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Chapter 1

Introduction

The title of this book may be puzzling. “Playing with knowledge and belief”
sounds somewhat flippant and flimsy. Actually, this book is a very serious study
of belief change. In everyday life, people are constantly changing their minds. In
the hyper connected world we live in, we receive lots of information coming from
different sources. These pieces of information cause changes in the way we look at
the world. Roughly speaking, we can distinguish between two attitudes a person
(from now we will call such a person “an agent”) has towards some proposition
describing the state of the world (here “world” is taken to be a very large notion
including the agent’s environment as well as her own mental state). The first
attitude is called knowledge while the second attitude is called belief. An agent
may know a given proposition p, or she may believe this proposition p. There is a
common understanding that the notion of knowledge is stronger than the notion
of belief. Indeed the notion of knowledge involves the idea of factivity: if an agent
knows p then p is true while the notion of belief does not. If an agent believes p,
it does not imply that p is true. The agent may hold wrong beliefs.

In this book we are interested in how the knowledge and the beliefs of an
agent1 evolve when she learns new information. On the one hand, knowledge
changes monotonically. Once an agent knows a proposition, she will never give
up her knowledge about this proposition but she may learn and come to know
some other propositions when she is given new information. So the knowledge of
an agent can only increase over time. On the other hand, beliefs do not change
monotonically. The agent may come to give up or revise her beliefs. Now we
distinguish between two types of information an agent can receive: factual in-
formation and higher-order information. An agent receives a piece of factual
information when she is informed of some facts about her environment, about
the world she lives in. Thus if she is informed that the Earth revolves around

1The agent we consider is taken to be an ideal agent who is able to remember the past. Thus
she remembers all the information she once had. In short we summarize this by saying that our
agent has “perfect recall”.

1



2 Chapter 1. Introduction

the Sun, she has received a piece of factual information. She receives a piece of
higher-order information if this incoming information is about her own knowledge
or beliefs. For example, if she is informed that she believes that the Earth revolves
around the Sun, she has received a piece of higher-order information. We point
out that from now on, we only consider an unchanging factual world. This means
that we deal with a world where the facts do not change over time contrary to
the mental state of the agent. In this world, the agent only receives information
about a static, fixed factual world or about her own mental state.

Philosophy has long considered the notion of knowledge as a topic of key
interest. Plato already investigates the concepts of knowledge and belief in dia-
logues such as Meno, Theaetetus and Gorgias. The specific branch of philosophy
dealing with the nature of knowledge and belief is called epistemology. Formal
epistemology has recently been developed to model and reason about knowledge
and beliefs with formal methods (mathematically based techniques). In the lit-
erature, there already exist many different settings to model and formalise belief
change. We can distinguish between probabilistic settings and purely qualitative
settings. Among the last ones, the setting of modal logic has recently led to a
new approach to model belief change. Some modal settings adopt a single agent
perspective while others focus on a multi-agent perspective. Single agent settings
only deal with the knowledge and beliefs of one single agent, disregarding the
existence of other agents in their models. On the contrary multi-agent settings
are interested in the interaction between the knowledge and beliefs of several
agents (for example, what agents believe about the beliefs of the other agents...).
In this thesis we focus only on the single agent setting. We can further distin-
guish between two different approaches in this thesis, in particular we focus on
those with a dynamic dimension and those with a temporal dimension. Dynamic
settings can be divided into two branches depending on whether the dynamics
is internal as in the setting of Dynamic Doxastic Logic (abbreviated as DDL)
or external as in the setting of Dynamic Epistemic Logic (abbreviated as DEL).
As the later chapters show, these two dynamic settings use the formal tools of
dynamic modal logic to model belief change. Among the approaches with a tem-
poral dimension, we will focus later on Giacomo Bonanno’s setting: his temporal
setting uses temporal (modal) logic to model belief change. Other approaches
such as the dialogical approach have an argumentative dimension: argumentative
settings use argumentation (in dialogues or games) to model belief change. In the
last chapter we will focus on a dialogical approach to reason about belief revision.

In this thesis we set three different goals. First we expose a brief overview of
some of the different existing settings of belief change so we can later refer back
to them. Next, we develop Soft Dynamic Epistemic Logic in three different ways:
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1. we study belief contraction in the setting of Dynamic Epistemic Logic. We
define three belief contracting operations as operations on total plausibility
models, assigning them epistemic actions and axiomatizing them in DEL
style.

2. we introduce justification models as a new formalisation of belief, evidence
and justification. This generalized setting will be used to explore new solu-
tions to some known epistemic issues.

3. we use this new setting to define a game semantics allowing to determine
if an agent really defeasibly knows some given proposition (or only believes
it).

Finally, we connect Soft Dynamic Epistemic Logic to two of the above mentioned
approaches:

1. we compare the internal dynamics of Dynamic Doxastic Logic (DDL) with
the external dynamics of Dynamic Epistemic Logic (DEL);

2. we connect the temporal setting of Bonanno to model belief change with
a dialogical approach to logic, providing an argumentative study of belief
revision.

We choose to focus on Soft Dynamic Epistemic Logic since it is a powerful
approach to model and reason about belief change and can be applied to tackle
epistemological issues. To achieve our goals, we will need a tool which should
be flexible enough to be easily adapted with respect to what properties of belief
change we want to capture. We choose such a tool from the literature, using a
family of spheres in Lewis-Grove style.2 Thus we use nested sphere systems in
Chapter 3, we use sphere-based justification models in Chapter 4 and hyperthe-
ories in Chapter 6. Finally, we are looking for some logical interactive tools to
solve epistemological problems. We use a game semantics in Chapter 5, to solve
the Gettier problem and we use the dialogical approach to logic in Chapter 7
to provide an argumentative study of temporal belief revision logic. Throughout
this thesis, apart from Chapters 2 and 6, we restrict ourselves to finite models.

Through this book, we are looking for answers to some key questions.

– How can we model the result of changing our beliefs in the light of new
information? Should we model belief revision in a static way or in a dynamic
way? How can we model the dynamics of belief revision?

The first formalisations of the notion of belief [41] were provided using
static Kripke models. Indeed these Kripke models are static since the set

2We introduce Grove spheres in Section 2.2.
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of possible worlds, the accessibility relation and the valuation remain fixed,
unchanged. The main challenge was then to find a way to represent the
mechanism of belief revision because these Kripke models are not fit for
this purpose. The author in [74, 75, 76] proposed another type of models
to internalize the dynamics of belief revision in which the model does not
change in itself but the structure of the model does; while the authors
of [8, 3, 10] provide richer structures than Kripke models as well as model
changing operations on this new type of models, in this way the fundamental
dynamic mechanism of belief revision is external to the models. The authors
in [6, 8] also proposed an extension of Kripke models with an operation for
hypothetical belief revision. Indeed it is interesting to describe what an
agent would come to believe if she would receive a new piece of information.
Here the purpose is not to capture the actual change of beliefs induced by a
new piece of information but to capture what the agent would believe (after
revision) about the state of the world as it is before the agent receives the
information.

– How do the beliefs of an agent behave over time? How do beliefs evolve
in a temporal setting? How are the revised beliefs of an agent different if
he receives two different pieces of information? How can we compare these
revised beliefs? What does this tell us about the rationality of the agent?

Since beliefs change over time, many authors point out how important it
is to formally represent this temporal parameter in belief revision theory
[18, 21, 17]. This allows us to study the interaction between beliefs and
information change over time. While the family of dynamic logics mentioned
above describes local changes of models, temporal doxastic logics provide
a global view of all the possible evolutions of the beliefs of an agent inside
one global model. In other words, the model unfolds possible histories of
informational processes involving belief change processes.

– How powerful are the different approaches of belief revision? How close or
different are the different settings of belief revision? How can we connect
the existing formalisms?

Many different settings have already been provided to model belief revision,
each of them comes with its own particular dimension. The authors in
[27, 12, 13] have very recently started to compare some of the different
settings. It is interesting to first compare the numerous existing frameworks
instead of only creating new ones. The approach of dynamic logics for belief
change has been compared with the approach of doxastic temporal logics
in [27, 13]. Moreover, the approach of Dynamic Doxastic Logic and the
approach of dynamic logics for belief change have been compared in [12].
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– When can we say that an agent knows a proposition and not only believes
this proposition? When can we say that a belief is justified? How can the
setting of justification of beliefs be formalised?

The first question has been asked for a long time and many have already
tried to answer it. Thus the notions of knowledge and belief have been
connected to the notion of justification since Plato. The evidence framework
of [16] has been provided to formalise the notion of justification of beliefs.
The models of [8, 3, 10] can also be used to deal with justifiable beliefs.
However these settings seem too specific: either they satisfy all the AGM
postulates3 but they only consider consistent pieces of evidence ([8, 3, 10]),
or they allow non compatible pieces of evidence but then the setting does
not satisfy all the AGM postulates ([16]). Hence, it is important to design
a new framework general enough to deal with justification as foundation
of belief and knowledge such that this new setting allows for inconsistent
evidence and satisfies the AGM postulates.

– What would an argumentative study of belief revision logic amount to? How
are the notions of beliefs and information interpreted in an argumentative
framework? How can we define a particular belief revision policy in such a
framework?

Public Announcement Logic has been quite recently studied in an argu-
mentative setting [56]. The meaning of the public announcement operator
is here reconstructed in terms of choice (more precisely, burden of choice)
instead of truth. Both [56] and [57] explore this particular use of public
announcement operators in the context of legal reasoning. Belief dynamics
in an argumentative setting is also worthy of investigation. Such an argu-
mentative setting can provide some new insights on the relation between
beliefs and information.

3We introduce the AGM postulates in Section 2.1.
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Structure and sources of the book

The content of this book is organized in three parts and 8 chapters. We provide
here a brief overview of these chapters.

Part I consists of the chapter 2.
Chapter 2 is a background chapter, presenting some existing logics of belief
change.

Part II consists of the chapters 3, 4 and 5. In these chapters, we develop Soft
Dynamic Epistemic Logic in three different ways.
Chapter 3 This chapter introduces three operations of AGM -friendly versions
of belief contraction. We define these three contracting operations as operations
on plausibility models, we associate to them epistemic actions in DEL style and
axiomatize them in DEL style.
Chapter 4 We introduce justification models as a general framework which rep-
resents the information and justification an agent has.
Chapter 5 This chapter provides a game semantics to formalise the notion of
defeasible knowledge of Keith Lehrer. Our game formally determines if an agent
defeasibly knows a proposition or merely believes but does not know this propo-
sition.

Part III consists of the chapters 6 and 7. In these chapters, we connect Soft
Dynamic Epistemic Logic with other existing settings.
Chapter 6 is based on: A. Baltag, V. Fiutek and S. Smets. DDL as an “Inter-
nalization” of Dynamic Belief Revision. In Krister Segerberg on Logic of Action.
Outstanding Contributions to Logic, Springer, 2014. This chapter compares two
main frameworks of belief revision namely, Dynamic Doxastic Logic and Dynamic
Epistemic Logic. More precisely, full DDL is studied from the perspective of soft
DEL in order to show that the DDL approach is at least as powerful as the
DEL approach. We provide several versions of DDL internalizing different belief
revision operations, as well as several operations of expansion and contraction.
Chapter 7 is based on: V. Fiutek, H. Rückert and S. Rahman. A Dialogi-
cal Semantics for Bonanno’s System of Belief Revision. Construction. College
Publications, London, pages 315-334, 2010. And on: V. Fiutek. A Dialogical
Approach of Iterated Belief Revision. Logic of Knowledge. Theory and Appli-
cations. C. Gómez, S. Magnier, and F. Salguero, (eds.), College Publications,
London, 2012. This chapter provides an argumentative study of a belief revi-
sion logic. Indeed we provide a dialogical reconstruction of the (last version of)
branching-time belief revision logic of Bonanno. We first define the dialogical
setting and then provide the language and rules of our dialogical system of belief
revision. We focus on the dialogical interpretation of the notions of belief and
information.
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Chapter 8 summarizes the results achieved in this book and states some open
questions.
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Chapter 2
Logics of belief change

In this chapter we provide a brief overview of some of the literature that we rely
on in the following chapters. In the next sections, we introduce a number of
different settings so we can later refer back to them. Note that we have chosen
to restrict ourselves to present you in this chapter only with the necessary infor-
mation needed for this thesis, without presenting all the details and interesting
philosophical discussions surrounding each one of the different approaches.

2.1 AGM theory of belief revision
The first formal approach provided to deal with belief revision is the AGM the-
ory called after the authors Alchourrón, Gärdenfors and Makinson. Since 1985,
[1] is the main reference in the traditional literature on belief revision. The au-
thors investigate how we can model the mechanism of rational belief change by
analyzing the rationality constraints that are (or should be) imposed upon belief
revision. The AGM approach adopts a syntactic view of the beliefs of an agent
and provides a clear list of postulates that capture rational belief change.

In the AGM approach to belief revision, beliefs are modelled as sets of propo-
sitional formulas of the language L which is defined as follows:

2.1.1. Definition. Let L be the set of formulas of a propositional language
based on a given countable set of atomic sentences, and defined via:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ

2.1.2. Definition. For a subset Th ⊆ L, we denote [Th] as the deductive clo-
sure of Th. The deductively closed sets of formulas are called “theories”. Let �
denote the inconsistent theory (containing all formulas).

The revised beliefs form a new set of formulas (a new theory) obtained as the
result of an operation which takes as input a theory and a formula. If the initial

11



12 Chapter 2. Logics of belief change

beliefs are represented by a deductively closed set of formulas (a theory) and
the new information is a formula in the same language L, then the result should
again form a deductive closed set of sentences. This operation is called revision
and satisfies 8 rationality postulates in the AGM theory of belief revision. We
provide these revision postulates in Definition 2.1.3 but before we do this, let us
mention that there are two other operations which are immediately relevant for
our discussion. These operations are called expansion and contraction. Similar as
for revision, belief contraction is also regulated by means of a series of postulates
in AGM which we give below in Definition 2.1.4. Formally belief expansion can
be defined as follows: the expansion [Th] + ϕ of a theory [Th] with a formula ϕ
is given by, [Th] + ϕ = {ψ ∣ [Th] ∪ {ϕ} ⊢ ψ} which in turn will correspond to a
series of expansion postulates (see [1]).

2.1.3. Definition. Suppose that T is the set of all theories. The belief revision
operator ∗ is a map from T ×L to T (∗ ∶ T ×LÐ→ T), satisfying 8 postulates.

(∗1. type) [Th] ∗ ϕ is a theory;

(∗2. success) ϕ ∈ [Th] ∗ ϕ;
(∗3-4. upper and lower bound) if ¬ϕ /∈ [Th], then [Th] ∗ ϕ = [Th] + ϕ;
(∗5. triviality) [Th] ∗ ϕ = � iff ⊢ ¬ϕ;
(∗6. extensionality) if ⊢ ϕ↔ ψ, then [Th] ∗ ϕ = [Th] ∗ ψ;
(∗7-8. iterated ∗3-4.) if ¬ψ /∈ [Th] ∗ ϕ, then [Th] ∗ (ϕ ∧ ψ) =

([Th] ∗ ϕ) + ψ.

Postulate (∗1. type) guarantees that the result of a revision is a theory (the
revised belief set is deductively closed). Postulate (∗2. success) states that after
revision with ϕ, ϕ is believed (information is believed). Postulates (∗3-4. upper
and lower bound) express minimality of revision: revising with ϕ and expanding
with ϕ is the same if ϕ is consistent with the theory. Postulate (∗5. triviality)
guarantees that only a new inconsistent piece of information can produce an
inconsistent theory. Postulate (∗6. extensionality) states that if two formulas
are propositionally equivalent then the result of a revision with one of the two
formulas is the same as the result of a revision with the other one. Postulates
(∗7-8. iterated ∗3-4.) generalise postulates (∗3-4. upper and lower bound) in
the case of iterated revision. Postulates (∗7-8. iterated ∗3-4.) state that if ψ is
consistent with the result of a revision with ϕ, then the result of a revision with
ϕ ∧ ψ is the same as the result of first revising with ϕ and then expanding with
ψ.

2.1.4. Definition. Suppose that T is the set of all theories. The contraction
revision operator ÷ is a map from T × L to T (÷ ∶ T × L Ð→ T), satisfying 8
postulates.
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(÷1. type) [Th] ÷ ϕ is a theory;

(÷2. success) if ⊬ ϕ, then [Th] ÷ ϕ ⊬ ϕ;
(÷3. inclusion) [Th] ÷ ϕ ⊆ [Th];
(÷4. vacuity) if [Th] ⊬ ϕ, then [Th] ÷ ϕ = [Th];
(÷5. extensionality1 ) if ⊢ ϕ↔ ψ, then [Th] ÷ ϕ = [Th] ÷ ψ;
(÷6. recovery) [Th] ⊆ ([Th] ÷ ϕ) + ϕ;
(÷7. conjunctive inclusion) if [Th] ÷ (ϕ ∧ ψ) ⊬ ϕ,

then [Th] ÷ ϕ ⊆ [Th] ÷ ϕ;
(÷7. conjunctive overlap) if [Th] ÷ ϕ ∩ [Th] ÷ ψ ⊆ [Th] ÷ (ϕ ∧ ψ)

Postulate (÷1. type) guarantees that the result of a contraction is a theory
(the contracted belief set is deductively closed). Postulate (÷2. success) states
that after a contraction with ϕ, ϕ is removed from the theory except if ϕ is a
tautology. Postulate (÷3. inclusion) states that no new belief is added to the
contracted belief set. Postulate (÷4. vacuity) says that if the theory does not
imply ϕ, in that case contraction has no effect. Postulate (÷5. extensionality)
guarantees that if two formulas are propositionally equivalent then the result of
a contraction with one of the two formulas is the same as the result of a con-
traction with the other one. Postulate (÷6. recovery) states that the result of an
expansion with ϕ of a theory resulting from a contraction with ϕ is the original
theory (the original theory is recovered). Postulate (÷7. conjunctive inclusion)
states that if ϕ is removed after a contraction with ϕ ∧ ψ, all formulas that have
to be removed in order to remove ϕ also have to be removed in order to remove
ϕ ∧ ψ. Postulate (÷8. conjunctive overlap) states that all formulas that do not
have to be removed in order to remove ϕ or in order to remove ψ, do not have to
be removed in order to remove ϕ ∧ ψ.

The operations of expansion, contraction and revision can be related to each
other via the so-called Levi Identity. Starting from a given contraction operator
(and expansion operator), one can define a revision operation. Levi defines the
operation of revision as an operation of contraction followed by an operation of
expansion : [Th]∗p = ([Th]÷¬p)+p [49] also, this is called the Levi identity. The
converse is also true: from a revision operator, one can define a contraction oper-
ator. Harper defines the operation of contraction as: [Th]÷p = [Th]∩([Th]∗¬p)
also called Harper identity [40]. Both identities have given rise to many discus-
sions but for the purpose of this thesis we do not develop this point further.

While the above theory is set in a syntactic framework, recent developments
show that a semantic approach to belief revision theory can give more insight in
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belief revision scenarios. We will turn to the semantics of belief change in the
remaining sections of this background chapter.

2.2 Grove spheres
One of the first semantic approaches to provide a model for belief revision theory
is given in terms of the so-called Grove spheres [39]. Grove adapted the spheres
systems which Lewis uses to model counterfactual conditionals [52]. Semanti-
cally, the belief state of an agent is modelled using families of sets of sets called
spheres. This type of model is built up from sets of possible worlds and so defines
propositions as sets of possible worlds. The propositions believed by an agent
(constituting her belief set) form a central sphere which is surrounded by con-
centric spheres, each of them representing a degree of similarity to the central
sphere. The motivation behind this type of model is that an agent who receives
a new piece of information has several ways to modify her belief set in order to
incorporate the new information. The doxastic state of an agent contains much
more than just an actual belief set, it also includes the predisposition the agent
has for belief change.

We provide an example of a family of spheres in Lewis-Grove style in Fig-
ure 2.1. This system of spheres represents the actual belief state of an agent such
that the central sphere corresponds to her belief set. In this example, the dots
represent states (or possible worlds). The formula ϕ is satisfied in the states s
and w. The possible worlds in the central sphere are the states s and v. Thus in
this example, the agent considers ϕ possible (she does not believe ϕ nor ¬ϕ).

 
  

φ

     t   u          v    s     w     

Figure 2.1: Example of a sphere system

Note that the actual state of affairs is not made explicit in the drawing but
can in principle correspond to any of the states in Figure 2.1. If the beliefs of
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the agent happen to be true, then one of the states in the central sphere will
correspond to the actual state of affairs.

2.3 Dynamic Doxastic Logic

In 1995, Krister Segerberg proposes a so-called Dynamic Doxastic Logic (DDL)
[74]. Syntactically, he uses PropositionalDynamicLogic-style operators [π]ψ
whose standard intended interpretation is “ψ holds after the agent performs ac-
tion π ”. Note that the origin of Propositional Dynamic Logic (PDL) traces back
to Fischer and Ladner [32] who propose PDL as a modal logic to reason about
programs. As a formal language for PDL, we include both formulas ϕ and pro-
grams π. In PDL we introduce dynamic modalities [π] such that the formula
[π]ϕ describes the properties holding after the execution of some program π. It
means “after executing program π, ϕ holds”.

If we take belief changing operations as the programs of PDL, we get the
core of the idea behind the syntax of DDL. Segerberg introduces three different
dynamic doxastic operators namely, one operator for expansion [+], one operator
for contraction [−] and the last one for revision [∗]. Indeed he wants to recast
AGM theory as a dynamic doxastic logic.

Segerberg provides different settings to study belief change distinguishing be-
tween basic DDL and full DDL. Basic DDL restricts revision operators to purely
Boolean formulas that is, formulas that do not contain any modal operators.
Contrary to full DDL, this setting only deals with agents revising their beliefs
about the basic facts of the world, not about their own beliefs.

Semantically, Segerberg uses the work of Lewis and Grove [52, 39] (see Sec-
tion 2.2). Depending on the conditions he imposed on this system of spheres, it
is called a hypertheory or an onion. The semantics of onions and hypertheories
will be analyzed in detail in Chapter 6.

Segerberg provides several corresponding axiomatizations together with sound-
ness and completeness results [75, 77, 78, 79, 73, 80].

Some of the logics in the literature have first been developed to deal with
knowledge change and have subsequently been extended to deal with belief change.

2.4 Public Announcement Logic

The formal study of epistemic logic has been initiated by Georg Henrik vonWright
in [81]. Later on, Jaako Hintikka developed von Wright’s ideas using modal logic
in [41]. We introduce the basic epistemic logic.
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Syntactically, a modal operator K is added to the language of propositional
logic such that Kϕ means “the agent knows ϕ”. The language of epistemic logic
LK is defined as follows.

2.4.1. Definition. Let Φ be a set of propositional atoms such that p ranges
over Φ.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣Kϕ

The knowledge operator gives an epistemic interpretation to the standard ne-
cessity operators of modal logic. One can add further notions of group knowledge
(distributed knowledge, common knowledge operator and so on), but in this the-
sis we will restrict all settings to the single agent case.

Semantically, we use Kripke models. As standard in modal logic, we introduce
Kripke semantics by first specifying the frames.

2.4.2. Definition. We introduce an epistemic frame to be a Kripke frame
(S,∼) where S is a set of states (or possible worlds) and ∼⊆ S×S is an equivalence
relation.

2.4.3. Definition. An epistemic model M is a Kripke model based on an epis-
temic frame and is obtained by adding a valuation V ∶ Φ → P(S) assigning to
each atomic sentence the set of states in which the sentence is true.

2.4.4. Definition. The valuation map can be extended so that the truth of an
arbitrary formula is defined as:

M, i ⊧ p iff i ∈ V (p).
M, i ⊧ ¬ϕ iffM, i /⊧ ϕ.
M, i ⊧ ϕ ∧ ψ iffM, i ⊧ ϕ andM, i ⊧ ψ.
M, i ⊧Kϕ iff (j ∈ S such that i ∼ j impliesM, j ⊧ ϕ).

An axiomatic system for the basic epistemic logic K is given by the following
axioms and rules:

a) All propositional tautologies.

b) S5 axioms for K.

K(ϕ→ ψ)→ (Kϕ→Kψ)
Kϕ→ ϕ

Kϕ→KKϕ

¬Kϕ→K¬Kϕ
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c) Rules of inference.

ϕ ϕ→ ψ (Modus Ponens)
ψ

ϕ (K-Necessitation)
Kϕ

The first axiom for K states that if an agent knows ϕ and knows that ϕ→ ψ,
then the agent must also know ψ. The second axiom for K states that knowledge
is truthful, that is, if an agent knows ϕ, ϕ is true. The third and fourth axioms
for K respectively state that knowledge is positively and negatively introspective.
This means that if an agent knows ϕ, then he knows that he knows ϕ and if he
does not know ϕ, he knows that he does not know ϕ.

Public Announcement Logic, abbreviated as PAL, traces back to the work of
[64]. In this logic we can express the epistemic change triggered by (truthful)
public announcements via dynamic modal operators. In particular, a public an-
nouncement of a formula ϕ is expressed in the language via a dynamic operator
(i.e. a modality) labelled by ϕ. Semantically we model these announcements via
so-called model transformers which, as a consequence of the truthful announce-
ment of ϕ, restrict the epistemic state of the agent such that all worlds where ϕ
does not hold are eliminated from the original model. These model transformers
can be studied more generally for several different kinds of events (including false
and private announcements) and in essence they form the core ingredient of the
logical systems we investigate in the setting of Dynamic Epistemic Logic.

2.4.5. Definition. The language for PAL LK[] is built up from a countable set
of propositional atoms Φ, the usual propositional connectives, a unary modal
operator K and a dynamic modal operator [!ϕ]ϕ. Let p range over the atomic
propositions in Φ.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣ Kϕ ∣ [!ϕ]ψ

The dual of the dynamic modality ¬[!ϕ]¬ϕ is defined as ⟨!ϕ⟩ϕ.

The intended interpretation of the announcement operators is as follows:

[!ϕ]ψ: after a truthful announcement of ϕ, it holds that ψ

2.4.6. Definition. The semantic clauses of the public announcement operators
are the following:

M, i ⊧ [!ϕ]ψ iff (M, i ⊧ ϕ impliesM∣ϕ, i ⊧ ψ).
M, i ⊧ ⟨!ϕ⟩ψ iff (M, i ⊧ ϕ andM∣ϕ, i ⊧ ψ).
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whereM∣ϕ = ⟨S′,∼′, V ′⟩ is defined as:

– S′ ∶= {i′ ∈ S ∣ (M, i′) ⊧ ϕ}

– ∼′∶= {(i′, j′) ∈ S′ × S′ ∶ (i, j) ∈∼}

– V ′
p ∶= {i′ ∈ S′ ∶ i ∈ Vp}

M∣ϕ is the model obtained after the public announcement of ϕ: it is the
modelM restricted to all the worlds where ϕ holds such that the valuation and
the equivalence relations between the remaining worlds do not change.

For a recent overview of the complete axiomatization of PAL, see [29]. In the
absence of group modalities such as “common knowledge”, one of the powerful
and attractive features of this logic is the fact that a complete axiomatization for
it will follow directly from the axioms and rules of the basic epistemic logic K by
applying the following Reduction axioms:

a) Atomic permanence.

[!ϕ]p↔ (ϕ→ p)

b) Announcement and negation.

[!ϕ]¬ψ↔ (ϕ→ ¬[!ϕ]ψ)

c) Announcement and conjunction.

[!ϕ](ψ ∧ χ)↔ ([!ϕ]ψ ∧ [!ϕ]χ)

d) Announcement and knowledge.

[!ϕ]Kψ↔ (ϕ→K[!ϕ]ψ)

e) Announcement composition.

[!ϕ][ψ]χ↔ [!ϕ ∧ [!ϕ]ψ]χ

Using the Reduction Laws, the public announcement operator can be step by
step “pushed through” all other operators and at the end, completely eliminated
using the Reduction Law for atomic formulas.

2.5 Soft Dynamic Epistemic Logic
Epistemic doxastic logic has been introduced by Jaako Hintikka in [41] as the
logic of knowledge and belief. Syntactically, a modal operator K and a modal
operator B are added to the language of propositional language such that Kϕ
means “the agent knows ϕ” and Bϕ means “the agent believes ϕ”.
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Syntax The language of epistemic logic LEL is defined as follows.

2.5.1. Definition. Let Φ be a set of propositional atoms such that p ranges
over Φ.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣Kϕ ∣ Bϕ

The knowledge and belief operators give a specific interpretation to the stan-
dard necessity operators of modal logic, respectively an epistemic interpretation
and a doxastic interpretation. Similar as before, also to this language one can
add further notions of group knowledge or group belief (distributed knowledge,
common knowledge operator, common belief operator and so on), but in this
thesis we will restrict all settings to the single agent case.

Semantics We interpret LEL in terms of plausibility models [8, 10].

2.5.2. Definition. A pointed plausibility model M is a tuple

(S,≤, V, s0)

where:

– S is a set of states (possible worlds),

– ≤ is a well-founded pre-order on S,

– V is a propositional valuation and

– s0 is an actual state of affairs.

A pre-order is a binary relation that is reflexive and transitive. A well-founded
pre-order is a pre-order such that there is no infinite descending chain of states
in S, i.e. there is no infinite sequence s1 > s2 > s3 > . . ., with all si ∈ S. A well
pre-order is a well-founded pre-order that is also connected, that is, for all s and t,
either s ≤ t or t ≤ s. We explicitly distinguish between partial plausibility models
(plausibility models with a non connected pre-order) and total plausibility models
(plausibility models with a connected pre-order). The notation s ≤ t denotes that
state s is at least as plausible as t for the agent. We write s < t iff s ≤ t but t ≰ s
and call this the “strict” plausibility relation.

Given a pointed (total or partial) plausibility modelM, we identify a “propo-
sition” with any set P ⊆ S of states in M. We write M, s ⊧ P (that is, the
proposition P is true at state s in the model M) iff s ∈ P in M. We define
the “always true” ⊺ and “always false” � propositions as standard: � ∶= ∅,⊺ ∶= S.
All the operations on sets can be “lifted” to propositions, so that we have a
natural meaning of the negation of a proposition (¬P ) ∶= S ∖ P , conjunction
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of propositions (P ∧ R) ∶= P ∩ R etc. Besides, for propositions P,Q ⊆ S we
define the set of most plausible states given that a certain proposition P is
true: bestP = Min⪯P ∶= {s ∈ P ∶ there is no t < s for any t ∈ P}. We define
best ∶= bestS as the set of most plausible states in the given state space. Proposi-
tions provide an interpretation to the well-formed formulas of the language LEL.
This is done as usual by lifting the valuation of the atomic facts from basic propo-
sitions to complex ones.

We provide an example of a total plausibility model2 in Figure 2.2. In this
example, P is satisfied in the states x, v, t and s. The most plausible states
are s and u. The state t is more plausible than the state v, while s and u are
equiplausible as well as the states x and w.

           x                          w                           v                           t                            u                            s        

P P¬ P P PP¬

Figure 2.2: Example of a total plausibility model

We use our earlier notation to formally introduce a notion of “irrevocable”
knowledge (K) and a notion of belief (B).

Irrevocable knowledge Irrevocable knowledge is formally defined as truth
in all possible worlds. Given a (total or partial) plausibility model, we set:

KP ∶= {s ∈ S ∶ P = S}

where KP is read as “the agent (irrevocably) knows P ”.

We provide an example of irrevocable knowledge in Figure 2.3. In this exam-
ple, the proposition P is satisfied in all the states of the model. Hence in this
example, the agent irrevocably knows P , i.e. KP is true in all states of the model.

Belief Belief is defined as what is true in the most plausible worlds. Given
a (partial or total) plausibility model, we set:

BP ∶= {s ∈ S ∶ best ⊆ P}

where BP is read as “the agent believes P ”.

2Note that we do not draw the reflexive and transitive arrows in any of our drawings of total
or partial plausibility models.
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           x                          w                           v                           t                            u                            s        

                                                                                                                                                                  PP P   P P  P

Figure 2.3: Example of irrevocable knowledge

We provide an example of belief in Figure 2.4. In this example, the proposition
P is satisfied in the states x, v, u and s. The most plausible states are s and u.
Hence in this example, the agent believes P , i.e. BP is true in all states of the
model.

           x                          w                           v                           t                            u                            s        

                                                                                                                                                                ¬PP P   P P ¬P

Figure 2.4: Example of belief

One can extend the language of LEL with three other doxastic operators cap-
turing the notions of conditional belief, strong belief and defeasible knowledge as
done in [8].

Note that while the definitions of irrevocable knowledge, belief, conditional
belief and strong belief are not state-dependent, the definition of defeasible knowl-
edge is state-dependent. In other words, if an agent knows (believes, conditional
believes or strongly believes) P at a state s in a given modelM, she also knows
(believes, conditional believes or strongly believes) P at another state t in M.
But if an agent defeasibly knows P at s inM, she does not necessarily defeasibly
know P at any t inM.

Conditional belief Conditional belief is defined as what is true in the most
plausible worlds within a given subset Q of the state space (satisfying the condi-
tion Q). Given a (total or partial) plausibility model, we set:

BQP ∶= {s ∈ S ∶ bestQ ⊆ P}

where BQP is read as “the agent believes P conditional on Q” and means that,
if the agent would receive some further (certain) information Q (to be added to
what he already knows) then she would believe that P was the case3.

3We refer back to the past tense for the interpretation of conditional belief because of the
existence of Moore sentences [59]. We present the Moore paradox in more details in Chapter 6.
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We provide an example of conditional belief in Figure 2.5. In this example,
the proposition P is satisfied in the states x, v and s and the proposition Q is
satisfied in the states x and s. The most plausible state satisfying the condition
Q is s. Hence in this example, the agent believes P conditional on Q, i.e. BQP
is true in all states of the model.

           x                          w                           v                           t                            u                            s        

                                                                                                                                                                ¬P,¬QP,Q P,¬Q ¬P,¬Q P,Q ¬P,¬Q

Figure 2.5: Example of conditional belief

2.5.3. Proposition. Knowledge of a sentence P can be said to be “irrevocable”
iff P is known conditional on any information. Formally in a given (partial or
total) plausibility model M we have:

s ⊧KP iff s ⊧ BQP for all Q

.

2.5.4. Proof. – In the direction from left to right, we start from a given
(partial or total) plausibility model M in which KP is true at s. Now we
have to prove that s ⊧ BQP for all Q. As we know that s ⊧KP , this means
that t ⊧ P for all states t inM. Hence, bestQ ⊆ P for all Q that is, it is the
case that s ⊧ BQP for all Q.

– In the direction from right to left we assume as given a model (partial or
total) plausibility modelM and a state s such that s ⊧ BQP for all Q. Let
Q be the singleton {t} for any t ∈ S. Then bestQ ⊆ P , that is P is true at t
for any t ∈ S. Hence, s ⊧KP .

◻

Strong belief The next attitude is called strong belief [8] and is given by
the following definition in a (total or partial) plausibility model:

SbP ∶= {s ∈ S ∶ P /= ∅ and t < w for all t ∈ P and all w ∉ P}

where SbP is read as “the agent strongly believes P ”. P is a strong belief, held
at a state s, iff P is epistemically possible and moreover all epistemically possible
P -states are strictly more plausible than all epistemically possible non-P states.

We provide an example of strong belief in Figure 2.6. In this example, the
proposition P is satisfied in the states t, v, u and s. Hence in this example, the
agent strongly believes P , i.e. SbP is true in all states of the model.
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           x                          w                           v                           t                            u                            s        

                                                                                                                                                                ¬P¬P P   P P  P

Figure 2.6: Example of strong belief

Defeasible knowledge The next attitude has been called defeasible knowl-
edge in [8] and is given by the following definition in a partial plausibility model4:

s ⊧KDP iff ∀t(t ≯ s⇒ t ∈ P )

where KDP is read as “the agent defeasibly knows P ”. An agent defeasibly knows
P in a state s iff P is true in all the worlds that are at least as plausible as s
including the non comparable worlds.

In partial plausibility models, KD is interpreted as the Kripke modality for the
relation ≯. Thus in this setting, defeasible knowledge is not positively introspec-
tive. The notion of defeasible knowledge in partial plausibility models has not
yet been studied in detail in the literature. There does not yet exist a complete
axiomatization of that notion on partial plausibility models.

We introduce an example of defeasible knowledge in non-connected (partial)
plausibility models. In Figure 2.7 we consider a partial plausibility model such
that the states s and t, and the states u and v are not comparable. In this model,
the agent believes P ∨Q since P ∨Q is true in the most plausible worlds (that is,
in s and t). The agent does not defeasibly know ¬Q at v since although ¬Q is
true at v and s, it is not true at t.

                                       w                              
                                                                                                                                                                

¬P,¬Q

  P,Q

 P,¬Q
                                       s                   

                                       v                                u        
¬P,¬Q

                                        t                   
 ¬P,Q

Figure 2.7: Partial plausibility model

In the special case of a total plausibility model, we have:

4We use here the notation ⇒ for the implication in the meta-language.
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2.5.5. Proposition. In a total plausibility model,

KDP = {s ∈ S ∶ t ≤ s implies t ∈ P}

In a total plausibility model, P is defeasibly known at a state s iff all the
states that are at least as plausible as s are P -states. This way of defining KD

in total epistemic plausibility models, uses the converse of ≤ as the accessibility
relation. This operator satisfies the conditions of an S4-type Kripke modality5.

We provide an example of defeasible knowledge in a total plausibility model,
in Figure 2.8. In this example, the proposition P is satisfied in the states v, u
and s. This example emphasizes that the defeasible knowledge of an agent is
state-dependent. At state s, the agent defeasibly knows P whereas at state v she
does not defeasibly know P (since the state t is more plausible than the state v
and satisfies ¬P ).

           x                          w                           v                           t                            u                            s        

                                                                                                                                                                ¬P¬P P   P P ¬P

Figure 2.8: Example of defeasible knowledge

In a total plausibility model, knowledge of a sentence P can be said to be
defeasible iff P is believed conditional on any true information.

2.5.6. Proposition. Given a total plausibility model M, observe that:

s ⊧KDP iff s ⊧ BQP for all Q such that s ⊧ Q

2.5.7. Proof. – In the direction from left to right, we start from a given
total plausibility model M in which KDP is true at s. Now we have to
prove that s ⊧ BQP for all Q such that s ⊧ Q. That is, we want to show
that bestQ ⊆ P for all Q such that s ⊧ Q. Let Q ⊆ S be such that s ∈ Q and
let w ∈ bestQ. Then we have w ≤ s. As we know that s ⊧KDP , this means
that t ⊧ P for all states t ≤ s. So w ∈ P . Hence, bestQ ⊆ P for all Q such
that s ⊧ Q, that is it is the case that s ⊧ BQP for all Q such that s ⊧ Q.

– In the direction from right to left we assume as given a model M and a
state s such that s ⊧ BQP for all Q such that s ⊧ Q. We have to show
that s ⊧ KDP . Let t be such that t ≤ s and let Q be the set {s, t}. Then

5See below the axioms S4 for KD.
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t ∈ bestQ. Since s ⊧ BQP for all Q such that s ⊧ Q, bestQ ⊆ P . Hence,
t ⊧ P that is, s ⊧KDP .

◻

This alliance between KDP and a conditional belief in P , tells us something
about how stable the belief in P really is in the light of new information. The
stability account of knowledge characterizes the difference between knowledge
and belief in terms of stability or robustness under belief revision when new true
information is received [71, 8].

Irrevocable and defeasible knowledge The main difference between these
two types of knowledge is how they persist when new information is received.
While irrevocable knowledge is immune to change, that is, it persists whatever
(true or false) information is received, defeasible knowledge is only persistent
under new true pieces of information.

Justifiable beliefs All the beliefs in a given (total or partial) plausibility
modelM are justifiable beliefs. This is a consequence of the following proposition
stating that an agent believes P at s iff it is entailed by some strong belief in F
and F ⊆ P :

2.5.8. Proposition. Given a (total or partial) plausibility model M,

s ⊧ BP iff ∃F such that s ⊧K(F → P ) ∧ SbF

2.5.9. Proof. – In the direction from left to right, we start from a given
(total or partial) plausibility model M in which BP is true at s. Now we
have to prove a conjunction, which means that we show that both conjuncts
are true. In particular we have to show that there exists a proposition F
such that in state s and model M, it is the case that K(F → P ) and we
have to show that in this model at state s it is the case that SbF holds.
Let us take F = {t ∣ t ∈ best}. As we know that s ⊧ BP this means that
best ⊆ P . From this it follows that F ⊆ P , or in other words that F → P .
This implication is true in all states of the model M, hence at s in M it
is the case that K(F → P ). To show M, s ⊧ SbF , we have to show two
things: that F /= ∅ and that all F -worlds are strictly more plausible than
all ¬F -worlds. The first condition is satisfied because F = bestS and if S
is non-empty then bestS is non-empty. The second condition is satisfied
because for any state t if t is in bestS then from the definition of bestS it
follows that t is strictly more plausible then any state v ∉ bestS.

– In the direction from right to left we assume as given a (total or partial)
plausibility modelM and a state s such that s ⊧ K(F → P ) and s ⊧ SbF .
We have to show that s ⊧ BP . Because F is a strong belief, F /= ∅ and
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every state t ≤ s must satisfy F . Note that from the first conjunct it follows
that F ⊆ P in all states of the model, hence all states t ≤ s must satisfy P.
This means that the most plausible states will be P -states and hence BP
is true in all states of the model, and hence also in state s.

◻

We now introduce the notion of correctly justifiable belief. A belief is correctly
justifiable if it has a correct (i.e. true) justification. So by adding to the previous
equivalence in Proposition 2.5.8 the condition that the justification has to be
truthful and restricting ourselves to total plausibility models, we obtain the notion
of defeasible knowledge as the closure under logical consequence of true strong
belief in the total plausibility model M that is, an agent defeasibly knows P at
s iff it is entailed by some true strong belief in F and s ∈ F ⊆ P .

2.5.10. Proposition. Given a total plausibility model M:

s ⊧KDP iff ∃F such that s ⊧ F ∧K(F → P ) ∧ SbF

2.5.11. Proof. – In the direction from left to right we assume as given a
model M and a state s such that s ⊧ KDP . Now we have to show that
there exists a proposition F such that the following three conjuncts hold in
state s and model M, i.e.s ⊧ K(F → P ), s ⊧ SbF and s ⊧ F . Let us take
F = {t ∣ t ≤ s} and F ⊆ P . Since s ⊧ KDP , t ∈ P for every t ≤ s and hence
we can indeed require that F ⊆ P . From the choice of F it follows that
s ∈ F and hence s ⊧ F . It also follows that F → P is true in all states of the
model, hence we have M, s ⊧ K(F → P ). We now still have to show that
F /= ∅ and that all F -worlds are strictly more plausible than all ¬F -worlds.
By the choice of F and by the assumption that s ⊧ KDP , any state t ≤ s
will satisfy bothP and F , hence F is non-empty when P is non-empty and
the second fact follows from the choice of F . Hence F is a strong belief in
this model and in particular also in state s.

– In the direction from right to left we assume as given a model M and a
state s such that there exists an F for which the following conjunction holds:
M, s ⊧K(F → P )∧SbF . Now have to show that P is defeasible knowledge
at state s in M. From the first conjunct it follows thats ∈ F and F ⊆ P .
Since s ∈ SbF (second conjunct) then for any t ≤ s it follows that t satisfies
F and hence also P (because F ⊆ P ). As all states which are at least as
plausible as s satisfy P , it follows that P is defeasible knowledge.

◻

One could wonder why would the strong beliefs yield a good notion of jus-
tification? The answer to this is that they establish good evidence because one
can think of them as originating from highly trusted sources. In order words,
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justification can be looked at as the pieces of information that have generated
or created the agent’s plausibility structure on states via a prior process of belief
dynamics6.

Axiomatization Baltag and Smets provide a sound and complete proof system
of the logic of irrevocable knowledge and defeasible knowledge (defined as an S4-
type Kripke modality) [8]. The language of this logic is called LKKD

7. In this
logic, belief and conditional belief are derived operators:

Bϕψ ∶= ¬K¬ϕ→ ¬K¬(ϕ ∧KD(ϕ→ ψ)

Bϕ ∶= B⊺ψ

2.5.12. Proposition. Given a semantics for KDϕ and Bϕψ in plausibility mod-
els, we can prove the following semantic equivalence.

Bϕψ ⇐⇒ ¬K¬ϕ→ ¬K¬(ϕ ∧KD(ϕ→ ψ))

2.5.13. Proof. – In the direction from left to right, we start from a given
total plausibility modelM in which Bϕψ is true at s. Suppose ¬K¬ϕ is also
true at s. We have to prove that ¬K¬(ϕ ∧KD(ϕ→ ψ)) is true at s. So we
have to prove that there exists t ∈M such that t ⊧ ϕ and t ⊧ KD(ϕ → ψ).
Then we have to prove that t ⊧ ϕ and that for all w ≤ t, w ⊧ ϕ → ψ.
According to our assumption, s ⊧ ¬K¬ϕ. So, there exists a state t such
that t ⊧ ϕ. Let t ∈ bestϕ. Since we know that s ⊧ Bϕψ, bestϕ ⊆ ψ. Then for
all w ≤ t, w ⊧ ϕ→ ψ. And we are done.

– In the direction from right to left, we start from a given total plausibility
model M in which ¬K¬ϕ → ¬K¬(ϕ ∧KD(ϕ → ψ)) is true at s. We have
to show that s ⊧ Bϕψ, that is bestϕ ⊆ ψ. As we know, s ⊧ ¬K¬ϕ →
¬K¬(ϕ ∧KD(ϕ→ ψ)). Then either:

1. s /⊧ ¬K¬ϕ or

2. s ⊧ ¬K¬(ϕ ∧KD(ϕ→ ψ)).

In the first case, s ⊧ Bϕψ trivially. In the second case, there exists t ∈M
such that t ⊧ ϕ and that for all w ≤ t, w ⊧ ϕ → ψ. Let t ∈ bestϕ. Then
bestϕ ⊆ ψ. And we are done.

◻
6We refer to Chapter 4 for more details.
7We refer to this language in Chapter 3.
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Proof system In addition to the rules and axioms of propositional logic,
the proof system for the logic KKD includes the following rules and axioms:

a) S5 axioms for K.

b) S4 axioms for KD.

KD(ϕ→ ψ)→ (KDϕ→KDψ)
KDϕ→ ϕ

KDϕ→KDKDϕ

c) KP →KDP

d) K(P ∨KDQ) ∧K(Q ∨KDP )→KP ∨KQ

e) Necessitation for K and KD.

As we will refer later to the axiom d (see Chapter 4), we call this axiom To-
tality.

The logic for irrevocable knowledge and defeasible knowledge in partial plau-
sibility models has not yet been axiomatized, this is still an open problem.8

Dynamics of information One can think of many ways to change the beliefs
of an agent according to the information she receives. She can receive hard
information or she can receive soft information. Hard information is a piece of
information that is unrevisable and irrevocable since it has been received from an
infallible source while soft information is a piece of information that is potentially
revisable since it has been revised from a fallible source.

– Receiving “hard” information ϕ corresponds to what in the DEL literature
[11, 3, 29] is called an update !ϕ and in the Belief Revision literature is
known as a “radical revision” (or irrevocable revision) with ϕ. This opera-
tion changes the model by eliminating all the ¬ϕ-worlds. The result of this
elimination is a submodel only consisting of ϕ-worlds.

– A second, softer kind of revision, is given by the DEL operation of lexi-
cographic upgrade ⇑ ϕ [10, 8], known in the Belief Revision literature as
“moderate revision” (or lexicographic revision). This changes the model by
making all ϕ-worlds become more plausible than all ¬ϕ-worlds.

8Note that in [14] van Benthem, Fernández-Duque and Pacuit provide a full axiomatization
for the modality [≤] in partial pre-ordered models, but this modality does not capture defeasible
knowledge (except only in total models).
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– Finally, the DEL operation of conservative upgrade ↑ ϕ [10, 8] is known as
“conservative revision” (or natural revision) in the Belief Revision literature.
This changes the model by making the most plausible ϕ-worlds become the
most plausible overall (while leaving everything else unchanged).

Syntactically, dynamic operators are added to LEL to express the dynamics of
information. The resulting language is called LDEL and is defined as follows.

2.5.14. Definition. Let Φ be a set of propositional atoms such that p ranges
over Φ.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣Kϕ ∣ Bϕ ∣ Bϕψ ∣ Sbϕ ∣KDϕ ∣ [!ϕ]ψ ∣ [⇑ ϕ]ψ ∣ [↑ ϕ]ψ

The dual of [!ϕ] is ⟨!ϕ⟩. Similarly, the dual of [⇑ ϕ] is ⟨⇑ ϕ⟩ and the dual of
[↑ ϕ] is ⟨↑ ϕ⟩.

From traditional DEL to soft DEL While traditional Dynamic Epistemic
Logic only deals with hard information, soft Dynamic Epistemic Logic deals with
both hard and soft information.

Hard information The semantic clause for the !ϕ operator is given in Def-
inition 2.4.6.

Van Benthem provides a complete axiomatization for the logic of conditional
belief under public announcements in [10].

Note that it is now possible to repackage the above given characterization of
the KD operator using the tools of update operations on models. For ontic (i.e.
non-doxastic) facts p which do not refer to the beliefs of an agent (hence when p
is a Boolean formula) we state the following proposition:

2.5.15. Proposition. If p is an atomic formula (i.e. an ontic fact), s ⊧ KDp
iff s ⊧ [!ϕ]Bp for every ϕ ∈ LDEL.

2.5.16. Proof. – In the direction from left to right we assume as given a
model M and a state s such that s ⊧ KDp. Now we have to show that
s ⊧ [!ϕ]Bp for every ϕ. By Proposition 2.5.6, we have s ⊧ Bϕp for all ϕ
such that s ⊧ ϕ. It means that bestϕ ⊆∣∣ p ∣∣M for all ϕ such that s ⊧ ϕ.
We know that in M∣ϕ, ≤′=≤ ∩(S′ × S′) and that ∣∣ p ∣∣M∣ϕ=∣∣ p ∣∣M ∩ϕ (see
Definition 2.4.6). For all ϕ such that s ⊧ ϕ, we then have best′ϕ = bestS′ ⊆
∣∣ p ∣∣M∣ϕ = ∣∣ p ∣∣M ∩ ϕ. So for all ϕ such that s ⊧ ϕ, s ⊧M∣ϕ Bp. Hence,
s ⊧ [!ϕ]Bp for every ϕ.
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– In the direction from right to left we assume as given a model M and a
state s such that s ⊧ [!ϕ]Bp for every ϕ. Take the sentence ϕ ∶= ¬KDp.
Then by our assumption, we have s ⊧ [!¬KDp]Bp. By the above semantics
for [!ϕ]ψ, this is equivalent to the following statement:

(∗) ifM, s ⊧ ¬KDp thenM∣¬KDp, s ⊧ Bp

So we have two cases:

– eitherM, s /⊧ ¬KDp, i.e. M, s ⊧KDp and we are done,
– or M, s ⊧ ¬KDp. Then by (∗), we get M∣¬KDp, s ⊧ Bp. Then
best ∣∣ ¬KDp ∣∣M ⊆ ∣∣ p ∣∣M∣¬KDp ⊆ ∣∣ p ∣∣M. Let t ∈ best ∣∣ ¬KDp ∣∣M. By
the semantics of KDϕ, there exists t′ ≤ t such that t′ ∈ ∣∣ ¬p ∣∣M. Since
t′ ≤ t, t′ ∈ best ∣∣ ¬KDp ∣∣M ⊆ ∣∣ p ∣∣M. But this contradicts t′ ∈ ∣∣ ¬p ∣∣M.
Hence, s ⊧KDp.

◻

The use of the update operator !ϕ in Proposition 2.5.15 shows that KDp
corresponds to a belief that is persistent under truthful learning of new (true)
facts ϕ but can be defeated by false information.

