϕ. Hence Kϕ → Cϕ should be
valid. Further suppose that

Cϕ1 ∧ · · · ∧ Cϕn → Cψ (2.64)

is not valid. As Vogel [1987] and Warfield [2004] point out, it does not follow that

Kϕ1 ∧ · · · ∧Kϕn → Kψ (2.65)

is not valid. For in the counterexample to (2.64), Kϕ1 ∧ · · · ∧ Kϕn may not hold,
since C is not sufficient for K.

Let C ′ be any other condition such that C and C ′ are jointly sufficient for K, so
Cϕ ∧ C ′ϕ → Kϕ is valid. If (2.65) is valid, then C ′ϕ1 ∧ · · · ∧ C ′ϕn does not hold in
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the counterexample to (2.64). Moreover, it must be that while (2.64) is not valid,

(Cϕ1 ∧ · · · ∧ Cϕn ∧ C ′ϕ1 ∧ · · · ∧ C ′ϕn)→ Cψ (2.66)

is valid. For if there is a counterexample to (2.66), then there is a counterexample to
(2.65), since C and C ′ are jointly sufficient and C is necessary for K.

The problem is that proposed conditions for K are typically independent in such a
way that assuming one also satisfies C ′ with respect to ϕ1, . . . , ϕn will not guarantee
that one satisfies a distinct, non-redundant condition C with respect to ψ, if satisfying
C with respect to ϕ1, . . . , ϕn is not already sufficient. For example, if ruling out
the relevant alternatives to ϕ1, . . . , ϕn is not sufficient for ruling out the relevant
alternatives to ψ, then what other condition is such that also satisfying it with respect
to ϕ1, . . . , ϕn will guarantee that one has ruled out the relevant alternatives to ψ?
The same question arises for subjunctivist conditions. It is up to subjunctivists to
say what they expect to block closure failures for knowledge, given closure failures
for their necessary subjunctivist conditions on knowledge.

One way to do so is to build in the satisfaction of closure itself as another neces-
sary condition. For example, Luper-Foy [1984, 45n38] gives the “trivial example” of
contracking ϕ, which is the condition (C ′) of satisfying the sensitivity condition (C)
for all logical consequences of ϕ. However, this idea for building in closure misses
the fact that multi-premise closure principles fail for contracking. For example, one
can contrack p and contract q, while being insensitive with respect to (p∧ q)∨ r and
therefore failing to contrack p ∧ q.

Contracking must be distinguished from another idea for combining tracking with
closure. Roush [2005, Ch. 2, §1] proposes a disjunctive account according to which
(to a first approximation) an agent knows ψ iff either the agent “Nozick-knows” ψ, i.e.,
satisfies Nozick’s belief, sensitivity, and adherence conditions for ψ, or there are some
ϕ1, . . . , ϕn, none of which is equivalent to ψ, such that the agent knows ϕ1, . . . , ϕn and
knows that ϕ1 ∧ · · · ∧ ϕn implies ψ. Importantly, according to this recursive tracking
view of knowledge, the tracking conditions (for which closure fails) are not necessary
conditions for knowledge.
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2.D Bases and Methods

In this section, we consider the closure properties of knowledge according to well-
known versions of the tracking and safety theories that take into account an agent’s
method of coming to believe or basis for believing a proposition.60 Suppose an agent
comes to believe ϕ by some method m. Call her belief that ϕ sensitive∗ iff in the
closest ¬ϕ-worlds, she does not believe ϕ by method m (though she may believe ϕ
by some m′ 6= m).61 (For simplicity, here I ignore adherence, although the treatment
below easily extends to adherence.) Similarly, suppose an agent comes to believe ϕ
on some basis b. Call her belief that ϕ safe∗ iff in all close worlds, if ϕ is false, then
she does not believe ϕ on basis b (though she may believe ϕ on some b′ 6= b).

To study closure for the sensitivity∗ and safety∗ theories, I will define a language
inspired by that of justification logic [Artemov, 2008, Fitting, 2009]. The definitions
will refer to ‘bases’, but I intend this to cover methods as well.

Definition 2.20 (Basis Language). Let At = {p, q, r, . . . } be a set of atomic sentences
and Ba = {a, b, c, . . . } a set of atomic bases (or methods). The epistemic-doxastic
basis language is defined inductively by

b ::= a | b · b
ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | B(ϕ, b) | Bϕ | K(ϕ, b) | Kϕ,

where a ∈ Ba and p ∈ At.

Let us take B(ϕ, b) to mean that the agent believes ϕ on basis b and K(ϕ, b) to
mean that the agent knows ϕ on basis b, which is to say that she believes ϕ on basis

60The motivation for taking account of methods of belief formation in the tracking theory was not
to restore closure, but to block counterexamples to the theory [Nozick, 1981, 179ff]. By contast, one
of the motivations for taking into account bases of beliefs in the safety theory was to restore closure
(see, e.g., Sosa 1999, 149, Williamson 2009, 20).

61Here we follow Luper-Foy’s [1984] statement of the sensitivity condition with methods, which
differs from that of Nozick [1981]. According to Nozick’s version, sensitivity∗ requires that in the
closest worlds where both ϕ is false and the agent uses method m to determine whether or not
ϕ, the agent does not come to believe ϕ by method m. This statement assumes what Luper-Foy
calls “two-sided methods . . . capable of recommending the belief that not-p as well as the belief that
p,” whereas Luper-Foy’s revised version handles methods that are “one-sided, i.e., not capable of
recommending the belief that not-p” (28).
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b and her belief constitutes knowledge. The first clause in Definition 2.20 allows us
to form complex bases out of atomic ones. If b is a basis for the agent’s believing p
and b∗ is a basis for the agent’s believing p→ q, then b∗· b is “the basis for believing q
which consists of believing p on basis b, believing p→ q on basis b∗, and believing q
by competent deduction from those premises” [Williamson, 2009, 20].62 For methods
instead of bases, Nozick says that if one comes to believe p by method M1 and p→ q

by method M2, then by deducing q from p and p→ q, one comes to believe q by the
“combined” method “M1 +M2” [Nozick, 1981, 233], which we would write as M2 ·M1.
Although I do not endorse this way of thinking about deduction, I will go along with
Williamson and Nozick in order to study their views on their own terms.

We interpret the basis language in models that enrich CB models with a function
B, inspired by the function E of Fitting models for justification logic (see Artemov
2008, §5, Fitting 2009, §4.2) but with different properties.

Definition 2.21 (CB∗ Model). A CB∗ model is a tupleM = 〈W,D,B,6, V 〉 where
W , D, 6, and V are as in Definition 2.2 and B assigns to each pair of a basis/method
b (atomic or complex) and ϕ in the language a set B(ϕ, b) ⊆ W such that:

1. if B(ϕ, b) 6= ∅, then B(ψ, b) = ∅ for ψ 6= ϕ;

2. if B(ϕ→ ψ, b) 6= ∅ and B(ϕ, b′) 6= ∅, then B(ψ, b · b′) ⊆ B(ϕ→ ψ, b) ∩ B(ϕ, b′).

We interpret B(ϕ, b) to be the set of worlds in which b is a basis for believing ϕ (see
Definition 2.23 below). Parts 1 and 2 of the definition follow from our interpretation
of bases/methods along the lines of Williamson/Nozick above. First, we allow there
to be multiple bases for the same belief. We might also wish to say that an agent’s
basis for believing ϕ is the same as her basis for believing ψ. However, we will adopt
the convention that bases are to be individuated in part by what they are bases for:
if b is a basis for believing ϕ in some world, then b is not a basis for believing some
other ψ in any world. (Similarly, we individuate methods in part by the belief content

62Harman and Sherman [2004] deny Williamson’s “presupposition that deduction is a kind of
inference, something one does,” arguing that this “confuses questions of implication with questions
of inference” (495). I will return to this issue in §5.4.
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they can produce.) The reason for this convention, imposed by Definition 2.21.1, is
that if we understand the basis b∗ · b for believing q as in the quote from Williamson,
then b∗ · b cannot be a basis for believing some other r. Definition 2.21.2 also follows
from understanding bases of the form b · b′ following Williamson. If b is a basis for
believing ϕ→ ψ and b′ is a basis for believing ϕ, then in any world where the agent
believes ψ on the basis of b ·b′, she must also believe ϕ→ ψ on the basis of b and ϕ on
the basis of b′. Similar points apply to methods, following the passage from Nozick.

We now define H∗- and S∗-semantics as modifications of H- and S-semantics. As
noted above, we ignore adherence and N-semantics for simplicity.

Definition 2.22 (Truth in CB∗ Models). Given a well-founded CB∗ model M =

〈W,D,B,6, V 〉 with w ∈ W and a formula ϕ in the basis language, defineM, w �x ϕ

as follows (with propositional cases as usual):

M, w �x B(ϕ, b) iff w ∈ B(ϕ, b) and ∀v ∈ W : if wDv thenM, v � ϕ;

M, w �h∗ K(ϕ,m) iff M, w �h∗ B(ϕ,m) and
(sensitivity∗) ∀v ∈ Min6w

(
JϕKh∗

)
:M, v 2h∗ B(ϕ,m);

M, w �s∗ K(ϕ, b) iff M, w �s∗ B(ϕ, b) and
(safety∗) ∀v ∈ Min6w(W ):M, v �s∗ B(ϕ, b)→ ϕ.

These clauses clearly capture the sensitivity∗ and safety∗ conditions stated at the
beginning of this section. Note that I have incorporated Observation 2.1 into the
S∗-clause (and the remarks of 2.B apply here as well). There are different options for
defining the truth of Bϕ and Kϕ formulas,63 but we will not need them here.

63For Kϕ we could define M, w �x Kϕ iff there exists a b ∈ Ba such that M, w �x K(ϕ, b).
According to Nozick [1981, 181], it is not enough for there to be one method with respect to which
the agent’s belief is sensitive∗. Nozick proposes a more subtle analysis in terms of which methods
outweigh other methods, while Luper-Foy [1984, 27n4] suggests that one good method should be
enough. In any case, this issue is not essential to our closure question. For Bϕ, we could adopt
the clause in Definition 2.7, or we could define M, w � Bϕ iff there exists a b ∈ Ba such that
M, w �x B(ϕ, b). Note that while the Bϕ clause in Definition 2.7 guarantees full doxastic closure,
the clause just given does not. The latter allows Bϕ∧¬Bψ to be satisfiable even when ψ is a logical
consequence of ϕ. We could think of the clause in Definition 2.7 as defining “implicit” belief, while
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Given the conditions on CB∗ models we have imposed so far, we can have both
w ∈ B(ϕ, b) andM, w 2 B(ϕ, b). In other words, the models allow that b is a basis
for believing ϕ even though the agent does not believe ϕ on that basis. However, we
can also choose to represent a basis in our model only if the agent believes something
on that basis. As I will put it, we can represent only “realized bases” in the model.

Definition 2.23 (Realized Bases). A CB∗ model has realized bases iff for all w ∈ W ,
b ∈ Ba, and formulas ϕ in the basis language,

w ∈ B(ϕ, b) impliesM, w � B(ϕ, b).

With this setup, let us now turn to the issue of deductive closure for the safety∗

theory. Fact 2.15 and its proof formalize an argument, clearly stated by Williamson
[2009, 20], according to which safety∗ preserves deductive closure.

Fact 2.15 (Deductive Closure & Bases). The deductive closure principle

(K(ϕ→ ψ, b) ∧K(ϕ, b′) ∧B(ψ, b · b′))→ K(ψ, b · b′)

is S∗-valid over CB∗ models with realized bases.

Proof. Assume

M, w �s∗ K(ϕ→ ψ, b) ∧K(ϕ, b′) ∧B(ψ, b · b′). (2.67)

It follows by Definition 2.22 that B(ϕ → ψ, b) 6= ∅ and B(ϕ, b′) 6= ∅, which with
Definition 2.21.2 implies

B(ψ, b · b′) ⊆ B(ϕ→ ψ, b) ∩ B(ϕ, b′). (2.68)

we interpret B(ϕ, b) to mean that the agent has an “explicit” (though not necessarily occurrent)
belief that ϕ on the basis of b. This interpretation makes sense of the satisfiability of Bϕ ∧ ¬Bψ
according to the clause just given, even when ψ is a consequence of ϕ. For the agent may not have
formed an explicit belief that ψ. Rather than choosing between the Bϕ clause of Definition 2.7 and
the other clause, we could introduce different belief operators for the different clauses.
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Consider some v ∈ Min6w(W ). IfM, v �s∗ B(ψ, b ·b′), then by Definition 2.22, (2.68),
and Definition 2.23,

M, v �s∗ B(ϕ→ ψ, b) ∧B(ϕ, b′). (2.69)

By Definition 2.22, (2.69) and (2.67) together implyM, v �s∗ (ϕ→ ψ)∧ϕ and hence
M, v �s∗ ψ. We conclude that for all v ∈ Min6w(W ), M, v �s∗ B(ψ, b · b′) → ψ,
which withM, w �s∗ B(ψ, b · b′) impliesM, w �s∗ K(ψ, b · b′) by Definition 2.22.

The key to Fact 2.15 is Williamson’s assumption (similar to Nozick’s for methods)
that the basis for believing ψ is not just deduction from ϕ → ψ and ϕ, which are
believed, but rather deduction from ϕ→ ψ and ϕ, which are believed on bases b and b′,
respectively. Alspector-Kelly [2011] objects that building the bases for the premises
into the basis for the conclusion so that safety∗ saves deductive closure is ad hoc. I
will not enter this dispute, since my main objection to safety/safety∗ is not about
deductive closure, but about the Problem of Vacuous Knowledge explained in §4.1.

The second point about Fact 2.15 is that if safety∗ saves closure at all, it only saves
deductive closure. As suggested by Williamson [2000, 282f], it is highly plausible that
an agent who knows ϕ ∧ ψ thereby knows ψ, in virtue of knowing the conjunction,
even if the agent did not deduce ψ from ϕ ∧ ψ (recall Remark 2.1). Yet the safety∗

theory fails to deliver this result. Recall the CB model in Fig. 2.10. At w, the agent
believes p and q, and she safely∗ believes p ∧ q, since it is true at all of the closest
worlds to w where she believes p ∧ q on the same basis as she does in w (which is
only w itself in Fig. 2.10, but we could add more). Assume that in w her belief that
q is not based on deduction from p∧ q, but (solely) on some other basis b, which does
not depend on her believing p or p ∧ q. Then we may assume that b is also her basis
for believing q in v, a world in which she believes neither p nor p ∧ q. Since q is false
at v, which is a closest (to w) world, she does not have a safe basis for believing q at
w. Hence according to the safety∗ theory, an agent can know p∧ q and believe q, but
fail to know q, contradicting the view suggested by Williamson. I take this to be a
problem for the safety∗ theory, rather than for Williamson’s suggestion.

I conclude this section by noting that even if we allow Nozick’s conception of
combined methods, sensitivity∗ does not save deductive closure.
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Figure 2.14: CB model for Example 1.1 (partially drawn)

Fact 2.16 (Deductive Closure & Methods). The deductive closure principle

(K(ϕ→ ψ,m) ∧K(ϕ,m′) ∧B(ψ,m ·m′))→ K(ψ,m ·m′) (2.70)

is not H∗-valid over CB∗ models (even with realized bases/methods).

For the proof, we return to Example 1.1 and the model in Fig. 2.14.

Proof. Let us extend the CB modelM = 〈W,D,6, V 〉 in Fig. 2.14 to a CB∗ model
M∗ = 〈W,D,B,6, V 〉 by defining B in any way such that

{w1, w3} ⊆ B(c→ ¬x,m) ∩ B(c,m′) ∩ B(¬x,m ·m′).64 (2.71)

In (2.70), substitute c for ϕ and ¬x for ψ to obtain

(K(c→ ¬x,m) ∧K(c,m′) ∧B(¬x,m ·m′))→ K(¬x,m ·m′). (2.72)

Given Min6w1

(
Jc→ ¬xK

)
= {w4} and M, w4 2 B(c → ¬x,m) (since w4Dw4 and

M, w4 2 c → ¬x), sensitivity∗ holds at w1 for c → ¬x with m. Then since
M, w1 � B(c → ¬x,m), it follows that M, w1 �h∗ K(c → ¬x,m). Similarly,
given Min6w

(
JcK
)

= {w2} and M, w2 2 B(c,m′) (since w2Dw2 and M, w2 2 c),
sensitivity∗ holds at w1 for c with m′. Then since M, w � B(c,m′), it follows that
M, w1 �h∗ K(c,m′). But given Min6w1

(
J¬xK

)
= {w3} and M, w3 � B(¬x,m ·m′),

64Think of m as the method of looking up in the medical textbooks whether c → ¬x and m′ as
the method of running the laboratory tests to check for signs of condition c. Assume that in both
w1, the (actual) world in which the patient has condition c, and w3, the world in which the patient
has disease x, student A forms her belief in c→ ¬x by method m, her belief in c by method m′, and
her belief in ¬x by deduction from c→ ¬x and c.
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sensitivity∗ fails at w1 for ¬x with m ·m′, soM, w1 2h∗ K(¬x,m ·m′). Then since
M, w1 � B(¬x,m ·m′), it follows that the conditional (2.72) is false atM, w1.

The difference between Fact 2.15 and Fact 2.16 is due to the ∃∀ nature of safety∗

vs. the ∀∃ nature of sensitivity∗. A world v that witnesses the violation of either
sensitivity∗ or safety∗ at w with respect to ψ must be a ¬ψ-world and hence a ¬ϕ-
world or a ¬(ϕ → ψ)-world. Since sensitivity∗ is a ∀∃ condition, if the ¬ψ-world v
witnesses the violation of sensitivity∗ at w with respect to ψ, it need not be among
the worlds that matter for sensitivity∗ at w with respect to ϕ and ϕ→ ψ, namely the
closest (to w) ¬ϕ-worlds or ¬(ϕ → ψ)-worlds. Hence even if in v the agent comes
to (falsely) believe ϕ or ϕ → ψ by the same methods as in w,65 the agent may still
sensitively∗ believe ϕ and ϕ → ψ at w. By contrast, since safety is a ∃∀ condition,
if the ¬ψ-world v witnesses the violation of safety∗ at w with respect to ψ, it must
be among worlds that matter for safety∗ at w with respect to ϕ and ϕ→ ψ, namely
the closest worlds to w. Hence if in v the agent (falsely) believes ϕ or ϕ→ ψ on the
same basis as in w, then the agent cannot safely∗ believe ϕ and ϕ→ ψ at w.

The ∀∃ nature of sensitivity∗ also explains the “complication” in Nozick’s [1981,
236] explanation for why closure under “inferring a disjunction from a disjunct” should
hold for his theory when methods are taken into account. Suppose that in w, the
agent knows p and infers p ∨ q from p. Further suppose that v is a closest (to w)
¬(p∨ q)-world, and therefore a ¬p-world. Nozick suggests that in v, the agent cannot
believe p—and thus cannot come to believe p ∨ q by the same method of inference
from p, as used in w—because if she does believe p at v, then at w her belief that p
is not sensitive. But this assumes that v, which is a closest (to w) ¬(p ∨ q)-world, is
also a closest (to w) ¬p-world, an assumption there is no reason to make. The closest
¬p-worlds may all be q-worlds. Therefore, Nozick’s explanation is incorrect.

65One might claim that in w, the method used is: deduction from ϕ and ϕ→ ψ, which are truly
believed by methods m and m′. If so, this cannot be the method used in v, since either ϕ or ϕ→ ψ
must be false at v. One might claim that in v, the different method used is: deduction from ϕ and
ϕ → ψ, which are (merely) believed by methods m and m′. However, Nozick [1981, 232] himself
rejects this suggestion, since the “two methods” described are indistinguishable for the agent, and
Nozick individuates methods “from the inside” (184).
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2.E Subjunctivist vs. Probabilistic Models

As noted in §2.5, Roush [2005] argues that sensitivity and adherence should be under-
stood in terms of conditional probability rather than subjunctive conditionals. Where
s and t are parameters, sensitivity becomes P (¬Bp | ¬p) > s, adherence becomes
P (Bp | p) > t,66 and an agent Nozick-knows p (relative to s, t) iff p is true, the agent
believes p, and sensitivity and adherence are met relative to s and t, respectively.
Roush’s own view of knowledge, sketched in §2.C, has another disjunctive clause.

In this section, I show that the probabilistic version of Nozick-knowledge (to be
distinguished from Roush’s more sophisticated account of knowledge) leads to the
same closure failures as the subjunctivist version. To do so, I will draw on results
of Baltag and Smets [2008] on the relationship between preorders and “Popper func-
tions” for conditional probability. Instead of starting with a probability function
P : P(W ) → [0, 1] on our space W , from which conditional probability can be de-
fined, we will take conditional probability as primitive. Baltag and Smets treat the
case where W is finite, which will be sufficient for our purposes here.

Definition 2.24 (Discrete Popper Function). A discrete Popper function on a finite
set W is a function µ : P(W )× P(W )→ [0, 1] such that for all A,B,C ⊆ W :

1. µ(A | A) = 1;

2. µ(A ∪B | C) = µ(A | C) + µ(B | C), if A ∩B = ∅ and C 6= ∅;

3. µ(A ∩B | C) = µ(A | B ∩ C) · µ(B | C).

An absolute probability function P : P(W ) → [0, 1] can be defined from the
Popper function µ by

P (A) = µ(A | W ).

Conditional probability is usually defined in terms of absolute probability by

P (A | B) =
P (A ∩B)

P (B)
,

66Roush also include P (B¬p | p) < 1− t as a conjunct in the adherence condition, since she does
not assume that the agent is fully rational according to the probability axioms.
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so note that it follows from Definition 2.24.3 that if P (B) 6= 0, then

P (A ∩B)

P (B)
=
µ(A ∩B | W )

µ(B | W )
= µ(A | B ∩W ) = µ(A | B),

so the derived conditional probability agrees with the primitive conditional probabil-
ity. Also note that even if P (B) = 0, µ(A | B) is well-defined, which is to say that
Popper functions allow conditionalization on propositions of probability 0.

2.E.1 Probabilistic Tracking (PT) Models

Let us now formalize probabilistic Nozick knowledge with new models and semantics.

Definition 2.25 (PTModel). A probabilistic tracking model is a tupleM = 〈W,D, µ, V 〉
where W is a finite set, D and V are defined as in Definition 2.6, and

1. µ assigns to each w ∈ W a function µw : P(W )× P(W )→ [0, 1];

(a) µw is a Popper function;

(b) µw({w} | W ) > 0.

For the following definition, fix some thresholds s, t ∈ [0, 1).

Definition 2.26 (Truth in a PT Model). Given a PT model M = 〈W,D, µ, V 〉 with
w ∈ W and ϕ in the epistemic-doxastic language, define M, w 
 ϕ as follows (with
propositional cases as usual):

M, w 
 Kϕ iff M, w 
 Bϕ ∧ ϕ and
(sensitivity) µw(‖Bϕ‖ | ‖ϕ‖) > s,

(adherence) µw(‖Bϕ‖ | ‖ϕ‖) > t,

where ‖α‖= {v ∈ W | M, v � α}. Observe that the condition that M, w 
 ϕ is not
redundant. However, given Definition 2.25.1b, the condition that M, w 
 ϕ would
be redundant if we were to define sensitivity as µw(‖Bϕ‖ | ‖ϕ‖) = 1; moreover, if
we were to assume that µw({w} | W ) = 1 (analogous to the centering condition
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that Min6w(W ) = {w}) instead of just µw({w} | W ) > 0, then the condition that
M, w 
 ϕ would be redundant even with sensitivity as defined above.

2.E.2 From CB to PT Models

To connect PT models to CB models, we define Popper functions µw from the pre-
orders 6w in our CB models in two steps, using the following definition and theorem.

Given a preorder � on a finite set W , define the function (· , ·)� : W ×W → [0, 1]

as follows:

(w, v)� =


1 if w ≺ v or w = v;

0 if v ≺ w;

.5 otherwise.

Theorem 2.2 (Baltag and Smets 2008). If � is a preorder on a finite set W , then
the function µ : P(W )× P(W )→ [0, 1] defined by67

µ(A | B) =
∑

w∈A∩B

1∑
v∈B

(v,w)�
(w,v)�

is a Popper function such that for all A,B ⊆ W ,

µ(A | B) = 1 iff Min�(B) ⊆ A. (2.73)

Finally, using Theorem 2.2 we can show that closure fails for probabilistic Nozick
knowledge in all of the ways that it fails for subjunctivist Nozick knowledge.

Proposition 2.9 (Closure Failures from CB to PTModels). Any flat closure principle
that is not H-valid over CB models is not valid over PT models.

Proof. It follows from the proof of Theorem 2.1 that if a flat closure principle

Kϕ1 ∧ · · · ∧Kϕn → Kψ1 ∨ · · · ∨Kψm
67Using the conventions that 1

0 =∞, 1
∞ = 0, ∞+∞ =∞, and ∞+ x =∞ for all x ∈ R.
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is not N-valid over CB models, then it is falsified at a finite pointed CB modelM, w

where for all j ≤ m, not only

Min6w(JψjK) 6⊆ JBψjK,

but also
Min6w(JψjK) ⊆ JBψjK.68 (2.74)

From the CB model M = 〈W,D,6, V 〉, define the PT model M = 〈W,D, µ, V 〉 by
constructing µw from 6w as in Theorem 2.2.

From (2.74), it follows by (2.73) that

µw(‖Bψj‖| ‖ψj‖) = 1,

in which case
µw(‖Bψj‖ | ‖ψj‖) = 0

by Definition 2.24.2. It follows that no matter the value of s, we have M, w 1 Kψj

by Definition 2.26.
For all i ≤ n, givenM, w � Kϕi we have

Min6w(JϕiK) ⊆ JBϕiK

and
Min6w(JϕiK) ⊆ JBϕiK

by Definition 2.7, so
µw(‖Bϕi‖ | ‖ϕi‖) = 1

68There are multiple ways to construct such a model. For one, use the proof of Theorem 2.1.2
to first construct a linear RA model that falsifies the closure principle according to D-semantics;
then use Proposition 2.4/2.5 to obtain a linear CB model that falsifies it according to N-semantics.
In a linear model, Min6w(JψK) 6⊆ JBψK obviously implies Min6w(JψK) ⊆ JBψK. For another, use
the construction of §2.6.4. To be more concrete, observe that in the modelM in Fig. 2.2, we have
M, w1 2n K(c ∧ ¬x)→ K¬x and Min6w1

(J¬xK) = {w3} ⊆ JB¬xK.
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and
µw(‖Bϕi‖| ‖ϕi‖) = 1

by (2.73). Also note that M, w � Kϕi implies M, w � Bϕi ∧ ϕi, which implies
M, w � Bϕi ∧ ϕi since ϕi is propositional and V and D are the same inM and M.
It follows that no matter the value of t, we have M, w 
 Kϕi by Definition 2.26.
Putting this together with our results from above, we have

M, w 1 Kϕ1 ∧ · · · ∧Kϕn → Kψ1 ∨ · · · ∨ ψm

no matter the values of s and t.

Is the converse of Proposition 2.9 true, so that all principles valid over CB models
in N-semantics are also valid over PT models? The answer is negative:

Fact 2.17 (C Axiom). For any s, t ∈ [0, 1), the C axiom Kϕ ∧Kψ → K(ϕ ∧ ψ) is
not valid over PT models.

Proof. It is easy to construct a pointed PT model M, w where

M, w � Bp ∧Bq ∧ p ∧ q, (2.75)

µw(‖Bp‖ | ‖p‖) = 1, (2.76)

µw(‖Bq‖ | ‖q‖) = 1, (2.77)

µw(‖Bp‖ | ‖p‖) > t, and (2.78)

µw(‖Bq‖ | ‖q‖) > t, (2.79)

but where
µw(‖B(p ∧ q)‖ | ‖p ∧ q‖) ≤ t. (2.80)

By (2.75) - (2.79), the belief, truth, sensitivity, and adherence conditions are satisfied
for p and q at w, but by (2.80), adherence is not satisfied for p ∧ q at w.

The C axiom can also be falsified due to a lack of sensitivity to p∧q, rather than a
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lack of adherence. For s > 0, it is easy to construct a pointed PT model M, w where

µw(‖Bp‖ | ‖p‖) > s, (2.81)

µw(‖Bq‖ | ‖q‖) > s, (2.82)

and (2.75), (2.78), and (2.79) hold, but where

µw(‖B(p ∧ q)‖ | ‖p ∧ q‖) < s, (2.83)

so sensitivity is not satisfied for p ∧ q at w.69

2.F Reduction Axioms for RA Context Change

In this section, our goal is to apply one of the main ideas of dynamic epistemic
logic, that of reduction axioms, to the picture of context change presented in §2.11.
Roughly speaking, reduction axioms are valid equivalences of the form [+χ]ψ ↔ ψ′,
where the left-hand side states that some ψ is true after the context change with χ,
while the right-hand side gives an equivalent ψ′ describing what is true before the
context change. For example, we can ask whether an agent counts as knowing ϕ

after χ becomes relevant, i.e., is [+χ]Kϕ true? The reduction axioms will answer this
question by describing what must be true of the agent’s epistemic state before the
context change in order for the agent to count as knowing ϕ after the context change.

To obtain reduction axioms for context change that are valid over our RA models,
we will use a language more expressive than the epistemic language used in the
previous sections. Our new RA language will be capable of describing what is relevant
at a world and what is ruled out at a world independently. This additional expressive
power will allow us to obtain reduction axioms using methods similar to those applied

69For example, construct M with worlds w, x1, x2, and y, where M, w 
 B(p ∧ q) ∧ p ∧ q,
M, x1 
 B(p ∧ q) ∧ p ∧ ¬q, M, x2 
 B(p ∧ q) ∧ ¬p ∧ q, and M, y 
 ¬Bp ∧ ¬Bq ∧ ¬p ∧ ¬p. For
s ∈ (0, 1), let the unconditional probabilities of the singleton sets relative to w be: Pw({w}) = k for
some k ∈ (0, 1), Pw({x1}) = Pw({x2}) = 2(1−k)(1−s)

(4−s) , and Pw({y}) = 3sPw({xi})
2(1−s) , which sum to 1.

Then one can check that Pw(‖Bp‖ | ‖p‖) = Pw(‖Bq‖ | ‖q‖) > s, but Pw(‖B(p ∧ q)‖ | ‖p ∧ q‖) < s.
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by van Benthem and Liu van Benthem and Liu [2007] to dynamic epistemic preference
logic (also see van Benthem et al. [2009]), but with an important difference.

Van Benthem and Liu work with models with a single preorder over worlds (for
each agent), representing an agent’s preferences between worlds, and their language
contains an operator �� used to quantify over all worlds that are better than the
current world according to the agent.70 In our setting, �� would quantify over all
worlds that are more relevant. Using another operator �_ to quantify over all worlds
that are uneliminated at the current world, we can try to write a formula expressing
that all of the most relevant ¬ϕ-worlds are eliminated at the current world. An
equivalent statement is that for all uneliminated worlds v, if v is a ¬ϕ-world, then
there is another ¬ϕ-world that is strictly more relevant than v. This is expressed by
�_(¬ϕ→ ♦�¬ϕ), where ♦�ψ := ¬��¬ψ.

The problem with the above approach is that unlike the models of van Benthem
and Liu (but like models for conditional logic and the general belief revision structures
of Board [2004]), our RA models include a preorder �w for each world w. Hence if the
operator �� quantifies over all worlds that are more relevant than the current world
according to the relevance relation of the current world, then �_(¬ϕ→ ♦�¬ϕ) will
be true at w just in case for all worlds v uneliminated at w, if v is a ¬ϕ-world, then
there is another ¬ϕ-world that is strictly more relevant than v according to �v. Yet
this is not the desired truth condition.71 The desired truth condition is that for all
worlds v uneliminated at w, if v is a ¬ϕ-world, then there is another ¬ϕ-world that
is strictly more relevant than v according to �w. To capture this truth condition,
we will use an approach inspired by hybrid logic [Areces and ten Cate, 2007]. First,
different modalities ��x , ��y , etc., will be associated in a given model with different
relevance relations �w, �v, etc., by an assignment function g. Second, a binder ↓
will be used to bind a world variable x to the current world, so that the formula

70Van Benthem et al. [2009] write this operator as �<, since they take w ≺ v to mean that v is
strictly better than w according to the agent. Since we take w ≺ v to mean that w is strictly more
relevant than v, we write �� for the operator that quantifies over more relevant worlds. We will
write �� for the operator that quantifies over worlds that are of equal or lesser relevance. We use
the same � for the superscript of the operator and for the relation in the model, trusting that no
confusion will arise.

71Since v is assumed to be minimal in �v, the condition would never be met.
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↓x.�_(¬ϕ → ♦�x¬ϕ) will capture the desired truth condition described above (cf.
Lewis 1973, §2.8 on the † operator).

In addition to the operator ��x that quantifies over all worlds more relevant than
the current world according to �g(x), we will use an operator ��x that quantifiers
over all worlds whose relevance is equal to or lesser than that of the current world
according to �g(x). The second operator is necessary for writing reduction axioms
for the context change operation & from Definition 2.15. Together the two types of
operators will also allow us to quantify over all worlds in the field of �g(x), Wg(x), with
formulas of the form ��xϕ∧��xϕ, which we will use in writing reduction axioms for
both of the context change operations, ↑ and &, from Definition 2.15.

Definition 2.27 (Dynamic & Static RA Languages). Let At = {p, q, r . . . } be a set
of atomic sentences and Var = {x, y, z, . . . } a set of variables. The dynamic RA
language is generated as follows, where p ∈ At and x ∈ Var:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �_ϕ | ��xϕ | ��xϕ | ↓x.ϕ | [π]ϕ

π ::= ↑ ϕ | & ϕ.

Where R is �x, �x, or _, let ♦Rϕ := ¬�R¬ϕ; let Rx stand for either �x or �x in
definitions that apply to both; and let us use + as after Definition 2.15. Finally, let
the static RA language be the fragment of the dynamic RA language consisting of
those formulas that do not contain any context change operators [π].

The truth clauses are as one would expect from our description above, and the
clause for the context change operators is the same as Definition 2.17.

Definition 2.28 (Truth). Given an RA modelM = 〈W,_,�, V 〉 and an assignment
function g : Var → W , we defineM, g, w � ϕ as follows (with propositional cases as
in Definition 2.4):

M, g, w � �_ϕ iff ∀v ∈ W : if w _ v thenM, g, v � ϕ;

M, g, w � �Rxϕ iff ∀v ∈ W : if wRg(x)v thenM, g, v � ϕ;

M, g, w � [+χ]ϕ iff M+χ, g, w � ϕ;

M, g, w � ↓x.ϕ iff M, gxw, w � ϕ,
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where gxw is such that gxw(x) = w and gxw(y) = g(y) for all y 6= x.

Hence the ↓x.ϕ clause captures the idea of letting x stand for the current world
by changing the assignment g to one that maps x to w but is otherwise the same.

We now show how the epistemic language can be translated into the RA language
in two different ways, corresponding to D- and L-semantics.72 To simplify the trans-
lation, let us assume for the moment that all of our RA models M = 〈W,_,�, V 〉
have the universal field property, so for all w ∈ W , Ww = W .

Definition 2.29 (Translation). Let σd be the translation from the epistemic language
of Definition 2.1 to the static RA language of Definition 2.27 defined by:

σd(p) = p

σd(¬ϕ) = ¬σd(ϕ)

σd(ϕ ∧ ψ) = (σd(ϕ) ∧ σd(ψ))

σd(Kϕ) = ↓x.�_(¬σd(ϕ)→ ♦�x¬σd(ϕ)).

Let σl be the translation with the same atomic and boolean clauses (with σl in place
of σd) but with:

σl(Kϕ) =↓x.�_(¬σl(ϕ)→ ♦�x>).

As explained at the beginning of this section, the idea of the σd translation is that
the truth clause for Kϕ in D-semantics—stating that the most relevant ¬ϕ-worlds are
eliminated—is equivalent to the statement that for all worlds v uneliminated at the
current world w, if v is a ¬ϕ-world, then there is another ¬ϕ-world that is strictly more
relevant than v according to �w. This is exactly what σd(Kϕ) expresses. Similarly,
the idea of the σl translation is that the truth clause for Kϕ in L-semantics—stating
that among the most relevant worlds overall, all ¬ϕ-worlds are eliminated—is equiva-
lent to the statement that for all worlds v uneliminated at the current world w, if v is
a ¬ϕ-world, then there is another world that is strictly more relevant than v according
to �w, in which case v is not among the most relevant worlds overall according to

72Note that since the translation of Definition 2.29 only requires a single variable x, for our
purposes here it would suffice to define the RA language such that |Var| = 1.
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�w. This is exactly what σl(Kϕ) expresses. The following proposition confirms these
claims.

Proposition 2.10 (Simulation). For any RA modelM = 〈W,_,�, V 〉, assignment
g : Var→ W , world w ∈ W , and formula ϕ of the epistemic language:

M, w �d ϕ iff M, g, w � σd(ϕ);

M, w �l ϕ iff M, g, w � σl(ϕ).

Proof. By induction on ϕ. All of the cases are trivial except where ϕ is of the form
Kψ. By Definition 2.29, we are to show

M, w �d Kψ iffM, g, w � ↓x.�_(¬σd(ϕ)→ ♦�x¬σd(ϕ)). (2.84)

By Definition 2.28, the rhs of (2.84) holds iff for all v ∈ W , if w _ v, then

M, gxw, v � ¬σd(ψ)→ ♦�x¬σd(ψ). (2.85)

By Definition 2.28, (2.85) is equivalent to the disjunction of the following:

M, gxw, v � σd(ψ); (2.86)

∃u ∈ W : u ≺gxw(x) v andM, gxw, u 2 σd(ψ). (2.87)

By the inductive hypothesis, (2.86) and (2.87) are respectively equivalent to

M, v �d ψ and (2.88)

∃u ∈ W : u ≺w v andM, u 2d ψ. (2.89)

AssumingM has the universal field property, the disjunction of (2.88) and (2.89) is
equivalent to

v 6∈ Min�w(JψK). (2.90)

Hence the rhs of (2.84) holds if and only if for all v ∈ W , if w _ v, then (2.90)
holds. The rhs of this biconditional is equivalent to the lhs of (2.84), M, w �d Kψ,
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by Definition 2.4. The proof for the case of L-semantics is similar.

If we do not assume that RA models have the universal field property, then we
must modify the translation of Definition 2.29 such that

σ′d(Kϕ) = ↓x.�_(¬σ′d(ϕ)→ (♦�x¬σ′d(ϕ) ∨��x⊥));

σ′l(Kϕ) = ↓x.�_(¬σ′l(ϕ)→ (♦�x> ∨��x⊥)).

We leave it to the reader to verify that given the modified translation, Proposition
2.10 holds without the assumption of the universal field property.

We are now prepared to do what we set out to do at the beginning of this section:
give reduction axioms for the context change operations of Definition 2.15. For the
following proposition, let us define �xϕ := ��xϕ ∧��xϕ.

Proposition 2.11 (RA Reduction). Given the valid reduction axioms in Table 2.3
below and the rule of replacement of logical equivalents,73 any formula of the dynamic
RA language is equivalent to a formula of the static RA language.

Proof. Assuming the axioms are valid, the argument for the claim of the proposition is
straightforward. Each of the axioms drives the context change operators [+χ] inward
until eventually these operators apply only to atomic sentences p, at which point they
can be eliminated altogether using (2.91). In case we encounter something of the form
[+χ1][+χ2]ϕ, we first reduce [+χ2]ϕ to an equivalent static formula ϕ′ and then use
the replacement of logical equivalents to obtain [+χ1]ϕ′, which we then reduce to an
equivalent static formula ϕ′′, etc.

Let us now check the validity of (2.91) - (2.95) in turn. First, (2.91) is valid
because the context change operations of Definition 2.15 do not change the valuation
V for atomic sentences in the model. For (2.92), in the left-to-right direction we have
the following implications: M, w � [+χ]¬ϕ ⇒ M+χ, w � ¬ϕ ⇒ M+χ, w 2 ϕ ⇒
M, w 2 [+χ]ϕ ⇒ M, w � ¬[+χ]ϕ. For the right-to-left direction of (2.92), simply

73Semantically, if α↔ β is valid, so is ϕ(α/p)↔ ϕ(β/p), where (ψ/p) indicates substitution of ψ
for p.
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[+χ] p ↔ p; (2.91)
[+χ]¬ϕ ↔ ¬ [+χ]ϕ; (2.92)
[+χ] (ϕ ∧ ψ)↔ [+χ]ϕ ∧ [+χ]ψ; (2.93)
[+χ] ↓x.ϕ ↔ ↓x.[+χ]ϕ; (2.94)
[+χ]�_ϕ ↔ �_ [+χ]ϕ; (2.95)
[↑ χ]��xϕ ↔ ��x⊥ ∨ (χ ∧��x¬χ)

∨
(
��x [↑ χ]ϕ ∧��x((χ ∧��x¬χ)→ [↑ χ]ϕ)

)
; (2.96)

[↑ χ]��xϕ ↔
(
(��x⊥ ∨ (χ ∧��x¬χ)) ∧�x[↑ χ]ϕ

)
∨ ��x((χ ∧��x¬χ) ∨ [↑ χ]ϕ); (2.97)

[& χ]��xϕ ↔ ♦�x(χ ∧��x¬χ)

∨
(
¬♦�x(χ ∧��x¬χ) ∧��x [& χ]ϕ

)
; (2.98)

[& χ]��xϕ ↔
(
♦�x(χ ∧��x¬χ) ∧�x[& χ]ϕ

)
∨
(
¬♦�x(χ ∧��x¬χ) ∧��x [& χ]ϕ

)
. (2.99)

Table 2.3: reduction axioms for context change

reverse the direction of the implications. It is also immediate from the truth definitions
that (2.93) is valid. For (2.94) and (2.95), [+χ] and ↓x. commute and [+χ] and �_

commute because the +χ operations do not change the assignment function g or the
relation _ from the initial modelM to the new modelM+χ.

For (2.96), the lhs expresses that after context change by ↑ χ, all worlds that are
more relevant than the current world w according to �↑χg(x) satisfy ϕ:

{v ∈ W | v ≺↑χg(x) w} ⊆ JϕKM↑χ . (2.100)

Case 1 : {v ∈ W | v ≺↑χg(x) w} = ∅. This implies (2.100) and is equivalent to

w ∈ Min�↑χ
g(x)

(W ). (2.101)
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By Definition 2.15 for ↑, (2.101) holds iff either

w ∈ Min�g(x)(W ), (2.102)

which is equivalent toM, g, w � ��x⊥, or else

w ∈ Min�g(x)(JχKM), (2.103)

which is equivalent toM, g, w � χ∧��x¬χ. This accounts for the first two disjuncts
on the rhs of (2.96).

Case 2 : {v ∈ W | v ≺↑χg(x) w} 6= ∅. In this case, by Definition 2.15 for ↑,

{v ∈ W | v ≺↑χg(x) w} = {v ∈ W | v ≺g(x) w} ∪Min�g(x)(JχKM). (2.104)

Hence (2.100) requires that

{v ∈ W | v ≺g(x) w} ⊆ JϕKM↑χ = J[↑ χ]ϕKM, (2.105)

which is equivalent toM, g, w � ��x [↑ χ]ϕ, and

Min�g(x)(JχKM) ⊆ JϕKM↑χ = J[↑ χ]ϕKM, (2.106)

which is equivalent to M, g, w � �x((χ ∧ ��x¬χ) → [↑ χ]ϕ). The conjunction of
��x [↑ χ]ϕ and �x((χ ∧��x¬χ)→ [↑ χ]ϕ) is equivalent to

��x [↑ χ]ϕ ∧��x((χ ∧��x¬χ)→ [↑ χ]ϕ), (2.107)

which is the last disjunct on the rhs of (2.96).
For (2.97), what the lhs expresses about the current world w is

{v ∈ W | w �↑χg(x) v} ⊆ JϕKM↑χ . (2.108)

Case 1 : {v ∈ W | w �↑χg(x) v} = Wg(x). This is equivalent to (2.101), which
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explains the first conjunct of the first disjunct on the rhs of (2.97). In this case,
(2.108) requires that

Wg(x) ⊆ JϕKM↑χ = J[↑ χ]ϕKM, (2.109)

which is equivalent toM, g, w � �x[↑ χ]ϕ. This accounts for the second conjunct of
the first disjunct on the rhs of (2.97).

Case 2 : {v ∈ W | w �↑χg(x) v} 6= Wg(x). In this case, by Definition 2.15 for ↑,

{v ∈ W | w �↑χg(x) v} = {v ∈ W | w �g(x) v} \Min�g(x)(JχKM). (2.110)

Hence (2.108) requires that

{v ∈ W | w �g(x) v} \Min�g(x)(JχKM) ⊆ JϕKM↑χ = J[↑ χ]ϕKM, (2.111)

which is equivalent toM, g, w � ��x((χ∧��x¬χ)∨ [↑ χ]ϕ). This explains the second
disjunct on the rhs of (2.97). The arguments for (2.98) - (2.99) are similar.

Given Propositions 2.10 and 2.11, if we combine the epistemic and RA languages
and interpret Kϕ according to D-semantics (a similar point holds for L), then we can
write a reduction axiom for context change and knowledge as follows:

[+χ]Kψ ↔↓x.�_(¬[+χ]σd(ψ)→ ¬α), (2.112)

where α is the rhs of (2.96) if + is ↑ (resp. of (2.98) if + is &) with ϕ := σd(ψ). Here we
have used the fact that ♦�x¬σd(ψ) is equivalent to ¬��xσd(ψ), and [+χ]¬��xσd(ψ)

reduces to ¬[+χ]��xσd(ψ), which in turn reduces to ¬α.

An important technical and conceptual issue raised by a result like Proposition
2.11 concerns the distinction between valid and schematically valid principles of con-
text change. Where a principle is schematically valid just in case all of its substitution
instances are valid [Benthem, 2011, §3.12], the valid reduction principle [+χ] p ↔ p

is clearly not schematically valid. Observe that [+χ]Kp ↔ Kp is not valid; if it
were, there would be no epistemic dynamics. A more interesting example is the valid
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principle ¬Kp → [+χ]¬Kp, which holds for our operations that make the context
more epistemically “demanding.” Observe that ¬Kψ → [+χ]¬Kψ is not valid for all
ψ; it is possible to count as having some knowledge after the context becomes more
demanding that one did not count as having before. How can this be? The answer
is that this new knowledge may be knowledge of ignorance.74 This can be seen by
substituting ¬Kp for ψ and either trying out model changes or using (2.112) to reduce
¬K¬Kp→ [+¬p]¬K¬Kp to a static principle that can be seen to be invalid. These
observations raise the question, which we leave open, of what is the complete set of
schematically valid principles of context change.

We leave as another open problem the task of finding an axiomatization of the
theory of RA models in the static RA language (or some static extension thereof).
Together with the reduction axioms of Proposition 2.11, that would give an axioma-
tization of the theory of RA models in the dynamic RA language to go alongside the
axiomatization in the epistemic language given by Theorem 2.4.

74This is easiest to understand in a multi-agent setting. (Note that all of our definitions easily
generalize to the multi-agent case where the modal operators in our language and relations in our
models are indexed for different agents.) Taking ψ := ¬Kjp, suppose agent i believes of agent j
that ¬Kjp, but i does not know ¬Kjp, as i has not eliminated some relevant Kjp-worlds. If the
context changes in such a way that j no longer counts as knowing p under any circumstances, then
relative to this new context, i can count as knowing ¬Kjp. We can no longer fault i for not having
eliminated some relevant Kjp-worlds if there are none relative to the current context.
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Fallibilism 1.0

In Chapter 2, I proposed formalizations of several RA and subjunctivist theories of
knowledge. In this chapter, I propose a unifying framework into which all of these
theories fit as special cases. The basic idea is that the RA and subjunctivist theories
are all versions of what I call ruling out fallibilism (RO fallibilism), the view that
knowing a proposition does not always require “ruling out” every last possibility in
which it is false. Although subjunctivists tend not to use the RA theorists’ talk of
“ruling out,” I will show how we can see both of their approaches as versions of RO
fallibilism. Doing so involves moving from the world-ordering pictures of Chapter 2 to
a more general set-selection function picture, which brings in interesting connections
with the study of preference orderings and choice functions in economics.

The RA and subjunctivist theories of the last forty years occupy only a small
space of the landscape of RO fallibilist theories, a space I call Fallibilism 1.0. After
exploring this space in this chapter, I will argue in Chapter 4 that any way of arriving
at a particular theory of knowledge in this space leads to one of three serious problems:

• The Problem of Vacuous Knowledge;

• The Problem of Containment;

• The Problem of Knowledge Inflation.

