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Chapter 1
Introduction

1.1 Motivations

Artificial neural networks are mathematical tools that abstract the computation of (a
part of) the human brain. Theoretical results, such as that two-layer neural networks
are universal approximators [Cybenko, 1989] and that Turing machines are recurrent
neural networks [Hyötyniemi, 1996], mean that their expressiveness is undeniable.
However, in practice, how to train large, deep neural networks effectively and effi-
ciently has been for a long time one of the most challenging problems in machine
learning. In spite of a lot of effort in solving this challenge (see Schmidhuber [2015]
for a general review), only recently, since Hinton et al. [2006] succeeded in train-
ing deep belief networks, deep learning, a subfield of machine learning dealing with
training deep models, has become a “promised land”. What makes deep learning so
appealing is that it significantly reduces (or, in many cases, avoids) the need for man-
ual feature engineering, which is to use expertise knowledge to extract useful features.
Deep learning systems can now learn to recognize cats in photos [Le et al., 2012], play
video games [Mnih et al., 2015] just by raw pixel inputs, and beat a professional human
Go player [Silver et al., 2016].

Because of the notorious complexity and irregularity of human language, tradi-
tional approaches in Natural Language Processing (NLP) rely heavily on expertise and
domain knowledge to design helpful features. Deep representation learning, therefore,
also holds great promise for NLP. And, in fact, we did not need to wait for long to
see outcomes of this “marriage”: just two years after the publication of Hinton et al.
[2006], SENNA1 [Collobert and Weston, 2008], the first deep learning NLP system, got
(nearly) state-of-the-art performance on several tasks (part-of-speech tagging, chunk-
ing, named entity recognition, and semantic role labelling). The following years have
seen a surprising number of publications proposing deep learning approaches to tackle
a wide range of NLP tasks, such as syntactic parsing [Socher et al., 2013a, Chen and

1http://ronan.collobert.com/senna/

1



2 Chapter 1. Introduction

Manning, 2014, Dyer et al., 2015], sentiment analysis [Socher et al., 2013b, Kalchbren-
ner et al., 2014, Tai et al., 2015], machine translation [Sutskever et al., 2014, Luong
et al., 2015, Bahdanau et al., 2015], dialog processing [Vinyals and Le, 2015, Wen
et al., 2015], language modelling [Mikolov et al., 2010, Jozefowicz et al., 2016], and
question answering [Weston et al., 2015, Kumar et al., 2015].

However, the road is not always smooth. The impact of deep learning in reducing
the dependency on linguistic knowledge is so significant that some in the NLP com-
munity have started to worry [Manning, 2016], and get increasingly vocal about their
criticism of the approach, using arguments that were also used in debates about connec-
tionism in cognitive science [Fodor and Pylyshyn, 1988] and in linguistics [Jackendoff,
2001]. One of the main lines of such criticism relates to the binding problem, often
defined as the problem of representing conjunctions of properties. For instance, when
processing the phrase “fat mice and small cats”, how can a connectionist system know
that “fat” related to “mice” and “small” to “cats”? How could it avoid combining “fat”
with “cats”?

Another main line relates to the criticism that a neural network is a “black box”,
in the sense that, in spite of the universal approximation property, studying the struc-
ture of a neural network does not give us any understanding about the structure of the
function being approximated. Besides, examining neurons’ activations hardly tells us
why and how neural networks work. In contrast, many of the advances in NLP of the
last 40 years were based on developing meaningful representations (Figure 1.1). A
representation could be a string of part-of-speech tags or a parse tree, if we are inter-
ested in syntactic structures. For semantics, logic has since the Ancient Greece era
been used as a tool to represent meaning. Traditional representations conveying mean-
ings of sentences are therefore logical expressions such as first-order logical forms.
Those types of representations have in common that they are readable for human be-
ings, in the sense that we can understand them and analyse their components directly.
For example, looking at a parse tree of a sentence, we can detect the tense of its main
verb, whether the sentence is complex, and so on. The vector representations used in
deep learning systems look, at first sight, like a major step back: it is very difficult (or
sometimes impossible) to fully interpret its components.

Despite those difficulties, in this dissertation, I do develop deep neural network
models to tackle the problem of transforming sentences into vector representations.
Like Manning [2016], I view the marriage of deep learning and NLP as a great op-
portunity to solve many NLP challenges: the use of linguistic knowledge can provide
(1) insights for building proper neural network models, and (2) priors for boosting the
learning process. (1) leads me to a hybrid approach of symbolic NLP and connectionist
deep learning to avoid the binding problem, based on the principle of compositionality,
which says that:

The meaning of a whole is a function of the meanings of the parts and of
the way they are syntactically combined

[Partee, 1995]. Technically speaking, the principle suggests a general mechanism to
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Figure 1.1: A sentence can have different representations. The symbolics representa-
tions (POS-tags, parse tree, logical expression) are readable whereas the vector repre-
sentation is not.
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represent a sentence: a syntactic structure gives us a skeleton for combining tokens
and the remaining task is recursively applying composition functions along this skele-
ton in a bottom-up manner. The role of symbolic NLP is to provide syntactic structures
whereas composition functions are implemented (and trained) by connectionist deep
learning. The works of Pollack [1988] and Socher et al. [2010] are important inspira-
tions: they recursively apply a neural network at every internal node of a parse tree,
given by an external parser, in a bottom-up manner. Thanks to this hybrid, I can safely
avoid the binding problem.

Although the “black box problem” is real, the vector representation type brings
great advantages that make it worth the trouble:

• Computers are exceptionally good at numerical computation. Thanks to algebra,
we therefore can build systems employing vectors and matrices (and tensors, in
general) as core components that run efficiently on the current computer archi-
tecture, especially with the help of advanced GPUs.

• Classical symbolic representations are powerful for performing tasks requiring
reasoning. However, there is a wide range of semantic tasks that this form is
not appropriate, such as measuring semantic similarity and classification (e.g.
sentiment analysis). The vector form, in contrast, fits such tasks well. This is
due to the fact that we can measure the distance between two arbitrary vectors,
and that there are an enormous number of machine learning techniques defining
instances as vectors. In addition, as shown in Bowman et al. [2015a] and in other
recent works, reasoning with vector representations is not impossible.

• We can consider human brain as a dynamical system the state of which changes
over time. At a time the system’s state, which is a set of neuron activations, can
be represented by a point in a vector space. It is therefore reasonable to say that
the vector form is, to some extent, biologically plausible.

In fact, the idea of using vectors to represent linguistic items could be traced back to the
birth of distributional semantics [Firth, 1957a]. The emergence of the vector type for
sentences could be credited to first neural-network-based attempts in replacing sym-
bolic approaches on sentence processing tasks: the Recursive auto-associative model
of Pollack [1988], the Simple recurrent network model of Elman [1990], and the work
of St John and McClelland [1990], to name a few.

1.2 Contributions and Outline
This dissertation focuses on how to extract information from sentences, which is a
crucial step for further processes, such as classification and translation. It draws a
broad picture in which vector representations are the central representations, featuring
in a hybrid of symbolic NLP and connectionist deep learning approaches, in turn based
on the principle of compositionality.
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Socher et al. [2010] show that the Recursive neural network (RNN) model has the
potential to transform sentences into vectors, forming a basis for several recursive deep
network models proposed in this dissertation. The outline of the rest of the dissertation
is given as follows:

Chapter 2 This chapter presents the background for the whole dissertation. In the first
section, I will introduce neural networks and how to train them with the back-
propagation algorithm. In the second section, I review the literature on repre-
senting words and sentences using vectors.

Chapter 3 I propose to integrate context and more syntactic information into the compu-
tation of the RNN model. The vector representation of an internal node is now
computed by taking into account, in addition to the representations of its chil-
dren, representations of its syntactic label (e.g. N, VP), context words (e.g. one
word before and one word after the phrase the node covers), and its head word.
This idea is instantiated by a novel RNN-based reranker which achieves a signif-
icant improvement over the baseline, the Berkeley parser, on the Penn Treebank
corpus. The content of this chapter is based on the following publication:

Le, Zuidema, and Scha [2013] Learning from errors: Using vector-based com-
positional semantics for parse reranking. Proceedings ACL Workshop on Con-
tinuous Vector Space Models and their Compositionality.

Chapter 4 The RNN model, like traditional compositional semantics approaches, focuses
on how to represent phrases and sentences. That, in fact, limits its applicabil-
ity because contexts, which play an important role in solving many NLP tasks,
are not represented. In this chapter, I point out that the meaning of the context
of a phrase can also be computed recursively, leading to a natural extension for
the traditional compositional semantics framework: the Inside-Outside Seman-
tic framework. I then propose its neural-net-based instance, called the Inside-
outside recursive neural network (IORNN), which, in principle, is applicable to
both supervised and unsupervised learning, in both a bottom-up and top-down
manner. The new network model will be shown to perform on par with or bet-
ter than the state-of-the-art (neural) models in word prediction, phrase-similarity
judgements and semantic role labelling. The content of this chapter is based on
the following publication:

Le and Zuidema [2014b] Inside-Outside Semantic: A Framework for Neural
Models of Semantic Composition. NIPS 2014 Workshop on Deep Learning and
Representation Learning.

Chapter 5 This chapter shows a case study illustrating that the IORNN model proposed
in Chapter 4 can handle top-down processes. Using this model, I introduce an
implementation for an ∞-order generative dependency grammar model which
can overcome the problem of data sparsity. A reranker employing this model,
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with the help of the MSTParser, will be shown to perform on par with state-of-
the-art parsers on the Penn Treebank corpus. The content of this chapter is based
on the following publication:

Le and Zuidema [2014a] The Inside-Outside Recursive Neural Network model
for Dependency Parsing. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Chapter 6 For each parse tree the RNN model will build a network shaped according to
a given tree. If the tree is deep, information from deep leaves propagating to
the root is obscured, leading to the challenge of capturing long range depen-
dencies. Besides, error signals propagating backward from the root to those
leaves can vanish so quickly that learning has little effect. In this chapter, I ad-
dress these two problems and propose a novel extension of the Long short term
memory architecture that can work on trees. Empirical results show that the
proposed model, the Recursive LSTM, significantly outperforms the traditional
RNN model on the Stanford Sentiment Treebank. The content of this chapter is
based on the following publication:

Le and Zuidema [2015c] Compositional Distributional Semantics with Long
Short Term Memory. Proceedings of the Fourth Joint Conference on Lexical
and Computational Semantics (*SEM).

Chapter 7 According to the principle of compositionality, syntax guides semantic compo-
sition. However, automatic parsers are far-from-perfect and, in many cases, are
not aware of tasks to which they are applied. As a result, it raises the challenge
of how to deal with the uncertainty resulting from automatic parsers. Moreover,
constituents can be formed by different grammar rules with different branching
factors, and a semantic composition model should take these issues into account.
Being aware of the fact that the traditional RNN model is not able to solve any of
these problems, in this chapter, I propose two key ideas: (i) a system should take
as input a forest of parses instead of a single parse tree as in the traditional com-
positional semantics framework, and (ii) we can employ a convolutional network
to handle varying branching factors, which also to some extent provide us with
a solution to handle different grammar rules. The resulting model, the Forest
Convolutional Network, will be shown to perform on par with state-of-the-art
models on the Stanford Sentiment Treebank and on the TREC question dataset.
The content of this chapter is based on the following publication:

Le and Zuidema [2015a] The Forest Convolutional Network: Compositional
Distributional Semantics with a Neural Chart and without Binarization. Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

All the research and all implementations described in this dissertation were carried
out by Phong Le. Willem Zuidema (and Remko Scha) helped shape the key ideas, edited
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the publications referred to above and contributed some text to the introduction and
conclusion sections of those papers.





Chapter 2
Background

The ultimate goal of this dissertation is to represent sentences by vectors based on the
principle of compositionality and using neural networks. It is thus related to two re-
search areas: artificial neural networks and vector space modelling. In this chapter, I
will give a brief introduction to them. More specifically, Section 2.1 presents neural
networks at a basic level such as artificial neurons, multi-layer feed-forward neural net-
works, the back-propagation algorithm. Section 2.2 introduces vector space modelling
of language for representing words and phrases, and summarizes recent related work.

2.1 Artificial Neural Networks

2.1.1 Neurons

An artificial neuron (Figure 2.1a) is a computation unit which is loosely inspired by
a biological neuron: an output is a function of a sum of weighted inputs. Tech-
nically speaking, let x1, x2, ..., xn ∈ R be n scalar inputs associated with weights
w1, w2, ..., wn ∈ R and a bias b ∈ R. The corresponding output y of the neuron is

Σ

x1

x2

x3
y

w1
w2

1

w3

b

f

...

(a) Classic form

x y

1

b

w

(b) Vector form

Figure 2.1: Artificial neuron.

9
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Figure 2.2: Activation functions: sigmoid(x) = 1
1+e−x , tanh(x) = e2x−1

e2x+1
,

softsign(x) = x
1+|x| .

computed by:

z =
n∑
i=1

wixi + b = w1x1 + w2x2 + ...+ wnxn + b

y = f(z)

where f is an activation function (see Figure 2.2).
Another form which uses the vector notation is given as follows. Let x ∈ Rn be an

n-dim vector input, associated with w ∈ Rn an n-dim weight vector and a bias b ∈ R,
the output y is computed by:

z = wTx + b ; y = f(z)

Because this form is more compact than the classic form, it will be used in the rest of
this dissertation.

2.1.2 Multi-layer Neural Networks
If m neurons share the same input, we have a one-layer neural network (Figure 2.3a)
which is described mathematically by:

z = Wx + b ; y = f(z)
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x

1

b

W
y

(a)

x
W1

y
W2

y(1) y(2)y(0)

(b)

Figure 2.3: (a) One-layer neural network. (b) Two-layer neural network (biases are
removed for simplicity).

where W ∈ Rm×n and b ∈ Rm; f is now an element-wise activation function:

f
(

z1

z2

...
zm

) =


f(z1)
f(z2)
...

f(zm)


We call x and y respectively the input and output layer of a one-layer neural network.

Now, if we insert one layer of neurons right before the output layer of a one-layer
neural network, we have a two-layer neural network (Figure 2.3b) in which the com-
putation is given below:

y(0) = x

z(1) = W1y
(0) + b1 ; y(1) = f(z(1))

z(2) = W2y
(1) + b2 ; y(2) = f(z(2))

y = y(2)

The inserted layer is called a hidden layer.
This hidden layer in fact decides the expressiveness of the whole neuron network.

As pointed out by Minsky and Papert [1969], one-layer networks can not solve prob-
lems with non-linearly separable data (e.g., exclusive-or). A two-layer network, in
contrast, can: the hidden layer can project the data onto another vector space in which
they are now linearly separable (Figure 2.4). Interestingly, several theoretical proofs
(e.g., Cybenko [1989]) show that two-layer neural networks are universal approxima-
tors: they are capable of approximating any continuous function to any desired degree
of accuracy.

Do we need more hidden layers?

Although theoretically one hidden layer is enough, adding more hidden layers can be
beneficial. This is because of two advantages of deep architectures (including deep
neural networks, i.e., networks with many hidden layers)
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hidden layer

Figure 2.4: The role of the hidden layer in a two-layer feed-forward neural network is
to project the data onto another vector space in which they are now linearly separable.

(1) deep architectures promote the re-use of features, and (2) deep ar-
chitectures can potentially lead to progressively more abstract features at
higher layers of representations.

[Bengio et al., 2013b].
To understand these two advantages, let us take Figure 2.5 as an example.1 Here,

we build a four-layer neural network for face recognition: we feed in the network an
image at the input layer and receive a distribution over a predefined set of objects at
the output layer. This distribution tells us how likely the given image is of a person.
After properly training this network on a large dataset, we will find that the first hidden
layer detects low level features such as edges and simple shapes; the second layer can
identify more complex shapes like noses, eyes; and so on. This means that higher
layers (i.e. closer to the output layer) can extract more abstract features.

Now, let us look at neurons in the second hidden layer. Because they receive the
same input which is the activation of the first layer, features extracted from the first
hidden layer are actually re-used many times in the second hidden layer. This is desir-
able because, to identify noses and eyes, detecting edges and curves is necessary. It is
therefore more efficient to have a lower layer extract common features which are shared
among neurons in higher layers. For formal arguments, see Bengio et al. [2013b].

1Note that this example merely serves as an illustration. A deep network classifier could be
more complicated, employing more kinds of layers such as convolutional layers and pooling layers
[Lee et al., 2009]. For an online demo, see http://cs.stanford.edu/people/karpathy/
convnetjs/demo/cifar10.html.
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Figure 2.5: A four-layer neural network for face recognition. Higher layers (i.e.
closer to the output layer) can extract more abstract features: the first hidden layer
detects low level features such as edges and simple shapes; the second layer can iden-
tify more complex shapes like noses, eyes; and so on. Reproduced from http:
//www.rsipvision.com/exploring-deep-learning/.

Classification

Binary classification can be done with a one-neuron output layer of which the activa-
tion function is a sigmoid (or any function whose range is [0, 1]). An output can be
interpreted as the probability Pr(true|x) of assigning a predefined class to an input x.

For N -class classification (with N > 2), a special N -neuron output layer called
softmax2 is often used: each neuron estimates the probability of assigning a class c to
an input x by:

Pr(c|x) = softmax(c) =
eu(c,yL−1)∑

c′∈C e
u(c′,yL−1)

[u(c1,yL−1), ..., u(cN ,yL−1)]T = WyL−1 + b

where yL−1 ∈ RnL−1 is the activation of the layer right before the output layer; C is
the set of all possible classes; W ∈ RN×nL−1 ,b ∈ RN are a weight matrix and a bias
vector.

Cost Function

For regression, given a training dataset Dtrain = {(x1, t1), .., (xn, tn)}, the squared
error (average squared distance from predictions to ground truths) is often used as a

2Interestingly, a softmax function with N = 2 turns out to be equivalent to a sigmoid function.
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J

ᶊ

ᶊ ←ᶊ - ᶙ.ᶬJ/ᷦᶊ

local minimum

global minimum

Figure 2.6: The gradient descent method. We iteratively update θ by adding to it an
amount of −η ∂J

∂θ
until J converges. In this way, J gets smaller and smaller until it

reaches a local minimum. This is similar to rolling a ball downhill.

cost function:

J(θ) =
1

n

n∑
i=1

||yi − ti||22 +
λ

2
||θ||22︸ ︷︷ ︸

L2 regularization

where yi is the output of the network when the input is xi. The regularization term is
added to avoid overfitting (by forcing parameters to remain close to 0).

For classification with Dtrain = {(x1, c1), .., (xn, cn)}, the cross-entropy, which is
negative likelihood, is preferred

J(θ) =
1

n

n∑
i=1

− log yi,ci +
λ

2
||θ||22 ≡ −

1

n

n∑
i=1

logPr(ci|xi)︸ ︷︷ ︸
log likelihood

+
λ

2
||θ||22︸ ︷︷ ︸

L2 regularization

where yi,ci is the ci-th entry of yi. It is obvious that we can also use the squared error
objective in this case. However, as pointed out by Golik et al. [2013], training using
the squared error often ends up in a worse local optimum.

Training

Let θ be the parameter set of a neural network model, and J(θ) be a cost function that
should be minimized with respect to θ. A traditional way to train a neural network is to
employ the minibatch stochastic gradient descent method (Figure 2.6): given a training
dataset D and a learning rate η,
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• step 1: sample a minibatch D′ of m examples from the training set D,

• step 2: compute J(θ) on D′,

• step 3: update the parameters: θ ← θ − η ∂J
∂θ

,

• step 4: if stopping criteria are not met, jump to step 1.

Thanks to the back-propagation algorithm [Werbos, 1974], which is a breakthrough
in artificial neural network research, gradients can be computed efficiently. The key
idea is to back-propagate errors from the output layer to the input layer using the chain
rule in calculus: if y = f(z) and z = g(x) then

dy

dx
=
dy

dz

dz

dx

In cases of using vectors, i.e. y = f(z) and z = g(x), we have a similar formula:

∂y

∂x
=
∂z

∂x

∂y

∂z

where for any vector u ∈ Rm, v ∈ Rn, 3

∂u

∂v
=


∂u1
∂v1

∂u2
∂v1

· · · ∂um
∂v1

∂u1
∂v2

∂u2
∂v2

· · · ∂um
∂v2...

... . . . ...
∂u1
∂vn

∂u2
∂vn

· · · ∂um
∂vn


Without loss of generality, let us take a two-layer neural network (Figure 2.7) as an

example. We first back-propagate the error to the hidden layer as follows:

∂J

∂y(2)
=
∂J

∂y
(2.1)

∂J

∂z(2)
=
∂y(2)

∂z(2)

∂J

∂y(2)
;

∂J

∂W2

=
∂J

∂z(2)
y(1)T ;

∂J

∂y(1)
= WT

2

∂J

∂z(2)
(2.2)

and then to the input layer:

∂J

∂z(1)
=
∂y(1)

∂z(1)

∂J

∂y(1)
;

∂J

∂W1

=
∂J

∂z(1)
y(0)T ;

∂J

∂y(0)
= WT

1

∂J

∂z(1)

∂J

∂x
=

∂J

∂y(0)
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x
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∂J/∂y
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∂J/∂y(1) ∂J/∂y(2)∂J/∂y(0)

Figure 2.7: Back-propagation on a two-layer neural network.
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l(b,c)

a

b

d

l(b,c)

c = f(Wl(a,c)a + Wl(b,c)b)

e = f(Wl(c,e)c + Wl(b,e)b 
      + Wl(d,e)d)

f = f(Wl(b,f)b + Wl(d,f)d)

(a) (b)

Figure 2.8: (a) A directed acyclic graph (DAG) is a graph without rings (l(x, y) is the
label of the edge from x to y). (b) A DAG neural network has a DAG topology (biases
are removed for simplicity).
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2.1.3 Directed-acyclic-graph Neural Networks
The topology of a multi-layer neural network is a directed sequence in which each node
corresponds to a layer. In general, we can build neural networks with more sophisti-
cated topologies, such as directed acyclic graphs (DAGs). We define a DAG neural
network as a neural network whose topology is a DAG [Goller and Küchler, 1996]
(see Figure 2.8).

Given a DAG, we build a neural network by assigning a layer to each node and
information flows in this network are decided by the edges of the graph. Technically
speaking, the activation of the layer at node p is a function of the activations of the
layers at its children nodes (biases are removed for simplicity):

p = f(
∑
c:c→p

Wl(c,p)c)

where Wl(x,y) ∈ Rdim(y)×dim(x) and x ∈ Rdim(x) is the activation of the layer at node
x. For example, as shown in Figure 2.8, we can compute the activation of the layer at
node c by taking into account the activations of the layers at node a and b as follows:

c = f(Wl(a,c)a + Wl(b,c)b)

We do the same to compute the activation of the layer at node f :

f = f(Wl(b,f)b + Wl(d,f)d)

Finally, we now can compute the activation of the layer at node e:

e = f(Wl(c,e)c + Wl(b,e)b + Wl(d,e)d)

Training a DAG neural network is similar to training a multi-layer neural network.
We also use the stochastic gradient descent method where gradients are efficiently com-
puted thanks to the back-propagation through structure algorithm [Goller and Küchler,
1996], which is a variant of the back-propagation algorithm but for DAGs. Let us take
the example above to illustrate how this algorithm works (see Figure 2.9). Given that
e and f are used in further computations, say classification with an objective J . We
firstly compute ∂J

∂e
and ∂J

∂f
. We then back-propagate the errors to their child nodes and

grandchild nodes as follows:

∂J

∂c
=
∂e

∂c

∂J

∂e
∂J

∂a
=
∂c

∂a

∂J

∂c
∂J

∂b
=
∂c

∂b

∂J

∂c
+
∂e

∂b

∂J

∂e
+
∂f

∂b

∂J

∂f
∂J

∂d
=
∂e

∂d

∂J

∂e
+
∂f

∂d

∂J

∂f
3Here I use the so called denominator-layout notation.
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l(b,c)

∂J/∂e

∂J/∂f

∂J/∂c = ∂e/∂c.∂J/∂e

∂J/∂d = ∂e/∂d.∂J/∂e 
         + ∂f/∂d.∂J/∂f  

∂J/∂a = ∂c/∂a.∂J/∂c

∂J/∂b = ∂c/∂b.∂J/∂c 
         + ∂e/∂b.∂J/∂e 
         + ∂f/∂b.∂J/∂f 

Figure 2.9: The back-propagation through structure.

In general, for each child node c, we have:

∂J

∂c
=
∑
p:c→p

∂p

∂c

∂J

∂p

Given those gradients, computing ∂J
∂Wl(x,y)

, ∀l(x, y) is now straightforward, as in Equa-
tion 2.2.

2.2 Vector Space Modelling for NLP
The artificial intelligence field, since its inception, has been struggling how to build
machines that can understand human language. Traditional approaches are using for-
mal languages (e.g., first order logic) to eliminate ambiguities and to do reasoning. For
instance,

All men are mortal :- ∀x.man(x)→ mortal(x)

Socrates is a man :- man(Socrates)

therefore mortal(Socrates)

From late 20th century, the idea of using vectors to represent linguistic items, firstly
at the lexical level, emerged. Firth introduced the concept of distributional semantics
[Firth, 1957b] which is to use context as the key factor to determine the meaning of
a word. This concept leads to a new philosophy of meaning representation: using
vectors. Although there is controversy in calling it “semantics” (because it lacks com-
positionality and reasoning ability [Lenci, 2008]), the ability of measuring semantic
similarity is the crucial reason for its wide-spread use in NLP. In addition, unlike for-
mal semantics, building word meaning with distributional semantics is always in an
unsupervised learning fashion; and thus we can exploit a huge amount of raw texts
available on the Internet.
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2.2.1 Representing Words
Many approaches that tackle the problem of how to represent word meaning by vec-
tors, from simple counting (see Erk [2012] for a survey) to recent advanced machine
learning techniques [Collobert et al., 2011b, Mikolov et al., 2013b], are based on the
insight of Firth

You shall know a word by the company it keeps

[Firth, 1957b]. It means that: the meaning of a word can be determined by words come
with it (i.e., context). To make it clear, let us consider the following bardiwac example
(by Stefan Evert). Imagine that we are reading an English book and encounter the
strange word “bardiwac” in some sentences:

• He handed her her glass of bardiwac.

