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Prof. dr. B. Skyrms University of California, Irvine

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



Contents

Acknowledgments ix

1 Introduction 1
1.1 The Semantics-Pragmatics Distinction 2
1.2 General Methodology 4

1.2.1 Ontogeny and phylogeny; biological and linguistic change 5
1.2.2 A computational analysis of outcomes of ecologically ratio-

nal linguistic behavior 7
1.3 Overview and Source Material 8

2 Signaling Games: Analysis and Interpretation 13
2.1 Signaling Games 14
2.2 Static Concepts and Optimal Solutions 19
2.3 On the Use and Limits of Static Equilibrium Analysis 24
2.4 Individual-Level Behavior: Rational Language Use 27

2.4.1 Focal points and semantic meaning 28
2.4.2 Pragmatic reasoning 31

2.5 Final Remarks 39

3 Signaling Under Uncertainty: Interpretative Alignment Without
a Common Prior 41
3.1 Meaning Multiplicity in Communication 42
3.2 Ambiguity, Preferences, Context and Common Priors 43

3.2.1 Brevity and context 45
3.2.2 Context and (beliefs about) subjective expectations 46

3.3 Ambiguous Signaling Through Pragmatic Inference 50
3.4 Predictions for Single and Iterated Interactions 54

3.4.1 Simulations 56
3.4.2 Exploration and past experience 61

v



3.4.3 Preemptive adaptation 61
3.5 Model Fit 62

3.5.1 Individual-level data and model 64
3.5.2 Results 67
3.5.3 Discussion 69

3.6 General Discussion 72
3.7 Conclusion 76

4 Co-Evolution of Lexical Meaning and Pragmatic Use 77
4.1 Introduction 78
4.2 A Model of Co-Evolving Lexical Representations and Pragmatic

Behavior 80
4.2.1 Communicative success and learnability 80
4.2.2 The replicator-mutator dynamic 80
4.2.3 Fitness and learnability of lexical meanings and pragmatic

strategies 83
4.2.4 Model summary 90

4.3 Functional Pressure: Utility vs. Expressivity 91
4.4 Case Study: Scalar Implicatures 94

4.4.1 Setup 94
4.4.2 Simulation results 97

4.5 General Discussion 103
4.6 Conclusion 106

5 Evolution of Ambiguity 109
5.1 The Evolution of Ambiguity: A Puzzle to be Explained? 110
5.2 Model Summary and Setup 111

5.2.1 Contexts and objective state distributions 112
5.2.2 Type space 115
5.2.3 Inductive learning bias 117
5.2.4 Summary 119

5.3 Simulation Results 120
5.3.1 Functional pressure only 121
5.3.2 Learnability only 122
5.3.3 Functional pressure and learnability 124

5.4 General Discussion 126
5.5 Conclusion 129

6 General discussion 131
6.1 On Semantics and Pragmatics 131
6.2 Change, Outcomes, and Factors of Influence 135

7 Conclusion 139

vi



Appendix A 143

Appendix B 145

Appendix C 149

Bibliography 156

Samenvatting 177

Abstract 179

vii





Acknowledgments

In his The Analytical Language of John Wilkins Jorge Luis Borges criticizes at-
tempts to make universal classifications. He exemplifies the arbitrariness and
conjectural nature of such classifications by conjuration of a Chinese encyclope-
dia that purports to give a universal animal taxonomy. In it, animals are divided
into categories such as belonging to the Emperor, fabulous, stray dogs, included
in this categorization, et cetera, or those that look like flies when seen from afar.
Acknowledging, with the right words and in the right place, all those that have
contributed, directly or otherwise, to shaping the content of this investigation,
and me along the way, feels a little like writing entries in Borges’ fictional ency-
clopedia myself. The good news is that I’m not, as Wilkins and others, trying
to come up with a universal scheme. I will therefore take the liberty to let my
subjective views seep through these initial pages, while accepting that a couple
of paragraphs will not be able to capture all I would want to convey on these
matters. I hope the reader will indulge me; it’s not often that I write a book.

First, I wish to thank my supervisor Robert van Rooij. Throughout these
years, Robert has given me the opportunity to prod and poke in many directions.
Some of these efforts led to the material found in this thesis. As may be expected,
others turned out to be less fruitful, or their outcomes were too remote to be
included here. Irrespective of the result, I wish to thank Robert for the trust
placed in me throughout this journey, as well as for guidance along it. Thanks
for giving me time to explore and err, but also for (much needed) pragmatism
when it came down to finishing projects.

Although, and particularly in light of the fact that, my research progressed in
directions away from his and that we were neither at the same institution nor in
the same country, I wish to thank Ewan Klein for his open ear and critical mind.
I have good memories of coffee sessions in Edinburgh revolving around language
identification in the limit, Popper and falsification, and noun-noun compounds
(not necessarily all in one sitting). Thanks for sharing your constructive and
critical views with me.

ix



I also wish to extend my gratitude to the remaining, non-supervisory, members
of my doctoral committee: Martin Stokhof, Frank Veltman, Rens Bod, Jelle
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Chapter 1

Introduction

. . . In that empire, the art of cartography attained such perfection
that the map of a single province occupied the entirety of a city, and
the map of the empire, the entirety of a province. In time, those
unconscionable maps no longer satisfied, and the cartographers
guilds struck a map of the empire whose size was that of the empire,
and which coincided point for point with it. The following
generations, who were not so fond of the study of cartography as
their forebears had been, saw that that vast map was useless, and
not without some pitilessness was it, that they delivered it up to the
inclemencies of sun and winters. In the deserts of the west, still
today, there are tattered ruins of that map, inhabited by animals
and beggars; in all the land there is no other relic of the disciplines
of geography.

Jorge Luis Borges, On Exactitude in Science

Communication is a social endeavor of information transfer. If we are told

(1) Alice went to Las Vegas and married,

we may learn just that. First, that Alice went to a place called Las Vegas. Second,
that she married. However, we might also infer more. For instance, that Alice
married in Las Vegas, taking and to indicate a temporal succession of events; or
that Las Vegas refers to a famous place in Nevada rather than to the city of Las
Vegas on the coast of Uruguay. With the appropriate background knowledge, we
might even infer that Alice left her partner if the speaker is Alice’s (now former)
spouse.

Some of these inferences, such as that of Alice leaving her spouse, are rather
ad hoc. Others, such as the enrichment of and to convey and then, show strik-
ing regularities across languages. What they all have in common is that they
go beyond what is said explicitly. On the one hand, this can give rise to uncer-
tainty and misunderstanding. Hearers cannot be certain that what they infer is
intended, nor can speakers be certain that the inferences they intend to convey
are drawn. On the other hand, the trait of not codifying all information overtly is
not exclusive to natural language but found in much of biological signaling, from
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2 Chapter 1. Introduction

cellular communication to that of meercats and baboons (Greenough et al. 1998,
Arnold and Zuberbühler 2006, Santana 2014). Rather than avoiding it, natural
communication seems to thrive in the implicit; in the unsaid; in the contextually
determined.

Framed in linguistic terminology, the information that is literally associated
with an expression concerns its semantics. What is inferred beyond its literal
meaning lies in the realm of pragmatics. This can involve the recruitment of con-
textual information, as well as mutual reasoning about interlocutors’ linguistic
choices. Under this distinction the meaning of an utterance is the product of con-
ventional semantic meaning and general pragmatic rules that apply on language
use in context.

Following the classic distinction between semantics and pragmatics we may
then ask: if all interlocutors cared about was faithful information transfer, why
leave to pragmatics and the implicit what semantics can do? Three reasons come
to mind. First, it might be that misunderstandings are rare. What speakers in-
tend to convey and what hearers take them to convey usually coincides. Second,
it might be that some degree of uncertainty is unavoidable. After all, natural
communication takes place in open and changing environments. Additionally,
language is not acquired from a single source, nor does it serve a single purpose.
It might consequently be impossible to use language in such a way that all un-
certainty is quenched. Third, some degree of uncertainty might be advantageous.
For instance, it may help interlocutors cope with some of the aforementioned
issues, leaving to pragmatics the job of filling in gaps impossible to fill only by se-
mantic conventions; or it might confer them with means to convey information in
a more efficient manner. Inversely then, if one or a combination of these answers
holds, we should also ask why and under which conditions interlocutors would
leave to semantics what pragmatics can do.

The overall goal of this investigation is to address both of these questions by
elucidating conditions under which language may come to leverage or accommo-
date uncertainty in information transfer. In particular, we will focus on cases in
which speakers could, in principle, provide more information overtly but never-
theless often choose not to do so. In analogy to Borges’ fictional empire, this
investigation’s underlying theme is accordingly the communicative potential that
less (overt) exactitude offers in a trade-off against (pragmatic) uncertainty, as
well as the linguistic properties that this trade-off gives rise to. Is language that
leaves no room for uncertainty even a stable alternative, or would it be left in
tatters by future language users?

1.1 The Semantics-Pragmatics Distinction

Natural languages are acquired from different sources and used in novel situations,
often with new interlocutors of which little to nothing is known. As mentioned
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above, some variation across speakers and uncertainty about their language (use)
may therefore be unavoidable. It is nevertheless also true that speakers do not
necessarily shy away from, but regularly make use of expressions that invite or
even necessitate pragmatic inference. A request for a blanket can be politely
veiled by saying I’m cold; a temporal succession of events can be communicated
by the order in which conjuncts appear, as in utterance (1); an invitation can be
declined by saying I have to work. Crucially, such information could be conveyed
more explicitly.

An influential account of the relation between what is said and what is con-
veyed is due to Grice (1975; 1989), who characterized pragmatic language use
and its interpretation as resulting from a process of mutual reasoning about ra-
tional language use. That is, pragmatic inference is an outcome of a hearer’s
reasoning about why the speaker said what she said in the way she said it, tak-
ing into consideration the conversation’s background as well as goals and beliefs
of interlocutors. Conversely, a speaker reasons about her addressee’s reasoning
process, which she expects to effect a particular enrichment of her utterance. For
instance, under the assumption that the speaker is cooperative and relevant, I
have to work can be interpreted as providing a reason why the speaker will not be
able to accept an invitation. Under this view, then, what is conveyed is explained
in terms of the goals that language use is believed to serve. By contrast to many
approaches in the philosophy of language contemporary to it, the Gricean project
explicitly brings interlocutors, their goals, and the context of interaction into the
picture instead of abstracting away from them.

Central to Grice’s pragmatic theory is the notion of rationality. He embodies it
in a number of guiding principles postulated to underlie conversation, his so-called
conversational maxims. Roughly put, these principles state that rational speakers
should be as informative but not more informative than necessary; that they
should be truthful, relevant, and brief, but that they should avoid ambiguity. As
an overarching principle, they should speak in such a way that the conversational
goal is furthered. According to Grice, at a fundamental level this goal is to
reach mutual understanding. These principles are not meant to be descriptive
but normative (Grice 1989:§2:29). That is, they are not intended to describe
how interlocutors behave but how rational language users ought to behave to
reach mutual understanding. Pragmatic inferences then follow from the mutual
assumption that all conversational participants behave in this fashion. What
is more, not only the compliance with conversational maxims can give rise to
pragmatic inference but also their violation. Under the assumption that (rational
and cooperative) speakers try to comply with the maxims as much as they can,
flouting a maxim is a deliberate and therefore meaningful signal for the hearer.
In sum, rationality is seen as not only guiding, but also as constraining language
use in relation to interlocutors’ beliefs and goals (Westera 2017:6). Under this
view, the role of semantics is to provide the groundworks on which pragmatic
inference can build on.
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Of course, although widespread, this is a particular view of pragmatics and
its relation to semantics. Much research has been devoted to the explanatory
potential of alternative principles to those proposed by Grice (e.g., Sperber and
Wilson 1986, Wilson and Sperber 2006, Carston 2006), or their reduction and
refinement (e.g., Horn 1984, Levinson 2000). As detailed in Chapter 2 we will
follow a third way and ground notions such as cooperativity directly in the beliefs
and preferences of interlocutors in context (e.g., Parikh 1991; 2000, Benz et al.
2006a, Benz 2006, Benz and van Rooij 2007, Franke 2009, Frank and Goodman
2012, Franke and Jäger 2014; 2016a). Under this view, pragmatic inference follows
directly from reasoning about such contextual beliefs and preferences, without
need for appeal to maxim-like rules. Using game-theoretic models that embody
this view will enable us to inspect predictions borne out from an interactive
perspective of language use, as well as those that follow from linguistic pressures
that apply on such interactions.

The approach we take here is notwithstanding Gricean in spirit. Information
transfer is viewed as en endeavor of social reasoning about rational language use.
Schematically, we will view what is conveyed as a product of (cf. Parikh 2000):

an agent’s cognitive make-up ⊗ context of utterance ⊗ semantic meaning

As a coarse approximation, our general explanandum can be recast as asking for
the conditions that may favor information transfer that relies more strongly on
the third component than on one of the first two, and vice-versa.

1.2 General Methodology

Our analysis spans across three interwoven levels: single interactions, iterated in-
teractions, and the level of populations. As made precise in Section 2.4, linguistic
behavior in single interactions is the foundation on which we build. Such behav-
ior results from the context of interaction and an individual’s cognitive make-up,
her beliefs and preferences, the semantic conventions she holds to be true, and
the conversational rules that she takes to operate on these conventions. Taken
together, these factors determine agents’ choice probabilities in production and
comprehension in a given situation. However, the particular behavior of an agent
at a particular time is not informative about the effects that linguistic pressures
have on her language and behavior in the long run. Our central tenant is that
if we are to understand why languages exhibit the properties they do, we should
consider the tasks they fulfill over time, as well as pressures that apply on them.
Many, if not arguably most, of these tasks are social endeavors that involve joint
rather than independent action. Our focus will accordingly lay on iterated inter-
actions and population-level dynamics. The former trace linguistic change over
the course of a sequence of linguistic interactions. This kind of change can be
conceived as taking place over the course of (possibly multiple) dialog(s). The
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latter trace change as a product of the expected outcome of repeated interac-
tions of members of a population (horizontal change), as well as the effects of
generational turnovers – when old population members are replaced by new ones
(vertical change). The remainder of this chapter sets the stage for such an analysis
by clarifying, in general terms, what we mean by words such as change, evolution
and development; in which relation iterated and population-level dynamics stand;
and on which level of analysis we operate.

1.2.1 Ontogeny and phylogeny; biological and linguistic
change

The relation between horizontal and vertical language change bears similarity to
the biological distinction between ontogeny and phylogeny. In broad strokes, on-
togeny studies the development of an organism throughout its lifetime. Human
ontogeny, for instance, spans from the ovum’s fertilization across embryogenesis,
infant and adolescent development, up to the development of the traits of fully
matured adults. Phylogeny instead studies the evolution of species or popula-
tions throughout generations, tracing their development and relationship to one
another.

The relationship between the development of an organism on the individual
level and that of its phylum was regarded as a fundamental topic in evolution-
ary and developmental biology before the turn of the 20th century. A popular
view on this matter is illustrated by Ernst Haeckel’s famous theory of recapit-
ulation, which holds that ontogeny recapitulates phylogeny (Haeckel 1866). In
other words, Haeckel’s hypothesis was that the individual development of an or-
ganism passes through stages that represent the development of its species, with
ontogenetic stages representing the features of its adult ancestors.1 The appeal
of such a mechanistic view of an organism’s ontogeny, viewed as a (con)sequence
of its phyletic history, is evident in light of its historical context: theories of re-
capitulation attempted to gain insight into the past through the analysis of the
present, with Mendelian genetics still to gain traction and to ultimately displace
recapitulation. Nowadays a relationship between ontogeny and phylogeny under
any strong interpretation of recapitulation is widely taken to be untenable. The
influence of phylogeny on ontogeny as well as the role of other, at recapitulation’s
height unknown or disregarded, determinants turned out to be more complex
than initially thought (see Gould 1977 for historical details).

What we learn from this snapshot of the history of biology is first and foremost
that relating processes of individual development to macro-processes from which

1Whether individual development faithfully traverses all the stages of its phylum’s history,
merely resembles (some of) them, and to which degree this is supposed to apply to an organism
as a whole or to its parts individually, allowing for temporal divergence in their development,
were issues of active debate at the height of recapitulation’s popularity. These details need not
concern us here but see Gould 1977 for a historical overview.
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they (partially) draw is often non-trivial. Caution is particularly called for in the
face of seemingly intuitive parallels, as illustrated by the conclusions drawn from
the ontogenetic expression of pharyngeal slits in human embryos to illustrate how
humans pass through a developmental fish-like stage. Interestingly, precursors to
recapitulation can be found in early theories of the origin of language (Danesi
1993). For instance, in the assumption that the language acquired by children
deprived of linguistic input would correspond to a/the proto-language from which
modern languages could have derived. As in the case of biology, a parallelism
between linguistic change at an individual level and its historical development
is appealing, for it would allow for a detailed inspection of its earlier stages in
living specimens, so to speak. In the case of language evolution this issue is
particularly pressing given that language “leaves no direct imprint in the fossil
record” (Bolhuis et al. 2014:3). For the purpose of this investigation the origins
of language itself are not of primary relevance. Our starting point is instead
given by the change of pre-existing linguistic knowledge at different transmission
levels with the goal to understand the conditions that lead to the adoption of
linguistic strategies that may favor implicit over explicit information codification.
Nevertheless, the question how the vertical transmission of linguistic knowledge
affects its horizontal use and change, and vice-versa, is relevant here as well.

As with ontogeny and phylogeny, the emergence and change of language and
its properties is also influenced by many intertwined factors. These range from
biological and socio-ecological to cultural ones (Benz et al. 2006b, Steels 2011,
Tamariz and Kirby 2016). Social and ecological pressures determine communica-
tive needs, while biology determines the architecture that enables and constrains
the means by which they can be fulfilled. Which of these factors is involved;
whether change involves individual- or population-level processes; and on what
timescale such change operates on are issues often obscured by the term language
evolution. Let us therefore pause and briefly clarify these matters to set the scope
of this investigation. With respect to the first issue concerning the nature of the
described change, our focus will lay on cultural aspects. That is, we analyze
processes of linguistic change as shaped by language use and its transmission: as
a result of a process of cultural evolution (Christiansen and Chater 2008, Pagel
2009, Thompson et al. 2016). With respect to the second issue, drawing from
the caution expressed above, we will analyze the effects of change at individual-
and population-level separately, and contrast their outcome where pertinent. In
analogy to the terminological distinctions often employed in connection to on-
togeny and phylogeny, we refer to the former as (individual) development and
reserve the term evolution for population change. Whether we analyze change
at the individual- or population-level will depend on the phenomenon at hand.
In Chapter 3, we will be concerned with contextual disambiguation in dialog.
The inferences that resolve ambiguity in such cases can be rather ad hoc and
idiosyncratic because they depend on the context and the interlocutors involved.
Their treatment accordingly calls for models that make predictions about agents’
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choice in single interactions and track their change over repeated interactions.
By contrast, Chapter 4 and Chapter 5 analyze the evolution of more systematic
pragmatic inferences. This analysis abstracts from proximate causes, individ-
ual choices at particular points in time, and instead looks at the outcome of
pressures that apply on populations of communicating agents. With respect to
the third issue, as mentioned above, we constrain our attention to change ef-
fected by pressures such as ones for higher communicative success, learnability,
or speaker-economy on populations or individuals that have some initial linguistic
conventions to draw from; rather than their emergence, for example, from proto-
communication systems, or the evolution of the cognitive endowment necessary to
deploy pragmatic reasoning (see Woensdregt and Smith 2017 for a recent survey
on these matters).

1.2.2 A computational analysis of outcomes of ecologically
rational linguistic behavior

Marr (1982) famously argued for a tripartite distinction of analysis. His aim
in doing so was to clarify how different perspectives taken toward an object of
study are informed by different methodologies, and to clarify that they seek to
answer different questions. More precisely, Marr proposes to categorize analysis
according to the following complementary levels:

• Computational level: the what and why of a system/operation;

• Algorithmic level: the (computational) implementation of a system/operation.
In particular, the representation of its input and output;

• Implementational level: the physical realization of a system/operation.

For example, in the case of vision Marr argues that a purely physiological
description of its biological architecture may not necessarily add to our under-
standing of visual recognition. In particular, it may not add to our understanding
of the motivations that underlie it; this being a computational rather than im-
plementational question.

Of course, levels of analysis also interact and should therefore inform each
other. Just as the physiology of vision may tell us something about its function, its
computational description may guide its implementation. A transversal analysis
is ultimately necessary to fully understand a complex system such as vision or,
in our case, language; however impractical this task may be (Marr 1982:20).

Acknowledging at which level analysis is conducted has the advantage of con-
straining the perspective taken with respect to an object of study, as well as that
of making clear the goals of the analysis. This is not only important to ensure
internal coherence but also for critical assessment.
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Our present aim is to gain insight in conditions under which language ac-
commodates or leverages uncertainty “[...] by understanding the nature of the
problem being solved [rather] than by examining the mechanism (and the hard-
ware) in which it is embodied” (Marr 1982:27). Under Marr’s classification, this
investigation is then conducted at the computational level. We focus on two
fundamental and interrelated problems being solved. The first is efficient infor-
mation transfer through language use. The second is the transmission of linguistic
knowledge from one agent to another. This may involve two proficient language
users that adapt their language use to each other through the course of their in-
teractions (Chapter 3), or proficient language users from which näıve users learn
(Chapter 4 and 5). Put differently, the second problem concerns the acquisition
or adaptation of the means by which the first problem is solved. As we shall see,
solutions to these problems can pull in opposite directions. A characterization of
their joint influence and combined solution is therefore part of our overall goal.

