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Chapter 1

Introduction

1.1 Introduction

Machine translation is a central task in natural language processing research, which
touches on many related tasks and subfields of this area of research. Throughout the
history of the field, research in machine translation has often been constrained by the
limited availability of suitable training data for building translation models. In recent
years such data has increasingly become available but approaches to machine transla-
tion still frequently show a bias towards the characteristics of the language pairs for
which data has been more readily available. Phrase-based machine translation, which
has been at the core of machine translation research for the past years, for example,
relies partly on the assumption that the word order of the languages it is applied to is
relatively fixed, thus allowing the extraction of meaningful sequences of words without
data sparsity. However, as data for a broader set of language pairs has become available,
it has become apparent that cross-linguistic differences can have a significant influence
on the quality of machine translation.

In this thesis, we investigate to which extent the characteristics of the source and
target language influence translation quality and whether such characteristics can be
utilized to produce more principled translation models for a broader range of language
pairs. In linguistic theory, the characteristics and differences between languages are
studied in the field of linguistic typology. Two areas of linguistic typology, word order
and morphological complexity, are central to machine translation and the properties of
languages in these two areas significantly influence to which extent the basic assump-
tions of many machine translation systems hold.

1



2 Chapter 1. Introduction

1.2 Objective
How do typological differences in languages influence the performance of machine
translation systems? And how can typological differences be modeled in order to im-
prove existing machine translation systems? In this thesis, we examine these two ques-
tions and argue that to create more principled models for machine translation, we must
take into account knowledge about typological differences between languages, espe-
cially in the areas of word order and morphology. Integrating knowledge about the
range of possible differences in languages is expected to (1) improve translation qual-
ity for languages for which the standard models do not perform well and (2) improve
how well machine translation models generalize to typologically diverse languages.

While our findings are not limited to this approach, in this thesis we focus mainly on
statistical machine translation using phrase-basedmodels. Phrase-basedmachine trans-
lation (Koehn et al., 2003; Och, 2002) has been at the core of state-of-the-art translation
systems in recent years. Phrase-based models match sequences of words in the source
sentence with observed translations and combine the observed target sequences into
sentences by reordering and scoring them using bilingual and monolingual features.

We focus in particular on two areas central to machine translation:
• Word order: Determining the most suitable order of words and phrases in the
target sentence is a crucial task in machine translation. Preordering, one of the
established methods for this task, has found wide adoption but has not benefited
all language pairs equally. In preordering, the source sentence is ordered in the
predicted target order, which relieves the translation system from having to per-
form potentially costly long-distance reordering operations and allows a more
thorough exploration of the space of word order permutations since it does not
have to take into account full translation. How do typological aspects such as
word order freedom and morphological complexity influence machine transla-
tion in general? And in particular, do such aspects impede the generalization of
approaches such as preordering to typologically diverse target languages?

• Word formation: Word formation processes vary in productivity from language
to language. Since phrase-based machine translation relies on combining words
into larger units for translation, productive morphological processes can interfere
with the translation process. Can the limits in the ability of statistical translation
systems to handle productive word formation processes be overcome by making
such differences overt to the translation system? We explore this idea for the two
crucial word formation processes of inflectional morphology and compounding.

How can we ensure that the benefits of machine translation models are not overly con-
centrated on specific types of languages but will apply to a wide range of typologically
diverse languages? In this thesis we examine word order and morphological complex-
ity, two areas in which languages show significant divergences, and propose models
that are robust to such typological differences.



1.3. Contribution 3

1.3 Contribution

We begin by examining the area of word order. Unlike English, which exhibits rela-
tively rigid word order, many languages allow for more freedom in the order of words
and constituents. How does this word order freedom influence machine translation? As
our first contribution, we examine this question by considering one particular method
to deal with word order differences, namely preordering. Do the assumptions made in
preordering hold for free word order languages? We first discuss the common defini-
tions of word order freedom in the linguistic literature and find that few quantitative
measures applicable to machine translation exist. Thus, we introduce an entropy-based
measure to quantify word order freedom based on source dependency trees and paral-
lel sentences. We find that the assumptions of preordering models are ill-fitted for free
word order and morphologically rich target languages (Chapter 4).

How can the typological robustness of preordering be improved? We propose to
pass a space of potential word order choices instead of a single-best word order predic-
tion to the machine translation system. In Chapter 5, we perform a case study with a
morphologically rich target language with relatively free word order, specifically using
the language pair English–German, and find that this approach provides great poten-
tial for a more principled treatment of such language pairs. Given the potential of the
idea of passing the preordering model’s space of word order choices to the translation
system, how can this space be represented to allow for efficient integration into the
machine translation system? In Chapter 6, we propose the use of word order permuta-
tion lattices to integrate the space of potential word order choices with the translation
system, which can then decide on a final word order while taking into account further
relevant information, such as lexical choice. We use our entropy measure of word order
freedom to select two target languages from opposite ends of the word order freedom
spectrum—Japanese as an instance of a strict word order language and German as an
instance of a language with less strict word order— and show that word order permu-
tation lattices provide a suitable representation for both target languages. This demon-
strates that permutation lattices of potential word order choices provide a typologically
robust solution to integrating preordering models into machine translation.

The second area of significant typological differences in machine translation is mor-
phological complexity. Here, we make contributions to two central areas. First, when
translating from a morphologically impoverished to a morphologically rich target lan-
guage, the typological differences of the language pair cause several challenges for
phrase-based machine translation systems, including data sparsity and the inability of
phrase-based models to reliably enforce morphological agreement over long distances.
Is it possible to bridge such typological differences in morphological complexity? We
propose to enrich the source language with the morphological attributes required to
form the correct target words. In Chapter 7, we show that the morphological attributes
which are helpful for finding the correct target word forms can be learnt from paral-
lel data and that predicting such attributes on the source side, in a similar fashion to
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preordering, can enable the translation system to perform better lexical choice.
Apart from inflectional morphology, which is the focus of Chapter 7, other produc-

tive word formation processes, such as compounding, complicate machine translation.
A phrase-basedmachine translation systemwhich during training has observed Spanish
“Estación Oeste” (west station) and the word “Este” (east) can reasonably deduce the
translation “Estación Este” for “east station,” while a similar system having observed
the German word “Westbahnhof” (west station) and the word “Ost” (east) would re-
quire knowledge about the internal structure of the observed word “Westbahnhof” to
form the correct translation “Ostbahnhof.” In order to make the translation system ty-
pologically robust and to allow the required generalization for compounding languages
such as German, this internal structure would have to be made explicit. In Chapter 8,
we introduce a method to surface the internal structure of compound words by splitting
them into their meaning-carrying parts. Our method is unsupervised and relies on se-
mantic analogies (“bookshop is to shop as bookshelf is to shelf’) based on contextual
representations of words obtained from large monolingual corpora (word embeddings).

This thesis focuses on the influence of language characteristics on machine transla-
tion. If the similarities and differences between languages can indeed be captured with
a small set of parameters, as linguistic typology and various linguistic theories suggest,
then models for natural language processing should, beyond just bridging the perfor-
mance gaps between typologically diverse languages, also be able to benefit from this
insight and the knowledge collected to support it. In the area of word order, for in-
stance, this would enable models with better generalization and requiring less training
data. Can linguistic typology serve as a source of knowledge to guide reorderingmodels
and to facilitate universal reordering models applicable to multiple target languages? In
Chapter 9, we examine this question: We show that typological information collected
by linguists in the World Atlas of Language Structures (WALS), when combined with
neural network techniques, can be used to build universal reordering models. These
models perform well on a typologically diverse set of target languages and can choose
automatically, which aspects of linguistic typology to pay attention to when predicting
the word order for a particular target language.

In summary, we make the following contributions:

• We examine the typological robustness of preordering and show that producing
a space of potential word order choices in conjunction with word order permuta-
tion lattices provides a suitable solution for both strict and free word order target
languages (Daiber and Sima’an, 2015a; Daiber et al., 2016a, Chapters 4–6).

• We show how morphologically impoverished source languages can be enriched
with unexpressed morphological attributes in order to bridge typological differ-
ences when translating intomorphologically rich languages (Daiber and Sima’an,
2015b, Chapter 7).

• We show that distributional semantics in the form of word embeddings can be
used to split compounds into their meaning-carrying components, thus allowing
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phrase-based translation models to work with comparable compositional trans-
lation units in the source and target language (Daiber et al., 2015, Chapter 8).

• We show that linguistic typology can serve as a source of knowledge to guide re-
ordering models and to facilitate universal reordering models applicable to mul-
tiple target languages (Daiber et al., 2016b, Chapter 9).

1.4 Overview
The rest of this thesis is organized as follows:

Part I: Background

• Chapter 2: The chapter contributes a comprehensive overview of the objective
of machine translation research and the three major categories of technical ap-
proaches to the problem. We provide a summary of both classical approaches
and neural machine translation and introduce the preliminaries of statistical ma-
chine translation, including word alignment, phrase-based models, decoding and
reordering. While discussing these approaches, we highlight the structure that
each approach imposes on the translation process.

• Chapter 3: In the second chapter, we discuss more specifically how linguistic
structure is represented in machine translation. We then introduce the area of
linguistic typology and discuss how it relates to machine translation and natural
language processing. We examine two areas of linguistic typology, word order
and morphology, in more detail as these two areas will form the areas of focus
for Part II and III of this thesis.

Part II: Word Order Freedom

• Chapter 4: We study the relationship between typological aspects of a language
pair, such as the word order freedom of the target language, and the effectiveness
of preordering in statistical machine translation. We first provide an overview of
current approaches to preordering and examine the linguistic motivations and
limitations of the technique. We find that the assumptions of preordering can be
insufficient for morphologically rich and free word order languages. While in-
dividual word order differences and morphological complexity are well-studied
topics in linguistic theory, the notion of word order freedom is rarely addressed in
a quantifiable way. To measure the word order freedom of languages in a quan-
titative manner, we therefore introduce a novel entropy measure which assesses
how difficult it is to determine word order given a source sentence and its syntac-
tic analysis. This measure, which we call bilingual head direction entropy, will
enable us to examine the influence of word order freedom on the effectiveness of
preordering in more detail in the following chapters.
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The content of this chapter is based on the following publications:
Joachim Daiber and Khalil Sima’an. Delimiting Morphosyntactic Search Space
with Source-Side Reordering Models. In 1st Deep Machine Translation Work-
shop, 2015.
Joachim Daiber, Miloš Stanojević, Wilker Aziz, and Khalil Sima’an. Examining
the Relationship Between Preordering and Word Order Freedom in Machine
Translation. In First Conference on Machine Translation, 2016.

• Chapter 5: We examine the question whether for morphologically rich and free
word order target languages, models without any notion of morphology can be
used as a means to delimit the search space for a machine translation system to a
set of potential word order predictions instead of committing to just a single best
order. We propose a novel preordering model based on a popular preordering
algorithm (Lerner and Petrov, 2013), which is able to produce both n-best word
order predictions as well as distributions over possible word order choices in the
form of a lattice. We further show that the integration of non-local language
model features can be beneficial for the model’s preordering quality and evaluate
the space of potential word order choices the model produces.
The content of this chapter is based on the following publication:
Joachim Daiber and Khalil Sima’an. Delimiting Morphosyntactic Search Space
with Source-Side Reordering Models. In 1st Deep Machine Translation Work-
shop, 2015.

• Chapter 6: We address preordering for two target languages at the far ends of
the word order freedom spectrum, German and Japanese. For languages with
more word order freedom, attempting to predict a single word order given only
the source sentence seems less suitable; therefore, we examine solutions which
fit both strict word order and free word order target languages. In Chapter 5,
we observed that delimiting the space of word order choices provides a potential
solution for free word order target languages and that non-local features can sup-
port the preordering model in making good word order choices. A more general
approach to this initial exploration is to pass the uncertainty of the preordering
model on to the machine translation decoder, which can then perform decisions
while taking into account a broader set of signals. Thus, we examine lattices of
n-best word order predictions as a unified representation for typologically diverse
target languages. We present an effective solution to the resulting technical is-
sue of how to select a suitable source word order from the lattice during training.
Our experiments show that lattices are crucial for good empirical performance for
languages with freer word order (English–German) and can provide additional
improvements for fixed word order languages (English–Japanese).
The content of this chapter is based on the following publication:
Joachim Daiber, Miloš Stanojević, Wilker Aziz, and Khalil Sima’an. Examining
the Relationship Between Preordering and Word Order Freedom in Machine
Translation. In First Conference on Machine Translation, 2016.
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Part III: Morphological Complexity

• Chapter 7: When translating from amorphologically impoverished to amorpho-
logically rich language, the typological differences of the language pair cause
challenges for phrase-based machine translation systems. In this chapter, we
examine whether such typological differences can be reduced by enriching the
source language with the missing morphological attributes. We present a trans-
lation pipeline consisting of two steps: first, the source string is enriched with
target morphological features and then fed into a translation model which per-
forms reordering and chooses lexical items matching the provided morphologi-
cal features. After performing experiments to test the merit of this proposal, we
present a model for predicting target morphological features on the source string
and its predicate-argument structure and address two major technical challenges:
(1) How can we determine which morphological features should be predicted for
a specific language pair? and (2) How can predicted morphological features be
integrated into the phrase-based model so that it can also be trained on morpho-
logical features from the parallel data for a more efficient pipeline? Finally, we
evaluate the approach on an English–German translation task and find promising
improvement over the baseline phrase-based system.
The content of this chapter is based on the following publication:
JoachimDaiber and Khalil Sima’an. Machine Translation with Source-Predicted
Target Morphology. In 15th Machine Translation Summit, 2015.

• Chapter 8: Compounding is a highly productive word formation process in
some languages that is often problematic for natural language processing appli-
cations. In this chapter, we investigate whether distributional semantics in the
form of word embeddings can enable more semantically motivated processing of
compounds than standard string-based methods. We present an unsupervised ap-
proach that exploits regularities in the semantic vector space (based on analogies
such as “bookshop is to shop as bookshelf is to shelf”) to produce compound anal-
yses of high quality. A subsequent compound splitting algorithm based on these
analyses is highly effective, particularly for ambiguous compounds. German–
English machine translation experiments show that this semantic analogy-based
compound splitter leads to better translations than a commonly used frequency-
based method.
The content of this chapter is based on the following publication:
Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and Stella Frank. Splitting
Compounds by Semantic Analogy. In 1st Deep Machine Translation Workshop,
2015.
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Part IV: Linguistic Typology as a Knowledge Source

• Chapter 9: In this chapter, we examine how linguistic typology itself can be used
as a rich source of information in machine translation. In particular, we explore
the idea of building a universal reordering model from English to a large num-
ber of target languages. To build this model, we exploit typological features of
word order for a large number of target languages together with source (English)
syntactic features. We train a single model on a combined parallel corpus repre-
senting all (22) involved language pairs. Apart from empirically demonstrating
the value provided by typological descriptions of language, our proposed method
can produce word order predictions for a broad range of languages, including lan-
guage pairs with little or no parallel data. When the universal reordering model
is used for preordering followed by monotone translation (no reordering inside
the decoder), our experiments show that this pipeline gives comparable or im-
proved translation performance with a phrase-based baseline for a large number
of language pairs (12 out of 22) from diverse language families.
The content of this chapter is based on the following publication:
Joachim Daiber, Miloš Stanojević, and Khalil Sima’an. Universal Reordering
via Linguistic Typology. In COLING 2016.

• Chapter 10: We present a summary of the thesis and our conclusions.
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Background

9





Chapter 2

Approaches to Machine Translation

The following two chapters will provide a brief overview of the background on various
areas of linguistics, computer science and, in particular, machine translation research
that this thesis will touch on. Wewill begin with an overview of recent research intoma-
chine translation and will pay particular attention to how syntactic and morphological
aspects of language are treated in these approaches. In the second part of this overview,
we will discuss in detail how linguistic structure is handled in approaches to machine
translation and will provide an introduction to research in linguistic typology and its
use in natural language processing.

2.1 Overview
In 1954 Leon Dostert, one of the researchers involved in the earliest attempts at ma-
chine translation, confidently exclaimed that “five, perhaps three years hence, interlin-
gual meaning conversion by electronic process in important functional areas of several
languages may well be an accomplished fact.”1 Reality did not follow this ambitious
plan. Sixty years later, the fields of machine translation and natural language process-
ing have seen significant progress. However, progress often came from unexpected
directions and the problem of machine translation is still far from solved today.

Significant amounts of work have been performed in various basic approaches to
machine translation including example-based machine translation, rule-based machine
translation and statistical machine translation. We will focus here mainly on statistical
approaches to machine translation. This section will summarize various types of basic

1A copy of the full press release by the International Business Machines Corporation (IBM)
dated January 8, 1954 can be found at

.

11

https://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
https://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html


12 Chapter 2. Approaches to Machine Translation

an
aly
sis

generation

syntactic transfer

semantic transfer

direct transfer

source language target language

interlingua

Figure 2.1: Vauquois’ triangle.

structures that modern approaches to machine translation assume and, subsequently,
we will highlight how these approaches handle difficulties posed by natural language
syntax and morphology.

Approaches to machine translation vary widely in their basic assumptions and in
the techniques they utilize for training and translation. Nevertheless, it is helpful to
categorize and compare these approaches based on their level of structural abstraction,
their assumptions about natural language and the level of linguistic analysis at which
they place transfer from source to target language.

2.2 Classical Approaches to Machine Translation

The Vauquois triangle (Vauquois, 1968) was originally introduced to discuss classical
(i.e., rule-based) approaches to machine translation, but it remains a helpful abstraction
for thinking about structure in machine translation to this day. Figure 2.1 illustrates the
idea: the source language on the bottom left is transformed into the target language on
the bottom right. This transformation can take place at various levels of abstraction.

The form of the pyramid illustrates an important property of these systems: if you
consider the length of the path traveled through the pyramid from the source language
to the target language as a measure of cost or difficulty, the pyramid illustrates that the
cost of transforming the source language into the target language on the level of direct
transfer is greater than for all other approaches, while it does not incur costs for analysis
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and generation. Conversely, when moving up the pyramid, the cost of transfer dimin-
ishes while the cost of analysis (in the source language) and the cost of generation (in
the target language) increases. Direct transfer and interlingua form the two extremes
of this trade-off: interlingua incurs no cost for transfer but the highest cost for analysis
and generation, while direct transfer does not incur costs for analysis but poses con-
siderable costs for transfer. Cost here can refer to both computational complexity and
difficulty. Accordingly, an approach which has to traverse a long distance for analysis
and generation in the triangle may suffer from error propagation.

Direct Transfer

On the lowest level, the level of direct transfer, translation is performed considering
only the surface form of the sentence. In rule-based translation on this level, a bilingual
dictionary would be used to look up and translate each word in the English sentence.
The initial word-by-word translation can then be reordered by simple rules to ensure
the correct word order in the target language (Jurafsky and Martin, 2009). The retrieval
of individual lexical translations must not be limited to a simple dictionary lookup, but
more advanced decision algorithms, similar to the task of word sense disambiguation,
can be used (for an example algorithm for translation of “much” and “many” into Rus-
sian, see Fig. 25.7, p. 883 of Jurafsky and Martin, 2009). While this method of transla-
tion is not in use today, more recent approaches like phrase-based machine translation
still follow the basic notion of transforming a source sentence into the target sentence.

Syntactic and Semantic Transfer

The first layer of transfer above direct transfer is syntactic transfer. In this case, the
source language string would undergo syntactic analysis—hence the upward arrow
labeled “analysis”—and would only then be transferred in its syntactically analyzed
form. On the target-language side, the transferred syntactic structure is used to generate
target-language words—hence the downward arrow labeled “generation.” A more re-
cent example of such a system is the tectogrammatical approach to machine translation
(Hajič, 2002) as well as the subsequent uses of abstract meaning representation as a
form of semantic representation (AMR, Banarescu et al., 2013). Fundamental to these
approaches is the idea that while languages differ significantly on the surface, their
differences are smaller on the syntactic and semantic level and transfer at these levels
can thus minimize the distance between the languages (Hajič, 2002). This additionally
allows to circumvent the treatment of language-specific phenomena during transfer by
delegating them to a separate analysis and generation phase where they can potentially
be handled in a simpler and more principled manner.

The motivation behind this approach can be best illustrated on examples from lan-
guage pairs with significant differences. Figure 2.2 shows an English sentence with two
semantically equivalent translations into German. The two translations differ mostly
in word order: The first example employs the auxiliary verb “hat” combined with the
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finite verb “gesehen,” thus requiring the specific word order in this example. The sec-
ond example uses the simple preterite verb “sah,” thus following the same word order
as the English sentence. Figure 2.3 (bottom half) further shows a simple example of
regular word order differences, in this case for the position of adjectives and nouns in
English and Spanish: adjectives generally precede nouns in English while they succeed
nouns in Spanish.

SUBJECT VERB OBJECT

Peter saw a red car
NOUN VERB DT ADJ NOUN

Peter saw a red car

Peter sah ein rotes Auto

Peter hat ein rotes Auto gesehen GERMAN

GERMAN

ENGLISH

Figure 2.2: Parallel example sentences from English–German.

A further common cross-lingual difference is a language’s use of determiners. Fig-
ure 2.3 (top half) illustrates this issue on the language pair English–Czech: while the
English object contains the article “a,” Czech does not use articles and thus has no
equivalent token. Figure 2.3 also highlights a third phenomenon whose treatment can
be simplified in transfer approaches: morphological agreement. In the graphic, this
phenomenon is illustrated by dashed lines between words indicating morphological
agreement. There is agreement between the subject and verb as well as within the ob-
ject noun phrase in both Czech and Spanish. While agreement plays almost no role in
morphologically impoverished languages such as English, it is a common and impor-
tant occurrence in languages such as Czech and Spanish.

Finally, prepositions and the morphological case they co-occur with can pose cross-
lingual difficulties. As grammatical case is not expressed morphologically in English,
the choice of preposition and the form of the noun phrase appear independent on the
surface (e.g. “by the red car” vs. “near the red car”). In languages such as German,
however, the choice of a preposition has to go hand-in-hand with suitable morpholog-
ical case (e.g. “von dem roten Auto” [dative] vs. “nahe des roten Autos” [genitive]).

Transfer-based approaches are motivated by the idea that the syntactic or semantic
analysis enables a simple treatment of most of these difficult phenomena. For very
regular language differences, such as the word order difference between the position
of the adjective and noun discussed earlier for English–Spanish, a simple rule would
suffice to transform the word order of the source language into the required target-
language word order: → ⇒ → .

Beyond simplifying the treatment of some phenomena in classical rule-based ap-
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DT NOUN VERB DT ADJ NOUN

Chlapci viděli červené auto

Los niños vieron un coche rojo
AGREEMENT

AGREEMENT

The boys saw a red car
SUBJECT VERB OBJECT

AGR
EEMENT AGR

EEMENT

AGREEMENT
AGREEMENT

CZECH

SPANISH

ENGLISH

Figure 2.3: Parallel example sentences from English–Czech and English–Spanish.

proaches, the syntactic and semantic abstractions employed also offer useful properties
in more modern approaches. Figure 2.4 shows a motivating example from a transfer-
based machine translation system for English–Czech (Popel and Žabokrtský, 2010).
The example shows the English sentence “Peter does not love Mary” and the Czech
equivalent “Petr nemiluje Marii” and highlights three levels of analysis: (1) a mor-
phological level, in which the sentence is divided into the smallest meaning-carrying
units, (2) a syntactic layer, in which the syntactic relations between the elements of
each sentence are modeled, and (3) a semantic layer (or tectogrammatic layer in the
terminology of the Prague Dependency Treebank), in which the sentence is reduced to
its core meaning. While this semantic layer contains all content words, function words
such as articles and prepositions are not nodes in this representation. Note that while
the Czech and English sentence structures differ significantly on the syntactic and mor-
phological level, their structures are comparable on the semantic level. The hypothesis
underlying these transfer-based systems is that languages are typologically more sim-
ilar on the tectogrammatical layer. Mareček (2009) explicitly tests this hypothesis for
English–Czech and shows that such a “deep” sentence representation can be used to ob-
tain better word alignments than if word alignment is performed on the surface forms
only. We will describe machine translation systems based on this idea in more detail in
Section 3.1.

Interlingua

The semantic and syntactic transfer approaches discussed above require a separate
transfer model for each language pair involved. Assuming that all languages share com-
mon properties and that certain parts of language are “universal,” it might be possible
to produce a semantic representation that fits all languages at the same time. This is the
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MORPHOLOGY

SYNTAX

SEMANTICS

Figure 2.4: Example of English–Czech syntactic and tectogrammatical analysis used
in transfer-based machine translation, reprinted from Popel and Žabokrtský (2010).

idea behind interlingua (sometimes also referred to as “pivot”): to abstractly represent
meaning in a language-independent manner. An interlingua-based machine translation
system would simplify dealing with many language pairs at once, since analysis and
generation modules could be reused. Interlingua-based approaches saw a significant
amount of research (see the overview of interlingua-based approaches in Dorr et al.,
1999); however, the idea saw limited practical use. In a similar spirit to interlingua
approaches, several modern multilingual neural approaches to machine translation are
combining multilingual corpora into a single training set, enabling the translation sys-
tem a certain amount of generalization (Firat et al., 2016; Johnson et al., 2016).

This section has reviewed how classical approaches to machine translation have
modeled the translation process. In the next part, we will introduce phrase-based ma-
chine translation models, which have constituted a departure from the more explicitly
defined structure of the classical models towards weaker modeling assumptions and
greater reliance on parallel data.

2.3 Phrase-Based Machine Translation

Starting with the work performed at IBM Research in the late 1980s and early 1990s
(Brown et al., 1988, 1990, 1993), statistical approaches to machine translation demon-
strated early successes and became the dominant approach in the field. Although the
ideas behind the statistical approach were not new at the time— the general idea was
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first proposed by Warren Weaver in 1949 (Weaver, 1955)— the increasing availabil-
ity of data and better computational resources made it feasible and enabled successful
implementations of these ideas.

While the resulting word-based translation models did not find broad adoption by
themselves, as word alignmentmodels they provide a fundamental ingredient for phrase-
based machine translation systems. In this section, we introduce phrase-based machine
translation, starting with an overview of word alignment methods (Section 2.3.1). We
will then provide an introduction to model estimation for phrase-based translation mod-
els (Section 2.3.2), including phrase extraction and tuning, discuss evaluation of ma-
chine translation (Section 2.3.3), decoding strategies (Section 2.3.4) and finally reorder-
ing (Section 2.3.5).

2.3.1 Word Alignment
The task of finding alignment links between the words of a bilingual sentence-aligned
corpus is a fundamental step in phrase-based machine translation systems. The most
commonly used tool for this task, GIZA++ (Och and Ney, 2003), is based on IBM
Models 1-5 (Brown et al., 1993).

IBM Models

IBM models assume a statistical view of the language translation process. A sequence
of words s in the source language is translated into a sequence of words t in the target
language. Statistical machine translation assumes that every target-language sequence
t is a possible translation of s and that a probability P (t | s) for the translation, i.e. for
the pair (s, t), can be assigned (Brown et al., 1993). Using Bayes’ theorem, the initial
formulation of the task is:

P (t | s) = P (s | t)P (t)
P (s)

(2.1)

The goal of the prediction task is to find the sequence t̂ that is the sequence produced
from s with the highest probability. Hence:

t̂ = argmax
t

P (s | t)P (t) (2.2)

This is the most fundamental equation of statistical machine translation; it high-
lights three important components of most statistical machine translation systems:
(a) the translation model P (s | t), (b) the language model P (t), and (c) the decod-
ing/search strategy argmaxt for finding the most likely sequence t̂.

The IBM models are a series of probabilistic translation models estimated by max-
imum likelihood using the Expectation Maximization algorithm (Baum, 1972). Fun-
damental to all IBM models is the notion of an alignment between a pair of strings.
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Alignments are introduced in order to factorize the joint likelihood into simpler com-
ponents. An alignment indicates for each word of the source sentence, by which words
in the target-language sentence it was produced. IBM models increase in complexity
with every model and the parameters of each model are used to initialize the following
model. Model 1 and 2 are the most basic models, allowing exact computation of the
Expectation Maximization algorithm. The models marginalize over the alignments a
between t and s. The likelihood for (s | t) in terms of P (s, a | t) is

P (s | t) =
∑

a

P (s, a | t) (2.3)

and P (s, a | t) can be defined as follows:

P (s, a | t) = P (m | t)
m∏

j=1

P (aj | aj−1
1 , sj−1

1 ,m, t)P (sj | aj1, s
j−1
1 ,m, t) (2.4)

where the source string s = sm1 ≡ s1s2...sm has m words, the target string t = tl1 ≡
t1t2...tl has l words, and the alignment a is represented by a vector am1 ≡ a1a2...am of
m values between 0 and l. If there is an alignment link between the word in position
j of the source string and the word in position i of the target string, then aj = i and if
the word is not connected to any target word, then aj = 0.

IBM Model 1 starts with strong independence assumptions that make the model
tractable. The first assumption is that P (m | t) is independent of t andm, meaning that
the length of the source sentence is chosen uniformly, regardless of the target sentence.
The second assumption is that P (aj | aj−1

1 , sj−1
1 ,m, t) depends only on l, the length of

t. Finally, P (sj | aj1, s
j−1
1 ,m, t) is assumed to only depend on sj and taj .

Thus, the joint likelihood for IBM Model 1 reduces to:

P (s, a | t) = ϵ

(l + 1)m

m∏

j=1

t(sj | taj), (2.5)

where t(sj | taj) ≡ P (sj | aj1, s
j−1
1 ,m, t), which is also called the translation proba-

bility of sj given taj , and ϵ is a small fixed number. Due to the assumptions made in
the model, P (s | t) reduces to the following:2

P (s | t) = ϵ

(l + 1)m

m∏

j=1

l∑

i=0

t(sj | ti). (2.6)

This form of the final model makes it straight-forward to estimate the parameters
t(s | t) using ExpectationMaximization and sinceP (s | t) has a unique local maximum
for Model 1 (cf. Appedix B of Brown et al., 1993), its parameters can be initialized
uniformly.

2For the sake of brevity, we avoid the full derivations here but refer the interested reader to Brown
et al. (1993).
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IBM Model 1 makes no assumptions about the positions of words in either the
target or source sentence. While this enables easier estimation, it is an unrealistic as-
sumption. IBMModel 2 thus assumes that P (aj | aj−1

1 , sj−1
1 ,m, t) depends on j, aj ,m

and l, while keeping all other assumptions of Model 1. For this, alignment probabilities
a(aj | j,m, l) are added:

a(aj | j,m, l) ≡ P (aj | aj−1
1 , sj−1

1 ,m, l), (2.7)

such that

l∑

i=0

a(i | j,m, l) = 1. (2.8)

The final form of IBM Model 2 is:

P (s | t) = ϵ
m∏

j=1

l∑

i=0

t(sj | ti)a(i | j,m, l). (2.9)

IBM Model 1 can be seen as a special case of IBM Model 2, where a(i | j,m, l) =
(l+1)−1. Hence, parameters from IBMModel 1 can be reused as parameters for IBM
Model 2.

