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Chapter 1

Introduction

This thesis is a modal logical study of nonstandard provability predicates for
Peano Arithmetic. We give a gentle introduction to the subject, which the reader
familiar with the above notions should feel free to skip.

1.1 Numbers

We all know the natural numbers:

0, 1, 2, 3, . . .

We can, of course, do much more with the natural numbers than just list them.
They can be added or multiplied. They can also have various properties, for
example being even, prime, or the smallest number expressible as a sum of cubes
in two different ways.

Certain statements about the natural numbers are true, for example 1`1 “ 2,
while certain other statements, for example 0 “ 1, are false. What we mean by
truth, in this thesis, is always truth in the above sense, i.e. truth about the natural
numbers.

Some truths are a matter of simple calculation — the stuff of elementary
school. Here is an example:

97 ¨ 79 “ 7663

The truth of other statements requires more insight to establish, for example:

“There are infinitely many prime numbers.”

But some statements are so complicated that we do not yet know whether they
are true or false at all. An example is Goldbach’s conjecture:

“Every even number greater than 2 can be expressed as the sum of two primes.”

1



2 Chapter 1. Introduction

If Goldbach’s conjecture is true, then — since it is a statement about infinitely
many numbers — we cannot establish it by simple calculation, similarly to the
product of 97 and 79. However, there could still be a systematic and mechanical
way of finding out truths. This brings us to the protagonist of this thesis, the
theory of Peano Arithmetic.

1.2 Peano Arithmetic and Gödel’s theorems

Peano Arithmetic (PA) is a theory about the natural numbers. We can think of
it as a computation device for producing true statements. It consists of:

˝ some basic facts, for example: n` 1 ą 0 and n ¨ 0 “ 0 for any n

˝ some basic rules of reasoning, for example modus ponens : if ϕ holds, and ϕ
implies ψ, then also ψ must hold

Applying the basic rules of reasoning to the basic facts, called axioms, allows PA
to prove more complex statements about the natural numbers. What we mean
by a proof is a finite sequence of sentences ψ0, . . . , ψj, where each ψi is either an
axiom, or obtained from the previous sentences by one of the basic rules. We
write PA $ ϕ if there exists a proof of the sentence ϕ.

Many true statements about the natural numbers are provable in PA. For
example, PA $ 97 ¨ 79 “ 7663, but also

PA $ For each prime number p, there exists a prime number p1 with p1 ą p.

The axioms of PA are chosen in such a way that they are obviously true, while
the rules of inference are guaranteed to preserve truth. It follows from this that
every statement provable in PA is true. In other words, the natural numbers are
a model of PA; we also say that PA is sound. Denote by K some contradiction,
for example 0 “ 1, and note that since PA is sound, it is clear that PA & K. We
say that PA is consistent.

It is, of course, good to know that PA only proves true statements. The really
interesting question is, however, whether the converse also holds:

Can PA prove every true statement?

An answer — a negative one — to this question is given by Gödel’s incomplete-
ness theorems. Before explaining the latter, let us note that while we started
off describing PA as a tool for reasoning about the natural numbers, the above
question makes it an object of mathematical inquiry itself. We have moved from
mathematics to metamathematics.
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The First Incompleteness Theorem According to the First Incompleteness
Theorem, there are statements about the natural numbers that are neither prov-
able nor disprovable in PA. To formulate this more precisely, let us write  ϕ for
the negation of ϕ. Gödel’s First Incompleteness Theorem states that there is a
statement ϕ about the natural numbers for which

PA & ϕ and PA &  ϕ.

We can think of PA as being undecided about ϕ — considering it possible that
ϕ is true, but also considering it possible that ϕ is false. Since one of ϕ and  ϕ
must be true — in fact, it is clear from Gödel’s proof which one it is — it follows
that not every true statement is provable in PA.

The Second Incompleteness Theorem The Second Incompleteness Theo-
rem gives a particularly interesting example of a statement that PA is undecided
about: the statement of its own consistency. Making this precise requires some
explanation.

The statement “PA is consistent” is, of course, about PA itself, not about the
natural numbers. The method of arithmetisation, developed by Gödel, allows
us to overcome this technical obstacle. The idea is to use the natural numbers
themselves as codes for syntactical objects of PA such as sentences or proofs.
This is done in such a way that simple operations on the syntactical objects,
for example negating a sentence, become simple functions on the corresponding
codes. Similarly, simple properties of the syntactical objects, for example “being
a proof of the sentence 2 ` 2 “ 4”, become simple properties of the respective
codes. This idea allows metamathematics to be done inside PA itself.

In particular, there is a formula Prpxq, the so-called provability predicate, that
expresses in a natural way basic facts about provability in PA. For example,
writing xϕy for the code of ϕ, we have for any ϕ,

PA $ ϕ if and only if PA $ Prpxϕyq. (1.1)

Roughly speaking, Prpxϕyq is PA’s way of saying that it proves ϕ. We may thus
read (1.1) as: PA proves ϕ if and only if PA knows that it proves ϕ.

The sentence  PrpxKyq then expresses that a contradiction is not provable in
PA, in other words that PA is consistent. The Second Incompleteness Theorem
states:

PA &  PrpxKyq.

This may be seen as failure of negative introspection for PA: while PA is consistent
— it does not know K — it does not know this fact. In other words, PA does not
know that it does not know K.
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Hilbert-Bernays-Löb derivability conditions Hilbert and Bernays isolated
from Gödel’s work certain principles concerning Prpxq which are sufficient for
proving the Second Incompleteness Theorem. These were later simplified by Löb,
and are now collectively referred to as the Hilbert-Bernays-Löb (HBL) derivability
conditions :

1. PA $ ϕñ PA $ Prpxϕyq

2. PA $ PrpxϕÑ ψyq Ñ pPrpxϕyq Ñ Prpxψyqq

3. PA $ Prpxϕyq Ñ PrpxPrpxϕyqyq

Condition (1) is simply one direction of (1.1), while (2) states that PA knows
that modus ponens is among its rules of inference. Condition (3) can be seen as
positive introspection: if PA knows that it proves ϕ, then it knows this fact.

Löb’s Theorem is a consequence of the HBL-conditions, together with the
Fixed Point Lemma. It states that for any ϕ,

if PA $ Prpxϕyq Ñ ϕ, then PA $ ϕ.

The implication Prpxϕyq Ñ ϕ may be seen as PA’s way of expressing its own
soundness: “if I prove ϕ, then ϕ is true”. Löb’s Theorem states that PA is very
modest, making the above claim only in case it can actually prove ϕ.

Taking K for ϕ, Löb’s Theorem tells us that PA $ PrpxKyq Ñ K implies
PA $ K; in other words that if PA & K, then PA &  PrpxKyq. The Second
Incompleteness Theorem is thus an instance of Löb’s Theorem.

1.3 Provability logic

According to the HBL-conditions, PA knows about some features of provability
in itself. Löb’s Theorem, on the other hand, indicates that there are limits to this
knowledge. But what exactly are these limits? How can we describe all principles
concerning Prpxq that are provable in PA?

A beautiful answer to the above question emerges from a modal perspective.
This brings us to the area of provability logic, where modal logic is used to
investigate what formal theories such as PA can prove about provability and
other metamathematical notions.

Writing � instead of Prpxq, the modal counterparts of the HBL-conditions
are:

pNecq $ A ñ $ �A

pKq �pAÑ Bq Ñ p�AÑ �Bq

p4q �AÑ ��A
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A reader familiar with modal logic recognises the modal system K4. The sys-
tem GL, named after Gödel and Löb, is obtained by adding to K4 the modal
counterpart of Löb’s rule:

$ �AÑ A ñ $ A.

GL is alternatively axiomatised by adding to the basic modal logic K the following,
known as Löb’s axiom: �p�AÑ Aq Ñ �A.

Axiom p4q follows from Löb’s axiom over K. The proof of Löb’s Theorem in
turn can be seen — modulo the Fixed Point Lemma — as a derivation in K4.
There is thus an interplay between Löb’s axiom on the one hand, and axiom p4q
together with self-reference — in the form of the Fixed Point Lemma — on the
other.

Given the HBL-conditions and Löb’s Theorem, it is clear that the rules and
axioms of GL may be used when reasoning about Prpxq in PA. It was shown by
Solovay ([Sol76]) that we will not miss anything when doing so: the theorems of
GL are exactly the propositional schemata concerning Prpxq that are provable in
PA. In other words, GL is the provability logic of PA.

In view of Solovay’s Theorem we shall usually write �ϕ instead of Prpxϕyq.
The consistency statement  PrpxKyq thus becomes  �K, allowing us to state the
Second Incompleteness Theorem as: PA &  �K.

Philosophical significance The importance of provability logic is manifold.
In the context of modal logic, provability logic stands out by endowing the modal
operator with an unambiguous interpretation. Formal provability, unlike other
common interpretations of � such as truth, knowledge, or necessity, has a precise
mathematical definition. Which modal axioms are the correct ones is thus not
a matter of dispute but a matter of proof. For Prpxq, the relevant proofs of
soundness and completeness were provided, respectively, by Löb and Solovay.

From a foundations-of-mathematics point of view, GL embodies — in a direct
and simple manner — a substantial body of reasoning leading to the incomplete-
ness theorems. Its principles reflect salient features of formal provability. While
Prpxq may, at first sight, seem like an unfathomable creature, Solovay’s Theorem
provides a description that speaks directly to our intuition — Prpxq behaves like
a modal operator, governed by the principles of GL.

We have been treating formal provability as a kind of epistemic modality for
PA. However, a modal perspective makes it clear that the provability modality is
very different from our usual notion of knowledge, which can be seen as informal
provability. One of the most important modal principles for the latter is �AÑ A
— “If I know something, then it is true”. In view of Löb’s Theorem, it is clear that
this principle is incompatible with GL. Modal analysis thus tells us that the notion
of formal provability is essentially different from that of informal provability.
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1.4 Feferman provability

Feferman, in his influential paper [Fef60], constructed a curious formula Mf, the
so-called Feferman provability predicate. One could argue that Mf, like �, is a
provability predicate for PA: writing Mfϕ as shorthand for Mfpxϕyq, we have

PA $ ϕ if and only if PA $ Mfϕ.

At the same time, however, PA $  MfK, i.e. PA proves its own Feferman-
consistency. Instead of contradicting the Second Incompleteness Theorem, the
existence of Mf illustrates the need for a more careful formulation of this result.

In order to have a closer look at the situation, let us point out that the axioms
of PA include the induction schema, i.e. the induction axiom for every statement ϕ.
The theory IΣn is obtained from PA by restricting the use of induction to formulas
of certain complexity, depending on n. Thus we have that PA “

Ť

nPω IΣn.
The formula Mf defines provability in the theory

PAf :“
ď

nPω

tIΣn | for all m ď n, IΣm is consistentu.

Since we know that PA is consistent, we also know that each IΣn is consistent.
But this implies PAf

“
Ť

nPω IΣn, i.e. that PA and PAf are, in fact, one and the
same theory. It is in this sense that Mf might be claimed to be a provability
predicate for PA.

On the other hand, the theory PAf is consistent by definition. Indeed, PAf

could equivalently be described as the largest consistent subtheory of PA in the
sequence pIΣnqnPω. Given this, it should come as no surprise that its consistency
is known to PA, i.e. that PA $  MfK.

The system PAf could also be introduced by outlining the following proof-
procedure:

1. Enumerate pairs pπ0, ϕ0q, pπ1, ϕ1q, pπ2, ϕ2q, . . ., where πi is a PA-proof of ϕi.

2. As soon as ϕi “ K, determine the amount of induction IΣn used in πi.

3. Backtrack and delete pπ, ϕq, whenever π makes use of IΣn1 for n1 ě n.

4. Return to step 1, but skip pπ, ϕq whenever π makes use of IΣn1 for n1 ě n.

Let us call a proof stable if it occurs in our enumeration and is never scratched
out. The stable proofs are exactly the proofs of PAf . The catch is that we need
to wait infinitely long in order to be sure that a proof is stable.

The above description portrays Mf as being allowed to change its mind about
the statements it considers provable. This kind of self-correcting behaviour is
arguably closer to the way humans reason than the one embodied by the ordinary
provability predicate. As such, Feferman provability is related to the so-called
trial-and-error predicates and experimental systems studied by Putnam ([Put65])
and Jeroslow ([Jer75]). The provability logics of such systems have been studied
by Visser ([Vis89]) and Shavrukov ([Sha94]).
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1.4.1 Feferman provability as nonstandard provability

Arguably, a notion of provability with built-in consistency is a rather unusual
one. But are there precise criteria for separating “strange” provability predicates
such as Mf from “normal” ones such as �?

As a way approaching the above question, note that our argument for the
equivalence of PA and PAf relied on the consistency of PA. By the Second In-
completeness Theorem, this argument is therefore not available when reasoning
inside PA. Indeed, the equivalence of the two theories is not known to PA: it does
not prove Mfϕ Ø �ϕ for all ϕ. In fact, since PA $  MfK and PA &  �K, it is
clear that

PA & �K Ñ MfK.

Following Smoryński ([Smo85, p.279]), let us call a provability predicate M for PA
standard if the schema MϕØ �ϕ is provable in PA. Thus, while Mf might claim
to be a provability predicate for PA, it is not a standard one.

In this thesis, the term nonstandard provability predicate is used to refer to the
provability predicate M of a theory PA˝ such that — even though PA˝ coincides
with PA in a strong enough metatheory T — the schema Mϕ Ø �ϕ is not
verifiable in PA. In case of Mf, we can take as T any theory that knows about
the consistency of PA, for example PA` �K.

1.4.2 Bimodal provability logic

Our reluctance to accept Mf as a genuine provability predicate could be explained
by emphasising that certain natural principles for formal provability are not veri-
fiable for it in PA. In fact, since PA $  MfK, at least one of the Hilbert-Bernays-
Löb-derivability conditions must fail for Mf. While conditions (1) and (2) do hold
for Mf, condition (3) does not, i.e. there are sentences ϕ for which

PA & MfϕÑ MfMfϕ.

Despite of Mf not obeying the same modal principles as �, its complete behaviour
can nevertheless be described by means of modal logic. The modal logic F, for-
mulated in the language containing a modal operator M, is axiomatised by adding
to K the following:

pF1q  MK

pF2q MAÑ MppMB Ñ Bq _ MAq

Shavrukov ([Sha94, Remark 4.12]) showed that F is the provability logic of Mf:
the propositional schemata involving Mf that are provable in PA are exactly the
theorems of F.

Since PA & MfϕØ �ϕ, it is also interesting to ask which principles concerning
the interaction of � and Mf are verifiable in PA. Adopting a modal perspective
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provides a neat answer to this question as well. The bimodal system LF contains
the principles of GL for �, the principles of F for M, as well as the following:

pT2q �AÑ M�A

pT3q �AÑ �MA

pF3q �AØ pMA_ �Kq

It was shown by Shavrukov ([Sha94, Theorem 4.9]) that the PA-provable proposi-
tional schemata concerning the interaction of ordinary and Feferman provability
are exactly the theorems of LF. We say that LF is the joint provability logic of �
and Mf.

Philosophical significance While the fact that the provability logic of Mf

is different from that of � might seem to suggest using provability logic as a
means for distinguishing natural provability predicates from unnatural ones, such
a strategy is not viable in general.

In this thesis, we shall see several nonstandard provability predicates whose
provability logic is GL. In this respect, they are indistinguishable from the ordi-
nary provability predicate. Their nonconformity becomes obvious, however, when
focusing on their interaction with ordinary provability. In some cases, the differ-
ence between nonstandard and standard provability is thus only visible from a
bimodal point of view.

A bimodal perspective is also useful in the study of standard provability.
Solovay’s Theorem for ordinary provability is very robust: GL is not just the
provability logic of PA, but the provability logic of any reasonable1 theory. This
generality might be seen as a drawback, implying that a simple modal approach
does not allow us to distinguish between interesting properties of theories such
as finite axiomatisability or essential reflexivity.

The joint behaviour of two provability predicates turns out to be less uniform
than that of a single provability predicate alone. There is no system that could
justifiably be called the bimodal provability logic. For example, if S is a finite
extension of T , the joint provability logic of S and T is different than in the case
where S proves �TϕÑ ϕ for all ϕ. The joint provability logic of two provability
predicates thus tells us something about the nature of the relationship between
the corresponding theories.

1.5 Overview of the thesis

This thesis is an exploration of certain nonstandard provability predicates and
their modal logics, in particular their joint provability logic with the ordinary

1What we mean by reasonable here is: a Σ1-sound extension of I∆0`exp with a recursively
enumerable axiomatisation.
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provability predicate �. The bimodal system GLT, studied in Chapter 3, plays a
central role in our thesis. The principles of GLT describe the interaction of � with
various different nonstandard provability predicates. Chapter 4 is about fast and
slow provability, while Chapter 5 deals with the so-called supremum adapters. In
Chapter 6 it is shown that the provability logic of a certain supremum adapter is
GL.

1.5.1 Fast and slow provability

Chapter 4 is concerned with the theories PA˚ and PAæF that can be seen as a
speeded up and a slowed down version of PA, respectively.

Fast provability The theory PA˚, first studied by Parikh ([Par71]), is obtained
by adding to PA the following inference rule, known as Parikh’s rule:

�ϕ

ϕ
.

From the metaperspective, we can see that Parikh’s rule is admissible in PA: if
PA $ �ϕ, then by soundness, PA $ ϕ. Thus PA˚ has exactly the same theorems
as PA.

As in the case of PA, we can construct a formula Mp expressing in a natural
way the property of being a PA˚-proof. The above argument for the equivalence
of PA˚ and PA made use of soundness and can therefore, as a consequence of Löb’s
theorem, not be used when reasoning in PA. Indeed, the schema MpϕØ �ϕ turns
out not to be verifiable in PA. Thus Mp, like Mf, is a nonstandard provability
predicate for PA.

It follows from the proof of Solovay’s Theorem that GL is the provability logic
of Mp. It was shown by Lindström ([Lin06]) that the joint provability logic of �
and Mp is the modal system GLT.

One way to understand PA’s ignorance about the equivalence of PA and PA˚

is to note that some theorems have much shorter proofs in PA˚ than in PA — we
say that PA˚ has speed-up over PA. The increase in proof length when converting
PA˚-proofs into PA-proofs grows faster than any provably total function of PA.
We shall thus refer to the notion of provability specified by Mp as fast provability.

Slow provability Exploiting the fact that certain total functions cannot be
proven to be total in PA, a notion of slow provability can also be defined. Such a
notion was introduced by Friedman, Rathjen, and Weiermann in [FRW13]. They
consider a certain computable function F on the natural numbers whose totality
is not provable in PA, and the theory defined as

PAæF :“
ď

nPω

tIΣn | FpnqÓu .



10 Chapter 1. Introduction

Nfϕ

Ngϕ

Msϕ

Mfϕ

�ϕ

Mpϕ

Figure 1.1: The zoo of provability predicates. Arrows indicate provable inclusion in
PA. The squiggly arrow indicates provability modulo an index shift.

When proving theorems in PAæF , we can only use induction for formulas of com-
plexity n after having computed the value of Fpnq. The process of proving theo-
rems in PAæF is therefore potentially slower than the process of proving theorems
in PA — depending on how long the required calculations take.

Nevertheless, since F is total it is clear that PAæF and PA have exactly the same
theorems. Arguing in PA, on the other hand, the totality of F cannot be assumed,
and so PAæF might seem to be a weaker theory than PA. As these considerations
suggest, the provability predicate Ms of PAæF is a nonstandard one.

It follows from the proof of Solovay’s Theorem that GL is the provability logic
of Ms. We show that the joint provability logic of Ms and � is GLT. Our proof
is rather general, and also yields a new proof of the fact that GLT is the joint
provability logic of � and Mp. The joint provability logic of slow and ordinary
provability is thus the same as that of ordinary and fast provability.
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1.5.2 Supremum adapters

The theories PA˚ and PAæF of Chapter 4 are recursively enumerable (r.e.). In
Chapter 5, we study nonstandard provability predicates corresponding theories
defined in a “non-r.e.” way.

A formula ϕ is said to be 1-provable in a theory T if it is provable in T together
with all true Π1-sentences. We say that T is 1-inconsistent if K is 1-provable in
T . Note that if T is inconsistent, then it is also 1-inconsistent. On the other
hand, a theory could be consistent but 1-inconsistent. Let

PAµ :“
ď

nPω

tIΣn | for all m ă n, IΣm is 1-consistentu.

Thus PAµ is defined similarly to PAf , except for requiring 1-consistency instead of
ordinary consistency, and using ă instead of ď. The theory PAµ may alternatively
be described as IΣµ, where µ is the smallest n such that IΣn is 1-inconsistent.

Since we know that PA is sound, we also know that it is 1-consistent. Using
this, it is clear that PAµ is in fact the same theory as PA. On the other hand, it
follows from the Second Incompleteness Theorem that PA does not prove its own
1-inconsistency, and so the above argument is inaccessible when reasoning in PA.
As one might expect, the provability predicate Ng of PAµ is another nonstandard
provability predicate for PA.

We call Ng a supremum adapter, because it turns out to be useful for obtaining
interpretability-suprema of finite extensions of PA, i.e. theories of the form PA`ϕ.
Roughly speaking, the theory PA`p Ng ϕ^ Ng ψq is the weakest theory that
is stronger than each of the theories PA` ϕ and PA` ψ.

In Chapter 6, it is shown that GL is the provability logic of Ng. Since Ng is not
the provability predicate of a r.e. theory, this result is not a simple consequence
of the proof of Solovay’s Theorem, as was the case with Mp and Ms. The joint
provability logic of � and Ng contains GLT, together with an additional modal
principle S. Whether the joint provability logic of � and Ng is equal to GLT
together with S is an open question.

A slight modification of the definition of PAµ yields another supremum adapter
Nf . In contrast to Ng, the formula Nf behaves according to the principles of the
modal system F. Determining the provability logic of Nf , as well as its joint
provability logic with �, remain challenges for future work.

1.6 Sources of the material

Much of the material in this thesis has been published elsewhere. Chapter 4
contains a subset of the material contained in [HP16]. Chapter 5 is loosely based
on [HV16], but also contains some new results. Chapter 6 is, modulo some minor
changes, [HS16].





Chapter 2

Preliminaries

This chapter introduces the central notions and results used in the thesis. We
assume the reader to be familiar with first-order logic and its model theory, as
well as basic modal logic.

2.1 Arithmetical theories

We work with first-order theories formulated in the language L of arithmetic
containing 0, S, `, ¨, and ď. We assume a Hilbert-style axiomatisation of first-
order logic, with modus ponens as the only rule of inference. Such a system can
be found for example in [Fef60, Section 2].

The standard model of arithmetic, denoted by N, are the natural numbers
together with the usual arithmetical structure. An L-sentence ϕ is said to be
true if N ( ϕ. We define for each natural number n an L-term n by letting 0 “ 0
and n` 1 “ Sn. Given this, we shall mostly write n instead of n. Terms of the
form n are called numerals.

An L-formula is bounded or ∆0 (equivalently, Σ0 or Π0) if all quantifiers occur-
ring in it are of the form Dx ď y or @x ď y. A formula is Σn`1 (Πn`1) if it is of the
form Dx1 . . . Dxn ϕ (@x1 . . . @xn ϕ), with ϕ a Πn (Σn)-formula. Formulas obtained
from Σ1-formulas by using propositional connectives and bounded quantification
are said to be ∆0pΣ1q.

The basic facts concerning 0, S, `, ¨, and ď are given by the axioms of the
theory Q of Robinson Arithmetic ([HP93, Definition I.1.1]). The theory Q is
Σ1-complete: it proves every true Σ1-sentence ([HP93, Theorem I.1.8]).

Given a class Γ of formulas, IΓ is the theory obtained by adding to Q the
induction schema for Γ-formulas. For n ą 0, IΣn is finitely axiomatisable ([HP93,
Theorem I.2.52]). The theory of Peano Arithmetic (PA) is given as

Ť

nPω IΣn.

The graph of the exponentiation function xy is definable in I∆0 by a ∆0-
formula ([HP93, Theorem V.3.15]). To be more precise, there is a ∆0-formula

13
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ϕepx, y, zq for which:

I∆0 $ ϕepx, 0, zq Ø z “ 1

I∆0 $ ϕepx, y ` 1, zq Ø Dw pϕepx, y, wq ^ z “ w ¨ xq

Denote by exp the sentence @x @y D!z ϕepx, y, zq stating, intuitively, that expo-
nentiation is a total function. We have that IΣ1 $ exp ([HP93, I.1.50]). On the
other hand, since every ∆0-defined provably total function of I∆0 is bounded by
a polynomial ([HP93, Theorem V.1.4]), it is clear that I∆0 & exp. The theory
I∆0`exp is finitely axiomatisable ([HP93, Theorem V.5.6]).

The language of EA (Elementary Arithmetic) is obtained by adding to L a
function symbol exp for binary exponentiation 2x. The theory EA, given as I∆exp

0

together with the recursive definition of 2x, is strong enough to formalise almost
all of finitary mathematics outside logic.

A formula is elementary or ∆exp
0 if it is ∆0 in the language of EA. We can also

speak of ∆exp
0 -formulas in the context of I∆0`exp: given the ∆0-formula defining

exponentiation as above, we can use the well-known term-elimination algorithm
([Vis92, Section 7.3]) in order to replace terms of the form 2t with L-formulas. A
formula ϕ is ∆npT q if T $ ϕ Ø σ and T $ ϕ Ø π for some Σn-formula σ and
Πn-formula π.

The proof of the following theorem is a minor variation of [GD82, Proposi-
tion 2.1].

2.1.1. Theorem. Every ∆exp
0 -formula is ∆1 in I∆0`exp. �

It follows from [GD82, Theorem 3.1] that I∆0`exp $ I∆exp
0 . Since, as is well-

known, EA is a conservative extension of I∆0`exp, the two theories can therefore
be treated as equivalent for most purposes.

2.1.1 Provably recursive functions

Every primitive recursive relation R is represented in I∆0`exp by a Σ1-formula
ϕR in the sense that for all n0, . . . , nk,

pn0, . . . , nkq P R iff I∆0`exp $ ϕRpn0, . . . , nkq.

According to Kleene’s Normal Form Theorem for recursive functions, there exist
a primitive recursive relation T (Kleene’s T-predicate) and a primitive recursive
function U, such that for every recursive function f, there is some e such that for
all inputs n,

fpnq » U pµy Tpe, n, yqq . (2.1)

Above, µy Tpe, n, yq denotes the smallest number k for which Tpe, n, kq holds, and
gpmq » hpmq means that gpmq and hpmq are either both undefined, or defined
and equal.
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Making use of (2.1), we can associate to any k-ary recursive function f a
Σ1-formula ϕf defining its graph in I∆0`exp, i.e. for all n1, . . . , nk,

I∆0`exp $ ϕfpn1, . . . , nk, fpn1, . . . , nkqq, and

I∆0`exp $ D!z ϕfpn1, . . . , nk, zq.

We assume every recursive function f to be equipped with such a Σ1-formula
ϕf. Given a k-ary recursive function f, we denote by fpx1, . . . , xkqÓ the formula
Dy ϕfpx1, . . . , xk, yq, and say that f converges on input x1, . . . , xk. Similarly, we
denote by fpx1, . . . , xkqÒ the formula  fpx1, . . . , xkqÓ, and say that f diverges on
input x1, . . . , xn. We use fÓÓ as shorthand for @x1 . . . xk fpx1, . . . , xkqÓ, and fÒÒ

as shorthand for  fÓÓ.
Since I∆0`exp is Σ1-sound, it follows from the above that any recursively

enumerable (r.e.) set A can be represented in I∆0`exp by a Σ1-formula ϕA in
the sense that for all n: n P Aô I∆0`exp $ ϕApnq. It was first shown in [EF60]
that the above holds for every recursively enumerable (not necessarily sound)
extension T of I∆0`exp.

Suppose that T is an extension of I∆0`exp. A k-ary recursive function f is
said to be provably total in T if for some Σ1-formula ϕf defining its graph in
I∆0`exp, T $ fÓÓ.

The following result was established independently by Parsons ([Par70]), Mints
([Min73]), and Takeuti ([Tak75]):

2.1.2. Theorem. The provably recursive functions of IΣ1 are exactly the prim-
itive recursive functions. �

Whenever f is provably total in some r.e. theory T Ě I∆0`exp, we assume
f to be equipped with a Σ1-formula ϕf defining its graph in T , and such that
T $ fÓÓ. For a characterisation of the provably recursive functions of IΣn for
n ą 1, see Theorem 4.2.3.

The class of (Kalmar) elementary functions is the smallest class containing
successor, zero, projection, addition, multiplication, subtraction, and closed under
composition as well as bounded sums and bounded products ([Ros84]).

According to Kleene’s Normal Form Theorem for elementary functions, there
exist an elementary relation T1 and an elementary function U1, such that for every
elementary function h, there is some e such that for all inputs n,

hpnq » U1 pµy T1pe, n, yqq . (2.2)

It can be shown that T1 and U1 are represented in I∆0`exp by elementary for-
mulas. Using (2.2), we can thus associate to every elementary function h an
elementary formula ϕh defining its graph in I∆0`exp. A proof of the following
result can be found for example in [SW12, Section 3.1].

2.1.3. Theorem. The provably recursive functions of I∆0`exp are exactly the
elementary functions. �
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In view Theorem 2.1.3 and the remark above it, we assume every elementary
function h to be equipped with an elementary formula ϕh defining its graph in
I∆0`exp, and such that I∆0`exp $ hÓÓ.

2.1.4. Theorem. ([HP93, Remark I.1.59(3)]) Let f, g and k be elementary. Sup-
pose that h is defined from f and g by primitive recursion, and majorised by k.
Then h is elementary, hence provably total in I∆0`exp, and moreover the defining
equations of h are provable in I∆0`exp. �

2.1.2 Arithmetisation of syntax

We assume some standard formalisation of syntactical notions in I∆0`exp, writing
xϕy for the code of ϕ. If the meaning is clear from the context, we shall often
identify syntactical objects with their codes, writing ϕ instead of xϕy.

Smooth recursively enumerable theories

We introduce the notion of a smooth recursively enumerable theory. The reason
a recursively enumerable theory is required to be smooth is to ensure that its
natural provability predicate is provably equivalent in I∆0`exp to a Σ1-formula.

By a theory T we shall, from now on, mean a pair pAxT , τq, where AxT

is a set containing the non-logical axioms of T , and τ an arithmetical formula
representing AxT in the standard model N. We say that τ is an axiomatisation
of T . If AxT is r.e. then, as explained in Section 2.1.1, τ may taken to be Σ1,
and we have for all ϕ,

ϕ P AxT ô I∆0`exp $ τpϕq.

We say that T is r.e. if τ is Σ1. Similarly, T is said to be elementary just in case
τ is elementary.

Following [Fef60, Definition 4.1], we define the formula Prτ pxq expressing in a
natural way provability in the theory T “ pAxT , τq:

Prτ pxq :“ Dp pp “ xψ0, . . . , ψjy ^ ψj “ x^ @i ď j p (2.3)

λpψiq _ Dk, l ă j ψk “ ψl Ñ ψi _ τpψiqqq, (2.4)

where λ is an elementary formula representing the axioms of first-order logic
in I∆0`exp. The free variable x of Prτ pxq is assumed to range over (codes of)
L-sentences.

If τ is elementary, it follows from Theorem 2.1.1 that Prτ pxq is equivalent in
I∆0`exp to a Σ1-formula.

The axiom sets of most natural theories are elementary. In this thesis, how-
ever, we shall also encounter theories given to us via axiom sets that are r.e. but
not elementary. We would like to argue that also in these cases, Prτ pxq is equiva-
lent to a Σ1-formula in I∆0`exp. In other words, I∆0`exp should know that the
notion of theoremhood in a r.e. theory is r.e. itself.
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2.1.5. Remark. This context might remind one of Craig’s Theorem ([HP93,
III.2.29]): given a r.e. theory T “ pAxT , τq, there is an elementary formula τ 1

representing AxT in N. The theory T 1 “ pAxT , τ
1q is thus elementary and equiv-

alent to T in N. However, it follows from the results of Visser in [Vis15a] that
Craig’s Theorem is not verifiable in I∆0`exp, and so the equivalence of T and
T 1 might not be known to I∆0`exp.