Soft information The semantic clause for ⇑ ϕ operator is:

M, s ⊧ [⇑ ϕ]ψ iffM∣ ⇑ ϕ, s ⊧ ψ

such thatM∣ ⇑ ϕ is the result of applying a lexicographic upgrade operation
with ϕ onM, which is defined as follows.

2.5.17. Definition. M∣ ⇑ ϕ is defined as < S,≤′, V > in which t ≤′ s iff:

– t ⊧ ϕ and s ⊧ ¬ϕ or

– t ≤ s.

The semantic clause for ↑ ϕ operator is:

M, s ⊧ [↑ ϕ]ψ iffM∣ ↑ ϕ, s ⊧ ψ

such that M∣ ↑ ϕ is the result of applying a conservative upgrade operation
with ϕ onM, which is defined as follows.

2.5.18. Definition. M∣ ↑ ϕ is defined as < S,≤′, V > in which t ≤′ s iff:

– t ∈ best ∣∣ ϕ ∣∣M or

– t ≤ s.

Van Benthem provides a complete axiomatization for the dynamic logic of
lexicographic upgrade and the dynamic logic of conservative upgrade in [10].
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Original epistemic models Note that originally, the DEL semantics was given
in terms of epistemic models that includes standard S5 or S4-Kripke models
< S,∼, V > such that ∼ is an equivalence relation on S. These types of models are
designed to model knowledge and work well with update operations modelling
knowledge change but they are not ideal to model beliefs (as beliefs are supposed
to be fallible). However problems arise when we try to adapt the standard DEL
models to deal with belief revision. Traditional DEL fails to model belief revi-
sion when the accessibility relation is serial, transitive and euclidean (KD45) or
reflexive and transitive (S4). Van Benthem provides a perfect example of this
failure in [10].

Consider the doxastic model illustrated in Figure 2.9 with two possible worlds
s and t such that only the actual state s satisfies the proposition p and also
satisfies B¬p. This is a KD45 model such that there is no reflexive arrow in
state s while there is a reflexive arrow in state t.

s                        t

p ¬ p

Figure 2.9: Example of the failure of standard doxastic models for belief revision

A piece of hard information !p would change this model into the one-world
model s with an empty doxastic accessibility relation. Indeed the state s has no
outgoing arrows. In other words, the agent’s beliefs become inconsistent!

Taking the conditional belief operator as basic, Baltag and Smets get back to
a semantics which is close to PDL, they call this Conditional Doxastic Logic.

2.6 Conditional Doxastic Logic

In 2006, Alexandru Baltag and Sonja Smets provide a Kripke-model based, qual-
itative, multi-agent version of the classical Belief Revision theory, which is called
the logic of conditional beliefs [6]. The Kripke-style models for the logic of con-
ditional beliefs is cast in pure qualitative terms. The qualitative description is
given in terms of conditional doxastic maps, which can be seen as labelled acces-
sibility relations in a given Kripke model. Every accessibility relation is labelled
by propositions that capture the new incoming information with which the agent
can revise her beliefs. These maps are then used in a natural way to give an in-
terpretation to the conditional doxastic belief operators in the object language of
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the logic. Here we only consider the single-agent case in which the agent receives
new factual information only.

Syntax The language of Conditional Doxastic Logic (CDL) is defined as follows.

2.6.1. Definition. The formal language LCDL is built up from a countable set
of propositional atoms, the usual connectives and a conditional belief operator.
Let p range over a set of propositional atoms:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣ Bϕψ

The intended interpretation of Bϕψ is “the agent believes that ψ conditional on ϕ”.

We can define a knowledge and belief modality as an abbreviation:

Kϕ ∶= B¬ϕ�
Bϕ ∶= B⊺ϕ

Semantics We interpret LCDL in the states of conditional doxastic models.

2.6.2. Definition. A conditional doxastic frame is a tuple (S,{BP}P⊆S), where
S is a non-empty set of worlds, and for each proposition P ⊆ S, we have a map
BP ∶ S Ð→ P(S), satisfying the following conditions9: for each w ∈ S,

– if w ∈ P , then BP (w) /= ∅

– if Q ∩BP (w) /= ∅, then BP (w) /= ∅

– if w′ ∈ BP (w), then BQ(w) = BQ(w′)

– BP (w) ⊆ P

– if BP (w) ∩Q /= ∅, then BP∩Q(w) = BP (w) ∩Q

The first condition states that beliefs are consistent if the information received
is true. The second one states that beliefs are consistent as long as new infor-
mation is not in contradiction with the old information. Condition 3 states that
beliefs are introspective. The fourth one states that the new information is be-
lieved. Condition 5 states that revision must be minimal in the sense the agent
keeps as much as possible of her previous beliefs when she receives a new piece
of information.

In [6], Baltag and Smets went on to show that any such conditional doxastic
frame is equivalent to a semantic AGM theory10 over a KB-frame.

9Note that, for each P ⊆ S, BP can be equivalently defined as a binary relation over S,
satisfying the corresponding conditions.

10Originally, the AGM theory is set in a syntactic framework.
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2.6.3. Definition. A KB-frame is a tuple, (S,B,K) where S is a non-empty
set, and the two maps K ∶ S Ð→ P(S), B ∶ S Ð→ P(S), satisfy the following
conditions:

– w ∈K(w);

– if w′ ∈K(w), then B(w) = B(w′),K(w) =K(w′);

– B(w) ⊆K(w)

– B(w) /= ∅

The first condition expresses the truthfulness of knowledge. The second one ex-
presses full introspection (an agent knows what she knows/believes and what
not). The third one says that the agent believes everything she knows, and the
fourth one says that beliefs are consistent.

We now provide a semantic version of the AGM theory over a KB-frame.
To this end, we need to consider the semantic counterparts of different syntactic
notions, eg. theories, sentences and others. An S-theory is taken to be a set
of states and an S-sentence is also considered to be a set of states. Note that
each S-theory A ⊆ S gives rise to a deductive closed set of sentences ThA =
{ϕ ∈ L ∣ i ⊧S ϕ for all i ∈ A}. We also assume that the belief sets form S-
theories. The inconsistent theory � can be represented by the empty set ∅ ⊆ S.
The deductive closure of the union of two syntactic theories corresponds to the
intersection of the respective semantic theories that is, sets of states. Thus, an
expansion A + Y of a semantic theory A ⊆ S with a semantic sentence Y ⊆ S is
given by the intersection A ∩ Y .

2.6.4. Definition. Given a KB-frame ⟨S,B,K⟩, let T ⊆ P(S) be a family of
S-theories. Now we define an operation ∗ ∶ T × P(S) Ð→ T be such that, for all
Y ⊆ S, we have that:

(T1.) B(i) ∈ T for each i ∈ S.
(T2.) ∅ ∈ T.
(T3.) if A ∈ T, then for all i, j ∈ A, B(i) = B(j).

(∗1.) A ∗ Y ∈ T;
(∗2.) A ∗ Y ⊆ Y ;

(∗3-4.) A ∗ S = S;
(∗5.) A ∗ Y = ∅ iff K(A) ∩ Y = ∅;
(∗6.) if Y = Z, then A ∗ Y = A ∗Z;
(∗7-8.) if (A ∗ Y ) ∩Z /= ∅, then A ∗ (Y ∩Z) = (A ∗ Y ) ∩Z.
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We should mention here that postulate (∗5) is modified from the original
syntactic AGM version. Since an agent’s beliefs about her beliefs or knowledge
are certain, they should not be revised.

2.6.5. Fact. Baltag and Smets went on to show that any such conditional dox-
astic frame is equivalent to a semantic AGM theory over a KB-frame.

2.6.6. Definition. A conditional doxastic model is a Kripke model whose un-
derlying frame is a conditional doxastic frame.

Axiomatics Baltag and Smets provide a sound and complete proof system for
CDL in [6].

Dynamics Baltag and Smets also investigate belief update, focusing on public
announcements. The mechanism of update is the same as the one in DEL: an
update with !P changes the model by eliminating all the ¬P -worlds. The result
of this elimination is a submodel only consisting of P -worlds.

The syntax of CDL is then extended with dynamic modalities ⟨!P ⟩. Reduction
axioms for public announcements are added to the axioms of CDL to obtain a
sound and complete proof system.

We now move on to a setting dealing explicitly with evidence and justification
for belief.

2.7 Evidence Logic
In [16], Johan van Benthem and Eric Pacuit provide a semantic approach to ev-
idence. They develop a very interesting extension of DEL aimed to deal with
evidential dynamics. Their evidence models are based on the well-known neigh-
bourhood semantics for modal logic, in which the neighbourhoods are interpreted
as evidence sets: pieces of evidence (possibly false, possibly mutually inconsis-
tent) possessed by the agent. Indeed, the evidence setting deals with inconsistent
evidence. Thus an agent can have several non compatible pieces of evidence. It
means that in their evidence sets, some subsets (representing pieces of evidence)
are disjunct sets (their intersection is empty). The plausibility relation that can
be induced on states in evidence models is not a total pre-order. That means
that not all states are comparable. As a result, the action of belief revision in
neighbourhood models does not satisfy the AGM postulates (in particular the
postulates (∗7-8. iterated ∗3-4.) in the Definition 2.1.3 will fail).

2.7.1. Definition. A pointed evidence model M is a tuple (S,E, ∥⋅∥, s0) con-
sisting of:
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– a non-empty set of worlds S,

– an evidence relation E ⊆ S ×P(S),

– a standard valuation function ∥⋅∥

– an actual state of affairs s0.

A pointed uniform evidence model is an evidence model with a constant func-
tion E.

2.7.2. Definition. The collection of evidence sets is defined as

E(s) = {X ∣sEX,X ⊆ S}

and we impose two constraints on the evidence function:

(Cons) For each state s, ∅ ∉ E(s)

(Triv) For each state s, S ∈ E(s)

These constraints ensure that no evidence set is empty and that the universe
S is itself an evidence set.

In this framework, the combination of different evidence sets does not neces-
sarily yield consistent evidence. Indeed for any two evidence sets X and Y , X
and Y may be disjoints sets that is, X ∩ Y = ∅.

2.7.3. Definition. Van Benthem and Pacuit introduce the notion of s-scenario:
a s-scenario is a maximal collection χ ⊆ E(s) that has the finite intersection
property (f. i. p.). χ has the f. i. p. if for each finite subfamily X ⊆ χ, ⋂X ≠ ∅.
A s-scenario relative to P is a maximal collection χ ⊆ E(s) that has the P -finite
intersection property (f. i. p.). χ has the P -f. i. p. if for each finite subfamily
X ⊆ χP , ⋂X ≠ ∅ with χP = {Y ∩ P ∣ Y ∈ χ}.

Epistemic and doxastic notions We can now formally define the notions of
irrevocable knowledge (K), belief (B), conditional belief (B−), evidence (⊟) and
conditional evidence (⊟−) in evidence models.

2.7.4. Definition. Irrevocable knowledge is formally defined as truth in all pos-
sible worlds, i.e.

KP ∶= {s ∈ S ∶ P = S}
Belief is defined as:

BP ∶= {s ∈ S ∶ for some s-scenario χ ⊆ E(s) and ∀t ∈⋂χ(t ∈ P )}



36 Chapter 2. Logics of belief change

Conditional belief is defined as:

BQP ∶= {s ∈ S ∶ for some s-scenario χ ⊆ E(s) and ∀t ∈⋂χQ(t ∈ P ))}

Evidence is defined as:

⊟P ∶= {s ∈ S ∶ sEX for ∅ ≠X ⊆ S and ∀t ∈X(t ∈ P )}

Conditional evidence is defined as:

⊟QP ∶= {s ∈ S ∶ sEX for ∅ ≠X ∩ ∥Q∥ ⊆ S and ∀t ∈X ∩ ∥Q∥(t ∈ P )}

The interpretation of ⊟P is the agent has evidence for P .

Note that these definitions come from [16]. When the evidence model M is
not finite, these definitions can lead to inconsistent beliefs, that is, the agent
might believe a contradiction (B�). There are several solutions for this problem:

– the first solution is the solution we adopt in Chapter 6 where we change the
definition of belief to make belief globally consistent;

– the second solution is the solution adopted by van Benthem, Fernández-
Duque and Pacuit in [14] where they introduce the notion of flateness. An
evidence model M satisfies the axiom D, that is, a flat evidence frame is
serial. Throughout most of this thesis (in Part II and Chapter 7), we adopt
a more neutral solution, we assume finite models11.

Dynamics of evidence When dealing with evidence dynamics, van Benthem
and Pacuit suggest two kinds of operations modifying evidence: external and
internal operations. Evidence change can be triggered by a piece of new incoming
information or can be the result of an internal process of re-evaluation. We
only present here “hard information change” (public announcement) and evidence
combination while van Benthem and Pacuit study also “soft information change”
(radical and conservative upgrade).

2.7.5. Definition. When new hard evidence ϕ is received, this induces an up-
date !ϕ, which changes the agent’s prior evidence model (S,E, ∥⋅∥) to (S′,E′, ∥⋅∥)
with: S′ = ∥ϕ∥ and E′(s) = {X ∣∅ ≠X = Y ∩ ∥ϕ∥for some Y ∈ E(s)}.

2.7.6. Definition. The basic internal operation that van Benthem and Pacuit
deal with is evidence combination: in this case an agent combines consistent
evidence. The evidence model is changed to (S∗,E∗, ∥⋅∥) with: S∗ = S and E∗(s)
is the smallest set closed under (non-empty) intersection and containing E(s).

11Note that every finite model is flat.
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Evidence models and partial plausibility models Van Benthem and Pacuit
compare their evidence models with partial plausibility models. Every partial
plausibility model can be extended to an evidence model defining evidence sets
as the downward ≤-closed sets of worlds. Let X↓≤ = {t ∈ S ∣ ∃x ∈ X and t ≤
x} for X ⊆ S, then X is ≤-closed if X↓≤ ⊆ X. Conversely evidence models with
a constant function E (such a type of evidence models is said to be uniform)
can be turned into partial plausibility models such that s ≤E t iff ∀X ∈ E, t ∈ X
implies s ∈X. They note that in partial plausibility models the agent has already
combined all of her evidence.

Proof system The proof system for the logic of evidence is given by the min-
imal modal logic for the separate dynamic modalities (given the usual rules of
Necessitation and Replacement of Provable Equivalents) and the following Re-
cursion axioms:

2.7.7. Definition.
[!ϕ]p ⇐⇒ (ϕ→ p),

[!ϕ](ψ ∧ χ) ⇐⇒ [!ϕ]ψ ∧ [!ϕ]χ,

[!ϕ]¬ψ ⇐⇒ ϕ→ ¬[!ϕ]ψ,

[!ϕ]Bψθ ⇐⇒ ϕ→ Bϕ∧[!ϕ]ψ([!ϕ]θ),

[!ϕ] ⊟ψ θ ⇐⇒ ϕ→ ⊟ϕ∧[!ϕ]ψ([!ϕ]θ),

Till now we have focused on settings with a dynamic dimension, now we move
on to a setting with a temporal dimension. Indeed Giacomo Bonanno chooses to
use a temporal (modal) logic to model belief change.

2.8 Branching time temporal logics of belief revi-
sion

In 2005, Giacomo Bonanno studies a branching time temporal logic of belief revi-
sion [17] and develops his setting through a series of papers [19, 18, 21, 20, 22]. In
these papers, he models the interaction between information and beliefs over time
using a multimodal logic. In his setting, Bonanno only considers agents who re-
ceive new factual information, that is information about facts. We consider again
a single agent facing new incoming information that triggers a belief change. To
model different types of belief change, Bonanno introduces three different logics
of increasing strength. For each logic he provides a set of axioms as well as the
corresponding property characterizing the axiom in question.
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The first logic is called the weakest logic of belief revision LW . Bonanno in-
troduces LW in [21] and in this setting he only considers information confirming
initial beliefs. Thus this logic captures a very weak notion of belief revision.
The second logic is called the logic of Qualitative Bayes Rule (LQBR), which is
stronger than the previous logic. LQBR considers new information which does not
contradict initial beliefs. Finally the last one is called the logic of AGM (LAGM ),
which is stronger than the two previous logics since it considers new information
contradicting initial beliefs.

In his latest papers [20, 22], Bonanno identifies the condition on his branching-
time belief revision frames that is equivalent to the property of AGM -consistency.
He adds this property (and the corresponding axiom) to the properties (and ax-
ioms) of the logic (LAGM ), defining then a new logic: the logic PLS (LPLS )12. But
in his very last paper [22], he changes some of the properties and corresponding
axioms making them simpler to handle. So the logic PLS becomes the logic PLS∗
(LPLS∗).

In what follows, we provide an introduction to his basic setting as well as his
belief expansion logic LQBR [21] and his last belief revision setting namely the
logic called LPLS∗ [22].

Syntax The language for his branching-time belief logic is an extension of the
classical propositional language.

2.8.1. Definition. The formal language LB is built up from a countable set of
propositional atoms Φ, the usual propositional connectives and five unary modal
operators, namely the temporal operators ◯ (next instant) and ◯−1 (previous
instant), the universal modality A, a belief operator B and an information oper-
ator I restricted to Boolean formulas that is, Iϕ is a well formed formula iff ϕ is
Boolean. Let p range over Φ.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣ ◯ϕ ∣ ◯−1ϕ ∣ Bϕ ∣ Iϕ ∣ Aϕ

We use the following abbreviations for the dual operators: ¬◯−1¬ϕ ∶= ◇−1ϕ
and ¬◯¬ϕ ∶=◇ϕ.

The intended interpretation of the operators is as follows:

◯ϕ: at every next instant it will be the case that ϕ

◯−1ϕ: at the previous instant it was the case that ϕ

Bϕ: the agent believes that ϕ
12Bonanno does not give a name to his new logic, we name it in reference to its new property

PLS.
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Iϕ: the agent is informed that ϕ

Aϕ: ϕ is true at every world

◇−1ϕ: there exists a previous instant at which ϕ is the case

◇ϕ: there exists a next instant at which ϕ is the case

Semantics Starting with the semantics, Bonanno uses temporal (branching-
time) possible world models. As standard in modal logic, such models are based
on an underlying Kripke frame.

2.8.2. Definition. We define a next-time branching frame (T,↝), consisting of
a countable set of time points or instants T and an “immediate successor” relation
↝ on T satisfying the following conditions: ∀t, u, v ∈ T ,

1. If t↝ v and u↝ v then t = u.

2. If < t1, ..., tn > is a sequence with ti ↝ ti+1, for every i = 1, ...n − 1, then
tn /= t1.

Condition 1 makes sure that each instant has a unique predecessor and con-
dition 2 excludes cycles in the structure, giving it a tree-form. The intended
interpretation of t↝ u is taken to be “u is an immediate successor of t or t is the
immediate predecessor of u”. Each instant can have several immediate successors.
Let t↝ denote the set of all immediate successors of t.

2.8.3. Definition. We introduce a branching-time belief frame to be a Kripke
frame,

(T,↝, S,{Bt, It}t∈T )
where :

– (T,↝) is a next-time branching frame,

– S is a non-empty set of states,

– Bt is a binary relation on S capturing the beliefs of an agent at t,

– It is a binary relation on S modelling the information an agent can receive
at t.13

Casting the relations in terms of maps, we set:

It(i) = {j ∈ S ∶ iItj}
Bt(i) = {j ∈ S ∶ iBtj}

13It might be customary to think of the belief relation as a KD45 relation in modal logic and
of the information relation as S4 or S5 but note that Bonanno leaves these options open.
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2.8.4. Example. As an example of a branching-time belief frame we introduce
Figure 2.10. The rectangles correspond to the information sets at every instant,
whereas the ovals inside them correspond to the belief sets of the agent. In
Figure 2.10, we have that It(i) = {i, j, k, l} and Bt(i) = {j, k}.

t 1 2 3 4 5 6

i      j        k      l        m      n  

1 4 5 2 3 6 1 2 3 4 5 6

u v

i        j       k           l       m      n i      j      k         l     m     n

Figure 2.10: Example of a branching-time belief frame

2.8.5. Definition. The branching-time belief expansion frames are branching-
time belief frames that satisfy the following conditions: ∀i ∈ S and ∀t, u ∈ T ,

1. if t↝ u and Bt(i) ∩ Iu(i) /= ∅ then Bu(i) ⊆ Bt(i)
2. if t↝ u then Bt(i) ∩ Iu(i) ⊆ Bu(i)
3. if t↝ u and Bt(i) ∩ Iu(i) /= ∅ then Bu(i) ⊆ Iu(i)

2.8.6. Example. As an example of a belief expansion scenario we introduce the
following story and we represent the corresponding branching-time belief expan-
sion frame in Figure 2.11. Consider an agent and a dice. Someone throws the dice
such that our agent cannot see the upper face. We have 6 possible worlds in our
belief expansion frame: i where 1 is the upper face, j where 2 is the upper face
and so on. Assume that the agent initially believes that the upper face is 2, 3, 4,
5 or 6 while in reality (unknown to our agent) the upper face is 3. So the agent
considers j, k, l, m and n to be the most plausible worlds at the initial world-
instant pair (k, t). Then she receives the information that the number on the
upper face is odd at the world-instant pair (k, u). So the agent is informed that
i, k and m are possible and according to our belief expansion rules she will now
come to believe that the upper face is 3 or 5. In our terms, the agent considers k
and m to be the most plausible worlds at the world-instant pair (k, u). Consider
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now the alternative scenario in which the agent receives the information that the
number on the upper face is smaller than 4 at the world-instant pair (k, v). In
this case, the agent is informed that i, j and k are possible and according to our
belief expansion rules she will come to believe that the upper face is 2 or 3. So
the agent considers j and k to be the most plausible worlds at the world-instant
pair (k, v).

t 1 2 3 4 5 6

1 3 5 2 4 6 1 2 3 4 5 6
u v

i      j       k      l        m      n

i       k      m           j       l       n   i     j     k             l    m    n

Figure 2.11: Example of a branching-time belief expansion frame

2.8.7. Definition. The branching-time belief revision frames are branching-
time belief frames in which S is finite and that satisfy the following properties:
∀i ∈ S, u0, u1, . . . , un ∈ t↝ with u0 = un and ∀k = 1, . . . , n

1. if t↝ u0 and Bt(i) ∩ Iu0(i) /= ∅ then Bu0(i) = Bt(i) ∩ Iu0(i)
2. Bt(i) ⊆ It(i)
3. if t↝ u0, t↝ u1 and Iu0(i) = Iu1(i) then Bu0(i) = Bu1(i)
4. Bt(i) /= ∅
5. if Iuk−1(i) ∩Buk(i) /= ∅, then Iuk−1(i) ∩Buk(i) = Buk−1(i) ∩ Iuk(i)

2.8.8. Example. As an example of a belief revision scenario we introduce the
following story and we represent the corresponding branching-time belief revision
frame in Figure 2.12. Consider again an agent and a dice. Someone throws the
dice such that the agent cannot see the upper face. We have 6 possible worlds in
our belief expansion frame: i where 1 is the upper face, j where 2 is the upper
face and so on. Assume that the agent initially believes that the upper face is 4,
5 or 6 while in reality (unknown to our agent) the upper face is 3. So the agent
considers l, m and n to be the most plausible worlds at the initial world-instant
pair (k, t). Then she receives the information that the number on the upper face
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is a prime number at the world-instant pair (k, u). So the agent is informed
that j, k and m are possible and according to our belief revision rules she will
come to believe that the upper face is 5. In our terms, the agent considers m to
be the most plausible worlds at the world-instant pair (k, u). Consider now the
alternative scenario in which the agent receives the information that the number
on the upper face is smaller or equal to 4 at the world-instant (k, v). So the agent
is informed that i, j, k and l are possible and according to our belief expansion
rules she will come to believe that the upper face is 4. So the agent considers l
to be the most plausible world at the world-instant pair (k, v).

t 1 2 3 4 5 6

u v

i      j       k      l        m      n

j       k      m           i       l       n   m        n         i     j     k    l    

2          3          5                1          4         6

 
5             6              1       2     3       4 

Figure 2.12: Example of a branching-time belief revision frame

2.8.9. Fact. In [22], Bonanno proves that all the branching-time belief revision
frames satisfying the above properties, satisfy the AGM postulates.

2.8.10. Definition. A branching-time belief model is a Kripke model based on
a branching-time belief frame and is obtained by adding a valuation V ∶ Φ→ P(S)
assigning to each atomic sentence p from a given set of atomic sentence Φ, the
set of states in which the sentence is true.

In the same way, a branching-time belief expansion model is a Kripke model
based on a branching-time belief expansion frame extended with a valuation
map. And a branching-time belief revision model is a Kripke model based on
a branching-time belief revision frame extended with a valuation map.

2.8.11. Definition. In a branching-time belief (respectively revision or expan-
sion) model, the valuation map can be extended to arbitrary well formed sentences
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ϕ in our language, where we use the standard notation in modal logic for satisfac-
tion in a world-time point in a given model14 M and denote this asM, (i, t) ⊧ ϕ
or equivalently as (i, t) ∈ ∣∣ ϕ ∣∣M.

M, (i, t) ⊧ p iff i ∈ V (p).
M, (i, t) ⊧ ¬ϕ iffM, (i, t) /⊧ ϕ.
M, (i, t) ⊧ ϕ ∨ ψ iffM, (i, t) ⊧ ϕ orM, (i, t) ⊧ ψ.
M, (i, t) ⊧◯ϕ iff for all u such that t↝ u,M, (i, u) ⊧ ϕ.
M, (i, t) ⊧◯−1ϕ iff for all u such that u↝ t,M, (i, u) ⊧ ϕ.
M, (i, t) ⊧ Iϕ iff (j ∈ It(i) iffM, (j, t) ⊧ ϕ).
M, (i, t) ⊧ Bϕ iff (j ∈ Bt(i) impliesM, (j, t) ⊧ ϕ).
M, (i, t) ⊧ Aϕ iff for all j ∈ S,M, (j, t) ⊧ ϕ.

It follows that:

M, (i, t) ⊧◇ϕ iff for at least one u such that t↝ u,M, (i, u) ⊧ ϕ.
M, (i, t) ⊧◇−1ϕ iff for at least one u such that u↝ t,M, (i, u) ⊧ ϕ.

Axiomatics

2.8.12. Definition. A complete axiomatization of the basic logic is given in
[83]. The axioms and rules for the basic logic are given as follows.

a) All propositional tautologies.

b) Kripke’s axiom K for ◯,◯−1,B,A.

◯(ϕ→ ψ)→ (◯ϕ→◯ψ)
◯−1(ϕ→ ψ)→ (◯−1ϕ→◯−1ψ)
B(ϕ→ ψ)→ (Bϕ→ Bψ)
A(ϕ→ ψ)→ (Aϕ→ Aψ)

c) Temporal axioms.

ϕ→◯◇−1 ϕ

ϕ→◯−1 ◇ ϕ

d) Backward uniqueness axiom.
14The model M can be a branching-time belief model or a branching-time belief expansion

model or a branching-time belief revision model.
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◇−1ϕ→◯−1ϕ

e) S5 axioms for A.

Aϕ→ ϕ

Aϕ→ AAϕ

¬Aϕ→ A¬Aϕ

f) Inclusion axiom for B.

Aϕ→ Bϕ

g) Axioms for the information operator I.

(Iϕ ∧ Iψ)→ A(ϕ↔ ψ)
A(ϕ↔ ψ)→ (Iϕ↔ Iψ)

h) Inference rules.
ϕ ϕ→ ψ (Modus Ponens)

ψ

ϕ (◯-necessitation)
◯ϕ

ϕ (◯−1-necessitation)
◯−1ϕ

ϕ (A-necessitation)
Aϕ

These axioms and inference rules state that the operators B, A,◯ and◯−1 are
normal operators such that the operator A is an S5 modal operator, whereas the
operator I is a non-normal operator15. In this setting an agent can only receive one
piece of information at a time such that if two formulas are equivalent then, if this
agent is informed about one of the two formulas, it means that she is also informed
about the other one. As Bonanno points out in his work, the information operator
is different but bears similarities to the “all and only” operator of Humberstone
[43], the “only knowing” operator of Levesque [48] and the “assumption operator”
of Brandenburger and Keisler [24]. The Inclusion axiom states that if a formula is
necessarily true then the agent believes it. Note that the branching-time structure
is such that each instant has a unique immediate predecessor but can have several
immediate successors. This axiom system forms the basis from which we start
adding axioms to deal specifically with the cases of belief expansion and belief
revision.

15Necessitation for B can be derived from Modus Ponens, Inclusion axiom for B and Neces-
sitation for A.
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2.8.13. Definition. A complete axiomatization of the belief expansion logic
LQBR is given by starting from the basic axioms and rules and by adding the
following axioms [21].

a) No Drop (ND).

(¬B¬ϕ ∧Bψ)→◯(Iϕ→ Bψ)

b) No Add (NA).

¬B¬(ϕ ∧ ¬ψ)→◯(Iϕ→ ¬Bψ)

c) Qualified Acceptance (QA).

¬B¬ϕ→◯(Iϕ→ Bϕ)

The axiom No Drop states that if the information received does not contradict
the initial beliefs, an agent does not drop her initial beliefs. The axiom No Add
states that if the information received does not contradict the initial beliefs, an
agent does not add a belief about which she is not informed. Note that together,
these axioms imply that the information received is also consistent. The axiom
Qualified Acceptance states that if the information received does not contradict
the initial beliefs, an agent believes the new information.

2.8.14. Fact. These axioms characterize the properties of Definition 2.8.5. Note
that Bonanno introduces the property which he calls the Qualitative Bayes Rule
in [17, 21]: if there exists an instant t such that t ↝ u and if Bt(i) ∩ Iu(i) /= ∅,
then Bu(i) = Iu(i)∩Bt(i). Bonanno uses the term “Qualitative Bayes Rule” since
he relates in [17] this property to the Bayes’ rule used in the economics and game
theory literature to model belief revision in a probabilistic setting. Then he proves
that the conjunction of axioms ND, NA and QA characterizes this property.

2.8.15. Definition. A complete axiomatization of the belief revision logic LPLS∗

is given by starting from the basic axioms and rules and by adding the following
axioms [22].
Let ⋀j=1,...,nϕj denote the formula (ϕ1 ∧ . . . ∧ ϕn) and let ϕ0 = ϕn and χ0 = χn

a) No Drop (ND).

(¬B¬ϕ ∧Bψ)→◯(Iϕ→ Bψ)

b) No Add (NA).

¬B¬(ϕ ∧ ¬ψ)→◯(Iϕ→ ¬Bψ)

c) Acceptance (A).
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Iϕ→ Bϕ

d) Equivalence (EQ).

◇(Iψ ∧Bϕ)→◯(Iψ → Bϕ)

e) PLS.

⋀
j=1,...,n

◇(Iϕj ∧ ¬B¬ϕj−1 ∧Bχj)→ ⋀
j=1,...,n

◯((Iϕj → B(ϕj−1 → χj−1))

∧(Iϕj−1 → B(ϕj → χj)))

f) Consistency (C).

Bϕ→ ¬B¬ϕ

The explanation of the axioms No drop and No Add is given above (see Defini-
tion 2.8.13). The axiom Acceptance states that the new information is believed.
The axiom Equivalence says that differences in beliefs must be due to differences
in information. The axiom PLS states that beliefs must be rationalized. The
axiom Consistency says that beliefs are consistent.

2.8.16. Fact. As shown in Bonanno [22], these axioms characterize the proper-
ties of Definition 2.8.7.

Extension to higher-order information While Bonanno’s work is fully de-
veloped in the sense that this approach allows one to model the AGM -rules of
belief revision in a branching-time setting, the main ideas have till now been
mainly pursued in a single-agent context. And in a single agent context, the
investigation of higher-order beliefs isn’t an issue of primary concern. However
this framework can be extended to higher-order information. Previous work on
an extension of Bonanno’s setting, in an attempt to deal with higher-order be-
liefs, was provided by Zvesper in [83] where he lifts the Boolean restriction on
I-formulas and provides as such an adjustment of the framework. According to
Zvesper, this adjustment makes the framework more comparable with the way in
which information dynamics is dealt with in Public Announcement Logic.

Zvesper [83] proposed an extension of Bonanno’s framework in order to elim-
inate the Boolean restriction on the I operator. His proposal provides a new
interpretation of the branching-time belief models. If an agent receives a piece of
new information at an instant t, she now revises her beliefs at an instant u such
that u is an immediate successor of t. This change in interpretation captures the
idea that the information received describes the state of the world as it was before
the receipt of this information.
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Zvesper extended the basic setting of Bonanno with additional axioms which,
in the restricted case of belief expansion (when the incoming information is con-
sistent with the existing beliefs) can handle the same type of information flow or
informational dynamics that we encounter in Public Announcement Logic (ab-
breviated as PAL, see Section 2.4).

2.8.17. Definition. To this end, Zvesper adds some additional axioms to the
basic set of axioms and rules presented in Definition 2.8.12:

a) Temporal axioms for the atomic propositions.

◇p→ p

◇−1p→ p

p→◯p

p→◯−1p

b) Temporal axioms for A.

◇Aϕ→ A◇ ϕ

◇−1Aϕ→ A◇−1 ϕ

c) UA.

Iϕ→ AIϕ

d) NM.

Iϕ→ (◇B◇−1 ψ → B(ϕ→ ψ))

e) PR.

Iϕ→ (B(ϕ→ ψ)→◯B◯−1ψ)

The axioms (a) and (b) respectively state that facts do not change over time
and the states of the model are constant over time which was however implicitly
present in the logic of Bonanno. Zvesper’s aim in [83] was to show the similarities
between the type of dynamics that is encoded in “public announcement actions”
(as in PAL) and the way we can interpret the I-operator in a branching-time
framework. Viewing I as some type of announcement operator, Zvesper uses UA
to abbreviate “uniform announcements”. In our view this axiom is intended to
capture the “public nature” of these announcements. The axiom NM is an ab-
breviation for “no miracles” indicating that the only way an agent can change
her mind is when it is triggered by an announcement. The axiom PR stands for
“perfect recall” and indicates intuitively that these agents have a perfect memory.
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2.8.18. Definition. Zvesper calls “public announcement temporal doxastic frames”
the branching-time belief frames that satisfy these two semantic properties:

(1) It(i) = It(j).
(2) if there exists an instant t such that t ↝ u, then Bu(i) = It(i) ∩
Bt(i).

He then further claims that UA, NM and PR are the axioms that characterize
exactly these frames.

Note that more general results about the relation between temporal models
and the dynamic models of DEL (including PAL) have recently been studied
in [15], while [27, 13] present an extension of these results for belief revision in
plausibility models. We will not review these results here in detail because in the
chapter where we deal with the temporal framework, we will mainly refer back
to the above explained branching-time belief revision setting of Bonanno.
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Chapter 3
Belief contraction in total plausibility

models

Aim In this chapter we study belief contraction in the framework of Dynamic
Epistemic Logic. Our aim is to model different belief contraction operations in
the particular setting of total plausibility models.

Summary: In this chapter we consider three different kinds of belief contrac-
tion operations. We first present the notions of severe withdrawal, conservative
contraction and moderate contraction. Then we axiomatize these AGM -friendly
versions of contraction in DEL. The main points are :

– we provide a brief presentation of the notions of belief contraction in the
literature.

– we present the notion of severe withdrawal and discuss the limits of this
belief contraction operation and we present two other types of contraction
operations namely, conservative and moderate contraction.

– we define these three contracting operations as operations on total plau-
sibility models, we associate to them epistemic actions in DEL style and
axiomatize them in DEL style.

Background In this chapter we use both Grove spheres and (finite) total plau-
sibility models as described in Chapter 2. These types of models are in fact
equivalent. Thus we can generate a Grove model from a given total plausibility
model and vice versa.

We illustrate this correspondence on the following example. Let us start from
a given Grove model in Figure 3.1. This model contains four nested spheres. Since
the central sphere represents the actual belief set of the agent and the world s
belongs to the central sphere, s is the most plausible world in this model. Since
the second sphere contains the world v and the third sphere contains the world t,

51
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v is more plausible than t. Since both u and w belong to the last sphere, u and
w are equiplausible and are the less plausible worlds in this model.

t

v

s

u

w

Figure 3.1: Example of a sphere system

From these observations, we can easily draw the corresponding total plausi-
bility model in Figure 3.2.

                                                         w                           u                            t                            v                            s        

Figure 3.2: Corresponding total plausibility model

In this chapter we will define different dynamic languages on top of two dif-
ferent static languages which we introduced in Chapter 2:

– the language LCDL is obtained from the language of propositional logic by
the addition of a conditional belief operator, and

– the language LKKD
is obtained from the language of propositional logic by

the addition of an irrevocable knowledge operator and a defeasible knowl-
edge operator.
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3.1 General background on belief contraction

We focus here on the notion of belief contraction. If an agent may revise her beliefs
after receiving a new piece of information, she may also contract her beliefs in
the light of new information. For example, consider an agent who believes that
Aristotle is lying on my couch. Then this agent receives the information that it is
not the case that Aristotle is lying on my couch. After receiving this information
she no longer believes that Aristotle is lying on my couch. In other words, the
agent removes her belief that Aristotle is lying on my couch. Indeed she considers
it now possible that Aristotle is lying on my couch but also that Aristotle is not
lying on my couch.

We already mentioned in Chapter 2 the work of Alchourrón, Gärdenfors and
Makinson who provide some postulates for belief contraction in [1]. In this chap-
ter, we are only interested in the AGM -friendly versions of belief contraction.

3.1.1 Severe withdrawal

The first notion of contraction we want to study is the notion called “mild con-
traction” by Levi [50], “severe withdrawal” by Pagnuco and Rott [63] and “Rott
contraction” by Ferme and Rodriguez [31].

3.1.1. Definition. Severe withdrawal is a belief change operation that removes
a belief from the belief set of an agent such that, after contracting this belief set
with ϕ, the most plausible worlds are all the worlds at least as plausible as the
best ¬ϕ-worlds.

Example We provide one example of severe withdrawal in Figure 3.3. As an
example of a severe withdrawal scenario we introduce the following story. Con-
sider an agent and a dice. Someone throws the dice such that the agent cannot
see the upper face. We have 6 possible worlds in our sphere system: i where 1 is
the upper face, ii where 2 is the upper face and so on. Assume that the agent
initially believes that the upper face is 3 while in reality (unknown to our agent)
the upper face is 4. Thus she believes that the upper face is odd that is, she
believes ϕ (the formula ϕ means “the number on the upper face is odd”). Besides,
the agent considers that it is more likely that the upper face is 5 than 1, and
that it is more likely that the upper face is 1 than 6 while she considers that it
is equally likely that the upper face is 1 or 2, and that it is equally likely that it
is 4 or 6. Then according to the agent: 3 < 5 < 1 ≡ 2 < 6 ≡ 4 (3 < 5 is read as it is
more likely that the upper face is 3 than 5 and 1 ≡ 2 is read as it is equally likely
that the upper face is 1 or 2). In other words, she considers iii more plausible
than v, v more plausible than both i and ii, and finally i and ii more plausible
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than both iv and vi.

Now we consider the case where the agent receives a piece of information say-
ing that the number on the upper face is even. The agent has to remove her
belief that the number on the upper face is odd. So according to our definition
for severe withdrawal, the agent will believe that the upper face is 1, 2, 3 or 5.
Indeed, the agent considers i, ii, iii and v to be more plausible after the severe
withdrawal. Then according to the agent: 1 ≡ 2 ≡ 3 ≡ 5 < 6 ≡ 4.

In Figure 3.3, the numbers represent the spheres of the new Grove system
after the revision. Thus all regions labelled with 1 form the first sphere of the
new Grove system, the regions labelled with 2 form the second sphere and so on.
Finally, the regions labelled with ω contain the states that are outside the union
of all the spheres of the Grove system that is, the impossible states.

 
�

       2     1       1             1                       1    2    
�

     
  

�
¬  

Figure 3.3: Example of severe withdrawal −ϕ

3.1.2 Other AGM -type contractions

Severe withdrawal is not the only AGM -friendly semantic contraction operation in
the literature. Other options include conservative contraction −cP and moderate
contraction −mP [72].

3.1.2. Definition. Conservative contraction is a belief change operation that
removes a belief from the belief set of an agent such that, after contracting this
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belief set with ϕ, the most plausible worlds are the best ¬ϕ-worlds plus the initial
best ϕ worlds.

3.1.3. Definition. Moderate contraction is a belief change operation that re-
moves a belief from the belief set of an agent such that, after contracting this
belief set with ϕ, the most plausible worlds are the best ¬ϕ-worlds plus the initial
best ϕ worlds and all the ¬ϕ-worlds are promoted. They become better than the
rest of the ϕ-worlds.

Examples We provide two examples in Figures 3.4, 3.5 respectively for conser-
vative contraction and moderate contraction. As an example of a conservative
contraction and moderate contraction scenario, we come back to our story with
an agent and a dice that we developed above.

After the agent receives the information that the number on the upper face
is even, she has to remove her belief that the number on the upper face is odd.
According to the definition for conservative contraction, the agent will believe
that the upper face is 2 or 3. Indeed, the agent considers ii and iii to be more
plausible after the conservative contraction. The agent still considers that it is
more likely that the upper face is 5 rather than 1, and more likely that the upper
face is 1 rather than 6 while she still considers that it is equally likely that the
upper face is 4 or 6. Then according to the agent: 2 ≡ 3 < 5 < 1 < 6 ≡ 4.

According to the definition for moderate contraction, the agent will believe
that the upper face is 2 or 3. Indeed, the agent considers ii and iii to be more
plausible after the conservative contraction. The agent still considers that it is
more likely that the upper face is 5 than 1; she now considers that both 4 and 6
are more likely than 5. Then according to the agent: 2 ≡ 3 < 6 ≡ 4 < 5 < 1.

3.2 A new approach to severe withdrawal

Now we will model these notions of contraction on (finite) total plausibility mod-
els. The language for belief contraction will consist of a base language equipped
with a dynamic contraction modality. There are now several options and depend-
ing both on the choice of the static base language and the type of contraction
operator a different language can be provided.

3.2.1 Language for the logic of severe withdrawal

We define two languages for severe withdrawal. The first language LSev1 will be
defined on top of LCDL equipped with dynamic modalities for contraction [−ϕ].
The second language LSev2 will be defined on top of LKKD

equipped with dynamic
modalities for contraction [−ϕ].
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Figure 3.4: Example of a conservative contraction −cϕ

3.2.2 Semantics for the logic of severe withdrawal

In Dynamic Epistemic Logic, belief contraction is modelled as a model-changing
operation. In particular it will take as input a given total plausibility model
M = (S,≤, V ) and produces as outputM−ϕ = (S,≤−ϕ, V ). Note that the current
ordering relation ≤ of a given total plausibility model will be replaced by the
following relation ≤−ϕ in the new model after the severe withdrawal with ϕ. The
intended meaning of this is that all the worlds at least as plausible as the best
¬ϕ-worlds have become the best worlds, but apart from that, the old ordering
remains the same.

3.2.1. Definition. The initial total plausibility modelM = (S,≤, V ) after a se-
vere withdrawal with ϕ is transformed into the following modelM−ϕ = (S,≤−ϕ, V )
in which t ≤−ϕ s iff:

– t ≤ s or

– t ≤ w for some w ∈ best ∣∣ ¬ϕ ∣∣M

The semantic clause for the dynamic operator [−ϕ] is:

M, s ⊧ [−ϕ]ψ iffM−ϕ, s ⊧ ψ
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Figure 3.5: Example of a moderate contraction −mϕ

Example In Figure 3.6 we present a sphere model composed of 6 states s, t, u, v,
w, x such that ϕ is true in s, t, v, x and ¬ϕ is true in u,w.

From this sphere system we can generate the corresponding total plausibility
model given in Figure 3.7.

Next, we present the total plausibility model resulting from the severe withdrawal
with ϕ in Figure 3.8. In this model, the states s, t, u and v are equi-plausible,
all of them being on top. Thus in the resulting model, the agent does not believe
ϕ anymore and does not believe ¬ϕ either.

3.2.3 Axiom system for the logic of severe withdrawal

3.2.2. Theorem. A sound and complete proof system for the logic SEV with
the language LSev2 is given by the axioms and rules of LKKD

plus the following
reduction axioms:
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Figure 3.6: Grove system
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Figure 3.7: Initial total plausibility model

[−ϕ]p ⇐⇒ p

[−ϕ]¬θ ⇐⇒ ¬[−ϕ]θ

[−ϕ](θ ∧ ψ) ⇐⇒ [−ϕ]θ ∧ [−ϕ]ψ

[−ϕ]Kθ ⇐⇒ K[−ϕ]θ

[−ϕ]KDθ ⇐⇒ (KD[−ϕ]θ ∧ (¬Kϕ→ ¬K¬(¬ϕ ∧KD[−ϕ]θ))

3.2.3. Proof. The soundness of the axioms of LKKD
is proved in [8]. All that

remains is to show the soundness of the Reduction axioms. The proof of the
first Reduction axioms is straightforward, we focus here only on the proof of the
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           x                          w                           v                           u                           t                             s        
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Figure 3.8: Severe withdrawal in the initial total plausibility model of Figure 3.7

reduction axiom for defeasible knowledge.

Suppose s ⊧M [−ϕ]KDψ. Then s ⊧M−ϕ KDψ. So for all t such that t ≤−ϕ s,
t ⊧M−ϕ ψ. This means that for all t such that t ≤−ϕ s, t ⊧M [−ϕ]ψ.

We know that t ≤−ϕ s iff t ≤ w for some w ∈ best ∣∣ ¬ϕ ∣∣M or t ≤ s. Then:

– for all t such that t ≤ w for some w ∈ best ∣∣ ¬ϕ ∣∣M, t ⊧M [−ϕ]ψ and,

– for all t such that t ≤ s, t ⊧M [−ϕ]ψ .

This means that s ⊧M ¬Kϕ→ ¬K¬(¬ϕ ∧KD[−ϕ]ψ) and s ⊧M KD[−ϕ]ψ .
◻

Sketch of the proof for completeness From the axiom system for the
logic SEV with the language LSev2 , we note that what is the case after a severe
withdrawal can be expressed by saying what is the case before the severe with-
drawal. Using the Reduction Laws, the severe withdrawal operator can be step by
step “pushed through” all other operators and at the end, completely eliminated
using the Reduction Law for atomic formulas.

3.2.4. Lemma. Every formula of LSev2 is provably equivalent in the above proof
system with another formula in LKKD

.

The completeness of the axioms of LSev2 follows from the completeness of the
axioms of LKKD

that is proved in [8] and Lemma 3.2.4.
Let ϕ be a formula in LKKD

such that it is satisfiable in a total plausibility
model and let ϕ′ be a formula in LSev2 equivalent to ϕ. Then ϕ′ is also satisfiable
in the total plausibility model.

We cannot provide Reduction Laws in the language LSev1 , that is, if the static
base language is the language of Conditional Doxastic Logic. Indeed we do not
have a reduction axiom for conditional belief.
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3.2.4 Objections against severe withdrawal

Many authors consider severe withdrawal to be a bad candidate for modelling
contraction. In addition to not satisfying the Recovery principle1, it does satisfy
a highly implausible property, called Expulsiveness. For ontic facts p, q, we have
that ¬Bp∧¬Bq implies [−p]Bq∨ [−q]Bp. This property does not allow unrelated
beliefs to be undisturbed by each other’s contraction.

Conservative contraction and moderate contraction are much better behaved
than severe withdrawal. Indeed they satisfy the Recovery postulate.

3.3 A new approach to conservative contraction

3.3.1 Language for the logic of conservative contraction

We define two languages for conservative contraction. The first language LCons1

will be defined on top of the static base language LCDL equipped with dynamic
modalities for contraction [−cϕ]. The second language LCons2 will be defined
on top of the static base language LKKD

equipped with dynamic modalities for
contraction [−cϕ].

3.3.2 Semantics for the logic of conservative contraction

The operation of conservative contraction has as an effect that a given total plau-
sibility modelM = (S,≤, V ) will be transformed into a modelM−cϕ = (S,≤−cϕ, V ).
In this setting the current ordering relation ≤ of a given total plausibility model
will be replaced by the following relation ≤−cϕ in the new model after the conserva-
tive contraction with ϕ. The intended meaning of this is that the best ¬ϕ-worlds
have become equi-plausible with the best worlds initially on top, but apart from
that, the old ordering remains the same.

3.3.1. Definition. The initial total plausibility model M = (S,≤, V ) after a
conservative contraction with ϕ is transformed into the following modelM−cϕ =
(S,≤−cϕ, V ) in which t ≤−cϕ s iff:

– t ∈ best ∣∣ ¬ϕ ∣∣M or

– t ≤ s.

3.3.2. Definition. We define best−cϕP :

– best−cϕP ∶= bestP if P ∩ best ∣∣ ¬ϕ ∣∣M= ∅ or,

1We provide an explanation of the Recovery principle in Chapter 2 when we introduce the
AGM postulates for belief contraction.
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– best−cϕP ∶= (P ∩ best ∣∣ ¬ϕ ∣∣M) ∪ (P ∩ bestS) if P ∩ best ∣∣ ¬ϕ ∣∣M≠ ∅.

The semantic clause for the dynamic operator [−cϕ] is:

M, s ⊧ [−cϕ]ψ iffM−cϕ, s ⊧ ψ

Example In Figure 3.9 we present a sphere model composed of 6 states s, t, u, v,
w, x such that ϕ is true in s, t, v, x and ¬ϕ is true in u,w.

φ¬
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t

v

x
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w

Figure 3.9: Grove system

From this sphere system we can generate the corresponding total plausibility
model given in Figure 3.10.

           x                          w                           v                           u                           t                             s        

 
  

     

                                                                                                                                                                ¬φφ φ φ φ¬φ

Figure 3.10: Initial total plausibility model
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Next we present the total plausibility model resulting from the conservative con-
traction with ϕ in Figure 3.11. In this model, the state u is equi-plausible with
the state s, both being on top. Thus the agent does not believe ϕ anymore and
does not believe ¬ϕ either.

           x                          w                           v                           t                            u                            s        

 
  

     

                                                                                                                                                                ¬φφ φ ¬φ φ  φ

Figure 3.11: Conservative contraction in the initial total plausibility model of
Figure 3.10

3.3.3 Axiom system for the logic of conservative contrac-
tion

3.3.3. Theorem. A sound and complete proof system for the logic CONS1 with
the language LCons1 is given by the axioms and rules of LCDL plus the following
reduction axioms:

[−cϕ]p ⇐⇒ p

[−cϕ]¬θ ⇐⇒ ¬[−cϕ]θ

[−cϕ](θ ∧ ψ) ⇐⇒ [−cϕ]θ ∧ [−cϕ]ψ

[−cϕ]Bψθ ⇐⇒ B([−cϕ]ψ → [−cϕ]θ) ∧B¬ϕ([−cϕ]ψ → [−cϕ]θ)

∧ (B¬ϕ[−cϕ]¬ψ → B[−cϕ]ψ[−cϕ]θ)

3.3.4. Proof. The soundness of the axioms of LCDL is proved in [6]. All that
remains is to show the soundness of the Reduction axioms. The proof of the
first Reduction axioms is straightforward, we focus here only on the proof of the
reduction axiom for conditional belief.

Suppose s ⊧M [−cϕ]Bψθ. Then s ⊧M−cϕ Bψθ. So best−cϕ ∣∣ ψ ∣∣M−cϕ ⊆ ∣∣ θ ∣∣M−cϕ .
This means that best−cϕ ∣∣ [−cϕ]ψ ∣∣M ⊆ ∣∣ [−cϕ]θ ∣∣M.

We know that:

– best−cϕ ∣∣ [−cϕ]ψ ∣∣M ∶= best ∣∣ [−cϕ]ψ ∣∣M if ∣∣ [−cϕ]ψ ∣∣M ∩ best ∣∣ ¬ϕ ∣∣M = ∅
or,
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– best−cϕ ∣∣ [−cϕ]ψ ∣∣M ∶= (∣∣ [−cϕ]ψ ∣∣M∩best ∣∣ ¬ϕ ∣∣M)∪(∣∣ [−cϕ]ψ ∣∣M∩bestS)
if ∣∣ [−cϕ]ψ ∣∣M ∩ best ∣∣ ¬ϕ ∣∣M ≠ ∅.