IBM Model 3-5 are significantly more complex than IBM Model 1 and 2 and add
several new concepts. Fertility describes the number of source words a word is aligned
to. The fertility φi of word ti in position i is defined as

φi =
∑

j

δ(aj, i), (2.10)

where δ is the Kronecker delta function which equals 1 if its arguments are the same
and 0 otherwise (Och and Ney, 2003). The possibly empty list of source words aligned
to each of the words in the target sentence t is called a tablet. The set of tablets for t
is called a tableau of t. The tableau can be thought of as a segmentation of the source
and target sentence into aligned units, similar to the phrases we will discuss in the next
section. The generative process first chooses a tableau and then reorders its elements to
produce s. The resulting permutation is the random variable Π and Πik is the random
variable for the position in s of word k in tablet i. The joint likelihood for a tableau τ
and a permutation π is defined as:
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P (τ, π | t) =
l∏

i=1

P (φi | φi−1
1 , t)P (φ0 | φl

1, t)×

l∏

i=0

φi∏

k=1

P (τik | τ k−1
i1 , τ i−1

0 ,φl
0, t)×

l∏

i=1

φi∏

k=1

P (πik | π k−1
i1 , πi−1

1 , τ l0,φ
l
0, t)×

φ0∏

k=1

P (π0k | π k−1
01 , πl

1, τ
l
0,φ

l
0, t),

(2.11)

where τ k−1
i1 is the series τi1, ..., τik−1, π k−1

i1 is πi1, ..., πik−1 and φi represents φti . Sev-
eral combinations of φ and π may lead to the same s and a, hence the likelihood is
defined over the set of all such pairs ⟨s, a⟩:

P (s, a | t) =
∑

(τ,π)∈⟨s,a⟩

P (τ, π | t) (2.12)

Model 3 is the first model with fertility. It defines P (φi | φi−1
1 , t) to depend only

on φi and ti, defines P (τik | τ k−1
i1 , τ i−1

0 ,φl
0, t) to depend on τik and ti, and defines

P (πik | π k−1
i1 , πi−1

1 , τ l0,φ
l
0, t) to depend on πik, i,m and l. Overall, the model estimates

three sets of parameters: translation probabilities, fertility probabilities, and distortion
probabilities.

Model 4 is based on the intuition that words in the target sentence form larger units
(phrases) that often move together. Two new concepts are introduced: ⊙i is the ceiling
of the average positions of the source-language words in a tablet, and the head of a
tablet is the word with the smallest position in the source string. Model 4 replaces
d(j | i,m, l) with two sets of parameters: one for placing the head and one for placing
the remaining words. For placing the head (τ[i]1):

P (Π[i]1 = j | π[i]−1
1 , τ l0,φ

l
0, t) = d1(j −⊙i−1 | A(t[i−1]),B(sj)), (2.13)

where A and B map source and target words into word classes (Brown et al., 1990,
1992). And for all other words:

P (Π[i]k = j | π k−1
[i]1 , π[i]−1

1 , τ l0,φ
l
0, t) = d>1(j − π[i]k−1 | B(sj)) (2.14)

For both Model 3 and 4, the formulation of the models lead to the problem of de-
ficiency (Brown et al., 1993): not all of the probability mass is concentrated on events
of interest. This is the case since the model can waste probability on strings in which
some positions are connected to multiple words and some to none. IBM Model 5 is a
reformulation of Model 4, in which the alignment model avoids this deficiency (Och
and Ney, 2003).
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Word Alignment with IBM Models

While modeling the probability of a sentence pair, the IBM models establish word
alignments. To use the models in the word alignment task, the most probable align-
ment for each sentence pair is determined (Viterbi alignment). This is done as a final
step after training the models with the Expectation Maximization algorithm over the
full dataset. One peculiarity of the formulation of the IBM models is that they generate
source-language words from aligned target-language words, which implies that each
source-language word is aligned to at most one target word. Since this restriction pro-
duces unrealistic word alignments, word alignment models are run in both directions
and then combined using various heuristics. This process is commonly referred to as
symmetrization and was first introduced by Och and Ney (2003). For a more detailed
treatment of symmetrization, we refer the reader to Koehn (2010).

Other Commonly Used Word Alignment Techniques

While word alignment based on IBMmodels has constituted a core method in statistical
machine translation, a number of approaches have been proposed since then. We will
only highlight two approaches relevant to this thesis here.

Vogel et al. (1996) presents a simple word alignment model in which the align-
ment probabilities depend on the differences in the alignment positions in the form of
a first-order Hidden Markov model. This model is motivated by the fact that in word
alignments there is often a strong dependence of an alignment link aj on the previous
alignment aj−1. Therefore, the model introduces this dependence as

P (aj | aj−1, I), (2.15)

where I is the length of the source sentence.
A second commonly used word alignment technique was introduced by Dyer et al.

(2013). Theirmethod, commonly referred to as fast_align, is a log-linear reparametriza-
tion of IBM Model 2 that performs as well as IBM Model 4 while being an order of
magnitude faster.

2.3.2 Phrase-Based Models
Phrase-basedmodels translate based on short sequences of words (phrases). The phrases
used in phrase-based machine translation systems are not linguistically motivated but
are determined by word alignments. Phrase-based models follow the same basic for-
mulation that we have seen for word-based translation models above in Equation 2.2:

t̂ = argmax
t

P (s | t)P (t), (2.16)

where P (s | t) is the translation model and P (t) is the language model.
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In a basic phrase-based translation system P (s | t) is decomposed into its phrases:

P (s̄I1 | t̄I1) =
I∏

i=1

φ(s̄i|t̄i)d(starti − endi−1 − 1), (2.17)

where the source sentence s consists of I phrases s̄i, φ(s̄i|t̄i) is the phrase translation
probability, d(starti − endi−1 − 1) is a distance-based reordering model, starti the po-
sition of the first word of phrase i and endi−1 is the position of the last word of phrase
i − 1. In this formulation, segmentation is not modeled in an explicit fashion and we
assume that all segmentations are equally likely. Apart from these basic components,
a number of other functions such as the reverse translation probability φ(t̄i|s̄i) have
empirically proven useful in translation. Hence, to produce a more general model and
to assign weights to each of the components, phrase-based models are usually formu-
lated as a log-linear model. In these models, the probabilistic formulation used in the
models introduced so far is dropped in favor of a formulation that optimizes towards an
evaluation metric. Optimizing towards a metric such as BLEU turned out to be a better
proxy for translation quality than likelihood for phrase-based models. It also increases
the flexibility of the model since optimizing towards a metric lifts the requirements of a
fully probabilistic treatment, thus avoiding potentially intractable marginalizations. We
will discuss such metrics and the optimization process in more detail in Section 2.3.3.
The log-linear model formulation is:

t̂ = argmax
t

exp
n∑

i=1

λihi(x), (2.18)

where x = (t, s), λi is the weight for feature i, and hi(x) is the ith feature function.
Commonly used feature functions include:

• Bidirectional phrase translation probabilities.
• Lexical weighting. Lexical translation probabilities act as a type of smoothing
for the phrase translation probabilities by providing an estimate for the lexical
translation probability based on word translation probabilities of the words in
the phrase. The feature function is defined as (following the formulation used in
Koehn, 2010):

lex(t̄ | s̄, a) =
len(t̄)∏

i=1

1

|{j | (i, j) ∈ a}|
∑

∀(i,j)∈a

w(ti | si), (2.19)

wherew(ti | si) is the lexical translation probability for the words ti and si, which
is estimated by maximum likelihood from the word-aligned parallel corpus.

• Word and phrase penalties. The word and phrase penalties score the number of
phrases and words produced and can encourage the model to produce more or
fewer phrases and words.

• n-gram language model.
• Distortion-based reordering model (cf. Section 2.3.5).
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Phrase Extraction

The atomic unit of phrase-basedmachine translationmodels is the phrase. Accordingly,
the quality of the phrase table is an important factor in the overall translation quality.
Various methods for extracting phrases from a parallel corpus have been proposed;
in the most common approach, phrases are extracted directly from word alignments.
To extract phrases from word alignments, sequences of words that are consistent with
the word alignment are extracted from the parallel sentences. A phrase pair (s̄, t̄) is
consistent with an alignment A (following the definition in Koehn, 2010) if no word in
s̄ has an alignment to a word outside of t̄ and no word in t̄ has an alignment to a word
outside of s̄. Formally, a phrase pair (s̄, t̄) is consistent with A if and only if:

∀ti ∈ t̄ : (ti, sj) ∈ A⇒ sj ∈ s̄

and ∀sj ∈ s̄ : (ti, sj) ∈ A⇒ ti ∈ t̄

and ∃ti ∈ t̄, sj ∈ s̄ : (ti, sj) ∈ A

(2.20)

Crucially, this definition of phrase pairs entails that phrases have to be continuous,
i.e. without any gaps. The example sentence presented in Figure 2.2, “Peter saw a red
car” / “Peter hat ein rotes Auto gesehen,” illustrates why this definition can be problem-
atic. In this example, the English word “saw” is aligned to the German discontinuous
phrase “hat ... gesehen.” In a standard phrase-based machine translation system this
would not be a valid phrase pair. While relaxing this constraint is desirable from a lin-
guistic point of view and would improve modeling, it raises computational issues for
phrase extraction and decoding.

Chiang (2005) introduces a model using hierarchical phrases. Hierarchical phrase-
based machine translation uses a synchronous context-free grammar learnt from paral-
lel sentences. This enables the use of more expressive phrase pairs and improves trans-
lation quality at the expense of increased computational complexity: decoding without
a language model in this model can be performed using the O(n3) CKY algorithm
(Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967). Simard et al. (2005) and
Galley and Manning (2010) introduce non-hierarchical phrase-based systems allowing
non-continuous phrases. Galley and Manning (2010) use suffix arrays to find and rep-
resent discontinuous phrases (Lopez, 2007) and extend a multi-stack decoder (Koehn
et al., 2007) to be able to handle phrases with gaps efficiently.

2.3.3 Parameter Tuning and Evaluation
As we have introduced them above, phrase-based models contain a set of weights for
their individual components. In this section, we will give a brief overview over two
issues arising from this: (1) What loss function should the weights be optimized for?
(2) What optimization algorithm can be used to determine the weights? The first ques-
tion goes hand in hand with the question howmachine translation systems are evaluated
and we will therefore answer this question first.
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Evaluation

The question of how to evaluate machine translation systems has been at the core of
an active field of machine translation research. The two fundamental areas of interest
in this field are manual evaluation and automatic evaluation. Manual evaluation of
machine translation systems is generally performed by bilingual human judges. Such
judges assess the quality of translations on several dimensions, most notably the criteria
of fluency and adequacy. Fluency determines whether the output sentence is fluent, in-
cluding whether there are grammatical errors, problems in morphological agreement,
word order errors etc. Adequacy addresses whether the output sentence conveys the
same meaning as the input sentence, hence whether it is an adequate/acceptable trans-
lation of the input sentence. As manual evaluation uses human judgements directly, it
is undoubtedly desirable; however, manual evaluation also incurs significant costs: it
is slow and expensive.

Automatic evaluation is the attempt to approximate human judgement of translation
quality automatically. In their most common form, automatic evaluation metrics rely
on having access to one or several reference translations, i.e. translations of the input
sentence produced by professional translators. Based on the source sentence and the
reference translations, an evaluation metric will assign a score to the output of a ma-
chine translation system (translation hypothesis). Automatic evaluation metrics them-
selves can be evaluated by determining their correlation to human judgements, as is
done in the annually organized WMT metrics task (Bojar et al., 2016). In such tasks,
evaluation metrics are evaluated in two categories: metrics are evaluated for system-
level (or corpus-level) correlation, which measures how well a metric’s scores correlate
with the ranking of the translation systems (i.e., over the full evaluation corpus), and
segment-level (or sentence-level) correlation, which measures how well a metric per-
forms in judging translations of a specific sentence. Since automatic metrics allow
for fast and non-interactive evaluation, they are also commonly used to optimize the
parameters of machine translation systems.

BLEU While a fairly simple evaluation metric, BLEU (Papineni et al., 2002), short
for Bilingual Evaluation Understudy, has become the most popular metric in recent
years. This is partially due to its simplicity and due to its selection in important eval-
uation campaigns such as WMT and evaluation campaigns organized by DARPA and
NIST. However, BLEU has also consistently shown high correlation with human judge-
ments on the corpus level. BLEU is based on n-gram match between the hypothesis
translation and the reference translations. The metric is defined as follows:

BLEU = BP · exp
(

N∑

n=1

wn log pn

)
, (2.21)

where pn is the precision for n-grams of length n and wn is a positive weight such
that

∑N
n=1 wn = 1. n-gram precision is defined with the sentence as the basic unit of
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evaluation:

pn =

∑
C∈{Candidates}

∑
ngram∈C countclip(ngram)∑

C′∈{Candidates}
∑

ngram′∈C′ count(ngram′)
, (2.22)

where count(ngram) indicates how many times an n-gram that occurs in one of the
references occurs in the translation hypothesis. To avoid rewarding machine trans-
lation systems for overgeneration, countclip(ngram) limits how often each hypothesis
n-gram match is counted to the maximum number of times the n-gram occurs in any
single reference translation. BP is a brevity penalty discouraging short translations,
which would otherwise be rewarded under a purely precision-based metric. For a total
candidate translation corpus length c (i.e. c is the combined length of all hypothesis
translations) and an effective reference corpus length r (r is the sum of the lengths
of each reference translation; if there are multiple references, the length closest to the
hypothesis translation length is chosen), BP is defined as follows:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
. (2.23)

The maximum n-gram length N is commonly set to 4 and the weights are generally
uniform with wn = 1

N .
Despite its relatively high correlation with human judgements, BLEU has a num-

ber of shortcomings and researchers have repeatedly urged the community not to be
overly reliant on it (see e.g. Callison-Burch et al., 2006). Frequently raised issues in-
clude that beyond allowing multiple reference translations, BLEU does not take into
account synonyms (e.g. “town” and “city” are both reasonable translations of the Ger-
man word “Stadt,” but each is only judged as correct if it explicitly appears in the
reference translation). Since the metric is based only on n-gram match, it also treats
all words as equally important, which can be a problematic assumption (e.g. whether
the word “not” appears in a sentence may fundamentally change its meaning). The
maximum length of the n-grams considered and the sparsity of potentially longer n-
grams also mean that the metric is very local and can only partially account for word
order. BLEU scores depend on many factors and are not directly comparable across
languages or even accross datasets in the same language. Finally, n-gram scores are
always computed over tokens, which is a reasonable abstraction for morphologically
impoverished languages such as English, but raises issues for morphologically rich lan-
guages in which only matching full tokens can lead to sparsity. This issue is partially
addressed by the recent trend of evaluation metrics using subword representations, such
as character n-grams in BEER (Stanojević and Sima’an, 2014) or character-based edit
distance in CharacTER (Wang et al., 2016).

METEOR METEOR (Banerjee and Lavie, 2005; Denkowski and Lavie, 2014) is an
evaluation metric that, unlike BLEU, focuses less on precision and introduces several
further improvements. The metric employs paraphrasing tables to expand words with
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their synonyms, therefore allowing semantic matches instead of only lexical matches
between a translation and its reference. Word order is evaluated over the entire sentence
by calculating a fuzzy reordering score based on automatic word alignments between
the translation hypothesis and the reference translation. The metric also distinguishes
function words and content words, following the intuition that content words are more
important in the evaluation. The individual components of the metric are combined as
a weighted precision and recall measure and all weights and parameters are optimized
based on human judgements from existing evaluation campaigns.

Tuning

The parameters of machine translation systems are optimized to maximize an eval-
uation metric, most commonly BLEU. In phrase-based machine translation systems,
phrases are extracted from a large number of parallel sentences. Since there are only
a limited number of components in phrase-based machine translation systems, their
weights can be estimated based on a smaller subset of holdout parallel sentences. In
the standard experimental setup, the bilingual data is separated into a training set, a de-
velopment set and a test set and languagemodels are estimated from a separatemonolin-
gual corpus. Since BLEU is a corpus-level metric, this estimation cannot be performed
on a per-sentence basis.

Och (2003) first proposed an iterative tuning algorithm commonly referred to as
MERT (minimum error rate training), which is still one of the most widely used op-
timization procedures in (non-neural) statistical machine translation systems. MERT
directly minimizes the error function (usually BLEU). Since BLEU is not continuously
differentiable, MERT uses an alternative optimization method based on iterative line
search (similar to Powell search, Och, 2003). Apart from the classic MERT approach,
several learning algorithms capable of handling a larger number of features have been
proposed. Pairwise ranking approaches (Hopkins and May, 2011) cast tuning as a clas-
sification task. These approaches are easy to implement in most phrase-based systems,
since they can be implemented in a similar setting as MERT. Various online learning
approaches have also shown promising results, especially for large numbers of features
(Liang et al., 2006; Watanabe et al., 2007). Cherry and Foster (2012) proposed a batch
version of the widely-used MIRA algorithm (Crammer et al., 2006) that performs on
par with online algorithms andMERTwhile at the same time reducing training time and
implementation complexity. For a more extensive treatment of optimization techniques
in machine translation, we refer the reader to Neubig and Watanabe (2016).

2.3.4 Decoding
Decoding is the process of finding the best-scoring translation according to the model.
Even in word-based models, this is a difficult problem as there is a factorial number of
possible permutations of words, for each of which a suitable translation has to be se-
lected. The problem has been shown to be NP-complete by reduction from the Hamil-
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ton Circuit Problem and the Minimum Set Cover Problem (Knight, 1999). Similarly,
phrase-based machine translation can be shown to be NP-complete by reduction from
the Traveling Salesman Problem (Zaslavskiy et al., 2009). Since exhaustive search is
thus infeasible, a number of heuristic search algorithms are commonly used in phrase-
based decoders. The most popular decoding algorithm for phrase-based models is a
variant of beam search (Koehn, 2003), which is similar to the decoding strategy pro-
posed for alignment template-based machine translation (Och, 2002; Och and Ney,
2004) and related to the strategy proposed by Tillmann and Ney (2003).

To generate the search space for translation, the input string is matched against the
phrase table, generating a set of translation options. The search then proceeds from left
to right: starting with an empty sentence, partial translations (hypotheses) are generated
by expanding a prior hypothesis until the hypothesis covers the entire sentence. Each
completed hypothesis forms a leaf in the search graph and the task of the search algo-
rithm is to find the best-scoring leaf in this graph. Several tricks are applied to lower the
amount of computation required. Hypothesis recombination combines different paths
in the graph leading to the same hypothesis, thus reducing the search space. This step
can be performed in a lossless fashion if two hypotheses cover the same source words
and if the last n− 1 target words are identical (assuming an n-gram language model).
In first-best decoding, hypotheses are recombined by selecting only the better-scoring
hypothesis. Apart from reducing the search graph, this technique also helps in handling
of spurious ambiguity, i.e., cases in which hypotheses only differ in their segmentation.

Stack decoding is a technique for reducing the search space while minimizing the
risk of removing good hypotheses. Pruning the search space of lower-scoring candidate
hypotheses poses a risk: low-scoring hypotheses covering only fewwordsmay still lead
to good translations once fully expanded while high-scoring hypotheses covering many
words may lead to bad translations. Both should not be discarded or kept based on their
score alone. A solution first introduced by Tillmann et al. (1997) for monotone decod-
ing in word-based models and extended for phrase-based models by Koehn (2004b) is
the use of hypothesis stacks. In this method, hypotheses are placed on several stacks
based on a specific criteria, e.g. based on the number of source words covered, and
pruning is performed on these individual stacks instead of globally. Search in the de-
coder is then implemented by keeping a beam of most promising hypotheses in each
stack while searching for the best complete hypothesis.

Because subsets of the source sentence with the same length may lead to full trans-
lations with varying difficulty, only comparing them based on their model score is not
sufficient. To address this issue, an estimate of future cost is added to the scoring func-
tion (Koehn, 2004b). Future cost provides an estimate of how difficult it will be to trans-
late the rest of the sentence, hence discouraging the pruning strategy from giving too
much preference to hypotheses covering only easy parts of the sentence. Calculating
the full future model score for every hypothesis would be computationally infeasible;
hence, when estimating this future cost (sometimes also called outside cost), phrase-
based decoders only consider translation model and local language model scores while
ignoring reordering and language model interactions.
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2.3.5 Reordering
One of the issues that make phrase-based machine translation computationally expen-
sive and more difficult to model is reordering. Depending on the language pair, phrases
may have to be reordered significantly to arrive at a good translation. Without stack
pruning, the decoding task would be exponential. For unrestricted reordering, the com-
putational complexity of decoding with stack pruning is (Koehn, 2010):

O(max stack size× sentence length2) (2.24)

Reordering is generally restricted using a reordering limit d. In this case, phrases can
only skip a maximum of d words if they are reordered. Using a constant reordering
limit, the complexity of decoding can be reduced to:

O(max stack size× sentence length) (2.25)

Apart from a simple word-based reordering limit d, several alternative reordering
constraints, such as constraints based on Inversion Transduction Grammar (ITG, Wu,
1997) can be employed. Zens and Ney (2003) formalize various reordering constraints
used in phrase-based systems and evaluate whether basic ITG constraints are sufficient
for English–German and English–French translation. Lopez (2009) further provides a
formalization of statistical machine translation as weighted deduction, which includes
a formal specification of various reordering constraints.

Two reordering models are most commonly used in phrase-based machine transla-
tion: distance-based reorderingmodels and lexicalized reorderingmodels. The distance-
based reordering model provides a simple measure for distortion during decoding. In
the initial formulation of phrase-based machine translation introduced above (again as-
suming all segmentations are equally likely), this model was represented as d(starti −
endi−1 − 1):

P (s̄I1 | t̄I1) =
I∏

i=1

φ(s̄i|t̄i)d(starti − endi−1 − 1), (2.26)

where the source sentence s consists of I phrases s̄i, starti is the position of the first
word of phrase i and endi−1 is the position of the last word of phrase i−1. The distance
captured by this model is the number of words skipped when source words are out of
sequence. For two phrases in sequence, the distance is d(0). d(x) is then defined as an
exponentially decaying function d(x) = α|x|, where α ∈ [0, 1], thus imposing a high
cost on long movements and a low cost on shorter movements.

Unlike the basic distance-based reordering model, which only conditions on the
distance, lexicalized reordering models also rely on the phrase itself. These models are
also often called MSD models, a name derived from the three types of movements they
allow: two phrases can be in monotone order (M), a phrase can be swapped with the
previous phrase (S), and two phrases can be discontinuous (D). The reordering model
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estimates the probability of a sequence of orientations o ≡ o1o2...on:3

P (o | t, s) =
n∏

i=1

P (oi | t̄i, s̄ai , ai−1, ai), (2.27)

where oi ∈ {M,S,D} and ai, ai−1 are the phrase alignments for the current and pre-
vious phrase. Lexicalized reordering models were first introduced by Tillman (2004)
and extended by Galley and Manning (2008) to add hierarchical phrase reordering.

2.3.6 Preordering
Reordering contributes significantly to the computational complexity of decoding. Dis-
connecting reordering from translation decisions can therefore lower the cost of decod-
ing significantly. As well as performing it during decoding, reordering can also be
approached as a post-processing or pre-processing task. Reordering as pre-processing,
also known as preordering or source-side reordering, has proven an effective method
to reduce the computational complexity of decoding and to improve the handling of
difficult long-distance reordering phenomena. We will discuss various approaches to
preordering in more detail in Chapter 4.

2.4 Neural Machine Translation
Recently, neural approaches to machine translation have enjoyed great popularity and
success for a broad range of language pairs. Neural machine translation aims to model
the full translation process using a single neural network model.

A popular approach to modeling the task is the encoder-decoder framework, in
which the source sentence is encoded into a vector, commonly called context vector,
and a decoder generates a translation from this vector. A key ingredient to the success
of this approach, the attention mechanism, was introduced by Bahdanau et al. (2015).
Attention predicts which source tokens will be relevant to the prediction of a given
target token.

Specifically, the decoder defines a probability over the translation t by decomposing
it into conditionals:

P (t) =
l∏

i=1

P (ti | ti−1
1 , s), (2.28)

where s is usually represented as a context vector c and t = tl1 ≡ t1t2...tl. In the
recurrent neural network approach of Bahdanau et al. (2015), the decoder is defined as:

P (ti | ti−1
1 , s) = g(ti−1, ri, ci), (2.29)

3We use the formulation from Galley and Manning (2008).
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where g is a non-linear function which outputs the probability of ti, ri is the hidden
state4 of a recurrent neural network (RNN) at time step i and ci is the context vector for
target word ti. ri is defined as:

ri = f(ri−1, yi−1, ci). (2.30)

The context vector ci is computed using so-called annotations, which are a context
representation aiming to summarize the entire source sentence with a focus around a
given word. The annotations are produced by running a bidirectional recurrent neu-
ral network (Schuster and Paliwal, 1997) in both directions for each token, producing
annotations (h1, ..., hm) for them source words.

The context vector ci is then computed as the weighted sum of the annotations:

ci =
m∑

j=1

αijhj, (2.31)

where the weights αij are computed as the softmax over an alignment model eij:

αij =
exp(eij)∑m
k=1 exp(eik)

(2.32)

eij = a(ri−1, hj) (2.33)

The alignment model eij scores how well words around the source position j fit the
words around the target position i. Thismodel is usually implemented as a feed-forward
neural network, but other approaches have also been proposed (Luong et al., 2015).

Given this model formulation, stochastic gradient descent can be used to train a
translation model from parallel data and the resulting model can be used to generate
translations via beam search. One limitation of neural machine translation is that the
model formulation outlined above relies on a closed vocabulary. Sennrich et al. (2016)
as well as Wu et al. (2016) approach this problem by learning a vocabulary of subword
units, which can be combined into words and thus allow for open vocabulary transla-
tion. Finally, convolutional neural networks have become increasingly popular as an
alternative to recurrent neural network-based approaches (e.g., Gehring et al., 2017).

Outlook
In this chapter, we have provided a brief overview of three important approaches to ma-
chine translation: classical approaches, phrase-based and neural machine translation.
In the next chapter, we will focus on the role and treatment of linguistic structure in
these approaches and provide relevant background on the area of linguistic typology.

4We use ri instead of the usual si here to avoid confusion with our notation of the source sentence.
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Linguistic Structure in Machine Translation

In this chapter, we provide an overview of the role and the treatment of linguistic struc-
ture in modern approaches to machine translation and introduce the field of linguistic
typology and its role and use in natural language processing.

3.1 Structure in Machine Translation
As a first step, we will summarize how research in machine translation has exploited
linguistic and non-linguistic structure in various approaches. These approaches can
be categorized into four main areas. String-to-string systems are the most popular ar-
chitecture and include standard phrase-based machine translation systems as well as
many neural approaches to machine translation. Tree-to-string and string-to-tree sys-
tems assume some extent of hierarchical structure on either the source or the target side
and include most syntax-based machine translation systems. Finally, tree-to-tree sys-
tems assume a hierarchical representation for both the source and the target side. This
category includes transfer-based approaches such as the tectogrammatical translation
approach.

String to String

Themost common architecture for machine translation systems assumes no explicit lin-
guistic structure on both the source and target side. This includes the standard phrase-
based approach discussed in Section 2.3 as well as recurrent and convolutional neural
machine translation, as discussed in Section 2.4. Hierarchical phrase-based machine
translation (Chiang, 2007) is based on synchronous context-free grammars and thus in-
cludes hierarchical derivations. Since the grammar is learnt based on parallel data and
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Figure 3.1: Structure in the Vauquois triangle.

without explicit consideration for linguistic structure, it is often considered to be a hi-
erarchical string-to-string system (see e.g. Williams et al., 2016). Hierarchical phrases
have also been used to guide the search in attention-based neural machine translation
(Stahlberg et al., 2016). While the translation itself may not exploit linguistic hierar-
chy, it may still be part of the overall translation process. A popular setup is the usage
of syntax on the source side to preorder sentences, followed by a purely string-to-string
translation step (e.g. Lerner and Petrov, 2013; Khalilov and Sima’an, 2012).

String to Tree and Tree to String

String-to-tree and tree-to-string systems are the two most common forms of syntax-
based statistical machine translation. In string-to-tree systems, the derived target-side
trees reflect observed linguistic structure. String-to-tree models use synchronous tree
substitution grammars (Aho and Ullman, 1972) or synchronous context-free grammars
with weakened restrictions. Galley et al. (2006), for example, use rules containing tree
fragments only on the target side. The annotation of syntactic treebanks may not al-
ways be optimal for use in syntax-based machine translation, hence Huang and Knight
(2006) show that relabeling constituents to better fit the translation task can provide sig-
nificantly better translation performance. Syntax-augmented models (Zollmann et al.,
2006; Zollmann and Venugopal, 2006) label phrases with syntactically motivated cat-
egories. Syntactically motivated models can improve word order and general transla-
tion quality, but their structures can also enable easier treatment of other phenomena.
Williams and Koehn (2011) show that morphological agreement can be improved via
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unification-based constraints on the target side of a string-to-tree model. Sennrich and
Haddow (2015) show that hierarchical structure on the target side can also help with
other morphological phenomena, such as particle verbs and composita, when enabling
the system to compose subword units.

In tree-to-string translation models, derivations contain linguistic structure on the
source side. Neubig and Duh (2014) study the factors influencing the quality of tree-
to-string translation systems and find that alignment, parse quality and search strategy
are crucial components determining whether a tree-to-string system performs on par
with or significantly better than a string-to-string system. Apart from models based
on constituency structure, dependency structure has also been employed in both string-
to-tree and tree-to-string approaches. Shen et al. (2008) introduce a system producing
dependeny graphs on the target side, which enables language models to better capture
long-distance relations. Treelet-based approaches (Quirk et al., 2005) employ depen-
dency trees on the source side.

For neural machine translation, Aharoni and Goldberg (2017) show that translating
into English represented as linearized, lexical constituency trees can improve trans-
lation quality. Their manual evaluation indicates that the observed improvements are
partially caused by improved reordering. Eriguchi et al. (2016) introduce a neural trans-
lation model with a tree-to-string attention mechanism in which attention can focus on
individual words as well as whole phrases on the source side. Finally, Bastings et al.
(2017) use graph-convolutional networks to integrate source dependency trees directly
into an attention-based model.