Let us thus examine the case where the axiomatisation τ of T is Σ1 but not
necessarily elementary. In this case, there is a ∆0-formula τ 1py, xq such that
τpxq “ Dy τ 1py, xq. The formula Prτ pxq is thus equivalent in I∆0`exp to a formula
of the form

Dp pδppq ^ @i ď j pδ1piq _ Dy τ 1py, ψiqqq ,

with δ and δ1 elementary. In the presence of Σ1-collection, the above formula is
provably equivalent to the Σ1-formula

Db Dp pδppq ^ @i ď j pδ1piq _ Dy ă b τ 1py, ψiqqq .

Collection for Σ1-formulas is, however, not provable in I∆0`exp ([HP93, The-
orem 2.5]). In order to make everything work smoothly in I∆0`exp, we shall
work with theories satisfying a slightly stronger condition than being recursively
enumerable.

2.1.6. Definition. An axiomatisation τ is smooth if

I∆0`exp $ @x ă u Dy τ 1py, xq Ñ Db @x ă uDy ă b τ 1py, xq.

In other words, τ is smooth if I∆0`exp proves the collection axiom given by τ . If
τ is Σ1, then its smoothness is exactly what is needed in order to conclude that
Prτ pxq is provably equivalent in I∆0`exp to a Σ1-formula.

We say that T “ pAxT , τq is smooth just in case τ is smooth. From the
above considerations, it is clear that if T is r.e. and smooth, then the provability
predicate Prτ pxq is provably equivalent in I∆0`exp to a Σ1-formula. We note
that all elementary theories are smooth.

2.1.7. Convention. Throughout this thesis, we use modal notation for prova-
bility predicates. Variants of the symbol � are mostly used for natural provability
predicates of PA and its fragments. As usual, we use 3 to denote the dual of �,
i.e. 3ϕ is written as an abbreviation for  � ϕ. Variants of M and its dual O are
mainly reserved for nonstandard provability predicates.

The symbol �0 denotes the natural provability predicate of I∆0`exp, while
� is written for the natural provability predicate of PA. However some sections
specify a local, more general interpretation for the symbol �.

As usual, �ϕp 9xqmeans that the numeral for the value of x has been substituted
for the free variable of the formula ϕ inside �. If the intended meaning is clear
from the context, we will often write �ϕpxq instead of �ϕp 9xq.



18 Chapter 2. Preliminaries

The HBL-conditions

Let T “ pAxT , τq be a smooth and recursively enumerable extension of I∆0`exp,
and write � for the formula Prτ pxq defined as in (2.3)-(2.4). In virtue of the
smoothness and recursive enumerability of T we may, as explained above, assume
that � is Σ1 when reasoning in I∆0`exp. We shall furthermore assume I∆0`exp
to know that T is an extension of itself:

I∆0`exp $ @ϕ p�0ϕÑ �ϕq (2.5)

The theory I∆0`exp is provably Σ1-complete ([HP93, Theorem 4.32]), meaning
that for any Σ1-formula σ, I∆0`exp $ @y pσpyq Ñ �0σp 9yqq. Since � is Σ1 it
follows from this, together with (2.5), that I∆0`exp $ @ϕ p�ϕ Ñ ��ϕq. From
the definition of �, it is clear that the closure of T under modus ponens is
verifiable in I∆0`exp. Summarising the above observations, we see that I∆0`exp
verifies the Hilbert–Bernays–Löb (HBL) derivability conditions for �:

1. T $ ϕ ñ I∆0`exp $ �ϕ

2. I∆0`exp $ �pϕÑ ψq Ñ p�ϕÑ �ψq

3. I∆0`exp $ �ϕÑ ��ϕ

Conditions (2) and (3) also hold when ϕ and ψ are regarded as internal variables
ranging over L-sentences.

We recall the Fixed Point Lemma, first extracted from the proof of Gödel’s
First Incompleteness Theorem by Carnap ([Car37]).

2.1.8. Theorem. Let ϕ be an L-formula whose free variables are exactly x0, . . . , xn.
Then there is an L-formula ψ with exactly the same free variables, and such that

I∆0`exp $ ψ px1, . . . , xnq Ø ϕ pxψy, x1, . . . , xnq . �

From the proof of Theorem 2.1.8 it is clear that if ϕ is Σn(Πn), then so is ψ.
The Fixed Point Lemma, together with the above assumptions on T and �, are
sufficient for proving Löb’s Theorem ([Löb55]) for T .

2.1.9. Theorem. If T $ �ϕÑ ϕ, then T $ �ϕ.

Proof: By the Fixed Point Lemma, let ϑ be such that

I∆0`exp $ ϑØ p�ϑÑ ϕq .

We reason as follows, using the HBL-conditions for �:

I∆0`exp $ ϑÑ p�ϑÑ ϕq

$ � pϑÑ p�ϑÑ ϕqq

$ �ϑÑ � p�ϑÑ ϕq

$ �ϑÑ p��ϑÑ �ϕq

$ �ϑÑ �ϕ
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Assuming that T $ �ϕÑ ϕ, we thus have:

T $ �ϑÑ ϕ

$ ϑ

$ �ϑ

$ ϕ

by using the properties of ϑ and the HBL-conditions for �. �

An inspection of the proof of Theorem 2.1.9 shows that it can be verified in
I∆0`exp:

2.1.10. Corollary. I∆0`exp $ � p�ϕÑ ϕq Ñ �ϕ �

The rules and axioms of the modal system GL (Section 2.2) can thus be used
when reasoning about � in I∆0`exp.

Provability in IΣx

The formula �x is the conventional Σ1-provability predicate for IΣx` exp, with x
a free variable. We write � for the provability predicate of PA, where we assume
that for all ϕ, �ϕ is provably equivalent in I∆0`exp to Dx�xϕ. Given a natural
formalisation of provability in IΣx, it is clear that:

1. I∆0`exp $ �xϕ^ x ď y Ñ �yϕ (monotonicity)

2. I∆0`exp $ �xpϕÑ ψq Ñ p�xϕÑ �xψq

3. I∆0`exp $ �0ϕÑ �xϕ

As above, it follows from (3) and provable Σ1-completeness of I∆0`exp that

I∆0`exp $ �xϕÑ �x� 9xϕ.

Using the Fixed Point Lemma, together with the above, it can be shown that Löb’s
Theorem for IΣx`exp is verifiable in I∆0`exp: I∆0`exp $ �xp� 9xϕÑ ϕq Ñ �xϕ.

Partial satisfaction predicates

It is well-known that in I∆0`exp there is a partial satisfaction predicate SatΠ1pϕ, yq
for Π1-formulas, where y and ϕ are internal variables ranging, respectively, over
assignments and L-formulas. The formula SatΠ1 is Π1 and satisfies Tarski’s con-
ditions ([HP93, Theorem I.2.55]). Defining TrΠ1pϕq to be the formula saying that
ϕ is a sentence and @y SatΠ1pϕ, yq, it is clear that TrΠ1 is Π1, and that for any
Π1-formula πpxq,

I∆0`exp $ πpxq Ø TrΠ1pπp 9xqq.
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(By our conventions for the dot notation, πp 9xq is a sentence from the point of
view of TrΠ1 .)

Given a theory T , 1-provability refers to provability in T together with all
true Π1-sentences. Using the formula TrΠ1 , we can define the provability predicate
�Π1
x for 1-provability in IΣx ` exp:

�Π1
x ϕ :“ Dπ pTrΠ1pπq ^ �xpπ Ñ ϕqq.

Similarly, the provability predicate �Π1 for 1-provability in PA is defined as:

�Π1ϕ :“ Dπ pTrΠ1pπq ^ �pπ Ñ ϕqq.

It is then clear that for all ϕ, �Π1ϕ is provably equivalent in I∆0`exp to Dx�Π1
x ϕ.

We note that �Π1
x is Σ2. It is well-known that �Π1

x is Σ2-complete, i.e. that for
any Σ2-formula σ,

I∆0`exp $ σpyq Ñ �Π1
x σp 9yq.

It follows from this that I∆0`exp $ �
Π1
x ϕ Ñ �Π1

x �
Π1
9x ϕ. Furthermore, I∆0`exp

verifies that modus ponens is among the rules of inference of �Πn
x , i.e. we have

I∆0`exp $ �xpϕ Ñ ψq Ñ p�xϕ Ñ �xψq. Using the above, together with
the Fixed Point Lemma, it can be shown I∆0`exp verifies Löb’s axiom for �Πn

x :
I∆0`exp $ �

Π1
x p�

Π1
9x ϕÑ ϕq Ñ �Π1

x ϕ.
In [HP93, Theorem I.4.33] it is shown that IΣk`1 proves the consistency of

the set of all true Πk`2-sentences. The proof can be formalised I∆0`exp:

I∆0`exp $ @x @ϕ pϕ P Πx`2 Ñ �x`1p�xϕÑ ϕqq

Since IΣk`exp is axiomatised by a single Πk`2-sentence, it follows from the above
that IΣk`1 proves the consistency of IΣk ` exp` Π1-truth:

I∆0`exp $ �x`1 �
Π1
9x K.

We refer to the above properties as reflection.
A theory T is said to be essentially reflexive if it proves the consistency of

each of its finite subtheories, and the same holds for every consistent extension
in the same language. It follows from the above that, verifiably in I∆0`exp, the
theory PA is essentially reflexive: I∆0`exp $ @ϕ @x�pϕÑ 3xϕq.

2.1.3 Interpretability and arithmetised model theory

The notion of interpretability that we are interested in is that of relative interpre-
tability, first introduced and carefully studied by Tarski, Mostowski and Robinson
([TMR53]). Due to the availability of a pairing function in all theories considered
in this thesis, it is safe to focus our attention on one-dimensional interpretations.
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2.1.11. Definition. Let S and T be first-order theories whose languages are
LS and LT . An interpretation j of S in T is a tuple xδ, τy, where δ is an LT -
formula with one free variable, and τ a mapping from relation symbols1 R of LS

to formulas Rτ of LT , where the number of free variables of Rτ is equal to the
arity of R. We extend τ to a translation from all formulas of LS to formulas of
LT by requiring:

i. pRpx1, . . . xnqq
τ “ Rτ px1, . . . xnq

ii. pϕÑ ψqτ “ ϕτ Ñ ψτ

iii. Kτ “ K

iv. p@xϕqτ “ @x pδpxq Ñ ϕτ q

Finally, we require that T $ Dx δpxq, and T $ ϕτ for all axioms ϕ of S .

We write j : T � S if j is an interpretation of S in T , and T � S if j : T � S
for some j. We say that T and S are mutually interpretable, and write T ” S ,
if T � S and S � T .

We are interested in interpretability between finite extensions of PA, i.e. the-
ories of the form PA ` ϕ, where ϕ is an L-sentence. We write ϕ � ψ as an
abbreviation for PA` ϕ� PA` ψ.

Interpretability, like provability, is a syntactical notion, and can therefore be
formalised in I∆0`exp. We also write ϕ � ψ for the L-sentence expressing that
PA`ϕ interprets PA`ψ, certain that the intended meaning is always clear from
the context.

The following result is implicit in [Ore61], and was first explicitly stated in
[Háj71] and in [HH72]. Item (iii) was added in [Gua79]. Inspection of the proof
shows that it can be verified in I∆0`exp.

2.1.12. Theorem (Orey-Hájek Characterisation). I∆0`exp verifies that
for all ϕ and ψ, the following are equivalent:

i. ϕ� ψ

ii. @x�pϕÑ 3xψq

iii. �pψ Ñ πq Ñ �pϕ Ñ πq for any Π1-sentence π (we say that ψ is Π1-
conservative over ϕ) �

1We assume here that S is formulated in a purely relational way. This restriction is not
essential – function symbols can be replaced by relation symbols by a well-known algorithm
(see [Vis92, Section 7.3]).
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Model theory within IΣ1

It is well-known that basic model-theoretic notions and proofs can be formalised in
IΣ1. We recall here the basic definitions and facts concerning the latter, referring
the reader to [HP93, Section 4(b)] for a more extensive overview. Reasoning
within IΣ1, what we mean by a model M is an interpretation, i.e. formulas δ,
ϕ0, ϕS, ϕ`, ϕ¨, and ϕď, defining the domain as well as the interpretations of the
non-logical symbols in M. A full model is a model with a satisfaction relation
for all first-order sentences in the language of the model. Reasoning in IΣ1, we
always assume models to be full.

We recall some model-theoretic definitions, which can easily seen to be for-
malisable in IΣ1.

If M and M1 are models of I∆0`exp, we say that M is an end-extension of
M1 (or that M1 is a cut of M) if M is an extension of M1, and for every a P M
and b PM1, we have that M ( a ă b implies a PM1.

Given a set Γ of L-formulas, we say that M is a Γ-elementary extension of
M1 (or that M1 is a Γ-elementary substructure of M), and write M1 ăΓ M, if for
every ϕ P Γ and for all m1, . . . ,mn PM

1,

M ( ϕpm1, . . . ,mnq iff M1
( ϕpm1, . . . ,mnq.

The following general version of the Arithmetised Completeness Theorem follows
from Theorems 1.7 and 2.2 of [McA78].

2.1.13. Theorem. Let M1 ( PA. If M1 ( 3Π1
m ϕ, where m PM1 is nonstandard,

then there is an end-extension M of M1 with M1 ăΠ1 M, M ( PA (from the
external point of view), and M ( ϕ. �

2.2 Modal logic

The language L� of propositional modal logic is obtained by adding a unary
operator � to the language of propositional logic. The symbol 3 is used as the
dual of �, i.e. as an abbreviation for  � . We shall omit brackets that are
superfluous according to the following reading conventions:

�, ą ^,_ ą Ñ,Ø,

where ą indicates binding strength. Thus � and  are the strongest, while Ñ
and Ø are the weakest binding operators.

The system K contains all propositional tautologies in the language L�, to-
gether with axiom K: �pA Ñ Bq Ñ p�A Ñ �Bq. The inference rules of K are
modus ponens and necessitation: if K $ A, then K $ �A.
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The modal logic GL, named after Gödel and Löb, is obtained by adding to K
the following, known as Löb’s axiom:

pLq �p�AÑ Aq Ñ �A

It is well-known (for a proof, see for example [Boo93, Theorem 1.18]) that the
“transitivity axiom” p4q is derivable in GL:

2.2.1. Lemma. GL $ �AÑ ��A �

Note that it follows from Lemma 2.2.1 that the theorems of GL include the
modal counterparts of the HBL-conditions.

Given a modal system L and a set Γ of formulas in the language of L, we write
Γ $L B to mean that B is derivable in L from some elements A0, . . . , An in Γ
without use of necessitation. If Γ “ tA0, . . . , Anu, we also write A0, . . . , An $ B
instead of Γ $L B. A set Γ of formulas is said to be L-consistent if Γ & K,
and maximal L-consistent if additionally it contains either A or  A for every
A in the language of L. Lindenbaum’s Lemma tells us that every consistent set
can be extended to a maximal consistent one. Throughout this section, we write
(maximal) consistent to mean (maximal) GL-consistent. The following basic facts
concerning GL will mostly be used without explicit mention:

2.2.2. Lemma. i. GL $ �pA^Bq Ø p�A^ �Bq

ii. GL $ �J

iii. If A0, . . . , An $GL B, then �A0, . . . ,�An $GL �B

iv. If GL $ AÑ B, then GL $ 3AÑ 3B �

A relation ă on a set W is converse well-founded if for every S Ď W with
S ‰ ∅, there is some a P W such that a ⊀ b for all b P S, in other words if
there are no infinite ascending ă-chains. A converse well-founded relation is, in
particular, irreflexive. We write a ĺ b if either a ă b or a “ b.

2.2.3. Definition. A GL-frame F is a tuple xW,ăy, where ă is a transitive
converse well-founded relation on W .

2.2.4. Definition. A GL-model is a triple xW,ă,,y, where xW,ăy is a GL-
frame, and , a valuation assigning to every propositional letter a subset of W . ,
is extended to all formulas of L� by requiring that it commutes with propositional
connectives, and interpreting ă as the accessibility relation for �:

M, a , �A if for all b with a ă b, M, b , A.
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Given a frame F or a model M with domain W , we shall often write a P F or
a PM instead of a P W . IfM is clear from the context, we write w , A instead
ofM, w , A. A formula A is valid in a model M, we writeM , A, if a , A for
every a PM. Similarly, A is valid in a frame F , we write F , A, if M , A for
any model M “ xW,ă,,y with F “ xW,ăy.

2.2.5. Theorem. GL $ A iff for every finite GL-frame F , F , A.

Proof: The proof of soundness, i.e. the direction from left to right, is straight-
forward. An overview of the proof of modal completeness is given below. �

2.2.1 Proof of modal completeness

The right to left direction of Theorem 2.2.5 is proven, as usual, by contraposition.
Given a sentence A with GL & A, we shall find a GL-frame F with F . A, or
in other words a GL-model M where w ,  A for some w PM. The domain of
F will consist of maximal consistent sets, and , is the canonical valuation, by
which we mean the valuation defined as:

x , p :ô p P x. (2.6)

The assumption GL & A implies that there is a maximal consistent set x0 with
 A P x0. Our goal is to extend the equivalence in (2.6) beyond propositional
formulas. In particular, we would like to have x0 . A.

It is well-known that GL is not compact: there is an infinite consistent set that
cannot be satisfied at any point on a GL-frame (see for example [Boo93, p.102]).
This means that we cannot hope to extend (2.6) to all L�-formulas. Nevertheless,
it is possible to extend (2.6) to a set that is big enough in order to ensure x0 . A.

There are many ways to find a frame F with the required properties; see for
example [JdJ98, Theorem 40]), [BV02, Exercise 4.8.7], or [Boo93, Chapter 5]. In
fact, some of them are easier than the proof presented here, which is based on
the construction method used in [GJ08]. The aim of the exposition is to prepare
the ground for the more involved modal completeness proof in Section 3.4.

2.2.6. Definition. A set D of formulas is said to be adequate if it is finite and
closed under subformulas and single negations.

Given A with GL & A, let D be an adequate set containing A, and let F0 be
the GL-frame consisting of a single maximal consistent set x0 with  A P x0. Our
goal is to extend F0 to a GL-frame F where, letting , be the canonical valuation,
we have for all x P F and B P D,

x , B :ô B P x.

We call the above equivalence a truth lemma (with respect to D). If x0 contains
formulas of the form  �C, we thus need to add new nodes to the frame.
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2.2.7. Definition. Let F be a frame whose domain consists of maximal consis-
tent sets, x P F , and D an adequate set. A D-problem in x is a formula  �B
where  �B P xXD, but there is no y with x ă y and  B P y.

If D is clear from the context, we shall refer to D-problems simply as problems.
An element of D is a problem-formula if it is has the form  �B. We assume as
given some ordering of problem-formulas.

2.2.8. Definition. For maximal consistent sets x and y, let x ă� y if for every
L�-formula B, we have that �B P x implies B P y.

2.2.9. Lemma. If x ă� y, then any problem-formula in y is contained in x.

Proof: Suppose that x ă� y and  �B P y. Assuming �B P x, we would have
��B P x by Lemma 2.2.1, and so �B P y, a contradiction. Since x is maximal
consistent, it must be that  �B P x. �

The proof of the following lemma is similarly straightforward:

2.2.10. Lemma. If x ă� y and y ă� z, then x ă� z. �

2.2.11. Definition. A frame F “ xW,ăy, where W consists of maximal con-
sistent sets, is adequate if for all x, y P F , we have that x ă y implies x ă� y.

The proof of the following lemma is completely straightforward.

2.2.12. Lemma. Let F be an adequate frame containing no D-problems, and let
, be the canonical valuation. Then x , B ô B P x for all B P D. �

2.2.13. Lemma. Let D be adequate, and x maximal consistent with  �B P xXD.
There is some y with x ă� y and  B,�B P y.

Proof: Using Lindenbaum’s Lemma, it suffices to show consistency of the set
tA | �A P xu Y t�B, Bu. Assuming the contrary, there would be �A0 . . . ,�An
in x with A0, . . . , An $GL �B Ñ B. Using necessitation and Löb’s axiom:

�A0, . . . ,�An $GL �p�B Ñ Bq

�A0, . . . ,�An $GL �B

Thus also �B should be in x, a contradiction. �

We describe an algorithm for eliminating problems in adequate GL-frames.
The function f is used to keep track of the order in which problems are eliminated.
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The problem elimination algorithm: Let x0 be maximal consistent and D
adequate. Define F0 “ xtx0, ∅uy and fp0q “ x0. While some world in the range
of f contains a problem in Fn “ xWn,ăny, do:

1. Let i be the least such that fpiq is defined and contains a problem, let x be
such that fpiq “ x, and let  �B be the least problem in x.

2. By Lemma 2.2.13, let y be maximal consistent with x ă� y and  B,�B P y.

3. Let fpjq :“ y, where j is the least such that fpjq is undefined.

4. Let Wn`1 :“ Wn Y tyu, and define ăn`1 to be the transitive closure of
ăn Ytx ă yu.

5. Let Fn`1 :“ xWn`1,ăn`1y

Clearly, F0 is an adequate GL-frame. Using Lemma 2.2.10, it is easy to check
that if Fn is an adequate GL-frame, then so is Fn`1.

2.2.14. Lemma. The problem elimination algorithm terminates.

Proof: We argue by induction on the number of problem-formulas in x0. When
starting the algorithm, we have fp0q “ x0. If x0 contains no problem-formulas,
then it contains no problems, and so the while-loop will never be entered.

So suppose that x0 contains n ` 1 problem-formulas. This means that all
problems  �B in x are eliminated during the (at most) first n ` 1 steps of the
algorithm by adding some y with x ă y and  B,�B P y. After these steps, we
thus have i ą 0 whenever the while-loop is entered in order to eliminate some
problem in fpiq. Since x ă� y by construction and �B P y while  �B P x, it
follows by using Lemma 2.2.9 that each y contains at most n problem-formulas.
Thus the algorithm, when run on each y, terminates by assumption. �

We prove the remaining direction of Theorem 2.2.5.

Proof: Suppose GL & A, let x0 be maximal consistent with  A P x0, and let D
be an adequate set containing A. Run the problem elimination algorithm on x0

and D. This yields a finite adequate GL-frame F free of problems. Letting , be
the canoncial valuation, we thus have x0 . A by Lemma 2.2.12. �

2.3 Provability logic

We show that GL is the provability logic of any reasonable theory. By a reasonable
theory we shall, throughout this thesis, mean a Σ1-sound smooth recursively
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axiomatised theory T “ pAxT , τq extending I∆0`exp, verifiably in I∆0`exp. We
write � for the provability predicate of T defined as in Section 2.1.2. As explained
there, � is Σ1 in I∆0`exp, and satisfies the following conditions:

1. T $ ϕ ô I∆0`exp $ �ϕ

2. I∆0`exp $ �pϕÑ ψq Ñ p�ϕÑ �ψq

3. I∆0`exp $ �0ϕÑ �ϕ,

where the right to left direction of (1) is by Σ1-soundness of I∆0`exp. We show
that if T and � are as above, then the propositional schemata involving � that
are provable in T are exactly the theorems of GL. A precise statement of this
result makes use of the following definition:

2.3.1. Definition. Let ϑ be an L-formula with one free variable. A ϑ-realisation
is a function ˚ from the propositional letters of L� to L-sentences. The domain of
˚ is extended to all L�-formulas by requiring that it commutes with propositional
connectives, and furthermore p�Aq˚ :“ ϑpxA˚yq.

A ϑ-realisation is thus a translation from the modal language L� to the language
L of arithmetic, where the modality � is translated by means of the formula
ϑ. We note that the values of a ϑ-realisation are determined by its values at
the propositional letters of L�. Instead of ϑ-realisations, we shall mostly speak
of arithmetical realisations mapping � to ϑ. It is clear how this notion can be
generalised to bimodal languages.

2.3.2. Theorem. Let � be the provability predicate of a reasonable theory T .
Then for all A P L�, GL $ A iff T $ A˚ for all �-realisations ˚.

The left to right direction of Theorem 2.3.2 is referred to as arithmetical sound-
ness. It is an immediate consequence of conditions (1)-(3) above, together with
the observation that — in the presence of the Fixed Point Lemma — the latter
imply Löb’s Theorem for � (Theorem 2.1.9). In fact, it is clear that arithmetical
soundness of GL with respect to T is already verifiable in I∆0`exp. The proof
of the other direction, i.e. arithmetical completeness, is due to Solovay ([Sol76]).
An overview of the proof is given below.

2.3.1 Proof of arithmetical completeness

Given an L�-formula A with GL & A, we would like to find an arithmetical
realisation ˚ mapping the modality � to the provability predicate �, and for
which it holds that T & A˚. The proof proceeds by showing that any finite
GL-frame can be embedded into I∆0`exp in a suitable way.
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We write x : �ϕ to mean that x is a witness of the Σ1-sentence �ϕ, i.e. that x
is the code of a T -proof of ϕ. We assume that every number witnesses the proof
of a unique sentence — if any — , noting that this requirement can be satisfied for
any reasonable arithmetisation of syntax in I∆0`exp. For the rest of this section,
let us fix a GL-frame F “ xW,ăy with root 0.

2.3.3. Definition. (I∆0`exp) The function h : ω Ñ W is defined by:

hp0q “ 0

hpx` 1q “

#

b if hpxq ă b and x : �L ‰ b

hpxq otherwise

The formula L ‰ b (see (2.7) below) depends on the formula χ representing h.
The self-reference in the definition of h is handled by the Fixed Point Lemma.
We note that the definition of h only relies on the gödelnumber of L ‰ b, and
the latter can be obtained from b and xχy by a function that is provably total in
I∆0`exp.

It follows from Theorem 2.1.4 — for example, by using that W is finite —
that h is elementary and provably total in I∆0`exp, with its defining equations
also provable in I∆0`exp. We write L “ a for the formula

Dxhpxq “ a^ @xhpxq ĺ a. (2.7)

The formula L “ a states that a is a ĺ-maximal element in the range of h. Given
the following lemma, we can think of L “ a as saying that a is the limit of h.

2.3.4. Lemma. i. I∆0`exp $ x1 ď xÑ hpx1q ĺ hpxq

ii. I∆0`exp $ D!wL “ w

Proof: (i) is proven by internal induction on x, using that h is defined by an
∆exp

0 -formula. The inductive step follows from the transitivity of ĺ, together with
the fact that hpxq ĺ hpx` 1q by definition.

(ii) Since the relation ĺ is antisymmetric, uniqueness is immediate from the
definition of L “ a. For existence, we show by external induction on the converse
of ă that for all a P W ,

I∆0`exp $ hpxq “ aÑ DwL “ w.

This is sufficient, since hp0q “ 0 holds in I∆0`exp. From (i) we have that

I∆0`exp $ hpxq “ aÑ p@x1 ě xhpx1q “ a_ Dx1 ě x a ă hpx1qq . (2.8)

Argue in I∆0`exp, assuming hpxq “ a. If the first disjunct in (2.8) holds, we have,
by using clause (i), L “ a, while if the second disjunct holds, then DwL “ w by
the induction assumption. Thus in either case DwL “ w as required. �
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2.3.5. Lemma. I∆0`exp $ L “ a^ a ă bÑ 3L “ b

Proof: Argue in I∆0`exp, assuming a ă b and L “ a, noting that the latter
implies

@xhpxq ĺ a. (2.9)

Suppose that there is some x with x : �L ‰ b. By (2.9) we have hpxq ĺ a, whence
it follows from the definition of h that hpx ` 1q “ b. From (2.9) we get b ĺ a,
whence b ă b by transitivity of ă, a contradiction. �

2.3.6. Lemma. I∆0`exp $ L “ a ‰ 0 Ñ �a ă L

Proof: Argue in I∆0`exp, assuming L “ a. Let x be such that hpxq “ a. Since
the latter is a ∆exp

0 -formula, we have �0 hp 9xq “ a by Theorem 2.1.1, together
with provable Σ1-completeness of I∆0`exp. Using the definition of L, this implies
�0 a ĺ L. By assumption, we have �0ϕÑ �ϕ for all ϕ, whence also

�a ĺ L.

Since a ‰ 0, it follows from the definition of h that

�L ‰ a.

Combining the above yields �a ă L as required. �

2.3.7. Definition. Let M “ xF ,,y be a finite GL-model with root w. The
model M0 is obtained by appending a new root 0 to M; the truth values of
propositional formulas at 0 are defined to be the same as at w. Apply Definition
2.3.3 to M0, and define the arithmetical realisation ˚ by letting

p˚ :“
ł

M0,a,p

L “ a.

2.3.8. Lemma. Let M and ˚ be as in Definition 2.3.7. For all B P L�, a ‰ 0,

if M, a , B, then I∆0`exp $ L “ aÑ B˚.

Proof: We prove the claim by induction on the complexity of B, simultaneously
with

if M, a ,  B, then I∆0`exp $ L “ aÑ  B˚.

The case of propositional letters is immediate from the the definition of ˚, together
with Lemma 2.3.4(ii). The boolean cases are straightforward.
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Suppose now that M, a , �C, i.e. that M, b , C for all b with a ă b. By
the induction assumption we have I∆0`exp $ L “ bÑ C˚ for all such b, whence
I∆0`exp $ a ă L Ñ C˚. Note that I∆0`exp $ ϕ ñ T $ ϕ ñ I∆0`exp $ �ϕ
for all ϕ. Reasoning as in GL, we thus obtain I∆0`exp $ �a ă LÑ �C˚. Using
Lemma 2.3.6, the latter implies I∆0`exp $ L “ aÑ �C˚ as required.

Finally, suppose M, a ( 3C, and let b be such that a ă b and M, b ( C.
By the induction assumption, I∆0`exp $ L “ b Ñ C˚. Reasoning as above,
we obtain I∆0`exp $ 3L “ b Ñ 3C˚, whence I∆0`exp $ L “ a Ñ 3C˚ by
Lemma 2.3.5. �

2.3.9. Lemma. i. N ( L “ 0.

ii. For all a ‰ 0, T & L ‰ a, i.e. L “ a is consistent with T

Proof: (i) Let a ‰ 0. We show N * Dxhpxq “ a by induction on the con-
verse of ă. Assume that the claim holds for all ă-successors of a, and sup-
pose N ( Dxhpxq “ a. By definition of h, this implies N ( �L ‰ a, whence
I∆0`exp $ �L ‰ a by Σ1-completeness. We have I∆0`exp $ �ϕ ñ T $ ϕ for
all ϕ, and thus also

T $ L ‰ a. (2.10)

Since N ( Dxhpxq “ a, by Σ1-completeness of T we also have T $ Dxhpxq “ a.
This, together with (2.10), implies T $ Dx a ă hpxq, whence N ( Dx a ă hpxq by
Σ1-soundness of T . The latter, however, contradicts our induction assumption.
We conclude that for a ‰ 0, N ( @xhpxq ‰ a, whence N ( @xhpxq “ 0, and
thus N ( L “ 0 as required. Closer inspection of the argument reveals that
I∆0`exp $ L “ 0 Ø 3n`1J, where n is the depth of M, see [Vis84].

(ii) By (i) and Lemma 2.3.5, we have N ( 3L “ a for all a ‰ 0. Now,
T $ L ‰ a would imply I∆0`exp $ �L ‰ a, and the latter in turn would imply
N ( �L ‰ a, a contradiction. �

We prove the right to left direction of Theorem 2.3.2.