In Chapter 5, I will argue that we can solve all of these problems by moving to a new
space of theories that I call Fallibilism 2.0.

120
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3.1 Standard Alternatives Models

The starting point of Fallibilism 1.0 is Dretske’s [1981] idea that for each proposition
to be known, there is “a set of situations each member of which contrasts with what
is [to be] known...and must be evidentially excluded if one is to know” (373). Dretske
proposes that we “call the set of possible alternatives that a person must be in an
evidential position to exclude (when he knows that P ) the Relevancy Set” (371).
Similarly, let us call the set of alternatives for P that the agent in question has not
excluded the Uneliminated Set. As in Chapter 2, we define two set-selection functions :

rC(P,w) = the set of (“relevant”) possibilities that the agent must eliminate in
order to count as knowing proposition P in world w relative to context C;

uC(P,w) = the set of (“uneliminated”) possibilities that the agent has not elim-
inated as alternatives for P in world w relative to context C.

Recall the reason for relativizing these sets to a world and a context. First, since
objective features of an agent’s situation in world w may affect what alternatives are
relevant in w and therefore what it takes to know P in w (see Dretske 1981, 377 and
DeRose 2009, 30f on “subject factors”), we allow that r(P,w) may differ from r(P, v)

for a distinct world v in which the agent’s situation is different. Second, if we allow—
unlike Dretske—that the conversational context C of those attributing knowledge to
the agent (or the context of assessment of a knowledge attribution, in the sense of
MacFarlane 2005) can also affect what alternatives are relevant in a given world w and
therefore what it takes to count as knowing P in w relative to C (see DeRose 2009, 30f
on “attributor factors”), then we should allow that rC(P,w) may differ from r

C′
(P,w)

for a distinct context C ′. Similarly, if one allows that what counts as eliminating an
alternative may vary with context (see DeRose 2009, 30n29) or depend on the agent’s
situation, then our u function should depend on the context and world as well.
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According to Fallibilism 1.0,1 the agent knows P in w relative to context C if and
only if the Relevancy Set and Uneliminated Set do not overlap:

rC(P,w) ∩ uC(P,w) = ∅.
(what must be eliminated and what is uneliminated don’t overlap)

Fig. 3.1 gives graphical representations of the knowledge condition violated (left)
and satisfied (right). Each circle represents the entire set W of possibilities under
consideration, which contains the actual world w, and the blue region represents the
subset of possibilities in which P is true. The Relevancy Set and Uneliminated Set
for P in context C are shown in red and orange, respectively, in the white not-P zone.
If these sets overlap, as on the left, then the agent does not know P in w relative to
C; if they do not overlap, as on the right, then the agent knows P in w relative to C.
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Figure 3.1: knowledge condition violated (left) vs. satisfied (right)

The pictures in Fig. 3.1 are RO fallibilist pictures, in the sense that the red
Relevancy Set for P does not cover the entire not-P zone; according to these pictures,
in order to know P , the agent need not eliminate every not-P possibility.

Claim 3.1. Standard fallibilist views fit into this set-selection function framework of
Fallibilism 1.0 as special cases distinguished by the following:

• different “structural” constraints on the r and u functions;

• different ideas about when an alternative must be eliminated ;
1As in §2.4, I omit the belief condition on knowledge for simplicity, but it is easy to add. See

§3.3.2.
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• different ideas about what it is to eliminate an alternative;

• different ideas about what an alternative is.

So far we have assumed a (partial) answer only to the last question: we have as-
sumed that alternatives are possibilities/scenarios/situations/states of affairs, rather
than more coarse-grained objects like propositions. As explained in §4.A, moving to
alternatives-as-proposition will not change the main conclusions of this chapter.

The following definition formally captures the picture sketched so far.

Definition 3.1 (SA Model). A standard alternatives (SA) model is a tuple M of the
form 〈W, u, r, V 〉 where u : P(W ) × W → P(W ), r : P(W ) × W → P(W ), and as
usual, W is a non-empty set and V : At→ P(W ).

We think of r(P,w) and u(P,w) as explained above, omitting the subscript for the
context C. As in Chapter 2, contextualists should think of the model M as associated
with a fixed context of knowledge attribution (or a fixed context of assessment), so a
change in context corresponds to a change in models from M to some M′.

The following definition states the knowledge condition that r(P,w) and u(P,w)

do not overlap.

Definition 3.2 (Truth in a SA Model). Given a SA model M = 〈W, u, r, V 〉 with
w ∈ W and a formula ϕ in the epistemic language, we define M, w � ϕ as follows
(with propositional cases as usual):

M, w � Kϕ iff r(JϕKM, w) ∩ u(JϕKM, w) = ∅,

where JϕKM = {v ∈ W |M, v � ϕ}.

In the next section, we will consider various constraints on the r and u functions,
in line with our epistemic interpretation. Without any further constraints, the only
closure property of “knowledge” in SA models is closure under logical equivalence:

RE ϕ↔ ψ

Kϕ↔ Kψ
.
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Where E is the weakest system of modal logic extending classical propositional
logic with the RE rule, we have the following result.

Proposition 3.1 (Completeness of E). E is sound and complete for the class of all
SA models.

Proof. By the proof of Lemma 3.1 in Appendix §3.B.

3.2 Constraints on r and u

Recall Dretske’s characterization of the relevancy set for a proposition P as “a set of
situations each member of which contrasts with what is [to be] known,” i.e., a set of
not-P situations. The following definition captures this constraint on r.

Definition 3.3 (contrast). GivenM = 〈W, u, r, V 〉, r satisfies contrast iff for all w ∈ W
and P ⊆ W ,

r(P,w) ⊆ P .

An immediate consequence of the contrast condition is validity omniscience: if ϕ
is logically valid, then ϕ is known.2 For if ϕ is logically valid, then for any model
M, we have JϕKM = ∅, in which case r(JϕKM, w) = ∅ by the contrast condition, so
r(JϕKM, w) ∩ u(JϕKM, w) = ∅ no matter the value of u. Where EN is the weakest
system of modal logic extending E with the necessitation rule

N
ϕ
Kϕ

,

we have the following result.

Proposition 3.2 (Completeness of EN). EN is sound and complete for the class of
SA models in which r satisfies contrast.

Proof. By the proof of Lemma 3.1 in Appendix §3.B.
2Note that if we were to allow in our models “logically impossible worlds” that falsify classical

validities, then the contrast condition would not imply such (classical) validity omniscience.
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We have not yet imposed sufficient constraints on SA models to obtain models for
epistemic logic, since SA models satisfying contrast do not even validate the T axiom
Kϕ→ ϕ. One way to ensure veridicality would be to add the truth of ϕ as a necessary
condition for the truth of Kϕ in Definition 3.2. However, if we assume Lewis’s
[1996] Rule of Actuality, that “actuality is always a relevant alternative” (554), and
assume that an agent can never eliminate her actual world, then as Lewis observed,
veridicality follows. The following definition makes the two assumptions precise.

Definition 3.4 (Rule of Actuality). Given M = 〈W, u, r, V 〉,

1. r satisfies the Rule of Actuality iff for all w ∈ W and P ⊆ W ,

r-RofA if w ∈ P , then w ∈ r(P,w);

2. u satisfies the Rule of Actuality iff for all w ∈ W and P ⊆ W ,

u-RofA if w ∈ P , then w ∈ u(P,w).

Given these constraints, the T axiom Kϕ → ϕ is valid. For if w 6∈ JϕKM, then
w ∈ r(JϕKM, w) ∩ u(JϕKM, w) by the constraints, so w 6∈ JKϕKM. Where ENT is the
weakest system of modal logic extending EN with T, we have the following result.

Proposition 3.3 (Completeness of ENT). ENT is sound and complete for the class
of SA models satisfying contrast, r-RofA, and u-RofA.

Proof. By the proof of Lemma 3.1 in Appendix §3.B.

Having obtained models for an epistemic logic, let us now make the distinction
between RO infallibilist and RO fallibilist views of knowledge. Simply put, RO in-
fallibilism is the view that for every proposition P , knowing P requires ruling out all
not-P possibilities, while RO fallibilism is the rejection of RO infallibilism.

Definition 3.5 (infallibilism and fallibilism). Given M = 〈W, u, r, V 〉,
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1. r satisfies infalliblism iff for all w ∈ W and P ⊆ W ,

P ⊆ r(P,w);

2. r satisfies fallibilism iff it does not satisfy infallibilism.

Here we are interested in RO fallibilist theories, so we will not assume infallibilism.
With the freedom of fallibilism comes a number of choices about further structural
properties of r. We will discuss one of the most important of these in the next section.

3.2.1 The RS and RO Parameters

In this section, I review the RS and RO theory parameters from Chapter 2.
Any RO fallibilist must answer the following questions. First, where w is the

actual world and v is some possibility, can we say whether v is simply “relevant” in
w, independently of any proposition in question; or must we instead say that v is
relevant in w as an alternative for a particular proposition P , allowing that v may
not be relevant in w as an alternative for a different proposition Q? Second, can we
say whether v is simply “ruled out” in w, independently of any proposition in question;
or must we instead say that v is ruled out in w as an alternative for a particular P ,
allowing that v may not be ruled out in w as an alternative for a different Q?

If the answer is ‘yes’ to the first disjunct of the first question, then there is a
fixed set R(w) ⊆ W of “relevant” worlds, singled out independently of any proposition
in question, such that for any proposition P , the worlds that one must rule out as
alternatives for P in order to know P in w are exactly the not-P worlds in R(w).
Similarly, if the answer is ‘yes’ to the first disjunct of the second question, then there
is fixed set U(w) ⊆ W of “uneliminated” worlds, singled out independently of any
proposition in question, such that for any proposition P , the worlds that one has not
eliminated as alternative for P in w are exactly the not-P worlds in U(w).

The foregoing observations are the source of the following crucial definition.

Definition 3.6 (RS and RO Parameters). Given M = 〈W, u, r, V 〉,
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1. r satisfies RS∃∀ iff for all w ∈ W ,

there is (∃) R(w) ⊆ W such that for all (∀) P ⊆ W , r(P,w) = R(w) ∩ P .

2. r satisfies RS∀∃ iff it does not satisfy RS∃∀.3

3. u satisfies RO∃∀ iff for all w ∈ W ,

there is (∃) U(w) ⊆ W such that for all (∀) P ⊆ W , u(P,w) = U(w) ∩ P .

4. u satisfies RO∀∃ iff it does not satisfy RO∃∀.
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Figure 3.2: RS∀∃ (left) vs. RS∃∀ (right) parameter settings

Fig. 3.2 gives a graphical representation of the difference between RS∀∃ and RS∃∀

parameters settings. On the RS∀∃ side, v is a not-P world and a not-Q world, but
3Since ∃∀ implies ∀∃, our definition of RS∃∀ and RS∀∃ as mutually exclusive involves some abuse,

but it makes classifications cleaner.
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while v is a world that must be ruled out in order to know Q, it is not a world that
must be ruled out in order to know P . By contrast, on the RS∃∀ side, no such split-
decision on v is possible. The pictures for RO∀∃ vs. RO∃∀ would be the same if we
were to substitute u for r and U for R. As observed in Chapter 2 and made precise in
§3.3, the theories of Lewis [1996], Sosa [1999], DeRose [1995], Dretske [1981], Nozick
[1981], and Heller [1999a] have the parameter settings in Fig. 3.3.

Fallibilism 1.0

RS∃∀ RS∀∃

RO∃∀
Lewis

RO∀∃
Sosa

DeRose

RO∃∀
Dretske

RO∀∃
Nozick
Heller

Figure 3.3: theories classified by RS and RO parameter settings

It is noteworthy that the RS∃∀ parameter setting is something that Lewis, Sosa,
and DeRose have in common with infallibilists, as the following fact shows.

Fact 3.1 (infallibilism and RS∃∀). If r satisfies contrast, then r satisfies infallibilism iff
it satisfies RS∃∀ with R(w) = W for all w ∈ W .

As discussed in Chapters 2, the ∃∀ vs. ∀∃ distinctions have crucial consequences
for closure. Assuming RS∃∀ and RO∃∀, the knowledge condition becomes

r(P,w) ∩ u(P,w) = ∅

= =

R(w) ∩ P ∩ U(w) ∩ P = ∅,

which is equivalent to
R(w) ∩ U(w) ⊆ P. (3.1)

Now it is easy to see that the K axiom (Kϕ ∧K(ϕ→ ψ))→ Kψ is valid. For if the
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agent knows ϕ and ϕ→ ψ in w, then as instances of (3.1) we have

R(w) ∩ U(w) ⊆ JϕKM and
R(w) ∩ U(w) ⊆ Jϕ→ ψKM.

It follows by propositional logic that

R(w) ∩ U(w) ⊆ JψKM,

so the agent knows ψ in w. Where K (resp. KT) is the weakest system of modal
logic extending EN (resp. ENT) with the K axiom, we have the following result.

Proposition 3.4 (Completeness of K and KT).

1. K is sound and complete for the class of SA models satisfying RS∃∀ and RO∃∀.

2. KT is sound and complete for the class of SA models satisfying RS∃∀, RO∃∀,
r-RofA, and u-RofA.

Proof. By the proof of Lemma 3.3 in Appendix §3.B.

If we do not assume RS∃∀ and RO∃∀, then as in Fig. 3.2, a (¬p∧¬q)-world v that
is relevant/uneliminated as an alternative for q may not be relevant/uneliminated as
an alternative for p (e.g., think of p as some mundane claim, q as the denial of a
radical skeptical hypothesis, and v as a skeptical scenario), even if the agent knows
p → q, which opens up the possibility of a failure of K. As discussed in §2.1, this is
one of the fundamental disagreements between Stine [1976], who insists on RS∃∀ and
full closure, and Dretske, who allows RS∀∃ and some closure failure. We will return
to this disagreement in §4.1, where I will raise problems for Stine’s position.

3.2.2 Separating Closure Conditions

Having seen the relationship between RS∃∀, RO∃∀, and full closure under known
implication—the K axiom—in §3.2.1, let us now “break apart” the conditions for full
closure to obtain a more fine-grained analysis. First we will consider the condition that
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corresponds, in a sense made precise in §3.2.3, to the M axiom K(ϕ∧ψ)→ Kϕ∧Kψ,
as well as a weaker version of this condition that will play an important role in §3.3.

Definition 3.7 (cover, beta). Given M = 〈W, u, r, V 〉,

1. r satisfies cover iff for all w ∈ W and P,Q ⊆ W ,

if P ⊆ Q, then r(Q,w) ⊆ r(P,w);

2. r satisfies beta iff for all w ∈ W and P,Q ⊆ W ,

if P ⊆ Q and r(P,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P,w).

I will explain the “beta” terminology in Remark 3.1 and the significance of beta in
§3.3. First, let us concentrate on the cover condition, which says that if P excludes
at least as much of logical space as Q does, then coming to know P should require at
least as much epistemic work, in terms of ruling out possibilities, as coming to know
Q does. I will have more to say about this later, but for now let us observe that
the M axiom K(ϕ ∧ ψ)→ Kϕ ∧Kψ is valid over models satisfying cover and RO∃∀.
Intuitively, this is clear: since ϕ∧ψ is as strong as ϕ, cover says that coming to know
ϕ does not require ruling out any more possibilities than coming to know ϕ∧ψ does.
Formally, for any model M,

Jϕ ∧ ψKM ⊆ JϕKM, (3.2)

so by cover we have
r(JϕKM, w) ⊆ r(Jϕ ∧ ψKM, w). (3.3)

By RO∃∀, there is some U(w) ⊆ W such that:

u(JϕKM, w) = U(w) ∩ JϕKM; (3.4)

u(Jϕ ∧ ψKM, w) = U(w) ∩ Jϕ ∧ ψKM. (3.5)
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Since JϕKM ⊆ Jϕ ∧ ψKM, it follows from (3.4) - (3.5) that

u(JϕKM, w) ⊆ u(Jϕ ∧ ψKM, w). (3.6)

Now if M, w � K(ϕ ∧ ψ), then by Definition 3.2,

r(Jϕ ∧ ψKM, w) ∩ u(Jϕ ∧ ψKM, w) = ∅, (3.7)

which with (3.3) and (3.6) implies

r(JϕKM, w) ∩ u(JϕKM, w) = ∅, (3.8)

so M, w � Kϕ by Definition 3.2. The argument for M, w � Kψ is analogous.
I regard the validation of K(ϕ ∧ ψ) → Kϕ ∧Kψ as a desideratum for any good

theory of knowledge, so the connection between this principle and cover is noteworthy.
We will return to this in §4.2 when we discuss the Problem of Containment.

Putting together our observations so far, we have the following result.

Proposition 3.5 (Completeness of EMNT). EMNT is sound and complete for the
class of SA models satisfying cover, RO∃∀, contrast, r-RofA, and u-RofA.

Proof. By the proof of Lemma 3.1 in Appendix §3.B.

Moving on from the M axiom, let us now consider the condition that corresponds,
in a sense made precise in §3.2.3, to the C axiom Kϕ ∧Kψ → K(ϕ ∧ ψ).

Definition 3.8 (alpha). Given M = 〈W, u, r, V 〉, r satisfies alpha iff for all w ∈ W

and P,Q ⊆ W ,
r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w).

The argument that the C axiom is valid over models satisfying alpha and RO∃∀
is straightforward and similar to the argument for M and cover above. In essence,
alpha says that the set of worlds one must rule out in order to know a conjunction is
a subset of the set of worlds that one must rule out in order to know both conjuncts
individually, which makes the connection with Kϕ ∧Kψ → K(ϕ ∧ ψ) clear.
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Proposition 3.6 (Completeness of ECNT). ECNT is sound and complete for the
class of SA models satisfying alpha, RO∃∀, contrast, r-RofA, and u-RofA.

Proof. By the proof of Lemma 3.2 in Appendix §3.B.

Just as we have written the alpha condition in a form that makes its connection
withKϕ∧Kψ → K(ϕ∧ψ) obvious, we can rewrite the cover condition in an equivalent
way that makes its connection withK(ϕ∧ψ)→ Kϕ∧Kψ obvious; and we can rewrite
alpha in an equivalent way that is parallel to our original formulation of cover.

Observation 3.1 (Relation of cover and alpha). The following are equivalent:

cover ∀P,Q ⊆ W : if P ⊆ Q, then r(Q,w) ⊆ r(P,w);

∀P,Q ⊆ W : r(P,w) ∩ r(Q,w) ⊆ r(P ∩Q,w).

Assuming contrast, the following are equivalent:4

∀P,Q ⊆ W : if P ⊆ Q, then r(P,w) ∩Q ⊆ r(Q,w);

alpha ∀P,Q ⊆ W : r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w).

The reason we have written cover in the first of the two forms is to make clear
that beta is a weakening of cover, an important point to which we will return in §4.2.
The first forms of cover and alpha also make it clear that, mathematically speaking,
cover is just the antitonicity of r, while alpha is a kind of weakening of monotoniticity.

Recall that the following are interderivable using the RE rule: (i) the combination
of the M axiom K(ϕ∧ ψ)→ Kϕ∧Kψ and the C axiom Kϕ∧Kψ → K(ϕ∧ ψ) and
(ii) the K axiom (Kϕ ∧ K(ϕ → ψ)) → Kψ. A parallel point applies to the corre-
sponding conditions on r: the combination of cover and alpha is equivalent to RS∃∀.

4From the first to the second, given P ∩Q ⊆ P and P ∩Q ⊆ Q, the first condition implies

r(P ∩Q,w) ∩ P ⊆ r(P ) and r(P ∩Q,w) ∩Q ⊆ r(Q). (3.9)

Given contrast, r(P∩Q,w) ⊆ P ∩Q = P∪Q, which with (3.9) implies r(P∩Q,w) ⊆ r(P,w)∪r(Q,w).
From the second to the first, given P ⊆ Q and the second condition, we have

r(P,w) = r(Q ∩ (P ∪Q), w) ⊆ r(Q,w) ∪ r(P ∪Q,w). (3.10)

Given contrast, r(P ∪Q,w) ⊆ P ∪Q = P ∩Q, which with (3.10) implies r(P,w) ∩Q ⊆ r(Q,w).
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Fact 3.2 (RS∃∀ = cover + alpha ). r satisfies RS∃∀ iff r satisfies cover and alpha.

Proof. The left-to-right direction is an easy exercise. For the right-to-left direction,
for each w ∈ W we must present some R(w) ⊆ W such that for all P ⊆ W ,

r(P,w) = R(w) ∩ P . (3.11)

The desired set is given by
R(w) = r(∅, w). (3.12)

Since ∅ ⊆ P , we have r(P,w) ⊆ r(∅, w) by cover, so r(P,w) ⊆ r(∅, w) ∩ P given
contrast. For the other inclusion, since ∅ ⊆ P , we have r(∅, w) ∩ P ⊆ r(P,w) by the
alternative version of alpha given in Observation 3.1. Hence r(P,w) = r(∅, w)∩P .

As desired, Fact 3.2 “breaks up” the conditions for full closure. We will return to the
significance of this when we discuss the Problem of Containment in §4.2.

Choice Functions in Economics

Those familiar with the literature on choice functions in economics will have noticed
the connection between the constraints we have considered for r and standard con-
straints proposed for rational choice functions. To make this precise, we need to
consider one more constraint on r, which will play a fundamental role in §4.1.

Definition 3.9 (no vacuous knowledge). Given M = 〈W, u, r, V 〉, r satisfies no vacuous

knowledge iff for all w ∈ W and P ⊆ W ,

noVK if P 6= W , then r(P,w) 6= ∅.

In other words, noVK says that if P is contingent, then knowledge of P cannot come
“for free,” in the sense of not requiring the elimination of any possibilities. I will say
much more about this later, but for now let us observe that if r satisfies noVK and
contrast, then we can define a choice function c based on r as follows.
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Definition 3.10 (c function). Given M = 〈W, u, r, V 〉, for all P ⊆ W and w ∈ W ,

c(P,w) = r(P ,w).

Think of c as choosing, for any set P , the relevant P -worlds. It is what economists
call a choice function just in case for any non-empty set P , it chooses a non-empty
set of relevant P -worlds: if P 6= ∅, then ∅ 6= c(P,w) ⊆ P , which holds just in case r

satisfies noVK and contrast. With this we can make the economics connection.

Remark 3.1 (Choice Functions). Using Definition 3.10, the alpha condition of Def-
inition 3.8 can be restated as c(X ∪ Y,w) ⊆ c(X,w) ∪ c(Y,w). This is equivalent
to what is known in the economics literature on choice functions as the “Chernoff
condition” [Chernoff, 1954]: if X ⊆ Y , then X ∩ c(Y,w) ⊆ c(X,w). Similarly, the
beta condition of Definition 3.7.2 can be restated with c as follows: if X ⊆ Y and
c(X,w) ∩ c(Y,w) 6= ∅, then c(X,w) ⊆ r(Y,w). The alpha and beta (α and β) ter-
minology is due to Sen [1971], although we have written the alpha condition in the
equivalent form that Sen [1971, §9, n1] calls α∗, and we have written the beta condi-
tion in the form given by Bordes [1976, §2]. Sen observed that the conjunction of his
α and β is equivalent to the well-known “Arrow condition” [Arrow, 1959, §2]:

if X ⊆ Y and X ∩ c(Y,w) 6= ∅, then c(X,w) = X ∩ c(Y,w) .

Similarly, we could repackage our alpha and beta into a single condition Arrow:

if X ⊆ Y and r(X,w) ∩ Y 6= ∅, then r(Y,w) = r(X,w) ∩ Y .

Finally, the strengthening of beta called cover is equivalent to Sen’s γ∗ [1971, §9, n1].
For further discussion of choice functions and their relation to orderings, to which we
will return in §3.3.1, see Rott 2001, Ch. 6.
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Return of the X Axiom

As noted above and made precise in §3.2.3, alpha corresponds to the C axiom
Kϕ ∧Kψ → K(ϕ ∧ ψ), while the strengthening of beta in cover corresponds to the
M axiom K(ϕ ∧ ψ)→ Kϕ ∧Kψ. What about the other key axiom from Chapter 2,
the X axiom K(ϕ ∧ ψ) → Kϕ ∨ Kψ? The corresponding condition appears in the
literature on counterfactuals as condition (e) in Loewer 1979 and Mayer 1981.

Definition 3.11 ((e) condition). Given M = 〈W, u, r, V 〉, r satisfies the (e) condition
iff for all w ∈ W and P ⊆ W ,

(e) r(P,w) ⊆ r(P ∩Q,w) or r(Q,w) ⊆ r(P ∩Q,w).

The argument that the X axiom is valid over models satisfying (e) and RO∃∀ is
straightforward. In essence, (e) says that for any conjunction, at least one of the
conjuncts is such that the set of worlds that one must rule out in order to know that
conjunct is a subset of the set of worlds that one must rule out in order to know the
conjunction, which makes the connection with K(ϕ ∧ ψ)→ Kϕ ∨Kψ clear.

Recall the beta condition from Definition 3.7:

if X ⊆ Y and r(X,w) ∩ r(Y,w) 6= ∅, then r(Y,w) ⊆ r(X,w).

Although by itself beta—unlike alpha—does not correspond to any closure principle
statable in our epistemic language, together alpha and beta imply the (e) condition
that corresponds to the X axiom, which hints at the role that beta will play later.

Observation 3.2 (Relations of (e) and alpha + beta).

1. alpha and beta jointly (but do not individually) imply (e).

2. alpha and (e) do not jointly imply beta.

3. beta and (e) do not jointly imply alpha.
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Proof. Given P ∩Q ⊆ P and P ∩Q ⊆ Q, by beta we have:

if r(P ∩Q,w) ∩ r(P,w) 6= ∅, then r(P,w) ⊆ r(P ∩Q,w); (3.13)

if r(P ∩Q,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P ∩Q,w). (3.14)

By alpha we have
r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w), (3.15)

and together (3.13) - (3.15) imply (e). We leave the other parts to the reader.

We have now introduced all of the constraints on r to be considered in this chapter,
and we are almost ready to see how the theories of Chapter 2 fit into this framework.
Before doing so, however, let us make precise our talk of “correspondence.”

3.2.3 Correspondence Theory

In the previous sections, I suggested that certain properties of r and u “correspond” to
certain closure principles. We can state this formally by extending standard notions
from modal correspondence theory [van Benthem, 2001] to our SA framework.

Definition 3.12 (Frames and Validity). An r-frame is a pair 〈W, r〉 where W and r

are as in Definition 3.1. A formula ϕ is valid on the frame 〈W, r〉 iff for all models
M = 〈W, u, r, V 〉 based on the frame and all w ∈ W , M, w � ϕ. A formula ϕ is valid
on the frame 〈W, r〉 relative to models in class K iff for all M = 〈W, u, r, V 〉 ∈ K and
all w ∈ W , M, w � ϕ. The definitions for u-frames are analogous.

Intuitively, a r-frame (relevance frame) is simply a set of worlds together with
information about which possibilities are relevant, provided by r, but without infor-
mation about which possibilities are (un)eliminated, provided by u, or about which
atoms p, q, r, . . . hold at different worlds, provided by V . A formula ϕ is valid on
the frame just in case no matter what information we add to the frame about which
possibilities are (un)eliminated or which atoms hold where, ϕ will be true everywhere.

The following proposition supports our earlier correspondence claims.

Proposition 3.7 (Correspondence). Let 〈W, r〉 be a r-frame satisfying contrast.
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1. Kϕ → ϕ is valid on 〈W, r〉 relative to models satisfying u-RofA iff r satisfies
r-RofA.

2. Kϕ ∧Kψ → K(ϕ ∧ ψ) is valid on 〈W, r〉 relative to models satisfying RO∃∀ iff
r satisfies alpha.

3. K(ϕ ∧ ψ) → Kϕ ∧Kψ is valid on 〈W, r〉 relative to models satisfying RO∃∀ iff
r satisfies cover.

4. K(ϕ ∧ ψ) → Kϕ ∨Kψ is valid on 〈W, r〉 relative to models satisfying RO∃∀ iff
r satisfies (e).

Proof. The proofs apply the standard style of modal correspondence reasoning (see,
e.g., van Benthem 2010, §9.2) to our alternatives frames. We have already seen
the right-to-left direction of 3, and we may prove the left-to-right by contraposition:
assuming 〈W, r〉 does not satisfy cover, we build a model M = 〈W, u, r, V 〉 satisfying
RO∃∀ such that for some w ∈ W , M, w 2 K(ϕ∧ψ)→ Kϕ∧Kψ. By the assumption
that r does not satisfy cover, there are P ⊆ Q ⊆ W such that for some w, v ∈ W ,
both v 6∈ r(P,w) and v ∈ r(Q,w). First, define u such that for all S ⊆ W and x ∈ W ,

u(S, x) = {v} ∩ S, (3.16)

so u satisfies RO∃∀.5 Since v 6∈ r(P,w), (3.16) implies

r(P,w) ∩ u(P,w) = ∅; (3.17)

and since v ∈ r(Q,w) ⊆ Q given contrast, (3.16) implies

v ∈ r(Q,w) ∩ u(Q,w) 6= ∅. (3.18)
5So defined, u does not satisfy u-RofA. Relative to models in which u satisfies both RO∃∀ and

u-RofA, K(ϕ ∧ ψ) → (Kϕ ∧ Kψ) is valid on 〈W, r〉 iff r satisfies cover for knowable propositions,
where this is the cover condition restricted to P such that w 6∈ r(P,w). With this modification, the
assumption of our proof is that there are some P ⊆ Q ⊆W such that w 6∈ r(P,w), v ∈ r(Q,w), and
v 6∈ r(P,w). We can then define u(S, x) = {w, v} ∩ S and (3.17) - (3.18) will hold. However, if we
only assume that r does not satisfy cover, then we cannot always construct a model M = 〈W, u, r, V 〉
satisfying RO∃∀ and u-RofA such that M, w 2 K(ϕ ∧ ψ)→ Kϕ ∧Kψ for some w ∈W .
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Second, define the valuation V such that for some atomic sentences p and q, V (p) = P

and V (q) = Q. Then given P ⊆ Q, we have JpKM ⊆ JqKM, in which case Jp ∧ qKM =

JpKM ∩ JqKM = JpKM = P . Together with (3.17) and (3.18) this implies

r(Jp ∧ qKM, w) ∩ u(Jp ∧ qKM, w) = ∅ and
r(JqKM, w) ∩ u(JqKM, w) 6= ∅,

so M, w � K(p∧ q) and M, w 2 Kq. The reasoning for the other parts is similar.

In §4.2, we will return to these facts in connection with the Problem of Containment.
As a logical observation, if we put Propositions 3.7.2 and 3.7.4 together with Fact

3.2.2, we can see that the C and X axioms, which form the core of the Logic of Ranked
Relevant Alternatives in §2.8, are not enough to “force” the r function to satisfy beta.
As we will see in §3.3.1, beta is required for r to be “equivalent” to a ranking of worlds.
What this means is that the C and X axioms do not force r to be equivalent to a
ranking. As a speculation, this may explain why defining a standard canonical model
“all at once” for the Logic of Ranked Relevant Alternatives is difficult: one would
have to force the canonical relation �cw to be a ranking “by hand,” as the axioms will
not do it by themselves. By building up falsifying models inductively as in §2.6.2, we
can more easily ensure that the relation is a ranking along the way.

3.3 Unification

We are now ready to establish one of the main claims made at the beginning of this
chapter: all of the RA and subjunctivist theories formalized in the world-ordering
pictures of Chapter 2 fit into the set-selection function picture of this chapter as
special cases. In other words, these theories really do belong on the tree of Fallibilism
1.0 in Fig. 3.3. This unification will be essential for the argument of Chapter 4.
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3.3.1 Relevant Alternatives

Recall that in §2.4, we formalized three different RA theories of knowledge over a
single class of RA models of the formM = 〈W,_,�, V 〉 by defining three different
truth clauses for knowledge formulas of the form Kϕ, given by C-semantics (for
Cartesian), D-semantics (for Dretske), and L-semantics (for Lewis):

M, w �c Kϕ iff JϕKc ∩_(w) = ∅;
M, w �d Kϕ iff Min�w

(
JϕKd

)
∩_(w) = ∅;

M, w �l Kϕ iff Min�w (W ) ∩ JϕKl ∩_(w) = ∅.

I have written these truth clauses in a different but equivalent form relative to Def-
inition 2.5. Recall the meaning of our notation (Notation 2.1 and 2.4): for any
proposition P ⊆ W , Min�w(P ) is the set of most relevant (at w) P -worlds;6 and
_(w) is the set of worlds that are uneliminated by the agent in w.

Our first step toward unification is to define three different classes of SA models
that will “capture” C-, D-, and L-semantics over RA models, respectively, while using
only the single truth clause for Kϕ formulas given by Definition 3.2 in this chapter.
Observe that there are three natural ways of transforming a given RA model M =

〈W,_,�, V 〉 into an SA model Mx = 〈W, u, rx, V 〉, where x ∈ {c, d, l}:

u(P,w) = _(w) ∩ P ; (3.19)

rc(P,w) = P ; (3.20)

rd(P,w) = Min�w(P ); (3.21)

rl(P,w) = Min�w(W ) ∩ P . (3.22)
6For simplicity I assume in this section that �w is total.
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Now if we apply the truth clause for Kϕ used in this chapter, we have

Mc, w � Kϕ iff rc(JϕK, w) ∩ u(JϕK, w) = ∅

= =

JϕK ∩ _(w) ∩ JϕK = ∅;

Md, w � Kϕ iff rd(JϕK, w) ∩ u(JϕK, w) = ∅

= =

Min�w
(
JϕK
)

∩ _(w) ∩ JϕK = ∅;

Ml, w � Kϕ iff rl(JϕK, w) ∩ u(JϕK, w) = ∅
= =

Min�w (W ) ∩ JϕK ∩ _(w) ∩ JϕK = ∅.

Observe that the second, fourth, and sixth equations are equivalent to the right-hand
sides of the C-, D-, and L-semantics clauses for Kϕ. What this shows is that if
we transform a RA modelM into a SA model Mx using (3.19) - (3.22), then what
the agent knows in M according to X-semantics will exactly agree with what the
agent knows in Mx according to the semantics of this chapter. The two models are
“epistemically equivalent.” The question now becomes: what kind of conditions on r

and u doesMx satisfy? In particular, we would like conditions such that if a SA model
satisfies these conditions, then we can transform it into an epistemically equivalent
RA model. The following definition identifies precisely such conditions.

Definition 3.13 (RA-like Model Classes).

1. Let C be the class of SA models satisfying the following conditions:7

contrast r(P,w) ⊆ P ;
infallibilism P ⊆ r(P,w);

u-RofA if w 6∈ P , then w ∈ u(P,w);
RO∃∀ there is U(w) ⊆ W such that for all P ⊆ W ,

u(P,w) = P ∩ U(w).

7From now on I leave the universal quantification over w ∈W and P,Q ⊆W implicit.
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2. Let L be the class of SA models satisfying u-RofA, RO∃∀, and the following:

r-RofA if w 6∈ P , then w ∈ r(P,w);
RS∃∀ there is R(w) ⊆ W such that for all P ⊆ W , r(P,w) = P ∩ R(w).

3. Let D be the class of SA models satisfying u-RofA, RO∃∀, and the following:

contrast r(P,w) ⊆ P ;
r-RofA if w 6∈ P , then w ∈ r(P,w);
noVK if P 6= W , then r(P,w) 6= ∅;
alpha r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w);
beta if P ⊆ Q and r(P,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P,w).

Class C reflects a simple infallibilist picture: in order to know a proposition P ,
one must eliminate all not-P worlds (contrast + infallibilism); an agent in w can
never eliminate her actual world w (u-RofA); and for every world w, there is a fixed
(proposition-independent) set of worlds uneliminated by the agent in w (RO∃∀).

Class L reflects Lewis’s [1996] simple fallibilist picture (for a single context): there
is a fixed set of worlds that are relevant for the agent w (RS∃∀) and a fixed set of
worlds that are uneliminated by the agent in w (RO∃∀); and the actual world w is
always relevant for and uneliminated by the agent in w (r-RofA + u-RofA).

Class D reflects a fallibilist picture combining a Lewisian (RO∃∀) view of ruling
out with a version of the Dretskean (RS∀∃) view of relevant alternatives: there is a
fixed set of worlds that are uneliminated by the agent in w (RO∃∀), and the actual
world w is always uneliminated by and relevant for the agent in w (u-RofA + r-

RofA); the worlds that one must eliminate in order to know P are not-P worlds
(contrast); if P is contingent, then knowing P requires eliminating some world(s)
(noVK); together the relevant alternatives for P and the relevant alternatives for Q
include the relevant alternatives for P and Q (alpha); and if P is as strong as Q, and
the relevant alternatives for P and the relevant alternatives for Q overlap, then the
relevant alternatives for P include the relevant alternatives for Q (beta).

As suggested above, the point of defining these model classes is to obtain results of
the following form: given a SA modelM = 〈W, u, r, V 〉 in class D, we can transformM

into an RA modelM = 〈W,_,�, V 〉 such that when we viewM from the perspective
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of D-semantics, M andM are epistemically equivalent. To do so, we define:

x _ y iff y ∈ U(x), and (3.23)

x �w y iff ∃Q ⊆ W : x ∈ r(Q,w) and y ∈ Q, (3.24)

where U(x) is the set of worlds whose existence is guaranteed by RO∃∀ for u. The idea
of (3.24) is that if x is a not-Q world that must be ruled out in order to know Q, and
y is also a not-Q world, then x must be at least as relevant as y, since only the most
relevant not-Q worlds must be ruled out in order to know Q. The crucial observation,
essentially due to Arrow [1959], is that if r satisfies contrast, noVK, alpha, and beta,
then �w defined by (3.24) is a ranking of worlds and the Relevancy Set r(P,w) is the
same as the set Min�w(P ) of most relevant P -worlds according to �w; conversely, if
�w is a ranking of worlds, then the function r obtained by (3.21) satisfies contrast,
noVK, alpha, and beta. Appendix §3.A contains proofs of these claims. What they
show is that contrast, noVK, alpha, and beta are the assumption about r built into
Heller’s [1989, 1999a] world-ordering version of the RA theory. Indeed, we have the
following connections between pairs of properties bridging SA and RA models:

• r-RofA for r and weak centering for each �w;

• noVK for r and well-foundedness for each �w;

• contrast + noVK + alpha + beta for r and totality + transitivity for �w;

• u-RofA for u and reflexivity for _.

We can now state the result that we have been building up to: Theorem 3.1
shows that the C/D/L-semantics of Chapter 2 over RA models are equivalent, as
semantics for the epistemic language, to our new semantics over SA models in C/D/L.8

Therefore, the completeness theorems of Chapter 2 transfer to the SA model classes.

Theorem 3.1 (RA and SA Models). Let x ∈ {c, d, l} and X ∈ {C,D, L}.
8Compare the result for D-semantics to the results for counterfactuals in Lewis 1973, 58f, 49f.
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1. For every total, well-founded RA model M with the universal field property,9

there is a SA model Mx ∈ X such that for all epistemic formulas ϕ,

M, w �x ϕ iff Mx, w � ϕ.

2. For every SA model M ∈ X, there is a total, well-founded RA model M with
the universal field property such that for all epistemic formulas ϕ,

M, w � ϕ iffM, w �x ϕ.

I give the proof of Theorem 3.1 in Appendix §3.A. In addition, in Remarks 3.3
and 3.4 of Appendix §3.A, I discuss the appropriate conditions for Theorem 3.1 in
the cases of well-founded RA models that are not assumed to be total or universal.

3.3.2 Counterfactuals and Beliefs

Our next goal is to show that the theories of knowledge of Heller [1999a], Nozick
[1981], and Sosa [1999] also fit into the framework of this chapter as special cases.
Recall that in §2.5 we formalized these theories over a single class of CB models
of the form M = 〈W,D,6, V 〉 by defining three different truth clauses, given by
H-semantics (for Heller), N-semantics (for Nozick), and S-semantics (for Sosa):

M, w �x Bϕ iff D(w) ⊆ JϕKx;

M, w �h Kϕ iff D(w) ⊆ JϕKh and
(sensitivity) Min6w

(
JϕKh

)
∩ JBϕKh = ∅;

M, w �n Kϕ iff D(w) ⊆ JϕKn and
(sensitivity) Min6w

(
JϕKn

)
∩ JBϕKn = ∅,

(adherence) Min6w(W ) ∩ JϕKn ∩ JBϕKn = ∅;
9Recall from Definition 2.3 that the universal field property requires that the field Ww of each

�w be W .
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M, w �s Kϕ iff D(w) ⊆ JϕKs and
(safety) Min6w(W ) ∩ JϕKs ∩ JBϕKs = ∅.

I have written these truth clauses in a different but equivalent form relative to Def-
inition 2.7. Recall the meaning of our notation (Notation 2.1 and 2.5): for any
proposition P ⊆ W , Min6w(P ) is the set of closest (to w) P -worlds;10 and D(w) is
the set of doxastically accessible worlds, compatible with the agent’s beliefs in w. As
in Chapter 2, we take D(w) ⊆ P to mean that in world w, the agent believes P .

Since belief is a necessary condition for knowledge in H/N/S-semantics, let us now
add belief as a necessary condition for knowledge in the framework of this chapter as
well. To do so, we first add a doxastic accessibility relation D to our SA models.

Definition 3.14 (SAB Model). A standard alternatives and belief model is a tuple
M = 〈W,D, u, r, V 〉 where 〈W, u, r, V 〉 is a SA model as in Definition 3.1, and D is a
serial binary relation on W .

We can now add the belief requirement to the Kϕ clause of Definition 3.2.

Definition 3.15 (Truth in a SAB Model). Given a SAB model M = 〈W,D, u, r, V 〉
with w ∈ W and a formula ϕ in the epistemic language, we define M, w � ϕ as follows
(with propositional cases as usual):

M, w � Kϕ iff D(w) ⊆ JϕKM and r(JϕKM, w) ∩ u(JϕKM, w) = ∅.

Toward obtaining a result for SAB and CB models analogous to Theorem 3.1 for
SA and RA models, we will first treat H- and S-semantics. Dealing with the adherence
condition of N-semantics requires a further generalization provided below.

As in §3.3.1, our first step to unification is to define two classes of SA models
that will “capture” H- and S-semantics over RA models, respectively, while using only
the single truth clause for Kϕ formulas in Definition 3.15. Observe that while the
sensitivity condition of H/N-semantics is typically thought of as the counterfactual
requirement ¬ϕ � ¬Bϕ, we can also think of it in terms of a requirement that

10For simplicity I assume in this section that 6w is total.
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certain worlds be “ruled out” as alternatives for ϕ. The “relevant” worlds in this case
are the closest ¬ϕ-worlds, and these must be “ruled out” in the sense that the agent
does not believe ϕ in these worlds. Hence we can think of the sensitivity condition

Min6w
(
JϕKh

)
∩ JBϕKh = ∅

as fitting into the pattern of

r(JϕKM, w) ∩ u(JϕKM, w) = ∅.

Similarly, we can think of the safety condition as a requirement that certain worlds
be “ruled out.” The “relevant” worlds in this case are any ¬ϕ-worlds within the fixed
set Min6w(W ) of close worlds, and these must be “ruled out” in the sense that the
agent does not believe ϕ in these worlds. Hence we can think of safety condition

Min6w(W ) ∩ JϕKs ∩ JBϕKs = ∅.

as also fitting into the pattern of

r(JϕKM, w) ∩ u(JϕKM, w) = ∅.

What this show is that there are two natural ways of transforming a given CB model
M = 〈W,D,6, V 〉 into a SAB model Mx = 〈W,D, u, rx, V 〉, where x ∈ {h, s}:

u(P,w) = {v ∈ W | D(v) ⊆ P}; (3.25)

rh(P,w) = Min6w(P ); (3.26)

rs(P,w) = Min6w(W ) ∩ P . (3.27)

We have already seen in §3.3.1 the properties of r implied by (3.26) and (3.27), which
are the same as (3.21) and (3.22). Let us give the key property of u an official name.

Definition 3.16 (dox). Given M = 〈W,D, u, r, V 〉, u satisfies dox iff for all w ∈ W
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and P ⊆ W ,
u(P,w) = {v ∈ W | D(v) ⊆ P}.

Hence for any formula ϕ,
u(JϕKM, w) = JBϕKM.

In other words, dox says that we take the uneliminated alternatives for P to be the
worlds in which the agent believes P . If one prefers to think of the uneliminated alter-
natives for P as not-P worlds, then we can instead take the uneliminated alternatives
for P to be the not-P worlds in which the agent believes P , as follows.

Definition 3.17 (Fdox). Given M = 〈W,D, u, r, V 〉, u satisfies Fdox iff for all w ∈ W
and P ⊆ W ,

u(P,w) = {v ∈ W | v ∈ P and D(v) ⊆ P}.

Hence for any formula ϕ,

u(JϕKM, w) = JϕKM ∩ JBϕKM.

Clearly both dox and Fdox give us the desired equivalences with H/S-semantics:

Mh, w � Kϕ iff D(w) ⊆ JϕK and
rd(JϕK, w) ∩ u(JϕK, w) = ∅

= =

(sensitivity) Min6w
(
JϕK
)

∩ JϕK ∩ JBϕK = ∅;

Ms, w � Kϕ iff D(w) ⊆ JϕK and
rl(JϕK, w) ∩ u(JϕK, w) = ∅

= =

(safety) Min6w (W ) ∩ JϕK ∩ JϕK ∩ JBϕK = ∅.

We are now ready to define the two special classes of SAB models.

Definition 3.18 (CB-like SAB Model Classes).
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1. Let H be the class of SAB models in which u satisfies dox/Fdox and r satisfies
the same conditions as in model class D of Definition 3.13.3 (contrast, r-RofA,
noVK, alpha, beta).

2. Let S be the class of SAB models in which u satisfies dox/Fdox and r satisfies
the same conditions as in model class L of Definition 3.13.2 (r-RofA and RS∃∀).

Finally, we can state the result that we have been building up to: Theorem 3.2
shows that the H/S-semantics of §2 over CB models are equivalent, as semantics for
the epistemic language, to our new semantics over SAB models in H/S. Therefore,
the completeness theorems of Chapter 2 transfer to the SAB model classes.

Theorem 3.2 (CB and SAB Models). Let x ∈ {h, s} and X ∈ {H, S}.

1. For every total, well-founded, CB model N with the universal field property,
there is a SA model Nx ∈ X such that for all epistemic-doxastic formulas ϕ,

N , w �x ϕ iff Nx, w � ϕ;

2. For every SAB model N ∈ X, there is a total, well-founded CB model N with
the universal field property such that for all epistemic-doxastic formulas ϕ,

N, w � ϕ iff N , w �x ϕ.

The proof of this result is essentially the same as for Theorem 3.1 in Appendix 3.A.

Building in Belief

Before extending our analysis to N-semantics with the adherence condition, let us first
consider further the interpretation of uneliminated possibilities in terms belief. The
dox and Fdox conditions state a relationship between the u function and the doxastic
accessibility relation D. A natural question is what these relationships imply about
the properties of the u function by itself. The following provides the answer.

Observation 3.3 (Doxastic Conditions on u).
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1. Suppose a SA model 〈W, u, r, V 〉 satisfies the following conditions:

(a) u(P,w) = u(P, v);

(b) if P ⊆ Q, then u(P ) ⊆ u(Q);

(c) for Σ ⊆ P(W ),
⋂
P∈Σ

u(P ) ⊆ u(
⋂
P∈Σ

P );

(d)
⋂{P ⊆ W | w ∈ u(P )} 6= ∅.

Then if we define a binary relation D on W by

D(w) =
⋂
{P ⊆ W | w ∈ u(P )}, (3.28)

M = 〈W,D, u, r, V 〉 is a SAB model satisfying dox.

2. If a SAB model M = 〈W,D, u, r, V 〉 satisfies dox, then u satisfies (a) - (d).

Before giving the simple proof of this observation, let us consider it conceptually.
Recall that the notion of elimination used in §3.3.1 is world-relative: it is allowed
that in world w, the agent has not eliminated possibility x as an alternative for P ,
while in world v, the agent has eliminated possibility x as an alternative for P . By
contrast, condition (a) says that the notion of elimination implied by dox is not world-
relative, but rather “global”: x is uneliminated by the agent in w as an alternative
for P just in case the agent believes P in x, so w drops out. However, the notion of
elimination implied by dox is obviously proposition-relative. Condition (b) says that
if x is uneliminated as an alternative for some proposition, then x is uneliminated as
an alternative for any weaker proposition; condition (c) says that if x is uneliminated
as an alternative for each of the propositions in Σ, then x is uneliminated as an
alternative for the conjunction of these propositions; and condition (d) says that the
set of proposition with respect to which x is uneliminated is consistent. It is easy to
check that any u function satisfying dox satisfies conditions (a) - (d), which clearly
reflect our idealized model of fully-closed belief for an ideally astute logician.