• Beef dishes are made to complement the bardiwac.

• Nigel staggered to his feet, face flushed from too much bardiwac.

• Malbec, one of the lesser-known bardiwac grapes, responds well to Australia’s
sunshine.

• I dined off bread and cheese and this excellent bardiwac.

• The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

Although we have no idea about the meaning of the word “bardiwac”, we can guess
it using contexts. From the first sentence, we can guess that “bardiwac” is a kind of
(drinkable) liquid. The second sentence suggests that it is drank with beef dishes. With
the third sentence, it seems that “bardiwac” can make us drunk. And so on. So finally,
we can guess (with a very high confidence) that “bardiwac” is a kind of red strong
wine.

Because we are human beings, we can guess the meaning of a unknown word
easily. The question is: how can a computer do that? Below two popular approach
classes will be introduced: co-occurrence count and prediction.

Co-occurrence count

For simplicity, we define a context of a target word in a sentence as the set of all words
standing before or after the target word not exceeding k positions. This is called a
window context. (If k =∞, the context is the whole sentence.)

Let V be a vocabulary. A very simple method is to count how many times a word
u ∈ V co-occurs with the target word w ∈ V . This is equivalent to estimating the
conditional distribution Pr(U = u|W = w) using maximum likelihood. An illustra-
tion is shown in Figure 2.10. First, we collect sentences containing the target word w.
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Figure 2.10: Step by step to build a vector for the word “bathtub” by simple count.
Reproduced from Erk [2012]. Copyright 2012 by John Wiley and Sons.

We then for each word u count how many times u co-occurs with w within a defined
window size k. Finally, we extract a vector containing all of those counts, which is
used to represent the target word w. Estimating the conditional distribution is simple
by:

P (U = u|W = w) =
#u and w co-occur

#w
(2.3)

However, in order to come up with meaningful vectors, there are some details that
should be concerned with. First, which u’s should be counted. It is clear that func-
tion words (e.g., “a”, “an”, “how”, “what”), which are extremely frequent, carry little
information about the meanings of target words. With this simple count, every word
plays an equal role. By contrast, rare words tend to contribute more important infor-
mation. We thus need one more step called weighting scheme. One of popular schemes
is point-wise mutual information:

PMI(u,w) =
P (U = u|W = w)

P (U = u)
(2.4)

where P (U = u) is the probability that u appears in the corpus. Intuitively speaking,
rare words should get higher weights than frequent words.
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In practice, the resulting vectors are high dimensional (e.g. 2000 or more). There-
fore, a dimension reduction method like PCA or non-negative matrix factorization is
often employed in the end (see Dinu and Lapata [2010] for an example).

Prediction

The key idea of this approach class is very similar to how we answer “filling in blanks”
questions in TOEFL and IELTS tests:

is the study of numbers, equations, functions, and geometric
shapes and their relationships.

a. physics

b. mathematics

c. geography

d. theology

If an examinee gets a good result (i.e. an accuracy substantially higher than 25% of
random guess), she is supposed to know the meanings of correct words as well as their
contexts. Similarly, if resulting word vectors can help us to do well on such questions,
those vectors are supposed to capture the meanings of the corresponding words.

Let us assume that each word v ∈ V is represented by a vector v ∈ Rd and there is
a mechanism to compute the probability P (W = w|U = (u1, u2, ..., ul)) of the event
that a target word w appears in a context (u1, u2, ..., ul). We are going to find a vector
v for each word v such that those probabilities are as high as possible for each w and
its context (u1, u2, ..., ul).

There are many approaches sharing this idea. Here, I introduce the one proposed
by Bengio et al. [2003], which is to my knowledge, the very first approach in this class.
First, we compose words u1, ..., ul into a vector x as below:

x = tanh(b + V1u1 + ...+ Vlul) (2.5)

where Vi ∈ Rn×d and b ∈ Rn. We then project x onto a |V|-dim vector space:

a = c + Wx (2.6)

Finally, using a softmax, we estimate the probability that wk, the k-th word in V ,
appears in the context (u1, ..., ul)

P (W = wk|U = (u1, u2, ..., ul)) = softmax(k, a) =
eak∑|V|
i=1 e

ai
(2.7)

Now, let θ = 〈w1, ...,w|V|,V1, ...,Vl,b,W, c〉. Training this neural network is to
maximize the log-likelihood (i.e., minimizing the cross entropy objective function) of
the training data with respect to θ:

L(θ) =
∑

w,(u1,...,ul)

logP (W = w|U = (u1, ..., ul)) (2.8)
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where the sum is over all possible 〈target word w, context (u1, ..., ul) 〉 pairs found in
the corpus.

Recent approaches use different neural network models. Mikolov et al. [2010] em-
ploy (simple) recurrent network networks of which resulting word vectors are shown
to capture linguistic regularities [Mikolov et al., 2013c] like

−−→
king −−−→man+−−−−→woman = −−−→queen

Another model is the skip-gram model [Mikolov et al., 2013a] which is trying to predict
contextual words using target word vectors. Huang et al. [2012]’s model employs
global information captured at the document level.

Because the computational cost of a softmax function (Equation 2.8) is linearly
proportional to the vocabulary size, with a very large vocabulary naively using a soft-
max function leads to a huge demand of computation. To overcome this problem, one
can use a hierarchical softmax [Morin and Bengio, 2005] whose complexity is a log of
the vocabulary size. Sampling techniques like noise contrastive estimation can also be
used [Mnih and Teh, 2012].

Maximizing log-likelihood is not the only way to train a model. Collobert et al.
[2011b] propose to use a ranking criterion: for every word w′ which is different from
the target word w, w should be ranked higher than w′.

2.2.2 Representing Sentences

Those techniques for representing words in theory can be applied to larger items like
phrases and sentences. However, in practice, lack of data is so serious that they are
mostly useless. In this section, I introduce two classes of approaches: composition and
non-composition.4

Composition

The solution that formal semantics research found is to rely on the principle of compo-
sitionality. With the lambda calculus, composition turns out to be very elegant: lambda
function application and reduction. For instance,

John :- john
run :- λx.run(x)

John run :-
(
λx.run(x)

)
(john) = run(john)

4It is worth mentioning that, in this dissertation, I draw a border between composition and non-
composition: any approach that is not explicitly based on the principle of compositionality is considered
non-compositional. This border however is not absolute because some models, such as Kalchbrenner
et al. [2014], are non-compositional according to this definition, but are shown to be able to find out
hidden structures similar to syntactic trees.
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I like it

VP

S

Figure 2.11: Compute sentence vector in a bottom manner. Firstly we compute a vector
for the VP and then compute a vector for the S .

For vectorial semantics, because there is unfortunately no such a beautiful mathemati-
cal solution like that, looking for universal composition functions is still very challeng-
ing. However, we can build a general framework based on that principle as follows.

Given that x and y are vectors representing two items x and y, respectively. The
task is to find a composition function f so that the output is a vector representing
constituent p = xy:

p = f(x,y, R,K) (2.9)

where R is the syntactic rule that combines x and y, K is background knowledge
[Mitchell and Lapata, 2008].

Computing a vector for a sentence is thus, like in formal semantics, carried out
in a bottom up manner on a given parse tree. An illustration is given in Figure 2.11.
Assuming that there are vectors representing words (we can randomly initialize them
or use any technique in Section 2.2.1). We first compute a vector for the VP:

−−−→
like it = f(

−−→
like,

−→
it , V P → ADJ PRP )

and then go higher up in the hierarchy to compute a vector for the whole sentence

−−−−−→
I like it = f(

−→
I ,
−−−→
like it, S → NP V P )

Approaches in this class mainly differ by the composition functions they make use
of. Below I will introduce three of them.

Mixture-based composition The simplest approach is to use vector element-wise
operations like addition and multiplication [Mitchell and Lapata, 2008]

• Additive: p = x + y

• Multiplicative: p = x� y (i.e., pi = xi × yi)
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where p = xy is formed by combined x and y. The name of this model comes from the
fact that an entry of the resulting vector can be considered as a mixture (via addition or
multiplication) of the two corresponding entries of the two input vectors.

Despite its simplicity, this approach works surprisingly well in composing noun-
noun and adjective-noun phrases [Blacoe and Lapata, 2012]. However, from the the-
oretical point of view, this approach is unsatisfactory. Because those operations are
commutative, the word order is not taken into account, i.e.,

−−−−−−−−→
man bit dog =

−−−−−−−−→
dog bit man

A more sophisticated way is to linearly combine those two operations:

p = αx + βy + γxi � y

Function-application-based Composition The idea is to resemble composition in
formal semantics. In formal semantics, words such as adjectives and verbs are functors
which are to modify arguments representing other words like nouns; and composition
is simply function application. Based on this, with the slogan “composition is largely a
matter of function application” Baroni et al. [2013] propose using tensors5 to represent
words:

• first-order tensors (i.e., vectors ∈ Rn) are to represent nouns,

• second-order tensors (i.e., matrices ∈ Rn×m) are to represent adjectives, intran-
sitive verbs,

• third-order tensors (i.e., ∈ Rn×m×k) are for transitive verbs, and so on.

Composition is carried out through tensor production. For example composing an
adjective and a noun is a matrix-vector multiplication like:

−−−−→
old dog = fold(

−→
dog) = OLD×−→dog (2.10)

5 Tensors describe linear relations between vectors, scalars, and other tensors. An n-dim vector is
a first-order n-shape tensor, an n × m matrix is a second-order n × m-shape tensor. A third-order
(n×m)× k-shape tensor T describes a linear map from a k-dim vector v to an n×m matrix M

M = T× v

where
Mm,n =

∑
k

Tm,n,kvk

Generally, a (I1× ...×Im)× (J1× ...×Jn)-shape tensor T describes a linear map from a J1× ...×Jn-
shape tensor V to an I1 × ...× Im-shape tensor M by

Mi1,...,im =
∑

j1,...,jn

Ti1,...,im,j1,...,jnVj1,...,jn
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old dog old dog

old cat old cat

...

extract 
from 

corpus

extract 
from 

corpus

linear 
regression

Figure 2.12: Learning a matrix for an adjective using linear regression.

Training this model is to find proper tensors for words. Given the fact that ap-
proaches for word vectors are not applicable to second and higher-order tensors, Baroni
et al. [2013] and Grefenstette et al. [2013] employ linear regression with co-occurrence
counts as training signals. First, co-occurrence count is used to find vectors for nouns
like “dog”, vectors for noun phrases “old X” such as “old dog”, “old cat”. From those
vectors representing “old X” and “X”, linear regression is used to estimate a matrix for
“old” (see Figure 2.12). Higher-order tensors are estimated with the same mechanism
but with a technique called multi-step linear regression.

From theoretical point of view, the function-application-based approach is a beauti-
ful model, which could be considered as inheriting the philosophy of formal semantics.
However, learning tensors for lexical items is the most serious weakness. This is be-
cause the model requires a very large number of parameters (a single transitive verb
needs n3, i.e., 1M if n = 100, parameters). Besides, we need to collect context distri-
butions of phrases like ‘old dog’ as in the above example. This becomes problematic
when phrases are rare.

Recursive neural networks Because two-layer feed forward neural networks are
universal approximators, they can theoretically approximate true composition func-
tions (if they exist and are measurable). Therefore, it is natural to think of using a feed
forward neural net as a composition function. This leads to a model called Recursive
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x

p = f(W1x + W2y+b)

y

W1 W2

(a)

I like it

xvp=f(W1xlike+W2xit)

xs=f(W1xl+W2xvp)

softmax

(b)

Figure 2.13: (a) A feed-forward neural network as a composition function. (b) Recur-
sive neural network for sentence classification.

neural network (RNN).6 This idea is first proposed by Pollack [1990] and Goller and
Küchler [1996]. It then became popular in NLP thanks to the work series of Socher
and colleagues [Socher et al., 2010, 2011c, 2012].

A composition function for this model is a network consisting of two layers (Fig-
ure 2.13a): an input layer with 2n nodes for pairs of two children, an output layer
with n nodes for parents. Technically speaking, given a production p → x y, the
computation is given by

p = f(W1x + W2y + b) (2.11)

where x,y,p ∈ Rn are vectors representing x, y, p. W1,W2 ∈ Rn×n, b ∈ Rn are
weight matrices and a bias vector. f is an activation function (e.g., tanh). It is easy
to recognize that an RNN is in fact a DAG neural network because a tree is a directed
acyclic graph. Therefore, we can employ the method presented in Section 2.1.3 to
efficiently train an RNN.

The RNN model differs from the above two models in that it is nonlinear (if the
activation function f in Equation 2.11 is nonlinear, e.g. sigmoid, tanh). Although it is
not clear whether the true composition functions are linear or nonlinear, the nonlinear-
ity obviously makes the RNN model more expressive and a wide range of choices for
f make it more flexible. Another difference lies in motivations. Because the mixture-
based and function-application-based models emerged from the expectation of captur-
ing general compositionality based on raw texts only like the way word vectors are
built, they are considered as task-independent. The RNN model, on the other hand,
is task-oriented, i.e., the resulting composition functions are for specific tasks (e.g.,

6The acronym ‘RNN’ is often referred to recurrent neural network in the neural network community.
However, because this work is mainly concerned with recursive neural networks, I reserve this acronym
for recursive neural network, and always state the full name for recurrent ones.
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sentiment prediction). Annotated data are thus required. It is however not true that
we can not make the other two models task-oriented nor that we can make the RNN
model task-independent. In the former case, injecting task-oriented training signals as
in supervised learning can help. In the latter case, training signals can be taken from
contexts (see Dinu et al. [2013] for an example).

Although the RNN model is simple, its elegance in terms of modelling and training
makes it popular in the NLP community. A bundle of its extensions have been pro-
posed, mainly along two directions: (i) proposing more expressive composition func-
tions and (ii) extending the topology. In the rest of this part, I will introduce three such
extensions: the Matrix-Vector RNN model and the Recursive Neural Tensor Network
model for (i) and the Bidirectional RNN model for (ii).

Matrix-Vector RNNs (MV-RNN) The beauty of the function-application-based model
is that it explicitly point out two main roles of an item (word or phrase): an item (e.g.,
adjective) could be used to modify the meaning of another item (e.g., noun), and could
be modified by another item (e.g., adverb). The MV-RNN model [Socher et al., 2012]
is an extension of the traditional RNN model such that the two roles are explicitly em-
ployed. The key idea is to represent any item a by a matrix-vector pair 〈A, a〉 where
a ∈ Rn represents the core meaning of a and A ∈ Rn×n captures a’s ability of modi-
fying another item. The composition for a production p→ x y is given by

p = f
(
W1(Yx) + W2(Xy) + b) (2.12)

P = U1X + U2Y (2.13)

where W1,W2, U1,U2 ∈ Rn×n, and b ∈ Rn.
Because now each word in the vocabulary must be represented by a matrix-vector

pair, the size of a MV-RNN is about n+ 1 times larger than the size of an RNN where
n is the dimension of the vector space. Socher et al. [2012], to reduce the model size,
thus propose to use a low-rank matrix approximation method

A = UV + diag(c)

where if A ∈ Rn×n then U ∈ Rn×r, V ∈ Rr×n, c ∈ Rn, and r � n.
Empirical results show that the MV-RNN model outperforms the traditional RNN

model in predicting sentiments and classifying sentiment relationships [Socher et al.,
2012].

Recursive Neural Tensor Networks (RNTN) The MV-RNN model above requires
a large number of parameters (even after employing the low-rank matrix approximation
method) and this number grows rapidly regarding to the vocabulary size. Socher et al.
[2013b] thus suggest that it is cognitively more plausible to have one powerful com-
position function with a fixed number of parameters. Their proposal is a tensor-based
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I like it

VP

S

Figure 2.14: Bidirectional Recursive neural network. The dashed lines correspond to
the top-down component.

composition7 which employs a tensor product (see the definition in Footnote 5)

p = f
(
V

(
x
y

)
︸ ︷︷ ︸

tensor product

(
x
y

)
+ W1x + W2y + b︸ ︷︷ ︸

standard RNN

)

where V ∈ Rn×2n×2n is a third-order tensor which is to transform a 2n-dim vector
to an n × 2n matrix. Comparing this to Equation 2.13, we can see that this RNTN
model can be considered as a compact form of the MV-RNN model where a vector for
each item now captures both its core meaning and modification ability. Multiplying

the tensor V to
(
x
y

)
is thus to extract the modifying matrices X and Y.

Tested on the Stanford Sentiment Treebank8 for sentiment analysis, this RNTN
model outperforms the MV-RNN model, and becomes a strong baseline for this task.

Bidirectional RNNs One restriction of the RNN model is that the information flows
on parse trees bottom-up only, a node in a parse tree is thus not aware of its surrounding
context. The RNN model therefore is not applicable to several NLP tasks such as
semantic role labelling in which contexts play an important role to determine some
desired property of constituents. The solution proposed by Irsoy and Cardie [2013]
is to add a top-down component to, at every node in a parse tree, compute one more
vector capturing information of the surrounding structure (see Figure 2.14).

Given a parse tree, we assign two vectors to each node p: p↑ ∈ Rn representing the
node itself and p↓ ∈ Rn representing the structure surrounding it. Let x and y be p’s
left and right child, respectively. We compute p↑ exactly like in the RNN model. Now,
if p is the root node then

p↓ = f(Vp↑ + b↓)

7I present an equivalent form in order to connect this model to the MV-RNN model.
8http://nlp.stanford.edu/sentiment/treebank.html
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Otherwise, let r be p’s parent, then

p↓ =

{
f(W↓

Lr
↓ + Vp↑ + b↓) if p is the left child of r

f(W↓
Rr
↓ + Vp↑ + b↓) if p is the right child of r

where V,W↓
L,W

↓
R ∈ Rn×n and b↓ ∈ Rn. Because of the way information flows, it is

easy to see that p↓ represents both p and its surrounding structure.
Fusing information of both p and its context in p↓ is a weak point. In fact, the

Bidirectional RNN model is not applicable to top-down generation as well as tasks
concerning incomplete sequences. In Chapter 4, I will discuss this in more details and
propose a network model, the Inside-outside Recursive neural network, to overcome
this problem.

Non-composition

Some approaches try to compute vectors for sentences without (explicitly) using syn-
tactic structures as glue to combine sub-components. They are thus non-compositional.

Recurrent Neural Networks A neural network is recurrent if it has at least one
directed ring in its structure. In NLP, the simple recurrent neural network (SRN) model
proposed by Elman [1990] (see Figure 2.15a) and its extensions are used to tackle
sequence-learning problems, such as machine translation [Sutskever et al., 2014] and
language modelling [Mikolov et al., 2010].

In an SRN, an input xt is fed to the network at each time t. The hidden layer h,
which has activation ht−1 right before xt comes in, plays a role as a memory captur-
ing the whole history

(
x0, ...,xt−1

)
. When xt comes in, the hidden layer updates its

activation by:
ht = g

(
Wxxt + Whht−1 + b

)
where Wx ∈ Rn×dim(xt), Wh ∈ Rn×n, b ∈ Rn are weight matrices and a bias vector;
g is an activation function. This network model thus, in theory, can be used to estimate
conditional probabilities with long histories. Besides, computing gradients is efficient
thanks to the back-propagation through time algorithm [Werbos, 1990].

Because the SRN can handle sequences with different lengths, we can use it to
process sentences. For instance, Figure 2.15b shows how we can use the SRN model
for language modelling: the idea is to try to predict which word will come next. In
this way, when we reach the end of a sentence, the hidden layer activation captures
the whole sentence. In other words, we can use the activation of the hidden layer
at that time point to represent the whole sentence. Figure 2.15b also shows that the
SRN model is in fact a special case of the RNN model: the input tree is always left-
branching.

Although in theory recurrent neural networks are, at least, as expressiveness as Tur-
ing machines [Hyötyniemi, 1996], training them is difficult because of the vanishing
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Figure 2.15: (a) Simple recurrent network (SRN) and (b) when we unfold it. Notice
that h0 can be simply ~0.



2.2. Vector Space Modelling for NLP 31

I like it very much<s> </s>

convolutional
layer

pooling

fully connected
layer

Figure 2.16: Convolutional neural network (one convolutional layer and one fully con-
nected layer) with a window-size-3 kernel.

gradient problem and the problem of how to capture long range dependencies [Hochre-
iter et al., 2001]. Two alternatives, which become popular recently, are the Long short
term memory architecture [Hochreiter and Schmidhuber, 1997] (which is discussed in
more detail in Chapter 6) and gated recurrent neural networks [Chung et al., 2014].

Convolutional Networks A very popular class of neural-network-based models em-
ploys convolutional networks. A convolutional neural network (CNN) [LeCun et al.,
1998] is also a feed-forward neural network; it consists of one or more convolutional
layers (often with a pooling operation) followed by one or more fully connected layers.
This architecture was invented for computer vision. It then has been widely applied to
solve NLP tasks [Collobert et al., 2011b, Kalchbrenner et al., 2014, Kim, 2014].

To illustrate how a CNN works, the following example uses a simplified version
of the model proposed by Collobert et al. [2011b], which consists of one convolu-
tional layer with a max pooling operation, followed by one fully connected layer (Fig-
ure 2.16). This CNN uses a kernel with the window size 3. When sliding this kernel
along the sentence “〈s〉 I like it very much 〈/s〉”, we get five vectors:

u(1) = W1x<s> + W2xI + W3xlike + bc

u(2) = W1xI + W2xlike + W3xit + bc

...

u(5) = W1xvery + W2xmuch + W3x</s> + bc

where W1,W2,W3 ∈ Rd×m are weight matrices, bc ∈ Rd is a bias vector. A max
pooling operation (i.e., element-wise max) is then applied to those resulting vectors:

x =
[

max
1≤i≤5

u
(i)
1 , ..., max

1≤i≤5
u

(i)
j , ...

]T
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(a) (b)

Figure 2.17: ParagraphVector. (a) Distributed Memory (b) Distributed Bag-of-words.
Reproduced from Le and Mikolov [2014].

Finally, a fully connected layer is employed:

y = f(Wx + b)

where W, b are a real weight matrix and a bias vector, respectively; f is an activation
function.

Intuitively, a window-size-k kernel extracts (local) features from k-grams, and is
thus able to capture k-gram composition. The max pooling operation is for reducing
dimension and forcing the network to discriminate important features from others by
assigning high values to them. For instance, if the network is used for sentiment analy-
sis, local features corresponding to k-grams containing the token “like” should receive
high values in order to be propagated to the top layer.

ParagraphVector Differing from all of the above models where the information di-
rection is from word to sequence (i.e., the vectors of the words in a sequence are com-
posed to form a vector representing the whole sequence), the ParagraphVector method
proposed by Le and Mikolov [2014] is in the opposite direction: from sequence to
word. For each sequence, it searches for a vector that can help to predict which words
occur in the sequence. If the prediction is successful, this vector is used to represent
the whole sequence.

From the technical perspective, this method is very much similar to the predic-
tion approach presented in Section 2.2.1. As a result, any word vector model in that
class can be used to produce word-sequence vectors. Le and Mikolov [2014] propose
two models: distributed memory (Figure 2.17a) and distributed bag-of-words (Fig-
ure 2.17b). In Figure 2.17, the i-th column of the matrix D represents the i-th docu-
ment (which could be a phrase, a sentence, or a paragraph) in corpora. The distributed
memory model thus considers a whole document as a part of the context of every word
in that document. The distributed bag-of-words model, on the other hand, considers
a document as a special token whose context consists of all of its words. Concate-
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nating word-sequence vectors produced by the two models are shown to be useful for
sentiment analysis and information retrieval.

One can recognize that this method is similar to reading comprehension tests: a stu-
dent is asked to read a paragraph and then answer questions about the content of that
paragraph. If her answers are correct, she is supposed to understand the paragraph.
Here in the model, questions like “what did the cat sit on?” or “tell me which informa-
tion can be extracted from the paragraph!” are rephrased by “what should come after
the cat sat on?” or “tell me what you read in the paragraph!” Although an exact equiv-
alent of the reading comprehension test would have the model learn from paraphrases,
paraphrasing is eliminated in this case for simplicity.





Chapter 3
Discriminative Reranking with Recursive

Neural Networks

In this chapter, I address the problem of how to use vector representations to improve
syntactic parsing, by using a hybrid reranking method: a k-best list generated by a
statistical symbolic parser is reranked based on acceptability scores given by a com-
positional, connectionist classifier. This classifier uses a recursive neural network to
construct vector representations for phrases in a candidate parse tree in order to classify
it as syntactically correct or not. Tested on the WSJ23, my proposed method achieves
a statistically significant improvement of 0.20% in F-score (2% error reduction) and
0.95% in exact match, compared with the Berkeley parser. This result shows that vec-
tor representations can be usefully applied to syntactic parsing, and demonstrates the
benefits of combining symbolic and connectionist approaches.

3.1 Introduction
According to the principle of compositionality, composing the meaning of a phrase or
a sentence requires a syntactic parse tree, which is, in most current systems, given by
a statistical parser. This parser, in turn, is trained on syntactically annotated corpora.