Proof: If GL & A, then by Theorem 2.2.5 there is a finite rooted GL-model M
with a . A for some a PM. Let ˚ be the realisation as in Definition 2.3.7. By
Lemma 2.3.8, I∆0`exp $ L “ a Ñ  A˚, i.e. I∆0`exp $ A˚ Ñ L ‰ a. Since T
does not prove L ‰ a by Lemma 2.3.9(ii), it therefore cannot prove A˚ either. �

2.4 Ordinals

In Section 2.4.2, we define transfinite iterations of a given provability predicate.
In order to do that, ordinals need to be represented as natural numbers, by means
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of some ordinal notation system. Basic facts concerning the latter are reviewed
in Section 2.4.1 below. Transfinite iterations of provability predicates are closely
related to Turing-Feferman progressions ([Tur39], [Fef62]). The presentation here
is based on [Bek03], which in turn is based on [Sch79].

2.4.1 Ordinal notation systems

Ordinals up to ε0 can be represented in I∆0`exp in a natural way by making use
of the Cantor Normal Form Theorem:

2.4.1. Theorem. For every ordinal α ą 0, there are unique α0 ě . . . ě αk with

α “ ωα0 ` ωα1 ` . . .` ωαk .

The above representation of α is called its Cantor normal form. For an ordinal
α and n ă ω, we define ωαn inductively by letting

ωα0 “ α,

ωαn`1 “ ωω
α
n .

We write ωn for ω1
n. Thus we have that ω0 “ 1, ω1 “ ω, ω2 “ ωω, etc. Let

ε0 :“ suptωn | n P ωu. Using that x Ñ ωx is strictly increasing and continuous,
it is not difficult to show that ε0 “ ωε0 , and that in fact ε0 is the smallest fixed
point of the function xÑ ωx. We note that ε0 is countable.

It follows from the above that if α ă ε0, then α has a Cantor normal form
with exponents αi ă α, and these exponents in turn have Cantor normal forms
with yet smaller exponents. Assuming the ordinal 0 to be represented by some
fixed term, say 0, an ordinal 0 ă α ă ε0 can thus be represented by its Cantor
normal form

ωα0 ` ωα1 ` . . .` ωαk ,

where α0 ě . . . ě αk, and each αi is represented in the same way. More formally,
we fix for any ordinal α ă ε0 an L-term built of ωx, x ` y, and 0. The relation
ă and the standard functions of ordinal arithmetic (x ` y, x ¨ y and ωx) on
Cantor ordinal notations are elementary. It follows from this that basic facts
about ordinal arithmetic are provable in I∆0`exp (in fact, already in I∆0 — see
[Som95, Section 3.5]).

The Cantor ordinal notation system is the most common way of representing
ordinals below ε0. In order to reason in I∆0`exp about ordinals beyond ε0, we
introduce the notion of an elementary linear ordering.

2.4.2. Definition. ([Bek03]) An elementary linear ordering is a pair of elemen-
tary formulas x P D and x ă y, such that I∆0`exp proves that the relation
ă linearly orders the domain D. An elementary well-ordering is an elementary
linear ordering which is well-founded in the standard model N.
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Given an elementary linear ordering pD,ăq, we use Greek variables α, β, γ etc.
to denote the elements of D. Since D is elementary, these variables can also be
used within I∆0`exp.

Reflexive induction, first used in [Sch79], is very useful for reasoning about
elementary linear orderings in theories containing I∆0`exp.

2.4.3. Lemma ([Bek03, Lemma 2.4]). Let pD,ăq be an elementary linear or-
dering, T a theory containing I∆0`exp, and � a provability predicate for T for
which Löb’s Theorem holds. Then T is closed under the following reflexive in-
duction rule:

@α p�@β ă 9αΦpβq Ñ Φpαqq

@αΦpαq
.

Proof: Assuming that T $ @α p�@β ă 9αΦpβq Ñ Φpαqq, we find:

T $ �@αΦpαq Ñ @α�@β ă 9αΦpβq

Ñ @αΦpαq

Thus T $ @αΦpαq follows by Löb’s Theorem for T . �

An ordinal α is recursive if there is a recursive well-ordering of a subset of the
natural numbers with order type α. Recursive ordinals are exactly the ordinals
that have a notation in Kleene’s O.

The following result follows from [Som93, Theorem 3], where it is shown that
recursive ordinals can even be ∆0-represented in I∆0:

2.4.4. Theorem. For any recursive ordinal α, there is an elementary linear or-
dering with order type α; furthermore the basic functions and relations (for ex-
ample ď, `, ¨) on ordinals ď α can also be taken to be elementary. �

2.4.2 Transfinite iterations of provability predicates

We wish to talk about iterations of a given provability predicate �. Iterations
corresponding to natural numbers can be defined in a natural way by letting
�0ϕ :“ ϕ, and �n`1ϕ :“ ��nϕ. Intuitively, �nϕ thus means: � applied to ϕ,
n-times. We carry out the above definition within I∆0`exp, and extend it to
ordinals beyond ω.

Throughout this section, the symbol � is used to denote an arithmetical for-
mula for which we have:

1. I∆0`exp $ @ϕ p�0ϕÑ �ϕq

2. I∆0`exp $ @ϕ @ψ p�pϕÑ ψq Ñ p�ϕÑ �ψqq

3. I∆0`exp $ @ϕ p�ϕÑ ��ϕq
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Note that we do not assume � to be Σ1, hence condition (3) does not follow
from (1) as in Section 2.1.2.

For the rest of this section, we fix an elementary linear ordering pD,ăq. We
assume that, verifiably in I∆0`exp, pD,ăq has a least element, denoted by 0.
Intuitively speaking, a transfinite iteration of � in I∆0`exp should be a formula
�α, where α ą 0 is an ordinal (represented within I∆0`exp by means of some
ordinal notation system), and I∆0`exp verifies that for all ϕ,

i. �β`1ϕØ ��βϕ for 0 ă β ă α

ii. �λϕØ Dβ ă λ�βϕ for a limit ordinal 0 ă λ ď α

2.4.5. Definition. By the Fixed Point Lemma, let �αϕ be a formula such that

I∆0`exp $ �
αϕØ Dβ ă α

`

pβ “ 0^ �ϕq _ pβ ‰ 0^ ��βϕq
˘

,

where α and ϕ are internal variables ranging over tδ P D | δ ‰ 0u and L-sentences,
respectively. Similarly, 3αϕ is defined to be a formula such that

I∆0`exp $ 3αϕØ @β ă α
`

pβ “ 0^3ϕq _ pβ ‰ 0^33βϕq
˘

.

When reasoning in I∆0`exp, we shall, less formally, assume �αϕ to satisfy

�αϕØ Dβ ă α��βϕ

and similarly for 3αϕ, having in mind that �0ϕ and 30ϕ are defined to be ϕ.
It is clear from Definition 2.4.5 that if � is Σn`1, then so is �αϕ, and that if

3 is Πn`1, then so is 3αϕ. In [HP16, Lemma 8], it is shown that, verifiably in
I∆0`exp, iterations are unique. Thus we can use �αϕ freely, without specifying
the formulas involved.

We define the formulas spβ, αq and limpαq stating, respectively, that α is an
immediate successor of β, and that α is a limit:

spβ, αq :“ β ă α ^ Dγ pβ ă γ ă αq

limpαq :“ α ‰ 0^ Dβ spβ, αq

The facts given in the following lemma will often be used without explicit mention.

2.4.6. Lemma (I∆0`exp). For any L-sentences ϕ, ψ, and α, β ‰ 0:

i. �αϕØ  3α ϕ

ii. �ϕÑ �αϕ

iii. β ă αÑ p�βϕÑ �αϕq

iv. �αpϕÑ ψq Ñ p�αϕÑ �αψq
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v. �αϕÑ �α�αϕ

vi. spβ, αq Ñ
`

�αϕØ ��βϕ
˘

vii. limpλq Ñ
`

�λϕØ Dα ă λ pα ‰ 0^ �αϕq
˘

Proof: By reflexive induction, using the assumptions on �. In (iii), we take
Ψpαq :“ @β ă α

`

�βϕÑ �αϕ
˘

. The proofs of (iv) and (v) use (iii); the proof of

(vii) uses (vi) and (iii). �

Clauses (ii), (iv), and (v) of Lemma 2.4.6 are the analogues of the HBL-
conditions for �α. Using the Fixed Point Lemma, it can be shown that also

I∆0`exp $ @ϕ p�
α
p�αϕÑ ϕq Ñ �αϕq.

2.4.7. Lemma. Let � and M be provability predicates for which it holds that
I∆0`exp $ @ϕ p�ϕÑ Mϕq. Then I∆0`exp $ @α @ϕ p�

αϕÑ �αϕq.

Proof: By reflexive induction. �

The results of this section, together with Theorem 2.4.4, imply that we can
reason within I∆0`exp about transfinite iterations corresponding to any recursive
ordinal α. It is important to keep in mind, however, that the natural properties of
an ordinal α might not be verifiable in I∆0`exp for an arbitrary representation of
α. When using the Cantor ordinal notation system, on the other hand, ordinals
below ε0 can be assumed to have more of the expected properties. The following
lemma gives one example.

2.4.8. Lemma. Suppose that pD,ăq is the Cantor ordinal notation system for
ordinals ď ε0. Then I∆0`exp $ @ϕ @β @α ‰ 0 p�α�βϕØ �β`αϕq.

Proof: By reflexive induction. �



Chapter 3

A bimodal provability logic

The system GLT of bimodal logic was introduced by Lindström ([Lin06]) in con-
nection with Parikh provability. The study of supremum adapters lead us to the
same system independently. This chapter deals with the modal aspects of GLT.
We prove completeness with respect to several classes of Kripke frames, one of
which yields decidability. We also provide a characterisation of the closed frag-
ment of GLT, and show that the latter is arithmetically complete with respect to
a wide class of provability predicates.

3.1 The system GLT

Let L�M be the language of propositional modal logic with two modal operators
� and M, their duals denoted by 3 and O respectively.

3.1.1. Definition. The axiom schemata of GLT include all propositional tau-
tologies in the language L�M, the rules and axiom schemata of GL for both M and
�, and furthermore:

pT1q MAÑ �A

pT2q �AÑ M�A

pT3q �AÑ �MA

pT4q �MAÑ �A

Throughout this chapter, we write $ A if GLT $ A, and C0, . . . , Cn $ A if A
is derivable in GLT from C0, . . . , Cn without use of necessitation. The notion
of a maximal GLT-consistent set is defined as in Section 2.2.1. Throughout this
section, we refer to (maximal) GLT-consistent sets as simply (maximal) consistent.

35
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3.1.2. Remark. Necessitation and Löb’s axiom for � are redundant in the above
axiomatisation of GLT. Necessitation for � follows from necessitation for M to-
gether with pT1q. As for Löb’s axiom, we note that by pT3q,

$ �pMAÑ Aq Ñ �MpMAÑ Aq. (3.1)

We also have $ �pMpMA Ñ Aq Ñ MAq by Löb’s axiom for M and necessitation
for �, whence $ �MpMAÑ Aq Ñ �MA by axiom pKq for �. Combining this with
(3.1) we obtain $ �pMAÑ Aq Ñ �MA, and so by pT4q,

$ �pMAÑ Aq Ñ �A. (3.2)

The desired result follows since $ �p�AÑ Aq Ñ �pMAÑ Aq by pT1q.

3.1.3. Lemma. i. $ MAÑ �MA

ii. $ MAÑ M�A

iii. $ Mp�AÑ Aq Ñ MA

iv. $ �pMAÑ Aq Ñ �A

Proof: (i) follows from pT1q, since $ MA Ñ MMA. (ii) is a consequence of pT1q
and pT2q. (iii) follows by Löb’s axiom for M, since $ Mp�AÑ Aq Ñ MpMAÑ Aq
by pT1q. (iv) is (3.2). �

3.2 Bimodal provability logics: an overview

Before introducing the semantics for GLT, let us briefly review some related sys-
tems. For more information on bimodal provability logics, see for example [JdJ98]
or [AB04].

Considering several provability predicates simultaneously is a natural ap-
proach for generalising Solovay’s Theorem. We shall first consider what can be
said about the provability predicates of reasonable theories (as defined in Section
2.3).

The system CS Let M and � be the provability predicates of some reasonable
theories T1 and T2, respectively. The joint provability logic of M and � is the
collection of all propositional schemata concerning M and � that are provable in
T1 X T2.

It follows from Solovay’s Theorem (Theorem 2.3.2) that the joint provability
logic of M and � contains the principles of GL for both M and �. Since M and
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� are Σ1, it follows from Σ1-completeness of I∆0`exp that their joint provability
logic also contains the following:

�AÑ M�A

MAÑ �MA

The system CS contains the rules and axiom schemata of GL for both M and �,
together with the above axioms. CS is modally complete with respect to a Kripke-
style semantics, and enjoys the finite model property. Note that �A Ñ M�A is
axiom pT2q. Given Lemma 3.1.3(i), it is thus clear that CS Ď GLT.

It was shown by Smoryński ([Smo85, Theorem 4.3.15 ]) that CS is the pro-
vability logic of a certain pair of r.e. extensions of PA. Beklemishev ([Bek92])
showed that there is a pair pM,�q of provability predicates for PA itself, such that
the joint provability logic of M and � is CS. Thus CS can be seen as the minimal
bimodal provability logic.

The theories with respect to which CS has shown to be arithmetically complete
are obtained by using the Fixed Point Lemma. The existence of natural theories
whose joint provability logic coincides with CS is an open question. Note that if
CS is the joint provability logic of T1 and T2 as above, then T1 and T2 know as
little about each other as possible. Naturally occurring theories thus usually turn
out to have some non-trivial knowledge about each other.

Bimodal logics for natural pairs of theories The simplest principle of inter-
action between two theories must be that of inclusion, expressed by the following,
already familiar to us as axiom pT1q of GLT:

MAÑ �A

The system CSM0 is CS together with the above principle. Clearly, CSM0 Ď GLT.
CSM0, like CS, is complete with respect to a Kripke-style semantics, and has
the finite model property. It has been shown by Wolter [Wol98] that all finitely
axiomatisable subframe logics containing CSM0 are decidable. Given that many
systems in this class do not have the finite model property, and are not even
complete with respect to any class of Kripke frames, this is a rather strong result.

The following principle expresses that not only is T2 stronger than T1 , it also
proves local reflection for T1:

pERq �pMAÑ Aq

It is not difficult to see that pT1q follows from pERq over CS. The system CSM1

is CS together with pERq. Unlike CSM0, the system CSM1 is not complete with
respect to any class of standard Kripke frames. Visser ([Vis93]), using topological
methods, devised a generalised Kripke semantics for CSM1 that is well-behaved,
even though the models are infinite.
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Recall axiom pT4q of GLT: �MA Ñ �A, and note that it follows from pERq.
Thus we have: CSM0 Ď GLT Ď CSM1. As we will see, the system GLT is interme-
diate between CSM0 and CSM1 also with respect to its model-theoretic properties:
like CSM0, it has a nice Kripe semantics, however as in the case of CSM1, the
respective frames are infinite. The closed fragment of CSM1 has been worked out
by Visser in [Vis93]. In Section 3.7, we show that the closed fragment of GLT
coincides with that of CSM1.

It was shown by Carlson ([Car86]) that CSM1 is the joint provability logic of
any pair of reasonable theories T1 and T2 whenever T1 and T2 are sound, and
the schema Mϕ Ñ ϕ is provable in T2. Examples of such pairs of theories are
pI∆0`exp,PAq, pIΣn, IΣn`1q, and pPA,ZFq.

The system GLP Recall from Section 2.1.2 that given a theory T , n-provability
refers to provability in T together with all true Πn-sentences. We write �Πn

T for
the provability predicate of this theory. The theory obtained by adding to T
all true Πn-sentences is — in case it is consistent — not recursively enumerable.
Accordingly, �Πn

T is not Σ1.
Smoryński ([Smo85, 3.3.9]) showed that the provability logic of each �Πn

T is GL.
The polymodal logic GLP, introduced by Japaridze ([DJ88]), contains a modality

�n for each n. Its axioms include the rules and axiom schemata of GL for each

�n , and the following interaction axioms, for all n ă m:

�n ϕÑ�mϕ

3n ϕÑ�m3n ϕ

Generalising Japaridze’s result, Ignatiev ([Ign93]) showed that GLP is the joint
provability logic of �Πn

T for all n. A simplified proof of this result was given by
Beklemishev ([Bek11]).

It is well-known that GLP is not complete with respect to a standard Kripke-
style semantics. The system GLP´ is obtained from GLP by replacing the axiom

3n ϕÑ�m3n ϕ by requiring that for all n ă m,

�n ϕÑ�m�n ϕ

The above is a generalisation of the principle MAÑ �MA of CS. The system GLP´

is sound and complete with respect to a nice class of Kripke frames. The latter
are also useful for reasoning about GLP, in particular for obtaining arithmetical
completeness results.

3.3 Kripke semantics

We prove modal completeness of GLT with respect to Kripke frames containing
accessibility relations Q and R for M and � respectively. Given binary relations
S and S 1, we write SS 1 for the relation tpa, bq | aSc and cS 1b for some cu.
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3.3.1. Definition. A GLT-frame is a triple xW,Q,Ry with W ‰ ∅, and

i. Q is converse well-founded

ii. Q is transitive

iii. RĎQ

iv. QRĎR

v. RQĎR

vi. RĎRQ

Conditions (i), (iii), and (iv) imply that the R-relation on a GLT-frame is transi-
tive and converse well-founded. Conditions (ii)-(v) are collectively referred to as
the GLT closure-conditions. We note that (i), (ii), and (vi) imply that GLT-frames
satisfy the following:

if w R a, there are panqnăω with a “ a0 and for all n,w R an and an`1 Q an.

If w R a and panqnăω is as above, we say that panqnăω witnesses the relation
w R a. It follows from (ii) and (i) that if panqnăω is as above, then an ‰ am for
all n ‰ m. A GLT-frame with at least one R-relation must thus be infinite.

3.3.2. Definition. A GLT-model is a quadruple xW,Q,R,,y, where xW,Q,Ry
is a GLT-frame, and , a valuation on W satisfying the usual clauses, with Q and
R as the accessibility relations for M and � respectively.

3.3.3. Theorem. $ A ô F , A for every GLT-frame F .

The proof of soundness, i.e. the left to right direction of Theorem 3.3.3, is straight-
forward. Section 3.4 below is dedicated to the proof of the other direction. Sound-
ness of GLT with respect to GLT-frames has the following simple consequence:

3.3.4. Lemma. i. & OJ

ii. & �K Ñ MK �

3.4 Proof of modal completeness

Our approach here is the same as in Section 2.2.1. Given a formula A with & A,
we will construct a GLT-frame consisting of maximal consistent sets, where a
truth lemma holds with respect to an adequate set containing A.

As in Section 2.2.1, an adequate set of formulas is one that is closed under
subformulas and single negations.
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3.4.1. Definition. Let F be a frame whose domain consists of maximal consis-
tent sets, x P F , and D adequate. A D-problem in x is one of the two:

i. a formula  MA P xXD such that there is no y with x Q y and  A P y.

ii. a formula  �A P xXD such that there is no y with x R y and  A P y.

If D is clear from the context, we refer to D-problems simply as problems. Ele-
ments of D of the form  MB or  �B are called problem-formulas.

3.4.2. Definition. For maximal consistent sets x and y, we define x ăM y if for
every L�M-formula A, we have that MA P x implies A P y, and similarly x ă� y if
for every L�M-formula A, we have that �A P x implies A P y.

3.4.3. Lemma. If x ăM y or x ă� y, then any problem-formula in y is in x.

Proof: Let x ăM y, and suppose that  MB P y. Supposing for a contradiction
that MB P x, we have MMB P x by axiom p4q for M, and so MB P y, a contra-
diction. If  �B P y, then assuming �B P x we obtain M�B P x by axiom pT2q,
whence �B P y, again a contradiction. The case of x ă� y is similar, by using
p4q for �, and Lemma 3.1.3(i) �

3.4.4. Definition. A frame whose domain consists of maximal consistent sets
is adequate if for all x and y, x Q y implies x ăM y, and x R y implies x ă� y.

The proofs of the following lemmas are straightforward:

3.4.5. Lemma. Let x, y, and z be maximal consistent.

i. If x ăM y and y ăM z, then x ăM z.

ii. if x ă� y, then x ăM y.

iii. if x ăM y and y ă� z, then x ă� z.

iv. if x ă� y and y ăM z, then x ă� z. �

3.4.6. Lemma. Let F be an adequate frame containing no D-problems, and let
, be the canoncial valuation. Then x , B ô B P x for all x P F and B P D. �
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3.4.1 Lemmas for the elimination of problems

The following lemma is proven in exactly the same way as Lemma 2.2.13.

3.4.7. Lemma. Let D be adequate, and x maximal consistent with  MB P xXD.
There is some y with x ăM y and  MB,B P y. �

Recall that GLT-frames satisfy the following condition:

if w R a, there are panqnăω with a “ a0 and for all n,w R an and an`1 Q an.

Thus whenever we add to our frame some world a with w R a, we should at some
point also add infinitely many worlds as above. We shall add all these worlds
simultaneously with a. The following lemma guarantees that maximal consistent
sets with suitable properties can be found.

3.4.8. Lemma. Let D be adequate, and x maximal consistent with  �B P xXD.
There is a sequence pyiqiăω of maximal consistent sets such that  B P y0 and for
all i, x ă� yi, yi`1 ăM yi, and �B P yi.

Iterations of modalities are defined inductively: M0A :“ A, Mn`1A :“ MMnA.
Similarly �0A :“ A and �n`1A :“ ��nA. The symbols OnA and 3nA are used
as shorthand for  Mn A and  �n A respectively.

The rest of this subsection is dedicated to the proof of Lemma 3.4.8. Fix an
adequate set D and a maximal consistent set x with  �B P xXD. We show that
there is a sequence pyiqiăω of maximal consistent sets such that for all i, x ă� yi,
yi`1 ăM yi, and  MiB,Mi`1B P yi. This suffices, for $ Mi`1B Ñ �B by axioms
pT1q and pT4q, and  M0B “  B.

Let us fix some notation and terminology. Define

si :“ tA | �A P xu Y t MiB,Mi`1Bu

For α P ωYtωu, a sequence pziqiăα of sets formulas is said to extend another such
sequence pz1iqiăα if zi Ě z1i for all i ă α.

3.4.9. Definition. A sequence pziqiăω of sets of formulas is good if it extends
psiqiăω, and for all k there is a sequence pyki qiďk of maximal consistent sets ex-
tending pziqiďk, with yki`1 ăM y

k
i for all i ă k.

The statement of Lemma 3.4.8 can be rephrased as:

“There exists a good sequence of maximal consistent sets.”

We prove the above claim by showing that psiqiăω is good (Lemma 3.4.10), and
that any good sequence can be extended to a good sequence of maximal consistent
sets (Lemma 3.4.11).
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3.4.10. Lemma. The sequence psiqiăω is good.

Proof: It suffices to show that for any k, there are maximal consistent sets pyki qiďk
extending psiqiďk, and such that yki`1 ăM y

k
i for all i ă k. Let us fix k. We show

the existence of ykj , for j ď k, by induction on k ´ j.
For ykk , it suffices to take a maximal consistent extension of sk. To see that

the latter is consistent, note that assuming the contrary implies the existence of
some �A0, . . . ,�An P x such that A0, . . . , An $ Mk`1B Ñ MkB, whence

�A0, . . . ,�An $ �pM
k`1B Ñ MkBq,

and so by Lemma 3.1.3(iv), �A0, . . . ,�An $ �MkB. By repeated applications of
pT4q, we obtain �A0, . . . ,�An $ �B. Since x contains each �Aj and  �B by
assumption, this is a contradiction.

For the inductive step, suppose that yki`1 has the required properties. We
would like to show that there is a maximal consistent yki Ě si with yki`1 ăM y

k
i .

By Lindenbaum’s Lemma, it suffices to show that the set si Y tC | MC P yki`1u

is consistent. Assuming the contrary, we obtain some �A0, . . . ,�An P x and
MC0 . . . ,MCl P yki`1 with A0, . . . An, C0, . . . , Cl $ Mi`1B Ñ MiB, whence by ne-
cessitation and Löb’s axiom for M,

MA0, . . .MAn,MC0, . . . ,MCl $ MpM
i`1B Ñ MiBq

MA0, . . .MAn,MC0, . . . ,MCl $ M
i`1B.

Each �Aj is in x, whence by pT3q also �MAj must be in x. Since si`1 Ď yki`1,
it follows that MAj is in yki`1. Since yki`1 also contains each MCj, it should thus
contain Mi`1B. But  Mi`1B P si`1 Ď yki`1, so this is a contradiction. �

3.4.11. Lemma. A good sequence can be extended to a good sequence of maximal
consistent sets.

Proof: Suppose that pziqiăω is a good sequence. We carry out a simultaneous
Lindenbaum construction for the sets pziqiăω, making sure that the property of
being good is preserved when new formulas are added to the sets. Fix some
enumeration pϕjqjăω of L�M-formulas, and define z0

i :“ zi. Assuming that pzni qiăω
is good, define pzn`1

i qiăω as follows:

Consider n as the pair pj,mq. We add either ϕj or  ϕj to zm:

Since pzni qiăω is good, we have for all k a sequence pyki qiďk of maximal consistent
sets extending pziqiďk, and such that yki`1 ăM y

k
i for all i ă k. In particular, we

have ykm Ě znm for all k ě m. Consider the sets

A “ tk | ϕj P y
k
mu and B “ tk |  ϕj P y

k
mu,

and note that at least one of A and B must be infinite.
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If A is infinite, zn`1
m :“ znm Y tϕju, otherwise zn`1

m :“ znm Y t ϕju.

For i ‰ m, zn`1
i :“ zni .

We claim that pzn`1
i qiăω is good. The resulting sequence clearly still extends

psiqiăω. Our construction ensures that for infinitely many k, the maximal consis-
tent sets witnessing the goodness of pzni qiăω are in fact extensions of pzn`1

i qiăω.
Noting that if k1 ă k and y0, . . . yk is a path of length k, then y0, . . . , yk1 is a path
of length k1, it is thus clear that pzn`1

i qiăω is also a good sequence. �

3.4.2 Quasi-frames

Given binary relations Q1 and R1, denote by S the relation

pR1˚ Y Q1˚q˚ R1 pR1˚ Y Q1˚q˚,

where P ˚ stands for the transitive closure of P . Intuitively, an S-step is any
sequence of Q1-steps and R1-steps containing at least one R1-step. We note that
if Q1 and R1 satisfy the GLT closure-conditions, then S “R1.

3.4.12. Definition. A frame G “ xW,Q1, R1y, where W consists of maximal
consistent sets, is a quasi-frame if:

i. G is adequate

ii. Q1 and S are converse well-founded

iii. if x R1 y, there is a sequence pyiqiăω with y “ y0, and such that for all i,
xSyi, and yi`1 Q

1 yi.

3.4.13. Lemma. Any quasi-frame can be extended to an adequate GLT-frame.

Proof: Let G 1 “ xW,Q1, R1y be a quasi-frame. If G is not an adequate GLT-
frame, it must be due to a violation of one of the GLT closure-conditions. Thus
let us close off to ensure QQĎQ, RĎQ, QRĎR, and RQĎR. The resulting frame
F “ xW,Q,Ry satisfies, of course, the GLT closure-conditions. It remains to show
that it also meets the remaining criteria for being an adequate GLT-frame.

Lemma 3.4.5 tells us that the process of closing off under the GLT closure-
conditions preserves adequacy of the underlying frame, whence it is clear that F is
adequate. It remains to show: (1) Q is converse well-founded, (2) any R-relation
is witnessed by an appropriate infinite sequence.

For (1), note that if F ( x Q y, then either G ( x Q1˚ y or G ( xSy. Since
Q1 and S are both converse well-founded, so must thus be Q.
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For (2), we note that if F ( xRy, then G ( xSy: new R-relations are only
created on top of old ones, in order to ensure QRĎR or RQĎR. If F ( xRy, we
thus have

G ( x . . . w R1 z . . . y,

where the dots denote a — possibly empty — sequence of R1 and Q1-steps.
If x “ w and z “ y, then G ( x R1 y, and the existence of a witnessing

sequence follows from Definition 3.4.12(iii), together with the fact that in F ,
S “R. So suppose x ‰ w, and note that then F ( x Q w — the GLT closure-
conditions ensure that any sequence of Q- or R-steps is itself a Q-step.

If z “ y, then G ( w R1 y, and hence there is a sequence pyiqiăω with y “ y0

and for all i, wSyi, and yi`1 Q
1 yi. From S “R it follows that F ( w R yi for all

i. Since F ( x Q w R yi and F (QRĎR, we thus have F ( x R yi for all i, and
so pyiqiăω is an appropriate witnessing sequence for x R y.

Suppose finally that z ‰ y, whence it must be that F ( z Q y. Since
G ( w R z1, there is a sequence pziqiăω with z “ z0, and such that for all i, wSzi,
and zi`1 Q

1 zi. From S “R it follows that F ( w R zi for all i. We define pyiqiăω
as: y0 “ y, yi`1 “ zi. Given that F ( x Q w R zi for all i, F (QRĎR, and
F ( x R y, we have x R yi for all i. Since also z “ y1 Q y0, it is clear that pyiqiăω
is an appropriate witnessing sequence for x R y.

3.4.3 The problem elimination algorithm

Let x0 be maximal consistent and D adequate. Let p be the number of problem-
formulas in D. Define F0 :“ xtx0u, ∅, ∅y, and fp0q :“ x0. While some world in the
range of f contains a problem in the frame Fn “ xWn, Qn, Rny, do the following:

1. Let i be the least such that fpiq is defined and contains a problem, let x be
such that fpiq “ x, and let B be the least problem in x.

2. If B has the form  MC, then by Lemma 3.4.7 there is a maximal consistent
set y with x ăM y, and  C,MC P y.

Let W 1
n`1 :“ Wn Y tyu; Q

1
n`1:“Qn `tx Q yu, and R1n`1:“Rn.

Let fpkq :“ y, where k is the least such that fpkq is undefined.

3. If B has the form  �C, then by Lemma 3.4.8 there is a sequence pyiqiăω
with  C P y0 and for all i, �C P yi, x ă� yi, and yi`1 ăM yi. Define:

W 1
n`1 :“ Wn Y tyi | i P ωu

R1n`1 :“Rn Ytpx, yiq | i ă ωu

Q1n`1 :“Qn Ytpyi`1, yiq | i P ωu

Let k be the least such that fpkq is undefined.
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For p1 ď p, let fpk ` p1q :“ yi, where i is the least index such that yi
contains a problem-formula that is not contained in any element in the
range of fpk ` jq with j ď p1.

In other words, we define fpkq, fpk` 1q, . . . , fpk` pq to be the first among
pyiqiăω containining pairwise distinct problem-formulas.

4. Let G be the frame xW 1
n`1, Q

1
n`1, R

1
n`1y. It is easy to check that in both

cases, G is a quasi-frame.

5. By Lemma 3.4.13, let Fn`1 be an adequate GLT-frame extending G.

3.4.14. Lemma. The problem elimination algorithm terminates, yielding an ad-
equate problem-free GLT-frame.

Proof: To see that the algorithm terminates, argue by induction on the number of
problem-formulas in x0. Since D is finite, there are finitely many of those. When
starting the algorithm, we have fp0q :“ x0. If x0 contains no problems-formulas,
then it contains no problems, and so the while-loop will never be entered.

Suppose now that x0 contains n ` 1 problem-formulas. This means that all
problems in x are eliminated during the (at most) n ` 1 steps of the algorithm:
problems of the form  MB are eliminated by adding some z with x0 Q z and
 B,MB P z, while problems of the form  �B are eliminated by adding pyiqiăω
with  B P y0 and �B P yi for all i.

After n ` 1 steps, we thus have i ą 0 whenever the while-loop is entered in
order to eliminate some problem in fpiq. It is clear from the construction that
only finitely many worlds are added to the domain of f . It follows from Lemma
3.4.3 that all new worlds contain at most n problem-formulas. The induction
assumption guarantees that the algorithm terminates when given each of the new
worlds as input.

It remains to show that the resulting frame F is problem-free, i.e. that no
y P F contains a D-problem. If y is in the range of f , then it is clear that by the
end of the construction there are no problems left in y.

