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Chapter 1
Introduction

What men really want is not knowledge but certainty. (B. Russell)

A basic distinction in scientific research is between descriptive, or positive, and
normative sciences. The purpose of the descriptive approach is clear and well-
defined: the definition of models that can describe actual observed phenomena.
The meaningfulness of a normative approach, though, is less uncontroversial.

Generally speaking, we could say that the goal of normative sciences is to state
how things should be, as opposed to positive sciences that aim at describing how
things are. In some fields, such as physics or biology, it would be hardly sensible
to hold any normative stance. The behavior of photons and electrons is just as
it is, and there is no reasonable claim that it should be otherwise. However,
normative questions fundamentally arise in social sciences, like ethics, economics
and philosophy. For instance, defending a certain moral claim amounts to arguing
about how people’s behavior should be.

The present research is centered around the concept of rationality, and the
issue of rational choice under uncertainty in particular. Although we all aim
at choosing rationally throughout our everyday life, it seems that we make our
choices without any established principle of rationality at hand. When we say
that some action was (or was not) rational, we often appeal to intuitive and
undefined insights about what it could be justified as the smart thing to do. But,
of course, different actions may be justified on different bases, which complicates
the problem of determining how one should act in a given decision situation.
Just as a wayfarer that has no fixed star to follow and decides at any crossroad
according to the spur of the moment, social sciences haven’t yet identified the
principle that serves us as the fixed guide in our everyday decisions.

Nowadays, the issue of rational choice is mainly addressed by economists,
psychologists and philosophers, and the state of the art is far from reaching an
agreement on what it means to choose rationally. Our investigation will take

1



2 CHAPTER 1. INTRODUCTION

place primarily in the fields of decision theory and game theory, as those parts of
economics and mathematics that study individual and interactive decision mak-
ing. Decision and game theory, however, do not necessarily have to deal with the
issue of rationality. Both also admit a descriptive perspective, with the aim of
modeling people’s actual behavior in (interactive) decision situations: this is the
direction taken by behavioral economics.

In line with other prominent economists, rationality is intended here as a
normative notion. We could then say that rationality defines the way an agent
should choose, which opens to two possible readings of the term. An objec-
tive viewpoint would advocate that there are choices that are objectively bet-
ter. Loosely speaking, one may be tempted to claim that, in general circum-
stances and apart from concocted exotic cases, not committing suicide is ob-
jectively better than committing suicide, and that choosing to commit suicide
is objectively irrational. This approach may be related to and reminiscent of
the concept of ecological rationality and the work done by Herbert Simon (e.g.,
[Simon, 1955], [Simon, 1990], [Simon, 1992]), and Gerd Gigerenzer and colleagues
(e.g., [Gigerenzer and Brighton, 2009], [Gigerenzer, 2008]). From a subjective
perspective, instead, a decision is rational if it is the best decision in the agent’s
own eyes.1 Rationality thus corresponds to what an agent should choose in the
sense of how the agent would like to choose, or would like to have chosen. In this
sense, an action is rational if the agent does not feel embarrassed about his or her
decision and would not want to choose differently after a further analysis of the
problem. This position is held in particular by [Gilboa, 2015]. In the following
we will often return to both the more objective and ecological view of Simon
and Gigerenzer, and the more subjectivist standpoint of Gilboa, Postlewaite and
Schmeidler.2 These introductory sections are supposed to start defining and clar-
ifying our position on the matter, which is sometimes closer to the view of Gliboa,
Postlewaite and Schmeidler, and other times is more in line with the approach
taken by Gigerenzer and colleagues.

While the purpose of positive sciences is to describe reality, the goal of norma-
tive sciences is to change reality. Dealing with rationality on a normative ground
means arguing for some specific decision making processes that a good decision
maker should adopt, just as normative ethical claims should induce the agents
to adhere to the underlying moral principles. An alternative account would be

1A similar distinction can also be found in [Gilboa et al., 2010], where the authors axiomatize
two different notions of rationality.

2When referring to the group of authors Gilboa, Postlewaite, and Schmeidler, we point to a
series of different works, some of which are not authored by the three of them together. These
works may present slightly different claims, but since they are unified by the same general spirit
we allow ourselves to treat them as representative for a unified perspective on the topic. By the
same reasoning, many papers falls under the label “Gigerenzer and colleagues”. Given the general
ideas that they all share, we will tend to consider them together, as different developments of
the same research direction.
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to consider and simply describe the rationale behind the choices of the decision
maker, just as a descriptive ethics would simply try to list the moral principles at
the basis of the agent’s behavior. To repeat, this research aims instead at investi-
gating which choice principles decision makers should follow and which behavior
they might be willing to exhibit.

1.1 Subjective Expected Utility Maximization

The view that has been dominant in economics for the last five decades relates
the concept of rationality to the maximization of subjective expected utility. As
we will see in detail, this paradigm traces back to the work by [Ramsey, 1926]
and [de Finetti, 1931] on one side, and by [von Neumann and Morgenstern, 1944]
on the other, and culminates in the axiomatization given by [Savage, 1954]. In
short, this school of thought holds that a choice is rational if and only if it
maximizes subjective expected utility, that is: the decision maker should have
(i) a probabilistic belief about the possible states of the world, as well as (ii) a
preference over the consequences that she can attain through her decision which
can be numerically expressed by a subjective utility function over outcomes, and
should finally make the choice that maximizes her utility with respect to her
belief.

The main reason why subjective expected utility (SEU, hereafter) maximiza-
tion became the paradigm of rational choice consists in the axiomatization offered
in [Savage, 1954]. Savage’s theorem is a jewel in itself and represents one of the
best achievements ever reached in mathematical economics: he was able to present
a set of seven axioms on a binary preference relation over the decision maker’s
possible options and to prove that an agent satisfies the axioms if and only if
she can be represented as maximizing a subjective utility for a certain subjec-
tive probabilistic belief. Savage’s axioms do not only look extremely elegant and
logically compelling, they also offer a straightforward equivalence between the
abstract notion of subjective expected utility maximization and the observable
choices of a decision maker. In times when the positivist prescription of reduc-
ing scientific notions to measurable observables was the fundamental approach
in philosophy of science, the latter played a crucial role for the success of Sav-
age’s theory. However, Savage’s axioms have also important drawbacks, which
immediately challenged the identification of rationality with SEU maximization.

SEU maximization corresponds to a concept of rationality that is, in some
respects, rather weak. The standard for rational choice delivered by SEU reduces
the essence of rationality to a matter of internal consistency. SEU never questions
the particular preferences and beliefs of the decision maker: being consistent with
your utility and belief (whatever they are) is all that is required to be rational,
and all subjective utilities and probabilistic beliefs are considered equally rational
by the theory. At the same time, though, SEU maximization may be seen as
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expressing too strong a standard for rational choice. Both these directions of
criticism are expanded and developed in the next section.

1.2 Criticisms of SEU
SEU maximization is often referred to as the Bayesian paradigm in decision the-
ory. Specifically, according to [Gilboa et al., 2012], the Bayesian paradigm in
decision theory consists of four main tenets:

1. The Grand State Space;

2. Prior probability;

3. Bayesian updating;

4. Expected utility maximization.

It is a common view in microeconomics that a state of the world should resolve
all uncertainty. Consequently, all the parameters that are relevant to the eco-
nomic agent must be specified in each possible state. With time, from Savage to
Harsanyi ([Harsanyi, 1967], [Harsanyi, 1968a], [Harsanyi, 1968b]) and to Aumann
([Aumann, 1976]), this view has enlarged the amount of information needed to
be specified in a state, and caused an exponential growth in the number of pos-
sible states. The final outcome of this process is what has been called the Grand
State Space (e.g., [Gilboa et al., 2012]). According to Gilboa, Postlewaite and
Schmeidler, the assumption of the Grand State Space may already be problem-
atic, especially in combination with the second tenet: in some cases, holding
a probability measure over such a space can be hardly feasible for the decision
maker.3

The second tenet states that all the agent’s uncertainty must always be quan-
tified by means of a probability measure over the state space. This requirement
has firstly come under attack from a descriptive standpoint. Ellsberg’s paradoxes
(see Chapter 2) became paradigmatic examples of such a criticism.

The third tenet, namely that agents should update their prior probability ac-
cording to Bayes’ rule, has been considered the most uncontroversial assumption
from a normative point of view, although the claim that agents actually follow
Bayesian updating has also been disproven by empirical data (see, for instance,
[Tversky and Kahneman, 1974]).

Finally, it is assumed in the Bayesian paradigm that rational economic agents
choose the option that maximizes expected utility, given their subjective prefer-
ences and subjective beliefs. The fourth tenet has also been severely confuted by

3For more criticism of the Grand State Space assumption, and the combination of the
first two tenets of the Bayesian paradigm, see [Gilboa et al., 2009], [Gilboa et al., 2012],
[Gilboa and Schmeidler, 1995], and [Gilboa and Schmeidler, 2001].
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many psychologists, economists and philosophers. The renowned Allais’ paradox
(see Chapter 2) made immediately evident that decision makers’ choices aren’t
always compatible with expected utility maximization. The work by Daniel Kah-
neman and Amos Tversky subsequently documented a plethora of experimental
situations in which observed behavior violates not only the tenet of expected
utility maximization, but almost all of the axioms and assumptions of SEU the-
ory (e.g., [Kahneman and Tversky, 1979]). Famously, Amos Tversky used to say
“Give me an axiom and I’ll design the experiment that refutes it.” ([Gilboa, 2010]).

Although SEU theory has been confuted from a descriptive point of view by
empirical evidence, it is the normative appeal of its axioms that still preserves it
as the golden standard of rational choice. The arguments advanced by Gilboa,
Postlewaite and Schmeidler, instead, aim at rejecting subjective expected utility
maximization on a normative ground. Their work mainly focuses on the issue
of rationality of beliefs, and leaves aside questions about the rationality of the
two other components of the theory, that is, subjective preferences and expected
utility maximization as the decision criterion.4 They justify their approach by
the fact that “one may say more about beliefs than about tastes.” Indeed, as they
continue in [Gilboa et al., 2012]: “Rationality does not constrain one to like or to
dislike the smell of tobacco but rationality does preclude the belief that smoking
has no negative health effects.” They support a higher standard of rationality,
that implies the rationality of beliefs: beliefs should be justified by evidence. In
their opinion, the Bayesian paradigm is lacking a theory of belief formation and
a classification of beliefs according to their rationality:

A theory of belief formation could suggest a systematic way of predict-
ing which beliefs agents might hold in various environments. [...] In
particular, we would be able to tell when economic agents are likely
to entertain probabilistic beliefs, and when their beliefs should be
modeled in other, perhaps less structured ways.

This shortcoming makes SEU too weak and too strong at the same time. It is
too weak for the already mentioned reason that whatever belief, if probabilistic,
is considered legitimate and rational. It is too strong because it does not allow
any uncertainty representation different than a probabilistic belief. In line with
the higher standard of rationality that they want to sustain, [Gilboa et al., 2012]
argue that: “Justification of beliefs by evidence offers a criterion for rationality
that need not rank highly specified beliefs as more rational than less specified
ones.”

We fully agree with Gilboa, Postlewaite and Schmeidler on this point, and,
to conclude the pars destruens, we finish with a last quote from [Gilboa, 2015]
which lucidly sums up one of the major difficulties that we also see in the Bayesian
paradigm:

4Similar positions can also be found, among others, in [Levi, 1974] and
[Gardenfors and Sahlin, 1982].
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The Bayesian approach is quite successful at representing knowledge,
but rather poor when it comes to representing ignorance. When one
attempts to say, within the Bayesian language, ‘I do not know’, the
model asks, ‘How much do you not know? Do you not know to degree
.6 or to degree .7?’ One simply doesn’t have an utterance that means
‘I don’t have the foggiest idea’.

It is therefore not at all obvious that rationality – even subjective
rationality – suggests that we select one prior out of all possible ones.
[...] Many would probably agree that they would feel more comfortable
with a choice of a paradigm that can represent ignorance as well as
knowledge.

The pars construens must then consist of possible alternatives for decision making
where the representation of uncertainty need not be probabilistic. Two proposals
along these lines come in particular from the work done by Gilboa and Schmei-
dler in the 1908s. Specifically, [Schmeidler, 1989] gives axiomatic representation
of a decision making based on non-additive probability measures and Choquet
expected utility. [Gilboa and Schmeidler, 1989] instead axiomatize maxmin ex-
pected utility decision criterion with non-unique prior, i.e., situations where the
decision maker acts as if she held a (convex compact) set of prior probabilities
and picked the option that maximizes the minimal expected utility, ranging over
all the priors in the set. From a descriptive point of view, both these alternatives
would for example not rule out behaviors such as those observed in Ellsberg’s
paradoxes, but they primarily stemmed from normative, rather than descriptive,
considerations about the excessive limitations imposed by the Bayesian school.
A detailed exposition of the relevant decision-theoretic literature, including Sav-
age’s and Gilboa and Schmeidler’s axiomatizations as well as the presentation of
Allais’ and Ellsberg’s paradoxes, is introduced in Chapter 2.

1.3 A Brief Overview

In the chapters of Part II, we build on the (normative) assumption that not all
uncertainty can be quantified in a probabilistic fashion, and we try to challenge
the rationality of the two other main components of SEU: subjective preferences
and expected utility maximization as the decision criterion.

In particular, we consider more general decision criteria for situations where
beliefs might be non-probabilistic (that would eventually reduce to expected util-
ity maximization in case of probabilistic uncertainty), and we investigate the
(ecological) rationality of different decision criteria. For our purposes, the di-
rection taken by [Gilboa and Schmeidler, 1989] will be especially relevant: when
beliefs are represented in terms of a set of prior probabilities, maxmin expected
utility is just one among many possible criteria. The approach of the present
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research to the issue of the rationality of decision criteria is ecological, and it is
close in spirit to the work of Herbert Simon and to the school of Gigerenzer and
colleagues. The rationality of different decision criteria is studied and assessed
in relation to the environment where decisions take place, that is also composed
of interactive decision situations in which different criteria have to compete with
each other. Game theory and, more specifically, evolutionary game theory will
thus be the principal tool for this investigation. The necessary background in
(evolutionary) game theory is given in Chapter 3.

On the other hand, subjective preferences suffer from the same weakness that
we have seen for subjective beliefs: all subjective utility functions are equally
rational. All that matters is that choices are consistent with a certain utility and
a certain belief. In our opinion, questions about the rationality of preferences
should also naturally arise here. For instance, when one is thirsty, it does not
seem rational to have a preference for drinking mercury over drinking water. But
on what basis would one consider it irrational? A purely subjectivist approach
would try to defend the indisputability of individual tastes, but there is also a
sense in which some preferences are better than others. This sense, we claim, is
grounded in the notion of evolutionary fitness.

In fact, there is a research direction, recently developed in economics un-
der the name of evolution of preferences, that aims at studying the evolution-
ary competition between different subjective utilities (e.g., [Samuelson, 2001],
[Robson and Samuelson, 2011], [Dekel et al., 2007]). Evolution of preferences has
already proven to be an insightful approach where the existence of apparently
(from an individualistic point of view) irrational preferences can be explained on
the basis of evolutionary and environmental factors (e.g., [Alger and Weibull, 2013]).
Chapter 5, Chapter 6 and Chapter 7 present the main results about the ecological
rationality of different decision criteria and subjective preferences.

To sum up, this study wants to challenge the dominant position that views
subjective expected utility maximization as the norm for rational choice. To that
aim, SEU theory is considered as the combination of three individual compo-
nents: subjective preferences, subjective probabilistic beliefs, and expected util-
ity maximization as the decision criterion. While normative arguments against
the necessity of expressing uncertainty by means of a probability measure have
already been introduced, we are going to question the ecological rationality of the
other two constituents: subjective preference and expected utility maximization
criterion. Finally, some guiding lines for a more realistic theory of rational choice
are proposed in Chapter 8.

1.4 Our Contributions

This section is meant to highlight the main original contributions of this work,
and to help the reader to go through them.
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As already anticipated in the previous section, the main results about eco-
logical rationality are developed in Chapter 5, Chapter 6, and Chapter 7. We
refer the reader directly to those chapters for what we consider the pivot of this
thesis, and we are not going to anticipate here the outcomes of the evolutionary
competitions investigated there. However, we want to stress that we view the
model used to study such an evolutionary competition as a fundamental contri-
bution per se. Although similar approaches can be found in a few recent papers
(e.g., [Zollman, 2008], [Bednar and Page, 2007], [Robalino and Robson, 2016]),
the multi-game model of this thesis, that we call the game of life, had not been
formulated in the full generality that reaches here, for the best of our knowledge.
The novelty and the contribution of the approach in itself is that it allows to en-
compass a (possibly infinite) variety of different (interactive) decision situations,
and to study the evolutionary competition of general ways of making choices in
such a rich and extended environment. In our opinion, this approach to evolu-
tionary game theory would merit closer attention in the future. As we are going
to argue in more detail at the beginning of Chapter 5, the behavioral gambit em-
bedded in single-game models might often be a limitation if we think of evolution
as driven by a series of different interactions, rather than a fixed single one.

In turn, the construction of the model is carefully built from standard notions
of decision theory and (evolutionary) game theory, in order to be presented as
an incremental extension of well-established literature. Chapter 2 and Chapter 3
represent a thorough selection and original exposition of all the background con-
cepts that are needed for the development of the game of life. To give an example
that will be clearer from the reading of the chapters, the foundation of the game
of life with learning of Chapter 6 comes from the notions of Bayesian game, ex
ante and interim equilibrium presented in Chapter 3, and in particular from the
case of incomplete information games under ambiguity introduced in Section 3.3.
The reader that is not familiar enough with these notions and that will try to
immediately jump to the results of Part II will incur the risk of missing substan-
tial ingredients of the arguments. We therefore view the background chapters as
important contributions to the story line of this work. This is obvious for Chap-
ter 4 (that offers a logical analysis of the epistemic structures for reasoning about
rationality used in epistemic game theory), but we also consider the presentation
of Chapter 2 and Chapter 3 fundamental for the best understanding of all that
is developed later.
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Chapter 2

Background on Rational Choice

Economists tend to think they are much, much smarter than histori-
ans, than everybody. And this is a bit too much because at the end of
the day, we don’t know very much in economics. (Thomas Piketty)

Formal decision theory started during the 16th and 17th century along with
the pioneeristic works in probability theory by Pierre de Fermat, Blaise Pascal,
and Christiaan Huygens. To this day, the literature on decision theory has been
increasing exponentially, and is now so vast that an entire book would not be
enough to exhaustively review it. This chapter does not aim to be a comprehensive
overview of the research on rational choice, but rather to lay out the necessary
notions and background for the developments of the following chapters.

2.1 From the Early Days to Savage

Blaise Pascal (1670) It is most likely with [Pascal, 1670]’s wager that many
important ideas of modern decision theory made their first appearance. At that
time, God was a major concern for scientists and philosophers. But while Decartes
and Leibnitz were still seeking after a proof for God’s existence, Pascal decided
to address the issue from a different angle, and gave rise to the first modern
formulation of a decision problem. Instead of the existence of God, Pascal’s point
was whether we should conduct a pious and religious life, or a worldly one. His
framing of the problem is verbal, but it is clearly phrased in terms of a bet between
two acts, as pictured in the table below.

God exists God does not exist
pious eternal happiness constrained life

not pious sorrow unconstrained life

11
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Following Pascal’s argument, the verbal outcomes of the previous matrix may be
expressed in util units as in the next table.

God exists God does not exist
pious ∞ b

not pious c d

The quantities b, c, d are such that: d > b and c > −∞. The bet proposed by
Pascal is then dependent on the degree of belief that the agent has in the existence
of God. Specifically, if we denote by p the agent’s probability assessment for the
existence of God, the expectation from a pious life should be p · ∞ + (1 − p) ·
b, whereas the expectation from a worldly life is p · c + (1 − p) · d. Pascal’s
conclusion is therefore that, for any p ∈ (0, 1], the agent should choose a pious
conduct. Informally stated, if the agent does not fully exclude the possibility of
God existing, and instead gives the existence some nonzero probability, then her
best choice would be to behave in accordance with religious principles.

Remarkably, the behavioral shift from God’s existence to life conduct brought
Pascal to introduce fundamental notions of theory of choice, such as the formaliza-
tion of a decision problem by means of a decision matrix, the use of probabilities
to express subjective degrees of belief, the representation of subjective utilities as
numerical quantities, and the appeal to expected utility maximization for solving
the decision problem.

Christiaan Huygens (1657) Apart from formulating the wave theory of light,
discovering the first of Saturn’s moons, Titan, through a telescope he designed
himself, inventing the pendulum clock and the pocket watch, and other things,
the name of Christiaan Huygens also appears in the foundations of probabil-
ity and decision theory. For our purposes, his main contribution is the ex-
plicit proposal of expected value as the proper criterion to evaluate games of
chance, where probabilities are objectively given. In [Huygens, 1657], Huygens
does not a priori assume that expected value is the suitable criterion to evalu-
ate games of chance, but rather tries to demonstrate its adequacy in different
games by mathematical proofs from more primitive principles. As pointed out by
[Gilboa and Marinacci, 2013], “Huygens’ propositions can be thus viewed as the
very first decision-theoretic representation theorems, in which the relevance of a
decision criterion is not viewed as self-evident, but needs to be justified through
logical arguments based on first principles.”

Daniel Bernoulli (1738) A step forward with respect to Huygens’ expected
value criterion is marked by the work of Daniel Bernoulli, and in particular by his
solution to the Saint Petersburg Paradox in [Bernoulli, 1738], a problem raised
by his cousin Nicolas Bernoulli. The paradox goes as follows: the decision maker
(DM hereafter) is offered a game of chance where a fair coin is tossed until it
comes up Heads, and the prize for DM amounts to 2n ducats, where the nth toss
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is the first time that Heads comes up. Before Daniel Bernoulli’s contribution, the
prevalent opinion about how lotteries and games of fortune had to be evaluated
made appeal to the expected value criterion, as suggested by Huygens. When we
compute the expected value of the Saint Petersburg Paradox, we get:

∞∑
n=1

2n
1

2n
= 1 + 1 + 1 + ... =∞.

Consequently, according to the expected value criterion, a DM would be willing
to pay an infinite amount (so, any amount) of ducats to enter the game. This
conclusion is blatantly counterintuitive. Rather than looking at the objective
value, the solution proposed by Daniel Bernoulli lies on the notion of subjective
utility. As [Bernoulli, 1738] wrote,

But anyone who considers the problem with perspicacity and interest
will ascertain that the concept of value which we have used in this rule
may be defined in a way which renders the entire procedure universally
acceptable without reservation. To do this the determination of the
value of an item must not be based on its price, but rather on the
utility it yields. The price of the item is dependent only on the thing
itself and is equal for everyone; the utility, however, is dependent on
the particular circumstances of the person making the estimate.

Bernoulli observed that the increase in subjective utility that DM experiences
when an additional ducat is added to her amount must be supposed to decrease
as her amount increases. This is the principle of diminishing marginal utility,
which has been a central tenet of economic theory ever since. Formally, this
intuition led Bernoulli to conjecture that utility must be a concave function of
the amount of money m, and he proposed to express it by the logarithm log(m).
With this interpretation, the expected utility of the coin game would be:

∞∑
n=1

log(2n)
1

2n
= log(2)

∞∑
n=1

n
1

2n
= 2 log(2) <∞.

Given m the wealth of DM, the fair price p of the game is computed by equating
DM’s current utility log(m) with the expected utility of her final wealth if she
pays the amount p and enters the game, that is,

log(m) =
∞∑
n=1

1

2n
log(m− p+ 2n).

Intuitively, DM will be willing to enter the game for any price that is lower than
p, and will not enter the game for any price that exceeds p. For example, if we
take DM with initial endowment of 200 ducats and natural logarithmic utility
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function, then DM would accept to enter the game only for prices lower than 9
ducats.1

Daniel Bernoulli’s work represented a major breakthrough for the develop-
ment of economic theory. He formally introduced the notion of subjective utility,
and from then on subjective expected utility has replaced expected value as the
standard criterion for evaluating games of chance.

Frank Plumpton Ramsey (1926) The modern representation of uncertainty
in decision theory and game theory is grounded in the so-called Bayesian ap-
proach, and is heavily indebted to the work done in the 1920s and 1930s by
Frank Plumpton Ramsey and Bruno de Finetti. [Ramsey, 1926] was the first to
explicitly state two main principles that are at the basis of the Bayesian approach.

1. The only sensible measure of subjective degrees of belief in some event E
is DM’s willingness to bet on event E.

2. The only consistent betting behavior of DM is in accordance with the laws
of probability theory.

The first principle endorses a behavioral definition of belief. Simple introspection
is not reliable to discover DM’s beliefs: the only way to measure DM’s beliefs
about a certain event is to check how heavy DM is willing to bet on that event.
As Ramsey noted too, this achievement had already been established in worldly
wisdom since long ago. The old technique of resolving a matter of contention
by challenging the opponent part to bet on her beliefs has probably been used
since the invention of bets themselves. More importantly, the appeal to betting
behavior enables theories of belief to acquire an operational basis that allows to
relate theoretical notions to empirical observations.

The second principle connects the consistency of such a betting behavior with
the use of probability theory to form beliefs. By consistent behavior Ramsey
means a behavior that cannot be exploited by Dutch books. Standard Bayesian-
ism holds that any uncertainty about events or propositions must be quantified
in terms of a probability distribution, and Ramsey’s observation that betting
behaviors at odds with probabilistic beliefs can be Dutch-booked was a central
contribution to the rise of the Bayesian paradigm. The two principles constitute
the core of de Finetti and Ramsey’s subjectivist view of probability theory.

Bruno de Finetti (1931) It is likely that nobody tried to promote and to
justify Bayesianism as the method to reason about uncertainty as did Bruno de
Finetti. He gave many considerable contributions to the fields of probability and
statistics, but his paper from 1931 is especially relevant for the present work.
[de Finetti, 1931] first introduces a binary relation % over an algebra Σ of events

1This example is due to Laplace ([Laplace, 1814]).
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defined on a state space S. The relation is interpreted as qualitative probability,
with E % E ′ denoting that the event E is at least as probable than E ′. The
goal of [de Finetti, 1931] is to state the properties of % to guarantee that for any
events E,E ′ ∈ Σ we can always find a (finitely additive) probability function P
over Σ, such that

E % E ′ if and only if P (E) ≥ P (E ′). (2.1)

The axioms for % used by de Finetti are the following:

d1. % is a total preorder, i.e., complete and transitive.

d2. For all E ∈ Σ, S % E % ∅.

d3. Given any events E,E ′, E ′′ ∈ Σ such that E ∩ E ′′ = ∅ = E ′ ∩ E ′′,
E % E ′ ⇒ E ∪ E ′′ % E ′ ∪ E ′′.

d4. For each n ≥ 1, there is a partition of S into n equally probable events
{Ei}ni=1.

De Finetti was able to prove that if % satisfies d1-d4, then there exists a proba-
bility function P such that

if E % E ′ then P (E) ≥ P (E ′). (2.2)

But his interest was originally the question whether axioms d1-d3 suffice to prove
the result in (2.1). Years later, [Kraft et al., 1959] demonstrated that they do
not, and that d1-d3 are not even sufficient to prove (2.2). The most satisfactory
solution to this problem was given by [Scott, 1964]2, who was able to show that
for % to be realizable by a probability measure, it is necessary and sufficient that
the conditions

1. % is total,

2. ∀E ∈ Σ, S % E % ∅,

3. 1E + 1E1 + ...+ 1En = 1E′ + 1E′1
+ ...+ 1E′n ⇒ E - E ′,

hold for all E,E1, ..., En, E
′, E ′1, ..., E

′
n ∈ Σ whenever Ei % E ′i (with 1 ≤ i ≤ n),

and where 1E ∈ {0, 1}S is the characteristic function of event E ∈ Σ.

Apart from later improvements of the results, the accomplishments of de
Finetti mark one of the first attempts to associate axioms for a qualitative rela-
tion with a quantitative and numerical representation of that relation. Through
this procedure he offered Savage the first qualitative axiomatization of subjective
probabilities in terms of a binary relation over events.

2Although Dana Scott was himself not satisfied by the result in that one of the conditions
is an algebraic sum of characteristic functions, and not a strictly Boolean condition.
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John von Neumann and Oskar Morgenstern (1944)

Behavioral foundations are mathematical results, stating a logical
equivalence between a list of preference conditions and a decision
model. They show that the subjective parameters in the decision
model are the relevant parameters for determining decisions. [Wakker, 2010]

The next landmark in the development of modern decision theory is due to the
joint work of two scholars emigrated from Europe and based at Princeton Univer-
sity, John von Neumann and Oskar Morgenstern. The representation result they
succeeded in proving involves a binary preference relation % over lotteries, and
provides the behavioral foundation of expected utility theory. Given a set X of
possible outcomes, a simple lottery is a probability function with finite support
over the possible outcomes. For x, y ∈ X, we denote by L = {x, p; y, (1− p)} the
lottery that gives outcome x with probability p and outcome y with probability
1−p. It is worth stressing that the set X can be any set of “things”, not necessar-
ily numerical quantities: x might be a cow and y a trip to Hawaii, for example.
In [von Neumann and Morgenstern, 1944], the preference relation is assumed to
satisfy the following properties over the space of all (simple) lotteries ∆(X) on
X:

vNM1. Total preorder : % is complete and transtive.

vNM2. Independence: For L,L′, L′′ ∈ ∆(X) and α ∈ (0, 1),

if L � L′ then αL+ (1− α)L′′ � αL′ + (1− α)L′′.

vNM3. Archimedean: For L,L′, L′′ ∈ ∆(X) such that L � L′ � L′′, it is
always possible to find α, β ∈ (0, 1) such that

αL+ (1− α)L′′ � L′ � βL+ (1− β)L′′.

The representation theorem of [von Neumann and Morgenstern, 1944] states that
the following are equivalent.

1. % satisfies axioms vNM1-vNM3.

2. There exists a function u : X → R such that

L % L′ iff
∑

x∈suppL

u(x)L(x) ≥
∑

x∈suppL′
u(x)L′(x),

where L(x) is the probability given by lottery L to outcome x, and suppL de-
notes the (finite) support of lottery L, that is, the finite set of outcomes that
L gives nonzero probability. Moreover, the function u, often called vNM
utility function, is unique up to positive affine transformations. Through
the vNM utility u over outcomes we can then define the subjective utility
of lotteries u : ∆(X)→ R such that u(L) :=

∑
x∈suppL u(x)L(x).
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We have seen that subjective expected utility had already appeared as the crite-
rion to evaluate chance games and lotteries since the solution of the Saint Peters-
burg Paradox by Daniel Bernoulli, and had been very popular thereafter. But
despite of its convenience, it was not clear why one would exclude other prop-
erties of the utilities’ distribution, such as the variance for instance. The work
by von Neumann and Morgenstern has the merit of founding expected utility
maximization on solid behavioral basis, formulated in terms of axioms on DM’s
preference relation. Their representation theorem is a milestone for the theory of
choice under risk, i.e., for those situations where the probabilities of outcomes are
evidently and objectively given, and DM is not asked any subjective probabilistic
assessment.

Leonard Jimmie Savage (1954) The culmination of Savage’s research un-
doubtedly lies in the book The Foundations of Statistics ([Savage, 1954]).3 There,
from an axiomatic system on the preference relation %, Savage is able to de-
rive subjective expected utility maximization for cases where neither utilities
nor objective probabilities are given. This is a step further with respect to
[von Neumann and Morgenstern, 1944], because the probabilities of the outcomes
are now unknown, and DM does no longer face a decision problem under risk, but
rather a choice under uncertainty. The representation theorem in [Savage, 1954]
rests upon the combination of von Neumann and Morgenstern’s derivation of ex-
pected utility and the axiomatization of subjective probabilities in [de Finetti, 1931].
Savage’s work has been so influential that mainstream economics has been indis-
solubly tied up with the Bayesian paradigm and subjective expected utility max-
imization from then on, and his model is now the standard model of a Bayesian
decision problem.

The beauty and success of Savage’s framework lies in its simplicity. There are
only two primitives: states of the world S (with characteristic element s), and
outcomes X (with characteristic element x). An event E ⊆ S is any subset of S,
which is considered to be endowed with the algebra 2S of measurable events. The
object of DM’s choice are acts. An act is defined as a function f : S → X, and
let F denote the set of all possible acts: F := XS = {f |f : S → X}. It is to be
noticed that all the constant acts (i.e., acts that yield the same outcome in any
state s) are in F . Let then x ∈ F denote the constant act that yields outcome
x ∈ X in any possible state, that is, the act f such that ∀s ∈ S f(s) = x.
Moreover, for event E ⊂ S and acts f, g ∈ F , we denote by f gE the act such that

f gE(s) =

{
g(s) if s ∈ E
f(s) if s /∈ E

3The title reflects the influence of [Wald, 1950]. At that time, the main concern was as
decision theoretic as it was statistical: the search for “the set of principles that [...] an objective
statistical decision rule should satisfy”, in Chernoff’s words ([Bather, 1996]).
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Finally, let f %E g denote the fact that DM prefers f over g given event E ⊆ S.
Formally, %E can be defined by modifying the two acts f and g in such a way
that they agree on the complement Ec := {s ∈ S|s /∈ E}, i.e.,

f %E g if fhEc % ghEc , for h ∈ F .

An event E ⊂ S is then called null if, for every f, g ∈ F , it holds that f ∼E g.
Within this set-up, the preference relation % ⊆ F ×F is supposed to satisfy the
following axioms.

P1. % is a total preorder, i.e., complete and transitive.

P2. For E ⊂ S, and f, g, h, h′ ∈ F , fhEc % ghEc iff fh
′

Ec % gh
′
Ec .

P3. For f ∈ F , x, y ∈ X, and non-null event E ⊂ S, x % y iff fxE % f yE.

P4. For E,E ′ ⊂ S, x, y, w, z ∈ X such that x � y and w � z, yxE % yxE′ iff
zwE % zwE′ .

P5. ∃f, g ∈ F such that f � g.

P6. For f, g, h ∈ F with f � g, there exists a partition {E1, ..., En} of S
such that, for every i ≤ n, fhEi � g and f � ghEi .

P7. For f, g ∈ F , E ⊂ S, if ∀s ∈ E f %E g(s) then f %E g, and if
∀s ∈ E f(s) %E g then f %E g.

Savage proved that % satisfies axioms P1-P7 if and only if there exist a non-
atomic4 finitely additive probability measure P on (S, 2S) and a non-constant
bounded function u : X → R such that, for any f, g ∈ F :

f % g iff
ˆ
S

u(f(s)) dP (s) ≥
ˆ
S

u(g(s)) dP (s).

Moreover, P is unique, and u is unique up to positive affine transformations, as
in [von Neumann and Morgenstern, 1944].

As [Gilboa and Marinacci, 2013] write, to this day Savage’s theorem “is uni-
versally viewed as the most compelling reason to assume that rational choice
necessitates Bayesian quantification of all uncertainty, that is, the reduction of
uncertainty to risk.” Its normative force is primarily due to the clear and intuitive
appeal of its axioms. With a view to later developments, two last points deserve
to be highlighted here. First, the rationality principle delivered by Savage’s work
is the maximization of subjective expected utility : DM should choose the act that
maximizes her expected utility in light of her subjective beliefs. Maximization of

4A probability measure is non-atomic if, for each event E s.t. P (E) > 0, there exists an
event E′ ⊂ E s.t. P (E′) > 0.
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subjective expected utility embodies a weak, internal notion of rationality, whose
only requirement is DM’s consistency of choices, without any demand for her
choices to be motivated by reasonable utilities and sensible beliefs. Second, there
is a historical anecdote that is very interesting for what we are going to see in
later chapters. According to [Bather, 1996], the ideas that originated Savage’s
investigation came from a conversation that he had with Herman Chernoff. It is
worth reporting Chernoff’s words directly from [Bather, 1996]:

At one time Savage felt that he had resolved the choice of criterion
problem in decision theory. In the decision theory approach there
remained a question of how you select among the various decision
rules when there is not a uniformly best choice (which is usually the
case). Wald had tentatively suggested the minimax principle.

[...] Savage proposed that minimax regret was the resolution to the
problem. When I played with that notion, I found that it failed to
satisfy one of Arrow’s requirements for a universal choice function.
That was the principle of irrelevant alternatives. If you had the choice
of a, b, c or d, you might decide that a is the best. However, if someone
tells you d is not available, it may then turn out that among a, b and
c, you prefer b. Minimax regret sometimes behaved this way, and that
was a violation of this principle of irrelevant alternatives. I brought
this to Savage’s attention and, after arguing futilely for a little while
that it proved how good his criterion was, he finally agreed that it
was wrong. He felt then that perhaps we should be elaborating on
de Finetti’s Bayesian approach, which he had come across. (He was
a voracious reader.) Meanwhile, I decided that I would list the set
of principles that I felt an objective statistical decision rule should
satisfy. I wrote a discussion paper on rational selection of decision
functions which came up with a contradiction. I sat on it for a few
years until I finally published it in Econometrica. Ultimately, from
the point of view of philosophical foundations, I think the Bayesian
position has won the day; if there is to be what we now call a coherent
procedure, it has to be a Bayesian procedure.

2.2 Non-Bayesian and Non-Expected Utility
Theories

Not long after the axiomatic foundations of expected utility given by von Neu-
mann and Morgenstern and subjective expected utility in [Savage, 1954], the first
objections started popping up. The first one is based on a violation of the inde-
pendence axiom vNM2, and it is due to the French physicist Maurice Allais, who
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was awarded the Nobel prize-equivalent for economics in 1988.5

Maurice Allais (1953) In economic theory, the name of Maurice Allais is
famous mainly for the celebrated Allais’ paradox ([Allais, 1953]). Allais imagined
a series of two decision problems, each consisting in a choice between two options.
The two decisions are depicted in the next table. In the first problem DM has
to choose between lottery 1a, that pays one million with certainty, and lottery
1b, that pays one million with 89% probability, nothing with 1% probability, and
five millions with 10% probability. Similarly, in the second problem DM has to
choose between lotteries 2a and 2b, with prizes according to the table below.

89% 1% 10%
1a 1 million 1million 1 million
1b 1 million 0 5 millions
2a 0 1 million 1 million
2b 0 0 5 millions

Allais predicted that DM would choose lottery 1a in the first problem and 2b in the
second, and subsequent experiments confirmed his intuition (see [Machina, 1987],
[Oliver, 2003]). This behavioral pattern contradicts expected utility. Indeed, it
is easy to see that the preference 1a � 1b in the first problem implies

u($1M) > 0.89u($1M) + 0.01u($0) + 0.1u($5M), (2.3)

and consequently

0.11u($1M)− 0.1u($5M) > 0.01u($0).

On the other hand, preference 2a ≺ 2b in the second problem implies that

0.9u($0) + 0.1u($5M) > 0.89u($0) + 0.11u($1M), (2.4)

and so
0.01u($0) > 0.11u($1M)− 0.1u($5M),

which is in contradiction to what we got from the first decision problem. As
anticipated, Allais’ paradox violates the independence axiom vNM2. Consider the
lotteries L = {$1M, 1}, L2 = {$0, 1}, and Lb = {$0M, 1/11; $5M, 10/11}. Lotteries
1a and 1b can then be reformulated as

1a = L = 0.89L+ 0.11L
1b = 0.89L+ 0.11Lb

,

5The Nobel Memorial Prize in Economic Sciences is often referred to as the Nobel prize
in economics, but to be precise it is not in the list of the five original Nobel prizes (physics,
literature, chemistry, peace, and medicine), and it was established by Sweden’s central bank
much later, in 1968. Although, for the sake of brevity, sometimes we will refer to it as the Nobel
prize in economics, it is worth remembering that there is no original Nobel prize for economics.
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and similarly for lotteries 2a and 2b:

2a = 0.89L2 + 0.11L
2b = 0.89L2 + 0.11Lb

.

The preferences displayed by DM over the two problems are equivalent to

L � 0.89L+ 0.11Lb

0.89L2 + 0.11L ≺ 0.89L2 + 0.11Lb

It is a direct implication of the independence axiom vNM2 that 1a - 1b if and
only if L - Lb. Hence, 1a � 1b implies L � Lb. But by the same reasoning,
2a ≺ 2b implies L ≺ Lb.

Few years after its establishment, the axiomatic solidity of expected utility
began to creak under the weight of actual behavior.

Daniel Ellsberg (1961) Daniel Ellsberg is an economist and political activist.
He is mainly known for two things. In 1971, while employed as U.S. military ana-
lyst, he decided to release the Pentagon Papers, a top-secret Pentagon document
about the U.S. government’s decision making relative to the Vietnam War, to the
New York Times. For this reason, he was charged of theft and conspiracy for a
total sentence up to 115 years. In 1973, all charges were dismissed, and in 2006
he got the Right Livelihood award (also known as the alternative Nobel prize) for
“offering practical and exemplary answers to the most urgent challenges facing us
today” ([RLA, 1980]), also awarded, among others, to Mordechai Vanunu, Amy
Goodman, Edward Snowden, and Gino Strada.

Daniel Ellsberg is also worldwide famous for Ellsberg’s paradoxes, which rep-
resent one of the hardest challenges to Savage’s axioms (see [Ellsberg, 1961]).
Ellsberg’s single-urn paradox goes as follows. There is an urn containing 90 balls:
30 red balls, and the 60 remaining balls are either black or yellow, in unknown
proportions. DM is faced with two decision problems. In each of them, a ball
is drawn from the urn and DM wins $100 if she guesses the color of the drawn
ball. In the first decision problem, DM can choose between two options: betting
on red r, and betting on black b. As for the second problem, DM still has two
possible acts: betting on red or yellow ry, and betting on black or yellow by. The
two situations are pictured in the following table. Which bet would you choose
in the first problem? And in the second? Take your time!

R B Y
r $100 0 0
b 0 $100 0
ry $100 0 $100
by 0 $100 $100

The prediction of Ellsberg, in line with the answers he observed when he pro-
posed the experiment, is that the majority of the people would choose to bet
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on r in the first decision problem and on by in the second. This behavior has
later been tested and corroborated by experimental evidence (for a review see
[Trautmann and van de Kuilen, 2016]).

Yet, the choices in Ellsberg’s paradox are in contradiction with Savage’s ax-
ioms, in particular with axiom P2, also known as the sure-thing principle. Let
us define the act y in the obvious way, that is, y pays $100 if a yellow ball is
drawn and nothing otherwise. Then it is evident that acts ry and by of Ellsberg’s
second problem correspond to ryY and byY , respectively. Hence, it follows from
the sure-thing principle that: r % b if and only if ryY % byY . But we have seen
that typically DM’s preferences are such that r � b and ryY ≺ byY . This pattern
reflects an aversion to the ambiguity regarding the proportions in the urn. In
both choices, DM picks the act that reduces that ambiguity as much as possible,
as if she tried to secure herself against the worst possible urn compositions.

The behavior in Ellsberg’s example clashes with the Bayesian paradigm and
subjective expected utility theory (SEU henceforth). It is evident that there is
no subjective probability distribution over the possible urn compositions that can
justify such preferences. For that to be the case, we should find a probability P
over the events R,B and Y such that

P (R)u($100) + P (B)u(0) + P (Y )u(0) > P (R)u(0) + P (B)u($100) + P (Y )u(0)

and

P (R)u($100)+P (B)u(0)+P (Y )u($100) < P (R)u(0)+P (B)u($100)+P (Y )u($100).

By simple calculation, the first inequality simplifies to P (R) > P (B), whereas
the second simplifies to P (R) < P (B). Hence, there is no subjective probabilistic
belief about the urn that can explain DM’s behavior in terms of the maximization
of subjective expected utility.

Ellsberg’s intuition might bring us even deeper down the rabbit hole. If, for
instance, we remember the two tenets of the Bayesian approach introduced earlier,
and we want to maintain that the only sensible measure of subjective degrees of
belief in some event is DM’s willingness to bet, then we have to admit that in
such cases DM’s beliefs are not Bayesian, namely, DM’s uncertainty cannot be
expressed by a probability function. Moreover, many people seem to refrain from
restoring probabilistic behavior even when one points to the inconsistency with
Bayesian prescriptions. As reported by [Ellsberg, 1961],

The important finding is that, after rethinking all their “offending”
decisions in the light of the axioms, a number of people who are not
only sophisticated but reasonable decide that they wish to persist
in their choices. This includes people who previously felt a “first-
order commitment” to the axioms, many of them surprised and some
dismayed to find that they wished, in these situations, to violate the
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Sure-thing Principle. Since this group included L. J. Savage, when
last tested by me (I have been reluctant to try him again), it seems
to deserve respectful consideration.

This touches upon an important point in relation to Savage’s axioms: their nor-
mativity. It may come as no surprise that axioms of subjective expected utility
happen to be (maybe even regularly and consistently) violated in actual decision
making. Decision makers are human, and humans are often fallible and irrational.
After all, as a criterion for rationality, maximization of subjective expected utility
does not claim any descriptive power. Instead, SEU axioms should be compelling
from a normative point of view instead. But, on the contrary, many people who
have been exposed to Ellsberg’s experiment (including Savage himself), preferred
to stick to their choices rather than conforming to the axioms.

What we have learned from Ellsberg’s paradox is that sometimes DM has
trouble forming Bayesian beliefs. This might depend, for example, on the quality
of the information available. Whenever the information is clear and precise (in
the case of an urn with known composition for instance), DM will most likely form
Bayesian beliefs, and face a decision problem under risk. On the other hand, the
more the available information becomes unreliable or unspecified, the less DM
should be expected to boil the uncertainty down to risk. In these cases (such
as Ellsberg’s urn), DM is said to face a decision problem under unmeasurable
uncertainty, or, in Ellsberg’s terminology, ambiguity.

After [Ellsberg, 1961], ambiguity has occupied a central position in decision
theory literature, and many frameworks have been proposed to encompass sit-
uations where DM’s uncertainty is not reduced to risk. We will now suspend
the chronological development for a moment, in order to stay on this track and
elaborate more on decision making under ambiguity. We will have to jump back
to the Allais’ paradox in a few pages.

The idea of modeling DM’s beliefs by means of multiple priors had already
been introduced in decision theory at least since the work by [Dempster, 1967],
[Levi, 1974], [Shafer, 1976], and [Gardenfors and Sahlin, 1982], but it is with the
axiomatization given by [Gilboa and Schmeidler, 1989] that the connection be-
tween multiple priors and ambiguity became apparent.

Itzhak Gilboa and David Schmeidler (1989) [Gilboa and Schmeidler, 1989]
prove a theorem that includes the possibility of DM entertaining non-Bayesian be-
liefs. In case of ambiguity, DM is represented as holding a (compact and convex)
set of prior probability functions, and an act is evaluated by considering the min-
imal expected utility attained by that act, ranging over the set of possible priors.
Accordingly, this approach (and the paper as well) is named maxmin expected util-
ity with non-unique prior. Multiple-prior models have been very successful ever
since, and they are nowadays the dominating paradigm for the representation of
decisions under unmeasurable uncertainty.
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The set-up in [Gilboa and Schmeidler, 1989] is similar to that in [Savage, 1954].
The main difference is that outcomes may be non-deterministic, usually called
(roulette) lotteries. Roulette lotteries are defined exactly as the lotteries in
[von Neumann and Morgenstern, 1944]. This amounts to saying that the out-
come set is now ∆(X) instead of X, where ∆(X) is the set of all simple lotteries
over X. Consequently, an act is defined as a function f : S → ∆(X), where
the state space S is endowed with an event algebra Σ, and acts are Σ-measurable
finite step functions. Let us denote the set of all acts by F and the set of constant
acts by ∆(X) (obviously, ∆(X) ⊂ F). Everything else is inherited from Savage’s
framework, but it is to be remarked that the presence of lotteries as outcomes
makes the outcome space convex. It follows that the set of acts F is also convex.
For f, g ∈ F and α ∈ (0, 1), the act h = αf + (1 − α)g is defined pointwise by
h(s) = αf(s) + (1 − α)g(s) for all s ∈ S. Finally, the axioms on the preference
relation % ⊆ F × F are the following.

GS1. Total preorder : % is complete and transitive.

GS2. Certainty independence: For f, g ∈ F and L ∈ ∆(X), and for α ∈
(0, 1), f � g iff αf + (1− α)L � αg + (1− α)L.

GS3. Archimedean: For f, g, h ∈ F , if f � g � h, then ∃α, β ∈ (0, 1) such
that αf + (1− α)h � g � βf + (1− β)h.

GS4. Monotonicity : For f, g ∈ F , if ∀s ∈ S f(s) % g(s) then f % g.

GS5. Ambiguity aversion: For f, g ∈ F and α ∈ (0, 1), f ∼ g implies
αf + (1− α)g % f .

GS6. Nontriviality : ∃f, g ∈ F such that f � g.

The representation result in [Gilboa and Schmeidler, 1989] states that the follow-
ing are equivalent:

1. % satisfies axioms GS1-GS6.

2. There exists a non-constant and unique (up to positive affine transforma-
tions) function u : X → R and a compact and convex set Γ ⊆ ∆(Σ) of
finitely additive probability measures such that, for all f, g ∈ F ,

f % g iff min
P∈Γ

ˆ
S

u(f(s)) dP (s) ≥ min
P∈Γ

ˆ
S

u(g(s)) dP (s),

where u(L) =
∑

x∈suppL u(x)L(x), as in von Neumann-Morgenstern’s repre-
sentation theorem.
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GS2, together with GS5, is the key axiom. Certainty independence restricts
the axiom of independence of [Anscombe and Aumann, 1963] to convex mixtures
with constant acts only. Loosely speaking, once the sure-thing principle has been
weakened to certainty independence, DM’s typical behavior in Ellsberg’s example
is no longer in contradiction with the axioms.6 To show this in the present setup,
let us define the auxiliary acts r∗, b∗, y∗ and f 0 such that r∗ pays $200 if a red ball
is drawn and nothing otherwise, b∗ pays $200 if a black ball is drawn and nothing
otherwise, y∗ pays $200 if a yellow ball is drawn and nothing otherwise, and act f 0

pays nothing in any case. We can then express acts r and b in Ellsberg’s paradox
as r = 0.5r∗+0.5f 0 and b = 0.5b∗+0.5f 0, and acts ry and by as ry = 0.5r∗+0.5y∗

and by = 0.5b∗ + 0.5y∗. If we allowed act h of axiom GS2 to be any act, then
we would have that: r∗ � b∗ ⇔ r � b ⇔ ry � by. Ellsberg’s paradox would not
be solved. But since certainty independence just admits mixtures with constant
acts, we have instead: r∗ � b∗ ⇔ r � b < ry � by. A way out of the impasse
is found. We can consequently think of DM as maximinimizing expected utility
over the obvious set of priors

Γ = {P ∈ ∆({R,B, Y }) : P (R) =
1

3
, P (B) = α, P (Y ) = 1−P (R)−α, for α ∈ [0,

2

3
]}.

This amounts to computing, for any probability measure in Γ, the expected util-
ity of each act, and then choosing the act that guarantees the highest minimal
expected utility. The minimal expected utility of r is then $33.33 and the minimal
expected utility of b is 0, whereas the minimal expected utility of ry is $33.33 and
the minimal expected utility of by is $66.66: DM will prefer r over b and by over
ry.

As already mentioned, experimental evidence suggests that the behavior pre-
dicted by Ellsberg is rather regular and systematic, and the axiomatization of
[Gilboa and Schmeidler, 1989] is hence an unquestionable contribution from a
descriptive point of view. But is that to be viewed as descriptive theory only? In
our opinion, the answer is negative. We agree with [Gilboa and Marinacci, 2013]
in that

DMs may sometimes admit that they do not know what the proba-
bilities they face are. Being able to admit ignorance is not a mistake.
It is, we claim, more rational than to pretend that one knows what
cannot be known.

[...] When central bank executives consider monetary policies, and
when leaders of a country make decisions about military actions, they
will not make a mistake if they do not form Bayesian probabilities.

6The weakening represented by certainty independence would be more evident had we intro-
duced the Anscombe-Aumann version of SEU (see [Anscombe and Aumann, 1963]). We refer
the interested reader directly to the original paper for more details.



26 CHAPTER 2. BACKGROUND ON RATIONAL CHOICE

On the contrary, they will be well advised to take into account those
uncertainties that cannot be quantified.

Therefore, we maintain, multiple-prior models are compatible with normative
interpretations too.

As a final curiosity, the 2016 annual report on global catastrophic risks devel-
oped by the joint work of the Global Challenges Foundations and the Future of
Humanity Institute at Oxford listed the twelve biggest threats that might lead
to the end of the world (see [GPP, 2016]). The following table summarizes their
conclusions.

possible cause probability
climate change 0,01%
nuclear war 0,005%

natural pandemics 0,0001%
economic collapse unknown

engineering pandemic 0,01%
artificial intelligence 0-10%

possible cause probability
super-volcanoes 0,00003%

asteroids 0,00013%
biotechnology 0,01%
eco-catastroph unknown
global misrule unknown
unknown risks 0,1%

This report furnishes a clear example of the two types of uncertainty just dis-
cussed. While, boldly enough, the research attaches precise probabilistic risk to
some of the possible causes, like super-volcanoes and nuclear war, for others it
can only step back from Bayesianism and admit ignorance.