However, there are good reasons to also consider information flowing in the op-
posite direction: from semantics to syntactic parsing. Performance of parsers trained
and evaluated on the Penn WSJ treebank has reached a plateau, as many ambiguities
cannot be resolved by syntactic information alone. Further improvements in parsing
may depend on the use of additional sources of information, including semantics. In
this chapter, I study the use of some form of semantics for syntactic parsing.

The currently dominant approach to syntactic parsing is based on extracting prob-
abilistic symbolic grammars from a treebank and defining appropriate probability dis-
tributions over the parse trees that they license [Charniak, 2000, Collins, 2003, Klein
and Manning, 2003, Petrov et al., 2006, Bod et al., 2003, Sangati and Zuidema, 2011,
van Cranenburgh et al., 2011]. An alternative approach, with promising recent de-
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velopments [Socher et al., 2010, Collobert, 2011], is based on using neural networks.
In the present chapter, I combine the symbolic and connectionist approaches through
reranking: a statistical symbolic parser is used to generate a k-best list which is then
reranked based on acceptability scores given by a connectionist classifier.

The idea of reranking is motivated by analyses of the results of state-of-the-art
symbolic parsers such as the Brown and Berkeley parsers, which have shown that
there is still considerable room for improvement: oracle results on 50-best lists display
a dramatic improvement in accuracy (96.08% vs. 90.12% in F-score and 65.56% vs.
37.22% in exact match with the Berkeley parser – shown later in the chapter). This
suggests that parsers that rely on syntactic corpus statistics, though not sufficient by
themselves, may very well serve as a basis for systems that integrate other sources of
information by means of reranking.

One important complementary source of information is the semantic plausibility
of the constituents of the syntactically viable parses. The exploitation of this kind of
information is the topic of the research I present here. In this work, I follow up on a
proposal by Steedman [1999], who suggests that the realm of semantics lacks the clear-
cut hierarchical structures that characterise syntax, and that semantic information may
therefore be profitably treated by the classificatory mechanisms of neural nets—while
the treatment of syntactic structures is best left to symbolic parsers. I thus develop a
hybrid system, which parses its input sentences on the basis of a probabilistic symbolic
grammar, and reranks the candidate parses based on scores given by a neural network.

My work is inspired by the work of Socher and colleagues [Socher et al., 2010,
2011b]. They propose a parser using a recursive neural network (RNN) for encoding
parse trees, representing phrases in a vector space, and scoring them. Their experimen-
tal result (only 1.92% lower than the Stanford parser in unlabelled bracketing F-score
for sentences up to a length of 15 words) shows that an RNN is expressive enough
for syntactic parsing. Additionally, their qualitative analysis indicates that the learnt
phrase features capture some aspects of phrasal semantics, which could be useful to
resolve semantic ambiguity that syntactic information alone cannot. My work in this
chapter differs from theirs in that I replace the parsing task by a reranking task, and
thus reduce the search space significantly to a set of parses generated by a symbolic
parser rather than the space of all parse trees. As a result, I can apply my method to
sentences which are much longer than 15 words.

Reranking a k-best list is not a new idea. Collins [2000], Charniak and Johnson
[2005], and Johnson and Ural [2010] have built reranking systems with state-of-the-art
performance. In order to achieve such high F-scores, those rerankers rely on a very
large number of features selected on the basis of expert knowledge. Unlike them, my
feature set is selected automatically, yet the reranker achieves a statistically significant
improvement in both F-score and exact match.

Closest to my work is the work of Menchetti et al. [2005] and the work, carried out
concurrently with mine, of Socher et al. [2013a]: both also rely on symbolic parsers to
reduce the search space and use RNNs to score candidate parses. However, my work
differs in the way the feature set for reranking is selected. In their methods, only the
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Figure 3.1: An overview of the proposed method.

score at the tree root is considered whereas in my method the scores at all internal
nodes are taken into account. Selecting the feature set like that gives us a flexible way
to deal with errors accumulated from the leaves to the root.

Figure 3.1 shows a diagram of the proposed method. First, a parser (in this chapter:
the Berkeley parser) is used to generate k-best lists of the Wall Street Journal (WSJ)
sections 02-21. Then, all parse trees in these lists and the WSJ02-21 are preprocessed
by marking head words, binarising, and performing error-annotation (Section 3.2).
After that, I use the annotated trees to train the classifier (Section 3.3). Finally, those
trees and the classifier are used to train the reranker (Section 3.4).

3.2 Experimental Setup
The experiments presented in this chapter have the following setting. I used the WSJ
corpus with the standard splits: sections 2-21 for training, section 22 for development,
and section 23 for testing. The latest implementation (version 1.7) of the Berkeley
parser1 [Petrov et al., 2006] was used for generating 50-best lists. I marked head words
and binarised all trees in the WSJ and the 50-best lists as in Section 3.2.1, and annotated
them as in Section 3.2.2 (see Figure 3.2).

3.2.1 Pre-processing Trees

I pre-processed trees by marking head words and binarising the trees. For head word
marking, I used the head finding rules of Collins [Collins, 1999] which are imple-
mented in the Stanford parser. To binarise a k-ary branching, e.g. P → C1 ... H ... Ck
where H is the top label of the head constituent, I used the following method. If H is
not the left-most child, then

P → C1 @P ; @P → C2 ... H ... Ck

otherwise,
P → @P Ck ; @P → H ... Ck−1

1https://code.google.com/p/berkeleyparser
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Figure 3.2: Example for preprocessing trees. Nodes marked with (*) are labelled in-
correct whereas the other nodes are labelled correct.

where @P , which is called dummy-P , now is the head of P . I then recursively applied
this transformation to the children until reaching terminal nodes. In this way, I ensure
that every internal node has one and only one head word.

3.2.2 Error Annotation
I annotated nodes (as correct or incorrect) as follows. Given a parse tree T in a 50-best
list and its corresponding gold-standard tree G in the Penn treebank, I first attempted
to align their terminal nodes according to the following criterion: a terminal node t is
aligned to a terminal node g if they are at the same position counting from left to right
and they have the same label. Then, a non-terminal node P [wh] with childrenC1, ..., Ck
is aligned to a gold-standard non-terminal node P ∗[w∗h] with children C∗1 , ..., C

∗
l (1 ≤

k, l ≤ 2 in our case) if they have the same head word, the same syntactic category, and
their children are all aligned in the right order. In other words, the following conditions
have to be satisfied

P = P ∗ ; wh = w∗h ; k = l

Ci is aligned to C∗i , for all i = 1..k

Aligned nodes were annotated as correct whereas the other nodes were annotated as
incorrect.
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Figure 3.3: An RNN attached to the parse tree shown in the top-right of Figure 3.2.
All unary branchings share a set of weight matrices, and all binary branchings share
another set of weight matrices (see Figure 3.4).

3.3 Acceptability Classification
This section describes how to employ a neural network to construct vector representa-
tions for phrases given parse trees and to identify whether those trees are syntactically
correct or not. In order to encode tree structures, inspired by the work of Socher et al.
[2010], I employ an RNN (see Figure 3.3 and Figure 3.4). However, unlike traditional
RNNs, my RNN

• can handle unary branchings,

• takes into account head words and syntactic tags, and

• takes into account contextual words (one word before and one word after the
constituent), as in the second model of Socher et al. [2010].

It is worth noting that, although we can use some transformation to remove unary
branchings, handling them is helpful in our case because the system avoids dealing with
the many syntactic tags that would result from the transformation. In addition, using
a new set of weight matrices for unary branchings makes my RNN more expressive
without facing the problem of sparsity thanks to a large number of unary branchings in
the treebank.

The RNN processes a tree structure by repeatedly applying itself at each internal
node. Thus, walking bottom-up from the leaves of the tree to the root, I compute for
every node a vector based on the vectors of its children. Because of this process, those
vectors have to have the same dimension. It is worth noting that, because information
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Figure 3.4: Details about the employed RNN for a unary branching (top) and a binary
branching (bottom). The biases are not shown for simplicity.

at leaves, i.e. lexical semantics, is composed according to a given syntactic parse, what
a vector at each internal node captures is some aspects of compositional semantics of
the corresponding phrase. In the remainder of this subsection, I describe in more detail
how to construct vector representations geared towards the acceptability classification
task.

Similarly to Socher et al. [2010], and Collobert [2011], given a sequence of words
(w1, ..., wl), I first compute a sequence of vectors (x1, ...,xl) representing those words
by using a lookup table (i.e., word embeddings) L ∈ Rn×|V |, where |V | is the size of
the vocabulary and n is the dimension of the vectors. This lookup table L could be
seen as a storage of lexical semantics where each column is a vector representation of
a word. Hence, let ui be the one-hot binary representation of word wi (i.e., all of the
entries of ui are zero except the one corresponding to the index of the word wi in the
dictionary), then

xi = Lui ∈ Rn (3.1)

I also encode syntactic tags by binary vectors but put an extra bit at the end of each
vector to mark whether the corresponding node is a dummy node (i.e., @P or P )
resulting from the binarization pre-processing.
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Then, given a unary branching P [wh] → C, I can compute the vector at the node
P by (see Figure 3.4-top):

p = f
(
Wuc + Whxh + W−1x−1 + W+1x+1 + Wttp + bu

)
(3.2)

where c,xh are vectors representing the childC and the head word; x−1,x+1 are vector
representations of the left and right neighbouring words of P ; tp encodes the syntactic
tag of P , Wu, Wh, W−1, W+1 ∈ Rn×n; Wt ∈ Rn×(|T |+1); |T | is the size of the set
of syntactic tags; bu ∈ Rn; and f can be any activation function (tanh is used in this
case). For a binary branching P [wh]→ C1 C2, I simply change the way the children’s
vectors are added (see Figure 3.4-bottom):

p = f
(
Wb1c1 + Wb2c2 + Whxh + W−1x−1 + W+1x+1 + Wttp + bb

)
(3.3)

Finally, I put a sigmoid neural unit on the top of each internal node (except pre-
terminal nodes because we are not concerned with POS-tagging) to detect the correct-
ness of the subparse tree rooted at that node:

y = sigmoid(wT
catp + bcat) (3.4)

where wcat ∈ Rn, bcat ∈ R.

3.3.1 Learning
The cost of a parse tree is computed as a sum of classification errors of all subparses.
Hence, learning is to minimise the following objective:

J(θ) =
1

N

∑
T

∑
(y(θ),t)∈T

1

2
(t− y(θ))2 + λ‖θ‖2 (3.5)

w.r.t. θ, where θ is the parameter set, N is the number of trees, λ is a regularisation
hyper-parameter, T is a parse tree, y(θ) is given by Equation 3.4, and t is the class
of the corresponding subparse (t = 1 means correct). Gradients ∂J

∂θ
are computed

efficiently thanks to the back-propagation through the structure algorithm [Goller and
Küchler, 1996]. L-BFGS [Liu and Nocedal, 1989] is used to minimise the objective
function.

3.3.2 Experiments
I implemented the classifier in Torch72 [Collobert et al., 2011a], which is a powerful
Matlab-like environment for machine learning. The 50-dim word embeddings given by
Collobert et al. [2011b]3 were used as L in Equation 3.1. Note that these embeddings,

2http://www.torch.ch/
3http://ronan.collobert.com/senna/
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pos-rate (%) neg-rate (%) %-Pos
gold-std 75.31 - 100
1-best 90.58 64.05 71.61

10-best 93.68 71.24 61.32
50-best 95.00 73.76 56.43

Table 3.1: Classification results on the WSJ22 and the k-best lists.

which resulted from training a neural language model on the English Wikipedia and
Reuters, have been shown to capture several interesting semantic similarities between
words. I train the classifier on 10-best parses of the WSJ02-21, with a minibatch size
of 5000, λ = 10−4, n = 50.

I evaluated the classifier on the development set WSJ22, which contains 1700 sen-
tences, and measured its performance in positive rate and negative rate, which are
defined by:

pos-rate = 100× #true pos
#true pos + #false neg

neg-rate = 100× #true neg
#true neg + #false pos

The positive/negative rate indicates rate at which positive/negative (sub)trees are cor-
rectly labelled positive/negative. In order to achieve a high performance in the rerank-
ing task, the classifier must have a high positive rate as well as a high negative rate.
In addition, the percentage of positive examples is also interesting because it shows
the unbalancedness of the data. Because accuracy is not a reliable measurement when
the dataset is highly unbalanced, I do not show it here. Table 3.1, Figure 3.5, and
Figure 3.6 show the classification results.

3.3.3 Discussion
Table 3.1 shows the classification results on the gold standard, 1-best, 10-best, and 50-
best lists. On the 1-best data, the classifier missed less than one tenth positive subtrees
and correctly found nearly two third of the negative ones. That is, my classifier might
be useful for avoiding many of the mistakes made by the Berkeley parser, whilst not
introducing too many new mistakes of its own. This fact gives me hope to improve
parsing performance when using this classifier for reranking.

Figure 3.5 shows the positive rate, the negative rate, and the percentage of positive
examples w.r.t. sub-tree depth on the 50-best data. We can see that the positive rate
is inversely proportional to the subtree depth, unlike the negative rate. This is the
case because the deeper a subtree is, the less likely it is positive (we can see this via
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Figure 3.5: Positive rate, negative rate, and percentage of positive examples w.r.t. sub-
tree depth.

the percentage-of-positive-examples curve). In addition, deep subtrees are difficult to
classify because uncertainty is accumulated when propagating from bottom to top.

3.4 Reranking
In this section, I describe how to apply the above classifier to the reranking task.
First, I need to construct a feature vector for each parse tree in one vector space, i.e.,
µ(T ) =

(
µ1(T ), ..., µv(T )

)T for any arbitrary parse tree T . Collins [2000], Char-
niak and Johnson [2005], and Johnson and Ural [2010] choose as the first feature the
original model’s score and as other features the frequencies of specific discrete hand-
crafted properties of the tree (e.g., how many times the word “pizza” comes after the
word “eat”). I here do the same with a method to discretise results from the classifier;
however, unlike the approaches just mentioned, I do not use any expert knowledge for
feature selection: instead, I use a fully automatic process. I use a 2D histogram to
store predicted scores w.r.t. subtree depths. This gives me a flexible way to penalise
low score subtrees and reward high score subtrees based on the performance of the
classifier at different depths (see Section 3.3.3).

Technically speaking, a feature vector µ(T ) is computed as follows. µ1(T ) is the
model score (i.e., max-rule-sum score) given by a third-party parser,

(
µ2(T ), ..., µv(T )

)
is a histogram of a set of (y, h)’s where y is given by Equation 3.4 and h is the depth of
the corresponding subtree (see Figure 3.7). The domain of y (i.e., [0, 1]) is split into γy
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Figure 3.6: Positive rate, negative rate, and percentage of positive samples w.r.t. syn-
tactic categories (excluding POS tags).

equal bins whereas the domain of h (i.e., {1, 2, 3, ...}) is split into γh bins such that the
i-th (i < γh) bin corresponds to all subtrees of depth i and the γh-th bin corresponds
to all subtrees of depths equal or greater than γh. The parameters γy and γh are then
tuned on the development set.

After extracting feature vectors for parse trees, I then find a linear ranking function

f(T ) = w>µ(T )

such that

f(T1) > f(T2) iff fscore(T1) > fscore(T2)

where fscore(.) is the function calculating F-score, and w ∈ Rv is a weight vector,
which is efficiently estimated by SVM ranking [Yu and Kim, 2012]. SVMs were ini-
tially used for binary classification. Their goal is to find the hyperplane which has the
largest margin to best separate two example sets. They were then proved to be efficient
in solving ranking tasks in information retrieval, and in syntactic parsing [Shen and
Joshi, 2003, Titov and Henderson, 2006]. In the below experiments, I employ SVM-
Rank4 [Joachims, 2006], which runs extremely fast (less than two minutes on about
38000 10-best lists).

4www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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Figure 3.7: Histogram of a set of (y, h) where y is given by Equation 3.4 and h is the
depth of the corresponding subtree.

3.4.1 Experiments

Using the classifier in Section 3.3, I implemented the reranker in Torch7, and trained
it on the WSJ02-21. I used WSJ22 to estimate the parameters γy and γh: grid search
determined that γy = 9 and γh = 4 yielded the highest F-score.

Table 3.2 shows the results of my reranker on 50-best WSJ23 generated by the
Berkeley parser, using the standard evalb. My method improves 0.20% in F-score for
sentences of all lengths, and 0.22% for sentences with ≤ 40 words. These differences
are statistically significant5 with p-value < 0.003. My method also improves exact
match (0.95% for all sentences as well as for sentences with ≤ 40 words).

Table 3.3 shows the comparison of the three parsers that use the same hybrid
reranking approach. My method achieves 0.1% in F-score lower than Socher et al.
[2013a]’s, and 1.5% better than Menchetti et al. [2005]’s. However, it achieves the
least improvement in F-score over its corresponding baseline. That could be because
my baseline parser (i.e., the Berkeley parser) performs much better than the other two
baseline parsers; and hence, detecting errors it makes on candidate parse trees is more
difficult.

3.5 Conclusions
This chapter describes a new reranking method which uses vector representations of
words and phrases in syntactic parsing: a symbolic parser generates a k-best list which

5I use the “Significance testing for evaluation statistics” software (http://www.nlpado.de/
˜sebastian/software/sigf.shtml) described in Padó [2006].
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Parser LR LP LF EX
all

Berkeley parser 89.98 90.25 90.12 37.22
This work 90.10 90.54 90.32 38.17

Oracle 95.94 96.21 96.08 65.56
≤ 40 words

Berkeley parser 90.43 90.70 90.56 39.65
This work 90.57 91.01 90.78 40.50

Oracle 96.47 96.73 96.60 68.51

Table 3.2: Reranking results on 50-best lists of WSJ23 (LR is labelled recall, LP is
labelled precision, LF is labelled F-score, and EX is exact match.)

Parser LF (all) k-best parser
Menchetti et al. [2005] 88.8 (0.6) Collins [1999]
Socher et al. [2013a] 90.4 (3.8) PCFG Stanford parser
My proposed reranker 90.3 (0.2) Berkeley parser

Table 3.3: Comparison of parsers using the same hybrid reranking approach. The
numbers in the blankets indicate the improvements in F-score over the corresponding
baselines (i.e., the k-best parsers).
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is later reranked with acceptability scores given by a connectionist classifier. The pro-
posed classifier uses an RNN, like Socher et al., [Socher et al., 2010, 2011b], to not
only represent phrases in a vector space given parse trees, but also identify if these
parse trees are grammatically correct or not.

Tested on WSJ23, my method achieves a statistically significant improvement in F-
score (0.20%) as well as in exact match (0.95%). This result, although not comparable
to the results reported by Collins [2000], Charniak and Johnson [2005], and Johnson
and Ural [2010], shows the potential of using vector representations to support avail-
able state-of-the-art parsers.

One of the limitations of the work in this chapter is the lack of a qualitative analysis
of how learnt vector representations have affected the reranking results. Therefore, the
need for “compositional semantics” in syntactic parsing is not yet proven. One possible
solution is to use vector representations together with non-semantic features (e.g., the
ones of Charniak and Johnson [2005]) to find out whether the vector representations
are truly helpful or they just resemble non-semantic features.





Chapter 4
Inside-Outside Semantics: A Framework

The Recursive Neural Network (RNN) model and its extensions have been shown to
be powerful tools for semantic composition with successes in many natural language
processing (NLP) tasks. However, in this chapter, I argue that the RNN model is re-
stricted to only a subset of the NLP tasks where semantic compositionality plays a
role. I propose a novel extension called Inside-Outside Semantics. In this framework
every node in a parse tree is associated with a pair of representations, the inside rep-
resentation for representing the content under the node, and the outside representation
for representing its surrounding context. I demonstrate how this allows me to develop
a neural network model for a much broader class of NLP tasks and for supervised as
well as unsupervised learning. The neural-net model, Inside-Outside Recursive Neural
Network, performs on par with or better than the state-of-the-art (neural) models in
word prediction, phrase-similarity judgements and semantic role labelling.

4.1 Introduction
For several decades, the most successful approaches for modelling word meaning, on
the one hand, and those for modelling semantic composition (needed to compute the
meaning of phrases and sentences), on the other hand, seemed incompatible. Word
meanings can be well described with numerical vectors, often reflecting co-occurrence
frequencies with other words in corpora. A rich and diverse literature has emerged
on distributional semantics, with many successes in tasks like similarity judgements,
word sense disambiguation and information retrieval (see Lenci [2008] for a review).

Semantic composition, on the other hand, has since Montague [1970] been mod-
elled using the lambda-calculus, which is straightforwardly employed in symbolic
logic of various sorts, but seems incompatible with vector representations. As re-
cently as 2008, Lenci [2008] wrote in a review of distributional semantics that the
issue of how to do semantic composition with vectorial word representations remained
unsolved. Since then, however, a series of papers have appeared proposing a range of
technical solutions for this problem and creating much excitement about the prospects
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Figure 4.1: Recursive Neural Network

of finally bridging the two fields. One of the most successful of these new approaches,
the Recursive Neural Network (RNN) model, originally proposed by Pollack [1990]
and employed by Socher et al. [Socher et al., 2010, 2012, 2011c], seems to lend itself
well for neural network-based technology for language processing.

In this chapter, for convenience, I re-introduce the traditional RNN model and it
extensions, discuss them in some detail, and show that, at a closer look, they leave
some major challenges unsolved. One such challenge concerns its bottom-up defini-
tion of composition, which reduces the RNN’s usefulness as a framework for NLP. In
Section 4.3 I propose a solution to this challenge, consisting of an extension, which I
call Inside-Outside Semantics. I show that this allows information to flow top-down
as well as bottom-up. As a result, its neural implementation, the Inside-Outside Re-
cursive Neural Network, introduced in Section 4.4, can be applied to a wide range of
NLP tasks. In Sections 4.5, 4.6, I report results on a word prediction task, a phrase
similarity judgement task, and a semantic role labelling task, and show in each task
that the new model is on par with the best n-gram or neural network approach for that
specific domain.

4.2 Recursive Neural Networks

In compositional semantics, meaning representations are typically computed in a bottom-
up manner: given a constituent p = xy and a grammar rule R that combines the two
linguistic items x and y, then

p = fR
(
x,y

)
where fR is a composition function. There are different ways to instantiate meaning
representations and composition functions. In formal semantics, meaning representa-
tions are typically λ-expressions and the composition function is function application
[Bos et al., 2004]. In recent models of compositional vectorial semantics, the words
meanings are vectors, matrices or tensors, and a variety of algebraic operators (e.g.,
vector addition) have been proposed for composition.
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Socher et al. [2010], amongst others, propose to learn composition functions from
data, rather than handcraft them, and to implement them using feed-forward neural
networks. The basic idea of their RNN is simple. Assume that there is a parse tree
(p2 (p1 x y) z) (Figure 4.1), and that x,y, z ∈ Rn are vector representations of
the three words x, y and z. We can then use a standard feedforward neural network
which consists of a weight matrix W1 ∈ Rn×n for left children and a weight matrix
W2 ∈ Rn×n for right children to compute the vector for a parent node in a bottom up
manner. The RNN model is recursive in the sense that the same weight matrices are
used recursively to compute vector representations for nodes higher up in the tree, until
we reach the root node. Thus, we compute representations for p1:

p1 = f(W1x + W2y + b)

and for p2:
p2 = f(W1p1 + W2z + b)

where b ∈ Rn is a bias vector and f is an activation function (e.g., tanh).
In the classic setup [Goller and Küchler, 1996], the sequence of computations the

RNN model performs is guided by an external, symbolic control structure that is pro-
vided with a parse tree of the sentence. Socher et al. integrate the RNN’s vector
computations with the (greedy) search for the best tree structure for a sentence, but
still need a symbolic control structure to guide the applications of the neural network.
Using Goller & Kuechler’s back-propagation through structure algorithm [Goller and
Küchler, 1996], and training on the syntactic annotations of the Penn WSJ treebank,
Socher et al. [2010] obtain promising results on the syntactic parsing task for short
sentences. A straightforward variant of the model, called compositional vector gram-
mars [Socher et al., 2013a], introduces separate weight matrices for grammar rules,
and obtains nearly state-of-the-art parsing scores on the Penn WSJ benchmark test.

Some extensions of the RNN have been introduced to further improve the accuracy
of the composition functions, such as the Matrix-Vector RNN model [Socher et al.,
2012], and the Recursive Neural Tensor Network model [Socher et al., 2013b]. Thanks
to the successes in NLP tasks such as constituency parsing [Socher et al., 2013a],
sentiment analysis [Socher et al., 2013b], the RNN models are now firmly established
as a powerful tool for semantic (and syntactic) composition.

However, the RNN framework can still only be applied to a specific subset of NLP
problems that involve compositional structure, because of

• the need for supervision, i.e. syntactic and semantic annotations needed as train-
ing signals, and

• the bottom-up definition of semantic composition.

A partial solution to the first problem (regarding to the need for semantic annotations) is
provided by an elegant extension called Recursive Auto-encoders (RAE) [Socher et al.,
2011c], which replace the traditional feed-forward neural networks by auto-encoders.
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The underlying principle of the RAE model is that composition is compression, such
that an input is able to be recovered from the output by a decoding function. In this
chapter, however, I present an alternative extension of RNNs for unsupervised learning
that outperforms the RAE model on the popular phrase-similarity judgement task by a
large margin.