Tree to Tree

Žabokrtský et al. (2008), Popel and Žabokrtský (2010) and Dušek et al. (2012) de-
scribe a statistical machine translation system based on transfer at the semantic level.
The system uses a standard dependency parser to produce the syntactic layer in the
source language, which is then followed by a deterministic transformation producing
the tectogrammatical layer. Transfer is performed using a translation model based on
Maximum Entropy models (Mareček et al., 2010) and a Hidden Markov model de-
fined over edges of the tree (Žabokrtský and Popel, 2009). In the target language, the
tectogrammatical representation that contains abstract grammatical information is then
deterministically transformed (based on hand-written rules) into surface forms. Em-
pirically, this English–Czech system, as well as systems more recently developed for
English–Spanish (Labaka et al., 2015), do not perform as well as phrase-based machine
translation systems when measured in terms of BLEU and require significant amounts
of language resources and development for each language pair.
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3.2 Linguistic Typology
Languages are diverse in structure and the debate on whether true linguistic univer-
sals exist and attempts to pinpoint those have been part of linguistic theory for at least
the past several decades. The study of linguistic typology itself dates back to as early
as the 18th century. Graffi (2010) highlights Adam Smith’s “Dissertation on the Ori-
gin of Language” (Smith, 1767) as one of the first works in this field. Georg von der
Gabelentz’s 1894 paper “Hypologie der Sprachen, eine neue Aufgabe der Linguistik”
(von der Gabelentz, 1894) is often pointed to as initially introducing the name typology.
His broader work is credited with introducing modern concepts of linguistic typology
while separating typology from genealogy of language and excluding any subjective
assessment of languages in terms of “quality,” a common notion until this point. In
the modern sense, linguistic typology studies the differences between languages and
describes which generalizations can be made about cross-linguistic variation (Daniel,
2010).

3.2.1 Description of Language Universals
Language universals fall into several categories based on the strength of their claim.
Moravcsik (2010) divides universals into four categories based on two parameters: un-
restricted/restricted universals and absolute/statistical universals. Unrestricted univer-
sals can be absolute (“all languages have feature X”) or statistical (“most languages
have feature X”). Accordingly, restricted universals, also called implicational univer-
sals, can be absolute (“for all languages, if a language has feature X, it also has feature
Y”) and statistical (“for most languages, if a language has feature X, it also has feature
Y”). Implicational universals were first introduced by Jakobson (1941), who studied the
acquisition of sounds and introduced universals such as “there exists no language which
has velar stops without having labial stops” (Graffi, 2010). Greenberg (1966b) further
distinguishes a separate category for implications in both directions, i.e. equivalence.

A high correlation between two parameters or even an absolute implication in both
directions can indicate that the two seemingly independent parameters may be one
broader parameter in language. Daniel (2010) illustrates this phenomenon with the
example of noun phrase case marking and word order: that the lack of case marking on
noun phrases tends to co-occur with strict word order could be explained by a parameter
for the “choice of formal means to mark grammatical relations” (Daniel, 2010).

3.2.2 Language Universals and Generative Grammar
Linguistic typology differs from other approaches involving linguistic universals, such
as generative grammar, mainly in the question of the origin and the form of linguis-
tic universals. Universals in linguistic typology are “empirically established general-
izations that describe distributional patterns for grammatical phenomena across lan-
guages” (Cristofaro, 2010) while in generative grammar they are a “set of entities that
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are specifically represented in a speaker’s mental grammar” (Cristofaro, 2010). Lin-
guistic typology hence deals with language universals in a descriptive manner. Lin-
guistic universals in generative grammar, on the other hand, are motivated by hypothe-
ses about the restrictions of language acquisition (Daniel, 2010). Accordingly, Daniel
(2010) argues, the biggest differences between both approaches to language univer-
sals arise from the varying basic assumptions of both approaches: generative gram-
mar posits that all languages are mostly structurally identical while linguistic typology
makes no prior assumptions about structure but collects evidence for whether or not
they are. This has implications on the methodology of research in both fields. Given
the basic premise that all languages are essentially similar and that there exists an in-
nate universal grammar whose parameters are fine-tuned for a specific language, it is
reasonable to focus on one or few languages initially. In generative grammar research,
this initial focus was mostly on English and was gradually expanded to other languages.
Linguistic typology research, lacking this basic assumption, focuses on as broad and
diverse a set of languages as possible. Another methodological difference is that the
assumptions made by generative grammar legitimize introspection as a valid method-
ology of data collection while linguistic typology research has relied on corpora and
usage-based studies (Daniel, 2010).

3.2.3 Word Order and Morphology
Two of the most central areas of study in linguistic typology are word order and mor-
phology.

Word Order

Word order has been an integral part of typological studies starting with Greenberg
(1963), who identified word order patterns based on a sample of 30 languages. His
study suggested 45 universals based on the sample, including 25 implicational univer-
sals for basic word order. These universals include basic observations that are still
considered valid today and have been corroborated by studies involving broader lan-
guage samples. Greenberg’s first universal, reproduced here from Greenberg (1963),
deals with the order of subject, verb and object:

Universal 1. In declarative sentences with nominal subject and object, the dominant
order is almost always one in which the subject precedes the object.
This leaves us with three common types: VSO, SVO, and SOV.

Examples of statistical and absolute implicational universals for word order are Uni-
versal 2 and 25 from Greenberg (1963):

Universal 2. In languages with prepositions, the genitive almost always follows the
governing noun, while in languages with postpositions it almost always precedes.
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Universal 25. If the pronominal object follows the verb, so does the nominal object.

Greenberg’s work was influential and established implicational universals as an im-
portant type of language universal, which were subsequently used by many typological
studies (Song, 2010). In later research, typologists attempted to reduce Greenberg’s
universals to more essential principles. Lehmann (1973, 1978) proposed a Fundamen-
tal Principle of Placement, which reduced many parameters in Greenberg’s universals
to only one: the order of the verb and the object noun phrase. According to the prin-
ciple, other word positions follow directly from this parameter: modifiers are placed
on the opposite side of V or O, i.e. modifiers go left in OV languages and right in VO
languages. Thus, the principle correctly predicts that in a VO language such as French,
adjectives would follow the nouns they modify. That some languages do not follow
this basic stipulation (e.g. English is a VO language, but adjectives precede nouns) is
justified by the claim that such languages are in the process of undergoing a change
from OV to VO or vice versa (Lehmann, 1973).

Hawkins (1983) argued against statistical universals and attempted to produce a
set of exceptionless universals for word order. He based his studies on a sample of
336 languages. To remove exceptions and the statistical nature of the universals, it
is necessary to narrow the scope of the universals drastically. A universal may now
have a logical form such as Pr ⇒ (NA ⇒ NG), which expresses that in languages in
which adpositions are prepositions, if the adjective follows the noun, genitives also do
(Hawkins 1983, as cited in Song, 2010). While this has the potential to increase the
number of universals significantly, Hawkins (1983) found that often only a limited set
of universals were attested for in the data. For the position of modifiers of nouns in
prepositional languages, for example, he found that only seven out of the 32 possible
combinations of the positions of demonstratives, numerals, adjectives, relative clauses
and genitives in relation to the noun were attested for in the data (Hawkins 1983, as
cited in Song, 2010). Instead of based on the position of the verb and the object, the
main division of the approach is into prepositional and postpositional languages.

Dryer (1992) introduced the Branching Direction Theory (BDT), which returned
to OV/VO as the main parameter and all other orientations being implied by it. The
BDT predicts that languages tend to be either fully left-branching (phrasal categories
precede non-phrasal categories) or fully right-branching (phrasal categories succeed
non-phrasal categories) (Dryer 1992, as cited in Song, 2010). The theory introduces a
number of modifications to the standard representation to account for exceptions, for
example Dryer (1992) argues for treating adjectives and nouns as non-phrasal cate-
gories, therefore excluding them from predictions of the BDT, which only predicts the
order between phrasal and non-phrasal categories. An important reason for highlight-
ing Dryer’s work is that in order to test his hypotheses, he employed the largest sample
of languages used until this point, a database consisting of 625 languages and was later
one of the co-creators of World Atlas of Language Structures (Dryer and Haspelmath,
2013), a dataset widely used in areas of research beyond linguistic typology itself.
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Word Order Freedom

Most word order typologies introduced above describe the relative order of a select set
of word types and constituents to each other. Only few language universals in relation
to word order freedom have been studied. The most prominent is the hypothesis that
languages with more word order freedom have an increased amount of case marking
(Kiparsky, 1997; Sapir, 1921). This hypothesis was tested by Futrell et al. (2015) who
performed a study of word order freedom in dependency treebanks and found a cor-
relation between word order freedom and the presence of nominative-accusative case
marking.

Morphology

In the area of morphology, linguistic typology studies the various systems languages
employ to compose words from smaller meaning-carrying units. The traditional typo-
logical view of morphology is that there are a small set of “holistic” language types (see
Brown, 2010). These types are inflectional, agglutinative and isolating languages. This
basic categorization was refined by Sapir (1921) who defined languages along two di-
mensions. The first dimension, formal process, describes the processes a language uses
to form words and the second dimension, synthesis, describes how many concepts are
contained in a word. There are four basic formal processes: In isolating languages, the
word expresses the root without any additional morphemes, in agglutinative languages,
regular affixes are added to the root, in fusional languages, affixes are added and the
root may be changed, and in symbolic languages, changes may be applied to the root
itself (see Brown, 2010; Sapir, 1921). Sapir (1921) defined three types of synthesis:
analytic, synthetic and polysynthetic, where analytic has the lowest and polysynthetic
has the highest morpheme-per-word ratio.

3.2.4 Linguistic Typology and Natural Language Processing
Whether explicitly or implicitly, linguistic typology has long played a role in natural
language processing research. Bender (2009) argues that truly language-independent
natural language processing requires linguistic knowledge in the form of generaliza-
tions from linguistic typology. Linguistic knowledge is often regarded with a critical
view in natural language processing research, since attempts to incorporate such knowl-
edge (e.g. in the form of rules) have often had limited success and are difficult to scale
across languages and domains. Instead of using linguistic knowledge in the form of
rules or hard constraints, Bender (2009) suggests that to build language-independent
(instead of “linguistically naïve”) natural language processing systems, natural lan-
guage processing research should be aware and incorporate what is known about the
existing human languages instead of attempting to be able to handle every possible
(potentially artificial) language.

The fields of linguistic typology, natural language processing and computational
linguistics have interacted and benefited from each other in several ways. The World
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Atlas of Language Structures Online (WALS, Dryer and Haspelmath, 2013) is the most
widely used linguistic typology resource in natural language processing research. Sev-
eral lines of research have explored how WALS features can be predicted for individ-
ual languages. The motivation behind predicting individual features can reach from
filling gaps in WALS itself to building language representations for selecting suitable
training data (e.g. in delexicalized transfer parsing, McDonald et al., 2011). Rama and
Kolachina (2012) and Teh et al. (2007) predict WALS features by building statistical
models based on their interactions with otherWALS features and Daume III and Camp-
bell (2007) and Lu (2013) attempt to predict typological implications based on WALS.

Other work attempts to predict WALS values from text alone. Östling (2015) uses
parallel sentences derived from translations of the Bible to predict WALS word order
features, which he then compares to the true values in WALS. Bender (2016) provides
an overview of further computational linguistics applications, such as the LinGo Gram-
mar Matrix (Bender et al., 2002), a tool providing a method for bootstrapping a gram-
mar for a new language based on a base grammar and a set of typological parameters.

In natural language processing research, interest in linguistic typology has been
driven significantly by the difficulties of adapting existing natural language processing
tools to new languages. Most modern natural language processing tools, such as part-
of-speech taggers, parsers, etc., require significant amounts of labeled training data,
which is not available for many languages. To alleviate this issue, language resources
can be artificially created by transferring existing labels available for a high-resource
language such as English to the low resource target language. This technique has been
applied successfully to part-of-speech tagging, named entity recognition and morpho-
logical analysis (Yarowsky et al., 2001), as well as dependency parsing (Hwa et al.,
2005). A related approach is delexicalized transfer parsing (Zeman and Resnik, 2008),
in which a parser for a target language is trained without words on a related source lan-
guage or on a mixture of source languages. For both approaches, it is helpful to select
source languages sharing typological properties with the target language. Several ap-
proaches use WALS to select suitable training data for the target language (Täckström
et al., 2013; Søgaard and Wulff, 2012; Naseem et al., 2012). Apart from using it to
select training data, typological data has also been used to provide additional guidance
to dependency parsers. Aufrant et al. (2016), for example, train delexicalized trans-
fer parsers and remove typological differences in word order by reordering the source
language to be closer to the target language using rules derived from WALS.

Finally, in several natural language processing tasks, there are benefits to learning
models which are trained on multiple languages at the same time. Apart from being
able to bridge the lack of sufficient resources for individual languages, multilingual
training data can also be beneficial since structural ambiguities in one language may
be explicit in another language and thus considering both languages may help overall
(Snyder, 2010; O’Horan et al., 2016). One example of such a model is presented by
Ammar et al. (2016), who train a single multilingual model for dependency parsing in
several languages. Linguistic typology can both inform the modeling of parameters for
the involved language and provide input data for such models.
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Outlook
The purpose of the first part of this thesis has been twofold: Firstly, we provided a
broad overview of the research field of machine translation, aiming at outlining the
three major classes of approaches to machine translation, and therefore providing the
necessary context for the empirical results we present in the following chapters. Sec-
ondly, we discussed aspects related to the object underlying all machine translation
research, namely language itself and its study in the research field of linguistics. We
specifically focused on how areas of linguistic study, such as syntax and semantics, are
treated in machine translation. Finally, we provided an overview of the research field
of linguistic typology, highlighting morphology and word order as two important areas
on which we will focus in this thesis.
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2.5.1. Khalil Sima’an helped editing the article and provided guidance. JoachimDaiber
wrote the article, developed all other software and performed all other experiments.
Khalil Sima’an and Joachim Daiber produced the idea for the article.
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Chapter 4

Examining the Relationship Between
Preordering and Linguistic Typology

Preordering has seen a surge in popularity in statistical machine translation research in
recent years, often providing reductions in translation time and showing good empirical
results in translation quality. For many language pairs, however—especially for trans-
lation into morphologically rich languages— the assumptions of such models may be
too crude. In this chapter, we study the relationship between typological aspects of a
language pair, such as the word order freedom of the target language, and the effective-
ness of preordering in statistical machine translation. We first provide an overview of
current approaches to preordering and examine the linguistic motivations and limita-
tions of the technique. We find that the assumptions of preordering can be insufficient
for morphologically rich and free word order languages. While individual word order
differences and morphological complexity are well-studied topics in linguistic theory,
the notion of word order freedom is rarely addressed in a quantifiable way. To measure
the word order freedom of languages in a quantitative manner, we therefore introduce a
novel entropy measure which assesses how difficult it is to determine word order given
a source sentence and its syntactic analysis. This measure, which we call bilingual head
direction entropy, will enable us to examine the influence of word order freedom on the
effectiveness of preordering in more detail in the following chapters.

45
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Chapter Highlights

Problem Statement
• Preordering is a popular technique in statistical machine translation. While it has
provided great benefits for some language pairs, it has been less successful for
language pairs involving free word order and rich morphology.

Research Question
• Why does preordering not perform equally well across language pairs?
• Can we isolate and measure the typological factors that cause difficulties in some
language pairs?

Research Contributions
• We examine the linguistic motivations and limitations of preordering and discuss
how they relate to typological properties of the language pair.

• We focus on two important aspects of the target language, morphological com-
plexity and word order freedom, and contribute a novel entropy measure that can
quantify the word order freedom of the target language.

4.1 Introduction
A significant amount of research in machine translation has focused on methods for
effectively restricting the often prohibitively large search space of statistical machine
translation systems. One popular method providing a crude but theoretically motivated
restriction of this space is preordering (also pre-reordering or source-side reordering).
In preordering, the source sentence is rearranged to reflect the assumed word order in
the target language. This provides an effective method for handling word and phrase
movements caused by long-range dependencies, which usually enlarge the search space
significantly. After preordering, decoding can be performed in fully monotone or close
to monotone fashion, making the method applicable to a wide range of translation sys-
tems, including n-gram-based translation (Marino et al., 2006) and phrase-based ma-
chine translation. While systems using this approach have in the past not always been
able to show improvements in translation quality over systems using more exhaustive
search algorithms or specialized reordering models, preordering provides several ben-
efits: Apart from facilitating the integration of additional information sources such as
paraphrases, preordering approaches provide significant improvements in runtime per-
formance. Jehl et al. (2014), for example, report an 80-fold speed improvement using
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their preordering system compared to a standard system producing translations of the
same quality.

The basic assumption inherent in the preordering approach is that it is feasible to
predict target word order given only information from the source sentence. The ma-
jority of work on preordering uses a single permutation of the source sentence, which
is passed on to the translation system. This leads to an even stronger assumption: it is
feasible to predict a single preferred target word order. In this chapter we will discuss
and evaluate whether this assumption is reasonable for all target languages. On the sur-
face, this assumption seems reasonable for translating into fixed word order languages
such as Japanese, but for translation into languages with less strict word order such
as German, it is less likely to hold. In such languages there are often multiple plausi-
ble target word orders per source sentence because the underlying predicate-argument
structure can be expressed with mechanisms other than word order (e.g. using morpho-
logical inflection or intonation). Hence, for these languages, it seems rather unlikely
that choosing a single word order given only the source sentence can succeed. In this
chapter, we want to examine the relationship between typological properties of the tar-
get language and the feasibility of preordering in more detail. Based on the findings
of this chapter, Chapter 5 and 6 will then propose and evaluate potential solutions to
dealing with these limitations.

We begin by examining the linguistic motivation and limitations of preordering
(Section 4.2) and review common approaches to the task (Section 4.3). One of the
major typological aspects influencing the effectiveness of preordering is the word order
freedom of the target language. However, while individual differences inword order are
well-studied, the notion of word order freedom is often difficult to define and quantify.
We therefore contribute an information-theoretic measure to quantify the difficulty of
predicting a target word order given the source sentence and its syntactic representation
(Section 4.4). Our measure provides empirical support for the intuition that it is often
not possible to predict a single word order for free word order languages, while it is
more feasible for fixed word order languages such as Japanese.

4.2 Preordering: LinguisticMotivation andLimitations

If we consider translation as a generative process which transforms a source sentence s
into a target sentence t, we can separate this process into word order choices and lexical
choices. Here, we denote word order choices as tπ and lexical choice as tlex such that
t = ⟨tπ, tlex⟩. If lexical choice and word order were fully independent, this could be
conveniently expressed as P (t | s) = P (tπ | s)P (tlex | s). However, this assumption is
unrealistic and in practice preordering models fall back to a weaker assumption (4.2):

P (t | s) = P (tπ, tlex | s) (4.1)
def
= P (tπ | s)P (tlex | tπ, s) (4.2)
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t der Mann sah den Hund der Mann hat den Hund gesehen den Hund sah der Mann

s the man saw the dog the man saw the dog the man saw the dog

π 1 2 3 4 5 1 2 5 3 4 4 5 3 1 2

m nom. nom.
3rd person

sing. preterite1 acc. acc. nom. nom.
past perfect
participle2 acc. acc. nom. nom.

3rd person
sing. preterite1 acc. acc.

Example 1 Example 2 Example 3

Figure 4.1: Example sentences from the language pair English–German.

The definition of P (tπ, tlex | s) is broken down into two parts: (a) word order prediction
P (tπ | s) and (b) translation based on the predicted word order P (tlex | tπ, s). This
process is commonly implemented in preordering by rearranging the source sentence s
into target word order s′π:

P (t | s) =
∑

s′π

P (s′π | s)P (t | s′π) (4.3)

Preordering therefore abstracts away from the target side word order by combining s
and tπ into the target-order source sentence s′π. In this model, lexical choice tlex may
depend on the word order choices but lexical choice cannot influence word order. This
restriction is often addressed in an ad-hoc fashion by allowing the machine translation
system to perform minimal reordering itself. To illustrate why this can be a problem-
atic assumption, consider the English example sentence and its German translations in
Figure 4.1. Between Examples 1 and 2, a change in the underlying grammatical struc-
ture (in this case the grammatical tense) causes a difference in both word choice and
word order on the German side (sah vs. hat gesehen). This can be observed in the word
order π and in the morphological attributesm in Figure 4.1: sah is a 3rd person singular
preterite verb while geschlagen is a past participle verb. In this example, word order
and word forms have to be selected conjointly in order to arrive at an adequate and
fluent German translation.

Work in syntax-based machine translation and cross-lingual projection of syntactic
annotation has demonstrated repeatedly that isomorphism between a source sentence
and its translation on the syntactic level is limited (see, for example, the discussion
of the Direct Correspondence Assumption in Hwa et al., 2005). On the other hand,
this correspondence may be clearer on the level of each sentence’s predicate-argument
structure, and word order and morphology should be considered as two interchange-
able means of realizing the underlying predicate-argument structure. This hypothesis
is a central motivation for work in semantic transfer-based machine translation, such
as the tectogrammatical approach discussed in Section 3.1. The success of preorder-
ing on morphologically impoverished target languages such as English therefore relies
on the predicate-argument structure mostly being expressed via word order in these

1Full attributes in the data: .
2Full attributes in the data: .



4.2. Preordering: Linguistic Motivation and Limitations 49

Correlation with preordering improvement

WALS feature and value Correlation

-1.0 0 1.0

112A Negative morphemes: Negative affix
144A Position of negative word: Morph. negation
49A Number of cases: 6-7 cases
138A Tea: Words derived from Sinitic cha
15A Weight-sensitive stress: Unbounded

...

-1.0 0 1.0

143E Preverbal negative morphemes: NegV
51A Position of case affixes: No case affixes
138A Tea: Words derived from Min Nan Chinese te
49A Number of cases: no morph. case-marking
50A Asymmetrical case-marking: Add.-quant. asym.

Table 4.1: Correlation (Pearson correlation coefficient) of preordering improvement
(BLEU) with typological features of the target language.

languages. From a linguistic point of view, the effectiveness of preordering therefore
seems fortuitous.

To illustrate this point further, consider Table 4.1, which shows the correlation be-
tween typological features of the target language and the improvements provided by
preordering for a translation experiment between English and a diverse set of target
languages (for more details on the experimental setup, see Chapter 9). Correlation is
calculated for the relative difference between the BLEU score for each language with
andwithout preordering using the Pearson correlation coefficient (Pearson, 1896).3 The
table shows that the language properties most correlated with successful preordering
(WALS feature 49A, 50A, 51A) are highly indicative of a lack of rich morphology,
while the properties most negatively correlated are properties commonly observed in
morphologically rich languages, such as the use of affixes to express negation (WALS
features 112A and 144A) or a significant number of cases (WALS feature 49A).

3Specifically, we calculate the correlation coefficient against the relative improvement of the BLEU
score of the preordered system (BLEUP) over the BLEU score of the baseline (BLEUBL): BLEUP−BLEUBL

BLEUBL
.

This ensures that the ranking is not influenced by the differences in the ranges of BLEU scores between
languages, which due to the token-based formulation of BLEU are partially caused by morphological
complexity themselves.
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the house of the green man

...

AuxA

Atr

Atr

AuxA
AuxP

das Haus des grünen Mannes

Figure 4.2: English dependency tree with aligned German translation.

4.3 Approaches to Preordering
Preordering has been explored from the perspective of the upper-bound achievable
translation quality in several studies, including Khalilov and Sima’an (2012) and Her-
rmann et al. (2013), which compare various systems and provide oracle scores for
syntax-based preordering models. Target-order source sentences, in which the word
order is determined via automatic alignments, enable translation systems great jumps in
translation quality and provide improvements in compactness and efficiency of down-
stream phrase-based translation models. Additionally, it was found that properties of
the source syntax representation, such as how deeply phrase structure trees are nested,
can significantly hamper the quality of these approaches. Approaches have largely fol-
lowed two directions: (1) predictingword order based on some form of source-syntactic
representation and (2) approaches which do not depend on source syntax.

Preordering with Source Syntax

Many approaches to preordering have made use of syntactic representations of the
source sentence, including Collins et al. (2005) who restructure the source phrase struc-
ture parse tree by applying a sequence of transformation rules. More recently, Jehl et al.
(2014) learn to order sibling nodes in the source-side dependency parse tree. The space
of possible permutations is explored via depth-first branch-and-bound search (Balas
and Toth, 1983). In later work, the authors further improve this model by replacing
the logistic regression classifier with a feed-forward neural network (De Gispert et al.,
2015), which results in improved empirical results and eliminates the need for feature
engineering. Lerner and Petrov (2013) train classifiers to predict the permutations of
up to six tree nodes in the source dependency tree. The authors found that by only
predicting the best 20 permutations of n nodes, they could cover a large majority of
the permutations in their data. Figure 4.2 shows an example dependency tree that can
serve as input to such systems.

Preordering Without Source Syntax

Tromble and Eisner (2009) learn to predict the orientation of any two words (straight or
inverted order) using a perceptron. The search for the best word order permutation is
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performed with aO(n3) chart parsing algorithm. More basic approaches to syntax-less
preordering include the application of multiple machine translation systems (Costa-
jussà and Fonollosa, 2006), where a first system learns preordering and a second learns
to translate the preordered sentence into the target sentence. Finally, there have been
successful attempts at the automatic induction of parse trees from aligned data (DeNero
and Uszkoreit, 2011) and the estimation of latent reordering grammars (Stanojević and
Sima’an, 2015) based on permutation trees (Zhang and Gildea, 2007).

4.4 Quantifying Word Order Freedom
While specific differences in word order are a well-studied topic in linguistics and lin-
guistic typology, word order freedom has only recently been studied from a quantitative
perspective. This has been enabled partly by the increasing availability of syntactic
treebanks. Kuboň and Lopatková (2015) propose a measure of word order freedom
based on a set of six common word order types (SVO, SOV, etc.). Futrell et al. (2015)
define various entropy measures based on the prediction of word order given unordered
dependency trees. Both approaches require a dependency treebank for each language.

In practical applications such as machine translation, it is difficult to quantify the
influence of word order freedom. For any arbitrary language pair, our goal is to quan-
tify the notion of the target language’s word order freedom based only on parallel sen-
tences and source syntax. In their head direction entropy measure, Futrell et al. (2015)
approach the problem of quantifying word order freedom by measuring the difficulty
of recovering the correct linear order from a sentence’s unordered dependency tree. We
approach the problem of quantifying a target language’s word order freedom by mea-
suring the difficulty of predicting target word order based on the source sentence’s de-
pendency tree. Hence, we examine notions such as how difficult it is to predict French
word order based on the syntax of the English source sentence.

4.4.1 Source Syntax and Target Word Order
We represent the target sentence’s word order as a sequence of order decisions. Each
order decision encodes for two source words, a and b, whether their translation equiva-
lents are in the order (a, b) or (b, a). The source sentences are parsed with a dependency
parser.4 The target-language order of the words in the source dependency tree is then
determined by comparing the target sentence positions of the words aligned to each
source word. Figure 4.3 shows the percentage of dependent-head pairs in the source
dependency tree whose target order can be correctly guessed by always choosing the
more common decision.5

4

5For English–Japanese, we use manual word alignments of 1235 sentences from the Kyoto Free
Translation Task (Neubig, 2011) and for English–German, we use a manually word-aligned subset of
Europarl (Padó and Lapata, 2006) consisting of 987 sentences.

http://cs.cmu.edu/~ark/TurboParser/
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Figure 4.3: Source word pairs whose target order can be predicted fully using only the
words’ dependency relation or part-of-speech tags.

German and Japanese

Both language pairs differ significantly in how strictly the target language’s word order
is determined by the source language’s syntax. English–German shows strict order
constraints within phrases, such as that adjectives and determiners precede the noun
they modify in the vast majority of cases (Figure 4.3b). However, English–German
also shows more freedom on the clause level, where basic syntax-based predictions for
the positions of nouns relative to the main verb are insufficient. For English–Japanese
on the other hand, the position of the noun relative to the main verb is more rigid,
which is demonstrated by the high scores in Figure 4.3a. These results are in line with
the linguistic descriptions of both target languages. From a technical point of view,
they highlight that any treatment of English–German word order must take into account
information beyond the basic syntactic level and must allow for a given amount of word
order freedom.

4.4.2 Bilingual Head Direction Entropy

While such a qualitative comparison provides insight into the order differences of se-
lected language pairs, it is not straight-forward to compare across many language pairs.
From the linguistic perspective, Futrell et al. (2015) use entropy to compare word order
freedom in dependency corpora across various languages. They observed that artifacts
of the data such as treebank annotation style can hamper comparability, but also found
that a simple entropy measure for the prediction of word order based on the dependency
structure can provide a reasonable quantitative measure of word order freedom.

We follow Futrell et al. (2015) in basing our measure on conditional entropy, which
provides a straight-forward way to quantify to which extent target word order is deter-
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mined by source syntax.

H(Y |X) = −
∑

x∈X

P (x)
∑

y∈Y

P (y|x) log P (y|x) (4.4)

Conditional entropy measures the amount of information required to describe the out-
come of a random variable Y given the value of a second random variable X . Given
a dependent-head pair in the source dependency tree, X consists of the dependent’s
and the head’s part of speech, as well as the dependency relation between them. Note
that as in all of our experiments the source language is English, the space of outcomes
of X is the same across all language pairs. Y in this case is the word pair’s target-
side word order in the form of a decision between the order (a, b) or (b, a). Following
Futrell et al. (2015), we estimateH(Y |X) using the bootstrap estimator of DeDeo et al.
(2013), which is less prone to sample bias than maximum likelihood estimation.6

Influence of Word Alignments

Futrell et al. (2015) use human-annotated dependency trees for each language they con-
sider. Our estimation only involves word-aligned bilingual sentence pairs with a source
dependency tree. Manual alignments are available for a limited number of language
pairs and often only for a diminishingly small number of sentences. Consequently,
the question arises whether automatic word alignments are sufficient for this task. To
answer this question, we apply our measure to a set of manually aligned as well as
a larger set of automatically aligned sentence pairs. In addition to the German and
Japanese alignments mentioned above, we use manual alignments for English–Italian
(Farajian et al., 2014), English–French (Och and Ney, 2003), English–Spanish (Graça
et al., 2008) and English–Portuguese (Graça et al., 2008).

Since a limited number of manually aligned sentences are available, it is important
to avoid bias due to sample size. Hence, we randomly sample the same number of
dependency relations from each language pair. Considering only those languages for
which we have both manual and automatic alignments, we can determine how well
their word order freedom rankings correlate. Even though the number of samples for
the manually aligned sentences is limited to 500 due to the size of the smallest set of
manual alignments, we find a high Spearman’s ρ correlation (Zwillinger and Kokoska,
1999) of ρ = 0.77 between the rankings of the six languages that occur in both sets.

