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Chapter 1
Introduction

1.1 Motivation

Human language is unarguably the most complex system of communication. Lan-
guages in the world consist of large vocabularies of words, which are combined to
express complex meanings in a variety of syntactic patterns that allow for unlimited
combinations. It is not surprising then that one of the questions that prominently occu-
pies linguists is how humans can learn a new language.

Imagine the task from the perspective of a young infant attempting to learn her first
language. Surely she is exposed to language in her environment (directed to her or
not), but in order to go from the speech input to the meaning it conveys, she needs to
succeed at a great number of subtasks. To begin with, speech is mostly continuous, so
the learner needs to identify the pieces it is composed of; in other words, she has to
segment the input into combinatorial meaningful units such as words and morphemes.
This is in itself a complex problem, since the infant needs to identify first which of
the available cues (stress patterns, prosodic contour, statistical information) are rele-
vant for identifying word boundaries, and how to integrate them. But in order to also
become productive with language, the learner needs to find out which rules govern the
particular combinations of words and morphemes that she encounters. Thus, the infant
must learn to generalize to grammatical novel productions; otherwise she could not
hope to utter linguistic productions that she had not heard before. Rules are abundant
in language, and appear at different levels, such as phonology, morphology and syntax.
For instance, infants need to learn the constraints of their language regarding lexical
categories, word order, morphological agreement, verb argument structure, etc.

Learning a language seems to be a greatly complicated endeavour, to the extent that
many linguists have shared the intuition that linguistic input alone could not suffice to
derive the right inductions (an argument known as Poverty of the Stimulus, [Chomsky,
1965, 1980]). From this perspective, it is not surprising that one of the most influential
ideas on the second half of the past century was that infants must be genetically en-
dowed with rich domain-specific linguistic knowledge (a Universal Grammar, Chom-
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2 Chapter 1. Introduction

sky [1965, 1986], Pinker [1994], Jackendoff [2003]). Under this theory, the process
of language acquisition was diminished, since the role of experience was limited to
discover the values of the parameters of a greatly specified set of linguistic principles.
This idea seemed to be supported by a well-known mathematical proof that shows that,
in the absence of a priori constraints and negative evidence, linguistic input does not
suffice for converging to the correct inductions [Gold, 1967]. Thus, for a long time,
research on language acquisition assumed a very constrained learner, and since the
role of experience was so limited, it became largely focused on the study of linguistic
product rather than processing [Clark, 2009].

However, Gold’s theorem is consistent with other explanations for the learnability
of language. For instance, domain-general (rather than linguistic-specific) constraints
on the hypothesis space could also facilitate the acquisition of correct grammatical pat-
terns [Elman, 1998], while the absence of certain patterns in the input could be used as
negative evidence [Rohde and Plaut, 1999, Regier and Gahl, 2004, MacWhinney, 2004,
Clark and Lappin, 2010]; additionally, it should be taken into account that language has
been shaped through cultural evolution to meet learnability pressures [Zuidema, 2003].

Syntactic theories based on this idea of strong nativism were also challenged with
empirical research that employed psycholinguistic experiments and child-directed cor-
pora (e.g. Lieven et al. [1997], MacWhinney [2000]), giving rise to alternative syn-
tactic theories that put more emphasis on acquisition through language use [Fillmore
et al., 1988, Goldberg, 1995, Croft, 2001, Tomasello, 2001]. In this dissertation, I fo-
cus on a particular class of psycholinguistic experiments that, by employing manually
constructed artificial languages, led to the discovery that infants are more powerful
learners than initially suspected, and thus strongly revitalized the interest for investi-
gating the basic mechanisms behind language learning.

The experimental paradigm that I refer to is known as Artificial Language Learn-
ing (ALL; also known as Artificial Grammar Learning, or AGL). First proposed by
[Reber, 1967], ALL experiments are characterized by the use of artificially constructed
languages, based on a (typically small) set of “words” that have been carefully cho-
sen. These word units are then combined, normally with the use of a pseudo-random
procedure, such that they form a sample of well-formed “sentences” of the artificial
language. This sample is used as the familiarization stimuli in experiments, generally
played as a speech stream with controlled acoustic properties (e.g. syllables can be
ensured to have the same syllable length, prosodic cues can be removed, etc.). In the
test phase, subjects are normally tested with positive and negative stimuli, and their
responses indicate whether they picked up on the properties that define the words or
sentences in such language.

One of the questions addressed by ALL experiments is segmentation of a contin-
uous speech stream into word units. Saffran et al. [1996a] famously showed that 8
month old infants are able to segment the words of a synthesized speech stream solely
on the basis of distributional information, such as frequency of co-occurrence or tran-
sitional probabilities (and the same goes for adults [Saffran et al., 1996b]). Later,
Aslin et al. [1998] showed that transitional probabilities alone sufficed for segmen-
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tation, while other studies revealed that stress patterns can also guide segmentation
[Thiessen and Saffran, 2003, 2007]. This skill is triggered (both in children and adults)
even when attention is hindered [Saffran et al., 1997]. Further studies investigate how
adults respond to different manipulations of the artificial language, showing that longer
sentences and greater vocabulary size hamper segmentation, while word repetition and
Zipfian (skewed) distribution of words facilitate it [Frank et al., 2010, Kurumada et al.,
2013].

Other studies have addressed the question of how language learners learn grammar-
like rules and apply them to novel items that they have never encountered. One of the
best known studies [Marcus et al., 1999] reports that 7-month-old infants generalize to
novel items that are consistent with an identity relation between syllables (e.g. ABA or
ABB patterns). Infants also generalize rules over word order at 12 month age [Gomez
and Gerken, 1999]. In the case of adults, it has been shown that not all generalizations
are equally easy to learn: some rules are only detected when the relevant syllables
appear in edge positions [Endress et al., 2005], and repetition-based rules seem to be
more accessible than ordinal rules [Endress et al., 2007].

Other studies focused on dependencies between non-adjacent items, which did not
necessarily involve repetitions. For instance, Gómez [2002] find that both 18-month-
olds and adults learn non-adjacent dependencies with greater success when they are
exposed to input with more variability in the intermediate elements. Adults can track
non-adjacent dependencies between consonants (with intervening unrelated vowel) and
vowels (with an intervening unrelated consonant), but they fail to do so over syllables
[Newport and Aslin, 2004]. Yet other studies have investigated how manipulations of
a continuous speech stream (such as the insertion of pauses) affect segmentation and
generalization based on non-adjacent dependencies [Peña et al., 2002, Onnis et al.,
2005, Endress and Bonatti, 2007, Frost and Monaghan, 2016].

ALL is moreover not limited to human participants: it has been used with non-
human animals, trained either with human speech or on vocalizations of their con-
specifics. Results show that rats are able to segment a human speech stream based on
co-occurrence frequency, although not transitional probabilities [Toro and Trobalón,
2005]; a similar result has been found for cotton-top tamarins [Hauser et al., 2001],
while zebra finches benefit from the presence of pauses in the input to recognize co-
herent chunks of songs of their conspecifics [Spierings et al., 2015]. Likewise, the
study on non-adjacent dependencies by Newport and Aslin [2004] was replicated with
cotton-top tamarins [Newport et al., 2004], who exhibited certain stimulus-dependent
differences, and rats [Toro and Trobalón, 2005], who showed no evidence of learning.

As for generalization, a version of the Marcus et al. [1999] study with birds shows
that budgerigars can transfer XXY and XYX structures to novel items, while zebra
finches only learn positional information [Spierings and ten Cate, 2016]. Much of
animal research in ALL has been devoted to study whether animal species can learn
syntactic rules that are beyond finite-state grammars. Fitch and Hauser [2004] show
that tamarins can discriminate sequences from a finite-state language such as (AB)n,
but fail to do so for the context-free AnBn language (while humans succeed in both).
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Starlings initially seemed to learn context-free grammars [Gentner et al., 2006], but it
was later shown that the birds may have used alternative strategies [Van Heijningen
et al., 2009]. Similarly, bengalese finches showed discrimination for sentences pro-
duced from a language with center-embedding [Abe and Watanabe, 2011], but acoustic
similarity between training and test items could have guided the results [Beckers et al.,
2012].

The abovementioned studies are just a small sample of some of the main results
in ALL, but illustrate that these experiments are immensely helpful for characterizing
many different aspects of language learning. That said, it turns out that in each of these
experiments, when we look at the details, it is far from trivial to interpret these results.
Precisely because the experiments address very different and concrete aspects of lan-
guage, such as non-adjacent relations and segmentation, but it is not obvious how these
aspects relate to each other. More generally, it is not easy to identify the properties of
the cognitive mechanism(s) behind all the results. In order to progress towards a unified
theory that explains these empirical data we need to complement the experimental re-
search with a methodology that allows for testing multiple alternative hypothesis under
different scenarios. I argue that the methodology we need is computational modelling.

The goal of this dissertation is to use the methodology offered by computational
modelling to advance the current knowledge on the cognitive mechanisms behind ALL
experiments. Thus, after providing the necessary background knowledge about this
methodology, the coming chapters present different models that I have designed and
experimented with, and illustrate the findings derived from these computational simu-
lations. I now present in more detail the outline of the coming chapters.

1.2 Outline
Part of the research carried out in this dissertation involved conceiving a conceptual
framework that identifies the main learning mechanisms involved in the experiments
we are concerned with. Our framework proposes to characterize such process as a
3-step approach, concerning: (i) memorization of segments of the auditory input, (ii)
determining the propensity to generalize, and (iii) generalization to a subset of novel
input. The novelty of this conceptualization lies on linking steps (i) and (iii) –whose
existence is widely agreed upon, regardless of concerns on whether they rely on the
same or different computational principles– with the proposal of (ii). Thus, the 3-step
approach is explained in detail in chapter 5 (when we propose and model step (ii)), but
we use it nonetheless as the overarching structure of this dissertation.

Hence, the chapters in this dissertation are organized are follows:

X ] X

Chapter 2 This chapter provides the necessary background to situate the work in this dis-
sertation in the broader context of computational cognitive modelling, and it
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specially targets readers without much prior knowledge on the topic. It intro-
duces what is a computational model, to then outline how computational models
are used in the study of cognitive mechanisms. It then summarizes the main
modelling traditions in cognitive modelling, and discusses how can we assess
whether a model is a good explanation of a cognitive process.

] ] ]

Part I: Segmentation
Chapter 3 The goal of this chapter is to propose an explanation of the mechanism respon-

sible for segmentation. Based on my previous publications, the chapter presents
a probabilistic exemplar model – the Retention&Recognition model, or R&R –
that views segmentation as the result of retention and recognition of subsegments
of an auditory input. Interestingly, R&R predicts a distribution of subjective fre-
quencies of memorized subsegments that is notably skewed. I find that, thanks
to this skew, the model exhibits excellent fit to data of experiments from human
adults, but also from rats. The content of this chapter is based on the following
publications:

Alhama, Scha, and Zuidema [2014] Rule Learning in humans and animals.
Proceedings of the International Conference on the Evolution of Language.

Alhama, Scha, and Zuidema [2016] Memorization of sequence-segments by
humans and non-human animals: the Retention-Recognition Model. ILLC Pre-
publications, ILLC (University of Amsterdam), PP-2016-08.

Alhama and Zuidema [2017b] Segmentation as Retention and Recognition:
the R&R model. Proceedings of the 39th Annual Conference of the Cognitive
Science Society.

Chapter 4 While the previous chapter presented and evaluated a model of segmentation
based on its goodness of fit to empirical results, this chapter focuses on how
does R&R compare to other models of segmentation. The goal of the chapter is
not only to find which model of segmentation is a more plausible explanation of
the results, but to reflect more broadly on how models of segmentation should
be evaluated, based on an analysis of the consequences of assuming different
evaluation criteria.

The content of this chapter is based on the following publications, although it
also features new material:

Alhama, Scha, and Zuidema [2015] How should we evaluate models of seg-
mentation in artificial language learning? Proceedings of 13th International
Conference on Cognitive Modeling.

Alhama and Zuidema [2017b] Segmentation as Retention and Recognition:
the R&R model. Proceedings of the 39th Annual Conference of the Cognitive
Science Society.
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Part II: Propensity to Generalize

Chapter 5 This chapter is my first approach to study under which circumstances humans
generalize to novel language-like items. However, instead of focusing on the
mechanism that explains which generalizations take place, we propose a model
that quantifies the propensity of an individual to generalize to any novel item.

We therefore propose a novel conceptualization, based on a 3-step account:
memorization, propensity to generalize and actual generalization. In order to
quantify the propensity to generalize, we draw a parallel with the smoothing
techniques employed in Natural Language Processing. We show that a rational
model based on one such smoothing techniques (Simple Good-Turing, [Good,
1953]) offers a compelling alternative interpretation of the experimental results.

The work presented in this chapter was presented before in the following paper:

Alhama, Scha, and Zuidema [2014] Rule Learning in humans and animals.
Proceedings of the International Conference on the Evolution of Language.

Alhama and Zuidema [2016] Generalization in Artificial Language Learning:
Modelling the Propensity to Generalize. Proceedings of the 7th Workshop on
Cognitive Aspects of Computational Language Learning, Association for Com-
putational Linguistics, 2016, 64-72.

Part III: Generalization

Chapter 6 This part of the thesis addresses the question of how humans generalize to partic-
ular novel items. But before delving into proposing a model for generalization,
I present in this chapter a review of existing models of generalization in ALL. I
identify what are the most relevant research questions that can be addressed when
formalizing the problem, and I outline how the reviewed models have advanced
on answering those questions, while also critically addressing what is still not
convincingly solved. Based on this analysis, I put together a list of desiderata
that aims to inspire future research.

The content of this chapter is based on the following manuscript:

Alhama and Zuidema [2017c]. Computational Models of Rule Learning. [To
be submitted.]

Chapter 7 After having identified the most pressing unsolved issues on models of general-
ization, I advance the state of knowledge with the proposal of my own model.
I argue that most models have been used as a tabula rasa, a simplification that
comes at the cost of not successfully reproducing the empirical findings. Thus,
my work focuses on investigating what is a plausible initial state for a model of
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generalization. I investigate two core ideas: (i) pre-wiring the model with mini-
mal independently motivated biases and (ii) pre-training to account for relevant
prior experience that could have influenced the task.

The content of this chapter is based on the following publication:

Alhama and Zuidema [2017a]. Pre-Wiring and Pre-Training: What does a
neural network need to learn truly general identity rules? [Under review.]

] ] ]

Chapter 8 I reflect on the main findings of this dissertation, as well as the limitations that
should be tackled with future work.

X ] X





Chapter 2
Background

Before embarking on the modelling proposals of chapters 3, 5 and 7 it is worth reflect-
ing first on what we want to achieve by building computational models, and what we
want to avoid. I will do that by discussing three taxonomies for computational models:
explanatory vs. predictive models, Marr’s levels of analysis, and traditional families of
cognitive models.

2.1 What is a computational model?

A computational model is a precise formulation of a system that can be simulated
in a computer to study its behaviour. Computational models offer the possibility of
exploring a wide range of ideas, since they can be simulated in a computer to see their
consequences. Thanks to this, many different models –or different variations of one
model– can be simulated to systematically compare their outputs. This does not only
result in an advantage over the quantity of hypotheses that can be tested, but it can also
result in improved quality of hypotheses, given that researchers are less constrained in
the ideas they can formalize and simulate.

By using computational models to study a system, the system may be approached
by dividing it into subcomponents, each of which may be individually studied. If such
subcomponents are implemented as computational models, the interaction between
them can also be simulated, and thus we can investigate how they should be integrated.
This modular approach is especially relevant for the study of complex systems in which
the study of the system as a whole is prohibitive.

Since the formulation of a model needs to be spelled out as a computer program,
researchers are forced to be precise about the ideas embodied in the hypothesis they
are testing. This can sometimes result in clarification of misunderstandings or in the
identification of false dichotomies. An instance of this is presented in chapter 5, which
shows how formalizing an idea as a computational model clarified some prior miscon-
ceptions and resulted in the rejection of a false dichotomy.

9
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An additional advantage of formulating hypotheses as computational models is that
the hypotheses can even involve the postulation of new concepts that are not immedi-
ately accessible to experimentation, but which can be studied (and maybe endorsed)
with computer simulations. In other words, models may be used to produce sufficiency
proofs for concepts that could not have been tested otherwise.

Thus, it seems clear that computational models can be of immense help in char-
acterizing a system. Interestingly, computational models can additionally lead to un-
expected conclusions. For instance, a model may predict how the system behaves in
other settings, and this prediction may be empirically tested, perhaps prompting new
discoveries in the field.

Finally, models may be used with different goals. Some models try to approximate
a real system as much as possible, with the aim of producing very accurate quantita-
tive predictions. These type of models are called predictive models, and they contrast
with explanatory models, which trade the realism of predictive models with explana-
tory power. Thus, the aim of explanatory models is to achieve a better understanding
of the principles governing a system. While predictive models are useful for certain
applications, such as weather forecast or stock market prediction, research in cognitive
science and linguistics is better served with explanatory models that shed some light
in the mental processes underlying certain phenomena. These are the models that this
dissertation is concerned with.

2.2 Marr’s levels of analysis
My goal is to achieve a better understanding of the cognitive processes that explain
language learning; concretely, through experimental results in the Artificial Language
Learning paradigm. These cognitive processes have a physical realization in the neural
substrate. However, the brain is a massively complex system: a great number of neu-
rons are connected in complicated dynamic patterns that are responsible for generating
all human behaviour, while also controlling the physiological regulations of the human
body. In order to link the behaviour observed in the experiments with the neural ac-
tivity, we need to understand which information is being represented in the brain and
what is the process that eventually produces the observed behavioural output.

Given the complexity of the brain, it is useful for cognitive modellers to abstract
away from many of the details of the wetware, and approach the problem at the level
of information processing. But of course there is not a unique way to do this, so in
practice computational models exhibit great variation in the level of abstraction they
assume and the intended realism of the processes and representations they incorporate.
I now introduce a well-known taxonomy that is useful for cognitive modellers to have
some orientation on the different goals and levels of abstraction pursued by model
proposals.

This taxonomy was proposed by David Marr, a neuroscientist and psychologist who
investigated the human visual processing system [Marr, 1982]. According to Marr,
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Computational or Rational

Processing or Algorithmic or 
Representational

Implementational
or Physical

Figure 2.1: Marr’s Levels of Analysis.

when studying an information system there are three explanatory levels at which we
can situate models, as reflected in figure 2.1. Each of these levels is characterized by the
amount of detail that is abstracted from the original system, such that the higher level
(the computational level) is the more abstract, and the implementational level is the
closest to the actual wetware. These levels are conceived of by Marr as complementary,
with one level being a more detailed refinement of the previous one. Thus, Marr’s
levels of explanation offer a way to structure the problem of studying cognition by
characterizing the level of simplification that the researcher may adopt.

The most abstract level is the rational or computational level. Rational models do
not focus on how a task is solved, but actually aim to provide a formal description of
the task itself and the strategy to solve it. As Marr puts it [Marr, 1982], the computa-
tional level is concerned with what is done, why is it done, and which is the strategy
followed; but crucially, how it is done is not part of the question. For this reason, ra-
tional models often propose optimal solutions to a problem, that is, they identify the
strategy that would offer the best performance possible given the constraints imposed
by the problem.

Thus, rational models may be used as a first step to give a precise characterization
of what the problem is and how it can be solved. A special class of rational models are
ideal learner models, which investigate the problem from the perspective of an ideal-
ized observer without any limitations coming from the cognitive system (e.g. memory
capacity, attention, etc.) with the aim to investigate human performance through com-
parison to this ideal learner baseline [Geisler, 2003].

When proposing the levels of analysis, Marr highlighted the relevance of computa-
tional level explanations:

[...] an algorithm is likely to be understood more readily by understanding
the nature of the problem being solved than by examining the mechanism
(and the hardware) in which it is embodied. [Marr, 1982, p.27]
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So, in fact, Marr did not only offer a taxonomy to situate models, but also suggested
a direction; concretely, starting at the most abstract level of analysis to eventually in-
crease the level of detail. This approach is known as top-down, and it contrasts with
approaches that go on the opposite direction (bottom-up). The arguments in favour
of top-down generally state that a better understanding is achieved if starting at the
more abstract functional level since the physical system is too hard to interpret, and
a wrong assumption on a physical model would cause the whole system to exhibit a
qualitatively different emergent behaviour (e.g. see Griffiths et al. [2010]).

In my opinion, the top-down approach can be helpful in order to constrain the space
of hypotheses of what can be learnt by the system, especially for problems in which
the hypothesis space is so big that we could not hope to discern the right hypothesis
from emergent behaviour. However, this is unlikely to be the case in ALL, since the
languages we are concerned with are very simple, and they are created with the aim to
minimize regularities other than the pattern under study. Therefore, rational models of
ALL generally converge very fast to learning the patterns that were originally used to
design the artificial language (e.g. see an example in § 6.4), and thus they are not very
revealing.

On the other hand, the processing level is well suited for modellers who aim to
investigate the cognitive processes and representations underlying some phenomena
–albeit without exploring their neural implementation. Models at this level of analysis
are committed to postulate a mechanistic account of the steps involved in the actual
cognitive process, as well as a high-level proposal of which kind of representations
mediate the process. Therefore, this intermediate level of analysis is concerned with
proposing a cognitively realistic account that reveals how the task is solved but without
delving into details of how it translates into neural activations.

Finally, models at the implementational or physical level offer a more detailed pro-
posal of how the processes and representations underlying a task are physically im-
plemented in the brain. This is not to say that these models include all the physical
details of its neural correlates; actually, most of these models implement a very coarse
simplification of neurons and neural activation dynamics. Nonetheless, this is a very
useful level of explanation to develop models that operate under constraints imposed
by the general computational principles of the brain, and they can reveal unexpected
emergent properties which may be later interpreted at a functional level [McClelland
et al., 2010].

In this dissertation, the three models I propose belong to each of these three levels
of analysis. In chapter 5 I propose a model to show that we need to account for the
propensity to generalize in order to properly interpret the empirical data; in this case, a
rational model turned out to be the more concise option to highlight the main principle
behind the propensity to generalize. But in chapter 3 I opted for a model pitched at
Marr’s processing level, since the goal was to gain a better intuition of the process of
segmentation. And finally, the model presented in chapter 7 is an implementational
model, since the question it addresses (whether symbolic representations are needed
to learn identity rules) required a detailed level of analysis in which the realism of
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those representations could play a role. Therefore, each model is pitched at the more
convenient level of explanation, depending on the goals pursued in each case.

2.3 Families of Cognitive Models
I now provide an overview of the most common cognitive modelling approaches. This
classification is based on well-known traditional categories of models, but of course
this does not entail that all models neatly fall into one particular category. In fact,
often models embrace principles from different approaches. Nevertheless, this clas-
sification is very illustrative to see of the main theoretical consequences of common
modelling choices, and will be useful to situate the models proposed and reviewed in
this dissertation.

2.3.1 Symbolic models
Symbolic models use discrete symbols to represent entities, and rules over symbols
that represent relations. The symbols can denote observable entities —such as sylla-
bles, words or phrases— but, more generally, they can be thought of as variables or
placeholders that can instantiate a certain class of entities, one at a time. For instance,
if the symbol NP instantiates Noun Phrases, then NP can stand for different phrases at
a given time, such as ‘my desk’, ‘Simpson’s paradox’ or ‘the infamous cat that chases
the poor mouse’. Thus, the represented entities in a symbolic model may be concrete
entities or abstract constructs postulated by the theory that the model embraces (which
may or may not have a cognitive reality as a mental representation).

Rules are necessary to establish how symbols are related. For instance, following
with our example, a rule could be S→ NP VP (i.e. a Sentence is composed of a Noun
Phrase and a Verb Phrase). This rule is applied over symbols, that is, the rule holds for
any NP and VP, regardless of the particular content of each NP and VP. In other words,
rules are syntactic rather than content-sensitive.

An important property of rules is that they are implemented as all-or-nothing: ei-
ther they completely apply or they do not. In other words, these models do not offer
graded acceptability. This can be seen as the main strength of these models; however,
this also entails that these models do not exhibit graceful degradation, that is, they
are not robust to small variations in the input. In order to alleviate this, some sym-
bolic models are implemented as probabilistic symbolic models, in which productions
are assigned a certain probability that determines their acceptability. Some examples
of symbolic models are formal grammars (e.g. Context-Free Grammars), in which
symbolic rules operate over terminals (words or morphemes) and non-terminals (non-
observed entities that are part of linguistic theory), and define the scope of well-formed
sentences. These models can be seen as implementations of generative theories of syn-
tax [Chomsky, 1957], according to which the postulated entities are cognitively real;
nevertheless, these models generally fit better at Marr’s computational level of analy-
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sis, since they concern the task (finding a proper description of the input) rather than
the nature of the cognitive processes involved in finding such a description.

Other examples of symbolic models include formal approaches to semantics [Gamut,
1991]; SOAR, a model that aims to provide a unified theory of cognition [Newell,
1990]; and some components of ACT-R, a processing level model which is conceived
of as a full cognitive architecture, i.e. a general model that implements the most basic
cognitive operations [Anderson, 2014].

2.3.2 Exemplar-based Models
Exemplar models emphasize the role of memory over the role of processing. The
main property of exemplar-based models is that most of the perceived input is stored,
generally in a very rich representation that involves many features. Representations
may vary in their complexity, so small phonetic units could be stored as well as some
complete utterances. However, these representations often are restricted to observed
items, that is, theoretical constructs such as NP, VP or S are often not stored in exemplar
models.

Thanks to the rich representations, exemplars can be related based on some notion
of similarity. Therefore, exemplar-based models need to come equipped with some
similarity distance to relate items. For instance, a model may recognize a novel input
as belonging to the same latent category as some other item already stored in memory
if the similarity distance is small enough.

A relevant property of exemplar models is that every token exemplar is stored.
This entails that we can derive the frequency of a type by counting the number of
stored tokens of the same type. This is an important difference with symbolic models,
in which frequency did not have any role. By considering frequencies, non clear-
cut decisions can be made; for instance, frequent productions may be deemed more
acceptable than infrequent ones.

All these properties make this models very robust to errors, since –contrary to
symbolic models – they are content-dependent. However, one important drawback
of exemplar-based models is that they do not generally handle well phenomena which
appear to be very systematic. This is because most exemplar-based models do not store
any form of abstract information; for instance, there may be no NP entity stored in an
exemplar-based model of syntactic processing.

Regarding Marr’s levels of analysis, exemplar models are a clear example of algo-
rithmic level models, since they are based on cognitive assumptions about how infor-
mation is stored and represented. Even though they may include numerically-coded
statistical information, modellers assume that those have neural correlates in the form
of strength of memory traces, associations and activation strength, respectively.