The next problem, that information is allowed to flow bottom-up only, turns out to
be greatly limiting the RNN models’ usefulness to a number of important domains in
NLP. First, the RNN models are not able to be used in ways that parallel major pars-
ing strategies, such as Earley parsing [Stolcke, 1995] and left-corner parsing [Man-
ning and Carpenter, 2000], that make use of top-down predictions. Second, the RNNs
cannot be used either in ways that parallel important classes of top-down generative
probabilistic models such as Eisner’s dependency models [Eisner, 1996b] and Collins’
phrase-structure models [Collins, 1997]. Third, the RNN models do not compute repre-
sentations for the contexts of constituents, even though contexts are essential for many
tasks, such as (i) next or missing word prediction based on preceding or surrounding
context, or (ii) semantic role labelling, where the goal is to assign semantic roles to
constituents based on properties of both the slot (context) and the filler (content).

4.3 The Inside-Outside Semantics Framework

Believing that a natural solution for the difficulties mentioned above is to be found in
the way information flows in linguistic structures such as parse trees, I propose a frame-
work, Inside-Outside Semantics. The crucial innovation of this framework is to intro-
duce an architecture that allows information to flow in parse trees not only bottom-up,
as in traditional compositional semantics frameworks, but also top-down. I accomplish
this by adding a second vector to every node that represents the context surrounding
that node (rather than the content under that node). These context representations can,
like content representations, be computed recursively. But where content represen-
tations are computed bottom-up from a node’s children, context representations are
computed top-down from a node’s parent and siblings. The interaction between con-
tent and context representations in turn makes it possible to devise a new unsupervised
learning scheme for estimating composition functions from raw texts. The interaction,
moreover, can be formed based on training signals in supervised learning tasks such as
semantic role labelling, and named entity recognition.

I denote with ip and op the representations of p’s content and context (see Fig-
ure 4.2). Henceforth, I will call i the inside representation, and o the outside represen-
tation. Similarly to the traditional compositional semantics framework, we have:

ip = f iR(ix, iy) (4.1)

where f iR is a composition function for inside representations. To compute outside
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ip : inside repr.

context content
p

op: outside repr.

Figure 4.2: Inside (ip) and outside (op) representations at the node that covers con-
stituent p. They are vector representations of p’s content and context, respectively.

ox ix oy iy

oz izop1 ip1

op2 ip2

z

yx

(a) Inside-Outside Semantics framework

x y

z

p1

p2

(b) Inside-Outside Recursive Neural Network

Figure 4.3: Inside-Outside framework. Black rectangles correspond to inside repre-
sentations, white rectangles correspond to outside representations.

representations (i.e., the associative profile of context), I use the following formulas:

ox = f o1R (oxy, iy) (4.2)
oy = f o2R (oxy, ix) (4.3)

where f ojR is a composition function for the outside representation of the j-th child.
The rationale for these equations is that the context of the constituent x consists of the
context of the parent constituent p = xy and the content of the sibling constituent y;
the outside representation of x is thus a function of the outside representation of p and
the inside representation of y. 1

The whole process for the parse tree (p2 (p1 x y) z) is depicted graphically in
Figure 4.3a, where an arrow indicates that the representation at its head is a function of
the representation at its tail, and solid arrows are for computing inside representations

1The reader may recognise that equations 4.1, 4.2, and 4.3 bear a resemblance to respectively inside
and outside probabilities in the Inside-Outside algorithm for stochastic grammars [Lari and Young,
1990].
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whereas dotted arrows are for outside representations. Looking at the graph, we can
see that there are two information flows in the tree structure: one from bottom up and
the other from top down. The interaction between these two flows may occur at any
node and depends on the purpose of usage.

This framework shares some properties with Irsoy and Cardie’s recently proposed
bidirectional RNN model [Irsoy and Cardie, 2013], and Paulus et al. [2014]’s global-
belief RNN model, which also add a second representation, the down vector, to every
node and allow for information to flow top-down. However, because these down vec-
tors can only be computed after all up vectors (corresponding to inside representations)
for a tree have been computed first, I doubt that these two models are able to solve the
three problems mentioned in Section 4.2. In my framework, by contrast, inside and
outside representations are strictly complementary: the outside representation for a
node x can be computed without knowing the contents under that node.

There are different ways to instantiate representations i,o and composition func-
tions f iR, f

oj
R . In the next section, I describe IORNN, a neural-network-based in-

stance of the framework. The proposed framework, moreover, can also work with
λ-expressions, as in formal semantics. The reader can find details in Appendix A.

4.4 The Inside-Outside Recursive Neural Network Model

I explain the operation of the IORNN model in terms of the same example parse tree
(p2 (p1 x y) z) as I used before (see Figure 4.3b). For the present chapter I assume
that an independently given parser assigns a syntactic structure to an input string. Each
node u in the syntactic tree carries two vectors ou and iu, the outside representation
and the inside representation of the constituent that is covered by the node.

Computing inside representations Inside representations are computed from the
bottom up. I assume for every word w an inside representation iw ∈ Rn. The inside
representation of a non-terminal node, e.g. p1, is given by:

ip1 = f(Wi
1ix + Wi

2iy + bi)

where Wi
1,W

i
2 ∈ Rn×n, bi ∈ Rn, and f is an activation function, e.g. tanh. The

inside representation of a parent node is thus a function of the inside representations of
its children. This is similar to the traditional RNN model.

Computing outside representations Outside representations are computed from the
top down. For a node which is not the root, e.g. p1, the outside representation is given
by

op1 = g(Wo
pop2 + Wo

2iz + bo)
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Mice

NP

love

(S\NP )/NP

cheese

NP
>

S\NP
<

S

Figure 4.4: A CCG derivation for the sentence “Mice love cheese”.

where Wo
p,W

o
{1,2} ∈ Rn×n, bo ∈ Rn, and g is an activation function.2 The outside

representation of a node is a function of the outside representation of its parent and
the inside representations of its siblings. If there is information about the external
context of the sentence that is being processed, this information determines the outside
representation of the root node oroot. In my first experiments reported here, no such
information is assumed to be available. In this case, a random value o∅ is chosen and
assigned to the root nodes of all sentences. Note that this value is adjusted by the
learning process discussed below.

Training

Training an IORNN is to minimise an objective function J(θ) which depends on the
purpose of usage (see Section 4.5, 4.6) where θ is the parameter set. To do so, I com-
pute gradients ∂J/∂θ and apply the stochastic gradient descent method. The gradients
are efficiently computed thanks to the back-propagation through structure algorithm
[Goller and Küchler, 1996]. I use AdaGrad [Duchi et al., 2011] to update the parame-
ters.

Incorporating Grammatical Information

The IORNN above uses just five matrices (left child/right child for inside, parent/left
sibling/right sibling for outside) for computing inside/outside representations in a bi-
nary tree, ignoring syntactic labels. However, Socher et al. [2013a] and Hermann and
Blunsom [2013] find that using different matrices for different grammar rules/categories
greatly improves results. In most of my experiments, I follow this suggestion, using
one of the following types of syntactic representations (without binarisation):

• CFG-k: context-free grammar (CFG) derivation with the k most frequent rules
(according to the Penn Treebank section 2-21), the other rules are replaced by
abstract rules X → X ... X;

• CCG: combinatory categorial grammar (CCG) derivation with all combinatory
rules.

2Notice that outside representations and inside representations do not need to have the same dimen-
sion.



56 Chapter 4. Inside-Outside Semantics: A Framework
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Figure 4.5: A fluent speaker needs to understand the meaning of the whole constituent
“chased the cat” to guess the meaning of the unknown word “X” (here should be
“dog”). Therefore, if a model can fulfill the task, it is expected to learn appropriate
composition functions for V P → V DP and DP → D NP .

CCG [Steedman, 2000] is a widely used grammar formalism for semantic appli-
cations thanks to its transparent interface between syntax and semantics [Bos et al.,
2004]. In CCG, a word or constituent is assigned a category, which could be basic (e.g.,
NP , S) or complex (e.g., NP/NP , S\NP ). A complex category defines selectional
and directional combination. For instance, NP/NP implies that any constituent or
word in this category can combine with a noun phrase to its right-hand side in order to
form a new noun phrase. The standard CCG specifies five basic rules for combination:
forward application (fa), backward application (ba), composition (comp), coordination
(conj), and type raising (tr). Figure 4.4 shows a CCG derivation for the sentence “Mice
love cheese”. (For a complete introduction, see Steedman [2000].)

4.5 Unsupervised Learning with IORNNs: word pre-
diction and phrase similarity

In this section, I employ the IORNN model to learn from data that contain no anno-
tations for the semantics of constituents, sentences or other combinations of words.
In that sense, the learning is unsupervised, but note that I will make use of syntactic
structures, both at train time and at test time (using a third party parser).

To demonstrate that the capabilities of the IORNN model go beyond those of the
standard bottom-up RNN model, I apply it to the task of predicting missing words in
a sentence. I reason that any fluent speaker of a language can guess the meaning of
an unknown word by making use of the meaning of its context, and that when she
correctly predicts the meaning of the unknown word, we can assume that she compre-
hends the meaning of the context (see Figure 4.5). Following this reasoning, I base
the composition function learning task on the word prediction task, which opens up a
novel (and much needed) scheme for unsupervised training of semantic composition
models.
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The IORNN model is expected to learn appropriate composition functions through
learning to predict words. To do so, at every leaf, I let the inside and outside repre-
sentations interact with each other such that what ends up in the outside representation
is some expectation about what the inside representation should be. Because the out-
side representation is computed based on the context word representations with the
composition functions, the more accurately the IORNN model performs on the word
prediction task is, the more semantically plausible the composition functions should
be. I therefore evaluate the IORNN model both on the quality of the missing word pre-
dictions and on the quality of the semantic composition functions that it learned for the
task (by measuring the correlation of semantic similarity judgements of compounds to
those of human subjects).

4.5.1 Word Prediction
Using a method proposed by Collobert et al. [2011b], I train the network such that it
assigns the correct target word a score higher than scores given to other words. The
score s(x,ow) given to a candidate word x for a specific context ow is computed by:

u(x,ow) = f(Wu
1ow + Wu

2 ix + bu) (4.4)

s(x,ow) = vTu(x,ow) (4.5)

where Wu
1 ,W

u
2 ∈ Rn×k, v,bu ∈ Rk. (I fix k = 2n.) Now, the objective function is a

ranking criterion with respect to θ:

J(θ) =
1

|D|
∑
s∈D

∑
w∈s

∑
x∈V

max{0, 1− s(w,ow) + s(x,ow)}+
λ

2
||θ||2 (4.6)

where λ is a regularization parameter. The outermost sum is over all sentences s in a
corpus D, the next sum is over all observed words w in a sentence, and the innermost
sum is over all candidate words x in the vocabulary V . The term inside the innermost
sum will give a value higher than 1 if the score of the candidate is higher than that
of the observed word, and smaller than 1 (but at least 0) if the observed word’s score
is higher. In this way, the network is forced to assign to the correct word a score
higher than scores given to any other words by, at least, a margin of 1. To minimize
this objective function, I randomly, from the uniform distribution, pick words in the
vocabulary as ‘corrupted’ examples and follow the method given in Section 4.4.

4.5.2 Experiments
I built three IORNNs, with n = 50, for three types of derivations [CFG-0], [CFG-200],
and [CCG] (see Section 4.4). All of them were initialised with the 50-dim word embed-
dings3 from Collobert et al. [2011b] and trained on around 3M sentences longer than
10 words4 in the British National Corpus (BNC), parsed by the C&C parser [Curran

3http://ronan.collobert.com/senna/
4Long contexts are needed for successfully guessing missing words.
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Model NAR
5-gram 1.8%

IORNN [CFG-0] 1.6%
IORNN [CFG-200] 0.8%

Table 4.1: Test results on the word prediction task. (Smaller is better.)

et al., 2007] and by the Berkeley Parser [Petrov et al., 2006].

Word Prediction

I run the trained networks on the Penn Treebank,5 section 22, and compared their per-
formances with a baseline formed by the Kneser-Ney smoothed 5-gram model6 trained
on 300M-word text from the Wikipedia7 (3 times larger than the BNC). It is worth
noting that this model is state-of-the-art in the language modelling area, outperforms
syntax-based language models and thus is a strong baseline to compare against (even
if it, unlike the IORNN’s, does not make use of the syntactic structure of sentences at
either train or test time). Predicting the actual word at any location in the sentence is
often next to impossible. I therefore based the evaluation on the rank of the correct
word in the list of candidate words (all 130k words in the vocabulary); and propose a
metric which is called normalized average rank (NAR):

NAR =
1

|V |
1∑

s∈D |s|
∑
s∈D

∑
w∈s

rank(w)

where |V | is the size of the vocabulary, D is the test set, and rank(w) is the rank of
the correct word w. 8

Table 4.1 shows test results. Both IORNNs achieve considerably lower NARs than
the 5-gram model, showing that the IORNN model is more capable of judging how
different words fit the context created by a surrounding utterance.

Phrase Similarity

To evaluate the composition functions that were learned on the word prediction task,
I made use of a phrase similarity judgement task. In this task the system considers

5I did not use sentences from the BNC corpus because I wanted to examine the generality of the
IORNN model.

6I used the BerkeleyLM at http://code.google.com/p/berkeleylm/.
7http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
8Veldhoen [2015] criticizes the proposed metric because it is biased by frequent words. For instance,

a uni-gram model can achieve an NAR as low as 3.1%. In other words, one can achieves an NAR of
3.1% just by sorting words by their frequencies. The problem here, in fact, lies in the vocabulary size
|V |: the larger the vocabulary V is, the more infrequent words it has. Despite that, using the NAR metric
we can compare models on how well they distinguish correct words from wrong ones. Therefore, I still
use the NAR metric in this experiment.
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type phrase 1 phrase 2 rating
v-obj remember name pass time 3
adj-n dark eye left arm 5
n-n county council town hall 4

Table 4.2: Items in the dataset from Mitchell and Lapata [2010]. The ratings range
from 1 (very low similarity) to 7 (very high similarity).

model adj-n n-n v-obj
RAE 0.20 0.18 0.14

IORNN [CFG-0] 0.38 0.36 0.32
CCAE-B 0.38 0.44 0.34

IORNN [CCG] 0.39 0.40 0.37

Table 4.3: Spearman’s correlation coefficients of model predictions on the phrase sim-
ilarity task.

pairs of (short) phrases and estimates the semantic similarity within each pair. Its es-
timations are compared with human judgements. I used the dataset from Mitchell and
Lapata [2010] which contains 5832 human judgements on 108 phrase pairs.9 The pairs
include noun-noun, verb-object, and adjective-noun combinations. The ratings range
from 1 (very low similarity) to 7 (very high similarity) (see Table 4.2). The cosine dis-
tance was used to measure semantic similarity d(a, b) = cos(ia, ib) and the Spearman’s
correlation coefficient ρ ∈ [−1, 1] was used to measure the distance between model
scores and human judgements.

I compare the IORNN model against two models: the Recursive Auto-encoder
(RAE) replicated by Blacoe and Lapata [2012], and the Combinatory Categorial Au-
toencoders (CCAE)-B model proposed by Hermann and Blunsom [2013]. The CCAE-
B model is similar to the RAE model but uses separate weight matrices for each CCG
rule. Table 4.3 shows results. The IORNN [CFG-0] (which, like the basic RAE, does
not make use of syntactic category information) outperforms the RAE by a large mar-
gin. When syntactic category information is used in the IORNN [CCG] and CCAE-B,
we can observe improvements across the board, with the IORNN [CCG] outperforming
all other models on verb-obj and adj-noun compounds.

4.6 Supervised Learning with IORNNs: Semantic Role
Labelling

Differing from the previous section, in this section I focus on a supervised learning
task, namely semantic role labelling (SRL), where we learn from data that do contain

9http://homepages.inf.ed.ac.uk/s0453356/share
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Figure 1: Syntax tree labelled for semantic roles with respect to the predicate sell. The subscripts show the
role labels, and the dotted and dashed edges are those which are pruned from the tree.

child. We have defined node and pairwise clique fea-
tures using data local to the corresponding syntactic
node(s), as well as some features on the predicate
itself.
Each feature type has been made into binary fea-

ture functions g and h by combining (feature type,
value) pairs with a label, or label pair, where this
combination was seen at least once in the training
data. The following feature types were employed,
most of which were inspired by previous works:

Basic features: {Head word, head PoS, phrase
syntactic category, phrase path, position rel-
ative to the predicate, surface distance to the
predicate, predicate lemma, predicate token,
predicate voice, predicate sub-categorisation,
syntactic frame}. These features are common
to many SRL systems and are described in Xue
and Palmer (2004).

Context features {Head word of first NP in prepo-
sition phrase, left and right sibling head words
and syntactic categories, first and last word
in phrase yield and their PoS, parent syntactic
category and head word}. These features are
described in Pradhan et al. (2005).

Common ancestor of the verb The syntactic cate-
gory of the deepest shared ancestor of both the
verb and node.

Feature conjunctions The following features were
conjoined: { predicate lemma + syntactic cate-
gory, predicate lemma + relative position, syn-
tactic category + first word of the phrase}.

Default feature This feature is always on, which
allows the classifier to model the prior prob-
ability distribution over the possible argument
labels.

Joint features These features were only defined
over pair-wise cliques: {whether the parent
and child head words do not match, parent syn-
tactic category + and child syntactic category,
parent relative position + child relative posi-
tion, parent relative position + child relative
position + predicate PoS + predicate lemma}.

5 Experimental Results

The model was trained on the full training set
after removing unparsable sentences, yielding
90,388 predicates and 1,971,985 binary features. A
Gaussian prior was used to regularise the model,
with variance �2 = 1. Training was performed on
a 20 node PowerPC cluster, consuming a total of
62Gb of RAM and taking approximately 15 hours.
Decoding required only 3Gb of RAM and about 5
minutes for the 3,228 predicates in the development
set. Results are shown in Table 1.

Figure 4.6: An annotated tree in the CoNLL2005 shared task training dataset. The
subscripts show the role labels with respect to the predicate “sold”. Reproduced from
Cohn and Blunsom [2005].

semantic annotations. Semantic role labelling is the task of detecting semantic argu-
ments for a verb or predicate in a sentence and identifying their roles. For instance, in
the sentence

Raquel baked a cake.

“Raquel” serves as the agent for the action “baked” whereas “a cake” is its theme,
which identifies the entity undergoing change in the event. The interaction between
the outside and inside representations at a node is now determined by the semantic role
assigned to the constituent the node covers.

The used benchmark is the CoNLL2005 shared task [Carreras and Màrquez, 2005].
In this task, given a sentence and a verb in this sentence, the system is required to
classify every constituent into one of 54 classes, corresponding to 53 roles or class
‘-NONE-’ (which means the constituent is not an argument). Figure 4.6 shows an
example sentence and its parse tree, where all arguments of the verb “sold” are labeled
with their roles. Following the PropBank formalism, roles A0-5 are assigned to words
that are arguments of verbs (e.g., A0 for agent, experiencer; A1 for patient, theme; and
so on.) In addition, there are several modifier tags such as AM-LOC (locational) and
AM-TMP (temporal). The given dataset consists of a training set (sections 2-21 of the
Penn WSJ treebank), a development set (section 24), and a test set (section 23 plus
three sections from the Brown corpus). All the sentences were parsed by the Charniak
parser [Charniak, 2001]. The evaluation metric is the F1 measure.
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4.6.1 Model
The new IORNN model is very similar to the one proposed in Section 4.4 except two
changes. First, I concatenate the inside representation of every word with an extra bit,
indicating whether this word is a target verb or not. Second, the inside representation
of the head word of a constituent is used to compute the constituent’s inside represen-
tation. This is consistent with the head-driven parsing theory of Collins [1997], and
is proposed in Chapter 3. At the same time, to force the model to focus on searching
for arguments for the target verb, the inside representation of the target verb is used to
compute the outside representation of every constituent. Therefore, I compute inside
and outside representations for the node p1 (Figure 4.3) as follows:

ip1 = f(Wi
1ix + Wi

2iy + Whih + bi)

op1 = g(Wo
pop2 + Wo

2iz + Wviv + bo)

where Wh,Wv ∈ Rn×n; ih, iv ∈ Rn are the inside representations of the head word of
the constituent p1 and of the target verb, respectively. Finally, I use a softmax function
to compute the probability that a class c is assigned to a constituent p:

P (c|p) =
eu(p,c)∑

c′∈C e
u(p,c′)

(4.7)

where
[u(p, c1), ..., u(p, c|C|)]

T = Woop + Wiip + b

C is the set of all classes, Wo,Wi ∈ R|C|×n, b ∈ R|C|. I use the method presented
in Section 4.4 to train the model, where the objective function is the regularized cross-
entropy over all constituents, i.e.,

J(θ) = − 1

|D|
∑
T∈D

∑
p∈T

|C|∑
i=1

ti × log(P (ci|p)) +
λ

2
||θ||2

where ti = 1 if ci is the correct class of p, ti = 0 otherwise; D is the set of training
parse trees; and λ is a regularization parameter.

IORNN-mixture

Combining neural networks is a simple way to increase the general performance [Mikolov
et al., 2011]. To combinem IORNNs, I simply compute an average of the probabilities
that IORNNs assign to a class c by

P (c|p) =
1

m

m∑
i=1

Pi(c|p)

where Pi is the probability given by the i-th IORNN.
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Model F1-valid F1-test
SENNA (w.o. syntax) 72.29 74.15

SENNA – 75.49
IORNN 74.04 73.88

IORNN-mixture – 75.36
IORNN+Charniak.RS 75.78 75.14

IORNN-mixture+Charniak.RS – 77.14

Table 4.4: Performance on the SRL task of the IORNN compared with SENNA.
IORNN+Charniak.RS is the IORNN model evaluated on the sentences parsed by the
self-trained re-ranked Charniak parser.

4.6.2 Experiment: CoNLL 2005 Shared Task

I built an IORNN [CFG-200], with n = 50, initialised with the 50-dim Collobert
& Weston word-embeddings [Collobert et al., 2011b]. Because the number of con-
stituents in the class ‘-NONE-’ is significantly larger than the numbers of constituents
in other classes, I employed the simple pruning algorithm proposed by Xue and Palmer
[2004] to eliminate those constituents that are very unlikely arguments. I also built an
IORNN-mixture which is a combination of ten IORNNs that have the same configura-
tion.

In this experiment, I compare the IORNN with SENNA [Collobert et al., 2011b], a
state-of-the-art neural net system for POS tagging, chunking, named entity recognising
and semantic role labelling. Differing from the IORNN, SENNA’s neural net uses a
convolutional layer to combine representations of the words in a sentence given the
target verb position. In addition, SENNA is biased to produce valid tag sequences, by a
mechanism that combines network scores with transition scores. Finally, SENNA may
also make use of syntactic constraints (computed by its own network). By contrast, in
my IORNN semantic tags are predicted solely on the basis of the computed inside and
outside representations for a given node.

Table 4.4 reports results. We can see that SENNA without using syntax performs
comparably with the (single) IORNN; when syntactic information is included, SENNA
outperforms the IORNN. I conjecture that this is because SENNA is relatively insen-
sitive to errors introduced by automatic parsers, thanks to its convolutional layer and
transition matrix. My IORNN, on the other hand, is very sensitive to such errors be-
cause it relies on the principle of compositionality.10 The performance of my sys-
tem, however, is boosted (by 1.48%) by combining ten IORNNs, yielding comparable
performance with SENNA. Furthermore, by using a better parser (I used the state-of-
the-art self-trained and discriminative re-ranked Charniak-Johnson parser [Charniak
and Johnson, 2005, McClosky et al., 2006]) I increased the performance even further
(1.26% for IORNN and 1.78% for IORNN-mixture). This confirms the importance of

10In Chapter 7 I propose a solution to this.
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accurate syntactic parsing in semantic role labelling [Punyakanok et al., 2008].

4.7 Other Applications

As I emphasize in Section 4.1, the IORNN model has a wider range of applications
than the traditional RNN model. In the two sections above, I present how the IORNN
model can be applied to three tasks: word prediction, learning composition functions
from raw texts, and semantic role labelling. In this section, I introduce two more tasks
to which the RNN model is not applicable but the IORNN model is.

4.7.1 Top-down prediction with IORNNs: Dependency parsing

I briefly consider the use of the IORNN model in top-down prediction tasks, such as
needed for Earley-style parsing and left-corner parsing, but also for defining neural
models to replace top-down generative probabilistic models such as those of Collins
[1997] (generating phrase-structure trees) and Eisner [1996b] (generating dependency
structures). I limit myself here to Eisner’s generative model, but similar observations
hold for the other applications.

Eisner’s generative model is simple. Every sentence is assumed to have a single
head word, generated from ROOT. This head word then first generates 0 or more de-
pendents to its left, and then generates 0 or more dependents to its right. Each of the
dependents recursively generates left and right dependents as well, until no more words
are generated. Eisner considers a number of variants of this generative story, and de-
fines ways to estimate the probabilities of each step in generating a full dependency
structure from counts in a training corpus, smoothed using back-off. At each of these
steps we have a partial dependency tree (the “conditioning context”, representing the
results of the generation process up to this point), and a representation of the dependent
we are about to generate (the “event”).

Can we define a neural network model to estimate these probabilities, to replace
the counting and back-off? This requires a neural representation of the conditioning
context, and a neural representation of the event. In a standard RNN the latter is avail-
able (the vector representation of the word or subtree), but the former is not. In an
IORNN, on the other hand, we can use the outside representation as a representation
for the conditioning context, and train a softmax classifier to compute the required con-
ditional probabilities. In Chapter 5 I describe the technical details of such a model, the
approximations needed to make it efficient, and state-of-the-art results in dependency
parsing using an IORNN as a reranker on the output of the third-party MST-parser
[McDonald et al., 2006]. For the purposes of this chapter, where I discuss the range of
applications that the Inside-Outside Semantics opens up for neural models, it suffices
to note that the IORNN model can successfully implement top-down prediction.
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4.7.2 Discourse Relation Classification
At a discourse level, there is a challenging task, namely discourse relation classifica-
tion, that identifies the relation between two discourse arguments. For instance, the
implicit discourse relation between following two sentences

Milos gave Raquel the sangria.
She was thirsty.

should be because thanks to the token “sangria” in the first sentence and “thirsty” in
the second one. Therefore, a discriminative classification on two bottom-up vector-
based representations for two sentences seems to be adequate. It is, however, not true
because if we replace the token “she” by “he”, i.e.