Influence of Source Syntax

Another factor that may influence our estimated degree of word order freedom is the
form and granularity of the source side’s syntactic representation: More detailed repre-
sentations may disambiguate cases that are difficult to predict with a more bare repre-
sentation. As we are interested in the bilingual case and, specifically, in preordering, we

6We observe an average of 1033 values for X per language pair and perform 10000 Monte Carlo
samples.
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Figure 4.4: Bilingual head direction entropy with English source side.

content ourselves with using the same syntactic representation, i.e. dependency trees,
that many preordering models use (e.g., Jehl et al. (2014), Lerner and Petrov (2013)).

Comparison to Monolingual Measures

Our measure is similar to Futrell et al. (2015)’s head direction entropy; however, it
also offers several advantages. While monolingual head direction entropy requires a
dependency treebank for each language, our bilingual head direction entropy only re-
quires dependency annotation for the source language (English in our case). One of
their caveats, the influence of the widely varying dependency annotation styles across
treebanks, is also not present in our method since a single dependency style is used for
the source language. We have demonstrated that automatic alignments perform on a
comparable level to manual alignments. Accordingly, the amount of data that can be
used to estimate the measure is only limited by the availability of parallel sentences.
Finally, while dependency treebanks rarely cover the same corpora or even domains,
our method can utilize sentences from the same or similar corpora for each language,
thus minimizing potential corpus biases.

Translation from English

Figure 4.4 plots bilingual head direction entropy for an English source side and a set of
typologically diverse target languages. For each language pair, we use 18000 sentence
pairs and automatic alignments from the Tatoeba corpus (Tiedemann, 2012).7

7The alignments were produced using GIZA++ (Och and Ney, 2003) with grow-diag-final-and sym-
metrization.
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Languages at the top of the plot in Figure 4.4 show a greater degree of word order
freedom with respect to the English source syntax. Thus, predicting their word order
from English source clues alone is likely to be difficult. In the next chapters, we will
argue that in such cases it is crucial to pass on the ambiguity over the space of predic-
tions to the translation model. By doing so, word order decisions can be influenced by
translation decisions while still shaping the space of reachable translations.

4.5 Conclusion
In this chapter, we have examined the role of typological properties of the targeted lan-
guage pair in the effectiveness of preordering in statistical machine translation. While
preordering has shown significant benefits for some language pairs, it has not worked
well for others. We have provided an overview over common approaches to preorder-
ing and discussed its linguistic motivations and limitations. We have observed that
typological aspects of the target language, such as morphological complexity and word
order freedom, can play a significant role in the effectiveness of preordering. For one
particularly interesting aspect, word order freedom, we have provided a measure which
enables an empirical comparison of language pairs in terms of the difficulty of predict-
ing the target language’s word order based on the source language. Our metric’s predic-
tions agree both with the intuition provided by linguistic theory and the empirical sup-
port in the form of translation experiments, which we will present in Chapter 6. While
continuing to focus on the language pairs English–German and English–Japanese as
language pairs representative of target languages with high and low degrees of word
order freedom, we will propose and evaluate methods to address word order freedom
in preordering in the following two chapters.





Chapter 5

Delimiting Morphosyntactic Search Space
via Preordering Models: A Case Study

In the previous chapter, we have provided theoretical and empirical reasons why the
effectiveness of preordering depends on typological properties of the languages it is
applied to. Especially for morphologically rich and free word order target languages,
the assumptions of these models seem ill-fitted. While such language pairs call for
more complex models, these could in turn increase the search space to an extent that
would diminish their benefits. One of the major issues of preordering is that in mor-
phologically rich target languages, word order and word form choices often cannot be
performed fully independently. In this chapter, we examine the question whether for
such languages, models without any notion of morphology can be used as a means to
delimit the search space for a machine translation system to a set of potential word or-
der predictions instead of committing to just a single best order. We propose a novel
preordering model based on a popular preordering algorithm (Lerner and Petrov, 2013),
which is able to produce both n-best word order predictions as well as distributions over
possible word order choices in the form of a lattice. We further show that the integra-
tion of non-local language model features can be beneficial for the model’s preordering
quality and evaluate the space of potential word order choices the model produces.
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Chapter Highlights

Problem Statement
• The assumptions inherent in preordering models are ill-fitted for translation into
morphologically rich and free word order target languages. For such languages,
interaction between word order and morphology make selecting a single word
order inadequate.

Research Question
• Can the limitations of preordering for translation into free word order languages
be overcome by delimiting the space of potential word order choices instead of
committing the machine translation system to a single best word order?

Research Contributions
• We propose a preordering model able to produce n-best word order predictions
as well as distributions over possible word order choices in the form of a lattice.

• We show that the integration of non-local language model features is beneficial
for the model’s preordering quality.

• We show that using the space of potential word order choices the model produces
is a promising approach for dealing with such language pairs.

5.1 Motivation
While for some languages preordering has provided great benefits, it has not performed
equally well for other languages, including many morphologically rich languages. In
this chapter, we evaluate a potential solution to this problem. We introduce a preorder-
ing model which can produce n-best word order predictions as well as distributions
over possible word order choices and apply this model to the language pair English–
German. The experiments with this language pair serve as a case study to examine
the feasibility and effectiveness of using preordering models to delimit the space of
potential word order choices so that the final word order decisions can be performed
taking into account a broader range of signals. In the next chapter, we will consider
more suitable ways to integrate such a model’s predictions into the machine translation
decoding process.

We begin by proposing a model and general framework for producing the space of
potential word order choices in Section 5.2.1. In Section 5.2.2, we show how casting
this model as context-free grammar parsing allows us to use cube pruning to integrate
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non-local language model features. Our model is based on source syntax in the form
of dependency trees. The reordering operations in source syntax-based approaches to
preordering are often restricted by the form of the source-side syntactic trees; hence,
the annotation conventions of the training treebank and the form of the predicted de-
pendency trees play a significant role for the preordering system. We will therefore
briefly describe the treebank format and other details of the experimental setup in Sec-
tion 5.3.1. Section 5.3.2 and 5.3.3 present results of the experimental evaluation and a
discussion of these results. We conclude in Section 5.4.

5.2 Delimiting Potential Word Order Choices
The goal of this chapter is to evaluate whether delimiting the space of potential word
order choices provides a better alternative to committing to a single best word order.
To examine this question, we first introduce a preordering model capable of producing
n-best word order predictions and distributions over possible word order choices. Pre-
ordering systems can be compared along several dimensions. The main distinctions are
whether the reordering rules are specified manually (Collins et al., 2005) or automat-
ically learnt from data (Lerner and Petrov, 2013; Khalilov and Sima’an, 2012). Fur-
thermore, approaches differ in the types of syntactic structures they assume. Systems
may use either source or target syntax (Lerner and Petrov, 2013; Khalilov and Sima’an,
2012), both source and target syntax or no syntax at all (e.g. Stanojević and Sima’an
(2015); DeNero and Uszkoreit (2011)). In this chapter, we focus on approaches us-
ing only source-side syntax. Dependency grammar offers a flexible and lightweight
syntactic framework that can cover a large number of languages and provides suitable
syntactic representations for reordering. Hence, we follow Lerner and Petrov (2013) in
using dependency trees for the representation of source syntax.

5.2.1 Preordering Beyond First-Best Predictions
Our work is related to the work of Lerner and Petrov (2013), in which feature-rich dis-
criminative classifiers are trained to directly predict the target-side word order based
on source-side dependency trees. This is done by traversing the dependency tree in a
top-down fashion and predicting the target order for each tree family (a family consists
of a syntactic head and its children). To address sparsity issues, two models are intro-
duced. For each subtree, the 1-step model directly predicts the target order of the child
nodes. Unlike other preordering models, which often restrict the space of possible per-
mutations, e.g. by the permutations permissible under the ITG constraint (Wu, 1997),
the space of possible permutations for each subtree is restricted to the k permutations
most commonly observed in the data. The blowup in permutation space with growing
numbers of children is addressed by a second model, the 2-step model. This model
decreases the number of nodes involved in any single word order decision. A binary
classifier (called pivot classifier, in analogy to quicksort) first predicts whether a child
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node should occur to the left or to the right of the head of the subtree. The order of the
set of nodes to the left and to the right of the head is then directly predicted as in the
1-step model. In total, the 2-step approach requires one pivot classifier, 5 classifiers for
the children on the left and 5 classifiers for the children on the right.

The cascade-of-classifiers approach used by this method (i.e. first predict the pivot,
then predict the left and right orders, then recurse) exhibits the problematic characteris-
tic that classification errors occurring near the top of the tree will propagate dispropor-
tionately to later decisions. The goal of the present work is to enable the preordering
model to pass decisions on to a later stage. Hence, this error propagation issue may
become problematic. In order to address this problem, we extract n-best word order
predictions from each classifier. A distribution over the n-best preordered sentences
can then be passed to a subsequent model or directly to a machine translation decoder
either as a list of options or in the form of a lattice. Similar to the practice of n-best
list extraction in machine translation decoders such as Moses, the preordering prob-
lem likewise allows the extraction of n-best preordering options either with or without
additional integration of non-local features such as a language model.

General Model

We define a model over the possible orders of the tokens in the source sentence. Given
a source sentence s and a corresponding dependency tree τ , π is the permutation of
source tokens and πh is a local permutation of a single tree family under head h. The
score of a word order s′ is:

P (s′ | s, τ) =
∏

h∈τ

PT (πh | s, h, τ), (5.1)

where PT (πh | s, h, τ) consists of decisions for the pivot and the left and right children:

PT (πh | s, h, τ) = P (ψ | s, h, τ)PL(πL | s, h, τ)PR(πR | s, h, τ) (5.2)

For each dependency tree family, the generative story of this model is as fol-
lows: First, decide on whether each child node should go left or right of the head,
i.e. P (ψ | s, h, τ). Then, decide the order of the nodes to the left of the head, i.e.
PL(πL | s, h, τ), and to the right of the head, i.e. PR(πR | s, h, τ).

Preordering Algorithm

Based on this model, we introduce the following preordering algorithm. For each
source dependency tree family with head h, we extract the best kT local word order
predictions using the function in Algorithm 1. Ψ(cs) is the set of
possible choices when distributing nodes using the pivot classifier. Given a set of child
nodes cs, Π(cs) is the set of their possible permutations. The best permutations for the
left and right side are extracted by the following methods:
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π̂L ← arg bestk
πL∈Π(csL)

PL(πL | s, h, τ) (5.3) π̂R ← arg bestk
πR∈Π(csR)

PR(πR | s, h, τ) (5.4)

Since this model is implemented using multi-class classifiers, finding the best kO per-
mutations for the nodes to the left and right of the head, i.e. Equation 5.3 and 5.4, only
require one multi-class classification. Following Lerner and Petrov (2013), we restrict
the set of allowed permutations Π(cs) to the 20 most common permutations observed
in the training data. Given a pivot decision ψ̂ (which children go left and which go
right of the head?), (ψ̂) returns the children to the left and (ψ̂) returns the
children to the right of the head. The function (ψ̂, π̂L, π̂R) returns the
word order permutation resulting from the pivot decision, the left children order and
the right children order.

Algorithm 1 n-best preordering of a source tree family.
procedure (h, τ )

cs← (h, τ)
topk ← ()

for ψ̂ ← arg bestk
ψ∈Ψ(cs)

P (ψ | s, h, τ) do ◃ Pivot decisions

csL ← (ψ̂)
csR ← (ψ̂)
for π̂L ← arg bestk

πL∈Π(csL)
PL(πL | s, h, τ) do ◃ Left order decisions

for π̂R ← arg bestk
πR∈Π(csR)

PR(πR | s, h, τ) do ◃ Right order decisions

p← (ψ̂, π̂L, π̂R)
topk. (P (ψ̂ | s, h, τ)× PL(π̂L | s, h, τ)× PR(π̂R | s, h, τ), p)

return topk. (kT )

For n children, there are S(n, 2) possible pivot decisions, where S(n, k) is the Stirling
number of the second kind. Since this number grows exponentially with n, it would be
extremely expensive, if not infeasible, to consider all possible pivot decisions. Hence,
similar to the extraction of π̂L and π̂R, the extraction of the possible choices for the
pivot decision, i.e. ψ̂, is implemented as k-best Viterbi extraction from a conditional
random field classifier: ψ̂ ← arg bestk

ψ∈Ψ(cs)
P (ψ | s, h, τ).

This approximation means that only the best kP pivot decisions are considered.
Hence, for each of the maximally kP possible ways to distribute the child nodes when
taking the pivot decision, two classifications have to be performed: one for the nodes
on the left and one for the nodes on the right. The extraction of n-best word order
predictions therefore requires 2 × kP classifications for each source-side tree family.
With the best kT local permutations for each source tree family, we can then extract
n-best permutations for the whole tree. If all order decisions in this model are local
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to their tree family, extracting the best permutations for the whole sentence is straight-
forward. In the next section, we will discuss how this assumption changes with the
introduction of non-local features.

5.2.2 Integration of Non-Local Features

While the basic model introduced by Lerner and Petrov (2013) shows promising empir-
ical performance, it alsomakes fairly strong independence assumptions. The generative
process assumes that the local order decisions occur only within individual tree fam-
ilies defined by the dependency tree. Hence, a local word order decision at any point
in the dependency tree is fully independent from any other decision in the tree. For
languages such as German, this independence assumption can be problematic because
the position of a constituent in the sentence influences the internal word order.1 For
example, certain positions allow for scrambling, i.e. more or less free movement of
some constituents within a specific area of the sentence. Previous work on preordering
(Khalilov and Sima’an, 2012) has shown that the integration of even a weak trigram
language model estimated over the gold word order predictions s′ can improve pre-
ordering performance. Since we use projective dependency trees, which are internally
converted to a flat phrase structure representation, the model can be expressed in the
form of a weighted context-free grammar in which labels encode the order of the con-
stituents. One method to weaken the independence assumptions of this grammar is the
direct integration of a language model (LM). This idea is reminiscent of the integration
of the finite state language model with the synchronous context-free grammar used in
hierarchical phrase-based machine translation (Chiang, 2007).

Hence, instead of searching for ŝ′ = argmaxs′ P (s′ | s, τ), the search will now in-
clude the n-gram language model, such that: ŝ′ = argmaxs′ P (s′ | s, τ)PLM(s′). This
integration can be performed in three ways: the simplest form of integration, which is
fast but allows for significant search errors, is to generate an n-best list of word order
predictions using the −LM preordering model (i.e., without the LM or other non-local
features) and re-score this list using the language model. On the other end of the spec-
trum, the language model can be integrated by performing a full intersection between
the preordering CFG and the finite state automaton that defines the language model
(Bar-Hillel et al., 1961). While this would allow for exact search, this method is found
to be too slow in practice. A compromise between these two extremes is cube pruning
(Chiang, 2007), in which the inner LM cost as well as the left and right LM states are
stored on each node, so that it is possible to perform bottom-up dynamic programming
to efficiently determine the total LM cost by combining the intermediate node costs.
Keeping the properties required for performing cube pruning, we use the more general
log-linear model formulation (Och and Ney, 2002) by defining the search for the best

1German word order is generally described based on a set of topological fields in which constituents
are placed and which restrict their movement (see Müller, 2015).



5.2. Delimiting Potential Word Order Choices 63

word order prediction ŝ′ as follows:

ŝ′ = argmax
s′

P (s′ | s, τ)λRMPLM(s′)λLM (5.5)

= argmax
s′

∏

i

φi(s′, s, τ)λi (5.6)

= argmax
s′

∑

i

λi logφi(s′, s, τ), (5.7)

where φi(s′, s, τ) is the ith feature function and λi is its weight. On every source tree
node, cube pruning is performed with a beam size of k+LM. The best k−LM preordering
labels are considered for expansion. Additionally, we prune all preordering labels for
which the language model cost is higher than the language model cost of the original
source tree order (i.e., performing no reordering). To make individual configurations
comparable, we follow Chiang (2007) in adding a heuristic cost that approximates the
cost of the first m − 1 words: logPLM(s′1...s′l) where l = min{m − 1, |s′|} for an m-
gram language model. In our case, s′ is the vector of preordered source-side words at a
specific tree node. We add the heuristic cost of all relevant feature functions φi for the
set of language model feature functions ΦLM as

∑
i∈ΦLM

λi logφi(s′1...s′l).

Feature Functions

The log-linear model formulation makes the addition of arbitrary local and non-local
features possible; hence, any suitable feature function can be added to this model. We
use the following initial features.

Lexicalized preordering model The most important feature is the lexicalized pre-
ordering model P (s′ | s, τ) introduced in Section 5.2.1. We call this model lexicalized
since it makes decisions based on the source words while other models might make
predictions based on non-lexical information (e.g., part-of-speech tags).

Language models To weaken the strong independence assumptions of this model,
we add a generic n-gram language model over the gold word order predictions s′, a
language model over part-of-speech tags and a class-based language model.

Unlexicalized preordering model As the lexicalized preordering model might run
into sparsity issues, we add as a further feature function a weaker model PW (π | h, cs),
where cs is the set of children represented by their dependency label and by whether
they have children, and h is the head represented by its POS tag. Themodel is estimated
via maximum likelihood estimation from the oracle word order choices restricted by
the source-side dependency trees (oracle tree reordering). These tree-restricted oracle
word order choices differ from the free oracle word order choices in that words are not
allowed to move out of the constituents of the dependency tree. For example, in the
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the house of the green man

...

AuxA

Atr

Atr

AuxA
AuxP

das Haus des grünen Mannes

Figure 5.1: Syntactic representation of English PP as German genitive NP translation.

English sentence “the house of the green man” in Figure 5.1, the word “green” would
always be on the same side of “house” as “man” since as a dependent of “man”, it will
always move with “man” in relation to its grandparent “house.”

5.2.3 Applicability of the Model
While we focused on one particular n-best preordering method in Section 5.2.1, the
general model introduced in Section 5.2.2 is applicable to any preordering model over
source trees for which n-best candidates can be extracted. For example, the pairwise
neural network-based method by De Gispert et al. (2015) can be used either by extract-
ing n-best decisions directly from the graph or by applying the CKY algorithm on the
space of permutations permissible under ITG (Tromble and Eisner, 2009).

5.3 Experiments
In this section, we present experimental results for the language pair English–German.
First, we will describe the details of the preordering system and the experimental setup
and highlight assumptions and decisions made in the system. After introducing the ex-
perimental setup, we will turn to examine the following two questions. In Section 5.2.2,
we have shown how cube pruning can be used to integrate non-local features into the
preordering model. We will therefore first consider the question whether the preorder-
ing model benefits from the access to non-local features that this provides. Subse-
quently, we will turn to evaluating the quality of the space of potential word order
choices produced by the model and discuss whether using the preordering model to
delimit this space can provide a better alternative to committing to a single word order
prediction for morphologically rich target languages.

5.3.1 Implementation and Experimental Setup

Source-Side Syntax

For source syntax-based preordering to work reliably, the dependency representation
should fulfill certain requirements: Flatter trees increase the space of coverable per-
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mutations while the information in the neglected segmentations may be recoverable by
the preordering model. Additionally, whenever reasonable, content-bearing elements
should be treated as the head.2 We use a customized version of the treebank collection
and transformation tool HamleDT (Zeman et al., 2012) for this purpose.

Model Training

For training the model, we mostly follow the process from Lerner and Petrov (2013).
Training instances are extracted from the automatically aligned training data based on a
small set of manually defined rules. To ensure high-quality training data, only subtrees
that are fully connected by high-confidence alignments are considered. The preorder-
ing classifiers are trained on the intersection of high-confidence word alignments and
the first-best output of the TurboParser dependency parser (Martins et al., 2009). The
alignments are created using the Berkeley aligner3 with the hard intersection setting.
While using only high-confidence alignment links will lead to a reduction in the num-
ber of alignment links, it creates more reliable training data for the preordering model.
The dependency parser is trained to produce pseudo-projective dependency trees (Nivre
and Nilsson, 2005).4 Appropriate values for k+LM and k−LM are determined using grid
search. We found that beam sizes above k+LM = 15 and k−LM = 5 did not improve
first-best preordering quality.

Model Tuning

The set of weights λ for the combination of the preordering model and the language
models are optimized for a selected target metric on holdout data. The straight-forward
choice for this metric is Kendall τ , which indicates the similarity of the word order
of both sides. The Kendall τ distance dτ (π, σ) between two permutations π and σ is
defined as (Birch et al., 2010):

dτ (π, σ) = 1−
∑n

i=1

∑n
j=1 zij

Z
, (5.8)

where zij =

{
1 if π(i) < π(j) and σ(i) > σ(j)

0 otherwise
and Z =

(n2 − n)

2
. (5.9)

The metric indicates the ratio of pairwise order differences between two permutations.
An alternative to this ordering measure would be the simulation of a full machine
translation system, as first proposed by Tromble and Eisner (2009). To ensure that
the changes in word order do not affect this mock translation system and to limit its
complexity, such a system would be limited to phrases of length 1.

2For example, auxiliary verbs should modify the finite verb and prepositions should depend on the
head of the noun phrase.

3

4Projectivization was performed using MaltParser version 1.8; .

https://code.google.com/p/berkeleyaligner/
http://www.maltparser.org/
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Model Kendall τ BLEU (ŝ′ → s′)
First-best −LM 92.16 68.1
First-best +LM (cube pruned) 92.27 68.7

Best out of n-best +LM (cube pruned, n = 5) 93.33 –
Best out of n-best +LM (cube pruned, n = 10) 93.72 –

Table 5.1: LM integration tested on first-best prediction. English–German, scores from
predicted English (̂s′) to gold-ordered English (s′).

We perform tuning towards Kendall τ using the tuning as ranking (PRO) frame-
work (Hopkins and May, 2011). At tuning time, k−LM and k+LM are set to 15 and 100
respectively. PRO requires the unweighted values of all feature functions; hence, dur-
ing tuning only, we retain the unweighted feature values on each node and sum over
intermediate values to arrive at the overall scores. Training instances for ranking are
sampled from the best 100 word order predictions for each sentence in the tuning set.
We perform 6 iterations and interpolate the weights of each iteration with the weights
from the previous iteration by the recommended factor of Ψ = 0.1.

Translation Setup

To evaluate the model in a full translation setup, we follow the standard approach to
preordering. Given the source side s and the target side t of the parallel training corpus,
we first perform word alignment using MGIZA++ (Gao and Vogel, 2008). We perform
6 iterations of IBMModel 1 training followed by 6 iterations of HMMword alignment
and 3 iterations each of IBM Model 3 and 4.

After initial training, the preordering model is applied to s, obtaining the preordered
corpus ŝ′. Since the word order differences between ŝ′ and t should be less acute, less
computationally expensive word alignment tools are sufficient to re-align the corpus.
We align ŝ′ and t using ,5 an efficient re-parameterization of IBMModel 2
(Dyer et al., 2013). Improvements in word order can lead to improvements in align-
ments and hence the training and word alignment process can be performed repeat-
edly. Lerner and Petrov (2013) report no significant improvements after the initial
re-alignment. Accordingly, we do not iterate the training process either. The underly-
ing translation system is Moses (Koehn et al., 2007) using the standard feature setup
and using only the distortion-based reordering model (with a distortion limit of 7). Tun-
ing is performed using MERT (Och, 2003). The system is trained on the full parallel
sections of the Europarl corpus (Koehn, 2005) and tuned and tested on the WMT 2009
and WMT 2010 newstest sets respectively. The language model is a 5-gram n-gram
model trained on the target side of Europarl and the news commentary corpus.6

5

6

http://github.com/clab/fast_align
http://statmt.org/wmt13/translation-task.html
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Distortion limit BLEU METEOR TER
Baseline 7 15.20 35.43 66.62
Best out of k (k = 10) 17.26A 37.97A 62.64A

A Result is statistically significant against baseline at p < 0.05.

Table 5.2: Estimation of the quality of the k best word order predictions.

5.3.2 Testing the Effectiveness of Non-Local Features
While our preliminary results showed that the integration of a language model might
be helpful, we now consider this question in more detail. To test whether the language
model features are beneficial to the reordering model, we compare two versions of the
same system: first-best −LM is the reordering system without a language model and
first-best+LM is the same systemwith the languagemodel integrated via cube pruning.
Results are presented in Table 5.1. While Kendall τ gives an impression of the overall
word order quality, the BLEU metric applied to the reordered source sentences gives
an indication of the quality of reordering within the more restricted space of the length
of the n-grams used in the metric. The results show that the integration of the language
model helps the system improve the quality of the word order predictions. We expected
the language model to provide benefits mostly on the borders between tree nodes. The
BLEU score indicates an improvement in the ordering of short word sequences, which
hints at the presence of this benefit.

In the “Best out of n-best+LM” setup in Table 5.1, we produce the top nword order
predictions and select the prediction that provides the most Kendall τ improvement.
These results hint at the potential improvement contained in the best n predictions of
themodel. Next, we turn to examining the quality of the space of word order predictions
in more detail by applying them in a machine translation task.

5.3.3 Evaluating the Quality of the Word Order Predictions
Our goal in this chapter has been to use a preordering model to delimit the search space
for a subsequent, more complexmodel. Hence, in order to examine themodel presented
in Section 5.2, we determine the quality of the n-best predictions the model produces.
We perform the following experiment for the language pair English–German: Using the
preordering system, we produce the 10 best word order predictions for each sentence
in the test set. We then translate each sentence arranged according to each of the word
order predictions using a standard phrase-based machine translation system trained on
the corpus produced by the first-best preordering system. After the translation is per-
formed, a single translation is selected based on the best sentence-level BLEU score.
Table 5.2 shows results for this setup and for a baseline system without preordering.
Both systems use a distortion limit of 7 and use only the standard distance-based re-
ordering model. Statistical significance tests are performed using bootstrap resampling
(Koehn, 2004a) and statistically significant results (p < 0.05) are marked with the let-



68 Chapter 5. Morphosyntactic Search Space via Preordering

ter A. The results show that significant improvements in translation quality measured
in terms of BLEU, METEOR and TER are possible based on the space of word order
choices provided by our model.

5.3.4 Discussion
Having introduced our preordering method and having evaluated the influence of non-
local features, we are interested in two basic aspects of the output space provided by
this system: The first aspect is the quality of the space delimited by the preordering sys-
tem. Since we plan to pass the output space to a subsequent translation model, it has to
be ensured that a sufficient number of good candidates are contained in this space. This
question is answered by the translation experiments performed in Section 5.3.3, which
indicate that even within the first 10 word order predictions per sentence, there are
enough good instances to enable a significant improvement in translation quality. Since
the evaluation of our translation experiments is performed using only automatic evalua-
tion metrics, it is difficult to pinpoint the exact source of these potential improvements.
In the next chapter, we further examine this aspect by performing broader experiments
with a preordering space in the form of a lattice. The second question is whether the
size of the space of potential word order choices is manageable for subsequent models.
Since our experiments show that even with only 10 word order predictions, a signifi-
cant improvement can be observed, it is clear that this very small space can be used by
a subsequent model. In addition to this, the output in the form of a lattice allows for
using a larger number of options and efficient processing using dynamic programming
algorithms.

5.4 Conclusion
Preordering provides significant potential for improvements in translation quality and
translation performance in machine translation, which was shown in previous studies
and is supported by the method’s recent surge in popularity. Most of the benefits of
preordering are due to enabling the modeling of much larger reordering spaces in a
more reliable manner than it would be possible within the underlying machine transla-
tion system. For target languages such as German or Arabic, however, word order and
morphology are interconnected and should not be treated in isolation. As a first step
towards broader morphosyntactic processing beyond word order only, this chapter has
explored how a preordering model can be utilized to produce a space of sensible word
order predictions. We have presented a novel preordering model for this purpose and
have evaluated its outputs with translation experiments using a common system setup.
Our experiments show that non-local language model features integrated via cube prun-
ing improve the preordering quality for the language pair English–German. Further, our
translation experiments show that this preordering system, when optimized for produc-
ing n-best predictions, provides an output space that is valuable for further processing
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both in its compactness and in the potential improvement in translation quality it en-
ables. This chapter has served as an exploration into the merit of using preordering
models to delimit the space of potential word order choices for machine translation. In
the next chapter, we will build on this idea by using preordering models to generate
lattices of potential word order predictions. Such lattices can be integrated directly into
the decoding process of a phrase-based machine translation system, thus enabling the
use of a broader range of non-local signals in the decoder.





Chapter 6

Machine Translation with
Word Order Permutation Lattices

We address preordering for two target languages at the far ends of the word order free-
dom spectrum, German and Japanese. For languages with more word order freedom,
attempting to predict a single word order given only the source sentence seems less
suitable; therefore, we examine solutions which fit both strict word order and free word
order target languages. In Chapter 5, we observed that delimiting the space of word
order choices provides a potential solution for free word order target languages and
that non-local features can support the preordering model in making good word order
choices. A more general approach to this initial exploration would be to pass the uncer-
tainty of the preordering model on to the machine translation decoder, which can then
perform decisions while taking into account a broader set of signals. Thus, we examine
lattices of n-best word order predictions as a unified representation for typologically di-
verse target languages. We present an effective solution to the resulting technical issue
of how to select a suitable source word order from the lattice during training. Our ex-
periments show that lattices are crucial for good empirical performance for languages
with freer word order (English–German) and can provide additional improvements for
fixed word order languages (English–Japanese).

71
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Chapter Highlights

Problem Statement
• A suitable representation of word order choices should provide benefits for both
strict and free word order target languages. However, passing a single word order
prediction to the machine translation system is insufficient for target languages
with greater word order freedom.

Research Question
• Can word order permutation lattices provide a suitable representation for word
order choices for typologically diverse target languages?

Research Contributions
• We propose lattices of n-best word order predictions by preordering models as a
unified representation of word order choices.

• We present an effective solution to the technical issue of how to select an appro-
priate source word order from the lattice during training.

• We perform experiments for English–German and English–Japanese, establish-
ing word order permutation lattices as a suitable representation for typologically
diverse target languages.

6.1 Motivation
Word order differences between a source and a target language are a major challenge for
machine translation systems. For phrase-based models, the number of possible phrase
permutations is so large that reordering must be constrained locally to make the search
space for the best hypothesis tractable. However, constraining the space locally incurs
the risk that the optimal hypothesis becomes unreachable. Preordering of the source
sentence has been embraced as a way to ensure the reachability of certain target word
order constellations for improved prediction of the target word order. Preordering aims
at predicting a permutation of the source sentence which has minimal word order dif-
ferences with the target sentence; the permuted source sentence is then passed on to
a translation system trained to translate target-order source sentences into target sen-
tences. In the previous two chapters, we have examined whether a basic assumption
inherent in the preordering approach, namely that it is feasible to predict target word
order given only information from the source sentence, is reasonable for all languages.
We concluded that while the assumption seems reasonable for translating into fixed
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word order languages such as Japanese, for languages with less strict word order such
as German, it is less likely to hold. In this chapter, we want to examine the relationship
between a target language’s word order freedom and preordering in more detail.