One of the most notable application of exemplar models to language is the work by
Royal Skousen, formalized in a general exemplar-based framework called Analogical
Modeling [Skousen, 1995, Skousen et al., 2002]. The main tenets of exemplar-based
models are also at the core of syntactic theories that are based on the storage of linguis-
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tic constructions (as opposed to the storage of separate entities for lexical items and
syntactic rules). This idea has crystalized in a range of proposals of grammatical for-
malisms that assume a rich inventory of linguistic constructions [Fillmore et al., 1988,
Goldberg, 1995, Croft, 2001, Steels, 2013], and computational implementations such
as Data-Oriented Parsing [Scha, 1990, Sima’an, 1999, Bod, 2006, Zuidema, 2006] (al-
though some of these proposals include also symbolic information).

Other exemplar-based models of language investigate grammar acquisition [Batali,
1999, Borensztajn et al., 2009], stress patterns [Daelemans et al., 1994] and inflectional
morphology [Keuleers and Daelemans, 2007], among others. In this dissertation, a
probabilistic exemplar-based model is presented in chapter 3.

2.3.3 Bayesian Models
As mentioned before, some symbolic models relax the rigidness of all-or-none rules,
by using probabilistic rules instead. These probabilities may be computed in differ-
ent ways, such as derived from the frequency counts items. One particular approach
to probabilistic modeling that has become very prominent in cognitive modelling is
Bayesian Modelling.

Bayesian models offer a perspective for reasoning under uncertainty. Probabili-
ties are a natural choice to model knowledge based on gradual degrees of belief, and
Bayesian models provide a framework to formalize how to reason about new data based
on actual knowledge or beliefs. Thus, these models conceive of learning as a problem
of induction from what is known to what is not. The process of going from known to
unknown facts is called inference.

According to this framework, when a learner faces some new data d, she tries to
find an explanation for that data in terms of which process generated the data. We refer
to the collection of possible hypotheses for explaining the data as H. For instance, d
could be a sentence like “I saw the thief with my glasses”, and H could be a set of
grammatical rules that could have generated the observed linguistic input (e.g. one in
which “with my glasses” is attached to “saw” and one in which it is attached to “thief”).
The task of the learner is to decide which of these hypotheses (syntactic trees) is more
likely to have generated the sentence. This can be formalized as

argmax
h∈H

P(h|d) (2.1)

That is, the goal is to find which hypothesis h has maximum probability for the
observed the data. This probability is called posterior.

Bayesian models provide a method of inference for computing the posterior based
on the observed data d and the prior knowledge of the learner. This method is based
on the computation of two components: the likelihood and the prior.

The prior, which can be written as P(h), refers to the biases of the learner before
observing any input. In our example, the prior shows which of the two syntactic struc-
tures would the learner favour before observing the sentence d. It could be the case that
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both appear equally likely; in this case, the prior should be modelled as a uniform dis-
tribution that assigns equal probability to each hypothesis (and thus it will not have any
effect on the posterior). If, however, one of the syntactic structures is more salient —
for example because it has been observed more often in other linguistic productions—
this should reflect in an assymetrical the prior.

The likelihood is the term that introduces the data in the equation. More formally,
it accounts for the probability of observing the data under a certain hypotheses, P(d|h).
In other words, if we fix each one of the hypothesis we consider, the likelihood tells us
how probable is it to observe this data for such hypothesis.

In order to compute the posterior based on the prior and the likelihood, Bayesian
models make use of to Bayes rule (eq. 2.2):

P(h|d) = P(d|h)P(h)
P(d)

(2.2)

where P(d) is a normalizing term, which can be computed as ∑hi∈H P(d|hi)P(hi).
This method of inference allows the learner to transform the prior knowledge into
posterior knowledge after observing data.

There have been many misunderstandings regarding their level of explanation of
Bayesian models, or more importantly, the cognitive realism they commit to. In most
cases, Bayesian models for cognition are pitched at Marr’s computational level, since
they are very well suited to investigate which statistical properties in the data may be
exploited by a learner, and which rational principles may be useful to solve the prob-
lem. On some other occasions, Bayesian approaches take a step further and are used
for exploring the effect of assuming different representations of the input [Griffiths
et al., 2010], partially entering Marr’s processing level. And finally, some modellers
take the stance of the so-called “Bayesian coding hypothesis”, which can be summa-
rized under the claim that populations of neurons approximate Bayesian computations
[Knill and Pouget, 2004]. The existence of such a variety of approaches, in addition
to many cases of unhelpful vagueness or even internal contradictions, have resulted in
substantial misunderstandings regarding the intended realism of Bayesian models in
general (e.g. see Bowers [2009] for an extensive discussion on this).

Even though Bayesian models are often seen as an example of symbolic models,
the fact that they can apply any type of representation blurs this categorization. Since
probabilities may be derived from actual frequency of occurrence, these models may
be seen as sharing properties with exemplar-based models. However, it should be
noted that exemplar-based models also rely heavily on rich representations of the input,
which is not a common feature of Bayesian models (although can be incorporated, as
proposed in Tenenbaum and Griffiths [2001]).

Bayesian Models have been extensively used to model many aspects of language,
such as word segmentation [Goldwater et al., 2009], grammar learning [Bannard et al.,
2009, Alishahi and Stevenson, 2008], language evolution [Kirby et al., 2007, Smith,
2009, Thompson et al., 2016] and many more.
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Figure 2.2: Diagram of a McCulloch-Pitts neuron, extended with a sigmoid activation
function.

2.3.4 Connectionist models

Connectionist models, also known as neural networks, are the paradigmatic example
of a model at the implementational level. This status is not without controversy, since
(most) neural networks drastically simplify many implementational details; neverthe-
less, these models are inspired by general computational principles in the brain, so they
arguably maintain the most relevant properties of the wetware.

Connectionist models consist of a network of interconnected artificial neurons (also
called nodes or units) that receive and send activation signals. The simplest and most
commonly used neuron model is the McCulloch-Pitts neuron [McCulloch and Pitts,
1943], which implements a coarse simplification of the functionality of a biological
neuron. In this model (depicted in figure 2.2), a neuron has a set of incoming connec-
tions with an associated weight wi. Signals x1,x2, ...,xn are fed into these connections,
either as a result from a previous computation in a connected neuron, or as perceived
input information. The input signal of each connection is scaled (multiplied) with the
weight of each connection, and all the incoming signals are summed. The result of this
operation is generally passed through an activation function; although it was a step
function in the original formulation, it is more common to use logistic functions (such
as sigmoid or tanh). After applying one of these activation functions, the model results
in an upgraded non-linear node. The output of the neuron may then be passed on to
other connected neurons.

A neural network consists of an interconnected set of nodes of this sort. Depending
on the chosen connection topology, the architecture may take different shapes; for
instance, figure 2.3 shows a fully connected network, a feedforward network, and a
network that includes recurrent connections.

The information that a neural network is trained on has to be represented in vectors
of activations, as reflected in figure 2.4. The most common approach is to employ dis-
tributed vector representations, in which each neuron participates in the representation
of several items (generally reflecting a certain feature of the item, as can be seen in fig-
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(a) Fully connected (b) Feed-forward (c) Recurrent

Figure 2.3: Different neural network architectures.

ure 2.4a); however, it has also been claimed that localist (or one-hot) representations,
in which a neuron is only active for one single input item, may also be biologically
justified (e.g. see Bowers [2009], Plaut and McClelland [2010], Quian Quiroga and
Kreiman [2010] and Bowers [2010] for a discussion on the evidence supporting so-
called grandmother cells).

Sing. Masc. 1st 2nd 3rd

(a) Distributed Representation

...
    a            shawny she   sheaf  zythum  

...

(b) Localist Representation

Figure 2.4: Vector representations for the word “she”. In 2.4a, the word is represented
based on some of its morphosyntactic features, while in 2.4b each node uniquely rep-
resents one word for the whole vocabulary.

Neural networks learn to solve tasks by gradually adjusting the weights in the con-
nections. This is typically done based on the gradient of the error, computed with the
backpropagation algorithm [Rumelhart et al., 1988]. A more biologically realistic al-
gorithm for training the connections is Contrastive Hebbian Learning [Hebb, 1949],
which is based on the Hebbian principle of “fire together, wire together” – in other
words, neurons that generally fire for the same input should have their connections
reinforced. In spite of the apparent differences between both algorithms, it has been
shown that under some assumptions they are mathematically equivalent [Xie and Se-
ung, 2003].

Thus, neural networks implement a domain-general learning model that extracts
associations in the input: connections are strengthened for correlated features in the
input, without any a priori defined structure. One relevant property is that abstract
knowledge is not explicit in a typical neural network, although it may be implicitly
learnt. Also, given that representations consist on vectors of activations, they can be
seen as continuous, since they establish the coordinates of points in a multidimensional
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space. Additionally, as in exemplar-based models, computations are content-sensitive.
For all these reasons, neural networks are generally regarded as diametrically opposed
to symbolic models. This will be further discussed in chapter 6.

Neural network models have been widely applied as learning models for many
aspects of language. Some examples include models of auditory word recognition
[McClelland and Elman, 1986], word segmentation [French et al., 2011, French and
Cottrell, 2014], and reading [Seidenberg and McClelland, 1989], but there are many
more. Chapter 6 contains an extensive list of connectionist models of rule learning,
and in chapter 7 I present a novel neural network model for generalization in ALL.

2.4 What constitutes a good model?
Computational models offer the possibility of investigating many different hypotheses,
for which we can study their consequences by simulating them on a computer. But how
can we use such simulations to assess which model constitutes a better explanation for
a certain phenomenon?

First of all, it must be noted that any model that is able to reproduce a given phe-
nomenon constitutes a sufficiency proof in itself. In that case, what is shown is that the
theory embraced by the model is a possible explanation for the phenomenon. But gen-
erally many models can reproduce the same phenomenon, sometimes even based on
qualitatively different principles. Therefore, even though sufficiency is not necessarily
easy to achieve, it is only a minimum criterion; we need some additional method to
assess which of the sufficient models is a better explanation. It should be noted though
that models that fail to reproduce a phenomenon may not always be useless: sometimes
models are on the right track, but an unfortunate decision on the simplification of the
process may have caused an almost correct model to fail.

In the case of cognitive models, it is crucial to have external validation, that is, the
principles embraced or ommitted by the model need to be supported with empirical
evidence. But since explanatory models incorporate some degree of simplification, it
is often a matter of interpretation whether the empirical data supports the proposed
theory [Zuidema and de Boer, 2014].

One way to implement a form of external validation is with the use of model par-
allelisation, by comparing how multiple models explain the same phenomenon. Al-
though this approach can be very beneficial in bringing new insights that result from
the comparison between models, it does not remove the interpretative nature of the val-
idation process. Therefore, it is still the responsibility of modellers to be critical and
demanding when applying model parallelisation.

In this regard, models are often compared in terms of their output. In that case,
some index of correlation between the output of the model and the empirical data is
chosen in order to see which model produces an output that is closer to reality. The
choice of that index should be wise: an index that is too complicated to fit may lead us
to accept models that overfit the data, while an index that is too lenient or summarized
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(e.g. just a final average over all the responses) may not be very informative about
how the models differ. This issue will come back later in this dissertation (chapter
4) with an illustration of how models embodying different principles can appear as
equally good explanations for a phenomenon unless we challenge them to reproduce
more fine-grained data.

There exists yet another method for evaluation. In cognitive modelling, the pro-
posed models are a subpart of a complex system, and therefore, they should eventually
interact with the rest of subcomponents of the system in a proper way. When that is
the case, a model can be evaluated regarding its role in the system in which it is con-
tained. Zuidema and de Boer [2014] refer to this as model sequencing, and argue that
it constitutes a strong form of model validation, specially when external validation is
unattainable due to lack of evidence. Chapter 5 shows an example of model evaluation
based on sequencing: it demonstrates how the output of the model presented in chapter
3 has the necessary properties to make the next model in the pipeline defined by the
system produce the desired output.

Finally, we should not forget that our aim is to build explanatory models. In this
regard, it must be noted that part of the process of building explanatory models is
finding a proper way to simplify reality; after all, the features that cause the studied
behaviour may only become apparent when other less relevant features are excluded.
Thus, models with too much detail obscure the properties of the system, although over-
simplification could also result in incorrect predictions or in limiting the phenomena
that the model can explain [McClelland, 2009]. Therefore, a cognitive model should
not necessarily be considered a good model when it incorporates very precisely de-
fined mechanisms, but rather, we should praise models which are useful caricatures of
the real system, such that they make obvious the most relevant properties while get-
ting rid of distracting details [Segel and Edelstein-Keshet, 2013]. After all, the goal
of explanatory models of cognition is to shed new light into the underlying cognitive
process.
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Segmentation
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Chapter 3

Segmentation as Retention and Recognition

3.1 Introduction

A crucial step in the acquisition of a spoken language is to discover what the building
blocks of the speech stream are. Children perform such segmentation by paying atten-
tion to a variety of statistical and prosodic cues in the input. In this process, learning
and generalization mechanisms play a role that might or might not be shared with other
species, and might or might not change significantly with cognitive development. Un-
derstanding the unique ability of humans to acquire speech requires an understanding
of the nature of these learning biases.

Artificial Language Learning has, over the last 20 years, become a key paradigm
to study the nature of learning biases in speech segmentation and rule generalization.
In experiments in this paradigm, participants are exposed to a sequence of stimuli that
follow a specific pattern, designed to mimic particular aspects of speech and language,
and tested on whether and under which conditions they discover the pattern. A key
result in this tradition is the demonstration by Saffran et al. (1996) that children of 8
month old are sensitive to transition probabilities between syllables and can segment
a speech stream based on these probabilities alone; this ability to track statistics over
concrete fragments of the input is often referred to as statistical learning. However,
these experiments do not reveal whether the underlying cognitive mechanism does op-
erate over transitional probabilities or, instead, it performs computations of an entirely
different nature but which can be described as transitional probabilities.

In order to reveal the precise underpinnings of such cognitive mechanism, it is
useful to resort to computational modeling. There exist several models in the liter-
ature, which are reviewed in the next chapter. However, the models that have most
successfully explained experimental results are either computational level approaches
[Frank et al., 2010], which do not make any predictions about the mechanistic nature
of the segmentation process, or neural network models [French et al., 2011], which do
provide a realistic account of the process but are less accessible to interpretation.

23
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In this chapter1 I present the Retention&Recognition model (or R&R for short), a
new model of segmentation in ALL that explains the memorization of subsegments of
a speech stream based on the cognitive processes of retention and recognition. Pitched
at Marr’s processing level, my model aims to offer a simple yet intuitive explanation
of the process of segmentation.

I aim for the R&R model to account for results from a variety of different experi-
ments. I test my model on several datasets: two conditions from the Toro and Trobalón
[2005] studies with rats, a variant of the baseline experiment from the Peña et al. [2002]
studies, and the three internet-based experiments with human adults reported in Frank
et al. [2010].

This chapter is structured as follows. I start with summarizing the relevant exper-
imental record in § 3.2. I then present my new model, and test its fit with the experi-
mental data (§ 3.3). I derive one important novel prediction –a skew in the frequency
distributions–, which I evaluate on existing experimental data for rats (§ 3.4.1). Since
I could not evaluate this prediction on existing data for humans2, in § 3.4.2 I report
results from a small, new experimental study that confirms that prediction. Finally, I
evaluate my model also on 2AFC experiments with human adults (§ 3.4.3) and discuss
the implications of this study (§ 3.5)

3.2 Overview of the experimental record
In this chapter I focus on three existing experiments of segmentation in ALL, and I
present a variant experiment that deviates in the design of the test.

The main experiment that inspires this modelling work was presented in Peña et al.
[2002]. In that study, the authors expose French-speaking adults to a stream of non-
sense words, and subsequently test them to ascertain whether they can (i) segment the
speech stream, and (ii) detect the underlying rules and generalize them to novel stimuli.

The “words” in these experiments are syllable triples of the form AXC, where A and
C reliably predict each other while X is drawn from a set of 3 different syllables. The

1The work presented in this chapter is based on the following publications:

• Alhama, Scha, and Zuidema [2014] Rule Learning in humans and animals. Proceedings of the
International Conference on the Evolution of Language.

• Alhama, Scha, and Zuidema [2016] Memorization of sequence-segments by humans and non-
human animals: the Retention-Recognition Model. ILLC Prepublications, ILLC (University of
Amsterdam), PP-2016-08.

• Alhama and Zuidema [2017b] Segmentation as Retention and Recognition: the R&R model.
Proceedings of the 39th Annual Conference of the Cognitive Science Society.

2Despite repeated requests, at the time I was working on this topic I could not obtain access to many
of the published data. Later, researchers in the Infant Learning Lab at the University of Wisconsin -
Madison kindly shared results on human experiments, but the analysis over such data is omitted in this
dissertation because it is inconclusive at the moment.
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words in this language are ‘puliki’, ‘puraki’ and ‘pufoki’, which are part of the same
“family” of words (they share the same A and C); ‘talidu’, ‘taradu’, and ‘tafodu’, which
constitute another family, and finally ‘beliga’, ‘beraga’ and ‘befoga’. In the familiar-
ization phase, subjects heard a stream of words constructed by randomly picking these
words, with the constraints that two words from the same family should not appear
consecutively. In some of the experiments, subliminal pauses were inserted between
subsequent words in the stream.

In the test phase of the experiments, subjects were tested on whether they showed
a preference for words when contrasted to partwords —triples that occurred in the
speech stream but that cross word-boundaries, thus having the structure CAX or XCA—
. On another condition, subjects were tested on their preference for rulewords —triples
AYC that conform to an attested A C pattern, but with a middle syllable Y that did not
occur in this position in the stream— vs. partwords.

In the original paper, all tests involve a forced choice task, where subjects are pre-
sented with pairs of triples and are asked which of the two was more likely to be part
of the artificial language they heard in the familiarization phase. Tested after 10 min-
utes of exposure, the subjects show a significant preference for words over partwords,
but they have no preference when they compare rulewords and partwords. If the ex-
posure time is increased to 30 minutes, they prefer partwords to rulewords. In a third
experiment, micropauses of 25 ms are added between words; now, only 2 minutes of
exposure suffice for revealing a preference for rulewords. In this chapter, I focus only
on the experiments that compare words to partwords, but in later chapters I explore the
conditions involving rulewords (see chapter 5).

Toro and Trobalón [2005, Experiment 3A] report similar experiments with rats.
The animals are exposed to a 20 minute speech stream (with or without pauses) cre-
ated with the same triples used in Peña et al. [2002]. Although the rats could segment a
simpler speech stream on the basis of co-occurrence frequencies, when exposed to the
Peña et al. stream (without micropauses) their response rates do not differentiate be-
tween words and partwords; only with the insertion of micropauses they show a higher
response rate for words. With or without micropauses, the responses to rulewords are
not significantly different from the responses to partwords. Toro and Trobalón inter-
pret this as evidence for lack of generalization —rats do generalize, but less readily
than humans. But since partwords were actually present in the familiarization stream
and rulewords were not, the data are consistent with a model that assumes degrees of
generalization. As in the case with humans, in this chapter I focus on the segmentation
experiments involving words and partwords.

I also present a variant of the baseline experiment by Peña and colleagues in which
I substitute the forced choice task with an alternative test. In this set up, participants
(human adults) have to answer a ‘yes/no’ question about a sequence being a word of
the artificial language; each of this questions is presented together with a confidence
rate about the answer. As explained in § 3.4.2, this alternative type of test reveals
interesting properties in the responses per test item.

Finally, in order to evaluate the model in a bigger dataset, I make use of the ex-
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periments published in Frank et al. [2010]. In this extensive study of segmentation in
human adults, the authors investigate how different properties of the stimuli can in-
fluence the performance of the participants. To do so, they manipulate the number of
words in the sentences that compose the stimuli, as well as the total number of different
words in the language and the amount of repetitions of each word. The results show
that the length of a sentence and the number of words increase the difficulty of the task,
while the amount of repetitions boosts the performance of the subjects.
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Figure 3.1: R&R:The Retention-Recognition Model

3.3 R&R: the Retention-Recognition Model

3.3.1 Model description

I present a simple processing model that describes the memorization process during the
familiarization phase of the experiments. The model I propose is called the Retention-
Recognition Model (R&R). It takes a sequence of syllables X = 〈xo,x1,x2, . . . ,xm〉 as
input, and considers all subsequences of length l = 1,2, . . . , lmax as potential segments
to be memorized. Thus, the set of candidate segments is computed as shown in figure
3.2.

In the simulations reported here I assume, for computational convenience, lmax = 4.
The model thus receives no specific information about the length of the words that
experimenters used to create the familiarization stream (length 3 in these experiments).
The model maintains a memory M, which is a set of segment types and their associated
counts. The memory is initially empty (M0 = /0) and it changes with update steps that
either add an entry (with count 1) or increase the count of an existing entry:
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Mt+1 ← ADD(Mt ,
〈
x j, . . . ,xk

〉
)

←Mt ∪{
〈〈

x j, . . . ,xk
〉
,1
〉
}

Mt+1 ← INCREMENT(Mt ,
〈
x j, . . . ,xk

〉
)
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〈〈

x j, . . . ,xk
〉
,c
〉
}∪{

〈〈
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〉
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〉
}

For any candidate segment s ∈ S (with segments processed in the order they are
encountered in the stream), the model checks whether it is stored in memory and, if so,
what the count of that segment in memory is (its ‘subjective frequency’). The model
may (with a probability p1 that increases with that count) recognize it (i.e., match it
with a segment in memory). If it succeeds, the count is incremented with 1. If it fails
to recognize the segment, the model might (with a probability p2 that decreases with
the length of the segment) still retain it (i.e., add it to memory with initial count of 1
if it was not stored, or increase the count by 1 as a form of ’late recognition’). In this
way, the model builds a memory of segments that have different degrees of familiarity
depending on their distribution in the stream. R&R’s flowchart is given in figure 3.1.

The key components of the model are the equations for computing the recogni-
tion probability (p1) and retention probability (p2). Recognition should become more
probable the more often a segment has been recognized, but decrease with the number
of segment types in memory (|M|). Hence, I define p1 as follows, with B and D free
parameters (0 6 B,D 6 1) that can be fitted to the data:

p1(s,M) = (1−BCOUNT(s,M)) ·D|M| (3.1)

If a segment is not recognized, the model considers retaining it with a probability
that should decrease with the length of the segment (l(s)), and which can be boosted
if there are additional cues favoring this segment (e.g., a micropause preceding it).
Hence, I define p2 as follows, with A and C free parameters (0 6 A,C 6 1) that can be
fitted to the data:

p2(s,M) = Al(s) ·Cτ (3.2)

Input: Stream X = 〈xo,x1,x2, . . . ,xm〉.
Output: Segments S = 〈s0,s1, . . . ,sn〉.
S← /0

for act = 0 to m:
for i = 1 to lmax:

if (act + i < m)

S← S∪X [act : act + i]

Figure 3.2: Pseudocode for computing candidate segments.
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The A parameter thus describes how quickly the retention probability decreases
with the length of a segment. The factor Cτ attenuates this probability unless an addi-
tional cue boosts it; here, I consider only the micropauses from Peña et al. [2002] as
additional cues, and set τ = 0 if there has been such a pause, and τ = 1 if not. Putting
everything together, the model can be described in pseudocode as in figure 3.3.

Input: Stream X , and empty memory M0← /0.
Output: Memory Mn+1.
/∗ Compute candidate segments: ∗/
S← 〈s0,s1, . . . ,sn〉
/∗ Process each segment: ∗/
for i = 0 to n:

/∗ Compute the recognition probability: ∗/
p1 = p1(si,Mi)
/∗ Compute the retention probability: ∗/
p2 = p2(si,Mi)
/∗ Draw two random numbers ∗/
r1 ∼U(0,1)
r2 ∼U(0,1)
/∗ Recognize, retain or ignore: ∗/
IF (r1 < p1)

Mi+1← increment(si,Mi)
ELSE IF (r2 < p2)

Mi+1← add(si,Mi)
ELSE

Mi+1←Mi

Figure 3.3: Pseudocode describing the R&R model.

R&R is thus a simple model, but it gives a surprisingly accurate match with empir-
ical data, as I will present in the next sections, without even taken processes such as
forgetting, priming, interference and generalization into account.

3.3.2 Qualitative behaviour of the model
R&R exhibits rich-get-richer dynamics: as the subjective frequency of a sequence
grows, the probability for this sequence to be recognized on its next occurrence in the
stream also grows, and therefore its subjective frequency is likely to increase again. A
sequence, however, cannot be recognized before it has been retained. The stochasticity
of the retention will cause some sequences to be retained later than others, so not all
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Parameters R&R Skew Words Skew Partwords
A=0.4 B=0.4 C=0.5 D=0.6 -0.13 2.29
A=0.5 B=0.5 C=0.5 D=0.5 0.88 1.41
A=0.6 B=0.7 C=0.7 D=0.3 -0.86 -0.37
A=0.9 B=0.4 C=0.5 D=0.6 0.68 0.0

Table 3.1: Skew for several parameter settings of R&R.

sequences will benefit equally from a high recognition probability. With this interplay
between the stochasticity of retention and the (also stochastic) rich-get-richer dynamics
of recognition, even sequences that are identical in terms of absolute frequency may
end up with substantially different subjective frequencies.

This intuition should be reflected in the distribution of subjective frequencies. First
of all, given the behaviour described above, we expect the frequency distributions to
be skewed, since some sequences should be quickly favoured (and thus end up with
high subjective frequencies) while others will be picked up later and therefore they
will end up having smaller subjective frequencies. For this same reason, another pre-
diction is that words and partwords will show overlapping distributions, that is, words
and partwords will not be clearly differentiated given their frequencies; instead, some
partwords should have higher frequencies than some words. In short, the R&R model
predicts (i) a notable degree of skew and (ii) overlapping distributions of words and
partwords.

I explore two different techniques to verify these predictions. In order to test for
(i), I apply one metric of skew from the literature on summary statistics, concretely
Pearson’s second coefficient of skewness (also known as median skew). As for (ii), I
use a qualitative approach, based on plotting the subjective frequencies of words and
partwords in the same graph, in order to visualize whether the distributions overlap.

Regarding the first technique — the quantification of the degree of skew —, the
median skew is defined as follows:

3(mean−median)
standard deviation

, (3.3)

This coefficient exploits the fact that the mean and the median are separated from
each other in skewed distributions. So 0 indicates no skew, while greater values indi-
cate greater skew, with the direction reflected in the sign.

Table 3.1 shows the median skew of a few parameter settings of the R&R model.
As can be seen, the degree of skew varies substantially. This casts doubts on whether
this summary statistic is a proper choice in this case, since the intuition sketched above
may not be reflected in the relation between the mean and the median of the data.

As for the qualitative analysis on the distributions of words and partwords, the cor-
responding graph can be seen in figure 3.4, which shows the distribution of the subjec-
tive frequencies computed by the R&R model for the baseline experiment in Peña et al.
[2002], for different parameter settings. As can be observed, the model presents dif-
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ferent behaviour under different parameter settings, with most of them yielding over-
lapping distributions (a very large value for A is required for the distributions to be
separated).

The qualitative behavior of R&R predicts therefore that the responses of subjects
in the segmentation experiments will exhibit considerable degree of skew, as well as
distributions that overlap. The next section analyzes whether this prediction is found
in the empirical results.