Milos gave Raquel the sangria.
He was thirsty.

the discourse relation turns to be though. The problem, as pointed out by Ji and Eisen-
stein [2015], is that bottom-up representations are not aware of the entity roles in the
discourse. Ji and Eisenstein [2015] thus propose using an IORNN11 to compute an out-
side representation for each entity. Integrating those outside representations to a system
using bottom-up representations and surface features, they get a 4% improvement in
accuracy over the best previous work in this task.

4.8 Conclusion
I propose the Inside-Outside Semantics framework in which every node in a parse tree
is associated with a pair of representations, the inside representation for representing
the contents under the node, and the outside representation for representing its sur-
rounding context. Thanks to adding context representations, information can flow not
only bottom-up but also top-down in parse trees. The Inside-Outside Recursive Neural
Network is presented as an instance of the framework, where both representations are
instantiated as high-dimensional vectors and composition functions are feed-forward
networks trained on large datasets. By exploiting the interaction between context and
content representations, I show that the IORNN model is capable of performing a wide
range of NLP tasks that the RNN model and its extensions are not.

I demonstrate how the IORNN model can be used for (1) word prediction, (2)
learning composition functions from raw texts, and (3) semantic role labelling. It is
worth noting that these tasks were chosen because the tradition RNN model alone
is not capable of tackling them: (1) and (3) require context awareness, whereas (2)
is an unsupervised learning task. The IORNN model outperforms the Kneser-Ney
smoothed 5-gram model, which is state-of-the-art in the language modelling area, on

11Their network model, although not named, is identical to my IORNN.
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the word prediction task. It also achieves better results than the RAE model by a large
margin in the phrase similarity evaluation. On the semantic role labelling task, the
IORNN model performs comparably with SENNA, a state-of-the-art neural-net-based
system for NLP. These empirical results establish that Inside-Outside Semantics offers
a promising framework for applying neural networks to NLP tasks that require paying
attention to the hierarchical structure of sentences and predictions based on contexts.

In this chapter, I assume that sentences stand alone and hence have initialised the
outside representation at every root node with the same vector o∅. To relax this as-
sumption, we can make use of external context such as neighbouring sentences and
background knowledge.





Chapter 5
The Inside-Outside Recursive Neural Network
model for Dependency Parsing

I propose the first implementation for an∞-order generative dependency model. This
implementation is based on the Inside-outside Recursive Neural Network model, which
is introduced in Chapter 4. Empirical results on the English section of the Universal
Dependency Treebank show that my∞-order model achieves a perplexity seven times
lower than the traditional third-order model using counting, and tends to choose more
accurate parses in k-best lists. In addition, reranking with this model achieves state-of-
the-art unlabelled attachment scores and unlabelled exact match scores. 1

5.1 Introduction
Estimating probability distributions is the core issue in modern, data-driven natural
language processing methods. Because of the traditional definition of discrete proba-
bility

Pr(A) ≡ the number of times that A occurs
the size of the event space

counting has become a standard method to tackle the problem. When data are sparse,
smoothing techniques are needed to adjust counts for non-observed or rare events.
However, successful use of those techniques has turned out to be an art. For instance,
much skill and expertise is required to create reasonable reduction lists for back-off,
and to avoid impractically large count tables, which store events and their counts.

An alternative to counting for estimating probability distributions is to use neu-
ral networks. Thanks to recent advances in deep learning, this approach has recently
started to look very promising again, with state-of-the-art results in sentiment analy-
sis [Socher et al., 2013b], language modelling [Mikolov et al., 2010], and other tasks.
The Mikolov et al. [2010] work, in particular, demonstrates the advantage of neural-
network-based approaches over counting-based approaches in language modelling: it

1My source code is available at: github.com/lephong/iornn-depparse.
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shows that recurrent neural networks are capable of capturing long histories efficiently
and surpass standard n-gram techniques (e.g., Kneser-Ney smoothed 5-grams).

In this chapter, keeping in mind the success of these models, I compare the two
approaches. Complementing recent work that focuses on such a comparison for the
case of finding appropriate word vectors [Baroni et al., 2014], I focus here on models
that involve more complex, hierarchical structures. Starting with existing generative
models that use counting to estimate probability distributions over constituency and
dependency parses (e.g., Eisner [1996b], Collins [2003]), I develop an alternative based
on the IORNN model that is introduced in Chapter 4. This is a non-trivial task because,
to my knowledge, no existing neural network architecture other than the IORNN can be
used in this way. For instance, classic recurrent neural networks [Elman, 1990] unfold
to left-branching trees, and are not able to process arbitrarily shaped parse trees that the
counting approaches are applied to. Recursive neural networks [Socher et al., 2010]
and extensions [Socher et al., 2012, Le et al., 2013], on the other hand, do work with
trees of arbitrary shape, but process them in a bottom-up manner. The probabilities we
need to estimate are, by contrast, defined by top-down generative models, or by models
that require information flows in both directions (e.g., the probability of generating a
node depends on the whole fragment rooted at its just-generated sister).

Because the IORNN model allows information to flow in any directions, depending
on the application, it is a natural tool for estimating probabilities in tree-based gener-
ative models. I therefore will apply it to an ∞-order generative dependency model
which is impractical for counting due to the problem of data sparsity. Counting, in-
stead, is used to estimate a third-order generative model as in Sangati et al. [2009]
and Hayashi et al. [2011]. My empirical results show that the new model not only
achieves a seven times lower perplexity than the third-order model, but also tends to
choose more accurate candidates in k-best lists. In addition, reranking with this model
achieves state-of-the-art scores on the task of supervised dependency parsing.

The outline of the chapter is following. Firstly, I give an introduction to Eisner’s
generative model in Section 5.2. Then, I present the third-order model using counting
in Section 5.3, and the∞-order model using the IORNN model in Section 5.4. Finally,
in Section 5.5 I show empirical results.

5.2 Eisner’s Generative Model
Eisner [1996b] proposes a generative model for dependency parsing. The generation
process is top-down: starting at the ROOT, it generates left dependents and then right
dependents for the ROOT. After that, it generates left dependents and right dependents
for each of ROOT’s dependents. The process recursively continues until there are no
further dependents to generate. The whole process is captured in the following formula

P (T (H)) =
L∏
l=1

P
(
HL
l |CHL

l

)
P
(
T (HL

l )
)
×

R∏
r=1

P
(
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r |CHR

r

)
P
(
T (HR

r )
)
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Figure 5.1: Example of different orders of context of “diversified”. The blue dotted
shape corresponds to the third-order outward context, while the red dashed shape cor-
responds to the∞-order left-to-right context. The green dot-dashed shape corresponds
to the context to compute the outside representation.

where H is the current head, T (N) is the fragment of the dependency parse rooted
at N , and CN is the context in which N is generated. HL, HR are respectively H’s
left dependents and right dependents, plus EOC (End-Of-Children), a special token
to indicate that there are no more dependents to generate. Thus, P (T (ROOT )) is
the probability of generating the entire dependency structure T . I refer to 〈HL

l , CHL
l
〉,

〈HR
r , CHR

r
〉 as “events”, and 〈CHL

l
〉, 〈CHR

r
〉 as “conditioning contexts”.

In order to avoid the problem of data sparsity, the conditioning context in which
a dependent D is generated might capture only part of the fragment generated so far.
Based on the amount of information that contexts hold, we can define the order of a
generative model (see [Hayashi et al., 2011, Table 3] for examples)

• first-order: C1
D contains the head H ,

• second-order: C2
D contains H and the just-generated sibling S,

• third-order: C3
D contains H , S, the sibling S ′ before S (tri-sibling); or H , S and

the grand-head G (the head of H) (grandsibling) (the fragment enclosed in the
blue dotted contour in Figure 5.1),

• ∞-order: C∞D contains all of D’s ancestors, theirs siblings, and its generated
siblings (the fragment enclosed in the red dashed contour in Figure 5.1).

In the original models [Eisner, 1996a], each dependent D is a 4-tuple 〈dist, w, c, t〉

• dist(H,D) the distance between D and its head H , represented as one of the
four ranges 1, 2, 3-6, 7-∞.

• word(D) the lowercase version of the word of D,

• cap(D) the capitalisation feature of the word of D (all letters are lowercase, all
letters are uppercase, the first letter is uppercase, the first letter is lowercase),
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• tag(D) the POS-tag of D,

Here, to make the dependency complete, deprel(D), the dependency relation of D
(e.g., SBJ, DEP), is also taken into account.

5.3 The third-order Model with Counting
The third-order model I suggest is similar to the grandsibling models proposed by
Sangati et al. [2009] and Hayashi et al. [2011]. It defines the probability of generating
a dependent D = 〈dist, d, w, c, t〉 as a product of the distance-based probability and
the probabilities of generating each of its components. Each of these probabilities is
smoothed using back-off according to the following reduction lists:

P (D|CD) =P (dist(H,D), dwct(D)|H,S,G, dir)
=P (d(D)|H,S,G, dir)

reduction list:

tw(H), tw(S), tw(G), dir
tw(H), tw(S), t(G), dir{
tw(H), t(S), t(G), dir
t(H), tw(S), t(G), dir

t(H), t(S), t(G), dir

× P (t(D)|d(D), H, S,G, dir)

reduction list:
d(D), dtw(H), t(S), dir
d(D), d(H), t(S), dir
d(D), d(D), dir

× P (w(D)|dt(D), H, S,G, dir)

reduction list:
dtw(H), t(S), dir
dt(H), t(S), dir

× P (c(D)|dtw(D), H, S,G, dir)

reduction list:
tw(D), d(H), dir
tw(D), dir

× P (dist(H,D)|dtwc(D), H, S,G, dir) (5.1)

reduction list:
dtw(D), dt(H), t(S), dir
dt(D), dt(H), t(S), dir

The reason for generating the dependency relation first is based on the similarity be-
tween relation/dependent and role/filler: we generate a role and then choose a filler for
that role.

Here, we can notice that a reduction list is a list of conditions sorted by their fine-
ness; for instance in the first list

(
tw(H), tw(S), tw(G), dir

)
contains more informa-

tion than
(
tw(H), tw(S), t(G), dir

)
. Because the finer a condition is, the less data we
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can find in corpora to estimate the probabilities, coarser conditions are needed to avoid
the problem of data sparsity. How to calculate the probabilities based on reduction lists
is given below.

Back-off

The back-off parameters are identical to those reported in Eisner [1996b]. To estimate
the probability P (A|context) given a reduction list L = (l1, l2, ..., ln) of context, let

pi =

{
count(A,li)+0.005
count(li)+0.5

if i = n
count(A,li)+3pi+1

count(li)+3
otherwise

then P (A|context) = p1.

5.4 The∞-order Model with IORNN
To apply the IORNN architecture to dependency parsing I need to adapt the definitions
somewhat. In particular, in the generative dependency model, every step in the gener-
ative story involves a decision to generate a specific word while the span of the subtree
that this word will dominate only becomes clear when all dependents are generated.
I therefore introduce partial outside representation as a representation of the current
context of a word in the generative process, and compute the final outside representa-
tion only after all its siblings have been generated.

Consider an example of head h and its dependents x, y (we ignore directions for
simplicity) in Figure 5.2. Assume that we are in the state in the generative process
where the generation of h is complete, i.e. we know its inside and outside representa-
tions ih and oh. Now, when generating h’s first dependent x (see Figure 5.2-a), we first
compute x’s partial outside representation (representing its context at this stage in the
process), which is a function of the outside representation of the head (representing the
head’s context) and the inside representation of the head (representing the content of
the head word):

ō1 = f(Whiih + Whooh + bo)

where Whi,Who ∈ Rn×n, bo ∈ Rn, f is an activation function.
With the context of the first dependent determined, we can proceed and generate

its content. For this purpose, we assume a separate weight matrix W, trained (as
explained below) to predict a specific word given a partial outside representation. To
compute a proper probability for word x, I use the following softmax function:

softmax(x, ō1) =
eu(x,ō1)∑
w∈V e

u(w,ō1)

where [
u(w1, ō1), ..., u(w|V |, ō1)

]T
= Wō1 + b
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x

h

x

h

x y

h

EOC

x y

h

x y

h

EOC

(a) (b) (c)

(d) (e)

y EOCso
ftm

ax

Figure 5.2: Example of applying the IORNN model to dependency parsing. Black,
grey, white boxes are respectively inside, partial outside, and outside representations.
For simplicity, only links related to the current computation are drawn (see text).

and V is the set of all possible dependents.
Note that since oh, the outside representation of h, represents the entire dependency

structure generated up to that point, ō1 is a vector representation of the∞-order context
generating the first dependent (like the fragment enclosed in the red dashed contour in
Figure 5.1). The softmax function thus estimates the probability P (D = x|C∞D ).

The next step, now that x is generated, is to compute the partial outside represen-
tation for the second dependent (see Figure 5.2-b)

ō2 = f(Whiih + Wdr(x)ix + Whooh + bo)

where Wdr(x) ∈ Rn×n is specific for the dependency relation of x with h.
Next y is generated (using the softmax function above), and the partial outside

representation for the third dependent (see Figure 5.2-c) is computed:

ō3 = f(Whiih +
1

2

(
Wdr(x)ix + Wdr(y)iy

)
+ Whooh + bo)

Since the third dependent is the End-of-Children symbol (EOC), the process of
generating dependents for h stops. We can then return to x and y to replace the partial
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outside representations with complete outside representations2 (see Figure 5.2-d,e):

ox = f(Whiih + Wdr(y)iy + Whooh + bo)

oy = f(Whiih + Wdr(x)ix + Whooh + bo)

Generalizing from this example of computing partial and complete outside repre-
sentations, we have: if u is the first dependent of h then

ōu = f(Whiih + Whooh + bo)

otherwise

ōu = f(Whiih +
1

|S̄(u)|
∑
v∈S̄(u)

Wdr(v)iv + Whooh + bo)

where S̄(u) is the set of u’s sisters generated before it. And, if u is the only dependent
of h (ignoring EOC) then

ou = f(Whiih + Whooh + bo)

otherwise

ou = f(Whiih +
1

|S(u)|
∑
v∈S(u)

Wdr(v)iv + Whooh + bo)

where S(u) is the set of u’s siblings.
We then continue this process to generate dependents for x and y until the process

stops.

Inside Representations

In the calculation of the probability of generating a word, described above, I assume
inside representations of all possible words to be given. These are, in fact, themselves
a function of vector representations for the words (in our case, the word vectors are ini-
tially borrowed from Collobert et al. [2011b]), the POS-tags and capitalisation features.
That is, the inside representation at a node h is given by:

ih = f (Wwwh + Wpph + Wcch)

where Ww ∈ Rn×dw , Wp ∈ Rn×dp , Wc ∈ Rn×dc , wh is the word vector of h, and
ph, ch are respectively one-hot vectors representing the POS-tag and capitalisation fea-
ture of h.

2According to the IORNN architecture, to compute the outside representation of a node, the inside
representations of the whole fragments rooted at its sisters must be taken into account. Here, I approx-
imate the inside representation of a fragment by the inside representation of its head since the meaning
of a phrase is often dominated by the meaning of its head.
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Training

Training this IORNN is to minimise the following objective function, which is the
regularised cross-entropy, w.r.t. θ

J(θ) = − 1

m

∑
T∈D

∑
w∈T

log(P (w|ōw)) +
1

2

(
λW‖θW‖2 + λL‖θL‖2

)
where θ is the parameter set, D is the set of training dependency parses, m is the
number of dependents; θW , θL are the weight matrix set and the word embeddings
(θ = (θW , θL)); λW , λL are regularisation hyper-parameters.

Implementation

I decompose a dependent D into four features: dependency relation, POS-tag, lower-
case version of word, capitalisation feature of word. I then factorise P (D|C∞D ) simi-
larly to Equation 5.1, where each component is estimated by a softmax function instead
of a reduction list.

5.5 Experiments

In the following experiments, I converted the Penn Treebank to dependencies using the
Universal dependency annotation [McDonald et al., 2013]3; this yielded a dependency
tree corpus I call PTB-U. In order to compare with other systems, I also experimented
with an alternative conversion using the head rules of Yamada and Matsumoto [2003]4;
this yielded a dependency tree corpus I call PTB-YM. Sections 2-21 were used for
training, section 22 for development, and section 23 for testing. For the PTB-U, the
gold POS-tags were used. For the PTB-YM, the development and test sets were tagged
by the Stanford POS-tagger5 trained on the whole training data, whereas 10-way jack-
knifing was employed to generate tags for the training set.

The vocabulary for both models, the third-order model and the ∞-order model,
was given by the list of words occurring more than two times in the training data. All
other words were labelled ‘UNKNOWN’ and every digit was replaced by ‘0’. For
the IORNN used by the ∞-order model, I set n = 200, and defined f as the tanh
activation function. I initialised it with the 50-dim word embeddings from Collobert
et al. [2011b] and trained it with the learning rate 0.1, λW = 10−4, λL = 10−10.

3https://code.google.com/p/uni-dep-tb/
4http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html
5http://nlp.stanford.edu/software/tagger.shtml
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Perplexity
3rd-order model 1736.73
∞-order model 236.58

Table 5.1: Perplexities of the two models on PTB-U-22.

back-off level d t w c
0 47.4 61.6 43.7 87.7
1 69.8 98.4 77.8 97.3
2 76.0, 89.5 99.7
3 97.9

total 76.1 86.6 60.7 92.5

Table 5.2: Percentages of events extracted from PTB-U-22 appearing more than two
times in the training set. Events are grouped according to the reduction lists in Equa-
tion 5.1. d, t, w, c stand for dependency relation, POS-tag, word, and capitalisation
feature.

5.5.1 Perplexity
I firstly evaluated the two models on PTB-U-22 using the perplexity-per-word metric:

ppl(P ) = 2−
1
N

∑
T∈D log2 P (T )

where D is a set of dependency parses, N is the total number of words. It is worth
noting that, the better P estimates the true distribution P ∗ ofD, the lower its perplexity
is. Because Eisner’s model with the dist(H,D) feature (Equation 5.1) is leaky (the
model allocates some probability to events that can never legally arise), this feature
was discarded (only in this perplexity experiment).

Table 5.1 shows results. The perplexity of the third-order model is more than seven
times higher than the∞-order model. This reflects the fact that data sparsity is more
problematic for counting than for the IORNN.

To investigate why the perplexity of the third-order model is so high, I computed
the percentages of events extracted from the development set appearing more than
two times in the training set. Events are grouped according to the reduction lists in
Equation 5.1 (see Table 5.2). We can see that reductions at level 0 (the finest) for
dependency relations and words seriously suffer from the data sparsity: more than half
of the events occur less than three times, or not at all, in the training data. I thus
conclude that counting-based models heavily rely on carefully designed reduction lists
for back-off.

5.5.2 Reranking
In the second experiment, I evaluated the two models in the reranking framework pro-
posed by Sangati et al. [2009] on PTB-U. I employed the MSTParser (with the 2nd-



76 Chapter 5. The IORNN for Dependency Parsing

order feature mode) [McDonald et al., 2005] to generate k-best lists. Two evaluation
metrics are labelled attachment score (LAS) and unlabelled attachment score (UAS),
including punctuation.

Rerankers

Given D(S), a k-best list of parses of a sentence S, I define the generative reranker as

T ∗ = arg max
T∈D(S)

P (T (ROOT ))

which is identical to the one of Sangati et al. [2009]. Moreover, as in many mixture-
model-based approaches, I define the mixture reranker as a combination of the gen-
erative model and the MST discriminative model, which is similar to the approach of
Hayashi et al. [2011]:

T ∗ = arg max
T∈D(S)

{α logP (T (ROOT )) + (1− α)s(S, T )}

where s(S, T ) is the score function given by the MSTParser, and α ∈ [0, 1].

Results

Figure 5.3 shows UASs of the generative reranker on the development set. The MST-
Parser achieves 92.32% and the Oracle achieves 96.23% when k = 10. With the third-
order model, the generative reranker performs better than the MSTParser when k < 6
and the maximum improvement is 0.17%. Meanwhile, with the ∞-order model, the
generative reranker always gains higher UASs than the MSTParser, and with k = 6, the
difference reaches 0.7%. Figure 5.4 shows UASs of the mixture reranker on the same
set. α was optimised by searching with the step-size 0.005. Unsurprisingly, we ob-
serve improvements over the generative reranker as the mixture reranker can combine
the advantages of the two models.

Table 5.3 shows scores of the two rerankers on the test set with the parameters
tuned on the development set. Both the rerankers, either using third-order or∞-order
models, outperform the MSTParser. The fact that both gain higher improvements with
the∞-order model shows that the IORNN surpasses counting.

5.5.3 Comparison with other systems
I first compare the mixture reranker using the ∞-order model against the state-of-
the-art dependency parser TurboParser (with the full mode) [Martins et al., 2013] on
PTB-U-23. Table 5.4 shows test LASs and UASs. When taking labels into account, the
TurboParser outperforms the reranker. But without counting labels, the two systems
perform comparably, and when ignoring punctuation the reranker even outperforms the
TurboParser. This pattern is also observed when the exact match metrics are used (see
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Figure 5.3: Performance of the generative reranker on PTB-U-22.

Figure 5.4: Performance of the mixture reranker on PTB-U-22. For each k, α was
optimized with the step-size 0.005.

Table 5.4). This is due to the fact that the TurboParser performs significantly better
than the MSTParser, which generates k-best lists for the reranker, in labelling: the
former achieves a label accuracy score of 96.03% whereas the latter achieves 94.92%.

One remarkable point is that reranking with the∞-order model helps to improve
the exact match scores 4% - 6.4% (see Table 5.4). Because the exact match scores
correlate with the ability of handling global structures, I conclude that the IORNN is
able to capture large contexts. Figure 5.5 shows distributions of correct-head accuracy
over CPOS-tags and Figure 5.6 shows F1-scores over binned HEAD distances (i.e.,
dependents are grouped w.r.t. the distances to their heads). Reranking with the∞-order
model is clearly helpful for all CPOS-tags and dependent-to-head distances, except a
minor decrease on PRT.

I compare the reranker against other systems on PTB-YM-23 using the UAS metric
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LAS UAS
MSTParser 89.97 91.99
Oracle (k = 10) 93.73 96.24
Generative reranker with
3rd-order (k = 3) 90.27 (+0.30) 92.27 (+0.28)
∞-order (k = 6) 90.76 (+0.79) 92.83 (+0.84)
Mixture reranker with
3rd-order (k = 6) 90.62 (+0.65) 92.62 (+0.63)
∞-order (k = 9) 91.02 (+1.05) 93.08 (+1.09)

Table 5.3: Comparison based on reranking on PTB-U-23. The numbers in the brackets
are improvements over the MSTParser.

LAS (w/o punc) UAS (w/o punc)
MSTParser 89.97 (90.54) 91.99 (92.82)
w. ∞-order (k = 9) 91.02 (91.51) 93.08 (93.84)
TurboParser 91.56 (92.02) 93.05 (93.70)

(a) Attachment scores

LEM (w/o punc) UEM (w/o punc)
MSTParser 32.37 (34.19) 42.80 (45.24)
w. ∞-order (k = 9) 37.58 (39.16) 49.17 (51.53)
TurboParser 40.65 (41.72) 48.05 (49.83)

(b) Exact match scores

Table 5.4: Comparison with the TurboParser on PTB-U-23. LEM and UEM are re-
spectively the labelled exact match score and unlabelled exact match score metrics.
The numbers in brackets are scores computed excluding punctuation.

Figure 5.5: Distributions of correct-head accuracy over CPOS-tags (PTB-U-23).
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Figure 5.6: F1-score over binned HEAD distance (PTB-U-23).

System UAS
Huang and Sagae [2010] 92.1
Koo and Collins [2010] 93.04
Zhang and McDonald [2012] 93.06
Martins et al. [2013] 93.07
Bohnet and Kuhn [2012] 93.39
Reranking
Hayashi et al. [2011] 92.89
Hayashi et al. [2013] 93.12
MST+∞-order (k = 12) 93.12

Table 5.5: Comparison with other systems on PTB-YM-23 (excluding punctuation).

ignoring punctuation (as the standard evaluation for English) (see Table 5.5). My sys-
tem performs slightly better than many state-of-the-art systems such as Martins et al.
[2013] (a.k.a. TurboParser), Zhang and McDonald [2012], Koo and Collins [2010]. It
outperforms Hayashi et al. [2011]’s reranker using a combination of third-order gener-
ative models with a variational model learnt on the fly; performs on par with Hayashi
et al. [2013]’s discriminative reranker using the stacked technique; and slightly worse
than Bohnet and Kuhn [2012], which is a hybrid transition-based and graphical-based
approach.

5.6 Related Work
The idea of letting parsing decisions depend on arbitrarily long derivation histories is
also explored in Borensztajn and Zuidema [2011] and is related to parsing frameworks
that allow arbitrarily large elementary trees (e.g., Scha [1990], O’Donnell et al. [2009],
Sangati and Zuidema [2011], and van Cranenburgh and Bod [2013]).