Then:

– if best ∣∣ ¬ϕ ∣∣M ⊆ ∣∣ [−cϕ]¬ψ ∣∣M then best ∣∣ [−cϕ]ψ ∣∣M ⊆ ∣∣ [−cϕ]θ ∣∣M and,

– best ∣∣ ¬ϕ ∣∣M ∩ ∣∣ [−cϕ]ψ ∣∣M ⊆ ∣∣ [−cϕ]θ ∣∣M and

– bestS ∩ ∣∣ [−cϕ]ψ ∣∣M ⊆ ∣∣ [−cϕ]θ ∣∣M otherwise.

This means that:

– s ⊧M (B¬ϕ[−cϕ]¬ψ → B[−cϕ]ψ[−cϕ]θ) and

– s ⊧M B¬ϕ([−cϕ]ψ → [−cϕ]θ) and

– s ⊧M B([−cϕ]ψ → [−cϕ]θ).
◻

Sketch of the proof for completeness From the axiom system for the
logic CONS1 with the language LCons1 , we note that what is the case after a
conservative contraction can be expressed by saying what is the case before the
conservative contraction. Using the Reduction Laws, the conservative contraction
operator can be step by step “pushed through” all other operators and at the end,
completely eliminated using the Reduction Law for atomic formulas.

3.3.5. Lemma. Every formula of LCons1 is provably equivalent in the above axiom
system to another formula in LCDL.

The completeness of the axioms of LCons1 follows from the completeness of
the axioms of LCDL that is proved in [6] and Lemma 3.3.5.

Let ϕ be a formula in LCDL such that it is satisfiable in a total plausibility
model and let ϕ′ be a formula in LCons1 equivalent to ϕ. Then ϕ′ is also satisfiable
in the total plausibility model.

3.3.6. Theorem. A sound and complete proof system for the logic CONS2 with
the language LCons2 is given by the axioms and rules of LKKD

plus the following
reduction axioms:

[−cϕ]p ⇐⇒ p

[−cϕ]¬θ ⇐⇒ ¬[−cϕ]θ

[−cϕ](θ ∧ ψ) ⇐⇒ [−cϕ]θ ∧ [−cϕ]ψ

[−cϕ]Kψ ⇐⇒ K[−cϕ]ψ

[−cϕ]KDψ ⇐⇒ KD[−cϕ]ψ ∧B¬ϕ[−cϕ]ψ
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Note that in the last reduction axiom, we use the following conditional oper-
ator B¬ϕ[−cϕ]ψ as an abbreviation as defined in Proposition 2.5.12.

3.3.7. Proof. The soundness of the axioms of LKKD
is proved in [8]. This leaves

us to focus on the Reduction axioms. The proof of the first Reduction axioms
is straightforward, we focus here only on the proof of the reduction axiom for
defeasible knowledge.

Suppose s ⊧M [−cϕ]KDψ. Then s ⊧M−cϕ KDψ. So for all t such that t ≤−cϕ s,
t ⊧M−cϕ ψ. This means that for all t such that t ≤−cϕ s, t ⊧M [−cϕ]ψ.

We know that t ≤−cϕ s iff t ∈ best ∣∣ ¬ϕ ∣∣M or t ≤ s. Then:

– for all t such that t ∈ best ∣∣ ¬ϕ ∣∣M, t ⊧M [−cϕ]ψ and,

– for all t such that t ≤ s, t ⊧M [−cϕ]ψ .

This means that s ⊧M B¬ϕ[−cϕ]ψ and s ⊧M KD[−cϕ]ψ .
◻

Sketch of the proof for completeness From the axiom system for the
logic CONS2 with the language LCons2 , we note that what is the case after a
conservative contraction can be expressed by saying what is the case before the
conservative contraction. Using the Reduction Laws, the conservative contraction
operator can be step by step “pushed through” all other operators and at the end,
completely eliminated using the Reduction Law for atomic formulas.

3.3.8. Lemma. Every formula of LCons2 is provably equivalent in the above proof
system to another formula in LKKD

.

The completeness of the axioms of LCons2 follows from the completeness of
the axioms of LKKD

that is proved in [8] and Lemma 3.3.8.
Let ϕ be a formula in LKKD

such that it is satisfiable in a total plausibility
model and let ϕ′ be a formula in LCons2 equivalent to ϕ. Then ϕ′ is also satisfiable
in the total plausibility model.

3.4 A new approach to moderate contraction

3.4.1 Language for the logic of moderate contraction

We define two languages for moderate contraction. The first language LMod1

will be defined on top of the static base language LCDL equipped with dynamic
modalities for contraction [−mϕ]. The second language LMod2 will be defined
on top of the static base language LKKD

equipped with dynamic modalities for
contraction [−mϕ].
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3.4.2 Semantics for the logic of moderate contraction

The operation of moderate contraction has as an effect that a given total plausi-
bility modelM = (S,≤, V ) will be transformed into a modelM−mϕ = (S,≤−mϕ, V ).
In this setting the current ordering relation ≤ of a given total plausibility model
will be replaced by the following relation ≤−mϕ in the new model after the moder-
ate contraction with ϕ. The intended meaning of this is that the best ¬ϕ-worlds
become equi-plausible with the best worlds initially on top, then the rest of the
¬ϕ-worlds become better than the rest of the ϕ-worlds, and within these two
zones the old ordering remains.

3.4.1. Definition. The initial total plausibility model M = (S,≤, V ) after a
moderate contraction with ϕ is transformed into the following model M−mϕ =
(S,≤−mϕ, V ) in which t ≤−mϕ s iff:

– t ∈ best ∣∣ ¬ϕ ∣∣M or,

– s ∈ ∣∣ ϕ ∣∣M, s ∉ best ∣∣ ϕ ∣∣M and t ∈ ∣∣ ¬ϕ ∣∣M or,

– s ∈ ∣∣ ϕ ∣∣M, t ∈ ∣∣ ϕ ∣∣M and t ≤ s or,

– s ∈ ∣∣ ¬ϕ ∣∣M, t ∈ ∣∣ ¬ϕ ∣∣M and t ≤ s.

3.4.2. Definition. We can define best−mϕP :

– best−mϕP ∶= bestP if P∩ ∣∣ ¬ϕ ∣∣M= ∅ or,

– best−mϕP ∶= best(¬ϕ ∩ P ) ∪ (P ∩ bestS) if P∩ ∣∣ ¬ϕ ∣∣M≠ ∅.

The semantic clause for the dynamic operator [−mϕ] is:

M, s ⊧ [−mϕ]ψ iffM−mϕ, s ⊧ ψ

Example In Figure 3.12 we present a sphere model composed of 6 states s, t, u,
v,w, x such that ϕ is true in s, t, v, x and ¬ϕ is true in u,w.

From this sphere system we can generate the corresponding total plausibility
model given in Figure 3.13.

Next we present the total plausibility model resulting from the moderate contrac-
tion with ϕ in Figure 3.14. In this model, the state u is equi-plausible with the
state s, both being on top while w is more plausible than t, v, x. Thus the agent
does not believe ϕ anymore and does not believe ¬ϕ either. However she has a
propensity to consider ¬ϕ more plausible than ϕ. If she further revises/contracts
her beliefs, she will finally come to believe ¬ϕ more easily than ϕ.
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Figure 3.12: Grove system
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Figure 3.13: Initial total plausibility model

3.4.3 Axiom system for the logic of moderate contraction

3.4.3. Theorem. A sound and complete proof system for the logic MOD1 with
the language LMod1 is given by the axioms and rules of LCDL plus the following
reduction axioms:

[−mϕ]p ⇐⇒ p

[−mϕ]¬θ ⇐⇒ ¬[−mϕ]θ

[−mϕ](θ ∧ ψ) ⇐⇒ [−mϕ]θ ∧ [−mϕ]ψ

[−mϕ]Bψθ ⇐⇒ B([−mϕ]ψ → [−mϕ]θ) ∧B¬ϕ∧[−mϕ]ψ[−mϕ]θ

∧ (K¬ϕ[−mϕ]¬ψ → B[−mϕ]ψ[−mϕ]θ)

3.4.4. Proof. The soundness of the axioms of LCDL is proved in [6]. All that
remains is to show the soundness of the Reduction axioms. The proof of the
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¬φφ ¬φ φ  φφ

Figure 3.14: Moderate contraction in the initial total plausibility model of Fig-
ure 3.13

first Reduction axioms is straightforward, we focus here only on the proof of the
reduction axiom for conditional belief.

Suppose s ⊧M [−mϕ]Bψθ. Then s ⊧M−mϕ Bψθ. So best−mϕ ∣∣ ψ ∣∣M−mϕ ⊆
∣∣ θ ∣∣M−mϕ . This means that best−mϕ ∣∣ [−mϕ]ψ ∣∣M ⊆ ∣∣ [−mϕ]θ ∣∣M.

We know that:

– best−mϕ ∣∣ [−mϕ]ψ ∣∣M ∶= best ∣∣ [−mϕ]ψ ∣∣M if ∣∣ [−mϕ]ψ ∣∣M∩ ∣∣ ¬ϕ ∣∣M = ∅ or,

– best−mϕ ∣∣ [−mϕ]ψ ∣∣M ∶= best(¬ϕ∩ ∣∣ [−mϕ]ψ ∣∣M)∪(∣∣ [−mϕ]ψ ∣∣M ∩bestS) if
∣∣ [−mϕ]ψ ∣∣M ∩ ∣∣ ¬ϕ ∣∣M ≠ ∅.

Then:

– if ∣∣ ¬ϕ ∣∣M ⊆ ∣∣ [−mϕ]¬ψ ∣∣M then best ∣∣ [−mϕ]ψ ∣∣M ⊆ ∣∣ [−mϕ]θ ∣∣M and,

– best(¬ϕ∩ ∣∣ [−mϕ]ψ ∣∣M) ⊆ ∣∣ [−mϕ]θ ∣∣M and

– bestS∩ ∣∣ [−mϕ]ψ ∣∣M ⊆ ∣∣ [−mϕ]θ ∣∣M otherwise.

This means that:

– s ⊧M K¬ϕ[−mϕ]¬ψ → B[−mϕ]ψ[−mϕ]θ and

– s ⊧M B¬ϕ∧[−mϕ]ψ[−mϕ]θ and

– s ⊧M B([−mϕ]ψ → [−mϕ]θ).

◻

Sketch of the proof for completeness From the axiom system for the
logic MOD1 with the language LMod1 , we note that what is the case after a
conservative contraction can be expressed by saying what is the case before the
conservative contraction. Using the Reduction Laws, the moderate contraction
operator can be step by step “pushed through” all other operators and at the end,
completely eliminated using the Reduction Law for atomic formulas.

3.4.5. Lemma. Every formula of LMod1 is provably equivalent in the above proof
system to another formula in LCDL.
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The completeness of the axioms of LMod1 follows from the completeness of the
axioms of LCDL that is proved in [6] and Lemma 3.4.5.

Let ϕ be a formula in LCDL such that it is satisfiable in a total plausibility
model and let ϕ′ be a formula in LMod1 equivalent to ϕ. Then ϕ′ is also satisfiable
in the total plausibility model.

We cannot provide an axiom system for the logic MOD2 with the language
LMod2 . Indeed we do not have a reduction axiom for defeasible knowledge. This
reduction axiom would require a new operator or equivalently a new language.
Let us consider what would be such an axiom:

[−mϕ]KDψ ⇐⇒ B¬ϕ[−mϕ]ψ ∧ (ϕ→KD(ϕ→ [−mϕ]ψ))

∧(¬ϕ→KD(¬ϕ→ [−mϕ]ψ)) ∧ (ϕ ∧ ¬bestϕ→K¬ϕ[−mϕ]ψ))
where the semantics of bestϕ is given by s ⊧ bestϕ iff s ∈ best ∣∣ ϕ ∣∣M.

The problem here is the operator “best” which cannot be expressed in our
language.

However, we can provide the following reduction axioms:

[−mϕ]p ⇐⇒ p

[−mϕ]¬θ ⇐⇒ ¬[−mϕ]θ

[−mϕ](θ ∧ ψ) ⇐⇒ [−mϕ]θ ∧ [−mϕ]ψ

[−mϕ]Kψ ⇐⇒ K[−mϕ]ψ

Conclusion
Belief revision has been widely explored in DEL contrary to belief contraction.
However, belief contraction is also a very interesting notion and is worth being
studied in the setting of DEL. A belief contraction operation really comes with
its own reduction axioms. We explored in this chapter three different notions of
contraction: severe withdrawal, conservative contraction and moderate contrac-
tion. We clarified the mechanism of each of these operations. We also explained
the limits of the mechanism of severe withdrawal while stressing the advantages
of conservative and moderate contraction.

In the next chapter, we continue to develop Soft DEL by designing a formal
setting allowing to make explicit the connections between plausibility models,
evidence models and uniting some existing different settings.



Chapter 4

Justification models

Aim In this chapter we introduce justification models as a generalization of
some of the models we have seen before. So we are after a general setting that
can encompass both total and partial plausibility models, sphere models as well
as the evidence models of van Benthem and Pacuit.

Summary The main points are:

– we introduce justification models defining the notions of evidence and jus-
tification. We provide an example to illustrate this new type of model.

– we study some special classes of justification models. We start with plau-
sibility models and show how they are related to justification models. We
show how a justification model can be mapped into a plausibility model
which allows us to define epistemic and doxastic attitudes.

– we then introduce counting models and weighting models, proving that they
can be considered as a special kind of justification models and we show that
(introspective) evidence models1 are exactly a special kind of justification
models.

– then we define the notion of update on justification models. We study this
update operation in each class of justification models.

– we provide a language and an axiomatization for the logic of justification.

– finally, we focus on total justification models providing some important
properties about defeasible knowledge.

1We define an introspective evidence model in Definition 4.2.9.
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Background We will need to use the evidence models as well as the (partial
and total) plausibility models we introduced in Chapter 2.

Van Benthem and Pacuit provide a semantic approach to evidence in [16].
They deal with possibly false and possibly mutually inconsistent evidence. The
belief revision in evidence models does not satisfy the AGM postulates since the
pre-order that can be induced on states in these models is not total. That means
that non every two states are comparable. Van Benthem and Pacuit show in [16]
how (uniform) evidence models can be turned into partial plausibility models and
how a partial plausibility model can be extended to an evidence model.
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4.1 Justification models as a new formalization of
belief, evidence and justification

In this section we introduce a new type of model that we call justification model.
Justification models will be used to capture the agents’ evidence or justification.
We claim that they provide a good formalization of belief, evidence and justifica-
tion. Below we first introduce the formal details of justification models.

4.1.1 General presentation of justification models

We introduce a (finite) pointed justification model via the following definition.

4.1.1. Definition. As for our formalisation, we introduce a pointed justification
modelM to be a tuple (S,E,⪯, ∥⋅∥, s0) consisting of:

– a finite set S of possible worlds,

– a family E ⊆ P(S) of non-empty subsets e ⊆ S (∅ ∉ E), called evidence
(sets) such that S is itself an evidence set (S ∈ E). A body of evidence (or
an argument) is any consistent family of evidence sets, i.e. any F ⊆ E such
that ⋂F /= ∅. We denote by E ⊆ P(E) the family of all bodies of evidence.

– a partial preorder ⪯ on E , satisfying the following constraints:

F ⊆ F ′⇒ F ⪯ F ′

F ⪯ F ′,G ⪯ G′ and F ′ ∩G′ = ∅⇒ F ∪G ⪯ F ′ ∪G′

F ≺ F ′,G ⪯ G′ and F ′ ∩G′ = ∅⇒ F ∪G ≺ F ′ ∪G′

whenever F,F ′,G,G′, F ∪G,F ′ ∪G′ are bodies of evidence.

– a standard ∥⋅∥ valuation map,

– an actual state of affairs s0.

Note that the empty family of evidence sets ∅ is a body of evidence. Since
formally speaking ⋂∅ = {s ∈ S ∣ ∀e ∈ E(e ∈ ∅⇒ s ∈ e)}, ∅ is a consistent family
of evidence sets.

Note also that ⪯ is a partial preorder, connecting only the consistent families
of evidence sets and we read F ⪯ G as the body of evidence G is (considered as)
at least as convincing or easier to accept (by some implicit agent) as the body of
evidence F . Similarly the strict version F ≺ G denotes that the body of evidence
G is (considered as) more convincing, easier to accept (by some implicit agent)
than the body of evidence F .
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We can impose further conditions on ⪯ to obtain a total pre-order. Indeed we
can require that either F ⪯ F ′ or F ′ ⪯ F . We call a justification model with a total
pre-order a total justification model. In total justification models, all evidence sets
are comparable.

Assumption We assume here that the agent is introspective regarding to evi-
dence. Informally it means that we assume that the agent knows what evidence
she has2.

Explanation of the conditions in Definition 4.1.1 The first condition ex-
presses that if an argument F entails argument F ′ then F ′ is at least as convincing
as F . Note that this implies that ∅ is the least convincing argument, that is, ∅ ⪯ F
for all F ∈ E . The second condition states that if F ′ is at least as convincing as F
and G′ is at least as convincing as G such that the argument F ′ and G′ are not
consistent, then the union of F ′ and G′ is at least as convincing as the union of
F and G. The last condition says that if F ′ is more convincing than F and G′ is
at least as convincing as G such that the argument F ′ and G′ are not consistent,
then the union of F ′ and G′ is more convincing than the union of F and G.

Example We illustrate a justification model in Figure 4.1.
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w
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e1

e2

e3

Figure 4.1: Justification model

In this figure, s, t, v,w, x, y, z are possible worlds. There are three evidence
sets: e1 = {s, x,w, y}, e2 = {x, y, z, t} and e3 = {t, v}. Thus E = {e1, e2, e3}.
We can then define five bodies of evidence in addition to the empty family of
evidence sets ∅: D = {e1}, F = {e2}, G = {e3}, H = {e1, e2} and I = {e2, e3}3.
Thus E = {∅,{e1},{e2},{e3},{e1, e2},{e2, e3}}.

Now we can state the following relations between consistent families of evi-
dence sets:

2If we drop this assumption, then E is no longer a family of evidence sets but a relation
E ⊆ S × ℘(S). In that case it coincides with the definition of the evidence relation of van
Benthem and Pacuit [16].

3Note that {e1, e3} is not a body of evidence since the evidence sets {e1} and {e3} are not
consistent sets.
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– {e1} ⊆ {e1, e2}, D ⪯H,

– {e2} ⊆ {e1, e2}, F ⪯H,

– {e2} ⊆ {e2, e3}, F ⪯ I,

– {e3} ⊆ {e2, e3}, G ⪯ I.

4.1.2 Plausibility in justification models

On every justification model, we can define a plausibility order on states in a
canonical way.

4.1.2. Definition. We define the notion of largest body of evidence consistent
with a given state s ∈ S and write it as Es ∶= {e ∈ E ∣ s ∈ e}.

We can induce a plausibility relation on states directly from the partial pre-
order on E : for two states s, t ∈ S, we put

s ≤E t iff Et ≤ Es

Example Let us go back to Figure 4.1 above. The largest body of evidence
consistent with x is Ex ∶= {e1, e2}. The largest body of evidence consistent with
s is Es ∶= {e1}. Since Es ≤ Ex, then x ≤E s.

Epistemic and doxastic notions Given a justification model, we can define
all epistemic and doxastic notions usually defined on plausibility models as irre-
vocable knowledge (K), belief (B), conditional belief (B−), strong belief (Sb) and
defeasible knowledge (KD) using this plausibility order ≤E.

KP ∶= {s ∈ S ∶ P = S}

BP ∶= {s ∈ S ∶ bestE ⊆ P}

BQP ∶= {s ∈ S ∶ bestEQ ⊆ P}

SbP ∶= {s ∈ S ∶ P /= ∅ and w <E t for all t ∈ P and all w ∉ P}

KDP = {s ∈ S ∶ t ≯E s implies t ∈ P}

Note that in case the plausibility order ≤E is total, Proposition 2.5.6 holds, this
is:

s ⊧KDP iff s ⊧ BQP for all Q such that s ⊧ Q
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4.2 Special classes of justification models
Justification models are a very general framework, subsuming a lot of different
existing settings. We will show that partial and total plausibility models and
evidence models are a special class of justification models and we will introduce
counting models and weighting models as special classes of justification models.
The relations between justification models, counting models, weighting models,
plausibility models and evidence models is given by the following Figure 4.2.
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Figure 4.2: Relations between settings

4.2.1 Plausibility models

How can we interpret a plausibility model as a justification model? As we will
see there are at least two ways to interpret a plausibility model (S,≤, ∥⋅∥, s0) as
a justification model (S,E,⪯, ∥⋅∥, s0). Plausibility models are a special kind of
justification models in which:

– S is the set of possible worlds,

– the set of evidence sets E = {↓ w ∶ w ∈ S} where ↓ w = {s ∈ S ∶ s ≤ w}

Now we can take either of the following two possible options:

1. F ⪯1 F ′ iff F ⊆ F ′ or

2. F ⪯2 F ′ iff ∣ F ∣≤∣ F ′ ∣.4

In the second case, plausibility models are a special case of counting models
which we introduce in the next section. In the first case, plausibility models
(S,≤, ∥⋅∥, s0) are a special kind of justification models (S,E,⪯1, ∥⋅∥, s0) in which:

4Note that while the inclusion order is not necessarily total, the cardinality order is total.
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1. the pre-order on bodies of evidence is given by inclusion (⪯1=⊆) and

2. the evidence sets are nested that is, ∀e, e′ ∈ E either e ⊆ e′ or e′ ⊆ e (it
means that the pre-order is a total pre-order).

3. a body of evidence F corresponds to any family of spheres of a plausibility
model5,

4. E corresponds to all the families of spheres.

4.2.1. Definition. Let us define two plausibility maps Just1 and Just2, map-
ping plausibility models to justification models:

– (S,≤, ∥.∥, s0)
Just1z→ (S,E,⪯1, ∥.∥, s0)

– (S,≤, ∥.∥, s0)
Just2z→ (S,E,⪯2, ∥.∥, s0).

The plausibility map Just1 corresponds to the case where the pre-order on bodies
of evidence is given by inclusion while the plausibility map Just2 corresponds to
the case where the pre-order on bodies of evidence is given by cardinality. We
will call the justification models that can be obtained in one of these two ways
(by applying Just1 or Just2 to a plausibility model), sphere-based justification
models.

Mapping justification models to plausibility models Any justification
model (S,E,⪯, ∥.∥, s0) can be mapped into a type of plausibility model (S,≤, ∥.∥, s0).

4.2.2. Definition. We define the plausibility map Plau, mapping justification
models to plausibility models: (S,E,⪯, ∥.∥, s0)

Plauz→ (S,≤, ∥.∥, s0).

A justification model with a partial pre-order gives a partial plausibility model
while a justification model with a total pre-order gives a total plausibility model.

4.2.3. Proposition. Total justification models induce total plausibility models:

∀F,F ′(F ⪯ F ′ ∨ F ′ ⪯ F )⇐⇒ ∀s, s′(s ≤E s′ ∨ s′ ≤E s)

Note that the map Plau mapping justification models to plausibility models is
not injective. So, two different justification models can give the same plausibility
model.

If we interpret a plausibility model M as a justification model M′ and then
apply the map Plau, we obtain the initial plausibility model M. The converse

5We saw in Chapter 3 that plausibility models and Grove models are equivalent. We use
this equivalence and discuss the relation between justification models and plausibility models
in terms of spheres.
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is false since if we apply the map Plau on a justification model M′ to obtain a
plausibility modelM and then interpret this plausibility modelM as a justifica-
tion model, we do not obtain the initial justification model M′. Thus, we have
both:

– Plau(Just1(M)) =M for any plausibility modelM and Just1(Plau(M′)) ≠
M′ for any justification modelM′,

– Plau(Just2(M)) =M for any plausibility modelM and Just2(Plau(M′)) ≠
M′ for any justification modelM′.

4.2.2 Counting models

4.2.4. Definition. A counting model is a justification model (S,E,⪯, ∥⋅∥, s0) in
which the pre-order is given by the cardinality order, i.e. F ⪯ F ′ iff ∣ F ∣≤∣ F ′ ∣.6

Thus a body of evidence G is more convincing than a body of evidence F
iff the number of evidence sets e ∈ G is bigger than the number of evidence sets
e ∈ F : F ⪯ G iff ∣ F ∣≤∣ G ∣. The intuition is that the more evidence the agent has,
the stronger it is.

We represent an example of counting model in Figure 4.3. In this example,
there are 4 states namely s, t, v and w. There are 5 evidence sets e1, e2, e3, e4

and e5. Since the order on evidence is induced from cardinality, we have F ⪯ G
iff ∣ F ∣≤∣ G ∣. Thus, ∣ {e1} ∣= 1, ∣ {e3, e4} ∣= 2, ∣ {e2, e4} ∣= 2 and ∣ {e2, e3, e5} ∣= 3.
Then, {e2, e4} ≺ {e2, e3, e5}, {e3, e4} ⪯ {e2, e4}, {e1} ≺ {e3, e4}.
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Figure 4.3: Counting model

4.2.3 Weighting models

First we define weighting models.
6Note that cardinality generates a total pre-order.
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4.2.5. Definition. A pointed weighting model is a structure (S,E, f, ∥⋅∥, s0)
where f ∶ E → N.

Weighting models can be considered as a special kind of justification models.
Let (S,E, f, ∥⋅∥, s0) be a weighting model. The function f can be extended to E
such that f(E) = ∑

e∈E
f(e) and E ⪯f E′ iff f(E) ≤ f(E′). Any weighting model

endowed with ⪯f is a justification model.

We represent an example of a weighting model in Figure 4.4. In this example,
there are 4 states namely s, t, v and w. There are 5 evidence sets e1, e2, e3, e4 and
e5. There is a function f ∶ E → N defined such that f(e1) = 1, f(e2) = 2, f(e3) =
1, f(e4) = 3 and f(e5) = 3. Thus, f(e1) = 1, f({e3, e4}) = 4, f({e2, e4}) = 5
and f({e2, e3, e5}) = 6. Then {e2, e4} ≺f {e2, e3, e5}, {e3, e4} ≺f {e2, e4}, {e1} ≺f
{e3, e4}.
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f(e1) = 1, f(e2) = 2,

f(e3) = 1, f(e4) = 3,

f(e5) = 3

Figure 4.4: Weighting model

4.2.6. Proposition. A counting model is a special case of a weighting model in
which f(e) = 1 for all e ∈ E.

4.2.7. Proposition. Every weighting model (S,E, f, ∥⋅∥, s0) is a justification
model (S,E,⪯, ∥.∥, s0).

4.2.8. Proof. We prove that weighting models (and so counting models) satisfy
the three constraints which the pre-order must satisfy for it to be a justification
model. First note that since we use the order on natural numbers, transitivity
follows.

– if F ⊆ F ′ then f(F ) = ∑
e∈F

f(e) ≤ ∑
e∈F ′

f(e) = f(F ′) that is, F ⪯ F ′.



78 Chapter 4. Justification models

– Let F ⪯ F ′,G ⪯ G′ and F ′ ∩G′ = ∅.
F ∪G = ∑

e∈F∪G
f(e) = ∑

e∈F
f(e) + ∑

e∈G
f(e) − ∑

e∈F∩G
f(e).

Moreover F ′ ∪G′ = ∑
e∈F ′∪G′

f(e) = ∑
e∈F ′

f(e) + ∑
e∈G′

f(e) − ∑
e∈F∩G

f(e).

Since F ′ ∩G′ = ∅ then F ′ ∪G′ = ∑
e∈F ′∪G′

f(e) = ∑
e∈F ′

f(e) + ∑
e∈G′

f(e).

Since F ⪯ F ′,G ⪯ G′ then f(F ) + f(G) − ∑
e∈F∩G

f(e) ≤ f(F ′) + f(G′).

It means that F ∪G ⪯ F ′ ∪G′.

– Let F ≺ F ′,G ⪯ G′ and F ′ ∩G′ = ∅.
F ∪G = ∑

e∈F∪G
f(e) = ∑

e∈F
f(e) + ∑

e∈G
f(e) − ∑

e∈F∩G
f(e).

Moreover F ′ ∪G′ = ∑
e∈F ′∪G′

f(e) = ∑
e∈F ′

f(e) + ∑
e∈G′

f(e) − ∑
e∈F∩G

f(e).

Since F ′ ∩G′ = ∅ then F ′ ∪G′ = ∑
e∈F ′∪G′

f(e) = ∑
e∈F ′

f(e) + ∑
e∈G′

f(e).

Then f(F ) + f(G) − ∑
e∈F∩G

f(e) < f(F ′) + f(G′).

It means that F ∪G ≺ F ′ ∪G′.

◻

4.2.4 Evidence models

Recall that we introduced the setting of van Benthem and Pacuit in Chapter 2.
Before we continue, we need to introduce one more notion, that’s the notion of
an introspective evidence model:

4.2.9. Definition. An evidence model M is introspective iff we have sEX iff
tEX for all s, t ∈ S and for all X ⊆ S.

Put in another way, we have ⊟ϕ⇒K ⊟ ϕ and ¬ ⊟ ϕ⇒K¬ ⊟ ϕ.7

4.2.10. Proposition. Introspective evidence models are a special kind of justi-
fication models namely, they correspond exactly to those justification models in
which the pre-order on bodies of evidence is given by inclusion.

In an introspective evidence model, the evidence relation E boils down to
our notion of E that is, it becomes a family of evidence sets E ⊆ P(S) such that
Es = {e ∣ s ∈ E} for any s ∈ S. Moreover, the notions of irrevocable knowledge (K),
belief (B) and conditional belief (B−) defined in evidence models (see Chapter 2)
do exactly correspond to the notions we defined in Section 4.1.

7We recall that irrevocable knowledge has been defined on evidence models in Chapter 2.
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4.2.5 Refined justification models

The evidence sets of a refined justification model may be of two types: genuine
evidence and biases (or defaults). In refined justification models, we consider that
an agent may have some preferences that are not genuinely based on evidence but
based on the trustworthiness of his senses and reason. For example, I prefer to
believe that I am actually writing my thesis, sitting at my desk instead of being in
my bed, dreaming that I am writing my thesis, even if I have no real evidence to
justify this belief. Bias comes from inside the agent. The biases are all the pieces
of evidence the agent has because she trusts her senses or her reason according
to her own experience. We do note that the difference between genuine evidence
and a bias is only a generic difference. Both types of evidence sets behave in the
same way in our models.

In refined justification models, the definition of E is the following:

4.2.11. Definition. E = E0 ∪ B such that E0 is the family of evidence sets
representing the genuine evidence the agent has while B is the family of evidence
sets representing the biases of the agent.

We put some conditions on B: all biases b ∈ B should strictly increase the
strengh of a body of evidence. Formally, F < F ∪ {b} such that F ∪ {b} ∈ E .

Let us take the famous example of Tweety. Consider an agent who learns that
Tweety is a bird. According to the experience of the agent, birds typically fly.
Indeed she saw many birds flying and she remembers seeing many birds flying.
Even if the agent has no genuine evidence about Tweety himself, she has some
prior experiences about birds. Since our agent trusts her senses and her memory,
she prefers to believe that Tweety flies instead of believing that Tweety does not
fly: “Tweety flies” is a bias of the agent.

4.2.6 Important notions in justification models

We remind the reader of our previous definitions, indicating the fact that every
argument F ∈ E , that every evidence set e ∈ E and that every state s ∈ S.

4.2.12. Definition. An argument F is sound at s iff s ∈ ⋂F .

Note that the empty argument ∅ is always sound at every state s since s ∈
⋂∅ = S.

4.2.13. Definition. An argument F supports Q (or F is an argument for Q)
iff ⋂F ⊆ Q.

In a refined justification model, we can consider a “softer” kind of support.
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4.2.14. Definition. In a refined justification model, an argument F weakly sup-
ports Q (or F is a “soft” argument for Q) conditional on some set B′ ⊆ B of biases
iff F ∪B′ supports Q.

4.2.15. Definition. A justification for Q is an argument F such that all argu-
ments at least as strong as F support Q, i.e. ∀F ′(F ⪯ F ′⇒ ⋂F ′ ⊆ Q).

4.2.16. Definition. An argument F supports Q conditional on P (or F is an
argument for Q conditional on P ) iff ⋂F ∩ P ⊆ Q.

4.2.17. Definition. A justification for Q given P is an argument F that is
consistent with P such that all arguments at least as strong as F support Q
conditional on P , i.e. ⋂F ∩ P ≠ ∅ and ∀F ′(F ⪯ F ′⇒ ⋂F ′ ∩ P ⊆ Q).

4.3 Dynamics of Justification Models

We consider the case in which an agent is confronted with new incoming infor-
mation and accommodates this new information. To model this, we adopt the
standard view in Dynamic Epistemic Logic (see Chapter 2). We consider here
updates of justification models.

4.3.1. Definition. Given a justification model M = (S,E,⪯, ∥⋅∥, s0) and some
subset P ⊆ S, we define the relativization of the justification model M to P as
M∣P = (S′,E′,⪯′, ∥⋅∥′, s′0) with:

S′ = P

E′ = {e ∩ S′ ∣ e ∈ E, e ∩ S′ /= ∅}

F ′ ⪯′ G′ iff {e ∈ E ∣ e ∩ S′ ∈ F ′} ⪯ {e ∈ E ∣ e ∩ S′ ∈ G′}

∥⋅∥′ = ∥⋅∥ ∩ S′

s′0 = s0

where the new set of states S′ is now reduced to the set of states satisfying P .
The new evidence set E′ is taken to be the old evidence E that is consistent
with the states surviving the update and the order ⪯′ on new bodies of evidence
F ′ ⪯′ G′ reflects the fact that the new evidence within G′ is at least as strong as
the new evidence in F ′.

We define the restriction F ∣M′ of the argument F to the justification model
M′ as follows.
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4.3.2. Definition. If F is an argument for a justification model M, and if
M′ =M∣P is the relativization of the justification modelM to a subset P , then
F ∣M′ is a body of evidence for the modelM′ (called the restriction F ∣M′ of the
argument F to modelM′), defined by

F ∣M′ = {e ∩ S′ ∣ e ∈ F}

Suppose we are given a language L for a class of justification modelsM.

4.3.3. Definition. Let ϕ be any formula in L. When new hard evidence ϕ is
received, this induces an update !ϕ, which changes the agent’s prior justification
model M = (S,E,⪯, ∥⋅∥, s0) to the justification model M∣ϕ = (S′,E′,⪯′, ∥⋅∥′, s′0)
with:

S′ = ∥ϕ∥M

E′ = {e ∩ S′ ∣ e ∈ E, e ∩ S′ /= ∅}

F ′ ⪯′ G′ iff {e ∈ E ∣ e ∩ S′ ∈ F ′} ⪯ {e ∈ E ∣ e ∩ S′ ∈ G′}

∥⋅∥′ = ∥⋅∥ ∩ S′

s′0 = s0

where the new set of states S′ is now reduced to the set of states satisfying the
new information ϕ. The new evidence set E′ is taken to be the old evidence E
that is consistent with the states surviving the update and the order ⪯′ on new
bodies of evidence F ′ ⪯′ G′ reflects the fact that the new evidence within G′ is at
least as strong as the new evidence in F ′.

It is easy to see that ifM is a justification model (S,E,⪯, ∥⋅∥, s0) andM∣ϕ is
the justification model (S′,E′,⪯′, ∥⋅∥, s0) that is the result of updatingM with !ϕ
then we have ≤′E=≤E ∩(S′ × S′). The new plausibility relation on states ≤′E after
the update with ϕ is exactly the result of updating the old plausibility relation
≤E with ϕ.

There are other ways to transform a given justification model into a new one,
for instance by just adding a new body of evidence and giving it a degree of
plausibility in relation to the other bodies of evidence. This would correspond to
obtaining soft evidence of which the agent is not fully certain. The theory of soft
evidence upgrades is interesting to be worked out in itself, this we’ll do in future
work.
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4.3.1 Plausibility models

When restricting to sphere-based justification models, our update operation co-
incides with the usual update on plausibility models (see Chapter 2):

≤′E=≤E ∩(S′ × S′)

For s ∈ S′, we have Es = {e ∈ E ∣ s ∈ e} and E′
s = {e ∩ S′ ∣ e ∈ Es}. Note that

from e ∈ Es and s ∈ S′, we have s ∈ e ∩ S′ /= ∅.
For s, t ∈ S′, we have:

s ≤′E t ⇐⇒ E′
t ⪯′ E′

s ⇐⇒ {e ∩ S′ ∣ e ∈ Et} ⪯′ {e ∩ S′ ∣ e ∈ Es}
⇐⇒ {e ∩ S′ ∣ e ∈ E, t ∈ e} ⪯′ {e ∩ S′ ∣ e ∈ E, s ∈ e}
⇐⇒ {e ∣ e ∈ E, t ∈ e} ⪯ {e ∣ e ∈ E, s ∈ e}
⇐⇒ Et ⪯ Es
⇐⇒ s ≤E t

4.3.2 Counting models

4.3.4. Proposition. The class of counting models is not closed under update.
When a given counting model is updated, the result of updating is a justification
model but not necessarily a counting model.

We present an example of such a problem below.

Consider the counting model depicted in Figure 4.5 where there are three
pieces of evidence e1, e2 and e3 and 4 states s, t, u and v. The most plausible
states are the states s and u since Es ∶= {e1, e2}, Et ∶= {e1}, Eu ∶= {e1, e3},
Ev ∶= {e3} and so ∣ Es ∣<∣ Et ∣, ∣ Es ∣<∣ Ev ∣, ∣ Eu ∣<∣ Et ∣ and ∣ Eu ∣<∣ Ev ∣.
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Figure 4.5: Initial counting model

What happens now if we want to update this counting model? It is easily
to see that a problem arises when dealing with (some) updates on this model.
Suppose that the agent receives the hard information that P such that P is only
true in s and v. Next, the model is updated with !P and the states u and t
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Figure 4.6: Counting updated model

are deleted as illustrated in Figure 4.6. Then s and v are equiplausible since
Ev ∶= {e3}, Es ∶= {e4} and so ∣ Es ∣=∣ Ew ∣.

But this should not be the case, we should have ∣ Es ∣<∣ Ev ∣ that is, we should
have the justification model as depicted in Figure 4.7.
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Figure 4.7: Labelling solution

The problem is clearly visible if we use plausibility models. We first provide the
corresponding initial (total) plausibility model in Figure 4.8, and then represent
the updated plausibility model after the update with P in Figure 4.9. Here it is
obvious that the state s is still more plausible than the state v.

                                        t                           v                          u                           s        

                                                                                                                                                                ¬P P   P ¬P

Figure 4.8: Initial plausibility model

4.3.3 Weighting models

One solution to the problem in Proposition 4.3.4 is to deal with weighting models
instead of counting models.

4.3.5. Definition. We define the map Wei, mapping weighting models to jus-
tification models: (S,E, f, ∥⋅∥, s0)

Weiz→ (S,≤, ∥.∥, s0).
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                                        v                          s                                  

                                                                                                                                                                 P  P

Figure 4.9: Plausibility model updated

4.3.6. Proposition. The class of weighting models is closed under update:

Wei(M)∣ϕ =Wei(M∣ϕ)

.

4.3.7. Proof. Let (S,E, f, ∥⋅∥, s0) be a weighting model M where f ∶ E → N.
We define the result of updating this model with ϕ. The weighting model M =
(S,E, f, ∥⋅∥, s0) is changed to the weighting modelM∣ϕ = (S′,E′, f ′, ∥⋅∥′, s′0) with:

S′ = ∥ϕ∥S

E′ = {e ∩ S′ ∣ e ∈ E, e ∩ S′ /= ∅}

f ′(e′) =∑{f(e) ∣ e ∈ E such that e ∩ S′ /= ∅}

∥⋅∥′ = ∥⋅∥ ∩ S′

s′0 = s0

◻

Coming back to Figure 4.5, we put f(e1) = f(e2) = f(e3) = 1. Then after the
update with P , v < w since as depicted in Figure 4.7, f(e1) + f(e2) > f(e3).

4.3.4 Evidence models

On evidence models, the update operation coincides with the update defined by
van Benthem and Pacuit in [16].

4.4 Language and axiomatization

4.4.1 The language of evidence logic

We can re-use the language introduced by van Benthem and Pacuit in [16] for
our justification models.
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Syntax

Assume given any static object language LEV containing propositional letters
coming from a set Φ, Boolean connectives, a conditional belief operator B− and
an evidence operator ⊟. This evidence operator comes from the logic of van
Benthem and Pacuit but can be used in justification models in general.

Dynamic modalities [!ϕ] are added to LEV to obtain a dynamic language.

Axiomatization

The axioms of van Benthem and Pacuit [16](see Chapter 2) hold for general
justification models.

4.4.1. Theorem. The Reduction axioms of van Benthem and Pacuit are sound
in the class of all justification models.

4.4.2. Proof. The proof of the first axioms is straightforward, we focus here
only on the proof of the reduction axiom for conditional belief. Assume a justi-
fication frame satisfying our three conditions. We now show that [!ϕ]Bψθ ⇐⇒
ϕ→ Bϕ∧[!ϕ]ψ([!ϕ]θ) holds in such a frame.

1. In the direction from left to right we assume as given a modelM and a state
s and assume that [!ϕ]Bψθ is true at s. To show that ϕ→ Bϕ∧[!ϕ]ψ([!ϕ]θ) is
also true at s, we need to assume that if ϕ is true at s then Bϕ∧[!ϕ]ψ([!ϕ]θ)
is true at s. So assume ϕ is true at s. To show that Bϕ∧[!ϕ]ψ([!ϕ]θ) is true
at s we need to show that [!ϕ]θ is true at t for all most plausible states t
where ϕ ∧ [!ϕ]ψ is true. Thus, we need to show that for all most plausible
states t such that ϕ is true at t and [!ϕ]ψ is true at t (that is, ψ is true at
t), θ is true at t.

We have assumed that [!ϕ]Bψθ and ϕ are true at s, hence Bψθ is true at
s. And Bψθ is true at s iff θ is true at t for all most plausible states t such
that ψ is true at t.

So we have shown that θ is true at t for all most plausible states t such that
ψ is true at t and we are done.

2. In the direction from right to left we assume as given a model M and a
state s and assume that ϕ→ Bϕ∧[!ϕ]ψ([!ϕ]θ) is true at s. We need to show
that [!ϕ]Bψθ is also true at s. We need to show that either ¬ϕ is true at s
or if ϕ is true at s, Bψθ is true at s. Thus, if ϕ is true at s, we have to show
that θ is true at t for all most plausible states t such that ψ is true at t.

We know that ϕ→ Bϕ∧[!ϕ]ψ([!ϕ]θ) is true at s. So either ¬ϕ is true at s or
Bϕ∧[!ϕ]ψ([!ϕ]θ) is true at s.
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– assume ¬ϕ is true at s, then [!ϕ]Bψθ is also true at s by definition of
the update modality.

– assume Bϕ∧[!ϕ]ψ([!ϕ]θ) is true at s, then for all most plausible states
t such that ϕ∧ [!ϕ]ψ is true at t, [!ϕ]θ is true at t. Then, for all most
plausible states t such that ϕ is true at t and [!ϕ]ψ is true at t (that
is, ψ is true at t), θ is true at t and we are done.

◻

4.4.2 The language of justification logic

The language LEV is not expressive enough to capture the main interesting fea-
tures of justification models. We need to introduce a more expressive language.

Syntax

The language of justification logic LJL is defined as follows.

4.4.3. Definition. Let Φ be a set of propositional atoms such that p ranges
over Φ.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣Kϕ ∣KDϕ ∣ sound ∣ ∀evϕ ∣ [⪯]ϕ

We can define a belief modality as an abbreviation:

Bϕ ∶=K¬KD¬KDϕ

In total justification models, this boils down to:

Bϕ ∶= ¬KD¬KDϕ

We can as well define the following modalities:

Suppϕ ∶=K(sound→ ϕ)
Justϕ ∶= [⪯]suppϕ
⊞ϕ ∶= ∃evsuppϕ

The intended interpretation of the operators is as follows:

Kϕ: the agent knows that ϕ

KDϕ: the agent defeasibly knows that ϕ

sound: the current argument F is sound (true) at the actual state s,
i.e. the current pieces of evidence e ∈ F are true

∀evϕ: for every argument F , ϕ is the case
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[⪯]ϕ: for every argument F ′ at least as convincing as the current
argument F , ϕ is the case

Suppϕ: the current argument F supports ϕ

Justϕ: the current argument is a justification for ϕ

⊞ϕ: there exists an argument supporting ϕ

Semantics

The formulas are interpreted at a state s and a body of evidence F such that F
is the current argument.

4.4.4. Definition. Given a justification model M, a semantics for LJL is re-
quired to satisfy the following constraints:

s,F ⊧ p iff s ∈ V (p)
s,F ⊧ ¬ϕ iff s,F /⊧ ϕ
s,F ⊧ ϕ ∧ ψ iff (s,F ⊧ ϕ) ∧ (s,F ⊧ ψ)
s,F ⊧Kϕ iff t, F ⊧ ϕ for every t ∈ S
s,F ⊧KDϕ iff t, F ⊧ ϕ for every t ∈ S such that t ≤ s
s,F ⊧ sound iff s ∈ ⋂F
s,F ⊧ ∀evϕ iff s,F ′ ⊧ ϕ for every F ′ ∈ E
s,F ⊧ [⪯]ϕ iff ∀F ′(F ⪯ F ′⇒ s,F ′ ⊧ ϕ)

Axiomatization

All the axioms of the logic KKD (see Chapter 2) hold for total justification models.

4.4.5. Theorem. A sound (but not complete) proof system for the logic JL with
the language LJL over the class of total justification models is given by the axioms
and rules of LKKD

plus the following reduction axioms:

Necessitation Rules for both ∀ev and [⪯]

S5-axioms for ∀ev

S4-axioms for [⪯]

[⪯]Kϕ→K[⪯]ϕ

∀evKϕ→K∀evϕ

∀evKDϕ→KD∀evϕ

∀evϕ→ [⪯]ϕ

∀ev(ϕ ∨ [⪯]ψ) ∧ ∀ev(ψ ∨ [⪯]ϕ)→ ∀evϕ ∨ ∀evψ
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The last axiom is the analogue of the axiom Totality for bodies of evidence
(arguments).

We do not have a complete system for the logic JL over the class of total jus-
tification models. We would need more axioms to connect doxastic and epistemic
modalities with evidence modalities. Obtaining a complete system is still ongoing
work.

4.5 Justifiable beliefs

All the next statements can be encoded in the formal syntax of the language LJL.

4.5.1 Belief in justification models

4.5.1. Proposition. An agent believes Q iff every argument can be strengthened
to a justification for Q, i.e.

∀F∃F ′ ⪰ F (∀F ′′ ⪰ F ′(⋂F ′′ ⊆ Q))

This fact can be captured by the following validity:

Bp ⇐⇒ ∀ev⟨⪯⟩just p

Or writing it more explicitly:

Bp ⇐⇒ ∀ev⟨⪯⟩[⪯]suppp

To prove Proposition 4.5.1, we first state and prove Lemma 4.5.2.

4.5.2. Lemma. An agent believes Q iff all maximal (in the sense of strength
order) arguments supports Q, i.e.

∀F ∈Max⪯E(⋂F ⊆ Q)

where Max⪯E = {F ∈ E ∣ F ⊀ F ′ for any F ′ ∈ E}.

4.5.3. Proof. – In the direction from left to right, we start from a given
justification modelM in which BQ is true at s. So we know that bestS ⊆ Q.
Let F ∈ Max⪯E and t ∈ ⋂F . Then F ⊆ Et, so F ⪯ Et. Suppose t ∉ bestS.
Then ∃w <E t, so Et ≺ Ew, so F ≺ Ew. This contradicts F ∈Max⪯E . Then
t ∈ bestS, so ⋂F ⊆ bestS. Hence ⋂F ⊆ Q.
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– In the direction from right to left we assume as given a justification model
M and a state s such that ∀F ∈Max⪯E(⋂F ⊆ Q). Let t ∈ bestS. Suppose
Et ∉ Max⪯E . Then ∃F ′ ∈ E such that Et ≺ F ′. Let w ∈ ⋂F ′, so F ′ ⊆ Ew,
so F ′ ⪯ Ew. Then Et ≺ Ew, so w <E t. This contradicts t ∈ bestS. Hence,
Et ∈Max⪯E . Then, t ∈ ⋂Et ⊆ Q. Hence t ∈ Q, so bestS ⊆ Q. Hence, BQ is
true at s.

◻

Now we can prove Proposition 4.5.1.

4.5.4. Proof. – In the direction from left to right, we start from a given
justification model M in which BQ is true at s. Let F ∈ E . Then F can
be strengthened to a maximal argument F ′, i.e. ∃F ′ ⪰ F (F ′ ∈ Max⪯E).
Indeed since S is finite, so is E . By Lemma 4.5.2, since BQ is true at
s and F ′ ∈ Max⪯E , ⋂F ′ ⊆ Q. So F ′ supports Q. Let F ′′ ⪰ F ′. Then
F ′′ ∈Max⪯E and by Lemma 4.5.2, ⋂F ′′ ⊆ Q. So F ′′ supports Q. Then, F ′

is a justification for Q. Hence, F can be strengthened to a justification for
Q.

– In the direction from right to left we assume as given a justification modelM
and a state s such that ∀F∃F ′ ⪰ F (∀F ′′ ⪰ F ′(⋂F ′′ ⊆ Q)). Let F ∈Max⪯E .
Then F ⪰ F ′. Take F ′′ ∶= F . Hence, ⋂F ⊆ Q. By Lemma 4.5.2, BQ is true
at s.

◻

4.5.5. Proposition. An agent believes Q conditional on P iff every argument
consistent with P can be strengthened to a justification for Q given P , i.e.

∀F (⋂F ∩ P ≠ ∅⇒ ∃F ′ ⪰ F (⋂F ′ ∩ P ∉ ∅ ∧ ∀F ′′ ⪰ F ′(⋂F ′′ ∩ P ⊆ Q)))

To prove Proposition 4.5.5, we first state and prove Lemma 4.5.6.

4.5.6. Lemma. An agent believes Q conditional on P iff all maximal (in the
sense of strength order) arguments consistent with P supports Q conditional on
P , i.e.

∀F ∈ E(F ∈MaxP⪯ E ⇒⋂F ∩ P ⊆ Q)
where MaxP⪯ E = {F ∈ E ∣ ⋂F ∩ P ≠ ∅ and F ⊀ F ′ for any F ′ ∈ E(⋂F ′ ∩ P ≠ ∅)}.

4.5.7. Proof. – In the direction from left to right, we start from a given
justification modelM in which BPQ is true at s. So we know that bestP ⊆
Q. Let F ∈MaxP⪯ E and t ∈ ⋂F ∩ P . Then F ⊆ Et, so F ⪯ Et. Suppose t ∉
bestP . Then ∃w <E t, so Et ≺ Ew, so F ≺ Ew. This contradicts F ∈MaxP⪯ .
Then t ∈ bestP . So we proved that ∀t(t ∈ ⋂F ∩ P ⇒ t ∈ bestP ). Hence,
⋂F ∩ P ⊆ bestP , i.e. ⋂F ∩ P ⊆ Q.
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– In the direction from right to left we assume as given a justification model
M and a state s such that ∀F ∈ E(F ∈∈ MaxP⪯ E ⇒ ⋂F ∩ P ⊆ Q). Let
t ∈ bestP . Then ⋂Et ∩ P ≠ ∅. Suppose Et ∉ MaxP⪯ E . Then ∃F ′ ∈ E
such that (⋂F ′ ∩ P ≠ ∅) and Et ≺ F ′. Let w ∈ ⋂F ′ ∩ P , so F ′ ⊆ Ew, so
F ′ ⪯ Ew. Then Et ≺ Ew, so w <E t. This contradicts t ∈ bestP . Hence,
Et ∈ MaxP⪯ E . Then, t ∈ ⋂Et ∩ P ⊆ Q. Hence t ∈ Q. So we proved that
∀t(t ∈ bestP ⇒ t ∈ Q). Hence, bestP ⊆ Q, i.e. BPQ is true at s.