Figure 3.4: Subjective frequencies in four simulations of the R&R model, with differ-
ent parameters, when familiarized with the AXC language of Peña et al. [2002]. Green
bars (w) are words and red bars (pw) are partwords.

3.4 Predictions and empirical data

3.4.1 Prediction of observed skew in response distribution in rats
After having identified the main predictions of the R&R model, I now investigate
whether the empirical data exhibits signatures of these predictions. In order to study
whether this is the case with the experimental data from rats, I have exposed the model
to the same stimuli used in Toro and Trobalón [2005], which is a stream of syllables
that I created by following the description of the familiarization stream in Peña et al.
[2002]. In that stream, words appear all with exactly the same frequency (e.g. puliki,
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Words Partwords
No Pauses 1.01 1.07
With Pauses 1.02 1.59

Table 3.2: Median skew of the experimental data with rats.

beraga, tafodu, etc. appear 100 times each in the 10 minute condition). Partwords have
a much lower frequency (approximately 1/2 of the word frequency)3.

Toro and Trobalón measure how rats respond to the test triples, based on how much
they press a lever; in this way, they assess the recognition of words, partwords and
rulewords. In order to test whether the responses exhibit signatures of skew, I plot the
data (which the authors kindly shared) in figure 3.6. The graph shows, with small solid
circles, the ordered responses of rats after familiarization to the stream without and
with pauses respectively.

What can be observed in such plot is that, in line with the observations made above,
R&R generates skewed distributions when presented with this familiarization stream.
Such a skew has, to the best of my knowledge, not been reported yet in the analysis
of experimental ALL results on adults, which all report averages over responses in a
forced choice setting. Nor has it been reported in papers on experiments with prelin-
guistic infants and animals, which do measure responses to individual test items but all
report averages over stimulus classes.

To evaluate how well the model can fit this data quantitatively, I make the additional
assumption that the measured response rates are directly proportional to the subjective
frequencies of the triples in the memories of the rats. I then search for parameter
settings that produce the best fit (measured with squared error) to the average rat. I fit
parameters B and D, and a value4 that combines A and C, to the data without pauses;
I then used the data with pauses solely to differentiate between the contributions of A
and C. The pink lines in the graphs give the prediction of the model with the thus fitted
parameters, and demonstrate a surprisingly good fit.

As explained before, I hypothesize that the observed skew in the responses (sum-
marized in table 3.2) is explained by a skewed distribution of subjective frequencies
of test items. However, an alternative explanation is that the observed skew is merely
due to variability in the responses. In order to investigate this alternative explanation, I
analyze how skewed would the responses be if they came from a Gaussian distribution
centered on the empirical mean and scaled with the empirical standard deviation. Fig-
ure 3.5 shows a histogram of the cumulative probability for 10.000 samples. As can be

3The exact frequency depends on the randomization process by which words are sampled; in the
reported simulations I have assumed that Peña et al. repeatedly play the complete sequence of words
in randomized order. I also tried other processes consistent with the description they give, and obtained
very similar results.

4As all considered segments have length 3 and there is no information to differentiate between the
contributions of A and C, I estimate the value of A3C instead. I then assume these values as given, and
employ the corresponding data from the experiment with micropauses to estimate A and C.
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seen, the probability of observing the empirical skew (or greater positive skew) is very
small. Therefore, it seems that the observed skew is not just due to random response
variability.

3.4.2 Prediction of observed skew in response distribution in hu-
mans

I have been able to confirm the prediction of skew in the response distribution of rats
because I obtained access to the original data, which consisted of responses per item.
But when it comes to humans, I encountered some complications: adults are typically
tested in 2AFC tasks, which do not allow for a study of the distribution of responses for
single items; as for infants, although the type of responses that are recorded (typically,
listening times) would allow to investigate the preference for single items, the reported
data consists only of averages for classes of sequences, and I could not obtain access
to the original data for any of the reported studies (although see footnote 2).

For these reasons, I have run an experiment with human adults to investigate whether
the skew of response distributions is consistent with that predicted by R&R. For this, I
used stimuli following the structure proposed in Peña et al. [2002].

Methods

Participants
13 participants, master students of the University of Amsterdam, participated in the
study as part of one of their courses.

Stimuli
The stimuli consisted of an 11 minute speech stream of synthetic speech syllables gen-
erated with eSpeak. I used two conditions that only differed in the randomization of
the position of a syllable in a word, and the randomization of the order of appearance
of those words. For one group, the words were: jaduki, jamaki, jataki, lidufo, limafo,
litafo, sudube, sumabe, sutabe; for the other, the words were: jabeta, jaduta, jakita,
mabefo, madufo, makifo, subeli, suduli, sukili. Each word was presented 100 times,
and their order of appearance was random with the constrain that one word cannot
follow another of the same family (i.e., that starts and ends with the same syllable).

The test items consist of the nine words of the familiarization stream and nine part-
words, also present in the familiarization stream, consisting of two syllables of one
word and one syllable of the next, or of one syllable of one word and two syllables
of the next. These eighteen items appear two times in the test set, and their order of
appearance is randomized (but constant across participants), with the constraint that
the same sequence does not appear consecutively.

Procedure
The participants were randomly assigned to one of the two conditions. The stimuli
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(a) Without pauses.

(b) With pauses.

Figure 3.5: Reversed cumulative probability of the median skew coefficient, for 10.000
samples from a Gaussian distribution based on the empirical mean and standard devia-
tion of the responses of the rats. The empirical median skew coefficient is marked with
a vertical line.
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(a) Without pauses.

(b) With pauses.

Figure 3.6: Responses of rats (blue) and subjective frequencies of the model (pink). W
indicates words; P indicates partwords; both ordered by response frequency. Parameter
setting of the model: A=0.3; B=0.92; C=0.93; D=0.94.

were presented with the use of a web form. They were instructed to listen to the whole
familiarization stream, for which they would have to answer questions afterwards. In
the test phase, each test item was presented acoustically, followed with the question
‘Is this sequence part of the language you have heard?’, to be answered with yes/no.
Afterwards, they were asked to rate their confidence in the previous answer, in a scale
from 1 to 7 (where 1 is minimum confidence and 7 is maximum).
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Results
The average accuracy of the participants is 59.25%. This number is below that of Peña
et al. [2002] (73.3%); this difference may reflect the fact that test items are presented in
isolation, in contrast with the 2AFC task that Peña et al. [2002] used, where two items
are presented at the same time and therefore the participant has more information (e.g.,
for a word that might have been accepted at chance level, the presence of its paired
partword in the test can provide an extra hint for accepting the word). Nevertheless,
the difference between words and partwords is significant (T-test over scale responses:
t = 2.8722, df = 21.971, p-value = 0.008859).

I use the scale response of the confidence rate, multiplied with -1 if the answer
to the yes/no question was negative. For each participant, I order their responses,
maintaining the separation between words and partwords. Then I align the responses
by their class (word or partword) and rank (position in the ordered list or responses
for a particular class) and I average across participants. The assumption behind this
procedure is that words are indistinguishable in terms of their frequency, but yet the
most salient word for one participant need not be the most salient word for the other
participant. In other words, I anonymize the particular item, while maintaining their
confidence rate, rank and class.

The results are shown in figure 3.7, combining the two conditions. Thanks to
analysing the responses per item, it can be observed that the data of human adults
also bear out the prediction of skew.5 Additionally, the responses given to items of
the same class show a great degree of assymetry, that is, words and partwords are
not clearly separated. In other words, this data meets the prediction of overlapping
distributions. Thus, the results show that the skewed responses and overlapping distri-
butions are not restricted to nonhuman animals such as rats, but are also a characteristic
behavior of human adults.

3.4.3 Fitting R&R to forced choice data
We have seen that the predictions of R&R in terms of skew are visible in the experi-
mental data of rats and humans. However, both experiments involve a small number of
subjects, so I turn the attention now to the more comprehensive study by Frank et al.
[2010], in order to use a sufficiently big number of datapoints to give a quantitative
measure of goodness of fit of R&R. It must be noticed that, in this chapter, the evalua-
tion applied to R&R follows the standard of the field. There are clear caveats with this
evaluation procedure, but the discussion about those and the proposal for other forms

5This is a qualitative rather than quantitative analysis. Computing the median skew of these re-
sponses is not straightforward, given that the responses are divided in two classes (depending on the
answer to the first question in the test). In the graph I have opted to distinguish those classes by casting
the responses into positive or negative, but the median skew computed over such data would be affected
by the fact that part of the distribution is positive and part is negative. For this reason, in this section I
resort to qualitative observation of skew over the plot rather than quantitative analysis.
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Figure 3.7: Confidence rates, averaged per ranked item.

of evaluation is left for chapter 4.
Frank et al. investigate how distributional aspects of an artificial language have

an effect on the performance of human adults in segmentation. Each of their three
experiments involves a range of conditions that vary in one particular dimension: (i)
sentence length, (ii) amount of exposure (number of tokens) and (iii) vocabulary size
(number of word types).

The stimuli consists of an auditory sequence of sentences, each of which is cre-
ated from a sample of artificial (unexisting) words. The sentences are separated with
a silence gap of 500 ms, while there is no acoustic nor prosodic cue indicating the
separation between words within a sentence. After the participants have been exposed
to a sample of sentences thus constructed, they participate in a 2-Alternative-Forced-
Choice test (2AFC). The two alternatives in the test consist on one word from the
artificial language (a correctly segmented sequence), and one “part-word” (a sequence
resulting from incorrect segmentation).

To analyze the results, the authors average the performance (i.e. the number of
correct choices) over participants. These averages are arranged to form a curve that
shows the performance for different values of sentence length, amount of exposure
and vocabulary size, as can be seen in the continuous line in figure 3.8. What the
resulting curves show is that: (i) human adults have more difficulty in segmenting
words when sentences are longer, presumably because they do not benefit from the
extra cue provided by the silence gaps; (ii) when the amount of word tokens is varied,
more occurrences of words facilitate the identification of such words, and (iii) the size
of the vocabulary seems to cause lower performance in the experiment, with an almost-
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linear inverse relation.
Given that the stimuli used in this experiment contain longer pauses, the model

needs some small adaptations. The design of R&R was initially inspired by the results
presented in Peña et al. [2002], where the pauses in the stimuli, when present, have a
length of 25ms, and this duration is supposed to be perceived by humans only sublim-
inally. The stimuli used in Frank et al. [2010] differ significantly in the use of pauses,
which have a duration of 500ms, and are used as a separation of sentences instead of
words. I adapt the formula for Retention, using an exponential parameter regulating
the effect of the pauses (Eq. (3.4)): 6

p2(s) = Alength(s)·µ (3.4)

µ =

{
µwp after a pause
µnp otherwise

The other adaptation is the use of the Luce Rule [Luce, 1963]. Following Frank
et al. [2010], I apply the Luce Rule to transform the scores produced by the R&R model
(the subjective frequencies) to behavioural predictions for a 2AFC task. Given a pair
of sequences s1 and s2 in test, the Luce Rule defines the probability of choosing s1 as
can be seen in Equation 3.5:

P(s1) =
Sub jFreq(s1)

Sub jFreq(s1)+Sub jFreq(s2)
(3.5)

Once the scores have been transformed to probabilities, the performance of the
models is computed as the mean probability of choosing the correct item, averaged
over participants and test trials. These datapoints are arranged in a curve in the same
way as with human participants, and the correlation in the shape of these curves —
measured with Pearson’s r— is taken as an indication of good fit.

The three experiments are simulated with R&R, transforming its output (the subjec-
tive frequencies) into test trials with the Luce Rule. A search is run over the parameter
space, in order to find which parameters yield best correlation with human perfor-
mance7. Clearly, optimizing the parameters on the same data on which the model is
evaluated brings the risk of overfitting, but the evaluation is nevertheless carried out in
this way so that the results remain comparable to other model simulations; this com-
parison and a discussion on better ways to evaluate are presented in chapter 4. The best
results of R&R are shown in figure 3.8.

When it comes to experiment 1, one interpretation for the good fit is that R&R ex-
plicitly models the effect of the silence gaps. By increasing the length of the sentences
while keeping the number of types and tokens constant, the stimuli necessarily con-

6As explained in footnote 4, the contributions of the two parameters A and C cannot bedistinguished,
so I opted to change the formula in this way. I keep the value of the new parameter µnp at 1.0 in this
simulation so that the resulting model remains comparable.

7The only parameter that I keep fixed in the search is µnp = 1.0, since the interpretation of the relative
importance of pauses is clearer if only one of the µ parameter is varied.
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(3) Varying the vocabulary size.

Figure 3.8: Curve of performance for all the different conditions in the experiments in
Frank et al. [2010].

sist of fewer sentences; therefore, the number of silence gaps also decreases. For this
reason, the performance of R&R declines with longer sentences, since it cannot obtain
the same benefit from exploiting silence gaps. This explanation can be supported by
looking at the values of the µwp parameter: the best fit of the model requires a low
value for this parameter (µwp = 0.234)), so in the presence of a pause it substantially
boosts the otherwise very small (Aµnp = 0.008) retention probability.

The second experiment was interpreted by Frank et al. as suggesting that humans
may be forgetting much of what they hear, which would explain the increased perfor-
mance with the number of tokens. R&R accounts for these results thanks to a prob-
abilistic form of retention (combined with recognition that allows for the “correct”
segments to be reinforced in memory); thus, the R&R model suggests that forgetting
need not be incorporated in a model of segmentation, at least for the length of the
stimuli used in these experiments.

Experiment 3 can be easily interpreted with R&R. The effect of increasing vocab-
ulary size only has an effect in the distributional properties of the stream, which result
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in less statistically coherent partwords. Still, humans do not seem to exploit this fact;
instead, their performance decreases when increasing vocabulary size. Therefore, it
seems that humans have some inherent difficulty in recognizing items over a large col-
lection of types, possibly due to interference. R&R explicitly models this phenomenon
with a parameter that penalizes recognition based on the number of memorized types.
In line with this intuition, the corresponding parameter value for the best fit amounts to
D = 0.86, which substantially decreases the chance for successful recognition8. There-
fore, in conditions of high number of types, humans have an increased difficulty in
recognizing sequences, most likely originating from the process of matching the input
segment to one of the many segments stored in memory.

3.5 Conclusions
Artificial Language Learning has proven to be very useful for finding out which cues
are exploited when subjects are learning an unknown language. In this work I focus
on one of the first problems that learners face: the identification of words in a speech
stream.

With R&R, I provide a theory that considers the process of segmentation as the
interaction of two cognitive mechanisms: retention and recognition. Pitched at the
processing level, and with a very simple formalization, R&R offers a way to understand
the pattern of experimental results that I find in the literature.

Models do not only help us reason about the cognitive processes underlying ex-
isting experiments, but also allow us to make predictions for experimental results.
R&R predicts that the memorized segments of the familiarization stream should ex-
hibit skewed and overlapping distributions of subjective frequencies; an observation
that, to my knowledge, has never been reported before.

To confirm this prediction, I have revisited the experimental results of Peña et al.
[2002], on human adults, and Toro and Trobalón [2005], on rats; focusing on the re-
sponses per test item: by replicating the experiment with a different test type in the
former, and by providing a more fine-grained analysis in the latter. I have used quali-
tative and quantitative techniques to show that both datasets present skewed and over-
lapping distribution of responses, albeit the quantitative metric employed (the median
skew) did not appear to be a very reliable measure for this prediction. Furthermore,
R&R is also shown to provide a good quantitative fit to the experimental data on 2AFC
responses of Frank et al. [2010].

I conclude that the R&R model constitutes a simple yet powerful characterization
of the mechanisms underlying speech segmentation that shows an excellent correlation
with the experimental data, and that has already allowed me to provide a new obser-

8Even though the values that parameter D range from 0.0 to 1.0, a value like 0.86 turns out to be
relatively small. This is because the model computes D|M|, and the number of types |M| stored by R&R
grows very rapidly due to the memorization of segments of any length. This entails that the whole term
quickly becomes very small, so values of D that are close to 0.0 are impractical.
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vation of the existing data, proving therefore to be a promising tool for revealing the
properties of this basic process of language learning.



Chapter 4
How should we evaluate models of

segmentation in Artificial Language Learning?

4.1 Introduction
The previous chapter presented the Retention and Recognition model, a model of seg-
mentation in Artificial Language Learning experiments. Using existing methods for
evaluating models, I showed that R&R provides a good fit to a range of empirical data.
However, other models of segmentation have been proposed before, and they have also
been assessed against empirical data. Thus, it is also necessary to also analyze how
does R&R compare to the existing models.

The goal of this chapter is to address this issue while taking a broader perspective,
that is, reflecting on general aspects of evaluation of segmentation models in ALL. As
I stated in § 2.4, it is very important to challenge computational models with evaluation
procedures based on empirical evidence (external validation, [Zuidema and de Boer,
2014]), and which are demanding enough to allow us to distinguish between different
proposals.

The structure of this chapter is as follows.1 First, I describe the most relevant
models of segmentation in Artificial Language Learning, and I relate them to R&R.
Second, I review how these models have been evaluated before, distinguishing be-
tween evaluation based on internal representations and evaluation over performance
in 2-Alternative-Forced-Choice (2AFC) tests. The latter is further illustrated with a
comparison of segmentation models, based on an extension of the study by Frank et al.
[2010] –which I extend to also incorporate R&R. I reflect on what can be learnt about

1The content in this chapter is based on the following publications:

• Alhama, Scha, and Zuidema [2015] How should we evaluate models of segmentation in artifi-
cial language learning? Proceedings of 13th International Conference on Cognitive Modeling.

• Alhama and Zuidema [2017b] Segmentation as Retention and Recognition: the R&R model.
Proceedings of the 39th Annual Conference of the Cognitive Science Society.

41



42 Chapter 4. Model evaluation

models when applying this evaluation procedure, and argue that a different type of
evaluation would result in a better understanding of the differences between models. I
then propose one such procedure for evaluating models, and then conclude the chapter
with a call for different experiments and encouraging data sharing.

4.2 Models of Segmentation
There exist several models of segmentation in the literature; here, I focus on a rep-
resentative sample, consisting of the most prominent models at each level of analysis
[Marr, 1982].

At Marr’s computational level of analysis we find the Bayesian Lexical Model
(BLM henceforth), presented in Goldwater et al. [2006, 2009] and adapted for ALL in
Frank et al. [2010]. The BLM conceptualizes the problem of segmentation from the
perspective of a Bayesian model: given the input (familiarization) stream, the model
attempts to reconstruct the generative process that generated the stream in the first
place. As explained in § 2.3.3, this is done by probabilistic inference that searches
through a space of possible generative hypotheses. In the case of segmentation, the hy-
potheses space consists of the possible segmentations, that is, each hypothesis consists
of the set of words of the language that may have generated the observed stream. Thus,
the ‘probability of a word’ refers to the probability of a sequence being a word under
the current hypothesis. This is the reverse perspective from that of the R&R model.
R&R is a processing model, and therefore the probabilities of sequences refer to the
probability of retaining or recognizing them while processing the input.

The BLM is driven by rich-get-richer dynamics similar to R&R, implemented as
a Dirichlet process. The main assumptions of this process are: (a) the probability of
a word in the ith position is proportional to the number of occurrences of this word in
previous positions; (b) the relative probability for a new word type in the ith position is
inversely correlated with the total number of word tokens, and (c) a new word type is
more probable if it is shorter.

How do these principles relate to R&R? Assumption (b) does not allow for direct
comparison, since R&R is not a generative model, and therefore it does not provide
a probability for new types —rather, the incorporation of new types to the memory
of the model depends on the retention probability, and it is based on a preference for
shorter sequences (an intuition encoded also in assumption (c) of the Bayesian model).
As for assumption (a), the same principle is incorporated in the recognition process
in R&R; however, in R&R the counts of the number of occurrences of a word are
based on the subjective frequencies resulting from memorization, while in the BLM,
these counts are based on absolute frequencies of the current hypothesis. This reflects
a fundamental difference between the two approaches, which concerns their level of
analysis [Marr, 1982]. The BLM is framed at Marr’s computational level; therefore,
since it does not incorporate any perceptual or memory constraints, it can operate over
absolute frequencies (although some of the extensions in Frank et al. [2010] incorpo-
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rate limitations on memory capacity, leading to somewhat hybrid models; I return to
this point later). In contrast, R&R is a processing model, whose dynamics are entirely
based on cognitive processes of retention and recognition, and therefore the frequency
counts are a result of these mechanisms.

At the processing level, the most well known model is PARSER, a symbolic model
that accounts for segmentation with basic principles of associative learning and chunk-
ing. Starting with a few primitives (typically, the syllables of the stream), PARSER
incrementally builds a lexicon of segments, each of which is stored with an associated
weight that has an effect on determining which segments are going to be memorized
next. The size of the next segment to be perceived is determined randomly; however,
the units that compose this segment will be either primitives or already-memorized
segments that have a weight higher than a certain threshold. As an example, if the
size of the next segment to be perceived is 2, it might be composed of two primitives
(syllables), two segments (larger than the syllables) or one of each. The algorithm
chooses the combination that allows the largest units, from left to right. For every new
segment that is perceived, its weight in memory is incremented (or it’s added with an
initial weight), but the smaller units that compose it are decremented; this is meant as
a process of interference. Additionally, at each timestep, all the units in memory have
their weights decreased, as a form of decay.

Both PARSER and R&R are exemplar-based models that build a lexicon of seg-
ments (exemplars), and use this lexicon of already-memorized segments to decide on
further segments to memorize. Each segment in the lexicon is stored together with a
score that determines the impact of this segment in the next steps of the segmentation
process. Thus, the models are similar in their procedure, but there are notable differ-
ences between them. One of them is the probabilistic nature of their components. For
PARSER, the stochasticity is limited to the random selection of the size of the next seg-
ment to read from the stream. In contrast, R&R considers all possible subsequences of
the stream (up to a maximum length), as inspired by research in Data-Oriented Parsing
tradition [Scha, 1990], but is inherently probabilistic in its basic processes of retention
and recognition.

There exist other differences in the procedure of these approaches. To begin with,
the process of retention in R&R penalizes longest segments, on the basis that they
would require more working memory. However, PARSER implements the opposite
principle: whenever several segment candidates are possible, it selects those that are
built of the longest units, creating in this way a bias for larger segments. As for the
process of recognition, it is implicitly implemented in PARSER when it maps the next
segment to be read against the units in memory. This process involves a binary thresh-
old: only units with weight above the threshold can be recognized as components of
the segment (but those below the threshold are retained). In contrast, the interaction
between recognition and retention in R&R is based on a graded probabilistic choice.
Finally, an important difference between the models is that R&R does not implement
any form of forgetting.

On the other extreme, at Marr’s implementational level, some connectionist mod-
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els have been proposed in the past, based on recurrent neural networks [Cleeremans
and McClelland, 1991, Servan-Schreiber et al., 1991, Christiansen et al., 1998]. More
recently, an autoencoder that goes by the name of TRACX has been presented and
evaluated on a range of experimental datasets [French et al., 2011, French and Cottrell,
2014]. As in all autoencoder networks, TRACX is optimized to learn a representation
for the input data. Thus, the model is trained to reproduce the input in its output layer,
and the error produced in the output can be interpreted as the degree of recognition of
the input.

The model processes the input stream sequentially, maintaining a context window.
After successful recognition of a segment, the internal representation learnt by the net-
work is used as the context for the next segment to be presented. In this way, contigu-
ous segments that are successfully recognized are gradually represented as chunks, and
therefore can be recognized as a unit. This approach shares with R&R the intuition that
words are consolidated in memory after repeated recognition; however, like PARSER,
TRACX is a chunking model, that is, it is oriented at the integration of syllables in
order to build larger fragments. In contrast, in R&R, words emerge in a process that
actually penalizes larger fragments, as a consequence of consolidated memorization of
statistically salient segments.

4.3 Existing evaluation procedures
Computational models need to be evaluated on some criteria to determine their valid-
ity as plausible explanations of the phenomena we aim to account for. In this section I
review some of the methods of evaluation that have been used for models of segmen-
tation in ALL.

4.3.1 Evaluation based on the internal representations
One way to evaluate the adequacy of a model is by exploring some of the properties
of the representations that it builds. One example is provided in Perruchet and Vin-
ter [1998], for the evaluation applied over PARSER. This model builds a symbolic
memory of the extracted sequences, with a weight that represents the strength of their
memory trace. In order to assess the quality of this built lexicon, the authors report the
amount of familiarization needed to meet each of two possible criteria. The first one,
called the loose criterion, is fulfilled when the memory contains all the words in the
language with the highest weights, although it may contain also other sequences. On
the other hand, the strict criterion states that the memory must contain all legal words
with the highest weights, and if there are other memorized sequences then they must
be ‘legal’ (subparts or concatenation of words, but not partwords).

The model has been evaluated based on the amount of exposure required for either
criterion to be reached. For instance, Perruchet and Vinter [1998] show that PARSER
meets both the loose and strict criteria with less exposure than that used for human
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adults in Saffran et al. [1996b], although it is not clear whether the criteria are still met
after full exposure. In the case of the counterpart study with infants [Saffran et al.,
1996b], more exposure than the one that infants had was required for PARSER to meet
a ‘looser’ version of the loose criterion (concretely, that one of the two words in the
test set have the higher weights in memory). Thus, a tacit assumption of this form of
evaluation is that successful segmentation corresponds to having a memory in which
the words have the higher weights.

The advantage of this form of evaluation is that the representations that the model
builds are directly taken into account, as opposed to evaluation based on behavioural
responses. However, for this to be a meaningful evaluation, the criteria used need
to be independently motivated, otherwise the evaluation may be biased to favour the
modellers’ idiosyncratic choices. Actually, the empirical data reported later in this
chapter (§ 4.5, figure 4.1) is at odds with these criteria, suggesting that this form of
evaluation is not as useful as originally thought.

The evaluation procedures reported for TRACX [French et al., 2011] are also based
on learnt representations, but since those are not easily observable in the model (given
that they are not symbolic), the authors indirectly evaluate the representations based on
the error produced by the model when attempting to recognize the represented items.

The metric (called Proportion Better) computes the difference between the scores
for words and distractors (partwords or nonwords); in the case of TRACX, the scores
are based on the recognition error of the model. This number is then normalized (see
equation 4.1) and compared to the equivalent calculation for the scores of participants
in the experiment, which may be based, for example, on listening times.

ProportionBetter =
score(words)− score(partwords)
score(words)+ score(partwords)

(4.1)

This evaluation is applied to segmentation experiments with infants [Saffran et al.,
1996a, Aslin et al., 1998, French et al., 2011]. It must be noticed thought that this evalu-
ation criterion relies on comparing the recognition error of the model, which is directly
computed from the internal representations, to behavioural responses. Additionally, by
averaging across test trials and participants, the whole dataset is summarized in one
single number, and is therefore not very strict.