So suppose that y is not in the range of f . This means that y is an element
of some pyiqiăω that was added to F during step 3. Let i be such that y “ yi,
and suppose for a contradiction that B is a problem in yi. It follows from the
definition of f that there is some j ă i with B P yj and such that yj is in the
range of f — otherwise yi would itself be in the range of f . Being in the range
of f , yj is problem-free. If B is of the form  MC, there is thus some z with
yj Q z and  C P z, and if it is of the form  �C, there is some z with yj R z
and  C P z. Since F is a GLT-frame, we have yi Q yj, and therefore yi Q z in
the first case and yi R z in the second, contradicting our assumption that B is a
problem in yi. �
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We conclude with a proof of the remaining direction of Theorem 3.3.3.

Proof: Suppose & A, let x0 be maximal consistent with  A P x0, and let D
be an adequate set containing A. Run the problem elimination algorithm on x0

and D. By Lemma 3.4.14, this yields an adequate GLT-frame F free of problems.
Letting , be the canoncial valuation, we also have x0 . A by Lemma 3.4.6. �

3.5 Lindström semantics

The material in this section is based on [Lin06]. We show that GLT is complete
with respect to two classes of Kripke frames containing a single accessibility re-
lation ă. Let us first fix some notation. Given a transitive relation ă on a tree,
we write a ăω b if the order type of the set tc | a ă c ă bu is at least ω˚.

3.5.1. Definition. A Lindström-frame is a transitive converse well-founded tree
of height ă ω2. A Lindström-model is a triple xW,ă,,y where xW,ăy is a
Lindström-frame, and , a valuation on W satisfying the usual clauses, with ă

and ăω as the accessibility relations for M and � respectively.

Thus the formula 3A is forced at a node a in a Lindström-model if and only if
A is forced at a node b that is infinitely many steps away from a.

3.5.2. Theorem. $ Aô F , A for every Lindström frame F .

Proof: For soundness, note that any Lindström frame is a GL-frame, whence it
must satisfy the axioms of GL for M. The validity of K� is straightforward, while
that of pT1q-pT4q follows from:

i. a ăω bñ a ă b,

ii. a ă b ăω cñ a ăω c,

iii. a ăω b ă cñ a ăω c, and

iv. a ăω bñ Dc a ăω c ă b.

While (ii) and (iii) hold in virtue of ăω-steps being defined as infinite ă-steps,
for (iv) it is crucial that the order type of the set of nodes between a and b is ω˚.

For the proof of completeness, we recall from Section 3.4 the construction
of a GLT-frame F with F . A, given some A with & A. Forgetting the R-
relations and renaming Q to ă, we obtain a transitive converse well-founded tree
F 1 “ xW,ăy. By examining the construction, it is clear that the height of F 1
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is ă ω2. Thus F 1 may be viewed as a Lindström-model. To finish our proof, it
suffices to show that the new interpretation of � coincides with the old one:

F ( x R y ô F 1 ( x ăω y.

The direction from left to right is clear since F is a GLT-frame, whence in par-
ticular every R-relation on it is witnessed by an appropriate infinite sequence.
For the other direction, suppose that x ăω y. By examining the construction of
F , we see that there must be some x1 with either x “ x1 or x Q x1, a sequence
pynqnăω that was added to F in order to eliminate some problem  �B in x1, and
finally yk Q y for some k P ω. Thus either x Q x1 R yk Q y or R yk Q y. Since F
is a GLT-frame, we obtain x R y in either case. �

Given a transitive tree xW,ăy and a, b P W , we write a ăn b to mean that
the order type of the set tc | a ă c ă bu is at least n.

3.5.3. Definition. An n-Lindström-frame is a transitive tree with only finite
branches. An n-Lindström-model is a triple xW,ă,,y where xW,ăy is a an n-
Lindström-frame, and , a valuation on W satisfying the usual clauses with ă as
the accessibility relation for M, and:

a , �A ô there is some n ą 0 such that b , A whenever a ăn b.

To put it differently, we have a , �A if and only if a , MnA for some n, and
dually a , 3A if and only if a , OnA for all n. Thus � is, in a sense, an
ω-iteration of M.

3.5.4. Theorem. $ Aô F , A for every n-Lindström-frame F .

Proof: The proof of soundness is straightforward; we treat pT4q. Suppose that
a , 3A, so a , OnA for all n. Then also a , On`1A for all n, i.e. a , OnOA,
and thus we have a , 3OA.

Completeness is proven by a slight modification of the construction in Section
3.4. O-problems are eliminated exactly as before. Given a problem  �B P x,
the proof of Lemma 3.4.8 guarantees the existence of a sequence pynqnăω, with
 B P y0, x ă� yn, yn`1 ăM yn, and �B P yn for all n. For each n, we add to
our frame the path x ă yi ă yi´1 . . . ă y0, and close off to ensure the transitivity
of ă. Since each added node contains less problems than x, it is clear that the
resulting frame has only finite branches. It remains to check that a truth lemma
holds at the end of this construction. We check that for all x P W :

 �A P xô for all n ą 0, there exists y with x ăn yn and yn ,  A.

The direction from left to right holds by construction. For the other direction,
assume that for every n, there is a path of length n from x to a node yn with
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yn ,  A, whence  A P yn by the induction assumption. Since the frame has only
finite branches, by König’s Lemma there must be some x1 with either x “ x1 or
x ă x1 such that x1 has infinitely many immediate successors pznqnăω, and zn ă yn
for all n. This can only be the case if the paths starting with the zn’s were added
in order to eliminate some problem  C in x1. Thus we have x ăM x

1 ă� zn ăM yn
or x ă� zn ăM yn, whence x ă� y by Lemma 3.4.5. But then �B P x would
imply B P yn, contradicting the consistency of yn. �

3.5.5. Lemma. i. for every n ą 0, $ MnAÑ �A

ii. if $ MnAÑ B for every n, then $ �AÑ B

Proof: (i) follows from pT1q and pT4q. For (ii), we note that if & �AÑ B, then
by Theorem 3.5.4 there is an n-Lindström-modelM where �A^ B is forced at
a node x. By Defintion 3.5.3, we have x , MnA for some n. It now follows from
the other direction of Theorem 3.5.4 that & MnAÑ B. �

3.5.6. Definition. The system GLT` contains all propositional tautologies in
the language L�M, the rules and axiom schemata of GL for M, and furthermore
MnAÑ �A for all n ą 0. Finally, GLT` contains the following rule of inference:

MnAÑ B for every n ą 0

�AÑ B
(3.3)

3.5.7. Lemma. GLT` and GLT have exactly the same theorems.

Proof: It follows from Lemma 3.5.5 that all theorems of GLT` are also theo-
rems of GLT . For the other direction, note that pT1q is just MnA Ñ �A with
n “ 1. For pT4q, we have MnMA Ñ �A by the axiom schema of GLT`, and thus
�MAÑ �A by using (3.3). Similarly, for pT3q it suffices to show that for n ą 0,
MnA Ñ �MA. This can be done by induction on n, using pT1q and pT4q. The
argument for pT2q is similar. �

3.6 Decidability

The material in this section is a careful exposition of the results in [Lin06], which
in turn are based on the method used in [Bek94].

In order to establish decidability of GLT, we introduce yet another class of
Kripke models. We write SpAq for the set of subformulas of A, and use y Q z as
abbreviation for: y Q z or y “ z.
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3.6.1. Definition. AnA-sound model is a quadruple xW,Q,R,,y, where xW,Qy
is a transitive irreflexive finite tree, RĎQ, QRĎR, RQĎR, and the following
condition holds for all w, a: if w R a, there is a d with w R d Q a such that
d , MB Ñ B for all B P SpAq. A node d as above said to be reflexive. Finally, ,
is a valuation on W satisfying the usual clauses, with Q and R as the accessibility
relations for M and � respectively.

3.6.2. Theorem. Let n =|SpAq|. Then $ A iffM , A for every A-sound model
M, where the cardinality of M can taken to be exponential in n.

Clearly, Theorem 3.6.2 has the following:

3.6.3. Corollary. GLT is decidable. �

The two directions of Theorem 3.6.2 are proven below as lemmas 3.6.4 and 3.6.5.

3.6.4. Lemma. If $ A, then M , A for every A-sound model M.

Proof: Suppose $ A, and letM be an A-sound model. We transformM into a
GLT-model M1 (Definition 3.3.1) in the following way: whenever w R a holds in
M, add to M an infinite sequence panqnăω of nodes and define

i. a0 Q d, where d is a reflexive node witnessing the relation w R a

ii. w R an and an`1 Q an for all n

iii. an , p iff d , p for all p P SpAq and for all n

Close off to guarantee the transitivity of Q, as well as the frame conditions RĎQ,
RQĎR, and QRĎR.

We claim that each of the new nodes panqnăω satisfies exactly the same sub-
formulas of A as d, i.e. that item (iii) extends to all B P SpAq. The boolean
cases are straightforward. If d , OB, then there is some b with d Q b , B. By
transitivity of Q, also an Q b, and so an , OB. If d , M B, then, since d is
reflexive, also d ,  B, whence by induction assumption an ,  B for all i. It is
clear from the construction that each an has no Q-successors apart from aj with
j ă n, and c with d Q c, and so it follows that an , M B. If d , 3B, let b be
such that d R b , B. Since QRĎR and an Q d, also an R b, and thus an , 3B.
It is clear from the construction that the only R-successors of each an are those
of d, and so d , � B also implies an , � B for all n. Using the above, it is
clear that for all B P SpAq,

M1
, B ôM , B. (3.4)

Finally, we check that for all w R a, there is a sequence panqnăω with an`1 Q an
and w R an for all n. By construction, this is clearly the case when w R a holds
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already in M. In the remaining cases where w R a results from closing off un-
der the frame conditions RQĎR and QRĎR, we can reuse the infinite sequence
panqnPω guaranteed to exist for the old R–transition. Thus M1 is a GLT-model.
By Theorem 3.3.3 we now have M1 , A, and therefore M , A by (3.4). �

3.6.5. Lemma. If & A, then M . A for some A-sound model M. The cardi-
nality of M can taken to be exponential in n, where n “ |SpAq|.

Proof: Let & A, and let x0 be maximal GLT–consistent with A R x0. We
construct an A-sound model M based on an adequate frame (Definition 3.4.2),
where a truth lemma holds with respect to all subformulas of A. The construction
proceeds exactly as in Section 3.4, except when it comes to the elimination of
problems of the form  �C. Whenever  �C is a problem in x, we add y0, . . . , ym
such that  C P y0, w R yn, yn`1 Q yn for all n ď m, and ym , MB Ñ B for all
B P SpAq. To see that y0, . . . ym with suitable properties exist, we note that

i. By Lemma 3.4.10 there are for every k, y0, . . . yk with  C P y0, and such
that for all n ď k, w ă� yn and yn`1 ăM yn. Thus we can define w R yn and
yn`1 Q yn without affecting the adequacy of the frame.

ii. Let n “ |SpAq|. Whenever we have y0, . . . yn, with yi`1 ăM yi for all i ă n,
one of them must contain MB Ñ B for all B P SpAq. This is because for
any B P SpAq, there exists at most one yi that does not contain MB Ñ B.
Then suppose (w.l.o.g.) that j ą i, MB Ñ B R yj and MB Ñ B R yi. Thus
yj , MB and yi . B. By transitivity of ăM, we have yj ăM yi, and so
MB P yj implies B P yi, a contradiction. By the pigeonhole principle, there
is thus some yk among y0, . . . yn such that yk , MB Ñ B for all B P SpAq.

Having added y0, . . . , ym as above, we close off to ensure that Q is transitive, and
that we have RĎQ, RQĎR, and QRĎR. Proceed with the construction until we
obtain a model M containing no problems. Reasoning as in Lemma 3.4.14, we
see that the construction must terminate after a finite number of steps. It is then
clear thatM is finite and satisfies transitivity of Q, RĎQ, RQĎR, and QRĎR. It
remains to check that every R-transition is witnessed by an appropriate reflexive
node. We need to check the cases where the R–relation was created to guarantee
that RQĎR or QRĎR. In both cases, we can reuse the reflexive node guaranteed
to exist for the old R-relation.

ThusM is an adequate A-sound model containing no problems. Using Lemma
3.4.6, we obtain M, x0 . A as required.

As for the cardinality ofM, note that elimination of a problem adds at most
n`1 nodes to the model. It is clear from properties of the added sets that once a
problem has been eliminated in a, it will not occur in any successor of a. Thus the
resulting model is, at most, an n ¨ pn` 1q-ary tree of height n, thus its cardinality
is at most pn2 ` nqn`1. �
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3.7 The closed fragment

In this section we study the closed fragment of GLT. An L�M-formula is said to
be closed if it is built up from J using boolean connectives, M and �; in other
words if it does not contain propositional letters.

For an ordinal α ă ω2, i.e. α “ ω ¨ n `m for some n,m P ω, we write Kα for
the L�M–formula Mm�nK; Kω

2
is defined to be J. An L�M-formula is in normal

form if it is a boolean combination of sentences of the form Kα, where α ď ω2.
We prove the following:

3.7.1. Theorem. Every closed formula is provably equivalent in GLT to a for-
mula in normal form.

We give two proofs of Theorem 3.7.1, relying on syntactical and semantical meth-
ods respectively. As a result, we obtain completeness of the closed fragment with
respect to a rather wide class of arithmetical interpretations.

The closed fragment of GLT coincides with the closed fragment of CMS1; see
[Vis93, Section 9].

3.7.1 Normal form theorem

The sequence pKαqαďω2 is linearly ordered with respect to provability in GLT:

3.7.2. Lemma. α ď β ď ω2 ô $ Kα Ñ Kβ.

Proof: For the direction from left to right, let α ď β with α “ ω ¨ n ` m and
β “ ω ¨ n1`m1. In case n “ n1 and m ď m1, it follows from transitivity of M that
$ Mm�nK Ñ Mm

1

�nK. So assume n ă n1. If m ď m1, it follows from transitivity
of M and � that $ Mm�nK Ñ Mm

1

�n
1

K. It remains to check the case that n ă n1

and m ą m1:

$ Mm�nK Ñ �Mm�nK Lemma 3.1.3 (i)

Ñ ��nK axiom pT4q

Ñ �n
1

K transitivity of �

Ñ Mm
1

�n
1

K axiom pT2q

We prove the other direction by contraposition. Let β ă α, and suppose that
$ Kα Ñ Kβ. By what was shown above, we have that $ Kβ`1 Ñ Kα. Combining
the two, we thus have $ Kβ`1 Ñ Kβ, and so $ Kβ by Löb’s principle for M.
But this contradicts Theorem 3.5.2 — it is easy to construct a Lindström-model
where  Kβ is true at a node. �

Here is our first proof of Theorem 3.7.1:
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Proof: We proceed by induction on the complexity of a closed formula. The
base case and the boolean cases are straightforward. In order to consider MA and
�A, assume that $ A Ø C, where C is a formula in normal form. We write C
in conjunctive normal form as C0 ^ . . .^ Ck, where each Ci has the form

K
α0 _ . . ._ Kαm _ Kβ0 _ . . ._ Kβn .

By Lemma 3.7.2, $ Kα _ Kβ Ø Kmaxtα,βu, and $ Kα ^ Kβ Ø Kmintα,βu. Letting
α “ maxtα0, . . . , αmu, and β “ mintβ0, . . . , βmu, it follows that Ci is provably
equivalent in GLT to Kβ Ñ Kα, i.e. to

K
α
_ K

β. (3.5)

For MA, our goal is to find a formula C 1 in normal form, with $ MC Ø C 1, whence
also $ MAØ C 1. Note that we have

$ MC Ø MpC0 ^ . . .^ Ckq Ø MC0 ^ . . .^ MCk.

Thus it suffices to find for each i ď k a formula C 1i in normal form with

$ MCi Ø C 1i,

as we can then take C 10 ^ . . . C 1k for C 1. Using (3.5), it remains to show that
MpKβ Ñ Kαq is equivalent to a formula in normal form. If β ď α, we have that
$ Kβ Ñ Kα, and so in this case

$ MpKβ Ñ K
α
q Ø MJ Ø K

ω2

.

Assume now that β ą α. Then β ě α`1, and so by Lemma 3.7.2, $ Kα`1 Ñ Kβ.
Using this and Löb’s axiom for M (recall that Mα`1K “ MKα), we see that

$ MpKβ Ñ K
α
q Ñ MpKα`1

Ñ K
α
q

Ñ MKα

Ñ MpKβ Ñ K
α
q

Thus in this case $ MpKβ Ñ Kαq Ø Kα`1.

It remains to consider �A. As above, it suffices to show that �pKβ Ñ Kαq is
equivalent to a formula in normal form. If β ď α, then as before,

$ �pKβ Ñ K
α
q Ø �J Ø K

ω2

.

So suppose β ą α. Then β ě α ` 1, and so by Lemma 3.7.2, $ Kα`1 Ñ Kβ. We
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reason as follows:

$ �pKβ Ñ K
α
q Ñ �pKα`1

Ñ K
α
q

Ñ �Kα Lemma 3.1.3(iv)

Ñ �Mm�nK rewrite, assuming α “ ω ¨ n`m

Ñ �n`1
K axiom pT4q

Ñ �Mm�nK axiom pT3q

Ñ �Kα rewrite: α “ ω ¨ n`m

Ñ �pKβ Ñ K
α
q

Thus in this case $ �pKβ Ñ Kαq Ø Kλ, where λ is the smallest limit ordinal
bigger than α: if α “ ω ¨ n`m, then λ “ ω ¨ pn` 1q. �

3.7.2 Universal model

Consider the frame U “ xW,ăy, where W is the set of ordinals ď ω2, and ă

the converse of the usual ordering on ordinals. The relation ă is transitive and
converse well–founded, and so U is a Lindström-frame (Definition 3.5.1). Since
the truth of closed formulas is invariant under valuations, U can be viewed as a
Lindström-model for the set of closed formulas. In this section, we show that U
is in fact a universal model : any unprovable closed formula can be refuted on U .

3.7.3. Definition. For a closed formula A, define the set JAK Ď ω2 (the exten-
sion of A in U) as follows:

JJK “ ω2

J AK “ ω2
´ JAK

JA^BK “ JAKX JBK
JOAK “ tβ | Dα β ă α and α P JAKu
J3AK “ tβ | Dα β ăω α and α P JAKu

Recall from Section 3.5 that β ăω α means that the order type of the set
tγ | β ă γ ă αu is at least ω˚. The following lemma states that the extension
of a closed formula in U has always a certain simple form, namely it is a finite
union of disjoint intervals.

3.7.4. Lemma. If A is closed, then JAK “
Ť

iPI rαi, βiq, where αi, βi ď ω2, and

i. I is finite

ii. rαi, βiq X rαj, βjq “ ∅ if i ‰ j.
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Proof: By induction on the complexity of a closed formula. For the base case, it
suffices to note that JJK “ r0, ω2q. For the boolean cases, we note that intervals of
the form

Ť

iPI rαi, βiq are closed under complements and intersections. We argue
by induction on the number k of elements in I. It is easy to check that

ω2
z rα, α1q “ r0, αq Y

“

α1, ω2
˘

rα, α1q X rβ, β1q “ rmaxtα, βu,mintα1, β1uq

The case where k ą 0 follows by using the above, and noting that:
ď

iPI

rαi, βiq X
ď

iPI

rγi, δiq “
ď

iPI

prαi, βiq X rγi, δiqq

ω2
z
ď

iPI

rαi, βiq “
č

iPI

`

ω2
z rαi, βiq

˘

Finally, writing λąminJAK for the smallest limit ordinal greater than minJAK:

JOAK “
“

minJAK` 1, ω2
˘

J3AK “
“

λąminJAK, ω
2
˘

. �

For a world a in a Lindström-model, we define dpaq, the depth of a, as the
ordinal α ă ω2 such that the longest ă-path starting from a has length α. Note
that dpαq “ α for all α P U . The following lemma states that whether a closed
formula is satisfied at a node a in a Lindström-model depends solely on dpaq.

3.7.5. Lemma. Let M be a Lindström-model, and B a closed formula. Then we
have M, a , B ô dpaq P JBK.

Proof: By induction on the complexity of B. If B is J, then both sides are true
for all a, as JJK “ ω2. The boolean cases follow directly from the definitions.
Suppose now that the claim holds for A, and that M, a , OA. Then there is
some b with a ă b andM, b , A. By the induction assumption, dpbq P JAK. Since
a ă b, we have that dpaq ą dpbq. Thus in U , we have that dpaq ă dpbq and so
dpaq P JOAK by definition. If on the other hand dpaq P JOAK, then there is some
β such that dpaq ă β in U , and such that β P JAK. Now let b be a node with
dpbq “ β and a ă b (such a node must exist because dpaq ą β). The induction
assumption now gives us M, b , A, and thus M, a , OA as required. The case
of 3A is completely analogous. �

3.7.6. Lemma. $ B ô JBK “ ω2

Proof: If $ B, then U , B follows by soundness of GLT with respect to Lind-
ström-frames (Theorem 3.5.2). For the other direction, suppose that B is a closed
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formula and & B. By Theorem 3.5.2, there is a Lindström-modelM and a world
a PM such that M, a . B. By Lemma 3.7.5, we find that dpaq R JBK, whence
JBK ‰ ω2 as required. �

3.7.7. Lemma. For every α, β ă ω2,

JKαK “ r0, αq (3.6)

J KαK “ rα, ω2
q (3.7)

J Kα ^ KβK “ rα, βq (3.8)

Proof: We first show that JKαK “ tβ | β ă αu. Note first that JK0K “ JKK “ ∅.
If α “ α1 ` 1 for some α1, we have

JKα
1`1K “ JMKα

1

K “ tγ | @δ γ ă δ δ P JKα
1

Ku
“ tγ | @δ γ ă δ δ P tβ | β ă α1uu i.a.

“ tγ | @δ γ ă δ α1 ă δu

“ tγ | γ ă α1 ` 1u

Finally, if α is a limit ordinal λ ă ω2, then it has the form form w ¨ pn ` 1q for
some n. We reason as follows:

JKλK “ J�n`1
KK “ tγ | @δ γ ăω δ δ P J�nKKu
“ tγ | @δ γ ăω δ δ P tβ | β ă ω ¨ nuu i.a.

“ tγ | @δ γ ăω δ δ ă ω ¨ nu

“ tγ | γ ă ω ¨ pn` 1qu

“ tγ | γ ă λu

Thus (3.6) and (3.7) hold. For (3.8), note that

rα, βq “ r0, βq X rα, ω2
q “ JKβKX J KαK “ JKβ ^ KαK. �

3.7.8. Lemma. Let A be closed. If & A, then $ pKα`1 ^ Kαq Ñ  A for some
α ă ω2.

Proof: Let A be a closed with & A. By Lemma 3.7.6, JAK ‰ ω2, thus there is
some α ă ω2 such that α R JAK. We show that pKα`1 ^ Kαq Ñ  A is valid
on the class of Lindström-frames, whence the desired result follows by Theorem
3.5.2. Let M be a Lindström-model with M, a , Kα`1 ^  Kα. Using Lemmas
3.7.5, 3.7.7, we see that dpaq P JKα`1 ^  KαK “ rα, α ` 1q, whence dpaq “ α.
Since α R JAK, we now obtain a . A by Lemma 3.7.5. �
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We conclude with another proof of Theorem 3.7.1:

Proof: Let A be a closed formula. By Lemma 3.7.4, we have JAK “
Ť

iPI rαn, βnq
for some finite set I. Let C :“

Ž

iPI

`

Kαn ^ Kβn
˘

, and note that C is in normal
form. Using Lemma 3.7.7, it is clear that JAK “ JCK. Using Definition 3.7.3, it is
easy to check that then JAØ CK “ ω2, whence $ AØ C by Lemma 3.7.12. �

3.7.3 Arithmetical completeness

We show that the closed fragment of GLT is arithmetically complete with respect
to a wide class of pairs of provability predicates. For the rest of this section, let
us fix arithmetical formulas M and �. As the notation suggests, we are interested
in arithmetical realisations mapping the modalities M and � to the arithmetical
formulas M and �, respectively. We only consider arithmetical realisations for
the closed fragment. Since arithmetical realisations (Definition 2.3.1) are distin-
guished only by the values they assign to propositional constants, it is clear that
there is exactly one such realisation ˚.

For the proof of arithmetical completeness, we only need to assume that for
every closed formula A:

1. If $ A, then PA $ MA˚

2. If A is an axiom of GLT, then PA $ A˚

3. If N ( �A˚, then PA $ A˚.

Since PA & K, and GLT $ MAÑ �A, it follows from (2) and (3) that for α ă ω2,

N ( pK
α
q
˚
Ø K. (3.9)

3.7.9. Remark. The arithmetical realisations considered here include the fast
and slow realisations of Chapter 4, as well some of the supremum adapter reali-
sations of Chapter 5.

3.7.10. Lemma. For any closed formula A, if GLT $ A, then PA $ A˚.

Proof: Immediate from requirements (1) and (2). �

We show first that the truth of arithmetical sentences that are translations of
closed formulas is decidable.

3.7.11. Theorem. The set S :“ tϕ | N ( ϕ, and ϕ is A˚ for some closed Au
is decidable.
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Proof: Let ϕ be an arithmetical sentence, and suppose that ϕ is A˚, where A
is some closed formula. By Theorem 3.7.1 and Lemma 3.7.10, there is a sen-
tence C in normal form, for which we have PA $ ϕ Ø C˚. In order to find out
whether ϕ P S, it therefore suffices to check whether N ( C˚. Denote by D
the result of erasing all occurrences of � and M in C, thus D is a boolean com-
bination of K’s. By (3.9), it is clear that N ( C˚ if and only if D is a tautology. �

3.7.12. Theorem. For any closed formula A, if PA $ A˚, then $ A.

Proof: We prove the claim by contraposition. Let A be closed with & A. By
Lemma 3.7.8, there is some α ă ω2 with $ pKα`1 ^ Kαq Ñ  A. By Lemma
3.7.10, we thus have PA $ pKα`1 ^ Kαq

˚
Ñ  A˚. Given this, PA $ A˚ would

imply PA $ pKα`1 Ñ Kαq˚. Requirements (1) and (2) imply that Löb’s rule for
M is admissible in PA. Applying the latter to PA $ pKα`1 Ñ Kαq˚, we obtain
PA $ pKαq˚. Since PA is sound, this contradicts (3.9). �





Chapter 4

Fast and slow provability

The provability concepts studied in this chapter differ from the ordinary one in
terms of speed. Section 4.1 is about Parikh provability, which can be seen as an
accelerated version of PA-provability. It was shown by Lindström that the joint
provability logic of ordinary and Parikh provability is GLT. Section 4.2 studies
the notion of slow provability introduced by Friedman, Rathjen, and Weiermann.
In Section 4.3, we show that GLT is also the joint provability logic of slow and
ordinary provability. Our proof of arithmetical completeness works for a wide
class of pairs of provability predicates, including ordinary and Parikh provability.

4.1 Parikh provability

PA˚ is the system obtained by adding to PA the following inference rule, known
as Parikh’s rule:

�ϕ

ϕ
,

where � is the usual provability predicate of PA, and ϕ an arithmetical sentence.
The system PA˚ was first studied by Parikh ([Par71]). Parikh’s rule is admissible
in PA: if PA $ �ϕ, then by soundness N ( �ϕ. But this means that there exists
a PA-proof of ϕ, i.e. PA $ ϕ. Hence it is clear that PA˚ has exactly the same
theorems as PA.

The above reasoning makes use of soundness and can therefore — as a con-
sequence of Löb’s Theorem — not be formalised in PA. Indeed, the equivalence
of PA and PA˚ cannot be established within PA. In particular, PA considers it
possible that it itself is consistent while PA˚ is inconsistent (Corollary 4.1.5).

While PA and PA˚ have exactly the same theorems, some theorems have much
shorter proofs in PA˚ than in PA — we say that PA˚ has speed-up over PA:

4.1.1. Theorem. ([Par71, Theorem 1.3]) Let g be provably recursive in PA. For
all i ě 1, there exists some n and a formula ϕ such that there is a PA–proof of
�iϕ of length n, but for no j ă i is there a proof of �jϕ of length ď gpnq. �

59
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PA’s lack of knowledge concerning the equivalence of PA and PA˚ can thus be ex-
plained by the observation that the function converting PA˚-proofs into ordinary
proofs grows faster than any provably recursive function of PA.

4.1.1 Modal principles for Parikh provability

We denote by Mp a natural formalisation of PA˚-provability; as usual Opϕ is
written as shorthand for  Mp ϕ. Obtained by adding to PA a single sound
inference rule, the theory PA˚ satisfies the criteria of being a reasonable theory,
given in Section 2.3. In particular, the formula Mp is Σ1, and we have

1. PA˚ $ ϕ ô I∆0`exp $ Mpϕ

2. I∆0`exp $ @ϕ pMppϕÑ ψq Ñ pMpϕÑ Mpψqq

3. I∆0`exp $ @ϕ p�0ϕÑ Mpϕq

Since PA˚ is reasonable, it follows from Theorem 2.3.2 that GL is the provability
logic of Mp.

Let us now look at how Mp interacts with the ordinary provability predicate
�. While it is not known to PA that any Parikh proof can be converted into an
ordinary proof, it is known — in fact even to I∆0`exp — that Parikh proofs can
be converted into finite iterations of ordinary proofs. The following lemma was
originally proven by Lindström ([Lin06, Lemma 1]), with PA in place of I∆0`exp.

4.1.2. Lemma. I∆0`exp $ @ϕ pMpϕØ �
ωϕq

Proof: Reason in I∆0`exp, fixing some ϕ. Assume first �ωϕ i.e. Dx��xϕ, and
suppose that p is a PA-proof of �xϕ. Letting p1 be the sequence resulting from p
by appending x applications of Parikh’s rule, it is clear that p1 witnesses Mpϕ.

For the other direction, suppose that xψ0, . . . , ψky is a Parikh proof of ϕ. Thus
each ψi is either an axiom of PA, or obtained from the previous formulas in the
sequence by either an application of modus ponens or of the Parikh rule. We
show by using reflexive induction1 that for all i ď k, �2i`1ψi. Fix i, and assume:

@j ă i�0�
2j`1ψj (4.1)

Consider ψi, and use reasoning granted by Lemma 2.4.6. If ψi is an axiom, it is
clear that �ψi, whence also �2i`1ψi. If ψi is obtained by modus ponens, then
by (4.1) we have �0�

2j`1ψj and �0�
2j1`1pψj Ñ ψiq for some j, j1 ă i. As-

suming w.l.o.g. j1 ă j, we also have �0�
2j`1pψj Ñ ψiq. Thus �2j`2ψj and

�2j`2pψj Ñ ψiq, whence also �2j`2ψi and finally, since j ă i, �2i`iψi. If ψi is

1Arguing in IΣ1, it is easy to show that for all i, �iψi. That this can be verified in I∆0`exp
is less obvious. We thank F. Pakhomov for the neat idea of replacing i with 2i ` 1, thus still
allowing us to prove the claim by means of a simple reflexive induction.
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obtained by Parikh’s rule, then by (4.1) there is some j ă i with �0�
2j`1�ψi. It

follows that �2j`3ψi. Since j ă i, we have 2j ` 3 ď 2i ` 1, and so �2i`1ψi as
required. �

We consider arithmetical realisations mapping the modalities M and � to the
provability predicates � and Mp, respectively; let us call such realisations fast
realisations. Lindström ([Lin06]) showed that GLT is arithmetically sound and
complete with respect to fast realisations, i.e. that GLT is the joint provability
logic of � and Mp. Since GL is the provability logic of both � and Mp, arithmetical
soundness of GLT with respect to fast realisations is an immediate consequence
of the following:

4.1.3. Lemma. i. I∆0`exp $ @ϕ p�ϕÑ Mpϕq

ii. I∆0`exp $ @ϕ pMpϕÑ �Mpϕq

iii. I∆0`exp $ @ϕ pMpϕÑ Mp�ϕq

iv. I∆0`exp $ @ϕ pMp�ϕÑ Mpϕq

v. I∆0`exp $ @ϕ pDxMp�
xϕÑ Mpϕq

Proof: (i) and (ii) are immediate from the definition of Mp, together with prov-
able Σ1-completeness of �. Clauses (iii) and (iv) follow from Lemma 4.1.2, since
we have I∆0`exp $ �

ωϕ Ø �ω�ϕ by Lemma 2.4.8. Clause (v) follows from (i)
together with the right to left direction of Lemma 4.1.2, �

Using Lemma 4.1.3, it is clear that fast realisations satisfy the conditions of
Theorem 3.7.12; thus we obtain:

4.1.4. Proposition. The closed fragment of GLT is arithmetically complete with
respect to fast realisations.

4.1.5. Corollary. OpJ �
‰
3J.

Proof: Since GLT & �K Ñ MK by Lemma 3.3.4, we have PA & MpK Ñ �K by
Proposition 4.1.4, i.e. PA & 3J Ñ OpJ. Since OpJ is Π1, 3J 6� OpJ follows by
Theorem 2.1.12. �

4.1.6. Remark. ([Bek03, Appendix B]) Consider the system

PAω :“ PA` t3n
J | n P ωu.

