
THE MODAL LOGIC OF INNER MODELS

TANMAY INAMDAR AND BENEDIKT LÖWE

§1. Introduction. In [10, 11], Joel Hamkins and the second author studied
the modal logic of forcing and the modal logic of grounds, respectively, consid-
ering the generic multiverse of models of set theory connected by the relation
of being a forcing extension. Various other aspects of the modal logic of forcing
are considered in [17, 12, 5, 8, 6, 18, 20, 4, 3, 9, 14]. The techniques used in [10]
and further developed in [9] are by no means restricted to the generic multiverse,
but can be applied to other collections of models of set theory with other acces-
sibility relations. In this paper, we apply them to the inner model multiverse
to determine the modal logic of inner models and determine this modal logic to
be S4.2Top, an extension of the well-known modal logic S4.2 by an additional
axiom (Theorem 19).

In § 2, we shall collect the results from modal logic needed for the proof of
our main theorem; in particular, we define the class of relevant structures, called
inverted lollipops. In § 3, we develop a general approach to modal logics of set-
theoretic model constructions. As opposed to the relations of being a forcing
extension or being a ground, we cannot expect that relations between models
of set theory are definable in the language of set theory: we therefore need to
work in second-order set theory to deal with these relations. Our § 4 contains a
recapitulation of the standard techniques for producing lower and upper bounds
for modal logics (mostly following [9]) and introduces a new type of control
statements: buttons and switches relative to a pure button that acts as a global
button pushing all relative buttons at once. We prove the appropriate transfer
theorem for these control statements, linking them to the inverted lollipops of
§ 2 (Theorem 13). Finally, in § 5, we combine all these components and prove
our main theorem (Theorem 19).

§2. Results from Modal Logic. In this section, we define the modal the-
ory S4.2Top needed for our main result and prove the relevant characterisation
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Figure 1. Three inverted lollipops

theorem. We remind the reader of the following well-known modal axioms:

K �(ϕ→ ψ)→ (�ϕ→ �ψ)

Dual ¬♦ϕ↔ �¬ϕ
T �ϕ→ ϕ

4 �ϕ→ ��ϕ

.2 ♦�ϕ→ �♦ϕ

The modal theory S4.2 is the smallest class of formulas containing all substitution
instances of the above axioms and closed under modus ponens and necessitation
(in other words, the smallest normal modal logic containing the above axioms).

As usual, a preorder is a set P with a reflexive and transitive relation ≤;
preorders carry a natural equivalence relation ≡ defined by x ≡ y : ⇐⇒ x ≤
y ≤ x. The ≡-classes are called clusters. Taking the ≡-quotient of a preorder
enforces antisymmetry and makes the preorder into a partial order. We call a
preorder a pre-Boolean algebra if its ≡-quotient is a Boolean algebra. A preorder
(P,≤) is called directed if for any x, y0, y1 ∈ P if x ≤ y0 and x ≤ y1, then there
is a z ∈ P with y0 ≤ z and y1 ≤ z; it is connected if for any x, y ∈ P there is a
finite sequence (z0, ..., zn) such that z0 = x, zn = y and for any i < n, we have
either zi ≤ zi+1 or zi+1 ≤ zi; we say that a cluster C ⊆ P is maximal if for v ∈ C
and w ≥ v, we have w ∈ C; and we say that a cluster C ⊆ P is the top cluster
if for any v ∈ P and w ∈ C, we have that v ≤ w. Clearly, a preorder that has
a top cluster is directed; conversely, if a preorder is directed and connected and
has a maximal cluster, then this is the top cluster. Furthermore, we say that
a preorder is topped if it has a top cluster consisting of exactly one node; it is
sharp if it is topped and remains directed after removal of the largest element;
and, finally, it is an inverted lollipop if it is topped and after removal of the
top element, the remainder is a pre-Boolean algebra. (Cf. Figure 1 to see three
inverted lollipops and to get an idea why we chose that name.)

A (Kripke) frame is a relational structure (W,R) consisting of a set of nodes
(or states or possible worlds) and a binary relation on them. A Kripke model
(W,R, V ) consists of a Kripke frame (W,R) together with a valuation V assigning
a truth value to each propositional variable and each element w ∈W . Semantics
for Kripke models is defined as usual [1, Definition 1.20]. If M = (W,R, V ) is
a Kripke model and w ∈ W , we write M[w] for the submodel generated by w
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(i.e., the submodel of M that consists of all nodes that can be reached from w
by a finite path via the relation R).