◻

Now we can prove Proposition 4.5.5.

4.5.8. Proof. – In the direction from left to right, we start from a given
justification model M in which BPQ is true at s. Let F ∈ E such that
F is consistent with P , i.e. ⋂F ∩ P ≠ ∅. Then F can be strengthened
to a maximal argument F ′ consistent with P , i.e. ∃F ′ ⪰ F (F ′ ∈ MaxP⪯ E).
Indeed since S is finite, so is E . By Lemma 4.5.6, since BPQ is true at s
and F ′ ∈ MaxP⪯ E , ⋂F ′ ∩ P ⊆ Q. So F ′ supports Q conditional on P . Let
F ′′ ⪰ F ′. Then F ′′ ∈ MaxP⪯ E and by Lemma 4.5.6, ⋂F ′′ ∩ P ⊆ Q. So F ′′

supports Q conditional on P . Then, F ′ is a justification for Q given P .
Hence, F can be strengthened to a justification for Q given P .

– In the direction from right to left we assume as given a justification model
M and a state s such that ∀F (⋂F ∩P ≠ ∅⇒ ∃F ′ ⪰ F (⋂F ′∩P ∉ ∅∧∀F ′′ ⪰
F ′(⋂F ′′ ∩ P ⊆ Q))). Let F ∈MaxP⪯ E . Then F ⪰ F ′. Take F ′′ ∶= F . Hence,
⋂F ∩ P ⊆ Q. By Lemma 4.5.6, BPQ is true at s.

◻

4.5.2 Knowledge and belief in total justification models

From now on, we restrict ourselves to justification models with a total pre-order.
In total justification models, a belief is a justified belief.

4.5.9. Proposition. In total justification models, an agent believes Q iff there
exists a justification F for Q, i.e.

∃F∀F ′ ⪰ F (⋂F ′ ⊆ Q)

This fact can be captured by the following validity:

Bp ⇐⇒ ∃evjust p

Or writing it more explicitly:

Bp⇐⇒ ∃ev[⪯]suppp
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4.5.10. Proof. – In the direction from left to right, we start from a given
total justification modelM in which BQ is true at s. By Proposition 4.5.1,
every argument can be strengthened to a justification for Q. Take any
argument and strengthen it, then we have a justification for Q.

– In the direction from right to left we assume as given a total justification
model M and a state s such that there exists a justification F for Q. We
have to show that s ⊧ BQ. Since F is a justification for Q, by Defini-
tion 4.2.15, ∀F ′ ∈ E(F ⪯ F ′ ⇒ ⋂F ′ ⊆ Q). Take any argument G such that
F ⪯ G or G ⪯ F . If F ⪯ G, ⋂G ⊆ Q. If G ⪯ F , G can be strengthened to a
justification for Q since G ⪯ F and ∀F ′ ∈ E such that F ⪯ F ′,⋂F ′ ⊆ Q. By
Proposition 4.5.1, BQ is true at s.

◻

4.5.11. Proposition. In total justification models, an agent defeasibly knows Q
at s iff there exists a sound (true) justification F for Q at s, i.e.

∃F (s ∈⋂F ∧ ∀F ′ ⪰ F (⋂F ′ ⊆ Q))

.
This fact can be captured by the following validity:

KDp ⇐⇒ ∃ev(sound ∧ just p)

4.5.12. Proof. – In the direction from left to right, we start from a given
total justification modelM in which KDQ is true at s. Then ∀t(t ≤E s⇒
t ∈ Q). So, ∀t(Es ⪯ Et ⇒ t ∈ Q). Take F ∶= Es. Since s ∈ ⋂Es, s ∈ ⋂F .
Let F ′ ⪰ F and t ∈ ⋂F ′. Then F ′ ⊆ Et, so F ′ ⪯ Et. Since Es ⪯ F ′, Es ⪯ Et.
Then t ≤E s, so t ∈ Q. Hence, ∃F (s ∈ ⋂F ∧ ∀F ′ ⪰ F (⋂F ′ ⊆ Q)).

– In the direction from right to left we assume as given a total justification
model M and a state s such that ∃F (s ∈ ⋂F ∧ ∀F ′ ⪰ F (⋂F ′ ⊆ Q)). Let
t ≤E s. We want to show that t ∈ Q. As we know, s ∈ ⋂F . Then F ⊆ Es, so
F ⪯ Es. Since t ≤E s, Es ⪯ Et. Then F ⪯ Et. By assumption, ⋂Et ⊆ Q. So,
t ∈ Q. Hence, KDQ is true at s.

◻

4.5.13. Proposition. An agent believes Q conditional on P iff there exists a
justification F for Q given P , i.e.

∃F (⋂F ∩ P ≠ ∅ ∧ ∀F ′ ⪰ F (⋂F ′ ∩ P ⊆ Q))

.
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4.5.14. Proof. – In the direction from left to right, we start from a given
total justification modelM in which BPQ is true at s. By Proposition 4.5.5,
every argument consistent with P can be strengthened to a justification for
Q given P . Take any argument consistent with P and strengthen it, then
we have a justification for Q given P.

– In the direction from right to left we assume as given a total justification
modelM and a state s such that there exists a justification F for Q given
P . We have to show that s ⊧ BPQ. Since F is a justification for Q given P ,
by Definition 4.2.17, ⋂F ∩P ≠ ∅ and ∀F ′ ∈ E(F ⪯ F ′⇒ ⋂F ′∩P ⊆ Q). Take
any argument G consistent with P ( ⋂G∩P ≠ ∅) such that F ⪯ G or G ⪯ F .
If F ⪯ G, ⋂G ∩ P ⊆ Q. If G ⪯ F , G can be strengthened to a justification
for Q given P since G ⪯ F and ∀F ′ ∈ E such that F ⪯ F ′,⋂F ′ ∩ P ⊆ Q. By
Proposition 4.5.5, BPQ is true at s.

◻

Conclusion
We have provided a very general setting which can encompass many other set-
tings. Indeed justification models subsume plausibility models, counting and
weighting models as well as evidence models.

In the next chapter we want to use these justification models to fix the agent’s
justifications, irrevocable knowledge, beliefs, conditional beliefs, strong beliefs and
defeasible knowledge. This will be a key ingredient of the game semantics (for
defeasible knowledge) we introduce in this next chapter.



Chapter 5

Playing for knowledge

Aim In this chapter our aim is to provide a game semantics for the “justification
games” used to define Keith Lehrer’s notion of “defeasible knowledge”. Indeed
while the specifics of Lehrer’s system were not formalized in logical terms and
that has left philosophers to settle the misunderstandings via argumentation and
on-going philosophical debates, we believe that a formalisation of this type of
game can lead to useful insights into the different accounts of knowledge within
formal epistemology.

Summary In this chapter we focus on the many definitions of the concept of
“knowledge”. We first present the traditional understanding of knowledge as “jus-
tified true belief” as well as Edmund Gettier’s counterexamples to this conception
[37]. Then we introduce the notion of defeasible knowledge theorized by Keith
Lehrer in [46, 47]. Finally we formalise Lehrer’s conception providing a game
semantics for “defeasible knowledge”. The main points are:

– we discuss the various definitions of knowledge, in particular the definition
of knowledge as “justified true belief”. We introduce the famous Gettier’s
counterexamples shattering this conception of knowledge.

– we develop the notion of “defeasible knowledge” in the form that was theo-
rized by Lehrer. We introduce the “ultra-justification game” as an essential
ingredient of Lehrer’s informal account of knowledge as “undefeated justified
acceptance”.

– we use total justification models to offer a qualitative representation of
an agent’s information and justification within the framework of Dynamic
Epistemic Logic.

– Finally we propose a “game semantics for defeasible knowledge”, as a for-
malization of Lehrer’s conception. We apply our formal model to some
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examples, discussing the limits of this formalisation and indicating some
possible ways to overcome them.

Background In the traditional literature, there is a common understanding
that the famous definition of knowledge as “justified true belief” can/should be
credited to Plato in Meno and Theaetetus. Edmund Gettier himself notes in
[37] that Plato seems to consider such a “definition [of knowledge] at Theaetetus
201, and perhaps accepting one at Meno 98”. However Rohit Parikh rightly
points out that Socrates presents an objection to this conception of knowledge in
the Theaetetus. Thus he shows that contrary to common belief, Plato does not
endorse this definition of knowledge.

In [37] Gettier exposes two counter-examples to that definition claiming that
having a true justified belief about a given proposition is not sufficient for some-
one’s knowing this proposition. Indeed these counter-examples show that even
true justified beliefs, instead of being real knowledge, can just be lucky guesses.
Gettier’s counter-examples are widely accepted by epistemologists as proving that
the analysis of knowledge must be modified.

One of the strategies followed by epistemologists to solve the so-called Gettier
problem is to find a suitable condition to the definition of knowledge such that
knowledge is a justified true belief plus “something”. Keith Lehrer provides such
a condition in [46, 47]. Indeed he defines knowledge as undefeated justified ac-
ceptance (true belief).

In this chapter we use the setting of justification models as described in Chap-
ter 4.
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5.1 Is knowledge justified true belief?

It is generally accepted in contemporary Epistemology that the partitional model
of knowledge (first proposed by Hintikka [41] in terms of equivalence relations,
and later rediscovered by Aumann) does not provide an adequate picture for
“knowledge”, as the term is used in day-to-day life or even in empirical science.
From the 1960s when Gettier’s counterexamples [37] shattered the traditional
understanding of knowledge as “justified true belief”, many distinguished philoso-
phers proposed various concepts of “knowledge” deemed to be closer to the target.
In this section, we focus on the notion of “defeasible knowledge” in the form that
was theorized by Lehrer [46, 47].

5.1.1 Discussion about the definition of knowledge

Knowledge as justified true belief The most common interpretation of
knowledge is that knowledge is a true belief that can be justified. In other
words, knowledge is defined as “justified true belief”. Thus an agent S knows
a proposition p iff:

(1.) p is true

(2.) S believes p

(3.) S is justified in believing that p.

The first condition is known as the truth condition and is not controversial.
The content of knowledge must be true that is, false propositions cannot be
known. The second condition is called the belief condition. Knowledge encodes
a propositional attitude towards a proposition. Finally the last condition is the
justification condition. Knowledge is not only true belief because an agent could
know a proposition being lucky. This agent knows this proposition only if he is
able to justify his belief. In other words only if he can provide reasons for his
belief.

Gettier problem In [37] Gettier provides some counter-examples to this tripar-
tite analysis of knowledge. We present here a so-called Gettier counter-example.
Consider an agent Smith who is justified to believe (1.) that is, he has some
reasons to believes (1.).

(1.) Jones owns a Ford.

Indeed he has evidence that Jones owns a Ford since Jones has offered Smith a
ride while driving a Ford, showed Smith some papers stating he owns a Ford and
told Smith he owns a Ford.
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Now consider an agent Brown who is Smith’s friend. Brown took vacations
and went abroad. Smith cannot remember where Brown has gone but it could be
Boston, Barcelona or Brest-Litovsk.

And consider the following propositions:

(2.) Either Jones owns a Ford, or Brown is in Boston.

(3.) Either Jones owns a Ford, or Brown is in Barcelona.

(4.) Either Jones owns a Ford, or Brown is in Brest-Litovsk.

Each of these propositions is entailed by (1.). Suppose Smith is a perfect
logician. Then Smith is completely justified in believing (2.), (3.) and (4.).

Consider now that Jones does not own a Ford, but an Honda. Besides, by a
strange coincidence (and remember entirely unknown to Smith), Brown is indeed
in Barcelona. Then (2.) is true, Smith believes that (2.) is true (since he believes
that Jones owns a Ford) and he is justified in believing that (2.) is true (since he
is justified in believing that Jones owns a Ford). However one cannot claim that
Smith knows that (2.) is true.

The Gettier problem is posed in terms of a problem in first order logic. The
problem is mainly due to the claim that justification is preserved by entailment:
if an agent S is justified to believe P and if P entails Q, then S would be justified
to believe Q. Thus Gettier claims that the three conditions are not sufficient to
define knowledge.

A fourth condition Several philosophers provide answers to the Gettier prob-
lem. Most of them add a fourth condition to the conditions of truth, belief and
justification1. We focus here on the solution provided by Lehrer in [46, 47].

5.1.2 Lehrer’s solution to the Gettier problem

Lehrer defines knowledge as undefeated justified acceptance: an agent knows
p in case she is justified to accept p and her justification cannot be defeated.
He considers several types of justifications varying from a subjective to more
objective ones. Both make use of the notions of coherence and reasonableness,
but the notion of truth only plays a role in the last one.

1Some philosophers provide another condition (4.), thus Alvin Goldman who states that a
belief is justified only if this belief has been caused by the truth of another belief, considers that
a justified true belief is knowledge if the agent is able to correctly reconstruct the causal chain.
However, some philosophers prefer to use another notion of justification or to use a primitive
notion of knowledge to solve Gettier problem instead of adding a further condition.
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Personal justification The subjective type of justification is called personal
justification. An agent is personally justified to accept p at time t iff p is coherent
with the agent’s “evaluation system” at t that is, it is more reasonable for the
agent to accept p than any objection against it on the basis of this evaluation
system at t.

Evaluation system The evaluation system of an agent is a collection of three
things: an acceptance system, a preference system and a reasoning system. To-
gether this captures both the relevant background information that the agent has
acquired about the world in her quest for truth as well as the limited reasoning ca-
pacity of the agent. As Lehrer puts it, “the evaluation system of a person consists
of what the person accepts, what the person prefers concerning acceptance, and
how the person reasons concerning acceptance” [47, p.127]. Then the evaluation
system tells what it is more reasonable to accept that is, what sources of informa-
tion can be trusted (senses, memory...). Note that in the first edition of Lehrer’s
book, the evaluation system was equated with the acceptance system [46]. But
as real agents are not considered to be logically omniscient, it is important in
Lehrer’s account that one should be able to state the agent’s reasoning system
explicitly, and similarly the agent’s preferences (or conditional acceptances) are
an important ingredient when analyzing the agent’s knowledge.

Example of personal justification Let’s consider an example of a personal
justification, that is, an example of coherence with an evaluation system. Imagine
I see what looks like a vase on the table in my house, but my reason tells me it
could also be a jug of water because they sometimes look like the same. So my
senses (my eyes) and my reason disagree on the nature of the object standing
on my table. I do not own a jug of water and I accept that I do not own any.
But someone could have placed one when I left the house. However I prefer to
accept that nobody came into my house than somebody did. Thus my evaluation
system (composed of my acceptance that I do not own any jug of water and my
preference concerning my acceptance that nobody came into my house) tells me
that it is more reasonable to trust my eyes and accept that it is a vase than to
accept it is a jug of water. Of course I can be wrong (somebody can actually
came to put this jug of water on my table) but I am personally justified to accept
that I see a vase.

Hence, an agent who is personally justified to accept a proposition p at t might
be wrong about the truth-value of p but will be right in claiming that p fits well,
in the sense of coherence, with the other propositions she accepts. The evaluation
system is fallible but according to Lehrer, it has to be used to decide what to
accept because relevant information is contained in it. The evaluation system
providing personal justification for an acceptance can be in error even though the
acceptance itself is true. So we cannot say that a person knows every acceptance
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to be true that she is personally justified in accepting provided only that it is also
true.

Truth-compatible subsystem In order to make the transition to a more ob-
jective type of justification, Lehrer introduces in [46] the notion of “complete”
justification but replaces this in [47] with the idea of justification on the basis of
a truth-compatible subsystem of an evaluation system. Such a truth-compatible
subsystem of an original evaluation system contains only the accepted items that
are actually true, it deletes those states of preference in which something false
is preferred over something that is true and its reasoning system is restricted to
sound reasonings.

Undefeated justification This notion of a truth-compatible subsystem plays
an essential role in Lehrer’s definition of irrefutable or undefeated justification as
follows: an agent is justified to accept p in a way that is undefeated at t iff she
is justified in accepting p at t on the basis of what Lehrer calls the ultra-system
at t (consisting of a truth-compatible subsystem of an original evaluation system
at t and the remaining so-called “unmarked” states). Note the difference in the
notions of undefeated justification and personal justification by stressing the role
played in the former but not the latter by ingredients that are objectively true.

Justification game To clarify these notions of justified acceptance, Lehrer
defines for each notion of justification a corresponding justification game. In a
justification game, an agent (called the Claimant) claims that she is justified to
accept p at time t while an opponent (called a Skeptic or Critic) tries to show
that this is in fact not the case.

Personal justification game In the personal justification game, the Skeptic
can object to the claim of the Claimant by using an objection (or so-called “com-
petitor” as it was called in the first edition [46]) o to p iff it is more reasonable for
the agent to accept that p on the assumption that o is false than on the assump-
tion that o is true on the basis of her evaluation system at t. Then the Claimant
has to answer or neutralize the Skeptic to win a round in the game. If she can
answer (show that o does not cohere with her evaluation system, that is, it is
more reasonable for her to accept p than o on the basis of her evaluation system)
or neutralize (show that there is a neutralizing statement n which together with
o is not an objection against p and it is as reasonable to accept n together with o
as it is to accept o alone on the basis of her evaluation system) all the objections
raised by the Skeptic, sshe wins the game. If he wins the game, she is personally
justified to accept p.
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Ultra-justification game In the ultra-justification game, the agent’s payoff is
“defeasible knowledge”. In this game the opponent (called Ultra-critic) is supposed
to be aware of the truth-value of what the Claimant accepts. The objections can
be raised in a similar fashion as in the personal justification game, but now such
objections can only be met (answered or neutralized) if they happen to refer to
truthful pieces of information (only the content of the truth-compatible subsystem
and the existence – but not the content – of the unmarked states of the ultra-
system can be used). If the Claimant wins the game, she is justified to accept p
in a way that is undefeated.

Defeasible knowledge If we adopt Lehrer’s definition in [47, p.169] of de-
feasible knowledge and we use the setting of his justification game to give an
explication to condition (4.) below, knowledge will in his setting be reduceable
to undefeated justified acceptance.

5.1.1. Definition. S knows that p if and only if

(1.) S accepts that p,

(2.) it is true that p,

(3.) S is justified in accepting that p, and

(4.) S is justified in accepting that p in a way that is not defeated by
any false statement (that does not depend on any false statement).

Hence if knowledge of p is reduced to undefeated justified acceptance of p, we
can say that if the Claimant wins every round of the ultra-justification game then
the Claimant knows p (in the (in)defeasible sense of knowledge).

No false lemma We want to clarify the meaning of condition (4.) above. What
does it mean “not defeated by any false statement” and “does not depend on any
false statement”? How a justification can be defeated by a false statement?

Lehrer insists on the fact that condition (4.) does not imply the simple denial
of false statements. Whenever the false statement is the result of a perceptual
error or is the premise of some reasoning, condition (4.) does not imply that
the justification the agent has to accept p must not contain any false statements
(or beliefs). Moreover Lehrer argues against Peter Klein and Risto Hilpinen’s
proposal according to which a justification depends on a false statement iff the
person holding the justification would not be justified anymore if she knew the
false statement to be false. Lehrer provides examples where knowing some state-
ment to be false is misleading2.

2We develop such an example in Section 5.2.3.
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In fact, Lehrer only requires that the agent has some justification that does
not depend on any false statement or is not defeated by any false statement in his
definition of knowledge. Here the need and the interest of the ultra-justification
game is fully revealed. Remember that this type of game involves using the ultra-
system of the agent that is, a system retaining only what is true in the agent’s
evaluation system, an evaluation system free of error. Indeed the Ultra-critic
can ask the Claimant to eliminate acceptances, preferences and reasonings that
do not belong to the ultra-system of the Claimant. The ultra-justification game
allows to delete all false statements that could be part of the justification of an
agent who can then only use true statements. Then the Claimant wins the game
if she can answer or neutralize all the objections of the Ultra-critic proving she is
justified to accept p in a way that is undefeated by any false statement.

If an agent has at least one justification that does not depend on false state-
ment, she will win the ultra-justification game because once she will delete all the
false statements belonging to her evaluation system, the Ultra-critic will not be
able to defeat the remaining statements and so the corresponding justification3.

5.2 An original game semantics for defeasible knowl-
edge

In this section we formalize Lehrer’s concept of “(in)defeasible knowledge” in
terms of a game semantics that we design for this purpose. First, we analyse
the notions of belief and knowledge we define in Section 4.5.2 and 4.2.6 from the
point of view of Lehrer’s theory of knowledge. Next, we prove Lehrer’s notion
of (in)defeasible knowledge (see Definition 5.1.1) to be equivalent to the formal
concept of defeasible knowledge.

5.2.1 Knowledge, belief and justification

In Definition 4.2.15, we define the notion of justification: a justification for Q
is an argument F such that all arguments at least as strong as F support Q
(∀F ′(F ⪯ F ′ ⇒ ⋂F ′ ⊆ Q)). In Lehrer’s personal justification game, this means
that the argument F cannot be defeated by a stronger argument since all stronger
arguments support Q. This notion of justification introduced in Chapter 4 cor-
responds exactly to the notion of personal justification of Lehrer.

In Definition 4.5.2, we define the notion of belief in total justification models:
an agent believes Q iff there exists a justification F for Q (∃F∀F ′ ⪰ F (⋂F ′ ⊆ Q)).
An agent believes Q iff all the arguments stronger than F support Q. In Lehrer’s
terminology, this means that the agent is personally justified in accepting Q.

3We provide an example to illustrate this in Section 5.2.3.



5.2. An original game semantics for defeasible knowledge 101

The notion of justified true belief is captured in our formal system as follows:
p ∧ ∃evjust p. We would like to emphasize here the difference between this def-
inition of justified true belief with our definition of (defeasible) knowledge. We
define (defeasible) knowledge in Definition 4.5.2: in total justification models, an
agent defeasibly knows Q at s iff there exists a sound justification F for Q at s
(∃F (s ∈ ⋂F ∧ ∀F ′ ⪰ F (⋂F ′ ⊆ Q))). In our definition of defeasible knowledge, it
is not just the belief in Q that has to be sound but above all the evidence the
agent has for Q. An agent defeasibly knows Q iff the evidence she has for Q
is sound and her evidence supports Q. In Lehrer’s ultra-justification game, this
means that the argument F cannot be defeated by a stronger argument since
all stronger arguments support Q nor by soundness. This notion of justification
corresponds exactly to the notion of undefeated justification of Lehrer.

5.2.2 Ultra-justification game

Our setting will start from a given justification modelM which fixes the agent’s
justifications, irrevocable knowledge, beliefs, conditional beliefs, strong beliefs
and defeasible knowledge. We take this to be the basis of the agent’s evaluation
system. From now we only focus on the class of justification models with a total
pre-order on bodies of evidence. We distinguish between two kinds of justifica-
tion models inside this class: the general kind of justification models where the
evidence sets are not nested but can be mutually inconsistent or only partially
overlapping and the AGM kind where all the evidence sets are nested.

Assumptions We equate Lehrer’s notion of “acceptance” with our notion of
“belief” and assume our agent to be logically omniscient. Another assumption we
make is that our agent holds only consistent beliefs. These simplifying assump-
tions render the formalization less complicated and prove sufficient to give a first
formal analysis of Lehrer’s justification games. However we are aware of the fact
that these restrictions will have to be lifted in future work if we want to have a
fully accurate formalization of Lehrer’s account including a formal analysis going
beyond the setting provided here.

5.2.1. Definition. Given a total justification model4 M0 = (S0,E0,⪯0, ∥⋅∥0, s0)
and a claim Q ⊆ S0, we define the ultra-justification game G(M0,Q).

The ultra-justification game is a two players game where the players are called
Claimant and Ultra-critic. The justification model of the Claimant is supposed
to be known by the Ultra-critic. That means the Ultra-critic knows the epistemic
and doxastic attitudes of the Claimant as well as his justification such that the

4In the rest of the chapter we assume that all justification models and plausibility models
are total (i.e. connected) models and we will only explicitly mention the word “total” further
on in case confusion is possible.
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Ultra-critic knows which belief (and conditional belief, strong belief) is false and
which justification is unsound.

Every move for the Claimant (or Believer) is bound by the precondition that
the information he conveys to his opponent about himself holding certain justi-
fications, beliefs, conditional beliefs or about the strength of his beliefs, has to
be truthful. In other words, the Believer cannot make claims that go against the
information he accepts in his own evaluation system, even if what he believes
might actually be false in reality.

The pre-condition for any move of the Ultra-critic is that all the information
he conveys has to be true in the actual world, i.e. the Ultra-critic cannot lie.
This is why we use public announcement operators ! in the formalization of the
information that the Ultra-critic conveys.

A play (or run) is a sequence of moves of the players where the set of legal
moves of each player is defined below.

The game is played on positions that is, on pairs P = (M, F ) such that
M = (S,E,⪯, ∥⋅∥, s) is a justification model such that s = s0(∈ S) and F ∈ EM is
an argument for that modelM (i.e. F is a body of evidence in that modelM).

The initial position is P0 = (M0, F0) whereM0 is the initial total justification
model and F0 = ∅.

The game is played in rounds composed of a move made by the Ultra-critic,
followed by a move made by the Claimant. We call the moves of the Ultra-critic
“challenges” and the moves of the Claimant “defences”.

Consider a position Pn−1 = (Mn−1, Fn−1) where n ≥ 1.

1. First, the Ultra-critic makes a move by:

a. either challenging the current argument Fn−1 as unsound, i.e. announcing
that s0 /∈ ⋂Fn−1 which induces an update !(¬⋂Fn−1) of the current
justification modelMn−1 or

b. challenging the current argument Fn−1 as unconvincing (it is not a justifi-
cation for Q), by finding an objection, i.e. an argument F ′ ∈ EMn−1 such
that Fn−1 ⪯ F ′ andMn−1, s0 ⊧ ¬K¬(⋂F ′ ∧ ¬Q), i.e. ⋂F ′ ⊈ Q ∩ Sn−1.

After this, the current justification model is updated to a new justification
modelMn given by:

– Mn ∶=Mn−1∣(¬⋂Fn−1) if the Ultra-critic made a move of type (a.);
– Mn ∶=Mn−1 if the Ultra-critic made a move of type (b.).
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2. Next, the Claimant correspondingly defends himself by:

a’. answering a challenge of type (a.) with a new argument Fn ∈ EMn ,
ending at a new position Pn = (Mn, Fn); or

b’. answering a challenge of type (b.) with a new argument Fn ∈ EMn such
that F ′ ≺ Fn, ending at a new position Pn = (Mn, Fn).

If at any round, a player cannot make a move, then he loses and the other
player wins. If the Ultra-critic cannot make a move, i.e. he cannot challenge a
given argument, this argument is said to be undefeated. If the Claimant cannot
make a move, i.e. he cannot defend a given argument, this argument is said to
be defeated. So the Claimant wins the ultra-justification game G(M0,Q) iff he
offered at least one justification for Q that is left undefeated (his original belief
in Q is undefeated).

5.2.2. Proposition. Every play ends in finitely many steps with one of the two
players winning.

5.2.3. Proof. Every move of the Claimant either shrinks the total justification
modelM or goes to a strictly more convincing argument Fn. We know that every
total justification model is finite. Since S0 is finite, there are only finitely many
updates that shrink the justification model. So there exists some number n, such
that starting from the n-th round, the justification model stays the same forever,
i.e. ∀m > n,Mn ∶=Mm.

From round n onwards, the Claimant can only make moves of type (b′.). So
he can only defend himself providing a new argument such that this argument
is strictly more convincing than the argument of the Ultra-critic, which means
that at each round, the arguments go stronger: ∀m > n,Fn ≺ ⋅ ⋅ ⋅ ≺ Fm for every
argument Fn ∈ EMn . Since Mn is finite, EMn is also finite and there are only
finitely many available arguments. Hence, there is no infinite ascending chain of
arguments, i.e. at some round m > n, the Claimant last argument Fm is either
defeated (the Ultra-critic wins) or is undeafeated (i.e. the Ultra-critic cannot
challenge it, that is, he cannot make a move) and the Claimant wins. ◻

5.2.4. Corollary. The game is determined: there exits a winning strategy for
one of the players.

5.2.5. Theorem. The Claimant defeasibly knows Q iff he has a winning strategy
in the ultra-justification game G(M0,Q). Else, the Ultra-critic has a winning
strategy in the ultra-justification game G(M0,Q).

5.2.6. Proof. – Assume the Claimant defeasibly knows Q. We are given
a total justification model M0 in which KDQ is true at s0. We have to
show that there exists a winning strategy for the Claimant in G(M0,Q).
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We denote by Ln the (finite) set of available moves for the Claimant at
round n at step (2.), i.e. after the Ultra-critic made his n-th move and the
justification model has been updated toMn. Since KDQ is true at s0 and
by Proposition 4.5.11, we know that there exists a sound justification F ∈ E0

for Q at s0. All we need to show is the following:

Claim: for every n, if the step (2.) is reached, i.e the Ultra-critic made
his n-th move and the justification model has been updated to Mn, then
Ln ≠ ∅. More precisely, we will show that we will always have

F ∣Mn ∈ Ln

The desired conclusion will follow from this claim. Since for every round
n, either the Ultra-critic cannot make his move (hence, he loses) or his
challenge can be answered by the Claimant (by choosing any F ∣Mn ∈ Ln).
Hence, the Claimant can never lose. So by Corollary 5.2.4, he will win.

Proof of the claim: by induction on n. At round n = 0, we just have
L0 ∶= E0 = {G ∈ E0 ∣ G0 = ∅ ⪯ G}. So we have F ∈ L0 since ∅ ⪯ F .
At any later round n, if the Ultra-critic cannot move, the Claimant wins
and we are done.

Otherwise if the Ultra-critic made a move of type (a.), announcing !(¬⋂Fn−1)
then we know that we haveMn ∶=Mn−1∣(¬⋂Fn−1). We want to show that
F ∣Mn ∈ Ln , i.e. F ∣Mn ∈ EMn . By induction hypothesis, we know that
F ∣Mn−1 ∈ Ln−1 ⊆ EMn−1 . We know that F ∣Mn ∶= (F ∣Mn−1)∣Mn. By defi-
nition of EMn , EMn = {G∣Mn ∣G ∈ EMn−1}. Then F ∣Mn ∶= (F ∣Mn−1)∣Mn ∈
EMn .

If the Ultra-critic made a move of type (b.), he found an argument F ′ ∈
En−1 such that Fn−1 ⪯ F ′ and ⋂F ′ ⊈ Q ∩ Sn−1, i.e. ⋂F ′ ⊈ Q. In this
case, we know that Mn ∶=Mn−1. We want to show that F ∣Mn ∈ Ln . By
induction hypothesis, we know that F ∣Mn−1 ∈ Ln−1 . We have to prove
that F ′ ≺Mn F ∣Mn. Suppose F ∣Mn ⪯Mn F ′. By definition of ⪯Mn , we
have {e ∈ E0 ∣ e ∩ Sn ∈ F ∣Mn} ⪯M0 {e ∈ E0 ∣ e ∩ Sn ∈ F ′}. But F is
sound, i.e. s ∈ e for all e ∈ F , and so s ∈ e ∩ Sn ≠ ∅ for all e ∈ F . Hence,
∀e ∈ E0(e ∈ F ⇒ e ∩ Sn ∈ F ∣Mn). So F ⊆ {e ∈ E0 ∣ e ∩ Sn ∈ F ∣Mn}, and
hence, F ⪯M0 {e ∈ E0 ∣ e ∩ Sn ∈ F ∣Mn} ⪯M0 {e ∈ E0 ∣ e ∩ Sn ∈ F ′}. Since F
is a justification for Q in M0, we must have ⋂{e ∈ E0 ∣ e ∩ Sn ∈ F ′} ⊆ Q.
But F ′ is an argument in Mn−1 ∶=Mn. Hence, we have e ∩ Sn = e for all
e ∈ F ′, and so ⋂F ′ = ⋂{e ∈ E0 ∣ e ∈ F ′} = ⋂{e ∈ E0 ∣ e ∩ Sn ∈ F ′} ⊆ Q, which
contradicts the fact that F ′ was chosen as an objection by the Ultra-critic
(with ⋂F ′ ⊈ Q).
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– For the other direction, assume the Claimant does not defeasibly know Q.
We are given total justification modelM0 in which KDQ is false at s0. We
want to show that the Ultra-critic has a winning strategy (and hence, the
Claimant has not a winning strategy). By Proposition 4.5.11, there does
not exist a sound justification F ∈ E0 for Q at s0.

At every round n, the previous argument Fn−1 of the Claimant will be de-
feated by the Ultra-critic. The Ultra-critic will challenge either by showing
that Fn−1 is unsound at s0 or that Fn−1 is unconvincing (it is not a justifi-
cation for Q), i.e. by providing an objection F ′ with Fn−1 ⪯ F ′ such that
⋂F ′ ⊈ Q. The Claimant can never win. Hence, by Corollary 5.2.4, he will
lose.

◻

We apply our setting to the following examples. In all the applications of our
game semantics, we will use refined justification models as defined in Section 4.2.5,
which allow us to distinguish between soft arguments (that weakly support a
conclusion, given some implicit biases) and “stronger” arguments (that make the
biases explicit).

5.2.3 Applications

The first example is inspired by [47].

Example 1: Zebra

Imagine an agent who is dreaming that she is at the Amsterdam Zoo (Artis)
looking at a Zebra. The atomic propositions in this example are zebra (there is
a zebra), dream (the agent is dreaming), see (the agent sees a zebra) and Zoo
(the agent is at the Amsterdam Zoo). We represent the agent’s evidences via the
refined justification modelM0 = (S0,E0,⪯0, ∥⋅∥0, s0) described in Figure 5.1.

Note that in this example, we do not consider “seeing” as a factual attitude:
what the agent sees is not necessarily true. However, we do consider “seeing” as
being fully introspective, that is, if an agent sees something, she irrevocably knows
that she sees it and if she does not see something, she irrevocably knows she does
not see it. So the agent irrevocably knows that she sees a zebra by introspection.
Moreover, the agent irrevocably knows that if she sees a zebra, then either she
is at the Zoo or she is dreaming (we assume an agent living in Amsterdam, far
away from any savannah). In the same way, she irrevocably knows that if she is
at the Amsterdam Zoo, then there is a zebra (we assume she already went to the
Zoo where there is indeed a zebra).

In accordance with the knowledge of the agent, her epistemic state consists of
four worlds S0 = {s, t, u, v}. The valuation of the atomic propositions is given as
follows: zebra is true at s, u, v, dream is true at s, t, u, see is true at s, t, u, v and
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Figure 5.1: Initial refined justification model

Zoo is true at u, v. So at the state s = s0, there is a zebra, the agent sees a zebra,
the agent is not at the Zoo and the agent is dreaming. At the state t, there is
not a zebra, the agent sees a zebra, the agent is not at the Zoo and the agent is
dreaming. At the state u, there is a zebra, the agent sees a zebra, the agent is
at the Zoo and the agent is dreaming. At the state v, there is a zebra, the agent
sees a zebra, the agent is at the Zoo and the agent is not dreaming. Formally we
have:

– ∣∣ zebra ∣∣0= {s, u, v},

– ∣∣ dream ∣∣0= {s, t, u},

– ∣∣ see ∣∣0= {s, t, u, v},

– ∣∣ Zoo ∣∣0= {u, v}.

We remind the reader that, in a refined justification model, not all evidence
sets represent genuine evidence. Some evidences sets are biases giving the agent’s
default beliefs. In the refined justification modelM0, there are four evidence sets:

E0 = {Zoo, see,¬dream, zebra→ Zoo}

with:

– Zoo = {u, v} = e1,

– see = {s, t, u, v} = e2,

– ¬dream = {v} = e3,

– zebra→ Zoo = {t, u, v} = e4.
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The evidence sets e1 and e2 represent genuine evidence (through not necessar-
ily truthful). The evidence set e2 represents the piece of evidence the agent has,
based on her perception: her eyes. The evidence set e1 represents the piece of
evidence the agent has, based on her memory: she remembers coming to the Zoo.
The evidence sets e3 and e4 represent the biases of the agent. By default, the
agent assumes that she is not dreaming, she has no evidence to the contrary so
she prefers to believe she is awake (as usually people do). She also assumes that
if there is a zebra, then she is at the Amsterdam Zoo (since there is no savannah
near Amsterdam).

Note that the evidence set e2 has the property that e2 = see = S0.

We have E0 = {∅,{e1},{e2},{e3},{e4},{e1, e2},{e1, e3},{e1, e4},{e2, e3}, {e2, e4},
{e3, e4},{e1, e2, e3},{e1, e2, e4},{e1, e3, e4},{e2, e3, e4},{e1, e2, e3, e4}}.

The pre-order ⪯0 on E0 is given by inclusion ⊆, i.e. F ⪯0 G iff F ⊆ G (so in
fact we get an evidence model).

From refined justification model to plausibility model We can easily
turn this refined justification model into a plausibility model:

1. s ≤E0 t iff Et ⪯0 Es iff Et ⊆ Es
2. Es ∶= {e2}, Et ∶= {e2, e4}, Eu ∶= {e1, e2, e4} and Ev ∶= {e1, e2, e3, e4}

3. {e1, e2, e4} ⪯0 {e1, e2, e3, e4} so Eu ⪯0 Ev

4. {e2, e4} ⪯0 {e1, e2, e4} so Et ⪯0 Eu

5. {e2} ⪯0 {e2, e4} so Es ⪯0 Et

So we have Es ⪯0 Et ⪯0 Eu ⪯0 Ev that is, v ≤E0 u ≤E0 t ≤E0 s.

Plausibility model We represent the agent’s beliefs and knowledge via the
plausibility model described in Figure 5.2 consisting of four possible states (s, t, u, v)
where the double circled state indicates the real world and the arrows represent
the plausibility relation on states (we skip the reflexive and transitive arrows).

t: ¬zebra, dream, see, ¬zoo u: zebra, dream, see, zoo v: zebra, ¬dream, see, zoos: zebra, dream, see, ¬zoo

Figure 5.2: Initial plausibility model

One can easily see that our justification model is sphere-based.
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The informal dialogue The dialogue starts with our agent claiming to know
that she sees a zebra:
Claimant: There is a zebra here.

B(zebra)

Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬zebra)

Claimant: I believe there is a zebra because I see a zebra.

{see} ∈ EM1 and B(see) and Bsee(zebra)

Ultra-critic: Maybe you are sleeping and dreaming that you see a zebra.
(Your evidence is consistent with the negation of “zebra”! You need to provide
further justification!)

¬K¬(see ∧ dream ∧ ¬zebra)
Claimant: It is more reasonable for me to accept that there is a zebra because I
see the zebra than to accept that I am dreaming a zebra!

{see,¬dream} ∈ EM2 and B(see ∧ ¬dream) and Bsee∧¬dream(zebra)

Ultra-critic: You are dreaming! You are asleep! You are only seeing the zebra in
your dreams!

!dream

Update The announcement of “dream” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.3 and 5.4:

SoM3 ∶=M2∣(dream) where EM3 = {zoo, see, dream, zebra→ zoo} with:

– Zoo = {u} = e1,

– see = {s, t, u} = e2,

– zebra→ Zoo = {t, u} = e4,

– dream = {s, t, u} = e5.

Note that after the update, dream is true in all the remaining states (S2∣(dream) =
dream), so dream is an evidence set.

We have EM3 = {∅,{e1},{e2},{e4},{e5}, {e1, e2},{e1, e4},{e1, e5},{e2, e4},{e2, e5},
{e4, e5},{e1, e2, e4},{e1, e2, e5},{e1, e4, e5},{e2, e4, e5},{e1, e2, e4, e5}}.
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e2

e1

e4

s

t

u

e5

Figure 5.3: Refined justification model updated with !dream

t: ¬zebra, dream, see, ¬zoo u: zebra, dream, see, zoos: zebra, dream, see, ¬zoo

Figure 5.4: Plausibility model updated with !dream

The dialogue continued Then the dialogue continues and our agent claims:
Claimant: I still believe there is a zebra here, coincidental with my dreaming of
it. I distinctly remember coming to the Zoo. Maybe I just fell asleep at the Zoo?
This would also explain why I am seeing a zebra.

Zoo ∈ EM3 and B(zoo) ∧BZoo∧dream∧see(zebra)

Ultra-critic: You are not at the zoo. You are asleep in your bed, dreaming of
zebras.

!¬Zoo

Update The announcement of “¬Zoo” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.5 and 5.6:

SoM4 ∶=M3∣(¬Zoo) where EM4 = {¬zoo, see, dream, zebra→ zoo} with:

– ¬Zoo = {s, t} = e6,

– see = {s, t} = e2,

– dream = {s, t} = e5,

– zebra→ Zoo = {t} = e4
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e2

e4

s

t

e5

e6

Figure 5.5: Refined justification model updated with !¬Zoo

t: ¬zebra, dream, see, ¬zoo, hears: zebra, dream, see, ¬zoo, ¬hear

Figure 5.6: Plausibility model updated with !¬Zoo

Note again that after the update, ¬Zoo is true in all the remaining states
(S3∣(¬Zoo) = ¬Zoo), so ¬Zoo is an evidence set.

We have EM4 = {∅,{e2},{e5},{e4},{e6}, {e2, e5},{e2, e4},{e2, e6},{e5, e4},{e5, e6},
{e4, e6}{e2, e5, e4},{e2, e5, e6},{e2, e4, e6},{e5, e4, e6},{e2, e5, e4, e6}}.

The dialogue ended Then the dialogue ends with our agent claiming:

Claimant: Given that I am asleep in my bed, I have no justification left to believe
there is a zebra here in the bedroom. So I give up: I no longer believe it!

Conclusion of the dialogue The agent loses because she cannot provide fur-
ther argument for zebra. She does not even believe zebra anymore. She didn’t
defeasibly “know” that there was a zebra. In this case our agent does not defea-
sibly know zebra since she based her belief on false evidence. Sadly enough, her
initial justified belief was in fact true: however implausible this might seem to
her, there is a zebra in her bedroom. The agent did not know: she only had a
true justified belief.

The formal game Formally, we model the informal dialogue as a play in our
ultra-justification game G(M0, zebra) as follows.
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Claimant: There is a zebra here.

B(zebra)

This means that at round 0, F0 = ∅.

Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬zebra)

This means that at round 1, the Ultra-critic chooses F ′
0 = F0 = ∅ such that F ′

0 does
not support zebra: ⋂F ′

0 = ⋂∅ = S0 ⊈ zebra because of the state t (t ⊧ ¬zebra).

Claimant: I believe there is a zebra because I see a zebra.

{see} ∈ EM1 and B(see) and Bsee(zebra)

This means that the Claimant chooses a new argument F1 = {see} inM1 ∶=M0,
which is a soft argument in the sense of Definition 4.2.14 that weakly supports
zebra conditional on the default ¬dream.

Ultra-critic: Maybe you are sleeping and dreaming that you see a zebra.
(Your evidence is consistent with the negation of “zebra”! You need to provide
further justification!)

¬K¬(see ∧ dream ∧ ¬zebra)

This means that at round 2, the Ultra-critic chooses F ′
1 = F1 = {see} because

F ′
1 does not support zebra: ⋂F ′

1 = ⋂{see} ⊈ zebra because of the state t (t ⊧
see ∧ dream ∧ ¬zebra).

Claimant: It is more reasonable for me to accept that there is a zebra because I
see the zebra than to accept that I am dreaming a zebra!

{see,¬dream} ∈ EM2 and B(see ∧ ¬dream) and Bsee∧¬dream(zebra)

This means that the Claimant makes explicit his bias ¬dream by adding it to his
argument, obtaining a new argument F2 = {see,¬dream} inM2 ∶=M1, which is
an argument that supports zebra.

Ultra-critic: You are dreaming! You are asleep! You are only seeing the zebra in
your dreams!

!dream

This means that at round 3, the Ultra-critic challenges F2 as unsound and an-
nounces that s /∈ ⋂F2 which induces an update !(¬⋂F2) of the refined justification
model and the plausibility model.
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Update The announcement of “dream” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.3 and 5.4:

SoM3 ∶=M2∣(¬⋂F2) where EM3 = {zoo, see, dream, zebra→ zoo} with:

– Zoo = {u} = e1,

– see = {s, t, u} = e2,

– zebra→ Zoo = {t, u} = e4,

– dream = {s, t, u} = e5.

Note that after the update, dream is true in all the remaining states (S2∣(¬⋂F2) =
dream), so dream is an evidence set.

We have EM3 = {∅,{e1},{e2},{e4},{e5}, {e1, e2},{e1, e4},{e1, e5},{e2, e4},{e2, e5},
{e4, e5},{e1, e2, e4},{e1, e2, e5},{e1, e4, e5},{e2, e4, e5},{e1, e2, e4, e5}}.

The game continued Then the game continues and our agent claims:
Claimant: I still believe there is a zebra here, coincidental with my dreaming of
it. I distinctly remember coming to the Zoo. Maybe I just fell asleep at the Zoo?
This would also explain why I am seeing a zebra.

Zoo ∈ EM3 and B(zoo) ∧BZoo∧dream∧see(zebra)

This means that the Claimant chooses a new argument F3 = {see, dream,Zoo}
inM3, which is an argument that supports zebra.

Ultra-critic: You are not at the zoo. You are asleep in your bed, dreaming of
zebras.

!¬Zoo
This means that at round 4, the Ultra-critic challenges F3 as unsound and an-
nounces that s /∈ ⋂F3 which induces an update !(¬⋂F3) of the refined justification
model and the plausibility model.

Update The announcement of “¬Zoo” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.5 and 5.6:

SoM4 ∶=M3∣(¬⋂F3) where EM4 = {¬zoo, see, dream, zebra→ zoo} with:

– ¬Zoo = {s, t} = e6,

– see = {s, t} = e2,
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– dream = {s, t} = e5,

– zebra→ Zoo = {t} = e4

Note again that after the update, ¬Zoo is true in all the remaining states
(S3∣(¬⋂F3) = ¬Zoo), so ¬Zoo is an evidence set.

We have EM4 = {∅,{e2},{e5},{e4},{e6}, {e2, e5},{e2, e4},{e2, e6},{e5, e4},{e5, e6},
{e4, e6}{e2, e5, e4},{e2, e5, e6},{e2, e4, e6},{e5, e4, e6},{e2, e5, e4, e6}}.

The game ended Then the game ends with our agent claiming:
Claimant: Given that I am asleep in my bed, I have no justification left to believe
there is a zebra here in the bedroom. So I give up: I no longer believe it!

Conclusion of the game The agent loses this round of the ultra-justification
game because she cannot provide further argument for zebra. She does not even
believe zebra anymore. Then the Claimant loses the game: she didn’t defeasibly
“know” that there was a zebra. In this case our agent does not defeasibly know
zebra since she based her belief on false evidence. Sadly enough, her initial
justified belief was in fact true: however implausible this might seem to her,
there is a zebra in her bedroom. The agent did not know: she only had a true
justified belief.

Example 2: Ferrari

The second example illustrates the meaning of Lehrer’s condition (4.) in his defi-
nition of knowledge and underlines the interest of the ultra-justification game. In
particular it shows that Lehrer only requires that the agent has at least one justi-
fication that does not depend on any false statement to win the ultra-justification
game.

Suppose an agent S is in a room with Mr. Nogot and Mr. Knewit. Mr.
Nogot does not own a Ferrari contrary to Mr. Knewit. However the agent S is
justified in accepting that Mr. Nogot owns a Ferrari because S saw Mr. Nogot
drove a Ferrari and Mr. Nogot showed S the papers stating he owns a Ferrari.
Then suppose someone asks S if she knows whether anyone in the room owns a
Ferrari, S replies claiming she knows that at least one person in the room owns
a Ferrari (P ). It seems that though S has a justified true belief that P , she
does not know it. However, suppose S also is justified in accepting that Mr.
Knewit owns a Ferrari because S sold Mr. Knewit her Ferrari. Though part of
the justification of S (Mr. Nogot owns a Ferrari) is a false statement/belief, she
also has justification that does not depend on this false statement/belief.
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The atomic propositions in this example are P (at least one person in the
room owns a Ferrari, i.e. Nogot∨Knewit)5, reliable (Mr. Nogot is reliable), buy
(Mr. Knewit bought the Ferrari of the agent), Mr. Nogot (Mr. Nogot owns a
Ferrari), Mr. Knewit (Mr. Knewit owns a Ferrari). We represent the agent’s
evidence via the refined justification modelM0 = (S0,E0,⪯0, ∥⋅∥0, s0) described in
Figure 5.7.

s

u

t

v

e1

e2

Figure 5.7: Initial refined justification model

For simplicity, we assume the agent irrevocably knows that if Mr. Nogot is
reliable then Mr. Nogot does own a Ferrari while if Mr. Nogot is not reliable, (i.e.
Mr. Nogot was lying about the papers stating he owns a Ferrari), he does not
actually own a Ferrari6. We also assume that the agent irrevocably knows that
if Mr. Knewit bought her Ferrari then Mr. Knewit does own a Ferrari (since the
agent knows Mr. Knewit really wants to own a Ferrari, not to sold one) while if
Mr. Knewit did not buy the Ferrari of the agent, then Mr. Knewit does not own
a Ferrari (the agent knows that nobody else could have sold one Ferrari to Mr.
Knewit).

In accordance with the knowledge of the agent, her epistemic state consists
of four worlds S0 = s, t, u, v. The valuation of the atomic propositions is given as
follows: P is true at t, u, v, Nogot is true at u, v, Knewit is true at v, t, reliable
is true at u, v and buy is true at t, v. So at the state s, Mr. Nogot is not reliable,
Mr. Nogot does not own a Ferrari, Mr. Knewit did not buy the Ferrari, Mr.
Knewit does not own a Ferrari, nobody in the room owns a Ferrari. At the state
t = s0, Mr. Nogot is not reliable, Mr. Nogot does not own a Ferrari, Mr. Knewit
bought the Ferrari, Mr. Knewit owns a Ferrari, at least one person in the room
owns a Ferrari. At the state u, Mr. Nogot is reliable, Mr. Nogot owns a Ferrari,
Mr. Knewit did not buy the Ferrari, Mr. Knewit does not own a Ferrari, at least
one person in the room owns a Ferrari. At the state v, Mr. Nogot is reliable,

5We assume that our agent knows that she does not own a Ferrari at that moment.
6It is not unusual to stop trusting and believing in people when one realize they are liars

while one continue to trust them as long as one has evidence that they are telling the truth.
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Mr. Nogot owns a Ferrari, Mr. Knewit bought the Ferrari, Mr. Knewit owns a
Ferrari, at least one person in the room owns a Ferrari. Formally we have:

– ∣∣ P ∣∣0= {t, u, v},

– ∣∣ Nogot ∣∣0= {u, v},

– ∣∣Knewit ∣∣0= {t, v},

– ∣∣ reliable ∣∣0= {u, v},

– ∣∣ buy ∣∣0= {t, v},

In the refined justification modelM0, there are two evidence sets:

E0 = {reliable, buy}

with:

– reliable = {u, v} = e1,

– buy = {t, v} = e2.

The evidence set e2 represents genuine evidence, i.e. the piece of evidence the
agent has, based on her memory: she remembers selling a Ferrari to Mr. Knewit.
The evidence set e1 represents a bias. By default, she assumes Mr. Nogot is reli-
able since she has no evidence to the contrary (and we assume the agent prefers
to trust people are not liars).

We have the family of bodies of evidence E0 = {∅,{e1},{e2},{e1, e2}}.

As pre-order ⪯0, we take the cardinality order, i.e. F ⪯0 G iff ∣∣ F ∣∣≤∣∣ G ∣∣. So
the refined justification modelM0 is a counting model.

From refined justification model to plausibility model We can easily
turn this refined justification model into a plausibility model:

1. s ≤E0 t iff Et ⪯0 Es iff ∣∣ Et ∣∣≤∣∣ Es ∣∣.