It is clear that, verifiably in I∆0`exp, the consistency of PAω is equivalent to
@x33xJ, i.e. to 3ωJ. By Lemma 4.1.2, the latter is provably equivalent in
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I∆0`exp to OpJ, i.e. to the consistency of PA˚. Thus PA˚ and PAω have the same
consistency strength, relative to I∆0`exp.

It is shown in [Bek05, Corollary 2.34] that PAω is, verifiably in I∆0`exp,
mutually interpretable with the following theory

PA` RfnpPAq :“ PA` t�ϕÑ ϕ | ϕ is an L- sentenceu.

Hence the theories PA˚, PAω, and PA ` RfnpPAq all have the same consistency
strength, relative to I∆0`exp. From the external point of view, on the other
hand, we have that PA˚ is equivalent to PA which does not interpret PAω or
PA` RfnpPAq, by the Second Incompleteness Theorem.

Thus we have here a natural example of intensionality: the theory PA˚, while
extensionally equivalent to PA, has the same consistency strength as the much
stronger theories PAω and PA ` RfnpPAq. Moreover, we have a natural example
separating the notion of relative consistency from that of interpretability. While
the consistency of PA˚ implies (relative to I∆0`exp) the consistency of PAω, PA˚

fails to interpret PAω.

4.2 Slow provability

The notion of slow provability for PA was introduced by Friedman, Rathjen,
and Weiermann ([FRW13]). They showed that the interpretability strength of
the corresponding slow consistency statement lies strictly between J and the
ordinary consistency statement 3J of PA. The slow consistency statement is the
first example of a sentence with this property that is natural: its existence does
not rely on the Fixed Point Lemma.

The definition of slow provability makes use of a certain recursive function Fε0
whose totality is not provable in PA. Consider the following theory:

PAæFε0 :“ tIΣn | Fε0pnqÓu .

Since Fε0 is recursive, it is clear that PAæFε0 is recursively enumerable. Moreover,
since Fε0 is total, it is clear that PAæFε0 and PA have exactly the same theorems.
Arguing in PA, on the other hand, the totality of Fε0 cannot be assumed, and thus
PAæFε0 might seem to be a weaker theory than PA. Indeed, as shown in [FRW13],
PA considers it possible that it itself is inconsistent while PAæFε0 is consistent.

4.2.1 The fast-growing hierarchy

The function Fε0 needed to define slow provability belongs to a certain fast-
growing hiearachy, also known as the extended Grzegorczyk hieararchy. Following
[FRW13], what we mean by this is an ordinal-indexed family of recursive func-
tions tFαuαďε0 . Each of the functions tFωnunăω is provably total in PA. The
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function Fε0 results from diagonalising over the latter, and is not provably total
in PA itself.

The idea of using diagonalisation to construct rapidly growing functions goes
back to de Bois Reymond ([DBR75, p.365ff]). The functions tFαuαăω are closely
related to a family of classes of functions known as the Grzegorczyk hierarchy
([Grz53]). Löb and Wainer ([LW70a], [LW70b]) extended the hierarchy into the
transfinite. The exact version of the fast-growing hierarchy used in [FRW13] was
introduced by Solovay and Ketonen ([KS81]).

The definition of the fast-growing hierarchy is tailored to ensure that for
β ą α, the function Fβ grows substantially faster than Fα. The function F0 is
the successor function, Fn`1 is defined by using iterations of Fn, and Fω by diago-
nalising over tFnunăω:

Fωpnq “ Fn`1pnq.

The functions tFnunăω are primitive recursive, and every primitive recursive func-
tion is majorised by some function in tFnunăω.

The definition of Fn`1 can be straightforwardly adjusted to successor ordinals
beyond ω. In order to generalise the limit case to a countable limit ordinal λ ą ω,
we need to introduce the notion of a fundamental sequence for λ. By this, we
mean a strictly monotone sequence pλrnsqnăω converging to λ from below, i.e.
λrns ă λrn ` 1s ă λ for all n ă ω, and suptλrns | n ă ωu “ λ. We consider the
standard assignment of fundamental sequences to limit ordinals below ε0.

4.2.1. Definition. Let ε0rns :“ ωn`1. For a limit ordinal λ ă ε0 with Cantor
normal form λ “ ωα0 ` ωα1 ` . . .` ωαk , we define λrns as follows:

λrns :“

#

ωα0 ` ωα1 ` . . .` ωpαk´1q ¨ pn` 1q if αk is a successor ordinal

ωα0 ` ωα1 ` . . .` ωαkrns if αk is a limit ordinal

Given a function F : N Ñ N, we use exponential notation to denote repeated
compositions of F, thus F0pnq “ n, and Fk`1pnq “ FpFkpnqq.

4.2.2. Definition. The fast-growing hierarchy tFαuαďε0 of recursive functions
is given by:

F0pnq “ n` 1

Fα`1pnq “ Fn`1
α pnq

Fλpnq “ Fλrnspnq

The results in [KS81], together with those in [Par80], imply the following
classification of the provably recursive functions of PA:

4.2.3. Theorem. For n ą 0, IΣn $ FαÓÓ ô α ă ωn. �



64 Chapter 4. Fast and slow provability

In order to reason about the fast-growing hierarchy in I∆0`exp, we assume
ordinals ă ε0 to be represented in I∆0`exp by their Cantor normal forms. Since
all functions involved in Definitions 4.2.1, 4.2.2 are elementary, it is clear that
these definitions can be carried out in I∆0`exp.

The following essential property of the fast-growing hierarchy was originally
stated in [KS81]; verifiability in I∆0`exp is treated in [FRW13, Lemma 2.3].

4.2.4. Lemma. I∆0`exp $ FαpxqÓ ^ y ă x Ñ FαpyqÓ ^ Fαpxq ě Fαpyq, where
α ranges over ordinals ď ε0. �

The natural way of establishing properties of the functions tFαuαďε0 is by
transfinite induction on ordinals ď ε0. For an ordinal α ď ε0 and n ă ω, we write
TIΠn-α for the following schema:

@β ă α p@ γ ă β ϕpγq Ñ ϕpβqq Ñ @γ ă αϕpγq, (4.2)

where ϕ is a Πn-formula, possibly with additional parameters. Since Πn-truth
is definable in I∆0`exp (Section 2.1.2), we can consider TIΠn-α to be a single
formula.

It follows from Gentzen’s work in [Gen43] that PA proves TIΠn-α for all n and
α ă ε0, and that it does not prove TIΠ0-ε0. For a treatment of the amount of
transfinite induction available in the fragments of PA, see [Som95].

4.2.5. Remark. In order to show, in the presence of TIΠn-α, that all ordinals
less than α have the property expressed by a Πn-formula ϕ, it suffices to show:

@β ă α p@ γ ă β ϕpγq Ñ ϕpβqq .

It is not difficult to see that for every α, it is verifiable in IΣ1 that

@β ă α p@γ ă β FγÓÓ Ñ FβÓÓq .

It follows that whether Fα is provably total in some extension T of IΣ1 depends on
the amount of transfinite induction available in T . Since FαÓÓ is a Π2-sentence,
we have IΣ1 $ TIΠ2-α Ñ FαÓÓ. In fact, the above is verifiable in I∆0`exp:
I∆0`exp $ @α ď ε0�1 pTIΠ2-αÑ FαÓÓq.

4.2.6. Theorem ([Som95, Theorem 4.1]). For 0 ă m ď n and ω ď α ă ε0,

I∆0 ` TIΠn-α $ TIΠm-β ô β ă ωα
ω

n´m. �

An inspection of the proof of Theorem 4.2.6 shows that it can be verified in
I∆0`exp. In particular, noting that for x ě 1, ωx`1 “ ωω

ω

x´1 we have:

4.2.7. Proposition. I∆0`exp $ @x ě 1 @α ă ωx`1�0pTIΠx`1-ω Ñ TIΠ2-αq �
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4.2.8. Remark. For proving the following lemma, it is useful to note that

I∆0`exp $ ωx`1rzs “ ωz`1
x .

To see that, we reason in I∆0`exp. Since ordinals ă ε0 are represented by
elementary formulas, we can use induction on x. For x “ 0, we have by definition:

ω1rzs “ ω1
rzs “ ω0

¨ pz ` 1q “ z ` 1 “ ωz`1
0 .

For x ą 0, we have that ωx`1 “ ωωx , where ωx is a limit ordinal. This means
that ωx`1rzs is defined as ωωxrzs. By the induction assumption, we have that

ωxrzs “ ωz`1
x´1. It follows that ωx`1rzs is equivalent to ωω

z`1
x´1 , i.e. to ωz`1

x .

Clause (i) of the following lemma is a formalisation of the right to left direction
of Theorem 4.2.3 in I∆0`exp.

4.2.9. Lemma. i. I∆0`exp $ @x @α ă ωx`1�x`1FαÓÓ

ii. I∆0`exp $ @x�x`1Fε0pxqÓ .

Proof: Argue in I∆0`exp. (i) Fix x, and let α ă ωx`1. By Remark 4.2.5, it
suffices to show that �x`1TIΠ2-α. If x “ 0, we have that α “ z for some z ă ω.
Note that TIΠn-z is the schema @y ă z p@u ă y ϕpuq Ñ ϕpyqq Ñ @y ă z ϕpyq.
By using that Q $ y ă n Ø y “ 0 _ . . . _ y “ n´ 1, the above is easily
seen to be verifiable in Q, whence clearly also in IΣ1. Assuming that x ě 1,
we obtain �1pTIΠx`1-ω Ñ TIΠ2-αq from Proposition 4.2.7. Note that TIΠx`1-ω
is induction for Πx`1-formulas, and equivalent to induction for Σx`1-formulas
([HP93, Theorem 2.4]). Thus it is clear that �x`1TIΠx`1-ω, and therefore also
�x`1TIΠ2-α.

(ii) Fix an x. By clause (i), �x`1FαÓÓ whenever α ă ωx`1. This implies that
for all y, �x`1Fωy`1

x
pyqÓ. By Remark 4.2.8 and Definition 4.2.2 we have

Fωy`1
x
pyq “ Fωx`1ryspyq “ Fωx`1pyq.

Combining this with the above, we see that for all y, �x`1 Fωx`1pyqÓ. Thus in
particular also �x`1 Fωx`1pxqÓ. Since Fε0pxq “ Fε0rxspxq “ Fωx`1pxq by Definitions
4.2.1, 4.2.2, this finishes the proof. �

Let us recall the system ACA0 of second-order arithmetic. The axioms of
ACA0 include the axioms of Q, the induction axiom (formulated in the second-
order language), as well as the arithmetical comprehension schema:

DX @n pn P X Ø ϕpnqq,

where ϕ is an L-formula (possibly containing free second-order variables). For
more information on ACA0, the reader is referred to [Sim09, Section III.1].



66 Chapter 4. Fast and slow provability

4.2.10. Theorem ([Sim09, Theorem IX.1.5]). ACA0 is a conservative exten-
sion of PA. �

The informal version of the following lemma is [FRW13, Corollary 3.8]; which
in turn follows from [Som95, Theorem 5.25]. Verifiability in ACA0 is treated in
[Fre16, Theorem 2.15].

4.2.11. Lemma. The following is verifiable in ACA0: Let M ( PA be nonstan-
dard, and let a PM be nonstandard. If M ( Fε0pa` 1qÓ, then for every n, there
is a cut Jn of M with Jn ( IΣn`1 and Fε0paq ă Jn ă Fε0pa` 1q. �

4.2.2 Modal principles for slow provability

The slow provability predicate introduced by Friedman, Rathjen, and Weiermann
([FRW13]) is defined as Dx p�xϕ^ Fε0pxqÓq. We study variants of slow provability
obtained by letting

Mxkyϕ :“ Dx p�x`kϕ^ Fε0pxqÓq ,

where k is a standard integer. For k ă 0, x` k is defined to be x .́
|k|, and x .́ k

is defined to be x` |k|, where |k| is the absolute value of k, and x .́ y is defined
as maxt0, x ´ yu. As usual, we write Oxky for the dual of Mxky, i.e. Oxkyϕ is an
abbreviation for  Mxky ϕ. The symbols Ms and its dual Os are used as collective
names for Mxky and Oxky, for k P Z.

Each Ms is a natural provability predicate for some theory

PAæFε0 :“ tIΣn`k | Fε0pnqÓu ,

where k P Z. We claim that each PA æFε0 is a reasonable theory, as defined in
Section 2.3. Since Fε0 is total, it is clear that PAæFε0 has the same theorems as PA,
and is therefore Σ1-sound. By Σ1-completeness, we have I∆0`exp $ Fε0pnqÓ for
every n, whence in particular I∆0`exp $ Fε0p0qÓ. It follows from this, together
with monotonicity of �x, that I∆0`exp $ @ϕ p�0ϕÑ Mpϕq.

It remains to show that PA æFε0 is smooth and recursively enumerable. The
latter is clear, for Fε0 is recursive. For smoothness, we would need to show:

I∆0`exp $ @x ă y Fε0pxqÓ Ñ Db @x ă y Dc ă b c : Fε0pxqÓ, (4.3)

where c : Fε0pxqÓ is written to mean that c is a witness for the Σ1-formula Fε0pxqÓ,
i.e. that c codes a computation of Fε0pxq. Recall that by Lemma 4.2.4,

I∆0`exp $ Fε0pxqÓ ^ y ă x Ñ Fε0pyqÓ ^ Fε0pxq ě Fε0pyq.

Given a natural coding of computations, we can assume that if Fε0pyqÓ ě Fε0pxqÓ
and c : Fε0pyqÓ, then there exists some c1 ď c with c1 : Fε0pxqÓ. In other words,
that greater outputs require greater computations. In order to show (4.3), argue
in I∆0`exp and assume @x ă y Fε0pxqÓ. Given the considerations above, we can
always take for b the witness c with c : Fε0py ´ 1qÓ.

We conclude that PAæFε0 is a reasonable theory, and we have:
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1. PAæFε0$ ϕ ô I∆0`exp $ Msϕ

2. I∆0`exp $ @ϕ pMspϕÑ ψq Ñ pMsϕÑ Msψqq

3. I∆0`exp $ @ϕ p�0ϕÑ Msϕq

In particular, it follows from Theorem 2.3.2 that GL is the provability logic of Ms.
Let us now look at how slow provability interacts with ordinary provability.

The following theorem concerning the joint behaviour of the two is essentially the
same as [FRW13, Theorem 4.1].

4.2.12. Theorem. PA $ @ϕ p�MsϕÑ �ϕ).

Proof: We argue by contraposition and show that PA $ @ϕ p3ϕ Ñ 3Osϕq.
Using Theorem 4.2.10, it suffices to show ACA0 $ @ϕ p3ϕ Ñ 3Osϕq. Fix some
k P Z and argue in ACA0, assuming 3ϕ, where ϕ is some arithmetical sentence.
We shall show 3Oxkyϕ.

Since 3ϕ, i.e. PA together with ϕ is consistent, there is a model M of PA with
M ( ϕ. If M ( Oxkyϕ, we are done. So let us assume M ( Mxky ϕ, i.e.

M ( �a`k ϕ^ Fε0paqÓ

for some a P M. Since M ( ϕ, it follows by essential reflexivity of PA that
a ` k is nonstandard. Given that k is a standard integer, it is clear that a
is nonstandard. Since M ( PA, we can assume that a is the least x with
M ( �x`k ϕ ^ Fε0pxqÓ. By Lemma 4.2.4, M ( Fε0paqÓ Ñ @b ă a Fε0pbqÓ,
thus it must be that M ( 3pa`kq´1ϕ. Applying Lemma 4.2.11, we obtain for
every n an initial segment Jn of M with Jn ( IΣn`1 and Fε0pa´1q ă Jn ă Fε0paq.
Since 3pa`kq´1ϕ is a Π1-sentence and M ( 3pa`kq´1ϕ, we have Jn ( 3pa`kq´1ϕ
for all n. Since Fε0paq R Jn, it is clear that Jn ( Fε0paqÒ. Hence Jn ( Oxkyϕ. We
now have 3nOxkyϕ for all n, i.e. 3Oxkyϕ as required. �

4.2.13. Corollary. PA $ @ϕ pDx�MxsϕÑ �ϕ).

Proof: Reason in PA. Fix some ϕ and argue by induction on x. For x “ 0 the
claim is trivial. For the inductive step, note that

�Mx`1
s ϕÑ �MsM

x
sϕÑ �M

x
s Ñ �ϕ,

where the second implication is by Theorem 4.2.12. �

We consider arithmetical realisations mapping the modalities M and � of GLT
to Ms and � respectively; let us call such realisations slow realisations. Since Ms

and � both obey the rules and axioms of GL, arithmetical soundness of GLT with
respect to slow realisations is an immediate consequence of the following:
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4.2.14. Lemma. i. I∆0`exp $ @ϕ pMsϕÑ �ϕq

ii. I∆0`exp $ @ϕ p�ϕÑ Ms�ϕq

iii. I∆0`exp $ @ϕ p�ϕÑ �Msϕq

iv. PA $ @ϕ p�MsϕÑ �ϕq

Proof: Clause (i) is immediate from the definition of Ms, while (ii) follows by
provable Σ1-completeness of �0, since I∆0`exp $ @ϕ p�0ϕ Ñ Msϕq. (iv) is
Theorem 4.2.12. For (iii), fix k P Z and argue in I∆0`exp, supposing �xϕ for
some ϕ. Suppose first that k ď x, and note that then x .́ k “ x´ k. We have:

�xϕÑ �0�xϕÑ �px´kq`1p�xϕ^ Fε0px´ kqÓq Ñ �z`1p�z`kϕ^ Fε0pzqÓq,

where the first implication is by Σ1-completeness of �0, the second by Lemma
4.2.9(ii), and the third by renaming x´k to z. Thus we have �Mxkyϕ as required.
It remains to consider the case k ą x. We reason as follows:

�xϕÑ �0�xϕÑ �x`1p�xϕ^ Fε0pxqÓq Ñ �x`1p�x`kϕ^ Fε0pxqÓq,

where the second implication is by Lemma 4.2.9(ii), and the third by monotonic-
ity. �

Given Lemma 4.2.14, it is clear that slow realisations satisfy the conditions of
Theorem 3.7.12; thus we have:

4.2.15. Theorem. The closed fragment of GLT is arithmetically complete with
respect to slow realisations.

4.2.16. Corollary. 3J �
‰
OsJ �

‰
J.

Proof: By Lemma 4.2.14(i), PA $ 3J Ñ OsJ, whence clearly 3J � OsJ � J.
It remains to show J 6� OsJ and OsJ 6� 3J. Since 3J and OsJ are Π1, by
Theorem 2.1.12 it suffices to show that PA & OsJ Ñ 3J and PA & OsJ. This
follows by Theorem 4.2.15, for we have GLT & OJ Ñ 3J and GLT & OJ by
Lemma 3.3.4. �

Transfinite iterations

We conclude with some observations concerning the behaviour of transfinite iter-
ations of slow provability. The following lemma is an immediate consequence of
Lemma 4.2.14(i) and Corollary 4.2.13:

4.2.17. Lemma. PA $ @ϕ pMωsϕÑ �ϕq �
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The following proposition is an analogue of Lemma 4.1.2. While it follows
from Proposition 4.2.16 that ordinary proofs cannot always be converted into
Mxky-proofs, for k ě 2 they can be converted into finite iterations of Mxky-proofs.

4.2.18. Proposition. For k ě 2, PA $ @ϕ p�ϕØ Mω
xkyϕq.

Proof: Let k ě 2. The direction from right to left is Lemma 4.2.17. For the
other direction, we argue in PA and show by induction on x:

@ϕ p�x`pk´1qϕÑ MxkyM
x
xkyϕq

By Σ1-completeness and monotonicity, we have @ϕ p�mϕ Ñ Mxkyϕq for all stan-
dard m. Using this, we have the claim for x “ 0. For the inductive step, assume
@ψ p�x`pk´1qψ Ñ MxkyMxxkyψq. Fix some ϕ with �x`kϕ, and reason as follows:

�x`kϕÑ �px`kq´1p�x`kϕ^ Fε0pxqÓq Ñ �px`kq´1MxkyϕÑ MxkyM
x
xkyMxkyϕ

where the first implication follows by monotonicity and Lemma 4.2.9(ii), noting
that k ě 2 implies px ` kq ´ 1 ą x. The last implication is by the induction
assumption. Thus we have MxkyM

x`1
xky ϕ as required. �

As was shown independently by Pakhomov and Freund, transfinite iterations
of Mx1y behave rather differently:

4.2.19. Theorem ([HP16, Theorem 10], [Fre16, Section 3]).

PA $ @ϕ p�ϕØ Mε0
x1y ϕq. �

It is shown in [HP16, Theorem 11] that the above holds for any Mxky with
k ď 1. Notwithstanding the contrast between Proposition 4.2.18 and Theorem
4.2.19, the provability predicates Mxky nevertheless share the same joint provability
logic with ordinary provability, as will be shown in the next section.

We conclude this section by mentioning yet another slow provability predicate.
Given a recursive function f, write Mfϕ for the provability predicate defined as
Dx p�xϕ^ fpxqÓq.

4.2.20. Theorem ([HP16, Theorem 12]). There is a recursive function r with

PA $ �ϕØ MrMrϕ. �

The slow provability predicates Mr, Mxky for k ě 2, and Mxuy for u ď 1, may thus be
seen as the square root, ω-root, and ε0-root of ordinary provability, respectively.

4.2.21. Question. Do other roots of ordinary provability exist?
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4.3 Arithmetical completeness

We prove completeness of GLT with respect to a wide class of arithmetical reali-
sations, including fast and slow realisations.

4.3.1. Definition. Let T be a Σ1-sound extension of I∆0`exp, and let M and
� be Σ1-formulas. An arithmetical realisation mapping the modalities M and �
to the formulas M and � is a a GLT-realisation if the latter satisfy the following
conditions:

1. I∆0`exp $ �ϕ ñ T $ ϕ ñ I∆0`exp $ Mϕ

2. I∆0`exp $ @ϕ p�0ϕÑ Mϕq

3. I∆0`exp verifies the axioms of GL for both M and �.

4. I∆0`exp verifies axioms pT1q, pT2q, and pT3q of GLT for M and �.

5. T $ Dx�MxϕÑ �ϕ

Condition (5) implies that T verifies axiom pT4q of GLT. It is thus clear that GLT
is arithmetically sound with respect to GLT-realisations. We prove the converse:

4.3.2. Theorem. If T $ A˚ for all GLT-realisations ˚, then GLT $ A.

4.3.3. Remark. From Lemma 4.1.3, it follows that fast realisations are GLT-
realisations. Using Lemma 4.2.14 and Corollary 4.2.13, we see that slow realisa-
tions are GLT-realisations. In both cases, we take PA for the theory T .

4.3.4. Question. Consider arithmetical realisations mapping the modalities M
and � to the provability predicates Ms and Mp respectively. Are these realisations
GLT-realisations? It is easy to see that such realisations satisfy (1)-(4) of Defini-
tion 4.3.1. Do they also satisfy condition (5)? Note that this would follow if the
schema MpMsϕÑ Mpϕ would be verifiable in PA.

Our proof of Theorem 4.3.2 uses the method of Theorem 2.3.2: we show that
any Kripke model for GLT can be suitably embedded into T .

4.3.1 A Solovay function

Recall (Definition 3.6.1) the notion of an A-sound GLT-model. For the remainder
of this section, fix some A-sound modelM “ xW,ă,ăR,,y. We assume thatM
has a root, i.e. that there is a node 0 P W such that 0 ă a for every 0 ‰ a P W .
As usual, a ĺ b is written as shorthand for a ă b_ a “ b; similarly for ĺR.

We write x : �ϕ to mean that x witnesses the Σ1-sentence �ϕ — intuitively,
that x is the code of a �-proof —, and similarly for M. We assume that ev-
ery number witnesses the proof of a unique sentence — if any — , noting that
this requirement can be satisfied for any reasonable arithmetisation of syntax in
I∆0`exp.
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4.3.5. Definition. (I∆0`exp) The function h : ω Ñ W is defined by:

hp0q “ 0

hpx` 1q “

$

’

&

’

%

b if hpxq ăR b, b is reflexive, and x : �L ‰ b, else:

c if hpxq ă c and x : ML ‰ c

hpxq otherwise

The formula L ‰ b (see (4.4) below) depends on the formula χ representing h in
I∆0`exp. The self-reference in the definition of h is handled by the Fixed Point
Lemma. We note that the definition of h only relies on the gödelnumber of L ‰ b,
and the latter can be obtained from b and xχy by a function that is provably total
in I∆0`exp.

It follows from Theorem 2.1.4 — for example, by using that W is finite — that
h is elementary and hence provably total in I∆0`exp, with its defining equations
also provable in I∆0`exp. For a P W , we write L “ a for the formula

Dxhpxq “ a^ @xhpxq ĺ a. (4.4)

Using Theorem 2.1.1, we see that L “ a is provably equivalent in I∆0`exp to a
∆0pΣ1q-formula. The formula L “ a states that a is the ĺ-largest element in the
range of h. In view of the following lemma, we can think of L “ a as saying that
a is the limit of h.

4.3.6. Lemma. i. I∆0`exp $ y ă xÑ hpyq ĺ hpxq

ii. I∆0`exp $ D!wL “ w

Proof: (i) is proven by internal induction on x, using that h is elementary. Since
a ăR b implies a ă b, it is clear from the definition of h that hpyq ĺ hpy ` 1q.
The inductive step thus follows from the transitivity of ĺ.

(ii) Since ĺ is antisymmetric, uniqueness is immediate from the definition of
L. For existence, we prove by external induction on the converse of ă that for all
a P W , I∆0`exp $ hpxq “ aÑ DwL “ w. This suffices, because I∆0`exp proves
that hp0q “ 0. By clause (i), we have

I∆0`exp $ hpxq “ aÑ @y ě xhpyq “ a_ Dy ą x a ă hpyq (4.5)

Argue in I∆0`exp, assuming hpxq “ a. If the first disjunct in (4.5) holds, we
have, by using clause (i), L “ a. And if the second disjunct holds, then DwL “ w
follows by the induction assumption. �

4.3.7. Lemma. I∆0`exp $ L “ a^ a ă bÑ OL “ b.
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Proof: Argue in I∆0`exp, assuming L “ a and a ă b. From the definition of
L, we have that for all y, hpyq ĺ a, whence hpyq ă b by transitivity of ĺ. Thus
x : ML ‰ b would imply, by definition of h, that hpx ` 1q “ b. Since a ă b, this
contradicts that hpyq ĺ a for all y. �

4.3.8. Lemma. I∆0`exp $ L “ a^ a ăR bÑ 3L “ b

Proof: Suppose that a ăR b. By properties of A-sound models, there exists some
reflexive c with a ăR c and c ĺ b. Arguing as in the proof of Lemma 4.3.7, and
using that a ăR c implies a ă c, we have I∆0`exp $ L “ aÑ 3L “ c. If c “ b,
we are done. If c ă b, then I∆0`exp $ L “ cÑ OL “ b by Lemma 4.3.7, whence

I∆0`exp $ 3L “ cÑ 3OL “ b

by using the axioms and rules of GL for �. Combining the above, we obtain
I∆0`exp $ L “ aÑ 3OL “ b, and so I∆0`exp $ L “ aÑ 3L “ b by pT3q. �

4.3.9. Lemma. I∆0`exp $ L “ aÑ M a ĺ L.

Proof: Argue in I∆0`exp. Since L “ a, we have that hpxq “ a for some x.
Since hpxq “ a is elementary, we have have �0 hp 9xq “ a by Theorem 2.1.1 and
Σ1-completeness of �0. By definition of L, it is clear that �0 php 9xq “ aÑ a ĺ Lq,
whence �0 a ĺ L. Since we have assumed that �0ϕ implies Mϕ for all ϕ, we ob-
tain M a ĺ L as required. �

4.3.10. Lemma. If a ‰ 0 is not reflexive, then I∆0`exp $ L “ aÑ M a ă L.

Proof: Argue in I∆0`exp. If the limit of h is some non-reflexive a ‰ 0, then h
must have moved to a due to some number witnessing ML ‰ a. By lemma 4.3.9,
we also have M a ĺ L. Combining these, we get M a ă L. �

4.3.11. Lemma. If a ‰ 0, then I∆0`exp $ L “ aÑ Dx�Mx a ăR L.

Proof: Argue in I∆0`exp, assuming L “ a ‰ 0. From Lemma 4.3.9 and pT1q we
have � a ĺ L. Since a ‰ 0, we also have �L ‰ a by the definition of h and pT1q.
Thus � a ă L, whence by pT3q and Lemma 2.4.6(iii), for all x,

�Mx a ă L. (4.6)

It therefore suffices to show that if b is such that a ă b but a ⊀R b, then �Mx L ‰ b
for some x. Using that W is finite, we prove the claim by induction on the number
of nodes between a and b. Assume that for all d with a ă d ă b, there is some xd
with �Mxd L ‰ d. We let x1 :“ maxtxd | a ă d ă bu. In case there is no d with
a ă d ă b, we define x1 :“ 0. By Lemma 2.4.6(iii), we have �Mx

1

L ‰ d for all d
with a ă d ă b. We reason in �Mx

1

:
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Let c be such that L “ c. From (4.6) we have a ă c and from the induction
assumption that c ⊀ b. If c “ b then, since a ⊀R b, it must be that ML ‰ b —
otherwise h would have never moved to b. Suppose now that c ‰ b. By Lemma
4.3.9 we have M c ĺ L. Since c ⊀ b, this means that ML ‰ b also in this case.

Back in I∆0`exp, we now have �Mx
1

ML ‰ b, i.e. �Mx
1`1 L ‰ b as required. �

Since we have assumed T $ Dx�Mxϕ Ñ �ϕ, the following is an immediate
consequence of Lemma 4.3.11:

4.3.12. Lemma. If a ‰ 0, then T $ L “ aÑ � a ăR L. �

4.3.13. Definition. Let M “ xW,ă,ăR,,y be an A-sound model with root
w. The model M0 is obtained by appending a root 0 to M; the truth values of
propositional formulas at 0 are defined to be exactly the same as at w. Apply
Definition 4.3.5 to M0, and define the realisation ˚ by letting:

p˚ :“
ł

M0,a,p

L “ a.

4.3.14. Lemma. Let M and ˚ be as in Definition 4.3.13. Then for every sub-
formula B of A, and for every a ‰ 0,

M, a , B ñ T $ L “ aÑ B˚. (4.7)

Proof: We use Lemmas 4.3.7-4.3.12 to prove the claim by induction on the
structure of B, simultaneously with

M, a ,  B ñ T $ L “ aÑ  B˚.