4.3.2 Evaluation based on behavioural responses

Another form of evaluation is also based on behavioural responses. Most of the exper-
imental record on segmentation on adults involves some form of 2AFC test between
target sequences (words) and distractors (generally a partword or a nonword). This
kind of data is more difficult to relate to internal representations (since responses for
one stimulus depend on the presentation of the alternative item in the test trial), so
in order to fit this data models need to postulate an additional hypothesis –a response
model– for linking memorized representations to the behavioral responses.
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For instance, PARSER has been evaluated against 2AFC data [Perruchet and Vin-
ter, 1998, Perruchet et al., 2004], using the following response model over the com-
putations of PARSER: given a test trial involving a word and a partword, the response
model chooses the sequence with strongest weight in the memory of PARSER; when
a test trials consists of a word and a nonword (which cannot be represented in mem-
ory because they have not been encountered) then the model selects the word if it is
contained in the memory of PARSER, provided that its weight is higher than 1. If the
word is not in memory then the choice is random.

Thus, the response model outputs a sequence of choices over the 2AFC trials. From
these, the authors compute the performance of the model, that is, the average propor-
tion of correct choices (i.e. choices for words). This final number is compared to the
performance of human participants in order to evaluate the good fit of the model.

This evaluation procedure is therefore based on this score, which summarizes the
entire experiment by averaging over test trials and participants. An important drawback
of this form of evaluation is that, by relying on a single datapoint, it is likely that several
models exhibit a good fit. Additionally, by evaluating models in this way, we miss the
chance of exploring other interesting aspects of the models, such as how the memory
evolves during the experiment and what the distribution of the memorized segments is.

Some of these issues are alleviated in the evaluation procedure used in Frank et al.
[2010]. As seen in chapter 3, this study is based on three 2AFC experiments on word
segmentation with adults, in which the authors explore how manipulations of certain
dimensions of the input affect segmentation (sentence length, amount of exposure and
vocabulary size). In order to evaluate several models with these data, the authors pro-
pose to use the Luce choice rule [Luce, 1963] as a response model to link the scores
produced by models (e.g. subjective frequencies) to responses in the 2AFC test. The
Luce choice rule defines the probability of choosing a sequence a on a test trial involv-
ing a and b based on the relative score of a:

P(a) =
S(a)

S(a)+S(b)
(4.2)

The Luce rule is applied to a range of models, and then the average probability
for choosing words (that is, the probability of a correct response) is averaged over test
trials and runs. This average probability is then used for comparison with human per-
formance. However, in contrast to the evaluation procedure presented by Perruchet and
colleagues, the authors do not base the evaluation only on these two numbers; instead,
they compute the Pearson’s r correlation for a sequence of average performances in
many conditions (i.e. they compare the curves of performance for each experiment;
see figure 3.8 in § 3.4.3 to recall the shape of the performance curves).

This evaluation is a great improvement over previous approaches; on the one hand
because it increases the number of datapoints, and on the other hand because it al-
lows for the study of models from a more interesting perspective. Concretely, what is
evaluated is how the performance is affected by variations in the input stream, or in
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other words, whether increasing or decreasing the difficulty of the segmentation task
(based on sentence length, exposure and vocabulary) has a similar effect on models
and humans. In the next section I discuss this form of evaluation from the perspective
of model selection.

4.4 Comparing alternative models against empirical data
I have discussed different forms of evaluation in the context of fitting models to empir-
ical data. In this section, I argue that even the most adequate of the criteria discussed
above can fall short when it comes to model selection. To do so, I extend the model
comparison study in Frank et al. [2010] to include also the R&R model. The mod-
els simulated by Frank and colleagues include the ones previously described (BLM
and PARSER, with the latter addition of TRACX, reported in French et al. [2011]),
and four additional approaches: Transitional Probabilities (TP), a Bayesian version of
Transitional Probabilities (Bayesian TPs), Mutual Information (MI), and a version of
MI model that segments sequences that exceed a threshold both on MI and raw fre-
quency counts (MI Clustering, Swingley [2005]). Due to their simplicity, these models
are not reviewed in this chapter; it suffices to say that they all share the property of
being normative models over bigrams.

Table 4.1 summarizes the goodness of fit between the models and the experimental
data, based on Pearson’s r correlation, as described before. As can be seen, for the
parameter setting that yields better fit in the three experiments (A = 0.008, B = 0.923,
D = 0.866, µnp = 1.0, µwp = 0.234), the R&R model outperforms all the other models.
In the previous chapter I reflected on the reasons why R&R provides a good fit to the
experimental data. I now revisit and broaden that discussion to relate the outcome of
R&R to that of other models.

When it comes to experiment 1, the reason for R&R outperforming other models
may be that it incorporates an explicit effect of processing the pauses in the stream;
concretely, in boosting the retention probability. Since the stimuli contain less pauses
when sentences are longer, R&R sees its performance decreased, at a similar pace as
humans. It must be noticed though that TRACX also exhibits an excellent correla-
tion with the data, as well as two of the versions of the Bayesian Lexical Model (the
original, and the one that implements uniform forgetting over types).

In the second experiment, normative models based on point estimates (those based
on TP and MI) do not offer a good fit with the data, since those metrics do not benefit
from the accumulation of evidence offered by the increased number of tokens (contrary
to humans). Frank et al. suggest that humans may be forgetting much of what they hear,
which would explain the increased performance with the number of tokens. However,
the extended versions of the BLM that incorporate some form of evidence limitation
(with input data restricted to a random 4% sample) or forgetting exhibit mixed results
(rows 8, 9, 10, 11 on table 4.1), although the results reveal that uniform forgetting
over types offers a better correlation. Still, these extensions appear unrealistic from
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Exp. 1: Exp. 2: Exp. 3:
Sentence Length #Tokens #Types Mean

1 Transitional Probabilities 0.84 0.43 -0.99 0.09
2 Mutual Information 0.83 -0.32 -0.99 -0.16
3 MI Clustering 0.11 -0.81 0.29 -0.13
4 PARSER 0.00 0.86 0.00 0.28
5 TRACX 0.92 — 0.97 —∗

6 BLM 0.94 0.89 -0.98 0.28
Bayesian TPs

7 4% data 0.82 0.92 0.96 0.90
BLM

8 4% data 0.88 0.85 0.90 0.87
BLM

9 Uniform forgetting (types) 0.95 0.92 0.73 0.86
BLM

10 Prop. forgetting (types) 0.88 0.87 0.88 0.87
BLM

11 Uniform forgetting (tokens) 0.86 0.82 0.97 0.88
12 R&R 0.98 0.94 0.98 0.97

Table 4.1: Comparison of model results to human performance. The reported metric
is Pearson’s r. Experiment 1 is based on varying sentence length; experiment 2 on
varying the number of word tokens, and experiment 3 on varying the number of word
types. ∗Experiment 2 was not reported in French et al. [2011]. Therefore, the mean
can be taken to be 0.63 (for a Pearson’s r of 0.0 in experiment 2) or 0.945 (averaging
only over experiments 1 and 3).
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a cognitive perspective (e.g. forgetting a randomly drawn type when memory capac-
ity is full), and additionally, the resulting models are somewhat difficult to interpret,
since after incorporating memory limitations, they are different from computational
level approaches. PARSER offers a more intuitive account of forgetting, with modest
correlation with human data; however, this model has zero correlation in the other ex-
periments. On the other hand, the rich-get-richer form of recognition combined with
a process of retention as defined in R&R yields a better correlation than a process of
recognition with forgetting.

Also on experiment 3, the R&R model exhibits the best correlation with human
data, followed closely by TRACX and the Bayesian Lexical Model with uniform for-
getting of tokens. Again, normative models show the opposite trend from humans
(rows 1, 2, 3, 6 on table 4.1), since they do not have any memory limitations, and thus
the effect of increasing vocabulary size only has an effect on the distributional proper-
ties of the stream, which result in less statistically coherent partwords. Thus, the same
issues about forgetting discussed above apply to this experiment. However, with the
exception of TRACX and R&R, the models that perform better in experiment 2 are not
the ones that excel in experiment 3; actually, results on the BLM model suggest that
uniform forgetting of tokens and 4% limitation on the input are better accounts of for-
getting. Note that, as explained before, TRACX and R&R do not implement forgetting;
actually, R&R explains these results based on the assumption that recognition over a
large number of types is necessarily more difficult, and does so by explicitly incorpo-
rating a parameter (D) that penalizes recognition based on the number of memorized
types.

But in spite of the good performance of R&R, the most relevant issue is that other
models that are different also offer a good correlation under this evaluation –although
never in all the experiments at the same time. Thus, we need another type of evaluation
that allows for finer distinction between models.

4.5 A proposal: evaluation over response distributions
We have seen that even with the most thorough evaluation procedure that I am aware of,
it is not easy to distinguish between different model proposals. On the one hand, evalu-
ation procedures based on internal representations could be potentially useful to reveal
interesting properties of the models, but it is difficult for modellers to find external
evidence that is informative about the distributional properties of mental representa-
tions, since most of the results that could shed some light on this issue are reported as
aggregated responses over participants and stimuli classes. On the other hand, model
evaluation based on 2AFC responses do not allow to identify the strength of internal
representations, since the observed responses for one sequence are influenced by the
presence of the other sequence in the trial (e.g. an unrecognized word may be chosen
because the alternative sequence may appear very unfamiliar to the subject).

I argue that, in order to evaluate and compare models, we need at least (i) exper-



50 Chapter 4. Model evaluation

Figure 4.1: Average confidence rates for each test stimulus type, in decreasing order.
Confidence rates for negative answers have negative values. (Repeated from chapter 3,
Fig. 3.7, for convenience.)

imental data based on (non-binary) responses to individual stimulus (ii) a big enough
number of datapoints to fit; additionally, I suggest (iii) to aggregate the responses for
individual test items anonymously. I now elaborate on these points.

There already exist experimental paradigms that are suitable for (i), such as lis-
tening times and likert scales. However, these existing paradigms are not frequently
used for ALL studies on human adults. And although listening times are very often
the type of experiment employed for infants, the results reported in papers are gener-
ally averages over all participants and class of test items (e.g. mean listening times for
words and nonwords [Saffran et al., 1996a]). Therefore, even though fitting a model to
a single quantity is a too lenient criterion, it is often the only alternative that modellers
can resort to. For this reason, in order to meet (ii), modellers need access to more
fine-grained data, either in the form of raw responses (which unfortunately are rarely
shared in public repositories2), or a different summarization of the reported data.

Related to the latter, I explore with (iii) an additional way of analyzing data, which
I already advanced in § 3.4.2 (but for convenience I remind of the most relevant de-
tails here). Recall that, in such experiment, I replicated the familiarization phase of
experiment 1 in Peña et al. [2002]; that is, human adult participants are exposed to a
speech stream constructed with words that follow an AiXCi pattern. But, unlike the
original experiment, the test phase in this experiment did not consist of a 2AFC ques-

2Although see the github repository of the Language and Cognition lab in Stanford for an example
of good practice on sharing raw responses: https://github.com/langcog.
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tionnaire; instead, each test item (word or partword) is presented in isolation, followed
by two questions: first, “Is this sequence a word of the language you have heard?”,
which could only be responded with a yes/no answer, and second, “How confident are
you?”, which had to be answered in a likert scale that ranged from 1 (not confident) to
7 (very confident). With this type of test I can now explore how much each sequence
is recognized in isolation, meeting requirement (i).

I ran two conditions of this experiment, differing only in the randomization of the
words. Since I found no effect on the different conditions, I plot an aggregate of the
responses, as can be seen in figure 4.1.

This graph is constructed as follows. First, for each subject and for each class of
test item (words and partwords), I order the responses according to their magnitude.
Second, I compute the mean response per each anonymous test item; that is, instead of
averaging for each test stimulus (e.g. averaging the responses for sequence ‘kidada’), I
average over responses to stimuli that occupy the same position on ordered responses.
In this way, the preferred word for a participant is averaged together with the preferred
word of other participants, and the same goes for second preferred, and so on. Third, I
combine information from each class (words and partwords) by ordering the sequences
based on their score while maintaining class of items identifiable (in this case it is
reflected in the colour). Thus, this procedure offers an additional way to analyze data
that allows monitoring effects that are not due to phonetic aspects of a stimulus, but due
to stochasticity and self-reinforcement in processing. This is the type of summarization
that I suggest in (iii), and it also addresses (ii) in reporting a complete distribution over
test items rather than a final average for each class of stimuli.

Hence, this experiment meets all the points suggested. As shown before, conduct-
ing this experiment allowed to confirm the prediction of skew from R&R, an obser-
vation that would not have been possible otherwise. It must be noticed that this kind
output is not expected from every model; for instance, I run the same analysis with
PARSER and, as can be seen in figure 4.2, the distribution yielded by the model does
not feature the same kind of skew: the weights for the partwords are fairly similar; ad-
ditionally, words and partwords are clearly separated, rather than having overlapping
distributions as in the human responses. Thus, returning to the question raised before
about the effect of implementing forgetting or imperfect storage, it seems that forget-
ting in PARSER augments the difference between words and partwords to the extent
that they become clearly separated, unlike in the human responses. In contrast, the
imperfect storage provided by R&R yields a distribution of items that is closer to that
observed in humans.

4.6 Conclusions
Computational models endow us with a very powerful methodology for implementing
and simulating an unconstrained number of ideas that describe how cognitive mecha-
nisms may be operating. We therefore require strict and informative evaluation proce-
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Figure 4.2: Response distribution of PARSER, over input data from experiment 1 in
Peña et al. [2002].

dures to determine what constitutes a good model.

I have revised the existing evaluation procedures, and I have reached two main
conclusions. First, that when evaluation is not based on quantitative fit to empirical
data but rather on the researcher’s intuitions on the internal states, the assumptions
may be flawed. Second, that we need to rely not only on 2AFC responses but also on
other type of experiments. I hope this encourages experimentalists to provide us also
with experiments that allow for an interpretation of the subjective frequencies (memory
traces) of individual stimulus. Likewise, modellers require access to such data after it
has been published. In other fields it is common to use online open repositories to
share either data or code, and it would be very useful if that became the standard in
ALL as well.

Finally, I have suggested a complementary form of analysis over experimental data.
In the ALL literature, responses are typically tested in order to see if subjects respond
differently to classes of stimuli (such as words vs. partwords). While this analysis
is necessary to assess hypotheses such as whether subjects can identify words in a
speech stream, it overshadows other interesting behaviours. Thus, I have proposed to
analyse responses based on aggregating the data anonymously, with the intuition that
subjects may have idiosyncratic preferences over stimuli. This prompted the discovery
that distributions of memorized sequences exhibit overlap between classes of stimuli,
and are more skewed than initially expected. The procedure reported here constitutes
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one proposal that has already shown to be useful to show that the process of segmen-
tation exhibits some form of self-reinforcement (rich-get-richer) dynamics, but other
methods should be explored in order to challenge computational models with strict
evaluation criteria.
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Chapter 5
Modelling the Propensity to Generalize

In the previous chapters I have proposed a model for segmentation in ALL, which I
have contrasted with other existing models. But segmentation is not the only task that
language learners need to master; as advanced in § 1.2, it is useful to conceptualize
(some of) the mechanisms involved in language learning as a three-step approach that
starts with segmentation and culminates in generalization to unseen productions. In
this chapter, I motivate the need for accounting for the second step: the propensity to
generalize.

5.1 Introduction
First of all, let’s recapitulate on the main findings in the field. In the last 20 years, ALL
experiments have become increasingly popular for the study of the basic mechanisms
that operate when subjects are exposed to language-like stimuli. Thanks to these exper-
iments, we know that 8 month old infants can segment a speech stream by extracting
statistical information of the input, such as the transitional probabilities between ad-
jacent syllables [Saffran et al., 1996a, Aslin et al., 1998]. This ability also seems to
be present in human adults Saffran et al. [1996b], and to some extent in nonhuman
animals like cotton-top tamarins [Hauser et al., 2001] and rats [Toro and Trobalón,
2005].

Even though this statistical mechanism is well attested for segmentation, it has
been claimed that it does not suffice for generalization to novel stimuli or rule learn-
ing1. Ignited by a study by Marcus et al. [1999], which postulated the existence of
an additional rule-based mechanism for generalization, a vigorous debate emerged
around the question of whether the evidence from ALL-experiments supports the ex-
istence of a specialized mechanism for generalization [Peña et al., 2002, Onnis et al.,
2005, Endress and Bonatti, 2007, Frost and Monaghan, 2016, Endress and Bonatti,

1I prefer the term ‘generalization’ because ‘rule-learning’ can be confused with a particular theory
of generalization that claims that the mental structures used in the generalization process have the form
of algebraic rules.
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2016], echoing earlier debates about the supposed dichotomy between rules and statis-
tics [Chomsky, 1957, McClelland and Elman, 1986, Pinker and Prince, 1988, Pereira,
2000].

In this chapter2 I argue that the dichotomy between rules and statistics is unhelpful;
as an alternative, I propose a different conceptualization of the steps involved in gener-
alization in ALL. In the following sections, I will first review some of the experimental
data that has been interpreted as evidence for an additional generalization mechanism
[Peña et al., 2002, Endress and Bonatti, 2007, Frost and Monaghan, 2016]. I then re-
frame the interpretation of those results with the three-step approach, a proposal of
the main steps that are required for generalization, involving: (i) memorization of seg-
ments of the input, (ii) computation of the probability for unseen sequences, and (iii)
distribution of this probability among particular unseen sequences. I model the first
step with the Retention&Recognition model. I propose that a rational characterization
of the second step can be accomplished with the use of smoothing techniques (which
I further demonstrate with the use of the Simple Good-Turing method, [Good, 1953,
Gale and Sampson, 1995]. I then argue that the modelling results shown in these two
steps already account for the key aspects of the experimental data; and importantly, it
removes the need to postulate an additional, separate generalization mechanism.

5.2 Experimental Record
Some of the experiments that I review here have been explained before in previous
chapters of this dissertation. I nevertheless report all the details that are relevant to this
chapter –in spite of the overlap–, for convenience to the reader.

Peña et al. [2002] conduct a series of Artificial Language Learning experiments
in which French-speaking adults are familiarized to a synthesized speech stream con-
sisting of a sequence of artificial words. Each of these words contains three syllables
AiXCi such that the Ai syllable always co-occurs with the Ci syllable (as indicated by
the subindex i). This forms a consistent pattern (a “rule”) consisting in a non-adjacent
dependency between Ai and Ci, with a middle syllable X that varies. The order of the
words in the stream is randomized, with the constraint that words do not appear con-
secutively if they either: (i) belong to the same “family” (i.e., they have the same Ai
and Ci syllables), or (ii) they have the same middle syllable X .

After the familiarization phase, the participants respond a two-alternative forced

2The work presented in this chapter was presented before in the following paper:

• Alhama, Scha, and Zuidema [2014] Rule Learning in humans and animals. Proceedings of the
International Conference on the Evolution of Language.

• Alhama and Zuidema [2016] Generalization in Artificial Language Learning: Modelling the
Propensity to Generalize. Proceedings of the 7th Workshop on Cognitive Aspects of Computa-
tional Language Learning, Association for Computational Linguistics, 2016, 64-72.
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stream pulikiberagatafodupuraki..
words
AiXCi

puliki, beraga, tafodu, ...

part-words
C jAiX ,XCiA j

kibera, ragata, gatafo, ...

rule-words
AiYCi

pubeki, beduga, takidu, ...

Table 5.1: Summary of the stimuli used in the depicted experiments.

choice test. The two-alternatives involve a word vs. a part-word, or a word vs. a rule-
word, and the participants are asked to judge which item seemed to them more like a
word of the imaginary language they had listened to. A part-word is an ill-segmented
sequence of the form XCiA j or CiA jX ; a choice for a part-word over a word is assumed
to indicate that the word was not correctly extracted from the stream. A rule-word is
a rule-obeying sequence that involves a “novel” middle syllable Y (meaning that Y did
not appear in the stream as an X , although it did appear as an A or C). Rule-words are
therefore a particular generalization from words. Table 5.1 shows examples of these
type of test items.

In their baseline experiment, the authors expose the participants to a 10 minute
stream of AiXCi words. In the subsequent test phase, the subjects show a significant
preference for words over part-words, proving that the words could be segmented out
of the familiarization stream. In a second experiment the same setup is used, with the
exception that the test now involves a choice between a part-word and a rule-word.
The subjects’ responses in this experiment do not show a significant preference for ei-
ther part-words or rule-words, suggesting that participants do not generalize to novel
grammatical sequences. However, when the authors, in a third experiment, insert mi-
cropauses of 25ms between the words, the participants do show a preference for rule-
words over part-words. A shorter familiarization (2 minutes) containing micropauses
also results in a preference for rule-words; in contrast, a longer familiarization (30
minutes) without the micropauses results in a preference for part-words. In short, the
presence of micropauses seems to facilitate generalization to rule-words, while the
amount of exposure time correlates negatively with this capacity.

Endress and Bonatti [2007] report a range of experiments with the same familiar-
ization procedure used by Peña et al. However, their test for generalization is based
on class-words: unseen sequences that start with a syllable of class “A” and end with
a syllable of class “C”, but with A and C not appearing in the same triplet in the famil-
iarization (and therefore not forming a nonadjacent dependency between the particular
syllables).

From the extensive list of experiments conducted by the authors, I will refer only
to those that test the preference between words and class-words, for different amounts
of exposure time. The results for those experiments (illustrated in figure 5.1) also show
that the preference for generalized sequences decreases with exposure time. For short
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exposures (2 and 10 minutes) there is a significant preference for class-words (as can be
seen by the high proportion of choices for generalized sequences); when the exposure
time is increased to 30 minutes, there is no preference for either type of sequence (the
generalization percentage is around chance level), and in an exposure of 60 minutes the
preference reverses to part-words (as can be seen by the small proportion of choices
for generalized sequences).
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Figure 5.1: Percentage of choices for rule-words and class-words, in the experiments
reported in Peña et al. [2002] and Endress and Bonatti [2007], for different exposure
times to the familiarization stream.

Finally, Frost and Monaghan [2016] show that micropauses are not essential for
rule-like generalization to occur. Rather, the degree of generalization depends on the
type of test sequences. The authors notice that the middle syllables used in rule-words
might actually discourage generalization, since those syllables appear in a different po-
sition in the stream. Therefore, they test their participants with rule*-words: sequences
of the form AiZCi, where Ai and Ci co-occur in the stream, and Z does not appear. Af-
ter a 10 minute exposure without pauses, participants show a clear preference for the
rule*-words over part-words of the form ZCiA j or CiA jZ.

The pattern of results is complex, but we can identify the following key findings:
(i) generalization for a stream without pauses is only manifested for rule*-words, but
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not for rule-words or class-words; (ii) the preference for rule-words and class-words is
boosted if micropauses are present; (iii) increasing the amount of exposure time cor-
relates negatively with generalization to rule-words and class-words (with differences
depending on the type of generalization and the presence of micropauses, as can be
seen in figure 5.1). This last phenomenon, which I call the time effect, is precisely the
aspect I want to explain in this work. (Note, in figure 5.1, that in the case of rule-words
and pauses, the amount of generalization increases a tiny bit with exposure time, con-
trary to the time effect. I could not test whether this is a significant difference, for
lack of access to the data. Endress&Bonatti, however, provided convincing statistical
analysis supporting a significant inverse correlation between exposure time and gener-
alization to class-words).

5.3 Understanding the generalization mechanism:
a three-step approach

Peña et al. interpret their findings as support for the theory that there are at least two
mechanisms, which get activated in the human brain based on different cues in the
input. Endress and Bonatti adopt that conclusion (and name it the More-than-One-
Mechanism hypothesis, or MoM), and moreover claim that this additional mechanism
cannot be based on statistical computations. The authors predict that statistical learning
would benefit from increasing the amount of exposure:

“If participants compute the generalizations by a single associationist
mechanism, then they should benefit from an increase in exposure, be-
cause longer experience should strengthen the representations built by as-
sociative learning (whatever these representations may be).” [Endress and
Bonatti, 2007]

I think this argument is based on a wrong premise: stronger representations do not
necessarily entail greater generalization. On the contrary, I argue that even very basic
models of statistical smoothing make the opposite prediction. To demonstrate this in a
model that can be compared to empirical data, I propose to think about the process of
generalization in ALL as involving the following steps (illustrated also in figure 5.2):

(i) Memorization: Build up a memory store of segments with frequency informa-
tion (i.e., compute subjective frequencies).

(ii) Quantification of the propensity to generalize: Depending on the frequency
information from (i), decide how likely are other unseen types.

(iii) Distribution of probability over possible generalizations: Distribute the prob-
ability for unseen types computed in (ii), assigning a probability to each gener-
alized sequence.
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Figure 5.2: Three step approach to generalization: (1) memorization of segments, (2)
compute probability of new items, and (3) distribute probability between possible new
items.

Crucially, I believe that step (ii) has been neglected in ALL models of general-
ization. This step accounts for the fact that generalization is not only based on the
particular structure underlying the stimuli, but also depends on the statistical proper-
ties of the input.

At this point, we can already call into question the MoM hypothesis: as stated
in this hypothesis, more exposure time does entail better representation of the stimuli
(as would be reflected in step (i)); however, contrary to what is stated in the MoM
hypothesis, the impact of exposure time on generalization depends on the model used
for step (ii). Next, I show that a cognitive model of step (i) and a rational statistical
model of step (ii) already account for the time effect.

5.4 Memorization of segments

For step (i) we could choose a segmentation model from the range of models that
reviewed in § 4.2, but since R&R was the most favoured in the analysis, I opt for
applying it in these simulations.

Among the properties of R&R, one that is particularly relevant for this study is the
skew that can be observed in the subjective frequencies computed by the model (see
§ 3.3.2). This feature is in consonance with the empirical data. Here, I show that this
property can also be validated in a different way: when R&R is part of a pipeline of
models (like the three-step approach), the skew turns out to be a necessary property for
the success of the next model in the sequence. I come back to this point in section 5.6.

I analyze the effect of the different conditions (exposure time and presence of
pauses) in the memorization of segments computed with R&R. Figure 5.3 shows the
presence of test items (the nine words and nine possible part-words) in the memory of
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Figure 5.3: Average number of memorized words and part-words after familiarization
with the stimuli in Peña et al., for 10 runs of the R&R model with an arbitrary parameter
setting (A=0.5 B=0.5 C=0.2 D=0.5).

R&R after different exposure times (average out of ten runs of the model). As can be
seen, the subjective frequencies of part-words increase over time, and thus, the differ-
ence between words and part-words decreases as the exposure increases.

The graph also shows that, when the micropauses are present, words are readily
identified after much less exposure, yielding clearer differences in subjective frequen-
cies between words and part-words.

The results of these simulations are consistent with the experimental results: the
choice for words (or sequences generalized from words) against part-words should
benefit from shorter exposures and from the presence of the micropauses. Now, given
the subjective frequencies, how can we compute the propensity to generalize?