2. Et ∶= {e2}, Eu ∶= {e1} and Ev ∶= {e1, e2}

3. {e1} ⪯0 {e1, e2} so Eu ⪯0 Ev

4. {e2} ⪯0 {e1, e2} so Et ⪯0 Ev

5. {e1} ≡0 {e2} so Eu ≡0 Et

So we have Es ⪯0 Eu ≡0 Et ⪯0 Ev that is, v ≤E0 t ≡E0 u ≤E0 s.
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Plausibility model We represent the agent’s beliefs and knowledge via the
plausibility model described in Figure 5.8 consisting of four possible states (s, t, u, v)
where the double circled state indicates the real world and the arrows represent
the plausibility relation on states (we skip the reflexive and transitive arrows).

 

 

s: ¬reliable, ¬buy,

 ¬Nogot, ¬Knewit

t: ¬reliable, buy,

¬Nogot, Knewit

u: reliable, ¬buy,

Nogot, ¬Knewit

v: reliable, buy,

Nogot, Knewit

Figure 5.8: Initial plausibility model

The informal dialogue The dialogue starts with our agent claiming to know
that someone in the room owns a Ferrari:
Claimant: At least one person in the room owns a Ferrari.

B(P )

Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬P )

Claimant: I believe at least one person in the room owns a Ferrari because Mr.
Nogot is reliable (and he showed me the papers stating he owns a Ferrari).

{reliable} ∈ EM1 and B(reliable) and Breliable(P )

Ultra-critic: Mr. Nogot is not reliable, he lied, he does not own a Ferrari!

!¬reliable

Update The announcement of “¬reliable” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.9 and 5.10:

SoM2 ∶=M1∣(¬reliable) where EM2 = {{e2},{e3}} with:

– buy = {t} = e2

– ¬reliable = {s, t} = e3

Note that after the update, ¬reliable is true in all the remaining states
(S1∣(¬reliable) = ¬reliable), so ¬reliable is an evidence set.

We have EM2 = {∅,{e2},{e3},{e2, e3}}.
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t

e2

s

e3

Figure 5.9: Refined justification model updated with !¬reliable

 

 

s: ¬reliable, ¬buy,

 ¬Nogot, ¬Knewit

t: ¬reliable, buy,

¬Nogot, Knewit

Figure 5.10: Plausibility model updated with !¬reliable

The dialogue ended Then the dialogue ends with our agent claiming:
Claimant: I still believe at least one person in the room owns a Ferrari because I
remember Mr. Knewit bought mine.

{buy} ∈ EM2 and B(buy) and Bbuy(P )

Conclusion of the dialogue The Ultra-critic cannot object against this last
argument because it is actually true that Mr. Knewit bought the Ferrari and so
owns one. The Claimant provides a sound justification for P . The Claimant wins,
she defeasibly knows at least one person in the room owns a Ferrari because she
is justified to accept it in a way that is undefeated by the falsity of any statement
(even if her justification for P contains a false statement/belief).

The formal game Formally, we model the informal dialogue as a play in our
ultra-justification game G(M0, P ) as follows.
Claimant: At least one person in the room owns a Ferrari.

B(P )

This means that at round 0, F0 = ∅.
Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬P )
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This means that at round 1, the Ultra-critic chooses F ′
0 = F0 = ∅ such that F ′

0

does not support P : ⋂F ′
0 = ⋂∅ = S0 ⊈ P because of the state s (s ⊧ ¬P ).

Claimant: I believe at least one person in the room owns a Ferrari because Mr.
Nogot is reliable (and he showed me the papers stating he owns a Ferrari).

{reliable} ∈ EM1 and B(reliable) and Breliable(P )

This means that the Claimant chooses a new argument F1 = {reliable} inM1 ∶=
M0, which is an argument that supports P .

Ultra-critic: Mr. Nogot is not reliable, he lied, he does not own a Ferrari!

!¬reliable

This means that at round 2, the Ultra-critic challenges F1 as unsound and an-
nounces that t /∈ ⋂F1 which induces an update !(¬⋂F1) of the refined justification
model and the plausibility model.

Update The announcement of “¬reliable” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.9 and 5.10:

SoM2 ∶=M1∣(¬⋂F1) where EM2 = {{e2},{e3}} with:

– buy = {t} = e2

– ¬reliable = {s, t} = e3

Note that after the update, ¬reliable is true in all the remaining states
(S1∣(¬⋂F1) = ¬reliable), so ¬reliable is an evidence set.

We have EM2 = {∅,{e2},{e3},{e2, e3}}.

The game ended Then the game ends with our agent claiming:

Claimant: I still believe at least one person in the room owns a Ferrari because I
remember Mr. Knewit bought mine.

{buy} ∈ EM2 and B(buy) and Bbuy(P )

This means that the Claimant chooses a new argument F2 = {buy} inM2, which
is a sound justification for P .



5.2. An original game semantics for defeasible knowledge 119

Conclusion of the game The Ultra-critic cannot object against this last ar-
gument because it is actually true that Mr. Knewit bought the Ferrari and so
owns one. The Claimant provides a sound justification for P . The Claimant
wins this run of the game, she defeasibly knows at least one person in the room
owns a Ferrari because she is justified to accept it in a way that is undefeated
by the falsity of any statement (even if her justification for P contains a false
statement/belief).

Example 3: Grabit

The last example is divided into two parts.

First scenario First, we suppose an agent called Harry who sees a man he
knows very well, Tom Grabit, in the library. Harry can see him taking a book
and leaving the library without paying.

The atomic propositions in this example are see (Harry saw Tom stealing a
book), Tom (Tom stole the book) and Twin (there exists somebody different
from Tom who looks just like Tom, that we call “a twin of Tom”). We represent
the agent’s evidences via the refined justification modelM0 = (S0,E0,⪯0, ∥⋅∥0, s0)
described in Figure 5.11.

e1

e2

u

t
s

Figure 5.11: Initial refined justification model

Note that again, we do not consider “seeing” as a factual attitude but as being
fully introspective. So Harry irrevocably knows that he saw “Tom” stealing a
book by introspection.

In accordance with the knowledge of the agent, his epistemic state consists
of three worlds S0 = s, t, u. The valuation of the atomic propositions is given as
follows: see is true at s, t, u, Tom is true at s, u, Twin is true at s, t. So at the
state u = s0, Harry saw “Tom” stealing a book and in fact, Tom did steal the
book and moreover there does not exist “a twin of Tom”. At the state t, Harry
saw “Tom” stealing a book, but there exists “a twin of Tom” who actually stole
the book (Tom did not steal the book). At the state s, Harry saw “Tom” stealing
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a book and in fact Tom stole the book, although there exists “a twin of Tom”.
Formally we have:

– ∣∣ see ∣∣0= {s, t, u},

– ∣∣ Tom ∣∣0= {s, u},

– ∣∣ Twin ∣∣0= {s, t},
In the refined justification modelM0, there are two evidence sets:

E0 = {see,¬Twin}
with:

– see = {s, t, u} = e1,

– ¬Twin = {u} = e2,

The evidence set e1 represents genuine evidence, i.e. the piece of evidence the
agent has, based on his perception: his eyes. The evidence set e2 represents a
bias of the agent. By default, the agent assumes that there does not exist some-
body different from Tom who looks just like Tom since he has no evidence to the
contrary (he never met such a person).

Note that the evidence set e1 has the property that e1 = see = S0.

We have E0 = {∅,{e1},{e2},{e1, e2}}.

The pre-order ⪯0 on E0 is given by inclusion ⊆, i.e. F ⪯0 G iff F ⊆ G (so in
fact we get an evidence model).7

From refined justification model to plausibility model We can easily
turn this refined justification model into a plausibility model:

1. s ≤E0 t iff Et ⪯0 Es iff Et ⊆ Es
2. Es ∶= {e1}, Et ∶= {e1} and Eu ∶= {e1, e2}

3. {e1} ⪯0 {e1, e2} so Es ⪯0 Eu and Et ⪯0 Eu.

So we have Es ≡0 Et ⪯0 Eu that is, u ≡E0 t ≤E0 s.

Plausibility model We represent the agent’s beliefs and knowledge via the
plausibility model described in Figure 5.12 consisting of three possible states
(s, t, u) where the double circled state indicates the real world and the arrows
represent the plausibility relation on states (we skip the reflexive and transitive
arrows).

7Note that the cardinality order would lead to the same conclusions about the defeasible
knowledge of the agent.
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s: see, Tom, Twin t: see, ¬Tom, Twin u: see, Tom, ¬Twin

Figure 5.12: Initial plausibility model

The informal dialogue The dialogue starts with our agent claiming to know
that Tom stole the book.
Claimant: Tom stole the book.

B(Tom)
Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬Tom)
Claimant: I believe Tom stole the book because I saw somebody looking just like
Tom stealing a book.

{see} ∈ EM1 and B(see) and Bsee(Tom)
Ultra-critic: Maybe there exists “a twin of Tom”!
(Your evidence is consistent with the negation of “Tom”! You need to provide
further justification!)

¬K¬(see ∧ Twin ∧ ¬Tom)
Claimant: It is more reasonable for me to accept that Tom stole the book because
I saw somebody looking just like Tom stealing a book than to accept that there
exists “a twin of Tom”!

{see,¬Twin} ∈ EM2 and B(see ∧ ¬Twin) and Bsee∧¬Twin(Tom)

Conclusion of the dialogue The Ultra-critic cannot object against this last
argument because it is actually true that there does not exist “a twin of Tom”.
The Claimant provides a sound justification for Tom. The Claimant wins, she
defeasibly knows Tom stole a book from the library (even despite the remark of
the Ultra-critic about the possible existence of “a twin of Tom”).

The formal game Formally, we model the informal dialogue as a play in our
ultra-justification game G(M0, T om) as follows.
Claimant: Tom stole the book.

B(Tom)
This means that at round 0, F0 = ∅.
Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬Tom)
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This means that at round 1, the Ultra-critic chooses F ′
0 = F0 = ∅ such that F ′

0

does not support Tom: ⋂F ′
0 = ⋂∅ = S0 ⊈ Tom because of the state t (t ⊧ ¬Tom).

Claimant: I believe Tom stole the book because I saw somebody looking just like
Tom stealing a book.

{see} ∈ EM1 and B(see) and Bsee(Tom)
This means that the Claimant chooses a new argument F1 = {see} inM1 ∶=M0,
which is a soft argument in the sense of Definition 4.2.14 that weakly supports
Tom conditional on the default ¬Twin.
Ultra-critic: Maybe there exists “a twin of Tom”!
(Your evidence is consistent with the negation of “Tom”! You need to provide
further justification!)

¬K¬(see ∧ Twin ∧ ¬Tom)
This means that at round 2, the Ultra-critic chooses F ′

1 = F1 = {see} because
F ′

1 does not support Tom: ⋂F ′
1 = ⋂{see} ⊈ Tom because of the state t (t ⊧

see ∧ Twin ∧ ¬Tom).

Claimant: It is more reasonable for me to accept that Tom stole the book because
I saw somebody looking just like Tom stealing a book than to accept that there
exists “a twin of Tom”!

{see,¬Twin} ∈ EM2 and B(see ∧ ¬Twin) and Bsee∧¬Twin(Tom)

This means that the Claimant chooses a new argument F2 = {see,¬Twin} in
M2 ∶=M1, which is a sound argument that supports Tom.

Conclusion of the game The Ultra-critic cannot object against this last ar-
gument because it is actually true that there does not exist “a twin of Tom”. The
Claimant provides a sound justification for Tom. The Claimant wins this run of
the game, she defeasibly knows Tom stole a book from the library (even despite
the remark of the Ultra-critic about the possible existence of “a twin of Tom”).

Second scenario Suppose again that the agent Harry sees a man he knows
very well, Tom Grabit, in the library. Harry can see him taking a book and
leaving the library without paying. Suppose now that there is really a Twin of
Tom, even if it is actually Tom who stole the book.

The atomic propositions in this scenario are exactly the same as those in
the first scenario. The refined justification model M0 = (S0,E0,⪯0, ∥⋅∥0, s0) rep-
resenting the agent’s evidences in this second scenario is identical to the refined
justification model in the first scenario with one exception: the actual state s0 = s.

We represent the agent’s beliefs and knowledge via the plausibility model
induced from the refined justification model M0 = (S0,E0,⪯0, ∥⋅∥0, s0) described
in Figure 5.13.
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s: see, Tom, Twin t: see, ¬Tom, Twin u: see, Tom, ¬Twin

Figure 5.13: Initial plausibility model

The informal dialogue Now the dialogue starts and the Claimant claims to
know that Tom stole the book.
Claimant: Tom stole the book.

B(Tom)
Ultra-critic: Why do you think so? (Justify!)

¬K¬(¬Tom)
Claimant: I believe Tom stole the book because I saw somebody looking just like
Tom stealing a book.

{see} ∈ EM1 and B(see) and Bsee(Tom)
Ultra-critic: Maybe there exists a Twin of Tom!
(Your evidence is consistent with the negation of “Tom”! You need to provide
further justification!)

¬K¬(see ∧ Twin ∧ ¬Tom)
Claimant: It is more reasonable for me to accept that Tom stole the book because
I saw somebody looking just like Tom stealing a book than to accept that there
exists “a twin of Tom”!

{see,¬Twin} ∈ EM2 and B(see ∧ ¬Twin) and Bsee∧¬Twin(Tom)

Ultra-critic: There exists a Twin of Tom!

!Twin

Updates The announcement of “Twin” is taken as a public announcement,
which formally will change the refined justification model and the plausibility
model as described respectively in Figures 5.14 and 5.15:

So M3 ∶= M2∣(Twin) where EM3 = {see, Twin} with see = {s, t} = e1 and
Twin = {s, t} = e3.

Note that after the update, Twin is true in all the remaining states (S2∣(Twin) =
Twin), so Twin is an evidence set.

We have EM3 = {∅,{e1},{e3},{e1, e3}}.
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e1

t
s

e3

Figure 5.14: Refined justification model updated with !Twin

s: see, Tom, Twin t: see, ¬Tom, Twin

Figure 5.15: Plausibility model updated with !Twin

The dialogue ended Then the dialogue ends with our agent claiming:

Claimant: Given that there exists a Twin of Tom, I have no justification left to
believe Tom stole the book. So I give up: I no longer believe it!

Conclusion of the dialogue The agent loses because she cannot provide fur-
ther argument for Tom. She does not even believe Tom anymore. Then the
Claimant didn’t defeasibly “know” that Tom stole the book. In this case our
agent does not defeasibly know Tom since she based her belief on false evidence.
Sadly enough, her initial justified belief was in fact true: even if Tom has actually
a Twin, he did steal the book. The agent did not know: she only had a true
justified belief.

The formal game Formally, we model the informal dialogue as a play in our
ultra-justification game G(M0, T om) as follows.

Claimant: Tom stole the book.
B(Tom)

This means that at round 0, F0 = ∅.

Ultra-critic: Why do you think so? (Justify!)
¬K¬(¬Tom)
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This means that at round 1, the Ultra-critic chooses F ′
0 = F0 = ∅ such that F ′

0

does not support Tom: ⋂F ′
0 = ⋂∅ = S0 ⊈ Tom because of the state t (t ⊧ ¬Tom).

Claimant: I believe Tom stole the book because I saw somebody looking just like
Tom stealing a book.

{see} ∈ EM1 and B(see) and Bsee(Tom)
This means that the Claimant chooses a new argument F1 = {see} inM1 ∶=M0,
which is a soft argument in the sense of Definition 4.2.14 that weakly supports
Tom conditional on the default ¬Twin.
Ultra-critic: Maybe there exists a Twin of Tom!
(Your evidence is consistent with the negation of “Tom”! You need to provide
further justification!)

¬K¬(see ∧ Twin ∧ ¬Tom)
This means that at round 2, the Ultra-critic chooses F ′

1 = F1 = {see} because
F ′

1 does not support Tom: ⋂F ′
1 = ⋂{see} ⊈ Tom because of the state t (t ⊧

see ∧ Twin ∧ ¬Tom).

Claimant: It is more reasonable for me to accept that Tom stole the book because
I saw somebody looking just like Tom stealing a book than to accept that there
exists “a twin of Tom”!

{see,¬Twin} ∈ EM2 and B(see ∧ ¬Twin) and Bsee∧¬Twin(Tom)

This means that the Claimant chooses a new argument F2 = {see,¬Twin} in
M2 ∶=M1, which is an argument that supports Tom.

Ultra-critic: There exists a Twin of Tom!

!Twin

This means that at round 3, the Ultra-critic challenges F2 as unsound and an-
nounces that s /∈ ⋂F2 which induces an update !(¬⋂F2) of the refined justification
model and the plausibility model.

Update The announcement of “Twin” is taken as a public announcement, which
formally will change the refined justification model and the plausibility model as
described respectively in Figures 5.14 and 5.15:

So M3 ∶= M2∣(¬⋂F2) where EM3 = {see, Twin} with see = {s, t} = e1 and
Twin = {s, t} = e3.

Note that after the update, Twin is true in all the remaining states (S2∣(¬⋂F2) =
Twin), so Twin is an evidence set.

We have EM3 = {∅,{e1},{e3},{e1, e3}}.
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The game ended Then the game ends with our agent claiming:
Claimant: Given that there exists a Twin of Tom, I have no justification left to
believe Tom stole the book. So I give up: I no longer believe it!

Conclusion of the game The agent loses this round of the ultra-justification
game because she cannot provide further argument for Tom. She does not even
believe Tom anymore. Then the Claimant loses the game: she didn’t defeasibly
“know” that Tom stole the book. In this case our agent does not defeasibly know
Tom since she based her belief on false evidence. Sadly enough, her initial justified
belief was in fact true: even if Tom has actually a Twin, he did steal the book.
The agent did not know: she only had a true justified belief.

Conclusion
We provided a formalisation of Lehrer’s ultra-justification game allowing to de-
termine if an agent really (defeasibly) knows some given proposition or if she only
believes this proposition. We then proved that an agent defeasibly knows a given
proposition iff she continues to believe this proposition as long as she receives only
true information (pieces of evidence). We provided the rules for our game seman-
tics for defeasible knowledge stating that an agent defeasibly knows a proposition
iff she has a winning strategy in the corresponding formal ultra-justification game.

In the next part, we connect Soft Dynamic Epistemic Logic with other settings.
We start by investigating the relations between DEL and the belief revision setting
of Dynamic Doxastic Logic in Chapter 6. We show that DDL can internalize all
the recent DEL developments for belief revision.



Part III

Connecting frameworks for belief
revision: from Soft Dynamic
Epistemic Logic to dialogues
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Chapter 6
Dynamic Doxastic Logic from the

perspective of Dynamic Epistemic Logic

Aim In this chapter we study Segerberg’s “full DDL” (Dynamic Doxastic Logic)
from the new perspective of “soft DEL” (the belief-revision-friendly version of
Dynamic Epistemic Logic), as a modern semantic embodiment of the AGM
paradigm. One of our main goals is to show that the DDL approach is at least as
powerful as the DEL approach: it can internalize all the recent DEL developments
for belief revision.

Summary: In this chapter we re-evaluate Segerberg’s “full DDL” from the per-
spective of Dynamic Epistemic Logic (DEL), in its belief-revision-friendly incar-
nation. We first present an appropriately generalized and simplified version of
“full DDL”. Next, we argue that a correct version of “full DDL” must give up the
Success Postulate for dynamic revision. We construct AGM -friendly versions of
“full DDL”, corresponding to various revising/contracting operations considered
in the Belief Revision literature. The main points are :

– We provide a general presentation of a simplified version of “full DDL”. The
semantics is based on Segerberg’s hypertheories which gives a generaliza-
tion of Segerberg’s onion-based semantics. We further simplify Segerberg’s
setting by dropping all the topological assumptions as well as all the closure
assumptions on hypertheories.

– We claim that a correct version of “full DDL” must give up the Success
Postulate for dynamic revision.

– We deal with static revision by adopting the conditional belief logic CDL
and we develop three versions of DDL that internalize three of the revision
operations considered in the Belief Revision literature.

– We introduce and axiomatize three AGM -friendly versions of belief con-
traction and expansion in DDL.
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Background We introduce the background for the three main frameworks we
are dealing with in this chapter:

The first framework, Dynamic Doxastic Logic (DDL), has been introduced and
developed by Krister Segerberg in [74, 75, 76, 77, 78, 79, 73, 80]. As we briefly
mentioned in Chapter 2, the main idea of Segerberg was to enhance traditional
epistemic and doxastic logics with specific dynamic-modal operators for belief
revision, thus linking modal logic with Belief Revision Theory (BRT ). Looking
the other way around, Segerberg’s work provided BRT with a new syntax and
formal semantics. Traditionally, the work on belief revision [1] focuses on the way
in which a given theory (or belief base, consisting of sentences in a given object
language) gets revised, but it does not treat “belief revision” itself as an ingredient
in the object language under study (see Chapter 2 for detail). Segerberg’s work
opened up a new perspective by taking the very act of belief revision itself and
placing it on an equal footing with the doxastic attitudes such as “knowledge” and
“belief”. His dynamic-modal operators describe transitions in doxastic models
that model belief change. Using this setting Segerberg provides modal axioms
encoding the AGM postulates.

The second framework, Conditional Doxastic Logic (CDL), has been intro-
duced by Alexandru Baltag and Sonja Smets in [6]. For details we refer to Chap-
ter 2 where we explained that CDL extends modal logic with conditional doxastic
belief operators. It is important to note that the interpretation of Bϕψ is taken
to be “if the agent would learn ϕ, then she would believe ψ was the case before
the learning”. Conditional beliefs capture static, purely hypothetical, revision.

The last framework, Dynamic Epistemic Logic (DEL), extends modal logic
with dynamic operators to deal with the actual knowledge dynamics of an agent
[36, 35, 5, 29]. For details we refer to Chapter 2. Here we stress that DEL takes
epistemic models as basis and investigates how such models evolve under receipt
of new information. Recently a belief-revision-friendly version of Dynamic Epis-
temic Logic has been developed [6, 7, 8, 11, 3, 10]. This “soft DEL” considers
three different operations to model belief change: update, lexicographic upgrade
and conservative upgrade. Each operation changes the epistemic/doxactic mod-
els differently expressing different types of belief revision. In this setting some
Reduction/Recursion Laws are given to provide complete axiomatizations of the
dynamic logics of these three kinds of belief revision.

Recently Johan van Benthem showed in [12] that Segerberg’s Dynamic Dox-
astic Logic and the DEL tradition co-exist in the perspective of modal frame
correspondence. He provides a correspondence analysis of modal logics for be-
lief change, using recursion axioms as constraints on possible update operations.
We want to add a complement to these results showing how the DEL-style of
modelling and axiomatizing belief revision can be “internalized” in DDL.
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6.1 Dynamic Doxastic Logic revisited

We introduce the setting of Dynamic Doxastic Logic in Chapter 2. In this section,
we first present our own version of full DDL which is a generalized and simplified
version of original fullDDL. Note that in this chapter, we do not restrict ourselves
to finite models. Next, we go over a main philosophical issue concerning the
validity of the so-called Success Axiom in a dynamic setting. To address this, we
follow the DEL literature in distinguishing between “static” and “dynamic” belief
revision. Though it is often explained in syntactic terms (as referring to two
different kinds of behaviour under revision with higher-level doxastic sentences),
from a semantic point of view this distinction is in fact related to (though distinct
from) the traditional dichotomy between one-step revision and iterated revision
[23, 26, 62, 72].

6.1.1 General presentation

We present a generalized and simplified version of the “General Model Theory”
for DDL introduced by Segerberg in Section 3 of [76]. The semantics is based
on Segerberg’s hypertheories which are families of sets of states, called fallbacks.
In fact these hypertheories are generalizations of Segerberg’s onions which are
families of nested sets of states, called spheres in accordance to the Lewis-Grove
tradition.

As a formal language to describe these models, we use the slightly extended
syntax for DDL introduced in [80], having in addition to belief operators B and
dynamic modalities [α], operators K for what Leitgeb and Segerberg call “nonre-
visable belief” or “knowledge”. We call this “irrevocable knowledge” to distinguish
it from other “softer” notions of knowledge considered in the philosophical liter-
ature, namely defeasible knowledge1. To ensure that the K operator is factive
(as expected for knowledge), we make a slight change to the definition of valid-
ity, inspired from the Moss-Parikh semantics of Topo-logic2 [60, 61]: validity is
obtained by quantifying only over pairs (s,H) of ontic states and hypertheories
such that s ∈ ⋃H.

We further simplify Segerberg’s setting from [76], by dropping all the topo-
logical assumptions – Stone spaces, compactness assumptions –, as well as all the

1We refer to the introduction for more details about different notions of knowledge.
2Topo-logic frames (U,T , V ) consists of a universe (set of “states”) U , a family T ⊆ P(U)

of sets of states (called “opens”) and a valuation V for the atomic sentences of their language.
While the points s ∈ U represent possible ontic states, the opens V ∈ T represent possible
information states. When the agent’s information state is V , this means that the only thing
that she knows about the state of the world is that it belongs to V . Sentences are evaluated
at pairs (s, V ) of an ontic state s ∈ U and information state V ∈ T , with the restriction that
s ∈ V so that “knowledge” is factual. Indeed, these are information states, rather than doxastic
states.
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closure assumptions on hypertheories – e.g. Lewis’ famous Limit Assumption3

[52], or the assumption from [80] of closure under nonempty intersections.
The price for this generality is that the definition of belief is more complicated:

we adopt the definition of B introduced by van Benthem and Pacuit [16]. But
we show that, whenever hypertheories do satisfy closure under intersection, this
definition boils down to Segerberg’s notion of belief which is the same as Grove’s
definition: belief equals truth in all the states of the smallest sphere. Moreover,
we show that in the special case of onions, this definition amounts to a natural
generalization of Grove’s definition: belief equals truth in all the states of all the
spheres that are “small enough”, that was already proposed in the Belief Revision
literature (and which validates the same modal formulas as Grove’s standard
definition). Finally, in case of onions satisfying Lewis’ Limit assumption, this
definition boils down again to the standard Grove-Segerberg notion of belief.

Syntax The language of full DDL is defined as follows.

6.1.1. Definition. Assume as given any object language LDDL consisting of
well-formed formulas build up from the following ingredients: propositional letters
coming from a set Φ, Boolean connectives, a belief operator B, an irrevocable
knowledge operator K, a set A of action terms, as well as the dynamic modalities
[α] (“after action α”) of Propositional Dynamic Logic (one for each action term
α ∈ A). Any such language LDDL is called a DDL-language. The minimal language
of full DDL has only the above operators4.

Semantics We interpret LDDL in DDL models.

6.1.2. Definition. Let U be a set of states (a universe). A hypertheory in U
is a nonempty family H ⊆ P(U) of nonempty subsets of U , called fallbacks. An
onion (or sphere system) in U is a hypertheory O ⊆ P(U) that is nested, i.e.
linearly ordered by set-inclusion: X,Y ∈ O implies that either X ⊆ Y or Y ⊆ X.
The elements of an onion (its fallbacks) are sometimes called spheres.

We think of each s ∈ U as an ontic state: a possible description of all the
ontic (i.e. non-doxastic) facts of the world. We think of a hypertheory H as
representing the agent’s doxastic state. In particular, as we will see in the next
section, an onion O will represent a doxastic state that satisfies the AGM pos-
tulates (when these postulates are appropriately stated, as axioms about static
revision). Hypertheories represent the current belief state of an agent such that
fallbacks are theories that can be viewed as alternative belief sets from which the
agent can build a new belief state in cases where doxastic actions (contraction,
expansion or revision) happen.

3We provide the definition of Lewis’ Limit Assumption in Definition 6.1.9.
4Later we will add conditional belief operators to describe static revision.
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6.1.3. Definition. An onion O is standard (or well-founded) if there is no
infinite descending chain of spheres in O, i.e. there is no infinite sequence
X1 ⊃X2 ⊃X3 ⊃ . . ., with all Xi ∈ O.

6.1.4. Definition. Given a hypertheory H ⊆ P(U), a family F ⊆H of fallbacks
has the finite intersection property (f.i.p.) if every finite subfamily F ′ ⊆ F has a
non-empty intersection ⋂F ′ /= ∅. We say that a family F ⊆ H of fallbacks has
the maximal f.i.p. if F has the f.i.p. but no proper extension F ⊂ G ⊆H does.

Note that if O is an onion then O has itself the maximal f.i.p. and moreover
O is the only family F ⊆ O having the maximal f.i.p.

6.1.5. Definition. An A-doxology is a structure (U,D,R), where U is a uni-
verse, D is a set of hypertheories in U and R = {Rα}α is a set of binary relations
Rα ⊆D×D on D, labelled with names α ∈ A coming from a given set A of action
terms.

The elements Rα ∈ R are called doxastic actions, and R itself a repertoire.
Note that each Rα is a binary relation between hypertheories (or onions), not
between states. Intuitively, each Rα describes a specific type of change which
may affect the agent’s epistemic/doxastic state but which does not change the
ontic state.

6.1.6. Definition. A DDL model M = (U,D,R,V ) for any DDL language LDDL

(with propositional letters in Φ and action terms in A) consists of an A-doxology
(U,D,R) together with a valuation V , mapping every propositional letter p ∈ Φ
to a set V (p) ⊆ U of states.

6.1.7. Definition. An onion model is a DDL model (U,D,R,V ) in which D
consists only of onions.

6.1.8. Definition. An onion model (U,D,R,V ) is standard if all the onions
O ∈D are standard.

A weakening of the standardness condition, which has the disadvantage of
being language-dependent is the so-called Lewis Limit Assumption.

6.1.9. Definition. An onion model (U,D,R,V ), together with a semantics ∥.∥
is said to satisfy the Limit Assumption if, for every formula ϕ ∈ LDDL and every
onion O ∈D, we have that: ∥ϕ∥ ∩⋃O /= ∅ implies ⋂{X ∈ O ∶ ∥ϕ∥ ∩X /= ∅} ∈ O.

Standard onion models always satisfy the Limit Assumption for every lan-
guage LDDL, but the converse is false. In fact, standard onion models satisfy a
stronger condition, that we call the Strong Limit Assumption: for every set P ⊆ U
of states and every onion O ∈ D, P ∩⋃O /= ∅ implies ⋂{X ∈ O ∶ P ∩X /= ∅} ∈ O.
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This means that, in a standard model, every onion intersecting a given set P
contains a unique smallest sphere intersecting P .

DDL model can also satisfy the Limit Assumption.

6.1.10. Definition. A DDL model (U,D,R,V ), together with a semantics ∥.∥
is said to satisfy the Limit Assumption if, for every formula ϕ ∈ LDDL and every
hypertheory H ∈ D, we have that: ∥ϕ∥ ∩ ⋃H /= ∅ implies ⋂{X ∈ H ∶ ∥ϕ∥ ∩X /=
∅} ∈H.

6.1.11. Definition. A static DDL model is a DDL model with R = ∅.

A semantics for LDDL is a map that, for each DDL model M = (U,D,R,V )
and each hypertheory H ∈ D, assigns to each formula ϕ ∈ LDDL some set of
states ∥ϕ∥M,H ⊆ ⋃H, and assigns to each action term α ∈ A some doxastic action
∥α∥M,H ∈ R, in such a way that a number of conditions (to be given below) are
satisfied. Our restriction to ⋃H is motivated by the intuition that the states s /∈
⋃H represent “impossible states”: ontic states that are excluded by the doxastic
state H. In other words, ⋃H encompasses the agent’s “hard information” about
the world. As a consequence, the operator K (given by quantifying over ⋃H) is
factive (unlike in the usual setting of DDL): we can think of K as representing
the agent’s knowledge, in the absolute sense of infallible, absolutely certain, and
absolutely unrevisable knowledge. We use the notation

s,H ⊧M ϕ

such that s ∈ ⋃H whenever we have s ∈ ∥ϕ∥M,H , and we delete the subscript(s)
whenever it is possible to do this without ambiguity, writing e.g. ∥ϕ∥H and
s,H ⊧ ϕ when M is fixed, or even ∥ϕ∥ when both M and H are fixed.

6.1.12. Definition. A semantics for LDDL is required to satisfy the following
constraints:

s,H ⊧ p iff s ∈ V (p)
s,H ⊧ ¬ϕ iff s,H /⊧ ϕ
s,H ⊧ ϕ ∧ ψ iff (s,H ⊧ ϕ) ∧ (s,H ⊧ ψ)
s,H ⊧ Bϕ iff ∀F ⊆H such that F has the maximal f.i.p. ∃F ′ finite ⊆ F

∀t ∈ ⋂F ′ (t,H ⊧ ϕ)
s,H ⊧Kϕ iff ∀t ∈ ⋃H (t,H ⊧ ϕ)
s,H ⊧ [α]ϕ iff ∀H ′ ∈D ((H,H ′) ∈ ∥α∥H ∧ s ∈ ⋃H ′ Ô⇒ s,H ′ ⊧ ϕ)

Our definition of irrevocable knowledge K is essentially the same as in [80],
except that our modified definition of validity entails the factivity of K, making
it behave indeed like a notion of knowledge (in contrast to [80]). Our definition of
belief B is a generalization of the Grove-Segerberg definition, due to van Benthem
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and Pacuit [16]. But it can be simplified in onion models (where it boils down
to a widely used generalization of Grove’s), and it can be simplified further when
we have either the Limit Condition or closure under intersection (where it boils
down to the Grove-Segerberg definition):

6.1.13. Proposition. In DDL models in which the set D consists only of hy-
pertheories H that satisfy the Limit Assumption, ϕ is believed iff it is true in all
the “most plausible states” – i.e. the states of the smallest fallback:

s,H ⊧ Bϕ iff ∀t ∈⋂H (t,H ⊧ ϕ).

6.1.14. Proposition. In onion models, ϕ is believed iff ϕ is true in all the
states that are “plausible enough” – i.e. throughout all the spheres that are “small
enough”:

s,O ⊧ Bϕ iff ∃X ∈ O∀t ∈X (t,O ⊧ ϕ).

Moreover, in onion models satisfying the Limit Assumption, this boils down to
the usual Grove definition:

s,O ⊧ Bϕ iff ∀t ∈⋂O (t,O ⊧ ϕ).

And, as a consequence, this equivalence holds in standard onion models.

For a class C of DDL models, we write C ⊧ ϕ and we say that ϕ is valid on C, if
∥ϕ∥M,H = U for every model M = (U,D,R,V ) ∈ C and every H ∈ D; equivalently,
iff s,H ⊧M ϕ holds for all models M = (U,D,R,V ) ∈ C, all hypertheories H ∈ D
and all states s ∈ ⋃H.

Note We can easily establish correspondences between Segerberg’s onions and
hypertheories and plausibility models: both semantic styles are equivalent if con-
sidered at an appropriate level of generality. Indeed any fallback H in a DDL
model induces a corresponding relation of plausibility between states. We say
that state s is at least as plausible as state t according to H, and we write s ≤H t,
if s belongs to all the fallbacks in H that contain t:

s ≤H t iff ∀X ∈H(t ∈X ⇒ s ∈X).

Obviously, the plausibility relation ≤H is a preorder (reflexive and transitive
relation) on the set ⋃H. Moreover, if O is an onion, then ≤O is a total (i.e.
connected) preorder on ⋃O: for all s, t ∈ ⋃O, we have either s ≤O t or t ≤O s (or
both).
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6.1.2 Static versus Dynamic belief revision

Static revision To model one-step revision, it is enough to specify the result
of doxastic revision with P for every proposition P , either syntactically – as a set
of sentences – or semantically – as a set of states, the ones that are most plausible
after revising with P . Semantically, this can be uniformly done in three different
ways by giving:

– a selection function, in Stalnaker’s style;

– a family of spheres in Lewis-Grove style – i.e. an onion in the sense of
Segerberg (or a hypertheory in his generalized semantics);

– a plausibility relation.

As far as modal Dynamic Doxastic Logic can tell, these three semantic styles are
equivalent if considered at an appropriate level of generality.

Syntactically, one can capture static revision by specifying in AGM -style, a
set T ∗P of revised beliefs for each original set T of beliefs and each proposition P ;
or alternatively, one can encode static revision using conditional belief operators
BPQ, whose meaning is that “after revision with P , the agent will come to believe
that Q was the case before the revision”. The static character of this revision is
reflected in the fact that, after the revision, Q is still evaluated according to the
original state of affairs. In terms of Grove spheres, this is reflected in the fact
that the same onion is used for evaluating Q (though not the same sphere): BPQ
holds iff the smallest sphere in the current onion that intersects P is included in
Q.

Dynamic revision In contrast dynamic revision involves a change of onion, or
a change of plausibility relation, or a change of model. Semantically, it requires
a binary relation between onions (in DDL-style), or between states with different
plausibility (in PDL style), or between models (in DEL-style). Again, these three
styles of doing doxastic dynamics are equivalent if considered at an appropriate
level of generality. Syntactically, dynamic revision can be captured by the use of
dynamic modalities [∗P ]Q. More precisely, [∗P ]BQ captures the fact that Q is
believed to hold after revision with P . The dynamic character is reflected in the
fact that, after the revision, Q is evaluated according to the new state of affairs.
In terms of Grove spheres, this is reflected in the fact that BQ is evaluated using
the new onion to which the old onion is related by the dynamic binary relation
R∗P .

Dynamic operators and reversed dynamic operators The static character
of conditional belief operators BPQ can be made more explicit by expressing
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them in terms of dynamic operators [∗ϕ]ψ and the reversed dynamic operators
⟨∗−1ϕ⟩ψ. While in the Segerberg’s onion semantics, dynamic operators [∗ϕ]ψ
are the universal (Box) modalities for some binary revision relation R∗ϕ between
onions, the reversed dynamic operators ⟨∗−1ϕ⟩ψ are the existential (Diamond)
modalities for the converse relation (R∗ϕ)−1 (going backwards in time from the
revised doxastic state to the initial, unrevised doxastic state). Then we have the
following equivalence:

Bϕψ⇔ [∗ϕ]B⟨∗−1ϕ⟩ψ.

This equivalence fully captures our above explanation of static revision Bϕψ, as
reflecting the revised beliefs after a revision with ϕ about a sentence ψ’s truth
value before the revision.

Belief revision plans Nevertheless, we choose not to reduce static revision to
dynamic revision (and its converse). Instead, we take static revision as basic,
in the shape of primitive conditional belief operators Bϕψ interpreted as belief-
revision plans: “if in the future I ever would have to revise with ϕ, I would
then come to believe that ψ was true now”. And we follow the DEL tradition
by recursively reducing any instance of dynamic revision to the static revision
statements (via so-called Reduction laws, or Recursion laws).

We choose this option because we think that, from a semantic point of view,
static belief revision is a simpler concept than the dynamic one. Indeed, recall
that to specify static revision one only needs to give one onion (together with a
specific way to move between its spheres). While dynamic belief revision is given
by a specific type of onion change – i.e. a specific way of moving between onions
namely, a relation between onions. So in fact, dynamic belief revision does not
involve only a simple revision of beliefs, but rather a revision of static belief revi-
sion plans. Indeed, to syntactically describe in full a given type of dynamic belief
revision, we do not need only statements of the form [∗P ]BQ (describing dy-
namic revision of beliefs), but rather sentences of the form [∗P ]BRQ (describing
dynamic revision of static belief-revision plans).

Luckily, this distinction does not need to be iterated: since (to use van Ben-
them’s expression) static belief revision BRQ pre-encodes dynamic belief revision
[∗R]BQ, it is enough to know the behaviour [∗P ]BRQ of static revision plans
under dynamic revision in order to be able to calculate the result of iterated
dynamic revision [∗P ][∗R]BQ. More generally, for each specific type of dox-
astic dynamic revision ∗, the statement [∗P ]Q can be recursively reduced to a
statement involving only static revision operators BRQ: these are the well-known
Reduction (or Recursion) Laws, from Dynamic Epistemic Logic. Thus, dynamic
revision can be straightforwardly iterated by its very semantic modelling while
static belief revision is just a one-step revision of (simple) beliefs.
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Static versus Dynamic revision The distinction of static versus dynamic
revision is not the same as the distinction between one-step and iterated revision.
The distinction is that dynamic revision fully “keeps up” with the doxastic change,
while static revision looks back at the old doxastic state from the perspective
of the new one. Indeed dynamic revision with higher-level doxastic sentences
behaves differently than static revision.

Consider a Moore sentence5 of the form ϕ ∶= p∧¬Bp [59, 28]. An introspective
agent will obviously not come to believe ϕ after she learns ϕ. Indeed, believing ϕ
would amount to a lack of introspection since it would mean the agent believes
both p and the fact that she doesn’t believe p. So, after learning ϕ, an introspec-
tive agent will come to believe p, but not ϕ itself. This is correctly reflected by
dynamic revision: as we will see, for any reasonable dynamic interpretation of the
revision operation ∗ as a binary relation on doxastic states (onions), the formula
[∗ϕ]Bϕ is false for any Moore sentence ϕ. Indeed, even if ϕ was true in the old
doxastic state, after revision with ϕ the sentence Bϕ is evaluated according to the
new doxastic state, in which ϕ is false, and known to be false, hence dis-believed.
In contrast, static revision with any sentence ϕ will always produce belief in that
sentence, since after static revision, the sentence is still evaluated according to
the original doxastic state: this is reflected by the conditional-belief validity Bϕϕ,
which is a version of the AGM Success Postulate ϕ ∈ T ∗ ϕ.

This distinction is an important one, that DDL needs to learn from DEL, in
order to deal correctly with higher-level doxastic sentences. Ignoring this distinc-
tion leads to the failure of the Success Postulate in the papers of Lindstrom and
Rabinowicz [54, 53] on DDL for introspective agents, as well as in Segerberg’s pa-
per [78]. Namely, these authors assume (mistakenly, in our view) that a dynamic
version of the Success postulate (in the form of the axiom [∗ϕ]Bϕ) is desirable, or
even tenable, in full DDL (i.e. when ϕ is itself a doxastic sentence). As we argue
below (and as was already argued before in the DEL literature), this assumption
is wrong.

6.1.3 Full DDL and the Success Postulate

Lindstrom and Rabinowicz’s Semantics Lindstrom and Rabinowicz pro-
pose two solutions to the Moore paradox. We should stress that the failure of
the Success Postulate affects only their first solution (in the first part of their
paper [54]). There, they define a semantics for revision, which together with
their standard PDL-like semantics for dynamic modalities, can be shown to im-
mediately lead to a semantic failure of the Success Postulate for any (positively)
introspective agent.

5Initially the Moore paradox is formulated in terms of knowledge. But it also works when
formulated in terms of belief.
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They represent propositions by sets of possible worlds in some space U . They
define a topology T over U in which the closed sets are the arbitrary intersections
of propositions. T is determined by the family C of all closed sets and consists
of all the open sets (the subsets of U that are complements of the sets in C).
They impose the compactness condition on the topology: any family of closed
sets with an empty intersection includes a finite subfamily that also has an empty
intersection. The propositions are represented by the clopen sets (the sets that
are both closed and open).

They define a model M to be a structure < U,Prop,w, d, b,R,V >, where

– U is the set of all possible worlds also called total states

– Prop is a Boolean set-algebra with domain U and is the set of propositions

– w is a function assigning to each total state x ∈ U a world state w(x)

– d is a function assigning to each total state x ∈ U a doxastic state d(x) of
the agent

– b is a function assigning to each total state x ∈ U the set of states that
are compatible with what is believed in x such that if d(x) = d(y) then
b(x) = b(y)

– R is a function that for every doxastic action term τ yields an accessibility
relation Rτ ⊆ U ×U

– V is a valuation.

In a Lindstrom-Rabinowicz model, formulas are evaluated at total states x,
each coming with an ontic state w(x) and a doxastic state d(x). In their turn,
doxastic states d(x) are Segerberg onions (or more generally hypertheories): these
are families of spheres (i.e. of closed sets of total states). If we put b(x) ∶= ⋂d(x)
for the “smallest sphere” of the onion d(x), then belief is defined as usually in
Grove models: x ⊧ Bϕ iff b(x) ⊆ ∥ϕ∥.

Take now any Lindstrom-Rabinowicz model M in which the following two
conditions are satisfied: (a) the agent is positively introspective with respect to
some specific fact p (at all the states of the model), and (b) there exists some total
state x in which the agent doesn’t believe p and she doesn’t believe ¬p. It seems
clear that, no matter what additional restrictions one might want to impose on
Lindstrom-Rabinowicz models, situations satisfying (a) and (b) should still be
allowed6. So, even if we add further conditions, a model M of the above kind

6Even if one doesn’t accept Positive Introspection as a general axiom, one certainly shouldn’t
exclude situations in which the agent is introspective, at least with respect to some particular
fact p.
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should still be in the intended class of models. As a consequence of (b), the
smallest sphere b(x) ∶= ⋂d(x) (at total state x) contains both p and ¬p worlds.

In this situation, the Moore sentence ϕ ∶= p ∧ ¬Bp is semantically consistent
with the agent’s (semantic) beliefs. Indeed, ϕ is true at all the p-worlds belonging
to the smallest sphere: b(x) ∩ ∥ϕ∥ ⊆ ∥p∥. Hence, this smallest sphere b(x) has a
non-empty intersection b(x)∩ ∥ϕ∥ = b(x)∩ ∥p∥ /= ∅ with the extension ∥ϕ∥ of ϕ in
this model.

The Lindstrom-Rabinowicz semantic conditions, or more precisely their pos-
tulates on semantic contraction and their Levi-style definition of revision7, ensure
that in this situation a revision with ϕ is the same as an expansion with ϕ (as
is also prescribed by the AGM theory): so, the total state y obtained after revi-
sion (i.e. such that xR∗ϕy) is the same as the state obtained by expansion, i.e.
we have xR+ϕy. But unlike revision (or contraction), the expansion operation is
completely determined by the AGM axioms, which are accepted by Lindstrom
and Rabinowicz, who in fact explicitly assume that the expanded state y is the
unique total state satisfying the conditions w(y) = w(x) (stability of ontic state)
and d(y) = d(x)+∥ϕ∥ =∶ d(x)∪{X∩∥ϕ∥ ∶X ∈ d(x)}. This means that the smallest
sphere of the new onion d(y) must be b(y) = ⋂d(y) = ⋂d(x) ∩ ∥ϕ∥ = b(x) ∩ ∥ϕ∥ =
b(x) ∩ ∥p∥ ⊆ ∥p∥. As a consequence, in the new total state y, the agent believes
p: y ⊧ Bp. Since Positive Introspection with respect to p holds in this model, we
also have y ⊧ BBp.

If the Success Postulate would also hold, in its dynamic form x ⊧ [∗ϕ]Bϕ,
then by the standard PDL semantics for dynamic operators (accepted by Lind-
strom and Rabinowicz in this part of their paper), we would have y ⊧ Bϕ. Using
the normality of the operator B (which is another immediate consequence of the
Lindstrom-Rabinowicz semantic definition of belief) and the fact that ϕ ∶= p∧¬Bp,
it follows that y ⊧ B¬Bp. So we have that y ⊧ (BBp∧B¬Bp), and by normality
again, we conclude that y ⊧ B(p ∧ ¬Bp), which by the semantic definition of B,
entails that b(y) ⊆ ∥Bp ∧ ¬Bp∥ = ∅. But this contradicts the above-mentioned
fact that b(y) = ⋂d(y) = ⋂d(x) ∩ ∥ϕ∥ = b(x) ∩ ∥ϕ∥ = b(x) ∩ ∥p∥ /= ∅.

This contradiction is obtained only by using the Lindstrom-Rabinowicz seman-
tics for belief and revision, the Success Postulate, and the natural and innocuous
assumptions (a) and (b) (i.e. that there occasionally may exist some agent who
is introspective with respect to some fact p, while the fact p itself is currently
neither believed nor disbelieved by the agent). Since the title of one of the papers
presenting their setting is Belief Change for Introspective Agents [53], it seems to
us that Lindstrom and Rabinowicz do not aim to give up even the mere possibility

7We recall that Levi defines the operation of revision as a composed operation since he
considers revision as an operation of contraction followed by an operation of expansion : K ∗p =
(K − ¬p) + p [49] also called Levi identity (see Chapter 2).
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of Positive Introspection (with respect to even just one factual statement). So it
follows that they must give up the Success Postulate.

Lindstrom and Rabinowicz’s Solution It is true that, in the second part
of their paper [54], Lindstrom and Rabinowicz propose a second solution to the
Moore paradox, their so-called bidimensional semantics, which is in fact very
close to the DEL solution. Indeed, their rendering in English of their proposal is
essentially the same as our solution: they point out that the Success Postulate
makes sense for doxastic sentences ϕ only if it is interpreted in terms of the revised
beliefs about ϕ’s truth value before the revision. However, they formally package
this solution in a different way (different from DEL), in order to maintain the
appearance at a purely syntactic level, that the Success Postulate is maintained.
Namely, they do this by adopting a bidimensional semantics in terms of pairs
of states (x, y), in order to refer to both doxastic states (before and after the
revision), and they radically change the PDL semantics of dynamic operators to
a non-standard one: roughly speaking, their new semantics amounts to evaluating
any doxastic expression Bψ that comes in the scope of a dynamic operator [∗ϕ] as
capturing the revised beliefs (after revision with ϕ) about ψ’s truth value before
the revision.

We fully agree with the conceptual analysis underlying the second solution of
Lindstrom and Rabinowicz, but we disagree with their non-standard modification
of the semantics of dynamic operators. We think dynamic modalities should be
left to express what they always did: a one-way move in time, from the state
before the (revision) action to the state after the action. Instead of twisting
the meaning of dynamic operators, we think one should simply recognize that
the Success Postulate does not and should not hold for dynamic revision with
doxastic sentences.

Segerberg’s Solution In most of his papers on DDL, Segerberg himself is cau-
tious not to fall into the above mentioned conceptual mistake, by almost always
limiting himself to basic DDL in which no revision with doxastic sentences is
allowed. However, in [78] he proposes an axiomatic system for full DDL. Un-
fortunately, this converts a conceptual mistake into a logical error: the proposed
system is not sound with respect to the proposed semantics. The reason is that
the proposed Success Axiom [∗ϕ]Bϕ is not a validity in this semantics.

The semantic setting in [78] differs slightly from the version of DDL pre-
sented in our paper [4] since we follow [76, 80], in that it is actually closer to the
Lindstrom-Rabinowicz setting: formulas are evaluated at states (called points) –
not at pairs of a state and an onion – and so the dynamics is given via binary
relations between states (similarly to the standard PDL semantics), rather than
via relations between onions. The resulting relational frame is called a revision
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space. However, in this setting (from [78]), each state is assigned an onion, via
an “onion determiner”, which paired with a revision space gives an “onion frame”.

Completeness for an axiomatic system that includes the dynamic version of
the Success Axiom is claimed with respect to the class of “AGM onion frames”
– i.e. onion frames satisfying some additional AGM -like semantic conditions.
Introspection is not assumed by Segerberg in this setting, neither as a semantic
condition nor as an axiomatic one. But it is easy to see that (Positive) Intro-
spection is consistent with this setting: there exist AGM onion frames that are
positively introspective. More precisely, the above counterexample (an introspec-
tive onion model in which neither p nor ¬p are believed) can be easily repackaged
as an AGM onion model in the sense of [78]. The dynamic version of the Success
Axiom, when instantiated to the Moore sentence p∧¬Bp, fails in this model. So
this axiom is simply not sound.8

Dropping Success Postulate The lesson is that in DDL (as in DEL) we can
really make sense of dynamic revision with doxastic sentences by an introspective
agent only if we drop the unrestricted, dynamic version of the Success Postulate.
A weakened version of this postulate can be retained either by (a) restricting it to
dynamic revision with simple, Boolean, non-doxastic sentences (as in the AGM
literature, as well as in many of Segerberg’s papers), or by (b) interpreting it in
terms of static revision – i.e. as a conditional-belief statement Bϕϕ.

6.2 Dynamic Doxastic Logic and Conditional Dox-
astic Logic/Dynamic Epistemic Logic

In this section we want to show that the DDL approach is at least as powerful as
the DEL approach since it can internalize all the recent DEL developments. We
first provide a complete axiomatization of static revision using the conditional
belief logic (CDL) and then we develop three versions of DDL that internalize
three of the revision operations considered in the Belief Revision literature.