Based on the idea of delimiting the space of potential word order choices, which
we examined for the language pair English–German in the previous chapter, we study
the option of passing n-best word order predictions, instead of a single word order, to
the translation system as a lattice of possible target word order choices for the source
sentence. For the training of the translation system, the use of such permutation lattices
raises a question: How should the training corpus for a lattice-preordered translation
system be prepared? In previous work on standard preordering using single word order
predictions, the training data consists of pairs of source and target sentences where
the source sentence is either in target order (i.e. ordered based on word alignments) or
preordered (i.e. in predicted order). In this chapter we contribute a novel approach for
selecting training instances from the lattice of word order permutations: We select the
permutation in the lattice providing the best match with the target-order source sentence
(we call this process “lattice silver training”).

Our experiments show that for English–Japanese and English–German lattice pre-
ordering has a positive impact on the translation quality. While lattices enable further
improvement for preordering English into the strict word order language Japanese, lat-
tices in conjunction with our proposed lattice silver training scheme turn out to be cru-
cial to reach satisfactory empirical performance for English–German. This result high-
lights that when predicting the word order of free word order languages given source-
side information only, it is important to ensure that the word order predictions and the
translation system can interact sufficiently.

6.2 Lattice Translation
In this section, we introduce related work on lattice-based machine translation. For an
overview of preordering, see Section 4.3 of Chapter 4.

A lattice is a directed acyclic graph with a single starting point and can be inter-
preted as an acyclic finite-state automaton defining a finite language. A special case of
lattices, confusion networks (also called sausage, Bertoldi et al., 2007), have been ex-
tensively used for representing alternative input sequences in various natural language
processing tasks. In a confusion network, every path from the start node to the final
node passes through all other nodes. Applications have mostly focused on represent-
ing intermediate hypotheses in tasks such as speech translation (Ney, 1999; Bertoldi
et al., 2007) or parsing of noisy input text (van der Goot and van Noord, 2017), or to
account for ambiguity due to pre-processing (Xu et al., 2005; Dyer, 2007). In machine
translation, lattices have been used to delimit the space of permutations of the input
considered by the decoder in a few instances (Knight and Al-Onaizan, 1998; Kumar
and Byrne, 2003). Word order permutation lattices have been demonstrated to be ef-
fective by Zhang et al. (2007). However, except for n-gram based decoders (Khalilov
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et al., 2009) this approach is not common practice.
Lattice translation for phrase-based and hierarchical phrase-based machine transla-

tion was first formalized by Dyer et al. (2008). Phrase-based models require a modifica-
tion of the standard decoding algorithm to maintain a coverage vector over states, rather
than input word positions. In standard phrase-based decodingwith a distortion limit, the
complexity of the space of translation options is O(max stack size × sentence length)
and the number of translation options considered by the decoder is reduced using beam
search (see Sections 2.3.4 and 2.3.5 of this thesis). With lattice input, the complexity
depends on |Q|, where Q is the set of states of the lattice, instead of the input sen-
tence length. Due to stack decoding, the number of translation options explored by
the decoder is independent of the number of transitions in the lattice. As in standard
phrase-based decoding, the states of a lattice can be visited non-monotonically. Dyer
et al. (2008) propose to estimate the distance between two nodes as the length of the
shortest path between them. The shortest path can be pre-calculated using an all-pairs
shortest path algorithm prior to decoding (see e.g. Chapter 25 of Cormen et al., 2001).
The Moses machine translation decoder used in this chapter uses the O(|Q|3) Floyd-
Warshall algorithm for this purpose. As in standard decoding, a distortion limit is used
to ensure that the translation space remains tractable.

In this chapter, we use lattice input to constrain the space of permutations of the
source sentence allowed within the decoder. Additionally, we completely disable the
decoder’s subsequent reordering capabilities in most cases. Because our models can
perform global permutation operations without ad-hoc distortion limits, we can reach
far more complexword orders. Crucially, ourmodels are better predictors of word order
than standard distortion-based reordering, thus we manage to decode with relatively
small permutation lattices.

6.3 Preordering Free andFixedWordOrderLanguages
Themeasure of word order freedom introduced in Chapter 4 enables us to estimate how
difficult it is to predict the target language’s word order based on the source language. In
this section, we introduce the two preordering models we use to predict the word order
of German and Japanese. Experiments with these models will allow us to examine the
relationship between preordering and word order freedom in an empirical setting and
enable us to test the suitability of word order permutation lattices as a typologically
robust representation of word order choices.

6.3.1 Neural Lattice Preordering
Based on their earlier work, which used logistic regression and graph search for pre-
ordering (Jehl et al., 2014), De Gispert et al. (2015) introduce a neural preordering
model. In this model, a feed-forward neural network is trained to estimate the swap
probabilities of nodes in the source-side dependency tree. Search is performed via the
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depth-first branch-and-bound algorithm. The authors have found this model to be fast
and to produce high-quality word order predictions for a variety of languages.

Model Estimation

Training examples are extracted from all possible pairs of children of a dependency tree
node, including the head itself. For each pair, the two nodes are swapped if swapping
them reduces the number of crossing alignment links. The crossing score of two nodes
a and b (a precedes b in linear order) and their aligned target indexes Aa and Ab is
defined as follows:

cs(a, b) = | {(i, j) ∈ Aa × Ab : i > j} |

Training instances generated in this manner are then used to estimate the swap proba-
bility p(i, j) for two indexes i and j. For each node in the source dependency tree, the
best possible permutation of its children (including the head) is determined via graph
search. The score of a permutation of length k is defined as follows:

score(π) =
∏

1≤i<j≤k|π[i]>π[j]

p(i, j)
∏

1≤i<j≤k|π[i]<π[j]

1− p(i, j) (6.1)

We closely follow De Gispert et al. (2015) for the implementation of the estimator of
p(i, j). A feed-forward neural network (Bengio et al., 2003) is trained to predict the
orientation of a and b based on a sequence of 20 features, such as the words, the words’
POS tags, the dependency labels, etc.1 The network consists of 50 nodes on the input
layer, 2 on the output layer, and 50 and 100 on the two hidden layers. We use a learning
rate of 0.01, a batch size of 1000 and perform 20 training epochs.

Search

Search in this model consists of finding the sequence of swaps leading to the best overall
score according to the model. Let a partial permutation of k nodes be a sequence of
length k′ < k containing each integer in {1, ..., k} at most once. The score of a new
permutation obtained by extending a partial permutation π′ of length k′ by one element
can be computed efficiently as:

score(π′ · ⟨i⟩) = score(π′)
∏

j∈V |i>j

p(i, j)

∏

j∈V |i<j

1− p(i, j) (6.2)
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Algorithm 2 k-best branch-and-bound search.
Precondition: m: maximum sequence length, ϵ: empty sequence,
bound0: initial bound, k: maximum number of permutations

procedure (ϵ, bound0,m)
bestk ← ∅
bound← bound0

(⟨ϵ⟩)
return bestk

procedure (π′)
if score(π′) > bound then

if |π′| = m then
if |bestk| = k then

remove worst permutation in bestk
bestk ← bestk ∪ ⟨π′⟩
bound← score(π′)
if |bestk| = k then

bound← worst permutation in bestk
return

else
for each i ∈ {1, ...,m} \ π′ do

(π′ · ⟨i⟩)

k-Best Search

Target languages such as German allow for a significant amount of word order free-
dom; hence, the depth-first branch-and-bound algorithm, which extracts the single best
permutation, may not be the best choice in this case. In the context of the Traveling
Salesman Problem, van der Poort et al. (1999) show that general branch-and-bound
search can be extended to retrieve k-best results while keeping the same guarantees
and computational complexity. Only minor changes are necessary to adapt the search
for the best permutation to finding the k-best permutations: We keep a set bestk of
the best permutations and a single bound. If for a permutation π′, score(π′) > bound,
instead of updating the bound to the single best permutation and remembering it, the
following steps are performed:

1. If |bestk| = k:

− Remove worst permutation from the set.

2. Add π′ to bestk.
1Our implementation is based on .

http://nlg.isi.edu/software/nplm/
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3. The new bound will be the score of the worst permutation in bestk.

Pseudocode for the full algorithm is presented in Algorithm 2.

6.3.2 Reordering Grammar Induction
Reordering Grammar is a hierarchical unsupervised approach to preordering proposed
by Stanojević and Sima’an (2015). In this approach, a probabilistic context-free gram-
mar is induced from aligned parallel data. The resulting grammar can predict permuta-
tion trees (Zhang and Gildea, 2007), which are a form of constituency trees able to fully
describe any permutation. Permutation trees can handle any possible permutation and
are therefore more expressive than ITG (Wu, 1997), which can only produce binariz-
able permutations. In a permutation tree, constituents are labeled with the permutation
of their children.

To induce the reordering grammar from parallel data, Stanojević and Sima’an (2015)
define a generative probabilistic model that is estimated using the Expectation Maxi-
mization algorithm. As during training only the source sentence and the permutation are
observed, Expectation Maximization is a suitable choice to model the latent variables
in this model. Specifically, there are two main sources of latent variables. Firstly, the
exact permutation tree generating a permutation cannot be observed and a single permu-
tation could have been generated by a potentially exponential number of permutaton
trees. The model therefore treats the bracketings of these trees as a latent variable.
Secondly, the model allows state splitting of non-terminals similar to latent variable
syntactic parsing (Matsuzaki et al., 2005; Petrov et al., 2006; Prescher, 2005).

The probability of the observed permutation π takes into account the latent deriva-
tions in the model:

P (π) =
∑

∆∈PEF(π)

∑

d∈∆

∏

r∈d

P (r), (6.3)

where PEF(π) is the set of permutation trees able to generate the permutation π (also
called the permutation forest),∆ is a permutation tree, d is a derivation of a permutation
tree and r is a production rule. The model can be estimated efficiently using maximum
likelihood estimation with the Inside-Outside algorithm (Lari and Young, 1990).

To produce a permutation during decoding, the estimated grammar is used to find
the derivation of the permutation tree with the lowest expected cost. With the proba-
bility of a derivation d defined as

P (d) =
∏

r∈d

P (r), (6.4)

the decoding task is as follows:

d̂ = argmin
d∈Chart(s)

∑

d′∈Chart(s)

P (d′) cost(d, d′), (6.5)
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where Chart(s) is the chart representing all possible derivations of all possible per-
mutation trees for source sentence s. To speed up inference, two modifications are
introduced: Firstly, due to its advantageous properties that enable the usage of effi-
cient dynamic programming for computing minimum Bayes risk (MBR, DeNero et al.,
2009), Kendall τ is used as a cost function. Secondly, MBR is computed over 10000
unbiased samples from the chart instead of over the full chart itself. To build the per-
mutation lattice with this model we use the top n permutations with the lowest expected
Kendall τ cost.

6.4 Machine Translation with Permutation Lattices

6.4.1 Permutation Lattices
For a sentence s ≡ s1s2...sn, we define a permutation lattice as a direct acyclic graph
where every path from the initial state to an accepting state traverses exactly n uniquely
labeled transitions. Transitions in the lattice are labeled with pairs in {(i, si)ni=1}. Each
path through the lattice represents an arbitrary permutation of the source sentence’s n
tokens.

Let Q be the set of states and E be the set of transitions, then every path between
any two states u, v ∈ Q has exactly the same length. We denote with out∗(x) the
transitive closure of x ∈ Q, which is the set of states reachable from x. If two nodes
u and v are connected, i.e. if v ∈ out∗(u), then their distance is dv − du, where dx
is x’s distance from the initial state. This observation can be used to speed up non-
monotone translation with permutation lattices: The set of shortest distances, which
has to be precomputed for imposing a distortion limit, can now be computed using the
transitive closure in time O(|Q| × |E|) (Simon, 1988) followed by computing single-
source distance in time O(|Q|+ |E|) (Mohri, 2002). This allows us to avoid having to
use a full-fledged cubic time all-pairs shortest path algorithm.

We produce permutation lattices by compressing the n-best outputs from the pre-
ordering models into a minimal deterministic acceptor. Unweighted determinization
and minimization are performed using OpenFST (Allauzen et al., 2007). The results
of this process are very compact representations that can be decoded efficiently. As
an illustration, Figures 6.1 and 6.2 show an English sentence from WMT newstest
2014 preordered for translation into German before (6.1) and after minimization (6.2).2
Table 6.1 shows the influence of the number of predicted permutations on the lattice
sizes for English–German. To measure the quality of the predictions, we compare the
permutations to the gold permutation obtained from each sentence’s word alignments.
Kendall τ distance is used to determine how close a predicted permutation is to the gold
permutation. The permutation quality for n permutations in Table 6.1 is the correlation
of the best out of the top n permutations.

2Example sentence: The Kluser lights protect cyclists, as well as those travelling by bus and the
residents of Bergle.
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Figure 6.1: Example linear permutation lattice.
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Lattice

Permutations Kendall τ States Transitions
Monotone 83.78 23 22

5 84.69 24 52
10 85.23 33 69
100 86.20 72 138
1000 86.75 123 233

Table 6.1: Permutations and lattice size (English–German).

6.4.2 Lattice Silver Training
While for first-best word order predictions, there are two straight-forward options for
how to select training instances for the machine translation system, it is less clear how
to do this in the case of permutation lattices. In standard preordering, the word order
of the source sentence in the training set is commonly determined by reordering the
source sentence to minimize the number of crossing alignment links (we denote this as
s′). Alternatively, the trained preordering model can be applied to the source side of the
training set, which we call ŝ′1. There is a trade-off between both methods: While s′ will
generally produce more compact and less noisy phrase tables, it may include phrases
that are not reachable by the preordering model. The predicted order ŝ′1, on the other
hand, may be too constrained to reach helpful hypotheses (for example, if permutations
other than the first-best are preferred). For lattices, one option would be to extract all
possible phrases from the lattice directly, but this approach may be noisy, spurious and
slow and may result in large phrase tables. Here, we consider a simpler alternative:
Instead of selecting either the gold order s′ or the predicted order ŝ′1, we select the order
ŝ′ which is closest to both the lattice predictions and the gold order s′. Since this order
is a mix of the lattice predictions and the gold order, we call this training scheme lattice
silver training.

Let (s, t) be a training instance consisting of a source sentence s and a target sentence
t and let s′ be the target-order source sentence obtained via the word alignments. For
each training instance, we select the preordered source ŝ′ as follows:

ŝ′ = argmax
ŝ′L∈πk(s)

overlap(ŝ′
L
, s′) (6.6)

where πk(s) is the set of k-best permutations predicted by the preordering model. Each
ŝ′
L
∈ πk(s) represents a single path through the lattice. As the cost function, we use

n-gram overlap, as commonly used in string kernels (Lodhi et al., 2002):

overlap(ŝ′
L
, s′) =

7∑

n=2

⎛

⎝
∑

c∈Cn
s′

count̂s′L(c)

⎞

⎠, (6.7)
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where Cn
s′ denotes all candidate n-grams of length n in s′ and count̂s′L(c) denotes the

number of occurrences of n-gram c in ŝ′
L
. Ties between permutations with the same

overlap are broken using the permutations’ scores from the preordering model.

6.5 Experiments
We begin with a description of the experimental setup, datasets and parameters, then
describe details of the preordering models and finally present and discuss the results of
our experiments.

6.5.1 Experimental Setup
Translation experiments are performedwith a phrase-basedmachine translation system,
namely a version of Moses (Koehn et al., 2007) with extended lattice support.3 We use
the basic Moses features and perform 15 iterations of batch MIRA (Cherry and Foster,
2012).

English–Japanese Our experiments are performed on the NTCIR-8 Patent Transla-
tion Task (PATMT). Tuning is performed on the NTCIR-7 dev sets, and translation is
evaluated on the test set from NTCIR-9. All data is tokenized (using the Moses tok-
enizer for English andKyTea 5 for Japanese (Neubig et al., 2011)) and filtered to include
sentences between 4 and 50 words in length. As a baseline we use a translation system
with a distortion limit of 6 and a lexicalized reordering model (Galley and Manning,
2008). We use a 5-gram language model estimated using lmplz (Heafield et al., 2013)
on the target side of the parallel corpus.

English–German For translation into German, we built a machine translation system
based on the WMT 2016 news translation data.4 The system is trained on all available
parallel data, consisting of 4.5m sentence pairs from Europarl (Koehn, 2005), Com-
mon Crawl (Smith et al., 2013) and the news commentary corpus. We removed all
sentences longer than 80 words and tokenization and truecasing is performed using
the standard Moses tokenizer and truecaser. We use a 5-gram Kneser-Ney language
model, estimated using lmplz (Heafield et al., 2013). The language model is trained on
189m sentences from the target sides of Europarl and news commentary, as well as the
News Crawl 2007-2015 corpora. Word alignment is performed using MGIZA++ (us-
ing grow-diag-final-and symmetrization with 6, 6, 3 and 3 iterations of IBM Model 1,
HMM, IBMModel 3 and IBMModel 4). As a baseline we use a translation systemwith
a distortion limit of 6 and a distortion-based reordering model. Tuning is performed on
newstest 2014 and we evaluate on newstest 2015.

3Made available at .
4

https://github.com/wilkeraziz/mosesdecoder
http://statmt.org/wmt16/
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Translation Word order

DL BLEU Kendall τ
Baseline 6 21.76 54.75

Oracle order 6 26.68 58.05
0 26.41 57.92

First-best 6 21.21A 53.44
Lattice (silver) 0 21.88B 54.51
AStat. significant against baseline. BStat. significant against first-best.

Table 6.2: Translation results for English–German.

6.5.2 Preordering Models
For German, we use the neural lattice preordering model introduced in Section 6.3.1.
The model is trained on the full parallel training data (4.5m sentences) based on the au-
tomatic word alignments used by the translation system. Source dependency trees are
produced by TurboParser (Martins et al., 2009),5 which was trained on the English ver-
sion of HamleDT (Zeman et al., 2012) with content-head dependencies. For translation
into Japanese, we train a Reordering Grammar model for 10 iterations of the Expecta-
tion Maximization algorithm on a training set consisting of 786k sentence pairs with
automatic alignments.

6.5.3 Translation Experiments
We report lowercased BLEU (Papineni et al., 2002) and Kendall τ calculated from
the force-aligned hypothesis and reference. Statistical significance tests are performed
for the translation scores using the bootstrap resampling method with p-value < 0.05
(Koehn, 2004a). The standard preordering systems (“first-best” in Table 6.2 and
6.4) use an additional lexicalized reordering model (MSD), while the lattice systems
use only lattice distortion. For training preordered translation models, we recreate
word alignments from the original MGIZA++ alignments and the permutation for
English–German and re-align preordered and target sentences for English–Japanese
using MGIZA++.6

English–German

Translation results for translation into German are shown in Table 6.2. For this language
pair, we found standard preordering to work poorly. This is despite the fact that the
oracle order (i.e. the source words in the test set are ordered using the word alignments)

5

6Re-aligning the sentences with MGIZA++ generally improves results, which implies that we are
likely underestimating the results for English–German.

http://cs.cmu.edu/~ark/TurboParser/
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shows significant potential. A lattice packed with 1000 permutations on the other hand,
performs better even when translating monotonically with a distortion limit of 0.

Lattice Silver Training

To examine the utility of the lattice silver training scheme, we train systemswhich differ
only in the way the training data is extracted. Table 6.3 shows that for English–German,
lattice silver training is successful in bridging the gap between the preordering model
and the alignment-based target word order, both for monotonic translation and when
allowing the decoder to additionally reorder translations.

Distortion limit

0 3
Gold training 21.44 21.60
Lattice silver training 21.88 21.88

Table 6.3: Lattice silver training (BLEU, English–German).

English–Japanese

Results for translation into Japanese are shown in Table 6.4. For this language pair, we
found that the first-best preordering approach works well out-of-the-box but providing
the translation system with a lattice can improve the results further.

Translation Word order

DL BLEU Kendall τ
Baseline 6 29.65 44.87

Oracle order 6 34.22 56.23
0 30.55 53.98

First-best 6 32.14A 49.68
Lattice 0 32.50AB 50.79

AStat. significant against baseline. BStat. significant against first-best.

Table 6.4: Translation results for English–Japanese.

6.5.4 Discussion
Although preordering with a single permutation already works well for the strict word
order language Japanese, packing the word order ambiguity into a lattice allows the
machine translation system to achieve better translation monotonically than allowing a
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distortion of 6 and an additional lexicalized reordering model on top of a single permu-
tation. We noticed that lexicalized reordering helped the first-best systems and hence re-
port this stronger baseline. In principle, lexicalized reordering can also be used with lat-
tice translation, and we plan to investigate this option in the future. Linguistic intuition
and the empirical results presented in Section 4.4 suggest that compared to Japanese,
German shows more word order freedom. Consequently, we assumed that a first-best
preordering model would not perform well on the language pair English–German, and
indeed the results in Table 6.2 confirm this assumption. For both language pairs, trans-
lating a lattice of predicted permutations outperforms the baselines, thus reducing the
gap between translation with predicted word order and oracle word order. However,
permutation lattices turn out to be the key to enabling even small improvements for
the language pair English–German in the context of preordering. This language pair
can benefit from the improved interaction between word order and translation deci-
sions. These findings go hand in hand with our analysis in Chapter 4 (see Figures 4.3
and 4.4), specifically the prediction of our information-theoretic word order freedom
metric that it should be more difficult to determine German word order from English
clues. Our main focus in this chapter was on the language pairs English–German and
English–Japanese. Hence, while the results we present in this chapter provide an em-
pirical data point for the utility of permutation lattices for free word order languages,
experiments with a broader range of language pairs would provide further empirical
support. We perform such preordering experiments with a typologically diverse set of
target languages in Chapter 9.

6.6 Conclusion
The world’s languages differ widely in how they express meaning, relying on indica-
tors such as word order, intonation or morphological markings. Consequently, some
languages exhibit stricter word order than others. Our goal in this part was to examine
the effect of word order freedom on machine translation and preordering. We show that
addressing uncertainty in word order predictions, and in particular doing so with per-
mutation lattices, can be an indispensable tool for dealing with word order in machine
translation. The experiments we performed in this chapter confirm this finding and we
further build on it by introducing a new method for training machine translation sys-
tems for lattice-preordered input (lattice silver training). Finally, we found that while
lattices are still helpful for English–Japanese, for which standard preordering already
works well, they are crucial for translation into the freer word order language German.
In the first part of this thesis, we have explored how typological differences in word
order affect machine translation and how these can be addressed. Next to word order,
the second major category of typological differences between languages are related to
morphology. In the second part of this thesis, we will examine issues caused by varying
levels of morphological productivity between languages and will propose methods to
bridge such differences.
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Chapter 7

Bridging Typological Differences with
Source-Predicted Target Morphology

When translating from a morphologically impoverished to a morphologically rich lan-
guage, the typological differences of the language pair cause challenges for phrase-
based machine translation systems. In this chapter, we examine whether such typo-
logical differences can be reduced by enriching the source language with the missing
morphological attributes. We present a translation pipeline consisting of two steps:
first, the source string is enriched with target morphological features and then fed into
a translation model which performs reordering and chooses lexical items matching the
provided morphological features. After performing experiments to test the merit of this
proposal, we present a model for predicting target morphological features on the source
string and its predicate-argument structure and address two major technical challenges:
(1) How can we determine which morphological features should be predicted for a spe-
cific language pair? and (2) How can predicted morphological features be integrated
into the phrase-based model so that it can also be trained on morphological features
from the parallel data for a more efficient pipeline? Finally, we evaluate the approach
on an English–German translation task and find promising improvement over the base-
line phrase-based system.

The content of this chapter is based on the following published article:
Joachim Daiber and Khalil Sima’an. Machine Translation with Source-Predicted Tar-
get Morphology. In 15th Machine Translation Summit, 2015.

Joachim Daiber performed all experiments and wrote the article. Khalil Sima’an pro-
vided guidance and helped editing the article. Khalil Sima’an and Joachim Daiber
produced the idea for the article. All chapters of this thesis were written in full by the
author.
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Chapter Highlights

Problem Statement
• When translating from amorphologically impoverished to amorphologically rich
language, the typological differences of the language pair cause challenges for
phrase-based machine translation systems: the translation model often lacks ac-
cess to the signals required for determining the correct target word form, thus
leading to data sparsity and impeding the enforcement of morphological agree-
ment over long distances.

Research Question
• Is it possible to bridge typological differences for morphologically improver-
ished source and morphologically rich target languages by enriching the source
language with the missing morphological attributes?

Research Contributions
• For translation of a specific language pair, some morphological attributes may
be helpful for determining the correct target words while others may be redun-
dant. To select the set of relevant morphological attributes in an efficient and
automatic manner, we introduce a latent variable method to select the optimal set
of attributes based on the parallel corpus and show that it learns a feature set with
quality comparable to a manually selected set for German.

• We introduce a source-side dependency chain model to predict morphological
attributes based on source-side syntactic information.

• We explore various ways of integrating the predicted morphological features into
the machine translation system and show that it is possible to use predicted fea-
tures with a translation model trained on morphological features from the parallel
data itself, thus enabling a more efficient pipeline.

7.1 Motivation
Typological differences in themeans languages employ to express the underlyingmean-
ing of a sentence can cause difficulties for machine translation systems. When translat-
ing into morphologically rich languages, this poses a challenge for statistical machine
translation systems. Rich morphology often co-occurs with relatively freer word order
of the target language, making it difficult to predict morphology and word order at the
same time. This difficulty is partly due to data sparsity, but morphological agreement
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Peter escaped from the police

ROOT

Sb AuxP
Adv
AuxA

Peter entkam der Polizei

Figure 7.1: Morphology projection from target to source.

between words over long distances also plays a part. In the previous chapters, we have
explored techniques to address the challenges caused by word order freedom in such
target languages. In this chapter, we explore the idea of combating the sparsity caused
by rich target morphology and long-distance agreement by conducting translation in a
probabilistic pipeline, in which morphological choice may precede lexical choice and
reordering.

One of the points highlighted in the previous chapters is that in translation, while
surface representationsmight disagree, the predicate-argument structure of a source and
a target sentence are often similar. This intuition is the basis for the semantic trans-
fer approaches to machine translation discussed in Section 2.2. When the predicate-
argument structure of the source and target sentence are sufficiently similar, we can
expect that the linguistic information required for choosing the correct morphological
form of the words in the target sentence is present in the source sentence and its syntac-
tic dependency structure. Based on this observation, we explore target morphology as
a source-side prediction task which aims at enriching the source sentence with useful
target morphological information. Figure 7.1 shows an example illustrating this ba-
sic idea. While the German and English sentences both express the same event (Peter
escaped from the police), the German sentence uses a dative noun phrase while the
English sentence uses a prepositional phrase. In this example, we project the morpho-
logical information missing on the source side, namely the grammatical case of the
noun phrase ( ), from the target to the source side.

In practice (see Figure 7.2), after performing word alignment on a sentence pair,
we project a subset of the target morphological attributes to the source side via word
alignments, and then train a model to predict these attributes on source dependency
trees, which we use as a representation of aspects of the source predicate-argument
structure. Our approach differs from other approaches to predicting target morphology
(e.g. Chahuneau et al., 2013) mainly in that we predict on the source side only. The
intuition underlying our approach is similar to the intuition used in the preordering
schemes discussed in the previous chapters. While preordering based on source syntax
assumes that the source and target syntax are sufficiently similar— an assumption that,
as we have illustrated, does not always hold—we only make the weaker assumption
that the predicate-argument structures are similar.

We see several technical benefits from predicting target morphology on the source
side, which could potentially enable further improvements in machine translation into
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(a) Morphology projection and prediction model training.
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(b) Machine translation system training.

Figure 7.2: Overview of the training setup and morphology projection.

morphologically rich languages. Source-side prediction models can capitalize on the
much reduced complexity of having to represent and process only the input source sen-
tence instead of a large lattice of target hypotheses. Hence, morphological agreement
can be enforced over long distances by morphological predictions for the full source
sentence. Furthermore, while not pursued in the present work, we hypothesize that
the morphological information predicted by our model can be exploited in the word
alignment process.

This chapter makes three contributions: Firstly, we report experiments to support
the hypothesis that projecting morphology to the source side can be beneficial for trans-
lation (Section 7.2), and then present a model for learning to predict target morphology
on the source side (Section 7.3). Secondly, we address the question how to automat-
ically learn the set of morphological attributes relevant for a language pair and fitting
the parallel training data (Section 7.4). Finally, we introduce methods for integrating
this new information into a machine translation system and evaluate on a translation
task (Section 7.5).

7.2 Morphology Projection Hypothesis
We are interested in the question whether aspects of target morphology can be directly
predicted on the source side. Our hypothesis is that projecting target morphological at-
tributes and learning to predict these on source-side trees can allow the machine transla-
tion system to make more informed word form choices. To test this hypothesis, we first
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define our representation of morphology and then look to other tasks such as preorder-
ing for inspiration on how to perform experiments indicating this approach’s potential.

7.2.1 Representation of Morphology
We elect to represent morphology using a common method in natural language pro-
cessing, namely by associating a set of morphological attributes to each word. Specif-
ically, we use the term morphological attribute to refer to any morphological property
of a word. Each morphological attribute can assume any of a predetermined set of
values, such as { } for the morphological attribute in the
German language. Further, the morphological attributes are refined based on a set
of nine atomic parts of speech, yielding a set of morphological attributes of the form

, , , etc.

7.2.2 Testing the Morphology Projection Hypothesis
In other source-side prediction tasks, such as preordering, a commonmethod tomeasure
potential translation improvement is to perform translation experiments with an artifi-
cially produced oracle word order, which is obtained using word alignments between
the sentences of a development set and their reference translations. Accordingly, to test
our hypothesis (i.e., can projecting target morphological attributes to the source side and
learning to predict these be beneficial?), we can perform translation experiments using
a machine translation setup with and without morphological information projected via
word alignments. Our hypothesis can be divided into three questions. The first ques-
tion is whether projecting target-side morphological attributes to the source side can
provide the machine translation system with helpful signals in selecting the correct
target words. A second related question is which morphological attributes should be
projected. Experiments using word alignments can provide an indication for the po-
tential of this approach, thus allowing us to address the first two questions. They do,
however, not answer the third question, namely to which extent target morphology can
realistically be predicted on the source side. Hence, in this section we will only focus
on the first two questions. The third question will then be addressed in Section 7.3.