We treat the case of MB; the other cases are exactly like in the proof of Lemma
2.3.8. Assume a , MB, i.e. b , B for all b with a ă b. By the induction
assumption, we have T $ L “ bÑ B˚ for all such b, and thus

T $ a ă LÑ B˚. (4.8)

If a is reflexive, then a , MB additionally implies a , B, whence (4.8) can be
strengthened to T $ a ĺ L Ñ B˚. Using the rules and axioms of GL for M, the
latter implies T $ Ma ĺ LÑ MB˚, and so $ L “ aÑ MB˚ by Lemma 4.3.9. If
a is not reflexive, we obtain from (4.8) by modal reasoning T $ M a ă LÑ MB˚,
and finally T $ M a ă LÑ MB˚ by Lemma 4.3.10. �

4.3.15. Lemma. i. N ( L “ 0

ii. for any a P W , the sentence L “ a is consistent with T
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Proof: (i) Let a ‰ 0. We show N * Dxhpxq “ a by induction on the con-
verse of ă. Assume that the claim holds for all ă-successors of a, and sup-
pose N ( Dxhpxq “ a. By definition of h, this implies N ( �L ‰ a, whence
I∆0`exp $ �L ‰ a by Σ1-completeness. We have assumed that I∆0`exp $ �ϕ
implies T $ ϕ for all ϕ, and thus also

T $ L ‰ a. (4.9)

Since N ( Dxhpxq “ a, by Σ1-completeness of T we also have T $ Dxhpxq “ a.
This, together with (4.9), implies T $ Dx a ă hpxq, whence N ( Dx a ă hpxq by
Σ1-soundness of T . The latter, however, contradicts our induction assumption.
We conclude that for a ‰ 0, N ( @xhpxq ‰ a, whence N ( @xhpxq “ 0, and
thus N ( L “ 0 as required.

(ii) Using Lemma 4.3.7, it follows from (i) that N ( OL “ a for all a ‰ 0.
Now, T $ L ‰ a would imply I∆0`exp $ ML ‰ a, and the latter in turn would
imply N ( ML ‰ a, a contradiction.

�

We conclude with the proof of Theorem 4.3.2:

Proof: If GLT & A, then by Lemma 3.6.5, there is some A-sound modelM with
M, w . A for some w PM. Let ˚ be as in Definition 4.3.13. By Lemma 4.3.14,
T $ L “ w Ñ  A˚. Since T does not prove L “ w by Lemma 4.3.15, it therefore
cannot prove A˚ either. �



Chapter 5

Supremum adapters

The first part of this chapter develops the philosophy and technology needed for
adding a supremum operator to the interpretability logic ILM of Peano Arithmetic
(PA). It is well-known that any two theories extending PA have a supremum in
the interpretability ordering. While provable in PA, this fact is not reflected in
the theorems of the modal system ILM, due to limited expressive power. We
would like to enrich the language of ILM by adding to it a new modality for the
interpretability supremum. We explore different options for specifying the exact
meaning of the new modality.

Our final proposal involves a unary operator: a certain nonstandard provabi-
lity predicate that we call supremum adapter. We consider several variants of the
supremum adapters. Some of them resemble the ordinary provability predicate,
in that they behave according to the rules and axioms of GL. Others satisfy the
principles of the modal system F, and are in this sense more similar to the Fe-
ferman provability predicate. We also study the joint behaviour of a supremum
adapter together with ordinary provability. Finally, we make some observations
concerning the transfinite behaviours of certain supremum adapters.

5.1 Introduction

Our overall goal in this chapter is to bring closer together two approaches to the
study of interpretability. We recall (Definition 2.1.11) that a first-order theory
T is said to interpret S (T � S ) if there is some structure-preserving translation
from the language of S to the language of T , such that the translations of all
theorems of S are provable in T .

Interpretability can be seen as generalised provability : T is required to prove
everything that S proves modulo some well-behaved translation. As such, it
allows us to compare theories talking about different objects, such as PA and
Zermelo-Fraenkel set theory (ZF). In fact, the notion of interpretability is a na-
tural candidate for giving a precise meaning to the intuitive idea of one theory
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being stronger than another one. Seen from a semantic perspective, an interpre-
tation of S in T gives rise to a uniform way of constructing models of S inside
models of T . Interpretations therefore give rise to relative consistency proofs.

The study of interpretability may roughly be divided into two traditions,
briefly outlined below. A more comprehensive overview can be found in [Vis98].

The lattice of degrees Interpretability as a means of comparison naturally
leads one to study the space of all theories ordered by this relation. A degree is
a collection of all theories that are equally strong as a given theory, i.e. that all
mutually interpret each other. We write rS s for the degree of S .

Among the first results concerning interpretability degrees is a strengthening
of Gödel’s Second Incompleteness Theorem by Feferman. In [Fef60, Theorem
6.5] it is shown that not only is 3J unprovable, it is also “uninterpretable”:
rPAs 6� rPA ` 3Js. Jeroslow ([Jer71, Theorem 3.1, 3.2]) showed that the de-
grees intermediate between rPAs and rPA ` 3Js form a dense partial order. It
follows from his work that the interpretability ordering is dense ([Šve78, p.798]).
Montague ([Mon62, Theorem 1]) proved the existence of an infinite set of finitely
axiomatised subtheories of PA, all of which are mutually incomparable with re-
spect to the interpretability ordering.

A systematic study of interpretability degrees was undertaken independently
by Švejdar and Lindström ([HP93, p.402]). Švejdar studied the structure pV ,�q
of the degrees theories of the form PA`ϕ, where ϕ is an arithmetical sentence. He
proved, among other things, that this structure is a distributive lattice ([Šve78,
Theorem 4.4, 4.7]). Lindström was concerned with the structure of the degrees of
all r.e. extensions of PA in the same language ([Lin79], [Lin84]), but also showed
that the latter is isomorphic to pV ,�q ([Lin79, p.348, Theorem 3]).

Our interest in provability logic makes it natural to focus on pV ,�q. Note
first that rPA ` Js is the minimum and rPA ` Ks the maximum element of this
structure. It is easy to see that the infimum of rPA ` ϕs and rPA ` ψs in pV ,�q
is rPA` pϕ_ ψqs.

5.1.1. Remark. Someone used to Boolean algebras has to think of the lattice
pV ,�q as being upside down: the weakest theory J is the bottom element, and
the strongest theory K is the top element of pV ,�q.

In contrast to what the above might lead one to expect, the supremum of
rPA ` ϕs and rPA ` ψs is in general not rPA ` pϕ ^ ψqs. Švejdar shows that the
supremum of rPA ` ϕs and rPA ` ψs may taken to be rPA ` ϑs, where ϑ is such
that PA $ ϑØ @x p3xϑÑ 3xϕ^3xψq. The existence of ϑ is guaranteed by the
Fixed Point Lemma.

Interpretability logic Interpretability, like provability, is a syntactical notion,
and can therefore be formalised in the language of arithmetic. We may thus ask:
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which statements concerning provability and interpretability (between its finite
extensions) are provable in PA?

As in the case of provability alone, this question has an elegant modal logical
answer. The system ILM of interpretability logic is obtained by adding to the
provability logic GL a binary modality � for interpretability, together with axioms
governing the behaviour of � as well as its interaction with �. It was proven
independently by Berarducci ([Ber90]) and Shavrukov ([Sha88]) that the theorems
of ILM are exactly the propositional schemata involving formalised provability and
interpretability that are provable in PA. We say that ILM is the interpretability
logic of PA.

A dissonance Given the two approaches to interpretability, it is natural to ask
how they relate to each other. The starting point for the work presented in this
chapter is the following question: does the modal logic ILM “know” that pV ,�q
is a lattice?

The fact that the infimum in pV ,�q is given by disjunction is indeed reflected
in the axioms of ILM. On the other hand, Švejdar’s construction of a supre-
mum employs a language much more complex than that available in propositional
modal logic. Indeed, it is shown in Section 5.2.2 that interpretability suprema lie
beyond the expressive power of ILM.

We note that the issue described above is by far not the only dissonance
between the two approaches to interpretability. For example, in the framework
of interpretability logic it is natural to consider statements containing nested
occurrences of the modalities, such as 3A Ñ A 6� 3A. At the same time, the
latter cannot be meaningfully formulated in the context of the lattice of degrees.

We want to boost the expressive power of ILM by adding to it a new modality
whose intended interpretation is a supremum operator in pV ,�q. As we will see,
Švejdar’s construction is only one out of many ways of obtaining suprema in this
structure. Since each of these can, in principle, be used to specify the meaning
of the new modality, we are faced with a design choice.

Overview of this chapter Section 5.2 introduces the modal system ILM, and
considers its relation to the interpretability degrees. Švejdar’s construction, along
with its dual discovered by Visser, are studied in Section 5.3. Section 5.4 intro-
duces our favourite way of interpreting the supremum modality: a combination of
conjunction with a certain nonstandard provability predicate, the so-called supre-
mum adapter. Section 5.5 is concerned with the provability logic of supremum
adapters, as well as their joint provability logic with ordinary provability. Section
5.6 contains some observations about transfinite iterations of supremum adapters.
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5.2 Interpretability logic

This section introduces the modal system ILM of interpretability logic. We con-
sider its relation to the lattice of degrees, and show that it fails to express inter-
pretability suprema.

5.2.1 The system ILM

Denote by L�� the language L� together with a binary modality �. The operator
� binds weaker than ^, but stronger than Ñ.

5.2.1. Definition. The system ILM contains all propositional tautologies in the
language L��, the axiom schemata of of GL, and:

pJ1q �pAÑ Bq Ñ A�B

pJ2q pA�Bq ^ pB � Cq Ñ pA� Cq

pJ3q pA� Cq ^ pB � Cq Ñ pA_Bq� C

pJ4q A�B Ñ p3AÑ 3Bq

pJ5q 3A� A

pMq A�B Ñ pA^ �Cq� pB ^ �Cq

The rules of ILM are modus ponens and necessitation for �.

5.2.2. Lemma. i. ILM $ �AØ  A� K

ii. ILM $ A� A^ � A

iii. ILM $ A�B Ñ A � B ^ � A

Proof: (i) The left to right direction follows by pJ1q, since �A Ñ �p A Ñ Kq.
The other direction follows from pJ4q, since K $ 3K Ñ K.

(ii) By Löb’s axiom, 3A Ñ 3pA ^ � Aq. Using neccesitation and pJ1q, it
follows that 3A�3pA^� Aq. With pJ1q we have A^3A�3A, whence by pJ2q,
A^3A�3pA^� Aq. Using pJ5q, the latter implies A^3A�A^� A. Since
A^� A�A^� A, it follows by pJ3q that pA^� Aq_ pA^3Aq�A^� A.
Given pJ1q, it is clear that A� pA^� Aq_pA^3Aq, thus A�A^� A follows
by one last application of pJ3q.

(iii) Follows from pMq, pJ2q, and clause (ii). �

5.2.3. Definition. An ILM–frame is a tuple xW,R, Sy, with W ‰ ∅, R a binary
relation on W , and S a set of binary relations indexed by the elements of W , and
such that SaĎ tpb, cq | a R b, a R cu. Furthermore,
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i. R is transitive and converse well-founded

ii. Sa is transitive

iii. a R bñ b Sa b

iv. a R b, b R cñ b Sa c

v. SaR Ď R

An ILM–model is a quadruple xW,R, S,,y, where xW,R, Sy is an ILM–frame, and
, a valuation on xW,R, Sy satisfying the usual clauses, with R as the accessibility
relation for �, and

a , A�B if for all b with a R b, there is some c with b Sa c , B.

5.2.4. Theorem ([dJV90]). ILM $ Aô F , A for every ILM-frame F . �

We consider arithmetical realisations mapping the modality � to an arith-
metical formula expressing in a natural way interpretability between theories of
the form PA`ϕ, where ϕ is an arithmetical sentence. The modality � is mapped
to the ordinary provability predicate � of PA.

5.2.5. Theorem ([Sha88], [Ber90]). For all A P L�M,

ILM $ Aô for all arithmetical realisations ˚,PA $ A˚. �

It follows from Visser’s results in ([Vis91]) that the left to right direction, i.e.
arithmetical soundness of ILM with respect to PA, is already verifiable in I∆0`exp.
We shall thus freely refer to the axioms of ILM when reasoning about formal
interpretability in theories containing I∆0`exp.

5.2.2 ILM and the lattice of degrees

Recall the structure pV ,�q of the degrees of finite extensions of PA, ordered by
the relation of interpretability. As mentioned in Section 5.1, pV ,�q is a lattice.
We now ask whether this is visible from the perspective of ILM.

The fact that pV ,�q is a lower semilattice is indeed reflected in the axioms
of ILM. Axioms pJ1q and pJ2q imply that the ordering given by � is reflexive
and transitive, and furthermore that ϕ� ϕ_ ψ and ψ � ϕ_ ψ, i.e. that rϕ_ ψs
is a lower bound of rϕs and rψs in pV ,�q. Axiom pJ3q states that it is in fact
the greatest lower bound, i.e. the infimum of rϕs and rψs. The following theorem
implies that rϕ^ ψs is not, in general, the supremum of rϕs and rψs.

5.2.6. Theorem ([Ore61, Theorem 2.4]). There is a sentence ρ such that
J� ρ and J� ρ. �
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A sentence ρ as in Theorem 5.2.6 is called an Orey sentence. We note that an
Orey sentence and its negation are both in rJs, and hence also their supremum
is an element of rJs, which is clearly not the case for the sentence ρ^ ρ.

5.2.7. Example. The Gödel-sentence of the Feferman provability predicate Mf

is, verifiably in PA, an Orey sentence. This can be shown by a simple modal
argument found by Visser ([Vis89, p. 177]). A crucial ingredient is the following
result by Feferman ([Fef60, Theorem 6.2]), according to which an analogue of pJ5q
holds with Feferman-consistency instead of ordinary consistency:

PA $ Ofϕ� ϕ (5.1)

Verifiability in PA follows from [Vis91, Section 6]. By the Fixed Point Lemma,
let γ be a Gödel-sentence for Mf:

PA $ γ Ø  Mfγ

Since PA $ γ Ñ  Mfγ, i.e. PA $ γ Ñ Of γ, by pJ1q also PA $ γ�Of γ, whence
by (5.1) and pJ2q, PA $ γ �  γ. Since PA $  γ �  γ, it follows by pJ3q that
PA $ J � γ. It remains to show PA $ J �  γ. Since PA $ OfJ and the modal
system K is sound with respect to Mf, we have that PA $ Mfγ Ñ Ofγ. Combining
the above with PA $  γ Ñ Mfγ and using pJ1q, we obtain PA $  γ�Ofγ. With
(5.1), this implies PA $  γ � γ. Thus PA $ J� γ follows by pJ3q as above.

The existence of Orey sentences rules out simple conjunctions as interpre-
tability suprema in ILM. Of course, this alone does not prove interpretability
suprema to lie beyond the expressive power of ILM. There could be some L��-
formula Spp, qq such that for any propositional letter r,

ILM $ pr � pq ^ pr � qq Ø r � Spp, qq.

We show that such a formula S cannot exist already when the above is only
required to hold for r “ J.

5.2.8. Theorem. There is no L��-formula S, for which

ILM $ pJ� pq ^ pJ� qq Ø J� Spp, qq. (5.2)

Proof: Suppose for a contradiction that S is as in (5.2). Note first that

ILM $ J� Spp, qq Ø J� Spp, qq ^ �K. (5.3)

The direction from left to right is Lemma 5.2.2(iii); the other direction follows by
using pJ1q and pJ2q. Combining (5.2) and (5.3), we obtain

ILM $ pJ� pq ^ pJ� qq Ø J� Spp, qq ^ �K. (5.4)
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We claim that there is a purely propositional formula S 1 such that

ILM $ �K Ñ pSpp, qq Ø S 1pp, qqq (5.5)

By induction on the structure of S, it can be shown that such a formula S 1 exists
for any L��-formula S. The base case and the boolean cases are straightforward.
It remains to consider the cases that S “ �Cpp, qq and S “ Cpp, qq � Dpp, qq.
Using Theorem 5.2.4, it is easy to see that in both cases we can take S 1 “ J.
Combining (5.4) and (5.5), we obtain

ILM $ pJ� pq ^ pJ� qq Ø J� S 1pp, qq ^ �K. (5.6)

Substituting J for p and q in (5.6), we obtain ILM $ J� S 1pJ,Jq ^ �K, thus it
must be that S 1pJ,Jq “ J. Substituting K for one of p or q yields

ILM $ J� K Ø J� S 1pp, qq ^ �K,

whence it must be that S 1pp, qq “ K if either p “ K or q “ K. Hence S 1pp, qq is
propositionally equivalent to p^ q, and we have

ILM $ pJ� pq ^ pJ� qq Ø J� pp^ qq ^ �K. (5.7)

Consider an arithmetical realisation ˚ with p˚ “ ρ and q˚ “  ρ, where ρ is,
verifiably in PA, an Orey sentence (see Example 5.2.7). By Theorem 5.2.5 we
have from (5.7) that

PA $ pJ� ρq ^ pJ� ρq Ø J� pρ^ ρq ^ �K, (5.8)

i.e. PA $ pJ � ρq ^ pJ �  ρq Ø J � K. Since PA $ pJ � ρq ^ pJ �  ρq but
PA & J� K, this is a contradiction. �

5.3 Binary suprema

Given Theorem 5.2.8, we would like to enrich ILM by adding to it a new modal-
ity for interpretability suprema. The methodological points related to this goal
are discussed in Subection 5.3.1. Most importantly, we define the notion of a
supremum implementation. The rest of this section studies two natural examples
of supremum implementations due to Švejdar and Visser, respectively. The pur-
pose of this section is mainly methodological and genealogical. We have therefore
decided to omit proofs of most results, referring the interested reader to [HV16].
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5.3.1 Methodological considerations

We would like to enrich ILM by adding to it a new binary modality ?, together
with the following:

pSupq pC � Aq ^ pC �Bq Ø pC � A?Bq.

Denote by ILMS the system ILM together with axiom Sup.

5.3.1. Definition. An arithmetical formula σ with two free variables is a supre-
mum implementation if for all sentences ϕ, ψ, χ of the language of arithmetic,

PA $ pχ� ϕq ^ pχ� ψq Ø χ� σpϕ, ψq.

Given a supremum implementation σ, arithmetical realisations for ILM can be
extended to the new language by mapping ? to a supremum implementation:

pϕ? ψq˚ :“ σpxϕ˚y, xψ˚yq.

This guarantees that ILMS is arithmetically sound with respect to a given σ.
For arithmetical completeness, we would like the theorems of ILMS to include

all propositional schemata involving σ that are known to PA. However, PA’s
knowledge about a formula σ is far from determined by what is required in Defi-
nition 5.3.1. For example, while for any such σ it is clear that σpϕ, ψq and σpψ, ϕq
are, verifiably in PA, mutually interpretable, there is no a priori reason why

σpϕ, ψq Ø σpψ, ϕq (5.9)

should be provable in PA, or even true. An example of a supremum adapter for
which (5.9) fails can be found in [HV16, Appendix A.2]. On the other hand, the
supremum implementations we encounter below all satisfy (5.9).

Whether the axiom A ? B Ø B ? A should be added to ILMS therefore
depends on which supremum implementation(s) we have in mind. In contrast to
formalised provability and interpretability, there is no strong intuition as to what
constitutes a natural supremum implementation. Thus our choice will depend
on practical and esthetical criteria. For example, we prefer implementations that
allow for a nice Kripke semantics.

5.3.2 Švejdar’s and Visser’s suprema

It follows from Theorem 2.1.12 that the supremum of rPA ` ϕs and rPA ` ψs in
pD,�q, the structure of degrees of all r.e. extensions of PA in the same language,
is the following infinite theory:

S :“ PA` t3nϕ^3nψ | n P ωu.

Švejdar’s construction can be seen as a way of compressing the information con-
tained in S into a single sentence.
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5.3.2. Theorem ([Šve78, Theorem 4.4]). By the Fixed Point Lemma, let ϑ
be such that

PA $ ϑØ @x p3xϑÑ 3xϕ^3xψq.

Then ϑ is (verifiably in I∆0`exp) a supremum of ϕ and ψ in pV ,�q. �

The formula ϑ is Π2. A dual construction, yielding a Σ2-supremum, was disco-
vered by Visser.

5.3.3. Theorem. By the Fixed Point Lemma, let ϑ be such that

PA $ ϑØ Dx p�x ϑ^ p3xϕ^3xψqq.

Then ϑ is, verifiably in I∆0`exp, a supremum of ϕ and ψ in pV ,�q.

Proof: Argue in I∆0`exp, and let ϑ be as above. We show:

i. ϑ� ϕ ^ ϑ� ψ

ii. pχ� ϕq ^ pχ� ψq Ñ χ� ϑ

(i) By Theorem 2.1.12, it suffices to show @x�pϑÑ 3xϕ^3xψq. We fix some x
and argue in �:

If ϑ, there is some z with �z ϑ, 3zϕ, and 3zψ. By essential reflexivity, we have
3xϑ, thus z must be greater than x. By monotonicity, it thus follows that 3xϕ
and 3xψ as required.

(ii) Assume χ�ϕ and χ�ψ. With Theorem 2.1.12, we see that the latter imply

@x�pχÑ 3xϕ^3xψq. (5.10)

By properties of ϑ, we have �p ϑ Ø @x pp3xϕ^3xψq Ñ 3xϑqq, whence it fol-
lows from (5.10) that

@x�pχ^ ϑÑ 3xϑq,

and thus χ ^  ϑ � ϑ by Theorem 2.1.12. Since clearly χ ^ ϑ � ϑ, it follows by
principle pJ3q of ILM that pχ^ ϑq _ pχ^ ϑq� ϑ, i.e. χ� ϑ. �

5.3.4. Remark. Strictly speaking, theorems 5.3.2 and 5.3.3 do not yet provide us
with supremum implementations in the sense of Definition 5.3.1. Corresponding
to Theorem 5.3.2, we would like to have a formula σ with two free variables, such
that for any sentences ϕ and ψ,

PA $ σpϕ, ψq Ø @x p3xσpϕ, ψq Ñ 3xϕ^3xψq,

and similarly for Theorem 5.3.3. By using the Fixed Point Lemma with parame-
ters, it is however clear that formulas with the required properties exist.
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5.3.3 Some features of Švejdar’s and Visser’s suprema

Svejdar’s and Visser’s supremum implementations are obtained as fixed points
of the following formulas (the capital Y indicates that we are interested in fixed
points with respect to this variable):

@x p3xY Ñ p3xϕ^3xψqq

Dx p�x Y ^ p3xϕ^3xψqq

The following theorems state the existence of unique explicit fixed points for these
fixed point equations. Theorem 5.3.5 is due to V. Yu. Shavrukov.

5.3.5. Theorem ([HV16, Theorem 7]). Let εpϕ, ψq be the formula

@x p�x ϕ_ �x ψ Ñ �xDy ă x p�y ϕ_ �y ψqq ,

where ϕ and ψ are regarded as internal variables ranging over L-sentences.

i. I∆0`exp $ εpϕ, ψq Ø @x p3x εpϕ, ψq Ñ 3xϕ^3xψq

ii. If PA $ ϑØ @x p3xϑÑ 3xϕ^3xψq, then PA $ ϑØ εpϕ, ψq. �

5.3.6. Theorem ( [HV16, Theorem 8]). Let εpϕ, ψq be the formula

Dx p�xp�x ϕ_ �x ψq ^ p3xϕ^3xψqq

where ϕ and ψ are regarded as internal variables ranging over L-sentences.

i. I∆0`exp $ εpϕ, ψq Ø Dx p�x εpϕ, ψq ^ p3xϕ^3xψqq

ii. If PA $ ϑØ Dx p�x ϑ^ p3xϕ^3xψqq, then PA $ ϑØ εpϕ, ψq. �

From the point of view of developing a modal logical treatment of the supre-
mum adapters, it is useful to have the following:

5.3.7. Theorem ([HV16, Theorem 9].). Let ε be as in Theorem 5.3.5 or as
in 5.3.6. Then

I∆0`exp $ �pϕØ ϕ1q ^ �pψ Ø ψ1q Ñ �pεpϕ, ψq Ø εpϕ1, ψ1qq. �

Theorem 5.3.7 states that Švejdar’s and Visser’s supremum are extensional. As
shown in [HV16, Theorem 10], Visser’s supremum is not monotone: there are
formulas ϕ and ψ such that, taking ε as in the statement of Theorem 5.3.6,
PA $ ϕ Ñ ψ but PA & εpϕ, ϕq Ñ εpψ, ψq. This property makes ε less suitable
for being treated as a modal operator. But also Švejdar’s supremum has some
quirky features.
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5.3.8. Remark. Write ΘpY q for the formula @x p3xY Ñ 3xKq, and let σ be
such that PA $ σ Ø Θpσq. The formula σ is thus an element of rKs. It is easy to
see that PA $ σ Ø K. On the other hand,

PA & Θpσq Ø ΘpKq.

To see that, note that PA $ ΘpKq Ø J. Assuming PA $ Θpσq Ø ΘpKq, we would
thus have:

PA $ K Ø σ Ø Θpσq Ø ΘpKq Ø J

— a blatant contradiction. We say that the formula ΘpY q is not extensional. The
above argument shows that every fixed point of ΘpY q is equivalent to K, while K
itself is not a fixed point of ΘpY q.

5.4 Supremum adapters

A supremum adapter is an arithmetical formula σ containing one free variable,
for which I∆0`exp verifies that for all ϕ, ψ, and χ,

χ� ϕ ^ χ� ψ Ø χ� σpϕq ^ σpψq.

We think of σ as adapting ϕ and ψ, so that their conjunction can be used to
obtain the supremum. The idea and the first examples of supremum adapters
are due to V. Yu. Shavrukov. The versions introduced here were obtained by
analysing and simplifying the latter.

We define a family of nonstandard provability predicates, each of which can
be viewed as the provability predicate of IΣa, where a is a certain nonstandard
number. In Section 5.4.2, it is shown that the consistency statements associated
to these provability predicates are supremum adapters. We shall also refer to the
provability predicates themselves as supremum adapters even though, strictly
speaking, only their duals satisfy the definition given above.

Consider the following theory:

PAµ :“
ď

nPω

tIΣn | for all m ă n, IΣm is 1-consistentu

Provability in PAµ is naturally expressed by the formula Dx p�xϕ^@y ă x3Π1
y Jq.

Since PA is 1-consistent but, as a consequence of the Second Incompleteness
Theorem, does not know this, it is clear that Dx p�xϕ ^ @y ă x3Π1

y Jq is a
nonstandard provability predicate for PA.

Different from the theories PA˚ and PAæFε0 of Chapter 4, the theory PAµ, as
defined above, is not recursively enumerable. Its natural provability predicate
Dx p�xϕ ^ @y ă x3Π1

y Jq is Σ3; the complexity is due to the Π1 truth predicate
needed to express 1-consistency.
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As in the case of slow provability, variants of supremum adapters are obtained
by letting:

Nxkyϕ :“ Dx
`

�x`kϕ^ @y ă x3Π1
y J

˘

,

where k is a standard integer. We recall from Chapter 4 that for k ă 0, x` k is
defined to be x .́

|k|, and x .́ k is defined to be x` |k|, where |k| is the absolute
value of k, and x .́ y :“ max t0, x´ yu. As usual, we write Hxky for the dual of
Nxky, i.e. as an abbreviation for  Nxky ϕ.

5.4.1 Provability in the least 1-inconsistent subtheory

Nxky-provability may be seen as provability in IΣµ`k, where µ is the least x such
that IΣx is 1-consistent. In order to make this precise, let µ “ x be the formula

p3Π1J ^ x “ 8q _
`

�Π1
x K ^ @y ă x3Π1

y J
˘

.

The uniqueness of µ is provable in I∆0`exp: I∆0`exp $ µ “ x^µ “ y Ñ x “ y.
As for existence, note that since Dx�Π1

x K is Σ2 and the least number principle for
Σ2-formulas is equivalent to induction for Σ2-formulas ([HP93, Theorem I.2.4]),
it is clear that IΣ2 $ Dxµ “ x. Theorem 5.4.2 below states that IΣ1 & Dxµ “ x.
Given the above, it is easy to see that

IΣ2 $ @ϕ
`

NxkyϕØ �µ`kϕ
˘

, (5.11)

where �8 is defined to be �, and for all k P Z, 8` k and 8 .́ k are defined to
be 8. In other words, Nxky-provability coincides with provability in IΣµ`k, or —
in case PA is 1-consistent — with provability in PA.

Each Nxky has a “universal” relative: M̈rksϕ :“ @x
`

�Π1
x K Ñ �x`kϕ

˘

. It can be
shown that each M̈rks, like Nxky, is a supremum adapter. Our reason for focusing on
the “existential” versions Nxky is that the M̈rks are not sound provability predicates.
In the standard model N, each M̈rks is the provability predicate of the inconsistent
theory: we have N ( M̈rksϕ for all ϕ.

Defining �µK like �µ , except with the reading that �8 is the provability
predicate of the the inconsistent theory, it is easy to check that

IΣ2 $ @ϕ
`

M̈rksϕØ �µK`kϕ
˘

. (5.12)

The formulas �Π1K, Nxky, and M̈rks, are definable in terms of each other:

5.4.1. Lemma. i. IΣ2 $ �
Π1K Ø @ϕ

`

NxkyϕØ M̈rksϕ
˘

ii. IΣ2 $ @ϕ pNxkyϕØ p3Π1J ^ �ϕq _ p�Π1K ^ M̈rksϕqq

iii. IΣ2 $ @ϕ pM̈rksϕØ pNxkyϕ_3Π1Jqq
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Proof: (i) Argue in IΣ2. If �Π1K, then by (5.11) and (5.12) both Nxky and M̈rks
are equivalent to �µ`k, where µ is the least x such that �Π1

x K. For the other
direction, assume that 3Π1J. Then M̈rks is the provability predicate of the incon-
sistent theory, and so M̈rksK. On the other hand,  NxkyK: NxkyK would imply �K
and thus also �Π1K, contradicting our assumption. The proof of clauses (ii) and
(iii) is straightforward, by using (i), (5.11), and (5.12). �

We conclude this section with a result due to F. Pakhomov, showing that the
existence of µ is not provable in IΣ1.

5.4.2. Theorem. IΣ1 & Dx µ “ x

Proof: We show that there is a model M of IΣ1 where PA is 1-inconsistent, but
there is no smallest a such that IΣa is inconsistent. M is constructed as the union
of an ascending chain pMiqiăω of models, where Mi ( �

Π1K and Mi ( PA for all
i. Denote by mi the least element such that Mi ( �

Π1
mi
K. We shall ensure that

for all i,

i. mi ą mi`1

ii. Mi ăΣ1 Mi`1 (Mi`1 is a Σ1-elementary extension of Mi)

We note that M :“
Ť

iăωMi is a model with the desired properties: from (ii)
it follows that for all i,

Mi ăΣ1 M.

Using this, it is easy to show that M ( IΣ1 and furthermore for all a P M, we
have that M ( �Π1

a K if and only if Mi ( �
Π1
a K for some i.

It remains to show that a chain pMiqiăω with the required properties exists.
We proceed by induction on i. Let M0 be any model of PA with M0 ( �

Π1K. Now
suppose that we have constructed a model Mi of PA with Mi ( �

Π1
mi
K^3Π1

mi´1J.

Since Mi ( 3Π1
mi´1J, we have Mi ( 3Π1

mi´1�
Π1
9mi´1K by Löb’s principle for �Π1

mi´1.