If (W,R) is a frame, a modal assertion is valid for (W,R) if it is true at all
worlds of all Kripke models having (W,R) as a frame. If C is a class of frames,
a modal theory is sound with respect to C if every assertion in the theory is
valid for every frame in C. A modal theory is complete with respect to C if every
assertion valid for every frame in C is in the theory. Finally, a modal theory is
characterized by C if it is both sound and complete with respect to C [13, p. 40].

We remind the reader of the technique called filtration (cf. [7, pp. 267-268]): if
M = (W,R, V ) is a Kripke model and Γ is a subformula-closed set of formulas,
we can define an equivalence relation ∼Γ on W by saying that u ∼Γ v if and only
if u and v agree on the truth values of all formulas in Γ. We define WΓ := W/∼Γ

and

VΓ(p, [w]∼Γ
) :=

{
V (p, w) if p ∈ Γ,

0 otherwise,

and say that a Kripke modelM′ = (WΓ, R
′, VΓ) is a filtration of M with respect

to Γ if for all ψ ∈ Γ and w ∈W , we haveM, w � ψ if and only ifM′, [w]∼Γ � ψ.

Theorem 1 (Filtration Theorem). For every Kripke model M = (W,R, V )
and every subformula-closed set of formulas Γ, there is a filtrationM′ = (WΓ, R

′, V ′)
of M with respect to Γ. One such filtration is the minimal filtration defined by
U R′ V if and only if there are u ∈ U and v ∈ V such that uR v. Furthermore,
if Γ was finite, then so is WΓ.

We also remind the reader of the technique of canonical models (cf. [1, Chapter
4.2]): If Λ is a normal modal theory, then we can construct the canonical model
(WΛ, RΛ, V Λ) satisfying all of the formulas in Λ where WΛ is the set of maximal
Λ-consistent sets of formulas, RΛ is the canonical accessibility relation, and V Λ

is the canonical valuation.

Theorem 2 (Canonical Model Theorem). Any normal modal theory Λ is com-
plete with respect to its canonical model. That is, for any ϕ 6∈ Λ, there is a node
w ∈WΛ such that ¬ϕ ∈ w.

It is easy to see that if Λ ⊇ S4.2 is a modal theory, then the Kripke frame
of its canonical model must be reflexive, transitive and directed (i.e., a directed
preorder). Furthermore, it is well-known that the class of finite directed preorders
characterises S4.2; Hamkins and the second author have observed that the class
of finite pre-Boolean algebras characterises S4.2 [10, Theorem 11].

We now go beyond S4.2 and introduce the following axiom Top as

♦((�ϕ↔ ϕ) ∧ (�¬ϕ↔ ¬ϕ));

this formula is equivalent over S4.2 to the negation of the cofinal subframe for-
mula for the one element frame of a single reflexive node.1 The modal theory
S4.2Top is defined to be the smallest normal modal theory containing S4.2 and
Top.

1A cofinal subframe formula for a finite frame F = (W,R) is a formula ϕF such that ϕF is
invalid in any frame G if and only if F is cofinally subreducible to G; cf. [2] for a discussion of

these concepts.
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Lemma 3. Every Kripke model on a finite directed preorder is bisimilar to a
Kripke model on a finite pre-Boolean algebra.

This argument is implicit in the proof of [10, Theorem 11], but since the bisim-
ulation was not explicitly given in [10], we include the proof here. Remember
from [10, p. 1802] that a partial order is called a baled tree if it has a maximal
element and the order after removing the maximal element is a tree. We observe
that baled trees are lattices, and so least upper bounds of finite sets of nodes
exist. A preorder is called a baled pretree if its ≡-quotient is a baled tree. In
baled pretrees, we still have least upper bounds, but they are only defined up to
≡-equivalence, so the least upper bound of any finite subset of a baled pretree
is a cluster.

Proof. Let M = (W,≤, V ) be a Kripke model on a finite directed preorder.
By unravelling as in the proof of [10, Lemma 6.5], we can assume without loss
of generality that (W,≤) is a baled pretree.

