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Chapter 1

Introduction

Our daily experiences, whether we are riding a bike or lazily floating on the
water, can be perfectly explained using the laws of classical mechanics. How-
ever, if we want to predict the behavior of small particles, such as atoms and
photons, a different mathematical framework is needed. The development of
this new model of nature known as quantum mechanics, has been one of the
most important scientific paradigm shifts of the last century. A very peculiar
and unique feature of this theory is that a quantum state can be in a super-
position of various different states at the same time. Moreover, an ensemble
of spatially separated quantum systems can be entangled and operations on a
single quantum system can influence the state of the other ones.

Large parts of this thesis are devoted to the study of the effects of quan-
tum entanglement in nonlocal games and communication problems in zero-error
information theory, using graph parameters and tools from conic optimization.

Nonlocal games. A nonlocal game is a thought physical experiment in which
two or more cooperating players, who can agree on a strategy but not exchange
information, interact with an extra party, usually called the referee. At the be-
ginning of the game, the referee sends to each player a question to which they
have to reply with an answer. Based on the questions asked and the answers
received, the referee decides if the players win or lose. The predicate that de-
cides whether the game is won or lost is known to all the parties involved
beforehand. However, the players only know the question that was asked di-
rectly to them, not the ones aimed to the other players. As the players cannot
communicate during the game, they can only use prearranged strategies to co-
ordinate their answers with the goal of maximizing the chances of winning.
If the players can only use the laws of classical mechanics, the optimal course
of action is to agree on how to answer to each question. More sophisticated
strategies can be implemented if the players have access to entangled physi-
cal systems. In this case each of the players bases its answer on the outcome

1



2 Chapter 1. Introduction

of an experiment performed on their private system. As it was first noticed
by Bell [Bel64] using a slightly different language, this type of strategies can
produce answers that are correlated in a way that cannot be obtained in a clas-
sical world. The existence of these non-classical correlations is also supported
by increasingly convincing experimental evidences [ADR82, HBD+15]. More-
over there exist games, such as the CHSH one (named after Clauser, Horne,
Shimony, and Holt [CHSH69]), for which the maximal probability of winning
using a quantum strategy is strictly larger than the one using a classical strat-
egy [CHTW04]. A perfect classical, or quantum, strategy is one that guarantees
the players to win on any possible set of questions. For a fixed game, we will
focus on the problem: Does a perfect classical, or quantum, strategy exist?

Zero-error information theory. Information theory is a mathematical field
that studies the way information can be communicated and stored. The foun-
dations of this subject were laid by Shannon in the paper “A Mathematical The-
ory of Communication” [Sha48]. One of the main tasks Shannon considered
was the channel coding problem, where a sender wants to communicate mes-
sages over a noisy channel in a way that allows the receiver to reconstruct the
messages with low probability of error. In a follow-up paper, Shannon [Sha56]
studied the same problem but now without tolerating any error: the transmis-
sion of the message must be error free. This paper started the field of zero-error
information theory, which studies various communication problems where no
error is allowed and which has developed into a large research area involving
information theory, combinatorics, computer science, and mathematical pro-
gramming (see for example the survey of Körner and Orlitsky [KO98] and Lu-
betzky’s PhD thesis [Lub07]). In this thesis we will approach various zero-error
classical communication problems with two main questions in mind: Given a
classical communication task, does entanglement allow for communication schemes
that are better than the classical ones? and How much more efficient can the commu-
nication be when quantum states are transmitted rather than classical ones?

Graph parameters. The unifying link among the various problems that we
study in this thesis is their combinatorial nature. Indeed, the majority of them
will have a graph theoretical formulation, mainly concerning the chromatic
and stability numbers and some quantum generalizations thereof. For in-
stance, we will consider a nonlocal game in which two players want to con-
vince a referee that they can color a given graph G using at most t colors. (A
coloring of a graph is an assignment of colors to the vertex set such that adja-
cent vertices receive different colors.) At the start of the game, the referee sends
to each player a vertex of the graph as question, to which they have to answer
with a color from {1, . . . , t}. The players win the game if they answer the same
color upon receiving the same vertex and different colors upon receiving adja-
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cent vertices. One can easily show that the chromatic number of the graph G
is the minimum t ∈ N for which there exists a perfect classical strategy for
this nonlocal game (see Section 3.3.1 for details). Analogously, the quantum
chromatic number of the graph G is the minimum t ∈ N for which there exists
a perfect quantum strategy. This parameter can be equivalently reformulated
as minimum t ∈ N for which there exists a collection of positive semidefinite
matrices satisfying certain linear and orthogonality constraints (which only de-
pend on the graph G).

An extensive overview of the various graph parameters considered in this
thesis is given in Chapter 3.

Conic optimization. Many hard combinatorial problems, as for example the
chromatic and stability numbers, can be reformulated as linear optimization
programs over an appropriate convex cone K. In this way the complexity of
the problem is pushed to the cone K and one can exploit the properties of the
cone to study the original problem. For instance, approximations can be built
by replacing K with a hierarchy of linear or semidefinite subcones (or super-
cones). In this thesis, we define a new matrix cone, the completely positive
semidefinite cone, to be able to reformulate some quantum generalizations of
the classical graph parameters as conic optimization programs.

1.1 Overview

Whenever one wants to study the effect of quantum entanglement on a clas-
sical problem, whether this is a nonlocal game or a communication problem,
there are two main questions that naturally arise. What are the intrinsic math-
ematical properties and differences between the classical and entanglement-
assisted scenarios? Can entanglement give an advantage?

Our contribution to the first question is a novel approach to the study of
quantum strategies using the paradigm of conic optimization. We introduce
the completely positive semidefinite cone CSn

+, a new matrix cone consisting
of all n× n symmetric matrices that admit a Gram representation by positive
semidefinite matrices (i.e., A ∈ CSn

+ if there exists a family of positive semidef-
inite matrices X1, . . . , Xn ∈ Sd

+, for some d ∈ N, such that A = (〈Xi, X j〉)n
i, j=1),

and use it to model quantum variants of classical parameters. Chapter 4 will
be entirely dedicated to the study of the completely positive semidefinite cone
and some of its structural properties. Moreover, we will investigate its strong
ties with a well-studied cone: the completely positive cone CPn, which consists
of the set of n × n matrices admitting a Gram representation by nonnegative
scalars (i.e., restricting to the case where d = 1 in the above definition). Us-
ing ideas that have been developed to approximate the completely positive
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cone, we will construct two hierarchies, a semidefinite and a linear one, that
approach the dual of the completely positive semidefinite cone.

In Chapter 5 we will draw the connection between the completely positive
semidefinite cone and the quantum graph parameters. In a nutshell, a quan-
tum graph parameter, such as the quantum chromatic number, can be defined
as the minimum (or maximum) integer of which there exists a collection of
positive semidefinite matrices satisfying some linear and orthogonality con-
straints. We can then reformulate it as a conic linear program over the com-
pletely positive semidefinite cone. Moreover, approximations can be obtained
applying the above mentioned hierarchies.

Chapters 6-9 will mainly focus on the second question by finding sepa-
rations between classical and quantum strategies in some standard problems
from information theory.

In Chapter 6 we study the channel coding problem, which asks a sender to
transmit data reliably to a receiver in the presence of noise. If we want the
receiver to recover the message with a probability of error that asymptotically
goes to zero (as the number of channel uses tends to infinity), then Bennett,
Shor, Smolin, and Thapliyal [BSST02] proved that entanglement cannot pro-
vide any advantage. We thus focus on the zero-error case, where the trans-
mission has to happen error free. Building on the work of Briët, Buhrman and
Gijswijt [BBG12] we will exhibit an infinite family of channel coding problems
for which the entanglement-assisted strategies are strictly better than the clas-
sical ones. The main contribution is a novel entanglement-assisted channel
coding protocol that uses remote state preparation.

In Chapter 7 we study two generalizations of the channel coding problem
to multiparty settings. In the first scenario we consider there is one sender who
wants to transmit a common message to multiple receivers; in the second one
we have multiple collaborating senders that want to communicate a message
to a single receiver. We will prove some separation results as well as show
limitations of the entangled strategies. Moreover, we will show that entangle-
ment allows for a peculiar amplification of information which cannot happen
classically.

In Chapter 8 we study the source coding problem, where a sender has to ef-
ficiently communicate data about which a receiver has already some informa-
tion, and the source-channel coding problem which is a combination of the source
and the channel coding problem. Here the sender can only use a noisy channel
to communicate the data to the receiver. For both these problems, using fami-
lies of problems that are related to the one studied in Chapter 6, we will show
that entanglement allows for strategies that are exponentially better than the
classical ones.

Finally, in Chapter 9 we consider two communication complexity problems:
the promise equality and the list problems. We are interested in the minimum
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number of classical, or quantum, messages that have to be exchanged between
two parties (Alice and Bob) to be able to solve the problem without error, espe-
cially when making the distinction between one-round communication com-
plexity, where the communication flows from Alice to Bob, and multi-round
communication complexity, where the parties take turns in the transmission of
the messages.

In the promise equality problem, Alice and Bob must decide whether their
inputs are equal or not. An instance of this problem was used by Buhrman,
Cleve, and Wigderson [BCW98] to show the first large gap between classical
and quantum communication complexity. Here, for a different promise equal-
ity problem, we prove that there exists an exponential gap between the one-
round and the two-round quantum communication complexity.

In the list problem Bob gets a list, Alice gets an element from Bob’s list and
their goal is for Bob to learn Alice’s element. We will show various results,
regarding both the classical and the quantum communication complexity.





Chapter 2

Preliminaries

We start by introducing some basic notions that are used in this thesis. In this
chapter we will give a brief introduction to the necessary concepts from linear
algebra, conic optimization, and quantum information theory. In Chapter 3,
we will give an overview of the needed notions from graph theory. Through-
out, we will use standard notation. The reader can find a List of Symbols at the
end of the thesis where the notation is defined.

2.1 Matrices

We begin with some standard definitions and properties of matrices. The in-
terested reader can find the omitted proofs in the book of Horn and John-
son [HJ12].

We denote by Sn the set of n×n real symmetric matrices, which is equipped
with the standard trace inner product: 〈A, B〉 = Tr(AB) = ∑

n
i, j=1 Ai jBi j and the

corresponding Frobenius norm: ‖A‖F =
√
〈A, A〉. The trace of matrix A is de-

fined as the sum of the elements on the main diagonal; i.e., Tr(A) = ∑i Aii.
The trace is a linear mapping and is invariant under cyclic permutations; i.e.,
for any A, B ∈ Sn and scalar λ ∈ R, we have Tr(A + B) = Tr(A) + Tr(B),
Tr(λA) = λTr(A) and Tr(AB) = Tr(BA). The rank of a matrix A, denoted by
rank(A), is the largest number of linearly independent columns. The image of
a matrix A ∈ Sn is the set of all vectors Ax ∈ Rn for x ∈ Rn.

A matrix Q ∈ Rn×n is said to be orthogonal if QQT = I (or equivalently
QTQ = I), which means that the rows (respectively, the columns) of Q form an
orthonormal basis of Rn. The real spectral decomposition theorem says that any
real symmetric matrix A ∈ Sn can be decomposed as A = ∑i∈[n] λivivT

i where
λ1, . . . , λn are the eigenvalues of A and v1, . . . , vn ∈ Rn are the correspond-
ing eigenvectors. Equivalently, A = QDQT where Q is an orthogonal matrix
and D is a diagonal matrix whose entries are the eigenvalues of A.

7



8 Chapter 2. Preliminaries

Let A ∈ Sn be a matrix with strictly positive entries. The Perron-Frobenius
theorem says that the largest eigenvalue in absolute value of A has multiplicity
one and the corresponding eigenvector can be chosen to have strictly positive
entries.

The vector space of the complex matrices Cn×n is equipped with the trace
inner product defined as 〈A, B〉 = Tr(A∗B) = ∑i j Ai jBi j, where Ai j is the com-
plex conjugate of Ai j. A complex matrix A is called Hermitian if A∗ = A; i.e.,
if A is equal to its conjugate transpose. All the eigenvalues of a Hermitian ma-
trix are real. A complex matrix U ∈ Cn×n is called unitary if U∗U = I. Unitary
matrices preserve inner products between vectors; i.e., for any pair x, y ∈ Cn

we have 〈Ux, Uy〉 = 〈x, y〉.
A permutation matrix is a square matrix where each row and each column

has exactly one entry equal to 1 and all others are equal to 0.

For a pair of matrices A, B we let A ⊕ B =

(
A 0
0 B

)
denote their direct

sum and A ◦ B denote the entrywise product, where the i j-th entry of A ◦ B is
equal to Ai jBi j. The tensor product (also known as Kronecker product) of A
and B is denoted by A⊗ B. If A is an m× n matrix, it is defined as the block

matrix A⊗ B =

A11B . . . A1nB
... . . . ...

Am1B . . . AmnB

 . The tensor product is both associative

(i.e., (A⊗ B)⊗ C = A⊗ (B⊗ C)) and distributive (i.e., for matrices B, C of the
same size we have A⊗ (B + C) = A⊗ B + A⊗ C).

2.1.1 Positive semidefinite matrices

A matrix A ∈ Sn is called positive semidefinite if the associated quadratic form
xT Ax is nonnegative; i.e., xT Ax ≥ 0 for any vector x ∈ Rn. We write A � 0
to denote the fact that A is positive semidefinite and we let Sn

+ denote the set
of n × n positive semidefinite matrices. The Gram matrix of a set of vectors
x1, . . . , xn ∈ Rd is the n× n matrix A where Ai j = 〈xi, x j〉 for all i, j ∈ [n] and
we say that the vectors x1, . . . , xn form a Gram representation of A. There are
several equivalent characterizations of a positive semidefinite matrix. In the
theorem below we summarize the ones that are more relevant for this thesis.

2.1.1. THEOREM. Consider a matrix A ∈ Sn. The following statements are equiva-
lent:

- A is positive semidefinite; i.e., xT Ax ≥ 0 for any vector x ∈ Rn.

- All the eigenvalues of A are nonnegative.

- A is the Gram matrix of a family of real vectors.



2.1. Matrices 9

- A = XTX for some real matrix X.

A complex Hermitian matrix A ∈ Cn×n is positive semidefinite if x∗Ax ≥ 0
for all x ∈ Cn. This is identical to requiring that A has only real nonnegative
eigenvalues, or that A is the Gram matrix of a family of complex vectors, or
that A = X∗X for some complex matrix X.

A matrix A is positive definite if the associated quadratic form xT Ax is pos-
itive (i.e., xT Ax > 0 for any nonzero vector x ∈ Rn) and if this is the case we
write A � 0. In analogy to Theorem 2.1.1, a matrix is positive definite if and
only if all its eigenvalues are strictly positive.

A symmetric matrix A that satisfies A2 = A is called a projector.

We now collect some useful, basic properties of positive semidefinite ma-
trices.

2.1.2. LEMMA. A symmetric matrix A is positive semidefinite if and only if A = X2

for some X ∈ Sn.

PROOF: Let A ∈ Sn be a positive semidefinite matrix. By the spectral de-
composition theorem A = QDQT for some orthogonal matrix Q and non-
negative diagonal matrix D. Let

√
D be the square root of the matrix D (i.e.,

D =
√

D
√

D), then the matrix X = Q
√

DQT is symmetric and X2 = A.
Conversely, let X be a symmetric matrix. Then the matrix X2 = XTX must

be positive semidefinite by Theorem 2.1.1. �

Let A ∈ Sn be of the form A =

(
α bT

b M

)
, where α > 0, b ∈ Rn−1 and

M ∈ Sn−1. Then,
A � 0 ⇐⇒ M− bbT/α � 0. (2.1)

The matrix M− bbT/α is called the Schur complement of M in A with respect to
the entryα.

2.1.3. PROPOSITION. Let A and B be n× n positive semidefinite matrices. Then the
following holds:

(i) 〈A, B〉 = 0 if and only if AB = 0.

(ii) The matrices A⊕ B, A ◦ B and A⊗ B are all positive semidefinite.

2.1.4. LEMMA. Consider the matrices A, B ∈ Sn
+. If Tr(AB) = Tr(A2) = Tr(B2),

then we have that A = B.

PROOF: The matrix A − B is symmetric and therefore, by Lemma 2.1.2, we
have (A− B)2 ∈ Sn

+. Hence, 0 ≤ Tr((A− B)2) = Tr(A2) + Tr(B2)− 2Tr(AB)
which, by the assumptions, is equal to zero. Since the trace of a positive
semidefinite matrix X is zero if and only if X is the zero matrix, we conclude
that A = B. �
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Consider the matrices I, J ∈ Sn, which are, respectively, the identity and
the all-one matrix. Then the matrix nI − J is positive semidefinite. Indeed, one
can easily check that the only eigenvalues of nI − J are 0 and n.

2.2 Cones of matrices

A convex coneK is a set satisfying the two following properties: (i) for all x ∈ K
and λ > 0 we have λx ∈ K; (ii) for all x, x′ ∈ K we have x + x′ ∈ K. Given
a cone K ⊆ Sn, its dual cone is K∗ = {M ∈ Sn : 〈A, M〉 ≥ 0 ∀ A ∈ K}. The
set K∗ is a closed convex cone and K∗∗ = K if and only if K is a closed convex
cone. A cone K ⊆ Sn is full-dimensional if it contains a basis of Sn and pointed if
the only linear subspace contained in it is the trivial subspace consisting only
of the zero matrix. Consider a full-dimensional cone K. A matrix A lies in the
interior of K, denoted by int(K), if and only if 〈A, M〉 > 0 for all nonzero ma-
trices M ∈ K∗. A cone is called proper if it is convex, closed, full-dimensional,
pointed, and with non-empty interior. The dual set of a proper cone is also
proper.

2.2.1 The positive semidefinite cone

The cone of positive semidefinite matrices has been widely studied. We sum-
marize some of its useful properties.

2.2.1. THEOREM. The cone of positive semidefinite matrices Sn
+ has the following

properties:

(i) Sn
+ is a proper cone (i.e., it is convex, closed, full-dimensional, pointed, and with

non-empty interior).

(ii) The interior of the positive semidefinite cone is the set of positive definite matri-
ces.

(iii) Sn
+ is a self-dual cone; i.e., M ∈ Sn

+ if and only if 〈M, A〉 ≥ 0 for all A ∈ Sn
+.

(iv) The extreme rays of Sn
+ are the rank 1 matrices yyT where y ∈ Rn.

The doubly nonnegative cone, denoted byDNN n, is the set of positive semidef-
inite matrices in Sn with nonnegative entries. The cone DNN n is proper.

2.2.2 The completely positive and copositive cone

A matrix A ∈ Sn is called completely positive if A is the Gram matrix of a set
of nonnegative vectors x1, . . . , xn ∈ Rd

+ for some d ≥ 1. We let CPn denote the
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set of completely positive matrices. Clearly, any completely positive matrix is
positive semidefinite and its entries are nonnegative. Thus, CPn ⊆ DNN n.
Moreover, we observe that any rank 1 doubly nonnegative matrix is com-
pletely positive. Indeed, if A = yyT with y ∈ Rn and A is entrywise non-
negative then, without loss of generality, y ∈ Rn

+ and the scalars y1, . . . , yn
form a Gram representation of A. It is well-known that the set CPn is closed.
This can be proven using the fact that its extreme rays are the rank 1 matrices
yyT where y ∈ Rn

+. Therefore, any matrix in CPn can be written as ∑
N
i=1 yi yT

i ,
where y1, . . . , yN ∈ Rn

+ and N ≤ (n+1
2 ) (using Carathéodory’s theorem), and

thus closedness follows using a compactness argument (see e.g. [BSM03, The-
orem 2.2] for the full proof). Having an explicit description of the extreme rays
of the CP cone is a key ingredient in many proofs concerning CP . We refer the
reader to the book of Berman and Shaked-Monderer [BSM03] for a detailed
account on the properties of the CP cone.

The dual of the completely positive cone CPn is the copositive cone COPn,
which consists of the matrices M ∈ Sn for which the n-variate polynomial
pM = ∑

n
i, j=1 Mi jx2

i x2
j is nonnegative over Rn; i.e., ∑

n
i, j=1 Mi jx2

i x2
j ≥ 0 for all

x1, . . . , xn ∈ R. The following simple lemma shows that it is only necessary
to check that the polynomial pM is nonnegative over the ball or, equivalently,
over the sphere.

2.2.2. LEMMA. A matrix M ∈ COPn if and only if pM = ∑
n
i, j=1 Mi jx2

i x2
j is non-

negative over the ball (i.e., x ∈ Rn : ∑
n
i=1 x2

i ≤ 1) or, equivalently, pM is nonnegative
over the sphere (i.e., x ∈ Rn : ∑

n
i=1 x2

i = 1).

PROOF: Observe that any nonzero vector x ∈ Rn can be rescaled such that
∑

n
i=1 x2

i = 1. Therefore, as pM is a homogeneous polynomial, pM is nonnega-
tive over Rn if and only if it is nonnegative over the ball or, equivalently, over
the sphere. �

2.3 Conic optimization

A conic optimization problem consists in finding the supremum (or infimum) of
a convex function over an affine slice of a convex cone. Linear and semidefine
programming are two of the most well-known classes of conic optimization
programs. We now briefly introduce the needed concepts and we refer the
reader to the book of Boyd and Vandenberghe [BV04] for further details.

LetK be a proper cone. Given C, A j ∈ Sn and b j ∈ R for j ∈ [m], a standard
conic program over a convex cone K ⊆ Sn has the form:

p∗ = sup 〈C, X〉 s.t. 〈A j, X〉 = b j ∀ j ∈ [m], X ∈ K. (2.2)
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The matrix X is the variable of the program. The conditions X ∈ K, 〈A j, X〉 = b j
for all j ∈ [m] are the constraints and the quantity 〈C, X〉 is the objective value of
the program. A matrix that satisfies all the constraints is called feasible and a
feasible matrix which lies in the interior ofK is called strictly feasible. A feasible
matrix that maximizes the objective value is an optimal solution for the program.
The corresponding dual program has the form:

d∗ = inf
m

∑
j=1

b jy j s.t. Z =
m

∑
j=1

y j A j − C ∈ K∗. (2.3)

By weak duality we have that p∗ ≤ d∗. Moreover, assume that d∗ > −∞ and
(2.3) is strictly feasible, then strong duality holds: p∗ = d∗ and (2.2) attains its
supremum.

If K is the set of nonnegative diagonal matrices, (2.2) and (2.3) are linear
programs and they can be solved in polynomial time. If K = Sn

+ then (2.2) and
(2.3) are called positive semidefinite programs. The optimal value of such pro-
grams can be approximated to within fixed arbitrary precision in polynomial
time (see e.g. [GLS88, BTN01]).

2.4 Quantum information theory

We now give some basic mathematical background information on quantum
information theory. For more on quantum information theory we refer to the
book of Nielsen and Chuang [NC00] and the lecture notes of Watrous [Wat11].

2.4.1 Quantum states and operations

Quantum states. A quantum register is an idealized physical system with which
experimenters (commonly called Alice and Bob) may interact and it is repre-
sented by a finite-dimensional complex vector space. The set of possible states
of a d-dimensional quantum register is formed by the d× d complex positive
semidefinite matrices whose trace equals 1. When such a state is ρ, the quan-
tum register A is said to be in state ρ. A state with rank 1 is called a pure state;
i.e., ρ = vv∗ for some unit vector v ∈ Cd. By the complex spectral decompo-
sition theorem, we have that any state ρ ∈ Cd×d is the convex combination of
pure states; i.e., ρ = ∑i∈[d] λivivi∗where λ1, . . . , λd ≥ 0 are the eigenvalues and
v1, . . . , vd ∈ Cd are the corresponding eigenvectors. A state which is not pure
is called a mixed state. At times, a complex unit vector v ∈ Cd is also referred to
as a state. In that case we are identifying the vector v to the pure state ρ = vv∗.

Quantum operations. An experimenter can alter a state ρ ∈ Cd×d in two pos-
sible ways: applying a unitary transformation or performing a measurement.
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A unitary transformation is simply a mapping ρ 7→ UρU∗, where U ∈ Cd×d sat-
isfies UU∗ = I. A t-outcome measurement is a collection {Fi ∈ Cd×d : i ∈ [t]} of
positive semidefinite matrices Fi that satisfy ∑

t
i=1 Fi = I, where I is the identity

matrix. Such a collection of matrices is also called positive operator valued mea-
sure, or POVM for short. If Alice performs a t-outcome measurement {Fi}i∈[t],
where Fi = M∗i Mi, on a register A which is in a state ρ, then she will observe
a random variable λ over the set [t] whose probability distribution is given by
Pr[λ = i] = Tr(Fiρ). In the event that λ = i, we say that Alice gets measure-
ment outcome i and that the state collapses to MiρM∗i /Tr(Fiρ).

Dirac notation. In quantum information theory it is common to write vec-
tors using the Dirac notation. The canonical unit vectors in Cd are denoted
by |1〉, . . . , |d〉; that is, |i〉 is the vector with a 1 in position i and 0’s elsewhere.
Greek letters are used to denote unit vectors; e.g., |φ〉 = ∑i∈[d]αi|i〉 ∈ Cd where
∑i∈[d] |αi|2 = 1. The conjugate transpose of a vector |φ〉 ∈ Cd is denoted by 〈φ|.
When we take the tensor product between two vectors, we often omit the ten-
sor product symbol: we abbreviate |φ〉 ⊗ |ψ〉 with |φ〉|ψ〉.

Superposition. A fundamental feature of quantum mechanics is the fact that
quantum states can be in superposition. The pure state |φ〉 = ∑i∈[d]αi|i〉 is
said to be in superposition of the states |1〉, . . . , |d〉 and the complex number αi
is called the amplitude of |i〉 in |φ〉. The rough idea is that a quantum state can
be in various states at the same time, but this phenomenon cannot be directly
observed. Indeed, if the state |φ〉 is measured in the computational basis (i.e.,
the d-outcome measurement {Fi}i∈[d] where Fi = |i〉〈i|), then the experimenter
will observe the state | j〉 with probability Tr(Fj|φ〉〈φ|) = |α j|2. In other words,
once the state |φ〉 is measured it collapses to one of the states forming its super-
position and the probability of this happening depends on the corresponding
amplitude.

Qubits. The basic unit of classical computing is the bit, which is either 0 or 1.
Its quantum counterpart is the qubit (quantum bit), which is a superposition

of the basis states |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
in C2. Indeed, a qubit is a

state α0|0〉+α1|1〉 ∈ C2, where |α0|2 + |α1|2 = 1. More generally, an n-qubit
is a superposition of 2n basis states, each of the form |b1〉|b2〉 . . . |bn〉 where
bi ∈ {0, 1}. As n-bit strings can be viewed as numbers between 0 and 2n − 1,
the basis states can also written as |0〉, . . . , |2n− 1〉. An n-qubit is then any state
of the form ∑

2n−1
i=0 αi|i〉 with ∑

2n−1
i=0 |αi|2 = 1.
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Entangled states. The possible states of a pair of quantum registers (A,B)
are the trace-1 positive semidefinite matrices in CdA×dA ⊗ CdB×dB . Here, dA
and dB are the dimensions ofA and B, respectively. The pair of systems (A,B)
is said to be entangled if it is in a state ρ which is not a convex combination
of states of the form ρA ⊗ ρB. In that case, we also say that the state ρ is en-
tangled. If a state is not entangled, it is called separable. The most famous en-
tangled state is the so-called EPR pair: (|0〉|0〉+ |1〉|1〉)/

√
2 ∈ C2 ⊗C2 named

after Einstein, Podolsky, and Rosen [EPR35], who first observed that quan-
tum mechanics predicts the existence of entangled states. In matrix notation,
this is the state ρ = vv∗ where v = (e1 ⊗ e1 + e2 ⊗ e2)/

√
2. More generally,

the d-dimensional maximally entangled state σ = vv∗ is defined by the vector
v = (∑`∈[d] e` ⊗ e`)/

√
d, where e` denotes the `-th canonical basis vector.

The partial trace is a linear operator defined as follows: for A ∈ CdA×dA and
B ∈ CdB×dB define TrA(A ⊗ B) = Tr(A)B and TrB(A ⊗ B) = ATr(B), and
extend these definitions in a linear fashion to all matrices of CdA×dA ⊗CdB×dB .
The partial trace of a state ρ ∈ CdA×dA ⊗CdB×dB with respect to the system A
is called the reduced state of ρ on system B. The concept of partial trace can
be generalized to the case where there are more than two quantum registers.
Suppose that the ` quantum registers (B1, . . . ,B`) are in state ρ. We denote
with TrB−k(ρ) the partial trace of ρ over all the subspaces but the k-th one; i.e.,
TrB−k(ρ) = TrB1 ,...,Bk−1 ,Bk+1 ,...,B`(ρ).

Suppose that the pair of quantum registers (A,B) is in the state ρ. If Al-
ice performs a unitary U ∈ CdA×dA on her register then the state ρ of the
system (A,B) is mapped to (U ⊗ I)ρ(U ⊗ I)∗, and similarly if Bob performs
a unitary on his register. Moreover, if Alice performs a t-outcome measure-
ment {Fi}i∈[t] onA then the probability that Alice gets measurement outcome i
equals pi = Tr

(
(Fi ⊗ I)ρ

)
and if this happens Bob’s register B is left in the

state ρi = TrA
(
(Fi ⊗ I)ρ

)
/pi. If Bob now performs an r-outcome measurement

{F′j} j∈[r] onB, then the probability that he gets outcome j ∈ [r] equals TrB(F′jρ
i).

The following lemma says that there exists a measurement that allows to
perfectly distinguish among a collection of states if and only if these are pair-
wise orthogonal.

2.4.1. LEMMA (ORTHOGONALITY LEMMA). Let ρ1, . . . ,ρ` ∈ Cd×d be a collection
of Hermitian positive semidefinite matrices. Then the following are equivalent:

(1) We have ρiρ j = 0 for every i 6= j ∈ [`].

(2) There exists a set of projectors P1, . . . , P`, P⊥ ∈ Cd×d forming an (` + 1)-
outcome measurement (i.e., ∑i∈[`] Pi + P⊥ = I) and such that Tr(Piρ j) =

δi j Tr(ρ j) and Tr(P⊥ρ j) = 0 for every i, j ∈ [`].
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In particular, a collection of pure states |φ1〉, . . . , |φ`〉 ∈ Cd can be perfectly dis-
tinguished with a measurement if and only if they are pairwise orthogonal.

PROOF: (1) ⇒ (2): Let Vi ⊆ Cd be the image of the matrix ρi. Condition (1)
implies that the spaces V1, . . . , V` are pairwise orthogonal. To see this, observe
that for any vectors u ∈ Vi and v ∈ Vj there exist x, y ∈ Cd such that u = ρix
and v = ρ jy. By Hermiticity, we have u∗v = x∗ρiρ jy = 0. Let Pi be the
orthogonal projection onto Vi and let P⊥ = I − ∑

`
i=1 Pi. It is now trivial to

verify that these projectors satisfy the desired properties.
(2) ⇒ (1): Let Vi be the image of ρi and let Wi be the image of Pi. We

start by proving that Vi ⊆ Wi. To this end, we expand ρi in its spectral de-
composition: ρi = ∑`∈[d] λ`v`v∗` where λ1, . . . , λd ∈ R+ are the eigenvalues and
v1, . . . , vd ∈ Cd are the corresponding eigenvectors. Then we have that

∑
`∈[d]

λ` = Tr(ρi) = Tr(Piρi) = ∑
`∈[d]

λ` Tr
(

Piv`v∗` ) = ∑
`∈[d]

λ`v∗`Piv`. (2.4)

As Pi is a projector, we have that (2.4) holds if and only if v∗`Piv` = 1 for
each ` ∈ [d] such that λ` 6= 0, which in turns implies that for such ` ∈ [d]
each v` is an eigenvector of Pi with eigenvalue 1. Therefore, Vi ⊆ Wi holds.
Similarly, the condition Tr(Piρ j) = 0 if i 6= j implies that Wi is orthogonal to Vj

and thus Vi ⊆Wi ⊆ V⊥j if i 6= j. Considering again the spectral decomposition
of ρi, for i 6= j we have: ρ jρi = ∑`∈[d] λ`ρ jv`v∗` = 0, since for every λ` 6= 0 the
vector v` lies in Vi ⊆ V⊥j . �

Hilbert spaces. A Hilbert space H is a vector space endowed with an inner
product 〈·, ·〉 such that the induced norm ‖x‖ =

√
〈x, x〉 turns H into a com-

plete metric space; i.e., a metric space in which every Cauchy sequence con-
verges. (A sequence (xi)i∈N ⊆ H is a Cauchy sequence if for every ε > 0 there
exists a N ∈ N such that d(xi, x j) < ε for all i, j > N, where d(·, ·) is the dis-
tance of the metric space.) A bounded operator T : H → H is said to be positive
if 〈Tx, x〉 ≥ 0 for all x ∈ H.

The Euclidean spaces Rn and Cn endowed with the standard (Euclidean)
inner product are Hilbert spaces.

2.4.2 Quantum correlations

The most interesting difference between separable and entangled states is that
the latter type can lead to measurement outcomes which are correlated in a
non-classical fashion. We only consider the case of two parties (aka the bi-
partite setting). The sets X, Y (respectively, A, B) model the possible inputs
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(respectively, outputs) of the two parties. We assume throughout that these
sets are finite.

A classical correlation is a bipartite probability distribution that can be ob-
tained using local and shared randomness. More formally, we have the follow-
ing mathematical definition.

2.4.2. DEFINITION. [Classical correlations] A bipartite probability distribution
P = (P(a, b|x, y))a∈A,b∈B,x∈X,y∈Y is called classical if P(a, b|x, y) admits a lo-
cal hidden variable model. Formally, there exists a distribution Q(λ) over
the hidden variable λ as well as probabilities P(a|x, λ) and P(b|y, λ) such that
P(a, b|x, y) = ∑λ Q(λ)P(a|x, λ)P(b|y, λ).

We denote by L the set of bipartite classical correlations.

Any probability distribution that is not in L is called nonlocal.
We now define the set of bipartite quantum correlationsQ, consisting of the

conditional probabilities that two physically separated parties can generate by
performing measurements on a shared quantum state.

2.4.3. DEFINITION. [Quantum correlations] A bipartite probability distribution
P = (P(a, b|x, y))a,b,x,y is called quantum if

P(a, b|x, y) = 〈ψ, (Ea
x ⊗ Fb

y)ψ〉,

where ψ ∈ CdA ⊗CdB is a unit vector (for some dA, dB ∈ N) and for some sets
of positive semidefinite matrices (aka POVM) {Ea

x}a∈A and {Fb
y}b∈B satisfying

∑a∈A Ea
x = I and ∑b∈B Fb

y = I for all x ∈ X, y ∈ Y.

The set of bipartite quantum correlations Q consists of all bipartite quan-
tum probabilities.

In the above definition we have only considered pure states because any mixed
state can be viewed as the reduced state of a pure state. This property is known
as the purification of a quantum state.

Note that we can without loss of genality assume that the unit vector ψ is
real valued and that Ea

x, Fb
y are real valued positive symmetric matrices. This

is due to the fact that the map that sends a Hermitian matrix A ∈ Cd×d to the

symmetric matrix 1√
2

(
Re(A) Im(A)
−Im(A) Re(A)

)
∈ S2d is an isometry that preserves

positive semidefiniteness.
While the set of classical correlations (those obtained using only local and

shared randomness) forms a polytope so that membership can be decided us-
ing linear programming, the set Q of quantum correlations is convex but with
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infinitely many extreme points and its structure is much harder to character-
ize. In particular, it is not known whether the set of quantum correlations Q is
closed.

In the above definition we required the composite Hilbert space HA ⊗HB
to be finite dimensional. One can generalize such definition by allowing an
infinite amount of entanglement (the space HA ⊗HB is now infinite dimen-
sional). We let Q∞ define the set of correlations arising this way.

One can also consider probability distributions arising from the relativis-
tic point of view. Roughly, instead of assuming that the measurement opera-
tors act on different Hilbert spaces so that joint measurements have a tensor
product structure, in the relativistic model the measurement operators act on
a common (possibly infinite dimensional) Hilbert space and the operators of
the two parties mutually commute. In this case, joint measurement operators
have a product structure.

2.4.4. DEFINITION. [Relativistic quantum field theory correlations] A correla-
tion P = (P(a, b|x, y))a,b,x,y is obtained from relativistic quantum field theory
if P(a, b|x, y) = 〈ψ, Ea

xFb
yψ〉, where ψ is a unit vector in a (possibly infinite di-

mensional) Hilbert space H; Ea
x and Fb

y are positive operators on H satisfying
∑a∈A Ea

x = I and ∑b∈B Fb
y = I for all x ∈ X, y ∈ Y; and Ea

xFb
y = Fb

y Ea
x for all

a ∈ A, b ∈ B, x ∈ X, y ∈ Y.
We denote by Qc the set of bipartite quantum correlations arising from the

relativistic point of view.

The set Qc is closed (see e.g. [Fri12, Proposition 3.4]) and the following
inclusions hold:

Q ⊆ Q∞ ⊆ cl(Q) ⊆ Qc. (2.5)

In a very recent breakthrough Slofstra [Slo16] showed that Q∞ ( Qc, while
it is still an open problem to determine whether Q = Q∞ holds [WCD08].
Moreover, deciding whether the identity cl(Q) = Qc holds is known to be
equivalent to Connes’ embedding conjecture (see [Oza13, Fri12, JNP+11]).

Any quantum correlation respects the no-signaling principle, which says
that information cannot propagate faster than the speed of light. The non-
signaling correlations are the set of correlations that obey the no-signaling prin-
ciple.

2.4.5. DEFINITION. [Non-signaling correlations] A bipartite probability distri-
bution P = (P(a, b|x, y))a,b,x,y is called non-signaling if the marginal distribu-
tion of each party only depends on its corresponding input, which means that
∑a∈A P(a, b|x, y) = ∑a∈A P(a, b|x′, y) and ∑b∈B P(a, b|x, y) = ∑b∈B P(a, b|x, y′)
for all a, b, x, x′, y, y′.

We denote by NS the set of bipartite non-signaling correlations.
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It is well-known that the following relationships hold among the various
bipartite correlations:

L ⊂ Q ⊆ Qc ⊂ NS .

We briefly mention that recent works from Mančinska and Roberson [MR14],
and independently Sikora and Varvitsiotis [SV15], showed that the set Q can
be described using the matrix cone which we introduce in this thesis, the com-
pletely positive semidefinite cone. (We will give the details in Section 5.5.) In
particular, they showed that

Q = π(CSN
+ ∩ BN), (2.6)

where BN is an affine space and π is the projection onto a subspace (see Theo-
rem 5.5.3 for the specifics).

2.4.3 Nonlocal games

In a nonlocal game, two (or more) cooperating players determine a common
strategy to answer questions posed by a referee. A question pair (x, y) is drawn
from a finite set X × Y and the referee sends a question to each of the players.
Without communicating, the players must each respond to their question and
send the answer to the referee. Upon collecting the answer pair (a, b) ∈ A× B,
using the rules of the game the referee determines whether the players have
won or lost. A strategy is said to be successful with probability p if it wins any
instance of the game with probability at least p. A perfect strategy is one that
always succeeds with probability 1.

A deterministic classical strategy is determined by the maps fA : X → A,
fB : Y → B that each player respectively uses to determine the answer given
the question. Classical strategies might involve shared and private random-
ness where the players also use coin flips to determine their answers and
any probabilistic strategy can be seen as a probability distribution over de-
terministic classical strategies. In other words, the probability distribution
P = (P(a, b|x, y))a,b,x,y that arises from a probabilistic strategy must lie in the
set L.

In a quantum strategy, the players share a quantum state on which they per-
form local measurements to obtain their answers (see also Figure 2.1). Suppose
that the two players, Alice and Bob, have quantum registers A and B, respec-
tively, that are initialized to be in some entangled state ρ. Upon receiving ques-
tion x ∈ X, Alice performs a measurement {Ea

x}a∈A; that is, the set {Ea
x}a∈A

is a collection of positive semidefinite matrices that sums up to the identity.
Simultaneously, upon receiving question y ∈ Y, Bob performs a measure-
ment {Fb

y}b∈B. The measurement outcomes determine the answers. Therefore,
if (x, y) is the question pair then the probability of answering (a, b) is equal to
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x

a

y

b

ρ

{Ea
x} {Fb

y}

Figure 2.1: A quantum strategy for a nonlocal game.

Tr((Ea
s ⊗ Fb

t )ρ). Equivalently, the corresponding probability P = (P(a, b|x, y))
lies in Q.

We will study, in particular, the problem of whether for a fixed game a per-
fect classical (or quantum) strategy exists. Note that since any perfect classical
strategy is given by the convex combination of perfect deterministic classical
strategies, we can without loss of generality restrict our attention to determin-
istic classical strategies.

2.4.4 Remote state preparation

We end this chapter with the description of a quantum protocol that will be
useful in Chapters 6-9.

Suppose that Alice has in mind a pure state ρ = uu∗ where u ∈ Cd is some
unit vector that is unknown to Bob. Remote state preparation [BDVS+01] is a
protocol that enables the parties to prepare a quantum register belonging to
Bob in the state ρ using only local measurements on a pair of entangled quan-
tum registers and classical communication from Alice to Bob. This task can
be achieved using the teleportation scheme of Bennett et al. [BBC+93], which
allows to remotely prepare a d-dimensional state ρ with the communication
of one among d2 distinct messages. (We refer interested readers to [BBC+93]
and [NC00, pp. 26–28] for the details of the teleportation scheme.) However,
for certain states, remote state preparation can be performed with less com-
munication. In particular, for the case where the vector u has only entries of
absolute value d−1/2 there exists a remote state preparation protocol that re-
quires only sending one among d distinct messages, or equivalently dlog de



20 Chapter 2. Preliminaries

bits. The protocol is due to Zeng and Zhang [ZZ02] and we will describe it
here for completeness.

To remotely prepare the state ρ = uu∗, where u ∈ Cd is a vector with entries
of modulus d−1/2 that is unknown to Bob, in a d-dimensional register B that
he possesses the two parties can use the following protocol: Assume Alice
has a d-dimensional quantum register A, such that (A,B) is in the maximally
entangled state σ = vv∗ where v = (∑`∈[d] e` ⊗ e`)/

√
d.

1. Alice performs on her register A the unitary transformation given by
U =

√
d Diag(u), where Diag(u) is the diagonal matrix whose main di-

agonal is vector u.

2. Next, Alice performs on her register the d-dimensional discrete Fourier
transform, given by the unitary F ∈ Cd×d whose (`, m)-th entry is equal
to F`,m = e2π i(`−1)(m−1)/d/

√
d.

3. She then measures in the canonical basis (i.e., she performs the measure-
ment {e`e∗` : ` ∈ [d]} on her register) and gets an outcome ` ∈ [d] which
she communicates to Bob.

4. Last, Bob performs on his register B the unitary given by the diagonal
matrix whose main diagonal is the vector (e−2π i(`−1)(m−1)/d)d

m=1.

The correctness of the protocol follows easily from the following observa-
tions. After step (2) the register pair (A,B) is in state (FU ⊗ I)vv∗(FU ⊗ I)∗.
For a matrix A ∈ Cd×d with columns a1, . . . , ad and rows b1, . . . , bd, we have

d

∑
`=1

a` ⊗ e` =
d

∑
`=1

e` ⊗ b`.

Since the `th row of the matrix FU is given by

d

∑
m=1

cm em where cm = um e2π i(`−1)(m−1)/d,

this is exactly the state of Bob’s register B after step (3). Thus, after step (4)
Bob’s register is in the state ρ = uu∗ as desired.
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Graph parameters

In this thesis we will discuss various graph parameters. Here we introduce
them and present some of their properties.

3.1 Basic notations

We start by defining some basic graph theory notation.
Throughout, all graphs are assumed to be finite, undirected and without

loops. For a graph G = (V, E), the sets V and E denote its vertex and edge
set, respectively (equivalently denoted by V(G) and E(G)). Given two ver-
tices u, v ∈ V(G), we write u ' v if u, v are adjacent or equal and we write
u ∼ v when u and v are adjacent, in which case the corresponding edge is
denoted as {u, v} or simply as uv. The complement of G is G, the graph with
vertex set V(G) where distinct vertices are adjacent if and only if they are non-
adjacent in G. A subgraph of a graph G is a graph formed from a subset of the
vertices and edges of G. An induced subgraph of G is a subgraph that contains
all the edges whose endpoints belong to the vertex set.

We denote with Kt the complete graph on t vertices, where each pair of dis-
tinct vertices is adjacent, and with Cn the n-cycle, where the n vertices are con-
nected through a single cycle. The disjoint union between the two graphs G
and H is denoted by G + H, where its vertex set is the disjoint union be-
tween V(G) and V(H) and the edge set is equal to E(G) ∪ E(H). We denote
with G+t the disjoint union of t copies of G; i.e., V(G+t) = V(G)× [t] and the
vertices (u, i) and (v, j) are adjacent if u ∼ v in G and i = j ∈ [t]. The Carte-
sian product graph G�Kt has V(G) × [t] as vertex set and two vertices (u, i)
and (v, j) are adjacent if (u = v and i 6= j) or if (u ∼ v and i = j). The strong
graph product G � H of G and H is the graph whose vertex set is the cartesian
product V(G)×V(H) and where two distinct vertices (u1, u2), (v1, v2) are ad-
jacent if and only if it holds that u1 = v1 or {u1, v1} ∈ E(G) and that u2 = v2
or {u2, v2} ∈ E(H). The m-th strong graph power of G, denoted by G�m, is the

21
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strong product graph of m copies of G. Its vertex set is the cartesian product
of m copies of V(G) and the pair of distinct vertices (u1 . . . , um), (v1, . . . , vm)
forms an edge in G�m if ui ' vi in G for all i ∈ [m]. Similarly, the disjunctive
product (or coproduct) of G and H is denoted by the graph G ∗ H. Its vertex set
is V(G)×V(H) and two vertices (u1, u2) and (v1, v2) are adjacent if and only
if either {u1, v1} ∈ E(G) or {u2, v2} ∈ E(H). We denote by G∗m the m-th dis-
junctive power of G, where the vertex set is the cartesian product of m copies
of V(G) and the vertices (u1 . . . , um), (v1, . . . , vm) form an edge in G∗m if there
exists a j ∈ [m] such that {u j, v j} ∈ E(G). One can easily check that

G�m = G∗m. (3.1)

An automorphism of a graph G is a permutation π of V(G) that preserves
the edges; i.e., {π(u), π(v)} ∈ E(G) if and only if {u, v} ∈ E(G). The graph G
is vertex-transitive if for every pair of vertices u, v ∈ V(G) there is an auto-
morphism π : V(G) → V(G) such that π(u) = v. Moreover, the graph G is
edge-transitive if for every pair of edges {u1, v1}, {u2, v2} ∈ E(G), there exists
an automorphism π : V(G) → V(G) where π(u1) = u2 and π(v1) = v2. A
homomorphism from a graph H to a graph G is a map φ : V(H) → V(G) such
that every edge {u, v} in H is mapped to an edge {φ(u),φ(v)} in G. If such a
map exists, we write H −→ G.

3.2 Classical graph parameters

3.2.1 Stability number and chromatic number

Given a graph G, a stable set of G is a subset of pairwise non-adjacent vertices.
The stability number α(G) is the cardinality of the largest stable set in G. A
proper coloring of a graph is an assignment of colors to the vertex set such
that adjacent vertices receive different colors. The chromatic number χ(G) is
the minimum number of colors needed for a proper coloring of G. As each
color class must define a subset of pairwise non-adjacent vertices, χ(G) is also
the minimum number of stable sets one needs to vertex-cover the graph G.
Thus, the inequality χ(G)α(G) ≥ |V(G)| holds trivially. The stability and the
chromatic numbers are NP-hard [Kar72] and also hard to approximate [Hås99,
FK98].

Another interesting relationship between these two parameters was shown
by Chvátal [Chv73] who related the chromatic number of a graph G to the
stability number of an appropriate graph product.

3.2.1. THEOREM (CHVÁTAL [CHV73]). For any graph G and any integer t ≥ 1,
we have χ(G) ≤ t if and only if α(G�Kt) = |V(G)|. Hence, χ(G) is the minimum
t ∈ N for whichα(G�Kt) = |V(G)| holds.
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A clique is a set of pairwise adjacent vertices and the clique number ω(G)
is the maximum cardinality of a clique in G. Clearly, the clique number of a
graph G is the stability number of its complement; that is, ω(G) = α(G). As
in any proper coloring all elements of a clique must receive different colors, we
haveω(G) ≤ χ(G).

Given two integers a ≥ b ≥ 1, an (a, b)-coloring is an assignment of b
colors, out of a available ones, to each vertex of the graph such that adjacent
vertices have no colors in common. The fractional chromatic number χf(G) is
the minimum ratio a/b such that there exists an (a, b)-coloring. Equivalently,
χf(G) is the smallest ∑

k
h=1 λh for which there exist stable sets S1, . . . , Sk of G

and nonnegative scalars λ1, . . . , λk such that ∑h:v∈Sh
λh = 1 for all v ∈ V(G).

By the latter definition, one can see that the fractional chromatic number can
be written as a linear program. Nevertheless, computing χf(G) is an NP-hard
problem [LY94]. Clearly, we have

ω(G) ≤ χf(G) ≤ χ(G) andα(G) ≤ χf(G) ≤ χ(G).

We remark that the separation between ω(G) and χf(G) can be arbitrarily
large. Indeed, there exists a family of graphs Mn, called Mycielski graphs, such
that ω(Mn) = 2 for every n ∈ N, while for every k ∈ R there exists a num-
ber nk ∈ N such that χf(Mnk) ≥ k [LPU95]. Such a large separation however
cannot exist between χf(G) and χ(G), for which Lovász [Lov75] proved that
χ(G)/(1 + lnα(G)) ≤ χf(G). Nonetheless, the fractional chromatic and the
chromatic numbers can differ significantly. To see this, we define the Kneser
graph Ka:b, for a, b ∈ N where a ≥ 2b, to be the graph whose vertices are all the
subsets of size b of [a] and where two vertices are adjacent if the sets are dis-
joint. Lovász [Lov79] showed that χf(Ka:b) = a/b, while he showed in [Lov78]
that χ(Ka:b) = a− 2b + 2.

Note that we can reformulate all the parameters we have introduced so far
using graph homomorphism: the stability numberα(G) is the maximum inte-
ger t for which there exists a homomorphism from the complete graph Kt to G;
χ(G) is the minimum t ∈ N such that G −→ Kt and χf(G) is the minimum a/b
such that there is a graph homomorphism from G to the Kneser graph Ka:b.

We have already seen that the inequality χ(G)α(G) ≥ |V(G)| holds for any
graph G. There exists a similar, stronger relationship between the fractional
chromatic number and the stability number: χf(G)α(G) ≥ |V(G)| with equal-
ity if the graph is vertex-transitive (see Corollary 3.2.10 below).

There is yet another way to reformulate the parameters α(G), χ(G) and
χf(G): as linear optimization problems over the completely positive cone CP .
These characterizations will be very useful in Section 5.1. Using a result of
Motzkin and Straus [MS65], de Klerk and Pasechnik [dKP02] showed the fol-
lowing reformulation of the stability number.
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3.2.2. THEOREM (DE KLERK–PASECHNIK [DKP02]). For any graph G, its stabil-
ity numberα(G) is equal to the optimum value of the following program:

max 〈J, X〉 s.t. X ∈ CP |V(G)|, Tr(X) = 1, Xuv = 0 ∀{u, v} ∈ E(G).

Combining Theorems 3.2.1 and 3.2.2, Gvozdenović and Laurent [GL08] ob-
tained a reformulation of the chromatic number as a completely positive op-
timization program. Furthermore, Dukanovic and Rendl [DR10] gave the fol-
lowing reformulation for the fractional chromatic number χf(G).

3.2.3. THEOREM (DUKANOVIC–RENDL [DR10]). For any graph G, its fractional
chromatic number χf(G) is equal to the optimum value of the following program:

min t s.t. X ∈ CP |V(G)|, X− J � 0, Xuu = t ∀u ∈ V(G),
Xuv = 0 ∀{u, v} ∈ E(G).

3.2.2 Shannon capacity

To study the zero-error channel coding problem (see Section 6.1 for details),
Shannon [Sha56] introduced a graph parameter, known as the Shannon ca-
pacity of a graph, which is defined from the stability number of strong graph
products.

The Shannon capacity of a graph is

Θ(G) = lim
n→∞ n

√
α(G�n).