5.5 Quantifying the propensity to generalize

5.5.1 The Simple Good-Turing method

In probabilistic modelling, generalization must necessarily involve shifting probability
mass from attested to unattested events. This is a well known problem in Natural
Language Processing, and the techniques to deal with it are known as smoothing. Here,
I explore the use of the Simple Good-Turing [Gale and Sampson, 1995] smoothing
method as a computational level characterization of the propensity to generalize.

Simple Good-Turing (SGT), a computationally efficient implementation of the
Good-Turing method [Good, 1953], is a technique to estimate the frequency of un-
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seen types, based on the frequency of already observed types. The intuition behind
this method is as follows. Imagine that a biologist goes to the forest, notebook in
hand, to write down the number of animals of different species that she encounters
(e.g. 20 snails, 10 sparrows, 2 squirrels and 1 snake). This data is a random sample of
the animal population in the forest, and we use these frequency counts to estimate the
probability that the next animal to be found belongs to one of these species (e.g. the
chance that the next animal is a sparrow would be 10/33 = 0.4). However, under this
probabilistic method, the probability of observing a previously unseen animal (e.g. a
rabbit) would be zero (0/33 = 0). What Good —acknowledging inspiration from un-
published work by Alan Turing— argues is that this is not a good estimation; instead,
we should shift some probability mass from the distribution of seen species to estimate
the probability of witnessing an animal belonging to an unseen species.

In order to provide a good estimation for unseen events, Good (and Turing) propose
the following method: first, we take the subjective frequencies r computed by R&R
and, for each of them, we compute the frequency of that frequency (Nr), that is, the
number of sequences that have a certain subjective frequency r. The values Nr are then
smoothed, that is re-estimated with a continuous downward-sloping line in log space.
The smoothed values S(Nr) are used to reestimate the frequencies according to (5.1):

r∗ = (r+1)
S(Nr+1)

S(Nr)
(5.1)

The probabilities for frequency classes are then computed based on these reesti-
mated frequencies:

pr =
r∗

N
(5.2)

where N is the total of the unnormalized estimates3 .
Finally, the probability for unseen events is computed based on the (estimated) 4

probability of types of frequency one, with the following equation:

P0 =
S(N1)

N
(5.3)

This probability P0 corresponds to what I have called “propensity to generalize”.
As can be deduced from the equations, SGT is designed to ensure that the proba-

bility for unseen types is similar to the probability of types with frequency one. The
propensity to generalize is therefore greater for distributions where most of the prob-

3It should be noted that the reestimated probabilities need to be renormalized to sum up to 1, by
multiplying with the estimated total probability of seen types 1−P0 and dividing by the sum of unnor-
malized probabilites.

4SGT incorporates a rule for switching between Nr and S(Nr) such that smoothed values S(Nr) are
only used when they yield significantly different results from Nr (when the difference is greater than
1.96 times the standard deviation).
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ability mass is for smaller frequencies. This obeys a rational principle: when types
have been observed with high frequency, it is likely that all the types in the population
have already been attested; on the contrary, when there are many low-frequency types,
it may be expected that there are also types not yet attested.

5.5.2 Prediction of observed decrease in the propensity to general-
ize

Next, I apply the Simple Good-Turing method5 to subjective frequencies computed by
the R&R model. As shown in figure 5.4, the propensity to generalize (P0) decreases
as the exposure time increases, regardless of the parameter setting used in R&R. This
result is consistent with the rationale in the Simple Good-Turing method: as expo-
sure time increases, frequencies are shifted to greater values, causing a decrease in the
smaller frequencies and therefore reducing the expectation for unattested sequences.
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Figure 5.4: Propensity to generalize, for several parameter settings (average of 100
runs). The model shows a clear decrease for all parameter settings, consistent with the
empirical data (compare with figure 5.1).

The results of these simulations point to a straightforward explanation of the experi-
mental finding of a reduced preference for the generalized sequences: longer exposures
repeat the same set of words (and partwords), and consequently, participants may con-
clude that there are no other sequences in that language – otherwise they would have
probably appeared in such a long language sample.

It can be noted in the graphs that the propensity to generalize is slightly smaller for
the micropause condition. The reason for that is that R&R identifies words faster when
micropauses are present, and therefore, the subjective frequencies tend to be greater.

5I use the free software implementation of Simple Good-Turing in
https://github.com/maxbane/simplegoodturing.
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This might appear unexpected, but it is in fact not contradicting the empirical results:
as shown in figure 5.3, the difference between words and partwords is much bigger in
the condition with micropauses, so this effect is likely to override the small probability
difference (as would be confirmed by a model of step (iii)). It should be noted that,
as reported in Frost and Monaghan [2016], micropauses are not essential for all type
of generalizations (as is evidenced with the fact that rule*-words are generalized in
the no-pause condition). Like those authors, I think the role of the micropauses is to
enhance the salience of initial and final syllables (A and C) to compensate for the odd
construction of the test items (rule-words and class-words), which include a middle
syllable that occupied a different position in the familiarization stream.

5.6 Discussion
The experiments I have focused on are all based on the same simple language, but
the results form a complex mosaic: generalization is observed in different degrees
depending on the amount of exposure, the presence of micropauses and the type of
generalization (rule-words, class-words or rule*-words). I have approached the analy-
sis of these results with the use of several tools: first, with the three-step approach, a
conceptualization of generalization that identifies its main components; second, with
the use of R&R, a probabilistic model that already predicts some aspects of the results
—and, importantly, generates a skewed distribution of subjective frequencies that is
crucial for step (ii); and third, with the Simple Good-Turing method for quantifying
the propensity to generalize. I now discuss how I interpret the outcome of my study.

Framing generalization with the three-step approach allowed us to identify a step
that is usually neglected in discussions in ALL, namely, the computation of the propen-
sity to generalize. I state that generalization is not only a process of discovering struc-
ture: the frequencies in the familiarization generate an expectation about the probabil-
ity of next observing any unattested item, and the responses for generalized sequences
must be affected by it. Moreover, this step is based on statistical information, proving
that — contrary to the MoM hypothesis — a statistical mechanism can account for the
negative correlation with exposure time.

It should be noted that this conclusion concerns the qualitative nature of the learn-
ing mechanism that is responsible for the experimental findings. It has been postulated
that such findings evidence the presence of multiple mechanisms [Endress and Bonatti,
2016]. In my view, the notion of ‘mechanism’ is only meaningful as a high-level con-
struct that may help researchers in narrowing down the scope of the computations that
are being studied, among all the computations that take place in the brain at a given
time. After all, there is no natural obvious way to isolate the computations that would
constitute a single ‘mechanism’, from an implementational point of view. Therefore,
the three-step approach should be taken as sketching the aspects that any model of gen-
eralization should account for, and the work reported here show that the experimental
results are expected given the statistical properties of the input.
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One issue to discuss is the influence of the use of the R&R model in computing the
propensity to generalize. The Simple Good-Turing method is designed to exploit the
fact that words in natural language follow a Zipfian distribution —that is, languages
consist of a few highly frequent words and a long tail of unfrequent words. This is a
key property of natural language that is normally violated in ALL experiments, since
most of the artificial languages used are based on a uniform distribution of words (but
see Kurumada et al. 2013). But it would be implausible to assume that subjects extract
the exact distribution for an unknown artificial language to which they have been only
briefly exposed. R&R models the transition from absolute to subjective frequencies,
resulting in a distribution of subjective frequencies that shows a great degree of skew,
and much more so than alternative models of segmentation in ALL. Thanks to this
fact, the frequency distribution over which the SGT method operates (the subjective
distribution) is more similar to that of natural language, and the pattern of results found
for the propensity to generalize crucially depends on this type of distribution.

Finally, I have thus accomplished my goal qualitatively. The model captures the
downward tendency of the propensity to generalize, but a model for step (iii), a long-
standing question in linguistics and cognitive science, is required to also achieve a
quantitative fit. The next chapters review the existing models for such step, and present
a neural network model that reveal key properties of the generalization mechanism.
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Chapter 6
Computational Models of Rule Learning

This part of the dissertation addresses the third step of the conceptualization I proposed;
namely, how individuals generalize to novel items. First of all, in this chapter1 I present
a critical review of models of generalization, and reflect on what is missing and which
steps should be taken in future research. I then present a new model in chapter 7 that
addresses some of the points raised in this review.

6.1 Introduction
One of the key abilities of human cognition is the capacity for discovering regularities
in the environment and generalize them to novel cases. For instance, consider how,
after seeing a giraffe for the first time, we are able to conclude that a previously un-
encountered giraffe is a member of the same animal species. Another well known
example, introduced by [Fodor and Pylyshyn, 1988], is that an individual who under-
stands the sentence John loves Mary can also understand Mary loves John2. To achieve
that, an individual must abstract from the concrete properties in the input, and decide
the extension of novel items to which the abstracted regularity or rule applies to.

In experimental linguistics, and concretely in the tradition of Artificial Language
Learning (ALL), the study of how structural relations are generalized from language-
like input is known as rule learning3. In the last two decades, a great body of experi-
mental work has emerged, focusing on how humans discover relations that range from

1The content in this chapter is based on the following manuscript:
Alhama and Zuidema [2017c]. Computational Models of Rule Learning. [To be submitted.]

2Fodor and Pylyshyn refer to this property of human thought as systematicity. I see it as an instance
of a generalized relation between two items (the lover and the loved).

3The term rule learning can be easily misinterpreted, since it has also been coined to postulate a
specific theory of generalization (which I present later), according to which the knowledge extracted
in such experiments must be explicitly represented as an algebraic symbolic rule. Unless otherwise
specified, my use of rule learning is interchangeable with generalization; and rule is by default used to
convey the same meaning as pattern or regularity unless it appears in the context of the specific theory
that postulates algebraic rules.
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identity rules [Marcus et al., 1999, Gerken, 2006, Endress et al., 2007] to nonadjacent
dependencies [Peña et al., 2002, Gómez, 2002, Gómez and Maye, 2005, Endress and
Bonatti, 2007, Frost and Monaghan, 2016] and even finite state grammars [Gomez and
Gerken, 1999].

These experiments have inspired a number of computational models that aim to
provide an explanation of the cognitive mechanisms underlying the empirical results.
In this chapter, I focus on the experimental study presented in Marcus et al. [1999],
which inspired a great number of modelling approaches and a very active debate around
theoretical issues such as the nature of the representations involved.

This chapter is structured as follows. First I describe the empirical findings from
the experiment by Marcus and colleagues (§ 6.2). Then I describe the existing models
(§ 6.3, § 6.4), to then identify what are the relevant questions that the models address
(§ 6.5). Finally, I delineate an agenda of concrete desiderata for future modelling
efforts (§ 6.6).

6.2 The Empirical Data
Marcus et al. [1999] presented an ALL study that aimed to investigate the acquisition
of grammar-like rules by 7 month old infants. The authors run a total of three experi-
ments, in which the 7 m.o. participants are familiarized with a speech stream consistent
with a certain ‘grammar’ or pattern. For instance, one of the familiarization streams
could involve syllable triplets like “linali talata nilani gagiga ...” (where the spaces
denote silence gaps); in this case, we say that the stimuli were generated with an ABA
grammar. In order to see if infants learn to extract the grammatical rule, they are subse-
quently tested with stimuli that involve triplets consistent with the grammar they were
familiarized with, and triplets generated with another control grammar. The amount of
time that infants direct their attention to the stimuli being played (the ‘listening times’)
are recorded, and then a statistical test is applied to see if they are significantly different
between stimuli of the different grammars, showing in this case that infants learnt to
discriminate stimuli of each grammar. Crucially, the test stimuli contain syllables that
did never appear in the familiarization stream; in this way, infants cannot solve the task
by only memorizing the syllables they were familiarized with.

In the first experiment, half of the participants are assigned to one of two conditions,
differentiated by the grammar used to generate the familiarization stimuli: either ABA
or ABB. After the familiarization phase, infants are tested to see if they extracted the
underlying grammatical patterns. In accordance to the procedure described above, for
all the participants the test stimuli contain triplets from both the ABA and the ABB
condition. The complete stimulus set is listed in table 6.1.

A statistical analysis of the results of this first experiment shows that looking times
were significantly longer for inconsistent triplets, reflecting what the authors interpret
as a novelty preference. It seems therefore that infants are able to discriminate between
grammatical and ungrammatical items. Since the syllables in test and familiarization
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do not overlap, the results seem to be an indication that the infants have abstracted the
grammatical rule.

Familiarization Test
ABA ga ti ga li ti li ni ti ni ta la ta wo fe wo

ga na ga li na li ni na ni ta ti ta de ko de
ga gi ga li gi li ni gi ni ta na ta
ga la ga li la li ni la ni ta gi ta

ABB ga ti ti li ti ti ni ti ti ta la la wo fe fe
ga na na li na na ni na na ta ti ti de ko ko
ga gi gi li gi gi ni gi gi ta na na
ga la la li la la ni la la ta gi gi

3x triplet (random order)

Table 6.1: Stimuli used in experiment 1 in Marcus et al. [1999].

Familiarization Test
ABA le di le wi di wi ji di ji de di de ba po ba

le je le wi je wi ji je ji de je de ko ga ko
le li le wi li wi ji li ji de li de

le we le wi we wi ji we ji de we de
ABB le di di wi di di ji di di de di di ba po po

le je je wi je je ji je je de je je ko ga ga
le li li wi li li ji li li de li li

le we we wi we we ji we we de we we
3x triplet (random order)

Table 6.2: Stimuli used in experiment 2 in Marcus et al. [1999].

However, the authors identified a possible confound: the consonants in the stimuli
appear always in voiced – unvoiced – voiced combinations, so the results could poten-
tially be explained also as caused by the detection of such a pattern. In order to rule
out this possibility, a more carefully controlled replication of the previous experiment
is presented (the list of stimulus items is shown in table 6.2). The responses in this ex-
periment still prove to be statistically significant in discriminating between grammars,
and therefore, the conclusions are consistent with those of experiment 1.

Finally, there still exists the possibility that the infants focus on the presence or
absence of an immediate repetition, rather than on the abstract identity rule. Therefore,
the authors carry out a third experiment in which the stimuli grammars are ABB and
AAB. Again, the participants show significantly different responses between gram-
mars, so this alternative explanation is ruled out.

To summarize, the three experiments show significantly different responses for
each of the tested grammars, so it seems that infants find some regularity that allows
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them to discriminate between grammars. This discrimination happens even when pho-
netic features are more carefully controlled, and it goes beyond the simple presence or
absence of an immediate repetition, so the authors conclude that 7 m.o. infants must
be abstracting the identity rule in the stimuli.

6.3 The Neural Network Models
In light of the reported results, Marcus and colleagues reflect on the cognitive mecha-
nism that may be responsible for the results. The first option they consider is whether
the same mechanism attested for word segmentation (statistical learning, as explained
in previous chapters [Saffran et al., 1996a,b, Aslin et al., 1998]) could be at play during
this experiment. However, Marcus and colleagues conclude that the results are incom-
patible with such an explanation, since the statistics for novel items amount to zero.
Instead, the authors propose that a cognitive mechanism of a different nature must
be at play; concretely, a rule-based mechanism that extracts algebra-like rules over
variables – that is, a mechanism that explicitly incorporates operations over symbols.

In order to provide additional support for this idea, the authors report failed simu-
lations with a neural network architecture, a class of model that implements statistical
learning. The authors argue that neural network models like the one they simulated (a
Simple Recurrent Network or SRN, Elman [1990]) do not stand a chance to account
for the results precisely because such models do not explicitly encode variables and
relations over variables. The scope of this claim includes the most standard neural net-
work architectures, which do not incorporate symbolic operations; but it did not target
hybrid neural network approaches that are extended to represent variables.

This study received much attention; after all, what Marcus and colleagues pointed
out was an apparent limitation of neural networks in reproducing a very basic capacity
that does not seem to pose a problem for infants, already at a very young age. The
publication triggered a heated debate, in which connectionist modellers presented a
number of alternative neural network models to account for the results; the next sec-
tions are devoted to reviewing these models.

6.3.1 The Simple Recurrent Network Models
The Simple Recurrent Network (SRN) was proposed in Elman [1990] as a variant of
the classic feed-forward network, specialized in learning regularities over sequences.
The main contribution of this network is to process input data that unfolds through
time. The architecture of an SRN (which can be seen in figure 6.1) incorporates a
‘context’ layer. At every time step, the activation values of the hidden nodes are copied
into the context layer. The context layer is at the same time connected as an input to
the hidden layer, so the hidden layer reads activations from both the input layer and the
context layer. Therefore, the internal representations depend on the previous state of
the network, incorporating in this way a form of memory.
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Figure 6.1: The Simple Recurrent Network [Elman, 1990]. Dotted lines represent
trainable connections; continuous line represents a one-to-one copy of the activation
values.

As mentioned before, Marcus and colleagues report failed simulations with this
model; however, other researchers proposed to model the experiment with an SRN
with certain modifications. I now review these models.

Using analog encoding

Negishi [1999] reflects that the lack of generalization in the original simulations is due
to the fact that both of the encoding schemes employed are based on binary activations.
Instead, the author proposes to represent features of the input as real numbers.

The original simulations were replicated, but with the stimuli characterized by two
continuous (analog) values: vowel height and place of articulation. This resulted in a
model that produced larger prediction errors for the grammar it was not trained with,
a fact that may be interpreted as reproducing the increased attention over inconsistent
test stimuli observed in the experiment.

Marcus [1999c] argues that the use of analog encoding can be seen as endowing the
network with registers: if an input node represents all possible values, then it suffices
to connect it to the output node with a weight of 1, and thus, the node would act like
a variable that instantiates a particular value at a given time. However, this reasoning
is not so straightforward when it applies to SRN models: the non-linearities in the
hidden layer, and the connection with the recurrent layer do not permit the direct copy
proposed by Marcus. As argued in Sirois et al. [2000], variable bindings are only
effective if they can be accessed for further computation.

Optimizing for a different goal: Segmentation, Categorization and Transfer Learn-
ing

Christiansen and Curtin [1999] (and later also Christiansen et al. [2000]) suggest that
the statistical knowledge that infants acquire when attempting to segment the speech
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in their environment could be the basis for their success in the experiment reported
by Marcus and colleagues. To prove this point, they use an existing SRN model
that learns to segment speech using different types of probabilistic information [Chris-
tiansen et al., 1998].

Their model is presented with a sequence of phonemes (instead of syllables), en-
coded with phonological features, primary and secondary stress, as well as whether the
phoneme is the last one in a triplet (and therefore it is followed by a 1s silence gap;
see table 6.3 for more details). The model is trained to predict an arbitrary representa-
tion of the next phoneme in the sequence, but also whether the phoneme is a syllable
boundary, that is, whether it is followed by a 250s silence gap (which is the length for
pauses within triplets). In this way, the model is expected to learn to segment syllables
after having been given the information of triplet boundaries.

In order to evaluate the performance of the model, the authors introduce two novel
methods. First, they report that the network performs better at segmenting syllables
belonging to triplets that are not consistent with the training grammar. The authors
interpret this as accounting for the behavior of infants in the experiment, who pay more
attention to inconsistent test items. Second, an analysis of the internal representations
built by the model is performed. The authors find that the representations for consistent
and inconsistent triplets are distinguishable, as revealed by a two-group discriminant
analysis.

Marcus [1999c] argues that an analysis of the internal representations is not a suit-
able evaluation, since representations must have a causal effect on the output in order
to be meaningful. Although the segmentation task could potentially account for that,
Marcus observes that it is somewhat unnatural that the model is trained with stimuli
that represents the pauses between triplets while being tested on the type of pauses
that have intentionally not been coded. Additionally, Marcus observes that the statisti-
cal significance of the analysis of the internal representations may not be meaningful,
since the test consists of a very small number of items (4) compared to the number of
hidden units (80) that provide the internal representation.

∗ ∗ ∗

The next model I review (Altmann and Dienes [1999], based on an earlier model
by Dienes et al. [1999]) conceives of generalization as an instance of transfer learning
between different domains. In the context of the Marcus et al. experiment, the authors
identify the domains as defined by familiarization stimuli and test stimuli. In order to
account for the distinct domains, the authors extend the SRN architecture; concretely,
the input and the output layers are augmented with extra nodes, such that two separate
groups of nodes in each layer account for each domain. Additionally, the SRN is
extended with an extra layer (the “encoding” layer), situated between the input and the
hidden layer. The architecture of this network can be seen in figure 6.2.

The network is first trained as a normal SRN, using only the input and output
nodes of the first domain (D1). In the test phase, the stimulus is presented to the
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Figure 6.2: SRN model in Altmann and Dienes [1999] (image from Dienes et al.
[1999]; copyrights remain with the original holders).

group of input nodes corresponding to the second domain (D2). Crucially, the test
items are presented several times, and – contrary to the previously reviewed models –
the network continues updating the weights, with the exception of those connecting the
encoding layer and the hidden layer, which remain “frozen”. By keeping those weights
intact, the model preserves some of the knowledge learnt during training and attempts
to transfer it to the test stimuli.

The authors measure the success of the network by computing the Euclidian dis-
tance between the predicted and target vectors, for the vectors resulting from the last
iteration in the test. The results show higher correlations for prediction in the consis-
tent grammar. However, Marcus [1999e] observes that this implementation is consis-
tent with the experimental results only when evaluating the results by computing the
distance to the target. If, instead, one evaluates the most active unit in the predicted
vector, then the model oscillates between the two grammars.

Additionally, it must be noted that in this model the domains are predefined, and
there is no a priori reason for the test items to be part of a different domain. Accord-
ingly, the model requires a mechanism that selects and freezes a subset of the weights,
but it is not clear when and under what circumstances this mechanism would oper-
ate, and which particular subset of weights it should freeze. As Marcus puts it, the
model is task-specific, and it remains unclear how it can be related to other cognitive
mechanisms.

∗ ∗ ∗
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I now review a model that deviates from the original simulations in two ways: by
changing the task into categorization, and by accounting for prior experience. Sei-
denberg and Elman [1999a] observe that the SRN presented by Marcus et al. had no
previous knowledge, while infants in their experiment had been exposed to natural
language in their environment. The authors argue that, by this prior exposure, infants
might have learned to represent phonological similarity between syllables.

In order to account for prior knowledge, the authors extensively pre-train an SRN
with 120 different syllables. In this pre-training phase, one single node is optimized to
output whether the current syllable is the same as the previous syllable in the sequence.
In this way, the SRN is trained to learn identity between syllables.

The weights learned during pre-training are used to initialize the SRN for the ac-
tual experiment, which is also defined as a categorization task, this time involving a
different output node. Crucially, the network is not trained only with items belonging
to one type of grammar (as the infants in the original experiment), but also with triplets
generated from both ABA and ABB.

When tested with the novel triplets, the network shows responses close to zero for
the ABA triplets and closer to 1 for ABB (concretely, 0.004 and 0.008 for bapoba and
kogako, and 0.853 and 0.622 for bapopo and kogaga). Thus, it seems that the SRN
learnt to correctly discriminate between the grammars.

However, although the incorporation of pre-training is cognitively motivated, other
aspects of this work require further justification, as discussed also in response letters
Marcus [1999c], Seidenberg and Elman [1999b], Marcus [1999d]. The simulations
greatly deviate from the original experiment in providing the model with negative evi-
dence, and additionally, the incorporation of a feedback signal both during pre-training
and training does not have its counterpart in the original experiment, since subjects in
the experiment did not receive any form of feedback.

Marcus further observes that the output node is trained to follow the symbolic rule
‘if X==Y then 1 else 0’, suggesting that this evidences the need for symbolic opera-
tions. Although the model is clearly trained under that rule, as Seidenberg and Elman
argue, the feedback is an external signal, which does not modify the space of hypoth-
esis of the model. In other words, the fact that the supervision signal can be expressed
with a symbolic rule does not entail that the network implements symbolic operations.
It is nevertheless not clear where the signal for learning identity on the first place would
come from, and whether it is plausible that a region of the brain is dedicated to finding
identity relations in the input.

Accounting for previous experience

I now review a model that also incorporates prior experience, but in this case it remains
as the original prediction task.

Altmann [2002] simulates the experiment in the same architecture presented in
Dienes et al. [1999] and Altmann and Dienes [1999] (reviewed in section 6.3.1). Like
in the previous proposals, the model is allowed to learn during the test phase; however,
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in this study, no connections are frozen — that is, all the connection weights of the
model can be updated.

The pretraining consists of a prediction task over a set of 252 sentences in natural
language, which were generated from the grammar and vocabulary presented in Elman
[1990] (with an additional control experiment that avoids sentences involving ABA
or ABB structures). After the pretraining, the network is trained on the Marcus et al.
stimuli, and then tested with the novel items.

The output of the model is evaluated by computing the product moment correla-
tion between the predicted vector with the correct one. Statistical tests show that the
response of the model significantly varies between consistent and inconsistent items.
The authors conclude that their model reproduces the empirical data; however, the cri-
tiques that Marcus raised for previous work [Marcus, 1999e], based on the fact that the
model iterates over the test items several times, apply also to these simulations.

Additionally, in my opinion a relevant aspect in this model is the type of representa-
tion employed for pauses. The authors use two different vectors to encode the pauses:
one for pauses that precede the onset of a triplet, and another to mark the ending. In this
way, the learning process can exploit this information to detect different associations
for onset and final syllables. This constitutes an indirect form of positional information
that is not available in the actual familiarization stream (since, perceptually, there is a
single uniform silence gap between triplets).

6.3.2 Neural Networks with non-sequential input
I now review two neural network models that are based on a different architecture,
known as autoencoder or autoassociator [Mareschal and French, 1997]. These models
do not incorporate recurrent connections to learn sequential relations over the input;
instead, they are optimized to find a suitable encoding of the input. The objective
function is set to minimize the error in reproducing the input pattern in the output, so
the network needs to built intermediate representations that favour the reconstruction
of the input.

I first review the study presented in Shultz [1999] (later replicated in Shultz [2001]
with a different encoding scheme). This model is an autoencoder that is trained with
cascade-correlation [Fahlman and Lebiere, 1990]. The main property of cascade-
correlation is that it gradually adds new nodes to the hidden layer, as determined by the
computed error. Since the network is trained to reproduce the input in the output layer,
the error signal is based on the difference between the actual output and the input.

In the original simulations, each syllable is encoded as a real number, which is
represented in a single node. The information is presented to the network as triplets;
thus, the input and output layers consist of 3 nodes, each one corresponding to one
syllable.

For the evaluation of the results, the author submits the error produced in the output
layer to a repeated ANOVA. The results show a significant effect on grammar condi-
tion, with more error for inconsistent test items. Shultz concludes that this reproduces
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the original experiments, since more error requires further cognitive processing –as
would be reflected in the increased looking times for inconsistent items.

Marcus [2001] argues that, due to using just one node to represent each syllable,
the model can easily learn to copy the relevant syllables in the output. It is true that
given the topology of the network, which is is built on the go, it is easy to imagine
that with the incorporation of a few nodes, the input gets roughly copied in the output
(although distorted with the non-linear function applied to the hidden nodes), but Vilcu
and Hadley [2005] showed with further analysis that the network does not perform such
mapping.