Daniel Kahneman and Amos Tversky (1979) Ten years before the work
by [Gilboa and Schmeidler, 1989], an article that addressed the issues raised by
Allais’ paradox and similar experiments appeared in Econometrica under the
title of Prospect Theory: An Analysis of Decision under Risk. The authors were
two Israeli psychologists, Daniel Kahneman and Amos Tversky, and their paper,
[Kahneman and Tversky, 1979], became the most cited paper ever published in
Econometrica. Daniel Kahneman was also awarded the Nobel prize-equivalent
for economics in 2002.

The flavor of Kahneman and Tversky’s Prospect theory is rather descriptive
than normative. The theory is originated from

several classes of choice problems in which preferences systematically
violate the axioms of expected utility theory. In the light of these ob-
servations we argue that utility theory, as it is commonly interpreted
and applied, is not an adequate descriptive model and we propose an
alternative account of choice under risk. ([Kahneman and Tversky, 1979])

A prospect Xi = (x1, p1; ...;xn, pn) is a lottery that yields monetary outcome xj
with probability pj, for 1 ≤ j ≤ n and

∑n
j=1 pj = 1. [Kahneman and Tversky, 1979]

take into consideration only choices between binary prospects, i.e., prospects with
at most two nonzero outcomes. Table 2.1 (borrowed from [Loomes and Sugden, 1982])
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Table 2.1: Experimental findings of [Kahneman and Tversky, 1979].

is a selection of some of the experimental results in [Kahneman and Tversky, 1979],
where prospect (2.500, 0.33) is an abbreviation for (2.500, 0.33; 0, 0.67). The prin-
cipal findings from these experiments are essentially three:

1. Allais’ paradox and the certainty effect : corresponding to the combination
of X1 ≺ X2 and X3 � X4, the combination of X5 ≺ X6 and X9 � X10, and
the combination of X13 ≺ X14 and X15 � X16. The reverse certainty effect
is also present, in the combination of X7 � X8 and X11 ≺ X12.

2. The isolation effect in two-stage problems: in the combination X9 � X10

and X17 ≺ X18.

3. The reflection effect : in the combination of X5 ≺ X6 and X7 � X8, in
the combination of X9 � X10 and X11 ≺ X12, and in the combination of
X19 � X20 and X21 ≺ X22.

While the reflection effect is not an explicit violation of classic expected utility
theory, Allais’ paradox and the certainty effect as well as the isolation effect openly
violate expected utility axioms (as we have already seen for Allais’ paradox).7

7For reasons of succinctness, we will not talk at more length about these effects here. The
certainty effect is exemplified by Allais’ paradox, which has already been discussed above. For a
more detailed account of the other effects we refer the reader to [Kahneman and Tversky, 1979].
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The new theory proposed by Kahneman and Tversky to accommodate all
these phenomena is built on two central pivots: a value function υ : X → R and
a weighting function π : [0, 1] → [0, 1]. As for the value function υ, the carrier
of value υ(x) is the change in wealth at outcome x, rather the final amount of
money per se. Then, the indifferent point with respect to changes in wealth is
x = 0, where DM does not incur any gains or losses, such that υ(0) = 0. This
is called the reference point, and experiments suggest that the value function is
concave in the domain of gains (υ′′(x) < 0 for x > 0), and convex in the domain
of losses (υ′′(x) > 0 for x < 0).8 Moreover, losses loom larger than gains, that is,
υ is steeper below the reference point than above (υ′(x) < −υ′(−x) for x > 0).
This would explain why many people find symmetric lotteries (x, 0.50;−x, 0.50)
rather unattractive.

As to the weighting function, it is assumed that DM’s probabilities p are
distorted by a function π. Although it is still required that π(0) = 0 and π(1) = 1,
the resulting decision weights π(p) do not obey the axioms of probability theory.
In particular, given the concavity of υ, problems like 8 in Table 2.1 suggest that,
for small values p, the function π is subadditive, namely, π(αp) > απ(p) for
α ∈ (0, 1). Moreover, because of certainty effects it seems that DM overestimates
low probabilities, so that π(p) > p for low p. Nevertheless, the weighting function
is also assumed to satisfy subcertainty : for all p ∈ (0, 1), π(p) + π(1− p) < 1.

Finally, an important distinction is the one between regular prospects and
non-regular prospects. Non-regular prospects are prospects of the form (x, p; y, q)
with p+ q = 1 and either x, y > 0 or x, y < 0. Prospects that are not non-regular
are regular. The value of a prospect is given by a function V , depending on the
type of the prospect:

• for regular prospects:

V (x, p; y, q) = π(p)υ(x) + π(q)υ(y);

• for non-regular prospects: for either x > y > 0 or x < y < 0,

V (x, p; y, q) = υ(y) + π(p)(υ(x)− υ(y)).

If we go back to Allais’ paradox for a moment, we can have an idea of how it can
be accommodated within Prospect theory. By rewriting equations (2.3) and (2.4)
according to the appropriate V we get

υ($1M) > π(0.89)υ($1M) + π(0.01)υ($0) + π(0.1)υ($5M),

and
π(0.9)υ($0) + π(0.1)υ($5M) > π(0.89)υ($0) + π(0.11)υ($1M).

8This assumption produces the celebrated S-shaped utility function of Prospect theory.
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The first simplifies to

υ($1M)− π(0.89)υ($1M) > π(0.1)υ($5M),

while the second reduces to

π(0.1)υ($5M) > π(0.11)υ($1M).

By combining the two we have

υ($1M)− π(0.89)υ($1M) > π(0.11)υ($1M),

and consequently
1 > π(0.89) + π(0.11).

In words, if DM has a function π that distorts the probabilities associated to
different outcomes, and that satisfies subcertainty, then Allais’ paradox can be
solved. The assumption that π(p) > p for low p, together with π(p) + π(1− p) <
1, reflects DM’s preference switch in Allais’ examples and justify the behavior
associated with the certainty effect: 1% difference in probability from 100% to
99% is much more significant than from 11% to 10%.

As it should be apparent by now, Prospect theory has no normative claims:
there is no compelling reason why DM should turn known probabilities into non-
probabilistic decision weights for example. The goal of the theory is purely de-
scriptive: it aims at formalizing a suitable mathematical framework to encompass
actual observed behavior, without providing any reason or explanation, apart
from experimental observations, for the decision rules introduced.

Graham Loomes and Robert Sugden (1982) An article written by two
British economists, Graham Loomes and Robert Sugden, entitled Regret Theory:
An Alternative Theory of Rational Choice Under Uncertainty appeared just a
few years after [Kahneman and Tversky, 1979], and, in our opinion, would have
deserved as much attention as the paper by Kahneman and Tversky. The idea
of [Loomes and Sugden, 1982] is straightforward. They realized that there is a
reason, or a principle, that could explain and connect all the empirical findings
that originated Prospect theory: the regret. Without performing any new experi-
ment, they simply borrowed the behavioral evidence from Kahneman and Tversky
and showed how a regret-based theory of choice can accommodate DM’s observed
behavior. Their point is that DM’s behavior is better explained as aiming to mini-
mize expected regret rather than to maximize expected utility. Roughly speaking,
the regret is the loss that DM incurs when the action she chooses turns out not
to be optimal. Minimizing this potential loss seems a perfectly legitimate goal for
DM’s decision making, and it can offer powerful insights also from a descriptive
and explanatory point of view. Regret-based reasoning will play a crucial role in
next chapters, so let’s zoom in on their ideas in more detail.
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Let’s assume for simplicity that there is a finite number n of states of the
world s1, ...sn. According to expected utility, an act, or action, f is preferred to
action g if f yields higher expected utility than g,

f % g iff
n∑
i=1

u(f(si))P (si) ≥
n∑
i=1

u(g(si))P (si).

The last formula is of course equivalent to

f % g iff
n∑
i=1

P (si)(u(f(si))− u(g(si))) ≥ 0. (2.5)

According to regret theory instead,

f % g iff
n∑
i=1

P (si)Q(u(f(si))− u(g(si))) ≥ 0, (2.6)

where Q is a strictly increasing function of the difference in utilities u(f(si)) −
u(g(si)), and represents the regret-rejoice of f relative to g at si. Besides, the
regret-rejoice function Q is supposed to have the following symmetry property:
Q(−x) = −Q(x). Consequently, Q(0) = 0. When Q is linear, it holds that

Q(u(f(si))− u(g(si))) = Q(u(f(si)))−Q(u(g(si))),

and if Q is linear and strictly increasing, it is a positive affine transformation. Fur-
thermore, we know from Savage’s theorem that u is unique up to positive affine
transformations. Hence, when Q is a linear function, regret theory and expected
utility theory are indistinguishable. The assumption of [Loomes and Sugden, 1982]
is instead that Q is convex on R+ (and, therefore, concave on R−).

To see how regret theory is able to accommodate the behavioral findings of
Prospect theory, consider Allais’ paradox again. Written in the form of prospects,
the typical preferences in Allais’ two problems are:

1. 1a = ($1M, 1) � ($1M, 0.89; $5M, 0.1) = 1b;

2. 2a = ($1M, 0.11) ≺ ($5M, 0.1) = 2b.

The state space for the first problem is generated by the possible combinations
of outcomes from prospects 1a and 1b, as described in the next table.

1a 1b P (si)

s1 $1M $5M 0.1
s2 $1M $1M 0.89
s3 $1M $0 0.01
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According to regret theory, DM’s preference 1a � 1b is equivalent to

0.1Q(u($1M)−u($5M))+0.89Q(u($1M)−u($1M))+0.01Q(u($1M)−u($0)) > 0.

By simple computation, the previous inequality is in turn equivalent to

Q(u($5M)− u($1M)) < 0.1Q(u($1M)− u($0)). (2.7)

Intuitively, this means that the regret from winning one million instead of five
millions is more than ten times smaller compared to the regret from getting
nothing instead of one million. When we come to consider Allais’ second problem,
the state space is as shown in the following table.

2a 2b P (si)

s1 $1M $5M 0.011
s2 $1M $0 0.099
s3 $0 $5M 0.089
s4 $0 $0 0.801

The typical preference 2a ≺ 2b observed in the second problem would then cor-
respond to

0.011Q(u($1M)−u($5M))+0.099Q(u($1M)−u($0))+0.089Q(u($0)−u($5M)) < 0,

which simplifies to

Q(u($5M)− u($1M)) > 9Q(u($1M)− u($0))− 89

11
Q(u($5M)− u($0)). (2.8)

Putting (2.7) and (2.8) together, we obtain

10

11
Q(u($5M)− u($0)) > Q(u($1M)− u($0)).

Therefore, DM’s regret from getting nothing instead of one million is now smaller
than the regret from getting nothing instead of five millions, and rightfully so.
Evidently, expected utility theory would fail in accommodating DM’s behavior.
As we have seen, expected utility theory amounts to the linearity of Q. If Q is
linear, equation (2.7) reduces to

Q(5) <
11

10
Q(1)− 1

10
Q(0),

while equation (2.8) can be reduced to

Q(5) >
11

10
Q(1)− 1

10
Q(0).

In full generality, we can express Allais’ paradox and the certainty effect as
the choice between a = ($x, p + α) and b = ($x, α; $y, q), where 0 < x < y,
0 < q < p ≤ 1, and α ≤ (1− p), such that:
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1. a � b, when α = (1− p);

2. a ≺ b, when α = 0.

The general state space is generated in the obvious way, as specified by the
following table.

a b P (si)

s1 $x $x α(α + p)
s2 $x $y q(α + p)
s3 $x $0 (1− α− q)(α + p)
s4 $0 $x α(1− α− p)
s5 $0 $y q(1− α− p)
s6 $0 $0 (1− α− q)(1− α− p)

It is clear that if we set p = 0.11, q = 0.1, x = 1M and y = 5M , we are back to
Allais’ paradox. For any given p, q, x, y, if we denote by α the value such that
a ∼ b when α = α, then we will observe a � b for α > α, and a ≺ b for α < α.

It is important to remark that the specification of the options in the form of
prospects underlies that the lotteries are independent and come from different
drawings. Independence of lotteries is fundamental for regret to give a different
prediction than expected utility in Allais’ paradox. Let us suppose that the two
lotteries 1a and 1b, as well as the two lotteries 2a and 2b, are not independent, but
rather depend on the same drawing of one ball from an urn with 100 numbered
balls. The prizes of the four lotteries are listed in the following table accordingly.

1 89 90 91 100
1a 1 million 1million 1 million
1b 1 million 0 5 millions
2a 0 1 million 1 million
2b 0 0 5 millions

When DM faces this version of the paradox, regret theory would also predict
that 1a � 1b if and only if 2a � 2b. If the lotteries are not independent, then
the state spaces would differ from those specified above, and the utilities at state
1− 89 would always cancel out in the summation. Whenever two actions achieve
the same outcome at a state, their utilities automatically cancel out according to
regret theory: Q(u(f(s)) − u(g(s))) = 0 whenever f(s) = g(s). For this reason,
regret theory satisfies the sure-thing principle:

fhEc % ghEc iff f
h′

Ec % gh
′

Ec .

It does not satisfy the independence axiom vNM2, though. Indeed, the prospect
formulation of Allais’ paradox is equivalent to the choice between lotteries that
we presented in the section on Maurice Allais:

1. 1a = L = ($1M, 1) � ($1M, 0.89; $5M, 0.1) = 0.89L+ 0.11Lb = 1b;
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2. 2a = 0.89L2 + 0.11L = ($1M, 0.11) ≺ ($5M, 0.1) = 0.89L2 + 0.11Lb = 2b.

Interestingly, [Birnbaum, 2008] reported that the typical behavior in Allais’ para-
dox is more systematic when the lotteries are presented as independent drawings.

Here, we have decided to focus only on Allais’ paradox, as the working exam-
ple, in order to illustrate how regret theory can explain Kahneman and Tversky’s
experimental observations, but all the other empirical findings of Prospect theory
discussed earlier can be accommodated by regret theory as well. However, when
compared to Prospect theory, regret theory has the advantage of exhibiting a le-
gitimate decision principle, the minimization of (some transformation of) regret,
that might lead DM to behave at odds with expected utility maximization.

Before concluding, it is worth mentioning another main deviation from ex-
pected utility theory. Consider the next table: a ball will be drawn from an urn
containing 90 numbered balls.

1 30 31 60 61 90
a $0 $100 $200
b $100 $200 $0
c $200 $0 $100

According to expected utility, DM should be indifferent between acts a and b,
since they have the same expected utility:

1

3
u($0) +

1

3
u($100) +

1

3
u($200) =

1

3
u($100) +

1

3
u($200) +

1

3
u($0).

This is precisely the prescription of the equivalence axiom: acts that induce the
same probabilities over outcomes are equivalent. Regret theory, however, does
not satisfy the equivalence axiom. Indeed, it follows from the convexity of Q on
R+ that

Q(u($200)− u($0)) > Q(u($200)− u($100)) +Q(u($100)− u($0)),

therefore

1

3
Q(u($0)− u($100)) +

1

3
Q(u($100)− u($200)) +

1

3
Q(u($200)− u($0)) > 0,

and consequently a � b, even if a and b induce exactly the same probabilities
over the outcomes. Moreover, by the same reasoning, regret theory predicts b � c
and c � a, which constitutes a preference cycle. This pattern violates transitivity
and, hence, the basic total preorder axiom.9 It should then be no surprise for the
reader who remembers the quote from [Bather, 1996] about Savage that regret
theory also violates the independence of irrelevant alternatives (IIA): if an option

9This axiom is supposed to be so essential to rational choice that some authors (e.g.,
[Mas-Colell et al., 1995]) name it the “rationality axiom”.
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a is chosen from the set of options A, then a should be chosen also from A′, for
any A′ ⊂ A such that a ∈ A′. The violation of IIA manifests one of the most
fundamental features of regret: its context dependency.

We want to conclude this paragraph with a brief discussion on the status of
regret theory. While the contribution from a descriptive point of view is signifi-
cant and indisputable, there is debate whether a normative reading of the theory
is also viable. [Loomes and Sugden, 1982] explicitly advocate a normative inter-
pretation, but [Bleichrodt and Wakker, 2015] for instance disagree on this point.
In [Loomes and Sugden, 1982]’s words:

Thus we believe that regret theory does more than predict certain
systematic violations of conventional expected utility theory: it indi-
cates that such behaviour is not, in any meaningful sense of the word,
irrational.
[...] we shall challenge the idea that the conventional axioms consti-
tute the only acceptable basis for rational choice under uncertainty.
We shall argue that it is no less rational to act in accordance with
regret theory, and that conventional expected utility theory therefore
represents an unnecessarily restrictive notion of rationality.
[...] it seems to us that psychological experiences of regret and rejoic-
ing cannot properly be described in terms of the concept of rational-
ity: a choice may be rational or irrational, but an experience is just
an experience. As far as the second assumption is concerned, if an
individual does experience such feelings, we cannot see how he can be
deemed irrational for consistently taking those feelings into account.

[Bleichrodt and Wakker, 2015] instead, in contrast to this position, argue that

Taking any emotion as rational just because it exists is too permissive
and applies Hume’s adage ‘reason is, and ought only to be the slave
of the passions’ too leniently.

To position ourselves in the debate, we shall say that we are not at all hostile to
the normative interpretation. On the contrary, we largely support it. The moti-
vation behind our stance is different from [Loomes and Sugden, 1982] though, in
that we rely on a theoretical, rather than psychological, argument. We think of
the matter at hand as relating to a more general issue about the status of context
dependency in rational choice. In our opinion, there is nothing wrong or disap-
pointing with ascribing a normative status to context dependent reasoning. We
suggest that there is no compelling reason to a priori deem as irrational a person
whose evaluation of an option may radically change depending on which other
options are concurrently available. We would even dare to claim that it would
not be rational to do otherwise. Apart from the obvious descriptive merits, re-
gret is one of the most successful instances of this context dependent approach
to rational choice.
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As anticipated when quoting Chernoff earlier, regret had already been intro-
duced in decision theory by [Savage, 1951], but for a long time it has been out-
classed by expected utility theory. As a final historical remark, 1982 was a great
year of Renaissance for regret minimization. Other than [Loomes and Sugden, 1982],
other two important papers, by [Bell, 1982] and [Fishburn, 1982], appeared that
year, and breathed new life into regret theory.

Jörg Stoye (2011) For the sake of completeness, we have to mention that
different representation theorems for regret-based choices have recently been pre-
sented. We are referring in particular to [Hayashi, 2008] and [Stoye, 2011].

We have already stressed that a main feature of regret is its context depen-
dency, that is the reason of the violation of IIA. As a consequence, it is impossible
for regret to fit into representations in terms of a binary preference relation %.
For instance, the last example above displays intransitive preferences a � b, b � c
and c � a. But to better explain this pattern, we shall explicitly notice that
regret theory predicts that a is chosen over b when the available options are a
and b only; similarly, b is preferred to c when the choice is between b and c only,
and c is chosen over a when the choice is only between a and c. On the other
hand, when all three alternatives are simultaneously available, DM is indifferent
between them, a ∼ b ∼ c. This context dependent behavior cannot be repre-
sented by a context independent preference relation %. For this reason, both
[Hayashi, 2008] and [Stoye, 2011] have to state their representation theorems in
terms of a choice correspondence C : 2F → 2F . Such a choice correspondence
can encode behavior that is dependent on the given menu of choices at hand.
The previous example may thus be described by means of the following choice
correspondence.

C({a, b}) = {a} C({b, c}) = {b}
C({a, c}) = {c} C({a, b, c}) = {a, b, c}

Notice that these choices are still in violation of IIA: since a ∈ C({a, b, c}) and
a ∈ {a, c} ⊂ {a, b, c}, then by IIA a ∈ C({a, c}), which is not the case.

The representation theorems for regret minimization presented in this section
follow the formulation in [Stoye, 2011], but the interested reader should also see
[Hayashi, 2008], [Milnor, 1954], and [Sugden, 1993]. The set-up in [Stoye, 2011]
is the same as in [Gilboa and Schmeidler, 1989], but DM is now offered finite and
nonempty menus of actions M ⊆ F . DM’s choice from menu M is represented
by the choice correspondence C(M) ⊆M . Finally, the following notation will be
useful. Given menu M , action f and α ∈ [0, 1], we denote by αM + (1 − α)f
the menu generated by the convex combination of all actions in M with action
f , i.e., αM + (1 − α)f := {αg + (1 − α)f : g ∈ M}. Moreover, let us define the
conditional choice correspondence Cs(M) ⊆M at state s ∈ S such that

f ∈ Cs(M) iff f(s) ∈ C({g(s) : g ∈M}).
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Notice that f(s) and g(s) are (roulette) lotteries, namely, f(s), g(s) ∈ ∆(X).
Hence, the correspondence Cs assumes that DM’s choice after state s is revealed
corresponds to DM’s choice from the constant acts {g(s) : g ∈M}. We then say
that an act f is strictly potentially optimal in M if there exists s ∈ S such that
Cs(M) = {f}.

In [Stoye, 2011], three possible versions of regret minimization are taken into
account. Regret minimization with no priors corresponds to the proposal by
[Savage, 1951]. The intuition is that the uncertainty in a given situation is
represented directly and exclusively by the state space S. The other two ver-
sions of regret minimization instead admit a representation of the uncertainty
in terms of a set of priors Γ over the space (S,Σ). The difference between
these two is that the set Γ may be endogenous or exogenous. The case of re-
gret minimization with endogenous priors is parallel to the approach taken by
[Gilboa and Schmeidler, 1989], where both DM’s subjective utility u and subjec-
tive beliefs Γ are derived from the axioms. Conversely, the idea behind regret
minimization with exogenous priors is that the ambiguity inherent in a decision
situation is triggered by the environment in an objective way, and it is specified
by an exogenously given set of priors Γ. In this latter case, there is no subjective
representation of DM’s beliefs, since Γ is already given by the environment from
the beginning.

The axioms on the choice correspondence C used by Stoye for the represen-
tation of regret minimization with no priors are the following.

S1. Nontriviality : For some M ⊆ F , C(M) ⊂M .

S2. Monotonicity : If f ∈ M , g ∈ C(M) and f ∈ Cs({f, g}) for all s ∈ S,
then f ∈ C(M).

S3. Independence: C(αM + (1− α)f) = αC(M) + (1− α)f .

S4. IIA for constant acts : Let M and N consist of constant acts, then

C(M ∪N) ∩M ∈ {C(M), ∅}.

S5. Independence of never strictly optimal alternatives : Let M and N be
such that Cs(M ∪N) ∩M 6= ∅ for all s, then

C(M ∪N) ∩M ∈ {C(M), ∅}.

S6. Mixture continuity : Fix any menu M and acts g ∈ M , h ∈ F , and
f /∈ M such that C(M ∪ {f}) = {f}. Then there exists α ∈ (0, 1)
such that

C(M ∪ {αf + (1− α)h}) = {αf + (1− α)h}

and
αg + (1− α)h /∈ C(M ∪ {f, αg + (1− α)h}).
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S7. Ambiguity aversion: C(M) is the intersection of M with a convex
set. That is, for any acts f, g, any α ∈ [0, 1], and any menu M ⊇
{f, g, αf + (1− α)g},

if f, g ∈ C(M) then αf + (1− α)g ∈ C(M).

S8. Symmetry : For any menu M and disjoint events E1, E2 ∈ Σ\∅ such
that any f ∈ M is constant on E1 as well as on E2, let f ′ be defined
by

f ′(s) =


f(s)||s∈E2 , s ∈ E1

f(s)||s∈E1 , s ∈ E2

f(s) otherwise.

Then the function (·)′ : 2F → 2F , that maps any N ⊆ M onto
N ′ = {f ′ : f ∈ N}, is such that

C(M ′) = (C(M))′.

The first representation theorem proven in [Stoye, 2011] states that, whenever Σ
contains at least three events, the choice correspondence C fulfills axioms S1-S8
if and only if it can be represented as

C(M) = argmin
f∈M

max
s∈S
{max
g∈M

u(g(s))− u(f(s))},

where the function u is non-constant and unique up to positive affine transfor-
mations.

The prior-less feature of this result emerges from the second maximization
over the state space S directly. We will see immediately that in case of regret
minimization with endogenous and exogenous priors the formula obtained in the
theorem includes a maximization over a set of priors Γ rather than over states. In
order to get there, we need to define the notion of state-independent outcome dis-
tribution. If the set of outcomes {L ∈ ∆(X) : ∃f ∈M s.t. f(s) = L} is constant
across all states s, then we say that menu M has state-independent outcome dis-
tribution. A menu consisting of constant acts necessarily has state-independent
outcome distribution, but this property can be satisfied also by menus without
any constant act. For example, for some E ∈ Σ\∅, the menu M = {f, g} such
that

f(s) = L if s ∈ E
f(s) = L′ if s ∈ Σ\E
g(s) = L′ if s ∈ E
g(s) = L if s ∈ Σ\E

has state dependent outcome distribution without containing any constant act.
Let us then introduce the next axiom:
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S9. C-betweenness when outcome distributions are state-independent : For
f ∈ F , L ∈ ∆(X), α ∈ (0, 1), and menu M ⊇ {L, f, αf + (1 − α)L}
with state-independent outcome distribution,

if L /∈ C(M) and f /∈ C(M), then αf + (1− α)L /∈ C(M).

This axiom is dual to axiom S7. While ambiguity aversion guarantees that if two
acts are ranked indifferent then neither of them can be chosen over any mixture of
the two, c-betweenness ensures the opposite: if the menu has state-independent
outcome distribution, then the mixture is not chosen if neither of them is. Axioms
S1-S7 and S9 are satisfied if and only if the choice correspondence C can be
represented as

C(M) = argmin
f∈M

max
P∈Γ

ˆ
S

(max
g∈M

u(g(s))− u(f(s))) dP (s),

where Γ and u are as in [Gilboa and Schmeidler, 1989], i.e., Γ is compact, convex
and unique, and u is non-constant and unique up to positive affine transforma-
tions.

This result expresses the representation of regret minimization with endoge-
nous priors, in that the set of priors Γ is uniquely defined by the axioms, namely,
it is derived from DM’s choices, rather than specified a priori by the environment.

As opposed to a subjective set of priors, there is the case of exogenous priors.
Before stating the relevant axioms, we have to introduce the binary relation QC

for choice correspondence C. Specifically, we define f QC g if and only if, for all
α ∈ (0, 1), L ∈ ∆(X), and M ⊇ {αf + (1− α)L, αg + (1− α)L}, it holds that

αg + (1− α)L ∈ C(M) ⇒ αf + (1− α)L ∈ C(M).

Let us denote by Γ∗ the exogenous set of priors reflecting some objective ambiguity
in the environment, and let us require that Γ∗ ⊆ ∆(Σ) is compact and convex.
Two more axioms are needed for the representation with exogenous priors.

S10. Γ∗-monotonicity :ˆ
S

u(f(s)) dP (s) ≥
ˆ
S

u(g(s)) dP (s) ∀P ∈ Γ∗ ⇒ f QC g.

S11. Γ∗-ambiguity :

f QC g ⇒
ˆ
S

u(f(s)) dP (s) ≥
ˆ
S

u(g(s)) dP (s) ∀P ∈ Γ∗.

The result about exogenous priors is then related to the one with endogenous
priors through the axioms S10 and S11. Whenever the representation in terms of
an endogenous set of priors Γ applies for a choice correspondence C, then

1. C satisfies Γ∗-monotonicity if and only if Γ ⊆ Γ∗.

2. C satisfies Γ∗-ambiguity if and only if Γ∗ ⊆ Γ.
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2.3 Ecological Rationality
Alternative to the account of rationality and decision making that we have seen
so far, be it Bayesian or not, is the position that views DM as endowed with an
adaptive toolbox of heuristics which are tailored for various and specific decision
situations. This school of thought has the Nobel laureate Herbert Simon as
prominent precursor (see e.g. [Simon, 1955], [Simon, 1990], [Simon, 1992]), and
nowadays is centered around the research of Gerd Gigerenzer and colleagues at
the Max Planck Institute for Human Development in Berlin. A cornerstone of
this approach is that the rationality of a choice criterion has to be evaluated
from its performance in specific decision problems, when competing with other
possible criteria and heuristics. We largely sympathize with the idea of connecting
the notion of rational choice to ecological and evolutionary considerations, and
although our models will look considerably different than theirs from a formal
point of view, we share similar intuitions about rationality from a general and
conceptual point of view. It is then useful to examine this line of research in more
detail.

The starting point of the explanation should probably specify that the repre-
sentation of DM is no longer based on preferences, beliefs, attitudes, or similar
internal attributes. Instead, DM possesses a toolbox of relevant heuristics to
choose from when facing a decision problem. Heuristics are simple rules of thumb
to make decisions. Unlike the results from the previous sections, a heuristic does
not aim to be a universal solution for any optimization problem:

[...] heuristics do not try to optimize (i.e., find the best solution),
but rather satisfice (i.e., find a good-enough solution). Calculating
the maximum of a function is a form of optimizing; choosing the
first option that exceeds an aspiration level is a form of satisficing.
[Gigerenzer, 2008]

Heuristics are often deemed fast and frugal ([Gigerenzer and Goldstein, 1996]),
because they may decide to ignore part of the information available. This re-
lates to some important misconceptions that are strongly opposed by Gigeren-
zer and colleagues. Traditionally, a major justification for the use of heuristics
has been based on the accuracy-efficiency trade-off argument: since the com-
putations needed for optimizing are often intractable (NP-hard) in real-world
problems, cognitive systems are allowed to rely on simpler heuristics (see for in-
stance [Beach and Mitchell, 1978] and [Shah and Oppenheimer, 2011]). Accord-
ing to Gigerenzer’s school, the implicit assumption behind this argument is that
heuristics are always second-best strategies, that we use instead of logic or prob-
ability theory (which would be the first-best strategies) because of our cognitive
limitations. Had we been provided with all the information, infinite time and un-
bounded computational power, there would be no reason for the existence of such
heuristics. The sustainers of the adaptive toolbox firmly object to this view by
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maintaining that there is no necessary trade-off between accuracy and efficiency,
and contrast the accuracy-efficiency trade-off argument with the less-is-more ar-
gument. An example might help to understand this point and how heuristics
work.

Suppose the problem at hand concerns how to invest money in N assets.
Harry Markowitz proved that there exists an optimal portfolio that maximizes
the returns and minimizes the risk ([Markowitz, 1952]), and later won the Nobel
prize in economics for his work. A simple heuristic to solve the same allocation
problem could be to invest equally in all the N assets. This is called the 1/N rule,
and it is the strategy used by Markowitz himself for his retirement investments
([Gigerenzer and Brighton, 2009]). It may seem strange that Markowitz trusted
this extremely simple heuristic more than the optimizing strategy that he himself
designed and was awarded the Nobel prize for. However, his choice looks less
bizarre in the light of some recent results on asset allocation in the financial
market. [DeMiguel et al., 2009] compared fourteen optimal allocation policies
with the 1/N rule in seven allocation problems, and showed that none of the
fourteen optimizing strategies scored better than the simple heuristic on various
financial measures. Although it can sound puzzling again, there are statistical
reasons why this is the case: main causes for the success of the 1/N rule are the
high unpredictability of the problem and the size of the learning sample (see
[Gigerenzer and Brighton, 2009] for details). With respect to the latter, it must
be stressed that the optimizing strategies could count on ten years of stock market
data to estimate the parameters in the model, while the simple 1/N heuristic makes
no use of past information at all. Still, the heuristic had superior performances.
This is an instance of the less-is-more principle, that should cast doubt on the
conception of heuristics as second-best options. In this case, disregarding relevant
information and appealing to a computationally trivial strategy proved to be
comparatively better than much more complex optimizing strategies. No tension
between accuracy and efficiency showed up here.

For our purposes, the term “comparatively better” is of primary importance,
and brings us back to the theme of ecological rationality and evolutionary success.
Needless to say, the ecological and evolutionary success of a criterion essentially
depends on the environment. Heuristics and choice rules that succeed in some
environments or decision problems may be completely outperformed in others.
What is at stake here is not the superiority of a simple heuristic over multiple
regression models in general, but rather the question of which environments make
simple heuristics more accurate than very sophisticated optimizing strategies. For
example, the more unpredictable the environment and the smaller the learning
sample, the bigger the advantage of the 1/N rule over the optimizing allocation
strategies; but less so when the environment is more predictable and the learning
sample size gets larger.

A central tenet of ecological rationality is that the notion of rational choice
is defined by correspondence (how successful a choice is in a given environment)
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rather than by coherence (whether a choice is consistent with respect to some
axiomatic system). This account of rationality stands in opposition to the ones
we have encountered in the previous sections: as [Gigerenzer, 2008] says,

Behavior is often called rational if and only if it follows the laws of logic
or probability theory, and psychological research has consequently in-
terpreted judgments that deviate from these laws as reasoning falla-
cies. From a Darwinian perspective, however, the goal of an organ-
ism is not to follow logic, but to pursue objectives in its environment,
such as establishing alliances, finding a mate, and protecting offspring.
Logic may or may not be of help. The rationality of the adaptive tool-
box is not logical, but ecological; it is defined by correspondence rather
than coherence.

Accordingly, a preponderant part of this program consists in studying the adap-
tive selection of heuristics, whose aim is to understand what environments make
a certain heuristic ecologically rational. Once the scopes where the heuristic is
pertinent have been uncovered, the analysis should focus on whether people actu-
ally adopt the heuristic where it is ecologically rational, and should refrain from
testing if a given heuristic is used indistinctly. Homo heuristicus has not been
endowed with a unique and universal principle fit for all practical purposes; homo
heuristicus is an organism that reasons and acts conforming to multiple modu-
lar criteria, which he pulls out of his toolbox according to their performance in
different environments.

To conclude, the paradigm of homo heuristicus has a threefold aspiration. A
descriptive investigation, that shall describe the adaptive toolbox, its heuristics,
as we observe them in use, and their building blocks. A normative claim, centered
on the definition of ecological rationality, that shall determine the features of the
environment favoring, and prescribing, a given heuristic. And, ultimately, the
design of new heuristics and environments to improve decision making.





Chapter 3

Background on (Evolutionary) Game
Theory

Trust everyone, but cut the cards. (F. P. Dunne)

This chapter aims at providing the tools which we will make use of in later
results. While the preceding chapter was meant to be primarily conceptual, and
introduced the ideas following the historical development of the field, here we
will focus on the relevant game-theoretic notions and evolutionary models in a
more compact and systematic way. We do not intend to present all the main
achievements of game theory and evolutionary game theory, but rather to lay out
the formal concepts that will be used in later investigations.

3.1 Game Theory

Game theory, as we know it nowadays, started with the seminal work of John
von Neumann and Oskar Morgenstern ([von Neumann and Morgenstern, 1944]),
where they also gave axiomatic foundation to expected utility maximization, as
we have seen in Chapter 2. Game theory is the branch of mathematics that
studies multi-agent interactive situations where the final consequences of DM’s
actions essentially depend on the actions chosen by other decision makers (called
players). Examples are poker and chess, but also auctions and oligopolies. A
more general and neutral way of naming game theory could thus be interactive
decision theory. The crucial difference from decision theory is that when a player
is aware of the interactive nature of the decision problem and realizes that the
final outcome is determined by the choices of other players like her, she can try to
put herself in the shoes of other intelligent agents and to anticipate their decisions
to her advantage. This is the essence of strategic thinking.

43
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The literature on game theory has grown at least as big as that in decision
theory, but in this section we will focus only on non-cooperative game theory, and
on static games in particular.1

Definition 3.1. A static game is a tuple G = 〈N,X, (Ai, ui)i∈N , π〉, where

• N = {1, 2, ..., n} is the set of players;

• X is a set of material payoffs, or outcomes;

• Ai is the set of actions available to player i;

• π : ~A→X is the outcome function, with ~A :=
∏

i∈NAi;

• ui : X → R is the subjective (vNM) utility function of player i.

In what follows, the sets N,X and Ai (∀i ∈ N) are assumed to be finite.

Terminology and notation A few remarks, that will be important in the next
chapters, are in order here. Following [Battigalli, 2016], the first four bullets of
Definition 3.1 list what we call the rules of the game. The fifth bullet, the vNM
utility function ui, specifies the subjective preferences of player i over the possible
outcomes. As we have seen in Chapter 2, the vNM utility function ui reflects the
agent’s subjective valuation of the outcomes, and in many conceivable scenarios
it is private information which is accessible to player i only.

We say that there is complete information in a game G = 〈N,X, (Ai, ui)i∈N , π〉
if it is common knowledge among all the players that G is the game that is being
played. Complete information concerns the players’ interactive knowledge about
the rules of the game and their subjective preferences. Whenever the first four
bullets of Definition 3.1 are commonly known, we say that there is common
knowledge of the rules of the game. However, game G still features incomplete
information unless the functions ui are common knowledge too.

There is perfect information in a (dynamic) game when players move one at
a time and all the players are informed of all the previous moves (chance moves
included).2 If perfect information fails, we say that the information in the game
is imperfect. In particular, if a game has imperfect information because different
players hold different pieces of information about past moves and\or the real-
ization of chance moves, the game is said to have asymmetric information. It
is of course possible that a game has imperfect and symmetric information, for

1The reader can always consult [Battigalli, 2016], [Osborne and Rubinstein, 1994], or
[Fudenberg and Tirole, 1991] for more details on all the game-theoretic notions presented in
this section.

2Although featuring perfect or imperfect information is not a property of static games, it
is useful to mention it here in order to stress the qualitative difference between perfect and
complete information.
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I II
I 1; 1 2; 5
II 5; 2 0; 0

Table 3.1: A static game.

instance if all the players are aware of all past moves except for the realization
of a chance move. It must be clear that (im)perfect and (a)symmetric informa-
tion are assumptions about the rules of the game, differently than (in)complete
information, which is an assumption about the players’ interactive knowledge.
Presuming that players want to win, chess is an example of a game with com-
plete and perfect information, whereas in poker there is complete but asymmetric
information. On the other hand, auctions are examples of games with incomplete
information if we assume that the participants’ subjective valuations of items are
not commonly known.

We call profile any list of objects (y1, y2, ..., yn), where each yi belongs to set
Yi, for 1 ≤ i ≤ n. A typical profile is denoted by ~y := (y1, ..., yn) ∈ ~Y :=

∏
i∈N Yi.

For example, ~a := (a1, ..., an) ∈ ~A is termed action profile, where each ai ∈ Ai is
a possible action of player i. When we subtract the ith element from a profile ~y =
(y1, ..., yi, ..., yn), we denote the reduced profile by ~y−i := (y1..., yi−1, yi+1, ..., yn) ∈
~Y−i :=

∏
j 6=i Yj. When we want to highlight the ith component of the profile

~y = (y1, ..., yi, ..., yn), we write the profile as (yi, ~y−i). Different subscripts denote
that the elements come from different sets (y1, yi, yj, ...) ∈ Y1×Yi×Yj..., as opposed
to different superscripts that mark the distinction between elements belonging to
the same set (y1

i , y
′
i, y

i
i, y

j
i , ... ∈ Yi). For two-player games, we will often refer to

player 1 as Ann and to player 2 as Bob.

Example 3.2. Consider the game defined by

• N = {1, 2}

• A1 = A2 = {I, II}

• X = ~A = A1 × A2

• π(~a) = ~a, ∀~a ∈ ~A

• u1(I, I) = u2(I, I) = 1, u1(I, II) = u2(II, I) = 2, u1(II, I) = u2(I, II) = 5,
u1(II, II)=u2(II, II)=0.

Table 3.1 depicts the game in its matrix form. Each entry in the (bi-)matrix is
a pair of numbers, whose first component is the utility of player 1 (row player)
and second component is the utility of player 2 (column player). This game is
an example of an anti-coordination game, since each player prefers her action to
differ from that of her co-player.
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I II
I 1; 1 0; 0
II 0; 0 2; 2

Table 3.2: Hi-Lo game.

Example 3.3. Traveler’s dilemma. A celebrated static game is the Traveler’s
dilemma ([Basu, 1994]). The story behind the game goes as follows. An airline
company lost the suitcases of two customers, Ann (player 1) and Bob (player
2). As it happens, both suitcases were identical and contained equally valuable
antiques. A manager of the airline company is assigned to the case and, being
unable to figure out the precise value of the antiques, designs the following reim-
bursement policy. Ann and Bob are asked to separately claim an amount between
$2 and $100. Since the antiques were equally valuable, if they both claim the same
amount, then probably they are being honest and they will be reimbursed that
amount. Otherwise, if one of them claims more than the other, the one who
claimed the higher amount will get the lower amount minus $2, and the one who
claimed the lower amount will get what (s)he claimed plus $2. Assuming that
the subjective utility of Ann and Bob is linear in money, the traveler’s dilemma
is defined by:

• N = {1, 2}

• A1 = A2 = {$2, $3, ..., $100}

• X = {(x1, x2) ∈ {$2, ..., $100} × {$2, ..., $100} : x1 = x2} ∪ {(x1, x2) ∈
{$0, ..., $101} × {$0, ..., $101} : x2 = x1 ± $4}

• π(a1, a2) =


(a1 + $2, a1 − $2) if a1 < a2

(a2 − $2, a2 + $2) if a1 > a2

(a1, a2) if a1 = a2

• ∀(x1, x2) ∈ X, u1(x1, x2) = x1 and u2(x1, x2) = x2.

Example 3.4. Hi-Lo. We can also represent a game by means of its matrix
form directly, as in Table 3.2. If not specified otherwise, the numbers in the
matrix express the subjective utilities of the players. The game in Table 3.2 is a
coordination game, in that the players desire to coordinate on the same action,
and it is often called Hi-Lo coordination game, because the coordination on one
action (action II) gives all players a higher utility than the coordination on the
other.

Definition 3.5. Symmetric game. Whenever a game is such that, for all
players i, j ∈ N :
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1. Ai = Aj, and

2. ui(π(ai,~a−i)) = uj(π(aj,~a−j)), for ai = aj and ~a−i = ~a−j,

we say that the game is symmetric.

In words, in a symmetric game all players have the same available actions and
the utility attained by a player is independent of her role in the game. In fact, in
symmetric games there are no distinctions by role. The player in role i has the
same possible actions as the player in role j, and, for any fixed action profile of
the co-players ~a−i = ~a−j, the utility to player i from a certain action is the same
as that to player j from the same action. For these reasons, to define a symmetric
game it suffices to specify only a generic action set A = Ai for any player i ∈ N ,
and a generic utility function ui : ~A → R, where the set of all action profiles is
given by ~A = A|N |. Consequently, we can also drop the index i from the function
ui by the convention that u(π(a, a2, ..., an)) denotes the utility of playing action
a ∈ A against the profile (a2, ..., an) ∈ A|N |−1. The profile (a2, ..., an) ∈ A|N |−1

will then be denoted by ~a−1 ∈ A|N |−1. A symmetric game G is thus specified by
a tuple G = 〈N,X,A, u, π〉.

Note that all the games introduced in the examples of this section are symmet-
ric. As it will be addressed later, symmetric games occupy an important position
in evolutionary game theory, and will be the main objects of our analysis.

Solution concepts So far, we have seen how game theory enables us to for-
mulate interactive decision problems in a precise mathematical language. But
without further assumptions we would be unable to draw any conclusions about
the behavior of the players. These assumptions pertain to the rationality and
the beliefs of the players. Solution concepts implicitly carry these assumptions
about the players’ rationality and beliefs. We have talked at length about ra-
tionality and beliefs in Chapter 2, and the considerations from there also apply
to the present context: players are nothing but (interactive) decision makers. In
a general sense, to be made more precise, solution concepts represent fixpoints
where rationality and beliefs of all players are mutually consistent. A bit more
precisely, a solution concept gives a set of action profiles where the action of each
player is consistent with his or her rationality and with his or her beliefs about
the others’ rationality, beliefs and actions. The most famous example is probably
the Nash equilibrium.

Definition 3.6. Nash equilibrium. For a given game G, an action profile
~a∗ ∈ ~A is called a Nash equilibrium if

∀i ∈ N, ∀ai ∈ Ai, ui(π(a∗i ,~a
∗
−i)) ≥ ui(π(ai,~a

∗
−i)).

Moreover, if the inequality holds strict for all players i, then a∗ is a strict Nash
equilibrium. In symmetric games, a Nash equilibrium where all the players play
the same action is said to be symmetric.
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In plain words, an action profile ~a∗ is a Nash equilibrium if no player can profit
by unilaterally deviating from her action in ~a∗. The action choices in ~a∗ are thus
mutually consistent and tied together.

Example 3.7. Example 3.2 continued. Consider the game from Example 3.2
again. In that game there are two Nash equilibria in pure actions: (I, II) and
(II, I). Since it is an anti-coordination game it should come as no surprise that
players choose different actions when they are in equilibrium.

Example 3.8. Traveler’s dilemma continued. We now want to find the
profile consistent with Nash equilibrium in the Traveler’s dilemma. To do that,
consider a profile (a1, a2) where one of the two claims is bigger than the other,
for instance a1 ≥ a2. In this case, the action of Ann (player 1) is not a best
reply to Bob’s action: Ann’s best reply would be to claim a2 − 1. When Ann
settles on her best reply, the resulting profile is (a′1, a2), with a′1 = a2 − 1. But
now Bob’s action is not a best reply to Ann’s action, and he should change his
action to a′2 = a′1 − 1 = a2 − 2. By continuing this reasoning all the way down,
we realize that the only profile where each player is choosing a best reply to
the other’s action is ($2, $2), which is consequently the only Nash equilibrium
in the Traveler’s dilemma. Ponder over this for a second: would you like to be
consistent with Nash equilibrium here? That’s why the title of the paper that
first introduced the Traveler’s dilemma is: The Traveler’s Dilemma: Paradoxes
of Rationality in Game Theory ([Basu, 1994]).

Example 3.9. Hi-Lo continued. In coordination games players want to coor-
dinate on the same action, as reflected in the two equilibrium profiles of the Hi-Lo
game: (I, I) and (II, II). Both players would prefer to coordinate on the profile
(II, II), but note that both action profiles are consistent with Nash equilibrium.

Let us denote by G the class of all static games. For a game G ∈ G, let ~AG
be the set of action profiles in G. Then we can formalize the notion of solution
concept (for static games) by the following definition.

Definition 3.10. Solution concept. A solution concept is an element of the
direct product

∏
G∈G 2

~AG . I.e., a solution concept is a function

F : G →
⋃
G∈G

2
~AG

such that ∀G ∈ G, F (G) ⊆ ~AG.
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Mixed equilibria If any game had at least one Nash equilibrium in pure ac-
tions, we could imagine that after a process of mutual reasoning, mutual learning
or similar, players are able to reach some stationary state, corresponding to a
Nash equilibrium of the game. Unfortunately, there are games, like the one in
the following table (known in the literature as the rock-paper-scissors game), that
have no pure Nash equilibria.

I II III
I 0; 0 −1; 1 1;−1
II 1;−1 0; 0 −1; 1
III −1; 1 1;−1 0; 0

It may seem that players will be stuck in an infinite loop in such a game with no
possibility of ever stabilizing on some equilibrium: if Ann chooses I, then Bob
should choose II, but then Ann would prefer to switch to III, and so Bob would
rather play I, to which Ann would respond II, that will make Bob play III and
Ann reply with I, and so on. Fortunately, [Nash, 1950] found a way out of this
predicament. Nash’s solution involves the concept of mixed equilibrium, that is
based on the mixed extension of a game.

Definition 3.11. Mixed extension. The mixed extension of a game G =
〈N,X, (Ai, ui)i∈N , π〉 is the game G = 〈N,∆(X), (∆(Ai), ui)i∈N , π〉, where

• N is the set of players

• ∆(X) := {L ∈ [0, 1]X :
∑

x∈X L(x) = 1} is the set of (lottery) outcomes

• ∆(Ai) := {αi ∈ [0, 1]Ai :
∑

ai∈Ai αi(ai) = 1} is i’s set of (mixed) actions

• π :
∏

j∈N ∆(Aj)→ ∆(X) is the expected outcome function, that associates
with each ~α ∈

∏
j∈N ∆(Aj) the lottery π(~α) = L such that, for π(~a) ∈ X,

L(π(~a)) =
∏
j∈N

αj(aj).

• ui : ∆(X)→ R is i’s subjective expected utility function, such that

ui(π(~α)) :=
∑
~a∈ ~A

ui(π(~a))
∏
j∈N

αj(aj).

The definition of π highlights that the mixed actions of the players are im-
plicitly assumed to be statistically independent. Moreover, the mixed extension
of a symmetric game is a symmetric game itself. Building on Definition 3.11, we
are now in the position of defining mixed Nash equilibria.

Definition 3.12. Mixed Nash equilibrium. A profile of mixed actions ~α∗ ∈∏
i∈N ∆(Ai) is a mixed Nash equilibrium of a game G if it is a Nash equilibrium

of the mixed extension G of G.
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Nash proved that any finite game (i.e., a game where the sets N and Ai, for
all i ∈ N , are finite) admits at least one mixed Nash equilibrium. Obviously, pure
actions can be viewed as degenerate mixed actions, so that Ai ⊂ ∆(Ai), ∀i ∈ N .
Therefore, any Nash equilibrium in pure actions ~a∗ corresponds to a mixed Nash
equilibrium ~α∗, where α∗i (a∗i ) = 1, and α∗i (ai) = 0 for ai 6= a∗i and i ∈ N .

Since the rock-paper-scissors game is a finite game, it has a Nash equilibrium
in mixed actions, when both Ann and Bob play each action 1

3
of the times. I.e.,

the unique mixed Nash equilibrium of the rock-paper-scissors is the mixed action
profile (α∗1, α

∗
2), with α∗i (I) = α∗i (II) = α∗i (III) = 1

3
for i = 1, 2.

Example 3.13. Example 3.2 continued. In the game of Example 3.2 there are
three mixed Nash equilibria. Apart from the two pure equilibria already identified
in Example 3.7, there is a genuine mixed Nash equilibrium ~α∗ such that α∗i (I) = 1

3

and α∗i (II) = 2
3
, for i = 1, 2. Notice that the expected utility of the players at

the mixed equilibrium is 5
3
, which is strictly less than what either of them would

get if they played any of the other two equilibria in pure actions.

Example 3.14. Hi-Lo continued. Consider again the Hi-Lo game of Table 3.2.
Apart from the two Nash equilibria in pure actions, there is another Nash equi-
librium in mixed actions, where both players choose I with probability 2

3
and II

with probability 1
3
. For both players, the expected utility at the mixed equilib-

rium is 2
3
, which is again strictly less than the expected utility at any of the pure

equilibria.

Finally, we want to say a few words about the interpretation of mixed actions.
To fix ideas, let us suppose that we are dealing with a two-player game. In classic
game theory, the mixed action α1 is interpreted as Ann randomizing over her own
pure actions. Yet, from experimental psychology we know that humans are very
poor and imprecise randomization devices, and seem incapable of implementing
the play recommended by a given mixed action. Real players constantly deviate
from the given frequencies. In accordance with this observation, epistemic game
theory assumes that players can only choose pure actions: players never random-
ize. The reader might now wonder if we are falling back into the problem of having
games without any equilibrium. After all, we were brought to considering mixed
actions in order to solve that impasse. The good news is that the epistemic pro-
gram in game theory can maintain both the assumption about pure actions and
the existence of equilibria in any finite game. The solution lies in the the inter-
pretation of mixed equilibria as equilibria in beliefs. Concretely, the mixed action
α1 of Ann is no longer a randomized action of Ann (players never randomize), but
rather a belief of Bob about what Ann is going to play. In the rock-paper-scissors
game, for example, both Ann and Bob can only choose from the set {I, II, III},
and their beliefs are in equilibrium when each player believes any of the co-player’s
actions with probability 1

3
, and believes that the co-player believes the same. In-

deed, when Ann believes any of Bob’s actions to be equiprobable, any action is
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a best reply for her; and similarly for Bob. So, if Bob believes that Ann is going
to play I, II or III with equal probability, and that she also believes that he is
going to play I, II or III with equal probability, then Bob believes that Ann is
rational. And, mutatis mutandis, Ann believes that Bob is rational. Therefore, in
such a situation both players believe in rationality and believe that the co-player
expects any action with equal probability. These epistemic conditions give rise
to an equilibrium in beliefs that corresponds to the mixed Nash equilibrium of
the game (see [Brandenburger, 1992], [Aumann and Brandenburger, 1995]). The
solution concept of (mixed) Nash equilibrium is thus characterized and derived
from epistemic assumptions about players’ (interactive) beliefs and rationality.
Under this interpretation players only choose pure actions, and the mixture over
one’s own actions is projected onto the probabilistic belief of the co-player.