Moreover, if u satisfies these conditions, then we can define the set of worlds D(w)

compatible with what the agent believes in w to be the set of worlds in which all of
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the propositions with respect to which w is uneliminated are true (or by (c), in which
the strongest such proposition is true), and the dox relationship will hold.

Proof. For part 1, the seriality of D follows from (3.28) and (d), so M is indeed a
SAB model. Now we must show that for all Q ⊆ W ,

dox w ∈ u(Q) iff D(w) ⊆ Q.

The left-to-right direction is immediate from (3.28). For the right-to-left direction, it
follows from (d) that

w ∈
⋂

P ∈{P ⊆W |w∈ u(P )}

u(P ), (3.29)

which with (c) and (3.28) implies

w ∈ u(
⋂
{P ⊆ W | w ∈ u(P )}) = u(D(w)). (3.30)

It follows from D(w) ⊆ Q and (b) together that u(D(w)) ⊆ u(Q), which with (3.30)
implies w ∈ u(Q). Part 2 is also straightforward.

An analogous observation applies in the case of Fdox, which delivers the result
that the possibilities uneliminated as alternatives for P are not-P possibilities.

Observation 3.4 (Doxastic Conditions on u cont.).

1. Suppose a SA model 〈W, u, r, V 〉 satisfies the following conditions:

u-contrast u(P,w) ⊆ P ;

(a′) u(P,w) = u(P, v);

(b′) if P ⊆ Q, then u(P ) ∩Q ⊆ u(Q);

(c′) for Σ ⊆ P(W ),
⋂
P∈Σ

u(P ) ⊆ u(
⋂
P∈Σ

P );

(d′) if {P ⊆ W | w ∈ u(P )} 6= ∅, then ⋂{P ⊆ W | w ∈ u(P )} 6= ∅.
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Then if we define a binary relation D on W by

D(w) =


⋂{P ⊆ W | w ∈ u(P )} if this is non-empty

{w} otherwise
, (3.31)

M = 〈W,D, u, r, V 〉 is a SAB model satisfying Fdox.

2. If a SAB model M = 〈W,D, u, r, V 〉 satisfies Fdox, then u satisfies u-contrast

and (a′) - (d′).

Proof. For part 1, the seriality of D follows from (3.31), so M is indeed a SAB model.
Now we must show that for all Q ⊆ W ,

Fdox w ∈ u(Q) iff w ∈ Q and D(w) ⊆ Q.

The left-to-right direction is immediate from u-contrast, (d′), and (3.31). For the
right-to-left direction, given w ∈ Q and D(w) ⊆ Q, we have D(w) 6= {w}, which with
(3.31) implies

w ∈
⋂

P ∈{P ⊆W |w∈ u(P )}

u(P ), (3.32)

which with (c′), (3.31), and D(w) 6= {w} implies

w ∈ u(
⋂
{P ⊆ W | w ∈ u(P )) = u(D(w)). (3.33)

It follows from D(w) ⊆ Q and (b′) together that u(D(w)) ∩ Q ⊆ u(Q), which with
(3.33) and w ∈ Q implies w ∈ u(Q). Part 2 is also straightforward.

While our focus in this chapter has been on the “theory of the r function,” Observa-
tions 3.3 and 3.4 concern the “theory of the u function” when we interpret elimination
in terms of the beliefs of an ideally astute logician. In Chapter 5, I will give a dif-
ferent theory of the u function, according to which elimination is both world- and
proposition-relative, in order to model the role of deduction in extending knowledge.
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Adding Adherence

Our final step in unification is to incorporate Nozick’s full tracking theory, as formal-
ized by the N-semantics of §2.5. The question is how we are to understand satisfying
the adherence condition in terms of ruling out possibilities. In fact, to capture ad-
herence we must generalize our interpretation of the r and u functions.

Like the other conditions on knowledge that we have considered, the adherence
condition requires that the agent fulfill some epistemic success condition with respect
to some selected set of possibilities. For sensitivity with respect to ϕ, the selected
worlds are the closest ¬ϕ-worlds, and the epistemic success conditions is not believing
ϕ in these worlds. For safety with respect to ϕ, the selected worlds are any ¬ϕ-worlds
within the fixed set Min6w(W ) of close worlds, and the epistemic success condition is
again not believing ϕ in these worlds. By contrast, for adherence with respect to ϕ, the
selected worlds are any ϕ-worlds within the fixed set of Min6w(W ) of close worlds, and
the epistemic success condition is believing ϕ in these worlds. In each case, knowledge
requires that the selected set of possibilities—r(P,w)—does not overlap with the set
of possibilities with respect to which the epistemic success condition is unfulfilled—
u(P,w). To combine more than one of these conditions in a single theory, we simply
distinguish different pairs of r and u functions for each condition, as follows.

Definition 3.19 (SAB×n Model). A SAB×n model is a tuple M of the form
〈W,D, {ui}i≤n, {ri}i≤n, V 〉 where for all i ≤ n, 〈W,D, ui, ri, V 〉 is a SAB model.

The truth clause for Kϕ is as before, but now with n distinct “no overlap” conditions.

Definition 3.20 (Truth in a SAB×n Model). Given a SAB×n model
M = 〈W,D, {ui}i≤n, {ri}i≤n, V 〉 with w ∈ W and a formula ϕ in the epistemic lan-
guage, we define M, w � ϕ as follows (with other cases as before):

M, w � Kϕ iff D(w) ⊆ JϕKM and ∀i ≤ n : ri(JϕKM, w) ∩ ui(JϕKM, w) = ∅.

Let us think of r1 and u1 as the functions for the sensitivity condition, and r2 and
u2 as the functions for the adherence condition. Now we can define a class of SAB
models that captures the tracking theory as formalized by N-semantics.
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Definition 3.21 (track). A SAB×2 model 〈W,D, {u1, u2}, {r1, r2}, V 〉 satisfies track

if and only if:

1. r1 satisfies contrast, r-RofA, noVK, alpha, and beta;

2. r2(P,w) = r1(∅, w) ∩ P ;

3. u1(P,w) = {v ∈ W | D(v) ⊆ P} (dox)
(or u1(P,w) = {v ∈ W | v ∈ P and D(v) ⊆ P} (Fdox));

4. u2(P,w) = {v ∈ W | D(v) 6⊆ P}
(or u2(P,w) = {v ∈ W | v ∈ P and D(v) 6⊆ P}).

We have already discussed the conditions on r1 and u1 in the previous sections.
The condition on u2 says that for adherence to P , the worlds with respect to which
the epistemic success condition is unfulfilled by the agent are the worlds in which (P
is true but) the agent does not believe P . Finally, consider the equation r2(P,w) =

r1(∅, w) ∩ P . As we have seen, we can think of r1 as encoding rankings of worlds,
such that r1(P,w) = Min6w(P ). As a special case, we have r1(∅, w) = Min6w(∅) =

Min6w(W ), so we can think of r1(∅, w) as the set of worlds closest to w. If we take
the selected worlds for adherence to P to be the P -worlds among the closest worlds,
Min6w(W ) ∩ P as in N-semantics, then this means r2(P,w) = r1(∅, w) ∩ P .

With this explanation, we can state an analogue of Theorem 3.2 for N-semantics.

Theorem 3.3 (CB and SAB×2 Models).

1. For every total, well-founded CB model N with the universal field property,
there is a SAB×2 model N satisfying track such that for all epistemic-doxastic
formulas ϕ,

N , w �n ϕ iff N, w � ϕ;

2. For every SAB×2 model N satisfying track, there is a total, well-founded CB
model N with the universal field property such that for all epistemic-doxastic
formulas ϕ,

N, w � ϕ iff N , w �n ϕ.
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The proof of this result is similar to that of Theorems 3.2 and 3.1.

Remark 3.2 (Free-Floating Adherence). In the SAB×2 framework, it is clear that
there is nothing preventing a tracking theorist from proposing that the set of selected
worlds for adherence to P is not equal to the set of P -worlds among the closest
worlds according to the ranking for sensitivity, but rather the set of selected worlds
for adherence to P may float free of the ranking for sensitivity. For example, one
might replace Definition 3.21.2 with the condition on r2 that for all w ∈ W ,

there is (∃) R2(w) ⊆ W such that for all (∀) P ⊆ W , r2(P,w) = R2(w) ∩ P.

Definition 3.21.2 implies this ∃∀ condition (recall §3.2.1), but not vice versa. With the
weaker condition, one could interpret R2(w) as the set of “close” or “nearby”—rather
than closest—worlds (cf. Heller 1989, Heller 1999a, and Pritchard 2005, 72). Both
versions of the tracking theory fit neatly into the SAB×2 framework. It is easy to see
that so does DeRose’s [2004] double-safety theory combining safety and adherence.

Finally, since the SAB×2 framework does not require the existence of a fixed
adherence sphere R2(w) as above, it can also capture the ∀∃ version of adherence
suggested by Nozick [1981, 680n8], as mentioned in note 24 of Chapter 2.

With Theorems 3.1 - 3.3, unification is complete. The C/D/L- and H/N/S-
semantics of Chapters 2 are indeed special cases of Fallibilism 1.0.

3.4 Conclusion

As promised at the beginning of this chapter, we have developed a unifying framework
into which all of the RA and subjunctivist pictures in Chapters 2 fit as special cases.
Doing so has illuminated the structural assumptions built into these pictures, as well
as the relation of these assumptions to the closure properties of knowledge. This
perspective will play a crucial role in Chapters 4 and 5, allowing us to clearly see the
flaws of Fallibilism 1.0 and the path to a new framework of Fallibilism 2.0.
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3.A Unification: Proofs

In this appendix, we prove Theorem 3.1 of §3.3.1.

Theorem 3.1 (RA and SA Models). Let x ∈ {c, d, l} and X ∈ {C,D, L}.

1. For every total, well-founded RA modelM with the universal field property,11

there is a SA model Mx ∈ X such that for all epistemic formulas ϕ,

M, w �x ϕ iff Mx, w � ϕ.

2. For every SA model M ∈ X, there is a total, well-founded RA model M with
the universal field property such that for all epistemic formulas ϕ,

M, w � ϕ iffM, w �x ϕ.

Proof. For part 1, given the RA model M = 〈W,_,�, V 〉, define the SA model
Mx = 〈W, u, rx, V 〉 with

u(P,w) = _(w) ∩ P ; (3.34)

rc(P,w) = P ;

rd(P,w) = Min�w(P ); (3.35)

rl(P,w) = Min�w(W ) ∩ P .

We will prove that Md ∈ D, leaving it to the reader to check that Mc ∈ C and Ml ∈ L.
First we must show that u satisfies the following properties:

RO∃∀ there is U(w) ⊆ W such that for all P ⊆ W , u(P,w) = U(w) ∩ P .
u-RofA if w 6∈ P , then w ∈ u(P,w).

That u satisfies RO∃∀ follows from (3.34) with U(w) = _(w); that u satisfies u-RofA

follows from the reflexivity of _. Next we must show that rd satisfies the following:
11Recall from Definition 2.3 that the universal field property requires that the field Ww of each
�w be W .
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contrast r(P,w) ⊆ P ;
r-RofA if w 6∈ P , then w ∈ r(P,w);
noVK if P 6= W , then r(P,w) 6= ∅;
alpha r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w);
beta if P ⊆ Q and r(P,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P,w).

That rd satisfies contrast is immediate from (3.35); that rd satisfies r-RofA follows
given the weak centering (Definition 2.2.3b) of �w; that rd satisfies noVK follows
given the well-foundedness and universal field of �w. To show that rd satisfies
alpha, we show that

Min�w(P ∩Q) ⊆ Min�w(P ) ∪Min�w(Q).

Suppose v ∈ Min�w(P ∩Q) = Min�w(P ∪ Q). Consider the case where v ∈ P , and
suppose for reductio that there is some x ∈ P such that x ≺w v. Then since x ∈ P∪Q,
it follows that v 6∈ Min�w(P ∪Q), a contradiction.12 Hence there is no such x, which
means v ∈ Min�w(P ). The case where v ∈ Q is analogous.

Finally, to show that rd satisfies beta, we show that

if P ⊆ Q and Min�w(P ) ∩Min�w(Q) 6= ∅, then Min�w(Q) ⊆ Min�w(P ).

Assume the antecedent and v ∈ Min�w(Q), so v ∈ P given P ⊆ Q. Suppose for
reductio that there is some x ∈ P such that x ≺w v. By assumption, there is some
y ∈ Min�w(P ) ∩Min�w(Q). It follows by the totality of �w that y �w x. By the
transitivity of �w, y �w x and x ≺w v implies y ≺w v. Since y ∈ Q, it follows that
v 6∈ Min�w(Q), a contradiction. Hence there is no such x, so v ∈ Min�w(P ).13

We conclude that Md ∈ D. The proof that M, w �d ϕ iff Md, w � ϕ is by a
straightforward induction on ϕ, using the truth definitions, (3.34), and (3.35).

For part 2, given a SA model M = 〈W, u, r, V 〉 ∈ D, we construct the RA model
12Recall that Min�w(S) = {v ∈ S ∩Ww | there is no u ∈ S such that u ≺w v}.
13Note that this proof shows that rd satisfies Bordes’s [1976, §2] stronger condition β+ below.
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M = 〈W,_,�, V 〉 by defining14

x _ y iff y ∈ U(x); (3.37)

x �w y iff ∃Q ⊆ W : x ∈ r(Q,w) and y ∈ Q. (3.38)

We will show that �w is a well-founded, total preorder with a universal field, weakly
centered around w, and

r(P,w) = Min�w(P ). (3.39)

Then the fact that M, w � ϕ iffM, w �d ϕ follows by a straightforward induction.
To show: �w is total.15 Suppose for reductio that there are x, y ∈ W such that

x 6�w y and y 6�w x. Hence by (3.38) there is no Q such that either x ∈ r(Q,w)

and y ∈ Q, or y ∈ r(Q,w) and x ∈ Q. In particular, {x, y} is not such a Q,
so given x, y ∈ {x, y}, we have x 6∈ r({x, y}, w) and y 6∈ r({x, y}, w). Then since
r({x, y}, w) ⊆ {x, y} given contrast, we have r({x, y}, w) = ∅. It follows by noVK that
{x, y} = W . Now consider r(∅, w). Given ∅ 6= W , we have r(∅, w) 6= ∅ by noVK again.
Then since W = {x, y}, either x ∈ r(∅, w) or y ∈ r(∅, w). But x, y ∈ ∅, so ∅ is a Q as
specified above, contradicting the assumption for reductio.

14Given contrast, noVK, alpha and beta, (3.38) is equivalent to the following definition (see Sen
1971, Definitions 2 and 5, Theorem T.3):

x �w y iff x ∈ r({x, y}, w).

Note how this definition takes advantage of the fact that the first input to the r function is a
proposition, rather than a formula. If the first input to r were a formula, as in the SSA models
of §4.B, then there would be no guarantee that {x, y} is definable by a formula. A definition that
works even if the first input to r must be definable is the following:

x �w y iff either (i) ∀P : y 6∈ r(P,w) or (ii) ∃Q : x ∈ r(Q,w) and y ∈ Q. (3.36)

15Here is a proof of totality using (3.36) from note 14. Suppose for reductio that there are x, y ∈W
such that x 6�w y and y 6�w x. Hence by (3.36) we have that (a) there are P and P ′ such that
x ∈ r(P,w) and y ∈ r(P ′, w), but (b) there is no Q such that either x ∈ r(Q,w) and y ∈ Q, or
y ∈ r(Q,w) and x ∈ Q. Given x ∈ r(P,w) and y ∈ r(P ′, w), it follows by contrast that x ∈ P
and y ∈ P ′, so x, y ∈ P ∩ P ′, which with (b) implies that x 6∈ r(P ∩ P ′, w) and y 6∈ r(P ∩ P ′, w).
But by Observation 3.2.1, together alpha and beta imply that either r(P,w) ⊆ r(P ∩ P ′, w) or
r(P ′, w) ⊆ r(P ∩ P ′, w), which with the fact that x ∈ r(P,w) and y ∈ r(P ′, w) implies that either
x ∈ r(P ∩ P ′, w) or y ∈ r(P ∩ P ′, w), contradicting what was just derived.
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To show: �w has a universal field. Immediate since �w is total on W .
To show: �w is transitive. Suppose x �w y and y �w z, so by (3.38) there are

P,Q ⊆ W such that x ∈ r(P,w), y ∈ P ∩ r(Q,w), and z ∈ Q. Where S = P ∩Q, we
have z ∈ S, so if we can show that x ∈ r(S,w), then we will have x �w z by (3.38).

Following Bordes [1976], we use the fact that alpha and beta together imply16

β+ if X ⊆ Y and r(X,w) ∩ Y 6= ∅, then r(Y,w) ⊆ r(X,w).

Suppose for reductio that r(S,w) ∩ P = ∅. Given contrast, r(S,w) ⊆ P ∩Q = P ∪Q
and x ∈ r(P,w) ⊆ P ⊆ S, so S 6= W and therefore r(S,w) 6= ∅ by noVK. Hence from
r(S,w) ∩ P = ∅ we have r(S,w) ∩ Q 6= ∅, which with β+ implies r(Q,w) ⊆ r(S,w).
But then since y ∈ r(Q,w)∩P , we have y ∈ r(S,w)∩P , contradicting the assumption
for reductio. Then given r(S,w)∩P 6= ∅, it follows by β+ that r(P,w) ⊆ r(P ∩Q,w),
so x ∈ r(S,w). Hence x �w z as desired.

To show: (3.39) holds. For the left-to-right inclusion, if x ∈ r(P,w), then for any
y ∈ P , we have x �w y by (3.38). It follows by the totality and transitivity of �w
that there is no y ∈ P such that y ≺w x. Hence x ∈ Min�w(P ). From left-to-right,
suppose x ∈ Min�w(P ). Hence P 6= W , so r(P,w) 6= ∅ by noVK. Consider some
y ∈ r(P,w). Given contrast, y ∈ P , so x ∈ Min�w(P ) implies x �w y by the totality
and transitivity of �w. Hence by (3.38) there is some Q ⊆ W such that x ∈ r(Q,w)

and y ∈ Q. Given x ∈ Min�w(P ), x ∈ P , but suppose for reductio that x 6∈ r(P,w).
Now recall from Remark 3.1 that alpha and beta are together equivalent to Arrow:

if X ⊆ Y and r(X,w) ∩ Y 6= ∅, then r(Y,w) = r(X,w) ∩ Y .

Given P,Q ⊆ P ∪Q, y ∈ r(P,w) ∩ P ∪Q, and x ∈ r(Q,w) ∩ P ∪Q, Arrow implies

r(P ∪Q) = r(P,w) ∩ P ∪Q = r(Q,w) ∩ P ∪Q,

which contradicts the combination of x 6∈ r(P,w) ∩ P ∪Q and x ∈ r(Q,w) ∩ P ∪Q.
16If X ⊆ Y , then r(X,w) ∩ Y ⊆ r(Y,w) by the equivalent form of alpha given in Observation 3.1.

Putting this together with r(X,w) ∩ Y 6= ∅, we have r(X,w) ∩ r(Y,w) 6= ∅, which is the antecedent
of beta, which has the same consequent as β+.
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Hence x ∈ r(P,w).
To show: �w is well-founded. Immediate from (3.39) and noVK.
To show: �w is weakly-centered. Immediate from (3.39) and r-RofA.

Remark 3.3 (Dropping Totality). Theorems 3.1 - 3.3 are stated for total preorders.
To see how to define classes of SA models corresponding to RA and CB models
without the assumption of totality, recall from Remark 3.1 that the alpha and beta

conditions are together equivalent to the Arrow condition:

if X ⊆ Y and r(X,w) ∩ Y 6= ∅, then r(Y,w) = r(X,w) ∩ Y .

The Arrow condition is in turn equivalent to what is known in the economics literature
as the Weak Axiom of Revealed Preference (rewritten using our r instead of c):

WARP if v ∈ P and ∃u ∈ r(P,w): v �w u, then v ∈ r(P,w),

where �w is defined from r as in (3.38). If r satisfies WARP, contrast, and noVK, then
�w is a total preorder and r(P,w) = Min�w(P ); and for any total preorder ≤w on
W , if we define r by r(P,w) = Min≤w(P ), then r satisfies WARP and contrast.17 To
obtain the analogous result without totality, Eliaz and Ok [2006] identify a weakening
of WARP that they call the Weak Axiom of Revealed Non-Inferiority:

WARNI if v ∈ P and ∀u ∈ r(P,w): v �w u, then v ∈ r(P,w),

where �w is defined from r as in (3.38). It follows from results of Eliaz and Ok that
if r satisfies WARNI, contrast, and noVK, then we can define a preorder ≤w such that
r(P,w) = Min≤w(P );18 and for any preorder ≤w on W (where W is assumed to be
countable), if we define r by r(P,w) = Min≤w(P ), then r satisfies WARNI and contrast.

Remark 3.4 (Dropping Universality). Theorems 3.1 - 3.3 are stated for preorders
with the universal field property requiring that the field of each �w is W . To restate

17For noVK, we must add the assumption that ≤w is well-founded.
18Eliaz and Ok show several ways of defining a preorder, other than the definition of �w in (3.38),

which differ in the further properties they guarantee (see their Remark 2 and Proof of Theorem 2).
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the theorems without this assumption, we must associate with each w ∈ W in our
SA models a set Ww ⊆ W and reformulate our conditions on r accordingly:

contrast? r(P,w) ⊆ P ∩Ww;
r-RofA if w 6∈ P , then w ∈ r(P,w);
noVK? if Ww 6⊆ P , then r(P,w) 6= ∅;
alpha r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w);
beta? if P ∩Ww ⊆ Q and r(P,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P,w).

Now everything works as before, with Ww serving as the field of �w.

3.B Relation to Neighborhood Models

To prove the completeness results of Propositions 3.1 - 3.6, our strategy is to relate
our SA models to neighborhood models (see Chellas 1980, Ch. 9).

Definition 3.22 (Neighborhood Model). A neighborhood model is a tuple M =

〈W,N, V 〉 where W and V are as in Definition 3.1 and N : W → P(P(W )).

Definition 3.23 (Truth in a Neighborhood Model). Given a neighborhood model
M = 〈W,N, V 〉, we define M, w � ϕ as follows (with propositional cases as usual):

M, w � Kϕ iff JϕKM ∈ N(w),

where JϕKM = {v ∈ W |M, v � ϕ}.

We will show that every neighborhood model satisfying certain properties can be
transformed into a modally equivalent SA model satisfying corresponding properties,
and vice versa. We can then transfer completeness results for the classes of neighbor-
hood models to completeness results for the corresponding classes of SA models.

Lemma 3.1 (SA Models and Neighborhood Models). Suppose M = 〈W, u, r, V 〉 is
a SA model satisfying some of the following three conditions:19

19As before, universal quantification over w ∈W and P,Q ⊆W is implicit.
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1. r(P,w) ⊆ P (contrast);

2. if w 6∈ P , then w ∈ r(P,w) and w ∈ u(P,w) (r-RofA and u-RofA);

3. if P ⊆ Q, then r(Q,w) ⊆ r(P,w) (cover); and there is U(w) ⊆ W such that for
all P ⊆ W , u(P,w) = U(w) ∩ P (RO∃∀).

Then there is a neighborhood model M = 〈W,N, V 〉 satisfying the corresponding
conditions among the following (i.e., 1 corresponds to 4, 2 to 5, and 3 to 6):

4. W ∈ N(w) (contains the unit);

5. If P ∈ N(w), then w ∈ P ;

6. If P ⊆ Q, then P ∈ N(w) implies Q ∈ N(w) (supplemented);

and for all ϕ, M, w � ϕ iff M, w � ϕ.
In the other direction, if there is a neighborhood model M = 〈W,N, V 〉 satisfying

some of 4 - 6, then there is a SA model M = 〈W, u, r, V 〉 satisfying the corresponding
conditions among 1 - 3, such that for all ϕ, M, w � ϕ iff M, w � ϕ.

Proof. Given the SA model M = 〈W, u, r, V 〉, we construct a neighborhood model
M = 〈W,N, V 〉 as follows. For all w ∈ W ,

N(w) = {P ⊆ W | r(P,w) ∩ u(P,w) = ∅}. (3.40)

Consider properties 4 - 6 above for M:

(iv) For condition 4, it follows from condition 1 (contrast) that r(W,w) = ∅,
which implies W ∈ N(w) by (3.40).

(v) For condition 5, if P ∈ N(w), then r(P,w) ∩ u(P,w) = ∅ by (3.40). But if
w 6∈ P , then w ∈ r(P,w) ∩ u(P,w) 6= ∅ by condition 2 (r-RofA and u-RofA).
Hence w ∈ P .
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(vi) For condition 6, suppose P ⊆ Q and P ∈ N(w), so r(P,w) ∩ u(P,w) = ∅
by (3.40). By the first part of condition 3 (cover), P ⊆ Q implies r(Q,w) ⊆
r(P,w), and by the second part (RO∃∀), P ⊆ Q implies

u(Q,w) = U(w) ∩Q ⊆ U(w) ∩ P = u(P,w).

It follows that r(Q,w) ∩ u(Q,w) = ∅. Hence Q ∈ N(w) by (3.40).

Having checked conditions 4 - 6 for M, the proof that M, w � ϕ iff M, w � ϕ is a
straightforward induction on ϕ.

In the other direction, given a neighborhood model M = 〈W,N, V 〉, we construct
a SA model M = 〈W, u, r, V 〉 as follows. For all w ∈ W and P ⊆ W ,

u(P,w) = P , (3.41)

so u satisfies RO∃∀ and r-RofA by construction, and

r(P,w) =

∅ if P ∈ N(w)

P if P 6∈ N(w).
(3.42)

Consider conditions 1 - 3 above for M:

(i) Condition 1 (contrast) is immediate from (3.42).

(ii) For condition 2 (r-RofA and u-RofA), if w 6∈ P , then P 6∈ N(w) by condition
5, so w ∈ r(P,w) = P by (3.42), and w ∈ u(P,w) = P by (3.41).

(iii) For condition 3, the second part (RO∃∀) is immediate from (3.41). For the
first part (cover), assume P ⊆ Q. Case 1: P 6∈ N(w), so r(P,w) = P by
(3.42). Since P ⊆ Q, Q ⊆ P , and by (3.42), r(Q,w) ⊆ Q. Hence r(Q,w) ⊆
r(P,w), as desired. Case 2: P ∈ N(w), so by condition 6, Q ∈ N(w). It
follows by (3.42) that r(Q,w) = ∅, in which case r(Q,w) ⊆ r(P,w) again.

Having checked conditions 1 - 3 for M, the proof that M, w � ϕ iff M, w � ϕ is
another straightforward induction on ϕ.
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Lemma 3.2 (SA and Neighborhood Models II). Suppose M = 〈W, u, r, V 〉 is a SA
model satisfying the following conditions:

1. r(P,w) ⊆ P (contrast);

2. if w 6∈ P , then w ∈ r(P,w) and w ∈ u(P,w) (r-RofA and u-RofA);

3. if P ⊆ Q, then r(P,w) ∩Q ⊆ r(Q,w) (alpha) (recall Observation 3.1); and
there is U(w) ⊆ W such that for all P ⊆ W , u(P,w) = U(w) ∩ P (RO∃∀).

Then there is a neighborhood model M = 〈W,N, V 〉 satisfying the following:

4. W ∈ N(w) (contains the unit);

5. If P ∈ N(w), then w ∈ P ;

6. If Σ ⊆ N(w), then
⋂

Σ ∈ N(w) (closed under intersection);

and for all ϕ, M, w � ϕ iff M, w � ϕ.
In the other direction, if there is a neighborhood model M = 〈W,N, V 〉 satisfying

conditions 4 - 6, then there is a SA model M = 〈W, u, r, V 〉 satisfying conditions 1 -
3, such that for all ϕ, M, w � ϕ iff M, w � ϕ.

Proof. Given the SA model M = 〈W, u, r, V 〉, we construct a neighborhood model
M = 〈W,N, V 〉 as before. For all w ∈ W ,

N(w) = {P ⊆ W | r(P,w) ∩ u(P,w) = ∅}. (3.43)

We have already checked in the proof of Lemma 3.1 that (3.43) implies that conditions
4 and 5 hold for M. Let us now check that the new condition 6 holds for M. If
Σ ⊆ N(w), then we have the following three facts. First, for all P ∈ Σ, we have
r(P,w) ∩ u(P,w) = ∅ by (3.43). Second, for all P ∈ Σ, since

⋂
Σ ⊆ P we have

r(
⋂

Σ, w) ∩ P ⊆ r(P,w) by alpha. Third, we have u(
⋂

Σ, w) = U(w) ∩⋂Σ by RO∃∀.
Now suppose for reductio that there is some v ∈ r(

⋂
Σ, w) ∩ u(

⋂
Σ, w), which with

the third fact above implies that v ∈ U(w) ∩ Q for some Q ∈ Σ, so v ∈ u(Q,w) by
RO∃∀. Given v ∈ Q, it follows by the second fact above that v ∈ r(Q,w) as well.
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Thus, we have r(Q,w)∩ u(Q,w) 6= ∅, contradicting the first fact above. We conclude
that r(

⋂
Σ, w) ∩ u(

⋂
Σ, w) = ∅, so ⋂Σ ∈ N(w) by (3.43), as desired.

In the other direction, given a neighborhood model M = 〈W,N, V 〉, we construct
a SA model M = 〈W, u, r, V 〉 as follows. For every P 6∈ N(w), consider the set

SwP =
⋂
{Q ⊆ W | P ⊆ Q ∈ N(w)}.

By condition 5, w ∈ SwP . Given P ⊆ SwP , if P ∩ SwP = ∅, then P = SwP , in which case
P ∈ N(w) by condition 6, contradicting our assumption. Therefore,

P ∩ SwP 6= ∅.

For each P 6∈ N(w), choose an element uwP ∈ P ∩SwP such that if w 6∈ P , then uwP = w.
Next, define20

U(w) = {uwP | P 6∈ N(w)}, (3.44)

and for all Q ⊆ W , let
u(Q,w) = U(w) ∩Q. (3.45)

Observe that u satisfies RO∃∀ and u-RofA.
Finally, we define r as follows:

r(Q,w) = {uwP | P ⊆ Q and P 6∈ N(w)} ∩Q. (3.46)

Clearly r satisfies contrast. For r-RofA, if w 6∈ P , then P 6∈ N(w) by condition 5, in
which case uwP = w by the construction above, so w ∈ r(P,w) by (3.46). Finally, it is
immediate from (3.46) that r satisfies alpha, written in the alternative form given in
Observation 3.1 as: if P ⊆ Q, then r(P,w) ∩Q ⊆ r(Q,w).

It only remains to show that M, w � ϕ iff M, w � ϕ.
If M, w 2 Kϕ, then JϕKM 6∈ N(w). It follows by (3.44) - (3.46) that

20I am assuming the Axiom of Choice, but this is not necessary. We could define Uw
P = P ∩Sw

P and
U(w) =

⋃
P 6∈N(w)

Uw
P , adjusting the rest of the proof accordingly. In any case, for reasons indicated in

note 21 below, we only need this direction of the lemma for finite M.
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uwJϕKM ∈ r(JϕKM, w) ∩ u(JϕKM, w)

and hence
uwJϕKM ∈ r(JϕKM, w) ∩ u(JϕKM, w)

by the inductive hypothesis, so M, w 2 Kϕ.
If M, w � Kϕ, then JϕKM ∈ N(w) and hence JϕKM ∈ N(w) by the inductive

hypothesis. By (3.46),

r(JϕKM, w) = {uwP | P ⊆ JϕKM and P 6∈ N(w)} ∩ JϕKM,

so if there is some u ∈ r(JϕKM, w), then u = uwP for some P ⊆ JϕKM. Recall that

uwP ∈ SwP =
⋂
{Q ⊆ W | P ⊆ Q ∈ N(w)}.

Then since P ⊆ JϕKM ∈ N(w), it follows that uwP ∈ JϕKM, contradicting the fact that
uwP ∈ r(JϕKM, w) ⊆ JϕKM. Hence r(JϕKM, w) = ∅, which implies M, w � Kϕ.

Lemma 3.3 (SA and Neighborhood Models III). Suppose M = 〈W, u, r, V 〉 is a SA
model satisfying the following conditions:

1. r(P,w) ⊆ P (contrast);

2. if w 6∈ P , then w ∈ r(P,w) and w ∈ u(P,w) (r-RofA and u-RofA);

3. there is R(w) ⊆ W such that for all P ⊆ W , r(P,w) = R(w) ∩ P (RS∃∀); and
there is U(w) ⊆ W such that for all P ⊆ W , u(P,w) = U(w) ∩ P (RO∃∀).

Then there is a neighborhood model M = 〈W,N, V 〉 satisfying the following:

4. W ∈ N(w) (contains the unit);

5. If P ∈ N(w), then w ∈ P ;

6. P ∈ N(w) iff
⋂
N(w) ⊆ P (augmented);
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and for all ϕ, M, w � ϕ iff M, w � ϕ.
In the other direction, if there is a neighborhood model M = 〈W,N, V 〉 satisfying

conditions 4 - 6, then there is a SA model M = 〈W, u, r, V 〉 satisfying conditions 1 -
3, such that for all ϕ, M, w � ϕ iff M, w � ϕ.

Proof. Given the SA model M = 〈W, u, r, V 〉, we construct a neighborhood model
M = 〈W,N, V 〉 as before. For all w ∈ W ,

N(w) = {P ⊆ W | r(P,w) ∩ u(P,w) = ∅}. (3.47)

We already checked in the proof of Lemma 3.1 that (3.47) implies conditions 4 and
5 for M. Let us now check the new condition 6 for M. As noted with (3.1) in §3.2.1,
assuming RS∃∀ and RO∃∀, r(P,w) ∩ u(P,w) = ∅ is equivalent to R(w) ∩ U(w) ⊆ P .
Thus, by (3.47), P ∈ N(w) is equivalent to R(w) ∩ U(w) ⊆ P ; moreover

⋂
N(w) =⋂{Q ⊆ W | R(w) ∩ U(w) ⊆ Q} = R(w) ∩ U(w), so P ∈ N(w) iff

⋂
N(w) ⊆ P .

In the other direction, given a neighborhood model M = 〈W,N, V 〉, we construct
a SA model M = 〈W, u, r, V 〉 as follows:

r(P,w) = P ;

U(w) =
⋂

N(w);

u(P,w) = U(w) ∩ P .

It is easy to see that M satisfies conditions 1 - 3 and that M, w � ϕ iff M, w � ϕ.

As explained in §3.2, condition 1/4 in Lemmas 3.1 - 3.3 corresponds to the neces-
sitation rule N (or the axiom K>); condition 2/5 in Lemmas 3.1 - 3.3 corresponds
to the T axiom, Kϕ→ ϕ; in Lemma 3.1, condition 3/6 corresponds to the M axiom,
K(ϕ ∧ ψ) → Kϕ ∧ Kψ; in Lemma 3.2, condition 3/6 corresponds to the C axiom,
Kϕ ∧Kψ → K(ϕ ∧ ψ); and in Lemma 3.3, condition 3/6 corresponds to the K ax-
iom, (Kϕ∧K(ϕ→ ψ))→ Kψ. For proofs that the systems combining these axioms
in Propositions 3.1 - 3.6 (E, EN, ENT, K, KT, EMNT, ECNT) are sound and
complete for the appropriate classes of neighborhood models, see Chellas 1980, Ch.
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9.21 Since Lemma 3.1 shows that any formula falsified by a neighborhood model in a
certain class is also falsified by a SA model in the corresponding class, and vice versa,
the cited completeness results for the classes of neighborhood models transfer to the
completeness results in Propositions 3.1 - 3.6 for SA models.

21The condition corresponding to the C axiom in neighborhood models is closure under finite
intersections, whereas I have stated Lemma 3.2 using closure under arbitrary intersections. Here we
use the fact that ECNT is complete with respect to the class of finite neighborhood models satisfying
conditions 4 - 6 of Lemma 3.2 [Chellas, 1980, §9.5], for which the two intersection conditions coincide.
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The Flaws of Fallibilism 1.0

Having built up the framework of Fallibilism 1.0, we will now evaluate it critically.
As suggested at the beginning of Chapter 3, I will argue that any way of navigating
down the tree of Fig. 4.1 leads to one of three serious problems:

• The Problem of Vacuous Knowledge;

• The Problem of Containment;

• The Problem of Knowledge Inflation.

Fallibilism 1.0

RS∃∀ RS∀∃

RO∃∀
Lewis

RO∀∃
Sosa

DeRose

RO∃∀
Dretske

RO∀∃
Nozick
Heller

Figure 4.1: theories classified by RS and RO parameter settings

After explaining the first two problems in §4.1 and §4.2, in §4.2.1 I will prove an
impossibility result to the effect that they are unavoidable by any version of Fallibilism

167
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1.0. In §4.3, I will consider and reject an attempt to escape the impossibility result by
“knowledge inflation.” My conclusion will be that Fallibilism 1.0 is inherently flawed.
However, this negative point leads in a positive direction, as we apply what we have
learned about the flaws of Fallibilism 1.0 to develop Fallibilism 2.0 in Chapter 5.

4.1 The Problem of Vacuous Knowledge

The Problem of Vacuous Knowledge arises for any fallibilist theory with a RS∃∀ pa-
rameter setting—any theory that goes left starting from Fallibilism 1.0 in Fig. 4.2.

Fallibilism 1.0

RS∃∀ RS∀∃

RO∃∀
Lewis

RO∀∃
Sosa

DeRose

RO∃∀
Dretske

RO∀∃
Nozick
Heller

Figure 4.2: parameter settings and the Problem of Vacuous Knowledge

Recall that on a RS∃∀ theory, for any context C and world w, there is a fixed set
RC(w) ⊆ W of worlds such that for any proposition P , knowing P in w relative to C
requires ruling out a world v iff v is a not-P world in RC(w): rC(P,w) = RC(w) ∩ P .
(I omit C when no confusion should arise.) As discussed in Chapter 2 and §3.2.1, RA
theorists like Stine [1976] and Lewis [1996] who wish to maintain full closure assume
RS∃∀. So do safety and double-safety theorists like Sosa [1999] and DeRose [2004],
who nonetheless fail to preserve full closure due to the failure of RO∃∀ (see §4.2).

One must pay a serious price for assuming RS∃∀: either accept infallibilism or
allow vacuous knowledge—knowledge of contingent propositions gained without the
elimination of a single possibility. The problem can be illustrated very simply as
in Fig. 4.3. Assuming RS∃∀, fallibilism says that the fixed set of “relevant” worlds
R(w) is a strict subset of the whole space W . Consider any contingent proposition
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Q 6= W that is true throughout R(w), i.e., R(w) ⊆ Q. Then given RS∃∀, we have
r(Q,w) = R(w) ∩Q = ∅, which violates the no vacuous knowledge condition:

noVK if Q 6= W , then r(Q,w) 6= ∅.

Hence even if the agent has not eliminated any possibilities, so u(P,w) = P for
all propositions P ⊆ W , nonetheless r(Q,w) ∩ u(Q,w) = ∅, so the theory implies
that the agent knows Q. Typical examples of such propositions Q, true throughout
R(w) in ordinary contexts, are the denials of skeptical hypotheses. Hence a fallibilist
RS∃∀ theory implies that agents can know the denials of skeptical hypotheses without
having eliminating any possibilities of any kind, skeptical or mundane.

Fact 4.1 (VK Dilemma). r satisfies RS∃∀ and noVK iff r satisfies infallibilism.

P

w

Standard Views and their Problems

Fallibilism with Closure I: Stine
RC (w)
(RS89) 8w 8C 8P 9rC (P , w): agent knows P in w (relative to C)

i↵ rC (P , w) \ uC (P , w) = ∆.

P

~P

r (P,w)

Q

~Q

r (Q,w)

w

P

~P

R(w)

Q

~Q

w

(RS98) 8w 8C

9RC (w) 8P : agent knows P in w (relative to C)
i↵ RC(w) \ P \ uC (P , w) = ∆.

Wes Holliday: Fallibilism and the Limits of Closure, 4

Q

w

Standard Views and their Problems

Fallibilism with Closure I: Stine
RC (w)
(RS89) 8w 8C 8P 9rC (P , w): agent knows P in w (relative to C)

i↵ rC (P , w) \ uC (P , w) = ∆.

P

~P

r (P,w)

Q

~Q

r (Q,w)

w

P

~P

R(w)

Q

~Q

w

(RS98) 8w 8C

9RC (w) 8P : agent knows P in w (relative to C)
i↵ RC(w) \ P \ uC (P , w) = ∆.

Wes Holliday: Fallibilism and the Limits of Closure, 4

Figure 4.3: the Problem of Vacuous Knowledge illustrated

Together RS∃∀ and fallibilism violate the basic idea that knowledge of a contingent
empirical proposition about the world is a cognitive achievement that does not come
“for free” (or even cheap), in the sense of not requiring the elimination of any possi-
bilities, but rather requires such epistemic work. This is what I call the Problem of
Vacuous Knowledge, following the terminology of Heller [1999a, 207], who also real-
izes that the RS∃∀ assumption is to blame. However, Heller and I view the problem
differently. For Heller, the problem seems to be that when a contingent Q is true
throughout R(w), RS∃∀ theories do not place a requirement on the agent to eliminate
any not-Q-possibilities in order to know Q. In my view, the problem is that RS∃∀
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theories do not place on the agent any requirement to eliminate any possibility in
order to know Q. This distinction will become important later in Chapter 5.

Of course, I make no pretense of having a proof or knockdown argument for noVK.1

In fact, I suspect that the issue of noVK is a near-bedrock issue that marks a deep
division among epistemologists. In the rest of this section, I will explain why I am
unconvinced by attempts to make violations of noVK look acceptable.2

4.1.1 Reply 1: No Problem

The first reply to the Problem of Vacuous Knowledge is to claim that there is no
problem with the idea of agents knowing contingent propositions without having
eliminated any possibilities. About Dretske’s zebra case, Stine [1976, 258] writes:

[O]ne does know what one takes for granted in normal circumstances. I
do know that it is not a mule painted to look like a zebra. I do not
need evidence for such a proposition. The evidence picture of knowledge
has been carried too far. . . . [I]f the negation of a proposition is not a
relevant alternative, then I know it—obviously, without needing to pro-
vide evidence—and so obviously that it is odd, misleading even, to give
utterance to my knowledge.

Of course, there is no argument here, but simply an assertion that “vacuous knowl-
edge” is obviously knowledge. Against Stine’s assertion, Cohen [1988, 99] writes:

Here, I think Stine’s strategy for preserving closure becomes strongly
counter-intuitive. Even if it is true that some propositions can be known
without evidence, surely this is not true of the proposition that S is not
deceived by a cleverly disguised mule.

While this is just another assertion from Cohen, Stine’s bald endorsement of vacuous
knowledge is sufficiently controversial that we should consider other replies.

1Note added in ILLC version: in fact, in order to raise a problem for RS∃∀ theories, it is not
necessary to argue that noVK holds for all propositions. See Holliday 2013b, §2.5.

2Note added in ILLC version: for updated and condensed versions of the arguments in the
following sections, see Holliday 2013b, §2.4.
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4.1.2 Reply 2: Unclaimable Knowledge

The second reply to the Problem of Vacuous Knowledge acknowledges that there is
apparently a problem, but argues that it can be mitigated by appeal to contextualism.
How can we try to smooth over the inconsistency between (a) RS∃∀, (b) the fallibilist
position that for a mundane proposition P and a skeptical counter-hypothesis S,
rC(P,w) does not contain any skeptical S-possibilities, and (c) the noVK position that
rC(S,w) should be non-empty? One way is to claim that when our conversation turns
to the skeptical hypothesis S, we shift to a context C ′ in which r

C′
(S,w) is non-empty

and r
C′

(P,w) does contain S-possibilities, contrary to our initial fallibilist position
but consistent with RS∃∀. This is exactly Lewis’s [1996, 561-562] line:

Do I claim you can know P just by presupposing it?! Do I claim you can
know that a possibility W does not obtain just by ignoring it? Is that
not what my analysis implies, provided that the presupposing and the
ignoring are proper? Well, yes. And yet I do not claim it. Or rather, I
do not claim it for any specified P or W . I have to grant, in general, that
knowledge just by presupposing and ignoring is knowledge; but it is an
especially elusive sort of knowledge, and consequently it is an unclaimable
sort of knowledge. You do not even have to practise epistemology to
make it vanish. Simply mentioning any particular case of this knowledge,
aloud or even in silent thought, is a way to attend to the hitherto ignored
possibility, and thereby render it no longer ignored, and thereby create a
context in which it is no longer true to ascribe the knowledge in question
to yourself or others. So, just as we should think, presuppositions alone
are not a basis on which to claim knowledge.

According to Lewis, vacuous knowledge is unclaimable knowledge—or rather, claimable
in the abstract, but not for any specific proposition. Does this resolve the problem?

I think not, for three reasons that I will sketch now and develop below:

1. The Mechanism Problem. Lewis’s idea that simply mentioning or attending to
a possibility changes the context in such a way that the possibility becomes
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relevant has fallen out of favor with contemporary contextualists. According
to DeRose [2004], we can resist such context changes, in which case what is
stopping us from truly claiming specific instances of vacuous knowledge?

2. The Motivation Problem. What gets us into the Problem of Vacuous Knowl-
edge is insistence on full closure. To maintain full closure, we need to know
anti-skeptical propositions vacuously. Lewis says that vacuous knowledge is un-
claimable knowledge. But then closure becomes unclaimable closure, so we have
to ask ourselves about how we got into this mess: was it really worth it?

3. The Missing-the-Point Problem. As Cohen [2000] correctly frames the vacuous
knowledge problem, it is that Lewis’s theory (and Cohen’s own) implies that
agents have a special kind of contingent a priori knowledge. What is problem-
atic about this is not just the idea that agents could truly claim to have such
contingent a priori knowledge, but the idea that they could have it at all.

The Mechanism Problem

Lewis’s [1996] claim, related to his Rule of Attention (559), is that when an agent
vacuously knows a proposition P relative to an attributor’s context C, if the attribu-
tor says or thinks that the agent knows P , this will invariably change the attributor’s
context from C to a new C ′ in which not-P possibilities uneliminated by the agent are
relevant. However, few contemporary contextualists think that sayings or thinkings
invariably introduce relevant counter-possibilities in this way.3 For example, DeRose
[2004, Ch. 4] suggests that participants in a conversation may resist context changes
by sticking to their own “personally indicated epistemic standards.” In this case, re-
sistance may be unnecessary. Imagine two lovers of vacuous knowledge, who delight
in the ease with which they know various contingent empirical propositions without
doing the epistemic work of eliminating any possibilities of error. Not wanting to leave
this happy state, they are careful to stick to mutually indicated epistemic standards

3Cohen [1998, 303n24] suggests that the Rule of Attention may need to be defeasible; Ichikawa
[2011, §4] disavows it; and Blome-Tillman [2009, 246-247] argues that it is too strong.
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relative to which they have vacuous knowledge. According to post-Lewisian contex-
tualism, there does not seem to be anything stopping them from truly claiming to
know what they know vacuously. If this is correct, then the “unclaimable knowledge”
reply collapses. But just to be safe, let us add two more problems with it.

The Motivation Problem

When Stine [1976] first articulated what I call the RS∃∀ condition, the motivation was
clear: preserve closure for a fixed context. In those cases where Dretske claims that
closure fails, Stine claims that fixed-context closure holds because our knowledge of
the conclusion is vacuous (contrast this with the “knowledge inflation” of §4.3). If
Stine saves fixed-context closure by appeal to vacuous knowledge, how significant
is this result? Lewis’s “unclaimable knowledge” reply threatens to make it rather
insignificant. For if Lewis is correct and context change invariably prevents us from
truly claiming to have the vacuous knowledge that is rightly ours according to fixed-
context closure, why should we bend over backwards to preserve fixed-context closure?

As Dretske [2005] said of Lewis-style contextualism, “it is a way of preserving
closure for the heavyweight implications while abandoning its usefulness in acquiring
knowledge of them” (19). To put it this way is misleading, however, since a closure
principle is not something that agents use in acquiring knowledge (unless we are
talking about knowledge of what agents know). It is not as if in the course of a
mathematical proof, the mathematician “uses closure” to extend her knowledge from
premises to conclusion. Instead, a closure principle is something that we use in
reasoning about the knowledge of agents—of others and ourselves. Hence Dretske’s
claim should be reformulated as: Lewis-style contextualism is a way of “preserving”
closure while abandoning its usefulness in reasoning about knowledge.