In fact we have Mi ( 3Π1
mi´1p�

Π1
9mi´1K ^ 3Π1

9mi´2Jq, for Mi ( �mi´13
Π1
9mi´2J by

reflection. In other words, Mi thinks that the theory

T :“ IΣmi´1 ` Π1-truth` �Π1
9mi´1K `3Π1

9mi´2J

is consistent (where Π1-truth is to be understood in the sense of Mi). By The-
orem 2.1.13, there is a Σ1-elementary end-extension Mi`1 of Mi with Mi`1 ( T
and such that, from the external point of view, Mi`1 ( PA. We now have
Mi ăΣ1 Mi`1 ( PA and Mi`1 ( �

Π1
mi´1K ^ 3Π1

mi´2J. Thus it suffices to put
mi`1 “ mi ´ 1. �
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5.4.2 Verification of the target property

We show that each Nxky or, strictly speaking its dual Hxky, is a supremum adapter:

5.4.3. Theorem. x where ϕ, χ, and ψ are regarded as internal variables ranging
over L-sentences.

Proof: It suffices to show:

i. I∆0`exp $ @ϕ
`

Hxkyϕ� ϕ
˘

ii. I∆0`exp $ @χ @ϕ @ψ
`

pχ� ϕq ^ pχ� ψq Ñ χ� Hxkyϕ^ Hxkyψ
˘

The above clauses are proven in Propositions 5.4.6 and 5.4.8 below. �

A formula ϑpxq is monotone (in x) if I∆0`exp $ ϑpxq ^ x ď y Ñ ϑpyq.

5.4.4. Lemma ([Vis15b, Theorem 4.3]). Suppose that ϑpxq, possibly with ad-
ditional free variables, is a monotone Π2-formula.

I∆0`exp $ @y
`

�yDx
`

ϑpxq ^ @u ă x3Π1
u J

˘

Ø �yϑpyq
˘

Proof: Argue in I∆0`exp, and fix y. Assume first �yϑpyq. By reflection, we
have �y@u ă y3Π1

u J, whence clearly �yDx
`

ϑpxq ^ @u ă x3Π1
u J

˘

. For the other
direction, assume

�yDx
`

ϑpxq ^ @u ă x3Π1
u J

˘

. (5.13)

We show �y
`

�Π1
y ϑpyq Ñ ϑpyq

˘

. Argue in �y:

Assume �Π1
y ϑpyq. Suppose for a contradiction that  ϑpyq. Since this is a Σ2-

formula, we have �Π1
y  ϑpyq, and thus �Π1

y K. From (5.13), we have some x
with ϑpxq and @u ă x3Π1

u J. The latter, together with �Π1
y  ϑpyq, implies that

x ď y. Thus ϑpyq follows by monotonicity of ϑ.

Back in I∆0`exp, we have �y
`

�Π1
y ϑpyq Ñ ϑpyq

˘

. From the latter, it follows that

�y p�yϑpyq Ñ ϑpyqq, and finally �yϑpyq by Löb’s principle for �y. �

5.4.5. Lemma. i. I∆0`exp $ @x@ϕ p�xNxkyϕØ �x�x`kϕq

ii. I∆0`exp $ @y@ϕ p�yϕÑ �y .́ kNxkyϕq

Proof: Reason in I∆0`exp. (i) Fix x and ϕ. The statement follows from Lemma
5.4.4 by taking for ϑpxq the formula �x`kϕ. Note that the latter is Σ1 — so also
Π2 — and monotone.

(ii) Fix y and ϕ. Suppose first that k ď y. Then y .́ k “ y ´ k, and we have:

�yϕÑ �0�yϕÑ �y´k�yϕÑ �y´kNxkyϕ
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The first implication is by Σ1-completeness of �0, the second by monotonicity,
and the last follows from clause (i) by taking y´k for x. If k ą y, then y .́ k “ 0,
and we argue as follows:

�yϕÑ �0�yϕÑ �0�kϕÑ �0Nxkyϕ

The second implication is by monotonicity, the third follows from clause (i) by
taking 0 for x. �

5.4.6. Proposition. I∆0`exp $ @ϕ
`

Hxkyϕ� ϕ
˘

Proof: In view of Theorem 2.1.12, it suffices to show

I∆0`exp $ @ϕ@y�pHxkyϕÑ 3yϕq

i.e., by contraposition: I∆0`exp $ @ϕ@y�p�yϕ Ñ Nxkyϕq. Argue in I∆0`exp,
fixing some y and ϕ. By Lemma 5.4.5(ii), we have �p�yϕ Ñ �y .́ kNxkyϕq. Since
Nxkyϕ is Σ3, we have by reflection �py .́ kq`2p�y .́ kNxkyϕÑ Nxkyϕq. Combining the
above yields �p�yϕÑ Nxkyϕq as required. �

5.4.7. Lemma. I∆0`exp $ @y @ϕ @ψ�y`1

`

�ypNxkyϕ_ Nxkyψq Ñ �y`kϕ_ �y`kψ
˘

Proof: Reason in I∆0`exp. Fix ϕ, ψ, and y, and argue in �y`1:

Suppose that �ypNxkyϕ_ Nxkyψq, i.e.

�y
`

Dx
`

�x`kϕ^ @u ă x3Π1
u J

˘

_ Dx
`

�x`kψ ^ @u ă x3Π1
u J

˘˘

The latter implies

�yDx
`

p�x`kϕ_ �x`kψq ^ @u ă x3Π1
u J

˘

Applying Lemma 5.4.4 with ϑpxq “ �x`kϕ_�x`kψ, we get �yp�y`kϕ_�y`kψq.
Since we are in �y`1, and �y`kϕ_ �y`kψ is Σ1, we obtain �y`kϕ_ �y`kψ by
reflection. �

5.4.8. Proposition. I∆0`exp $ pχ�ϕq ^ pχ�ψq Ñ χ�Hxkyϕ^Hxkyψ, where
χ, ϕ, and ψ are regarded as internal variables ranging over sentences.

Proof: Argue in I∆0`exp. Fix χ, ϕ, and ψ, and assume χ � ϕ and χ � ψ. By
Theorem 2.1.12, we have @y�pχÑ 3yϕq and @y�pχÑ 3yψq, whence also

@y�pχÑ 3yϕ^3yψq.

Using contraposition, it follows from Lemma 5.4.7 that

�y`1

`

3y`kϕ^3y`kψ Ñ 3ypHxkyϕ^ Hxkyψq
˘

.

Combining the above and using monotonicity of �y, we have

@y�pχÑ 3ypHxkyϕ^ Hxkyψqq,

and so finally χ� pHxkyϕ^ Hxkyψq by Theorem 2.1.12. �
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5.5 Modal principles

This section studies the supremum adapters from a modal logical perspective.
Section 5.5.1 deals with the provability logic of a supremum adapter, and Section
5.5.2 with the joint provability logic of a supremum adapter together with ordinary
provability.

5.5.1 Provability logic

Note first that each Nxky is a cross between ordinary and 1-provability. Dropping
the Π1-oracle from the definition of Nxky yields the provability predicate:

�rksϕ :“ Dx p�x`kϕ^ @y ă x3yJq .

For k ě 0, IΣ1 $ �rksϕ Ø �ϕ. The direction from left to right is obvious. For
the other direction, argue in IΣ1, and suppose �ϕ, i.e. �xϕ for some x. By the
least number principle for Σ1-formulas, we can assume that x is the least with
this property. Since k ě 0, we have �x`kϕ by monotonicity. If for some y ă x,
�yK, then also �yϕ, contradicting the minimality of x. Thus @y ă x3yJ, and
so �rksϕ as required.

In contrast, for k ă 0, we have IΣ1 $  �rksK. To see that, note that  �rksK
is the sentence

@x p�x`kK Ñ Dy ă x�yKq .

Argue in IΣ1, assuming �x`kK. Since  �0K by reflection, it must be that
x` k ą 0. Since k ă 0, it is clear that x ` k ă x, thus we can take x ` k
for y. It is not difficult to see that the formula �r´1s is provably equivalent in IΣ1

to the Feferman provability predicate Mf.
Similarly to their pure-blooded relatives, the Nxky’s are naturally divided into

two classes. For k ě 0, Nxky behaves like the ordinary provability predicate,
whereas for k ă 0, Nxky behaves like Feferman provability predicate. We shall,
from now on, write Ng for Nxky with k ě 0, and Nf for Nxky with k ă 0. The
symbol N is used as a common name for Ng and Nf .

5.5.1. Lemma. i. If PA $ ϕ, then PA $ Nϕ

ii. I∆0`exp $ @ϕ p�0ϕÑ Nϕq

iii. I∆0`exp $ @ϕ pNpϕÑ ψq Ñ pNϕÑ Nψqq

Proof: (i) follows from (the informal version of) Lemma 5.4.5(ii). For (ii) note
that by monotonicity, we have for all k, �0ϕÑ p�0`kϕ^ @y ă 03Π1

y Jq. Clause

(iii) follows by monotonicity together with the HBL-conditions for �x. �

Recall the provability logic GL, formulated in the language L� of propositional
logic together with a unary modality �. We consider arithmetical realisations
mapping the modality � to the formula Ng.
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5.5.2. Lemma. If GL $ A, then I∆0`exp $ A˚ for all arithmetical realisations ˚.

Proof: Given Lemma 5.5.1, it suffices to show I∆0`exp $ NgpNgϕÑ ϕq Ñ Ngϕ.
The latter follows by the usual argument — see the proof of Theorem 2.1.9 —
from I∆0`exp $ NgϕÑ NgNgϕ. We reason as follows:

NxkyϕÑ �y`kϕ^ @u ă y3Π1
u J

Ñ �py`kq .́ kNxkyϕ Lemma 5.4.5(ii)

Ñ �yNxkyϕ since k ě 0

Ñ �y`kNxkyϕ monotonicity

Ñ NxkyNxkyϕ

The above argument also works when ϕ is an internal variable ranging over sen-
tences. �

Thus GL is arithmetically sound with respect to Ng. In Chapter 6, it is shown
that GL is the provability logic of Nx0y.

5.5.3. Question. Is GL arithmetically complete with respect to each Ng?

Recall the provability logic F of the Feferman provability predicate, formulated
in the language of propositional modal logic containing a unary modality M, and
axiomatised by adding to K the following:

pF1q  MK

pF2q MAÑ MppMB Ñ Bq _ MAq

We consider arithmetical realisations mapping the modality M to the formula Nf .

5.5.4. Lemma. If F $ A, then PA $ A˚ for all arithmetical realisations ˚.

Proof: In view of Lemma 5.5.1, it suffices to show:

i. IΣ1 $ HfJ

ii. PA $ NfϕÑ Nf ppNfψ Ñ ψq _ Nfϕq

(i) Note that HxkyJ is the sentence @x p�x`kK Ñ Du ă x�Π1
u Kq. Argue in IΣ1,

assuming �x`kK. The latter implies �Π1
x`kK. Since 3Π1

0 J by reflection, it must
be that x` k ą 0. Since k ă 0, clearly x` k ă x; thus we may take x` k for u.

(ii) Let k1 ă 0, and fix some ψ and n with ψ P Πn. Recall that µ was defined
to be the least x such that IΣx is 1-inconsistent. In Section 5.4.1, it was explained
that Nxk1y can be viewed as the provability predicate of IΣµ`k1 :

PA $ @ϕ
`

Nxk1yϕØ �µ`k1ϕ
˘

.
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Since k1 ă 0, µ ` k1 is defined to be µ .́ k, where k “ |k1|. Reasoning in PA,
µ is nonstandard, whence µ ą k, and so µ .́ k “ µ ´ k. In order to show
PA $ Nxk1yϕÑ Nxk1y

`

pNxk1yψ Ñ ψq _ Nxk1yϕ
˘

, it thus suffices to show

PA $ �µ´kϕÑ �µ´k pp�µ´kψ Ñ ψq _ �µ´kϕq .

We argue in PA, assuming �µ´kϕ for some ϕ. Suppose first µ “ 8. In this case,
�µχØ �µ´kχØ �χ for all χ. Thus it suffices to show ��µ´kϕ. We have:

�µ´kϕÑ �ϕÑ �xϕÑ �x`kNxk1yϕÑ ��µ´kϕ,

where the third implication follows by Lemma 5.4.5(ii). Let us now assume µ ă 8.
We argue in �µ´k:

From the outside world, we have � 9µ´kϕ by Σ1-completeness. By reflection,
µ ě 9µ´ k. We consider two cases:

paq µ ě 9µ. In this case �µ´kϕ follows from � 9µ´kϕ by monotonicity.

pbq µ ă 9µ. In this case µ ´ k ă 9µ ´ k. Assuming �µ´kψ, we thus obtain ψ
by reflection. Here we also use that ψ is Πn and so also Π 9µ`2 — since n
is standard but 9µ nonstandard (from the external point of view). �

5.5.5. Question. Is F arithmetically complete with respect to Nf?

5.5.2 Supremum adapters and ordinary provability

We establish some principles for the joint provability logic of N and �.

5.5.6. Lemma. i. I∆0`exp $ NϕÑ �ϕ

ii. I∆0`exp $ �ϕÑ N�ϕ

iii. I∆0`exp $ �p�ψ Ñ Nϕq Ø �p�ψ Ñ ϕq

iv. I∆0`exp $ �NϕØ �ϕ

Proof: (ii) By Σ1-completeness and Lemma 5.5.1(ii):

I∆0`exp $ �ϕÑ �0�ϕÑ N�ϕ.

(iii) It follows from Theorem 5.4.3 that I∆0`exp $ ϕ ” Hϕ. Since 3ψ is Π1,
Theorem 2.1.12 tells us that

I∆0`exp $ �pHϕÑ 3ψq Ø �pϕÑ 3ψq.

(iii) follows from the above by contraposition and renaming ϕ, ψ. (iv) follows
from (iii) by taking J for ψ. Inspecting the proof, it is clear that clauses (ii)-(iv)
also hold when ϕ and ψ are regarded as internal variables. �

Lemmas 5.5.1 and 5.5.6 imply that Ng and � satisfy the axioms and rules of
GLT, verifiably in I∆0`exp. We can thus apply Theorem 3.7.12 to obtain:
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5.5.7. Theorem. The closed fragment of GLT is arithmetically complete with
respect to � and Ng.

5.5.8. Corollary. PA & �K Ñ NK

Proof: The statement for Ng follows from Theorem 5.5.7, since GLT & �K Ñ MK
by Lemma 3.3.4. As for Nf , note that PA $ @ϕpNxuyϕ Ñ Nxkyϕq whenever
u ă k; therefore PA $ @ϕpNfϕ Ñ Ngϕq. PA $ �K Ñ NfK would thus imply
PA $ �K Ñ NgK. �

By Lemma 5.5.6(iii), the joint provability logic of Ng and � contains the
principle

�p�B Ñ MAq Ø �p�B Ñ Aq.

It is not difficult to see that GLT $ �p�B Ñ Aq Ñ �p�B Ñ MAq. However,
using Theorem 3.3.3, it can be shown that GLT & �p�B Ñ MAq Ñ �p�B Ñ Aq.
Let S be the principle �p�B Ñ MAq Ñ �p�B Ñ Aq. Recall axiom pT4q of
GLT: �MA Ñ �A. Taking J for B, we see that pT4q is derivable from pSq over
K. Denote by GLS the system obtained from GLT by replacing axiom pT4q with
axiom pSq.

5.5.9. Question. Does GLS have a Kripke semantics?

5.5.10. Question. Is GLS arithmetically complete with respect to � and Ng?

5.5.11. Question. What is the joint provability logic of � and Nf?

5.6 Transfinite iterations

We conclude with some observations about the transfinite iterations of supremum
adapters. The results in this section are due to F. Pakhomov.

We note first that every ω-iteration of a supremum adapter proof can be
converted into an ordinary proof.

5.6.1. Proposition. PA $ @ϕ pNωϕÑ �ϕq

Proof: Fix k P Z. We have PA $ @ϕ pNω
xkyϕ Ñ Dx�Nxϕq from the definition of

Nω
xkyϕ and Lemma 5.5.6(i). Thus it suffices to show PA $ @x @ϕ p�Nx

xkyϕÑ �ϕq.
We argue in PA, by induction on x. If x “ 0, then Nx

xkyϕ is ϕ, so the claim triv-

ially holds. Assume now that @ψp�Nx
xkyψ Ñ �ψq. To prove the claim for x ` 1,

suppose that �Nx`1
xky ϕ for some ϕ. This implies �NxkyNxxkyϕ, whence by Lemma

5.5.6(iv), �Nxϕ, and so finally �ϕ by the induction assumption. �
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The remaining results in this section hold for specific supremum adapters only.
Section 5.6.1 is concerned with Nx0y. Recall (Theorem 4.2.19) that for k ě 1, the
slow provability predicate Mxky is an ε0-root of �, i.e. PA $ @ϕ p�ϕØ Mε0

xky ϕq. An
analogue of the right to left direction is shown for Nx0y: ε0-iterations of Nx0y-proofs
can be converted into ordinary proofs (Theorem 5.6.5). However conversion into
the opposite direction fails (Theorem 5.6.7).

Section 5.6.2 is concerned with Nxky, where k ě 1. We show that each such
Nxky is an ω-root of �: PA $ @ϕ p�ϕ Ø Nω

xkyϕq. Recall (Proposition 4.2.18) that
for k ě 2, the slow provability predicate Mxky is also an ω-root of �. The fact that
a supremum adapter has this property is, in a sense, more surprising: it implies
that Nxky, while being Σ3, becomes Σ1 when iterated up to ω.

5.6.1 IΣµ-proofs

Unless indicated otherwise, the Greek variables α, β, γ, etc. range over elements
of an elementary linear ordering pD,ăq, as in Section 2.4.1. Ordinals α ď ε0 are
assumed to be represented in I∆0`exp by their Cantor normal forms. For these
ordinals, we write ă instead of ă. To improve readability, we write N for Nx0y
throughout Subsection 5.6.1.

The following lemma can be seen as a generalisation of Lemma 5.4.5(i), ac-
cording to which I∆0`exp $ @x@ϕ p�xNϕØ �x�xϕq.

5.6.2. Lemma. I∆0`exp $ @x@α@ϕ p�xNαϕØ �x�αxϕq

Proof: By reflexive induction, it suffices to show in I∆0`exp that for every α,

�0@β ă α @ϕ p�xN
βϕØ �x�

β
xϕq Ñ @ϕ p�xN

αϕØ �x�
α
xϕq. (5.14)

We argue in I∆0`exp, and fix some α. The antecedent of (5.14) implies

�0 @ϕ
`

Dβ ă α�xN
βϕØ Dβ ă α�x�

β
xϕ

˘

.

Using monotonicity, it follows that

@ϕ�x
`

Dβ ă α�xN
βϕØ Dβ ă α�x�

β
xϕ

˘

.

With the HBL-conditions for �x, we obtain from the latter

@ϕ
`

�xDβ ă α�xN
βϕØ �xDβ ă α�x�

β
xϕ

˘

. (5.15)

Note that the formula Dβ ă α�yNβϕ is Σ1 and monotone (in y). By Theorem
5.4.4, we thus have

�xDy
`

Dβ ă α�yN
βϕ^ @u ă y3Π1

u J
˘

Ø �xDβ ă α�xN
βϕ. (5.16)
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The left hand side is logically equivalent to �xDβ ă α Dy
`

�yNβϕ^ @u ă y3Π1
u J

˘

,
i.e. to �xDβ ă αNNβϕ. Thus it follows from (5.16) that

@ϕ
`

�xDβ ă αNNβϕØ �xDβ ă α�xN
βϕ

˘

.

Combining the above with (5.15) we obtain

@ϕ
`

�xDβ ă αNNβϕØ �xDβ ă α�x�
β
xϕq

˘

i.e. @ϕ p�xNαϕØ �x�αxϕq as required. �

5.6.3. Lemma. I∆0`exp $ @x @ϕ @α ă ε0 p�
α`1
x ϕÑ �ϕq

Proof: Argue in I∆0`exp, fixing x, ϕ, and α as above. Argue in �:

We show first that

@β ă α ` 1
`

@γ ă β p�γxϕÑ ϕq Ñ p�βxϕÑ ϕq
˘

(5.17)

Fix β ă α`1, assume @γ ă β p�γxϕÑ ϕq, and suppose �βxϕ. If β “ 0, then we
have ϕ immediately from the definition of �βxϕ. If β ‰ 0, then Dγ ă β �x�

γ
xϕ.

Since x is external, we have �γxϕ by reflection, and thus ϕ by assumption.

We are reasoning in PA and α ă ε0. Using TIΣ1-pα ` 1q, it thus follows from
(5.17) that @γ ă α ` 1 p�γxϕÑ ϕq. In particular, �αxϕÑ ϕ.

Back in I∆0`exp, we have shown �p�αxϕ Ñ ϕq. It follows that ��αxϕ Ñ �ϕ,
whence �α`1

x ϕÑ �ϕ by Lemma 2.4.8. �

The following can be seen as a generalisation of Lemma 5.5.6(iv), according
to which I∆0`exp $ @ϕ p�ϕØ �Nϕq.

5.6.4. Lemma. I∆0`exp $ @α ă ε0@ϕ p�ϕØ �Nαϕq

Proof: Argue in I∆0`exp, and let α ă ε0. Suppose first �ϕ, and let x be such
that �xϕ. By Lemma 2.4.6(iii),(vi) we have �x�

α
xϕ, whence �xNαϕ by Lemma

5.6.2, and so �Nαϕ as required. For the other direction, let x be such that �xNαϕ.
Then �x�

α
xϕ by Lemma 5.6.2, thus �α`1

x ϕ, and so �ϕ by Lemma 5.6.3. �

5.6.5. Theorem. I∆0`exp $ @ϕ pNε0ϕÑ �ϕq.
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Proof: Argue in I∆0`exp. We show that for all α ă ε0, NNαϕ Ñ �ϕ. Fix
α ă ε0. By Lemma 5.5.6(i), we have that NNαϕ implies �Nαϕ, and so �ϕ follows
by Lemma 5.6.4. �

We now show that ordinary proofs cannot generally be converted into trans-
finite iterations of N-proofs. In the lemmas below, the Greek letters range over
elements of an arbitrary elementary linear ordering pD,ăq. We assume that, ver-
ifiably in I∆0`exp, pD,ăq has a least element, denoted by 0. We denote by spαq
the unique immediate successor of α, i.e. an element D for which spα, βq holds.

5.6.6. Lemma. I∆0`exp ` TIΠ1- spαq ` 3Π1J $ @x@ψ p3xψ Ñ 3x3
α
xψq

Proof: Argue in I∆0`exp ` TIΠ1-α ` 3Π1J. Fix x and ψ, and assume 3xψ.
We show by transfinite induction on β ă spαq that 3x3

β
xψ. For β “ 0 the claim

is immediate from the definition of 3β
xψ. Supposing that β is a successor, let γ be

such that spγ, βq. By the induction assumption, we have 3x3
γ
xψ which by Lemma

2.4.6(vi) is equivalent to 3β
xψ. Since this is a Π1-sentence, we have �Π1

x 3β
xψ. Sup-

posing that �x�
β
x ψ, we would therefore have �Π1

x K, contradicting that 3Π1J.
Thus it must be that  �x�

β
x ψ, i.e. 3x3

β
xψ as required. Finally, suppose that β

is a limit ordinal. Then by assumption we have @δ ă β3x3
δ
xψ. Since this is a Π1-

sentence, we obtain 3x@δ ă β3x3
δ
xψ, i.e. 3x3

β
xψ, reasoning exactly as above. �

5.6.7. Theorem. If TIΠ1- spαq is consistent with PA ` 3Π1J, then there is a
sentence ϕα with PA & �ϕα Ñ Nαϕα.

Proof: Suppose that TIΠ1- spαq is consistent with PA ` 3Π1J. We show that
there is a sentence ϕα and a model M of PA with M ( �ϕα ^ Nαϕα. Let

ϕα :“  
`

TIΠ1-α ^3Π1J
˘

,

and let M be a model of PA with M ( �ϕα ^  ϕα. To see that M exists, note
that PA $ �ϕα Ñ ϕα would imply PA $ ϕα by Löb’s Theorem, contradicting our
assumption that PA` ϕα is consistent.

Since PA is essentially reflexive, we have M ( 3n ϕα for every standard
n, whence by overspill M ( 3m ϕα for some nonstandard m. By Lemma
5.6.6, M ( 3m3

α
m ϕα, and therefore M ( 3mHα ϕα by Lemma 5.6.2. Since

M ( �ϕα, we have M ( 3m p�ϕα ^ Hα ϕαq by Σ1-completeness of �m. In other
words M thinks that the theory IΣm`�ϕα`Hα ϕα is consistent. By Theorem
2.1.13, there is an end-extension M1 of M with M1 ( PA (from the external point
of view) and M1 ( �ϕα ^ Hα ϕα. �

Theorem 5.6.7 implies that for every α, there is some sentence ϕα such that
PA & �ϕα Ñ Nαϕα. We show next that there is no single ϕ that works for all
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such α. This result relies on Turing’s Completeness Theorem for ordinal logics.
Kleene’s O is a system of ordinal notations; it contains a (not necessarily unique)
notation for every recursive ordinal.

5.6.8. Theorem ([Tur39]). For any true Π1-sentence π, there is an ordinal
notation c P O with |c| “ ω ` 1, and such that IΣ1 $ 3c

1J Ñ π. �

An inspection of the proof of Theorem 5.6.8 shows that the ordering corre-
sponding to |c| is elementary. We can thus reason about �c using the results of
Section 2.4.2.

5.6.9. Theorem. For any ϕ, there is an ordinal notation c P O with |c| “ ω`1,
and such that PA $ � ϕÑ Nc ϕ.

Proof: If PA $  ϕ, then PA $ N ϕ, whence by Lemma 2.4.7, PA $ Nc ϕ,
and so clearly also PA $ � ϕ Ñ Nc ϕ. Assume now that PA &  ϕ. Then
3ϕ is a true Π1-sentence, whence by Theorem 5.6.8 there is some c P O with
|c| “ ω ` 1 and IΣ1 $ 3c

1J Ñ 3ϕ. By the HBL-conditions for �c, we have
IΣ1 $ 3c

1ϕÑ 3c
1J. Using reflection, we see that IΣ1 $ @ψ p�1ψ Ñ Nψq, whence

by Lemma 2.4.7,
IΣ1 $ H

cϕÑ 3c
1ϕ.

Combining the above yields IΣ1 $ HcϕÑ 3ϕ i.e. IΣ1 $ � ϕÑ Nc ϕ. �

5.6.2 ω-roots of ordinary provability

We consider Nxky with k ě 1. We shall here write N for such Nxky.

5.6.10. Lemma. PA $ @ϕ p�xϕÑ Nx`1ϕq.

Proof: We argue in PA, by induction on x. If x “ 0, the claim holds by Lemma
5.5.1(ii). So let us assume @ψ p�xψ Ñ Nx`1ψq. To show the claim for x ` 1,
suppose �x`1ϕ. By Lemma 5.4.5(ii), �x`1ϕÑ �px`1q .́ kNxkyϕ. If k ě 1, it is clear
that px ` 1q .́ k ď x. Using monotonicity, we thus have �x`1ϕ Ñ �xNϕ, and
so �xNϕ. Taking Nϕ for ψ, the induction assumption gives us Nx`1Nϕ, and so
Nx`2ϕ by Lemma 2.4.8. �

The following is an immediate consequence of Lemmas 5.6.10 and 5.6.1:

5.6.11. Proposition. PA $ @ϕ p�ϕØ Nωϕq �

5.6.12. Question. What can be said about transfinite iterations of Nxky for
k ă 0?





Chapter 6

A Solovay function for the least
1-inconsistent subtheory of PA

The provability predicate M, introduced in Section 5.4 as Nx0y, is defined as:

Mϕ :“ Dx
`

�xϕ^ @y ă x3Π1
y J

˘

.

We recall that M is useful for obtaining suprema in the lattice of interpretability
degrees of finite extensions of PA (Theorem 5.4.3), and that it can be seen as the
provability predicate of IΣµ, where µ is the least x such that IΣx is 1-inconsistent
(Section 5.4.1). In this chapter, we show that the provability logic of M coincides
with that of the ordinary provability predicate of PA, i.e. the Gödel–Löb prova-
bility logic GL. While arithmetical completeness of GL with respect to ordinary
provability is established by using a single Solovay function, our proof for M relies
on a uniformly defined infinite sequence of such functions.

6.1 Introduction

We are interested in the PA-provable propositional schemata involving M, i.e. the
provability logic of M. We consider arithmetical realisations mapping the modality
� of GL to the provability predicate M, and show the following:

6.1.1. Theorem. GL $ A iff for all arithmetical realisations ˚, PA $ A˚.

Arithmetical soundness, i.e. the left to right direction of Theorem 6.1.1, is
Lemma 5.5.2. The proof of the other direction proceeds, as usual (see the proof
of Theorem 2.3.2), by showing that any finite Kripke frame for GL can be suitably
embedded into PA. Our proof is closely related to Beklemishev’s arithmetical
completeness proof for GLP ([Bek11]). The latter uses a sequence phiqiăm of
Solovay functions, where m is some standard number. In contrast, we need an
infinite sequence phyqyăω of such functions, uniformly defined by a single formula.

99
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We start with an informal description of the construction, based on the view
of M as provability in IΣµ (Section 5.4.1). Given a finite GL-frame F “ xW,ăy
with root 0, we consider a family of Solovay functions phyqyăω climbing up the
accessibility relation ă of F . The function h0 is the usual Solovay function
for I∆0`exp: it starts at 0 and moves upon the emergence of I∆0`exp-proofs
concerning its own limit. Similarly, each hy`1 is like the usual Solovay function
for IΣy`1, except that it starts where the previous function hy came to rest.

We write x : �yϕ to mean that x is (the code of) a �y-proof of ϕ. Given a
reasonable coding of proofs, we have that the formula x : �yϕ is elementary, and
furthermore that every x is the proof of at most one sentence.

Letting `y denote the limit of hy, we would like the functions phyqyăω, with
hy : ω Ñ W , to satisfy:

h0p0q “ 0, hy`1p0q “ `y, and

hypx` 1q “

#

a if hypxq ă a and x : �y`y ‰ a,

hypxq otherwise.

We are interested in the value `µ, i.e. the limit of the function hµ, where `µ is
defined to be limyÑ8 `y in case µ “ 8. We would like to to show that the sentence
`µ “ a is a natural arithmetical representative for the node a, in the sense that
for some theory T Ď PA,

i. if a ‰ 0, then T $ `µ “ aÑ �µa ă `µ,

ii. if a ă b, then T $ `µ “ aÑ 3µ`µ “ b.

It might seem, at first sight, that T has to be at least as strong as IΣ2: as seen
in the previous chapter (Theorem 5.4.2), the existence of µ is not known to IΣ1.
Moreover, each function hy`1, as presented above, is genuinely more complex
than the usual Solovay function: it is defined by using the limit of hy, the natural
representation of which is at least Σ2. It is therefore not obvious that the basic
properties of hy and `y can be verified in I∆0`exp or even IΣ1. By tweaking the
construction we shall nevertheless succeed in making everything work smoothly
in I∆0`exp.

6.2 A multi-stage Solovay function

Fix a GL-frame F “ xW,ăy. We start by defining an auxiliary function hy,a
— the Solovay function for �y, starting off at node a (where both y and a are
parameters represented by free variables).

6.2.1. Definition. (I∆0`exp) For y ă ω, a P W , the function hy,a : ω Ñ W is
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defined by:

hy,ap0q “ a

hy,apx` 1q “

#

b if hy,apxq ă b and x : �y` 9y ‰ b,

hy,apxq otherwise.

The formula `y ‰ b (Definition 6.2.3 below) depends on the formula χ representing
the family of functions phy,aqyăω,aPW . The self-reference in the definition of hy,a is
handled, as usual, by the Fixed Point Lemma. We note here that the definition
of hy,a only relies on the gödelnumber of ` 9y ‰ b, and the latter can be obtained
from y, b and xχy by a function whose totality is known to I∆0`exp.

It follows from Theorem 2.1.4 — for example, by using that W is finite —
that the function hpy, a, xq “ hy,apxq is elementary (∆exp

0 ) and hence provably
total in I∆0`exp, with its defining equations also provable in I∆0`exp.

We write limhy,a “ b for the formula

Dx hy,apxq “ b^ @x hy,apxq ĺ b.

Since hy,apxq is elementary, we have that limhy,a “ b is provably equivalent in
I∆0`exp to a ∆0pΣ1q-formula. The formula limhy,a “ b states that b is the ĺ-
largest element in the range of hy,a. In view of the following lemma, we can think
of limhy,a “ b as saying that b is the limit of hy,a.

