
Position-based Quantum
Cryptography and

Catalytic Computation

Florian Speelman

Position-based Quantum
Cryptography and

Catalytic Computation

ILLC Dissertation Series DS-2016-08

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

The investigations were supported by the DIAMANT project, subsidized by the
Netherlands Organization for Scientific Research (NWO), the EU projects SIQS
and QALGO, and QuSoft.

Copyright c© 2016 by Florian Speelman

Printed and bound by Ipskamp Drukkers.

ISBN: 978–94–028–0345–7

Position-based Quantum
Cryptography and

Catalytic Computation

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

op woensdag 16 november 2016, te 12.00 uur

door

Florian Speelman

geboren te Ouder-Amstel.

Promotor: Prof.dr. H. Buhrman Universiteit van Amsterdam

Overige leden: Prof. dr. A. Kent University of Cambridge
Dr. C. Schaffner Universiteit van Amsterdam
Prof. dr. C.J.M. Schoutens Universiteit van Amsterdam
Dr. L. Torenvliet Universiteit van Amsterdam
Prof. dr. R. de Wolf Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The results in this thesis are based on the following articles. For all articles, the
authors are ordered alphabetically and co-authorship is shared equally.

1. [BFSS13] Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian
Speelman. The garden-hose model. In Proceedings of the 4th Conference
on Innovations in Theoretical Computer Science, ITCS ’13, pages 145–158,
New York, NY, USA, 2013. ACM.

2. [Spe16] Florian Speelman. Instantaneous non-local computation of low T-
depth quantum circuits. In 11th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2016), pages 9:1–
9:24, 2016.

3. [BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and
Florian Speelman. Computing with a full memory: Catalytic space. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 857–866, New York, NY, USA, 2014. ACM.

4. [BKLS16] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speel-
man. Catalytic space: non-determinism and hierarchy. In 33rd Symposium
on Theoretical Aspects of Computer Science (STACS 2016).

The author has additionally (co-)authored the following articles that are not
included in this thesis.

5. [BBL+15] Jop Briët, Harry Buhrman, Debbie Leung, Teresa Piovesan, and
Florian Speelman. Round elimination in exact communication complexity.
In 10th Conference on the Theory of Quantum Computation, Communica-
tion and Cryptography (TQC 2015).

6. [BCG+16] Harry Buhrman, Łukasz Czekaj, Andrzej Grudka, Michał Horodecki,
Paweł Horodecki, Marcin Markiewicz, Florian Speelman, and Sergii Strelchuk.
Quantum communication complexity advantage implies violation of a Bell
inequality. In PNAS, 113 (12) 3191–3196, 2016.

7. [BBK+13] [BBK+16] Joshua Brody, Harry Buhrman, Michal Koucký, Bruno
Loff, Florian Speelman, and Nikolay Vereshchagin.
Towards a Reverse Newman’s Theorem in Interactive Information Complex-
ity. In IEEE Conference on Computational Complexity (CCC 2013) and
Algorithmica, p. 1–33, 12 January 2016.

8. [DSS16] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quan-
tum homomorphic encryption for polynomial-sized circuits. In Advances in
Cryptology – CRYPTO 2016, part III p. 3–32, 2016.

v

Contents

Acknowledgments xi

1 Introduction 1
1.1 Position-based quantum cryptography 1

1.1.1 Example: the QPVBB84 scheme 4
1.1.2 Our contributions . 6

1.2 Catalytic computation . 9

2 Preliminaries 13
2.1 Notation . 13
2.2 Quantum information . 14

2.2.1 Teleportation . 18
2.2.2 Mixed states and density matrices 20
2.2.3 The No-Cloning Theorem 21

2.3 Communication complexity . 21
2.4 Complexity theory . 23

I Position-based quantum cryptography 25

3 The garden-hose model 27
3.1 Introduction . 28
3.2 A scheme for position-verification 31
3.3 The garden-hose model . 33

3.3.1 Definition . 33
3.3.2 Upper and lower bounds 35
3.3.3 Equality . 37
3.3.4 Inner product . 38
3.3.5 Lower bounds . 39

vii

3.3.6 Garden-hose complexity and log-space computations . . . 42
3.4 Randomized garden-hose complexity 46
3.5 Quantum garden-hose complexity 48

3.5.1 Deterministic setting . 48
3.5.2 Randomized setting . 50

3.6 Lower bounds on quantum resources to perfectly attack PVqubit . . 51
3.6.1 Localized qubits . 52
3.6.2 Squeezing many vectors in a small space 53
3.6.3 The lower bound . 54
3.6.4 Functions for which perfect attacks need a large space . . . 56

3.7 Conclusion and open questions . 57

4 INQC of low T-depth quantum circuits 59
4.1 Introduction . 60
4.2 Preliminaries . 63

4.2.1 The Pauli matrices and the Clifford group 63
4.2.2 Key transformations from Clifford circuits 64
4.2.3 Clifford+T quantum circuits, T-count and T-depth 65
4.2.4 The garden-hose model . 66

4.3 Definition of INQC . 68
4.4 Low T-count quantum circuits . 70

4.4.1 The Clifford hierarchy . 73
4.5 Conditional application of phase gate using garden-hose protocol . 74
4.6 Low T-depth quantum circuits . 78
4.7 Attack on the Interleaved Product protocol 81
4.8 Discussion . 86

5 Experimental considerations for single-qubit position verification 89
5.1 Introduction . 89

5.1.1 Results . 93
5.1.2 Related work . 93
5.1.3 Security model for limited communication speed 94
5.1.4 Other protocol modifications 96

5.2 Attack model and proof strategy 96
5.3 Bound by SDP . 98

5.3.1 SDP relaxation of monogamy game 98
5.3.2 Deriving the constraints 101
5.3.3 Proof of Lemma 5.3.1 . 103

viii

II Catalytic computation 105

6 Catalytic computation 107
6.1 Introduction . 108
6.2 Preliminaries . 109
6.3 Transparent computation . 112

6.3.1 Previous results on this model 114
6.3.2 Getting more . 115
6.3.3 Getting TC1 . 117

6.4 Catalytic computation . 120
6.4.1 Simulation of transparent computation 121
6.4.2 Upper bounds . 123
6.4.3 Oracle results for catalytic computation 125

7 Catalytic computation: Non-determinism and hierarchy 129
7.1 Introduction . 129
7.2 Preliminaries . 131

7.2.1 Existence of hash family 133
7.3 Non-deterministic catalytic computation 134

7.3.1 Simulation by probabilistic computation 136
7.4 An analogue of the Immerman–Szelepcsényi theorem 137
7.5 Hierarchies for Catalytic Computation 145
7.A CNL definition, equivalent to Definition 7.3.2 147

Bibliography 149

Index 163

Abstract 167

Samenvatting 171

ix

Acknowledgments

I would first and foremost like to thank my advisor, Harry Buhrman. Being his
student these past years have been a wonderful experience, and I am very grateful
for the opportunity to be a part of his research group at CWI, for his guidance,
and for sense of humor. It was always a great pleasure to work together and to
learn from his many insights.

For agreeing to be a part of my PhD committee and for their helpful comments
on earlier drafts of this thesis, I thank Adrian Kent, Christian Schaffner, Kareljan
Schoutens, Leen Torenvliet, and Ronald de Wolf.

Of course this thesis would not be possible without the co-authors of the
papers that the chapters are based on, and I am very grateful to Harry Buhrman,
Richard Cleve, Serge Fehr, Michal Koucký, Bruno Loff, Christian Schaffner, and
Hugo Zbinden. Besides these, I would also like to thank Jop Briët, Joshua Brody,
Łukasz Czekaj, Yfke Dulek, Andrzej Grudka, Michał Horodecki, Paweł Horodecki,
Debbie Leung, Marcin Markiewicz, Teresa Piovesan, Sergii Strelchuk, and Nikolay
Vereshchagin for working together on papers that are outside the scope of this
thesis.

QuSoft and the Algorithms & Complexity group were a great environment to
be in, and responsible are the colleagues I have had the pleasure to interact with
over the past years, who I all want to thank for their good company, ideas, and
games of table football – including Joran van Apeldoorn, Srinivasan Arunachalam,
Tom Bannink, Ralph Bottesch, Jop Briët, Sabine Burgdorf, André Chailloux,
Yfke Dulek, David García Soriano, András Gilyén, Koen Groenland, Peter van
der Gulik, Bruno Loff, Fernando de Melo, Teresa Piovesan, Giannicola Scarpa,
Christian Schaffner, Penghui Yao, and Jeroen Zuiddam. Of these I’d like to
highlight Christian for his invaluable advice and encouragement, Ronald for his
very helpful eye for improvements and for kindly sharing his newspaper with me,
and the office mates that I have had: Jop, David, Peter, Bruno, and Jeroen. I also
thank the members of the Machine Learning group, for their company at many
pleasurable lunches.

xi

The quantum information and complexity theory communities have been very
welcoming and I have enjoyed my interactions with many researchers. I’d like to
thank Richard Cleve, Nicolas Gisin, Adrian Kent, Arie Matsliah, Sergii Strelchuk,
and Hugo Zbinden for their hospitality when hosting me, and additionally I’d
like to thank Anne Broadbent, Lance Fortnow, Stacey Jeffery, Anthony Lever-
rier, Periklis Papakonstantinou, and Dominik Scheder for interesting scientific
discussions and advice.

Finally, I would like to thank my family, girlfriend, and friends for making
these past few years very happy ones.

Amsterdam Florian Speelman
September, 2016.

xii

Chapter 1
Introduction

1.1 Position-based quantum cryptography
The first part of this thesis focuses on position-based quantum cryptography.
Most classical cryptography is based on secret keys, but the aim of position-based
cryptography is to use position as a credential instead, for example to create
messages that are guaranteed to come from a certain location.

The field of quantum information investigates what computational tasks are
possible when, instead of ordinary bits, information is stored in quantum-mechanical
systems, called qubits. Manipulating qubits makes it possible to use phenomena
unique to the laws of quantum mechanics, such as entanglement: the possibility
of different particles to be more strongly correlated than possible in a classical
theory.

Since its beginnings, the development of quantum computation has been in-
timately tied to cryptography. The field gained much in prominence when Peter
Shor showed in 1994 [Sho94] that factorization of large numbers can be done effi-
ciently by quantum computers, since that implies that the creation of a working
quantum computer would break RSA – a widely used public-key cryptosystem.
Even though this seems to be bad news for our security, quantum information
has also been the source of new cryptography. For example, the BB84 cryptosys-
tem [BB84] generates keys that are provably secure. The BB84 protocol was a
major milestone in the field, and besides the theoretical importance of this work,
implementations of the scheme are commercially available.

The goal of position-based cryptography is to perform cryptographic tasks using
location as a credential. Think for example of a scheme that encrypts a message
in such a way that this message can only be read at a certain location, like a
military base. Position authentication is another example of a position-based
cryptographic task; there are many thinkable scenarios in which it would be very
useful to be assured that the sender of a message is indeed at the claimed location.

One of the most basic tasks of position-based cryptography is position verifi-

1

2 Chapter 1. Introduction

V0

V1

V2

P

d0

d1

d2

Figure 1.1: Example setup for two-dimensional position verification. The circle
centered around the verifiers show the possible locations of any party that can
respond to the message in a timely manner. In this picture, P is the only loca-
tion from where a response can reach all three verifiers in time. A coalition of
adversaries will need to use a non-trivial common strategy to break the protocol.

cation. We have a prover P trying to convince a set of verifiers V0, . . . ,Vk, spread
around in space, that P is present at a specific position pos. The first idea for such
a protocol is a technique called distance bounding [BC94]. Each verifier sends a
random string to the prover, using radio or light signals, and measures how long it
takes for the prover to respond with this string. Because the signal cannot travel
faster than the speed of light, each verifier can upper bound the distance from
the prover. For a two-dimensional example, see Figure 1.1.

The current general framework of position-based cryptography was introduced
by Chandran, Goyal, Moriarti and Ostrovsky [CGMO09]. Before the recent
formulation of a general framework, the problem of secure positioning had been
studied in the field of wireless security, and there have been several proposals for
this task ([BC94, SSW03, VN04, Bus04, CH05, SP05, ZLFW06, CCS06]).

Although the earlier proposals are provably secure against a single attacker,
they can all be broken by multiple colluding adversaries. A group of adversaries
can send a copy of all information they intercept to their other partners in crime.
Each adversary can then emulate the actions of the honest prover and in this way
fool the verifier that is closest. It was shown by Chandran et al. [CGMO09] that
such an attack is always possible in the classical world, when not making any extra
assumptions. Their paper does give a scheme where secure position verification
can be achieved, when restricting the adversaries by assuming there is an upper
limit to the amount of information they can intercept: the Bounded Retrieval

1.1. Position-based quantum cryptography 3

Model. Assuming bounded retrieval might not be realistic in every setting, so the
next question was whether other extensions might be possible to achieve better
security.

Attention turned to the idea of using quantum information instead of classical
information. Because the classical attacks depend on the ability of the adversaries
to simultaneously keep information and send it to all other adversaries, researchers
hoped that the impossibility of copying quantum information might make an attack
impossible. (See Section 2.2.3 for the quantum no-cloning theorem.)

The first schemes for position-based quantum cryptography were investigated
by Kent in 2002 under the name of quantum tagging. Together with Munro, Spiller
and Beausoleil, a U.S. patent was granted for this protocol in 2006 [KMSB06].
These results have appeared in the scientific literature only in 2010 [KMS11].
This paper considered several different schemes, and also showed attacks on these
schemes. Independently in the same year, Malaney proposed schemes that use
quantum information for position-verification and location-dependent communi-
cation [Mal10a, Mal10b]. Besides these early proposals, multiple other schemes
have been put forward, but all eventually turned out to be susceptible to attacks.

Eventually a general impossibility result was given by Buhrman, Chandran,
Fehr, Gelles, Goyal, Ostrovsky, and Schaffner [BCF+11], showing that every
quantum protocol can be broken. The construction in this general impossibility
result uses a doubly exponential amount of entanglement. Beigi and König later
gave a new construction, which reduces the needed entanglement to an exponential
amount [BK11].

The improved construction by Beigi and König made use of port-based telepor-
tation [IH08, IH09], a novel way of teleporting where the correcting operation of
the receiver is very simple (discarding a part of his state), at the cost of using much
entanglement. More efficient variants of the protocol have been proposed [SHO13],
although these have not yet been applied to position-based quantum cryptography.
Port-based teleportation was also used to study the connection between quantum
communication complexity and Bell inequalities [BCG+16].

Even though it has been shown that any scheme for position-based quantum
cryptography can be broken, these general attacks use an amount of entanglement
that is too large for use in practical settings. Even when the honest provers use
a small state, the dishonest players need an astronomical amount of EPR pairs
to perform the attack described in the impossibility proofs. This brings us to the
following question, which is also a central topic of the first part of this thesis:

How much entanglement is needed to break specific schemes for quantum position
verification?

4 Chapter 1. Introduction

V0 V1(pos)A B

ρ0 ρ1

σ0 σ1

time

position

Figure 1.2: Attack on a one-round one-dimensional protocol for position verifi-
cation, by two attackers Alice and Bob, instead of the (absent) honest prover
P at claimed position pos. They reply to messages ρ0 by V0 and ρ1 by V1 with
responses σ0 and σ1. The attackers have time for one round of simultaneous
communication, besides their local quantum memory. Time flows from top to
bottom, the horizontal dimension represents position.

1.1.1 Example: the QPVBB84 scheme
The QPVBB84 protocol for quantum position verification is the proposal that has
currently been studied most. In Figure 1.3 the one-dimensional version has been
drawn schematically1. The states used are similar to that in the BB84 protocol
for quantum key distribution [BB84].

The prover wants to convince the two verifiers, V0 and V1, that he is at position
pos on the line in between them. V0 sends a qubit |φ〉 prepared in one of four
states to P : he sends either the states of the computational basis |0〉 or |1〉, or
the basis states of the Hadamard basis |+〉 or |−〉. From the other side V1 sends
the basis θ to P , where we use + to indicate the computational basis and × to
indicate the Hadamard basis. The verifiers V0 and V1 time their actions such that
the messages arrive at the location of the honest prover at the same time. The
prover P has to correctly (and in time) tell V0 and V1 which qubit was sent, which

1For an introduction to the notation used here and to quantum teleportation, see the quantum
information preliminaries in Section 2.2.1.

1.1. Position-based quantum cryptography 5

V0 V1Prover P

|ψ〉 ∈
{|0〉, |1〉, |+〉, |−〉}

θ ∈
{+,×}

Measure |ψ〉
in basis θ

outcome outcome

time

position

Figure 1.3: The QPVBB84 protocol. The prover receives a quantum state |ψ〉 from
verifier V0 and a measurement basis θ as classical message from V1. He has to
respond with the measurement outcome to both V0 and V1 in time.

he can do by measuring |ψ〉 in basis θ and immediately broadcasting the outcome.
The work of Buhrman et al. [BCF+11] gave a security proof for this protocol –

which holds assuming that attackers, positioned as in Figure 1.1, do not start with
an entangled quantum state. This result was extended by the work of Tomamichel,
Fehr, Kaniewski and Wehner [TFKW13] who show that the entanglement needed
grows if the protocol is executed in parallel (the exact bound was later tightened
by Ribeiro and Grosshans [RG15])2.

On the other hand, the QPVBB84 protocol can be broken easily by attackers
that share entanglement – also see Figure 1.4. The attackers, Alice and Bob3,
only need to share a single EPR pair to perform a successful attack.

The attacker Alice who intercepts the qubit immediately teleports it to Bob,
with outcomes the two bits of her teleportation measurement a1, a2. The half of

2The work by Unruh [Unr14] also showed security of a variant of QPVBB84, combined with
classical information, but requires existence of a random oracle, a different type of cryptographic
assumption than we will consider in this thesis.

3Giving attackers the friendly names Alice and Bob is not standard in the literature on
quantum cryptography. We choose to use these names, contrary to for example ‘multiple
eavesdropper Eves’ E0 and E1, because most of our results are given from the perspective of
the attackers, for whom breaking the cryptographic scheme is a cooperative task.

6 Chapter 1. Introduction

Alice Bob

Measure in basis θ
outcome x

θ ∈ {+,×}|ψ〉 ∈ {|0〉, |1〉, |+〉, |−〉}Bell
measurement
outcome a1, a2

a1, a2 θ,x

Figure 1.4: Breaking QPVBB84, from the perspective of the attackers, Alice and
Bob, who share a single EPR pair. Timing constraints force them to use only a
single round of simultaneous communication. If θ = +, the players output x⊕ a1.
If θ = ×, they output x⊕ a2.

the EPR pair on Bob’s side can then be described as Xa1Za2|ψ〉.
Now, if the original qubit |ψ〉 was in the state |0〉, the qubit at Bob’s side will

just be |0〉 if a1 = 0, and |1〉 if a1 = 1. These outcomes are precisely opposite if she
started with an intercepted |1〉: when starting with a state in the computational
basis, a1 just determines whether the bit is flipped. Similarly, if |ψ〉 started as
|+〉 or |−〉, the state on Bob’s side will still be one of |+〉 or |−〉, where they are
exchanged if a2 = 1.

The other attacker, Bob, has intercepted the basis θ. Simultaneously with
Alice’s actions, Bob performs the correct measurement given by θ on his half of
the EPR pair. After exchanging their measurement results, the attackers now
have enough information to produce the correct outcome.

1.1.2 Our contributions
The above scheme uses a quantum state and a single classical bit, but more
complicated proposals might be harder to break. InChapter 3, we will investigate
several schemes that combine classical and quantum information. Schemes of
this form were first considered by Kent et al. [KMS11]. We focus on the one-
dimensional set-up, but the schemes easily generalize to three-dimensional space.
Besides the assumption that all communication happens at the speed of light, we

1.1. Position-based quantum cryptography 7

assume that all parties do not need time to process the verifiers’ messages and can
perform computations instantaneously. We also assume that the verifiers have
clocks that are synchronized and accurate, and that the verifiers have a private
channel over which they can coordinate their actions.

The basic scheme we consider can be described as follows. The setup assumes
a prover P and two verifiers, V0 and V1, with the prover at a position pos on the
line in between them. V0 sends a qubit |φ〉 prepared in a random basis to P . In
addition, V0 sends a string x ∈ {0, 1}n and V1 a string y ∈ {0, 1}n to P . The
verifiers V0 and V1 time their actions such that the messages arrive at the location
of the honest prover at the same time. After receiving |φ〉,x and y, P computes
a predetermined Boolean function f(x, y). He sends |φ〉 to V0 if f(x, y) = 0 and
to V1 otherwise. V0 and V1 check that they receive the correct qubit in time
corresponding to pos and measure the received qubit in the basis corresponding to
which it was prepared. In order to cheat the scheme, we imagine two provers P0
and P1 on either side of the claimed position pos, who try to simulate the correct
behavior of an honest P at pos.

Looking from the perspective of the adversaries, we can describe their task
in the following way. P0 receives |φ〉,x and P1 receives y. They are allowed to
simultaneously send a single message to each other such that upon receiving that
message they both know f(x, y) and if f(x, y) = 0 then P0 still has |φ〉, otherwise
P1 has it in his possession. The attack described in [KMS11] accomplishes this task,
for any function f , but requires an amount of entanglement that is exponential in n.
In this thesis we introduce a complexity measure which relates to the complexity
of computing f(x, y), the garden-hose complexity. The garden-hose complexity
gives an upper bound on the number of EPR pairs the adversaries need to break
the one-qubit scheme that corresponds to the function f .

These protocols are interesting to consider, because the quantum actions of
the honest prover are very simple. All the honest prover has to do is route a qubit
to the correct location, while the verifiers have to measure in the correct basis,
actions which are not much harder than those needed in the BB84 protocol, which
is already technologically feasible. If a gap can be shown between the difficulty of
the actions of the honest prover and those of the adversaries, this protocol would be
a good candidate to investigate further for use in real-life settings. The hope is that
for functions f(x, y) that are “complicated enough”, the amount of entanglement
needed to successfully break the protocol grows at least linearly in the bit length
n of the classical strings x, y; we would then require more classical computing
power of the honest prover, whereas more quantum resources are required by
the adversary to break the protocol. Since manipulating quantum information
is currently orders of magnitude harder than manipulating classical information,
such a trade-off is very desirable.

In Chapter 4 we continue the study of schemes for position-based quantum
cryptography and their attacks. For specific proposed protocols efficient attacks
are known, for example the work by Lau and Lo [LL11] or the attack on the

8 Chapter 1. Introduction

QPVBB84 scheme first mentioned by Kent, Munro and Spiller [KMS11]. Also
in that line, the garden-hose model, as described in this thesis, gives efficient
attacks for a class of proposed protocols. As described earlier, the attacks on
general schemes by Buhrman et al. [BCF+11] and Beigi and König [BK11] use
exponentially many resources.

These general attacks use the quantum functionality of the protocol as a black
box, executing it without knowledge of its structure. Quantum operations are
often described in terms of quantum circuits, and the size of quantum circuits
corresponds to how difficult a quantum functionality is to implement. Of course,
honest parties would like to be able to use a protocol which is not too hard to use
in practice.

This gives rise to a natural question: do protocols consisting of simple quantum
circuits allow for an efficient attack? We answer this question in the positive, for
a specific class of simple circuits.

The circuits we consider consist of gates from the Clifford+T gateset, a com-
mon universal set of quantum gates. There are many examples in quantum
information where the gates from the Clifford group are easy to implement –
see for example work on error-correcting codes [Got98b], classical simulation of
quantum circuits [AG04], or cryptographic applications [Chi05, BJ15] – while the
non-Clifford gate, in our case the T gate, is hard and needs special care. We show
that (single-round) protocols for position-based quantum cryptography based on
circuits with a small number of T gates, the T-count, or a very small number
of layers of T gates, the T-depth, can be broken efficiently. As application of
our techniques, we also present an attack on a recently-proposed scheme for po-
sition verification by Chakraborty and Leverrier [CL15], the Interleaved Product
protocol.

These attacks are phrased as protocols for instantaneous non-local quantum
computation. The attack by Buhrman et al. [BCF+11] was based on a scheme by
Vaidman [Vai03] for an instantaneous non-local measurement, originally phrased
as investigation of the compatibility of special relativity with quantum measure-
ment. That attack and the work by Beigi and König [BK11], extended this task
to the more general setting of quantum computation. Besides the application
to position-based quantum cryptography, protocols for instantaneous non-local
quantum computation can also be applied to other settings, e.g. to reduce com-
munication time in distributed quantum computing.

Our final chapter on position-based quantum cryptography proposes modifica-
tions to schemes to make them more suitable for practical implementation. Much
of the earlier work tries to show security of schemes for position-based cryptogra-
phy that require honest parties to have a very low error rate for any round, and
assumes that transfer of the quantum state between verifier and prover happens
at the speed of light. These requirements are very hard to fulfill with current
experimental setups.

For many applications on earth, qubits will have to be implemented as photons

1.2. Catalytic computation 9

in optical fiber cables, and some of these photons will invariably be lost. We
therefore need schemes that are secure, even when some rounds have to be aborted
because no photon is received by the prover – this significantly helps potential
adversaries. A second problem concerns the assumption that all messages travel
at the speed of light. Even though classical signals can easily be sent at light speed
using radio waves, the speed of light in fiber-optic cable is significantly lower. We
address these issues in Chapter 5 by constructing the new protocol , an extension
of earlier protocols which is still secure when taking these experimental constraints
into account (against limited adversaries). Our security proof converts attacks
on the protocol to strategies for a new variant of a monogamy of entanglement
game, a non-local game first introduced by Tomamichel, Fehr, Kaniewski and
Wehner [TFKW13], originally used to prove security of parallel repetition of the
QPVBB84 scheme among other things. We bound the success probability of this
game numerically using semidefinite programming (SDP).

1.2 Catalytic computation
The second part of this thesis focuses on (classical) complexity theory—the study
of which problems can be solved with a limited amount of technical resources. We
will give a short introduction to complexity theory in Section 2.4

The Turing machine is one of the most well-studied models of computation.
First defined by Alan Turing in the 1936 paper ‘On Computable Numbers, with
an Application to the Entscheidungsproblem’ [Tur36], a Turing machine is a
hypothetical device that manipulates symbols on a scratch pad according to a set
of rules.

For Turing machines, two resources that are commonly limited are computation
time and the space used. Complexity theory tries to order problems in classes
based on these resources. For example, P stands for the class of problems that
can be solved using by a Turing machine that uses an amount of time which is
polynomial in the length of problem. We often say that these problems can be
solved efficiently. Another well-known class is NP, consisting of the problems for
which an answer can be verified efficiently, even though finding this answer might
be hard to do. For our next topic, we will investigate the setting where the space
of the computation is bounded, instead of the time.

Consider the following scenario. Say you want to perform a computation, but
only have a small amount of space available. In addition to your small memory,
you have an extra bigger hard-drive which is already full, filled with data that
you don’t need right now, but also do not want to erase. Is it possible to use this
extra space, even though the memory is already full?

In Chapter 6 we introduce the model of catalytic computation which formal-
izes this notion. We show that, surprisingly, it is possible to compute more using
this extra full space. The term catalysis comes from chemistry, and describes a

10 Chapter 1. Introduction

reactant which speeds up a chemical reaction but is not consumed – just like the
full memory added to our computation.

Problems that can be solved by a computation that only uses an amount of
memory logarithmic in the input size are part of the complexity class L, short
logarithmic space. For our catalytic computations we focus on the case where we
have logarithmic normal working space, augmented with a polynomially-big full
tape – a class we call CL for catalytic log space. Our main question then becomes:
is L the same as CL?

Many programmers will have seen the ‘XOR swap’: a trick which swaps the
contents of two variables, x and y, with starting contents x and y respectively:

Algorithm 1 XOR swap. Here ⊕ stands for the bitwise XOR. The contents of
the variable after the statements are shown as comments.
1: x← x⊕ y . x = x⊕ y
2: y← y⊕ x . y = y ⊕ (x⊕ y) = x
3: x← x⊕ y . x = (x⊕ y)⊕ x = y

The technical part of our result builds further on a construction of Ben-Or
and Cleve [BC92], who showed surprising power of another very limited model of
computation: a machine using only 3 registers, which can be added and multiplied
together. Their methods were similar to the XOR swap above, cleverly combining
registers and utilizing cancellations to produce the correct answer. By using and
extending their construction, we are able to show that the circuit class TC1 can
be computed by the catalytic log-space machines—something which is unlikely to
be true for ordinary log-space Turing machines.

In terms of limits to the power of CL, we are able to show that catalytic
computations only need polynomial time on average. Therefore, CL has at most
the power of the complexity class ZPP, zero-error probabilistic polynomial time.

We continue the study of catalytic computation in Chapter 7, by proving
equivalent statements of two classical results on space-bounded computation in
our new model.

First we extend the model by adding non-determinism. For ordinary Tur-
ing machines, the complexity class NL, non-deterministic log-space, is the same
as its complement coNL, a result known as the Immerman–Szelepcsényi Theo-
rem [Imm88, Sze88]. We show the same for our catalytic versions CNL and coCNL,
directly adapting the inductive-counting proof of the Immerman–Szelepcsényi
Theorem. There are several obstacles that have to be overcome to make such a
proof work. One challenge is that the size of the configuration graph might be
exponentially big; we use a pseudorandom generator to avoid this problem and
search for random seeds where the configuration graph is small. Another issue
is that we need to be able to remember and compare different configurations,
each taking much space to write down. To solve this problem, we use a hashing
algorithm to fingerprint the different configurations.

1.2. Catalytic computation 11

Finally we present a hierarchy theorem – we show that adding more space
enables the catalytic computation to solve strictly more problems. The theorem
follows as an adaptation the work of Kinne and van Melkebeek [KvM10], and van
Melkebeek and Pervyshev [vMP06], who earlier showed hierarchy theorems for
probabilistic and other semantic models of computation.

Chapter 2
Preliminaries

In this chapter we will give some basic definitions and results that will be used
in the rest of this thesis. Section 2.1 introduces basic notation and presents a
few inequalities that are sometimes needed when discussing the other topics. In
Section 2.2 we give some basic results on quantum information that will be used
frequently in our results on position-based quantum cryptography. Section 2.3
introduces communication complexity. In Section 2.4 we will give a few basic
notions of computational complexity theory.

2.1 Notation
We will use N for the set of natural numbers. C denotes the complex numbers.
Fp is the finite field of order p. We often will view bits as elements of F2, so
that addition over the field corresponds to the binary XOR of the bits, and field
multiplication corresponds to the binary AND. For any natural number n and
finite field F we use Fn for the vector space formed by n-tuples of elements of F.
For any two elements from these vector spaces x and y, we will always use x · y
for their inner product, or dot product, given by ∑i xiyi.

Let k,n ∈ N. We write [n] as a shorthand for the set {1, . . . ,n}. Let x, y ∈
{0, 1}n be bit strings. We write x ⊕ y for the bitwise XOR. Sometimes we also
use addition x+ y for the same operation, when viewing x and y as elements of
Fn2 . The Hamming weight of a binary string |x| is the number of 1s in the string.
The Hamming distance between two binary strings x and y, written as ∆(x, y), is
the number of positions where the strings differ; this equals |x⊕ y|. For a set S,
we use S∗ for the set of all arbitrary-length tuples of elements of S. In particular,
{0, 1}∗ will be the set of all bit strings.

When written without an explicit base, log always stands for the base-2 log-
arithm. The natural logarithm is written as ln. We use

(
n
k

)
for the binomial

coefficient. When S is a set,
(
S
k

)
is the collection of all k-element subsets of S.

13

14 Chapter 2. Preliminaries

Many statements will hold asymptotically, i.e., when a relevant parameter
grows sufficiently large, and it will often be convenient to use big-O notation, which
we will briefly review here. Let f , g be two functions from N to N. The expression
f(n) = O(g(n)) means that there exists a constant c such that f(n) ≤ c · g(n) for
every sufficiently large n. We say that f(n) = Ω(g(n)) if g(n) = O(f(n)), and
f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. Finally, the
so-called little o is written as f(n) = o(g(n)), which is true if for any ε > 0 it holds
that f(n) ≤ εg(n) for every sufficiently large n, and the converse f(n) = ω(g(n))
holds if g(n) = o(f(n)).

We will occasionally need to bound sums of random variables, for which the
Chernoff bound can be a very useful tool. Let X1,X2, . . . ,Xn be independent
random variables, that each are 1 with probability 1/2 + ε and 0 with probability
1/2− ε for a positive real number ε. Then the Chernoff bound states that

Pr[
n∑
i=1

Xi ≤ n/2] ≤ e−2ε2n .

Another basic inequality we need is the Cauchy-Schwarz inequality. In terms of
vectors |u〉, |v〉, it states that |〈u|v〉|2 ≤ 〈u|u〉〈v|v〉. For the special case concerning
vectors x, y over Rn, i.e. two lists of real numbers (x1, . . . ,xn) and (y1, . . . , yn),
we obtain the following useful bound:(

n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
.

2.2 Quantum information
Here we will give a very short introduction to the parts of quantum information
that will be most relevant for this thesis. For an excellent textbook on the topic,
see [NC00]. Some background knowledge in linear algebra will be assumed for the
next section.

The main object of study in quantum information is the quantum state, a
mathematical description of a system following the laws of quantum mechanics.

Dirac notation As is common in the study of quantum information, we will
typically write vectors in bra-ket notation, also known as Dirac notation. To illus-
trate, consider the finite-dimensional complex Hilbert space Cd for some number
d ∈ N. In bra-ket notation we write a column vector named ψ as

|ψ〉 =

ψ1
ψ2
...
ψd

2.2. Quantum information 15

which is called a ket. The bra is then the corresponding row vector,

〈ψ| =
(
ψ∗1 ψ∗2 . . . ψ∗d

)
,

where the ∗ denotes complex conjugation. The inner product of two vectors |ψ〉
and |φ〉 can be written as 〈ψ|φ〉, a shorthand for 〈ψ||φ〉.

The tensor product (which we will introduce below) between two vectors |ψ〉
and |φ〉 is written as |ψ〉 ⊗ |φ〉, often abbreviated as |ψ〉|φ〉.

State vector Quantum states can be described as unit vectors in a complex
Hilbert space; a complex vector space with an inner product.

The quantum states we will deal with, will mostly be finite-dimensional systems,
and therefore our space will often be Cd for some d. A quantum mechanical state
in some Hilbert space H can be described by a vector ψ ∈ H, or |ψ〉 in braket
notation. The vector norm of a vector ψ, sometimes called the length of the vector,
is written as ‖ψ‖ =

√
〈ψ|ψ〉. For an operator A we will also sometimes need the

operator norm, defined in the following way, using the vector norm:

‖A‖ = sup
ψ:‖ψ‖=1

‖A|ψ〉‖

An important example of a system is a quantum bit or qubit. The state of a
single qubit is described by a vector in a two-dimensional state space, C2. The
most common orthonormal basis we use for qubits is called the computational
basis and is defined as

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
.

We can describe any one-qubit state by a superposition of these basis vectors,
enabling us to write

|ψ〉 = α|0〉+ β|1〉 with α, β ∈ C

for any one-qubit state |ψ〉. Here normalization requires that |α|2 + |β|2 = 1. In
vector notation we would write this state |ψ〉, and its dual 〈ψ|, as

|ψ〉 =
(
α
β

)
, 〈ψ| =

(
α∗ β∗

)
The joint state of multiple quantum systems is a vector in a space that is

a tensor product1 of the original spaces. Take as example a Hilbert space V of
dimension m and a Hilbert space W of dimension n. The tensor space V ⊗W
is a single space of dimension mn, with elements linear combinations of tensor

1See also any textbook on quantum computation, such as [NC00, Section 2.17], for a com-
prehensive explanation.

16 Chapter 2. Preliminaries

products of the elements of the spaces. For instance, if |v1〉 and |v2〉 are elements
of V , and |w1〉 and |w2〉 are elements of W , then |v1〉 ⊗ |w1〉 and |v2〉 ⊗ |w2〉 are
elements of the tensor space V ⊗W , and so is their sum |v1〉 ⊗ |w1〉+ |v2〉 ⊗ |w2〉.

Three important properties of the tensor product are the following. For any
scalar c, and arbitrary |v〉 ∈ V and |w〉 ∈ W , it holds that

c(|v〉 ⊗ |w〉) = (c|v〉)⊗ |w〉 = |v〉 ⊗ (c|w〉) .

For any |v1〉, |v2〉 ∈ V and |w〉 ∈ W ,

|v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 = (|v1〉+ |v2〉)⊗ |w〉 ,

and similarly for any |v〉 ∈ V and |w1〉, |w2〉 ∈ W ,

|v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 = |v〉 ⊗ (|w1〉+ |w2〉) .

For example, a two-qubit system can be described by a unit vector in C4, with
computational basis states

|0〉|0〉 =
(

1
0

)
⊗
(

1
0

)
=

1
0
0
0

 |0〉|1〉 =
(

1
0

)
⊗
(

0
1

)
=

0
1
0
0

|1〉|0〉 =
(

0
1

)
⊗
(

1
0

)
=

0
0
1
0

 |1〉|1〉 =
(

0
1

)
⊗
(

0
1

)
=

0
0
0
1

 .

The state space of n qubits is C2n , a complex vector space with dimension 2n. Not
all two-qubit states can be written as the tensor product of two one-qubit states.
A quantum state that cannot be written as a product of individual qubit states
is said to be entangled.

A very important two-qubit entangled state is the EPR pair . We can write
this state in terms of the computational basis states as

1√
2

(|0〉|0〉+ |1〉|1〉) .

The evolution of a closed quantum system is described by a unitary transfor-
mation. This means that we can describe manipulation of the quantum states
as a unitary matrix; a matrix for which it holds U †U = I. Here A†, pronounced
as ‘dagger’, is the conjugate transpose of some matrix A, also called Hermitian
transpose, obtained by taking the transpose of the matrix and then taking the
complex conjugate of each entry.

2.2. Quantum information 17

The Pauli matrices are four unitary matrices that are very common in quantum
computing. Here we define them as

σ0 := I :=
(

1 0
0 1

)
σ1 := X :=

(
0 1
1 0

)

σ2 := Y :=
(

0 −i
i 0

)
σ3 := Z :=

(
1 0
0 −1

)
.

The following commutation relations between the four Pauli matrices are often
helpful to keep in mind:

XY = iZ
YZ = iX
ZX = iY

When using the Pauli matrices as operations on quantum states the global phase
factor i is not important, and will often be omitted.

The Hadamard matrix is a unitary transformation which is defined as

H := 1√
2

(
1 1
1 −1

)
.

We write

|+〉 := H|0〉 = 1√
2

(|0〉+ |1〉) and

|−〉 := H|1〉 = 1√
2

(|0〉 − |1〉)

for the basis vectors of the Hadamard basis.

Measurement Even though our description of a system of n qubits is very big,
taking 2n complex numbers, we can not access these numbers directly. Instead,
they give rise to probabilities we will see a certain outcome when we measure
this system. A quantum measurement is described by a collection {Mm} of
measurement operators, where m refers to the measurement outcome. If the state
before measurement is |ψ〉, the probability that result m occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉 ,

and the state after getting measurement outcome m is

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
.

18 Chapter 2. Preliminaries

Reflecting the fact that probabilities sum to one, we have the completeness relation∑
m

M †
mMm = I .

Measurements in the computational basis can be described by measurement
operators

M0 = |0〉〈0| M1 = |1〉〈1| ,

while measurements in the Hadamard basis have measurement operators

M0 = |+〉〈+| M1 = |−〉〈−| .

Many of the measurement operators we will explicitly use are projective measure-
ments. We call a measurement a projective measurement if, beside satisfying the
completeness relation, the Mm are orthogonal projectors. The last requirement
means that the operators have to be Hermitian, that is M †

m = Mm, and that
MmM

′
m = δm,m′Mm. Here δm,m′ is the Kronecker delta. As a consequence of using

projective measurements, measuring the same qubit twice, consecutively, will give
the same outcome both times.

In many cases, when projective measurements are not general enough but
when we do not need the measurement operators {Mm} to explicitly describe
the post-measurement state, it will be convenient to use the POVM formalism.
Consider a measurement {Mm}, and suppose we define

Em ≡M †
mMm ,

then each Em is a positive semidefinite operator, called a POVM element, and
we have the relation ∑mEm = I. The probability of any particular measurement
outcome m is given by p(m) = 〈ψ|Em|ψ〉. The set of these operators {Em}
is known as a POVM. In many circumstances, for example when converting
a question in quantum information to an optimization problem, it can be very
helpful to argue about a corresponding POVM instead of directly considering the
measurement operators.

2.2.1 Teleportation
One of the most important protocols in the study of quantum communication
is quantum teleportation, first described by Bennett et al. [BBC+93]. The goal
of quantum teleportation is to transfer a quantum state from one location to
another by only communicating classical information, together with a pre-shared
entangled state.

To illustrate, let’s say Alice wants to teleport a qubit Q to Bob, in an arbitrary
unknown state

|ψ〉Q = α|0〉Q + β|1〉Q .

2.2. Quantum information 19

Alice and Bob already share an EPR pair 1√
2(|0〉A|0〉B + |1〉A|1〉B, where Alice has

qubit A and Bob has B.
Now consider the following states, the four Bell states

|β00〉 := 1√
2
(
|00〉+ |11〉

)
|β01〉 := 1√

2
(
|01〉+ |10〉

)
|β10〉 := 1√

2
(
|00〉 − |11〉

)
|β11〉 := 1√

2
(
|01〉 − |10〉

) . (2.1)

Together the four Bell states form an orthonormal basis for the state of two qubits.
A Bell measurement is a projective measurement in this basis, with the an index
of one of the four Bell states as outcome.

For instance, it’s easy to check that we can write our original basis vectors in
terms of the Bell states in the following way:

|00〉 = 1√
2
(
|β00〉+ |β10〉

)
|01〉 = 1√

2
(
|β01〉+ |β11〉

)
|10〉 = 1√

2
(
|β01〉 − |β11〉

)
|11〉 = 1√

2
(
|β00〉 − |β10〉

) . (2.2)

The goal of quantum teleportation is to transfer a quantum state from one
location to another by only communicating classical information. Teleportation
requires pre-shared entanglement among the two locations.

Say Alice wants to teleport a qubit Q to Bob, in an arbitrary unknown state

|ψ〉Q = α|0〉Q + β|1〉Q .

The state that Alice and Bob share can also be written |β00〉AB, where Alice has
qubit A and Bob has B. The total state of their system then is |Ψ〉 = |β00〉AB|ψ〉Q.

We can rewrite the state of their quantum system as

|Ψ〉 = 1√
2
(
|0〉A|0〉B + |1〉A|1〉B

)(
α|0〉Q + β|1〉Q

)
= 1√

2
(
α|00〉AQ|0〉B + β|01〉AQ|0〉B + α|10〉AQ|1〉B + β|11〉AQ|1〉B

)
= 1

2

[
α
(
|β00〉AQ + |β10〉AQ

)
|0〉B + β

(
|β01〉AQ + |β11〉AQ

)
|0〉B+

α
(
|β00〉AQ − |β10〉AQ

)
|1〉B + β

(
|β01〉AQ − |β11〉AQ

)
|1〉B

]
= 1

2

[
|β00〉AQ

(
α|0〉B + β|1〉B

)
+ |β01〉AQ

(
α|1〉B + β|0〉B

)
+ |β10〉AQ

(
α|0〉B − β|1〉B

)
+ |β11〉AQ

(
α|1〉B − β|0〉B

)]
= 1

2

[
|β00〉AQ |ψ〉+ |β01〉AQ X|ψ〉+ |β10〉AQ Z|ψ〉+ |β11〉AQ XZ|ψ〉

]
.

20 Chapter 2. Preliminaries

Here we reordered terms, and then used Equation 2.2 to write these terms in a
different basis – the state that we started with is still unchanged so far. Next
Alice performs a Bell measurement on qubits A and Q, getting an outcome
z ∈ {00, 01, 10, 11}. After this measurement, the state Bob holds will be equal to
σz|ψ〉, where σz is one of the four Pauli matrices that we defined earlier, depending
on the outcome z. Now Alice sends the two bits z to Bob.

We can quickly check that when z = 00, Bob does not have to apply a
correction. On z = 01, Bob can recover |ψ〉 by applying σ1 = X. When z = 10,
Bob has to apply σ3 = Z. And when z = 11, Bob can recover the original state |ψ〉
by applying σ2 = Y to his qubit. The Y operation does contain an extra factor
i in its usual definition, but this only adds a global phase to the quantum state,
which we can always ignore. With this protocol, Alice can effectively transfer a
quantum state to Bob, using a pre-shared entangled state and two bits of classical
information per qubit.

2.2.2 Mixed states and density matrices
In addition to the description of quantum states with state vectors as above, it
is also possible to describe quantum-mechanical systems using density matrices.
We say that a state that can be represented by a single vector is a pure state.
The language of density matrices can be especially convenient when describing a
system in a mixed state.

A mixed state can be defined as a probability distribution over pure states.
The resulting mixed state does not always have a unique decomposition as a
probability distribution over pure states. For example, consider an experimenter
who prepares either |0〉 with probability 1/2 or |1〉 with probability 1/2. No
measurement can ever distinguish the resulting mixed state from the case where
either (|0〉+ |1〉)/

√
2 or (|0〉 − |1〉)/

√
2 is prepared with equal probability.

A density matrix is a positive semidefinite matrix with trace 1 which represents
such a mixed state. For a Hilbert space H, we will use S(H) to denote the set of
density matrices that use the corresponding Hilbert space.

For any density matrix there exists a decomposition of the following form,
where pi are non-negative real numbers such that ∑ pi = 1 and |ψi〉 are a set of
orthonormal vectors.

ρ =
∑
i

|ψi〉〈ψi|

The collection {(pi, |ψ〉)} is called an ensemble of pure states. Pure states corre-
spond to rank 1 density matrices; the state ρ can then be written as |φ〉〈φ| for
some pure state |φ〉.

We can write the earlier operations on pure quantum states in terms of density
matrices. A unitary transformation U transforms the state ρ to UρU †. The
probability of getting a certain outcome of a POVM {Em} is given by tr(Emρ).