In response to Dretske, Hawthorne [2005, 39] clarifies the contextualist view:

Suppose that A isn’t considering heavyweight possibilities but that B is.
In particular suppose that B believes P and also goes on to believe some
heavyweight consequence of P by deduction. Suppose A says (1) “B knows
P” and, moreover, (2) “B knows anything he has deductively inferred from
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P and thereby come to believe.” If B [sic] is in a context where “A [sic]
knows P,” in her mouth, expresses a truth, then she will be in a context
where (2), in her mouth, expresses a truth as well.

(Note that A and B should be switched in the last sentence.) The trick, of course, is
that A does not consider any specific heavyweight consequence Q of P . For if A were
to do this, it could change her context so that it would not be true for her to say “B
knows Q.” This was Dretske’s complaint, which Hawthorne does not address.

Insofar as Hawthorne’s no-specificity trick allows contextualists to express their
commitment to closure, it also allows us to state their commitment to vacuous knowl-
edge. Indeed, Lewis stated his commitment to vacuous knowledge in exactly such an
unspecific way, which leads to my last point about the “unclaimable knowledge” reply.

The Missing-the-Point Problem

The third problem with the “unclaimable knowledge” reply is that as a reply to the
Problem of Vacuous Knowledge, it misses the point. What is problematic about
vacuous knowledge is not just the idea that agents could truly claim to have it—
which they probably can according to post-Lewisian contextualism—but rather that
they could have it at all. As Cohen [2000, 105] concedes about his contextualist view:

Unfortunately, a problem remains. If in everyday contexts, it is a priori
rational enough for us to know the falsity of skeptical alternatives, then
we have a priori knowledge of the falsity of skeptical alternatives. But
surely these alternatives are contingent. So it looks as if the contextualist
is committed to the view that we have contingent a priori knowledge.
And of course, these cases do not fit the structure of the reference-fixing
cases called to our attention by Kripke.

Of course, I am not entirely happy with this result. . . .

I am not at all happy with non-Kripkean contingent a priori knowledge. Yet as
I suggested before, I suspect that this is a near-bedrock issue that deeply divides
epistemologists. For example, DeRose [2000, 138] is willing to say that we do have
contingent a priori knowledge of the denials of skeptical hypotheses:



4. THE FLAWS OF FALLIBILISM 1.0 175

I suspect that the best ways of filling out and then evaluating my alterna-
tive, contextualist Moorean account of how we know that we’re not BIVs
will have it come out also as an account according to which our knowledge
that we’re not BIVs is a priori.

What about skeptical hypotheses not about how our perception hooks up to the world,
but rather about the constitution of the world around us (see the discussion of “world-
side” skeptical hypotheses in §6.2.3)? Do we have a priori knowledge of their denials
as well? I find such a view, given by fallibilist RS∃∀ theories, highly implausible.
Without having a filled-out version of the contextualist Moorean account to evaluate,
for now I will simply state that I am firmly in the camp of those who think that
knowledge of contingent empirical propositions requires investigation of the world.4

4.1.3 Reply 3: Something Less Than Ruling Out

The third reply to the Problem of Vacuous Knowledge, considered (and rejected) by
Vogel [1999], is to admit that knowledge of contingent truths always requires epistemic
work, but to argue that this “epistemic work” may involve something less that ruling
out any possibilities in a strong sense.5 As Vogel [1999, 159 - 159n12] explains:

The RAT is committed to the thesis that one can know that an irrelevant
alternative is false even though one can’t rule it out. . . . The RA theorist
might still require that you have some minimal evidence against irrelevant
alternatives in order to know that they are false. However, holding onto
this scruple will make it more difficult, if not impossible, for the RA
theorist to resist skepticism.

The presupposition of the last sentence seems to be that agents typically lack even
minimal evidence against radical skeptical alternatives. Cohen [1988, 111] agrees:

4Note added in ILLC version (see Holliday 2013b, §2.4): even if one thinks there are some special
counterexamples to Evans’s [1979, 161] famous claim that “it would be intolerable for there to be
a statement which is both knowable a priori and deeply contingent,” such examples are beside the
point. The point is that RS∃∀ theories imply that every proposition Q with RC (w) ⊆ Q is knowable
with no requirement of eliminating possibilities, and there is no guarantee that every such Q fits the
mold of one of the recherché examples of (deeply) contingent but a priori knowable propositions.

5I am grateful to Zoltan Gendler Szabo for raising this idea in conversation.
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A moderate skeptical hypothesis is immune to rejection on the basis of a
particular kind of evidence. . . . Radical skeptical hypotheses are immune
to rejection on the basis of any evidence. There would appear to be no
evidence that could count against the hypothesis that we are deceived
by a Cartesian demon. . . . Radical skeptical hypotheses are designed to
neutralize any evidence that could be adduced against them.

If this is correct, it will not help to hold onto RS∃∀ by saying that knowing P re-
quires ruling out all not-P possibilities within R(w) (if any) and having some evidence
against all not-P possibilities outside of R(w), since the second part will lead to skep-
ticism. Followers of Williamson’s [2000, Ch. 9] E = K (evidence = knowledge) thesis
may claim that we do have evidence against skeptical hypotheses insofar as we know
they do not obtain. But then they owe us an explanation of what epistemic work we
have done to earn such knowledge, or else we are back to the vacuous knowledge.6

It is worth emphasizing that the Problem of Vacuous Knowledge is as much a
problem for safety theories [Sosa, 1999, Pritchard, 2005] as it is for RS∃∀ versions of
the RA theory. One might claim that we have earned our anti-skeptical knowledge
because our anti-skeptical beliefs are safe—there are no close worlds where the skep-
tical hypotheses are true but we believe they are false—but this is because they are
vacuously safe—there are no close worlds where the skeptical hypotheses are true at
all. The problem with safety in this case is precisely that it is a RS∃∀ condition.

4.1.4 Reply 4: Double-Safety

While safety suffers from the Problem of Vacuous Knowledge, what about the other
∃∀ condition (recall Remark 3.2): adherence. The fourth reply to the problem is
that for a given skeptical hypothesis S, even if one’s anti-skeptical belief in not-S is

6Note added in ILLC version: even if Vogel and Cohen are incorrect and we can acquire at
least minimal evidence against skeptical hypotheses, the “something less than ruling out” reply still
does not solve the Problem of Vacuous Knowledge facing RS∃∀ theories. For while having “minimal
evidence” may not require eliminating any ¬P -possibilities, where P is the contingent empirical
proposition to be known, presumably it does requires eliminating some possibilities, perhaps as
alternatives to related propositions (see Holliday 2013b). But if it does, then we must reject RS∃∀,
since it allows agents to know contingent truths with no requirement of eliminating possibilities.
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vacuously safe, in virtue of the fact that not-S is true throughout the set R(w) of
nearby worlds, it is not vacuously adherent, since it is some kind of achievement that
in all of the nearby worlds where not-S is true, the adherent agent believes not-S.
As Heller [1999a, 207] puts it, “One might insist that [the agent] is in the following
positive epistemic condition with respect to [not-S]: if p were true, [the agent] would
believe p.”7 DeRose [2000, 135] suggests something similar:

As a Moorean, I face the pointed question: How do we know that we’re
not BIVs? . . . [M]y account is that we know, according to even quite high
standards (though not according to the absolute standards) that we’re not
BIVs because our belief as to whether we’re BIVs matches the fact of the
matter in the actual world and in the sufficiently nearby worlds.

Does a “double-safety” theory (recall §2.10.1) combining safety and adherence solve
the Problem of Vacuous Knowledge?8

Against the idea that adding adherence solves the Problem of Vacuous Knowledge,
Heller objects that an agent “is in that condition [if p were true, she would believe
p] with respect to any (or perhaps almost any) true belief” (207), perhaps because
he thinks that a counterfactual with a true antecedent is equivalent to a material
conditional. But if we take adherence to range over some set R(w) of nearby worlds,
then it is not the case that an agent satisfies adherence with respect to any true belief.
However, as I will explain, something similarly defeating is the case for double-safety.

As Kripke [2011, 183] shows, if an agent’s belief that p satisfies the sensitivity
condition, then normally the agent’s belief that p∧Bp will satisfy both the sensitivity
and adherence conditions (see note 54 in Chapter 2). Kripke concludes that adherence
“is almost without force, a broken reed. What can be the point of a condition whose
rigor can almost always be overcome by conjoining ‘and I believe (via M) that p’...?” ’
(184). A similar point applies to the adherence part of double-safety. Suppose an
agent’s belief that p is vacuously safe, in virtue of the fact that there are no ¬p-
worlds among the nearby worlds. It follows by an argument similar to Kripke’s that

7I have changed the variables in Heller’s sentence for consistency with mine.
8I am grateful to Keith DeRose for raising this idea in conversation.
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the agent’s belief that p ∧ Bp will normally be double-safe, even if the agent’s belief
that p is not. So according to the double-safety theory, it is normally sufficient to
know p∧Bp that one has a vacuously safe belief that p. I conclude that double-safety
does not solve the Problem of Vacuous Knowledge, but only relocates it.

To put the point more formally, in the framework of S-semantics for safety in
§2.5 and R-semantics for double-safety in §2.10.1, the following is easy to prove if we
constrain the doxastic accessibility relation D such that Bϕ→ BBϕ is valid.

Fact 4.2 (Double-Safe Belief about Belief). For any CB model M = 〈W,D,6, V 〉
in which D is transitive, w ∈ W , and propositional formula ϕ,M, w �s Kϕ implies
M, w �r K(ϕ ∧Bϕ).

Proof. Since D is transitive, Bϕ→ BBϕ is valid. To showM, w �r K(ϕ ∧ Bϕ), we
first observe that for any v ∈ Min6w(W ), we have these equivalences: M, v � Bϕ iff
M, v � Bϕ ∧ BBϕ (because Bϕ → BBϕ is valid) iff M, v � B(ϕ ∧ Bϕ) (because
Bα∧Bβ ↔ B(α∧β) is valid). Now givenM, w �s Kϕ, we haveM, w �s Bϕ, which
for propositional ϕ impliesM, w �r Bϕ, which with the previous equivalences implies
M, w �r B(ϕ ∧ Bϕ), so the belief condition for M, w �r K(ϕ ∧ Bϕ) is satisfied.
Moreover, given M, w �s Kϕ, we have that for all v ∈ Min6w(W ), M, v � Bϕ

iff M, v � ϕ ∧ Bϕ. Thus, by the previous equivalences, M, v � B(ϕ ∧ Bϕ) iff
M, v � ϕ∧Bϕ, so the double-safety condition forM, w �r K(ϕ∧Bϕ) is satisfied.

4.1.5 RS∃∀ Reconsidered

Having found no satisfactory solution to the Problem of Vacuous Knowledge, falli-
bilists would be wise to reconsider the RS∃∀ assumption. What, after all, are the
arguments for RS∃∀? It is not obvious that for every context C there is such a special
set RC(w) as required by RS∃∀. Why should there be a single set for which the equa-
tion rC(P,w) = RC(w) ∩ P holds for all propositions P , no matter how different the
subject matters of these propositions? That there is such a single set is a substantial
theoretical assumption. Infallibilism implies RS∃∀, where RC(w) is the set of all pos-
sibilities. Yet those who reject infallibilism but want to retain full closure must add
RS∃∀ as a further assumption. What is the argument for this assumption?
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As far as I know, the only person to attempt to argue for RS∃∀ directly was Stine
[1976]. There are two parts to Stine’s argument. First, Stine claims that to reject
full closure by flouting RS∃∀, as Dretske did, “would be to commit some logical sin
akin to equivocation” (256). This seems to be a confusion, repeated by those who
endorse the equivocation charge [Cohen, 1988, 98]. There is no equivocation in the
explanations in §3.2.1 and Chapter 2 of how closure can fail without RS∃∀. And to
reject the additional RS∃∀ assumption on r is not equivocation either.

The second part of Stine’s argument is more interesting. Concerning the validity
of arguments involving ‘knows’, Stine claims that “If the relevant alternatives, which
have after all to do with the truth or falsity of the premises and conclusion, cannot be
held fixed,” as in RS∃∀, then “it is hard to see on what basis one can decide whether
the argument form is valid or not” (256). Must we choose between RS∃∀ and an
anything-goes epistemic logic? The results of Chapter 3 demonstrate that the answer
is ‘no’. As we saw, fallibilists who reject RS∃∀ can accept a variety of other constraints
on r, and given such a set of constraints, we can completely characterize the forms of
valid argument involving ‘knows’. Stine’s second argument for RS∃∀ fails as well.

4.2 The Problem of Containment

As shown in §4.1, if we go left in the RS∃∀ direction down the tree in Fig. 4.2, we
encounter the Problem of Vacuous Knowledge. A natural question is whether we
might do better if we instead go right in the RS∀∃ direction down the tree in Fig. 4.4.
Heller [1999b, 128n5] explains how a desire to avoid vacuous knowledge is what drives
him away from the RS∃∀ condition of safety to the RS∀∃ condition of sensitivity :

The property in question is the property of not believing p in any of the
not-p worlds within the selected set. The simple version of the anti-luck
theory would hold that the selected worlds are all and only the similar
enough ones. However, when not-p is very bizarre there may not be any
not-p worlds among the similar enough worlds. In such cases the simple
version would be forced to attribute vacuous knowledge. To avoid this
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consequence, I prefer a more complicated version of the anti-luck theory
according to which the selected worlds are all those that are close enough
plus all those that are as close as the closest not-p worlds. This extra
clause will only make a difference in cases in which there are no not-
p worlds among the close enough worlds. . . . The simple version of the
anti-luck condition preserves closure, while my more complicated version
rejects closure.

As shown in Chapter 3, the properties of the r function built in to the world-ordering
picture for sensitivity are the following:

contrast r(P,w) ⊆ P ;
r-RofA if w 6∈ P , then w ∈ r(P,w);
noVK if P 6= W , then r(P,w) 6= ∅;
alpha r(P ∩Q,w) ⊆ r(P,w) ∪ r(Q,w);
beta if P ⊆ Q and r(P,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P,w).

The guarantee of noVK is an attractive feature of this package of properties. However,
other pieces of the package create another serious problem: the Problem of Contain-
ment. We have already investigated this problem in detail in Chapters 2. Recall
from the Closure Theorem of Chapter 2 that even such weak closure principles as the
following fail for Heller and Nozick’s theories of knowledge:9

• K(ϕ ∧ ψ)→ Kϕ ∧Kψ;

• K(ϕ ∧ ψ)→ K(ϕ ∨ ψ);

• Kϕ ∧Kψ → K(ϕ ∨ ψ).

For reasons explained in Chapter 2, I regard such closure failures and their conse-
quences (e.g., for higher-order knowledge) as unacceptable. Using the framework of
Chapter 3, we can pinpoint the source of these closure failures. For Heller and Nozick,

9Subject to the qualification of Remark 2.4 for Heller.
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the problem is that their theories do not satisfy the condition

cover if P ⊆ Q, then r(Q,w) ⊆ r(P,w).

As we saw in §3.2.3, cover corresponds in a precise sense to K(ϕ ∧ ψ) → Kϕ ∧Kψ
in the framework of Chapter 3. Recall our intuitive reading of cover: if P excludes
as much of logical space as Q does, then coming to know P should require at least
as much epistemic work, in terms of eliminating possibilities, as coming to know Q

does. For example, since ϕ ∧ ψ excludes as much of logical space as ϕ ∨ ψ does,
coming to know ϕ ∧ ψ should require at least as much epistemic work, in terms of
ruling out possibilities, as coming to know ϕ ∨ ψ does. Imagine if someone were to
say, “I agree that you’ve done enough research to know that ϕ∧ψ, but when it comes
to knowing ϕ ∨ ψ, that’s going to take some more work in the lab.” This seems
absurd, but if Heller and Nozick’s theories were correct, it would make perfect sense:
knowing ϕ ∧ ψ only requires ruling out the closest (¬ϕ ∨ ¬ψ)-worlds, which may all
be easy-to-eliminate ¬ϕ-worlds, whereas knowing ϕ∨ψ requires ruling out the closest
(¬ϕ ∧ ¬ψ)-worlds, and ¬ψ-worlds may be very difficult to eliminate.

What this shows is that the difference between cover and

beta if P ⊆ Q and r(P,w) ∩ r(Q,w) 6= ∅, then r(Q,w) ⊆ r(P,w),

which the theories of Heller and Nozick satisfy, is crucial. According to beta, the
epistemic work done to know ϕ ∧ ψ is guaranteed to be sufficient for one to know
ϕ ∨ ψ only if the closest (¬ϕ ∨ ¬ψ)-worlds and the closest (¬ϕ ∧ ¬ψ)-worlds overlap
(r(Jϕ ∧ ψK, w) ∩ r(Jϕ ∨ ψK, w) 6= ∅). It is unclear whether there is any intuitive
motivation for this restriction of cover independent of the world-ordering picture.

Of the fallibilist theories we have considered so far, the RS∃∀ theories (Lewis, Sosa,
DeRose) violate noVK and hence suffer from the Problem of Vacuous Knowledge, while
the RS∀∃ theories (Nozick, Heller) violate cover and hence suffer from the Problem of
Containment. In fact, the RS∃∀ + RO∀∃ theories we have considered (Sosa, DeRose)
suffer from both the Problem of Vacuous Knowledge, as observed in §4.1, and the
Problem of Containment, as observed in Chapter 2 and highlighted in Fig. 4.4. The
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Fallibilism 1.0

RS∃∀ RS∀∃

RO∃∀
Lewis

RO∀∃
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Dretske
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Heller

Figure 4.4: parameter settings and the Problem of Containment

reason is that although these theories satisfy cover for r, they do not satisfy the
analogue of cover for u,

u-cover if P ⊆ Q, then u(Q,w) ⊆ u(P,w),

which says that if a possibility is uneliminated as an alternative for a proposition
Q, then it is uneliminated as an alternative for any stronger proposition P . Recall
the definition of the u function for safety and sensitivity theories from §3.3.2: v is
uneliminated as an alternative for P by the agent in w, so v ∈ u(P,w), iff the agent
falsely believes P in v. Since falsely believing a weaker proposition Q does not imply
falsely believing a stronger P , the u-cover condition clearly fails. Now a symmetry
between r and u becomes important: just as in Proposition 3.7, we showed that

K(ϕ ∧ ψ) → Kϕ ∧Kψ is valid on 〈W, r〉 relative to models satisfying RO∃∀ iff
r satisfies cover,

by a symmetrical argument we have

K(ϕ ∧ ψ) → Kϕ ∧Kψ is valid on 〈W, u〉 relative to models satisfying RS∃∀ iff
u satisfies u-cover.

Therefore, just as a RO∃∀ theory without cover fails to validate K(ϕ∧ψ)→ Kϕ∧Kψ,
so does a RS∃∀ theory without u-cover fail to validate it. This explains whyK(ϕ∧ψ)→
Kϕ ∧Kψ fails as a pure closure principle (recall Remark 2.1) for Sosa and DeRose.
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These reflections on the important role of cover suggest a simple solution to
the twin problems of Vacuous Knowledge and Containment. As theorists, we can
postulate principles concerning what must be eliminated in order to know various
propositions—we can postulate conditions on the r function—provided we have good
reasons. Question: why not postulate that r satisfies both noVK and cover?

4.2.1 An Impossibility Result

Answer: because of the following simple impossibility result.

Proposition 4.1 (Impossibility I). There is no SA model satisfying the following:
contrast r(P,w) ⊆ P ;

fallibilism ∃P ⊆ W : P 6⊆ r(P,w);
noVK if P 6= W , then r(P,w) 6= ∅;
cover if P ⊆ Q, then r(Q,w) ⊆ r(P,w).

Proof. For reductio, suppose there is such a model. By fallibilism, there is some P ⊆ W

such that P 6⊆ r(P,w). Given contrast, it follows that

r(P,w) ( P . (4.1)

Consider the proposition Q defined by

Q = P ∪ r(P,w). (4.2)

Together (4.1) and (4.2) imply
Q 6= W. (4.3)

Given P ⊆ Q, it follows by cover that r(Q,w) ⊆ r(P,w), which with (4.2) implies

r(Q,w) ⊆ Q. (4.4)

However, contrast requires that r(Q,w) ⊆ Q, which with (4.4) implies

r(Q,w) = ∅. (4.5)
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Together (4.3) and (4.5) contradict noVK.

In Appendix §4.A I argue that moving to an alternatives-as-propositions picture
does not avoid this kind of impossibility result, and in Appendix §4.B I argue that
moving to more structured objects of knowledge does not help either.10

Standard Views and their Problems

Fallibilism with Closure I: Stine
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Figure 4.5: illustration for the proof of Proposition 4.1

Fig. 4.5 illustrates the key step in the proof of Proposition 4.1: where P is
a contingent proposition that can be known without ruling out all not-P worlds,
consider a contingent proposition Q that is true in all P -worlds and in all of the not-
P worlds that one must rule out in order to know P . For example, Q could be the
disjunction of P and various relevant counter-hypotheses that are true in all of the
relevant not-P worlds; or Q could be the negation of a skeptical counter-hypothesis.
In either case, it follows from contrast and cover that Q is a proposition that can be
known without ruling out any possibilities, so we are back to vacuous knowledge.

Proposition 4.1 shows that we cannot avoid both the Problem of Vacuous Knowl-
edge and the Problem of Containment in the framework of Fallibilism 1.0. Of course,
there is one escape route that we have not yet considered: giving up the contrast

condition and claiming that it is necessary in order to know Q that one rule out pos-
sibilities in which Q is true. But how could this be necessary? Surely ruling out all
not-Q possibilities (even the most remote skeptical ones) should be enough to know
Q. Suppose someone says, “I agree that you’ve ruled out every possible way in which

10Note added in ILLC version: see Holliday 2013b, §2.5 for a stronger version of the above im-
possibility result. Importantly, as noted in Holliday 2013b, §2.5, to derive a contradiction we do not
need to assume that the conditions of Proposition 4.1 (e.g., noVK) hold for all propositions.
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Q could be false, but that’s not enough for you to know that Q is true; you also need
to rule out such-and-such ways in which Q could be true.” This seems absurd.

Or is it? Consider a Gettier case: not having any idea what time it is, you check a
clock that—unbeknownst to you—has been stopped for weeks on 5:43; as it happens,
the time is now 5:43; but you do not come to know this from the stopped clock.
Where F is the proposition that the time is 5:43 and S is the proposition that the
clock has stopped, one might think this is a case in which knowing F requires ruling
out F ∩ S-possibilities, which would explain your ignorance of F (since you have not
ruled those out) and violate contrast. But this is a mistake. What explains your
ignorance of F is that since you have only looked at a stopped clocked, you have not
ruled out various possibilities in which F is false and the time is something other
than 5:43. If by some other means you had ruled out every possibility in which F is
false, then it would be absurd to say “I agree you have ruled out every possibility in
which the time is something other than 5:43, but you still do not know the time is
5:43 unless you rule out such-and-such possibilities in which the time is 5:43.”

A similar point applies to self-side skeptical hypotheses. Imagine a skeptic who
claims that in order to know that there is a Gadwall on the lake (P ), not only must
you rule out possibilities in which you are dreaming that there is a Gadwall on the
lake when there is no Gadwall on the lake (let x be such an “unlucky dream” world),
but also you must rule out possibilities in which you are dreaming that that there
is a Gadwall on the lake when there happens to be one on the lake (let y be such a
“lucky dream” world).11 There are two different reasons one might think this:

1. The skeptic might think that if y ∈ u(P,w), then x ∈ u(P,w) (if you haven’t
ruled out the lucky dream world, then you haven’t ruled out the unlucky dream
world either), so given the skeptic’s view that x ∈ r(P,w) (knowing P requires
ruling out the unlucky dream world), knowing P requires y 6∈ u(P,w);

2. The skeptic might think that y ∈ r(P,w), so even if P ∩ u(P,w) = ∅, knowing
P still requires y 6∈ u(P,w).

While the first reason is intelligible, even skeptics should see the second as confused.
11Cf. Stroud 1984, 29.
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If somehow you have ruled out every possible way that you could be wrong about
their being a Gadwall on the lake, then you know that there is a Gadwall on the lake.
There is no separate requirement that you rule out ways that you could be right.

I conclude that dropping contrast in the context of Fallibilism 1.0 is not an op-
tion. Therefore, by Proposition 4.1, the twin problems of Vacuous Knowledge and
Containment seem to be inescapable for Fallibilism 1.0. In §4.3, I will consider a final
attempt to escape, which leads to a third problem no less serious than the first two.

4.3 The Problem of Knowledge Inflation

In §4.1 I argued that RS∃∀ theories suffer from the Problem of Vacuous Knowledge,
and in §4.2 I argued that RS∀∃ theories suffer from the Problem of Containment. In
this section, I will consider an attempt to save RS∀∃ theories from the latter problem
and sidestep Proposition 4.2.1, based on a defense of closure by Klein [1995].

Klein [1995, 216] begins by distinguishing two “sources of justification”:

We can conveniently divide the sources of justification into two mutually
exclusive and jointly exhaustive types. One source is what I will call
“externally situated evidence”—that is, features of the world other than
the contents of S’s actual beliefs and S’s justified beliefs. During a murder
investigation, the discovery of fingerprints, eyewitness testimony, letters,
and traces of gunpowder may lead a detective to justifiably accuse someone
of the crime. These are examples of externally situated evidence.

On the other hand, the contents of a person’s actual beliefs and justified
beliefs can serve as an adequate source of justification for further beliefs.
When the detective “puts two and two together” as, for example, when
the detective recognizes the consequence of her belief that the murderer’s
fingerprints match those of a suspect, she may be led to justifiably believe
the suspect is the murderer. Such potential sources of justification are
internally situated reasons.
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With this distinction, Klein offers a critique of the standard Dretske-style objections
to closure. According to Klein [1995, 220]:

[T]hese objections to the Closure Principle depend upon the fact that the
externally situated evidence or the internally situated reasons that provide
an adequate source of justification for a proposition, p, do not always
provide an adequate source of justification for a proposition, q, entailed
by p. But that fact cannot be used against the Closure Principle if the
argument for closure depends upon the claim that in the relevant cases p,
itself, provides an adequate internally situated reason for expanding the
corpus of justified and/or known beliefs to those propositions obviously
entailed by p. [last emphasis added]

Although here Klein discusses closure for justification rather than knowledge, we can
consider an analogous defense of epistemic closure. To make Klein’s point concrete,
let us compare Klein’s analysis with Stine’s [1976] analysis (recall §4.1.1) applied to
the Gadwall vs. Siberian Grebe example from Dretske [1981], our Example 1.2.

As fallibilists, Dretske, Stine, and Klein agree that (i) the birdwatcher’s externally
situated evidence e, obtained by observing the bird, is sufficient for him to know that
the bird is a Gadwall, even though (ii) e does not rule out Siberian Grebe possibilities.
Dretske concludes that the birdwatcher cannot know the denial of the Siberian Grebe
hypothesis without more externally situated evidence, so closure fails.12 In response,
Stine attempts to save closure by saying that the birdwatcher can know the denial
of the Siberian Grebe hypothesis on the basis of no evidence, because it is irrelevant.
By contrast, Klein attempts to save closure by saying that although with only e the
birdwatcher lacks sufficient externally situated evidence to know the denial of the
Siberian Grebe hypothesis, the birdwatcher does have an internally situated reason r

that is sufficient for her to know the denial of the Siberian Grebe hypothesis, namely
that the bird is a Gadwall, which the birdwatcher knows on the basis of e.13

12Dretske does not actually discuss closure when he gives the Gadwall case in Dretske 1981, but
this is the analysis he gives of the zebra case in Dretske 1971 (also see Dretske 2004, 2005).

13Here is Klein [1995, 221] on Dretske’s [1971] zebra case:

If we restrict the meaning of “evidence” or “reasons” (as used by Dretske) to what I
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Cohen [1999] calls Klein’s view modus ponens fallibilism14 and remarks, “At first
blush, it looks as if Klein has pulled the rabbit out of the hat” [2000, 101].15 Brueckner
[1998, 143] is on to the problem when he discusses Dretske’s zebra case:16

Klein’s position can be seen in the following way. Proposition e is a good
reason for believing z, z is a good reason for believing ∼cd, but e is not a
good reason for believing∼cd. The relation—is a good reason for believing
. . . , then, is not transitive. . . . Note a peculiarity of this picture. Suppose
that S does not infer from e to z and then to ∼cd, but rather reasons
directly from e to ∼cd (as might an epistemologist who has run through
the example a thousand times). Then S does not justifiably believe ∼cd,
on Klein’s view. This is because, according to the view we have reasonably
attributed to Klein, e is not a good reason for believing ∼cd.

To say that this is a “peculiarity” is an understatement. I will argue that it leads to

have called externally situated evidence, then Dretske is clearly correct. There can be
adequate externally situated evidence to justify a proposition, p, without there being
adequate externally situated evidence to justify a proposition, q, entailed by p. In
addition, the internally situated reasons that are adequate for making p justified might
not be adequate to make q justified. For example, the justified belief that the animals
look like zebras and are in a pen marked “Zebras” cannot be used to justify the claim
that the animals are not cleverly disguised mules. But the important point to note is
that Dretske has restricted the search for a source of the justification of the entailed
proposition in such a way that it precludes finding the entailing proposition—namely,
the animals in the pen are zebras—as that source.

14Cohen [1999, 74] gives the following definition: “Let us say that when an alternative H, to P is
eliminated on the basis of P, where the reasons for P are not reasons against H, that the reasons have
an MPF [Modus Ponens Fallibilism] structure.” Compare this with Brueckner’s quote to follow.

15Cohen’s [2000, 101] interpretation of Klein is essentially the same as mine:

Klein agrees with Dretske that our evidence is sufficient for us to know that we see a
Zebra. He also agrees that we cannot on the basis of our evidence come to know that
we do not see a cleverly disguised mule—at least not directly. But on Klein’s view,
this poses no threat to the deductive closure principle. Since we can on the basis of
our evidence come to know we see a Zebra, and since we can infer from the fact that
we see a zebra, that we do not see a cleverly-disguised mule, we can thereby come to
know that we do not see a cleverly-disguised mule.
At first blush, it looks as if Klein has pulled the rabbit out of the hat.

16Brueckner takes ‘z’ to stand for the proposition that the animal is a zebra and ‘∼cd’ for the
proposition that the animal is not a cleverly disguised mule.
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a serious Problem of Knowledge Inflation.17 First, let us consider how to represent a
view like Klein’s in our framework, applying it to the Gadwall example.

Let P be the proposition that the bird is a Gadwall and S the proposition that
the bird is a Siberian Grebe. According to Klein, if an agent goes directly from the
observations of the bird to not-S, this will not suffice for knowledge of not-S; it will
leave S-possibilities uneliminated that must be eliminated. However, if the agent goes
from the same observations of the bird first to P and then to not-S, this will suffice for
knowledge of not-S; all S-possibilities that must be eliminated will be eliminated.18

What this suggests in our framework is a rule for updating the u function:

Klein’s Rule: if r(P,w) ∩ u(P,w) = ∅ and the agent appropriately transitions
from P to an entailed Q,19 then update u to u′ such that r(Q,w)∩u′(Q,w) = ∅.20

With this rule, single-premise deductive closure holds even if cover fails for r, i.e., even
if r(Q,w) 6⊆ r(P,w), and there is nothing stopping us from postulating noVK. Hence
Klein’s Rule promises to avoid the problems of Containment and Vacuous Knowledge.
Unfortunately, by doing so it leads to the new Problem of Knowledge Inflation.21

We can illustrate the Problem of Knowledge Inflation by running a step-by-step
analysis of the birdwatcher story. Before the birdwatcher has made any observations,
let us ask: what will it take for the birdwatcher to come to know that bird b is a Gad-
wall? According to infallibilists, it will take eliminating all possibilities in which b is
not a Gadwall, as shown by the red shading of the entire not-P zone on the right side
of Fig. 4.6. By contrast, according to fallibilists, it will only take eliminating, e.g.,
possibilities in which b is of some other North American variety of bird, as shown on

17I am grateful to Helen Longino for proposing this apt name.
18As Cohen [1999, 75] puts it, “According to Klein, though sometimes an alternative to P must

be “eliminated” prior to coming to know P, sometimes it can be eliminated after coming to know P,
by appealing to P itself.”

19Klein is not clear about the conditions under which an agent can come to know Q based on a
newly acquired “internally situated reason” in the form of a newly known P that entails Q. Presum-
ably the agent has to “put two and two together” or recognize the entailment, as in the quote from
Klein about internally situated reasons, but he does not go into the details.

20Of course, this does not uniquely define an update rule, since there are many ways to update u
to u′ such that r(Q,w) ∩ u′(Q,w) = ∅. However, for our purposes here it is enough to delimit a set
of update rules with that effect. The criticism to follow will apply to any member of the set.

21In §5.4, I will propose a different rule for updating the u, which avoids this problem.
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the left side of Fig. 4.6. Now let us consider three steps in the birdwatcher’s inquiry:
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Figure 4.6: fallibilist picture (left) and infallibilist picture (right)

Step I: Using her binoculars and guidebook, the birdwatcher eliminates possibilities
in which b is of some other North American variety of bird, without eliminating skep-
tical possibilities in which b is a Siberian Grebe, animatronic robot, etc. See Fig. 4.7,
where turning counter-possibilities from red to grey indicates their elimination.
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Figure 4.7: fallibilist picture (left) and infallibilist picture (right)

Step II: According to fallibilists (including Klein), eliminating possibilities in which
b is of some other North American variety of bird, without eliminating skeptical pos-
sibilities, is sufficient for the birdwatcher to know b is a Gadwall. See Fig. 4.8, where
turning P from blue to green indicates the birdwatcher’s new knowledge of P . Note
that the infallibilist denies this new knowledge, so P is still blue on the right.

Step III: According to Klein, although the birdwatcher came to know that b is a
Gadwall by obtaining externally situated evidence that did not eliminate the skeptical
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Figure 4.8: fallibilist picture (left) and infallibilist picture (right)

possibilities, having done so, she can turn right around and use that new internally
situated reason—that b is a Gadwall—to eliminate all skeptical possibilities, thanks
to closure. See Fig. 4.9, where the entire not-P zone has suddenly turned grey.Standard Views and their Problems
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Figure 4.9: Klein’s picture (left) and infallibilist picture (right)

It is in Step III that knowledge inflation occurs. As Brueckner [1998, 146] says of
Klein’s view, “it is as if we are attempting to squeeze more out of S’s evidence than is
really there.” Formally, there can be possibilities v such that before the new internally
situated reason works its magic, v is uneliminated with respect to all propositions,
including the P that gives the internally situated reason, but afterward (moving from
u to u′), v becomes eliminated with respect to any Q entailed by P , including P itself:

KI v ∈ u(P,w) for all P ⊆ W , but v 6∈ u′(Q,w).

To see this intuitively, consider the situation just before the birdwatcher crosses off
the last North American variety she needs to eliminate: Pintail. At this point, Klein
agrees that she cannot cross off skeptical possibilities. And yet Klein is committed
to the view that as soon as she crosses off Pintail and comes to know that b is
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a Gadwall, then she can cross off all of the skeptical possibilities using the new
internally situated reason that b is a Gadwall. Moreover, the birdwatcher can do this
even though her externally situated evidence that ruled out Pintail and the other
North American varieties did not rule out the skeptical possibilities; if she had tried
to use that evidence to rule out skeptical possibilities directly, she would have failed.

The problem with Klein’s view is not with the idea of “internally situated reasons,”
as he first characterized them, but rather with the idea that these reasons are capable
of inflating knowledge. The act of “putting two and two together” may extend knowl-
edge, but it does not inflate knowledge as in Klein’s picture. In §5.4, I will replace
Klein’s Rule for knowledge inflation with a new rule for knowledge extension.

Cohen [1999, 2000] also rejects Klein’s view of “the structure of reasons,” arguing
that it licenses objectionable reasoning (see Cohen 1999, 74-76, Cohen 2000, 106, and
Cohen 2002 on “easy knowledge”). Cohen [2000, 106] sums up the situation as follows:

Our options seem to be accepting contingent a priori knowledge or en-
dorsing what looks to be objectionable reasoning. However we go then,
there is a distasteful consequence. But then again skepticism is a distaste-
ful consequence—and I would maintain more so than any consequence of
a contextualist account.

I prefer . . . a priori rationality, but that may be mostly a statement about
which bullet I am most prepared to bite.

In the framework of Fallibilism 1.0, it is true that however we go there is a dis-
tateful consequence and a bullet to bite: either the Problem of Vacuous Knowledge,
the Problem of Knowledge Inflation, or the Problem of Containment. In my view,
this is so much the worse for Fallibilism 1.0. While Cohen chooses to bite the first of
these bullets, we will find a better way around them in Chapter 5: Fallibilism 2.0.

4.4 Conclusion

In this chapter, we have delved into the difficulties that arise from combining two
attractive ideas: one idea is that the amount of epistemic work required to know
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something can be limited (fallibilism); the other idea is that knowing something
contingent always requires some amount of epistemic work (no vacuous knowledge).
Unfortunately, when we put these ideas together, we seem forced to reject even weak
closure (the containment problem) or accept that we can get more epistemic work
out of inquiry than we put into it (knowledge inflation). The question is whether
these difficulties are unavoidable—or whether they are artifacts of a flawed framework
assumed by the standard fallibilist theories. The next chapter provides an answer.

4.A Alternatives as Possibilities vs. Propositions

In this section, I return to an issue raised in §3.1, the distinction between thinking of
“alternatives” as possibilities/situations/scenarios/states of affairs or as more coarse-
grained objects like propositions.22 Both ways of thinking appear in the literature.
For example, here is a brief historical survey of passages in the first tradition:

• “[L]et us consider a state of affairs in which it is true to say that it is possible,
for all that the person . . . knows, that p. Clearly the content of this statement
cannot be adequately expressed by speaking of only one state of affairs. The
statement in question can be true only if there is a possible state of affairs in
which p would be true: but this state of affairs need not be identical with the
one in which the statement was made. A description of such a state of affairs
will be called an alternative . . . . (Sometimes the state of affairs will itself be
said to be an alternative . . . .)” [Hintikka, 1962, 34].

• “A person knows that p, I suggest, only if the actual state of affairs in which p
is true is distinguishable or discriminable by him from a relevant possible state
of affairs in which p is false” [Goldman, 1976, 774].

22Note added in ILLC version: in Holliday 2013b, §2.1, I argue that if we take alternatives to be
more coarse-grained than possibilities, then the set of alternatives (in a given context) should form a
nontrivial partition of the set of possibilities. Views of the kind discussed in this appendix, according
to which the set of alternatives for a proposition P is the set of all propositions incompatible with
P , violate the partition condition because their “alternatives” are not mutually exclusive.
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• “The social or pragmatic dimension to knowledge, if it exists at all, has to do
with what counts as a relevant alternative, a possibility that must be evidentially
excluded, in order to have knowledge” [Dretske, 1981, 367].

• “Which of all the uneliminated alternative possibilities may not properly be
ignored? Which ones are the ‘relevant alternatives’? - relevant, that is, to what
the subject does and doesn’t know” [Lewis, 1996, 554].

• “On RA, one need not be able to rule out every possibility of p’s falsity in order
to know p, but only the relevant alternatives to p” [Heller, 1999a].

• “According to premise 2, no experience gives an adequate basis for perceptual
knowledge unless it enables the knower to discriminate situations where the
believed proposition 〈p〉 is true, from all incompatible alternative situations.
The “relevant alternatives” response is to deny that situations in which 〈p〉 is
true must be discriminated by the knower from all 〈p〉-precluding alternatives.
On the contrary, situations in which 〈p〉 is true must be discriminated only from
those alternatives that are relevant” [Sosa, 2004, 35].23

On the other hand, here is a sampling of passages from the other tradition:

• “Let an alternative to a proposition q, be a proposition incompatible with q”
[Cohen, 1988, 94].

• “An alternative A to a proposition P is a logical contrary of P; A is an alternative
to P just in case P entails −A” [Vogel, 1999, 155].

• “As we’ll understand the RA-Theory, it says that, if q is an irrelevant alternative
to p, then knowing p doesn’t require you to have evidence which would enable
you to rule q out” [Pryor, 2001, 97].

Others, like Rysiew [2006], go back and forth between the two interpretations.
Let us set up our models and truth definition with alternatives-as-propositions.

23Sosa notes that “I do not distinguish formally between situations or scenarios or states of affairs
that are actual and the propositions that fully capture such situations, etc., and are true. The
reasoning of interest to us could be cast equivalently either way” (57).
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Definition 4.1 (SAP Model). A standard alternatives-as-propositions model is a
tuple M of the form 〈W, u, r, V 〉 where W and V are as in Definition 3.1,
u : P(W )×W → P(P(W )), and r : P(W )×W → P(P(W )).

Hence r sends each pair of a proposition P and a world w to a set of propositions,
and similarly for u. With this adjustment, the truth definition is as before.

Definition 4.2 (Truth in a SAP Model). Given a SAP model M = 〈W, u, r, V 〉 with
w ∈ W and a formula ϕ in the epistemic language, we define M, w � ϕ as follows
(with propositional cases as usual):

M, w � Kϕ iff r(JϕKM, w) ∩ u(JϕKM, w) = ∅.

Clearly we can recover SA models as a special case of SAP models in which every
set in r(P,w) and u(P,w) is a singleton set, so we have generalized.

As before, we can now consider constraints on the r and u functions, such as:

r-constrast r(P,w) ⊆ P(P );

u-constrast r(P,w) ⊆ P(P ).

The study of SAP models can proceed from here using techniques similar to those
used in the study of SA models. However, I will cut the study of SAP models short
by arguing that viewing alternatives as propositions does not solve the fundamental
problems with the framework of Fallibilism 1.0 discussed earlier in this chapter.

Let us begin with the question of whether not-P is in general a “relevant alterna-
tive” to P : is P ∈ r(P,w)? A positive answer threatens to plunge us into skepticism,
for the following reason. I claim that any sensible theory of what it is to eliminate
alternatives-as-propositions should satisfy the following condition:

strength if Q ⊆ S and Q ∈ u(P,w), then S ∈ u(P,w).

This principle reflects the idea that eliminating a weaker proposition is at least as
difficult as eliminating a stronger one. So, for example, if one has not eliminated
the alternative Mallard to Gadwall, then one has not eliminated the weaker alterna-
tive Mallard ∨ Pintail to Gadwall. Whatever one’s view of what it is to eliminate
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alternatives-as-propositions, I think that one should accept the strength principle.
One might argue that strength is like a closure condition, and if we are willing to
give up some knowledge closure, then we should be willing to give up strength. How-
ever, this misunderstands the motivation for giving up some knowledge closure: the
motivation has to do with how the range of alternatives—r(P,w)—can be different for
different propositions, which does not put any pressure on principles of elimination.

Returning to the plunge into skepticism, as an instance of strength we have

if Q ⊆ P and Q ∈ u(P,w), then P ∈ u(P,w).

Assuming u-contrast, Q ∈ u(P,w) implies Q ⊆ P , so the instance reduces to

if Q ∈ u(P,w), then P ∈ u(P,w).

Now if P ∈ r(P,w), we have the following result:

if Q ∈ u(P,w), then r(P,w) ∩ u(P,w) 6= ∅;

so if there is any uneliminated alternative to P , then the agent does not know P ,
which amounts to skepticism given the inevitability of uneliminated alternatives.

I conclude from this that P cannot in general count as a relevant alternative to
P in this setting, if we are to maintain fallibilism. Hence it is not enough to define
fallibilism by analogy with our definition for alternatives-as-possibilities24 as

fallibilism− ∃P ⊆ W : P(P ) 6⊆ r(P,w),

since this is compatible with P ∈ r(P,w). Instead, we must at least require

fallibilism ∃P ⊆ W : P 6∈ r(P,w).

Whether this captures enough of fallibilism is a further question. However, we are
already on the path to an impossibility result analogous to the result of §4.2.1. As
the final step along this path, I claim that any sensible theory of the relevance of
alternatives-as-propositions should satisfy the principle that a disjunction of relevant
alternatives is itself a relevant alternative:

24Recall the condition of falliblism: ∃P ⊆W : P 6⊆ r(P,w).
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r-union if Σ ⊆ r(P,w), then
⋃

Σ ∈ r(P,w).

For example, if Mallard is a relevant alternative to Gadwall, and Pintail is a relevant
alternative to Gadwall, then it hardly makes sense to claim that Mallard ∨ Pintail
is an irrelevant alternative to Gadwall.

We can now see that the move to alternatives-as-proposition does not solve the
problems of §4, given Proposition 4.2. Let us define:

noVK if P 6= W , then r(P,w) 6= ∅;
cover if P ⊆ Q, then r(Q,w) ⊆ r(P,w).

The noVK and cover conditions have the same form and meaning in the alternatives-
as-propositions setting as noVK and cover did in the alternatives-as-possibilities set-
ting: noVK says that knowing a contingent proposition requires epistemic work in the
sense of ruling out some alternative(s), while cover says that if P excludes as much
of logical space as Q does, then coming to know P requires at least as much epistemic
work, in terms of ruling out alternatives, as coming to know Q does.

4.A.1 Another Impossibility Result

Unfortunately, the principles discussed so far cannot be consistently combined.

Proposition 4.2 (Impossibility II). There is no SAP model satisfying the following
conditions:

r-contrast r(P,w) ⊆ P(P );
fallibilism ∃P ⊆ W : P 6∈ r(P,w);

noVK if P 6= W , then r(P,w) 6= ∅;
cover if P ⊆ Q, then r(Q,w) ⊆ r(P,w);

r-union if Σ ⊆ r(P,w), then
⋃

Σ ∈ r(P,w).

Proof. For reductio, suppose there is such a model. By fallibilism, there is some
P ⊆ W such that P 6∈ r(P,w). Given r-union, it follows that

⋃
r(P,w) 6= P , (4.6)
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so given r-contrast it follows that

⋃
r(P,w) ( P . (4.7)

Consider the proposition Q defined by

Q = P ∪
⋃

r(P,w). (4.8)

Together (4.7) and (4.8) imply
Q 6= W. (4.9)

Given P ⊆ Q, it follows by cover that r(Q,w) ⊆ r(P,w), which with (4.8) implies

r(Q,w) ⊆ P(Q). (4.10)

However, r-contrast requires that r(Q,w) ⊆ P(Q), which with (4.10) implies

r(Q,w) = ∅. (4.11)

Together (4.9) and (4.11) contradict noVK.

I conclude that the move to alternatives-as-propositions does not fix the flaws of
Fallibilism 1.0. To avoid impossibility results like Propositions 4.2 and 4.1, we must
depart from Fallibilism 1.0 in more fundamental ways, as in Chapter 5.

4.B Structured Objects of Knowledge

So far we have assumed that the objects of knowledge are no more finely individuated
than sets of worlds. In this section, I show that even if we assume that the objects
of knowledge are as finely individuated as formulas in our language, this additional
structure will not solve the problems for Fallibilism 1.0 raised in §4.2.1. To show this,
we define a new class of models as follows. Form is the set of formulas in our language.
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Definition 4.3 (SSA Model). A fine-grained standard alternatives model is a tupleM
of the form 〈W, u, r, V 〉 whereW and V are as in Definition 3.1, u: Form×W → P(W ),
and r: Form×W → P(W ).

Here r(ϕ,w) is the set of possibilities that the agent must eliminate to know ϕ in
world w, and u(ϕ,w) is the set of possibilities that the agent has not eliminated as
alternatives for ϕ in w. The truth definition is analogous to that of Definition 3.2.

Definition 4.4 (Truth in a SSA Model). Given a SSA model M = 〈W, u, r, V 〉 with
w ∈ W and a formula ϕ in the epistemic language, we define M, w � ϕ as follows
(with propositional cases as usual):

M,w � Kϕ iff r(ϕ,w) ∩ u(ϕ,w) = ∅.

With this setup, conditions on SA models such as

contrast r(P,w) ⊆ P ,
noVK if P 6= W , then r(P,w) 6= ∅, and
RO∃∀ ∃U(w) ⊆ W ∀P ⊆ W : u(P,w) = U(w) ∩ P ,

have analogues on SSA models such as

contrast r(ϕ,w) ⊆ JϕK,
noVK if JϕK 6= W , then r(ϕ,w) 6= ∅, and
RO∃∀ ∃U(w) ⊆ W ∀ϕ : u(ϕ,w) = U(w) ∩ JϕK.

In addition, we can state conditions on SSA models that correspond to closure
properties in a more fine-grained manner than before. For example, the principle
Kϕ→ K(ϕ ∨ ψ) corresponds (relative to models satisfying RO∃∀) to

∨-cover r(ϕ ∨ ψ,w) ⊆ r(ϕ,w).