Combining a result due to Fekete (Lemma 6.1.1) with the observation that the
sequence

(
n
√
α(G�n)

)
n∈N

is monotone nondecreasing, one can derive that the

Shannon capacity of graph is also equivalent to Θ(G) = supn
n
√
α(G�n) (see

Section 6.1 for details). Furthermore, the following chain of inequalities holds:

α(G) ≤ Θ(G) ≤ χf(G) ≤ χ(G). (3.2)

The left most inequality follows directly from the supremum formulation of
the Shannon capacity and the right most one is trivial. Moreover, the inequal-
ity Θ(G) ≤ χf(G) will follow from (3.4) below.

All the inequalities in (3.2) can be strict. For this, consider the 5-cycle
graph C5. One can easily compute that α(C5) = 2, χf(C5) = 5/2 and that
χ(C5) = 3. Moreover, Shannon [Sha56] showed that α(C�2

5 ) = 5 and, thus,

α(C5) <
√
α(C�2

5 ) ≤ Θ(C5). Only after a couple of decades Lovász [Lov79]

was able to prove that Θ(C5) =
√

5.
The fact that the Shannon capacity is hard to determine even for small

graphs should not be surprising since it is defined as the limit of a sequence of
NP-hard parameters. Interestingly, we do not even know whether the Shannon
capacity is decidable.
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3.2.3 Lovász theta number

We briefly mentioned that Lovász was able to prove that the Shannon capacity
of the 5-cycle is equal to

√
5. He managed to do this by introducing a param-

eter ϑ(G), known as the Lovász theta number, which is an upper bound on the
Shannon capacity.

3.2.4. DEFINITION. [Lovász theta number] Let G be a graph with |V(G)| = n,
the Lovász theta number ϑ(G) of G is defined as follows:

ϑ(G) = max 〈J, X〉
s.t. X ∈ Sn

+

Tr(X) = 1
Xuv = 0 ∀ {u, v} ∈ E(G);

= min t
s.t. Z ∈ Sn

+, Z− J ∈ Sn
+

Zuu = t ∀ u ∈ V(G)

Zuv = 0 ∀ {u, v} ∈ E(G).

Since the Lovász theta number is the optimum value of a positive semidefinite
program, it can be computed up to any precision in polynomial time in the
number of vertices. Furthermore, this parameter is a well-known bound for
both the stability and the chromatic numbers. Indeed, Lovász [Lov79] showed
the following ‘sandwich’ inequalities:

α(G) ≤ ϑ(G) ≤ χf(G) ≤ χ(G). (3.3)

By definition, the parameter ϑ(G) is monotone non-decreasing under taking
subgraphs and from (3.3) we get that ϑ(Kt) = 1, ϑ(Kt) = t where t ∈ N and Kt
is the complete graph. Moreover, in [Lov79] it is shown that for any graph G
we have ϑ(G)ϑ(G) ≥ |V(G)|, with equality if the graph is vertex-transitive
(see also Corollary 3.2.10 below).

As can be seen in the following lemma, the parameter ϑ(G) behaves well
under various graph products. (For the proofs and further properties of the
Lovász theta number, we refer the reader to the survey of Knuth [Knu94].)

3.2.5. LEMMA. Consider two graphs G and H. The following identities hold for the
Lovász theta number: (i) ϑ(G + H) = ϑ(G) + ϑ(H); (ii) ϑ(G � H) = ϑ(G)ϑ(H);
(iii) ϑ(G ∗ H) = ϑ(G)ϑ(H).

Using Lemma 3.2.5 (ii) and by (3.3), we get that ϑ(G) is an upper bound for
the Shannon capacity. Therefore, we have that

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ χf(G) ≤ χ(G). (3.4)

Lovász was able to conclude that the Shannon capacity of the 5-cycle is
equal to

√
5 since ϑ(C5) =

√
5 and therefore

√
5 ≤ Θ(C5) ≤ ϑ(C5) =

√
5. In

general, however, ϑ(G) is not a tight bound on Θ(G). We will see examples of
such graphs in Chapter 6.



26 Chapter 3. Graph parameters

Inspired by the chain of inequalities (3.4), Berge introduced the notion of a
perfect graph. This is a graph such that for every induced subgraph H ⊆ G we
haveα(H) = χ(H). This in particular implies that for a perfect graph both the
stability number and the Shannon capacity can be computed in polynomial
time. As the complement of a perfect graph is still perfect [Lov72], also the
chromatic number of a perfect graph can be efficiently computed.

Generalizations of the Lovász theta number. Several strengthenings of the
Lovász theta number toward α(G) and χ(G) have been proposed, in particu-
lar, the parameters ϑ′(G), introduced independently by Schrijver [Sch79] and
McEliece et al. [MRR78], and ϑ+(G), introduced by Szegedy [Sze94].

3.2.6. DEFINITION. Let G be a graph with |V(G)| = n, the parameters ϑ′(G)
and ϑ+(G) are defined as follows:

ϑ′(G) = max 〈J, X〉
s.t. X ∈ DNN n

Tr(X) = 1
Xuv = 0 ∀{u, v} ∈ E(G);

ϑ+(G) = min t
s.t. Z ∈ DNN n, Z− J ∈ Sn

+

Zuu = t ∀ u ∈ V(G)

Zuv = 0 ∀ {u, v} ∈ E(G).

Dukanovic and Rendl [DR10] introduced a further generalization of the
Lovász theta number.

3.2.7. DEFINITION. Let G be a graph with |V(G)| = n and K be a convex cone
such that CP ⊆ K ⊆ S+. The parameters ϑK(G) and ΘK(G) are defined as
follows:

ϑK(G) = sup 〈J, X〉
s.t. X ∈ Kn

Tr(X) = 1
Xuv = 0 ∀ {u, v} ∈ E(G);

ΘK(G) = inf t
s.t. Z ∈ Kn, Z− J ∈ Sn

+

Zuu = t ∀ u ∈ V(G)

Zuv = 0 ∀ {u, v} ∈ E(G).

3.2.8. REMARK. We observe a ‘monotonicity’ property for the program above
characterizing ϑK(G), that will be useful later in Section 5.1.2. Set n = |V(G)|
and consider scalars 1 ≤ t < T. Assume that a matrix X is feasible for the
program defining ϑK(G) with value 〈J, X〉 = T. Then we have that the matrix
X′ = t−1

T−1 X + T−t
n(T−1) I is again feasible for ϑK(G) and it has value 〈J, X′〉 = t.

3.2.9. PROPOSITION (DUKANOVIC–RENDL [DR10]). Let K be a cone such that
CP ⊆ K ⊆ S+. Then, we have ϑK(G)ΘK(G) ≥ |V(G)|. Moreover, it holds
with equality if the graph G is vertex-transitive and the cone K is invariant under
simultaneous permutation of the rows and the columns.
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Clearly, if in Definition 3.2.7 we replace the coneKwith the positive semidef-
inite cone, we get back the original Lovász theta number. Moreover, by Defi-
nition 3.2.6 we have that ϑDNN (G) = ϑ′(G) and ΘDNN (G) = ϑ+(G). At last,
if in Definition 3.2.7 we set K = CP , we find α(G) and χf(G) (respectively by
Theorems 3.2.2 and 3.2.3). Summarizing, we get:

ϑDNN (G) = ϑ′(G), ϑCP (G) = α(G), (3.5)
ΘDNN (G) = ϑ+(G), ΘCP (G) = χf(G). (3.6)

Combining Proposition 3.2.9 with the above considerations, we obtain the
following relationships.

3.2.10. COROLLARY. For a graph G, the following inequalities hold:

α(G)χf(G) ≥ |V(G)|,ϑ(G)ϑ(G) ≥ |V(G)| and ϑ′(G)ϑ+(G) ≥ |V(G)|.

Moreover, if G is vertex-transitive graph all the above inequalities hold with equality.

As CPn ⊆ DNN n ⊆ Sn
+ and by (3.5) and (3.6), we get the following in-

equalities, which refine (3.3):

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χf(G) ≤ χ(G).

All the above inequalities can be strict and the separation between ϑ′(G) and
ϑ(G), as well as the one between ϑ(G) and ϑ+(G), can be exponentially large.
Indeed, let n be an even integer and consider the graph Gn = ({0, 1}n, E)
where E is given by all pairs of strings with Hamming distance in {n/2, . . . , n}.
Samorodnitsky [Sam98] showed that ϑ′(Gn) ≤ O(n) while 2Ω(n) ≤ ϑ(Gn).
Moreover, one can easily check that the graph Gn is vertex-transitive and using
Corollary 3.2.10 we obtain that there is an exponential separation also between
the parameters ϑ(Gn) and ϑ+(Gn).

Using Lemma 3.2.5 (ii), we have derived that the Lovász theta number is
an upper bound on the Shannon capacity. Such reasoning cannot be applied
to the parameter ϑ′(G) because Cubitt et al. [CMR+14] exhibited a graph G
for which ϑ′(G � G) > ϑ′(G)2 holds. In the same paper and for the same
graph, it was also proven that ϑ+(G ∗ G) < ϑ+(G)2 and therefore that ϑ+ is
not multiplicative under the disjunctive product.

3.2.4 Orthogonal rank

A d-coloring of a graph G can be thought of as a map that assigns to each vertex
one of the canonical basis vectors {e1, . . . , ed} of Cd such that adjacent vertices
receive distinct vectors. As a straightforward generalization, a d-dimensional
orthogonal representation of a graph G is a map f from the vertex set to nonzero
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vectors in Cd such that adjacent vertices are mapped to orthogonal vectors.
(We stress that we consider the representations over complex vectors and not,
as more usual in the combinatorial literature, over real ones and that orthogo-
nalities are required for adjacent vertices.)

3.2.11. DEFINITION. [Orthogonal rank] The orthogonal rankξ(G) of a graph G
is the minimum integer d such that there exists a d-dimensional orthogonal
representation of G.

Clearly, we have that ξ(G) ≤ χ(G) and Peeters [Pee96, Theorem 3.1] proved
that the orthogonal rank is an NP-hard parameter. Following [CMN+07], we
introduce a slight variation of the orthogonal rank.

3.2.12. DEFINITION. For a graph G, ξ ′(G) is the minimum d ∈ N for which
there exists a d-dimensional orthogonal representation f of G such that for
each u ∈ V(G) the entries of the vector f (u) all have absolute value one.

In the paper where Lovaśz introduced the parameter ϑ(G), he proved that
this is a lower bound on the minimum dimension of an orthogonal representa-
tion where the vectors are real valued. We show that the Lovász theta number,
and in particular ϑ+(G), is also a lower bound for the orthogonal rank ξ(G),
where the vectors can have complex entries. The proof is an adaptation to the
complex case of a known proof [Lau14].

3.2.13. LEMMA. For any graph G, we have that ϑ+(G) ≤ ξ(G).

PROOF: Let n = |V(G)| and label the vertices of the graph G by {1, 2, . . . , n}.
Suppose that the orthogonal rank of G is equal to d and that u1, . . . , un ∈ Cd are
the nonzero vectors forming an orthogonal representation of G. By scaling, we
can without loss of generality assume that u1, . . . , un are unit vectors. For every
vertex of the graph i ∈ [n], define a matrix Ui = uiu∗i and U0 = I ∈ Sd. Let Z
be a (n + 1)× (n + 1) matrix where the i, j-th entry Zi j = 〈Ui, U j〉 = Tr(U∗j Ui)

for every i, j ∈ {0} ∪ [n]. The matrix Z is positive semidefinite, as it is the
Gram matrix of a set of complex vectors, and is also real valued. Moreover, we
have that Z00 = d, Z0i = 〈I, uiu∗i 〉 = 1 and Zii = 〈uiu∗i , uiu∗i 〉 = (u∗i ui)

2 = 1
for all i ∈ V(G) and that Zi j = (u∗i u j)(u∗j ui) ≥ 0 for all i, j ∈ V(G) with
equality if i j ∈ E(G). By taking the Schur complement in Z with respect to the
entry Z00 (see (2.1)), we obtain a new symmetric positive semidefinite matrix X
with Xii = 1− 1/d for all i ∈ V(G), Xi j ≥ −1/d for all i, j ∈ V(G) and with
equality if i j ∈ E(G). The matrix Y = dX + J is then a feasible solution for the
minimization program in Definition 3.2.6 of ϑ+(G) with value d. We conclude
that d = ξ(G) ≥ ϑ+(G). �
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Therefore, the following chain of inequalities hold:

ϑ(G) ≤ ϑ+(G) ≤ ξ(G) ≤ ξ ′(G) ≤ χ(G), (3.7)

where for the latter one we use the following observation. Let t = χ(G) and
fix an optimal coloring of G. To any vertex with color `, we assign the vector
f (`) ∈ Ct whose k-th entry is f (`)k = e2π i`(k−1)/t. As the vectors { f (`)}`∈[t]
form an orthogonal basis, this is a t-orthogonal representation where all the
entries have absolute value one and thus ξ ′(G) ≤ χ(G).

3.3 Quantum graph parameters

We now introduce quantum variants of the chromatic and stability numbers.

3.3.1 Quantum chromatic number

Consider the nonlocal game where two players want to convince a referee that
they can color a graph using at most a fixed amount of colors. Fix a graph G
and an integer t ∈ N. As questions each player receives a vertex of the graph
to which they have to answer a color from {1, . . . , t}. To win the game, they
have to answer the same color upon receiving the same vertex and different
colors if the vertices are adjacent. We say that the players can classically t-color
the graph G if the above nonlocal game admits a perfect classical strategy. We
will now show that such a strategy exists if and only if t is least the chromatic
number of G. Take any perfect classical strategy, which we can assume to be
deterministic. Since the players have to answer the same color upon receiving
the same vertex, both players use the same map f : V(G) → [t] as strategy.
This map assigns different color to adjacent vertices and therefore induces a
coloring of the graph. For the other direction, any coloring of the graph can
be used as a strategy: each player upon receiving a vertex answer the color of
that vertex. Therefore, the chromatic number χ(G) is the minimum number
for which the players can classically color the graph. Similarly, we define the
quantum chromatic number χq(G) as the minimum number of colors for which
the game admits a perfect quantum strategy. Reformulating, this means that
χq(G) is the minimum integer t ∈ N for which there exists an entangled state
σ and measurements {Ei

u}i∈[t], {Fi
u}i∈[t] for each u ∈ V(G) such that:

Tr((Ei
u ⊗ Fi

v)σ) = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G);

Tr((Ei
u ⊗ F j

u)σ) = 0 ∀i 6= j ∈ [t], ∀u ∈ V(G).
(3.8)

This parameter was first introduced in [AHKS06] and then more formally stud-
ied in [CMN+07]. In particular, in the latter paper (see also [Rob13, Section 6.5])
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it was proven that if a perfect quantum strategy exists then there is one with
the following special form: Ei

u, Fi
u are d× d projectors all of the same rank (for

some d ∈ N), Ei
u = FiT

u for all i ∈ [t] and u ∈ V(G), and the state σ is the
maximally entangled one (i.e., σ = vv∗ where v = 1√

d ∑
d
`=1 e` ⊗ e`). Denote

D = I/
√

d and notice that vec(D) = v. We get that:

Tr((Ei
u ⊗ F j

v)vv∗) = Tr(v∗(Ei
u ⊗ F j

v)v) = Tr(D∗(Ei
uDF j

v)) = Tr(Ei
uF j

vD2),

where the first equivalence holds by the cyclicity of the trace, the second one
due to the identity (A⊗ B)vec(X) =vec(AXBT), and the latter one due to the
observations that D commutes with F j

v and that D = D∗. Now, we observe
that Tr(Ei

uF jT
v D2) = Tr(Ei

uF jT
v I/d) = Tr(Ei

uF jT
v )/d = 0 if and only if Ei

uF jT
v = 0

(applying Proposition 2.1.3 (i)) and the latter is equivalent to Ei
uE j

v = 0. There-
fore, we can reformulate conditions (3.8) and get the following definition of the
quantum chromatic number.

3.3.1. DEFINITION. [Quantum chromatic number [CMN+07]] For a graph G,
χq(G) is the minimum t ∈ N for which there exist d× d projectors Ei

u for i ∈ [t],
u ∈ V(G) (for some d ≥ 1) satisfying the conditions:

∑i∈[t] Ei
u = I ∀u ∈ V(G),

Ei
uEi

v = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G),

Ei
uE j

u = 0 ∀i 6= j ∈ [t], ∀u ∈ V(G).

This parameter has recently received a notable amount of attention (see among
others [AHKS06, CMN+07, FILG11, SS12, MSS13, MR16, Ji13, PSS+16, PT15]).
Ji [Ji13] proved that χq(G) is an NP-hard parameter and the following inclu-
sions are known to hold:

ϑ(G) ≤ ϑ+(G) ≤ χq(G) ≤ ξ ′(G) ≤ χ(G), (3.9)

using Corollary 5.1.8, [CMN+07, Proposition 7] and (3.7), respectively. One
of the most interesting questions is to find and characterize graphs for which
there is a separation between the quantum chromatic number and its classi-
cal counterpart. Clearly there is no such separation when G is a perfect graph
because then the identities α(G) = ϑ(G) = χ(G) hold. Moreover, the only
graphs for which χq(G) = 1 are the empty ones and the only graphs for which
χq(G) = 2 are the bipartite ones. Therefore, the smallest separation possible is
to have a graph with χq(G) = 3 and χ(G) = 4 and such a graph was found
in [FILG11]. In [AHKS06] they show that there exists a family of graphs for
which the quantum chromatic number is exponentially smaller than the clas-
sical one. These graphs are known as the orthogonality graphs and they are
defined as follows.
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3.3.2. DEFINITION. [Orthogonality graph] For k ∈ N even, the orthogonality
graph Ωk has vertex set {−1, 1}k and two vertices are adjacent if they are or-
thogonal.

By a well-known result of Frankl and Rödl (see Theorem 9.2.4), for k multiple
of 4 large enough, we have that χ(Ωk) ≥ |V(Ωk)|

α(Ωk)
≥ ( 2

2−ε)
n where ε is a small

positive constant. At the same time, by Definitions 3.2.12 and 3.3.2, we know
that ξ ′(Ωk) ≤ k holds and, using (3.9), we derive that χq(Ωk) ≤ k.

Beside the inequality χq(G) ≤ ξ ′(G), the only other non-trivial method to
upper bound the quantum chromatic number is given by the following propo-
sition, which holds for graphs having small dimensional real valued orthogo-
nal representations.

3.3.3. PROPOSITION (CAMERON ET AL. [CMN+07]). Let G be a graph with an
orthogonal representation in Rc. If c ∈ {3, 4} then χq(G) ≤ 4; if 5 ≤ c ≤ 8 then
χq(G) ≤ 8.

In [PSS+16, PT15], Paulsen and coauthors have introduced many variants
of the quantum chromatic number motivated by the study of quantum correla-
tions. We briefly recall two of them, the parameters χqa(G) and χqc(G), which
we will later use in Section 5.3.

Consider a conditional bipartite probability distribution (P(i, j|u, v)) with
input sets X = Y = V(G) and output sets A = B = [t]. Recall that Q
is the set of quantum correlations (Definition 2.4.3) and that Qc is the set of
probability distributions arising from the relativistic field theory point of view
(Definition 2.4.4). We can rewrite constraints (3.8) by defining the linear map
LG,t : R(nt)2 → R

LG,t(P) = ∑
i 6= j∈[t],u∈V(G)

P(i, j|u, u) + ∑
i∈[t],uv∈E(G)

P(i, i|u, v).

Then the players have a perfect quantum winning strategy if and only if the
probability distribution P lies in Q and satisfies LG,t(P) = 0. Therefore, χq(G)
is equal to

χq(G) = min t ∈ N s.t. ∃P ∈ Q with LG,t(P) = 0. (3.10)

The parameter χqa(G) defined in [PSS+16] asks the probability distribu-
tion P to be in the closure of Q:

χqa(G) = min t ∈ N s.t. ∃P ∈ cl(Q) with LG,t(P) = 0. (3.11)

In [PSS+16] (see also [PT15]) the parameter χqc(G) is defined as

χqc(G) = min t ∈ N s.t. ∃P ∈ Qc with LG,t(P) = 0. (3.12)
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In [PSS+16] it is shown that χqc(G) can be computed by a positive semidef-
inite program (after rounding). This result is existential in the sense that the
semidefinite program is not explicitly known. For this the authors of [PSS+16]
use the semidefinite programming hierarchy developed by Navascués, Pironio
and Acı́n [NPA08] for noncommutative polynomial optimization. As pointed
out in [PSS+16], in view of the inclusions in (2.5), the following relationships
hold between the parameters:

χqc(G) ≤ χqa(G) ≤ χq(G).

Furthermore, if Connes’ embedding conjecture has a positive answer then the
identity χqc(G) = χqa(G) holds for every graph.

3.3.2 Quantum stability number

Mančinska and Roberson [MR16] introduced a quantum version of the stabil-
ity number. For a fixed graph G and an integer t, suppose that two players
want to convince a referee that there exists a stable set of cardinality at least t.
The nonlocal game is as follows: each player receives a number from {1, . . . t}
as question and has to answer with a vertex of the graph. They win if upon
receiving the same number they reply with the same vertex as answer and
non-adjacent vertices if the questions were different. We are interested in de-
termining for which t ∈ N there exists a perfect classical (or quantum) strategy
for this nonlocal game. A possible classical strategy is to label the vertices
of a (maximum) stable set of the graph with {1, . . . , t} and upon receiving a
number each player answers with the corresponding vertex. Actually, one can
easily see that any perfect classical strategy is symmetric (meaning that both
players apply the same map) and identifies a stable set. Therefore, the stabil-
ity number α(G) is the maximum integer t ∈ N such that the players have a
perfect classical strategy. Analogously, the quantum stability number αq(G) is
the maximum t ∈ N for which there exists a perfect quantum strategy. Us-
ing a similar reasoning as the one used for the quantum chromatic number,
in [MR16] it is proven thatαq(G) can be equivalently reformulated as follows.

3.3.4. DEFINITION. [Quantum stability number [MR16]] For a graph G, αq(G)
is the maximum t ∈ N for which there exist d × d projectors Eu

i for i ∈ [t],
u ∈ V(G) (for some d ≥ 1) satisfying the conditions:

∑u∈V(G) Eu
i = I ∀i ∈ [t],

Eu
i Ev

j = 0 ∀i 6= j ∈ [t], ∀u ' v ∈ V(G),

Eu
i Ev

i = 0 ∀i ∈ [t], ∀u 6= v ∈ V(G).

In [MR16] it is shown that α(G) ≤ αq(G) ≤ ϑ′(G) ≤ ϑ(G) holds and that
there exists a quantum equivalent to Theorem 3.2.1:

χq(G) ≤ t if and only if αq(G�Kt) = |V(G)| holds. (3.13)
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As noticed in [MR16] (using an idea from [MSS13]), the above relation can
be used to show separations between the quantum stability number and the
classical one starting from graphs G where χq(G) < χ(G). Indeed, let k ≥ 8
be a multiple of 4 and consider the orthogonality graph Ωk (Definition 3.3.2)
for which we know that χq(Ωk) ≤ k < χ(Ωk). Vizing [Viz63] proved that,
for any pair of graphs G and H, α(G�H) ≤ min {α(G)|V(H)|,α(H)|V(G)|}
and therefore α(Ωk�Kk) ≤ k(2 − ε)k < 2k = |V(Ωk)| = αq(Ωk�Kk) where
in the last identity we used (3.13). Furthermore, since χq(G) is an NP-hard
parameter, relation (3.13) implies that alsoαq(G) is NP-hard.

In Section 3.2.1, we have seen that the inequality χ(G)α(G) ≥ |V(G)| al-
ways holds. Interestingly, in [MR16] it is shown that if k is a multiple of 4 but
not a power of 2 then χq(Ωk)αq(Ωk) < |V(Ωk)|.

3.3.3 Zero-error information theory graph parameters

In Sections 6.2 and 8.1.1, we will introduce two further quantum variants of
the stability and chromatic numbers: the entangled stability number α?(G)
(Definition 6.2.1) and the entangled chromatic number χ?(G) (Definition 5.1.2),
which arise in the context of zero-error communication scenarios. To avoid un-
necessary repetitions, we refer the reader to the respective sections for the def-
initions and properties of these parameters. As we will see in Corollaries 5.1.8
and 5.1.17, the following chain of inequality holds:

α(G) ≤ αq(G) ≤ α?(G) ≤ ϑ(G) ≤ χ?(G) ≤ χq(G) ≤ χ(G). (3.14)

Interestingly, it is not known whether the inequalities αq(G) ≤ α?(G) and
χ?(G) ≤ χq(G) can be strict.

We finish this chapter by exhibiting an example of a graph for which both
the inequalities αq(G) > α(G) and χq(G) < χ(G) hold. This graph is de-
picted in Figure 3.1 and it was used by Cubitt, Leung, Matthews, and Win-
ter [CLMW10] to show a separation betweenα?(G) andα(G). It has 24 vertices
which are defined by the vectors:

1 : (1, 0, 0, 0)
5 : (0, 1, 1, 0)
9 : (1, 1, 1, 1)

13 : (1, −1, 0, 0)
17 : (−1, 1, 1, 1)
21 : (1, 0, 1, 0)

2 : (0, 1, 0, 0)
6 : (1, 0, 0,−1)

10 : (1,−1, 1,−1)
14 : (1, 1, 0, 0)
18 : (1, 1, 1,−1)
22 : (0, 1, 0, 1)

3 : (0, 0, 1, 0)
7 : (1, 0, 0, 1)

11 : (1,−1,−1, 1)
15 : (0, 0, 1, 1)
19 : (1,−1, 1, 1)
23 : (1, 0, −1, 0)

4 : (0, 0, 0, 1)
8 : (0, 1,−1, 0)

12 : (1, 1,−1,−1)
16 : (0, 0, 1, −1)
20 : (1, 1,−1, 1)
24 : (0, 1, 0, −1)

and two vertices are adjacent if the corresponding vectors are orthogonal. We
observe that the sets B1 = {1, 2, 3, 4}, B2 = {5, 6, 7, 8}, B3 = {9, 10, 11, 12},
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Figure 3.1: Graph for whichαq(G) > α(G) and χq(G) < χ(G).

B4 = {13, 14, 15, 16}, B5 = {17, 18, 19, 20} and B6 = {21, 22, 23, 24} are 6
disjoint cliques. One can check that α(G) = 5 and χ(G) = 5 hold. Moreover,
by construction G has a 4-dimensional real valued orthogonal representation
and, using Proposition 3.3.3, this implies that χq(G) ≤ 4. In particular, equality
holds since the clique number is equal to 4. Cubitt et al. [CLMW10] showed
thatα?(G) ≥ 6 by proving that if a graph has orthogonal rank d and M disjoint
d-cliques then α?(G) ≥ M (see Theorem 6.2.4). We will use a very similar
reasoning to show thatαq(G) ≥ 6. For every k ∈ [24], let fk be the normalized
vector associated to vertex k. For i ∈ [6] and k ∈ [24], we define Ek

i = fk f T
k if

k ∈ Bi and Ek
i = 0 otherwise. One can easily check that the projectors Ek

i satisfy
all the conditions of the program of Definition 3.3.4, which in turn implies that
αq(G) ≥ 6.



Chapter 4

The completely positive semidefinite cone

In this chapter we introduce the completely positive semidefinite cone CS+
and establish some of its basic properties. We investigate the relationship
among the completely positive semidefinite cone, the completely positive cone
and the doubly nonnegative cone, and their dual counterparts. Moreover, we
present two different constructions that aim to approximate the CS+ cone.
The first one is based on noncommutative trace polynomial optimization (Sec-
tion 4.4) and the second one gives a hierarchy of polyhedral cones covering
the interior of the completely positive semidefinite cone (Section 4.5). At last in
Section 4.6, we give an explicit description of the closure of the completely pos-
itive semidefinite cone using the tracial ultraproduct of matrix algebras Rk×k.

The content of this chapter is based on the results of two papers: one is joint
work with Monique Laurent [LP15] and the other is joint work with Sabine
Burgdorf and Monique Laurent [BLP15].

4.1 Basic properties

Associated to any positive semidefinite matrix there is a set of vectors which
forms its Gram representation. That is, for any positive semidefinite matrix
A ∈ Sn there exists a set of vectors x1, . . . , xn ∈ Rd, for some d ∈ N, such
that A = (〈xi, x j〉)n

i, j=1. Similarly, a matrix is completely positive if it has a
Gram representation by nonnegative vectors. We now consider Gram repre-
sentations by positive semidefinite matrices.

4.1.1. DEFINITION. A matrix A ∈ Sn is called completely positive semidefinite if
there exists a set of positive semidefinite matrices X1, . . . , Xn ∈ Sd

+, for some
d ∈ N, such that A = (〈Xi, X j〉)n

i, j=1. We then say that the set {Xi}i∈[n] forms
a Gram representation of A. We denote by CSn

+ the set of all n× n completely
positive semidefinite matrices.

35
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4.1.2. LEMMA. CSn
+ is a convex cone.

PROOF: Given a matrix A ∈ CSn
+, let X1, . . . , Xn ∈ Sd

+ be its Gram repre-
sentation. Fix a λ ≥ 0 and consider the set of positive semidefinite matrices√
λX1, . . . ,

√
λXn. These form a Gram representation of λA and thus λA ∈ CSn

+.
Now, let B ∈ CSn

+ and Y1, . . . , Yn ∈ Sk
+ be its Gram representation. We

show that the matrix A + B lies in CSn
+. To this end, consider the set of matri-

ces X1 ⊕ Y1, . . . , Xn ⊕ Yn ∈ Sd+k
+ , where Xi ⊕ Yi is the direct sum between Xi

and Yi. These matrices are positive semidefinite and form a Gram representa-
tion of A + B. We conclude that CSn

+ is a convex cone. �

The completely positive semidefinite cone was implicitly introduced by
Frenkel and Weiner [FW14]. The following lemmas contain simple but use-
ful results about completely positive semidefinite matrices.

4.1.3. LEMMA. Any principal submatrix of a completely positive semidefinite matrix
is itself completely positive semidefinite.

PROOF: Let A be a completely positive semidefinite matrix and X1, . . . , Xn be
its Gram representation. Consider a principal submatrix A[I] of A, obtained
from A by keeping only the rows and columns which are indexed by I ⊆ [n].
The set {Xi}i∈I forms a Gram representation for A[I] and thus A[I] ∈ CS |I|+ . �

4.1.4. LEMMA. The matrix A⊕ B is completely positive semidefinite if and only if A
and B are both completely positive semidefinite.

PROOF: One direction follows directly from Lemma 4.1.3. Indeed, if A⊕ B is a
completely positive semidefinite matrix then also its two principal submatrices
A and B must be completely positive semidefinite.

Suppose now that A ∈ CSn
+, B ∈ CSm

+ and that X1, . . . , Xn ∈ Sd
+ and

Y1, . . . , Ym ∈ Sk
+ form a Gram representation for A and B, respectively. The

set of positive semidefinite matrices X1 ⊕ 0k, . . . , Xn ⊕ 0k, 0d ⊕ Y1, . . . , 0d ⊕ Ym
(where 0n is the n× n zero matrix) forms a Gram representation for A⊕ B and
thus A⊕ B ∈ CSn+m

+ . �

4.1.5. LEMMA. Let A ∈ Sn and P be an n× n permutation matrix. Then A ∈ CSn
+

if and only if PT AP ∈ CSn
+.

PROOF: The claim follows by an appropriate reordering of the matrices form-
ing the Gram representation of A. �

4.1.6. LEMMA. The following chain of inclusions holds: CPn ⊆ CSn
+ ⊆ DNN n.
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PROOF: Let A ∈ CPn and the nonnegative vectors x1, . . . , xn ∈ Rd
+ be its Gram

representation. For each i ∈ [n], define Xi = Diag(xi); i.e., Xi is a diagonal
matrix having vector xi as diagonal. Clearly, X1, . . . , Xn ∈ Sd

+ form a Gram
representation of A and thus the inclusion CPn ⊆ CSn

+ holds.
Furthermore, any completely positive semidefinite matrix is also positive

semidefinite (any matrix can be thought of as a vector by stacking on top of
each others its columns). As the inner product of positive semidefinite matri-
ces is always nonnegative, any matrix in CSn

+ must have nonnegative entries.
Therefore, we deduce that CSn

+ ⊆ DNN n holds. �

Since the cone CPn is full-dimensional, the same holds for the cone CSn
+.

All the cones CPn, CSn
+,DNN n, Sn

+ are pointed. Moreover, the sets CPn, Sn
+

andDNN n are closed, while we do not know whether the cone CSn
+ is closed.

One of the difficulties in proving this, as well as other properties of the com-
pletely positive semidefinite cone, lies in the fact that we do not have an alter-
native description for it. In particular, we do not know its extreme rays. This
topic will be further discussed in Section 4.6.

We have that the following relations hold:

CPn ⊆ CSn
+ ⊆ cl(CSn

+) ⊆ DNN n

and, taking their dual, we get the corresponding inclusions:

DNN n∗ = Sn
+ + (Sn ∩Rn×n

+ ) ⊆ CSn∗
+ ⊆ CPn∗ = COPn.

Consider a convex, pointed, full-dimensional coneKn ⊆ Sn. Recall that its dual
cone is the set of symmetric matrices having nonnegative inner product with
any matrix in the original cone: Kn∗ = {M ∈ Sn : 〈M, A〉 ≥ 0 ∀ A ∈ Kn}.
Moreover, a matrix A lies in the interior of Kn if and only if 〈A, M〉 > 0 for all
nonzero matrices M ∈ Kn∗. Equivalently, A lies on the boundary of Kn if and
only if there exists a nonzero matrix M ∈ Kn∗ such that 〈A, M〉 = 0. We give
two sufficient conditions for a matrix to lie on the boundary of CS+.

4.1.7. LEMMA. Let A ∈ CSn
+ be a matrix having a zero entry, then A lies on the

boundary of CSn
+.

PROOF: Let A ∈ CSn
+ and suppose Ai j = 0. Consider the elementary ma-

trix Ei j (with entries equal to 1 at positions (i, j) and ( j, i) and zero elsewhere).
Clearly, Ei j ∈ Sn ∩Rn×n

+ and thus Ei j ∈ CSn∗
+ . Moreover, 〈A, Ei j〉 = 0 and we

conclude that A must lie on the boundary of CSn
+. �

Let At be the affine space in Snt defined by the equations

∑
i, j∈[t]

Aui,v j = 1 for u, v ∈ [n].

We show that any completely positive semidefinite matrix that lies on the
affine spaceAt is on the boundary of the completely positive semidefinite cone.
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4.1.8. LEMMA. Let A ∈ Snt be a completely positive semidefinite matrix that lies
on At, then A is on the boundary of CSnt

+ .

PROOF: Take a matrix A ∈ CSnt
+ ∩ At. Pick two distinct elements u, v ∈ [n]

and define F to be n × n matrix with Fuu = Fvv = 1, Fuv = Fvu = −1 and
zero elsewhere. Let J be the t× t all-one matrix, then M = J ⊗ F is a positive
semidefinite matrix as J, F � 0. Therefore M ∈ CSnt∗

+ and, since 〈A, M〉 = 0,
this shows that A lies on the boundary of CSnt

+ . �

We end this section by mentioning that linear optimization over affine sec-
tions of the completely positive semidefinite cone is an NP-hard problem (see
Remark 5.2.4).

4.2 Links with completely positive and doubly non-
negative matrices

In this section we study the links among completely positive, completely pos-
itive semidefinite and doubly nonnegative matrices. In particular, we give cri-
teria that reduce the question of determining whether a matrix lies in CSn

+ to
the one of determining if it lies in CPn. These are then use to show that both
strict inclusions: CPn ( CSn

+ and CSn
+ ( DNN n hold for any n ≥ 5.

We have already seen that the following inclusions hold:

CPn ⊆ CSn
+ ⊆ cl(CSn

+) ⊆ DNN n (4.1)

and, by taking their dual, we get:

Sn
+ + (Sn ∩Rn×n

+ ) ⊆ CSn∗
+ ⊆ COPn. (4.2)

For any n ≤ 4, Maxfield and Minc [MM62] and Diananda [Dia62] showed,
respectively, that CPn = DNN n and that Sn

+ + (Sn ∩Rn×n
+ ) = COPn. Hence

equality holds throughout in (4.1) and (4.2). Moreover, as we will see, for any
n ≥ 5 the inclusions CPn ⊆ DNN n and Sn

+ + (Sn ∩ Rn×n
+ ) ⊆ COPn are

known to be strict.
One may wonder about why there is a change in behavior between 4× 4

and 5× 5 matrices. This can be explained by the following result of Kogan and
Berman [KB93] that uses graph theoretical arguments. Given a matrix A ∈ Sn,
its support graph is the graph G(A) = ([n], E) where there is an edge {i, j}
whenever Ai j 6= 0 with i 6= j. A graph G is said to be completely positive if every
doubly nonnegative matrix with support G is completely positive.

4.2.1. THEOREM (KOGAN–BERMAN [KB93]). A graph G is completely positive if
and only if it does not contain an odd cycle of length at least 5 as a subgraph.
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This in particular implies that any matrix A ∈ Sn with n ≤ 4 has com-
pletely positive support graph G(A) and, therefore, A ∈ CPn if and only if
A ∈ DNN n.

On the other hand, to find a doubly nonnegative matrix which is not com-
pletely positive (see Example 4.2.3 below), we can use the following result
characterizing completely positive matrices whose support graph is triangle-
free. For a matrix A ∈ Sn, define its comparison matrix C(A) ∈ Sn to be the
matrix with entries C(A)ii = Aii for all i ∈ [n] and C(A)i j = −Ai j for all
i 6= j ∈ [n].

4.2.2. THEOREM (DREW–JOHNSON–LOEWY [DJL94]). Let A ∈ Sn and assume
that its support graph is triangle-free. Then, A is completely positive if and only if its
comparison matrix C(A) is positive semidefinite.

We notice that to prove strict inclusions in (4.1) and consequentially in (4.2),
it suffices to show them for n = 5. Indeed, in view of Lemma 4.1.4, a matrix A
belongs to CS5

+ if and only if the extended matrix Ã, obtained by adding a
border of zero entries to A, belongs to CSn

+. One can easily observe that an
equivalent statement holds true for both CP and DNN . We thus focus on
5× 5 matrices and, in particular, on circulant matrices with the following form:

M(b, c) =


1 b c c b
b 1 b c c
c b 1 b c
c c b 1 b
b c c b 1

 where b, c ∈ R.

4.2.3. EXAMPLE. The matrix W = M((
√

5 − 1)/2, 0) is doubly nonnegative
but not completely positive. Indeed, one can easily check that W is positive
semidefinite while its comparison matrix C(W) = M((1 −

√
5)/2, 0) 6∈ S5

+.
Applying Theorem 4.2.2 we then conclude that W is not completely positive
and hence CPn ( DNN n for any n ≥ 5.

4.2.4. EXAMPLE. The matrix H = M(−1, 1), known as the Horn matrix, is
copositive but cannot be decomposed as the sum of a positive semidefinite
matrix and a nonnegative matrix (see e.g. [Hal86, Section 16.2]).

4.2.5. EXAMPLE. The matrix L = M(cos2(4π/5), cos2(2π/5)) (equivalently,
L = M((3 +

√
5)/8, (3−

√
5)/8)) was given in [FGP+15] as an example of a

completely positive semidefinite matrix which is not completely positive. To
see this, consider the matrix L̂ = M(cos(4π/5), cos(2π/5)), so that L is the
entrywise square of L̂. Then, the vectors xi = (cos(4iπ/5), sin(4iπ/5)) ∈ R2

(for i ∈ [5]) form a Gram representation of L̂ and thus the positive semidefinite
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matrices xixT
i ∈ S2

+ (i ∈ [5]) form a Gram representation of L. This shows that
L ∈ CS5

+. On the other hand, L 6∈ CP5 as its inner product with the Horn
matrix is negative: 〈L, H〉 = 5(1−

√
5/2) < 0 and H ∈ CP5∗. Therefore,

L ∈ CS5
+ \ CP5 and H ∈ COP5 \ CS5∗

+ .

Example of a matrix inDNN 5 \ CS5
+. To find a matrix which is doubly non-

negative but not completely positive semidefinite (or even better is not in the
closure of the CS+ cone), we need a sufficient criterion for a matrix to be not
completely positive semidefinite. In Theorem 4.2.9 below, we prove that, for
matrices whose support graph is a cycle, being completely positive is equiva-
lent to being completely positive semidefinite. From this we deduce that the
matrix W = M((

√
5 − 1)/2, 0) (from Example 4.2.3) is doubly nonnegative

but not completely positive semidefinite. Frenkel and Weiner [FW14] were
the first to prove that W ∈ DNN 5\CS5

+. At the end of this section, we will
present their original proof and show how we can use their ideas to prove that,
in fact, W does not even belong to the closure of CS5

+ (see Theorem 4.2.14 and
the preceding discussion).

We start with an observation about matrices supported by bipartite graphs.

4.2.6. LEMMA. Consider a matrix A ∈ Sn and assume that G(A) is a bipartite
graph. Then, A ∈ CSn

+ if and only if A ∈ CPn.

PROOF: We only have to prove that A ∈ CSn
+ implies A ∈ CPn, as the reverse

implication holds trivially. Assume that A ∈ CSn
+ and, say, X1, . . . , Xn ∈ Sd

+
form its Gram representation. As the support graph G(A) is bipartite, consider
a bipartition of its vertex set as U ∪W so that all edges of G(A) are of the
form {i, j} with i ∈ U and j ∈ W. Observe that the matrices Xi for i ∈ U,
and −X j for j ∈ W form a Gram representation of the comparison matrix
C(A). Thus C(A) is positive semidefinite and, by Theorem 4.2.2, A ∈ CPn. �

4.2.7. REMARK. We could have derived the statement of Lemma 4.2.6 directly
from Theorem 4.2.1. Indeed, a graph G is bipartite if and only if it does not
contain any odd-length cycles. Hence, in particular, the support graph G(A)
does not contain an odd cycle of length at least 5 as a subgraph and by Theo-
rem 4.2.1 we get that: A ∈ CP ⇐⇒ A ∈ CS+ ⇐⇒ A ∈ DNN .

Next we state an useful elementary result about positive semidefinite matrices.

4.2.8. LEMMA. Let A and B be positive semidefinite matrices with block-form:

A =

(
A1 A2
AT

2 A3

)
and B =

(
B1 B2
BT

2 B3

)
,

where Ai and Bi have the same dimension. If 〈A, B〉 = 0 holds, then we have
〈A1, B1〉 = 〈A3, B3〉 = −〈A2, B2〉.
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PROOF: As both A, B are positive semidefinite matrices, 〈A, B〉 = 0 implies
AB = 0 and thus A1B1 + A2BT

2 = 0 and AT
2 B2 + A3B3 = 0. Taking the trace

and noticing that Ai, Bi for i ∈ {1, 3} are symmetric matrices, we obtain the
desired identities. �

We can now characterize the completely positive semidefinite matrices sup-
ported by a cycle.

4.2.9. THEOREM. Consider a matrix A ∈ Sn and assume that its support graph
G(A) is a cycle. Then, A ∈ CSn

+ if and only if A ∈ CPn.

PROOF: As CPn ⊆ CSn
+ is always true, one direction is obvious.

Assume that A ∈ CSn
+ with n ≥ 5 (otherwise there is nothing to prove) and

that its support graph G(A) is a cycle. In view of Lemma 4.1.4, we can without
loss of generality restrict our attention to the case where the graph G(A) is a n-
cycle. Moreover, due to Lemma 4.1.5, we can assume that the nonzero entries
of A are Ai,i+1 for i ∈ [n] (taking indices modulo n). Let X1, . . . , Xn ∈ Sd

+ be
a positive semidefinite Gram representation of A. Due to Theorem 4.2.2, to
prove that A ∈ CPn it suffices to show that the comparison matrix C(A) is
positive semidefinite.

Consider first the easy case when n is even. Then, the matrices Y1 = −X1,
Y2 = X2, Y3 = −X3, Y4 = X4, . . . , Yn−1 = −Xn−1, Yn = Xn form a Gram
representation of C(A), thus showing that C(A) ∈ Sn

+ and concluding the
proof. Notice that, since even cycles are bipartite graphs, this case also follows
from Lemma 4.2.6.

Now suppose that n is odd. As we will see, in order to construct a Gram
representation of C(A), we can choose the same matrices Y1, . . . , Yn−1 as above
but we need to look in more detail into the structure of the Xi’s in order to be
able to tell how to define the last matrix Yn.

For this, we now show that the matrices X1, . . . , Xn can be assumed to be
(n− 2)× (n− 2) block-matrices, where we denote the blocks of Xk as Xk

rs for
r, s ∈ [n− 2] (with Xk

sr = (Xk
rs)

T) and the index sets of the blocks as I1, . . . , In−2.

Indeed, without loss of generality we can assume that X1 =

(
X1

11 0
0 0

)
where

X1
11 is positive definite and the index set of X1

11 defines the index set I1 of the

first block. Next, X2 has the form

X2
11 X2

12 0
X2

21 X2
22 0

0 0 0

, where X2
22 � 0 and its

index set defines the index set I2 of the second block. Then, we can write

X3 =


X3

11 X3
12 X3

13 0
X3

21 X3
22 X3

23 0
X3

31 X3
32 X3

33 0
0 0 0 0

, where X3
33 � 0 and I3 is the index set of X3

33.
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Hence X3 has its blocks indexed by I1, I2, I3 and [d]\(I1 ∪ I2 ∪ I3). Iteratively,
for each k ∈ {2, 3, . . . , n− 3}, the matrix Xk has blocks Xk

r,s for r, s ∈ [k] with
Xk

k,k � 0 and it has zero entries outside of these blocks. The index sets of
the blocks Xk

kk for 1 ≤ k ≤ n − 3 define the sets I1, I2, . . . In−3 and the set
In−2 = [d]\(I1 ∪ I2 · · · ∪ In−3) collects all the remaining indices.

By looking at the zero-pattern of the matrix A, we show some structural
properties of the Xk matrices and that each set Ik is nonempty. Since A12 6= 0,
we know that I1 6= ∅. As A13 = 0 we can conclude that X3

11 = 0 (and thus
X3

12 = X3
13 = 0) and that the only nonzero blocks of X3 are X3

22, X3
23, X3

32 and
X3

33. Moreover, as A23 6= 0 we get that I2 6= ∅. With the same reasoning,
for each k ∈ {2, 3, . . . , n − 3}, as Ak′ ,k = 0 for all k′ ≤ k − 2 we have that
all blocks of the matrix Xk are equal to zero except its blocks Xk

k−1,k−1, Xk
k−1,k,

Xk
k,k−1 and Xk

kk. For all k ∈ [n − 2], the fact that Ak,k+1 6= 0 implies that the
index set Ik is nonempty. Additionally, using the fact that An−2,k = 0 for each
k ∈ {1, . . . , n− 4} we obtain that each block Xn−2

kk is equal to zero. Similarly,
Xn−1

kk is the zero matrix for every k ∈ {1, . . . , n − 3} as An−1,k = 0. For the
matrix Xn we cannot make any consideration on the presence of zero blocks.

Next we indicate how to construct the (non-symmetric) matrix Yn from Xn:
we just change signs to its two blocks Xn

n−3,n−2 and Xn
n−2,n−2. In other words,

we let Yn be the (n− 2)× (n− 2) block matrix where Yn
n−3,n−2 = −Xn

n−3,n−2,
Yn

n−2,n−2 = −Xn
n−2,n−2 and Yn

rs = Xn
rs for all other blocks. Let us stress that we

do not change the sign of the block Xn
n−2,n−3. As in the case when n is even, for

any 1 ≤ i ≤ n− 1, we set Yi = −Xi for odd i and Yi = Xi for even i.
We claim that Y1, . . . , Yn form a Gram representation of the comparison

matrix C(A). It is clear that 〈Yi, Y j〉 = C(A)i j for all i, j ∈ [n − 1] and that
〈Y1, Yn〉 = −A1n = C(A)1n and 〈Yi, Yn〉 = 0 for 2 ≤ i ≤ n− 3 (since the blocks
indexed by [n− 3] in Yn are the same as in Xn and for any r ∈ [n] each block
Yi

r,n−2 is equal to the zero matrix). Moreover, 〈Yn, Yn〉 = 〈Xn, Xn〉 = C(A)nn

and 〈Yn−1, Yn〉 = −An−1,n = C(A)n−1,n. Finally, we use Lemma 4.2.8 to verify
that 〈Yn−2, Yn〉 = 0. Indeed, we have that

0 = An−2,n = 〈Xn−2, Xn〉 = 〈
(

Xn−2
n−3,n−3 Xn−2

n−3,n−2
Xn−2

n−2,n−3 Xn−2
n−2,n−2

)
,
(

Xn
n−3,n−3 Xn

n−3,n−2
Xn

n−2,n−3 Xn
n−2,n−2

)
〉.

By Lemma 4.2.8, this then implies 〈Xn−2
n−3,n−3, Xn

n−3,n−3〉 = 〈Xn−2
n−2,n−2, Xn

n−2,n−2〉.
Therefore,

〈Yn−2, Yn〉 = 〈
(
−Xn−2

n−3,n−3 −Xn−2
n−3,n−2

−Xn−2
n−2,n−3 −Xn−2

n−2,n−2

)
,
(

Xn
n−3,n−3 −Xn

n−3,n−2
Xn

n−2,n−3 −Xn
n−2,n−2

)
〉

is equal to zero. �
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4.2.10. EXAMPLE. The matrix W = M((
√

5 − 1)/2, 0) is doubly nonnegative
but not completely positive semidefinite. Recall from Example 4.2.3 that W
is doubly nonnegative but not completely positive. Noticing that the support
graph of W is the 5-cycle, by Theorem 4.2.9 we conclude that W 6∈ CS5

+ and,
hence, that CSn

+ ( DNN n for any n ≥ 5.

Using a result from Hamilton-Jester and Li [HJL96] we can construct a class
of matrices in DNN 5 \ CS5

+, see Lemma 4.2.12 below.

4.2.11. THEOREM (HAMILTON-JESTER–LI [HJL96]). (i) Assume n ≥ 5 is odd
number and consider a matrix A ∈ DNN n with rank n − 2. Then, A lies on an
extreme ray of DNN n if and only if G(A) is the n-cycle.

(ii) If A lies on an extreme ray of DNN 5, then A has rank 1 or 3.

4.2.12. LEMMA. For odd n ≥ 5, any matrix A ∈ Sn with rank n − 2 and whose
support graph G(A) is the n-cycle is not completely positive semidefinite. Moreover,
for n = 5, if A ∈ S5 lies on an extreme ray of DNN 5, then A is completely positive
semidefinite if and only if A is completely positive.

PROOF: Let A ∈ CSn
+ be a matrix having the n-cycle as support graph and

with rank n − 2, for some odd number n ≥ 5. By Theorem 4.2.9 we know
that A ∈ CPn. Moreover, from Theorem 4.2.11(i), A lies on an extreme ray
of DNN n and thus also of CPn. Since the extreme rays of CP are rank 1
matrices, we get a contradiction: 1 = rank A = n− 2. Hence, A /∈ CSn

+.
For the second claim, assume that A lies on an extreme ray of DNN 5. We

show that if A 6∈ CP5 then A 6∈ CS5
+ (the reverse implication is clear). By

Theorem 4.2.11(ii), any matrix on an extreme ray of DNN 5 has rank 1 or 3.
Recall that any doubly nonnegative matrix with rank 1 is completely positive
(see Section 2.2.2). Hence, if A /∈ CP5 then A has rank 3 and its support graph
is the 5-cycle (by Theorem 4.2.11(i)). Using the first part of the lemma we can
conclude that A 6∈ CS5

+. �

Furthermore, as a simple application of Lemma 4.2.6 and of Theorem 4.2.9,
we get the following result. Recall that the parameters ϑK and ΘK were intro-
duced in Definition 3.2.7.