2.3. Communication complexity 21

2.2.3 The No-Cloning Theorem
The no-cloning theorem is a classic result of quantum information which states
that it is impossible to copy an arbitrary quantum state. This theorem has very
important consequences for quantum cryptography. For example, without the
impossibility of cloning the BB84 scheme would be insecure. The no-cloning
theorem is also the reason why the classical attack on schemes for position-based
cryptography does not generalize to the quantum case. Here we state the theorem
which shows that perfect cloning is impossible as illustration of the concept: for
cryptographic purposes stronger versions which also concern approximate copying
are necessary.

2.2.1. Theorem. There exists no unitary operation U that perfectly copies the
state of an arbitrary qubit.

Proof. By contradiction, suppose we have a unitary operation U that performs a
copy, so that U |ψ〉|s〉 = U |ψ〉|ψ〉 for any possible |ψ〉, where |s〉 is some starting
state that is independent of |ψ〉. More specifically, this would imply

U(|0〉|s〉) = |0〉|0〉

and also
U(|1〉|s〉) = |1〉|1〉.

But now let us try to copy |+〉 = 1√
2(|0〉+ |1〉). Since U is linear, we can use the

previous equations to get

U |+〉|s〉 = 1√
2

(U |0〉|s〉+ U |1〉|s〉) = 1√
2

(|0〉|0〉+ |1〉|1〉)

and this is not equal to |+〉|+〉, giving a contradiction.

2.3 Communication complexity
Communication complexity was introduced by Yao [Yao79]. For an excellent
introduction to the topic, see the book of Kushilevitz and Nisan [KN97] or one of
the more-recent surveys on a specific aspect of communication complexity [LS07,
CP10, Raz11].

Alice and Bob want to work together to compute a function f(x, y), where
Alice receives the input x ∈ {0, 1}n and Bob receives y ∈ {0, 1}n. To do this, they
are allowed to send messages back-and-forth.

A communication protocol defines the messages Alice and Bob send each other.
The protocol describes, for possible inputs and previous messages that are sent,
the actions for Alice and Bob respectively.

22 Chapter 2. Preliminaries

A transcript of a protocol is a binary string describing the messages sent by
Alice and Bob on a specific run of the protocol.

The cost of a protocol is the length of the longest transcript of a protocol,
when considered over all input pairs x, y.

The deterministic communication complexity D(f) of a function f : {0, 1}n ×
{0, 1}n → {0, 1} is the lowest cost of any protocol for which Alice and Bob compute
f(x, y) correctly on all input pairs.

We can also allow the players to each flip coins, a type of randomness called
private randomness, and allow the players to be wrong with some small probability.
The randomized communication complexity Rε(f) of a function f : {0, 1}n ×
{0, 1}n → {0, 1} is the lowest cost of any protocol which computes f(x, y) with
error at most ε for any input pair. We define R(f) as R1/3, the cost of the best
randomized protocol where the players are allowed to be wrong with probability
1/3. The specific constant is not important here, since we can reduce the error
probability to any desired error ε with only a small multiplicative overhead. To
do this, we can repeat the protocol O(log 1/ε) times and then using the outcome
that is seen most frequently. The proof then follows directly by applying the
Chernoff bound.

Instead of locally flipping coins, we can also imagine the case where the players
share public randomness, for example by distributing their random choices before
they receive their inputs, or because they share a source of external randomness
(perhaps both parties have their telescopes pointed towards the same quasar). It
turns out that private randomness is capable of simulating public randomness at
the cost of a small additive amount of extra error and communication, a result
known as Newman’s Theorem [New91].

Quantum communication complexity After the development of quantum
information theory, the model of communication complexity was extended to
incorporate quantum information by Yao in 1993 [Yao93]. In the quantum case,
Alice and Bob are allowed to communicate qubits, instead of classical bits. For
some problems, communicating qubits instead of classical bits can make a very
big difference.

The exact quantum communication complexity of a function f , denoted by
QE(f), is the least number of qubits that two players have to communicate to
compute the function without any error.

In bounded-error quantum communication, we require that the players answer
correctly with probability at least 1− ε. The bounded-error quantum communi-
cation complexity of a function f is called Qε(f).

Cleve and Buhrman defined a different variant of quantum communication,
one where the parties are only allowed to communicate classical bits, but start
the protocol with an (unbounded) entangled quantum state [CB97]. Define the
least amount of classical bits that these quantum players have to send to correctly

2.4. Complexity theory 23

compute a function f as QCB,ε(f). Using quantum teleportation it is easy to see
that for any function, we have QCB,ε(f) ≤ Qε(f). It remains an open question to
characterize exactly how much more power this entanglement provides, over the
model where quantum communication is allowed.

2.4 Complexity theory
Computational complexity theory studies the amount of resources (for example
time or space) needed to solve computational problems by a computational model.
For a modern textbook on complexity theory, see the recent book by Arora and
Barak [AB09]. Here we do introduce a few of the concepts that are important
for the final chapters of this thesis.

The Turing machine is the first model we will consider, an abstraction of an
algorithm which operates on a memory according to a set of rules.

The memory of a Turing machine consists of an input tape, one or more work
tapes, and an output tape. These tapes consist of a line of cells, each of which
contains a symbol from a finite alphabet. We will often use an alphabet consisting
of just the binary digits 0/1 and ‘blank’ symbol �, but the exact alphabet size is
often not important: Turing machines with smaller alphabets can simulate those
with larger ones without a big overhead. Every tape has a tape head that can
read and write symbols, one cell at a time. At every time step, the tape head can
move one cell to the left or to the right.

A Turing machine has a finite set of states, and the state register of the
machine always contains one of these states. To determine the actions of the
Turing machine, the machine has a transition function that, given the current
state and the symbols under the tape heads, determines the next state in the
state register, what to write under the heads, and the movement of the heads.

Computational problems are often given as decision problems, i.e., yes or
no questions. The most common way to encode such a problem is as a set of
arbitrarily long binary strings A ⊆ {0, 1}∗. The computation receives as input
some binary string x ∈ {0, 1}∗, and has to decide whether this string is part of
our set or not. For example, if the set would be the set of all prime numbers,
the computation has to accept if the input x is a prime number and reject if the
number is composite.

The time complexity of a problem is the runtime of the best algorithm that
solves it, in terms of the length of the input |x|. We say that a problem is
polynomial-time computable if there exists an algorithm for the problem and a
polynomial p such that the algorithm solves the problem in time p(|x|). The
class of all polynomial-time computable problems is called P.

Another natural way of classifying how hard a problem is to compute, is in
terms of its space complexity: the amount of work-tape cells used by a Turing ma-
chine solving the problem. Space-bounded computation will feature prominently

24 Chapter 2. Preliminaries

in the results on the garden-hose model in Chapter 3, and is the central object of
study in our work on catalytic computation of Chapter 6 and 7.

A problem A is log-space computable if there exists an algorithm that for
any input x ∈ {0, 1}∗ correctly decides whether x ∈ A or not, and takes space
O(log |x|). The class of all these problems is called L, or sometimes log space.

The Turing machine model can be made more powerful by adding randomness.
The class ZPP, short for ‘zero-error probabilistic polynomial time’, is the set of
problems that can be solved without error, in polynomial time on expectation.

ZPP consists of those problems L for which there exists a Turing machine M
such that the following holds. Let p be some polynomial. The machine receives,
besides its input x, also a polynomially long random string r. The computation
has to be correct for any random string r:

∀n,x ∈ {0, 1}n, r ∈ {0, 1}∗ : M(x, r) = 1 if and only if x ∈ L

The runtime does not necessarily have to be polynomial for any random run, we
only require that on average the machine halts in polynomial time:

∀x ∈ {0, 1}n E
r
[runtime of M(x, r)] = p(n)

The class NP consists of the problems such that, for any instance that is true,
there exists a proof of that fact which can be verified in polynomial time. More
precisely, we say that a problem L ⊆ {0, 1}∗ is in NP if there exists a Turing
machine M , which runs in time polynomial in its input length, and a polynomial
p, such that for any string x:

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|)M(x,u) accepts

Some computational problems are at least as difficult as the entire class NP,
we call such problems NP hard. We say that a problem S ⊆ {0, 1}∗ is NP hard
if for any language L ∈ NP there exists some function f which is computable in
polynomial time, such that for any x ∈ {0, 1}∗, it holds that

x ∈ L ⇐⇒ f(x) ∈ S .

This means that S is at least as hard as L; any polynomial-time algorithm for
S can be turned into an algorithm for L by first using f and then running the
algorithm which decides L.

A problem that is both in NP and NP hard is called NP complete. The
NP-complete problems are the hardest problems in the class NP and an efficient
algorithm for any one of them would imply efficient algorithms for all problems
in NP. The canonical NP-complete problem is boolean formula satisfiability,
SAT, independently proven by Cook [Coo71] and Levin [Lev73]. Many other
natural problems are known to be NP complete, such as the traveling salesman
problem, the question of whether a graph is colorable with three colors, and
more [Kar72, GJ79].

Part I

Position-based quantum
cryptography

25

Chapter 3
The garden-hose model

We define a new model of communication complexity, called the garden-hose model.
Informally, the garden-hose complexity of a function f : {0, 1}n×{0, 1}n → {0, 1}
is given by the minimal number of water pipes that need to be shared between
two parties, Alice and Bob, in order for them to compute the function f as follows:
Alice connects her ends of the pipes in a way that is determined solely by her
input x ∈ {0, 1}n and, similarly, Bob connects his ends of the pipes in a way that
is determined solely by his input y ∈ {0, 1}n. Alice turns on the water tap that
she also connected to one of the pipes. Then, the water comes out on Alice’s or
Bob’s side depending on the function value f(x, y).

The garden-hose model was inspired by attacks on a certain class of quantum
position-verification schemes, where qubits are teleported back-and-forth between
cooperating parties. We show an interesting connection between the garden-hose
model and the (in)security of these schemes.

We prove almost-linear lower bounds on the garden-hose complexity for con-
crete functions like inner product, majority, and equality, and we show the ex-
istence of functions with exponential garden-hose complexity. Furthermore, we
show a connection to classical complexity theory by proving that all functions
computable in log-space have polynomial garden-hose complexity.

Finally, we also consider a randomized variant of the garden-hose complexity,
where Alice and Bob hold pre-shared randomness, and a quantum variant, where
Alice and Bob hold pre-shared quantum entanglement, and we show that the ran-
domized garden-hose complexity is within a polynomial factor of the deterministic
garden-hose complexity. Examples of (partial) functions are given where the quan-
tum garden-hose complexity is logarithmic in n while the classical garden-hose
complexity can be lower bounded by nc for constant c > 0.

The results in this chapter are based on the following publication:

• [BFSS13] Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian
Speelman. The garden-hose model. In Proceedings of the 4th Conference

27

28 Chapter 3. The garden-hose model

on Innovations in Theoretical Computer Science, ITCS ’13, pages 145–158,
New York, NY, USA, 2013. ACM.

The conference publication is an extension of the author’s earlier Master’s thesis:

• [Spe11] Florian Speelman. Position-based quantum cryptography and the
garden-hose game. Master’s thesis, University of Amsterdam, 2011.

The material on the quantum garden-hose model, mostly concentrated in Sec-
tion 3.5, was not present in the Master’s thesis [Spe11] and was added at the time
of conference publication [BFSS13]. Additionally, some of the smaller observa-
tions, like Propositions 3.3.10 and 3.3.11, were unpublished before this thesis, the
proof of Theorem 3.3.15 has been improved from earlier versions, and references
to several later results by other authors have been included.

3.1 Introduction
The garden-hose model On a beautiful sunny day, Alice and Bob relax in
their neighboring gardens. It happens that their two gardens share s water pipes,
labeled by the numbers 1, 2, . . . , s. Each of these water pipes has one loose end in
Alice’s and the other loose end in Bob’s garden. For the fun of it, Alice and Bob
play the following game. Alice uses pieces of hose to locally connect some of the
pipe ends that are in her garden with each other. For example, she might connect
pipe 2 with pipe 5, pipe 4 with pipe 9, etc. Similarly, Bob locally connects some
of the pipe ends that are in his garden; for instance pipe 1 with pipe 4, etc. We
note that no T-pieces (nor more complicated constructions), which connect two
or more pipes to one (or vice versa) are allowed. Finally, Alice connects a water
tap to one of her ends of the pipes, e.g., to pipe 3 and she turns on the tap. Alice
and Bob observe which of the two gardens gets sprinkled. It is easy to see that
since Alice and Bob only use simple one-to-one connections, there is no “deadlock”
possible and the water will indeed eventually come out on one of the two sides.
Which side it is obviously depends on the respective local connections.

Now, say that Alice connects her ends of the pipes (and the tap) not in a fixed
way, but her choice of connections depends on a private bit string x ∈ {0, 1}n;
for different strings x and x′, she may connect her ends of the pipes differently.
Similarly, Bob’s choice which pipes to connect depends on a private bit string
y ∈ {0, 1}n. These strategies then specify a function f : {0, 1}n×{0, 1}n → {0, 1}
as follows: f(x, y) is defined to be 0 if, using the connections determined by x
and y respectively, the water ends up on Alice’s side, and f(x, y) is 1 if the water
ends up on Bob’s side.

Switching the point of view, we can now take an arbitrary Boolean function
f : {0, 1}n×{0, 1}n → {0, 1} and ask: How can f be computed in the garden-hose
model? How do Alice and Bob have to choose their local connections, and how

3.1. Introduction 29

many water pipes are necessary for computing f in the garden-hose model? We
stress that Alice’s choice for which pipes to connect may only depend on x but
not on y, and vice versa; this is what makes the above questions non-trivial.

In this chapter, we introduce and put forward the notion of garden-hose
complexity. For a Boolean function f : {0, 1}n×{0, 1}n → {0, 1}, the garden-hose
complexity GH (f) of f is defined to be the minimal number s of water pipes
needed to compute f in the garden-hose model. It is not too hard to see that
GH (f) is well defined (and finite) for any function f : {0, 1}n × {0, 1}n → {0, 1}.

This new complexity notion opens up a large spectrum of natural problems
and questions. What is the (asymptotic or exact) garden-hose complexity of
natural functions, like equality, inner product etc.? How hard is it to compute the
garden-hose complexity in general? How is the garden-hose complexity related to
other complexity measures? What is the impact of randomness, or entanglement?
Some of these questions we answer in this chapter; others remain open.

Lower and upper bounds We show a near-linear Ω(n/ log(n)) lower bound
on the garden-hose complexity GH (f) for a natural class of functions f : {0, 1}n×
{0, 1}n → {0, 1}. This class of functions includes the mod-2 inner-product func-
tion, the equality function, and the majority function. For the former two, this
bound is close to tight, in that for these two functions we also show a linear upper
bound. In the conference version of these results, we showed a quadratic upper
bound for the majority function. In follow-up work Klauck and Podder [KP14]
exhibited a protocol which used only O(n log3 n) pipes, among several other results
on the garden-hose model. In different follow-up work, Margalit and Matsliah
improved our upper bound for the equality function with the help of the IBM SAT-
Solver [MM12, Mar14] to approximately 1.448n, and the question of how many
water pipes are necessary to compute the equality function in the garden-hose
model featured as April 2012’s “Ponder This” puzzle on the IBM website1. The
current best construction was found by Chiu et al. [CSWX14] using approximately
1.359n pipes. The exact garden-hose complexity of the equality function is still
unknown, though; let alone that of other functions.

By using a counting argument, we show the existence of functions with expo-
nential garden-hose complexity, but so far, no such function is known explicitly.
We also show, again using counting, the existence of a hierarchy – adding more
pipes enable the parties to compute strictly more functions.

Connections to other complexity notions We show that every function
f : {0, 1}n × {0, 1}n → {0, 1} that is log-space computable has polynomial garden-
hose complexity. And, vice versa, we show that every function with polynomial
garden-hose complexity is, up to local pre-processing, log-space computable. As
a consequence, we obtain that the set of functions with polynomial garden-hose

1 http://ibm.co/I7yvMz

http://ibm.co/I7yvMz

30 Chapter 3. The garden-hose model

complexity is exactly given by the functions that can be computed by arbitrary
local pre-processing followed by a log-space computation.

We also point out a connection to communication complexity by observing
that, for any function f : {0, 1}n × {0, 1}n → {0, 1}, the one-way communication
complexity of f is a lower bound on GH (f) log(GH (f)).

Randomized and quantum garden-hose complexity We consider the fol-
lowing natural variants of the garden-hose model. In the randomized garden-hose
model, Alice and Bob additionally share a uniformly random string r, and the
water is allowed to come out on the wrong side with small probability ε. Similarly,
in the quantum garden-hose model, Alice and Bob additionally hold an arbitrary
entangled quantum state and their wiring strategies can depend on the outcomes
of measuring this state before performing a the garden-hose protocol. Again, the
water is allowed to come out on the wrong side with small probability ε. Based on
the observed connections of the garden-hose complexity to log-space computation
and to one-way communication complexity, we can show that the resulting notion
of randomized garden-hose complexity GHε(f) is polynomially related to GH (f).
For the resulting notion of quantum garden-hose complexity GH Q

ε (f), we can show
a separation (for a partial function) from GHε(f).

Application to quantum position-verification Finally, we show an inter-
esting connection between the garden-hose model and the (in)security of a certain
class of quantum position-verification schemes. The goal of position-verification is
to verify the geographical position pos of a prover P by means of sending messages
to P and measuring the time it takes P to reply. Position-verification with security
against collusion attacks, where different attacking parties collaborate in order
to try to fool the verifiers, was shown to be impossible in the classical setting
by [CGMO09], and in the quantum setting by [BCF+11], if there is no restriction
put upon the attackers. In the quantum setting, this raises the question whether
there exist schemes that are secure in case the attackers’ quantum capabilities are
limited.

Each position-verification scheme PVqubit we consider here is specified by a
Boolean function f : {0, 1}n × {0, 1}n → {0, 1}. This class of schemes was
first considered by Kent et al. [KMS11]. These schemes may have the desirable
property that the more classical resources the honest users use to faithfully execute
the scheme, the more quantum resources the adversary needs in order to break
it. It turns out that there is a one-to-one correspondence between the garden-
hose model and a certain class of attacks on these schemes, where the attackers
teleport a qubit back and forth using a supply of EPR pairs. As an immediate
consequence, the (quantum) garden-hose complexity of f gives an upper bound on
the number of EPR pairs the attackers need in order to break the scheme PVqubit.
As a corollary, we obtain the following interesting connection between proving

3.2. A scheme for position-verification 31

the security of quantum protocols and classical complexity theory: If there is an
f in P such that there is no way of attacking scheme PVqubit using a polynomial
number of EPR pairs, then P 6= L. Vice versa, our approach may lead to practical
secure quantum position-verification schemes whose security is based on classical
complexity-theoretical assumptions such as P is different from L. However, so far
it is still unclear whether the (quantum) garden-hose complexity by any means
gives a lower bound on the number of EPR pairs needed; this remains to be further
investigated.

3.2 A scheme for position-verification
The results of this chapter are motivated by the study of a particular quantum
protocol for secure position verification, PVqubit, described in Figure 3.12.

In Step 0, the verifiers prepare challenges for the prover. In Step 1, they send
the challenges, timed in such a way that they all arrive at the same time at the
prover. In Step 2, the prover computes his answers and sends them back to the
verifiers. Finally, in Step 3, the verifiers verify the timing and correctness of the
answer.

As in [BCF+11], we consider here for simplicity the case where all players
live in one dimension, the basic ideas generalize to higher dimensions. In one
dimension, we can focus on the case of two verifiers V0,V1 and an honest prover
P in between them.

We minimize the amount of quantum communication in that only one verifier,
say V0, sends a qubit to the prover, whereas both verifiers send classical n-bit
strings x, y ∈ {0, 1}n that arrive at the same time at the prover. We fix a publicly
known Boolean function f : {0, 1}n × {0, 1}n → {0, 1} whose output f(x, y)
decides whether the prover has to return the qubit (unchanged) to verifier V0 (in
case f(x, y) = 0) or to verifier V1 (if f(x, y) = 1).

The motivation for considering this protocol is the following: As the proto-
col uses only one qubit which needs to be correctly routed, the honest prover’s
quantum actions are trivial to perform. His main task is evaluating a classical
Boolean function f on classical inputs x and y whose bit size n can be easily scaled
up. On the other hand, our results in this section suggest that the adversary’s
job of successfully attacking the protocol becomes harder and harder for larger
input strings x, y. The hope is that for “complicated enough” functions f(x, y),
the amount of EPR pairs (ebits) needed to successfully break the security of the
protocol PVqubit grows (at least) linearly in the bit length n of the classical strings
x, y.

If this intuition can be proven to be true, it is a very interesting property of
the protocol that we obtain a favorable relation between quantum and classical
difficulty of operations in the following sense: if we increase the length of the

2The protocol is of the generic form described in Section 3.2 of [BCF+11].

32 Chapter 3. The garden-hose model

0. V0 randomly chooses two n-bit strings x, y ∈ {0, 1}n and privately sends y
to V1. V0 prepares an EPR pair (|0〉V |0〉P + |1〉V |1〉P)/

√
2. If f(x, y) = 0, V0

keeps the qubit in register V . Otherwise, V0 sends the qubit in register V
privately to V1.

1. V0 sends the qubit in register P to the prover P together with the classical
n-bit string x. V1 sends y so that it arrives at the same time as the information
from V0 at P .

2. P evaluates f(x, y) ∈ {0, 1} and routes the qubit to Vf(x,y).
3. V0 and V1 accept if the qubit arrives in time at the right verifier and the Bell

measurement of the received qubit together with the qubit in V yields the
correct outcome.

Figure 3.1: Position-verification scheme PVqubit using a single qubit and classical
n-bit strings.

classical inputs x, y, we require more classical computing power of the honest
prover, whereas more quantum resources (ebits) are required by the adversary to
break the protocol. To the best of our knowledge, such a trade-off has never been
observed for a quantum-cryptographic protocol.

In order to analyze the security of the protocol PVqubit, we define the following
communication game in which Alice and Bob play the roles of the adversarial
attackers of PVqubit. Alice starts with an unknown qubit |φ〉 and a classical n-
bit string x while Bob holds the n-bit string y. They also share some quantum
state |η〉AB and both players know the Boolean function f : {0, 1}n × {0, 1}n →
{0, 1}. The players are allowed one round of simultaneous classical communication
combined with arbitrary local quantum operations. When f(x, y) = 0, Alice
should be in possession of the state |φ〉 at the end of the protocol and on f(x, y) = 1,
Bob should hold it.

As a simple example consider the case where f(x, y) = x⊕y, the exclusive OR
function, with 1-bit inputs x and y. Alice and Bob then have the following way of
performing this task perfectly by using a pre-shared quantum state consisting of
three EPR pairs (three ebits). Label the first two EPR pairs 0 and 1. Alice tele-
ports |φ〉 to Bob using the pair labeled with her input x. This yields measurement
result i ∈ {0, 1, 2, 3}, while Bob teleports his half of the EPR pair labeled y to
Alice using his half of the third EPR pair while obtaining measurement outcome
j ∈ {0, 1, 2, 3} . In the round of simultaneous communication, both players send
the classical measurement results and their inputs x or y to the other player. If
x⊕ y = 1, i.e. x and y are different bits, Bob can apply the Pauli operator σi to
his half of the EPR pair labeled x = y ⊕ 1, correctly recovering |φ〉. Similarly, if
x⊕ y = 0, it is easy to check that Alice can recover the qubit by applying σiσj to
her half of the third EPR pair.

The garden-hose model is inspired by the following question: What attacks are

3.3. The garden-hose model 33

0

1

x = 0 x = 1

Alice

y = 0 y = 1

Bob

XOR

Water tap

Figure 3.2: Computing the XOR function in the garden-hose model using three
water pipes. If Alice’s input bit x is 0, she connects the water tap to the first
water pipe labeled “0”. In case x = 1, she connects the tap to the second pipe
labeled “1”.

possible if Alice and Bob are constrained to the types of actions in the example
above, i.e., if they are restricted to teleporting the quantum state back and forth
depending on their classical inputs?

3.3 The garden-hose model

3.3.1 Definition
Alice and Bob get n-bit input strings x and y, respectively. Their goal is to
“compute” an agreed-upon Boolean function f : {0, 1}n × {0, 1}n → {0, 1} on
these inputs, in the following way. Alice and Bob have s water pipes between
them, and, depending on their respective classical inputs x and y, they connect
(some of) their ends of the pipes with pieces of hose. Additionally, Alice connects
a water tap to one of the pipes. They succeed in computing f in the garden-hose
model, if the water comes out on Alice’s side whenever f(x, y) = 0, and the water
comes out on Bob’s side whenever f(x, y) = 1. Note that it does not matter out
of which pipe the water flows, only on which side it flows. What makes this task
non-trivial is that Alice and Bob must do their “plumbing” based on their local
input only, and they are not allowed to communicate. We refer to Figure 3.2 for
an illustration of computing the XOR function in the garden-hose model.

We formalize the above description of the garden-hose model, given in terms of

34 Chapter 3. The garden-hose model

pipes and hoses etc., by means of rigorous graph-theoretic terminology. However,
we feel that the above terminology captures the notion of the garden-hose model
very well, and thus we sometimes use the above “watery” terminology. We start
with a balanced bi-partite graph (A ∪ B,E) which is 1-regular and where the
cardinality of A and B is |A| = |B| = s, for an arbitrarily large s ∈ N. We
slightly abuse notation and denote both the vertices in A and in B by the integers
1, . . . , s. If we need to distinguish i ∈ A from i ∈ B, we use the notation iA and
iB. We may assume that E consists of the edges that connect i ∈ A with i ∈ B
for every i ∈ {1, . . . , s}, i.e., E =

{{
iA, iB

}
: 1 ≤ i ≤ s

}
. These edges in E are

the pipes in the above terminology. We now extend the graph to (A◦ ∪B,E) by
adding a vertex 0 to A, resulting in A◦ = A∪{0}. This vertex corresponds to the
water tap, which Alice can connect to one of the pipes. Given a Boolean function
f : {0, 1}n × {0, 1}n → {0, 1}, consider two functions EA◦ and EB; both take as
input a string in {0, 1}n and output a set of edges (without self loops). For any
x, y ∈ {0, 1}n, EA◦(x) is a set of edges on the vertices A◦ and EB(x) is a set of
edges on the vertices B, so that the resulting graphs (A◦,EA◦(x)) and (B,EB(y))
have maximum degree at most 1. EA◦(x) consists of the connections among the
pipes (and the tap) on Alice’s side (on input x), and correspondingly for EB(y).
For any x, y ∈ {0, 1}n, we define the graph G(x, y) = (A◦∪B,E∪EA◦(x)∪EB(y))
by adding the edges EA◦(x) and EB(y) to E. G(x, y) consists of the pipes with the
connections added by Alice and Bob. Note that the vertex 0 ∈ A◦ has degree at
most 1, and the graph G(x, y) has maximum degree at most two 2; it follows that
the maximal path π(x, y) that starts at the vertex 0 ∈ A◦ is uniquely determined.
π(x, y) represents the flow of the water, and the endpoint of π(x, y) determines
whether the water comes out on Alice’s or on Bob’s side (depending on whether
the final vertex is in A◦ or in B).

3.3.1. Definition. A garden-hose protocol is given by a graph function G :
(x, y) 7→ G(x, y) as described above. The number of pipes s is called the size of
G, and is denoted as s(G). A garden-hose protocol G is said to compute a Boolean
function f : {0, 1}n×{0, 1}n → {0, 1} if the endpoint of the maximal path π(x, y)
starting at 0 is in A◦ whenever f(x, y) = 0 and in B whenever f(x, y) = 1.

3.3.2. Definition. The deterministic garden-hose complexity of a Boolean func-
tion f : {0, 1}n × {0, 1}n → {0, 1} is the size s(G) of the smallest garden-hose
protocol G that computes f . We denote it by GH (f).

Relation between the garden-hose model and attack on PVqubit If Alice
and Bob are constrained to the types of actions in the example above, i.e., if
they are restricted to teleporting the quantum state back and forth depending on
their classical inputs, there is a one-to-one correspondence between attacking the
position-verification scheme PVqubit and computing the function f in the garden-
hose model. The quantum strategy for attacking PVqubit in the example above

3.3. The garden-hose model 35

exactly corresponds to the strategy depicted in Figure 3.2 for computing the
XOR-function in the garden-hose model.

More generally, we can translate any strategy of Alice and Bob in the garden-
hose model to a perfect quantum attack of PVqubit by using one EPR pair per pipe
and performing Bell measurements where the players connect the pipes.

Our hope is that also the converse is true: if many pipes are required to
compute f (say we need super-polynomially many), then the number of EPR
pairs needed for Alice and Bob to successfully break PVqubit with probability close
to 1 by means of an arbitrary attack (not restricted to Bell measurements on EPR
pairs) should also be super-polynomial.

The examples of (partial) functions from Theorem 3.5.2 show that the classical
garden-hose complexity GH (f) does not capture the amount of EPR pairs required
to attack PVqubit. It is conceivable that one can show that arbitrary attacks can
be cast in the quantum garden-hose model and hence, the quantum garden-hose
complexity GH Q

ε (f) (or a variant of it3) correctly captures the amount of EPR
pairs required to attack PVqubit. We leave this question as an interesting problem
for future research.

We stress that for this application, any polynomial lower bound on the number
of required EPR pairs is already interesting.

3.3.2 Upper and lower bounds
In this section, we present upper and lower bounds on the number of pipes required
to compute some particular (classes of) functions in the garden-hose model. We
first give a simple upper bound on GH (f) which is implicitly proven in the attack
on Scheme II in [KMS11].

3.3.3. Proposition. For every Boolean function f : {0, 1}n × {0, 1}n → {0, 1},
the garden-hose complexity GH (f) is at most 2n + 1.

Proof. We identify {0, 1}n with {1, . . . , 2n} in the natural way. For s = 2n+1 and
the resulting bipartite graph (A◦ ∪ B,E), we can define EA◦ and EB as follows.
EA◦(x) is set to {(0,x)}, meaning that Alice connects the tap with the pipe labeled
by her input x. To define EB, group the set Z(y) = {a ∈ {0, 1}n : f(a, y) = 0}
arbitrarily into disjoint pairs {a1, a2} ∪ {a3, a4} ∪ . . .∪ {a`−1, a`} and set EB(y) =
{{a1, a2}, {a3, a4}, . . . , {a`−1, a`}}. If ` = |Z(y)| is odd so that the decomposition
into pairs results in a left-over {a`}, then a` is connected with the “reserve” pipe
labeled by 2n + 1.

By construction, if x ∈ Z(y) then x = ai for some i, and thus pipe x = ai is
connected on Bob’s side with pipe ai−1 or ai+1, depending on the parity of i, or
with the “reserve” pipe, and thus π(x, y) is of the form π(x, y) = (0,xA,xB, vB, vA),

3In addition to the number of pipes, one might have to account for the size of the entangled
state as well.

36 Chapter 3. The garden-hose model

ending in A◦. On the other hand, if x 6∈ Z(y), then pipe x is not connected on
Bob’s side, and thus π(x, y) = (0,xA,xB), ending in B. This proves the claim.

We notice that we can extend this proof to show that the garden-hose complexity
GH (f) is at most 2D(f)+1 − 1, where D(f) is the deterministic communication
complexity of f .

3.3.4. Proposition. The garden-hose complexity GH (f) of any function f is
at most 2D(f)+1 − 1, where D(f) is the deterministic communication complexity
of f .

Proof. Consider a protocol where Alice and Bob alternate in sending one bit.
The pipes between Alice and Bob are labeled with all possible non-empty strings
of length up to D(f), with one extra reserve pipe.

Let Av(x) be the bit Alice sends after seeing transcript v ∈ {0, 1}∗ given input
x and let Bv(x) be the bit Bob sends after a transcript v on input y. (Since Alice
and Bob alternate, Alice sends a bit on even length transcripts, while Bob sends
when the transcript has odd length.) Alice connects the tap to 0 or 1 depending
on the first sent bit. Then, Alice makes connections

{{v, vAv(x)} | v ∈ {0, 1}∗with |v| even and 1 ≤ |v| ≤ D(f)} .

Here vAv(x) is the concatenation of v and Av(x). Bob’s connections are given by
the set

{{v, vBv(x)} | v ∈ {0, 1}∗with |v| odd and 1 ≤ |v| ≤ D(f)} .

Now, for all transcripts of length D(f), Alice knows the function outcome. (As-
sume D(f) is even for simplicity.) For those 2D(f) pipes she can route the water
to the correct side by connecting similar outcomes, as in the proof of Propo-
sition 3.3.3, using one extra reserve pipe. This brings the total used pipes to
1 +∑D(f)

i=1 2i = 2D(f)+1− 1. The correctness can be verified by comparing the path
of the water to the communication protocol: the label of the pipe the water is
in, when following it through the pipes for r “steps”, is exactly the same as the
transcript of the communication protocol when executing it for r rounds.

3.3.5. Definition. We call a function f injective for Alice, if for every two
different inputs x and x′ there exists y such that f(x, y) 6= f(x′, y). We define
injective for Bob in an analogous way: for every y 6= y′, there exists x such that
f(x, y) 6= f(x, y′) holds.

3.3.6. Proposition. If f is injective for Bob or f is injective for Alice, then

GH (f) log(GH (f)) ≥ n .

3.3. The garden-hose model 37

Proof. We give the proof when f is injective for Bob. The proof for the case
where f is injective for Alice is the same. Consider a garden-hose protocol G that
computes f . Let s be its size s(G). Since, on Bob’s side, every pipe is connected
to at most one other pipe, there are at most ss = 2s log(s) possible choices for
EB(y), i.e., the set of connections on Bob’s side. Thus, if 2s log(s) < 2n, it follows
from the pigeonhole principle that there must exist y and y′ in {0, 1}n for which
EB(y) = EB(y′), and thus for which G(x, y) = G(x, y′) for all x ∈ {0, 1}n. But
this cannot be since G computes f and f(x, y) 6= f(x, y′) for some x due to the
injectivity for Bob. Thus, 2s log(s) ≥ 2n which implies the claim.

We can use this result to obtain an almost linear lower bound for several
functions that are often studied in communication complexity settings such as:

• Bitwise inner product: IP(x, y) = ∑
i xiyi (mod 2)

• Equality: EQ(x, y) = 1 if and only if x = y

• Majority: MAJ(x, y) = 1 if and only if ∑i xiyi ≥ dn2 e

The first two of these functions are injective for both Alice and Bob, while majority
is injective for inputs of Hamming weight at least n/2, giving us the following
corollary.

3.3.7. Corollary. The functions bitwise inner product, equality and majority
have garden-hose complexity in Ω(n

log(n)).

By considering the water pipes that actually get wet, one can show a lower
bound of n pipes for equality [Pie11]. On the other hand, we can show upper
bounds that are linear for the bitwise inner product and equality, and quadratic
in case of majority. For illustration, we will present explicit constructions for
the equality and inner product function. A simple O(n2) construction for the
majority function can be found in the author’s Master’s thesis [Spe11], this was
later improved to almost-linear by Klauck and Podder [KP14].

3.3.8. Proposition. In the garden-hose model, the equality function4 can be
computed with 3n + 1 pipes and the bitwise inner product can be computed with
4n+ 1 pipes.

3.3.3 Equality
For a graphical depiction of the protocol, see Figure 3.3. As initialization, Alice
first connects the source to pipe R0, effectively letting Bob start with the water.

4Also see later follow-up results by different authors [Mar14, CSWX14], that improve on
these bounds.

38 Chapter 3. The garden-hose model

We repeat the same pattern, for every i from 1 to n. If y = 0, Bob connects
pipe Ri−1 to pipe Q0

i , and on y = 1, Bob connects pipe Ri−1 to pipe Q1
i . On the

other side, Alice connects Ri to Q0
i if x = 0 and she connects Ri to Q1

i instead, if
x = 1.

If x and y are different on bit j, then Qyj
j stays unconnected, so the water will

flow out on Alice’s side, right there. If x and y are equal this situation will never
happen, so the water will exit at Rn, on Bob’s side. The strategy uses 3n + 1
pipes, so we have shown that

GH (EQ) ≤ 3n+ 1.

Q1
i

xi = 0 xi = 1

Alice

yi = 0 yi = 1

Bob
Equality

Start:

For every bit i from 1 to n:

Ri−1

Q0
i

Ri

R0

Source

Figure 3.3: Garden-hose protocol for the equality function.

3.3.4 Inner product
The protocol for inner product is drawn in Figure 3.4. Recall that the inner-
product function is defined as IP(x, y) = ∑

i xiyi (mod 2). Consider the following

3.3. The garden-hose model 39

simple algorithm to calculate the bitwise inner product: Initialize a one-bit result
register with the value 0, let i step from 1 to n, and flip the register bit whenever
the AND of xi and yi equals 1. The garden-hose protocol follows a strategy
inspired by this idea.

To start, Alice connects the source to Q0
k, with k the first index for which

xk = 1. For every i from 1 to n, there are four pipes. If yi = 0, Bob connects Q0
i

to R0
i and Q1

i to R1
i . If y = 1, Bob instead connects Q0

i to R1
i and Q1

i to R0
i .

Alice does not make any new connections if xi = 0, and if xi = 1 she connects
R0
i and R1

i to R0
k and R1

k respectively, with k the next index for which xk = 1. If
xi is the last bit of x equal to 1, Alice does nothing with R0

i and connects R1
i to

the pipe labeled End.
To see why this construction works, we can compare it to the simple algorithm

described earlier. The water flowing through Rb
i corresponds to the result register

having value b after step i of the algorithm, and the water changes from the top to
bottom pipe, or vice versa, when xi = yi = 1. At the last index k for which xk = 1,
the water flows to Alice through the pipe corresponding to the final function value.
Alice leaves R0

k unconnected, so the water exits at Alice’s side if IP(x, y) = 0. She
connects R1

k to the pipe End, which is unconnected on Bob’s side, making the
water exit at Bob’s side if IP(x, y) = 1.

The strategy uses 4n+ 1 pipes, letting us upper bound the garden-hose com-
plexity with

GH (IP) ≤ 4n+ 1.

3.3.5 Lower bounds
3.3.9. Proposition. There exist functions f : {0, 1}n × {0, 1}n → {0, 1} for
which GH (f) is exponential.

Proof. The existence of functions with an exponential garden-hose complexity
can be shown by a simple counting argument. There are 222n different functions
f(x, y). For a given size s = s(G) of G, for every x ∈ {0, 1}n, there are at most
(s+1)s+1 ways to choose the connections EA◦(x) on Alice’s side, and thus there are
at most ((s+1)s+1)2n = 22n(s+1) log(s+1) ways to choose the function EA◦ . Similarly
for EB, there are at most 22ns log(s) ways to choose EB. Thus, there are at most
22·2n(s+1) log(s+1) ways to choose G of size s. Clearly, in order for every function f to
have a G of size s that computes it, we need that 2 ·2n(s+1) log(s+1) ≥ 22n, and
thus that (s+ 1) log(s+ 1) ≥ 2n−1, which means that s must be exponential.

We can extend this result, with the same choice as functions as [BCP+13], to
show a hierarchy of functions that can be computed depending on the number of
pipes:

40 Chapter 3. The garden-hose model

Alice

yi = 0 yi = 1

Bob

Inner product

Start:

For every bit i from 1 to n:

Q0
k, for the first k s.t. xk = 1

Q1
i

R0
i

R1
i

Q0
k, for the next k s.t. xk = 1

Q1
k, for the next k s.t. xk = 1

When there is no next (end):

Alice connects R1
i to End instead

End

Q0
i

(Alice does nothing if xi = 0)

Source

Figure 3.4: Garden-hose protocol for the inner-product function.

3.3.10. Proposition. Given any natural numbers s and s′ such that s′ > 2(s+
1) log(s+1)+1 and s′ ≤ 2n+1, there exist functions f : {0, 1}n×{0, 1}n → {0, 1}
that can be computed by s′ pipes but can not be computed by s pipes.

Proof. Let #f(s) denote the number of 2n-bit functions for which there exists a

3.3. The garden-hose model 41

garden-hose protocol with s pipes. From the proof of Proposition 3.3.9, we know
that #f(s) ≤ 22(s+1) log (s+1)2n .

To show a lower bound on the number of functions #f(s′), note that the
construction of Proposition 3.3.3 only depends on the 2n different possibilities of
Alice’s input x, and has no dependence on the length of Bob’s input y.

We will count all functions f : {0, 1}n × {0, 1}n → {0, 1} that are only non-
trivial for the first s′ − 1 possible values of x, and are 0 otherwise. There are
2(s′−1)2n such n-bit functions: since x can take (s′ − 1) different values, and y can
take all 2n possibilities, we consider (s′ − 1)2n input pairs, and for each pair the
function can have output value either 0 or 1. Each of these functions has a simple
garden-hose protocol using s′ pipes, by the construction of Proposition 3.3.3.

There exists a function which has a garden-hose protocol with s′ pipes but not
with s pipes whenever #f(s) < #f(s′), which, filling in the earlier upper and
lower bounds, is implied by

22(s+1) log (s+1)2n < 2(s′−1)2n ,

that is, when 2(s+ 1) log (s+ 1) < s′ − 1.

A natural class of functions we might use in cryptographic settings are those
of the form

f(x, y) = g(x⊕ y) ,

where we start with some n-bit function and turn it into a 2n-bit function by
taking the XOR of the inputs x and y. There are specific functions of this form
that we can lower bound using the observation of Proposition 3.3.12, for example
functions which depend on the Hamming distance of these strings [AGSU15], but
one could also wonder whether there exist functions of this type with exponential
garden-hose complexity. It is possible to show (again via a simple observation
and a counting argument) that there exists a promise problem for which it is the
case [Sze12].

3.3.11. Proposition. There exist (partial) functions f : {0, 1}n × {0, 1}n →
{0, 1} such that f(x, y) = g(x⊕ y) for some g : {0, 1}n → {0, 1} for which GH (f)
is exponential.

Proof. Consider functions with a promise that x = (x′, 0n/2) and y = (0n/2, y′).
Say Alice and Bob share s pipes between them. There are 22n functions f =
g(x⊕ y) = g(x′, y′) of this form, one for any function g, but with this promise
Alice and Bob have only 2s log s2n/2 different strategies each. Then we need that
22n ≤ (2s log s2n/2)2 and therefore s needs to be exponential.

In general, garden-hose protocols can be transformed into (one-way) com-
munication protocols by Alice sending her connections EA◦(x) to receiver Bob,
which will require at most GH (f) log(GH (f)) bits of communication. Bob can

42 Chapter 3. The garden-hose model

then locally compute the function by combining Alice’s message with EB(y) and
checking where the water exits.5 We summarize this observation in the following
proposition.

3.3.12. Proposition. Let D1(f) denote the deterministic one-way communica-
tion complexity of f . Then,

D1(f) ≤ GH (f) log(GH (f)) .

As a consequence, lower bounds on the communication complexity carry over to the
garden-hose complexity (up to logarithmic factors). Notice that this technique will
never give lower bounds that are better than linear, as problems in communication
complexity can always be solved by sending the entire input to the other party.
It remains an interesting open problem to show super-linear lower bounds in the
garden-hose model . The majority function was named as a likely candidate for
needing a super-linear number of pipes in the original paper that presented the
garden-hose model [BFSS13], but recently Klauck and Podder showed that an
O(n log3 n) garden-hose protocol for the function exists [KP14].

3.3.6 Polynomial garden-hose complexity and log-space
computations

A family of Boolean functions {fn}n∈N is log-space computable if there exists a
deterministic Turing machine M and a constant c, such that for any n-bit input
x, M outputs the correct output bit fn(x), and at most c · log n locations of M ’s
work tapes are ever visited by M ’s head during computation.

3.3.13. Definition. We define the complexity class L(2), called logarithmic space
with local pre-processing, to be the class of Boolean functions f(x, y) for which
there exists a Turing machine M and two arbitrary functions α(x), β(y), such
that6 M(α(x), β(y)) = f(x, y) andM(α(x), β(y)) runs in space logarithmic in the
size of the original inputs |x|+ |y|.

This definition can be extended in a natural way by considering Turing ma-
chines and circuits corresponding to various complexity classes, and by varying
the number of players. For example, a construction as in Proposition 3.3.3 and
a similar reasoning as in Proposition 3.3.17 below can be used to show that

5In fact, garden-hose protocols can even be transformed into communication protocols in
the more restrictive simultaneous-message-passage model, or SMP, where Alice and Bob send
simultaneous messages consisting of their connections EA◦(x) and EB(y) to the referee who
then computes the function. The according statements of Propositions 3.3.12, 3.4.5 and 3.5.1
can be derived analogously.

6For simplicity of notation, we give two arguments to the Turing machine whose concatenation
(α(x),β(y)) is interpreted as the input.

3.3. The garden-hose model 43

every Boolean function is contained in PSPACE(2). As main result of this sec-
tion, we show that our newly defined class L(2) is equivalent to functions with
polynomial garden-hose complexity. We leave it for future research to study in-
termediate classes such as AC0

(2) which are related to the polynomial hierarchy of
communication complexity [BFS86].

3.3.14. Theorem. The set of functions f with polynomial garden-hose complex-
ity GH (f) is equal to L(2).

The two directions of the theorem follow from Theorem 3.3.15 and Proposi-
tion 3.3.17.

3.3.15. Theorem. If f : {0, 1}n×{0, 1}n → {0, 1} is log-space computable, then
GH (f) is polynomial in n.

Our proof explicitly encodes the configuration graph of a Turing machine, and
then lets the water follow the computation. A different feasible proof strategy,
which we do not follow here, would be to first use the completeness of multiplication
of permutations, elements of Sn, for L, under suitable reductions [CM87, IL95],
because of the close relation between the garden-hose model and permutations.

Proof. LetM be a deterministic Turing machine deciding f(x, y) = 0. We assume
that M ’s read-only input tape is of length 2n and contains x on positions 1 to n
and y on positions n+ 1 to 2n. By assumption M uses logarithmic space on its
work tapes.

In this proof, a configuration of M is the location of its tape heads, the state
of the Turing machine and the content of its work tapes, excluding the content of
the read-only input tape. This is a slightly different definition than usual, where
the content of the input tape is also part of a configuration. When using the
normal definition (which includes the content of all tapes), we will use the term
total configuration. Any configuration of M can be described using a logarithmic
number of bits, because M uses logarithmic space.