Similarly for K(ϕ ∧ ψ)→ (Kϕ ∧Kψ):

∧-cover r(ϕ,w) ∪ r(ψ,w) ⊆ r(ϕ ∧ ψ,w).

Hence we can consider classes of SSA models that validate one of these closure prin-
ciples but not the other. Finally, let us consider how to express fallibilism in SSA
models. By analogy with fallibilism in SA models, we could define fallibilism in SSA
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models as follows: there is some ϕ such that JϕK 6⊆ r(ϕ,w). However, I will use a
slightly stronger definition: there are some ϕ and ψ such that r(ϕ,w) ⊆ JψK and
JϕK 6⊆ JψK. Intuitively, this says that there is some ψ that is true in all of “relevant”
¬ϕ-worlds (perhaps in exactly these worlds) but not true in all of the “irrelevant”
¬ϕ-worlds. In other words, some difference between the set of relevant ¬ϕ-worlds
and the set of irrelevant ¬ϕ-worlds is expressible in our language.25

Despite the additional flexibility of SSA models, §4.B.1 shows that they are not
flexible enough to avoid both the problems of Vacuous Knowledge and Containment.

4.B.1 More Impossibility Results

The following proposition gives one of many analogues to Proposition 4.1.

Proposition 4.3 (Impossibility IB). There is no SSA model satisfying the following:
contrast r(ϕ,w) ⊆ JϕK;

fallibilism ∃ϕ, ψ: r(ϕ,w) ⊆ JψK and JϕK 6⊆ JψK;
noVK if JϕK 6= W , then r(ϕ,w) 6= ∅;
∨-cover r(ϕ ∨ ψ,w) ⊆ r(ϕ,w).

Proof. For reductio, suppose there is such a model. By fallibilism, there are some ϕ
and ψ such that

r(ϕ,w) ⊆ JψK (4.12)

and
JϕK 6⊆ JψK. (4.13)

Consider ϕ ∨ ψ. By (4.13), we have

Jϕ ∨ ψK 6= W. (4.14)

By ∨-cover, we have r(ϕ ∨ ψ,w) ⊆ r(ϕ,w), which with (4.12) implies

r(ϕ ∨ ψ,w) ⊆ Jϕ ∨ ψK. (4.15)
25Note added in ILLC version: see the discussion of “expressible fallibilism” in Holliday 2013b,

§2.1, and compare Propositions 4.3 - 4.4 below to Proposition 1 in Holliday 2013b, §2.5.
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However, contrast requires that r(ϕ ∨ ψ,w) ⊆ Jϕ ∨ ψK, which with (4.15) implies

r(ϕ ∨ ψ,w) = ∅. (4.16)

Together (4.14) and (4.16) contradict noVK.

Proposition 4.3 shows that even with SSA models, we cannot avoid the Problem
of Vacuous Knowledge while also validating the principle Kϕ → K(ϕ ∨ ψ). The
following corollary shows that we cannot avoid the Problem of Vacuous Knowledge
while also validating the principles K(ϕ ∧ ψ)→ Kϕ and Kϕ↔ K((ϕ ∨ ψ) ∧ ϕ), the
latter being a special case of closure under logical equivalence.

Proposition 4.4 (Impossibility IC). There is no SSA model satisfying the following:
contrast r(ϕ,w) ⊆ JϕK;

fallibilism ∃ϕ, ψ: r(ϕ,w) ⊆ JψK and JϕK 6⊆ JψK;
noVK if JϕK 6= W , then r(ϕ,w) 6= ∅;
∧-cover r(ϕ,w) ⊆ r(ϕ ∧ ψ,w);
∨∧-equiv r(ϕ,w) = r((ϕ ∨ ψ) ∧ ϕ,w).

Proof. By ∧-cover and ∨∧-equiv, we have

r(ϕ ∨ ψ,w) ⊆ r((ϕ ∨ ψ) ∧ ϕ,w) = r(ϕ,w),

so ∨-cover holds. Hence there is no such model by Proposition 4.3.

Note that r(ϕ,w) = r((ϕ ∨ ψ) ∧ ϕ,w) says that for an IAL, coming to know ϕ

requires empirically eliminating the same alternatives as coming to know the logically
equivalent (ϕ∨ψ)∧ϕ. Assuming this modest principle, Proposition 4.4 shows that in
Fallibilism 1.0, we must either accept vacuous knowledge or give up K(ϕ∧ψ)→ Kϕ.

I conclude that the move to more structured objects of knowledge does not fix the
flaws of Fallibilism 1.0. To avoid impossibility results like Propositions 4.3 and 4.4,
we must depart from Fallibilism 1.0 in more fundamental ways, as in Chapter 5.



5

Fallibilism 2.0:

The Multipath Picture

In Chapter 3, we studied how the framework of Fallibilism 1.0 unifies the RA and
subjunctivist theories from Chapter 2. This unification revealed in Chapter 4 how
problems with those theories are manifestations of a trio of problems facing any theory
developed in the same framework: the Problem of Vacuous Knowledge, the Problem
of Containment, and the Problem of Knowledge Inflation. More tinkering within the
framework of Fallibilism 1.0 will not solve these problems. What is required is a more
fundamental change. As promised in Chapter 4, we will now apply what we have
learned about the flaws of Fallibilism 1.0 in search of a new and improved framework
of Fallibilism 2.0, with the goal of resolving the three problems.

In this chapter, I offer a proposal for Fallibilism 2.0 in the form of what I call
the Multipath Picture of Knowledge. This picture of knowledge is based on taking
seriously the idea that there can be multiple paths to knowing a complex claim. An
overlooked consequence of fallibilism is that these multiple paths to knowledge of a
claim may involve ruling out different sets of alternatives, which should be represented
in our picture of knowledge. I will argue that the Multipath Picture of Knowledge
is a better picture for all fallibilists, whether for or against closure, whether for or
against contextualism, compared to the “single path picture” assumed by Fallibilism
1.0. I will also argue for giving up full closure, but those who accept full closure will

202
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do better with the Multipath Picture than without it. Finally, I will present a new
picture of the epistemic effect of “putting two and two together,” the Transfer Picture
of Deduction, showing how deduction can extend knowledge without inflating it.

5.1 Back to the Drawing Board

Recall the starting point of Fallibilism 1.0 from Chapter 3: for each proposition to be
known, there is “a set of situations each member of which contrasts with what is [to
be] known...and must be evidentially excluded if one is to know” [emphasis added]
[Dretske, 1981, 373]. Against these contrast and set assumptions, I will argue:

• In some cases, it is sufficient (as far as empirical work goes) for an agent to
know P that she only rules out non-contrasting possibilities in which P is true.

• In some cases, there is no set of situations all of which must be excluded if one
is to know; instead, there are multiple sets of situations, such that if one is to
know, one must exclude all of the situations in at least one of those sets.

In the following subsections, I will argue for both of these claims in turn.

5.1.1 Against the Single Alternative Set Assumption:

The Multipath Picture of Knowledge

Suppose an agent wants to know whether α∨β is true, where α and β are contingent.
Further suppose that it is true. Then there are at least three paths by which she
could come to know it: she could start with α, and if she comes to know α, then she
is done (at least with ruling out possibilities); or she could start with β, and if she
comes to know β, then she is done (with ruling out possibilities); or she could come
to know that α ∨ β is true without coming to know which disjunct is true1 (by, e.g.,

1Examples of coming to know along the third path abound. I can know by observation that
either horse A won the race or horse B won the race, since they were far ahead of all of the other
horses, even though I do not know that horse A won the race and I do not know that horse B won
the race, since the finish was too close for me to tell. Testimony also provides many examples.
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ruling out all (¬α ∧ ¬β)-possibilities without ruling out any (¬α ∧ β)-possibilities or
any (α ∧ ¬β)-possibilities). This is just common sense. But it raises the question
of why anyone should think that for something like α ∨ β, there is a single set of
situations that must be evidentially excluded if one is to know α∨β. It seems instead
that there should be at least three sets of situations such that if one is to know α∨β,
one must evidentially exclude all of the situations in at least one of those three sets,
corresponding to the three paths to knowledge of α ∨ β described above.

If we were infallibilists, then there would be no need for these multiple “alternative
sets” for α ∨ β. According to infallibilism, coming to know α requires (among other
things) ruling out all (¬α ∧ ¬β)-possibilities; so does coming to know β; and so does
coming to know α ∨ β without coming to know which disjunct is true. Moreover, as
argued in §4.2.1, ruling out all ¬ϕ-possibilities should be sufficient for knowing ϕ.
Therefore, infallibilists need only consider one alternative set for α∨β: to know α∨β
it is necessary and sufficient that one rule out all (¬α ∧ ¬β)-possibilities.

But we are fallibilists. According to fallibilism, coming to know α may not require
ruling out all (¬α ∧ ¬β)-possibilities. Indeed, it may not require ruling out any
(¬α ∧ ¬β)-possibilities,2 e.g., if ¬β is a skeptical hypothesis.3 But then since it
suffices to know α ∨ β that one rule out all (¬α ∧ ¬β)-possibilities, it is immediate
that we need multiple alternative sets for α ∨ β, corresponding to the multiple paths
to knowledge of α∨β described above: the (¬α∧¬β)-possibilities that one must rule

2Note added in ILLC version: indeed, the claim that for every α and β, knowing α requires ruling
out some (¬α ∧¬β)-possibility (if there is one) is essentially equivalent to infallibilism; and if every
possibility were definable, then the claim would be exactly equivalent to infallibilism. Given any
¬α-possibility v, pick β so that ¬β is true only at v. Then if knowing α requires ruling out some
(¬α ∧ ¬β)-possibility (if there is one), the agent must rule out v. Since v was arbitrary, it follows
that knowing α requires ruling out every ¬α-possibility, which is the infallibilist position.

3 Contextualists should read this as a claim about what the agent must rule out in order to know
α∨ β relative to a context in which skeptical possibilities are irrelevant. A Lewis-style contextualist
(recall §4.1.2) may claim that if ¬β is a skeptical hypothesis, then the mere mention of β will shift
the context to one in which knowing α requires ruling out all (¬α ∧ ¬β)-possibilities. Setting aside
the problems with this view discussed in §4.1.2, it is still compatible with everything I say here. We
simply observe Hawthorne’s point from §4.1.2: even if the agent is considering a skeptical hypothesis
¬β at time t (let us assume she is fully confident in α∨β), if the attributors are not considering any
skeptical hypotheses, then they can truly say “the agent knows α at t, so she knows any disjunction
α ∨ X that she has derived from α at t,” which requires for its truth that the agent can know α
relative to the attributor’s context despite not having ruled out skeptical (¬α ∧ ¬β)-possibilities.
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out in order to know one disjunct may be different from those that one must rule out
in order to know the other disjunct, which may be different from those that one must
rule out in order to know the disjunction without knowing either disjunct.

What this shows is that we should replace the r function of Fallibilism 1.0, which
assigns to each pair of a proposition P and a world w a set r(P,w) ⊆ W of possibilities,
with a new r function for Fallibilism 2.0 that assigns to each pair of a proposition
P and a world w a set r(P,w) = {A1, A2, . . . } of sets Ai ⊆ W of possibilities. For
example, for α ∨ β we may have alternative sets A1, A2, and A3, where A1 is the set
of possibilities to be ruled out in the path to knowing α ∨ β that goes via α; A2 is
the set of possibilities to be ruled out in the path that goes via β; and A3 is the set
of possibilities to be ruled out in the path to knowing α ∨ β without knowing either
α or β. (I am intentionally sliding between the proposition P and the formula α ∨ β
until §5.1.4.) Later in the chapter we will see concrete examples of this form.

Although here we are working with a propositional language, the foregoing points
about disjunctive claims clearly apply to existential claims as well. One could come
to know ∃xϕ(x) by coming to know ϕ(a), or by coming to ϕ(b), etc., or by coming to
know ∃xϕ(x) without coming to know ϕ(c) for any c. As a consequence of fallibilism,
the alternatives sets for these different paths to knowing ∃xϕ(x) may be different.

Standard Views and their Problems
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Figure 5.1: Single-Path Picture (left) vs. Multipath Picture (right)

I have used the term ‘path to knowledge’ instead of ‘way of knowing’. There are
often “multiple ways of knowing” a claim in the sense that one can come to know the
claim by ruling out a single set of alternatives in a number of ways: by sight, sound,
smell, etc. I reserve the idea of “multiple paths to knowledge” for the case in which
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for a given claim there are multiple sets of alternatives such that in order to know the
claim, it suffices to rule out all of the alternatives in one of those sets (which one may
often do in a number of ways). The multiplicity of paths arises from the structure
of the claim itself, rather than variation in the methods of inquiry. Indeed, it arises
from the logical structure of the claim, to which I return in §5.1.4 and §5.2.4.

The move from r to r is the basis of what I call the Multipath Picture of Knowledge.
In §5.2.1, I will propose Five Postulates for properties of r in the Multipath Picture.
First, however, I must explain why one of the fundamental assumptions of Fallibilism
1.0 must be dropped when we adopt the Multipath Picture for Fallibilism 2.0.

5.1.2 Against the Contrast Assumption

Recall the contrast assumption from Fallibilism 1.0:

contrast r(P,w) ⊆ P .

In §4.2.1, I argued that we cannot give up contrast in the framework of Fallibilism
1.0 (to avoid the impossibility result of Proposition 4.1), because it should always be
sufficient for knowing a true proposition P that one rule out all not-P possibilities.

In the Multipath Picture of Knowledge, the corresponding assumption is

contrast
⋃

r(P,w) ⊆ P ,

which says that all alternative sets for P are sets of not-P possibilities. In other
words, the assumption is that all paths to knowing P only involve eliminating not-P
possibilities. Should fallibilists accept this assumption? The answer is ‘no’, as we
have already seen a counterexample in §5.1.1. If one path to knowing α ∨ β is via
knowing α, and if knowing α only requires ruling out (¬α ∧ β)-possibilities (e.g.,
because ¬β is a skeptical hypothesis), which are of course (α ∨ β)-possibilities, then
there is a path to knowing α ∨ β that only involves ruling out (α ∨ β)-possibilities.
(This is so even for the shiftiest versions of contextualism, for reasons explained in
footnote 3.) Since the idea that knowing α is a path to knowing α ∨ β is at the core
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of common sense about knowledge, and the idea that knowing α may only require
ruling out (¬α∧ β)-possibilities is at the core of fallibilism, we must reject contrast.
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Multipath Picture without contrast (right)
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Having just argued for the strong claim that there can be alternatives sets A ∈
r(P,w) such that A ⊆ P , we also have the weaker claim that there can be alternative
sets A ∈ r(P,w) such that A ∩ P 6= ∅. Later I will propose an overlap postulate
concerning the conditions under which an alternative set for P may overlap with P
in this way. For now, however, let us observe that in the Multipath Picture, denying
contrast is compatible with holding that it should always be sufficient for knowing
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a true proposition P that one rule out all not-P possibilities, guaranteed as follows:4

enough if w ∈ P , then ∃A ∈ r(P,w): A ⊆ P .

(Applying this to our α ∨ β example, there should be an alternative set A for α ∨ β
such that A is included in the set of ¬(α∨β)-worlds, representing the path to knowing
α ∨ β without necessarily knowing either disjunct, in addition to the alternative set
for the α-path that overlaps with the set of (α∨ β)-worlds.) What this shows is that
the argument for the necessity of contrast in the Single-Path Picture of Fallibilism
1.0, given in §4.2.1, does not apply to contrast in the Multipath Picture.

It is worth emphasizing that the foregoing arguments for the Multipath Picture
without contrast should be acceptable to fallibilists who support full closure as much
as to those who do not. As we will see, the Multipath Picture without contrast will
be key to resolving the trio of problems for Fallibilism 1.0 discussed in Chapter 4.
Before resolving those problems, however, we must discuss one more aspect of our
basic framework: in Figs. 5.1 - 5.3, what kind of space do the large circles represent?

5.1.3 Logical Space

In the previous chapters, I left open how exactly we should think of the domain W
of our RA models (§2.4), CB models (§2.5), and SA models (Chapter 3). Here I will
be explicit about how we should think of W for the purposes of this chapter.

My approach to this issue is not metaphysical, in the style of Lewis [1986], but
rather pragmatic, in the style of Stalnaker [1984, 57]:

To believe in possible worlds is to believe only that [rational] activities
have a certain structure, the structure which possible worlds theory helps
to bring out.

It is important to realize that those who agree with Stalnaker that to “believe” in a
possible worlds picture is just to believe that rational activities have the structure that

4Note added in ILLC version: a simpler version of enough simply states that for all propositions
P , ∃A ∈ r(P,w) : A ⊆ P . Using this simpler version requires changing the r-RofA condition in
Definition 5.3 from w ∈ P ⇒ r(P,w) = ∅ to w ∈ P ⇒ w ∈ ⋂ r(P,w), as in Holliday 2013b.



5. FALLIBILISM 2.0: THE MULTIPATH PICTURE 209

the picture helps bring out may nonetheless disagree with him about what should be
included in the picture, because they disagree with him about matters of structure.

In Stalnaker’s picture (as in Lewis’s), W contains only “metaphysically possible
worlds,” sets of which are propositions. As a result, there is no way to capture in
a model the distinction between metaphysically equivalent but logically inequivalent
propositions. For if two claims are logically inequivalent but are true in the same
metaphysically possible worlds, then they express the same proposition for Stalnaker.
In my view, this a serious problem for modeling knowledge in a Stalnakerian picture,
for at least two reasons: one general and one specific to fallibilist views of knowledge.
(Moreover, these problems are distinct from the kind of worries that arise when we
treat logically equivalent claims as expressing the same proposition.) I will explain
the general problem here and the specific problem for fallibilism in §5.3.

First, however, let us note two modifications that would allow us to distinguish
propositions that are metaphysically equivalent but logically inequivalent. One op-
tion is to stick with propositions as sets, but allow more into these sets than only
metaphysically possible worlds. Another option is to replace propositions as sets by
some more fine-grained objects or structured propositions (see §5.1.4 and §5.2.4).

If we stick with sets, then the general problem with restricting W to include only
“metaphysically possible worlds” is clearly stated by Kaplan [1995], who asks what
would happen to possible worlds semantics if metaphysicians discovered the truth
of Hyperdeterminism, the thesis that the only metaphysically possible world is the
actual world. Kaplan’s [1995, 48] discussion is worth quoting at length:

The metaphysical should not be confused with the logical. If Hyperde-
terminism were to imply that there is only one true proposition, then not
only would whatever is true be necessary (as would be expected), but all
propositional operators would become truth functional. Even if this were
the only metaphysically possible world, should ‘it is desirable that’ and
‘it is undesirable that’ become truth functional? I think not!

A proper PWS framework for a language containing both possibility and
desirability operators, should I believe, allow the logical to dominate the
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metaphysical . . . . This means that Hyperdeterminism or not, we must
retain all the points (representing so-called possible worlds) needed to
distinguish the propositions expressed by [logically] inequivalent sentences
. . . . It would be reasonable to take the view that real possible worlds
correspond to some of the points, namely, those that are metaphysically
possible.

Note that Kaplan’s remarks apply as much to ‘it is known that’ as they do to ‘it is
desirable that’: even if the actual world were the only metaphysically possible world,
‘it is known that’ should not become truth functional, so a proper PWS framework
for a language containing both possibility and knowledge operators should allow the
logical to dominate the metaphysical in Kaplan’s sense.5 (Of course, practitioners of
epistemic logic and modal logic more generally follow Kaplan and not Stalnaker on this
point: they include in their models—especially canonical models—whatever points,
with whatever propositional valuations, are needed to make logical distinctions.)

Salmon [1989] presents metaphysical arguments for admitting total ways things
could not have been (“metaphysically impossible worlds”) as well as total ways things
could have been (“metaphysically possible worlds”) and for considering metaphysical
necessity as a restriction of logical necessity. King [2007] argues that Stalnaker’s
pragmatic methodological approach to possible worlds supports the inclusion of ways
things count not have been as well. However, I will not go into these accounts here. In
our formal framework, Kaplan’s extra points are unmysterious: they are points whose
associated propositional valuations do not correspond to a metaphysically possible
world according to the intended meaning of the sentence letters p, q, . . . .6

My unmetaphysical attitude about the extra points is justified by the weak use I
will make of them, explained in the following remark.

Remark 5.1 (Distinguishing vs. Witnessing). Let us draw a distinction between a
distinguishing use of the extra points and a witnessing use of them. Suppose that

5For a less extreme metaphysical hypothesis, consider the view that the laws of physics are
metaphysically necessary. Even if true, we want to make logical distinctions beyond physical ones.

6If we were working with models for quantified epistemic logic, then they would be first-order
structures that do not correspond to metaphysically possible worlds according to our intuitive un-
derstanding of the predicates, functions, and constants.
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given the intended meaning of p and q, p is metaphysically equivalent to p ∧ q, but
given the logical inequivalence of p and p∧q, we would like to allow the non-identity of
JpK and Jp∧qK, so we include in our model(s) “impossible” points where p is true and q
is false. This is a distinguishing use of these points. By contrast, one might wish to use
impossible points to witness an agent’s ignorance of some metaphysically necessary
truth (e.g., Hersperus = Phosphorus), by including such points in alternative sets in
r(P,w) and allowing them to be uneliminated by the agent. This is a witnessing use
of the points. King [2007] and Chalmers [2011] discuss the witnessing use of points
that do not correspond to metaphysically possible worlds, but here I will only use
them for distinguishing. While theorists who use impossible points for witnessing
may owe us a story about the nature of these entities, their relevance in inquiry, and
how they are (un)eliminated, I take is that theorists who use impossible points only
for distinguishing can adopt the stance of logical construction that I have taken.

Formally, the models to be introduced in §5.2 will be tuples containing (among
other things) a pair W = 〈W, {Ww}w∈W 〉, where W is a set of points and for each
w ∈ W , we think of Ww ⊆ W as the subset of points that are possible relative to w
(so w ∈ Ww), with which we will interpret necessity formulas �ϕ. Those who do not
wish to use impossible points for witnessing an agent’s ignorance may assume

r-possible
⋃

r(P,w) ⊆ Ww and

u-possible u(P,w) ⊆ Ww,

where u(P,w) is the set of uneliminated alternatives for P , as in Chapter 3.
I will sometimes refer to W , with its associated propositional valuation V , as

“logical space.” However, one should not take this to mean that W and V must
provide the same maximal space in all models. We include in a model as many points
as necessary to make the logical and epistemic distinctions that we wish to capture in
a given scenario, and we call this “logical space” for current modeling purposes; if we
want to make more distinctions, we add more points to the model for a larger “logical
space.”7 Eventually we may reach Kaplan’s big model that contains any points needed

7Cf. Stalnaker’s [1984, 58] point that there need not be a single domain of all possibilities.
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to distinguish logically inequivalent formulas. For example, by adding points we may
reach a model where for every set of atoms in At, there is a point in the model that
satisfies exactly those atoms—in other words, a model containing all state-descriptions
in the Carnap-inspired sense of Hendry and Pokriefka 1985—in which all inequivalent
propositional formulas have distinct extensions.8 More generally, by adding points
we may reach a model in which for every set of formulas that is consistent according
to epistemic logic L, there is a point in the model satisfying those formulas (as in a
Henkin model used in the standard style of completeness proofs for epistemic logic).
Formally, where At = {p, q, r . . . } is the set of sentence letters in our language, a
model M with domain W and valuation V may satisfy

A-space ∀S ⊆ At ∃s ∈ W : S = {p ∈ At | s ∈ V (p)}.

More generally, given a logic L for our language L, a model M may satisfy

L-space ∀ L-consistent sets Σ of formulas ∃s ∈ W : Σ ⊆ {ϕ ∈ L |M, s � ϕ}.

For the purposes of modeling concrete epistemic scenarios, the standard practice in
epistemic logic is to start with a “small model” that omits many logical possibilities, for
two reasons. First, we might assume that many of these have already been eliminated
as epistemic possibilities. Second, we can always add more points later to make finer
distinctions between what the agent knows and does not know. The first reason marks
a slight difference with the approach taken here, where we often like to show in our
model points that have already been eliminated according to the u function. However,
the second reason for adopting the “small model” approach still applies here.

The question of which valuations to include in our “logical space” W also depends
on how we think of the letters p, q, r . . . of our language.

Remark 5.2 (Statement Letters). Burgess [2003, 154] distinguishes two ways of
8I say ‘Carnap-inspired’ because Carnap allows that certain state-descriptions may be excluded

from consideration given the meanings of the atoms and analytic truths relating those meanings,
whereas I am adopting what Ballarin [2005, 278] calls the “Wittgensteinian logical/combinatorial
view” of state-descriptions, which includes all combinatorially consistent state description.
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thinking about the letters in our propositional modal language:

What is crucial is that one distinguish conceptually between statement
letters thought of as representing arbitrary statements, and statement
letters thought of as representing independent atomic statements. With
the former, standard understanding, the restriction to a subset of all val-
uations . . . need have nothing to do with a switch from logical to any kind
of non-logical modalities, since it is required even for logical modalities,
simply a reflection of the fact that with logically complex, logically interre-
lated statements instantiating the statement letters, not all combinations
of truth values may be logically possible . . . . By contrast, [including all
valuations] with the non-standard understanding of the role of statement
letters [as representing independent atomic sentences] . . . is appropriate for
logical modalities; whereas [restricting to a subset of all valuations] with
the same understanding . . . will be appropriate for non-logical modalities,
such as metaphysical modalities.

Burgess’s distinction is important in connection with the space conditions above. If
we think of statement letters as representing independent atomic statements,9 then a

9Burgess [2003, 147-148] explicates this way of thinking as follows:

The result of replacing the statement letters in a formula A with specific statements,
such as “Snow is white” or “Snow is black” (with simultaneous replacement of logi-
cal symbols ∼, &, ∨, and so on, by the logical operations of negation, conjunction,
disjunction, and so on, that they are supposed to represent) I will call an instantia-
tion of A . . . . Let us call the result of replacing the statement letters in a formula
A by statements an instantiation* if statement letters are replaced by statements that
are logically atomic (or, to state explicitly once a qualification that will henceforth
be tacitly understood, if not literally logically atomic, at least without further logical
structure that can be represented only using whatever logical symbols one is using),
and with [sic] distinct sentence [sic] are instantiated by statements that are logically
independent. (Here n statements α1, . . . , αn are independent if all 2n combinations of
truth values are possible.)
A formula fully indicates the logical form of its instantiations* (insofar as it can be
represented with the logical symbols one is using), but not of all its instantiations. For
example, “Grass is green or snow is white” is an instantiation* of p ∨ q, while “Grass
is green or grass is not green” is an instantiation of p ∨ q that is not an instantiation*
thereof. It is, rather, an instantiation* of p∨ ∼ p . . . .
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condition like A-space makes sense. However, if we think of them as representing
arbitrary statements, then we can have a full “logical space” without A-space, let
alone L-space. Both ways of thinking are compatible with the framework of this
chapter, and I will flag those places where the distinction matters.

5.1.4 Logical Structure

The example of multiple paths to knowing a disjunction in §5.1.1 assumes that the
objects of knowledge have some internal structure. Can we implement this episte-
mological idea in our formal framework? Before answering this question, it helps to
consider a related question. Those who accept the example of contrast failure for
disjunctions in §5.1.2 often ask whether contrast should hold for claims that are
atomic, e.g., d is a duck. Can we implement this idea in our formal framework?
The answer to both questions is ‘yes’, and there multiple ways to do so. One way,
discussed in §5.2.4, would be to take the first input of our new r function to be a
formula, rather than a set. However, by taking advantage of the discussion in the
previous section, we can implement the two ideas without changing the inputs to r.10

The two questions raise an interesting point of contrast between possible worlds
semantics in the style of Lewis [1986] and Stalnaker [1984] and formal semantics
in modal logic. In the pictures of Lewis and Stalnaker, the objects of knowledge
are propositions—sets of worlds—and there is no sense in which one of these sets
is “atomic” and another “complex.” They are just sets. Hence there is no way to
draw a distinction, using only such coarse-grained propositions, between knowing
something atomic vs. knowing something complex. By contrast, in modal logic, in
addition to sets of points we have a valuation function for sentence letters, which
can be understood—following Burgess’s distinction in Remark 5.2—as representing
independent atomic sentences. This allow us to associate with sets of points some
logical structure: some sets are definable by an atomic sentence or its negation, some
sets are definable as the union of two distinct sets of the first kind, etc., and assuming

10Note added in ILLC version: in Holliday 2013b,c, I take the first input to r to be a structured
proposition/formula. I then propose constraints on r such that logically equivalent propositions have
essentially the same alternative sets, so mere syntactic differences do not matter. See §5.2.4 below.
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A-space from §5.1.3, no set of the first “atomic” kind is also a set of the second
“disjunctive” kind, etc. In this way, formal semantics in modal logic takes a step in
the direction of structured propositions, away from the more coarse-grained pictures of
Lewis and Stalnaker.11 Hence we can draw the distinction between knowing something
atomic vs. knowing something complex. To capture the idea that contrast holds for
atomic propositions—and conjunctions thereof—one can require that the r function
in a model (see Definition 5.1) satisfies the following for all propositions P ⊆ W and
worlds w ∈ W , where At is the set of atomic sentences in our language:

A-contrast ∀p ∈ At :
⋃

r(J±pK, w) ⊆ J±pK;
A-contrast+ if ∃p ∈ At : P ⊆ J±pK, then

⋃
r(P,w) ⊆ P .

There is another way to see that we can capture the idea that different paths
to knowing depend on the logical structure of what is known, even when the inputs
of our r function are sets. Suppose that to model a particular scenario, I construct
a small model in which it happens to hold that Jp ∨ qK = JrK. Moreover, suppose
that I claim there are multiple paths to knowing p or q, so there should be multiple
alternative sets for Jp∨ qK. Hence JrK will have the same multiple alternative sets. If
we are thinking of sentence letters like r as representing arbitrary sentences, then one
may be fine with allowing multiple paths to knowing r and hence multiple alternative
sets for JrK. However, if we are understanding sentence letters like r as representing
independent atomic sentences, then one may object to JrK having the same alternative
sets as Jp ∨ qK. But if so, then there is an simple solution: add a point to the model
where r is true and p ∨ q false, or vice versa, so that Jp ∨ qK 6= JrK. (One can assume
that this point is not in r(P,w) or u(P,w) for any P and w.) Having pulled apart
the extensions in this way, one can then assign to them different alternative sets.

Of course, if the first input to the r function is a set, then we cannot assign different
alternatives sets to logical equivalents, since these always have the same extensions.
Hence this approach assumes that what matters for the multiple paths to knowledge

11For the formal counterpart of the Lewis and Stalnaker pictures, see Halpern 1999 on purely
set-theoretic approaches to epistemic logic (i.e., with no syntax) as used in economics.
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is logical structure, rather than finer-grained syntactic structure. To represent views
according to which logical equivalents can have different alternative sets, we must
change the inputs of r. I will discuss the relation between these approaches in §5.2.4.

5.1.5 Logical Closure

Given our distinction between logical space W and the metaphysical space Ww for
a given world w, we can represent in our formalism a fundamental distinction be-
tween two types of closure for ideally astute logicians (IALs): closure under logical
consequence (or equivalence) and closure under (known) strict implication (or bi-
implication). In the epistemology literature, authors often play fast and loose with
the notion of logical consequence and equivalence. For example, the idea that that
the animals in the pen aren’t cleverly disguised mules is a “clear logical consequence”
of the animals in the pen are zebras (Vogel 1990, 40) confuses logic and zoology. Sim-
ilarly, the idea that one could know of a zebra that “its being a zebra is a priori (or
logically) equivalent to its being a zebra and not a painted mule” [Adams et al., 2012]
involves the same zoo-logical confusion.12 To state the obvious:

‘z is a zebra or z is not a painted mule’ is a logical consequence of ‘z is a zebra’;

‘z is not a painted mule’ is a logical consequence of ‘z is not a painted mule
and z is a zebra’.

By contrast:

‘z is a zebra and z is not a painted mule’ is not a logical consequence of ‘z is a
zebra’;

‘z is not a painted mule’ is not a logical consequence of ‘z is a zebra’.

At best, the latter two are cases of strict implication.
Having distinguished logic from zoology, let us state closure under logical conse-

quence as the principle that if ψ is a logical consequence of ϕ, so ϕ → ψ is a logical
truth, then the IAL knows ϕ only if she knows ψ. I will also call this

12Moreover, as Hawthorne [2004a, 41n99] notes, it is at best a necessary a posteriori truth that
zebras are not mules.
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• single-premise logical closure, represented by the rule

RM ϕ→ ψ

Kϕ→ Kψ
.

Since I assume that IALs know all logic, I will not bother to distinguish between
closure under logical consequence and closure under known logical consequence. By
contrast, since I will not always assume that IALs know all metaphysics, I will dis-
tinguish between closure under strict implication and closure under known strict
implication. Formally, we distinguish single-premise logical closure from:

• closure under known strict implication,

(Kϕ ∧K�(ϕ→ ψ))→ Kψ;

• closure under strict implication,

(Kϕ ∧�(ϕ→ ψ))→ Kψ;

• closure under known material implication,

K (Kϕ ∧K(ϕ→ ψ))→ Kψ.

Finally, let us distinguish single-premise logical closure from multi-premise logical
closure, the principle that if ψ is a logical consequence of {ϕ1, . . . , ϕn}, so ϕ1 ∧ · · · ∧
ϕn → ψ is a logical truth, then the IAL knows ϕ1, . . . , ϕn only if she knows ψ:

• multi-premise logical closure,

RK ϕ1 ∧ · · · ∧ ϕn → ψ

Kϕ1 ∧ · · · ∧Kϕn → Kψ
.
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If we assume that all logical truths are metaphysically necessary and known by IALs,13

and that whatever is metaphysically necessary is true,14 then the five closure principles
above are listed in order of increasing deductive strength, except for K and RK, which
have the same deductive power (assuming IALs know all logical truths). The last
point means that anyone who rejects closure under material implication must also
reject multi-premise logical closure, an important point to which we will return.

Since our models in this chapter will contain both a logical space W and a meta-
physical space Ww for a given w ∈ W , we will be able to semantically distinguish
single premise logical closure not only from closure under known implication, as we
could in Chapter 3, but also from the metaphysical closure principles.

Analogous distinctions apply to equivalence, strict bi-implication, and bi-implication:

• closure under logical equivalence,

RE ϕ↔ ψ

Kϕ↔ Kψ
.

• closure under known strict bi-implication,

(Kϕ ∧K�(ϕ↔ ψ))→ Kψ;

• closure under strict bi-implication,

(Kϕ ∧�(ϕ↔ ψ))→ Kψ;

• closure under known material bi-implication,

(Kϕ ∧K(ϕ↔ ψ))→ Kψ.

13That is, the necessitation rules for � and K.
14That is, the T axiom �α→ α.
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5.1.6 Main Claims

With the distinctions of §5.1.5, I can now state the main claims of this chapter. First,
the Multipath Picture fixes the flaws of Fallibilism 1.0 discussed in Chapter 4:

Claim 5.1 (The Three Problems Solved). In Fallibilism 1.0, we were forced to either
admit vacuous knowledge or give up even special cases of single-premise logical closure
such as K(ϕ ∧ ψ) → Kϕ and Kϕ → K(ϕ ∨ ψ). Yet in the Multipath Picture
for Fallibilism 2.0, we can reject vacuous knowledge and retain all single-premise
logical closure principles, thereby solving the twin problems of Vacuous Knowledge
and Containment without resorting to Knowledge Inflation. In §5.4, I will give a new
account of deduction as involving knowledge extension rather than inflation.

If Claim 5.1 is correct, then it follows that one of the most serious concerns about
fallibilism without full closure—that it will force us into the extreme closure failures
that plagued the subjunctivist-flavored theories in Chapter 2—has been eliminated.
In addition to establishing this claim in defense of fallibilism without full closure, I
will argue for the following claims against fallibilism with full closure in §5.3:

Claim 5.2 (Against Implication Closure). Fallibilist should reject the idea that clo-
sure under known implication is valid. That principle (or equivalently, multi-premise
logical closure) still saddles fallibilists with the Problem of Vacuous Knowledge.

Claim 5.3 (Against Strict Implication Closure). Fallibilists should reject the idea that
closure under (known) strict implication/bi-implication is valid. That principle either
forces fallibilists into the Problem of Vacuous Knowledge or forces fallibilists to give
up even K(ϕ ∧ ψ) → Kϕ, reinstating the Problem of Containment. In §6.1.2, I will
explain what I take to be the mistake in accepting strict bi-implication closure.

Fallibilists may accept the Multipath Picture of Knowledge without accepting
Claims 5.2 or 5.3. Roughly speaking, fallibilists who insist on full closure—and are
therefore committed to vacuous knowledge—will be committed to less vacuous knowl-
edge in the Multipath Picture than they were in Fallibilism 1.0. However, it is still
too much vacuous knowledge for me, so I will argue firmly for Claims 5.2 and 5.3.
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5.2 Multipath Alternatives Models

Let us now develop the Multipath Picture formally, starting with our new models.

Definition 5.1 (MA Model). A multipath alternatives model is a tupleM of the form
〈W, u, r, V 〉 where W = 〈W, {Ww}w∈W 〉 with W a non-empty set and w ∈ Ww ⊆ W ;
u : P(W )×W → P(W ), r : P(W )×W → P(P(W )), and V : At→ P(W ).

As in §5.1.3, W is logical space and Ww is the set of worlds that are (metaphysi-
cally) possible relative to w. (One may assume standard constraints on this notion of
possibility, e.g., requiring that if v ∈ Ww, thenWv = Ww, but none of this will matter
for our purposes.) As in Chapter 3, u(P,w) is the set of alternatives (possibilities)
that are uneliminated as alternatives for P by the agent in w. However, in contrast
to r(P,w) from Chapter 3, r(P,w) is not a single set of alternatives that the agent
must rule out in order to know P in w. Rather, r(P,w) is a set of sets of alternatives
such that in order to know P in w, the agent must rule out all of the alternatives in at
least one of these sets. This is precisely the content of the following truth definition.

Definition 5.2 (Truth in a MA Model). Given a model M = 〈W, u, r, V 〉 with
w ∈ W and a formula ϕ in the epistemic-alethic language (recall §2.9.2), we define
M, w � ϕ as follows (with propositional cases as usual):

M, w � �ϕ iff Ww ⊆ JϕKM;

M, w � Kϕ iff ∃A ∈ r(JϕKM, w): A ∩ u(JϕKM, w) = ∅,

where JϕKM = {v ∈ W | M, v � ϕ}.

Observe that we can assume without loss of generality that all models are non-
redundant in the sense that for all P ⊆ W , w ∈ W , and A,B ∈ r(P,w): A 6( B.

As in Chapter 3, with no constraints on r or u we have the following result.

Proposition 5.1 (Completeness of E). E is sound and complete for the class of all
MA models.
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5.2.1 The Five Postulates

Rather than studying possible constraints on r one-by-one, as in Chapter 3, I will
go straight to my own theory of the r function, consisting of the Five Postulates in
Definition 5.3. Included among these postulates are the analogues in the Multipath
Picture of noVK and cover from Chapters 3 and 4, now called noVK and cover. In
§5.2.3, I will show the consistency of the Five Postulates together with fallibilism,
defined below. I have stated strong postulates and more postulates than are needed
to resolve the problems of Vacuous Knowledge and Containment, since this makes
the consistency result a stronger result. Otherwise one may worry that as soon as we
add to noVK and cover other constraints, we will find an inconsistency. Moreover,
the reader may rest assured that any weakening of the postulates is also consistent.

Definition 5.3 (Five Postulates). An MA model M = 〈W, u, r, V 〉 satisfies the Five
Postulates if and only if for all P ⊆ W and w ∈ W :

1. (r-RofA) if w ∈ P , then r(P,w) = ∅;
Read: if w is a not-P world, then there is no path to knowing P in w.

2. (enough) if w ∈ P , then ∃A ∈ r(P,w): A ⊆ P ;
Read: in order to know P in w, it is sufficient that one eliminates all not-P
possibilities, which the existence of such an alternative set A for P guarantees.
See Fig. 5.4.15

3. (noVK) if P 6= Ww, then ∅ 6∈ r(P,w);
Read: if P is contingent, then coming to know P in w requires eliminating some
possibilities, in which case the empty set cannot be an alternative set for P .16

4. (overlap) ∀A ∈ r(P,w): if A ∩ P 6= ∅, then ∃Q ( P : A ∈ r(Q,w);
Read: if an alternative set A for P overlaps with P—so there is a path to
knowing P that involves eliminating P -possibilities—then this is because there

15Together enough and r-possible guarantee the validity of �ϕ → Kϕ, so agents know all
metaphysical necessities, as in standard possible worlds models without impossible points. This
raises interesting issues, but my focus here is on knowledge of contingent empirical propositions.

16Those who reject r-possible may wish to restate noVK as: if P 6= W , then ∅ 6∈ r(P,w).
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Figure 5.4: enough violated (left) vs. satisfied (right)

is some Q that is logically stronger than P such that eliminating all of A is a
path to knowing Q. See Fig. 5.5.17
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Figure 5.5: overlap visualized

5. (cover) if Q ⊆ P , then ∀B ∈ r(Q,w) ∃A ∈ r(P,w): A ⊆ B.
Read: if Q excludes as much of logical space as P does, then any path to
knowing Q by eliminating possibilities covers a path to knowing P .

At this point, the Five Postulates should be largely self-explanatory. r-RofA is an
17Strictly speaking, Fig. 5.5 reflects a stronger statement of overlap, which is also consistent

with the other postulates:

(overlap+) ∀A ∈ r(P,w): if A ∩ P 6= ∅, then ∃Q ( P : A ∩Q = ∅ and A ∈ r(Q,w).

Read: if an alternative set A for P overlaps with P—so there is a path to knowing P that involves
eliminating P -possibilities—then this is because there is some Q that is logically stronger than P
(and does not overlap with A) such that eliminating all of A is a path to knowing Q.
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analogue of r-RofA from Chapter 3.18 I have already argued for enough (though not
under this name) in §4.2.1 and for noVK in §4.1. The one new postulate is overlap,
which I alluded to in §5.1.2. This postulate generalizes the example from §5.1.2 into
a rule about when contrast fails: think of P in the statement of overlap as the
extension of α ∨ β and the stronger proposition Q as the extension α. The point
of adding this postulate, besides its plausibility, is to show that even if we strongly
constrain failures of contrast as in overlap, we can still consistently satisfy all of the
other postulates. One may worry that with no constraints on failures of contrast,
anything goes, so no wonder we have consistency. In addition to overlap, we can
consistently add the constraint on failures of contrast mentioned in §5.1.4: to cap-
ture the idea that contrast holds for knowing atomic propositions (and conjunctions
thereof), one can assume A-contrast (and A-contrast+) from §5.1.4

Let us now consider the cover postulate. What is crucial to observe is that the
antecedent of cover, Q ⊆ P , is a statement of set inclusion in logical space W , not in
metaphysical space Ww. Hence the following principle is not a consequence of cover:
if Q strictly implies P , so Q ∩Ww ⊆ P , then any path to knowing Q by eliminating
possibilities covers a path to knowing P , which implies (unlike cover) that if Q and P
are metaphysically equivalent, so Q∩Ww = P ∩Ww, then knowing Q requires elimi-
nating the same possibilities as knowing P , i.e., r(Q,w) = r(P,w).19 In my view, this

18An alternative definition of r-RofA, which is even more analogous to r-RofA, requires that if
w ∈ P , then w ∈ ⋂ r(P,w), which would serve our purposes just as well given u-RofA.

19In other words, the principle

(M-cover) if Q ∩Ww ⊆ P , then ∀B ∈ r(Q,w) ∃A ∈ r(P,w): A ⊆ B,
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principle—as well as the weaker version for known strict implication/bi-implication—
should be anathema to fallibilists, for reasons explained in §5.3. However, for now let
us observe the following correspondence results, recalling §3.2.3.20

Proposition 5.2 (Correspondence). Let 〈W, r〉 be an r-frame.

1. K(ϕ ∧ ψ) → (Kϕ ∧Kψ) is valid on 〈W, r〉 relative to models satisfying RO∃∀

iff r satisfies cover.

2. (Kϕ ∧�(ϕ→ ψ))→ Kψ is valid on 〈W, r〉 relative to models satisfying RO∃∀

iff r satisfies

(M-cover) if Q ∩Ww ⊆ P , then ∀B ∈ r(Q,w) ∃A ∈ r(P,w): A ⊆ B.

3. (Kϕ∧�(ϕ↔ ψ))→ Kψ is valid on 〈W, r〉21 relative to models satisfying RO∃∀

iff r satisfies

(M-equiv) if Q ∩Ww = P ∩Ww, then r(Q,w) = r(P,w).

4. (Kϕ ∧Kψ) → K(ϕ ∧ ψ) is valid on 〈W, r〉 relative to models satisfying RO∃∀

iff r satisfies the following combine condition:

∀P, P ′ ⊆ W ∀Q ∈ r(P,w) ∀Q′ ∈ r(P ′, w) ∃S ∈ r(P ∩ P ′, w): S ⊆ Q ∪Q′.

In §5.3 and §6.1.2 I will explain why fallibilists should reject the M-cover (‘M’
for metaphysical), M-equiv, and combine assumptions, as in Claims 5.3 and 5.2.

together with Q ∩Ww = P ∩Ww, implies r(Q,w) = r(P,w), assuming as after Definition 5.2 that
these sets are non-redundant in the sense that we never have A,B ∈ r(Y,w) such that A ( B.
Suppose for reductio that there is X ∈ r(Q,w) but X 6∈ r(P,w). Then by M-cover and the fact
that Q ∩Ww ⊆ P , there is some X ′ ∈ r(P,w) such that X ′ ( X. Then by M-cover and the fact
that P ∩Ww ⊆ Q, there is some X ′′ ∈ r(Q,w) such that X ′′ ⊆ X ′. But then X ′′ ( X, contradicting
the assumption that we do not have A,B ∈ r(Q,w) such that A ( B.

20The RO∃∀ condition is defined for MA models exactly as it was for SA models in §3.2.1.
21Here we assume that r is non-redundant as after Definition 5.2 and in footnote 19.
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In line with the above correspondence results, we can prove completeness theorems
as in Chapter 3. For our purposes, the most important is the following. Recall the
nomenclature for modal axioms: M is K(ϕ ∧ ψ)→ (Kϕ ∧Kψ) and T is Kϕ→ ϕ.

Proposition 5.3 (Completeness of EMNT). EMNT is sound and complete for the
class of MA models satisfying the Five Postulates, RO∃∀, and u-RofA.

Hence if we add to the Five Postulates on the r function a very simple theory of
the u function with RO∃∀ and u-RofA, then we obtain EMNT as our static epistemic
logic for reasoning about what an ideally astute logician knows (for a fixed context).
It is easy to check that EMNT is equivalent to propositional logic plus the rule

RM ϕ→ ψ

Kϕ→ Kψ

and the axioms K> and Kϕ → ϕ. So with the simply theory of u, knowledge
implies truth, the ideally astute logician knows all logical truths, and the ideally astute
logician knows all logical consequences of each proposition she knows. However, in
§5.4 I will replace the simple theory of u with a dynamic theory that models the
epistemic effect of “putting two and two together,” necessary for those of us who are
not yet ideally astute logicians. We will then replace RM with a dynamic rule.

All along my arguments have been motivated by fallibilism, so it is time to state
what fallibilism minimally amounts to in the Multipath Picture, using Definition 5.4.

Definition 5.4 (Fallibilism). A MA model M = 〈W, u, r, V 〉 satisfies fallibilism iff

∃P ⊆ W ∃w ∈ W ∃A ∈ r(P,w): w ∈ P and A ( P .

In other words, fallibilism implies that there is some world w where an agent can
come to know a proposition P by ruling out a strict subset of the not-P possibilities.
Stronger versions of fallibilism—according to which there are many such w and P—
are also compatible with the Five Postulates, as should be clear from §5.2.3.
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5.2.2 Lewis and Nozick in MA Models

Having introduced all of the conditions on the r function to be considered in this
chapter, it helps to see how the pictures of Lewis and Nozick look in our MA models—
and how they violate the Five Postulates. Given an RA model M = 〈W,_,�, V 〉
from §2.4, as in Fig. 5.7, we can define an MA model M = 〈W, u, r, V 〉 for Lewis
by taking each Ww in the MA model to be the field of �w from the RA model and
by defining r(P,w) = {{Min�w(W ) ∩ P}}. Of course, Lewis’s picture does not take
advantage of the multiple paths to knowledge in the Multipath Picture, so r(P,w)

only contains a single alternative set. For u, we define u(P,w) = {v ∈ P | w _ v}. In
this case, while MA models contain a function u instead of a relation _, we can draw
the arrows in our diagrams and recover the function by the definition just given.