4.2.13. LEMMA. If a graph G is bipartite or an odd cycle, then ϑCS+(G) = α(G) and
ΘCS+(G) = χ f (G).

PROOF: It suffices to show ϑCS+(G) ≤ α(G) (as the reverse inequality is clear).
For this pick a matrix A ∈ CS+ feasible for the program defining ϑCS+(G).
Then the support of A is contained in G and thus is bipartite or an odd cycle.
By Lemma 4.2.6 and Theorem 4.2.9, A is completely positive. Using Theo-
rem 3.2.2, this implies α(G) ≥ 〈J, A〉 and thus α(G) ≥ ϑCS+(G). The identity
ΘCS+(G) = χ f (G) follows analogously using Theorem 3.2.3. �
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Example of a matrix in DNN 5 \ cl(CS5
+). At last we show that the matrix

W = M((
√

5 − 1)/2, 0) does not belong to the closure of CS5
+. For this we

use results that will be proven in Section 4.6 and findings from [FW14] re-
garding Gram representations by positive elements in a general finite von Neu-
mann algebra (an infinite dimensional analog of Gram representations by pos-
itive semidefinite matrices). At this stage, we only need to know that a fi-
nite von Neumann algebra N is equipped with a trace τ (an analog of the
usual matrix trace) which satisfies the following properties: for any A, B ∈ N ,
τ(AB) = τ(BA); if A is positive then τ(A) ≥ 0 with equality if and only if
A = 0; and

if A, B are positive and τ(AB) = 0 then AB = 0. (4.3)

On the one hand, in Theorem 4.6.9 we show that there exists a finite von Neu-
mann algebra N (with trace τ) with the property that any matrix A lying in
the closure of CSn

+ admits a Gram representation by positive elements of N ;
i.e., A = (τ(XiX j))i, j∈[n] for some positive X1, . . . , Xn ∈ N . On the other hand,
it is shown in [FW14] that the matrix W does not admit a Gram representation
by positive elements in any finite von Neumann algebra, see Theorem 4.2.14
below. Hence, by combining these two results, we deduce that the matrix W
does not belong to the closure of CS5

+.

4.2.14. THEOREM (FRENKEL–WEINER [FW14]). Let N be a finite von Neumann
algebra with trace τ . For the matrix W = M((

√
5 − 1)/2, 0), there do not exist

positive elements X1, . . . , X5 ∈ N such that W = (τ(XiX j))
5
i, j=1.

PROOF: We give a proof for completeness. Assume that W = (τ(XiX j))
5
i, j=1

for some positive X1, . . . , X5 ∈ N . Using (4.3), Wi,i+2 = 0 implies XiXi+2 = 0
for all i ∈ [5] (taking indices modulo 5). As W is a rank 3 positive semidefi-
nite matrix, there exist vectors u1, . . . , u5 ∈ R3 forming a Gram representation
of W and the set {u1, . . . , u5} has rank 3. Moreover, one can check that the set
{u1, u3, u4} is a base of R3. Hence, u2 = αu1 +βu3 +γu4 for someα,β,γ ∈ R.
Since W = (uT

i u j)
5
i, j=1 = (τ(XiX j))

5
i, j=1, we obtain the analogous relation:

X2 = αX1 + βX3 + γX4. Multiplying both sides by X1 gives X1X2 = αX2
1 .

Analogously, expressing u1 in the base {u2, u4, u5} implies that X1X2 = α′X2
2

for some α′ ∈ R. Thus, αX2
1 = α′X2

2 which, as W11 = W22 = 1, implies that
α = α′ and thus X1 = X2. Since W12 6= 1, we reached a contradiction. �

4.2.15. COROLLARY. For any n ≥ 5, the following inclusions hold

CPn ( CSn
+ ⊆ cl(CSn

+) ( DNN n and Sn
+ + (Sn ∩Rn×n

+ ) ( CSn∗
+ ( COPn.

PROOF: Combine relationships (4.1), (4.2) together with Examples 4.2.5, 4.2.10
and the discussion preceding Theorem 4.2.14. �
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4.3 The dual of the completely positive semidefi-
nite cone

We now investigate the dual of the cone CSn
+.

4.3.1. LEMMA. Given a matrix M ∈ Sn, the following assertions are equivalent:

(i) M ∈ CSn∗
+ , i.e., ∑

n
i, j=1 Mi j〈Xi, X j〉 ≥ 0 for all X1, . . . , Xn ∈ Sd

+ and d ∈ N.

(ii) Tr(∑n
i, j=1 Mi jX2

i X2
j ) ≥ 0 for all X1, . . . , Xn ∈ Sd and d ∈ N.

PROOF: Statement (i) is simply conic duality. By linearity of the trace we have:
∑

n
i, j=1 Mi j〈Xi, X j〉 = ∑

n
i, j=1 Mi j Tr(XiX j) = Tr(∑n

i, j=1 Mi jXiX j). Statement (ii)
follows since any matrix X ∈ Sd

+ can be written as X = Y2 for some Y ∈ Sd. �

4.3.2. COROLLARY. A matrix M ∈ CSn∗
+ if and only if the associated polynomial

pM = ∑
n
i, j=1 Mi jX2

i X2
j in the noncommutative variables X1, . . . , Xn is trace posi-

tive, meaning that the evaluation of pM at any symmetric matrices X1, . . . , Xn (of the
same arbitrary size d ≥ 1) produces a matrix with nonnegative trace.

Recalling that a matrix M is copositive if and only if the n-variate polynomial
pM = ∑

n
i, j=1 Mi jx2

i x2
j is nonnegative over Rn, in the above corollary we recover

copositivity by restricting to symmetric matrices Xi of size d = 1; i.e., to real
numbers.

Interestingly, understanding which matrices lie in CSn∗
+ is deeply connected

with Connes’ embedding conjecture [Con76], one of the most important con-
jectures in von Neumann algebra (see Section 4.6.3). A reformulation of the
conjecture that shows this connection is given by Klep and Schweighofer [KS08]
(Conjecture 4.3.5 below). Connes’ embedding conjecture plays an important
role also in the description of the matrices lying in the closure of CSn

+. We
investigate this link in Section 4.6.

We introduce some useful notation. Let R[x] denote the set of real polyno-
mials in the commutative variables x1, . . . , xn. Similarly, we denote by R〈X〉
the set of real polynomials in the noncommutative variables X1, . . . , Xn. The set
R〈X〉 is endowed with the involution ∗ : R〈X〉 → R〈X〉 that sends each vari-
able to itself, each monomial Xi1 Xi2 · · ·Xit to its reverse Xit · · ·Xi2 Xi1 and ex-
tends linearly to arbitrary polynomials; e.g., (X2

1 X2 + X2X3)
∗ = X2X2

1 + X3X2.
Let f ∈ R〈X〉 be polynomial, then f ∗ evaluated at (X1, . . . , Xn) ∈ (Sd)n is
equal to f (X1, . . . , Xn)T. Given a constant ε ∈ R and f ∈ R〈X〉, the polynomial
f + ε evaluated at (X1, . . . , Xn) ∈ (Sd)n is equal to f (X1, . . . , Xn) + ε/dId. We
say that a polynomial f ∈ R〈X〉 is symmetric if f ∗ = f and SR〈X〉 denotes the
set of symmetric polynomials in R〈X〉. A polynomial f ∈ R〈X〉 is said to be
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trace positive if Tr( f (X1, . . . , Xn)) ≥ 0 for all (X1, . . . , Xn) ∈ ∪d≥1(Sd)n. A poly-
nomial of the form f f ∗ is called a Hermitian square. Note that any Hermitian
square when evaluated by symmetric matrices gives a positive semidefinite
matrix and it is, therefore, trace positive. Moreover, any polynomial of the
form [ f , g] = f g− g f is called a commutator. By the cyclic and linear properties
of the trace, it is clear that when evaluated at any n-tuple of matrices the trace
of any commutator vanishes.

Membership of a matrix M in CSn∗
+ requires that the polynomial pM is trace

positive on all symmetric matrices. However, since pM is a homogeneous poly-
nomial, it suffices to check trace positivity over the (noncommutative version
of the) hypercube Qnc or over the (noncommutative) ball Bnc, where we set

Qnc =
⋃

d≥1

{
(X1, . . . , Xn) ∈ (Sd)n : I − X2

i � 0 ∀i ∈ [n]
}

,

Bnc =
⋃

d≥1

{
(X1, . . . , Xn) ∈ (Sd)n : I −

n

∑
i=1

X2
i � 0

}
.

A similar observation was made by Burgdorf [Bur11], we include a proof for
completeness.

4.3.3. LEMMA. A matrix M ∈ Sn belongs to CSn∗
+ if and only if the associated poly-

nomial pM is trace positive on the cube Qnc or, equivalently, on the ball Bnc.

PROOF: One direction is clear as being trace positive on all symmetric matrices
implies being trace positive on the cube Qnc or on the ball Bnc.

Suppose that pM is trace positive on the ball Bnc. Consider any n-tuple of
matrices X = (X1, . . . , Xn) ∈ (Sd)n, we show that Tr( f (X)) ≥ 0. Let λ be
the largest eigenvalue of ∑

n
i=1 X2

i ∈ Sd
+. If λ = 0, then each Xi is the zero

matrix and f (X) = 0. Otherwise, if λ > 0 the matrix λI − ∑
n
i=1 X2

i is positive
semidefinite and X̃ = (X̃1, . . . , X̃n), where X̃i = Xi/

√
λ (for i ∈ [n]), is in Bnc.

Hence, we have 0 ≤ Tr( f (X̃)) = (1/
√
λ)n Tr( f (X)) and thus Tr( f (X)) ≥ 0.

We can conclude that M ∈ CSn∗
+ .

As Bnc ⊆ Qnc, if pM is trace positive on the hypercube Qnc it is also so on Bnc
and, by the above reasoning, M ∈ CSn∗

+ . �

In view of Lemma 4.3.3, to check whether M ∈ CSn∗
+ we need to determine

if pM is trace positive on Qnc (or equivalently on Bnc). We define two sets of
polynomials trMcube

nc and trMball
nc which by construction are trace positive on

Qnc and on Bnc, respectively.

4.3.4. DEFINITION. The tracial quadratic module trM generated by a set of poly-
nomials p1, . . . , pm ∈ SR〈X〉 is defined as the set of all polynomials of the
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form h + ∑
m0
j=1 f j f ∗j + ∑

m
i=1 ∑

mi
ji=1 g ji pig∗ji , where h ∈ R〈X〉 is a sum of commu-

tators, f j, g ji ∈ R〈X〉 and m0, mi ∈ N.
In particular, the tracial quadratic module trMcube

nc is the set of all polyno-
mials of the form h + ∑

m0
j=1 f j f ∗j + ∑

m
i=1 ∑

mi
ji=1 g ji(I − X2

i )g∗ji , where h ∈ R〈X〉 is
a sum of commutators, f j, g ji ∈ R〈X〉 and m0, mi ∈ N.

The tracial quadratic module trMball
nc consists of all polynomials of the form

h + ∑
m0
j=1 f j f ∗j + ∑

m1
j=1 g j(I −∑

n
i=1 X2

i )g∗j , where h ∈ R〈X〉 is a sum of commuta-
tors, f j, g j ∈ R〈X〉 and m0, m1 ∈ N.

Klep and Schweighofer [KS08] (see also [BDKS14]) showed that Connes’
embedding conjecture is equivalent to the following conjecture which charac-
terizes the trace positive polynomials on Qnc.

4.3.5. CONJECTURE (KLEP–SCHWEIGHOFER [KS08] ). Let f ∈ SR〈X〉. The fol-
lowing assertions are equivalent:

(i) f is trace positive on Qnc, i.e., Tr( f (X1, . . . , Xn)) ≥ 0 for all n-tuples of matri-
ces (X1, . . . , Xn) ∈ Qnc.

(ii) For any ε > 0, f +ε ∈ trMcube
nc , i.e., f +ε = g + h, where h is a sum of com-

mutators and g = ∑
m0
j=1 f j f ∗j +∑

n
i=1 ∑

mi
ji=1 g ji(1−X2

i )g∗ji for some polynomials
f j, g ji ∈ R〈X〉 and m0, mi ∈ N.

The implication (ii) =⇒ (i) is true. Indeed, suppose f +ε ∈ trMcube
nc for any

ε > 0. Then, for all tuples X ∈ Qnc and anyε > 0, we have that Tr( f (X)) ≥ −ε.
Thus, f is trace positive on Qnc.

As a matter of fact, Connes’ embedding conjecture is also equivalent to
Conjecture 4.3.5 when we restrict the polynomial f to have degree at most 4
(see [Bur11, Proposition 2.14]). Note that the polynomials pM, associated to
matrix M, involve only monomials of the form X2

i X2
j . Interestingly, in the proof

that Conjecture 4.3.5 is equivalent to Connes’ embedding conjecture, the mono-
mials X2

i X2
j play a fundamental role (due to a result of Rădulescu [Răd99]).

Finally, let us point out that, as observed by Burgdorf [Bur11, Remark 2.8],
Connes’ conjecture is also equivalent to Conjecture 4.3.5 where the ball is used
instead of the hypercube, i.e., replacing the tracial quadratic module trMcube

nc
by the tracial quadratic module trMball

nc .

4.4 Approximations to the dual of the completely
positive semidefinite cone

A matrix M ∈ CSn∗
+ if and only if the associated polynomial pM belongs to the

tracial quadratic module trMball
nc (Lemma 4.3.3). We define the set Knc,ε con-

sisting of all matrices M for which the perturbed polynomial pM + ε belongs
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to trMball
nc . To simplify the notation, in Knc,ε we omit the dependence on the

size n of the matrices.

4.4.1. DEFINITION. For ε ≥ 0, let Knc,ε denote the set of matrices M ∈ Sn for
which the polynomial pM +ε belongs to the tracial quadratic module trMball

nc .

4.4.2. LEMMA. For any ε ≥ 0, Knc,ε is a convex set. Moreover, we have inclusion⋂
ε>0

Knc,ε ⊆ CSn∗
+ , with equality if Connes’ embedding conjecture holds.

PROOF: Assume that M, M′ ∈ Knc,ε and that λ ∈ [0, 1], then the polynomial
pλM+(1−λ)M′ + ε = λ(pM + ε) + (1 − λ)(pM′ + ε) ∈ trMball

nc and, therefore,
λM + (1− λ)M′ ∈ Knc,ε. Hence, the set Knc,ε is convex.

Consider a matrix M ∈ ⋂
ε>0Knc,ε. Then, for any ε > 0, the polynomial

pM + ε is trace positive on Bnc. By letting ε tend to 0, we obtain that pM is
trace positive on Bnc. Thus, by Lemma 4.3.3 we get M ∈ CSn∗

+ . Finally, equal-
ity

⋂
ε>0Knc,ε = CSn∗

+ holds under Connes’ embedding conjecture since, as
mentioned above, by results of [KS08, BDKS14] Connes’ embedding conjec-
ture is equivalent to Conjecture 4.3.5, also when the ball is used instead of the
hypercube. �

We point out a connection between the set Knc,ε and the following set Kc,
used in the commutative setting. Let Σ denote the set of sums of squares of
(commutative) polynomials. Following [Par00] define the cone

Kc =

{
M ∈ Sn : pM(

n

∑
i=1

x2
i )

r ∈ Σ for some r ∈ N
}

=

{
M ∈ Sn : pM ∈ Σ+ (1−

n

∑
i=1

x2
i )R[x]

}
(see [dKLP05, Proposition 2] for the equivalence between both definitions).
Clearly, we have the inclusion Kc ⊆ COP . Moreover, Parrilo [Par00, Sec-
tion 5.3] showed that Kc covers the interior of COP . By adding degree con-
straints on the terms entering the decomposition of pM, he defined a hierarchy
of subcones of COP , whose first level is equal to the dual of the doubly non-
negative cone: K(0)

c = {M ∈ Sn : pM ∈ Σ} = Sn
+ + (Sn ∩Rn×n

+ ) = DNN n∗.

It turns out that, for ε = 0, the set Knc,0 is equal to K(0)
c .

4.4.3. LEMMA. We have: DNN n∗ = K(0)
c = Knc,0 ⊆ Knc,ε for any ε > 0.

PROOF: The inclusion Knc,0 ⊆ Knc,ε is obvious.
Firstly, we show the inclusion Knc,0 ⊆ K(0)

c . Assume that M ∈ Knc,0; i.e.,
the associated polynomial pM = h + g, where h is a sum of commutators and
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g = ∑
m0
j=1 f j f ∗j + ∑

m1
j=1 g j(1− ∑

n
i=1 X2

i )g∗j with f j, g j ∈ R〈X〉. If we evaluate pM

at commutative variables x = (x1, . . . , xn), we see that h(x) vanishes and thus
we obtain pM(x) = g(x) ∈ Σ + (1 − ∑

n
i=1 x2

i )Σ. As pM is a homogeneous

polynomial, we can derive that pM ∈ Σ and thus M ∈ K(0)
c . This follows from

[dKLP05, Proposition 4] which shows that, for a homogeneous polynomial of
even degree, membership in Σ+ (1− ∑

n
i=1 x2

i )Σ implies membership in Σ.

Secondly, we prove that K(0)
c ⊆ Knc,0. As K(0)

c = Sn
+ + (Sn ∩ Rn×n

+ ), it
suffices to show that if M � 0 or if M ≥ 0 then pM is a sum of commutators
and of Hermitian squares, which implies M ∈ Knc,0. Assume that M � 0 and
let u1, . . . , un ∈ Rd be a set of vectors forming a Gram representation of M.
Then, pM(X) = ∑

n
i, j=1 ∑

d
h=1 ui(h)u j(h)X2

i X2
j = ∑

d
h=1(∑

n
i=1 ui(h)X2

i )
2 is a sum

of Hermitian squares. Assume now that M is entrywise nonnegative. Then
each term Mi jX2

i X2
j = Mi j([X2

i X j, X j] + X jX2
i X j) is sum of a commutator and

a Hermitian square and, therefore, pM is sum of commutators and Hermitian
squares. �

We conclude with some remarks concerning how well Kc and Knc,ε ap-
proximate the cones COP and CS∗+, respectively. As mentioned above, Par-
rilo [Par00] showed that int(COP) ⊆ Kc ⊆ COP . This can also be derived
using the following result of Schmüdgen [Sch91].

4.4.4. THEOREM (SCHMÜDGEN [SCH91]). If f ∈ R[x] is positive on the sphere,
i.e., f (x) > 0 for all x ∈ Rn with ∑

n
i=1 x2

i = 1, then f ∈ Σ+ (1− ∑
n
i=1 x2

i )R[x].

In the noncommutative case, membership of a matrix M in Knc,ε means
that the polynomial pM + ε belongs to the tracial quadratic module trMball

nc ,
but there is no clear link between this and membership in the interior of the
cone CS∗+. To explain this difference of behavior between Kc and Knc,ε let
us point out that, in the commutative (scalar) case, working with the ball is,
in some sense, equivalent to working with the sphere (recall Lemma 2.2.2).
However, when working with matrices X1, . . . , Xn, one can rescale them to
ensure that I − ∑

n
i=1 X2

i � 0 but one cannot ensure equality: ∑
n
i=1 X2

i = I.
Hence, in the noncommutative case one cannot equivalently switch between
the ball and the sphere.

At last, we observe that, for a fix ε ≥ 0, checking whether M in Knc,ε can be
done using a sequence of semidefinite programs. The matrix M ∈ Knc,ε if the
polynomial pM +ε admits a decomposition of the form pM +ε = g+ h, where
g = ∑

m0
j=1 f j f ∗j + ∑

m1
j=1 g j(1− ∑

n
i=1 X2

i )g∗j with f j, g j ∈ R〈X〉 and m0, m1 ∈ N,
and h is a sum of commutators. Fixing an integer k, we can determine via a
semidefinite program whether pM + ε has a decomposition pM + ε where the
terms f j f ∗j and g j(1− ∑

n
i=1 X2

i )g∗j have degree at most 2k (see e.g. [Bur11] for
details).
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4.5 Polyhedral approximations of the completely pos-
itive semidefinite cone and of its dual cone

In this section we construct hierarchies of polyhedral cones converging asymp-
totically to the completely positive cone and its dual. The construction of our
polyhedral hierarchy for CSn

+ is directly inspired from the classical case where
analogous hierarchies of polyhedral cones exist for approximating the com-
pletely positive cone CPn and the copositive cone COPn. In Section 4.5.1 we
recall this construction and we introduce the new hierarchy in Section 4.5.2.

4.5.1 Polyhedral approximations of the completely positive cone
and of its dual cone

A matrix M ∈ Sn is copositive if and only if the polynomial pM is nonnegative
over the standard simplex ∆n = {x ∈ Rn

+ : ∑
n
i=1 xi = 1} (Lemma 2.2.2). The

idea for constructing outer approximations of the copositive cone is simple
and relies on requiring nonnegativity of the polynomial pM over all rational
points in the standard simplex with given denominator r and letting r grow.
This is made explicit in [Yil12] and goes back to earlier work on how to de-
sign tractable approximations for quadratic optimization problems over the
standard simplex [BdK02, dKP02] and more general polynomial optimization
problems [dKLP06]. More precisely, for an integer r ≥ 1, define the sets

∆(n, r) = {x ∈ ∆n : rx ∈ Zn}, ∆̃(n, r) =
r⋃

s=1

∆(n, s)

where we restrict to rational points in ∆n with given denominators. The sets
∆̃(n, r) are nested within the standard simplex: ∆̃(n, r) ⊆ ∆̃(n, r + 1) ⊆ ∆n.
Following Yildirim [Yil12], we define the cone:

On
r = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ ∆̃(n, r)}

and its dual cone On∗
r , which is the conic hull of all matrices of the form vvT

for some v ∈ ∆̃(n, r). By construction, the cones On
r form a hierarchy of outer

approximations for COPn and their dual cones form a hierarchy of inner ap-
proximations for CPn:

COPn ⊆ On
r+1 ⊆ On

r and On∗
r ⊆ On∗

r+1 ⊆ CPn.

4.5.1. THEOREM (YILDIRIM [YIL12]). We have: COPn =
⋂

r≥1On
r . Moreover,

we have the inclusions int(CPn) ⊆ ⋃r≥1On∗
r ⊆ CPn and cl(

⋃
r≥1On∗

r ) = CPn.



4.5. Polyhedral approximations of the completely positive semidefinite cone 51

4.5.2 The new polyhedral approximations

We introduce the cones Cn
r , which will form a hierarchy of inner approxima-

tions for the cone CSn
+, and the cones Dn

r , which will form a hierarchy of outer
approximations for the dual cone CSn∗

+ . These cones are in fact dual to each
other, so it suffices to define the cones Dn

r . The idea is simple and analogous
to the one used in the classical (scalar) case: instead of requiring trace nonneg-
ativity of the polynomial pM over the full set

⋃
d≥1(Sd

+)
n, we only ask trace

nonnegativity over specific finite subsets. We start with defining the set

∆n = {X = (X1, . . . , Xn) ∈
⋃

d≥1

(Sd
+)

n :
n

∑
i=1

Tr(Xi) = 1}, (4.4)

which can be seen as a dimension-free matrix analog of the standard sim-
plex ∆n in Rn. Next we observe that a matrix M belongs to CSn∗

+ if and only if
its associated polynomial pM is trace nonnegative over all n-tuples of rational
matrices in ∆n.

4.5.2. LEMMA. For M ∈ Sn the following assertions are equivalent:

(i) M ∈ CSn∗
+ , i.e., Tr(pM(X)) ≥ 0 for all X ∈ ⋃d≥1(Sd

+)
n.

(ii) Tr(pM(X)) ≥ 0 for all X ∈ ∆n.

(iii) Tr(pM(X)) ≥ 0 for all X = (X1, . . . , Xn) ∈ ∆n with X1 � 0, . . . , Xn � 0.

(iv) Tr(pM(X)) ≥ 0 for all X = (X1, . . . , Xn) ∈ ∆n with X1 � 0, . . . , Xn � 0
and with rational entries.

(v) Tr(pM(X)) ≥ 0 for all X ∈ ∆n with rational entries.

PROOF: The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv), (i) =⇒ (v) and
(v) =⇒ (iv) are clear. We show that (iv) =⇒ (iii) =⇒ (ii) =⇒ (i).

Implication (ii) =⇒ (i) follows by scaling. Indeed, take X ∈ (Sd
+)

n with
λ = ∑

n
i=1 Tr(Xi) > 0 (else X is identically zero and Tr(pM(X)) = 0). Then we

have X/λ ∈ ∆n and thus Tr(pM(X/λ)) ≥ 0, which implies Tr(pM(X)) ≥ 0.
The remaining implications follow using continuity arguments. Namely,

for (iv) =⇒ (iii), use the fact that the set of rational positive definite matri-
ces is dense within the set of positive definite matrices. For (iii) =⇒ (ii),
use that the set of positive definite matrices is dense within the set of positive
semidefinite matrices (Theorem 2.2.1 (ii)). �

This motivates introducing the subset ∆(n, r) of the set ∆n obtained by con-
sidering only n-tuples of rational positive semidefinite matrices with denomi-
nator at most r. This set can be seen as a matrix analog of the rational grid point
subsets of the standard simplex ∆n and it permits to define the new cones Dn

r .
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4.5.3. DEFINITION. Given an integer r ∈ N, define the set

∆(n, r) = {X ∈ ∆n : each Xi has rational entries with denominator ≤ r}

and define the cone

Dn
r = {M ∈ Sn : Tr(pM(X)) ≥ 0 ∀X ∈ ∆(n, r)}.

Next we show that Dn
r is a polyhedral cone. Notice that the set ∆(n, r) is not

finite as there is no bound on the dimension of the matrices in ∆n. However, in
the next lemma we observe that, without loss of generality, we can replace in
the definition of Dn

r the set ∆(n, r) by its subset ∆(n, r), obtained by restricting
to r× r matrices X1, . . . , Xn.

4.5.4. LEMMA. Define the set

∆(n, r) = {X ∈ (S r
+)

n ∩∆n : each Xi has rational entries with denominator ≤ r}.

Then, the following identity holds:

Dn
r = {M ∈ Sn : Tr(pM(X)) ≥ 0 ∀X ∈ ∆(n, r)}.

PROOF: The inclusion “⊇” is clear since ∆(n, r) ⊆ ∆(n, r).
To prove the reverse inclusion, take a matrix M such that Tr(pM(X)) ≥ 0

for all X ∈ ∆(n, r). Consider a n-tuple X = (X1, . . . , Xn) ∈ ∆(n, r), we show
that Tr(pM(X)) ≥ 0. By assumption, the matrices X1, . . . , Xn are rational with
denominator at most r, ∑

n
i=1 Tr(Xi) = 1 and X1, . . . , Xn ∈ Sd

+ with d > r (else
there is nothing to prove). For each i ∈ [n], set Ii = {k ∈ [d] : Xi(k, k) 6= 0}
and notice that Tr(Xi) ≥ |Ii|/r (since each diagonal entry Xi(k, k) indexed by
k ∈ Ii is at least 1/r). Hence we have 1 = ∑

n
i=1 Tr(Xi) ≥ ∑

n
i=1 |Ii|/r, implying

∑
n
i=1 |Ii| ≤ r. Then we can find a set I that contains

⋃
i∈[n] Ii and with cardinality

|I| = r. As each matrix Xi has zero entries outside of its principal submatrix
Xi[I] indexed by I, then Tr(pM(X1, . . . , Xn)) = Tr(pM(X1[I], . . . , Xn[I])) ≥ 0,
where the last inequality follows from the fact that (X1[I], . . . , Xn[I]) belongs
to the set ∆(n, r). �

The cardinality of the set ∆(n, r) is clearly finite. Moreover, in the following
lemma we provide a simple upper bound on the cardinality of ∆(n, r).

4.5.5. LEMMA. For any fixed r, the cardinality of the set ∆(n, r) is polynomial in
terms of n. More precisely, let γr denote the number of r × r positive semidefinite
matrices whose entries are rational with denominator at most r and whose trace is at
most one. Then, |∆(n, r)| ≤ (γr)r if n ≤ r, and |∆(n, r)| ≤ (n

r)(γr)r if n > r.
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PROOF: Consider an n-tuple of matrices whose sum of the traces is equal to
one and whose entries are rational with denominator at most r. Clearly only
at most r of them can be a nonzero matrix. Using this simple observation the
statement of the lemma becomes straightforward. �

Notice that the simple identity Tr(pM(X)) = ∑i, j Mi j〈Xi, X j〉 holds for any
X = (X1, . . . , Xn). Therefore, the cone Dn

r can be equivalently defined as
the set of matrices M ∈ Sn satisfying the finitely many linear inequalities:
∑

n
i, j=1 Mi j〈Xi, X j〉 ≥ 0 for all (X1, . . . , Xn) ∈ ∆(n, r). This implies the following

corollary.

4.5.6. COROLLARY. The cone Dn
r is polyhedral.

As ∆(n, r) ⊆ ∆(n, r + 1) ⊆ ∆n, the sets Dn
r form a hierarchy of outer approxi-

mations for CSn∗
+ :

CSn∗
+ ⊆ Dn

r+1 ⊆ Dn
r ⊆ · · · ⊆ Dn

1 .

Hence, CSn∗
+ ⊆

⋂
r≥1Dn

r . In fact, as a direct application of the equivalence
between (i) and (v) in Lemma 4.5.2, equality holds. The proof of the next
theorem is thus omitted.

4.5.7. THEOREM. The identity CSn∗
+ =

⋂
r≥1Dn

r holds.

The following property of the cones Dn
r will be useful.

4.5.8. LEMMA. Consider a sequence of matrices (Mr)r≥1 in Sn converging to a ma-
trix M ∈ Sn. If Mr ∈ Dn

r for all r ∈ N, then M ∈ CSn∗
+ .

PROOF: By Lemma 4.5.2, it suffices to show that Tr(pM(X)) ≥ 0 whenever
X ∈ ∆n is rational valued. Fix a rational valued X ∈ ∆n with, say, X ∈ (Sd

+)
n

and all entries have denominator at most t. Then, for all r ≥ r0 = max{d, t},
we have X ∈ ∆(n, r). Hence Tr(pMr(X)) ≥ 0 for all Mr with r ≥ r0. When r
tends to infinity, Tr(pMr(X)) tends to Tr(pM(X)) and thus Tr(pM(X)) ≥ 0. �

We turn to the description of the dual cone Cn
r = Dn∗

r . As a direct appli-
cation of Lemma 4.5.4, we derive that Cn

r is the set of conic combinations of
matrices which have a Gram representation by matrices in ∆(n, r); i.e.,

Cn
r = cone{A ∈ Sn : A = (〈Xi, X j〉)n

i, j=1 for some X ∈ ∆(n, r)}.

By construction, the cones Cn
r are polyhedral and they form a hierarchy of inner

approximations of CSn
+: Cn

1 ⊆ · · · ⊆ Cn
r ⊆ Cn

r+1 ⊆ CSn
+. Moreover, strict

inclusion holds.

4.5.9. LEMMA. We have: Cn
r ( Cn

r+1 ( CSn
+ for any n ≥ 2 and r ≥ 1.
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PROOF: We only need to prove that each inclusion is strict. It suffices to show
this for n = 2 since one can extend a matrix A in C2

r to a matrix in Cn
r by adding

a border of zeros, and similarly for CS+. For this, we consider a rank 1 ma-
trix A = vvT, where v = (1 a)T and a is a nonnegative scalar. Then A ∈ CS2

+.
If we choose a to be an irrational number, A cannot belong to any cone C2

r , and
if we choose a = 1/(r + 1), A belongs to C2

r+1 but not to C2
r . �

We show that the union of the cones Cn
r covers the interior of CSn

+.

4.5.10. THEOREM. We have the inclusions: int(CSn
+) ⊆

⋃
r≥1 Cn

r ⊆ CSn
+.

PROOF: We only have to show: int(CSn
+) ⊆

⋃
r≥1 Cn

r . For a contradiction, let A
be a matrix in the interior of the cone CSn

+ and assume that A does not belong
to
⋃

r≥1 Cn
r . Then, for each r ≥ 1, there exists a hyperplane strictly separating A

from the (closed convex) cone Cn
r . That is, there exists a matrix Mr ∈ Dn

r such
that 〈Mr, A〉 < 0 and ‖Mr‖F = 1. Since all matrices Mr lie in a compact set, the
sequence (Mr)r admits a converging subsequence (Mri)i≥1 which converges to
a matrix M ∈ Sn. By Lemma 4.5.8 we know that the matrix M belongs to the
cone CSn∗

+ and thus 〈A, M〉 ≥ 0. On the other hand, as 〈A, Mri〉 < 0 for all
the indexes i, by taking the limit as i tends to infinity, we get that 〈A, M〉 ≤ 0.
Hence we obtain 〈A, M〉 = 0, which contradicts the assumption that A lies in
the interior of CSn

+. �

It is easy to give an explicit description of the cones Cn
r for small r. For

example, Cn
1 is the set of n × n diagonal nonnegative matrices and Cn

2 is the
convex hull of the matrices Eii and Eii + Ei j + E j j (for i, j ∈ [n]), where Ei j
denote the elementary matrices in Sn.

4.6 The closure of the completely positive semidef-
inite cone

One of the most interesting, but hard, open questions regarding the completely
positive semidefinite cone is whether it is closed. We make a small progress
by giving an alternative description of the closure of CS+ using the tracial
ultraproduct of matrix algebras Rk×k. More precisely, cl(CS+) consists of the
symmetric matrices having a Gram representation by positive operators which
belong to the mentioned tracial ultraproduct. This ultraproduct is an algebra
of bounded operators on an infinite dimensional Hilbert space.

Before introducing tracial ultraproducts, we observe an easier connection
between the closure of CS+ and Gram matrices of operators on infinite dimen-
sional Hilbert spaces. Let SN denote the set of all infinite symmetric matri-
ces X = (Xi j)i, j≥1 with finite norm: ∑i, j≥1 X2

i j < ∞. Thus SN is a Hilbert space,
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equipped with the inner product 〈X, Y〉 = ∑i, j≥1 Xi jYi j. A matrix X ∈ SN
is called positive semidefinite if all its finite principal submatrices are positive
semidefinite, i.e., X[I] ∈ S |I|+ for all finite subsets I ⊆ N, and let SN+ denote
the set of all positive semidefinite matrices in SN. Finally, let CSn∞+ denote the
set of matrices A ∈ Sn having a Gram representation by elements of SN+. As
for CSn

+, one can verify that CSn∞+ is a convex cone. Moreover, we can show
the following relationships between these two cones.

4.6.1. THEOREM. We have: CSn
+ ⊆ CSn∞+ ⊆ cl(CSn∞+) = cl(CSn

+).

PROOF: The inclusion CSn
+ ⊆ CSn∞+ is clear. Indeed, any matrix X ∈ Sd

+ can
be viewed as an element of SN+ by adding zero entries.

Next we prove the inclusion: CSn∞+ ⊆ cl(CSn
+). For this, let A ∈ CSn∞+ and

X1, . . . , Xn ∈ SN+ be its Gram representation; i.e., Ai j = 〈Xi, X j〉 for i, j ∈ [n].
For any ` ∈ N and i ∈ [n], let X`

i = Xi[{1, . . . , `}] be the ` × ` upper left
principal submatrix of Xi and let X̃`

i ∈ SN be the infinite matrix obtained by
adding zero entries to X`

i . Thus, X`
i ∈ S`+ and X̃`

i ∈ SN+. Now, let A` denote
the Gram matrix of X`

1, . . . , X`
n, so that A` ∈ CSn

+. We claim that the sequence
(A`)`≥1 converges to A as ` tends to infinity, which shows that A ∈ cl(CSn

+).
Indeed, for any i, j ∈ [n] and ` ∈ N, we have:

|Ai j − A`
i j| = |〈Xi, X j〉 − 〈X`

i , X`
j 〉|

≤ |〈Xi − X̃`
i , X j〉|+ |〈X̃`

i , X j − X̃`
j 〉|

≤ ‖Xi − X̃`
i ‖F‖X j‖F + ‖X̃`

i ‖F‖X j − X̃`
j‖F

using the Cauchy-Schwarz inequality in the last step. Clearly, we have that
‖X̃`

i ‖F ≤ ‖Xi‖F =
√

Aii for all ` ∈ N and i ∈ [n]. Hence lim`→∞ |Ai j− A`
i j| = 0

for all i, j ∈ [n], concluding the proof.
Taking the closure in the inclusions: CSn

+ ⊆ CSn∞+ ⊆ cl(CSn
+), we conclude

that cl(CSn∞+) = cl(CSn
+) holds. �

4.6.1 Preliminaries

Let A be a (Banach) algebra. A subalgebra A′ of A is a subset A′ ⊆ A closed
under the algebra’s operations. The subalgebra A′ is said to be unital if it
contains a unit I (i.e., an identity element) and I is also the unit of the original
algebraA. The center of an algebraA is the set of all elements ofA commuting
with every element in the algebra. A subset I ⊂ A is called a two-sided ideal
if I is a subspace and ai, ia ∈ A whenever a ∈ A and i ∈ I . An ideal I is said
to be maximal if the existence of an ideal J containing I (i.e., J ⊇ I) implies
that either J = I or J = A. Every maximal ideal is closed.
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Let Mk = Rk×k denote the matrix algebra of all k × k real matrices. We
assume that eachMk is endowed with the normalized trace trk =

1
k Tr (if clear

from the context, we may omit the dimension and simply write tr) and the
corresponding inner product, so that ‖I‖2

2 = tr(I) = 1 where I is the identity
matrix. For T ∈ Mk, ‖T‖op denotes its operator norm and ‖T‖2 its L2-norm.
They satisfy the inequality: ‖ST‖2 ≤ ‖S‖op ‖T‖2 for S, T ∈ Mk. This, in
particular, implies that ‖S‖2 ≤ ‖S‖op holds for any S ∈ Mk.

We denote by B(H) the (Banach) algebra of bounded linear operators on a
Hilbert spaceH. This is endowed with an involution ∗, which maps an opera-
tor T to its adjoint T∗. An operator T ∈ B(H) is self-adjoint if T∗ = T. The op-
erator norm of an element T ∈ B(H) is ‖T‖op = sup{‖Tx‖ : x ∈ H, ‖x‖ ≤ 1}.
The algebra B(H) satisfies the identity ‖T∗T‖op = ‖T‖2

op for all T ∈ B(H),
i.e., B(H) is a C∗-algebra. The positive operators of B(H) are exactly the
squares of (symmetric) operators.

A von Neumann algebra N is a unital ∗-subalgebra (i.e., a subalgebra closed
under the involution ∗) of the algebra B(H) that is closed in the weak oper-
ator topology. The weak operator topology on B(H) is the weakest topology
for which the map B(H) → C that sends T 7→ 〈Tx, y〉 is continuous for any
x, y ∈ H. In other words, a sequence (Tk)k∈N ∈ B(H) converges to T ∈ B(H)
if, for any x, y ∈ H, the sequence (〈Tkx, y〉)k∈N converges to 〈Tx, y〉 as k tends
to infinity.

A tracial state (or trace) τ on a von Neumann algebra N is a linear map
τ : N → C satisfying: (i) τ(I) = 1; (ii) τ(T) ≥ 0 for all positive T ∈ N ; and
(iii) τ(TU) = τ(UT) for any T, U ∈ N . The tracial state τ is said to be normal
if τ(T∗T) = 0 implies T = 0, and to be faithful if τ is continuous on the unit
ball of N with respect to the weak operator topology.

4.6.2 Tracial ultraproducts

Tracial ultraproducts of matrix algebras, or more generally of finite von Neu-
mann algebras, are an adapted version of classical ultraproducts from model
theory. Their construction is a standard technique in von Neumann algebras
(see e.g. the appendix of the book of Brown and Ozawa [BO08]). One usually
considers complex Hilbert spaces but the construction works similarly over
real Hilbert spaces. Alternatively, one can use the complex construction and
‘realify’ the resulting algebra afterwards, see for instance [ARU97, Li03]. Ultra-
products are constructions with respect to an ultrafilter. Here we only consider
ultrafilters on the natural numbers N. Recall that P(N) is the collection of all
subsets of N.

4.6.2. DEFINITION. An ultrafilter on the set N is a subset U ⊆ P(N) satisfying
the conditions: (i) ∅ /∈ U ; (ii) if A ⊆ B ⊆ N and A ∈ U then B ∈ U ; (iii) if



4.6. The closure of the completely positive semidefinite cone 57

A, B ∈ U then A ∩ B ∈ U ; (iv) for every A ∈ P(N) either A ∈ U or N \ A ∈ U .

Combining (i) and (iii) in Definition 4.6.2, any two elements in U must have
nonempty intersection. This allows only two kinds of ultrafilters: either all
elements of U contains a common element n0 ∈ N or U contains the cofinite
sets of N. We are only interested in the second kind of ultrafilters, which are
called free ultrafilters. For a given free ultrafilter U on N, we define the ultralimit
limU ak of a bounded sequence (ak)k∈N of real numbers as follows:

lim
U

ak = a if Iε ∈ U for all ε > 0, where Iε = {k ∈ N : |ak − a| < ε}.

4.6.3. REMARK. For any fixed ultrafilter, the ultralimit of any bounded sequence
of real numbers is unique.

4.6.4. EXAMPLE. Let U be a non-free ultrafilter; i.e., U = {A ∈ P(N) : k0 ∈ A}
for some k0 ∈ N. Then, limU ak = ak0 for any sequence (ak)k∈N ⊆ R.

4.6.5. EXAMPLE. Let U be a free ultrafilter, then the ultralimit of a bounded
sequence (ak)k∈N ⊆ R is one of its accumulation points.

Consider the sequence ak = (−1)k for all k ∈ N. This has two accumulation
points and both can be attained as an ultralimit depending on the choice of the
ultrafilter U . By conditions (iii) and (iv) in Definition 4.6.2, we know that any
ultrafilter contains either the set 2N of even numbers or its complement, but
not both. Hence, there is an ultrafilter U , which contains 2N, with limU ak = 1
and an ultrafilter U ′, containing the odd numbers 2N+ 1, with limU ′ ak = −1.

Next we use ultralimits to construct the tracial ultraproduct of a sequence
(Mdk

)k∈N of matrix algebras for some dk ∈ N. Here we consider the full
sequence (Mk)k∈N, but the same construction would work for the sequence
(Mdk

)k∈N. We define the C∗-algebra

`∞(N, (Mk)k) = {(Tk)k∈N ∈ ∏
k∈N
Mk : sup

k∈N
‖Tk‖op < ∞}.

Every free ultrafilter U on N defines a two-sided ideal of `∞(N, (Mk)k)

IU = {(Tk)k∈N ∈ `∞(N, (Mk)k) : lim
U
‖Tk‖2 = 0},

which is well-defined as sequences in `∞(N, (Mk)k) are also bounded in the
Hilbert-Schmidt norm. The ideal IU is maximal and thus closed. The quotient
algebra

MU = `∞(N, (Mk)k)/IU
is called the tracial ultraproduct of (Mk)k along U . One can check that the map

τU :MU → R, (Tk)k∈N + IU 7→ lim
U

trk(Tk)

defines a tracial state onMU . In fact,MU is a finite von Neumann algebra of
type II1 (see definition below). In particular, MU is a subalgebra of bounded
operators on an infinite dimensional Hilbert space.
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4.6.3 Von Neumann algebras and Connes’ embedding prob-
lem

We give a short overview of the needed concepts; we refer the reader to the
book of Takesaki [Tak03] for details. A von Neumann algebra N is a unital
∗- subalgebra of the algebra B(H) of bounded operators on a Hilbert space H
that is closed in the weak operator topology. A factor is a von Neumann alge-
bra with trivial center (i.e., the center contains only the scalar multiples of the
identity I). Every von Neumann algebra on a separable Hilbert space is iso-
morphic to a direct integral of factors (the appropriate analog of matrix block
decomposition).

A factor F is finite if it possesses a normal faithful tracial state τ : F → C.
This tracial state τ is unique and gives rise to the Hilbert-Schmidt norm on F
given by ‖T‖2

2 = τ(T∗T) for T ∈ F . A von Neumann algebra is finite if it
decomposes into finite factors. Every finite von Neumann algebra comes with
a trace, which might not be unique.

Von Neumann algebras can be classified into two types depending on the
behavior of their projections (i.e., the elements P ∈ N satisfying P = P∗ = P2).
If for a given finite factor F with trace τ the range of τ over all projections
P ∈ F is discrete, then F is of type I. A von Neumann algebra is of type I
if it consists only of type I factors. Any finite type I von Neumann algebra is
isomorphic to a matrix algebra over C. The only other possibility for a finite
factor is that τ maps projections (surjectively) onto [0, 1]. Those are II1 factors,
and a von Neumann algebra is of type II1 if it is finite and contains at least one
II1 factor.

Connes’ embedding problem asks to what extent II1 factors are close to
matrix algebras. Murray and von Neumann [MvN36] showed that there is a
unique II1 factorRwhich contains an ascending sequence of finite-dimensional
von Neumann subalgebras (i.e., matrix algebras) with dense union. This fac-
torR is called the hyperfinite II1 factor. There are several constructions ofR, one
is as infinite tensor product

⊗
n∈NM2(C) of the von Neumann algebras M2(C),

which is the weak closure of the algebraic tensor product
⊗

n∈N M2(C). In fact,
any infinite countable sequence of matrix algebras will do.

Connes [Con76] conjectured that all separable II1 factors embed (in a trace-
preserving way) into an ultrapower RU of the hyperfinite II1 factor R, where
the ultrapowerRU is the ultraproduct `∞(N, (R)k)/IU . AsR contains ascend-
ing sequences of matrix algebras with dense union, any matrix algebraMk em-
beds intoR. One can extend these embeddings ofMk intoR to an embedding
of the tracial ultraproductMU into RU (using a more general construction of
ultralimits). Therefore, the finite von Neumann algebra MU satisfies Connes’
embedding conjecture.

This conjecture is equivalent to a huge variety of other important conjec-
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tures in e.g. operator theory, noncommutative real algebraic geometry and
quantum information theory. In particular, we have already mentioned that it
is equivalent to Conjecture 4.3.5 and to deciding whether cl(Q) = Qc holds.

For an alternative description of cl(CS+) in the case that Connes’ embed-
ding conjecture holds true, we will use the following result on finite von Neu-
mann algebras which embed into RU (for a proof see e.g. [CD08]). The claim
is that tracial moments of an embeddable finite factor can be approximated up
to arbitrary precision by matricial tracial moments.

4.6.6. PROPOSITION (COLLINS AND DYKEMA [CD08]). Let (F , τ) be a II1 fac-
tor which embeds into RU for some free ultrafilter U . Then F has matricial mi-
crostates, i.e., for any n ∈ N and given self-adjoint T1, . . . , Tn ∈ F the following
holds: for every k ∈ N and ε > 0 there exist d ∈ N and B1, . . . , Bn ∈ Sd such that

|τ(Ti1 · · · Tit)− trd(Bi1 . . . Bit))| < ε for all i1, . . . , it ∈ [n], t ≤ k.

4.6.4 Ultraproduct description of the closure of CS+

We define a new cone CSU+ which turns out to be equal to cl(CS+). Fix a free
ultrafilter U on N. Consider the tracial ultraproductMU = `∞(N, (Mk)k)/IU ,
we define

CSn
U+ = {A ∈ Sn

+ : A = (τU (XiX j))
n
i, j=1 for positive X1, . . . , Xn ∈ MU}.

Note that the trace τU is normalized, i.e., τU (I) = 1, whereas we used the (not
normalized) trace Tr in the definition of CS+. Nonetheless, both descriptions
agree up to a rescaling of the Xi’s.

We first show the inclusion: cl(CSn
+) ⊆ CSn

U+. To this end, let A(k) be a se-

quence of matrices in CSn
+ converging to some A ∈ Sn; i.e., limk→∞ A(k)

i j = Ai j

for all i, j ∈ [n]. A priori, for each k, there exist an integer dk and matrices
X(k)

1 , . . . , X(k)
n ∈ Sdk

+ such that A(k) = (tr(X(k)
i X(k)

j ))n
i, j=1. The following tech-

nical lemma says that without loss of generality we can assume dk = k for
all k ∈ N.

4.6.7. LEMMA. Suppose that (Xk)k, (Yk)k ∈ ∏k∈N Sdk
+ are such that the sequence

(trdk
(XkYk))k∈N converges to some γ ∈ R, then there exist (X′k)k, (Y′k)k ∈ ∏k∈N Sk

+
such that trk(X′kY′k) goes to γ as k tends to infinity.

PROOF: By possibly reordering the indices, we can assume that the sequence
(dk)k∈N is monotonically nondecreasing. First, we modify the sequence (Xk)k
in such a way that dk ≤ k holds for all k ∈ N. For this, if there is some k ∈ N
with dk > k we repeat the preceding element Xk−1 exactly dk − k times before
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the element Xk. For instance, suppose X1 ∈ R+ and X2 ∈ S3
+ (i.e., d1 = 1 and

d2 = 3), then we replace the sequence (X1, X2, X3, . . . ) by (X1, X1, X2, X3, . . . ).
The position of Xk is shifted by dk − k to k + dk − k = dk. If k = 1 we sim-
ply add d1 − 1 zero matrices before X1. We apply the same procedure to the
sequence (Yk)k. The new sequence of inner products is obtained from the orig-
inal sequence (trdk

(XkYk))k∈N by replacing each trdk
(XkYk) by dk− k + 1 copies

of it if dk > k, and thus still converges to the limit γ.

Thus, we have that dk ≤ k for all k ∈ N. We set X′k =
√

k
dk
(Xk⊕ 0k−dk

) ∈ Sk
+

and Y′k =
√

k
dk
(Yk ⊕ 0k−dk

) ∈ Sk
+ for every k ∈ N. Therefore we have

trk(X′kY′k) =
1
k
Tr(X′kY′k) =

1
k

k
dk

Tr(XkYk) = trdk
(XkYk)

for every k ∈ N and the final sequence (trk(X′kY′k))k∈N still converges to γ. �

We proceed by showing that the closure of CS+ is a subset of CSU+, using
Remark 4.6.3 together with Lemma 4.6.7.

4.6.8. LEMMA. For any free ultrafilter U on N, we have cl(CSn
+) ⊆ CSn

U+.

PROOF: Take a matrix A ∈ cl(CSn
+), then there exists a sequence of matri-

ces A(k) ∈ CSn
+ converging to A: limk→∞ A(k)

i j = Ai j for all i, j ∈ [n]. For each

k ∈ N, we have A(k) = (tr(X(k)
i X(k)

j ))n
i, j=1 for some positive semidefinite matri-

ces X(k)
1 , . . . , X(k)

n . By Lemma 4.6.7, we can assume that X(k)
1 , . . . , X(k)

n ∈ Sk
+. As

the matrices A(k) are bounded, the matrices X(k)
i are bounded as well. Hence,

the sequence (X(k)
i )k∈N belongs to `∞(N, (Mk)k) and we can consider its im-

age Xi in the tracial ultrapowerMU . By the theorem of Łos (see e.g. [FHS14,
Proposition 4.3] and references therein), the operators Xi are positive since all
the matrices X(k)

i are positive semidefinite. To conclude that A ∈ CSn
U+, we

need to show that A = (τU (XiX j))
n
i, j=1. Observe that, by definition of τU ,

we have τU (XiX j) = limU trk(X(k)
i X(k)

j ) = limU A(k)
i j . On the other hand,

since the sequence (A(k)
i j )k∈N converges to Ai j, by Remark 4.6.3 we have that

limU A(k)
i j = Ai j. This concludes the proof. �

4.6.9. THEOREM. For any free ultrafilter U on N, we have cl(CSn
+) = CSn

U+.

PROOF: In view of Lemma 4.6.8 we only have to show that CSn
U+ ⊆ cl(CSn

+).
Consider a matrix A ∈ CSn

U+, then A = (τU (XiX j))
n
i, j=1 for some positive op-

erators X1, . . . , Xn ∈ MU . As the operators Xi are positive, for any i ∈ [n] there



4.6. The closure of the completely positive semidefinite cone 61

exists a operator Yi ∈ MU such that Xi = Y2
i and each Yi is given by a sequence

of symmetric matrices (Y(k)
i )k∈N ∈ ∏k∈NMk. For s ∈ N, define the index set

Is = {k ∈ N : |τU (Y2
i Y2

j ) − trk((Y
(k)
i )2(Y(k)

j )2)| ≤ 1/s for all i, j ∈ [n]}. By
definition of τU , Is belongs to U and, therefore, is nonempty. For any s ∈ N,
we can thus find an index ks ∈ Is. Hence the operators X(s)

i = (Y(ks)
i )2 belong

to Sks
+ and satisfy∣∣∣τU (XiX j)− trks(X(s)

i X(s)
j )
∣∣∣ < 1

s
for all i, j ∈ [n] and all s ≥ 1. (4.5)

For each s ∈ N, the matrix A(s) = (trks(X(s)
i X(s)

j ))n
i, j=1 belongs to CSn

+ and,

by (4.5), the sequence (A(s))s∈N converges to the matrix A as s tends to infinity.
We deduce that A belongs to the closure of CSn

+. �

We finish this section by giving a possibly alternative description of the
closure of CS+ in the case that Connes’ embedding conjecture holds true.