Vilcu and Hadly further argued that these results are only replicable for this partic-
ular stimuli; for ABA or ABB sequences that involve different phonemes, the model is
unable to distinguish between the grammars. Additionally, the authors show that the
model does not generalize to stimuli encoded outside the range of the real numbers
employed in the encoding.

It must be noted that this network operates over full triplets, creating in this way a
somewhat artificial treatment of a continuous input. The next model I review incorpo-
rates a slightly more realistic treatment of time.

∗ ∗ ∗

Sirois et al. [2000] implement a fully connected neural network; that is, the nodes
in the network are all connected to each other. The network is trained to reproduce ex-
ternal input in its nodes, strengthening the connections in the nodes that have correlated
activations.

This model contrasts with the previous approaches in its formalization of time.
Each syllable in a triplet is presented to a different group of nodes, one at time. After
the three syllables in a triplet have been presented, the activations are reset. Addition-
ally, the model implements activation decay. For instance, when the third syllable of
a triplet is presented, the first and second syllables still remain active, but their activa-
tions are decreased (with the first syllable having weaker activation than the second).

As for the evaluation, Sirois analyses the number of presentations required for the
test items to be assimilated (i.e. to be accurately reproduced by the network). The
results of this analysis exhibit a significant difference between consistent and inconsis-
tent items; therefore, the authors interpret the results as showing that this model could
be a possible explanation of the original experiment.

It must be noted though that one of the drawbacks of this approach is that its design
is intimately tied to the actual experiment: the architecture would need to be adapted in
the case of input sequences with a different number of syllables, and the full activation
reset is linked to the appearance of the highly salient 1s silence gaps in the input, but it
is not clear how this would generalize to stimuli involving less perceptible silence gaps
(if any).
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6.3.3 Neural Networks with a repetition detector

We now review three models that include some form of dedicated mechanism to detect
repetitions of syllables in the input.

Shastri and Chang [1999] present a model of the Marcus et al. experiment that
implements a form of dynamic binding [Hummel, 2011]. The model, originally pre-
sented in Shastri et al. [1993], is implemented as a neural network with two groups of
dedicated nodes for the input: one group that represents the phonetic features for an
input syllable, and another group with three nodes corresponding to each of the three
positions in a triplet. The idea behind dynamic binding is that the nodes of the two
groups activate in synchrony, and therefore the coincident activity can be exploited by
the network in order to learn the abstract pattern in the input.

This neural network model involves recurrent connections, but it is not imple-
mented as a standard SRN. Instead, the model (illustrated in figure 6.3) clamps some
input activations and propagates the activity through the network. After some delay,
a target (the “correct” activation of the positional information) is clamped in the net-
work. The difference between the actual activations and the target is used to update the
weights through gradient descent.

Crucially, during the presentation of each syllable, all the positional nodes in which
the syllable appears are active in the target; for instance, for the stimulus ledile, the first
and the third positional nodes are both active on each presentation of le, and the second
positional node is active during the presentation of di. It must be noted that, with the
introduction of this form of feedback, the model is provided with an actual mechanism
for detecting repetitions.

When it comes to the Marcus et al. experiment, the performance of the model
is evaluated by computing the mean squared error between the model activations of
the positional nodes and the target. The error is considerably smaller for test items
consistent with the training grammar, and thus the model appears to reproduce the
empirical findings. However, this type of evaluation is based on the actual relations
learnt by the model (since it employs a target based on a rule), rather than on the
produced output (the “behaviour”) of the model. Therefore, it cannot be compared
to the results in the experiment with infants without assuming that these are the rules
extracted in the experiment.

Shastri and Chang argue that this approach offers a plausible mechanism to im-
plement rules via biologically inspired temporal synchrony. Thus, this model is not
presented as a counterargument to the claim by Marcus et al.; actually, Marcus [2001]
reflects that this model implements temporal rather than spatial variables. However, as
argued also in Shultz [2001], the design of the model is very tied to the actual experi-
ment; additionally, the feedback is clearly unrealistic, in providing the model with the
expected outcome rather than with the available information in the input. Therefore, it
does not really offer a reconciliation between symbolic and neural network models.

∗ ∗ ∗
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Figure 6.3: Model presented in Shastri and Chang [1999] (image courtesy of the au-
thors; copyrights remain with the original holders). The numbers indicate link delays
in the connections.

Gasser and Colunga [2000] also present a model that implements another form of
dynamic binding. The authors frame the problem as extraction of correlations from the
input; in their view, the reason why the correlations that infants learn during the exper-
iment allow them to generalize to novel items is that those correlations are relational
instead of content-specific.

This model – named PLAYPEN – is implemented as a generalized Hopfield net-
work, that is, a fully connected neural network model in which weights are adjusted
with the Contrastive Hebbian Learning algorithm [Hopfield, 1984]. The network, il-
lustrated in figure 6.4, is provided with dedicated units that detect sameness and dif-
ference. Therefore, its task is to reinforce the correlations according to the relations of
sameness and difference found in the input.

As in the previous model, the authors assume dedicated nodes for each syllable
position in a triplet. Additionally, the model is augmented such that each unit has an
“angle”. While the particular value of the angle is irrelevant, it provides an additional
dimension to the network, such that units with similar angle can be treated similarly.
In this way, Gasser and Colunga implement a form of simplified dynamic binding.

The results of the experiment simulations with this model show that the relational
units are more active for test items consistent with the training grammar. Therefore, the
network has strengthened the connections of the relations present in the familiarization
stimuli.

In spite of the claims of biological plausibility of the model, its actual implemen-
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Figure 6.4: The PLAYPEN model [Gasser and Colunga, 2000] (image courtesy of the
authors; copyrights remain with the original holders). Diamonds indicate difference
relations; ovals indicate sameness.

tation remains extremely tied to the actual task, since the model comes with pre-wired
relations over explicit bindings. Still, the authors argue that their model does not qual-
ify as a symbolic model, since variables in symbolic models are content-independent,
while PLAYPEN is sensitive to feature similarity between the presented items. How-
ever, while I agree that the model does not implement symbolic variables, it does in-
corporate rules, and thus it embodies the assumption that infants are equipped with a
repetition detector.

∗ ∗ ∗

The last model in this section is a variant of a recurrent neural network model that
also incorporates a repetition detector. This approach, presented in Dominey and Ra-
mus [2000], is based on an architecture called Temporal Recurrent Network [Dominey,
1995], a recurrent architecture in which only the weights connecting the hidden and
the output layer are trained (while the rest are randomly initialized and remain un-
changed). Interestingly, the nodes in this network are Leaky Integrate-and-Fire units.
This endows the network with a more realistic representation of time: unlike in previ-
ous approaches, in which activations consist of a single value that is produced after a
discrete timestep, the nodes of this network produces activations in the form of contin-
uous spikes.

Nevertheless, the authors do not find with this model a pattern of results that is
consistent with behaviour of the infants in the experiment. Therefore, they explore an
augmented version of the model, which they call Abstract Recurrent Network (ARN).
The ARN model features an additional short-term memory that stores the last 5 syl-
lables of the input (in order to account for the 7±2 magical number for short-term
memory, [Miller, 1956]), and a “recognition” component that detects whether any of
the items in the short-term memory is the same as the actual item. This information is
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then provided to the internal state (the hidden layer), so that the model can exploit this
information while updating the weights between the hidden layer and the output.

Given that the model is updated in continuous time, the responses can be easily
compared to Reaction Times. Concretely, the authors measure the response latencies of
the activation of the correct output nodes. These latencies should be smaller for learnt
items, since the strength of the activations in the network would influence the activity in
the output. With this form of evaluation, the authors find significant statistical evidence
for shorter Reaction Times for test items consistent with the familiarization grammar.

This model therefore appears to be a promising approach, in incorporating suc-
cessful learning with a more realistic treatment of time. However, as mentioned in the
previous approaches, this network is endowed with a component that actively looks for
repetitions in short-term memory (and even contains a node that fires when no repeti-
tion is found). This results in the very strong postulation that infants must be equipped
with such dedicated mechanism.

Importantly, this model adds some form of variables, in line with the claims by
Marcus and colleagues. This is due to how the model accesses the augmented short-
term memory, which is based on isolated memory positions dedicated to store different
items. It must be emphasized that this behaviour comes from how the memory is ac-
cessed, not by the mere fact of adding short-term (spatial) memory; in other words, a
network with this kind of memory may learn how to access it efficiently, and might
eventually discover how it can exploit that nodes in the memory are dedicated to dif-
ferent items. This is not the case in the model by Dominey and Ramus, in which
the recognition component is handcrafted to have positional access to elements in the
short-term memory.

6.3.4 Evaluating the Neural Network Models
Although the models reviewed address the same experimental data, they greatly differ
in the criteria applied to judge their success in reproducing the empirical phenomenon.
In the original simulations by Marcus and colleagues, it is not clear how the output of
the model was evaluated, since the authors only report that “the network is unable to
distinguish the inconsistent and consistent sentences”. In the follow-up papers, mod-
ellers use some error measure (e.g. Mean Squared Error) to compute how much the
predicted vectors deviate from the target [Negishi, 1999, Altmann and Dienes, 1999,
Altmann, 2002, Shultz, 1999, Shastri and Chang, 1999]; generally this is accompanied
with a statistical analysis that shows whether the computed error allows for distinction
between grammars.

While that is the most common approach, the rest of the reviewed studies apply
completely different criteria. To begin with, Seidenberg and Elman [1999a] report the
average activity of the output node in their model (which is trained for grammar classi-
fication). Another example is Sirois et al. [2000], who compare the number of stimuli
presentations required to succeed in generalization in each grammar. We find yet an-
other approach in Gasser and Colunga [2000], who analyze whether the model learns
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the expected identity rule (an approach that is also present in an extended analysis in
Shastri and Chang [1999]). In contrast, Christiansen and Curtin [1999] and Chris-
tiansen et al. [2000] evaluate their model in its prediction of the internal pauses within
a triplet (since the authors frame the problem as a segmentation task). Additionally,
the authors also analyze the internal representations built by the model, and find that
they are distinguishable for each type of grammar. Finally, a contrasting approach is
found in Dominey and Ramus [2000], in which the latency of output node related to
the correct prediction is measured and taken as an indication of Reaction Time.

Given this stunning variation on evaluating the models, it is not possible to quanti-
tatively compare the models in either their goodness of fit to the empirical data or in to
what extent the models are capable of generalization.

Interestingly, there is one aspect of the evaluation criteria on which most of the
proposals agree: the models are evaluated in showing some form of discrimination
between grammars. The corollary is that, even though a successful model can reliably
detect some difference between the stimuli generated by each grammars, it need not be
capable of accurately generalizing (i.e. on systematically predicting or accepting novel
items that are consistent with the generalized rule). Exceptions to this are the models
by Shastri and Chang [1999] and Gasser and Colunga [2000], which are evaluated
on learning abstract identity (or difference) relations –albeit they are not evaluated on
producing actual generalizations but rather on settling for the hypothesized rules.

6.4 Symbolic Models of Rule Learning
All the models reviewed so far are neural network approaches, albeit some of them
incorporate some form of symbolic structure. The original proposal by Marcus and
colleagues can also be implemented in a purely symbolic model, but the number of
such models applied to the Marcus et al. experiment is really small (to the best of my
knowledge, the only existing models are Kuehne et al. [2000] and Frank and Tenen-
baum [2011]). A possible reason for this asymmetry with neural approaches is that the
grammars to be learnt are so simple when rules and variables are assumed that there
is not much room for unexpected findings. For this reason, here I focus on the model
by Frank and Tenenbaum [2011], since its the only model that goes beyond simple
rule extraction to also address an important question that has been neglected in other
approaches; namely, what determines which rule is preferred when there are multiple
consistent rules.

The model presented by F&T is a Bayesian model, inspired by the Bayesian simi-
larity model in Tenenbaum and Griffiths [2001]; however, unlike the original proposal,
it is not driven by analogy between exemplars; instead, the model infers the most likely
symbolic rule that may have generated the observed data.

The hypothesis space in this model consists of an inventory of symbolic rules.
Since the model is applied to a variety of datasets, this inventory is adapted to each
experiment; in the case of the experiment by Marcus and colleagues, the hypothesis
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space incorporates an identity relation over syllables. Therefore, the model may learn
any combination of identity relations over syllables in the input.

The model uses Bayesian inference to decide which is the most likely rule r (gram-
mar) that may have generated the observed stream of triplets T = t1, ..., tn; in other
words, the goal of the model is to find for which rule r the posterior probability p(r|T )
is maximal. As defined in equation 6.1, the posterior can be computed as a product of
the likelihood of observing the data assuming this rule p(T |r) (see equation 6.2) and
the prior probability of the rule p(r) (that is, the probability of a rule before observing
the input stream). In order for the posterior to be a probability, this product needs to be
normalized by the sum of the probabilities for all possible rules.

p(r|T ) = p(T |r)p(r)
∑r′∈R p(T |r′)p(r′)

(6.1)

where

p(T |r) = ∏
ti∈T

p(ti|r), (6.2)

and where

p(ti|r) =
1
|r|

. (6.3)

The prior is defined as a uniform distribution; hence, each rule is a priori equally
likely. As for the likelihood, the authors assume strong sampling, that is, the triplets
are assumed to have been uniformly sampled from the set of triplets that a rule can
generate. This entails that the probability of observing a triplet under a certain grammar
is larger for “smaller” grammars (that is, grammars that generate a smaller number of
triplets), as seen in equation 6.3. This creates a bias in the model in favour of more
concise grammars; for instance, for a triplet such as “je-li-je”, a rule like ABA is more
likely than a more general but equally consistent rule ABC that involves no identity.

Given the simplicity of the experiment and the model, the only rule that can com-
pete with ABA or ABB is ABC, that is, a grammar which generates triplets consisting
of three arbitrary syllables, which may or may not be repeated. This model shows that
more probability is attributed to the more specific grammars ABA and ABB (consistent
with the size principle defined above).

The authors present two additional variants of this model: one that assumes a cer-
tain amount of noise in the generative process (regulated through an additional parame-
ter), and another that additionally allows for the possibility that the data was generated
from multiple rules.

Due to the addition of parameters, the model now requires a procedure of fitting.
The posterior probabilities derived from the model are related to the human responses
through the use of the negative log probability (surprisal). These two models also at-
tributed more probability (less surprisal) to the rules involving identity, although some
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small probability mass was attributed to the general rule ABC.
Thus, the BLM model identifies which rules would be favoured under a rational

model incorporating a certain bias for less general rules. Although the model appears
extremely simple in comparison to the neural network approaches (mostly due to the
fact that that the hypothesis space is relatively small and manually defined, ad hoc
for the experiment), it brings an additional value that should not be underestimated.
Concretely, it is the only model that clearly defines which biases are hypothesized
to guide the preference for certain rules over others. Thanks to that, this approach
incorporates a principle that postulates why the participants induced an identity rule
instead of a more general rule in which all triplets are possible.

This study was fiercely criticized in a follow up publication [Endress, 2013]. Among
other issues, the author questions the validity of the “size principle” as a cognitive bias.
The author reports an independent experiment in which participants are exposed to in-
stances of an ABB grammar, vocalized with human speech. The participants could
discover at least two rules: the identity rule between the second and third syllable, or
a more general rule glossed as “any sequence of human speech syllables”. In the sub-
sequent test phase, participants had to choose between an ABB sequence of monkey
vocalizations, or AAB triplets carried by human speech. The results show a preference
for the AAB human triplets, a fact that is interpreted by Endress as contrary to the “size
principle”. However, Frank [2013] argues that this data shows a modality preference
rather than a rule preference. The issue is therefore not settled: it is not clear whether
the subjects prefer certain generalizations based on the “size” of the set of items that
a rule can generate or based on a bias favouring acoustic aspects of the input (i.e. the
vocalizations).

6.5 Analysis of the Models
In the previous section, I have reviewed models that appear to offer distinct perspec-
tives on generalization. I now identify what I think are the most relevant questions
that the Marcus et al. experiment give raise to, and analyse whether these seemingly
contrasting approaches differ in answering those questions.

6.5.1 Question 1: Which features or perceptual units participate
in the process?

In the experiment, infants are exposed to a synthesized speech stream. The way this
stream is perceived must impact what is learnt from it, and therefore, details of this per-
ceptual process are relevant. For instance, do infants perceive the input as a sequence
of phonemes, or is the syllable the most salient perceptual unit? Do they analyze lower-
level properties, such as phonetic features, once a syllable has been recognized? Do
other acoustic dimensions, such as loudness or pitch, play a role in what is learnt? How
does the insertion of silence gaps affect the perception of the basic units?
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These questions have not received much attention. However, thanks to using com-
puter modelling, researchers are forced to make choices on how to represent the input
and how to present it to the model over time. This is reflected in the encoding, which
may, for instance, incorporate some detailed acoustic aspects of the stimuli or, instead,
represent it with arbitrary symbol that does not encode any properties of the item. The
latter is the approach taken by symbolic models such as the BLM, where each sylla-
ble is represented with an arbitrary symbol that does not incorporate any information
of what it represents. But in the case neural network models, the input vector can be
coded in either way, as explained next.

In a localist encoding scheme, vectors are initialized to a null value (typically, 0 or
-1) except for one of its units, which will have a non-null activation value (typically,
1). The position of the active unit indicates which item is represented, but it does not
convey any information of the properties of the item; therefore, localist representations
are always arbitrary. On the contrary, in a distributed encoding scheme, each unit may
participate in the representation of more than one item. Although these values can
be chosen arbitrarily, each unit may be chosen to represent one particular property of
the item, and thus, the distributed vector would encode certain specific properties of
the stimuli. As shown in table 6.3, models vary in the choice of represented acoustic
features.

The choice of the encoding scheme has an impact on generalization. As argued in
Marcus [1998], for a neural network to succeed in generalizing to novel items, such
novel items must fall within the training space; that is, the values of each unit must have
been witnessed by the network during training (even if in different combinations). For
instance, if the training data contains the vectors [1, 1, 1], [1, 0, 1] and [1, 0, 0], then
a novel item like [1, 1, 0] lies within the training space, while [0, 1, 0] is outside
the training space, since the first unit in the vector has never taken the value 0 during
training. If a certain unit in the input always has the same value during training the
network learns a solution based on such fixed value, and therefore the solution will not
be valid for novel test items that contain the opposite feature value.

For this reason, the choice of the encoding scheme and the dimensions to encode
is relevant, since a certain amount of overlap is needed for generalization in neural
networks. To illustrate this, consider the case in which localist representations are used.
The nodes that represent the test items will be zero during familiarization, and therefore
the learning algorithm will update the connecting weights until they converge to zero,
so they would never be active to predict novel items. On the contrary, with distributed
vectors, some of the units representing the test stimuli may have been active during
training.

This raises two relevant issues. First of all, distributed vectors stand a chance for
generalization, depending on the overlap between vectors in training and test. This can
be accomplished in two ways: either by using pseudo-random symbolic initializations
that guarantee a certain amount of overlap, or by investigating which are the relevant
properties of the input that need to be coded in the vector. To our knowledge, this issue
has not been thoroughly explored. Thus, this will be one of our points in the desiderata
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Models Unit Scheme Features
Marcus et al. (1)) Syllable Localist — Binary
Marcus et al. (2) Syllable Distributed — Binary 6 phonetic features
Negishi Syllable Distributed — Analog Place of Articulation and

Continuous Vowel Height
Christiansen&Curtin Phoneme Distributed — Binary 11 phonological features,

primary and secondary stress,
and presence of 1s gap

Seidenberg & Elman Syllable Distributed — Binary 12 phonetic features
Altmann and Dienes Syllable Localist — Binary
Shultz Triplet Localist* — Analog *Localist for syllables
Sirois et al. Syllable Localist — Analog
Shastri&Chang Syllable Distributed — Binary 6 phonetic features
Gasser&Colunga Triplet Localist* — Binary *Also includes an angle
Domeney&Ramus Syllable Localist — Binary

Table 6.3: Encoding used in the neural network models reviewed. In the scheme col-
umn: L stands for Localist, D for Distributed, B for binary, and A for analog.

for future work, as explained in desideratum 1.

Second, the fact that a neural network may show only some degree of generaliza-
tion (by predicting a vector that is close to the ‘correct’ vector) begs the question of
whether infants in the experiment are producing accurate generalizations. The ana-
lyzed empirical data is based on looking times, and therefore, there was no chance to
observe if the discrimination between grammars was based on perfect generalization. It
is therefore not clear whether we should expect models to produce perfect generaliza-
tion or statistically significant responses between grammars. For this reason, I propose
that models are evaluated at least on both aspects, as I reflect later in the desiderata
(section 6.6, desideratum 6).

Finally, an aspect of the representation of the input that has not received attention
is the treatment of time. Almost all the neural network models reviewed receive the
input as discretized units, and update the weights of the model after each presentation
(sometimes during a few timesteps, as in Shastri and Chang [1999]). The only excep-
tion is the spiking neural network model by Dominey and Ramus [2000], but even in
this model we can find discrete syllable registers in its short-term memory. The use
of discrete input has also forces the model to have a very unnatural representation of
pauses, which are generally coded as one symbol –as if it were one more item in the
vocabulary. For this reason, in the desiderata I suggest to investigate generalization
over continuous input (desideratum 9).
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6.5.2 Question 2: What is the learning process?

One of the most relevant and ambitious scientific questions behind the Marcus et al.
experiment is to understand the nature of the learning mechanism that is operating
during the experiment. Since we only observe the input stimuli and the behavioural
output, the characterization of the unobserved procedure that relates them allows for
multiple hypothesis.

In neural networks, the process of learning is commonly referred to as “associative
learning”, and it is characterized by responding to contingency relations in the data.
Most neural networks are trained with some form of gradient descent; in the majority
of cases, the algorithm used is backpropagation [Rumelhart et al., 1988]. Although
the neurobiological plausibility of backpropagation was initially in question [Zipser
and Andersen, 1988, Crick, 1989, Stork, 1989], later work argued that the learning
procedure can be implemented also with biologically plausible bidirectional activation
propagation [O’Reilly, 1996, 1998]; moreover, Xie and Seung [2003] prove that –
under certain conditions– backpropagation is mathematically equivalent to Contrastive
Hebbian learning, a process whose biological plausibility is widely agreed upon. All
the neural network models reviewed implement some form of gradient descent, with
the exception of the proposal of Dominey and Ramus [2000], which features a learn-
ing algorithm based on cortico-striatal circuits in the brain [Dominey, 1995], which
researchers have interpreted as a form of Least Mean Squares [Lukoševičius, 2012].

In the rule-based model proposed by Frank and Tenenbaum [2011], the model
learns through Bayesian inference over a predefined space of hypothesis. Therefore,
this model does not offer an account of the process that induces the regularities in the
first place. However, the authors clearly state that the model is proposed as an “ideal
learner” rather, and thus it should not be interpreted as a model of human learning.
Therefore, a cognitively realistic rule-based model that explains how learning takes
place during the experiment is still lacking.

6.5.3 Question 3: Which generalization?

The speech streams we are concerned with are generated according to an ABA, AAB
or ABB pattern, which involves relations between syllables. However the stimuli are
also compatible with other rules, and – as discussed in section 6.5.1– regularities may
also appear on other acoustic dimensions.

In order to illustrate this, table 6.4 shows some of the rules that describe the rela-
tions between syllables in the triplets. These can be as general as ‘three consecutive
syllables’ (equivalent to rule (a)), or they could operate over two of the syllables in the
triplet. These basic rules can be composed with logical operators (and, or, not), such
as ‘(a) and (b)’; for instance, if a learner is hypothesized to learn a rule like ‘triplet
containing an adjacent repetition’, this can be expressed as ‘X=Y or Y=Z’. As will be
explained in next section, theories that postulate that rules are cognitively real need to
disambiguate which rule is being learnt when rules are equivalent in their extension.
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From the models have reviewed, only the Bayesian approach Frank and Tenen-
baum [2011] explicitly tackles this question. In order to distinguish between otherwise
equiprobable consistent hypotheses, this model incorporates a predefined rational prin-
ciple that determines which hypothesis should be favoured; in this case, the size prin-
ciple. In this way, this model offers a transparent way to test how different principles
would be favoured by a probabilistic inference process, an aspect that is missing in the
neural network models.

It must be noted that rational principles are not the only source of disambigua-
tion to decide between competing rules. For instance, Endress et al. [2005] report ex-
perimental evidence showing that repetition-based grammars are easier to learn when
the repetition takes place in the edge positions. This entails that other aspects –such
as perceptual factors– can also impose saliency in certain dimensions of the stimuli,
breaking the uniformity between otherwise equivalent rules. For this reason, I suggest
in desiderata 2, 3 and 4 that alternative factors that influence why certain rules are
favoured should be explored.

6.5.4 Question 4: What are the mental representations created?
Even if we agree on the generalization procedure and the question of which rule has
been extracted, we still need to discuss how the induced rule is represented in the
cognitive system.

Symbolic and non-symbolic models have different strengths and weaknesses. Rule-
based models exploit the fact that symbolic rules can easily accommodate some of the
most interesting properties of thought and language, such as systematicity, productivity
and compositionality. The use of variables that are blind to the specific properties
of their content ensures a rigorous description: as well as a binary output: rules are
either consistent or inconsistent, never in between. However, this has the downside of
endowing the models with little flexibility, and thus they are not robust to noise [Opitz
and Hofmann, 2015]. In contrast, neural network models do not explicitly represent
rules or variables, so relations are content-dependent (as well as context dependent).
One of the advantages of these models is that they can naturally account for degraded
instances or accidental gaps; therefore, exceptions can be handled without the need of
additional mechanisms [Elman, 1999].

As researchers, we are used to employ formal languages for scientific descriptions,
and thus it is natural to characterize stimuli with formal rules such as XYZ such that
X=Z. And indeed, the behavior shown by the infants in Marcus et al. experiment can be
described as following an identity rule that accounts for the familiarization grammar.
However, the mental representations of infants in the experiment need not directly map
with the components of such formal expression: the variables and the logical operators
that relate them may or may not correspond directly to mental entities.

As argued in Pylyshyn [1991], it is common in science that a debate arises when
the object of research involves a system that can be easily described with rules. The
author outlines a topology for theories addressing those type of systems, according to
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which the ontological status of the theory can be seen as a point in a spectrum between
two extremes. Theories may, on one extreme, postulate rules that only account for
regularities in the behavior of the system. In this case, rules function only as a theo-
retical descriptive construct, but the theory is agnostic towards the representations and
the principles followed by the system. In intermediate positions, theories postulate that
some of its elements correspond to principles or properties materialized in the system.
And on the other extreme, theories maintain that all its rules and representations are
explicitly encoded in the system. In the latter case, the elements in the canonical ex-
pression of a rule (including its symbols and the relations between them) correspond
to certain properties in the system. Thus, details such as the total number of rules and
their precise definition (e.g. whether they are based on identity or difference, even if
their scope is identical) become relevant for a theory that posits that these rules are
materialized in the cognitive system.