In Fig. 5.7, which is the same as Fig. 2.1 from §2.4 except for the names of atoms,
think of p as some mundane proposition and s as an incompatible skeptical hypothesis
(in particular, a world-side skeptical hypothesis in the sense of §6.2.3). In the actual
world w1, p is true, but there is also a “relevant” or “close” world w2 in which p is
false, which is strictly more relevant or closer than the skeptical world w3 in which p
is false and the skeptical hypothesis s is true. Depending on the specific choices for p
and s, the world w4 in which p and s are both true may be metaphysically impossible
or only impossible in a weaker sense, e.g., physically impossible.

Remark 5.3 (Strong vs. Strict Skeptical Counter-Hypotheses). In the rest of this
section and in §5.2.3, I treat the case where s is what I call a (merely) strong skeptical
counter-hypothesis to p, in the sense that p→ ¬s is necessary in a weaker sense than
metaphysical necessity, as was implicitly assumed in the medical diagnosis Example
1.1 in Chapter 2 (where p was c and s was x).22 Hence we let w4 ∈ Ww1 . In §5.3, I
treat the case where s is what I call a strict counter-hypothesis to p, in the sense that
p→ ¬s is necessary in the strongest sense. The birdwatching Example 1.2 is such a
case, assuming it is metaphysically impossible for something to be a Gadwall and a
Siberian Grebe (cf. Stroud [1984, 25]: “a goldfinch simply could not be a canary”).

22As explained in Example 1.1, given actual human biology, x confers immunity to c, so c → ¬x
is “biologically necessary.” But we can suppose that this is a contingent biological truth; if human
biology were slightly different in various ways, then x would not confer immunity to c.
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Figure 5.7: RA model from §2.4 (partially drawn, reflexive loops omitted)

Example 5.1 (Lewisian MA Model). Deriving the r function for our Lewisian MA
model from the RA model in Fig. 5.7, we have the result in Table 5.1, where I have
grayed out the information for propositions false at w1. Fig. 5.8 displays the same
result in a color-coded graphical form. Each row in Fig. 5.8 displays a proposition,
the set of worlds outlined in blue, along with the single Lewisian alternative set for
that proposition consisting of the red worlds. (Each non-empty alternative set in this
model happens to contain a single world, but of course that is not required.) Note
the conspicuous violations of the noVK postulate in rows four, six, and seven.

Let us now construct a Nozickian MA model based on the RA model in Fig.
5.7. For Nozick, strictly we should start with the CB model in Fig. 2.2 of §2.5 and
take into account the role of belief in N-semantics when defining the u function as
in §3.3.2, but for simplicity I will start with the Nozick-like picture of D-semantics
over RA models from §2.4. The result for the r function will be exactly the same.
For our MA model we define r(P,w) = {{Min�w(P )}}. As in Example 5.1, since we
are starting with a theory in the framework of Fallibilism 1.0, we are not yet taking
advantage of the multiple paths to knowledge available in the Multipath Picture.

Example 5.2 (Nozickian MA Model). Deriving the r function for our Nozickian MA
model from the RA model in Fig. 5.7, we have the result in Table 5.2, where I have
grayed out the information for propositions that are false at w1. Fig. 5.9 displays
the same result in a color-coded graphical form. Each row in Fig. 5.8 displays
a proposition, the set of worlds outlined in blue, along with the single Nozickian
alternative set for that proposition consisting of the red worlds. (Each non-empty
alternative set in this model happens to contain a single world, but of course that is
not required.) Note the conspicuous violations of the cover postulate in rows four



5. FALLIBILISM 2.0: THE MULTIPATH PICTURE 228

U(w1) = {w1, w3}
u(P,w1) = U(w1) ∩ P

r(Jp ∧ ¬pK, w1) = r(∅, w1) = ∅
r(Jp ∧ sK, w1) = r({w4}, w1) = ∅

r(Jp ∧ ¬sK, w1) = r({w1}, w1) = {{w2}} M, w1 � K(p ∧ ¬s)
r(J¬p ∧ sK, w1) = r({w3}, w1) = ∅

r(J¬p ∧ ¬sK, w1) = r({w2}, w1) = ∅
r(JpK, w1) = r({w1, w4}, w1) = {{w2}} M, w1 � Kp
r(JsK, w1) = r({w3, w4}, w1) = ∅

r(Jp↔ sK, w1) = r({w2, w4}, w1) = ∅
r(Jp↔ ¬sK, w1) = r({w1, w3}, w1) = {{w2}} M, w1 � K(p↔ ¬s)

r(J¬sK, w1) = r({w1, w2}, w1) = {∅} M, w1 � K¬s
r(J¬pK, w1) = r({w2, w3}, w1) = ∅

r(Jp ∨ sK, w1) = r({w1, w3, w4}, w1) = {{w2}} M, w1 � K(p ∨ s)
r(Jp ∨ ¬sK, w1) = r({w1, w2, w4}, w1) = {∅} M, w1 � K(p ∨ ¬s)
r(Jp→ sK, w1) = r({w2, w3, w4}, w1) = ∅

r(Jp→ ¬sK, w1) = r({w1, w2, w3}, w1) = {∅} M, w1 � K(p→ ¬s)
r(Jp ∨ ¬pK, w1) = r(W,w1) = {∅} M, w1 � K(p ∨ ¬p)

Table 5.1: partial representation of the Lewisian MA model from Example 5.1
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Figure 5.8: partial representation of the Lewisian MA model from Example 5.1
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U(w1) = {w1, w3}
u(P,w1) = U(w1) ∩ P

r(Jp ∧ ¬pK, w1) = r(∅, w1) = ∅
r(Jp ∧ sK, w1) = r({w4}, w1) = ∅

r(Jp ∧ ¬sK, w1) = r({w1}, w1) = {{w2}} M, w1 � K(p ∧ ¬s)
r(J¬p ∧ sK, w1) = r({w3}, w1) = ∅

r(J¬p ∧ ¬sK, w1) = r({w2}, w1) = ∅
r(JpK, w1) = r({w1, w4}, w1) = {{w2}} M, w1 � Kp
r(JsK, w1) = r({w3, w4}, w1) = ∅

r(Jp↔ sK, w1) = r({w2, w4}, w1) = ∅
r(Jp↔ ¬sK, w1) = r({w1, w3}, w1) = {{w2}} M, w1 � K(p↔ ¬s)

r(J¬sK, w1) = r({w1, w2}, w1) = {{w3}} M, w1 2 K¬s
r(J¬pK, w1) = r({w2, w3}, w1) = ∅

r(Jp ∨ sK, w1) = r({w1, w3, w4}, w1) = {{w2}} M, w1 � K(p ∨ s)
r(Jp ∨ ¬sK, w1) = r({w1, w2, w4}, w1) = {{w3}} M, w1 2 K(p ∨ ¬s)
r(Jp→ sK, w1) = r({w2, w3, w4}, w1) = ∅

r(Jp→ ¬sK, w1) = r({w1, w2, w3}, w1) = {{w4}} M, w1 � K(p→ ¬s)
r(Jp ∨ ¬pK, w1) = r(W,w1) = {∅} M, w1 � K(p ∨ ¬p)

Table 5.2: partial representation of the Nozickian MA model from Example 5.2

(relative to row one), six (relative to rows one and four), and seven (relative to rows
one and four). The following is the absurd consequence of the first violation of cover:

• While p ∧ ¬s is a strictly stronger proposition than p ∨ ¬s, in the Nozickian
picture of Fig. 5.9, coming to know p ∨ ¬s requires additional epistemic work
compared to coming to know p∧¬s, so the agent knows p∧¬s but not p∨¬s.

Having seen how the standard “single path” pictures violate the Five Postulates
in our MA models, in the next section we will see how taking advantage of multiple
paths to knowledge establishes the consistency of the Five Postulates with fallibilism.
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Figure 5.9: partial representation of the Nozickian MA model from Example 5.2
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Figure 5.10: infallibilist MA model based on the RA model in Fig. 5.7
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5.2.3 Consistency of the Postulates

It is now time to solve two of the problems of Fallibilism 1.0—the Problem of Vacuous
Knowledge and the Problem of Containment—in one fell swoop. What prevented such
a solution in the framework of Fallibilism 1.0 was the following impossibility result.

Proposition 4.1 (Impossibility I). There is no SA model satisfying the following:
contrast r(P,w) ⊆ P ;

fallibilism ∃P ⊆ W : P 6⊆ r(P,w);
noVK if P 6= W , then r(P,w) 6= ∅;
cover if P ⊆ Q, then r(Q,w) ⊆ r(P,w).

In contrast to Proposition 4.1, Proposition 5.4 finally delivers some good news.

Proposition 5.4 (Consistency). The following are consistent:

1. (r-RofA) if w ∈ P , then r(P,w) = ∅;

2. (enough) if w ∈ P , then ∃A ∈ r(P,w): A ⊆ P ;

3. (noVK) if P 6= Ww, then ∅ 6∈ r(P,w);

4. (overlap) ∀A ∈ r(P,w): if A ∩ P 6= ∅, then ∃Q ( P : A ∈ r(Q,w);

5. (cover) if Q ⊆ P , then ∀B ∈ r(Q,w) ∃A ∈ r(P,w): A ⊆ B;

6. (r-possible)
⋃

r(P,w) ⊆ Ww;

7. (A-space) ∀S ⊆ At ∃s ∈ W : S = {p ∈ At | s ∈ V (p)};

8. (A-contrast+) if ∃p ∈ At: P ⊆ J±pK, then ⋃ r(P,w) ⊆ P ;

9. (fallibilism) ∃P ⊆ W ∃w ∈ W ∃A ∈ r(P,w): w ∈ P and A ( P .

Proof. Take the set of worlds and valuation in Fig. 5.7 with the r function in Table
5.3, and one can check that all nine conditions of Proposition 5.4 are satisfied.23

23Table 5.3 only specifies the r function for w1, but for the other worlds we can simply use the
infallibilist formula r(P,wi) = {P ∩Ww} and all of the postulates will be satisfied for the whole
model. We could instead define r in an appropriate fallibilist way for each of the other words, but
I leave that as an exercise to the reader. As observed in footnote 16 of §2.4, to plausibly model the
agent’s knowledge at worlds other than w1, we should add more structure to the model.
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Proposition 5.4 is even easier to see in the color-coded graphical form in Fig. 5.11.
As before, each row in Fig. 5.11 displays a proposition, the set of worlds outlined in
blue, along with the alternative set(s) for the proposition. In a given row, if two
possibilities are shaded in the same color, then they belong to the same alternative
set. Hence it is only row six that has two alternative sets, each containing one
possibility. I have shaded w2 in rows two and six the same color orange in order to
indicate that the orange path to knowing p ∨ ¬s in row six is the path that goes via
knowing p in row two, consistent with the overlap postulate. We can construct larger
and more complicated models with many alternative sets for a given proposition, but
we can already see from the simple model in Fig. 5.11 how the key ideas of the
Multipath Picture from §5.1.1 and §5.1.2 allow us to combine no vacuous knowledge
with single-premise logical closure. Moreover, the model in Fig. 5.11 delivers what I
take to be exactly the right verdicts—from the perspective of a fallibilist who denies
full closure against the skeptic—about what the agent knows. While Nozick’s picture
in Fig. 5.9 strangely shows the agent as knowing the strong p ∧ ¬s without knowing
the weaker p ∨ ¬s, our new picture in Fig. 5.11 correctly reverses these verdicts.

To claim that we have solved the twin problems of Vacuous Knowledge and Con-
tainment, we should show not only that noVK and cover are consistent in the
Multipath Picture, but also that the model witnessing their consistency is a natural
one for fallibilists. Indeed, the model in Fig. 5.11 can been seen as generated from
minimal fallibilist assumptions. Step 1: start with the infallibilist model in Fig. 5.10
where for all P , the only alternative set for P is P ; so r1(P,w) = {P}. Step 2:
since the minimal fallibilist assumption is that knowing p in w1 (relative to ordinary
contexts) does not require ruling out skeptical worlds, modify r1 to r2 by taking all
s-worlds out of all alternative sets for JpK; so r2(JpK, w1) = {JpK ∩ JsK}. Step 3: since
knowing p is a path to knowing propositions logically weaker than p, modify r2 to r3

by adding the alternative sets for JpK to the set of alternative sets for any weaker Q;
so if JpK ⊆ Q, then r3(Q,w) = r2(Q,w) ∪ r2(JpK, w). The result is Fig. 5.11.

Not only does this solve the problems of Vacuous Knowledge and Containment, but
also the justification given for our witnessing model raises a challenge for fallibilists
who insist on full (multi-premise) closure: try to justify step-by-step your further
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U(w1) = {w1, w3}
u(P,w1) = U(w1) ∩ P

r(Jp ∧ ¬pK, w1) = r(∅, w1) = ∅
r(Jp ∧ sK, w1) = r({w4}, w1) = ∅

r(Jp ∧ ¬sK, w1) = r({w1}, w1) = {{w2, w3, w4}} M, w1 2 K(p ∧ ¬s)
r(J¬p ∧ sK, w1) = r({w3}, w1) = ∅

r(J¬p ∧ ¬sK, w1) = r({w2}, w1) = ∅
r(JpK, w1) = r({w1, w4}, w1) = {{w2}} M, w1 � Kp
r(JsK, w1) = r({w3, w4}, w1) = ∅

r(Jp↔ sK, w1) = r({w2, w4}, w1) = ∅
r(Jp↔ ¬sK, w1) = r({w1, w3}, w1) = {{w2, w4}} M, w1 � K(p↔ ¬s)

r(J¬sK, w1) = r({w1, w2}, w1) = {{w3, w4}} M, w1 2 K¬s
r(J¬pK, w1) = r({w2, w3}, w1) = ∅

r(Jp ∨ sK, w1) = r({w1, w3, w4}, w1) = {{w2}} M, w1 � K(p ∨ s)
r(Jp ∨ ¬sK, w1) = r({w1, w2, w4}, w1) = {{w2}, {w3}} M, w1 � K(p ∨ ¬s)
r(Jp→ sK, w1) = r({w2, w3, w4}, w1) = ∅

r(Jp→ ¬sK, w1) = r({w1, w2, w3}, w1) = {{w4}} M, w1 � K(p→ ¬s)
r(Jp ∨ ¬pK, w1) = r(W,w1) = {∅} M, w1 � K(p ∨ ¬p)

Table 5.3: partial representation of an MA model for Proposition 5.4

modifications to the model in Fig. 5.11, which are required to restore full closure, on
the basis of minimal fallibilist assumptions. In addition to raising this challenge, in
the next section I will present impossibility results to the effect that fallibilists who
insist on full closure will lead us back into the Problem of Vacuous Knowledge.

5.2.4 Finer-Grained Structure

In this section, I return to an issue first raised in §5.1.4, namely the distinction
between logical structure and syntactic structure. As we have seen, by adding points
to a model we can pull apart the extensions of logically inequivalent formulas, to
which we can then assign different alternative sets in our MA model; but we cannot
pull apart the extensions of logically equivalent formulas, so we cannot assign different
alternative sets to them in our MA model. One might think that given the example
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Figure 5.11: partial representation of an MA model for Proposition 5.4
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of multiple paths to knowing a disjunction in §5.1.1, it is not clear why the logical
equivalence of ϕ and ψ should imply that ϕ and ψ have the same alternative sets.
For one formula that is not syntactically disjunctive may be logically equivalent to
another formula that is: e.g., p is logically equivalent to (p∧ q)∨ (p∧¬q). One might
think that we should allow that in some cases, while there may be only one path to
knowing p, there are multiple paths to knowing (p ∧ q) ∨ (p ∧ ¬q). To see where this
idea leads, let us define a new class of models in which logically equivalent formulas
may have different alternative sets. Form is the set of formulas of our language.

Definition 5.5 (SMA Model). A syntactic multipath alternatives model is a tuple
M of the form 〈W, u, r, V 〉 where W = 〈W, {Ww}w∈W 〉 with W a non-empty set and
w ∈ Ww ⊆ W ; u : Form×W → P(W ), r : Form×W → P(P(W )), and V : At→ P(W ).

We define truth in a SMA model following the same pattern as Definition 5.2.

Definition 5.6 (Truth in a SMA Model). Given a SMA model M = 〈W, u, r, V 〉
with w ∈ W and a formula ϕ in the epistemic-alethic language, we define M, w � ϕ

as follows (with propositional and � cases as usual):

M, w � Kϕ iff ∃A ∈ r(ϕ,w): A ∩ u(ϕ,w) = ∅.

I will now show that if single-premise logical closure holds, then the move from MA
to SMA models is not necessary for the purposes of representing IALs’ knowledge.
In order for single-premise logical closure to hold, it must be that if ϕ is a logical
consequence of ψ, then every path to knowing ψ covers a path to knowing ϕ:24

∀B ∈ r(ψ,w)∃A ∈ r(ϕ,w): A ⊆ B. (5.1)

Now suppose that ϕ and ψ are logically equivalent, so we also have

∀B ∈ r(ϕ,w)∃A ∈ r(ψ,w): A ⊆ B. (5.2)

Together (5.1) and (5.2) are consistent with r(ϕ,w) 6= r(ψ,w). Hence we can combine
24Here I assume that u satisfies the RO∃∀ condition from §4.B.
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single-premise logical closure with the idea that, e.g., p and (p ∧ q) ∨ (p ∧ ¬q) have
different alternative sets. However, we can show that their having different alternative
sets is a not a reflection of a real distinction, but rather a reflection of redundancy.
To do so, we first define an operation on r functions that eliminates redundancies.

Definition 5.7 (r− function). Given a function r : Form ×W → P(P(W )), define
the function r− : Form×W → P(P(W )) as follows:

r−(ϕ,w) = {B ∈ r(ϕ,w) | ∀A ∈ r(ϕ,w): A 6( B}.

The following fact states the sense in which the extra alternative sets in r(ϕ,w)

that are not in r−(ϕ,w) are redundant for representing the agent’s knowledge.

Fact 5.1 (From r to r−). Where M = 〈W, u, r, V 〉 is an SMA model and M− =

〈W, u, r−, V 〉, the following holds for any formula α:

M, w � α iff M−, w � α.

The final fact in the argument is that while (5.1) and (5.2) are jointly consistent
with r(ϕ,w) 6= r(ψ,w), they are not jointly consistent with r−(ϕ,w) 6= r−(ψ,w).

Fact 5.2. If (5.1) and (5.2) hold for r−, then r−(ϕ,w) = r−(ψ,w).

Proof. Assume (5.1) and (5.2) hold for r− and suppose for reductio that there is some
C ∈ r−(ϕ,w) such that C 6∈ r−(ψ,w). It follows by (5.2) that there is B ∈ r−(ψ,w)

such that B ( C, so by (5.1) there is A ∈ r−(ϕ,w) such that A ⊆ B. But then there
are A,C ∈ r−(ψ,w) such that A ( C, contradicting the definition of r−. It follows
that r−(ϕ,w) ⊆ r−(ψ,w), and an analogous argument shows r−(ψ,w) ⊆ r−(ϕ,w).

Together Facts 5.1 and 5.2 show that if single-premise logical closure holds, then
the non-redundant alternative set representations for logically equivalent formulas
must be the same. In the redundant representation, (p∧q)∨(p∧¬q) may indeed have
multiple alternative sets while p has only one, but this is because there are alternative
sets A,B ∈ r((p∧q)∨ (p∧¬q), w) such that A ( B, so B is redundant. In particular,
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B may be the alternative set for the path to knowing (p ∧ q) ∨ (p ∧ ¬q) via knowing
(p∧ q), while A may be a strictly smaller alternative set for the path to knowing the
disjunction without knowing either disjunct. However, when we eliminate redundant
alternative sets like B, we have r−(p, w) = r−((p ∧ q) ∨ (p ∧ ¬q), w).

If r−(ϕ,w) = r−(ψ,w) whenever ϕ and ψ are logically equivalent, then we might
as well use the r function that ignores syntax, setting r(JϕK, w) = r−(ϕ,w) =

r−(ψ,w) = r(JψK, w). One difference is that with the r function, if α and β are
logically inequivalent formulas such that JαK = JβK happens to hold in our model,
then we must add points to the model such that JαK 6= JβK in order to have r(JαK, w) 6=
r(JβK, w). By contrast, with the r function, we can have both JαK = JβK and
r−(JαK, w) 6= r−(JβK, w). Whether to use r or r becomes a matter of modeling pref-
erence: in MA models, we may have to add more points, whereas in SMA models,
we have to define r on more inputs (Form vs. P(W )). Either way, the importance of
Facts 5.1 and 5.2 is to show that given closure under logical equivalence, the multiple
paths to knowledge of ϕ arise from its logical structure, not its syntactic structure.

Where SMA models become essential is in representing views of knowledge that
reject closure under logical equivalence even for IALs, views according to which there
are logically equivalent ϕ and ψ such that knowing ϕ requires more empirical elimina-
tion of possibilities than knowing ψ. For example, as I will discuss in §6.2.2, Dretske
[1970] seems to implicitly reject closure under logical equivalence while explicitly ac-
cepting closure principles like K(ϕ ∧ ψ) → Kϕ and Kϕ → K(ϕ ∨ ψ). While we
cannot represent such views in MA models, we can do so in SMA models. Not only
can we represent such views, but we can solve a problem for them. Recall from the
impossibility results of §4.B.1 that in the framework of Fallibilism 1.0, validating ei-
ther of these principles (even without full single-premise closure) leads to the Problem
of Vacuous Knowledge.25 By contrast, by taking advantage of the multipath picture,
we can transfer the consistency result of Proposition 5.4 from MA models to SMA
models to show that fallibilists can accept any special cases of single-premise closure,
such as K(ϕ ∧ ψ) → Kϕ and Kϕ → K(ϕ ∨ ψ), while avoiding vacuous knowledge.

25To be precise, the impossibility result for K(ϕ ∧ ψ) → Kϕ in Proposition 4.4 also assumed a
special case of closure under logical equivalence, Kϕ↔ K((ϕ ∨ ψ) ∧ ϕ).
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The following fact gives the simple transformation from MA models to SMA models.

Fact 5.3 (From MA to SMA Models). Given a MA model M = 〈W, u, r, V 〉, define
a SMA model N = 〈W, u, r, V 〉 by

r(ϕ,w) = r(JϕK, w); (5.3)

u(ϕ,w) = u(JϕK, w). (5.4)

For all w ∈ W and formulas ϕ, M, w � ϕ iff N, w � ϕ, and if M satisfies any of the
conditions of Proposition 5.4, then N satisfies the corresponding conditions:

1. (r-RofA) if w ∈ JϕK, then r(ϕ,w) = ∅;

2. (enough) if w ∈ JϕK, then ∃A ∈ r(ϕ,w): A ⊆ JϕK;

3. (noVK ) if JϕK 6= Ww, then ∅ 6∈ r(ϕ,w);

4. (overlap) ∀A ∈ r(ϕ,w): if A ∩ JϕK 6= ∅, then ∃ψ: JψK ( JϕK and A ∈ r(ψ,w);

5. (cover) if JψK ⊆ JϕK, then ∀B ∈ r(ψ,w) ∃A ∈ r(ϕ,w): A ⊆ B;

6. (r-possible)
⋃

r(ϕ,w) ⊆ Ww;

7. (A-space) ∀S ⊆ At ∃s ∈ W : S = {p ∈ At | s ∈ V (p)};

8. (A-contrast+) if ∃p ∈ At: JϕK ⊆ J±pK, then ⋃ r(ϕ,w) ⊆ JϕK;

9. (fallibilism) ∃ϕ∃w ∈ W ∃A ∈ r(ϕ,w): w ∈ JϕK and A ( JϕK.

Together Proposition 5.4 and Fact 5.3 show that there are SMA models satisfying
conditions 1 - 9. Of course, it follows that any weakenings of conditions 1 - 9 are also
consistent. The important point, for our purposes, is that the multipath picture allows
fallibilists who reject full single-premise closure to accept any weakenings of cover for
specific instances of single-premise closure, while avoiding vacuous knowledge.

I will return to views like Dretske’s that weaken single-premise closure in §6.2.2.
First, however, we must consider what happens if we go in the other direction and
add the assumptions necessary for full multi-premise closure in the multipath picture.
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5.3 Full Closure

By Proposition 5.2, full epistemic closure requires the combine assumption on r.
What do I say to fallibilists who wish to add combine to the Five Postulates? I
cannot say that the addition will result in inconsistency, since it will not.

Proposition 5.5 (Consistency II). The nine conditions of Proposition 5.4 plus com-

bine are consistent.

Proof. The model in Fig. 5.12 witnesses the consistency of the ten conditions.

The model in Fig. 5.12 can be seen as coming from my preferred model in Fig.
5.11 by two additional steps. Step 4: if we assume that ruling out w3 is not necessary
in order to know p ∧ ¬s or to know ¬s, then we modify r3 to r4 by taking w3 out
of all alternative sets for Jp ∧ ¬sK and J¬sK; so r4(Jp ∧ ¬sK, w1) = {Jp ∧ ¬sK \ {w3}}
and r4(J¬sK, w1) = {J¬sK \ {w3}}. Step 5: since knowing ¬s is a path to knowing
propositions logically weaker than ¬s, modify r4 to r5 by adding the alternative
sets for J¬sK to the set of alternative sets for any weaker Q; so if J¬sK ⊆ Q, then
r5(Q,w) = r4(Q,w) ∪ r4(J¬sK, w). We can do the same for p ∧ ¬s, but recall from
the remark after Definition 5.2 that we display our models in a non-redundant form
so that if A,B ∈ r(P,w) and A ( B, then we do not display B as an alternative set.
The result is the model in Fig. 5.12, and observe that it satisfies combine.

Although as a technical matter the model in Fig. 5.12 establishes Proposition 5.5,
as a conceptual matter there are two problems. First, what is the justification for
Step 4? In my view, it is not a minimal fallibilist assumption that knowing p ∧ ¬s
and knowing ¬s do not require ruling out the world w3 where s is true. Its removal
from the alternative sets seems to be an ad hoc effort to enforce closure. Moreover,
if knowing p∧¬s and ¬s does not require ruling out w3, why should it require ruling
out the even more bizarre (perhaps impossible) world w4 in which p and s are both
true? I see no good argument for this position, but note that if we were to remove
w4 from the alternative sets, then we would violate noVK in row four.

The last observation suggests a problem lurking for full closure. So far I have
been assuming that the mundane proposition p and the skeptical hypothesis s are
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Figure 5.12: partial representation of an MA model for Proposition 5.5
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incompatible in some weaker sense than p→ ¬s being metaphysically necessary. But
let us now assume that p→ ¬s is metaphysically necessary at the actual world w1, so
any (p∧ s)-points like w4 are not possible worlds in Ww1 . If we also adopt r-possible
from §5.1.3, so alternative sets for propositions only contain possible worlds, then we
must remove w4 from the alternative sets. Doing so starting from my preferred model
in Fig. 5.11 and making adjustments to satisfy cover and enough, we obtain the
model in Fig. 5.13 that still satisfies all of the conditions in Proposition 5.4. However,
if we remove w4 from the alternative sets in the “closed” model in Fig. 5.12, then we
violate noVK in row four. In fact, the problem with full closure here is general, not
merely with the model in Fig. 5.12. For the following proposition, think of P as the
mundane proposition and S as the metaphysically incompatible skeptical hypothesis.
After giving the proof, I will explain the argument informally below.

Proposition 5.6 (Impossibility III). There is no MA model satisfying the following
conditions (but there are MA models satisfying all but combine, as in Fig. 5.13):

1. (SK) For some w ∈ W and P, S ⊆ W :

(a) w ∈ S;
Read: the skeptical hypothesis S is false at w.

(b) P ∩ S ∩Ww = ∅;
Read: P and S are incompatible as a matter of metaphysical necessity.

(c) ∀A ∈ r(P,w): A ∩ S = ∅;
Read: knowing P does not require ruling out skeptical S-worlds.

(d) ∀A ∈ r(S,w): A ∩ S 6= ∅;
Read: knowing not-S requires ruling out some S-worlds.
Note: if S = JsK for s ∈ At, then (d) follows from noVK and A-contrast.

2. (r-possible)
⋃

r(P,w) ⊆ Ww;

3. (enough) if w ∈ P , then ∃A ∈ r(P,w): A ⊆ P ;

4. (cover) if Q ⊆ P , then ∀B ∈ r(Q,w) ∃A ∈ r(P,w): A ⊆ B;
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Figure 5.13: partial representation of an MA model for Proposition 5.4 (w4 6∈Ww1)
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5. (combine)

∀P, P ′ ⊆ W ∀A ∈ r(P,w) ∀A′ ∈ r(P ′, w) ∃B ∈ r(P ∩ P ′, w): B ⊆ A ∪ A′.

Proof. By cover, for all B ∈ r(P ∩ S), there is some A ∈ r(S,w) such that A ⊆ B.
It follows by (d) that

∀B ∈ r(P ∩ S): B ∩ S 6= ∅. (5.5)

By (a) and enough, there is some A ∈ r(P ∩ S,w) such that A ⊆ P ∩S, which with
(b) and r-possible implies A = ∅, so

∅ ∈ r(P ∩ S,w). (5.6)

Given P ∩ (P ∩ S) = P ∩ S, (5.6) and combine together imply

∀A ∈ r(P,w) ∃B ∈ r(P ∩ S,w): B ⊆ A ∪ ∅. (5.7)

Observe that (5.7), (c), and (5.5) are inconsistent.

Remark 5.4. Here is the argument for Proposition 5.6 informally. Assume p→ ¬s is
necessary and knowable a priori, without the empirical elimination of any possibilities,
as Hawthorne [2004a, 39] assumes for some skeptical hypotheses. Add to this the
minimal fallibilist assumption that knowing p (relative to ordinary contexts) does not
require ruling out any s-worlds. We must ask: does knowing p∧¬s require ruling out
any s-worlds? Case 1: suppose the answer is ‘no’. Then assuming that knowing p∧¬s
suffices for knowing ¬s, it follows that knowing ¬s does not require ruling out any
s-worlds, which violates the conjunction of noVK and A-contrast. Case 2: suppose
the answer is ‘yes’. Then the agent can know p and p → ¬s individually, since this
does not require ruling out s-worlds, without knowing something logically equivalent
to the conjunction of p and p → ¬s, namely p ∧ ¬s, which violates multi-premise
closure by violating combine. In short, full closure requires vacuous knowledge.

I have already explained in Chapter 4 why I reject vacuous knowledge, so I con-
clude as in Claim 5.2 that fallibilists should reject combine and multi-premise closure.
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Hence we are lead to reject the principle (Kϕ∧Kψ)→ K(ϕ∧ψ) for reasons distinct
from the typical ones concerning probability and “accumulation of risk” (see, e.g.,
Skyrms 1967; Goldman 1975, Hawthorne 2004a, §1.6).26,27 Those who can stomach
the idea that an agent may know p and know p→ ¬s without knowing ¬s may pause
at the idea that such an agent could fail to know p∧ (p→ ¬s). But one should not be
fooled by syntax into thinking that there is something harmless about putting p and
(p → ¬s) together with ∧. We must remind ourselves that p ∧ (p → ¬s) is logically
stronger than ¬s, so if it is difficult to know the latter, then it must also be difficult
to know the former. The sense that it should be easy to know p∧ (p→ ¬s) (just put
the ∧ in between!) is a cognitive illusion induced by too much focus on syntax.

Almost the same argument as that of Remark 5.4 applies against closure under
known strict bi-implication (recall §5.1.5). Assume that p↔ (p∧¬s) is necessary and
knowable a priori, without the empirical elimination of possibilities, as Hawthorne
[2004a, 39] assumes for some skeptical hypotheses. Add to this the minimal fallibilist
assumption that knowing p (relative to ordinary contexts) does not require ruling out
any s-worlds. We must ask: does knowing p ∧ ¬s require ruling out any s-worlds?
Case 1: suppose the answer is ‘no’. Then assuming that knowing p ∧ ¬s suffices for
knowing ¬s, it follows that knowing ¬s does not require ruling out any s-worlds, which

26Assuming (incorrectly) that the only worries about multi-premise closure have to do with accu-
mulation of risk, Hawthorne [2004a, 35n88] writes:

[T]hose who accept SPC [single-premise closure] will also, presumably, be happy with
the following special case of MPC [multi-premise closure]: Necessarily, if one knows
p and, in conjunction with a set of premises that are known with certainty a priori,
competently deduces q, thereby coming to believe q, retaining one’s knowledge of p
and of that set of premises throughout, then one comes to know q. The standard kind
of worry concerning MPC—that small risks add up to big risks—has far less force with
regard to this special case.

As explained in Remark 5.4, I reject this special case of multi-premise closure for different reasons.
27Lasonen-Aarnio [2008] argues that single- and multi-premise closure “come as a package: either

both will have to be rejected or both will have to be revised” (157). The argument for this claim is
that both single- and multi-premise closure are susceptible to similar kinds of “accumulation of risk”
failures, given the fallibility of humans in deductive reasoning. There are several reasons why this
is orthogonal to our discussion. For one thing, as discussed in §2.1, I have been considering which
closure principles hold for ideally astute logicians (IALs) who are deductively infallible. Setting this
point aside, my claim is that single-premise logical closure does not lead to the Problem of Vacuous
Knowledge, while multi-premise logical closure does. This claim is consistent with Lasonen-Aarnio’s
view that both types of closure are problematic for accumulation of risk reasons.
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violates the conjunction of noVK and A-contrast. Case 2: suppose the answer is
‘yes’. Then the agent can know p, since this does not require ruling out s-worlds,
without knowing p∧¬s, which violates closure under known strict bi-implication. In
short, closure under known strict bi-implication requires either vacuous knowledge or
a rejection of K(p ∧ ¬s)→ K¬s. In §6.1.2, I will argue against Kp↔ K(p ∧ ¬s).

The formal version of the result can be stated as in Proposition 5.7, using the
fact from Proposition 5.2 that closure under strict bi-implication corresponds to the
M-equiv condition. One can easily prove a similar result for closure under known
strict bi-implication, but the corresponding condition on r is more complicated (and
involves the u function), so I omit it. The informal argument above suffices.

Proposition 5.7 (Impossibility IV). There is no MA model satisfying the following:

1. (SK) For some w ∈ W and P, S ⊆ W :

(a) P ∩ S ∩Ww = ∅;

(b) ∀A ∈ r(P,w): A ∩ S = ∅;

(c) ∀A ∈ r(S,w): A ∩ S 6= ∅;
Note: if S = JsK for s ∈ At, then (d) follows from noVK and A-contrast.

2. (M-equiv) if Q ∩Ww = P ∩Ww, then r(Q,w) = r(P,w);

3. (cover) if Q ⊆ P , then ∀B ∈ r(Q,w) ∃A ∈ r(P,w): A ⊆ B.

Proof. By (a) and M-equiv, r(P,w) = r(P ∩ S,w). By cover, for all B ∈ r(P ∩ S)

there is some A ∈ r(S,w) such that A ⊆ B. It follows by (c) that for all B ∈ r(P ∩S),
B ∩ S 6= ∅, which contradicts (b) given r(P,w) = r(P ∩ S,w).

Using the SMA models of §5.2.4, we can state an analogue of Proposition 5.7 that
shows the inconsistency using only the condition on r corresponding to K(ϕ ∧ ψ)→
Kψ, instead of full-single premise logical closure, but I leave this to the reader.

Some fallibilists who were willing to give up multi-premise closure to avoid vacuous
knowledge may claim that it is worth biting the bullet on vacuous knowledge after all
to keep closure under known strict bi-implication (or bi-implication known a priori).
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In Chapter 6, I will further defend my choice to reject this closure principle rather
than accept vacuous knowledge. For now, observe that if we run my three step
argument at the end of §5.2.3 for generating the model in Fig. 5.11 from minimal
fallibilist assumptions, together with the assumption that w4 is an impossible point
that should not be included in alternative sets, then we uniquely obtain the model in
Fig. 5.13 that violates the closure principle. In this sense, minimal fallibilism leads
directly to a rejection of closure under known strict bi-implication.

There are other ways of constructing MA models that satisfy the conditions of
Proposition 5.4, besides the simple three step argument. In particular, we can con-
struct such MA models from the world-orderings in RA models by a recursive con-
struction, but I will not go into the details here.28

Let us take stock. Working with the Multipath Picture of Knowledge, we have
developed a fallibilist theory of the r function that solves the problems of Vacuous
Knowledge (§4.1) and Containment (§4.2), as shown by Proposition 5.4, without re-
sorting to Knowledge Inflation (§4.3). To underscore the last point, in the next section
I will present an account of the epistemic effect of “putting two and two together”
that shows how competent deduction can extend knowledge without inflating it.

5.4 The Transfer Picture of Deduction

So far, we have studied the issue of closure statically, taking as our agent an ideally
astute logician who has already finished deducing whatever follows from what she
knows. Our job has been to reason what about what this “finished” agent knows. If
you tell me that she knows ϕ ∧ ψ, may I conclude that she knows ϕ? In my view,
yes. If you tell me that she knows ϕ and ϕ→ ψ, may I conclude that she knows ψ?
In my view, not necessarily—I need to hear more about the case. And so on.

But what about the rest of us, who are never finished deducing whatever follows
from what we know? In this final section, I will present a picture of the epistemic
dynamics of deduction, or of putting two and two together, for us “unfinished” agents.
I call this picture the Transfer Picture of Deduction. It is not a picture of what must

28Note added in ILLC version: see the Multipath Theorem of Holliday 2013b, §3.5.
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go on in an agent’s head in order for her to count as having competently deduced
something. Instead, it is a picture of the epistemic effect of a competent deduction,
compatible with different views about what it takes to competently deduce.

Let me digress momentarily to note that according to Harman and Sherman [2004,
495], talking as if there is an activity of deducing is a serious error:

A more basic worry about the passage from Williamson is its presupposi-
tion that deduction is a kind of inference, something one does. Hawthorne
apparently presupposes the same thing . . . .

Surely, this confuses questions of implication with questions of inference.
A deduction is a structured object, an abstract argument or proof. True,
in order to check or exhibit implications, we sometimes construct argu-
ments. And inference can be involved in that construction. But a deduc-
tion is the abstract argument that is constructed. Although constructing
the argument is something someone does, the deduction itself is not some-
thing someone does. The deduction is not the constructing of the deduc-
tion . . . . The conclusion of a deduction is not in general the conclusion
of an inference. (The conclusion of an inference might be that a certain
construction is indeed a valid deduction. The whole argument is then the
conclusion of the inference.)

I agree with Harman and Sherman that there is a sense of the noun ‘deduction’
referring to a structured, abstract object. But why can we (and Williamson and
Hawthorne) not use the English verb ‘deduce’ to refer to what Sherlock Holmes does
when he puts two and two together to conclude that so-and-so is the murderer? In
the Oxford English Dictionary [2012], Definition 6.a. of ‘deduction’ is “the process
of deducing or drawing a conclusion from a principle already known or assumed.” I
trust that in what follows, readers are capable of using context to determine when we
are talking about the process and when we are talking about the abstract object.

Suppose that we have a model M representing the epistemic state of our agent at
some initial time. Subsequently, the agent puts two and two together and draws a
conclusion from something(s) she already knows. If she gains new knowledge in this
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way, then we need to update M to M′ to reflect her new and improved epistemic
state. In my view, this is a matter of updating the u function, which tells us which
possibilities are uneliminated as alternatives for which propositions. Recall from §4.3
the following rule for updating the u function, inspired by Klein [1995]:

Klein’s Rule: if r(P,w) ∩ u(P,w) = ∅ and the agent competently deduces Q
from P , then update u to u′ such that r(Q,w) ∩ u′(Q,w) = ∅.29

In §4.3 I argued that this rule leads to a serious Problem of Knowledge Inflation.
My alternative view is based on the idea, familiar from the RO∀∃ theories of

Chapter 3, that a single not-P -and-not-Q possibility x may be eliminated as an
alternative for P but not eliminated as an alternative for Q. For example, suppose a
scientist is trying to determine whether a hypothesis P is true. She draws up a list
of various ways x, y, z, . . . in which the hypotheses could be false and starts running
experiments to try to rule them out. When she rules out one of the ways x in which
P could be false, she has eliminated x as an alternative for P . However, I would not
say that she has thereby eliminated x as an alternative for every other proposition
Q falsified by x, because for many of these Q, her inquiry concerning the question of
P in which she eliminates x does not at all concern the question of Q. (One could
have various theories about what it is for an inquiry to concern a question, but we
can all think of clear cases in which a question was not at all a concern of one of
our inquiries.) Now suppose that the scientist rules out the other possibilities and
thereby comes to know P . Some time later, in a discussion at a conference on a
different topic, someone asks her about her view on some proposition Q. She thinks
to herself for a moment, when she realizes that Q follows from P . Assuming that
she still knows P ,30 even if all of the details of her experiments concerning P are not
fresh in her mind, what happens when she deduces Q from P? Here is my answer:

Transfer: if ∃A ∈ r(P,w): A ∩ u(P,w) = ∅ and the agent competently deduces
Q from P , then update u to uP⇒Q such that uP⇒Q(Q,w) = u(Q,w) ∩ u(P,w).

29As noted before, this does not define a unique update rule, but picks out a class of update rules.
30Assume that realizing the consequence Q of P does not lead her to give up her belief in P .
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In other words, all possibilities that were eliminated as alternatives for the known
premise P become eliminated as alternatives for the conclusion Q. The epistemic
effect of deduction is to transfer the elimination relation from alternatives for the
premise to alternatives for the conclusion. Assuming full closure, the alternatives
for the premise will cover the alternatives for the conclusion, so the transfer will
correspond to our scientist coming to know Q from P . Deduction saves her the
effort of doing new experiments to eliminate those alternatives for the conclusion or
of having to recall the details of her past experiments to see how they bear on the
conclusion. But deduction does not eliminate alternatives for the conclusion that were
never eliminated as alternatives for the premise—that would be knowledge inflation.

Until this section, I have developed my framework in such a way as to be com-
patible with a variety of different views about what it is to “eliminate” a possibility.
But the Transfer Picture of Deduction constrains the possible views of elimination.
When the scientist trying to determine whether P is true draws up a list of various
ways x, y, z, . . . in which P could be false and then runs an experiment whose result
is incompatible with x,31 this is a paradigm case of what might be called the “direct”
empirical elimination of x as an alternative for P . According to the Transfer Picture,
whether this counts as the direct, empirical elimination of x as an alternative for
some Q depends on whether the inquiry that the experiment is part of concerns the
question of Q. Moreover, according to the Transfer Picture, there is another way that
the scientist could eliminate x as an alternative for some Q, other than this kind of
direct, empirical elimination of x as an alternative for Q; namely, the agent could
deduce Q from some known proposition P for which x has been eliminated as an
alternative, either by direct, empirical elimination or by another deduction.

My proposal will actually be more general than Transfer. First, I will include the
case of an agent deducing a conclusion from multiple premises. Second, I will modify

31A skeptic might say: have you really ruled out x? What if a demon is manipulating your
measurement apparatus? But if x stands for a possibility in which the measurement apparatus
is working correctly and the result of the measurement is 0, then in the actual world when the
measurement apparatus is working correctly and the result of the measurement is 1, I would say
that the scientist has ruled out x. One may want to add that the scientist knows that her apparatus
is working properly, but as fallibilists we will say that she knows this provided that she has ruled
out the relevant failure modes for the apparatus, which does not include the skeptic’s demon.
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the u function to allow that the agent may know ϕ and yet not know a logically
equivalent ψ until she deduces ψ from ϕ. Before giving the definitions, I should note
that this approach to the dynamics of deduction also works for the SA models of
Chapter 3, but I will present it here in terms of the Multipath Picture of §5.2.

First, I will expand the epistemic language with new dynamic deduction operators
of the form 〈ϕ1, . . . , ϕn ⇒ ψ〉, reading 〈ϕ1, . . . , ϕn ⇒ ψ〉χ as “after the agent compe-
tently deduces conclusion ψ from premises ϕ1, . . . , ϕn, χ is the case.” Various ways of
adding dynamic operators to the epistemic language to stand for acts of deduction or
inference have been explored in depth in Velázquez-Quesada 2009, van Benthem and
Velázquez-Quesada 2010, and Velázquez-Quesada 2011, but in a different semantic
framework. I leave it to future work to compare these approaches to the one here.

Definition 5.8 (Deductive-Epistemic Language). For a set of atomic sentences At,
the deductive-epistemic language is generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ | Kϕ | 〈ϕ, . . . , ϕ⇒ ϕ〉ϕ,

where p ∈ At. Let Form be the set of all formulas.

To allow that an agent may know ϕ and yet not know a logically equivalent ψ
until she deduces ψ from ϕ, I will now view the objects of an agent’s knowledge
not as sets-of-worlds propositions, but rather as structured propositions that can be
distinguished as finely as formulas of our language. In particular, I will replace the
function u : P(W ) ×W → P(W ) with a function u : Form ×W → P(W ), so that a
possibility may be eliminated as an alternative for one structured proposition/formula
but not as an alternative for another, for the same reasons as discussed above.

However, the function r : P(W )×W → P(W ) will be the same as before, reflecting
my view that the alternative sets for a propositions are a function of the proposition’s
extension in logical space. The reason an agent may know ϕ and yet not know a
logically equivalent ψ is not because knowing one of them requires empirically ruling
out more or different possibilities than the other, but rather because an agent may
rule out possibilities as alternatives for one of them without realizing the connection
between ϕ and ψ. In short, it is a matter of the u function, not the r function.
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Definition 5.9 (MDA Models). A multipath deductive alternatives model is a tuple
M = 〈W, u, r, V 〉 where W, r, and V are as in a MA model (Definition 5.1) and
u: Form×W → P(W ).

Hence MA models are MDA models where JϕK = JψK implies u(ϕ,w) = u(ψ,w). For
now, I do not assume anything about the relation of u(ϕ,w) and u(ψ,w) for distinct
ϕ and ψ (see after Proposition 5.9), although one may assume u(ϕ,w) ⊆ JϕK.

Having moved from MA to MDA models, I can now state in general the rule for
updating a MDA model M to a new MDA model Mϕ1,...,ϕn⇒ψ, reflecting the change in
our agent’s epistemic state as a result of her competently deducing ψ from ϕ1, . . . , ϕn.
Of course, since an agent cannot deduce ψ from just any premises ϕ1, . . . , ϕn, we will
need to put a further precondition on this action, but that will come later.

Definition 5.10 (Deductive Change). Given a MDA model M = 〈W, u, r, V 〉, we
define the model Mϕ1,...,ϕn⇒ψ = 〈W, uϕ1,...,ϕn⇒ψ, r, V 〉 as follows. First, let

Iw = {i ≤ n |M, w � Kϕi}

be the set of indices of premises known at w. Then where χ 6= ψ, for all w ∈ W , let

uϕ1,...,ϕn⇒ψ(χ,w) = u(χ,w);

uϕ1,...,ϕn⇒ψ(ψ,w) = u(ψ,w) ∩ ⋂
i∈Iw

u(ϕi, w).

The idea is the same as before: all possibilities that were eliminated as alternatives
for the known premises become eliminated as alternatives for the conclusion.

The range of worlds w for which we change u(ψ,w) matters for the agent’s higher-
order knowledge after the deduction. But since my main interest here is in uniterated
knowledge, I set aside this subtlety and simply modify u(ψ,w) for all w ∈ W .

We are now ready to define truth for the deductive-epistemic language, taking the
precondition formula pre(ϕ1, . . . , ϕn ⇒ ψ) for deduction as a parameter.

Definition 5.11 (Truth in MDA Models). Given a MDA model M = 〈W, u, r, V 〉
with w ∈ W and a formula ϕ in the deductive-epistemic language, we define M, w � ϕ
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as follows (with propositional cases as usual):

M, w � �ϕ iff Ww ⊆ JϕKM;

M, w � Kϕ iff ∃A ∈ r(JϕKM, w): A ∩ u(ϕ,w) = ∅;
M, w � 〈ϕ1, . . . , ϕn ⇒ ψ〉χ iff M, w � pre(ϕ1, . . . , ϕn ⇒ ψ) and

Mϕ1,...,ϕn⇒ψ, w � χ.