With Grice and much work in Bayesian cognitive modeling, decision theory,
and game theory, our approach is rationalistic at the level of individuals (Ander-
son 1990; see Griffiths et al. 2012 and Franke and Jäger 2016a for discussion). This
means that we aim to give a teleological, rather than mechanistic, explanation
of linguistic behavior. To analyze linguistic change, we couch this rationalistic
approach in the ecological context in which behavior takes place. That is, we
analyze linguistic change as shaped both by the behavior resulting from the com-
putational capacities of an agent itself, as well as by the environment in which
this behavior is embedded (Simon 1990). The former we assume to correspond
to (an approximation of) bounded rational behavior (Chapter 2). The latter
encompasses factors such as the interlocutor’s overt behavior and contextual in-
formation (Chapter 3 and 5), the population in which actors find themselves in
(Chapter 4 and 5), as well as factors such as noisy perception (Chapter 6). In
light of our main findings, we cast a critical light on this approach to the analysis
of linguistic change in Chapter 6.

1.3 Overview and Source Material

Chapter 2 This chapter lays out the technical and conceptual foundations of our analy-
sis, building on Lewis’ (1969) signaling games. We proceed by incrementally
introducing some central game-theoretic notions and highlight how they can
aid linguistic inquiry. In particular, we focus on how they can make the in-
terplay of conventional meaning, interlocutors’ goals, information transfer,
and mutual reasoning precise.

This chapter also discusses the limitations of static equilibrium analysis.
With Franke (2013) and Huttegger and Zollman (2013), we argue that static
approaches suffer from conceptual and technical issues that make them un-
suitable for our purposes: they fail to make clear predictions when multiple
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equilibria exist; their procedural agnosticism lacks in explanatory force to
address the question how language users may come to adopt a particular
(way of using) language; and they can be taken to suggest outcomes that
in some cases are seldom, if ever, reached. These shortcomings motivate a
move from a static analysis of language to a dynamic one. This is the kind
of analysis which we conduct throughout this investigation.

In the dynamic realm we differentiate between micro dynamics, which track
change in language or behavior of individual agents, and macro dynamics,
which abstract away from individuals and instead trace change in popu-
lations. Making predictions using either type of dynamic analysis presup-
poses that we characterize how language is used, as well as what counts as
a language in the first place. To this end, we introduce a general model of
rational language use at this chapter’s end.

Chapter 3 This chapter focuses on ambiguity in iterated interactions. In particular, on
the question why ambiguity is such a pervasive property in biological signal-
ing if, at first sight, functional considerations about efficient and accurate
information transfer would seem to disfavor it. With previous justifications
of ambiguity, we argue that context plays an important role in allowing
for the (relatively) safe exploitation of ambiguity. However, we inject some
wrinkles in this justification by calling into question the assumption that in-
terlocutors have access to the same contextual information to disambiguate
utterances. We then argue that this issue unravels into a larger one, where
the interaction between context, interlocutors’ private contextual expecta-
tions, and their beliefs about each other’s expectations play an important
role. These factors are argued to jointly determine the conditions under
which a functional advantage for ambiguity crystallizes. We conclude that
ambiguity can be viewed as an opportunistic adaptive device: it endows
interlocutors with the ability to flexibly mold language use to suit their
communicative preferences and the context of interaction.

Iterated interactions and alignment play an important role in this chapter.
By interacting multiple times, interlocutors can learn something about each
other’s contextual expectations. This reduces the speaker’s uncertainty
about what her interlocutor is likely to infer from an ambiguous utterance.

We analyze the outcomes of iterated interactions without a common contex-
tual prior using a conservative generalization of previous models of rational
language use, paired with simple update rules. After exploring the the-
oretical predictions of the model, we show that it succeeds in explaining
signaling patterns found in experimental data.

The content of this chapter is based on:

Brochhagen, Thomas. 2017. Signalling under uncertainty: interpretative
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alignment without a common prior. The British Journal for the Philosophy
of Science. doi: 10.1093/bjps/axx058.

Chapter 4 This chapter focuses on the evolution of a division of labor between se-
mantics and pragmatics. To analyze how such a division may come to
be, we trace the effects that two evolutionary pressures have on the joint
interaction between conventionalized lexical representations and conversa-
tional strategies of language use. These pressures are (i) a horizontal one
for communicative success during information transfer within a popula-
tion and (ii) a vertical one for learnability, which applies when linguistic
knowledge is transmitted from one generation to the next. We model the
ensuing dynamics using the replicator-mutator dynamic, where replication
exerts fitness-based pressure for efficient communication and mutation cap-
tures the transmission fidelity by which linguistic knowledge is transmitted
through a process of iterated learning. Importantly, learners do not have
access to unobservable lexical representations and conversational strategies.
They instead need to infer these latent properties from the overt linguistic
behavior that results from their combination.

We analyze the separate and joint influence that these pressures have in a
case study on the (lack of) lexicalization of scalar implicatures. This case
study suggests that semantics and pragmatics play a synergic role in over-
coming both pressures: pragmatic use allows maintenance of simpler lexical
representations that are easier to learn; pressure toward representational
simplicity indirectly promotes pragmatic over literal language use. As a
consequence, iterated transmission and use of language lead to a regular-
ization that may explain the lack of lexicalization of systematic pragmatic
enrichments.

This chapter is based on:

Brochhagen, Thomas, Michael Franke and Robert van Rooij. Co-evolution
of lexical meaning and pragmatic use. 2017. Manuscript, Amsterdam–
Tübingen.

Brochhagen, Thomas, Michael Franke and Robert van Rooij. 2016. Learn-
ing biases may prevent lexicalization of pragmatic inferences: a case study
combining iterated (Bayesian) learning and functional selection. In Pro-
ceedings of the 38th Annual Conference of the Cognitive Science Society.

Chapter 5 This chapter looks at ambiguity at the population level. Drawing from the
individual-level analysis in Chapter 3, we ask under which conditions con-
ventional semantic meaning that allows for functional ambiguity exploita-
tion evolves. For signaling behavior to be functionally advantageous it needs
to ensure that information is transmitted accurately. This means that, even
if a signal is semantically ambiguous, in context it should be, by and large,
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unequivocal. However, such a signal may not necessarily suggest underly-
ing semantic ambiguity to a näıve learner. If the learner only witnesses the
signal being used in a single context to signal a single meaning, then she
may not learn to associate this signal with other meanings. This poses a
challenge for the acquisition of (unobservable) ambiguous semantic conven-
tions.

We use the model from Chapter 4 to investigate how the context(s) in which
communication and learning take place affect the evolution of semantic am-
biguity. Our results suggest that ambiguity evolves when the environment is
varied, with language use happening in multiple contexts that are informa-
tive about different meanings. An environment that instead favors a single
context promotes precise semantic conventions rather than the pragmatic
flexibility enabled by their underspecification.

Chapter 6 This chapter discusses the models proposed in previous chapters and the
predictions they make from a general perspective. We begin by reflecting
on what we learned about the conditions under which language may come
to favor semantic underspecification and recruit pragmatics to effect effi-
cient and successful information transfer. We argue that there are multiple
evolutionary trajectories under which this may happen. First, if communi-
cation occurs in varied informative contexts, then underspecified semantics
coupled with pragmatic abilities endow interlocutors with the ability to flex-
ibly adapt their linguistic resources to the context of interaction and their
interlocutors. Second, some underspecified lexical meanings may be sim-
pler and therefore easier to learn; if interlocutors are sufficiently rational,
then pragmatic reasoning can enrich these meanings and thereby counter-
act functional disadvantages otherwise incurred. Reversely, if the context
of interaction is static or rationality is low, then precise semantics come to
be favored over pragmatic recruitment. We then discuss the methodolog-
ical issues raised by this kind of investigation and argue for a pluralistic
approach that takes multiple likely factors of change into consideration.

This chapter discusses results presented in fuller detail in:

Brochhagen, Thomas and Michael Franke. 2017. Effects of transmission
perturbation in the cultural evolution of language. In Proceedings of the
39th Annual Conference of the Cognitive Science Society.

Chapter 7 This is where we conclude. This chapter gives a broad summary of our
findings and a sketch of roads ahead.





Chapter 2

Signaling Games: Analysis and
Interpretation

“I don’t know what you mean by ‘glory’,” Alice said. Humpty
Dumpty smiled contemptuously. “Of course you don’t – till I tell
you. I meant ‘there’s a nice knock-down argument for you!’ ”
“But ‘glory’ doesn’t mean ‘a nice knock-down argument’,” Alice
objected. “When I use a word,” Humpty Dumpty said, in rather a
scornful tone, “it means just what I choose it to mean – neither
more nor less.”

Lewis Carroll, Through the Looking-Glass

Where our goal is to analyze the conditions that may give rise to linguistic
properties in interaction, we first need to specify how the choices that make up
such interactions are made. Specifying linguistic choice, in turn, requires the
specification of interlocutors’ communicative goals, the context of interaction,
and other aspects that may influence how these goals are reached. For instance,
interlocutors’ beliefs about each other’s linguistic behavior. Game theory gives
us the means to make these notions and their interplay precise.

The fundamentals of game theory were laid out in von Neumann and Mor-
genstern’s (1944) Theory of Games and Economic Behavior. In it, a game is
understood as any interaction between agents for which all possible actions and
their joint outcome can be specified. A straightforward case that satisfies these
conditions is an interaction with simple and overtly acknowledged rules, actions,
and goals, such as a game of rock-paper-scissors. Table 2.1 shows this game in
normal form, which is read as follows. The possible moves of one player, call her
player one, are represented by the table’s rows. The possible moves of the other
player, call her player two, are given by the table’s columns. According to this
specification each player can perform one of three actions: rock, paper or scissors.
The rules of the game dictate that both players should reveal their choices simul-
taneously. The outcome of the combination of their choices is described by the

13
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Player 2

rock paper scissors

P
la

ye
r

1 rock (0, 0) (−1, 1) (1,−1)

paper (1,−1) (0, 0) (−1, 1)

scissors (−1, 1) (1,−1) (0, 0)

Table 2.1: Normal-form representation of a game of rock-paper-scissors.

table’s cells, where a numeric value of 1 is attached to winning, −1 to losing, and
0 to a draw. In Table 2.1 the payoff of player one is given by the first number
in a cell’s bracket and that of player two is given by the second number. In this
way, we know that the pair of actions 〈rock,rock〉 gives a payoff of (0, 0), a draw,
whereas 〈rock,scissors〉 is a win for player one and a loss for player two.

Even for this seemingly mundane game there are some interesting questions
a game theorist may want to answer. For instance, one may ask what action a
player should take given the information she has about her opponent’s behavior.
If it is known, for example, that the opponent plays scissors half of the time.
Another question one may ask is how an action policy should change over time.
For example, after witnessing the opponent play rock 10 times in a row.

The broad conception of a game put forth by von Neumann and Morgenstern
allows us to ask similar questions about other kinds of interactions. Indeed, game
theory has found applications in a multitude of fields, ranging from economics,
political science and biology to computer science and linguistics. In this chapter
we discuss some of the questions that the conception of language (use) as a game
can inform us about, as well as how we may go about answering them.

Section 2.1 doubles as an introduction to fundamental game-theoretic notions
as well as to Lewis’ (1969) signaling games. Section 2.2 builds on these notions
to characterize linguistic outcomes, using classic static solution concepts such as
that of a Nash equilibrium. The shortcomings of static equilibrium analysis are
discussed in detail in Section 2.3, and contrasted with dynamic analysis. This
discussion motivates the kind of analysis we conduct throughout this investiga-
tion. Section 2.4 introduces a family of models of rational language use, which
we employ in following chapters to characterize linguistic behavior. In particular,
to characterize pragmatic inference. Final remarks on our main assumptions are
given in Section 2.5.

2.1 Signaling Games

In his seminal work on conventions, Lewis (1969) laid out the backbone on which
much of modern game-theoretic analysis of communication rests (see Skyrms
2010 for an overview). According to Lewis communication can conceived as a
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strategic endeavor between interlocutors. Central to his analysis are signaling
games: formal characterizations of information transfer mediated by messages
sent from speakers to addressees. The classical setup considers two agents: a
sender and a receiver. The sender has some information that she wishes to convey
to the receiver. As the receiver has no direct access to the sender’s information
state, the sender has to resort to the use of messages. Upon reception of a message
the receiver’s task is to act upon it.

Signaling games can characterize a variety of communicative situations. For
instance, animal alarm calls. In the signaling literature, vervet monkeys are
particularly famous for their alarm calls (e.g., Seyfarth et al. 1980, Cheney and
Seyfarth 1990, Skyrms 2010:§2, Price et al. 2015; see Zuberbühler 2009 for an
overview on animal alarm calls). A vervet alarm call depends on the type of
predator observed. This allows receivers of the alarm call to take appropriate
evasive action. For example, the alarm call for an aerial predator may effect
the act of hiding in bushes. One used for terrestrial predators may instead be
answered by hiding in trees. By analogy, in the case of human communication,
the appropriate act to a request such as Pass me the salt would be to pass the salt
(if the addressee is able and willing to do so). The particular kind of receiver acts
we will focus on in this investigation are interpretations. That is, we assume the
receiver’s act to be to interpret the message she receives as a particular state. This
simplifies our notation a little, as we need not focus on sender states and receiver
acts, but rather on a single set of states relevant to the context of interaction.
More precisely, a classical signaling game considers a set of sender states S, a set
of messages M , and a set of receiver acts A. An interpretation game is one where
A = S.

The strategic aspect of interactions in signaling games lies in the choices made
by each agent and the joint outcome they wish to effect. What message the
sender sends for which state hinges on the receiver’s (expected) interpretation of
the message. Conversely, the receiver’s interpretation hinges on the way in which
messages are (expected to be) used by the sender. If interlocutors can coordinate
in such a way that messages sent in a state are interpreted as conveying that state
then information is transferred faithfully.

Strategies. More formally, a signaling game is a sequential two player game.
In contrast to a game of rock-paper-scissors, this means that choices are not si-
multaneous. Instead, sender choices are contingent on states (they are in) and
receiver choices are contingent on messages (they receive). In other words, a re-
ceiver’s interpretation follows a sender’s choice. A player’s complete contingency
plan of which message/state to send/infer when is called a strategy. If these
choices are deterministic, a sender strategy is a mapping from states to messages,
σ : S → M , and a receiver strategy is one from messages to states, ρ : M → S.
Such deterministic strategies are called pure in game-theoretic parlance.
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Sender strategies Receiver strategies

σ1:
s1 7→ m1 σ2 :

s1 7→ m1 ρ1:
m1 7→ s1 ρ2 :

m1 7→ s1

s2 7→ m1 s2 7→ m2 m2 7→ s1 m2 7→ s2

σ3:
s1 7→ m2 σ4 :

s1 7→ m2 ρ3:
m1 7→ s2 ρ4 :

m1 → s2

s2 7→ m2 s2 7→ m1 m2 7→ s2 m2 7→ s1

Table 2.2: Pure strategies in a 2-states/messages signaling game.

s1 m1 s1 s1 m1 s1

s2 m2 s2 s2 m2 s2

Figure 2.1: Sequential depiction of σ1 and ρ1 (left) and σ2 and ρ2 (right).

We will also want to consider strategies that are not pure but instead capture
probabilistic behavior. A probabilistic sender strategy is a mapping from states to
probability distributions over messages, σ : S → ∆(M). A probabilistic receiver
strategy is one from messages to distributions over states, ρ : M → ∆(S). We
will often denote the probability of a sender choosing message m given state s
under behavioral strategy σ as σ(m | s). Analogously, ρ(s | m) is the probability
of the receiver interpreting message m as state s under ρ.

At first sight, it may seem strange for interlocutors to adopt a probabilistic
strategy over a pure one. After all, while there are situations in which players
gain from unpredictability, such as when playing rock-paper-scissors, less pre-
dictability in communication might work against mutual understanding. Mutual
understanding improves if the receiver can reliably infer what the sender wishes
to convey and the better the sender can predict the receiver’s interpretative be-
havior. There are two general reasons why considering probabilistic strategies is
nevertheless desirable. First, communication often involves a substantial amount
of uncertainty, meaning that neither sender nor receiver can be certain about
each other’s behavior. Probabilistic strategies can accordingly be conceptualized
as resulting from conjectures about interlocutor behavior (Franke 2009:§1.2.3).
Second, as made precise in Section 2.4, probabilities are convenient to repre-
sent an agent’s occasional deviation from rational behavior, failure to recognize
slight differences between the outcome of different choices, other consequences of
bounded rationality, or imperfect perception of the environment (see Chapter 6).

To make matters more concrete, consider a signaling game with two states, s1

and s2, and two messages, m1 and m2. In this game there are four pure sender
strategies and four pure receiver strategies, listed in Table 2.2. The sequential
nature of the game and the interdependence of sender and receiver strategies is
illustrated in Figure 2.1.
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Preferences and (expected) utility. Intuitively, some of the strategies listed
in Table 2.2 are less suited for communication than others. For instance, a sender
adopting strategy σ1 will always send message m1, irrespective of the state she
is in. Conversely, a receiver using ρ1 will interpret any message she receives as
state s1. By contrast, the strategy combinations 〈σ2, ρ2〉 and 〈σ4, ρ4〉 ensure that
the state that the sender is in is also the one inferred by the receiver.

That sender and receiver care about matters such as successful information
transfer is captured by the notion of utility, a subjective measure of an agent’s
preference over outcomes of a game. More precisely, utility is a function from
outcomes to real numbers: Uσ,ρ : S ×M × S → R.

Beyond having a preference about which state is inferred when, interlocutors
can also have preferences about how matters are communicated. A sender may
prefer a polite but less clear expression over one that is more explicit; have par-
ticular stylistic predispositions; prefer shorter over longer expressions; or have
preferences over matters such as the relative cognitive load of the retrieval of
expressions. A receiver may have other, possibly opposed, preferences over mes-
sages.

Following the distinction between what is communicated and how it is com-
municated, signaling games are often distinguished depending on whether players
have differential preferences over messages. Signaling games in which one message
is as good as any other to all players are known as cheap talk, so called because
no message carries cost (or all are equally costly). By contrast, if preferences over
messages are relevant, message cost is represented as a small but non-negligible
amount deducted from an interlocutor’s preference for the communicated state
when the message is used. In other words, message cost is inverse to message
preference but nominal. That is, small relative to preferences over what is com-
municated when (Blume et al. 1993, Benz and van Rooij 2007).

Even if signaling is free of cost, communicative preferences may be opposed. A
sender could, for instance, prefer the receiver to always infer state s1, irrespective
of whether this is the actual state. The receiver might instead prefer to know the
actual sender state. This situation could represent the preferences of an applicant
who wants her interviewer to think she is qualified for a position even when she
is not; that of a predator mimicking a harmless species to lure in prey; or that
of prey mimicking a noxious species to avoid predation. In cases where players’
preferences are orthogonal to each other communication is not a cooperative
affair. If, as standardly assumed, players’ preferences are common knowledge,
a player’s best interest would then be to detect deceitful behavior and turn it
to their advantage. Whether messages are credible and information transfer is
possible at all will then depend on how aligned preferences are, what each message
is (believed) to mean, what other messages are at an agent’s disposition, as well as
other aspects of the interaction, such as message cost. In this investigation, we will
instead be concerned with cooperative communication, meaning that sender and
receiver strive for mutual understanding. In signaling games this is reflected by
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Receiver

s1 s2

S
en

d
er s1 1 0

s2 0 1

Table 2.3: Players’ preferences in a cheap talk 2-states/messages signaling game.

utility functions that assign higher utility to successful information transfer than
to misunderstanding, while leaving room for potentially diverging preferences over
messages.

Taking stock, outcomes in signaling games are triples of a sender state s, a sent
message m, and receiver interpretation s′. Letting cσ,ρ(·) codify the subjective
cost assigned to a message by sender σ or receiver ρ, their utility can be defined
as:

Uσ(s,m, s′)= δ(s, s′)− cσ(m); (2.1)

Uρ(s,m, s
′)= δ(s, s′)− cρ(m), (2.2)

where

δ(s, s′)=

{
1 if s = s′

0 otherwise
(2.3)

In Gricean terms, δ(·), as defined in (2.3), codifies cooperativity. In line with
Grice’s (1975) postulated maxims of rational language use, it moreover follows
from rational choice as utility maximization that a sender will convey matters,
e.g., as clearly but succinctly as possible while avoiding false or misleading state-
ments (as long as individuals actually have such preferences). This game-theoretic
rendering can accordingly capture the fundamental insights that underlie the
Gricean program, but also allows us to go beyond it by enabling for the consid-
eration of non-cooperative situations, as well as more differentiated preferences.
We return to this issue and pragmatic inference more generally in Section 2.4.

If talk is cheap, preferences over outcomes in a cooperative interpretation
game reduce to pairings of a sender state s and a receiver’s interpretation s′. In
a cooperative game these preferences are equal for both players. For a signaling
game with two states they can be summarized by the matrix in Table 2.3.

Utility captures the quantitative preference of an agent for a single outcome.
Expected utility takes this a step further and gives the weighted mean utility that
interlocutors can expect when interacting. For finite S and two players, σ and ρ,
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ρ1 ρ2 ρ3 ρ4

σ1 .5 .5 .5 .5
σ2 .5 1 .5 0
σ3 .5 .5 .5 .5
σ4 .5 0 .5 1

Table 2.4: EU(σi, ρj) in a cheap talk 2-states/messages signaling game.

expected utility is defined as:1

EUσ(σ, ρ)=
∑
s

P ∗(s)
∑
m

σ(m|s)
∑
s′

ρ(s′|m) Uσ(s,m, s′); (2.4)

EUρ(σ, ρ)=
∑
s

P ∗(s)
∑
m

σ(m|s)
∑
s′

ρ(s′|m) Uρ(s,m, s
′), (2.5)

where P ∗(s) is the probability of state s. How P ∗ is to be interpreted in linguistic
terms has been subject to some discussion (Allott 2006, Franke 2013) and will
become relevant in later chapters. To better explain what is at stake we defer this
issue to Section 3.2.2. We may until then think of P ∗ as an abstract exogenous
determinant for what state the speaker is in, often referred to as nature.