We perform translation experiments with translation systems decorated with pro-
jected morphological attributes. In these systems, the target side of the test set was
processed with a morphological tagger and subsets of the resulting morphological at-
tributes were projected to the source side via the word alignments. The translation
system is a standard phrase-based machine translation system applied to a training set
of several million sentence pairs with a feature-based representation of the morpholog-
ical attributes. We evaluate translation quality with METEOR and BLEU (Denkowski
and Lavie, 2011; Papineni et al., 2002), word order with Kendall τ (Kendall, 1938) and
lexical choice with unigram BLEU. Statistical significance is calculated for the trans-
lation scores (METEOR and BLEU) using the bootstrap resampling method (Koehn,
2004a). For a more detailed description of the experimental setup, see Section 7.5.3.
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Translation Word order Lexical choice

Training & test decoration Tags MTR BLEU Kendall τ BLEU-1
None (baseline) - 35.74 15.12 45.26 49.86

Projected manual set 77 36.34 15.86 45.79 51.30
Projected automatic set 225 36.50 15.73 46.45 51.24
Projected full set 846 36.67 15.96 46.27 51.52

All translation results statistically significant against baseline at p < 0.01.

Table 7.1: Translation with various subsets of projected morphology.

These experiments provide a conservative indication of the potential of our ap-
proach. They are not oracle translation experiments, but simulate an optimal target
morphology prediction model. Results of the experiments are documented in Table 7.1.
The three systems differ only in the subset of morphological attributes they use. The
results show that projecting target morphological attributes improves translation. Im-
provements result both from better lexical choice and sometimes also better word order.
Using the full set of attributes gives the best METEOR and BLEU scores, but it also
contributes significantly to data sparsity. Surprisingly, including only a small, man-
ually selected subset of attributes gives comparable improvement while significantly
decreasing the number of resulting tags (combinations of observed morphological fea-
tures). This manual subset is the set of attributes selected for prediction by Fraser et al.
(2012), who found that it is beneficial to make some morphological attributes part of
the translated word stem instead of predicting them on the target side. The automatic
selection is a selection of features that our automatic learning procedure, which we
will describe in Section 7.4, determined to be the most beneficial for representing the
language pair. This selection performed equally well in our experiments.

Hence, while better translation performance is achievable by including all attributes,
the prediction task also becomes significantly harder; comparable translation perfor-
mance can be achieved with a small, well-chosen set of attributes. The good perfor-
mance of the manual set shows that linguistic intuition can be a good starting point
for selecting this set; however, a more empirically beneficial set may be selected by
enriching the source side only with attributes which help in selecting the correct target
words. The fact that the automatic set produces a better METEOR score than the man-
ual set further supports this intuition.1 We highlight the METEOR scores here, since
for the language pair English–German, METEOR has higher correlation with human
judgments than BLEU (Machacek and Bojar, 2014). Now that we established the po-
tential of projecting target morphology to the source side, we aim at capitalizing on this
potential. In the next section, we present our model for predicting target morphology
on source trees based on source-side dependency chains.

1The difference is statistically significant at p < 0.05.
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Peter escaped from the police

ROOT

Sb AuxP
Adv
AuxA

Peter entkam der Polizei

Figure 7.3: Morphology projection and a highlighted source dependency chain.

7.3 Modeling Target-Side Morphology
Since the word order of the source and target language may differ significantly, pre-
dicting morphology in a sequential, word-by-word fashion could be inadequate. We as-
sume that the source syntax and the source predicate-argument structure are informative
for predicting target morphology. Hence, we propose a source-side dependency chain
model, which is expressed as P (s′m | τ, s), to predict the morphologically enriched
source string s′m given a lexical dependency tree τ of the source string s.

7.3.1 Source-Side Dependency Chains
A source-side dependency chain is any path from the root of the source dependency
tree to any of its leaf nodes, such as → → → in Figure 7.3. Ev-
ery source node with a 1-to-1 alignment to a target node is decorated with the target
node’s morphological attributes. A standard morphological tagger, such as the n-th or-
der linear chain conditional random field model (CRF, e.g. Müller et al., 2013), would
predict the attribute–value vector for each word left-to-right with a history of n − 1
tags. Modeling source-side dependency chains instead provides various advantages:
Besides providing access to the morphological tags assigned to the dependency tree
parent and grandparent nodes, it implicitly encourages morphological agreement be-
tween a node and its n− 1 ancestor nodes. The model also benefits from access to the
node’s syntactic role, for example to predict grammatical case. Finally, training data
sparsity is alleviated because the dependency chain formulation allows the extraction
of chains from only partially aligned sentences.

7.3.2 Model Estimation
We estimate the source dependency chain model using the general CRF framework. In
a linear-chain CRF model, the probability of a tag sequence y given a sentence x is:

P (y | x) =
exp

∑
t,i λi · φi(y, x, t)∑

y′ exp
∑

t,i λi · φi(y′, x, t)
,

where t is the index of a token, i is the index of a feature and λi is the weight corre-
sponding to the binary feature φi(y, x, t). To improve training and inference time, we
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Manual Automatic All

5 6 7 5 6 7 5

Strict
50k 68.50 70.13 68.86 70.84 69.73 70.97 58.33
100k 67.08 67.38 67.01 69.33 71.15 69.52 58.65
200k 67.40 67.40 68.55 69.58 69.82 70.06 57.99

Relaxed
50k 72.67 70.36 72.86 74.67 71.42 71.83 62.16
100k 70.01 71.89 69.82 72.63 72.04 72.61 62.18
200k 69.40 69.46 69.99 71.44 70.80 69.83 60.86

Best overall F1 score highlighted in bold.

Table 7.2: Impact of attribute selection and model parameters on prediction quality
measured by F1 score.

use a coarse-to-fine pruned CRF tagger (Müller et al., 2013). The training procedure
is identical to the linear-chain case, except that we use dependency chains instead of
left-to-right chains as training examples. The dependency chain model’s feature set is
based on the set used in the linear chain CRF for morphological tagging (Müller et al.,
2013). Additionally to the features used by Müller et al. (2013), we add the following
feature templates: the dependency label of the current token, the dependency label of
the parent token, the number of children of the current token, the source-side part-of-
speech tag of the token, and the current token’s child tokens if they are a determiner
(AuxA), auxiliary verb (AuxV), subject (Sb) or a preposition (AuxP).

7.3.3 Intrinsic Evaluation
To evaluate the quality of the source dependency chain predictions, we perform exper-
iments on a heldout dataset. Models are trained on a subset of the parallel Europarl
data. Evaluation is performed using the F1 score of the predictions compared to the
projected morphological attributes obtained by automatic alignment of the source and
target side of the evaluation set.

Impact of Model Parameters

Table 7.2 shows prediction performance of the dependency chain model in relation to
a selection of model parameters. For each morphological attribute set, we train models
of order 5, 6 and 7. All models are trained on sets of 50k, 100k and 200k dependency
chains, which are randomly sampled from the training data. In strict training mode,
we require that target words and source words connected by alignment links agree in
their coarse part-of-speech tags. This restriction enforces a weak form of isomorphism
between the source and the target sentence and hence limits the training set to train-
ing instances of potentially higher quality. In the relaxed setup, no such agreement is
enforced.
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Up to a certain point, higher-order models perform better than models with shorter
dependency histories; however, thesemodels are also prone to the issues of data sparsity
and overfitting. The results show that strict training performs worse than the relaxed
training regime. The strict training regime could possibly produce cleaner training ex-
amples; however, since it also enforces a potentially unrealistic isomorphism between
the two sentences, those examples may also be less helpful for the final prediction.

Impact of Morphological Attribute Selection

As illustrated in Section 7.2, it is possible to reduce the set of morphological attributes
without major losses in translation quality. For the dependency chain model, smaller
attribute sets are preferable since they lead to less complex models and faster train-
ing. Individual attributes may also be difficult to predict; hence, the exact selection of
attributes is important for prediction quality.

Manual Automatic All
Training time, 50k 36m 45m 77m
Training time, 100k 58m 82m 2h51m
Training time, 200k 1h54m 3h5m 6h44m

Tags 77 225 846
Best F1 72.86 74.67 62.18

Table 7.3: Training times and best scores for the three attribute sets.

Table 7.3 summarizes training times and prediction performance of the three morpho-
logical attribute sets. Larger attribute sets and more training examples lead to longer
training times. Overall, the automatic set produces more accurate results than the man-
ual selection. Our analysis shows that this is largely due to difficult-to-predict verb
attributes, which are included in the manual selection but are not part of the automati-
cally learnt set. The finding that these attributes are hard to predict is in line with Fraser
et al. (2012), who equally dropped the prediction of verb attributes in later work.

7.4 Learning Salient Morphological Attributes
Decorating the source language with all morphological properties of the target language
would lead to data sparsity and would complicate the prediction task. Therefore, it is
necessary to reduce this set to only those morphological attributes which are helpful for
a given language pair. We consider a morphological attribute to be salient if it enables
the machine translation system to perform better lexical selection. It is computation-
ally infeasible to test all possible combinations of morphological attributes in a full
machine translation system; hence, we approximate the machine translation system’s
ability to perform lexical selection with the word-based translation system defined by
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IBM Model 1 (Brown et al., 1993). Based on this simplified translation model, the set
of salient features which improve the translation performance can be chosen using a
clustering procedure.

7.4.1 Learning Procedure
Let (s, t) be a pair of parallel sentences in the source and target language. IBMModel 1
provides an iterative method for estimating the translation model P (t | s) from a set
of parallel sentences. We add the morphological decoration s′m to this model. The
translation model now takes the following form:

P (t | s) =
∑

s′m∈Θm(s)

P (s′m | s)P (t | s′m),

where P (t | s′m) is the standard IBM Model 1 formulation applied to morphologically
decorated source tokens. In this simple machine translation model, the morphologi-
cal attributes are directly concatenated to the source words. For example, if the En-
glish token is decorated with grammatical case, gender and number, it would
be replaced by the string . We
define the log-likelihood of a set of parallel sentences X to be:

L(X) ≡ log
∏

(s,t)∈X

P (t | s)P (s) =
∑

(s,t)∈X

logP (t | s) + logP (s)

Let M0 be the initial set of all morphological attributes observed in the training cor-
pus. Our goal is to find the setMn ⊆M0 which maximizes the likelihood of a heldout
dataset. An alternative to choosing a subset of M0 would be to learn a latent repre-
sentation directly; however, since using a subset of M0 makes the resulting selection
interpretable and since it simplifies the subsequent training of the prediction model, we
opt for using the subset approach. By s′m

(i) we denote the decorated source sentence
containing only the morphological attributes inMi. We formulate the search for the set
Mn as follows:

Mn = argmax
Mi⊆M0

∑

(s,t)∈X

logP (t | s) + logP (s)

= argmax
Mi⊆M0

∑

(s,t)∈X

logP (t | s)

= argmax
Mi⊆M0

∑

(s,t)∈X

log
( ∑

s′m∈Θm(s)

P (s′m | s)P (t | s′m
(i))

)

We found the estimates for P (s′m | s) using the full set of attributes M0 to be reason-
able, with sufficient probability mass assigned to the most likely path. Therefore, we
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approximate this model by only using the first-best (Viterbi) assignment s′′m. The final,
simplified search objective is therefore:

Mn = argmax
Mi⊆M0

∑

(s,t)∈X

log
(
P (s′′m | s)P (t | s′′m

(i))
)

= argmax
Mi⊆M0

∑

(s,t)∈X

logP (t | s′′m
(i))

The optimal set of attributes can now be determined with a clustering procedure start-
ing from the full set of morphological attributes M0. This procedure is reminiscent
of Petrov et al. (2006) since as in their work, we can simulate the removal of a mor-
phological attribute by merging the statistics of each of its occurrences: To simulate
the removal of the attribute , for example, we would merge the statistics of ev-
ery occurrence of the attribute (either or ). The two tags

and would therefore be merged
into one tag .

In summary, the procedure is as follows:
1. Initialization:

− Estimate the source dependency chain model P (s′m
(0) | s), apply it to dec-

orate the training and heldout set, producing T0 and H0 (datasets T and H
decorated withM0).

− Estimate P (t | s′′m
(0)): perform 5 iterations of IBMModel 1 training on T0.

2. Start with i = 0.
3. Calculate P (t | s′′m

(i)) for each sentence pair in the heldout set Hi.
4. Find the attribute m̂ ∈Mi, such that:

m̂ = argmin
m′∈Mi

( ∑

(s,t)∈Hi

logP (t | s′′m
(i))− logP (t | s′′m

(i)\m′
)

)
,

where s′′m
(i)\m′

denotes a sentence with the attributes inMi minus attributem′.
5. Merge all values of m̂ in Ti and Hi, producing Ti+1 and Hi+1.
6. Estimate P (t | s′′m

(i+1)): Merge the t-tables containing m̂ and perform IBM
Model 1 iteration on Ti+1.

7. Repeat from (3) with i = i+ 1. Stop if no possible merge improves L(Hi).

7.4.2 Intrinsic Evaluation
The complexity of the clustering procedure isO(|M |×k×l2) for k sentences of length l.
In practice, the procedure runs several hours on a standard personal computer. Table 7.4
shows the attributes determined by the learning procedure. The column Auto shows
the procedure’s selection and the column Manual shows the manually determined set
of morphological attributes for the same language pair, as used by Fraser et al. (2012).
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Noun Adjective Verb Other

Manual Auto Manual Auto Manual Auto Manual Auto
gender†
number
case

gender
number
case

gender†
number‡
case‡

declension

gender
number
case

synpos
degree

number‡*
person‡*
tense*
mode*

- - part:neg
part:sbpos
punc:type
num:type

† Transferred with lemma. ‡ Propagated from noun. * Dropped in later work.

Table 7.4: Salient attributes for English–German.

Quality of the Selection

From inspection of these attributes, we find that our method learns a reasonable set
of salient attributes. The manual and automatic selections differ mainly in the verb
attributes, which our learning procedure removed from the final set. Morphological
attributes in the manual selection marked with † are attributes that in the work of Fraser
et al. (2012) were transferred as part of the translated stem by their machine translation
system. The symbol ‡ marks morphological attributes that they propagated from the
noun (for example, an adjective’s case is copied from the noun it modifies). Finally,
the verb attributes, which are marked with *, are used by Fraser et al. (2012) but found
to be problematic by Cap et al. (2014b) and dropped in later work (Cap et al., 2014a).
Likewise, inspection of our model showed that verb attributes perform badly as they
may be difficult to predict. Hence, our procedure successfully learnt not to model these
attributes while retaining the beneficial noun and adjective attributes.

Granularity of the Morphological Attributes

When simulating the removal of a morphological attribute with this learning algorithm,
all of its values are merged. In some language pairs, however, it may be useful to merge
the individual values of the attributes instead. For example, from the spelling of Ger-
man nouns it is usually not recognizable whether the noun is or

. Hence, the algorithm should ideally be able to also merge individ-
ual values. Since this is a straight-forward extension of our current algorithm, we plan
to evaluate this aspect in future work.

7.5 Morphology-Informed Machine Translation
To leverage the morphology predictions in a machine translation decoder, we integrate
this additional information into the translation model. During training and tuning, the
translation model is decorated with morphological attributes either projected from the
target side or predicted by our dependency chain model.
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7.5.1 Integration of Target Morphology Predictions

In practice, the predicted morphological attributes on the source side can be integrated
into the machine translation system as arbitrary features based on source morphology
and target strings. In our experiments, we opted for a feature representation in which
this information is encoded as source morphology-to-target affix features. We chose
this simple representation because it is generic enough as a representation on the one
hand and it is not prone to overfitting on the other hand. For each phrase candidate
on the source side, sparse features fire for a given sequence of source-side morphol-
ogy tags and target-side string affixes. As an example, consider the sentence Peter
entkam der Polizei (Peter escaped from the police) from Figure 7.3. In this case,
the morphological attributes gender (female), number (singular) and grammatical case
(dative) would have been projected from the target to the source side for the phrase
the police/der Polizei. When translating the source segment the police, the feature

→ would fire based on the predicted
morphology. This hint would help the machine translation system choose the correct
German determiner der.2

7.5.2 Inference Strategies

At test time, the morphological decoration of the source sentence needs to be selected.
This decision should ideally take into account both the predictions of our source-side
dependency chain model and the content of the phrase table, which may be decorated
with projected morphology.

We compare several inference strategies. Themajor distinction between these strate-
gies is whether the machine translation system is trained and tuned on projected mor-
phology or predicted morphology. Training on predicted morphology has the benefit
that it lets the machine translation system learn how much it can trust the predictions
made by the dependency chain model. However, this method is also more laborious in
system development, since it requires retraining and tuning the entire translation system
for every change in the prediction model.

Training and Decoding with Viterbi Predictions

In the first decoding setup, which is similar to the most common setup used in preorder-
ing, we decorate both the training and the test set with the Viterbi decorations extracted
from the dependency chain model. Specifically, for each possible dependency chain in
the source dependency tree, we preform standard CRF Viterbi tagging starting from the
root of the tree. The full training and tuning set is decorated with these single-best pre-
dicted decorations. System training and tuning is then performed on these predictions.

2This feature example is taken from the weights of the system trained with the automatic morpho-
logical attribute set and predicted training and test decoration.
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During test time, only the single-best Viterbi prediction is considered by the machine
translation system.

Training on Projected Morphology and Decoding with Viterbi Predictions

The “projected” training setup differs from the previous setup in that the morphological
decorations on the training and tuning set are not predicted but projected from the tar-
get side via the word alignments. During test time, the decorations are predicted using
single-best Viterbi predictions as in the previous setup. While this strategy is advan-
tageous since it simplifies the system training, its main downside is that it cannot take
into account possible shortcomings of the prediction model. At training time, only pro-
jected decorations are observed, which might not be realistic when taking into account
the prediction model.

7.5.3 Evaluation
Having introduced and evaluated the attribute selection process and the prediction of
target-side morphological attributes based on source-side dependency chains, we now
turn to the evaluation of the predicted morphological information within a full machine
translation pipeline.

Experimental Setup

We use a phrase-based machine translation system (Cer et al., 2010) with a 5-gram
language model and distortion-based reordering (dl=5). Features based on the source
morphology predictions are learnt on either the projected morphology or the predic-
tions of the source dependency chain model. Experiments are conducted on English–
German. Source-side dependency trees are predicted based on the HamleDT treebank
(Zeman et al., 2012) using TurboParser (Martins et al., 2010). The dependency parser
is trained to produce pseudo-projective dependency trees (Nivre and Nilsson, 2005).3
The system is trained on the full parallel sections of Europarl (Koehn, 2005) and tuned
and tested on the WMT 2009 and WMT 2010 newstest sets respectively.

Monolingual morphological tagging is performed using the Marmot CRF-based
tagger (Müller et al., 2013). The tagger is trained on the English and German parts
of the HamleDT treebank. The morphological attributes of both languages follow the
Interset standard (Zeman, 2008), which contains 45 unique attribute vectors (tags) for
English and 958 for German.

Discussion

Table 7.5 shows the outcomes of using the inference strategies presented in Section 7.5.2.
We evaluate translation quality with METEOR and BLEU (Denkowski and Lavie,

3Projectivization was performed using MaltParser version 1.8; .

http://www.maltparser.org/
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Translation Word order Lexical choice

Attributes Training decoration MTR BLEU Kendall τ BLEU-1
None - 35.74 15.12 45.26 49.86

Manual Predicted 35.85 15.19 45.43 50.01
Projected 34.63A 14.00A 44.07 48.75

Automatic Predicted 35.99AC 15.23B 45.88 50.27
Projected 35.98AC 15.22C 45.89 50.27

AStatistically significant against baseline at p < 0.05 BStatistically significant against baseline at p < 0.06
CStatistically significant against Manual selection at p < 0.05

Table 7.5: Translation with predicted test decorations.

2011; Papineni et al., 2002), word order with Kendall τ (Kendall, 1938) and lexical
choice with unigram BLEU. Statistical significance tests are performed for the transla-
tion scores using the bootstrap resampling method (Koehn, 2004a).

The results show that both attribute selections show improvements over the baseline
when training and testing on predicted morphology. On the other hand, when training
on projected morphology and performing Viterbi predictions, a visible gap between
the manual set and the automatic set can be observed. This gap indicates that with the
automatic set, the predictions by the dependency chain model are closer to the pro-
jected predictions so that the machine translation system learns realistic weights for the
prediction part. Additionally, the system based on the automatic selection produces a
significantly better METEOR score than the system using the manual selection. As
in the experiments with projected morphology, the results of this evaluation indicate
that the improvements stem from both word order choices as well as better lexical se-
lection. In terms of time performance, we found that the additional information does
not significantly affect the speed of the translation system. The Viterbi algorithm for
predicting the target morphology is efficient and as the information is passed to the ma-
chine translation system as sparse features, no additional complexity is added. While
we have focused on the language pair English–German, the methods presented in this
chapter are applicable to many other language pairs. We therefore aim to perform ad-
ditional experiments for morphologically rich target languages such as Turkish, Arabic
and Czech in future work.

7.6 Related Work
Various approaches have been proposed to the problem of translating between lan-
guages of varying morphological complexity. Avramidis and Koehn (2008) enrich the
morphologically impoverished source side with syntactic information and translate via
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a factored machine translation model. The work of Avramidis and Koehn (2008) is
closely related to the present work; however, while their decorations are source-side
syntactic information (e.g. whether a noun is the subject), we directly predict target
morphology and learn to select the most relevant properties automatically. A similar
approach, in which source syntax is reduced to part-of-speech tags, is used success-
fully for translation into Turkish (Yeniterzi and Oflazer, 2010). Following the tradition
of two step machine translation (Bojar and Kos, 2010), Fraser et al. (2012) translate
morphologically underspecified tokens and add inflections on the target side based on
the predictions of discriminative classifiers.

Carpuat andWu (2007), Jeong et al. (2010), Toutanova et al. (2008) and Chahuneau
et al. (2013) propose discriminative lexicon models that are able to take into account
the larger context of the source sentence when making lexical choices on the target side.
These proposals differ mostly in the way that the additional morphological information
is integrated into the machine translation process. Jeong et al. (2010) integrate their
lexical selection model via features in the underlying treelet translation system (Quirk
et al., 2005). Toutanova et al. (2008) survey two basic methods of integration. In the
first method, the inflection prediction model is allowed to change the inflections pro-
duced by the underlying machine translation system. The second method is a two step
method, where the machine translation system translates into target-language stems,
which are then inflected by the inflection model. Chahuneau et al. (2013) create syn-
thetic phrases, i.e. phrases with inflections that have not been observed directly in the
training corpus but have been created by an inflection model. These synthetic phrases
are then added to the training data of the machine translation system and marked as
such. This in turn enables the machine translation system to learn how much to trust
them. Finally, Williams and Koehn (2011) add unification-based constraints to the tar-
get side of a string-to-tree model. The constraints are extracted heuristically from a
treebank and violations of these constraints are then penalized during decoding.

7.7 Conclusion

In this chapter, we have explored the novel approach of target morphology projection.
After testing the idea empirically, we have proposed three components to realize this
idea: First, we introduced the dependency chain model for predicting arbitrary tar-
get morphology attributes based on source dependency trees. Second, we introduced
a learning procedure to determine a language pair’s set of salient morphological at-
tributes. And finally, we have introduced and compared various strategies for integrat-
ing this new information into a machine translation system. The experiments we have
performed have provided several insights: They have demonstrated that projecting a
small subset of morphological attributes to the source side can provide major trans-
lation improvements while reducing the complexity of prediction. Furthermore, our
approach for learning this useful subset performs well based on both intrinsic evalu-
ation and the empirical results during prediction and translation. Given that previous
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work has found it rather difficult to achieve improvements in German morphology, we
consider the improvements in METEOR score and the modest improvements in BLEU
score encouraging. Apart from morphological inflection, a second area of word forma-
tion leading to great typological differences between languages and causing issues for
statistical machine translation is compounding. In the next chapter, we will examine
this problem based on the language pair German–English and propose and evaluate an
unsupervised method for splitting compound words into their meaningful parts.





Chapter 8

Aligning Word Formation Processes:
A Semantic Approach to Compound Splitting

Compounding is a highly productive word formation process in some languages that
is often problematic for natural language processing applications. In this chapter, we
investigate whether distributional semantics in the form of word embeddings can en-
able more semantically motivated processing of compounds than standard string-based
methods. We present an unsupervised approach that exploits regularities in the seman-
tic vector space (based on analogies such as “bookshop is to shop as bookshelf is to
shelf”) to produce compound analyses of high quality. A subsequent compound split-
ting algorithm based on these analyses is highly effective, particularly for ambiguous
compounds. German–English machine translation experiments show that this seman-
tic analogy-based compound splitter leads to better translations than a commonly used
frequency-based method.

The content of this chapter is based on the following published article:
Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and Stella Frank. Splitting Com-
pounds by Semantic Analogy. In 1st Deep Machine Translation Workshop, 2015.

Joachim Daiber and Stella Frank produced the initial research idea and provided guid-
ance to Lautaro Quiroz and Roger Wechsler. Stella Frank additionally wrote an early
draft of Section 4.2. Joachim Daiber additionally helped with running experiments and
wrote the article. Lautaro Quiroz and Roger Wechsler developed initial versions of the
code, ran experiments and wrote early drafts of several sections. All chapters of this
thesis were written in full by the author.

105
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Chapter Highlights

Problem Statement
• Phrase-based models combine minimal units, most commonly words, into longer
phrases. Highly productive word formation processes such as compounding pose
a challenge since they produce new words while obscuring from the translation
system the minimal units these new words are composed of.

Research Question
• Can semantic analogy based on distributional semantics in the form of word em-
beddings be used to split compound words into their components?

Research Contributions
• We show that regularities in the semantic vector space (based on analogies such as
“bookshop is to shop as bookshelf is to shelf”) can be used to produce compound
analyses of high quality.

• We develop a compound splitting algorithm based on these analyses and show
that it is highly effective on a German–English machine translation task.

8.1 Motivation
In languages such as German, compoundwords are a frequent occurrence leading to dif-
ficulties for natural language processing applications, and in particular machine transla-
tion. Several methods for dealing with this issue— from shallow count-based methods
to deeper but more complex neural network-based processing methods—have been
proposed. The recent surge in practical models for distributional semantics has en-
abled a multitude of practical applications in many areas, most recently in morpholog-
ical analysis (Soricut and Och, 2015). In this chapter, we investigate whether similar
methods can be utilized to perform more semantic processing of compounds. A great
asset of word embeddings are the regularities that their multi-dimensional vector space
exhibits. Mikolov et al. (2013) showed that regularities such as “king is to man what
queen is to woman” can be expressed and exploited in the form of basic linear algebra
operations on the vectors produced by their method. This often-cited example can be
expressed as follows: v(king)− v(man) + v(woman) ≈ v(queen), where v( · ) maps a
word into its word embedding in vector space.

Soricut and Och (2015) exploit these regularities for unsupervised morphology in-
duction. Their method induces vector representations for basic morphological transfor-
mations in a fully unsupervised manner. String prefix and suffix replacement rules are
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induced directly from the data based on the idea that morphological processes can be
modeled on the basis of prototype transformations, i.e. vectors that are good examples
of a morphological process are applied to a word vector to retrieve its inflected form. A
simple example of this idea is ↑dcars = v(cars)−v(car) and v(dogs) ≈ v(dog)+↑dcars,
which expresses that the relation of the word car to the word cars is the same as the
relation of the word dog to the word dogs. The direction vector ↑dcars represents the
process of adding the plural morpheme -s to a noun.

While this intuition works well for frequently occurring inflectional morphology,
it is not clear whether it extends to more semantically motivated word formation pro-
cesses such as compounding. We study this question in the present chapter. Our experi-
ments are based on the German language, in which compounding is a highly productive
phenomenon allowing for a potentially infinite number of combinations of words into
compounds. This fact, coupled with the issue that many compounds are observed infre-
quently in data, leads to a data sparsity problem that complicates the processing of such
languages. Our contributions are as follows: First, we study whether the regularities
exhibited by the vector space also apply to compounds (Section 8.2). We examine the
relationship between the components within compounds, as illustrated by the analogi-
cal relationship “Hauptziel is to Ziel what Hauptader is to Ader.”1 By leveraging this
analogy we can then analyze the novel compound Hauptmann (captain) by searching
for known string prefixes (e.g.Haupt-) and testing whether the resulting split compound
Haupt|mann has a similar relation between its components (haupt, mann) as the proto-
typical exampleHaupt|ziel. We induce the compound components and their prototypes
and apply them in a greedy compound splitting algorithm, which we evaluate on a gold
standard compound splitting task (Section 8.3) and as a preprocessing step in a machine
translation setup (Section 8.4).

8.2 Compounds and Morphology Induction

Our approach is based on the work of Soricut and Och (2015), who exploit regularities
in the vector space to induce morphological transformations.

8.2.1 Morphology Induction from Word Vectors

Soricut and Och (2015) extract morphological transformations in the form of prefix
and suffix replacement rules up to a maximum length of 6 characters. The method re-
quires an initial candidate set containing all possible prefix and suffix rules that occur
in the monolingual corpus. For English, the candidate set contains rules such as

, which represents the suffix ed replaced by ing (e.g. walked→walking).

1In vector algebra: ↑dHauptziel = v(Hauptziel)− v(Ziel) and v(Hauptader) ≈ v(Ader) + ↑dHauptziel.
The compounds translate to “main goal” (Hauptziel) and “main artery” (Hauptader). As a separate noun,
Haupt means head.
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This candidate set also contains over-generated rules that do not reflect actual morpho-
logical transformations; for example ϵ2 in Scream→cream.

The goal is to filter the initial candidate set to remove spurious rules while keeping
useful rules. For all word pairs a rule applies to, word embeddings are used to cal-
culate a vector representing the transformation. For example, the direction vector for
the rule based on the pair (walking, walked) would be ↑dwalking→ed =
v(walked) − v(walking). For each rule there are thus potentially as many direction
vectors as word pairs it applies to. A direction vector is considered to be meaning-
preserving if it successfully predicts the affix replacements of other, similar word pairs.
Specifically, each direction vector is applied to the first word in the other pair and an or-
dered list of suggested words is produced. For example, the direction vector ↑dwalking→ed
can be evaluated against (playing, played) by applying ↑dwalking→ed to playing to pro-
duce the predicted word form: v(played∗) = v(playing)+↑dwalking→ed. This prediction
is then compared against the original word embedding v(played) using an evaluation
function E(v(played), v(playing) + ↑dwalking→ed).3 If the evaluation function passes a
certain threshold, we say that the direction vector explains the word pair. Some direc-
tion vectors explain many word pairs while others explain few. To judge the explana-
tory power of a direction vector, a hit rate metric is calculated, expressing the percent-
age of applicable word pairs for which the vector makes good predictions.4 Each direc-
tion vector has a hit rate and a set of word pairs that it explains (its evidence set). Apart
from their varying explanatory power, morphological transformation rules can also be
ambiguous. For example, the rule ϵ can describe both the pluralization of a
noun (one house→two houses) and the 3rd person singular form of a verb (I find→she
finds). Different direction vectors may explain the nouns and verbs separately.