We start by considering the case where (W,≤) is a baled tree. Let r be the
root of F , S := F\{r}, and write S = {s0, ..., sn−1}. Let B be the Boolean
algebra of all subsets of S. For each nonempty a ⊆ S, let wa be the least upper
bound of a and w∅ := r. We define a valuation on B by V ′(a, p) = 1 if and
only if M, wa � p, and with this, M′ := (B,⊆, V ′). This means that in M′,
each a ∈ B looks like the node wa in M. It is straightforward to check that the
relation B ⊆W ×B defined by (w, a) ∈ B if and only if w = wa is a bisimulation
between M and M′.

Now, if (W,≤) is a baled pretree, then the argument is similar except that
we may have clusters of ≡-equivalent nodes. We let R be the root cluster,
S = {S0, ..., Sn−1} the set of clusters other than the root cluster and B the
Boolean algebra of subsets of S. For each A ∈ B, let wA be the least upper
bound of

⋃
A ⊆W . As mentioned above, wA is not a node in W , but a cluster.

We now copy this cluster wA to A. The rest of the proof remains the same. a

Lemma 4. Every Kripke model on a frame that is a finite topped preorder is
bisimilar to a Kripke model on a frame that is a finite sharp preorder.

Proof. Let (W,≤) be the finite topped preorder that is the frame of our
Kripke model and let t be its largest node. Build a Kripke model by adding an
extra node t′ above t which has the same valuation as t. It is easy to see that
the two models are bisimilar, where the bisimulation is the identity on all the
nodes which are not t, and t in the old model is matched to both t and t′ in the
new model. a

Lemma 5. Every Kripke model on a frame that is a finite sharp preorder is
bisimilar to a Kripke model on a frame that is a finite inverted lollipop.

Proof. If (W,≤) is the finite sharp preorder underlying the Kripke model and
t its largest element, then (W\{t},≤) is a finite directed preorder. By Lemma
3, this suborder is bisimilar to a pre-Boolean algebra, and therefore the entire
frame is bisimilar to an inverted lollipop. a

Theorem 6. The following classes characterise S4.2Top:

1. the class of finite topped preorders,
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2. the class of sharp preorders,
3. the class of inverted lollipops.

Proof. In all three cases, soundness is easy to check. It is sufficient to show
completeness for the class of finite topped preorders: if this is established, then
the completeness with respect to the class of sharp preorders follows from Lemma
4; this in turn implies completeness with respect to the class of inverted lollipops
by Lemma 5. So, let us focus on completeness for the class of finite topped
preorders: let ϕ be a formula which is not in S4.2Top. Let M = (W,R, V ) be
the canonical model of S4.2Top.

By Theorem 2, let w ∈ W be a node such that ϕ 6∈ w and let MΦ =
(WΦ, RΦ, VΦ) be the minimal filtration of M[w] with respect to the finite sub-
formula-closed set

Φ = {ψ | ψ is a subformula of ϕ}.
By Theorem 1, MΦ is a finite, rooted, connected, and directed preorder and ϕ
is not valid in (WΦ, RΦ). Since MΦ is finite, connected and directed, it must
have a top cluster. So, it is sufficient to show that this top cluster consists of
one element.

Elements of WΦ are ∼Φ-equivalence classes of S4.2Top-maximal consistent sets
of formulas. Suppose towards a contradiction that there are two distinct elements
of the maximal cluster s, t ∈WΦ. Since s 6= t, there must be v, w ∈W such that
v ∈ s and w ∈ t, and ψ ∈ Φ such that M, v � ψ and M, w � ¬ψ, and hence by
Theorem 1, MΦ, s � ψ and MΦ, t � ¬ψ.

Since MΦ � S4.2Top, the ψ-instance of Top is true at every node of MΦ, so
in particular at s:

MΦ, s � ♦((�ψ ↔ ψ) ∧ (�¬ψ ↔ ¬ψ)).

Thus, we find u with sRu such that

MΦ, u � (�ψ ↔ ψ) ∧ (�¬ψ ↔ ¬ψ).(*)

Since s was in the maximal cluster, so is u, and thus s, t, and u are all RΦ-
accessible from each other; but now (*) implies that s and t must agree with u
(and hence with each other) about the truth value of ψ which they do not. a

§3. Modal logics of set-theoretic model constructions. In the follow-
ing, we denote the language of propositional modal logic with a countable set of
propositional variables by L� and the first-order language of set theory by L∈.
In [10, 11], the crucial idea for the analysis of the modal logic of forcing and the
modal logic of grounds was that an assignment of sentences of L∈ to the proposi-
tional variables yields a translation of all formulas in L� into sentences of L∈ by
interpreting � as “in all forcing extensions” or “in all grounds”. These two cases
are rather special since the meta-quantifiers “for all forcing extensions” and “for
all grounds” are expressible in L∈.2 In general, this is not true and thus the
translations for other relations between models of set theory do not give formu-
las in L∈. The natural setting for this is second-order set theory. In this paper,