80 Chapter 5. The IORNN for Dependency Parsing

Titov and Henderson [2007] are the first proposing to use deep networks for depen-
dency parsing. They introduce a transition-based generative dependency model using
incremental sigmoid belief networks and apply beam pruning for searching best trees.
Similarly, other recent neural-network-based approaches, such as the works of Stene-
torp [2013], Chen and Manning [2014], and Dyer et al. [2015], also rely on transition-
based parsing: neural networks are used to estimate distributions over a list of transition
decisions. Differing from theirs, the neural network model in my work, the IORNN,
is used to estimate probabilities for a top-down generative model. These probabilities
are then used to rescore k-best candidates generated by an independent graph-based
parser, namely the MSTParser.

Reranking k-best lists was introduced by Collins and Koo [2005] and Charniak and
Johnson [2005]. Their rerankers are discriminative and for constituency parsing. San-
gati et al. [2009] propose to use a third-order generative model for reranking k-best lists
of dependency parses. Hayashi et al. [2011] then follow this idea but combine genera-
tive models with a variational model learnt on the fly to rerank forests. In this chapter,
I also follow Sangati et al. [2009]’s idea but use an∞-order generative model, which
has never been used before. Recently, Zhu et al. [2015a], returning to Collins and Koo
[2005]’s idea, propose to employ a recursive neural network model in a discriminative
dependency reranker.

5.7 Conclusions
In this chapter, by applying the IORNN model to dependency parsing, I show that
using an ∞-order generative model for dependency parsing, which has never been
done before, is practical. My empirical results on the English section of the Universal
Dependency Treebanks show that the∞-order generative model approximates the true
dependency distribution better than the traditional third-order model using counting,
and tends to choose more accurate parses in k-best lists. In addition, reranking with this
model even outperforms the state-of-the-art TurboParser on unlabelled score metrics.

The IORNN model for dependency parsing constitutes a detailed case study of the
IOS framework proposed in Chapter 4 and illustrates the power of this framework. This
model can, furthermore, be enhanced in different ways. For instance, in Le [2015], I
point out that replacing softmax functions by hierarchical softmax functions can signif-
icantly speed up the reranker, and taking into account complete contexts can improve its
performance in terms of accuracy. Moreover, we can even employ the model to tackle
the problem of unsupervised dependency parsing. In Le and Zuidema [2015b], we pro-
pose an iterated reranking system which uses the reranker introduced in this chapter.
The system outperforms the state-of-the-art unsupervised parser of Spitkovsky et al.
[2013] on the Penn WSJ corpus by a large margin.



Chapter 6
Composition with Recursive Long Short Term
Memory

I propose an extension of the recursive neural network model that makes use of a
novel variant of the Long short-term memory (LSTM) architecture. The new model,
called Recursive LSTM (RLSTM), allows information low in a parse tree to be stored
in a memory register (the memory cell) and used much later higher up in the parse
tree. This provides a solution to the vanishing gradient problem in the traditional RNN
model, and allows the network to capture long range dependencies. Empirical results
show that the proposed model outperforms the traditional RNN model on the Stanford
Sentiment Treebank.

6.1 Introduction
Moving from lexical to compositional semantics in vectorial semantics requires an-
swers to two difficult questions:

1. What is the nature of the composition functions (given that the lambda calculus
for variable binding is no longer applicable)?

2. How do we learn the parameters of those functions (if they have any) from data?

A number of classes of functions have been proposed to answer the first question, in-
cluding simple linear functions like vector addition [Mitchell and Lapata, 2009], non-
linear functions like those defined by multi-layer neural networks [Socher et al., 2010],
and vector-matrix multiplication and tensor linear mapping [Baroni et al., 2013]. The
matrix and tensor-based functions have the advantage of allowing a relatively straight-
forward comparison with formal semantics, but the fact that multi-layer neural net-
works with non-linear activation functions like the sigmoid function can approximate
any continuous function [Cybenko, 1989] already make them an attractive choice.

In trying to answer the second question, the advantages of approaches based on
neural network architectures, such as the recursive neural network (RNN) model [Socher

81
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et al., 2013b] and the convolutional neural network model of Kalchbrenner et al. [2014],
are even clearer. Models in this paradigm can take advantage of general learning pro-
cedures based on back-propagation, and with the rise of deep learning, of a variety
of efficient algorithms and established heuristics (e.g. gradient clipping, dropout) to
further improve training. Since the first success of the RNN model [Socher et al.,
2011b] in constituency parsing, two classes of extensions have been proposed. One
class is to enhance the quality of composition by, for instance, using tensor products
[Socher et al., 2013b] or concatenating RNNs horizontally to make a deeper net [Irsoy
and Cardie, 2014]. The other class is to extend its topology to fulfill a wider range of
tasks, like the IORNN model for dependency parsing (see Chapter 5) and the model of
Paulus et al. [2014] for context-dependent sentiment analysis.

My proposal in this chapter is the Recursive Long Short Term Memory (RLSTM)
model, an extension of the RNN model to improve the quality of the composition
function it implements. My motivation is that, like training recurrent neural networks
and as shown later on in experiments with toy data, training RNNs on deep trees can
suffer from the vanishing gradient problem [Hochreiter et al., 2001], i.e., that error
signals propagating backward to leaf nodes shrink quickly 1. In addition, information
sent from a leaf node to the root can be obscured if the path between them is long, thus
leading to the problem of how to capture long range dependencies. I therefore adapt the
LSTM architecture [Hochreiter and Schmidhuber, 1997] from recurrent neural network
research to tackle those two problems. The main idea is to allow information low in
a parse tree to be stored in a memory cell and used much later higher up in the parse
tree, by recursively adding up all memory into a memory cell in a bottom-up manner.
In this way, error signals propagating backward through structures do not vanish. And
information from leaf nodes is still (loosely) preserved and can be used directly at
any higher nodes in the hierarchy. I then demonstrate the contribution of the RLSTM
on a sentiment analysis task. Empirical results show that my model outperforms the
traditional RNN model in terms of accuracy.

The outline of the rest of the chapter is as follows. I introduce the traditional
LSTM architecture in Section 6.2. In Section 6.3 I propose the RLSTM model for
tree structures, and examine how the two problems mentioned above affect it and the
traditional RNN model on an artificial task. Section 6.4 shows how I apply the RLSTM
model to a sentiment analysis task, using the Stanford Sentiment Treebank.

6.2 The Long Short Term Memory Architecture
Recurrent neural networks (Figure 6.1a, Section 2.2), in theory, can be used to estimate
conditional probabilities P (.|x0...xt) with long histories. In practice, however, train-
ing recurrent neural networks with the gradient descent method is challenging because

1Error signals can also grow quickly when propagating back to leaf nodes. This problem is called
exploding gradient. A trick often used to solve this problem and working quite well is to scale gradients
into a sphere whenever their norms are larger than a specified threshold.
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Figure 6.1: (a) Simple recurrent neural network and (b) Long short-term memory. Bias
vectors are removed for simplicity.
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gradients ∂Jt/∂hj (j ≤ t, Jt is the objective function at time t) could vanish quickly
after a few back-propagation steps [Hochreiter et al., 2001]. In addition, it is difficult
to capture long range dependencies, i.e. the output at time t depends on inputs that
came in long time ago. One solution, originally proposed by Hochreiter and Schmid-
huber [1997] and enhanced by Gers [2001], is the long short-term memory (LSTM)
architecture.

The main idea of the LSTM architecture is to maintain a memory of all inputs that
the hidden layer receives over time, by adding up all inputs (weighted by a gating func-
tion as I will define later) coming in the hidden layer through time to a memory cell.
In this way, error signals propagating backward through time do not vanish and even
inputs received very long time ago are still (approximately) preserved and can play a
role in computing the output of the network at the current time (see the illustration in
[Graves, 2012, Chapter 4]).

An LSTM cell (see Figure 6.1b) consists of a memory cell c, an input gate i, a forget
gate f , an output gate o. Crucially, the input to the memory cell is gated: the network
can learn to use the input gate to decide when to remember coming information, and
similarly learn to use the output gate to decide when to access the memory. The forget
gate is to reset the memory cell. Computations occurring in this LSTM cell are given
below:

it = σ
(
Wxixt + Whiht−1 + Wcict−1 + bi

)
ft = σ

(
Wxfxt + Whfht−1 + Wcfct−1 + bf

)
ct = ft � ct−1 + it � tanh

(
Wxcxt + Whcht−1 + bc

)
ot = σ

(
Wxoxt + Whoht−1 + Wcoct + bo

)
ht = ot � tanh(ct)

where σ is the sigmoid function; it, ft, ot are the outputs (i.e. activations) of the corre-
sponding gates; ct is the state of the memory cell; ht is the output of the LSTM cell;
� denotes the element-wise multiplication operator; W’s and b’s are weight matri-
ces and bias vectors. Note that because the sigmoid function has the range of (0, 1),
activations of those gates can be seen as normalized weights.

6.3 The Recursive Long Short-Term Memory Model

I propose the RLSTM model, a novel variant of the LSTM architecture for tree struc-
tures. For simplicity, I consider only binary trees, but extending this variant to n-ary
trees is straightforward. I then evaluate the proposed RLSTM model and the traditional
RNN model on an artificial task to examine how the two problems mentioned above
(i.e., the vanishing gradient problem and the problem of how to capture long range
dependencies) affect the two models.
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a parse tree, there are two vectors: u representing the constituent that the node covers,
cu storing a memory. The parent node p has two input gates i1, i2 and two forget gates
f1, f2 for the two children x and y.

6.3.1 The New Architecture

This variant is inspired by the RNN model, where the key idea is to hierarchically
combine vectors of two children to compute a vector representation for their parent:
given a production p→ x y, the computation of the RNN model is given by

p = f(W1x + W2y + b) (6.1)

where x,y,p ∈ Rn are vectors representing x, y, p. W1,W2 ∈ Rn×n, b ∈ Rn are
weight matrices and a bias vector. f is an activation function (e.g., tanh).

I now, at each node u in a parse tree, use two vectors: u representing the constituent
that the node covers, cu storing a memory. In the RLSTM architecture (see Figure 6.2),
the parent node p has two input gates i1, i2 and two forget gates f1, f2 for the two
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children x and y. Computations occurring in this RLSTM are:

i1 = σ
(
Wi1x + Wi2y + Wci1cx + Wci2cy + bi

)
i2 = σ

(
Wi1y + Wi2x + Wci1cy + Wci2cx + bi

)
f1 = σ

(
Wf1x + Wf2y + Wcf1cx + Wcf2cy + bf

)
f2 = σ

(
Wf1y + Wf2x + Wcf1cy + Wcf2cx + bf

)
cp = f1 � cx + f2 � cy + g

(
Wc1x� i1 + Wc2y � i2 + bc

)
o = σ

(
Wo1x + Wo2y + Wcoc + bo

)
p = o� g(cp)

where i1, i2, f1, f2, o are the activations of the corresponding gates; W’s and b’s are
weight matrices and bias vectors; and g is an activation function.

Intuitively, I put in p’s memory (i.e., cp) its children’s memories, and compute its
representation (i.e., p) as the result of an emission of the memory. The input gate
ij lets the RLSTM at the parent node decide how important the representation of the
j-th child is. If it is important, the input gate ij will have an activation close to 1,
thus allowing the child’s representation to have a large contribution to the parent’s
representation. Moreover, the RLSTM controls, using the forget gate fj , the degree to
which information from the memory of the j-th child should be added to the parent’s
memory. This way, the network has the option to store information when processing
constituents low in the parse tree, and make it available later on when it is processing
constituents high in the parse tree.

Using one input gate and one forget gate for each child makes the RLSTM flexible
in storing memory and computing composition. For instance, in a complex sentence
containing a main clause and a dependent clause it could be beneficial if only infor-
mation about the main clause is passed on to higher levels. This can be achieved by
having low values for the input gate and the forget gate for the child node that covers
the dependent clause, and high values for the gates corresponding to the child node
covering (a part of) the main clause.

Compared to similar models

Independently from and concurrently with this work, Tai et al. [2015] and Zhu et al.
[2015b] have developed very similar models. The main difference between my pro-
posed RLSTM and the two other models is that, for a binary tree, my RLSTM has two
input gates, corresponding to two children, whereas the other two models have only
one input gate. In theory, using one input gate for each child makes the RLSTM more
expressive. For instance, this RLSTM can even allow a child to contribute to com-
position by activating the corresponding input gate, but ignore the child’s memory by
deactivating the corresponding forget gate. This happens when the information given
by the child is of local importance only.
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Figure 6.3: Example binary tree for the artificial task. The number enclosed in the box
is the keyword of the sentence. The label at the root node is the label of the whole
sentence. Notice that all internal nodes other than the root are labeled 0, which are not
using in the experiments.

6.3.2 Experiments
I now examine how the two problems, the vanishing gradient problem and the problem
of how to capture long range dependencies, affect the proposed RLSTM model and the
traditional RNN model. To do so, I propose the following artificial task, which requires
a model to distinguish useful signals from noise:

• a sentence is a sequence of tokens which are integer numbers in the range [0, 10000],

• a sentence contains one and only one keyword token which is an integer number
smaller than 1000,

• a sentence is labeled with the integer resulting from dividing the keyword by
100. For instance, if the keyword is 607, the label is 6. In this way, there are 10
classes, ranging from 0 to 9.

The task is to predict the class of a sentence, given its binary parse tree (Figure 6.3).
Because the label of a sentence is determined solely by the keyword, the two models
need to identify the keyword in the parse tree and allow only the information from the
leaf node of the keyword to affect the root node.

The two models, RLSTM and RNN, were implemented with the dimension of vec-
tor representations and vector memories n = 50. Following Socher et al. [2013b], I
used f = g = tanh and initialized word vectors by randomly sampling each value
from a uniform distribution U(−0.0001, 0.0001). I trained the two models using the
AdaGrad method [Duchi et al., 2011] with a learning rate of 0.05 and a mini-batch size
of 20 for the RNN and of 5 for the RLSTM. Development sets were employed for early
stopping (training is halted when the accuracy on the development set is not improved
after 5 consecutive epochs).
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Figure 6.4: Test accuracies of the RNN model (the best among 5 runs) and the RLSTM
model (boxplots) on the 10 datasets of different sentence lengths.

Experiment 1

I randomly generated 10 datasets. To generate a sentence of length l, I shuffle a list of
randomly chosen l − 1 non-keywords and one keyword. The i-th dataset contains 12k
sentences of lengths from 10i− 9 tokens to 10i tokens, and is split into train, dev, test
sets with sizes of 10k, 1k, 1k sentences. I parsed each sentence by randomly generating
a binary tree whose number of leaf nodes equals to the sentence length.

The test accuracies of the two models on the 10 datasets are shown in Figure 6.4;
For each dataset I run each model 5 times and reported the highest accuracy for the
RNN model, and the distribution of accuracies (via boxplot) for the RLSTM model.
We can see that the RNN model performs reasonably well on very short sentences
(less than 11 tokens). However, when the sentence length exceeds 10, the RNN’s
performance drops so quickly that the difference between it and the random guess’
performance (10%) is negligible. Trying different learning rates, mini-batch sizes,
and values for n (the dimension of vectors) did not give significant differences. On
the other hand, the RLSTM model achieves more than 90% accuracy on sentences
shorter than 31 tokens. Its performance drops when the sentence length increases, but
is still substantially better than the random guess when the sentence length does not
exceed 70. When the sentence length exceeds 70, both the RLSTM and RNN perform
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Figure 6.5: Test accuracies of the RNN model (the best among 5 runs) and the RLSTM
model (boxplots) on the 10 datasets of different keyword depths.

similarly.

Experiment 2

In Experiment 1, it is not clear whether the tree size or the keyword depth is the main
factor of the rapid drop of the RNN’s performance. In this experiment, I kept the tree
size fixed and vary the keyword depth. I generated a pool of sentences of lengths from
21 to 30 tokens and parsed them by randomly generating binary trees. I then created
10 datasets each of which has 12k trees (10k for training, 1k for development, and 1k
for testing). The i-th dataset consists of only trees in which distances from keywords
to roots are i or i+ 1 (to stop the networks from exploiting keyword depths directly).

Figure 6.5 shows test accuracies of the two models on those 10 datasets. Similarly
in Experiment 1, for each dataset I run each model 5 times and reported the highest
accuracy for the RNN model, and the distribution of accuracies for the RLSTM model.
As we can see, the RNN model achieves very high accuracies when the keyword depth
does not exceed 3. Its performance then drops rapidly and gets close to the performance
of the random guess. This is evidence that the RNN model has difficulty capturing long
range dependencies. By contrast, the RLSTM model performs at above 90% accuracy
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Figure 6.6: Ratios of norms of error vectors at keyword nodes to norms of error vectors
at root nodes w.r.t. the keyword node depth in each epoch of training the RNN model.

until the depth of the keyword reaches 8. It has difficulty dealing with larger depths,
but the performance is always better than the random guess.

Experiment 3

I now examine whether the two models can encounter the vanishing gradient problem.
To do so, I looked at the the back-propagation phase of each model in Experiment 1 on
the third dataset (the one containing sentences of lengths from 21 to 30 tokens). For
each tree, I calculated the ratio

‖ ∂J
∂xkeyword

‖
‖ ∂J
∂xroot

‖

where the numerator is the norm of the error vector at the keyword node and the de-
nominator is the norm of the error vector at the root node. This ratio gives us an
intuition how the error signals develop when propagating backward to leaf nodes: if
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Figure 6.7: Ratios of norms of error vectors at keyword nodes to norms of error vectors
at root nodes w.r.t. the keyword node depth in each epoch of training the RLSTM
model. (Notice that because the y-axis is cut off at 5, some outliers are not shown.)
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Figure 6.9: Boxplot of leaf node depths in the training set of the of the Stanford Senti-
ment Treebank. More than three fourth of leaf nodes are at depths less than 10.

the ratio� 1, the vanishing gradient problem occurs; else if the ratio� 1, we observe
the exploding gradient problem.

Figure 6.6 reports the ratios w.r.t. the keyword node depth in each epoch of training
the RNN model. The ratios in the first epoch are always very small, since word vec-
tors were initialized by very small values (∼ U(−0.0001, 0.0001)). In each following
epoch, the RNN model successfully lifts up the ratios steadily (see Figure 6.8a for a
clear picture at the keyword depth 10), but a clear decrease when the depth becomes
larger is observable. For the RLSTM model (see Figure 6.7 and 6.8b), the story is
somewhat different. The ratios go up after two epochs so rapidly that there are even
some exploding error signals sent back to leaf nodes. They are then go down and
remain stable with substantially less exploding error signals. This is, interestingly,
concurrent with the performance of the RLSTM model on the development set (see
Figure 6.8b). It seems that the RLSTM model, after one epoch, can quickly locate the
keyword node in a tree and relate it to the root by building a strong bond between them
via error signals. After the correlation between the keyword and the label at the root
is found, it turns to try to stabilize the training by reducing error signals sent back to
the keyword node. Comparing the two models by aligning Figure 6.6 with Figure 6.7,
and Figure 6.8a with Figure 6.8b, we can see that the RLSTM model is more capable
of transmitting error signals to leaf nodes.

It is worth noting that we do see the vanishing gradient problem happening when
training the RNN model in Figure 6.6; but Figure 6.8a suggests that the problem be-
comes less serious after a few epochs. This might be because the depth 10 is still
manageable to the RNN model. The question now is “do we need to handle depths
larger than 10?”. To answer this, let us look at Figure 6.9, showing the statistics of
leaf node depths in the training set of the Stanford Sentiment Treebank, which is used
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Figure 6.10: The RNN model (left) and the RLSTM model (right) for sentiment anal-
ysis.

later in this chapter. (Noting that the average length of those sentences is 19.1, which
is quite large.) We can see that more than three quarters of leaf nodes are at depths less
than 10. It suggests that handling larger depths might be not so crucial for datasets of
average sentence length less than 20.

6.4 The RLSTM model for Sentiment Analysis

6.4.1 The Model
I now apply the proposed RLSTM model to a sentiment analysis task (see Figure 6.10).
On the top of each node, if its sentiment class (e.g., positive, negative, or neutral) is
given, I put a softmax layer to compute the probability of assigning a class to it. The
vector representations of words (i.e. word embeddings) can be initialized randomly, or
pre-trained. The memory of any leaf node w, i.e. cw, is always ~0.

Similarly to Irsoy and Cardie [2014], I ‘untie’ leaf nodes and internal nodes: I use
one weight matrix set for leaf nodes and another set for internal nodes. Hence, if word
representations are vectors of dimension dw and phrase representations are vectors of
dimension d, all weight matrices from a leaf node to an immediate internal node have
a size of d×dw, and all weight matrices from an internal node to another internal node
have a size of d× d.

Training

Training this model is to minimize the following objective function, which is the cross-
entropy over a training set D plus an L2-norm regularization term:

J(θ) = − 1

|D|
∑
s∈D

∑
p∈s

logPr(lp|p) +
λ

2
||θ||2

where θ is the parameter set, lp is the sentiment class of phrase p, p is the vector
representation at the node covering p, and λ is a regularization parameter. Like training
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an RNN, I use the mini-batch gradient descent method to minimize J w.r.t. θ, where
gradients ∂J/∂θ are computed efficiently using the back-propagation through structure
algorithm [Goller and Küchler, 1996]. I use the AdaGrad method [Duchi et al., 2011]
to automatically update the learning rate for each parameter.

Complexity

I analyse the complexities of the RNN and RLSTM models in the forward phase where
vector representations for internal nodes and classification probabilities are computed.
The complexities in the backward phase where gradients ∂J/∂θ are computed can
be analysed similarly. It is easy to see that the complexities of the two models are
dominated by the matrix-vector multiplications that are carried out. Since the number
of sentiment classes is very small (5 or 2 in the later experiments) compared to d and
dw, I only consider those matrix-vector multiplications which are for computing vector
representations at internal nodes.

For a sentence of lengthN , let us assume that its parse tree is binarized without any
unary branch (as in the data set I used in the later experiments). In the RNN model, be-
cause each node (other than the root) requires one matrix multiplication for computing
its parent’s representation, the complexity in the forward phase is approximately:

N × d× dw︸ ︷︷ ︸
for N leaf nodes

+ (N − 2)× d× d︸ ︷︷ ︸
for N−2 internal nodes other than the root

In the RLSTM model, because each leaf node requires 6 matrix multiplications for
computing its parent’s gates, each internal node (other than the root) requires 11 matrix
multiplications for computing its parent’s gates and its own output gate, and the root
requires one matrix multiplication for computing its own output gate, the complexity
is approximately:

N × 6× d× dw︸ ︷︷ ︸
for N leaf nodes

+ (N − 2)× 11× d× d︸ ︷︷ ︸
for N−2 internal nodes other than the root

+ d× d︸ ︷︷ ︸
for the root node

If dw ≈ d, the complexity of the RLSTM model is about 8.5 times higher than the
complexity of the RNN model.

In my experiments, this difference is not a serious problem because training and
evaluating the RLSTM model is very fast: it took me, on a single core of a modern
computer, about 10 minutes to train the model (d = 50, dw = 100) entirely on 8544
sentences, and about 2 seconds to evaluate it on 2210 sentences.

6.4.2 Experiments
Experiments in this section use the Stanford Sentiment Treebank2 [Socher et al., 2013b]
which consists of 5-way fine-grained sentiment labels (very negative, negative, neutral,

2http://nlp.stanford.edu/sentiment/treebank.html
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Figure 6.11: Example tree with a sentiment label at every node. (0, 1, 2, 3, 4 mean
very negative, negative, neutral, positive, very positive.)

positive, very positive) for 215,154 phrases of 11,855 sentences (see an example tree
in Figure 6.11). The standard splitting is also given: 8544 sentences for training, 1101
for development, and 2210 for testing. The average sentence length is 19.1. In addi-
tion, the treebank also supports binary sentiment (positive, negative) classification by
removing neutral labels, leading to: 6920 sentences for training, 872 for development,
and 1821 for testing. The evaluation metric is the accuracy, given by 100×#correct

#total
.

RLSTM vs. RNN

Setting I initialized the word vectors in both models using the 100-dim GloVe3 word
embeddings [Pennington et al., 2014], which were trained on a 6B-word corpus. The
initial values for theirs weight matrices were uniformly sampled from the symmetric
interval

[
− 1√

n
, 1√

n

]
where n is the number of total input units.

For each model (RNN and RLSTM), I employed three activation functions: soft-
max, tanh, and softsign, leading to six sub-models. Tuning those sub-models on the
development set, I chose the dimension of internal nodes’ vectors d = 50, a learning
rate of 0.05, regularization parameter λ = 10−3, and a mini-batch-size of 5. On each
task, I run each sub-model 10 times. Each time, I trained the sub-model in 20 epochs
and select the network achieving the highest accuracy on the development set.

Results Figure 6.12 and 6.13 show the statistics of the test accuracies of the resulting
networks on the test set on the fine-grained classification task and binary classification
task, respectively. It can be seen that the RLSTM model outperforms the RNN model

3http://nlp.stanford.edu/projects/GloVe/
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Figure 6.12: Boxplots of test accuracies of 10 runs of the RNN model and the RLSTM
model on the fine-grained classification task.

when using tanh and softsign. With the sigmoid activation function, the difference is
not as clear, but the RLSTM model performs slightly better. The tanh-RLSTM and the
softsign-RLSTM achieve highest median accuracies (48.1 and 86.4) on the fine-grained
classification task and on the binary classification task, respectively.

For the RNN model, the sigmoid function performs on par with the other two func-
tions on the fine-grained task, and even better than the softsign function on the binary
task. This is surprising to see, given that sigmoid is not often chosen in recent work.
The softsign function, which is shown to work better than tanh for deep networks [Glo-
rot and Bengio, 2010], however, does not yield improvements in this experiment.