One may consider various candidates for pre(ϕ1, . . . , ϕn ⇒ ψ), but I will assume32

pre(ϕ1, . . . , ϕn ⇒ ψ) := �(ϕ1 ∧ · · · ∧ ϕn → ψ),

so not only can an agent deduce conclusions that follow logically from premises, as in

ϕ ∧ ψ ⇒ ϕ and
ϕ, ϕ→ ψ ⇒ ψ,

for which
�((ϕ ∧ ψ)→ ϕ) and
�((ϕ ∧ (ϕ→ ψ))→ ψ)

are valid,33 but the agent can even “deduce” conclusions that are strictly implied by
(but do not follow logically from) the premises, as in

red⇒ colored,

where red and colored are atomic sentences such that

�(red→ colored)

32Here one may wish to impose a constraint on our models mentioned after Definition 5.1, that if
v ∈Ww, then Wv = Ww, which implies that the precondition is met at w just in case it is also met
at all worlds possible relative to w. However, this will not matter for our purposes.

33Therefore, K�((ϕ ∧ ψ) → ϕ) and K�((ϕ ∧ (ϕ → ψ)) → ψ) are valid, assuming the enough
condition, so the agent knows the entailments. I have not, however, built into the precondition of
the deduction that the agent must know the entailment to perform the deduction.
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is true at our given pointed model.34

With this setup, we can represent different views about the extent to which com-
petent deduction is guaranteed to extend knowledge. For example, recall that over
MA models satisfying cover and RO∃∀, the rule

RM ϕ→ ψ

Kϕ→ Kψ

is sound. Over MDA models satisfying only cover, this is not the case. However:

Proposition 5.8 (Single-Premise Deductive Logical Closure). The following dynamic
analogue of RM is sound over MDA models satisfying cover:

DRM ϕ→ ψ

Kϕ→ 〈ϕ⇒ ψ〉Kψ .

Proof. We first observe that for any model M and formulas ψ and ϕ,

JψKM = JψKMϕ⇒ψ , (5.8)

which means that deducing ψ does not change the truth value of ψ. The argument is
a simple induction on the structure of ψ. Suppose ψ is of the form Kχ. To show: for
all w ∈ W , M, w � Kχ iff Mϕ⇒ψ, w � Kχ. By Definition 5.10, since χ 6= ψ, we have

uϕ⇒ψ(χ,w) = u(χ,w). (5.9)

By the inductive hypothesis, JχKM = JχKMϕ⇒ψ , which with (5.9) implies that there is
some A ∈ r(JχKM, w) such that A ∩ u(χ,w) = ∅ iff there is some A ∈ r(JχKMϕ⇒ψ , w)

such that A ∩ uϕ⇒ψ(χ,w) = ∅, which gives M, w � Kχ iff Mϕ⇒ψ, w � Kχ.
Now to the main part of the proof, illustrated in Fig. 5.14 below: if ϕ → ψ is

valid, then for any model M,
JϕKM ⊆ JψKM, (5.10)

34As observed in footnote 15, if we assume both r-possible and enough, then �α → Kα is
true, so the agent will know the implication red → colored. I have not, however, built into the
precondition of the deduction that the agent must know the implication to perform the deduction.
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so by cover we have

∀B ∈ r(JϕKM, w) ∃A ∈ r(JψKM, w): A ⊆ B. (5.11)

Now suppose M, w � Kϕ, so there is some B ∈ r(JϕKM, w) such that

B ∩ u(ϕ,w) = ∅. (5.12)

It follows by (5.11) that there is some A ∈ r(JψKM, w) such that

A ∩ u(ϕ,w) = ∅. (5.13)

By Definition 5.10 and the assumption that M, w � Kϕ,

uϕ⇒ψ(ψ,w) = u(ψ,w) ∩ u(ϕ,w). (5.14)

It follows by (5.13) and (5.14) that

A ∩ uϕ⇒ψ(ψ,w) = ∅. (5.15)

Given (5.8), A ∈ r(JψKM, w) implies A ∈ r(JψKMϕ⇒ψ , w), with which (5.15) implies
Mϕ⇒ψ, w � Kψ. Finally, since ϕ → ψ is valid, �(ϕ → ψ) is also valid, so the
precondition in Definition 5.11 is satisfied and we have M, w � 〈ϕ⇒ ψ〉Kψ.

Proposition 5.8 shows that in my proposed version of the Multipath Picture of
Knowledge with the Five Postulates of §5.2.1, if an agent knows ϕ—relative to an
attributor’s context C—and competently deduces a logical consequence ψ from ϕ, then
the agent is guaranteed to know ψ—relative to the same context C. Contextualists
may claim that in certain cases, the attributor’s attending to the fact that the agent
has deduced ψ will change the attributor’s context, but that is a separate issue. If
an agent makes a deduction, unbenownst to the attributor, then her doing so does
not automatically change the attributor’s context. We must be careful not to confuse
the dynamics of deduction, which happens on the side of the knowing agent, with the
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dynamics of context change, which happens on the side of the attributor.
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Figure 5.14: illustration for the proof of Proposition 5.8

We can prove analogues of Proposition 5.8 for other closure principles. For exam-
ple, recall that over MA models satisfying cover, combine, and RO∃∀, the axiom

K (Kϕ ∧K(ϕ→ ψ))→ Kψ

is valid. Over MDA models satisfying cover and combine, this is not the case.
However:

Proposition 5.9 (Deductive Closure Under Known Implication). The following dy-
namic analogue of K is sound over MDA models satisfying cover and combine:

DK (Kϕ ∧K(ϕ→ ψ))→ 〈ϕ, ϕ→ ψ ⇒ ψ〉Kψ.

The proof is similar to that of Proposition 5.8 and left to the reader.
One can multiply results like Propositions 5.8 and 5.9, but the message is clear:

for each static closure principle, we can consider the corresponding dynamic, deduc-
tive closure principle; and just as the validity of a static closure principle over MA
models depends on properties of the r function, the same applies to the validity of
the corresponding dynamic, deductive closure principle over MDA models. I leave
discussion of further technical aspects of this dynamic deductive logic to future work.
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It is also important to observe that static, pure closure principles (recall Remark
2.1) still make sense in this framework. For example, in connection with the view of
elimination suggested above, it seems that any inquiry that concerns the question of ϕ
and ψ concerns the question of ϕ, so if a ¬ϕ-world gets eliminated as an alternative to
ϕ∧ψ, it is also gets eliminated as an alternative for ϕ. In other words, we should adopt
the constraint that u(ϕ,w) ⊆ u(ϕ∧ψ,w), which together with cover guarantees the
validity of the pure closure principle K(ϕ∧ψ)→ Kϕ, and similarly for ψ. Moreover,
it seems that any inquiry that concerns the question of ϕ ∧ ψ concerns the question
of ψ ∧ ϕ, and so on (see the discussion of “syntactic variants” in §6.2.2). Constraints
on the u function (together with cover) give rise to pure closure principles that can
live alongside dynamic deductive closure principles in the Transfer Picture.

At last, we have a model of the epistemic effect of “putting two and two together”
that is so important for us non-ideally astute logicians. Whether putting two and two
together in a certain way always guarantees the extension of knowledge depends on
one’s theory of the r function. But it is important to note that fallibilists with different
theories of the r function can still accept the Transfer Picture of Deduction, given by
Definition 5.10, just as they can still accept the Multipath Picture of Knowledge.

According to my theory of the r function, given by the Five Postulates in §5.2.1,
the principle DK of deductive closure under known implication is not valid. This is
because I do not assume that the combine postulate holds for every pair of propo-
sitions. For the same reason, the principle (Kϕ ∧Kψ) → 〈ϕ, ψ ⇒ ϕ ∧ ψ〉K(ϕ ∧ ψ)

is not valid. Yet competently deducing ϕ ∧ ψ from known premises ϕ and ψ some-
times—indeed often for those who stay away from tricky propositions—results in
knowledge of ϕ ∧ ψ, because the r function satisfies the instance of combine for the
particular propositions JϕKM and JψKM. Let us not forget that validity is a strong
thing. In Chapter 6, I will continue to defend the view that when it comes to these
multi-premise closure principles, validity is something we fallibilists can live without.
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5.5 Conclusion

In this chapter, I have presented new fallibilist views of knowledge and deduction,
the Multipath Picture of Knowledge and the Transfer Picture of Deduction. My
motivating arguments for these pictures in §5.1.1, §5.1.2, and §5.4 were aimed at
all fallibilists, whatever their views on disputed issues like closure and contextual-
ism. What these pictures revealed in §5.2.3 and §5.4 is that the problems of Vacuous
Knowledge, Containment, and Knowledge Inflation from Chapter 4 are artifacts of
the standard but flawed framework of Fallibilism 1.0, not problems inherent in fal-
libilism itself. Finally, in §5.3 and §5.4, I staked a position on the disputed issue of
deductive closure for fallibilists: single-premise logical closure fits well with fallibil-
ism, while multi-premise logic closure and closure under non-logical (bi-)entailment
push fallibilists in the wrong direction, back to vacuous knowledge. In Chapter 6, I
will further defend my position on closure—from both those who think I have not
admitted enough closure, as well as those who think I have admitted too much.

Of course, there is much more to be done to realize the blueprint of the Multipath
Picture of Knowledge in a specific fallibilist theory of knowledge. Like other falli-
bilists, I have appealed to the idea that some possibilities need not be eliminated in
order to know some proposition P relative to a context C, without giving a criterion
for a possibility to be “irrelevant” to knowing P relative to C in that sense. As I
suggested at the end of §5.3 and I will show in other work,35 there are various ways
to generate a multipath function r from a family of world-orderings thought of in
any of the traditional ways, or from a set-selection function r as in Chapter 3; so the
fallibilist who adopts the Multipath Picture is no worse off than traditional fallibilists
with respect to explaining what makes some possibilities “irrelevant” to knowing P .
Nonetheless, some kind of explanation needs to be given, and similarly for the notion
of elimination, the interpretation of which is constrained by the Transfer Picture of
Deduction as discussed in §5.4. I am confident that there are adequate explanations,
but I will not give them here. Instead, I refer to Lawlor [2013] for discussion of
“reasonable alternatives” and to Pryor [2001, §1.2] for discussion of “ruling out.”

35Note added in ILLC version: see Holliday 2013b.



6

Objections and Replies

Here is a recap of our story so far: in Chapter 5, the Multipath Picture of Knowl-
edge and Transfer Picture of Deduction resolved the Problems of Vacuous Knowledge,
Containment, and Knowledge Inflation raised in Chapter 4 for the framework of Fal-
libilism 1.0 proposed in Chapter 3 as a generalization of the RA and subjunctivist
theories from Chapter 2. As argued in §5.3, the complete resolution of the Problem
of Vacuous Knowledge for fallibilism required rejecting the validity of closure under
known implication—and hence multi-premise closure—as well as closure under known
strict (bi-)implication, the key principles used in closure-based arguments for radical
skepticism about knowledge. However, as shown by the consistency of the Five Posu-
late in §5.2.3 and the Transfer Picture in §5.4, fallibilists can maintain single-premise
closure without either vacuous knowledge or knowledge inflation.

In this chapter, I consider objections to my position on closure that accepts single-
premise logical closure but rejects the stronger principle(s) of closure under known
(strict) (bi-)implication. In §6.1.1 and §6.1.2, I consider objections according to which
I have not guaranteed enough closure, while in §6.2, I consider objections according
to which I have guaranteed too much closure. In each case, I argue that the objection
fails. The reasons for their failure illuminate the relation between closure and the
pragmatics of assertion, the structure of skeptical arguments, and the relation between
closure and the logical strength and subject matter of what we know.

260
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6.1 Not Enough Closure

In this section, I consider two arguments according to which my position on closure,
which rejects closure under known (strict) (bi-)implication, does not guarantee enough
closure. I will assume from the beginning that rejecting full closure is preferable to
accepting skepticism. Luper-Foy [1987] remarks that “if the rejection of skepticism
depends on the rejection of the Entailment Principle, then perhaps we would be
better off adopting skepticism” (6). How so? Adopting skepticism means adopting
the view that we know almost nothing about the world, that our ordinary practices of
ascribing knowledge are radically in error. It turns our view of the relation between
ourselves and the world upside-down. The violence done to our view of ourselves
and the world by rejecting closure under known implication, a rarified philosophical
principle, pales in comparison. The idea that we would be better off, in the face of
the “skeptical paradox” [Cohen, 1988], to accept that we know nothing rather than
give up unrestricted closure under known implication strikes me as implausible as
the idea that we would be better off, in the face of Russell’s paradox, to accept true
contradictions rather than give up unrestricted set comprehension.1

I assume that the mentality of “Give me Closure, or Give me (Epistemic) Death!”
does not depend on a confusion between, on the one hand, the denial that agents
always know what they know to be implied by (or what they “competently deduce”
from) what they know, and on the other hand, the claim that agents never know
those things. However, consider the following passage from BonJour 1987:

[If] knowing something does not allow one to reason from it via a known
entailment to some further conclusion and thereby know the result, then
what, one might well ask, is the point of having knowledge in the first
place? In particular, if we infer from our knowledge that a particular
course of action is the best choice in a particular situation, we will not

1In a way, the first idea may be even more radical, since the epistemologist who wishes to retain
closure at the cost of skepticism must be willing to reject almost all of our thought about knowledge,
whereas the set theorist who wishes to retain comprehension at the cost of true contradictions will
argue that by adopting a paraconsistent logic, we may contain the few true contradictions without
too much damage to mathematical thought [Priest, 2011].
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thereby know that it is best, leaving it quite unclear how knowledge can
serve the crucial role of guiding action. (310)

Of course, the phrases ‘does not allow’ and ‘we will not’ mischaracterize the position
of fallibilists why deny full closure. The phrase ‘does not allow’ should be something
like ‘does not guarantee that one can’ and ‘we will not’ should be something like ‘we
are not guaranteed, in virtue of a general closure principle, to . . . ’. BonJour mentions
in an endnote the crucial fact that Nozick does not claim that we never know things in
virtue of their following from things we know via known implications,2 and that Nozick
even discusses “which formal rules always preserve knowledge” (313n22) (although I
would not say that a restricted closure principle states that a “formal rule preserves
knowledge,” which is a confusing expression). However, BonJour claims “this does
not seem to help very much . . . since very many actual entailments fail to fall neatly
under formal rules” (ibid.). But fallibilists who deny full closure do not claim that in
cases where none of their restricted closure principles applies, the agent fails to know
the conclusion of her reasoning. It is rather that she may well know the conclusion,
but this was not guaranteed in virtue of some general closure principle. Obviously it
does not follow from this that there is no point to having knowledge.

6.1.1 Hawthorne on Assertion

Let us call a fallibilist who denies closure under known implication against the skeptic
a “robust fallibilist” [Pritchard, 2005, 35]. The first objection I will consider concerns
the assertions that robust fallibilists are supposedly willing to make. The objection
has two parts, the “abominable conjunction” objection [DeRose, 1995] and what we
might call the “Tortoise” objection [Hawthorne, 2004a]. We begin with the second,
as Hawthorne explains it:

[D]enial of closure interacts disastrously with the thesis that knowledge
is the norm of assertion. One who attempts to conform to this norm but
simultaneously attempts to adhere to the Dretske-Nozick strategy will end

2“[W]e have not said that . . . knowledge never flows down from known premises to the conclusion
known to be implied, merely that knowledge . . . does not always flow down” [Nozick, 1981, 230].
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up behaving rather like a familiar object of ridicule—Lewis Caroll’s (1895)
Tortoise. For if you place such a character in front of a zoo cage containing
a zebra and ask him ‘Do you agree that the thing in the cage is a zebra?’,
he will say ‘Yes’, and if you ask him, ‘Do you also agree that if the thing
in the cage is a zebra, then the thing in the cage is not a cleverly disguised
mule?’, he will also say ‘Yes’. But if you then ask him, ‘So you agree that
the thing in the cage is not a cleverly disguised mule?’, he will now say
‘Oh no. I’m not agreeing to that’. (By his lights, he does not know the
conclusion and thus, given the controlling norm, will not assert it.) Now
sometimes when we have a consequence of our beliefs pointed out to us,
we do not embrace the consequence. Rather, given the unpalatability of
the consequence, we give up one of the original beliefs. But that is not
what is going on here either. The premises of the modus ponens argument
are stably adhered to and yet the conclusion is stably repudiated. (39)

Although there is controversy (see Weiner 2007) surrounding the idea that knowledge
is the norm of assertion, that one must assert a proposition only if one knows the
proposition [Williamson, 2001, Ch. 11], let us grant it for the sake of argument. Even
so, it does not follow that the robust fallibilist would “repudiate” the conclusion of the
modus ponens argument, responding “I’m not agreeing to that,” as in Hawthorne’s
caricature. It does not follow for several reasons. Harman and Sherman [2004] clearly
explain one of the mistakes involved in this form of the Tortoise objection:

Hawthorne argues that this can lead to an odd conversation: Alice asserts
that the animal in the cage is a zebra and agrees that, if the animal is a
zebra, then it is not a cleverly disguised mule; however, she is not willing
to agree that the animal is not a cleverly disguised mule. But this is a
mistake. Alice accepts that the animal is not a cleverly disguised mule.
In fact, she assumes that. She just doesn’t take herself to know it and so
does not assert it, although she can assert that it is something she accepts.
So, we see no difficulty here. (496-497)
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Hawthorne [2004b, 512] still feels uncomfortable that Alice would be unwilling to just
answer “Yes” when asked if the conclusion is true. But it would be natural for her to
reply “I think so,” which hardly makes her an object of ridicule like Caroll’s Tortoise.
On the other hand, what does it mean for Alice to “stably adhere” to the premise that
the thing in the cage is a zebra? Does it mean that she must be willing to re-assert
that it is a zebra, after someone has just raised to her the skeptical hypothesis of
the cleverly disguised mule? Even those who do not deny closure recognize pragmatic
reasons for why making the same type of utterance would be inappropriate after one’s
interlocutor raises a skeptical hypothesis (e.g., Pritchard 2005, §3.2; Turri 2010), and
robust fallibilists can recognize them too. But before turning to these pragmatic
issues, let us consider an objection related to the Tortoise objection.

Suppose that in the passage from Hawthorne, we replace the phrase ‘Do you agree
that . . . ’ by the phrase ‘Do you agree that you know . . . ’. Hence we have moved
up one level epistemically. Now the principle behind Hawthorne’s questions is not
modus ponens, but closure under known implication. The objection becomes: if Alice
is a robust fallibilist, will she not end up “stably adhering” to the premise that she
knows the thing is a zebra while “stably repudiating” the conclusion that she knows
the thing is a cleverly disguised mule. Is this not “abominable” [DeRose, 1995]?

I ask again: what does it mean for her to “stably adhere” to the premise? Must she
be willing to re-assert that she knows the thing in the cage is a zebra, after someone
has just raised to her the skeptical hypothesis of the cleverly disguised mule? These
questions demand that we consider the pragmatics of dialogue with a skeptic.

Two Kinds of Skeptical Dialogue

For reasons explained in §6.2, I will now shift from Dretske’s zebra vs. painted mule
case to his Gadwall vs. Siberian Grebe case. Suppose that a fallibilist park ranger
and a skeptical ornothologist are talking about Alice, who is standing with her son
in front of the lake with the Gadwall on it. Further suppose that the ranger and
ornothologist have just inspected the Gadwall, so there is no question between them
about what kind of bird it is. They can say definitively that it is a Gadwall, not a
Siberian Grebe, not an animatronic robot, etc. The following dialogue ensues:
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Dialogue I

Ornothologist: Does she know it’s a Gadwall?

Ranger: Yes, I overheard her talking to her son. She knows it’s a Gadwall. In
fact, she even identified it as a female Gadwall.

Ornothologist: Wow, she got that right. But does she really know it’s a Gad-
wall?

Ranger: What do you mean?

Skeptic: Well, does she know it isn’t a Siberian Grebe or an animatronic robot
planted to fool tourists or . . . [he lists other skeptical hypotheses]?

Ranger: Oh come on, that’s not necessary for her to know it’s a Gadwall, which
she does.

For comparison with Dialogue I, consider a dialogue between Alice and her son:

Dialogue II

Son: What kind of bird is that?

Alice: It’s a Gadwall. In fact, you can tell from the plumage that it’s a female
Gadwall.

Son: Do you really know that?

Alice: What do you mean?

Son: Well, do you know it isn’t a Siberian Grebe or an animatronic robot
planted to fool tourists or . . . [he lists other skeptical hypotheses]?

Alice: . . .
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Some might expect Alice, if she is a robust fallibilist, to reply to her son as the ranger
did to the ornothologist, with “Oh come on, that’s not necessary for me to know it’s
a Gadwall, which I do” or with “Oh come on, that’s not necessary for me to know
that it’s a Gadwall, which it is,” and leave it at that. However, there is an important
difference between the two dialogues for the robust fallibilist.

The role of the son’s question about the possibility of the Siberian Grebe in Dia-

logue II is not the same as the role of the ornothologist’s question about it in Dia-

logue I. The ornothologist asks the question in order to raise doubt about whether
Alice knows that the bird is a Gadwall, but not to raise doubt about whether the
bird is a Gadwall. There is no question in Dialogue I that Alice’s belief about the
Gadwall is true; the ornothologist only questions whether her true belief constitutes
knowledge. However, at the beginning of Dialogue II, it is not part of the common
ground (in the sense of Stalnaker 2002) that the bird is a Gadwall, as shown by the
son’s first question. Hence when the son asks about the Siberian Grebe possibility,
he raises doubt about whether the bird is in fact a Gadwall. For this reason, it would
be inappropriate for Alice to reply to her son in the way that the ranger replies to
the ornothologist. For her son is in effect questioning something that is a necessary
condition for her Gadwall knowledge: that the bird isn’t a Siberian Grebe. By con-
trast, the ornothologist, who knows that this necessary condition for Alice’s Gadwall
knowledge is satisfied, is not questioning it. He is questioning something else, which
is not—according to the robust fallibilist—a necessary condition for Alice’s Gadwall
knowledge: that she knows that the bird isn’t a Siberian Grebe. This is why the
ranger’s reply to the ornothologist is appropriate by fallibilist standards.

Abominable Conjunctions

The above distinctions help to explain why robust fallibilists would not assert “abom-
inable conjunctions” [DeRose, 1995] of the form: I know it’s a Gadwall, but I don’t
know it’s not a Siberian Grebe. Robust fallibilists can recognize pragmatic reasons
for why these and related assertions are inappropriate, even if true.3 For one thing,

3Heller [1999a], Dretske [2005], and Sherman and Harman [2011] offer explanations for why
assertions of abominable conjunctions are inappropriate, consistent with their sometimes being true.
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the assertion of the second conjunct suggests that there are now special reasons for
considering relevant a possibility normally assumed to be irrelevant by someone who
asserts the first conjunct (cf. Dretske 2005). Why else bring it up? To this we add
that an assertion of the second conjunct normally raises doubt about whether the
bird is in fact a Gadwall, which is a necessary condition for the truth of what is
asserted with the first conjunct. In Gricean [1989] terms, the first tension arises given
the assumption that the speaker is observing the maxim of Relation (“Be relevant”),
while the second tension arises given the assumption that the speaker is observing
the supermaxim of Quality (“Try to make you contribution one that is true”).

According to the pragmatic explanation, if we explicitly block the problematic
suggestions, then the resulting assertion should sound better. Suppose that the ranger
tells the ornothologist about Alice, “Yes, she knows that our Gadwall is a Gadwall—in
fact, she even knows it’s a female Gadwall—although she of course hasn’t ruled out
[or doesn’t know to be false] your wild fantasies about it’s being a Siberian Grebe or
an animatronic robot.”4 Is the ranger’s assertion debatable? Yes. Abominable? No.
If we are honest, Lewis [1996, 549f] says, then we will admit that saying “He knows,
yet he has not eliminated all possibilities of error” sounds wrong, even contradictory.
But as Lewis [1973] writes in a different context, “oddity is not falsity; not everything
true is a good thing to say. In fact, the oddity dazzles us. It blinds us to the truth
value of the sentences” (28). Try this instead: “he knows, for what he believes is true
and he has eliminated all possibilities of error—except, of course, the bizarre ones”
(cf. Rysiew 2001, 495). As before, this is debatable, but not abominable.5

To block the second problematic suggestion of the “abominable conjunction” (the
doubt that the bird is in fact a Gadwall), we switched to assertions in the third

Unlike the explanations given by Dretske and Sherman and Harman, Heller’s explanation appeals
to contextualism. There is a related literature, started by Rysiew [2001] and Stanley [2005], on
concessive knowledge attributions (CKAs) such as “I knows it’s a Gadwall, but it’s possible that it’s
a Siberian Grebe.” But neither Rysiew nor Stanley attempts to apply his explanation of the infelicity
of CKAs to abominable conjunctions. In fact, Stanley [2005] thinks that the infelicity of asserting
the CKA above is due to the fact that this CKA is always false (for a different kind of CKA, Stanley
offers a pragmatic explanation instead), but he also argues that fallibilism is not committed to its
truth; he has the same view on abominable conjunctions, since he accepts epistemic closure.

4The intended reading is, of course, that Alice knows that our Gadwall (de re) is a Gadwall.
5Also see Pritchard 2005, 89 on the pragmatic awkwardness of uttering Lewis’s sentence.
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person for a reason. Since the ranger and ornothologist have settled that the bird
is a Gadwall, not a Siberian Grebe, the ranger can make his assertion against this
background. However, the issue is not settled in the same way in a conversation
between you and me, if I admit to you that I do not know that the bird is not a
Siberian Grebe. The problem is not just the use of the first person, but the use of
the present tense. For I can admit that I did not know that it was not a Siberian
Grebe, while maintaining in robust fallibilist fashion that I knew it was a Gadwall.
For example, suppose that after talking to the ranger, the ornthologist approaches
Alice, and the following dialogue ensues.

Dialogue III

Ornothologist: Do you know what kind of bird that is?

Alice: It’s a Gadwall. In fact, you can tell from the plumage that it’s a female
Gadwall.

Ornothologist: That’s right. But do you really know it’s a Gadwall?

Alice: Yes, you just told me it is.

Ornothologist: What I meant to ask was—did you really know it was a Gadwall,
before I told you?

Alice: What do you mean?

Ornothologist: Well, did you know it wasn’t a Siberian Grebe or an animatronic
robot planted to fool tourists or . . . [he lists other skeptical hypotheses]?

Alice: Oh come on, that wasn’t necessary for me to know it was a Gadwall,
which I did.

By the middle of this dialogue, it is common ground that the bird is indeed a Gadwall.
Hence the role of the ornothologist’s question about the possibility of the Siberian
Grebe is the same as in Dialogue I, as explained above. This is why the robust
fallibilist takes Alice’s response in Dialogue III to be appropriate.
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Application to Global Skepticism

Let us now apply what we have observed to the case of global skepticism. The
important difference from the Gadwall case is that it is typically not common ground
between the global skeptic and the non-skeptic that (for example) there is definitely
a mind-independent world, the only question being whether some person knows this
fact. Perhaps skepticism is treated in this way in some seminar rooms. However, there
is a kind of philosophical skeptic who questions whether anyone—himself included—
knows that there is an external world in part by questioning whether there is one,
much like the son in Dialogue II in effect questions whether there is a Gadwall on
the lake. Receiving no answer that satisfies him, this kind of skeptic concludes that
we do not know the ordinary things about the world that we purport to know.

One might have thought that if we can deny closure, then we can insist against
the challenge of the global skeptic that we do know the ordinary propositions in
question.6 However, our analysis of Dialogue II suggests that insisting on this
(even if true) is not an appropriate answer to the skeptic’s line of questioning.7 We
should be more modest. What the denial of closure allows us to say to the global
skeptic is that his conclusion that we know next to nothing does not follow from his
premise that we do not know that all of his global skeptical hypotheses are false.
It is consistent with his argument that we know a great deal about the world (not

6Referring to a scenario in which a skeptic raises the possibility that what appear to be oranges
are instead wax imitations, Dretske [2004, 40] writes: “Agreeing with the skeptic . . . that I don’t
now, and never did, know they aren’t wax leaves me (unlike a radical contextualist) free to insist
that I nonetheless knew what I then said I knew—that they were oranges. . . . . That, it seems to
me, is a meaningful answer to skepticism.” Dretske apparently has in mind a situation not like that
of Dialogue III, where it has become common ground that what appeared to be oranges were in
fact oranges, but rather like that of Dialogue II, where it has not (given the “I don’t now . . . ”). I
consider the more modest reply to the skeptic given in the main text to be a meaningful answer to
skepticism. Also see note 8.

7This does not mean that asserting knowledge of ordinary propositions is inappropriate in other
contexts. That the same knowledge-ascribing utterance can be an appropriate speech act in one
context and an inappropriate one in another context can be explained in several ways. The standard
explanation is that what counts as an appropriate assertion is context-dependent. An alternative
explanation, proposed by Turri [2010], is that by uttering the same knowledge-ascribing sentence in
different contexts, one may perform different kinds of speech acts, e.g., an assertion in an ordinary
context and a guarantee in a skeptical context, and these different kinds of speech acts have different
standards of appropriateness.
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only possibly, but actually). That being said, our denial that knowledge has a certain
closure property should hardly reassure someone worried about whether the world has
existed for more than five minutes, or whether there is a mind-independent world at
all, which are necessary conditions for the truth—and hence our knowledge—of many
ordinary propositions. This is why it seems inappropriate to baldly claim knowledge
of such propositions against the skeptic (even if we have it) and leave it at that. We
are left in an uncomfortable position. If anyone thought there was an easy way out,
they have failed to appreciate the force of philosophical skepticism.

One should not mistake the call for modesty against the skeptic for a concession
that we do not know that we know the ordinary propositions disputed by the skeptic.8

If we are externalists about knowledge, as many robust fallibilists are, then we should
allow that we may know without knowing that we know, that we may know that we
know without knowing that we know that we know, etc. (see Dretske 2004), and even
that we do not know up to which level we know (see Nozick 1981, 247). However, as
robust fallibilists, we also maintain that nothing the skeptic has said establishes that
we do not have a great deal of higher-order knowledge. Arguments to the effect that
we do not depend on closure as much as arguments against first-order knowledge do.

How does the robust fallibilist compare in dialogue with a skeptic to a neo-Moorean
(recall Remark 2.5) or contextualist? According to Pritchard [2005, §3.2-3.4], neo-
Mooreans should not emulate Moore’s boldness against the skeptic. For Moore’s
claims of knowledge—even of ordinary propositions—in the face of the skeptic were
(true but) pragmatically inappropriate. Much of Pritchard’s explanation of this

8Those who hold that knowledge is sufficient for appropriate assertion may interpret the call for
modesty in this way. I join Pritchard [2005, §3.2-3.4] in thinking that the sufficiency thesis fails
for skeptical conversations. (For other arguments against sufficiency, see Brown 2010.) In taking
this position, I depart from some robust fallibilists. For example, McGinn [1984, 28] writes: “Non-
closure allows us to accept that the sceptic’s initial contention has force without being committed
to the alarming conclusion that our ordinary knowledge claims are false. This seems to me some
advance against the sceptic, but it leaves an important question open: do we know that our ordinary
knowledge claims are true? We commonly think, not only that we may have knowledge that there is
a table there, but also that we know that we do—so that we are in a position to assert that we know
that there is a table there. It therefore seems that if we are to be at all consoled by the antisceptical
consequences of non-closure, we need to sustain our conviction that we know that we know.”
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context-sensitive inappropriateness could be adopted by robust fallibilists and ap-
plied to the Tortoise and abominable conjunction objections as well.9

As for contextualists, they can be no bolder against the skeptic. For their “solu-
tion” to skepticism (see, e.g., Cohen 1988, DeRose 1995, Lewis 1996) does not allow
them to insist, when challenged in dialogue with a radical skeptic, that they know
ordinary propositions either—or even that they know such propositions according to
ordinary standards of knowledge. This is a consequence of the much-discussed Prob-
lem(s) of Factivity for contextualism [Williamson, 2001, Wright, 2005, Brendel, 2005,
Baumann, 2008] (see Appendix §6.A). In fact, this problem shows that contextualists
must concede even more in dialogue with a skeptic, namely that they do not know
that they count as knowing ordinary propositions relative to ordinary standards of
knowledge.10 By contrast, as noted above, robust fallibilists make no such concession.

What the analysis of this section shows is that the objection from assertion un-
derestimates the sensitivity of robust fallibilists to the pragmatics of dialogue with a
skeptic. Anyone pushed into a corner by a skeptic ends up in an uncomfortable place.
Yet the robust fallibilist, who offers a serious critique of the skeptical argument, does
not end up behaving in conversation in a ridiculous or abominable manner.

9However, I do not follow Pritchard in thinking that if Alice claims to know the negations of all
of the skeptic’s hypotheses, then she is merely saying something conversationally inappropriate (but
true). In my view, if she has not done the epistemic work required to rule out skeptical possibilities,
then she does not know the negations of all of the skeptics hypotheses, contrary to Pritchard’s
safety-based view that allows vacuous knowledge of these propositions (recall §4.1).

10At least they must concede this if the skeptic induces a context S like that described in Appendix
§6.A. The contextualist may reply that the skeptic does not always succeed in inducing such a
context. Hence one contextualist suggests that “the prospect of hard-nosed sceptics turning one’s
context into a defective context should not bother the anti-sceptic too much: sceptics are easily
excluded from one’s conversation by simply ignoring them” [Blome-Tillmann, 2009, 274]. I leave it to
the reader to judge which is the more philosophically satisfying response in a dialogue with a skeptic,
the robust fallibilist response—argue that the skeptic’s reasoning is invalid—or this contextualist
response—wear earplugs.
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6.1.2 Hawthorne on Equivalence

In this section, I consider another argument to the effect that I have not guaranteed
enough closure. Recall from §5.3 that I have rejected the closure principle

EP (Kϕ ∧K�(ϕ↔ ψ))→ Kψ,

since it leads to the Problem of Vacuous Knowledge or the Problem of Containment.
Hence I reject the closure step in (5) of the following skeptical argument discussed by
Hawthorne [2004a, 41]. Assume s is a strict counter-hypothesis to p (Remark §5.3),
so �(p → ¬s) holds, and to reduce symbols let ϕ L ψ stand for �(ϕ ↔ ψ). Each
line contains the following from left to right: line number, formula, justification, set
of open assumptions, and my evaluation (× for rejection and X for endorsement).

(1) ¬K¬s

(2) K(p ∧ ¬s)→ K¬s

(3) ¬K(p ∧ ¬s)

(4) K(pL (p ∧ ¬s))

(5) (Kp∧K(pL (p∧¬s)))→ K(p∧¬s)

(6) ¬Kp

premise {(1)} granted

M {} X

(1), (2), PL {(1)} granted

premise {(4)} granted

EP {} ×

(3) - (5), PL {(1), (4)} ×

I also reject (9) in the following skeptical argument from Hawthorne [2004a, 41], where
AC is the principle Kϕ→ K(ϕ ∨ ψ), which Hawthorne calls “addition closure”:
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(7) ¬K¬s

(8) K((p ∨ ¬s)L ¬s)

(9) (K(p ∨ ¬s) ∧K((p ∨ ¬s)L ¬s))→

(10) ¬K(p ∨ ¬s)

(11) Kp→ K(p ∨ ¬s)

(12) ¬Kp

premise {(7)} granted

premise {(8)} granted

K¬s EP {} ×

(7) - (9), PL {(7), (8)} ×

AC {} X

(10), (11), PL {(7), (8)} ×

According to Hawthorne [2004a, 41], the principle EP is “very compelling.” Given
that EP leads to either the Problem of Vacuous Knowledge or Problem of Contain-
ment (§5.3), I do not find it compelling on reflection. Yet one might object that it
is one thing to show that EP leads to these problems, as a basis for claiming that
fallibilists should give it up, and another thing to explain why EP is not valid. As
Hawthone observes, “the counterfactual considerations that Dretske and Nozick ad-
duce to divorce the epistemic status of some p from its a priori consequences do
not similarly divorce p from its a priori equivalents” (39-40). I agree, despite recent
objections by Adams et al. [2012], for reasons explained in Appendix §6.B.

However, there are other considerations that divorce the epistemic status of p
from that of some of its a priori equivalents. Let p be b is a Gadwall and let s be a
strict skeptical counter-hypothesis like b is a duck-hologram. Hence p and p ∧ ¬s are
a priori equivalents.11 Why is it that (on my view) knowing p does not require any
looking around for a hologram projector, whereas knowing p ∧ ¬s may require extra
investigation of some kind when one’s background information is not sufficient to rule
out holograms? The answer is that p∧¬s goes beyond p in two closely related ways:
it has a greater logical strength and a greater subject matter (I owe the latter point
to Yablo, discussed below). It has a greater logical strength than p because of the
conjunct with the logically unrelated ¬s, and it has a greater subject matter than
p because ¬s is about holograms, so p ∧ ¬s is (partly) about holograms, whereas p
is not at all about holograms; p is about b and a common flesh-and-blood species of

11I am assuming that it is knowable a priori that if b is a Gadwall, then b is not hologram.
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duck. In short, p ∧ ¬s says more about more. This is why it can take more work to
know it. Indeed, this is what allows the a priori equivalent p ∧ ¬s of p to have what
Dretske [2005] calls a “heavyweight” status compared to the “lightweight” status of p.

Not only do we have a demonstration of how EP leads to either the Problem of
Vacuous Knowledge or the Problem of Containment, but also we have an explanation
of why EP is not valid, based on the natural fallibilist idea that the range of alter-
natives that one must eliminate in order to know something depends on its logical
strength and what it’s about. This explanation assumes that the objects of knowledge
are more fine-grained than propositions understood as sets of metaphysically possible
worlds, in line with my position in Chapter 5. Now I am putting this together with
what Lewis [1988, §XI] calls the hyper-intenstional, “part-of-statements” conception
of (partial) aboutness, which Lewis regards as one of a number of legitimate notions
of aboutness. In my view, the idea that EP is “very compelling” is symptomatic of a
dangerous general tendency. It is what Perry [1989] has called “losing track of subject
matter”: losing track of what propositions are about, considering only the possibilities
in which they are true. Barwise and Perry [1983, 1996] have argued that losing track
of subject matter leads to serious problems in semantics. Recently Stephen Yablo has
drawn attention to the importance of keeping track of subject matter in connection
with epistemic closure,12 and the argument above for why knowing p ∧ ¬s may be
more difficult than knowing p is similar to Yablo’s subject-matter based arguments
against closure. Yet it is also different in an important respect, which leads to a
divergence of my view and Yablo’s. I will explain this divergence in §6.2.1.

6.2 Too Much Closure

According to the objection of the previous section, I have not admitted enough closure.
According to the objection of this section, I have admitted too much closure.

12Yablo presented his ideas on these topics in his Kant Lectures, “Truth and Aboutness” and
“Achieving Closure,” at Stanford University on May 19-20, 2011.
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Recall the (static) formulation of single-premise logical closure with the rule

RM ϕ→ ψ

Kϕ→ Kψ
.

The argument that single-premise logical closure is too much closure depends on the
claim that the following principles, derivable from RM, are problematic:

Kp→ K¬(¬p ∧ s) (6.1)

K¬p→ K¬(p ∧ s). (6.2)

First observe that (6.1) and (6.2) are derivable from

AC Kϕ→ K(ϕ ∨ ψ)

together with closure under logical equivalence,

RE ϕ↔ ψ

Kϕ↔ Kψ
,

as follows:

(13) Kp→ K(p ∨ ¬s)

(14) (p ∨ ¬s)↔ ¬(¬p ∧ s)

(15) K(p ∨ ¬s)↔ K¬(¬p ∧ s)

(16) Kp→ K¬(¬p ∧ s)

AC

PL

(14), RE

(13), (15), PL,

and similarly for (6.2).
The problem with (6.1) is supposed to arise when p is a mundane proposition and

s is an incompatible skeptical hypothesis. For example, Nozick [1981, 229] writes:

Also, it is possible for me to know p yet not know the denial of a con-
junction, one of whose conjuncts is not-p. I can know p yet not know
. . . not-(not-p & SK). I know I am in Emerson Hall now, yet I do not
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know that: it is not the case that (I am in the tank on Alpha Centauri
now and not in Emerson Hall).

However, we have seen no reason to think knowledge does not extend
across known logical equivalence.

Interestingly, only a few pages later Nozick [1981, 230] writes:

It seems that a person can track ‘Pa’ without tracking ‘there is an x such
that Px’. But this apparent nonclosure result surely carries things too
far. As would the apparent result of nonclosure under the propositional
calculus rule of inferring ‘p or q’ from ‘p’, which stands to existential
generalization as simplification stands to universal instantiation.13

What is interesting about these passages is that they are inconsistent.14 I assume
Nozick knows that (p∨¬s) is logically equivalent to ¬(¬p∧s), so given his endorsement
of closure under known logical equivalence, if he knew (p ∨ ¬s) then he would know
¬(¬p∧s). But he says he does not know ¬(¬p∧s), so he must not know (p∨¬s). But
he also says he knows p and endorses Kϕ→ K(ϕ ∨ ψ), so he should know (p ∨ ¬s).

I do not think this inconsistency was simply a mistake. Instead, I suspect that it
reflects an intuition that Nozick shares with others. Let us now bring Dretske into
the story. While Nozick explicitly endorses AC and explicitly rejects (6.1), Dretske
explicitly endorses AC and implicitly rejects (or at least is committed to rejecting)
(6.2). For the first part, Dretske [1970] says that “it seems to me fairly obvious that
if someone . . . knows that P is the case, he knows that P or Q is the case” (1009).
For the second part, consider Dretske’s [1970, 1015-1016] famous zebra example:

You take your son to the zoo, see several zebras, and, when questioned
by your son, tell him they are zebras. Do you know they are zebras?
Well, most of us would have little hesitation saying that we did know this.
We know what zebras look like, and, besides, this is the city zoo and the
animals are in a pen clearly marked “Zebras.” Yet, something’s being a

13The second quoted sentence is from the footnote to the first sentence.
14Kripke [2011, 199] also discusses the inconsistency, pointed out to him by Assaf Sharon and Levi

Spectre.
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zebra implies that it is not a mule and, in particular, not a mule cleverly
disguised by the zoo authorities to look like a zebra. Do you know that
these animals are not mules cleverly disguised by the zoo authorities to
look like zebras? . . . . I don’t think you do. In this I agree with the skeptic
. . . . I part company with the skeptic only when he concludes from this
that, therefore, you do not know that the animals in the pen are zebras.
I part with him because I reject the principle he uses in reaching this
conclusion—the principle that if you do not know that Q is true, when it
is known that P entails Q, then you do not know that P is true.

Now I will make an assumption about Dretske’s view that is not in his text. The
assumption is that one can know by looking at the zebras that they are not mules:

You take your son to the zoo, see several zebras, and, when questioned
by your son, tell him they are zebras. Do you know they are not mules?
Well, most of us would have little hesitation saying that we did know this.
We know what mules and zebras look like, and, besides, this is the city
zoo and the animals are in a pen clearly marked “Zebras.”

As fallibilists, surely we should say that in ordinary cases of observing zebras at the
zoo, people who know the difference between zebras and mules know that the zebras
are not mules: K¬m. Putting this together with Dretske’s view that ¬K¬(m ∧ d),
where d stands for ‘the animal in the pen is cleverly disguised to look like a zebra’,
Dretske must deny (6.2). Moreover, since Dretske explicitly endorsesKϕ→ K(ϕ∨ψ),
an instance of which is K¬m → K(¬m ∨ ¬d), it follows that Dretske must deny
K(¬m ∨ ¬d)→ K¬(m ∧ d) and hence closure under logical equivalence (RE).

Faced with fellow fallibilists like Dretske and Nozick who reject (6.1) and (6.2),
we have three choices:

1. Deny AC, Kϕ→ K(ϕ ∨ ψ), even for IALs.

2. Deny the “De Morgan” closure principle K(±ϕ ∨ ±ψ)→ K¬(∓ϕ ∧ ∓ψ)15 and
hence closure under logical equivalence, RE, even for IALs.

15Notation: ±ϕ is either ϕ or ¬ϕ; if ±ϕ is ϕ, then ∓ϕ is ¬ϕ; if ±ϕ is ¬ϕ, then ∓ϕ is ϕ.
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3. Defend single-premise logical closure, RM, and hence (6.1) and (6.2), at least
for IALs.

I will consider these choices in 6.2.1, 6.2.2, and 6.2.3, respectively.

6.2.1 Yablo and the Denial of AC

In §6.1.2, I argued that the different epistemic status of p∧¬s relative to p is a result
of the greater logical strength and greater subject matter of p∧¬s, which are closely
related, due to the new conjunct ¬s. The idea that closure should be restricted by
considerations of subject matter has been proposed by Yablo, but his restrictions are
stronger than mine.16 According to Yablo, knowing a proposition lets an agent know
what follows from that proposition, barring a change in subject matter. Hence Yablo
and I agree on the claim made in §6.1.2 that closure does not necessarily get us from
knowledge of p to knowledge of p∧¬s.17 However, Yablo also claims that closure does
not necessarily get us from knowledge of p to knowledge of p ∨ ¬s either. According
to his view, an IAL may know the logically stronger proposition without knowing the
logically weaker one, because the logically weaker one brings in new subject matter
with the disjunct ¬s. Yablo rejects AC and step (13) in the derivation of (6.1).

Yablo’s [2012b] particular theory of subject matter, coupled with his theory of the
relation between subject matter and epistemic closure, leads to some serious failures
of single-premise logical closure. To see this, we need some definitions.

Definition 6.1 (Partial & Minimal Models). Let At be a set of atomic sentences.

1. A classical valuation is a function v : At→ {0, 1}.

2. A classical model of ϕ is a classical valuation v that satisfies ϕ (v � ϕ), as
defined in the usual way.

16References to Yablo without parenthetical citations are references to his Kant Lectures, “Truth
and Aboutness” and “Achieving Closure,” at Stanford University on May 19-20, 2011.

17At least it is a consequence of Yablo’s formal theory of subject matter in Definition 6.2 that p
and p∧¬s differ in subject matter. This depends on the fact that although p and p∧¬s are assumed
to be true in the same metaphysically possible worlds, Yablo’s formal theory of subject matter deals
with a logical space of all classical valuations, including those that distinguish p and p∧¬s. Whether
Yablo’s informal theory is supposed to allow such an inclusive logical space is not clear.
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3. A partial valuation is a function v: S→ {0, 1} where S ⊆ At.

4. A valuation (partial or classical) v: S → {0, 1} extends (resp. strictly extends)
v′ : S′ → {0, 1} iff S′ ⊆ S (resp. S′ ( S) and v(p) = v′(p) for all p ∈ S′.

5. A partial model of ϕ is a partial valuation v such that for all classical valuations
v extending v, v � ϕ.

6. A minimal model of ϕ is a partial model of ϕ that does not strictly extend any
partial model of ϕ.

With the help of these definitions, Yablo defines a relation ≥ between formulas,
reading ϕ ≥ ψ as “ϕ includes ψ” or “ψ is content-part of ϕ.”

Definition 6.2 (Yablo Inclusion). Given propositional formulas ϕ and ψ, let ϕ ≥ ψ

iff all of the following hold:

1. Every classical model of ϕ is a classical model of ψ
(ψ is a classical consequence of ϕ);

2. Every minimal model of ψ is extended by a minimal model of ϕ
(“ϕ’s subject matter includes ψ’s subject matter”);

3. Every minimal model of ¬ψ is a minimal model of ¬ϕ
(“ϕ’s subject anti-matter includes ψ’s subject anti-matter”).

Since Yablo defines the overall subject matter of a formula to be its subject matter
and subject anti-matter together, conditions 2 and 3 together say that the overall
subject matter of ϕ includes the overall subject matter of ψ. For motivation of this
definition, which leads to a fascinating new theory of content-parts, I refer to Yablo.

According to Yablo’s theory of the relation between closure and subject matter,
Kϕ → Kψ (or a dynamic version thereof) is a valid closure principle only if ϕ ≥ ψ.
Observe from Definition 6.2 that p 6≥ p∨ q, because there is a minimal model of p∨ q
that is not extended by any minimal model of p: the function v : {q} → {0, 1} with
v(q) = 1. Not only that, but also p ∧ q 6≥ p ∨ q, because there is a minimal model of
¬(p∨ q) that is not a minimal model of ¬(p∧ q): the only minimal model of ¬(p∨ q)
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is the function v′ : {p, q} → {0, 1} with v′(p) = v′(q) = 0, which strictly extends a
partial model of ¬(p∧ q), namely the function v′′ : {p} → {0, 1} with v′′(p) = 0, so v′

is not a minimal model of ¬(p∧ q). What this shows is that Yablo’s view implies the
non-validity not only of Kp→ K(p ∨ q), but even of K(p ∧ q)→ K(p ∨ q).