6.2.1 Complete axiomatization of static revision: the logic
CDL

To capture static revision, we follow the DEL tradition by borrowing from condi-
tional logic a conditional belief operator Bϕψ [6]. So we add a conditional belief
operator Bϕψ in our DDL-language (see Definition 6.1.1). Our semantic clauses

8While soundness of the given axiomatic system is not explicitly claimed in [78], its com-
pleteness is claimed. But from a conceptual point of view, a completeness result (with respect
to a class of frames) is of course of no use if the axioms are not sound (with respect to that
same class of frames).
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can be naturally extended to this enlarged language.

Notation But first, following Segerberg [76], we introduce the notation

H ⩀ P ∶= {X ∈H ∶X ∩ P /= ∅}

for all hypertheories H ∈D and sets P ⊆ U of states.
Moreover we generalize to any families F ⊆H of fallbacks of a hypertheory H

F ⩀ P ∶= {X ∈ F ∶X ∩ P /= ∅}.

6.2.1. Definition. The relativization of a family F ⊆ H of fallbacks (of a hy-
pertheory H) to a set P ⊆ U of states is the family

F P ∶= {X ∩ P ∶X ∈ F ⩀ P} = {P ∩X ∶X ∈ F,P ∩X /= ∅}.

Of course, this operation can be applied in particular to an hypertheory H or
onion O, producing a relativized hypertheory HP or relativized onion OP .

6.2.2. Definition. A family F ⊆H of fallbacks has the finite intersection prop-
erty relative to P (P -f.i.p.) if every finite subfamily (of its relativization to P )
F ′ ⊆ F P has non-empty intersection ⋂F ′ /= ∅. We say that a family F ⊆ H of
fallbacks has the maximal P -f.i.p. if F has the P -f.i.p. but no proper extension
F ⊂ G ⊆H has the P -f.i.p.

Observe that, if O is an onion such that P ∩ ⋃O /= ∅, then O has itself the
maximal P -f.i.p.; and moreover O is the only family F ⊆ O having the maximal
P -f.i.p.

When P = ∥ϕ∥H for some formula ϕ, we write “maximal ϕ-f.i.p.” for “maximal
∥ϕ∥H-f.i.p.” and so on.

Semantic clause for conditional belief Now we define conditional belief by
putting:

s,H ⊧ Bθϕ iff ∀F ⊆H such that F has the maximal θ-f.i.p. ∃F ′ finite ⊆ F ∥θ∥H

∀t ∈⋂F ′ (t,H ⊧ ϕ)
6.2.3. Proposition. In onion models, ϕ is believed conditional on θ iff ϕ is true
in all the plausible enough states satisfying θ:

s,O ⊧ Bθϕ iff ∃X ∈ O∥θ∥O ∀t ∈X (t,O ⊧ ϕ).

Moreover, in onion models satisfying the Limit Condition, this boils down to the
usual Grove semantics for static revision:

s,O ⊧ Bθϕ iff ∀t ∈⋂O∥θ∥O (t,O ⊧ ϕ).



144 Chapter 6. DDL from the perspective of DEL

We provide a detailed presentation of Conditional Doxastic Logic in Chapter 2.

6.2.4. Definition. The language of Conditional Doxastic Logic LCDL is the
smallest set of formulas containing the atomic sentences p ∈ Φ, the tautological
formula ⊺ and is closed under conditional belief operators Bθϕ. It can be consid-
ered as a variant of the DDL-language, in which there are no dynamic modalities,
while B and K are defined as abbreviations by putting

Bϕ ∶= B⊺ϕ,

Kϕ =∶ B¬ϕ�
(where � ∶= ¬⊺).

These abbreviations are semantically equivalent to the belief and knowledge op-
erators, as defined in the previous section.

6.2.5. Theorem. The following proof system CDL for Conditional Doxastic Logic
is sound and complete with respect to the class of all onion models, the class of
standard onion models, and the class of finite onion models:

Necessitation Rule: From ⊢ ϕ infer ⊢ Bψϕ
Normality: ⊢ Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
Truthfulness of Knowledge: ⊢Kϕ→ ϕ
Persistence of Knowledge: ⊢Kϕ→ Bψϕ
Full Introspection: ⊢ Bψϕ→KBψϕ

⊢ ¬Bψϕ→K¬Bψϕ
Hypotheses are (hypothetically) accepted: ⊢ Bϕϕ
Superexpansion: ⊢ Bϕ∧ψθ → Bϕ(ψ → θ)
Subexpansion (=Rational Monotonicity): ⊢ (¬Bϕ¬ψ ∧Bϕ(ψ → θ))→ Bϕ∧ψθ

(where in all the above axioms, K is just the abbreviation Kϕ ∶= B¬ϕ�).

Figure 6.1: Proof system CDL

6.2.6. Fact. In [6] Baltag and Smets show that the proof system CDL is sound
and complete with respect to their conditional doxastic models (CDM ) and prove
this setting to be equivalent to an “epistemic” version of AGM theory. In the
epistemic version of AGM theory, the Triviality Postulate (T ∗ ϕ = � iff ⊢ ¬ϕ)
is replaced with its epistemic version: T ∗ ϕ = � iff T ⊢ K¬ϕ. Indeed this is
unavoidable in the presence of any irrevocable knowledge operator K: revising
with a sentence whose negation is known should lead to a contradiction.

As a consequence, onion models satisfy all the postulates of the epistemic
version of AGM .
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6.2.7. Corollary. If we take the initial AGM theory T to be the set T = {ψ ∶
s,O ⊧M Bψ} of all beliefs held in a given ontic state s and a given onion O of
an onion model M , and interpret the statically-revised theory T ∗ ϕ as the set
T ∗ ϕ = {ψ ∶ s,O ⊧ Bϕψ} of all conditional beliefs held conditional on ϕ in the
same state s and same onion O of the same model M , then all the postulates of
the epistemic AGM theory are satisfied.

In contrast, static revision in general DDL models does not satisfy the epis-
temic AGM postulates since the Subexpansion principle fails in general DDL
models. In conclusion, general DDL does not support an AGM -type theory of
belief revision, but onion models are the natural AGM -friendly version of DDL.

6.2.2 Dynamic revision in DDL: internalizing doxastic up-
grades

In DEL, epistemic/doxastic models are taken as basis and evolve under new in-
formation. One actually defines in a constructive way the new epistemic/doxastic
model after a given doxastic action. This constructive approach can be internal-
ized in DDL models: we will use such a constructive DDL approach to belief
revision. We give constructive definitions of binary relations between onions,
that internalize three different revision operations considered in the literature.
Then we adopt from DEL the method of using Reduction/Recursion laws to give
complete axiomatizations of the dynamic logics of these three kinds of revision.
Indeed, our laws are identical to the ones considered in the DEL literature: this
is a concrete example of how the DEL-style of modelling and axiomatizing belief
revision can be “internalized” in DDL.

Different revision operations One can think of many ways to change the
beliefs of an agent according to the information she receives. We provide a com-
plete description of three of them in Chapter 2 and define the corresponding DEL
operations of: update !ϕ, lexicographic upgrade ⇑ ϕ and conservative upgrade
↑ ϕ.

Internalization doxastic upgrades Dynamic Epistemic Logic DEL (in its
single-agent version) for the above-mentioned three types of upgrades can now be
obtained as a special case of generalized DDL.

6.2.8. Definition. We reuse the relativized onion notation OP ∶= {P ∩X ∶ X ∈
O,P ∩X /= ∅} introduced in Definition 6.2.1, to define binary relations R!P (for
update), R⇑P (for lexicographic upgrade) and R↑P (for conservative upgrade) be-
tween onions O ∈ D of some onion model (U,D,R) and sets of sets of states
O′ ⊆ P(U), as follows:

(O,O′) ∈ R!P iff O′ = OP /= ∅
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(O,O′) ∈ R⇑P iff O′ = OP ∪ {X ∪⋃OP ∶X ∈ O}

(O,O′) ∈ R↑P iff O′ = {⋂OP ∶⋂OP /= ∅} ∪ {X ∪⋂OP ∶X ∈ O}

Examples We provide three examples in Figures 6.3, 6.4, 6.5 one for each
revision operation. The pictures drawn are following Hans Rott’s presentation
[72]. The spheres of the initial sphere system are drawn as usual, as nested
circles. The dots represent the states. The numbers represent the spheres of the
new sphere system after the revision. Thus all regions labelled with 1 form the
first sphere of the new sphere system, the regions labelled with 2 form the second
sphere and so on. Finally, the regions labelled with ω contain the states that are
outside the union of all the spheres of the sphere system that is, the impossible
states9.

As an example of a belief revision scenario we introduce the following story.
Consider an agent and a dice. Someone throws the dice such that the agent
cannot see the upper face. We have 6 possible worlds in our sphere system: i

where 1 is the upper face, ii where 2 is the upper face and so on. Assume that
the agent initially believes that the upper face is 3 while in reality (unknown to
our agent) the upper face is 4. Besides, the agent considers that it is more likely
that the upper face is 5 than 1, and that it is more likely that the upper face
is 1 than 6 while she considers that it is equally likely that the upper face is 1
or 2, and that it is equally likely that it is 4 or 6. Then according to the agent:
3 < 5 < 1 ≡ 2 < 6 ≡ 4 (3 < 5 is read as it is more likely that the upper face is 3 than
5 and 1 ≡ 2 is read as it is equally likely that the upper face is 1 or 2). In other
words, she considers iii more plausible than v, v more plausible than both i and
ii, and finally i and ii more plausible than both iv and vi. We represent the
corresponding sphere system in Figure 6.2. The formula ¬ϕ means “the number
on the upper face is even”.

In Figure 6.3 we consider an example of an update scenario. Indeed we con-
sider the case where the agent receives a piece of hard information (coming from
an infallible source) saying that the number on the upper face is even. So accord-
ing to our definition for update, the agent will believe that the upper face is 2.
Indeed, the agent considers ii to be more plausible after the update.

In Figure 6.4 we consider an example of a lexicographic upgrade scenario.
Indeed we consider the case where the agent receives a piece of soft information
(coming from a fallible but highly trustworthy source) saying that the number on
the upper face is even. So according to our definition for lexicographic upgrade,

9Note that from Rott’s perspective, these are subjective impossible states. In other words
theses states are the least plausible worlds in the sphere system such that the actual word can
be in ω. We adopt a different perspective since in our modelling s ∈ ∪H. Our impossible states
in the regions labelled with ω are ontic states excluded by the doxastic state H.
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Figure 6.2: Initial sphere system

the agent will believe that the upper face is 2. Indeed, the agent considers ii

to be more plausible after the lexicographic upgrade. If the agent still considers
that it is more likely that the upper face is 3 rather than 5, and that it is more
likely that the upper face is 5 rather than 1; she now also considers that both 4
and 6 are more likely than 3. According to the agent: 2 < 6 ≡ 4 < 3 < 5 < 1. In
other words, she considers iimore plausible than both iv and vi, iv and vimore
plausible than iii, iii more plausible than v and finally v more plausible than i.

In Figure 6.5 we consider an example of a conservative upgrade scenario. In-
deed we consider the case where the agent receives a piece of soft information
(coming from a fallible and weakly trustworthy source) saying that the number
on the upper face is even (¬ϕ). So according to our definition for conservative up-
grade, the agent will believe that the upper face is 2. Indeed, the agent considers
ii to be more plausible after the conservative upgrade. If the agent still considers
that it is more likely that the upper face is 3 rather than 5, more likely that the
upper face is 5 rather than 1, and more likely that the upper face is 1 rather than
6 while she still considers that it is equally likely that the upper face is 4 or 6.
According to the agent: 2 < 3 < 5 < 1 < 6 ≡ 4. In other words, she considers ii
more plausible than iii, iii more plausible than v, v more plausible than i, and
finally i more plausible than both iv and vi.

6.2.9. Definition. We define a DEL onion model to be a standard onion model
M = (U,D,R) such that

R = {R!P ∶ P ⊆ U} ∪ {R⇑P ∶ P ⊆ U} ∪ {R↑P ∶ P ⊆ U}
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Figure 6.3: Example of an update !¬ϕ

and such that D is closed under all the relations in R.

Semantic clauses The semantics is obtained by defining the interpretation
maps ∥ϕ∥ and ∥α∥ by double recursion: the static propositional clauses are as in
CDL, the semantics of dynamic modalities is as in the generalized DDL, while
the clauses for ∥α∥ are given by

∥!ϕ∥ = R!∥ϕ∥

∥ ⇑ ϕ∥ = R⇑∥ϕ∥

∥ ↑ ϕ∥ = R↑∥ϕ∥

6.2.10. Definition. The language of this version of DEL is obtained by adding
to CDL dynamic modalities for all the above types of upgrades.

6.2.11. Theorem. A sound and complete proof system for DEL onion models
can be obtained by adding to the above proof system of CDL the van Benthem Re-
duction/Recursion laws [10]. We give here only the reduction laws for conditional
belief:

[!ϕ]Bψθ ⇐⇒ ϕ→ Bϕ∧[!ϕ]ψ([!ϕ]θ),
[⇑ϕ]Bψθ ⇐⇒ Bϕ∧[⇑ϕ]ψ[⇑ϕ]θ ∧ (Kϕ[⇑ϕ]¬ψ → B[⇑ϕ]ψ[⇑ ϕ]θ) ,

[↑ϕ]Bψθ ⇐⇒ Bϕ([↑ϕ]ψ → [↑ ϕ]θ) ∧ (Bϕ[↑ ϕ]¬ψ → B[↑ϕ]ψ[↑ ϕ]θ) ,
where we used the abbreviation Kϕψ ∶=K(ϕ→ ψ).
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Figure 6.4: Example of a lexicographic upgrade ⇑ ¬ϕ

Strongest Postcondition Modalities The standard dynamic modalities [α]ϕ
are known in Computer Science as weakest preconditions. Indeed, they capture
the weakest condition that can be imposed on an input information state (s,H)
to ensure that, after performing action α in that state, ϕ will become true in
the output-state. The dual modalities (in the sense of reversed modality) are the
strongest postcondition modalities ⟨α−1⟩ϕ, capturing the weakest condition that
is ensured to hold in an output-state after performing action α on an input state
satisfying ϕ.

While standard DEL cannot represent strongest postconditions10, DDL mod-
els contain enough information to define them, as existential (Diamond) modali-
ties for the converse relations R−1

α : equivalently, just put

s,H ⊧ ⟨α−1⟩ϕ iff ∃H ′ ((H ′,H) ∈ ∥α∥H ∧ s,H ′ ⊧ ϕ)

It is obvious that these operators are the reversed dynamic modalities, and
that the same holds for their corresponding de Morgan duals: i.e. we have the
validities

ϕ⇒ [α]⟨α−1⟩ϕ,
ϕ⇒ [α−1]⟨α⟩ϕ.

Finally, using the strongest postcondition modality for lexicographic upgrade,
we can check the semantic equivalence:

Bϕψ⇐⇒ [⇑ ϕ]B⟨(⇑ ϕ)−1⟩ψ.
10But extensions of DEL which can define strongest postconditions have been proposed by

Guillaume Aucher [2].
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Figure 6.5: Example of a conservative upgrade ↑ ¬ϕ

This equivalence confirms our interpretation of conditional beliefs Bϕψ as embod-
iments of static revision: the agent’s revised beliefs after revision with ϕ about
ψ’s truth value before the revision.

6.3 Expansion and contraction in full DDL
In [76], Segerberg uses a constructive approach (similar to the one we used above
for revision) for modelling expansion and contraction in DDL, assuming some
additional conditions on the hypertheories. However these two operations do
not fit the AGM framework. In this section we introduce and axiomatize three
AGM -friendly versions of contraction and expansion in DDL.

6.3.1 Main definitions for contraction and expansion

First, Segerberg assumes some additional conditions on the hypertheories namely,
that they are closed under non-empty intersections and satisfy the Strong Limit
Assumption. He calls LR hypertheories (from Lindstrom and Rabinowicz), the
hypertheories that satisfy these two conditions. Then he defines H/P , the aug-
mentation of H by P and H ∣X, the restriction of H by X.

6.3.1. Definition. Segerberg puts, for LR hypertheories H and sets P ⊆ U,X ∈
H:

H/P ∶=H ∪ {X ∩ P ∶X ∈H,X ∩ P /= ∅},
H ∣X ∶= {Y ∈H ∶X ⊆ Y },
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and requires the doxology D to be closed under these operations.

Minimal fallback Using these notations, Segerberg says that a fallback Z ∈H
is a contraction with P ⊆ U in H iff Z is a minimal fallback (with respect to
inclusion) in the familyH⩀(U−P ) whereH⩀(U−P ) ∶= {X ∈H ∶X∩(U−P ) /= ∅}.
Note that such a contraction with P in H might not exist11, and even if it exists
it might not be unique.

6.3.2. Definition. Segerberg then explicitly defines an expansion action +P
and a contraction action −P (for any given set P ⊆ U of states), given by the
following relation on hypertheories in D:

(H,H ′) ∈ R+P iff H ′ =H/P,

(H,H ′) ∈ R−P iff H ′ =H ∣Z for some contraction Z with P in H.

However, these two operations do not fit the AGM framework. This was a
conscious decision by Segerberg, since his aim in [76] was to give a semantics to
the Lindstrom-Rabinowicz theory of contraction rather than for the AGM theory.

AGM adaptation In order to try to accommodate AGM , first we have to
restrict the above definitions to onion models. As we saw, these are the AGM -
friendly models for DDL. On onion models, contractions with P (as defined
above) might still not exist but if they do, then they are unique as required by
AGM . To ensure existence, we have to further restrict to onion models satisfying
the Limit condition or (for simplicity) to the even more restricted case of stan-
dard onion models. As we will see, this restriction does ensure that Segerberg’s
contraction satisfies the AGM principles.

Problems with expansion But even in this case, we still have problems with
Segerberg’s definition of expansion. This operation does not preserve the “nested-
ness” property, so it does not map standard onions into onions. Moreover, there
is no reasonable additional condition that would ensure that the expansion of an
onion O with a set P in the sense of Segerberg, is an onion whenever P ∩⋃O /= ∅.
Since “onionhood” (i.e. nestedness of the hypertheories) is essential for satisfying
AGM postulates, this means that one should look for a different definition for
AGM expansion.

11Though the additional closure assumptions made by Segerberg in [76] do ensure the exis-
tence of contractions.
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6.3.2 Expansion

In fact, any of the known semantic proposals for expansion (as an operation on
Grove sphere models) considered in the Belief Revision literature can be internal-
ized in DDL. In particular, for each of the three types of revision defined above
there is a corresponding expansion action on standard onion models:

(O,O′) ∈ R+!P iff (O,O′) ∈ R!P and X ∩ P /= ∅ for all X ∈ O,
(O,O′) ∈ R+⇑P iff (O,O′) ∈ R⇑P and X ∩ P /= ∅ for all X ∈ O,
(O,O′) ∈ R+↑P iff (O,O′) ∈ R↑P and X ∩ P /= ∅ for all X ∈ O.

Since expansion is a special case of revision (namely the case in which the new
information does not contradict any prior beliefs), the corresponding expansion
modalities can be reduced to the revision ones, e.g.

[+!ϕ]θ ⇐⇒ (¬B¬ϕ→ [!ϕ]θ) ,
[+ ⇑ ϕ]θ ⇐⇒ (¬B¬ϕ→ [⇑ ϕ]θ) ,
[+ ↑ ϕ]θ ⇐⇒ (¬B¬ϕ→ [↑ ϕ]θ) .

6.3.3 Contraction

On standard onion models, contractions with P exist and are unique whenever
P is not irrevocably known (i.e. whenever (⋃O) ∩ (U − P ) /= ∅). Moreover, on
standard onion models Segerberg’s definition is equivalent to putting:

(O,O′) ∈ R−P iff O′ = O ⩀ (U − P ) ∶= {X ∈ O ∶X ∩ (U − P ) /= ∅}.
This semantic contraction operation is the operation of severe withdrawal we
introduced in Chapter 3.

Axiom system for the logic of severe withdrawal We refer back to Chap-
ter 3 for the definition of the language for the logic of severe withdrawal as well
as for the proof of Theorem 6.3.3.

6.3.3. Theorem. A sound and complete proof system for the logic SEV with the
language LSev2 over the class of onion models in DDL is given by the axioms and
rules of LKKD

plus the following reduction axioms:

[−ϕ]p ⇐⇒ p

[−ϕ]¬θ ⇐⇒ ¬[−ϕ]θ

[−ϕ](θ ∧ ψ) ⇐⇒ [−ϕ]θ ∧ [−ϕ]ψ

[−ϕ]Kθ ⇐⇒ K[−ϕ]θ

[−ϕ]KDθ ⇐⇒ (KD[−ϕ]θ ∧ (¬Kϕ→ ¬K¬(¬ϕ ∧KD[−ϕ]θ))
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We cannot provide Reduction Laws in the language LSev1 that is, if the static
base language is the language of Conditional Doxastic Logic.

Objections against severe withdrawal We already mentioned some objec-
tions against severe withdrawal in Chapter 3. To these objections, we can add
another one based on dynamic logic. Namely, although severe withdrawal satis-
fies a dynamic version of the so-called Levi identity with respect to irrevocable
revision (DEL update)

R−¬P ;R+!P = R!P

(where R;R′ is relational composition and P ⊆ U is an arbitrary set of states),
the corresponding Levi identities for lexicographic revision or minimal revision
are not satisfied:

R−¬P ;R+⇑P /= R⇑P ,

R−¬P ;R+↑P /= R↑P .
Since update (irrevocable revision) is a rather implausible operation when dealing
with belief change in daily life, this throws more doubt on the appropriateness of
Segerberg’s definition of contraction.

6.3.4 Other AGM -type contractions

We also introduced conservative contraction −cP and moderate contraction −mP
in Chapter 3.

6.3.4. Definition. We give the formal definitions over onion models in DDL.
First we put O−P ∶= ⋂OU−P for the smallest non-empty intersection of an O-
sphere with U − P whenever OU−P /= ∅ (i.e. whenever ⋃O /⊆ P ), and O−P ∶= ∅
otherwise.

6.3.5. Definition. Then for any two standard onions O,O′ ∈D we define

(O,O′) ∈ R−cP iff O′ = {X ∪O−P ∶X ∈ O},

(O,O′) ∈ R−mP iff O′ = {Y ∪⋂O ∶ Y ∈ OU−P} ∪ {X ∪⋃OU−P ∶X ∈ O}.

Axiom system for the logic of conservative contraction We refer back
to Chapter 3 for the definition of the language for the logic of conservative con-
traction as well as for the proofs of Theorem 6.3.6 and Theorem 6.3.7.

6.3.6. Theorem. A sound and complete proof system for the logic CONS1 with
the language LCons1 over the class of onion models in DDL is given by the axioms
and rules of LCDL plus the following reduction axioms:
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[−cϕ]p ⇐⇒ p

[−cϕ]¬θ ⇐⇒ ¬[−cϕ]θ

[−cϕ](θ ∧ ψ) ⇐⇒ [−cϕ]θ ∧ [−cϕ]ψ

[−cϕ]Bψθ ⇐⇒ B([−cϕ]ψ → [−cϕ]θ) ∧B¬ϕ([−cϕ]ψ → [−cϕ]θ)

∧ (B¬ϕ[−cϕ]¬ψ → B[−cϕ]ψ[−cϕ]θ)

6.3.7. Theorem. A sound and complete proof system for the logic CONS2 with
the language LCons2 over the class of onion models in DDL is given by the axioms
and rules of LKKD

plus the following reduction axioms:

[−cϕ]p ⇐⇒ p

[−cϕ]¬θ ⇐⇒ ¬[−cϕ]θ

[−cϕ](θ ∧ ψ) ⇐⇒ [−cϕ]θ ∧ [−cϕ]ψ

[−cϕ]Kψ ⇐⇒ K[−cϕ]ψ

[−cϕ]KDψ ⇐⇒ KD[−cϕ]ψ ∧B¬ϕ[−cϕ]ψ

Axiom system for the logic of moderate contraction We refer back to
Chapter 3 for the definition of the language for the logic of moderate contraction
as well as for the proof of Theorem 6.3.8.

6.3.8. Theorem. A sound and complete proof system for the logic MOD1 with
the language LMod1 over the class of onion models in DDL is given by the axioms
and rules of LCDL plus the following reduction axioms:

[−mϕ]p ⇐⇒ p

[−mϕ]¬θ ⇐⇒ ¬[−mϕ]θ

[−mϕ](θ ∧ ψ) ⇐⇒ [−mϕ]θ ∧ [−mϕ]ψ

[−mϕ]Bψθ ⇐⇒ B([−mϕ]ψ → [−mϕ]θ) ∧B¬ϕ∧[−mϕ]ψ[−mϕ]θ

∧ (K¬ϕ[−mϕ]¬ψ → B[−mϕ]ψ[−mϕ]θ)

We cannot provide an axiom system for the logic MOD2 with the language
LMod2 . Indeed we do not have a reduction axiom for defeasible knowledge (see
Chapter 3 for a more detailed explanation).
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Advantages Conservative contraction and moderate contraction have the ad-
vantage to satisfy the dynamic versions of Levi identity for all the above-mentioned
revision operators: for all sets P ⊆ U of states, we have

R−c¬P ;R+!P = R!P , R−m¬P ;R+!P = R!P ,

R−c¬P ;R+⇑P = R⇑P , R−m¬P ;R+⇑P = R⇑P ,
R−c¬P ;R+↑P = R↑P , R−m¬P ;R+↑P = R↑P .

Conclusion
The DEL approach and the DDL approach are two different styles of modelling
doxastic changes. In the DEL approach, the dynamics is external to the mod-
els. Doxastic actions are seen as model-changing actions, and represented as
relations between models. Segerberg’s DDL keeps the actual states unchanged
(as ontic states) and internalizes the dynamics by representing doxastic actions
as binary relations between doxastic structures (onions, hypertheories, doxastic
states) living in a fixed space of possible such structures (the doxology). Again, if
considered at an appropriate level of generality, these approaches are equivalent.
However, there are some conceptual (and practical) differences.

The DEL approach is the most “open-ended”, well-suited for open systems,
in which there are innumerable doxastic actions that might happen. It is also
the most “economical”, as only the states and the doxastic structures that are
currently epistemically possible are “given”. Only they are represented in a given
model hence, the DEL models can be easily visualized and drawn. It is also a
“constructive” approach: the doxastic dynamics is not given in this approach but
is to be constructed (in the form of various model transformers, or upgrades).

The DDL style keeps the states fixed and only multiplies the doxastic struc-
ture. It also brings conceptual clarity: doxastic changes are after all only changes
of belief, so they shouldn’t multiply the states of the world. It is an elegant
and natural way to internalize doxastic changes. As shown in this chapter, it is
potentially at least as expressive and powerful as the single-agent version of the
DEL approach: all work on belief revision done in DEL style can be done in DDL
style.

In the next chapter, we would like to investigate the belief dynamics in a
dynamic setting namely the dialogical setting. We first present the branching-
time belief revision logic LPLS∗ of G. Bonanno and provide an argumentative
study of this belief revision logic using the dialogical approach to logic.





Chapter 7
Bonanno’s belief revision logic in a

dialogical setting

Aim: In this chapter our aim is to provide an argumentative study of belief
revision logic. In particular we focus on the branching-time belief revision logic
of Bonanno LPLS∗ as introduced in Definition 2.8.15. To fulfil our purpose we
provide a dialogical approach to this logic LPLS∗.

Summary: In this chapter we motivate our choice to provide a dialogical ap-
proach to LPLS∗ and we precisely define this dialogical setting. We provide our
dialogical approach to LPLS∗ as well as its soundness and completeness proof, es-
tablishing a formal relation with its model-theoretic approach. The main points
are :

– we motivate the investigation of LPLS∗ in an argumentative setting. We
provide the main characteristics of the dialogical setting we use as well as
its historical background.

– we precisely define some important dialogical notions we use in this chapter.

– we provide a dialogical approach to the logic LPLS∗ providing the language
and the rules. We apply our dialogical system to specific examples to illus-
trate its mechanisms.

– we prove that our dialogical approach to Bonanno’s logic of belief revision
is sound and complete with respect to LPLS∗ showing that there exists a
winning strategy for the Proponent in a dialogue with a thesis ∆ if and only
if ∆ is a valid formula in LPLS∗.

157
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Background: The dialogical approach to logic is a two-person game in which
one party defends a proposition while the other party challenges it. The game is
defined by a set of rules. Some rules stipulate how the logical constants can/have
to be challenged and defended and some other rules define the process of the
game itself (which player starts, can move, wins...). Two notions are fundamental
in the dialogical approach to logic namely, the notion of choice which leads to
the notion of strategy. Indeed players make choices among the available moves
allowed by the rules. If a player wins, whatever the choices of the other player,
he has a winning strategy in the corresponding dialogical game.

We have to underline that dialogical games are not played on a given model.
There is no model in the dialogical approach to logic. The concept of validity has
its counterpart in the concept of winning strategy. If the player defending the
proposition has a winning strategy then this proposition is considered to be valid.

Paul Lorenzen and Kuno Lorenz were first to introduce the concept of for-
mal dialogues.1 This first dialogical approach was concerned with intuitionistic
and classical logic [55]. Later on, the dialogical framework has been developed
and applied to non-classical logics by one of their students Shahid Rahman [66].
In particular Shahid Rahman and Helge Rückert developed the first modal di-
alogues [69, 68, 45]. They introduce new sets of rules in relation with modal
operators. Very recently, a dialogical approach to Dynamic Epistemic Logic has
been developed [56] by Sébastien Magnier. He offers an argumentative study of
Dynamic Epistemic Logic focusing mainly on Public Announcement Logic. New
rules are given not only for epistemic operators but also for public announcement
operators. We believe it is now time to extend the dialogical approach to belief
revision logic in order to provide the first argumentative study of belief revision
logic.2 In this thesis, we choose to study the branching-time belief revision logic
of Bonanno LPLS∗ in a dialogical setting (see Chapter 2).

1In the spirit of our work on game semantics in this thesis in Chapter 5, let us mention
that the dialogical logic founded by Lorenzen and Lorenz and the game theoretical semantics
of Hintikka [42], have been compared with each other. For this comparison we refer to the work
of [70] and for an analysis of the importance of the differences between these game styles in the
context of the philosophical (anti)-realism debate, we refer to [58].

2Note that [67] provides a dialogical approach to the first logic of belief revision introduced
by Bonanno in [17] (which is actually a belief expansion logic rather than a belief revision logic).
We would like to emphazise that this first version of Bonanno’s belief revision is very different
from LPLS∗.
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7.1 General background on the dialogical approach
to logic

After motivating our interest in the argumentative study of logic, we precisely
define the dialogical framework we use in concrete terms.

7.1.1 Motivation

We first have to distinguish between two different notions of dynamics namely, the
dynamics of an argumentative practice and the dynamics of semantics (through
dynamic modal operators). We are taking up an idea put forward by Magnier
[56] where he establishes two distinct levels of dynamical changes:

– A logic is called “dynamic” because of its object language. Some operations
introduced in the logical language force its dynamic nature.

– A logic becomes “dynamic” because it is implemented in an argumentative
context.

So Magnier distinguishes between a dynamic logical language and a dynamic prac-
tice of logic. Magnier names the first type of dynamics “internal dynamics” and
the second one “external dynamics”. The argumentative practice of logic is dy-
namic in an external sense because the argumentative process is dynamic in itself
but not necessarily the language of the logic investigated through this argumenta-
tive practice. Thus the argumentative practice is grounded in an irreducible form
of dynamics. Contrary to some dynamic modal languages such as the language of
dynamic epistemic logics that can be rewritten into static epistemic languages by
means of appropriate reduction axioms (see the reduction axioms in [29]). Indeed
the static language pre-encodes the dynamics.

We are interested in investigating the relation between beliefs and informa-
tion over time from an external dynamic perspective. We claim that this external
dynamic perspective will shed some new light on this relation. In particular we
will interpret this relation through the notion of choice. In an argumentative pro-
cess, players challenge each other’s claims. Thus players have to make choices.
Implementing a belief revision logic inside an argumentative framework will pro-
duce choices about belief and information. Moreover we see now that the internal
dynamics of the information operator will become more apparent in the light of
this external dynamic point of view. The goal is to explore what we can learn
about Bonanno’s logic of belief revision LPLS∗ from an argumentative framework.
But we also carefully examine what the interpretation of the information oper-
ator through the argumentative notion of choice provides to the argumentative
framework itself. Indeed the non normality of Bonanno’s information operator
will bring some new interesting developments in this framework.
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7.1.2 Dialogues

There exist different types of dialogues. Our aim is not to present these dialogues
in details, we only mention that they have different purposes and thus different
sets of rules3. Which type of dialogue would be suitable to investigate LPLS∗

through an argumentative practice? We have to define the main characteristics
of the type of dialogues we are looking for to answer this question. First we list
what kind of argumentative practice we do not want. We do not want :

– exchanges of unrelated statements,

– exchanges linked to some particular background,

– arguments to be about players (challenging players as personal attacks),

– inequality between players as different inference rules,

– infinite argumentative processes (without a winning player),

– possible or plausible conclusions (no certain conclusions).

Since we want to reconstruct LPLS∗ into an argumentative framework, we are only
interested in formal dialogues. In formal dialogues, the players are objective and
impartial. They can only challenge the arguments of the other player (and not
the other player himself), and they have to cooperate even if they are engaged in
a competitive argumentative process because they comply with the rules. Finally
we look for dialogues regulated by symmetric rules, providing them with an ob-
jective aspect. Since we want to establish a counterpart of the notion of validity
of a formula, namely the notion of winning strategy, we require finite dialogues
providing at least one and only one winning player. This notion of winning strat-
egy involves the notion of competitive players. The dialogical approach to logic
meets all these criteria, that’s why we choose to provide a dialogical approach to
LPLS∗.

7.1.3 The dialogical approach to logic

The dialogical approach to logic was first introduced by Lorenzen in the 1950’s and
then developed by Lorenz for classical and intuitionistic logic4. Rahman, one of
Lorenz’s students, has further developed the dialogical approach to logic to allow
for the development and the combination of different logics in this framework (free
logic, normal modal logic, non normal modal logic and so on) [66, 44]. The aim
was to propose a semantics based on argumentation games as a new alternative to
model theory and proof theory: the dialogical approach to logic is neither model
theory nor proof theory. The main concept of this approach is “meaning as use”
namely use in an argumentative process.

3For a complete taxonomy see [82].
4The most important early papers on the dialogical approach to logic are collected in [55].
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Dialogical game In a dialogical game two players confront each other. The
Proponent proposes a thesis that he will defend against the challenges of the
Opponent who aims to find a counter-argument for it. So the game starts with
the Proponent (P) stating a formula from some given language L. Then the
Opponent (O) challenges the formula and the Proponent defends: they interact
by alternately choosing moves according to some rules. The notion of choice plays
an essential role in the dialogical approach to logic. We will further develop this
point when we will present the dialogical rules. Thus some rules are needed in
order to define how players can challenge/defend logical constants but also to
define when players can make a move, what kind of move they are allowed to
make, when the game ends, which player wins and so on.

Dialogical rules The dialogue is a game which obeys two kinds of rules: par-
ticle rules and structural rules. Particle rules constitute the local semantics of
a logic: it determines the meaning of each logical constant in terms of use (how
players can/have to use them) in an argumentative process. Thus particle rules
define the way in which connectives are played. These rules are symmetric that
is, they are necessarily the same for the Opponent as well as the Proponent. As a
consequence, the logical meaning of a given constant is independent of the players.
That’s why we use X and Y as variables ranging on {O, P}, always assuming
that X ≠ Y in their definition. This symmetry of the particle rules provides an
objective aspect to dialogues. Structural rules determine the global semantics of
a logic: they define the way in which the dialogue proceeds.

Dialogical language A dialogical language for propositional logic is obtained
from the standard propositional language by the addition of one metalogical sym-
bol “?” standing for “challenge”, and two labels O and P, standing for the players
(Opponent, Proponent) of the dialogue.

Dialogical approach to modal logic Modal dialogues are developed by Rah-
man and Rückert [69, 68, 45]. While dialogical propositional logic investigates
the meaning in terms of use in an argumentative process, dialogical modal logic
contextualises this meaning in terms of use. Thus the meaning of a logical con-
stant depends on its contextual use. Technically, dialogical modal logic needs the
introduction of contextual points allowing to specify the contextual nature of the
moves, i.e. the context in which the moves are made. They are the counterpart
of possible worlds in the model-theoretic approach.

7.1.1. Definition. A contextual point is a positif integer i indexing a statement
in a dialogue.

Players can choose new contextual points when challenging a modal operator
according to the rules. Indeed a particle rule must be added for each modal opera-
tor to define the way in which it is played and some structural rules must be added
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to define what contextual points can be chosen by the players to challenge the
corresponding modal operator. In that case, structural rules define the conditions
of particular use of particle rules for modal operators. They can be interpreted as
the counterpart of conditions imposed on frames in the model-theoretic approach.
A contextual point is new if and only if it is chosen by a player in some move and
there is no previous move in the same game where the contextual point is chosen.
The play (challenge/defence) on a modal operator creates a chain of contextual
points.

7.1.2. Definition. If a player successively challenges modal operators from the
contextual point i choosing successively the contextual points j, k, . . ., n, then
i.j.k....n is a chain of contextual points.

A chain of contextual points reflects the choices the players made. Thus i.j.k
means that the contextual point k has been chosen from the contextual point j
to challenge a modal operator such that this contextual point j has been itself
chosen to challenge a modal operator from the contextual point i.

7.2 Original dialogical approach to Bonanno’s logic
for belief revision

In this section we provide a dialogical approach to LPLS∗ providing some im-
portant definitions and the corresponding language, particle and structural rules,
based on [34] and [33]. Next, we illustrate our dialogical system for LPLS∗ through
some concrete examples. We name this dialogical approach Dialogical Temporal
Doxastic Logic (DTDL).

7.2.1 DTDL Framework

We first define the language of DTDL.

7.2.1. Definition. The language of DTDL LDTDL is obtained from the language
of LPLS∗ by the addition of:

– the symbols O and P,

– the symbol for challenge “?”,

– two new symbols “!” and “?∗” respectively for request and confirmation.

The new symbols are introduced in relation to the non normality of the informa-
tion operator.
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Since the language of DTDL is a multimodal language, we need two different
types of contextual points. Indeed we can distinguish between two types of modal
operators: temporal operators (◯−1 and◯) and non temporal operators (B, I,A).
Then we use the contextual points i and t such that moves are made in a context
(i, t). In that case, contextual points i are the counterpart of possible worlds s
while t is the counterpart of instants t in the model-theoretic approach.

7.2.2. Definition. A move is a tuple ⟨X − i, t ∶ e⟩ where:

– X ∈ {O,P},

– i and t are contextual points that is, positive integers or sequences of positive
integers such that (i, t) is a context,

– e is a statement of the language of DTDL

We now have to draw a sharp distinction between some dialogical terms.

7.2.3. Definition. We define the notions of dialogue, play, close play and ter-
minal play:

– a dialogical game or dialogue D∆ is the set of all the possible plays for a
formula ∆,

– a play d∆ is a sequence of moves allowed by the rules. This sequence starts
with a move ⟨P − 0,0 ∶ ∆⟩,

– a play d∆ is close if and only if it contains two moves such that ⟨O− i, z ∶ p⟩
and ⟨P − i, t ∶ p⟩5; ⟨O − i, t ∶ ?Ij⟩ and ⟨P − i, t ∶ ?I∗j ⟩; ⟨O − i, t ∶ ?Bj⟩ and
⟨P − i, t ∶ ?I∗j ⟩,

– a play d∆ is terminal if there are no more moves allowed by the rules.

7.2.2 Particle rules

Particle rules define the way in which logical constants are played that is, how
they should be challenged and defended. These rules are strictly the same for the
Opponent and the Proponent. In other words, what matters is how a logical con-
stant can be used regardless of the player who uses it. Thus the meaning of logical
constants is given independently of the role of players (Opponent/Proponent).

5It is possible that z ∉ t.
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Vocabulary First we have to distinguish the dialogical terms challenge, request
and confirmation. A player challenges a statement of the other player. A request
is always about a contextual choice. A player requests the other player to confirm
that he could choose a particular contextual point to challenge a modal operator
in a given context. A player confirms that he could choose the required contextual
point to challenge a modal operator in a given context.

Reading particle rules A particle rules involves three steps:

– X utters a formula,

– Y challenges this formula,

– X defends the formula.

Particle rules for standard connectives We first provide particle rules for
the standard connectives in Figure 7.1.

Standard connectives X Utterance Y Challenge X Defence
¬, there is no possible defence i,t : ¬ ϕ i,t : ϕ ⊗

∧, the challenger chooses a
conjunct

i,t : ?∧1 i,t : ϕ
i,t : ϕ ∧ ψ or respectively

i,t : ?∧2 i,t : ψ

∨, the defender chooses a
disjunct

i,t : ϕ
i,t : ϕ ∨ ψ i,t : ?∨ or

i,t : ψ

Figure 7.1: Particle rules for standard connectives

When X utters the negation of a formula, Y challenges by uttering the formula.
There is no corresponding defence – denoted in a dialogue by the symbol ⊗. When
X utters a conjunction, Y chooses the conjunct X has to defend; while when X
utters a disjunction, X chooses the disjunct he wants to defend.

Particle rules for modal operators Now we provide particle rules for modal
operators in Figure 7.2. The contextual points play an essential role here. Indeed
they become paramount when modal operators come into the language. For
the sake of clarity, we always explicitly state the modal operator challenged in
the challenge itself. Thus a challenge of a belief operator looks like “ ?Bj” and a
challenge of an information operator looks like “ ?Ij”. The same applies to request
and confirmation.

But first we have to clarify a fundamental distinction between the players of
the dialogue and an agent. The players of the dialogue are the Proponent and
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the Opponent. These players can discuss about the beliefs of an agent and/or
the information received by an agent but they are not in any case the agent in
question. The Proponent and the Opponent discuss about a third person, not
about their own beliefs/information.

Modal operators X Utterance Y Challenge X Defence
◯−1, the challenger chooses a
contextual point u i,t : ◯−1ϕ i,t : ?◯−1

u i,t.u: ϕ

◯, the challenger chooses a
contextual point u i,t : ◯ϕ i,t : ?◯u i,t.u: ϕ

B, the challenger chooses a
contextual point j i,t : Bϕ i,t : ?Bj i.j,t : ϕ

A, the challenger chooses a
contextual point j i,t : Aϕ i,t : ?Aj i.j,t : ϕ

I, the challenger has the
choice between two challenges i,t : Iϕ

i,t ?Ij i.j,t : ϕ

i,t : !Ij i,t : ?I∗j

Figure 7.2: Particle rules for modal operators

When X utters a formula of the form ◯−1ϕ in (i, t), he must be able to defend
ϕ in any contextual point u chosen by Y to challenge the ◯−1 operator: in that
case the context (i, t.u) is called an immediate past context of the context (i, t).
Indeed if a player X states that at the previous instant it was the case that ϕ, he
is committed to defend ϕ in all immediate past contexts.

When X utters a formula of the form ◯ϕ in (i, t), he must be able to defend
ϕ in any contextual point u chosen by Y to challenge the ◯ operator: in that
case the context (i, t.u) is called an immediate future context of the context (i, t).
Indeed if a player X states that at every next instant it will be the case that ϕ,
he is committed to defend ϕ in all immediate future contexts.

When X utters a formula of the form Bϕ in (i, t), he must be able to defend
ϕ in any contextual point j chosen by Y to challenge the B operator. Indeed if a
player X states that an agent believes a proposition ϕ, he is committed to defend
ϕ in all contexts that this agent conceives.

When X utters a formula of the form Aϕ in (i, t) , he must be able to defend
ϕ in any contextual point j chosen by Y to challenge the A operator. Indeed if
a player X states that it is always the case that ϕ, he is committed to defend ϕ
in all contexts.

When X utters a formula of the form Iϕ in (i, t), Y has the choice between
two different challenges. He can choose the standard challenge: he challenges
choosing a contextual point j, and then X must be able to defend ϕ in any
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contextual point j chosen by Y. Or he can choose the non-standard challenge:
he chooses a contextual point j and requests X to confirm that this contextual
point j could be chosen to challenge an information operator at (i,t), and then X
must be able to confirm that the contextual point j chosen by Y can be chosen
at (i,t) to challenge an information operator. Indeed if a player X states that
an agent is informed about a proposition ϕ, he is committed to defend ϕ in all
contexts of which the agent is informed and he is committed to defend that all
contexts where ϕ holds are contexts of which the agent is informed.

The information operator is a non normal operator, that’s why its particle rule
is far from being standard. The non standard challenge !Ij at (i,t) can be read as
“show me that the contextual point j can be chosen to challenge the I operator
at (i,t)”. Then the corresponding defence ?I∗j at (i,t) is the confirmation that
indeed this contextual point j can be chosen to challenge the I operator at (i,t):
“I confirm that the contextual point j can be chosen to challenge the I operator
at (i,t)”. This is new in the dialogical approach to logic: players no longer deal
with formulas but with choices. The non normality of the I operator introduces
directly the notion of choice inside the dialogue. Players discuss about their own
choices, more precisely about the choices they can make. We will further develop
this point in the examples (see Section 7.2.4).

Particle rules of DTDL The particle rules of DTDL consist of the particle
rules for standard connectives and for modal operators. These rules determine all
the possible uses of the logical constants of the language of DTDL. Now we have
to define the structural rules of DTDL to determine the conditions under which
some particle rules of DTDL can be used and how the game is played.

7.2.3 Structural rules

Structural rules regulate the process of the dialogue. We first introduce the
structural rules defining how the play starts and ends, how the players can play,
as well as the winning rule6.

◇ (SR-0) (Starting rule): Any play d∆ of a dialogue D∆ starts with P uttering
the thesis in an initial context (i, t). The moves of a play are numbered such
that the thesis has number 0. Then O and P respectively choose a natural
number n and m allowing a number of repetitions (called repetition rank).
O and P can repeat the same move (challenge or defence) respectively n

6We provide some schemas for the reader who is not familiar with structural rules in Ap-
pendix A. We strongly recommend to first read the rules with the help of the schemas and then
to read the explanations of the rules.
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and m times7.

◇ (SR-1) (Game-playing rule): Moves are made alternately by O and P
according to the other rules. In any move each player may challenge any
complex formula uttered by the other player, or he may defend himself
against any challenge, including those which have already been defended
according to his repetition rank.

◇ (SR-2) (Formal rule for atomic formulas): P is allowed to utter an
atomic formula at (i, t) only if O has first uttered it at (i, z).

◇ (SR-3) (Winning rule): A player wins a play if and only if the other player
cannot make a move.

Now we introduce the structural rules defining the conditions under which
particle rules for modal operators can/have to be used.

◇ (SR-5) (Formal rule for contextual points t): To challenge a move as
⟨P − i, t ∶ ◯ϕ⟩, O can choose any contextual point u whenever other rules
allow him to do so. To challenge a move as ⟨P − i, t ∶ ◯−1ϕ⟩, O can choose
any contextual point u provided that he has not chosen a contextual point
v before to challenge a move as ⟨P − i, t ∶ ◯−1ϕ⟩.
To challenge a move as ⟨O− i, t ∶ ◯ϕ⟩, P can only choose a contextual point
u already chosen by O to challenge a move as ⟨P − i, t ∶ ◯ϕ⟩. To challenge
a move as ⟨O− i, t ∶ ◯−1ϕ⟩, P can only choose a contextual point u already
chosen by O to challenge a move as ⟨P − i, t ∶ ◯−1ϕ⟩.
However P can choose the initial contextual point t to challenge a move as
⟨O − i, t.u ∶ ◯ϕ⟩ or ⟨O − i, t.u ∶ ◯−1ϕ⟩ under some conditions:

◇ (SR-5.1) P can choose the initial contextual point t to challenge a move
as ⟨O− i, t.u ∶ ◯ϕ⟩ if O has chosen the contextual point u to challenge
a move as ⟨P − i, t ∶ ◯−1ϕ⟩.

◇ (SR-5.2) P can choose the initial contextual point t to challenge a
move as ⟨O − i, t.u ∶ ◯−1ϕ⟩ if O has chosen the contextual point u to
challenge a move as ⟨P − i, t ∶ ◯ϕ⟩.

7See N. Clerbout for more details [25].
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◇ (SR-6) (Formal rule for contextual points j): To challenge a move as
⟨O− i, t ∶ Bϕ⟩, P can only choose a contextual point j already chosen by O
to challenge a move as ⟨P − i, t ∶ Bϕ⟩; if O did not choose any contextual
point to challenge a move as ⟨P− i, t ∶ Bϕ⟩, P can choose a new contextual
point j.
To challenge a move as ⟨O− i, t ∶ Iϕ⟩, P can only choose a contextual point
j already chosen by O to challenge a move as ⟨P− i, t ∶ Iϕ⟩ or ⟨P− i, t ∶ Bϕ⟩.
To challenge a move as ⟨O− i, t ∶ Aϕ⟩, P can only choose a contextual point
j already chosen by O to challenge a move as ⟨P− i, z ∶ Iϕ⟩ or ⟨P− i, z ∶ Bϕ⟩
or ⟨P − i, z ∶ Aϕ⟩; or he can choose the contextual point i.
However P can choose more contextual points j to challenge a move as
⟨O − i, t ∶ Bϕ⟩ under some conditions: let three contextual points t, u and
v be such that u and v have been chosen by O to challenge a move as
⟨P − i, t ∶ ◯ϕ⟩ and consider three contextual points i, j and k:

◇ (SR-6.1) P can choose a contextual point j to challenge a move as
⟨O − i, t ∶ Bϕ⟩ if O has chosen the contextual point k to challenge a
move as ⟨P− i, t ∶ Bϕ⟩ and to challenge a move as ⟨P− i, t.u ∶ Iϕ⟩/or if
he has stated ⟨O− i, t.u ∶ ?I∗k ⟩ and if O has chosen the contextual point
j to challenge a move as ⟨P − i, t.u ∶ Bϕ⟩.

◇ (SR-6.2) P can choose a contextual point j to challenge a move as
⟨O − i, t.u ∶ Bϕ⟩ if O has chosen the contextual point j to challenge a
move as ⟨P− i, t ∶ Bϕ⟩ and to challenge a move as ⟨P− i, t.u ∶ Iϕ⟩/or if
he has stated ⟨O − i, t.u ∶ ?I∗j ⟩.

◇ (SR-6.3) P can choose a contextual point j to challenge a move as
⟨O − i, t.v ∶ Bϕ⟩ if O has chosen the contextual point j to challenge
a move as ⟨P − i, t.u ∶ Bϕ⟩ and if every contextual points j chosen to
challenge a move as ⟨X − i, t.u ∶ Iϕ⟩ can also be chosen to challenge a
move as ⟨X − i, t.v ∶ Iϕ⟩.

◇ (SR-6.4) P can choose a contextual point j to challenge a move as
⟨O − i, t.v ∶ Bϕ⟩ if O has chosen the contextual point j to challenge a
move as ⟨P− i, t.u ∶ Bϕ⟩ and to challenge a move as ⟨P− i, t.v ∶ Iϕ⟩/or
if he has stated ⟨O − i, t.v ∶ ?I∗j ⟩.

◇ (SR-7) (Request rule): Y can choose a contextual point j and request X
to confirm that this contextual point j could be chosen to challenge a move
as ⟨X − i, t ∶ Iϕ⟩, only if ⟨O − i.j, z ∶ ϕ⟩ ∈ d∆.

Now we have to explain our structural rules, more precisely our formal rules:
why do they make sense? What does this mean for players? What does this mean
for the notion of beliefs and information? First note that players can discuss about
facts, time (immediate past/future), the beliefs of an agent or the information
received by an agent.
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Formal rule for atomic formulas The main point of this rule is that the
Proponent can only state atomic formulas in a particular context if the Opponent
has already done it in some context. Indeed we saw that the Opponent tries to
build a counter-argument to the thesis of the Proponent. Then he is the only one
who can introduce (uttering first) atomic formulas in a context in a dialogue. The
Proponent can only reuse them. But the important thing here is the contextual
point i in which the Opponent states the atomic formulas, not the contextual point
t. When the Opponent utters an atomic formula, in fact he states a proposition
describing a fact that holds in some particular context. And we only consider
here facts that do not change during the play that is, the facts described by
the propositions stated by the players do not change during the discussion. For
example if the fact “Earth revolves around the sun” holds in the context (i, t), it
will also hold in the context (i, z) for any t and z. That’s why it is sufficient that
Opponent utters atomic formulas at (i, z) to be reused by Proponent at (i, t).
This is the counterpart of the non-changing worlds (facts describing the world do
not change over time) in the model-theoretic approach.