2In the case of “for all forcing extensions”, this is just the Forcing Theorem [15, Theorem
14.6]; in the case of “for all grounds”, this is the Laver-Woodin theorem; cf. [16, 21].
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we emulate second-order set theory by restricting our attention to transitive set
sized models of ZFC inside a fixed meta-universe V. We write tsmst(M) for the
L∈-formula stating that M is a transitive set modelling ZFC.

In this situation, fix an assignment T assigning a sentence of L∈ to every
propositional variable and let Γ be an arbitrary L∈-formula in two free vari-
ables. By recursion in the surrounding set-theoretic universe V, we define for
any transitive set sized model M � ZFC,

M �TΓ p :⇐⇒ M � T (p),

M �TΓ ϕ ∧ ψ :⇐⇒ M �TΓ ϕ and M �TΓ ψ,

M �TΓ ϕ ∨ ψ :⇐⇒ M �TΓ ϕ or M �TΓ ψ,

M �TΓ ¬ϕ :⇐⇒ not M �TΓ ϕ, and

M �TΓ �ϕ :⇐⇒ ∀N((Γ(M,N) ∧ tsmst(N))→ N �TΓ ϕ).

For every transitive set M � ZFC, we can now define

MLΓM := {ϕ ∈ L� ; for all assignments T , we have M �TΓ ϕ} and

MLΓ :=
⋂
{MLΓM ; tsmst(M)}.

We define two particular cases of Γ:

IM(M,N) :⇐⇒ N ⊆M ∧OrdM = OrdN and

G(M,N) :⇐⇒ ∃B ∈ N∃G(N � “B is a complete Boolean algebra”,

G is B-generic over N , and M = N [G]).

By general forcing theory, we have that G(M,N) implies IM(M,N), but more
is true:

Proposition 7. Let M0, M1, and M2 be transitive set sized models of ZFC.
If IM(M1,M0), IM(M2,M0), and G(M2,M0), then G(M2,M1).

In order to prove Proposition 7, we need the following well known theorem
due to Grigorieff [15, Lemma 15.43]:

Theorem 8 (Grigorieff). Let M0 be a model of ZFC. Let B ∈ M0 be a com-
plete atomless Boolean algebra. Let H be M0-generic for B and M0[H] the cor-
responding generic extension. Let M1 be an inner model of M0[H] such that
M0 ⊆M1 ⊆M0[H]. Then there is a complete atomless Boolean subalgebra C of
B in M0 such that M1 = M0[C ∩H].

Proof of Proposition 7. Let M0, M1, and M2 be as in the statement.
Theorem 8 gives that G(M1,M0), and the Boolean algebra witnessing this is a
complete atomless Boolean subalgebra of the Boolean algebra witnessing
G(M2,M0). By [15, Exercise 16.4], this implies G(M2,M1). a

§4. Lower and upper bounds. As before, let Γ be a formula in two vari-
ables; the formula Γ defines a (possibly) class-sized relation on the meta-universe
V. In order to determine MLΓ, we give lower and upper bounds. The following
easy observations about lower bounds are essentially due to [9, Theorem 7] and
[17]:
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Proposition 9. Let Γ be a relation between models of set theory.

1. If Γ is reflexive, then T is valid for MLΓ.
2. If Γ is transitive, then 4 is valid for MLΓ.
3. If Γ is directed, then .2 is valid for MLΓ.
4. If Γ is topped, then Top is valid for MLΓ.

Proposition 10. The relation IM is reflexive and transitive. For any transi-
tive set sized model M � ZFC, the relation IM restricted to the generated subframe
of M is directed and topped. Hence, S4.2Top ⊆ MLIM.

Proof. It is easy to see that reflexivity and transitivity hold. Since every
relation that is topped is directed, we only need to show that IM restricted to
the generated subframe of M is topped: for this, consider LM which is equal
to LOrdM (where L is the constructive universe inside our ambient set-theoretic
universe). The model LM an inner model of every transitive set model of height

OrdM . a
Since it makes our definitions considerably easier, from now on, assume that

the (possibly class-sized) relation Γ is reflexive and transitive.