In my view, the failure of such a weak closure principle as K(p ∧ q) → K(p ∨ q)
is an indication that something has gone wrong. One might think from this example
that the problem is only with condition 3 of Definition 6.2, but condition 2 is also
problematic. For it is a consequence of condition 2 that there are ϕ and ψ for which
K(ϕ∧ψ)→ Kϕ is not valid on Yablo’s view. Simply observe that (p∨ q)∧p 6≥ p∨ q,
because (using the same example as for p 6≥ p ∨ q) there is a minimal model of p ∨ q
that is not extended by any minimal model of (p∨q)∧p: the function v: {q} → {0, 1}
with v(q) = 1. Hence K((p ∨ q) ∧ p) → K(p ∨ q) is not valid according to Yablo’s
view.18 I take it that the failure of K(ϕ ∧ ψ) → Kϕ according to a theory of the
relation between closure and subject matter is a serious strike against the theory.

I have introduced Yablo’s view as a representative (in fact, the only one I know
of) for the view that AC is not valid for IALs.19 In addition, Yablo [2012a] rejects
closure under (known) logical equivalence, RE, motivated in part by an example. The
example is based on the reported reaction of Yablo’s students when they encounter
Descartes’s famous Dream Argument. To set up the example, let MyDream(x) indi-
cate that experience x is a dream of mine, and let AsLifelikeAs(x, y) indicate that
experience x is as “lifelike” as experience y. Finally, let e refer to my total current
experience. According to Yablo, if I were like many of his students, I would hold that

∀x(MyDream(x)→ ¬AsLifelikeAs(x, e)), (6.3)

but I would not claim to know just on the basis of (6.3) that

∀x(AsLifelikeAs(x, e)→ ¬MyDream(x)), (6.4)
18By contrast, K(p∧ q)→ Kq is valid according to Yablo’s view, since p∧ q ≥ q, illustrating that

ϕ ≥ ψ does not imply σ(ϕ) ≥ σ(ψ), where σ is a uniform substitution function.
19Williamson [2000] correctly points out that AC fails when an agent does not grasp the new

disjunct ψ, but I have been assuming that our IAL does grasp it, and Williamson does not argue
against such a restricted version of AC.
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which is of course logically equivalent to (6.3). Yablo [2012a] concludes that “Appar-
ently it is easier to know about dreams that that they are not this lifelike than it is
to know about experiences this lifelike that they are not dreams” (12).

I do not have the reported intuition when considering (6.3) and (6.4). Since I
assume the students were exposed to natural language utterances rather than (6.3)
and (6.4), one would have to think carefully about possible context change, default
reasoning, etc., before concluding that the situation is best represented as one in
which students think it is harder to know (6.4) than the classically equivalent (6.3).

According to Yablo, the reason that (6.3) is easier to know than (6.4) is that they
differ in subject matter (the first is supposed to be about my dreams, whereas the
second is supposed to be about my phenomenal states individuated qualitatively).
However, while Yablo’s example involves equivalence in first-order logic, it follows
from his formal theory of subject matter for propositional logic in Definition 6.2 that
logically equivalent propositional formulas have the same subject matter.

Fact 6.1 (Equivalence and Subject Matter). If ϕ and ψ are classically equivalent
propositional formulas, then ϕ ≥ ψ and ψ ≥ ϕ.

Proof. Assume all classical models of ϕ are classical models of ψ and vice versa.
Suppose v is a partial model of ϕ, so for all classical valuations v extending v, v � ϕ.
By the assumption, it follows that for all classical valuations v extending v, v � ψ,
so v is also a partial model of ψ. Hence all partial models of ϕ are partial models of
ψ, and obviously vice versa, which implies that all minimal models of ϕ are minimal
models of ψ and vice versa. The same reasoning shows that all minimal models of ¬ϕ
are minimal models of ¬ψ. It follows by Definition 6.2 that ϕ ≥ ψ and ψ ≥ ϕ.

It follows from Fact 6.1 that Yablo’s theory of subject matter and its relation to clo-
sure does not undermine closure under propositional logical equivalence. Whether an
extension of his theory to first-order logic would undermine closure under first-order
logical equivalence is a question that awaits the development of such an extension.

It is worth mentioning a different formalization of the idea of subject matter
containment, related to Parry’s [1933, 1989] notion of analytic implication (also see
Anderson and Belnap 1975, §29.6), that does distinguish logical equivalents. Burgess
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[2009, §5.2] considers an extension of classical logic that he calls topic logic, adding a
new binary connective / (among others) to the propositional language. A model for
(propositional) topic logic is a pair 〈v, s〉, where v assigns each sentence letter a truth
value and s assigns each sentence letter a subset of some set T , thought of as a “set
of topics.” We extend s to a function ŝ on arbitrary formulas as follows:

ŝ(p) = s(p)

ŝ(¬ϕ) = ŝ(ϕ)

ŝ(ϕ#ψ) = ŝ(ϕ) ∪ ŝ(ψ)

for any two-place connective #. Hence ŝ(ϕ) is the union of the s(p) sets for every
sentence letter p occurring in ϕ. (Cf. Lewis 1988, 155: “The part-of-statements
conception [of partial aboutness] is cumulative. When we build up statements from
their parts, we may gain new subject matters for the resulting statement to be partly
about, but we never lose old ones.”) The valuation v extends to a valuation v̂ for
formulas with the classical connectives in the usual way, and for the new connective
/, Burgess defines v̂(ϕ/ψ) = 1 iff s(ψ) ⊆ s(ϕ), in other words, iff the subject matter
of ϕ contains that of ψ. As an abbreviation, let us write ϕ→/ψ for (ϕ→ ψ)∧(ϕ/ψ).

As Burgess observes, if ϕ and ψ are formulas without the new connective /, then
ϕ → /ψ is valid (true in all models 〈v, s〉) iff ψ is a classical consequence of ϕ and
the set of sentence letters occurring in ϕ contains the set of sentence letters occurring
in ψ (in Parry’s [1933] terminology, ϕ is “analytically relevant” to ψ). For ϕ and
ψ without the new connective, it is interesting to compare when ϕ → /ψ is valid
in topic logic to when ϕ ≥ ψ holds according to Yablo’s Definition 6.2, especially
when we consider Yablo’s proposal that closure should hold (Kϕ → Kψ should be
valid) barring a change in subject matter from ϕ to ψ. It is easy to see that the
two conditions are incomparable in strength. For example, the topic logic condition
supports K(ϕ ∧ ψ) → K(ϕ ∨ ψ) and K(ϕ ∧ ψ) → Kϕ for any ϕ and ψ, since
(ϕ ∧ ψ) → / (ϕ ∨ ψ) and (ϕ ∧ ψ) → /ϕ are valid for any ϕ and ψ, whereas Yablo’s
condition does not (recall above). On the other hand, the topic logic condition does
not support closure under classical equivalence, whereas Yablo’s does (Fact 6.1).
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As I have indicated, I take the failure of K(ϕ ∧ ψ) → Kϕ to tell against the
requirement on Kϕ → Kψ that ϕ ≥ ψ. Although the requirement that ϕ → /ψ

be valid does not have this consequence, it does lead to the rejection of AC, Kϕ →
K(ϕ∨ψ), which is too much for me. (I should note that Burgess’s discussion of topic
logic has nothing to do with epistemic closure.) While I reject the closure step from
Kp to K(p ∧ ¬s), I accept the step from Kp to K(p ∨ ¬s). In my view, there is
an important difference between the two: relative to p, p ∧ ¬s says more about more
in the sense explained in §6.1.2; whereas relative to p, p ∨ ¬s says less about more
(logically weaker with expanded subject matter).20 I hold that knowing more about
more can require more epistemic work. Yablo agrees but adds that knowing less about
more can require more epistemic work too. In the case of AC, I agree with Dretske,
Nozick, and Kripke21 that knowing ϕ is a path to knowing ϕ ∨ ψ. In §6.2.2 - 6.2.3, I
consider responses to the issue of (6.1) and (6.2) that maintain AC.

6.2.2 Dretske and the Denial of RE

According to Yablo’s view, the problematic principle in the derivation of (13) - (16)
is Kp → K(p ∨ ¬s), whereas by Fact 6.1, K(p ∨ ¬s) → K¬(¬p ∧ s) holds on
Yablo’s view. I will now consider views according to which Yablo’s view gets things
backwards. For those who, like Dretske [1970], Nozick [1981], and Kripke [2011], wish
to maintain Kϕ → K(ϕ ∨ ψ), but who, like Dretske and Nozick, reject either (6.1)

20Note added in ILLC version: in contrast to Burgess’s idea of the set of topics that a proposition
is about, Dunn [1976, §6] introduces the idea of the set of topics that a proposition gives definite
information about. To a given propositional formula ϕ, Dunn assigns a pair I(ϕ) = 〈I+(ϕ), I−(ϕ)〉,
where I+(ϕ) is the set of topics that ϕ gives definite information about and I−(ϕ) is the set of
topics that the negation of ϕ gives definite information about. Given an assignment of such pairs to
atomic propositions, Dunn uses the following recursive clauses: I(¬ϕ) = 〈I−(ϕ), I+(ϕ)〉; I(ϕ∧ψ) =
〈I+(ϕ) ∪ I+(ψ), I−(ϕ) ∩ I−(ψ)〉; and I(ϕ ∨ ψ) = 〈I+(ϕ) ∩ I+(ψ), I−(ϕ) ∪ I−(ψ)〉. Note that while
a disjunction may introduce new topics according to Burgess, it does not give definite information
about new topics according to Dunn. Thus, if we adopt the view that an epistemic closure step
moving from ϕ to a logical consequence ψ is problematic only if ψ gives definite information about
new topics—as opposed to just being about new topics—then an epistemic closure step moving from
α to α ∨ β is not problematic, because I+(α ∨ β) ⊆ I+(α), whereas an epistemic closure step from
p to p ∧ ¬s may well be problematic, because there is no guarantee that I+(p ∧ ¬s) ⊆ I+(p).

21Kripke [2011, 202] writes that “I myself believe that for the intuitive concept of knowledge,
adding a disjunct ought to preserve knowledge.”
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or (6.2), there is only one choice: give up the “De Morgan” closure principle K(±ϕ∨
±ψ)→ K¬(∓ϕ∧∓ψ) and hence closure under logical equivalence. Having given up
this instance of single-premise closure, one faces the question of what distinguishes
K(±ϕ ∨ ±ψ)→ K¬(∓ϕ ∧ ∓ψ) from the principles that Dretske and Nozick accept.

According to Yablo’s view, the problem with (6.1) and (6.2) is that their con-
sequents, although logically weaker than their antecedents, introduce new subject
matter. In my terminology, they involve knowing less about more. Now I will offer
an alternative explanation of why (6.1) and (6.2) seem problematic: their consequents
claim knowledge that something is not the case, and this negation brings with it the
idea of contrast that I argued fallibilists should not accept in general (recall §5.1.2).22

In particular, I argued that contrast can fail for disjunctions like p ∨ ¬s; for I agree
with Dretske and Kripke that one path to knowing p∨¬s is via knowing p, and I agree
with fallibilists in general that coming to know p may not require ruling out (¬p∧ s)-
worlds, so I conclude that ruling out (¬p ∧ ¬s)-worlds may be sufficient for knowing
p ∨ ¬s. But can one come to know ¬(¬p ∧ s) without ruling out (¬p ∧ s)-worlds?

With the negated conjunction, I expect some peoples’ intuitions to shift in favor
of contrast, perhaps because the processing of negations in non-epistemic contexts
in natural language involves the construction of contrast classes (see Oaksford and
Stenning 1992). There are three ways the explanation might go from here:

1. K(±ϕ ∨ ±ψ) → K¬(∓ϕ ∧ ∓ψ) is valid, but the negation in the consequent
triggers the mistaken intuition that contrast must hold for r(¬(∓ϕ∧∓ψ), w).

2. K(±ϕ∨±ψ)→ K¬(∓ϕ∧∓ψ) is valid for a fixed context, but when an attributor
claims that an agent knows that not-P , this has a tendency to change the
context to one in which contrast holds for r(P,w) (cf. DeRose 1995).

3. K(±ϕ ∨ ±ψ) → K¬(∓ϕ ∧ ∓ψ) is not valid even for a fixed context, because
contrast may apply to r(¬(∓ϕ∧∓ψ), w) without applying to r(±ϕ∨±ψ,w).

In this section, I will consider the third position, which is the only one available
to someone like Dretske who rejects epistemic contextualism and, as I have argued,

22I believe Hannah Ginsborg at Berkeley was the first person from whom I heard the suggestion
that what might make certain closure principles problematic was the introduction of negation.
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K(±ϕ ∨ ±ψ) → K¬(∓ϕ ∧ ∓ψ). The question is: for those who reject the validity
K(±ϕ ∨ ±ψ)→ K¬(∓ϕ ∧ ∓ψ), what other closure principles can they accept?

One approach to answering this question is to modify the rule RM, with which we
can obtain Kϕ→ Kψ whenever ϕ→ ψ is derivable in classical logic, to a weaker rule
RMS, with which we can obtain Kϕ→ Kψ whenever ϕ→ ψ is derivable in a system
S that is weaker than classical logic.23 For example, from the hypothesis that if (6.1)
and (6.2) are not valid, then their non-validity should be explained by the connection
between negation and contrast, we are lead to another hypothesis: that a sufficient
(but not necessary) condition forKϕ→ Kψ to be an innocuous single-premise closure
principle (at least for IALs) is that ϕ→ ψ be a valid principle in the positive fragment
of our language, without negation. In the list of axioms below, together with the rule
of modus ponens, axioms 1 - 8 (Hilbert’s positive propositional calculus or positive
logic) axiomatize the positive fragment of intuitionistic propositional logic, while 1
- 9 axiomatize the positive fragment of classical propositional logic [Carnielli et al.,
2007, Middelburg, 2011], where → is now a primitive symbol:

1. ϕ→ (ψ → ϕ)

2. (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

3. (ϕ ∧ ψ)→ ϕ

4. (ϕ ∧ ψ)→ ψ

5. ϕ→ (ϕ ∨ ψ)

6. ψ → (ϕ ∨ ψ)

7. ϕ→ (ψ → (ϕ ∧ ψ))

8. (ϕ→ ψ)→ ((χ→ ψ)→ ((ϕ ∨ χ)→ ψ))

9. ((ϕ→ ψ)→ ϕ)→ ϕ

23The corresponding constraint on the syntactic r function from §5.2.4 would be:

coverS if `S ϕ→ ψ, then ∀B ∈ r(ϕ,w) ∃A ∈ r(ψ,w): A ⊆ B.
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10. modus ponens.

As Church [1995/1956] explains, positive logic was “designed to embody the part of
propositional calculus which may be said to be independent in some sense of the
existence of negation” (140). Now if we bring negation back into our language, the
question arises as to which principles involving negation we should add to 1 - 9 to
obtain a system such that if ϕ → ψ is derivable, then Kϕ → Kψ is an innocuous
closure principle. According to the Dretskean view we are considering, we do not
want (¬ϕ∨¬ψ)→ ¬(ϕ∧ψ) to be derivable. In standard extensions of positive logic,
such as minimal logic24 and intuitionistic logic,25 although not all of the De Morgan
laws are derivable, (¬ϕ ∨ ¬ψ) → ¬(ϕ ∧ ψ) is; on the other hand, these systems do
not derive the right-to-left direction of ϕ↔ ¬¬ϕ, which the Dretskean may want in
full. If so, the Dretskean must extend positive logic in a different direction.

However, there is a subtlety here. Suppose that instead of adopting a rule like
RMS, as described above, one adopts a closure principle Kϕ → Kψ for each axiom
ϕ → ψ listed above, including those for minimal logic in note 24. One might think
that this is equivalent to adopting RMS for the same system. However, the two
approaches are not equivalent for a Dretskean who rejects K. To see this, consider
the following derivation using minimal logic with RMS:

(17) (m ∧ d)→ m axiom

(18) ((m ∧ d)→ m)→ (¬m→ ¬(m ∧ d)) axiom

(19) ¬m→ ¬(m ∧ d) (17), (18), modus ponens

(20) K¬m→ K¬(m ∧ d) (19), RMS

Now suppose that instead of RMS, we have a closure principle Kϕ → Kψ for each
axiom ϕ→ ψ, and consider the following derivation:

(21) K(m ∧ d)→ Km axiom
24Obtained by adding (ϕ→ ψ)→ (¬ψ → ¬ϕ) and ϕ→ ¬¬ϕ to positive logic.
25Obtained by adding (ϕ→ ¬ψ)→ (ψ → ¬ϕ) and ¬ϕ→ (ϕ→ ψ) to positive logic.
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(22) K((m ∧ d)→ m)→ K(¬m→ ¬(m ∧ d)) axiom

(23) K(¬m→ ¬(m ∧ d)) (21), (22), modus ponens

If we had the K axiom,26 then we could extend the derivation as follows:

(24) K(¬m→ ¬(m ∧ d)))→ (K¬m→ K¬(m ∧ d)) K axiom

(25) K¬m→ K¬(m ∧ d) (23), (24), modus ponens,

obtaining the allegedly problematic (6.2). However, if like Dretske we do not have
the K axiom, then we cannot always epistemically “internalize” proofs of theorems
in system S, which is why the approach with RMS and the approach with a closure
principle for each axiom are not equivalent (I leave a proper proof of the inequivalence
to the reader). Note that if we adopt the approach with a closure principle for each
axiom, then propositional axiom systems that are equivalent given modus ponens will
not necessarily give rise to equivalent epistemic logics without the K axiom.

Finally, I will mention one other approach that is consistent with the denial of
RE. Presented with the arguments for the Multipath Picture in Chapter 5, a number
of people have asked whether r(ϕ,w) (where r is the syntactic version of r discussed
in §5.2.4) could be defined by recursion on the structure of ϕ. My answer is that
we can at least put natural constraints on r that are of a recursive character.27 For
example, we could adopt the following constraints:

(∨-paths) ∀B ∈ r(ϕ,w) ∪ r(ψ,w) ∃A ∈ r(ϕ ∨ ψ,w): A ⊆ B;

(∧-paths) ∀B ∈ r(ϕ ∧ ψ,w) ∃A ∈ r(ϕ,w) ∃A′ ∈ r(ψ,w): A ∪ A′ ⊆ B,

corresponding to (Kϕ∨Kψ)→ K(ϕ∨ψ) and K(ϕ∧ψ)→ (Kϕ∧Kψ), respectively.
However, defining r by recursion is a different matter. Those who accept the principle
(Kϕ ∧Kψ)↔ K(ϕ ∧ ψ) could define

r(ϕ ∧ ψ,w) = {A ∪ A′ | A ∈ r(ϕ,w) and A′ ∈ r(ψ,w)},
26Here written as K(ϕ→ ψ)→ (Kϕ→ Kψ) instead of (Kϕ ∧K(ϕ→ ψ))→ Kψ.
27Note added in ILLC version: for a more definite answer, see the recursive construction in the

Multipath Theorem of Holliday 2013b.
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but to give an equation for r(ϕ ∨ ψ,w), we seem to need more than just r(ϕ,w) and
r(ϕ,w), since we need the path to knowing ϕ ∨ ψ without knowing either disjunct.28

Moreover, negation is again a problem: it is not clear how to define r(¬ϕ,w) in terms
of r(ϕ,w), although if we take r(¬p, w) as given, then we could define

r(¬¬ϕ,w) = r(ϕ,w);

r(¬(ϕ ∧ ψ), w) = r(¬ϕ ∨ ¬ψ,w);

r(¬(ϕ ∨ ψ), w) = r(¬ϕ ∧ ¬ψ,w).29

Of course, since I have argued that Dretske must reject K(¬ϕ ∨ ¬ψ)→ K¬(ϕ ∧ ψ),
he would at least have to weaken the second equation to

∀B ∈ r(¬(ϕ ∧ ψ), w) ∃A ∈ r(¬ϕ ∨ ¬ψ,w): A ⊆ B.

Finally, observe that if we adopt the recursive constraints rather than a recursive
definition, then we have not yet ensured such trivial “closure principles” asK(ϕ∨ψ)→
K(ψ ∨ ϕ). Here we might adopt the view that K(ϕ ∨ ψ) and K(ψ ∨ ϕ) are mere
syntactic variants that do not represent different knowledge ascriptions at all, so that
K(ϕ ∨ ψ) → K(ψ ∨ ϕ) should be thought of as a re-writing principle rather than a
closure principle. More generally, we might define a syntactic variant relation ≈ on
formulas, e.g., with at least the following conditions (cf. Levesque 1984, §5):

(ϕ ∧ ψ) ≈ (ψ ∧ ϕ)

(ϕ ∨ ψ) ≈ (ψ ∨ ϕ)

(ϕ ∧ (ψ ∧ χ)) ≈ ((ϕ ∧ ψ) ∧ χ)

(ϕ ∨ (ψ ∨ χ)) ≈ ((ϕ ∨ ψ) ∨ χ)

(ϕ↔ ψ) ≈ (ψ ↔ ϕ)

(ϕ ∧ ϕ) ≈ ϕ

(ϕ ∨ ϕ) ≈ ϕ

ϕ ≈ ¬¬ϕ

if α ≈ β, then ϕ(α/p) ≈ ϕ(β/p).

One could then adopt the constraint that r(ϕ,w) = r(ψ,w) whenever ϕ ≈ ψ.
28Here one might look to an ordering of worlds, taking the set of closest ¬(ϕ ∨ ψ)-worlds.
29Recall the discussion of the r− function in §5.2.4.
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All of the ideas suggested in this section could be explore in much greater depth.
However, I will conclude this section by stressing the following crucial facts: first,
all of the constraints on r that we have considered in this section (including in note
23), as well as any that someone who accepts less than full single-premise closure
would be willing to consider, are weaker than the cover constraint discussed in §5.2.4;
second, in §5.2.4 the cover constraint was shown to be consistent with all of the other
postulates in the Multipath Picture, including the noVK postulate that eliminated
the Problem of Vacuous Knowledge; it follows that any constraints weaker than cover
are also consistent with the other postulates and noVK. In other words, by adopting
the Multipath Picture, fallibilists who accept less than full single-premise closure can
rest assured that whatever system they settle upon, they will avoid the Problem
of Vacuous Knowledge. This is a significant result, since we saw in §4.B.1 that by
adding only Kϕ→ K(ϕ∨ψ) or K(ϕ∧ψ)→ Kϕ and Kϕ↔ K((ϕ∨ψ)∧ϕ), let alone
full single-premise closure, to Fallibilism 1.0, we brought on the Problem of Vacuous
Knowledge. Hence we had to choose between the Problem of Vacuous Knowledge or
giving up one of those three principles, exemplifying the Problem of Containment. By
contrast, all of the approaches considered in this section secure those principles, and
given the Multipath Picture in §5.2.4, they can do so without vacuous knowledge.

6.2.3 Roush and the Defense of RM

Recall our three options when faced with fellow fallibilists like Dretske and Nozick
who reject (6.1) and (6.2):

1. Deny AC, Kϕ→ K(ϕ ∨ ψ), even for IALs.

2. Deny the “De Morgan” closure principle K(±ϕ ∨ ±ψ) → K¬(∓ϕ ∧ ∓ψ) and
hence closure under logical equivalence, RE, even for IALs.

3. Defend single-premise logical closure, RM, and hence (6.1) and (6.2), at least
for IALs.
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In this final section, I will consider the third option, according to which Dretske and
Nozick were wrong to reject (6.1) and (6.2),

Kp→ K¬(¬p ∧ s) and

K¬p→ K¬(p ∧ s).

In the previous chapters, I argued that fallibilists who wish to maintain full multi-
premise closure are lead to either the Problem of Vacuous Knowledge or the Problem
of Knowledge Inflation, whereas fallibilists who maintain single-premise logical closure
are not. What reasons are there to reject the single-premise (6.1) and (6.2)? Nozick
notes that (6.1) fails according to his theory, but he offers no independent argument
against it. Since we have read between the lines to see that Dretske must reject (6.2),
we do not have an argument from him either. However, the source of worries about
(6.1) and (6.2) is clear: it is the idea that they are dangerous in the hands of skeptics.
To see whether this is so, we must first review the skeptic’s tactics.

Standard Skeptical Arguments

Let p be the proposition that b is a Gadwall, and let s be the skeptical hypothesis
that b is a Siberian Grebe. Read Kϕ as the third-person knowledge attribution, “Alice
knows that ϕ.” Below I state the standard, multi-premise skeptical argument. As
in §6.1.2, each line contains the following information from left to right: line num-
ber, formula, justification, set of open assumptions, and my evaluation (× indicates
rejection and in later arguments X indicates endorsement).

Skeptical Argument I

(26) ¬K¬s

(27) K(p→ ¬s)

(28) (Kp∧K(p→ ¬s))→ K¬s

(29) ¬Kp

premise

premise

K

(26) - (28), PL

{(26)} granted

{(27)} granted

{} ×

{(26), (27)} ×
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Let me emphasize two points. First, if we substitute (Kp∧K�(p→ ¬s))→ K¬s
for (27), I reject that step as well. Second, if I am in the role of the fallibilist park
ranger in Dialogue I, then I will continue to maintain that Alice knows that the
bird is a Gadwall, even after the skeptical ornothologist raises in (26) the Siberian
Grebe hypothesis that we both agree is false. I do not think, as some contextualists
do, that by merely raising this hypothesis, the ornothologist changes the context to
one in which the “skeptic wins” and Alice no longer counts as knowing that the bird
is a Gadwall. In a case like Dialogue I, I stand my fallibilist ground. Yet I am
willing to grant the skeptic his first premise in cases where Alice has little background
information about Siberian Grebes and has not seen the bird’s belly in flight.30

Recall that the closure step in Argument I is an example of multi-premise logical
closure because ¬s is not a logical consequence of the single premise p, though it is a
logical consequence of the set of premises {p, p → ¬s}. Here we meet the objection:
while ¬s is not a logical consequence of p, the skeptic can just run his argument with
¬(¬p ∧ s) instead, since that is a logical consequence of p.31 But if so, the objector
says, then those fallibilists who deny closure against the skeptic must even give up
single-premise logical closure, right? Not so fast. Let us analyze the argument:

Skeptical Argument II

(30) ¬K¬(¬p ∧ s)

(31) Kp→ K¬(¬p ∧ s)

(32) ¬Kp

premise {(30)}

(6.1) {}

(30), (31), PL {(30)}

According to Roush [2010], the move from ¬s in (26) to ¬(¬p∧s) in (30) trivializes
the skeptic’s argument. Before explaining this view, let us consider a skeptical argu-
ment whose first premise is blatantly question-begging with respect to its conclusion:

30Recall that as Dretske sets up the case, the only way to tell apart a Gadwall and a Siberian
Grebe is to look at the markings on the belly of the bird when it is in flight.

31One might call this the “BIV to handless BIV” maneuver, to which I return in §6.2.3.
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(33) ¬Kp

(34) Kp→ Kp

(35) ¬Kp

premise {(33)}

tautology {}

(33), (34), PL {(33)}

Next, observe that the skeptical argument in (36) - (38) is at least as bad as the one
in (33) - (35) on the score of question-begging. Intuitively, the skeptic assumes in
(36) that the agent has an even greater lack of knowledge than assumed in (33):

(36) ¬K(p ∨ ¬s)

(37) Kp→ K(p ∨ ¬s)

(38) ¬Kp

premise {(36)}

AC {}

(36), (37), PL {(36)}

From here, consider the closure of question-begging under equivalence: if P is question-
begging as a premise for conclusion C, and P is equivalent to P ′, then P ′ is question-
begging as a premise for C.32 If this is correct, and if we can assume that ¬K(p∨¬s)
is equivalent to ¬K¬(¬p ∧ s) for IALs, then given that ¬K(p ∨ ¬s), like ¬Kp, is
question-begging as a premise for the conclusion of ¬Kp, it follows that ¬K¬(¬p∧s)
is question-begging as a premise for the conclusion of ¬Kp in Argument II.

I take the closure principle for question-begging to be uncontroversial. For I know
of no example in which a philosopher has responded to the charge that a premise
is question-begging by substituting an admittedly equivalent premise. To avoid the
results that (30) is question-begging in Argument II, it seems that one must deny
that ¬K¬(¬p ∧ s) is equivalent to ¬K(p ∨ ¬s) for IALs, which means denying that
K¬(¬p ∧ s) is equivalent to K(p ∨ ¬s) for IALs, which leads one back to §6.2.2.

In the next section, I consider Roush’s take on Argument II when the argument
schema is instantiated with a special kind of skeptical hypothesis.

32We do not need a principle of such generality, but the basic intuition should be clear. I expect
that any plausible refinement of the principle would also apply in the case at hand.
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Self-Side Skeptical Hypotheses

Roush’s [2010] discussion concentrates on what I call self-side skeptical hypotheses,
as opposed to the world-side skeptical hypotheses that I have considered in Examples
1.1 and 1.2. Austin [1946, 158] clearly states the distinction I have in mind:

...either my current experiencing or the item currently under consideration
(or uncertain which) may be abnormal, phoney. Either I myself may be
dreaming, or in delirium, or under the influence of mescal, etc.: or else the
item may be stuffed, painted, dummy, artificial, trick, freak, toy, assumed,
feigned, etc.: or else again there’s an uncertainty (it’s left open) whether
I am to blame or it is—mirages, mirror images, odd lighting effects, etc.

A skeptical hypothesis according to which the item currently under consideration is
abnormal or phoney is a world-side skeptical hypothesis, whereas a skeptical hypoth-
esis according to which the agent’s experiencing is abnormal or phoney is a self-side
skeptical hypothesis. For example, let Matrix be the self-side skeptical hypothe-
sis that Alice’s brain is being stimulated by a computer simulation as in the movie
The Matrix. Below is the crudest self-side skeptical argument. I will now omit the
justification and open assumptions for each step, trusting the reader to fill them in:

(39) ¬K¬Matrix granted

(40) KGadwall→ K¬Matrix ×

(41) ¬KGadwall ×

What is the skeptic’s argument for (40)? Faced with a fallibilist, the skeptic might
try to appeal to closure under known entailment:

(42) K�(Gadwall→ ¬Matrix) ×

(43) (KGadwall ∧K�(Gadwall→ ¬Matrix))→ ¬K¬Matrix false antecedent

(44) KGadwall→ K¬Matrix ×
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One problem with this argument is that the proposition Gadwall about the exter-
nal world does not entail the negation of the self-side skeptical hypothesis Matrix;
�(Gadwall→ ¬Matrix) is false, so it is not known. For it is compatible with b being
a Gadwall that Alice’s brain is being stimulated by a computer simulation. G.E.
Moore’s famous Duke of Devonshire story makes this point about dreaming; Stroud
[1984, 25-29] emphasizes it; and Roush [2010] argues that it deflates closure-based
arguments for skepticism that use what I call self-side skeptical hypotheses.

The skeptic might claim that although K�(Gadwall → ¬Matrix) is false, we
can assume that K(Gadwall → ¬Matrix), i.e, K(¬Gadwall ∨ ¬Matrix) is true, so
the argument can be reformulated using closure under known material implication
instead of closure under known entailment. In that case, I would reject the argument
at the point where it appeals to closure under known material implication.

Although obvious, it is worth observing that if we replace the proposition that
b is a Gadwall with the proposition that Alice has hands, it does not improve the
argument (in the movie The Matrix, the subjects of brain stimulation all have hands):

(45) ¬K¬Matrix granted

(46) K�(hands→ ¬Matrix) ×

(47) (Khands ∧K�(hands→ ¬Matrix))→ ¬K¬Matrix false antecedent

(48) ¬Khands ×

At this point, the skeptic may say that what he meant all along by his skeptical
hypothesis was not Matrix but rather (¬hands ∧ Matrix), arguing as follows:

(49) ¬K¬(¬hands ∧ Matrix) ×

(50) hands→ ¬(¬hands ∧ Matrix) X

(51) Khands→ K¬(¬hands ∧ Matrix) ?

(52) ¬Khands ×

Now we have a logically valid implication in (50), but as Roush [2010, 245] argues:
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However, it is not enough that there be an implication. It must be an
implication from something we think we do know to something we pretty
clearly do not, in order to set us up for a modus tollens. What is wrong
with this particular patch is that weakening the conclusion to “I am not
a handless brain in a vat” trivializes it for this purpose. If we assume I
know that I have a hand, then we should not have the slightest hesitation
to credit me with knowledge that I am not a handless brain in a vat.

No appeal to the closure principle is needed to support this conclusion.
The claim is independently obvious because that you are not a handless
brain in a vat is just not much to know. If we know that someone has
hands then it follows that she is not a handless person with high blood
pressure, or a handless victim of child abuse, but this would not give us
any assurance that she need not go to a doctor for these conditions . . . .
If I know that I have hands, then in virtue of that I know I am not a
handless anything. The implication is achieved in the skeptical argument,
but only by letting the issue of brains in vats swing free of it.

To underscore Roush’s last point, when we claim that an agent knows ¬(¬hands ∧
Matrix), we are not claiming that the agent knows the logically stronger ¬Matrix. We
must not let the skeptic blind us to the logical fact that ¬Matrix does not follow from
¬(¬hands∧Matrix), so his arguments that ¬Matrix is difficult or impossible to know
do not directly show that the weaker ¬(¬hands ∧ Matrix) is difficult or impossible
to know. This point raises the question of to what extent self-side skepticism of the
“handless BIV” variety trades on luring people into incorrect intuitions about the
distribution of negation over conjunction. I don’t know, but we shouldn’t fall for it.33

Roush [2010] defends the position stated in the quote above at length, but I will
not repeat her arguments here. Instead, in the next subsection I will show how her
basic point applies to world-side skeptical hypotheses of a special kind.

33Note added in ILLC version: As Wright [forthcoming] remarks, “Maybe we are confused by the
operation of some kind of implicature here: maybe saying, or thinking, “It is not the case that those
animals are cleverly disguised mules” somehow implicates, in any context of a certain (normal) kind,
that “Those animals have not been cleverly disguised”. But anyway, it doesn’t entail it: not-(P&Q),
dear reader, does not entail not-Q!” (§IV).
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Twisted Skeptical Hypotheses

As we have seen, to raise doubts about whether Alice knows that the bird is a Gadwall,
one hypothesis that the skeptic can raise is that the bird is instead a Siberian Grebe.
Another hypothesis that the skeptic can raise is that the bird is instead a Mallard
disguised to look just like a Gadwall. What distinguishes the second from the first is
that the second takes a reasonable alternative that one may well (need to) rule out
on the way to knowing that the bird is a Gadwall, the Mallard alternative, and then
puts a skeptical twist on it with the idea of disguise. By contrast, the Siberian Grebe
alternative is skeptical from the start. I will call the skeptical hypothesis that the bird
is a Mallard disguised to look just like a Gadwall a twisted skeptical hypothesis, and I
will call the hypothesis that the bird is a Siberian Grebe a direct skeptical hypothesis.

According to any reasonable fallibilist view, it may well be that Alice not only
knows that b is a Gadwall, but also knows that b is not a Mallard. As in Dialogue

I, assume that the fallibilist and the skeptic are completely agreed that the animal is
a Gadwall and not a Mallard, there is no funny business going on, etc. While female
Gadwalls and Mallards have similar plumage, suppose Alice has correctly observed
that b does not have the characteristic dark orange-edged bill of the female Mallard.
Still, the skeptic might try to argue that Alice does not know that b is not a Mallard
by using a twisted skeptical hypothesis. Let Mallard stand for b is a Mallard, and
let disguised stand for b is disguised to look just like a Gadwall :

Skeptical Argument III

(17) ¬K¬(Mallard ∧ disguised) ×

(18) ¬Mallard→ ¬(Mallard ∧ disguised) X

(19) K¬Mallard→ K¬(Mallard ∧ disguised) ?

(20) ¬K¬Mallard ×

Of course, this is just a special case of Argument II. Hence Roush’s line applies
here as well: if Alice knows it’s not the case that b is a Mallard, then Alice knows the
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logically weaker proposition that: it’s not the case that [b is a Mallard and anything ],
assuming she believes it. Perhaps filling in the ‘anything’ with a bizarre proposition
will change some attributors’ conversational context, badgering Alice about it may
shake her confidence, etc., but the claim is that when she knows it’s not the case that
b is a Mallard and believes it’s not the case that [b is a Mallard and anything ], then
she also knows the weaker proposition. Note that “this is not a claim about what it
would be appropriate to say, what the person himself thinks he knows or would say
he knows. It is a question, simply, of what he knows” [Dretske, 1971, 1009 - 1010].

One may object that if a fallibilist is willing to hold thatK¬(Mallard∧disguised),
why is the fallibilist not also willing to hold that K¬SiberianGrebe? Why is there a
difference between knowing the negations of twisted and direct skeptical hypotheses?
The answer is that there are recognized ways, well-established by the practices of
birdwatchers, of checking that something thought to be a Gadwall is not a Mallard,
including checking for the dark orange-edged bill. Since Alice has performed the nec-
essary checks, she knows ¬Mallard, which gives us an explanation of how she knows
the logically weaker ¬(Mallard ∧ anything), assuming she believes it. Now there
are also recognized ways of checking that something thought to be a Gadwall is not
a Siberian Grebe, principally checking the color of the belly—white or red—of the
bird in flight. However, Alice has not performed these checks, so we have no good
explanation of how she knows ¬SiberianGrebe (assuming as before that she does
not have much background information about Siberian Grebes). At this point others
will resort to vacuous knowledge or knowledge inflation, but I will not.

To claim Alice knows ¬(Mallard∧disguised) is not to ascribe vacuous knowledge
to her. In the case we are imagining, Alice has come to know ¬(Mallard∧disguised)

through the empirical work of ruling out Mallard-possibilities in order to know
¬Mallard. By contrast, the Problem of Vacuous Knowledge arises in Fallibilism
1.0 because an agent can supposedly know ¬(Mallard ∧ disguised) without ruling
out any possibilities, let alone the Mallard-possibilities necessary to know ¬Mallard.

To claim that Alice knows ¬(Mallard∧ disguised) is also not to endorse knowl-
edge inflation. To endorse knowledge inflation is roughly to claim that there are
propositions P and Q such that (i) P implies Q, (ii) coming to know Q by empirical
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investigation would require ruling out possibilities that are not required to know P by
empirical investigation, but (iii) if someone who knows P—on the basis of empirical
investigation insufficient to know Q—goes on to deduce Q from P , then she knows
Q. By contrast, on the view of single-premise closure we have been considering, the
reason it holds in this case is that coming to know ¬(Mallard∧ disguised) does not
require more empirical investigation that coming to know the stronger ¬Mallard.

This is the heart of the matter: does knowing the weaker ¬(Mallard∧disguised)

require more empirical work than knowing the stronger ¬Mallard? We considered
such a view, which rejects K¬p→ K¬(p ∧ q), in §6.2.2, showing that it is consistent
with maintaining many other closure principles in the Multipath Picture.

Another way to go is contextualist, holding that K¬p→ K¬(p ∧ q) is valid with
respect to a fixed context, but bringing up the issue of disguised in conversation may
shift our context to one in which Alice must do more empirical work in order to count
as knowing both ¬Mallard and ¬(Mallard ∧ disguised), relative to the empirical
work she must do in order to count as knowing them in our original context. In
§4.1, I argued against appealing to contextualism in order to defend fixed-context
multi-premise closure principles that commit us to vacuous knowledge. However, as
explained above, in the Multipath Picture K¬p→ K¬(p∧ q) does not commit us to
vacuous knowledge, so the contextualist may have a tenable position in this case.

As we have seen, Roush defends single-premise logical closure without appeal to
the semantic thesis of contextualism. Roush’s explanation is instead partly pragmatic.
While it is a logical error to distribute the negation in ¬(Mallard ∧ disguised) to
obtain ¬disguised, Roush [2010, 246] points outs that uttering the English trans-
lation of ¬(Mallard ∧ disguised) may produce the conversational implicature that
¬disguised.34 If someone says, “Alice knows the bird is not a Mallard” and then
adds that “she knows the bird is not a Mallard disguised to look like a Gadwall,”
this seems to carry a strong conversational implicature that Alice knows the bird is
not disguised to look like a Gadwall.35 However, this implicature can be cancelled by

34Note added in ILLC version: recall the quote from Wright in note 33.
35Another complication is that when we express the knowledge attributions in English, we tend to

use predicate negation (i.e., “the bird is not a Mallard . . . ”), whereas the epistemic closure principles
are stated with sentential negation (i.e., “it is not the case that the bird is a Mallard and . . . ”).
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adding “but she doesn’t know that the bird is not disguised to look like a Gadwall.”36

All of this reinforces the sense that the pragmatics of negation may be important for
knowledge attributions, as suggested in §6.2.2, a topic that deserves further study.

I will not decide between these views here. For one thing, they are not mutually
exclusive. For another, each is compatible with the Multipath Picture of Knowledge.

6.3 Conclusion

In this chapter, I have discussed objections according to which accepting single-
premise logical closure while denying multi-premise logical closure either admits too
much closure or not enough. But the goal, I think, should be to get good lower-
and upper-bounds on the line between unproblematic and problematic closure, even
if the exact line is a subtle matter of dispute, as witnessed by the analysis of (6.1)
and (6.2) in §6.2.2. The results for the Multipath Picture of Knowledge in Chapter
5 show that any lower-bound involving instances of single-premise logical closure can
be consistently combined with the rejection of Vacuous Knowledge and Knowledge
Inflation, while closure under known (strict) (bi)-implication cannot, leading me to
conclude that the appropriate upper-bound is lower than full multi-premise closure.

However, the exact line may not be characterizable in formal terms at all. For
example, I have argued that fallibilists should not accept closure under known implica-
tion, (Kϕ∧K(ϕ→ ψ))→ Kψ, as a general schema for every ϕ and ψ. Are fallibilists
who take this line committed to claiming that an IAL can, e.g., know that something
is red without knowing that it is colored? The answer is: no, we are not, and we
should say nothing of the sort, unless we can think of a situation in which knowing
that something is colored plausibly requires ruling out possibilities that one need not
rule out in order to know that it is red. By denying that (Kϕ∧K(ϕ→ ψ))→ Kψ is
a valid schema, true for all substitutions for ϕ and ψ in all situations, we are not com-
mitted to claiming that an instance such as (Kred∧K(red→ colored))→ Kcolored

36To see this clearly, change the story so that Alice has disguised what she knows to be a Pintail
as a Gadwall. Then we can say, “Alice knows the bird is not a Mallard” and add that “she knows the
bird is not a Mallard disguised to look like a Gadwall—but she doesn’t know the bird is not disguised
to look like a Gadwall,” because she knows that the bird is disguised to look like a Gadwall.
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can actually be false. Of course, in the formal frameworks of Chapters 2 - 5, the in-
stance (Kred∧K(red→ colored))→ Kcolored can be false in some model, but this
is because the model class is not restricted by taking into account anything about the
non-logical content of or relation between red and colored. If we restricted to models
in which red and colored are interpreted in a certain way and in which the sets of
counter-possibilities for these propositions are constrained relative to each other in a
certain way, then there would be no falsifying model for the principle.

Following Dretske [2005], one could propose that knowledge is closed under known
“lightweight” implications, which do not introduce additional counter-possibilities—
counter-possibilities that one must rule out in order to know the consequent ψ but
not to know the antecedent ϕ. For it is only the “heavyweight” implications, leading
us from the mundane to the radically skeptical, that force some fallibilists to accept
Vacuous Knowledge or Knowledge Inflation in order to maintain closure under known
implication. The concept of lightweight implications seems to cover the implication
from it is red to it is colored but not from ordinary propositions to the denial of
skeptical hypotheses, as desired. But can we rigorously characterize the class of all ϕ
and ψ that are permissible in the Dretskean principle? Perhaps not. Some may take
this as supporting the view that closure under known implication is valid for all ϕ and
ψ after all. In my view, to accept a schema some of whose instances force fallibilists
into serious problems, for lack of a certain kind of characterization of what all the
problematic instances have in common, would be a serious philosophical mistake. The
alternative path, accepting that we must give up full closure, does not seem to me a
radical one. Instead, it is the result of following fallibilism where it leads.

6.A The Problem of Factivity

Here is the relevant version of the factivity problem referenced in §6.1.1. Suppose
the contextualist finds herself in a context S in which the skeptic’s conversational
maneuvers have installed epistemic standards relative to which she does not know
some ordinary propositions. The contextualist might like to respond to the skeptic
by claiming that she still counts as knowing those ordinary propositions relative to
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a context O with less demanding, ordinary standards. However, by making such a
claim in context S, she would be claiming something that is impossible for her to know
relative to S, as a simple derivation shows. Let KCp indicate that the agent knows p
relative to context C. Hence our initial assumption was ¬KSp. Suppose for reductio ad
absurdum that KSKOp. Relative to any context, knowledge is factive, so KOp → p,
and we can assume that the contextualist knows this relative to any context, so
KS(KOp → p). Finally, following standard contextualism, we assume closure under
known implication relative to any fixed context, (KCϕ ∧ KC(ϕ → ψ)) → KCψ, an
instance of which is (KSKOp ∧ KS(KOp → p)) → KSp. Putting it all together, we
derive KSp and ¬KSp, a contradiction. Hence KSKOp is impossible.

Moreover, it is plausible that the contextualist can follow this derivation and come
to know that KSKOp is impossible. In that case, a weak norm of assertion, namely
that you should not assert something that you know to be impossible for you to
know relative to what would be the context of your assertion, would prohibit the
contextualist from responding to the skeptic as described above.

6.B Subjunctivism and Equivalence

Recall from §6.1.2 Hawthorne’s point that “the counterfactual considerations that
Dretske and Nozick adduce to divorce the epistemic status of some p from its a priori
consequences do not similarly divorce p from its a priori equivalents” (39-40).

The reason, I take it, is that a priori equivalents p and q will be true in exactly the
same metaphysically accessible worlds (�(p↔ q)), and if we also assume that they are
believed by the agent in exactly the same metaphysically accessible worlds (�(Bp↔
Bq)), then any counterfactuals ϕ(p) � ψ(p) and ϕ(q) � ψ(q) (where ϕ and ψ

may only contain extensional logical operators and the belief operator B) that differ
only with respect to uniform substitution of p and q will have the same truth value
(evaluated at the same world in the same context), according to standard semantics for
counterfactuals [Stalnaker, 1968, Lewis, 1973]. According to subjunctivism, whether
one knows p or knows q depends on whether some such counterfactual conditions hold,
and by the previous observation, the conditions hold for p iff they hold for q. Given
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this reasoning, I agree with Hawthorne, against the claims of Adams et al. [2012],
that subjunctivists need a new story if they wish to reject Hawthorne’s principle EP.

In their attempt to show that subjunctivists are not committed to EP, Adams
et al. assume (without comment) the controversial view that counterfactuals whose
antecedents are true in exactly the same metaphysically accessible worlds can differ
in truth value. They write: “[I]f it were not the case that x is a zebra, then x would
not be a painted mule . . . . But if it were not the case that x is both a zebra and not
a painted mule, . . . then x might be a painted mule.” Assuming, as usual (see Lewis
1973, §1.1, §1.5), that the might-counterfactual implies the negation of the correspond
would-counterfactual with the consequent negated, i.e., ϕ� ψ implies ¬(ϕ� ¬ψ),
the quoted passage commits Adams et al. to the controversial view in question.

The full quote from Adams et al. suggests why they may be lead to their con-
troversial assumption: “But if it were not the case that x is both a zebra and not a
painted mule, i.e., if it were the case that x is a either a non-zebra or a painted mule,
then x might be a painted mule” [emphasis added]. It has been much-discussed in
the literature on counterfactuals that a counterfactual with a disjunctive antecedent
can appear to differ in truth value from a counterfactual (with the same consequent)
whose non-disjunctive antecedent is true in exactly the same metaphysically accessi-
ble worlds as (or is even logically equivalent to) the disjunctive antecedent. Some take
this appearance as reality (e.g., Nute 1975, 1978, although Nute 1980 offers an al-
ternative, pragmatic explanation). Others explain it away by distinguishing between
counterfactual sentences in natural language with apparently disjunctive antecedents
and the true logical form of such sentences (see Lewis 1977 and references therein).

In any case, the intuition of Adams et al. that “if it were not the case that x is
a zebra, then x would not be a painted mule” can differ in truth value from “if it
were the case that x is either a non-zebra or a painted mule, then x would not be
a painted mule” reflects a well-known phenomenon involving disjunctive antecedents.
If taken at face value, however, such intuitions would call into question the equiva-
lence that Adams et al. assume (with their “i.e.”) between the counterfactual with
the disjunctive antecedent and the counterfactual whose antecedent is an equivalent
negated conjunction. Then even if they were to argue that Hawthorne’s EP fails with
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respect to disjunctive propositions in virtue of the behavior of counterfactuals with
disjunctive antecedents, what would they say about Hawthorne’s argument in (1) -
(6)? The authors need to address these delicate issues involving counterfactuals.
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