2.2 Static Concepts and Optimal Solutions

With these notions at hand we can return to our 2-states/messages signaling game
and quantitatively compare strategy pairings. For expository ease, let us assume
that talk is cheap, that each state is equally probable, P ∗(s1) = 1/2 = P ∗(s2), and
focus only on pure strategies. The expected utilities of this game’s 16 possible
pure strategy combinations are given in Table 2.4.

Inspecting how well any two strategy pairings of this game fare reveals two
things. First, many pairings leave no room for improvement. For instance, should
a receiver be confronted with a sender that signals according to σ1 then she
can do no better than 0.5 under any strategy. To see this, inspect the row of
σ1 in Table 2.4. Put differently, a receiver following ρ3, for example, has no
incentive to change her interpretative behavior when interacting with σ1. There
is no alternative strategy that would yield better results. Second, the strategy
combinations 〈σ2, ρ2〉 and 〈σ4, ρ4〉 guarantee the highest expected utility of 1.

1For pure strategies expected utility is defined by the more succinct:

EUσ(σ, ρ)=
∑
s

P ∗(s) Uσ(s, σ(s), ρ(σ(s)));

EUρ(σ, ρ)=
∑
s

P ∗(s) Uρ(s, σ(s), ρ(σ(s))).
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s1 m1 s1 s1 m1 s1

s2 m2 s2 s2 m2 s2

Figure 2.2: Signaling systems of a 2-states/messages signaling game.

That is to say that either pairing guarantees that states are always communicated
successfully. In contrast to the first case, there is not only nothing to be gained
from unilaterally adopting a different strategy but doing so would always be
detrimental.

Both of these properties are central in game theory. The former, when there
is no incentive to unilaterally switch to a different strategy, is called a (weak)
Nash equilibrium. The latter, when no incentive for unilaterally switching exists
and, moreover, doing so would always be disadvantageous, is called a strict Nash
equilibrium.

More formally, let si denote player i’s strategy and s−i the strategies of all
players except i. Then

〈
s∗i , s

∗
−i
〉

is a weak or, respectively, strict Nash equilibrium
should there be no alternative strategy si for any player i such that

EUi(s
∗
i , s
∗
−i) ≤ EUi(si, s

∗
−i); (2.6)

or

EUi(s
∗
i , s
∗
−i) < EUi(si, s

∗
−i). (2.7)

To reiterate in words, a Nash equilibrium is a collection of strategies in which
no single player has an incentive to change her strategy provided everyone else
conforms to theirs. In the context of signaling games, Lewis (1969) calls those
Nash equilibria that are strict and lead players to associate each single state with
a single and correct interpretation signaling systems.

Central to a signaling system is that it is arbitrary. For the games Lewis
focused on – cheap talk games with |M | = |S| (= |A|) and uniform P ∗ – there
always exists at least one other equilibrium that results from a permutation of
messages that is as optimal for information transfer as itself. Such is the re-
lation between 〈σ2, ρ2〉 and 〈σ4, ρ4〉, depicted in Figure 2.2. Signaling systems
consequently do not require messages to be meaningful in themselves. After all,
messages can be used to signal completely different states and either signaling
system is equally good for information transfer. Instead, what endows messages
with meaning is their use in equilibrium because interlocutors behave “as if”
they meant something. Moreover, although a signaling system is arbitrary, being
a strict Nash equilibrium ensures that no individual would wish to unilaterally
deviate from it.

As shown in Table 2.4, there are 2 signaling systems in a 2-states/messages
game. More generally, in a N -states/messages signaling game, there are N ! sig-
naling systems.
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Signaling systems intuitively correspond to desirable linguistic outcomes. How-
ever, the characterization of strategy combinations in terms of equilibria is silent
on how they are reached. This begs the question whether they can be reached at
all; and if so, under which conditions. One common conception of Nash equilibria
is that they correspond to stable states when games are repeatedly played (Os-
borne 2004). Under this view, equilibrium analysis is agnostic about the process
that leads players to adopt their behavior but predicts that, over time, players
will reach equilibrium and thereafter remain in it. Players in equilibrium stay in
equilibrium. Importantly, equilibrium analysis does not appeal to the rationality
of players in reaching a particular outcome.

Populations and types. Nash equilibria describe optimal stable outcomes
with respect to individual strategy pairings. To transfer this idea to a popula-
tion of communicating agents we either have to restrict our attention to senders
only meeting receivers and vice-versa, i.e., consider two distinct populations and
their interaction, or alternatively endow agents with both a sender strategy and
a receiver strategy. The latter is an arguably natural assumption for much of bio-
logical communication and is what we will assume throughout this investigation.

Irrespective of the nature of the population analysis employed, we call the
units that distinguish members of a population types, τ ∈ T . Under a biological
interpretation types can be identified with phenotypes and their expected utility
with their fitness. This determines a type’s chance of survival and reproduction.
Under a cultural interpretation a type corresponds to a particular linguistic be-
havior. That is, a sender and receiver strategy. As exemplified by monkey alarm
calls (e.g., Seyfarth et al. 1980, Cheney and Seyfarth 1990, Skyrms 2010:§2), com-
municative success can be a determinant for survival and reproduction, closing
the gap between communicative and biological fitness; being able to act upon an
alarm call correctly can greatly enhance chances of survival. However, where the
focus lies on human communication, my preferred interpretation is that agents
themselves strive toward efficient and successful information transfer. They there-
fore occasionally adapt or revise their behavior to improve their communication
with other members of the population (Benz et al. 2006b:§3.3, Skyrms 2010:55).
In a dynamic setting a type’s higher fitness then translates to a higher chance
that other agents will attempt to adopt/imitate this behavior (see Chapter 4 for
details).2

The transformation of a game to one in which all players draw from the
same strategy pool is called its symmetrization (Wärneryd 1993, Cressman 2003,

2Another possible cultural interpretation, put forth by Nowak et al. (2002), is that successful
communication increases the chances of influencing the acquisition process of future generations.
In the same fashion as my preferred interpretation, populations would come to reflect a higher
proportion of successful past behaviors (assuming all types are equally likely to be acquired; see
Chapter 4). Rather than this behavior being adopted by more agents horizontally, this would
then be a consequence of the influence of their success on future generations.
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τ11 τ12 τ13 τ14 τ21 τ22 τ23 τ24 τ31 τ32 τ33 τ34 τ41 τ42 τ43 τ44

τ11 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
τ12 .5 .5 .5 .5 .75 .75 .75 .75 .5 .5 .5 .5 .25 .25 .25 .25
τ13 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
τ14 .5 .5 .5 .5 .25 .25 .25 .25 .5 .5 .5 .5 .75 .75 .75 .75
τ21 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25
τ22 .5 .75 .5 .25 .75 1 .75 .5 .5 .75 .5 .25 .25 .5 .25 0
τ23 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25
τ24 .5 .75 .5 .25 .25 .5 .25 0 .5 .75 .5 .25 .75 1 .75 .5
τ31 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
τ32 .5 .5 .5 .5 .75 .75 .75 .75 .5 .5 .5 .5 .25 .25 .25 .25
τ33 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
τ34 .5 .5 .5 .5 .25 .25 .25 .25 .5 .5 .5 .5 .75 .75 .75 .75
τ41 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75
τ42 .5 .25 .5 .75 .75 .5 .75 1 .5 .25 .5 .75 .25 0 .25 .5
τ43 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75 .5 .25 .5 .75
τ44 .5 .25 .5 .75 .25 0 .25 .5 .5 .25 .5 .75 .75 .5 .75 1

Table 2.5: EU(τi, τj) in a symmetrized cheap talk 2-states/messages game.

Franke and Wagner 2014). While our illustrative 2-states/messages signaling
game has 4 pure sender strategies and 4 pure receiver strategies, there are 16 types
in its symmetrized counterpart. These result from pairing all possible sender and
receiver strategies. Mnemonically labeling each type with an index of its sender
and receiver strategy we have that τ11 = 〈σ1, ρ1〉 and that τ42 = 〈σ4, ρ2〉, for
example. That is, τ11 sends and receives according to σ1 and ρ1 whereas τ42

follows σ4 and ρ2.
Assuming that agents are senders half of the time, the expected utility of τi

interacting with τj is defined by:

EU(τi, τj) = 1/2 EUσ(τi, τj) + 1/2 EUρ(τi, τj). (2.8)

The expected utilities of the 16 types of the symmetrized 2-states/messages
signaling game are given in Table 2.5.

Finally, fitness indicates how well a type communicates in a population. Let-
ting x be a population vector with xj corresponding to the proportion of τj in x,
the fitness of τi is defined as the average expected communicative success of this
type given the type frequencies of the current population x:

fi =
∑
j

xj EU(τi, τj) (2.9)

Evolutionary stable strategies. Returning to the question about a population-
level counterpart to a static solution concept such as that of a Nash equilibrium,
a type’s stability is classically associated with the notion of invasibility (May-
nard Smith and Price 1973). Intuitively, an evolutionary stable strategy (ESS)
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is a strategy such that, if a population consist mostly of it, then this population
is resistant against invader types changing the population’s composition. More
simply put: a type is evolutionary stable if its population cannot be taken over
by others. This concept, just as that of a Nash equilibrium, is static: it does
not make explicit which processes may lead a different type to join or take over
the population. Similarly, it does not appeal to the rationality of members of a
population; nor their knowledge of other types behavior; nor to their knowledge
of the structure of the game. Instead, types are compared solely based on their
(expected) utility following the intuition that a strategy is an ESS if fitness-based
selection is sufficient to drive out invaders.

The concept of an ESS is a refinement of that of a Nash equilibrium. Consider
a population consisting solely of τ11. While 〈τ11, τ11〉 is a Nash equilibrium, such
a population is tolerant toward any proportion of the 15 remaining types being
present in it. As before, inspect the row of τ11 in Table 2.5 to see this. For instance,
if an agent of type τ22 entered this population it would do as well as τ11-players.
What is more, not only would τ22 not be driven out of the population, if more
players of this type emerged then τ22 would do better than τ11. This would allow
it to invade this initially monomorphic population. In short, Nash equilibria are
too permissive to qualify as ESS. A possible solution would be to instead identify
only strict Nash equilibria with stability at a population level. This move turns
out to be too restrictive. Many games have mixed Nash equilibria that should
count as stable (at the individual level; probabilistic strategies), but mixed Nash
equilibria cannot be strict. In light of these considerations, Maynard Smith and
Price (1973) propose that τi is an ESS iff

EU(τi, τi) ≥ EU(τj, τi) for all alternative types j; (2.10)

EU(τi, τi) = EU(τj, τi) → EU(τi, τj) > EU(τj, τj). (2.11)

In words, τi is an ESS if, according to (2.10), it fares as least as well when
interacting with itself than does any other type. Additionally, according to (2.11),
should there be a type that fares as well against τi as τi against itself, then that
type fares worse against its own type. The relationship between Nash equilibria
and ESS can be summarized as follows (Nowak 2006):

strict Nash equilibrium⇒ ESS⇒ weak Nash equilibrium

A second common take on ESS is to make the degree to which an evolutionary
outcome is impervious to invasion explicit, using an invasibility threshold ε̄. In
this case, τi is an ESS iff for all ε < ε̄ and all alternative types j:

εEU(τi, τj) + (1− ε)EU(τi, τi) > εEU(τj, τj) + (1− ε)EU(τj, τi). (2.12)

That is, if the proportion of invaders is below threshold ε̄ then a population
consisting of a proportion of (1−ε) types τi cannot be taken over. The underlying
intuition of this definition remains the same as that of conditions (2.10) and (2.11).
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2.3 On the Use and Limits of Static Equilibrium

Analysis

Nash equilibria and ESS are informative about optimal outcomes at the individ-
ual and population level, respectively. The agnosticism of either type of static
equilibrium analysis with respect to rationality and underlying processes is part
of its appeal. Were it demonstrable that static predictions coincided with dy-
namic ones under fairly general conditions, our task would be restricted to that
of finding a suitable model for a linguistic phenomenon under scrutiny and to
then identify an appropriate static solution concept. There are, however, three
major issues that static equilibrium methodology faces at either level. The first
two are technical (Huttegger and Zollman 2013); the third is conceptual (Franke
2013).

Unclear predictions. First, as illustrated by the simple 2-states/messages case
above, many signaling games have multiple equilibria. As mentioned earlier,
Lewis’ (1969) setup in fact guarantees a multiplicity of strict Nash equilibria
at the individual level. The existence of multiple equilibria percolates to the
population level in these cases as well, as only these strict Nash equilibria are
ESSs (Wärneryd 1993). Prima facie, static equilibrium analysis does not offer
guidance as to what its predictions are when more than one solution exist. This
leaves such an analysis at best incomplete.

Uncertain predictions. With Searcy and Nowicki (2005) one may neverthe-
less intuit that optimal signaling is expected to emerge in Lewisian signaling
games because agents have a common interest in information transfer. Any equi-
librium would do, and there might appear to be little mystery to the fact that one
of them will emerge. If so, a dynamic analysis would then “only” inform us about
the process that leads to the adoption of one equilibrium over the other (see the
third issue discussed below on this matter). However, a second problem of static
equilibrium analysis is that neither at the individual nor at the population level
these outcomes necessarily obtain.

Two simple and well-studied processes that illustrate this issue are Roth-Erev
reinforcement learning, at the individual level, and the replicator dynamic, at the
population level. These processes are particularly relevant to this issue because
both, in principle, promote high utility behavior. They may therefore be expected
to favor the optimal outcomes predicted by static equilibrium analysis.

Roth-Erev reinforcement learning is a simple learning process whereby actions
that were successful in the past are rendered more likely to be chosen in the future
(Roth and Erev 1995, Erev and Roth 1998). In the context of signaling games
this means that a successful interaction will lead to a stronger association of the
conveyed state with the used message in the case of senders, and to a stronger
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Figure 2.3: Roth-Erev reinforcement learning with initial weights set to 0.5 and r
equal to player utility in a cooperative cheap talk game. Edge values show sender
and receiver choice probabilities prior to any interaction (left), and after a first
successful interaction conveying s1 using m1 (right).

association of the received message with the inferred state in the case of receivers.
Prior to any interaction, each agent’s associations are initialized with a weight.
After an interaction relevant weights are then modified by a reinforcement value r.
In each interaction the probability of choosing an action – to send a message or to
interpret a message as a state – is proportional to its weight. Figure 2.3 illustrates
this process. Initially, choice is driven by chance or whatever information fed the
initial weight of a state-message or message-state association. However, over time,
actions that were previously successful are more likely to be taken.

The replicator dynamic is one of the most famous population dynamics in
evolutionary game theory. It models fitness-based selection, where the relative
frequency of a type in a population increases with a gradient proportional to its
average fitness in the population (Taylor and Jonker 1978, Hofbauer and Sigmund
2003; see Chapter 4 for details). This dynamic is popular and versatile because
it can be derived from many abstract processes of biological and cultural trans-
mission and selection (for overview and several derivations see Sandholm 2010),
including conditional imitation (e.g., Helbing 1996, Schlag 1998) or reinforcement
learning (e.g., Börgers and Sarin 1997, Beggs 2005).

Figure 2.4 shows the predictions of Roth-Erev reinforcement learning and the
replicator dynamic for the cheap talk 2-states/messages signaling game. As show-
cased, neither dynamic guarantees the outcome predicted by its respective static
equilibrium analysis. That is, not all dyads/populations converge to signaling
systems. Instead, the proportion of suboptimal outcomes increases with the dif-
ference in frequency between the two states (see Catteeuw and Manderick 2014
for detailed analysis of reinforcement learning in signaling games, and Huttegger
2007 and Pawlowitsch 2008 on the replicator dynamic).

Many variants of these processes have been studied in connection to signaling
games. For instance, reinforcement may not only be positive but punish actions
that led to failure (e.g., Roth and Erev 1995). Alternatively, the stronger associ-
ation of a state with a message may decrease this state’s association with other
messages (e.g., Franke and Jäger 2011). The replicator dynamic can similarly
be supplemented by perturbations in the form of type mutations at generational
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Figure 2.4: Proportion of signaling systems established under Roth-Erev rein-
forcement learning and the replicator dynamic in a cheap talk 2-states/messages
signaling game across state probabilities P ∗ ∈ ∆(S). Reinforcement results cor-
respond, for each probability of s1, to the mean outcome of 20000 independent
games of 500 interactions each with initial weights set to 1 for all associations and
r equal to players’ utility. Dyads with an expected utility higher than .95 after
500 interactions were categorized as having established a signaling system. Repli-
cation results correspond to mean proportions of 20000 independent populations
after 500 generations, each randomly initialized.

turn-overs; or by dropping the assumption that players are equally likely to en-
counter each other, instead correlating encounters with expected utility or an
environment’s topological space (see, e.g., Skyrms 2010:§5). Some of these vari-
ations are more likely to converge to optimal outcomes than others. The crucial
point, however, is that making these dynamics explicit is necessary to understand
under which conditions an outcome can be expected to obtain. As summarized
by Skyrms (2010:72): “The emergence of a signaling system is not always a moral
certainty.”

Explanatory force. The third problem of static equilibrium analysis has to do
with the quality of its explanatory potential. As argued by Franke (2013) appeals
to optimality are unsatisfying if the conditions under which an outcome emerges
are not made explicit, or if the assumptions underlying a solution concept lack
justification. Put differently, even if Searcy and Nowicki’s (2005) intuition were
correct, we would arguably not have learned much about the emergence and sta-
bility of a communication system. Instead, an explanatory analysis should be
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able to answer questions such as how rational agents are required to be, what
information they base their choices on, what adaptive mechanisms they (mini-
mally) need to possess, and so on. By virtue of its procedural agnosticism, static
analysis cannot answer these questions.

With these issues in mind, we should stress that static solution concepts are
nevertheless useful to characterize outcomes with respect to measures of interest.
For example, communicative success. Outcomes identified in this manner can
then be critically compared to those borne out under particular processes, as well
as to those that are evidenced empirically. Under this view, static equilibrium
analysis is supplementary to dynamic analysis (Huttegger and Zollman 2013).

2.4 Individual-Level Behavior: Rational Language

Use

Iterated interactions and population dynamics build on individual-level behavior.
At this level dynamic alternatives to static solution concepts also exist, e.g., ratio-
nalizability (Bernheim 1984, Pearce 1984), Benz and van Rooij’s (2007) Optimal
Assertions model, the Rational Speech Act model (Frank and Goodman 2012,
Goodman and Stuhlmüller 2013), and the iterated X-response family: iterated
Best-, Cautious-, and Quantal-response (Jäger 2007b, Franke 2009, Franke and
Jäger 2014). Common to these concepts is that they model players’ choices in a
single interaction as resulting from a reasoning process over beliefs about other
players’ behavior. This contrasts with the preceding exposition where individuals
were assumed to follow a strategy without specifying why.

The idea that linguistic choice results from a process of mutual reasoning
about rational language use brings us back to the Grice. However, there is an
important difference between Grice’s approach and the one pursued here, which
we briefly touched upon earlier. According to Grice (1975; 1989) the process of
reasoning that interlocutors engage in is guided by the mutual assumption that
certain principles of (rational) language use are followed; e.g., to be succinct, or-
derly, and relevant (see Chapter 1). Most dynamic game-theoretic approaches to
pragmatics also view mutual reasoning as the motor that leads interlocutors to
their choices. However, they do not rely on the formulation of conversational prin-
ciples to constrain and guide communication. Instead, these approaches ground
linguistic choice in individuals’ contextual beliefs and preferences. Under this
view, the explanation of linguistic behavior is not in term of maxims but in terms
of rational behavior according to such beliefs and preferences (Benz 2006, Benz
and van Rooij 2007, Franke and Jäger 2016b:120f). In informal terms, in coop-
erative communication interlocutors do their best to ensure faithful information
transfer according to their beliefs about others’ linguistic behavior and their own
communicative preferences. Not because they believe that a particular rule of
conversation is being followed. In virtue of not being tied to explicit conversa-
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tional rules, such an approach also allows for predictions in situations not covered
by Grice’s principles, such as non-cooperative communication (e.g., De Jaegher
and van Rooij 2014, Ahern and Clark 2017).

In recent years the idea that pragmatic reasoning can be captured by models
that characterize linguistic inference as a product of explicit representations of
mutual reasoning about beliefs and preferences has led to a diverse and growing
literature. On a general level, this approach to pragmatics as rational language
use encompasses game-theoretic approaches (e.g., Parikh 1991; 2000, Benz 2006,
van Rooij and Sevenster 2006, Benz and van Rooij 2007, Jäger 2007b, Franke
2013, De Jaegher and van Rooij 2014, Franke and Jäger 2014) as well as Bayesian
approaches (e.g., Frank and Goodman 2012, Goodman and Stuhlmüller 2013,
Franke and Degen 2016, Bergen et al. 2016, Goodman and Frank 2016). Franke
and Jäger (2016a:§3) identify five central properties common to these approaches:
They are probabilistic, interactive, rationalistic, computational, and data ori-
ented. The first four properties should not come as a surprise in light of the
preceding discussion. The fifth refers to the fact that these models are usually
not constrained to categorical predictions but allow for finer-grained quantita-
tive predictions. This enables for a closer fit between theoretical predictions and
actual communicative behavior evidenced, e.g., in experiments with human par-
ticipants (Franke and Jäger 2016a:14). We will take advantage of this ability in
Chapter 3. The remainder of this chapter incrementally introduces the common
elements that make up models of rational language use.