There are at least two main formal structures in the literature to reason about
the interactive rationality of the players: type spaces and (multi-agent) Kripke
models. A logical analysis of these structures will be the topic of Chapter 4. It has
to be stressed, however, that the notion of (epistemic) types that we will consider
in Chapter 4 is different than the notion of types that will be used in the rest of
this thesis. Epistemic types are essentially hierarchies of interactive beliefs (see
[SectionChapterEmiliano with the definition]). The types that we will introduce
in later chapters, instead, are the types of the players existing in a population,
as customary in evolutionary game theory. Since our focus will be the evolution
of different ways of making choices, these types will consist of a subjective utility
function, a subjective belief, and a decision criterion.

In general, epistemic game theory holds that the strategic analysis of a game
should start from the players’ beliefs. For a game G = 〈N,X, (Ai, ui), π〉, let
Pi ∈ ∆(A−i) denote the (Bayesian) belief of player i about the actions of her
co-players, and let suppαi ⊆ Ai denote the support of mixed action αi. The
following lemma justifies the soundness of such an epistemic approach to game
theory, as well as the claim that players never randomize.3

Lemma 3.15. For a game G = 〈N,X, (Ai, ui)i∈N , π〉 and a belief Pi ∈ ∆(A−i)
of player i, the following are equivalent:

1. α∗i ∈ argmaxαi∈∆(Ai)

∑
~a∈ ~A ui(π(~a))αi(ai)Pi(~a−i),

2. suppα∗i ⊆ argmaxαi∈∆(Ai)

∑
~a∈ ~A ui(π(~a))αi(ai)Pi(~a−i).

In words, Lemma 3.15 says that the players, whatever their beliefs about the
co-players are, cannot increase their expected utility by playing a mixed action.
For any possible belief Pi, there is always a pure action ai ∈ Ai that maximizes
expected utility: players never randomize, and they never need to.

3The proof is not difficult, but we are not going to present it here for reasons of succinctness.
The interested reader can find it in [Battigalli, 2016].
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In what follows, we assume that players can always choose pure actions only,
in line with the approach supported by epistemic game theory.

A solution concept that will play a major role in later chapters is the Bayesian
Nash equilibrium. Before presenting it, we have to explain what Bayesian games
are.

Bayesian games and Bayesian Nash equilibrium The key to understand-
ing Bayesian games is incomplete information. We said that complete informa-
tion is an assumption about the players’ interactive knowledge of the game, and
whenever the game is not commonly known, players have incomplete informa-
tion of the game. For example, players may lack (common) knowledge about the
others’ preferences, as well as about the outcome function. A game that fea-
tures incomplete information gives rise to a Bayesian game, in that players need
to form (Bayesian) beliefs about all the relevant unknown variables. Bayesian
games are the mathematical structures that permit to formalize games where
the information is not complete. The main ideas to deal with games featur-
ing this augmented uncertainty come from the seminal work by John Harsanyi
([Harsanyi, 1967], [Harsanyi, 1968a], and [Harsanyi, 1968b]), who enriched game
structures with a set of possible worlds and possible types for each player.

Definition 3.16. Bayesian game. A Bayesian game is a structure BG =
〈N,S,X, (Θi, Ti, Ai, τi, ϑi, Pi, ui)i∈N , π〉, where

• N is the set of players

• S is a set of possible states of the world, assumed finite for simplicity

• X is the set of material payoffs, or outcomes

• Θi is the set of (subjective) utility types of player i

• Ti is the set of types of player i

• Ai is the set of actions available to player i

• τi : S → Ti is the signal function, or type function, of player i

• ϑi : Ti → Θi is the utility type function of player i

• Pi ∈ ∆(S) is player i’s prior belief, such that ∀ti ∈ Ti, Pi(τ−1
i (ti)) > 0

• ui : Θi ×X → R is player i’s subjective utility function

• π : ~Θ× ~A→ X is the outcome function, with Θ :=
∏

i∈N Θi.
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Figure 3.1: A Bayesian game.

A few words and examples will help to clarify the meaning of the items in
Definition 3.16. As noticed before, the most likely cause of incomplete information
is the failure of common knowledge about the players’ subjective utilities. The
uncertainty about the others’ subjective preferences can be expressed by means of
the utility functions ui that are now parameterized via the utility types θi ∈ Θi.
The following example shows this point.

Example 3.17. Consider the Bayesian game depicted in Figure 3.1, defined by
the following bullets:

• N = {1, 2}

• S = {s1, s2, s3, s4}

• X = ~A

• Θi = Ti = {t1i , t2i } ∀i ∈ N

• Ai = {I, II} ∀i ∈ N

• τ1(s1) = τ1(s2) = t11, τ1(s3) = τ1(s4) = t21

• τ2(s1) = τ2(s3) = t12, τ2(s2) = τ2(s4) = t22

• ϑi(ti) = ti ∀i ∈ N,∀ti ∈ Ti
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• Pi(s1) = 1
8
, Pi(s2) = Pi(s3) = 1

4
, Pi(s4) = 3

8
∀i ∈ N

• ui(t1i , I, I) = 1, ui(t1i , I, II) = 2, ui(t1i , II, I) = 5, ui(t1i , II, II) = 0,
ui(t

2
i , I, I) = 1, ui(t2i , I, II) = 0, ui(t2i , II, I) = 0, ui(t2i , II, II) = 2, ∀i ∈N

• π(~θ,~a) = ~a ∀~θ ∈ ~Θ,∀~a ∈ ~A.

Intuitively, Ann is uncertain whether Bob’s subjective utilities correspond to those
of the game in Example 3.2 or to those of the Hi-Lo game in Example 3.4. Bob’s
uncertainty about Ann’s utilities is exactly the same. Formally, this uncertainty
is expressed by assigning two (utility-)types to each player. Type t1i ’s utilities are
those of Table 3.1, while type t2i ’s utilities are those of Table 3.2.

Another familiar example of a game without common knowledge of the sub-
jective utility functions is the popular board game (Secret Mission) Risk, where
the players have to draw a mission card each from a deck of possible missions,
without revealing to the others which mission they have been assigned to. Lack
of knowledge about the others’ subjective preferences is not the unique possible
source of incomplete information in games, albeit presumably the most common.
The next example, borrowed from [Battigalli, 2016], considers two agents involved
in the production of a public good.

Example 3.18. Ann and Bob have to decide how much effort to invest in the
production of a public good. Each of them can choose to put a quantity of effort
ai ∈ [0, 1]. The output y depends on their efforts according to the Cobb-Douglas
production function:

y = K(a1)θ1(a2)θ2 ,

where K is a constant parameter. The cost of the effort for each player is ci(ai) =
(ai)

2. The outcome function π : [0, 1]2 → R3
+, that expresses both the output and

the costs of the production, is given by

π(θ1, θ2, a1, a2) = (K(a1)θ1(a2)θ2 , (a1)2, (a2)2).

The subjective utility for each player i and each θi is given by

ui(θi, π(θ1, θ2, a1, a2)) = K(a1)θ1(a2)θ2 − (ai)
2 = y − ci.

If the players do not know the parameters K, θ1, θ2, then they do not know
the material payoff function π, even if they would know the utility functions:
ui(θi, y, c1, c2) = y − ci, for all i and all θi. Indeed, even if Ann could know the
parameter K and her own productivity θ1, she might not know how productive
Bob is when he decides to put effort a2; and similarly for Bob. Since the outcome
depends on the productivity of both, the outcome function π is not known and
the game features incomplete information.
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Terminology Whenever there is common knowledge of the material payoff
function (i.e., π(~θ,~a) = π(~θ′,~a) for all ~θ, ~θ′ ∈ ~Θ), and for all players i, the utility
function ui depends only on the action profile ~a and on i’s own utility type θi,
the game is said to have private values. This is the case of the game in Exam-
ple 3.17. If the function π is not common knowledge (i.e., π(~θ,~a) 6= π(~θ′,~a) for
some ~θ, ~θ′ ∈ Θ), the game is said to have interdependent values. The public good
production game of Example 3.18 has interdependent values. Usually, it is also
assumed that all the players hold the same prior probability over the states of
the world, ∀i ∈ N Pi = P . In this case, the game is said to have common prior.
Finally, the structure of the Bayesian game (i.e., all the items in Definition 3.16)
is implicitly assumed to be commonly known by the players.

As already mentioned when we introduced Nash equilibrium, there is nothing
in the definition of a game that describes or prescribes any specific behavior of the
players. The same holds for Bayesian games as well: we need to make assumptions
regarding the rationality and beliefs of the players in order to draw conclusions
about their behavior. The concept of Bayesian Nash equilibrium is the equivalent
of Nash equilibrium for Bayesian games.

Definition 3.19. Bayesian Nash equilibrium. A Bayesian Nash equilibrium
of a Bayesian game BG is a profile of policy functions (σ∗i : Ti → Ai)i∈N such
that, ∀i ∈ N,∀ti ∈ Ti,

σ∗i (ti) ∈ argmax
ai∈Ai

∑
s∈S

Pi(s|ti)ui(ϑi(ti), π(ϑi(ti), ~ϑ−i(~τ−i(s)), ai, ~σ−i(~τ−i(s)))),

where ~τ−i(s) = (τj(s))j 6=i :=
∏

j 6=i{τj(s)}, and similarly ~ϑ−i(~t−i) := (ϑj(tj))j 6=i

and ~σ−i(~t−i) := (σj(tj))j 6=i.

To illustrate the connection between Nash equilibrium and Bayesian Nash
equilibrium, we have to introduce two complete information games associated
with a given Bayesian game: the ex ante and the interim strategic form of the
game.

Definition 3.20. Ex ante strategic form. Given a Bayesian game BG, we
define the ex ante strategic form of BG the complete information game Gex =〈
N,X

~T , (Σi, u
ex
i )i∈N , π

ex
〉
, where N and X are as in BG, and

• Σi := ATii (i.e., the set of all functions from Ti to Ai) is i’s action set

• πex is the ex ante material payoff (or outcome) function, and uexi is the ex
ante utility function of player i, such that the function uexi (πex(·)) : ~Σ→ R
is defined by:

uexi (πex(~σ)) :=
∑
s∈S

Pi(s)ui(ϑi(τi(s)), π(~ϑ(~τ(s)), ~σ(~τ(s))))
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=
∑
ti∈Ti

Pi(ti)
∑

~t−i∈~T−i

Pi(~t−i|ti)ui(ϑi(ti), π(ϑi(ti), ~ϑ−i(~t−i), σi(ti), ~σ−i(~t−i))).

In the ex ante strategic form all the uncertainty is considered from an ex ante
perspective, when the players have not yet received any signal about their type.
Each player is then asked to choose a policy function from Σi that specifies an
action choice for any possible type of his or hers. The utility uexi of player i in
the ex ante version of the game corresponds to the expected utility given by the
function ui with respect to i’s probability Pi over the states, together with the
policy function σi chosen by player i and the policy functions ~σ−i chosen by the
other players. The next remark then follows.

Remark 3.21. A profile (σ∗i )i∈N is a Bayesian Nash equilibrium of the Bayesian
game BG if and only if it is a Nash equilibrium of the ex ante strategic form Gex

of BG.

Definition 3.22. Interim strategic form. Given a Bayesian game BG, we
define the interim strategic form of BG the complete information game Gin =〈⋃

i∈N Ti, X
~T , (Ati , uti)i∈N,ti∈Ti , π

in
〉
, where

•
⋃
i∈N Ti is the set of players

• X is as in BG

• Ati = Ai, ∀i ∈ N, ∀ti ∈ Ti is the action set of player ti

• πin is the interim outcome function, and uti is the interim utility function
of player ti, such that the function uti(π

in(·)) :
∏

j∈N
∏

tj∈Tj Atj → R is
defined by:

uti(π
in((atj)j∈N,tj∈Tj)) :=

∑
~t−i∈~T−i

Pi(~t−i|ti)ui(ϑi(ti), π(ϑi(ti), ~ϑ−i(~t−i), ati , (atj)j 6=i)).

In the interim strategic form, the intuition is that the players have already
received the signal about their type, and each type ti is now an independent player
that chooses its own action ati and has its own utility function uti . Note that the
utility uti in the interim version corresponds to the expected utility given by the
utility function ui with respect to the conditional probability Pi(·|ti), together
with the actions ati ∈ Ai and (atj)j 6=i ∈ ~A−i. As before, we remark the following
point.

Remark 3.23. A profile (σ∗i )i∈N is a Bayesian Nash equilibrium of the Bayesian
game BG if and only if the profile (a∗ti)i∈N,ti∈Ti , such that a∗ti = σ∗i (ti) for all i ∈ N
and ti ∈ Ti, is a Nash equilibrium of the interim strategic form Gin of BG.
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Example 3.24. Example 3.17 continued. The following table represents the
players’ utilities of the ex ante strategic form of the Bayesian game from Exam-
ple 3.17. The first component of ordered pairs like (I, I) specifies the action of
type t1i , and the second component specifies the action of type t2i .

I, I I, II II, I II, II
I, I 1; 1 7/8; 3/8 7/8; 5/2 3/4; 15/8

I, II 3/8; 7/8 11/8; 11/8 11/8; 7/8 2; 11/8

II, I 5/2; 7/8 7/8; 11/8 13/8; 13/8 0; 7/4

II, II 15/8; 3/4 11/8; 2 7/4; 0 5/4; 5/4

There are three Nash equilibria in this game: ((I, II), (I, II)), ((I, II), (II, II)),
and ((II, II), (I, II)). The first corresponds to the profile of policy functions
(σ1, σ2) such that σ1(t11) = I, σ1(t21) = II, σ2(t12) = I, σ1(t22) = II. Similarly,
the second corresponds to the profile (σ1, σ2) such that σ1(t11) = I, σ1(t21) =
II, σ2(t12) = II, σ1(t22) = II; the third corresponds to the profile (σ1, σ2) such
that σ1(t11) = II, σ1(t21) = II, σ2(t12) = I, σ1(t22) = II.

The utilities for the interim strategic form are given by the following for-
mulas. Since the utility ut1i of player t1i ∈ Ti is not dependent on the actions
of the other type t2i ∈ Ti (and vice versa), we can ease notation by using for-
mulas like ut1i (π

in(I, (I, II))) as an abbreviation for ut1i (π
in((I, II), (I, II))), and

ut2i (π
in(II, (I, II))) for ut2i (π

in((I, II), (I, II))), where the first action is the choice
of the player whose utility we are considering and the following pair specifies the
actions of the co-players t13−i and t23−i. The interim utilities of player t11 are:

ut11(π
in(I, (I, I))) = 1 ut11(π

in(II, (I, I))) = 5

ut11(π
in(I, (I, II))) = 5/3 ut11(π

in(II, (I, II))) = 5/3

ut11(π
in(I, (II, I))) = 4/3 ut11(π

in(II, (II, I))) = 10/3

ut11(π
in(I, (II, II))) = 2 ut11(π

in(II, (II, II))) = 0

Analogously, the interim utilities of player t21 are:

ut21(π
in(I, (I, I))) = 1 ut21(π

in(II, (I, I))) = 0

ut21(π
in(I, (I, II))) = 2/5 ut21(π

in(II, (I, II))) = 6/5

ut21(π
in(I, (II, I))) = 3/5 ut21(π

in(II, (II, I))) = 4/5

ut21(π
in(I, (II, II))) = 0 ut21(π

in(II, (II, II))) = 2

The interim utilities of players t12 are the same as those of player t11, and the interim
utilities of t22 are the same as those of t21. We can notice that when the co-players
are playing actions (I, II), both I and II are best replies for player t11 and II is
the unique best reply for player t21. Since the utilities of t12 and t22 equal those of
t11 and t21, the same holds for players t12 and t22. Consequently, ((I, II), (II, II)),
((II, II)(I, II)), and ((I, II)(I, II)) are Nash equilibria of the interim form of
the game. Notice moreover that there is no other Nash equilibrium in the game.
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For instance, if we consider the profile ((I, I)(II, I)), we can observe that player
t11 would switch to action II, and so would player t21, for a resulting profile of
((II, II)(II, I)). But then player t12 would prefer to play action I rather than
II, and player t22 would prefer to switch from I to II, giving rise to the profile
((II, II)(I, II)), where the players are finally in equilibrium. The three Nash
equilibria that we have found in the interim strategic form correspond to the
three policy functions obtained from the ex ante analysis above, as anticipated in
Remark 3.23.

In later chapters, incomplete information games will play a crucial role. We
already argued that common knowledge of subjective preferences is not a realistic
assumption in many cases. It is even less realistic when we deal with evolutionary
models and large populations of players, as customary in evolutionary game the-
ory. There, a player is normally supposed to recurrently play a fixed game with
different co-players randomly selected from the population at any repetition of
the game. If we think of real-life scenarios, it might be sometimes possible that
we know the subjective preferences of the co-players that we are matched with.
But if we had to meet members of a population at random, most likely we would
have no idea about our co-players’ preferences in the majority of the cases. In
all those circumstances, the situation we would be facing corresponds to a game
with incomplete information.

3.2 Evolutionary Game Theory
The combination of game theory with evolutionary models and dynamical systems
has proven to be very fruitful, and offered researchers many new insights over the
last decades. As a result, game theory, in its population version, is nowadays a
well-established instrument for analysis in many fields: biology, ecology, sociology,
linguistics, ethology, philosophy, anthropology and others (e.g., [Skyrms, 1996],
[Sinervo and Lively, 1996], [Bergstrom and Godfrey-Smith, 1998], [Skyrms, 2010],
and [Franke, 2012]). The success gained by evolutionary game theory in all these
areas stems from the possibility of studying (the attainability and the stability
of) biological as well as sociological and linguistic traits as the outcome of the
evolutionary selection between different and competing traits.

In evolutionary game theory, players are traditionally thought of and modeled
as very primitive and unsophisticated organisms, like mindless animals or plants,
whose behavior is mechanically determined by a genetic code that they received
from their parents and will transmit to their offspring. The evolutionary success
is defined in terms of differential reproduction: the more successful a behavior,
the larger the offspring in the next generation. A behavior, trait or action under
consideration and under selection is generically termed phenotype.

There are two different approaches to an evolutionary investigation of the
interactions between members of a population. The static analysis is mainly
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interested in the stability of a given state, trait or behavior. For this reason, it is
also called equilibrium analysis. On the other side, the dynamic analysis focuses
more on the attainability of a given state, trait or behavior. We will present both
these methodologies, but we refer to [Huttegger and Zollman, 2013] for a more
extensive discussion.

Static analysis The point of departure for the static analysis of population
interactions is the concept of evolutionarily stable strategy (ESS) (see the work by
[Maynard Smith and Price, 1973], [Maynard Smith, 1974], [Maynard Smith, 1982]).4
In order to introduce ESSs, we first need to define the unit of measure for evo-
lutionary success. This quantity is called evolutionary payoff, or objective (as
opposed to subjective) utility, or simply fitness. The fitness Φ of a behavior is
specified by fixing the fitness game.

Definition 3.25. Fitness game. A fitness game G = 〈N,X, (Ai,Φi)i∈N , π〉 is
a game where N,X,Ai and π are as in Definition 3.1, and Φi : X → R is the
fitness function of player i.

Note that the functions Φi have the same domain and codomain as the func-
tions ui of Definition 3.1, but the interpretation is different. While ui represents
player i’s subjective utility (or happiness), which is an intimate feeling, the func-
tion Φi gives the fitness of player i, which is supposed to be an objective quantity.5

The notion of ESS is classically defined for two-player games and, strictly
speaking, it only applies to symmetric games. However, it is customary in evolu-
tionary game theory to talk about ESSs in asymmetric games too. In the latter
case, the concept of ESS is referred to the symmetrized version of the game.
This will not be an important issue here, since we will deal with symmetric two-
player games for most of the results. A fitness game is symmetric if it satisfies
Definition 3.5, where, for all i ∈ N , the function ui is replaced by the function
Φi.

Definition 3.26. ESS. Let G = 〈N,X,A,Φ, π〉 be a symmetric two-player fit-
ness game. A strategy (i.e., phenotype) a∗ ∈ A is evolutionarily stable if, for all
a 6= a∗, it holds that:

1. Φ(π(a∗, a∗)) ≥ Φ(π(a, a∗));

2. Φ(π(a∗, a∗)) = Φ(π(a, a∗)) ⇒ Φ(π(a∗, a)) > Φ(π(a, a)).
4The terms “action”, “act”, and “strategy” are all synonymous in static games. The reader

must also keep in mind that static games (as defined in Section 3.1) and the static analysis of
evolutionary game theory are completely different notions.

5If we consider market competition for instance, an economist would maybe think of this
quantity as money, with the intuition that only firms that maximize profits will survive in the
long run, independent of the subjective happiness that each firm attaches to (different amounts
of) money.
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Whenever the consequent in point 2 is just a weak inequality, a∗ is said to be a
neutrally stable strategy (NSS).

Intuitively, ESS captures the evolutionary stability of a monomorphic popula-
tion. A population is termed monomorphic when all its players display the same
phenotype. We call a-monomorphic a monomorphic population whose unique
phenotype is a ∈ A. If the unique phenotype of a monomorphic population is
an ESS of the fitness game, then there are no other phenotypes that can invade
and thrive in the population. Indeed, imagine an a∗-monomorphic population
confronting a few invaders playing action a ∈ A. Since the invaders represent
only a minimal share of the population, each player will encounter the incumbent
phenotype a∗ most of the times. If condition 1 of Definition 3.26 holds strictly,
there is no chance for the invaders to achieve a higher (expected) fitness than
the incumbent type. Given that the number of offspring is determined by the
fitness of a phenotype, a will be weeded out of the population in the next gen-
erations. If instead Φ(π(a∗, a∗)) = Φ(π(a, a∗)), the tie-breaking condition 2 of
Definition 3.26 is crucial, since it compares the performance of each phenotype
when paired with one of the few invaders. If the incumbent type a∗ has higher
fitness against the invader a than a against itself, then a∗ has higher expected
fitness in the population in general, and will be evolutionarily stable.

Example 3.27. Hi-Lo continued. Suppose a II-monomorphic population of
players is recurrently playing the Hi-Lo fitness game, i.e., the fitness game G =
〈N,X,A,Φ, π〉 such that

• N = {1, 2}

• X = ~A

• A = {I, II}

• Φ(I, I) = 1, Φ(I, II) = 0 = Φ(II, I), Φ(II, II) = 2

• π(~a) = ~a, ∀~a ∈ ~A.

Since it holds that Φ(π(II, II)) = 2 > 0 = Φ(π(I, II)), action II is an ESS
by condition 1 of Definition 3.26. Analogously, it also holds that Φ(π(I, I)) =
1 > 0 = Φ(π(II, I)), so that a I-monomorphic population cannot be invaded by
phenotype II. Hence, both strategies I and II are ESSs.

Condition 1 of Definition 3.26 tells us that if a∗ is an ESS, then the profile
~a∗ = (a∗, a∗) is a Nash equilibrium of the fitness game. Indeed, as we have
seen in Example 3.9, both (I, I) and (II, II) are Nash equilibria of the Hi-Lo
game. However, the concept of ESS does not coincide with the concept of Nash
equilibrium. It is not difficult to find symmetric games that have Nash equilibria
in pure strategy, but where no strategy is evolutionarily stable. An example is
the game of Table 3.1.
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Example 3.28. Example 3.2 continued. Consider the fitness game G =
〈N,X,A,Φ, π〉 corresponding to the game defined in Example 3.2, where the
subjective utilities are now interpreted as fitness. We have seen in Example 3.7
that the (fitness) game has two strict Nash equilibria in pure actions: (I, II) and
(II, I). However, when we check if either action is an ESS, we find that:

• Φ(π(I, I)) = 1 < 5 = Φ(π(II, I)), hence I is not an ESS;

• Φ(π(II, II)) = 0 < 2 = Φ(π(I, II)), hence II is not an ESS.

The inadequacy of the Nash equilibrium concept for an evolutionary analysis
emerges even more clearly from the next example.

Example 3.29. Hi-Lo modified. Consider the modified Hi-Lo fitness game
depicted in the following table.

I II
I 0; 0 0; 0
II 0; 0 2; 2

Action I is weakly dominated by action II for both players, because action II
yields the same fitness as action I against I, and it yields a strictly higher fitness
against II. As in the original Hi-Lo game, however, both (I, I) and (II, II) are
Nash equilibria. When we look for ESSs, we find that:

• Φ(π(II, II)) = 2 > 0 = Φ(π(I, II)), hence II is an ESS;

• Φ(π(I, I)) = 0 = Φ(π(II, I)) and Φ(π(I, II)) = 0 < 2 = Φ(π(II, II)),
hence I is not an ESS.

Admittedly, we would be surprised to observe a population stably anchored to
the Nash equilibrium (I, I). The rationale behind our surprise is precisely the
concept of ESS: as soon as a few II-players arise in the population, the Nash
equilibrium (I, I) will be destabilized.

Just as any ESS defines a symmetric Nash equilibrium (by condition 1 of
Definition 3.26), in the same way, if (a∗, a∗) is a strict Nash equilibrium of the
fitness game, then a∗ is an ESS (because condition 1 of Definition 3.26 holds
strictly by definition of strict Nash equilibrium).

In the absence of ESSs, the static analysis can still appeal to the concept of
(Nash) equilibrium state. Given a fitness game G = 〈N,X,A,Φ, π〉 with action
set A = {a1, ..., am}, a population state is a probability vector of length m that
represents the share of each phenotype in the population. Consequently, we can
denote a population state as a mixed action α = (α(a1), ..., α(am)) ∈ ∆(A). At
any given state α, each phenotype ai ∈ A has an expected fitness defined by

Φ(ai, α) :=
∑

~a−1∈A|N|−1

Φ(π(ai,~a−1))
∏

j∈N\{1}

α(aj),
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which, in case of two-player games, reduces to

Φ(ai, α) =
m∑
j=1

Φ(π(ai, aj))α(aj). (3.1)

Definition 3.30. Equilibrium state. Given a fitness game G, a population
state α∗ ∈ ∆(A) is a (Nash) equilibrium state if, for all a, a′ ∈ A, it holds that

α∗(a) > 0 ⇒ Φ(a, α∗) ≥ Φ(a′, α∗). (3.2)

Formula (3.2) expresses the fact that, for a population state to be in equilib-
rium, all the phenotypes represented in the population must have equal expected
fitness. From Definition 3.12 and Lemma 3.15, it is not difficult to see that α∗ is
an equilibrium state of the fitness game G = 〈N,X,A,Φ, π〉 if and only if ~α∗ is a
symmetric Nash equilibrium of the mixed extension G =

〈
N,∆(X),∆(A),Φ, π

〉
.

Example 3.31. Example 3.2 continued. Consider the fitness game defined
by the game of Table 3.1. As we have seen in Example 3.28, there are no ESSs.
However, the polymorphic population state α∗ = (α∗(I) = 1

3
, α∗(II) = 2

3
) is

an equilibrium state of the game, since Φ(I, α∗) = 5
3

= Φ(II, α∗). No other
equilibrium states exist for this game. Note that the proportions of phenotypes
in the polymorphic equilibrium state correspond to the mixed Nash equilibrium of
the game (Example 3.13). In the equilibrium state the mixture of the population
keeps all actions equally fit, just as in the mixed Nash equilibrium the mixture of
the co-player keeps the player indifferent between her own actions.

Example 3.32. Hi-Lo continued. The Hi-Lo fitness game of Table 3.2 has
three equilibrium states: αI = (αI(I) = 1, αI(II) = 0), αII = (αII(I) =
0, αII(II) = 1), and α∗ = (α∗(I) = 2

3
, α∗(II) = 1

3
). The first two correspond

to the Nash equilibria in pure actions (Example 3.9), where the monomorphic
population is playing an ESS (Example 3.27). The third corresponds to the
mixed Nash equilibrium of Example 3.14.

Example 3.32 highlights an important point: whenever an action a∗ is an
ESS, then the population state α∗ such that α∗(a∗) = 1 and α∗(a) = 0 for all
a 6= a∗ is an equilibrium state. This follows immediately from Definition 3.26
and Definition 3.30: if Φ(π(a∗, a∗)) ≥ Φ(π(a, a∗)) for all a 6= a∗, then Φ(a∗, α∗) ≥
Φ(a, α∗) for all a ∈ A.

The static approach to evolutionary game theory essentially answers two
questions: what are the equilibrium states of the population, and what are the
monomorphic states which are stable against invasion? There is a third important
evolutionary question about the equilibria of a game: what are the stable equilib-
rium states? As we will see shortly, not all the equilibrium states are necessarily
stable.
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Dynamic analysis Instead of focusing on the static identification of the equi-
librium states, the dynamic analysis makes the evolutionary process explicit
through the formalization of the dynamics that represent the driving forces within
the population, and investigates what equilibrium states are stable with respect
to those dynamics. The principal dynamics that have been studied in the litera-
ture are two: the replicator dynamics (RD) and the replicator-mutator dynamics
(RMD).

Replicator dynamics The replicator dynamics (see [Taylor and Jonker, 1978],
[Hofbauer and Sigmaund, 1998]) express the change of proportions of the pheno-
types in the population from a generation to the following one when evolution is
uniquely determined by (expected) fitness. To present the dynamics, we need to
keep track of the changes in the population. The obvious way to proceed is to
introduce a time index t for population states α0, α1, ..., αt, αt+1, and so on. The
(discrete-time) replicator dynamics for a fitness game G and phenotype a ∈ A
are specified by

αt+1(a) = αt(a)
Φ(a, αt)

Φ(αt)
, (3.3)

where Φ(αt) :=
∑

a′∈A Φ(a′, αt)αt(a′) is the average fitness in the population at
time t. The ratio in equation (3.3) is greater than 1 if the expected fitness of ac-
tion a is higher than the average fitness of the population. Hence, equation (3.3)
formalizes the fact that evolutionary success translates into differential reproduc-
tion. If the expected fitness of phenotype a is higher that the average fitness, then
the proportion of a-players is expected to raise in the next generation αt+1 (vice
versa, the proportion of a-players will decrease if a’s expected fitness is lower
than the average). Moreover, αt+1(a) = 0 for all a ∈ A such that αt(a) = 0:
replicator dynamics only take into account phenotypes that are already present
in the population.

Often, in dynamical systems the evolution of the system is described in con-
tinuous time. When the population is in state α ∈ ∆(a) and time is continuous,
the rate of increment (or decrement) of phenotype a ∈ A is given by:

α̇(a) = α(a) (Φ(a, α)− Φ(α)). (3.4)

Equation (3.4) states that the proportion of a will be increasing when the fitness
of a is higher than the average fitness, so that Φ(a, α)−Φ(α) > 0, and decreasing
when Φ(a, α) − Φ(α) < 0 (as we have seen for the discrete case). As before, we
also have that α̇(a) = 0 whenever α(a) = 0.

Definition 3.33. Rest point. A population state α∗ ∈ ∆(A) is called a rest
point of the dynamics if α̇∗(a) = 0 for all a ∈ A.

Although discrete-time and continuous-time dynamics do not always coincide
(see for example [Weibull, 1995], [Sandholm, 2010], [Cressman and Tao, 2014]),
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it is straightforward from equations (3.3) and (3.4) that α̇∗(a) = 0 for all a ∈ A
if and only if α∗ = α∗+1. When the population is on a rest point, the proportions
of phenotypes are not going to change in the next generations. Furthermore,
a population state is in equilibrium when all the phenotypes in the population
have the same expected fitness (Definition 3.30). At any equilibrium state α∗ it
then holds that Φ(α∗) = Φ(a, α∗) for all a ∈ A with α∗(a) > 0. So, if α∗ is an
equilibrium state it follows from equation (3.4) that α̇∗(a) = 0 for all a ∈ A, and
from equation (3.3) that α∗ = α∗+1. Any equilibrium state is thus a rest point of
the dynamics, but the converse is not true, as shown in the following example.

Example 3.34. Example 3.2 continued. Consider the fitness game defined
by Table 3.1, and a population state αt such that αt(I) = 1

2
= αt(II). Therefore,

Φ(I, αt) = 1.5, Φ(II, αt) = 2.5, and Φ(αt) = 2. By computing the discrete-
time dynamics, in the next generation we expect αt+1(I) = 3

8
and αt+1(II) = 5

8
.

Looking at the continuous-time RD, we have α̇t(I) = −1
4
, and α̇t(II) = 1

4
. Hence,

αt is not a rest point. We can also check that αt+1(I) = 1
2
− 1

4
· 1

2
= 3

8
, and

αt+1(II) = 1
2

+ 1
4
· 1

2
= 5

8
, as expected from discrete-time RD. There are three rest

points in the game under consideration. Two of them are the monomorphic states.
The third is the equilibrium state found in Example 3.31. Notice that the unique
equilibrium state of the game is also a rest point, but the two monomorphic rest
points are not equilibrium states.

Once some evolutionary dynamics is explicitly defined, a question that nat-
urally arises is: what are the rest points of the dynamic that are evolutionarily
stable? In [Maynard Smith, 1982]’s words, “A population is said to be in an evo-
lutionarily stable state if its genetic composition is restored by selection after a
disturbance, provided the disturbance is not too large.” More precisely, there are
two ways for a rest point to be stable. A weaker sense of stability is captured by
the notion of Lyapunov stability.

Definition 3.35. Lyapunov stability. A rest point α∗ ∈ ∆(A) is said to be
Lyapunov stable if for any open neighborhood Γ of α∗, there is a neighborhood
Γ′ ⊆ Γ of α∗ such that

αt ∈ Γ′ ⇒ αt
′ ∈ Γ ∀t′ > t.

Definition 3.35 intuitively expresses that if α∗ is Lyapunov stable, then all the
population states nearby α∗ will stay nearby. A stronger sense in which a state
can be evolutionarily stable is given by the following definition.

Definition 3.36. Asymptotic stability. A rest point α∗ is called asymptotically
stable if it is Lyapunov stable and there is an open neighborhood Γ of α∗ such
that

αt ∈ Γ ⇒ lim
t→∞

αt = α∗.
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A state is asymptotically stable if, besides being Lyapunov stable, there is a
neighborhood Γ of α∗ where all the points converge to α∗. When this happens, the
state α∗ is called attractor, and the largest neighborhood Γ that has the property
of Definition 3.36 is called its basin of attraction.

Example 3.37. Example 3.2 continued. We have seen that the fitness game
of Table 3.1 has no evolutionarily stable strategy, but it might still have evolution-
arily stable states. The candidates are the three rest points that we found in Ex-
ample 3.34: the polymorphic equilibrium state α∗ where (α∗(I) = 1

3
, α∗(II) = 2

3
),

and the two monomorphic states. As for the stability of the polymorphic state
α∗, consider the population state αt with αt(I) = 1

2
= αt(II), as in Exam-

ple 3.34. We know that in the following generation the population will be in
state αt+1(I) = 3

8
and αt+1(II) = 5

8
. By computing the next time steps we find

αt+2 = (≈ 0.3421,≈ 0.6579), αt+3 = (≈ 0.3351,≈ 0.6649), ..., converging to
α∗ = (1

3
, 2

3
), where the first number of each pair is the proportion of phenotype

I and the second number is the proportion of phenotype II. The situation is
different when we take into consideration the monomorphic rest points. Let us
suppose that the II-monomorphic state is minimally perturbed by a tiny quan-
tity ε of I-players that are injected into the population at time t. The expected
fitness of phenotype I is then Φ(I, αt) = ε + 2(1 − ε) ≈ 2, whereas the expected
fitness of phenotype II is Φ(II, αt) = 5ε+ 0(1− ε) ≈ 0. Consequently, we should
expect an increase of I-players in the next generation αt+1. Precisely, I-players
will keep increasing until they will occupy 1

3
of the population. At that moment,

their expected fitness will equal that of II-players, and their number will stop
growing. By a similar argument, a minimal perturbation of the other monomor-
phic rest point will result a cascade effect towards the polymorphic equilibrium
state α∗. Since any state in the interior of ∆(A) is attracted to the polymorphic
equilibrium state, the basin of attraction of α∗ equals the full interior of ∆(A).
The state α∗ is thus called a global attractor.

It is not difficult to see that being an equilibrium state is a necessary condi-
tion for evolutionary stability. If a state α is not in equilibrium, it means that
α(a) > 0 and Φ(a, α) < Φ(a′, α) for some a, a′ ∈ A. But then for any open
neighborhood Γ of α there is a state α′ ∈ Γ with α′(a′) 6= 0. It follows that it will
be possible to find an open neighborhood Γ of α without the property specified in
Definition 3.35. The next example shows that being an equilibrium state is not a
sufficient condition though: not every equilibrium state is evolutionarily stable.

Example 3.38. Hi-Lo continued. The rest points for the Hi-Lo fitness game
are also three, and coincide with the three equilibrium states of Example 3.32:
the monomorphic states αI = (1, 0) and αII = (0, 1), and the polymorphic state
α∗ = (2

3
, 1

3
). The two monomorphic rest points are asymptotically stable, while

α∗ is not. Obviously, neither αI nor αII can be a global attractor in this case.
It follows that the state space ∆(A) is split into two basins of attraction. The
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frontier of the two basins is exactly the unstable rest point α∗ = (2
3
, 1

3
): a minimal

perturbation towards one of the two phenotypes will start a cascade which will
end at the monomorphic state with only that phenotype in the population.

Replicator-mutator dynamics The second dynamic that we want to intro-
duce and make use of in later chapters is an extension of the replicator dynam-
ics, where the proportions of phenotypes in the next generation are determined
by the combined effect of fitness-based differential reproduction (replicator dy-
namics) and possible mutation of some players from one phenotype to another.
For this reason, it is called replicator-mutator dynamics (see [Hofbauer, 1985],
[Nowak, 2006]).

Given a fitness game G = 〈N,X,A,Φ, π〉 with action set A = {a1, ..., am}, the
mutator dynamics are expressed by a (right) stochastic matrix

M =

M11 ... M1m
...

...
...

Mm1 ... Mmm


such that

∑m
j=1Mij = 1 for each i = 1, ...,m. The entry Mij fixes the probability

of mutation from phenotype ai to phenotype aj in the next generation. The
discrete-time replicator-mutator dynamics are specified by the joint action of
replication and mutation:

αt+1(ai) =
m∑
j=1

Mji · αt(aj)
Φ(aj, αt)

Φ(αt)
. (3.5)

The formula states that, in each generation t, players play against each other
in the population, and each phenotype aj gets a certain expected fitness that
determines its fertility rate. But if some of its offspring are going to mutate into a
different phenotype, then the overall share of phenotype ai in the next generation
t+ 1 is the sum of the expected offspring of each phenotype aj multiplied by the
probability of mutation from aj into ai.

In continuous time, RMD are given by:

α̇(ai) =
m∑
j=1

α(aj)Φ(aj, α)Mji − α(ai)Φ(α). (3.6)

From a biological point of view, it makes sense to postulate that mutation from a
phenotype to another happens only very rarely. This amounts to assuming that,
for any row i in the stochastic matrix, the probability of mutating

∑
j 6=iMij is

substantially lower than the probability of not mutating Mii.

Example 3.39. Example 3.2 continued. Let us consider the fitness game
defined by Table 3.1, and suppose the population is at the II-monomorphic state
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αII = (0, 1). When we study the evolutionary dynamics driven by both replication
and mutation, we need to specify the mutation probabilities Mij. Denote by
MI,II the probability of mutating from phenotype I to phenotype II, and fix
MI,II = MII,I = ε, for an arbitrarily small ε > 0. Then the population state αII
is no longer a rest point of the replicator-mutator dynamics. Indeed, according to
RMD, a fraction ε of mutants playing action I will arise by mutation in the next
generation. This will cause the cascade effect that we have seen in Example 3.37,
leading the population to the state α∗ = (1

3
, 2

3
).

Example 3.40. Hi-Lo continued. Suppose the population is playing the Hi-
Lo fitness game, and the population state at time t is αt = (2

3
, 1

3
). As observed

in Example 3.38, this is a rest point of the replicator dynamics. If we have
MI,II = MII,I = ε again, then it is easy to compute that α̇t(I) 6= 0 6= α̇t(II), so
that αt is not a rest point of RMD in this case. From discrete-time RMD, we get
αt+1 = (2

3
− ε

3
, 1

3
+ ε

3
): we expect an increase of phenotype II and a decrease of

phenotype I in the next generation. However, it is still possible for αt = (2
3
, 1

3
)

to be a rest point of RMD. If we fix MII,I = 2MI,II , for example MI,II = ε and
MII,I = 2ε, it follows that α̇t(I) = α̇t(II) = 0. To restore αt = (2

3
, 1

3
) as rest point

of the replicator-mutator dynamics in the Hi-Lo game we had to counterbalance
the difference in fitness by a proportional difference in mutation rates.

A general result that relates the set of rest points of RMD to the set of rest
points of RD is that the limit rest points of RMD constitute a subset of the rest
points of RD (see [Samuelson, 1997]), where a limit rest point is the limit of the
sequence of rest points of RMD as the mutation rates tend to zero.

So far, the evolutionary dynamics have mainly been used to investigate the
stability of states, without going much beyond the equilibrium analysis of popu-
lation games. A second important question that we might ask once the dynamics
have been explicitly introduced is about the attainability of different evolutionar-
ily stable states. The attainability of a state is understood as the probability of a
random population to evolve to it, and determined by the size of its basin of at-
traction. In this context, [Huttegger and Zollman, 2010] found examples of games
with a unique strict Nash equilibrium and a unique ESS, where nevertheless the
population evolved to the ESS less than twenty percent of the times. Yet, ESSs
correspond to evolutionarily stable states with respect to most dynamics. This
shows that one should be very careful in taking the equilibrium analysis in terms
of ESSs as a good approximation for the outcomes of the evolutionary dynamics.
An explicit dynamic analysis in terms of basins of attraction and attainability of
states is crucial in many cases. We believe that neither a static nor a dynamic
analysis is exhaustive by itself, and agree with [Huttegger and Zollman, 2013] on
the necessity of a pluralistic approach to the study of evolutionary outcomes. In
the following chapters we will therefore make use of both methodologies.
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3.3 Population Games With Incomplete Informa-
tion Under Ambiguity: An Important Exam-
ple

In this final section we will bring together notions from decision theory and evo-
lutionary game theory by means of an example that is going to introduce us to
the evolutionary framework of the following chapters.

Consider a population with two different types of players. Suppose that the
members of the population are randomly matched to play the symmetric two-
player fitness game G = 〈{1, 2}, X,A,Φ, π〉 depicted in the following table.

I II
I 2; 2 1; 0
II 0; 1 5; 5

Here, instead of considering types as different expressed behaviors a ∈ A, we
will think of a type as a subjective utility u : X → R. This research direction aims
at studying the evolution of preferences and has been investigated in some re-
cent papers (see, e.g., [Alger and Weibull, 2013], [Robson and Samuelson, 2011],
[Dekel et al., 2007]).

Let us denote the set of types in the population by T , and suppose that there
are two different preference types t1, t2 ∈ T , with subjective utilities ut1 and ut2
respectively. Furthermore, denote by λ ∈ [0, 1] the proportion of types t2, so that
the population share of types t1 will be 1 − λ. The probability of encountering
the first type will thus be P (t1) = 1− λ, and analogously P (t2) = λ. Given this
set-up, when two players are selected from the population and matched to play
G, it is natural to model the situation as a Bayesian game with private values
BG = 〈N,S,X, (Θi, Ti, Ai, τi, ϑi, Pi × Pi, ui)i∈N , π〉 such that:

• N = {1, 2}

• Ti = Θi = T = {t1, t2}, ∀i ∈ N

• S = T × T

• τi : S → T is the projection such that ∀(ti, tj) ∈ T × T , τ1(ti, tj) = ti and
τ2(ti, tj) = tj

• ϑi is the identity function, ϑi(tj) = tj, ∀i, j ∈ {1, 2}

• X and Ai (∀i ∈ N) are as in the fitness game G

• π : ~A→ X is as in the fitness game G, since the game has private values

• ui : Θi ×X → R is such that ∀i ∈ N, ∀tj ∈ T , ui(tj, x) = utj(x)
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I II

0,2

-2,1 0,5
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I II
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0,-4 5,0
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2,2

0,1 5,5

1,0I

II

I II

P (t1, t1) = (1− λ)2

P (t2, t1) = λ(1− λ)

P (t1, t2) = λ(1− λ)

P (t2, t2) = λ2

Figure 3.2: The resulting Bayesian population game.

• Pi × Pi ∈ ∆(T × T ) such that ∀i ∈ N, ∀(ti, tj) ∈ T × T , (Pi × Pi)(ti, tj) =
P (ti) · P (tj).

Moreover, suppose that the two preference types in the population have sub-
jective utility ut1 and ut2 such that

1. ut1 = Φ

2. ut2(π(I, I)) = ut2(π(II, II)) = 0, ut2(π(I, II)) = −4, ut2(π(II, I)) = −2.

The resulting Bayesian population game is pictured in Figure 3.2. The horizontal
dotted line distinguishes worlds where player 1 is of type t1 (above) from worlds
where she is of type t2 (below), and the vertical dashed line distinguishes worlds
where player 2 is of type t1 (on the left) from those where he is of type t2 on the
right.

However, in realistic situations, it is reasonable to assume that the players
might not have access to the precise statistics about the composition of the pop-
ulation, especially when the population is very large and the game has been
played only a few times. This amounts to saying that the players cannot pinpoint
the actual λ. In such cases, agents may entertain a non-probabilistic represen-
tation of the uncertainty. This line of thoughts derives from the considerations
about the justification of beliefs as a prerequisite for rational choice that we
have seen in Chapter 1. Games with incomplete information under ambiguity
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(without any evolutionary interpretation though) have recently been studied by
[Kajii and Ui, 2005] and [Liu, 2015]. Very much in the spirit of urns ï¿œ la Ells-
berg, it is then natural to think of the random selection of players from the
population as an extraction from an urn with unknown composition.

Just as in Ellsberg’s examples, whenever the players’ uncertainty about the
population composition is unmeasurable, a possibility is to represent it as a com-
pact convex set Γ of possible distributions of types in the population. The in-
tuition may be that if the players observed some plays of the game, they could
realize that there are some types t1, and that there are also some types t2, but
without being able to narrow down the set of possible proportions of t2 to more
than, for example, λ ∈ [0.1, 0.9]. Then, when a player of type ti is drawn from
the population, his or her probability λ of being matched with a type t2 is within
the interval [0.1, 0.9], that specifies a lower probability λ = 0.1 and an upper
probability λ = 0.9 of encountering type t2.

The unmeasurable uncertainty about the proportions in the population gives
rise to a game with incomplete information under ambiguity, that differs from
the previous Bayesian games in that the ex ante and interim beliefs of player i
are now represented by a set of probabilities. Assuming that players have the
same uncertainty about the proportions in the population, quantified in terms of
a common set Γ of possible distributions of types, it follows that the game has
common set of priors Γ � Γ, defined as

Γ � Γ := {P × P : P ∈ Γ}

where, for all (ti, tj) ∈ T × T , (P × P )(ti, tj) = P (ti) · P (tj). The last bullet
from the previous list, corresponding to the prior beliefs of the players, turns
accordingly into:

• Γ � Γ ⊆ ∆(T × T ).

Relying on the convention of denoting simply by λ ∈ [0, 1] the Bernoulli distri-
bution Pλ ∈ Γ with parameter λ, we directly express the set Γ as an interval in
[0, 1], Γ ⊆ [0, 1]. Each state (ti, tj) ∈ T ×T will then have a lower prior probabil-
ity (P × P )(ti, tj) and an upper prior probability (P × P )(ti, tj). In our example
with Γ = [0.1, 0.9], we get

(P × P )(t1, t1) = (P × P )(t2, t2) = 0.01

(P × P )(t1, t2) = (P × P )(t2, t1) = 0.09

(P × P )(t1, t1) = (P × P )(t2, t2) = 0.81

(P × P )(t1, t2) = (P × P )(t2, t1) = 0.25

In general, the theoretical literature on decision making under ambiguity has
not yet reached a consensus on which updating rule should be used for updating
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prior sets of probabilities to posterior sets of probabilities. Note that our formula-
tion implies that players update the prior set of probabilities Γ�Γ to the posterior
set Γ by means of full Bayesian updating (see [Fagin and Halpern, 1990]):

Γ = {(P × P )(·|tj) ∈ ∆(T × T ) : P × P ∈ Γ � Γ}.

Games with incomplete information under ambiguity have been introduced
and studied in very recent works (see, e.g., [Kajii and Ui, 2005], [Liu, 2015],
[Battigalli et al., 2015]). For our goals, it is important to stress that the un-
measurable uncertainty can be resolved to an action choice in different ways.

For brevity, given the Bayesian population game (with common prior P ×P ∈
Γ � Γ), let us write the ex ante utility for player i and profile ~σ as

EP×P [ui(σi, ~σ−i)] :=∑
ti

(P × P )(ti)
∑

~t−i
(P × P )(~t−i|ti)ui(ϑi(ti), π(ϑi(ti), ~ϑ−i(~t−i), σi(ti), ~σ−i(~t−i))).

Likewise, we will write the interim utility of player i given profile ~σ and type ti
as

EP×P [ui(σi, ~σ−i)|ti] :=∑
~t−i

(P × P )(~t−i|ti)ui(ϑi(ti), π(ϑi(ti), ~ϑ−i(~t−i), σi(ti), ~σ−i(~t−i))).

As we have seen in Section 3.1, in Bayesian games a profile of policy functions ~σ∗
defines a Nash equilibrium in the ex ante strategic form of the game if and only
if it defines a Nash equilibrium in the interim strategic form. When uncertainty
is unmeasurable and the epistemic state of the players is specified by a set of
probability distributions over the states, rather than a single probability, different
uncertainty resolution procedures correspond to different equilibrium concepts.

Consider a two-player game with incomplete information and private values
like the one above, and a prior set Γ� Γ of distributions over the states together
with a profile ~σ = (σ1, σ2). The ex ante “value” of policy σi might then be
established by looking, for instance, at the minimal expected utility possibly
achievable,

min
P×P∈Γ�Γ

EP×P [ui(σi, σ3−i)],

or, alternatively, by considering the maximal expected utility,

max
P×P∈Γ�Γ

EP×P [ui(σi, σ3−i)].

The same reasoning holds for the interim utilities. Given a profile ~σ and a type tj,
a player may evaluate actions depending on the interim minimal expected utility
possibly achievable,

min
P×P∈Γ�Γ

EP×P [ui(σi, σ3−i)|tj]
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as well as on the interim maximal expected utility possibly achievable,

max
P×P∈Γ�Γ

EP×P [ui(σi, σ3−i)|tj],

where, for each λ ∈ Γ, the expectation is given by:

EPλ×Pλ [ui(σi, σ3−i)|tj] = (1−λ)utj(π(σi(t
j), σ3−i(t

1
3−i)))+λutj(π(σi(t

j), σ3−i(t
2
3−i))).

Following the work by [Liu, 2015], we introduce the following equilibrium concepts
for the population game under ambiguity.

Definition 3.41. Ex ante Γ-equilibrium. Given an incomplete information
game under ambiguity, a profile of policy functions ~σ∗ is defined to be an ex ante
Γ-equilibrium if, for all i ∈ N ,

σ∗i ∈ argmax
σi

min
P×P∈Γ�Γ

EP×P [ui(σi, ~σ
∗
−i)].

The concept of interim Γ-equilibrium is defined analogously.

Definition 3.42. Interim Γ-equilibrium. Given an incomplete information
game under ambiguity, a profile of policy functions ~σ∗ is defined to be an interim
Γ-equilibrium if, for all i ∈ N and all tj ∈ T ,

σ∗i ∈ argmax
σi

min
P×P∈Γ�Γ

EP×P [ui(σi, ~σ
∗
−i)|tj].

Let us now get back to the analysis of the game with incomplete information
under ambiguity of our current example. The following table shows the ex ante
utilities. Each pair of actions listed in the first column defines a policy σ1 :
T1 → A1 for player 1, with the convention that the first element is the action
associated with type t1 and the second element is the action associated with type
t2 (and similarly for player 2). Since the game is symmetric, it suffices to specify
the utilities of player 1 only.

I, I I, II II, I II, II
I, I −2λ+ 2 −3λ2 − 3λ+ 2 3λ2 − 4λ+ 1 −5λ+ 1
I, II −4λ+ 2 3λ2 − 5λ+ 2 −3λ2 + 1 −λ+ 1
II, I 0 −9λ2 + 5λ λ2 − 10λ+ 5 −9λ+ 5
II, II −2λ −3λ2 + 3λ 3λ2 − 10λ+ 5 −5λ+ 5

When λ ∈ [0.1, 0.9], the ex ante minimal expected utilities are those computed in
Table 3.3.