A Turing machine is called deterministic, if every total configuration has a
unique next configuration. A Turing machine is called reversible, if in addition
to being deterministic, every total configuration also has a unique predecessor. It
was shown by Lange, McKenzie and Tapp that any S(n) space-bounded determin-
istic Turing machine can be simulated by a reversible Turing machine in space
O(S(n)) [LMT97]. This means that without loss of generality, we can assume M
to be a reversible Turing machine, which is crucial for our construction.

Any state of the Turing machine is either moving, meaning that the tape
head moves, or stationary. The proof of [LMT97] also immediately gives us
the convenient property that all moving states are oblivious, meaning that the
direction that the tape head moves is only determined by the state of the Turing
machine, and not the contents under the tape head.

44 Chapter 3. The garden-hose model

Alice’s and Bob’s strategies in the garden-hose model are as follows. They
list all (moving) configurations where the head of the input tape is on position n
and about to move to position n + 1. Let us call the set of these configurations
CA→B. Let CB→A be the analogous set of configurations where the input tape
head is on position n + 1 and is about to move to position n. Because M is
oblivious on the moving configurations, these sets depend only on the function f ,
but not on the input pair (x, y). The number of elements of CA→B and CB→A is at
most polynomial, being exponential in the description length of the configurations.
Now, for every element in CA→B and CB→A, the players label a pipe with this
configuration. Also label |CB→A| pipes ACCEPT and |CA→B| of them REJECT.
These steps determine the number of pipes needed, Alice and Bob can do this
labeling beforehand.

For every configuration in CB→A, with corresponding pipe p, Alice runs the
Turing machine starting from that configuration until it either accepts, rejects, or
until a configuration from CA→B is encountered, i.e., until the head is about to
move to position n + 1. If the Turing machine accepts, Alice connects p to the
first free pipe labeled ACCEPT. On a reject, she leaves p unconnected. If the tape
head of the input tape is about to move to position n+ 1, she connects p to the
pipe from CA→B corresponding to the configuration of the Turing machine she is
simulating. By her knowledge of x, Alice knows the content of the input tape on
positions 1 to n, but not the other half. Alice also runs M from the starting
configuration, connecting the water tap to a target pipe with a configuration from
CA→B depending on the reached configuration.

Bob connects the pipes labeled by CA→B in an analogous way: He runs the
Turing machine starting with the configuration with which the pipe is labeled
until it halts or the position of the input tape head is about to move to n. On
accepting, the pipe is left unconnected and if the Turing machine rejects, the pipe
is connected to one of the pipes labeled REJECT. Otherwise, the pipe is connected
to the one labeled with the configuration in CB→A, the configuration the Turing
machine is in when the head on the input tape is moving to n.

In the garden-hose model, only one-to-one connections of pipes are allowed.
Therefore, to check that the described strategy is a valid one, the simulations of
two different configurations from CB→A should never reach the same configuration
in CA→B and vice-versa. This is guaranteed by the reversibility of M as follows.
Consider Alice simulating M starting from different configurations c, c′ ∈ CB→A.
We have to check that their simulation can not end at the same d ∈ CA→B,
because Alice can not connect both pipes labeled c and c′ to the same d. Because
M is reversible, we can in principle also simulate M backwards in time starting
from a certain configuration. In particular, Alice can simulate M backwards
starting with configuration d, until the input tape head position reaches n + 1.
The configuration of M at that time can not simultaneously be c and c′, so there
will never be two different pipes trying to connect to the pipe labeled d.

It remains to show that, after the players link up their pipes as described, the

3.3. The garden-hose model 45

water comes out on Alice’s side if M rejects on input (x, y), and that otherwise
the water exits at Bob’s. We can verify the correctness of the described strategy
by comparing the flow of the water directly to the execution of M . Every pipe
the water flows through corresponds to a configuration ofM when it runs starting
from the initial state. So the side on which the water finally exits also corresponds
to whether M accepts or rejects.

In the garden-hose model, we allow Alice and Bob to locally pre-process their
inputs before computing their wiring. Therefore, it immediately follows from
Theorem 3.3.15 that any function f in L(2) has polynomial garden-hose complexity,
proving one direction of Theorem 3.3.14.

We saw in Proposition 3.3.9 that there exist functions with large garden-hose
complexity. However, a negative implication of Theorem 3.3.15 is that proving
the existence of a polynomial-time computable function f with exponential garden-
hose complexity is at least as hard as separating L from P, a long-standing open
problem in complexity theory.

3.3.16. Corollary. If there exists a function f : {0, 1}n × {0, 1}n → {0, 1}
in P that has super-polynomial garden-hose complexity, then P 6= L.

It remains to prove the other inclusion of Theorem 3.3.14.

3.3.17. Proposition. Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function.
If GH (f) is polynomial (in n), then f is in L(2).

Proof. Let G be the garden-hose protocol that achieves s(G) = GH (f). We write
s for s(G), the number of pipes, and we let EA◦ and EB be the underlying edge-
picking functions, which on input x and y, respectively, output the connections
that Alice and Bob apply to the pipes. Note that by assumption, s is polynomial.
Furthermore, by the restrictions on EA◦ and EB, on any input, they consist of at
most (s+ 1)/2 connections.

We need to show that f is of the form f(x, y) = g(α(x), β(y)), where α and
β are arbitrary functions {0, 1}n → {0, 1}m, g : {0, 1}m × {0, 1}m → {0, 1} is
log-space computable, and m is polynomial in n. We define α and β as follows.
For any x, y ∈ {0, 1}n, α(x) is simply a natural encoding of EA◦(x) into {0, 1}m,
and β(y) is a natural encoding of EB(y) into {0, 1}m. In the hose-terminology we
say that α(x) is a binary encoding of the connections of Alice, and β(y) is a binary
encoding of the connections of Bob. Obviously, these encodings can be done with
m of polynomial size. Given these encodings, finding the endpoint of the maximum
path π(x, y) starting in 0 can be done with logarithmic space: at any point during
the computation, the Turing machine only needs to maintain a pointer to the
position of the water and a binary flag to remember on which side of the input
tape the head is. Thus, the function g that computes g(α(x), β(y)) = f(x, y) is
log-space computable in m and thus also in n.

46 Chapter 3. The garden-hose model

We also note the connection between the notion of computation with local
preprocessing, the garden-hose model, and the recent work on space-bounded
communication complexity, first defined by Brody et al. [BCP+13]. This connection
was made more explicit in the thesis of Song [Son14], as a result of discussions
between Song, Buhrman and Speelman in January 2014 at CWI in Amsterdam.
In particular, it was shown that the class of functions with polynomial garden-hose
complexity, directly corresponds to the functions that have multi-round two-way
space-bounded communication protocols that use logarithmic space.

3.4 Randomized garden-hose complexity
It is natural to study the setting where Alice and Bob share a common random
string and are allowed to err with some probability ε. More formally, we let the
players’ local strategies EA◦(x, r) and EB(y, r) depend on the shared random-
ness r and write Gr(x, y) = f(x, y) if the resulting garden-hose protocol Gr(x, y)
computes f(x, y).

3.4.1. Definition. Let r be the shared random string. The randomized garden-
hose complexity of a Boolean function f : {0, 1}n×{0, 1}n → {0, 1} is the size s(Gr)
of the smallest garden-hose protocolGr such that ∀x, y : Prr[Gr(x, y) = f(x, y)] ≥
1− ε. We denote this minimal size by GHε(f).

By repeating the protocol a polynomial number of times the error probability
can be made exponentially small.

3.4.2. Proposition. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function such that
GHε(f) is polynomial in n, with error ε ≤ 1

2 −n
−c for a constant c > 0. For every

constant d > 0 there exists a polynomial q(·) such that GH 2−nd (f) ≤ q
(
GHε(f)

)
.

Proof. The new protocol G′r(x, y) takes the majority of k = 8n2c+d outcomes of
Gri(x, y) where r1, . . . , rk are k independent and uniform samples of the random
string. We have to establish (i) that taking the majority of k instances of the
original protocol indeed gives the correct outcome with probability at least 1−2−nd

and (ii) that G′r(x, y) requires only polynomial pipes.

(i) Let Xi be the random variable that equals 1 when Gri(x, y) = f(x, y)
and 0 otherwise. Note that the Xi are independent and identically distributed
random variables with expectation E[Xi] ≥ 1−ε =: p. Whenever∑k

i=1Xi ≥ k
2

the protocol gives the correct outcome. Use the Chernoff bound to get

Pr
[
k∑
i=1

Xi < (1− ζ)pk
]
≤ e−

ζ2
2 pk

3.4. Randomized garden-hose complexity 47

for any small ζ. Picking ζ = n−c, so that (1− ζ)pk is still greater than k
2 , and

filling in k, we can upper bound the probability of failure by

e−
8n2c+d

2n2c p ≤ 2−nd

(ii) In Theorem 3.3.15 we show that any log-space computable function can be
simulated by a polynomial-sized garden-hose strategy. Thus, if checking the
majority of k garden-hose strategies can be done in logarithmic space (after
local pre-computations by Alice and Bob), then G′r(x, y) can be computed
using a polynomial number of pipes.
Let Ai = EA◦(x, ri) be the local wiring of Alice for strategy G on input x with
randomness ri, and let Bi = EB(y, ri). Alice locally generates (A1, . . . ,Ak) and
Bob locally generates (B1, . . . ,Bk). In the proof of Proposition 3.3.17 it was
shown that simulating the outcome of a single garden-hose strategy (Ai,Bi)
can be done in logarithmic space. Here we follow the same construction, but
instead of getting the outcome of a single strategy we simulate all k strategies.
This can still be done in logarithmic space, since we can re-use the memory
needed to simulate each of the k strategies. To find the majority, we need to
add a counter to keep track of the simulation outcomes, using only an extra
log k bits of space.

Using this result, any randomized strategy can be turned into a deterministic
strategy with only a polynomial overhead in the number of pipes.

3.4.3. Proposition. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function such that
GHε(f) is polynomial in n and ε ≤ 1

2 − n
c for a constant c > 0. Then there exists

a polynomial q(·) such that GH (f) ≤ q
(
GHε(f)

)
.

Proof sketch. By Proposition 3.4.2 there exists a randomized garden-hose protocol
Gr(x, y) of size q(GHε(f)) with error probability at most 2−2n−1. The probability
for a random string r to be wrong for all inputs is at most 22n · 2−2n−1 < 1, by the
union bound. In particular, there exists a string r̂ which works for every input
(x, y).

Using this Proposition 3.4.3, we conclude that the lower bound from Proposi-
tion 3.3.9 carries over to the randomized setting.

3.4.4. Corollary. There exist functions f : {0, 1}n×{0, 1}n → {0, 1} for which
GHε(f) is exponential.

With the same reasoning as in Proposition 3.3.12, we get that lower bounds on
the randomized one-way communication complexity with public shared random-
ness carry over to the randomized garden-hose complexity (up to a logarithmic
factor).

48 Chapter 3. The garden-hose model

3.4.5. Proposition. Let R1,pub
ε (f) denote the minimum communication cost of

a one-way-communication protocol which computes f with an error ε using public
shared randomness. Then, R1,pub

ε (f) ≤ GHε(f) log(GHε(f)).

For instance, the linear lower bound Rpub
ε (IP) ∈ Ω(n) from [CG88] for the inner-

product function yields GHε(IP) ∈ Ω(n
logn).

3.5 Quantum garden-hose complexity
Let us consider the setting where Alice and Bob share an arbitrary entangled quan-
tum state besides their water pipes. Depending on their respective inputs x and y,
they can perform local quantum measurements on their parts of the entangled
state and wire up the pipes depending on the outcomes of these measurements.
We denote the resulting quantum garden-hose complexity with GH Q(f) in the
deterministic case and with GH Q

ε (f) if errors are allowed.
With the same reasoning as in Proposition 3.3.12, we get that lower bounds

on the entanglement-assisted one-way communication complexity carry over to
the quantum garden-hose complexity (up to a logarithmic factor).

3.5.1. Proposition. For ε ≥ 0, let Q1
ε(f) denote the minimum cost of an

entanglement-assisted one-way communication protocol which computes f with
an error ε. Then, Q1

ε(f) ≤ GH Q
ε (f) log(GH Q

ε (f)).

For instance, the lower bound on the bounded-error one-round quantum com-
munication complexity Q1

ε(IP) ∈ Ω(n) which follows from results in [CDNT98]
gives GH Q

ε (IP) ∈ Ω(n/ log n). For the disjointness function, Q1
ε(DISJ) ∈ Ω(

√
n)

from [Raz03] implies GH Q
ε (DISJ) ∈ Ω(

√
n/ log n).

Here we present partial functions which give a separation between the quantum
and classical garden-hose complexity in the deterministic and in the randomized
setting. This shows that adding randomness or shared quantum correlations can
make the garden-hose model more powerful. The proofs are direct translations of
earlier separations in communication complexity by Buhrman, Cleve and Wigder-
son [BCW98] and Gavinsky, Kempe, Kerenidis, Raz and de Wolf [GKK+07].

3.5.2. Theorem. There exist partial Boolean functions f and g such that

1. GH Q(f) ∈ O(log n) and GH (f) ∈ Ω(n
logn),

2. GH Q
ε (g) ∈ O(log n) and GHε(g) ∈ Ω(

√
n

logn).

3.5.1 Deterministic setting
Using techniques from [BCW98], we show a separation between the garden-hose
model and the quantum garden-hose model in the deterministic setting for the

3.5. Quantum garden-hose complexity 49

function EQ′, defined as:

EQ′(x, y) =
{

1 if ∆(x, y) = 0 ,
0 if ∆(x, y) = n/2 ,

where ∆(x, y) denotes the Hamming distance between two n-bit strings x and y.
We show that the zero-error quantum garden-hose complexity ofEQ′ is logarithmic
in the input length.

3.5.3. Theorem. GH Q(EQ′) ∈ O(log n).

Proof. Alice and Bob start with the fully entangled quantum state of log n qubits,
i.e. with 1√

n

∑n−1
i=0 |i〉|i〉. Counting indices of the input bits from 0 to n− 1, Alice

gives a phase of −1 to state |i〉 whenever xi = 0 and Bob does the same thing
with his half when the bit yi = 0, yielding the state

1√
n

n−1∑
i=0

(−1)xi+yi |i〉|i〉 .

After both Alice and Bob perform a Hadamard transformation on their qubits,
we obtain

1
n
√
n

∑
i

∑
a,b

(−1)xi+yi(−1)a·i(−1)b·i|a〉|b〉 .

So the probability pa,b of obtaining outcome a, b when measuring in the com-
putational basis is

pa,b = 1
n3

∣∣∣∣∣∑
i

(−1)xi+yi+(a+b)·i
∣∣∣∣∣
2

If x = y, then pa,b = 0 wherever a 6= b. If ∆(x, y) = n/2, then pa,b = 0 wherever
a = b. It follows that EQ′(x, y) = EQ(a, b) — determining the equality of the
n-bit strings x and y is equivalent to computing the equality of the log(n)-bit
strings a and b. The garden-hose protocol for equality needs a number of pipes
that is linear in the input size. After the quantum steps above, Alice and Bob
can use O(log n) water pipes to compute EQ(a, b).

We can also show that the deterministic classical garden-hose complexity has
an almost-linear lower bound.

3.5.4. Theorem. GH (EQ′) ∈ Ω(n
logn)

Proof. Theorem 1.7 of [BCW98] shows that the zero-error classical communication
complexity of EQ′ is lower bounded by Ω(n). The statement then follows from
Proposition 3.3.12.

50 Chapter 3. The garden-hose model

3.5.2 Randomized setting
The Noisy Perfect Matching problem (NPM) is a variant of the Boolean Hidden
Matching introduced in [GKK+07] where they prove an exponential gap between
the classical one-way communication complexity and the quantum one-way com-
munication complexity of NPM. We adapt the given quantum one-way protocol
to our setting, showing that the quantum garden-hose complexity is only loga-
rithmic. This gives a separation between the classical and quantum garden-hose
complexity of a partial function in the randomized setting.

The NPM problem is described as follows:7

Alice’s input: x ∈ {0, 1}2n.

Bob’s input: a perfect matching M on {1, . . . , 2n} and a string w ∈ {0, 1}n.
The matching M consists of n edges, e1 = (i1, j1), . . . , en = (in, jn).

Promise: ∃b ∈ {0, 1} such that ∆(M · x ⊕ bn,w) ≤ n/3, where ∆(·, ·) is the
Hamming distance and the k-th bit of the n-bit string M ·x equals xik ⊕xjk .

Function value: b.

Informally, the question asked is whether the parity on the edges of M , where the
vertices are entries of x, is close to the parities specified by w, or not.

3.5.5. Theorem. GH Q(NPM) ∈ O(log n).

Proof. Alice and Bob use log(2n) EPR pairs as quantum state |ψ〉 = 1√
2n
∑2n−1
i=0 |i〉|i〉.

Alice inserts her input bits x = x0 . . . x2n−1 as phases of the shared superposition,
yielding the shared state

1√
2n

2n−1∑
i=0

(−1)xi |i〉A|i〉B .

Bob performs the following measurement: he uses projectors Pk = |ik〉〈ik|B +
|jk〉〈jk|B corresponding to the n edges. As they form a perfect matching, we have∑n
k=1 Pk = I and PkPk′ = δkk′Pk, so {Pk}k is a valid orthogonal measurement.

Let us denote Bob’s measurement outcome by `. Setting i := i` and j := j`, the
post-measurement state is

(−1)xi|i〉A|i〉B + (−1)xj |j〉A|j〉B .

Alice then performs a Hadamard transform H⊗2n ⊗ I on her part of the state,
resulting in

2n−1∑
a=0
|a〉A

[
(−1)xi+a·i|i〉B + (−1)xj+a·j|j〉B

]
.

7For this example, we deviate from the earlier convention of giving two n-bit strings as input
to the players.

3.6. Lower bounds on quantum resources to perfectly attack PVqubit 51

Alice measures her register in the computational basis and obtains outcome a.
Bob performs a Hadamard gate on basis states |i〉B and |j〉B, that is, Hi,j =
1
2(|i〉〈i|B + |i〉〈i|B + |j〉〈j|B − |j〉〈j|B), resulting in the state

|a〉A
(1

2
[
(−1)xi+a·i + (−1)xj+a·j

]
|i〉B

+1
2
[
(−1)xi+a·i − (−1)xj+a·j

]
|j〉B

)
.

and measures in the computational basis. He gets outcome i if and only if xi⊕a·i =
xj ⊕ a · j which is equivalent to xi ⊕ xj = a · (i⊕ j). In case xi ⊕ xj 6= a · (i⊕ j),
Bob gets outcome j.

After the measurements, Alice and Bob perform the garden-hose protocol for
the inner-product function described in Section 3.3.4 with a and i ⊕ j as their
respective inputs. The protocol can be easily adapted so that at the end of it, the
water will be in one particular pipe (known to Bob) on Bob’s side if a · (i⊕ j) = 0,
let us call this pipe 0-pipe. The water will be in another “1-pipe” (known to Bob)
if a · (i⊕ j) = 1. Furthermore, Bob knows from his second measurement outcome
if they are computing xi ⊕ xj or xi ⊕ xj ⊕ 1. In the first case, Bob looks at the
`-th bit of w and leaves the 0-pipe open if w` = 1 and routes the 1-pipe to Alice,
and if w` = 0 he keeps the 1-pipe open and sends back the 0-pipe. This strategy
computes the function value w` ⊕ xi ⊕ xj, with ` uniformly random in {1, . . . ,n}.
The promise guarantees that it gives the correct value b with probability at least 2

3 .
The second case (when Bob knows that a · (i ⊕ j) 6= xi ⊕ xj) is handled by the
“inverse” strategy.

3.5.6. Theorem. GHε(NPM) ∈ Ω(
√
n

logn).

Proof. Combining the lower bound on the classical one-way communication com-
plexity from [GKK+07] of Ω(

√
n) with Proposition 3.4.5 gives the statement.

3.6 Lower bounds on quantum resources to per-
fectly attack PVqubit

In Section 3.6.3, we show that for a function that is injective for Alice or injective
for Bob, according to Definition 3.3.5, the dimension of the quantum state the
adversaries need to handle (including possible quantum communication between
them) in order to attack protocol PVqubit perfectly has to be of order at least linear
in the classical input size n. In other words, they require at least a logarithmic
number of qubits in order to successfully attack PVqubit.

3.6.1. Theorem. Let f be injective for Bob. Assume that Alice and Bob perform
a perfect attack on protocol PVqubit. Then, the dimension d of the overall state
(including the quantum communication) is in Ω(n).

52 Chapter 3. The garden-hose model

In the last subsection, we show that there exist functions for which perfect
attacks on PVqubit require the adversaries to handle a polynomial amount of qubits.

3.6.2. Theorem. For any starting state |ψ〉 of dimension d, there exists a Boolean
function f on inputs x, y ∈ {0, 1}n such that any perfect attack on PVqubit requires
d to be exponential in n.

These results can be seen as first steps towards establishing the desired relation
between classical difficulty of honest actions and quantum difficulty of the actions
of dishonest players. We leave as future work the generalization of these lower
bounds to the more realistic case of imperfect attacks and also to more relevant
quantities like some entanglement measure between the players (instead of the
dimension of their shared state).

We show that for a function that is injective for Alice or injective for Bob
(according to Definition 3.3.5), the dimension of the state the adversaries need to
handle (including possible quantum communication between them) in order to
attack protocol PVqubit perfectly has to be of order at least linear in the classical
input size n. We start by showing two lemmas. The actual bound is shown in
Section 3.6.3.

In Section 3.6.4 we show that there exist functions for which perfect attacks
on PVqubit requires the adversaries to handle a polynomial amount of qubits. Do
note that not allowing the adversaries any error is not realistic for cryptographic
purposes: the proofs in this section are only a stepping stone for showing a trade-
off between the amount of classical information and the size of the quantum state
needed to execute a realistic attack on the protocol.

3.6.1 Localized qubits
Assume we have two bipartite states |ψ0〉 and |ψ1〉 with the property that |ψ0〉
allows Alice to locally extract a qubit and |ψ1〉 allows Bob to locally extract the
same qubit. Intuitively, these two states have to be different.

More formally, we assume that both states consist of five registers R,A, Ã,B, B̃
where R,A,B are one-qubit registers and Ã and B̃ are arbitrary. We assume that
there exist local unitary transformations UAÃ acting on registers AÃ and VBB̃
acting on BB̃ such that8

UAÃ

∣∣∣ψ0
〉
RAÃBB̃

= |β〉RA ⊗ |P 〉ÃBB̃ (3.1)

VBB̃

∣∣∣ψ1
〉
RAÃBB̃

= |β〉RB ⊗ |Q〉AÃB̃ , (3.2)

where |β〉RA := (|00〉RA + |11〉)RA)/
√

2 denotes an EPR pair on registers RA and
|P 〉ÃBB̃ and |Q〉AÃB̃ are arbitrary pure states.

8We always assume that these transformations act as the identities on the registers we do
not specify explicitly.

3.6. Lower bounds on quantum resources to perfectly attack PVqubit 53

3.6.3. Lemma. Let |ψ0〉, |ψ1〉 be states that fulfill (3.1) and (3.2). Then,
∣∣∣ 〈ψ0|ψ1〉

∣∣∣ ≤ 1/2 .

Proof. Multiplying both sides of (3.1) with U †
AÃ

and multiplying (3.2) with V †
BB̃

,
we can write ∣∣∣ 〈ψ0|ψ1〉

∣∣∣ =
∣∣∣ 〈β|RA〈P |ÃBB̃ UAÃ V †BB̃ |β〉RB|Q〉AÃB̃ ∣∣∣

=
∣∣∣ 〈β|RA〈P ′|ÃBB̃|β〉RB|Q′〉AÃB̃ ∣∣∣

=
∣∣∣ 〈P ′|ÃBB̃〈β|RA|β〉RB|Q′〉AÃB̃ ∣∣∣ ,

where we used that UAÃ and VBB̃ commute and defined |P ′〉ÃBB̃ := VBB̃|P 〉ÃBB̃
and |Q′〉AÃB̃ := UAÃ|Q〉AÃB̃. The last equality is just rearranging terms that act
on different registers.

Note that writing out the partial inner product between |β〉RA and |β〉RB gives

〈β|RA|β〉RB = 1
2
(
〈0|A|0〉B + 〈1|A|1〉B

)
,

where the operator in the parenthesis “transfers” a qubit from registerA to register
B. Hence,

∣∣∣ 〈ψ0|ψ1〉
∣∣∣ =

∣∣∣ 〈P ′|ÃBB̃ 1
2
(
〈0|A|0〉B + 〈1|A|1〉B

)
|Q′〉AÃB̃

∣∣∣
= 1

2 ·
∣∣∣ 〈P ′|ÃBB̃|Q′〉BÃB̃ ∣∣∣

≤ 1
2 ,

where the last step follows from the fact that the inner product between any two
unit vectors on the same registers can be at most 1.

3.6.2 Squeezing many vectors in a small space
For the sake of completeness, we reproduce here an argument similar to [NC00,
Section 4.5.4] about covering the state space of dimension d with patches of
radius ε.

3.6.4. Lemma. Let B be a set of 2n distinct unit vectors in a complex Hilbert
space of dimension d, with pairwise absolute inner product at most 1/2. Then, the
dimension d has to be in Ω(n).

54 Chapter 3. The garden-hose model

Proof. For any two vectors |v〉, |w〉, we can rotate the space such that |v〉 = |0〉
and |w〉 = cos θ|0〉+sin θ|1〉 for two orthogonal vectors |0〉 and |1〉. The Euclidean
distance between |v〉 and |w〉 can be expressed as∣∣∣ |v〉 − |w〉 ∣∣∣ = |(1− cos θ)|0〉 − sin θ|1〉|

=
√

(1− cos θ)2 + sin2 θ

=
√

1− 2 cos θ + cos2 θ + sin2 θ

=
√

2
√

1− cos θ .

If |v〉 and |w〉 have absolute inner product at most 1/2, we have that | cos θ| ≤ 1/2
and hence

∣∣∣ |v〉 − |w〉 ∣∣∣ ≥ 1. Therefore, the vectors in B have pairwise Euclidean
distance at least 1. The set of unit vectors |w〉 with Euclidean distance at most δ
from |v〉 is called patch of radius δ around |v〉. It follows that patches of radius
1/2 around every vector in the set B do not overlap.

The space of all d-dimensional state vectors can be regarded as the real unit
(2d− 1)-sphere, because the vector has d complex amplitudes and hence 2d real
degrees of freedom with the restriction that the sum of the squared amplitudes is
equal to 1. Notice that the Euclidean distance between complex vectors |v〉, |w〉
remains unchanged if we regard these vectors as points of the real unit (2d− 1)-
sphere.

The surface area of a patch of radius 1/2 near any vector is lower bounded by
the volume of a (2d− 2)-sphere of radius ε where ε is a constant slightly less than
1/2.9. We use the formula Sk(r) = 2π(k+1)/2rk/Γ((k + 1)/2) for the surface area
of a k-sphere of radius r, and Vk(r) = 2π(k+1)/2rk+1/[(k + 1) Γ((k + 1)/2)] for the
volume of a k-sphere of radius r. The total surface area of all patches, which is at
least 2n · V2d−2(ε), is not more than the total surface of the whole sphere S2d−1(1).
Inserting the formulas, we get

2n · 2πd− 1
2

ε2d−1

(2d− 1) Γ(d− 1
2) ≤ 2πd 1

Γ(d)

Using the fact that Γ(d− 1
2)

Γ(d) ≤
1
d
, we conclude that

2n ≤
√
π(2− 1

d
)ε−(2d−1) ≤ 2

√
πε−(2d−1) .

As ε < 1/2, we obtain that d has to be in Ω(n).

3.6.3 The lower bound
We consider perfect attacks on protocol PVqubit from Figure 3.1. We allow the
players one round of simultaneous quantum communication which we model as

9The patch is a “bent” version of this volume.

3.6. Lower bounds on quantum resources to perfectly attack PVqubit 55

follows. Let |ψ〉RAÃACBB̃BC be the pure state after Alice received the EPR half
from the verifier. The one-qubit register R holds the verifier’s half of the EPR
pair, the one-qubit register A contains Alice’s other half of the EPR pair, the
register Ã is Alice’s part of the pre-shared entangled state and the register AC
holds the qubits that will be communicated to Bob. The registers BB̃BC belong
to Bob where B holds one qubit and B̃ is Bob’s part of the entangled state and the
BC register will be sent to Alice. We denote by qA the total number of qubits in
registers Ã and AC and by qB the total number of qubits in B̃ and BC . The overall
state is thus a unit vector in a complex Hilbert space of dimension d := 22+qA+1+qB .

In the first step of their attack, Alice performs a unitary transform Ux depend-
ing on her classical input x on her registers AÃAC . Similarly, Bob performs a
unitary transform V y depending on y on registers BB̃BC . After the application
of these transforms, the communication registers AC and BC and the classical
inputs x and y are exchanged. A final unitary transform (performed either by
Alice or Bob) depending on both x, y “unveils” the qubit either in Alice’s register
A or in Bob’s register B.

3.6.5. Theorem. Let f be injective for Bob. Assume that Alice and Bob perform
a perfect attack on protocol PVqubit. Then, the dimension d of the overall state
(including the quantum communication) is in Ω(n).

Proof. We assume that the player’s actions are unitary transforms as described
before the theorem.

We investigate the set B of overall states after Bob performed his operation,
but before Alice acts on the state. These states depend on Bob’s input y ∈ {0, 1}n,

B :=
{
V y

BB̃BC
|ψ〉RAÃACBB̃BC : y ∈ {0, 1}n

}
.

We claim that for any two different n-bit strings y 6= y′, the corresponding two
vectors V y|ψ〉 and V y′|ψ〉 in B have an absolute inner product of at most 1/2.

Due to the injectivity of f , there exists an input x for Alice such that f(x, y) 6=
f(x, y′). Applying Alice’s unitary transform Ux to both vectors does not change
their inner product, i.e.

|〈ψ|(V y)†V y′ |ψ〉| = |〈ψ|(V y)†(Ux)†UxV y′|ψ〉| .

As f(x, y) 6= f(x, y′), the qubit has to end up on different sides. Formally, there
exist unitary transforms KAÃBC

and LBB̃AC that “unveil” the qubit in register A
or B respectively. Hence, we can apply Lemma 3.6.3 to prove the claim that the
two vectors V y|ψ〉 and V y′ |ψ〉 have an absolute inner product of at most 1/2. In
particular, all of the vectors in B are distinct. Applying Lemma 3.6.4 yields the
theorem.

56 Chapter 3. The garden-hose model

3.6.4 Functions for which perfect attacks need a large
space

Using similar arguments as above, we can show the existence of functions for
which perfect attacks require polynomially many qubits.

3.6.6. Theorem. For any starting state |ψ〉 of dimension d, there exists a Boolean
function on inputs x, y ∈ {0, 1}n such that any perfect attack on PVqubit requires
d to be exponential in n.

We believe that the statement with the reversed order of quantifiers is true
as well (but our current proof does not suffice for this purpose), so that we can
guarantee the existence of one particular function (independent of the starting
state) for which perfect attacks require large states.

Proof sketch. We consider covering the sphere with K patches of vectors whose
pairwise absolute inner product is larger than

√
3

2 (which corresponds to an Eu-
clidean distance of ε =

√
2
√

1 +
√

3/2 ≈ 0.52). This partitioning also induces a
partitioning on all possible unitary operations of Alice and Bob. We say that two
actions A and A′ are in the same patch if they take the starting state |ψ〉 to the
same patch. In other words, if two actions are in the same patch then

∣∣∣〈ψ|A′†A|ψ〉∣∣∣ ≥ √3
2 .

Claim. Given two actions of Alice A,A′ coming from the same patch i, and two
actions of Bob B,B′ coming from the same patch j, the inner product between
BA|ψ〉 and B′A′|ψ〉 has magnitude at least 1

2 .

Proof of the claim. Since Alice and Bob act on different parts of the state, their
actions commute. Write |ψA〉 := A′†A|ψ〉 and |ψB〉 := B†B′|ψ〉. Then the inner
product can be written as

〈ψ|A′†B′†BA|ψ〉 = 〈ψ|B′†BA′†A|ψ〉 = 〈ψB|ψA〉

Note that ∣∣∣〈ψ|ψA〉∣∣∣ =
∣∣∣〈ψ|A′†A|ψ〉∣∣∣ ≥ √3

2 ,

so the angle θ between |ψA〉 and |ψ〉 is at most arccos
√

3
2 = π

6 . The same holds
for the angle between |ψB〉 and |ψ〉. We can upper bound the total angle between
|ψA〉 and |ψB〉 by the sum of these angles, giving a total angle of at most π

3 . This
corresponds to a lower bound on the inner product of cos π

3 = 1
2 .

So there exists no pair of combined actions AB and A′B′, with A and A′ in
patch i and B and B′ in patch j, such that the qubit ends up on Alice’s side for

3.7. Conclusion and open questions 57

AB and on Bob’s side for A′B′. Therefore, the combination of i and j completely
determines the destination of the qubit and hence the output of the function. If
K denotes the number of patches, then there are K2n possible strategies for Alice
and K2n possible strategies for Bob. Hence, the number of combined strategies
(possibly resulting in different functions) is at most K2·2n .

It is shown in [NC00, Section 4.5.4] that we need at least K = Ω(1
εd−1) patches.

Using the same counting argument as in Proposition 3.3.9, we have that

222n ≥ Ω
(1
ε(d−1)2·2n

)
,

from which follows that for some function, d has to be exponential in n.

3.7 Conclusion and open questions
The garden-hose model is a new model of communication complexity. We con-
nected functions with polynomial garden-hose complexity to a newly defined class
of log-space computations with local pre-processing. Alternatively, the class L(2)
can also be viewed as the set of functions which can be decided in the simultaneous-
message-passing (SMP) model where the referee is restricted to log-space compu-
tations. Many open questions remain. Can we find better upper and lower bounds
for the garden-hose complexity of the studied functions? The constructions given
in [Spe11] still leave a polynomial gap between lower and upper bounds for many
functions. It would also be interesting to find an explicit function for which the
garden-hose complexity is provably super-linear or even exponential, the counting
argument in Proposition 3.3.9 only showed the existence of such functions. It
is possible to extend the basic garden-hose model in various ways and consider
settings with more than two players, non-Boolean functions or multiple water
sources. Furthermore, it is interesting to relate our findings to recent results
about space-bounded communication complexity [BCP+13].

Garden-hose complexity is a tool for the analysis of a specific scheme for
position-based quantum cryptography. This scheme requires the honest prover
to work with only a single qubit, while the dishonest provers potentially have
to manipulate a large quantum state, making it an appealing scheme to further
examine. The garden-hose model captures the power of attacks that only use
teleportation, giving upper bounds for the general scheme, and lower bounds
when restricted to these attacks.

An interesting additional restriction on the garden-hose model would involve
limiting the computational power of Alice and Bob. For example to polynomial
time, or to the output of quantum circuits of polynomial size. Bounding not only
the amount of entanglement, but also the amount of computation with a realistic
limit might yield stronger security guarantees for the cryptographic schemes.

Chapter 4
Instantaneous non-local computation of
low T-depth quantum circuits

Instantaneous non-local quantum computation requires multiple parties to jointly
perform a quantum operation, using pre-shared entanglement and a single round
of simultaneous communication. We study this task for its close connection to
position-based quantum cryptography, but it also has natural applications in the
context of foundations of quantum physics and in distributed computing. The
best known general construction for instantaneous non-local quantum computation
requires a pre-shared state which is exponentially large in the number of qubits
involved in the operation, while efficient constructions are known for very specific
cases only.

We partially close this gap by presenting new schemes for efficient instantaneous
non-local computation of several classes of quantum circuits, using the Clifford+T
gate set. Our main result is a protocol which uses entanglement exponential
in the T-depth of a quantum circuit, able to perform non-local computation of
quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-
polynomial entanglement. Our proofs combine ideas from blind and delegated
quantum computation with the garden-hose model, a combinatorial model of
communication complexity which was recently introduced as a tool for studying
certain schemes for quantum position verification. As application of our results,
we also present an efficient attack on a recently-proposed scheme for position
verification by Chakraborty and Leverrier.

The results in this chapter are also available as the following paper:

• [Spe16] Florian Speelman. Instantaneous non-local computation of low T-
depth quantum circuits. In 11th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2016), pages 9:1–
9:24, 2016.

59

60 Chapter 4. INQC of low T-depth quantum circuits

4.1 Introduction

We continue our study of position-based quantum cryptography by focusing on the
task of instantaneous non-local quantum computation, and present new protocols
to efficiently perform this task for specific classes of quantum circuits. Our main
motivation comes from position-based quantum cryptography, where previous
attacks on schemes for position-based quantum cryptography have taken either
of two forms:

First results on quantum position-based cryptography involved attacks on
specific proposals for schemes, such as the attacks by Lau and Lo [LL11], those by
Kent, Munro and Spiller [KMS11], and the attack on Beigi and König’s scheme
using mutually-unbiased-bases [Spe11]. The garden-hose model that we studied in
Chapter 3 can also be seen as an efficient attack on a concrete class of single-qubit
schemes [BFSS13]. Described as ‘fast protocols for bipartite unitary operators’,
Yu, Griffiths and Cohen [YGC12, Yu11] give protocols that, although not directly
inspired by position-based quantum cryptography, can be translated to our setting.

On the other hand, as we mentioned earlier in Section 1.1, Buhrman et
al. [BCF+11] constructed a general attack which treats the quantum functionality
of the protocol to be attacked as a black box. For a protocol which uses a mes-
sage of n qubits, the entanglement consumption of this attack is around 2log (1

ε
)24n

EPR pairs, doubly exponential in n. Here ε represents the probability that the
attack does not succeed. The construction of Buhrman et al. was based on a
protocol for ‘instantaneous non-local measurement’ by Vaidman [Vai03, CCJP10].
Beigi and König [BK11] later constructed a more efficient general attack, using
port-based teleportation – a new teleportation method introduced by Ishizaka
and Hiroshima [IH08, IH09]. The improved attack uses O(n28n

ε2) EPR pairs, still
an exponential dependence on n.

These protocols were able to solve the following task, of which we here give
an intuitive description. We present a more precise general definition of this task
in Section 4.3. Given a constant ε ≥ 0 and an n-qubit quantum operation1 U ,
where n is a natural number. Two players, Alice and Bob, receive an arbitrary
input state ρAB of n qubits, with the players receiving n/2 qubits each. After a
single round of simultaneous quantum2 communication, the players must output
a state ε-close to UρABU †. Alice outputs the first n/2 qubits of the state and Bob
outputs the other n/2 qubits. We define INQCε(U) as the smallest number of

1Our constructions only consider unitaries given by quantum circuits, but the task natu-
rally extends to more general quantum operations. The motivation for Vaidman’s original
scheme [Vai03], which formed the basis of Buhrman et al.’s construction, was to instantaneously
perform a non-local measurement. Our constructions can also be applied to that case, by writing
the measurement as a unitary operation followed by a measurement in the computational basis.

2Since restriction to classical communication is not necessarily dictated by the application
in position-based quantum cryptography, we allow quantum communication. All presented
protocols work equally well when all messages are classical instead.

4.1. Introduction 61

EPR pairs that the players have to share at the start of a protocol which performs
this task. INQC(U) is used as a shorthand for INQC0(U), a protocol which works
with no error.

Any protocol for quantum position verification has to be easy to implement for
honest parties, to be usable in practice. The hardness of a quantum computation
is commonly analyzed in terms of properties of the associated quantum circuit,
such as the size or depth.

In this chapter, we will partially bridge the gap between efficient specific
constructions for instantaneous non-local computation and expensive general ones,
by constructing a protocol for non-local computation of a unitary transformation
U such that the entanglement use of the protocol depends on the quantum circuit
which describes U .

In particular, we will write quantum circuits over the Clifford+T gate set, and
create a protocol using entanglement exponential in the T-count. We will also
create a protocol that uses an amount of entanglement which is exponential in
the T-depth of the circuit, where the number of qubits n is part of the base of
the dependence. Even though this is a quickly-growing dependence, for circuits
of constant T-depth this amounts to a polynomial dependence on n, unlike any
earlier construction. For circuits of polylogarithmic T-depth we obtain an amount
of entanglement which is quasi-polynomial in n, i.e. a dependence of the form
2(logn)c for some constant c. Note that the depth and size of the quantum circuit
can be much higher than its T-depth—we allow an arbitrary number of gates from
the Clifford group besides the limited number of T gates. Our results therefore
imply new efficient attacks on any scheme for position-verification where the action
of the honest party can be written as a low T-depth quantum circuit.

Linking blind quantum computation and instantaneous non-local quantum
computation was first considered by Broadbent3 [Bro15b], who considered a setting
where the parties have access to non-local boxes – correlations even stronger than
those allowed by quantum mechanics. The techniques we use are also based
on delegated and blind quantum computation [Chi05, AS06, DNS10, FBS+14,
Bro15a] and results on computation via teleportation [GC99], but we combine
them with new ideas from the garden-hose model [BFSS13, KP14]. We introduced
the garden-hose model in the previous chapter as a combinatorial model for
communication complexity, inspired by attacks on a very specific class of schemes
for position verification.

In this chapter we prove two main theorems, each improving on the entangle-
ment consumption of the best known previous constructions for non-local instan-
taneous quantum computation for specific circuits. From now on, whenever we
write ‘quantum circuit’, we will always mean a quantum circuit that only uses
gates that generate the Clifford group, together with T gates. Additionally, we use

3These results were first available as privately-circulated notes in December 2011, and were
made available online in December 2015.

62 Chapter 4. INQC of low T-depth quantum circuits

our proof method to construct a new attack on a scheme for position verification
which was recently proposed by Chakraborty and Leverrier [CL15].

Theorem 4.4.1 Any n-qubit Clifford+T quantum circuit C which has at most
k T gates has a protocol for instantaneous non-local computation using O(n2k)
EPR pairs.

Theorem 4.6.1 Any n-qubit quantum circuit C using the Clifford+T gate set
which has T-depth d, has a protocol for instantaneous non-local computation
using O((68n)d) EPR pairs.

We can apply the construction of Theorem 4.4.1 to the Clifford hierarchy, also
called the Gottesman–Chuang hierarchy [GC99], to obtain the following result.
Since the dependence on n is exponential, the (error-less) Proposition 4.4.2 will
only be a qualitative improvement over Beigi and König’s port-based teleportation
construction when both n and the level k are small.

Proposition 4.4.2 If U is an n-qubit operation in the k-th level of the Clifford
hierarchy, where Alice receives n/2 qubits and Bob receives n/2 qubits, then
INQC(U) ≤ O(n4nk).

The main technical tool we use in the proof of our depth-dependent construc-
tion is the following lemma, which is able to remove a conditionally-applied gate
from the Clifford group without any communication – at an entanglement cost
which scales with the garden-hose complexity of the function which describes the
condition.

Lemma 4.5.1 Let f : {0, 1}n × {0, 1}n → {0, 1} be a function known to all
parties, and let GH (f) be the garden-hose complexity of the function f . Assume
Alice has a single qubit with state Pf(x,y)|ψ〉, for binary strings x, y ∈ {0, 1}n,
where Alice knows the string x and Bob knows y. The following two statements
hold:

1. There exists an instantaneous protocol without any communication which
uses 2GH (f) pre-shared EPR pairs after which a chosen qubit of Alice is in
the state Xg(x̂,ŷ)Yh(x̂,ŷ)|ψ〉. Here x̂ depends only on x and the 2GH (f) bits
that describe the measurement outcomes of Alice, and ŷ depends on y and
the measurement outcomes of Bob.

2. The garden-hose complexities of the functions g and h are at most linear
in the garden-hose complexity of the function f . More precisely, GH (g) ≤
4GH (f) + 1 and GH (h) ≤ 11GH (f) + 2.

4.2. Preliminaries 63

Chakraborty and Leverrier [CL15] recently proposed a protocol for quantum po-
sition verification on the interleaved multiplication of unitaries, the Interleaved
Product protocol. They show that all known attacks, applied to this protocol,
require entanglement exponential in the number of terms t in the product. As
application of Lemma 4.5.1, we present an attack on their proposed protocol
which has entanglement cost polynomial in t and the number of qubits n. The
new attack requires an amount of entanglement which scales as (t

ε
)O(1) per qubit,

and for each qubit succeeds with probability at least 1− ε.

4.2 Preliminaries

4.2.1 The Pauli matrices and the Clifford group

Recall from Chapter 2 that the single-qubit Pauli matrices are X =
(

0 1
1 0

)
,

Y =
(

0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, and the identity I =

(
1 0
0 1

)
. A Pauli operator on

an n-qubit state is the tensor product of n one-qubit Pauli matrices, the group of
n qubit Pauli operators4 is P = {σ1⊗· · ·⊗σn | ∀j : σj ∈ {I,X,Y ,Z}}×{±1,±i}.
These are some of the simplest quantum operations and appear, for example, as
corrections for standard quantum teleportation.

The Clifford group can be defined as those operations that take elements of
the Pauli group to other elements of the Pauli group under conjugation – the
normalizer of the Pauli group. We consider the Clifford group on n qubits, for
some natural number n.

C = {U ∈ U(2n) | ∀σ : σ ∈ P =⇒ UσU † ∈ P} (4.1)
Notable elements of the Clifford group are the single-qubit gates given by the
Hadamard matrix

H = 1√
2

(
1 1
1 −1

)
and the phase gate

P =
(

1 0
0 i

)
,

and the two-qubit CNOT gate given by

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

4The given definition includes a global phase, which is not important when viewing the
elements as quantum gates.

64 Chapter 4. INQC of low T-depth quantum circuits

Applied to arbitrary qubits, the set {H, P, CNOT} generates the Clifford group
(up to a global phase) [Got98b]. For all these gates, we will use subscripts to
indicate the qubits or wires to which they are applied; e.g. Hj is a Hadamard gate
applied to the j-th wire, and CNOTj,k is a CNOT that has wire j as control and
k as target.