2.4.1 Focal points and semantic meaning

For information transfer to take place in single interactions, the reasoning process
that sender and receiver engage in should lead them to behave in a congruent
fashion. That is, if things go smoothly, the receiver’s interpretation of a mes-
sage should agree with the information state the sender is attempting to convey.
However, only a belief in common rationality is too weak to ensure meaningful
predictions in one-shot signaling games (see Franke 2009:§1.2 for details on this
negative result). Intuitively, the problem is that many signaling games do not
have a unique “obvious” solution that sender and receiver can reach indepen-
dently, without prior communication and only through mutual reasoning. Put
differently, these games lack a solution that is noteworthy relative to others in
that it would allow all interlocutors to conclude the others’ reasoning process to
be drawn to it. This issue was already touched upon from a different angle in
Section 2.3, where we saw that Nash equilibria do not fulfill the requirement of
uniqueness which could otherwise make them stick out relative to other strategies.
To get meaningful inference without prior interaction off the ground the relation
between the set of information states S and the set of messages M needs to be
constrained.
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Figure 2.5: Illustration of a coordination problem without prior communication.

Focal points

Imagine that you and your partner are independently shown the four squares
depicted in Figure 2.5 and that you have no means to communicate with each
other. You are told that you will win a prize if both of you pick the same
square. Which square would you choose? Similarly, imagine that you get lost
in Amsterdam’s city center and cannot get in touch with your partner. Where
would you attempt to meet?

At a fundamental level these problems are analogous to the coordination prob-
lem posed by signaling games: You and your partner care about performing con-
gruent actions but in principle any behavior/square/location could be chosen.
Crucially and differently from the games discussed so far, in the coordination
problems sketched above some squares/locations will appear to be more obvious
candidate solutions than others. This may seem particularly evident for the prob-
lem illustrated in Figure 2.5. It is therefore important to stress that, in terms of
the problem’s setup, there is no reason to pick one square over the other. Co-
ordination on a particular square is payoff irrelevant. You win the prize if you
agree on any of them. However, things are different because you may believe that
the third square draws you partner’s attention and the belief that she believes it
draws yours as well is a good reason to choose it. Such beliefs need not but may
well be partner specific. For instance, while Amsterdam’s Dam Square may be
a more obvious location to rendezvous for residents, Amsterdam central station
may be more salient to tourists.

Coordination problems such as these are what Schelling (1960) uses to illus-
trate the idea of focal points: solutions that are prominent, conspicuous or salient.
In virtue of drawing reasoners’ attention such solutions can improve coordination
in the absence of prior agreement and lack of utility-relative differentiation (see,
e.g., Mehta et al. 1994 for behavioral experiments supporting this claim). As con-
ceived by Schelling, focal points come into play to break a tie between strategies.
They are consequently of particular relevance when the game itself lacks such a
tie breaker. For our purposes, the question is then whether within communication
there is a plausible constraint on the beliefs interlocutors’ may entertain about
each other’s linguistic behavior. As argued by Franke (2009:§2.1.1), semantic
meaning is a natural candidate to serve this purpose.
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Semantic meaning

The idea that semantic meaning plays a role in constraining what messages are
admissible in which information state, although not necessarily its conception as
a focal point, has figured in many game-theoretic approaches to rational language
use (e.g., Parikh 1992; 2000, Benz 2006, Jäger 2007b, Stalnaker 2006, Benz and
van Rooij 2007) and bleeds into classic literature on message credibility in sig-
naling games (e.g., Rabin 1990, Matthews et al. 1991, Farrell 1993). In informal
terms, the problem of message credibility is that, prima facie, the receiver rec-
ognizing that the sender intends her to believe the meaning of a message does
not need to imply that she will form this belief (Stalnaker 2006). A message is
credible in case the receiver can reason the sender to send it only in case it is
true. Put differently, message credibility concerns the question whether there are
situations in which the sender has incentive to be untruthful. As mentioned ear-
lier when discussing preferences and cooperation, this problem is pressing if there
is at least some conflict of interest between interlocutors. If instead the game is
(believed to be) one of pure coordination there is no reason to suspect foul play.

Message credibility is particularly important in the context of fully ratio-
nal agents and solution concepts, particularly epistemic ones, for it answers the
question whether reasoning stays within the boundaries of truth. As already fore-
shadowed in Section 1.2, our analysis will not be concerned with these matters.
Nevertheless, in line with this literature, semantic conventions and some degree of
rationality will play a crucial role in providing the necessary fuel for meaningful
pragmatic inference. In all generality, giving up the assumption of full rationality
and allowing agents to occasionally err does however mean that we have to give
up the claim that messages will always be used truthfully. In practice, the degrees
of rationality we assume, while far from full rationality, will be sufficient to ensure
that there is a strong tendency toward truthfulness in the games analyzed.

Returning to the conception of semantic meaning as a focal point, this view
ascribes semantics a similar role to that of precedence and salience: it biases an
agent’s decision procedure. As illustrated below, such a bias proves to be suf-
ficiently restrictive to reign in the multiplicity of inferences otherwise obtained,
while providing sufficient flexibility as to not necessarily determine the outcome
of the reasoning process on which it is based. Different from Schelling’s (1960)
conception of a focal point as a concept that applies at the final stage of delibera-
tion, semantic meaning serves as a constraining point of departure for pragmatic
reasoning. In other words, semantics provides the initial focal points that guide
and constrain pragmatic inference.

In models of rational language use, semantic meaning is standardly repre-
sented by a lexicon L which maps state-message pairs to the (Boolean) truth-
value of the message in that state. As a model’s object, a lexicon represents
the relevant semantic information required for pragmatic reasoning to get off the
ground, relative to the phenomenon at hand. As illustrated shortly, the addition
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of individuals’ beliefs and preferences to the model then yields the minimal set of
relevant context features for pragmatic reasoning. A full specification of a game’s
lexicon together with the sender’s and receiver’s cognitive make-up can accord-
ingly be construed as a context model (Franke and Jäger 2014:§1) for a class of
pragmatic inferences (e.g., scalar implicatures). A convenient way to represent
lexica is by (|S | , |M |)-Boolean matrices.

2.4.2 Pragmatic reasoning

Models of rational language use have been applied to many linguistic phenomena,
ranging from implicatures (e.g., Benz and van Rooij 2007, Jäger 2007b, Franke
2009, Frank and Goodman 2012, Franke and Jäger 2014, Bergen et al. 2016) and
disambiguation (e.g., Parikh 2000) to the use of generics (Tessler and Goodman
2016), polite language use (Yoon et al. 2016) and prosodic emphasis (Bergen and
Goodman 2015), to name a few. To better showcase commonalities and differences
across models, we will focus on one prominent kind of pragmatic inference that
has received substantive attention in the literature: scalar implicatures.

Scalar implicatures

Scalar implicatures are a particularly productive and well studied class of system-
atic pragmatic inferences (Horn 1984, Hirschberg 1985, Levinson 1983, Geurts
2010). Usually, the utterance of a sentence like I own some of Johnny Cash’s
albums will be taken to mean that the speaker does not own all of them. This is
because, if the speaker instead owned them all, she could have used the word all
instead of some in her utterance, thereby making a more informative statement.
Weak scalar expressions such as some are often semantically characterized as hav-
ing literal meanings that are compatible with that of more informative relevant
alternatives, like all. That is, if it were true that I own some of the albums, the
literal meaning of some would not rule out that I own all of them. However, the
use of a less informative expression when a more informative one could have been
used can license a pragmatic inference that the stronger alternative does not hold.
This rationale has been proposed to underlie the pragmatic use of many so-called
scalar expressions. As exemplified by (2a) – (4a) and the defeasible scalar infer-
ences they can give rise to in (2b) – (4b), English examples include numerals such
as five and six, scalar adjectives like warm and big, as well as other quantifiers
like many.

(2) a. I own some/many of Johnny Cash’s albums.

b.  I do not own all of Johnny Cash’s albums.

(3) a. I have five dogs.

b.  I do not have six/seven/... dogs.
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(4) a. The soup is warm.

b.  The soup is not hot.

Scalar implicatures, especially the inference from some to some but not all,
have been studied extensively, both theoretically (e.g., Horn 1984, Sauerland 2004,
van Rooij and Schulz 2004, Chierchia et al. 2012) as well as experimentally (e.g.,
Bott and Noveck 2004, Huang and Snedeker 2009, Grodner et al. 2010, Goodman
and Stuhlmüller 2013, Degen and Tanenhaus 2015). While there is much dispute
in this domain about many details, a clear majority endorses the view that a weak
scalar item like some is underspecified to semantically mean some and maybe all
and that the enrichment to some but not all is part of some regular process with
roots in pragmatics (see Chapter 4 for further discussion and analysis).

A minimal game-theoretic rendering of the semantics relevant for scalar im-
plicatures is as follows: Assume that there are two relevant world states S =
{s∃¬∀, s∀}. In state s∃¬∀ Chris owns some but not all of Johnny Cash’s albums
while in s∀ Chris owns them all. Additionally, assume that there are two rele-
vant messages M = {msome,mall}, where msome is short for a sentence like Chris
owns some of Johnny Cash’s albums and mall is short for the same sentence with
some replaced by all. Lexica for this case would assign a Boolean truth-value,
either 0 for false or 1 for true, to each state-message pair. The majority view of
semantically underspecified some is captured by the following lexicon:

L =

msome mall[ ]
s∃¬∀ 1 0
s∀ 1 1

In words, according to L the message msome is true of both s∃¬∀ and s∀ whereas
message mall is true only of state s∀.

Rational language use

What behavior would a rational user of L exhibit? A rational hearer would reason
about the message she receives from the speaker, taking as a point of departure
the semantics of L. Intuitively and in analogy to the characterization of scalar
implicatures given above, if a rational speaker means to convey s∀ she should send
mall. This message is semantically unequivocal, thereby increasing the chance of
communicative success. In the case of s∃¬∀, semantically, only message msome

is an option, but this message could signal either state. Nevertheless, if mall is
reasoned to signal s∀, then the hearer can infer that msome is to be associated
with s∃¬∀ not with s∀. A rational speaker reasons in analogous fashion, coming
to her behavior through reasoning about the hearer’s likely interpretation of a
message. She will accordingly send msome in s∃¬∀ and mall in s∀.
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Models of rational language use such as the Optimal Assertions model (Benz
2006, Benz and van Rooij 2007), the Rational Speech Act model (Frank and Good-
man 2012, Goodman and Stuhlmüller 2013) and Iterated Best-, Cautious- and
Quantal-Response models (Jäger 2007b, Franke 2009, Franke and Jäger 2014) rep-
resent this reasoning procedure as a hierarchy over reasoning types. The bottom of
the hierarchy, level 0, corresponds to literal signaling behavior. Literal language
users do not reason about their interlocutors but simply produce/comprehend
according to their preferences/expectations and the semantics provided by their
lexica. Player i’s literal receiver and sender behavior are defined in (2.13) and
(2.14).

ρ0(s|m; pri;L) ∝ L[s,m] pr
i(s); (2.13)

σ0(m|s;L) ∝ L[s,m] − ciσ(m), (2.14)

where pri is player i’s prior over states, pri ∈ ∆(S). Such a prior represents
the subjective relative saliency of states in a context. They are an individual’s
expectations in a particular situation. We construe such expectations as based on
any source of information beyond an expression’s literal meaning. Among others,
a prior may draw from the context in which communication takes place, general
expectations of language use, or perceptual information. In short, it represents
condensed information of the association strength with which an interpretation
comes to mind (Franke 2009:129ff). Whenever cost, priors, or lexica are assumed
to be common – i.e., shared across individuals – we omit individual indices as well
as their explicit codification as conditional parameters in choice probabilities.

To the best of my knowledge, in the case of scalar implicatures no strong evi-
dence about differences in preferences between relevant message alternatives has
been found, for example, between the choice of some and all; nor have particular
prior biases been suggested. We may therefore assume that the scalar infer-
ence game is a cheap talk game with an uninformative common prior, pr(s∀) =
1/2 = pr(s∃¬∀). These assumptions are further motivated by the broader question
whether some pragmatic inferences can be explained purely in terms of mutual
reasoning. That is, whether certain inference patterns can be explained without
appeal to state saliency or differential message preferences. This should not be
taken to suggest that cost or priors should not play an explanatory role in prag-
matics. Nor that an explanation that appeals to these factors is subordinate to
one that does not. Rather, in the face of a lack of evidence to the contrary, an
explanation that does not require a particular prior or cost-assignment is more
parsimonious than one that does not.

Under these assumptions and with L as above, definitions (2.13) and (2.14)
give the following choice probabilities for literal behavior in the some-all context
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model:

σ0(· | ·) =

msome mall[ ]
s∃¬∀ 1 0
s∀ .5 .5

ρ0(· | ·) =

s∃¬∀ s∀[ ]
msome .5 .5
mall 0 1

In words, a literal sender with no preferences over messages will be indifferent
between sending msome or mall for s∀, sending either with equal probability, and
she will send msome to convey s∃¬∀. Analogously, if their prior is flat, literal
interpreters choose an arbitrary true interpretation for each message according to
their lexicon.

Most models of rational pragmatic language use assume that näıve level-0
reasoners do not correspond to actual linguistic behavior. This is reflected by the
fact that neither choice rule involves (an approximation of) utility maximization.
Instead, (2.13) and (2.14) characterize completely unreflected literal language use.

Higher order reasoning types of level n + 1 make their linguistic choices ac-
cording to the expected behavior of a level n interlocutor. There are two general
approaches to how higher order reasoning is set up. The first assumes that agents
are strictly rational utility maximizers (e.g., Benz and van Rooij 2007, Jäger
2007b, Franke 2009). The second approach allows for some slack in agents’ ten-
dency toward utility maximization (e.g., Goodman and Stuhlmüller 2013, Franke
and Jäger 2014). As motivated below, we will follow the latter approach. For a
finite state space this behavior is defined as follows for player i:

ρn+1(s|m; pri;L) ∝ exp(λ
σn(m|s;L) pri(s)∑
s′ σn(m|s′;L)pri(s′)

); (2.15)

σn+1(m|s;L) ∝ exp(λ(ρn(s|m; pri;L)− cσ(m))). (2.16)

That is, instead of using only the literal meaning of messages, higher order rea-
soners use Bayes’ rule to weigh their possible actions based on a conjecture
about their interlocutor’s behavior. In both cases choice is regulated by a soft-
maximization parameter λ ≥ 0 (Luce 1959, Sutton and Barto 1998). As λ in-
creases choices approach strict maximization of expected utilities. For a sender
this means that messages reasoned to have a high probability of being understood
that are of low cost are increasingly prioritized over low success and/or high cost
ones. In the case of receivers, states consistent with a conjecture of rational
speaker behavior that are favored by their prior over states are more likely to be
inferred. This so-called rationality parameter thereby allows for the representa-
tion of a range of behavioral strategies: from irrational behavior (λ = 0) up to
the approximation of strictly rational behavior as λ approaches infinity.

In contrast to strict utility maximization, soft-maximization has the advantage
of making explicit the degree to which rational behavior is necessary to explain
pragmatic inference. Additionally, it allows us to consider cases in which some
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deviation from optimal rational behavior might even be explanatory. From a
more technical perspective, soft-maximization also has the desirable consequence
that no choice is ever completely ruled out – even if acting upon it may be highly
unlikely. By contrast, models that assume strict utility maximization require an
additional assumption to deal with situations in which receivers reason that a
message will never be sent (see Franke 2009, Franke and Jäger 2014, and Bergen
et al. 2016:2ff for details and discussion). Such cases require attention because
receiver strategies need to specify the behavior that ensues after the reception of
any message. Otherwise, if, for one reason or another, such a surprise message is
used, the receiver’s reaction to it would not be defined.

Another desirable consequence of not having degenerate choice probabilities
will become relevant once iterated Bayesian learning comes into the picture (see
Chapter 4 for details). That is, once we consider cases in which agents need not
just use but first acquire language. In such situations non-zero choice probabilities
allow näıve learners to entertain that all learning hypotheses could be compatible
with the input they receive. Degenerate counterparts could, by contrast, lead to
situations in which a language is faithfully transmitted solely because it harbors a
single word/feature/construction that no user of a different language would ever
use in virtue of strict utility maximization. Put differently, (at least minimal)
variation in linguistic behavior opens up to the possibility of variation in the
transmission of linguistic knowledge across generations.

Returning to single interactions and linguistic choice, as specified by (2.15)
and (2.16), higher order reasoning types are assumed to behave rationally accord-
ing to the expected behavior of a level n interlocutor. This is a debatable design
choice. For instance, a more flexible – and possibly more realistic – alternative
would be for players to have beliefs about their interlocutor’s level of sophis-
tication and for choice probabilities to be derived from these beliefs (see, e.g.,
Camerer et al. 2004). The assumption that players believe their interlocutor to
be exactly one level less sophisticated than themselves is first and foremost made
for simplicity. It primarily hinges on a trade-off between a more rigid reasoning
procedure and increased model complexity. However, this assumption of myopic
reasoning types has also been shown to succeed in predicting various empirically
attested linguistic patterns (see Goodman and Frank 2016 for a recent overview).
We will therefore opt for this simpler, and to my mind more perspicuous assump-
tion, while bounding agents’ reasoning to a low degree of sophistication: level
1. This minimal degree of mutual reasoning will suffice to capture the classes of
inferences we aim to characterize in this investigation.

To illustrate how higher order reasoning affects linguistic behavior, let us turn
to the some-all context model again. With λ = 1 the choice probabilities of level-1
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players are as follows:

σ1(· | ·) ≈
msome mall[ ]

s∃¬∀ .62 .38
s∀ .38 .62

ρ1(· | ·) ≈
s∃¬∀ s∀[ ]

msome .58 .42
mall .27 .73

By contrast, with λ = 10 we have:

σ1(· | ·) ≈
msome mall[ ]

s∃¬∀ .99 .01
s∀ .01 .99

ρ1(· | ·) ≈
s∃¬∀ s∀[ ]

msome .97 .03
mall 0 1

The intuition behind the stronger association of msome with s∃¬∀ and that
of mall with s∀ follows the same rationale given earlier. It results from agents’
mutual reasoning about (boundedly) rational language use.

More generally, in the some-all context model the association of s∃¬∀ with
msome and that of s∀ with mall approximates 1 with λ ≥ 17 for level-1 reasoning.
For level-2 reasoning this result already obtains for λ ≥ 7. Overall, the pragmatic
strengthening of an underspecified message, in this case msome to signal some but
not all rather than some and maybe all, is predicted provided (i) some degree of
rationality in choice (high λ) and (ii) some degree of mutual reasoning (n-level
reasoning with n ≥ 1). Importantly, higher level reasoning can only lead to this
strengthening if fueled by a common belief in rational language use. As suggested
above by λ = 1, in cases of low rationality choice probabilities instead approach
.5 as reasoning levels increase.

Variation across models

Models of rational language use share many fundamental components: they rep-
resent mutual reasoning as a reasoning hierarchy and characterize pragmatic in-
ference as based on explicit representations of beliefs, preferences, and semantic
conventions. The main difference across approaches lies in the choice functions
of reasoning types and the depth of the reasoning on which they build. Four
influential models that differ in this respect are the Rational Speech Act (RSA)
model (Frank and Goodman 2012, Goodman and Stuhlmüller 2013), the Optimal
Assertions (OA) model (Benz 2006, Benz and van Rooij 2007), the Iterated Best
Response (IBR) model (Jäger 2007a, Franke 2009, Franke and Jäger 2014), and
the Iterated Quantal Response (IQR) model (Franke and Jäger 2014).

In contrast to OA as well as to IBR and IQR, the RSA model was originally
formulated as a hearer-centric model. Its main focus accordingly laid in cap-
turing pragmatic interpretation rather than speaker behavior. The RSA model
defines level-0 behavior and level-1 sender behavior in a similar fashion to def-
initions (2.13) and (2.16). However, in contrast to the above, no literal sender
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is defined. Instead, pragmatic interpretation is identified with a level-2 receiver
who reasons about level-1 sender behavior. Put differently, early instances of
the model focused exclusively on the reasoning chain that defines level-2 receiver
behavior. There are two other major differences to our definitions. First, only
level-1 senders are assumed to soft-maximize. A receiver’s pragmatic inference
instead only involves the inversion of level-1 speaker behavior using Bayes’ rule.
Second, utilities in RSA models are associated with an information-theoretic mea-
sure of a message’s informativity about the sender state. For player i this gives
the following RSA-style behaviors:3

ρ0(s|m; pri;L) ∝ L[s,m] pr
i(s); (2.17)

σ1(m|s;L) ∝ exp(λ(log ρ0(s|m; pri;L)− cσ(m))); (2.18)

ρ2(s|m; pri;L) ∝ σ1(m|s;L) pri(s). (2.19)

In a nutshell, RSA views the sender’s goal as that of inducing a belief about the
state in the receiver (with minimal effort if message cost is involved) by sending
informative messages. The receiver’s goal is to form this belief.

Beyond numerical differences that can stem from the different ways in which
level-1 sender behavior is defined, there are also conceptual differences between
the RSA-approach and game-theoretical ones, embodied here by OA, RSA and
IQR models. In the context of this investigation these differences are slightly
obscured by the fact that we focus on interpretation games. To illustrate the two
conceptions more clearly, recall that, in a general form, receiver strategies are
defined as mappings from messages to (distributions over) acts. As mentioned
earlier, acts can be interpretations; but they could equally well be reactions to
animal alarm calls, such as hiding in a tree or hiding in a bush, or any other
physical action such as passing the salt or bringing the keys. Under a game-
theoretical view, utilities are preferences over state-message-act triples.