As shown in Theorem 4.6.1, cl(CS+) contains matrices which have a Gram
representation by some class of positive semidefinite infinite dimensional ma-
trices. The given description of cl(CS+) as CSU+ also involves Gram repre-
sentations by operators on an infinite dimensional Hilbert space. One might
ask for the most general infinite dimensional version of CS+. As we are re-
stricted to operators for which one can define an inner product (or trace), a
decent candidate is the following.

4.6.10. DEFINITION. We define the set

CSn
vN+ = {A ∈ Sn

+ : A = (τN (XiX j))
n
i, j=1 for a finite von Neumann algebra N

with trace τN and some positive X1, . . . , Xn ∈ N},

where we allow any finite von Neumann algebra N (with trace τN ).

Obviously, we have that CSn
+ ⊆ CSn

U+ ⊆ CSn
vN+. Moreover, using the general

theory of tracial ultraproducts of von Neumann algebras (instead of just ma-
trix algebras), one can show with a similar line of reasoning as in Lemma 4.6.8
that CSvN+ is a closed cone. Indeed, take a sequence of matrices A(k) ∈ CSn

vN+
converging to some A ∈ Sn. For each k there exist a finite von Neumann al-
gebra Nk with trace τk and bounded positive operators X(k)

1 , . . . , X(k)
n ∈ Nk

such that A(k) = (τk(X(k)
i X(k)

j ))n
i, j=1. Fixing a free ultrafilter U one can con-

clude that the images Xi of the sequences (X(k)
i )k∈N in the tracial ultraproduct

NU = `∞(N, (Nk)k)/IU of the corresponding finite von Neumann algebras
provide a Gram representation for A in the von Neumann algebra NU . This
implies the following statement.
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4.6.11. THEOREM. CSn
vN+ is a closed cone.

Theorem 4.2.14, due to Frenkel and Weiner [FW14], implies the strict inclu-
sion CSn

vN+ ( Sn
+ ∩Rn×n

+ for any n ≥ 5. Summarizing we have that:

cl(CSn
+) = CSn

U+ ⊆ CSn
vN+ ⊆ Sn

+ ∩Rn×n
+ .

Finally, if Connes’ embedding conjecture is a true statement, the cone CSvN+

coincides with the closure of CS+.

4.6.12. THEOREM. If Connes’ embedding conjecture is true, then cl(CSn
+) = CSn

vN+.

PROOF: We only need to show the inclusion CSvN+ ⊆ cl(CS+). As the line
of reasoning is similar to the one in the proof of Theorem 4.6.9, we only give a
sketch of the proof. Fix a matrix A ∈ CSvN+. Suppose first that Y2

1 , . . . , Y2
n ∈ F

is a Gram representation of A, where F is a finite II1 factor. Since by assump-
tion Connes’ embedding conjecture holds, F embeds into an ultrapower RU
of the hyperfinite II1 factor R for some free ultrafilter U . By Proposition 4.6.6,
we can find, for every k ∈ N, finite dimensional matrices (Y(k)

1 )2, . . . , (Y(k)
n )2

approximating the tracial moments Ai j = τ(Y2
i Y2

j ) for i, j ∈ [n] within a dis-

tance 1/k. The corresponding Gram matrices A(k) of (Y(k)
1 )2, . . . , (Y(k)

n )2 then
belong to CS+ and therefore the limit point limk→∞ A(k) = A lies in cl(CS+).

Consider now the more general case where A ∈ CSvN+ is a Gram matrix
of operators Y2

i in a finite von Neumann algebraN . Then we can use the same
reasoning as in the previous case since any finite von Neumann algebra can be
decomposed into finite factors. �

We conclude with mentioning that a hierarchy of semidefinite outer ap-
proximations of the cone CS+ was recently formulated in [BFS15]. These in
fact also form outer approximations for the larger cone CSvN+.



Chapter 5

Applications of the completely positive
semidefinite cone

While in the previous chapter we presented some theoretical properties of the
completely positive semidefinite cone, here we will see some of its applica-
tions. In Section 5.1, we study the quantum graph parameters as conic feasibil-
ity programs over the cone CS+ and, in Sections 5.2 and 5.3, apply to these
parameters the hierarchies constructed in Sections 4.4 and 4.5, respectively.
Moreover, we will see how to apply the polyhedral hierarchy of Section 4.5 to
general optimization problems over the (closure of the) CS+ cone (Section 5.4)
and to construct an hierarchy of polytopes that form an inner approximation
to the set of bipartite quantum correlations and cover its relative interior (Sec-
tion 5.5).

The content of this chapter is based on the results of two papers: one is joint
work with Monique Laurent [LP15] and the other is joint work with Sabine
Burgdorf and Monique Laurent [BLP15].

5.1 Conic reformulation of quantum graph param-
eters

We show how to use the completely positive semidefinite cone to study the
quantum graph parameters χq(G), χ?(G), αq(G) and α?(G). The idea is to
give an alternative definition of each quantum parameter as a conic feasibility
program over the completely positive semidefinite cone. This will allow us
to make a neat comparison between these quantum parameters, their classical
counterparts and the (appropriate variant of the) Lovász theta number.

For simplicity, we will assume throughout that the graph G has a vertex set
of cardinality |V(G)| = n.

63
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5.1.1 Conic reformulation of the quantum chromatic numbers

We start by reformulating the two quantum variants of the chromatic number
as conic feasibility programs over the completely positive semidefinite cone.
This prospective allows to easily derive lower and upper bounds for both pa-
rameters (Corollary 5.1.8 and Proposition 5.1.10).

The quantum chromatic number χq(G) was introduced in Section 3.3.1. It
roughly corresponds to the minimum number of colors needed for the exis-
tence of a perfect quantum strategy in the graph coloring game.

For the purposes of this chapter, it will be useful to reformulate Defini-
tion 3.3.1 in the following way.

5.1.1. PROPOSITION. For a graph G, χq(G) is the minimum t ∈ N for which there
exist positive semidefinite matrices ρ,ρi

u ∈ Sd
+ for i ∈ [t], u ∈ V(G) (for some d ≥ 1)

satisfying the conditions:

〈ρ,ρ〉 = 1, (5.1)
∑i∈[t] ρi

u = ρ ∀u ∈ V(G), (5.2)

〈ρi
u,ρi

v〉 = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G), (5.3)

〈ρi
u,ρ j

u〉 = 0 ∀i 6= j ∈ [t], ∀u ∈ V(G). (5.4)

PROOF: Suppose there exists d× d projectors Ei
u that satisfy the conditions of

Definition 3.3.1, then the positive semidefinite matrices ρi
u = Ei

u/
√

d, ρ = I/
√

d
form a feasible solution for Proposition 5.1.1.

Conversely, suppose that there exist matrices ρ,ρi
u ∈ Sd

+ satisfying con-
ditions (5.1)-(5.4) of Proposition 5.1.1. Let W ⊆ Rd be the image of ρ and,
similarly, let Wi

u be the image of ρi
u for all i ∈ [t], u ∈ V(G). Then W is the or-

thogonal sum of the subspaces {Wi
u}i∈[t], i.e., W = ⊕i∈[t]Wi

u for all u ∈ V(G),
and therefore the matrices ρi

u are projectors. Suppose for the moment that
W = Rd, then we let Ei

u be the projection from Rd onto Wi
u (for all i ∈ [t],

u ∈ V(G)) and these clearly form a feasible solution for Definition 3.3.1. For
the case where W ⊂ Rd, we let Ei

u be the projection from Rd onto Wi
u for all

i ∈ [t − 1], u ∈ V(G), and Et
u be the projection from Rd onto (⊕i∈[t−1]Wi

u)
T

for all u ∈ V(G). One can easily check that the set of projectors {Ei
u} form a

feasible solution for Definition 3.3.1. �

The parameter χ?(G) arises in the context of an entanglement-assisted com-
munication problem. We refer the reader to Section 8.1 for further details. For
the time being, we will only need to know the following definition.

5.1.2. DEFINITION. [Entangled chromatic number] For a graph G, χ?(G) is the
minimum t ∈ N for which there exist positive semidefinite matrices ρ,ρi

u ∈ Sd
+

for i ∈ [t], u ∈ V(G) (for some d ≥ 1) satisfying the conditions (5.1), (5.2)
and (5.3).
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We can now reformulate both quantum variants of the chromatic number
as conic feasibility problem over the completely positive semidefinite cone.

5.1.3. PROPOSITION. For a graph G, χq(G) is equal to the minimum integer t for

which there exists a matrix A ∈ CS |V(G)|t
+ satisfying the following conditions:

∑i, j∈[t] Aui,v j = 1 ∀u, v ∈ V(G). (C1)

Aui,vi = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G), (O1)
Aui,u j = 0 ∀i 6= j ∈ [t], ∀u ∈ V(G). (O2)

Moreover, the parameter χ?(G) is equal to the minimum integer t for which there
exists a matrix A ∈ CS |V(G)|t

+ satisfying (C1) and (O1).

PROOF: By Proposition 5.1.1, there exist positive semidefinite matrices ρ,ρi
u

for i ∈ [t], u ∈ V(G) satisfying conditions (5.1)-(5.4). Let A be the Gram matrix
of the set {ρi

u}; i.e., Aui,v j = 〈ρi
u,ρ j

v〉 for all i, j ∈ [t] and u, v ∈ V(G). By

construction A ∈ CS |V(G)|t
+ and it satisfies (O1) and (O2). Using (5.1) and (5.2),

we have 1 = 〈ρ,ρ〉 = 〈∑i∈[t] ρi
u, ∑ j∈[t] ρ

j
v〉 = ∑i, j∈[t] Aui,v j for any u, v ∈ V(G),

which shows (C1).
Conversely, suppose that A ∈ CS |V(G)|t

+ satisfies conditions (C1), (O1) and
(O2) and let ρi

u be the positive semidefinite matrices forming a Gram represen-
tation of A. It is clear that both (5.3) and (5.4) hold. Let ρu = ∑i∈[t] ρi

u for any

u ∈ V(G). Then, from (C1) we have that 1 = ∑i, j∈[t]〈ρi
u,ρ j

v〉 = 〈ρu,ρv〉 for all
u, v ∈ V(G), which implies that the positive semidefinite matrices ρu are actu-
ally all equal (see Lemma 2.1.4 for a proof of this simple claim). Thus, also (5.1)
and (5.2) are satisfied and this concludes the proof for the parameter χq(G).

The proof is analogous for χ?(G) and therefore omitted. �

Next we observe that, in Proposition 5.1.3, we can restrict without loss of gen-
erality to solutions that are invariant under the action of the permutation group
Sym(t) (consisting of all permutations of [t] = {1, . . . , t}). We sketch this well-
known symmetry reduction, which has been used in particular for the study
of the chromatic number in [GL08].

Given a matrix A ∈ S |V(G)|t and a permutation π ∈ Sym(t), define the new
matrix π(A) with entries π(A)ui,v j = Auπ(i),vπ( j) for i, j ∈ [t], u, v ∈ V(G), and
the matrix A′ = 1

|Sym(t)| ∑π∈Sym(t) π(A), called the symmetrization of A under
the action of Sym(t). Then, A′ is invariant under the action of Sym(t), i.e.,
π(A′) = A′ for all π ∈ Sym(t), and thus A′ has the following block-form:

X Y . . . Y
Y X . . . Y
...

... . . . ...
Y Y . . . X

 for some X, Y ∈ S |V(G)|. (5.5)
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Notice that the programs described in Proposition 5.1.3 are invariant under
the action of Sym(t); that is, if A is feasible for one of them then any permuta-
tion π(A) is feasible too and thus its symmetrization A′ as well. Therefore both
programs have a feasible solution in block-form (5.5) (assuming one exists).

To prove Proposition 5.1.6 below, we will need the following lemma whose
proof can be found for example in [GL08].

5.1.4. LEMMA. Let A be a t× t block-matrix with the block structure (5.5), having X
as diagonal blocks and Y as off-diagonal blocks, where X, Y ∈ Sk (for some k ≥ 1).
Then, A � 0 if and only if X−Y � 0 and X + (t− 1)Y � 0.

Next we consider again the programs introduced in Proposition 5.1.3 to
reformulate the parameters χq(G) and χ?(G), and we investigate what is their
optimum value when the cone CS+ is replaced by any of the two cones CP
or DNN . For this we will use the following theorem regarding a property of
completely positive matrices. We will apply it in the proof of Proposition 5.1.6

for the choice of B having
(

1 −1
−1 1

)
as its 2× 2 nonzero principal submatrix.

5.1.5. THEOREM (BARIOLI [BAR01]). Let A, B ∈ Sn. Assume that A is a com-
pletely positive matrix, B is positive semidefinite with all its entries equal to zero ex-
cept for a 2× 2 principal submatrix, and that A + B is a nonnegative matrix. Then
the matrix A + B is completely positive.

5.1.6. PROPOSITION. Let G be a graph, t ≥ 1 be an integer, and let K denote the
cone DNN or CP . Consider the following three assertions.

(i) There exists a matrix A ∈ K|V(G)| such that dAuue = t for every u ∈ V(G),
Auv = 0 for all {u, v} ∈ E(G) and A− J � 0.

(ii) There exists a matrix A ∈ K|V(G)|t satisfying the conditions (C1), (O1) and (O2).

(iii) There exists a matrix A ∈ K|V(G)|t satisfying the conditions (C1) and (O1).

Then, (i)⇐⇒ (ii)⇐⇒ (iii) if K = DNN , and (iii)⇐⇒ (ii) =⇒ (i) if K = CP .

PROOF: Note that statement (i) is equivalent to saying that ΘK(G) ≤ t holds.
Assume first K = DNN . We show: (i)⇒ (iii)⇒ (ii)⇒ (i).
(i) ⇒ (iii): Let A be a matrix that satisfies the conditions of (i). By adding

an appopriate nonnegative diagonal matrix to A we can assume that Auu = t
for all u ∈ V(G). Set A′ = A − J ∈ S |V(G)|. Then A′ � 0, A′uu = t − 1 for
all u ∈ V(G) and, for all u 6= v, A′uv = Auv − 1 ≥ −1 with equality when
{u, v} ∈ E(G). Moreover, A′uv ≥ −(t − 1) since A′ � 0 and has diagonal
entries equal to t− 1.
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In the case t = 1, we have A′ = 0, hence G is the empty graph and the
all-ones matrix satisfies (iii). We now assume t ≥ 2. We define the matrices
X̃ = 1

t2 A′, Ỹ = − 1
t2(t−1) A′, X = X̃ + 1

t2 J and Y = Ỹ + 1
t2 J ∈ S |V(G)|. We let

B ∈ S |V(G)|t be the block-matrix as in (5.5) with X as diagonal blocks and Y as
off-diagonal blocks and show that B satisfies (iii).

The constrain (O1) holds by construction and (C1) follows from the simple
observation that tX + t(t− 1)Y = J and thus, for every u, v ∈ V(G), we have
∑i, j∈[t] Bui,v j = tXuv + t(t − 1)Yuv = 1. At last, we argue that B ∈ DNN .
Notice that X, Y ≥ 0 and thus B ≥ 0. Moreover, since X + (t− 1)Y = J/t � 0
and X−Y = A′/t � 0, using Lemma 5.1.4 we deduce that B � 0.

(iii) ⇒ (ii): Let B′ be a feasible matrix for (iii), we construct a new matrix
B satisfying (ii). For this, it suffices to modify each (u, u)-th diagonal block
of B′ in such a way that all its off-diagonal entries become zero. The idea is
simple: move the value of each off-diagonal entry B′ui,u j to the diagonal entry
B′ui,ui. Formally, for i 6= j ∈ [t], define Fi j ∈ S t to be the matrix with entries
Fi j(i j) = Fi j( ji) = −1, Fi j(ii) = Fi j( j j) = 1, and all remaining entries equal
to 0. Clearly, Fi j is positive semidefinite. Moreover, for u ∈ V(G), define the
matrix Fi j

u ∈ S |V(G)|t with Fi j as its (u, u)-th diagonal block and all remaining
entries equal to 0, so that Fi j

u � 0. The new matrix

B = B′ + ∑
u∈V(G)

∑
1≤i< j≤t

B′ui,u jF
i j
u , (5.6)

is entrywise nonnegative, positive semidefinite and satisfies (ii).

(ii) ⇒ (i): Let B ∈ DNN satisfy (ii). Without loss of generality, we can
assume that B has the block-form (5.5). Then, Xuu = 1/t for all u ∈ V(G) by
(C1) together with (O2), Xuv = 0 for {u, v} ∈ E(G) by (O1), and Yuu = 0 for
u ∈ V(G) by (O2). Moreover, we can rewrite (C1) as tXuv + t(t− 1)Yuv = 1 for
all u, v ∈ V(G). The matrix X + (t− 1)Y is nonnegative, all its diagonal entries
are equal to 1/t and, by Lemma 5.1.4, is positive semidefinite. Therefore, for
any u, v ∈ V(G) the (u, v)-th entry of X + (t− 1)Y lies in the interval [0, 1/t].
However, since ∑u,v∈V(G) Xuv + (t− 1)Yuv = |V(G)|2/t, we have that the ma-
trix X + (t− 1)Y must be equal to J/t.

We now construct a matrix A ∈ S |V(G)| satisfying (i). Namely, set A = t2X.
Thus, A ∈ DNN , Auu = t for u ∈ V(G), and Auv = 0 for {u, v} ∈ E(G). We
are left to show that A− J � 0. For this, using the identity X + (t− 1)Y = J/t
we have that A − J = t2X − J = t(t − 1)(X − Y). Positive semidefiniteness
now follows because, due to Lemma 5.1.4, we have X−Y � 0. This concludes
the proof in the case K = DNN .

We now consider the case K = CP . The implication (ii)⇒ (iii) is clear.
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(iii)⇒ (ii): We can mimic the above proof of this implication for theDNN
cone. The only thing to notice is that the new matrix B in (5.6) is completely
positive, which can proved by applying Theorem 5.1.5. Indeed, B′ ∈ CP , each
term B′ui,u jF

i j
u is a positive semidefinite matrix whose entries are all zero except

for a 2 × 2 principal submatrix, and one gets a nonnegative matrix at each
intermediate step of the summation. Hence, Theorem 5.1.5 can be applied at
every step and one can conclude that B ∈ CP .

(ii) ⇒ (i): Again we can mimic the above proof of this implication in the
case of DNN . Indeed, we can assume that there exists a matrix B ∈ CP |V(G)|t

satisfying (ii) and with block-form (5.5), where the block matrices X, Y satisfy
the identity: X + (t− 1)T = J/t. Then, the matrix X = t2 A belongs to CP |V(G)|

and satisfies (i). �

5.1.7. COROLLARY. For any graph G, the minimum integer t for which there exists a
matrix A ∈ K|V(G)|t satisfying the conditions (C1), (O1) and (O2) (or, equivalently,
the conditions (C1) and (O1)) is equal to the parameter dϑ+(G)e when K = DNN
and it is equal to the chromatic number χ(G) when K = CP .

PROOF: In the caseK = DNN , the result follows using Proposition 5.1.6 com-
bined with the program of Definition 3.2.6 defining ϑ+(G).

Consider the case K = CP . In view of Proposition 5.1.6, we know that
the two conditions (ii) and (iii) are equivalent. Let t denote the minimum
integer for which the condition (ii) of Proposition 5.1.6 holds; we show that
χ(G) = t. First, we show that χ(G) ≤ t. Consider a matrix A ∈ CP |V(G)|t

satisfying (ii) which has block-form (5.5) and X, Y denote its diagonal and
off-diagonal blocks, respectively. As in the proof of implication (ii) ⇒ (i)
in Proposition 5.1.6, we can deduce that X − Y � 0, X + (t − 1)Y = J/t
and that Tr(X) = |V(G)|/t. This then implies that Tr(A) = |V(G)| and
〈J, A〉 = |V(G)|2. Now we use the result of Theorem 3.2.2 for computing
the value of α(G�Kt). For this, set A′ = 1

|V(G)|A ∈ CP
|V(G)|t. We see that

A′ satisfies the conditions of the program in Definition 3.2.2 applied to the
graph G�Kt. Indeed the orthogonality conditions (O1) and (O2) correspond
exactly to the edges of the cartesian graph G�Kt. Therefore, we can deduce
that α(G�Kt) ≥ |V(G)|. As the reverse inequality also holds (since G�Kt can
be covered by |V(G)| cliques Kt), we have α(G�Kt) = |V(G)|. Using the re-
duction of Chvátal in Theorem 3.2.1, we can conclude that χ(G) ≤ t.

For the reverse inequality, let χ(G) = s. It is easy to see that G�Ks can
be properly colored with s colors and therefore χ(G�Ks) = s. We construct a
matrix A ∈ CP |V(G)|s satisfying the conditions of (ii), which will imply t ≤ s
and thus conclude the proof. For this, select s subsets S1, . . . , Ss ⊆ V(G�Ks)
which are stable sets in G�Ks and partition the vertex set of G�Ks. Since for
each u ∈ V(G) the collection of vertices {ui}i∈[s] forms a complete graph, each
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set Sk must contain exactly one element from {ui}i∈[s]. In particular, this im-
plies that for any fixed u, v ∈ V(G) and set Sk there exists a unique pair (i, j)
such that ui, v j ∈ Sk. For k ∈ [s], let xk ∈ R|V(G)|s denote the incidence vector
of Sk and define the matrix A = 1

s ∑
s
k=1 xkxT

k . By construction, A ∈ CP |V(G)|s,
Aui,ui = 1/s for all u ∈ V(G), i ∈ [s] and A satisfies conditions (O1) and (O2).
Moreover, ∑i, j∈[s] Aui,v j = ∑

s
k=1 ∑i, j∈[s]

1
s xk(ui)xk(v j) = 1 for all u, v ∈ V(G) by

using the above mentioned property of the sets Sk, that is A also satisfies (C1).
Hence A is feasible for (ii). This concludes the proof. �

As an application we obtain the following ‘sandwich’ inequalities for the quan-
tum variants of the chromatic number.

5.1.8. COROLLARY. For any graph G, dϑ+(G)e ≤ χ?(G) ≤ χq(G) ≤ χ(G).

We further observe that, in Proposition 5.1.6, the implication (i)⇒ (ii) does
not hold when selecting the cone K = CP .

5.1.9. REMARK. By Corollary 5.1.7, the smallest integer t for which there exists
a matrix A ∈ CP |V(G)|t satisfying Proposition 5.1.6 (ii) is equal to the chromatic
number χ(G). On the other hand, as a direct application of Theorem 3.2.3, we
have that the smallest integer t for which there exists a matrix X ∈ CP |V(G)|

satisfying Proposition 5.1.6 (i) is equal to dχf(G)e, where χf(G) is the fractional
chromatic number of G. The inequality dχf(G)e ≤ χ(G) is consistent with the
inequality t ≤ s corresponding to implication (ii)⇒ (i) in Proposition 5.1.6.

Moreover, as we have mentioned in Section 3.2, the parameters dχf(G)e and
χ(G) can differ significantly. Indeed, for the Kneser graph Ka:b where a ≥ 2b,
χf(Ka:b) = a/b and χ(Ka:b) = a − 2b + 2. This shows that the implication
(i)⇒ (ii) does not hold in Proposition 5.1.6 for K = CP .

We conclude with a comparison between the quantum chromatic num-
bers and the generalized theta number ΘCS+(G), obtained by selecting the
cone CS+ in Definition 3.2.7.

5.1.10. PROPOSITION. For any graph G, the following chain of inequalities holds:
dϑ+(G)e ≤ dΘcl(CS+)(G)e ≤ dΘCS+(G)e ≤ χ?(G) ≤ χq(G).

PROOF: Combining the identity ΘDNN (G) = ϑ+(G) (from (3.6)) with the in-
clusions CS+ ⊆ cl(CS+) ⊆ DNN , we obtain the two left most inequalities.
Moreover, the right most inequality derives from Corollary 5.1.8.

For the inequality dΘCS+(G)e ≤ χ?(G), we use the fact that dΘCS+(G)e is
the minimum integer t for which Proposition 5.1.6 (i) holds when selecting
K = CS+, and that χ?(G) is by definition the minimum integer t for which
Proposition 5.1.6 (iii) holds with K = CS+. Therefore, in order to prove that
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dΘCS+(G)e ≤ χ?(G) holds, it suffices to show that Proposition 5.1.6 (iii) im-
plies Proposition 5.1.6 (i) also in the case K = CS+. This is what we do next.

Let B ∈ CS+ satisfy Proposition 5.1.6 (iii) with K = CS+. Again we
may assume without loss of generality that B has the block-form (5.5) with
blocks X, Y. We can use condition (C1) to show that X + (t− 1)Y = J/t, fol-
lowing the same steps as in the proof (ii) ⇒ (i). Next we consider the ma-
trix A = t2X. Then A ∈ CS+, Auv = 0 for every {u, v} ∈ E(G) and A− J � 0.
Since we started with a solution B of (iii) (instead of a solution for (ii)), we can
only derive that Auu ≤ t for any u ∈ V(G). We build a solution A′ by adding
to A a diagonal matrix D with entries Duu = t− Auu ≥ 0 for any u ∈ V(G).
Hence A′ ∈ CS+ and it satisfies all the conditions of Proposition 5.1.6(i). �

5.1.2 Conic reformulation for quantum stability numbers

Analogously to what was done in Section 5.1.1, we reformulate the two quan-
tum stability numbers αq(G) and α?(G) as conic feasibility programs over the
completely positive semidefinite cone and use this to retrieve lower and upper
bounds for those parameters.

In Section 3.3.2 we have introduced the quantum stability number αq(G).
This is the maximum number t such that there exists a perfect quantum strat-
egy that persuades a referee of the existence of a stable set of cardinality t.
Similarly as what we did at the beginning of Section 5.1.1, we reformulate Def-
inition 3.3.4 as follows. We omit the proof since it goes along the same lines as
the one of Proposition 5.1.1.

5.1.11. PROPOSITION (QUANTUM STABILITY NUMBER [MR16]). For a graph G,
αq(G) is the maximum integer t ∈ N for which there exist positive semidefinite ma-
trices ρ,ρu

i ∈ Sd
+ for i ∈ [t], u ∈ V(G) (for some d ≥ 1) satisfying the conditions:

〈ρ,ρ〉 = 1, (5.7)
∑u∈V(G) ρ

u
i = ρ ∀i ∈ [t], (5.8)

〈ρu
i ,ρv

j 〉 = 0 ∀i 6= j ∈ [t], ∀u ' v ∈ V(G), (5.9)

〈ρu
i ,ρv

i 〉 = 0 ∀i ∈ [t], ∀u 6= v ∈ V(G). (5.10)

The parameter α?(G) is useful to study a zero-error communication prob-
lem, which will be explained in Section 6.2. For the purpose of this section, we
only need to know the following definition.

5.1.12. DEFINITION. [Entangled stability number [CLMW10]] For a graph G,
α?(G) is the maximum t ∈ N for which there exist positive semidefinite matri-
ces ρ,ρu

i ∈ Sd
+ for i ∈ [t], u ∈ V(G) (for some d ≥ 1) satisfying the conditions

(5.7), (5.8) and (5.9).
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We can reformulate the two quantum variants αq(G) and α?(G) of the sta-
bility number as conic feasibility programs over the cone CS+. The proof is
omitted since it is easy and along the same lines as the one of Proposition 5.1.3.

5.1.13. PROPOSITION. For a graph G, the parameter αq(G) is equal to the maxi-

mum t ∈ N for which there exists a matrix A ∈ CS |V(G)|t
+ satisfying the conditions:

∑u,v∈V(G) Aui,v j = 1 ∀i, j ∈ [t], (C2)

Aui,v j = 0 ∀i 6= j ∈ [t], ∀u ' v ∈ V(G), (O3)

Aui,vi = 0 ∀i ∈ [t], ∀u 6= v ∈ V(G). (O4)

Moreover, the parameter α?(G) is equal to the maximum integer t for which there
exists a matrix A ∈ CS |V(G)|t

+ satisfying (C2) and (O3).

Next we show an analog of Proposition 5.1.6 for the stability numbers and
prove that when choosing the coneK = CP we find the classical stability num-
ber α(G) while, when using the cone DNN , we find the parameter bϑ′(G)c
(Corollary 5.1.16). For this, we will use Lemma 5.1.14 below.

Given a graph G and an integer t ≥ 1, we introduce the graph Gt which
models the orthogonality conditions (O3), (O4); i.e., its vertex set is V(G)× [t]
and two distinct vertices are adjacent in Gt if i 6= j ∈ [t] and u ' v ∈ V(G), or
if i = j ∈ [t] and u 6= v ∈ V(G).

5.1.14. LEMMA. Let G be a graph and let t ≥ 1 be an integer such that ϑ′(G) ≥ t.
Then, we have ϑ′(Gt) ≥ t.

PROOF: Let X be a matrix which is an optimal solution for the program of
Definition 3.2.6 defining ϑ′(G), that is 〈J, X〉 = ϑ′(G), Tr(X) = 1, Xuv = 0
for all pairs {u, v} ∈ E(G) and X ∈ DNN . Set n = |V(G)| and T = ϑ′(G).
Define the diagonal matrix D ∈ Sn with Duu = Xuu for all u ∈ V and the
matrix M = (T − 1)D⊗ It − (D− X)⊗ (Jt − It) in Snt. Then, M is entrywise
nonnegative, its entries are zero at all the positions corresponding to edges
of Gt, Tr(M) = (T − 1)t, and 〈J, M〉 = (T − 1)t2. Hence, if we can show that
M � 0, then the matrix M̃ = M

t(T−1) is feasible for the program defining ϑ′(Gt)

with 〈J, M̃〉 = t, thus showing the desired inequality ϑ′(Gt) ≥ t.
We now show that M � 0. We may assume that all diagonal entries of X

are positive (else replace X by its principal submatrix having only positive di-
agonal entries). Then, D � 0 and define M′ = (D−1/2 ⊗ It)M(D−1/2 ⊗ It) =

(T − 1)Int − (In − D−1/2XD−1/2)⊗ (Jt − It). It is clear that M � 0 if and only
if M′ � 0, which in turn is equivalent to checking whether all the eigenval-
ues of the matrix Y = (In − D−1/2XD−1/2)⊗ (Jt − It) are at most T − 1. Let
0 ≤ λ1 ≤ . . . ≤ λn denote the eigenvalues of the positive semidefinite matrix
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D−1/2XD−1/2. Then, the eigenvalues of Y are (1− λi)(t− 1) and (1− λi)(−1)
for i ∈ [n]. Clearly, (1− λi)(t− 1) ≤ t− 1 ≤ T − 1 for all i ∈ [n] and thus it
suffices to show that (1− λi)(−1) = λi − 1 ≤ T − 1 for all i ∈ [n] or, equiv-
alently, that λn ≤ T. To this end, notice that since the matrix D−1/2XD−1/2 is
nonnegative, by Perron-Frobenius it admits a nonnegative (unit) eigenvector u
for its largest eigenvalue λn. Define the matrix X′ = D−1/2XD−1/2 ◦ uuT ∈ Sn

(taking the entrywise product). Then, X′ ∈ DNN n, X′uv = 0 if {u, v} ∈ E(G),
Tr(X′) = ‖x‖2

F = 1, and 〈J, X′〉 = uTD−1/2XD−1/2u = λn. As X′ is feasible for
the program defining ϑ′(G), it follows that λn ≤ ϑ′(G) = T. �

5.1.15. PROPOSITION. Let G be a graph, let t ≥ 1 be an integer, and let K denote the
cone DNN or CP . The following statements are equivalent.

(i) There exists a matrix A ∈ K|V(G)| satisfying b〈J, X〉c = t, Tr(X) = 1 and
Xuv = 0 for all {u, v} ∈ E(G).

(ii) There exists a matrix A ∈ K|V(G)|t satisfying the conditions (C2), (O3) and (O4).

(iii) There exists a matrix A ∈ K|V(G)|t satisfying the conditions (C2) and (O3).

PROOF: Notice that statement (i) is equivalent to ϑK(G) ≥ t. We will show
the implications (i)⇒ (iii)⇒ (ii)⇒ (i), starting with the case K = DNN .

(i)⇒ (iii): Assume first t = 1. If (i) holds with t = 1, then by Remark 3.2.8
there exists a matrix A ∈ DNN |V(G)| with Tr(A) = 〈J, A〉 = 1 and therefore
Auv = 0 for all u 6= v ∈ V(G). Thus A satisfies (iii).

Assume now that t ≥ 2. If (i) holds, then ϑ′(G) ≥ t and from Lemma 5.1.14
we can conclude that ϑ′(Gt) ≥ t. Using Remark 3.2.8, we know there exists a
matrix A ∈ S |V(G)|t feasible for the program of Definition 3.2.6 defining ϑ′(Gt)

with value 〈J, A〉 = t. Hence the matrix B = tA ∈ DNN |V(G)|t satisfies
〈J, B〉 = t2, Tr(B) = t and Bui,v j = 0 for all edges {(u, i), (v, j)} of Gt. More-
over, after symmetrization by Sym(t), we can assume that B has the block-
form (5.5), where X is a diagonal matrix and Yuv = 0 for all edges {u, v} of G.
Then, t = Tr(B) = tTr(X) = t〈J, X〉 and t2 = 〈J, B〉 = t〈J, X〉+ t(t− 1)〈J, Y〉.
This implies that Tr(X) = 〈J, X〉 = 〈J, Y〉 = 1 (since t ≥ 2). Then B satisfies
(C2) and therefore (iii).

(iii)⇒ (ii): Assume that B′ satisfies (iii); we construct a new matrix B satis-
fying (ii). Similarly to the proof of implication (iii)⇒ (ii) in Proposition 5.1.6,
it suffices to modify each (i, i)-th diagonal block B′[ii] = (B′ui,vi)u,v∈V(G) of B′ in
such a way that its off-diagonal entries become zero. For any u 6= v ∈ V(G),
define the matrix Fuv ∈ S |V(G)| where the entries Fuv(uv) = Fuv(vu) = −1,
Fuv(uu) = Fuv(vv) = 1 and all remaining entries are zero. Clearly, Fuv � 0.
Moreover, for i ∈ [t], define the matrix Fuv

i ∈ S |V(G)|t with Fuv as its (i, i)-th
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diagonal block and all remaining entries equal to 0, so that Fuv
i � 0. Fix an

arbitrary ordering of the vertices of G. Define the new matrix

B = B′ + ∑
i∈[t]

∑
u<v∈V(G)

B′ui,viF
uv
i . (5.11)

By construction, the sum of entries of the (i, i)-th diagonal block of B is equal
to the sum of entries of the (i, i)-th diagonal block of B′ and thus equal to 1.
The matrix B is entrywise nonnegative and it is a sum of positive semidefinite
matrices. It then follows that B satisfies (ii).

(ii) ⇒ (i): Let B be a matrix satisfying (ii). As B � 0, there exist vectors
yu

i (for u ∈ V(G), i ∈ [t]) forming a Gram representation of B. For any i ∈ [t],
let yi = ∑u∈V(G) yu

i . Using condition (C2), 1 = ∑u,v∈V(G)〈yu
i , yv

j 〉 = 〈yi, y j〉
holds for all i, j ∈ [t], which implies that the vectors yi are all equal. Define the
vectors xu = ∑i∈[t] yu

i for all u ∈ V(G) and let A ∈ S |V(G)| denote their Gram
matrix. Then, A � 0, 〈J, A〉 = ‖∑u∈V(G) ∑

t
i=1 yu

i ‖2 = ‖tyi‖2 = t2, and has trace
Tr(A) = ∑u∈V(G) ‖xu‖2 = ∑i, j∈[t] ∑u∈V(G)〈yu

i , yu
j 〉 = ∑i∈[t] ∑u∈V(G) Bui,ui = t.

Moreover, the entry Auv = 〈xu, xv〉 = ∑i, j∈[t]〈yu
i , yv

j 〉 = ∑i, j∈[t] Bui,v j ≥ 0 for
any u, v ∈ V(G), with equality for {u, v} ∈ E(G). Rescaling the matrix A
by 1/t, we obtain a feasible solution for (i).

We now consider the case K = CP .
(i) ⇒ (iii): Let A be a matrix that satisfies (i). Applying Theorem 3.2.2,

we obtain that α(G) ≥ t. Let S ⊆ V(G) be a stable set of cardinality t. Say,
V(G) = [n] and S = {1, . . . , t}. Define the vector x ∈ Rnt

+ with block-form
x = (e1, . . . , et), where e1, . . . , et are the first t standard unit vectors in Rn.
Define the matrix B′ = xxT which, by construction, belongs to CPnt. One can
easily verify that B′ satisfies (iii).

(iii) ⇒ (ii): We can mimic the above proof of this implication in the case
of the cone DNN . We only need to observe that the new matrix B in (5.11) is
completely positive. This is the case because Theorem 5.1.5 can be applied at
every step of the summation, since one gets a nonnegative matrix at each step.

(ii)⇒ (i): The reasoning is analogous to the above proof of this implication
for DNN . �

As an application, if in Proposition 5.1.13 we replace the cone CS+ by the
cone DNN in the definition of αq(G) or of α?(G), then we obtain the param-
eter bϑ′(G)c; analogously, if we replace the cone CS+ by the cone CP then we
obtainα(G).

5.1.16. COROLLARY. For any graph G, the maximum integer t for which there exists
a matrix X ∈ K|V(G)|t satisfying the conditions (C2), (O3) and (O4) (or, equivalently,
the conditions (C2) and (O3)) is equal to the parameter bϑ′(G)c when K = DNN
and it is equal to the stability numberα(G) when K = CP .
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PROOF: We simply apply Proposition 5.1.15 combined with the program of
Definition 3.2.6 defining ϑ′ when K = DNN and with Theorem 3.2.2 when
K = CP . �

In turn this permits to derive the following ‘sandwich inequalities’ for the
quantum analogs of the stability number.

5.1.17. COROLLARY. For any graph G,α(G) ≤ αq(G) ≤ α?(G) ≤ bϑ′(G)c.

The bound α?(G) ≤ bϑ′(G)c was recently shown, with a different method, by
Cubitt et al. [CMR+14]. The inequalityα(G) ≤ αq(G) can be strict (see [MR16]),
but it is not known whether the other two inequalities can be strict.

Observe that, if one could prove that the two conditions (ii) and (iii) in
Proposition 5.1.15 are equivalent also when setting K = CS+, this would im-
ply the identityαq(G) = α?(G). This would work if we could show an analog
of Theorem 5.1.5 when replacing the condition of being ‘completely positive’
by the condition of being ‘completely positive semidefinite’, since then the rea-
soning used in the proof of Proposition 5.1.15 for the implication (iii) ⇒ (ii)
would extend to the case of CS+. However, the following example shows that
Theorem 5.1.5 does not extend to the cone CS+.

5.1.18. EXAMPLE. Consider the matrix L = M(cos2( 4π
5 ), cos2( 2π

5 )), which was
presented in Example 4.2.5 as an example of a matrix which is completely pos-
itive semidefinite but not completely positive. For i 6= j ∈ [5], let Fi j ∈ S5

+

be the matrix with all zero entries except Fi j
ii = Fi j

j j = 1 and Fi j
i j = Fi j

ji = −1.

Define L′ = L + cos2( 2π
5 )(F13 + F24 + F35 + F14 + F25). This matrix is not

completely positive since its inner product with the Horn matrix is negative:
〈H, L′〉 = 5(1 + 2 cos2( 2π

5 ))− 10 cos2( 4π
5 ) = 5(2−

√
5)/2 < 0. As the support

of L′ is equal to the 5-cycle, we can conclude using Theorem 4.2.9 that L′ is not
completely positive semidefinite.

Therefore, although one starts from a completely positive semidefinite ma-
trix and at each step of the summation nonnegativity is preserved, the final
matrix L′ does not belong to the completely positive semidefinite cone. We
deduce that Theorem 5.1.5 does not extend to the cone CS+.

Finally, we relate the quantum stability numberαq(G) with the generalized
theta number ϑCS+(G), obtained when selecting the cone K = CS+ in Defini-
tion 3.2.7.

5.1.19. PROPOSITION. For any graph G, we have the following chain of inequalities:
αq(G) ≤ bϑCS+(G)c ≤ bϑcl(CS+)(G)c ≤ bϑ′(G)c.
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PROOF: From (3.5), we have the identity ϑDNN (G) = ϑ′(G) which together
with CS+ ⊆ cl(CS+) ⊆ DNN gives ϑCS+(G) ≤ ϑcl(CS+)(G) ≤ ϑ′(G) and thus
the two right most inequalities.

For the inequality αq(G) ≤ bϑCS+(G)c, we revisit the proof of Proposi-
tion 5.1.15. First we observe that the implication (ii) ⇒ (i) remains true in
Proposition 5.1.15 if we select the cone K = CS+. (Indeed, the same proof
applies as in the case K = DNN , except that yu

i are now positive semidef-
inite matrices and we need to use Lemma 2.1.4 to be able to claim that all
the yi are equal.) By definition, αq(G) is the largest integer t for which Propo-
sition 5.1.15 (ii) holds with K = CS+. In turn, by the above, this largest num-
ber is at most the largest integer t for which Proposition 5.1.15 (i) holds with
K = CS+, the latter being equal to bϑCS+(G)c. Thus αq(G) ≤ bϑCS+(G)c
holds. �

We do not know whether ϑCS+(G) also provides an upper bound for α?(G),
since we cannot show that Proposition 5.1.15 (iii) implies Proposition 5.1.15 (i)
when K = CS+. The proof used when K ∈ {DNN , CP} does not extend to
the case K = CS+ since Theorem 5.1.5 does not hold if we consider matrices
in CS+ (as shown in Example 5.1.18).

5.2 Approximations using the set Knc,ε

We show how one can use the convex setsKnc,ε introduced earlier in Section 4.4
to define parameters that approximate the quantum graph parameters. We
give the details only for the quantum chromatic number χq(G), but the same
reasoning can be extended to the other parameters χ?(G),αq(G) andα?(G).

The construction will go as follows. In a first step we reformulate χq(G)
as a single ‘aggregated’ minimization program over an affine section of the
cone CS+. When replacing the cone CS+ by its closure cl(CS+) we get the pa-
rameter χ̃q(G), satisfying χq(G) ≥ χ̃q(G). The second step will consist of writ-
ing the dual of this aggregated conic program over the cone cl(CS+), which
is thus a maximization program over the dual cone CS∗+, and showing that
strong duality holds. Finally, we define new parameters Ψε(G) by replacing in
this dual conic program the cone CS∗+ by the convex sets Knc,ε.

We start with a slightly different conic formulation of the quantum chro-
matic number χq(G) than the one in Proposition 5.1.3. Given a set of positive
semidefinite matrices that satisfies the conditions in Proposition 5.1.1, consider
the matrix A ∈ CS |V(G)|t+1

+ defined as the Gram matrix of the set ρ, {ρi
u} for

u ∈ V(G) and i ∈ [t]. Constructing the matrix in this way allows for the fol-
lowing conic reformulation of χq(G), the proof is omitted as it is equivalent to
the one in Proposition 5.1.3.
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5.2.1. PROPOSITION. For a graph G, χq(G) is equal to the minimum integer t for

which there exists a matrix A ∈ CS |V(G)|t+1
+ (indexed by {0} ∪ V(G) × [t]) satis-

fying the following conditions: (i) A0,0 = 1; (ii) ∑i∈[t] A0,ui = 1 for all u ∈ V(G);
(iii) ∑i, j∈[t] Aui,u j = for all u ∈ V(G); (iv) Aui,vi = 0 for all i ∈ [t], {u, v} ∈ E(G);
and (v) Aui,u j = 0 for all i 6= j ∈ [t], u ∈ V(G).

5.2.2. REMARK. The minimum natural number t for which there exists a matrix
A ∈ DNN |V(G)|t+1 satisfying conditions (i), (ii), (iii), (iv) and (v) of Proposi-
tion 5.2.1 is equal to dϑ+(G)e.

Indeed, consider a matrix A satisfying the above conditions and let x, {xi
u}

(for u ∈ V(G), i ∈ [t]) be its Gram representation. Then, x = ∑i∈[t] xi
u for

any u ∈ V(G), as ‖x− ∑i∈[t] xi
u‖2 = A0,0 − 2 ∑i∈[t] A0,ui − ∑i, j∈[t] Aui,u j = 0.

Therefore, ∑i, j∈[t] Aui,v j = 〈x, x〉 = 1 for any u, v ∈ V(G) and the matrix A′

which has Gram representation {xi
u} (for u ∈ V(G), i ∈ [t]) is a feasible solu-

tion for Proposition 5.1.6 (ii) when K = DNN .
Conversely, take a matrix A ∈ DNN |V(G)|t feasible for Proposition 5.1.6 (ii)

and let {xi
u} (for u ∈ V(G), i ∈ [t]) be its Gram representation. We define

xu = ∑i∈[t] xi
u for any u ∈ V(G). Since ∑i, j∈[t] Aui,v j = 1 for any u, v ∈ V(G),

we derive that the vectors {xu}u∈V(G) are all equal to, say, x. Consider the
matrix A′ which is the Gram of the vectors x, {xi

u} (for u ∈ V(G), i ∈ [t]).
One can easily check that A′ satisfies conditions (i), (ii), (iii), (iv) and (v) of
Proposition 5.2.1. Using Corollary 5.1.7, we then derive the claim.

We define new matrices that are useful to formulate the constraints of Propo-
sition 5.2.1. Let Dt

u ∈ S |V(G)|t+1 (for u ∈ V(G), t ∈ [|V(G)|]) be the matrix with
entries Dt

u(0, 0) = Dt
u(ui, u j) = 1 for all i, j ∈ [t], Dt

u(0, ui) = Dt
u(ui, 0) = −1

for all i ∈ [t] and zero elsewhere, and set Dt = ∑u∈V(G) Dt
u. Observe that each

matrix Dt
u is positive semidefinite (with rank 1). Notice that using Proposi-

tion 5.2.1, χq(G) is equal to the smallest t ∈ N for which there exists a matrix

A ∈ CS |V(G)|t+1
+ satisfying the conditions (i), (iv) and (v) of Proposition 5.2.1

together with 〈Dt, A〉 = 0. We can now reformulate χq(G) as the optimal value
of a single conic optimization program over the cone CS+.

5.2.3. PROPOSITION. Let G be a graph and set n = |V(G)|. The quantum chromatic
number χq(G) is equal to the optimal value of the program:

min ∑t∈[n] tAt
0,0 s.t. At ∈ CSnt+1

+ ∀t ∈ [n],

∑t∈[n] At
0,0 = 1, ∑t∈[n]〈Dt, At〉 = 0,

At
ui,vi = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G), ∀t ∈ [n],

At
ui,u j = 0 ∀i 6= j ∈ [t], ∀u ∈ V(G), ∀t ∈ [n].

(5.12)
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PROOF: Set t = χq(G) and letµ denote the optimal value of the program (5.12).

Let A ∈ CS |V(G)|t+1
+ be a solution for the program from Proposition 5.2.1

defining χq(G). We obtain a solution A1, . . . , An to the program (5.12) by set-
ting At = A and Ai = 0 if i ∈ [n] \ {t}. This shows that µ ≤ t.

Conversely, let A1, . . . , An be a solution for the program (5.12) with value µ̃
and let s be the minimum i ∈ [n] such that Ai

0,0 6= 0. Then, consider the
matrix A = As/As

0,0 which is feasible for the program in Proposition 5.2.1.
We have: t ≤ s = s ∑i∈[n] Ai

0,0 = s ∑i≥s Ai
0,0 ≤ ∑i≥s iAi

0,0 = ∑i∈[n] iAi
0,0 = µ̃.

This shows that t ≤ µ and thus the identity χq(G) = µ holds. Moreover, this
also gives that program (5.12) has indeed an optimal solution, thus justifying
writing ‘min’ rather than ‘inf’ in (5.12). �

5.2.4. REMARK. Ji [Ji13] proved that deciding whether χq(G) ≤ 3 is an NP-
hard problem. Combining this with Proposition 5.2.3 one gets that linear op-
timization over affine sections of the completely positive semidefinite cone is
also an NP-hard problem.

It is convenient to rewrite program (5.12) in a more compact way. For this
set N = ∑

n
t=1(nt + 1), where n = |V(G)|, and define D = ⊕n

t=1Dt ∈ SN. Let
Et

0,ui, Et
ui,v j denote the elementary matrices in Snt+1 and let Ẽt

0,ui, Ẽt
ui,v j denote

their extensions to SN obtained by adding a border of zero entries. Moreover,
set F = ⊕n

t=1tEt
0,0 and F̂ = ⊕n

t=1Et
0,0 ∈ SN. We rewrite the program (5.12) as

χq(G) = min 〈F, A〉 s.t. A ∈ CSN
+ , 〈F̂, A〉 = 1, 〈D, A〉 = 0, (5.13)

〈Ẽt
ui,vi, A〉 = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G), ∀t ∈ [n],

〈Ẽt
ui,u j, A〉 = 0 ∀i 6= j ∈ [t], ∀u ∈ V(G), ∀t ∈ [n].

5.2.5. REMARK. Any feasible solution A of program (5.13) defining χq(G) lies
on the border of the CS+ cone (due to Lemma 4.1.7).

If in the program (5.13) we replace the cone CS+ by its closure cl(CS+), then its
optimal value is equal to χ̃q(G) and we have: χ̃q(G) ≤ χq(G). By Remark 5.2.5
it is not clear whether these two parameters coincide. On the other hand, one
can verify that the result of Proposition 5.2.3 (and its proof) extend to the case
when the cone CS+ is replaced by its closure cl(CS+). Hence, χ̃q(G) can be
equivalently defined by using the program from Proposition 5.2.1 after replac-
ing the cone CS+ by its closure cl(CS+). (Another equivalent formulation
of χ̃q(G) is given in Definition 5.3.1 in the next section.) Using this, Corollary
5.1.7 and the fact that CS+ ⊆ cl(CS+) ⊆ DNN , we get:

dϑ+(G)e ≤ χ̃q(G) ≤ χq(G).
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The dual program of (5.13) reads:

sup λ s.t. M = F− λF̂−µD−∑ yt
u,v,iẼ

t
ui,vi −∑ zt

u,i, jẼ
t
ui,u j ∈ CSN∗

+ , (5.14)

where the variables are λ,µ, yt
u,v,i and zt

u,i, j, the first summation is over t ∈ [n],
i ∈ [t] and {u, v} ∈ E(G), and the second summation is over t ∈ [n], i 6= j ∈ [t]
and u ∈ V(G). Let λq(G) be the optimal value of the program (5.14). By weak
duality, we have: λq(G) ≤ χ̃q(G) ≤ χq(G).

Moreover, the program (5.14) is strictly feasible, hence there is no duality
gap and the optimal value of (5.14) is equal to χ̃q(G). That is, we have that
λq(G) = χ̃q(G) ≤ χq(G). To see that (5.14) is strictly feasible, define the matrix
Mt = (t + n2)Et

0,0 + Dt − ∑u∈V(G) ∑i 6= j∈[t] Et
ui,u j and set M = ⊕n

t=1Mt. Then,

M is feasible for the program (5.14). Moreover, M lies in the interior of CSN∗
+

since M � 0, as Mt � 0 for all t. (Indeed, the entries of Mt are equal to
Mt

0,0 = n + t + n2, Mt
0,ui = −1, Mt

ui,ui = 1 and zero otherwise, and take a
Schur complement, see (2.1), to derive that Mt � 0).

We now introduce the new parameter Ψε(G), which is obtained by replac-
ing in the program (5.14) the cone CS∗+ by the convex set Knc,ε.

5.2.6. DEFINITION. For ε ≥ 0, let Ψε(G) be the optimal value of the program:

sup λ s.t. M = F− λF̂−µD−∑ yt
u,v,iẼ

t
ui,vi −∑ zt

u,i, jẼ
t
ui,u j ∈ Knc,ε. (5.15)

5.2.7. LEMMA. For ε ≥ 0, we have: dϑ+(G)e ≤ Ψε(G), with equality if ε = 0.

PROOF: By Lemma 4.4.3, we have the inclusion DNN ∗ ⊆ Knc,ε, with equality
if ε = 0. Hence the claim will follow if we can show that the optimal value of
the program (5.15), when we replace the setKnc,ε by its subsetDNN ∗, is equal
to dϑ+(G)e .

In other words, let us consider the program (5.14) where we replace the
cone CS∗+ by the coneDNN ∗. Using the same argument as above, we can con-
clude that its optimal value is equal to the optimal value of the program (5.13)
where we replace the cone CS+ by the cone DNN (strong duality holds and
use the fact that the cone DNN is closed).