For the RLSTM model, the tanh function, in general, works best whereas the sig-
moid function is the worst. This result agrees with the common choice for activa-
tion function for the LSTM architecture in recurrent network research [Gers, 2001,
Sutskever et al., 2014].

Compared against other Models

I compare the RLSTM model (using tanh) in the previous experiment against existing
models: Naive Bayes with bag of bigram features (BiNB), Recursive neural tensor
network (RNTN) [Socher et al., 2013b], Convolutional neural network (CNN) [Kim,
2014], Dynamic convolutional neural network (DCNN) [Kalchbrenner et al., 2014],
paragraph vectors (PV) [Le and Mikolov, 2014], and Deep RNN (DRNN) [Irsoy and
Cardie, 2014].

Among them, the BiNB is the only one that does not employ neural networks. The
RNTN and the DRNN are two extensions of the traditional RNN model. Whereas the
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Figure 6.13: Boxplot of test accuracies of 10 runs of the RNN model and the RLSTM
model on the binary classification task.

RNTN uses both matrix-vector multiplications and tensor products for the composition
purpose, the DRNN has a deeper net structure which results from concatenating two
or more RNNs horizontally. The CNN, DCNN and PV do not rely on syntactic trees.
The CNN uses a convolutional layer and a max-pooling layer to handle sequences of
different lengths. The DCNN is hierarchical in the sense that it stacks two or more
convolutional layers with k-max pooling layers in between. In the PV, a sentence (or
document) is represented as an input vector to predict which words appear in it.

Table 6.1 (above the dashed line) shows the test accuracies of those models. The
accuracy of the RLSTM model is taken from the network achieving the highest perfor-

Model Fine-grained Binary
BiNB 41.9 83.1
RNTN 45.7 85.4
CNN 48.0 88.1
DCNN 48.5 86.8
PV 48.7 87.8
DRNN 49.8 86.6
with GloVe-100D
RLSTM 48.0 86.2
with GloVe-300D
RLSTM 49.9 88.0

Table 6.1: Test accuracy of the (tanh) RLSTM compared with other models.
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mance out of 10 runs on the development set. The accuracies of the other models are
copied from the corresponding papers. The RLSTM clearly performs worse than the
DCNN, PV, DRNN on both tasks, and worse than the CNN on the binary task.

Approaching the state-of-the-art with better word embeddings

I now focus on the DRNN model, which is the most similar to the RLSTM model
among those four models CNN, DCNN, PV and DRNN. In fact, from the results re-
ported in [Irsoy and Cardie, 2014, Table 1a], the RLSTM performs on par4 with their
one-layer-DRNN (d = 340) using dropout (randomly removing some neurons during
training). Dropout is a powerful technique to train neural networks, not only because it
plays a role as a strong regularization method to prohibit neurons from co-adapting, but
it is also considered as a technique to efficiently build an ensemble of a large number
of shared weight neural networks [Srivastava et al., 2014]. Thanks to dropout, Irsoy
and Cardie [2014] boost the accuracy of a 3-layer-DRNN (d = 200) from 46.06 to 49.5
in the fine-grained task.

In the next experiment, I tried to boost the accuracy of the RLSTM model. Inspired
by Irsoy and Cardie [2014], I employed dropout and better word embeddings. Dropout,
however, does not work with the RLSTM. The reason might be that dropout corrupts
the RLSTM’s memory, thus making training more difficult. Better word embeddings
do pay off, on the other hand. I used the 300-dim GloVe word embeddings trained
on a 840B-word corpus. Based on the development set, I chose the same values for
the hyper-parameters as in the first experiment, except setting the learning rate 0.01. I
also run the model 10 times and selected the network achieving the highest accuracy
on the development set. Table 6.1 (below the dashed line) shows the results. Using the
300-dim GloVe word embeddings is very helpful: the RLSTM model now performs
on par with the DRNN model on the fine-grained task, and with the CNN model on the
binary task. Therefore, taking into account both tasks, the RLSTM model initialized
with the 300-dim GloVe word embeddings outperforms all other models. 5

4Irsoy and Cardie [2014] used the 300-dim word2vec word embeddings trained on a 100B-word
corpus whereas I used the 100-dim GloVe word embeddings trained on a 6B-word corpus. From the
fact that they achieve an accuracy of 46.1 with the RNN (d = 50) on the fine-grained task and 85.3
on the binary task, and my implementation of the RNN (d = 50) performs worse, I conclude that the
100-dim GloVe word embeddings are not more suitable than the 300-dim word2vec word embeddings.

5Tai et al. [2015]’s Tree-LSTM model achieves 51% and 88.0% in accuracy on the fine-grained task
and on the binary task, respectively. Zhu et al. [2015b]’s S-LSTM model achieves 50.1% on the fine-
grained task. Like my RLSTM in this experiment, both models were initialized with the 300-dim GloVe
word embeddings. Finding why the Tree-LSTM outperforms the RLSTM on the fine-grained task is left
for future work.
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6.5 Conclusions
In this chapter I propose the Recursive Long short term memory (RLSTM) model, a
new composition method by extending the LSTM architecture which is widely used in
recurrent neural network research. The proposed RLSTM model has been shown to
capture long range dependencies and overcome the vanishing gradient problem more
effectively than the traditional RNN model. In addition, empirical results on the Stan-
ford Sentiment Treebank benchmark show that the RLSTM model outperforms the
RNN model in terms of accuracy.

I now try to answer the question: why does the RLSTM model perform better than
the RNN model? Here, I borrow the argument given in [Bengio et al., 2013a, Section
3.2] to answer the question, based on the hypothesis that the RLSTM for tree structures
should work very similarly to the traditional LSTM architecture. Bengio explains that
LSTMs behave like low-pass filters “hence they can be used to focus certain units
on different frequency regions of the data”. This suggests that an RLSTM plays a
role as a lossy compressor which, by focusing on low frequency regions, can capture
global information. So composition in this case could be seen as compression, like the
Recursive auto-encoder (RAE) [Socher et al., 2011a]. Because pre-training an RNN
by an RAE can boost the overall performance [Socher et al., 2011a,c], considering
an RLSTM as a compressor might explain why it works better than an RNN without
pre-training.

Comparing the RLSTM model against the DRNN model [Irsoy and Cardie, 2014]
might give a hint about how to improve the proposed model. From the empirical
results, the RLSTM without the 300-dim GloVe word embeddings performs worse
than the DRNN, which gains a significant improvement thanks to dropout. Finding
a method like dropout that does not corrupt the RLSTM’s memory, therefore, might
boost the overall performance significantly.



Chapter 7
The Forest Convolutional Network Model

According to the principle of compositionality, the meaning of a sentence is com-
puted from the meanings of its parts and the way they are syntactically combined. In
practice, however, syntactic structures are generated by automatic parsers which are
far-from-perfect and not tuned to the specifics of the task. Current recursive neural
network (RNN) approaches for computing sentence meaning therefore run into a num-
ber of practical difficulties, including the need to carefully select a parser appropriate
for the task, deciding how and to what extent syntactic context modifies the semantic
composition function, as well as on how to transform parse trees to conform to the
branching settings (typically, binary branching) of the RNN. This chapter introduces
a new model, the Forest Convolutional Network, that avoids all of these challenges,
by taking as input a parse forest, rather than a single tree, and by allowing arbitrary
branching factors. I report improvements over the state-of-the-art in sentiment analy-
sis and question classification.

7.1 Introduction
In the previous chapters I discuss the RNN models and their successes in tackling
the challenge of transforming sentences into vectors. In this chapter, I present a new
recursive neural network architecture that fits squarely in this tradition, but aims to
solve a number of difficulties that have arisen in existing work. In particular, the model
I propose addresses three issues:

1. how to make the composition functions adaptive, in the sense that they operate
adequately for the many different types of combinations (e.g., adjective-noun
combinations are of a very different type than VP-PP combinations);

2. how to deal with different branching factors of nodes in the relevant syntactic
trees (i.e., I want to avoid having to binarize syntactic trees,1 but also do not want
ternary productions to be completely independent from binary productions);

1[Eisner, 2001, Chapter 2] shows that using flat rules is linguistically beneficial, because “most

101
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3. how to deal with uncertainty about the correct parse inside the neural architecture
(i.e., I do not want to work with just the best or k-best parses for a sentence
according to an external model, but receive an entire distribution over possible
parses).

To solve these challenges I take inspiration from two other traditions: the convolu-
tional neural networks and classic parsing algorithms based on dynamic programming.
Including convolution in my network model provides a direct solution to issue (2), and
turns out, somewhat unexpectedly, to also provide a solution to issue (1). Introducing
the chart representation from classic parsing into the proposed architecture then allows
me to tackle issue (3).

The outline of this chapter is as follows. In Section 7.2 I propose the novel Forest
Convolutional Network model. I then show empirical results on a sentiment analysis
task and a question classification task in Section 7.3. Section 7.4 discusses related
work and Section 7.5 gives conclusions.

7.2 The Forest Convolutional Network Model
In this section, I first propose a solution to issues (1) and (2) (i.e., building adap-
tive composition functions and dealing with different branching factors) using con-
volutional networks. I then introduce a solution to the third issue (i.e., dealing with
uncertainty about the correct parse), called the Chart Neural Network (ChNN). A com-
bination of them, the Forest Convolutional Network (FCN), is presented lastly.

7.2.1 Composition with Convolutional networks
Given a production p→ x1 ... xl, my idea (Figure 7.1), like the CNN model introduced
in Section 2.2.2, is to slide a window-size-k kernel along the sequence of children
(x1, ..., xl) to compute a pool of vectors. A max pooling operation followed by a fully
connected layer is then applied to this pool to compute a vector for the parent p.

However, what I propose here differs from that CNN model at two points. First, I
use a non-linear kernel: after linearly transforming input vectors, an activation function
is applied. Second, I put k − 1 padding tokens <b> at the beginning of the children
sequence and k − 1 padding tokens <e> at the end. This thus guarantees that all the
children contribute equally to the resulting vector pool, which now has l+k−1 vectors.

It is obvious that employing convolutional layers for composition can solve the
second issue (i.e., dealing with different branching factors), I now show how it can
make the composition functions adaptive. We first see what happens if the window

crucially, a flat lexical entry corresponds to the local domain of a headword – the word together with all
its semantic arguments and modifiers”. From the computational perspective, flat rules make trees less
deep, thus reducing the effect of the vanishing gradient problem and the problem of how to capture long
range dependencies.
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Figure 7.1: Composition with a convolutional network using a nonlinear window-size-
3 kernel.

size k is larger than the number of children l, for instance k = 3 and l = 2. There are
four vectors in the pool:

u(1) = f(W1x<b> + W2x<b> + W3x1 + bc)

u(2) = f(W1x<b> + W2x1 + W3x2 + bc)

u(3) = f(W1x1 + W2x2 + W3x<e> + bc)

u(4) = f(W1x2 + W2x<e> + W3x<e> + bc)

where W1,W2,W3 are weight matrices, bc is a bias vector, f is an activation function.
These four resulting vectors correspond to four ways of composing the two children’s
vectors:

(1) the first child stands alone (e.g., when the information of the second child is not
important, it is better to ignore it),

(2,3) the two children are composed with two different weight matrix sets,

(4) the second child stands alone.

Because the max pooling then chooses features from these four vectors based on their
values (i.e., on a row the feature with the highest value will be chosen to pass to the
parent), it is reasonable to say that the behaviours of this composition function change
according to input vectors. Therefore, this composition function is adaptive.
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Figure 7.2: Chart Neural Network.

If the window size k is smaller than the number of children l, there are also l+k−1
vectors in the resulting pool, which means that we have l + k − 1 ways to combine
l children. However, now, there is no longer a direct interaction between any two
children whose distance is larger than k; still, an indirect interaction can be set up
through pooling. In practice, this is not a big limitation because rules with a large
number of children are very rare.

7.2.2 The Chart Neural Network model

Unseen sentences are, in the tradition we consider here, parsed by automatic parsers,
which are far from perfect and not aware of tasks to which they are applied. Therefore,
we would like to give the system a set of parses and let it decide which parse is the
best or to combine several of them. The RNN model handles one extreme where this
set contains only one parse. I now consider the other extreme where the set contains
all possible parses (Figure 7.3). Because the number of all possible binary parse trees
of a length-n sentence is the n-th Catalan number, processing individual parses is im-
practical. I thus propose a new model working on charts in the CKY style [Younger,
1967], called Chart Neural Network (ChNN).

I describe this model by the following example. Given the phrase “ate pho with
Milos”, the ChNN model will process its parse chart as in Figure 7.2. Because any
2-word constituent only has one parse, the computation for p1, p2, p3 is identical to the
computation of the traditional RNN. For the 3-word constituent p4, because there are
two possible productions p4 → ate p2 and p4 → p1 with, we compute one vector for
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All possible treesA single tree

Recursive neural net Chart Neural Net

O(nd2) O(n2d2+n3d)

pruned chart

Forest convolutional net

Figure 7.3: The three models, RNN, FCN, and ChNN, are sorted by the number of
trees they can handle. The complexities of the RNN and the ChNN are also shown,
where n is the sentence length, d is the dimension of vector representations.

each production:

u(1) = f(W1xate + W2p2 + b)

u(2) = f(W1p1 + W2xwith + b)
(7.1)

and then apply a max pooling operation to these two vectors to compute p4. We do
the same to compute p5. Finally, at the top, there are three productions p6 → ate p5,
p6 → p1 p3 and p6 → p4 Milos. Similarly, we compute one vector for each production
and employ the max pooling operation to compute p6.

Because the ChNN model processes a chart like the CKY algorithm [Younger,
1967], its time complexity is O(n2d2 + n3d) where n and d are the sentence length
and the dimension of vectors, respectively. This formula comes from the fact that in
each cell we apply the matrix-vector multiplication two times and (if the cell is not a
leaf) apply the max pooling to a pool of maximally n d-dim vectors. As a result, the
ChNN model is notably more complex than the traditional RNN model, which has the
complexity O(nd2). Like chart parsing, the complexity can be reduced significantly
by pruning the chart before applying the ChNN model. This will be discussed right
below.

7.2.3 The Forest Convolutional Network Model
I now introduce the Forest Convolutional Network (FCN) model, which is a combina-
tion of the two ideas proposed above. The key idea is to use an automatic parser to
prune the chart, debinarize productions (if applicable), and then apply the same mech-
anism of the ChNN model where the computation in Equation 7.1 is replaced by a
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Figure 7.4: Forest of parses (left) and Forest Convolutional Network (right). ⊗ denotes
a convolutional layer followed by a max pooling operation and a fully connected layer
as in Figure 7.1.

convolutional layer followed by a max pooling operation and a fully connected layer
as in Figure 7.1. Pruning a chart by an automatic parser is also not flawless. However,
the quality of pruned charts can get very close to human annotation. For instance, the
chart pruner proposed by Huang [2008] has a forest oracle of 97.8% F-score on sec-
tion 23 of the Penn Treebank whereas resulting forests are very compact: the average
number of hyperedges per forest is 123.1.

Figure 7.4 shows an illustration of how the FCN processes the phrase “ate pho
with Milos”. The example forest of parses (which is given by an external parser, in
practice), comprises two parses:

• (V P ate pho (PP with Milos)) (solid lines) and

• (V P ate (NP pho (PP with Milos))) (dash-dotted lines).

The first parse is the preferred reading if “Milos” is a person, but the second one is a
possible reading (for instance, if “Milos” is the name of a sauce). Instead of forcing the
external parser to decide which one is correct, we let the FCN model do that because
it has more information about the context and domain, which are embedded in training
data. What the network should do is depicted in Figure 7.4-right.

Training Training the FCN model is similar to training the traditional RNN model. I
use the mini-batch gradient descent method to minimize an objective function J , which
depends on which task this model is applied to. For instance, if the task is sentiment
analysis, J is the cross-entropy over a training set D plus an L2-norm regularization
term:

J(θ) = − 1

|D|
∑
s∈D

∑
p∈s

logPr(cp|p) +
λ

2
||θ||2
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where θ is the parameter set, cp is the sentiment class of phrase p, p is the vector
representation at the node covering p, Pr(cp|p) is computed by a softmax function,
and λ is a regularization parameter.

Gradients ∂J/∂θ are computed efficiently thanks to the back-propagation through
structure algorithm [Goller and Küchler, 1996]. I use the AdaGrad method [Duchi
et al., 2011] to automatically update the learning rate for each parameter.

7.3 Experiments
I evaluated the FCN model on two tasks: question classification and sentiment analysis.
The evaluation metric is the classification accuracy.

The FCN model was initialized with the 300-dim GloVe word embeddings trained
on a corpus of 840B words2 [Pennington et al., 2014]. The initial values for a weight
matrix were uniformly sampled from the symmetric interval

[
− 1√

n
, 1√

n

]
where n is the

number of total input units. In each experiment, a development set was used to tune the
model. I run the model ten times and chose the run with the highest performance on
the development set. I also employed early stopping: training is halted if performance
on the development set does not improve after three consecutive epochs.

7.3.1 Sentiment Analysis
In the first experiment, I used the Stanford Sentiment Treebank (SST)3 [Socher et al.,
2013b] which consists of 5-way fine-grained sentiment labels (very negative, negative,
neutral, positive, very positive) for 215,154 phrases of 11,855 sentences. I used the
standard splitting: 8544 sentences for training, 1101 for development, and 2210 for
testing. The average sentence length is 19.1. In addition, the treebank also supports
binary sentiment (positive, negative) classification by removing neutral labels, leading
to: 6920 sentences for training, 872 for development, and 1821 for testing.

All sentences were parsed by Liang Huang’s dependency parser4 [Huang and Sagae,
2010]. I used this parser because it generates parse forests and because dependency
trees are less deep than constituency trees. In addition, because the SST was anno-
tated in a constituency manner, I also employed the Charniak’s constituency parser
[Charniak and Johnson, 2005] with Huang [2008]’s forest pruner. I found that the
beam width 16 for the dependency parser and the log probability beam 10 for the other
worked best. Lower values harm the system’s performance and higher values are not
beneficial.

Testing on the development set, I chose the size of vectors at internal nodes 200, the
window size for the convolutional kernel 7, and the activation function tanh. The FCN
model was trained with the learning rate 0.01, the regularization parameter 10−4, and

2http://nlp.stanford.edu/projects/GloVe/
3http://nlp.stanford.edu/sentiment/treebank.html
4http://acl.cs.qc.edu/˜lhuang/software
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Model Fine-grained Binary
RNTN 45.7 85.4
CNN 48.0 88.1
DCNN 48.5 86.8
PV 48.7 87.8
DRNN 49.8 86.6
RLSTM 49.9 88.0
CT-LSTM 51.0 88.0
FCN (dep.) 50.4 88.2
FCN (const.) 51.0 89.1

Table 7.1: Test accuracies at sentence level on the SST dataset. FCN (dep.) and
FCN (const.) denote the FCN with dependency forests and with constituency forests,
respectively. The accuracies of the other models are copied from the corresponding
papers (see text).

the mini batch size 5. To reduce the average depth of the network, the fully connected
layer following the convolutional layer was removed (i.e., p = x, see Figure 7.1).

I compare the FCN model against other models: the Recursive neural tensor net-
work (RNTN) [Socher et al., 2013b], the Convolutional neural network (CNN) [Kim,
2014], the Dynamic convolutional neural network (DCNN) [Kalchbrenner et al., 2014],
the Paragraph vectors (PV) [Le and Mikolov, 2014], the Deep recursive neural network
(DRNN) [Irsoy and Cardie, 2014], the Recursive Long short term memory (RLSTM)
proposed in Chapter 6 (and in Le and Zuidema [2015c]) and the Constituency Tree
LSTM (CT-LSTM) [Tai et al., 2015].5

Table 7.1 shows the test results. The FCN model using constituency forests achieves
the highest accuracies on both fine-grained task and binary task, 51% and 89.1%. Com-
paring to the CT-LSTM model, although there are no differences on the fine-grained
task, the difference on the binary task is substantially (1.1%). Comparing to the RL-
STM, the differences on both tasks are all remarkable (1.1% and 1.1%).

Constituency parsing is clearly more helpful than dependency parsing, which is
also confirmed in [Tai et al., 2015, Table 2]: the improvements that the FCN model
gets are 0.6% on the fine-grained task and 0.9% on the binary task. This might be
because sentences in the treebank were parsed by a constituency parser (here is the
Stanford parser). As a result, training on constituency forests is more beneficial.

7.3.2 Question Classification

The second task is question classification. I used the TREC question dataset6 [Li and
Roth, 2002] which contains 5952 questions (5452 questions for training and 500 ques-

5See Section 6.3.1 for how the RLSTM and the Tree-LSTM are different.
6http://cogcomp.cs.illinois.edu/Data/QA/QC
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Model Acc. (%)
DCNN 93.0
MaxEntH 93.6
CNN-non-static 93.6
SVMS 95.0
LSTM-RNN 93.4
FCN 94.8

Table 7.2: Test accuracies on the TREC question type classification dataset. The accu-
racies of the other models are copied from the corresponding papers (see text).

tions for testing). The task is to assign one of six types to a question: ABBREVI-
ATION, ENTITY, DESCRIPTION, HUMAN, LOCATION, NUMERIC. The average
length of the questions in the training set is 10.2 whereas in the test set is 7.5. This dif-
ference is due to the fact that those questions are from different sources. All questions
were parsed by Liang Huang’s dependency parser with the beam width 16.

I randomly picked 5% of the training set (272 questions) for validation. Using this
development set, I chose the dimension of vectors at internal nodes 200, the window
size for the convolutional kernel 5, and the activation function tanh. The FCN was
trained with the learning rate 0.01, the regularization parameter 10−4, and the mini
batch size 1. The vectors representing the two padding tokens <b>, <e> were fixed
to 0.

I compare the FCN model against the Convolutional neural network (CNN) [Kim,
2014], the Dynamic convolutional neural network (DCNN) [Kalchbrenner et al., 2014],
MaxEntH [Huang et al., 2008] (which uses MaxEnt with uni-bi-trigrams, POS, wh-
word, head word, word shape, parser, hypernyms, WordNet) and the SVMS [Silva
et al., 2011] (which uses SVM with, in addition to features used by MaxEntH , 60 hand-
coded rules). I also include the RLSTM whose accuracy was computed by running
the published source code7 on binary trees generated by the Stanford Parser8 [Klein
and Manning, 2003]. The RLSTM was also initialized by the 300-dim GloVe word
embeddings.

Table 7.2 shows the results.9 The FCN achieves the second best accuracy, only
slightly lower than the SVMS (0.2%). This is a promising result because the FCN uses
only parse forests, unsupervisedly pre-trained word embeddings whereas the SVMS

uses heavily engineered resources. The difference between the FCN and the third best
is remarkable (1.2%). Interestingly, the RLSTM does not perform well on this dataset.
This is likely because the questions are short and the parse trees quite shallow. As a
result, the two problems that the LSTM architecture was invented for (the problem of
how to capture long range dependencies and the vanishing gradient problem) are not

7https://github.com/lephong/lstm-rnn
8http://nlp.stanford.edu/software/lex-parser.shtml
9While finalizing the current work I discovered a paper by Ma et al. [2015] proposing a convolutional

network model for dependency trees. They report a new state-of-the-art accuracy of 95.6% in accuracy.
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Figure 7.5: Chart of sentence “Most of the action setups are incoherent .” The size of
a circle is proportional to the number of the cell’s features that are propagated to the
root.

crucial.

7.3.3 Visualization

I visualize the charts I obtained on the sentiment analysis task as in Figure 7.5. To
identify how important each cell is for determining the final vector at the root, I com-
puted the number of features of each that are actually propagated all the way to the
root in the successive max pooling operations. The circles in a graph are proportional
to this number. Here, to make the contribution of each individual cell clearer, I have
set the window size to 1 to avoid direct interactions between cells.

At the lexical level, we can see that the FCN model can discriminate the impor-
tant words from the others. The two words “most” and “incoherent” are key to the
sentiment of this sentence: if one of them is replaced by another word (e.g. replacing
“most” by “few” or “incoherent” by “coherent”), the sentiment will flip. The punctua-
tion “.” however also has a high contribution to the root. This happens to other charts
as well. I conjecture that the network uses the vector of “.” to store neutral features
and propagates them to the root whenever it can not find more useful features in other
vectors.

At the phrasal level, the network tends to group words in grammatical constituents,
such as “most of the action setups”, “are incoherent”. Ill-formed constituents such
as “of the action” and “incoherent .” receive little attention from the network. The
evidence is that the circles corresponding to ill-formed constituents are relatively much
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smaller than the circles corresponding to well-formed constituents. Interestingly, we
can see that the circle of “incoherent” is larger than the circles of any internal cells,
suggesting that the network is able to make use of parses containing direct links from
that word to the root. This shows that the network has the ability of selecting (or
combining) parses that are beneficial to this sentiment analysis task.

7.4 Related Work
The idea that a composition function must be able to change its behaviour on the fly ac-
cording to input vectors is explored by Socher et al. [2013b] and my work in Chapter 6,
to name a few. The tensor in the former is multiplied with the vector representations
of the phrases it is going to combine to define a composition function (a matrix) on the
fly, which is then multiplied again with these vectors to yield a compound representa-
tion. In the RLSTM architecture of the latter, there is one input gate for each child in
order to control how the vector of the child affects the composition at the parent node.
Because the input gate is a function of the vector of the child, the composition function
has an infinite number of behaviours. In this chapter, I instead slide a kernel function
along the sequence of children to generate different ways of composition. Although the
number of behaviours is limited (and depends on the window size), it simultaneously
provides us with a solution to handle rules of different branching factors.