Following Qing and Franke (2015) we can call the RSA-view on utility belief-
oriented and the game-theoretic view action-oriented. Under the former view,
speakers care to maximize log ρ0(s | m) − cσ(m). That is, first and foremost,
they care about the receiver’s beliefs and the receiver cares to form this belief.
Under the latter view, receivers care to maximize their (expected) utility. It is
their preference over state-(message-)act triples that matters.

The signaling behavior defined by OA, IBR, and IQR is more similar to defi-
nitions (2.13) – (2.16). Coming from a game-theoretic tradition, all three models
are action-oriented as well. As for their differences, instead of soft-maximization,
OA and IBR assume strict utility maximization at each step of the reasoning

3As with other models of rational language use, there is substantial variation within the
RSA tradition. For instance, on whether receivers take senders’ preferences over messages into
consideration; or on whether receivers’ priors only come into play at reasoning level 2, letting
the prior of level-0 receivers instead be uniform across contexts. These finer differences do not
need to concern us here, but see Qing and Franke (2015) for detailed comparison.



38 Chapter 2. Signaling Games: Analysis and Interpretation

hierarchy. IQR assumes soft-maximization at every step. This contrasts with our
definitions of literal behavior in (2.13) and (2.14), where no tendency toward util-
ity maximization is assumed. IBR and OA differ in two respects (Franke 2008).
First, OA limits the receiver’s reasoning sequence to ρ0-σ1-ρ2 in a similar fashion
to RSA. Second, prior state probabilities do not come into play in the OA model.
Of course, behaviorally this difference disappears if the prior is uniform.

These variations can be seen as reflecting the explanatory goal of each model.
OA, IBR, and IQR come from a game-theoretic tradition and aim to capture the
signaling behavior of both players to understand their joint outcome. OA and IBR
follow the classic assumption that choice is strictly rational. IQR accommodates
a more diverse range of behaviors in a trade-off between some analytic results
of OA and IBR and the possibility to capture finer-grained predictions involving
different degrees of rationality. This ability makes IQR models more attractive for
investigations that involve empirical data (Degen and Franke 2012, Franke and
Jäger 2016a; see Chapter 3 for a concrete application). In its original formulation,
the RSA model is more constrained in that it focuses only on a particular kind of
receiver behavior. This constraint is a consequence of its original goal to model
experimental data involving only pragmatic interpretation. However, nothing
prevents the model from being extended to characterize sender behavior as well
(see, e.g., Franke and Degen 2016 for such an extension). In sum, I believe
it is fair to say that the commonalities among these approaches far supersede
their differences. Within any approach it is common to find a number of slight
differences in how each analysis sets up the linguistic behavior of agents. However,
these changes mainly hinge on the phenomenon to be explained. They do not
purport to be fundamentally new proposals in their own right.

As for my own assumptions on these matters, the definitions in (2.13) – (2.16)
and their instantiations in the following chapters are mainly motivated by the ad-
vantages conferred by soft-maximization in contrast to strict utility maximization
mentioned above. As for other differences, contra IQR, level-0 soft-maximization
is not assumed in cases where literal behavior is not considered to correspond to
actual linguistic behavior.4 Contra RSA, higher level receivers are assumed to
soft-maximize because their goal is not only to form a posterior belief about the
sender state, but rather to maximize the utility derived from the act they perform
upon reception of a message. That is, I will follow the game-theoretic view of
action-oriented signaling. On this matter we should note that whether there is
a conceptual difference between belief- and action-oriented models depends on
the situation at hand. In cases in which interlocutors care about belief-formation
they evidently coincide (see van Rooy 2004b for detailed comparison of notions of
utility and related information-theoretic measures). In terms of technical differ-

4In Chapter 4 we will come to contrast literal behavior with behavior that results from
higher order reasoning under evolutionary dynamics. In this setup literal behavior is taken to
correspond to behavior that can actually be adopted. Consequently we assume it to come with
a rationality parameter that regulates choice (see Franke and Degen 2016 for a similar choice).
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ences, the choice of one over the other is ultimately empirical. A first step toward
their experimental comparison is provided by Qing and Franke (2015), who show
that action-oriented behavior better reflected data collected in a reference game.
Nevertheless, this issue is far from settled and invites future research.

2.5 Final Remarks

This chapter touched upon a number of different questions. The two central ones
are:

(i) How can linguistic behavior be represented?

(ii) How can linguistic outcomes be analyzed?

On question (i) we follow the view of language use as a strategic endeavor of
information transfer and employ signaling games as context models of features
relevant to an interaction: individuals’ preferences and beliefs, together with
the linguistic material relevant to the situation at hand. At a general level, this
view of communication identifies linguistic knowledge with operational knowledge
(Parikh 1994:530ff). What is relevant for communication is not that speaker and
receiver share a language. Rather, what is relevant is that their language use
effects successful behavior. In the case of interpretation games this translates to
an agreement between a sender’s information state and a receiver’s interpretation.
Importantly, this view allows for mismatches in interlocutors’ subjective priors
(Chapter 3) or even their semantics (Chapter 4 and 5).

As for question (ii), we argued that, where possible, linguistic outcomes should
be explained in terms of the processes that lead to their emergence and stability
rather than by appeal to their optimality. Particular phenomena will of course call
for the analysis of particular processes, at possibly distinct levels of interaction.
Irrespective of these differences, the common thread of this investigation lies in
that they build on models of rational language use at the individual level. This
allow us to inspect the joint role of semantic conventions and language use in the
emergence of pervasive phenomena at the semantics-pragmatics interface.





Chapter 3

Signaling Under Uncertainty

Interpretative Alignment Without a Common Prior

To conclude, the light of human minds is perspicuous words, but by
exact definitions first snuffed, and purged from ambiguity; reason is
the pace; increase of science, the way; and the benefit of mankind,
the end. And on the contrary, metaphors, and senseless and
ambiguous words, are like ignes fatui; and reasoning upon them is
wandering amongst innumerable absurdities; and their end,
contention and sedition, or contempt.

Thomas Hobbes, Leviathan

Communication involves a great deal of uncertainty. Prima facie, it is therefore
surprising that biological communication systems – from cellular to human –
exhibit a high degree of ambiguity and often leave its resolution to contextual
cues. This puzzle deepens once we consider that contextual information may
diverge among individuals.

In this chapter we lay out a model of iterated ambiguous communication be-
tween subjectively rational agents that lack a common contextual prior. On its
basis, we argue ambiguity’s justification to lie in endowing interlocutors with
means to flexibly adapt language use to each other and the context of their in-
teraction to best serve their communicative preferences. Linguistic alignment
is shown to play an important role in this process. It foments convergence of
contextual expectations and thereby leads to agreeing use and interpretation of
ambiguous messages. We conclude that ambiguity is ecologically rational when (i)
interlocutors’ (beliefs about) contextual expectations are generally in line or (ii)
they interact multiple times in an informative context, enabling for the alignment
of their expectations. In light of these results, meaning multiplicity can be un-
derstood as an opportunistic device enabled and shaped by linguistic adaptation
and contextual information.

41
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3.1 Meaning Multiplicity in Communication

In principle, speakers can draw from a large and virtually inexhaustive pool of
alternatives to convey a state of affairs. We can refer to an entity as Donald
Trump, as the forty-fifth president of the United States, or simply as that guy.
Similarly, we may say bank rather than financial institute, bat rather than base-
ball club, superfluous hair remover rather than remover of superfluous hair, or
thing instead of any of the aforementioned. When the primary goal is informa-
tion transfer the linguistic choices of speakers are chiefly constrained by whether
their interlocutors will be able to infer information as intended. Why and when,
then, would a speaker opt for a more ambiguous expression over one that is less
ambiguous?

The diverse nature of the examples above illustrates the issue we seek to
address in this chapter: from cellular signals to those employed by meerkats and
baboons, biological signaling is rife with meaning multiplicity (Greenough et al.
1998, Arnold and Zuberbühler 2006, Santana 2014). Natural languages are no
exception. Prima facie, this fact may be qualified as puzzling, if not as downright
indicative for a lack of communicative efficiency in their design (Chomsky 2002;
2008).

Ambiguity avoidance has an intuitive appeal because the association of mul-
tiple meanings with a single expression can give rise to uncertainty in interpre-
tation. Consequently, unambiguous language may be argued to be better suited
for communication. This idea has prominently figured in investigations on the
emergence of signaling systems, where an emerging system is standardly evalu-
ated against the ideal of one-to-one form-meaning mappings (e.g., Lewis 1969,
Steels 1998, Skyrms 2010; see Spike et al. 2016 for a recent review). Notwith-
standing, a growing body of literature argues that meaning multiplicity confers
functional advantages. It allows for smaller vocabularies (Santana 2014), greater
signal compression (Juba et al. 2011), for the reuse of forms that are easier to pro-
duce or parse (Horn 1984, van Rooij and Sevenster 2006, Piantadosi et al. 2012b,
Dautriche 2015), for the partition of large semantic spaces (O’Connor 2015), for
coordination on non-lexicalized meaning (Brochhagen 2015b), and for deception
in non-cooperative communication (Crawford and Sobel 1982). In most of these
analyses the exploitation of contextual information plays a central role. The ar-
gument is simple: the information provided by context needs not be codified in
a signal. As a consequence, ambiguous languages can be more compressed or en-
able for a more optimal reuse of their inventory than unambiguous counterparts,
while transmitting information as faithfully.

A complication ignored by this justification is that the gain attained from
contextual information is not necessarily cashed out in situations in which con-
textual information varies across agents. Once a divergence of subjective con-
textual information is admitted, it remains to be shown what the consequences
of meaning multiplicity are in cooperative communication. Furthermore, even if
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the assumption of a common contextual prior were justified, it is not clear how
it may come about nor how it relates to the context of interaction itself. In the
following, we take up these challenges by analyzing ambiguous communication in
iterated interactions without a common contextual prior. To this end, we pro-
pose a conservative generalization of the speaker behavior defined in (2.16) and
then analyze its predictions when combined with simple adaptive dynamics. The
result is a game-theoretic model that combines mutual reasoning with pragmatic
uncertainty which allows players to adapt their language use to each other over
time.

This chapter’s main goal is twofold. First, we set out to investigate the con-
ditions under which meaning multiplicity is advantageous by going beyond static
approaches, as well as by decoupling context from the subjective access individuals
may have to it. Second, we seek to further our understanding of the consequences
of linguistic alignment by analyzing how the interplay of context, subjective con-
textual expectations, and iterated interactions shapes (un)ambiguous language
use.

We proceed as follows. Section 3.2 discusses the issues that an analysis of
ambiguity in terms of a common prior raises. Section 3.3 lays out our main
assumptions together with the model we employ to characterize communication
under pragmatic uncertainty. Section 3.4 showcases the model’s main predictions
and explores the consequences of possible refinements, as well as those that follow
from environmental constraints. Going beyond theoretical predictions, Section 3.5
shows how well our model can explain experimental data. We critically assess our
main findings and possible shortcomings in Section 3.6, and conclude in Section
3.7.

3.2 Ambiguity, Preferences, Context and Com-

mon Priors

In linguistics it is common to distinguish different types of meaning multiplicity
based on syntactic, phonetic, graphemic, or semantic criteria. We instead take
a decision-theoretic point of view under which the relevant distinction concerns
whether or not communicative success hinges on the discrimination of interpre-
tations conventionally associated with the same form (Parikh 2000:§6, Santana
2014:§3). That is, whether an expression requires its addressee to settle for a par-
ticular interpretation over others – be it simplex or complex, and irrespective of
the locus of its meaning multiplicity. While this conception is broad, it excludes
phenomena such as vagueness, where an expression may have multiple precifica-
tions but (at least partially) successful interpretation does not hinge in teasing
them apart (see, for example, De Jaegher and van Rooij 2011, Franke et al. 2011,
O’Connor 2014). For the sake of brevity we will call this property ambiguity, as
tacitly done so far.
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Figure 3.1: Sequential structure of Parikh’s (2000) game. Starting at the top,
nature selects a state, s1 or s2, then sender σ picks a (true) message to send
in this state, and, lastly, receiver ρ interprets the message. End nodes indicate
sender and receiver utility for a given branch, with µ being the cost associated
with the use of m1, υ that of m2 and ι that of m3. The dotted line represents the
receiver’s epistemic uncertainty about which branch she is in when receiving m3.

As motivated in more detail below, we focus on situations where ambiguous
signaling is deliberate insofar as the speaker could have chosen a less ambigu-
ous expression. A minimal lexicon fragment that allows for the choice between
ambiguous messages over unambiguous ones is one with three messages and two
states, where L(s1,m1) = 1 = L(s2,m2), L(s1,m3) = 1 = L(s2,m3), and all other
state-message pairings are false:

L =

m1 m2 m3[ ]
s1 1 0 1
s2 0 1 1

In words, according to lexicon L message m1 is exclusively true of state s1, m2

only of s2 and m3 is ambiguous between these two states. Speakers of L therefore
need not use ambiguous m3 to convey these states but may nevertheless choose
to do so.

To better illustrate the technical and conceptual issues at stake, as well as to
better motivate our own assumptions on these matters, we postpone our analysis
of L in terms of a model of rational language use to Section 3.3. In this section,
we instead use Parikh’s (2000) analysis of ambiguity as a guide.

Figure 3.1 shows the sequential game that Parikh focuses on, with µ, υ and
ι being the numerical cost the sender associates with messages m1, m2 and m3,
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respectively (cf. Figure 4 in Parikh 2000:199). This game follows from the seman-
tics specified by L if, with Parikh, we assume that sender and receiver behavior
are fully constrained by semantic meaning. In Gricean terms, the assumption is
that the maxim of quality – to be truthful – cannot be violated; or, using Benz
and van Rooij’s (2007) terminology, that only admissible messages are sent.

In this game, the sender’s preferences over messages are inverse to the values
of µ, ι and υ. If this were a cheap talk game, µ = ι = υ = 0, then the strategic
situation is clear: a rational sender should always send the unambiguous message
with an index that matches her information state. This would leave no room
for misunderstanding and ambiguity is avoided. In the face of ambiguity being a
pervasive property of natural communication then either Chomsky (2002; 2008)
is right and (the use of) m3 indicates a defect of language (use), or ambigu-
ity’s justification lies in other factors such as a message bottleneck (O’Connor
2015) or non-cooperative communication (Crawford and Sobel 1982). However,
as discussed below, there are reasons to believe that ambiguous signaling is of-
ten a deliberate choice in cooperative communication as well, and not necessarily
driven by restrictions in the space of forms available. Such situations can be
characterized through differential sender preferences over messages, where not all
messages are equally preferred.

3.2.1 Brevity and context

While there can be many idiosyncratic reasons why a speaker may prefer a par-
ticular ambiguous message over a less ambiguous one, we will illustrate our pre-
dictions by assuming a speaker preference for brevity. As argued in the following,
brevity is a plausible candidate for a preference shared across individuals. It
additionally has a bearing on domains central to our purpose: linguistic choice,
dialogal adaptation, ambiguity, and contextual predictability.

Brevity is often argued to be a rational speaker-oriented principle. It is
posited, for instance, in Grice’s (1975) maxim of manner, Horn’s (1984) R-
principle, and Zipf’s (1949) principle of least effort. The tension between ambigu-
ity and brevity is explicit in the interaction between Grice’s maxims of quantity –
to be as but not more informative than required – and his manner (sub)maxims
– to be brief but to avoid ambiguity.

In dialog, message brevity has been reported to increase incrementally in
iterated tasks (Clark and Wilkes-Gibbs 1986, Motamedi et al. 2016, Hawkins
et al. 2017, Kanwal et al. 2017). This provides some indirect evidence for speakers
seeking to increase message compression when possible.

In the case of word length, Piantadosi et al. (2011) report cross-linguistic ev-
idence for its predictability based on contextual information; a prediction subse-
quently corroborated by Mahowald et al. (2013) in a behavioral study suggesting
that this relation is a consequence of deliberate speaker choices, instead of a sta-
tistical effect of language use or word classes. That is, there is some supporting
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evidence for the assumption that brevity interacts with contextual information
and influences linguistic behavior. The more predictive the context, the shorter
messages tend to be. Furthermore, there is a wealth of evidence for a nega-
tive correlation between contextual predictability and the pronunciation length
of phones and words (see Brennan and Hanna 2009:§2.1, Piantadosi et al. 2011,
and references within).

The claim that ambiguity’s risk is assessed through contextual rather than
language internal factors has also received some empirical support (see Ferreira
2008 and Wasow 2015 for recent psycholinguistic overviews). Two main findings
are relevant here. First, there is little evidence for the idea that ambiguity influ-
ences linguistic behavior to the extent that speakers always prefer unambiguous
expressions over ambiguous ones. This is contrary to the idea that ambiguity
avoidance exerts a strong influence on speakers’ choices. Second, while no con-
clusive evidence for this kind of avoidance has been found, Ferreira et al. 2005 do
report a tendency for the avoidance of ambiguity in naming tasks under certain
conditions. This tendency was registered in situations in which a single reading of
an ambiguous expression still applied to multiple objects. For example, subjects
presented with multiple baseball bats of different sizes avoided the plain label bat
to name one of them. The same degree of avoidance was not registered when
the naming target was a baseball bat while a bat of the zoological kind was also
present. A possible rationalization of this difference is that speakers may expect
meaning multiplicity rooted in linguistic conventions to be manageable (baseball
bat vs. flying bat) whereas more information is supplied when context typically
would not lend sufficient support to a single interpretation (as is the case when a
label applies to multiple objects of the same kind). As we argue in the following:
for ambiguity to be advantageous, meanings associated to a single form should
generally appear in contrasting contexts to safeguard understanding. That is,
they should appear in contexts in which priors sufficiently favor one interpreta-
tion over the other. An expectation that the addressee will be able to resolve
ambiguity may conversely not be warranted when the risk of misunderstanding
stems from atypical or language external factors. Additionally, in Ferreira et al.’s
task the choice of less ambiguous labels may have been fueled by the addressee
being unknown to the speaker.

Returning to Parikh’s game in Figure 3.1, the situation we are after is then one
in which m3 is shorter than m1 and m2, and thereby preferred: cσ(m3) < cσ(m1)
and cσ(m3) < cσ(m2). Albeit sparsely motivated, this is the same preference
ordering that Parikh (2000) assumes, with cσ(m1) = cσ(m2).

3.2.2 Context and (beliefs about) subjective expectations

If the deliberate use of ambiguous expressions hinges on contextual factors, this
begs questions about of the kind of contextual information interlocutors have ac-
cess to. We will argue that to answer such questions satisfactorily, the conception
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Sender strategies Receiver strategies

σ1:
s1 7→ m1 σ2 :

s1 7→ m3

ρ1:

m1 7→ s1

ρ2 :

m1 7→ s1

s2 7→ m3 s2 7→ m2 m2 7→ s2 m2 7→ s2

m3 7→ s2 m3 7→ s1

σ3:
s1 7→ m3 σ4 :

s1 7→ m1

s2 7→ m3 s2 7→ m2

Table 3.1: Pure admissible strategies in Parikh’s (2000) game.

and role of three factors needs to be clarified and their interdependence under-
stood: (i) the true context (nature), which determines the true distribution over
states, (ii) individuals’ subjective priors, and (iii) the beliefs that interlocutors
have about each other’s priors.

We begin by sketching out Parikh’s analysis of the strategic situation presented
in Figure 3.1. This analysis is conducted under static equilibrium methodology
(see §2.2) and consists of two main ingredients. First, it is assumed to be common
knowledge how likely s1 and s2 are; or at least whether one is more likely than
the other. Call the probability of the former state p and that of the latter p′. Sec-
ond, in acknowledgment of the problem that the existence of multiple equilibria
poses to static analysis (see §2.3), Parikh proposes a two-step solution concept.
First, interlocutors are assumed to identify the game’s Nash equilibria, as stan-
dard equilibrium analysis would have it. Second, out of the equilibria identified in
this manner, interlocutors then pick out the unique remaining Pareto-dominating
equilibrium. In informal terms, one outcome Pareto-dominates another if strate-
gies can be changed such that at least one player is better off in the first outcome
than in the second without making anyone else worse off.

Let us illustrate these ideas. If we restrict our attention to pure admissible
strategies, there are four sender strategies and two receiver strategies in this game.
They are listed in Table 3.1. Sender σ1 sends ambiguous m3 in s2; σ2 sends m3 in
s1; σ3 always signals ambiguously; and σ4 always does so unambiguously. Receiver
strategies only differ with respect to how m3 is interpreted, with ρ1 taking it to
signal s2 and ρ2 interpreting it as s1 instead.

If both state probabilities, p and p′, are positive and the sender’s preference
ordering over messages is as described above, then this game has only two Nash
equilibria: 〈σ1, ρ1〉 and 〈σ2, ρ2〉. The first succeeds in using ambiguous but pre-
ferred m3 to signal s2. The second does so by associating m3 with s1. For the
receiver either equilibrium is equally good. However, if p > 0.5 then the second
equilibrium is better for the sender because the least costly message is associated
with the most probable state. Under Parikh’s assumption of common knowl-
edge about the relation in which p and p′ stand, both players are aware (that
the other is aware) of this. Consequently, the second-order selection criterion of
Pareto-dominance predicts that the optimal outcome 〈σ2, ρ2〉 is played by. The
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situation is reversed if p′ > 0.5, with 〈σ1, ρ1〉 being the game’s optimal and unique
solution. Lastly, in case p = p′ the sender is predicted to signal unambiguously
by adopting σ4 because her uncertainty about the receiver’s interpretation of m3

makes ambiguous strategies less attractive than guaranteed information transfer
(Parikh 2000:206).1

Both ingredients of Parikh’s analysis have received criticism. For our purposes,
the interpretation of probabilities p and p′ is central, but see van Rooy 2004a for
detailed criticism of Pareto-dominance as a second-order selection criterion.