On the other hand, the interim analysis of the game is as follows. Given a
value of λ, when player 1 observes signal t1 the interim expected utilities are:

EPλ×Pλ [u1(I, (I, I))|t1] = 2 EPλ×Pλ [u1(I, (II, I))|t1] = 1 + λ
EPλ×Pλ [u1(II, (I, I))|t1] = 0 EPλ×Pλ [u1(II, (II, I))|t1] = 5− 5λ

EPλ×Pλ [u1(I, (I, II))|t1] = 2− λ EPλ×Pλ [u1(I, (II, II))|t1] = 1
EPλ×Pλ [u1(II, (I, II))|t1] = 5λ EPλ×Pλ [u1(II, (II, II))|t1] = 5
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I, I I, II II, I II, II
I, I 0.2; 0.2 −3.13;−1.6 −1

3
(!); 0 −3.5;−1.8

I, II −1.6;−3.13 − 1
12

(!);− 1
12

(!) −1.43;−2.79 0.1; 0.27
II, I 0;−1

3
(!) −2.79;−1.43 −3.19;−3.19 −3.1;−1.57

II, II −1.8;−3.5 0.27; 0.1 −1.57;−3.1 0.5; 0.5

Table 3.3: Ex ante minimal expected utilities.

When player 1 observes signal t2 we have instead:

EPλ×Pλ [u1(I, (I, I))|t2] = 0 EPλ×Pλ [u1(I, (II, I))|t2] = −4 + 4λ
EPλ×Pλ [u1(II, (I, I))|t2] = −2 EPλ×Pλ [u1(II, (II, I))|t2] = −2λ
EPλ×Pλ [u1(I, (I, II))|t2] = −4λ EPλ×Pλ [u1(I, (II, II))|t2] = −4

EPλ×Pλ [u1(II, (I, II))|t2] = −2 + 2λ EPλ×Pλ [u1(II, (II, II))|t2] = 0

Since the game is symmetric the same holds for player 2.
In Table 3.3, we highlighted some expected utilities by means of exclamation

marks. The reason of those will remain mysteriously unspecified for the mo-
ment, until Section 6.2. For now, the crucial point about this example is that
ex ante and interim Γ-equilibria do not coincide. Indeed, from the ex ante form
in Table 3.3 we can see that the only two ex ante Γ-equilibria are ((I, I), (I, I))
and ((II, II), (II, II)). On the contrary, we can check from the interim analy-
sis above that the interim Γ-equilibria are ((I, I), (I, I)), ((II, II), (II, II)), and
((I, II), (I, II)). In general, as shown in [Liu, 2015], and differently than Bayesian
games, ex ante and interim Γ-equilibria do no longer coincide in incomplete in-
formation games under ambiguity.





Chapter 4

Epistemic Structures for Rationality

Without knowledge action is useless and knowledge without action is
futile. (Abu Bakr)

4.1 Introduction

In recent years many game theorists have focused on the epistemic part of playing
a game, taking explicitly into account the knowledge and beliefs of the players
involved in strategic interactions. The goal of the epistemic approach to game
theory is to study what are the players’ epistemic conditions that lead to solution
concepts. Indeed, there are few games (e.g., the Prisoners’ Dilemma) that do not
need any strategic reasoning about the others for a rational player to choose an
action. In most of the situations instead players have to take into consideration
what they think about the others’ actions and beliefs in order to choose an action.
Furthermore, we need to consider what a player thinks about the others in order to
assess her rationality. Strategic thinking comes out when the players reason about
the others’ actions, knowledge and beliefs, and epistemic game theory makes it
explicit.

In the literature there are at least two main formal structures to deal with sit-
uations of interactive epistemology: Kripke models, mainly used in logic and
computer science [Fagin et al., 1995], and type spaces, more common in eco-
nomics and game theory ([Harsanyi, 1967], [Harsanyi, 1968a], [Harsanyi, 1968b]).
As shown in many papers, both these frameworks can be used to express epistemic
conditions for solution concepts. For instance, [Aumann and Brandenburger, 1995]
and [Battigalli and Siniscalchi, 2002] state the epistemic conditions for Nash equi-
librium and extensive form rationalizability by means of type spaces, whereas in

75
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[Baltag et al., 2009] and [Lorini, 2013] epistemic conditions for backward induc-
tion and iterated weak dominance are expressed by Kripke models. The issue we
try to address here is to formally study the relationship between these two struc-
tures, with a view to a possible broader communication and closer interaction
between the two communities, epistemic logic and epistemic game theory.

Quite recently some steps have already been attempted towards the aim of
bridging the mentioned frameworks. We are mainly referring to the work in
[Heifetz and Mongin, 2001] and in [Zvesper, 2010]. In [Heifetz and Mongin, 2001]
the authors are able to identify a logical system which is sound and complete
with respect to the class of type spaces based on some modifications of Aumann’s
system [Aumann, 1995]. Both these logical systems are probabilistic, in the sense
that they are expressed in a language with probabilistic operators. Zvesper’s
work instead starts from a qualitative version of type spaces, that he names type-
space models and shows that there is an isomorphism with Kripkean state-space
models.

In Section 4.2, we start by defining a qualitative multi-agent epistemic lan-
guage with belief operators. Then, we show firstly how to interpret it on a specific
class of qualitative Kripke models, that we call doxastic game models, and later
we show how to interpret the same language on probabilistic type spaces. Finally,
we prove that the two frameworks are semantically equivalent with respect to the
language.

In Section 4.3, we extend the language by introducing knowledge operators,
in order to express two different epistemic attitudes in our frameworks. We show
how to interpret the extended language on type spaces and subsequently we de-
fine the corresponding class of epistemic-doxastic game models. In the end we
prove the semantic equivalence between the two semantics with respect to the
extended language. Consequently, doxastic game models and epistemic-doxastic
game models represent the qualitative Kripkean counterpart of type spaces.

Section 4.4 is devoted to the axiomatizations of the logic of belief and of
the logic of belief and knowledge interpreted over doxastic game models and
epistemic-doxastic game models, respectively. Given the results on the semantic
side, these two logics are sound and complete with respect to type spaces too.

We conclude in Section 4.5 by extending the analysis about the equivalence
between Kripke-style semantics and type space semantics to a modal language
with probabilistic beliefs. The significance of this section consists in showing that
the equivalence between the two kinds of semantics is preserved when moving from
a qualitative representation of epistemic attitudes to a quantitative one based on
probabilities.
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4.2 Models With Belief
In this section we will introduce the epistemic structures under consideration:
doxastic Kripke models and type spaces. As usual in logic, we start out by
introducing a logical language to talk about the epistemic interactive situation
of the players in a game, and in the end we interpret it on both doxastic models
and type spaces.

4.2.1 Language

Let us be given a static game G, as defined in the previous chapter. We want to
endow ourselves with a logical language to talk about the epistemic situation of
the players. We define the language LDGL(G) for the doxastic game logic (DGL)
as generated by the following grammar:

ϕ ::= pli(ai) | ¬ϕ | ϕ ∧ ϕ | Biϕ

where ai ∈ Ai and i ∈ N . The other boolean operators ∨,⊥,>,→ and ↔ are
defined in the standard way. The language LDGL(G) is a doxastic language with
a belief operator Bi for each player i. Notice that the language LDGL(G), and
consequently the logic DGL, is parametrized by the game G that we are taking
into consideration. It is the game G that gives us the primitives pli(ai) of our
language LDGL(G): for each ai ∈ Ai we have one primitive pli(ai), read as “player
i is playing her action ai”. The doxastic formula Biϕ has to be read as “player
i believes that ϕ is true”. Let us define the sets Φi = {pli(ai) : ai ∈ Ai} and
Φ =

⋃
i∈N Φi. Moreover, let us abbreviate B̂iϕ := ¬Bi¬ϕ.

4.2.2 Semantics

4.2.2.1 Doxastic models

In the epistemic logic literature it is standard to express the semantics of doxastic
languages by means of structures called doxastic models. Doxastic models are a
specific type of Kripke models used in modal logic ([Blackburn et al., 2001]).

Definition 4.1 (Doxastic model). A doxastic model is a tuple

M = 〈W,→1, ...,→n, υ〉

where:

• W is a countable set of possible worlds;

• υ : W → 2Φ is the valuation function for the set of primitives Φ defined in
Section 4.2.1;
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• →i⊆ W × W is the belief relation of player i that satisfies the following
conditions:

– seriality: ∀w∃w′ such that w →i w
′;

– transitivity: ∀u,w, z : u→i w and w →i z implies u→i z;

– Euclideaness: ∀u,w, z : w →i u and w →i z implies u→i z.

Let us define the belief set of player i at world w as follows: →i (w) := {w′ :
w →i w

′}.

Before interpreting LDGL(G) over doxastic models we are going to identify a
subclass of doxastic models, that we call doxastic game models DGM for game
G. A similar notion is defined also in [Lorini and Schwarzentruber, 2010].

Definition 4.2 (Doxastic game model). A doxastic game model for the game G
is a doxastic model M = 〈W,→1, ...,→n, υ〉 satisfying the following conditions:

• Adequate valuation condition (AVC):

∀i ∈ N , ∀w ∈ W, υi(w) is a singleton,

where υi(w) is the restriction of υ(w) to Φi, i.e., υi(w) = υ(w) ∩ Φi;

• Ex interim condition (ExIC):

∀i ∈ N , ∀w,w′ ∈ W , ∀ai ∈ Ai, if w →i w
′ and pli(ai) ∈ υ(w),

then pli(ai) ∈ υ(w′).

AVC simply says that the valuation function assigns one and only one action
to each player at each world, since we do not want to have worlds in which a
player can play two different actions at the same time. ExIC means that if a
player plays an action, then she believes to play that action. For this reason we
call it the ex interim condition: it describes a stage in the game where the players
have already chosen their own actions, and they might be uncertain only about
the others’ actions.

Doxastic game models of the form M = 〈W,→1, ...,→n, υ〉 can be used to
provide a semantics for the language LDGL(G). The following are the truth
conditions of formulas in the language LDGL(G) relative to doxastic game models,
where M,w � ϕ means that formula ϕ is true at world w in the model M :

• M,w � pli(ai) iff pli(ai) ∈ υ(w);

• M,w � ¬ϕ iff M,w 2 ϕ;
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• M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ;

• M,w � Biϕ iff ∀w′ ∈ W, if w →i w
′ then M,w′ � ϕ.

As usual we say that a formula ϕ is true in a model M = 〈W,→1, ...,→n, υ〉
if ∀w ∈ W , M,w � ϕ. Then, a formula ϕ is valid in DGM if ϕ is true in M for
all M ∈ DGM, and we write �DGM ϕ. A formula ϕ is satisfiable in DGM if ¬ϕ
is not valid in DGM.

4.2.2.2 Type spaces

The formal structures mainly used in economics to express epistemic situations
in a game are type spaces, introduced in [Harsanyi, 1967], [Harsanyi, 1968a], and
[Harsanyi, 1968b]. The classical construction of type spaces is inductive (see
[Brandenburger and Dekel, 1993]). Each type ti of player i is associated with
an action ai ∈ Ai = X0

i and represents a hierarchy of beliefs about the other
players. The first level of the hierarchy is given by a probability distribution
x1
i on the actions of the other players ~A−i = Πj 6=iAj = Πj 6=iX

0
j = ~X0

−i, i.e.,
x1
i ∈ ∆( ~X0

−i). Call this distribution x1
i player i’s 1-order belief, and ~X0

−i the
domain of player i’s 1-order beliefs. Then, anticipating the other players’ rea-
soning, each player i will also form expectations about the other players’ be-
liefs about the other players’ action profiles. Incorporating these into the for-
mal account results in a probability distribution x2

i ∈ ∆( ~X0
−i × Πj 6=i∆( ~X0

−j))
over the strategy profiles and the first-order beliefs of the other players, where
~X0
−i × Πj 6=i∆( ~X0

−j) = ~X1
−i is the domain of player i’s 2-order beliefs. The pro-

cess goes iteratively: the domain of player i’s k + 1-order beliefs is defined as
~Xk
−i = ~Xk−1

−i × Πj 6=i∆( ~Xk−1
−j ), and a k + 1-order belief of i is a probability distri-

bution xk+1
i ∈ ∆( ~Xk

−i). Prima facie, if k > h > 0 then player i’s k-order belief is
more complex than player i’s h-order belief. It was Harsanyi’s seminal contribu-
tion to see that this process catches itself at infinity, in the sense that player i’s ω-
order belief captures player i’s beliefs about the entire hierarchies of beliefs of the
other players (see [Brandenburger and Dekel, 1993, Mertens and Zamir, 1985]).
That is, a ω-order belief of player i contains information about ω-order beliefs
of the other players and not just about lower order beliefs of the other players.
This implies that a type of player i is associated with both an action of player i
and a probability distribution over the types of the others. Consequently, every
type ti ∈ Ti of player i can be mapped to an element of Ai and to an element
of ∆(~T−i), with ~T−i = Πj 6=iTj. Harsanyi’s characterization leads to the follow-
ing simplified definition of type spaces as given by Aumann and Brandenburger
[Aumann and Brandenburger, 1995]:

Definition 4.3 (Type space). A type space T for game G is a tuple

〈T1, ..., Tn, β1, ..., βn, σ1, ..., σn〉
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where:

• Ti is a countable set of types of player i;

• βi : Ti → ∆(~T−i) is the belief function of player i that associates with each
type ti ∈ Ti a probability distribution µ ∈ ∆(~T−i) over the types of the
others ~T−i = Πj 6=iTj;

• σi : Ti → Ai is the action function of player i that associates an action
ai ∈ Ai with each type ti ∈ Ti.1

An element ~t ∈ ~T is called state, where as usual ~T = T1 × ...× Tn. Given a state
~t, ti denotes the element in ~t corresponding to player i.

The truth conditions for formulas of the doxastic language LDGL(G) relative
to a probabilistic type space T = 〈T1, ..., Tn, β1, ..., βn, σ1, ..., σn〉 are given by the
following clauses. Note that formulas are evaluated at a given state ~t of a type
space T :

• T,~t � pli(ai) iff σi(ti) = ai;

• T,~t � ¬ϕ iff T,~t 2 ϕ;

• T,~t � ϕ ∧ ψ iff T,~t � ϕ and T,~t � ψ;

• T,~t � Biϕ iff ∀~t′ ∈ ~T if t′i = ti and βi(ti)(~t′−i) > 0 then T,~t′ � ϕ.

The truth condition of the doxastic operator Bi is justified by the way the notion
of belief is commonly defined in type spaces. A basic notion in the literature on
type spaces is the event. An event is a subset e ⊆ ~T . An event for player i is a
subset e−i ⊆ ~T−i. Let βi(ti)(e−i) be the probability that type ti gives to the event
e−i, i.e.,

βi(ti)(e−i) =
∑

~t′−i∈e−i

βi(ti)(~t
′
−i).

Then, the event that player i believes e−i, denoted by Bi(e−i), is defined in type
spaces as follows:

Bi(e−i) = {~t ∈ ~T : βi(ti)(e−i) = 1}.

Intuitively, Bi(e−i) is the set of states at which player i assigns probability 1 to
the event e−i. It is easy to check that T,~t � Biϕ if and only if ~t ∈ Bi({~t′−i ∈ ~T−i :

T, (ti,~t
′
−i) � ϕ}). In other words, player i believes ϕ at state ~t if and only if ~t

1We are considering complete information games: the rules of the game and the
subjective utilities are common knowledge among the players. Consequently, unlike
[Aumann and Brandenburger, 1995] there is no need to specify a subjective utility function
for each type.
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belongs to the set of states at which player i assigns probability 1 to set of states
at which ϕ is true.

The notions of validity and satisfiability for formulas of LDGL(G) relative to
the class T of type spaces are defined in the standard way, as for doxastic game
models.

4.2.3 Correspondence

In this section we are going to formally prove what we claimed in the beginning of
this chapter, namely that type spaces and doxastic game models are semantically
equivalent with respect to the language LDGL(G). The proof is developed in
many steps and it will proceed as follows. Firstly, we present a way to transform
type spaces into doxastic models, and in particular it turns out that the resulting
doxastic models are doxastic game models. Then, we show that the transforma-
tion preserves the truth of all the formulas in LDGL(G). This gives us the first
half of the proof, i.e., the result that if a formula of LDGL(G) is satisfiable in type
spaces, then it is satisfiable in doxastic game models.

The second half of the proof will proceed symmetrically. Firstly we define a
way to transform doxastic game models into type spaces, then we prove that the
transformation preserves the truth of all the formulas in LDGL(G). Consequently,
we get the second part of the result, i.e., that if a formula of LDGL(G) is satisfiable
in doxastic game models, then it is satisfiable in type spaces.

Starting from a given type space T = 〈T1, ..., Tn, β1, ..., βn, σ1, ..., σn〉 we can
transform it into a doxastic game model MT = 〈W,→1, ...,→n, υ〉 where:

• W = ~T is the set of worlds (unless differently specified, to ease the notation
in what follows we simply write w ∈ W for the world corresponding to
state ~t ∈ ~T , w′ for the world corresponding to state ~t′, w′′ for the world
corresponding to state ~t′′, and so on);

• υ : W → 2Φ is the valuation function, defined such that pli(ai) ∈ υ(w) iff
σi(ti) = ai;

• →i is the belief relation of player i, defined as follows: w →i w
′ iff βi(ti)(~t′−i) >

0 and ti = t′i.

We have now to prove that any model obtained via this transformation is
a doxastic game model. It amounts to showing that any MT obtained via the
transformation satisfies AVC and ExIC.

Proposition 4.4. MT is a doxastic game model.

Proof. (AVC). Since ∀i ∈ N , σi(ti) = ai for a given ai ∈ Ai and ¬∃a
′
i ∈ Ai s.t. a

′
i 6=

ai and σi(ti) = a
′
i, we have that MT , w � pli(ai) and ∀a′i ∈ Ai s.t. a

′
i 6= ai, MT , w 2

pli(a
′
i). Then, for all w ∈ W υi(w) is a singleton and AVC is satisfied.
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(ExIC). In MT we have a world w ∈ W corresponding to each state ~t ∈ ~T .
It follows by definition of MT that if w′ ∈→i (w) then ti = t′i. Furthermore,
since each type ti is associated with a unique action ai ∈ Ai it follows that
if w →i w

′ and pli(ai) ∈ υ(w) then pli(ai) ∈ υ(w′). Hence ExIC is satisfied.

One might now wonder why we presented such a transformation among the
many possible ones. For instance, a plausible alternative could be to transform
the probability distribution into a qualitative ordering � in the following way:
w �i w′ iff βi(t′i)(~t′−i) ≥ βi(ti)(~t−i) and ti = t′i. The reason for our choice, as
we are going to show in order to conclude the first half of the proof, is that our
transformation preserves the truth of all the formulas in our language LDGL(G).
It means that the two structures T and MT express the same epistemology with
respect to the game G taken into account. We can now formally prove this result.

Theorem 4.5. Let ~t ∈ ~T be a state in the type space T and w ∈ W the cor-
responding world in the doxastic game model MT built from T . For any ϕ in
LDGL(G), if T,~t � ϕ then MT , w � ϕ.

Proof. By induction on the structure of ϕ. We prove only some cases.
Induction basis: (ϕ = pli(ai)). Suppose T,~t � pli(ai). Then, by definition of υ we
have that MT , w � pli(ai).
Inductive steps: (ϕ = Biψ). Suppose T,~t � Biψ. Then, ∀~t′ such that t′i =
ti and βi(ti)(~t′−i) > 0, we have T,~t′ � ψ. By inductive hypothesis, MT , w′ �
ψ, ∀w such that w →i w

′, hence MT , w � Biψ.

The second half of the proof consists in the other direction: given an arbitrary
doxastic game model M it is always possible to associate with it a corresponding
type space TM . Furthermore, it holds that the doxastic game model M and the
associated type space TM are semantically equivalent with respect to the language
LDGL(G).

Let us be given an arbitrary doxastic game model M = 〈W,→1, ...,→n, υ〉.
Firstly, we define the types in TM in the following way: for all w ∈ W we
associate a type ti of player i such that if→i(w) =→i(w

′) then→i(w) and→i(w
′)

represent the same type. Formally, Ti = {→i(w) : w ∈ W}. Then for any given
world w in M we have a state ~t = (t1, ..., tn) in TM , defined by→1(w), ...,→n(w).
We call ~t the state corresponding to world w. Secondly, we associate with each
type ti an action ai specified by υ: σi(ti) = ai iff pli(ai) ∈ υ(w). By ExIC each
type will be associated with a unique action. Finally, we define the probability
distribution βi(ti) over ~T−i by distinguishing two cases: the case in which the
support suppti(βi) = {~t′−i ∈ ~T−i : w →i w

′} is finite and the case in which
suppti(βi) is infinite. Let us define first the finite case. For each i ∈ N , for each
ti ∈ Ti and for each ~t′−i ∈ ~T−i, if suppti is finite then:

βi(ti)(~t
′
−i) =

{
1

|suppti (βi)|
if ~t′−i ∈ suppti(βi)

0 else
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Let us now define the infinite case. For each i ∈ N , for each ti ∈ Ti and for each
~t′−i ∈ ~T−i, if suppti is infinite then:

βi(ti)(~t
′
−i) =

{
1

2
f(~t′−i)

if ~t′−i ∈ suppti(βi)

0 else

where f is a bijective function with domain suppti(βi) and codomain N+ =
{1, 2, . . .}. Since suppti(βi) is countably infinite this function is well-defined and
clearly Σ~t′−i∈suppti (βi)

1

2
f(~t′−i)

sums up to 1.

To sum up, given an arbitrary doxastic game model M = 〈W,→1, ...,→n, υ〉,
we can associate with it the type space TM = 〈T1, ..., Tn, β1, ..., βn, σ1, ..., σn〉
defined as follows:

• a type ti of player i for each →i(w): Ti = {→i(w) : w ∈ W};

• an action ai of ti specified by υ: σi(ti) = ai iff pli(ai) ∈ υ(w);

• a belief function βi defined as above.

Theorem 4.6. Let w ∈ W be a world of M and ~t ∈ ~T the corresponding
state in the type space TM built from M . For any ϕ in LDGL(G), if M,w �
ϕ then TM ,~t � ϕ.

Proof. By induction on the structure of ϕ. We prove only some cases.
Induction basis: (ϕ = pli(ai)). Suppose M,w � pli(ai). Then, by definition of υ
we have that TM ,~t � pli(ai).
Inductive steps: (ϕ = Biψ). Suppose M,w � Biψ. Consequently, M,w′ �
ψ, ∀w′ ∈→i (w). By inductive hypothesis, ∀~t′ s.t. t′i = ti and βi(ti)(~t′−i) >

0, TM ,~t′ � ψ, hence TM ,~t � Biψ.

The following corollary finally states that the class of type spaces T and the
class of doxastic game models DGM provide equivalent semantics with respect
to the language LDGL(G).

Corollary 4.7. A formula ϕ of LDGL(G) is satisfiable in T iff it is satisfiable in
DGM.2

2In order to avoid further complications, here we limit ourselves to the countable case:
countable type sets and countable possible worlds set. However, our results generalize to the
uncountable case by appropriately endowing type sets Ti and ~T−i with σ-algebras, and by
ensuring that every βi(ti) is a measurable function, as usual in type spaces literature (see
[Aumann and Brandenburger, 1995] Section 6).
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4.3 Models With Belief and Knowledge

In this section we want to extend our language to deal with more than one
epistemic attitude. A straightforward extension is to introduce another operator
to represent “knowledge” or “absolute certainty with no possibility at all for error”.
We want to show if and how we can interpret it on our structures, proving the
same equivalence result between type spaces and Kripke models with respect to
the enriched language.

4.3.1 Language

Given a static game G, we define an extension of our logic DGL, and we call
it epistemic-doxastic game logic EDGL. The language LEDGL(G) of EDGL is
defined by the following grammar:

ϕ ::= pli(ai) | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Biϕ | 2ϕ

where ai ∈ Ai and i ∈ N .
The language LEDGL(G) is the doxastic game language LDGL(G) of DGL

extended by the knowledge operator Ki, and the universal operator 2, which
turns out to be useful for obtaining the axiomatization, as we will see in Section
4.4. Kiϕ is read as “player i knows that ϕ is true”, while 2ϕ is read as “ϕ is
universally true”. As before, let us abbreviate the dual of Ki as K̂iϕ := ¬Ki¬ϕ
and the dual of 2 as 3ϕ := ¬2¬ϕ.

4.3.2 Semantics

4.3.2.1 Type spaces

In a similar way to what we did above we want to interpret our language LEDGL(G)
over a type space T as semantics. In order to do that, we simply need to add to
the previous list of clauses of Section 4.2.2.2 the following clauses for Ki-formulas
and 2-formulas:

• T,~t � Kiϕ iff ∀~t′ ∈ ~T if t′i = ti then T,~t′ � ϕ;

• T,~t � 2ϕ iff ∀~t′ ∈ ~T , T,~t′ � ϕ.

Looking at these clauses, we can observe that the Ki-operator ranges over all the
states with the same type for player i, whereas the 2-operator ranges over all the
states in ~T . We will spend more words in Section 4.3.5 on the interpretation. In
particular, although the clause for Ki-formulas seems the obvious one for type
spaces, we will see that it is far from being uncontroversial and it will have
important consequences on Kripke models.
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4.3.2.2 Epistemic-doxastic models

In the literature about Kripke models, the semantics usually associated with
epistemic-doxastic languages containing both a Bi-operator and a Ki-operator
are called epistemic-doxastic models, or just epistemic models for brevity (see
[Kraus and Lehmann, 1988]). Epistemic models are nothing but multi-relational
Kripke models commonly used in modal logic ([Blackburn et al., 2001]).

Definition 4.8 (Epistemic-doxastic model). An epistemic-doxastic model is a
tuple M = 〈W,∼1, ...,∼n,→1, ...,→n, υ〉 where:

• W is a countable set of possible worlds;

• υ : W → 2Φ is the valuation function for the set Φ defined in Section 4.2.1;

• ∼i is the epistemic accessibility relation of player i, that is an equivalence
relation over W ;

• →i⊆ W ×W is the belief relation of player i which satisfies the following
conditions:

– seriality: ∀w∃w′ s.t. w →i w
′;

– →i⊆∼i;
– ∀w,w′ ∈ W , if w ∼i w′ then →i(w) ⊆→i(w

′).

Moreover, let us write ∼i(w) for the partition cell (also called information set) of
player i containing world w: ∼i(w) = {w′ ∈ W : w ∼i w′}.

In order to interpret LEDGL(G) over epistemic models and to state a result
of semantic equivalence with respect to type spaces, we are going to identify a
subclass of epistemic models, that we call epistemic-doxastic game models, or just
epistemic game models EGM.

Definition 4.9 (Epistemic game model). Epistemic game models are epistemic-
doxastic models satisfying the conditions AVC and ExIC given in Definition 4.2,
and the following condition:

• Epistemic independence condition (EIC):

∼1(w1) ∩ ...∩ ∼n(wn) 6= ∅ for every (w1, ..., wn) ∈ W n.

Roughly speaking, EIC says that each player has no reason to rule out any
possible information set of the others specified in the model: if an information
set of i is present in the model, then the other players should not consider it
impossible at any world.

Epistemic game models can be used to represent a semantics for the language
LEDGL(G). The semantic clauses are the same as for doxastic game models, plus
the following clauses for Ki-formulas and 2-formulas:
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• M,w � Kiϕ iff ∀w′ ∈ W if w ∼i w′ then M,w′ � ϕ;

• M,w � 2ϕ iff ∀w′ ∈ W, M,w′ � ϕ.

As forDGM, we say that a formula ϕ is true in a modelM if ∀w ∈ W , M,w �
ϕ. Then, a formula ϕ is valid in EGM (and we write �EGM ϕ) if ϕ is true in M
for all M ∈ EGM, and a formula ϕ is satisfiable in EGM if ¬ϕ is not valid in
EGM.

We want to point out also that the condition ExIC in epistemic game models
implies that each player knows her own action. This makes sense, since we are
describing an ex interim stage of the game, where each player is already certain
about her own choice. This is expressed by the following validity:

Lemma 4.10. ∀i ∈ N , ∀ai ∈ Ai, �EGM pli(ai)→ Kipli(ai).

Proof. By contradiction, suppose that M,w � pli(ai) and that M,w 2 Kipli(ai).
Consequently, ∃u ∈∼i(w) s.t. M,u 2 pli(ai). Hence, by AVC ∃a′i ∈ Ai s.t. a

′
i 6=

ai and M,u � pli(a
′
i). By definition of →i we have that if w ∼i u then →i

(w) =→i(u). It follows that ∀w′ ∈ W, if w′ ∈→i(w) then w′ ∈→i(u) too. Then,
by ExIC M,w′ � pli(ai) and M,w′ � pli(a

′
i). Contradiction with AVC.

4.3.3 Correspondence

In this section we prove the semantic equivalence between type spaces and epis-
temic game models with respect to the language LEDGL(G). The proof will
proceed in the same way as before, i.e., it will be divided into two parts and we
will make use of a transformation of one structure into the other in order to show
the equivalence.

Given an arbitrary type space T , the corresponding epistemic-doxastic model
MT is defined as the tuple MT = 〈W,∼1, ...,∼n,→1, ...,→n, υ〉 where:

• W = ~T is the set of worlds;

• υ : W → 2Φ is the valuation function such that pli(ai) ∈ υ(w) iff σi(ti) = ai;

• ∼i is the accessibility relation of player i, given by: ∀w,w′ ∈ W , w ∼i
w′ iff ti = t′i. Then ∼i determines a partition over W ;

• →i is the belief relation of player i, defined as follows: w →i w
′ iff βi(ti)(~t′−i) >

0 and ti = t′i.

We have now to show that the epistemic-doxastic model we obtain via the
transformation is an epistemic game model, namely we have to show that it
satisfies AVC, ExIC and EIC.

Proposition 4.11. MT is an epistemic game model.
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Proof. The proof for AVC and ExIC is similar to Proposition 1. Here we only
prove that EIC holds too.
(EIC). Since ~T = T1 × ... × Tn, each state ~t ∈ ~T has the form (t1, ..., tn), and
∀ti∀~t−i∃~t s.t. ~t = (ti,~t−i). Denoting by ∼i(ti) the partition cell corresponding to
type ti, it follows that ∀(t1, ..., tn) ∈ ~T ∃w ∈ W s.t. ∼1(t1) ∩ ...∩ ∼n(tn) = w.
Consequently, ∼1(w1) ∩ ...∩ ∼n(wn) 6= ∅ for every (w1, ..., wn) ∈ W n and EIC is
satisfied.

To conclude the first half of the proof we show that this transformation into
epistemic game models preserves the truth of all the formulas of LEDGL(G). The
proof is similar to the previous one, so in this section we can just focus on the
part for Ki-formulas and 2-formulas.

Theorem 4.12. Let ~t ∈ ~T be a state in T and let w ∈ W be the corresponding
world in MT . For any ϕ in LEDGL(G), if T,~t � ϕ then MT , w � ϕ.

Proof. By induction on the structure of ϕ.
(ϕ = Kiψ). Suppose T,~t � Kiψ. Then, ∀~t′ s.t. t′i = ti T,~t

′ � ψ. By inductive
hypothesis, MT , w′ � ψ, ∀w′ ∈∼i(w), hence MT , w � Kiψ.
(ϕ = 2ψ). Suppose T,~t � 2ψ. Then, ∀~t′ ∈ ~T , T,~t′ � ψ. By inductive hypothesis,
MT , w′ � ψ, ∀w′ ∈ W , hence MT , w � 2ψ.

In the second part of the proof we are going to show the other direction: given
an arbitrary epistemic game model M it is always possible to associate with it a
corresponding type space TM . Moreover, it holds again that the epistemic game
model M and the associated type space TM are semantically equivalent with
respect to the language LEDGL(G).

Let us be given an arbitrary epistemic game model M . Firstly, we define a
type ti ∈ Ti for each i’s partition cell ∼i(w) in M : Ti = {∼i(w) : w ∈ W}. Notice
that when we have ∼i relations in the model this is equivalent to the definition
of types given for Theorem 4.6. Then by EIC, given n arbitrary partition cells,
one for each player, the intersection will always be non-empty. The worlds w in
the intersection are associated with the state ~t = (t1, ..., tn), where types t1, ..., tn
are determined by the partition cells ∼i (w) for all i: let us call ~t the state
corresponding to those worlds w in the intersection. Moreover, EIC guarantees
that in TM the states ~T correspond to the Cartesian product of type sets Ti, i.e.
~T = T1 × ...× Tn. Secondly, we associate with each type ti an action ai specified
by υ: σi(ti) = ai iff pli(ai) ∈ υ(w). By ExIC each type will be associated with a
unique action. Finally, for each type ti we define the probability distribution βi(ti)
over ~T−i in the same way as we did in the proof of Theorem 4.6 by distinguishing
two cases, the case in which the support suppti(βi) = {~t′−i ∈ ~T−i : w →i w

′} is
finite and the case in which it is infinite, with w being the world in W associated
with the type ti.
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To sum up, taken an arbitrary M = 〈W,∼1, ...,∼n,→1, ...,→n, υ〉, we can as-
sociate with it the corresponding type space TM = 〈T1, ..., Tn, β1, ..., βn, σ1, ..., σn〉
defined as follows:

• a type ti of player i for each i’s partition cell ∼i(w) in M : Ti = {∼i(w) :
w ∈ W};

• an action ai of ti specified by υ: σi(ti) = ai iff pli(ai) ∈ υ(w);

• a belief function βi defined differently for the finite case and for the infinite
case, as before.

Theorem 4.13. Let w ∈ W be a world of M and ~t ∈ ~T the corresponding state
in TM . For any ϕ in LEDGL(G), if M,w � ϕ then TM ,~t � ϕ.

Proof. By induction on the structure of ϕ.
(ϕ = Kiψ). Suppose M,w � Kiψ. Then, by definition M,w′ � ψ, ∀w′ ∈∼i(w).
By inductive hypothesis, ∀~t′ s.t. t′i = ti, TM ,~t′ � ψ, hence T,~t � Kiψ.
(ϕ = 2ψ). Suppose M,w � 2ψ. Then, by definition M,w′ � ψ, ∀w′ ∈ W . By
inductive hypothesis, ∀~t′ ∈ ~T , TM ,~t′ � ψ, hence TM ,~t � 2ψ.

The following corollary then states that the class of type spaces T and the
class of epistemic game models EGM provide equivalent semantics with respect
to the language LEDGL(G).

Corollary 4.14. A formula ϕ of LEDGL(G) is satisfiable in T iff it is satisfiable
in EGM.

4.3.4 Examples

We consider a two player game G, where Ann has action set {U,D} and Bob has
action set {L,R}. Then, an example of type space for G is pictured in Figure
4.1.

Figures 4.2 and 4.3 depict the transformation into epistemic game models as
defined above. Arrows represent the belief relation: an arrow going from w to
w′ means w →i w

′. Squared boxes that partition the set of all possible worlds
represent the accessibility relation and each box corresponds to a type.

Notice that if we drop the ex interim condition we can represent a situation
in which players have not decided yet their actions and they do not know what
their own action will be (Figure 4.4).
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Figure 4.1: A possible type space

(1U,1L)

(1U,2L)

(1U,1R)

(1U,2R)

(1D,1L) (1D,1R)

(1D,2L) (1D,2R)

(2U,1L) (2U,1R)

(2U,2L) (2U,2R)

(2D,1L) (2D,1R)

(2D,2L) (2D,2R)

Figure 4.2: Transformation: Ann

4.3.5 Discussion

After having presented the equivalence results between the Kripkean semantics
and type space semantics for the qualitative epistemic languages of belief and
knowledge, we want to talk about two conceptual issues that are relevant here.
First of all, we spend some more words on the concept of knowledge introduced
in Section 4.3. Secondly, we briefly discuss the distinction between probabilistic
(quantitative) type spaces and qualitative type spaces.
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(1U,1L)

(2U,1L)

(1D,1L)

(2D,1L)

(1U,1R) (1D,1R)

(2U,1R) (2D,1R)

(1U,2L) (1D,2L)

(2U,2L) (2D,2L)

(1U,2R) (1D,2R)

(2U,2R) (2D,2R)

Figure 4.3: Transformation: Bob

(1U,2L)

(1U,1L) (1D,1L)

(1D,2L)

(1U,1R) (1D,1R)

(1U,2R) (1D,2R)

Figure 4.4: Transformation without ExIC: Ann type 1

4.3.5.1 On the knowledge operator

One might wonder why we introduced the operator Ki. In fact, only one basic
epistemic operator is normally introduced and used in type spaces: the proba-
bility 1-operator, that corresponds to the operator Bi. In economic literature
this probability 1-operator is sometimes called knowledge and sometimes be-
lief (see [Aumann and Brandenburger, 1995] and [Brandenburger, 2008]). Indeed,
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Aumann and Brandenburger [Aumann and Brandenburger, 1995] write:

In this paper, “know” means “ascribe probability 1 to”. This is some-
times called “believe”, while “know” is reserved for absolute certainty
with no possibility at all for error.

The reason why we introduced two different epistemic operators is related to that
observation. As mentioned in the previous quote, in (modal) epistemic litera-
ture there are two different basic notions, knowledge and belief, that standardly
correspond to a S5-operator and a KD45-operator. Then, it makes sense to try
to express these two different epistemic attitudes in both the structures we are
dealing with, and to compare their interpretations in parallel.

The most obvious thing to do if we want to represent in type spaces both
mentioned epistemic attitudes, absolute certainty with no possibility for error and
probability 1 (or, knowledge and belief), is to interpret the knowledge operator
as we showed in Section 4.3.2.1. Far from being uncontroversial, this definition
of the knowledge operator on type spaces gives rise to interesting properties that
make the Ki-operator different from the classical S5-knowledge operator used in
logic, computer science and distributed artificial intelligence [Fagin et al., 1995].
As we will see, the main difference from the standard knowledge operator is made
by the condition EIC. The following propositions show two properties satisfied
by the Ki-operator but not by the classical S5-knowledge operator.

Proposition 4.15. For all i, j ∈ N such that i 6= j, we have �EGM KiKjϕ↔ 2ϕ.

Proof. (right-to-left). Let i 6= j. Suppose that M,w � KiKjϕ. Then, ∀w′ ∈∼i
(w), M,w′ � Kjϕ. However, every world u ∈ W belongs to a partition cell of
player j, i.e., ∼j (u), and, by EIC, for every partition cell ∼j (u) of player j we
have that ∼j (u)∩ ∼i (w) 6= ∅. Then, in every partition cell ∼j (u) of player j
there is a world w′ s.t. M,w′ � Kjϕ. It means that ∀u ∈ W, M, u � ϕ. Hence,
M,w � 2ϕ.
(left-to-right). Trivial.

Proposition 4.16. For all i ∈ N , we have �EGM 3pl−i(~a−i)↔ K̂ipl−i(~a−i).

Proof. (left-to-right). Suppose that M,w � 3pl−i(~a−i). Then, ∃w′ ∈ W s.t.
M,w′ � pl−i(~a−i), with pl−i(~a−i) := Πj 6=i plj(aj). For each j ∈ N s.t. j 6= i and
for each plj(aj) ∈ pl−i(~a−i), by ExIC there must be a partition cell ∼j(w′) where
∀u ∈∼j(w′), M,u � plj(aj). By EIC, we have that: ∀u′ ∈ W , ∼i(u′) ∩

⋂
j 6=i ∼j

(w′) 6= ∅. Hence, M,w � K̂ipl−i(~a−i).
(right-to-left). Trivial.

Proposition 4.16 says that if a particular action profile pl−i(~a−i) is possible,
i.e., if pl−i(~a−i) holds at some world in the model, then player i knows for sure
that it is possible. Proposition 4.15 on the other hand is a more general and
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stronger property of the model: it states that if i and j are different players, then
player i knows that player j knows that ϕ if and only if ϕ is necessary.

Let us spend some words on the meaning of Proposition 4.15. As it is clear
from the definition of type space given in Section 4.2.2.2, a type for player i
provides information about the ‘psychological situation’ of player i, namely: (i)
her actual choice, and (ii) her subjective probability distribution over possible
states. As emphasized above, the operatorKi should be interpreted as an operator
of absolute unrevisable certainty, in the sense that Kiϕ is true if and only if ϕ
is true in all states that player i envisages (or imagines) as possible. The truth
condition of this operator in the type space semantics given in Section 4.3.2.1
presupposes that for every possible psychological situation of the other players,
player i envisages a state in which this psychological situation occurs. In other
words, player i only excludes from her information set those states in which her
psychological situation is different from her actual psychological situation. Under
this assumption, Proposition 4.15 makes perfect sense. Indeed, let i and j be
different players. The previous assumption implies that, for every possible state
~t′′ ∈ ~T that is not in the information set of player i at the actual state ~t, there
exists a state ~t′ ∈ ~T in player i’s information set at the actual state ~t such that ~t′′
is included in player j’s information set at state ~t′. Therefore, clearly, if KiKjϕ
is true at state ~t then 2ϕ is true at ~t too. The other direction of the equivalence
(i.e., 2ϕ implies KiKjϕ) holds for obvious reasons.

4.3.5.2 Qualitative vs. quantitative type spaces

In Section 4.2.2.2 we have introduced probabilistic type spaces as defined by
Aumann and Brandenburger [Aumann and Brandenburger, 1995] and justified
this definition on the basis of Harsanyi’s characterization. It is worth noting
that Harsanyi’s characterization only holds because of the properties of prob-
abilities. In particular, in Harsanyi’s type spaces probabilities are σ-additive,
and therefore continuous on increasing and decreasing sequences of events. As it
has been shown by [Fagin et al., 1999] (see also [Fagin, 1994, Fagin et al., 1991,
Heifetz and Samet, 1998]), there is an analogous inductive construction of quali-
tative type spaces that does not satisfy the property that all information about
other players’ beliefs is captured at level ω, as the construction might need to
carry out transfinitely long. Type spaces studied by Fagin et al. are qualitative:
given player i’s basic domain of uncertainty W 0

i = ~A−i, f0 denotes a member of
W 0
i . Each assignment 〈f0〉 represents a “possible 1-world”, and the domain of i’s

1-order beliefs is the set of all possible 1-worlds W 1
i . Then, i’s 1-order belief is

defined as a set f1(i) ⊆ W 1
i . Inductively, player i’s k-level belief is defined as a set

fk(i) ⊆ W k
i of possible k-worlds, i.e., k-tuples of functions 〈f0, ..., fk−1〉. Equiv-

alently, a 1-order belief of i can be expressed as a function f1(i) : W 1
i → {0, 1},

and i’s k-order belief as a function fk(i) : W 1
i × ...×W k

i → {0, 1}. Specifically, it
is shown by Fagin et al. that for qualitative type spaces it is not necessarily the
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case that a ω-order belief fω(i) of i contains information about ω-order beliefs of
the other players. In this sense, there is no simplified definition of qualitative type
spaces which is analogous to Definition 4.3 in Section 4.2.2.2 for quantitative type
spaces and which is justified in the light of an argument à la Harsanyi. However,
since we do not use such an inductive construction of qualitative hierarchies of
beliefs and we deal with finitary modal logics, the results by Fagin et al. are not
problematic from our standpoint.

The reason why we have introduced probabilistic (quantitative) type spaces
instead of qualitative type spaces à la Fagin et al. is that in Section 4.5 we will
move from a qualitative representation of epistemic attitudes to a quantitative
representation which requires a probabilistic interpretation in terms of probabilis-
tic type spaces. Thus, we preferred to state semantic equivalence with respect to
a unique type space representation that applies both to qualitative and quantita-
tive languages. However, it is worth noting that, as for the interpretation of the
qualitative epistemic language with belief operators given in Section 4.2 and of its
extension by knowledge operators given in Section 4.3, we could have completely
omitted the probabilistic aspect of type spaces as defined in Definition 4.3 and
given an analogous qualitative definition in which functions βi are replaced by
functions β′i : Ti → 2

~T−i , where ~t′−i ∈ β′i(ti) means that player i’s type ti considers
type ~t′−i possible and, viceversa, ~t′−i /∈ β′i(ti) means that player i’s type ti considers
type ~t′−i impossible. The two semantics, the one with functions βi of Definition
4.3 and the one in which functions βi are replaced by functions β′i, have clearly
the same sets of validities for both qualitative epistemic languages introduced
here. We conjecture that the sets of validities for the two qualitative epistemic
languages do not change if we adopt the qualitative type space semantics à la
Fagin et al. in which type spaces are defined in an inductive way. We postpone
the proof of this conjecture to future work.

4.4 Axiomatization
In this section we provide sound and complete axiomatizations for the logics
EDGL and DGL relative to the class of epistemic game models and doxastic
game models, respectively.

Given the equivalences between epistemic game models and type spaces with
respect to EDGL (Corollary 4.29) and between doxastic game models and type
spaces with respect to DGL (Corollary 5.5), these axiomatizations will also turn
out to be sound and complete relative to type spaces.

Theorem 4.17. The set of validities of the logic EDGL relative to the class of
epistemic game models (EGM) is completely axiomatized by the principles given
in Figure 4.5.

Proof. Proving that the axioms given in Figure 4.5 are sound with respect to the
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• Axioms for EDGL:

(1) All tautologies of classical propositional logic

(2) Axioms K, T, 4 and B for the universal modality 2

(a) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

(b) 2ϕ→ ϕ

(c) 2ϕ→ 22ϕ

(d) ϕ→ 23ϕ

(3) Axioms K, T, 4 and B for the knowledge modality Ki

(a) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

(b) Kiϕ→ ϕ

(c) Kiϕ→ KiKiϕ

(d) ϕ→ KiK̂iϕ

(4) Axioms K and D for the belief modality Bi

(a) Bi(ϕ→ ψ)→ (Biϕ→ Biψ)

(b) ¬(Biϕ ∧ Bi¬ϕ)

(5) Interaction axioms between universal modality, knowledge modality
and belief modality

(a) 2ϕ→ Kiϕ

(b) Kiϕ→ Biϕ

(c) Biϕ→ KiBiϕ

(d) (3K1ϕ1 ∧ . . . ∧3Knϕn)→ 3(K1ϕ1 ∧ . . . ∧ Knϕn)

(6) Axioms for the atomic formulas pli(ai)

(a)
∨
ai∈Ai pli(ai)

(b) pli(ai)→ ¬pli(a′i) if ai 6= a′i
(c) pli(ai)→ Kipli(ai)

• Rules of inference for EDGL:

(7) From ϕ and ϕ→ ψ infer ψ

(8) From ϕ infer 2ϕ

Figure 4.5: Axiomatization of EDGL

class EGM and that the inference rules preserve validity is just a routine task
and we do not give it here.

As to completeness, let us define the class of weak epistemic game models
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(WEGM) as the class of epistemic models that satisfy the epistemic indepen-
dence condition (EIC) but do not necessarily satisfy the adequate valuation con-
dition (AVC) and the ex interim condition (ExIC). In other words, epistemic
game models are a subclass of weak epistemic game models that satisfy both the
adequate valuation condition (AVC) and the ex interim condition (ExIC).

We write �WEGM ϕ to mean that the EDGL-formula ϕ is valid relative to the
class WEGM.

Moreover, for any finite set ∆ of EDGL-formulas, we write ∆ �WEGM ϕ to
mean that ϕ is a logical consequence of the set of formulas ∆ relative to the class
WEGM. That is, ∆ �WEGM ϕ iff, for every weak epistemic game model M =
〈W,∼1, ...,∼n,→1, ...,→n, υ〉, if M,w �

∧
ψ∈∆ ψ for all w ∈ W , then M,w � ϕ

for all w ∈ W .
The following Proposition 4.18 highlights that the validity problem relative

to the class EGM is reducible to the logical consequence problem relative to the
class WEGM.

Proposition 4.18. Let

∆0 ={
∨
ai∈Ai

pli(ai) : i ∈ N}∪

{pli(ai)→ ¬pli(a′i) : i ∈ N and ai, a′i ∈ Ai with ai 6= a′i}∪
{pli(ai)→ Bipli(ai) : i ∈ N and ai ∈ Ai}

Then, for every EDGL-formula ϕ, �EGM ϕ iff ∆0 �WEGM ϕ.

Proof. We just need to observe that the (global) axioms in ∆0 force a weak epis-
temic game model to satisfy the ex interim condition (ExIC) and the adequate
valuation condition (AVC). That is, M is a weak epistemic game model in which
the formula

∧
ψ∈∆0

ψ is true (i.e.,M,w �
∧
ψ∈∆0

ψ for all w inM) iffM is an epis-
temic game model. Therefore, the class WEGM in which the formula

∧
ψ∈∆0

ψ
is true coincides with the class EGM.

The following Proposition 4.19 highlights that, thanks to the universal modal-
ity 2, the logical consequence problem relative to the class WEGM can be re-
duced to the validity problem relative to the class WEGM. The proof of the
proposition is trivial, as we just need to apply the definitions of validity and
logical consequence relative to WEGM.

Proposition 4.19. For every EDGL-formula ϕ and for every finite set ∆ of
EDGL-formulas, ∆ �WEGM ϕ iff �WEGM 2

∧
ψ∈∆ ψ → ϕ.

The following Lemma 4.20 provides an axiomatization result for EDGL rela-
tive to the class WEGM.
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Lemma 4.20. The set of validities of the logic EDGL relative to the class WEGM
is completely axiomatized by the groups of axioms (1),(2),(3),(4) and (5) and by
the rules of inference (7) and (8) in Figure 4.5.

Proof. The proof is divided into three steps.
Step 1 The first step consists in providing an alternative semantics for EDGL
relative to the class of enriched weak epistemic game models (EWEGM). An
enriched weak epistemic game model is a tuple M = 〈W,∼1, ...,∼n,→1, ...,→n

,∼, υ〉 where 〈W,∼1, ...,∼n,→1, ...,→n, υ〉 is a weak epistemic game model and
∼ is an equivalence relation on W such that:

(C1) for all i ∈ N , ∼i⊆∼;

(C2) for all u1, . . . , un ∈ W : if ui ∼ uj for all i, j ∈ {1, . . . , n} then ∼1(u1) ∩
. . .∩ ∼n(un) 6= ∅.

The truth conditions of EDGL formulas relative to the class EWEGM are
exactly like the truth conditions of EDGL formulas relative to the classesWEGM
and EGM, except for the universal modality 2 that is interpreted as follows. Let
M = 〈W,∼1, ...,∼n,→1, ...,→n,∼, υ〉 be a EWEGM and let w be a world in M .
Then:

• M,w � 2ϕ iff ∀w′ such that w ∼ w′, M,w′ � ϕ

Step 2 The second step consists in proving that the set of validities of EDGL
relative to the class EWEGM is completely axiomatized by the groups of axioms
(1),(2),(3),(4) and (5) and by the rules of inference (7) and (8) in Figure 4.5.

It is a routine task to check that all principles in Figure 4.5 except Axiom (5d)
correspond one-to-one to their semantic counterparts on the models in the class
EWEGM. This can be easily checked by using the existing algorithm SQEMA
[Conradie et al., 2006]: for every axiom in Figure 4.5, it allows us to compute the
corresponding first-order condition on the models in the class EWEGM.

In particular, the group of axioms (2) together with the inference rule (8)
correspond to the fact that ∼ is an equivalence relations.3 The group of axioms
(3) corresponds to the fact that ∼i is an equivalence relation, while Axiom (4b)
corresponds to the seriality of the relation →i.
Remark 4.21. Note that the necessitation rules for the knowledge modality (i.e.,
from ϕ infer Kiϕ) and for the belief modality (i.e., from ϕ infer Biϕ) do not need
to be added to the axiomatization, as they are provable by Axioms (5a), Axiom
(5b), the inference rule (7) and the inference rule (8).4

3Specifically, Axiom (2b) corresponds to reflexivity of the relation ∼, Axiom (2c) to transi-
tivity and Axiom (2d) to symmetry.

4Suppose ϕ. Hence, by the inference rule (8), we infer 2ϕ. Thus, by Axiom (5a) and the
inference rule (7), we infer Kiϕ. Furthermore, by Axiom (5b) and the inference rule (7), we
infer Biϕ.
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As to the group of axioms (5) we have the following correspondences: Axiom
(5a) corresponds to the preceding condition C1: ∼i⊆∼; Axiom (5b) corresponds
to the following condition in the definition of epistemic game model: →i⊆∼i;
Axiom (5c) corresponds to the following condition: for all w, v ∈ W , if w ∼i v
then →i(v) ⊆→i(w). Because of the reflexivity of the relation ∼i the latter is
equivalent to the following condition in the definition of epistemic game model:
for all w, v ∈ W , if w ∼i v then →i(v) =→i(w).

As to Axiom (5d) a bit more work is required. First of all, it is a routine task
to verify that, in terms of correspondence theory, Axiom (5d) corresponds to the
following condition:

(C2∗) for all w, u1, . . . , un ∈ W : if u1, . . . , un ∈∼(w) then there is v ∈ W such
that v ∈∼(w) and ∼i(v) ⊆∼i(ui) for all i ∈ N .