Some approaches try to overcome the problem of varying branching factors. My
work in Chapter 4 uses different sets of weight matrices for different branching factors,
thus requiring a large number of parameters. Because productions of large branching
factors are rare, many parameters are infrequently updated during training. Socher
et al. [2014], for dependency trees, use a weight matrix for each relative position to the
head word (e.g., first-left, second-right). My work in Chapter 5 replaces relative po-
sitions by dependency relations (e.g., OBJ, SUBJ). These approaches strongly depend
on input parse trees and are very sensitive to parsing errors. The approach presented
in this chapter, on the other hand, does not need the information about the head word
position and is less sensitive to parsing errors. Moreover, its number of parameters is
independent from the maximal branching factor.

Convolutional networks have been widely applied to solve natural language pro-
cessing tasks. Collobert et al. [2011b], Kalchbrenner et al. [2014], and Kim [2014]
use convolutional networks to deal with varying length sequences. Recently, Zhu et al.
[2015a] and Ma et al. [2015] integrate syntactic information by employing parse trees.
Ma et al. [2015] extend the work of Kim [2014] by taking into account dependency
relations so that long range dependencies could be captured. The model proposed by
Zhu et al. [2015a], which is very similar to my proposal in Section 7.2.1, is to use
a convolutional network for the composition purpose. My work, although also em-
ploying a convolutional network and syntactic information, goes beyond all of them:
I address the issue of how to deal with uncertainty about the correct parse inside the
neural architecture. To do so, instead of using a single parse, the proposed FCN model
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takes as input a forest of parses.
Related to the FCN model is the Gated recursive convolutional neural network

model proposed by Cho et al. [2014] which stacks n − 1 convolutional neural layers
using a window-size-2 gated kernel (where n is the sentence length). If we map their
network into a chart, we can see that each cell is only connected to the two cells right
below it. What makes this network model special is the gated kernel which is a 3-
gate switcher for (softly) choosing one of three options: directly transmit the left/right
child’s vector to the parent node, or compose the vectors of the two children. Thanks
to this, the network can capture any binary parse tree by setting those gates prop-
erly. However, the network is not able to capture arbitrary forests. For instance, if the
switcher prefers the left gate, the combination of the children’s vectors cannot have a
large effect on cells higher up in the chart. The FCN model, which can handle arbitrary
forests, is thus more expressive and flexible than the other.

7.5 Conclusions
I propose the Forest Convolutional Network (FCN) model that tackles the three issues:
(1) how to make the composition functions adaptive, (2) how to deal with different
branching factors of nodes in the relevant syntactic trees, and (3) how to deal with
uncertainty about the correct parse inside the neural architecture. The key principle is
to carry out many different ways of computation and then choose or combine some of
them. For more details, the two first issues are solved by employing a convolutional
net for composition. To the third issue, the network takes as input a forest of parses
rather than a single parse as in traditional approaches.

There are different ways to improve the current model. We can focus on how to
choose/combine different ways of computation. For instance, we might replace the
max pooling by different pooling operations such as mean pooling, k-max pooling
[Kalchbrenner et al., 2014], and stochastic pooling [Zeiler and Fergus, 2013]. Another
way is to bias the selection/combination toward grammatical constituents by weighing
cells by their inside probabilities [Lari and Young, 1990].



Chapter 8
Conclusions

8.1 Summary

In this dissertation I propose several recursive deep network models for learning to
transform sentences to vectors, based on the principle of compositionality. Starting
with the traditional Recursive neural network (RNN) model, which is successfully
exploited in Socher et al. [2010] and Socher et al. [2011b], I explore three different
directions.

The first direction focuses on strengthening the composition functions. One way
to do that is making use of syntactic information and contexts, as in Chapter 3. In that
chapter, I propose composition functions, which are also one-layer feed-forward neural
networks, taking into account representations of syntactic labels (e.g. N, VP), context
words, and head words. Another way is to replace one-layer neural networks by more
advanced networks. In Chapter 6, based on empirical results which show that the Long
short term memory (LSTM) architecture can capture long range dependencies and deal
with the vanishing gradient problem more effectively than Recurrent neural networks,
I introduce a novel variant of the LSTM, called Recursive-LSTM, that works on trees.
Empirical results on an artificial task and on the Stanford Sentiment Treebank confirm
that the proposed Recursive-LSTM model is superior to the traditional RNN model
in terms of accuracy. Furthermore, in Chapter 7, I demonstrate how a convolutional
neural network can be used as a composition function.

The second direction to extend the classical RNN is to focus on how information
flows in a parse tree. In traditional compositional semantics approaches, including the
RNN model, information flows in a bottom-up manner, leading to a situation where
there is no way for a node to be aware of its surrounding context. As a result, these ap-
proaches are not applicable to top-down processes such as several top-down generative
parsing models, and to problems requiring contexts such as semantic role labelling.
In Chapter 4, I propose a solution to this, namely the Inside-Outside Semantic frame-
work, in which the key idea is to allow information to flow not only bottom-up but
also top-down. In this way, we can recursively compute representations for the content
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and the context of the phrase that a node in a parse tree covers. The Inside-Outside
RNN model, a neural-net-based instance of this framework, is shown to work well on
several tasks, including unsupervised composition function learning from raw texts,
supervised semantic role labelling, and dependency parsing (Chapter 5).

The third direction is dealing with the uncertainty of the correct parse. As a result
of relying on the principle of compositionality, compositional semantics uses syntactic
parse trees to guide composition, which in turn makes compositional semantics ap-
proaches vulnerable to the errors of automatic parsers. The problems here are that
automatic parsers are not flawless, and that they are not aware of domains to which
they are applied. To overcome this problem, in Chapter 7, I propose the Forest Convo-
lutional Network model, which takes as input a forest of parse trees rather than a single
tree as in traditional approaches. The key idea is that we should give the model several
options and let it select (or combine) ones that best fit its need. Empirical results show
that the model performs on par with state-of-the-art models on the Stanford Sentiment
Treebank and on the TREC question dataset.

8.2 Do we need trees?

Although it is clear, from a theoretical point of view [Montague, 1970, Bos, 2011],
that in many cases syntactic trees are essential for computing meaning on the sentence
level,1 many recent neural-network-based approaches do not make use of syntactic
trees. Some of them, such as Kim [2014] and Kalchbrenner et al. [2014], employ
convolutional networks. Several use (deep) recurrent neural networks and similar ar-
chitectures, for instance Sutskever et al. [2014], Luong et al. [2015], Wen et al. [2015].

The rejection of trees as an essential level of representation is clear in neural ma-
chine translation, where the key idea is to represent the source sentence by a vector
and then use it to generate a sentence in the target language. The majority of recent
approaches, such as Sutskever et al. [2014] and Luong et al. [2015], rely on deep recur-
rent models (such as Figure 8.1) (with or without the help of an attention mechanism
[Bahdanau et al., 2015]). The only exception I found is the work of Liu et al. [2014].
This is also true for other research areas, such as language modelling [Kim et al., 2016,
Tran et al., 2016] and dialog processing [Wen et al., 2015, Vinyals and Le, 2015].

This state of affairs raises the question “when are parse trees needed in practice?”
The work of Li et al. [2015] is the first to systematically compare recursive models
and recurrent models on four tasks: binary sentiment classification, phrase matching,
semantic relation classification, and discourse parsing. They find that the recursive
models can mainly help on tasks that “require long distance connection modeling, par-
ticularly on very long sequences”. Breaking long sentences at punctuations allows
recurrent models to perform on par with recursive models. They then conclude that the
role of tree structures is to break down long sentences into manageable components.

1See Frank et al. [2012] for a paper that challenges this.
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Figure 8.1: An LSTM-based sequence-to-sequence learning model for machine trans-
lation.

Concurrently with Li et al. [2015], Bowman et al. [2015b] also compare the two classes
of models. They find that recurrent models can discover and implicitly use recursive
structure. However, they demonstrate that recurrent models are significantly outper-
formed on an artificial task (logical relation classification) where recursive structure is
crucial.

To my knowledge, no final answers to the question have been presented. On the
one hand, several NLP tasks such as sentiment analysis and question classification do
not strictly require syntactic structures. For instance, in sentiment analysis, finding
out and combining keywords (e.g. “good”, “bad”) and negation (e.g. “not”) is more
important than knowing how to compose a noun phrase with a verb phrase. Another
problem is that automatic parsers are still far from perfect, leading to the fact that a
system relying on parse trees could be “fooled” by errors on automatically generated
trees.2 Besides, automatic parsers are not always available or reliable, especially in
machine translation and dialog processing.

On the other hand, it seems that existing deep learning models do not yet exploit
syntactic structures effectively. The evidence is that, as stated by Manning [2016], so
far the most important factor helping us to gain promising empirical results is word em-
beddings. I therefore believe that we should not give up on recursive models. Instead,
there is the need for more advanced ones, if gains from word embeddings cannot yet be
further improved. More importantly, because employing tree structures is not harmful,

2This is, of course, the problem I address in Chapter 7 by proposing the Forest Convolutional Net-
work model which takes as input a forest of parses.
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according to the empirical results reported by Li et al. [2015], and a complete AI sys-
tem should be involved in logical operations, recursive models should be considered.
Furthermore, the need for external (statistical) symbolic parsers can be eliminated by
recent connectionist approaches aiming to tackle the challenge of syntactic parsing
(such as Borensztajn [2011]).

8.3 Future work: Unifying the three directions
Since the three directions I explore in this dissertation are not mutually exclusive, I can
freely unify them. An obvious step to extend the work in this dissertation is therefore
to build a model which takes into account all of these three directions. This model

• implements the Inside-outside semantic framework for representing both con-
tents and contexts,

• uses R-LSTMs as composition functions for capturing long range dependencies
and dealing with the vanishing gradient problem, and

• employs the same mechanism as in the FCN model for making use of parse
forests.

As a result, this model can be considered as a complete neural implementation for the
inside-outside algorithm [Lari and Young, 1990]; and hence, its potential usage covers
all applications where chart-based algorithms can be employed, such as modelling
language with probabilistic top-down parsing [Roark, 2001].



Appendix A
Inside-Outside Semantics Framework with

λ-Expressions

I demonstrate how the IOS framework works with λ-expressions as in formal seman-
tics. First of all, I rely on the observation that the content and context of a constituent
must be strongly correlated in the sense that we can predict the content thanks to the
context. For instance, given the world model

M = {Tom loves cheese, mice love cheese, mice hate cats}

and the context “mice love X”, we can infer that X ∈ {cheese}. Therefore, I hypothe-
size that, given a world model M , M |= opip must hold true for any constituent p, for
instance icheese = cheese and ocheese = λy.love(mice, y).

Combinatory Categorial Grammar (CCG) [Steedman, 2000] (see Section 4.4) is
a widely used grammar formalism for semantic applications thanks to its transparent
surface between syntax and semantics [Bos et al., 2004]. In the terminology of the
IOS framework, it provides an elegant method to compute inside representations (see
the first and second columns of Table A.1. Figure A.1 shows a CCG derivation for the
sentence “mice love cheese”.) However, it does not specify the operations needed to
compute outside representations. To do so, I introduce extensions for its combinatory
rules.

Extended rules From the hypothesis that M |= opip must hold true for any con-
stituent p, I postulate a more strict constraint: opip = oqiq for all constituents p, q,
which is equivalent to the following constraint:

ocic = opip ∀c ∈ C(p), where C(p) is the set of children of p (A.1)

Therefore, I propose 9 formulas shown in the third column of Table A.1. To prove that
these formulas satisfy the constraint in Equation A.1, for an arbitrary child node, sim-
ply applying the outside representation to the inside representation and then employing
the beta reduction, we get opip.
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Rule Inside (parent) Outside (children)
(fa) X/Y Y ⇒ X ip = ilir ol = λP.op (P ir)

or = λP.op (ilP )
(ba) Y X\Y ⇒ X ip = iril ol = λP.op (irP )

or = λP.op (P il)
(comp) X/Y Y/Z ⇒ X/Z ip = λx.(il(irx)) ol = λP.op (λx.(P (irx)))

or = λP.op (λx.(il(Px)))
(conj) X conj X ′ ⇒ X ′′ ip = λx.(ilx ∧ irx) ol = λP.op (λx.(Px ∧ irx)))

or = λP.op (λx.(ilx ∧ Px)))
(tr) A⇒ X/(X\A) ip = λR.(Ric) oc = λP.op (λR.(RP ))

Table A.1: The five basic CCG combinatory rules (the first and second columns) and
their extensions for computing outside representations (the third column). p, l, r, c
respectively denote parent, left-child, right-child, and child.

> fa

< ba

S\NP/NP
ol = λP.P cheese mice
il = λyλx.love(x, y)

lovemice
im = mice

om = λx.love(x, cheese)
NP

cheese
ic = cheese

oc = λy.love(mice, y)
NP

S\NP
oS\NP = λP.P mice

iS\NP = λx.love(x, cheese)

S
oS = λP.P

iS = love(mice, cheese)

Figure A.1: CCG parse tree and inside, outside representations for the sentence “Mice
love cheese”.

In order to see how those formulas work, let us consider a simple example of the
sentence “Mice love cheese” (Figure A.1). First of all, because this sentence stands
alone, λP.P is assigned to the outside representation of the whole sentence, which
means that the truth of this sentence solely depends on its own meaning. Then, using
the formulas given in Table A.1 we compute the outside and inside representations for
each constituent.

The first thing we can see is that, given the world model M above, all 〈inside,
outside〉 pairs satisfy the requirement M |= oi. Secondly, it is easy to see that those
outside representations are intuitive. For instance, the outside representation of the
word “cheese” oc = λx.love(mice, x) perfectly intuitively matches the context “mice
love –”: the missing word/constituent must represent an object x that makes the predi-
cate love(cheese, x) true.

One application for this might be to represent questions. Since a question can be
seen as a context of an unknown object/information, we can use the IOS framework to
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represent a question by converting it to the cloze format (a sentence containing a blank
corresponding to the unknown constituent). The outside representation of the unknown
constituent therefore can be used as the representation for the question. Another appli-
cation is to be a base for formal-semantics-liked compositional distributional semantics
approaches, e.g. [Baroni et al., 2013], to compute context representations.
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dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
2001.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In International conference on artificial intelligence and
statistics, pages 249–256, 2010.

Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs. squared error train-
ing: a theoretical and experimental comparison. In INTERSPEECH, pages 1756–
1760, 2013.
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Summary

Learning Vector Representations for Sentences
– The Recursive Deep Learning Approach

Natural language processing (NLP) systems, until recently, relied heavily on so-
phisticated representations and carefully designed feature sets. Now with the rise of
deep learning, for the first time in the history of NLP, the importance of such man-
ual feature engineering has started to be challenged. Deep learning systems using
very few handcrafted features can achieve state-of-the-art (or nearly state-of-the-art)
performance on many tasks, such as syntactic parsing, machine translation, sentiment
analysis, and language modelling. However, rather than letting deep learning replace
linguistically informed approaches, in this dissertation I explore how linguistic knowl-
edge can provide insights for building even better neural network models. I tackle
the problem of transforming sentences into vectors by employing a hybrid approach
of symbolic NLP and connectionist deep learning based on the principle of composi-
tionality. In this approach, the role of symbolic NLP is to provide syntactic structures
whereas composition functions are implemented (and trained) by connectionist deep
learning.

All of the models I develop in this dissertation are variants of the Recursive neural
network (RNN). The RNN takes a sentence, syntactic tree, and vector representations
for the words in the sentence as input, and applies a neural network to recursively com-
pute vector representations for all the phrases in the tree and the complete sentence.
The RNN is a popular model because of its elegant definition and promising empirical
results. However, it also has some serious limitations: (i) the composition functions it
can learn are linguistically impoverished, (ii) it can only be used in a bottom-up fash-
ion, and (iii) it is extremely sensitive to errors in the syntactic trees it is presented with.
Starting with the classic RNN, I propose extensions along three different directions
that solve each of these problems.

The first direction focuses on strengthening the composition functions. One way
to do that is making use of syntactic information and contexts, as in Chapter 3. In that
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chapter, I propose composition functions, which are also one-layer feed-forward neural
networks, taking into account representations of syntactic labels (e.g. N, VP), context
words, and head words. Another way is to replace one-layer neural networks by more
advanced networks. In Chapter 6, based on empirical results which show that the Long
short term memory (LSTM) architecture can capture long range dependencies and deal
with the vanishing gradient problem more effectively than Recurrent neural networks,
I introduce a novel variant of the LSTM, called Recursive-LSTM, that works on trees.
Empirical results on an artificial task and on the Stanford Sentiment Treebank con-
firm that the proposed Recursive-LSTM model is superior to the classic RNN model
in terms of accuracy. Furthermore, in Chapter 7, I demonstrate how a convolutional
neural network can be used as a composition function.

The second direction to extend the classic RNN is to focus on how information
flows in a parse tree. In traditional compositional semantics approaches, including the
RNN model, information flows in a bottom-up manner, leading to a situation where
there is no way for a node to be aware of its surrounding context. As a result, these ap-
proaches are not applicable to top-down processes such as several top-down generative
parsing models, and to problems requiring contexts such as semantic role labelling.
In Chapter 4, I propose a solution to this, namely the Inside-Outside Semantic frame-
work, in which the key idea is to allow information to flow not only bottom-up but
also top-down. In this way, we can recursively compute representations for the content
and the context of the phrase that a node in a parse tree covers. The Inside-Outside
RNN model, a neural-net-based instance of this framework, is shown to work well on
several tasks, including unsupervised composition function learning from raw texts,
supervised semantic role labelling, and dependency parsing (Chapter 5).

The third direction is dealing with the uncertainty of the correct parse. As a result
of relying on the principle of compositionality, compositional semantics uses syntactic
parse trees to guide composition, which in turn makes compositional semantics ap-
proaches vulnerable to the errors of automatic parsers. The problems here are that
automatic parsers are not flawless, and that they are not aware of domains to which
they are applied. To overcome this problem, in Chapter 7, I propose the Forest Convo-
lutional Network model, which takes as input a forest of parse trees rather than a single
tree as in traditional approaches. The key idea is that we should give the model several
options and let it select (or combine) ones that best fit its need. Empirical results show
that the model performs on par with state-of-the-art models on the Stanford Sentiment
Treebank and on the TREC question dataset.

The dissertation thus proposes solutions to the main shortcomings of the RNN
model. It provides all components for a completely neural implementation of a syntactic-
semantic parser: the three ideas above essentially yield a neural inside-outside algo-
rithm. This represents an approach to NLP that combines the best of two worlds: all
the flexibility and learning power of deep learning without sacrificing the linguistic
adequacy of earlier approaches in computational linguistics.



Samenvatting

Het leren van vector-representaties van zinnen
– de ‘recursive deep learning’-aanpak

Systemen voor taalverwerking per computer waren tot voor kort grotendeels gebaseerd
op complexe, symbolische representaties en, voor zover ze gebruik maken van machi-
naal leren, toch afhankelijk van met de hand geselecteerde lijstjes van kenmerken.
Met de opkomst van ‘deep learning’ is het, voor het eerst in the geschiedenis van het
vakgebied, mogelijk geworden om ook die kenmerk-selectie te gaan automatiseren.
In de afgelopen jaren hebben we succesvolle deep learning-systemen zien verschij-
nen die nauwelijks of geen handmatige kenmerk-selectie behoeven en toch bij de best
presterende systemen behoren op taken zoals automatisch ontleden, automatisch ver-
talen, sentiment-analyse en woordvoorspelling.

Die successen betekenen echter niet dat we alle taalkundig geı̈nformeerde benaderin-
gen nu aan de kant moeten schuiven. In dit proefschrift exploreer ik op welke manier
taalkundige kennis ingezet kan worden om nog betere neurale netwerk-modellen van
taal te kunnen bouwen. Ik pak de uitdaging op om vector-representaties voor zin-
nen uit te rekenen op basis van een hybride symbolisch-connectionistische benader-
ing, uitgaande van het zogeheten compositionaliteitsbeginsel. In mijn aanpak levert
de symbolische traditie de syntactische structuur van zinnen, maar gebruik ik neu-
rale netwerken om representaties van woorden, combinaties van woorden en zinnen te
leren.

Alle modellen die ik uitwerk in dit proefschrift zijn varianten van het Recursive
Neural Network (RNN). Een RNN neemt een zin, een syntactische boom en vector-
representaties van de woorden in die zin als input. Vervolgens gebruikt het model
een neuraal netwerk om recursief representaties uit te rekenen voor combinaties van
woorden, beginnend bij de combinaties van woorden die volgens de syntactische boom
een frase vormen, en eindigend met een representatie voor de hele zin. Het RNN is een
populair model vanwege de elegante definitie en veelbelovende empirische resultaten.
Het model heeft echter ook heel duidelijke beperkingen: (i) de compositie-functies die
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het leert zijn taalkundig deficiënt; (ii) het model kan alleen in een bottom-up richting
worden toegepast; (iii) het model is extreem gevoelig voor fouten in de aangeboden
syntactische bomen. Met het standaard RNN-model als startpunt stel ik daarom een
uitbreidingen voor in drie richtingen als oplossingen voor elk van deze drie problemen.

Het eerste type uitbreidingen betreft het verbeteren van de compositie-functies. Eén
manier om dat te doen is om gebruik te maken van syntactische en context-informatie,
zoals ik dat doe in hoofdstuk 3. De compositie-functies in dat hoofdstuk zijn nog
steeds zogeheten ‘one-layer feedforward’-netwerken, maar er is een apart netwerk voor
iedere combinatie van syntactische categorieën en ‘heads’. Een andere manier is om
die eenvoudige netwerken te vervangen door complexere. In hoofdstuk 6 rapporteer ik
resultaten waaruit blijkt dat het zogeheten Long Short Term Memory-netwerk (LSTM)
effectiever omgaat met lange afstandsafhankelijkheden en het ‘vanishing gradient’-
probleem dan de veelgebruikte recurrente netwerken. Ik werk in dat hoofdstuk een
nieuwe variant van het LSTM uit, het ‘Recursive LSTM’, dat werkt met syntactisch
bomen. Empirische resultaten op een kuntmatige taak en op de Stanford Sentiment
Treebank laten zien dat dit nieuwe model veel accurater is dan het standaard RNN.
In hoofdstuk 7 laat ik tenslotte zien dat ook zogeheten convolutional neural networks
succesvol gebruikt kunnen worden om de compositie-functie mee te implementeren.

Het tweede type uitbreidingen betreft de manier waarop informatie stroomt door
een syntactische boom. In klassieke compositionele semantiek-benaderingen, waaron-
der ook de RNN, is die informatie-stroom strikt bottom-up, waardoor een knoop in zo’n
boom geen toegang heeft tot informatie over de context van een zin. Zulke benaderin-
gen zijn daarom moeilijk te combineren met technieken die top-down werken, zoals
verschillende populaire statistische modellen voor automatisch ontleden, of technieken
die gebruik maken van context-informatie, zoals populaire modellen voor semantische
rolbepaling. In hoofdstuk 4 stel ik een oplossing voor voor deze problemen, onder de
naam ‘Inside-Outside Semantics framework’, waar het centrale idee is dat informatie
zowel bottom-up als top-down moet kunnen stromen. Ik stel voor om voor elke knoop
in een syntactische boom twee representaties te berekenen (via recursieve definities):
een ‘content representation’ voor het corresponderende deel van de zin die bottom-up
wordt berekend, en een ’context representation’ die top-down wordt bepaald. Ik laat
zien, in hoofdstuk 5, dat een neurale netwerk-implementatie van dit idee heel goed
werkt op een reeks van verschillende taken, inclusief ‘unsupervised composition func-
tion learning’, ‘semantic role labeling’ en ‘dependency parsing’.

Het derde type uitbreidingen betreft de omgang met onzekerheid over de juiste syn-
tactische ontleedboom. Ontleedbomen zijn een cruciaal onderdeel van alle modellen in
deze dissertatie, omdat volgens het compositionaliteitsbeginsel de syntactische struc-
tuur bepaalt welke semantische composities worden uitgevoerd, en op welk moment.
Dat maakt de aanpak gevoelig voor fouten in de ontleedbomen. Dergelijke fouten
worden onvermijdelijk door automatische ontleedprogramma’s geı̈ntroduceerd, omdat
die programma’s binnen het domein waar ze voor zijn ontwikkeld al niet foutloos op-
ereren, maar bovendien in veel gevallen buiten dat domein worden ingezet. Om dit
probleem het hoofd te bieden stel ik in hoofdstuk 7 het ‘Forest Convolutional Net-
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work’ voor, dat in plaats van een enkele ontleedboom een grote verzameling bomen,
een zogeheten ‘parse forest’, als input krijgt. Het idee achter dit model is dus dat het
model uit een variatie aan mogelijkheden de syntactisch structuur kiest (of samenstelt)
die het beste past bij de waar het model voor wordt geoptimaliseerd. De empirische
resultaten laten zien dat het resulterende model tot de best beschikbare modellen be-
hoort op twee populaire taken: de ‘Stanford Sentiment Treebank’-taak en de ’TREC
vraag-classificatie’-taak.

In dit proefschrift beschrijf ik dus concrete oplossingen voor de belangrijkste teko-
rtkomingen van het RNN-model. Daarmee bevat dit proefschrift alle ingrediënten voor
een volledige neurale implementatie van een syntactisch-semantische parser: de drie
beschreven uitbreidingen komen neer op een neurale versie van het ‘inside-outside’-
algoritme. De aanpak in dit proefschrift biedt daarmee het beste van twee werelden:
de enorme flexibiliteit en zelflerende kracht van ‘deep learning’, zonder de taalkundige
principes en uitdrukkingskracht van eerdere benaderingen in de computationele taalkunde
op te geven.
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