From the above, it should be clear that common knowledge of the relation in
which p and p′ stand is central to ensure coordination. This is the main deter-
minant of the outcome the analysis predicts. What are these probabilities and
where do they come from? Parikh (2000:197) notes that they can be “objective
or subjective, in general” but that, more often than not, they will be subjective
as “objective information will often not be available.” On the one hand, Parikh
hereby concedes that subjective probabilities matter. Rather than s1 being more
frequent than s2 or vice-versa, what matters is whether s1 is (believed by the re-
ceiver to be) more likely to be intended than s2. On the other hand, he suggests
that “in the absence of any special information” interlocutors can adduce that if
s1 is more frequent than s2 (and this is common knowledge), it is also more likely
to be intended. How this claim is to be reconciled with the claim that objective
information is often not available, as well as what counts as a “special informa-
tion” is not explained. In light of the centrality of these probabilities and their
direct involvement in agents’ deliberation processes more should be said about
them.

Parikh’s analysis ultimately necessitates a frequentist interpretation of p and
p′. Otherwise, if these probabilities were purely subjective, the speaker would not
experience the difference in payoffs between the two Nash equilibria necessary to
employ his second-order selection criterion (Franke 2013:277). More precisely,
they may be subjective but this information needs to accord with the true fre-
quency of the states. As argued by Allott (2006:§4), it is therefore important to
clarify what the nature of these frequencies is. If, for instance, frequency of a
state is interpreted as the frequency to which a state is true, then Parikh’s analy-
sis seems to make wrong predictions. Intuitively, if frequency is truth based, the
utterance Bolivar wrote a letter should then be interpreted as (5a) and not as
(5b).

(5) a. Bolivar wrote a letter of the alphabet.

1Additional ideas that Parikh introduces are needed to fully explain this prediction. After
all, with p = p′ we face the problem of multiple equilibria again. These ideas are not relevant
to what follows but the gist is that the sender then makes her choice relative to the utility she
can expect if the receiver is equally likely to pick ρ1 or ρ2. That is, she maximizes .5 EUσ(·, ρ1)
+ .5 EUσ(·, ρ2), with all sender strategies being on the table again. In this case the best sender
strategy is σ4.
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b. Bolivar wrote a letter of correspondence.

I agree with Allott (2006) that these probabilities cannot correspond to truth-
based frequency, with Franke (2013) that something needs to be interpreted in
frequentist terms if it is to have an impact on players’ payoffs, and with Parikh
himself that, for linguistic behavior at any given point in time, it is subjective
probabilities – what interlocutors believe – that ultimately matter. The notions
we introduced in Chapter 2 give us the means to coherently put together these
requirements.

Technically, the true distribution over states or nature, P ∗ ∈ ∆(S), is what
determines state frequencies. Under my preferred interpretation, what determines
P ∗ is the context of interaction. An admittedly artificial but illustrative example
is an experimental setup where this distribution is controlled by the experimenter
(see §3.5 for concrete illustration). For example, if the task is to describe different
objects, the experimenter plays the role of nature in deciding what object a
subject is to describe. Viewing P ∗ in these terms does not imply it being truth-
based. Depending on the stimuli of the experiment, (5a) may be more likely than
(5b), and vice-versa. Beyond experiments, the information state a calligrapher
wishes to convey may skew P ∗ differently than if she were a secretary; just as a
zoologist may be more likely to speak about a bat in its zoological sense than a
baseball player.

We should stress that, by contrast to the true distribution over states, a
prior, pr ∈ ∆(S), represents an individual’s subjective expectations in a context
(see §2.4). The true distribution over states and individuals’ subjective priors are
different objects. The former determines the state to be conveyed in an interaction
whereas the latter determine expectations over states in any such interaction. We
had already made this distinction in Chapter 2 but now it should become clearer
why keeping P ∗ and pr apart is important.

The intuition that Bolivar wrote a letter is more likely to be interpreted as (5b)
implies that this is due to our private contextual expectations in the underspec-
ified context presented above. In a different context we may entertain different
expectations. Crucially, and contra Parikh, I do not see why there should be a
guarantee that in any context our expectations fully align with P ∗; nor with each
other’s subjective expectations. This is an empirical question. As suggested by
the data we analyze in Section 3.5 neither assumption seems warranted.

This brings us back to the questions we set out to address. As noted earlier,
many approaches to ambiguity make use of contextual information but it is usu-
ally assumed that this information is shared. So far, we discussed Parikh’s (2000)
analysis. Based on it, we argued that it is important to tease apart the context of
interaction from the subjective expectations individual’s entertain in it. In what
follows, our goal is to elucidate the conditions under which ambiguous signaling
can be successful in the face of varying contextual information among individuals,
as well as to understand the relation in which such subjective information stands
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to the true distribution over states.

3.3 Ambiguous Signaling Through Pragmatic In-

ference

We model language use to the effect that a speaker decides whether to send an
ambiguous message based on her beliefs about her interlocutor’s likely interpre-
tation of it. That is, speakers gauge whether their addressees will be able to
infer the intended meaning from an ambiguous message. If not, they may opt
for a less ambiguous one to minimize the risk of misunderstanding. In turn, a
hearer’s interpretation of an ambiguous message will depend on her subjective
expectations in a given context: the relative saliency of interpretations that are
truth-conditionally compatible with the message used by the speaker (as discussed
in §2.4.2). As before, individuals’ expectations in a given context are represented
by a prior over states pr ∈ ∆(S), where pri is player i’s prior. Importantly, play-
ers are uncertain about their interlocutor’s prior. This uncertainty is captured
by a distribution over priors, P ∈ ∆(pr). Contrary to past approaches, this
information is not common. Put differently, P(pr) represents a player’s belief
about pr being her interlocutor’s prior.

We propose a conservative generalization of the rational language use model
introduced in Section 2.4 to incorporate these assumptions. Player i’s literal
receiver and sender behavior remain unchanged. They are repeated below as
(3.1) and (3.2).

ρ0(s|m; pri) ∝ L[s,m] pr
i(s); (3.1)

σ0(m|s) ∝ L[s,m] − cσ(m). (3.2)

Letting L and the sender’s preferences over messages be as above, our initial
question about the motivations for deliberate ambiguous signaling can be recast
as asking under which conditions the risk incurred by the use of preferred m3

undercuts the benefit of safe unambiguous communication using only m1 and m2.

The tension of a sender wanting to uphold her message preferences as much as
possible while taking the, possibly diverging, expectations of her interlocutor into
consideration arises when higher reasoning types of level n+1 are considered. As
discussed in Section 2.4, we restrict our attention to boundedly rational agents
of level 1. This minimal degree of mutual reasoning suffices to associate m3 with
a salient state under suitable conditions: when the receiver’s prior, respectively,
the sender’s beliefs about it, are informative enough.

Our departure from previous models of rational language use concerns the
behavior of the sender, who, instead of using her own prior to anticipate the
receiver’s behavior, employs her beliefs about the receiver’s prior P. Letting θ
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codify the parameters of pr, the level-1 behavior of player i is then given by:2

ρ1(s|m; pri) ∝ exp(λ
σ0(m|s)pri(s)∑
s′ σ

0(m|s′)pri(s′)
); (3.3)

σ1(m|s; P) ∝ exp(λ((

∫
P(θ)ρ0(s|m; θ)dθ)− cσ(m))). (3.4)

The behavior of speakers of level 1 defined in (3.4) corresponds to the quantal
best response to a belief-weighted level-0 hearer. The latter is derived from the
domain of P, a set of possible receiver priors, with weights according to the
sender’s belief in them as corresponding to the actual prior of the receiver.

This proposal is conservative in that it retains the predictions made by previ-
ous models of rational language use when the prior is (believed to be) common (cf.
Frank and Goodman 2012, Franke and Jäger 2014). This situation is given when
P is degenerate, ruling out all but the speaker’s own prior. While in this case
a common prior and a belief in a common prior are behaviorally indistinguish-
able, they are nevertheless conceptually different. The former requires equality
of expectations whereas the latter represents beliefs of players about each other’s
expectations. While a belief in a common prior may often be false, it leads players
to behave as if there was a common prior. More importantly, this generalization
can additionally capture situations in which the sender is either uncertain about
her interlocutor’s expectations; or is certain but believes that they differ from her
own. Such situations can arise in a number of ways but behaviorally boil down
to a speaker’s increased tendency to use safer messages when uncertain; or to use
messages in a way that might go against her own prior but be in line with her
beliefs about her addressee’s prior, respectively. Reasoning beyond level 1 would
allow for further variability in receiver behavior depending on her beliefs about
the sender’s beliefs, and vice-versa for the sender. We do not make use of such
additional layers of complexity here.

To illustrate how (3.4) plays out, let us assume that there are only two dis-
tributions in the support of P. For example, prv(s1) = 0.9 = prw(s2). Prior
prv strongly favors state s1 over s2, and vice-versa for prw. Furthermore, let in-
terlocutors tend to maximize expected utility (high λ), rendering their behavior
more deterministic, and assume that the lexicon and the cost-induced order over
messages is as above. While there is a gamut of possible speaker behaviors that
arise from an interaction between P and the concrete values assigned to λ and
the cost of messages, there are three general cases of interest. The first is given
by P assigning high probability to prv. In this case, ambiguous m3 is sent in

2Alternatively, when considering a finite subset of P’s domain:

σ1(m|s; P) ∝ exp(λ((
∑
pr

P(pr)ρ0(s|m; pr))− cσ(m))).
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s1 to maximize expected utility. Since the receiver is believed to expect s1, m3

is judged to be risky in s2. Consequently, unambiguous m2 is sent in s2 instead.
The second case, in which high probability is assigned to prw, is the opposite
of the first: m3 is sent in s2 but not in s1, where m1 is sent instead. Lastly,
the sender may be uncertain about the receiver’s prior, reflected, for example,
by P(prv) = P(prw). In this case, the speaker will opt for the safe strategy of
sending m1 in s1 and m2 in s2.

Single interactions already allow us to quantify how well a pairing of signal-
ing strategies fares in a context. However, the degree of agents’ success chiefly
depends on their (beliefs about their interlocutors’) priors, and on how well these
match the context’s true distribution over states P ∗. A crucial component miss-
ing from such an analysis is the possibility of players to interact with each other
multiple times. Clearly, if they know nothing about each other, the best a player
can do is to make a guess and hope for the best. By contrast, iterated interac-
tions allow senders to change their beliefs according to information obtained from
receivers’ linguistic behavior, as well as for subjective expectations over states to
adapt to the context itself.

Iterated interactions. More often than not communication involves iterated
rather than single interactions. This allows interlocutors to adapt to each other.
In dialog, linguistic alignment is evinced on many levels: from phonetic (Kim
et al. 2011) or syntactic (Pickering and Ferreira 2008) to lexical and referential
(Brennan and Clark 1996, Clark and Wilkes-Gibbs 1986, Hawkins et al. 2017).
Here, we are concerned with the relation between subjective contextual expecta-
tions, beliefs about them, and the information provided by the context in which
interactions take place. The latter is codified in P ∗, which interlocutors are indi-
rectly exposed to while they interact. What is missing, then, are means for priors
and beliefs about them to change over time.

Communication ensues as before. The sender wants to convey a state and
sends a message. The receiver interprets it and both players receive a payoff.
However, now the players’ own subjective priors and their beliefs about their
interlocutor’s prior are updated based on information gained from the interaction.

There are many ways in which these updates could be modeled. For subjec-
tive priors we will assume them to be updated using a simple form of Roth-Erev
reinforcement learning (Roth and Erev 1995, Erev and Roth 1998). The moti-
vation behind this rather simple learning mechanism is to (ideally) obtain high
rationality outcomes from low rationality behavior (Huttegger et al. 2013). Addi-
tionally, it allows us to maintain an analogy to simple biological learning processes
(Thorndike 1898, Herrnstein 1970). In human terms this process is akin to prim-
ing in that a state’s saliency increases as interlocutors are exposed to it (Pickering
and Garrod 2004, Reitter and Moore 2014).

More concretely, we assume subjective priors over states to be updated based
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on a player’s accumulated propensity for each state s at interaction t, apt(s).
Accumulated propensity can be likened to a record of the states that the sender
intended to communicate, or the receiver interpreted, in previous interactions.
The propensity for the state in play is updated by a value r after an interaction.
This value is positive in case of communicative success and negative in case of
failure, as reflected by δ(·, ·) (see definition (2.3)). For sender i that sent m in s
with receiver j interpreting this message as s′ this gives:

apit+1(s) = apit(s) + f(r), where f(r) = r if δ(s, s′) = 1,

f(r) = −r otherwise.

The receiver’s accumulated propensity for state s′ that she took m to signal,
apjt+1(s′), is updated analogously.

Before interacting, player i’s propensity is simply proportional to her prior,
api0(s) ∝ pri(s). Subsequently, player i’s prior for interaction t+1 is derived from
her amassed propensity up to interaction t: prit+1(s) ∝ apit(s).

The value by which propensities change controls how fast the initial prior is
overridden. Small r gives the initial prior more weight whereas larger values lead
players to abandon or reinforce their preconceptions faster. Negative reinforce-
ment is not required for the results reported below to obtain. However, it speeds
up the process. Other possibilities include the addition of recency effects – by
weighting recent states higher than less recent ones – or learning with suppression
– by decreasing the association strength of states that were not in play (Erev and
Roth 1998, Franke and Jäger 2011). Alternatively, interlocutors could use more
sophisticated mechanisms to update their priors. As with our previous choices,
we decide for a simple and transparent mechanism that serves our purpose. The
contribution of reinforcement learning to our following predictions is straightfor-
ward and can be achieved in a number of ways: a player’s expectations of a state
should grow with increased exposure to it.

Note that r is dissociated from utility. This diverges from most previous
signaling models with adaptive learning dynamics (e.g., Barrett and Zollman
2009, Franke 2016). Notwithstanding, this assumption is warranted here as there
is no reason to relate a speaker’s prior over states to incurred production cost. In
fact, a direct association between utility and prior updates would have undesirable
consequences in cases where messages true of less frequent states are less costly
than those true of more frequent ones. This could lead to the former being more
salient than the latter. In informal terms, having a preference to talk about
something in a particular fashion should not make it a priori more probable to
be spoken about.

In contrast to the somewhat mechanistic fashion in which subjective priors
are updated, we assume the change of a sender’s beliefs about her addressee’s
prior to involve an inferential component. Here, we model it as an update of P
that consolidates old with new information using Bayes’ rule. This reflects the
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sender’s primary goal to actively reach understanding by correctly anticipating
her addressee’s interpretation. This motivation can already be seen as rooted in
agents’ engagement in mutual reasoning.

The evidence witnessed by the sender on which she bases her inference is
whether communication succeeded. However, she receives no information about
the receiver’s interpretation if communication failed, beyond the fact that it
failed.3 More precisely, in an interaction in which the speaker wanted to convey
s with message m, interpreted as s′ by the receiver, the sender witnesses w(s),
where w(s) = {s} if δ(s, s′) = 1. Otherwise w(s) = S \ {s}. Based on evidence
w(s), the sender adjusts her beliefs about her interlocutor’s prior based on the
likelihood of a prior leading to the witnessed receiver behavior. Accordingly, P
is updated as follows:

Pt+1(pr | w(s);m) ∝ (
∑

s′∈w(s)

ρ0(s′ | m; pr))P t(pr). (3.5)

When interacting again, linguistic choice is computed as before with updated
priors and updated beliefs over them.

3.4 Predictions for Single and Iterated Interac-

tions

Based on the preceding discussion, a straightforward first prediction is that am-
biguous communication is at least functionally equivalent, in terms of information
transfer and fulfillment of speaker preferences, to unambiguous counterparts pro-
vided that (i) the speaker’s beliefs about the receiver’s prior correctly anticipate
her actual behavior, and that (ii) signaling behavior is relatively deterministic.
Condition (ii) is important to ensure that receivers have a tendency to associate
ambiguous messages with a single state in a given context. More importantly,
under these conditions ambiguity is functionally advantageous when there are at
least two contexts governed by distributions over states that each assign a non-
zero probability to distinct states associated with a preferred ambiguous message,
and the speaker uses this message in both contexts. The existence of multiple
contexts is important because for every single context there is an unambiguous
lexicon that fares at least as well as an ambiguous one. For example, one in which
m3 is only true of s1 if P ∗(s1) ≥ P ∗(s2) or one in which this message is true only
of s2 if P ∗(s1) ≤ P ∗(s2). An advantage for ambiguity can therefore only manifest

3This is one of the main differences between signaling games in the Lewisian tradition and
so-called naming games (e.g., Steels 1998). In the latter tradition it is standardly assumed
that the true state of the world (or intended referent) is revealed to the receiver after each
interaction. For a game with two states this makes no difference: even when players fail to
communicate there is only one other state the sender could have intended to convey.
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when there are multiple contexts. We return to this matter in Section 3.6 and
address it in detail in Chapter 5. Lastly, ambiguity is maximally advantageous
in a context if the most frequent state in it is associated with the least costly
message. Put differently, the most frequent state(s) in a context ought ideally be
associated with the most preferred form(s) when speaker economy is at stake.

The adoption of an ambiguous strategy ultimately hinges on the sender’s be-
liefs about the receiver. Whether the aforementioned advantages manifest there-
fore depends on factors that would lead agents to have similar expectations (over
expectations). This also means that ambiguous signaling is more risky in a world
in which contextual expectations greatly vary across agents. In the case of hu-
mans, behavioral experiments suggest that they generally succeed, at least signif-
icantly beyond chance, in matching their expectations with those of others when
it is known that the other party is trying to do the same (Schelling 1960, Mehta
et al. 1994; see Section 3.5 for data particular to ambiguous signaling as well as
the discussion on focal points in Section 2.4.1). However, from previous accounts
and our analysis so far, it is unclear how agents may come to entertain such
aligned expectations.

That speakers are somewhat aware of the contextual expectations of their
interlocutors is also evident in the use of puns, such as (6) - (8), which are funny
because they manipulate and exploit the likely expectation of how ambiguity will
be resolved.

(6) What is the difference between a hippo and a Zippo? One is very heavy
and the other is a little lighter.

(7) Why did the man fall in the well? Because he could not see that well.

(8) Two goldfish are in a tank. One turns to the other and says, “You man
the guns, I will drive”.

To recapitulate, ambiguity can be advantageous in single interactions as long
as sender beliefs anticipate receiver behavior. Crucially, subjective priors need not
match for ambiguity to be exploited. No common prior is required. On a general
level, this characterization is nevertheless in the spirit of previous justifications
of ambiguity. The explanatory burden shifts from a common prior to sufficiently
accurate beliefs about the receiver’s prior. However, this shift highlights that the
conditions for safe ambiguity exploitation may not always be given and allows
us to ask when and how they can be reached. Whether an ambiguous signal is
understood depends on the receiver’s own expectations; whether it is sent depends
on the sender’s beliefs about these expectations; and the utility of conveying a
particular state by an ambiguous message will – in the long run – depend on the
true distribution over states. We now turn to iterated communication to tease
apart the interaction between these factors and to elucidate how and under which
conditions an advantage crystallizes.
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Figure 3.2: Mean subjective prior development in 104 independent simulations
with P *(s1) = 0.7 for r = 0.1 (left) and r = 1 (right).

3.4.1 Simulations

In order to inspect the model’s predictions in more detail, a sender’s initial beliefs
about the receiver’s prior need to be set. Here, we assume sender i’s initial P
to be Dirichlet distributed, with weights for state s set to q × pri(s) + 1. In
words, high q corresponds to the sender believing that the receiver’s expectations
are close to her own, with q → ∞ approaching the belief of a common prior.
Lower values correspond to more divergence and uncertainty. In the extreme,
q = 0 corresponds to complete uncertainty about the receiver’s prior; every prior
is deemed equally probable.

For the following simulations, we use L as above and assume that λ = 20,
cσ(m1) = 0.4 = cσ(m2) and cσ(m3) = 0.1. That is, players are subjectively
rational but might occasionally fail to maximize utility (from their subjective
perspective), and ambiguous m3 is preferred over either unambiguous message,
each of equal cost. To inspect the average outcome of interactions, including best-
and worse-case scenarios, players’ priors are randomly sampled at the onset of a
first interaction. The sender’s value for q is randomly sampled from [0; 20] at the
onset as well.

The mean development of players’ subjective prior when interacting in a con-
text governed by P ∗(s1) = 0.7 is illustrated in Figure 3.2 for two values of rein-
forcement parameter r. This figure shows that priors approach the true distribu-
tion of the context as players interact in it. When there are only two states this
simple learning process is particularly fast because negative reinforcement in one
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Figure 3.3: Mean beliefs about receiver prior in 104 independent simulations with
P *(s1) = 0.5 (top-left) and P *(s1) = 0.9 (top-right). The lower row splits the
mean beliefs of senders in P *(s1) = 0.9 by their expected sender utility being less
or equal than 0.63 (bottom-left) and greater than 0.63 (bottom-right). The latter
are beliefs of senders that, at least in tendency, associate s1 with m3. The former
do not.

state leads to the prominence of the other. Figure 3.2 also showcases the role of r
in controlling the speed by which priors converge to a context’s distribution over
states.

In the following we focus on results obtained from an r-value of 0.5 after 50 in-
teractions. The latter ensures that the reported outcomes approximate endpoints
of the dynamics but should not be taken as indicative of the minimal number of
interactions required to reach them. Supplementary results obtained from less
interactions and different r-values are provided in Appendix A.