Secondly, one can prove that the condition C2∗ and the condition C2 are equiv-
alent. Let us prove first that C2 implies C2∗. Suppose that u1, . . . , un ∈∼(w).
Hence, by condition C2 and the fact that ∼ is an equivalence relation, ∼(w)∩ ∼1

(u1) ∩ . . .∩ ∼n(un) 6= ∅. It follows that there exists v ∈ W such that v ∈∼(w),
v ∈∼1(u1), . . . , v ∈∼n(un). Since every ∼i is an equivalence relation, for every
i ∈ N , if v ∈∼i(ui) then ∼i(v) =∼i(ui). Thus, we can conclude that there exists
v ∈ W such that v ∈∼(w) and ∼i(v) ⊆∼i(ui) for all i ∈ N .

Now let us prove that C2∗ implies C2. Suppose that ui ∼ uj for all i, j ∈
{1, . . . , n}. It follows that u1, . . . , un ∈∼(w) for some w. Hence, by condition
C2∗, there are w, v ∈ W such that v ∈∼(w) and ∼i(v) ⊆∼i(ui) for all i ∈ N .
Since every ∼i is an equivalence relation, for every i ∈ N , if ∼i(v) ⊆∼i(ui) then
∼i(v) =∼i(ui). Thus, we can conclude that there are w, v ∈ W such that v ∈∼(w)
and ∼i(v) =∼i(ui) for all i ∈ N . By the fact that every relation ∼i is reflexive, it
follows that there are w, v ∈ W such that v ∈∼(w) and v ∈∼i(ui) for all i ∈ N .
Hence, ∼1(u1) ∩ . . .∩ ∼n(un) 6= ∅.

It is routine, too, to check that all principles given in Figure 4.5 are in the
so-called Sahlqvist class [Sahlqvist, 1975]. Thus, because of the general Sahlqvist
completeness theorem (cf. [Blackburn et al., 2001, Theorem 3.54]), they are com-
plete with respect to the defined model classes.
Step 3 The third step consists in proving that the EDGL-semantics relative to
the class EWEGM and the EDGL-semantics relative to the class WEGM are
equivalent. Specifically, we show that for every EDGL-formula formula ϕ, ϕ is
satisfiable in the class WEGM iff ϕ is satisfiable in the class EWEGM.

(⇒) Let us prove the left-to-right direction. Suppose ϕ is satisfiable in the
class WEGM. This means that there is a weak epistemic game model M =
〈W,∼1, ...,∼n,→1, ...,→n, υ〉 and a world w ∈ W such that M,w � ϕ. We can
build a corresponding enriched weak epistemic game model M ′ = 〈W,∼1, ...,∼n
,→1, ...,→n,∼, υ〉 with ∼= W ×W . Clearly, M ′, w � ϕ.

(⇐) Let us prove the right-to-left direction. Suppose ϕ is satisfiable in the class
EWEGM. This means that there is an enriched weak epistemic game modelM =
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〈W,∼1, ...,∼n,→1, ...,→n,∼, υ〉 and a world w ∈ W such that M,w � ϕ. We can
now build a weak epistemic game modelM ′ = 〈W ′,∼′1, ...,∼′n,→′1, ...,→′n, υ′〉 that
corresponds toM . The construction ofM ′ is made in two steps. We first consider
the submodel Mw = 〈Ww,∼1,w, ...,∼n,w,→1,w, ...,→n,w,∼w, υw〉 generated from
M and w (cf. [Blackburn et al., 2001, Definition 2.5]): by the generated submodel
property (cf. [Blackburn et al., 2001, Proposition 2.6]) we have Mw, w � ϕ. Mw

is also an enriched weak epistemic game model, and ∼w= Ww ×Ww. The latter
means that the operator 2 is interpreted as a universal modal operator. Finally,
we can define M ′ = 〈W ′,∼′1, ...,∼′n,→′1, ...,→′n, υ′〉 as follows:

• W ′ = Ww;

• for every i ∈ N , ∼′i=∼i,w and →′i=→i,w;

• υ′ = υw.

It is a routine task to check that M ′ is indeed a weak epistemic game model and,
by induction on the structure of ϕ, that we have M ′, w � ϕ.

Lemma 4.20 is a consequence of: (i) the equivalence between the EDGL-
semantics relative to the class EWEGM and the EDGL-semantics relative to
the class WEGM (proved in Step 3) and, (ii) the completeness result for EDGL
relative to the class EWEGM (proved in Step 2).

The last element we need for proving Theorem 4.17 is the following Proposition
4.22. Let `EDGL ϕ and �EDGL ϕ mean, respectively, that the EDGL-formula ϕ
is provable via the groups of axioms (1),(2),(3),(4), (5) and (6) and the rules of
inference (7) and (8) in Figure 4.5 and that the EDGL-formula ϕ is provable via
the groups of axioms (1),(2),(3),(4) and (5) and the rules of inference (7) and (8)
in Figure 4.5.

Proposition 4.22. For every EDGL-formula ϕ, if �EDGL 2
∧
ψ∈∆0

ψ → ϕ
then `EDGL ϕ, where ∆0 is defined as in Proposition 4.18.

Proof. Suppose �EDGL 2
∧
ψ∈∆0

ψ → ϕ. Hence, `EDGL 2
∧
ψ∈∆0

ψ → ϕ.
By the inference rule (8) (viz. necessitation for 2) and the group of axioms

(6), we have `EDGL
∧
ψ∈∆0

2ψ. By Axiom 2(a), we can derive `EDGL 2
∧
ψ∈∆0

ψ.
Consequently, by the inference rule (7) (viz. modus ponens), we have that `EDGL
ϕ.

Propositions 4.18, 4.19 and 4.22 together with Lemma 4.20 are sufficient to
prove Theorem 4.17.

Suppose that �EGM ϕ. Hence, by Proposition 4.18 and Proposition 4.19,
�WEGM 2

∧
ψ∈∆0

ψ → ϕ. By Lemma 4.20, it follows that�EDGL 2
∧
ψ∈∆0

ψ → ϕ.
Hence, by Proposition 4.22, `EDGL ϕ.
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As to the logic DGL, namely the fragment of the logic EDGL presented in
Section 4.2, we have the following axiomatization result. We do not prove it here,
as the proof follows the general lines of the proof of Theorem 4.17.

Theorem 4.23. The set of validities of the logic DGL relative to the class of
doxastic game models (DGM) is completely axiomatized by the groups of axioms
(1), (4) and (6) and the inference rule (7) in Figure 4.5, plus the following axioms
and rules of inference for the belief modality Bi:

• Biϕ→ BiBiϕ

• B̂iϕ→ BiB̂iϕ

• From ϕ infer Biϕ

Note that differently from EDGL, Axioms 4 and 5 as well as the necessitation
rule for the belief modality Bi must be added to the axiomatics, as they are not
derivable from the other principles.

4.5 Probabilistic Extension
In this section we want to show how to extend our analysis about the equivalence
between Kripke-style semantics and type space semantics for epistemic modal
languages to a modal language with probabilistic beliefs LEPGL(G), interpreted
over a specific class of Kripke models called epistemic-probabilistic game models
(EPGM). The resulting logic EPGL (epistemic-probabilistic game logic) will then
be an extension of the logic EDGL, that was itself introduced as an extension
of DGL. Consequently, this section follows an approach that is incremental with
respect to the logics that have been introduced so far.

4.5.1 Language

Let us first introduce a probabilistic language LEPGL(G) for epistemic-probabilistic
game logic EPGL, defined by the grammar:

ϕ ::= pli(ai) | ¬ϕ | ϕ ∧ ϕ | Kiϕ | P r
i ϕ | 2ϕ

where ai ∈ Ai, i ∈ N and r ∈ Q.
The language LEPGL(G) is the language LEDGL(G) of EDGL introduced in

Section 4.3 with the difference of replacing the qualitative belief operator Bi with
the probabilistic belief operator P r

i , where P r
i has to be read as “player i believes

with probability at least r that ϕ is true”. It is easy to see that this language
is incremental relative to LEDGL(G): the belief operator Bi of LEDGL(G) is
expressible in LEPGL(G) by the operator P 1

i .



100 CHAPTER 4. EPISTEMIC STRUCTURES FOR RATIONALITY

4.5.2 Semantics

4.5.2.1 Type spaces

The interpretation of the new formulas P r
i ϕ in a type space T is as one could

expect, and it is given by the following clause:

• T,~t � P r
i ϕ iff ∀~t′ ∈ ~T if t′i = ti

∑
~t′−i:T,t

′
i�ϕ

βi(ti)(~t
′
−i) ≥ r.

All the other clauses are the same as in Section 4.3. As mentioned before, when
r = 1 we can show the equivalence with respect to the clause for Bi. Indeed,

T,~t � Biϕ

iff
∀~t′ ∈ ~T if t′i = ti and βi(ti)(~t′−i) > 0 then T, t′ � ϕ

iff
∀~t′ ∈ ~T if t′i = ti then

∑
~t′−i:T,

~t′i�ϕ

βi(ti)(~t
′
−i) = 1

iff
T,~t � P 1

i ϕ.

4.5.2.2 Epistemic-probabilistic models

When we come to consider how to interpret the language LEPGL(G) over Kripke
models we firstly need to endow the structure with probabilistic belief relations for
the agents. The resulting Kripke model will be an epistemic-probabilistic model,
formally defined as follows.

Definition 4.24 (Epistemic-probabilistic model). An epistemic-probabilistic model
is a tupleM = 〈W,∼1, . . . ,∼n, φ1, . . . , φn, υ〉 whereW , ∼i and υ are defined as in
Definition 4.8, and φi is a function mapping every world w inW into a probability
distribution φi,w over the worlds in ∼i(w) that satisfies the following conditions:

•
∑

w′∈∼i(w) φi,w(w′) = 1;

• if w ∼i w′ then φi,w = φi,w′ .

In order to interpret the language LEPGL(G) on epistemic-probabilistic mod-
els we want to identify a subclass of them that we call epistemic-probabilistic
game models EPGM.

Definition 4.25 (Epistemic-probabilistic game model). An epistemic-probabilistic
game model EPGM is an epistemic-probabilistic model that satisfies conditions
AVC and EIC in Definitions 4.2 and 4.9 plus the following condition ExIC’:
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• Ex interim condition revisited (ExIC’):

∀i ∈ N , ∀w,w′ ∈ W , ∀ai ∈ Ai, if w ∼i w′ and pli(ai) ∈ υ(w)

then pli(ai) ∈ υ(w′).

Now we can give the conditions to interpret the language LEPGL(G) over
epistemic-probabilistic game models EPGM. Apart from P r

i formulas, the truth
conditions for all the other formulas remain the same as for EDGM. The clause
for P r

i formulas is as follows:

• M,w � P r
i ϕ iff

∑
w′∈∼i(w):M,w′�ϕ φi,w(w′) ≥ r.

4.5.3 Correspondence

It is also possible to establish correspondence results between type spaces and
epistemic-probabilistic game models relative to the language LEPGL(G). Given
an arbitrary type space T , the corresponding epistemic-probabilistic model MT

is defined as the tuple MT = 〈W, (∼i)i∈N , (φi,w)i∈N,w∈W , υ〉 where:

• W = ~T is the set of worlds;

• υ : W → 2Φ is the valuation function such that pli(ai) ∈ υ(w) iff σi(ti) = ai;

• ∼i is the accessibility relation of player i, given by: ∀w,w′ ∈ W , w ∼i
w′ iff ti = t′i;

• φi,w is the probabilistic belief relation of player i at world w, defined as
follows: φi,w(w′) = r iff βi(ti)(~t′−i) = r and ti = t′i.

It is easy to see that the Kripke model that we get after the transformation
is a epistemic-probabilistic game model.

Proposition 4.26. MT is an epistemic-probabilistic game model.

Proof. AVC and EIC conditions hold unchanged with respect to EGM. The only
thing that differs from epistemic game models is ExIC’. Then, ExIC’ also holds
in MT since each type is associated with one and only one action and two worlds
w and w′ belong to the same partition cell of player i if and only if the type of i
at w is the same as i’s type at w′.

As for DGM and EGM before, we conclude the first half of the proof with a
theorem showing that if a formula of LEPGL(G) is satisfiable in a type space T ,
then it is also satisfiable in the corresponding EPGM MT .

Theorem 4.27. Let ~t ∈ ~T be a state in T and let w ∈ W be the corresponding
world in MT . For any ϕ in LEPGL(G), if T,~t � ϕ then MT , w � ϕ.
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Proof. By induction on the structure of ϕ. We prove just the case ϕ = P r
i ψ since

the others are similar to Section 4.3. Suppose T,~t � P r
i ψ. Therefore, we have that∑

~t′−i:T,t
′
i�ψ

βi(ti)(~t
′
−i) ≥ r. By inductive hypothesis,

∑
w′∈∼i(w):M,w′�ψ φi,w(w′) ≥ r,

hence MT , w � P r
i ψ.

In the second half of the proof the other direction is carried out: we show
that given any epistemic-probabilistic game model M it is possible to associate
with it the corresponding type space TM , and that M and TM are semantically
equivalent with respect to LEPGL(G).
Apart from the probabilistic belief relation φi,w, the construction of the type
space TM is the same as for the case of epistemic game models. What we
need to define here is the belief function βi for player i, given the probabilis-
tic belief relation φi,w of player i in M . Then, for an arbitrary M = 〈W, (∼i
)i∈N , (φi,w)i∈N,w∈W , υ〉, we can associate with it the corresponding type space
TM = 〈T1, ..., Tn, β1, ..., βn, σ1, ..., σn〉 defined as follows:

• a type ti of player i for each i’s partition cell ∼i(w) in M : Ti = {∼i(w) :
w ∈ W};

• an action ai of ti specified by υ: σi(ti) = ai iff pli(ai) ∈ υ(w);

• a belief function βi such that βi(ti)(~t′−i) = r iff φi,w(w′) = r.

Theorem 4.28. Let w ∈ W be a world of M and ~t ∈ ~T the corresponding state
in TM . For any ϕ in LEPGL(G), if M,w � ϕ then TM ,~t � ϕ.

Proof. By induction on the structure of ϕ.
We show only the case ϕ = P r

i ψ since the others are already covered in Section
4.3. Suppose M,w � P r

i ψ. Then, by definition
∑

w′∈∼i(w):M,w′�ϕ φi,w(w′) ≥ r. By
inductive hypothesis,

∑
~t′−i:T,t

′
i�ϕ

βi(ti)(~t
′
−i) ≥ r, where ti = t′i. Hence TM ,~t �

P r
i ψ.

The following corollary then states that the class of type spaces T and the
class of epistemic-probabilistic game models EPGM are equivalent semantics
with respect to the language LEPGL(G).

Corollary 4.29. A formula ϕ of LEPGL(G) is satisfiable in T iff it is satisfiable
in EPGM.

4.6 Conclusion
This work aimed at explicitly showing the formal relations between the two main
structures that are used in the literature on epistemic game theory: type spaces
and Kripke models. We started with a language for belief and we proceeded by
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extending the language taken into account. We noticed that with respect to belief
the relation can be carried through in a straightforward way, using a rather stan-
dard KD45-concept of belief. When we tried later to establish a correspondence
with respect to a language with both belief and knowledge the situation turned
out to be more complicated. Interpreting in the most obvious way a S5-concept
of knowledge on type spaces gave rise to some interesting properties (as shown in
Section 4.3.5) that the usual S5-knowledge operator does not have. This means
in a sense that Kripke models are less demanding towards the interpretation of
knowledge and more suitable to express both knowledge and belief at the same
time. The kind of knowledge representable in Kripke models is broader and more
general than the interpretation of knowledge in type spaces, whereas the belief
representation is basically the same in both structures.

An important thing to stress here is also that we axiomatized a qualitative
logic for type spaces. Since Kripke models are normally qualitative structures,
we decided to establish a correspondence from a qualitative point of view in the
first place. We then showed what are the qualitative logics (for belief and for
both belief and knowledge) and the classes of qualitative Kripke models (i.e.,
doxastic game models and epistemic game models respectively) corresponding
to type spaces (Section 4.4). We presented at first the result for a qualitative
language with at most two different operators, Bi and Ki. Using the same line
of reasoning we could aim at proving the result for other epistemic attitudes,
like strong belief or defeasible knowledge ([Baltag and Smets, 2008]). What we
need to do is to enrich the semantics on the side of Kripke models by means of
plausibility orderings or rankings over worlds instead of simple belief sets (see
[Baltag and Smets, 2008] or [Spohn, 2012]). By a further enrichment of Kripke
models towards more fine-grained semantics in the end we introduced probabilis-
tic Kripke models and we extended the correspondence result to the epistemic-
probabilistic language LEPGL(G) (Section 4.5).





Part II

Evolutionary Analysis

105





Chapter 5

The Game of Life

As economic theorists, we organize our thoughts using what we call
models. The word “model” sounds more scientific than “fable” or “fairy
tale” although I do not see much difference between them.
(A. Rubinstein)

5.1 The Behavioral Gambit

Classic evolutionary game theory, as we have seen in the previous chapter, looks at
a single, fixed fitness game and focuses on the evolution of behavior for that game
alone. Although single-game models can be useful to study a particular type of in-
teraction in isolation (e.g., [Sinervo and Lively, 1996] use the rock-paper-scissors
game to model the mating system in the side-blotched lizard), assuming that the
entire biological dynamics driving the evolution of a population can be modeled
as a fixed and single game would be an oversimplified description of the reality.
In the case of side-blotched lizards investigated by [Sinervo and Lively, 1996], for
example, the mating behavior is certainly a primary component for the evolu-
tionary success of an individual, but it is presumably not the only one. Lizards’
strategies when hunting for food or hiding from predators are equally impor-
tant factors in determining the fitness of different individuals. If we want to get
closer to more realistic evolutionary dynamics, we have to incorporate a variety
of possible interactions into our models.

A related shortcoming of classic single-game models is that the phenotypes un-
der selection are nothing more than simple behavioral traits, and each player just
represents a single action of the fixed fitness game. In other words, pure actions
are the only things that evolve within a single-game model. In contrast, some
argue for studying the evolutionary competition of general behavior-generating
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mechanisms. [Fawcett et al., 2013], in particular, explicitly point out the “behav-
ioral gambit” of standard evolutionary models, and write

By focusing on expressed behavior and neglecting the underlying mech-
anism, behavioral ecologists unwittingly adopt the behavioral gambit,
extending the phenotypic gambit beyond its accepted remit.

[...] Natural environments are so complex, dynamic, and unpredictable
that natural selection cannot possibly furnish an animal with an ap-
propriate, specific behavior pattern for every conceivable situation it
might encounter. Instead, we should expect animals to have evolved
a set of psychological mechanisms which enable them to perform well
on average across a range of different circumstances.

This line of thoughts is clearly reminiscent of the work on ecological rational-
ity encountered in Chapter 2. Sometimes [Fawcett et al., 2013] even adopt the
same terminology used by Gigerenzer and colleagues when talking about homo
heuristicus:

To understand why that behavior has evolved, we have to consider
the adaptive value of the psychological mechanism which controls it,
in the kinds of environments the animal would normally encounter.

Still, there seems to be a slightly different understanding of these mechanisms in
the two approaches. While the heuristics of the adaptive toolbox are different
behavioral rules unrelated to each other, the psychological mechanism sought by
[Fawcett et al., 2013] looks like a more general and abstract principle that governs
distinct expressed behaviors in a systematic way (we will expand on this issue
later).

Either way, the study of behavior-generating mechanisms would hardly fit
into classic evolutionary game theory, given the minimal conception of environ-
ment delivered by single-game models. The competition between general choice
principles requires a richer and extended notion of environment, in terms of a
multiplicity of possible interactions, or the concept of choice principle would oth-
erwise collapse into that of simple behavior, and the two would no longer be
distinguishable.

5.2 Choice Principles: A General Discussion
The essence of a choice principle is to associate different decision situations with
action choices. Chapters 2 and 3 presented an assortment of solitary and in-
teractive decision situations. Roughly speaking, a choice principle, or decision
criterion, is then a method to select a specific action for any of those decision
problems. Theoretically, a simple heuristic like those in homo heuristicus’ adap-
tive toolbox can be a choice principle. For example, a simple rule dictating “always
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choose the first option that comes to your mind” is a decision criterion, in that
it specifies an act for any possible decision situation. On the contrary, a rule
dictating “always choose act II” is not guaranteed to be a valid choice principle,
because it would specify a choice only for some of the games in Chapter 3, but it
would give no behavioral prescription in most decision problems of Chapter 2 as
well as in the Traveler’s dilemma of Chapter 3 for instance. But in order to relate
choice principles more tightly to the decision-theoretic literature introduced in
Chapter 2, we take a closer look inside choice principles, and express them as a
function of two different things: a subjective utility and a subjective belief. This
perspective will carry a twofold contribution. On the one hand, we can work
with decision criteria that are more general and less case-specific than those of
Gigerenzer’s homo heuristicus.1 On the other hand, we can bring together the
literature on ecological rationality and the classic works in decision theory. In
other terms, this approach will allow the study of the ecological rationality of
general decision criteria.

In general, the simplest form of decision problem an agent can be faced with
is one in which DM merely has to select an action a in order to achieve a reward
π(a), where the outcome π(a) does not depend on anything else than the choice
of the agent (in particular, it does not depend on any possible state of the world
or any action of other agents). In such a situation, we generally deem an action
a as rational if it maximizes the utility of the agent u(π(a)). An action a′ is thus
inferior to a competing alternative a if and only if u(π(a′)) ≤ u(π(a)).

However, in many realistic scenarios of our interest, the outcome achieved by
the agent depends on extrinsic factors that are not under her control (all the
results in decision theory presented in Chapter 2 fall under this category). In
such situations, an agent’s action a does not in itself yield a unique outcome, but
rather selects a certain outcome function b 7→ π(a, b), where b ∈ B is a generic
variable whose value is not chosen by the agent (in solitary decision problems b is a
state variable chosen by nature, in interactive decision problem b represents some
actions chosen by other agents). Depending on what value b happens to take, a
certain action a may then prove to be either better or worse than an alternative
a′ in terms of utility for DM. However, without additional assumptions, there
is no straightforward way of comparing the two outcome functions b 7→ π(a, b)
and b 7→ π(a′, b), so that the choice of action is no longer a simple maximization

1We just observed that a simple heuristic like those suggested by Gigerenzer and colleagues
is not always general enough to be applied in all possible circumstances, from which stems the
necessity of providing homo heuristicus with a variety of different heuristics. But admitting a
multiplicity of possible heuristics in the adaptive toolbox might rise a second-order issue: in
case of a decision problem where more than one heuristic is applicable, how should DM choose
between different heuristics? Are there second-order heuristics to deal with these cases, or
does DM just pick one at random? The same problem may also occur at higher levels. Our
approach instead wants to equip DM with a general and single choice principle that can be used
throughout. A choice principle must thus be flexible enough to be fit for all decision situations
that DM may possibly encounter.
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problem.
By and large, a method for imposing an ordering on such a space of outcome

functions is what we call a choice principle. A choice principle, or decision crite-
rion, is a rule that dictates how DM should act when faced with a choice whose
consequences are uncertain. In general, such a decision will depend both on the
objective structure of the decision problem, and on DM’s subjective preference
over different possible outcomes and subjective beliefs about the realization of
these outcomes. We have seen that the objective features of the situation can be
formally specified in terms of an outcome function

π : A×B → X

which maps an action a ∈ A and a situation b ∈ B to an outcome π(a, b). It
is thus natural to think of a as a control variable whose value is chosen by the
agent in question, while b represents some external factors which influence the
agent’s outcome but are outside her control. A choice principle is a function that
combines DM’s subjective utility over X and beliefs over B in order to pick an
action:

Choice principle: Utility× Beliefs → Actions.

From Chapter 1 and Chapter 2, we know that there are many possible ways
to deal with the uncertainty about the relevant external factors b. Depending
on the type of uncertainty the agent has about the value of b, this uncertainty
may be best described in terms of a probability distribution, a set of probability
distributions, a plausibility ordering, a set of values, or something else.2 In turn,
different kinds of uncertainty call for different notions of uncertainty resolution.
For instance, when the agent can quantify the uncertainty about b in terms of
a probability distribution P , the standard definition of best reply refers to the
work by [Savage, 1954], and state that and action a∗ is a best reply if it maximizes
expected utility,

a∗ ∈ argmax
a∈A

EP [u(π(a, b))].

This is still the standard model for decisions under uncertainty in many branches
of economics. Specifically, most of the literature in game theory, as we have par-
tially seen in Chapter 3, is still limited to the case of Bayesian agents. (A few re-
cent attempts to extend the scope of game theory beyond the Bayesian paradigm
can be found in [Battigalli et al., 2015], [Kajii and Ui, 2005], and [Liu, 2015]).
However, Ellsberg’s examples, among many others, show that we cannot presup-
pose that DM is able to quantify the uncertainty in a probabilistic way. Others
(e.g., [Gilboa et al., 2012], [Gilboa et al., 2009], and [Gilboa, 2015]) even question
the normativity of the Bayesian paradigm, as we have see in Chapter 1.

2Here we almost exclusively consider (precise or imprecise) probabilistic models, but there
is extensive literature also on decision theory without probabilities (e.g., [Tan and Pearl, 1994],
[Baltag et al., 2009], [Brafman and Tennenholtz, 2000], [Lehmann, 1996]).
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When DM’s beliefs are not Bayesian, she has to appeal to other choice prin-
ciples. If, for example, the uncertainty is just represented as a set of values of b,
then a possible and famous decision criterion dictates to choose the action that
maximizes the minimum. According to this criterion, an action a∗ is a best reply
if

a∗ ∈ argmax
a∈A

min
b∈B

u(π(a, b)).

A third option, combining the first two, may be to express the agent’s un-
certainty as a set Γ of probabilities over B. A suitable decision criterion for this
case would be the maximinimization of expected utility, already introduced in
Chapter 2. An action a∗ is then a best reply if

a∗ ∈ argmax
a∈A

min
P∈Γ

EP [u(π(a, b))].

Notice that this third representation has some formal advantages, in that it can
include the first two as a special case. Indeed, when Γ = {P}, the decision
criterion reduces to maximization of expected utility; when Γ = ∆(B), then it
corresponds to simple maxmin.

To sum up, while the subjective preferences over outcomes is specified by
means of a vNM utility function u : X → R (in line with what we have seen
in Chapters 2 and 3, and with the literature on evolution of preferences, e.g.,
[Dekel et al., 2007], [Alger and Weibull, 2013]), a subjective belief can still be ex-
pressed in many different ways. A choice principle â, however, must be able to
resolve the uncertainty and to associate the agent’s utility and beliefs with an ac-
tion choice. Examples of choice principles (some of which we already encountered)
are:

1. Simple Maxmin:

â(u,B) = argmax
a∈A

min
b∈B

u(π(a, b))

2. Simple Regret Minimization:

â(u,B) = argmax
a∈A

min
b∈B
{u(π(a, b))−max

a′∈A
u(π(a′, b))}

3. Maxmin Expected Utility:

â(u,Γ) = argmax
a∈A

min
P∈Γ

EP [u(π(a, b))]

4. Expected Regret Minimization:

â(u,Γ) = argmax
a∈A

min
P∈Γ
{EP [u(π(a, b))]−max

a′∈A
EP [u(π(a′, b))]}
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5. Maximax Expected Utility:

â(u,Γ) = argmax
a∈A

max
P∈Γ

EP [u(π(a, b))]

6. Laplace rule (for B finite):

â(u,B) = argmax
a∈A

∑
b∈B

1

|B|
u(π(a, b))

7. Expected Utility Maximization:

â(u, P ) = argmax
a∈A

EP [u(π(a, b))].

As observed earlier, each of these principles may require a different quantifica-
tion of the uncertainty, but some uncertainty representations are more general
and adaptable than others. For instance, we can encompass all the choice prin-
ciples listed above by expressing uncertainty in terms of a set of probabilities Γ.
Indeed, both maxmin and maximax expected utility are equivalent to expected
utility maximization when the set Γ is a singleton, and in turn expected util-
ity maximization reduces to Laplace rule when Γ is a single uniform probability
over B. Simple regret minimization is expressible by means of expected regret
minimization with Γ = ∆(B), just as simple maxmin is expressible in terms of
maxmin expected utility with Γ = ∆(B), and expected regret minimization also
boils down to expected utility maximization when Γ is a singleton.

A crucial part in determining DM’s choices is played by the subjective repre-
sentation of the decision situation, namely the manner of forming preferences and
beliefs about a possibly uncertain world. Indeed, in order to prescribe an action,
a choice principle needs to be given a specific utility and belief as input. We call
the pair of a subjective utility and a subjective belief the subjective representation
of the decision problem.

Once the subjective representation is fixed, the essence of a choice principle is
the qualitative order over possible choices induced by the procedure for resolving
uncertainty. Consider for example the case of maxmin and maximax expected
utility, both acting on the same subjective representation (u,Γ). The two choice
principles will rank the available options according to two different criteria, in-
ducing two different orders over possible actions. Given utility u : X → R and
belief Γ, an expected utility maximinimizer would prefer action a over a′ if

min
P∈Γ

EP [u(π(a, b))] ≥ min
P∈Γ

EP [u(π(a′, b))],

whereas an agent choosing according to maximax expected utility would prefer a
over a′ if

max
P∈Γ

EP [u(π(a, b))] ≥ max
P∈Γ

EP [u(π(a′, b))].
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Hence, a choice principle is the way DM resolves uncertainty and picks an action,
and involves two levels of subjectivity. Firstly, DM has to decide which outcomes
she would prefer and how likely she considers each outcome. This amounts to
coming up with a subjective representation consisting of a subjective utility and
a subjective belief. The second level fixes the method of resolving uncertainty
and determines a ranking over possible acts.

5.3 On the Rationality of Choice Principles

Chapter 1 and Chapter 2 presented the basics of rational choice theory. We saw
that the standard definition of rationality in textbooks and papers in economics
and decision theory still traces back to the works by de Finetti [de Finetti, 1931],
von Neumann and Morgenstern [von Neumann and Morgenstern, 1944], and Sav-
age [Savage, 1954]. This tradition considers DM rational if she maximizes sub-
jective expected utility (SEU). According to this point of view, DM is always
able to quantify uncertainty in a probabilistic way, and then she maximizes her
expected utility. Expected utility is subjective in the sense that it is a function of
a subjective probabilistic belief P and a subjective utility u of the decision maker.
We already noticed in Chapter 1 and Section 2.1 that SEU represents a weak and
internal notion of rationality, whose unique requirement is DM’s consistency of
choices. To wit, a choice can be rational (i.e., the choice that maximizes subjec-
tive expected utility from DM’s point of view), even if based on peculiar beliefs
and/or aberrant preferences. On the other hand, it requires DM to always have
probabilistic beliefs, and it dictates to always use expected utility maximization
as decision criterion.

If beliefs and preferences are subjective, however, there is room for rational-
ization or redescriptionism of observable behavior. For example, in the case of
interactive decision making, including considerations of fairness allows us to de-
scribe as rational (according to SEU) empirically observed behavior, such as in
experimental prisoner’s dilemmas or public goods games, that might otherwise
appear irrational (e.g., [Fehr and Schmidt, 1999], [Charness and Rabin, 2002]).

The main objection to redescriptionism is that, without additional constraints,
the notion of rationality is likely to collapse, as it seems possible to deem rational
almost everything that is observed, given the freedom to adjust beliefs and pref-
erences at will. An opposite position therefore emphasizes that there are many
ways in which (i) the ascription of beliefs and preferences, and (ii) the uncertainty
resolution method should be constrained by normative considerations of rational-
ity as well. Subjective beliefs should be justified by evidence, and quantified in
terms of a single probability function P only if possible; subjective preferences
should be oriented towards tracking objective fitness. For instance, profit max-
imization seems a necessary requirement for evolution in a competitive market
because only firms behaving according to profit maximization will survive in the
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long run ([Alchian, 1950], [Friedman, 1953]). Once subjective beliefs and sub-
jective utilities have been tuned as much as possible with objective chance and
objective fitness respectively, the SEU paradigm prescribes that DM shall choose
the action that maximizes expected utility.

An alternative view on rationality of choice is adaptationism ([Anderson, 1991],
[Chater and Oaksford, 2000], [Hagen et al., 2012]). Adaptationism aims to ex-
plain rational behavior by appealing to evolutionary considerations: DMs have
acquired choice principles that have proven to be adaptive with respect to the
variable environment where they have evolved. The focus on the ecological ratio-
nality of different heuristics and choice mechanisms maintained by Gigerenzer’s
school and the research program pursued by [Fawcett et al., 2013] both share this
adaptive perspective on the study of rational choice. Our approach is along the
same lines, in that we do not want to assess the rationality of choices on the
basis of some system of axioms or aprioristic philosophical intuition about the
nature of rationality. Our intuition is that the quality of a choice cannot be eval-
uated independently of the environment in which it takes place. In the following,
we will specifically investigate the evolutionary fitness of different ways of form-
ing subjective representations and resolving uncertainty across multiple decision
problems.

5.4 The Game of Life

If agents deal with a rich and variable environment, they have to face many
different choice situations. But, as noted earlier, standard evolutionary game
models frequently simplify reality in at least two ways. Firstly, the environment
is represented as a fixed fitness game; secondly, the focus of evolutionary selec-
tion is behavior for that stage game alone. This section instead introduces a
general multi-game model that aims at overcoming the limitations of single-game
models presented in previous sections, and conservatively extends the scope of
evolutionary game theory to deal with evolutionary selection of general choice
principles.3 The model will thus include a multiplicity of different fitness games,

3In particular, similar ideas recently appeared in [Zollman, 2008], [Bednar and Page, 2007],
and [Robalino and Robson, 2016]. [Bednar and Page, 2007] use a multi-game framework, com-
posed of a fixed selection of six possible games, to study the emergence of different cultural
behaviors, and model agents as finite-state automata playing games from the fixed selection.
[Zollman, 2008] explains seemingly “irrational” fair behavior in social dilemmas (like the Ulti-
matum game) by means of a model where agents have to play the Ultimatum game together
with the Nash bargaining game, but they are constrained to choose the same strategy for both
games. Finally, [Robalino and Robson, 2016] consider, in a more decision-theoretic setting,
what subjective utility function a cognitively limited agent should be endowed with in order to
maximize her evolutionary fitness. Our framework can then be viewed as a generalization of
those models, mainly in that here players do not experience any cognitive constraint, and we
allow for larger and possibly variable classes of games.
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each representing a possible interaction between members of the population, and
will capture the evolutionary dynamics determined by the multiplicity of inter-
actions in the environment. For this reason, the multi-game model might also be
called the big game, or the game of life. To illustrate the usefulness of the model,
this chapter shows how it can enable us to investigate which choice principles are
ecologically valuable and lead to high fitness, and which principles would instead
be disfavored by natural selection in multi-game environments.

Research on the evolutionary selection of different subjective representations
(especially in terms of different subjective utilities) has been subject of recent in-
terest in theoretical economics, giving rise to a body of literature under the name
of evolution of preferences (see [Samuelson, 2001], [Robson and Samuelson, 2011]).
There, the phenotypes under selection are usually preferences over outcomes,
modeled as different subjective utility functions u : X → R. Our framework gen-
eralizes those models, and, in addition to the selection of subjective preferences,
it also allows to study the evolution of different subjective beliefs and decision
criteria. In fact, a crucial point that we are going to show is that questions of
preference evolution should take variability in uncertainty representation and un-
certainty resolution into account as well. We demonstrate that, particularly when
agents have imprecise probabilistic beliefs (see [Dempster, 1967], [Levi, 1974],
[Shafer, 1976], [Gardenfors and Sahlin, 1982]), the way they resolve uncertainty
to an action choice is a fundamental issue for determining evolutionary selection.
The result is relevant in that it also offers an evolutionary comparison in terms of
ecological rationality between the main decision criteria presented in the chapter
on rational choice.

5.5 The Model

We denote by G the set of fitness games that can possibly be played in a given pop-
ulation. For simplicity, we assume that all fitness gamesG = 〈N,X, (Ai,Φi)i∈N , π〉
are symmetric two-player games, i.e., such that N = {1, 2}, A1 = A2 and
Φ1(π(a1, a

′
2)) = Φ2(π(a′1, a2)) =: Φ(π(a, a′)).4 As argued in Section 3.3, it is

reasonable to assume that the players’ uncertainty about the distribution of dif-
ferent phenotypes in the population may be non-probabilistic. To allow for this
case, we represent uncertainty by means of a set Γ of probability distributions.
Given the game-theoretic setting, the subjective belief Γ is now a set of probability
functions over the co-player’s actions, Γ ⊆ ∆(A).

Overall, in the present context a phenotype is a triple (â, u,Γ) consisting of a
decision criterion â : u×Γ→ A, a subjective utility u : X → R, and a subjective
belief Γ ⊆ ∆(A). For brevity let us denote phenotype (âi, ui,Γi) simply by ti,

4Since the game is symmetric, we can simply write Φ(π(a, a′)) for Φ1(π(a1, a
′
2)) and A :=

A1 = A2, as in Chapter 3. Furthermore, notice that all definitions can be extended to more
general cases.
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and the set of all phenotypes in the population by T . The fitness of a phenotype
is then measured in terms of expected fitness. Formally, the fitness of phenotype
ti = (âi, ui,Γi) against phenotype tj = (âj, uj,Γj) in a symmetric two-player game
G = 〈{1, 2}, X,A,Φ, π〉 is given by:5

FG(ti, tj) = Φ(π(âi(ui,Γi), âj(uj,Γj))).

We want, however, to study the fitness and the evolutionary selection of dif-
ferent choice principles in a rich multi-game environment. Towards this end, fix
a class G of symmetric two-player fitness games, together with a probability mea-
sure PG that specifies the occurrence probability of games G ∈ G. Intuitively, the
probability PG encodes the statistical properties of the environment. The game
of life is then a tuple GoL = 〈T ,G, PG, F 〉, where T is the set of phenotypes, G
is the set of possible games, PG is the probability distribution of possible games,
and F : T × T → R is the (meta-)fitness function, defined as:

F (ti, tj) =

ˆ
FG(ti, tj) dPG(G) . (5.1)

Hence, F (ti, tj) determines the evolutionary fitness of phenotype ti against phe-
notype tj in the multi-game. It is also possible to compute the average fitness of
phenotype ti against the population, that is given by:

F (ti) =

ˆ
F (ti, tj) dPt(t

j) =

ˆ ˆ
FG(ti, tj) dPt(t

j) dPG(G) (5.2)

where Pt(tj) is the probability of encountering a co-player of phenotype tj.
Multi-games are thus abstract models for the evolutionary competition be-

tween different choice principles and subjective representations in interactive de-
cision making contexts. Standard notions of evolutionary game theory apply to
multi-games as well. For example, a profile (ti, ti) is a strict Nash equilibrium of
GoL if F (ti, ti) > F (tj, ti) for all tj; a phenotype ti is evolutionarily stable if for all
tj: (i) F (ti, ti) ≥ F (tj, ti) and (ii) F (ti, ti) = F (tj, ti)⇒ F (ti, tj) > F (tj, tj); it is
neutrally stable if for all tj: (i) F (ti, ti) ≥ F (tj, ti) and (ii) F (ti, ti) = F (tj, ti)⇒
F (ti, tj) ≥ F (tj, tj). Similarly, evolutionary dynamics can be applied to multi-
games. Later we will also turn towards a dynamical analysis in terms of replicator
dynamics and replicator-mutator dynamics.

5.6 A Bold Alternative to the Alternatives
The model introduced in the previous section is rather general and abstract. In
this section, we concretely compare a selection of subjective representations and

5Whenever a choice mechanism would not select a unique action, we assume that
the player chooses one of the equally optimal actions at random. I.e., FG(ti, tj) =∑
a∈âi(ui,Γi)

∑
a′∈âj(uj ,Γj)

1
|âi(ui,Γi)|

1
|âj(uj ,Γj)| Φ(π(a, a′)).
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decision criteria against each other. As for subjective utilities, consider initially
the objective utility u that coincides with the fitness u(π(a, a′)) = Φ(π(a, a′)) for
all G ∈ G and all a, a′ ∈ A. The objective utility perfectly tracks the evolutionary
fitness of the outcomes, and looks like the utility that an agent should be willing
to adopt from a normative point of view.6

For a start, the subjective beliefs that we take into consideration are two:

1. P̃ , a precise uniform belief over the co-player’s actions: ∀a ∈ A, P̃ (a) = 1
|A| ;

2. Γ̃, a maximally imprecise belief over the co-player’s actions: Γ̃ = ∆(A).

We have seen that these two kinds of belief underlie two different views on uncer-
tainty. Faced with uncertain events, a Bayesian agent will always form a precise
belief, specified by a single probability P . In the absence of any information
about future uncertain events, the Bayesian would most likely invoke the prin-
ciple of insufficient reason, and choose a uniform probability over the states. In
contrast, others have argued against the obligation of representing a belief by
means of a single probability measure, opposite to the Bayesian paradigm (e.g.,
[Gilboa et al., 2012], [Gilboa and Marinacci, 2013]). They argue instead in favor
of a more encompassing account, according to which uncertainty can be unmea-
surable, i.e., not represented by a unique measure. This line of thought appears
extremely relevant in game-theoretic contexts too. Indeed, in a recent paper,
[Battigalli et al., 2015] write:

Such [unmeasurable] uncertainty is inherent in situations of strategic
interaction. This is quite obvious when such situations have been
faced only a few times. (p. 646)

In evolutionary game theory, players obviously face uncertainty about the com-
position of the large population that they are part of, and consequently about
the (type of) co-player that they are randomly paired with at each round and
about the co-player’s choice. In case of complete lack of information about the
composition of the population, a non-Bayesian player would thus entertain max-
imal unmeasurable uncertainty, i.e., a maximally imprecise belief.7 As already
anticipated, we will see that the way agents form beliefs, and the possibility of
holding imprecise beliefs in particular, can have a fundamental impact on their
evolutionary success.

Finally, the decision criteria that we start with are two:

6But see also [Alger and Weibull, 2013], among others.
7Such a radical uncertainty could ensue, in other cases, if agents have no conception of their

co-player or her preferences. Unsophisticated agents, as considered in evolutionary game theory,
might be entirely unaware of the interactive decision situation that they are engaged in (see
[Heifetz et al., 2013], for game-theoretic models of unawareness). It is therefore not ludicrous
to consider maximal uncertainty first and tend to more sophisticated ways of forming beliefs
later (more on this below).
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1. Maxmin Expected Utility:

Mm(u,Γ) = argmax
a∈A

min
P∈Γ

EP [u(π(a, a′))];

2. Expected Regret Minimization:

Reg(u,Γ) = argmax
a∈A

min
P∈Γ
{EP [u(π(a, a′))]−max

a′′∈A
EP [u(π(a′′, a′))]}.

As motivation for this comparison, we know from Chapter 2 that regret minimiza-
tion is one of the main alternatives to utility maximization in decision theory, to
the point that has been recently called “a bold alternative to the alternatives”
([Bleichrodt and Wakker, 2015]). The notion of regret in decision theory dates
back at least to the work by [Savage, 1951], and has later been developed by
[Loomes and Sugden, 1982, Fishburn, 1982, Bell, 1982] independently. Recently,
[Halpern and Pass, 2012] showed how the use of regret minimization can give
solutions to game-theoretic puzzles (like the Traveller’s dilemma and the Cen-
tipede game) in a way that is closer to everyday intuition and empirical data (see
[Rubinstein, 2006]).

Some facts follow from the selection of decision criteria and subjective repre-
sentations under consideration. The first is related to our focus on different types
of uncertainty that players may entertain.

Fact 5.1. For any precise (Bayesian) belief Γ = {P} and subjective utility u,
maxi(mini)mization of expected utility and minimization of expected regret are
behaviorally equivalent. I.e., when Γ is a singleton set, Mm(u,Γ) = Reg(u,Γ)
for any subjective utility u.

The following observations highlight that, by combining the selection of sub-
jective beliefs and choice principles considered here, it is possible to embrace
other choice principles listed previously. The next fact expresses a behavioral
equivalence which we will make use of in the following section.

Fact 5.2. In the class of 2 × 2 symmetric games (i.e., symmetric two-player
games with two acts for each player), the acts selected by Laplace rule are exactly
the acts selected by simple regret minimization.

Fact 5.3 states two behavioral equivalences in the case of maximally imprecise
beliefs.

Fact 5.3. Fix a subjective utility u. The acts selected by simple maxmin are
exactly the acts selected by maxmin expected utility for maximally imprecise beliefs
Γ̃. Analogously, the acts selected by simple regret minimization are exactly the acts
selected by expected regret minimization for maximally imprecise beliefs Γ̃.
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In light of Fact 5.3, Mm(Φ, Γ̃) coincides with simple maximinimization of objec-
tive fitness, and likewise Reg(Φ, Γ̃) is equivalent to simple regret minimization
with respect to objective fitness.

A simple example may be helpful to show how choice principles and subjective
representations work in practice. Consider the fitness game of Section 3.3 again.
The next table pictures Ann’s utility when it coincides with objective fitness Φ.

I II
I 2 1
II 0 5

While simple maxmin will choose action I, simple regret minimization will select
II. Indeed, action I has the higher minimum, 1 > 0, but it also has lower negative
regret, 1− 5 < 0− 2, and, hence, higher regret.

5.7 Results

5.7.1 Simulation results

Since for now we keep all subjective utilities u fixed to the evolutionary fitness Φ,
different action choices of different players will only depend on differences in the
decision criterion â and/or subjective beliefs Γ. In other words, two phenotypes
(âi, ui,Γi) and (âj, uj,Γj) can only differ in two of the three components, since we
fix ui = uj = Φ. Consequently, a phenotype ti ∈ T is now fully specified by the
pair (âi,Γi), and we will directly refer to pairs like (Reg, Γ̃) or (Mm, P̃ ) as the type
of the player for brevity. Sometimes we will also distinguish types by referring
only to the choice principle or the subjective belief: for instance, (Reg, Γ̃) and
(Reg, P̃ ) are regret types, while (Mm, Γ̃) and (Reg, Γ̃) are imprecise types.

As observed earlier, multi-games factor in statistical properties of the envi-
ronment. For particular empirical purposes, one could consult a specific class of
games G with appropriate, maybe empirically informed probability PG in order to
match the natural environment of a given population. For our present purposes,
let G be a set of symmetric two-player fitness games with two acts for a start.
Each game G ∈ G is then individuated by a quadruple of numbers G = (a, b, c, d),
as shown in the following table.

I II
I a; a b; c
II c; b d; d

As for the occurrence probability PG(G) of game G, we imagine that the values
a, b, c, d are i.i.d. random variables sampled from the set {0, . . . , 10} according to
uniform probability PV . Using Monte Carlo simulations, we can then approximate
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(Reg, Γ̃) (Mm, Γ̃) (Reg, P̃ ) (Mm, P̃ )

(Reg, Γ̃) 6.663 6.662 6.663 6.663
(Mm, Γ̃) 6.486 6.484 6.486 6.486
(Reg, P̃ ) 6.663 6.662 6.663 6.663
(Mm, P̃ ) 6.663 6.662 6.663 6.663

Table 5.1: Average evolutionary fitness from Monte Carlo simulations of 100.000
symmetric 2× 2 games.

the values of equation (5.1) to construct the meta-fitness for the game of life.
Results based on 100.000 randomly sampled games are given in table 5.1.8

Simulation results obviously reflect Fact 5.1 and Fact 5.2 in that all encounters
in which types (Reg, Γ̃), (Reg, P̃ ) or (Mm, P̃ ) are substituted for one another
yield identical results. More interestingly, Table 5.1 shows that (Mm, Γ̃), the
simple maxmin strategy, is strictly dominated by the three other types: in each
column (i.e., for each type of co-player), simple maxmin is strictly worse than any
of the three competitors. This has a number of interesting consequences.

If we restrict attention to subjective representations with imprecise beliefs
only, then a monomorphic state in which every agent has regret-based choice
principle is the only evolutionarily stable state. More strongly, since (Mm, Γ̃) is
strictly dominated by (Reg, Γ̃), we expect selection that is driven by (expected)
fitness to invariably weed out maxmin players (Mm, Γ̃) in favor of regret min-
imizers (Reg, Γ̃). In terms of decision criteria, this means that simple regret
minimization is evolutionarily better than simple maxmin over the class of games
considered.

Next, if we look at the competition between all four types represented in
Table 5.1, (Reg, Γ̃) is no longer evolutionarily stable. Given the behavioral equiv-
alences of Fact 5.1 and Fact 5.2, types (Reg, Γ̃), (Reg, P̃ ), and (Mm, P̃ ) are all
neutrally stable. But since (Mm, Γ̃) is strictly dominated and so disfavored by
fitness-based selection, we are still drawn to conclude that simple maxmin be-
havior is weeded out in favor of a population with a random distribution of the
remaining three types.

Simulation results of the (discrete time) replicator dynamics indeed show that
random initial population configurations are attracted to states with only three
player types: (Reg, Γ̃), (Reg, P̃ ) and (Mm, P̃ ). The relative proportions of these
depend on the initial shares in the population. This variability fully disappears

8Concretely, 100.000 games were sampled repeatedly by choosing independently four integers
between 0 and 10 uniformly at random. For each game, the action choices of all four types were
determined and fitness from all pairwise encounters recorded. The number in each cell of
Table 5.1 is the average fitness for the type listed in the row when matched with the type in
the column.
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if we add a small mutation rate to the dynamics. Take a fixed, small mutation
rate ε for the probability that a player’s decision criterion or her subjective be-
lief changes to another criterion or belief. The probability that a player’s type
randomly mutates into a completely different type with altogether different de-
cision criterion and different belief would then be ε2. With these assumptions
about “component-wise mutations”, numerical simulations of the (discrete time)
replicator-mutator dynamics show that already for very small mutation rates al-
most all initial population states converge to a single fixpoint in which the major-
ity of players have regret-based decision criterion. For instance, with ε = 0.001,
almost all initial populations are attracted to a final distribution with proportions:

(Reg, Γ̃) (Mm, Γ̃) (Reg, P̃ ) (Mm, P̃ )
0.289 0.021 0.398 0.289

What this suggests is that, if biological evolution selects behavior-generating
mechanisms, not behavior as such, it need not be the case that behaviorally equiv-
alent mechanisms are treated equally all the while. If mutation probabilities are a
function of individual components, it can be the case that certain components of
such behavior-generating mechanisms are more strongly favored by a process of
random mutation and selection. This is exactly the case of regret-based decision
criterion. Since expected regret minimization is much better in connection with
imprecise beliefs than maxmin expected utility is, the proportion of regret-based
decision makers, and particularly of precise expected regret minimizers (Reg, P̃ ),
in the attracting state is substantially higher than that of expected utility maxi-
mizers, (Mm, P̃ ), even though these types are behaviorally equivalent.

5.7.2 Analytical results

Results based on the single multi-game in Table 5.1 are not fully general and pos-
sibly spoiled by random fluctuations in the sampling procedure. Fortunately, for
the case of 2×2 symmetric games, the main result that maxmin types (Mm, Γ̃) are
strictly dominated by regret minimizers (Reg, Γ̃) can also be shown analytically
for considerably general conditions.

Proposition 5.4. Let G be the class of 2 × 2 symmetric games G = (a, b, c, d)
generated by i.i.d. sampling a, b, c, d from a set of values with at least three ele-
ments in the support. Then, (Reg, Γ̃) strictly dominates (Mm, Γ̃) in the resulting
meta-game.

Proof. All proofs are in Appendix 5.10.

Corollary 5.5. Let G be as in Proposition 5.4. If we only consider imprecise
types, (Mm, Γ̃) and (Reg, Γ̃), then the unique evolutionarily stable state of RD is
a monomorphic population of type (Reg, Γ̃).
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This shows that the main conclusions drawn in the previous section based on
the approximated multi-game of Table 5.1 hold more generally for arbitrary 2×2
symmetric games with i.i.d. sampled fitness.

5.8 Extensions

How do the basic results from the preceding section carry over to richer models?
Section 5.8.1 first introduces further conceptually interesting phenotypes that
have been considered in the evolutionary game theory literature. Section 5.8.2
then addresses the case of symmetric two-player n× n games for n ≥ 2. Finally,
Section 5.8.3 presents a brief comparison to the case of solitary decision making.

5.8.1 More preference types

Given a game G, any function u : X → R is a possible subjective preference. We
have so far considered only objective preferences (i.e., ui = uj = Φ for all ti, tj ∈ T
and all G ∈ G), but the space of possible subjective preferences is enormous. Let
us now look at other relevant subjective preferences that have been investigated,
especially in behavioral economics and in evolutionary game theory. A famous ex-
ample is the altruistic preference (e.g., [Becker, 1976], [Bester and Güth, 1998]),
summoned to explain the possibility of altruistic behavior. At the other end of
the spectrum, the competitive preference is located. The corresponding utilities
are defined as follows:

1. altruistic utility:9 for all G ∈ G,

alt(π(a, a′)) := Φ(π(a, a′)) + Φ(π(a′, a));

2. competitive utility: for all G ∈ G,

com(π(a, a′)) = Φ(π(a, a′))− Φ(π(a′, a)).