Definition 11. Let (F,≤F ) be a Kripke frame. A Γ-labelling of F for a model
of set theory W is an assignment to each node w in F a set-theoretic statement
Φw such that

1. The statements Φw form a mutually exclusive partition of truth in the
multiverse of W generated by Γ. That is, if W ′ is in the multiverse of W
generated by Γ, then W ′ satisfies exactly one of the Φw.

2. Any W ′ in the multiverse of W generated by Γ in which Φw is true satisfies
♦ΓΦu if and only if w ≤F u.

3. If w0 is an initial element of F , then W � Φw0 .

The formal assertion of these properties is called the Jankov-Fine formula for
F (cf. [10]). The next theorem, which is from [9] (which itself generalises a result
from [10]), is our main technique to calculate upper bounds for MLΓ.

Theorem 12. Suppose that w 7→ Φw is a Γ-labelling of a finite Kripke frame F
for a model of set theory W and that w0 is an initial element of F . Then for any
model M based on F , there is an assignment of the propositional variables to set
theoretic assertions p 7→ ψp such that for any modal assertion ϕ(p0, p1, . . . , pn),

(M,w0)  ϕ(p0, p1, . . . , pn) iff W � ϕ(ψp0
, ψp1

, . . . , ψpn).

In particular, any modal assertion that fails at w0 in M also fails in W under
this Γ-interpretation. Consequently, the modal logic of Γ over W is contained in
the modal logic of assertions valid in F .

We use so-called control statements in order to prove the existence of labellings
as in Theorem 12. In [10] and [9], the notions of buttons and switches were
introduced; here, we need conditional variants of these.

Let M be a transitive set such that M � ZFC. A pure Γ-button over M is
a sentence σ of L∈ such that for every assignment T with T (p) = σ, we have
that M �TΓ �♦�p and M �TΓ �(p → �p). We say that σ is unpushed in M if
M � ¬σ. In the following, fix an unpushed pure Γ-button σ over M .
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We say that τ is called a Γ-σ-switch over M if, for any transitive set M ′ �
ZFC ∧ ¬σ such that Γ(M,M ′), there are transitive sets N and N ′ such that
N � ZFC∧¬σ ∧ τ and N ′ � ZFC∧¬σ ∧¬τ . Equivalently, for any assignment T
such that T (p) = σ and T (q) = τ , we have M �TΓ �(¬p→ ♦(¬p∧q)∧♦(¬p∧¬q)).

A statement τ is called a pure Γ-σ-button over M if, for any assignment T
such that T (p) = σ and T (q) = τ , we have M �TΓ �(p → q) ∧ �((¬p ∧ ¬q) →
♦(¬p ∧ q)) ∧�(q → �q).

A finite family S = {s0, ..., sn, b0, ..., bm} of Γ-σ-switches s0, ..., sn and pure
Γ-σ-buttons b0, ..., bm over M is called independent if for any transitive set
M ′ � ZFC such that Γ(M,M ′) the following hold:

1. for any 0 ≤ i ≤ n, if M ′ � ¬σ, then there are transitive sets N and N ′ such
that Γ(M ′, N), Γ(M ′, N ′), N � ZFC ∧ ¬σ ∧ si, N ′ � ZFC ∧ ¬σ ∧ ¬si, and
for any c ∈ S\{si}, M ′ � c if and only if N � c if and only of N ′ � c;

2. for any 0 ≤ i ≤ m, if M ′ � ¬σ, then there is a transitive set N such that
Γ(M ′, N), N � ZFC ∧ ¬σ ∧ bi, and for any c ∈ S\{bi}, M ′ � c if and only
if N � c.

We omit Γ from the notation when it is clear from the context.

Theorem 13. Let Γ be a formula defining a reflexive and transitive relation
between transitive sets N � ZFC, and let M be a model of ZFC such that there is
an unpushed pure button σ in M . Suppose that there are arbitrarily large finite
families of mutually independent unpushed σ-buttons and σ-switches over M .
Then any inverted lollipop can be labelled over M , and hence the valid principles
of MLΓM are contained within S4.2Top.

Proof. We show the first part. The second part then follows from the con-
junction of Theorems 6 and 12.

Let L be a frame which is an inverted lollipop. Let F be the quotient partial
order of L under the natural equivalence relation. Then F is a finite Boolean
algebra with a single extra node on top; in particular, F is a topped partial
order. Therefore, the partial order of non-maximal elements of F is isomorphic
to the power set algebra ℘(A) for some finite set A. We fix such a set A.