This characterization of theories can be easily related to Marr’s levels of analysis
[Marr, 1982]. Marr suggests a topology for computational models of cognition, such
that: i) computational level theories are concerned only with characterizing the prob-
lem and the solution, ii) algorithmic or processing level models propose a mechanistic
account of the process and the representations in the cognitive system, and iii) imple-
mentational level approaches explain how the process and representations are physi-
cally instantiated. Thus, according to this characterization, computational-level models
may employ high-level descriptions that may not translate into actual representations
in lower levels.

With this taxonomy at hand, it is straightforward to see where the described models
stand on such issue. The rule-based model in Frank and Tenenbaum [2011] is explicitly
stated at Marr’s computational level; therefore, the fact that it employs symbolic rules
is not to be taken as a representational claim. On the other hand, neural network
models are implementational-level accounts of how processes and representations may
be realized. Thus, (most of) the reviewed neural network models propose that symbolic
representations are not cognitively real, and that the emergent behaviour observed in
the experiment can emerge even when symbolic representations are not employed.

6.5.5 Conclusion of the analysis

This analysis has allowed us to closely examine how this collection of models has
helped in advancing our knowledge on the main research questions. But surprisingly,
in spite of the relative simplicity of the experiment and the vast number of models, the
state of our knowledge appears rather incomplete when we analyze the questions at
this level of detail. For this reason, I have compiled an agenda of the issues that require
more attention.
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6.6 An agenda for Rule Learning
I now reflect on how the unresolved issues identified in our analysis could be mate-
rialized in future studies, and I briefly mention some of the most recent work that is
starting to address my desiderata.

1. DESIDERATUM. Investigate which features should be encoded in the input repre-
sentation, and quantify the overlap of features needed for generalization to occur.

To begin with, not much attention has been devoted to how the perception of the
input can affect generalization. The syllables in the original experiment are chosen to
minimize phonetic overlap, but as pointed out by McClelland and Plaut [1999], other
acoustic cues may exhibit regularities. Additionally, similar experiments involving a
different set of syllables show null results (Geambasu&Levelt, p.c.), suggesting that
low-level cues are relevant.

As mentioned before (section 6.5.1), the amount of overlap in the representation of
input vectors in neural network models influences the prediction of novel items. Thus,
more research is needed to quantify the amount of overlap required to reproduce the
empirical findings, and specially, which features should be encoded in the vectors (and
therefore, which perceptual dimensions guide generalization).

2. DESIDERATUM. Investigate perceptual biases.

The second issue that can be observed is that, in all models, the perceptual units
(generally syllables) are treated equally, regardless of the position they appear in. How-
ever, as mentioned before, experimental work shows that syllables that appear in the
edge of sequences are more salient to humans, to the extent that some rules are not
learnt if the regularity appears in middle positions [Endress et al., 2005].

The reviewed models do not explicitly incorporate any such biases. Although a
case could be made for neural networks being able to learn those biases, this would
only occur when saliency facilitates the task. Thus, I suggest that future efforts should
be directed to investigate which perceptual biases facilitate or hinder generalization.

3. DESIDERATUM. Investigate the role of prior experience.

Most of the models reviewed are used as a tabula rasa: they are initialized with some
independent method (e.g. randomly sampled weights in a neural network) and then
trained exclusively on the familiarization data. However, for a randomly initialized
model, it is unlikely that a short exposure to the familiarization stimuli suffices to re-
produce the experiments. If, instead, the initial state of the models incorporates relevant
prior knowledge, the learning procedure may converge more easily to the generalizing
solution that infants seem to learn.

This is the idea behind the models proposed by Altmann [2002] and Seidenberg
and Elman [1999a], but our analysis concluded that these models are not convincing
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explanations of the empirical phenomenon. Moreover, the use of pretraining proce-
dures would result more explanatory if the they allow to pinpoint which aspects of the
prior knowledge are the ones influencing generalization to novel items.

4. DESIDERATUM. Model the coexistence and competition of rules.

It is very unlikely that a perceived flow of information can be described with one
single rule, but rather, an input stream is likely to incorporate regularities between
features in different dimensions. Thus, a model of generalization should explain how
the detected regularities coexist, that is, how they are represented and whether they
interfere between each other during the course of perception and learning.

In reviewing the existing models of generalization of simple grammars, I have ob-
served that the question of “which generalization” has been widely neglected. The
Bayesian model by Frank et al. has initiated that an approach to that question by
proposing the size principle as a rational criteria to predict a preference for some rules
over others (see also Chater and Vitányi [2003] for an more general argument for sim-
plicity as the disambiguating rational principle). However, I argue that factors other
than rational principles of parsimony may also play a role.

Some of the desiderata outlined above suggests factors that may influence the pref-
erence for some rules, such as perceptual factors like edge saliency, or the role of prior
experience in shaping the perceived contingencies (or in providing the right pressure
for finding generalising solutions). External factors may also play a role; for instance,
the contextual information.

As an example, consider a math student who is asked to generalize after seeing
numbers 30 and 40: we would expect her to be more likely to generalize to number
50 than to 41, inducing a mathematical rule such as ‘multiple of 10’. But a medicine
student who is studying dangerous cholesterol levels, after observing that 30 and 41 are
a dangerous levels, would prefer to generalize to 41 rather than 50, due to proximity.
Given the same input, and the task of generalizing to novel stimuli, the context provides
extraneous cues that have an effect on the favoured generalizations (example adapted
from [Tenenbaum and Griffiths, 2001]).

To sum up, I suggest that future models attempt to explain how rules coexist and
compete, and aim to reveal which factors determine which rules are preferred.

5. DESIDERATUM. Incorporate independently motivated pressures for learning gen-
eralizing solutions.

The hypothesis space in neural networks often contains multiple local optima, and
thus the learning procedure has high risk of getting stuck in one of those local optima.
This entails that, in practice, there exist multiple solutions that may be found by a neu-
ral network model. While these solutions can be sufficient to account for the training
data, they may not be generalising solutions that can be transferred to the test stimuli.

This can be seen as a form of overfitting. Since neural networks have many degrees
of freedom, they can easily find one of the non-generalizing solutions. In order to push
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a neural network model to find a generalizing solution, an additional source of pressure
is needed. Thus, I believe an important avenue of future research is to investigate how
to incorporate independently motivated biases to find generalizing solutions.

6. DESIDERATUM. Find a consensus in evaluation criteria for models.

One of the most pressing issues that I have discovered in this review is that there is
ample disagreement in the formulation of the objective to optimize and, specially, on
how to evaluate the outcome of a model.

As I observed before, reflecting on the evaluation reveals an important issue about
the empirical data: while the results exhibit statistical significance for the attention that
infants show between different grammars, there is no evidence that infants perform
accurate generalization (i.e. correct prediction of the last syllable in a triplet). It is
certainly ambitious to establish the reality for the subjects in the experiment, since we
do not know of experimental procedures that allow us to investigate what exactly have
infants learnt. Progress in this direction would definitely facilitate that modellers settle
for one particular evaluation method and compare the different model proposals in a
systematic manner.

For lack of better knowledge, I suggest that models are evaluated on both crite-
ria: i) whether they exhibit statistical significance for grammar discrimination, and ii)
whether the model accurately generalizes to new items.

7. DESIDERATUM. Bridge the gap between levels of analysis: investigate how neural
networks perform apparently symbolic computations.

As discussed before, one of the most debated issues is the ontological status of
symbolic rules and variables. Even though the neural network models reviewed have
arguably shown some success in reproducing the empirical findings, the relation be-
tween the symbolic-like behaviour and its actual realization in the model is not com-
pletely clear: neural networks are assumed to perform symbolic-like computations
implicitly, but how exactly this is done remains elusive. Thus, in order to understand
how non-symbolic systems perform apparently symbolic computations, we should aim
to investigate the internal representations and strategies employed by neural networks.

This issue can be regarded as finding the relation between computational level ex-
planations (for which rules and symbols are well suited) and the corresponding imple-
mentational realization. Thus, another way to frame this problem is in trying to bridge
the gap between the computational level approaches (such as those offered by Bayesian
models) and implementational models.

8. DESIDERATUM. Models should learn spontaneously from brief/limited exposure.

Neural network models need to iterate over the data in order to converge to a good
parameter setting. This is aggravated in the case of small training datasets (as would
be the case for the Marcus et al. stimuli), since less data entails that more epochs
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are required for convergence. Unfortunately, this does not reproduce the training set
up used in the infants experiment, in which the familiarization stimuli is presented
only once. Although it could be argued that the iterations of the stimuli reflected the
availability of the data in short term memory (such as the phonological loop), this does
not allow us to distinguish between tasks that can be learnt spontaneously and those
that require a longer exposure or even a developmental trajectory.

For this reason, I think that achieving spontaneous learning with neural network
models is an ambitious but relevant project. Recent advances on neural network archi-
tectures involving augmented memory (e.g. the Neural Turing Machines [Graves et al.,
2014]) are capable of fast memorization and retrieval of input stimuli, and thus they
offer a promising avenue for learning from short-exposures (e.g. successes in one-shot
learning have been reported in Santoro et al. [2016]).

9. DESIDERATUM. Investigate the effect of the continuous nature of speech in gener-
alization.

An aspect that has been widely neglected in the reviewed models is to represent the
continuous nature of speech. Some of the models operate over all the data at once (con-
cretely, the Bayesian model), while the neural networks process the data in an online
fashion, either over triplets, syllables or phonemes. But even in this case, the stream
is pre-segmented, and the models are updated synchronously in discrete timesteps –
although, as argued in section 6.3.3, the model by Dominey and Ramus [2000] offers
a more realistic treatment of time, but it does not succeed in modelling the experiment
without pre-segmenting the input syllables and accessing its storage in a symbolic
fashion.

By simplifying the representation of time, some aspects of auditory processing can
be neglected. For instance, the speed at which an auditory speech stream is played may
have an effect on the structural dependencies that learners can extract from it, due to the
temporal proximity of the items involved. This phenomenon cannot be modelled with
discrete neural networks, since there is no manipulation that can account for the speed
of presentation of the syllables. It remains an open question whether a more realistic
treatment of time would also bring new insights to the question of generalization.

6.7 Conclusions
The study by Marcus and colleagues has been very influential in the field, thanks to
showing generalization abilities in 7 m.o. infants that had not been previously attested.
It is fair to point out that these results have proved to be difficult to replicate (see foot-
note 1 in Gerken [2006] as an example; also Geambasu&Levelt, p.c.); likewise, other
generalization experiments [Gomez and Gerken, 1999] show behavior in the opposite
direction, with infants looking significantly longer to consistent rather than inconsis-
tent test items. Thus, unraveling under which conditions the Marcus et al. study can
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be replicated requires further investigation, as well as a methodology to compare the
outcomes of a group of related studies (e.g. see methodological proposal for meta-
analysis of experimental data in Tsuji et al. [2014]). Nevertheless, even if I conclude
that the experiment can only be replicated under very specific conditions, its design
has undeniably been a very fruitful for posing concrete questions about the nature of
generalization.

In this work, I have contrasted different modelling traditions. Even though some
approaches may appear irreconcilable at first glance, it actually seems that neural net-
works and Bayesian approaches are somewhat complementary in their contribution to
understanding generalization. The former offer a theory of how humans discover the
relevant regularities in the input, while the latter provides a transparent method for de-
ciding between alternative hypothesis. In neural networks, it is complicated to predict
beforehand which of the competing hypothesis would be learnt, and thus, as explained
in the previous section, the choices for the represented dimensions of the input will
have an impact on what is learnt. In contrast, in Bayesian models we can test rational
principles to distinguish between possible generalizations, but those models require
a pre-specified hypothesis space and a cognitive theory of how the cognitive process
takes place.

Overall, our study shows that, in spite of the many questions that can be raised from
the Marcus et al. study and the large number of modelling contributions, most of the
discussion has been centered around the question of the ontological status of rules and
symbols. Although I agree that one of the most intriguing issues in cognitive science
is to discover whether rule-like behaviour requires symbolic operations, I expect that
our review brings back attention to other aspects of the problem that have received
less attention, such as the impact of perceptual factors and the question of which rule
is preferred among competing consistent rules. Hopefully, future experimental work
and modelling efforts in these directions would help unravelling the underpinnings of
generalization.
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Chapter 7
Pre-Wiring

and Pre-Training: What does a neural network
need to learn truly general identity rules?

In the previous chapter I reviewed a range of models of generalization in ALL, and
reflected on the next steps needed to increase our knowledge on this mechanism. I now
present in this chapter1 a new model that results from addressing many of the proposed
desiderata: in particular, investigating the role of prior experience (desideratum 3) and
learning biases that facilitate generalization (desideratum 5), but also understanding the
relation between neural and apparently symbolic computations. I also make progress
on desideratum 6 by proposing two different complementary methods of evaluation for
models of generalization. Aspects of desiderata 4 and 8 are briefly explored as well.

7.1 Introduction
Accounting for how humans learn abstract patterns, represent them and apply them to
novel instances is the central challenge for cognitive science and linguistics. In natural
languages there is an abundance of such phenomena, and as a result linguistics has
been one of the main battlegrounds for debates between proponents of symbolic and
connectionists accounts of cognition. One of the most heated debates was concerned
with accounting for the regular and irregular forms of the English past tense. Rumelhart
and McClelland [1986] proposed a connectionist model that allegedly accounted for
the regular and irregular forms of the past tense. However, this model was fiercely
criticized by Steven Pinker and colleagues [Pinker and Prince, 1988, Pinker, 2015],
who held that rules are essential to account for regular forms, while irregular forms are
stored in the lexicon (the ‘Words-and-Rules’ theory).

1The content of this chapter is based on the following publication:
Alhama and Zuidema [2017a]. Pre-Wiring and Pre-Training: What does a neural network need to

learn truly general identity rules? [Under review.]
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As seen in the previous chapter, a similar debate emerged with the publication of
Marcus et al. [1999], this time centered on experimental results in Artificial Gram-
mar Learning. The authors showed that 7 month old infants generalize to novel in-
stances of simple ABA, ABB or AAB patterns after a short familiarization. Crucially,
this outcome could not be reproduced by a Simple Recurrent Network (SRN) [Elman,
1990], a result that was interpreted by the authors as evidence in favour of a symbol-
manipulating system:

Such networks can simulate knowledge of grammatical rules only by being
trained on all items to which they apply; consequently, such mechanisms
cannot account for how humans generalize rules to new items that do not
overlap with the items that appear in training. [Marcus et al., 1999, p. 79]

This claim triggered many replies, some of which proposed variations of the orig-
inal model. However, in this debate the issues of whether neural networks are capable
at all of representing general rules, of whether backpropagation is capable of finding
these general rules from an arbitrary initial state or only from an appropriately chosen
initial state are sometimes conflated. The latter issue – what initial state does a neural
network model need to have success in the experiment – has, in my view, not received
enough attention (but see Seidenberg and Elman [1999a], Altmann [2002]). This will
be therefore the focus of this chapter, in which I explore two directions. First, I ask
which initial values of the connection weights could encourage generalization while
remaining cognitively plausible (pre-wiring); second, I investigate the role of previous
experience in creating an initial state in the network that would facilitate generaliza-
tion (pre-training). I employ a prewiring and a pretraining technique in an Echo State
Network (ESN) [Jaeger, 2001], and show that only when combining both techniques
the ESN is able to accurately generalize to novel items.

7.2 Background

7.2.1 Empirical Data
In this chapter, I focus on modelling the empirical data presented in Marcus et al.
[1999]. Since this study has been extensively discussed in the previous chapter, the
reader can refer to § 6.2 for more details. For convenience, I also briefly summarize
the study here.

Marcus and colleagues investigate the generalization abilities of 7 month old in-
fants by conducting three Artificial Language Learning experiments. In their first
experiment, the participants are familiarized to syllable triplets that follow a certain
grammar: ABA for a randomly assigned group of infants, and ABB for the other. The
stimuli contain 16 different triplets, each repeated 3 times. Those triplets are arranged
in a 2-min. auditory speech stream, such that syllables are separated by a pause of 250
ms, and triplets of syllables are separated by 1s.
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After the familiarization, the infants participate in a test phase, in which their look-
ing times (to the speaker device that plays the stimuli) are recorded. The speaker plays
a randomized set of triplets from both grammars, in order to see if infants can discrim-
inate between them. Crucially, the test triplets contain syllables that were not used in
the familiarization stimuli.

The results show a statistically significant difference between mean looking times
to consistent and inconsistent grammars in both group of infants. The authors then
conclude that infants can discriminate among ABA and ABB grammars.

An additional experiment was performed, in this case using AAB vs. ABB gram-
mars, in order to determine whether the rule learnt before was simply the presence
or absence of an immediate repetition. Infants also showed significantly different re-
sponses in this experiment.

In the light of these results, the authors concluded that: (i) 7 m.o. infants can extract
grammar-like rules, (ii) they can do it not based solely on statistical information (as
would be evidenced from the additional controls in experiment 2, and (iii) the extracted
rule is not merely the presence or absence of an immediate repetition.

7.2.2 Generalization and Neural Networks
Marcus [1998] argues that certain types of generalizations are unattainable for certain
types of neural networks: concretely, those that lie outside the training space. The
author defines training space as the combination of all feature values that network has
witnessed during training. If there exist feature values that have never appeared during
training, any item displaying that feature value lies outside the training space. For
neural networks that are trained with the backpropagation algorithm, generalization to
items outside the training space is, according to the author, extremely unlikely to occur
due to what he calls training independence, which stands for the fact that the algorithm
updates the weights of nodes independently of the activations of other nodes in the
same layer.

In Marcus et al. [1999], the authors provide empirical evidence in support of this
idea, by simulating the presented experiment in a Simple Recurrent Network (SRN)
[Elman, 1990], a neural network architecture that incorporates an additional context
layer that maintains an exact copy of the hidden layer and presents it to the network
in the subsequent timestep, providing the model with memory in this way. The SRN
is trained to predict the next syllable in the familiarization stimuli, and then tested on
its ability to predict the final syllable of test items consistent with the familiarization
grammar. This model failed to produce the correct predictions, confirming the hypoth-
esis of the researchers.

Some following publications proposed to change the encoding of the input [Chris-
tiansen and Curtin, 1999, Christiansen et al., 2000, Eimas, 1999, Dienes et al., 1999,
Altmann and Dienes, 1999, McClelland and Plaut, 1999], the task [Seidenberg and
Elman, 1999a,b], the neural network architecture [Shultz, 1999, Sirois et al., 2000,
Shultz, 2001], or – relevant to this work — incorporating some form of pre-training
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[Seidenberg and Elman, 1999a, Altmann, 2002]. Many of these models were sub-
ject of criticism by Marcus [Marcus, 1999a,b,c,d], who argued that the models either
involved some form of symbolic manipulation or did not adequately represent the ex-
periment. About the model of Altmann [2002], which involves pre-training similar
to the regime explored in section 7.6, Marcus [1999e] points out, without giving any
details, that, even if the model distinguishes grammatical from ungrammatical stim-
uli to some degree, it is unclear whether the model can actually learn the underlying
general rule or discovers some heuristic that weakly correlates with it. In my work, I
employ a neural network architecture that was not previously explored for this task (an
Echo State Network, a type of Reservoir Computing network), and report additional
performance measures that tell us more about how general the learned rules are.

7.3 Simulations with a Simple Recurrent Network
Before presenting the simulations with the ESN model, I replicate the original simu-
lations. I implement a Simple Recurrent Network as described in Elman [1990], and
train it to predict the next syllable in the input. As in Marcus et al., I use distributional
encoding of phonetic features (based on Plunkett and Marchman [1993]). But unlike
the original simulations, I do not encode the pause between triplets as an additional
symbol; instead, I do not update the weights in the network when it predicts the first
syllable of the next triplet (I do this to make my baseline results maximally comparable
with the simulations presented in the next sections).

In order to remain close to the test used in the experiments with infants, I test the
network on both consistent and inconsistent sequences. I take the predicted vector for
the third syllable of each triplet, and I find the closest vector that corresponds to one
of the seen syllables (both from training and from test). I then evaluate whether the
accuracy for consistent and inconsistent triplets is significantly different (for 16 runs
of the model, equivalent to the number of infants in the experiment).

The test set used in the original experiments, as can be seen in Table 1, is based
solely in two triplet types of each grammar. For this reason, I also evaluate my model
with an extended test set that contains 5 additional random novel syllables of each type
(A and B), consisting therefore of 25 test triplets.

I try 160 parameter settings for each familiarization grammar, varying the hyper-
parameters of the model: the size of the hidden layer, the learning rate and the number
of epochs 2 . Figure 7.1 shows the proportion of these runs that yield a significant
difference in the predictions for the two classes of test items (those that are consistent
with the grammar used in training and those which are not). For the responses that are
significantly different, I separate those for which the neural network responds better
to the consistent grammar (in white) from those in which the inconsistent grammar is
favoured (in grey).

2I found that the values of the three hyperparameters had a significant effect on the accuracy of the
predicted syllables in the test.
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Figure 7.1: Proportion of parameter settings that yield significant (white), non-
significant (dark grey) and inconsistently significant (light grey) differences in the re-
sponses between grammars, for simulations with an SRN.

As shown in the graphic, most of the simulations yield non-significant response
differences between grammars, in spite of a notable proportion of significant responses
in the ABB condition for the extended test, possibly due to the fact that immediate
repetitions are easier to learn3. I therefore confirm that the Simple Recurrent Network
does not reproduce the empirical findings.

7.4 Simulations with an Echo State Network

Recurrent Neural Networks, such as the SRN, can be seen as implementing mem-
ory: through gradual changes in synaptic connections, the network learns to exploit
temporal regularities for the function it is trained on. An alternative way to learn time-
dependent relations is that offered by Reservoir Computing (RC) approaches, such as
the Liquid State Machine [Maass et al., 2002] and the model adopted here, the Echo
State Network (ESN) [Jaeger, 2001, Frank and Čerňanskỳ, 2008]. In RC models, the
weights in the hidden layer (which is dubbed “reservoir”) remain untrained, but – if
satisfying certain constraints (the so-called “Echo State Property”, which depends on
the scaling of the weights in the reservoir based on the spectral radius parameter) – the
dynamics exhibited by the reservoir “echo” the input sequence: some memory of the
input lingers on for some time in the recurrent connections. In other words, the state
of the reservoir depends on the fading history of the input; after a long enough input,
the initial state does not determine the final states of the network.

The formalization of the ESN model is as follows. For an input u at time t, the
activation x of the nodes in the reservoir is defined as:

3This was also observed in the SRN model in Altmann [2002].
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Figure 7.2: The Echo State Network.

x(t) = f (W in ·u(t)+W res · x(t−1)) (7.1)

where W in are the input weights, W res are the internal weights of the reservoir, and
f is a non-linear function, generally tanh.

The activation of the output is defined as:

y(t) = f out(W out · x(t)) (7.2)

where W out are the weights that connect the reservoir with the output nodes, and
f out is a function, which might be different from the function applied to the reservoir;
in fact, it often consists of a simple identity function.

I implement a basic ESN with tanh binary neurons, and I follow the same procedure
described in section 7.3 to train the network with backpropagation4. I try 200 parameter
settings for each familiarization grammar, varying the hyperparameters of the model:
the number of nodes in the reservoir, the input scaling, the spectral radius, learning
rate and epochs.5 Figure 7.3 shows the proportion of these runs that yield a significant
difference in the predictions.

As can be seen, the results based on the Marcus et al. test set differ greatly from
those in the extended test. This confirms my intuition that the amount of test items
is crucial for the evaluation. For this reason, I base the analysis of the behaviour of
the model in the extended test; however, it is important to notice that the amount of
test items could have also played a role in the actual experiments with infants (see also
section 7.8).

The plots of the extended test condition clearly show an assymetry between the
grammars: more than half of the parameter settings yield significant responses for the
ABB, while in the case of ABA, less than a quarter of the simulations are significant,
and most of them are actually favouring the inconsistent grammar, which is precisely

4I have also run simulations with Ridge Regression, with similar results.
5I found that the values of the input scaling and the learning rate had a significant effect on the

accuracy of the predicted syllables in the test.
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Figure 7.3: Proportion of parameter settings that yield significant (white), non-
significant (dark grey) and inconsistently significant (light grey) responses, for the
simulation with the basic ESN.

ABB. As mentioned before, the reason for this assymetry is probably due to the fact
that immediate repetitions are easier to learn, since they are less affected from the
decay of the activation function; for now, it suffices to say that the behaviour of the
model towards ABA does not suggest that it could be a potential explanation for the
experimental results.

7.5 Pre-Wiring: Delay Line Memory
In order to succeed in the prediction task, the model must predict a syllable that is
identical to one presented before. In the previous simulations, I relied on the mem-
ory that ESNs offer through the recurrent connections and the Echo Property [Jaeger,
2002]. However, there exist several computational alternatives that brains may use to
implement memory [Chaudhuri and Fiete, 2016]. I now explore one such model of
memory: a delay line.

Figure 7.4: Depiction of five timesteps in the DeLi-ESN. The highlighted nodes show
the activations in the delay line (the activation of the rest of the nodes is not illustrated).
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Computationally, a delay line is a mechanism that ensures the preservation of the
input by propagating it in a path (“line”) that implements a delay. In the brain, delay
lines have been proposed as part of the sound localization system [Jeffress, 1948], and
they have been identified through intracellular recordings in the barn owl brain [Carr
and Konishi, 1988]. In a neural network, a delay line is naturally implemented by
organizing a subnetwork of neurons in layers, with “copy connections” (with weights
1 between corresponding nodes and 0 everywhere else) connecting each layer to the
next. In this way, the information is kept in the network for as many timesteps as
dedicated layers in the network (see figure 7.4).

I implement a delay line memory in the ESN (creating thus a new model that I call
DeLi-ESN) by imposing this layer structure in the reservoir. I run 1200 combinations
of parameter settings with the DeLi-ESN, including also a parameter that establishes
some amount of noise to add to the weights of the reservoir. In this way, some models
contain a less strict delay line; the greater the noise, the closer the model is to the
original ESN.

ABA

5.83%
0.17%

94.00%

Extended test.
ABA

11.33%

5.67%

83.00%

ABB

3.33%

18.00%

78.67%

Extended test.
ABB

57.50%

0.17%

42.33%

Sign. Cons. Sign. Incons. Not Sign.

Figure 7.5: Proportion of parameter settings that yield significant, non-significant and
inconsistently significant responses in the tests, for the simulation with DeLi-ESN.

The results, illustrated in Figure 7.5, show an increased number of significant re-
sponses (in favour of the consistent grammar) for the extended test of ABA familiariza-
tion: the addition of the delay line memory indeed helps in the detection of the identity
relation. But in spite of the positive effect of the delay line, we need to ask ourselves
to what extent these results are satisfactory. The pie plots show the likelihood of ob-
taining with my model the results that Marcus et al. found in their experiments, and
in order to do so, I use the same measure of success (i.e. whether the responses for
each grammar are significantly different). However, the models hardly ever produce
the correct prediction6. For this reason, in the next section, I adopt a stricter measure

6I find that the values of the input scaling, learning rate, spectral radius, reservoir size, and reservoir
noise each have a significant effect on the accuracy of the predicted syllables in the test, although exact
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of success. I discuss this issue further in section 7.8.