Formal rule for contextual points t On one hand, the main point of this
rule is that Opponent can choose several contextual points u to challenge a move
as ⟨P − i, t ∶ ◯ϕ⟩ according to the other rules (his repetition rank), but only
one contextual point v to challenge a move as ⟨P − i, t ∶ ◯−1ϕ⟩ operator. When
players talk about (immediate) past, they only deal with one immediate past con-
text from the actual context. Indeed they discuss about a fixed and determined
(immediate) past. There are no several possibilities of (immediate) past. For
example, if “at the previous instant it was the case that some peanuts lie all over
the table” holds in the context (i, t), there is exactly one context (i, t.u) where “it
is the case that some peanuts lie all over the table” holds. On the contrary, when
players discuss about the (immediate) future, they talk about an undetermined
future and so several possibilities of an (immediate) future. For example, if “at
every next instant it will be the case that some peanuts will be cleaned up” holds
in the context (i, t), there are several possible (immediate) contexts (i, t.u) where
“some peanuts are actually cleaned up” holds. This is the counterpart of the
branching-time frame in the model-theoretic approach.

On the other hand, the Proponent cannot introduce contextual points u for
the same reason he cannot introduce atomic formulas: only the Opponent can
do this because the Opponent tries to build a counter-argument to the thesis of
the Proponent. Note that when players discuss about the (immediate) past and
future, they have to be consistent with the notion of time. Thus they have to be
consistent with respect to the choices of contextual points u they make. When a
player discusses about the (immediate) past in the context (i, t) and then explic-
itly considers a(n) (immediate) past context (i, t.u), then (i, t) is a(n) (immediate)
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future context of (i, t.u). Conversely, if he discusses about the (immediate) fu-
ture in the context (i, t) and explicitly considers a(n) (immediate) future context
(i, t.u), then (i, t) is a(n) (immediate) past context of (i, t.u). That’s why even
if the initial contextual point t is not technically chosen by the Opponent, if the
Opponent challenges a move as ⟨P− i, t ∶ ◯ϕ⟩ or ⟨P− i, t ∶ ◯−1ϕ⟩ with the contex-
tual point u, then the Proponent can choose t to challenge respectively a move
as ⟨O − i, t.u ∶ ◯−1ϕ⟩ or ⟨O − i, t.u ∶ ◯ϕ⟩.

Formal rule for contextual points j The Proponent cannot introduce con-
textual points j for the same reason that he cannot introduce atomic formulas
and contextual points u: only the Opponent can do this because the Opponent
tries to build a counter-argument to the thesis of the Proponent.

However, the Proponent can introduce a contextual point j to challenge a
move as ⟨O− i, t ∶ Bϕ⟩ if the Opponent did not introduce such a contextual point
j to challenge a move as ⟨P − i, t ∶ Bϕ⟩. When players discuss about beliefs,
they discuss about the beliefs of an agent such that these beliefs are consistent.
Thus if a player states that an agent believes a proposition ϕ, there should be at
least one context this agent conceives (see particle rules in Section 7.2.2) where
ϕ holds. Otherwise, the beliefs of the agent would be inconsistent. For example,
if “an agent believes that the Earth revolves around the sun” holds in (i, t), there
exists at least one context (i.j, t) considered by the agent where “Earth revolves
around the sun” holds. This is the counterpart of the seriality of beliefs in the
model-theoretic approach.

Besides, the Proponent can choose a contextual point j already chosen by O
to challenge a move as ⟨P−i, t ∶ Bϕ⟩, to challenge a move as ⟨O−i, t ∶ Iϕ⟩. In other
words, the Proponent can use a contextual point j initially chosen to challenge a
belief operator, to challenge an information operator in the same context. There
is an interplay between the contextual points that can be chosen to challenge a
belief operator and the contextual points that can be chosen to challenge an in-
formation operator in the same context. Indeed players discuss about the beliefs
of an agent as well as the information she receives, such that if the agent has
been informed about a proposition, she believes this proposition. That’s why all
contextual points chosen to challenge a belief operator in a context (i, t) can also
be chosen to challenge an information operator in (i, t). For example, if “an agent
is informed that the Earth revolves around the sun” holds in (i, t) and “an agent
believes that the Earth revolves around the sun” holds in (i, t), then every context
(i.j, t) that the agent conceives is also a context of which she has been informed.
This is the counterpart of the acceptance of information in the model-theoretic
approach.
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Finally, P can choose a contextual point j already chosen by O to challenge
a move as ⟨P − i, z ∶ Iϕ⟩ or ⟨P − i, z ∶ Bϕ⟩ or ⟨P − i, z ∶ Aϕ⟩, to challenge a move
as ⟨O − i, t ∶ Aϕ⟩. When players discuss about a proposition that is always the
case (in a non-temporal sense), they state that whatever the context they already
discussed about, the proposition is the case in that context. For example, if “it is
always the case that Amsterdam is the capital city of the Netherlands” holds at
(i, t), then “Amsterdam is the capital city of the Netherlands” holds in all contexts
of the dialogue. Then whatever the modal operator for which the contextual
point j has been introduced, it can be chosen to challenge a universal operator.
Choices to challenge a universal operator are transitive and symmetric. The
additional condition that P can choose the initial contextual point i to challenge
⟨O− i, t ∶ Aϕ⟩ ensures there is reflexivity. This is the counterpart of the S5 frame
in the model-theoretic approach.

But note that once again, the contextual point t is not important here. O
can introduce the contextual point j in the context (i, z) and P can choose this
contextual point j to challenge a universal operator in (i, t). Indeed when play-
ers introduce contexts in a dialogue, they can discuss about them all along the
dialogue. Contexts do not disappear, they are constant throughout the whole
discussion. This is the counterpart of the constant worlds over time in the model-
theoretic approach (see Definition 2.8.3).

Now we have to explain the four exceptions we notice with respect to the
choices of contextual points j P can make to challenge a move as ⟨O − i, t ∶ Bϕ⟩.
We are dealing here with the interplay between information and beliefs as well
as the interplay between beliefs themselves – namely, initial beliefs and revised
beliefs – that involve an interplay between the choices of the players. In other
words, some choices of a player allow for other choices for the other player to be
made.

The first exception states that if there exists a context the agent conceives
in (i, t) and of which she is informed in (i, t.u) such that (i, t.u) is an immediate
future context of (i, t), then all the contexts the agent conceives in (i, t.u) were
already conceived by the agent in (i, t). Indeed players discuss about an agent who
receives a piece of information, such that if she receives an information compatible
(that is, consistent) with her beliefs, then she does not add beliefs about which she
is not informed. All the contexts the agent conceives after the information were
already conceived before the information. That’s why under these conditions, P
can choose a contextual point j initially chosen to challenge a belief operator in
(i, t.u), to challenge a belief operator in (i, t). This is the counterpart of the No
Add property in the model-theoretic approach.

The second exception states that if there exists a context the agent conceives
in (i, t) and of which she is informed in (i, t.u) such that (i, t.u) is an immediate
future context of (i, t), then the agent also conceives this context in (i, t.u). Indeed
players discuss about an agent who receives a piece of information, such that if



172 Chapter 7. Bonanno’s belief revision logic in a dialogical setting

she receives an information compatible (that is, consistent) with her beliefs, then
she does not drop these beliefs. She still conceives contexts compatible with
the information is received. That’s why under these conditions, P can choose
a contextual point j initially chosen to challenge a belief operator in (i, t), to
challenge a belief operator in (i, t.u). This is the counterpart of the No Drop
property in the model-theoretic approach.

The third exception states that if an agent is informed of the same contexts in
contexts (i, t.u) and (i, t.v) such that both contexts are immediate future contexts
of (i, t), then she conceives the same contexts in (i, t.u) and (i, t.v). In that case,
P can choose a contextual point j initially chosen to challenge a belief operator
in (i, t.u), to challenge a belief operator in (i, t.v). Indeed players discuss about
an agent who is consistent with respect to the information she receives. If the
beliefs of the agent change and differ over time, it is only because she receives
different information. This is the counterpart of the Equivalence property in the
model-theoretic approach.

The last exception states that if an agent conceives a context in (i, t.u) and is
informed about the same context in (i, t.v) such that both contexts are immediate
future contexts of (i, t), then the agent also conceives this context in (i, t.v).
Indeed the players discuss about the beliefs of the agent such that these beliefs
are rationalized with respect to the information received. This is the counterpart
of the PLS property in the model-theoretic approach.

Request Rule This rule ensures that players can only choose the non-standard
challenge on an information operator that is, request the other player to confirm
that a particular contextual point j could be chosen to challenge a move as ⟨X−
i, t ∶ Iϕ⟩, if the Opponent already stated that ϕ holds in the contextual point
j8. Indeed a player who states that an agent is informed about a proposition
ϕ, is committed to defend that all and only contexts where ϕ holds are contexts
of which the agent is informed. For example, if “an agent is informed that the
President is dead” holds in (i, t), then he is informed of all and only contexts
where “the President is dead” holds. This is the counterpart of the non-normality
of the information operator.

Structural rules of DTDL The structural rules of DTDL consist of (SR-0),
(SR-1), (SR-2), (SR-3), (SR-4), (SR-5), (SR-5.1), (SR-5.2), (SR-6), (SR-6.1),
(SR-6.2), (SR-6.3), (SR-6.4), and (SR-7).

7.2.4. Definition. DTDL is defined by the set of particle rules and structural
rules.

8Remember that ϕ must be Boolean so the contextual point t does not matter.
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An argumentative interpretation When investigating the relation between
beliefs and information over time from an external dynamic perspective, we inter-
pret this relation through the notion of choice. Players make choices when they
discuss about the beliefs of an agent and the information she receives. We notice
a genuine interplay between the choices of the players. Under specific conditions,
some choices initially made to challenge belief operators can also be made to
challenge information operators; some choices initially made to challenge belief
operators in a particular context can also be made to challenge belief operators
in different contexts and so on. Some choices allow some other choices otherwise
prohibited by the other rules. Not only the meaning of belief and information
operators is defined in terms of choice, but the belief revision policy itself is de-
fined in terms of choice. Indeed the restrictions on the possible choices players
can make to challenge belief and information operators define a particular belief
revision policy. In other words DTDL allows an argumentative interpretation of
the belief revision policy of Bonanno.

7.2.4 Applications

In the Figures 7.3, 7.4, 7.5 the number in the outer column corresponds to the
number of the move whereas the one in the inner column corresponds to the
number of the move challenged.

Non surprising information We illustrate a play where two players discuss
about an agent who receives a piece of information that does not contradict her
beliefs and revises this beliefs in the light of this new information. The thesis of
this play described in Figure 7.3 is the formula ¬[¬B¬q∧Bp]∨[◯(¬Iq∨B(p∧q))].

Explanations of Figure 7.3 In accordance with the starting rule (SR-0),
the Proponent states the thesis at move 0. At move 1, the Opponent challenges
the disjunction and the Proponent chooses to defend the first disjunct at move
2. At move 3, the Opponent challenges the negation and the Proponent has no
corresponding defence. Then he chooses to challenge the conjunction of move
3 choosing respectively the first conjunct at move 4 and the second conjunct at
move 6 in accordance with his repetition rank n ∶= 2. The Opponent defends the
corresponding conjunct at moves 5 and 7. At move 8, the Proponent challenges
the negation of move 5 and the Opponent counter-attacks the move 8 since he has
no possible defence. So he challenges the belief operator choosing the contextual
point 2 at move 9 and the Proponent defends ¬q in the context (1.2,1) at move
10. The Opponent challenges the negation of move 10 and the Proponent has no
possible defence. Then he chooses to change the defence against the challenge of
move 1, choosing the second disjunct at move 12 in accordance with his repetition
rank n ∶= 2. At move 13, the Opponent challenges the◯ operator choosing a con-
textual point 2 and the Proponent defends ¬Iq ∨B(p ∧ q) in the context (1,1.2).
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O P
1,1 ∶ ¬[¬B¬q ∧Bp] ∨ [◯(¬Iq ∨B(p ∧ q))] 0

m ∶= 1 n ∶= 2

1 1,1 ∶ ?∨ 0 1,1 ∶ ¬[¬B¬q ∧Bp] 2
3 1,1 ∶ ¬B¬q ∧Bp 2 ⊗
5 1,1 ∶ ¬B¬q 3 1,1 ∶ ?∧1 4
7 1,1 ∶ Bp 3 1,1 ∶ ?∧2 6

⊗ 5 1,1 ∶ B¬q 8
9 1,1 ∶ ?B2 8 1.2,1 ∶ ¬q 10
11 1.2,1 ∶ q 10 ⊗

1,1 ∶ ◯(¬Iq ∨B(p ∧ q)) 12
13 1,1 ∶ ?◯2 12 1,1.2 ∶ ¬Iq ∨B(p ∧ q) 14
15 1,1.2 ∶ ?∨ 14 1,1.2 ∶ ¬Iq 16
17 1,1.2 ∶ Iq 16 ⊗

1,1.2 ∶ B(p ∧ q) 18
19 1,1.2 ∶ ?B3 18 1.3,1.2 ∶ p ∧ q 20
21 1.3,1.2 ∶ ?∧1 20 1.3,1.2 ∶ p 26
23 1,1.2 ∶ ?I∗2 17 1,1.2 ∶ !I2 22
25 1.3,1 ∶ p 7 1,1 ∶ ?B3 24

Figure 7.3: Non surprising information - Play 1

Then the Opponent challenges the disjunction and the Proponent chooses to de-
fend the first disjunct. The Opponent challenges the negation of move 16 and
the Proponent has no corresponding defence. He changes his defence against the
challenge of move 15 choosing to defend the second disjunct. At move 19, the
Opponent challenges the belief operator choosing the contextual point 3 and the
Proponent defends p ∧ q in the context (1.3,1.2). The Opponent then chooses
the first conjunct when he challenges the conjunction of move 20. In accordance
with the formal rule (SR-2), the Proponent cannot defend now since he cannot
utter first an atomic formula in a particular context. But he can challenge the
information operator of move 17 choosing the non standard challenge and the
contextual point 2. Indeed the Opponent has stated that q holds in the contex-
tual point 2 at move 11 so the request rule (SR-7) allows him to choose this
contextual point 2 for his non standard challenge. Then the Opponent defends
at move 23, confirming that this contextual point 2 can be chosen to challenge
an information operator in the context (1,1.2). The move 9, move 19 and move
23 allow the Proponent to challenge the belief operator of move 7 choosing the
contextual point 3 in accordance with the formal rule for contextual point j (SR-
6.1). Indeed the Opponent has chosen the contextual point 2 to challenge a belief
operator in (1,1) and has stated that this contextual point 2 can be chosen to
challenge an information operator in the context (1,1.2), and he has also chosen
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the contextual point 3 to challenge a belief operator in the context (1,1.2). The
Opponent then defends stating p in the context (1.3,1) allowing the Proponent
to state p in (1.3,1.2) at move 26 to defend against the challenge of move 21 in
accordance with the formal rule (SR-2). In accordance with the winning rule
(SR-3) the Proponent wins since the Opponent cannot move.

Note In move 22, the Proponent requests the Opponent to confirm that the
contextual point 2 can be chosen to challenge an information operator in the con-
text (1,1.2). In other words, the Proponent requests the Opponent to confirm a
choice he could do. In moves 22 and 23, the players are actually dealing about
the Opponent choices with respect to his previous choices and statements. And
previously, the Opponent has stated that q holds in the contextual point 2 and
that the agent is informed about q in the context (1,1.2) (moves 11 and 17). If the
Opponent is consistent with himself, he must stated that (1.2,1.2) is a context of
which the agent is informed. Indeed a player who states that an agent is informed
about a proposition ϕ, is committed to defend that all and only contexts where ϕ
holds are contexts of which the agent is informed (see Request Rule p 168). So the
Opponent must confirm that 2 is an available choice to challenge an information
operator in the context (1,1.2) with respect to his argumentation otherwise he
contradicts himself.

What happens now if the Opponent chooses the second conjunct when he
challenges the conjunction of move 20? We consider a play with the same thesis
as in Figure 7.3.

Explanations of Figure 7.4 The play proceeds in the same way as in Fig-
ure 7.3 until move 21. Indeed the Opponent chooses the second conjunct when he
challenges the conjunction of move 20. In that case, the Proponent challenges the
information operator of move 17 choosing the standard challenge. Since the Op-
ponent has chosen the contextual point 3 to challenge the belief operator of move
18 (move 19), the Proponent can choose this contextual point to challenge the
information operator of move 17 in accordance with the formal rule for contextual
point j (SR-6) at move 22. At move 23, the Opponent defends stating q in the
context (1.3,1.2) allowing the Proponent to state q in (1.3,1.2) at move 24 to de-
fend against the challenge of move 21 in accordance with the formal rule (SR-2).
In that play, in accordance with the winning rule (SR-3) the Proponent wins too.

In the Figures 7.3 and 7.4, the Opponent first states that the agent considers
q possible (move 5) and believes p (move 7), and then is informed about q (move
17). In that case and according to the belief revision policy described by the rules
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O P
1,1 ∶ ¬[¬B¬q ∧Bp] ∨ [◯(¬Iq ∨B(p ∧ q))] 0

m ∶= 1 n ∶= 2

1 1,1 ∶ ?∨ 0 1,1 ∶ ¬[¬B¬q ∧Bp] 2
3 1,1 ∶ ¬B¬q ∧Bp 2 ⊗
5 1,1 ∶ ¬B¬q 3 1,1 ∶ ?∧1 4
7 1,1 ∶ Bp 3 1,1 ∶ ?∧2 6

⊗ 5 1,1 ∶ B¬q 8
9 1,1 ∶ ?B2 8 1.2,1 ∶ ¬q 10
11 1.2,1 ∶ q 10 ⊗

1,1 ∶ ◯(¬Iq ∨B(p ∧ q)) 12
13 1,1 ∶ ?◯2 12 1,1.2 ∶ ¬Iq ∨B(p ∧ q) 14
15 1,1.2 ∶ ?∨ 14 1,1.2 ∶ ¬Iq 16
17 1,1.2 ∶ Iq 16 ⊗

1,1.2 ∶ B(p ∧ q) 18
19 1,1.2 ∶ ?B3 18 1.3,1.2 ∶ p ∧ q 20
21 1.3,1.2 ∶ ?∧2 20 1.3,1.2 ∶ q 24
23 1.3,1.2 ∶ q 17 1,1.2 ∶ ?I3 22

Figure 7.4: Non surprising information - Play 2

of DTDL, it is impossible for players to argue that the agent does not believe p
and q after she receives the information.

Surprising information What happens if the information is surprising? We
illustrate a play where two players discuss about an agent who receives a piece
of information that does contradict her beliefs and revises this beliefs in the light
of this new information. The thesis of this play described in Figure 7.5 is the
formula ¬[B¬q ∧Bp] ∨ [◯(¬Iq ∨B(p ∧ q))].

Explanations of Figure 7.5 The play starts and proceeds as in Figure 7.3. At
move 8, the Proponent cannot challenge the moves 5 or 7 in accordance with the
formal rule for contextual point j (SR-6), so he changes his defence against the
challenge of move 1, choosing the second disjunct in accordance with his repetition
rank n ∶= 2. Once again the play proceeds as in Figure 7.3. In accordance with the
formal rule (SR-2), the Proponent cannot defend against the challenge on move
16 since he cannot utter first an atomic formula in a particular context. The
only move the Proponent can then make is to challenge the move 13 choosing
the standard challenge. Since the Opponent has chosen the contextual point 3 to
challenge the belief operator of move 14 (move 15), the Proponent can choose this
contextual point to challenge the information operator of move 13 in accordance
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O P
1,1 ∶ ¬[B¬q ∧Bp] ∨ [◯(¬Iq ∨B(p ∧ q))] 0

m ∶= 1 n ∶= 2

1 1,1 ∶ ?∨ 0 1,1 ∶ ¬[B¬q ∧Bp] 2
3 1,1 ∶ B¬q ∧Bp 2 ⊗
5 1,1 ∶ B¬q 3 1,1 ∶ ?∧1 4
7 1,1 ∶ Bp 3 1,1 ∶ ?∧2 6

1,1 ∶ ◯(¬Iq ∨B(p ∧ q)) 8
9 1,1 ∶ ?◯2 8 1,1.2 ∶ ¬Iq ∨B(p ∧ q) 10
11 1,1.2 ∶ ?∨ 10 1,1.2 ∶ ¬Iq 12
13 1,1.2 ∶ Iq 12 ⊗

1,1.2 ∶ B(p ∧ q) 14
15 1,1.2 ∶ ?B3 14 1.3,1.2 ∶ p ∧ q 16
17 1.3,1.2 ∶ ?∧1 16 —
19 1.3,1.2 ∶ q 13 1,1.2 ∶ ?I3 18

Figure 7.5: Surprising information

with the formal rule for contextual point j (SR-6) at move 18. At move 19, the
Opponent defends stating q in the context (1.3,1.2). Then the Proponent cannot
make a move.

The main difference with Figure 7.3 is that the Proponent cannot challenge
the move 7 with contextual point 3 in accordance with the rules. The choices
of the Opponent do not allow this choice to the Proponent. So in that play, the
Proponent loses in accordance with the winning rule (SR-3).

In the Figure 7.5, the Opponent first states that the agent believes ¬q (move
5) and believes p (move 7), and then is informed about q (move 13). In that case
and according to the belief revision policy described by the rules of DTDL, it is
possible for the Opponent to argue that the agent does not believe p after she
receives the information and then does not believe (p ∧ q).

Stubborn agent What happens if the agent is stubborn? We illustrate a play
where two players discuss about a stubborn agent who receives a piece of informa-
tion that does not contradict her beliefs and revises this beliefs in the light of this
new information such that she does not believe the information. The thesis of this
play described in Figure 7.6 is the formula ¬[¬B¬q∧Bp]∨[◯(¬Iq∨(Bp∧¬B¬q))].

Explanations of Figure 7.6 The play starts and proceeds as in Figure 7.5.
At move 17, the Opponent chooses the second conjunct when he challenges
the conjunction of move 16. The Proponent defends stating ¬q in the context
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O P
1,1 ∶ ¬[B¬q ∧Bp] ∨ [◯(¬Iq ∨B(p ∧ ¬q))] 0

m ∶= 1 n ∶= 2

1 1,1 ∶ ?∨ 0 1,1 ∶ ¬[B¬q ∧Bp] 2
3 1,1 ∶ B¬q ∧Bp 2 ⊗
5 1,1 ∶ B¬q 3 1,1 ∶ ?∧1 4
7 1,1 ∶ Bp 3 1,1 ∶ ?∧2 6

1,1 ∶ ◯(¬Iq ∨B(p ∧ q)) 8
9 1,1 ∶ ?◯2 8 1,1.2 ∶ ¬Iq ∨B(p ∧ ¬q) 10
11 1,1.2 ∶ ?∨ 10 1,1.2 ∶ ¬Iq 12
13 1,1.2 ∶ Iq 12 ⊗

1,1.2 ∶ B(p ∧ ¬q) 14
15 1,1.2 ∶ ?B3 14 1.3,1.2 ∶ p ∧ ¬q 16
17 1.3,1.2 ∶ ?∧2 16 1.3,1.2 ∶ ¬q 18
19 1.3,1.2 ∶ q
21 1.3,1.2 ∶ q 13 1,1.2 ∶ ?I3 20

Figure 7.6: Stubborn agent

(1.3,1.2). At move 19, the Opponent challenges the negation stating q in the
context (1.3,1.2). The only move the Proponent can then make is to challenge
the move 13 choosing the standard challenge. Since the Opponent has chosen
the contextual point 3 to challenge the belief operator of move 14 (move 15), the
Proponent can choose this contextual point to challenge the information operator
of move 13 in accordance with the formal rule for contextual point j (SR-6) at
move 20. At move 21, the Opponent defends stating q in the context (1.3,1.2).
Then the Proponent cannot make a move.

In the Figure 7.6, the Opponent first states that the agent believes ¬q (move
5) and believes p (move 7), and then is informed about q (move 13). In that case
and according to the belief revision policy described by the rules of DTDL, it is
possible for the Opponent to argue that the agent does not believe ¬q after she
receives the information and then does not believe (p ∧ ¬q).

Irrational agent What happens if the agent is irrational? We illustrate a
play where two players discuss about an irrational agent who receives a piece of
information that does not contradict her beliefs and revises this beliefs in the
light of this new information in an irrational way. Here we interpret “irrational
way” as changing her beliefs regardless the information received. The thesis of
this play described in Figure 7.7 is the formula ¬[¬◯¬(Ip∧Bq)]∨[◯(¬Ip∨B¬q)].
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O P
1,1 ∶ ¬[¬◯¬(Ip ∧Bq)] ∨ [◯(¬Ip ∨B¬q)] 0

m ∶= 1 n ∶= 2

1 1,1 ∶ ?∨ 0 1,1 ∶ ¬[¬◯¬(Ip ∧Bq)] 2
3 1,1 ∶ ¬◯¬(Ip ∧Bq) 2 ⊗

⊗ 3 1,1 ∶ ◯¬(Ip ∧Bq) 4
5 1,1 ∶ ?◯2 4 1,1.2 ∶ ¬(Ip ∧Bq) 6
7 1,1.2 ∶ Ip ∧Bq 6 ⊗
9 1,1.2 ∶ Ip 7 1,1.2 ∶ ?∧1 8
11 1,1.2 ∶ Bq 7 1,1.2 ∶ ?∧2 10

1,1 ∶ ◯(¬Ip ∨B¬q) 12
13 1,1 ∶ ?◯3 12 1,1.3 ∶ ¬Ip ∨B¬q 14
15 1,1.3 ∶ ?∨ 10 1,1.3 ∶ ¬Ip 16
17 1,1.3 ∶ Ip 16 ⊗

1,1.3 ∶ B¬q 18
19 1,1.3 ∶ ?B2 18 1.2,1.3 ∶ ¬q 20
21 1.2,1.3 ∶ q
23 1.2,1.3 ∶ p 17 1,1.3 ∶ ?I2 22
25 1,1.2 ∶ ?I∗2 9 1,1.2 ∶ !I2 24
27 1.2,1.2 ∶ q 11 1,1.2 ∶ ?B2 26

Figure 7.7: Irrational agent

Explanations of Figure 7.7 At move 1, the Opponent challenges the disjunc-
tion and the Proponent chooses to defend the first disjunct at move 2. At move
3, the Opponent challenges the negation and the Proponent has no correspond-
ing defence. Then he counter-attacks and challenges the negation of move 3. At
move 5 the Opponent challenges the ◯ operator choosing a contextual point 2
and the Proponent defends ¬(Ip ∧ Bq) in the context (1,1.2). The Opponent
challenges the negation at move 7 and the Proponent counter-attacks challenging
the conjunction. He chooses respectively the first conjunct at move 8 and the
second conjunct at move 10. The Opponent defends the corresponding conjunct
at move 9 and 11. The Proponent cannot challenge these moves so he decides to
change his defence against the challenge of move 1, choosing the second disjunct
at move 12 in accordance with his repetition rank n ∶= 2. At move 13 the Oppo-
nent challenges the ◯ operator choosing a contextual point 3 and the Proponent
defends ¬Ip ∨B¬q in the context (1,1.3). At move 15, the Opponent challenges
the disjunction and the Proponent chooses to defend the first disjunct at move
16. At move 17, the Opponent challenges the negation and the Proponent has
no corresponding defence. He decides to change his defence against the challenge
of move 15, choosing the second disjunct at move 18 in accordance with his rep-
etition rank n ∶= 2. At move 19, the Opponent challenges the belief operator
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choosing the contextual point 2 and the Proponent defends ¬q in the context
(1.2,1.3). The Opponent then challenges the negation of move 20 stating q in the
context (1.2,1.3). The Proponent challenges the information operator of move 17
choosing the standard challenge and the contextual point 2 in accordance with
the formal rule for contextual point j (SR-6). Indeed the Opponent has cho-
sen the contextual point 2 to challenge a belief operator in (1,1.3) at move 19.
Since the Opponent defends stating p in (1.2,1.3), the Proponent can challenge
the information operator of move 9 choosing the contextual point 2 for his non
standard challenge at move 24 in accordance with the request rule (SR-7). Then
the Opponent defends at move 25, confirming that this contextual point 2 can
be chosen to challenge an information operator in the context (1,1.2). The move
19, move 22 and move 25 allow the Proponent to challenge the belief operator of
move 11 choosing the contextual point 2 in accordance with the formal rule for
contextual point j (SR-6.3). Indeed the Opponent has chosen the contextual
point 2 to challenge a belief operator in (1,1.3) and so contextual point 2 can be
chosen by the Proponent to challenge an information operator in (1,1.3), and the
Opponent has also stated that this contextual point 2 can be chosen to challenge
an information operator in the context (1,1.2). The Opponent then defends stat-
ing q in the context (1.2,1.2). In accordance with the winning rule (SR-3) the
Proponent loses since he cannot move.

Note In move 24, the Proponent requests the Opponent to confirm that the
contextual point 2 can be chosen to challenge an information operator in the
context (1,1.2) that is, he requests the Opponent to confirm a choice he could
do. In moves 24 and 25, the players are actually dealing about the Opponent
choices with respect to his previous choices and statements: the Opponent has
stated that the agent is informed about p in the context (1,1.2) and that p holds
in the contextual point 2 (moves 9 and 23). If the Opponent is consistent with
himself, he must stated that (1.2,1.2) is a context of which the agent is informed
(see Request Rule). So he must confirm that 2 is an available choice to challenge
an information operator in the context (1,1.2) with respect to his argumentation
otherwise he contradicts himself.

In the Figure 7.7, the Opponent first states that the agent is informed about
p (move 9) and believes q (move 11) in a particular context and that this agent is
also informed about p in another context (move 17). In that case and according
to the belief revision policy described by the rules of DTDL, it is possible for
the Opponent to argue that the agent does not believe ¬q after she receives the
information in the second context.
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Winning strategy In the Figures 7.3 and 7.4, we provide two different plays of
the dialogue D¬[¬B¬q∧Bp]∨[◯(¬Iq∨B(p∧q))] corresponding to different choices of the
Opponent when he challenges the conjunction of move 20. Whatever he chooses
the first –Figure 7.3– or the second –Figure 7.4– conjunct, the Proponent wins the
play. In other words, the Proponent can win whatever the choices of the Opponent
if he plays optimally that is, if he makes the choices allowing his victory (among
the available ones).

Being able to win whatever the choices of the playerY means not only winning
a play d∆ ∈ D∆ but also all the possible plays for ∆ that is, winning D∆. In other
words, this means that X has a winning strategy.

7.2.5. Definition. A player has a winning strategy if he can win whatever the
choices of the other player.

This notion of winning strategy is the counterpart of the notion of validity
in the model-theoretic approach. Since DTDL is a dialogical approach to LPLS∗,
there exists a correspondence between having a winning strategy for a formula ϕ
in DTDL and being valid in LPLS∗ for the same formula ϕ.

7.3 Soundness and Completeness for DTDL

We prove that DTDL is sound and complete with respect to LPLS∗ showing that
there exists a winning strategy for the Proponent in D∆ iff ∆ is a valid formula
in LPLS∗.

We start with one hypothesis.

7.3.1. Hypothesis. Both Players always play the best move that is, they are
ideal players able to choose the best move to win the play. Thus we can always
consider plays where the Opponent chooses m ∶= 1 and the Proponent chooses
n ∶= 2 as repetition ranks. Indeed if the the Opponent plays in an optimal way, it
is sufficient for him to have m ∶= 1 because if he has a winning strategy and follows
it, he does not have to change his defences or challenges. In Theorem 7.3.16, we
show that the repetition ranks m ∶= 1 and n ∶= 2 are optimal respectively for the
Opponent and the Proponent.

7.3.1 Soundness

We prove that our dialogical approach is sound with respect to LPLS∗ showing
that if the Proponent has a winning strategy in D∆ then the formula ∆ is valid
in LPLS∗. We prove the contrapositive : we prove that if there exists a model
satisfying ¬∆ then the Proponent cannot win any play with ∆ as thesis.

We start from one hypothesis.
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7.3.2. Hypothesis. A dialogical move ⟨X − i, t ∶ ϕ⟩ means that :

– M, (i, t) ⊧ ϕ if X = O

– M, (i, t) ⊧ ¬ϕ if X = P

A dialogical move ⟨X − i, t ∶ ?I∗j ⟩ means that :

– j ∈ It(i) if X = O

– j ∉ It(i) if X = P

We first need to prove that our particle rules preserve satisfaction that is, our
Hypothesis 7.3.2 is preserved after the use of any particle rule.

7.3.3. Lemma. Given a branching time belief revision modelM, all the particle
rules preserve satisfiability.

7.3.4. Proof. We show that our 8 particle rules preserve satisfiability.

◇ Particle rule for negation :
if ⟨X − i, t ∶ ¬ϕ⟩ ∈ d∆

then ⟨Y − i, t ∶ ϕ⟩ ∈ d∆

1. if X = O, by Hypothesis 7.3.2, M, (i, t) ⊧ ¬ϕ iff M, (i, t) ⊭ ϕ (by Defini-
tion 2.8.11).

2. if X = P, by Hypothesis 7.3.2,M, (i, t) ⊧ ¬¬ϕ iffM, (i, t) ⊧ ϕ ( by Defini-
tion 2.8.11).

◇ Particle rule for conjunction :
if ⟨X − i, t ∶ ϕ1 ∧ ϕ2⟩ ∈ d∆

then ⟨Y − i, t ∶ ?∧1⟩ ∈ d∆, or ⟨Y − i, t ∶ ?∧2⟩ ∈ d∆

so ⟨X − i, t ∶ ϕ1⟩ ∈ d∆, or ⟨X − i, t ∶ ϕ2⟩ ∈ d∆

1. if X = O, P can change his challenge since n ∶= 2, then by Hypothe-
sis 7.3.2, M, (i, t) ⊧ (ϕ1 ∧ ϕ2) iff M, (i, t) ⊧ ϕ1 and M, (i, t) ⊧ ϕ2 (by
Definition 2.8.11).

2. if X = P, O cannot change his challenge since m ∶= 1, then by Hypoth-
esis 7.3.2, M, (i, t) ⊧ ¬(ϕ1 ∧ ϕ2) iff M, (i, t) ⊧ ¬ϕ1 or M, (i, t) ⊧ ¬ϕ2 (by
Definition 2.8.11).

◇ Particle rule for disjunction :
if ⟨X − i, t ∶ ϕ1 ∨ ϕ2⟩ ∈ d∆

then ⟨Y − i, t ∶ ?∨⟩ ∈ d∆

so ⟨X − i, t ∶ ϕ1⟩ ∈ d∆, or ⟨X − i, t ∶ ϕ2⟩ ∈ d∆
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1. if X = O, O cannot change his defence since m ∶= 1, then by Hypothe-
sis 7.3.2,M, (i, t) ⊧ (ϕ1 ∨ ϕ2) iffM, (i, t) ⊧ ϕ1 orM, (i, t) ⊧ ϕ2 (by Defini-
tion 2.8.11).

2. if X = P, P can change his defence since n ∶= 2, then by Hypothesis 7.3.2,
M, (i, t) ⊧ ¬(ϕ1 ∨ ϕ2) iff M, (i, t) ⊧ ¬ϕ1 and M, (i, t) ⊧ ¬ϕ2 (by Defini-
tion 2.8.11).

◇ Particle rule for ◯−1 operator :
if ⟨X − i, t ∶ ◯−1ϕ⟩ ∈ d∆

then ⟨Y − i, t ∶ ?◯−1
u ⟩ ∈ d∆

so ⟨X − i, t.u ∶ ϕ⟩ ∈ d∆

1. if X = O, then by Hypothesis 7.3.2,M, (i, t) ⊧◯−1ϕ iffM, (i, t.u) ⊧ ϕ for
every u such that u↝ t (by Definition 2.8.11).

2. if X = P, then by Hypothesis 7.3.2, M, (i, t) ⊧ ¬◯−1ϕ iffM, (i, t.u) ⊧ ¬ϕ
for at least one u such that u↝ t (by Definition 2.8.11).

◇ Particle rule for ◯ operator :
if ⟨X − i, t ∶ ◯ϕ⟩ ∈ d∆

then ⟨Y − i, t ∶ ?◯u⟩ ∈ d∆

so ⟨X − i, t.u ∶ ϕ⟩ ∈ d∆

1. if X = O, then by Hypothesis 7.3.2, M, (i, t) ⊧ ◯ϕ iff M, (i, t.u) ⊧ ϕ for
every u such that t↝ u (by Definition 2.8.11).

2. if X = P, then by Hypothesis 7.3.2,M, (i, t) ⊧ ¬◯ϕ iffM, (i, t.u) ⊧ ¬ϕ for
at least one u such that t↝ u (by Definition 2.8.11).

◇ Particle rule for B operator :
if ⟨X − i, t ∶ Bϕ⟩ ∈ d∆

then ⟨Y − i, t ∶ ?Bj⟩ ∈ d∆

so ⟨X − i.j, t ∶ ϕ⟩ ∈ d∆

1. if X = O, then by Hypothesis 7.3.2, M, (i, t) ⊧ Bϕ iff M, (i.j, t) ⊧ ϕ for
every j ∈ Bt(i) (by Definition 2.8.11).

2. if X = P, then by Hypothesis 7.3.2,M, (i, t) ⊧ ¬Bϕ iffM, (i.j, t) ⊧ ¬ϕ for
at least one j ∈ Bt(i) (by Definition 2.8.11).

◇ Particle rule for A operator :
if ⟨X − i, t ∶ Aϕ⟩ ∈ d∆

then ⟨Y − i, t ∶ ?Aj⟩ ∈ d∆

so ⟨X − i.j, t ∶ ϕ⟩ ∈ d∆

1. if X = O, then by Hypothesis 7.3.2, M, (i, t) ⊧ Aϕ iff M, (i.j, t) ⊧ ϕ for
every j ∈ S (by Definition 2.8.11).
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2. if X = P, then by Hypothesis 7.3.2,M, (i, t) ⊧ ¬Aϕ iffM, (i.j, t) ⊧ ¬ϕ for
at least one j ∈ S (by Definition 2.8.11).

◇ Particle rule for I operator :
if ⟨X − i, t ∶ Iϕ⟩ ∈ d∆

then ⟨Y − i, t ∶ ?Ij⟩ ∈ d∆, or ⟨Y − i, t ∶ !Ij⟩ ∈ d∆

so ⟨X − i.j, t ∶ ϕ⟩ ∈ d∆, or ⟨X − i, t ∶?I∗ej ⟩ ∈ d∆

1. if X = O, P can change his challenge since n ∶= 2, then by Hypothesis 7.3.2,
M, (i, t) ⊧ Iϕ iff M, (i.j, t) ⊧ ϕ for every j ∈ It(i); and M, (i.j, t) ⊧ ϕ and
j ∈ It(i) (by Definition 2.8.11).

2. if X = P, O cannot change his challenge since m ∶= 1, then by Hypoth-
esis 7.3.2, M, (i, t) ⊧ ¬Iϕ iff M, (i.j, t) ⊧ ¬ϕ for at least one j ∈ It(i); or
M, (i.j, t) ⊧ ϕ and j ∉ It(i) (by Definition 2.8.11).

◻

7.3.5. Lemma. The Proponent wins d∆ iff he states an atomic formula or a
context choice confirmation.

7.3.6. Proof. Note that the structural rule SR-3 states that a player wins iff
he plays the last move of the play9.

1. If the Proponent wins d∆, then his last move is ⟨P − i, t ∶ e⟩ such that e is
an atomic formula or a context choice confirmation.

7.3.7. Hypothesis. The Proponent wins d∆ such that the last move is ⟨P−
i, t ∶ e⟩, where e is not an atomic formula or a context choice confirmation.

From Hypothesis 7.3.7 it follows that :

(a) ⟨P − i, t ∶ e⟩ is a defence of the Proponent where e is a complex for-
mula. Then the Opponent can challenge that formula, consequently
the previous move of the Proponent is not the last one, contradicting
the Hypothesis 7.3.7 ; or

(b) ⟨P − i, t ∶ e⟩ is a challenge of the Proponent. Then the Opponent is
always able to produce a defence (consequently the previous move of
the Proponent is not the last one, contradicting the Hypothesis 7.3.7)
unless it is a challenge against a negation (since there is no possible
defence in that case). In that case :

9See structural rule SR-3 in Section 7.2.
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i. either e is an atomic formula, contradicting the Hypothesis 7.3.7,
ii. or e is not an atomic formula but a complex formula, and the Op-

ponent is always able to produce a counter-attack (consequently
the previous move of the Proponent is not the last one, contra-
dicting the Hypothesis 7.3.7).

2. If the Proponent states an atomic formula or a context choice confirmation
then he wins d∆ with the corresponding move.

7.3.8. Hypothesis. The Proponent states an atomic formula or a context
choice confirmation in a move α ∈ d∆, but he does not win d∆.

From Hypothesis 7.3.8 it follows that :

(a) there exists a move β of the Opponent immediately following α (by
SR-1 and SR-3).

(b) Since there is no possible challenge on atomic formula or context choice
confirmation, β cannot be a challenge on α.

(c) β cannot be a defence against α. Indeed α should be a challenge,
consequently it would be a challenge on a negation (this is the only
case where the challenge amounts to state a formula) and there is no
possible defence in that case.

(d) Consequently β must be a challenge or a defence against a previous
move of the Proponent.

◇ If β is a challenge :

– there exists a move γ of the Proponent challenged by β.
– After γ, the Opponent had the choice between β and the move δ

immediately following γ in d∆.
– But since m ∶= 1 and δ is already a challenge on γ, β cannot be

another challenge on this move : β cannot be a challenge on γ.

Consequently, if β is a challenge on a previous move of the Proponent,
this challenge is on a move ε preceding γ.

◇ If β is a defence :

– there exists a move γ of the Proponent of which β is the defence.
– After γ, the Opponent had the choice between β and the move δ

immediately following γ in d∆.
– But since m ∶= 1 and δ is already a defence against γ, β cannot

be another defence against this move : β cannot be a challenge
against γ.
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Consequently, if β is a defence against a previous move of the Propo-
nent, this defence is against a move ε preceding γ.

This reasoning can be applied until the start of d∆ showing that β cannot
be a challenge or a defence against ε but has to be (on the same grounds
as above) a challenge or a defence against a previous move ζ and so on.
Finally, β would be a challenge on ∆ or a defence against the first challenge
of the Proponent but since m ∶= 1, the actual choice and β cannot both
belong to d∆.

Consequently, β cannot be a challenge or a defence against a previous move
of the Proponent. In other words, (d) leads to a contradiction. Then it
follows that (a) leads to a contradiction : there does not exist a move β
following α, contradicting – in accordance with the structural rule SR-3 –
the defeat of the Proponent in d∆ (Hypothesis 7.3.8).

◻

Soundness Theorem

7.3.9. Theorem. If the Proponent wins d∆ with the rules of DTDL, then ∆ is
a valid formula in LPLS∗.

7.3.10. Proof. We prove soundness by showing the contrapositive that is, we
show that if there exists one (M, (i.t)) such that ¬∆ is satisfiable in (M, (i, t)),
then the Proponent loses d∆. It follows from Lemma 7.3.3 and Lemma 7.3.5 that
if ¬∆ is satisfiable then the Proponent loses :

7.3.11. Hypothesis. Let a play d∆ be such that ¬∆ is satisfiable in (M, (i, t))
and the Proponent wins d∆.

1. By SR-3 and Hypothesis 7.3.11, it follows that the Proponent plays the
last move.

2. By (1) the Proponent plays the last move in d∆. By Lemma 7.3.5, the
last move of the Proponent is an atomic formula or a context choice con-
firmation. By SR-2, the Proponent can state an atomic formula only if
this atomic formula has been stated by the Opponent first. By SR-5 and
SR-5.2 The Proponent can only state a context choice confirmation if the
corresponding context has been chosen by the Opponent first to challenge
a B or I operator.

3. From (2) and Definition 7.2.3, d∆ is close.

4. By Lemma 7.3.3 et (3) it follows that it exists a branching time belief
revision model M such that M, (i, t) ⊧ p and M, (i, t) ⊧ ¬p, or such that
j ∈ It(i) and j ∉ It(i), which is a contradiction.
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Consequently, if the Proponent wins d∆, there is no branching time belief revision
model satisfying ¬∆.

◻

7.3.2 Completeness

We prove that DTDL is complete with respect to LPLS∗ showing that if ∆ is
valid in LPLS∗ then the Proponent has a winning strategy in D∆ with the rules of
DTDL. We prove the contrapositive : we prove that if the Proponent loses d∆

with the rules of DTDL then ∆ is not valid in LPLS∗.

Note that we still assume Hypothesis 7.3.1.

We start providing two definitions.

7.3.12. Definition. An extended dialogue D∆ is a play d∆ where the Propo-
nent can challenge modal operators as many times as he needs. In other words,
repetition ranks do not concern modal operators anymore10. A branching time
belief revision model M can be built from an extended dialogue : M is defined
as < T,↝, S,{Bt, It}t∈T , V >, where11:

– T = {t such that ⟨X − i, t ∶ ϕ⟩ ∈D∆}, or ⟨X − i, s ∶ ?◻t⟩ ∈D∆} for ◻ any kind
of temporal operator (◯,◯−1),

– t↝ = {u such that ⟨X − i, t ∶ ?◯u⟩ ∈D∆},

– S = {i such that ⟨X − i, t ∶ ϕ⟩ ∈D∆}, or ⟨X − h, t ∶ ?◻i⟩ ∈D∆} for ◻ any kind
of non temporal operator (A,B, I),

– Bt(i) = {j such that ⟨X − i, t ∶ ?Bj⟩ ∈D∆},

– It(i) = {j such that ⟨X − i, t ∶ ?Ij⟩ ∈D∆} or ⟨O − i, t ∶ ?I∗j ⟩ ∈D∆},

– Vp = {i such that ⟨O − i, t ∶ p⟩ ∈D∆}.

It seems that an extended dialogue can then be infinite. However, we noticed
in Definition 2.8.7 that the set of states S of branching-time belief revision frames
is finite as well as the set t↝ of all immediate successors of an instant t for all
instants t. Then we can consider a finite number of choices of contextual points
to challenge modal operators. So we can only consider finite extended dialogues.

10In Theorem 7.3.16, we show that if the Proponent can win, n ∶= 2 is enough to win d∆ that
is, he does not need to challenge all contextual points.

11Note that we cast all the relations in terms of maps.
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7.3.13. Definition. The length of ϕ is defined as :

– len(p) = 1

– len(¬ϕ) = 1 + len(ϕ)

– len(ϕ ∧ ψ) = 1 + len(ϕ) + len(ψ)

– len(◯−1ϕ) = 2 + len(ϕ)

– len(◯ϕ) = 2 + len(ϕ)

– len(Bϕ) = 1 + len(ϕ)

– len(Iϕ) = 1 + len(ϕ)

– len(Aϕ) = 1 + len(ϕ)

7.3.14. Lemma. If D∆ is terminal and the Proponent loses D∆, then it exists a
model (M, (i, t)) such that :

– ⟨O − i, t ∶ ϕ⟩ ∈D∆ meansM, (i, t) ⊧ ϕ, and

– ⟨P − i, t ∶ ϕ⟩ ∈D∆ meansM, (i, t) ⊧ ¬ϕ.

– ⟨O − i, t ∶ ?I∗j ⟩ ∈D∆ means j ∈ It(i), and

– ⟨P − i, t ∶ ?I∗j ⟩ ∈D∆ means j ∉ It(i).

7.3.15. Proof. We proceed by induction on the length of ϕ. The basic case is
about atomic formulas.

1. Base: ϕ ∶= p
If ⟨X − (i, t) ∶ p⟩ ∈D∆, then either :

1. X = O andM, (i, t) ⊧ p (Definition 7.3.12) ; or

2. X = P and consequently, in accordance with Lemma 7.3.5, the Proponent
wins D∆ since he states an atomic formula, contradicting Lemma 7.3.14.

2. Induction Hypothesis :
If len(ϕ) ≤ n then if ⟨X − i, t ∶ ϕ⟩ ∈ D∆ and the Proponent loses D∆, there exists
a model (M, (i, t)) such that :

– ⟨O − i, t ∶ ϕ⟩ ∈D∆ meansM, (i, t) ⊧ ϕ, and

– ⟨P − i, t ∶ ϕ⟩ ∈D∆ meansM, (i, t) ⊧ ¬ϕ.
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– ⟨O − i, t ∶ ?I∗j ⟩ ∈D∆ means j ∈ It(i), and

– ⟨P − i, t ∶ ?I∗j ⟩ ∈D∆ means j ∉ It(i).

3. Inductive step :
Let us assume that len(ϕ) = n + 1. We consider 8 different cases, one for each
logical constant in our dialogical language.

Case 1 : ϕ ∶= ¬ψ
If ⟨X − i, t ∶ ¬ψ⟩ ∈D∆, then :
⟨Y − i, t ∶ ψ⟩ ∈D∆.

1. Y = O thenM, (i, t) ⊧ ψ (by Induction Hypothesis – H. I.) ; or

2. Y = P then either :

(a) ψ ∉ Φ : ⟨P − i, t ∶ ψ⟩ ∈D∆ thenM, (i, t) ⊧ ¬ψ (by H. I.) ; or

(b) ψ ∈ Φ :

i. ⟨O − i, z ∶ ψ⟩ ∉ D∆ for any contextual point z,12 so i ∉ Vψ then
M, (i, t) ⊧ ¬ψ (by Definition 7.3.12),

ii. ⟨O− i, z ∶ ψ⟩ ∈D∆ and ⟨P− i, t ∶ ψ⟩ ∈D∆, then by Lemma 7.3.5 the
Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.

Case 2 : ϕ ∶= ψ ∧ χ
If ⟨X − i, t ∶ ψ ∧ χ⟩ ∈D∆, then :
⟨Y − i, t ∶ ?∧1⟩ ∈D∆ or ⟨Y − i, t ∶ ?∧2⟩ ∈D∆.

1. If X = O, the Proponent can change his challenge since n ∶= 2. Conse-
quently :

⟨O − i, t ∶ ψ⟩ ∈D∆ thenM, (i, t) ⊧ ψ (by H. I.) ; and

⟨O − i, t ∶ χ⟩ ∈D∆ thenM, (i, t) ⊧ χ (by H. I.)

iffM, (i, t) ⊧ ψ ∧ χ (by Definition 2.8.11).

2. If X = P, O can only challenge once since m ∶= 1. We only deal with the
case where the Opponent challenges the first conjunct13.

(a) If ψ ∉ Φ then :
⟨P − i, t ∶ ψ⟩ ∈D∆ thenM, (i, t) ⊧ ¬ψ (by H. I.)
iffM, (i, t) ⊧ ¬(ψ ∧ χ) (by Definition 2.8.11).

12Indeed it is possible that z ≠ t.
13The same reasoning can be applied in the case where the Opponent challenges the second

conjunct.
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(b) If ψ ∈ Φ then either :

i. ⟨O − i, z ∶ ψ⟩ ∉ D∆ for any contextual point z, so i ∉ Vψ then
M, (i, t) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬(ψ ∧ χ) (by Definition 2.8.11) ; or

ii. ⟨O− i, z ∶ ψ⟩ ∈D∆ and ⟨P− i, t ∶ ψ⟩ ∈D∆, then by Lemma 7.3.5 the
Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.

Case 3 : ϕ ∶= ψ ∨ χ
If ⟨X − i, t ∶ ψ ∨ χ⟩ ∈D∆, then :
⟨Y − i, t ∶ ?∨⟩ ∈D∆.