Next, observe that this latter value (which is equal to the optimal value of
the program (5.12) when we replace CS+ by DNN ) is equal to dϑ+(G)e. This
can be seen by combining Remark 5.2.2 together with the fact that the result of
Proposition 5.2.3 (and its proof) extends to the case when we replace the cone
CS+ by the cone DNN . �

As the sets Knc,ε aim to approximate the dual cone CS∗+, the parameters
Ψε(G) aim to approximate the quantum coloring number χq(G). However,



5.3. Linear programming lower bounds to the quantum graph parameters 79

as there is no apparent inclusion relationship between CS∗+ and Knc,ε, we do
not know the exact relationship between Ψε(G) and χq(G). Moreover, as the
cone CS+ is not known to be closed, there is a possible gap between the two
parameters χq(G) and χ̃q(G). Nevertheless, what we can claim is the following
relationship under Connes’ embedding conjecture.

5.2.8. LEMMA. If Connes’ embedding conjecture is true, then χ̃q(G) ≤ infε>0 Ψε(G).

PROOF: If Connes’ conjecture holds then CS∗+ ⊆ Knc,ε for any ε > 0 (from
Lemma 4.4.2). The result now follows using the definition of Ψε(G) and the
definition of χ̃q(G) as the optimal value of (5.14). �

Finally, we observe that the parameter Ψε(G) can be obtained as the limit
of a sequence of semidefinite programs. For this, recall that M lies in Knc,ε if
the polynomial pM + ε admits a decomposition of the form pM + ε = g + h,
where g = ∑

m0
j=1 f j f ∗j + ∑

n
i=1 ∑

mi
ji=1 g ji(1 − X2

i )g∗ji for some f j, g ji ∈ R〈X〉 and
m0, mi ∈ N, and h is a sum of commutators. Fixing an integer k and restricting
to those decompositions of pM + ε where all terms f j f ∗j and g ji(1 − X2

i )g∗ji
have degree at most 2k, we get a parameter Ψk

ε(G) which can be computed via
a semidefinite program (see e.g. [Bur11] for details). Moreover, Ψk

ε(G) tends to
Ψε(G) as k goes to infinity.

5.3 Linear programming lower bounds to the quan-
tum graph parameters

In this section we apply the polyhedral hierarchy Cn
r defined in Section 4.5.2 to

get linear programming bounds for the quantum graph parameters. We will
show the construction in details for the quantum chromatic number χq(G), but
the same ideas extend also to the parameters χ?(G),αq(G) andα?(G).

In Theorem 4.5.10, we showed that the hierarchy Cn
r asymptotically covers

the full interior of CSn
+. However, from Remark 5.2.5 (or also Lemma 4.1.8) we

know that any feasible solution for χq(G) lies in the border of the CS+ cone.
To ensure the existence of a feasible solution in the interior of the cone CS+
and thus to be able to use the hierarchy, we will relax the affine constraints
defining χq(G) (using a small perturbation). In this way we will be able to get
a hierarchy of parameters that can be computed through linear programming
and give the exact value of χ̃q(G) (see Definition 5.3.1 below). We remark that
this result is existential. We can prove the existence of a linear program permit-
ting to compute the quantum parameter, but we do not know at which stage
this happens. This result should be seen in the light of a recent result of the
same flavor proved by Paulsen et al. [PSS+16]. The authors of [PSS+16] con-
sider yet another variant χqc(G) of the quantum chromatic number (see (3.12)
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in Section 3.3.1 for a definition), satisfying χqc(G) ≤ χq(G), and they show
that χqc(G) can be computed with a positive semidefinite program (also not
explicitly known).

In the same paper, Paulsen et al. [PSS+16] introduced the parameter χqa(G).
Using the same approach we will also show that a variant χ̃qa(G) of the param-
eter χqa(G) can be written as a linear program.

We start by recalling some definitions and by underlining the link among
all the various parameters.

Let At represent the affine space in S |V(G)|t defined by the equations

∑
i, j∈[t]

Aui,v j = 1 for u, v ∈ V(G), (5.16)

and LG,t : S |V(G)|t → R denote the linear map defined by

LG,t(A) = ∑
u∈V(G),i 6= j∈[t]

Aui,u j + ∑
uv∈E(G),i∈[t]

Aui,vi. (5.17)

We can then reformulate the definition of χq(G) in Proposition 5.1.3 as

χq(G) = min t ∈ N s.t. ∃A ∈ CS |V(G)|t
+ , A ∈ At and LG,t(A) = 0.

We introduced the variant χ̃q(G) by replacing the cone CS+ by its closure in
the above definition.

5.3.1. DEFINITION. For a graph G, the parameter χ̃q(G) is defined as follows:

χ̃q(G) = min t ∈ N s.t. ∃A ∈ cl(CS |V(G)|t
+ ), A ∈ At and LG,t(A) = 0,

where At and LG,t are defined by (5.16) and (5.17), respectively.

The parameter χqa(G), which was defined in (3.11), can also be written as
a feasibility program over the affine section of the cone cl(CS+). Indeed, us-
ing (2.6) (see Theorem 5.5.3 for details), we can rewrite the identities (3.10)
and (3.11), which define, respectively, χq(G) and χqa(G), as follows:

χq(G) = min t s.t. ∃P ∈ π(CS2nt
+ ∩ B2nt) with LG,t(P) = 0, and

χqa(G) = min t s.t. ∃P ∈ cl(π(CS2nt
+ ∩ B2nt)) with LG,t(P) = 0.

Analogously to the way we have defined the variant χ̃q(G) of the parame-
ter χq(G), we introduce the variant χ̃qa(G) by replacing CS+ by its closure in
the above definition of χqa(G). Namely,

χ̃qa(G) = min t s.t. ∃P ∈ π(cl(CS2nt
+ ) ∩ B2nt) with LG,t(P) = 0. (5.18)
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Note that the set cl(CS+) ∩ B2nt is bounded and thus compact, so that its pro-
jection π(cl(CS+) ∩ B2nt) is compact too.This is the reason why in (5.18) we
have written P ∈ π(cl(CS2nt

+ ) ∩ B2nt) instead of P ∈ cl(π(cl(CS2nt
+ ) ∩ B2nt)).

The inclusion CS+ ∩ B2nt ⊆ cl(CS+) ∩ B2nt implies:

cl(π(CS+ ∩ B2nt)) ⊆ π(cl(CS+) ∩ B2nt)

and thus the following relationship: χ̃qa(G) ≤ χqa(G).
Note that if a matrix A is feasible for the program of Definition 5.3.1, then

the matrix R =
(

A A
A A

)
is feasible for the program (5.18) defining χ̃qa(G). Hence,

χ̃qa(G) ≤ χ̃q(G) holds.

The relationship among the parameters χq(G), χqc(G), χqa(G) and χ̃qa(G),
χ̃q(G) can be summarized as follows:

χqc(G) ≤ χqa(G) ≤ χq(G)

≤ ≤

χ̃qa(G) ≤ χ̃q(G).

We are ready now to explain how to use the hierarchy Cn
r to build linear

relaxations for the parameters χ̃q(G), χ̃qa(G). We will illustrate the method
for χ̃q(G) but, as it will be mention at the end of the section, a similar approach
can be taken for χ̃qa(G).

A first natural approach is to replace the cone cl(CSnt
+ ) in the definition

of χ̃q(G) by the subcone Cnt
r leading to the parameter

`r(G) = min t ∈ N s.t. ∃A ∈ Cnt
r , A ∈ At and LG,t(A) = 0.

(Recall that throughout we assume |V(G)| = n.) As Cnt
r ⊆ CSnt

+ , we have
χ̃q(G) ≤ χq(G) ≤ `r(G). Moreover, the sequence (`r(G))r∈N of natural num-
bers is monotonically nonincreasing and thus has a limit (it even becomes sta-
tionary). However, it is not clear whether the limit is equal to χq(G). If one
could claim that for t = χq(G) there is a feasible matrix A for Definition 5.3.1
which lies in the interior of CSnt

+ then, by Theorem 4.5.10, A would belong to
some cone Cnt

r which in turn would imply the identity χq(G) = `r(G). But this
idea cannot work because, as observed in Lemma 4.1.8 (see also Lemma 4.1.7),
any matrix feasible for Definition 5.3.1 lies on the boundary of CSnt

+ . To go
around this difficulty, our strategy is to relax the affine constraints in Defini-
tion 5.3.1 so as to allow feasible solutions in the interior of CSnt

+ .
For any integer k ≥ 1, let At

k be the affine space defined by the equations:

| ∑
i, j∈[t]

Aui,v j − 1| ≤ 1
k

for u, v ∈ V(G).
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We define the parameter:

λk(G) = min t s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At

k and LG,t(A) ≤ 1
k

. (5.19)

In a first step we show that λk(G) = χ̃q(G) for k large enough.

5.3.2. LEMMA. For any graph G, there exists k0 ∈ N such that χ̃q(G) = λk(G)
holds for all k ≥ k0.

PROOF: Notice that λk(G) ≤ χ̃q(G) holds for every k ∈ N. Indeed, any ma-
trix solution for χ̃q(G) is also a solution for λk(G). Moreover, as the sequence
(λk(G))k∈N is a monotone nondecreasing sequence of natural numbers upper
bounded by χ̃q(G), there exists a k0 such that λk(G) = λk0(G) for all k ≥ k0.
Let t = λk0(G). For all k ≥ k0, there exists a matrix Ak ∈ cl(CSnt

+ ) with Ak ∈ At
k

and LG,t(Ak) ≤ 1/k. Consider the sequence (Ak)k≥k0 , which is bounded as
all Ak lie in At

k0
. Therefore, the sequence has a converging subsequence to,

say, A where A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0. Hence, A is a feasible

solution for χ̃q(G) and χ̃q(G) ≤ t = λk0(G) = λk(G) for all k ≥ k0. �

In a second step we show that the new parameter λk(G) can be computed
by a linear program. For this we replace in the definition of λk(G) the cone
cl(CSnt

+ ) by the polyhedral cone Cnt
r , leading to the following parameter:

λr
k(G) = min t s.t. ∃A ∈ Cnt

r , A ∈ At
k and LG,t(A) ≤ 1

k
. (5.20)

Notice that this parameter λr
k(G) can be computed through a linear program

since Cnt
r is a polyhedral cone. We will show that for any graph G there exist

integers k0 and r0 such that χ̃q(G) = λ
r0
k0
(G). We emphasize that this is an exis-

tential result: we do not know for which integers k0 and r0 such a convergence
happens. One of the ingredients to prove the result is to show the existence of
a matrix in the interior of CS+ satisfying certain constraints. To this end, we
will use the matrix Z = I + J ∈ Snt where I and J are, respectively, the identity
and the all-ones matrix.

5.3.3. LEMMA. The matrix Z = I + J ∈ Snt lies in the interior of CSnt
+ . Moreover,

we have that ∑i, j∈[t] Zui,u j = t2 + t for all u ∈ V(G), ∑i, j∈[t] Zui,v j = t2 for all
u 6= v ∈ V(G) and LG,t(Z) = nt2 − nt + mt, where m is the number of edges of the
graph G.

PROOF: We only show that I + J lies in the interior of CSnt
+ , the other claims

follow from direct computations. Assume that there exists a matrix M ∈ CSnt∗
+

such that 〈M, I + J〉 = 0, we show that M = 0. Indeed, as both I and J lie
in CSnt

+ we get that Tr(M) = 0 and 〈J, M〉 = 0. Observe that, since M is
copositive with zero diagonal entries, all entries of M must be nonnegative.
Combining this with 〈J, X〉 = 0, we deduce that M is identically zero. �
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5.3.4. THEOREM. For any graph G, there exist integers k0 and r0 ∈ N such that
χ̃q(G) = λr

k(G) for all k ≥ k0 and all r ≥ r0. Moreover λr0
k0
(G), and thus χ̃q(G), can

be computed via a linear program.

PROOF: From Lemma 5.3.2 we know that there exists an integer k0 ∈ N such
that λk(G) = χ̃q(G) for all k ≥ k0. In view of this, we just need to show
that for this k0 there exists an integer r0 ∈ N for which λr0

k0
(G) = λk0(G). Let

t = λk0(G) = χ̃q(G).
By the definitions (5.19) and (5.20) and the inclusion relationships between

the cones Cnt
r , we have that the sequence (λr

k0
)r∈N of natural numbers is non-

increasing and it is lower bounded by λk0(G). Hence there exists an r0 ∈ N
such that λr

k0
(G) = λ

r0
k0
(G) ≥ λk0(G) for all r ≥ r0. We are left to prove that

λ
r0
k0
(G) ≤ λk0(G) = t.
To this end, we show that there exists a matrix Yk0 ∈ int(CSnt

+ ) such that
Yk0 ∈ At

k0
and LG,t(Yk0) ≤ 1/k0. This will suffice since then, by Theorem 4.5.10,

Yk0 ∈ Cnt
r0

for some r0. Therefore, Yk0 satisfies the conditions in program (5.20)
and thus λr0

k0
(G) ≤ t = λk0(G). To show the existence of such a matrix Yk0 , let

A ∈ cl(CSnt
+ ) be a feasible solution for the program of Definition 5.3.1 defining

χ̃q(G) = t and consider the matrix Z = I + J which belongs to int(CSnt
+ ) by

Lemma 5.3.3. Any convex combination Zε = (1−ε)A +εZ (for 0 < ε < 1) lies
in the interior of CSnt

+ . If we can tune ε so that the new matrix Zε satisfies the
conditions in program (5.20), then we can choose Yk0 = Zε and we are done.
We claim that selecting ε = min { 1

k0(t2+t−1) , 1
k0(nt2−nt+2mt)} will do the trick.

Indeed, for suchεwe have Zε ∈ int(CSnt
+ ) and LG,t(Zε) = εLG,t(Z) ≤ 1/k0 (use

Lemma 5.3.3). Moreover, Zε lies in At
k0

since for all u, v ∈ V(G) the following
holds ∣∣ ∑

i, j∈[t]
Zε(ui, v j)− 1

∣∣ =
∣∣(1−ε) +ε ∑

i, j∈[t]
Zui,v j − 1

∣∣
≤

∣∣−ε+ε ∑
i, j∈[t]

Zui,u j
∣∣ = ∣∣ε(t2 + t− 1)

∣∣ ≤ 1
k0

.

Summarizing, from Lemma 5.3.2 we know that there exists an integer k0 ∈ N
such that λk0(G) = χ̃q(G) and we just proved that for this k0 there exists an
integer r0 ∈ N with the property that λr0

k0
(G) = λk0(G) = χ̃q(G). �

The same result holds for the parameter χ̃qa(G) introduced in (5.18). For
clarity we rewrite its definition in the following form:

χ̃qa(G) = min t ∈ N s.t. ∃A ∈ cl(CS2nt
+ ), A ∈ B2nt with LG,t(π(A)) = 0.

This parameter is quite similar to χ̃q(G), the only differences being that we now
work with matrices A of size 2nt (instead of nt) lying in the affine space B2nt



84 Chapter 5. Applications of the completely positive semidefinite cone

(instead of At) and satisfying LG,t(π(A)) = 0 (instead of LG,t(A) = 0). In
analogy to the parameter λk(G) we can define the parameter Λk(G) by doing
these replacements and defining the relaxed affine space B2nt

k in the same way
asAt

k was defined fromAt. Then the analog of Lemma 5.3.2 holds: there exists
an integer k0 such that χ̃qa(G) = Λk(G) for all k ≥ k0. Next, replacing the cone
cl(CS2nt

+ ) by C2nt
r , we get the parameter Λr

k(G) (the analog of λk
r (G)):

Λr
k(G) = min t ∈ N s.t. A ∈ C2nt

r , A ∈ B2nt
k with LG,t(π(A)) ≤ 1

k
.

The analog of Theorem 5.3.4 holds, whose proof is along the same lines and
thus omitted.

5.3.5. THEOREM. For any graph G, there exist natural numbers k0 and r0 such that
χ̃qa(G) = Λr

k(G) for all k ≥ k0 and r ≥ r0. Hence the parameter χ̃qa(G) can be
computed by a linear program.

5.4 Polyhedral approach for optimization over the
completely positive semidefinite cone

Here we explain how to extend the polyhedral approach explained in the pre-
vious section to a more general class of optimization problems over the (closure
of the) CSn

+ cone. Consider the following optimization program:

min 〈C, A〉 s.t. A ∈ cl(CSn
+), A ∈ A and L(A) = 0, (5.21)

where C ∈ Sn, L a linear functional on Sn, and A ⊆ Sn is an affine subspace
of Sn with the property thatA∩ CSn

+ is bounded. In particular, assume thatA
is defined by the affine equations 〈B j, A〉 = b j (for j ∈ [m]).

Analogously to what was done in Section 5.3, we can define a double hierar-
chy yielding a sequence of two-parameters LP-based bounds which converges
asymptotically to the optimum value of the above optimization program. More
concretely, for any integer k ≥ 1 define the parameter

λk = min 〈C, A〉 s.t. A ∈ cl(CSn
+), A ∈ Ak and |L(A)| ≤ 1

k
,

where the affine spaceAk is a perturbed version ofA defined by the constraints
|〈B j, A〉 − b j| ≤ 1/k (for j ∈ [m]). Using similar arguments as for Lemma 5.3.2,
one can show that the sequence (λk)k∈N is monotone non-decreasing and con-
verges to the optimum value of program (5.21) as k tends to infinity. How-
ever, in contrast to Lemma 5.3.2, we cannot guarantee finite convergence in
general (the finite convergence in Lemma 5.3.2 followed from the fact that the
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parameter λk(G) is integer valued, which is generally the case). Next, for any
integer r ≥ 1 define the parameter

λr
k = min 〈C, A〉 s.t. A ∈ Cn

r , A ∈ Ak and |L(A)| ≤ 1
k

.

Using similar arguments as for the proof of Theorem 5.3.4, one can show that
the sequence (λr

k)r∈N is monotone non-increasing and converges to λk. Hence,
we obtain the sequence of parameters (λr

k)k,r∈N asymptotically convergences
to the optimum value of program (5.21) as both the parameters k, r tend to
infinity.

5.5 Polyhedral approximations for the set of quan-
tum correlations

As yet another application of the polyhedral hierarchy Cn
r (defined in Sec-

tion 4.5.2), we construct a hierarchy of polytopes that form inner approxima-
tions to the set of bipartite quantum correlations Q and cover its relative inte-
rior.

5.5.1 The set of bipartite quantum correlations

The set of bipartite quantum correlations, commonly denoted asQ, consists of
the conditional probabilities that two physically separated parties can gener-
ate by performing measurements on a shared entangled state. More formally,
recall the following definition.

5.5.1. DEFINITION. [Quantum correlations] A conditional bipartite probability
distribution (P(a, b|x, y))a∈A,b∈B,x∈X,y∈Y is called quantum if

P(a, b|x, y) = 〈ψ, (Ea
x ⊗ Fb

y)ψ〉,

where ψ ∈ CdA ⊗CdB is a unit vector (for some dA, dB ∈ N) and for some sets
of positive semidefinite matrices (aka POVM) {Ea

x}a∈A and {Fb
y}b∈B satisfying

∑a∈A Ea
x = I and ∑b∈B Fb

y = I for all x ∈ X, y ∈ Y.
The set of bipartite quantum correlations Q consists of all bipartite quan-

tum probabilities.

5.5.2. REMARK. Without loss of generality, in the above definition we can as-
sume that all positive semidefinite matrices Ea

x, Fb
y are real valued and that, for

some d ∈ N, the matrices Ea
x, Fb

y lie in Sd
+ and the vector ψ is in Rd2

.
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We introduce some notation. For x ∈ X, we let Ex denote the tuple (Ea
x)a∈A

and then the tuple E = (Ex)x∈X contains all matrices Ea
x for a ∈ A, x ∈ X.

Analogously, for y ∈ Y, let Fy denote the tuple (Fb
y)b∈B and F = (Fy)y∈Y

contains all matrices Fb
y for b ∈ B, y ∈ Y.

Let Γ ′ denote the set of all triples (E, F,ψ), where E = (Ex)x∈X, F = (Fy)y∈Y
and each Ex, Fy is a POVM, and where ψ is a unit vector. By definition the
elements of Q are characterized by triples in the set Γ ′. Now consider the
following dimension-dependent set of triples:

Γd = {(E, F,ψ) : E = (Ex)x∈X where each Ex = (Ea
x)a∈A ∈ (Sd

+)
|A| is a POVM,

F = (Fy)y∈Y where each Fy = (Fb
y)b∈B ∈ (Sd

+)
|B| is a POVM

and ψ ∈ Rd2
,ψ 6= 0, ‖ψ‖2 ≤ 1}

and the union
Γ =

⋃
d≥1

Γd.

By Remark 5.5.2, the elements of Q can be equivalently described as

Q =

P =

(
1

‖ψ‖2 〈ψ, (Ex
a ⊗ Fy

b )ψ〉
)

a,b,x,y

for some (E, F,ψ) ∈ Γ

 .

Mančinska and Roberson [MR14], and independently Sikora and Varvitsio-
tis [SV15], recently showed that the set of bipartite quantum correlationsQ can
be described in terms of the completely positive semidefinite cone. They show
that Q can be obtained as the projection of an affine section of the cone CS+.

5.5.3. THEOREM ([MR14, SV15]). A bipartite conditional probability distribution
P = (P(a, b|x, y)) with input sets X, Y and output sets A, B is quantum (i.e., P ∈ Q)
if and only if there exists a matrix R ∈ CS+ indexed by (X× A)∪ (Y× B) satisfying
the conditions:

∑a,a′∈A Rxa,x′a′ = 1 for all x, x′ ∈ X, (5.22)
∑b,b′∈B Ryb,y′b′ = 1 for all y, y′ ∈ Y, (5.23)

∑a∈A,b∈B Rxa,yb = 1 for all x ∈ X, y ∈ Y, (5.24)

Rxa,yb = P(a, b|x, y) for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y. (5.25)

In other words,
Q = π(CSN

+ ∩ BN),

where N = |(X × A) ∪ (Y × B)|, BN is the affine space defined by the constraints
(5.22), (5.23) and (5.24), and where π is the projection onto the subspace indexed by
(X× A)× (Y× B) (defined by (5.25)).
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Any feasible matrix R to the above program has the form
(

R1 P
PT R2

)
, where R1

is indexed by X × A, R2 is indexed by Y × B and each entry of P is such that
Pxa,yb = P(a, b|x, y).

As shown in [MR14, SV15], if the completely positive semidefinite cone
is closed then the set Q of bipartite quantum correlations is also closed. In-
deed, the constraints (5.22)-(5.24) imply that the set CS+ ∩ Bt is bounded.
Hence, if CS+ is closed then CS+ ∩ Bt is compact and therefore its projection
Q = π(CS+ ∩ Bt) is also compact.

5.5.2 Inner polyhedral hierarchy for the set Q
We now construct an inner polyhedral hierarchy that approximates the set Q
and covers its relative interior.

We start by introducing a discretization of the set Γ which we then use to
define the polyhedral inner approximations of the set Q.

5.5.4. DEFINITION. Given an integer r ∈ N, define the sets

Γ(r) = {(E, F,ψ) ∈ Γd : d ≤ r and each element has rational entries with
denominator at most r}

and

Q(r) = Conv

P =

(
1

‖ψ‖2 〈ψ, (Ex
a ⊗ Fy

b )ψ〉
)

a,b,x,y

for (E, F,ψ) ∈ Γ(r)

 .

By construction, the set Γ(r) is finite and thus the setQ(r) is a polytope. Clearly,
Q(r) ⊆ Q(r + 1) ⊆ Q holds for every r ∈ N and therefore the polytopes Q(r)
form a hierarchy of inner approximations for Q. Moreover, as we see below,
the union of the sets Q(r) covers the relative interior of Q.

5.5.5. THEOREM. The relative interior of the set Q is contained in
⋃

r≥1Q(r).

The statement of the above theorem has a similar flavor to the one of The-
orem 4.5.10. In Section 4.5 we considered the set ∆n, consisting of the n-tuples
of positive semidefinite matrices such that Tr(∑n

i=1 Xi) = 1 (see (4.4)), as a
dimension-free matrix analog of the standard simplex ∆n and we used a dis-
cretization of ∆n to obtain the polyhedral hierarchy. Here, in order to prove
Theorem 5.5.5, we will use a different normalization: we will study the set
of n-tuples X = (X1, . . . , Xn) forming a POVM; i.e., a collection of positive
semidefinite matrices such that ∑

n
i=1 Xi = I. This is another possible way to

define the dimension-free matrix analog of the standard simplex ∆n.
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The rest of the section will be devoted to the proof of Theorem 5.5.5. For
this, we will first prove that for any triple (E, F,ψ) ∈ Γ we can find a triple
(Ẽ, F̃, ψ̃) ∈ Γ(r) (for some r ∈ N) which is arbitrarly close to it and then we will
prove some useful geometric properties of the set Q.

In what follows, for a n-tuple of matrices X = (X1, . . . , Xn) we define the

norm ‖X‖ =
√

∑
n
i=1 ‖Xi‖2

op.

5.5.6. LEMMA. Given an n-tuple X = (X1, . . . , Xn) ∈ (Sd
+)

n such that ∑
n
i=1 Xi = I

and a constant ε > 0, there exists a n-tuple Y = (Y1, . . . , Yn) ∈ (Sd
+)

n of rational
valued matrices with ∑

n
i=1 Yi = I and such that ‖X−Y‖ < ε.

PROOF: Let X = (X1, . . . , Xn) be a POVM, i.e., ∑
n
i=1 Xi = I and Xi � 0 for all

i ∈ [n], and fix a constant ε > 0. We will prove the statement in two steps:
firstly we build a n-tuple Z of positive definite matrices such that ∑

n
i=1 Zi = I

and ‖X− Z‖op < ε/2 and secondly we construct a n-tuple of rational valued
positive semidefinite matrices Y such that ∑

n
i=1 Yi = I and ‖Z−Y‖op < ε/2.

Combining these two results, we then get the statement of the lemma.
Let 0 < λ < 1 be a constant and define Zi = (1 − λ)Xi + λ/nI for all

i ∈ [n]. Then ∑
n
i=1 Zi = I, each Zi is a positive definite matrix, and we have

‖Xi − Zi‖op = λ ‖Xi + I/n‖op. Hence we can choose λ to be small enough such
that the n-tuples X and Z are arbitrarly close.

As the set of rational positive semidefinite matrices is dense within the set
of positive definite matrices, for each i ∈ [n− 1] and 0 < γ < 1, we can pick
a rational valued positive semidefinite matrix Yi such that ‖Zi −Yi‖op < γ.
We show that also the matrix Yn = I − ∑

n−1
i=1 Yi is positive semidefinite if we

chooseγ small enough. Since Zn = I−∑
n−1
i=1 Zi � 0, we have ‖∑n−1

i=1 Zi‖op < 1.
Thus, ‖∑n−1

i=1 Yi‖op − ‖∑n−1
i=1 Zi‖op ≤ ‖∑n−1

i=1 (Yi − Zi)‖op, which implies that
‖∑n−1

i=1 Yi‖op ≤ γ(n − 1) + ‖∑n−1
i=1 Zi‖op. Then, for any γ > 0 small enough,

in particular γ < (1 − ‖∑n−1
i=1 Zi‖op)/(n − 1), we have that ‖∑n−1

i=1 Yi‖op < 1
and equivalently Yn � 0. Hence we have constructed a rational valued POVM
n-tuple Y which is arbitrarily close to Z. �

The above lemma says that we can approximate any POVM by a rational
valued one of the same dimension. Moreover, as the set of rational numbers is
dense in the set of real numbers, any nonzero vector can be approximated by
a rational valued one. By noticing that any element of the set Γ is composed of
a collection of POVM’s and a nonzero vector, we get the following corollary.

5.5.7. COROLLARY. Given a triple (E, F,ψ) ∈ Γd (for some d ∈ N) and a constant
ε > 0, there exist an integer r ∈ N and a triple (Ẽ, F̃, ψ̃) ∈ Γ(r) satisfying the
inequality ‖(E, F,ψ)− (Ẽ, F̃, ψ̃)‖ < ε.
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We now prove some useful geometrical properties of the set Q of bipartite
quantum correlations. As is well-known, the setQ is a convex bounded subset
of the space RA×X×B×Y, which for convenience is denoted below as V and can
be seen as the set of all (X × A)× (Y× B) matrices. For x ∈ X, y ∈ Y, let Hx,y
denote the hyperplane:

Hx,y = {P ∈ V : ∑
a∈A,b∈B

P(a, b|x, y) = 1} = {P ∈ V : 〈Jxy, P〉 = 1},

where Jxy ∈ V is the matrix whose entries are equal to 1 at the positions within
the block ({x}× A)× ({y}× B) and zero otherwise. Since any P ∈ Q is a con-
ditional probability distribution, we have that the inclusionQ ⊆ ⋂x∈X,y∈Y Hx,y
holds and that any P ∈ Q is entrywise nonnegative. The combination of these
two simple observations gives that the set Q is bounded. We show that the
hyperplanes Hx,y are (essentially) the only ones containing Q.

5.5.8. LEMMA. Assume that the hyperplane {P ∈ V : 〈M, P〉 = α} contains
the set Q. Then there exist scalars λx,y such that M = ∑x∈X,y∈Y λx,y Jxy with
∑x∈X,y∈Y λx,y = α.

PROOF: Notice that the set Q contains the set of deterministic conditional
probability distributions; i.e., the elements P ∈ V having exactly one entry
equal to 1 in each of its (x, y)-blocks and all other entries equal to zero. This
implies that, for any a ∈ A, b ∈ B, the entries Mxa,yb have to be equal to a
common value, say λx,y, which in turn implies that α = ∑x∈X,y∈Y λx,y. This
concludes the proof. �

As Q is not full-dimensional, any linear inequality 〈M, P〉 ≤ α that is valid
for Q admits several possible forms obtained by adding a linear combination
of the equations 〈Jxy, P〉 = 1 to it. We say that the inequality 〈M, P〉 ≤ α is non-
trivial if 〈M, P〉 < α for some P ∈ Q; i.e., ifQ is not contained in the hyperplane
〈M, P〉 = α. In the following lemma, we observe that any non-trivial valid
linear inequality for Q can be assumed to have a unique representation of a
special form.

5.5.9. LEMMA. Any linear inequality which is valid for Q and non-trivial has, with-
out loss of generality, the form:

〈M, P〉 ≤ 1 where M ≥ 0 and min a∈A,b∈BMxa,yb = 0 ∀x ∈ X, y ∈ Y. (5.26)

Moreover, the same holds for any valid non-trivial inequality for Q(r) with r ∈ N.

PROOF: Let 〈M, P〉 ≤ α be a non-trivial valid inequality for Q. Up to adding
suitable scalar multiples of the matrices Jxy and modifying accordingly the
right hand sideα, we can assume M to be nonnegative and thatα > 0. Scaling
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byα we thus can assume thatα = 1. Finally, let µx,y denote the smallest of the
entries Mxa,yb for x ∈ X, y ∈ Y and suppose that µx,y > 0 for some x, y. Now,
if we replace M by M′ = (M− ∑x,y µx,y Jxy)/(1− ∑x,y µx,y), then we obtain a
reformulation of the form 〈M′, P〉 ≤ 1 as desired. This can be done since the
inequality 〈M, P〉 ≤ 1 being non-trivial implies that 1− ∑x,y µx,y > 0. Indeed,
by definition of µx,y we have that M− ∑x,y µx,y Jxy ≥ 0. So, 1 = ∑x,y µx,y im-
plies that for all P ∈ Q we have 〈M, P, 〉 ≥ ∑x,y µx,y〈Jxy, P〉 = 1 and thus that
〈M, P〉 ≤ 1 is a trivial inequality, which is a contradiction of the assumption.

The same reasoning proves that, for any r ∈ N, one may assume that any
non-trivial valid linear inequality for Q(r) has the form (5.26). �

The following corollary is a direct consequence of Lemma 5.5.9.

5.5.10. COROLLARY. The set Q can be defined as the solution set of all its valid in-
equalities, which can be assumed to be of the form (5.26). Moreover, an element P ∈ Q
lies in the relative interior ofQ precisely when 〈M, P〉 < 1 for all the non-trivial valid
inequalities for Q.

For the proof of Theorem 5.5.5, we will also need the following lemma.

5.5.11. LEMMA. Assume 〈Mr, P〉 ≤ 1 is valid for Q(r) for all r ≥ 1 and assume
that the sequence (Mr)r∈N converges to M. Then the inequality 〈M, P〉 ≤ 1 is valid
for Q.

PROOF: For any fixed d ∈ N, consider the function fd : Γd → Q that maps
(E, F,ψ) to P = (〈ψ, (Ea

x ⊗ Fb
y)ψ〉/‖ψ‖2)a,b,x,y. Notice that each fd is a contin-

uous function.
Take a P ∈ Q, then there exist a d ∈ N and a triple (E, F,ψ) ∈ Γd such that

fd(E, F,ψ) = P. As fd is continuos, for any fixed ε > 0 there exists a η > 0 with
the property that for all (Ẽ, F̃, ψ̃) ∈ Γd such that ‖(E, F,ψ)− (Ẽ, F̃, ψ̃)‖ < η

then we have ‖P − P̃‖op < ε where P̃ = fd(Ẽ, F̃, ψ̃). Moreover, from Corol-
lary 5.5.7 we know that there exists a triple (Ẽ, F̃, ψ̃) with these properties and
rational valued. Suppose that the denominator of the entries of all the matri-
ces in Ẽ, F̃ and in the vector ψ̃ is at most ` and let r0 = max{`, d}. Then, for
all r ≥ r0, we have P̃ = fd(Ẽ, F̃, ψ̃) ∈ Q(r) and thus 〈Mr, P̃〉 ≤ 1 holds by
assumption. We get the following chain of inequalities:

〈M, P〉 = 〈M, P− P̃〉+ 〈Mr, P̃〉+ 〈−Mr + M, P̃〉
≤ 1 + ‖M‖F‖P− P̃‖F + ‖P̃‖F‖M−Mr‖F

< 1 +ε‖M‖F + ‖P̃‖F ‖M−Mr‖F ,

using the Cauchy-Schwarz inequality. As Mr tends to M, for any r large enough
also ‖M − Mr‖F ≤ ε holds. Hence, for any fixed ε > 0 there exist a r ∈ N
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and a P̃ ∈ Q(r) such that 〈M, P〉 < 1 + ε(‖M‖F + ‖P̃‖F). As Q is bounded,
‖M‖F + ‖P̃‖F is upper bounded by an absolute constant. Therefore by letting ε
tend to zero, we deduce that the inequality 〈M, P〉 ≤ 1 is valid for Q. �

We can finally prove the statement of Theorem 5.5.5, namely that the rela-
tive interior of the set Q is contained in

⋃
r≥1Q(r)

PROOF OF THEOREM 5.5.5: Consider an element P0 lying in the relative inte-
rior of Q and, for a contradiction, assume that it does not belong to any of the
sets Q(r). Then, for each r ≥ 1, there exists a non-trivial inequality valid for
Q(r) which separates P0 from the closed convex setQ(r); i.e., there exist matri-
ces Mr andαr > 0 such that 〈Mr, P〉 ≤ αr for all P ∈ Q(r) while 〈Mr, P0〉 ≥ αr.
By Lemma 5.5.9, the inequalities can be chosen of the form 〈Mr, P〉 ≤ 1 and
satisfying (5.26). Since all the entries of Mr lie in [0, 1], the sequence (Mr)r∈N
admits a converging subsequence (Mri)i≥1 that converges to, say, M. More-
over, 〈Mri , P〉 ≤ 1 for all P ∈ Q(ri) (i ≥ 1) and, from Lemma 5.5.11, we deduce
that the inequality 〈M, P〉 ≤ 1 is valid for Q. Hence, we have 〈M, P0〉 ≤ 1.
At the same time, 〈Mr, P0〉 ≥ 1 holds for all r by construction. Taking the
limit as i tends to infinity, we obtain that 〈M, P0〉 ≥ 1. Therefore the equal-
ity 〈M, P0〉 = 1 holds. However, since P0 lies in the relative interior of Q, by
Corollary 5.5.10 the inequality 〈M, P〉 ≤ 1 must be trivial for Q and it thus
defines a hyperplane that contains the set Q. Using Lemma 5.5.8 we know
that M = ∑x,y λx,y Jxy for some scalars λx,y. We now show that for all x, y the
scalar λx,y is equal to zero. This means that M = 0 and gives a contradiction.

Fix some x ∈ X, y ∈ Y. As 〈Mr, P〉 ≤ 1 is a valid non-trivial inequality
for Q(r), by Lemma 5.5.9 it follows that each Mr has at least one zero entry
within the block indexed by ({x} × A)× ({y} × B). Hence, there must exist
a pair (a, b) ∈ A × B and an infinite subsequence (Mr j) j≥1 of the sequence
(Mr)r∈N such that all Mr j have a zero entry at the same position (xa, yb). Tak-
ing the limit as j tends to infinity, we obtain that the (xa, yb)-entry of M must
be equal to 0. However, this entry is equal to λx,y, which implies that λx,y = 0,
as desired. �





Chapter 6

Channel coding

In this chapter we study a problem from information theory: the zero-error
channel coding problem, in the setting where the sender and the receiver may
use quantum entanglement. The task is to transmit data reliably using a noisy
channel. In Section 6.1 we review the classical problem and its graph theoreti-
cal reformulation. In Section 6.2 we describe the entangled assisted version of
the problem and present the known results. At last, in Section 6.3 we explain
a new entanglement-assisted protocol and use it to present an infinite family
of channels for which entanglement-assisted protocols are more efficient than
classical ones.

The content of this chapter is based on joint work with Jop Briët, Harry
Buhrman, Monique Laurent, and Giannicola Scarpa [BBL+15a].

6.1 The channel coding problem

Imagine the following scenario: a sender, Alice, wants to transmit some in-
formation to a receiver, Bob, and in order to do that they can communicate
through a one-way classical noisy channel. How much information can she
send to him on average, such that Bob learns Alice’s message with zero prob-
ability of error? This question was first posed by Shannon in his seminal pa-
per [Sha56] and spurred a large research area which involves information the-
ory, combinatorics, computer science and mathematical programming. We re-
fer the interested reader to the survey of Körner and Orlitsky [KO98] and to
Lubetzky’s PhD thesis [Lub07] for more recent results.

A noisy discrete channel N is fully characterized by a finite input set V, a
(possibly infinite) output set W and a probability distribution N (·|v) over W
for each v ∈ V. Here we only consider memoryless channels, where the prob-
ability distribution of the outputs depends only on the current channel input.
If Alice sends an input v ∈ V through the channel, Bob then receives output
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x ∈ {0, 1}m

C : {0, 1}m → Vn D : Wn → {0, 1}m

x =

N

Figure 6.1: A classical channel coding protocol.

w ∈ W with probability N (w|v). Their goal is to transmit a binary string x of,
say, m bits from Alice to Bob while using the channel as little as possible.

A communication protocol using a block code of length n is depicted in Fig-
ure 6.1 and works as follows. To communicate an m-bit string x, Alice uses an
encoding function C : {0, 1}m → Vn and sends C(x) = (C(x)1, . . . ,C(x)n) ∈ Vn

through the channel by using it n times in a sequence. On the i-th instance Alice
sends input C(x)i and consequentially Bob receives output wi ∈ W with prob-
ability N (wi|C(x)i). He then applies a decoding function D : Wn → {0, 1}m

to the entire sequence w = (w1, . . . , wn). The coding scheme (C,D) works if
D(w) = x. The communication rate of the scheme is m/n, which is the number
of bits transmitted per channel use.

Shannon [Sha48] proved that there is a computable quantity, called the
channel capacity, which gives the maximum communication rate that can be
achieved nearly error-free asymptotically in the number of uses of the chan-
nel. The great challenge in information theory has been to construct encoding
and decoding schemes that achieve a communication rate close to the optimal
one. Here we focus on a slightly different situation. Instead of allowing an
arbitrary small probability of error, we do not allow any error in the communi-
cation. The key notion to study is then the zero-error capacity of a channel: the
maximum number of bits that can be transmitted without error per channel
use. This notion was first introduced by Shannon [Sha56].

Suppose v1, v2 ∈ Vn are two channel input sequences that can both lead to a
channel output sequence w with positive probability. Then no decoding func-
tion D can decide with zero probability of error which one of the two sequences
was used by the sender. Such sequences are called indistinguishable and, to be
able to communicate with zero error, one has to select a subset C ⊆ Vn, called
a codebook, having the property that all the elements in C are pairwise distin-
guishable. As was shown by Shannon [Sha56], this problem can be reformu-
lated in graph-theoretic terms.
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Associated to a channel N is its confusability graph G = (V, E) where the
pair {u, v} forms an edge if there exists a w ∈ W such that both N (w|u) > 0
and N (w|v) > 0. The edge set identifies indistinguishable inputs; i.e., pairs of
inputs which can lead to identical channel outputs on Bob’s side. Therefore,
any stable set in G can be used as codebook for a single use of the channel. It is
easy to see that any graph is the confusability graph of a (non-unique) channel.

To model n uses of the channel, we take the graph G�n (the strong product
of n copies of G), whose edges are the pairs of input sequences for Alice which
Bob cannot distinguish. That is, u = (u1, . . . , un) and v = (v1, . . . , vn) form
an edge in G�n if and only if for every i ∈ [n] either uivi ∈ E(G) or ui = vi.
Any stable set in G�n is a feasible codebook for Vn and codes of block-length n
allow the zero-error transmission of α(H�n) distinct messages. The Shannon
capacity

c(G) = lim
n→∞ 1

n
logα(G�n)

is the maximum communication rate of a zero-error coding scheme. In other
words, c(G) is the zero-error capacity of the channel N .

As is well-known and easy to check, the stability number of a graph is
super-multiplicative; i.e.,α(G�(m+n)) ≥ α(G�m)α(G�n). Combining this with
the following lemma (commonly known as Fekete’s Lemma), we obtain that
in the above definition the limit exists and it coincides with the supremum:
c(G) = supn∈N

1
n logα(G�n).

6.1.1. LEMMA (FEKETE’S LEMMA (SEE E.G. [SCH03] THEOREM 2.2)). Consider a
sequence {am}m∈N of real numbers with the property that an+m ≥ an + am for
all n, m ∈ N. Then the sequence (an/n)n∈N has a limit which is equal to its supre-
mum: limn→∞ an/n = supn∈N an/n.

With a slight abuse of terminology, we call Shannon capacity of a graph also the
parameter:

Θ(G) = lim
n→∞ n

√
α(G�n) = sup

n

n
√
α(G�n),

which is linked to c(G) by the simple identity: c(G) = log Θ(G). By the supre-
mum formulation of Θ(G), it is clear thatα(G) ≤ Θ(G) holds.

The smallest graph (on the number of vertices) for which α(G) < Θ(G) is
the 5-cycle C5 [Sha56]. Indeed, α(C5) = 2 while α(C�2

5 ) = 5, which implies

α(C5) = 2 <
√

5 =
√
α(C�2

5 ) ≤ Θ(C5). It took more than 20 years to prove

that Shannon’s lower bound is actually tight: Θ(C5) =
√

5. Lovász [Lov79]
introduced an upper bound of the Shannon capacity Θ(G), now known as
the Lovász theta number ϑ(G), and showed that ϑ(C5) =

√
5. (The definition

and some useful properties of the Lovász theta number can be found in Sec-
tion 3.2.3.) In general however the Lovász theta number is not (and far from
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being) a tight bound on Θ(G) and the problem of determining the Shannon
capacity of a graph is wide open. Indeed, the value of Θ(G) is not known even
for very small graphs, like the 7-cycle, and the Shannon capacity is not known
to be decidable.

Curiously, every graph G for which the Shannon capacity is known has
the property that Θ(G) is either attained with block codes of length one or of
length two, or not attained at any finite length. An example of the latter is the
graph H = C5 + K1, which is the disjoint union of C5 and an isolated vertex.
Then

√
5 + 1 = Θ(C5) + Θ(K1) ≤ Θ(H) ≤ ϑ(H) = ϑ(C5) + ϑ(K1) =

√
5 + 1,

where for the last two identities we used Lemma 3.2.5 (i) and that ϑ(K1) = 1.
Therefore, Θ(H) =

√
5 + 1. One can easily observe that there is no natural

number n ≥ 1 such that (
√

5 + 1)n is an integer, hence the Shannon capacity
of H can never be attained at any finite length. Moreover, Alon and Lubet-
zky [AL06] proved that if one knows an arbitrarily large, but fixed, sequence
of values n

√
α(G�n) this cannot be used to approximate the Shannon capacity,

not even if the sequence stabilizes.
These are only some peculiar features of the zero-error capacity. The ordi-

nary channel capacity (which allows asymptotically vanishing error) is both
multiplicative and additive, while both of these plausible properties do not
hold for the zero-error case. Shannon [Sha56] proved that the Shannon capac-
ity is super-multiplicative and super-additive; that is, for any pair of graphs G
and H we have that Θ(G � H) ≥ Θ(G)Θ(H) and Θ(G + H) ≥ Θ(G) +Θ(H),
where G + H denotes the disjoint union of the graphs G and H. More interest-
ingly, Haemers [Hae78] proved that the Shannon capacity is not multiplicative,
i.e., there exist two distinct graphs G, H such that Θ(G� H) > Θ(G)Θ(H), and
Alon [Alo98] showed that it is not additive, i.e., there exist distinct graphs G, H
such that Θ(G + H) > Θ(G) +Θ(H). A key ingredient in both of these results
is an upper bound on the Shannon capacity due to Haemers [Hae78].

6.1.2. THEOREM (HAEMERS [HAE78]). Let G = ([n], E) be a graph and A be an
n × n matrix over a field F having all diagonal entries equal to one and such that
Ai j = 0 if and only if the pair of vertices {i, j} is non-adjacent in G. Then, the
inequality Θ(G) ≤ rank(A) holds.

6.2 Entanglement-assisted channel coding

Consider again the zero-error channel coding problem, but now the parties are
allowed to use entanglement. That is, Alice and Bob have quantum registersA
and B, respectively, that are initialized to be in some entangled state. Their
most general course of action, for a single use of the channel, is as follows (see
also Figure 6.2):
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i ∈ [M]

σ

{Au
i } {B j

w}
j

u

w

i =

N

Figure 6.2: An entanglement-assisted channel coding protocol.

1. To communicate a message i ∈ [M], Alice performs a measurement on
her register A and uses the measurement outcome, say u, as input to the
channel N ;

2. After receiving output w with probability N (w|u), Bob performs a mea-
surement on his register B and obtains a measurement outcome j ∈ [M].

This protocol is successful if Bob’s outcome j is always equal to the original
message i. Let σ denote the state in which the pair of registers (A,B) is ini-
tialized before the protocol starts. The measurement Alice performs in step (1)
is given by a collection of positive semidefinite matrices {Av

i }v∈V that adds up
to the identity. If Alice gets outcome u ∈ V, then after step (1) Bob’s register is
left in a state proportional to ρu

i = TrA((Au
i ⊗ I)σ). Note that for each i ∈ [M]

the matrices {ρv
i }v∈V sum to Bob’s reduced density matrix ρ = TrA(σ). With

probability N (w|u), Bob receives outcome w ∈ W from the channel and this
allows him to reduce the list of Alice’s possible inputs to a clique C in the con-
fusability graph G = (V, E) that contains Alice’s input u. For the protocol to be
successful, Bob measurement {Bi

w}i∈[M] must be able to discriminate between
state ρu

i and ρv
j for any i 6= j ∈ [M] and u, v ∈ C. Hence, by the Orthogonality

Lemma (Lemma 2.4.1), the states ρu
i must be such that ρu

i ρ
v
j = 0 for any i 6= j

and u ' v ∈ V. This justifies Definition 6.2.1 below, first introduced by Cubitt
et al. [CLMW10], and shows that as in the classical case the protocol depends
only on the confusability graph of the channel.

6.2.1. DEFINITION. [Entangled stability number and Shannon capacity] For a
graph G, define α?(G) as the maximum integer M ∈ N for which there exist
d ∈ N and positive semidefinite matrices ρ and {ρu

i : i ∈ [M], u ∈ V(G)}
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in Cd×d such that Tr(ρ) = 1 and

ρu
i ρ

v
j = 0 ∀i 6= j and ∀u, v ∈ V(G) such that u = v or {u, v} ∈ E(G),

∑
u∈V(G)

ρu
i = ρ ∀i ∈ [M].

The entangled Shannon capacity is defined by

c?(G) = lim
n→∞ 1

n
logα?(G�n).

We still have to show that if there exists a set of matrices satisfying Defini-
tion 6.2.1, then we can construct a channel coding protocol.

6.2.2. PROPOSITION. Suppose there exists a collection of positive semidefinite matri-
ces {ρu

i : i ∈ [M], u ∈ V(G)} in Cd×d such that (i) ∑u∈V(G) ρ
u
i = ρ for all i ∈ [M],

(ii) Tr(ρ) = 1, and (iii) ρu
i ρ

v
j = 0 for all i 6= j ∈ [M], u ' v ∈ V(G). Then, there

exists an M-message entanglement-assisted protocol for the channel coding problem.

This proposition follows almost directly from the following well-known theo-
rem (see e.g. [SR02, HJW Theorem, pp. 74], where it is attributed to Hughston,
Jozsa and Wootters).

6.2.3. THEOREM (HUGHSTON–JOZSA–WOOTTERS). Let d, n be positive integers,
p1, . . . , pn ≥ 0 satisfying p1 + · · ·+ pn = 1, and let ρ1, . . . ,ρn ∈ Cd×d be positive
semidefinite matrices with trace 1. Then, there exists a state σ for a pair of registers
(A,B) and a measurement on A consisting of a collection of positive semidefinite
matrices A1, . . . , An that add up to the identity, such that for each i ∈ [n] we have
TrA((Ai ⊗ I)σ) = piρi. Moreover, σ depends only on p1ρ1 + · · ·+ pnρn.

PROOF OF PROPOSITION 6.2.2: It suffices to find an entangled stateσ and mea-
surement {Au

i }u∈V(G) for each message i ∈ [M] such that ρu
i = TrA((Au

i ⊗ I)σ).
Indeed, suppose Alice gets outcome u which she uses as input to the chan-
nel and Bob receives output w. Then Bob knows that his register is in the
state ρv

j/Tr(ρ
v
j ) for some j ∈ [M] and v ∈ C, where C is a clique in G that con-

tains Alice’s outcome u. By (i) and the Orthogonality Lemma (Lemma 2.4.1),
there exists a measurement {B j : j ∈ [M]} ∪ {B⊥} such that Tr(B jρu

i ) =
δi j Tr(ρ

u
i ) for all u ∈ C, which thus allows Bob to correctly identify Alice’s

message i.
For each i ∈ [M], define the nonnegative numbers pu

i = Tr(ρu
i ), where

u ∈ V(G), and trace-1 matrices ρ̃u
i given by ρu

i /pu
i if pu

i is nonzero and an ar-
bitrary trace-1 matrix otherwise. Then, ∑u∈V(G) pu

i = 1 and ∑u∈V(G) pu
i ρ̃

u
i = ρ.

Hence, Theorem 6.2.3 gives the desired state and measurements. �
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As we already mentioned, the parameter α?(G) was introduced by Cubitt et
al. [CLMW10] and gives the maximum number of messages that can be sent
without error using entanglement and a single use of a channel with confus-
ability graph G. It follows that c?(G) equals the maximum asymptotic com-
munication rate of such a channel when entanglement can be used.

Using the operational interpretation of α?(G), one can easily see that this
parameter is super-multiplicative with respect to strong graph products; i.e.,
α?(G � G′) ≥ α?(G)α?(G′). Indeed, let N and N ′ be channels with confus-
ability graphs G and G′ and suppose that each has an entanglement-assisted
protocol that allow to transmit M and M′ messages, respectively. If Alice and
Bob are connected through the product channel N ⊗N ′ (which has confus-
ability graph G � G′), then they can communicate at least M · M′ different
messages by running the two protocols separately. Alternatively, the super-
multiplicativity can be derived from Definition 6.2.1 using simple matrix ma-
nipulations. Thus, using Fekete’s Lemma (Lemma 6.1.1), in the definition
of c?(G) the limit can be replaced with the supremum.

Whenever one considers the entanglement-assisted version of a problem
the first natural question to ask is whether there is something to gain: Are there
channels for which the entangled Shannon capacity is strictly greater than the
classical one? What about for a single use of a channel?

The second question was positively answered by the authors of [CLMW10],
who found a graph G such that α?(G) > α(G). The key ingredient is the
following non-trivial lower bound onα?(G).

6.2.4. THEOREM (CUBITT–LEUNG–MATTHEWS–WINTER [CLMW10]). If G is
a graph with ξ(G) ≤ d and it has M disjoint d-cliques, thenα?(G) ≥ M.