Even though there exist interesting quantum circuits that use only gates from
the Clifford group, it is not a universal set of gates. Indeed, the Gottesman–Knill
Theorem states that such a circuit can be efficiently simulated by a classical
computer, something which is not known to be true for general quantum cir-
cuits [Got98a, AG04]. By extending C with any gate, we do obtain a gate-set
which is universal for quantum computation [NRS01].

The gate we will use to extend the Clifford gates to a universal set is the T

gate, sometimes called π/8-gate or R, defined by T =
(

1 0
0 eiπ/4

)
. We will write

all circuits using gates from the set {X, Z, H, P, CNOT, T}5.
In our protocols for instantaneous non-local computation, we will alternate

teleportation steps with gate operations, and therefore the interaction between
the Pauli matrices and the other gates are especially important. We will make
much use of the following identities, which can be easily checked by hand6.

XZ = ZX
PZ = ZP
PX = XZP
HX = ZH
HZ = XH
TX = PXT

CNOT1,2(X⊗ I) = (X⊗ X)CNOT1,2

CNOT1,2(I⊗ X) = (I⊗ X)CNOT1,2

CNOT1,2(Z⊗ I) = (Z⊗ I)CNOT1,2

CNOT1,2(I⊗ Z) = (Z⊗ Z)CNOT1,2

(4.2)

4.2.2 Key transformations from Clifford circuits
For a vector v ∈ {0, 1}n and for any single-qubit operation U , we write U v =⊗n
j=1 U

vj , i.e., U v is the application of U on all qubits j ∈ [n] for which vj = 1.
When Alice teleports a state |ψ〉 of n qubits to Bob, before Bob knows the
teleportation correction, the state at Bob’s side can be written as XaxZaz |ψ〉,
when we let ax and az be the vectors representing the outcomes of the Bell
measurements of Alice. In analogy with the the literature on assisted and blind
quantum computation, we will call the teleportation measurement outcomes ax
and az the key needed to decode |ψ〉.

The specific entries of these keys will often depend on several different mea-
surement outcomes, given by earlier steps in the protocol, and we will therefore

5Technically X, P, and Z are redundant here, since they can be formed by the others as
P = T2, Z = P2 and X = ZHZ, but we include them because of their ubiquity.

6Here equality is up to a global phase – which we will ignore from now on for simplicity.

4.2. Preliminaries 65

occasionally describe them as polynomials over F2. Viewing the keys as polyno-
mials is especially helpful in the description of the more-complicated protocol of
Section 4.6.

For any gate from the Clifford group U ∈ C, if we apply U on the encoded
state, we can describe the resulting state as U |ψ〉 with a new key. That is,
UXaxZaz |ψ〉 = X âxZ âzU |ψ〉 for some new 0/1 keys âx, âz. The transformations
of the keys will have a particularly simple form. (See for example [BCL+06] for
a characterization of these transformations and a different application of Clifford
circuit computation.)

For example, we can write the identities of Equation 4.2 in terms of key
transformations. The transformations that occur when a bigger Pauli operator
is applied, can then be easily found by writing the Pauli operator in terms of its
generators {H, P, CNOT}, and applying these rules one-by-one. We will write
(x1,x2 | z1, z2) as a shorthand for, respectively, the X key on the first and second
qubit, and the Z key on the first and second qubit – this is a convenient notation
for the pair of vectors ax and az that represent these keys. All addition of these
keys will be over F2, i.e., the + represents the binary exclusive or.

P(x | z)→ (x | x+ z)P
H(x | z)→ (z | x)H

CNOT1,2(x1,x2 | z1, z2)→ (x1,x1 + x2 | z1 + z2, z2)CNOT1,2

4.2.3 Clifford+T quantum circuits, T-count and T-depth

All circuits in this chapter will be written using gates from the Clifford group,
and the T gate. In several different areas of quantum information, gates from
the Clifford group are ‘well-behaved’ or ‘easy’, while the other non-Clifford gates
are hard – an observation which was also made, with several examples, in the
recent [BJ15].

The T-count of a quantum circuit is defined as the number of T gates in the
entire quantum circuit. The T-depth is the number of layers of T gates, when
viewing the circuit as alternating between Clifford gates and a layer of simultaneous
T gates. See for example Figure 4.6.

Given a quantum operation, it is not always obvious what is the best circuit
in terms of T-count or T-depth. Recent work gave algorithms for finding cir-
cuits that are optimized in terms of T-depth [AMMR13, GS13, Sel13, AMM14]
and optimal constructions for arbitrary single-qubit unitaries have also been
found [KMM13, RS14, Sel15]. These constructions sometimes increase the num-
ber of qubits involved by adding ancillas—the use of which can greatly decrease
the T-depth of the resulting circuit.

66 Chapter 4. INQC of low T-depth quantum circuits

4.2.4 The garden-hose model

The garden-hose model is a combinatorial model of communication complexity,
first introduced by Buhrman, Fehr, Schaffner and Speelman [BFSS13]. The recent
work by Klauck and Podder [KP14] further investigated the notion, proving several
follow-up results. Even though we studied the garden-hose model in Chapter 3,
for convenience we will review the basic definitions of the garden-hose model, a
few relevant results, and its link to attacks on schemes for position-based quantum
cryptography.

Alice has an input x ∈ {0, 1}n, Bob has an input y ∈ {0, 1}n, and the players
want to compute a function f : {0, 1}n × {0, 1}n → {0, 1} in the following way.
Between the two players are s pipes, and, in a manner depending on their respec-
tive inputs, the players link up these pipes one-to-one with hoses. Alice also has
a water tap, which she can connect to one of these pipes. When f(x, y) = 0, the
water should exit on Alice’s side, and when f(x, y) = 1 we want the water to exit
at Bob’s side. The garden-hose complexity of a function f , written GH (f), then
is the least number s of pre-shared pipes the players need to compute the function
in this manner.

There is a natural translation from strategies of the garden-hose game to a
quantum protocol that routes a qubit to either Alice or Bob depending on their
local inputs, up to teleportation corrections. Consider the following quantum
task, again dependent on a function f like in the previous paragraph. Alice now
receives a quantum state |ψ〉 and a classical input x, Bob receives input y, and
the players are allowed one round of simultaneous communication. If f(x, y) = 0,
Alice must output |ψ〉 after this round of communication, and otherwise Bob must
output |ψ〉. We would like to analyze how much pre-shared entanglement the
players need to perform this task.

From the garden-hose protocol for f , the players can come up with a strategy
for this quantum task that needs at most GH (f) EPR pairs pre-shared. Every
pipe corresponds to an EPR pair. If a player’s garden-hose strategy dictates a
hose between some pipe j and another pipe k, then that player performs a Bell
measurement of EPR-halves labeled j and k. Alice’s connection of the water
tap to a pipe corresponds to a Bell measurement between her input state |ψ〉
and the local half of an EPR pair. After their measurements, the correct player
will hold the state |ψ〉, up to Pauli corrections incurred by the teleportations.
The corrections can be performed after a step of simultaneous communication
containing the outcomes of all measurements.

We will describe some of the logic in terms of the garden-hose model, as
an abstraction away from the qubits involved. When we refer to a quantum
implementation of a garden-hose strategy, we always mean the back-and-forth
teleportation as described above.

4.2. Preliminaries 67

Equivalence to log-space computation We saw in Chapter 3 that polyno-
mial garden-hose complexity is equivalent to log-space computation – up to a
local preprocessing of the inputs. Instead of directly presenting garden-hose pro-
tocols, it will sometimes be easier to argue about space-bounded algorithms and
then using the equivalence as a black-box translation. We repeat the informal
statement of these results here, as a convenient reminder.

Theorem 3.3.15 If f : {0, 1}n×{0, 1}n → {0, 1} is log-space computable, then
GH (f) is polynomial in n.

Proposition 3.3.17 For a function f : {0, 1}n × {0, 1}n → {0, 1}, if GH (f)
is polynomial in n, then f is log-space computable (up to local preprocessing).
That is, there exists a polynomial p, functions α, β : {0, 1}n → {0, 1}p(n) and a
function g : {0, 1}p(n) × {0, 1}p(n) → {0, 1} such that g is log-space computable,
and f(x, y) = g(α(x), β(y)) for all x, y.

The following lemma, proven by Klauck and Podder, will also prove to be
useful. Let the number of spilling pipes of a garden-hose protocol for a player
be the number of possible places the water could possibly exit. More precisely,
the number of spilling pipes for Alice for a strategy for a specific input x is the
number of different places the water could exit on her side when considering all
Bob’s possible actions for all possible inputs y′ ∈ {0, 1}n. The number of spilling
pipes for Alice is then the maximum number of spilling pipes over all possible
inputs x′ ∈ {0, 1}n. To be able to chain different parts of a garden-hose protocol
together, it is often very convenient to only have a single spilling pipe for each
player.
4.2.1. Lemma (Lemma 11 of [KP14]). A garden-hose protocol P for any func-
tion f with multiple spilling pipes can be converted to another garden-hose protocol
P ′ for f that has only one spilling pipe on Alice’s side and one spilling pipe on
Bob’s side. The size of P ′ is at most 3 times the size of P plus 1.

Garden-hose protocol for XOR of functions

Klauck and Podder also showed that computing the binary XOR of several proto-
cols is possible with only a linear overhead in total garden-hose complexity [KP14,
Theorem 18]. We give an explicit construction for this statement here – the result
already follows from the similar construction of [KP14, Lemma 12], except that
we obtain a constant which is slightly better than unfolding their (more general)
proof.
4.2.2. Lemma. Let (f1, f2, . . . , fk) be functions, where each function fi has garden-
hose complexity GH (fi). Let c ∈ {0, 1} be an arbitrary bit. Then,

GH
(
c⊕

k⊕
i=1

fi

)
≤ 4

k∑
i=1

GH (fi) + 1 .

68 Chapter 4. INQC of low T-depth quantum circuits

Proof sketch. This statement was proven by Klauck and Podder [KP14, Theorem
18] in a more general form, using the following two steps: First, any garden-hose
protocol can be turned into a single-output garden-hose protocol, repeated in this
chapter as Lemma 4.2.1, such that the new complexity is at most three times
the old complexity. Then, these single-output garden-hose protocols can be used
as nodes in a permutation branching program. Our current case is simply an
instantiation of that proof for the particular case of the exclusive OR, together
with the observation that we can combine both steps into one for this particular
case.

For all functions fi we build a gadget with two input pipes and two output
pipes, such that if the water flows in at input pipe labeled b ∈ {0, 1}, it flows out
at the pipe labeled fi⊕ b. See Figure 4.2.4 for an overview. We use four copies of
the garden-hose protocol for fi.

The open 0 output pipes of the protocol for fi in copy 0-INi are connected
to the open 0 output pipes in copy 0-OUTi. The designated source pipe of the
original protocol for fi in copy 0-OUTi is then guaranteed to be the output.7
We similarly connect the 1 outputs of 0-INi to the 1 outputs of 1-OUTi. This
construction, i.e. before adding the 1-IN copy, is exactly the method used to
create a single-output protocol. We connect the open 0 pipes of 1-INi to the open
0 pipes of 1-OUTi and the open 1 pipes of the open 1 pipes of 1-INi to the open
1 pipes of 0-OUTi.

The gadget then works as claimed by direct inspection. Since all four copies
are wired exactly the same, the path of the water through the ‘OUT’ copy is the
reverse of the path it followed through the ‘IN’ copy, and therefore the water will
exit correctly – at the pipe which was the source of the original protocol.

4.3 Definition of INQC
An instantaneous non-local quantum protocol that uses k qubits of entanglement
is a protocol of the following form. We use S(A) for the set of density matrices
on some Hilbert space A.

Alice and Bob start with a fixed, chosen 2k-qubit state ηAeBe ∈ C2k ⊗C2k , the
entanglement. (Our protocols will all be in the special case where this state is a
tensor product of k EPR pairs.) The players receive an input state ρ ∈ S(Ain⊗Bin).
Let Am,As,Bm,As denote arbitrary-sized quantum registers. Alice applies some
quantum operation, i.e. completely positive trace-preserving map, A1 : S(Ain ⊗
Ae)→ S(Am ⊗ As) and Bob applies the quantum operation B1 : S(Bin ⊗Be)→
S(Bm ⊗Bs). Alice sends the register As to Bob, while simultaneously Bob sends
Bs to Alice.

7This same trick is used in the proof of Lemma 4.2.1 in [KP14, Lemma 11] and in our proof
of Lemma 4.5.1.

4.3. Definition of INQC 69

protocol
for fi

0-INi

protocol
for fi

1-INi

protocol
for fi

0-OUTi

protocol
for fi

1-OUTi

0 in 1 in

0 out 1 out

Figure 4.1: XOR gadget for any function fi, total complexity 4GH (fi).

Afterwards Alice applies the quantum operation A2 : S(Am ⊗Bs)→ S(Aout)
on her memory and the state she received from Bob, and outputs the result.
Likewise Bob applies the operation B2 : S(Bm ⊗ As) → S(Bout) on the part of
the quantum state he kept and outputs the result of this operation.

4.3.1. Definition. Let Φ : S(Ain ⊗Bin)→ S(Aout ⊗Bout) be a bipartite quan-
tum operation, i.e. a completely positive trace-preserving map, for some input
registers Ain,Bin and output registers Aout,Bout.

We say that INQCε(Φ) is the smallest number k such that there exists an
instantaneous non-local quantum protocol that uses k qubits of entanglement,
with induced channel Ψ : S(Ain ⊗Bin)→ S(Aout ⊗Bout), so that ‖Φ−Ψ‖� ≤ ε.

For any unitary U , we write INQCε(U) as a shorthand for INQCε(ΦU), where
ΦU is the induced quantum operation defined by ρAB → UρABU

†. In this chapter,
we assume for simplicity that Alice’s and Bob’s input and output registers all
consist of n qubits.

These definitions are mostly compatible with those given in [BK11], but differ
in two ways – both are unimportant for our results in this chapter, but might
be relevant for follow-up results, especially when proving lower bounds. Firstly,
we made the choice for generality to allow the players to communicate using
qubits, instead of just classical messages. As long as the number of communicated

70 Chapter 4. INQC of low T-depth quantum circuits

qubits is not too large, quantum communication could potentially be replaced
by classical communication using teleportation, at the cost of extra entanglement
– the counted resource. Secondly, we make the choice to explicitly separate the
shared entangled state from the local memory in notation – Beigi and König split
the state in a measured and unmeasured part, but do not introduce notation for
(free) extra local memory in addition to the shared entangled state.

Whether these choices are reasonable or not will also depend on the exact
application. Since we mostly think about applications to position-based quantum
cryptography, giving the players, i.e. ‘attackers’, as much power as possible seems
the most natural.

4.4 Low T-count quantum circuits

C1 C2 Ck Ck+1

T
· · ·

T︸ ︷︷ ︸
k times

Figure 4.2: A circuit with T-count k. The Ci gates represent subcircuits consisting
only of operations from the Clifford group C.

4.4.1. Theorem. Let C be an n-qubit quantum circuit with gates from the Clif-
ford+T gate set, and let C contain k T-gates in total. Then INQC(C) ≤ O(n2k),
i.e., there exists a protocol for two-party instantaneous non-local computation of
C which uses a pre-shared entangled state of O(n2k) EPR pairs.

Proof. Let Alice’s input state be some arbitrary quantum state |ψ0〉. We will
write the quantum state at step t ∈ {0, . . . , k}, as intermediate result of executing
the circuit C for t steps, as |ψt〉. Let Ct be the subcircuit, consisting only of
Clifford gates, between the (t − 1)th and tth T gates. At step t, the circuit
alternates between the Clifford subcircuit Ct and a T-gate on some wire wt which
we write as Twt , i.e.,

Twt = I⊗wt−1 ⊗ T⊗ I⊗n−wt−1 .

Because of the nature of the setting, all steps are done instantaneously unless
noted otherwise, without waiting for a message of the other party. For example,
if the description mentions that one party teleports a qubit, we can instantly
describe the qubit as ‘being on the other side’, but the other party will act on

4.4. Low T-count quantum circuits 71

the uncorrected qubit, since the communication will only happen afterwards and
simultaneously.

We first give a high-level description of the protocol. Bob teleports his part
of the state to Alice, who holds the entire state – up to teleportation corrections.
Alice will now apply the first set of Clifford gates, followed by a single T gate. The
teleportation corrections (all known to Bob) determine whether the T gate that
Alice performs creates an unwanted extra P gate on the state. The extra P gate is
created whenever an X correction is present, because of the relation TX = PXT.
Therefore, even though Alice holds the state, only Bob knows whether the state
has an extra unwanted P gate or not.

To remove the unwanted gate, Alice teleports all n qubits back to Bob, who
corrects the phase gate (if present). The players then perform a garden-hose-like
trick to keep the form of the key simple, at the cost of doubling the total size at
each step.

Now we will give the precise description of the players’ actions:

Step 0 Bob performs a Bell measurement to teleport all his n/2 qubits to Alice,
where we write the needed X-corrections as b0

x,i and Z-corrections b0
z,i, for

i = n/2 + 1, . . . ,n. Now, since the qubits Alice already started with don’t
need a correction, we have b0

x,i = b0
z,i = 0 for i = 1, . . . ,n/2. Then we write

b0
x and b0

z for the 0/1 vector containing the X corrections and Z correction
respectively. The complete state is Xb0

xZb0
z |ψ0〉, where all qubits are at Alice’s

side while Bob knows the key.

Step 1.a Alice executes C1 on the (uncorrected) qubits, so that the state is now

C1Xb0
xZb0

z |ψ0〉 = Xb̂1
xZb̂1

zC1|ψ0〉 ,

where (b̂1
x, b̂1

z) = f1(b0
x, b0

z), with f1 : Fn2 × Fn2 → Fn2 × Fn2 is a formula that
consists of relabeling and addition over F2, and that is known to all parties.
I.e. Bob knows all the entries of the vectors b̂1

x and b̂1
z that contain the new

teleportation corrections.

Step 1.b Alice executes the T gate on the correct wire w1 ∈ {1, . . . ,n} of the
uncorrected qubits. Define b1 = b̂1

x,w1 , the w1 entry of the vector b̂1
x. The

state in Alice’s possession is now

Tw1Xb̂1
xZb̂1

zC1|ψ0〉 = Pb1

w1Xb̂1
xZb̂1

zTw1C1|ψ0〉

= Pb1

w1Xb̂1
xZb̂1

z |ψ1〉 .

That is, besides the presence of the Pauli gates, depending on the telepor-
tation measurements, the w1 qubit possibly has an extra phase gate that
needs to be corrected before the protocol can continue.

72 Chapter 4. INQC of low T-depth quantum circuits

Step 1.c Alice teleports all qubits to Bob, with teleportation outcomes a1
x, a1

z ∈
Fn2 . We will define the a1 as the w1 entry of a1

x. Bob then has the state

Xa1
xZa1

zPb1

w1Xb̂1
xZb̂1

z |ψ1〉 = Pb1

w1Xb̂1
xZb̂1

zZa1b1Xa1
xZa1

z |ψ1〉 .

Knowing the relevant variables from his measurement outcomes in the pre-
vious steps, Bob performs the operation Xb̂1

xZb̂1
z(Pb1

w1)† to transform the state
to

Za1b1Xa1
xZa1

z |ψ1〉 .

Step 1.d For this step the players share two sets of n EPR pairs, one set labeled
“b1 = 0”, the other set labeled “b1 = 1”. Bob teleports the state to Alice
using the set corresponding to the value of b1, with teleportation outcomes
b2
x and b2

z.

Step 1.e The set of qubits corresponding to the correct value of b1 are in the
state

Xb2
xZb2

xZa1b1Xa1
xZa1

z |ψ1〉 .
On the set labeled “b1 = 0”, Alice applies Xa1

xZa1
z , and on the set labeled

“b1 = 1” Alice applies Xa1
xZa1

zZa1
w1 , so that the state (at the correct set of

qubits) equals
Xb2

xZb2
z |ψ1〉 .

Now this is almost the same situation as before the first step: Alice is in
possession of a state for which Bob completely knows the needed teleporta-
tion corrections – with the difference that Alice does not know which of the
two sets that is.

Steps 2 . . .k The players repeat the protocol from Step 1, but Alice performs
all steps in parallel for all sets of states. The needed resources then double
with each step: two sets for step 2, four for step 3, etc.

Step k+1, final step When having executed this protocol for the entire circuit,
Alice only teleports Bob’s qubits back to him, i.e. the qubits corresponding
to the last n/2 wires, instead of the entire state, so that in the correct groups,
Alice and Bob are in possession of the state |ψk〉 up to simple teleportation
corrections. Then, in their step of simultaneous communication, the players
exchange all teleportation measurement outcomes. After receiving these
measurement outcomes, the players discard the qubits that did not contain
the state, and perform the Pauli corrections on the correct qubits.

The needed EPR pairs for this protocol consist of n/2 for Step 0. Then
every set uses at most 3n pairs: n for the teleportation of Alice to Bob, and 2n
for the teleportation back. The t-th step of the circuit starts with 2t−1 sets of
parallel executions, therefore the total entanglement is upper bounded by n/2 +∑k
t=1 2t−13n ≤ 3n2k.

4.4. Low T-count quantum circuits 73

4.4.1 The Clifford hierarchy
The Clifford hierarchy, also called the Gottesman–Chuang hierarchy, generalizes
the definition of the Clifford group of Equation 4.1 in the following way [GC99].
Define C1 = P, the first level of the hierarchy, as the Pauli group. Recursively
define the k-th level as

Ck = {U ∈ U(2n) | ∀σ ∈ P : UσU † ∈ Ck−1} .

Then C2 is the Clifford group and the next levels consist of increasingly more
quantum operations – although for k ≥ 3 the set Ck is no longer a group [ZCC08].

The method behind the protocol of Theorem 4.4.1 immediately translates to
the related setting of the Clifford hierarchy. Since the scaling of the entanglement
cost of our protocol is exponential, both in the number of qubits and in the level
of the hierarchy, this observation is mostly interesting when both these quantities
are small. We include a proof sketch here. As noted in the introduction, this
statement was independently proven by Chakraborty and Leverrier [CL15].

4.4.2. Proposition. Let U be an n-qubit operation in the k-th level of the Clif-
ford hierarchy, where Alice receives n/2 qubits and Bob receives n/2 qubits, then
INQC(U) ≤ O(n4nk).

Proof sketch. First Bob teleports his qubits to Alice, with n outcomes for X
and Z. Alice applies U to the uncorrected state, so that now the state equals
UXbxZbz |ψ〉 = Vbx,bzU |ψ〉, where Vbx,bz is an operator in the (k − 1)-th level of
the Clifford hierarchy. Exactly which operator depends on Bob’s measurement
outcomes bx, bz.

Alice teleports the entire state to Bob, with outcomes ax, az, and Bob applies
the inverse V †bx,bz , so that the state is

V †bx,bzX
axZazVbx,bzU |ψ〉 = Wax,az ,bx,bzU |ψ〉 ,

with Wax,az ,bx,bz in the (k− 2)-th level of the Clifford hierarchy. For every possible
value of bx, bz, the players share a set of n EPR pairs. Bob teleports the state
using the set labeled with his measurement outcome bx, bz, obtaining teleportation
corrections b̂x, b̂z.

For every set the players repeat this protocol recursively, in the following way.
For any set, Alice repeats the protocol as if it were the set used by Bob. At the
correct set, Alice effectively knows the values bx, bz from the label, and ax, az she
knows as own measurement outcomes. The state present is Xb̂xZb̂zWax,az ,bx,bzU |ψ〉.
When Alice applies W †

ax,az ,bx,bz , the state is given by Fax,az ,bx,bz ,b̂x,b̂zU |ψ〉, with F
in the (k−3)-th level of the Clifford hierarchy. Of this state, effectively only b̂x, b̂z
is unknown to Alice. Alice teleports this state to Bob using the EPR pairs labeled
with ax, az, and the recursive step is complete.

74 Chapter 4. INQC of low T-depth quantum circuits

The players continue these steps until the first level of the hierarchy is reached
– formed by Pauli operators – after which they can exchange the outcomes of their
measurements to undo these and obtain U |ψ〉.

After t steps, Every teleportation step after the first uses a set of n EPR pairs,
picked out of 4n possibilities corresponding to the Pauli correction of the n qubits
teleported in the previous step.

Summing over all rounds gives a total entanglement use of n∑k
t=1 4nt =

O(n4nk).

4.5 Conditional application of phase gate using
garden-hose protocol

The following lemma connects the difficulty of removing an unwanted phase gate
that is applied conditional on a function f , to the garden-hose complexity of f .
This lemma is the main technical tool which we use to non-locally compute
quantum circuits with a dependence on the T-depth.

4.5.1. Lemma. Assume Alice has a single qubit with state Pf(x,y)|ψ〉, for binary
strings x, y ∈ {0, 1}n, where Alice knows the string x and Bob knows y. Let GH (f)
be the garden-hose complexity of the function f . The following two statements
hold:

1. There exists an instantaneous protocol without any communication which
uses 2GH (f) pre-shared EPR pairs after which a known qubit of Alice is in
the state Xg(x̂,ŷ)Yh(x̂,ŷ)|ψ〉. Here x̂ depends only on x and the 2GH (f) bits
that describe the measurement outcomes of Alice, and ŷ depends on y and
the measurement outcomes of Bob.

2. The garden-hose complexities of the functions g and h are at most linear in
the complexity of the function f . More precisely, GH (g) ≤ 4GH (f) + 1 and
GH (h) ≤ 11GH (f) + 2.

Proof. To prove the first statement we will construct a quantum protocol that
uses 2GH (f) EPR pairs, which is able to remove the conditional phase gate. The
quantum protocol uses the garden-hose protocol for f as a black box.

For the second part of the statement of the lemma, we construct garden-hose
protocols which are able to compute the teleportation corrections that were in-
curred by executing our quantum protocol. By explicitly exhibiting these protocols,
we give an upper bound to the garden-hose complexity of the X correction g and
the Z correction h.

The quantum protocol is shown as Figure 4.3. Alice and Bob execute the
garden-hose protocol with the state Pf(x,y)|ψ〉, i.e. they teleport the state back
and forth, with the EPR pairs chosen depending on x and y. Afterwards, if

4.5. Conditional application of phase gate using garden-hose protocol 75

Pf(x,y)|ψ〉

Teleport according to
GH protocol for f

P−1

P−1

P−1

Xg(x̂,ŷ)Zh(x̂,ŷ)|ψ〉

Pf(x,y)|ψ〉

GH protocol for f (copy)

Figure 4.3: Schematic overview of the quantum protocol to undo the conditionally-
present phase gate on |ψ〉. The solid connections correspond to Bell measurements.

f(x, y) = 0, the qubit will be at one of the unmeasured EPR halves on Alice’s
side, and if f(x, y) = 1 the qubit will be on Bob’s side. The state of the qubit will
be Xg′(x′,y′) Zh′(x′,y′) Pf(x,y)|ψ〉 = Pf(x,y)Xg′(x′,y′) Zh′(x′,y′)⊕f(x,y)g′(x′,y′) |ψ〉, for some
functions g′ and h′.

On each qubit on Bob’s side, corresponding with an ‘open pipe’ in the garden-
hose model, Bob applies P−1, so that the state of the qubit is now equal to
Xg′(x′,y′) Zh′(x′,y′)⊕f(x,y)g′(x′,y′) |ψ〉. The exact location of our qubit depends on the
protocol, and is unknown to both players. Here x′ and y′ are the measurement
outcomes of Alice and Bob in this first half of the protocol.

To return the qubit to a known position without an extra communication step,
we employ a trick that uses the reversibility of the garden-hose model. Alice and
Bob repeat the exact same garden-hose strategy, except they leave the start open,
and connect the open ends between the original and the copy. Alice performs
a Bell measurement between the first open qubit in the original, and the first
open qubit in the copy, etc. Bob does the same, after he applied the P gates.
Afterwards, the qubit will be present in the start location, ‘water tap’ in garden-
hose terminology, of the copied game, since it has followed the exact same path
backwards. The final state of the qubit now is Xg(x̂,ŷ) Zh(x̂,ŷ) |ψ〉, for some functions
g and h and x̂ and ŷ the measurement outcomes of Alice and Bob respectively.
The total entanglement consumption is 2GH (f).

76 Chapter 4. INQC of low T-depth quantum circuits

Every measurement corresponds to a connection of two pipes in the garden-hose
model, therefore each player performs at most GH (f) teleportation measurements,
of which the outcomes can be described by 2GH (f) bits.

Label the EPR pairs with numbers from {1, 2, . . . , 2GH (f)}, and use the label
0 for the register holding the starting qubit |ψ〉. Let A be a list of disjoint pairs
of the indices of the EPR pairs that Alice uses for teleportation in this protocol,
and let ax, az ∈ {0, 1}|A| be the bit strings that respectively hold the X and Z
outcomes of the corresponding Bell measurements. Similarly, let B be a list of the
indices of the EPR pairs that Bob uses, and let bx, bz ∈ {0, 1}|B| be the bit strings
that hold the measured X and Z corrections.

To show the second part of the statement, we will construct a garden-hose
protocol which tracks the newly-incurred Pauli corrections from teleporting the
qubit back-and-forth, by following the qubit through the path defined by A and B.

We will first construct the protocol for the final X-correction, a function we
denoted by g. The protocol is also schematically shown as Figure 4.5. Note
that to compute the X correction the conditional presence of the phase gate is
not important: independent of whether f(x, y) equals 1 or 0, we only need to
track the X teleportation corrections that the qubit incurred by being teleported
back-and-forth by Alice and Bob. An efficient garden-hose protocol for g is given
by the following.

Use two pipes for each EPR pair in the protocol, 2GH (f) pairs of 2 pipes
each. Label the top pipe of some pair i by Ii, and the bottom pipe by Xi. We
will iterate over all elements of A, i.e. all performed Bell measurements by Alice.
Consider some element of A, say the k-th pair Ak which consists of {i, j}. If the
corresponding correction bx,k equals 0, we connect the pipe labeled Ii with the
pipe labeled Ij and the pipe labeled Xi with the pipe labeled Xj. Otherwise, if
bx,k equals 1, we connect them crosswise, so we connect Ii with Xj and Xi with Ij.
Finally, the place where the qubit ends up after the protocol is unique (and is the
only unmeasured qubit out of all 2GH (f) EPR pairs). For the set of open pipes
corresponding to that EPR pair, say number i∗, we use one extra pipe to which
we connect Xi∗ , so that the water ends up at Bob’s side for the 1-output. This
garden-hose protocol computes the X correction on the qubit, and uses 4GH (f)+1
pipes in total, therefore GH (g) ≤ 4GH (f) + 1.

For the Z-correction we can build a garden-hose protocol using the same idea,
but there is one complication we have to take care of. At the start of the protocol,
there might be an unwanted phase gate present on the state. If some teleportation
is performed before this phase gate is corrected, say by Alice with outcomes ax, az,
then the effective correction can be written as XaxZazP = PXaxZax⊕az . That
is, for the part of the protocol that the unwanted phase gate is present, a Bell
measurement gives a Z-correction whenever the exclusive or of the X- and Z-
outcomes is 1, instead of just when the Z-outcome is 1. We will therefore use
the garden-hose protocol that computes whether f(x, y) = 1, that is, compute
whether the phase gate is present, and then execute a slightly different garden-hose

4.5. Conditional application of phase gate using garden-hose protocol 77

|ψ〉
EPR pair 1

EPR pair 2

EPR pair 3

ax,1, az,1

ax,2, az,2

bx,1, bz,1

tap
I1

X1

I2

X2

(out if ax,1 ⊕ bx,1 ⊕ ax,2 = 0)
I3

(out if ax,1 ⊕ bx,1 ⊕ ax,2 = 1)
X3

ax,1 =0 ax,1 =1

ax,2 =0 ax,2 =1

bx,1 =0 bx,1 =1

Figure 4.4: Example garden-hose protocol to compute the Pauli X incurred by
Alice and Bob teleporting a qubit back-and-forth. When a teleportation requires a
Pauli X correction, the corresponding pipes are connected crosswise, and otherwise
they are connected in parallel.

protocol for each case.
See Figure 4.5 for an overview of the different parts of this garden-hose protocol

for the Z-correction h. Using Lemma 4.2.1 we can transform the garden-hose
protocol for f into a garden-hose protocol for f with unique 0 and 1 outputs at
Alice’s side, of size 3GH (f).8 For the 0 output, i.e. if there was no unwanted
phase gate present, we can track the Z corrections in exactly the same way as
we did for the X corrections, for a subprotocol of size 4GH (f) + 1. For the 1
output there was a phase gate present for those teleportations that happened in
the protocol before the P−1 corrections. For that part of the protocol, we execute
the correction-tracking protocol using the XOR of the X- and Z-measurement
outcomes. For all teleportations after the phase correction, we again track the
correction using just the Z-outcomes, since there is no phase gate present anymore.
This part of the garden-hose protocol also uses 4GH (f) + 1 pipes, for a total of
11GH (f) + 2.

8If the unique 0 output has to be at Alice’s side, and the unique 1 output at Bob’s side, the
construction uses 3GH (f) + 1 pipes. It is easy to show that the construction of Lemma 4.2.1
needs one pipe less if we let Alice have both a designated 0 output and a 1 output.

78 Chapter 4. INQC of low T-depth quantum circuits

Unique-output GH protocol
for f(x, y)

(Lemma 4.2.1)

Compute correction using
Z outcomes

Compute correction using
X⊕Z outcomes of first part

Compute correction using
Z outcomes of the rest

tap

f(x, y) = 0

f(x, y) = 1
0 1

0 1

Figure 4.5: Sketch of garden-hose protocol for the Z correction. The bottom
two boxes use the construction which was used for the X-correction; in the top
case using the Z-outcomes for all measurements, in the bottom case using the
parity of the X- and Z-outcomes for those teleportations that happened before
the unwanted phase gate was removed.

4.6 Low T-depth quantum circuits
4.6.1. Theorem. Let C be an n-qubit T-depth d quantum circuit, then INQC(C) ≤
O((68n)d). That is, there exists a protocol for two-party instantaneous non-local
computation of C, where each party receives n/2 qubits, which uses a pre-shared
entangled state of O((68n)d) EPR pairs.

Proof. As in the proof of Theorem 4.4.1, we write the input state |ψ〉, and write
the correct quantum state after step t of the circuit as |ψt〉. At a step t, the circuit

4.6. Low T-depth quantum circuits 79

C0

T

C1 Cd−1

T

Cd

T
T · · · T
T T
T︸ ︷︷ ︸

d times

Figure 4.6: An example circuit with T-depth d. The Ci gates represent subcircuits
consisting only of operations from the Clifford group C. A layer does not necessarily
have a T gate on all wires.

alternates between a layer of T gates9 and a subcircuit consisting of only Clifford
gates, Ct.

The high-level idea of this protocol is as follows. During steps 1 to t, Alice
will hold the entire uncorrected state and performs a layer of the circuit: she
performs a layer of T gates and then a Clifford subcircuit. The Pauli corrections
at each step are a function of earlier teleportation outcomes of both Alice and Bob.
These functions determine for each qubit whether that qubit now has obtained
an unwanted extra P gate when Alice performs the layer of T gates. The players
then, for each qubit, correct this extra gate using Lemma 4.5.1 – removing the
unwanted phase gate from the qubit in a way that both players still know its
location.

At each step we express the corrections as functions of earlier measurements and
consider their garden-hose complexity, which is important when using Lemma 4.5.1.
The Clifford subcircuit takes the correction functions to the XOR of several earlier
functions. We can bound the growth in garden-hose complexity by taking XORs
using Lemma 4.2.2. Taken together, the garden-hose complexity grows with a
factor of at most a constant times n each step.

We will use f tx,i to denote the function that describes the presence of an X
correction on qubit i, at step t of the protocol. Similarly, f tz,i is the function that
describes the Z correction on qubit i at step t. Both will always be functions of
outcomes of earlier teleportation measurements of Alice and Bob. For any t, let
mt be the maximum garden-hose complexity over all the key functions at step t.

Step 0 Bob teleports his qubits, the qubits labeled n/2 up to n, to Alice, obtain-
ing the measurement outcomes b0

x,1, . . . , b0
x,n/2 and b0

z,1, . . . , b0
z,n/2. On these

uncorrected qubits, Alice executes the Clifford subcircuit C0.
9We will assume that for each layer of T gates all wires have a T gate. This is only done to

avoid introducing extra notation needed when instead the gates are only applied to a subset –
the protocol easily generalizes to the more common general situation.

80 Chapter 4. INQC of low T-depth quantum circuits

Then, since Bob also knows how C0 transforms the keys, the functions de-
scribing the Pauli corrections can all either be described by a single bit of
information which is locally computable by Bob, or are constant and there-
fore known by both players. Let f 0

x,i and f 0
z,i be the resulting key function

for any qubit i. The garden-hose complexity of all these key functions is con-
stant: GH (f 0

x,i) ≤ 3 and GH (f 0
z,i) ≤ 3, and therefore also for the maximum

garden-hose complexity we have m0 ≤ 3.

Step t = 1, . . . , d At the start of the step, the X and Z corrections on any wire i
are given by f t−1

x,i and f t−1
z,i respectively.

Alice applies the T gates on all wires. Any wire i now has an unwanted P
if and only if f tx,i equals 1.
Alice and Bob apply the construction of Lemma 4.5.1, which removes this
unwanted phase gate. Let gti be the function describing the extra X correc-
tion incurred by this protocol, so that the new X correction can be written
as f tx,i ⊕ gti . Let hti be the function describing the Z correction, so that the
total Z correction is f tz,i⊕hti. The entanglement cost of this protocol is given
by 2GH (f tx,i) and the garden-hose complexities of the new functions are at
most GH (gti) ≤ 4GH (f tx,i) + 1 and GH (hti) ≤ 11GH (f tx,i) + 2.
Alice now executes the Clifford subcircuit Ct. The circuit Ct determines
how the current Pauli corrections, i.e. the key functions, transform. For a
specification of the possible transformations, see Section 4.2.2. For the sake
of simplicity, consider new keys that are formed by an XOR of an arbitrary
subset of keys that were present in the previous step10.
Consider the worst case key for our construction: a key which is given by the
XOR of all keys that were present when the Clifford subcircuit was executed.
A worst-case key function of the form ⊕n

i=1 f
t−1
x,i ⊕ gti ⊕ f t−1

z,i ⊕ hti then has
garden-hose complexity at most

mt ≤ 4
(

n∑
i=1

GH (f t−1
x,i) + GH (gti) + GH (f t−1

z,i) + GH (hti)
)

+ 1

≤ 4
(

n∑
i=1

GH (f t−1
x,i) + 4GH (f t−1

x,i) + 1 + GH (f t−1
z,i) + 11GH (f t−1

x,i) + 2
)

+ 1

≤ 4
(

n∑
i=1

mt−1 + 4mt−1 + 1 +mt−1 + 11mt−1 + 2
)

+ 1

= 68nmt−1 + 12n+ 1 . (4.3)

Step d+ 1, final step Alice teleports the last n/2 qubits back to Bob. Alice and
10Do note that the possible key transformations are strictly a subset of these functions – only

the transformations generated by the possibilities in Section 4.2.2 are possible.

4.7. Attack on the Interleaved Product protocol 81

Bob exchange all results of teleportation measurements and locally perform
the needed corrections, using both players’ measurement outcomes.

At every step t, the protocol uses at most 2nmt−1 EPR pairs for the protocol
which corrects the phase gate. Using that m0 ≤ 3, we can write the upper bound
of Equation 4.3 as the closed form mt ≤ c1(68n)t + c2, with c1 = 216n−2

68n−1 ≈
54
17 and

c2 = 3− 216n−2
68n−1 ≈ −

3
17 . The total entanglement use therefore is bounded by

d∑
t=1

2nmt−1 ≤ O((68n)d) .

4.7 Attack on the Interleaved Product protocol
Chakraborty and Leverrier [CL15] recently proposed a scheme for quantum posi-
tion verification based on the interleaved multiplication of unitaries, the Interleaved
Product protocol, denoted by GIP(n, t, ηerr, ηloss). The parameter n concerns the
number of qubits that are involved in the protocol in parallel, while t scales with
the amount of classical information that the protocol uses. Their paper analyzed
several different attacks on this scheme, which all required exponential entangle-
ment in the parameter t. In this section, as application of the proof strategy of
Theorem 4.6.1, we present an attack on the Interleaved Product protocol which
requires entanglement polynomial in t.

The original protocol is described in terms of the actions of hypothetical honest
parties and also involves checking of timings at spatial locations. For simplicity,
we instead only describe a two-player game, for players Alice and Bob, such that
a high probability of winning this game suffices to break the scheme. Let x be a
string x ∈R {0, 1}n, and let U be a random (single-qubit) unitary operation, i.e.
a random element of U(2). Alice receives t unitaries (ui)ti=1, and Bob receives t
unitaries (vi)ti=1 such that U = ∏t

i=1 uivi. Alice receives the state U⊗n|x〉. The
players are allowed one round of simultaneous communication. To break the
protocol GIP(n, t, ηerr, ηloss), after the round of simultaneous communication the
players need to output an identical string y ∈ {∅, 0, 1}n such that the number of
bits where y is different from x is at most ηerrn and the number of empty results ∅
is at most ηlossn. We will consider attacks on the strongest version of the protocol,
where we take ηloss = 0.

For operators A,B, let ‖A‖ denote the operator norm, and use ‖A−B‖ as an
associated distance measure.

4.7.1. Theorem. There exists an attack on GIP(n, t, ηerr, ηloss = 0) that requires
p(t/ηerr) EPR pairs per qubit of the protocol, for some polynomial p, and succeeds
with high probability.

82 Chapter 4. INQC of low T-depth quantum circuits

Our attack will involve the computation of the unitary U = ∏t
i=1 uivi in the

garden-hose protocol. This is a simple function, but so far we have only defined
the garden-hose model for functions with a binary output. Therefore we define
an extension of the garden-hose model to functions with a larger output range,
where instead of letting the water exit at Alice’s or Bob’s side, we aim to let the
water exit at correctly labeled pipe. A short proof of the following proposition is
given after the proof of the main theorem.

4.7.2. Proposition. Let f : {0, 1}n × {0, 1}n → {0, 1}k be a function, such
that f is log-space computable and k is at most O(log n). Then there exists a
garden-hose protocol which uses a polynomial number of pipes, and such that for
any input x, y the water exists at Alice’s side, at a pipe labeled by the output of
f(x, y).

We will also need a decomposition of arbitrary unitary operations into the
Clifford+T gate set. The Solovay–Kitaev theorem is a classic result which shows
that any single-qubit quantum gate can be approximated up to precision ε using
O(logc(1/ε)) gates from a finite gate set, where c is approximately equal to 2.
See for example [NC00] for an exposition of the proof. Our constructions use a
very particular gate set and we are only concerned with the number of T gates
instead of the total number of gates. A recent result by Selinger strengthens the
Solovay–Kitaev theorem for this specific case [Sel15]11.

4.7.3. Theorem (Selinger 2015). Any single-qubit unitary can be approxi-
mated, up to any given error threshold ε > 0, by a product of Clifford+T operators
with T-count 11 + 12 log(1/ε).

With these auxiliary results in place, we can present our attack on the Inter-
leaved Product protocol.

Proof of Theorem 4.7.1. We will describe the actions taken for any single qubit
U |b〉, with b ∈ {0, 1}, such that the probability of error is at most ε. The protocol
will be attacked by performing these actions on each qubit, n times in parallel.
Our construction can be divided in the following four steps.

1. Construct a (polynomial-sized) garden-hose protocol, with a number of
pipes s, where the qubit is routed to a pipe labeled with a unitary Ũ which
is ε1-close to the total product U .

2. Decompose the unitaries of all labels in terms of the Clifford+T gate set,
using Theorem 4.7.3. In particular, we have a Clifford+T circuit C with
T-count k = O(log ε2) such that C is ε2-close to Ũ , and therefore C is at
most ε-close to U , where ε = ε1 + ε2.

11When the single-qubit unitary is a z-rotation, an even stronger version of the theorem is
available [RS14].

4.7. Attack on the Interleaved Product protocol 83

3. After executing the garden-hose protocol as a series of teleportations, the
state at pipe Ũ can be approximated by XfxZfzC|ψ〉, with fx and fz func-
tions of the connections Alice and Bob made in step 1 and their measure-
ment outcomes. By the construction of Figure 4.5, described in the proof
of Lemma 4.5.1, the garden-hose complexities GH (fx) and GH (fz) are at
most linear in s.
We can now alternate between applying a single gate of the circuit C† and
using Lemma 4.5.1, k times in total, to obtain a state which only has Pauli
corrections left.

4. After Alice measures this final state, she can broadcast the outcome to Bob.
Alice and Bob also broadcast their inputs and measurement outcomes, which
together determine whether to flip the outcome of Alice’s final measurement.

As the first step, we present a log-space computation solving the following
problem (equivalent to the input of the protocol, with simplified notation): The
input is given by t two-by-two unitary matrices, u1, . . . ,ut, and we output a matrix
Ũ such that ‖Ũ − ut . . . u2u1‖ ≤ ε1, where Ũ is encoded using O(log t+ log 1/ε1)
bits. We can then use a simple extension of Theorem 3.3.15 to transform this
computation to a garden-hose protocol.

Store the current intermediate outcome of the product in the memory of our
computation, using 2` + 2 bits for each entry of the two-by-two matrix, ` + 1
for the real and imaginary part each. Let Mr denote the memory of our log-
space computation after r steps, obtained by computing the product urMr−1 with
rounding. Since the rounded matrix entry has a difference of at most 2−` with the
unrounded entry, we can write the precision loss at each step asMr = urMr−1+∆r,
where ∆r is some matrix with all entries absolute value at most 2−`. Note that
‖∆r‖ ≤ 2−`+1.

The total error incurred by the repeated rounding can now be upper bounded
by

‖Mt − ut . . . u2u1‖ ≤ ‖utMt−1 + ∆t − ut . . . u2u1‖
≤ ‖∆t‖+ ‖ut(Mt−1 − ut−1 . . . u2u1)‖
≤ 2−`+1 + ‖Mt−1 − ut−1 . . . u2u1‖
≤ t2−`+1

Here we use that ‖AB‖ ≤ ‖A‖‖B‖ together with the unitarity of all ui. The
final step is by iteratively applying the earlier steps t times. If we choose ` =
log t+ log 1/ε1 + 1 and note that the final output Ũ is given by Mt, we obtain the
bound.