With each element a ∈ F which is not maximal, there is associated a cluster
wa1 , w

a
2 , . . . w

a
ka

of worlds of L. By adding dummy nodes to each cluster, we may
assume that there is some natural number m such that for each non-maximal
a ∈ F , the sizes ka of the complete clusters at node a are the same, and equal to
2m. Also, suppose that F has size 2n + 1, that is, the size of A is n, so there are
n atoms in the Boolean algebra of non-maximal elements of F . We can therefore
think of the Boolean algebra of non-maximal elements of F as the worlds waj
where a ⊆ A, and j < 2m, with the order obtained by waj ≤ wci if and only if
a ⊆ c. Also, since F consists exactly of this pre-Boolean algebra and a single
extra node above every element of it, we can consider F as being made up of
worlds waj where a ⊆ A, and j < 2m, with the order obtained by waj ≤ wci if and
only if a ⊆ c, and a node t with waj ≤ t for each a and j.

Associate with each element i ∈ A an unpushed pure σ-button bi such that
the collection {bi | i ∈ A} form a mutually independent family with m-many
σ-switches s0, s1, . . . sm−1. For j < 2m, let s̄j be the assertion that the pattern
of switches corresponds to the binary digits of j (i.e., sk is true if and only if the
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kth binary bit of j is 1). We associate the node waj with the assertion

Φwa
j

= ¬σ ∧ (
∧
i∈a

bi) ∧ s̄j ,

and we associate the node t with the assertion Φt = σ. Clearly, we can assume
that all of the switches are off. Now, if W is a model in the multiverse of Γ
generated by M , and W � Φwa

j
, then by the mutual independence of buttons

and switches combined with our remark that pushing these buttons cannot push
the button σ, we see that W � Φwc

r
if and only if a ⊆ c.

Also, for any model W in the multiverse of M generated by Γ, if W � ¬σ,
then as σ is itself a button, it follows that W � ♦Φt. Therefore, if W � Φwa

j
,

then W � Φt. Also, since all of these buttons and switches are off in M , we
have M � Φw∅

0
. Thus, we have provided a Γ-labelling of this frame for W , hence

demonstrating that we can label all inverted lollipops. The result follows. a

§5. The modal logic of inner models. In [19], Reitz constructed a bot-
tomless model in which there is a class-sized descending sequence of grounds and
which is not a set forcing extension of the constructible universe L. Furthermore,
we know that in this model, the relation G is reflexive, transitive and directed.
This was used in [11] to calculate MLG in that model to be S4.2; we are reusing
parts of this proof in our main result.

Definition 14. Let κ be a regular cardinal. The forcing poset Add(κ) which
adds a Cohen subset of κ is the following:

1. p ∈ Add(κ) if p is a function and there is a γ < κ such that dom(p) = γ
and ran(p) ⊆ {0, 1}.

2. If p, q ∈ Add(κ), then p ≤ q if p ⊆ q.

Definition 15. Let SuccL denote the class of infinite successor cardinals in
L. Define in L the following (class-sized) partial order with Easton support:

P :=
∏

γ∈SuccL

Add(γ).

That is, p ∈ P if

1. p is a class function such that dom(p) = SuccL;

2. For each γ ∈ SuccL, p(γ) ∈ Add(γ);

3. For each such p, for each regular cardinal γ, |{λ ∈ SuccL | p(λ) 6= 0}∩γ| < γ

(the class {γ ∈ SuccL | p(γ) 6= 0} is called to be the support of p).

The ordering is defined by p ≤ q if p ⊆ q.
Also, for each p ∈ P and each γ ∈ SuccL, we can decompose p into three parts:

p<γ = p�[0, γ);

pγ = p�[γ, γ];

p>γ = p�(γ,∞).
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Using this decomposition, for each γ ∈ SuccL, we can decompose P into three
parts:

P<γ = {p<γ | p ∈ P};
Pγ = {pγ | p ∈ P};

P>γ = {p>γ | p ∈ P}.

It is clear that P ∼= P<γ × Pγ × P>γ .

Theorem 16. Assume V=L. Let γ be an infinite successor cardinal. Let
Qγ := P<γ × P>γ . Then forcing with Qγ does not add a Cohen subset of γ.