While for sufficiently small, or structured, graphs the stability number can
be computed, the Shannon capacity is a much harder quantity. Thus, to find
a graph that exhibits a separation between entangled and classical Shannon
capacity, one has to find an upper bound on c(G) which potentially could
be smaller than c?(G). We have seen that the Lovász theta number is an
upper bound on the classical Shannon capacity. This is however not good
enough because ϑ(G) is also an upper bound for the entangled Shannon ca-
pacity and hence c(G) ≤ c?(G) ≤ logϑ(G) holds. Indeed, [Bei10, DSW13]
proved that α∗(G) ≤ bϑ(G)c and using the multiplicativity of ϑ(G) under
strong graph products one can conclude that c∗(G) ≤ logϑ(G). What turns
out to be useful is the upper bound on c(G) due to Haemers (Theorem 6.1.2),
which is the only other known non-trivial upper bound on the Shannon capac-
ity. Haemers’ bound and the Lovász theta number are incomparable and in
most cases ϑ(G) provides a better bound. Leung, Mančinska, Matthews, Ozols
and Roy [LMM+12] and subsequently Briët, Buhrman and Gijswijt [BBG12]
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found families of graphs for which c?(G) > c(G) by combining Haemers’
bound together with the lower bound given by Theorem 6.2.4.

Such type of separation results holds only for the special case where we
want the communication to succeed with zero error. As shown in [BSST02,
Theorem 1], sharing entanglement does not provide any advantage in the case
of vanishing error probability, where we ask the probability of error to asymp-
totically go to zero as the number of uses of the channel goes to infinity. How-
ever, if one restricts to a finite number of channels uses Prevedel et al. [PLM+11]
experimentally showed that entanglement allows for a better error rate than
the optimal classical code.

We briefly mention that Cubitt et al. [CLMW10] (see also [CLMW11]) stud-
ied also the case where the two parties can share non-signaling correlations,
instead of sharing an entangled state. They showed that the non-signaling
zero-error channel capacity has an elegant closed-form formula that can be
computed from the description of the channel via a linear program. We will
consider a generalization of this scenario in Section 7.1.2.

6.3 Separation between classical and entangled Shan-
non capacity

In this section we introduce a new method to lower bound the entangled Shan-
non capacity (Theorem 6.3.9) which allows us to strengthen the above men-
tioned result of Briët, Buhrman and Gijswijt [BBG12]. More specifically, we
use the same family of graphs as in [BBG12], but using the new lower bound
technique we can relax the conditions on which graphs of the family we can
use and get an infinite family of graphs whose entangled capacity exceeds their
Shannon capacity.

6.3.1 Quarter-orthogonal graphs

We use the following family of graphs which was also considered in [BBG12]
for similar reasons.

6.3.1. DEFINITION. [Quarter-orthogonality graph Hk] For an odd positive inte-
ger k, the quarter-orthogonality graph Hk has as vertex set all vectors in {−1, 1}k

that have an even number of ‘−1’ entries, and as edge set the pairs with in-
ner product −1. Equivalently, the vertices of Hk are the k-bit binary strings
with even Hamming weight and its edges are the pairs with Hamming dis-
tance (k + 1)/2.
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6.3.2. REMARK. The quarter-orthogonality graph is an induced subgraph of
the orthogonality graph (Definition 3.3.2) containing a quarter of its vertices.
This can be seen by appending a ‘1’ to the vertices of Hk.

Some results will rely on the existence of certain Hadamard matrices. A
Hadamard matrix is a square matrix A ∈ {−1, 1}`×` that satisfies AAT = `I.
The size ` of a Hadamard matrix must necessarily be 2 or a multiple of 4 and
the famous Hadamard conjecture (usually attributed to Paley [Pal33]) states
that for every ` that is a multiple of 4 there exists an `× ` Hadamard matrix.
Although this conjecture is still open, many infinite families of Hadamard ma-
trices are known. In Section 8.2.3, we will use a family constructed by Xia and
Liu [XL91] (see for example [Xia96, Che97, XSX06] for closely related construc-
tions).

6.3.3. THEOREM (XIA–LIU [XL91]). Let q be a prime power with q ≡ 1 mod 4.
Then, there exists a Hadamard matrix of size 4q2.

In [BBG12], it is shown that for some values of k, the entangled Shannon
capacity of Hk can be strictly larger than the classical one.

6.3.4. THEOREM (BRIËT–BUHRMAN–GIJSWIJT [BBG12]). Let p be an odd prime
such that there exists a Hadamard matrix of size 4p. Set k = 4p− 1. Then,

c?(Hk) ≥ k− 1− 2 log(k + 1),
c(Hk) ≤ 0.846k.

Note that here we consider the exact bounds on c?(Hk) and c(Hk) rather
than the asymptotic ones as originally written in [BBG12] and that it is not
known if Hadamard matrices of size 4p exist for infinitely many primes p.
Theorem 6.3.4 requires the existence of Hadamard matrices because to lower
bound c?(Hk) Theorem 6.2.4 is used. Moreover, k has to be of the form rp− 1
for some odd prime p and positive integer r ≥ 4 due to the technique used to
upper-bound c(Hk), which is based on a result of Frankl and Wilson [FW81].

Here we relax the conditions in Theorem 6.3.4 and our result does not rely
anymore on the existence of a Hadamard matrix. This is obtained by intro-
ducing a new lower bound technique for c?(G). We show the existence of an
infinite family of quarter-orthogonality graphs whose entangled capacity ex-
ceeds their Shannon capacity.

6.3.5. THEOREM. For every odd integer k ≥ 11, we have

c?(Hk) ≥ (k− 1)
(

1− 2 log(k + 1)
k− 3

)
. (6.1)

Moreover, if k = 4p` − 1 where p is an odd prime and ` ∈ N, then

c(Hk) ≤ 0.846 k. (6.2)
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We prove (6.1) in Section 6.3.2, using a new technique based on quantum
remote state preparation [BDVS+01]. In Section 6.3.3 we show the bound (6.2)
by combining an instance of the linear algebra method due to Alon [Alo98]
with a construction of certain low-degree polynomials over a finite field for
a low-degree representation of the OR-function due to Barrington, Beigel and
Rudich [BBR94].

Before doing that we record some useful results regarding the graph Hk.

6.3.6. LEMMA. For every odd positive integer k, we haveα(Hk) ≥ 2(k−3)/2.

PROOF: The statement follows by considering the subset W of all the vectors
in V(Hk) (in the {0, 1}k setting) that have zeros in their last (k + 1)/2 coordi-
nates. It is easy to see that |W| = 2(k−3)/2 and that W is a stable set since it does
not contain pairs of strings at Hamming distance (k + 1)/2. �

6.3.7. PROPOSITION (BRIËT–BUHRMAN–GIJSWIJT [BBG12]). Let k be an odd in-
teger such that there exists a Hadamard matrix of size k + 1. Then,ω(Hk) ≥ k + 1.

PROOF: We include a proof for completeness. Let A be a size k + 1 Hadamard
matrix. Without loss of generality, we may assume that the first row and the
first column of A contain only ‘+1’ elements. Indeed, the property of being a
Hadamard matrix is preserved under changing the sign all entries of a row (or
column). The first row is orthogonal to each of the last k rows, these therefore
contain (k + 1)/2 entries equal to ‘-1’. Take now the k + 1 vectors in {−1, 1}k

obtained from the rows of A by deleting the first element. One can easily check
that these form a clique in Hk and thus we can conclude. �

Recall that ξ ′(G) is the minimum d for which there exists a d-dimensional
orthogonal representation f of G such that all entries of each vector f (u) have
absolute value one.

6.3.8. LEMMA. For every odd positive integer k, we have ξ ′(Hk) ≤ k + 1.

PROOF: This was already observed in Remark 6.3.2. Indeed, the map f from
V(Hk) to {−1, 1}k+1 defined by f (u) = (u, 1)T has all the needed properties.
�

6.3.2 Lower bound on the entangled Shannon capacity

Here we prove the bound (6.1). The idea is to show that with t + 1 sequential
uses of a channel with confusability graph G, Alice can perfectly transmit one
out of |V(G)|t messages to Bob, provided that t ≤ logα(G)/ logξ ′(G). This is
achieved using the remote state preparation protocol (Section 2.4.4).
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6.3.9. THEOREM. For a graph G and integer t ≥ 1 such that t ≤ logα(G)/ logξ ′(G),
we have

c?(G) ≥ t
t + 1

log |V(G)|.

PROOF: Let N be a channel with confusability graph G. Let d = ξ ′(G) and
let f be a d-dimensional orthogonal representation of G such that its vectors
have entries of modulus one. For each v ∈ V(G) define ρv = f (v) f (v)∗/d.
Let t be a positive integer such that

t ≤ logα(G)

log d
. (6.3)

It suffices to find an entanglement-assisted protocol for the noiseless transmis-
sion of |V(G)|t distinct messages based on at most t + 1 uses of the channelN .
Indeed, this then implies thatα?(G�(t+1)) ≥ |V(G)|t and therefore

c?(G) ≥ logα?(G�(t+1))

t + 1
≥ t log |V(G)|

t + 1

as claimed. To this end, consider the following four-step protocol for transmit-
ting a sequence v = (v1, . . . , vt) ∈ V(G)t. First, Alice prepares d-dimensional
quantum registers A1, . . . ,At to be in the states ρv1 , . . . ,ρvt , respectively. Sec-
ond, Alice sends the sequence v through the channel by using it t times in a
row. This will result in t channel-outputs on Bob’s end of the channel from
which he can infer that each vi belongs to a particular clique in G. Third, Alice
and Bob execute the remote state preparation scheme described in Section 2.4.4
t times in a row, once for each of the states ρv1 , . . . ,ρvt separately. (Recall that
ρvi = f (vi) f (vi)

∗/d where f (vi) ∈ Cd has norm
√

d, so in the notation of
Section 2.4.4 we are setting u = f (vi)/

√
d.) This requires that Alice commu-

nicates a total of tdlog de bits to Bob. To do so, Alice uses the channel one
more time to send, without error, the bits required to perform the remote state
preparation. This can be done if logα(G) ≥ tdlog de, which holds by our
assumed bound (6.3). At this point Bob’s quantum registers B1, . . . ,Bt are in
states ρv1 , . . . ,ρvt . Moreover, for each vi Bob knows a clique in the graph G that
contains vi and by construction elements of a clique have pairwise orthogonal
states. In the last step, for every i ∈ [t], Bob can perform a measurement on reg-
ister Bi such that he gets outcome vi with probability one (due to Lemma 2.4.1).
Hence, Bob can recover any sequence v = (v1, . . . , vt) ∈ V(G)t with zero prob-
ability of error, completing the proof. �

The bound (6.1) can now be derived as a simple corollary.

6.3.10. COROLLARY. For every odd integer k ≥ 11, we have

c?(Hk) ≥ (k− 1)
(

1− 2 log(k + 1)
k− 3

)
.
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PROOF: By Lemmas 6.3.6 and 6.3.8, we have that logα(Hk) ≥ (k− 3)/2 and
that logξ ′(Hk) ≤ log(k + 1). Therefore, for any k ≥ 11 we can choose t to
be equal to b(k− 3)/(2 log(k + 1))c ≤ blogα(Hk)/ logξ ′(Hk)c. (We require
k ≥ 11 to ensure that t ≥ 1.) Applying Lemma 6.3.9 combined with the fact
that |V(Hk)| = 2(k−1), we obtain

c?(Hk) ≥
t(k− 1)

t + 1
≥ (k− 1)

(
1− 2 log(k + 1)

k− 3

)
which gives the result. �

6.3.3 Upper bound on the Shannon capacity

We prove the bound (6.2) by using the following upper bound on the stability
number of the graphs H�m

k for certain values of k.

6.3.11. LEMMA. Let p be an odd prime, ` ∈ N and set k = 4p` − 1. Then, for every
m ∈ N, we have

α(H�m
k ) ≤

((
k
0

)
+

(
k
1

)
+ · · ·+

(
k

p` − 1

))m
≤ 2H(3/11)km < 20.846km (6.4)

where H(t) = −t log t − (1 − t) log(1 − t) for t ∈ [0, 1] is the binary entropy
function.

The proof of this lemma is an instance of the linear algebra method due to
Alon [Alo98] (see also Gopalan [Gop06]), which itself is inspired by Haemers’
bound (Theorem 6.1.2). We recall this method below for completeness. Let G
be a graph and F be a field. Let F ⊆ F[x1, . . . , xk] be a subspace of the space
of k-variate polynomials over F. A representation of G over F is an assignment(
( fu, cu)

)
u∈V(G)

⊆ F × Fk of polynomial-point pairs to the vertices of G such
that

fu(cu) 6= 0 ∀u ∈ V(G) and fu(cv) = 0 ∀u 6= v ∈ V(G) with {u, v} 6∈ E(G).

6.3.12. LEMMA (ALON [ALO98]). Let G be a graph, F be a field, k ∈ N and F be a
subspace of F[x1, . . . , xk]. If

(
( fu, cu)

)
u∈V(G)

⊆ F × Fk represents G, then we have

α(G�n) ≤ dim(F )n for all n ∈ N.

We get a representation for the graph Hk, for k = 4p` − 1, from the follow-
ing result of Barrington, Beigel and Rudich [BBR94] (see [Yek12, Lemma 5.6]
for the statement as it appears below).
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6.3.13. LEMMA (BARRINGTON–BEIGEL–RUDICH [BBR94]). Let p be a prime num-
ber and let k, ` and w be integers such that k > p`. There exists a multilinear polyno-
mial f ∈ Zp[x1, . . . , xk] of degree deg( f ) ≤ p` − 1 such that for every c ∈ {0, 1}k,
we have

f (c) ≡
{

1 if c1 + c2 + · · · ck ≡ w mod p`

0 otherwise.

With this we can now prove Lemma 6.3.11.

PROOF OF LEMMA 6.3.11: Let c ∈ {0, 1}k be a string such that its Hamming
weight |c| is even and satisfies |c| ≡ 0 mod p`. Then, as p is odd and k < 4p`,
we have |c| ∈ {0, 2p`}. Hence, if |c| 6∈ {0, 2p`}, then |c| 6≡ 0 mod p`.

Recall from Definition 6.3.1 that Hk can be defined as the graph whose ver-
tices are the strings of {0, 1}k with an even Hamming weight and where two
distinct vertices u, v are adjacent if their Hamming distance |u⊕ v| is equal to
(k + 1)/2 = 2p`. Here u ⊕ v is the sum modulo 2. For u, v ∈ V(Hk), their
Hamming distance |u⊕ v| is an even number. Hence if u 6= v are non-adjacent
in Hk, then |u⊕ v| 6∈ {0, 2p`} and thus |u⊕ v| 6≡ 0 mod p`.

Let f ∈ Zp[x1, . . . , xk] be a multilinear polynomial of degree at most p` − 1
such that for every c ∈ {0, 1}k, we have

f (c) ≡
{

1 if |c| ≡ 0 mod p`

0 otherwise,

as is promised to exist by Lemma 6.3.13 (applied to w = 0).
We use f to define a representation for Hk. To this end, define for each

u ∈ {0, 1}k vertex in V(Hk) the polynomial fu ∈ Zp[x1, . . . , xk] obtained by
replacing in the polynomial f the variable xi by 1− xi if ui = 1 and leaving it
unchanged otherwise. For example, if u = (1, 1, 0, . . . , 0), then fu(x1, . . . , xk) =
f (1− x1, 1− x2, x3, . . . , xk). Moreover, associate to the vertex u the point cu = u
seen as a 0/1 vector in Zk

p. We claim that
(
( fu, cu)

)
u∈V(Hk)

is a representation
of Hk. To see this, observe that fu(cv) = f (u⊕ v) for any u, v ∈ V(Hk), so that
fu(cu) = f (0) = 1, and fu(cv) = 0 if u, v are distinct and non-adjacent.

Since the polynomials fu are multilinear and have degree at most p` − 1,
they span a space of dimension at most (k

0) + (k
1) + · · ·+ ( k

p`−1), which is the

number of multilinear monomials of degree at most p`− 1. Using Lemma 6.3.12
we obtain that

α(H�m
k ) ≤

((
k
0

)
+

(
k
1

)
+ · · ·+

(
k

p` − 1

))m
. (6.5)

We now use the well-known fact that for q, k ∈ N with 1 < q < k/2, the sum
(k

0) + . . . + ( k
q−1) ≤ 2kH(q/k). Since p`/(4p` − 1) ≤ 3/11, we deduce that the

right hand side in (6.5) can be upper bounded by 2H(3/11)km < 20.846km. �
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The upper bound (6.2) on the Shannon capacity of Hk stated in Theorem 6.3.5
is an easy corollary of Lemma 6.3.11.

6.3.14. COROLLARY. Let p be an odd prime, ` ∈ N and set k = 4p` − 1. Then,
c(Hk) ≤ 0.846k.

PROOF: By taking the logarithm, dividing by m and taking the limit m goes to
infinity on both sides of (6.4) we get the result. �



Chapter 7

Multiparty channel coding

We study which effects entanglement can have on the performance of two gen-
eralizations of the zero-error channel coding problem. In the first task one
sender wants to communicate a common message to multiple receivers (Sec-
tion 7.1). For this we show that entanglement-assisted strategies might provide
an advantage only if the number of receivers is below a certain threshold. In
the second task multiple collaborating senders want to transmit a message to
one receiver (Section 7.2). In Theorem 7.2.6 we show that entanglement allows
for a peculiar amplification of information which cannot happen classically.

The content of this chapter is based on joint work with Giannicola Scarpa
and Christian Schaffner [PSS15].

7.1 Multiple receivers

Suppose there are ` receivers that want to decode a common message sent
by a single sender, as for example in TV broadcasting. This is known as the
compound channel model. We focus on the zero-error case, where each receiver
perfectly learns the original message, and on the scenario where the sender is
connected to each of the receivers through identical classical channels. Our re-
sults are twofold. If the block length of the code is fixed, entanglement may be
helpful only up to a certain number of receivers (Theorem 7.1.2). On the other
hand, for any constant number of receivers, we can build a compound channel
(based on Section 6.3) for which there is an entanglement-assisted protocol that
is more efficient than any classical one (Corollary 7.1.10).

7.1.1 The compound channel problem

Consider a family of channels N = {N1, . . . ,N`} with the same input set V
where Nk connects the sender with the k-th receiver. A common input v ∈ V

107
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is sent to all the receivers and the k-th receiver gets the output wk according to
the distribution Nk(wk|v). The goal is for each receiver to retrieve the original
input v with zero probability of error. As for the two parties case, this problem
can be treated from a graph-theoretical perspective associating to each channel
Nk its confusability graph Gk = (V, Ek). As the input set is in common, the
family of graphs G = {G1, . . . G`} share the same vertex set V. Suppose C ⊆ V
is a stable set in each graph Gk ∈ G then, for each of the receivers, C forms a set
of non-confusable inputs and it therefore can be used for zero-error communi-
cation. We define α(G , n) to be the maximum cardinality of a set C ⊆ Vn such
that C is a stable set in G�n

k for each Gk ∈ G. Thus, α(G , n) is the maximum
number of messages that can be transmitted perfectly to each of the receivers
using codes of block length n. Observing that α(G , ·) is super-multiplicative
(i.e., α(G , m + n) ≥ α(G , m)α(G , n) for every m, n ∈ N), the Shannon capacity
of a family of graphs G is well-defined as c(G) = limn→∞ 1

n logα(G , n).
This parameter was introduced by Cohen, Körner and Simonyi [CKS90]

as a generalization of the zero-error Shannon capacity (see [Sin09] and refer-
ences therein for recent results). Determining the Shannon capacity of a family
of graphs seems a hopeless endeavor since already computing the Shannon
capacity of a single graph is not known to be decidable. However, there are
positive results for a slightly different task. Suppose that one knows the capac-
ity of every graph in the family G, then Gargano, Körner and Vaccaro [GKV94]
proved that it is possible to determine the capacity of the whole family.

Here we focus on the particular instance where all the receivers are con-
nected to the sender through the same channel N with confusability graph G.
Note that this leads to the trivial situation: α(G , 1) = α(G) and, for any n ∈ N,
α(G , n) = α(G�n). Therefore, we have that c(G) = c(G). As all the elements
of the family G are equal, we introduce the following new notation: let ` be the
cardinality of the family G, thenα1,`(G) = α(G , 1) and c1,`(G) = c(G).

Consider now the scenario where the sender shares a single entangled state
with all the receivers. That is, Alice has a quantum register A, each Bob has a
quantum register Bk and the tuple (A,B1, . . . ,B`) is in some entangled state.
The entanglement-assisted version of the compound channel coding scheme,
with a single use of the channels, is as follows (see also Figure 7.1):

1. To communicate a message i ∈ [M], Alice performs a measurement on
her register A and uses the measurement outcome, say, u as input to
each channel Nk;

2. After the k-th Bob receives output wk with probability Nk(wk|u), he per-
forms a measurement on his register Bk and obtains a measurement out-
come jk ∈ [M].

The protocol works if jk is equal to the original message i for every k ∈ [`]; i.e.,
if every Bob is able to perfectly learn Alice’s message. As in the single-receiver
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i ∈ [M]

u

jh

ji

j`

jk

Figure 7.1: An entanglement-assisted compound channel coding protocol.

case, the protocol depends only on the confusability graph of the channels and,
using the same line of reasoning as in Section 6.2, we can define the following
quantities.

7.1.1. DEFINITION. [Entangled compound stability number and capacity] For
a graph G, the entangled compound stability number with ` receivers α?

1,`(G) is
defined as the maximum M ∈ N such that there exist d ∈ N and positive
semidefinite matrices ρ and {ρu

i , i ∈ [M], u ∈ V(G)} in (Cd×d)⊗`, denoted as
B1 ⊗B2 ⊗ · · · ⊗ B`, such that Tr(ρ) = 1 and

TrB−k(ρ
u
i ) TrB−k(ρ

v
j ) = 0 ∀k ∈ [`], ∀i 6= j, ∀u ' v ∈ V(G),

∑
u∈V(G)

ρu
i = ρ ∀i ∈ [M],

where the operator TrB−k denotes the partial trace over all the subspaces but
the k-th one; i.e., TrB−k(ρ

u
i ) = TrB1 ,...,Bk−1 ,Bk+1 ,...,B`(ρ

u
i ).

The entangled compound Shannon capacity with one sender and ` receivers is

c?1,`(G) = lim
n→∞ 1

n
logα?

1,`(G
�n).

Operationally,α?
1,`(G) is the maximum number of messages that Alice can per-

fectly communicate to all the Bobs through identical channels with confusabil-
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ity graph G and an entangled state. This interpretation allows us to immedi-
ately see thatα?

1,`(G) is super-multiplicative with respect to strong graph prod-
uct; i.e.,α?

1,`(G � G′) ≥ α?
1,`(G)α?

1,`(G
′). Indeed, suppose that two channelsN

and N ′ allow an entanglement-assisted compound channel protocol with `
receivers that communicates M and M′ messages, respectively. Then for the
combined channel N ⊗N ′, with confusability graph G � G′, the sender can
transmit M · M′ messages by running subsequently the two protocols. Com-
bining this observation with Fekete’s Lemma (Lemma 6.1.1) we obtain that
c?1,`(G) is a well-defined quantity.

7.1.2 Entanglement for fixed block length

Here we prove a limitation of entanglement-assisted communication for the
compound channel problem. For any fixed channel and number of channel
uses, entanglement cannot be advantageous if the number of receivers is above
a certain threshold. Let θe(G) denote the edge-clique cover number of G; i.e.,
the smallest number of cliques needed to cover all the edges of the graph,
and θ′e(G) denote the edge-clique cover number plus the number of isolated
vertices of G. The goal of this section is to prove the following theorem.

7.1.2. THEOREM. For any graph G, if ` ≥ θ′e(G) thenα?
1,`(G) = α(G).

This statement follows directly from Theorem 7.1.5 below, where we prove
an analogous result for the situation when the players can use arbitrary non-
signaling correlations. Recall that a probability distribution is non-signaling if
the marginal distribution of the output of each subset of parties depends only
on the corresponding inputs.

7.1.3. DEFINITION. An n-partite probability distribution P(a1, . . . , an|x1, . . . , xn)
is called non-signaling if for all outputs a1, . . . , an and all inputs x1, . . . , xn the
marginal distribution for each subset of parties I = {i1, i2 . . . , ik} ⊆ [n] only
depends on the corresponding inputs

P(ai1 , ai2 , . . . , aik |x1, x2, . . . , xn) = P(ai1 , ai2 , . . . , aik |xi1 , xi2 , . . . , xik).

Since any entanglement-assisted strategy is also non-signaling, the amount
of information that can be communicated using a non-signaling strategy is al-
ways at least as much as it can be done using entanglement.

We have seen that to study the zero-error channel coding problem we can
restrict our attention to the properties of the confusability graph of the chan-
nel. However, many different channels have the same confusability graph and,
unlike the classical and entanglement-assisted capacities, the non-signaling ca-
pacity depends on the particular channel. For our purposes we are interested



7.1. Multiple receivers 111

in the particular channel that minimizes the number of outputs while keep-
ing the same confusability graph. Notice that every output of a channel de-
fines a clique or an isolated vertex in the confusability graph. Therefore, we
fix an edge-clique covering of the confusability graph G of minimum cardi-
nality θe(G) (which might not be unique), we add the isolated vertices to ob-
tain a clique covering of cardinality θ′e(G), and we consider the channel that
has θ′e(G) outputs. In other words, we take a channel which has one output
per element of the edge-clique covering plus one output per isolated vertex.

We mentioned that the non-signaling version of the two-party zero-error
channel coding problem was studied in [CLMW10]. We consider a generaliza-
tion of this and study the compound channel with ` receivers scenario, where
Alice and the Bobs share an (`+ 1)-partite non-signaling probability distribu-
tion. Alice is connected to each Bob through a fixed channel, which has confus-
ability graph G and is constructed as above. To communicate message i ∈ [M],
Alice inputs i to the non-signaling distribution P(u, j1, . . . , j`|i, c1, . . . , c`) and
uses her output u ∈ V(G) as input of the channel. Each Bob gets a ck ⊆ V(G)
as channel output, where u ∈ ck and ck is either a clique or an isolated vertex
of G. If ck is used as input to the non-signaling distribution it gives jk as out-
put. The protocol works if every single Bob learns i with zero probability of
error, that is i = jk for every k ∈ [`].

7.1.4. DEFINITION. [Non-signaling compound stability number] For a graph G,
the non-signaling compound stability number with ` receiversαns

1,`(G) is the max-
imum M ∈ N such that there exists a non-signaling distribution

P(u, j1, . . . , j`|i, c1, . . . , c`)

between Alice and Bob1, . . . , Bob`, where i ∈ [M] and ck ⊆ V(G) are elements
of a fixed clique covering of cardinality θ′e(G). Additionally, for all i ∈ [M]
we require that: If vertex u is contained in ck for all k ∈ [`] and there exists
a k′ ∈ [`] such that i 6= jk′ , then P(u, j1, . . . , j`|i, c1, . . . , c`) = 0.

The last condition imposes the perfect correctness of the protocol. Every Bob
must output the correct message i upon receiving as channel output a ck which
is compatible with Alice’s channel input u (i.e., if u ∈ ck for every k ∈ [`]).

Since every entanglement-assisted strategy is also non-signaling, for every
graph G and ` ∈ N, we have: αns

1,`(G) ≥ α?
1,`(G). Moreover, we now prove that

for ` large enough equality holds.

7.1.5. THEOREM. For any graph G, if ` ≥ θ′e(G) thenαns
1,`(G) = α?

1,`(G) = α(G).

To prove this, we use a property known as monogamy of non-signaling dis-
tributions as derived by Masanes, Acin and Gisin [MAG06]. For convenience,
we reproduce the definition and result here.
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7.1.6. DEFINITION. A non-signaling probability distribution P(a, b|x, y) is called
`-shareable with respect to Bob, if there exists an (` + 1)-partite non-signaling
probability distribution Q(a, b1, . . . , b`|x, y1, . . . , y`) such that:

1. For any permutation π ∈ Π(`), we have that

Q(a, bπ(1), . . . , bπ(`)|x, yπ(1), . . . , yπ(`)) = Q(a, b1, . . . , b`|x, y1, . . . , y`) .

2. It holds that

∑
b2 ,...,b`

Q(a, b1, . . . , b`|x, y1, . . . , y`) = P(a, b1|x, y1) .

Note that if both conditions hold, we have that for all k ∈ [`]

∑
b1 ,...,bk−1 ,bk+1 ,...,b`

Q(a, b1, . . . , b`|x, y1, . . . , y`) = P(a, bk|x, yk) . (7.1)

7.1.7. THEOREM (MASANES–ACIN–GISIN [MAG06]). Let Y be the set of differ-
ent values for the input y and suppose ` ≥ |Y|. If P(a, b|x, y) is a non-signaling
distribution which is `-shareable with respect to Bob, then P(a, b|x, y) admits a local
hidden variable model. Formally, there exists a distribution Q(λ) over the hidden vari-
able λ as well as local strategies A(a|x, λ) for Alice and B(b|y, λ) for Bob such that
P(a, b|x, y) = ∑λ Q(λ)A(a|x, λ)B(b|y, λ).

PROOF: Assume without loss of generality that Y = {1, 2, . . . , |Y|}. The idea
of the proof is to ask all possible questions y = 1, 2, . . . , |Y| to |Y| different Bobs
(which is possible because ` ≥ |Y|) and use their answers b1, . . . , b|Y| to these
questions as hidden variable λ.

Assume for now that ` = |Y|. Let us fix the questions to the ` Bobs as
y1 = 1, y2 = 2, . . . , y` = ` and abbreviate this event with E . We can then write

P(a, b|x, y)
(7.1)
= ∑

b1,...,b`
by=b

Q(a, b1, . . . , b`|x, E)

= ∑
b1 ,...,b`

Q(b1, . . . , b`|x, E) ·Q(a|b1, . . . , b`, x, E) · δb,by .

Due to non-signaling, Q(b1, . . . , b`|x, E) = Q(b1, . . . , b`|E) = Q(λ|E). The con-
ditional distribution Q(a|b1, . . . , b`, x, E) defines Alice’s strategy A(a|λ, x, E).
Bob’s strategy B(b|λ, y, E) is defined by giving the answer b = by of the y-th
Bob. In summary, we obtain a local-hidden-variable representation of P:

P(a, b|x, y) = ∑
λ

Q(λ|E) · A(a|λ, x, E) · B(b|λ, y, E) .

In case that ` > |Y|, we observe that `-shareability of P(a, b|x, y) implies
|Y|-shareability. Hence, the above proof applies. �
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PROOF OF THEOREM 7.1.5: Let P(u, j1, . . . , j`|i, c1, . . . , c`) be the optimal non-
signaling probability distribution achieving αns

1,`(G)
. We define the following

distribution

Q(u, j1, . . . , j`|i, c1, . . . , c`) = ∑
π∈Π(`)

1
|Π(`)|P(u, jπ(1), . . . , jπ(`)|i, cπ(1), . . . , cπ(`))

which clearly fulfills the first condition of Definition 7.1.6. By assumption, we
have that for all i ∈ [M], P(u, j1, . . . , j`|i, c1, . . . , c`) = 0 whenever u ∈ ck
for all k ∈ [`] and there is a k′ such that i 6= jk′ . As this condition holds for
each pair of Alice and Bobk individually, it is invariant under permutations of
Bobs. Therefore, the same condition also holds for Q. Since any convex com-
bination of non-signaling distributions is also non-signaling, it follows that Q
can also be used to achieveαns

1,`(G). We now focus on the marginal distribution
Q(u, j1|i, c1) between Alice and the first Bob. This distribution is non-signaling
and `-shareable by construction where ` ≥ θ′e(G); i.e., ` is greater or equal to
the number of outputs of the specific channel we consider. By Theorem 7.1.7, Q
admits a local-hidden-variable model. In other words, Alice and the first Bob
can achieve the distribution by using classical shared randomness. However,
as we are considering the zero-error scenario, shared randomness does not im-
prove over the deterministic classical setting. Therefore Alice and the first Bob
are unable to transmit more than α(G) messages over the channel, showing
thatαns

1,`(G) ≤ α(G). The claim of the theorem then follows by combining this
inequality withα(G) = α1,`(G) ≤ α?

1,`(G) ≤ αns
1,`(G). �

7.1.3 Entanglement can improve the capacity for a fixed num-
ber of receivers

For any fixed number of receivers we construct a channel such that its entan-
gled compound Shannon capacity is strictly bigger than the classical one. To
this end, we will use the quarter-orthogonality graph Hk introduced in Defini-
tion 6.3.1 and prove a generalization to the compound channel setting of the
lower bound on the entanglement-assisted capacity obtained in Theorem 6.3.9.

7.1.8. THEOREM. For a graph G, a natural number ` and integer t ≥ 1 such that
t ≤ logα(G)/ logξ ′(G), we have

c?1,`(G) ≥ t
t + `

log |V(G)|.

PROOF: In Theorem 6.3.9 we proved the special case when ` is equal to one.
Let N be a channel with confusability graph G, d = ξ ′(G) and let f be a d-
dimensional orthogonal representation of G such that its vectors have entries
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of modulus one. For each v ∈ V(G) define ρv = f (v) f (v)∗/d. Moreover,
suppose t ∈ N is such that t ≤ logα(G)/ log d.

Consider the following protocol for a compound channel with ` receivers.
Let the entangled state be such that Alice shares with each individual Bob,
say the k-th, an independent tuple of registers (Ak

1, . . . ,Ak
t ,Bk

1, . . . ,Bk
t ), where

(Ak
1, . . . ,Ak

t ) are Alice’s registers and (Bk
1, . . . ,Bk

t ) are the ones of Bobk. Sup-
pose that Alice wants to transmit the sequence v = (v1, . . . , vt) ∈ V(G)t. Al-
ice prepares d-dimensional quantum registers Ak

1, . . . ,Ak
t to be in the states

ρv1 , . . . ,ρvt , respectively, for each k ∈ [`]. Then, she sends the sequence v
through the channels by using each of them t times in a row. For each Bob
this will result in t channel outputs from which he can infer that each vi be-
longs to a particular clique in G. Now Alice execute with each individual Bob
the remote state preparation scheme (Section 2.4.4) t times in a row, once for
each of the states ρv1 , . . . ,ρvt separately. This requires that Alice communicates
a total of tdlog de bits to each Bob. To do this, Alice uses the channels ` ad-
ditional times and the k-th Bob will consider the (t + k)-th use of the channel
as his output and ignore the others. Due to the way we chose t, this commu-
nication suffices to perform the remote state preparation. At this step, each
Bob has registers (Bk

1, . . . ,Bk
t ) in states ρv1 , . . . ,ρvt . Using their channel out-

puts, they can each perform a measurement on their registers and all recover
the sequence v = (v1, . . . , vt) ∈ V(G)t with zero probability of error.

This concludes the proof as we have provided an entanglement-assisted
protocol for the noiseless transmission of |V(G)|t distinct messages based on
at most t + ` uses of the compound channel N with ` receivers. Indeed, this
implies thatα?

1,`(G
�(t+`)) ≥ |V(G)|t and therefore

c?1,`(G) ≥
logα?

1,`(G
�(t+`))

t + `
≥ log |V(G)|t

t + `
,

as claimed. �

We show that this lower bound technique allows to obtain a separation
between c?1,`(Hk) and c1,`(Hk) for certain k and ` ≥ 1 (Corollary 7.1.10 below).

7.1.9. THEOREM. For every odd integer k ≥ 5 and integer ` ∈ N, we have

c?1,`(Hk) ≥
t

t + `
(k− 1)

with t = b k−3
2 log(k+1)c.

PROOF: Note that if t = b k−3
2 log(k+1)c , then from Lemmas 6.3.6 and 6.3.8 we get

that ξ ′(Hk)
t ≤ (k + 1)t ≤ 2(k−3)/2 ≤ α(Hk). Therefore we can apply Theo-

rem 7.1.8 and obtain the desired bound, since |V(Hk)| = 2k−1. �
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7.1.10. COROLLARY. Consider any k = 4ps − 1 such that p is an odd prime and s is
a natural number. If ` < 0.144k−1

0.856k b k−3
2 log(k+1)c then c?1,`(Hk) > c1,`(Hk).

PROOF: Easy algebraic manipulations give that for every ` <
(

0.144k−1
0.856k

)
t with

t = b k−3
2 log(k+1)c we have:

c?1,`(Hk) ≥
t

t + `
(k− 1) > 0.846k ≥ c1,`(Hk),

where we used Theorem 7.1.9 and Corollary 6.3.14. �

This means that our lower bound on the entangled compound Shannon capac-
ity for k ≈ 1000 is strictly larger than the classical capacity up to ` = 8, for
k ≈ 2000 up to ` = 15. Moreover, the upper bound on ` tends to infinity as k
goes to infinity.

7.2 Multiple senders

We now move to a different zero-error communication scenario which can be
seen as having multiple senders and a single receiver. Classically, cooperation
among the senders might allow them to communicate more messages than the
sum of their individual possibilities. We show that whenever a channel allows
single-sender entanglement-assisted advantage, then the gain extends also to
the multi-sender case (Theorem 7.2.3). Furthermore, for a fixed number of
channel uses entanglement allows for a peculiar amplification of information
which cannot happen classically (Theorem 7.2.6).

7.2.1 Cooperating senders channel coding

Suppose there are ` senders, each of whom gets access to a classical channel
which connects her to the single receiver. We are interested in the total amount
of messages that the senders, as a group, can transmit perfectly. At every stage
of the communication only one of the senders uses her channel to communicate
a message. We assume that inputs of one sender cannot be confused with
inputs from another sender. In other words, the receiver knows which one
of the senders sent him the message. We want to find what is the maximum
cardinality of a message set that the senders are able to perfectly communicate
to the receiver when they are allowed to cooperate.

Equivalently, this communication scenario can be depicted as single-sender
single-receiver where the sender can choose among ` channels {N1,N2, . . .N`}
to use for the communication. At every round of communication, the receiver
learns the output of the channel as well as which channel has been used.
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Suppose that the k-th Alice is connected to Bob through a channel Nk with
confusability graph Gk. As noticed in [AL07], the confusability graph related
to ` cooperating Alices is given by the disjoint union G1 + G2 + · · ·+ G`. The
intuition being that, as inputs from different senders cannot be confused, there
is no edge between vertices of Gi and G j if i 6= j. The maximum size of a mes-
sage set that can be perfectly transmitted with one use of the channels is then
α(G1 + G2 + · · ·+ G`) = ∑i∈[`]α(Gi). However, the capacity of such a graph
is in general non additive. Indeed, as previously mentioned, Alon [Alo98]
showed the existence of a pair of distinct graphs G and H having the prop-
erty that Θ(G + H) > Θ(G) + Θ(H). (However, if G and H are equal then
Θ(G + G) = 2Θ(G) must hold. We will show this simple fact at the end of this
section.) From an information-theoretical perspective, the example of Alon
says that when two senders are allowed to cooperate, the average number of
messages they can communicate is strictly more than the sum of their individ-
ual possibilities. This result was extended by Alon and Lubetzky [AL07] for
a larger number of senders, where they showed that it is possible to assign a
channel to each sender such that only privileged subsets of senders are allowed
to communicate with high capacity.

Suppose now that the parties can use an entanglement-assisted protocol.
We focus on the particular case where all ` senders have access to the same
channel N with confusability graph G. We notice that, since the senders are
cooperating and there is no restriction on the amount of shared entanglement,
we can assume that only one of the senders performs quantum operations on
the entangled state. Hence, without loss of generality, the quantum state is bi-
partite and the entanglement-assisted strategy is equal to the one in Section 6.2
for a channel with confusability graph G+`, where G+` denotes the disjoint
union of ` copies of the graph G. An instance of such an entanglement-assisted
strategy is pictured and explained in Figure 7.2.

7.2.1. DEFINITION. [Entangled multi-sender stability number and Shannon ca-
pacity] For a graph G, the entangled multi-sender stability number with ` senders
isα?

`,1(G) = α?(G+`). The entangled multi-sender Shannon capacity with ` senders
is c?`,1(G) = c?(G+`) which by definition is equal to limn→∞ 1

n logα?
(
(G+`)�n).

A useful observation is that α?
`,1(G) ≥ ` ·α?(G) holds for every G and ` ∈ N.

Indeed, each Alice can individually communicate α?(G) messages using en-
tanglement and in our model Bob learns for free which Alice performed the
communication. Therefore, the ` cooperating Alices can communicate at least
one among ` ·α?(G) distinct messages with one use of the channels and entan-
glement. Somewhat surprisingly, we present in Section 7.2.3 an example of a
graph for which ` senders have a better joined strategy. In other words, there is
a graph G and ` ∈ N for whichα?

`,1(G) > ` ·α?(G). This does not happen in the
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i

Nk

σ
v, k

w, k

j

Figure 7.2: An instance of an entanglement-assisted multi-sender channel cod-
ing protocol: Suppose that the Alices want to communicate the message i to
Bob, then one of them performs a measurement {Av,k

i } (that depends on i) on
her part of the entangled state. The outcome (v, k) indicates that the k-th Alice
should use her channel Nk to send input v. Bob receives an outcome w and,
by assumption, he knows that channel Nk has been used for the communica-
tion. He can then perform measurement {B j

w,k} which depends on w and k,
and outputs j. The protocol works if j is equal to i with zero probability of
error.

classical case where, using analogous notation, for every G and ` ∈ N we have
α`,1(G) = α(G+`) = ` ·α(G) and c`,1(G) = c(G+`) = c(G) + log ` (or, analo-
gously, Θ(G+`) = ` ·Θ(G)). We give a proof of this latter identity, which was
also mentioned by Shannon [Sha56]. The key fact is that the strong graph prod-
uct distributes over the disjoint union; i.e., G � (H1 + H2) = G � H1 + G � H2
for every G, H1, H2 (see for example [HIK11] for a proof). This in particular
implies that (G+`)�n = (G�n)+`n

. Using this last equality, we have

c(G+`) = lim
n→∞ 1

n
logα

(
(G+`)�n) = lim

n→∞ 1
n

logα
(
(G�n)+`n)

= lim
n→∞ 1

n
log

(
`n ·α(G�n)

)
= lim

n→∞ 1
n

log
(
α(G�n)

)
+ log `

= c(G) + log `.

7.2.2 Separation between classical and entangled multi-sender
capacities

Here we show the following: for every graph with a separation between the
classical and entangled capacity, there is also a separation in the multi-sender
setting independently of the number of senders (Theorem 7.2.3). The same
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type of result holds when we restrict to single use of the channels (Lemma
7.2.2). The latter is to be expected since we mentioned above that there is an
easy quantum strategy that allows the ` Alices to communicate ` ·α?(G) mes-
sages with a single communication round.

7.2.2. LEMMA. Let G be a graph such that α?(G) > α(G), then for every ` ∈ N we
haveα?

`,1(G) > α`,1(G).

PROOF: Each Alice can individually communicate α?(G) messages using an
entanglement-assisted protocol. Since Bob also learns which Alice has sent
him the message, the senders can transmit one among ` · α?(G) messages
with entanglement. Thus, the claim follows from the chain of inequalities:
α?
`,1(G) ≥ ` ·α?(G) > ` ·α(G) = α(G+`) = α`,1(G). �

7.2.3. THEOREM. Let G be a graph such that c?(G) > c(G), then for every ` ∈ N
we have c?`,1(G) > c`,1(G).

PROOF: Recall that for any ` ∈ N and graph G we have (G+`)�n = (G�n)+`n

andα?
`,1(G) = α?(G+`) ≥ ` ·α?(G). Therefore, we get

c?`,1(G) = lim
n→∞

(
1
n

log
(
α?
(
(G+`)�n))) = lim

n→∞
(

1
n

log
(
α?
(
(G�n)+`n)))

≥ lim
n→∞

(
1
n

log
(
`n ·α?(G�n)

))
= lim

n→∞
(

1
n

log(α?(G�n)) + log `

)
= lim

n→∞
(

1
n

log
(
α?(G�n)

))
+ log ` = c?(G) + log `

> c(G) + log ` = c`,1(G).

�

7.2.3 Improving communication by joint entanglement-assisted
strategy

We exhibit a graph G and natural number ` for which α?
`,1(G) > ` ·α?(G).

In other words, there is a joint entanglement-assisted strategy for ` senders
which is strictly better than the sum of their optimal individual strategies.
More generally, we are able to prove that there exist graphs for which co-
operation among the senders allows for a better entanglement-assisted strat-
egy for any finite number of channels uses. This is a peculiar property of the
entanglement-assisted setting since in the classical caseα`,1(G) = ` ·α(G) and
c`,1(G) = c(G) + log ` always hold. We do not know whether this improve-
ment gained by cooperation in the entanglement-assisted setting extends also
to the asymptotic regime.
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In order to prove the result, we need to briefly describe a different two-
party entanglement-assisted communication scenario that will be studied in
detail in Section 8.1. Let G be a graph. Suppose that Alice receives a ver-
tex x ∈ V(G) and Bob receives (as side information) a clique C ⊆ V(G) under
the promise that x ∈ C. Moreover, Alice can send classical messages to Bob
without error. What is the minimum cardinality of a message set that Alice
has to use to communicate to Bob such that he can perfectly learn Alice’s in-
put x? In the classical scenario, the minimum cardinality is given by the chro-
matic number χ(G). Indeed, if the players agree on an optimal coloring of the
graph, Alice can simply send the color corresponding to x to Bob. This suffices
since elements of a clique all have different colors. Conversely, any determin-
istic strategy yields a coloring of the graph and, since we are in the zero-error
regime, we can always assume the optimal strategy to be deterministic. Sim-
ilarly, the entangled chromatic number χ?(G) is the minimum cardinality of
a message set that Alice has to send to Bob such that he can perfectly learn x
when Alice and Bob can share an arbitrary entangled state. This parameter
has two useful properties: ϑ(G) ≤ χ?(G) and χ?(G�m) ≤ χ?(G)m for every
graph G and m ∈ N (see Section 8.1.1).

We will use the following technical lemma, which can be seen as an entan-
gled version of Theorem 3.2.1. Recall that G�Kt denotes the Cartesian product
graph between the graph G and the complete graph Kt and that ϑ(G) is the
Lovász theta number.

7.2.4. LEMMA. For any graph G, if t = χ?(G) thenα?(G�Kt) = |V(G)|.

PROOF: First, we prove that for any t ∈ N the inequality α?(G�Kt) ≤ |V(G)|
holds. For convenience let |V(G)| = n. For every t ∈ N, we have that
α?(G�Kt) ≤ ϑ(G�Kt) ≤ ϑ(Kn �Kt) = ϑ(Kn) ·ϑ(Kt) = n = |V(G)|. This chain
of inequalities uses the fact that ϑ upper bounds α?, Kn � Kt is a subgraph of
G�Kt and ϑ is monotone non-decreasing under taking subgraphs, ϑ is multi-
plicative under strong graph products, and that ϑ(Kn) = n and ϑ(Kt) = 1.

For the reverse inequality, let t = χ?(G) and suppose that Alice and Bob are
connected through a classical channel N with confusability graph G�Kt. We
present a strategy that uses entanglement and allows to communicate |V(G)|
messages with a single use, thus implying α?(G�Kt) ≥ |V(G)|. Suppose that
Alice wants to send message x ∈ V(G) to Bob. Using the strategy for the en-
tangled chromatic number χ?(G), Alice makes a measurement on her part of
the entangled state and gets an outcome i ∈ [χ?(G)]. She sends message (x, i)
through the channel. To any channel output w ∈ W we can associate a clique
in the confusability graph, describing the set of messages that are confusable
to Bob given w. There are two types of cliques in G�Kt: either {(z, h) : z is
in a clique C of G} or {(z, h) : h ∈ H ⊆ [χ?(G)]}. Suppose for the moment
that from his channel output Bob infers that Alice’s input (x, i) is an element
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of the set {(y, i) : y ∈ Cx where Cx is a clique of G containing x}. Since Bob
learns Cx, he can use message i to finish the protocol of the entangled chro-
matic number. As mentioned above the protocol allows Bob to recover x with
zero probability of error. For the other case, Bob from his output learns that
Alice’s input is an element in the set {(x, j) : j ∈ J ⊆ [χ?(G)] with i ∈ J}.
Then he can directly deduce that x is the message that Alice wanted to send.
Hence, we have shown an entanglement-assisted protocol that allows to per-
fectly communicate |V(G)| classical messages through a channel with confus-
ability graph G�Kt. Therefore, if t = χ?(G) then α?(G�Kt) ≥ |V(G)| holds.
Combining this inequality with the one derived at the beginning of the proof,
we can conclude. �

The following lemma was proven in a more general context by Gvozden-
ović and Laurent [GL08, Lemma 2.4].

7.2.5. LEMMA. Let G be a graph such that χ?(G)α?(G) < |V(G)| and t = χ?(G).
Then,α?(G+t) > t ·α?(G).

PROOF: We have: t ·α?(G) = χ?(G)α?(G) < |V(G)| = α?(G�Kt) ≤ α?(G+t),
where we used Lemma 7.2.4 and, in the last inequality, that G+t is a subgraph
of G�Kt and that the parameter α? is monotone non-decreasing under taking
subgraphs. �

The above lemma is the key fact to obtain the desired result. We now sim-
ply have to exhibit a graph G where χ?(G)α?(G) < |V(G)|. We remark that
classically χ(G)α(G) ≥ |V(G)| always holds and indeed α(G+`) = ` ·α(G)
for every ` ∈ N and graph G.

To this end, we will use the orthogonality graph Ωk (Definition 3.3.2); i.e.,
the graph with {±1}k as vertex set and two vectors are adjacent if orthog-
onal. From [MR16], we know that ϑ(Ωk) = 2k/k and ϑ(Ωk) = k if k is a
multiple of four. Consider the orthogonal representation f : V(Ωk) → Rk

with f (v) = v/
√

k that maps vertices of Ωk to the unit sphere and adjacent
vertices to orthogonal vectors. Thus, we have ξ ′(Ωk) ≤ k. Since χ? is up-
per bounded by the minimum dimension of an orthogonal representation in
which all the entries of the vectors have equal moduli (Lemma 8.1.3), we have
that k = ϑ(Ωk) ≤ χ?(Ωk) ≤ ξ ′(Ωk) ≤ k, and thus χ?(Ωk) = k, for every k
multiple of four.

We can now prove the main result of the section.

7.2.6. THEOREM. Let Ωk be the orthogonality graph with k a multiple of four but not
a power of two. Thenα?

k,1(Ωk) = α
?(Ω+k

k ) > k ·α?(Ωk).
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PROOF: From the discussion above we know that χ?(Ωk) = k. Moreover, we
haveα?(Ωk) ≤ bϑ(Ωk)c = b2k/kc < 2k/k = ϑ(Ωk). Using a similar argument
as in [MR16], we get that χ?(Ωk)α

?(Ωk) < |V(Ωk)| since

χ?(Ωk)α
?(Ωk) ≤ k · b2k/kc < k · 2k/k = 2k = |V(Ωk)|.

Using Lemma 7.2.5 we conclude thatα?
k,1(Ωk) = α

?(Ω+k
k ) > k ·α?(Ωk). �

With a similar reasoning, we can prove that for every finite number of uses
of the channel, cooperation among the players improves the entanglement-
assisted communication. Let α?

`,1(G, n) = α?((G+`)�n) be the maximum car-
dinality of a message set that ` Alices can communicate perfectly to Bob with n
uses of the channel and entanglement.

In the next lemma, we show that there exist a graph G and ` ∈ N such that
α?
`,1(G, n) > `n ·α?(G�n) for every n ∈ N. This is equivalent to saying that

there exists a channel and a certain number of senders for which cooperation
among the senders strictly improves the communication of n channel uses for
every n ∈ N.

7.2.7. THEOREM. Let Ωk be the orthogonality graph with k a multiple of four but not
a power of two. Then,α?

k,1(Ωk, n) > kn ·α?(Ωk, n) for every n ∈ N.

PROOF: Using Lemma 3.2.5 (ii) and the above discussion, we deduce that

ϑ(Ω�n
k ) = ϑ(Ωk)

n =
(

2k

k

)n
for every n ∈ N. Moreover, from (3.1) together

with Lemma 3.2.5 (iii), we have that ϑ(Ω�n
k ) = ϑ(Ω

∗n
k ) = ϑ(Ωk)

n = kn for any
n ∈ N. Then by sub-multiplicativity of χ?(G) and since χ?(Ωk) = k, we have
kn = ϑ(Ω�n

k ) ≤ χ?(Ω�n
k ) ≤ χ?(Ωk)

n = kn. This implies that for any integer n,

α?(Ω�n
k ) ≤ bϑ(Ω�n

k )c =
⌊(2k

k

)n ⌋
<

(
2k

k

)n

=
|V(Ω�n

k )|
χ?(Ω�n

k )
.