Once different subjective utilities have been introduced, there is variability
in the players’ subjective preferences too. Consequently, a player’s type ti can
no longer be identified by the pair (âi,Γi) only, but needs the complete triple
(âi, ui,Γi) to be fully specified. Throughout this section, a type ti will thus
correspond to a triple (âi, ui,Γi).

Table 5.2 shows results of Monte Carlo simulations that approximate the ex-
pected fitness in the game of life with all the subjective preferences considered

9Amore general formulation would be to define γ-altruistic utility, for γ ∈ [0, 1], altγ(a, a′) :=
Φ(π(a, a′)) + γΦ(π(a′, a)). Since we are not interested in the evolution of degrees of altruism,
here we simply fix γ = 1. Analogously for γ-competitive utilities too.
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(Reg,Φ, Γ̃) (Mm,Φ, Γ̃) (Mm, com, Γ̃) (Mm, alt, Γ̃) (Reg,Φ, P̃ ) (Mm,Φ, P̃ ) (Mm, com, P̃ ) (Mm, alt, P̃ )

(Reg,Φ, Γ̃) 6.663 6.662 5.829 7.105 6.663 6.663 5.829 7.489
(Mm,Φ, Γ̃) 6.486 6.484 6.088 6.703 6.486 6.486 6.088 6.875

(Mm, com, Γ̃) 6.323 6.758 5.496 6.977 6.323 6.323 5.496 7.149
(Mm, alt, Γ̃) 5.949 5.722 5.326 6.396 5.949 5.949 5.326 6.568
(Reg,Φ, P̃ ) 6.663 6.662 5.829 7.105 6.663 6.663 5.829 7.489
(Mm,Φ, P̃ ) 6.663 6.662 5.829 7.105 6.663 6.663 5.829 7.489

(Mm, com, P̃ ) 6.323 6.758 5.496 6.977 6.323 6.323 5.496 7.149
(Mm, alt, P̃ ) 6.331 5.893 5.497 6.566 6.331 6.331 5.497 7.152

Table 5.2: Average evolutionary fitness from Monte Carlo simulations of 100.000
symmetric 2× 2 games with four preference types.

so far.10 These results confirm basic intuitions about altruistic and competitive
types: everybody would like to have an altruistic co-player and nobody would like
to play with a competitive player. Perhaps more surprisingly, (Mm, alt, Γ̃) comes
up strictly dominated by (Mm, com, Γ̃), but competitive types themselves are
worse off against all types except against maxmin players (Mm,Φ, Γ̃) than any
of the behaviorally equivalent types (Reg,Φ, Γ̃), (Reg,Φ, P̃ ), and (Mm,Φ, P̃ ).
It thus follows that the previous results still obtain for the larger game of life
in Table 5.2: (Reg,Φ, Γ̃), (Reg,Φ, P̃ ), and (Mm,Φ, P̃ ) are still neutrally stable;
simulation runs of the (discrete-time) replicator dynamics on the 8×8 multi-game
from Table 5.2 end up in population states consisting of only these three types in
variable proportions.

In sum, the presence of other subjective representations, such as those based
on altruistic or competitive utilities, does not undermine, but rather strengthens
our previous results.

5.8.2 More actions

Results from Section 5.7 relied heavily on Fact 5.2, which is no longer true when we
look at arbitrary n×n games. Table 5.3 gives approximations of expected fitness
in the class of n× n symmetric games. Concretely, the numbers in table 5.3 are
averages of evolutionary fitness obtained in 100.000 randomly sampled symmetric
games, where each game G was sampled by first picking a number of acts |A| ∈
{2, . . . , 10} uniformly at random, and then filling the necessary |A| × |A| fitness
matrix with i.i.d. sampled numbers, as before.

The most important result is that the regret minimizing type (Reg,Φ, Γ̃) is
strictly dominated by (Reg,Φ, P̃ ) and by (Mm,Φ, P̃ ) in the multi-game from
Table 5.3. This means that while simple regret minimization can thrive in some
evolutionary contexts, there are also contexts where it is demonstrably worse
off. While this may be bad news for simple regret minimizers (Reg,Φ, Γ̃), it is

10Notice that in the simulations altruistic and competitive types may have precise as well as
imprecise beliefs, but, for reasons of space, here we paired altruistic and competitive preferences
only with maxmin expected utility as decision criterion.
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(Reg,Φ, Γ̃) (Mm,Φ, Γ̃) (Mm, com, Γ̃) (Mm, alt, Γ̃) (Reg,Φ, P̃ ) (Mm�,Φ, P̃ ) (Mm, com, P̃ ) (Mm, alt, P̃ )

(Reg,Φ, Γ̃) 6.567 6.570 5.650 6.992 6.564 6.564 5.593 7.409
(Mm,Φ, Γ̃) 6.476 6.483 5.896 6.818 6.484 6.484 5.850 7.124

(Mm, com, Γ̃) 6.468 6.647 5.512 7.169 6.578 6.578 5.577 7.354
(Mm, alt, Γ̃) 5.968 5.923 5.363 6.685 5.975 5.975 5.086 6.973
(Reg,Φ, P̃ ) 6.908 6.918 5.988 7.456 6.929 6.929 5.934 7.783
(Mm,Φ, P̃ ) 6.908 6.918 5.988 7.456 6.929 6.929 5.934 7.783

(Mm, com, P̃ ) 6.529 6.680 5.445 7.276 6.542 6.542 5.521 7.440
(Mm, alt, P̃ ) 6.450 6.337 5.772 6.978 6.457 6.457 5.479 7.500

Table 5.3: Average evolutionary fitness from Monte Carlo simulations of 100.000
symmetric n× n games with four preference types.

(Reg,Φ) (Mm,Φ) (Mm, com) (Mm, alt)

(Reg,Φ) 6.926 6.926 5.942 7.757
(Mm,Φ) 6.924 6.924 5.948 7.751

(Mm, com) 6.566 6.570 5.481 7.434
(Mm, alt) 6.463 6.461 5.478 7.469

Table 5.4: Meta-game for the evolutionary competition when beliefs are exoge-
nously given (see main text).

not the case that regret types as such are weeded out by selection. Since, by
Fact 5.1, (Reg,Φ, P̃ ) and (Mm,Φ, P̃ ) are behaviorally equivalent in general, it
remains that selection in the game of life constructed from n× n games will still
not eradicate regret-based principles.

On the other hand, there are plenty of ways in which the basic insights from
Proposition 5.4 can make for situations in which evolution would favor regret
types, even in n × n games. If, for example, the belief of a player is a trait
that biological evolution has no bite on, but rather something that the particu-
lar choice situation would exogenously give us (possibly because of the different
amount and quality of information available in different contexts), then expected
regret minimizers can again drive out expected utility maximinimizers altogether.
For example, suppose that only choice principles and preference representations
compete, and that agents’ beliefs are exogenously given in such a way that both
players hold a precise (Bayesian) uniform belief with probability p and they both
have a maximally imprecise belief otherwise. A phenotype is then a pair (â, u)
of a choice principle â and a subjective utility u, while the beliefs are assigned
game-by-game according to probability p. This transforms the multi-game from
Table 5.3 into a simpler 4 × 4 meta-game in which the fitness obtained by type
(â, u) is the weighted average over the evolutionary fitness of the types including
choice principle â and preference u in Table 5.3. Setting p = 0.98 for illustration,
we get the multi-game in Table 5.4.

The only evolutionarily stable state of this multi-game is again a monomorphic
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population of regret types. Accordingly, all our simulation runs of the (discrete-
time) replicator dynamics converge to monomorphic regret-type populations. The
reason why expected regret minimizers prosper is that they have a substantial
fitness advantage when paired with imprecise beliefs (Proposition 5.4). If unmea-
surable uncertainty is exogenously given as something that happens to agents
because of the information available in some choice situations, and even if that
happens only very infrequently (i.e., for rather low p), regret types will outperform
expected utility maximinimizers.

5.8.3 Solitary decisions

To see how different choice principles behave in evolutionary competition based
on solitary decision making, we approximated, much in the spirit of multi-games,
average accumulated fitness obtained in randomly generated solitary decision
problems. For our purposes, a decision problem can be specified by a tuple
D = 〈S,X,A,Φ, π〉, where S is the finite set of states of the world, X is the
set of outcomes, A is the finite set of acts, π : S × A → X is the outcome
function, and Φ : X → R is the fitness function.11 We generate arbitrary de-
cision problems by selecting, uniformly at random, numbers of states and acts
|S|, |A| ∈ {2, . . . , 10} and then filling the fitness table, so to speak, by i.i.d. sam-
ples for each Φ(π(s, a)) ∈ {0, 10}. Unlike with two-player games, we need to
also sample the actual state of the world, which we selected uniformly at random
from the available states in the current decision problem. The expected fitness of
phenotype ti in decision problem D is then given by:

FD(ti) =
∑
s∈S

Φ(π(s, âi(ui,Γi)))

|S|
,

with Γi ⊆ ∆(S). As phenotypes, we considered the original cast of four from
Table 5.1, since altruistic and competitive types are meaningless in solitary deci-
sion situations. As before, the relevant fitness measure, defined in equation 5.3,
was approximated by Monte Carlo simulations, the results of which are given in
Table 5.5.

F (ti) =

ˆ
FD(ti) dPD(D) (5.3)

Facts 5.1 and 5.2 still apply: (Reg, P̃ ) and (Mm, P̃ ) are behaviorally equiv-
alent in general, and (Reg, Γ̃) is behaviorally equivalent to the former two in

11Here we choose this formalization of decision problem to stay closer to the game-theoretic
formulation of this and the previous chapter. A formalization closer to the chapter on rational
choice would be to express a decision problem as a tuple D = 〈S,X,A,Φ〉, where S,X and Φ
are as before, and acts a ∈ A are functions a : S → X. It is however possible to translate one
formulation into the other.
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(Reg, Γ̃) (Mm, Γ̃) (Reg, P̃ ) (Mm, P̃ )

6.318 6.237 6.661 6.661

Table 5.5: Expected fitness approximated from 100.000 simulated solitary decision
problems.

decision problems with two states and two acts. This shows in the results from
table 5.5 in that the averages for (Reg, P̃ ) and (Mm, P̃ ) are identical. But since
we included decision problems with more acts and more states as well, the av-
erage for regret minimizers (Reg, Γ̃) is not identical to the one of (Reg, P̃ ) and
(Mm, P̃ ). It is, in fact, lower, but again not as low as that of (Mm, Γ̃).

It follows that every relevant result we have seen about game situations is also
borne out for solitary decisions. Evolutionary selection based on objective fitness
will not select against regret-based choice principles, as these are indistinguishable
from expected utility maximinization when paired with precise beliefs. But when
paired with imprecise beliefs, expected regret minimizers outperform expected
utility maximinimizers. Consequently, if there is a chance, however small, that
agents fall back on imprecise beliefs, evolution will actually positively select for
regret-based decision criteria.

5.9 Conclusion

5.9.1 Subjective preferences or choice principles?

Before concluding, it is interesting to note that it may not always be straight-
forward to understand which individual components are the cause of different
observed behaviors. Consider the example of the Hi-Lo fitness game for instance.
An expected regret minimizer (Reg,Φ, Γ̃) would choose action II. However, any
expected utility maximinimizer (Mm,Φ, [1

3
− γ, 1

3
+ δ]), where 1

3
− γ is the lower

probability of the co-player playing II and 1
3

+ δ is the upper probability, would
also play action II for any γ ∈ [0, 1

3
] and δ < 2γ. In this case, observing ac-

tion II can be explained in two different ways: the player might be either a
maximally imprecise expected regret minimizer (Reg,Φ, Γ̃), or a non-maximally
imprecise expected utility maximinimizer (Mm,Φ, [1

3
− γ, 1

3
+ δ]), with γ ∈ [0, 1

3
]

and δ < 2γ. Of course, if we knew the subjective belief of the player (because, for
example, it comes from a learning process that we are fully informed about), then
we could exclude one of the two cases and deduce the player’s choice principle
accordingly. We will follow this direction in the next chapter.

There is, however, an analogous but subtler issue that involves subjective
preferences. Suppose that we define the following subjective utility:
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• the regret : for all G ∈ G,

reg(π(a, a′)) := Φ(π(a, a′))−max
a′′∈A

Φ(π(a′′, a′)).

Then, the two types (Reg,Φ, Γ̃) and (Mm, reg, Γ̃) would be behaviorally indis-
tinguishable, for any G ∈ G. In other words, simple regret minimizing behavior
can be thought of as the result of two distinct processes: expected regret mini-
mization acting on objective fitness (and maximally imprecise beliefs), or maxmin
expected utility acting on regret utility (and maximally imprecise beliefs). In this
chapter, opting for the first formalization was more a matter of intuition than a
necessary choice, and there is no conclusive argument to prefer one to the other.
Since the behavior of the two phenotypes is exactly the same, all the results
presented above would equally hold if we substituted type (Reg,Φ, Γ̃) with type
(Mm, reg, Γ̃). At the same time, the conceptual interpretation of the results in
Section 5.7 might change depending on the formalization we choose. In the first
case, evolution favors one decision criterion over another; in the second, evolution
selects a subjective preference over the other. While beliefs can be updated by
learning and decision criteria can eventually be improved (perhaps) by studying
some decision theory and game theory, subjective preferences (similarly to tastes)
look like more rooted and innate characteristics of the individual. From a psy-
chological point of view, acting at the level of beliefs and decision criteria seems
very different than acting at the level of subjective preferences. We will expand
on this issue in later chapters.

5.9.2 Precise and imprecise beliefs

So far, we have mainly focused on the evolutionary part of the story, and we have
partially neglected the epistemic part, namely the ways of forming and updating
beliefs about co-players’ behavior or the actual state of the world. As mentioned
earlier, there are motivations for this choice. The first is programmatic. Although
objecting against keeping beliefs fixed is a reasonable point, it is in the spirit of
evolutionary game theory (as we have seen in Section 3.2) to consider unsophis-
ticated agents to begin with. The second reason is expositional. Evolutionary
selection and belief updating are by and large distinct topics. For the complete-
ness of our analysis we will have to bring them together, and allow the agents to
learn about the population composition while playing the game of life. Nonethe-
less, to ease the exposition we decided to split the evolutionary part, that was
the focus of this chapter, from the learning and belief updating, that will be the
topic of the next chapter.

One last remark is in order here, before concluding. In line with the normative
claims of Gilboa, Postlewaite and Schmeidler (see Chapter 1 and Section 2.2), we
do not necessarily view the lack of a precise probabilistic belief as a cognitive
limitation of the agents, but rather as the conscious awareness that in certain
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situations a non-Bayesian belief is the best possible option given the amount and
the quality of information available. Quoting [Gilboa and Marinacci, 2013] again,
we agree that

Being able to admit ignorance is not a mistake. It is, we claim, more
rational than to pretend that one knows what cannot be known.

In our population scenario, forcing the players to always have Bayesian beliefs
about the co-player’s actions, even when they do not know anything about the
proportions of types in the population and they never met that co-player before,
would be excessively demanding in our opinion. Similarly to Ellsberg’s urn, it
seems more reasonable to think that players (should) have imprecise beliefs about
the behavior of a co-player randomly drawn from a population whose composition
is unknown. The population context makes the emergence of imprecision in beliefs
almost inevitable, especially when players from a big population have interacted
only a few times, as in the quote from [Battigalli et al., 2015] above.

5.10 Appendix: Proofs
The proof of Proposition 5.4 relies on a partition of G, and on some lemmas. For
brevity, let us denote the regret minimizer (Reg, Γ̃) by R and the maximinimizer
(Reg, Γ̃) byM . Following equation (5.1), let FG(X, Y ) denote the expected fitness
of type X against type Y on the possibly restricted class of fitness games G.

Proof of Proposition 5.4. By definition of strict dominance, we have to show
that in the class G of symmetric 2× 2 games with fitness numbers sampled from
a set of i.i.d. values with at least 3 elements in the support, it holds that:

• (i) FG(R,R) > FG(M,R);

• (ii) FG(M,M) < FG(R,M).

A symmetric 2×2 game is fully specified by a quadruple of four numbers (a, b, c, d).

I II
I a b
II c d

We partition the class G as follows:

1. Coordination games C: {(a, b, c, d) ∈ G : a > c and d > b};

2. Anti-coordination games A: {(a, b, c, d) ∈ G : a < c and d < b};
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3. Strong dominance games S: {(a, b, c, d) ∈ G : a > c and b > d} ∪
{(a, b, c, d) ∈ G : a < c and b < d};

4. Weak dominance gamesW : {(a, b, c, d) ∈ G : a = c and b 6= d}∪{(a, b, c, d) ∈
G : a 6= c and b = d};

5. Boring games B: {(a, b, c, d) ∈ G : a = c and b = d}.

Before proving the lemmas, it is convenient to fix some notation. Let us call
x, y, z the 3 elements in the support, and without loss of generality suppose that
x > y > z. We denote by C a coordination game in C with fitness aC , bC , cC , and
dC ; similarly for games A ∈ A, S ∈ S, W ∈ W , and B ∈ B. Let us denote by IRC
the event that a R-player plays action I in the game C; and similarly for action
II, for a player of type M , and for games A, S, W and B. We first consider the
case of i.i.d. sampling with discrete support.

Lemma 5.6. R and M perform equally well in S and in B.

Proof. By definition of regret minimization and maxmin it is easy to check that
whenever in a game there is a strongly dominant action a$, then a$ is both the
maxmin action and the regret minimizing action. Then, for all the games in S,
R chooses action a if and only if M chooses action a. Consequently, R and M
always perform equally (well) in S. In the case of B it is trivial to see that all
the players perform equally.

Lemma 5.7. In W, R strictly dominates M .

Proof. Assume without loss of generality that b = d, and that a > c. There are
two cases that we have to check: (i) c < b = d and (ii) c ≥ b = d. In the first case it
is easy to see that R andM perform equally: act I is the choice of both R andM .
In the case of (ii) instead we have that I is the regret minimizing action, whereas
both actions have the same minimum andM plays (1

2
I; 1

2
II), since both I and II

maximize the minimal fitness. Consider now a population of R and M playing
games from the class W . Whenever (i) is the case R and M perform equally
well. But suppose W ∈ W and (ii) is the case. Then, FW (R,R) = a > 1

2
a+ 1

2
c =

FW (M,R), whereas FW (M,M) = 1
4
a+ 1

4
b+ 1

4
c+ 1

4
d < 1

2
a+ 1

2
b = FW (R,M). Hence,

we have that in general FW(R,R) > FW(M,R), and FW(M,M) < FW(R,M).

Since it is not difficult to see that both (R,R) and (M,M) are strict Nash equi-
libria in C, and that (R,R) and (M,M) are not Nash equilibria in A, the main
part of the proof will be to show that R strictly dominates C in the class C ∪ A,
that is:

• (i’) FC∪A(R,R) > FC∪A(M,R),

• (ii’) FC∪A(M,M) < FC∪A(R,M).
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This part needs some more lemmas to be proven, but firstly we introduce the
following bijective function φ between coordination and anti-coordination games.

Definition 5.8. φ. The permutation φ(a, b, c, d) = (c, d, a, b) defines a bijec-
tive function φ : C → A that for each coordination game C ∈ C with fitness
(aC , bC , cC , dC) gives the anti-coordination gameA ∈ A with fitness (aA, bA, cA, dA) =
(cC , dC , aC , bC). Essentially, φ swaps rows in the fitness matrix.

Lemma 5.9. Occurrence probability of C equals that of φ(C): P (φ(C)) = P (C).

Proof. By definition, each game C = (aC , bC , cC , dC) is such that aC > cC and
dC > bC , and each game A = (aA, bA, cA, dA) is such that aA < cA and dA <
bA. Given that a, b, c, d are i.i.d. random variables and that a sequence of i.i.d.
random variables is exchangeable, it is clear that the probability of (aC , bC , cC , dC)
equals the probability of (cC , dC , aC , bC). Hence, P (φ(C)) = P (C).

Lemma 5.10. Let P (E) be the probability of event E, e.g., P (IRC) is the proba-
bility that a random R-player plays act I in coordination game C. It then holds
that:

• P (IRC) = P (IIRφ(C)), and P (IIRC) = P (IRφ(C));

• P (IMC) = P (IIMφ(C)), and P (IIMC) = P (IMφ(C)).

Proof. It is easy to check that if bC − dC > cC − aC , a R-player plays action I
in C; that if bC − dC < cC − aC , R plays II; and that if bC − dC = cC − aC , a
R-player is indifferent between I and II in C, and so randomizes with (1

2
I; 1

2
II).

Similarly, if aA−cA > dA−bA, a R-player plays action I in A; if aA−cA < dA−bA,
R plays II; and if aA − cA = dA − bA, a R-player is indifferent between I and
II in A, and randomizes with (1

2
I; 1

2
II). Consequently, if bC − dC > cC − aC ,

then P (IRC) = 1, and by definition of φ we have P (IIRφ(C)) = 1. Likewise, if
bC − dC < cC − aC , then P (IIRC) = 1 = P (IRφ(C)); and if bC − dC = cC − aC ,
then P (IRC) = P (IIRC) = 1

2
= P (IIRφ(C)) = P (IRφ(C)).

In the same way, in coordination games we have that if bC > cC , a M -player
plays I; if cC > bC , a M -player plays II; and if bC = cC , M is indifferent between
I and II, and plays (1

2
I; 1

2
II). In anti-coordination games instead, if aA > dA, M

plays I; if aA < dA, M plays II; if aA = dA, M plays (1
2
I; 1

2
II). By definition of

φ: P (IMC) = 1 = P (IIMφ(C)) if bC > cC ; P (IIMC) = 1 = P (IMφ(C)) if cC > bC ;
and P (IMC) = P (IIMC) = 1

2
= P (IIMφ(C)) = P (IMφ(C)) if bC = cC .

Lemma 5.11. It holds that:

• aC > dC → (IMC ⊆ IRC);

• aC = dC → IMC = IRC ;
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• aC < dC → (IIMC ⊆ IIRC).

Proof. The event that R plays action I, IRC , with positive probability is the event
that bC−dC ≥ cC−aC : if bC−dC > cC−aC , R plays I, and if bC−dC = cC−aC , R
plays (1

2
I; 1

2
II). Similarly, the event that IMC has positive occurrence is the event

that bC ≥ cC : if bC > cC , M plays I, and if bC = cC , M plays (1
2
I; 1

2
II). Then,

IRC implies that bC −dC ≥ cC −aC , and IMC implies that bC ≥ cC . Moreover, on
the assumption that aC > dC , it is easy to check that bC ≥ cC implies bC − dC >
cC − aC . Hence, in any C with aC > dC it holds that IMC implies IRC , i.e.,
aC > dC → (IMC ⊆ IRC). Instead, it is possible that aC > dC , bC − dC > cC − aC
and bC < cC hold simultaneously, so that IMC + IRC . By a symmetric argument
it can be shown that aC < dC → (IIMC ⊆ IIRC) too. Finally, when aC = dC it
holds that: bC − dC > cC − aC iff bC > cC ; bC − dC < cC − aC iff bC < cC ; and
bC − dC = cC − aC iff bC = cC . Hence, aC = dC → IMC = IRC .

We are now ready to prove that FC∪A(R,R) > FC∪A(M,R). With notation like
P (IRC∩IRC) denoting the probability that a random R-player plays I and another
R-player plays I as well in game C, rewrite the inequality as:∑
C∈C

P (C)[P (IRC∩IRC)·aC+P (IIRC∩IIRC)·dC+P (IRC∩IIRC)·bC+P (IIRC∩IRC)·cC ]

+
∑
A∈A

P (A)[P (IRA∩IRA)·aA+P (IIRA∩IIRA)·dA+P (IRA∩IIRA)·bA+P (IIRA∩IRA)·cA]

>
∑
C∈C

P (C)[P (IRC∩IMC)·aC+P (IIRC∩IIMC)·dC+P (IRC∩IIMC)·cC+P (IIRC∩IMC)·bC ]

+
∑
A∈A

P (A)[P (IRA∩IMA)·aA+P (IIRA∩IIMA)·dA+P (IRA∩IIMA)·cA+P (IIRA∩IMA)·bA]

By Lemma 5.9 and Lemma 5.10, we can express everything in terms of C only:∑
C∈C

P (C)[P (IRC∩IRC)·aC+P (IIRC∩IIRC)·dC+P (IRC∩IIRC)·bC+P (IIRC∩IRC)·cC

+P (IIRC∩IIRC)·cC+P (IRC∩IRC)·bC+P (IIRC∩IRC)·dC+P (IRC∩IIRC)·aC ] >∑
C∈C

P (C)[P (IRC∩IMC)·aC+P (IIRC∩IIMC)·dC+P (IRC∩IIMC)·cC+P (IIRC∩IMC)·bC

+P (IIRC∩IIMC)·cC+P (IRC∩IMC)·bC+P (IIRC∩IMC)·aC+P (IRC∩IIMC)·dC ]

This simplifies to:∑
C

P (C)[aC ·(P (IRC∩IRC)+P (IRC∩IIRC))+bC ·(P (IRC∩IIRC)+P (IRC∩IRC))+



132 CHAPTER 5. THE GAME OF LIFE

cC · (P (IIRC ∩ IRC) +P (IIRC ∩ IIRC)) + dC · (P (IIRC ∩ IIRC) +P (IIRC ∩ IRC))]

>
∑
C

P (C)[aC ·(P (IRC∩IMC)+P (IIRC∩IMC))+bC ·(P (IIRC∩IMC)+P (IRC∩IMC))

+cC ·(P (IRC∩IIMC)+P (IIRC∩IIMC))+dC ·(P (IIRC∩IIMC)+P (IRC∩IIMC))]

Now let us split into a > d and a < d, and consider a > d first. Notice that, by
Lemma 5.11, the case a = d is irrelevant in order to discriminate between R and
M . If a > d, by Lemma 5.11 we can eliminate the cases where R plays II and
M plays I:∑
Ca>d

P (C)[aC ·(P (IRC∩IRC)+P (IRC∩IIRC))+bC ·(P (IRC∩IIRC)+P (IRC∩IRC))+

cC · (P (IIRC ∩IRC)+P (IIRC ∩IIRC))+dC · (P (IIRC ∩IIRC)+P (IIRC ∩IRC))] >∑
Ca>d

P (C)[aC ·P (IRC∩IMC)+bC ·P (IRC∩IMC)+cC ·(P (IRC∩IIMC)+P (IIRC∩IIMC))

+dC · (P (IIRC ∩ IIMC) + P (IRC ∩ IIMC))]

Rewrite:∑
Ca>d

P (C)[aC · (P (IRC ∩ IRC) + P (IRC ∩ IIRC)− P (IRC ∩ IMC))

+ bC · (P (IRC ∩ IIRC) + P (IRC ∩ IRC)− P (IRC ∩ IMC))

+ cC · (P (IIRC ∩ IRC) + P (IIRC ∩ IIRC)− P (IRC ∩ IIMC)− P (IIRC ∩ IIMC))

+ dC · (P (IIRC ∩ IIRC) + P (IIRC ∩ IRC)− P (IIRC ∩ IIMC)− P (IRC ∩ IIMC))]

> 0

We now distinguish between two cases: (1) a− c = d− b and (2) a− c 6= d− b.
Notice that P (IRC ∩ IIRC) 6= 0 if and only if case (1) obtains, and that a > d and
(1) imply IIMC . Then, from (1) we have:12

12Note that when we have only 3 elements in the support it is not guaranteed that case
(1), together with a > d, may arise in a coordination game, whereas it is guaranteed that
case (2), together with a > d, occurs with some positive probability. If we take for instance
x = 5, y = 2, z = 1, then case (1) cannot obtain, whereas if we take x = 3, y = 2, z = 1, both
(1) and (2) may obtain (a = 3, b = 1, c = 2, d = 2 for case (1), and a = 3, b = 1, c = 2, d = 2
for case (2)). Moreover, under the assumption that a > d, having 3 elements in the support is
a necessary and sufficient condition for case (2) to have positive occurrence in a coordination
game. As it will be clear in the following, a positive occurrence of case (2) only is enough for
the theorem to hold.
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∑
Ca>d

P (C)[aC · (P (IRC ∩ IRC) + P (IRC ∩ IIRC))

+ bC · (P (IRC ∩ IIRC) + P (IRC ∩ IRC))

+ cC · (P (IIRC ∩ IRC) + P (IIRC ∩ IIRC)− P (IRC ∩ IIMC)− P (IIRC ∩ IIMC))

+ dC · (P (IIRC ∩ IIRC) + P (IIRC ∩ IRC)− P (IIRC ∩ IIMC)− P (IRC ∩ IIMC))]

> 0

that is∑
Ca>d

P (C)[aC · (
1

4
+

1

4
) + bC · (

1

4
+

1

4
) + cC · (

1

4
+

1

4
− 1

2
− 1

2
) + dC · (

1

4
+

1

4
− 1

2
− 1

2
)]

> 0

Since we have assumed a− c = d− b, the last inequality is not satisfied. We have
instead: ∑

Ca>d

P (C)[
1

2
aC +

1

2
bC −

1

2
cC −

1

2
dC ] = 0

This means that where aC > dC and where (1) is the case, R andM are equally fit.
This changes when we turn to (2). In that case, since aC > dC → (IMC ⊆ IRC)
by Lemma 5.11, we have that P (IRC ∩ IRC) − P (IRC ∩ IMC) = P (IRC ∩ IIMC).
Moreover, if aC > dC , then bC ≥ cC implies bC − dC > cC − aC (see Lemma
5.11). Consequently, when M plays either I or (1

2
I; 1

2
II), R always plays I.

Hence, whenever aC > dC and (2) obtain, it also holds that P (IIRC ∩ IIMC) =
P (IIRC ∩ IIRC). In this case we can simplify:∑

Ca>d

P (C)[aC · (P (IRC ∩ IRC)− P (IRC ∩ IMC))

+ bC · (P (IRC ∩ IRC)− P (IRC ∩ IMC))

+ cC · (P (IIRC ∩ IIRC)− P (IRC ∩ IIMC)− P (IIRC ∩ IIMC))

+ dC · (P (IIRC ∩ IIRC)− P (IIRC ∩ IIMC)− P (IRC ∩ IIMC))] > 0

that is ∑
Ca>d

P (C)[P (IRC ∩ IIMC) · (aC + bC − cC − dC)] > 0

We know that IRC implies that aC − cC ≥ dC − bC . Since we have assumed that
aC − cC 6= dC − bC , we have that aC − cC > dC − bC . Hence, the inequality∑

Ca>d

P (C)[P (IRC ∩ IIMC) · (aC + bC − cC − dC)] > 0

is satisfied. So, when aC > dC , R strictly dominates M . Symmetrically, from
a < d and by distinguishing between the two cases (1) and (2) as before, in the
end we get:
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1.
∑

Ca<d
P (C)[−1

2
aC − 1

2
bC + 1

2
cC + 1

2
dC ] = 0;

2.
∑

Ca<d
P (C)[P (IIRC ∩ IMC) · (−aC − bC + cC + dC)] > 0.

Hence, we can conclude that R strictly dominates M in the class C ∪ A. Notice
that in case of i.i.d. sampling with continuous support, games from B and W
never arise, but the proof is the same for the remaining games in S, C and A.

It remains to be shown that FC∪A(M,M) < FC∪A(R,M). As before, spell this
out as:∑
C

P (C)[P (IMC∩IMC)·aC+P (IIMC∩IIMC)·dC+P (IMC∩IIMC)·bC+P (IIMC∩IMC)·cC ]

+
∑
A

P (A)[P (IMA∩IMA)·aA+P (IIMA∩IIMA)·dA+P (IMA∩IIMA)·bA+P (IIMA∩IMA)·cA]

<
∑
C

P (C)[P (IRC∩IMC)·aC+P (IIRC∩IIMC)·dC+P (IRC∩IIMC)·bC+P (IIRC∩IMC)·cC ]

+
∑
A

P (A)[P (IRA∩IMA)·aA+P (IIRA∩IIMA)·dA+P (IRA∩IIMA)·bA+P (IIRA∩IMA)·cA]

When a > d, similarly to the above derivation, we get:∑
Ca>d

P (C)[aC · (P (IMC ∩ IMC) + P (IMC ∩ IIMC)− P (IRC ∩ IMC)− P (IRC ∩ IIMC))

+ bC · (P (IMC ∩ IMC) + P (IMC ∩ IIMC)− P (IRC ∩ IMC)− P (IRC ∩ IIMC))

+ cC · (P (IIMC ∩ IMC) + P (IIMC ∩ IIMC)− P (IIRC ∩ IIMC))

+ dC · (P (IIMC ∩ IIMC) + P (IIMC ∩ IMC)− P (IIRC ∩ IIMC))] < 0

We now distinguish between (1) b = c, (2) b > c, and (3) b < c. Notice that
a > d, combined with either (1) or (2), implies IRC . Then we obtain:13

1.
∑

Ca>d
P (C)[−1

2
aC − 1

2
bC + 1

2
cC + 1

2
dC ] < 0;

2.
∑

Ca>d
P (C)[aC · (P (IMC ∩ IMC)− P (IRC ∩ IMC)) + bC · (P (IMC ∩ IMC)−

P (IRC ∩ IMC))] = 0;

3.
∑

Ca>d
P (C)[aC ·(−P (IRC∩IIMC))+bC ·(−P (IRC∩IIMC))+cC ·(P (IIMC∩

IIMC)−P (IIRC ∩ IIMC)) + dC · (P (IIMC ∩ IIMC)−P (IIRC ∩ IIMC))] ≤ 0.

When a < d, the derivation proceeds symmetrically and we get:

1.
∑

Ca<d
P (C)[1

2
aC + 1

2
bC − 1

2
cC − 1

2
dC ] < 0;

13Note that here, when we only have 3 elements in the support, case (2) is impossible, but
cases (1) and (3) occur with positive probability, and this is enough for our purpose.



5.10. APPENDIX: PROOFS 135

2.
∑

Ca<d
P (C)[aC · (P (IMC ∩ IMC)− P (IRC ∩ IMC)) + bC · (P (IMC ∩ IMC)−

P (IRC ∩ IMC)) + cC · (−P (IIRC ∩ IMC)) + dC · (−P (IIRC ∩ IMC))] ≤ 0;

3.
∑

Ca<d
P (C)[cC · (P (IIMC ∩ IIMC) − P (IIRC ∩ IIMC)) + dC · (P (IIMC ∩

IIMC)− P (IIRC ∩ IIMC))] = 0.

Finally, we can conclude that FC∪A(M,M) < FC∪A(R,M). As before, notice
that, when we have i.i.d. sampling with continuous support, games from W and
B never occur, but the proof is the same for all the other cases. Hence, both
when the support of a, b, c, d is finite, and when the support is infinite, R strictly
dominates M under the conditions assumed.





Chapter 6

Learning Players’ Types

You can discover more about a person in an hour of play
than in a year of conversation. (Plato)

In the preceding chapter we have studied the evolution of different subjec-
tive representations and decision criteria in the game of life, i.e., a multi-game
framework where players are randomly matched with each other to play randomly
selected two-player games. At the end of their life, players accumulate a certain
amount of fitness (maybe money, or profit) that determines their offspring in the
next generation.

However, along with the evolutionary dynamics, another fundamental dy-
namic may take place within the game of life if we endow the players with more
sophisticated cognitive capabilities. Sophisticated players that recurrently in-
teract with other members of the same population might also be able to learn
statistical information about the population from past plays.

In classic evolutionary game theory, agents repeatedly playing the same game
could eventually learn the proportions of different behaviors. Since in single-game
models phenotypes usually coincide with expressed behavior, the only thing that
players can learn is the frequency of different actions in their generation. The
situation gets more complex once we look at the game of life introduced in the
previous chapter, where a new fitness game is selected at each time. In the game
of life, a phenotype does no longer coincide with a simple action, but represents
instead a general behavior-generating mechanism that may select different ac-
tions in different games. The players’ learning essentially aims at the proportions
of these phenotypes in the population, and thus has to infer general behavior-
generating mechanisms from observed behavior.

137
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6.1 The Learning Model

This section explicitly specifies the dynamics according to which players learn in
the game of life. We are interested in adding the learning part into the multi-game
model of Chapter 5, and to study the evolutionary selection of choice principles
also in the light of the learning dynamics.

As we have already seen, in standard evolutionary game theory, randomly
selected agents from a given population recurrently play a unique, fixed fitness
game,

G0, G0, G0, G0, ...

The learning that we want to investigate instead takes place in the richer environ-
ment of the game of life, where the players play a sequence of randomly generated
games,

G1, G2, G3, G4, ...

In accordance with what we have presented in previous chapters, we postulate
the following assumptions:

1. The games G1, G2, G3, ... are i.i.d. samples from some probability distribu-
tion PG over the set of possible games G.

2. The support of PG is restricted to symmetric 2 × 2 games. These games
can be parametrized in terms of four real numbers (a, b, c, d), as illustrated
in Table 6.1. Thus, PG is effectively a probability distribution over R4.

3. The four fitness values (a, b, c, d) are drawn i.i.d. from some probability
measure PV on the reals. The game distribution is thus the fourfold product
of PV , that is, PG = P 4

V .

4. At each time t ≥ 1, a symmetric 2 × 2 game Gt is sampled by drawing
(a, b, c, d), and two players are randomly selected from the population to
play the game Gt.

5. At the end of the play, the two players split, another game Gt+1 is sampled,
other two players are randomly selected, and so on.

6. There is common knowledge among the players about the types in the
population, but the proportions of types are unknown. For simplicity, we
also assume that the outcome of each game is common knowledge within
the population.

7. At the beginning of each new generation (i.e., at time t = 0), all players
are born maximally uncertain about the proportions, and possibly reduce
their uncertainty as they observe the sequence of plays in G1, G2, G3, ... in
the subsequent time steps t = 1, 2, 3, ....
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I II
I a; a b; c
II c; b d; d

Table 6.1: General form table for symmetric 2× 2 games

The present work has focused in particular on two alternatives for decision
making: expected utility maximinimization and expected regret minimization.
Here, we maintain this focus of interest by making a further assumption:

8. It is common knowledge that the types in the population are the expected
maximinimizer (Mm,Φ,Γ) and the expected regret minimizer (Reg,Φ,Γ)
defined in Chapter 5.

When we introduce the learning dynamics in the game of life, beliefs will no
longer be a fixed, genetically predetermined trait of players, but will be instead
subject to a process of repeated updatings. Consequently, it becomes natural not
to include any epistemic component Γ in the specification of a phenotype, and
the beliefs needed by the decision criterion to produce a choice are endogenously
determined through the learning process. Since, by point 8, the subjective utility
u is fixed to the evolutionary fitness Φ for all players, a phenotype is now uniquely
determined by the decision criterion â. Consequently, the set of phenotypes in
the population coincides with the two choice principles under consideration, that
is, T = {Mm,Reg}. From point 7, it thus follows that Γ0 = ∆({Mm,Reg}): at
time t = 0 players have maximal unmeasurable uncertainty about the proportions
of types in the population. The first game G1 is then selected, and, after observing
the actions played in G1, players update their beliefs to Γ1 ⊆ ∆({Mm,Reg}).
Next, the second game G2 is selected, and so on. For simplicity, we also assume
that all players update their beliefs according to the same learning procedure.
This assumption, together with points 6 and 7, implies that at any time t all the
players in the population will hold the same belief Γt.

We remark again that, differently from Chapter 5, the beliefs of players are
now expressed in terms of a (compact convex) set of probabilities over the possible
types of the co-player, Γt ⊆ ∆({Mm,Reg}) for all t ≥ 0, rather than in terms of
a (compact convex) set of probabilities over the possible actions of the co-player.
This reflects the target of the learning dynamics: players aim at learning the
proportions of choice principles in the population, not only the frequency of single
actions. We will later see that learning information on proportions of different
types (of choice principles) translates into useful information on the co-player’s
future actions.
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P (s2) = λ(1− λ)

P (s4) = λ2

P (s1) = (1− λ)2

P (s3) = λ(1− λ)

Figure 6.1: The outcome of two drawings under ambiguity.

6.2 Intermezzo: A Simple Extraction

To better understand the development of the chapter, the following example
underlines the parallel with a decision-theoretic scenario by means of a simple
extraction from an urn.

Consider an urn with 100 balls. Suppose that the only thing you know about
the urn is that the balls are either white or black, but you don’t have any further
information about the relative proportions of the two colors. Suppose that your
uncertainty is thus represented by the (compact and convex) set of probabili-
ties Γ̃ that assigns lower probability of white P (W ) = 0 and upper probability
of white P (W ) = 1, such that Γ̃ = {P ∈ ∆({W,B}) : P (W ) = λ, P (B) =
1 − P (W ), for λ ∈ [0, 1]}. As for the case of the random selection of players
from a population with two types in Section 3.3, we can represent the possible
distributions in the urn as an interval in [0, 1], in particular Γ̃ = [0, 1], with the
convention that each point λ ∈ [0, 1] is a possible proportion of white balls. I will
now draw a ball twice, with replacement, from the urn. Given the prior beliefs on
white and black balls in the urn, your beliefs on the outcome of the two drawings
must be as pictured by Figure 6.1, for λ ∈ [0, 1].

The point of this example is that the obvious set of priors generated by the
double extraction and depicted in Figure 6.1 is not convex, despite the fact that
the belief Γ̃ over the white and black balls in the urn is convex. It is easy to see it,
if we think of the set of priors over the possible outcome space of Figure 6.1 as a
region in the three-dimensional simplex with vertices s1, s2, s3 and s4 (let us call
this region Γ̃� Γ̃). Since the probability P (W ) = 1 is in Γ̃, then vertex s4 of the
three-dimensional simplex that gives probability 1 to a double white extraction
is in Γ̃ � Γ̃ (λ2 = 1 when λ = 1). Likewise, vertex s1 giving probability 1 to two
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black balls is also in Γ̃ � Γ̃, since (1− λ)2 = 1 when λ = 0. However, the convex
combination 1

2
s1 + 1

2
s4 is not in Γ̃ � Γ̃ (since there is no possible λ ∈ [0, 1] such

that λ2 = (1− λ)2 = 1
2
). Note, moreover, that if we condition on the event that

the first ball is white W (or black B), the resulting set of probabilities is again
convex, and it is precisely the original set Γ̃.

Suppose that you bet on a double white extraction from the urn, and that you
will win $10 if two white balls are drawn, so that π(b1, b2) = $10 if b1 = b2 = W ,
and π(b1, b2) = 0 otherwise. Then, note that while, for each possible Bernoulli
distribution Pλ with parameter λ, the expectation of a single white extraction

Eb2∼Pλ [π(W, b2)]

is a linear function of the distribution Pλ,

Eb2∼Pλ [π(W, b2)] = $10 · λ+ 0 · (1− λ) ,

the expectation on the double extraction, corresponding to a double integral, is
not linear in the distribution Pλ:

Eb1,b2∼Pλ×Pλ [π(b1, b2)] = $10 · λ2 + 0 · (1− λ)λ+ 0 · λ(1− λ) + 0 · (1− λ)2 .

It is now the moment to reveal the mysterious exclamation marks of Table 3.3
in Section 3.3. The state space in Figure 3.2 is generated by a double extraction
of players from the population, exactly as the outcome space of Figure 6.1 is the
result of a double extraction of a ball from the urn. The set of probability distri-
butions over the possible outcomes of the double extraction from the population is
consequently not convex. [Walley, 1991] showed that given a compact and convex
set of probabilities, minimal utilities are always attained at the extreme points of
the set. Furthermore, the expectation for the case of a double extraction is not
a linear function of the distribution P . In general, if π(b1, ..., bn) is a function of
n Bernoulli variables, then the expectation is a polynomial of degree n in λ. The
exclamation marks in Section 3.3 highlights the profiles where the minimal utility
is not reached at the extreme points of the interval [0.1, 0.9]. This is possible be-
cause the expectations are no longer linear functions of the Bernoulli distribution
P , and the set of product measures Γ � Γ is not convex.

6.3 The Game of Life with Incomplete Informa-
tion and its Γ-Equilibria

Let us now get back to the game-theoretic context, and suppose that we are
dealing with a given 2 × 2 symmetric game Gt and that two players have been
randomly drawn from a population consisting of two possible types, T = {t1, t2}.
In the current framework, the two types are just two different decision criteria,
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Mm and Reg, so that we can also call them decision types. Let us denote by λ ∈
[0, 1] the relative proportion of type Reg in the population, so that (1− λ) is the
proportion of type Mm. We argued in previous sections for taking into account
non-probabilistic uncertainty about the proportions of types in such cases. In the
model, players are born maximally uncertain at time t = 0, and at any time t ≥ 1,
they can narrow down the possible values of λ to some set Γt = [λ, λ] ⊆ [0, 1]. This
gives rise to an incomplete information game under ambiguity. From Section 3.3
we know that in these cases the two solution concepts of ex ante and interim
Γ-equilibrium do no longer coincide. It is thus natural to focus on the interim
analysis of the game, and to consider the set of posterior probabilities Γt.1

The set Γt leaves the players with ambiguity about the value of λ, and they
will need to involve some decision criterion that can handle this non-probabilistic
uncertainty. As we have seen in the previous chapter, there are different possible
ways to deal with such situations, and to turn the overall uncertainty into an
action choice. The way an agent resolves the uncertainty and gives rise to an
order over her possible actions is encoded by her decision type.

Given a value λ ∈ [0, 1], and a profile of policy functions ~σ = (σ1, σ2), the
interim expected utility for type Mm of player i is

EPλ×Pλ [ui(σi, σ3−i)|Mm] :=

(1− λ)Φ(π(σi(Mm), σ3−i(Mm))) + λΦ(π(σi(Mm), σ3−i(Reg))) .

Likewise, the interim expected utility for decision type Reg of player i is

EPλ×Pλ [ui(σi, σ3−i)|Reg] :=

(1− λ)Φ(π(σi(Reg), σ3−i(Mm))) + λΦ(π(σi(Reg), σ3−i(Reg)))

−max
a∈A
{(1− λ)Φ(π(a, σ3−i(Mm))) + λΦ(π(a, σ3−i(Reg)))} .

Hence, given a set Γt ⊆ [0, 1] and a profile of policy functions ~σ∗ = (σ∗1, σ
∗
2), the

action σ∗i (Mm) is optimal for type Mm of player i if

σ∗i ∈ argmax
σi:T →A

min
Pλ×Pλ∈Γ�Γ

EPλ×Pλ [ui(π(σi, σ
∗
3−i))|Mm] .

Note that a profile ~σ, together with a belief Γt, determines a minimal and a
maximal probability for the co-player playing II. Therefore, given a profile ~σ∗,

1There are at least two reasons why it is natural to decide for the interim perspective. The
first is more technical: the sets Γt are convex and the interim expected utility is linear in the
distributions Pλ, as observed in Section 6.2. As a consequence, the interim perspective relates
more tightly to the representation results on ambiguity that we have seen in Chapter 2. The
second reason is conceptual: in the population models of evolutionary game theory, players are
types (or phenotypes) from the beginning to the end of their life, and there is no moment in
time where they have to wait for a signal to be informed about the type they are. The players’
perspective is always from the interim point of view.
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we can rewrite the previous expression in the notation of Chapter 5 and say that
action σ∗i (Mm) is optimal for type Mm if

σ∗i (Mm) ∈Mm(Φ,Γt|σ∗3−i) ,

where for Pλ ∈ Γt, Pλ|σ∗3−i ∈ ∆(A) is defined by

(Pλ|σ∗3−i)(a) =
∑

ti∈T :σ∗3−i(t
i)=a

Pλ(t
i),

and
Γt|σ∗3−i := {Pλ|σ∗3−i ∈ ∆(A) : Pλ ∈ Γt}.

In a similar way, the action σ∗i (Reg) is optimal for type Reg of player i if

σ∗i (Reg) ∈ Reg(Φ,Γt|σ∗3−i) ,

that is, if

σ∗i ∈ argmax
σ:T →A

min
Pλ×Pλ∈Γ�Γ

EPλ×Pλ [ui(σ, σ
∗
3−i)|Reg] .

The following definition then extends the notion of interim Γ-equilibrium to
the case of a population where players differ in the decision criterion.

Definition 6.1. Interim Γ-equilibrium for decision types. In the incomplete
information games under ambiguity that we are considering, a profile of policy
functions (σ∗i : {Mm,Reg} → A)i∈{1,2} is an interim Γ-equilibrium for decision
types if, for i ∈ {1, 2},

σ∗i ∈ argmax
σi:T →A

min
Pλ×Pλ∈Γ�Γ

EPλ×Pλ [ui(π(σi, σ
∗
3−i))|Mm]

and
σ∗i ∈ argmax

σi:T →A
min

Pλ×Pλ∈Γ�Γ
EPλ×Pλ [ui(σi, σ

∗
3−i)|Reg] .

Whenever the set Γt is a singleton, Γt = {λ}, the previous definition reduces
to the definition of interim equilibrium of the Bayesian game (see Section 3.1).
But in this case, as we already know, the action that maximizes expected utility
would be the same action that minimizes expected regret, so that the two decision
criteria would always dictate the same action choice (Fact 5.1). The difference
between the two types emerges only when players have unmeasurable uncertainty
about the type of the co-player. In this sense, the game can only be either (the
Bayesian elaboration2 of) a game with complete information, or a game with
incomplete information under ambiguity, without the “intermediate” stage of a
standard Bayesian game with incomplete information.

2See [Battigalli, 2016].
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Finally, Definition 6.1 can be generalized to situations where there are more
decision criteria in the population, and also different subjective utilities u. In this
case, the types in the population might not only differ in the decision criterion,
but also with respect to the subjective utility that the criteria operate on. (A type
would then be specified by a pair tj = (âj, uj), as we have seen in the previous
chapter.)

Definition 6.2. Interim Γ-equilibrium for the game of life. A profile of
policy functions ~σ∗ = (σ∗1, σ

∗
2) is defined to be an interim Γ-equilibrium for the

game of life if it is the case for i ∈ {1, 2} and all types tj = (âj, uj) ∈ T that

σ∗i (t
j) ∈ âj(uj,Γt|σ∗3−i) .

We say that a Γ-equilibrium ~σ∗ is symmetric if all players use the same policy,
σ∗1 = σ∗2. Throughout most of this chapter we will only consider symmetric
equilibria. Intuitively, this amounts to requiring that the action choices are stable
with respect to types: all regret types Reg would choose the same action given
the same game, and likewise for all maxmin types Mm. As we will see later, this
assumption can be weakened, but it is a practical starting point for the analysis.

6.4 Symmetry and Learning
Consider the fitness game of Example 3.2 played in a population of Mm and Reg
types where players have unmeasurable uncertainty about the relative shares of
the two types, such that Γt = [0.1, 0.9]. Being an anti-coordination game, it
is easy to check that neither of the two policies σI = (I, I) and σII = (II, II),
where both types play the same action, can give rise to a symmetric Γ-equilibrium.
Indeed, both maxmin and regret types have incentives not to coordinate in anti-
coordination games. (A game that rewards coordination or anti-coordination does
the same in terms of regret too.) We can consequently exclude the profiles ~σI
and ~σII from the possible Γ-equilibria of the game. Similarly, it is straightforward
to see that the profile ~σ = (σI , σII) = ((I, I), (II, II)) where player 1 always
plays action I and player 2 always plays II, independent of their types, is a Γ-
equilibrium of the game (and the same would hold for the reversed equilibrium
(σII , σI)). However, that equilibrium is not symmetric, and there are two reasons
why it is not a good equilibrium for our analysis.

Firstly, the definition of the profile (σI , σII) entails the possibility of distin-
guishing the two players by role. Since we are dealing with symmetric fitness
games and randomly selected members of a single population, this distinction is
not easily accessible, especially from the players’ perspective. In fact, the distinc-
tion between player 1 and player 2 is just a technical artifice to define the relevant
equilibrium concepts: from an evolutionary point of view, the phenotypes are all
that exists in the population. If we don’t restrict our attention to symmetric
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equilibria, the distinction between phenotypes would be overlooked in favor of
the distinction between players, and it would become evolutionarily meaningless.

Secondly and more importantly, if we don’t restrict the analysis to symmetric
equilibria, the distinction between the two decision types would become mean-
ingless also from a decision-theoretic point of view, and the possibility of learning
would be prevented. Loosely speaking, in order to learn the proportions of deci-
sion types, players must be able to reason according to the logic: “if the player is
of type Mm, she will choose action a′; if the player is of type Reg, then she will
choose action a.” If this reasoning cannot be carried out, then there is no possi-
bility of associating players’ types with observed behavior. Suppose for instance
that, at step 4 of the procedure described in Section 6.1, four players, rather than
two, are randomly selected and paired in two couples to play the game. For the
sake of the example, suppose also that one couple consists of two typesMm, while
the second couple of two types Reg. If we allowed the two couples to play asym-
metric equilibria, for instance the equilibrium (σI , σII), then the action choices
would in no way reflect the difference in types: in both couples, we would have
two players of the same type playing different actions. Refusing the restriction to
symmetric Γ-equilibria would thus prevent the players from learning.