Soricut and Och (2015) retain only the most explanatory vectors by applying a re-
cursive procedure to find the minimal set of direction vectors explaining most word
pairs. We call this set of direction vectors prototypes, as they represent a prototypical
transformation for a rule and other words are formed in analogy to this particular word
pair. Intuitively, it may seem surprising that the vector space of word embeddings can
be used to learn representations of morphological processes, since this vector space
is only informed by the other words directly surrounding a word. Nevertheless, Sori-
cut and Och (2015) show that their prototypes can be applied successfully in a word
similarity task for several languages, including morphologically rich languages such as
Arabic. In this chapter, we use word embeddings to analyze the relationship between
compound words and their components, which is more markedly a semantic relation-
ship and should therefore be more robustly covered by word embeddings.

2ϵ denotes the empty string.
3We follow Soricut and Och (2015) in defining E as either the cosine distance or the rank (position

in the predictions).
4A transformation is considered a hit if the evaluated score is above a certain threshold for each

evaluation function E.
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8.2.2 Compounds and the Semantic Vector Space

Compounds can be classified into several groups (Lieber and Štekauer, 2009): in en-
docentric compounds, the semantic head is part of the compound (a birdhouse is a also
a house) and in exocentric compounds the semantic head is outside of the compound
(a skinhead is not a head). In this chapter, we focus on endocentric compounds, which
are also the most frequent type in German (Dressler et al., 2012, p. 254). Endocentric
compounds consist of a modifier and a semantic head. The semantic head specifies
the basic meaning of the word and the modifier restricts this meaning. In German, the
modifiers come before the semantic head; hence, the semantic head is always the last
component in the compound. When applying the idea of modeling morphological pro-
cesses by semantic analogy to compounds, we can represent either the semantic head or
the modifier of the compound as the transformation (like the morpheme rules above).
Since the head carries the compound’s basic meaning in endocentric compounds, we
add the modifier’s vector representation to the head word in order to restrict its mean-
ing. We expect the resulting compound to be in the neighborhood of the head word in
the semantic space (birdhouse should be close to house).

We illustrate this intuition by visualizing compound words and their components in
the vector space. All visualizations are produced by performing principal component
analysis (PCA) to reduce the vector space from 500 to 2 dimensions. Figure 8.1 presents
the visualization of various compounds with either the same head or the same modifier.
For Figure 8.1a, we plot all German compounds in our dataset that have one of the
modifiers Haupt-,5a Super-, Bundes-,5b Kinder-5c or Finanz-.5d Figure 8.1b plots all
German compounds with one of the heads -arbeit,5e -ministerium,5f -mann5g or -stadt.5h
Hence, the two plots illustrate the difference between learning vector representations
for compound modifiers or heads. Words with the same modifier do not necessarily
appear in close proximity in vector space. This is even less likely for modifiers that can
be applied liberally tomany headwords, such as Super- orKinder-.5c On the other hand,
compounds with the same head are close in the embedding space. This observation is
crucial to our method, as we aim to find direction vectors that generalize to as many
word pairs as possible.

8.3 Compound Induction from Word Embeddings

8.3.1 Extracting Candidates

The initial set of modifier candidates is produced from all possible string prefixes of 4
or more characters (for languages in which the semantic head precedes the modifier, we

5Gloss for modifiers: (a) main, (b) federal, (c) children, (d) finance. Heads: (e) piece of work, (f)
ministry, (g) man, (h) city.
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(a) Compounds with the same modifier.

(b) Compounds with the same head.

Figure 8.1: Semantic representations of compounds based on (a) their modifiers and
(b) their semantic heads.
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Modifier Support Modifier Support
1. Land- 8387 6. Landes- 5189
2. Kinder- 6249 7. Schul- 5011
3. Haupt- 5855 8. Jugend- 4855
4. Lande- 5637 9. Ober- 4799
5. Stadt- 5327 10. Groß- 4656

Table 8.1: Modifiers by size of support set.

would extract suffixes instead).6 We retain a modifier as a candidate if both the modifier
and the rest of the word, which is the potential head, occur in our vocabulary. The
initial candidate set contains 281k modifiers, which are reduced to 165k candidates by
removing the modifiers occurring in only one word. The length of the average support
set (i.e., the set of all compounds the modifier applies to) is 13.5 words. Table 8.1 shows
the ten candidate modifiers with the biggest support sets. At this stage, the candidate set
contains any modifier-head split that can be observed in the data, including candidates
that do not reflect real compound splits.7 Compound splits are not applied recursively
here, as we assume that internal splits can be learnt from the occurrences of the heads
as individual words.8

8.3.2 Extracting Prototypes

To find the prototype vectors that generalize best over the most words in the support set,
we apply the recursive procedure of Soricut and Och (2015). The algorithm initially
computes the direction vector for each (modifier, compound) pair in the support set by
performing a subtraction of the head embedding and the compound embedding, e.g.
↑ddoghouse = v(doghouse)− v(house).

Each direction vector is then evaluated by applying it to all the word pairs in
the support set, for example v(owner) + ↑ddoghouse

?
= v(dogowner) for the word pair

dog|owner. If the resulting vector is close (according to E) to the vector of the target
compound, we add it to the evidence set of the vector. The direction vector with the
largest evidence set is selected as a prototype. All pairs this prototype explains are then
removed and the algorithm is applied recursively until no direction vector explains at
least tevd compounds. As the evaluation function E we use the rank of the correct word
in the list of predictions and perform experiments with tevd = {10, 6, 4}. Lastly, to
ensure efficient computation, we down-sample the evidence set to 500 words.

6For efficient computation, we use a directed acyclic word graph:
.

7For example, as Para (a river) and dies (this) occur in the data, an incorrect candidate split occurs
for Para|dies (paradise).

8For example, for Haupt|bahn|hof (main train station), we observe both Haupt|bahnhof and
Bahn|hof in the data.

https://pypi.python.org/pypi/pyDAWG
https://pypi.python.org/pypi/pyDAWG
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Prototype Evidence words
v-Zeiger -Bewegung -Klicks -Klick -Tasten

-Zeiger
v-Stämme -Mutanten -Gene -Hirnen -Stämme
v-Kostüm -Knopf -Hirn -Hirns -Kostüm
v-Steuerung -Ersatz -Bedienung -Steuerung

Table 8.2: Prototypes and evidence words for Maus-.11

8.3.3 Implementation and Intrinsic Evaluation
We now turn to implementation considerations and perform an intrinsic evaluation of
the prototypes.

Word embeddings Asmonolingual data, we use the German parts of theNews Crawl
Corpus (2007-2014).9 The text is truecased and tokenized, and all punctuation charac-
ters are removed, resulting in approximately 2 billion tokens and a vocabulary size of 3
million words. We use word2vec to estimate the word embeddings using the skip-gram
model.10 Embeddings are trained with a window size of 5, using 500 dimensions and
a minimum word frequency of 2. The relatively low minimum frequency threshold
means that word embeddings are created even for infrequent words, thus ensuring that
word embeddings are created for complex compound words, which may occur very
few times in the data. While producing word embeddings for very rare words poses the
risk that their representations may be of poor quality, we found this to not be an issue
in our experiments.

Treatment of interfixes (Fugenelemente) For mostly phonetic reasons, German al-
lows the insertion of a limited set of characters between the modifier and the head. As
learning this set is not the aim of our work, we only allow the fixed set of interfixes
{-s-, -es-} to occur. We add all combinations of interfix and case variations of the head
word to the modifier’s support set.

What do the prototypes encode? An inspection of the prototypes for each modifier
shows that the differences between them are not always clear-cut. Often, however,
each prototype expresses one specific sense of the modifier. Table 8.2 illustrates this
observation using the German modifierMaus- as an example. The German wordMaus,
mouse in English, can refer to both the computer device and the animal. Although there
are more than two prototype vectors, it is interesting to observe that the two senses are
almost fully separated.

9

10

11Words are related to mouse pointer (Zeiger), biological genus (Stämme), mouse costume (Kostüm)
and control (Steuerung).

http://www.statmt.org/wmt15/translation-task.html
https://code.google.com/p/word2vec/
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(a) Mean hit rate (b) Mean cosine similarity

trank = 80 100 80 100

tevd = 4 26% 22% 0.39 0.39
tevd = 6 31% 26% 0.43 0.43
tevd = 10 36% 31% 0.45 0.45

(c) % with prototypes (d) Mean number of prototypes

trank = 80 100 80 100

tevd = 4 8.93% 9.52% 4.20 4.16
tevd = 6 5.13% 5.47% 3.29 3.30
tevd = 10 2.91% 3.14% 2.25 2.29

Table 8.3: Overview of the influence of hyper-parameters on prototype extraction.

Quality of the prototypes To evaluate the quality of our extracted prototypes, we use
the hit rate metric defined by Soricut and Och (2015). A direction vector’s hit rate is
the percentage of relevant word pairs that can be explained by the vector. A prediction
is explainable if the correct target word is in the top trank predictions and, optionally,
if there is a cosine similarity of at least tsim. The implementation of this evaluation
functionE requires the calculation of the cosine distance between a newly created vec-
tor and the word vector of every item in the vocabulary. Since this score is calculated
N times for every of the N word pairs (i.e., N2 times), this is an extremely compu-
tationally expensive process. For more efficient computation, we use an approximate
k-nearest neighbor search method.12 While this is not a lossless search method, it offers
an adjustable trade-off between the model’s prediction accuracy and running time.13
For our standard setting (tevd = 6, trank = 80), the hit rates using approximate and ex-
act rank are 85.9% and 60.9% respectively. This shows that the approximate method
produces hit rates that are more optimistic, which will affect how the prototype vectors
are extracted. Additionally, restricting both rank and similarity (trank = 80, tsim ≥ 0.5)
leads to lower hit rates (25.9% for approximate and 15% for exact rank).

Influence of the thresholds Table 8.3 compares the parameters of our model based
on (a) the mean hit rate, (b) cosine similarity, (c) the percentage of candidate modifiers
with at least one prototype and (d) the mean number of prototypes per rule. Higher
values of tevd (minimum evidence set size) lead to better quality in terms of hit rate and
cosine similarity as prototypes have to be able to cover a larger number of word pairs
in order to be retained. The rank threshold trank also behaves as expected. Reducing
trank to 80 produces predicted vectors of higher quality since they have to be closer to

12

13With this fast approximate search method the total training time would be just below 7 days if run
on a single 16 core machine.

https://github.com/spotify/annoy
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the compound embeddings. Tables (c) and (d) illustrate that using a more restrictive
parameter setting reduces the number of modifiers for which a prototype can be ex-
tracted. Of a total of 165k candidate prefixes, only 3%-10% are not filtered out using
these settings. The average number of prototypes per modifier also decreases with more
restrictive settings. Interestingly, however, for the most restrictive setting (tevd = 10,
trank = 80), this number is still a relatively high 2 prototypes per vector.

8.3.4 Compound Splitting
To obtain a clearer view of the quality of the extracted compound representations, we
apply the prototypes to a compound splitting task.

Splitting Compounds by Semantic Analogy

The extracted compound modifiers and their prototypes can be employed directly to
split a compound into its components. Algorithm 3 presents the greedy algorithm,
which can be applied to individual words in a text. V is the word embedding vocabulary,
M is the set of extracted modifiers with their prototypes, and ( · ) is a function
returning all string prefixes.

Algorithm 3 Greedy compound splitting algorithm.
1 procedure (word, V, M)
2 modifiers← {m | p← (word) if p ∈ M}
3 if modifiers = ∅ OR word /∈ V then
4 return word
5 bestModifier← ∅
6 for modifier ∈ modifiers do
7 head← word without modifier ◃ e.g. house← doghouse without dog-
8 if head ∈ V then
9 for (headproto,wordproto) ∈ modifier do
10 Evaluate “word is to head what wordproto is to headproto”
11 ◃ e.g. doghouse is to house what dogowner is to owner
12 Update bestModifier if this is the best match so far
13 return word split based on bestModifier

Compounds may only be split if (a) the full compound word is in the vocabulary V,
i.e. it has been observed at least twice in the training data (Line 3), (b) it has a string
prefix in the modifier set and this modifier has at least one prototype (Line 3), (c) the
potential head word resulting from splitting the compound based on the modifier is also
in our vocabulary (Line 8). The last case, namely that the compound head candidate
is not in the vocabulary can occur for two reasons: either this potential head is a valid
word that has not been observed frequently enough or, the more common occurrence,
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This work Moses (partial) Moses (full)

Scenario Accuracy Coverage Accuracy Coverage Accuracy Coverage
Full test set 27.43 58.45 18.04 31.41 6.57 13.75

2 splits 24.94 56.75 13.13 20.13 1.79 3.11
3 splits 21.10 68.37 8.04 18.35 1.21 2.92
4 splits 22.09 62.11 9.98 15.91 1.19 1.90
5 splits 24.04 69.23 9.62 11.54 0.96 1.92

Table 8.4: Evaluation of all compounds and highly ambiguous compounds only.

the substring does not form a valid word of the language.14 The algorithm’s coverage
can be increased by backing off to a frequency-based method if conditions (a) or (c) are
violated. The core of the algorithm is the evaluation of meaning preservation in Line 10.
This evaluation is performed using the rank-based and cosine similarity-based evalu-
ation functions. Modifiers that do not pass the thresholds defined for these functions
are discarded as weak splits. To split compounds with more than two components, the
algorithm is applied recursively.

Evaluation of Compound Splitting

We use the test set from Henrich and Hinrichs (2011), which contains 54k compounds,
each annotated with binary splits. We require a minimal prefix length of 4 characters
and, hence, also filter the test set accordingly. This step leaves 50651 compounds for
evaluation. Moses (Koehn et al., 2007) offers a compound splitter that splits a word if
the geometric average of the frequencies of its components is higher than the frequency
of the full compound. We use two instances of this compound splitter as baselines: one
using the German monolingual dataset used to train the word2vec models and a second
using a subset of the previous dataset.15 Results for the full test set (accuracy and
coverage, i.e. |correct splits|

|compounds| and
|compounds split|
|compounds| ) are presented in the first row of Table 8.4.

Splitting highly ambiguous compounds The semantic nature of our approach en-
ables us to discriminate good candidate splits from bad ones. By capturing the mean-
ing relation between compounds and their components, the method can disambiguate
between the various splitting rules for each compound. Contexts where multiple split
points apply to a compound should therefore be handled particularly well by our ap-
proach. We simulate different ambiguity scenarios based on the Henrich and Hinrichs
(2011) gold standard dataset: We extract compounds with 2, 3, 4, or 5 potential split

14For example, when applying the algorithm to Herrengarderobe (male cloak room), two possible
prefixes can be extracted: The prefixes Herr and Herren. For Herr, the remaining substring is engarder-
obe, which is by itself not a German word. Hence, in this case the candidate prefix can be discarded.

15Subset: News Crawl 07-09 (275m tokens, 2.09m types). Full: 07-14 (2b tokens, 3m types).
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Figure 8.2: Evaluation of highly ambiguous compounds.

points.16 The resulting test sets consists of 18571, 1815, 842 and 104 compounds, re-
spectively. For all compound splitting experiments, prototype vectors are extracted
using tevd = 6 and trank = 100.

Table 8.4 presents accuracy and coverage for the compounds within the different
ambiguity scenarios. To better visualize the trends for highly ambiguous compounds,
we plot the accuracy and coverage scores in relation to the ambiguity of the compounds
in Figure 8.2. The analogy-based method outperforms the frequency-based baselines in
both coverage and accuracy. While for the Moses splitter, the coverage decreases with
increasing ambiguity, the opposite behavior is exhibited by our approach. Having more
possible splits produces a larger number of direction vectors, which in turn increases
the likelihood of obtaining a meaning-preserving split. This experiment shows that
the analogy-based compound splitter is advantageous for words that can potentially be
explained by several candidate splits.

8.4 Compound Splitting for Machine Translation

8.4.1 Translation Setup
We use the Moses decoder (Koehn et al., 2007) to train a phrase-based machine trans-
lation system on the German–English Common Crawl parallel corpus and WMT news

16Each string prefix that occurs as a separate word produces a potential split (indicated by ). Potential
split points may not be linguistically motivated and can lead to correct (general|stabs) or incorrect splits
(gene rals tabs). Examples include Einkauf s wagen, Eis en bahn unternehmen, Wissen s chaft s park
and Gene ra l s tab s.
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(a) No compound splitting (b) OOV only

Splits BLEU MTR Splits BLEU MTR
Moses splitter 0 17.6 25.5 226 17.6 25.7A

This work 317 17.6 25.8A

(c) Rare: c(w) < 20 (d) All words

Splits BLEU MTR Splits BLEU MTR
Moses splitter 231 17.6 25.7 244 17.9 25.8A

This work 744 18.2ABC 26.1ABC 1616 17.7 26.3A

A Statistically significant against (a) at p < 0.05 B Statistically significant against Moses splitter at same c(w) at p < 0.05
C Statistically significant against best Moses splitter (d) at p < 0.05.

Table 8.5: Translation results for various integration methods.

test 2010 (tuning). Word alignment is performed with GIZA++ (Och and Ney, 2003).
We use a 4-gram language model estimated using IRSTLM (Federico et al., 2008),
as well as lexicalized reordering. The test data set is WMT news test 2015,17 which
contains approximately 2100 German–English sentence pairs and 10000 tokens (using
one reference translation). We compare our method against a translation system with-
out any handling of compounds, and the same system using Moses’ default compound
splitter, an implementation of the frequency-based compound splitter discussed above.
The test set contains 2111 out-of-vocabulary word types (natural OOVwords), yielding
2765 unknown tokens, consisting mostly of compounds, brand and city names. This
implies that 22.16% of the word types and 7.15% of the tokens of the test corpus are
out-of-vocabulary words for the baseline system.

8.4.2 Translation Experiments and Discussion
To test our compound splitter in a realistic setting, we perform a standard machine
translation task. We translate a German text using a translation baseline system without
compound handling, system (a) in Table 8.5, a translation system integrating the Moses
compound splitter trained using the best-performing settings, and a translation system
using our analogy-based compound splitter. We test the following basic methods of
integration: Splitting only words that are out-of-vocabulary to the translation model,
system (b) in Table 8.5, splitting all words that occur less than 20 times in the training
corpus, system (c) in Table 8.5, and applying the compound splitters to every word in
the datasets, system (d) in Table 8.5. Table 8.5 shows the results of these translation
experiments. For each experiment, we report BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), and the number of compound splits performed on the test
set. Statistical significance is calculated using bootstrap resampling (Koehn, 2004a).

17

http://www.statmt.org/wmt15/translation-task.html
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The results show that when applied without restrictions, our method splits a large
number of words and leads to minor improvements. When applied only to rare words
the splitter produces statistically significant improvements in both BLEU and ME-
TEOR over the best frequency-based compound splitter. This difference indicates that
a better method for deciding which words the splitter should be applied to could lead
to further improvements. Overall, the output of the analogy-based compound splitter
is more beneficial to the machine translation system than the baseline splitter.

8.5 Related Work

8.5.1 Splitting Compounds for Machine Translation
Highly productive word formation such as compounding can be a cause for data spar-
sity in statistical machine translation. When translating from a compounding language,
two main problems have to be addressed from a technical point of view: Firstly, to split
compound words into their components potential split points have to be disambiguated.
Secondly, it has to be decided whether a compound should be split at all. When trans-
lating into a compounding language, the individual components of a compound word
have to be merged into a single word. We only address translation from a compounding
language in this chapter, for approaches to dealing with compound merging, see Fraser
et al. (2012) and Cap et al. (2014a).

One of the most straight-forward approaches to compound splitting was presented
by Koehn and Knight (2003), who split compounds based on their components’ fre-
quency. Apart from this frequency-based algorithm, Koehn and Knight (2003) also
present more complex approaches usingword alignments and part-of-speech tags; how-
ever, while these more advanced approaches provide better intrinsic performance (mea-
sured against hand-annotated segmentations), themore basic frequency-based approach
results in the best translation quality. This discrepancy is likely caused by the fact
that phrase-based systems do not necessarily penalize the over-splitting of compounds,
since the components of a compound can be handled as a phrase. Employing more
resource-intensive tools, Nießen and Ney (2000), Popović et al. (2006) and Fritzinger
and Fraser (2010) usemorphological analyzers to split German compoundwords. Com-
bined with frequency information, these methods can provide improved intrinsic per-
formance and translation quality. As these approaches rely on supervised morphologi-
cal analyzers, they are orthogonal to our approach, which is fully unsupervised.

Another avenue of research has dealt with the question of whether it is benefi-
cial to only split compositional compounds while taking care not to split lexicalized
compounds. Weller et al. (2014) use this approach by only splitting words that pass a
threshold of distributional similarity to its components. When applying the resulting
split compounds in a phrase-based machine translation system, they find that, similarly
the observation of Koehn and Knight (2003), over-splitting does not pose a problem
for the translation system and hence not splitting lexical compounds does not improve
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translation quality. Our approach also relies on distributional semantics for determin-
ing similarity. However, the approach we follow in this chapter is fully unsupervised,
requiring only word embeddings estimated from a monolingual corpus. Additionally,
our approach is significantly less complex, making it easy to understand and implement.

8.5.2 Semantic Compositionality
Noun compounds have also played a role in the field of distributional semantics it-
self. Reddy et al. (2011) find that distributional properties can explain the relationship
between English compound components and the full compound, a result that was later
replicated by Schulte imWalde et al. (2013) for German compounds. Schulte imWalde
et al. (2013) further studied whether syntactically motivated word embeddings would
help in this task but found them to be inferior to standard word vectors.

8.6 Conclusion
In this chapter, we have studied whether regularities in the semantic word embedding
space can be exploited to model the composition of compound words based on anal-
ogy. To approach this question, we made the following contributions: First, we eval-
uated whether properties of compounds can be found in the semantic vector space.
We found that this space lends itself to modeling compounds based on their semantic
head. Based on this finding, we discussed how to extract compound transformations
and prototypes following the method of Soricut and Och (2015) and proposed an algo-
rithm for applying these structures to compound splitting. Our experiments show that
the analogy-based compound splitter outperforms a commonly used compound splitter
on a gold standard task. Our novel compound splitter is particularly adept at splitting
highly ambiguous compounds. Finally, we applied the analogy-based compound split-
ter in a machine translation task and found that it compares favorably to a commonly
used shallow frequency-based method. In the first two parts of this thesis, we have ex-
amined how typological differences between languages influence machine translation
and have proposed various methods to address them. In the next chapter, we turn to
the question of whether we can, beyond solely addressing typological differences, ex-
ploit our knowledge about the typological properties of languages to build more robust,
universal models for machine translation.
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Chapter 9

Universal Reordering via Linguistic Typology

In the previous chapters, we observed that typological properties of the languages tar-
geted in natural language processing tasks influence performance and we have exam-
ined various methods to address this issue. In this chapter, we examine how linguistic
typology itself can be used as a rich source of information in machine translation. In
particular, we explore the idea of building a universal reordering model from English to
a large number of target languages. To build this model, we exploit typological features
of word order for a large number of target languages together with source (English)
syntactic features. We train a single model on a combined parallel corpus represent-
ing all (22) involved language pairs. Apart from empirically demonstrating the value
provided by typological descriptions of language, our proposed method can produce
word order predictions for a broad range of languages, including language pairs with
little or no parallel data. When the universal reordering model is used for preordering
followed by monotone translation (no reordering inside the decoder), our experiments
show that this pipeline gives comparable or improved translation performance with a
phrase-based baseline for a large number of language pairs (12 out of 22) from diverse
language families.

The content of this chapter is based on the following published article:
Joachim Daiber, Miloš Stanojević, and Khalil Sima’an. Universal Reordering via Lin-
guistic Typology. In Proceedings of COLING 2016, the 26th International Confer-
ence on Computational Linguistics.

Joachim Daiber performed experiments and wrote the article. Miloš Stanojević and
Joachim Daiber produced the idea for the article. All authors edited the article. All
chapters of this thesis were written in full by the author.

123



124 Chapter 9. Universal Reordering via Linguistic Typology

Chapter Highlights

Problem Statement
• If the similarities and differences between languages can be captured with a small
set of parameters, as various linguistic theories suggest, then models of word
order should be able to benefit by gaining better generalization and requiring
less training data for individual languages. Such benefits are not attainable when
training reordering models for each language pair individually, but a universal
reordering model applicable to and trained on a range of typologically diverse
languages could take advantage of them.

Research Question
• Can linguistic typology serve as a source of knowledge to guide reordering mod-
els and to facilitate universal reordering models applicable to multiple target lan-
guages?

Research Contributions
• We show that typological information collected in the WALS database, when
combined with neural network techniques, can be used to build a universal re-
ordering model.

• We evaluate this model in a translation task from English into various typologi-
cally diverse languages and show that it provides comparable or improved trans-
lation performance to a phrase-based baseline for a large number of languages.

9.1 Motivation
As we have seen in previous chapters, various linguistic theories and typological stud-
ies suggest that languages often share a number of properties and that their differences
fall into a small set of parameter settings (Chomsky, 1965; Greenberg, 1966a; Comrie,
1981). In Chapter 3.2, we have provided an overview of how these theories explain
the differences and commonalities between languages, and we have examined and ad-
dressed issues in machine translation caused by typological differences in word order
freedom (Part II) and morphological complexity (Part III). While intuitions about lan-
guage universals and language typology have influenced work on multilingual parsing
(Zeman and Resnik, 2008; McDonald et al., 2011), linguistic typology has found less
practical use in guiding or informing models in other areas of natural language process-
ing, such as the task of machine translation. A main area where typological differences
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between languages cause difficulties, and an area which we have highlighted in this
thesis, is differences in word order. These differences are frequently given special
treatment, such as in the case of preordering. The preordering approach works well
for some language pairs, however it usually demands a separate, dedicated preordering
model for every source-target language pair, trained on a word-aligned corpus specific
to the particular language pair.

However, if the similarities and differences between languages can indeed be cap-
tured with a small set of parameters, as various linguistic theories suggest, then models
of word order should try to benefit from the similarities between target languages in
the training data. This benefit is not attainable when training a separate preordering
model for every new target language. Hence, ideally, the word-aligned data obtained
for various target languages should be combined to train a single universal reordering
model with a single set of parameters. In this chapter, we address two fundamental
questions: (1) can a linguistically inspired universal reordering model show promising
experimental results and (2) how can such a universal reordering model be built?

For building an effective universal reordering model, we require access to a re-
source that describes the similarities and differences between (target) languages using
a small set of properties. The World Atlas of Language Structures (Dryer and Haspel-
math, 2013), WALS, is a major resource which currently specifies the abstract linguistic
properties of 2679 languages.1 In this chapter we explore the use of the linguistically
defined features in WALS for a broad range of target languages and show that these
features have merit for building a single, universal reordering model. The universal
reordering model is based on a feed-forward neural network which is trained to predict
the target word order given source syntactic structure and all available WALS parame-
ter settings for each of the 22 target languages involved. By training the feed-forward
neural network on the WALS-enriched data from a broad range of target languages,
we enable the universal reordering model to both learn how much to trust the WALS
parameters and to exploit possible interactions between them for different target lan-
guages. When the universal reordering model is followed by monotone translation (no
reordering inside the decoder), our experiments show that this pipeline gives compara-
ble or improved translation performance to a Moses baseline with a distortion limit of 6
for a large number of language pairs. This suggests that typological target language fea-
tures could play a key role in building better, more general preordering models, which
have, until now, been trained solely on source sentences and word alignments, but had
no access to other target-side information.

We believe that the experiments presented in this chapter have both theoretical and
practical implications. Firstly, they show the utility and provide empirical support for
the value of linguistic typology in machine translation. Secondly, they enable build-
ing more compact preordering models that should generalize to a broad set of target
languages and which potentially apply for the low resource setting where little or no
parallel data is available for a specific target language.

1For more uses of WALS in natural language processing, see Section 3.2.4 of Chapter 3.
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9.2 Related Work
The most basic usage of linguistic knowledge in preordering is in restricting the search
space of possible word order choices by using syntactic parse trees. Earlier work
was done mostly on constituency trees (Khalilov and Sima’an, 2012; Xia and Mc-
Cord, 2004) while more recent versions of preordering models mostly use dependency
trees (Lerner and Petrov, 2013; Jehl et al., 2014). Preordering in syntax-based mod-
els (whether dependency or constituency) is done on the local level where for each
constituent (or head word in dependency-based models) the classifier decides how the
children (or dependent words) should be reordered.

Employing classifiers to make local decisions on each tree node is one machine
learning approach to solving this problem. An alternative to employing machine learn-
ing techniques is the direct use of linguistic knowledge, which can in some cases give
clear rules for the reordering of children in the tree. An early example of rule-based
preordering is by Collins et al. (2005), who develop linguistically justified rules for
preordering German into English word order. Similar in spirit but significantly simpler
is the approach of Isozaki et al. (2010), who exploit the fact that Japanese word order
is in large part the mirror image of English word order— the heads of constituents in
English are in final position while they are in initial position in Japanese. Preorder-
ing English sentences into Japanese word order thus only involves two simple steps:
(1) Finding the parse tree of the English sentence (the authors used HPSG derivations)
and (2) moving the head of each constituent to the initial position. However, this ap-
proach does not seem to scale easily because manually encoding reordering rules for
all the world’s language pairs would be a rather difficult and very slow process.

In contrast to manually encoding rules for language pairs, we could use similarities
and differences between target languages encoded in existing typological databases of
structural properties of the world’s languages, such as the World Atlas of Language
Structures (Dryer and Haspelmath, 2013). The challenge we address in this chapter
is how to exploit typological databases such as WALS to guide the learning algorithm
into making the right decisions about word order. So if, for instance, a feature indi-
cates that the target language follows VSO (verb-subject-object) word order, then the
preordering algorithm should learn to transform the English parse tree from SVO into
VSO order. Using typological features like these in a machine learning system for pre-
ordering constitutes a compromise between knowledge-based (rules) and data-driven
(learning) approaches to preordering.

9.3 Linguistic Typology as a Knowledge Source
The field of linguistic typology, as introduced in Chapter 3.2, studies the similarities
and distinguishing features between languages and aims at classifying them accord-
ingly. Among other areas, the World Atlas of Language Structures describes general
properties of each language’s word order. Overall, WALS contains 192 features, but
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not all features are relevant to determining word order. Many WALS features deal
with phonology, morphology or lexical choice: Feature 129A, for example, describes
whether the language’s words for “hand” and “arm” are the same. Hence, for simplic-
ity’s sake we pre-select the subset ofWALS features potentially relevant to determining
word order and describe this subset in the following. Table 9.1 provides an overview
of these features, along with an indication of the relative frequency distribution of each
of their values over all languages in WALS.