6.2.2. Lemma. i. I∆0`exp $ x1 ď xÑ hy,apx
1q ĺ hy,apxq

ii. I∆0`exp $ D!b limhy,a “ b

Proof: (i) is proven by internal induction on x. Since hy,apxq ĺ hy,apx ` 1q by
definition, the inductive step follows by using the transitivity of ĺ.

(ii) Since ĺ is antisymmetric, uniqueness is immediate from the definition of
limhy,a. For existence, we show by external induction on the converse of ă that
for all c P W ,

I∆0`exp $ hy,apxq “ cÑ Db limhy,a “ b.

This is sufficient, since I∆0`exp proves that hy,ap0q “ a. From (i) we have that

I∆0`exp $ hy,apxq “ cÑ p@x1 ě x hy,apx
1
q “ c_ Dx1 ě x c ă hy,apx

1
qq . (6.1)

Argue in I∆0`exp, assuming hy,apxq “ c. If the first disjunct in (6.1) holds
then, using (i), we have limhy,a “ c, while if the second disjunct holds, then
Db limhy,a “ b by the induction assumption. Thus in either case Db limhy,a “ b
as required. �



102 Chapter 6. A Solovay function

6.2.3. Definition. (I∆0`exp) The formula `y “ a, with free variable y, is de-
fined as:

Ds ps “ pl0, l1, . . . , lyq ^ l0 “ limh0,0 ^ @z ă y lz`1 “ limhz`1,lz ^ ly “ aq .

A sequence s is a y-witness if it satisfies the first three conjuncts in the formula
above. If s also satisfies the fourth conjunct, then s is a witness for `y “ a. We
write `y ‰ a for the negation of `y “ a.

From Definition 6.2.1, it is clear that any y-witness is a sequence of elements
of W . Since the latter is finite, the leading existential quantifier in `y “ a can be
bounded by a term of the form exppk ¨ yq, where k is a sufficiently large standard
number. Recalling that limhy,b “ c is a ∆0pΣ1q-formula, we thus see that `y “ a
is a ∆exp

0 pΣ1q, where the latter is defined like ∆0pΣ1q, except that the quantifier
bounds are allowed to be of the form @x ď exp z and Dx ď exp z. Reasoning about
the formula `y “ a by induction on y can therefore be problematic in I∆0`exp.
The following lemmas state that several properties of `y “ a are nevertheless
verifiable in I∆0`exp.

6.2.4. Lemma (I∆0`exp). For each y, there is at most one y-witness. In par-
ticular, `y “ a and `y “ b imply a “ b.

Proof: We reason in I∆0`exp. Suppose that pl0, . . . , lyq and pl10, . . . , l
1
yq are both

y-witnesses. We prove, by ∆exp
0 -induction that for all i ď y, li “ l1i. By Lemma

6.2.2(ii) it is clear that l0 “ limh0,0 “ l10. Supposing that li “ l1i, we have again
by Lemma 6.2.2(ii) that li`1 “ limhi`1,li “ limhi`1,l1i

“ l1i`1. �

If follows from Lemma 6.2.4 that we can treat `y as a partial function in
I∆0`exp.

6.2.5. Lemma. i. I∆0`exp $ x ă y ^ `y “ bÑ Da `x “ a

ii. I∆0`exp $ x ă y ^ `y “ bÑ `x ĺ b

iii. I∆0`exp $ `y “ 0 Ø @z ď y @x hz,0pxq “ 0.

iv. I∆0`exp $ `y “ a ă bÑ 3y` 9y “ b

v. I∆0`exp $ `y “ a ‰ 0 Ñ �y` 9y ‰ a.

Proof: We argue in I∆0`exp. (i) Suppose that pl0, . . . , lyq is a witness for `y “ b.
If x ă y, then clearly pl0, . . . , lxq is a witness for `x “ lx, so we can put a “ lx.

(ii) Suppose that pl0, . . . , lyq is a witness for `y “ b. If x ă y, then an x-witness
exists by clause (i), and by Lemma 6.2.4 it is an initial segment of pl0, . . . , lyq.
We prove by ∆exp

0 -induction on z ď y that z1 ă z implies lz1 ĺ lz. It follows from
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the relevant definitions, together with Lemma 6.2.2, that lz ĺ limhz`1,lz “ lz`1.
Assuming lz1 ĺ lz, we thus obtain lz1 ĺ lz`1 by transitivity of ĺ.

(iii) We have @z ď y @x hz,0pxq “ 0 iff @z ď y limhz,0 “ 0 iff pl0, . . . , lzq, with
all li “ 0, is a witness for `z “ 0.

(iv) By Definitions 6.2.1 and 6.2.3, together with the transitivity and anti-
symmetry of ĺ.

(v) Assume that `y “ a ‰ 0, and let pl0, . . . , lyq be the witness for `y “ a.
By ∆exp

0 -induction, let y1 ď y be minimal such that ly1 “ a. Since a ‰ 0, by the
definition of `y and hy,c, we have that �y1`y1 ‰ a. We show �y1`y ‰ a, from which
�y`y ‰ a clearly follows. Argue in �y1 :

Suppose that `y “ a. Since `y1 ‰ a, we have y1 ă y, and so `y1 ă `y by
clause (ii). Let b be such that `y1 “ limhy1,b. We thus have @x hy1,bpxq ă a. By
Σ1-completeness, we also have �y1`y1 ‰ a. By definition of hy1,b, this implies
Dxhy1,bpxq “ a, hence a ĺ limhy1,b i.e. `y ĺ `y1 , a contradiction. �

6.2.6. Lemma. i. I∆0`exp $ `y “ a ‰ 0 Ñ �Π1
y K

ii. I∆0`exp $ 3Π1
x J Ñ `x “ 0

iii. I∆0`exp $ @x ă y3Π1
x J Ñ `y “ limhy,0

iv. I∆0`exp $ limhy,0 “ aÑ �ya ĺ ` 9y.

Proof: (i) Argue in I∆0`exp, letting pl0, . . . , lyq be the witness for `y “ a ‰ 0.
Using ∆exp

0 -induction, we can assume that y is minimal such that ly ‰ 0, thus
either y “ 0 or ly´1 “ 0. It follows that `y “ limhy,0, and so

limhy,0 “ a. (6.2)

Since a ‰ 0, we have by Lemma 6.2.5(v) that

�y`y ‰ a. (6.3)

Reason in �Π1
y :

We claim first that `y “ limhy,0. If y “ 0, this is clear from the definition. If
y ą 0, we have `y´1 “ 0 since, using Lemma 6.2.5(iii), the latter is equivalent to
a true Π1-formula. Since (6.2) is a true conjunction of a Σ1- and a Π1-formula,
it is also true here, whence it follows that `y “ a, contradicting (6.3).

(ii) By reflexive induction (Lemma 2.4.3), it suffices to show:

I∆0`exp $ �0@z ă x p3Π1
z J Ñ `z “ 0q Ñ p3Π1

x J Ñ `x “ 0q.

Argue in I∆0`exp. If x “ 0, then, since `0 “ limh0,0 and the latter exists by
Lemma 6.2.2(ii), we have the claim from clause (i) by contraposition. So let
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x ą 0, and suppose that �0p3
Π1
x´1J Ñ `x´1 “ 0q and 3Π1

x J. Since �x3
Π1
x´1J by

reflection, it follows that �x`x´1 “ 0. Since 3Π1
x J is equivalent to Σ1-reflection

for �x and `x´1 “ 0 is equivalent to a Π1-formula by Lemma 6.2.5(iii), we now
have `x´1 “ 0. But this means that `x is equal to limhx,0, and thus it exists by
Lemma 6.2.2(ii). Finally, `x “ 0 follows by contraposition from clause (i).

(iii) Argue in I∆0`exp, assuming @x ă y3Π1
x J. For y “ 0, `y “ limhy,0 holds

by definition. For y ą 0 we have `y´1 “ 0 from clause (ii) together with the
assumption, and so again by definition `y “ limhy,`y´1 “ limhy,0.

(iv) Suppose that limhy,0 “ a, whence Dxhy,0pxq “ a. Reason in �y:

Using reflection, we obtain @x ă y3Π1
x J, and so `y “ limhy,0 by clause (iii).

By Σ1-completeness we have Dxhy,0pxq “ a from outside, and so a ĺ `y by the
definition of limhy,0. �

6.2.7. Remark. While, as shown above, `y is a partial function in I∆0`exp,
its totality is, in general, not provable in I∆0`exp. Consider the frame with
W “ t0, 1u and 0 ă 1. From the definition of hy,a it is clear that

I∆0`exp $ �yK Ø limhy,0 “ 1. (6.4)

As in the proof of Theorem 5.4.2, we see that there is a model M of I∆0`exp and
a sequence pmiqiPω of elements of M, such that

i. M ( �miK and M ( mi ą mi`1 for all i

ii. For all k PM, M ( �kK if and only if for some i P ω, mi ă k

It follows from the above that M ( �K, and M ( 3nJ for all standard n.
Let m be any element from pmiqiPω, and suppose for a contradiction that

`m “ a is witnessed by s “ pl0, . . . , lmq. If a “ 0, then by Lemma 6.2.5(ii) also
`m´1 “ 0; thus `m “ limhm,0 “ 0. However since M ( �mK, from (6.4) we have
that limhm,0 “ 1. Thus it must be that `m “ 1. Let i ď m be the minimal
coordinate of s with li “ 1 “ `i. Since M ( 30J, it follows from (6.4) that
i ą 0. Thus `i´1 “ limhi´1,0 “ 0, and so  �i´1K by (6.4). On the other hand,
`i “ limhi,0 “ 1, and so �iK, contradicting the properties of M.

Write L “ a for the formula

Dy
`

`y “ a^ @x ă y3Π1
x J

˘

^ @z
`

@x ă z3Π1
x J Ñ `z ĺ a

˘

stating, intuitively, that `µ “ a.

6.2.8. Lemma. i. I∆0`exp $ D!aL “ a

ii. I∆0`exp $ @x ă y3Π1
x J Ñ `y ĺ L
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iii. I∆0`exp $ �z` 9z ĺ L

iv. I∆0`exp $ �zp�
Π1
9z K Ñ L “ ` 9zq

Proof: (i). Since ĺ is antisymmetric, uniqueness is immediate from the defini-
tion. For existence, we show by external induction on the converse of ă that for
all a P W ,

I∆0`exp $ `y “ a^ @x ă y3Π1
x J Ñ Db L “ b.

We note that this is sufficient, for I∆0`exp $ `0 “ limh0,0^@x ă 03Π1
x J. Argue

in I∆0`exp. From `y “ a ^ @x ă y3Π1
x J we have by Lemmas 6.2.5(ii) and

6.2.6(iii):

@z ą y
`

@x ă z3Π1
x J Ñ `z “ a

˘

_ Dz ą y
`

@x ă z3Π1
x J ^ a ă `z

˘

.

If the first disjunct holds, then, using Lemma 6.2.5(ii), we have that L “ a. And
if the second disjunct holds, then Db L “ b follows by the induction assumption.

(ii) Immediate from the definition of L, by using Lemma 6.2.6(iii) to see that
`y exists.

(iii) Within �z we have @x ă z3Π1
x J by reflection, and thus `z ĺ L by clause

(ii).
(iv) Argue in �z, assuming �Π1

z K. By clause (iii) we have that `z ĺ L. Suppose
for a contradiction that `z ă L. In particular, there is some x with

L “ `x ^ @y ă x3Π1
y J.

Since �Π1
z K, the second conjunct implies that x ď z. On the other hand `z ă `x

implies, using Lemma 6.2.5(ii), that z ă x, a contradiction. �

6.2.9. Lemma. If a ă b, then I∆0`exp $ L “ aÑ OL “ b.

Proof: Argue in I∆0`exp. Assuming L “ a, we have

@z
`

@x ă z3Π1
x J Ñ `z ĺ a

˘

(6.5)

If ML ‰ b for some b ą a, then there is some y with �yL ‰ b ^ @x ă y3Π1
x J.

Using (6.5) we have that `y ĺ a ă b. Now �y thinks:

Suppose that `y “ b. Since a ă b, we have b ‰ 0 whence �Π1
y K by Lemma

6.2.6(i). By Lemma 6.2.8(iv), the latter implies L “ `y i.e. L “ b, a contradic-
tion.

Back in I∆0`exp, we conclude �y`y ‰ b, contradicting Lemma 6.2.5(iv). �
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6.2.10. Lemma. If a ‰ 0, then I∆0`exp $ L “ aÑ M a ă L.

Proof: Argue in I∆0`exp. Assume L “ a, and let y be such that

`y “ a^ @x ă y3Π1
x J.

It follows from Lemma 6.2.6(iii)–(iv) that �ya ĺ `y. Given a ‰ 0, we have
�ya ‰ `y by Lemma 6.2.5(v). Combining the above yields �ya ă `y. Since
�y`y ĺ L by Lemma 6.2.8(iii), we obtain �ya ă L, whence also M a ă L. �

6.2.11. Definition. Let M “ xF ,,y be a finite GL-model. The model M0

is obtained by appending a new root 0 to M; the truth values of propositional
formulas at 0 are set arbitrarily. Apply Definition 6.2.1 to M0, and define the
arithmetical ˚ by letting

p˚ :“
ł

M0,a,p

L “ a.

6.2.12. Lemma. Let M and ˚ be as in Definition 6.2.11. For all B P L�, a ‰ 0,

if M, a , B, then I∆0`exp $ L “ aÑ B˚.

Proof: Using Lemmas 6.2.9 and 6.2.10, we prove the claim simultaneously with

if M, a ,  B, then I∆0`exp $ L “ aÑ  B˚

by induction on the structure of B. �

6.2.13. Lemma. i. N ( L “ 0, where N is the standard model.

ii. For all a ‰ 0, L “ a is consistent with PA.

Proof: (i) follows from Lemma 6.2.6(i).
(ii) Note that by (i) and Lemma 6.2.9, we have N ( OL “ a for all a, whence

also N ( 3L “ a (recall that since N ( 3Π1J, we have N ( @ϕ p�ϕØ Mϕq). �

We prove the remaining direction of Theorem 6.1.1.

Proof: If GL & A, then by Theorem 2.2.5 there is a finite rooted GL-model M
with w . A for some w inM. Let ˚ be as in Definition 6.2.11. By Lemma 6.2.12,
I∆0`exp $ L “ w Ñ  A˚. Since PA does not prove L ‰ w by Lemma 6.2.13(ii),
it therefore cannot prove A˚ either. �
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Conclusion

By way of conclusion, let us review the provability predicates studied in this
thesis, and point out some connections between them.

7.1 Fast and slow provability

Chapter 4 studied the notions of fast and slow provability. The formula Mp

represents provability in the theory PA˚ obtained by adding to PA Parikh’s rule:
“from �ϕ, infer ϕ”. While Parikh’s rule is admissible in PA, it was shown by
Parikh ([Par71]) that PA˚ has substantial speed-up over PA.

The notion of slow provability predicate for PA was introduced by Friedman,
Rathjen, and Weiermann ([FRW13]). They showed that the corresponding slow
consistency statement lies strictly between J and 3J in terms of interpretability
strength (see also Corollary 4.2.16). In fact, the slow consistency statement is
the first example of a sentence with this property that is natural, at least in the
sense that its existence does not rely on the Fixed Point Lemma. In contrast,
the fast consistency statement OpJ is strictly stronger in terms of interpretability
strength than 3J (Corollary 4.1.5).

We studied variants of slow provability defined as

Mxkyϕ :“ Dx p�x`kϕ^ Fε0pxqÓq ,

where k is a standard integer. We use Ms as a collective name for these predicates.
It follows from the proof of Solovay’s Theorem that GL is the provability logic

of both Mp and Ms. Lindström ([Lin06]) proved that the joint provability logic of
Mp and � is GLT. We showed (Theorem 4.3.2) that GLT is also the joint provability
logic of � and Ms. The system GLT thus seems to be suitable for capturing the
interaction of two provability predicates, one of which is slower than the other in
some sense.

Lindström ([Lin06]) showed that ordinary provability may be seen as an ω-root
of Parikh provability: PA $ @ϕ pMpϕØ �

ωϕq. We have seen (Proposition 4.2.18)
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that a similar principle characterises the interaction of � with Mxky for k ě 2:
PA $ @ϕ p�ϕ Ø Mω

xkyϕq. Pakhomov showed ([HP16]) that for k ď 1, Mxky is an

ε0-root of �: PA $ @ϕ p�ϕ Ø Mε0
xkyϕq. The results about transfinite iterations of

slow provability predicates have been independently proven by Freund ([Fre16]).

7.2 Supremum adapters

The supremum adapters studied in Chapter 5 are defined as:

Nxkyϕ :“ Dx
`

�x`kϕ^ @y ă x3Π1
y J

˘

,

where k is a standard integer. The reason why Nxky is called a supremum adapter
is that Hxkyϕ^Hxkyψ is an interpretability supremum of ϕ and ψ (Theorem 5.4.3):

I∆0`exp $ pχ� ϕq ^ pχ� ψq Ø χ� Hxkyϕ^ Hxkyψ (7.1)

The symbols Nf and Ng are used as collective names for supremum adapters
indexed by negative and non-negative integers, respectively.

GL is arithmetically sound with respect to Ng (Lemma 5.5.2), and arithmeti-
cally complete with respect to Nx0y (Theorem 6.1.1). The joint provability logic
of � and Ng contains GLT, together with

pSq �p�B Ñ MAq Ñ �p�B Ñ Aq.

Whether the joint provability logic of � and Ng is GLT together with pSq is, for
now, an open question. The modal system F is sound with respect to Nf (Lemma
5.5.4). Determining the provability logic of Nf , as well as its joint provability
logic with �, remain challenges for future work.

Consistency statements

It is an immediate consequence of (7.1) that consistency statements corresponding
to supremum adapters have the same interpretability degree as J:

HgJ ” HfJ ” J.

When it comes to logical strength, on the other hand, we need to distinguish
between HgJ and HfJ.

Since the modal system F is sound with respect to Nf , it is clear that PA $ HfJ;
thus HfJ has the same logical strength as J. This implies that HfJ is not an Orey
sentence: its negation NfK is refutable, whence clearly J 6� NfK.

We have seen (Example 5.2.7) that the Gödel sentence of the Feferman prova-
bility predicate Mf is an Orey sentence. By a similar argument, it can be shown
that the Gödel sentence of Nf is an Orey sentence.
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OpJ

3J

OsJ

HgJ

HfJ OfJ

J

Figure 7.1: The zoo of consistency statements. Arrows stand for the provability or-
dering; dotted lines separate interpretability degrees.

The provability predicate Ng behaves according to the rules and principles of
GL, and so Löb’s Theorem holds for it: PA $ Ngϕ Ñ ϕ implies PA $ ϕ. Given
this, it is clear that PA & HgJ.

We claim that HgJ is an Orey sentence, i.e. PA $ J�NgK and PA $ J�HgJ.
As mentioned above, the latter is an immediate consequence of (7.1). To see that
PA $ J � NgK, note that by Löb’s axiom, PA $ HgJ Ñ HgNgK, whence clearly
PA $ HgJ�HgNgK. It follows from [Fef60, Theorem 6.2] that PA $ Hgϕ�ϕ, and
so we obtain PA $ HgJ� NgK. Since PA $ J� HgJ, we have PA $ J� NgK by
transitivity of �.

Since PA $ J�HgJ but PA & J�OsJ, it is clear that PA & HgJ Ñ OsJ, i.e.
PA & MsK Ñ NgK. Hence the squiggly arrow in Figure 7.2 is irreversible. Figure
7.1 summarises the relations between our consistency statements.

Transfinite iterations

We have seen (Proposition 5.6.11) that similarly like Mxny for n ě 2, the formula
Nxky, for k ě 1, is an ω-root of �: PA $ @ϕ p�ϕ Ø Nω

xkyϕq, and furthermore

(Theorem 5.6.5) that PA $ @ϕ pNε0
x0yϕ Ñ �ϕq. However Nx0y, unlike Mx0y, is not

an ε0-root of �: it follows from Theorem 5.6.7 that PA & @ϕ p�ϕ Ñ Nα
x0yϕq,
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whenever α is an element of an arbitrary elementary linear ordering satisfying
certain minimal assumptions.

7.2.1. Question. What is the relationship between transfinite iterations of slow
provability on the one hand, and those of supremum adapters, on the other?

7.3 Slow provability and supremum adapters

Figure 7.2 gives an overview of our provability predicates. All inclusions except
for the one indicated by the squiggly arrow are straightforward. Taking K for ϕ,
it follows from the observations made in the previous section (see also Figure 7.1)
that all arrows are irreversible. We provide the missing piece of the puzzle.

Nfϕ

Ngϕ

Msϕ

Mfϕ

�ϕ

Mpϕ

Figure 7.2: The zoo of provability predicates. Arrows indicate provable inclusion in
PA. The squiggly arrow indicates provability modulo an index shift.

7.3.1. Remark. Figure 7.2 glosses over the fact that members of the families
Nf , Ng, and Ms are not provably equivalent among themselves. We do have
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I∆0`exp $ @ϕ pMxkyϕ Ñ Mxk1yϕq whenever k ď k1, and similarly for Nxky. How-
ever, as witnessed by the behaviour of transfinite iterations of Nxky and Mxky for
different values of k, the reverse implication does not hold in general.

The following proposition shows that, modulo an index shift, supremum-
adapter proofs can be converted into slow proofs. Recall that the supremum
adapter Nxky and the slow provability predicate Mxky, with k P Z, are defined as

Nxkyϕ :“ Dx
`

�x`kϕ^ @y ă x3Π1
y J

˘

Mxkyϕ :“ Dx p�x`kϕ^ Fε0pxqÓq

7.3.2. Proposition. For all k P Z, I∆0`exp $ @ϕ
`

NxkyϕÑ Mxk`2yϕ
˘

.

Proof: Let k P Z. Reason in I∆0`exp, fixing x and ϕ with �x`kϕ^@y ă x3Π1
y J.

We want to show that Dy
`

�y`pk`2qϕ^ Fε0pyqÓ
˘

. In case x “ 0 or x “ 1, this fol-
lows by monotonicity, for Fε0p0qÓ by Σ1-completeness. Assume now that x ě 2.
Taking y “ x ´ 2, we clearly have �y`pk`2qϕ. It remains to show Fε0px´ 2qÓ.

Since Fε0px´ 2qÒ is a Π1-formula, its truth would imply �Π1
x´1Fε0px´ 2qÒ. By

Lemma 4.2.9(ii), we have �x´1Fε0px´ 2qÓ. Combining the above yields �Π1
x´1K,

contradicting our assumption that @y ă x3Π1
y J. �

We recall from Section 5.4.1 that in IΣ2, Nxky-provability coincides with pro-
vability in �µ`k, where µ is the least x such that �Π1

x K.
Similarly, it is easy to see that Mxky-provability coincides with provability in

�ν`k, where ν is the greatest x with Fε0pxqÓ. If Fε0ÓÓ, we let ν :“ 8, where �8
is defined to be �.

We claim that µ ď ν ` 2. In case Fε0ÓÓ, we have ν “ 8, whence it is clear
that µ ď ν ` 2. If Fε0ÒÒ, then by definition of ν, Fε0pν ` 1qÒ. Since the latter is
a Π1-formula and �ν`2Fε0pν ` 1qÓ by Lemma 4.2.9(ii), this implies �Π1

ν`2K.
Since µ ď ν ` 2, it is clear that �µϕ implies �ν`2ϕ and in general that, as

stated in Proposition 7.3.2, �µ`kϕ implies �ν`pk`2qϕ.

Extremely slow provability

Proposition 7.3.2 reveals a certain relationship between supremum adapters and
slow provability. The following result, established by Paris ([Par80, Theorem 36])
by means of model-theoretic methods, suggests an even deeper connection be-
tween the two:

for all n, IΣ1 $ 3Π1
n J Ø FωnÓÓ.

A proof-theoretic proof of this fact follows from the work of Beklemishev in
[Bek03, Theorem 1, Proposition 7.3, Remark 7.4]. It has been shown by Freund
that the quantifier ranging over natural numbers can be internalised:

7.3.3. Theorem ([Fre15]). IΣ1 $ @x
`

3Π1
x`1J Ø Fωx`1ÓÓ

˘

�
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Theorem 7.3.3 yields an alternative characterisation of supremum adapters in
terms of the fast-growing hierarchy:

IΣ2 $ NxkyϕØ Dx p�x`kϕ^ @y ă x FωyÓÓq

Recall that Mxkyϕ “ Dx p�x`kϕ^ Fε0pxqÓq. We may thus view Nxky as specifying a
notion of “extremely slow” provability — it requires certain fast-growing functions
to be total, not only to converge on a certain input as does Mxky.

This thesis may thus be viewed as a study of provability concepts differing from
ordinary provability in terms of speed. Parikh provability is a speeded up version
of ordinary provability, while both slow provability and supremum adapters are
examples of slowed down provability. We solved a number of questions concerning
these provability predicates, in particular their behaviour as seen from a modal
perspective. However, just as many questions remain open. The latter are listed
in Appendix A; our hope is that they give rise to further exciting research.



Appendix A

List of open questions

Modal Logic

The bimodal system GLS is obtained from GLT by replacing axiom pT4q with
axiom pSq:

�p�B Ñ MAq Ñ �p�B Ñ Aq.

GLS is arithmetically sound with respect to Ng and � (Lemma 5.5.6).
It is easy to see that the axioms of GLS characterise the subclass of GLT-frames

satisfying the following property: if wRa, there is a sequence paiqiăω with a “ a0,
and for all i: wRai, ai`1Qai, and ai has exactly the same R-successors as a. Let
us call this class of frames GLS-frames.

A.1. Question. Is GLS complete with respect to the class of GLS-frames?

Provability logic

The system GLT is arithmetically sound and complete with respect to slow and
ordinary provability, as well as ordinary and fast provability (Theorem 4.3.2). It
is thus natural to ask whether it is also the joint provability logic of slow and fast
provability:

A.2. Question. Is GLT the joint provability logic of Ms and Mp? Consider arith-
metical realisations mapping the modalities M and � to the provability predicates
Ms and Mp respectively. It is clear that such realisations satisfy conditions (1)-(4)
of Definition 4.3.1. Do they also satisfy condition (5)? This would follow if the
schema MpMsϕÑ Mpϕ would be provable in PA.

The system GL is arithmetically sound and complete with respect to the supre-
mum adapter Nx0y (Theorem 6.1.1).

113
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A.3. Question. Is GL arithmetically complete with respect to each Ng?

The modal logic F is arithmetically sound with respect to Nf (Lemma 5.5.4).

A.4. Question. Is F arithmetically complete with respect to Nf?

The bimodal system GLS is arithmetically sound with respect to � and Ng

(Lemma 5.5.6).

A.5. Question. Is GLS arithmetically complete with respect to � and Ng?

A.6. Question. What is the joint provability logic of � and Nf?

Transfinite iterations

Provability predicates Mxky with k ď 1 and k ě 2 may be seen, respectively, as
ε0-roots and ω-roots of ordinary provability (Theorem 4.2.19, Proposition 4.2.18).
Using similar ideas as in the definition of Mxky, a square root of ordinary provability
can be shown to exist (Theorem 4.2.20).

A.7. Question. Do other roots of ordinary provability exist?

Supremum adapters Nxky with k ě 1 are also ω-roots of ordinary provabi-
lity (Proposition 5.6.11). For Nx0y, it only holds that PA $ @ϕ pNε0

x0yϕ Ñ �ϕq

(Theorem 5.6.5, Theorem 5.6.7).

A.8. Question. What can be said about transfinite iterations of supremum
adapters indexed by negative integers?

We have established (Proposition 7.3.2) the following connection between
supremum adapters and slow provability: PA $ @ϕ pNxkyϕÑ Mxk`2yϕq

A.9. Question. What is the relationship between transfinite iterations of slow
provability on the one hand, and those of supremum adapters, on the other?
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Samenvatting

Dit proefschrift behelst een studie van niet-standaard bewijsbaarheidspredikaten
voor de Peano-Rekenkunde (PA). Onder een niet-standaard bewijsbaarheids-
predikaat verstaan we een bewijsbaarheidspredikaat van een theorie die samen-
valt met PA vanuit extern standpunt, maar niet op een wijze die verifieerbaar is
in PA. Ons perspectief wordt vormgegeven door de modale logica: het doel is te
bepalen welke modale principes het gedrag van onze niet-standaard bewijsbaar-
heidspredikaten in PA beschrijven.

Hoofdstuk 3 behandelt de bimodale bewijsbaarheidslogica GLT. We laten
zien dat GLT zonder dat het de eindige model eigenschap heeft beslisbaar is, en
volledig met betrekking tot diverse natuurlijke klassen Kripke-frames. We geven
een karakterisering van het gesloten fragment van GLT, en tonen de aritmeti-
sche volledigheid aan met betrekking tot een ruime klasse van bewijsbaarheids-
predikaten.

Hoofdstuk 4 gaat over theorieën die verkregen zijn uit PA door het versnellen of
vertragen van gewone bewijsbaarheid. We laten zien dat GLT aritmetisch volledig
is met betrekking tot een ruime klasse van bewijsbaarheidspredikaten, waaronder
zowel gewone en snelle als langzame en gewone bewijsbaarheid.

Hoofdstuk 5 bestudeert zogenaamde supremum-adapters. Deze bewijsbaar-
heidspredikaten worden gebruikt bij het verkrijgen van interpreteerbaarheids-
suprema van enkele uitbreidingen van PA. We bespreken eerst de methodolo-
gische problemen die het verrijken van de interpreteerbaarheidslogica ILM van PA
met supremum-operatoren met zich meebrengt. De supremum-adapters verschaf-
fen een passende oplossing voor die vraagstukken. We stellen een aantal modale
principes vast van deze operatoren, en bestuderen het gedrag van transfiniete
iteraties ervan.

In Hoofdstuk 6 wordt aangetoond dat de bewijsbaarheidslogica van een bepaalde
supremum-adapter de Gödel-Löb bewijsbaarheidslogica GL is.

Tenslotte, in Hoofdstuk 7, leggen we een aantal verbanden tussen de supremum-
adapters en de langzame bewijsbaarheidspredikaten.
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Abstract

This thesis is a study of nonstandard provability predicates for Peano Arithmetic
(PA). By a nonstandard provability predicate, we mean the provability predicate
of a theory that coincides with PA from the external point of view, however
not verifiably in PA. Our perspective is shaped by modal logic: the goal is
to determine which modal principles govern the behaviour of our nonstandard
provability predicates in PA.

Chapter 3 deals with the bimodal provability logic GLT. We show that GLT —
while lacking the finite model property — is decidable, and complete with respect
to several natural classes of Kripke frames. We provide a characterisation of the
closed fragment of GLT, and establish its arithmetical completeness with respect
to a wide class of provability predicates.

Chapter 4 is concerned with theories obtained from PA by speeding up or
slowing down ordinary provability. We show that GLT is arithmetically complete
with respect to a wide class of provability predicates, including ordinary and fast,
as well as slow and ordinary provability.

Chapter 5 studies the so-called supremum adapters. These provability predi-
cates are useful for obtaining interpretability suprema of finite extensions of PA.
We first discuss methodological issues arising from the enterprise of adding supre-
mum operators to the interpretability logic ILM of PA. The supremum adapters
provide a convenient solution. We establish some modal principles for these op-
erators, and study the behaviour of their transfinite iterations.

In Chapter 6 it is shown that the provability logic of a certain supremum
adapter is the Gödel-Löb provability logic GL.

Finally, in Chapter 7 we establish some connections between the supremum
adapters and the slow provability predicates.
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Models of Language: Towards a practice-based account of information in na-
tural language

ILLC DS-2012-04: Yurii Khomskii
Regularity Properties and Definability in the Real Number Continuum: ide-
alized forcing, polarized partitions, Hausdorff gaps and mad families in the
projective hierarchy.

ILLC DS-2012-05: David Garćıa Soriano
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