7.6 Pre-Training: Incremental-Novelty Exposure
The infants that participated in the original experiment had surely been exposed to hu-
man speech before the actual experiment; however, in most computational simulations
this fact is obviated. I hypothesize that prior perceptual experience could have trig-
gered a bias for learning abstract solutions: since the environment is variable, infants
may have adapted their induction mechanism to account for novel instances. I now
propose a method to pre-train a neural network that aims to incorporate this intuition.

In this training regime —which I call Incremental-Novelty Exposure, or INE for
short— I iteratively train and test my model; so for a certain number of iterations i, the
model is trained and tested i times, with the parameters learnt in one iteration being the
initial state of the next iteration. The test remains constant in each of these iterations;
however, the training data is slightly modified from one iteration to the next. The first
training set is designed according to the Marcus et al. stimuli: 4 syllables of type A
and 4 syllables of type B are combined according to the pattern of the familiarization
grammar (ABA or ABB). In the second iteration, one syllable of type A and one of
type B are deleted (that is, all the triplets involving those syllables are removed from
the training set), and a new syllable of type A and one of type B are incorporated, such
that new triplets of the familiarization pattern are generated with the new syllables
(combined as well with the already-present syllables). Therefore, for each training
iteration, the model is exposed to a similar training set as the previous iteration, but
there is a small amount of novelty. This procedure is illustrated in figure 7.6.

I simulate 600 different hyperparameter configurations, varying the reservoir size,
noise in the delay line, input scaling, spectral radius, learning rate, and epochs. Figure
7.7 illustrates how the mean accuracy evolves at each stage of the INE procedure of
one representative run. As it can be seen in the graphs, the accuracy is really low
in the beginning (corresponding to a simulation without pre-training) but, with more
iterations –and thus with more novel items incorporated in the training set–, the model
becomes better, presumably by finding a more general solution.

In order to test that these results are robust, I compute the mean over the accuracy
for the last quarter of the tests (in this case, the last 25 tests, corresponding to the right-
most curve in the graph), for a few runs. The results are fairly similar in each run, as
can be seen in figure 7.8a. Thus, the combination of the DeLi-ESN and the INE dras-
tically boosts the generalization capabilities of the ESN; however, we should identify
what is the contribution of the DeLi-ESN. Figure 7.8b shows the mean accuracy (again,
for the last quarter of the regime), for 16 runs of the basic ESN in the INE regime. The
effect of the delay line memory is clear: when removed, the accuracy is close to 0 for
ABA, and mostly around 20% for ABB.

prediction accuracy remains low (rarely above 12% for ABA and above 20% for ABB familiarization)
even for the best combination of parameters.
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Figure 7.6: Depiction of the Incremental-Novelty Exposure. Barred syllables are re-
moved from the training set after the training of the corresponding iteration has finished
(so they do not remain in the training set of the next iteration).

7.7 Discussion: Relation with other neural network tech-
niques

The task defined by Marcus and colleagues is simple, but the difficulty it presents for
neural networks has been taken to reveal a fundamental limitation of such networks in
real world tasks. I now therefore briefly discuss how my solution to these difficulties
might relate to other methods in artificial intelligence and deep learning.

7.7.1 Relation with Recurrent Neural Networks

My model differs from the SRN model, and from Recurrent Neural Network (RNN)
more generally, in its adoption of the reservoir computing approach. Concretely this
means the weights from the input layer to the hidden layer, and the recurrent weights
from the hidden layer to itself, are never updated. Thus, learning only occurs in the
output layer.

This has important consequences for how each model implements a memory. In
RNNs, input from previous time steps may continue to play a role through the re-
current connections. Since those connections are updated during training, the model
must learn what to memorize and how to combine it with novel input. In contrast, in
reservoir computing models, the reservoir is designed, by enforcing the echo property,
to have informations from past inputs (and initialization) linger around in the recur-
rent connections (and this information is asymptotically ’washed out’ [Jaeger, 2007]).
Hence, the architecture does not need to learn to memorize information, but rather may
focus on how to use both the memorized and current input to solve a task.

There is an interesting connection between the echo state property in reservoir com-
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Figure 7.7: Performance over 100 iterations with Incremental Novelty Exposure, for
one representative run in the ABA familiarization condition (left) and one in the ABB
condition (right).

puting and the now popular ‘orthogonal initialization’ for recurrent networks. In echo
state networks, the echo state property is often achieved by ensuring, as I do in here,
that the spectral radius (largest eigen value) of the recurrent weight matrix has a value
just below 1.0 (although this is neither a sufficient nor a necessary condition for the
echo state property to hold; see Jaeger 2007). In ‘orthogonal initialization’ all eigen-
values of that matrix have an absolute value of 1; the largest eigenvalues will thus
initially be 1.0, before backpropagation gradually changes the weights and eigen val-
ues.

7.7.2 Relation with standard Echo State Network
There are two main changes in my model that deviate from the standard ESN. First
of all, by pre-wiring the reservoir, I depart from the original implementation, in which
the reservoir is randomly initialized (although constrained to satisfy the echo state
property). This has an effect on the type of memory the model has access to. In
standard ESN’s, the echo state property ensures that the information of previous input
lingers around, but not that this information remains represented in the same way: any
(sub)vector representing the information of interest at time t might be inverted, rotated
or projected into another subspace at any time t. Instead, the delay line in my model
keeps information in the same representation (and projected to a dedicated subspace
for each time delay).

Another aspect that deviates from common implementations of ESN is that I train
through gradient descent, while generally, ESNs are trained with Ridge Linear Regres-
sion. The latter is a simple and fast solution, works over a convex error function, and
converges to the global optimum. However, for the ’Incremental Novelty Exposure’
in section 7.6, the global optimum for the current training set is not what is looked
for. Key to the success of that approach is that previous training phases still have an
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(a) DeLi-ESN

(b) Basic ESN

Figure 7.8: Mean accuracy for the tests in the last quarter simulation in the INE simu-
lation, for DeLi-ESN (a) and basic ESN (b).

effect on the current. With my use of stochastic gradient descent, my model explores
multiple local optima, and thus has a chance to find a solution that generalizes beyond
the current datasets.

7.7.3 Pre-Wiring: Relation with LSTMs

The incorporation of a Delay Line extends the memory of the model in a particular way,
by forcing the persistence of an explicit representation of the input for a certain time.
This technique relates to Long Short Term Memory (LSTM) networks Hochreiter and
Schmidhuber [1997], a variant of RNNs that also augments recurrent networks with a
’memory cell’.

In LSTMs, the hidden layer is extended to incorporate a circuitry of gates that
control the flow of information. The core of such circuitry is the memory cell, the
component that maintains a persistent copy of the input over time. The gates add or
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remove information from the cell state through linear operations. Thus, the gates are
designed to learn which information should be forgotten or retrieved, while the state
cell acts like a conveyor belt on which the input is propagated over time.

Both the delay line and the gated memory in LSTMS are incorporated to the net-
works to ensure persistence of the input by copying it over timesteps. However, the
techniques also exhibit notable differences in how the information is propagated: while
in LSTMs, the information in the cell state is only modified with linear operations, the
delay line incorporates a non-linear activation function (tanh) that has the effect of ap-
plying a form of decay over the input, such that the input values are closer to zero after
every timestep.

These models also exhibit a different approach to forgetting. As mentioned, my
model incorporates some form of forgetting by decaying the input over time. This de-
cay is applied uniformly to all the units participating in the representation of a certain
input vector. In contrast, in LSTMs the information does not uniformly and constantly
deteriorate over time. Instead, the gate circuitry incorporates a forget gate that is trained
to decide which information of the cell state should decay or be removed. The gate op-
erates over units rather than over vectors, so the features of the input are not uniformly
surpressed.

7.7.4 Pre-training: Relation with Dropout
The Incremental Novelty Exposure training regime of section 7.6, also finds a counter-
part in the current deep learning literature, in the regularization technique of Dropout
(Hinton et al. 2012, Srivastava et al. 2014). The idea behind Dropout is that, by ran-
domly removing some of the units of the network during training, the model is forced
to find solutions that do not rely too much on concrete correlations. This intuition is
similar to the one that guides the INE: by constantly adding some novelty to the data,
I force the network to not rely too much on accidental correlations. The crucial differ-
ence between both techniques is that Dropout modifies the architecture of the network
to achieve this purpose, while the INE achieves a similar effect by manipulating the
training data.

7.8 Conclusion
The Marcus et al. publication conveyed two main statements: first, that infants spon-
taneously extract identity rules from a short familiarization, and second, that neural
networks are doomed to fail in such simple task. My work suggests that both the initial
optimism for the generalization abilities of infants and the pessimism towards neural
networks were overstated.

This study investigates the initial conditions that a neural network model should
implement in order to account for the experimental results. First, I have proposed that
networks should be pre-wired to incorporate a bias towards memorization of the input,
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which I have implemented as a delay line. With such pre-wiring, the model yields a
notable proportion of significantly different responses between grammars. But despite
such apparent success, the accuracy of the model in syllable prediction is very low.

Therefore, even though the successful discrimination between grammars is gener-
ally understood as abstraction of the underlying rule, my results show that significantly
different responses can easily be found in a model that has not perfectly learnt such a
rule. The corollary is that the generalization abilities of infants may have been overesti-
mated; as a matter of fact, null results in similar experiments also point in that direction
(see for instance footnote 1 in Gerken [2006]; also Geambasu&Levelt, p.c.).

But can neural networks go beyond grammar discrimination and accurately predict
the next syllable according to a generalized rule? This work shows that this can be
achieved when prior experience is incorporated in the model. I have hypothesized
that, from all the information available in the environment, it is the gradual exposure
to novel items that enhances generalization. This particular hypothesis deviates from
related studies in which (i) an SRN was pre-trained to learn the relation of sameness
between syllables [Seidenberg and Elman, 1999a], and (ii) an SRN was pre-trained
with a set of sentences generated from a uniformly sampled vocabulary. Although the
data used in the pre-training proposed here is less realistic than that used by Altmann
[2002], my evaluation method is more strict (since I aim to test for accuracy rather than
discrimination); for this reason, I first need to evaluate a model with a more constrained
input. The next step in future work should be to explore whether the same results can
be obtained when input data involving gradual novelty is generated from a grammar
unrelated to the actual experiment.

Finally, from the perspective of the symbol vs. associations debate, at some ab-
stract level of description, the delay line may be interpreted as providing the model
with variables (that is, the dedicated group of nodes that encode the input at a certain
time may be seen as a register) and the symbolic operation of “copy”. It should be
noted though that these groups of nodes are not isolated, and therefore, the learning
algorithm needs to discover the structure in order to make use of it. Furthermore, it
is uncontroversial that items are kept in memory for a certain lapse of time, so this
structure is unlikely to constitute the core of the symbolic enterprise. If nevertheless
my model is seen as compatible with the theory of rules-over-variables, my approach
may be seen as providing a unifying model in which both sides in the debate can see
their proposals reflected.
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Chapter 8

Conclusions

8.1 Summary

The goal of this dissertation was to use the methodology offered by computational
modelling to advance the current knowledge on the cognitive mechanisms behind ALL
experiments. In my approach to the challenge, I conceptualized the process of learning
the basic rules of a language as consisting of three steps: (i) memorization of sequence
segments, (ii) computing the propensity to generalize, and (iii) generalization. In this
dissertation I have proposed an account of each of these steps with a computational
model.

Step (i) is relevant to understand how individuals segment a speech stream. In
chapter 3 I have proposed R&R, a processing model that explains segmentation as a
result of retention and recognition. This model offered an intuitive explanation of the
process, and prompted the discovery that the memorization of segments tends to follow
a skewed distribution rather than one that clearly separates statistically coherent items
(words) from other segments of similar length but less statistically salient (partwords).

For step (ii), I propose that Simple Good Turing [Good, 1953], an existing smooth-
ing model used in Natural Language Processing to account for unseen words in cor-
pora, can be taken as a rational model. The principle it is based on —that the number
of useful unseen items can be estimated from the number of times that items are seen
once, twice, thrice, etc.— can explain the responses of individuals in the experiments.

As for step (iii), I first presented an extensive critical review of the existing mod-
els (chapter 6), in order to assess the state of the art and the critical issues that have
not been resolved yet. After listing a desiderata for future research on generalization,
I present a neural network model that emphasizes the role of the initial state of the
model, based on two core ideas: pre-wiring the connections of the network to provide
it with another type of memory, and pre-training to account for the relevant experi-
ence that influences generalization (concretely, experience that gradually incorporates
novelty).
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8.2 Contributions I: Exploring better ways to evaluate
models

As reflected in § 2.4, there are no a priori criteria to determine what constitutes a
good model. In this dissertation I have employed and developed different forms of
evaluation.

To begin with, in chapter 5 I use model sequencing to study the behavior of models
when combined in a pipeline sequence –that is, the output of one model (in this case the
output of the R&R model) is used as the input of the next model (SGT). As reported,
thanks to the contribution of both models the final output coincides with the empirical
data.

In chapter 4 I used model parallelisation instead, to compare a range of models
based on their goodness of fit to data from a number of experiments. As reported in
that chapter, also for model parallelisation we can find different types of evaluation,
roughly divided on those that assess the internal representations built by models while
processing the stimuli, or those based instead on the ‘behavioural responses’ of the
model. These are complementary forms of evaluation, but as shown, evaluation based
on certain aspects of internal representations (in this case frequency distributions) can
be necessary to differentiate between models.

Finally, in chapter 7 I evaluated my model based on two criteria: whether the model
produced ‘responses’ that are sufficiently different between conditions, or whether it
predicted the ‘correct’ outcome. The former was applied with the aim of reproducing
the empirical results, while the latter aimed to assess the accuracy of the model, in order
to address a more general theoretical question about whether perfect generalization in
this model can be achieved.

After exploring these various forms of evaluation, what becomes clear is that each
study may require a different approach, but in all cases modellers should strive to
be very strict and creative in defining evaluation criteria that challenges models suffi-
ciently to be able to distinguish between alternative models.

8.3 Contributions II: Exploring complementary levels
of analysis

The models proposed throughout this dissertation are pitched at different levels of anal-
ysis. As advanced in chapter 2, each level suits different objectives.

To begin with, R&R is a processing level model. The main reason for this choice
is that, in segmentation, the key open questions are about differences in behaviour
between age groups and species. These differences cannot be investigated with rational
models, since those models do not incorporate any properties of the cognitive system.
Likewise, addressing these questions at the neural level is not likely to be helpful, since
we require interpretable theories before addressing which implementational properties
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are responsible for the observed differences. And indeed, after proposing this model
we have an intuitive theory of segmentation, based on basic perceptual and memory
processes of retention and recognition.

In generalization, I identified a misconception in the field: namely, that statistical
models should always generalize more when presented with more data. I have used a
rational model (SGT, [Good, 1953]) to show that, when accounting for the propensity
to generalize, this premise turns out to be false. This approach served as a first step to
conceptualize the problem, and it paves the way for future models at the processing or
implementational level.

Finally, I have proposed an implementational model of generalization (chapter 7).
The goal of this model was precisely to understand how behaviour that appears sym-
bolic can be accounted for at the implementational level, without the use of rules and
symbols; hence this level of analysis was called for. Additionally, as seen in the corre-
sponding chapter, the symbolic models proposed to explain the experiment in Marcus
et al. [1999] are very simple: when assuming predefined rules over existing variables,
the models do not offer much room for unexpected findings or predictions.

These three models target different types of questions, and it has been clearly useful
to adhere to different levels of analysis depending on each particular goal.

8.4 Contributions III: Reframing key theoretical debates

One of the main advantages of the computational modelling methodology is that it
forces researchers to be precise about all the details in a theory, and hence it helps clar-
ifying misunderstandings. There are two important debates to which this dissertation
has contributed.

First of all, with the proposal of a model for the propensity to generalize (chapter
5), I contributed to the debate about one vs. multiple mechanisms. Roughly speaking,
most ALL studies can be categorized in one of these positions: those that postulate that
the same mechanism for segmentation can be extended to account for generalization,
and those which argue that we need to postulate an additional mechanism of a different
nature. With my work, I have shown that one of the arguments for the latter position
—namely, that a single statistical mechanism would predict better generalization with
longer exposure— was a result of lack of formalization; a simple rational model like
Simple Good Turing sufficed to illustrate this point.

Second, I have also contributed to a prominent debate about the allegedly sym-
bolic nature of the mechanism of generalization. As reviewed in chapter 6, the debate
condenses in disagreement on the cognitive realism of rules and variables (although I
identified other questions to which computational models can contribute). The neural
network model proposed in chapter 7 shows that a non-symbolic model can learn to
use the information in a way that is descriptively equivalent to the use of rules over
variables, even though at the level of implementation there are no rules or variables.
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8.5 Future work
This dissertation has been structured along the three-step approach, which is a high-
level conceptualization of the learning processes that take place in ALL experiments.
Even though I have proposed a model for each step, there are details about the whole
approach that are still underspecifed.

For instance, does the flow of information always proceed as a pipeline, or are steps
(ii) and (iii) being constantly updated while step (i) is taking place? This may appear
irrelevant if the information flows unidirectionaly, but we do not know if that is actually
the case. For instance, the generalizations derived in step (iii) may have an influence
on what is being memorized in step (i). These are open questions that this dissertation
does not address and thus they should be tackled in future work.

Likewise, a more integrated model of the three steps is missing: while in chapter
5 I have used model sequencing to show that the output of step (i) has the necessary
properties for step (ii) to reproduce the empirical data, this type of serialization is
missing for connecting steps (ii) and (iii). Although the conceptualization makes it
clear that the propensity to generalize is quantified as a probability for unseen items
that should be divided between the generalized items computed in step (iii), how this
probability is actually divided among these items has not been formalized yet.

Another direction that should be further explored is to extend the cross-species
analysis with other animal species. In chapter 3 I presented simulations based on
ALL experiments with rats, but as mentioned in the introduction (chapter 1), there
exists a large body of ALL experiments involving other animals, such as birds and
primates. These experiments are often not directly comparable with those on humans
(e.g. experiments with songbirds generally require extensive training with feedback,
and this contrasts especially with human infant experiments in which learning is typ-
ically spontaneous after short familiarization), but computational simulations may be
used in creative ways to investigate empirical results in different species.

Finally, even in the case of humans, the datasets that have been studied in this
dissertation are relatively small. This limitation is most serious in the case of general-
ization (step (iii)), for which I have focused exclusively on the data from Marcus et al.
[1999] despite the existence of other experiments (see chapter 1 for other examples of
generalization experiments in ALL). The reason for this is that the Marcus et al. exper-
iment offers a very clean and illustrative dataset, and in spite of the replication issues,
it is conceptually useful to discuss the challenges of generalization. Nonetheless, the
predictions of models of generalization should be tested against other existing datasets
to move forward on this question.
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Samenvatting

In de afgelopen twintig jaar is Artificial Language Learning één van de belangrijk-
ste benaderingen geworden in het onderzoek naar hoe we het spraaksignaal in stukken
opdelen en hoe we regels van onze moedertaal leren. In de experimenten in dit paradigma
krijgen proefpersonen een reeks van stimuli te horen of te zien, waarin bepaalde (statis-
tische) regelmatigheden verborgen zitten die lijken op de regelmatigheden in spraak en
taal. Proefpersonen worden vervolgens getest om er achter te komen òf, en onder welke
voorwaarden zij het onderliggende patroon kunnen ontdekken.

In dit proefschrift gebruik ik computermodellen om de resultaten van dergelijke
experimenten — met babies, volwassenenen en dieren — beter te analyseren en inter-
preteren. Doel van die analyse is een beter begrip van de meest fundamentele mecha-
nismen die een rol spelen bij het leren van taal. Ik stel voor om over het leerproces in
Artificial Language Learning-experimenten na te denken als bestaande uit 3 stappen:
(i) het opslaan in het geheugen van fragmenten van de input; (ii) het berekenen van de
bereidheid tot generalisatie; (iii) het daadwerkelijk generaliseren. In dit proefschrift
werk ik voor ieder van deze stappen een computermodel uit.

Stap (i) is relevant voor ons begrip van hoe mensen het continue spraaksignaal in
discrete segmenten kunnen opdelen. In hoofdstuk 3 stel ik het Rentention & Recogni-
tion-model voor, dat het segmentatie-proces beschrijft als het resultaat van een interac-
tie tussen kortdurende retentie van stukken van het signaal, opslag in het geheugen en
het herkennen van een segment in de input. Ik laat zien dat dit model een verklaring
biedt voor een reeks van empirische resultaten met mensen en ratten (Peña et al., 2002;
Toro and Trobalón, 2005; Frank et al., 2010). R&R geeft een natuurlijke verklaring
voor het segmentatie-proces. Bovendien was R&R de aanleiding om eens goed te ki-
jken naar de frequentie-verdelingen van segmenten, en daarmee tot de ontdekking dat
die verdelingen vaak heel scheef zijn en dat de frequenties van zogeheten ‘words’ en
‘partwords’ vaak overlappen.

Stap (ii) is in dit proefschrift een aparte stap in het generalisatie-proces, en dat feit
op zich is één van de innovaties in dit proefschrift. In hoofdstuk 5 gebruik ik een
bestaand model uit de natuurlijke taalverwerking voor het ‘gladstrijken’ (‘smoothing’)
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van kansverdelingen, te weten het Simple Good Turing-model (SGT, Good (1953)). Ik
laat zien dat het principe waar dit model op gebaseerd is een goede verklaring biedt
voor de observaties uit experimenten met mensen.

In hoofdstuk 6 begin ik mijn analyse van stap (iii) met een kritisch overzicht van
bestaande modellen, om een duidelijk beeld te krijgen van wat er op dit punt al bereikt
is en wat de open vragen zijn. Ik eindig dat hoofdstuk met een lijst van ‘desider-
ata’ — nastrevenwaardige kenmerken van toekomstige modellen van generalisatie. In
hoofdstuk 7 werk ik vervolgens een neuraal netwerk-model uit dat al voldoet aan
een belangrijk deel van de genoemde kenmerken op dat verlanglijstje. Mijn model
biedt een verklaring voor de resultaten van één van de meest invloedrijke studies uit
de ALL-literatuur (Marcus et al., 1999). Het model maakt gebruik van twee cru-
ciale ideeën: ‘pre-wiring’ — het idee dat het netwerk al voorafgaand aan het leren
verbindingen tussen neuronen heeft die het een extra vorm van geheugen geven — en
‘pre-training’ — het idee dat het netwerk voordat het de stimuli uit het experiment te
zien krijgt, al op een manier getraind is die generalisatie faciliteert.

Op meerdere plekken in het proefschrift komen methodologische kwesties aan de
orde. Ik begin met een bespreking van Marr’s analyse-niveaus (Marr, 1982) en de
consequenties van de keuze voor een top-down of bottom-up benadering. Daarna be-
spreek ik de voor- en nadelen van die verschillende keuzes. Ik concludeer dat wat de
beste benadering is, sterk afhangt van de onderzoeksvraag. Tenslotte behandel ik ook
methodologische vragen over hoe we modellen moeten evalueren. In een vergelijk-
ende studie van computermodellen in hoofdstuk 4 behandel ik een aantal alternatieve
manieren van evalueren (‘model parallelisation’ vs. ‘model sequencing’, ‘internal rep-
resentations’ vs. ‘external output’). Daarbij laat ik zien dat verschillende evaluatie-
procedures naast elkaar kunnen en moeten bestaan, en dat we voor de ALL-modellen
striktere evaluatie-criteria kunnen formuleren.

Dit proefschrift biedt al met al een geı̈ntegreerd perspectief op de segmentatie-
en generalisatie-processen in Artificial Language Learning, op basis van computer-
modellen die empirische observaties reproduceren, toetsbare voorspellingen doen, een
bijdrage leveren aan het oplossen van open vragen in het vakgebied, en daarmee tot
een beter begrip leiden van de fundamentele processen die aan het leren van taal ten
grondslag liggen.



Abstract

Artificial Language Learning has, over the last 20 years, become a key paradigm to
study the nature of learning biases in speech segmentation and rule generalization. In
experiments in this paradigm, participants are exposed to a sequence of stimuli that
have certain statistical properties, and which may follow a specific pattern. The design
intends to mimic particular aspects of speech and language, and participants are tested
on whether and under which conditions they can segment the input and/or discover the
underlying pattern.

In this dissertation, I have used computational modelling to interpret results from
Artificial Language Learning experiments on infants, adults and even non-human ani-
mals, with the goal of understanding the most basic mechanisms of language learning.
I have conceptualized the process as consisting of three steps: (i) memorization of
sequence segments, (ii) computing the propensity to generalize, and (iii) generaliza-
tion. Along the dissertation I have proposed an account of each of these steps with a
computational model.

Step (i) is relevant to understand how individuals segment a speech stream. In
chapter 3 I have proposed R&R, a processing model that explains segmentation as a
result of retention and recognition. I have shown that this model can account for a
range of empirical results on humans and rats (Peña et al., 2002; Toro and Trobalón,
2005; Frank et al., 2010). R&R offers an intuitive explanation of the segmentation
process, and it also prompted the discovery that the memorization of segments tends
to produce skewed and overlapping distributions of words and partwords.

Identifying step (ii) as a separate step is actually a contribution from this disserta-
tion (as is explained in chapter 5). I propose that Simple Good Turing (or SGT, Good
(1953)), an existing smoothing model used in Natural Language Processing to account
for unseen words in corpora, can be taken as a rational model for step (ii) since the
principle it is based on can explain the responses of individuals in the experiments.

As for step (iii), I first presented an extensive critical review of the existing models
(chapter 6), in order to identify the state of the art and the critical issues that still
have not been resolved. After listing desiderata for future research on generalization,
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I present a neural network model that addresses some of those. Concretely, my neural
network model accounts for the results of one influential experiment (Marcus et al.,
1999) by incorporating two core ideas: pre-wiring the connections of the network to
provide the model with another type of memory, and pre-training to account for the
relevant experience that influences generalization (concretely, incremental presentation
of novelty).

Throughout the dissertation, I also reflect on methodological issues in computa-
tional modelling. After introducing Marr’s levels of analysis (Marr, 1982) and dis-
cussing the implications of top-down and bottom-up approaches, I explore the strengths
and weaknesses of each level of analysis with each one of the proposed models, and
conclude that the best choice depends on the particular research question. Finally, I
also discuss issues with model evaluation. Through a model comparison study (chap-
ter 4), I explore alternative evaluation procedures (model parallelisation vs. model se-
quencing, internal representations vs. external output). This study illustrates the need
for complementary types of analysis of empirical results, and it provides the basis for
devising stricter evaluation criteria.

This dissertation thus provides an integrated account of segmentation and gener-
alization, based on computational models that have been shown to reproduce empiri-
cal results, produce testable predictions, contribute to unresolved theoretical questions
and, overall, increase our understanding of the basic processes of language learning.
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