By application of Proposition 4.7.2 we can convert this log-space computation
to a garden-hose protocol, using s pipes, where s is polynomial in ε1 and t. We

84 Chapter 4. INQC of low T-depth quantum circuits

then teleport the qubit back-and-forth using Bell measurements given by this
garden-hose protocol.

As second step, we approximate the unitaries that label each output pipe of the
garden-hose protocol of the previous step. In particular, consider the pipe labeled
Ũ , and say we approximate Ũ using a Clifford+T circuit C. By Theorem 4.7.3,
we can write C using k = 11 + 12 log(1/ε2) T gates, such that ‖Ũ − C‖ ≤ ε2.
Therefore, defining ε = ε1 + ε2, we have ‖U − C‖ ≤ ε.

We will perform the next steps for all unmeasured qubits (corresponding to
open pipes in the garden-hose model) in parallel. After the simultaneous round of
communication, Alice and Bob are then able to pick the correct qubit and ignore
the others.

Consider the state of the qubit after the teleportations chosen by the garden-
hose protocol. For some functions fx, fz, with inputs Alice’s and Bob’s measure-
ment outcomes, the qubit has state XfxZfzU |b〉. From now on, we will assume
this state is exactly equal to XfxZfzC|b〉 – since U is ε-close to C in the operator
norm, this assumption adds error probability at most 2ε to the final measurement
outcome12.

Write the inverse of this circuit as alternation between gates from the Clifford
group and T gates, C† = CkTCk−1T . . . C1TC0. We will remove C from the qubit
by applying these gates, one by one, by repeated application of Lemma 4.5.1. As
convenient shorthand, define the state of the qubit after applying the first r layers
of C†, i.e. up to and including Cr, of C† as

|ψr〉 = T†C†r+1T†Cr+2 . . .T†C†k|b〉 .

In particular, we have CrT|ψr−1〉 = |ψr〉.
By exactly the same construction used in the proof of Lemma 4.5.1, shown

in Figure 4.5, we observe that the garden-hose complexities of the functions fx
and fz is at most 2s+ 1. That is, the protocol uses 2 pipes for all of the s EPR
pairs, and connects them in parallel if the corresponding X- or Z-correction is 0,
or crosswise if the corresponding X- or Z-correction is 1.

We will use divide f rx and f rz as the functions describing the X and Z corrections
at the end of the step r. Define mr = max{GH (f ix), GH (f iz)} to be the maximum
garden-hose complexity out the of functions describing the X and Z corrections
after step r. After Alice executes the Clifford gate C0, the new key functions f 0

x

and f 0
z can be written as (the NOT of) an XOR of subsets of the previous keys,

e.g., one of the keys could be fx ⊕ fz. By Lemma 4.2.2, we then have that our
starting complexities GH (f 0

x) and GH (f 0
z) are at most linear in s.

Now, for any layer r = 1, 2, . . . , k: Our qubit starts in the state Xfr−1
x Zfr−1

z |ψr−1〉,
for some functions f r−1

x , f r−1
z that each have garden-hose complexity at mostmr−1.

After Alice performs a T gate, the qubit is in the state

TXfr−1
x Zf

r−1
z |ψr−1〉 = Pfr−1

x Xfr−1
x Zf

r−1
z T|ψr−1〉 .

12See for instance [NC00, Box 4.1] for a computation of this added error.

4.7. Attack on the Interleaved Product protocol 85

Now, we apply Lemma 4.5.1, costing 2GH (f r−1
x) EPR pairs, so that Alice has the

state
Xfr−1

x ⊕grZf
r−1
z ⊕hrT|ψr−1〉 ,

for some functions gr and hr that depend on the measurement results by Alice
and Bob. We have that GH (gr) ≤ 4GH (f r−1

x) + 1 and GH (gr) ≤ 11GH (f r−1
x) + 2.

Now Alice applies the Clifford group gate Cr, so that the state becomes

CrXfr−1
x ⊕grZf

r−1
z ⊕hrT|ψr−1〉 = XfrxZfrz |ψr〉 .

The functions f rx and f rz can be expressed as XOR of the functions f r−1
x , f r−1

y , gr,
hr. These functions have garden-hose complexity respectively at mostmr−1, mr−1,
4mr−1 + 1 and 11mr−1 + 2. By application of Lemma 4.2.2, the exclusive OR
of these functions therefore at most has garden-hose complexity mr ≤ 4(mr−1 +
mr−1 + 4mr−1 + 1 + 11mr−1 + 2) + 1 = 68mr−1 + 13.

Finally, after application of the gates in C†, Alice has a qubit in a state which
is ε-close to XfrxZfrz |b〉. Measurement in the computational basis will produce
outcome b ⊕ f rx with high probability. Besides this final measurement, Alice
and Bob both broadcast all teleportation measurement outcomes in their step of
simultaneous communication. From these outcomes they can each locally compute
f rx and so derive the bit b from the outcome, which equals b ⊕ f rx , breaking the
protocol.

Our total entanglement usage is s for the first step, and then for each of the
at most s output pipes, Alice performs the rest of the protocol. For the part of
the protocol that undoes the unitary U , we use at most 2∑k−1

r=0 mr EPR pairs (for
each of the at most s output pipes of the first part). We have m0 ≤ O(s) and
mr ≤ m0 · 2O(k). Since s is polynomial in t and ε1 and k = O(log ε2), the total
protocol uses entanglement polynomial in t and ε.

Our attack replaces the exponential dependence on t of the attacks presented
in [CL15] by a polynomial dependence. For the case of ηerr = 0, we would need
an error per qubit of around ε

n
to achieve total error at most ε. In that case,

the entanglement required still grows as a polynomial, now with a super-linear
dependence of both parameters n and t.

Only the first step of our attack, i.e. the garden-hose protocol which computes
a unitary from the inputs of the players, is specific to the interleaved product
protocol. This attack can therefore be seen as a blueprint for attacks on a larger
class of protocols: any protocol of this same form, where the unitary operation
chosen depends on a log-space computable function with classical inputs, can
be attacked with entanglement which scales as a polynomial in the size of the
classical inputs.

Proof of Proposition 4.7.2. We can split up the computation f : {0, 1}n×{0, 1}n →
{0, 1}k into k functions that each compute a bit, f1, . . . , fk. Since f is a log-space
computation, each of these functions is also a log-space computation and therefore

86 Chapter 4. INQC of low T-depth quantum circuits

has a polynomial-size garden-hose protocol by Theorem 3.3.15. Using Lemma 4.2.1,
we can with linear overhead transform each of these protocol into a unique-output
protocol, so that the water flows out at a unique pipe when the function is 0 and
another unique pipe when the function is 1. Let p be a polynomial so that the
single-output garden-hose protocol of each function fi uses pipes at most p(n).

First use the protocol for f1, with output pipes labeled 0 and 1. Now each of
these output pipes we feed into their own copy of f2. The 0 output of the first copy
we label 00 and its 1 output 10. Similarly, we label the 0 output of the second
copy 01 and the 1 output we label 11. By recursively continuing this construction,
we build a garden-hose protocol for the function f which uses s pipes, where s is
at most

s ≤
k∑
i=1

2i−1p(n) ≤ 2kp(n) .

Since we have taken k = O(log n), this construction uses a number of pipes
polynomial in n.

4.8 Discussion
In this chapter, we combined ideas from the garden-hose model with techniques
from quantum cryptography to find a class of quantum circuits for which instan-
taneous non-local computation is efficient. These constructions can be used as
attacks on protocols for quantum position-verification, and could also be trans-
lated back into the settings related to physics (most notable the relation between
the constraints of relativity theory and quantum measurements) and distributed
computing.

The resource usage of instantaneous non-local quantum computation quantifies
the non-locality present in a bi- or multi-partite quantum operation, and there is
still room for new upper and lower bounds. Any such bounds will result in new
insights, both in terms of position-based quantum cryptography, but also in the
other mentioned settings.

Some possible approaches for continuing this line of research are as follows:

• Computing the Pauli corrections happens without error in our current con-
struction. Perhaps introducing randomness and a small probability of error
– or the usage of entanglement as given in the quantum garden-hose model
of Section 3.5 – could make this scheme more efficient.

• Future research might be able to extend this type of construction to a wider
gate set or model of computation. One could think for example of a Clif-
ford+cyclotomic gate set [FGKM15], match-gate computation [JKMW09],
or measurement-based quantum computation [BBD+09, BFK09].

4.8. Discussion 87

• We presented an attack on the Interleaved Product protocol which required
entanglement polynomial in t. Since the exponent of this polynomial was
quite large, the scheme could still be secure under realistic assumptions.
Since the parameter t concerns the classical information that the verifiers
send, requiring attackers to manipulate an amount of entanglement which
scales linearly with the classical information would already make a scheme
unpractical to break in practice – let alone a quadratic or cubic dependence.

• The combination of the garden-hose model with the tool set of blind quantum
computation is potentially powerful in other settings.
For example, following up on Broadbent and Jeffery who published con-
structions for quantum homomorphic encryption for circuits of low T-gate
complexity [BJ15], Dulek, Speelman, and Schaffner [DSS16] developed an
improved scheme for quantum homomorphic encryption, based on this com-
bination as presented in (a preprint of the arXiv version of) this chapter.

Chapter 5
Experimental considerations for

single-qubit position verification

Current proposals for quantum position-based cryptography require parties to
transmit qubits without any loss, at the speed of light. To implement these
schemes somewhere on earth, an experimentalist might have to use photons trans-
mitted through optical fibers as carriers of quantum information, encountering
two problems.

Firstly, a sizable fraction of photons will be lost in transmission, and secondly,
the speed of light in fiber is significantly lower than in a vacuum. We propose an
adapted version of the QPVBB84 protocol and prove its security against a coalition
of attackers that do not share prior entanglement. Our security proof uses a
reduction to a semidefinite program (SDP), which we solve numerically.

The results in this chapter are based on research performed by the author
together with Harry Buhrman, Christian Schaffner and Hugo Zbinden, currently
unpublished.

5.1 Introduction
In this chapter we study the following class of protocols for quantum position
verification QPVBB84, first proposed by Kent, Munro, and Spiller [KMS11]. Also
see Section 1.1.1 for an introduction to this protocol.

The basic protocol works as follows. Consider two verifiers on a line1, V1 and
V2. Verifier V1 sends a BB84 qubit |φ〉 to the prover P and verifier V2 sends basis
information, encoded as binary string, θ ∈ {+,×} so that all signals arrive at
the prover simultaneously. The symbol ‘+’ denotes the computational basis and
‘×’ denotes the Hadamard basis. The prover P is instructed to measure |φ〉 in
basis θ, getting an outcome b, and broadcast b to all verifiers. Even though the
QPVBB84 protocol is insecure when a coalition of coordinated adversaries share

1For simplicity, we will describe and analyze one-dimensional protocols.

89

90 Chapter 5. Experimental considerations for single-qubit position verification

entanglement, this protocol is provably secure against attackers that do not share
any entanglement – but performing the protocol does require the honest players
to have a perfect experimental setup.

The security of QPVBB84 against adversaries that do not share entanglement
was first proven by Buhrman et al. [BCF+11]. Later work gave security proofs
when this scheme is being executed in parallel [TFKW13] and this result was
recently improved to show that QPVBB84 (repeated n times in parallel) is in fact
secure whenever the adversaries share less than n− O(log n) ebits of entangle-
ment2 [RG15]. This final result is tight, since it is possible to attack the scheme
using n EPR pairs.

The creation and manipulation of the quantum states needed for QPVBB84
is possible with current experimental capabilities and this is a great part of the
appeal of studying precisely this scheme. Indeed, at first sight it might seem that
experimental setups for the BB84 cryptosystem can be augmented with precise
timing to implement the QPVBB84 protocol (cf. the experimental realization of
[LKB+13]). Unfortunately, should we try to actually build an experiment that
implements this protocol, we would encounter a few problems that are particular
to quantum position verification. The natural adaption to these issues, that first
seem only practical in nature, invalidate the security proofs and much care has
to be taken to make sure that the schemes do not suddenly become insecure.

To use the scheme to verify position (on earth), the qubits would have to be
implemented as photons that travel through fiber. All classical signals can be sent
as radio signals that travel at the speed of light.

First, the speed of light in fiber is significantly lower than c, the speed of
light in vacuum, and therefore the classical messages have to be sent later than the
quantum signals, if we want the signals to arrive simultaneously. All the timings
will be relative to the classical signals – which do travel at light speed. We will
show that, even though this adapted timing does not require us to substantially
change the protocol, the timing issues make finding a rigorous security proof
harder. A more in-depth discussion of the adaptation needed can be found in
Section 5.1.3.

The second experimental issue is that of photon loss. Even though the
accuracy of measurements can be quite good, many of the photons a verifier
attempts to send will not be detected by the honest party trying to execute the
protocol. We categorize three main sources of loss for this type of experiment:
losses in fiber, detector inefficiencies, and the probabilistic nature of a typical
photon source, a Poisson distribution parametrized by the mean photon number.
We will give a rough estimate for the magnitude of these sources of loss in current
state-of-the-art experimental setups, to make our argument more concrete.

2The lower bound of [RG15] concerns attackers that use only classical communication, besides
sharing an entangled state. This is a slightly weaker model than the one of [TFKW13], and the
model we currently consider, where the size of the pre-shared entangled state is bounded even
when the round of simultaneous communication consists of a quantum message.

5.1. Introduction 91

Let η be the fraction of photons that are successfully transmitted through the
fiber. Under good conditions, we can estimate this loss as 0.2 db per km. This
means that for 15 km, we have η ≈ 0.5.

Define pinst to be detector efficiency of an honest party, including the losses
incurred by beam splitters, filters and other instruments of the prover’s experi-
mental setup. In our feasibility calculation we will estimate pinst to be around
0.5. Let µ be the mean photon number of the pulse. Since the photon count
follows a Poisson distribution, this should be tuned so that a probability of a
double/triple/etc. photon is very small, since these events can increase the chance
a hypothetical adversary breaks the protocol. We will use a value of µ = 0.1 for
our current argument.

The probability that a photon, sent by the verifier, arrives at the prover is
then given by the overall detection probability pdet = µ pinst η. This is the fraction
that an honest prover can be expected to reply with a measurement result.

Since the mean photon number is less than one, for some of those losses the
photon was never sent over fiber, and for those rounds an adversary will also
not be able to interact with these photons. We then define the effective detection
probability p∗det = pinst η as the probability that the honest prover would be able to
answer, whenever a photon is sent (i.e. whenever an attacker has any information
to act on)3.

Extending the original protocol by allowing the prover to answer ‘no photon’
with large probability completely breaks security by an easy attack. Let Alice
and Bob be the two attackers that work together to simulate the actions of an
honest prover without being present at the correct location.

The attack on the naively modified scheme goes as follows. For every incoming
photon, the attacker Alice measures |φ〉 in a basis randomly chosen from {+,×},
guessing the value of the basis θ, and sends the basis and result to Bob. After
Alice receives the basis information from Bob, and Bob receives the outcome from
Alice, they send a reply to their closest verifier with the answer if Alice’s guessed
basis matches θ, and announce ‘no photon’ otherwise. It is easy to see that when
1/p∗det is at least the number of possible bases, this strategy enables them to reply
with the same rate as an honest prover.

We propose a protocol which is still secure under photon losses, and prove its
security against malicious adversaries that do not share entanglement before the
start of a round. The protocol is a simple extension of the earlier variant, obtained
using a larger set of possible bases in which the qubit might be measured. See
Figure 5.1 for a description of the protocol.

The proof strategies that were used in earlier analyses of protocols for quantum
position-based cryptography do not seem to translate directly to our case, the

3Of course an adversary could decide to answer even when there was no photon in the fiber
to intercept. For these rounds, he will be able to guess the answer with probability at most 0.5.
Therefore an easy calculation shows that producing any answer on a non-negligible fraction of
these rounds will make his chances of fooling the verifiers very small.

92 Chapter 5. Experimental considerations for single-qubit position verification

0. V0 picks a random bit b ∈ {0, 1}, a random basis θ ∈ {0, . . . ,m− 1} and
a random number r ∈ {0, . . . ,m − 1}, and privately sends all three to
V1. The verifier V0 prepares the state |bθ〉, where we define

|0θ〉 := cos πθ2m |0〉+ sin πθ

2m |1〉

|1θ〉 := sin πθ

2m |0〉 − cos πθ2m |1〉 .

1. V0 sends the qubit to the location of the prover P. He also sends m0 =
θ− r mod m to P so that it arrives at the same time as the qubit. From
the other side V1 sends m1 = r to the prover P, so that it arrives at the
same time at P as the information from V0.

2. The prover P calculates m0 +m1 mod m = θ. P then measures the qubit
in the basis given by θ, i.e., the measurement defined by the projectors
{|0θ〉〈0θ|, |1θ〉〈1θ|}. P sends the outcome b′ to both V0 and V1. If P has
not received a photon because of experimental losses, he replies with ‘no
photon’, for which we will use the symbol ⊥.

3. • If one of the verifiers receive a message too late, or if V0 receives a
different message than V1, the verifiers Abort. Otherwise:
• In case the verifiers receive⊥ from the prover P, the verifiers register
No photon.
• If they receive an outcome b which equals b′, the verifiers Accept.
• If b does not equal b′, the verifiers note it as Wrong answer.

Figure 5.1: A round of the modified protocol QPVBB84-e.

inclusion of the ‘no photon’ reply is hard to incorporate. We bypass the difficulties
by defining a semidefinite program (SDP) based on the actions of hypothetical
attackers and then numerically bounding this SDP. As an intermediate step, we
write attacks on the protocol as strategies for a new variant of a monogamy of
entanglement game, a type of non-local game first introduced by Tomamichel, Fehr,
Kaniewski and Wehner [TFKW13], originally used to prove security of parallel
repetition of the QPVBB84 scheme among other things.

The study of non-local quantum correlations through semidefinite program-
ming has been very fruitful and several advanced techniques for giving bounds
for the success probability of playing non-local games exist. See, for example,
the work of Navascués, Pironio and Acín [NPA08], or semidefinite programming
applied to non-local games in [Lan88, Weh06, DLTW08, NV15].

In this chapter, we will use relatively elementary methods of this kind. We
directly show that if adversaries can break the protocol with high probability,

5.1. Introduction 93

then there exists a positive semidefinite matrix with various properties. Software
for semidefinite optimization can then numerically show that this matrix can not
exist and that therefore the protocol is secure.

5.1.1 Results
Using the SDP bounds described in the next section, we can prove limits on how
well adversaries can attack a round of the new scheme, for specific experimental
parameters. For example we find that withm = 10, perr = 1 ·10−3, the adversaries
can answer with probability at most 0.194, while for the honest prover p∗det ≈ 0.25.
For these experimental parameters the difference could then be detected by
repeated rounds, where a dishonest party would eventually have too many errors or
declined to answer too many times, compared to the success rate that is achievable
by an honest prover.

5.1.2 Related work
Most of this work was done during a visit of Harry Buhrman, Christian Schaffner
and Florian Speelman to the University of Geneva in November 2014, and in a
follow-up visit of Hugo Zbinden to CWI in Amsterdam in January 2015. Unfortu-
nately, the partial results of this chapter were not made publicly available by the
current author at that time – other publications have come out with observations
that partially overlap with the work in this chapter.

The independent publication by Qi and Siopsis [QS15], ‘Loss-tolerant position-
based quantum cryptography’4, identifies the problem of photon loss in existing
single-qubit protocols for quantum position verification and proposes a very similar
adapted protocol to be resilient against lost photons. Their work was published
before any of our results were available, and they therefore were the first to identify
the issue of photon loss for the QPVBB84 protocol in print.

Though our conclusions are similar, we highlight two differences between this
work and [QS15]5.

• The security analysis in [QS15] assumes that attackers always perform a
one-dimensional single-qubit projective measurement on the incoming qubit.
On the other hand, our proofs are valid for attackers that can perform any
quantum operation; as long as they shared no entanglement beforehand.
The specific SDP formulation we use gives weaker bounds than the results
of [QS15], but for more general adversaries.

4First made available on arXiv in February 2015, and published in Physical Review A in
April 2015.

5Here we just describe the differences in the security analysis; the work of Qi and Siopsis
also reports on their analysis of the continuous-variable analog of this protocol and reflects on
the extra attacks possible when the used weak coherent source sends multiple photons.

94 Chapter 5. Experimental considerations for single-qubit position verification

• The protocol proposed by Qi and Siopsis generalizes the single-qubit QPVBB84
to pick bases from the entire Bloch sphere, while our work chooses to limit
the protocol to the equator which is parametrized by a single angle. We
made this choice so that an experimental implementation of the protocol
can be performed with fewer optical components, limiting photon losses.

Qi, Lo, Lim, Siopsis, Chitambar, Pooser, Evans, and Grice [QLL+15] also
propose a scheme for loss-tolerant quantum position verification. Their results are
in the ‘free-space’ setting, that is, without light-speed limitations. The security
proof, like that of Qi and Siopsis, is in a setting where adversaries are not allowed
any quantum communication – since we consider a stronger model, we think our
results are still of independent interest.

Finally, in very recent work, Johnston, Mittal, Russo, and Watrous [JMRW15]
use semidefinite programming to study monogamy of entanglement games, and
study an extension of the Navascues–Pironio–Acin hierarchy for these games. They
do not directly apply their results to our main question, the study of protocols
resilient against loss and light-speed limitations. Combining their new results
with the approach we outline in the current chapter could be a possible method
to improve the bounds in our security proof.

5.1.3 Security model for limited communication speed
Transmission of qubits as single photons on earth (as opposed to, for example,
satellite-to-satellite transmission) is commonly done using optical fiber as medium.
Besides the signal loss inherent in fiber, which is the main obstacle we address, the
speed of light in the medium is much lower, around two thirds of the speed of light
in vacuum c. The security of our protocols critically depends on the signal speed,
which determines the possible locations of the quantum information and thus
limits the capabilities of the attacker. Even though we only know how to reliably
transmit photons at two thirds of light speed with current technology, we should
not constrain the attackers in this way, but instead assume that adversaries can
transmit any signal with the speed of light – even when forwarding the intercepted
qubit which is coming from the verifier.

Contrary to the quantum signals, it is possible to send the classical messages
reliably and at the speed of light, also for the honest parties. To be able to still
argue the security of these protocols, we then must be careful to put constraints
on the timing of the classical messages only.

The slowness of the qubit gives the attackers extra time to distribute the qubit
amongst themselves; a protocol that sends the complete basis information as a
single message would be completely insecure in this setting. Attackers can break
such a protocol by using their hypothetical light-speed quantum channel to quickly
forward the qubit to the party knowing the basis and so execute a trivial attack.

One natural security model for slow qubits with fast classical information

5.1. Introduction 95

1. For a random θ ∈ {0, . . . ,m− 1}, bit b ∈ {0, 1}, and a random number
r ∈ {0, . . . ,m− 1}, the verifier V prepares |φ〉 = |bθ〉.

2. Alice receives |φ〉 and can choose whether to keep it, or let Bob start
with |φ〉. At this point, the attackers share no entanglement.

3. Alice receives classical message r, Bob receives θ − r mod m. Both
players simultaneously send one (arbitrarily-sized) quantum message to
the other player.

4. Alice and Bob use their received messages and the information they
chose to keep, to each send an answer from {0, 1,⊥} to the verifier.

5. • The verifier outputs Accept if the answers match and are correct.
• If the answers of Alice and Bob are not the same, the verifier outputs
Abort.
• In case both Alice and Bob answer ⊥, the verifier outputs No
photon,
• If Alice and Bob output the wrong answer, the verifier outputs
Wrong answer.

Figure 5.2: A round of attack in the lossy No-PE model for QPVBB84-e where the
attackers can choose the location of the qubit.

would let the attackers perform a quantum operation Φ before receiving any of
the classical messages, but after Alice receives a quantum state ρA and Alice
and Bob pre-share an auxiliary state σA′B. The players then start their attack
on the protocol with the state Φ(ρA ⊗ σA′B), effectively ‘distributing the state’
beforehand.

Our security proofs concern the no prior-entanglement (No-PE) model, and
there is an incompatibility between the slow-qubit security model and not allowing
the attackers to share entanglement: they are able to generate new entanglement
in their initialization step which distributes the qubit. In keeping with the spirit
of the No-PE model, we therefore propose the following adaptation.

Before any round of the protocol starts, the attackers Alice and Bob can route
the qubit to any party they desire, and so either Alice or Bob will start with
the qubit – security in this model will then still mean that Alice and Bob would
need to accurately manipulate entangled states over large distances to break the
scheme, while the trivial attack which could happen when Alice and Bob have
access to a faster medium than the honest parties is accounted for.

96 Chapter 5. Experimental considerations for single-qubit position verification

5.1.4 Other protocol modifications
The proposed protocol only picks measurement directions from one circle on the
Bloch sphere, a natural extension would pick bases distributed over all one-qubit
possibilities. Unfortunately, the gain made by this adjustment is diminished by
the extra optical component that would be needed to implement it, which would
cause extra losses.

Possible other options, which we do not investigate in-depth in this thesis,
include varying the timing of the sent photons, or varying their wavelength. These
variations would not make the task of an honest party any harder, but would force
an attacker to perform attacks that are significantly more complicated.

5.2 Attack model and proof strategy
We will prove limits on the success probability of an attack on a single round
of the protocol via a series of reductions. First, we show that the security of a
round of the protocol is implied by a limited success probability for a particular
variation of a monogamy of entanglement game – a non-local game which was first
introduced by Tomamichel, Fehr, Kaniewski and Wehner [TFKW13].

For our case the players can lose the game in different ways, an important
difference. A verifier will be much more lenient for ‘no photon’ answers than for
wrong answers. The verifier will be very strict in terms of differing answers; if
Alice and Bob output a different value, they are instantly caught. Because it is not
directly possible to include the ‘no photon’ response in the model of entanglement
games, we extend their model. The proof strategy in [TFKW13] will also no
longer work for our case, therefore we will use a different method: we define an
SDP relaxation, which we numerically solve.

Consider a game with three parties6: Alice, Bob, and a verifier V. The game
is defined by a collection of measurements of the verifier on his local Hilbert
space HV .

{V θ
0 ,V θ

1 }θ∈{0,...,m−1}

As in Figure 5.1, we define

|0θ〉 := cos πθ2m |0〉+ sin πθ

2m |1〉

|1θ〉 := sin πθ

2m |0〉 − cos πθ2m |1〉 .

Now, let HV = C2 and let the used measurements be the one-dimensional projec-
tors V θ

0 = |0θ〉〈0θ| and V θ
1 = |1θ〉〈1θ|.

6The parties are named differently in the paper that introduced this game - we choose these
names for consistency with the other chapter concerning the position-verification setting.

5.2. Attack model and proof strategy 97

QPVBB84-e
ks +3 QPV∗BB84-e

+3 Monogamy game +3 SDP

Figure 5.3: A strategy for a round of QPVBB84-e can be converted to a strategy
for a purified version of the protocol, then into a strategy for the monogamy of
entanglement game, and finally to a positive semidefinite matrix with certain
properties. Therefore non-existence of this matrix also implies non-existence of
the strategy for QPVBB84-e.

A strategy S to this game is then given by the finite-dimensional Hilbert spaces
HA, HB, three-outcome projective measurements on these spaces

{Aθ0,Aθ1,Aθ⊥}θ∈{0,...,m−1}

and
{Bθ

0 ,Bθ
1 ,Bθ

⊥}θ∈{0,...,m−1},
and a state |ψ〉 ∈ HV ⊗HA⊗HB. The assumption that the players use a pure state
and that the measurements are projective, instead of general POVM elements,
can be made without loss of generality by a standard purification argument (see
for example Lemma 9 in [TFKW13]).

For a given strategy, define the probability p⊥ of not playing, i.e. announcing
that no photon was received, as

p⊥ = E
θ∈{0,...,m−1}

[〈ψ|I ⊗ Aθ⊥ ⊗Bθ
⊥|ψ〉] .

Keeping in mind the comparison to the error rate of a photon detector, we define
winning probability as the chance of winning conditional on playing:

pwin = E
θ∈{0,...,m−1}

[
〈ψ|V θ

0 ⊗ Aθ0 ⊗Bθ
0 |ψ〉+ 〈ψ|V θ

1 ⊗ Aθ1 ⊗Bθ
1 |ψ〉

〈ψ|I ⊗ Aθ0 ⊗Bθ
0 |ψ〉+ 〈ψ|I ⊗ Aθ1 ⊗Bθ

1 |ψ〉

]

We will use ε for the maximum probability that the attackers give inconsistent
answers. First thought might be to set this to 0, since any single inconsistent
answer would let attackers be detected, but if this probability is tiny the attackers
might still stay undetected. Instead, we choose to keep it as a (small) numerical
parameter, which will have to be picked according to the number of times the
protocol is repeated.

5.2.1. Proposition. If there exists no strategy for the players for the monogamy
game that has both conditional success probability pwin and ‘no play’ probability
at most p⊥, then there also exists no strategy (in the lossy no prior-entanglement
model) for a round of the protocol QPVBB84-e such that the verifiers output Accept
with conditional probability at least pwin and No photon with probability at most
p⊥.

98 Chapter 5. Experimental considerations for single-qubit position verification

Proof sketch. First note that without loss of generality, we can assume that Alice
does not forward the qubit |φ〉, when attacking the protocol QPVBB84-e in the
way described in Figure 5.1.3; if Alice forwards the qubit to Bob, the attackers
have to win a game which is completely equivalent to the game where Alice keeps
the qubit. Also in the forwarded case, the players are asked to measure in a basis
which comes from the sum of their inputs, therefore a good strategy for a round
where Alice forwards can be trivially translated to an equally good strategy where
Alice does not forward by swapping the role of the attackers.

Next, note that given previous assumption, we only need to consider the attack
strategy for the case where Alice receives 0 and therefore Bob’s input completely
determines the basis. Indeed, say the attackers have a strategy which is more
successful when Alice receives some other classical message m′0, then they could
also use this to play the case where m0 = 0 better using that strategy, by using
the better strategy with m1 replaced by m1 −m′0 mod m.

Define QPV∗BB84-e as a purified version of QPVBB84-e, where the verifier V0
prepares an EPR pair and sends one half to the prover (intercepted by attacker
Alice), so that they share |0〉V |0〉A+|1〉V |1〉A√

2 . After randomly selecting θ ∈ {0, . . . ,m−
1}, the verifier measures his half in the corresponding basis, getting random
outcome b. The reduced state on Alice’s side is given by |bθ〉, and therefore
security of the purified protocol is completely equivalent to the original variant
from the perspective of the attackers.

Finally, a strategy for the purified protocol can be easily transformed into a
strategy for the monogamy game, via a similar proof as used in [TFKW13], in the
following way. Since Bob only receives classical information, his optimal strategy
consists of just forwarding his received bits. Take |ψ〉V AB to be the state of the
attack after Alice sends her quantum message to Bob. Here register V consists
of the qubit of the verifier, which he will measure in basis θ to get the correct
outcome b, register A is the quantum memory of Alice and register B contains
the message of player Alice to Bob. The measurements {Aθ0,Aθ1,Aθ⊥}θ∈{0,...,m−1}
and {Bθ

0 ,Bθ
1 ,Bθ

⊥}θ∈{0,...,m−1} are the measurements Alice and Bob use to obtain
their response.

5.3 Bound by SDP

5.3.1 SDP relaxation of monogamy game

We will show that a good strategy for the modified monogamy of entanglement
game implies the existence of a positive semidefinite matrix with certain properties
and constraints. We will then use an SDP solver to show that this matrix can not
exist, thereby showing security of the protocol.

Assume there exists some strategy S for the players, with associated projective

5.3. Bound by SDP 99

measurements
{Aθ0,Aθ1,Aθ⊥}θ∈{0,...,m−1}

and
{Bθ

0 ,Bθ
1 ,Bθ

⊥}θ∈{0,...,m−1},

and a state |ψ〉 ∈ HV ⊗HA ⊗HB.
Let G be a (4m + 1) × (4m + 1) matrix with real entries. We will think

of this matrix as the Gram matrix of the set of vectors |ψ〉, I ⊗ Aθa ⊗ I|ψ〉 for
θ ∈ {0, . . . ,m− 1}, a ∈ {0, 1}, and I⊗I⊗Bθ′

b |ψ〉 for θ′ ∈ {0, . . . ,m−1}, b ∈ {0, 1},
of which there are 4m + 1 total. That is, every entry of the matrix equals the
inner product of a corresponding pair of vectors from this set. By deriving bounds
on these inner products that would hold for a good strategy, i.e. a strategy
corresponding to an undetectable attack on the protocol QPVBB84-e, we find
constraints on the entries of the matrix G. Note that the optimization only
involves the measurement operators of Alice and Bob – the properties of the
verifier’s measurements (which are known explicitly in our case) will be used to
derive constraints on the matrix.

The indices are labeled by symbols, where “I” stands for |ψ〉, and “Aθa” and
“Bθ′

b ” are used for the other vectors respectively. For example, the entry G(Aθa,Bθ′
b)

is the entry of G that corresponds to the inner product 〈ψ|(I ⊗ I ⊗Bθ′
b)(I ⊗Aθa⊗

I)|ψ〉 = 〈ψ|I ⊗ Aθa ⊗ Bθ′
b |ψ〉 and the entry G(Aθa,Aθ

′
b) corresponds to the inner

product 〈ψ|I ⊗ Aθ′b Aθa ⊗ I|ψ〉. Even though the latter represents a measurement
which is never performed when the game is played, and therefore does not cor-
respond to a probability in the game, the value of that entry can still be seen
as inner product between vectors, a hypothetical combining of the strategies for
different inputs.

Observe that, for any θ, we can write the third measurement operator as

I ⊗ Aθ⊥ ⊗ I|ψ〉 = |ψ〉 − I ⊗ Aθ0 ⊗ I|ψ〉 − I ⊗ Aθ1 ⊗ I|ψ〉

with similar equalities holding for Bθ′
⊥ . Therefore we do not need to include the

‘no photon’ result of the measurements in the matrix, but can write down any
constraint that involves the ‘no photon’ entries as a linear combination of other
entries. In our description of the constraints we will still include these, but actual
software implementations of the optimization use less memory when we simplify
these and optimize over a smaller set of vectors instead.

Since the matrix G is a Gram matrix, it is always positive semidefinite (PSD).
Our program will optimize the probability that the players answer something
different than ⊥ over the corresponding entries of all PSD matrices G. The
objective function to maximize will then just be the sum∑

a∈{0,1}
θ∈{0,...,m−1}

G(Aθa,Bθ
a) .

100Chapter 5. Experimental considerations for single-qubit position verification

From the form of the vectors we can immediately derive several constraints to
impose on G. First of all, since all quantum states are unit vectors, we require
that G(I, I) = 1. Because all measurements Aθa and Bθ′

b are taken to be Hermitian
projectors, we have that G(Aθa, I) = G(Aθa,Aθa) and G(Bθ′

b , I) = G(Bθ′
b ,Bθ′

b) for
any θ, a or y, b.

Because of the tensor-product structure between the strategies of the players,
we have that G(Aθa,Bθ′

b) = G(Bθ′
b ,Aθa) for any θ, a, θ′, b.

Since some of the inner products are very common in our derivations, we will
abbreviate them. We define

pθ,θ
′

a,b = 〈ψ|I ⊗ Aθa ⊗Bθ′

b |ψ〉

corresponding to the case where Alice and Bob receive inputs θ, θ′, and produce
outputs a, b. We then also define

pθa = pθ,θa,a = 〈ψ|I ⊗ Aθa ⊗Bθ
a|ψ〉

as a shorthand for the case where both Alice and Bob receive input θ and output a.
The next section we use the extra conditions on winning the game to derive

other linear constraints, given as Equations 5.1, 5.2, 5.6 and 5.7.

∀a, b ∈ {0, 1,⊥} s.t. a 6= b : 〈ψ|I ⊗ Aθa ⊗Bθ
b |ψ〉 ≤ ε (see 5.1)

E
θ∈{0,...,m−1}

[
1− 〈ψ|I ⊗ Aθ⊥ ⊗Bθ

⊥|ψ〉
]
≥ p∗det (see 5.2)

pθ,θ
′

a,b ≤
perr(pθ0 + pθ1 + pθ

′
0 + pθ

′
1 + 4ε)

2− ‖V θ
a + V θ′

b ‖
=

perr(pθa + pθ
′
b)

1− |cos π(θ−θ′)
2m |

if a = b

perr(pθa + pθ
′
b)

1− |sin π(θ−θ′)
2m |

if a 6= b .
(see 5.6)

pθ,θ
′

0,0 + pθ,θ
′

1,0 + pθ,θ
′

0,1 + pθ,θ
′

1,1 ≤ 1
1− |sin π(θ−θ′)

2m |
+ 1

1− |cos π(θ−θ′)
2m |

perr(pθ0 + pθ1 + pθ
′

0 + pθ
′

1 + 4ε) (see 5.7)

Now we can fill in these equations, and numerically solve the SDP – for example
using the Mosek package. We generated the matrix in Python, with help of the
library functions supplied by the Ncpol2sdpa package [Wit15]. We find that with
m = 10, perr = 1 ·10−3, ε = 1 ·10−7 the adversaries can answer with probability at
most 0.194, while for the honest prover p∗det ≈ 0.25. It is possible to choose a low
value for ε, since only a single error of that type can be detected by a verifier—also
see the comments below.

5.3. Bound by SDP 101

5.3.2 Deriving the constraints
We will derive some constraints for a strategy that works well (i.e. with high
probability) on all inputs θ instead of an average randomly chosen input. This
is possible because of the symmetry inherent in the protocol QPVBB84-e. Given
any attack, where Alice and Bob perform some action on local input θ, we can
consider a symmetrized version where Alice and Bob instead perform the local
action associated to a randomly chosen input θ′, after performing a rotation on
their input by π(θ′−θ)

2m . This symmetrized strategy still has the same average-case
behavior, but now the worst-case input is exactly equal to the average-case input
– the strategy has the same properties for each input θ.

An attack on the protocol that works well for all inputs θ ∈ {0, . . . ,m − 1}
implies the existence of a strategy for this game with the following properties.

1. If in the original protocol the verifiers V0 and V1 receive a different message,
any attackers will immediately be detected, since the classical response by
an honest player will never differ between V0 and V1. Given that the protocol
is repeated k times, if the probability per round of a different response is
ε, then this causes the attackers to be caught with probability at least
1− (1− ε)k.
Therefore, a good attack on the protocol will give a strategy for the game
with the following property. When players Alice and Bob both receive the
same input θ ∈ {0, . . . ,m− 1}, they will produce a different output with at
most the (very low) probability ε.

∀a, b ∈ {0, 1,⊥} s.t. a 6= b : 〈ψ|I ⊗ Aθa ⊗Bθ
b |ψ〉 ≤ ε (5.1)

2. The players play with probability at least p∗det.

E
θ∈{0,...,m−1}

[
1− 〈ψ|I ⊗ Aθ⊥ ⊗Bθ

⊥|ψ〉
]
≥ p∗det (5.2)

3. Whenever the players do play, the error probability is low. How can we
encode this conditional error probability as constraints on the matrix entries?
Out of all times when the verifier gets a 0 as measurement outcome, and the
players give a valid answer, this answer is wrong with at most probability
given by the measurement error – and the same holds when the verifier
measures a 1.
Define pθa = 〈ψ|I ⊗ Aθa ⊗ Bθ

a|ψ〉. Then enforcing a low measurement error
gives:

〈ψ|V θ
0 ⊗ Aθ1 ⊗Bθ

1 |ψ〉
〈ψ|V θ

0 ⊗ (Aθ0 + Aθ1)⊗ (Bθ
0 +Bθ

1)|ψ〉 ≤ perr

102Chapter 5. Experimental considerations for single-qubit position verification

and
〈ψ|V θ

1 ⊗ Aθ0 ⊗Bθ
0 |ψ〉

〈ψ|V θ
1 ⊗ (Aθ0 + Aθ1)⊗ (Bθ

0 +Bθ
1)|ψ〉 ≤ perr

therefore, the final constraint on the matrix entry that we derive from the
maximum measurement error is given by the sum

〈ψ|V θ
1 ⊗ Aθ0 ⊗Bθ

0 |ψ〉+ 〈ψ|V θ
0 ⊗ Aθ1 ⊗Bθ

1 |ψ〉 ≤ perr〈ψ|I ⊗ (Aθ0 + Aθ1)⊗ (Bθ
0 +Bθ

1)|ψ〉
≤ perr(pθ0 + pθ1 + 2ε) (5.3)

We will now consider the probability that Alice would output a and Bob
outputs b should they have received respective different inputs θ and θ′, which we
call pθ,θ

′

a,b . Even though the players always receive the same input when playing
a round of the monogamy game, their actions when both receive different inputs
are well-defined.

Using the constraints above, we will give a bound on the values of pθ,θ
′

a,b .

2pθ,θ
′

a,b = 2〈ψ|I ⊗ Aθa ⊗Bθ′

b |ψ〉 = 〈ψ|(V θ
a + V θ

1−a + V θ′

b + V θ′

1−b)⊗ Aθa ⊗Bθ′

b |ψ〉
= 〈ψ|(V θ

a + V θ′

b)⊗ Aθa ⊗Bθ′

b |ψ〉+ 〈ψ|V θ
1−a ⊗ Aθa ⊗Bθ′

b |ψ〉
+ 〈ψ|V θ′

1−b ⊗ Aθa ⊗Bθ′

b |ψ〉
≤ ‖V θ

a + V θ′

b ‖p
θ,θ′
a,b + 〈ψ|V θ

1−a ⊗ Aθa ⊗ I|ψ〉+ 〈ψ|V θ′

1−b ⊗ I ⊗Bθ′

b |ψ〉

and therefore

pθ,θ
′

a,b ≤
1

2− ‖V θ
a + V θ′

b ‖
(
〈ψ|V θ

1−a ⊗ Aθa ⊗ I|ψ〉+ 〈ψ|V θ′

1−b ⊗ I ⊗Bθ′

b |ψ〉
)

. (5.4)

Here the first step used the completeness of the measurement V θ
0 + V θ

1 = I, for
any θ. In the second step we used that for all the measurement operators M , it
holds that M ≤ I.

For a ∈ {0, 1}, and any b,θ′, we can use the relation in Equation 5.1 to bound

〈ψ|V θ
1−a ⊗ Aθa ⊗ I|ψ〉 = 〈ψ|V θ

1−a ⊗ Aθa ⊗ (Bθ
a +Bθ

1−a +Bθ
⊥)|ψ〉

= 〈ψ|V θ
1−a ⊗ Aθa ⊗Bθ

a|ψ〉+ 〈ψ|V θ
1−a ⊗ Aθa ⊗Bθ

1−a|ψ〉
+ 〈ψ|V θ

1−a ⊗ Aθa ⊗Bθ
⊥|ψ〉

≤ 〈ψ|V θ
1−a ⊗ Aθa ⊗Bθ

a|ψ〉+ 2ε, (5.5)

together with the analogous statement for 〈ψ|V θ′
1−b ⊗ I ⊗Bθ′

b |ψ〉.
Since we have an explicit expression for the measurements of the verifier V, it

is not hard to directly compute the operator norm. We prove the following lemma
at the end of the chapter.

5.3. Bound by SDP 103

5.3.1. Lemma. The operator norm of the sum of two of the measurements of the
verifier V is given by

‖V θ
a + V θ′

b ‖ =

1 +

∣∣∣∣∣cos π(θ − θ′)
2m

∣∣∣∣∣ if a = b

1 +
∣∣∣∣∣sin π(θ − θ′)

2m

∣∣∣∣∣ if a 6= b

By combining these expressions, we find a usable bound for sums of the pθ,θ
′

a,b
entries, that will form a constraint on our SDP formulation of the problem.

Filling in Equation 5.5 into Equation 5.4, we apply Equation 5.3 to find the
bound

pθ,θ
′

a,b ≤
perr(pθ0 + pθ1 + pθ

′
0 + pθ

′
1 + 4ε)

2− ‖V θ
a + V θ′

b ‖
=

perr(pθa + pθ
′
b)

1− |cos π(θ−θ′)
2m |

if a = b

perr(pθa + pθ
′
b)

1− |sin π(θ−θ′)
2m |

if a 6= b .
(5.6)

We can also sum four of these probabilities together, to give a slightly better
constraint on the sum:

pθ,θ
′

0,0 + pθ,θ
′

1,0 + pθ,θ
′

0,1 + pθ,θ
′

1,1 ≤ 1
1− |sin π(θ−θ′)

2m |
+ 1

1− |cos π(θ−θ′)
2m |

perr(pθ0 + pθ1 + pθ
′

0 + pθ
′

1 + 4ε). (5.7)

5.3.3 Proof of Lemma 5.3.1
Proof. We compute the norm of the 2 × 2 matrix V θ

a + V θ′
b . For brevity, define

cθ = cos πθ
2m and sθ = sin πθ

2m , with the analogous definition for cθ′ and sθ′ . Then

V θ
0 =

(
c2
θ sθcθ

sθcθ s2
θ

)
and V θ

1 =
(
s2
θ sθcθ

sθcθ c2
θ

)
.

We will compute ‖V θ
0 + V θ′

0 ‖, the proof for the other three cases can be found
similarly.

‖V θ
0 + V θ′

0 ‖ =
∥∥∥∥∥
(

c2
θ + c2

θ′ sθcθ + sθ′cθ′
sθcθ + sθ′cθ′ s2

θ + s2
θ′

)∥∥∥∥∥
This matrix has two eigenvalues, say λ1 and λ2. Note that we can express these in
terms of the trace Tr[V θ

0 +V θ′
0] = λ1+λ2 and the determinant det[V θ

0 +V θ′
0] = λ1λ2.