1. If X = O, O can only produce one defence since m ∶= 1. Consequently :

⟨O − i, t ∶ ψ⟩ ∈D∆ thenM, (i, t) ⊧ ψ (by H. I.) ; or

⟨O − i, t ∶ χ⟩ ∈D∆ thenM, (i, t) ⊧ χ (by H. I.)

iffM, (i, t) ⊧ (ψ ∨ χ) (by Definition 2.8.11).

2. If X = P, the Proponent can change his defence since n ∶= 2.

(a) If ψ ∉ Φ and χ ∉ Φ then :
⟨P − i, t ∶ ψ⟩ ∈D∆ thenM, (i, t) ⊧ ¬ψ (by H. I.) ; and
⟨P − i, t ∶ χ⟩ ∈D∆ thenM, (i, t) ⊧ ¬χ (by H. I.)
iffM, (i, t) ⊧ ¬(ψ ∨ χ) (by Definition 2.8.11).

(b) If ψ ∈ Φ and χ ∉ Φ then either :

i. ⟨O − i, z ∶ ψ⟩ ∉ D∆ for any contextual point z, so i ∉ Vψ then
M, (i, t) ⊧ ¬ψ (by Definition 7.3.12) and
⟨P − i, t ∶ χ⟩ ∈D∆ thenM, (i, t) ⊧ ¬χ (by H. I.)
iffM, (i, t) ⊧ ¬(ψ ∨ χ) (by Definition 2.8.11) ; or

ii. ⟨O− i, z ∶ ψ⟩ ∈D∆ and ⟨P− i, t ∶ ψ⟩ ∈D∆, then by Lemma 7.3.5 the
Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.14

(c) If ψ ∈ Φ and χ ∈ Φ then either :

i. ⟨O − i, z ∶ ψ⟩ ∉ D∆ for any contextual point z, so i ∉ Vψ then
M, (i, t) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬(ψ ∨ χ) (by Definition 2.8.11) ; or

ii. ⟨O− i, z ∶ ψ⟩ ∈D∆ and ⟨P− i, t ∶ ψ⟩ ∈D∆, then by Lemma 7.3.5 the
Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.15

14The same reasoning can be applied in the case where ψ ∉ Φ and χ ∈ Φ.
15We only show the reasoning for ψ. The same reasoning can be applied for χ.
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Case 4 : ϕ ∶=◯−1ψ
If ⟨X − i, t ∶ ◯−1ψ⟩ ∈D∆, then :
⟨Y − i, t ∶ ?◯−1

u ⟩ ∈D∆ for all contextual points u.

1. If X = O, then :

⟨O−i, t.u ∶ ψ⟩ ∈D∆ thenM, (i, u) ⊧ ψ (by H. I.). By Hypothesis Lemma 7.3.14,
D∆ is terminal, consequently :

⟨O − i, t.v ∶ ψ⟩ ∈D∆ thenM, (i, v) ⊧ ψ (by H. I.), and

⋮
⟨O − i, t.w ∶ ψ⟩ ∈D∆ thenM, (i,w) ⊧ ψ (by H. I.)

for all contextual points u that respect SR-4, SR-4.1 and SR-4.2

iffM, (i, t) ⊧◯−1ψ (by Definition 2.8.11).

2. If X = P, then :

(a) If ψ ∉ Φ then :
⟨P − i, t.u ∶ ψ⟩ ∈D∆ thenM, (i, u) ⊧ ¬ψ (by H. I.)
for at least one contextual point u that respect SR-4
iffM, (i, t) ⊧ ¬◯−1ψ (by Definition 2.8.11).

(b) If ψ ∈ Φ then either :
i. ⟨O − i, z ∶ ψ⟩ ∉ D∆ for any contextual point z,16 so i ∉ Vψ then
M, (i, u) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬◯−1ψ (by Definition 2.8.11) ; or

ii. ⟨O−i, z ∶ ψ⟩ ∈D∆ and ⟨P−i, t.u ∶ ψ⟩ ∈D∆ then by Lemma 7.3.5 the
Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.

Case 5 : ϕ ∶=◯ψ
If ⟨X − i, t ∶ ◯ψ⟩ ∈D∆, then :
⟨Y − i, t ∶ ?◯u⟩ ∈D∆ for all contextual points u.

1. If X = O, then :

⟨O−i, t.u ∶ ψ⟩ ∈D∆ thenM, (i, u) ⊧ ψ (by H. I.). By Hypothesis Lemma 7.3.14,
D∆ is terminal, consequently :

⟨O − i, t.v ∶ ψ⟩ ∈D∆ thenM, (i, v) ⊧ ψ (by H. I.), and

⋮
⟨O − i, t.w ∶ ψ⟩ ∈D∆ thenM, (i,w) ⊧ ψ (by H. I.)

for all contextual points u that respect SR-4, SR-4.1 and SR-4.2

iffM, (i, t) ⊧◯ψ (by Definition 2.8.11).
16Indeed it is possible that z ≠ u.
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2. If X = P, then :

(a) If ψ ∉ Φ then :
⟨P − i, t.u ∶ ψ⟩ ∈D∆ thenM, (i, u) ⊧ ¬ψ (by H. I.)
for at least one contextual point u that respect SR-4
iffM, (i, t) ⊧ ¬◯ψ (by Definition 2.8.11).

(b) If ψ ∈ Φ then either :

i. ⟨O − i, z ∶ ψ⟩ ∉ D∆ for any contextual point z, so i ∉ Vψ then
M, (i, u) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬◯ψ (by Definition 2.8.11) ; or

ii. ⟨O−i, z ∶ ψ⟩ ∈D∆ and ⟨P−i, t.u ∶ ψ⟩ ∈D∆ then by Lemma 7.3.5 the
Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.

Cas 6 : ϕ ∶= Bψ
If ⟨X − i, t ∶ Bψ⟩ ∈D∆ then :
⟨Y − i, t ∶ ?Bj⟩ ∈D∆ for all contextual points j.

1. If X = O, then :

⟨O − i.j, t ∶ ψ⟩ ∈ D∆ then M, (j, t) ⊧ ψ (by H. I.). By Hypothesis of
Lemma 7.3.14, D∆ is terminal, consequently :

⟨O − i.k, t ∶ ψ⟩ ∈D∆ thenM, (k, t) ⊧ ψ (by H. I.), and

⋮
⟨O − i.l, t ∶ ψ⟩ ∈D∆ thenM, (l, t) ⊧ ψ (by H. I.)

for all contextual points j that respect SR-5, SR-5.4, SR-5.5, SR-5.6,
SR-5.7 and SR-5.8

iffM, (i, t) ⊧ Bψ (by Definition 2.8.11).

2. If X = P, then :

(a) If ψ ∉ Φ then :
⟨P − i.j, t ∶ ψ⟩ ∈D∆ thenM, (j, t) ⊧ ¬ψ (by H. I.)
for at least one contextual point j that respect SR-5
iffM, (i, t) ⊧ ¬Bψ (by Definition 2.8.11).

(b) If ψ ∈ Φ then either :

i. ⟨O − i.j, z ∶ ψ⟩ ∉ D∆ for any contextual point z,17 so j ∉ Vψ then
M, (j, t) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬Bψ (by Definition 2.8.11) ; or

17Indeed it is possible that z ≠ t.
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ii. ⟨O − i.j, z ∶ ψ⟩ ∈D∆ and ⟨P − i.j, t ∶ ψ⟩ ∈D∆ then by Lemma 7.3.5
the Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.

Cas 7 : ϕ ∶= Aψ
If ⟨X − i, t ∶ Aψ⟩ ∈D∆ then :
⟨Y − i, t ∶ ?Aj⟩ ∈D∆ for all contextual points j.

1. If X = O, then :

⟨O − i.j, t ∶ ψ⟩ ∈ D∆ then M, (j, t) ⊧ ψ (by H. I.). By Hypothesis of
Lemma 7.3.14, D∆ is terminal, consequently :

⟨O − i.k, t ∶ ψ⟩ ∈D∆ thenM, (k, t) ⊧ ψ (by H. I.), and

⋮
⟨O − i.l, t ∶ ψ⟩ ∈D∆ thenM, (l, t) ⊧ ψ (by H. I.)

for all contextual points j that respect SR-5, SR-5.1, SR-5.3

iffM, (i, t) ⊧ Aψ (by Definition 2.8.11).

2. If X = P, then :

(a) If ψ ∉ Φ then :
⟨P − i.j, t ∶ ψ⟩ ∈D∆ thenM, (j, t) ⊧ ¬ψ (by H. I.)
for at least one contextual point j that respect SR-5
iffM, (i, t) ⊧ ¬Aψ (by Definition 2.8.11).

(b) If ψ ∈ Φ then either :

i. ⟨O − i.j, z ∶ ψ⟩ ∉ D∆ for any contextual point z, so j ∉ Vψ then
M, (j, t) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬Aψ (by Definition 2.8.11) ; or

ii. ⟨O − i.j, z ∶ ψ⟩ ∈D∆ and ⟨P − i.j, t ∶ ψ⟩ ∈D∆ then by Lemma 7.3.5
the Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14.

Cas 8 : ϕ ∶= Iψ
If ⟨X − i, t ∶ Iψ⟩ ∈D∆ then :
⟨Y − i, t ∶ ?Ij⟩ ∈D∆ or ⟨Y − i, t ∶ !Ij⟩ ∈D∆ for all contextual points j.

1. If X = O, the Proponent can change his challenge since n ∶= 2. Conse-
quently :

⟨O − i.j, t ∶ ψ⟩ ∈ D∆ then M, (j, t) ⊧ ψ (by H. I.). By Hypothesis of
Lemma 7.3.14, D∆ is terminal, consequently :

⟨O − i.k, t ∶ ψ⟩ ∈D∆ thenM, (k, t) ⊧ ψ (by H. I.), and

⋮
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⟨O − i.l, t ∶ ψ⟩ ∈D∆ thenM, (l, t) ⊧ ψ (by H. I.)

for all contextual points j that respect SR-5, SR-5.2 ; and

⟨O − i, t ∶ ?I∗j ⟩ ∈D∆ then j ∈ It(i) (by H. I.)

for all contextual points j that respect SR-5, SR-5.2, SR-5.X that is,
M, (i.j, t) ⊧ ψ
iffM, (i, t) ⊧ Iψ (by Definition 2.8.11).

2. If X = P, O can only challenge once since m ∶= 1.

(a) If ψ ∉ Φ then :
⟨P − i.j, t ∶ ψ⟩ ∈D∆ thenM, (j, t) ⊧ ¬ψ (by H. I.)
for at least one contextual point j that respect SR-5
iffM, (i, t) ⊧ ¬Iψ (by Definition 2.8.11).

(b) If ψ ∈ Φ then either :

i. ⟨O − i.j, z ∶ ψ⟩ ∉ D∆ for any contextual point z, so j ∉ Vψ then
M, (j, t) ⊧ ¬ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬Iψ (by Definition 2.8.11) ; or

ii. ⟨O − i.j, z ∶ ψ⟩ ∈D∆ and ⟨P − i.j, t ∶ ψ⟩ ∈D∆ then by Lemma 7.3.5
the Proponent winsD∆, contradicting the hypothesis of Lemma 7.3.14 ;
or

(a) ⟨O − i, t ∶ ?Ij⟩ ∉ D∆ and ⟨O − i, t ∶ ?Bj⟩ ∉ D∆ and ⟨O − i, t ∶ ?I∗j ⟩ ∉ D∆

then j ∉ It(i) for any contextual points j that respect SR-5, SR-5.X
that is,M, (i.j, t) ⊧ ψ (by Definition 7.3.12)
iffM, (i, t) ⊧ ¬Iψ (by Definition 2.8.11) ; or

(b) ⟨O − i, t ∶ ?Ij⟩ ∈ D∆ or ⟨O − i, t ∶ ?Bj⟩ ∈ D∆ or ⟨O − i, t ∶ ?I∗j ⟩ ∈ D∆,
and ⟨P− i, t ∶ ?I∗j ⟩ ∈D∆ then by Lemma 7.3.5 the Proponent wins D∆,
contradicting the hypothesis of Lemma 7.3.14.

◻

In Lemma 7.3.14, we assumed players can change their challenges or defences
on modal operators as many time as needed. This allows to establish a symmetric
link between the moves in D∆ and a model M satisfying ∆ since it allows to
check every possible situations of a model. In the next theorem, we show that it
is enough to consider a play d∆ where m ∶= 1 and n ∶= 2.

7.3.16. Theorem. The repetition ranks m ∶= 1 and n ∶= 2 are enough to check if
there exists a winning strategy for the Proponent in D∆.
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7.3.17. Proof. We proceed by induction on the length of ϕ in the scope of
modal operators.

1. ◯−1 operator :

(a) Base : We show that if the Proponent wins D∆, then a repetition rank
1 is enough for a challenge on a formula ◯−1ϕ of the Opponent where
len(ϕ) = 1 :
⟨O − i, t ∶ ◯−1ϕ⟩ ∈D∆

⟨P−i, t ∶ ?◯−1
u ⟩ ∈D∆ or ⟨P−i, t ∶ ?◯−1

v ⟩ ∈D∆ for any contextual points u
and v. However these contextual points have to respect SR-4, SR-4.1
and SR-4.2 that is, u = v. The Proponent can only choose one single
instant to challenge a P operator whatever his repetition rank is.

(b) Induction Hypothesis : If the Proponent wins D∆ then a repetition
rank 1 is enough for a challenge on a formula ◯−1ϕ of the Opponent
if len(ϕ) = n.

(c) Inductive step : The same reasoning as the basic case can be applied
to show that if the Proponent wins D∆, a repetition rank 1 is enough
for a challenge on a formula ◯−1ϕ of the Opponent where len(ϕ) ≥
n + 1.

2. ◯ operator :

(a) Base : We show that if the Proponent wins D∆, then a repetition rank
1 is enough for a challenge on a formula ◯ϕ of the Opponent where
len(ϕ) = 1 :
⟨O − i, t ∶ ◯ϕ⟩ ∈D∆

⟨P − i, t ∶ ?◯u⟩ ∈ D∆ or ⟨P − i, t ∶ ?◯v⟩ ∈ D∆ for any contextual points
u and v, so
⟨O − i, t.u ∶ ϕ⟩ ∈ D∆ or ⟨O − i, t.v ∶ ϕ⟩ ∈ D∆. The Proponent can then
state the atomic formula ϕ in the contextual point i at every instant
(by SR-2). The Proponent only needs to challenge once whatever the
contextual point he chooses.

(b) Induction Hypothesis : If the Proponent wins D∆ then a repetition
rank 1 is enough for a challenge on a formula ◯ϕ of the Opponent if
len(ϕ) = n.

(c) Inductive step : We show that if the Proponent wins D∆, then a
repetition rank 1 is enough for a challenge on a formula ◯ϕ of the
Opponent where len(ϕ) ≥ n + 1 :
⟨O − i, t ∶ ◯ϕ⟩ ∈D∆
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⟨P − i, t ∶ ?◯u⟩ ∈ D∆ or ⟨P − i, t ∶ ?◯v⟩ ∈ D∆ for any contextual points
u and v, so
⟨O − i, t.u ∶ ϕ⟩ ∈ D∆ or ⟨O − i, t.v ∶ ϕ⟩ ∈ D∆. Since the Proponent wins
D∆, we only need to consider the choice u or v leading him to win.

3. B operator :

(a) Base : We show that if the Proponent wins D∆, then a repetition rank
1 is enough for a challenge on a formula Bϕ of the Opponent where
len(ϕ) = 1 :
⟨O − i, t ∶ Bϕ⟩ ∈D∆

⟨P − i, t ∶ ?Bj⟩ ∈D∆ or ⟨P − i, t ∶ ?Bk⟩ ∈D∆ for any contextual points j
and k, so
⟨O − i.j, t ∶ ϕ⟩ ∈ D∆ or ⟨O − i.k, t ∶ ϕ⟩ ∈ D∆. The Proponent can then
state the atomic formula ϕ in the contextual point j or k at any instant
(by SR-2). Since he wins D∆, we only need to consider the choice j
or k leading him to win.

(b) Induction Hypothesis : If the Proponent wins D∆ then a repetition
rank 1 is enough for a challenge on a formula Bϕ of the Opponent if
len(ϕ) = n.

(c) Inductive step : We show that if the Proponent wins D∆, then a
repetition rank 1 is enough for a challenge on a formula Bϕ of the
Opponent where len(ϕ) ≥ n + 1 :
⟨O − i, t ∶ Bϕ⟩ ∈D∆

⟨P − i, t ∶ ?Bj⟩ ∈D∆ or ⟨P − i, t ∶ ?Bk⟩ ∈D∆ for any contextual points j
and k, so
⟨O − i.j, t ∶ ϕ⟩ ∈ D∆ or ⟨O − i.k, t ∶ ϕ⟩ ∈ D∆. Since the Proponent wins
D∆, we only need to consider the choice j or k leading him to win.

4. A operator :

(a) Base : We show that if the Proponent wins D∆, then a repetition rank
1 is enough for a challenge on a formula Aϕ of the Opponent where
len(ϕ) = 1 :
⟨O − i, t ∶ Aϕ⟩ ∈D∆

⟨P − i, t ∶ ?Aj⟩ ∈D∆ or ⟨P − i, t ∶ ?Ak⟩ ∈D∆ for any contextual points j
and k, so
⟨O − i.j, t ∶ ϕ⟩ ∈ D∆ or ⟨O − i.k, t ∶ ϕ⟩ ∈ D∆. Then Proponent can then
state the atomic formula ϕ in the contextual point j or k at any instant
(by SR-2). Since he wins D∆, we only need to consider the choice j
or k leading him to win.
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(b) Induction Hypothesis : If the Proponent wins D∆ then a repetition
rank 1 is enough for a challenge on a formula Aϕ of the Opponent if
len(ϕ) = n.

(c) Inductive step : We show that if the Proponent wins D∆, then a
repetition rank 1 is enough for a challenge on a formula Aϕ of the
Opponent where len(ϕ) ≥ n + 1 :
⟨O − i, t ∶ Aϕ⟩ ∈D∆

⟨P − i, t ∶ ?Aj⟩ ∈D∆ or ⟨P − i, t ∶ ?Ak⟩ ∈D∆ for any contextual points j
and k, so
⟨O − i.j, t ∶ ϕ⟩ ∈ D∆ or ⟨O − i.k, t ∶ ϕ⟩ ∈ D∆. Since the Proponent wins
D∆, we only need to consider the choice j or k leading him to win.

5. I operator :

(a) Base : We show that if the Proponent wins D∆, then a repetition rank
1 is enough for a challenge on a formula Iϕ of the Opponent where
len(ϕ) = 1 :
⟨O − i, t ∶ Iϕ⟩ ∈D∆

⟨P − i, t ∶ ?Ij⟩ ∈ D∆ or ⟨P − i, t ∶ ?Ik⟩ ∈ D∆, or ⟨P − i, t ∶ !Ij⟩ ∈ D∆ or
⟨P − i, t ∶ !Ik⟩ ∈D∆ for any contextual points j and k, so
⟨O − i.j, t ∶ ϕ⟩ ∈ D∆ or ⟨O − i.k, t ∶ ϕ⟩ ∈ D∆, or ⟨O − i, t ∶ ?I∗j ⟩ ∈ D∆ or
⟨O− i, t ∶ ?I∗k ⟩ ∈D∆. The Proponent can then state the atomic formula
ϕ in the contextual point j or k at any instant (by SR-2), or he can
then use the contextual point j or k at t to challenge a I operator.
Since he wins D∆, we only need to consider the choice leading him to
win.

(b) Induction Hypothesis : If the Proponent wins D∆ then a repetition
rank 1 is enough for a challenge on a formula Iϕ of the Opponent if
len(ϕ) = n.

(c) Inductive step : We show that if the Proponent wins D∆, then a
repetition rank 1 is enough for a challenge on a formula Iϕ of the
Opponent where len(ϕ) ≥ n + 1 :
⟨O − i, t ∶ Iϕ⟩ ∈D∆

⟨P − i, t ∶ ?Ij⟩ ∈ D∆ or ⟨P − i, t ∶ ?Ik⟩ ∈ D∆, or ⟨P − i, t ∶ !Ij⟩ ∈ D∆ or
⟨P − i, t ∶ !Ik⟩ ∈D∆ for any contextual points j and k, so
⟨O − i.j, t ∶ ϕ⟩ ∈ D∆ or ⟨O − i.k, t ∶ ϕ⟩ ∈ D∆, or ⟨O − i, t ∶ ?I∗j ⟩ ∈ D∆ or
⟨O − i, t ∶ ?I∗k ⟩ ∈ D∆. Since the Proponent wins D∆, we only need to
consider the choice leading him to win.

◻



198 Chapter 7. Bonanno’s belief revision logic in a dialogical setting

If the Proponent wins D∆, a repetition rank 1 is enough for a challenge on a
modal formula ◻ϕ such that ◻ is any (◯−1,◯,B,A, I) of the Opponent, whatever
the length of ϕ is. A repetition rank 2 is only required for Proponent to challenge
a conjunction or change his defence against disjunction. Then we can deal with
d∆ instead of D∆ for the completeness theorem.

Completeness Theorem

7.3.18. Theorem. If ∆ is a valid formula in LPLS∗, then the Proponent wins
d∆ with the rules of DTDL.

7.3.19. Proof. We prove completeness by showing the contrapositive that is,
we show that if the Proponent loses d∆ then ∆ is not a valid formula in LPLS∗. By
Lemma 7.3.14 and Theorem 7.3.16, if the Proponent loses d∆, then there exists
a branching time belief revision model (M, (i.t)) satisfying ¬∆. Consequently,
there exists a model (M, (i.t)) such that ∆ is not satisfiable in (M, (i.t)) and
then, ∆ is not a valid formula in LPLS∗. ◻

Conclusion
DTDL allows an argumentative interpretation of the belief revision policy of Bo-
nanno. The notion of belief and information as well as their relation is then
interpreted in terms of choice in a dialogical framework. We pointed out the
interpretation of the interplay between information and beliefs as well as the in-
terplay between the beliefs themselves – namely, initial beliefs and revised beliefs
– as the interplay between the choices of the players. In particular we showed the
interplay between the choices of contextual points to challenge belief and/or infor-
mation operators. We noticed that this is the interplay that defines a particular
belief revision policy, namely the belief revision policy of Bonanno. Finally, we un-
derlined the originality of the interpretation of the information operator through
the notion of choice. Indeed this notion of choice is directly implemented in the
dialogue in the sense that players discuss explicitly the choices they can/should
make with respect to their previous arguments.
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Chapter 8

Conclusion

Answering the questions

In the first chapter we have provided the reader with a list of questions, which
have guided the work in this thesis. Some of these questions have received clear
answers while others have generated more refined questions or even new questions.
Looking back, it is time to take stock of what we have achieved so far.

In Part I, Chapter 2 we explored the literature on belief revision theory and
presented the reader with an overview of different ways in which one can model
belief change. We introduced the first formal (and syntactic) approach provided
to deal with belief expansion, belief contraction and belief revision. Next, we
turned to the semantic approaches to belief revision. We focused on the log-
ics modelling belief revision in a static (Conditional Doxastic Logic) or dynamic
way (Dynamic Epistemic Logic, Dynamic Doxastic Logic). We also presented a
new approach dealing with evidential dynamics (Evidence Logics). Finally, we
investigated temporal doxastic logics (branching-time temporal belief revision)
modelling belief revision over time. What we have covered in Chapter 2 does not
exhaust all the literature on this topic but provides the formal details of several
important approaches that were used in the later chapters.

In Part II, we further developed the setting of Soft Dynamic Epistemic Logic.
In Chapter 3, we did justice to the notion of belief contraction. Indeed belief
revision is not the only notion that is worth considering. We explored in this
chapter three different notions of contraction in the framework of DEL, clarify-
ing the mechanism of each of these operations. In Chapter 4, we provided the
new setting of justification models, general enough to encompass some existing
formalisms. Indeed justification models subsume plausibility models, counting
and weighting models as well as evidence models. We defined the usual epistemic
and doxastic notions as well as the notions of evidence and justification in those
justification models. In Chapter 5, we used this new setting to create a game
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semantics allowing to determine if an agent really (defeasibly) knows some given
proposition or if she only believes this proposition. The game semantics we pro-
vided gives a qualitative formalization of Keith Lehrer’s philosophical account in
which defeasible knowledge is interpreted as undefeated justified acceptance.

In Part III, we connected the setting of Soft Dynamic Epistemic Logic with
two other settings. In Chapter 6, we showed that if considered at an appropri-
ate level of generality, the setting of Dynamic Doxastic Logic and the setting of
Dynamic Epistemic Logic are in fact equivalent. Moreover, we showed that DDL
is potentially at least as expressive and powerful as the single-agent version of
DEL: all work on belief revision done in DEL style can be done in DDL style.
In Chapter 7, we provided an argumentative interpretation of the belief revision
logic of Bonanno. We interpreted the notion of belief and information as well as
their relation in terms of choice in a dialogical framework.

Finally let us focus on the three important notions which we dealt with in this
thesis: Knowledge, Argumentation and Dialogue. From our point of view these
three concepts are inseparably linked together. We investigated the notion of
Knowledge, trying to solve the eternal debate about what is the correct definition
of knowledge. We choose to define (defeasible) knowledge using the notions of
truth and justification: an agent knows a proposition if and only if she has a
“correct” justification (i.e. a true undefeatable argument) for this proposition.
It is sufficient for the agent to have at least one such correct justification to
be allowed to say “I know”. Checking if an agent really knows a proposition
or only believes this proposition entails that this agent argues that she has a
correct justification for this proposition. Here comes in our second notion of
Argumentation. The agent has to provide arguments to justify her knowledge.
Justifying a claim emerges only in argumentative contexts in which there are (at
least) two agents. As long as an agent is alone she can claim and argue that she
knows something when she is a total ignorant. It is only when an (omniscient)
Opponent objectively challenges her arguments to check whether they are sound
and convincing that we can check that the agent has a correct justification for
her knowledge. As such we end up with our last notion of Dialogue, bringing all
three notions together.

Asking new questions

Philosophers have been looking for answers to key questions since antiquity but
many of these questions have not been answered, on the contrary what often hap-
pens in a philosophical debate is that questions get refined and reformulated and
very often new questions arise. This thesis is not different in this respect, while
looking for answers we have come to realize that there are many more questions
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that lay on our path. In the remainder of this section we list new questions and
indicate new directions of work, all building further on the results obtained in
this thesis.

We start with the last chapter in which we provided a dialogical setting for
Bonanno’s branching time logic. We stressed earlier on that Bonanno’s branch-
ing time belief revision logic restricts the main information operator I to Boolean
formulas, which means that the agent is facing only new factual information but
not any information about her own beliefs and higher-order beliefs. In many
scenarios, revision with higher-order beliefs is important so the question about
extending Bonanno’s setting to higher-order belief revision should be addressed.
However, lifting Bonanno’s Boolean restriction on the I-operator will have strong
consequences for his belief revision setting, in particular the current frame condi-
tions and axioms need then to be revised. One of the necessary revisions refers
to Bonanno’s belief acceptance axiom (similar to the AGM success postulate),
which can no longer be maintained in a dynamic context that holds on to the
consistency of (higher-order) beliefs (see Section 6.1.3 for more details). We be-
lieve that constructing a revised framework for a branching time belief revision
logic is important. Ideally, such a revised framework should keep track of two
things: how beliefs evolve over time as well as the conditional beliefs of an agent
at a previous moment in time (before the belief changing action took place).
Looking for a temporal belief revision setting with those two ingredients, brings
us immediately close to the work that has recently been developed in the con-
text of soft DEL and its connections to doxastic temporal logics for multi-agent
belief revision, allowing also revision with higher-order information. Here we
mention the work of van Benthem and Dégremont on doxastic-temporal models
H with a total plausibility pre-order in [27, 13] for which they show that if these
doxastic-temporal models H satisfy a number of conditions (i.e. the property of
propositional stability, synchronicity, bisimulation invariance, preference propa-
gation and preference revelation) then there exists a total plausibility model M
and a sequence of total plausibility event models such that H is isomorphic to
the forest generated by the priority update ofM by this sequence of events, and
vice versa.1 In the light of this investigation, it would be interesting to study
any exact correspondence there is between the temporal belief revision axioms
given by Bonanno (and their adaptations to a higher-order belief setting) and the
bridge principles (such as “propositional stability”, “preference propagation” and
so on) of van Benthem and Dégremont. In the end one hopes for a more general
characterization of the specific classes of doxastic-temporal models resulting from

1This result (in the way we have referred to it here) has been worked out for so-called uniform
protocols in [13] but we do note that this result can be (and has also been) extended to the
setting of state-based protocols, i.e. the case in which “the set of executable sequences of events
forming our current informational process, varies from state to state” (see [13] p.15) and to the
case where the models are equipped with a partial plausibility relation (see also [27]).
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specific belief revision, (or expansion or contraction) protocols. Such a result will
go beyond the already expressed formal relation between the I operator and the
public announcement operator in PAL (see Zvesper [83] and Section 2.8 for more
details.) for belief expansion in which case it is easy to match the principles of
Bonanno (No Add, No Drop, Qualitative Acceptance) to the principles of Zves-
per (No Miracles, Perfect Recall, Uniform Announcement).2 The work in this
direction would bring an interesting contribution to the further alignment of two
research directions (temporal belief revision logic and dynamic epistemic logics
for belief change). Note that we have recently started working in this direction
together with S. Gosh and S. Smets.

In Chapter 7 we offered an argumentative study of belief revision logic, pro-
viding the dialogical meaning of information and belief operators. The next step
would be to investigate the dialogical meaning of other epistemic and doxastic
operators (defeasible knowledge, conditional belief, strong belief) as well as the
dynamic operators of Soft DEL. A dialogical approach to DEL (in particular
to PAL) has already been provided in [56]. This approach provides the dialogi-
cal meaning of the update operator: the dialogical rules for the update operator
entail a restriction on the choices of the players (restricting the number of avail-
able choices for both players). These results give rise to the following question:
what would be the dialogical meaning of the upgrade operators? What would
be the impact of the dialogical rules for the upgrade operators on the choices of
the players? Next the notions of evidence and justification will be worthwhile
to investigate as well in this setting. We think that it would be very interesting
to build an argumentative setting allowing to deal with players trying to provide
some justifications for their knowledge/beliefs as well as pieces of evidence for or
against a particular claim P . Some recent work [56, 57] started to investigate
the connections between (Public Announcement) Logic and Law from the point
of view of dialogues. These investigation do study the similarity of the notions
of proof and evidence both in Law and Logic. The setting of Law reveals how
the dialogical interpretation of the public announcement operator is worthwhile
in the context of a legal trial. It allows to introduce the notion of proof but also
to determine who has to bear the burden of proof. Following these very recent
results in [56, 57], it would be interesting to provide a formal framework allowing

2We introduce these principles in Chapter 2. The axioms Perfect Recall (PR), No Miracles
(MN) on the one hand and No Drop (ND), No Add (NA), Qualitative Acceptance (QA) on the
other hand express something very similar. PR states that the agents have a perfect memory
and ND states that an agent does not drop her beliefs if the incoming information is not
surprising. NM states that the only way an agent can change her mind is when it is triggered
by an announcement and NA states that an agent does not add a new belief about which she
is not informed if the incoming information is not surprising. Finally QA states that if the
information received does not contradict the initial beliefs, an agent believes it and we know
that Zvesper only considers the case where the incoming information is not surprising.



205

to deal with the notions of justification, evidence, upgrade, knowledge and belief
in an argumentative framework.

In Chapter 5 we have given a formal foundation of the close relationship
between “belief revision” and the definition of “knowledge” in K. Lehrer’s defeasi-
bility account of knowledge. What we have shown in this thesis is that the tools
of Soft DEL are very powerful and can be used to make several philosophical ideas
formally precise. In particular we have paid special attention to Lehrer’s ultra-
justification game. However, Lehrer’s philosophy also describes how an agent
can justify her (possibly false) beliefs via a so-called personal justification game.
While we have not covered it in this thesis, it is possible to extend our formal
setting to a game semantics for the case of personal justification. In Lehrer’s
personal justification games, an agent has to prove that her beliefs fit with her
background knowledge and beliefs. So we think that all this agent has to prove in
terms of our justification setting, is that her beliefs are consistent and that they
do support her claim. In the case of a personal justification game, the agent does
not have to provide a sound justification for her claim, but only an argument for
it. The work in Chapter 5 opens the door to provide game-semantic accounts
for many more concepts reaching beyond the notions of truth and (single-agent)
knowledge. Defeasible knowledge is just the tip of the iceberg, there are other
epistemic and doxastic attitudes that are worth analysing and making precise
using the tools we have provided. In particular our game semantical framework
can maybe be extended to combine different epistemic attitudes, defining a game
for agents having multiple attitudes (as we actually do in real life). A further
challenge would be to look at a multi-player game against a critic, this is interest-
ing when analysing different notions of group knowledge. In this context it would
be interesting to look at the notion of common knowledge and analyse it in the
philosophical context of Lewis’ work on conventions [51]. In joint work with A.
Baltag and S. Smets we want to explore these directions of work further.

A further direction of research would connect our game semantics to the study
of argumentation theory. Argumentation theory provides a framework represent-
ing arguments and the relations between these arguments (an argument can attack
or defend another argument) as well as formal methods to define what arguments
are justified. This kind of framework is called argumentation system and has
been introduced in [30]. Here we are only interested in the systems dealing with
an abstract notion of argument. These systems are called abstract argumenta-
tion systems3. Abstract argumentation systems have been developed by [30] and
more recently by [38]. An abstract argumentation system represents relations
between arguments through formal models called attack graphs - or Dung frame-
work. Solving an attack graph means finding the justified argument in that attack

3See [9, 65] for a more detailed presentation of argumentation theory.
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graph. There exist several methods to determine which arguments are justified in
an attack graph corresponding to different notions of “best” argument. Different
sets of criteria - corresponding to these different notions - a justified argument
must satisfy are provided. Here we are only interested in the notion of grounded
set according to which a justified argument is an unattacked argument. Our idea
is to provide a game semantics for defeasible knowledge using this argumenta-
tion setting. We want to use attack graphs as graphic representation of available
arguments as well as the relations between these arguments. Thus they would rep-
resent the different choices available for both players during an ultra-justification
game.

In chapter 3 we have conducted the study of belief contraction in DEL. Indeed
we wanted to study how an agent contracts her beliefs after receiving a new
information. Does the agent lose a lot of information after contracting her beliefs?
Is she willing to prefer to believe the inverse of the information she received ?
Or did she keep her initial beliefs as much as possible, contracting only what is
necessary to give up the belief contradicting the information she receives? The
answer we gave to these questions within DEL is that it all depends on the trust
the agent has in the source of the information. In this thesis we noted that
the belief contraction operation that was easiest to formalize is the conservative
contraction operation. The conservative contraction operation corresponds to
the case where the agent is careful and contracts as little as possible her beliefs,
keeping as much as possible her initial beliefs. What does it mean? We know
that the three contraction operations we studied are AGM friendly so they respect
AGM postulates, i.e. the rationality constraints that should be imposed upon
belief contraction. We think that our results mean that, among the notions of
contraction studied in this thesis, the most rational way to contract the beliefs
is the conservative way. Of course, in the literature other notions of contraction
have been studied that are less AGM friendly. It would be interesting to analyse
these notions as well within the framework of DEL and compare them with the
results we have presented here. In joint work with A. Baltag and S. Smets we
will start exploring this direction of work further.

*
* *

Looking beyond the horizon The answers in this thesis (as well as the new
questions we want to address in the future) belong to the area of formal episte-
mology. However, we are well aware that other approaches in formal epistemology
use quantitative methods to model belief change. While our work is of a pure
qualitative nature, we do think that exploring the connections to quantitative
frameworks may lead us to new insights. Going from qualitative to quantitative
methods is only one way to look further, another road to explore (as some of our
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new questions indicate) brings us to study belief change in a multi-agent setting.
One idea would be to bring in multiple agents who can reason about each other’s
beliefs.

However another idea would be to argue that the true nature of (even single-
agent) belief change can only be revealed in an inherently multi-agent context,
and maybe our game semantics ultimately does hint in this direction. The roles
of the two players are essential in this respect: we need a Believer and a Critic
exactly as indicated in the previous chapters. If we take this second idea a step
further, it ties in with one of van Benthem’s views on analysing belief dynamics
itself as a form of multi-agent preference merge (we refer here to a presentation
of van Benthem, titled “The Social Choice Behind Belief Revision” held at the
workshop “Dynamic Logic Montreal” in 2007). Hence, viewing belief revision
from a multi-agent angle opens a whole new philosophical perspective which, in a
larger framework, can be supported by the approach we presented in this thesis.

And last but not least, we are well aware of the fact that we live in a world in
flux, it is not only our beliefs that change, our knowledge that gets updated but
also the environment changes. In this thesis we have restricted ourselves to study
belief change in a world in which the environment (or the facts themselves) do not
change. Other work in the belief revision literature lifts this restriction and sim-
ilarly, the formal tools of DEL have been extended to study fact-changes. Hence
looking beyond the horizon we have drawn for ourselves means that we should
study belief change, knowledge and its justification in a changing environment.

While playing with knowledge and belief, it is fair to say that the game has
only just begun.





Appendix A
Structural rules

We provide some schemas for the reader who is not familiar with structural
rules. For a detailed explanation of the rules, see Chapter 7, Section 7.2.3. We
only present the rules allowing Proponent to state formulas or choose contextual
points. The line above the dash describes the moves required in order to allow
the move under the dash. If more than one move is required, the moves are listed
one above the other. If the line above the dash is crossed out, it means that there
should be no such move to allow the move under the dash. For any contextual
points t, u and z and contextual points i, j and l:

(SR-2) ⟨O − i, z ∶ p⟩
⟨P − i, t ∶ p⟩

(SR-5) ⟨O − i, t ∶ ?◯u⟩
⟨P − i, t ∶ ?◯u⟩

⟨O − i, t ∶ ?◯−1
u ⟩

⟨P − i, t ∶ ?◯−1
u ⟩

(SR-5.1) ⟨O − i, t ∶ ?◯−1
u ⟩

⟨P − i, t.u ∶ ?◯t⟩

(SR-5.2) ⟨O − i, t ∶ ?◯u⟩
⟨P − i, t.u ∶ ?◯−1

t ⟩

(SR-6) ⟨O − i, t ∶ ?Bj⟩
⟨P − i, t ∶ ?Bj⟩
hhhhhhhh⟨O − i, t ∶ ?Bl⟩ for any
⟨P − i, t ∶ ?Bj⟩ new j
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⟨O − i, t ∶ ?Ij⟩ or ⟨O − i, t ∶ ?Bj⟩
⟨P − i, t ∶ ?Ij⟩

⟨O − i, z ∶ ?Ij⟩ or ⟨O − i, z ∶ ?Bj⟩ or ⟨O − i, z ∶ ?Aj⟩
⟨P − i, t ∶ ?Aj⟩

⟨O − i, t ∶ Aϕ⟩
⟨P − i, t ∶ ?Ai⟩

Now let four contextual points t, u, v and z be such that u and v have been
chosen by O to challenge a move as ⟨P − i, t ∶ ◯ϕ⟩ and consider three contextual
points i, j and k:

(SR-6.1) ⟨O − i, t.u ∶ ?Bj⟩
⟨O − i, t ∶ ?Bk⟩
⟨O − i, t.u ∶ ?Ik⟩ or ⟨O − i, t.u ∶ ?I∗k ⟩

⟨P − i, t ∶ ?Bj⟩

(SR-6.2) ⟨O − i, t ∶ ?Bj⟩
⟨O − i, t.u ∶ ?Ij⟩ or ⟨O − i, t.u ∶ ?I∗j ⟩

⟨P − i, t.u ∶ ?Bj⟩

(SR-6.3) ⟨O − i, t.u ∶ ?Bj⟩
⟨O − i, t.u ∶ ?Ij⟩ or ⟨O − i, t.u ∶ ?I∗j ⟩
⟨O − i, t.v ∶ ?Ij⟩ or ⟨O − i, t.v ∶ ?I∗j ⟩

⟨P − i, t.v ∶ ?Bj⟩

(SR-6.4) ⟨O − i, t.u ∶ ?Bj⟩
⟨O − i, t.v ∶ ?Ij⟩ or ⟨O − i, t.v ∶ ?I∗j ⟩

⟨P − i, t.v ∶ ?Bj⟩

(SR-7) ⟨X − i, t ∶ Iϕ⟩
⟨O − i.j, z ∶ ϕ⟩
⟨Y − i, t ∶ !Ij⟩
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Samenvatting

Dit proefschrift draagt bij aan de ontwikkeling van de Soft Dynamisch Epistemis-
che Logica. De Soft Dynamisch Epistemische Logica werd geïntroduceerd om met
een aantal informationele fenomenen, zoals geloofsherziening, om te gaan. In dit
proefschrift breiden we de Soft Dynamisch Epistemische Logica uit naar “geloof
contractie”. Op deze wijze creëren we een kader voor de studie van geloofsveran-
dering. Dit onderzoek naar geloofsverandering draagt ook bij aan de studie van
het kennis-concept. Eén van de belangrijkste uitdagingen in de formele episte-
mologie vandaag de dag is het formeel vastleggen van wat een juiste definitie van
kennis is. Om dit aan te pakken, moeten we de concepten van “evidence” en
“justified true belief” formeel definiëren. In dit proefschrift breiden we de Soft
Dynamisch Epistemische Logica zodanig uit dat het toegepast kan worden op de
concepten van “evidence” en “justification”. We ontwikkelen in deze context een
speltheoretische semantiek voor de notie van “defeasible knowledge”. Op deze
wijze geven we een nieuwe formalisatie aan K. Lehrer’s notie van kennis in ter-
men van “undefeated justified acceptance”. Dit kader biedt een nieuw perspectief
voor de analyse van epistemologische problemen zoals het Gettier-probleem. Dit
proefschrift geeft ook het verband weer tussen de Soft Dynamisch Epistemische
Logica en twee andere aanpakken die in de literatuur werden bestudeerd. Eén van
deze andere aanpakken is de Dynamisch Doxastische Logica van K. Segerberg.
Een belangrijk deel van het werk in dit proefschrift gaat over de vergelijking
van deze twee benaderingen en daarbij brengen we de verschillen en overeenkom-
sten in kaart. Ten slotte verbinden we ons werk aan de argumentatieve studie
van geloofsherziening waarbij we de dynamiek van geloof onderzoeken in een dy-
namisch argumentatief kader.

Hoofdstuk 2 presenteert een aantal verschillende benaderingen van geloofsveran-
dering die in de literatuur werden bestudeerd.

In Hoofdstuk 3 bestuderen we drie noties van geloofscontractie die we we
uit de literatuur hebben gekozen: extreme contractie, gematigde contractie en
conservatieve contractie. We definiëren de overeenkomstige operaties van geloof-

219



220 Samenvatting

scontractie als operaties in plausibiliteitsmodellen en we geven een axiomatisatie
voor elk van deze operaties in de stijl van DEL.

In Hoofdstuk 4 bestuderen we “justification”-modellen waarin we de infor-
matie en bewijsstukken van een agent kunnen modelleren. We geven een formele
definitie van een geldig (waar) argument en van wat een rechtvaardiging (of “jus-
tification”) is.

In Hoofdstuk 5 analyseren we de informele kennis-theorie van K. Lehrer in het
kader waarin we een oplossing zoeken voor het Gettier probleem. We stellen in dit
hoofdstuk ook een speltheoretische semantiek voor zodanig dat we Lehrer’s notie
van “defeasible knowledge” formeel kunnen onderbouwen. Het ultra-rechtvaardi-
gingsspel laat ons toe om op formele wijze te bepalen als een agent deze vorm
van “defeasible knowledge” heeft van een propositie (of als hij deze propositie
gelooft maar niet kent): een agent (“the Claimant”) heeft “defeasible knowledge”
van een propositie P als en slechts dan als zij een strategie heeft om het ultra-
rechtvaardigingsspel voor propositie P te winnen.

Hoofdstuk 6 onderzoekt de relatie tussen de Dynamisch Doxastische Logica en
de Dynamisch Epistemische Logica waarin we “full DDL” bestuderen vanuit het
perspectief van “Soft DEL”. We bekijken verschillende versies van DDL, waarbij
de aandacht gaat naar verschillende operaties voor geloofsherzieningen evenals
verschillende operaties van geloofsuitbreiding en -contractie. We tonen aan dat
DDL minstens even krachtig is als DEL.

In Hoofdstuk 7 geven we een uiteenzetting over G. Bonanno’s logica voor
“branching-time belief revision” en bestuderen we deze logica in een argumentatief
kader. We rechtvaardigen onze keuze om Bonanno’s logica voor geloofsherziening
te onderzoeken via de aanpak van de dialoog-logica. We geven in dit hoofdstuk de
taal en de regels van het dialogisch systeem voor geloofsherziening. We richten
onze aandacht op de dialogische interpretatie van de concepten van geloof en
informatie.



Abstract

This thesis contributes to the development of Soft Dynamic Epistemic Logic. Soft
Dynamic Epistemic Logic has been introduced to deal with a number of informa-
tional phenomena, including belief revision. The work in this thesis extends the
scope of Soft Dynamic Epistemic Logic to belief contraction, providing as such
a framework which can now deal with belief change. This study of belief change
contributes also to the study of the notion of knowledge. Nowadays, one of the
main challenges in formal epistemology is to formally capture what is a correct
definition of knowledge. To tackle this issue we need to be able to formally define
the notions of evidence and justified true belief. In this thesis, we extend Soft Dy-
namic Epistemic Logic such that it can indeed deal with the notions of evidence
and justification. In this context we provide a game semantics for “defeasible
knowledge”, offering a new formalization of K. Lehrer’s concept of knowledge in
terms of “undefeated justified acceptance”. This setting provides a new perspec-
tive for analysing epistemological problems such that the Gettier problem. This
thesis also connects Soft Dynamic Epistemic Logic to two different approaches
that have been studied in the literature. One of these other approaches is Dy-
namic Doxastic Logic, as introduced by K. Segerberg. An important part of the
work we have done, compares Dynamic Doxastic Logic to Soft Dynamic Epistemic
Logic. This comparison makes it possible to investigate what are the differences
and the similarities between these two approaches. Finally we connect our work
to the argumentative study of belief revision, offering an investigation of belief
dynamics in a dynamic argumentative setting.

Chapter 2 presents a number of different settings of belief change that have
been studied in the literature.

Chapter 3 introduces three notions of belief contraction that we choose from
the literature: severe withdrawal, moderate contraction and conservative contrac-
tion. We define the corresponding belief contracting operations as operations on
total plausibility models and axiomatize each of them in DEL style.
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In chapter 4 we introduce the new framework of justification models as a
general setting to model the information and evidence an agent has. We formally
define what is a sound (true) argument and what is a justification.

Chapter 5 introduces the informal theory of knowledge of K. Lehrer as a
solution to the Gettier problem and proposes a game semantics that formalises
the notion of defeasible knowledge of K. Lehrer. Our ultra-justification game
formally determines if an agent defeasibly knows a proposition (or merely believes
but does not know this proposition): an agent (the Claimant) defeasibly knows
a proposition P iff she has a winning strategy in the ultra-justification game
corresponding to the claim P .

Chapter 6 compares Dynamic Doxastic Logic and Dynamic Epistemic Logic,
studying full DDL from the perspective of Soft DEL. We provide several versions
of DDL internalizing different belief revision operations, as well as several oper-
ations of expansion and contraction, showing that the DDL approach is at least
as powerful as the DEL approach.

Chapter 7 introduces the branching-time belief revision logic of G. Bonanno
and provides an argumentative study of this belief revision logic. We use the
dialogical approach to logic and provide the language as well as the rules of our
dialogical system of belief revision. We focus on the dialogical interpretation of
the notions of belief and information.



Résumé

Cette thèse contribue au développement de la Logique Épistémique Dynamique
dite flexible (Soft Dynamic Epistemic Logic). La Logique Épistémique Dynamique
flexible a été introduite afin de capturer un certain nombre de phénomènes in-
formationnels, incluant la révision de croyances. Cette thèse étend la portée de
la Logique Épistémique Dynamique flexible à la contraction de croyances, four-
nissant ainsi une structure capable de traiter plus généralement du changement
de croyances. Cette étude du changement de croyances contribue également à
l’étude de la notion de savoir. L’un des principaux défis de l’épistémologie formelle
contemporaine est de capturer formellement ce qu’est une définition correcte du
savoir. Pour répondre à ce problème, nous avons besoin de définir formelle-
ment les notions d’évidence et de croyance vraie justifiée. Dans cette thèse, nous
étendons la Logique Épistémique Dynamique flexible de telle sorte qu’elle puisse
désormais capturer les notions d’évidence et de justification. Dans ce contexte,
nous proposons une sémantique des jeux pour le savoir dit défaisable (defeasible
knowledge), offrant ainsi une nouvelle formalisation du concept de savoir de K.
Lehrer en termes d’acceptation justifiée indéfaisable (“undefeated justified accep-
tance”). Ce cadre fournit une nouvelle perspective pour l’analyse des problèmes
épistémologiques tels que le problème de Gettier. Cette thèse connecte également
la Logique Épistémique Dynamique flexible à deux approches différentes qui ont
été étudiées dans la littérature. Une de ces approches est la Logique Doxastique
Dynamique (Dynamic Doxastic Logic) introduite par K. Segerberg. Une part
importante du travail que nous avons produit, compare la Logique Doxastique
Dynamique à la Logique Épistémique Dynamique flexible et permet de mettre
en évidence les différences et les similitudes de ces deux approches. Finalement,
nous proposons une approche argumentative de la dynamique des croyances.

Le chapitre 2 présente un certain nombre de différentes logiques de changement
de croyances qui ont été étudiées dans la littérature.

Le chapitre 3 introduit trois notions de contraction de croyances que nous
avons choisies dans la littérature: la réduction sévère (severe withdrawal), la
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contraction modérée (moderate contraction) et la contraction conservatrice (con-
servative contraction). Nous définissons les opérations correspondantes de con-
traction de croyances comme des opérations sur les modèles de plausibilité totaux
(total plausibility models) et axiomatisons chacune d’entre elles dans le style de
la Logique Épistémique Dynamique.

Dans le chapitre 4 nous introduisons un nouveau cadre, celui des modèles de
justification en tant que cadre général permettant de modéliser l’information et
les évidences que l’agent possède. Nous définissons formellement ce qu’est un
argument vrai et ce qu’est une justification.

Le chapitre 5 introduit la théorie informelle du savoir de K. Lehrer en tant que
solution au problème de Gettier et propose une sémantique des jeux qui formalise
la notion de savoir défaisable de K. Lehrer. Notre jeu de l’ultra-justification
(ultra-justification game) détermine formellement si un agent connait – au sens
défaisable du terme – une proposition (ou simplement croit mais ne connait pas
cette proposition): un agent (que nous appelons le Claimant) connait – au sens
défaisable du terme – une proposition P si et seulement si il a une stratégie de
victoire dans le jeu de l’ultra-justification correspondant à la revendication P .

Le chapitre 6 compare la Logique Doxastique Dynamique et la Logique Épisté-
mique Dynamique flexible, étudiant la Logique Doxastique Dynamique dite com-
plète (full DDL) à partir de la perspective de la Logique Épistémique Dynamique
flexible. Nous fournissons plusieurs versions de la Logique Doxastique Dynamique
internalisant différentes opérations de révision de croyances, ainsi que plusieurs
versions d’expansion et de contraction de croyances, montrant que l’approche de
la Logique Doxastique Dynamique est au moins aussi puissante que l’approche
de la Logique Épistémique Dynamique flexible.

Le chapitre 7 introduit la logique de révision de croyances de temps branché
de G. Bonanno et fournit une étude argumentative de cette logique de révision
de croyances. Nous utilisons l’approche dialogique de la logique et fournissons le
langage ainsi que les règles de notre système dialogique de révision de croyances.
Nous nous concentrons sur l’interprétation dialogique des notions de croyances et
d’information.
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