A more central interaction is that between P ∗ and a sender’s beliefs about
her interlocutor’s prior, as well as their bearing on the choice of ambiguous m3.
Figure 3.3 showcases how the context influences sender beliefs. The top row
shows the beliefs of senders about their interlocutors’ priors after 50 interactions
for two true distributions over states. The bottom row zooms in on the sender’s
beliefs in P ∗(s1) = 0.9; they show the difference in the beliefs of senders that (at
least in tendency) adopt the optimal strategy of associating m3 with the most
frequent state (right) and that of those that opt for safe unambiguous signaling
instead (left). Different contexts give rise to similar patterns, with a belief-peak
centered around 0.5 in the case of unambiguous signalers and peaks that tend to
the extremes of the space in the case of ambiguous ones.
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Recall that P is updated based on what can be inferred about the receiver’s
prior from her behavior. The only interactions that are informative about this
matter and therefore influence a sender’s beliefs are the receiver’s interpretations
of ambiguous messages. In turn, the receiver’s interpretation of an ambiguous
message may change over time due to her exposure to the context (see Figure
3.2). In particular, contexts that are not very informative can lead to fluctuations
in the receiver’s expectations, making her interpretative behavior more difficult
to predict for the sender. Consequently, as showcased by the top-left plot in
Figure 3.3, senders grow uncertain about their interlocutor’s expectations in such
contexts. The uninformative prior that receivers converge to in such contexts does
not lend itself for the safe exploitation of ambiguity either. Uncertainty about
expectations centered around uninformative priors therefore often lead to the
avoidance of risky signals. By contrast, receiver expectations in contexts in which
one state is markedly more frequent than the others are fairly predictable after
a few interactions. Senders pick up on this fact once they employ an ambiguous
signal.

As shown for P ∗(s1) = 0.9 in the right plots of Figure 3.3, senders tend to
overestimate their interlocutor’s prior in contexts that strongly favor one state.
This is due to the likelihood of a correct interpretation of m3 being higher the
more degenerate subjective priors are. Overestimation decreases as mutual rea-
soning levels increase but predictions about the use or avoidance of ambiguous
messages do not hinge on the shape of the sender’s belief but on the range of
priors it concentrates on. That is, a false belief about an addressee’s prior is not
detrimental to communication if it correctly predicts behavior.

The amount of senders that adopt an ambiguous strategy in a context is re-
flected most clearly by their expected utility (see definitions (2.4), (2.5) and (2.8)).
An excerpt of the mean expected sender utility together with the mean Jensen-
Shannon divergence (JSD) between the interlocutors’ priors is given in Table 3.2.
Informally, JSD measures the closeness of two distributions as a divergence to
their average. More precisely,

JSD(prv, prw) = 1/2 D(prv ||M) + 1/2 D(prw ||M), (3.6)

where

M = 1/2(prv + prw); (3.7)

D(prv || prw) =
∑
s

prv(s) log
prv(s)

prw(s)
. (3.8)

As shown in Table 3.2, even in a context governed by a uniform distribution the
mean expected utility of senders is higher than 0.6. This is the value guaranteed
by the use of only unambiguous messages m1 and m2, irrespective of P ∗, for
cσ(m1) = 0.4 = cσ(m2). The senders’ mean expected utility is also always higher
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P ∗(s1) EUσ (SD) JSD EUmax
σ

0.5 0.61 (0.06) 0.004 0.75
0.7 0.68 (0.10) 0.002 0.81
0.9 0.72 (0.13) 0.002 0.87

Table 3.2: Mean sender expected utility and JSD of interlocutors’ priors after 50
interactions in 104 independent games per P *. EUmax indicates the maximum
expected utility reachable for a given P *. SD is the standard deviation.

than the mean utility of approximately 0.57 expected in the first interaction. The
latter value is lower than the safe guaranteed value of 0.6 because priors and q
were sampled randomly. This inevitably led to the failure of some initial attempts
to exploit ambiguous m3. As suggested by Figure 3.2, iterated interactions also
strongly improve upon the mean initial JSD of approximately 0.15. Lastly, the
increase in standard deviation of expected utility with the frequency of s1 is a
consequence of the ensuing increasing difference between the expected utility of
an ambiguous signaling strategy against that of adopting an unambiguous one.

Finally, Figure 3.4 shows the proportion of communicative failures across in-
teractions for a sample of true distributions over states. As is to be expected,
the initial error rate effected by sampling priors and beliefs about them decreases
as the number of interactions increases. Once again, coordination is aided by
increase in frequency of one state over others. Contexts with a markedly more
frequent state lead to more informative priors. More informative priors are less
prone to change and effect more deterministic linguistic behavior.

In sum, this model (i) generalizes past analyses of ambiguity by relaxing the
assumption of a common prior, (ii) shows how agents may come to entertain
(beliefs about) contextual expectations that allow for the safe exploitation of am-
biguity, (iii) highlights the role of context frequencies in enabling or preventing
such exploitation, and (iv) connects this research with claims in the alignment lit-
erature about its role in dialog optimization, providing interlocutors with means
to establish patterns of language use better tailored to the context of their inter-
action and their preferences (Clark and Wilkes-Gibbs 1986, Reitter and Moore
2014).

More broadly, this interactive perspective also highlights the function of am-
biguity as an opportunistic adaptive device that endows agents with the ability
to mold language use to their interlocutors and the environment, and links this
opportunism to the information provided by a context. Contexts of high infor-
mativity are particularly conducive to ambiguity exploitation because they (i)
foment less fluctuations in the receiver’s interpretation of ambiguous messages
and, consequently, (ii) lead to less uncertainty in the sender’s beliefs about her
interlocutor’s prior. The expected utility of senders also increases with context
informativity as these contexts more often lead to the association of frequent
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Figure 3.4: Proportion of communicative failures across 50 interactions in 104

independent simulations per true distribution over states.

states with preferred but ambiguous messages. By contrast to, e.g., Parikh 2000,
this association is not explicitly sought after by senders but rather is a byproduct
of a receiver’s association of an ambiguous message with its most salient inter-
pretation. The interplay of saliency, frequency and interpretation therefore often
leads players to adopt Pareto-optimal signaling strategies.

Nevertheless, as indicated by Table 3.2, not even informative contexts guar-
antee that the optimal ambiguous strategy is always adopted. There are two
intertwined reasons for this. First, we allowed the priors of interlocutors to vary
freely before engaging in communication. This may cause a speaker with an unin-
formative prior and high q to believe her interlocutor’s prior to be uninformative
as well. Consequently, such a speaker will never try to use an ambiguous mes-
sage even after exploring the context (which may turn out to be informative).
Similarly, initial uncertainty from low q may lead speakers to not use risky sig-
nals, meaning that they never learn anything about the receiver’s expectations.
Second, a great number of interactions started with opposing contextual expecta-
tions. This can lead to an early communicative failure when using an ambiguous
message. As in the other cases mentioned, this can then deter the sender from
using risky messages in the future. As we will see once we look at the empiri-
cal data in Section 3.5, the fact that the model does not always converge to the
game’s optimal outcome but instead allows for unambiguous strategies or Pareto-
dominated ones to entrench themselves is a desirable feature. Nevertheless, we
briefly explore two ideas that qualify whether these situations pose challenges to
successful coordination with ambiguous messages.
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3.4.2 Exploration and past experience

Communication draws from past experience and agents may often find themselves
in similar contexts. This enables visitors of zoos and baseball courts alike to
use plain bat without first probing whether their interlocutor is attentive to the
same meaning. They have experience in these contexts and assume that their
interlocutors have had some too; at least to a degree to which one interpretation
of ambiguous bat is markedly more expected than the other. Once we allow for
richer background knowledge of a context the issue of strongly diverging initial
priors is reduced. A shared cultural background and experience in an environment
may therefore suggest themselves as partial answers to the question how linguistic
coordination with ambiguous messages can succeed prior to multiple interactions.4

The question how the speaker’s initial q-value is determined remains, however.
While a detailed treatment is outside the scope of this chapter, one possibility is
for it to be sensitive to the informativity of a context in combination with beliefs
about the receiver’s experience in similar ones. In broad strokes: high q may come
about because the context is assumed to be well known. Either because this is
known about the receiver itself or because this context is common enough that
members of a population are taken to be familiar with it. An informative context
that is assumed to have been encountered frequently enough may then lead to
an optimistic speaker strategy in which ambiguity is believed to be (usually)
resolvable (cf. Clark and Schober’s (1992) presumption of interpretability). Even
for such optimistic speakers, adaptive dynamics would still play a role in unknown
or infrequent contexts, as well as as corrective devices when optimism turns out
to be misplaced.

3.4.3 Preemptive adaptation

Next, we turn to the issue of senders who, due to early communicative failure or
initial uncertainty about their interlocutors’ expectations, remain averse to ambi-
guity even in informative contexts. The reason for senders occasionally locking-in
on an unambiguous strategy even if they could safely exploit ambiguity is that the
update of P is not sensitive to the information gained from the context; nor to
the fact that interlocutors adapt to it over time. There are different alternatives
that can stimulate the exploration of ambiguous strategies after learning more
about the context. A simple one is for P(pr) to be affected by the probability
of the current state s under pr. To this end, we can keep our update mainly as

4There are many ways in which this idea could be implemented. For example, initial priors
could be derived from samples from P ∗, or from past interactions with other agents. We chose
not to do so as we hope the positive effect this idea would have are clear.
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P ∗(s1) EUσ (SD) JSD EUmax
σ

0.5 0.58 (0.114) 0.033 0.75
0.7 0.8 (0.022) 0.001 0.81
0.9 0.87 (0) 0 0.87

Table 3.3: Mean sender expected utility and JSD of interlocutors’ priors after 50
interactions in 104 independent games using “preemptive” belief updates. EUmax

indicates the maximum expected utility reachable for a given P *.

it was in (3.5) and simply add pr(s) as a last term:

Pt+1(pr | w(s);m; s) ∝ (
∑

s′∈w(s)

ρn−1(s′ | m; pr))P t(pr) pr(s). (3.9)

This operationalizes a sender that changes her beliefs on the assumption that
her interlocutor adapts to the context; “preemptively” exploiting the relative
saliency of states that were relevant before. Table 3.3 shows how this modifica-
tion affects the outcome of interactions. As with the update in (3.5), supplemen-
tary results obtained from less interactions and different r-values are provided in
Appendix A.

In a nutshell, this less conservative update fares well in contexts governed by
distributions that favor a single state but less in those governed by flatter ones.
In the former kind of context the proportion of dyads that adopt the Pareto-
optimal strategy of associating m3 with the most frequent state is markedly
higher than under the simpler update mechanism in (3.5). However, as shown
for P ∗(s1) = 0.5, this can come at a cost in less informative contexts. The modi-
fied update in (3.9) favors priors that are informative about the current state in
play. Consequently, while the receiver converges to a prior that is not well-suited
for ambiguity exploitation in uninformative contexts, speakers instead tend to
infer more informative priors, attempt the use of risky signals, and often fail.
By contrast, our main proposal for updating P leads to more cautious behavior
that may not always result in ambiguity exploitation but generally ensures that
communication succeeds.

3.5 Model Fit

In a recent study, Kanwal et al. (2017) use an artificial language learning paradigm
to investigate people’s tendency to associate short forms with frequent meanings.
The experiment’s combined condition, detailed below, closely resembles the sit-
uation we analyzed above: there is a preference for an ambiguous message over
either of two unambiguous alternatives; the communicative task subjects are in-
volved in is cooperative; and there is a latent context that controls state frequen-
cies, with one object being more frequent than the other. Crucially, subjects
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had no direct access to the latter information. Instead, they were implicitly ex-
posed to it throughout the experiment. In our notation, this context is such that
P ∗(s1) = 24/32 = (1− P ∗(s2)), with s1 denoting the experiment’s frequent object
and s2 the infrequent one. After surveying Kanwal et al.’s setup, we use their
data to assess how well our model can explain subjects’ behavior and use our fit
to explore the data.5

In contrast to other studies that use iterated coordination tasks in the form
of dialog (e.g., Krauss and Weinheimer 1964, Clark and Wilkes-Gibbs 1986), the
vocabulary available to subjects in this study was not open ended. Instead,
participants were trained on an “alien” language, consisting only of three names
and two objects. One name, zop, was ambiguous and could apply to either object.
The other two names, zopudon and zopekil, were unambiguous and applied only
to one object each. Restricting language use to only these three forms ensured
that the two objects stood in direct competition for the single short label zop.
The artificial language that subjects were trained to use to communicate with
each other was accordingly one of the following two:

zopudon zopekil zop[ ]
object1 1 0 1
object2 0 1 1

zopudon zopekil zop[ ]
object1 0 1 1
object2 1 0 1

The experiment consisted of a training phase and a testing phase. In the
training phase subjects were iteratively presented with object-label pairs that
were true in the artificial language assigned to them. In this way the subjects
learned the language that was later used for actual communication with other
participants in the testing phase. Training consisted of 32 learning trials, with
one object appearing 24 times and the other one appearing only 8 times. After
completing the training phase, subjects were assigned to one of the four experi-
mental conditions of the testing phase.

In the combined condition subjects were paired to play a signaling game with
partners trained on the same language as themselves. Partners were also exposed
to the same object frequencies. In each testing trial the sender was presented
with one of the two objects, and with a choice to send one of the two labels that
applied to this object. For example, if trained on the left language from above, a
sender trial could consist of communicating object1 with the choice to send either
unambiguous zopudon or ambiguous zop.

In this condition sending messages cost time. To signal, senders had to keep a
transmission box pressed while the letters of the selected message appeared one by
one. A message could only be transmitted once all letters had appeared. Sending
ambiguous zop therefore took less time than sending an unambiguous message.

5I am extremely grateful to Jasmeen Kanwal for making this data available to me and
answering my inquiries about it. This analysis would not have been possible without her help.
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The receiver’s task, upon receiving the message, was just to select the intended
object from an array showing both object1 and object2. After receiving feedback
about their communicative success the subjects’ roles reversed. In this way, each
participant played a total of 32 sender and 32 receiver trials with their assigned
partner. Similarly to the training phase, each sender had to communicate one
object 24 times and the other one only 8 times. The frequencies of the objects
in the testing phase matched those that subjects had already been implicitly
exposed to in their training. That is, if object1 was frequent in training then it
was also the frequent object in testing. At the beginning of the game subjects
were told that the quickest dyad with the highest amount of correct trials would
get a reward. This was done to incentivize communicative success as well as a
preference for the faster ambiguous message zop.

The other three experimental conditions differed from the combined condition
in that the pressure for communicative success, the time difference between mes-
sages, or both of these factors were removed. One condition had instantaneous
message transmission. Another had subjects play a labeling task alone in order
to remove the communicative element of the game while keeping the difference
in transmission time between messages. The remaining condition had them play
alone and with instantaneous messages.

Overall, Kanwal et al. (2017) found that subjects showed a tendency to use
unambiguous labels when pressured for communicative success in the condition
with no difference in transmission time between short and long messages; to use
the short ambiguous label when a time differential existed but no communicative
element; to use unambiguous labels when neither time differences nor commu-
nication existed;6 and to use the (un)ambiguous message to communicate the
(in)frequent object when there was a time difference and a communicative el-
ement. While these tendencies are robust, there was also substantial variation
across subjects and trials. Of particular interest to us is that, in the combined
condition, some subjects deviated from the optimal strategy of associating the
frequent object with the short ambiguous form. Instead, they signaled either
unambiguously or associated the infrequent object with the short form.

3.5.1 Individual-level data and model

Kanwal et al.’s (2017) data set for the combined condition comprises the linguistic
behavior of 40 participants (20 dyads). As we focused on level-1 senders rather
than more complex interactions between higher order sender/receiver beliefs, our

6That is, even with a pressure for communicative success removed, subjects showed a ten-
dency to send unambiguous messages when they were as fast to transmit as ambiguous ones.
This result is noteworthy in that it suggests that, all else being equal, unambiguous messages
are preferred over ambiguous ones. While the results of the combined condition of Kanwal et al.
2017 adds to the evidence against ambiguity aversion in language use, this condition indicates
that a baseline preference for its avoidance might exist.
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analysis will focus on the 32 sender trials of each subject. We begin by surveying
the data to give a broad first impression of how subjects behaved.

Data

Out of a total of 1280 sender trails, 1201 trials were successful (93.8%). Out of
the 40 senders, 19 senders managed to communicate the objects successfully in
all of their 32 trials. Six failed once; four failed twice; three failed three times;
two failed four times; one failed five times; one failed seven times; two failed eight
times; and two failed ten times. The trials of five subjects therefore account for
more than half of the communicative failures in this experimental condition. Put
differently, most subjects did well but, out of those that did not, some accrued a
large amount of communicative failures.

To get an idea of how individuals behaved in the experiment, we categorize
subjects according to whether they predominantly (i) associated the frequent ob-
ject with the short ambiguous message, the Horn strategy, (ii) associated the
infrequent object with the short message, the Anti-Horn strategy, (iii) avoided
ambiguity, the unambiguous strategy, (iv) employed none of the preceding strate-
gies, the variational strategy, or (v) failed to communicate more than three times,
the erratic strategy.

The first two strategies owe their name to Horn’s (1984) division of pragmatic
labor, which states that (un)marked expressions typically are associated with an
(un)marked interpretation. For instance, utterances (9) and (10) are classically
analyzed as having the same truth-conditions. However, in virtue of (9) being
less marked, it is taken to pragmatically convey an unmarked interpretation.
Reversely, uttering (10) signals that there is a reason why (9) was not uttered.
This gives rise to a marked interpretation.

(9) Mercader killed Trotsky.
 Mercader killed Trotsky in a stereotypical way.

(10) Mercader caused Trotsky to die.
 Mercader killed Trotsky in a non-stereotypical way.

In this case, the Horn strategy is the strategy that associates unmarked zop
with the frequent object. The Anti-Horn strategy uses the reverse signaling pat-
tern, going against Horn’s prediction. This is the ambiguous Pareto-dominated
strategy that, e.g., Parikh (2000) predicts to never arise.

By contrast to the other four categories, the erratic category gives a crude
approximation of the amount of “problematic” subjects (more details below).
Given the relative simplicity of the task and the fact that, in principle, safe
communication was always an option, we categorize subjects as erratic if they
failed to communicate more than a total of three times.

As for subjects that failed to communicate three times or less, we categorize
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them as (Anti-)Horn if they used ambiguous zop to communicate the (in)frequent
object in all but at most three occasions. This allows for some deviation from full
adherence to these strategies. Similarly, we categorize subjects as unambiguous
if they used zop at most three times. Senders that did not fulfill any of the
aforementioned conditions are categorized as being variational. In total, there
were 11 Horn, 4 Anti-Horn, 7 unambiguous, 10 variational, and 8 erratic senders.

Model

Our goal is to see whether our model can explain subjects’ individual choices
across their sender trials in the testing phase. To do so we need to specify the
choice and update mechanisms assumed to underly these choices. Recall that
linguistic behavior is driven by the rationality parameter λ, preferences over mes-
sages, and a sender’s beliefs about her interlocutor’s prior, with q and a sender’s
initial prior determining P’s initialization. We fix preferences over messages
with the same values as before. That is, cσ(zop) = 0.1 and cσ(zopudon) = 0.4 =
cσ(zopekil); we use the simple update mechanism defined in (3.5); and also fix the
initial prior of all subjects to pr(frequent object) = 24/32. The latter corresponds
to the exposure to the true distribution P ∗ that subjects had after the training
phase. As for q, we assume players to come in one of two types: cautious type
τc or risky type τr. We let these types correspond to a q-value of 0 and 40, re-
spectively. This has the effect that cautious type τc senders initially believe every
receiver prior to be equally probable, making the use of less ambiguous messages
more likely due to uncertainty. Risky type τr senders instead initially believe their
interlocutor’s prior to approximate their own prior of pr(frequent object) = 0.75.

In principle, the model would allow us to estimate, for each subject: its own
preferences over messages, its initial prior, and its particular q-value. However,
our goal is not to show that a model with many parameters can account for sub-
jects’ behavior. Instead, we want to see whether we can do so with a constrained
and informed model, allowing us to enrich our preceding theoretical analysis by
its success as well as its failure. What is more, for our predictions to be inter-
pretable in a meaningful way, the model has to be restricted in some respects.
Otherwise, completely unambiguous behavior could for instance be effected either
by low q; a reversal of preferences over messages; or an uninformative initial prior.
Of course, it is probable that subjects entertained a wider range of beliefs about
their interlocutors than captured by types τc and τr; that they had diverging
initial priors even if they were trained in the same way; and that their incentive
to use the ambiguous label differed. However, lacking precise information about
these matters, we follow the original experimental setup as closely as our model
allows while fixing unknowns as best as we can.

In sum and with these provisos in mind, we want to see whether subjects’
behavior can be explained by one of two types, τc and τr together with an indi-
vidual’s degree of soft-maximization λ. This is done under the assumption that
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subjects are cooperative; that they form beliefs about their interlocutors’ contex-
tual expectations based on their linguistic behavior; that they have a preference
for ambiguous zop; and that they have an initial prior that favors the frequent
over the infrequent object. Reversely, failures to explain the data will also shed
light on these assumptions.

For each individual i we want to explain 32 data points of the form diopjkln.
Each such datum codifies a sender’s choice in a particular trial as well as the
information available to her from past trials to update P. The superscript la-
bels the individual, i ∈ [1; 40]. Index o ∈ {1, 2} codifies whether the subject
had to communicate object1 or object2 in this trial. Index p ∈ {1, 2, 3} codifies
the message the subject sent, with 1 and 2 standing for the unambiguous mes-
sages true of the object with the same index, and 3 for ambiguous zop. Indices
j, k, l, n ∈ [0; 31] are counts of previous successes and failures using the ambiguous
message. This information feeds into the sender’s beliefs about her interlocutor’s
prior as specified in the update rule in (3.5). This, in turn, has a bearing on
her choice as specified in the choice rule in (3.4). Index j is the count of previ-
ous successes communicating object1 using the ambiguous message and k that of
previous failures to communicate object1 using this message. Analogously, l and
n are counts of previous successes and failures to communicate object2 using the
ambiguous message. The likelihood of datum diopjkln is then given by the prob-
ability P i

opjkln that individual i of type τ i ∈ {τc, τr} with λi sends message p in
state o, conditioned on the counts in j – n.