By direct computation we find

Tr[V θ
0 + V θ′

0] = c2
θ + s2

θ + c2
θ′ + s2

θ′ = 2

104Chapter 5. Experimental considerations for single-qubit position verification

and

det[V θ
0 + V θ′

0] = (c2
θ + c2

θ′)(s2
θ + s2

θ′)− (sθcθ + sθ′cθ′)2

= c2
θs

2
θ′ + s2

θc
2
θ′ − 2cθsθcθ′sθ′

= (cθsθ′ − sθcθ′)2 =
(

sin π(θ − θ′)
2m

)2

= 1−
(

cos π(θ − θ′)
2m

)2

.

Here the last step uses the trigonometric identities sinα cos β − cosα sin β =
sin(α− β) and (sinα)2 + (cosα)2 = 1. Filling in gives

det[V θ
0 + V θ′

0] = λ1λ2 = λ1(2− λ1)
= 1− (λ1 − 1)2

= 1−
(

cos π(θ − θ′)
2m

)2

.

Therefore λ1 = 1± cos π(θ−θ′)
2m . Choosing λ1 to be the largest eigenvalue following

convention, we pick the largest option for the sign, depending on the values of θ
and θ′, giving

λ1 = 1 +
∣∣∣∣∣cos π(θ − θ′)

2m

∣∣∣∣∣ ,
and

λ2 = 1−
∣∣∣∣∣cos π(θ − θ′)

2m

∣∣∣∣∣ .

Part II

Catalytic computation

105

Chapter 6
Catalytic computation

In this chapter we define the notion of a catalytic-space computation. This is a
computation that has a small amount of clean space available and is equipped with
additional auxiliary space, with the caveat that the additional space is initially
in an arbitrary, possibly incompressible, state and must be returned to this state
when the computation is finished. We show that the extra space (surprisingly)
adds extra power to the model: it is possible to compute uniform TC1-circuits with
just a logarithmic amount of clean space. The extra space thus works analogously
to a catalyst in a chemical reaction. TC1-circuits can compute for example the
determinant of a matrix, which is not known to be computable in logspace.

In order to obtain our results we study an algebraic model of computation,
a variant of straight-line programs. We employ register machines with input
registers x1, . . . ,xn and work registers r1, . . . , rm. The instructions available are
of the form ri ← ri± u× v, with u, v registers (distinct from ri) or constants. We
wish to compute a function f(x1, . . . ,xn) through a sequence of such instructions.
The working registers have some arbitrary initial value ri = τi, and they may be
altered throughout the computation, but by the end all registers must be returned
to their initial value τi, except for, say, r1 which must hold τ1 + f(x1, . . . ,xn). We
show that all of Valiant’s class VP, and more, can be computed in this model. This
significantly extends the framework and techniques of Ben-Or and Cleve [BC92].

Upper bounding the power of catalytic computation we show that catalytic
logspace is contained in ZPP. We further construct an oracle world where catalytic
logpace is equal to PSPACE, and show that under the exponential time hypothesis
(ETH), SAT can not be computed in catalytic sub-linear space.

The results in this chapter are based on the following publication:

• [BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and
Florian Speelman. Computing with a full memory: Catalytic space. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 857–866, New York, NY, USA, 2014. ACM.

107

108 Chapter 6. Catalytic computation

6.1 Introduction
Imagine the following scenario. You want to perform a computation that requires
more memory than you currently have available on your computer. One way
of dealing with this problem is by installing a new hard drive. As it turns out
you have a hard drive but it is full with data, pictures, movies, files, etc. You
don’t need to access that data at the moment but you also don’t want to erase it.
Can you use the hard drive for your computation, possibly altering its contents
temporarily, guaranteeing that when the computation is completed, the hard drive
is back in its original state with all the data intact? One natural approach is to
compress the data on the hard disk as much as possible, use the freed-up space
for your computation and finally uncompress the data, restoring it to its original
setting. But suppose that the data is not compressible. In other words, your
scheme has to always work no matter the contents of the hard drive. Can you
still make good use of this additional space?

In order to study this question we define the following model of computation,
which we call catalytic space1. We equip the standard Turing machine model —
which has input, output, and work tapes — with an additional auxiliary tape. We
assume that the Turing machine halts on every input and call it catalytic if at
the end of every computation, the auxiliary tape is unaltered for every possible
initial setting of its content. As usual in space-bounded computation we limit
the amount of work space by a function s(n), usually logarithmic or polynomial.
We define the class CSPACE(s(n)) to be the class of sets that are computed by
catalytic Turing machines whose work-tape is bounded by s(n) tape cells, and
whose auxiliary space is bounded by 2s(n) cells.

Intuition tells us that the auxiliary tape is not very useful since its contents
must be present in some way at every step of the computation and if these
contents are incompressible, effectively no extra space is available. Surprisingly
it appears that CSPACE(log n), which we call CL, is more powerful than ordinary
logspace (DSPACE(log n) or L), for we show that TC1 ⊆ CL. Note that TC1

contains NL and even #L and other classes that are conjectured to be different
from L. We remark that, although the catalytic requirement of the auxiliary space
suggests the computation is reversible, it is not sufficient to have just reversibility,
since reversible computation schemes [Ben73, LMT97, BTV01] usually require
the initial configuration of all the space cells to be set to some fixed initial value,
for example all blanks. However, a stronger version of reversibility, that we call
transparent computation, suffices. Our reversibility framework is related to the
work of Ben-Or and Cleve [BC92] but goes beyond it. We show that the techniques
of Ben-Or and Cleve stop at the class of problems that are reducible to iterated
matrix product (GapL), whereas our model is able to compute TC1.

1Catalysis refers to the situation where the rate of a chemical reaction is increased by
participation of a substance which is not consumed and is available unaltered after the reaction
has taken place.

6.2. Preliminaries 109

We don’t know what the exact power of catalytic logspace is, but show that it
is contained in ZPP – the class of problems which can be solved with randomized
algorithms that run in polynomial time on expectation. It could be possible that
every problem in P is computable in CL. This would be remarkable. It could be
of practical interest in situations when additional clean space is not available, for
example when the main memory of a computer is filled with data of an ongoing
background computation which may be temporarily stopped, but requires the
memory to be unaltered when it continues. On the other hand, CL might be a
proper subset of P. There remains the possibility that CL = L. If this is the
case then our result implies L = NL, and the intuition that an additional full
memory is useless could lead to an approach for proving this collapse. Lastly,
we present an oracle relative to which CL = PSPACE, showing the potential, at
least in a relativized world, of the auxiliary tape. We also show that under the
exponential-time hypothesis [IP99], SAT 6∈ CSPACE(o(n)).

6.2 Preliminaries
A short introduction to basic complexity theory can be found in Section 2.4, to
put our results into a proper context we also review several problems and related
complexity classes here.

L, NL, LOGCFL. By L we denote the class of problems solvable in logspace,
by NL the class of problems solvable non-deterministically in logspace, and by
LOGCFL the class of problems that are logspace many-one reducible to context-
free languages. Another equivalent characterization of LOGCFL is as the class of
languages accepted by non-deterministic logspace-bounded auxiliary push-down
automata (AuxPDAs) running in polynomial time [Sud78].

NCi, SACi, ACi, TCi. These are classes of boolean functions computed by
polynomial-size circuits of depth (log n)i. The different classes differ by the set of
gates that are allowed in the circuit. NCi-circuits consist of input gates, constant
(0/1) gates, binary (fan-in-2) AND and OR gates, and unary NOT gates. SACi-
circuits additionally allow for the OR gates to have arbitrary fan-in. ACi-circuits
allow for both AND and OR gates to have arbitrary fan-in. TCi-circuits are
additionally allowed to have MAJ gates of arbitrary fan-in (a MAJ gate decides
whether most of its input bits are 1).

GapL, #LOGCFL. We also consider counting classes: GapL is the class of
functions obtained by counting the difference between the number of accepting
and rejecting paths of a non-deterministic logspace machine; #LOGCFL is the
class of functions that count the number of accepting paths of AuxPDAs running
in logarithmic space and polynomial time.

VP(R), SkewVP(R). Finally, we will also work with algebraic circuits that
operate over some ring R. When R is the ring of integers Z, these are also
called arithmetic circuits. Valiant’s class VP(R) [Val79] is the class of (families of)

110 Chapter 6. Catalytic computation

multivariate polynomials over R, computed by algebraic circuits using addition
and multiplication gates over R, that have size and degree nO(1) (where n is
the number of variables). SkewVP(R) is the class of multivariate polynomials
which can be computed by VP(R)-circuits, with the further restriction that each
multiplication gate is binary and such that one of its inputs is either a constant
or an input variable.

#NCi(R), #SACi(R), #ACi(R). These are classes of families of multivariate
polynomials over R that are computed by polynomial-size algebraic circuits of
depth (log n)i. Again, these classes differ only by the set of gates that are allowed.
#NCi(R)-circuits consist of input gates, constant gates (one such gate for each
element in R), and binary addition and multiplication gates. #SACi(R)-circuits
further allow for the addition gates to have arbitrary fan-in. #ACi(R)-circuits
can have both addition and multiplication gates of arbitrary fan-in.

Beside circuit families over a ring R that is the same for all input lengths we
also consider circuit families where the circuit for inputs of length n computes over
a ring Rn, e.g., #NC1(Mn2×n2(Z)) consists of families of multivariate polynomials
over the ring of integer matrices, where the size of the matrices is n2 for n being
the number of matrix variables.

DETn,R, IMMn,m,R. By DETn,R we denote the problem of computing a deter-
minant of an n× n matrix over a ring R. By IMMn,m,R we denote the problem of
computing the product of n matrices, each over the ring R of dimension m×m.
We can omit the subscripts when the ring or dimensions are understood from the
context. Typically we may think of R being the ring of integers, and m = n.

Relationship among these concepts. We now present known relationships
among these classes; see Figure 6.1 for an overview.2. It is standard knowledge
that TC0 ⊆ NC1 ⊆ SAC1 ⊆ AC1 ⊆ TC1, but none of these inclusions is known to
be proper. TC0 is known to contain problems such as computing the sum and the
product of n-many n-bit integers, computing the division of two n-bit integers,
etc [BCH86, RT92, HAM02]. It is also (not-as-well) known that NC1 ⊆ L ⊆ NL ⊆
SAC1 = LOGCFL [Ven91].

The complexity of computing the determinant characterizes GapL. More pre-
cisely, f is in GapL if and only if it is logspace many-one reducible to DETn,Z
[Tod91, Dam91, Vin91, Val92]. Cook and others [Coo85, AO94] have shown that
the class of problems logspace many-one reducible to DET is the same as the
class of problems logspace many-one reducible to IMM.3 Taken over the integers,

2Below and in Figure 6.1, inclusion is not meant in a set-theoretic sense, and should be
interpreted with the usual caveats that apply to complexity classes; for instance, NL ⊆ GapL
in the sense that the characteristic function of any NL decision problem is in GapL; or, to
give another example, #AC0(Zp) ⊆ TC0 in the sense that any polynomial in #AC0(Zp) can be
computed in TC0 using the canonical encoding of Zp (see Section 6.4.1) But describing this with
full precision would give a cluttered, poorer exposition.

3A function f is logspace many-one reducible to the determinant if there is a function g
computable in logspace such that f(x) (viewed as a number written in binary) is equal to the

6.2. Preliminaries 111

SAC1

TC0 // NC1 // L // NL
��

// LOGCFL
��

// AC1 // TC1

#AC0(Zpn) // GapL // #LOGCFL // #AC1(Zpn)

SkewVP(Z) VP(Z)

#AC0(Z2poly(n))

OO

#NC1(Mn×n(Z)) SAC1(Z) #AC1(Z2poly(n))

OO

Figure 6.1: Inclusion diagram for all the classes.

SkewVP(Z) equals GapL [Tod92], and also #NC1(MnO(1)×nO(1)(Z)), the class of
log-depth fan-in-2 circuits over integer matrices.4

#SAC1(R) is actually a characterization of VP(R) [VSBR83], a deep result
of depth-reduction for algebraic circuits. Taken over the integers VP(Z) equals
#LOGCFL [Vin91].

The question posed by Valiant [Val79] about the relationship between the
determinant and VP(Z), namely, whether evaluating a VP(Z) circuit reduces to
evaluating the determinant of a matrix that is at most polynomially larger in size
(or, equivalently, whether SkewVP(Z) = VP(Z)), is no different to the question
about the relationship between GapL and #LOGCFL.

[AAD00, BFS92, RT92] establish a relationship between the classes TCi and
#ACi(R) over various integral rings and finite fields. For instance, it is shown in
[RT92] that TCi ⊆ #ACi(Zp(n)), where p(n) is any prime number larger than the
maximum fan-in of the TCi circuit to be simulated (for inputs of length n), and
that, conversely, #ACi(Zf(n)) ⊆ TCi holds for any function f(n) = O(2poly(n)).

A remark on TC1 versus GapL. Immerman and Landau [IL95] conjecture
that computing determinant over the integers is hard for TC1. However, there is
evidence suggesting that this is not the case. Namely, it is known that TC1 circuits
can evaluate #AC1 circuits over Zm, the ring of integers mod m, for exponentially
large m.5 If the Immerman-Landau conjecture were true then #SAC1 circuits
over the integers — which compute polynomials of degree polynomial in the
number of inputs — could simulate TC1, and hence #AC1. But the latter can
have super-polynomial degree! This conclusion can not be ruled out entirely,
because while polynomials of nO(1) degree over integer variables can not simulate

determinant of matrix g(x).
4This follows from [BC92, Cle89], see Theorem 6.3.2 below.
5This is because TC0 circuits can evaluate an iterated sum and iterated product of integers,

as well as compute the remainder mod m. TC1 circuits cannot evaluate #AC1 circuits over
unbounded integers since #AC1 circuits represent polynomials of degree up to nO(log n), and
hence the encoding of their output may require super-polynomially many bits.

112 Chapter 6. Catalytic computation

polynomials of larger degree over integer variables, they could still conceivably
simulate polynomials of nlogn degree over integers modulo 2n (Z2n). But this does
seem unlikely.

6.3 Transparent computation
The model for transparent computation is a variant of straight-line programs.
The computational device is a register machine equipped with read-write working
registers ~r = r1, r2, . . . , rm and read-only input registers ~x = x1, . . . ,xn. Each
register xi or ri holds a value from some designated ring R. The standard set
of instructions — called standard basis — consists of instructions of the form
ri ← ri± u× v, where u and v are either elements of R (“constants”), or registers
different from ri, and the +,− and × are the operations of R. These instructions
are said to be reversible, and for an instruction I, its inverse I−1 is I with the +
or − interchanged.6 Moreover when at least one of the u and v is an input register
or constant we call the instruction skew, and the skew basis is the standard basis
restricted to skew instructions

A program for this register machine is a sequence of reversible instructions,
and we also call these programs reversible. Thus for a reversible program P =
I1, I2, . . . , I` we let the inverse program P−1 be I−1

` , I−1
`−1, . . . , I−1

1 . It is easy to
verify that P ,P−1 computes the identity.

We say that a program P uses register r if one of its instructions involves this
register, e.g., r1 ← r1 + r4 · r7 uses registers r1, r4 and r7.

We say that f(~x) can be computed transparently into a register ri if there is
a reversible program P that when executed on registers r1, r2, . . . , rm with initial
values τ1, τ2, . . . , τm ends with value τi+f(~x) in register ri; the other registers may
contain arbitrary values at the end of the computation. (We will always use τi to
denote the initial value held in register ri before executing a program.) Clearly, if
we have a program that transparently computes f into a register r we can modify
it by relabeling registers to compute f transparently into a different register. We
may also want P to transparently compute a vector of functions (f1(~x), f2(~x), . . . ,
fk(~x)) into registers ri1 , ri2 , . . . , rik , meaning that the execution of P ends with
the value τij + fj(~x) in each register rij .

Transparent computation is a very special type of reversible computation as it
has the additional property that the computation is meaningful regardless of the
initial setting of the working registers.7 Hence the choice of name: the computation

6Generally speaking, the reversibility property would hold for any instruction of the form
ri ← σ~x,~r 6=i

(ri), where σ~x,~r 6=i
is a permutation of R which may arbitrarily depend on the input

registers and on the work registers other than ri. Also, in principle, different registers could
work over different domains. In this chapter we do not make use of these possibilities, but they
may appear in future extensions of the model.

7Furthermore, and quite remarkably, the following can be shown: let R(t) be the contents
of the working registers after executing t instructions of some transparent program, and let

6.3. Transparent computation 113

is “transparent,” in the sense that it somehow sees through the contents of the
working registers. This property is not universally shared by reversible models
of computation. Our model is a variant of the model considered by Coppersmith
and Grossman [CG75], and by Ben-Or and Cleve [BC92].

6.3.1. Definition. TP(R, s,m) is the class of functions transparently computed
by reversible programs over the standard basis over ring R, having at most s
instructions and using at most m registers. TP(R) is the class of (families of)
functions in TP(R, poly, poly). SkewTP(R, s,m) and SkewTP(R) are analogously
defined for the skew basis.

Coppersmith and Grossman [CG75] have shown that TP(Z2, 2O(n),O(1)) con-
tains all boolean functions (cf. [Cle89]). The reason why we are interested in
transparent computation is because it allows us to restore the work registers to
their initial values. For suppose that we have a reversible program P that trans-
parently computes f(~x) into register r1, while freely modifying the contents of
other registers. Then we can take the program P ′: r ← r− r1,P , r ← r+ r1,P−1,
where r is a register not used by P . While this new program still transparently
computes f(~x) into r, all of the remaining registers are returned to their initial
value. We then say that P ′ cleanly (as well as transparently) computes f(~x) into
register r.
Uniformity. Our class TP(R) is a non-uniform class. Naturally, we may consider
also its uniform variant. All our results in which we simulate circuits by transparent
programs essentially preserve the uniformity, so a uniform family of circuits is
simulated by a uniform family of transparent programs. There is only a slight
loss in our Powering Lemma where we hardwire binomial coefficients into the
transparent program. Since the necessary binomial coefficients can easily be
computed in logarithmic space the resulting transparent program is still at least
logspace uniform if the circuit family is. This also affects all our results that use
the Powering Lemma, including our main result on simulation of TC1. A possible
way to avoid this loss in uniformity is to construct very uniform transparent
programs that would compute the binomial coefficients.

X = X1, . . . ,Xn be the input; then for any t, I(R(t) : X) = I(R(0) : X), where I denotes the
common information, either in the Shannon or Kolmogorov sense (input and registers must be
suitably specified, respectively as a distribution or as a binary string, in order to fit in either
framework; details are left to the reader).
In particular, if the initial contents of the registers are independent of the input (I(R(0) :

X) = 0), then at any point in the computation, the register machine knows nothing about the
input, other than whichever specific register Xi it might be accessing directly (as when executing
the instruction r ← r +Xi, for instance).
It should be noted, however, that if one is to look at two distinct time-steps t1 and t2, some

information about X could be derived, i.e., it could hold that I(R(t1),R(t2) : X) > I(R(0) : X).

114 Chapter 6. Catalytic computation

6.3.1 Previous results on this model
It is a natural question to ask: what functions can be transparently computed by
small programs over the standard basis, or over other bases? We do not have a
precise answer to this question but we will be able to show that all functions in the
circuit class TC1 can be computed transparently by polynomial size programs over
the standard basis. This greatly extends the result of Ben-Or and Cleve [BC92]
who in essence show that any function in NC1 can be computed transparently by
a polynomial size program using three registers. Cleve in his thesis [Cle89] shows
a result slightly stronger than [BC92], namely that iterated matrix product can
be computed transparently by polynomial size programs over the standard basis.
Indeed, an inspection of the proof, together with the technique of Ben-Or and
Cleve, shows that the iterated matrix product can be computed transparently
by polynomial size programs over the skew basis. In particular, iterated matrix
product of n matrices can be represented by a formula over Rm×m of depth log n.
Using the same techniques, we can prove a tight characterization of SkewTP(R).

6.3.2. Theorem. Let f(x1, . . . ,xn) be a polynomial over a ring R.

(a) If f can be represented as an entry of a d-depth formula over the ringMm×m(R),
where each entry in each matrix input to this formula is either an element of R,
or±xi for some i, andm = poly(n), then f is in SkewTP(R,O(m34d),O(m2)).

(b) If f is in SkewTP(R, s,m), then f can be represented as an entry in the
product of s-many (m+ 1)× (m+ 1) such matrices.

Proof. The first part is a restatement of Theorem 3.3.1 of [Cle89]. For the given
parameters, it follows that f ∈ SkewTP(R,O(m34d),O(m2)). The only minor
difference is that Theorem 3.3.1 of [Cle89] uses standard basis instructions and not
our skew basis. However, the inspection of the proof together with the technique
of Ben-Or and Cleve [BC92] shows that the theorem is true also for the skew
basis.

Now suppose that f ∈ SkewTP(R,S,m). Consider the (m + 1)-dimensional
vector R0 = (0, . . . , 0, 1), where the first m entries represent the values of registers
r1, . . . , rn used by the program, and the last entry represents a constant one. The
skew instruction ri ← ri± rj · v, where v is either an element of R or a variable xi,
can be represented by the (m+1)×(m+1) matrix having 1 on the diagonal, ±v in
the (j, i) position, and 0 elsewhere. The instruction ri ← ri+v can be represented
by an identity matrix with the entry (m+1, i) set to v. These matrices will act on
the vector R0 in the same way as their corresponding instructions. If the program
transparently computes f into r1 then the (1,m+ 1) entry of the product of the
matrices corresponding to the program gives f . For each instantiation of ~x, this
product can be computed by a balanced (O(log n)-depth) tree of product gates
over the ring Mm×m(R).

6.3. Transparent computation 115

From the GapL-completeness of IMM over Z, we get:

6.3.3. Corollary. SkewTP(Z) = GapL = SkewVP(Z) = #NC1(MnO(1)×nO(1)(Z)).

6.3.2 Getting more
The previous characterization tells us that, to go beyond GapL, we can not restrict
ourselves to skew instructions. We will now show how to use reversible programs
to transparently compute #SAC1(R). We must then be able to transparently
compute binary product and unbounded sum.

6.3.4. Lemma (Binary product). Let r0, r1, r2, r3, r4 be registers over some
ring R. There are reversible programs I1, I2, I3 over the standard basis using
registers over R such that for any reversible program P that does not use r0, r3
and r4 and that transparently computes r1 ← τ1 + f1(~x) and r2 ← τ2 + f2(~x), the
program I1,P , I2,P−1, I3 computes r0 ← τ0 + f1(~x) × f2(~x). The total length of
I1, I2, I3 is eight instructions.

Proof. The following program computes the required product. The right-hand
side indicates the result of applying the instructions on the left-hand side.

1. r0 ← r0 + r1r2 + r1r4 + r3r2 // r0 = τ0 + τ1τ2 + τ1τ4 + τ3τ2

2. P // ri = τi + fi(~x), for i = 1, 2

3. r3 ← r3 + r1 // r3 = τ3 + τ1 + f1(~x)
r4 ← r4 + r2 // r4 = τ4 + τ2 + f2(~x)
r0 ← r0 + r1r2 // r0 = τ0 + f1(~x)f2(~x)

+ τ1(τ4 + τ2 + f2(~x))
+ (τ3 + τ1 + f1(~x))τ2

4. P−1 // ri = τi, for i = 1, 2

5. r0 ← r0 − r1r4 − r3r2 // r0 = τ0 + f1(~x)f2(~x)
The first statement, which can be implemented using three standard basis in-
structions, forms I1; the statements from line 3 form I2; and the two instructions
corresponding to line 5 form I3.

6.3.5. Lemma (Unbounded sum). Let r0, r1, r2, . . . , rk be registers over some
ring R. There are reversible programs I1 and I2 over the standard basis using
registers over R such that for any reversible program P that does not use r0 and
that for each i = 1, . . . , k transparently computes ri ← τi + fi(~x), the program
I1,P , I2 computes r0 ← τ0 +∑k

i=1 fi(~x). The total length of I1, I2 is 2k.

Proof. The following program computes the sum.

116 Chapter 6. Catalytic computation

1. For each i = 1, . . . , k do r0 ← r0 − ri.

2. P

3. For each i = 1, . . . , k do r0 ← r0 + ri.

The first statement which corresponds to k standard basis instructions forms I1,
and the k instructions from line 3 form I2.

6.3.6. Corollary. If R is a ring and f is computed by a depth-d arithmetic
circuit with w wires and s gates for binary product and unbounded fan-in addition,
then

f ∈ TP(R,O(dw2d+1),O(s)) .

Proof. Let C be the depth-d circuit for f of given properties. Let us assume
that C is layered, that is, each gate at level ` takes as its inputs gates at level
`− 1. For every gate gi of C we will have an auxiliary register ri into which we
will transparently compute the value of gi. We will compute the values of gates
inductively level by level.

If gi is an input gate then it corresponds either to a constant c ∈ R or to an
input variable xj. In the former case the instruction ri ← ri + c transparently
computes the value of gi, and in the latter case ri ← ri + xj does the job. A
concatenation of such instructions in arbitrary order for all the input gates gives
a program that simultaneously and transparently computes the values of input
gates into their associated registers.

Assume that we already have a program P`−1 that simultaneously and trans-
parently computes the values of gates at the level `− 1 into appropriate registers.
If gi is a gate at level ` then it is either the sum of the values of gates at the level
`− 1 or their binary product. By the Unbounded Sum Lemma or by the Binary
Product Lemma, there are programs I i1, I i2, I i3 such that I i1,P`−1, I i2,P−1

`−1, I i3 trans-
parently computes gi into ri. (We can and will assume that I i1, I i2, I i3 use different
auxiliary registers for different i.) If gi1 , gi2 , . . . , gik are the gates at level ` then

P` = I i11 , . . . , I ik1 ,P`−1, I i12 , . . . , I ik2 ,P−1
`−1, I i13 , . . . , I ik3

computes simultaneously and transparently the values of the gates at level ` into
appropriate registers. In this way we obtain a program Pd for transparently
computing the value of C.

If the size of the program P` is S` then S` ≤ 2S`−1 + 4w`, where w` is the
number of wires leading into the gates at the level `. The number of input gates
can be bounded by w, so S1 ≤ w. Thus S` ≤ 6w2`−2 ≤ w2`+1. Each gate uses at
most three registers, and hence our final program will use O(s) registers. This is
under the assumption that C is layered. Any circuit can be transformed into a
layered one while increasing its number of wires by a factor of at most d.

6.3. Transparent computation 117

We thus get a potentially larger class of functions than that of Ben-Or and
Cleve:

6.3.7. Corollary. For any ring R, #SAC1(R) ⊆ TP(R). In particular,

#LOGCFL = #SAC1(Z) = VP(Z) ⊆ TP(Z).

6.3.3 Getting TC1

To go even further and obtain TC1 we will need the ability to compute the n-th
power of a gate. We will show how to do this over commutative rings, but we do
not know how to proceed in the non-commutative case.

The following lemma gives a small-length program for computing the iterated
product of registers.

6.3.8. Lemma (Iterated product). There is a program P with 2k + 1 in-
structions from the standard basis over R that transparently computes, for every
i ≤ k,

ri ← τi +m1 × . . .×mi,

where m1, . . . ,mk are either input registers, work registers (different from the ri),
or constants.

Proof. The following program computes the product.

1. For i = k, . . . , 2 do ri ← ri − ri−1 ×mi.

2. r1 ← r1 +m1

3. For i = 2, . . . , k do ri ← ri + ri−1 ×mi.

Notice that this lemma is different from the binary product or unbounded sum
lemmas, in that we do not prove how to inductively compute the iterated product
of the outputs of some given program. In fact, we currently do not know how to
prove this.

To compute the n-th power over commutative rings, we will need the following
variant of the usual binomial expansion.

6.3.9. Lemma. For any elements a,x of a commutative ring, and any integer
k ≥ 1, the following holds:

(a+ x)k = xk +
k∑
i=1

(−1)i−1
(
k

i

)
ai(a+ x)k−i

118 Chapter 6. Catalytic computation

Proof. Let us consider the binomial expansion of (a+ x− a)k.

xk = (a+ x− a)k =
k∑
i=0

(
k

i

)
(−a)i(a+ x)k−i

= (a+ x)k +
k∑
i=1

(−1)i
(
k

i

)
ai(a+ x)k−i

Now the lemma immediately follows.

6.3.10. Lemma (Powering). Let k be a positive integer. Let r0 and r be reg-
isters over some commutative ring R. There are programs I1, I2 and I3 over the
standard basis registers over R such that for any program P that does not use any
registers used by I1, I2, I3 other than r and that transparently computes

r ← τ + f(~x),

the program I1,P , I2,P−1, I3 computes

r0 ← τ0 + [f(~x)]k.

The total length of I1, I2, I3 is O(k), and O(k) registers are used.

Proof. Assume we have auxiliary registers r1, r2, . . . , rk. Then for the constants
ci = (−1)i−1

(
k
i

)
, i = 1, . . . , k, the following program computes the power of f(~x).

1. For i = 1, . . . , k do r0 ← r0 + ci · ri · ri.

2. P

3. For i = 1, . . . , k do ri ← ri + rk−i.
r0 ← r0 + rk.

4. P−1

5. For i = 1, . . . , k do r0 ← r0 − ci · ri · ri.

This can be seen as before by carefully tracking the contents of the registers,
and eventually by applying Lemma 6.3.9. By the Iterated Product Lemma the
first line can be implemented using a program over the standard basis of size O(k).
This will be I1. Similarly, line 3 and line 5 can each be implemented by a similar-
size program I2 and I3, respectively. This would give programs of size O(k) using
O(k) registers.

6.3. Transparent computation 119

6.3.11. Lemma (Exact value). Let p be a prime, R be the field Zp, and s ∈ R.
Let r0, r1, r2, . . . , rk be registers over R. There are programs I1, I2 and I3 over the
standard basis using registers over R such that for any program P that does not
use r0 and that transparently computes for each i = 1, . . . , k

ri ← τi + fi(~x),

the program I1,P , I2,P−1, I3 computes

r0 ← τ0 + [[
k∑
i=1

fi(~x) 6= s]],

where [[∑k
i=1 fi(~x) 6= s]] equals 1 if ∑k

i=1 fi(~x) 6= s and equals 0 otherwise. The
total length of I1, I2, I3 is O(p+ k), and O(p) registers are used.

Proof. By the Unbounded Sum Lemma we have programs I ′1 and I ′2 such that for
any program P that simultaneously and transparently computes ri ← ri + fi(~x),
the program P ′ = I ′1,P , I ′2 transparently computes ∑k

i=1 fi(~x)−s into an auxiliary
register r. The total length of I ′1, I ′2 is 2k + 1. Notice, ∑k

i=1 fi(~x) − s is non-
zero iff ∑k

i=1 fi(~x) 6= s. Since R is a field of size p, by Fermat’s little theorem,
(∑k

i=1 fi(~x)− s)p−1 is one iff ∑k
i=1 fi(~x)− s is non-zero. Hence, by the Powering

Lemma, we have programs I ′′1 , I ′′2 , I ′′3 such that I ′′1 ,P ′, I ′′2 ,P ′−1, I ′′3 transparently
computes (∑k

i=1 fi(~x) − s)p−1, i.e., [[∑k
i=1 fi(~x) 6= s]]. Setting I1 = I ′′1 , I ′1, setting

I2 = I ′2, I ′′2 , (I ′2)−1 and setting I3 = (I ′1)−1, I ′′3 gives the required programs. Their
total length is 2(2k + 1) +O(p).

6.3.12. Corollary. Let a function f be computed by a depth-d boolean circuit
consisting of at most s MAJ-gates, each of fan-in at most k. Let p > k be a
prime. Then f ∈ TP(Zp,O(dpks4d),O(dksp)).

Proof. First, notice thatMAJ gates can be simulated using the Exact Value gates.
Indeed, let b1, b2, . . . , bk be bits where k is even. Then

[[
k/2∑
j=1

[[
k∑
i=1

bi 6= j]] 6= k/2]]

if and only if
k∑
i=1

bi > k/2.

Similarly for odd k. Hence, the depth-d circuit C for f consisting of MAJ gates
has an equivalent depth-2d circuit C ′ consisting of the Exact Value gates. The
number of gates in C ′ is at most O(ks). Making C ′ layered may increase the
number of gates by a factor of 2d. Using the same technique as in the proof
of Corollary 6.3.6 we can transparently simulate the computation of C ′ by a

120 Chapter 6. Catalytic computation

reversible program. Each gate of C ′ will require additional computation of size
O(k+p), and uses O(p) registers. Since, there are O(dks) gates this will contribute
by O(dks(k + p)) instructions using O(dksp) registers. However, as we proceed
layer by layer in constructing the program for C ′, the number of instructions gets
multiplied by a factor of at most 22d as the instructions for each gate get copied
twice at each sub-sequent layer. Hence, in total we obtain a program of length
O(22d(dk2s+ dkps)) = O(4ddkps).

Allender and Koucký [AK10] show that for any ε > 0, one can simulate MAJ-
gate of fan-in n by a uniform constant depth circuit of polynomial size consisting
of MAJ-gates of fan-in at most nε. Hence, in the previous lemma we could use
polynomially smaller primes for the cost of increasing the size of the resulting
program by a polynomial factor. We can state our main technical result.

6.3.13. Theorem. For any sequence of primes (pn)n∈N of size polynomial in n,
TC1 ⊆ TP(Zpn).

Note, we can find polynomially large primes in logspace so if f is computable
by a logspace uniform family of TC1 circuits then f is transparently computable
by a logspace uniform family of polynomial size transparent programs.

Because of the relationship between TC1 and #AC1 the previous theorem
allows us to simulate the computation of #AC1 circuits over Zm, the ring of
integers modulo m, where m can be exponentially large. Because the degree of
the polynomials computed by #AC1(Zm) circuits can be as high as nlogn, this
seems to give a significant improvement over GapL and #LOGCFL.

6.4 Catalytic computation
A catalytic Turing machine is a Turing machine, equipped with a read-only input
tape, a work tape8, and an extra tape — the auxiliary tape. For every possible
initial setting of the auxiliary tape, at the end of the computation the catalytic
Turing machine must have returned the tape to its initial contents.

We say a language L is decided by a catalytic Turing machine M if for any
string x, and for any string w representing the initial contents of the auxiliary tape,
M(x,w) halts with contents of the auxiliary tape being exactly w and M(x,w)
accepts if and only if x ∈ L.

6.4.1. Definition. Let s, sa : N→ N. We define the class CSPACE(s(n), sa(n))
to be the set of all languages that can be decided by a catalytic machine using
O(s(n)) space of the work tape and O(sa(n)) auxiliary space of the auxiliary tape,
for an input of length n.

8For simplicity, the Turing machine’s alphabet is assumed to be {0, 1}, but the model naturally
extends to larger alphabets.

6.4. Catalytic computation 121

As a notational shorthand we define CSPACE(s(n)) = CSPACE(s(n), 2O(s(n)))
as the set of languages that can be decided by a catalytic machine with a work
tape of size s(n). We take the auxiliary space exponential in s(n), the largest
amount of auxiliary space which can be addressed when using the machine’s work
tape.

We will pay the most attention to the setting where the machine has work
tape of logarithmic size, which we call catalytic logspace or CL = CSPACE(log n).

6.4.1 Simulation of transparent computation by catalytic
computation

Our goal is to present now several surprising containments in the catalytic logspace.
To achieve that, we will show how to simulate transparent programs in catalytic
logspace, how to extract the value of a function from the transparent computation,
and how to deal with uniformity issues.

Let us first observe that, in the same way in which one can compose logspace
reductions, we can compose constantly many reductions running in catalytic
logspace into a single reduction that will also run in catalytic logspace. In this
case the total work space will be roughly the sum of the work space used by
each of the reductions, but the same auxiliary space can be reused by each of
the reductions, since it is returned to its original content after each use. We will
heavily use such compositions in this section.

Before proceeding further let us specify what we mean by a uniform sequence
of rings.9 We say that a map h : R→ {0, 1}∗ is a compact encoding of the ring R
if h is a bijection between R and the lexicographically first |R| strings of length
` = dlog2 |R|e.10 We say that a family of rings (Rn)∞n=1 is logspace uniform, if
there are logspace-bounded Turing machinesM ,M+,Mc,Ms and a family (hn)∞n=1
of compact encodings of (Rn)∞n=1, such that (1) on input (1n,hn(u) ◦ hn(v)), M
outputs hn(u ◦ v), where u, v ∈ R and ◦ ∈ {+,−,×}; (2) with (1n,hn(v)) written
on a read-only tape and hn(u) written on a read-write tape, M+ transforms hn(u)
in-place into hn(u+ v) for any u, v ∈ Rn (possibly using O(log n) of extra space);
(3) on input 1n, Mc outputs hn(−1),hn(0),hn(1) and Ms outputs |Rn|.

Examples of logspace uniform families are (Z2)∞n=1 and (Z2n)∞n=1. More gener-
ally, if a sequence of numbers m1,m2, . . . is itself logspace uniform in the usual
sense then (Zmn)∞n=1 is logspace uniform. (This follows since addition, multi-

9The well-endowed rings defined by Borodin, Cook and Pippenger [BCP83] are similar, but
have different requirements.

10The encoding is called compact because in some cases using the lexicographically first |R|
strings forces the encoding to be unnatural. This happens in the case of prime fields Fpn for
p > 2 and n > 1, where the most natural encoding would be n blocks of dlog2 pe bits, each
holding a Zp coefficient; but such a natural encoding does not map into the lexicographically
first strings of ndlog2 pe bits, so it is not a compact encoding! We will need the encoding to be
compact in order to simulate register machines using a full memory.

122 Chapter 6. Catalytic computation

plication and taking remainder are all computable in logspace, and adding and
subtracting two integers can be done in-place.) In the case of Zm, we will make
use of the canonical compact encoding mapping n ∈ Zm to the n-th dlogme-bit
string in the lexicographical order. In this case, the encoding of the binomial
coefficients

(
n
k

)
can be computed in O(logm) space, which will be important for

the TC1 simulation in Section 6.3.3.
The following is our key simulation lemma.

6.4.2. Lemma (Catalytic simulation). For any logspace uniform family of
rings (Rn)n, there is a logspace catalytic machine M that on input (P ,x) outputs
f(x), where P is a transparent program using registers r1, r2, . . . , rm over R|x| that
transparently computes f(x) into r1. Furthermore, M uses (m · dlog2 |R|x||e)2 bits
of auxiliary space, and logarithmic (in terms of length of P and x) amount of
work-space.

Proof. The machine M will compute f(x) by simulating P in the auxiliary space.
Let n = |x|. To simulate registers r1, . . . , rm of P the machine will view its
auxiliary space as consisting of blocks each having b = dlog2 |Rn|e bits. Each of
the blocks may be used as a register.

Consider first the case when |Rn| is a power of two. Then the first m blocks of
the auxiliary space can be used to represent the values of registers r1, . . . , rm. As
the sequence of rings is uniform, in logspace we can simulate any instruction in
the standard basis. Hence, in logspace we can simulate P . To compute the value
f(x), we can design a reduction that first outputs the content of r1, that is the
initial content τ1 of the first block of the auxiliary space, then simulates P and
again outputs the content of r1, this time holding the value τ1 + f(x), and finally
runs P−1 which restores the original content of the auxiliary space. Clearly, this
is a reduction running in catalytic logspace. By composing this reduction with
one which subtracts the two output values obtained by the previous reduction,
we get a program computing f(x).

When |Rn| is not a power of two, we will proceed similarly but we have to
represent registers differently. We split our auxiliary space into m groups of mb
blocks (each block having b bits as before). Two possibilities may happen: either
there is a group in which none of the blocks represents a value from Rn, or each
group has a block that represents a value from Rn.

In the first case, if b bits do not represent a value from Rn, then — because
our encoding of Rn is compact — they have their first bit set to one. Thus in this
case there is a group of mb blocks where the first bit of each block is set to one.
These mb bits can be used to simulate m registers of P . We will first erase them,
then simulate P , output the content of the first register, which holds f(x), and
in the end reset the mb bits back to one.

In the second case, we will use the first block representing a value from Rn

in the i-th group to represent the register ri. Since during the simulation of P ,

6.4. Catalytic computation 123

register ri always contains a value from Rn, it is uniquely determined during the
whole computation and we can locate it in logspace. Using the same strategy as
in the case of Rn having size of power of two we can compute f(x) while restoring
the auxiliary space to its original contents.

We remark that we could save on the auxiliary space, and instead of using
(m · dlog2 |R|x||e)2 bits of auxiliary space, we could use only O(m · dlog2 |R|x||e)
bits if we were to use some stronger compression of the high order bits in the case
when there are insufficiently many blocks representing values from Rn.

It is clear that if a sequence of programs (Pn)n is logspace constructible —
where the programs are over some logspace constructible sequence of rings and Pn
transparently computes fn into a register r1 — then we can compute the function
family (fn)n in catalytic logspace.

6.4.3. Corollary. Let (Pn)n be a logspace uniform sequence of programs over
some logspace constructible sequence of rings. Let Pn transparently compute fn
into a register r1. Then the function family (fn)n is in catalytic logspace.

We remark that our constructions of transparent programs in Section 6.3 are
all logspace-uniform. Thus, from the results in Section 6.3 we conclude, quite
surprisingly, that a computer which has plenty of occupied memory is (to the
extent we believe that TC1 6⊆ L) more powerful than one that does not.

6.4.4. Theorem. TC1 ⊆ CL, for logspace uniform TC1.

The Ben-Or & Cleve construction of Theorem 6.3.2(a) is also uniform. From
this (using Chinese remaindering computable in logspace) we obtain a result
incomparable to the above:

6.4.5. Theorem. Iterated matrix product of n matrices over Z, each of dimen-
sion m(n) × m(n), can be computed in logspace with O(m(n)2 · log n) bits of
auxiliary space. In particular, the iterated matrix product of n matrices over Z,
each of dimension 2

√
logn×2

√
logn, can be computed in logspace with sub-polynomial

(2O(
√

logn)) auxiliary space.

Thus even if the auxiliary space is of less than polynomial size, in catalytic
logspace we can still compute functions that are not known to be in the ordinary
logspace.

6.4.2 Upper bounds
Let ZTIME(T (n)) be the set of languages decidable by a zero-error probabilistic
Turing machine that runs in expected time O(T (n)) for any input of length n.

6.4.6. Theorem. CSPACE(s(n)) ⊆ ZTIME(2O(s(n))).

124 Chapter 6. Catalytic computation

Proof. Consider an input x of length n, and let O(s(n)) be the available space on
the work tape and sa be the size of the auxiliary tape of the machine M . Since
the total space available to the catalytic machine equals s + sa, it has at most
O(2s+sa) possible configurations. We take sa to be at most 2O(s).

When running M with input x and auxiliary start w, the machine can visit
any configuration only once, since otherwise it would never halt. Similarly, a
catalytic Turing machine can also not have any configuration in common between
a computation starting with w or one with w′ 6= w, for a certain input x; from
that point on they would run the same computation, so the restored auxiliary
part at halting would be incorrect for at least one of them.

Because of this uniqueness property, we can bound the expected runtime of a
catalytic computation by simple counting. Note that the total number of different
configurations that a Turing machine of memory s + sa can have is bounded
by O(2sa+s+log sa+log s), where we need the logarithmic terms to account for the
location of the tape heads. Let timeM(x,w) denote the computation time of M
on input x with the auxiliary tape initialized to w. Then it holds that

2sa−1∑
w=0

timeM(x,w) ≤ O(2sa+s+log sa+log s) .

Dividing by 2sa gives

E
w∈R{0,1}sa

[timeM(x,w)] ≤ 2O(s),

where we use that log sa = O(s). Now the inclusion in ZTIME(2O(s(n))) directly
follows: a simulating zero-error probabilistic machine can just run the same
computation asM , randomly generating bits of w as needed, and halt in expected
time 2O(s).

In particular, for catalytic logspace, CL = CSPACE(log n) ⊆ ZPP.
A natural question to ask is: can a catalytic machine directly simulate deter-

ministic Turing machines that use strictly more space, by having a translation
for every instruction? From the previous theorem it follows that the answer is no.
(Lack of this type of simulation of course does not rule out the possibility that
the catalytic machine could decide languages that need more space, it only hints
that such a construction can not use another Turing machine as a black box.)

6.4.7. Corollary. No step-by-step simulation of deterministic space ω(s(n)) is
possible in catalytic space s(n).

Proof. There is some computation M on space ω(s(n)) that uses time t = 2ω(s(n))

for all inputs of length n. Let x be an input of length n. Suppose that M has a
step-by-step catalytic simulation M ′, which runs in space s = s(n) with auxiliary
space sa.

6.4. Catalytic computation 125

By the definition of a step-by-step simulation, we have that

∀a ∈ {0, 1}sw timeM ′(x,w) ≥ timeM(x) ≥ 2ω(s).

From the proof of Theorem 6.4.6 we know that on expectation over w, M ′ must
have timeM ′(x,w) ≤ O(2s), a contradiction.

6.4.8. Corollary. If ZPP = L then CSPACE(s(n)) = DSPACE(s(n)).

Proof. The statement immediately follows from Theorem 6.4.6. Using padding,
ZPP = L implies ZTIME(2s(n)) ⊆ DSPACE(s(n)), which gives CSPACE(s(n)) ⊆
ZTIME(2s(n)) ⊆ DSPACE(s(n)).

6.4.9. Corollary. The exponential-time hypothesis [IP99] implies that SAT 6∈
CSPACE(o(n)).

Proof. The ETH says that SAT 6∈ BPTIME(2o(n)). From this it directly follows that
SAT 6∈ ZTIME(2o(n)) and by Theorem 6.4.6 this implies SAT 6∈ CSPACE(o(n)).

6.4.3 Oracle results for catalytic computation
We can show an oracle relative to which CL = CSPACE(log n) = PSPACE.

6.4.10. Theorem. There exists an oracle A such that

DSPACEA(2Ω(s(n))) = CSPACEA(s(n))

The intuition behind the proof is as follows. Any auxiliary string is either com-
pressible, in which case we can replace it by a compressed version and use the
now-available free space, or hard to compress, in which case we can make some
non-trivial use of it — in this case as a ‘password’ for the oracle that can not be
found by a small-space computation.

Some care has to be taken when interpreting oracle results for space-bounded
computation. For example, there are oracles relative to which classic results like
Savitch’s theorem and the Immerman-Szelepcsènyi theorem do not hold.