Applying Lemma 7.2.5, we then have that α?
(
(Ω�n

k )+kn)
> kn ·α?(Ω�n

k ) for
every n ∈ N. We can conclude that

α?
k,1(Ωk, n) = α?

(
(Ω�n

k )+kn)
> kn ·α?(Ω�n

k ) = kn ·α?(Ωk, n).

�

A particular graph. In this section, we exhibited examples of graphs whose
entangled stability number is strictly greater than the sum of the entangled
stability number of the disjoint components. A smaller graph that has this
property was recently found by Mančinska and Roberson [MR15].
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Figure 7.3: Line graph of K3�K3.

Consider the following 9 orthogonal bases of R4, say, B1, . . . , B9:

(0, 0, 0, 1)
(0, 0, 1, 0)
(1, 1, 0, 0)
(1,−1, 0, 0)

(0, 0, 0, 1)
(0, 1, 0, 0)
(1, 0, 1, 0)
(1, 0,−1, 0)

(1,−1, 1, −1)
(1,−1,−1, 1)
(1, 1, 0, 0)
(0, 0, 1, 1)

(1,−1, 1, −1)
(1, 1, 1, 1)
(1, 0, −1, 0)
(0, 1, 0, −1)

(0, 0, 1, 0)
(0, 1, 0, 0)
(1, 0, 0, 1)
(1, 0, 0,−1)

(1,−1,−1, 1)
(1, 1, 1, 1)
(1, 0, 0, −1)
(0, 1, −1, 0)

(1, 1, −1, 1)
(1, 1, 1, −1)
(1,−1, 0, 0)
(0, 0, 1, 1)

(1, 1,−1, 1)
(−1, 1, 1, 1)
(1, 0, 1, 0)
(0, 1, 0, −1)

(1, 1, 1, −1)
(−1, 1, 1, 1)
(1, 0, 0, 1)
(0, 1,−1, 0)

One can easily check that each vector is contained in exactly two bases. Con-
struct the graph G as follows: to each of the above vectors we associate a vertex
and they are adjacent if the corresponding vectors are elements of the same ba-
sis. (Note that orthogonal vectors do not have to be adjacent.) Equivalently, G
is the line graph of the Cartesian product graph K3�K3; i.e., the graph whose
vertices represents the edges of the original graph and where two vertices are
adjacent if the corresponding edges share an endpoint. This graph has 18 ver-
tices and 54 edges. It is depicted in Figure 7.3.

By construction ξ(G) ≤ 4 and equality holds because 4 = ω(G) ≤ ξ(G).
Using Proposition 3.3.3 and the fact that χ?(G) ≤ χq(G), we have χ?(G) ≤ 4.
At the same time, α?(G) = 4 since 4 = α(G) ≤ α?(G) ≤ ϑ(G) = 9/2.
As α?(G) χ?(G) = 16 < 18 = |V(G)|, Lemma 7.2.5 applies and we have
α?(G+4) ≥ 18 > 16 = 4α?(G). Actually, α?(G+4) = 18 holds because
ϑ(G+4) = 4 · 9/2 = 18.

Even better, Mančinska and Roberson [MR15] gave an entanglement-assisted
protocol with which one can transmit 9 classical messages with a channel whose
confusability graph is G + G. Moreover, as ϑ(G + G) = 9, we have the follow-
ing identitiesα?(G + G) = Θ?(G + G) = 9.
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7.2.8. LEMMA (MANČINSKA–ROBERSON [MR15]). Let G be the line graph of the
Cartesian product K3�K3, then α?(G + G) = 9. Furthermore, this implies that
α?(G + G) > 2α?(G).

PROOF: We only prove the non-trivial inequality: α?(G + G) ≥ 9. In what fol-
lows, we associate to each vertex v ∈ V(G) its corresponding (normalized) vec-
tor fv. The protocol goes as follows. Let the pair of quantum registers (A,B) be
initialized to be in the 4-dimensional maximally entangled stateσ = zz∗where
z = (∑4

`=1 e`⊗ e`)/
√

4. If Alice wants to communicate message i ∈ [9], she per-
forms the measurement { fu f T

u } fu∈Bi and gets an outcome fu ∈ Bi. Bob’s regis-
ter is then in a state proportional to ρu

i = TrA(( fu f T
u ⊗ I)σ) = ( fu f T

u )
T/4. Let j

be the index such that fu ∈ Bi ∩B j. If i < j, Alice uses the first copy of the graph
G to send vertex u as input. Otherwise, to send u she uses the second copy of
the graph G. As outcome of the channel, Bob gets a clique C, where u ∈ C, to-
gether with an index k ∈ {1, 2} that tells him which copy of the channel Alice
has used. From C, Bob constructs a measurement {Pv : v ∈ C} ∪ {PT} where
Pv = { fv f T

v } and PT = I − ∑v∈C Pv, which he uses to measure the state ρu
i and

gets u as outcome. Now, he knows that Alice either wanted to send index i or
index j. If as output of the channel Bob received index k = 1 he outputs the
minimum between i and j, otherwise he outputs max(i, j). Therefore, Alice
can perfectly communicate to Bob 9 different messages andα?(G + G) ≥ 9. �

At last, we mention that this graph has another peculiar property. As ob-
served in [LMM+12], for the very few graphs for which we know a separation
between α?(G) and α(G) we have α?(G) = Θ?(G). This might, or might not,
be the case for the quarter-orthogonality graphs (Definition 6.3.1). However,
we will now show that for this graph we have: α?(G) < Θ?(G). As far as we
know, this is the only graph with such a property.

We already know that α?(G) = 4 and now prove that Θ?(G) ≥ 3
√

2. We
claim that Alice can transmit |V(G)| different messages to Bob with two uses
of the channel and entanglement. The bound now follows as |V(G)| = 18. We
use the same protocol as in the proof of Theorem 6.3.9.

For each v ∈ V(G), define the state ρv = fv f T
v , where as before fv is the

normalized vector corresponding to vertex v. Suppose that Alice wants to send
message u ∈ V(G). She prepares her 4-dimensional quantum register A to be
in state ρu and sends u through the channel. Using his output, Bob infers a
clique C of the graph containing u. Since the state ρu lives in R4×4, Zeng and
Zhang [ZZ02] have a scheme that allows to remote-state prepare ρu requiring
only the transmission of 2 classical bits. As α(G) = 4, this can be achieved by
using the channel one additional time. Now Bob’s register is in state ρu and,
knowing C, he can construct a measurement such that he is guaranteed to get u
as outcome. Therefore, Θ?(G) ≥

√
α?(G�2) ≥

√
18 = 3

√
2.
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It would be of particular interest if this lower bound was tight. There reason
begin that since Θ?(G + G) = 9 the graph G is a candidate for having the
property Θ?(G + G) > 2Θ?(G). If this were to be true it would show that the
parameter Θ? can be strictly smaller than the Lovász theta number.



Chapter 8

Source and source-channel coding

In this chapter we study two zero-error coding problems: the source and the
source-channel coding problems, in the scenario where the parties may use en-
tanglement. Here, Alice and Bob are given correlated inputs from a random
source and they are connected by a one-way classical noiseless channel (source
coding) or a noisy one (source-channel coding). Their goal is for Bob to learn
Alice’s input with zero probability of error, while using the channel as little as
possible. In Section 8.1 we study the source coding problem and show that en-
tanglement can allow for source coding schemes that are exponentially more
efficient than classical ones. In Section 8.2 we present the source-channel cod-
ing problem and prove that, also in this case, entanglement allows for coding
schemes which are exponentially better than the classical ones.

The content of this chapter is based on joint work with Jop Briët, Harry
Buhrman, Monique Laurent, and Giannicola Scarpa [BBL+15a].

8.1 The source coding problem

The source coding problem asks a sender to communicate data about which a
receiver has already some information. The sender can supply additional in-
formation to the receiver by using a noiseless binary channel.

A sourceM consists of a finite set X, a (possibly infinite) set S and a prob-
ability distribution P over X× S. In a source instance, Alice is given an input
x ∈ X and Bob an input s ∈ S with probability P(x, s). Bob’s input may already
give him some information about Alice’s. But if his input does not uniquely
identify hers, she can supply some additional information by getting access to
a noiseless one-way binary channel. Their goal is for Bob to learn Alice’s input
while minimizing the use of the channel. Here we consider only memoryless
sources, which means that the probability distribution P(x, s) of the source is
unchanged after every instance.

125
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The source-coding problem can sometimes be solved more efficiently by
jointly encoding sequences of inputs into single codewords. If the parties use
block codes of length-n to deal with length-m input sequences, then after re-
ceiving an input sequence x = (x1, . . . , xm), Alice applies encoding function
C : Xm → {0, 1}n and sends C(x) through the binary channel by using it n
times in a row. Bob, who received an input s = (s1, . . . , sm) ∈ Sm, then applies
a decoding function D : Sm × {0, 1}n → Xm to the pair (s,C(x)) to get a string
in Xm. The scheme works if Bob always gets the string x. The cost rate of the
scheme (C,D) is then n/m, which counts the average number of channel uses
per source-input symbol.

In the vanishing error regime, Slepian and Wolf [SW74] showed that the
amount of communication that Alice needs to supply is equal to the informa-
tion theoretical lower bound. That is, let (X, S) be the random variable pair
generated according to the distribution P(x, s). Then, asymptotically, Alice
has to transmits to Bob at a cost rate which is equal to the conditional entropy
function H(X|S). Here we focus however on the zero-error scenario.

Witsenhausen [Wit76] and Ferguson and Bailey [FB75] showed that the
zero-error source coding problem can be studied in graph-theoretic terms. As-
sociated with a sourceM is its characteristic graph H = (X, E), where {x, y} ∈ E
if there exists a s ∈ S such that P(x, s) > 0 and P(y, s) > 0. As such, the edge
set identifies the pairs of inputs for Alice which Bob cannot distinguish based
on his input. Notice that every graph is the characteristic graph of a (non-
unique) source. Solving one instance of the zero-error source coding problem
for M is equivalent to finding a proper coloring of H. Indeed, Bob’s input s
reduces the list of Alice’s possible inputs to the set {x ∈ X : P(x, s) > 0} and
this set forms a clique in H. So Bob can learn Alice’s input if she sends him its
color. Conversely, a length-1 block-code forM defines a proper coloring of H.
To deal with length-m input sequences we take the strong product graph H�m,
whose edges are the pairs of input sequences for Alice which Bob cannot dis-
tinguish. The Witsenhausen rate

R(H) = lim
m→∞ 1

m
log χ(H�m)

is the minimum asymptotic cost rate of a zero-error code for a source. As is
well-known and easy to check, the chromatic number is sub-multiplicative; i.e.,
χ(H�(m+n)) ≤ χ(H�m)χ(H�n). Therefore, by Fekete’s Lemma (Lemma 6.1.1)
the above limit exists and is equal to the infimum: R(H) = infm log χ(H�m)/m.

8.1.1 Entanglement-assisted source coding

Consider the same setup as before, except now Alice and Bob have quantum
registers A and B, respectively, that are initialized to be in some entangled
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x =

Figure 8.1: An entanglement-assisted source coding protocol.

state. If the sourceM gives the parties inputs x ∈ X and s ∈ S, respectively,
then their most general course of action is as follows (see also Figure 8.1):

1. After receiving her input x, Alice performs a measurement on her regis-
ter A and communicates the measurement outcome, say i, to Bob;

2. After receiving both his input s and Alice’s measurement outcome i, Bob
performs a measurement on his register B and obtains a measurement
outcome y ∈ X.

The protocol is successful if Bob gets outcome y = x for each possible in-
put pair (x, s). In a fashion similar to Section 6.2, one arrives to the following
entangled variants of the chromatic number and Witsenhausen rate.

8.1.1. DEFINITION. [Entangled chromatic number and Witsenhausen rate] For
a graph H, define χ?(H) as the minimum integer t ∈ N for which there exist
d ∈ N and positive semidefinite matrices ρ and {ρi

x : x ∈ V(H), i ∈ [t]}
in Cd×d such that Tr(ρ) = 1 and

ρi
xρ

i
y = 0 ∀i ∈ [t] and x, y ∈ V(H) such that {x, y} ∈ E(H),

∑
i∈[t]

ρi
x = ρ ∀x ∈ V(H).

The entangled Witsenhausen rate is defined by

R?(H) = lim
m→∞ 1

m
log χ?(H�m).



128 Chapter 8. Source and source-channel coding

The operational interpretation of the parameter χ?(H) makes it easy to
see that it is sub-multiplicative with respect to strong graph products; that
is, χ?(H � H′) ≤ χ?(H) χ?(H′). This implies that the entangled Witsenhausen
rate is also given by the infimum: R?(H) = infm log χ?(H�m)/m.

Recall that in Section 5.1.1 we have shown that the Lovász theta number is
a lower bound on the entangled chromatic number; i.e., ϑ(H) ≤ χ?(H). By the
multiplicativity of ϑ(H) under strong graph products, we can directly deduce
the inequality: logϑ(H) ≤ R?(H).

8.1.2 Separation between classical and entangled Witsenhausen
rate

We exhibit an exponential gap between the entangled and the classical Witsen-
hausen rate for the quarter-orthogonality graphs Hk (Definition 6.3.1).

We remark that, as for the channel coding problem, entanglement-assisted
protocols may provide an advantage only in the zero-error scenario. Indeed,
if one allows a vanishing probability of error, the above mentioned result of
Slepian and Wolf [SW74] implies that, asymptotically, entanglement cannot
improve the communication cost rate.

The remaining of the section will be use to prove the following result.

8.1.2. THEOREM. For every odd integer k, we have

R?(Hk) ≤ log(k + 1). (8.1)

Moreover, if k = 4p` − 1 where p is an odd prime and ` ∈ N, then

R(Hk) ≥ 0.154k− 1. (8.2)

Upper bound on the entangled Witsenhausen rate. In order to prove the
bound (8.1) on R?(Hk), we first show that χ?(H) ≤ ξ ′(H). This inequality can
be derived from the fact that χ?(H) ≤ χq(H) and a result of [CMN+07] stat-
ing that χq(H) ≤ ξ ′(H). We give a self-contained proof of the implied bound
on χ?(H). From our proof, it follows almost immediately that also χ?(H) ≤ ξ(H)2

holds; the only thing to change in the proof is to replace the remote state prepa-
ration scheme described in Section 2.4.4 by quantum teleportation.

For any graph H, ξ(H) is the minimum dimension of an orthogonal repre-
sentation; while ξ ′(H) is the minimum dimension of an orthogonal represen-
tation where each vector has all the entries with absolute value one.

8.1.3. LEMMA. For every graph H, we have χ?(H) ≤ ξ ′(H).
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PROOF: Consider a sourceM with characteristic graph H. Let d = ξ ′(H) and
let f be a d-dimensional orthogonal representation of G such that all the entries
of the vectors have modulus one. It suffices to find an entanglement-assisted
protocol forM that involves only d-outcome measurements on Alice’s part. To
this end, let us recall the observation that Bob’s input s allows him to reduce
the list of Alice’s possible inputs to a clique C in H that contains Alice’s actual
input x. Next, notice that the set of states f (y) f (y)∗/d for y ∈ C are pairwise
orthogonal. This suggests the following protocol. First the parties perform the
remote state preparation protocol (Section 2.4.4) to put a quantum register be-
longing to Bob in the state f (x) f (x)∗/d. Now Bob performs the measurement
with outcomes in C ∪ {⊥} as promised to exist by the Orthogonality Lemma
(Lemma 2.4.1) to learn which of the states f (y) f (y)∗/d his register is in, thus
learning x. The result now follows because the remote state preparation in-
volves only d-outcome measurements. �

Combining Lemma 6.3.8 with the one above, we easily get the following
upper bound on the entangled chromatic number.

8.1.4. LEMMA. Let k be an odd positive integer and m ∈ N. Then, the inequality
χ?(H�m

k ) ≤ (k + 1)m holds. Moreover, we have equality if there exists a Hadamard
matrix of size k + 1.

PROOF: By the sub-multiplicativity of χ?(H), Lemma 8.1.3 and Lemma 6.3.8,
we have χ?(H�m

k ) ≤ χ?(Hk)
m ≤ ξ ′(Hk)

m ≤ (k + 1)m.
Suppose now that there exists a Hadamard matrix of size k + 1. Recall

from Proposition 6.3.7 that the existence of a Hadamard matrix of size k + 1
implies ω(Hk) ≥ k + 1. Combining this with the fact that for every graph G
the inequalities χ?(G) ≥ ϑ(G) ≥ ω(G) hold (see (3.14)), then for every m ∈ N
we have

χ?(H�m
k ) ≥ ϑ(H�m

k ) ≥ω(H�m
k ) ≥ ω(Hk)

m ≥ (k + 1)m,

where the third inequality uses the simple fact that if a subset W ⊆ V(G) forms
a clique in a graph G, then the set Wm of m-tuples of elements from W forms a
clique in G�m. �

The bound (8.1) can now be derived as a simple corollary.

8.1.5. COROLLARY. Let k be an odd positive integer. Then R?(Hk) ≤ log(k + 1).

PROOF: We have R?(Hk) = infm log χ?(H�m
k )/m ≤ log(k + 1), where in the

last inequality we used Lemma 8.1.4. �
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Lower bound on the Witsenhausen rate. The bound (8.2) on R(Hk) follows
from the upper bound on the classical stability number of the graphs H�m

k for
certain values of k given in Lemma 6.3.11.

8.1.6. COROLLARY. Let p be an odd prime and ` ∈ N. Then, for k = 4p` − 1, we
have R(Hk) ≥ 0.154k− 1.

PROOF: By Lemma 6.3.11, for every integer m, we have

χ(H�m
k ) ≥ |V(H�m

k )|
α(H�m

k )
>

2(k−1)m

20.846km = 2(0.154k−1)m.

Taking the logarithm, dividing by m and taking the limit as m tends to infinity
gives the result. �

8.2 The source-channel coding problem

In the source-channel coding problem the parties receive inputs from a sourceM
and get access to a channel N . Their goal is to solve the source coding prob-
lem, but now using the (noisy) channelN instead of a (noiseless) binary chan-
nel. An (m, n)-coding scheme for this problem consists of an encoding func-
tion C : Xm → Vn and a decoding function D : Sm ×Wn → Xm. The cost rate
is n/m and gives the average number of channel uses per source-input symbol.

Nayak, Tuncel and Rose [NTR06] showed that if the sourceM has charac-
teristic graph H and the channelN has confusability graph G, then a zero-error
(m, n)-coding scheme is equivalent to a homomorphism from H�m to G�n.
Then, the parameter

η(H, G) = lim
m→∞ 1

m
min

{
n ∈ N : H�m −→ G�n

}
gives the minimum asymptotic cost rate of a zero-error code. We will assume
throughout that both H and G contain at least one edge. (Indeed, if H has no
edge then η(H, G) = 0 for any G and, if H has at least one edge, then η(H, G)
is well-defined only if G has at least one edge.) To see that the limit exists,
observe that the parameter

ηm(H, G) = min
{

n ∈ N : H�m −→ G�n
}

is sub-additive and apply Fekete’s Lemma (Lemma 6.1.1), which shows that
η(H, G) = limm→∞ ηm(H, G)/m is also equal to the infimum infm ηm(H, G)/m.

If the channel N is replaced by a noiseless binary channel we regain the
source coding problem. Conversely, if Alice receives binary inputs from the
source and Bob’s source inputs give him no information at all about Alice’s
one, then we regain the channel coding problem. More formally, we can refor-
mulate R(H) and c(G) in the following way.
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8.2.1. LEMMA. Let G and H be graphs such that both G and H have at least one edge.
Then,

R(H) = η(H, K2) and 1/c(G) = η(K2, G).

PROOF: For the proof of the identity R(H) = η(H, K2) we use the following
simple fact: for a graph H′ and t ∈ N, there exists a homomorphism from H′

to Kt if and only if χ(H′) ≤ t. That is, χ(H′) = min {t : H′ −→ Kt} and taking
the logarithms we have

log χ(H′) ≤ min {n : H′ −→ K2n} < log χ(H′) + 1.

Combining these inequalities applied to H′ = H�m with the simple identity

K�n
2 = K2n , we obtain

η(H, K2) = lim
m→∞ 1

m
min {n : H�m −→ K�n

2 = K2n}

= lim
m→∞ 1

m
log χ(H�m)

= R(G).

The proof of the identity 1/c(G) = η(K2, G) uses the fact that, for a graph G′

and t ∈ N, there exists a homomorphism from Kt to G′ if and only ifα(G′) ≥ t.
Since K�m

2 = K2m , we get

ηm(K2, G) = min
{

n : K�m
2 = K2m −→ G�n

}
= min

{
n : α(G�n) ≥ 2m}

= min
{

n : logα(G�n) ≥ m
}

.

Setting nm = ηm(K2, G), this implies

logα(G�(nm−1)) < m ≤ logα(G�nm)

and thus nm

logα(G�nm)
≤ nm

m
<

nm

logα(G�(nm−1))
. (8.3)

As c(G) = supn logα(G�n)/n, using the left most inequality in (8.3) we de-
duce that for all m

1
c(G)

≤ nm

logα(G�nm)
≤ nm

m
.

Taking the limit, we obtain 1/c(G) ≤ limm→∞ nm/m = η(K2, G). Next, as
η(K2, G) = infm nm/m, using the right most inequality in (8.3) we get that

η(K2, G) ≤ nm

m
<

nm

logα(G�(nm−1))
=

nm − 1
logα(G�(nm−1))

nm

nm − 1
.
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Figure 8.2: An entanglement-assisted source-channel coding protocol.

It is clear that limm→∞ nm = ∞. Therefore we can conclude that the limit of the
right most term in the above inequalities is equal to 1/c(G), which shows the
reverse inequality η(K2, G) ≤ 1/c(G). Thus the equality η(K2, G) = 1/c(G)
holds. �

8.2.1 Entanglement-assisted source-channel coding

Suppose that now Alice and Bob possess quantum registers A and B, respec-
tively, that are initialized to be in some entangled state σ . The entanglement-
assisted version of an (m, n)-coding scheme is as follows (see also Figure 8.2):

1. Alice and Bob receive inputs x ∈ Xm and s ∈ Sm, respectively, from the
sourceM;

2. Alice performs a measurement {Av
x}v∈Vn (which can depend on x) on A

and gets some sequence v as outcome;

3. Alice sends v through the channel N after which Bob receives some se-
quence w ∈ Wn;

4. Bob performs a measurement {By
s,w}y∈Xm (which can depend on s and

w) on B and gets some sequence y ∈ Xm as outcome.

Using the same arguments as in Section 6.2, one then arrives at the follow-
ing variants of the cost-rate.
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8.2.2. DEFINITION. [Entangled source-channel cost rate] For graphs G, H and
number m ∈ N, define η?m(H, G) as the minimum integer n ∈ N for which
there exist d ∈ N and positive semidefinite matrices ρ and {ρu

x : x ∈ V(H�m),
u ∈ V(G�n)} in Cd×d such that Tr(ρ) = 1 and

ρu
xρ

v
y = 0 ∀x, y such that {x, y} ∈ E(H�m) and

∀u, v such that u = v or {u, v} ∈ E(G�n),

∑
u∈V(G�n)

ρu
x = ρ ∀x ∈ V(H�m).

The entangled source-channel cost rate is defined by

η?(H, G) = lim
m→∞ 1

m
η?m(H, G).

As for the classical counterpart, we assume throughout that both graphs
H and G contain at least one edge, thereby excluding trivial settings. It is not
difficult to see that we regain the parameter η(H, G) if we restrict the above
matrices ρ and ρu

x to be {0, 1}-valued scalars. Sharing an entangled quantum
system cannot make the coding scheme worse and so η?(H, G) ≤ η(H, G).
As in the classical case, the parameter η?m(H, G) is sub-additive (as can easily
be derived by its operational interpretation or by matrix manipulations using
Definition 8.2.2), hence the parameter η?(H, G) is well-defined and can equiv-
alently be given by infm η

?
m(H, G)/m.

Furthermore, building up on the work presented in this chapter, Cubitt et
al. [CMR+14] proved the following bound: η?(H, G) ≥ logϑ(H)/ logϑ(G).

As one would expect, an analog of Lemma 8.2.1 holds.

8.2.3. LEMMA. Let G and H be graphs such that both G and H have at least one edge.
Then,

R?(H) = η?(H, K2) and 1/c?(G) = η?(K2, G).

PROOF: As K2
�n is the empty graph on 2n vertices, one can derive from the

definitions that η?m(H, K2) = dlog χ?(H�m)e. The identity R?(H) = η?(H, K2)
then follows by dividing by m and letting m go to infinity.

Since K�m
2 = K2m , it follows from the definitions that η?m(K2, G) is the min-

imum n ∈ N such that α?(G�n) ≥ 2m or, equivalently, logα?(G�n) ≥ m.
We can then use the same techniques as in Lemma 8.2.1 to prove the identity
1/c?(G) = η?(K2, G). �
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8.2.2 Separate coding schemes for the source-channel problem

Intuitively one can obtain a source-channel coding scheme by concatenating a
coding scheme for a source with one for a channel. This is actually an optimal
strategy in the setting of asymptotically vanishing error probability [VVS95],
meaning that source and channel code design can be dealt separately without
asymptotic loss in the code rate in the limit of large block lengths. But when
errors cannot be tolerated, Nayak, Tuncel and Rose [NTR06] showed that sepa-
rated codes can be highly suboptimal. In terms of the above graph parameters,
this says that in general η(H, G) ≤ R(H)/c(G) holds (see Proposition 8.2.5
below), but that for some families of graphs there can be a large separation:
η(H, G)� R(H)/c(G).

To be able to concatenate a source coding scheme with one for a channel,
the number of bits one can send perfectly with n uses of the channel must be at
least as large as the number of bits required to solve m instances of the source
problem. In other words, for a source with characteristic graph H and a chan-
nel with confusability graph G, we need the condition χ(H�m) ≤ α(G�n) in
order to send length-m source-input sequences with n uses of the channel. If
this condition holds, then it follows that ηm(H, G) ≤ n. The same type of rea-
soning holds also in the entanglement-assisted case. We have just proved the
following simple lemma, which can alternatively be shown using the defini-
tion of a graph homomorphism and simple matrix manipulations.

8.2.4. LEMMA. Given graphs G, H and positive integers n, m, we have

χ(H�m) ≤ α(G�n) =⇒ ηm(H, G) ≤ n, (8.4)

χ?(H�m) ≤ α?(G�n) =⇒ η?m(H, G) ≤ n. (8.5)

We now relate the minimum cost rate to the ratio of the Witsenhausen rate
and the Shannon capacity in both classical and entangled cases.

8.2.5. PROPOSITION. Let G and H be graphs and assume that both G and H have at
least one edge. Then,

η(H, G) ≤ R(H)

c(G)
= lim

m→∞ 1
m

min {n : χ(H�m) ≤ α(G�n)}, (8.6)

η?(H, G) ≤ R?(H)

c?(G)
= lim

m→∞ 1
m

min {n : χ?(H�m) ≤ α?(G�n)}. (8.7)

PROOF: We show (8.6); we omit the proof of (8.7) which is analogous (and
uses (8.5)). Let define εm(H, G) = min {n : χ(H�m) ≤ α(G�n)}. From
(8.4) we have the inequality ηm(H, G) ≤ εm(H, G), which in turn implies
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η(H, G) ≤ limm→∞ εm(H, G)/m. Next we show that this limit is equal to
R(H)/c(G), which concludes the proof of (8.6). Setting n = εm(H, G), we
have thatα(G�(n−1)) < χ(H�m) ≤ α(G�n), implying

R(H)

c(G)
≤ log χ(H�m)

m
n

logα(G�n)
≤ n

m
<

n
n− 1

log χ(H�m)

m
n− 1

logα(G�n−1)
.

Taking limits as m tends to infinity, in the right most terms we obtain that
R(H)/c(G) is equal to limm→∞ εm(H, G)/m. �

8.2.3 Separation between classical and entangled source-channel
cost rate

We exhibit a family of source-channel instances where an entanglement-assisted
strategy allows to reduce the cost rate. We again use properties of the quarter-
orthogonality graphs Hk (Definition 6.3.1).

8.2.6. THEOREM. Let p be an odd prime and ` ∈ N such that there exists a Hadamard
matrix of size 4p`. Set k = 4p` − 1. Then,

η?(Hk, Hk) ≤
log(k + 1)

(k− 1)
(

1− 2 log(k+1)
k−3

) , (8.8)

η(Hk, Hk) >
0.154 k− 1

k− 1− log(k + 1)
. (8.9)

Let us point out that Theorem 8.2.6 holds for an infinite family of graphs. This
follows from the result of Xia and Lu [XL91] in Theorem 6.3.3, since there exist
infinitely many (p, `)-pairs such that p`/2 ≡ 1 mod 4. (For instance, for p = 5
and ` = 2i with i ∈ N, 5i = (4 + 1)i ≡ 1 mod 4.)

Thus, for any k satisfying the condition of the theorem, we have an expo-
nential separation between the entangled and the classical source-channel cost
rate as

η?(Hk, Hk) ≤ O
( log k

k

)
while η(Hk, Hk) ≥ Ω(1).

In Section 8.2.2 we mentioned that there are graphs for which a large sep-
aration η(H, G) � R(H)/c(G) is possible [NTR06]. This is however not the
case for our source-channel combination using G = H = Hk. Indeed,

Ω(1) ≤ η(Hk, Hk) ≤
R(Hk)

c(Hk)
≤ log χ(Hk)

logα(Hk)
≤ 2(k− 1)

k− 3
≤ O(1),

where in the second last inequality we use that log χ(Hk) ≤ log |V(Hk)| = k− 1
and that logα(Hk) ≥ (k− 3)/2 (Lemma 6.3.6).
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Lower bound on the entangled source-channel cost rate. The bound (8.8) is
obtained as direct application of Proposition 8.2.5.

8.2.7. COROLLARY. Let k be an odd integer with k ≥ 11, then

η?(Hk, Hk) ≤
log(k + 1)

(k− 1)
(

1− 2 log(k+1)
k−3

) .

PROOF: From Proposition 8.2.5 we know that η?(Hk, Hk) ≤ R?(Hk)/c?(Hk).
We now only have to apply the upper bound on R?(Hk) given in Corollary 8.1.5
and the lower bound on c?(Hk) of Corollary 6.3.10. �

Upper bound on the source-channel cost rate. The proof of (8.9) relies on the
following result, commonly known as the No-Homomorphism Lemma, due to
Albertson and Collins [AC85].

8.2.8. LEMMA (ALBERTSON–COLLINS [AC85]). Let G be a vertex-transitive graph.
If there is a homomorphism from H to G, then

|V(H)|
α(H)

≤ |V(G)|
α(G)

.

As observed in [BBG12], the graph Hk is vertex-transitive; indeed, for any
u ∈ V(Hk), the map v 7→ u ⊕ v is an automorphism of Hk. It is easy to see
that vertex transitivity is preserved under strong products and complements.
Hence, H�n

k is vertex-transitive for any n ∈ N.
We will also need the following result about the graphs Hk.

8.2.9. COROLLARY. For every odd integer k such that there is a Hadamard matrix of
size k + 1, we haveω(H�m

k ) = (k + 1)m.

PROOF: The statement can be easily derived by combining Proposition 6.3.7
with Lemma 8.1.4. �

8.2.10. LEMMA. Let p be an odd prime and ` ∈ N such that there exists a Hadamard
matrix of size 4p`. Set k = 4p` − 1. Then,

η(Hk, Hk) >
0.154 k− 1

k− 1− log(k + 1)
.

PROOF: Consider integers m, n ∈ N for which H�m
k −→ H�n

k . Applying
Lemma 8.2.8, we deduce that

|V(H�m
k )|

α(H�m
k )

≤ |V(H�n
k )|

α(H�n
k )

=
|V(H�n

k )|
ω(H�n

k )
. (8.10)
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From Lemma 6.3.11 we have α(H�m
k ) < 20.846 k m. Using Corollary 8.2.9 and

the fact that |V(Hk)| = 2k−1, we get

2(k−1)m

2k m 0.846 <
|V(H�m

k )|
α(H�m

k )

(8.10)
≤ |V(H�n

k )|
ω(H�n

k )
=

2(k−1) n

(k + 1)n .

After a few elementary algebraic manipulations and taking logarithms, the
above inequality implies

n
m

>
0.154 k− 1

k− 1− log(k + 1)
.

�





Chapter 9

Round elimination in communication
complexity

In this chapter we tackle two problems arising in communication complex-
ity: the promise equality and the list problems. We will study their classical
and quantum exact communication complexity, making a distinction between
one-round protocols (where the communication is unilateral) and multi-round
ones (where back and forth communication is allowed). In a promise equality
problem (Section 9.2), Alice and Bob must decide if their inputs are equal or
not. We give an explicit instance that exhibits an exponential gap between the
one- and two-round exact quantum communication complexities, while in the
classical scenario one-round protocols are optimal.

In a list problem (Section 9.3), Bob gets a subset of some finite universe,
Alice gets an element from Bob’s subset, and their goal is for Bob to learn which
element Alice was given. We prove that quantum protocols for list problems
resist round elimination, a phenomenon that works trivially in the classical case
(Theorem 9.3.8).

The content of this chapter is based on joint work with Jop Briët, Harry
Buhrman, Debbie Leung, and Florian Speelman [BBL+15b].

9.1 Communication complexity

Since its introduction by Yao [Yao79] communication complexity has become
a standard model in computational complexity that enjoys a wide variety of
connections to other areas in theoretical computer science [KN97]. Here two
parties, Alice and Bob, receive inputs x, y from sets X ,Y (respectively) and
need to compute the value f (x, y) of a two-variable function f known to them
in advance. Usually each party has insufficient information to solve the prob-
lem alone, meaning that they have to exchange information about each others’
inputs. (A communication complexity protocol is depicted in Figure 9.1.) The

139
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x y

f (x, y)

. . . . . . . . .

f (x, y)

Figure 9.1: A communication complexity protocol.

idea that communication is expensive motivates the study of the communica-
tion complexity of f , which counts the minimum number of bits that the parties
must exchange on worst-case inputs. Throughout, we consider only exact (de-
terministic) communication protocols, meaning that no error is allowed, and
we will omit the word exact from now on. Of particular importance here is
the distinction between one-round protocols, where all communication flows
from Alice to Bob, and multi-round protocols, where they take turns in sending
messages from one party to the other.

In yet another celebrated paper, Yao [Yao93] introduced quantum communi-
cation complexity, where to compute the value f (x, y) the parties are allowed
to transmit qubits back and forth. The study of this model has also become
a well-established discipline in theoretical computer science and quantum in-
formation theory. The most basic question that arises when considering the
classical and quantum models is whether they are actually substantially dif-
ferent. An upper bound on the possible difference between these models was
proved by Kremer [Kre95, Theorem 4].1

9.1.1. THEOREM (KREMER [KRE95]). Any quantum protocol that uses ` qubits of
communication can be turned into a 2O(`)-bit one-round classical protocol for the same
problem.

The first large gap between exact classical and quantum communication
complexity was demonstrated by Buhrman, Cleve, and Wigderson [BCW98],

1The result stated here is actually a slight generalization of Kremer’s result (which focuses
on Boolean functions) that can be proved in the same way; for completeness we give a proof
in Section 9.4. Moreover, this statement (as well as Kremer’s original formulation) holds in the
bounded-error model of communication complexity, not only in the exact one.
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who gave a problem admitting a one-round quantum protocol that is expo-
nentially more efficient than any (multi-round) classical protocol. In the next
section we will consider a generalization of the problem studied in [BCW98].

9.2 Promise equality

In a promise equality problem, Alice and Bob each receive an input from a set X
with the promise that their inputs either are equal or come from a subset D of
(X2 ), where D is known to them in advance. We denote these problems by the
pair (X ,D). The players’ goal is to decide whether their inputs are equal or
different.

The main result of this section is given by the following theorem.

9.2.1. THEOREM. There exist absolute constants c, C ∈ (0, ∞), an infinite sequence
of promise equality problems ({0, 1}n,Dn)n∈S with S ⊂ N such that for each problem
({0, 1}n,Dn):

(i) The classical communication complexity is attained with a single round and is
at least cn.

(ii) The one-round quantum communication complexity is at least cn.

(iii) There is a two-round quantum protocol using at most C log n qubits.

The problem we consider is simple. Let n be a positive integer multiple
of 8. Alice and Bob are given n-bit strings x and y, respectively, that are either
equal or differ in exactly n/4 coordinates and they must distinguish between
the two cases. We denote this problem by EQ-( n

n/4). Similar promise equality
problems were studied before in [BCW98, GQZ14] and we will briefly mention
the known results in Section 9.2.4. An easy observation is that the problem
EQ-(n

d) where n and d have different parities is trivial: Alice can just send the
parity bit of her string to Bob. For this reason, here and in the above mentioned
works both n and d are assumed to be even numbers.

We will prove Theorem 9.2.1 in Section 9.2.2. Before doing that we observe
some useful properties of the promise equality problems.

9.2.1 General properties

To any promise equality problem we associate the graph G = (X ,D) where,
as before, X is the input set and the promise is that either the inputs are equal
or they come from the subset D of (X2 ).
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As it was observed by de Wolf [dW01, Theorem 8.5.1], the one-round classi-
cal communication of this problem equals dlog χ(G)e. Indeed, a feasible strat-
egy is that the players agree upon an optimal coloring of the graph beforehand
and Alice communicates the color associated to her input, then Bob compares
it with the color associated to his input. At the same time, any deterministic
strategy gives a coloring of the graph. For general communication problems
using more rounds of communication can decrease the total communication.
This is for example the case for the Pointer Jumping Problem, where for ev-
ery positive integer m there is an instance for which any m-round protocol
requires exponentially more communication than the best (m + 1)-round pro-
tocol [KN97, Section 4.2]. However, we show that this is not true for promise
equality problems, meaning that for such problems the chromatic number not
only characterizes the one-round complexity, but their overall communication
complexity.

9.2.2. LEMMA. For any promise equality problem, the classical communication com-
plexity is attained with a single round of communication.

PROOF: We show how to transform a k-round communication protocol into a
one-round protocol that uses the same amount of bits. In a nutshell, the idea
is that Alice mimics all the rounds of communication assuming that her input
is equal to Bob’s, and sends them in one-round. He then checks whether the
message received is consistent with his input. If this is not the case, he then
knows that the two strings are different, otherwise he completes the protocol.

More formally, fix a protocol Π that requires k rounds, where k ≥ 2. Sup-
pose that Alice has input x and Bob has y. We assume that the first round
of communication is from Alice to Bob, but the same reasoning applies in the
other case. For i odd, let ai be the message that Alice would send to Bob on
the i-th round of communication if she followed protocol Π and used both the
knowledge of the messages exchanged in the previous rounds and of her in-
put x. Similarly, for i even, let b̂i be the message that Bob would send to Alice
on the i-th round of communication if he had y = x as input, followed the
protocol Π and used the knowledge derived by the previous rounds. Using
the protocol Π, Alice can mimic Bob’s rounds of communication under the as-
sumption that Bob’s input is equal to x. Alice uses her input x to produce the
string a1b̂2a3 . . . aib̂i+1 . . . ak and sends it to Bob in one round. From his input y,
Bob constructs the messages bi that he would have produced during the pro-
tocol Π, with the knowledge of Alice’s messages a` and his messages b` for
all ` < i. If there exists an index i such that bi 6= b̂i, then x must be differ-
ent from y. Otherwise, Bob uses the string a1b̂2a3 . . . aib̂i+1 . . . ak to finish the
protocol and either outputs x = y or x 6= y. We have constructed a one-round
communication protocol Π′ that works as the original protocol Π does and that
in the worst-case uses at most as many bits as the protocol Π. Therefore if Π is
an optimal protocol, so is Π′. �
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Let’s now consider quantum communication protocols. De Wolf [dW01,
Theorem 8.5.2] observed that the one-round quantum communication com-
plexity is characterized by the orthogonal rank of the associated graph. For
completeness we include a proof below. Contrary to the classical case, Theo-
rem 9.2.1 shows that allowing additional rounds of quantum communication
can be beneficial.

9.2.3. THEOREM (DE WOLF [DW01]). Consider a promise equality problem defined
by the sets X andD. Then its one-round quantum communication complexity is equal
to dlogξ(G)e where G = (X ,D).

PROOF: Let Π be an optimal one-round protocol for the considered promise
equality problem and let ρx be the state that Alice sends on input x ∈ X . We
associate to the state ρx a vector |φx〉 with the property that |φx〉〈φx| is a pure
state in the spectral value decomposition of ρx. For any pair (x, y) ∈ D, ρx and
ρy have to be perfectly distinguishable and therefore, in view of Lemma 2.4.1,
they must be orthogonal. Equivalently, |φx〉 and |φy〉 have to be orthogonal
and we can without loss of generality assume that the protocol uses only the
pure states |φx〉. Hence, the map φ : X → Cd where φ(x) = |φx〉 is a d-
dimensional orthogonal representation of G = (X ,D) and ξ(G) ≤ d.

On the other hand, let φ be a d-dimensional orthogonal representation of
the graph G = (X ,D) and consider the one-round quantum protocol that
transmits the normalized vector φ(x)/‖φ(x)‖ ∈ Cd on input x ∈ X . This
uses log d-qubits of communication. From Lemma 2.4.1 we know that Bob can
use his input y to perform a quantum measurement that allows him to learn
whether his input is equal or not to Alice’s. Thus, the one-round quantum
communication complexity of this equality problem is at most dlogξ(G)e. �

9.2.2 Proof of Theorem 9.2.1

This section will be devoted to the proof of Theorem 9.2.1, which shows that
there is a family of promise equality problems where using two rounds of
quantum communication is exponentially more efficient than a single round.
The problem that exhibits this separation is EQ-( n

n/4), where Alice and Bob
each receive a n-bit string that are either equal or differ in exactly n/4 posi-
tions (with n multiple of 8). We denote by H(n, n/4) the graph associated with
this problem. In general, with H(n, d) we denote the graph that has {0, 1}n as
vertex set and where two n-bit strings are adjacent if they differ exactly in d
positions. Equivalently, H(n, d) is the graph with vertex set {−1, 1}n where
two vertices are adjacent if their inner product is equal to n− 2d. We will also
use the notion of adjacency matrix of a graph G, which is the |V(G)| × |V(G)|
symmetric matrix where the (i, j)-th entry is equal to 1 if i j ∈ E(G) and to 0
otherwise.
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We split the proof in two parts: firstly we bound the one-round quantum
communication complexity and secondly we give a two-round protocol.

The classical communication complexity, Theorem 9.2.1 (i), can be deduced
by combining Lemma 9.2.2 together with the following theorem due to Frankl
and Rödl [FR87, Theorem 1.10].

9.2.4. THEOREM ( FRANKL AND RÖDL [FR87]). Letα ∈ (0, 1) andαn, n be even
numbers. Then the stability number of the graph H(n,αn) is at most equal to (2−ε)n

for some positive constant ε.

9.2.5. COROLLARY. Let α ∈ (0, 1) and αn, n be even numbers. The classical com-
munication complexity of EQ-( n

αn) is at least Ω(n).

PROOF: We get a lower bound on the chromatic number of the graph H(n,αn)
using Theorem 9.2.4. Indeed, we have χ(H(n,αn)) ≥ |V(H(n,αn))|

α(H(n,αn)) ≥ ( 2
2−ε)

n.
Taking the logarithm and using Lemma 9.2.2, we can conclude. �

One-round quantum communication complexity of EQ-( n
n/4)

Here we prove the following result, which gives Theorem 9.2.1 (ii) as a special
case.

9.2.6. THEOREM. Letα ∈ (0, 1/2) andαn, n be even numbers. The one-round quan-
tum communication complexity of EQ-( n

αn) is at least Ω(n).

We obtain this statement by lower bounding the Lovász theta number which
itself is a lower bound for the orthogonal rank: ϑ(G) ≤ ξ(G) (Lemma 3.2.13).
We prove the desired bound in two steps: first, we use structural properties of
the graph H(n, d) together with known properties of the Lovász theta number
to reformulate this bound in terms of the eigenvalues of the adjacency matrix
of this graph; second, we bound the eigenvalues to get the desired result.

Step 1: Eigenvalue bound on the Lovász theta number. We show that the
Lovász theta number of the graph H(n, d) can be expressed in terms of the
eigenvalues of its adjacency matrix. For the remainder of this step, by the
eigenvalues of a graph we mean the eigenvalues of its adjacency matrix.

Lovász [Lov79, Theorems 8 and 9] showed that if a graph is both vertex-
and edge-transitive, then the Lovász theta number is given by a simple formula
involving its eigenvalues.

9.2.7. LEMMA (LOVÁSZ [LOV79]). For a positive integer n, let G be an n-vertex
graph with eigenvalues λ1 ≥ · · · ≥ λn. If G is both vertex- and edge-transitive, then
ϑ(G) = 1− λ1/λn.
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We now observe that the graph H(n, d) is both vertex- and edge-transitive.
We start by showing that H(n, d) is vertex-transitive. Given any pair of vertices
u, v ∈ {0, 1}n of H(n, d), consider the automorphism of the graph H(n, d) that
maps x 7→ x ⊕ u ⊕ v where ⊕ is the bit-wise addition. This map preserves
the Hamming distance and, therefore, the adjacencies between the vertices.
Moreover, it sends u 7→ v and we can conclude that H(n, d) is vertex-transitive.

To show that H(n, d) is edge-transitive, fix any two edges uv and st and
let p = u⊕ v, q = s⊕ t. Noting that the n-bit strings p and q have the same
Hamming weight d, let π be a permutation of the indices such that π(p) = q.
We define ν to be an automorphism that sends a vertex x to π(x⊕ u)⊕ s. The
map ν preserves the edges of H(n, d) and, since the permutation π maps the
all-zero string to itself and p to q, we have that ν(u) = s and ν(v) = t. Thus
H(n, d) is edge-transitive.

The following corollary is then a direct application of Lemma 9.2.7.

9.2.8. COROLLARY. Let n ∈ N and d ∈ [n]. Then ϑ(H(n, d)) = 1 − (n
d)/λMIN

holds where λMIN is the smallest eigenvalue of H(n, d).

PROOF: We are only left to observe that, since the largest eigenvalue of a vertex-
transitive graph is equal to its degree, we have λ1(H(n, d)) = (n

d). �

Step 2: Bound on the smallest eigenvalue of H(n, d). We prove an upper
bound on the magnitude of the smallest eigenvalue of H(n, d).

9.2.9. LEMMA. Let n and d be even positive integers such that d < n/2. Then, the
smallest eigenvalue λMIN of the graph H(n, d) is a negative number such that

|λMIN| ≤
√√√√ 2n(n

d)

( n
n/2−
√

d(n−d))
.

The proof of the lemma uses the following facts from coding theory that
can be found in the survey of Delsarte and Levenshtein [DL98]. The eigenval-
ues of H(n, d) play a fundamental role in the theory of Hamming association
schemes, where they are expressed in terms of a set of orthogonal polyno-
mials known as the (binary) Krawtchouk polynomials. For a positive integer n
and d ∈ {0, 1, . . . , n} the Krawtchouk polynomial Kn

d ∈ R[x] is a degree-d
polynomial that is uniquely defined by

Kn
d (x) =

d

∑
j=0

(−1) j
(

x
j

)(
n− x
d− j

)
, x = 0, 1, . . . , n.
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When n and d are even, then Kn
d is symmetric about the point x = n/2. More-

over, these polynomials satisfy the orthogonality relation

n

∑
x=0

(
n
x

)
Kn

d (x)Kn
d′(x) = δd,d′

(
n
d

)
2n. (9.1)

The set of distinct eigenvalues of H(n, d) turns out to be equal to the set of
integer evaluations {Kn

d (0), Kn
d (1), . . . , Kn

d (n)} of the polynomial Kn
d . Crucial

to our proof of Lemma 9.2.9 then is the following result of Levenshtein [Lev95,
Theorem 6.1] characterizing the smallest roots of the Krawtchouk polynomials.

9.2.10. THEOREM (LEVENSHTEIN [LEV95] ). Let n be a positive integer and d ∈ [n].
Then, Kn

d has exactly d distinct roots and its smallest root is given by

n/2−max
z

( d−2

∑
i=0

zizi+1

√
(i + 1)(n− i)

)
, (9.2)

where the maximum is over all vectors z = (z0, . . . , zd−1) on the real Euclidean unit
sphere.

This implies the following general bound on the location of the smallest
root of Kn

d . The bound is stated for instance in [KL01] without a proof, we
include one here for completeness.

9.2.11. COROLLARY. Let n and d be positive integers such that d < n/2. Then, the
smallest root of Kn

d lies in the interval
[
n/2−

√
(n− d)d, n/2

]
.

PROOF: Clearly (9.2) is upper bounded by n/2. We focus on the lower bound.
To this end, let z = (z0, . . . , zd−1) be a real unit vector achieving the maxi-
mum in (9.2). We define ai = zi

√
n− i for any i ∈ {0, 1, . . . , d − 1} and set

bi = zi+1
√

i + 1 for any i ∈ {0, 1, . . . , d− 2}. Then, we can rewrite the sum as
∑

d−2
i=0 zizi+1

√
(i + 1)(n− i) = ∑

d−2
i=0 aibi. By the Cauchy-Schwarz inequality,( d−2

∑
i=0

aibi

)2
≤
( d−2

∑
i=0

a2
i

)( d−2

∑
j=0

b2
j

)
=
( d−2

∑
i=0

a2
i

)( d−1

∑
j=1

b2
j−1

)
≤
( d−1

∑
i=0

a2
i

)( d−1

∑
j=1

b2
j−1

)
≤
( d−1

∑
i=0

z2
i (n− i)

)( d−1

∑
j=0

z2
j j
)

=
(

n−
d−1

∑
i=0

z2
i i
)( d−1

∑
j=0

z2
j j
)

, (9.3)

where in the last equality we used the fact that z is a unit vector. Observe that
the sum ∑

d−1
i=0 z2

i i lies in the interval [0, d− 1]. Hence, since d < n/2, (9.3) is at
most max{(n− t)t : t ∈ [0, d− 1]} = (n− (d− 1))(d− 1) ≤ (n− d)d. �



9.2. Promise equality 147

PROOF OF LEMMA 9.2.9: As the trace of a matrix equals the sum of its eigen-
values and the trace of an adjacency matrix is zero, it follows that λMIN < 0.

Recall that the eigenvalues of the graph H(n, d) belong to the set {Kn
d (x) :

x = 0, 1, . . . , n}. Moreover, since by assumption n and d are even, the polyno-
mial Kn

d is symmetric about the point n/2. Also observe that Kn
d (0) > 0 and

hence the first time this polynomial assumes a negative value is somewhere
beyond its smallest root; i.e., the smallest x for which Kn

d (x) < 0 lies in be-
tween the smallest root and n/2. It therefore follows from Corollary 9.2.11 and
from the fact that Kn

d is symmetric about the point n/2 that λMIN = Kn
d (x?) for

some integer x? ∈ [n/2−
√
(n− d)d, n/2].

Clearly (9.1) implies that

n

∑
x=0

(
n
x

)
Kn

d (x)2 =

(
n
d

)
2n.

Hence, (
n
x?

)
Kn

d (x?)2 ≤
(

n
d

)
2n

and we can conclude that

|λMIN|2 = |Kn
d (x?)|2 ≤ 2n(n

d)

( n
x?)
≤ 2n(n

d)

( n
n/2−
√

(n−d)d)
.

�

Putting everything together. We are almost ready to prove Theorem 9.2.6.
The only missing piece is the following property of the binary entropy func-
tion H, which is defined as H(p) = −p log p− (1− p) log(1− p) for p ∈ [0, 1].

9.2.12. LEMMA. For any p ∈ (0, 1/2), H(p) + H(1/2−
√
(1− p)p)− 1 > 0.

The proof of the lemma uses the following lower bound for the function H.

9.2.13. LEMMA. For any p ∈ [0, 1], we have H(p) ≥ 1 − (1 − 2p)2. Moreover,
equality holds if and only if p ∈ {0, 1/2, 1}.