Note, en passant, that Chapter 5 already contains a possible analysis of such
situations: if players are born with maximal ambiguity about the population and
they can never learn, they will just keep the original set Γ̃ throughout their life,
without ever reducing the uncertainty.

6.5 Strong Informativity

To ensure the possibility of learning, we are thus looking for games where the
agents unambiguously reveal their type by playing. In that case, we would say
that the game is strongly informative. But what are the strongly informative
games then? Games with incomplete information under ambiguity might have
more than one symmetric Γ-equilibrium. Consider for example the Hi-Lo fitness
game of Table 3.2, and suppose that the players’ uncertainty about the relative
proportion λ of type Reg is represented by the set Γt = [0.2, 0.6]. We then
have three symmetric interim Γ-equilibria: ((I, I), (I, I)), ((II, II), (II, II)), and
((I, II), (I, II)). Indeed, when player 1 is of type Mm, the minimal expected
utilities are

minλ Eλ[u1(I, (I, I))|Mm] = 1 minλ Eλ[u1(I, (II, I))|Mm] = 0.1
minλ Eλ[u1(II, (I, I))|Mm] = 0 minλ Eλ[u1(II, (II, I))|Mm] = 0.8

minλ Eλ[u1(I, (I, II))|Mm] = 0.4 minλ Eλ[u1(I, (II, II))|Mm] = 0
minλ Eλ[u1(II, (I, II))|Mm] = 0.2 minλ Eλ[u1(II, (II, II))|Mm] = 2
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where, to ease notation, we abbreviated the product measure Pλ × Pλ by the
relevant parameter λ. When player 1 is of type Reg we have instead:

minλ Eλ[u1(I, (I, I))|Reg] = 0 minλ Eλ[u1(I, (II, I))|Reg] = −1.7
minλ Eλ[u1(II, (I, I))|Reg] = −1 minλ Eλ[u1(II, (II, I))|Reg] = 0

minλ Eλ[u1(I, (I, II))|Reg] = −0.8 minλ Eλ[u1(I, (II, II))|Reg] = −2
minλ Eλ[u1(II, (I, II))|Reg] = −0.7 minλ Eλ[u1(II, (II, II))|Reg] = 0

Since the game and the players’ uncertainty are symmetric, the minimal utilities
are the same for player 2.

Hence, we are looking for games with a unique symmetric Γ-equilibrium where
different types are associated with different actions. We thus call a Γ-equilibrium
~σ∗ revealing if

1. ~σ∗ is a strict symmetric Γ-equilibrium;

2. ~σ∗ associates different types with different actions.

A game is said to be strongly informative when there is a revealing Γ-equilibrium,
and that equilibrium is the unique symmetric Γ-equilibrium of the game.

For concreteness, consider again the fitness game of Example 3.2 played in
a population of decision types Mm and Reg, where players have unmeasurable
uncertainty such that λ = 0.4 and λ = 0.8. Being an anti-coordination game,
the two symmetric profiles ~σI and ~σII cannot be Γ-equilibria, as we have noticed
in the previous section. We are then left with two possible symmetric profiles,
((I, II), (I, II)) and ((II, I), (II, I)). It will be helpful to visualize them graphi-
cally.

Figure 6.2 pictures the situation for the case of ((I, II), (I, II)). The graph
on the left represents the expectations from the two actions for type Mm, while
the one on the right corresponds to the expectations in terms of regret. In both
graphs, the two vertical dashed lines delimit the player’s expectation about the
probability of action II, when λ = 0.4 and λ = 0.8 and the population is playing
according to the policy function (I, II), i.e., σi(Mm) = I and σi(Reg) = II for
i ∈ {1, 2}. From the graph in Figure 6.2a, it is easy to see that action II has a
lower minimal expectation within the dashed interval than action I, so that the
best reply for a type Mm against a population playing according to the policy
(I, II) would indeed be action I. The graph on the right instead shows that
for type Reg the best reply to a population playing the policy (I, II) is action
II. This implies that the profile ((I, II), (I, II)) is a revealing Γ-equilibrium of
the game. But is it the unique symmetric equilibrium? Neither the profile ~σI
nor ~σII can be a Γ-equilibrium, since it is an anti-coordination game, but if the
reverse revealing profile ((II, I), (II, I)) is also a Γ-equilibrium, then the same
type might play different actions, in accordance with different possible equilibria.

Figure 6.3 depicts the case of a population playing according to the policy
(II, I). Note that everything is as in Figure 6.2, apart from the position of the
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Figure 6.2: Maxmin and regret minimization for σ3−i(Mm) = I and σ3−i(Reg) =
II.
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b < d b = d d < b
a < c II strongly dominant II weakly dominant Anti-coordination
a = c II weakly dominant Boring I weakly dominant
c < a Coordination I weakly dominant I strongly dominant

Table 6.2: A partition of the set of games according to how a compares to c, and
how b compares to d.

two dashed lines: since we are now facing a population playing the policy (II, I),
we had to flip the two lines around to their mirror image. Looking at the minima
of the two actions in the graph on the left, the minimal expected utility of action
II is higher than that of action I, so that type Mm would choose to play II. In
Figure 6.3b, the minimal utility of II is also higher that the minimal utility of I,
and type Reg would also play II. Consequently, the profile ((II, I), (II, I)) is not
a Γ-equilibrium, and in this case the revealing Γ-equilibrium ((I, II), (I, II)) is
also the unique symmetric equilibrium of the game. Hence, the game is strongly
informative. The numerical computation of minimal expected utilities confirms
our analysis. When player 1 is of type Mm, the minimal utilities are

minλ Eλ[u1(I, (I, I))|Mm] = 1 minλ Eλ[u1(I, (II, I))|Mm] = 1.2
minλ Eλ[u1(II, (I, I))|Mm] = 5 minλ Eλ[u1(II, (II, I))|Mm] = 2

minλ Eλ[u1(I, (I, II))|Mm] = 1.4 minλ Eλ[u1(I, (II, II))|Mm] = 2
minλ Eλ[u1(II, (I, II))|Mm] = 1 minλ Eλ[u1(II, (II, II))|Mm] = 0

When player 1 is of type Reg we have instead:

minλ Eλ[u1(I, (I, I))|Reg] = −4 minλ Eλ[u1(I, (II, I))|Reg] = −2.8
minλ Eλ[u1(II, (I, I))|Reg] = 0 minλ Eλ[u1(II, (II, I))|Reg] = 0

minλ Eλ[u1(I, (I, II))|Reg] = −1.6 minλ Eλ[u1(I, (II, II))|Reg] = 0
minλ Eλ[u1(II, (I, II))|Reg] = −0.8 minλ Eλ[u1(II, (II, II))|Reg] = −2

We thus found at least one strongly informative game for λ = 0.4 and λ = 0.8.
However, our aim is to identify the conditions that can ensure the possibility of
learning, independent of the uncertainty of the players and the composition of
the population. To this end, the next lemmas generalize some ideas introduced
in the previous examples.

Consider the partition of all possible symmetric 2 × 2 games (a, b, c, d), ac-
cording to how a compares to c, and how b compares to d, as shown in Table 6.2.
We can then prove the following lemma.

Lemma 6.3. Only anti-coordination games can be strongly informative.

Proof. All proofs are in Section 6.10.

As already noticed, none of the coordinating policies σ∗(Mm) = σ∗(Reg) = a∗

can be a Γ-equilibrium in an anti-coordination game, since both regret minimizing
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and maximinimizing players will have an incentive to deviate from the coordinat-
ing policy functions in anti-coordination games. Hence, the strongly informative
games are the anti-coordination games in which exactly one of the two anti-
coordinating policies (i.e., such that either all types Mm play action I and all
types Reg play action II, or vice versa) corresponds to the unique symmetric
Γ-equilibrium of the game.

The next lemma expresses another property of strongly informative games,
which narrows down this class even further.

Lemma 6.4. An anti-coordination game can be strongly informative only if either
λ < c−a

c−a+b−d < λ or 1− λ < c−a
c−a+b−d < 1− λ.

In general, in any given population game with two types choosing from a menu
of two actions, there are two symmetric and revealing policy profiles, since there
are exactly two different ways for the two subpopulations to disagree. (If they
had a menu of three actions, they could disagree in 3 · 2 different ways, with four,
4 · 3 different ways, and so on. For a menu of n actions they could disagree in
n2 = n · (n − 1) different ways.) Suppose, however, that both λ < c−a

c−a+b−d < λ

and 1 − λ < c−a
c−a+b−d < 1 − λ hold. Lemma 6.4 does not exclude that both

revealing policies might correspond to a symmetric Γ-equilibrium. For strong
informativity to obtain, we must have anti-coordination games such that only
one between the policy σ = (I, II) and the dual policy σ = (II, I) defines a
revealing Γ-equilibrium. The next lemma deals with this issue.

Lemma 6.5. In any anti-coordination game, at most one between the two policies
σ = (I, II) and σ = (II, I) can define a revealing Γ-equilibrium.

6.6 The Set of Strongly Informative Games

It is not necessary, in general, that at least one of the revealing policy profiles
corresponds to a Γ-equilibrium of the game. Whether this is the case depends
on the fitness matrix of the game, and on the confidence interval Γt = [λ, λ]
that describes the players’ current state of information. Since the fitness matrix
of a particular game can be represented as a four-dimensional vector (a, b, c, d),
the set of strongly informative games corresponds, for a fixed Γ = [λ, λ], to
a certain region in the four-dimensional space. In this section, we will give a
characterization of this region and provide conditions on the distribution over
fitness matrices under which games fall inside of this strongly informative region.

Lemma 6.3 tells us that only anti-coordination games can be strongly in-
formative, and Lemma 6.4 puts more restrictive necessary conditions for strong
informativity to obtain. As a consequence, not every anti-coordination game
is strongly informative. For example, it is possible that, for an interval [λ, λ],
an anti-coordination game (a, b, c, d) is such that neither λ < c−a

c−a+b−d < λ nor
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1− λ < c−a
c−a+b−d < 1− λ holds. Moreover, it is also possible that one or both of

λ < c−a
c−a+b−d < λ and 1 − λ < c−a

c−a+b−d < 1 − λ hold, but still the same action is
the best reply for both types.

Suppose therefore that an anti-coordination game (a, b, c, d) is given, and sup-
pose that the population is split into a subpopulation of typesMm playing action
I, and and a subpopulation of types Reg playing action II. Conditional on player
i being of type Mm, action I is strictly optimal, namely a Γ-best reply, if

min
λ

Eλ[ui(π((I, II), (I, II)))|Mm] > min
λ

Eλ[ui(π((II, II), (I, II)))|Mm] .

Given the actions that are being played in the two subpopulations, this amounts
to saying that I is strictly optimal if

min
λ
{(1− λ)a+ λb} > min

λ
{(1− λ)c+ λd} .

Since the minimum of a linear function over a closed interval is attained at one
of the endpoints, this is equivalent to

min
{

(1− λ)a+ λb, (1− λ)a+ λb
}
> min

{
(1− λ)c+ λd, (1− λ)c+ λd

}
.

This can be written a bit more simply in terms of the following quantities (see
Figure 6.4):

a′ := (1− λ)a+ λb = a+ λ(b− a)

b′ := (1− λ)a+ λb = a+ λ(b− a)
c′ := (1− λ)c+ λd = c+ λ(d− c)
d′ := (1− λ)c+ λd = c+ λ(d− c)

(6.1)

Using this notation, the condition under which it is strictly optimal for typesMm
to play action I against regret minimizers playing action II is that

min {a′, b′} > min {c′, d′} .

By definition, (a, b, c, d) is an anti-coordination game if and only if

c > a and b > d.

For λ < c−a
c−a+d−b < λ (that is, Γ is nonempty and the necessary condition of

Lemma 6.4 is satisfied), this entails

c′ > a′ and b′ > d′.

Under these assumptions, we can make the following observations:

• If a′ < d′, then a′ is smaller than both c′ and d′; it follows that

min {a′, b′} < min {c′, d′} ,

and types Mm are not using a best reply.
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• If a′ > d′, then d′ is smaller than both a′ and b′; it follows that

min {a′, b′} > min {c′, d′} ,

and types Mm are using a best reply.

• If a′ = d′, then

min {a′, b′} = min {c′, d′} = a′ = d′,

and types Mm would be indifferent between the two actions.

When the population is split according to policy (I, II), action I is thus strictly
optimal for types Mm if and only if a′ > d′. Expanding the definition of a′ and
d′, this can be reformulated as

a+ λ(b− a) > c+ λ(d− c),

which is equivalent to

(1− λ)c+ λd < (1− λ)a+ λb. (6.2)

When we state the condition in terms of the last inequality, it is evident that
it expresses a relation between the height of the line corresponding to action I
at λ = λ (given by the convex combination (1 − λ)a + λb) and the height of
the line corresponding to action II at λ = λ (given by the convex combination
(1− λ)c+ λd). This provides the necessary and sufficient condition under which
action I is the unique best reply for a player of type Mm when the population is
playing according to the policy (I, II).

Consider now the subpopulation of regret minimizers. In an anti-coordination
game, these players are responding optimally to the population playing the policy
(I, II) by choosing action II if and only if

c′ − a′ > b′ − d′.

Expanding the definitions and rearranging the terms, this can be reformulated as

c− a
c− a+ b− d

>
λ+ λ

2
. (6.3)

Hence, for a given anti-coordination game, the policy function (I, II), in which
maxmin types play action I and regret minimizers play action II, defines a sym-
metric Γ-equilibrium when the conditions 6.2 and 6.3 are simultaneously satis-
fied. Therefore, when the conditions 6.2 and 6.3 hold simultaneously, the game
is strongly informative.
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Figure 6.4: Examples of strong informativity in anti-coordination games.

If we consider the case in which the subpopulation of types Mm plays II and
the subpopulation of types Reg plays I, then by the dual argument the quantities
a′, b′, c′, d′ are defined as

a′ := b+ λ(a− b)
b′ := b+ λ(a− b)
c′ := d+ λ(c− d)
d′ := d+ λ(c− d)

(6.4)

Accordingly, the necessary and sufficient condition for action II to be the unique
best reply of Mm is given by

λc+ (1− λ)d > λa+ (1− λ)b, (6.5)

whereas the necessary and sufficient condition for types Reg to play I is

c− a
c− a+ b− d

<
(1− λ) + (1− λ)

2
. (6.6)

Figure 6.4 depicts two games that exemplify these two possibilities for strong
informativity in anti-coordination games.

In order to summarize these results in a more convenient way and to prove
the next proposition, let us abbreviate the denominator by

Z := c− a+ b− d

and notice that in Figures 6.4a and 6.4b, the intersection of the lines correspond-
ing to action I and action II lies precisely at c−a

Z
. From these premises it is

possible to show that the conditions ensuring that, for any interval [λ, λ] with
λ 6= λ, the set of strongly informative games is nonempty (and, hence, that
players can learn) are given in the following proposition.
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Proposition 6.6. The distribution λ∗ of regret types in the population is learnable
if and only if, for any λ ∈ [0, 1) and λ ∈ (λ, 1], there is positive probability of
having anti-coordination games (a, b, c, d) such that at least one of the following
two conditions is satisfied:

1. λ+λ
2
< c−a

Z
< λ(c−d)+λ(b−a)

Z
;

2. (1−λ)(c−d)+(1−λ)(b−a)
Z

< c−a
Z
< (1−λ)+(1−λ)

2
.

Proof. In appendix 6.10.

Although Proposition 6.6 may seem rather cryptic and technical, we will see that
it has a clean geometrical representation, and that its conditions are satisfied in
many simple scenarios.

Notice that, for the first condition to hold, it is necessary that

λ+ λ

2
<
λ(c− d) + λ(b− a)

Z
.

It turns out that this equation reduces to

b− a < c− d.

Symmetrically, the second condition can obtain only if

(1− λ)(c− d) + (1− λ)(b− a)

Z
<

(1− λ) + (1− λ)

2
,

which is equivalent to
b− a > c− d.

Consequently, an anti-coordination game (a, b, c, d) such that b−a
Z

= 1
2
is never

strongly informative. Figure 6.5b represents an example of this case. In general,
notice that the quantity b−a

Z
distinguishes between the two possible informativities

of the game: b−a
Z

< 1
2
is equivalent to b − a < c − d, and b−a

Z
> 1

2
is equivalent

to b − a > c − d. Figure 6.4a is an example of 1 < b−a
Z
, while Figure 6.4b is

an example of b−a
Z

< 0. We can see from the figures that in both cases the two
actions are represented by lines which are both increasing (Figure 6.4a) or both
decreasing (Figure 6.4b). When 0 < b−a

Z
< 1 instead, the slopes of the two lines

have different signs (one positive and one negative), as in Figure 6.5.
It is then possible to visualize the space of strongly informative games, for

a given interval [λ, λ], in two-dimensional space (Figure 6.6). The horizontal
dotted lines represent the intervals [λ, λ] and [1 − λ, 1 − λ]. We can see that
the space of informative games is bounded both from above and from below by
these lines, such that only anti-coordination games (a, b, c, d) with λ < c−a

Z
< λ or

1−λ < c−a
Z
< 1−λ can be strongly informative. This corresponds to the necessary
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condition of Lemma 6.4. The white area corresponds to informative games where
Mm plays I and Reg plays II, while the black area corresponds to informative
games where the population plays according to the dual policy (II, I). There is
no region of space where the two colors overlap. As proven in Lemma 6.5, there is
no anti-coordination game that can be informative in two different ways, i.e, such
that the two policies (I, II) and (II, I) define two different revealing Γ-equilibria.
It is evident from the picture that all informative games with policy (I, II) are
on the left of b−a

Z
= 1

2
, and all informative games with the dual policy (II, I) lie

on the right of b−a
Z

= 1
2
. Finally, notice that the line passing through the points

(0, λ) and (1, λ) has equation

y = λ+ (λ− λ)x,

that is,
c− a
Z

= λ+ (λ− λ)
b− a
Z

,

which in turn reduces to

c− a
Z

=
λ(c− d) + λ(b− a)

Z
,

that is exactly one of the relevant edges of the first condition in Proposition 6.6.
By symmetry, the same holds for the line passing through the points (0, 1 − λ)
and (1, 1− λ) and the second condition of Proposition 6.6.

6.7 Asymmetric Equilibria and Behavioral Assump-
tions

So far, we took into account anti-coordination games only. The reason was that,
if we restrict our attention to symmetric equilibria, (some of) those games had
the advantage of admitting a unique revealing Γ-equilibrium. As argued before,
allowing for asymmetric equilibria may look like a departure from the decision-
theoretic and evolutionary intuitions about types, but, after all, from a purely
game-theoretic point of view one might object that asymmetric equilibria should
be considered as accessible as symmetric equilibria, and that there is no cogent
game-theoretic reason to exclude asymmetric equilibria from the analysis. This
section is meant to offer an alternative reply to this possible objection.

It is evident that if we just included asymmetric equilibria in the analysis,
we would be left with no strongly informative games at all. Indeed, their strong
informativity stemmed from the exclusion of asymmetric equilibria: in certain
anti-coordination games, the revealing equilibrium was the unique equilibrium
available precisely because we prevented players from playing asymmetric equi-
libria. According to Lemma 6.5, however, any anti-coordination game admits at
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most one revealing Γ-equilibrium, plus the two uninformative asymmetric equilib-
ria ((I, I), (II, II)) and ((II, II), (I, I)). A first important step for the develop-
ment of this section is that the equivalent of Lemma 6.5 also holds for coordination
games.

Lemma 6.7. In any coordination game, at most one between the two policies
σ = (I, II) and σ = (II, I) can define a revealing Γ-equilibrium.

Proof. Analogous to the proof of Lemma 6.5.

If we want to drop the restriction to symmetric equilibria, it is helpful to
start off by thinking what actions the two types would choose when faced with a
coordination game.

Coordination games were immediately discarded from the analysis, inasmuch
as the two uninformative profiles, ((I, I), (I, I)) and ((II, II), (II, II)), are always
symmetric Γ-equilibria for all coordination games. On the other hand, the fitness
achieved in coordination games is crucial for the evolutionary results of Chapter 5.
In order to extend the arguments of Chapter 5, the behavior in coordination games
must also be taken into consideration (as well as the behavior in uninformative
anti-coordination games).

To fix ideas, it may be useful to start with a simple example. Suppose that a
new generation was just born (so that players are still maximally uncertain about
the distribution of types, Γ0 = [0, 1]), and the first fitness game that is played is
the same that we have seen at the end of Section 5.6:

I II
I 2; 2 1; 0
II 0; 1 5; 5

When we presented simple fitness maximinimizationMm(Φ, Γ̃) and simple re-
gret minimization Reg(Φ, Γ̃) there, we saw that simple maxmin Mm(Φ, Γ̃) would
dictate to choose action I, while simple regret minimization Reg(Φ, Γ̃) would
suggest action II. According to the analysis of Chapter 6, where the primary
source of uncertainty was on the co-player’s type rather than directly on the
co-player’s actions, there are three interim symmetric Γ-equilibria for Γ = [0, 1]:
((I, I), (I, I)), ((II, II), (II, II)), and ((I, II), (I, II)). Indeed, when player 1 is
of type Mm, the minimal expected utilities are:

minλ Eλ[u1(I, (I, I))|Mm] = 2 minλ Eλ[u1(I, (II, I))|Mm] = 1
minλ Eλ[u1(II, (I, I))|Mm] = 0 minλ Eλ[u1(II, (II, I))|Mm] = 0
minλ Eλ[u1(I, (I, II))|Mm] = 1 minλ Eλ[u1(I, (II, II))|Mm] = 1
minλ Eλ[u1(II, (I, II))|Mm] = 0 minλ Eλ[u1(II, (II, II))|Mm] = 5
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When player 1 is of type Reg we have instead:

minλ Eλ[u1(I, (I, I))|Reg] = 0 minλ Eλ[u1(I, (II, I))|Reg] = −4
minλ Eλ[u1(II, (I, I))|Reg] = −2 minλ Eλ[u1(II, (II, I))|Reg] = −2
minλ Eλ[u1(I, (I, II))|Reg] = −4 minλ Eλ[u1(I, (II, II))|Reg] = −4
minλ Eλ[u1(II, (I, II))|Reg] = −2 minλ Eλ[u1(II, (II, II))|Reg] = 0

Since the game is symmetric, the utilities of Player 2 are identical to those of
Player 1.

When the players’ uncertainty is lifted from the direct behavior of the co-
player to the type of the co-player, such situations arise, and the action choices
are no longer determined in a unique and obvious way, given the multiplicity
of Γ-equilibria. This problem may noticeably echo the old issue of equilibrium
selection (see [Harsanyi and Selten, 1988]). There seems to be a tension here
between the analysis of Chapter 5 and the equilibrium analysis of games with
incomplete information under ambiguity of this chapter. To assign behavior to
types in each game that is played and to compute the accumulated fitness at the
end of the generation, we have to resolve the tension between the two analyses
and to decide how different types will behave when facing situations like that of
the last example.

In our opinion, in front of multiple (symmetric or asymmetric) equilibria, a
simple equilibrium analysis assuming that players always end up in one of the
equilibria would be unsatisfactory. Backing the equilibrium play by standard
evolutionary arguments based on single-game models would also not be main-
tainable given the current dynamics: since the games change continuously, there
is no time for evolution to select an equilibrium among the many in each sin-
gle game. How could players always end up in an equilibrium, even in situations
where equilibria are multiple and the game is played only once and never repeated
again? When looking for reasonable behavioral assumptions, we thus prefer to
focus on the notion of rationalizable play, rather than on equilibrium play. The
behavioral assumptions that we postulate are then the following.

Assumption 6.8. (Common belief in) Rationality. In every game, each
type plays a rationalizable action.

Assumption 6.9. Type’s preference. In games with a revealing Γ-equilibrium,
each type prefers the action specified by the revealing equilibrium. In games with
no revealing Γ-equilibrium, each type plays one of the rationalizable actions at
random.

Assumption 6.8 just puts rationality constraints on possible action choices:
roughly speaking, if an action cannot be justified as rational by any reasonable
conjecture about the co-player, then that action will not be chosen. The second
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assumption requires something more than (common belief in) rationality, and it
produces a ranking over rationalizable actions.

To better understand the rationale behind Assumption 6.9, it may be useful
to consider again the example at the beginning of this section. In that game, both
types (and both players) have incentives to coordinate with the action of the co-
player, but there is no obvious way to jointly decide for one action over the other.
Ultimately, however, players have to play the game, and therefore they have to
choose an action. Notice then that in the previous example action I is optimal
for typesMm independent of the choice of types Reg: if types Reg play action I,
types Mm should choose action I in order to best reply; if types Reg play action
II, both actions are optimal for typesMm. Conversely, the same is true for action
II and types Reg. This is the intuition behind the preference of a type for one
rationalizable action over the other in the presence of a revealing Γ-equilibrium.
In turn, the presence and the uniqueness of revealing Γ-equilibria (Lemma 6.5 and
Lemma 6.7) comes from and reflects the decision-theoretic foundations of different
types: in the previous example the reverse revealing behavior (II, I) would be
at odds with the interpretation of the two types as different decision criteria.
The fact that ((II, I), (II, I)) is never a Γ-equilibrium of the game mirrors the
difference in choice principles between the two types.

The introduction of the two behavioral assumptions allows to drop the re-
striction to symmetric equilibria (since revealing behavior is now derived from
rationalizability and types’ preferences), and to include also coordination games
in the class of informative games.

Specifically, by the same argument as for the case of anti-coordination games,
we obtain that the necessary and sufficient condition for I to be a strict best reply
for Mm in a coordination game (a, b, c, d) against a population playing according
to policy (I, II) is

(1− λ)a+ λb > (1− λ)c+ λd. (6.7)

Likewise, a type Reg is responding optimally to the population playing the policy
(I, II) by choosing action II if and only if

c− a
c− a+ b− d

<
λ+ λ

2
. (6.8)

The space of informative games is therefore extended to all coordination games
satisfying equations 6.7 and 6.8. So, for a given interval Γ = [λ, λ], the space of
informative coordination games is shown in Figure 6.7. Proposition 6.6 is thus
extended to include the case of coordination games as well.

Proposition 6.10. Given Assumption 6.8 and Assumption 6.9, the distribution
λ∗ of regret types in the population is learnable if and only if Proposition 6.6
holds, or, for any λ ∈ [0, 1) and λ ∈ (λ, 1], there is positive probability of having
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Figure 6.7: A graphical representation of informativity in coordination games.

coordination games (a, b, c, d) such that at least one of the following two conditions
is satisfied:

1. λ+λ
2
> c−a

Z
> λ(b−a)+λ(c−d)

Z
;

2. (1−λ)(b−a)+(1−λ)(c−d)
Z

> c−a
Z
> (1−λ)+(1−λ)

2
.

Proof. By arguments analogous to the proof of Proposition 6.6, it is possible to
show that if the conditions of Proposition 6.10 hold, then the class of strongly
informative coordination games is nonempty for any λ ∈ [0, 1) and λ ∈ (λ, 1]. So,
when the above conditions hold, players will always play a revealing Γ-equilibrium
with positive probability, which ensures, for any λ ∈ [0, 1) and λ ∈ (λ, 1], the
possibility of further reducing the uncertainty towards the true distribution λ∗.

6.8 Discrete and Continuous Fitness

It should be clear from the previous discussion that density properties of the
space of possible fitness values are crucial for the learnability of the distribution
of maxmin and regret types in the population. Whenever the space of values is
discrete, for instance, players are prevented from learning the true distribution of
types. This would be the case of fitness given in terms of monetary payoffs. If,
instead, fitness is a continuous quantity, players might be able to learn the popu-
lation composition. This of course will also depend on how games are generated.
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The following proposition shows that learnability can be guaranteed under
rather general circumstances. In particular, if fitness values are given by i.i.d
drawings of a continuous random variable, the conditions of Proposition 6.6 and
Proposition 6.10 follow and learning is ensured.

Corollary 6.11. When games come from i.i.d. drawings of a continuous random
variable, then the true distribution λ∗ is learnable.

6.9 Conclusion
Players in the game of life are now allowed the possibility of learning. We provided
the formal conditions for the distribution of the decision types in the population
to be learnable, and we showed how it is possible to infer behavior-generating
mechanisms from observed behavior. To this end, we had to define suitable equi-
librium concepts for incomplete information games under ambiguity, taking into
account the variability in the players’ decision criteria too. Overall, the results
of this chapter might look mostly technical, but they guarantee the possibility
of learning for rather intuitive scenarions, e.g., when fitness values are given by
i.i.d. drawings of a continuous random variable, and exclude perfect learnability
in other simple circumstances, for instance whenever fitness values are discrete.

Through the introduction of learning, modeled as process that reduces the
ambiguity in front of incoming evidence, we also want to offer a formal theory of
belief formation in the framework of the game of life. In line with the position
of Gilboa, Postlewaite and Schmeidler presented in Chapter 1, we aim in this
way at backing the project of having beliefs justified by evidence, as a basis
for “a systematic way of predicting which beliefs agents might hold in various
environments.”3

6.10 Appendix: Proofs
The following is the proof of Lemma 6.3.

Proof. A symmetric 2×2 game can be represented as a payoff matrix with entries
(a, b, c, d), so the set of possible games can be identified with (a subset of) R4. We
divide this space up into nine regions according to how a compares to c, and how
b compares to d. As shown in Table 6.2, each of these possibilities corresponds to
a certain game-theoretic property. Note that all of these properties are preserved
under the regret transformation (e.g., coordination games are coordination games
for types Mm as well as for types Reg).

By definition, a game is not strongly informative if there is a policy function
σ∗(Mm) = σ∗(Reg) = a∗ such that the profile ~σ∗ is a Γ-equilibrium. However,

3[Gilboa et al., 2012]
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whenever some action a∗ is weakly or strongly dominant, the policy function
σ∗(Mm) = σ∗(Reg) = a∗ defines a symmetric Γ-equilibrium. We can thus imme-
diately discard seven of these nine cases as uninformative.

This leaves us with coordination and anti-coordination games. However, in a
coordination game, the coordinating policy function σ∗(Mm) = σ∗(Reg) = a∗ de-
fines a symmetric Γ-equilibrium for a∗ ∈ {I, II}. Hence, coordination games are
never strongly informative. It follows that if there exist any strongly informative
games at all, they must be anti-coordination games.

The following is the proof of Lemma 6.4.

Proof. Suppose that λ < c−a
c−a+b−d < λ and 1−λ < c−a

c−a+b−d < 1−λ are not the case
and suppose, towards a contradiction, that the policy σ∗ such that σ∗(Mm) = I
and σ∗(Reg) = II defines a symmetric Γ-equilibrium ~σ∗ = (σ∗, σ∗). For that to
be the case, it must hold that, for i ∈ {1, 2}:

min
λ

Eλ[ui(π((I, II), σ∗))|Mm] ≥ min
λ

Eλ[ui(π((II, II), σ∗))|Mm], (6.9)

and that

min
λ

Eλ[ui(π((I, II), σ∗))|Reg] ≥ min
λ

Eλ[ui(π((I, I), σ∗))|Reg] (6.10)

Given λ ∈ Γ = [λ, λ] ⊆ [0, 1], the expected fitness of action I associated to ~σ∗ is:

Eλ[Φ(π(I, σ∗))] = (1− λ)a+ λb,

while the expected fitness of action II is:

Eλ[Φ(π(II, σ∗))] = (1− λ)c+ λd.

Consequently, action I has higher expected fitness than action II if

(1− λ)a+ λb− (1− λ)c− λd > 0

which is equivalent to λ < c−a
c−a+b−d . In the same way, action II has higher

expected fitness than action I if λ > c−a
c−a+b−d . Remember that, for any single λ,

Eλ[Φ(π(I, σ∗))] ≥ Eλ[Φ(π(II, σ∗))]

iff

Eλ[Φ(π(I, σ∗))]−max
a′∈A

Eλ[Φ(π(a′, σ∗))] ≥ Eλ[Φ(π(II, σ∗))]−max
a′∈A

Eλ[Φ(π(a′, σ∗))].

This is, again, the reason why maximinimizers and regret minimizers do not differ
when Γ is a singleton set. But then if c−a

c−a+b−d < λ, action II is strongly dominated
by action I for all λ ∈ Γ for both types, which contradicts equation (6.10), so
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that type Reg will have incentives to deviate form the policy σ∗. Similarly, if
λ < c−a

c−a+b−d then action I is strongly dominated by action II for all λ ∈ Γ
for both types, which contradicts equation (6.9), so that type Mm will have
incentives to deviate form the policy σ∗. Hence, the revealing profile ~σ∗ such
that σ∗(Mm) = I and σ∗(Reg) = II cannot be a Γ-equilibrium of the game.
Analogously for the other revealing profile ~σ∗ = (σ∗, σ∗) such that σ∗(Mm) = II
and σ∗(Reg) = I, if 1− λ < c−a

c−a+b−d < 1− λ is not the case.

The following is the proof of Lemma 6.5.

Proof. As shown in Figure 6.2a, in an anti-coordination game action I corresponds
to the line a+ (b− a)x, while action II corresponds to the line c+ (d− c)x. The
slope of action I is then (b − a), and the slope of action II is (d − c). Action
I is steeper than action II if |b − a| > |d − c|, and action II is steeper than
action I if the reverse of the last inequality holds. Given a belief Γ = [λ, λ] and
a policy function σ, let us define the following preference relations over actions.
The relation %M |Γ,σ corresponding to type Mm is defined by

I %M |Γ,σ II iff min
λ

Eλ[Φ(π(I, σ))] ≥ min
λ

Eλ[Φ(π(II, σ))],

while the relation %R|Γ,σ corresponding to type R̂eg is defined by

I %R|Γ,σ II iff

minλ{Eλ[Φ(π(I, σ))]−maxa′∈A Eλ[Φ(π(a′, σ))]}
≥

minλ{Eλ[Φ(π(II, σ))]−maxa′∈A Eλ[Φ(π(a′, σ))]}.

For any fixed belief Γ and policy σ, it is the case that |d− c| > |b− a| entails

I %R|Γ,σ II ⇒ I �M |Γ,σ II.

Indeed, when a belief Γ = [λ, λ] about types’ proportions is paired with a policy
σ, the two induce a belief Γ|σ over the co-player’s actions in the obvious way. For
a given Γ|σ = [p, p], where p is now the lower probability of action II and p is
the upper probability of action II, let us define

a′ := (1− p)a+ pb = a+ p(b− a)
b′ := (1− p)a+ pb = a+ p(b− a)
c′ := (1− p)c+ pd = c+ p(d− c)
d′ := (1− p)c+ pd = c+ p(d− c)

Next, type Reg is indifferent between the two acts, I ∼R|Γ,σ II, if c−a
c−a+b−d − p =

p− c−a
c−a+b−d , and prefers I over II if c−a

c−a+b−d−p < p− c−a
c−a+b−d . For succinctness, let
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us abbreviate Z := c−a+b−d. Whenever |d−c| > |b−a| and c−a
Z
−p ≤ p− c−a

Z
,

it is the case that a′ > d′, so that I �M |Γ,σ II. Indeed, when p = p = c−a
Z

, we have
that a′ = d′ = cb−ad

Z
. When we enlarge the interval Γ|σ by moving p to the left of

c−a
Z

and p to the right of c−a
Z

by the same extent, such that c−a
Z
−p = p− c−a

Z
, we get

that a′ > d′, since a′ moved by (a−b)( c−a
Z
−p) while d′ moved by (d−c)(p− c−a

Z
).

Consequently, in an anti-coordination game where action II is steeper than action
I, the only possible revealing symmetric Γ-equilibrium is a profile ~σ∗ = (σ∗, σ∗)
such that σ∗(Mm) = I and σ∗(Reg) = II. By a similar argument, when action I
is steeper than action II, the only possible revealing symmetric Γ-equilibrium is a
profile ~σ∗ = (σ∗, σ∗) such that σ∗(Mm) = II and σ∗(Reg) = I. Hence, whenever
one of the actions is steeper than the other, only one of the two revealing policies
can constitute a Γ-equilibrium, so that we excluded the case of games with two
revealing symmetric Γ-equilibria.

We are left with the case where action I and action II are equally steep,
|d − c| = |b − a|. We will see later that these are games such that b−a

Z
= 1

2
, and

they are never strongly informative. Indeed, by the same argument as above we
obtain that |d− c| = |b− a| implies

I %R|Γ,σ II ⇔ I %M |Γ,σ II,

so that, for each Γ and σ, the two types will always choose the same action.

Finally, we can prove Proposition 6.6.

Proof. Only if. Notice first that, by simple computation, the condition expressed
by inequality 6.2 is equivalent to the condition

c− a
Z

<
λ(c− d) + λ(b− a)

Z
.

This allows us to formulate both condition 6.2 and condition 6.3 in terms of the
intersection point c−a

Z
between line I and line II, and to put them together in a

unique double inequality, as done in the first point of Proposition 6.6:

λ+ λ

2
<
c− a
Z

<
λ(c− d) + λ(b− a)

Z
.

In the same way, the condition expressed by inequality 6.5 is equivalent to

(1− λ)(c− d) + (1− λ)(b− a)

Z
<
c− a
Z

,

so that we can bring condition 6.5 and condition 6.6 together:

(1− λ)(c− d) + (1− λ)(b− a)

Z
<
c− a
Z

<
(1− λ) + (1− λ)

2
,
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as in the second point of Proposition 6.6.
Now, by contraposition, suppose that both conditions of Proposition 6.6 are

violated, that is, there is some interval [γ, γ] ⊆ [0, 1] (with γ < γ) such that there
are no anti-coordination games (a, b, c, d) for which one of the two conditions in
Proposition 6.6 holds. Then, whenever the interval Γ = [λ, λ] hits the interval
[γ, γ], the players will no longer observe any informative plays in the future.
In particular, if the first condition of Proposition 6.6 does not hold for some
interval [γ, γ] ⊆ [0, 1], it follows that there will be no more anti-coordination
games where the policy (I, II) constitutes a symmetric Γ-equilibrium for Γ ⊆
[γ, γ]. Reversely, if the second condition does not hold either, there will be no
anti-coordination games where the dual policy (II, I) constitutes a symmetric
Γ-equilibrium for Γ ⊆ [γ, γ]. Suppose now that the true distribution λ∗ of regret
types lies in that interval, γ < λ∗ < γ. From the assumption that both conditions
of Proposition 6.6 are violated, it follows that, whenever Γ ⊆ [γ, γ], both types
will play the same action in all future games. Consequently, the players will no
longer face any strongly informative game in the future, and they will not be able
to shrink the set Γ any further, so that they are prevented from learning the true
distribution λ∗.

If. By the same reasoning, if for any interval [λ, λ] ⊆ [0, 1] at least one of
the two conditions of Proposition 6.6 is satisfied, then it means that whatever
the belief interval Γ = [λ, λ] is, the players will always face, sooner or later, a
strongly informative game, i.e., a game that satisfies one of the conditions of
Proposition 6.6. Specifically, when the first condition is satisfied, this ensures
that there will be anti-coordination games for which the policy function (I, II)
constitutes the unique symmetric Γ-equilibrium; when the second condition is
fulfilled, there will be games where the dual policy (II, I) defines the unique
symmetric Γ-equilibrium. In such games, the two types would play two different
actions, so that the players will be able to further shrink the interval Γ, according
to the behavior observed in those games. If strongly informative games will always
arise, independent of the current interval Γ, then the interval Γ can always be
shrunk further and further, and the players will eventually be able to learn the
true distribution λ∗ in the limit.

The following is the proof of Corollary 6.11.

Proof. Proposition 6.6 gives necessary and sufficient conditions for learnability in
anti-coordination games. We now want to show that if games come from i.i.d.
drawings of a continuous random variable, then each of the two conditions of
Proposition 6.6 follows. (By similar arguments it is possible to show that the
same holds for the two conditions of Proposition 6.10 for coordination games.)
Suppose that games (a, b, c, d) are generated by i.i.d drawings of a continuous
random variable with probability distribution PV , and that the real interval (r, r)
is a subset of its support. Fix any set Γ = [λ, λ], corresponding to the uncertainty
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of the players about the distribution of types, and consider the first condition of
Proposition 6.6:

λ+ λ

2
<
c− a
Z

<
λ(c− d) + λ(b− a)

Z
. (6.11)

Note also that the ratio c−a
Z

takes values in the interval (0, 1), since to get c−a
Z

= 0
we shall have a = c and for c−a

Z
= 1 we need d = b, which have no probability of

occurrence for continuous random variables. Suppose that two random numbers
c, d ∈ (r, r) are drawn. Two cases are equiprobable: c > d and c < d. Consider
the first, c > d. Since (d, c) ⊆ (r, r), the event that a ∈ (d, c) has positive
probability, i.e., there is positive probability of drawing a such that d < a < c.
Take the interval

[
λ+λ

2
, λ
]
, and consider the two extrema. The line passing

through a and intersecting the line corresponding to action II passing through c
and d at x = λ+λ

2
has equation:

y = x

(
c+ λ+λ

2
(d− c)− a
λ+λ

2

)
+ a ,

while the line passing through a and intersecting the line corresponding to action
II passing through c and d at x = λ has equation:

y = x

(
c+ λ(d− c)− a

λ

)
+ a .

If we consider the values of y for x = 0 and x = 1, each of these lines corresponds
to possible fitness numbers for action I (each line gives a for x = 0 and b for
x = 1).

Each point z ∈
(
λ+λ

2
, λ
)
can be written as a convex combination

z = α
λ+ λ

2
+ (1− α)λ

for some α ∈ (0, 1). So, the line passing through a and intersecting the line
corresponding to action II at x = αλ+λ

2
+ (1− α)λ has equation:

y = x

c+
(
αλ+λ

2
+ (1− α)λ

)
(d− c)− a

αλ+λ
2

+ (1− α)λ

+ a .

As we have seen, each of these lines corresponds to a value of b for x = 1. The
set of all these values of b is thus the set

B :=

{
c− a

αλ+λ
2

+ (1− α)λ
+ d− c+ a : α ∈ (0, 1)

}
.
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Since all these values are included in the interval(
c− a
λ

+ d− c+ a ,
c− a
λ+λ

2

+ d− c+ a

)
,

then we can express the set B as a set of convex combinations between these two
extreme points:

(1− α)

[
c− a
λ

+ d− c+ a

]
+ α

[
c− a
λ+λ

2

+ d− c+ a

]
.

Notice, however, that in general

(1−α)

[
c− a
λ

+ d− c+ a

]
+α

[
c− a
λ+λ

2

+ d− c+ a

]
6= c− a

αλ+λ
2

+ (1− α)λ
+d−c+a ,

and, more precisely, we have that

(1− α)
[
c−a
λ

+ d− c+ a
]

+ α

[
c−a
λ+λ
2

+ d− c+ a

]
− c−a

αλ+λ
2

+(1−α)λ
+ d− c+ a

=

(c− a)
α(1−α)

(
λ−λ+λ

2

)
2

λλ
(
αλ+λ

2
+(1−α)λ

) .
Hence, we can see that in general the difference between the two is always positive
(since c > a by assumption, and λ > λ+λ

2
), so that

(1−α)

[
c− a
λ

+ d− c+ a

]
+α

[
c− a
λ+λ

2

+ d− c+ a

]
>

c− a
αλ+λ

2
+ (1− α)λ

+d−c+a .

Moreover, as one would expect, the difference between the two tends to 0 both
when α tends to 0 and when α tends to 1.

This shows that the set B corresponds to an interval B ⊂ (d, c) ⊂ (r, r).
Consequently, for any (d, c) ⊆ (r, r), there is always positive probability to find
a, b ∈ (d, c) such that the game (a, b, c, d) is strongly informative.



Chapter 7

Evolution and Learning

Life is not a matter of holding good cards,
but of playing a poor hand well. (R. L. Stevenson)

7.1 The Game of Life with Learning

The obvious question that the reader should ask himself or herself at this point is:
what happens when we consider a population that plays the game of life, where
players both learn according to the learning dynamics described in Chapter 6 and
evolve according to the evolutionary dynamics of Chapter 5? This is a relevant
and legitimate question: it is possible that the stability of some evolutionary
outcomes can be destabilized by the introduction of learning.

In the new game of life, enriched with the possibility of learning, players are
involved in two different dynamics. We think of the situation as follows. During
their life, within each generation, players face many different interactive decision
problems. The intragenerational dynamics are exactly as described by points 1-8
of Section 6.1: at each time t a game is selected according to some probability PG
over all possible games, two players from the population are randomly matched,
the two players play the game, and the outcome is commonly known within
the population. Moreover, in order to add the intergenerational evolutionary
dynamics to the process, we need to keep track of the accumulated fitness of
different types, as we did in Chapter 5. As t → ∞, players might eventually
be able to learn the precise distribution of types in the population (depending
on the games in the environment, as we have seen in Chapter 6), and will also
accumulate some evolutionary fitness (depending on their type, as we have seen
in Chapter 5). In particular, at any moment t′ <∞, all types in the population
will have an associated accumulated fitness on the basis of their (expected) fitness
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in all past t′−1 games. Natural selection is then based on the fitness accumulated
by each type, as in Chapter 5.

7.2 Play Without Regret

Let us take into consideration a population with the two decision types Mm and
Reg, i.e., a population where players can only differ in the decision criterion â.
More specifically, the subjective utility uj of all types tj = (âj, uj,Γj) ∈ T is
anchored to objective fitness, uj = Φ for all tj ∈ T , and, at any time t, Γj = Γt

for all tj ∈ T , that is: all players hold the same confidence interval, in line
with the learning dynamics of Chapter 6. Consequently, we can identify different
phenotypes in the population by their decision criterion, i.e., T = {Mm,Reg}.
Possible differences in action choices will only depend on different decision criteria.
Ceteris paribus, we are then looking at the evolution of decision criteria here,
leaving aside possible variability in subjective utilities and beliefs for the moment.
The departure from Chapter 5 consists in that the set Γj is now subject to a
process of repeated updatings.

From these premises, it is possible to proceed to the evolutionary analysis
of the game of life with learning. Intragenerational dynamics are as described
in points 1-8 of Section 6.1. The intergenerational dynamics are given by the
evolutionary dynamics:

9. At the end of each generation at time T < ∞, each type accumulated a
certain (expected) fitness, which determines the reproduction of the type in
the next generation.

10. After time T , a new generation of players is created, and begins to play the
game of life G1, G2, G3, ... from t = 0 again, according to points 1-8.

We refer to the evolutionary multi-game specified by points 1-10 as the game of
life with learning.

The following proposition extends the evolutionary results of Chapter 5 to the
game of life with learning.

Proposition 7.1. In the game of life with learning generated by drawing a contin-
uous random variable with uniform distribution on a given support, Reg strictly
dominates Mm.

Proof. In Appendix 7.5.

The following corollary confirms the evolutionary results of Corollary 5.5 also
for the case of the game of life with learning.
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Figure 7.1: The two possible representations of regret.

Corollary 7.2. Fix a population of phenotypes Mm and Reg. In the game of life
with learning generated by drawing a continuous random variable with uniform
distribution on a given support, the only evolutionarily stable state is a monomor-
phic population of type Reg.

7.3 Regret What?
In Section 5.9.1, we showed how different pairings of decision criteria and subjec-
tive utilities may generate the same indistinguishable behavior. In particular, we
showed that it would have been possible to represent simple regret minimization
both by using regret-based preferences coupled with maxmin decision criterion,
and by regret minimization acting on objective preferences. The resulting be-
havior would have been the same. This is no longer the case once we introduce
learning, and uncertainty is not necessarily maximal.

Consider the population game of Section 3.3. There, we opted for the preference-
based representation of regret: type t2 associates each outcome with the regret
at that outcome, i.e., ut2(π(a, a′)) = reg(π(a, a′)). On the other hand, in the last
two chapters, we expressed regret directly as a decision criterion rather than a
subjective preference.

For the case of the population game in Section 3.3, Figure 7.1 graphically
represents the difference between formalizing regret as a decision criterion and
formalizing regret in terms of a subjective utility function. The picture on the
right corresponds to the subjective preference version of regret, defined as the
difference of single outcomes:

Mm(reg,Γ) = argmax
a∈A

min
P∈Γ

EP [u(π(a, a′))−max
a′′∈A

u(π(a′′, a′))].

The picture on the left instead represents regret as a decision criterion, as defined
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in Chapter 5:

Reg(u,Γ) = argmax
a∈A

min
P∈Γ
{EP [u(π(a, a′))]−max

a′′∈A
EP [u(π(a′′, a′))]}.

In the first case, we say that regret is expressed as a subjective preference because
it is possible to express it through a subjective utility reg : X → R, whereas this
is not possible in the second case.

Notice from Figure 7.1 that both notions of regret would dictate action II:
the minimal expected utility of I in the interval Γ = [λ, λ] is lower than the
minimal expected utility of II both in 7.1a and 7.1b. This is not true in general,
though.

Suppose there is a possible bet on an urn which contains ten balls that are
either white or black. The bet pays $1000 if a white ball is drawn and the bettor
guesses the color, $3000 if a black ball is drawn and the bettor guesses the color,
and nothing otherwise, as shown in the table below.

W B

w 1000 0
b 0 3000

It is known that the urn contains one black ball and seven white balls, but the
color of the last two balls is unknown (this is the case of Γ = [λ′, λ] in Figure 7.2).
Preference-based regret is indifferent between betting on white and betting on
black in such a situation, while the second account of regret would prefer to bet
on white.

If, instead, it is known that two balls are black, seven are white, and the color
of only one ball is unknown, then preference-based regret would bet on black,
while the other regret would be indifferent between the two colors (this is the
case of Γ = [λ, λ] in Figure 7.2).

Figure 7.2 represents the two different situations, in terms of preference-based
regret (on the left), and in terms of regret as decision criterion (on the right).
Clearly, the regret representation on the right is indifferent between the two ac-
tions whenever the set of parameters Γ = [λ, λ] is symmetric around 1

4
: this is

the case of the urn where the color of only one ball is unknown. When the set
Γ is not symmetric around 1

4
, instead, regret-choice principle strictly prefers one

of the two actions. Hence, when preference-based regret is indifferent between b
and w, i.e., when λ = 0.1 and λ = 0.3, regret-choice principle will prefer action
w over b. Reversely, when regret-choice principle is indifferent, preference-based
regret will uniquely choose action b.

One final remark is in order here. Notice that the axiomatic system given
by [Stoye, 2011] represents the preference-based notion of regret, which is not the
choice principle version of regret that we used for our results about evolution and
learning in the last chapters. Opting for one notion of regret over the other, rather
than necessary, is a matter of preference and intuition, since both preference-based
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Figure 7.2: The two possible representations of regret.

regret and regret-choice principle express reasonable and viable norms for decision
making. It is left to experimental work to determine if agents tend to resort to
one more than the other.

7.4 Conclusion

The main goal of this chapter was to combine the results about the evolutionary
competition from Chapter 5 with the results about the learning from Chapter 6.
This unified perspective allows us to consider the evolution of more sophisticated
agents, that are able to learn about the proportions of decision types within
their generation while playing the game of life. The main conclusion that the
presence of unmeasurable uncertainty generally favors regret minimizing players
over maximinimizers hasn’t been destabilized by the introduction of the learning
dynamics.

7.5 Appendix: Proofs

Definition 7.3. ϕ. The permutation ϕ(a, b, c, d) = (d, c, b, a) defines a bijective
function from coordination games to coordination games ϕ : C → C, and from
anti-coordination games to anti-coordination games ϕ : A → A.

Lemma 7.4. For coordination and anti-coordination games G ∈ C∪A, the policy
(I, II) constitutes a symmetric Γ-equilibrium in game G if and only if the dual
policy (II, I) constitutes a symmetric Γ-equilibrium in game ϕ(G).

Proof. Geometrically, the bijection ϕ amounts to a reflection about the y-axis,
plus a relabeling of the actions. Suppose now that the policy (I, II) defines a
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(strict) symmetric Γ-equilibrium for the anti-coordination game A. For that to
be the case, we know from Proposition 6.6 that it must hold that

λ+ λ

2
<
c− a
Z

<
λ(c− d) + λ(b− a)

Z
,

so that I is a best reply for type Mm, and II is a best reply for type Reg. In the
corresponding game ϕ(A), (by simple relabeling) it must hold that:

λ+ λ

2
<
b− d
Z

<
λ(b− a) + λ(c− d)

Z
.

But notice that
b− d
Z

= 1− c− a
Z

,

and hence we can rewrite the previous double inequality as

λ+ λ

2
< 1− c− a

Z
<
λ(b− a) + λ(c− d)

Z
.