Proof. Kolmogorov complexity will give us the notion of compressibility:

6.4.11. Definition. Fix some choice U for a universal Turing machine, and let
x, y be two binary strings. The Kolmogorov complexity of a x relative to y,
denoted C(x|y) is the size of the smallest program p for machine U that outputs
x on input y (i.e., U(p, y) = x). The Kolmogorov complexity of x, denoted C(x),
is C(x|ε).

6.4.12. Fact. [Chain Rule [ZL70]] C(x, y) ≥ C(x)+C(y|x)−4 logC(x, y)−O(1).

126 Chapter 6. Catalytic computation

We will construct an oracle A such that, relative to this oracle, a catalytic compu-
tation with work-tape space s = s(n) can simulate a deterministic computation
that uses space 2s/16. As a minor technical restriction, consider s(n) such that
2s(n)/8 = ω(n), i.e., s(n) is at least c log(n) for c > 8.

Let w be a bit-string of length 2s, the arbitrary initial contents of the auxiliary
tape.

The oracle A will be given by four distinct parts, which we first describe
informally. The first part checks if the (relative) Kolmogorov complexity of a given
string is low. The second and third part can be respectively used to compress or
decompress a given string. The fourth part, for which the definition is slightly
more involved, gives access to a complete set for the large space computation
when given a string with high complexity.

A1 =
{
〈1, s,w,w′〉

∣∣∣ |w| = 2s/8 and C(w|w′) < 3
4s
}

A2 =
{
〈2,w,w′, i, b〉

∣∣∣b is the i-th bit of the smallest p

such that U(p,w′) = w
}

A3 =
{
〈3,w, p, i, b〉

∣∣∣b is the i-th bit of U(p,w)
}

A′ = A1 ∪ A2 ∪ A3

Now let KO
f(n) be a complete language for space f(n) relative to oracle O. We

define A4 in stages, where the complete set is given relative to only the previous
stages.

A
(n)
4 =

{
〈4,w,x〉

∣∣∣ |x| = n and C(a) ≥ 2s(n)/8 and x ∈ KA′∪A<n4
2s(n)/16

}
A4 =

⋃
n

A
(n)
4

Here A<n4 = ⋃n−1
i=1 A

(i)
4 . Now the oracle A is the union of these parts, A =

A′ ∪ A4.
Let us give an algorithm to decide any given language L ∈ DSPACEA(2s(n)/16).

We divide the first 2s/4 bits of w into 2s/8 parts each of size 2s/8 and name the
parts w1, . . . ,w2s/8 . Let w<i be the concatenation of w1 up to wi−1.

Starting with i = 1, ask part 1 of the oracle if C(wi|w<i) < 3
4s. If that is not

the case, increment i and repeat. If that is the case, then use the second part
of the oracle to find the compressed version of wi (given w<i). Then store the
compressed string version in our ordinary memory of size s, and erase the wi part
in the auxiliary tape. This frees up 2s/8 bits of memory, which we can use to
decide if x ∈ L. When we are done with that, we can use the third part of the
oracle to decompress wi back into the auxiliary tape.

6.4. Catalytic computation 127

If none of the wi for i ∈ {1, . . . , 2s/8} are compressible given w<i, we can show
a lower bound for the Kolmogorov complexity of w using the chain rule:

C(w1,w2, . . . ,w2s/8) ≥
2s/8∑
i=1

(C(wi|w<i)− 4 logC(w)−O(1))

≥ 2s/8
(3

4s−
4
8s−O(1)

)
≥ 2s/8

(for s sufficiently large). Now we can use w as a high complexity ‘password’ for
the fourth part of the oracle.

No machine in space o(2s/8) can make a query of complexity as large as w.
To see this, consider the configuration of the machine (including the input tape)
before it starts writing the first character of any query q to the oracle tape. This
configuration can be stored using O(2s(n)/16) + n = o(2s(n)/8) bits, but it contains
all the information needed to produce q — a contradiction if q has Kolmogorov
complexity at least 2s/8.

This implies that machines with space 2s(n)/16, on an input of length n, cannot
distinguish A′ ∪ A<n4 from A, because they cannot query any string in A

(i)
4 , for

i ≥ n. For any n it then holds that KA′∪A<n4
2s(n)/16 = KA

2s(n)/16 , for the accessible strings
of length n, and hence, having access to the string a and the oracle A, our catalytic
machine can decide KA

2s(n)/16 (and therefore whether x ∈ L) by using the part 4
of the oracle.

6.4.13. Theorem. There is an oracle B such that NLB 6⊆ CSPACEB(log n).

Proof. A Baker–Gill–Solovay [BGS75] construction works: from the proof of Theo-
rem 6.4.6 we know that a Turing machineM deciding a language in CSPACE(log n)
has to run in average polynomial time, averaged over all possible auxiliary starting
contents w. Therefore for any input x there is always a w for which M makes
only polynomially many queries, and we apply the construction for that starting
state — we diagonalize against the machine M at a string in the oracle that is not
queried by M(x,w). Because the outcome of the catalytic computation should
be correct for all possible starting values, the existence of a value w such that the
machine fails implies that the machine does not correctly decide the language.

Chapter 7
Catalytic computation:

Non-determinism and hierarchy

Catalytic computation, which we defined in the previous chapter (first published
as [BCK+14]), is a space-bounded computation where in addition to our working
memory we have an exponentially larger auxiliary memory which is full; the
auxiliary memory may be used throughout the computation, but it must be
restored to its initial content by the end of the computation.

Motivated by the surprising power of this model, we set out to study the non-
deterministic version of catalytic computation. We establish that non-deterministic
catalytic logspace is contained in ZPP, which is the same bound known for its
deterministic counterpart, and we prove that non-deterministic catalytic space is
closed under complement (under a standard derandomization assumption). Fur-
thermore, we establish hierarchy theorems for non-deterministic and deterministic
catalytic computation.

The results in this chapter are based on:

• [BKLS16] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speel-
man. Catalytic space: non-determinism and hierarchy. In 33rd Symposium
on Theoretical Aspects of Computer Science (STACS 2016).

7.1 Introduction
In the previous chapter, joint work which was published as Buhrman et al. [BCK+14],
we defined the notion of catalytic computation, a space-bounded model of compu-
tation in which the usual Turing machine has, in addition to its work tape, access
to a large auxiliary memory which is full. The auxiliary memory can be used
during the computation, but its starting contents must be restored by the end of
the computation. The space usage that is counted is the amount of work space
s used; the auxiliary memory is for free. In a reasonable setting, the auxiliary
memory is of size at most 2s. One can think of the auxiliary memory as a hard

129

130 Chapter 7. Catalytic computation: Non-determinism and hierarchy

disk full of data. The catch with the auxiliary memory is that it may contain
arbitrary content, possibly incompressible, which has to be preserved in some way
during the computation. It is not obvious whether such auxiliary memory can
be useful at all. In the previous chapter we showed that, surprisingly, there is a
non-trivial way of using the full memory; that it is possible to compute in work
space O(log n) (catalytic log-space, CL) functions not known to be computable in
the usual logarithmic space (log-space, L without the auxiliary memory. Indeed,
all of TC1, which includes NL and LOGCFL, is contained in CL.

This motivated us to explore further: What other problems can be solved in
catalytic log-space? Buhrman et al.1 show CL ⊆ ZPP, so CL is unlikely to contain
the whole of PSPACE (even though this is the case relative to some oracle). The
fact that NL ⊆ CL suggests an obvious question: what about non-deterministic
catalytic log-space? Could it be that non-deterministic computation equipped
with auxiliary tape has the same power as deterministic catalytic computation?
Non-deterministic catalytic computation could possibly allow us to identify further
problems that can benefit from having full memory. The previous chapter also
raises a host of further question about the catalytic model such as: Is there a
space hierarchy? Does some kind of Savitch’s theorem hold for catalytic log-space?
Is non-deterministic catalytic space closed under complement? etc. The work we
present in this chapter aims to shed light on some of these questions.

In this chapter we show that non-deterministic catalytic space is closed un-
der complement under a widely accepted derandomization assumption. We also
establish hierarchy theorems for catalytic computation in the deterministic and
non-deterministic settings. For our non-deterministic catalytic log-space we can
also establish the same ZPP upper bound that was known for CL. Hence there
seems to be a closeness between determinism and non-determinism for catalytic
computation. Despite that we are unable to establish an equivalent of Savitch’s
theorem. This remains an intriguing open problem.

We prove the closure under complement using the inductive counting technique
of Immerman and Szelepcsényi [Imm88, Sze88]. However, we had to overcome
several difficulties. One challenge is that we might be faced with an exponential-
size graph of reachable configurations. We show how to use a pseudorandom
generator to avoid such a situation. Another issue is that for inductive counting we
need to be able to remember and reason about different configurations. However,
the full description of a configuration is exponentially bigger than our work space,
so we cannot possibly store it in full. This is one of the hurdles that prevents us
from carrying out Savitch’s algorithm for catalytic computation. For the inductive
counting we resolve this issue by using fingerprints for various configurations.

Our hierarchy theorems are proven in the setting of computation with advice.
The catalytic model is a semantic restriction. It is an easy exercise to show that
it is algorithmically undecidable whether a machine will restore the full memory

1Presented as Theorem 6.4.6 in this thesis.

7.2. Preliminaries 131

on every input to its original content. For semantic models of computation, like
bounded-error randomized computation, the only hierarchy theorems that we know
of are in the setting with advice. The reason is that essentially all known hierarchy
theorems are proven by diagonalization, which requires the ability to enumerate
exactly all machines of a given type. We do not know any such enumeration for
catalytic machines so we have to settle for the weaker result. The advice is used
only to tell the diagonalizing machine whether it is safe to diagonalize against
a particular machine. The hierarchy theorems follow from the work of Kinne
and van Melkebeek, and van Melkebeek and Pervyshev [KvM10, vMP06]. For
some space bounds we provide more accurate separations that were not explicitly
calculated before.

The layout of the chapter is as follows. Section 7.2 contains some preliminaries.
In Section 7.3 we define non-deterministic catalytic computation, and prove that
the corresponding log-space class CNL is contained in ZPP. Section 7.4 is devoted
to proving that CNL is closed under complement, and in Section 7.5 we show
hierarchy theorems for catalytic computation.

7.2 Preliminaries
We gave a short introduction to complexity theory in Section 2.4, but for conve-
nience we will quickly mention the complexity classes that are relevant for the
current chapter.

The complexity class L denotes the problems solvable in logspace, while
PSPACE is the class of those problems that can be solved using a polynomial
amount of space. The class NL contains the problems that can be solved non-
deterministically in logspace, and LOGCFL is the class of problems that are
logspace many-one reducible to context-free languages.

The problems in ZPP (zero-error probabilistic polynomial time) are the ones
computable by a probabilistic Turing machine, that halts in expected polynomial
time, while always outputting the correct answer for any input.

One circuit class we mention is TC1, which is the class of boolean functions
computable by circuits of depth O(log n) by AND gates, OR gates and MAJ gates,
all with unbounded fan-in — a MAJ gate outputs 1 if and only if most of its input
bits are 1. We use SIZE(s) to denote the class of problems that can be solved by
circuits of size s.

We introduced the notion of a catalytic computation in the previous chapter.
Since we will define the non-deterministic variant shortly, we quickly summarize
the definition here for easy comparison.

7.2.1. Definition. Let M be a deterministic Turing machine with four tapes:
one input and one output tape, one work tape, and one auxiliary tape (or aux-tape).

132 Chapter 7. Catalytic computation: Non-determinism and hierarchy

M is said to be a catalytic Turing machine using workspace s(n) and auxiliary
space sa(n) if for all inputs x ∈ {0, 1}n and auxiliary tape contents w ∈ {0, 1}sa(n),
the following three properties hold [BCK+14].

1. Space bound. The machine M(x,w) uses space s(n) on its work tape and
space sa(n) on its auxiliary tape.

2. Catalytic condition. M(x,w) halts with w on its auxiliary tape.

3. Consistency. The outcome of the computationM(x,w) is consistent among
all initial aux-tape contents w.2

We used this to obtain an analogue of the usual space-bounded complexity
classes:

7.2.2. Definition. CSPACE(s(n), sa(n)) is the class of decision problems solv-
able by a catalytic Turing machine using workspace O(s(n)) and auxiliary space
O(sa(n)). The notational shorthand CSPACE(s(n)) is defined as the complexity
class CSPACE(s(n), 2O(s(n))). The class CL is CSPACE(log n).

In the previous chapter (published as [BCK+14]), it was shown that, surpris-
ingly, CL can make a non-trivial use of the auxiliary tape. Indeed, we have shown
that TC1 ⊆ CL, but it is generally believed that TC1 6⊆ L.

In this chapter, we will first prove an analogue of the Immerman–Szelepcsényi
theorem. The definition of the non-deterministic version of CL, denoted CNL, will
be left for Section 7.3. Then CNL = coCNL will hold under the same assumption
as the following standard derandomization result, whose proof is now standard.3

7.2.3. Lemma ([IW97, KvM02]). If there exists a constant ε > 0 such that
DSPACE(n) 6⊆ SIZE(2εn) then for all constants c there exists a constant c′ and a
function G : {0, 1}c′ logn → {0, 1}n such that for any circuit C of size nc∣∣∣∣∣ Pr

r∈{0,1}n
[C(r) = 1]− Pr

s∈{0,1}c′ logn
[C(G(s)) = 1]

∣∣∣∣∣ < 1
n

and G is computable in space logarithmic in n.

We will also need a hash family with nice properties.
2What this means depends on what we are trying to do. For instance, when solving a decision

problem, M(x,w) should either accept for all choices of w — in which case we say M accepts x
— or it rejects for all possible w — M rejects x.

3For instance, the pseudo-random generator of [IW97] has the right properties. Also see
Appendix C of [KvM02] and Theorem 19 of [ABK+06].

7.2. Preliminaries 133

7.2.4. Lemma. For every n, there exists a family of hash functions {hk}n
3
k=1, with

each hk a function {0, 1}n → {0, 1}4 logn, such that for every k the following
properties hold. Firstly, hk is computable in space O(log n), and secondly, for
every set S ⊂ {0, 1}n with |S| ≤ n there is a hash function in the family that is
injective on S.

The proof of this lemma is a simple exercise; we do include it for completeness at
the end of the current section.

In addition to studying non-determinism, we will prove a space-hierarchy
theorem for catalytic computations. This hierarchy theorem holds for catalytic
Turing machines with an advice string.

We define advice added to a catalytic computation in the same way as in the
recent line of research that proves hierarchies for certain classes of semantic models,
see for example [vMP06, KvM10]. In our case that means that a computation
needs to satisfy the catalytic condition and consistency properties on the correct
advice, and is allowed to (for example) fail to restore the contents of the aux-tape
for other values of the advice. This notion of advice is a variation on the one
defined by Karp and Lipton [KL82], who required that the machine model was
robust under all possible values of the advice string. Proving the same hierarchy
theorem using the Karp-Lipton definition would be harder, and would indeed
imply a hierarchy theorem that also holds without any advice [KvM10].

The proof of the hierarchy for catalytic computation uses Savitch’s theo-
rem [Sav70], a classic result in complexity theory, which shows that for any space
bound s(n) at least log n it holds that NSPACE(s(n)) ⊆ DSPACE(s(n)2). That is,
any problem which can be solved by a non-deterministic space-bounded Turing
machine, can also be solved by a deterministic Turing machine using a squared
amount of space.

Remarks on notation. For two binary strings x, y of equal length, we use x⊕y
for the bitwise XOR of x and y. The function log always stands for the logarithm
of base 2. For simplicity, all Turing machines are assumed to use a binary alphabet
— all definitions and proofs would easily generalize to larger alphabet sizes, at the
cost of introducing notational clutter.

7.2.1 Existence of hash family
7.2.5. Theorem (Chinese Remainder Theorem). Let p1, . . . , pm be a list of
relatively prime integers. Any positive integer x is uniquely specified by the list of
remainders a1 = x mod p1, a2 = x mod p2, . . . , am = x mod pm, provided that
x <

∏m
i=1 pi.

Proof of Lemma 7.2.4. For a natural number k, let pk be the k-th prime number.
For every k = 1, . . . ,n3 define the hash function hk(x) = x mod pk. We will show

134 Chapter 7. Catalytic computation: Non-determinism and hierarchy

that for any set S ⊂ {0, 1}n of size n, there exists a number k∗ ∈ {1, . . . ,n3} such
that the function hk∗ is injective on S. Here we interpret binary strings as natural
numbers in the usual way, and hence we can upper bound any element of S by 2n.

For all x, y ∈ S, where x 6= y, define Bx,y = {pk | x mod pk = y mod pk, 1 ≤
k ≤ n3} to be the set of primes for which x and y hash to the same value. Then
B = ⋃

x,y∈S,x 6=y Bx,y is the set of all primes which give a hash collision on the set
S.

For any pair x, y it now holds that |Bx,y| ≤ n. Indeed, assume for a contra-
diction that the set contains a subset of n+ 1 primes for which x and y have the
same remainders. Noting that the product of these n + 1 primes is at least 2n,
larger than both x and y, and that prime numbers are relatively prime, we find
an immediate contradiction with the Chinese Remainder Theorem.

We can bound the number of primes that give a collision by

|B| ≤
∑

x,y∈S,x 6=y
|Bx,y| ≤

(
n

2

)
n ,

which is strictly less than n3 for n > 1. Therefore there exists a prime pk with
1 ≤ k ≤ n3 such that pk 6∈ B, and therefore x mod pk is unique for all x ∈ S.

Left is to show this algorithm can be executed in logarithmic space. First note
that using the prime number theorem we can (imprecisely) bound pk ≤ n4, for
1 ≤ k ≤ n3. Since every number p ≤ n4 we try as modulus can be stored using
4 log n bits, checking primality is also readily seen to be in space O(log n), just by
checking all possible factors. To hash a value x ∈ {0, 1}n we can, for example, sum
2i mod p for all i such that xi = 1. The value 2i mod p can easily be computed
in space O(log n) by repeated multiplication by 2, i.e., a bit shift, followed by
subtraction of p whenever the intermediate value becomes too large.

7.3 Non-deterministic catalytic computation
The model for catalytic computation is defined in terms of deterministic Turing
machines. This gives rise to the question: What would the power of a non-
deterministic version of CL be? In this section we extend the definitions of
catalytic-space computation to the non-deterministic case, and prove basic results
about this model.

7.3.1. Definition. Let M be a non-deterministic Turing machine, with four
tapes: one input and one output tape, one work-tape, and one auxiliary tape.

Let x ∈ {0, 1}n be an input, and w ∈ {0, 1}sa(n) be the initial contents of
the auxiliary tape. We say that M(x,w) accepts x if there exists a sequence
of nondeterministic choices that makes the machine accept. If for all possible
sequences of nondeterministic choicesM(x,w) does not accept, the machine rejects
x.

7.3. Non-deterministic catalytic computation 135

Then M is said to be a catalytic non-deterministic Turing machine using
workspace s(n) and auxiliary space sa(n) if for all inputs, the following three
properties hold.

1. Space bound. The machine M(x,w) uses space s(n) on its work tape and
space sa(n) on its auxiliary tape.

2. Catalytic condition. M(x,w) halts with w on its auxiliary tape, irrespec-
tive of its nondeterministic choices.

3. Consistency. The outcome of the computationM(x,w) is consistent among
all initial aux-tape contents w. This means that for any given input x,
M(x,w) should always accept, or always reject, regardless of w; however :
the specific nondeterministic choices that make M(x,w) go one way or the
other may depend on w.

7.3.2. Definition. CNSPACE(s(n), sa(n)) is the class of decision problems solv-
able by a catalytic non-deterministic Turing machine using workspace s(n) and
auxiliary space sa(n), and CNSPACE(s(n)) is defined as CNSPACE(s(n), 2s(n)).
The class CNL is CNSPACE(O(log n)).

We now have an analogue of non-deterministic space-bounded complexity. For
convenience, as an appendix to the chapter we present an equivalent definition of
CNL with all the conditions unfolded.

A note on alternative definitions. There are multiple possible ways to add
non-determinism to a catalytic Turing machine. For instance, we require the
machine to restore the contents of the auxiliary tape for any given sequence of non-
deterministic bits; but at a first glance, it seems we could make this requirement
only for those non-deterministic guesses which result in accepting states. However,
defining the model in this way is less natural for several reasons. For one, we can
not run two machines sequentially and accept if one of them accepts: if one of
the two machines would reject, the whole computation needs to reject, because
the auxiliary tape may have been irreversibly changed; so the class would not be
closed under union. This would also prevent amplification of success probability
in a probabilistic class defined using such machines. Philosophically speaking,
having a catalytic machine which ‘sometimes’ destroys all data it is guaranteed
to preserve, seems to go against the spirit of the model.

Another possible variation would be to require that the accepting sequence of
non-deterministic choices is independent of the initial contents of the auxiliary
tape, which would give a weaker model. Indeed, this would not look very strange in
a certificate definition, effectively requiring that there exists a read-once certificate,
independent of the initial contents of the aux-tape, which can be verified by a
deterministic log-space catalytic Turing machine. Even so, when describing the

136 Chapter 7. Catalytic computation: Non-determinism and hierarchy

model with non-deterministic Turing machines it seems unnatural to have this
restriction. Furthermore, the model is weaker, so if we expect to make some use
of non-determinism, it should be easier if we define it in the current way. Hence
we have also ruled out this alternative definition.

7.3.1 Simulation by probabilistic computation
In Theorem 6.4.6, we proved that CL ⊆ ZPP; we now generalize this to our new
non-deterministic model by showing that CNL ⊆ ZPP.

7.3.3. Definition. Define the directed acyclic graph GM ,x,w to be the configu-
ration graph of a catalytic non-deterministic Turing machine M on input x and
auxiliary tape starting contents w. That is, GM ,x,w has a node for every configu-
ration which is reachable by non-deterministic choices when executing M(x,w).

We will use |GM ,x,w| to denote the number of nodes of the configuration graph.

7.3.4. Lemma. LetM be a non-deterministic catalytic machine using space c log n
and let c′ = 2c+ 2. Then for all x

E
w∈R{0,1}nc

[
|GM ,x,w|

]
≤ O(nc′) .

Proof. Notice that, for any given x ∈ {0, 1}n, and for different auxiliary tape
contents w,w′, the set of configurations in GM ,x,w and in GM ,x,w′ have to be
disjoint. For the sake of contradiction, consider a configuration q that is reachable
both by M(x,w) and by M(x,w′). Then any halting configuration reachable by
q will have the wrong contents on its auxiliary tape for either the computation
that started with w or with w′.

The number of bits needed to describe a configuration of M , excluding the
contents of the input tape, is bounded by

c log n+ nc + log nc + log n+ log (c log n) +O(1) ≤ (2c+ 2) log n+ nc +O(1),

where we do include the encoding of the location of the tape heads and the
internal state of the Turing Machine. Therefore the total number of reachable
configurations, counted over all possible starting auxiliary tape contents, is at
most ∑

w∈{0,1}nc
|GM ,x,w| ≤ 2c′ logn+nc+O(1) = O(nc′)2nc

And thus:
1

2nc
∑

w∈{0,1}nc
|GM ,x,w| = E

w∈R{0,1}nc

[
|GM ,x,w|

]
≤ O(nc′) .

7.4. An analogue of the Immerman–Szelepcsényi theorem 137

Now suppose we have CNL machine M , and let x ∈ {0, 1}n be the input string.
Consider an algorithm which flips a random string w and searches GM ,x,w for
a path from the initial configuration to an accepting configuration. This takes
time polynomial in |GM ,x,w|. By Lemma 7.3.4 this graph is polynomial-sized in
expectation, and therefore this procedure finishes in expected polynomial time.
Thus we obtain:

7.3.5. Corollary. CNL ⊆ ZPP.

7.4 An analogue of the Immerman–Szelepcsényi
theorem

This section is devoted to proving that CNL is closed under complement. Our proof
strategy is based on the inductive-counting argument to prove the Immerman–
Szelepcsényi theorem. In order for the proof to work for catalytic computation,
we will need a couple of new ideas.

Suppose we are given a CNL machineM , and wish to construct a CNL-machine
M ′ to compute the complement M , via an inductive-counting argument on the
configuration graph of M .

First of all, notice that whenever M ′ wishes to simulate a run of M , it must
necessarily use its own aux-tape to simulate the aux-tape of M , because it is the
only read-write tape that is big enough.

Now, for some w (initial contents of the aux-tape), M may visit exponentially
many configurations. Then the inductive counting would be impossible to do with
only logarithmic space. So the first idea is to use the pseudo-random generators
of Lemma 7.2.3 to avoid such bad w. Lemma 7.4.1 explains why this works.

Notice also that we must be careful that M ′, when simulating a run of M ,
can always restore the initial contents of its aux-tape. We can make sure this
happens correctly by using the catalytic condition applied to M : whenever we
need to restore the initial contents of the aux-tape, it will be enough to run the
simulation of M to an arbitrary halting configuration.

Finally, recall that the inductive-counting argument involves storing and com-
paring configurations of M ; but the configurations of M include the aux-tape,
and are too big for the simulating machine M ′ to store on its work tape. So
the second idea is to use the family of hash functions of Lemma 7.2.4, and do
inductive-counting by storing and comparing the hashes of configurations instead.

Putting the whole thing together, however, is rather delicate, because our
pseudo-random generator will still give us bad w’s for some seeds, and there is no
easy CNL way of showing that a given hash function is collision free on the set of
reachable configurations of a CNL machine (that is a coCNL predicate); but our
algorithm has to manage anyway.

Let us start by showing how to avoid bad w’s.

138 Chapter 7. Catalytic computation: Non-determinism and hierarchy

7.4.1. Lemma. Assume the derandomization condition of Lemma 7.2.3, and let
G be as given therein. Let M be a non-deterministic catalytic Turing machine
using workspace c log n. Then, for every input x and aux-tape contents w, at least
half of the seeds s ∈ {0, 1}O(logn) will cause the non-deterministic computation
M(x,G(s)⊕ w) to reach at most n2c+3 many different configurations.

Proof. Let M be a CNL machine using workspace c log n and auxiliary space nc.
Let x ∈ {0, 1}n, w ∈ {0, 1}nc be given.

Let Cx,w be a boolean circuit which, on input r ∈ {0, 1}nc , does a breadth-first
traversal of GM ,x,r⊕w

4, starting on the initial configuration, until either:

i. More than n2c+3 nodes have been found, in which case it outputs 0; or

ii. The graph has been fully traversed, in which case it outputs 1.

The size of Cx,w can be bounded by a polynomial, say nd. The circuit Cx,w
outputs 1 on input r if and only if |GM ,x,r⊕w| ≤ n2c+3. Therefore, for large enough
n, for all x ∈ {0, 1}n and all w ∈ {0, 1}nc ,

Pr
r∈R{0,1}nc

[Cx,w(r) = 0] = Pr
r∈R{0,1}nc

[
|GM ,x,r⊕w| ≥ n2c+3

]
= Pr

r∈R{0,1}nc

[
|GM ,x,r| ≥ n2c+3

]
≤ 1
n2c+3 E

r∈R{0,1}nc

[
|GM ,x,r|

]
≤ O

(1
n

)
.

Here we have used the fact that, for a fixed w, r and r ⊕ w are equidistributed.
The last inequality follows from Markov’s inequality and Lemma 7.3.4.

Now Lemma 7.2.3 provides us with a log-space computable function G :
{0, 1}O(logn) → {0, 1}nc such that, for all x ∈ {0, 1}n and w ∈ {0, 1}nc ,∣∣∣∣∣ Pr

r∈{0,1}nc
[Cx,w(r) = 0]− Pr

s∈{0,1}O(logn)
[Cx,w(G(s)) = 0]

∣∣∣∣∣ ≤ 1
n

.

In particular, for all sufficiently large n we get the rough bound:

Pr
s∈{0,1}O(logn)

[Cw(x,G(s)) = 0] ≤ 1
n

+O
(1
n

)
<

1
2.

Therefore, for any x and w, at least half of the seeds s will ensure that the
configuration graph GM ,x,G(s)⊕w has at most n2c+3 nodes.

4Recall that GM ,x,r⊕w is the configuration graph of M , for input x and aux-tape contents
given by the bit-wise XOR of r and w.

7.4. An analogue of the Immerman–Szelepcsényi theorem 139

Our goal is now to use an inductive counting argument on GM ,x,G(s)⊕w. Like
we mentioned earlier, inductive counting requires us to write down configurations
in the work tape, but the tape is not big enough. To circumvent this, we will
instead write down the hash values of the configurations, via the hash family of
Lemma 7.2.4. The proof below puts it all together.

7.4.2. Theorem (Immerman–Szelepcsényi for catalytic computation).
If there exists a constant ε > 0 such that DSPACE(n) 6⊆ SIZE(2εn) then CNL =
coCNL.

Proof. Let M be a nondeterministic Turing machine that uses d log n work space,
and has an auxiliary tape of size nd. We wish to construct a nondeterministic
catalytic Turing machine M ′, using workspace O(log n), such that for any n and
any input x ∈ {0, 1}n our computation accepts x if M rejects x, and vice-versa.

Without loss of generality, assume that for any given w ∈ {0, 1}nd , M(x,w)
has a unique accepting configuration accw. Let startw be the initial configuration
of M(x,w) and let e = 2d+ 3.

By the consistency property, either there exists a path from startw to accw
for all w, or it is impossible to reach accw from startw, for any w. We prove
Theorem 7.4.2 by describing a way of certifying that there exists no path between
startw and accw in GM ,x,w.

Fix some input x, and let w′ denote the initial contents of the aux-tape of
M ′. By Lemma 7.4.1, we know that for at least half of the possible seeds s ∈
{0, 1}O(logn), we have

|GM ,x,G(s)⊕w′ | ≤ ne . (7.1)

If (7.1) holds, we say s is a good seed.
Lemma 7.2.4 gives us a family of hash functions {hk}n

3e
k=1, with the property

that, for every good seed s, there is at least one hash function in the family which
is one-to-one on the nodes of GM ,x,w.

Below, as Algorithm 7.4, we give the pseudo-code for M ′’s algorithm. Let us
now do a guided reading of this code. We begin by breaking the code into three
sections, for the lines 2–6, 7–26, and 27–32.

140 Chapter 7. Catalytic computation: Non-determinism and hierarchy

Algorithm 2 Pseudo-code for M ′.
Here G is the log-space PRG of Lemma 7.2.3, S is the number of seeds, m = ne

stands for the maximum number of configurations allowed in the configuration
graph, and H is the size of the hash family given by Lemma 7.2.4. The aux-
tape is represented by a variable w, whose initial value is w′. The lines that use
non-determinism are marked with a (*).
1: procedure coCNL-Simulation(Input x, Aux-Tape w ← w′)
2: N ← 0
3: for s = 0 . . . S do
4: w ← G(s)⊕ w
5: g ← 0
6: `← 0
7: for k = 1 . . . H do
8: c← 1
9: for i = 1 . . .m do
10: c′ ← 0
11: for v = 0 . . .m do
12: if canReach(v, i,hk) then . (*)
13: c′ ← c′ + 1
14: else if cannotReach(v, i, c,hk) then . (*)
15: Do nothing
16: else
17: Jump to line 30
18: end if
19: end for
20: c← c′

21: end for
22: if c > g then
23: g ← c
24: `← k
25: end if
26: end for
27: if cannotReach(h`(accw),m+ 1, g,h`) then . (*)
28: N ← N + 1
29: end if
30: w ← G(s)⊕ w
31: end for
32: Accept if N > S/2, and Reject otherwise
33: end procedure

In lines 2–6, we initialize a variable N to 0 (line 2), cycle through every seed s
(line 3), XOR the contents of the aux-tape with G(s) (line 4), and initialize two

7.4. An analogue of the Immerman–Szelepcsényi theorem 141

variables g and ` to 0 (lines 5 and 6).
Then, in lines 7–26, we have an inner loop that cycles through every hash

function (line 7). Below we will prove:

Property I If the seed s is good, then (I.a) some sequence of non-deterministic
bits will cause the inner loop to exit normally at line 27, with the promise that
g = |GM ,x,w|, and that h` is one-to-one on GM ,x,w; and (I.b) any sequence
of non-deterministic bits that fails this promise will exit the inner loop by
jumping directly to line 30.

At line 27, we use the value of g and ` we have obtained to try and certify that
accw is not reachable. If we succeed to do so, we increment N (line 28). Below
we will also prove:

Property II If the seed s is good, g = |GM ,x,w|, and h` is one-to-one on GM ,x,w,
then some sequence of non-deterministic bits will cause us to successfully
certify that accw is not reachable if and only if M(x,w) rejects.5

Before we move on to the next seed, we first restore the initial contents of the
aux-tape, by once again XORing them with G(s) (line 30).

Finally, the procedure accepts if and only if N > S/2 in line 32. Let us prove
that, assuming Properties I and II, the procedure accepts if and only if M(x,w)
rejects. Lemma 7.4.1 ensures that more than half the seeds are good, and hence:

1. If M(x,w) rejects: Property I ensures that, for each good seed s, some
non-deterministic guess will cause us to reach line 27 with g = |GM ,x,w| and
h` one-to-one on GM ,x,w; then Property II ensures that some further guess
will result in N being incremented; hence some overall non-deterministic
guess will give N > S/2, and the procedure will accept in line 32.

2. If M(x,w) accepts: Property I ensures that, for each good seed s, if we
reach line 27, then g = |GM ,x,w| and h` one-to-one on GM ,x,w, and thus, by
Property II, N will not be incremented in line 28. If some non-deterministic
guess fails to get us to line 27, then Property I tells us that the execution
jumped directly to line 30, so N was again not incremented. Because no
good seed will ever cause N to be incremented, N < S/2 and the procedure
rejects in line 32.

So all we need to do is prove properties I and II. We first need to specify
the canReach and cannotReach subroutines. Their correctness is easy to see
from the description and pseudo-code.

The canReach(v, i,hk) subroutine (see Algorithm 3) checks whether there
is a node w in GM ,xw, reachable within i steps, with hk(w) = v.

5But if s, g or h` are not as assumed, we might get a false-positive, claiming that accw is not
reachable when in fact it is.

142 Chapter 7. Catalytic computation: Non-determinism and hierarchy

Behavior of the canReach subroutine. If such a w exists, then some
non-deterministic guess will cause the procedure to return TRUE, and, otherwise,
every non-deterministic guess will return FALSE.

canReach non-deterministically works as follows: we guess a length L ≤ i,
and simulate M for L steps. After this, we hash the configuration M is currently
in, and compare it to v. We will then return TRUE if and only if the two hashes
are the same, but before we return, we finish the simulation of M until we reach
a halting state, in order to restore the contents of the aux-tape.

Algorithm 3 The canReach subroutine.
The subroutine to check that a node hashing to v is reachable in at most i steps,
given some hash function hk.
1: procedure canReach(v, i, hk)
2: z ← 0 . Workspace and internal state of simulated machine
3: Non-deterministically guess L ≤ i . (*)
4: Simulate M(x,w) using z as workspace for L steps . (*)
5: if hk(z,w′) = v then
6: r ← TRUE
7: else
8: r ← FALSE
9: end if
10: Continue simulation of M(x,w) using z and reach any halting state
11: return r
12: end procedure

The cannotReach(v, i, c,hk) subroutine (see Algorithm 4) checks that there
is no node in GM ,x,w hashing to v and reachable within i steps, as long as c and
hk fulfill the promise that there are exactly c nodes in GM ,x,w that are reachable
within i− 1 steps, and that hk is one-to-one on GM ,x,w.

Behavior of the cannotReach subroutine. If the hash v is unreachable
within i steps and the given c,hk obey the promise, then some non-deterministic
guess will cause the procedure to return TRUE. If v is reachable and c,hk
obey the promise, every guess will return FALSE. Furthermore, if the hash v is
unreachable within i steps, and c is smaller than the number of nodes in GM ,x,w
that are reachable within i− 1 steps, then there is a non-deterministic guess that
causes the procedure to return TRUE, even if hk is not one-to-one.

7.4. An analogue of the Immerman–Szelepcsényi theorem 143

Algorithm 4 The cannotReach subroutine.
The subroutine checking that a node hashing to v is not reachable within i steps,
for hash function hk, when given c, the number of nodes reachable in i− 1 steps.
1: procedure cannotReach(v, i, c, hk)
2: h′ ← −1 . Hash of previously seen node
3: for j = 1 . . . c do
4: z ← 0 . Workspace and internal state of simulated machine
5: Non-deterministically guess L ≤ i− 1 . (*)
6: Simulate M(x,w) using z as workspace for L steps . (*)
7: if hk(z,w) ≤ h′ then . Visited the nodes in wrong order
8: Simulate M(x,w) using z and reach any halting state
9: return FALSE
10: end if
11: h′ ← hk(z,w)
12: while there are unvisited neighbours do
13: Step M(x,w) with workspace z into a neighbour configuration
14: if hk(z,w′) = v then . v is reachable in i steps
15: Simulate M(x,w) using z and reach any halting state
16: return FALSE
17: end if
18: Revert simulation with one step back
19: end while
20: Continue simulation of M(x,w) using z and reach any halting state
21: end for
22: return TRUE
23: end procedure

The cannotReach subroutine visits c different nodes of GM ,x,w in order of
ascending hash value, and for each of them checks that none of their neighbors
hash to v. Since a single step of a computation only makes a local change, it is
possible to remember this step and revert it afterward to continue with the next
neighbor. If one of the neighbors hash to v or if a wrong non-deterministic guess
has been made somewhere, we restore the aux-tape and return FALSE. Otherwise
finish the simulation of M until a halting configuration is reached, to restore the
orginal value of w. If we have visited c distinct nodes without finding v as a
neighbor, then we return TRUE.

Property II follows easily from the correctness of the cannotReach subrou-
tine: indeed, if M(x,w) rejects, then accw is not reachable, and hence with the
promise made on g and h`, some guess will cause cannotReach(h`(accw),M +
1, g,h`) to return TRUE.

We now complete the proof of the theorem by proving Property I. Let us focus
on the k-loop (lines 7–26) which goes through every hash function hk. For each

144 Chapter 7. Catalytic computation: Non-determinism and hierarchy

hk a value c is computed (see lines 8, 10, 13 and 20).
It might happen that the k-loop is aborted (in line 17), but if this never

happens, then c will be compared to g (line 22), so that by the time the k-loop
terminates, g will hold the maximum c produced for any value of k (line 23), and
` will hold the first value of k which produced this maximum (line 24).

Now we make the following two claims:

(i) If s is good, and hk is one-to-one on GM ,x,w, the i-loop (lines 9–21) will either
abort, or set c = |GM ,x,w|. Furthermore, some non-deterministic choice
within the i-loop will not abort.

(ii) If s is good, but hk is not one-to-one on GM ,x,w, the i-loop will either abort,
or set c to a value strictly smaller than |GM ,x,w|. As above, some non-
deterministic choice within the i-loop will not abort.

From these, it follows that if s is good, then for every k there is a non-deterministic
guess which does not abort, and using any such non-aborting guess, g will be set
to |GM ,x,w|, and ` will be the smallest k for which hk is one-to-one. This gives us
Property I.

Let us prove claim (i). Suppose that hk is one-to-one, and that the i-loop does
not abort. Then we may prove inductively that in every iteration of the i-loop, c
is the number of nodes in GM ,x,w reachable by M(x,w) within i− 1 steps. Now,
c,hk satisfy the promise required by cannotReach, and hence, for any non-
aborting guess, the v-loop will set c′ to the number of nodes in GM ,x,w reachable
within i steps; this value is then copied to c (line 20) for the next iteration of the
i-loop. When the i-loop ends, c has been set to the number of nodes reachable
within M steps, which is exactly |GM ,x,w|. The fact that there always exists such
a non-aborting guess follows from the behavior of the canReach procedure, and
from the behavior of the cannotReach procedure in the case when c,hk fulfill
the promise.

To prove claim (ii), notice that the value of c′ is incremented in line 13, and
is thus bounded by the the size of image hk(GM ,x,w). So if hk is not one-to-one, c′
will always be strictly less than |GM ,x,w|. On the other hand, it is always possible
to find a non-deterministic guess which does not abort, even when hk is not one-
to-one. Whenever hash v is reachable in i steps, we can take the guess which
makes canReach in line 12 return TRUE; when hash v is not reachable in i
steps, we know from the behavior of cannotReach, that we can find a guess
that makes cannotReach return true, provided that the argument c given to
cannotReach in iteration i is not more than the number of nodes reachable
within i − 1 steps. This follows from the fact that, in iteration i − 1, c′ is
bounded by the number of such nodes (because it is incremented only conditional
on canReach of line 12.

7.5. Hierarchies for Catalytic Computation 145

7.5 Hierarchies for Catalytic Computation
In this section we prove space-hierarchy theorems for deterministic and non-
deterministic catalytic computation. Hierarchy theorems are usually proven using
diagonalization. Since catalytic computation is a semantic model we do not know
how to use diagonalization directly. Similarly to other semantic models (such
as bounded-error randomized computation) we have to settle for hierarchy the-
orems with advice. This advice is used to tell the diagonalizing machine which
machines can be safely simulated and diagonalized against, and which should not
be simulated (so that the diagonalizing machine remains in the model).

The hierarchy theorem can be proven using the technique of Van Melkebeek
and Pervyshev [vMP06], which are sophisticated variations of [Ž83]. Separations
for certain space bounds follow directly from previous results on generic hierarchy
theorems for semantic models of computation [KvM10, vMP06]. For some ranges
of parameters we provide a direct proof, mainly the calculations justifying the
correctness of the bounds. We state the theorem next.

7.5.1. Theorem. Let a ≥ 1 be an integer and s′(n) and s(n) be space-constructible
functions. There is a function in the complexity class CNSPACE(s(n))/1 that is
not in CNSPACE(s′(n))/a, and there is a function in CSPACE(s(n))/1 that is not
in CSPACE(s′(n))/a, if any of the following is satisfied:

1. s′(n) = O(log n) and s(n) = ω(log n).

2. s′(n) = O(logk′ n) and s(n) = Ω(2(log logn)k′), for some constant k′ > 1.

3. s′(n) = O(nk′) and s(n) = Ω(nk), where k, k′ > 0 are reals such that
k′ < k/2 and k′ < 1/(1 + a).

4. s′(n) = O(nk′) and s(n) = Ω(nk), where k, k′ > 0 are reals such that k ≥ 2a
and k ≥ d4ak′2e.

Proof. The first part is immediate from Kinne and Van Melkebeek [KvM10] as
catalytic computation satisfies the requirements on a reasonable semantic model
and allows complementation with linear-exponential overhead.

Now we prove the third part using the technique of Van Melkebeek and Per-
vyshev [vMP06]. Fix a small enough ε > 0 and let’s consider the case when
s′(n) = nk

′+ε and s(n) = nk. Let Mi be an enumeration of possibly catalytic
machines working in space s′(n) with catalytic tape of size 2s′(n). Assume without
loss of generality that each machine appears infinitely often in this enumeration.
We will construct a machine M and an advice sequence {bn}n>0 so that M/bn be-
haves catalytically on inputs of length n and uses space at most s(n) and catalytic
space 2s(n). No machine Mi will accept the same language as M/{bn} regardless
of its a-bit advice.

146 Chapter 7. Catalytic computation: Non-determinism and hierarchy

The proof diagonalizes against all machines Mi with all possible advice se-
quences. We define a sequence of integers ni and n∗i as follows:

n∗0 = a, ni = n∗i−1 + 1, and n∗i = n1+ani
i .

We will diagonalize against Mi with all possible advices on input of length
between ni and n∗i . Let mi = log ni and for j = 0, . . . ,mi define

ni,j = ni · (nai)2j .

For w ∈ {0, 1}a(mi−j−1) and z ∈ {0, 1}a define ni,j,wz = ni,j + wz, where wz is the
integer represented by wz in binary. For y ∈ {0, 1}ni,j,wz define the function

f(y) = yz0ni,j+1,w−ni,j,wz−a.

Since all ni,j,wz are distinct, this is a well defined partial function. We are ready
to define the machine M which takes {bn}n>0 as its advice sequence.

1. On input x of length n do:

2. If bn = 0 then REJECT.

3. If n = ni,j,wz for some i, j,wz, where j ≤ mi, |w| = a(mi−j−1) and |z| = a
then (nondeterministically) simulate Mi with advice z on input f(x) and
ACCEPT iff Mi accepts, and REJECT iff Mi rejects.

4. If n = n∗i then find y such that f(f(· · · f(y) · · ·)) = x, where f is applied
mi-times. If no such y is found (such a y is a prefix of x) then REJECT.
Let z be the first a bits of y. Using Savitch’s algorithm decide whether Mi

with advice z accepts y. If it accepts, REJECT, otherwise ACCEPT.

This defines the behavior of machine M . The advice {bn}n>0 is defined to be 1
of inputs of length ni,j,wz if and only if on all inputs of length ni,j+1,w machine Mi

with advice z behaves in a correct catalytic manner (hence it is safe to simulate).
Assuming that machine M can perform the simulations in the designated

space, it is easy to verify that it behaves catalytically and it diagonalizes against
all machines Mi and all their possible advice sequences infinitely often.

So we only need to argue about the used space. Let Mi with advice sequence
{zn}n>0 be a catalytic machine using work space s′(n) and catalytic space 2s′(n).
On inputs of length ni,j,wzni,j+1,w

, M will simulate Mi on inputs of length ni,j+1,w
with advice zni,j+1,w . By the choice of small enough ε, for all large enough ni

s′(ni,j+1,w) ≤ 2n(1+2j+1a)(k′+ε)
i

≤ n
(1+2ja)k
i /n

k/2
i ≤ s(ni,j,wz)

n
k/2
i

.

7.A. CNL definition, equivalent to Definition 7.3.2 147

Hence,M can successfully simulateMi on these input lengths using its work space
and the catalytic space. It remains to verify that the space necessary for Savitch’s
algorithm on inputs of length n∗i will fit into our work space. Savitch’s algorithm
for machine Mi on input y will require space at most O((log |y| + log s′(|y|) +
2s′(|y|) + 2s′(|y|))2), which is less than 23s′(|y|) for y (resp. ni) large enough. The
length of y is at most 2n1+a

i . Thus

s′(|y|) ≤ 2n(1+a)(k′+ε)
i < 2ni

and
23s′(|y|) ≤ 26ni ≤ s(n∗i),

for ni large enough.
To prove the second part one uses the same argument as above but verifies

that the space needed by M for the simulations fits into its space bounds:

s′(ni,j+1,w) ≤
(

log 2n(1+2j+1a)
i

)k′
=

(
1 + (1 + 2j+1a) · log ni

)k′
≤ o

(
2logk

′((1+2ja)·logni)
)

= o
(

2logk
′
logn(1+2ja)

i

)
= o(s(ni,j,wz)).