PROOF: The Taylor series of the binary entropy function around the point 1/2
gives that

1− H(p) =
1

2 ln 2

∞
∑

n=1

(1− 2p)2n

n(2n− 1)
≤ (1− 2p)2

2 ln 2

∞
∑

n=1

1
n(2n− 1)

= (1− 2p)2,

where the first inequality is due to the fact that |1− 2p| ≤ 1 and therefore that
(1 − 2p)2n ≤ (1 − 2p)2; the last one uses the identity 2 ln 2 = ∑n≥1

1
n(2n−1) .
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Indeed, the Taylor series for ln 2 around 0 (also known as Mercator series)

gives that ln 2 = ∑n≥1
(−1)n+1

n = ∑n≥1
1

2n(2n−1) , and multiplying both sides
by 2 gives the wanted result.

Therefore, we deduce that H(p) ≥ 1− (1− 2p)2. Moreover, equality holds
only at the points where (1 − 2p)2n = (1 − 2p)2 for every n ∈ N, which are
p ∈ {0, 1/2, 1}. �

PROOF OF LEMMA 9.2.12: Using Lemma 9.2.13 and elementary algebraic ma-
nipulations, for any p ∈ (0, 1/2) we have that H(p) > 4p(1 − p) and that
H(1/2−

√
(1− p)p) > 1− 4p(1− p). But now the statement follows imme-

diately: H(p) + H(1/2−
√
(1− p)p)− 1 > 0. �

PROOF OF THEOREM 9.2.6: We combine Lemma 3.2.13, Corollary 9.2.8 and
Lemma 9.2.9 to obtain

ξ(H(n, d)) ≥ ϑ
(

H(n, d)
)
≥ 1−

(
n
d

)
/λMIN ≥ 1 +

√
(n

d)(
n

n/2−
√

(n−d)d)

2n . (9.4)

We take the logarithm in the above equation and use Stirling’s approxima-
tion: log (n

k) =
(

H(k/n) + o(1)
)
n, where H is the binary entropy function and

the o(1) term goes to zero as n→ ∞ (see for example [SF14, pp. 64]). Then, for
α = d/n, the logarithm of (9.4) is at least

1
2

log

 (n
d)(

n
n/2−
√

(n−d)d)

2n

 =
n
2

(
H(α) + H

(
1/2−

√
(1−α)α

)
− 1 + o(1)

)
.

By Lemma 9.2.12, H(α) + H(1/2−
√
(1−α)α)− 1 > 0 for any α ∈ (0, 1/2)

and therefore logξ(H(n,αn)) ≥ Ω(n). �

9.2.3 Two-round quantum communication of EQ-( n
n/4)

Using a distributed version of Grover’s search algorithm, we find a quantum
protocol that solves EQ-( n

n/4) with a logarithmic number of qubits, which gives
Theorem 9.2.1 (iii).

9.2.14. THEOREM. The two-round quantum communication complexity of EQ-( n
n/4)

is at most 2dlog ne+ 1 qubits.

PROOF: Let x and y be the inputs of Alice and Bob, respectively, and z = x⊕ y
be their bit-wise addition. The promise ensures that either |z| = 0 if x = y or
|z| = n/4 in the case where x 6= y.
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If a bit string z ∈ {0, 1}n is known to contain exactly n/4 entries that
are 1, Grover’s algorithm [Gro96] is able to find one of these entries without
error [BBHT98], needing only a single query to the string z. For any string we
define the query unitary Uz = ∑

n
i=1(−1)zi |i〉〈i| and we define |s〉 = 1√

n ∑
n
i=1 |i〉

to be the uniform superposition of all basis states. Then G = 2|s〉〈s| − I is a
unitary operation known as the Grover diffusion operator.

The quantum communication protocol can be viewed as combining Grover’s
algorithm with a special case of the simulation theorem given in [BCW98, The-
orem 2.1]. We want to perform the algorithm on the effective string z = x⊕ y,
using the fact that performing a single query Uz is the same as performing the
operations Ux and Uy in sequence; i.e., Uz = UxUy = UyUx.

At the start of the protocol, Bob creates the state Uy|s〉 and sends this state
over to Alice using dlog ne qubits. Alice first applies Ux to the incoming state
and then applies the Grover operator G. The final state of Grover’s algorithm
is 1√

n/4
∑i s.t. zi=1 |i〉 if |z| = n/4. That is, in the case that x 6= y, Grover’s

algorithm has produced a superposition over all indices i such that xi 6= yi.
Alice measures the state, obtaining some index i∗ such that xi∗ 6= yi∗ if x 6= y.
Then she sends i∗ and the value xi∗ over to Bob using dlog ne+ 1 qubits. He
outputs ‘equal’ if and only if xi∗ = yi∗ . The total communication cost of the
protocol is then 2dlog ne+ 1 qubits. �

The above protocol can be extended to efficiently solve EQ-( n
αn) forα < 1/2

in a constant number of rounds, by using a more general exact version of the
Grover search algorithm. This construction is described in the next section.

9.2.4 Communication complexity of EQ-(n
d)

The promise equality problems were first introduced by Buhrman, Cleve, and
Wigderson [BCW98] to show an exponential gap between classical and quan-
tum communication. They used the problem EQ-( n

n/2), where Alice and Bob
get n-bit strings that are either equal or differ in exactly half of the entries (for n
multiple of 4). One can easily check that the map φ : {0, 1}n → Cn with
φ(x) = 1√

n ∑i∈[n](−1)xi ei (where ei is the i-th canonical basis vector of Cn) is
an orthogonal representation of H(n, n/2) and therefore, by Theorem 9.2.3, the
one-round quantum communication complexity is at most log(n) qubits. At
the same time, Corollary 9.2.5 says that the classical communication complex-
ity is at least Ω(n).

Similar results were shown by Gruska, Qiu, and Zheng [GQZ14] for the
analogous problem EQ-( n

αn) for constant α > 1/2. Corollary 9.2.5 still applies
giving that the classical communication complexity is at least Ω(n). Moreover,

the mapφ : {0, 1}n → Cn+1 withφ(x) =
√

1−γ2

n ∑i∈[n](−1)xi ei +γen+1, where
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γ = 1 − 1
2α , is an orthogonal representation of H(n,αn) and thus the one-

round quantum communication complexity is at most log(n + 1) qubits.
The authors of [GQZ14] posed as open problem to determine the quantum

communication complexity of EQ-( n
αn) when α < 1/2. (The classical com-

munication complexity is known and again given by Corollary 9.2.5.) Here
we prove that for any of these promise equality problems, there is a quantum
multi-round protocol that is exponentially more efficient than any single round
one. The lower bound on the one-round quantum communication complexity
follows from Theorem 9.2.6, while next we give the multi-round protocol.

Multi-round quantum protocols for EQ-( n
αn) withα < 1/2

We split the situation in two cases. If α ∈ (1/4, 1/2) we can simply pad an
appropriate number of zeros to both inputs such that the new strings are ei-
ther equal or differ in exactly 1/4-th of the positions. Then we simply run the
protocol of Theorem 9.2.14.

9.2.15. THEOREM. Let α ∈ (1/4, 1/2). The two-round quantum communication
complexity of EQ-( n

αn) is at most 2dlog ne+ 2dlog(4α)e+ 1 qubits.

PROOF: Let x and y be Alice’s and Bob’s inputs. Both of the players pad the
input received with k = 4d− n zeros. Hence, the new bit strings x′ and y′ have
length n′ = n + k = 4d and they are either equal or differ in n′/4 positions.
Alice and Bob can now run the communication protocol described in the proof
of Theorem 9.2.14 on the new inputs x′, y′ ∈ {0, 1}n′ . The communication cost
is 2dlog n′e+ 1 = 2dlog(4αn)e+ 1 ≤ 2dlog ne+ 2dlog(4α)e+ 1 qubits. �

Ifα ∈ (0, 1/4), we need to introduce some technicalities to ensure an exact
version of Grover’s search algorithm.

9.2.16. THEOREM. Let α ∈ (0, 1/4). The quantum communication complexity of
EQ-( n

αn) is at most O(log n) qubits and the protocol uses O( 1√
α
) rounds.

PROOF: If a n-bit string z is known to contain exactly d entries that are 1,
Grover’s algorithm can be modified such that it finds an index for one of them
with certainty [BHMT02, Theorem 16] (see also [BHT98, Amb04]). The number
of queries ` that the exact version of Grover’s algorithm needs in this case is
given by

` =

 π

4 arcsin
√

d
n

− 1
2

 <
π

4

√
n
d
+ 1 .

The exact version of Grover’s algorithm is the same as the original algorithm
except for an adapted final step, which uses a parametrized diffusion operator



9.2. Promise equality 151

G(φ) and partial query Vz(ϕ) where φ and ϕ are angles that depend on the
Hamming distance d. As these angles do not have a nice closed formula, we
refer the reader to [BHMT02, Equation (12)] for the relation thatφ andϕ must
satisfy. Here

Vz(ϕ)| j〉 =
{
| j〉 if z j = 0
eiϕ| j〉 if z j = 1

and
G(φ) = FnV0(φ)F∗n ,

where Fn is the n× n discrete quantum Fourier transform.
Take x, y ∈ {0, 1}n to be the input strings of Alice and Bob, let z = x⊕ y

and d = αn. As in the proof of the n/4 case of Theorem 9.2.14, we turn this
search algorithm into a quantum communication protocol by writing a single
query Uz = UxUy = UyUx. We can use the commutativity of Ux and Uy
to save rounds: The exact Grover’s algorithm is performed by executing the
operations

G(φ)Vz(ϕ) GUz . . . GUz︸ ︷︷ ︸
`−1 times

on starting state |s〉 = 1√
n ∑

n
i=1 |i〉. Since we can write two alternations as

GUzGUz = GUxUyGUyUx, alternating whether Alice or Bob executes the query
first that round, only `− 1 rounds are needed for the `− 1 ordinary Grover it-
erations. Alice starts the protocol if ` is even, and Bob sends the first message
if ` is odd.

For the final step, the players need to simulate a query Vz(ϕ) by local oper-
ations that depend only on x or y. At this point in the protocol it is Alice’s turn
to communicate. She currently holds the state

|ψ〉 = GUz . . . GUz︸ ︷︷ ︸
`−1 times

|s〉 .

Now Alice adds an auxiliary qubit that starts in state |0〉. Define the unitary
operation Qx by its action on the computational basis states as

Qx| j〉|b〉 = | j〉|b⊕ x j〉

and the (diagonal) unitary matrix Ry(ϕ) as

Ry(ϕ)| j〉|b〉 = eiϕ(b⊕y j)| j〉|b〉 .

Now Alice first applies Qx on the state |ψ〉|0〉, sends this state to Bob who
performs Ry(ϕ), sending the state back to Alice who again performs Qx. It is
easy to check that QxRy(ϕ)Qx|ψ〉|0〉 = (Vz(ϕ)⊗ I)|ψ〉|0〉, therefore Alice now



152 Chapter 9. Round elimination in communication complexity

discards the auxiliary qubit and applies G(φ) to finish the simulation of the
exact version of Grover’s algorithm.

The final state of the exact Grover’s algorithm is 1√
d ∑i s.t. zi=1 |i〉 if |z| = d.

Once Alice has this state in her possession, she performs a measurement in the
computational basis, obtaining an index i∗ such that xi∗ 6= yi∗ if x 6= y. Then
she sends i∗ and the value xi∗ over to Bob, who outputs ‘equal’ if and only if
xi∗ = yi∗ . This final message consists of dlog ne+ 1 qubits. By the correctness
of the exact Grover’s algorithm, this protocol correctly outputs ‘not equal’ if
the Hamming distance between x and y is the fixed value d. Therefore we
turned an `-query execution of the exact version of Grover’s algorithm into a
protocol that uses (`+ 2)dlog ne+ 2 qubits of communication in `+ 2 rounds.
�

Distances close to n/2

The one-round quantum communication of the problem EQ-( n
αn) is O(log n)

for α ≥ 1/2 [BCW98, GQZ14], while it is at least Ω(n) for α ∈ (0, 1/2). One
may wonder whether 1/2 is exactly the threshold where this exponential jump
sits. We show that this is not the case. When α is strictly smaller than 1/2 but
very close to it, the one-round quantum communication complexity of EQ-( n

αn)
still requires only a logarithmic number of qubits.

9.2.17. LEMMA. Let d = n/2− ` with ` ≤ O(log n) and n, d be even numbers. The
one-round quantum communication complexity of EQ-(n

d) is at most O(log n).

PROOF: We start by making the following easy observation. Suppose Alice
sends to Bob the first 2` bits of her input. If this 2`-bit string differ from Bob’s
initial part of the input, he knows that the answer is ‘not equal’. Otherwise
Alice and Bob have to exchange information about the remaining part of their
inputs, which have length n′ = n − 2` and they are either equal or differ in
exactly d′ = d = n/2− ` = n′/2 positions.

More formally, consider the mapφ : {0, 1}n → Ck where k = 22`n′ and that
sends x 7→ x1⊗ x2⊗ · · · ⊗ x2`⊗ 1√

n′ ∑
n′
i=1(−1)xi+2`ei. This is an orthogonal rep-

resentation of the graph H(n, d). As log k is O(log n), the result now follows
from Theorem 9.2.3. �

9.3 The list problem

In the list problem, inputs are picked from a subset D ⊆ X × Y and the goal is
for Bob to learn Alice’s input. The reason for the name “list problem” is that
Bob’s input y may just as well be given to him as the list (subset) of all of Alice’s
possible inputs x satisfying (x, y) ∈ D. A list problem can thus equivalently
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be given by a family L ⊆ 2X of lists, where Bob gets a list L ∈ L, Alice gets an
element x ∈ L, and Bob must learn x. We refer to this communication problem
as L-LIST.

The best general lower bound (due to Orlitsky [Orl90]) and upper bound
(due to Naor, Orlitsky, and Shor [NOS93]) on the classical communication com-
plexity of such problems differ only by a constant factor. We exhibit an exam-
ple showing that, somewhat surprisingly, the four-round protocol used in the
bound of Naor et al. [NOS93] can in fact be optimal (Theorem 9.3.4). Further-
more, we show that a phenomenon which works trivially in the classical case
does not have a quantum counterpart (Theorem 9.3.8).

9.3.1 Classical communication complexity of list problems

Notice that if one allows only one-round classical protocols, this problem is
equivalent to solving one instance of a zero-error source coding problem where
the input pair is an element of D ⊆ X × Y . Indeed, Witsenhausen [Wit76]
observed that the one-round classical communication complexity of the list
problem is characterized by the chromatic number of the graph with vertex
set X and whose edge set consists of the pairs of distinct elements appear-
ing together in some list L ∈ L. Denoting this graph by GL, the one-round
communication complexity equals dlog χ(GL)e. The multi-round communi-
cation complexity of the list problem has also been studied. Orlitsky [Orl90,
Corollary 3 and Lemma 3] proved the following lower bound in terms of the
chromatic number of GL, and the cardinality of the largest list, denoted

ω(L) = max{|L| : L ∈ L}

(not to be confused with the cardinality of the largest cliqueω(GL), which can
be larger).

9.3.1. THEOREM (ORLITSKY [ORL90]). For every family L ⊆ 2X , the classical
communication complexity of L-LIST is at least max{log log χ(GL), logω(L)}.

The basic idea behind the above result is that any multi-round protocol can be
simulated by a one-round protocol with at most an exponential difference in
communication, and that Alice must send sufficient information for Bob to be
able to distinguish amongω(L) elements. In the same work, Orlitsky [Orl90,
Theorem 4] gave a two-round classical protocol based on perfect hashing func-
tions that nearly achieves the above lower bound.

9.3.2. THEOREM (ORLITSKY [ORL90]). For any L ⊆ 2X , the two-round classical
communication complexity of L-LIST is at most log log χ(GL) + 3 logω(L) + 4.
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It thus follows from Witsenhausen’s observation and Theorem 9.3.2 that
list problems have exponentially more efficient two-round protocols than one-
round protocols, provided that ω(L) ≤ poly(log χ(GL)). But Theorem 9.3.1
shows that—in stark contrast with the Pointer Jumping Problem—using more
than two rounds cannot decrease the total communication by more than a
factor of 4, as log log χ(GL) + 3 logω(L) ≤ 4 max{log log χ(GL), logω(L)}.
Furthermore, in a follow up work, Orlitsky [Orl91] showed that in general two-
round protocols are not sufficient to reach the communication complexity. The
natural question that thus arises is: Can the lower bound of Theorem 9.3.1 be
attained by using more than two rounds of communication?

Towards answering this question Naor, Orlitsky, and Shor [NOS93, Corol-
lary 1] slightly improved on Theorem 9.3.2 and showed that the four-round
communication complexity gets to within a factor of about 3 of the lower
bound.

9.3.3. THEOREM (NAOR–ORLITSKY–SHOR [NOS93]). For every familyL ⊆ 2X ,
the four-round classical communication complexity of the L-LIST problem is at most
log log χ(GL) + 2 logω(L) + 3 log logω(L) + 7.

Our contribution to this line of work is to show that, perhaps surprisingly,
for some list problems the four-round protocol of Naor, Orlitsky, and Shor is
in fact asymptotically optimal, thus answering the above question in the nega-
tive.

9.3.4. THEOREM. For any ε > 0 there exist a set X and a family L ⊆ 2X such that
the classical communication complexity of L-LIST is at least

log log χ(GL) + (2−ε) logω(L).
Moreover, there exists such an (X ,L) pair for whichω(L) = log χ(GL).

In particular, our result gives a family of list problems with communication
complexity at least (3−ε)max{log log χ(GL), logω(L)} for any ε > 0.

Proof of Theorem 9.3.4. The list problem that we use for the proof of The-
orem 9.3.4 is simple. For positive integers k, N such that 2 ≤ k ≤ N, we
consider the list problem L = ([N]

k ), where the family of lists consists of all k-
element subsets of [N]. Note that for this L, GL is the complete graph on N
vertices, giving χ(GL) = N, and we have ω(L) = k (not to be confused with
ω(GL) = N). Hence, Theorem 9.3.3 gives a four-round protocol using at most
log log N + 2 log k + O(log log k) bits of communication.

9.3.5. THEOREM. The classical communication complexity of ([N]
k )-LIST is at least

log log N + 2 log(k− 1)− log log(k− 1)−O(1).
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To see that this implies Theorem 9.3.4 note that the above bound can be
written as log log χ(GL) + (2 − o(1)) logω(L), where the term o(1) goes to
zero as k tends to infinity. Choosing k = log N then gives the second part of
the theorem.

To prove Theorem 9.3.5, we use a bound on the size of cover-free families
due to Dýachkov and Rykov [DR82]; see [Rus94, Für96] for simplified proofs
(in English).

9.3.6. DEFINITION. Let r be a positive integer and S be a finite set. A family
F ⊆ 2S of at least r+ 1 subsets is r-cover-free if every subfamily of r+ 1 distinct
sets F0, F1, . . . , Fr ∈ F satisfies F0 * F1 ∪ · · · ∪ Fr.

9.3.7. THEOREM (DÝACHKOV–RYKOV [DR82]). There exists an absolute constant
c > 0 such that the following holds. Let r, N be positive integers such that r ≥ 2
and N ≥ r + 1. Let S be a finite set and F ⊆ 2S be an r-cover free family consisting
of N sets. Then,

|S| ≥ cr2 log N
log r

.

PROOF OF THEOREM 9.3.5: For a positive integer C, suppose that the commu-
nication complexity of ([N]

k )-LIST is C. Fix an optimal protocol Π. For ev-

ery possible input pair (x, L) in the ([N]
k )-LIST problem, define the transcript

Tx,L ∈ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}C to be the concatenation of the parties’
messages in the order they are sent during their conversation on input (x, L).
Let T be the set of said transcripts.

For each transcript T ∈ T , denote by TA the sequence of Alice’s messages
in T, to be understood as a sequence of strings indexed by her rounds in the
conversation. Let F = {Fx}x∈X ⊆ 2T be the family where each Fx is the collec-
tion of transcripts T ∈ T that is consistent with x being Alice’s input and that
agrees on TA. We claim that F is a (k− 1)-cover free family. To see this, take
any k sets of F , say Fx0 , . . . , Fxk−1 , and let L̃ be the corresponding k-element list
{x0, . . . , xk−1}. Consider the transcript Tx0 ,L̃ related to the input pair (x0, L̃).
Clearly, Tx0 ,L̃ ∈ Fx0 . We show that Tx0 ,L̃ 6∈ Fxi for each i ∈ {1, . . . , k− 1},
which gives the claim as this implies that Fx0 6⊆ Fx1 ∪ · · · ∪ Fxk−1 . Suppose
that Tx0 ,L̃ ∈ Fxi holds for some i ∈ {1, . . . , k− 1}. This means that Alice sends
identical message sequences on inputs x0 and xi and therefore that Bob is not
able to distinguish between these two cases for the input pair (x0, L̃), contra-
dicting our assumption that we started with a functional protocol.

We also claim that F consists of at least N sets. Indeed, for every pair
x, y ∈ [N], there is a list L ∈ ([N]

k ) containing both x and y. Since we must have
that TA

x,L 6= TA
y,L in order for Bob to be able to distinguish between x and y on

input L, the inputs x and y induce distinct transcript sets.
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It thus follows from Theorem 9.3.7 that the total number of distinct tran-
scripts is at least

|T | ≥ c(k− 1)2 log N
log(k− 1)

,

for some absolute constant c > 0. Now as T ⊆ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}C,
we have

2C+1 − 1
2− 1

=
C

∑
l=0

2l ≥ c(k− 1)2 log N
log(k− 1)

.

Taking logarithms we get the claim. �

9.3.2 Quantum communication complexity of list problems and
quantum round elimination

We show that list problems have the interesting property of resisting a quan-
tum analog of round elimination. This peculiar phenomenon is also shown by
Briët and Zuiddam [BZ16] using a similar reasoning.

In classical communication complexity, round elimination reduces the num-
ber of rounds of a given protocol by having the parties send some extra infor-
mation instead. Consider the following basic example, where we start with
a two-round (log n + 1)-bit protocol in which Bob starts by sending Alice a
single bit and Alice replies with a log n-bit string. This protocol can easily be
turned into a one-round 2 log n-bit protocol by having Alice directly send Bob
two log n-bit strings, one corresponding to the case where Bob sends a 0 in the
two-round protocol and another for if he sends a 1. Then Bob can just pick
the string corresponding to the bit he would have sent based on his input and
solve the problem.

Surprisingly a quantum analog of this phenomenon does not hold.

9.3.8. THEOREM. There exist an absolute constant c ∈ (0, ∞), an infinite sequence
of list problems (Kn)n∈S with S ⊆ N such that for each Kn-LIST problem:

(i) The one-round quantum communication complexity is at least cn.

(ii) There is a two-round quantum protocol where one single qubit is transmitted in
the first round and the second round consists of a (log n + 1)-qubit message.

The sequence of lists that we consider is simple. For an even positive inte-
ger n and d ∈ [n], let Ld ⊆ 2{0,1}n

be the family of lists L ⊆ {0, 1}n of maximal
cardinality such that each pair of strings in L have Hamming distance exactly d.
Consider the family of lists given by Kn = Ln/2 ∪ · · · ∪ Ln.

Before proving Theorem 9.3.8, we observe some useful properties of quan-
tum communication complexities for list problems.
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General properties. We previously mentioned that Witsenhausen [Wit76] ob-
served that the chromatic number of an appropriate graph characterizes the
one-round communication complexity of the list problem. Similarly, the one-
round quantum communication complexity of a list problem is characterized
in terms of the orthogonality dimension of its associated graph. This result is
similar to Theorem 9.2.3 and, indeed, the proof is along the same lines.

9.3.9. LEMMA. For every family L ⊆ 2X , the one-round quantum communication
complexity of L-LIST equals to dlogξ(GL)e.

PROOF: Consider an optimal one-round protocol. With the same reasoning as
in Theorem 9.2.3, we can assume, without loss of generality, that Alice sends to
Bob a pure state |φx〉 ∈ Cd on input x ∈ X . Then, given a list L ∈ L, Bob has a
measurement that allows him to distinguish the states {|φx〉 : x ∈ L}. It thus
follows from Lemma 2.4.1 that these states must be orthogonal. In particular,
since for every list L ∈ L, each pair of distinct elements x, y ∈ L forms an edge
in GL, the vectors |φx〉, x ∈ X , form a d-dimensional orthogonal representa-
tion. Hence, ξ(GL) ≤ d.

Conversely, let φ : V(GL) → Cd be an orthogonal representation of GL.
Then, for every list L ∈ L, the vectors {φ(x) : x ∈ L} are pairwise orthogonal.
If Bob gets a list L ∈ L and Alice gets an element x ∈ L, it follows from
Lemma 2.4.1 that there is a quantum measurement allowing Bob to uniquely
identify x when Alice sends φ(x) using log d-qubits. Hence, the one-round
quantum communication complexity is at most dlogξ(GL)e. �

For multi-round protocols, a quantum analog of Theorem 9.3.1 also holds.

9.3.10. LEMMA. For every family L ⊆ 2X , the quantum communication complexity
of L-LIST is at least max{Ω(log log χ(GL)), logω(L)}.

PROOF: Kremer’s Theorem (Theorem 9.1.1) shows that there is at most an ex-
ponential difference between the (multi-round) quantum and one-round clas-
sical communication complexity. Hence, by Witsenhausen’s result, the former
is at least Ω(log log χ(GL)). Moreover, on the worst input Bob has to be able
to distinguish among ω(L) different elements. Hence, logω(L) bits of in-
formation must be communicated and Holevo’s Theorem [Hol73] says that to
retrieve logω(L) bits of information logω(L) qubits are necessary. �

Proof of Theorem 9.3.8. Recall that we are considering the following family
of lists. For an even positive integer n and d ∈ [n], let Ld ⊆ 2{0,1}n

be the family
of all lists L ⊆ {0, 1}n of maximal cardinality such that all strings in L have
pairwise Hamming distance d. We denote by Kn the union Ln/2 ∪ · · · ∪ Ln. In
other words, this is the union of lists for which, individually, there is a one-
round O(log n)-qubit protocol (see Section 9.2.4).
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We start by proving Theorem 9.3.8 (i). In view of Lemma 9.3.9, we have
to lower bound the orthogonal rank of the graph Gn, where Gn = ({0, 1}n, E)
and E is given by all pairs of strings with Hamming distance in {n/2, . . . , n}.
We derive that logξ(Gn) ≥ Ω(n) by combining the fact that ξ(G) ≥ ϑ(G)
(Lemma 3.2.13) together with the following lower bound on ϑ(Gn) proven by
Samorodnitsky in an unpublished note [Sam98, Lemma 3.3].

9.3.11. THEOREM (SAMORODNITSKY [SAM98]). For the graph Gn, we have that
ϑ(Gn) ≥ 2(1−H(1/4))n−o(n), where H is the binary entropy function.

Indeed, taking the logarithm, we obtain the following chain of inequalities:
logξ(Gn) ≥ logϑ(Gn) ≥ (1− H(1/4)− o(1))n ≈ (0.189− o(1))n where the
term o(1) goes to zero as n → ∞. (In the above mentioned work of Briët
and Zuiddam [BZ16], the authors give an independent and easier proof of
a lower bound on ϑ(Gn) analogous to the one of Theorem 9.3.11.) Thus the
one-round quantum communication of Kn-LIST problem is at least Ω(n) and
Theorem 9.3.8 (i) follows.

Secondly, we give a simple two-round protocol for Kn-LIST which implies
Theorem 9.3.8 (ii).

9.3.12. THEOREM. For Kn = Ln/2 ∪ · · · ∪ Ln, there exists a two-round protocol for
Kn-LIST where Bob sends to Alice a single qubit and Alice replies with a (log n + 1)-
qubit message.

PROOF: Let ` = dlog ne and U be the (`+ 1)-qubit unitary matrix which sat-
isfies U|0〉|0〉⊗` = |0〉|0〉⊗` and U|1〉|0〉⊗` = 1√

n |1〉∑
n
i=1 |i〉. Moreover, for any

2`-bit string z, we define the conditional query unitary Uz which acts on the
computational basis states as Uz|0〉|i〉 = |0〉|i〉 and Uz|1〉|i〉 = (−1)zi |1〉|i〉 for
any i ∈ [2`]. For a small technicality if n is not a power of 2, i.e., ` > log n,
we will map any n-bit string to a 2`-bit string obtained by padding zeros to the
original string. We can now explain the protocol.

Fix an input pair (x, L) where L ∈ Ld for some d ∈ {n/2, . . . , n}. Bob look-
ing at the list L learns d and sends to Alice the single qubit γ|0〉+

√
1−γ2|1〉

where γ2 = 1− n
2d ≥ 0. Alice pads the state |0〉⊗` to the one she received and

then applies in sequence the unitaries U and Ux, obtaining the state

|φx〉 = UxU
(
(γ|0〉+

√
1−γ2|1〉)|0〉⊗`

)
= γ|0〉|0〉⊗` +

√
1−γ2

n

n

∑
i=1

(−1)xi |1〉|i〉.

She sends this to Bob using dlog ne + 1 qubits. Notice that if x, y ∈ {0, 1}n

differ in exactly d positions, then the states |φx〉 and |φy〉 are orthogonal to each
other. Hence, by Lemma 2.4.1, using the list L Bob can perform a measurement
that allows him to learn Alice’s input x. �
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9.3.3 Entanglement-assisted and non-signaling communication
complexity of the list problem

We end the chapter by presenting two results about the list problem when the
players can only exchange classical bits but they are allowed to share non-
classical correlations.

Quantum correlations. If Alice and Bob can share an entangled state and
communicate classical bits, then they can use the teleportation protocol of Ben-
nett et al. [BBC+93] to simulate the quantum communication with a factor of 2
overhead. However, there may be more efficient protocols. In particular, we
show for the Kn-LIST problem, where Kn is the union Ln/2 ∪ · · · ∪ Ln, a two-
round entanglement-assisted protocol that uses only dlog ne+ 3 classical bits.

9.3.13. LEMMA. For Kn = Ln/2 ∪ · · · ∪ Ln, there exists a two-round entanglement-
assisted protocol for K-LIST where Bob sends Alice a single bit and Alice replies with
dlog ne+ 2 bits of communication.

PROOF: Let (x, L) be Alice and Bob’s input pair where L ∈ Ld. Consider the
conditional query unitary Uz, where z is a n-bit string, which acts on the com-
putational basis states as Uz|0〉|i〉 = |0〉|i〉 and Uz|1〉|i〉 = (−1)zi |1〉|i〉 for any
i ∈ [n]. We show a two-round communication protocol that uses as shared
entanglement the state 1√

n ∑
n
i=1 |i〉A|i〉B together with two EPR pairs. We use

the subscript A (respectively B) to specify Alice’s part of the state (respectively
Bob’s).

From the list L, Bob learns the distance d and uses one EPR pair and one bit
of communication to remote state prepare the qubit γ|0〉+

√
1−γ2|1〉, where

γ2 = 1 − n
2d ≥ 0 [Pat00, Lo00]. Now Alice and Bob are sharing the entan-

gled state:
(
γ|0〉A +

√
1−γ2|1〉A

)
1√
n ∑

n
i=1 |i〉A|i〉B. Using her input x, Alice

performs the unitary Ux followed by the unitary U = |0〉〈0| ⊗ Fn + |1〉〈1| ⊗ Fn
where Fn is the n× n discrete quantum Fourier transform. The entangled state
is now:

γ|0〉A
1
n

n

∑
i=1

n

∑
j=1
ω

i j
n | j〉A|i〉B + (

√
1−γ2)|1〉A

1
n

n

∑
i=1

n

∑
j=1

(−1)xiω
i j
n | j〉A|i〉B,

where ωn is the n-th root of unity. Alice measures in the computational basis
her second n-qubit register and gets an outcome ĵ. She sends ĵ to Bob using
dlog ne classical bits. Moreover, Alice teleports the qubit γ|0〉+

√
1−γ2|1〉 to

Bob using the protocol of Bennett et al. [BBC+93]. This requires two classical
bits and an EPR pair.
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He can then use ĵ to perform a unitary |0〉〈0| ⊗ U ĵ + |1〉〈1| ⊗ U ĵ, where

U ĵ = ∑
n
i=1ω

i ĵ∗
n |i〉〈i|, that will put his register in the state

|ψx〉 = γ|0〉 1√
n

n

∑
i=1
|i〉+ (

√
1−γ2)|1〉 1√

n

n

∑
i=1

(−1)xi |i〉.

At last, we notice that if x, y ∈ {0, 1}n differ in exactly d bits then |ψx〉 is or-
thogonal to |ψy〉. Using the elements of the list L, by Lemma 2.4.1, Bob can
construct a measurement that allows him to learn Alice’s input. In total the
protocol required entanglement and dlog ne + 3 bits of classical communica-
tion. �

Non-signaling correlations. If the two parties can share non-signaling corre-
lations (Definition 2.4.5), every list problem becomes trivial.

9.3.14. LEMMA. For every family L ⊆ 2X , there is a one-round non-signaling pro-
tocol that uses only dlogω(L)e bits of communication and this is optimal.

PROOF: Fix a list L ∈ L and an element x ∈ L. Uniquely label the elements of L
with numbers in Zω(L) and let i be the label assigned to x. Let P(·, ·|x, L) be the
probability distribution over Zω(L)×Zω(L) that assigns probability 1/ω(L) to
each pair in {(a, a + i) : a ∈ Zω(L)} and vanishes on all other pairs. Clearly
this distribution is non-signaling. Similarly define non-signalling distributions
for every other pairs (x′, L′) in the list problem.

Consider the following protocol. Upon receiving x ∈ X and L ∈ L such
that x ∈ L, Alice and Bob sample from the distribution P(·, ·|x, L) as explained
above and get a and a + i ∈ Zω(L), respectively. Next, Alice sends a to Bob,
using at most dlogω(L)e bits of communication. Finally, Bob subtracts Alice’s
message from his input, getting (a + i)− a = i, which tells him Alice’s input.

At last, we notice that any functional protocol has to communicate at least
dlogω(L)e bits and hence the above protocol is an optimal one. Indeed, there
is an instance of the problem where Bob has to distinguish Alice’s input from
a list ofω(L) different elements. �

9.4 Kremer’s Theorem

Here we prove Kremer’s Theorem (Theorem 9.1.1), which we restate for con-
venience. The original proof by Kremer [Kre95] applied to Boolean functions;
we give a slight generalization of the statement so that it applies to functions
with arbitrary range. It is important to notice that the statements in this section
hold for general communication protocols, not only exact ones.
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9.4.1. THEOREM. Let ` be a positive integer, X, Y,R be finite sets and D ⊆ X × Y.
Let f : D → R be a function and suppose that f admits an `-qubit quantum protocol.
Then, there exists a one-round 2O(`)-bit classical protocol for f .

The proof uses the following lemma of Yao [Yao93] and Kremer [Kre95]. To
reduce the amount of notation needed in the proof we assume that the par-
ties use the following general protocol. At any point during the protocol, both
Alice and Bob have a private quantum register. If it is Alice’s turn to commu-
nicate, say ` qubits, she appends a fresh `-qubit register to her existing register,
applies a unitary to both registers and sends the `-qubit register over to Bob,
who then absorbs the `-qubit register into his private register. If it’s his turn
to communicate, Bob operates similarly. This assumption will allow us to deal
more easily with protocols in which different numbers of qubits are sent in
each round.

9.4.2. LEMMA (YAO–KREMER). Let ` be a positive integer, X, Y,R be finite sets
and D ⊆ X × Y. Suppose that there exists an r-round quantum protocol for a func-
tion f : D → R, where `i qubits are communicated in round i ∈ [r]. Then, the final
state of the protocol on input (x, y) ∈ D can be written as

∑αu(x)βu(y)|Au(x)〉|Bu(y)〉,

where the sum is over all u ∈ {0, 1}`1 × · · · × {0, 1}`r , theαu(x),βu(y) are complex
numbers and the |Au(x)〉, |Bu(y)〉 are complex unit vectors.

PROOF: By induction on r. The base case r = 1 is trivial, since then Alice sends
Bob an `-qubit state. For some i ∈ {2, 3, . . . , r}, suppose that after i− 1 rounds
the state is given by

∑αv(x)βv(y)|Av(x)〉|Bv(y)〉,

where the sum is over all v ∈ {0, 1}`1 × · · · × {0, 1}`i−1 . Assume that the i-th
round is Alice’s turn (the case of Bob’s turn is handled similarly). She appends
a fresh `i-qubit register to her current register, causing the state to become

∑αv(x)βv(y)|Av(x)〉 |0〉 . . . |0〉︸ ︷︷ ︸
`i times

|Bv(y)〉.

Next, she applies a unitary over both of her registers, turning the state into

∑αv(x)βv(y)

 ∑
w∈{0,1}`i

γw|Av,w(x)〉|w〉
 |Bv(y)〉,
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where γw is a complex number (which might depend on x) and for some unit
vectors |Av,w(x)〉. Now define

αv,w(x) = αv(x)γw, βv,w(y) = βv(y) and |Bv,w(y)〉 = |w〉|Bv(y)〉,
so that after the i-th round, after Alice has sent the `i-qubit register to Bob, the
state equals

∑
v,w
αv,w(x)βv,w(y)|Av,w(x)〉|Bv,w(y)〉.

After r rounds the state thus looks like as claimed in the lemma. �

PROOF OF THEOREM 9.1.1: Assume that the protocol proceeds in r rounds and
that `i qubits are communicated during round i ∈ [r]. By Lemma 9.4.2 the final
state of the protocol can be written as

∑αu(x)βu(y)|Au(x)〉|Bu(y)〉,
To produce his output, Bob performs a measurement {M1, . . . , Mk} on his

register. For each pair u, v ∈ {0, 1}`1 × · · · × {0, 1}`r and j ∈ [k] we define the
complex numbers

au,v(x) = αu(x)αv(x)〈Au(x)|Av(x)〉
b j

u,v(x) = βu(y)βv(y)〈Bu(y)|M j|Bv(y)〉.
Then, the probability that Bob gets measurement outcome j equals

p j(x, y) = ∑
u,v

au,v(x)b j
u,v(y).

The classical one-round protocol works in the following way. Let ` be the
total communication of the protocol and define ãu,v(x) as an approximation of
au,v(x) using 2`+ 4 bits for the real part and 2`+ 4 bits for the imaginary part,
so that |ãu,v(x)− au,v(x)| ≤ 2−2`−3. Alice’s message consists of all 22` numbers
ãu,v(x), making the total communication cost O(`22`) bits. Bob calculates his
approximation of the probability of getting outcome j as

p̃ j(x, y) = ∑
u,v

ãu,v(x)b j
u,v(y).

We can bound the difference between this approximation and the accep-
tance probability of the original quantum protocol by

| p̃ j(x, y)− p j(x, y)| =
∣∣∣∑
u,v

(
ãu,v(x)− au,v(x)

)
b j

u,v(y)
∣∣∣

≤ ∑
u,v

∣∣ãu,v(x)− au,v(x)
∣∣ ∣∣b j

u,v(y)
∣∣

≤ 2−2`−322` ≤ 1
8

.
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Therefore, given a quantum protocol with sufficiently high success proba-
bility, here in particular probability 1, Bob can (deterministically) choose the
unique outcome j for which p̃ j(x, y) is strictly greater than 1

2 , and this outcome
j is equal to the function value f (x, y), by correctness of the original quantum
protocol. �
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[BBL+15a] J. Briët, H. Buhrman, M. Laurent, T. Piovesan, and G. Scarpa.
Entanglement-assisted zero-error source-channel coding. IEEE
Transactions on Information Theory, 61(2):1124–1138, 2015.
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List of symbols

N Set of positive integers.

[n] Set of the elements {1, 2, . . . , n}.
P(N) Collection of all the subsets of N.

Π(n) Symmetric group over [n].

δi j
Kronecker delta function which is equal to 0 if i 6= j and to 1
otherwise.

log Logarithm in base 2.

O( f (n))
Function that is asymptotically upper bounded by f (up to a
constant factor).

Ω( f (n))
Function that is asymptotically lower bounded by f (up to a
constant factor).

Θ( f (n))
Function that is asymptotically both upper and lower
bounded by f (up to a constant factor).

o( f ) Function that is asymptotically upper bounded by f .

ω( f ) Function that is asymptotically lower bounded by f .

Vectors

Rn Set of real n-vectors.

Rn
+

Set of nonnegative real n-vectors.

Cn Set of complex n-vectors.

e Vector of all ones.

ei Vector with i-th entry equal to 1 and all others equal to 0.

〈x, y〉 Inner product between vectors x, y ∈ Cn,
〈x, y〉 = x∗y = ∑i x(i)y(i).

‖x‖ Norm of a vector x ∈ Cn, ‖x‖ =
√
〈x, x〉.

∆n Standard simplex ∆n = {x ∈ Rn
+ : ∑

n
i=1 xi = 1}
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Matrices

AT Transpose of the matrix A.

A∗ Conjugate transpose of the matrix A.

I Identity matrix.

J Matrix whose entries are all ones.

Ei j Matrix with a 1 in positions (i, j) and ( j, i) and 0 elsewhere.

Diag(x) Diagonal matrix whose main diagonal is vector x.

A[I]
Let A ∈ Sn, I ⊂ [n], then A[I] is the matrix obtained from A
by removing the rows and columns not indexed by I.

vec(A)
Vector obtained from A by stacking its columns on top of
each other.

A � 0 Matrix A is positive semidefinite.

Tr(A) Trace of a matrix A, Tr(A) = ∑i Aii.

〈A, B〉 Inner product between two matrices A, B ∈ Cn×n,
〈A, B〉 = Tr(A∗B) = ∑i j Ai jBi j.

‖A‖F Frobenius norm of A, ‖A‖F =
√
〈A, A〉.

‖A‖2
Spectral norm of A, ‖A‖2 =

√
λmax(A∗A) where λmax is the

largest eigenvalue.

‖A‖op Operator norm of A, ‖A‖op = sup{‖Ax‖ : x is a unit vector}.
A⊕ B Direct sum of matrices A and B.

A ◦ B
Entrywise product of matrices A and B, where
(A ◦ B)i j = Ai jBi j.

A⊗ B
Tensor product (also known as Kronecker product) of
matrices A and B.

Rn×n
+

Set of n× n entrywise nonnegative matrices.

Sn Set of n× n symmetric matrices.

Sn
+

Set of n× n positive semidefinite matrices.

DNN n Set of n× n doubly nonnegative matrices.

CPn Set of n× n completely positive matrices.

COPn Set of n× n copositive matrices.

cone(C) For a set C, define cone(C) = {αx : α ∈ R+, x ∈ C}.
cl(C) Closure of the set C.

int(C) Interior of the set C.
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Quantum information theory

|φ〉 Dirac notation for a vectorφ ∈ Cd.

〈φ| Conjugate transpose of vector |φ〉.
|i〉 Vector with ith entry equal to 1 and 0 elsewhere.

H Hilbert space

TrH Partial trace over the Hilbert spaceH.

Q Set of quantum correlations

Graphs

χ(G) Chromatic number.

χf(G) Fractional chromatic number.

χq(G) Quantum chromatic number.

χ?(G) Entangled chromatic number.

α(G) Stability number.

αq(G) Quantum stability number.

α?(G) Entangled stability number.

ω(G) Clique number.

Θ(G) Shannon capacity.

Θ?(G) Entangled shannon capacity.

ϑ(G) Lovász theta number.

ξ(G) Orthogonal rank.

ξ ′(G)
Minimum dimension of an orthogonal representation where
the entries of the vectors have all absolute value one.

Kn Complete graph on n vertices.

Cn Cycle of length n.

G + H Disjoint union of graphs G and H.

G�H Cartesian product of graphs G and H.

G � H Strong graph product of graphs G and H.

G ∗ H Disjunctive product of graphs G and H.





Samenvatting

Kwantummechanica is een natuurkundig model dat het gedrag van kleine
deeltjes beschrijft. Een zeer eigenaardig kenmerk van deze theorie is dat het
het het bestaan van kwantumverstrengeling voorspelt, zoals voor het eerste
ontdekt door Einstein, Podolsky en Rosen [EPR35] in 1935. Het idee is dat
ruimtelijk gescheiden kwantumsystemen met elkaar verstrengeld kunnen zijn
en dat lokale operaties op één systeem invloed hebben op de toestanden van
de andere systemen. In het bijzonder zegt dit dat deeltjes gecorreleerd kunnen
zijn op een niet-klassieke manier. In 1964 presenteerde Bell [Bel64] een experi-
ment om te testen of dit niet-klassieke fenomeen in de natuur voorkomt en in
de laatste dertig jaar hebben we steeds overtuigendere implementaties gezien
van dit experiment [ADR82, HBD+15] die de niet-klassieke aard aantonen van
de wereld waar wij in leven.

In deze scriptie bestuderen we de gevolgen van kwantumverstrengeling in
nonlokale spelen en communicatieproblemen in zero-error informatietheorie

Een nonlokaal spel is een spel met twee samenwerkende spelers, die niet
met elkaar mogen communiceren, maar die wel contact hebben met een schei-
dsrechter. Ze ontvangen ieder een vraag van de scheidsrechter waarop ze
moeten reageren met een antwoord. Aan de hand van een bij de spelers bek-
end predicaat, dat afhangt van de twee vragen en de twee antwoorden, bepaalt
de scheidsrechter of de spelers het spel hebben gewonnen of verloren. Het doel
van de spelers is om hun winkans te maximaliseren door op de een of andere
manier hun strategieën te coördineren. Klassiek is de optimale werkwijze om
voor iedere vraag een vast antwoord te hebben. Echter, als de spelers toegang
hebben tot een verstrengeld systeem, dan kunnen geavanceerdere strategieën
worden gebruikt: elke speler antwoordt aan de hand van de uitkomst van een
experiment uitgevoerd op een persoonlijk systeem. Zulke strategieën kunnen
ervoor zorgen dat de spelers antwoorden geven die gecorreleerd zijn op niet-
klassieke wijze.

Zero-error informatietheorie is een gebied in de wiskunde dat zich richt op
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verscheidene communicatieproblemen waar geen fouten worden getolereerd.
Bijvoorbeeld, in het zero-error kanaalcoderingsprobleem wil een verzender
berichten sturen over een kanaal met ruis op een manier dat de ontvanger in
staat is om het bericht perfect te reconstrueren. Voor dit probleem en andere
problemen onderzoeken we of verstrengeling het mogelijk maakt om beter-
dan-klassieke communicatieprotocollen te maken.

De verbindende schakel tussen de verscheidene problemen die we bestud-
eren in deze scriptie is hun combinatorische karakter. De meerderheid heeft in-
derdaad een graaftheoretische formulering, voornamelijk betreffende het chro-
matisch getal en het stabiliteitsgetal en enige kwantumgeneraliseringen daar-
van.

Een van de voornaamste bijdragen in deze scriptie is een nieuwe benader-
ing voor het bestuderen van deze kwantum-graafparameters door het gebruik
van conisch optimaliseren. Dit moet worden gezien in analogie met het klassieke
geval, waar het chromatisch getal en het stabiliteitsgetal kunnen worden gefor-
muleerd als lineaire optimalisatieprogramma’s over een geschikte convexe kegel,
die de compleet positieve kegel wordt genoemd. We introduceren de com-
pletely positive semidefinite-kegel CSn

+, een nieuwe matrixkegel die bestaat
uit alle n × n symmetrische matrices die een Gram-representatie hebben in
positief semi-definiete matrices. Naast het bestuderen van enkele structurele
eigenschappen en het leggen van verbanden met andere welbekende kegels,
gebruiken we het om kwantumvarianten te formuleren van graafparameters
als lineaire optimalisatieprogramma’s over de completely positive semidefinite-
kegel.

In het tweede deel van deze scriptie richten we ons op het probleem van
het vinden van scheidingen tussen klassieke strategieën en kwantumstrate-
gieën in enkele standaardproblemen uit de zero-error informatietheorie. We
bestuderen het kanaalcoderingsprobleem, wat vraagt dat een verzender data be-
trouwbaar verstuurd naar een ontvanger in de aanwezigheid van ruis, en twee
generaliseringen van dit probleem in het meerpartijenmodel. We beschouwen
het broncoderingsprobleem, wat vraagt dat een verzender efficiënt data verstuurt
waarover een ontvanger al wat informatie heeft, en het bron-kanaalcoderings-
probleem wat een combinatie is van het broncoderingsprobleem en het kanaal-
coderingsprobleem: de verzender moet een kanaal met ruis gebruiken om de
data naar de ontvanger te communiceren.

Daarnaast bestuderen we de complexiteit van twee communicatieproble-
men: het promise equality probleem en het lijstprobleem. In het promise equality
probleem moeten twee spelers (Alice en Bob) beslissen of hun invoeren gelijk
zijn of niet. In het lijstprobleem krijgt Bob een lijst en krijgt Alice een element in
Bobs lijst. Hun doel is dat Bob het element van Alice te weten komt. Voor beide
problemen zijn we geı̈nteresseerd in het minimum aantal klassieke berichten,
of kwantumberichten, dat moet worden uitgewisseld tussen Alice en Bob zo-
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dat het probleem kan worden opgelost zonder fouten, in het bijzonder wan-
neer we onderscheid maken tussen de één-ronde communicatiecomplexiteit,
waar de communicatie altijd loopt van Alice naar Bob, en de multi-ronde com-
municatiecomplexiteit, waar de spelers om beurten berichten sturen.





Abstract

Quantum mechanics is a physical model that describes the behavior of small
particles. One very peculiar feature of this theory is that it predicts the exis-
tence of quantum entanglement, as it was first discovered by Einstein, Podolsky,
and Rosen [EPR35] in 1935. The idea is that spatially separated quantum sys-
tem can be entangled with each others and local operations on one system can
have an influence on the states of the other systems. In particular, this says that
particles can be correlated in a non-classical way. In 1964 Bell [Bel64] proposed
an experiment to test whether this non-classical phenomenon occurs in nature
and in the last three decades we have seen increasingly convincing implemen-
tations of such experiment [ADR82, HBD+15] showing the non-classical nature
of the world we live in.

In this thesis we study the effects of quantum entanglement in nonlocal
games and communication problems in zero-error information theory.

In a nonlocal game two cooperating players, who are not allowed to com-
municate with each others, interact with a referee. They each receive a question
from the referee to which they have to reply with some answer. According
to some known predicate, which depends on the two questions and on the
two answers, the referee determines whether the players have won or lost the
game. The players’ goal is to maximize their chances of winning by somehow
coordinating their strategy. Classically, the optimal course of action is to fix
an answer to each question. However, if the players have access to a entan-
gled physical system, more sophisticated strategies can be used: each player
answers according to the outcome of an experiment performed on a private
system. Such strategies can cause the players to produce answers that are cor-
related in a non-classical way.

Zero-error information theory is a mathematical field that studies various
communication problems where no error is tolerated. For instance, in the zero-
error channel coding problem, a sender wants to communicate messages over
a noisy channel in a way that allows the receiver to perfectly reconstruct the
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message. For this and other problems, we investigate whether entanglement
allows for better-than-classical communication schemes.

The unifying link among the various problems that we study in this thesis
is their combinatorial nature. Indeed, the majority of them will have a graph
theoretical formulation, mainly concerning the chromatic and stability num-
bers and some quantum generalizations thereof.

One of the main contributions of this thesis is a novel approach to the study
of these quantum graph parameters using the paradigm of conic optimization. This
should be seen in analogy with the classical case, where the chromatic and sta-
bility numbers can be reformulated as linear optimization programs over an
appropriate convex cone, called the completely positive cone. Here we intro-
duce the completely positive semidefinite cone CSn

+, a new matrix cone con-
sisting of all n × n symmetric matrices that admit a Gram representation by
positive semidefinite matrices. Beside studying some of its structural proper-
ties and drawing connections with other well-known cones, we use it to for-
mulate quantum variants of graph parameters as linear optimization programs
over the completely positive semidefinite cone.

In the second part of the thesis, we focus on the problem of finding sepa-
rations between classical and quantum strategies in some standard problems
from zero-error information theory. We study the channel coding problem, which
asks a sender to transmit data reliably to a receiver in the presence of noise,
and two generalizations of this problem to the multiparty setting. We consider
the source coding problem, where a sender has to efficiently communicate data
about which a receiver has already some information, and the source-channel
coding problem which is a combination of the source and the channel coding
problem: the sender can only use a noisy channel to communicate the data to
the receiver.

Moreover, we study two communication complexity problems: the promise
equality and the list problems. In the promise equality problem, two parties
(Alice and Bob) must decide whether their inputs are equal or not. In the list
problem, Bob gets a list and Alice gets an element from Bob’s list. Their goal
is for Bob to learn Alice’s element. In both of these problems we are inter-
ested in the minimum number of classical, or quantum, messages that have
to be exchanged between Alice and Bob to be able to solve the problem with-
out error, especially when making the distinction between one-round commu-
nication complexity, where the communication flows from Alice to Bob, and
multi-round communication complexity, where the parties take turns in the
transmission of the messages.
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