By computation, the last reduces to

(1− λ)(b− a) + (1− λ)(c− d)

Z
<
c− a
Z

<
(1− λ) + (1− λ)

2
,

which corresponds to the necessary and sufficient conditions for ((II, I), (II, I))
to be a Γ-equilibrium of the anti-coordination game ϕ(A). Hence, the policy
(I, II) defines a symmetric Γ-equilibrium in game A if and only if the dual policy
(II, I) defines a symmetric Γ-equilibrium in game ϕ(A). By analogous argument,
the same holds for coordination games too.

We can finally prove Proposition 7.1.

Proof. First of all, notice that the revealing Γ-equilibria ((I, II), (I, II)), where
Mm plays I and Reg plays II, are only possible for λ < c−a

Z
< λ, since λ is

the proportion of regret types in the population. Reversely, revealing equilibria
((II, I), (II, I)) are only possible if 1 − λ < c−a

Z
< 1 − λ. Then, by Lemma 7.4

we can reason only in terms of the interval [λ, λ] and of Γ-equilibria of the form
((I, II), (I, II)), knowing that for any (anti-)coordination game that has a reveal-
ing Γ-equilibrium ((I, II), (I, II)) there is a corresponding (anti-)coordination
game such that 1 − λ < c−a

Z
< 1 − λ and such that ((II, I), (II, I)) is a Γ-

equilibrium where players get exactly the same fitness as in the Γ-equilibrium
((I, II), (I, II)) of the original game. By this move we can reduce the analysis
just to the interval [λ, λ] and to Γ-equilibria of the form ((I, II), (I, II)).
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Figure 7.3: Examples of revealing games with equilibrium ((I, II), (I, II)).

Second, by the conditions of Proposition 6.6 and Proposition 6.10 and by
Lemma 6.4, it follows that, for any given interval [λ, λ], the revealing coordination
games with Γ-equilibrium ((I, II), (I, II)) must be such that

λ <
c− a
Z

<
λ+ λ

2
,

whereas the revealing anti-coordination games with Γ-equilibrium ((I, II), (I, II))
must be such that

λ+ λ

2
<
c− a
Z

< λ.

Figure 7.3 shows examples of revealing coordination and anti-coordination games
for a given interval [λ, λ]. As we can see, the two lines intersect on the left of
the middle of the interval in the coordination game, and on the right in the
anti-coordination game.

From Lemma 6.7 we know that a necessary condition for ((I, II), (I, II)) to
be a Γ-equilibrium is that

|d− c| > |a− b|.

Suppose now that the two numbers c and d have been drawn. From the last
inequality we already know that if c < d then the only possible revealing games
in [λ, λ] are coordination games, because an anti-coordination games by definition
satisfies a < c and d < b, which contradicts the necessary condition |d−c| > |a−b|.
Reversely, if c > d, then the only revealing games in [λ, λ] are anti-coordination
games. Without loss of generality, suppose that c and d are drawn such that
c < d, so that the only possible revealing games in [λ, λ] are coordination games.
By the argument above, the revealing coordination games in [λ, λ] must be such
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that

λ <
c− a
Z

<
λ+ λ

2
,

since this is the necessary and sufficient condition for Reg to (strictly) prefer II
over I. Consider now all the points λ ∈ (λ, λ+λ

2
). Each of these points can be

expressed as a linear combination:

kλ+ (n− k)λ

n
,

for k > n
2
. By simple algebra, for each point in λ ∈ (λ, λ+λ

2
) and c < d, the point

c+
kλ+ (n− k)λ

n
(d− c)

expresses the expected value of action II for λ = kλ+(n−k)λ
n

, i.e., it is the y-value
of the line corresponding to action II when x = kλ+(n−k)λ

n
. Then, given a two-

dimensional point (x0, y0), the sheaf of lines passing through that point is defined
by all the equations

y − y0 = m(x− x0)

for m ∈ R. (The vertical line m = ∞ is excluded from the sheaf, but it is not
relevant for the proof.) Consequently, given the two-dimensional point(

kλ+ (n− k)λ

n
, c+

kλ+ (n− k)λ

n
(d− c)

)
,

the sheaf of lines passing through that point is defined by the set of equations,
for m ∈ R:

y − c− kλ+ (n− k)λ

n
(d− c) = m

(
x− kλ+ (n− k)λ

n

)
.

If, for each equation in the set, we define

a� := m
(
−kλ+(n−k)λ

n

)
+ c+ kλ+(n−k)λ

n
(d− c)

b� := m
(

1− kλ+(n−k)λ
n

)
+ c+ kλ+(n−k)λ

n
(d− c)

(7.1)

then each equation corresponds to a possible game such that

c− a�

c− a� + b� − d
=
kλ+ (n− k)λ

n
.

Among those, we are interested in all the games that are revealing, i.e., the games
for which ((I, II), (I, II)) is a Γ-equilibrium. From the previous analysis, we
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know that only coordination games such that d−c > |a�−b�| can be informative.
Indeed, if a� < b� and d−c < b�−a�, then the game is an anti-coordination game,
and it cannot possibly support the profile ((I, II), (I, II)) as a Γ-equilibrium for

c−a�
c−a�+b�−d ∈ (λ, λ+λ

2
); if instead a� > b� and d − c < a� − b�, then the game is

still a coordination game, but we have that |d− c| < |a� − b�|, and according to
Lemma 6.7 the profile ((I, II), (I, II)) cannot be a Γ-equilibrium of the game.
By algebraic computations, the condition d− c > |a� − b�| is equivalent to

|m| < d− c.

Moreover, among the coordination games such that d − c > |a� − b�|, the infor-
mative ones are those that also satisfy b′ > c′, otherwise type Mm would not
(strictly) prefer I over II. If we rewrite a′, b′, c′, d′ as in equation 6.1, then the
inequality b′ > c′ reduces to

m

(
k

k − n

)
< d− c.

To sum up, so far we have seen that each line

y − c− kλ+ (n− k)λ

n
(d− c) = m

(
x− kλ+ (n− k)λ

n

)
corresponds to a possible game:

I II
I a� b�

II c d

such that
c− a�

c− a� + b� − d
=
kλ+ (n− k)λ

n
.

When d > c, the only possible revealing games are coordination games, since it is
necessary |d− c| > |a� − b�| for the profile ((I, II), (I, II)) to be an equilibrium.
Furthermore, for a coordination game to be revealing it must also hold that b′ > c′.
Hence, in the end, we are looking for all games

y − c− kλ+ (n− k)λ

n
(d− c) = m

(
x− kλ+ (n− k)λ

n

)
with the constraints that

|m| < d− c

and
m

(
k

k − n

)
< d− c.
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By symmetric arguments, whenever c > d, the only possible revealing games for
the same interval [λ, λ] are anti-coordination games for which

λ+ λ

2
<
c− a
Z

< λ,

and such that c − d > |a − b|, and that a′ > d′. Similarly, for k < n
2
, these

correspond to all games

y − c− kλ+ (n− k)λ

n
(d− c) = m

(
x− kλ+ (n− k)λ

n

)
such that

|m| < c− d
and

m

(
k − n
k

)
> d− c.

Consider now the following bijective function ψ : C → A between coordination
and anti-coordination games, that, for d > c, associates the coordination game

y − c− kλ+ (n− k)λ

n
(d− c) = m

(
x− kλ+ (n− k)λ

n

)
with the anti-coordination game

y − d− (n− k)λ+ kλ

n
(c− d) = −m

(
x− (n− k)λ+ kλ

n

)
.

Essentially, ψ changes c to d, m to −m, and k to n−k. In particular, note that ψ
is a bijection that, for a fixed interval [λ, λ], sends revealing coordination games
to revealing anti-coordination games. Figure 7.4 gives a graphical example of the
bijection.

We can then pair these two games and consider the average fitness in {C,ψ(C)}
of a type Reg against another type Reg, and then compare it to the fitness of a
type Mm against a type Reg. In the pair of revealing games C and ψ(C), Reg
strictly dominates Mm if

F{C,ψ(C)}(R,R) > F{C,ψ(C)}(M,R)

and
F{C,ψ(C)}(R,M) > F{C,ψ(C)}(M,M).

Consider the first inequality. Since both C and ψ(C) are supposed to be revealing
with respect to the interval [λ, λ], it implies that F{C,ψ(C)}(R,R) = d + c, and
F{C,ψ(C)}(M,R) = b� + ψ(b�). Therefore, the first inequality is equivalent to

d+ c

2
>
b� + ψ(b�)

2
,
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Figure 7.4: Examples of revealing games with equilibrium ((I, II), (I, II)) under
the bijection ψ.

which can be spelled out as

d+ c > m
(

1− kλ+(n−k)λ
n

)
+ c+ kλ+(n−k)λ

n
(d− c)

− m
(

1− (n−k)λ+kλ
n

)
+ d+ (n−k)λ+kλ

n
(c− d)

After some computations, the previous inequality boils down to

d− c > m,

which we know it is the case, since we have seen that the condition d−c > |a�−b�|
is equivalent to d− c > |m|.

Finally, from the previous argument it follows that, for any given interval
[λ, λ], if we consider the set of all revealing coordination games, let’s denote it by
Cr, and the set of all revealing anti-coordination games Ar, then it holds that

F{Cr∪Ar}(R,R) > F{Cr∪Ar}(M,R).

Let us now check that the second inequality for Reg to strictly dominate Mm
also holds. In {C,ψ(C)}, that is equivalent to

d+ c > a� + ψ(a�),

which amounts to m < d− c. As before, it then follows that

F{Cr∪Ar}(R,M) > F{Cr∪Ar}(M,M).

Therefore, Reg strictly dominates Mm.





Chapter 8

A Theory of Rationality

Fra gli errori ci sono quelli che puzzano di fogna,
e quelli che odorano di bucato.1 (C. Pavese)

All theories of rational choice proposed so far in the literature have proven
to have shortcomings. It is apparently in the nature of human behavior the
impossibility of being fully described by a system of axioms and captured by
some formal rules. As Amos Tversky used to say ([Gilboa, 2010]), “Give me an
axiom and I’ll design the experiment that refutes it.” Our models and proposals
in this and the previous chapters are no exception.

In this final part, we would nonetheless try to elaborate on the results of the
preceding chapters, and to discuss a possible theory of rational choice.

Let us start off by reconsidering an example that was introduced in Chapter 3.

8.1 The Traveler’s Dilemma Case

An interesting examination of the Traveler’s dilemma has appeared in a paper by
Ariel Rubinstein, entitledDilemmas of an Economic Theorist ([Rubinstein, 2006]).
In that paper, Rubinstein shows experimental results on the Traveler’s dilemma
which he collected in various lectures at different universities during the years
2002-2003. The results of the experiments are reported in the following table.2

180 181-294 295 296-298 299 300
13% 15% 5% 3% 9% 56%

Rubinstein’s interpretation of the results is that
1Among errors, there are those that stink of sewer, and those that smell of fresh laundry.
2In Rubinstein’s version of the game, players were allowed to claim an amount between $180

and $300.
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The players who chose 180 are probably aware of the game theoretical
prediction. On average, they would do badly playing against a player
chosen randomly from the respondents. These players can claim to
be the “victims” of game theory. The subjects whose answers were in
the range 295–299 clearly exhibit strategic reasoning. The answer 300
seems to be an instinctive response in this context and the responses
in the range 181–294 appear to be the result of random choice.

This interpretation is further corroborated by data about the subjects’ response
time, showing that responses between 295 and 299 were also the slowest. Fur-
thermore, he stresses:

Note that this regularity was found without any preconceived model
and I am not aware of any existing game theoretical model that can,
in fact, explain it.

Although Rubinstein wants to suggest that economists do not need to have a
model in order to find regularities in the data, when looking at the results of
the experiments a theorist would necessarily ask himself what models of rational
choice could explain these regularities, and what kind of reasoning could be the
basis of the behavior in the Traveler’s dilemma.

An answer to this question has been provided a few years later by Joe Halpern
and Rafael Pass in a paper called Iterated Regret Minimization: a New Solution
Concept ([Halpern and Pass, 2012]). They show that if players perform one round
of elimination of actions that are dominated in terms of regret, then they are
left with the set of actions {296, ..., 300}. If a second round of elimination is
performed on the remaining actions, only action 297 survives. This analysis
in terms of regret is noticeably close to Rubinstein’s intuitions. The strategic
reasoning acknowledged by Rubinstein may be based on, or at least explained by,
regret minimization principles.

8.2 A Modest Proposal

Notice that in one of the quotes above, Rubinstein himself recognizes that the
players acting in accordance with the standard game-theoretic analysis (called the
“victims of game theory”) would do badly when randomly paired with a member
of the population. This observation is perfectly in line with the evolutionary
findings of Chapter 5 and Chapter 7.

However, the example of the Traveler’s dilemma is not meant to suggest that
regret minimization is the choice principle that players use, just as the results of
Chapter 5 and Chapter 7 are not intended to suggest that regret minimization
is the criterion that players should use. The evolutionary advantage of regret
minimization was established for a general class of environments, but not for all
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possible environments that can possibly exist in nature. Other principles might
be more beneficial for different environments.

These considerations lead us to some tentative guiding lights for a possible
theory of rational choice.

1. Agents do not resort to a single and fixed principle in all decision situations.

2. The qualities of a choice cannot be evaluated independently of the environ-
ment in which it takes place.

Although these statements may sound trivial, their acceptance is not an uncon-
troversial issue.

Point 2, for example, suggests an ecological evaluation of choices, and it would
be objected by the sustainers of a subjectivist, or solipsistic, approach to ratio-
nality (e.g., [Gilboa, 2014]). Such an approach would maintain that a choice is
rational if DM does not feel embarrassed by it. Precisely,

According to this view, a mode of behavior is irrational for a decision
maker, if, when the latter is exposed to the analysis of her choices,
she feels uneasy or embarrassed by them. [...] Finally, rationality is
defined by the negation of irrationality. Thus, a decision is rational
for a decision maker if analysis of the decision, which could have been
carried out by the decision maker at the time of decision, does not
make one regret it.

The subjectivist approach delivers a weak notion of rationality, where the only
requirement for a choice to be rational is to be accepted as such by the deci-
sion maker after further analyses of the decision problem. If DM will not feel
embarrassed and will not reject the choice she made, then the choice is rational.

This is certainly a consistent definition of rationality, but it also displays some
drawbacks, which the supporters of the subjectivist view are fully aware of. In
Gilboa’s words [Gilboa, 2014],

First, as opposed to behavioral axioms such as Savage’s, this definition
makes use of non-behavioral data. It does not suffice to know how
a person behaves in order to determine whether they are rational.
Rather, we need to find out whether they are embarrassed by their
behavior. It is not clear how one can measure this embarrassment or
unease, whether the expression of such emotions can be manipulated,
and so forth.

Second, according to this definition the choice of axioms that define
rationality cannot be made by decision theorists proving theorems
on a whiteboard. Rather, the selection of axioms that constitute
rationality becomes a subjective and empirical question: some people
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may be embarrassed by violating an axiom such as transitivity, while
others may not. [...]

Third, this definition also makes rationality non-monotonic in intel-
ligence: suppose that two people make identical decisions, and that
they violate a certain axiom. They are then exposed to the analysis
of their decisions. One is bright enough to understand the logic of
the axiom while the other isn’t. The bright one, by feeling embar-
rassed, would admit that she had been irrational. By contrast, if the
less intelligent person fails to see the logic of the axiom, he won’t be
embarrassed by violating it, and will be considered rational.

However, there must be reasons to embrace such a subjectivist approach, despite
of the weaknesses that have been identified so far. According to Gilboa, the
reason lies in the current state of the art in decision theory. As we have partly
seen in Chapter 2, there is

conflict between the remarkable intellectual edifice of the rational
choice paradigm and the vast body of experimental findings about
violations of choice theoretic principles. [Gilboa, 2014]

We are then at a crossroad between two possible options to solve this conflict.
Either we try to modify our theories by incorporating empirical findings in order
to develop new theories that are descriptively more accurate, or we expose people
to rational choice theories more extensively, hoping that this will make them
behave less “irrationally”. The advantage of the subjectivist position would then
be that it can guide us in choosing a good direction at the crossroad we are now.

It is claimed that the definition of rationality suggested here offers the
appropriate test for guiding us in this choice. If it is the case that most
people who violate the theory are embarrassed by realizing how they
behave, that is, if it is irrational for them to violate the theory, then
it makes sense to teach the theory to them, and to hope that they will
make better decisions in the future, according to their own judgment.
If, by contrast, most people seem to be unperturbed by their violation
of the theory, that is, it is rational for them to violate it, then there’s
little hope for the theory to be successful as a normative one, and we
should accept people’s behavior as a fact that’s here to stay, and that
should be incorporated into our descriptive theories to improve their
accuracy. [Gilboa, 2014]

The problem we see with this motivation is that it is not clear, at least to us, what
the rational choice theory that one should teach is supposed to be. What is the
theory whose violations are supposed to embarrass people, and whose violations
are hence supposed to be irrational? Classically, it would correspond to Savage’s
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axioms, but it is unlikely that Gilboa would refer to Savage’s theory, since in the
paper (as well as in other articles, see Chapter 2) Gilboa is ultimately arguing
against the necessity of a Bayesian foundation of rational choice.

We are thus left with the previous question: what is the theory of rational
choice that should be preached? As we have seen in Chapter 2, there are many
competitors on the market, and there are consequently different interpretations of
Gilboa’s words. One possibility would be to expose the subjects to all the possible
alternative theories. Once this has been done, we could either expect that all the
subjects would decide to behave according to the same theory, or that each subject
would pick his or her own favorite theory and always behave in accordance with
it in all future circumstances, or neither of the two, and most people will continue
to behave as before, in violation of each of the theories that have been taught. A
further possibility is that people would decide to act according to different theories
in different contexts. Since the first two possibilities seem highly unrealistic to us,
we opt for the last one. Specifically, we would try to hold that in general people
may follow different choice principles, depending on the decision situation at hand.
If this is the case, then decision makers would irremediably exhibit violations of
the theory, whatever the theory is. Decision makers do not stick to a single and
fixed decision criterion for all their life, but are able to switch from one to another.
Starting from a different approach, Gilboa, Postlewaite and Schmeidler have also
reached similar conclusion in a different paper ([Gilboa et al., 2009]):

We reject the view that rationality is a clear-cut, binary notion that
can be defined by a simple set of rules or axioms. There are various
ingredients to rational choice. Some are of internal coherence, as cap-
tured by Savage’s axioms. Others have to do with external coherence
with data and scientific reasoning. The question we should ask is not
whether a particular decision is rational or not, but rather, whether a
particular decision is more rational than another. And we should be
prepared to have conflicts between the different demands of rational-
ity. When such conflicts arise, compromises are called for. Sometimes
we may relax our demands of internal consistency; at other times we
may lower our standards of justifications for choices. But the quest
for a single set of rules that will universally define the rational choice
is misguided.

For concreteness, going back to the framework of the previous chapters, we
might expect agents to “use” maxmin expected utility in some cases and regret
minimization in others. Obviously, whenever they will use maxmin expected
utility they will possibly violate the axioms of regret minimization, and vice
versa, when they will use regret minimization they will violate maxmin axioms.

From these premises, the obvious question to answer would be: what makes
DM switch from one principle to another? Admittedly, what we are suggesting
is far from being a fully-fledged theory, but we can at least propose a tentative
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answer according to the guiding lights above. The switch might then be triggered
by the context of the specific decision situation faced by the agent, in a way that
has possibly been selected by evolution.

Context dependency is the key factor in our proposal, in two distinct and dif-
ferent uses of the term. Context dependency, as generally understood in decision
theory, is the dependency on the menu of alternative options. This is the kind
of context dependency that may generate intransitive choice patterns, and that
calls for representation theorems in terms of general choice correspondences, as
we have seen for the case of regret in Chapter 2. The second type of context de-
pendency refers instead to the dependency on the environment in which choices
take place, that is, the class of possible decision problems and interactions, and
the composition and nature of the agents in the population. The analysis of the
environment can improve the agents’ decision making, and can show that cer-
tain context-dependent principles can be advantageous, even for rather general
circumstances.

To be clear, we do not want to claim that agents are able to deterministically
associate decision criteria with specific decision situations in an optimal way.
Given the enormous number and unpredictability of possible choice situations
that an individual might face during her life, it is likely that the switch would not
be triggered by each single problem, but rather by some features that are shared
by subsets of possible choice situations.3

Either way, given a certain environment, different associations of (features of)
possible decision problems with choice principles will prove to be more or less
beneficial from an evolutionary point of view, and successful associations might
be selected accordingly. These considerations could then represent the conceptual
framework for a theory of rational choice in line with the two points listed above,
and with the general spirit of this work.

To conclude this section, notice that different modes of interaction between
principles would be compatible with such a theory. Two principles might be
competing, but they could also be combined, by weighting or nesting them, to
obtain a final decision. The sense of this last possibility should become clearer in
the next sections.

8.3 Relief Maximization

A popular book by Dan Ariely [Ariely, 2008], entitled Predictably Irrational, be-
gins with the case of an advertisement for a yearly subscription to the Economist .
The customer was offered the following three alternatives:

1. online subscription, $59;

3This perspective can also be related to considerations about cognitive limitations (see
[Zollman, 2008], [Bednar and Page, 2007], [Mengel, 2012], [Rayo and Becker, 2007]).
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2. print subscription, $125;

3. print-and-online subscription, $125.

The last two options are both priced at $125, there is no typo. The second
option is obviously dominated by the third. When Ariely wanted to test the
effect of including the dominated alternative (called “decoy option”), he asked
one hundred MIT students to choose one of the options in the menu and found
that the students decided as follows:

1. 16 students chose the online subscription;

2. 0 students chose the print subscription;

3. 84 students chose the print-and-online subscription.

Then Ariely removed the decoy option from the menu, and asked the students
again. He discovered that in this case 68 students opted for the online subscrip-
tion, while only 32 chose the print-and-online subscription. The mere existence
of a dominated option, that nobody opted for, caused a substantial difference in
the choice between the other two alternatives. The first chapter of his book is
full of similar examples, where the decoy effect is evidently playing a considerable
role in the individuals’ decisions. The general observation made by Ariely is that

[...] humans rarely choose things in absolute terms. We don’t have an
internal value meter that tells us how much things are worth. Rather,
we focus on the relative advantage of one thing over another, and
estimate value accordingly.

Relativity is (relatively) easy to understand. But there’s one aspect of
relativity that consistently trips us up. It’s this: we not only tend to
compare things with one another but also tend to focus on comparing
things that are easily comparable—and avoid comparing things that
cannot be compared easily.

These ideas show in the subscription case in that the decision is structured in a
way that makes the comparison between the second and third option straight-
forward, while it is not obvious how the first option compares with these two.
The Economist ’s marketing wizards aim at exploiting this asymmetry in order to
sell the subscription they want to sell. And it works: when the second option is
present, the third option apparently looks much better.

The case presented by Ariely is an example of decision under certainty, while
all this study was focused on decisions under uncertainty. Decoy effects, also called
asymmetric dominance effects, have been recently investigated in the context of
decisions under uncertainty, and in game theory in particular. In [Colman et al., 2007],
the authors conducted an experimental analysis on a set of two-player games with
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three possible actions, one of which (the decoy action E) is dominated by one
of the remaining two (action C), and with no other dominance relation between
the other actions. Their experiments were performed both on symmetric and
asymmetric games, with similar results. Given the single-population models we
have worked with so far, we are mainly interested in the symmetric case. The
symmetric games used in the experiments are the following.4

I C D E
C 40 20 60
D 60 40 20
E 20 0 40

II C D E
C 60 20 40
D 0 80 0
E 20 0 20

III C D E
C 80 20 40
D 40 80 0
E 60 0 20

IV C D E
C 60 20 40
D 0 80 0
E 40 0 20

V C D E
C 80 20 20
D 40 80 0
E 60 0 0

Players first had to play the 3 × 3 games, and later, as control condition,
they had to play the same games except that the dominated action E had been
deleted. In short, the findings were that asymmetric dominance effects were
significantly exhibited in most of the games. Games II and IV represented natural
exceptions, in the authors’ opinion, because of the payoff dominance of the (D,D)
equilibrium:

[...] the payoff dominance of the (D,D) outcome may have counter-
acted the influence of the strategic dominance of C over E to some
extent in the 3× 3 versions of these games by providing players with
a persuasive reason for choosing D. [...] The asymmetric dominance
effect seems most likely to emerge when the control version of a game
lacks a focal point on which players might expect to coordinate, pre-
sumably because asymmetric dominance provides a reason for choice,
but it can be overwhelmed by a strong focal point such as a payoff-
dominant equilibrium that offers an alternative reason for choice.

The last quote underlines that asymmetric dominance may provide a “reason for
choice”, which sounds something very similar to a choice principle. Interestingly
enough, we can formally express this reason for choice as a decision criterion like
those listed in Chapter 5:

• Simple Relief Maximization:

â(u,B) = argmax
a∈A

min
b∈B
{u(π(a, b))−min

a′∈A
u(π(a′, b))} .

4The symmetric games presented in [Colman et al., 2007] are actually six, but one of them
is uninteresting for our purposes, because it does not distinguish between any of the choice
principles considered here. As usual, since games are symmetric, it suffices to specify row
player’s payoffs.
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In parallel to the probabilistic version of maxmin and regret minimization, it is
also straightforward to define the probabilistic version of relief maximization:

• Expected Relief Maximization:

â(u,Γ) = argmax
a∈A

min
P∈Γ
{EP [u(π(a, b))]−min

a′∈A
EP [u(π(a′, b))]} .

To the best of our knowledge, the concept of relief has been formally introduced
in decision theory by Richard Jeffrey in [Jeffrey, 1990], and has gone unused since
then. On the other hand, the link between relief maximization and decoy effects is
apparent: the choice that would be determined by asymmetric dominance effects
is precisely the choice that maximizes simple relief in all of the above examples.

Is acting according to asymmetric dominance irrational? Well, first of all, it
can be easily checked that both simple and expected relief maximization violate
the independence of irrelevant alternatives, and that consequently both violate
Savage’s axiom P1 (see Chapter 2).

Second, apparently decoy effects are not held in the highest regard by behav-
ioral economists either. In this respect, Ariely writes

This is not only irrational but predictably irrational as well.

According to the subjectivist view, however, it might also be fully rational to act
in accordance to relief maximization. Suppose a person exhibits the decoy effect
in the subscription example above, i.e., she would choose the print-and-online
option when the dominated option is also available, and the online subscription
otherwise. Shall this person feel embarrassed by her choices? It is indeed possible
that she might feel embarrassed by violating the independence of irrelevant alter-
natives, but it is also possible that she would defend her actions in light of the
reason for choice provided by relief-maximizing considerations. The same would
hold for a game-theoretic context too. In the presence of the dominated option,
DM has a reason for defending her choice, and a possible choice principle that she
could appeal to. From a subjectivist perspective, asymmetric dominance would
be irrational for a decision maker that acts, or wants to act, in accordance to
Savage’s axioms (or, equivalently, maximization of expected utility), but it would
be perfectly rational for an agent that wants to maximize relief.5 From this point
of view, asymmetric dominance effects may or may not be rational, depending on
the choice principle motivating DM’s choices.

According to point 2 of our tentative guiding lights, however, the qualities and
the rationality of a choice cannot be evaluated independently of the environment
in which it takes place. This approach would then recommend an ecological and

5The same would hold for regret minimization. As a personal consideration, when I look,
for example, at Stoye’s axiomatization of regret minimization as opposed to Savage’s axioms, I
don’t feel disgusted by Stoye’s axioms. On both sides, there are axioms that seem to me very
reasonable, and others less so.
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evolutionary analysis of relief maximization as a choice principle. What would
evolutionary selection have to say about relief maximization?

8.4 From an Evolutionary Point of View

Relief maximization as choice principle is rather weak. Its weakness lies in the
fact that relief has no bite unless there is in the decision problem an action that is
a never-worst-reply. In problems without such actions, simple relief maximization
would be indifferent between all alternatives available. For a decision criterion,
this is intuitively a clear shortcoming, that should somehow manifest also in
evolutionary contexts and contests.

Consider, for instance, the game of life of Chapter 5 where all games are 2× 2
games. In such an environment, relief maximizers will perform very poorly, both
against maximinimizers and against regret minimizers. Indeed, relief maximizers
would be indifferent (and, consequently, would choose at random) in all games
apart from those where one of the two actions strictly dominates the other, which
is also the behavior prescribed by both maxmin and regret minimization in all
games with a strictly dominant action.

In general, relief maximizers would lose the evolutionary competition against
both maximinimizers and regret minimizers in many environments that are not
explicitly tailored to relief maximization.

To have an idea of this, consider an environment consisting of the five games
of the previous section, and suppose for the sake of the example that each of
them has the same occurrence probability. Suppose, moreover, that the only two
types in the population are the maximinimizers and the relief maximizers. The
expected fitness in the corresponding game of life is given by the next table (in
the row player’s perspective).

Mm, Γ̃ Rel, Γ̃

Mm, Γ̃ 64 66
Rel, Γ̃ 62 64

There, relief maximization (and, hence, asymmetric dominance effects) turns out
to be strictly dominated by maxmin as a choice principle. The only evolutionarily
stable state will then be a monomorphic population of maxmin players.

One might now wonder why asymmetric dominance effects are still consis-
tently observed in actual behavior, given that agents who fall prey to decoys
should go extinct in many circumstances. There are two possible explanations.
The first is that relief-based reasoning survived as a side effect of the evolution-
ary success of other context-dependent principles, such as regret minimization. In
the case of regret minimization, context dependency is the key of its evolutionary
advantage. It is possible that human beings generally retained a propensity for
choosing in a context-dependent manner (by comparing options with each other),
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that is evolutionarily beneficial when implemented in terms of regret, but much
less beneficial when implemented in terms of relief. This direction would be in
line with the previous observation by Ariely that “humans rarely choose things
in absolute terms.” The human attitude of judging things relative to the context
might then be much more rational than it is normally believed in the literature.
Not all context-dependent principles are equally good, though.

A second option is to ponder on the possibility that different choice principles
could also be mixed. Point 1 of our guiding lights excludes the idea that agents
use the same decision criterion in all possible circumstances. As outlined before,
different principles may then be triggered by different (features of) choice situa-
tions. But agents might also combine, in a lexicographic or in a weighted way,
different principles in the same decision problem.

8.5 Nested and Weighted Principles

It might be the case in some decision situations that two or more actions are
equally optimal according to a certain decision criterion. How will DM break
symmetry and choose between them? In Chapter 5, we assumed that DM will
simply pick one at random, but an alternative would be to reconsider the equally
optimal actions in the light of a different principle, i.e., to use a second principle
to break the tie.

Let us consider the previous five games again.6 But notice that, since in all
those games the Nash equilibria are in the diagonal, they somehow provide an
incentive for coordination between the players. To have a more diverse environ-
ment, let us also consider their “anti-coordination” versions, where the first two
rows are swapped around.

I’ D C E
D 60 40 20
C 40 20 60
E 20 0 40

II’ D C E
D 0 80 0
C 60 20 40
E 20 0 20

III’ D C E
D 40 80 0
C 80 20 40
E 60 0 20

IV’ D C E
D 0 80 0
C 60 20 40
E 40 0 20

V’ D C E
D 40 80 0
C 80 20 20
E 60 0 0

Two remarks are in order here. Firstly, notice that E is still dominated by C,
and no other dominance relations exist in the games, as before. So C is still the
relief maximizing action in all games. Secondly, with respect to the description
of their experiment, [Colman et al., 2007] say:

6Remember that we didn’t choose those games. The selection comes from
[Colman et al., 2007].
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The dominant strategies are shown in row and column C and the dom-
inated strategies in row and column E, although in the experiment,
to control for positioning and labeling effects, strategies were rotated
systematically so that they appeared equally frequently in all three
rows and columns.

The authors seem to assume that the rotation of actions in the matrix does not
affect the players’ choices, but this is not obvious at all to us. Consider games II
and II’ for example. In game II, (C,C) and (D,D) are Nash equilibria of the game,
while in game II’ the Nash equilibria are (C,D) and (D,C). The coordination
problem of game II looks easier to solve than the anti-coordination problem of
game II’. In particular, only in game II the authors can appeal to the payoff-
dominance justification for equilibrium (D,D), but not in game II’. However,
they do not seem to distinguish between game II and its rotated version II’ in
their analysis.

Either way, let us get back to our evolutionary analysis. Suppose a popula-
tion of maximinimizers and regret minimizers is surrounded by an environment
composed of the previous ten games, and each game has the same probability of
occurring. The expected fitness of the two types in the corresponding game of
life is given in the following table.

Mm, Γ̃ Reg, Γ̃

Mm, Γ̃ 44 44
Reg, Γ̃ 46 46

This is another instance of what we have seen in Chapter 5: maxmin is strictly
dominated by regret minimization. Let us now introduce two more sophisticated
variants of maximinimizers and regret minimizers, that first evaluate choices ac-
cording to one of the two principles, and then proceed to a second round of
evaluation of the surviving actions in terms of relief. So, typeMm+ first discards
all actions that do not maximize the minimum, and then, among the surviving
actions, discards all those that do not maximize relief. The resulting expected
fitness of the four types is specified by the next table.

Mm, Γ̃ Mm+, Γ̃ Reg, Γ̃ Reg+, Γ̃

Mm, Γ̃ 44 44 44 44
Mm+, Γ̃ 42 42 42 42
Reg, Γ̃ 46 46 46 46
Reg+, Γ̃ 46 46 46 46

Reasoning in terms of relief, in combination with other principles, is not neces-
sarily detrimental to the evolutionary fitness. When paired with maxmin, relief
minimization performs rather poorly, but when paired with the other context-
dependent principle, regret minimization, relief reasoning can survive the evolu-
tionary competition. In the example considered, the evolutionarily stable states
are all population states with types Reg and Reg+ only.
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8.6 The Power of Context Dependency
The fact that humans do not usually choose in absolute terms, but rather evalu-
ate options in comparison with each other, is not a new discovery, and context-
dependent choices have been extensively studied in behavioral economics (see,
among others, [Kahneman and Tversky, 1979], [Tversky and Kahneman, 1974],
[Tversky and Kahneman, 1981], [Tversky and Simonson, 1993], [Shafir et al., 1993]).
However, context-dependent effects have never had a highly regarded reputation
in decision theory. They are normally viewed as a consequence of human imper-
fect decision making, and are deemed as irrational phenomena, maybe predictably
irrational. In this respect, [Tversky and Kahneman, 1981] for example write:

The definition of rationality has been much debated, but there is gen-
eral agreement that rational choices should satisfy some elementary
requirements of consistency and coherence.
[...] Because of imperfections of human perception and decision, how-
ever, changes of perspective often reverse the relative apparent size of
objects and the relative desirability of options.

A famous case study that Tversky and Kahneman present in their paper is about
two alternative programs to combat a disease which is expected to kill 600 people.
The two alternatives were given as follows:

• if Program A is adopted, then 200 people will be saved;

• if Program B is adopted instead, then there is a probability of 1
3
that 600

people will be saved, and a probability of 2
3
that nobody will be saved.

When they asked a first group of participants in the experiment what they would
have opted for, 72% of the participants chose Program A, and 28% chose Program
B. Next, they presented a second group of participants the same problem, except
that it was phrased as follows:

• if Program C is adopted, then 400 people will die;

• if Program D is adopted instead, then there is a probability of 1
3
that nobody

will die, and a probability of 2
3
that 600 people will die.

Most of the participants from the second group opted for Program D (78%), while
only 22% chose Program C.

When we require coherence and consistency as necessary attributes of ratio-
nality, the results of the experiment cannot be justified as rational. As they notice
in the paper, the framing effect of phrasing the problem in terms of losses (deaths)
rather than gains (survivals) should not affect the people’s choice according to
standard models of rationality. As a side comment, to check which of the two
aspects prevails, it would be interesting to test people’s reaction to a third version
of the problem:
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• if Program E is adopted, then 400 people will die and 200 will be saved;

• if Program F is adopted instead, then there is a probability of 1
3
that nobody

will die and everyone will be saved, and a probability of 2
3
that 600 people

will die and nobody will be saved.
Unfortunately, this experiment is not reported in [Tversky and Kahneman, 1981].
You can still ask yourself what you would choose in this case.

In general, Tversky and Kahneman describe these phenomena as “shifts of
preference”. Differently from the evolution of preference literature that we have
seen in earlier chapters, by preference they mean DM’s observed action choices,
and not the subjective utilities over outcomes. But what the two different formu-
lations are suggesting more specifically is, perhaps, a shift of decision criterion.
Again, rather than a general theory, the reader should consider this just as a
suggestion for a possible interpretation of the experiment to be further tested in
the future.

The first formulation of the choice situation would then make DM focus on
the perspective of saving at least 200 persons. The decision problem could thus
be represented as pictured in the following table.

1
3

2
3

A 200 200
B 600 0

Instead, the second formulation of the problem could trigger a more regret-
based perspective on the problem, and suggest a reading of the situation possibly
close to the next table.

1
3

2
3

C -400 0
D 0 -200

It is possible that DM, when faced with questions of life and death like this,
could have a propensity for using a security strategy, i.e., some security reasoning
based on worst-case considerations, such as simple maxmin, simple regret min-
imization, or simple relief maximization. But then the best worst-case scenario
(and the corresponding action) would be different, depending on the specific se-
curity principle used. According to this possibility, the first formulation would
trigger the use of maxmin principles, while the second formulation would favor
regret-minimizing considerations.

One of the main points stemming from the results in previous chapters is
that context dependency should not necessarily be viewed as irrational. Regret-
minimizing preferences are context-dependent, but nevertheless are able to out-
perform context-independent choice principles, like maxmin, in considerably gen-
eral circumstances. Among context-dependent criteria, though, adopting the ap-
propriate perspective when comparing available options is crucial. Some perspec-
tives are more beneficial than others, as highlighted by the examples on relief.
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Nonetheless it would be better, at least from an evolutionary point of view, to
distinguish between different context dependencies rather than rejecting them as
a whole in the name of some essential axiom of rationality.

Clearly, we do not adopt the approach of judging what is rational (exclusively)
based on the acceptability, or acceptance, of a system of axioms. This is mainly
because of two sorts of considerations. First of all, we do not want to constrain
the agent’s decision making to any fixed decision criterion. We believe it is com-
mon and perfectly admissible to shift from a decision criterion to another given
different circumstances, so that we cannot link the rationality of an agent to any
fixed axiomatic system.

The second consideration is related to evolutionary arguments. Suppose there
is a large population of maximinimizers and regret minimizers facing a set of
possible interactions (and assume for simplicity that the games that are played in
the population have monetary payoffs, and that fitness corresponds to money).
Suppose there is an external observer, an analyst named Charles, who has two
good friends in the population, Ann and Bob. As an analyst, Charles decides
to analyze the situation. Given the relevant information available, i.e., given the
games that might possibly occur and given what has been observed about the
composition of the population so far, he realizes that choosing according to re-
gret minimization could actually be beneficial. Charles shows his two friends the
models that led him to this conclusion (models like the games of life introduced
before for example, or something else), and Ann and Bob agree that the assump-
tions about the environment and the population composition in Charles’ models
are reasonable and in line with their knowledge about the situation. Finally, after
listening to his arguments, they are persuaded that Charles has good reasons for
arguing in favor of regret minimization. But then their common friend David
comes along, and strongly discourages Ann and Bob to act in accordance with
regret minimization, because it is not transitive, it can induce preference cycles,
at the risk of being money-pumped, etc. David manages to convince Bob to
avoid regret minimization and to use, say, maxmin instead, while Ann decides
to stick to regret minimization. David’s analysis is surely correct, regret-based
principles can create cycles, and can be money-pumped, while maxmin generates
a preference ranking of options that is independent of the available alternatives.
But, for the sake of the argument, let us suppose that Charles’ analysis was also
correct: given the environment, regret minimization turns out to be more fruitful
than maxmin. Consequently, what will happen is that Bob will act according to
maxmin and avoid possibly intransitive choices, while Ann will choose according
to regret minimization and will be richer at the end of the day. Now, if Bob pri-
marily cares about money, shouldn’t he shift to regret minimization after realizing
that Charles was right in his analysis?

These examples lead us to considering which arguments are normatively more
powerful. If both Ann and Bob primarily cared about their personal wealth (or
evolutionary fitness), would the axiomatic argument be more compelling than
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the evolutionary argument from a normative point of view? Ann is becoming
richer, while Bob is firmly avoiding any possible violation of transitivity: is it
then more likely that Ann will be persuaded that she should start using maxmin,
or that Bob will be persuaded that he should start using regret minimization?
The second, in our opinion. Or at least, if we didn’t observe Bob switching to
regret minimization, we might have to assume that what he primarily cares about
is transitivity, and not final wealth or fitness.

Suppose that there is a change in the environment, and according to Charles’
analysis maxmin will now bear greater wealth. Between maxmin and regret
minimization, Charles then suggests his friends Ann and Bob to play according
to maxmin. Of course Charles can be wrong, but he was right in his previous
suggestion, and let us suppose that Charles’ analysis is again correct. Shouldn’t
Ann and Bob switch to the maxmin principle then? Or shall they ponder over
different axiomatic systems and opt for the choice principle with nicer axioms?
Assuming that the environment changed and that Charles is right, we maintain
that they should switch. In other words, if agents care about the final amount of
money, we would suggest to act in accordance with regret-minimizing reasoning
when playing the Traveler’s dilemma, but to adapt to transitive criteria, such
as maxmin, in the presence of possible money pumps. Would it be irrational to
change from a criterion to another depending on the structure of the decision
problem and on the environment?

Notice, however, that the appeal to evolutionary fitness is not even necessary
for the previous argument.7 Consider for example the results of Chapter 5, and
suppose that the function Φ is no longer the fitness function, but just a subjective
utility over outcomes. In such a situation we would have a population of agents
with the same subjective utility and different choice principles. Even if a player
were only interested in the amount of personal happiness Φ achieved at the end
of the day, then Charles would advise to adopt regret minimization instead of
maxmin as decision criterion in the context of the game of life defined there.
Indeed, for the circumstances described in Chapter 5, the expected subjective
happiness (independent of the evolutionary fitness) of a regret minimizer would
be superior than that of a maximinimizer.

As a final remark, a parallel and complementary research direction is to in-
vestigate the evolution of theory of mind. Theory of mind (ToM) is the ability
of attributing mental states, such as beliefs and desires, to other agents, and it
is an essential part of strategic reasoning. Agents with ToM level-0 act as if they
have no beliefs or desires, level-1 agents instead form a belief over the co-player’s
actions and choose a best reply to that belief, and hence they will avoid strictly
dominated actions. Level-2 agents assume that the co-player is of level-1 and
does not play dominated actions, and therefore they will only play actions that
survive two iterations of elimination of strictly dominated actions. Level-3 agents

7I am indebted to Tommaso Orlando for this observation.
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think that the co-player is a level-2 agent, and so on (see [Camerer et al., 2004],
[Ho et al., 1998], [Stahl and Wilson, 1994], [Stahl and Wilson, 1995]).

Apparently, humans did not develop the ability of iterating more than 2-
3 times the elimination of dominated actions (e.g., [Beard and Beil, 1994] and
[Ho et al., 1998]). This might have two explanations: either they cannot rea-
son higher than 2-3 levels of theory of mind, or they don’t believe that the co-
player can reason more than 1-2 levels. Both explanations may be supported
by ecological arguments. [Stahl, 1993] for example shows that the survival of
super-intelligent players, with the ability of reasoning up to any level of the-
ory of mind, can be questioned from an evolutionary perspective. If higher
levels of reasoning are not costless, then evolution could select against super-
smart agents. Other recent results suggest that reasoning more than one level
higher than your co-player may be self-defeating in strategic interactions (see
[Mohlin, 2012], [de Weerd et al., 2013]). The best position would be to outdo
your co-player by exactly one level. Taken together, these results point again
to the relevance of the environment: agents with the highest level of ToM would
probably be outperformed by agents whose level is only one step above the major-
ity of the population. Similar to the case of choice principles, the performance of
a specific level of ToM is contextual and essentially depends on the environment.

8.7 Conclusion

We do not have conclusive evidence to support the intuitions advanced in this
chapter, which are destined to simply remain a modest proposal for now. But we
hope we have at least suggested some reasons to take into consideration, if only
to reject it in the future, a more ecological and less axiomatic approach to the
normative debate on the rationality of decision criteria.

With this perspective, we also share with Gilboa the wish to better integrate
normative and descriptive accounts of rationality. Indeed, if previous considera-
tions support a normative reading of this proposal, it is also reasonable to expect
that successful principles (or successful associations between principles and con-
texts) had a higher chance to survive, while deleterious principles and unfortunate
associations should have gone extinct. From a descriptive point of view, we could
then presume that the observed behavior shall somehow reflect the results of such
a natural selection. By studying the contexts and environments in which agents
developed their decision making, we may hope to also improve the descriptive
accuracy of our theories of rational choice.

Despite the scarce interest and low regard demonstrated towards context de-
pendency, in the sense of dependency of action choices on both the menu of avail-
able options and on the environment, the success of an agent’s decisions seems to
be essentially affected by these two dimensions of contextuality. Choice principles
that evaluate options in comparative rather than absolute terms can be favored
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by evolutionary selection in many general circumstances. The appeal to different
principles on the basis of the analysis of the specific environment and decision
situation may also be beneficial to the agent’s decision making. Experimental re-
sults at odds with standard theories of rational choice might be better understood
if interpreted as the behavior resulting from a more context-dependent decision
making, that evolution could have positively selected, without any consideration
about coherence, consistency, or acceptability of different systems of axioms.



Chapter 9

Conclusion

When we started researching on the issue of rational choice, our aim was initially
to find a better principle than Savage’s maximization of subjective expected util-
ity, which still constitutes the standard definition of rationality in economics. A
predicament immediately encountered in pursuing our goals was that it is not
even established what the proper ground is on which one should start building
the very first notion of rationality. Should rationality be investigated from an ax-
iomatic perspective, by proposing and debating over different systems of axioms?
Should it be considered instead from an evolutionary point of view, in terms of
the ecological rationality of different choices? Does it appertain to psychology, in
the sense of describing the rationale behind the agent’s decisions? We straight-
away found ourselves in an impasse: different bases have been proposed for the
foundation and the study of the concept of rationality without ever reaching a
consensus on where one should even begin the investigation.

In Chapter 2, we presented and extensively discussed two of the possible
approaches to rational choice. Since we think of the issue of rationality primarily
as normative (as explained in Chapter 1), we left aside any consideration about the
psychology of reasoning,1 and we directed our attention to the dualism between
the axiomatic approach and the ecological approach.

Savage’s classic work obviously belongs to the axiomatic approach. His ax-
ioms, as we have seen, have been attacked mostly from two different perspec-
tives, that can be called an axiomatic perspective, and a behavioral perspective.
Axiomatic attacks came from those who tried to reject (mainly with normative
arguments) one or more of Savage’s axioms, and to propose alternative axioms for
rationality. This is the case, among others, of [Gilboa and Schmeidler, 1989] and
[Schmeidler, 1989]. According to this position, Savage’s axioms and subjective ex-
pected utility maximization represent an unsatisfactory norm for rationality, and
different systems of axioms and better decision criteria are needed. Behavioral at-
tacks, on the other hand, are often descriptive, and criticize SEU theory because

1But see also [Stenning and van Lambalgen, 2008] for a detailed study in this direction.
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it is systematically at odds with decision makers’ behavior. This is the case, for
instance, of [Allais, 1953], [Ellsberg, 1961], and [Kahneman and Tversky, 1979].

Our approach is different. We didn’t want to argue for a specific system of
axioms over another. Neither did we want to object against some specific axioms,
or choice principles, from a descriptive perspective, because they would be in
contradiction with observed behavior.2 We opted instead for a third, less well-
trodden path: the study of the ecological rationality of different choice principles.

The idea of investigating the ecological rationality of choices traces back at
least to the work by Herbert Simon, and has been further developed by Gigerenzer
and colleagues (see Chapter 2). Here we proposed a general model, the game of
life, to allow the ecological analysis and the evolutionary comparison of classic
choice principles coming from the literature in decision theory. Maximization of
subjective expected utility is just one among many, and, in a sense, a special case
for situations where uncertainty is represented in a probabilistic way. One of the
important results is then that if we don’t buy the assumption that all uncertainty
is and must be probabilistic, regret-based choice may prove to be evolutionarily
successful and ecologically beneficial in various environments. Furthermore, as
specified also in Chapter 5, even if we want to advocate that all uncertainty
should be quantified in probabilistic terms,3 regret-based principles are never
disfavored by evolutionary selection in all scenarios considered here.

In the end of all this research, however, we reached the conclusion that the
goal we were aiming at when we started is actually misleading. Indeed, the no-
tion of ecological rationality hinges on the specific environment that we take into
account, and it is essentially relativistic in this respect. The same principle can
be very good or very bad, evolutionarily speaking, depending on the surrounding
environment, which consists of at least two aspects: the (structure of the) deci-
sion problems an agent has to face, and the composition of the population the
agent is part of. From this perspective, the quality of a choice is fundamentally
related to the environment, and not objectively given a priori. And so is the
rationality of different choice principles considered here. The notion of a “better
principle” is hence meaningless in itself, and it should rather be replaced by the
more contextual notion of a “better principle, given a certain environment”.

Finally, this work still leaves many open issues for further developments, such
as the ones sketched in Chapter 8. One of those that we consider very interesting
and urgent for this program is the investigation of possible shifts from a decision
criterion to another. In our opinion, it is a fact that agents do not exclusively
stick to the same principle in all decision problems throughout their life. Rather,
they are able to switch from one criterion to another, and, we conjecture, the shift
may be triggered by the context and the structure of the specific decision problem

2Here we just take as a matter of fact that SEU maximization is descriptively inaccurate as
decision criterion.

3We already blatantly disagreed with this position all along.
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in a way that reflects evolutionary success. This thesis only sketched a possible
theory along these lines (see Chapter 8), and wishes to see more advancements
in this direction.

Moreover, the model introduced here allows the comparative study of other
features traditionally examined in decision theory, such as different attitudes
towards risk and towards ambiguity, and different levels of theory of mind, as
already anticipated in Chapter 8. The combination of all this factors and its
evolutionary analysis might shed new light on how we (should) make choices in
different contexts.
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Abstract

This thesis is centered on the issue of rational choice. Traditional decision-
theoretic arguments aim at providing axiomatizations of different norms for deci-
sion making, and evaluate their rationality on the basis of the normative strength
of their axiom systems.

The approach taken in this dissertation is different. Instead of arguing in
favor or against the normativity of some system of axioms, we decided to take a
less well-trodden path: the study of the ecological rationality of different decision
criteria.

To this end, we extended the standard single-game models used in evolutionary
game theory to include a multitude of different interactive decision problems. We
consider the introduction of such a multi-game model, called the game of life, a
principal contribution of this work in itself, in that it allows to lift the focus of the
investigation from simple behavior to general behavior-generating mechanisms.

The main results of this thesis concern the evolutionary competition between
different ways of making choices in rich and complex environments. Classic deci-
sion criteria are compared from an ecological point of view, with respect to their
evolutionary fitness, and regret-based principles prove to be especially beneficial
in many (interactive) decision contexts.
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Samenvatting

Dit proefschrift richt zich op rationele keuze. Traditionele argumenten in de
besluitvormingstheorie streven ernaar om verschillende normen voor besluitvorm-
ing te axiomatiseren, en evalueren de rationaliteit hiervan op basis van de nor-
matieve kracht van de resulterende axiomasystemen.

In dit proefschrift gebruiken we een andere aanpak. We argumenteren niet
voor of tegen de normativiteit van een bepaald axiomasysteem. In plaats daar-
van kiezen we voor een minder vaak gebruikte aanpak: het bestuderen van de
ecologische rationaliteit van verschillende beslissingcriteria.

Om dit te doen hebben we de gebruikelijke single-game-modellen, die gebruikt
worden in de evolutionaire speltheorie, uitgebreid zodat ze een groot aantal ver-
schillende interactieve beslissingsproblemen omvatten. Het introduceren van een
dergelijk multi-game-model, genaamd the game of life, beschouwen we als een
belangrijke bijdrage van dit werk, omdat dit het mogelijk maakt om de focus van
het onderzoek te verleggen van eenvoudig gedrag naar algemene mechanismen die
gedrag voortbrengen.

De voornaamste resultaten van dit proefschrift gaan over de evolutionaire
competitie tussen verschillende manieren om keuzes te maken in rijke en complexe
omgevingen. We vergelijken klassieke beslissingscriteria vanuit een ecologisch
standpunt, aan de hand van hun evolutionaire fitness. Principes die gebaseerd
zijn op spijt blijken in het bijzonder van pas te komen in veel (interactieve)
beslissingscontexten.
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