Proof. Since P>γ is clearly ≤ γ-closed, we only need to show that forcing
with P<γ does not add a Cohen subset of γ. Suppose towards a contradiction
that this is not so. Let L[G] be a generic extension by P<γ such that S ∈ L[G]
is a Cohen subset of γ. Therefore, for each α < γ, S ∩ α ∈ L. Using GCH, it is
easy to see that |P<γ | < γ.

Recall that for a regular uncountable cardinal δ and transitive sets M ⊆ N
that are models of ZFC of the same height, M is said to have the δ-approximation
property in N if for every cardinal κ such that cf(κ) ≥ δ and every ⊆-increasing
sequence in N of sets 〈Xα | α < κ〉 from M , its union

⋃
{Xα ; α < κ} ∈M . By

[21, Lemma 4], we know that L has the γ-approximation property in L[G].
But then, S =

⋃
α<γ(S ∩α), and 〈S ∩α | α < γ〉 is a ⊆-increasing sequence of

length γ of elements of L, and hence, S ∈ L, which is a contradiction. Therefore,
forcing with P<γ does not add any Cohen subsets of γ. a

Fix any transitive set M � ZFC, consider P to be defined in LM , and let G be
LM -generic for P, and let R := LM [G]. If γ is an infinite successor cardinal of
LM , we write G>γ := G ∩ P>γ . Let

τR := ∀κ ∈ SuccL
M

∃G ⊆ κ(G is an LM -Cohen subset of κ) and

σR := ∀B[(B is a complete atomless Boolean algebra)→ (‖τR‖B 6= 1B)].

Clearly, R � τR and for any N with IM(R,N) we have that G(R,N) if and
only if N � ¬σR. So, σR expresses that a model where it is true is a ground of
R. Hence, if N � σR is an inner model of R, then by Proposition 7, no further
inner model of N can be a model of ¬σR. Hence, σR is a pure IM-button (and
unpushed in R).

Lemma 17. Let N be a ground of R. Then in LM , there is an infinite suc-
cessor cardinal γ such that N ⊇ LM [G>γ ]. In particular, LM [G>γ ] is a ground
(and hence, an inner model) of N .

Proof. Towards a contradiction, suppose this is not so. Let Q ∈ N be a
forcing poset and let H be Q-generic over N such that R = N [H]. For some
infinite successor cardinal γ large enough, let x be a name for G>γ . Let p ∈ Q
be such that

p  “x is P>γ-generic over LM”.

By assumption, G>γ is a function of size OrdM which is not in N , but in a
set forcing extension of N by Q. Therefore, working in N , for any q ≥ p, q can
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decide only a set sized initial segment of G>γ . However, in N , for every β > α,
there is a r ≥ p such that r decides G>γ�(γ, β). Therefore, we can form a strictly

increasing chain of length OrdM = OrdN of conditions in Q, thus contradicting
that it is a set in N . a

Lemma 18. In R, there are arbitrarily large finite independent families of σR-
switches and σR-buttons. Consequently, MLIMR = S4.2Top.

Proof. We use control statements from [11, Theorem 6]. Let bn be the state-

ment “there is no LM -generic subset of ℵLM

n ”. Partition the successor cardinals
in LM above ℵω into ℵ0-many classes, 〈Γn〉n∈ω such that each class contains

unboundedly many cardinals. Enumerate each class as Γn = {γnα | α ∈ OrdM}.
Let sn be the statement “the least α such that there is an LM -generic subset of
γnα is even”. In [11, Theorem 6], it was shown that these are G-switches which
in our setting means that they are IM-σR-switches. We use Theorem 16 to see
that the family of the bn and sn is an independent family of IM-σR-buttons and
IM-σR-switches. As mentioned above, σR is a pure button; so we can appeal to
Theorems 13 and 6 to see that we are done. a

This, together with Proposition 10 gives us our main theorem:

Theorem 19. If there is a transitive set M � ZFC, then MLIM = S4.2Top.
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[10] Joel David Hamkins and Benedikt Löwe, The modal logic of forcing, Transactions
of the American Mathematical Society, vol. 360 (2008), no. 4, pp. 1793–1817.

[11] , Moving up and down in the generic multiverse, Logic and Its Applications,
5th International Conference, ICLA 2013, Chennai, India, January 10-12, 2013, Pro-
ceedings (Kamal Lodaya, editor), Lecture Notes in Computer Science, vol. 7750, Springer-

Verlag, 2013, pp. 139–147.



12 TANMAY INAMDAR AND BENEDIKT LÖWE
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