In Section 3.2.3 we have discussed the various means of classification of languages
in linguistic typology. Traditionally, the most common classification is according to the
order of the subject, the object and the verb in a transitive clause. Accordingly, a num-
ber of WALS features describe the order of these elements. WALS Feature 81A clas-
sifies languages into 6 dominant clause-level word orders. For languages such as Ger-
man or Dutch, which do not exhibit a single dominant clause-level order, Feature 81B
describes 5 combinations of two acceptable word orders. Additionally, two features de-
scribe whether the verb precedes the subject (82A) and whether the verb precedes the
object (83A). The position of adjuncts in relation to the object and the verb are described
in Feature 84A and the internal structure of adpositional phrases is described in Fea-
ture 85A, which specifies whether the language uses pre-, post- or inpositions. Finally,
the following properties describe the order of words in relation to nouns: Feature 86A
specifies the position of genitives (e.g. “the girl’s cat”), Feature 87A the position of ad-
jectives (e.g. “yellow house”), Feature 89A the position of numerals (e.g. “10 houses”)
and Feature 90A the position of relative clauses (e.g. “the book that I am reading”) in
relation to the noun.

9.4 Universal Reordering Model
Our universal reordering model uses a preordering architecture similar to the (non-
universal) preordering model of De Gispert et al. (2015), which in turn is based on the
authors’ earlier work on logistic regression and graph search for preordering (Jehl et al.,
2014).

9.4.1 Basic Preordering Model
In this neural preordering model, a feed-forward neural network is trained to estimate
the swap probabilities of nodes in the source-side dependency tree. The learning task
is built around the following question: How likely is it that two nodes a and b are in the
linear order (a, b) or (b, a) in the target language? Preordering then consists of finding
the best sequence of swaps according to this model. While De Gispert et al. (2015) use a
depth-first branch-and-bound algorithm to find the best permutation, we use the k-best
version of this algorithm and minimize the resulting preordering finite-state automaton
to produce a lattice of word order choices (see Daiber et al., 2016a, or Chapter 6 of this
thesis).
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Observed feature values
WALS feature # Distribution
37A Definite Articles 5
46A Indefinite Pronouns 5
48A Person Marking on Adpositions 4
52A Comitatives and Instrumentals 3
53A Ordinal Numerals 8
54A Distributive Numerals 7
55A Numeral Classifiers 3
56A Conjunctions and Universal Quantifiers 3
57A Position of Pronominal Possessive Affixes 4
61A Adjectives Without Nouns 7
66A The Past Tense 4
67A The Future Tense 2
68A The Perfect 4
69A Position of Tense-Aspect Affixes 5
81A Order of Subject, Object and Verb 7
81B Two Dominant SVO Orders 5
82A Order of Subject and Verb 3
83A Order of Object and Verb 3
84A Order of Object, Oblique, and Verb 6
85A Order of Adposition and NP 5
86A Order of Genitive and Noun 3
87A Order of Adjective and Noun 4
88A Order of Demonstrative and Noun 6
89A Order of Numeral and Noun 4
90A Order of Relative Clause and Noun 7
91A Order of Degree Word and Adjective 3
92A Position of Polar Question Particles 6
93A Position of Interrogative Phrases 3
94A Order of Adverbial Subordinator and Clause 5
95A Rel. between Order of O +V and Adp. +NP 5
96A Rel. between Order of O +V and Rel. Cl. +N 5
97A Rel. between Order of O +V and Adj. +N 5

Table 9.1: WALS features potentially relevant to determining word order.
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Model Estimation

Training examples are extracted from all possible pairs of children of the source depen-
dency tree node, including the head itself. The crossing score of two nodes a and b (a
precedes b in linear order) is defined based on each node’s set of aligned target indexes
(Aa and Ab) as follows:

cs(a, b) = | {(i, j) ∈ Aa × Ab : i > j} | (9.1)

A pair of nodes (a, b) is swapped if cs(b, a) < cs(a, b), i.e. if swapping reduces the
number of crossing alignment links. Training instances generated in this manner are
then used to estimate the order probability p(i, j) for two indexes i and j. The best
possible permutation of each node’s children (including the head) is determined via
graph search. The score of a permutation π of length k consists of the order probabilities
of all possible pairs:

score(π) =
∏

1≤i<j≤k|π[i]>π[j]

p(i, j)
∏

1≤i<j≤k|π[i]<π[j]

1− p(i, j) (9.2)

De Gispert et al. (2015) use a feed-forward neural network (Bengio et al., 2003) to
predict the orientation of a and b based on 20 source features, such as the words, POS
tags, dependency labels, etc.2

Permutation Lattices

In order to find the sequence of swaps leading to the best overall permutation according
to the model, the score of a permutation is obtained by extending a partial permutation
π′ of length k′ by one index i (Jehl et al., 2014). This score can be efficiently computed
as:

score(π′ · ⟨i⟩) = score(π′)
∏

j∈V |i>j

p(i, j)
∏

j∈V |i<j

1− p(i, j) (9.3)

Instead of extracting the single-best permutation, we use the k-best extension of
branch-and-bound search (van der Poort et al., 1999). The resulting k-best permuta-
tions are then compressed into a minimal deterministic acceptor and unweighted deter-
minization andminimization are performed usingOpenFST (Allauzen et al., 2007). For
a more detailed description of the preordering model and permutation lattices, please
see Chapter 6 of this thesis.
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(a) Basic preordering model.
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(b) Universal reordering model.

Figure 9.1: Training of basic preordering models and the universal reordering model.

9.4.2 Estimating a Universal Reordering Model
The universal reorderingmodel differs from the basic neural preorderingmodel in terms
of its features and in how the training data is collected. Differences in training data
collection are illustrated in Figure 9.1. Figure 9.2 shows how the model is applied.

In addition to the source features used in the standard neural preordering model (cf.
Section 9.4.1), we add a feature indicating the source word order of the two tokens,
as well as the type of end-of-sentence punctuation. We then add WALS features 37,
46, 48, 52–57, 61, 66–69 and 81–97. In our model, WALS features are represented by
their ID and the value for the current target language (e.g. “WALS_87A=Adj-Noun” or
“WALS_87A=Noun-Adj”). For the most basic word order features (81, 82 and 85–91),
we additionally add a feature indicating if the order of the considered node pair agrees
with the order specified by the WALS feature.3

While the training data for a standard preordering model consists of source sen-
tences and their target-language order retrieved via word alignments, the training data
for the universal reordering model is comprised of training examples from a large num-
ber of language pairs. Because of the diversity of this data, special care has to be
taken to ensure a balanced dataset. We select an equal number of sentences from each
language-specific training subcorpus. Additionally, we reduce class imbalance by fur-
ther randomly shuffling the source tokens when creating training instances. This en-
sures a balanced distribution of classes in the training data. The distribution of the two
classes is 84.5%/15.5% in the original and 50.1%/49.9% in the randomized dataset.

2Full set of features: words, word classes, dependency labels, POS tags, coarse POS tags, word and
class of the left-most and right-most child token, and the tokens’ distance to their parent.

3Example for WALS feature 87A=Adj-Noun: f(a, b) =

{
”W87A:ab” if a = adj ∧ b = noun
”W87A:ba” if a = noun ∧ b = adj



9.4. Universal Reordering Model 131
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(a) Basic preordering model.
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(b) Universal reordering model.

Figure 9.2: Application of basic preordering and the universal reordering model.

9.4.3 Intrinsic Evaluation
We use NPLM (Vaswani et al., 2013) to train a feed-forward neural network to predict
the orientation of two nodes a and b based on the features described in Section 9.4.2.
The network consists of 50 nodes on the input layer, 2 on the output layer, and 50 and
100 on the two hidden layers. We use a learning rate of 0.01, a batch size of 1000 and
perform 60 training epochs, ensuring convergence of the log-likelihood on a validation
set.

Preordering Data

The training data for the universal reordering model consists of a combined corpus
of 30k sentence pairs each from the Tatoeba corpus (Tiedemann, 2012) for French,
German, Japanese, Portuguese, Russian, and Spanish as well as 100k sentence pairs
each from the OpenSubtitles 2012 corpus (Tiedemann, 2012) for Spanish, Portuguese,
Italian, Danish, Romanian, Swedish, French, Greek, Russian, Polish, Arabic, Hebrew,
Hungarian, Czech, Finnish, Icelandic, Dutch, Slovak, Chinese, German and Turkish.
Word alignments for all corpora were produced using MGIZA++ (Och and Ney, 2003)
using grow-diag-final-and symmetrization while performing 6, 6, 3 and 3 iterations of
IBM Model 1, HMM, IBM Model 3 and IBM Model 4 respectively. To evaluate the
model, we also use sets of manually word-aligned sentences for the following language
pairs: English–Japanese (Neubig, 2011), English–German (Padó and Lapata, 2006),
English–Italian (Farajian et al., 2014), English–French (Och and Ney, 2003), English–
Spanish and English–Portuguese (Graça et al., 2008).

Quality of Word Order Predictions

Figure 9.3a shows the intrinsically measured quality of the predictions by the univer-
sal reordering model. We use Kendall τ (Kendall, 1938) to measure the correlation
between the predicted word order and the oracle word order determined via the word
alignments. Figure 9.3a plots absolute Kendall τ improvement over the original, i.e.
unreordered, source sentence for the single best permutation for a number of language
pairs. The three worst-performing target languages in Figure 9.3a, Estonian, Finnish
and Hungarian, are all morphologically rich, indicating that additional considerations
may be required to improve word order for languages of this type. Figure 9.3b shows
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Hungarian
Finnish
Estonian
German
Dutch

Russian
Swedish
Spanish

Romanian
Portuguese

French
Irish

Japanese
Italian
Turkish

(a) Absolute 1-best Kendall τ improvements.

Manual word alignments Automatic word alignments

Language τ@10 τ@100 τ@1000 τ@10 τ@100 τ@1000
French +01.95 +03.05 +03.05 +01.28 +02.12 +02.13
German +04.03 +05.61 +05.61 +06.85 +08.27 +08.27
Italian +06.39 +06.75 +06.75 +03.07 +03.32 +03.32

Portuguese +05.87 +07.89 +07.89 +03.24 +03.55 +03.55
Spanish +05.97 +06.57 +06.57 +04.28 +05.11 +05.11

Romanian +02.49 +03.37 +03.37 +01.23 +02.09 +02.10
Swedish +00.13 +00.42 +00.42 +00.71 +01.18 +01.18

(b) n-best permutation quality on manually and automatically aligned data.

Figure 9.3: Intrinsic word order quality (improvement over monotone permutation).

the quality of n-best permutations of the universal reordering model for both manually
and automatically word-aligned sentence pairs. This table allows two observations:
Firstly, the evaluation of word order quality using automatic alignments shows good
agreement with the evaluation using manually word-aligned sentences, thus highlight-
ing that automatic alignments should suffice for this purpose in most cases. Secondly,
we can observe that for all datasets presented in this table little is gained from increas-
ing the number of extracted permutations beyond 100 predictions. We therefore apply
a maximum number of 100 permutations per sentence in all experiments presented in
the rest of this chapter.
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9.5 Translation Experiments

To evaluate the universal reordering model in a real-world task, we perform translation
experiments on various language pairs. As a baseline system, we use a plain phrase-
based machine translation system using a distortion-based reordering model with a dis-
tortion limit of 6. We compare against a baseline system without a lexicalized reorder-
ing model since the permutation lattices used in our system only delimit possible word
order choices but do not score them. When applying the universal reordering model, we
produce a lattice from each sentence’s best 100 word order permutations. This lattice
is then passed to the machine translation system and no additional reordering is al-
lowed. During training, we choose the source sentence permutation closest to the gold
word order determined via the word alignments (lattice silver training, see Chapter 6 or
Daiber et al., 2016a). The word alignments for the preordered training corpus are then
recreated from the original MGIZA++ alignments and the selected permutation.4

Translation experiments are performed with a phrase-based machine translation
system, a version of Moses (Koehn et al., 2007) with extended lattice support.5 We use
the basic Moses features and perform 15 iterations of batch MIRA (Cherry and Foster,
2012). To control for optimizer instability, we perform 3 tuning runs for each system
and report the mean BLEU score for these runs (Clark et al., 2011). As a baseline we
use a translation system with distortion limit 6 and a distance-based reordering model.
For each language pair, a 5-gram language model is estimated using lmplz (Heafield
et al., 2013) on the target side of the parallel corpus.

9.5.1 Evaluating on a Broad Range of Languages

In order to test whether a single universal reordering model based on typological fea-
tures can sufficiently generalize to multiple languages, we evaluate our model on a
broad range of languages from various language families. While doing so, it is im-
portant to ensure that the results are not skewed by differences in the corpora used for
training and testing each language pair. We therefore build translation systems from
the same corpus and domain for every language pair.

We use the 2012 OpenSubtitles corpus6 (Tiedemann, 2012) to extract 800k paral-
lel sentences for each language pair, ensuring that every sentence pair contains only a
single source sentence and that every source sentence contains at least 10 tokens. For
each language pair, 10k parallel sentences are retained for tuning and testing. We use
English as the source language in all language pairs. Table 9.2 summarizes properties
of the data used in these experiments. Apart from the average source sentence length

4To keep the experiments manageable, we opted not to re-align the preordered training corpus using
MGIZA++. Re-alignment often leads to improved translation results, therefore we are likely underesti-
mating the potential preordered translation quality.

5Made available at .
6

https://github.com/wilkeraziz/mosesdecoder
http://opus.lingfil.uu.se/OpenSubtitles2012.php
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Sentences Sentences

Language Total Length BiHDE Language Total Length BiHDE
Spanish 800k 14.29 0.57 Hebrew 800k 14.61 0.68

Portuguese 800k 14.29 0.58 Hungarian 800k 14.33 0.68
Italian 800k 14.68 0.61 Czech 800k 14.19 0.69
Danish 800k 14.50 0.62 Finnish 800k 14.36 0.69

Romanian 800k 14.24 0.64 Icelandic 800k 14.10 0.69
Swedish 800k 14.49 0.64 Dutch 800k 14.37 0.70
French 800k 14.25 0.65 Slovak 638k 15.08 0.70
Greek 800k 14.36 0.65 Chinese 636k 10.39 0.71

Russian 800k 15.08 0.65 German 800k 14.62 0.72
Polish 800k 14.22 0.67 Turkish 800k 14.25 0.72
Arabic 800k 14.84 0.68

Table 9.2: Properties of training data (English source) from the 2012 OpenSubtitles
corpus. We highlight the number of parallel sentence pairs, the average source sentence
length and Bilingual Head Direction Entropy to indicate word order freedom.

and the number of training examples, we report Bilingual Head Direction Entropy (Bi-
HDE, Daiber et al., 2016a), which indicates the difficulty of predicting a unique target
word order given the source sentence and its syntactic analysis. The language pairs
in Table 9.2 are sorted by their BiHDE score, meaning that target languages whose
word order is more deterministic are listed first. For each language pair, we train four
translation systems:

System: Baseline The baseline system is a standard phrase-based machine translation
system with a distance-based reordering model, a distortion limit of 6, and a
maximum phrase length of 7.

System: Gold The gold system provides an indication for the upper-bound achiev-
able translation quality using preordering. In this system, the tuning and test
sets are word-aligned along with the training portion of the corpus and the word
alignments are then used to determine the optimal source word order. While
this system provides an indication for the theoretically achievable improvement,
this improvement may not be achievable in practice since not all information re-
quired to determine the target word order may be available on the source side
(e.g. morphologically rich languages can allow several interchangeable word or-
der variations). Apart from the source word order, the gold system is equivalent
to the Baseline system.

System: No WALS As a baseline for our preordering systems, we create a translation
system that differs from our universal reordering model only in the lack ofWALS
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BLEU ∆ BLEU

Language Baseline No WALS WALS Gold
Dutch 13.76 +0.11 +0.79 +3.44
Italian 23.59 +0.04 +0.48 +1.83
Turkish 5.89 −0.36 +0.43 +0.80
Spanish 23.82 −0.27 +0.29 +1.98

Portuguese 25.94 −0.48 +0.21 +1.64
Finnish 9.95 +0.13 +0.16 +0.51
Hebrew 11.64 +0.30 +0.11 +2.24

Romanian 16.11 +0.11 +0.11 +1.14
Hungarian 8.26 −0.10 +0.10 +0.61

Danish 26.36 −0.13 +0.08 +1.56
Chinese 11.09 −0.32 +0.05 +0.44
Greek 7.22 −0.02 +0.01 +0.49
Arabic 5.36 −0.10 −0.01 +0.36

Swedish 25.60 −0.14 −0.03 +2.04
Slovenian 10.56 −0.35 −0.10 +1.21

Slovak 15.56 −0.09 −0.13 +1.98
Icelandic 14.97 −0.31 −0.14 +0.66

Polish 17.68 −0.45 −0.16 +0.40
Russian 20.12 −0.47 −0.17 +0.92
German 17.08 −0.21 −0.19 +3.31
Czech 12.81 −0.47 −0.21 +0.70
French 19.92 −0.70 −0.23 +1.20

Table 9.3: Translation experiments with parallel subtitle corpora. The system labeled
“WALS” is the universal reordering model with access to all WALS information for
the target language, “NoWALS” is a universally trained model without any typological
information, “Gold” is a system trained with testing time target word order.
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information. The preordering model is trained using the standard set of features
described in Section 9.4.1 with only a single additional feature: the name of the
target language. As in the WALS system, this system is applied by generating a
minimized lattice from the 100-best permutations of each sentence and restrict-
ing the decoder’s search space to this lattice. This system therefore isolates two
potential sources of improvement: (1) improvement due to restricting the search
space by the source dependency tree and (2) improvement from the preordering
model itself, independent of the typology information provided by WALS.

System: WALS TheWALS system applies the universal reordering model introduced
in Section 9.4.2. For each language pair, the preordering model is provided with
the target language and all the WALS features available for this language. The
machine translation system’s search space is then restricted using the minimized
lattice of the 100-best word order permutations for each sentence and no addi-
tional reordering within the decoder is allowed.

The results of the translation experiments using the OpenSubtitles corpora are presented
in Table 9.3. BLEU scores for the No WALS, WALS and Gold systems are reported
as absolute improvement over the Baseline system (∆ BLEU). Over the three tuning
runs performed for each model, we observe minor variance in BLEU scores between
the runs (mean standard deviations: Baseline 0.04, No WALS 0.05, WALS 0.04, Gold
0.07), thus we report the mean BLEU score for each model’s three runs.

While performing monotone decoding (i.e., allowing no reordering on top of the
input lattice), the universal reordering model (WALS) enables improvements or com-
parable performance for the majority of the language pairs we evaluated while the No
WALS system performs worse for most language pairs. This suggests that the improve-
ments are not due to the neural preordering model or the lattice-based translation alone,
but that the WALS information is crucial in enabling these results.

9.5.2 Influence of Domain and Data Size
While the experiments using the subtitle corpora presented in the previous section al-
low a fair comparison of a large number of language pairs, they also exhibit certain
restrictions: (1) all experiments are limited to a single domain, (2) the source sentences
are fairly short, and (3) to ensure consistent corpus sizes, a limited number of 800k sen-
tence pairs had to be used. Therefore, we perform an additional set of experiments with
data from different domains, longer sentences and a larger number of sentence pairs.
To train the translation systems for these experiments, we use the following training
data: For English–Italian, English–Spanish and English–Portuguese, we train systems
on Europarl v7 (Koehn, 2005). English–Hungarian uses the WMT 2008 training data,7
English–Turkish the SETIMES2 corpus (Tiedemann, 2009). Tuning is performed on

7

http://www.statmt.org/
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Dataset Baseline WALS

Language Domain Size Length BiHDE BLEU ∆ BLEU
Turkish News 0.20m 23.54 0.73 8.27 +0.34
Spanish Parl./news 1.73m 23.47 0.58 24.34 +0.18
Italian Parl./news 1.67m 24.49 0.61 24.83 +0.13

Portuguese Parl./news 1.73m 23.67 0.58 32.13 −0.08
Hungarian Parl./news 1.41m 17.11 0.70 7.63 −0.19

Table 9.4: Translation experiments with varying training data sizes and domains (news
and parliamentary proceedings).

the first 1512 sentences of newssyscomb2009+newstest2009 (English–Italian), new-
stest2009 (English–Spanish), newsdev2016 (English–Turkish), newstest2008 (English–
Hungarian), and the first 3000 sentences of news commentary v11 (English–Portuguese).
As test sets we use the rest of newssyscomb2009+newstest2009 (English–Italian), new-
stest2013 (English–Spanish), newstest2016 (English–Turkish), newstest2009 (English–
Hungarian), and the first 3000 sentences of news commentary v11 not used in the dev
set (English–Portuguese). All datasets are filtered to contain sentences up to 50 words
long, and tokenization and truecasing is performed using the Moses tokenzier and true-
caser. Statistics about each dataset and the dataset’s domains, as well as translation
results for the baseline system and the universal reordering model are summarized in
Table 9.4. The results indicate that despite the longer sentences and different domains,
the universal reordering model performs similarly as in the experiments performed in
Section 9.5.1.

Our intrinsic evaluation (Section 9.4.3) as well as the extrinsic evaluation on a trans-
lation task (Section 9.5) indicate that a universal reordering model is not only feasible
but can also provide good results on a diverse set of language pairs. The performance
difference between the No WALS baseline and the universal reordering model (cf. Ta-
ble 9.3) further demonstrates that the typological data points provided by WALS are
the crucial ingredient in enabling this model to work.

9.6 Conclusion
In this chapter, we have shown that linguistics in the form of linguistic typology and
modern methods in natural language processing in the form of neural networks are not
rivaling approaches but can come together in a symbiotic manner. In the best case, com-
bining both approaches can yield the best of both worlds: the generalization power of
linguistic descriptions and the good empirical performance of statistical models. Con-
cretely, we have shown in this chapter that it is possible to use linguistic typology
information as input to a preordering model, thus enabling us to build a single model
with a single set of model parameters for a diverse range of languages. As an empir-
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ical result, our findings provide support for the adequacy of the language descriptions
found in linguistic typology. Additionally, they open the way for more compact and
universal models of word order that can be especially beneficial for machine translation
between language pairs with little parallel data. Finally, our results also suggest that
target-language typological features could play a key role in building better preordering
models.



Chapter 10

Conclusion

This thesis focuses on statistical machine translation. It contributes an extensive study
of the impact of typological factors in two main areas: differences in word order free-
dom and morphological complexity. In both areas, we demonstrate that typological
differences between languages influence translation quality and show that these dif-
ferences can and should be taken into account in order to produce more typologically
robust translation models.

We study the following typological differences and present methods to address them:

• In the area of word order freedom, we show that producing a space of potential
word order choices instead of a single word order can improve howwell preorder-
ing generalizes to typologically diverse target languages. We further show that
word order permutation lattices provide a suitable representation for efficiently
integrating such word order choices into a phrase-based machine translation sys-
tem. Using translation experiments and with a newly introduced entropymeasure
for word order freedom, we show that these word order permutation lattices are
effective for both strict and free word order target languages.

• In the area of inflectional word formation processes and specifically for trans-
lation into morphologically rich languages, we show that morphologically im-
poverished source languages can be enriched with unexpressed morphological
attributes to mitigate the translation model’s difficulties in selecting appropriate
word forms. The set of morphological attributes whose addition to the source
language may potentially be helpful in this task varies from language pair to lan-
guage pair. Hence, we propose a latent variable model for selecting these mor-
phological attributes from parallel data, which results in a high-quality selection
in our experiments.

139



140 Chapter 10. Conclusion

• In the area of non-inflectional word formation processes, which can cause fur-
ther sparsity issues for phrase-based machine translation systems, we introduce
an unsupervised approach to split compound words into their individual parts us-
ing distributional semantics. We show that semantic analogies (“bookshop is to
shop as bookshelf is to shelf”), which can be performed using word embeddings
obtained from large monolingual corpora, provide a rich source of semantic in-
formation for surfacing the internal structure of compound words. The resulting
semantic information is sufficient to reliably isolate the parts of compounds and
thus enables translation systems to work with comparable translation units in the
source and target language.

The methods we introduce in this thesis serve to build machine translation models that
are more robust to typological differences between languages. Various linguistic the-
ories and the empirical findings of linguistic typology suggest that the similarities and
differences between languages can in many cases be captured with a small set of param-
eters. If this is indeed the case, then models for natural language processing should not
only be able to reliably deal with typologically diverse languages, but they should also
be able to benefit from the existence of such a small set of parameters and the knowl-
edge about their values which was collected in linguistic typology. We show that for
word order, specifically for preordering in phrase-based models, typological informa-
tion collected by linguists in the World Atlas of Language Structures, when combined
with neural network techniques, can be used to build universal reordering models that
perform well on a typologically diverse set of target languages. Thus, in this instance
typological knowledge can be used not only to build models that work for more lan-
guage pairs but enables models that can use this information to improve generalization
and that require less training data.

This thesis furthermore provides a comprehensive summary of the relationship be-
tween linguistic typology and machine translation. While focusing on phrase-based
statistical machine translation, it introduces the preliminaries of three major paradigms
in machine translation and highlights the structure each of these approaches imposes
on the translation process. It examines how linguistic structure in particular is treated
in various approaches and covers how the various areas studied in linguistic typology
relate to machine translation and which problems they may cause. Finally, we have
provided a broad overview of how the issues caused by significant typological differ-
ences are addressed in machine translation and how our work fits into the larger context
of machine translation research.
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Abstract

Machine translation systems often incorporate modeling assumptions motivated by
properties of the language pairs they initially target. When such systems are applied
to language families with considerably different properties, translation quality can de-
teriorate. Phrase-based machine translation systems, for instance, are ill-equipped to
handle the challenges caused by relaxed word order constraints and productive word
formation processes in morphologically rich languages. In this thesis, we ask what
role the properties of languages, as studied in the field of linguistic typology, play in
how well machine translation systems perform. We focus in particular on word order
and morphology, and show that typological differences in these areas can be bridged
by making certain linguistic phenomena overt to the translation system. Understand-
ing and exploiting typological differences between languages enables improvements
to the typological robustness of translation systems without significantly changing the
assumptions of the underlying translation models.

We begin by studying the effect of word order freedom on preordering, a popular
technique to model word order in phrase-based machine translation. We show that
producing a space of potential word order choices instead of a single word order and
integrating this space into the translation model via word order permutation lattices
provides a principled way of improving the typological robustness of preordering.

Then, we show that reducing the dissimilarity between the source and target lan-
guage in the area of morphological complexity improves phrase-based machine transla-
tion for typologically diverse language pairs. For inflectional morphology, we do so by
enriching the morphologically impoverished source language with unexpressed mor-
phological attributes, which enables better lexical choice in the target language. For
non-inflectional morphology, we introduce a semantically motivated model of com-
pounding, which can be used to split compound words into their meaning-carrying
subparts, thus enabling the translation system to work with comparable translation units
in the source and target language.

Finally, we show that besides helping to bridge the performance gaps between typo-
logically diverse languages, linguistic typology can also serve as a source of knowledge
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to guide reordering models and to facilitate universal reordering models applicable to
multiple target languages. Such universal reordering models can learn in a data-driven
manner which aspects of linguistic typology to pay attention to, enable better general-
ization and require less training data than models for individual languages.



Samenvatting

Typologisch robuuste statistische machinevertaling
Variaties en overeenkomsten tussen talen

begrijpen en benutten voor machinevertaling

Machinevertaalsystemen gebruiken vaak modelleringsaannames die gebaseerd zijn op
de taalparen waar ze oorspronkelijk voor gemaakt zijn. Als zulke systemen toegepast
worden op taalfamilies met aanzienlijk verschillende eigenschappen, kan dat nadelig
zijn voor de kwaliteit van de vertaling. Phrase-based machinevertaalsystemen zijn bij-
voorbeeld slecht toegerust voor de uitdagingen die meegebracht worden door versoe-
pelde woordvolgorderestricties en productieve woordvormingsprocessen in morfolo-
gisch rijke talen. In deze dissertatie vragen we welke rol taaleigenschappen, zoals be-
studeerd in het veld van taaltypologie, in de prestaties van machinevertaalsystemen
spelen. We leggen de nadruk op woordvolgorde en morfologie in het bijzonder en we
laten zien dat typologische verschillen in deze gebieden overbrugd kunnen worden door
bepaalde taalverschijnselen expliciet te maken in het vertaalsysteem. Het begrijpen en
gebruiken van typologische verschillen tussen talen maakt het mogelijk vertaalsyste-
men typologisch meer robuust te maken zonder de aannames van de onderliggende
vertaalmodellen drastisch te hoeven veranderen.

We beginnen met een studie van het effect van woordvolgordevrijheid op pre-
orderen, een populaire techniek om de woordvolgorde te modelleren in phrase-based
machinevertaling. We laten zien dat het gebruiken van een keuzeruimte van poten-
tiële woordvolgorden in plaats van een enkele woordvolgorde en het inbouwen van
deze ruimte in het vertaalmodel door middel van woordvolgordepermutatieroosters een
principiële oplossing biedt voor het verbeteren van typologische robuustheid voor pre-
orderen.

Vervolgens laten we zien dat phrase-based machinevertaling voor typologisch ver-
schillende taalparen verbeterd kan worden door het verkleinen van de verschillen in
morfologische complexiteit tussen bron- en doeltaal. Voor flexiemorfologie doen we
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dit door het verrijken van een morfologisch arme brontaal met ongemarkeerde morfo-
logische kenmerken, wat woordkeuze in de doeltaal verbetert. Voor samenstellingen
stellen we een semantisch gemotiveerd samenstellingsmodel voor, dat samengestelde
woorden in hun betekenisdragende onderdelen opsplitst. Dit stelt het vertaalsysteem in
staat om met vergelijkbare vertalingseenheden in de bron- en doeltaal te opereren.

Tenslotte laten wij zien dat taaltypologie niet alleen voor het overbruggen van pres-
tatieverschillen tussen typologisch verschillende talen van dienst is, maar dat het ook
een kennisbron vormt om reorderingsmodellen te leiden en universele reorderingsmo-
dellen voor meerdere doeltalen te vergemakkelijken. Zulke universele reorderingsmo-
dellen kunnen op een data-gebaseerde manier leren op welke taaltypologische aspecten
te letten, ze bevorderen generalisatie en ze hebben minder trainingsdata nodig dan mo-
dellen voor afzonderlijke talen.
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