Similarly,
23s′(2n1+a

i) ≤ o(s(n∗i)) .
For the fourth part we set the parameters exactly like Van Melkebeek and Pervy-
shev [vMP06, KvM10]: a constant d = max(2a, d4ak′2e), n∗i = n

ndi
i and ni,j = nd

j

i .
With these parameters there is sufficient space for M to simulate Mi’s.

7.A CNL definition, equivalent to Definition 7.3.2
7.A.1. Definition. A decision problem L is in CNL if there exists a constant
c and a deterministic Turing machine M , with a read-only input tape, a uni-
directional certificate tape, work tape of size c log n and an auxiliary tape of
size nc, such that for all n-bit strings x and for all w ∈ {0, 1}nc it holds that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}2nc M(x,u,w) accepts
and

∀u ∈ {0, 1}2ncM(x,u,w) halts with w on its aux-tape.
The string u represents the contents of the uni-directional certificate tape, and w
is the starting contents of the auxiliary tape.

Bibliography

[AAD00] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic
circuits. Journal of Computer and System Sciences, 60(2):395–421,
2000.

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[ABK+06] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–
1493, June 2006.

[AG04] S. Aaronson and D. Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70(5):052328, 2004.

[AGSU15] A. Ambainis, W. Gasarch, A. Srinivasan, and A. Utis. Lower
bounds on the deterministic and quantum communication complex-
ity of Hamming-distance problems. ACM Trans. Comput. Theory,
7(3):10:1–10:10, June 2015.

[AK10] E. Allender and M. Koucký. Amplifying lower bounds by means of
self-reducibility. Journal of the ACM, 57(3), 2010.

[AMM14] M. Amy, D. Maslov, and M. Mosca. Polynomial-time T-depth opti-
mization of Clifford+T circuits via matroid partitioning. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 33(10):1476–1489, Oct 2014.

[AMMR13] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits.
Trans. Comp.-Aided Des. Integ. Cir. Sys., 32(6):818–830, June 2013.

149

150 Bibliography

[AO94] E. Allender and M. Ogihara. Relationships among PL, #L, and
the determinant. In Proceedings of the Ninth Annual Structure in
Complexity Theory Conference, pages 267–278, 1994.

[AS06] P. Arrighi and L. Salvail. Blind quantum computation. International
Journal of Quantum Information, 4(05):883–898, 2006.

[BB84] C. Bennett and G. Brassard. Quantum cryptography: Public key
distribution and coin tossing. In Proceedings of IEEE International
Conference on Computers, Systems and Signal Processing, volume
175, 1984.

[BBC+93] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters. Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.,
70(13):1895–1899, Mar 1993.

[BBD+09] H. Briegel, D. Browne, W. Dür, R. Raussendorf, and M. Van den
Nest. Measurement-based quantum computation. Nature Physics,
5(1):19–26, 2009.

[BBK+13] J. Brody, H. Buhrman, M. Koucký, B. Loff, F. Speelman, and
N. Vereshchagin. Towards a reverse newman’s theorem in inter-
active information complexity. In Computational Complexity (CCC),
2013 IEEE Conference on, pages 24–33, June 2013.

[BBK+16] J. Brody, H. Buhrman, M. Koucký, B. Loff, F. Speelman, and
N. Vereshchagin. Towards a reverse newman’s theorem in interactive
information complexity. Algorithmica, pages 1–33, 2016.

[BBL+15] J. Briët, H. Buhrman, D. Leung, T. Piovesan, and F. Speelman.
Round elimination in exact communication complexity. In S. Beigi
and R. König, editors, 10th Conference on the Theory of Quantum
Computation, Communication and Cryptography, TQC 2015, May
20-22, 2015, Brussels, Belgium, volume 44 of LIPIcs, pages 206–225.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[BC92] M. Ben-Or and R. Cleve. Computing algebraic formulas using a
constant number of registers. SIAM Journal on Computing, 21(1):54–
58, 1992.

[BC94] S. Brands and D. Chaum. Distance-bounding protocols. In EURO-
CRYPT’93, pages 344–359. Springer, 1994.

[BCF+11] H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky,
and C. Schaffner. Position-based quantum cryptography: Impossibil-
ity and constructions. In P. Rogaway, editor, Advances in Cryptology

Bibliography 151

– CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 429–446. Springer Berlin / Heidelberg, 2011.

[BCG+16] H. Buhrman, Ł. Czekaj, A. Grudka, M. Horodecki, P. Horodecki,
M. Markiewicz, F. Speelman, and S. Strelchuk. Quantum commu-
nication complexity advantage implies violation of a Bell inequality.
Proceedings of the National Academy of Sciences, 113(12):3191–3196,
March 2016.

[BCH86] P. Beame, S. Cook, and H. Hoover. Log depth circuits for division
and related problems. SIAM Journal on Computing, 15(4):994–1003,
1986.

[BCK+14] H. Buhrman, R. Cleve, M. Koucký, B. Loff, and F. Speelman. Com-
puting with a full memory: Catalytic space. In Proceedings of the
46th Annual ACM Symposium on Theory of Computing, STOC ’14,
pages 857–866, New York, NY, USA, 2014. ACM.

[BCL+06] H. Buhrman, R. Cleve, M. Laurent, N. Linden, A. Schrijver, and
F. Unger. New limits on fault-tolerant quantum computation. In
Foundations of Computer Science, 2006. FOCS ’06. 47th Annual
IEEE Symposium on, pages 411–419, Oct 2006.

[BCP83] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for
well-endowed rings and space-bounded probabilistic machines. Infor-
mation and Control, 58(1–3):113–136, 1983.

[BCP+13] J. E. Brody, S. Chen, P. A. Papakonstantinou, H. Song, and X. Sun.
Space-bounded communication complexity. In Proceedings of the 4th
Conference on Innovations in Theoretical Computer Science, ITCS
’13, pages 159–172, New York, NY, USA, 2013. ACM.

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical
communication and computation. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC 1998), pages 63–68,
1998.

[Ben73] C. H. Bennett. Logical reversibility of computation. IBM Journal
of Research and Development, 1973.

[BFK09] A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind
quantum computation. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 517–526. IEEE,
2009.

152 Bibliography

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in communica-
tion complexity theory. In Foundations of Computer Science, 1986.,
27th Annual Symposium on, pages 337–347, 1986.

[BFS92] J. Boyar, G. Frandsen, and C. Sturtivant. An arithmetic model of
computation equivalent to threshold circuits. Theoretical Computer
Science, 93(2):303–319, 1992.

[BFSS13] H. Buhrman, S. Fehr, C. Schaffner, and F. Speelman. The garden-
hose model. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, ITCS ’13, pages 145–158, New York,
NY, USA, 2013. ACM.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP
question. SIAM Journal on Computing, 4(4):431–442, 1975.

[BJ15] A. Broadbent and S. Jeffery. Quantum homomorphic encryption for
circuits of low T-gate complexity. In R. Gennaro and M. Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, volume 9216 of
Lecture Notes in Computer Science, pages 609–629. Springer Berlin
Heidelberg, 2015.

[BK11] S. Beigi and R. König. Simplified instantaneous non-local quantum
computation with applications to position-based cryptography. New
Journal of Physics, 13(9):093036, 2011.

[BKLS16] H. Buhrman, M. Koucký, B. Loff, and F. Speelman. Catalytic Space:
Non-determinism and Hierarchy. In N. Ollinger and H. Vollmer,
editors, 33rd Symposium on Theoretical Aspects of Computer Science
(STACS 2016), volume 47 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 24:1–24:13, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Bro15a] A. Broadbent. Delegating private quantum computations. Canadian
Journal of Physics, 93(9):941–946, 2015.

[Bro15b] A. Broadbent. Popescu–Rohrlich correlations imply efficient
instantaneous nonlocal quantum computation. arXiv preprint
arXiv:1512.04930, 2015.

[BTV01] H. Buhrman, J. Tromp, and P. Vitányi. Time and space bounds for
reversible simulation. In Proceedings of the 28th ICALP, 2001.

[Bus04] L. Bussard. Trust Establishment Protocols for Communicating De-
vices. PhD thesis, Eurecom-ENST, 2004.

Bibliography 153

[CB97] R. Cleve and H. Buhrman. Substituting quantum entanglement for
communication. Physical Review A, 56(2):1201, 1997.

[CCJP10] S. R. Clark, A. J. Connor, D. Jaksch, and S. Popescu. Entanglement
consumption of instantaneous nonlocal quantum measurements. New
Journal of Physics, 12(8):083034, 2010.

[CCS06] S. Capkun, M. Cagalj, and M. Srivastava. Secure localization with
hidden and mobile base stations. In IEEE INFOCOM, 2006.

[CDNT98] R. Cleve, W. v. Dam, M. Nielsen, and A. Tapp. Quantum en-
tanglement and the communication complexity of the inner product
function. In Selected papers from the First NASA International
Conference on Quantum Computing and Quantum Communications,
QCQC ’98, pages 61–74. Springer-Verlag, 1998.

[CG75] D. Coppersmith and E. Grossman. Generators for certain alternating
groups with applications to cryptography. SIAM Journal on Applied
Mathematics, 29(4):624–627, 1975.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak
randomness and probabilistic communication complexity. SIAM J.
Comput., 17(2):230–261, April 1988.

[CGMO09] N. Chandran, V. Goyal, R. Moriarty, and R. Ostrovsky. Position
based cryptography. In Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 391–407.
Springer, 2009.

[CH05] S. Capkun and J.-P. Hubaux. Secure positioning of wireless devices
with application to sensor networks. In IEEE INFOCOM, pages
1917–1928, 2005.

[Chi05] A. M. Childs. Secure assisted quantum computation. Quantum
Information & Computation, 5(6):456–466, 2005.

[CL15] K. Chakraborty and A. Leverrier. Practical position-based quantum
cryptography. Phys. Rev. A, 92:052304, Nov 2015.

[Cle89] R. Cleve. Methodologies for Designing Block Ciphers and Crypto-
graphic Protocols. PhD thesis, University of Toronto, 1989.

[CM87] S. A. Cook and P. McKenzie. Problems complete for deterministic
logarithmic space. Journal of Algorithms, 8(3):385–394, September
1987.

154 Bibliography

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971.

[Coo85] S. A. Cook. A taxonomy of problems with fast parallel algorithms.
Information and Control, 64:2–22, 1985.

[CP10] A. Chattopadhyay and T. Pitassi. The story of set disjointness. ACM
SIGACT News, 41(3):59–85, 2010.

[CSWX14] W. Y. Chiu, M. Szegedy, C. Wang, and Y. Xu. The garden hose
complexity for the equality function. In Q. Gu, P. Hell, and B. Yang,
editors, Algorithmic Aspects in Information and Management, volume
8546 of Lecture Notes in Computer Science, pages 112–123. Springer
International Publishing, 2014.

[Dam91] C. Damm. DET=L(#L). Technical Report Informatik-Preprint 8,
Fachbereich Informatik der Humboldt–Universität zu Berlin, 1991.

[DLTW08] A. C. Doherty, Y.-C. Liang, B. Toner, and S. Wehner. The quan-
tum moment problem and bounds on entangled multi-prover games.
In Computational Complexity, 2008. CCC’08. 23rd Annual IEEE
Conference on, pages 199–210. IEEE, 2008.

[DNS10] F. Dupuis, J. B. Nielsen, and L. Salvail. Secure two-party quantum
evaluation of unitaries against specious adversaries. In CRYPTO,
pages 685–706, September 2010.

[DSS16] Y. Dulek, C. Schaffner, and F. Speelman. Quantum homomorphic
encryption for polynomial-sized circuits. In Advances in Cryptology –
CRYPTO 2016, pages 3–32. Springer Berlin Heidelberg, 2016.

[FBS+14] K. Fisher, A. Broadbent, L. Shalm, Z. Yan, J. Lavoie, R. Prevedel,
T. Jennewein, and K. Resch. Quantum computing on encrypted data.
Nature communications, 5, 2014.

[FGKM15] S. Forest, D. Gosset, V. Kliuchnikov, and D. McKinnon. Exact
synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets.
Journal of Mathematical Physics, 56(8):–, 2015.

[GC99] D. Gottesman and I. L. Chuang. Quantum Teleportation is a
Universal Computational Primitive. Nature, 402:390–393, August
1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979.

Bibliography 155

[GKK+07] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf. Expo-
nential separations for one-way quantum communication complexity,
with applications to cryptography. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, STOC ’07, pages
516–525, New York, NY, USA, 2007. ACM.

[Got98a] D. Gottesman. The Heisenberg representation of quantum comput-
ers. In Group theoretical methods in physics. Proceedings, 22nd
International Colloquium, Group22, ICGTMP’98, Hobart, Australia,
July 13-17, 1998, 1998.

[Got98b] D. Gottesman. Theory of fault-tolerant quantum computation. Phys.
Rev. A, 57:127–137, Jan 1998.

[GS13] B. Giles and P. Selinger. Exact synthesis of multiqubit Clifford+T
circuits. Physical Review A, 87(3):032332, 2013.

[HAM02] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Jour-
nal of Computer and System Sciences, 65(4):695–716, 2002.

[IH08] S. Ishizaka and T. Hiroshima. Asymptotic teleportation scheme as
a universal programmable quantum processor. Phys. Rev. Lett.,
101(24):240501, Dec 2008.

[IH09] S. Ishizaka and T. Hiroshima. Quantum teleportation scheme by
selecting one of multiple output ports. Phys. Rev. A, 79(4):042306,
Apr 2009.

[IL95] N. Immerman and S. Landau. The complexity of iterated multiplica-
tion. Information and Computation, 116(1):103–116, 1995.

[Imm88] N. Immerman. Nondeterministic space is closed under complementa-
tion. SIAM Journal on Computing, 17(5):935–938, 1988.

[IP99] R. Impagliazzo and R. Paturi. The complexity of k-SAT. In Pro-
ceedings of the 14th CCC, pages 237–240, 1999.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires expo-
nential circuits: Derandomizing the XOR lemma. In Proceedings of
the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM.

[JKMW09] R. Jozsa, B. Kraus, A. Miyake, and J. Watrous. Matchgate and space-
bounded quantum computations are equivalent. In Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, page rspa20090433. The Royal Society, 2009.

156 Bibliography

[JMRW15] N. Johnston, R. Mittal, V. Russo, and J. Watrous. Extended non-
local games and monogamy-of-entanglement games. arXiv preprint
arXiv:1510.02083, 2015.

[Kar72] R. M. Karp. Complexity of Computer Computations: Proceedings of a
symposium on the Complexity of Computer Computations, held March
20–22, 1972, chapter Reducibility among Combinatorial Problems,
pages 85–103. Springer US, Boston, MA, 1972.

[KL82] R. Karp and R. Lipton. Turing machines that take advice.
L’Enseignement Mathématique, 28:191–209, 1982.

[KMM13] V. Kliuchnikov, D. Maslov, and M. Mosca. Fast and efficient exact
synthesis of single-qubit unitaries generated by Clifford and T gates.
Quantum Info. Comput., 13(7-8):607–630, July 2013.

[KMS11] A. Kent, W. J. Munro, and T. P. Spiller. Quantum tagging: Authen-
ticating location via quantum information and relativistic signaling
constraints. Phys. Rev. A, 84:012326, Jul 2011.

[KMSB06] A. Kent, W. Munro, T. Spiller, and R. Beausoleil. Tagging systems,
2006. US patent nr 2006/0022832.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cam-
bridge University Press, 1997.

[KP14] H. Klauck and S. Podder. New bounds for the garden-hose model. In
V. Raman and S. P. Suresh, editors, 34th International Conference
on Foundation of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2014), volume 29 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 481–492, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[KvM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses.
SIAM Journal on Computing, 31(5):1501–1526, 2002.

[KvM10] J. Kinne and D. van Melkebeek. Space hierarchy results for ran-
domized and other semantic models. Computational Complexity,
19(3):423–475, 2010.

[Lan88] L. J. Landau. Empirical two-point correlation functions. Founda-
tions of Physics, 18(4):449–460, 1988.

[Lev73] L. A. Levin. Universal sequential search problems. Problemy
Peredachi Informatsii, 9(3):115–116, 1973.

Bibliography 157

[LKB+13] T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel,
A. Kent, N. Gisin, S. Wehner, and H. Zbinden. Experimental bit
commitment based on quantum communication and special relativity.
Phys. Rev. Lett., 111:180504, Nov 2013.

[LL11] H.-K. Lau and H.-K. Lo. Insecurity of position-based quantum-
cryptography protocols against entanglement attacks. Phys. Rev. A,
83(1):012322, Jan 2011.

[LMT97] K.-J. Lange, P. McKenzie, and A. Tapp. Reversible space equals
deterministic space. In Proceedings of the 12th Twelfth Annual IEEE
Conference on Computational Complexity., 1997.

[LS07] T. Lee and A. Shraibman. Lower bounds in communication com-
plexity. Foundations and Trends in Theoretical Computer Science,
3(4):263–399, 2007.

[Mal10a] R. A. Malaney. Location-dependent communications using quantum
entanglement. Phys. Rev. A, 81(4):042319, Apr 2010.

[Mal10b] R. A. Malaney. Quantum location verification in noisy channels. In
GLOBECOM’10, pages 1–6, 2010. arXiv:1004.4689v1.

[Mar14] O. Margalit. On the riddle of coding equality function in the garden
hose model. In Information Theory and Applications Workshop
(ITA), 2014, pages 1–5, Feb 2014.

[MM12] O. Margalit and A. Matsliah. Mage - the CDCL SAT solver devel-
oped and used by IBM for formal verification http://ibm.co/P7qNpC.
personal communication, 2012.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Information. Cambridge university press, 2000.

[New91] I. Newman. Private vs. common random bits in communication
complexity. Information Processing Letters, 39(2):67 – 71, 1991.

[NPA08] M. Navascués, S. Pironio, and A. Acín. A convergent hierarchy of
semidefinite programs characterizing the set of quantum correlations.
New Journal of Physics, 10(7):073013, 2008.

[NRS01] G. Nebe, E. Rains, and N. Sloane. The invariants of the Clifford
groups. Designs, Codes and Cryptography, 24(1):99–122, 2001.

[NV15] M. Navascués and T. Vértesi. Bounding the Set of Finite Dimensional
Quantum Correlations. Physical Review Letters, 115(2):020501, July
2015.

http://ibm.co/P7qNpC

158 Bibliography

[Pie11] K. Pietrzak. Personal communication, 2011.

[QLL+15] B. Qi, H.-K. Lo, C. C. W. Lim, G. Siopsis, E. A. Chitambar,
R. Pooser, P. G. Evans, and W. Grice. Free-space reconfigurable
quantum key distribution network. arXiv preprint arXiv:1510.04891,
2015.

[QS15] B. Qi and G. Siopsis. Loss-tolerant position-based quantum cryptog-
raphy. Phys. Rev. A, 91:042337, Apr 2015.

[Raz03] A. A. Razborov. Quantum communication complexity of symmetric
predicates. Izvestiya Mathematics, 67(1):145–159, 2003.

[Raz11] A. A. Razborov. Communication complexity. In D. Schleicher and
M. Lackmann, editors, An Invitation to Mathematics, pages 97–117.
Springer, 2011.

[RG15] J. Ribeiro and F. Grosshans. A tight lower bound for the
BB84-states quantum-position-verification protocol. arXiv preprint
arXiv:1504.07171, 2015.

[RS14] N. J. Ross and P. Selinger. Optimal ancilla-free Clifford+T approxi-
mation of z-rotations. arXiv preprint arXiv:1403.2975, 2014.

[RT92] J. Reif and S. Tate. On threshold circuits and polynomial computa-
tion. SIAM Journal on Computing, 21(5):896–908, 1992.

[Sav70] W. J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. Journal of Computer and System Sciences,
4(2):177 – 192, 1970.

[Sel13] P. Selinger. Quantum circuits of T-depth one. Physical Review A,
87(4):042302, 2013.

[Sel15] P. Selinger. Efficient Clifford+T approximation of single-qubit op-
erators. Quantum Information & Computation, 15(1-2):159–180,
January 2015.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete loga-
rithms and factoring. In 35th Annual Symposium on Foundations of
Computer Science - FOCS 1994, pages 124–134. IEEE, 1994.

[SHO13] S. Strelchuk, M. Horodecki, and J. Oppenheim. Generalized telepor-
tation and entanglement recycling. Phys. Rev. Lett., 110:010505,
Jan 2013.

Bibliography 159

[Son14] H. Song. Space-Bounded Communication Complexity. PhD thesis,
Tsinghua University, 2014.

[SP05] D. Singelee and B. Preneel. Location verification using secure distance
bounding protocols. In IEEE MASS’10, 2005.

[Spe11] F. Speelman. Position-based quantum cryptography and the garden-
hose game. Master’s thesis, University of Amsterdam, 2011.
arxiv:1210.4353.

[Spe16] F. Speelman. Instantaneous non-local computation of low T-depth
quantum circuits. In 11th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2016), vol-
ume 61 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 9:1–9:24, 2016.

[SSW03] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location
claims. In WiSe’03, pages 1–10, 2003.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-
free languages. Journal of the ACM, 25(3):405–414, July 1978.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondetermin-
istic automata. Acta Informatica, 26(3):279–284, 1988.

[Sze12] M. Szegedy. Personal communication, 2012.

[TFKW13] M. Tomamichel, S. Fehr, J. Kaniewski, and S. Wehner. A monogamy-
of-entanglement game with applications to device-independent quan-
tum cryptography. New Journal of Physics, 15(10):103002, 2013.

[Tod91] S. Toda. Counting problems computationally equivalent to comput-
ing the determinant. Technical Report CSIM, 91-07, 1991.

[Tod92] S. Toda. Classes of arithmetic circuits capturing the complexity of
computing the determinant. IEICE Transactions on Information
and Systems, E75-D:116–124, 1992.

[Tur36] A. M. Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1936.

[Unr14] D. Unruh. Quantum position verification in the random oracle
model. In J. Garay and R. Gennaro, editors, Advances in Cryptology
– CRYPTO 2014, volume 8617 of Lecture Notes in Computer Science,
pages 1–18. Springer Berlin Heidelberg, 2014.

160 Bibliography

[Vai03] L. Vaidman. Instantaneous measurement of nonlocal variables. Phys.
Rev. Lett., 90(1):010402, Jan 2003.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of
the eleventh annual ACM symposium on Theory of computing, STOC
’79, pages 249–261, New York, NY, USA, 1979. ACM.

[Val92] L. G. Valiant. Why is Boolean complexity theory difficult? In
Poceedings of the London Mathematical Society symposium on Boolean
function complexity, pages 84–94. Cambridge University Press, 1992.

[Ven91] H. Venkateswaran. Properties that characterize LOGCFL. Journal
of Computer and System Sciences, 43(2):380–404, 1991.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-
unbounded arithmetic circuits. In Proceedings of the Sixth Annual
Structure in Complexity Theory Conference, pages 270–284, 1991.

[vMP06] D. van Melkebeek and K. Pervyshev. A generic time hierarchy for
semantic models with one bit of advice. In Computational Complexity,
2006. CCC 2006. Twenty-First Annual IEEE Conference on, pages
14 pp.–144, 2006.

[VN04] A. Vora and M. Nesterenko. Secure location verification using radio
broadcast. In OPODIS’04, pages 369–383, 2004.

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel
computation of polynomials using few processors. SIAM Journal on
Computing, 12(4):641–644, 1983.

[Ž83] S. Žák. A Turing machine time hierarchy. Theoretical Computer
Science, 26(3):327 – 333, 1983.

[Weh06] S. Wehner. Tsirelson bounds for generalized clauser-horne-shimony-
holt inequalities. Physical Review A, 73(2):022110, 2006.

[Wit15] P. Wittek. Algorithm 950: Ncpol2Sdpa—sparse semidefinite pro-
gramming relaxations for polynomial optimization problems of non-
commuting variables. ACM Trans. Math. Softw., 41(3):21:1–21:12,
June 2015.

[Yao79] A. C.-C. Yao. Some complexity questions related to distributive
computing (preliminary report). In Proceedings of the 11th annual
ACM symposium on Theory of computing (STOC 1979), pages 209–
213, 1979.

Bibliography 161

[Yao93] A. C.-C. Yao. Quantum circuit complexity. In Proceedings of the
34th Annual Symposium on Foundations of Computer Science (FOCS
1993), pages 352–361, 1993.

[YGC12] L. Yu, R. B. Griffiths, and S. M. Cohen. Fast protocols for local
implementation of bipartite nonlocal unitaries. Physical Review A,
85(1):012304, 2012.

[Yu11] L. Yu. Fast controlled unitary protocols using group or quasigroup
structures. arXiv preprint arXiv:1112.0307, 2011.

[ZCC08] B. Zeng, X. Chen, and I. L. Chuang. Semi-Clifford operations, struc-
ture of Ck hierarchy, and gate complexity for fault-tolerant quantum
computation. Physical Review A, 77(4):042313, 2008.

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects
and the development of the concepts of information and randomness
by means of the theory of algorithms. Russian Mathematics Surveys,
256:83–124, 1970.

[ZLFW06] Y. Zhang, W. Liu, Y. Fang, and D. Wu. Secure localization and
authentication in ultra-wideband sensor networks. IEEE Journal on
Selected Areas in Communications, 24:829–835, 2006.

Index

AC, 109
alphabet, 23, 120
auxiliary tape, 120, 131, 134

Bell measurement, 6, 19, 32, 64
Bounded Retrieval Model, 3
bra, 15

catalytic computation, 9, 107
catalytic Turing machine, 120
non-deterministic, 134
Turing machine, 132

catalytic log space, see CL
catalytic non-deterministic log space,

see CNL
Cauchy–Schwarz inequality, 14
Chernoff bound, 14, 46
Chinese Remainder Theorem, 133
CL, 10, 108, 121
Cleve–Buhrman model, 22
Clifford group, 8, 63
Clifford hierarchy, 62, 73
CNL, 10, 132, 135, 139
CNSPACE, 135
coCNL, 10, 132, 139
communication complexity, 21, 30

bounded-error quantum, 22
deterministic, 36
exact quantum, 22
quantum, 22, 48

randomized, 50
complexity theory, 23, 108
computational basis, 15, 89
configuration, 43
CSPACE, 120

density matrix, 20
DET, 110
detection probability, 91
distance bounding, 2

entanglement, 5, 16, 48, 68
EPR pair, 16, 30, 60, 68
equality function, 37
exponential-time hypothesis, 125

GapL, 109
garden-hose model, 7, 28, 61, 66

garden-hose protocol, 34
quantum, 30, 48, 86
randomized, 30, 46

Gottesman–Chuang hierarchy, see Clif-
ford hierarchy

Hadamard
Hadamard basis, 4, 17, 89
Hadamard matrix, 17

Hamming distance, 13, 41, 49
Hamming weight, 13, 37
hash function, 10, 132
Hilbert space, 15

163

164 Index

IMM, 110
Immerman–Szelepcsényi Theorem, 10,

130, 139
inner product function, 37, 38
input tape, 23, 43, 120, 147
INQC, see instantaneous non-local quan-

tum computation
instantaneous non-local quantum com-

putation, 8, 60, 68
Interleaved Product protocol, 63, 81

ket, 15
Kolmogorov complexity, 125

L, 10, 24, 29, 42, 67, 108, 130
logarithmic space, see L
LOGCFL, 109
#LOGCFL, 109

majority function, 37
match gates, 86
measurement, 17

completeness, 18
projective, 18

mixed state, 20
monogamy of entanglement game, 9,

92, 96

NC, 109
Ncpol2sdpa, 100
Newman’s Theorem, 22
NL, 108
no-cloning theorem, 3, 21
Noisy Perfect Matching, 50
non-deterministic computation, 10, 24,

131
NP, 9, 24
NP hard, 24

operator norm, 15, 81, 102
output tape, 23, 131, 134

P, 9, 23, 109
Pauli matrix, 17, 63
photon loss, 9, 90

polynomial time, 23
position verification, 2, 31, 59, 89
POVM, 18, 97
PRG, see pseudorandom generator
private randomness, 22
pseudorandom generator, 10, 130, 140
public randomness, 22, 48
pure state, 20

QPVBB84, 4, 89
QPVBB84-e, 9, 92
quantum circuit, 8, 61
quantum homomorphic encryption, 87
quantum position verification, 30
quantum state, 14
quantum tagging, 3
qubit, 15

S, 20, 68
SAC, 109
Savitch’s theorem, 125, 130, 133
semidefinite programming, 9, 92, 98
simultaneous message passing, 42, 57
Solovay–Kitaev theorem, 82
space complexity, 23, 108
space hierarchy, 11, 130, 145
special relativity theory, 8
speed of light, 6, 9, 90

T-count, 8, 65, 70
T-depth, 8, 65, 78
tape head, 23
TC1, 108
teleportation, 5, 18, 30, 63

port-based, 3, 60
tensor product, 15
transition function, 23
Turing machine, 9, 23, 108, 120

deterministic, 43
non-deterministic, 134
oblivious, 43
probabilistic, 131
reversible, 43

Index 165

unitary transformation, 16

vector norm, 15
VP, 109

work tape, 23, 121, 131

zero-error probabilistic polynomial time,
see ZPP

ZPP, 10, 24, 109, 131

Abstract

In this thesis, we present several results along two different lines of research. The
first part concerns the study of position-based quantum cryptography, a topic
in quantum cryptography. In the second part we introduce a new notion of
computation, catalytic computation, and study this new model within complexity
theory.

Part I: Position-based quantum cryptography
By combining quantum mechanics with special relativity theory, new crypto-
graphic tasks can be developed that use the causality constraints of relativity
theory in a constructive way. Position-based cryptography is a type of cryptog-
raphy that wants to use location as a credential, instead of (or in addition to) a
secret key – for instance to create a protocol to send messages that can only be
read at one specific location.

After earlier proposals, which used only classical information, were shown
to be insecure, new schemes for position-based cryptography that used quantum
information at first seemed promising. Recent results showed that all such schemes
can be broken by attackers that use an exponential amount of quantum resources.
This leaves the following question open: Is it possible to create a scheme which is
secure under realistic assumptions?

If an attack on a scheme requires more entanglement than the number of
particles in the universe, then it surely is secure. Therefore, limiting the attacker’s
entanglement is a natural step. Our results will all consider this distinction:
schemes that can be attacked using little entanglement are insecure, while schemes
for which a coalition of attackers needs large entangled states will be secure.

Chapter 3. The first chapter on this topic analyzes a family of position-verification
schemes that combines a single qubit with classical information. We introduce
a new tool to study these schemes, the garden-hose model. In this simple com-

167

168 Abstract

binatorial model, two parties, Alice and Bob, share ‘pipes’ between them, and
they want to compute a function by linking these pipes together with ‘hoses’. By
studying garden-hose complexity, we characterize a class of teleportation attacks
on the family of schemes, and show a surprising relationship between their secu-
rity and open problems in computational complexity theory. We prove several
smaller results on the new model and additionally introduce natural variants: the
randomized garden-hose model, where the players share a random string, and the
quantum garden-hose model, where Alice and Bob have access to a pre-shared
entangled quantum state.

Chapter 4. In the next chapter we continue our study of the use of quantum
information in position verification, but now our attention turns to a different
class of protocols: those that that can be written using a class of small quantum
circuits, those with low T-gate complexity. We combine techniques from blind and
delegated quantum computation with the new garden-hose model and construct
new efficient attacks on these schemes. As an additional application, we present
an efficient attack on the Interleaved Product protocol for position verification,
recently introduced by Chakraborty and Leverrier.

Chapter 5. The final chapter on this topic looks at questions that are directly
inspired by practical considerations. Positioning protocols will likely use photons
as carriers of quantum information, possibly traveling in optical fiber. This is
incompatible with current protocols in two ways: a significant fraction of photons
are lost in transmission, and the speed of light in fiber is lower than in vacuum.
Adapting protocols to deal with these problems opens them up to new attacks. We
propose a new protocol for position verification that prevents these attacks and
use semidefinite programming to show security of this protocol against attackers
that do not share entanglement.

Part II: Catalytic computation
In the second part of this thesis, we study the notion of a catalytic-space computa-
tion. This is a computation that has a small amount of clean space available and is
equipped with additional auxiliary space, with the caveat that the additional space
is initially in an arbitrary, possibly incompressible, state and must be returned
to this state when the computation is finished. The term ‘catalytic’ comes from
chemistry, where it refers to a reactant which speeds up a chemical reaction but
is not consumed – just like the extra space available to the computation.

Chapter 6. In this chapter, we show that the extra space adds a surprising
amount of power to the model. To obtain this result, we study an algebraic model
of computation, called Transparent Programs, a variant of straight-line programs.

Abstract 169

Within these Transparent Programs, we can adapt a construction by Ben-Or and
Cleve to show that it’s possible to compute TC1 circuits using only a logarithmic
amount of clean space. Additionally, we present some complexity-theoretical
limits on the power of catalytic computation, by showing that computations that
use a logarithmic amount of clean memory, can be simulated probabilistically in
polynomial time.

Chapter 7. We continue the study of catalytic computation by translating two
foundational results on space-bounded computation to this new setting. First we
extend the model to incorporate nondeterminism. The Immerman–Szelepcsényi
Theorem is an important classic result in complexity theory that shows that the
complexity class of problems solvable by nondeterministic log-space Turing ma-
chines is closed under complement. We show that non-deterministic catalytic
space is also closed under complement, under standard derandomization assump-
tions. Finally, we present a hierarchy theorem – we show that adding more space
enables the catalytic computation to solve strictly more problems.

Samenvatting

In dit proefschrift worden resultaten gepresenteerd in twee verschillende onder-
zoeksrichtingen. Het eerste gedeelte heeft betrekking op positionele quantum cryp-
tografie, een onderwerp binnen de quantum cryptografie. In het tweede gedeelte
introduceren we een nieuw rekenmodel, katalytische berekeningen, en bestuderen
dit model binnen de computationele complexiteitstheorie.

Deel I: Positionele Quantum cryptografie
Door quantummechanica te combineren met de speciale relativiteitstheorie kunnen
nieuwe cryptografische taken worden bedacht die de beperkingen van relativiteit-
stheorie op een constructieve manier gebruiken. Positionele cryptografie is een
type cryptografie waarbij de locatie gebruikt wordt als bewijs van de identiteit van
een gebruiker, in plaats van (of samen met) een geheime sleutel. Een mogelijke
toepassing is bijvoorbeeld een protocol voor het sturen van berichten die maar op
één locatie gelezen kunnen worden.

Nadat de eerste voorstellen voor positionele cryptografie, gebaseerd op klassieke
informatie, onveilig bleken te zijn, leken nieuwe protocollen gebaseerd op quantum
informatie op het eerste gezicht veelbelovend. Recente resultaten lieten echter
zien dat ook die protocollen onveilig zijn tegen aanvallers die exponentieel grote
quantum toestanden kunnen manipuleren. Om deze reden richten wij ons op de
vraag: Is het mogelijk om een schema te maken wat met realistische aannames
veilig is?

Als een aanval op een cryptografisch protocol altijd extreem veel verstren-
gelde deeltjes nodig zou hebben, bijvoorbeeld meer dan het aantal deeltjes in
het universum, dan zou dat protocol uiteraard veilig zijn tegen alle realistische
aanvallen. Onze resultaten zullen allemaal dit onderscheid maken: protocollen
die aangevallen kunnen worden met behulp van kleine verstrengelde toestanden
zijn onveilig, terwijl we protocollen waarbij de aanvallers grote toestanden nodig
hebben veilig noemen.

171

172 Samenvatting

Hoofdstuk 3. Het eerste hoofdstuk over dit onderwerp analyseert positie-verificatie
schema’s die een enkele qubit combineren met klassieke informatie. We introduc-
eren een nieuw hulpmiddel om deze schema’s te bestuderen, het garden-hose model.
In dit simpele combinatorische model delen twee partijen, Alice and Bob, ‘buizen’
met elkaar, en willen ze een functie berekenen door deze buizen met ‘tuinslan-
gen’ aan elkaar vast te maken. Door garden-hose complexiteit te bestuderen,
karakteriseren we een klasse van teleportatie-aanvallen op de schema’s, en laten
we een verrassende relatie zien tussen de veiligheid van deze schema’s en open
problemen in computationele complexiteitstheorie. We bewijzen diverse kleinere
resultaten over het nieuwe model, en introduceren daarnaast twee varianten: het
gerandomiseerde garden-hose model, waarbij de spelers een willekeurige reeks van
bits delen, en het quantum garden-hose model, waarbij Alice en Bob toegang
hebben tot een (vooraf gedeelde) quantum toestand.

Hoofdstuk 4. We vervolgen onze studie naar het gebruik van quantum infor-
matie in positie verificatie, maar nu richten we onze aandacht op een andere klasse
van protocollen: degene die beschreven kunnen worden door quantum circuits
met lage T-gate complexiteit. We combineren technieken die eerder gebruikt zijn
voor het delegeren van quantum berekeningen met het garden-hose model, en
construeren zo nieuwe aanvallen op deze schema’s. Als aanvullende toepassing
presenteren we een efficiënte aanval op het Interleaved Product protocol voor
positie verificatie, geïntroduceerd door Chakraborty en Leverrier.

Hoofdstuk 5. Ons laatste hoofdstuk over dit onderwerp beschouwt vragen die
direct geïnspireerd zijn door praktische overwegingen. Positioneringsprotocollen
zullen hoogstwaarschijnlijk fotonen gebruiken als dragers voor quantum informatie,
mogelijk in glasvezelkabels. Dit komt niet overeen met de aannames die gedaan
worden bij huidige protocollen op de volgende twee manieren: a significant aantal
fotonen raakt verloren in overdracht, en de lichtsnelheid in glasvezel is lager dan
de lichtsnelheid in vacuüm. Aanpassingen van protocollen om deze problemen op
te lossen, geeft nieuwe aanvalsmogelijkheden en maakt de protocollen potentieel
onveilig. We ontwikkelen een nieuw protocol voor positie verificatie dat deze
aanvallen voorkomt, en we gebruiken semidefiniete programmering om te bewijzen
dat dit protocol veilig is tegen aanvallers die geen verstrengelde toestand delen.

Deel II: Katalytische berekeningen
In het tweede gedeelte van dit proefschrift bestuderen we berekeningen met kat-
alytisch geheugen. Dit zijn berekeningen die een kleine hoeveelheid lege geheugen-
ruimte hebben en daarnaast uitgerust zijn met aanvullend hulpgeheugen, met het
voorbehoud dat het aanvullende geheugen geïnitialiseerd is in een arbitraire, mo-
gelijk niet-comprimeerbare, toestand en aan het eind van de berekening teruggezet

Samenvatting 173

moet zijn naar deze toestand. De term ‘katalytisch’ komt uit de scheikunde, waar
het verwijst naar een reactant die een chemische reactie versnelt zonder verbruikt
te worden – net als het extra geheugen wat bij de berekening beschikbaar is.

Hoofdstuk 6. In dit hoofdstuk laten we zien dat het extra geheugen een ver-
rassende hoeveelheid mogelijkheden aan het rekenmodel toevoegt. Om dit re-
sultaat te verkrijgen bestuderen we een algebraïsch rekenmodel, Transparante
Programma’s. Met behulp van deze transparante programma’s kunnen we een
constructie van Ben-Or en Cleve aanpassen en zo laten zien dat het mogelijke
is om TC1 circuits te simuleren met slechts een logaritmische hoeveelheid leeg
geheugen. Daarnaast laten we enkele complexiteits-theoretische beperkingen zien
van de kracht van katalytische berekeningen, door te bewijzen dat elke katalytis-
che berekening die slechts een logaritmische hoeveelheid leeg geheugen gebruikt,
gesimuleerd kan worden door een normale Turing machine in polynomiale tijd.

Hoofdstuk 7. We vervolgen de studie van katalytische berekeningen met het
vertalen van twee klassieke resultaten uit de computationele complexiteitstheo-
rie naar dit nieuwe model. Ten eerste breiden we het model uit met een non-
deterministische variant. De Immerman–Szelepcsényi stelling is een belangrijk
complexiteitstheoretisch resultaat dat laat zien dat de klasse van problemen die
non-deterministische Turing machines kunnen oplossen met logaritmisch groot
geheugen gesloten is onder complement. We laten zien dat non-deterministische
katalytische berekeningen ook gesloten zijn onder complement, onder standaard
derandomisatie-aannames. Tot slot presenteren we hiërarchie-stelling – we laten
zien dat het toevoegen van meer geheugen de katalytische berekening strikt meer
problemen laat oplossen.

Titles in the ILLC Dissertation Series:

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2010-12: Martin Mose Bentzen
Stit, Iit, and Deontic Logic for Action Types

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Re-
trieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

ILLC DS-2011-11: Gideon Borensztajn
The neural basis of structure in language

ILLC DS-2012-01: Federico Sangati
Decomposing and Regenerating Syntactic Trees

ILLC DS-2012-02: Markos Mylonakis
Learning the Latent Structure of Translation

ILLC DS-2012-03: Edgar José Andrade Lotero
Models of Language: Towards a practice-based account of information in nat-
ural language

ILLC DS-2012-04: Yurii Khomskii
Regularity Properties and Definability in the Real Number Continuum: ide-
alized forcing, polarized partitions, Hausdorff gaps and mad families in the
projective hierarchy.

ILLC DS-2012-05: David García Soriano
Query-Efficient Computation in Property Testing and Learning Theory

ILLC DS-2012-06: Dimitris Gakis
Contextual Metaphilosophy - The Case of Wittgenstein

ILLC DS-2012-07: Pietro Galliani
The Dynamics of Imperfect Information

ILLC DS-2012-08: Umberto Grandi
Binary Aggregation with Integrity Constraints

ILLC DS-2012-09: Wesley Halcrow Holliday
Knowing What Follows: Epistemic Closure and Epistemic Logic

ILLC DS-2012-10: Jeremy Meyers
Locations, Bodies, and Sets: A model theoretic investigation into nominalistic
mereologies

ILLC DS-2012-11: Floor Sietsma
Logics of Communication and Knowledge

ILLC DS-2012-12: Joris Dormans
Engineering emergence: applied theory for game design

ILLC DS-2013-01: Simon Pauw
Size Matters: Grounding Quantifiers in Spatial Perception

ILLC DS-2013-02: Virginie Fiutek
Playing with Knowledge and Belief

ILLC DS-2013-03: Giannicola Scarpa
Quantum entanglement in non-local games, graph parameters and zero-error
information theory

ILLC DS-2014-01: Machiel Keestra
Sculpting the Space of Actions. Explaining Human Action by Integrating
Intentions and Mechanisms

ILLC DS-2014-02: Thomas Icard
The Algorithmic Mind: A Study of Inference in Action

ILLC DS-2014-03: Harald A. Bastiaanse
Very, Many, Small, Penguins

ILLC DS-2014-04: Ben Rodenhäuser
A Matter of Trust: Dynamic Attitudes in Epistemic Logic

ILLC DS-2015-01: María Inés Crespo
Affecting Meaning. Subjectivity and evaluativity in gradable adjectives.

ILLC DS-2015-02: Mathias Winther Madsen
The Kid, the Clerk, and the Gambler - Critical Studies in Statistics and Cog-
nitive Science

ILLC DS-2015-03: Shengyang Zhong
Orthogonality and Quantum Geometry: Towards a Relational Reconstruction
of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh
Correspondence and Canonicity in Non-Classical Logic

ILLC DS-2015-05: Facundo Carreiro
Fragments of Fixpoint Logics: Automata and Expressiveness

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning
Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

	Acknowledgments
	Introduction
	Position-based quantum cryptography
	Example: the PV-BB84 scheme
	Our contributions

	Catalytic computation

	Preliminaries
	Notation
	Quantum information
	Teleportation
	Mixed states and density matrices
	The No-Cloning Theorem

	Communication complexity
	Complexity theory

	I Position-based quantum cryptography
	The garden-hose model
	Introduction
	A scheme for position-verification
	The garden-hose model
	Definition
	Upper and lower bounds
	Equality
	Inner product
	Lower bounds
	Garden-hose complexity and log-space computations

	Randomized garden-hose complexity
	Quantum garden-hose complexity
	Deterministic setting
	Randomized setting

	Lower bounds on quantum resources to perfectly attack PVqubit
	Localized qubits
	Squeezing many vectors in a small space
	The lower bound
	Functions for which perfect attacks need a large space

	Conclusion and open questions

	INQC of low T-depth quantum circuits
	Introduction
	Preliminaries
	The Pauli matrices and the Clifford group
	Key transformations from Clifford circuits
	Clifford+T quantum circuits, T-count and T-depth
	The garden-hose model

	Definition of INQC
	Low T-count quantum circuits
	The Clifford hierarchy

	Conditional application of phase gate using garden-hose protocol
	Low T-depth quantum circuits
	Attack on the Interleaved Product protocol
	Discussion

	Experimental considerations for single-qubit position verification
	Introduction
	Results
	Related work
	Security model for limited communication speed
	Other protocol modifications

	Attack model and proof strategy
	Bound by SDP
	SDP relaxation of monogamy game
	Deriving the constraints
	Proof of Lemma 5.3.1

	II Catalytic computation
	Catalytic computation
	Introduction
	Preliminaries
	Transparent computation
	Previous results on this model
	Getting more
	Getting TC1

	Catalytic computation
	Simulation of transparent computation
	Upper bounds
	Oracle results for catalytic computation

	Catalytic computation: Non-determinism and hierarchy
	Introduction
	Preliminaries
	Existence of hash family

	Non-deterministic catalytic computation
	Simulation by probabilistic computation

	An analogue of the Immerman–Szelepcsényi theorem
	Hierarchies for Catalytic Computation
	CNL definition, equivalent to Definition 7.3.2

	Bibliography
	Index
	Abstract
	Samenvatting