We assume an uninformative prior over types, τ i ∼ Bernoulli(p) with p = 0.5,
and that λ is positive and sufficiently high, λi ∼ Gamma(shape = 30, β = 1). In
words, we expect subjects to be of one of the two types without a bias toward
either, and to be sufficiently rational as to exploit the ambiguous message if it is
believed to be understood by her interlocutor (initially due to her own type; later
due to the information she gets from counts j – n).

We expect the model to be able to explain the behavior of subjects that
fall into the first three categories reasonably well. That is, that of those that
approximate either Horn, Anti-Horn or unambiguous strategies. Furthermore,
we expect it to be less successful in explaining the behavior of subjects that
experienced multiple communicative failures.

3.5.2 Results

Some of the terminology used in this section presupposes basic familiarity with
Bayesian modeling. Readers lacking this background will hopefully nevertheless
be able to appreciate the results (see, e.g., Lee and Wagenmakers 2014 for an
introduction). Intuitively, what we want to infer is the degree to which a sub-
ject maximizes expected utility from her subjective perspective, λ, together with
whether she is (initially) cautious or risky. We do so based on the data she
produced across her 32 sender trials. We provide the model with a reasonable
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Horn Anti-Horn Unambiguous Variational Erratic
Population

mean

λ 31.34 22.39 25.99 22.066 12.97 23.52
τc 0.09 1.0 1.0 0.63 0.31 0.52
τr 0.91 0.0 0.0 0.37 0.69 0.48

RMSE 0.13 0.19 0.14 0.24 0.37 0.21

Table 3.4: Mean marginal posteriors and root-mean-square errors.

starting point, the Gamma and Bernoulli distributions mentioned above, and
then explore the parameter space to find a good estimate that accords well with
the data; inasmuch as the model is able to account for the subject’s behavior in
the first place. These estimates are not single points but instead yield uncertainty
over parameters. We can then use these estimates to predict a subject’s behavior,
which is a reasonable way to check whether the model can account for the data
in the first place. Note that the model knows nothing about our five categories.
These are just intended as aid to interpret model and data by providing some
coarse-grained bins to classify subjects.

To obtain posterior estimates for our parameters, λ and τ , we fit individuals’
data with PyMC3 (Salvatier et al. 2016). For each individual we collected 2000
samples from two chains from the joint posterior distribution after a burn-in of
800 samples. All simulations conducted in this way had an R̂-value below 1.05.
This suggests chain convergence (Gelman and Rubin 1992).

Mean summary statistics of the marginal posteriors estimated for types and
λ-values are given in Table 3.4. Individual estimates for λ with respective highest
density intervals are provided in Appendix B.

We also conducted posterior predictive checks by drawing 500 samples from
subjects’ posteriors for each of their trials. The root-mean-square error (RMSE)
between actual values and the ones predicted by the model in this way are also
given in Table 3.4 (see Appendix B for individual RMSEs). We showcase a
selection of predicted values in more detail below.

Considering the categorical nature of the data and that we have a single data
point per trial choice, the model provides a good fit for most subjects. Partic-
ularly for those we had categorized as Horn, Anti-Horn and unambiguous. The
higher RMSE for Anti-Horn subjects is a consequence of having fixed all initial
priors to favor the frequent object. This means that the model cannot explain
initial use of ambiguous zop to refer to the infrequent object. This would not be a
rational choice for initial pr(infrequent object) = .25 neither as τc nor as τr. How-
ever, these subjects’ subsequent uses of zop tended to be rational provided past
evidence, leaving these initial choices unexplained. The remaining error within
these first three categories is caused by subjects’ occasional experimentation with
different signaling patterns. This can be expected in such an experimental setup.
Some subjects may take a few trials to explore their options and get accustomed
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Figure 3.5: Marginal posterior for subjects’ types.

to the experiment, as well as to probe their partner’s behavior in this unusual
task.

As for λ-values, the data is best explained by a tendency toward utility max-
imization for all but erratic subjects. λ-values are higher for Horn subjects due
to the initial prior of pr(frequent object) = 0.75. Such a prior requires high λ
for zop to be exploited from the onset of the game. That is, before witnessing
evidence that this object is actually expected by the receiver.

Figure 3.5 shows the posterior distributions over subjects’ types in more detail.
There is an almost even split between τc and τr and uncertainty only about the
type of few subjects. This suggests that most subjects’ behavior is well explained
by either τc or τr. The few subjects for which some uncertainty remains all belong
either to the variational or to the erratic category.

Finally, Figure 3.6 shows draws from the posterior predictive of four different
subjects across trials. As discussed below, the bottom-right plot gives an example
of a subject which the model cannot explain well. The remaining three plots show
cases where the model can explain most of a subject’s actual behavior.

3.5.3 Discussion

There are three key things we learn from Kanwal et al.’s (2017) data. First, as
illustrated by the left plots in Figure 3.6, different degrees of initial uncertainty
about the interlocutor’s contextual expectations can explain the behavior of sub-
jects that approximated Horn and unambiguous strategies very well. While it
is not possible to ascertain which factors drove subjects to behave as they did,



70 Chapter 3. Signaling Under Uncertainty

Figure 3.6: Subjects’ posterior predictive with 95% confidence intervals, derived
from 500 draws per trial. Plots show actual and predicted use of ambiguous zop
across trials for a Horn subject (top-left), an Anti-Horn subject (top-right), an
unambiguous subject (bottom-left), and an erratic subject that experienced 10
communicative failures (bottom-right).

the experiment’s exit poll is nevertheless suggestive.7 In it, many subjects that
favored sending long unambiguous labels rationalize their behavior as being moti-
vated by uncertainty, giving answers such as “zop was too easy to be identified as
incorrect [I would] rather use the extra time to make sure the guess was correct”
or “I wanted to make sure the person got my message. I know it takes time but
I prefer to be safe than sorry.”

Second, the belief update explains the data well as the game progresses. This
is particularly evident in the case of subjects for which the initial prior, which we
assumed to favor the frequent object, led to erroneous initial predictions. This is
illustrated by the top-right plot in Figure 3.6. The subject’s choice not to send
the ambiguous message for the frequent object is best explained by assuming her
to be of the cautious type τc. This, however, predicts the ambiguous message
to be avoided across the board. After an initial failure to predict its use for

7It is debatable whether subjects’ post hoc introspection in this kind of task is informative
about their behavior. Additionally, not all subjects provided answers that can easily be in-
terpreted. Some puzzling reasons include “I choose the names depend on the structure of the
objects” and “I selected the option which i like the most.” Then again, it is to be expected
that some subjects will not behave according to theoretical predictions, that some may not be
attentive to the task, and that some simply do not care enough about the task to perform it
according to the instructions of the experimenters.
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the infrequent object, this information feeds into P and the model catches up
with the subject’s behavior as she continues using zop to signal the infrequent
object. This pattern of erroneous initial predictions being improved upon as trials
advance holds for all players that approximated the Anti-Horn strategy, as well
as for some variational ones.

As noted earlier, it would be possible to improve the fit if we did not fix the
initial prior to favor the frequent object. That is, by letting the model estimate
an initial prior for each subject. Rather than doing so, the failure on this matter
should be seen as indicating need for additional experimentation that controls
for subject’s expectations in order to understand what factors ultimately lead to
the adoption of Anti-Horn-like strategies. Put differently, while the model could
explain this data, I do not see a justification within Kanwal et al.’s (2017) ex-
perimental setup for the assumption of an initial prior that favors the infrequent
object. There may be many reasons why some subjects associated ambiguous zop
with the infrequent object. However, a better fit would not improve our under-
standing of this matter. In terms of our overall predictions, this does however
suggest that Table 3.4 and Figure 3.5 under-report the amount of risky type τr
subjects. Currently, Anti-Horn-like subjects are best explained by τc even though
the posterior predictive suggests this prediction to be off the track. Their use
of ambiguous zop would instead be best explained by τr in combination with an
initial prior that favors the infrequent object.

As for variational subjects, their experimentation with multiple strategies is
initially unexpected by the model as well. However, once a subject stopped
probing her interlocutor’s expectations, the model can account for their behavior
well.

Some of the subject’s comments in the experiment’s exit poll suggest reasons
for switching strategies. For example, (i) interlocutors’ failure to coordinate,
“I wanted to set the shorter name for carrots [...] but my partner didn’t seem
to have understood the game properly”; (ii) starting safe and adapting to the
interlocutor’s linguistic behavior, “[I w]ait[ed] for the ‘partner’ to determine what
words he/she/it wanted to use [...] and simply [fed] that information back”; or
(iii) error “[...] I wasn’t thinking well and just used the long names for both, as
soon as my partner begin to shorten one I caught on and did the same.” The
first two reasons fall squarely within the scope of our theoretical analysis. In
the first case, learning that the interlocutor is not attentive to the same states
as oneself may lead to the adoption of a different strategy. Reversely, positive
evidence about an interlocutor’s linguistic behavior provides evidence for which
strategy best to adopt. The third reason is not accounted for by the model but
is also an expected issue that is inherent in empirical data.

Lastly, note that the model fails more the less receptive to communicative
success or failure a subject’s behavior is. That is, when subjects switched strate-
gies having succeeded in the past with no evidence to support this change. Or,
reversely, when they did not switch even in the face of repeated communicative
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failure. This is illustrated by the bad predictions made for the erratic subject in
Figure 3.6 (bottom-right). This subject kept using ambiguous zop to signal the
frequent object even after her interlocutor had already failed to infer it multiple
times, accruing a total of 10 communicative failures. Case in point, after the
experiment ended, this subject noted “[...] I always selected zop as the word is
small and the time taken [...] would be less.” While this is the optimal strategy,
the cooperative element of the game seems to have been lost on this subject,
who refused to adapt to the partner even in the face of repeated failure. Overall,
this issue is only pronounced in a few subjects. The model’s failure to predict
such behavior is also expected in light of one of our main assumptions being that
individuals (at least in tendency) adapt their linguistic behavior to one another.
The model fit reflects this by estimating low λ-values for subjects with many
communicative failures.

In sum, this analysis further highlights some of the main properties of our
model, and some of the aspects in which it differs from previous static treatments
such as that of Parikh (2000). Kanwal et al.’s (2017) data is well explained by a
tendency toward utility maximization, the possibility of strategies to adaptively
change through the course of interactions, and the initialization of P as effecting
either risky or cautious signaling. While, as reported by Kanwal et al. (2017),
taken together subjects tend toward an association of ambiguous but preferred
forms with frequent meanings, individual-level behavior turned out to foster a
multitude of strategies. Where strategies changed the model makes good predic-
tions for subjects that managed to communicate objects successfully. From an
experimental perspective, the behavior of Anti-Horn subjects is hard to explain
in light of training and testing frequencies. This issue bleeds into the broader
question how the prior of individuals and their belief about their interlocutor’s
prior are formed before interacting (cf. §3.4.2). In the case of Kanwal et al.’s
experiment, even if subjects were attuned to frequency differences in training,
they had no guarantees that these would transfer to the testing condition, as we
assumed, nor that the assigned partner had experienced similar frequencies. This
uncertainty may account for some initial variation across subjects. As stressed
above, this issue requires further empirical research.

3.6 General Discussion

We proposed a conservative generalization of speaker choice in models of rational
language use and combined it with simple adaptive dynamics to generate predic-
tions about ambiguous communication between players lacking a common prior.
The model decouples interlocutors’ subjective contextual expectations from each
other, as well as from the environment itself. This weakens the assumptions of
past investigations by neither assuming a common prior (Parikh 2000, Piantadosi
et al. 2012b, Santana 2014) nor shared randomness in a language’s forms (Juba
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et al. 2011). Beyond their separation, these components were argued to iteratively
feed into each other. A sender’s beliefs about her interlocutor play a central role
in her linguistic behavior and change according to the receiver’s actions. At the
same time, interlocutors’ communicative intentions and expectations are indi-
rectly shaped by the context and the outcome of interactions. This allows for
adaptive behavior that can lead to a plurality of strategies being adopted over
time.

In single interactions ambiguity is predicted to be advantageous when (be-
liefs about) priors are sufficiently aligned relative to the truth-conditions of rel-
evant messages of a language (cf. Parikh 2000, Juba et al. 2011, Piantadosi
et al. 2011, Santana 2014). We further showed that these conditions can often
be reached when iterated interactions and adaptive mechanisms are considered.
Even if players’ priors are allowed to initially vary freely. In a nutshell, the more
speakers interact, the closer their (beliefs about) contextual expectations grow,
and the riskier their communication can be. Crucially, whether (beliefs about)
expectations facilitate the safe exploitation of ambiguity is influenced by how
informative the context of interaction is. More informative contexts allow in-
terlocutors to reach an implicit agreement on salient meanings faster and more
reliably than less informative ones. A byproduct of this interaction is a tendency
for the association of preferred forms with frequent meanings (Horn 1984, van
Rooy 2004a).

The model also establishes a connection between models of rational language
use, usually confined to single interactions, and linguistic alignment. In analogy to
experimental findings with human subjects, it predicts increased signal compres-
sion as interlocutors interact (Fowler and Housum 1987, Clark and Wilkes-Gibbs
1986, Bard et al. 2000, Motamedi et al. 2016, Kim et al. 2011, Pickering and Fer-
reira 2008, Brennan and Clark 1996, Hawkins et al. 2017, Kanwal et al. 2017), a
strong connection between linguistic adaptation and task success (Fusaroli et al.
2012), and audience and interaction dependent adaptation (Branigan et al. 2010,
Garrod and Doherty 1994, Brennan and Clark 1996, Metzing and Brennan 2003).
In particular, we showed that the model can explain empirical data in a simple
iterated coordination task well. This analysis further underscores that, at least
in some contexts, rather than common knowledge of P ∗ or a common prior, peo-
ple’s behavior in dialog is adaptive and ambiguity exploitation opportunistic.
While some subjects tended toward the adoption of the game’s optimal strategy,
others coordinated on meaning with Pareto-dominated strategies or even unam-
biguous strategies. This stands in stark contrast to past “one strategy takes it
all”-analyses of ambiguity.

The parallels listed above should however not be taken to suggest the model
to be a comprehensive model of dialogal adaptation. Our main aim was to add
to the general understanding of the conditions under which ambiguity may be
justified in cooperative communication, as well as how these conditions can be
reached and how they interact. The model is therefore best viewed as an in-
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formed but idealized abstraction of communication. It is at this level that it
makes predictions about ambiguous communication under the assumption that
interlocutors (i) have preferences over messages, (ii) engage in mutual reasoning,
(iii) are influenced by information acquired from (iiia) context and (iiib) their in-
terlocutor, and that they (iv) have private contextual expectations. The specifics
of these assumptions depend on the situation at hand. For instance, interactions
in which linguistic feedback from addressees is limited – such as speeches, lec-
tures or meetings – may require higher degrees of reasoning. Particularly from
addressees. On the other extreme, other cases of biological signaling may of-
ten involve less rather than more sophistication. In particular, assumptions (ii)
and (iiib) may seem contentious when applied to communication of non-human
organisms. Along the lines of our and previous accounts, whether ambiguity is
explained in functional terms in such cases instead depends on whether priors
are generally aligned, dissipating the need for mutual reasoning. An important
contributing factor to successful ambiguous communication without conditions
(ii) and (iiib) may be that other organisms have been argued to lack or only show
very limited degrees of displacement: the ability to communicate about things
that are not spatio-temporally present (Hockett 1960). By contrast, in the case of
human communication, nothing prevents two zoologists at a baseball court to dis-
cuss their work on bats. Taking stock, we proposed a conservative generalization
of models of rational language use, embedded it in a dynamic setting in which
interlocutors interact multiple times, analyzed its predictions under assumptions
that draw from insights of previous research, and explored its explanatory poten-
tial using experimental data. Of course, we make no claim to have exhausted the
diverse conditions under which biological signaling takes place.

The complementary approach to dialogal adaptation recently proposed by
Hawkins et al. (2017) deserves some mention. Rather than starting with fixed
semantics, Hawkins et al. analyze adaptation in convention formation. That is,
they look at situations where states are yet to be lexically associated with partic-
ular forms. The dynamics they propose consequently initialize with interlocutors
that are uncertain about the meaning of messages. Technically speaking, inter-
locutors have uncertainty about their interlocutor’s lexicon L(·,m) rather than
about her prior (Bergen et al. 2016). Over interactions, evidence for the use of a
particular lexicon then leads to the mutual adoption of particular (unambiguous)
semantics in a self-reinforcing process initially driven by chance. There are clear
parallels and differences between Hawkins et al.’s (2017) and our proposal. In
terms of parallels, in both models uncertainty diminishes over interactions and is
leveraged to effect agreement on disambiguated language use. As for differences,
our prior-driven disambiguation process presupposed fixed semantics. In fact,
ambiguous semantics that can be resolved differently across contexts are central
to our justification, as well as the starting point of this chapter (see Chapter 5 on
the evolution of such semantics). By contrast, lexical uncertainty, as conceived by
Hawkins, Bergen, and colleagues, leads to the emergence of unambiguous seman-
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tics starting from no preexisting conventions (cf. Skyrms 2010, Spike et al. 2016). I
believe that lexical and pragmatic uncertainty are best regarded as dual processes
whose explanatory role depends on the degree to which semantics are (believed
to be) shared. On the one hand, novel situations may require interlocutors to
establish what expressions mean. On the other hand, interactions that build on
established conventions may instead draw communicative advantage from what
expressions can convey in a context. I think the rich spectrum of situations where
a combination of lexical and pragmatic uncertainty may come into play, as well
as a formal and conceptual analysis of their role at the semantics-pragmatics
interface offers exciting venues for future research.

One way in which our analysis could be criticized is that players accurately
recognize the context they are in and that they approximate subjectively rational
behavior (albeit bounded in mutual reasoning depth and allowing for occasional
mistakes). These simplifying assumptions do not have a strong bearing on our
main argument. A weakening of either is tantamount to the introduction of a
higher error rate when using ambiguous signals. It follows that if this rate exceeds
the benefit of the use of preferred but ambiguous messages, then unambiguous
communication is predicted to be more advantageous and consequently to be
adopted. This is well in line with our argument that the benefit of meaning
multiplicity is enabled by particular conditions rather than being a property that
benefits language users across the board.

This chapter focused on analyzing the conditions under which ambiguous sig-
nals can be used without incurring communicative disadvantages in a single con-
text. As noted earlier, one may therefore contend that for any given context an
unambiguous language that semantically associates the most frequent state with
the most preferred message can be constructed. I agree. Were the world such that
language users would always find themselves in exactly the same context there
would be little use to associating multiple meanings to a single form. Contextual
information would be invariant. Speakers would then do better if they avoided
the risk of ambiguous communication altogether and opted for unambiguous ex-
pressions instead. It should therefore be stressed that the advantage of expres-
sions that are true of more than one state lies in their ability to fulfill speaker
preferences in multiple contexts simultaneously. This is something unambiguous
language cannot do. Unambiguous alternatives are nevertheless important; at
least for communication that allows for displacement. They come into play ei-
ther when speakers need to signal a state that is not in line with (beliefs about)
contextual expectations, or when these are not sufficiently informative. We will
come to further substantiate these claims in Chapter 5.

To summarize, ambiguity endows agents with the ability to adapt their lin-
guistic resources to an environment without incurring too great a risk of mis-
understanding. This may involve an adaptation process between interlocutors
in a particular situation, but can also draw from general knowledge about com-
monly experienced domains in single interactions. The more varied the world
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but more shared the experience, the better ambiguous language users fare. These
results add to the growing list of realms in which ambiguity has been argued to
be functionally justified, such as non-cooperative communication (Crawford and
Sobel 1982), unaligned preferences (De Jaegher and van Rooij 2014), and when
a language’s form inventory is restricted in size (O’Connor 2015).

3.7 Conclusion

We argued that the risk of ambiguity lies not in the meaning multiplicity of ex-
pressions but rather in uncertainty about contextual expectations. In turn, its
advantage lies in the reuse of preferred forms, leaving coordination on meaning to
be partially resolved by the context of interaction. We have shown under which
conditions this justification holds without a common contextual prior and char-
acterized how language users may come to successfully communicate even when
these conditions are initially not given, as well as when they fail to materialize.
Linguistic alignment was shown to play a pivotal role in this process by having
a bearing on coordination and convergence of (beliefs about) expectations over
meaning, thereby influencing linguistic choice. In more general terms, we argued
that meaning multiplicity is an adaptive tool that enables agents to fit language
to their needs, their interlocutors, and the environment, through an exploitation
of shared pragmatic principles and (partially) shared contextual information.

Ambiguity is not inevitable. However, when the conditions for its exploitation
are given it is likely to emerge through interaction. In functional terms our
analysis echoes the sentiment already expressed by Miller (1951:111): ambiguity
is not the unruly creature it often is branded to be. Instead, its qualification
as disruptive or suboptimal is an artifact of theoretical idealization – a product
of expressions’ isolated inspection instead of in the naturally richer contexts in
which they are produced.



Chapter 4

Co-Evolution of Lexical Meaning and
Pragmatic Use

. . . language is not, as we are led to suppose by the dictionary, the
invention of academicians or philologists. Rather, it has been evolved
through time, through a long time, by peasants, by fishermen, by
hunters, by riders. It did not come from the libraries; it came from
the fields, from the sea, from rivers, from night, from the dawn.

Jorge Luis Borges, This Craft of Verse

According to standard linguistic theory, the meaning of an utterance is the
product of conventional semantic meaning and general pragmatic rules on lan-
guage use. To investigate how cultural evolution of language plays out under this
picture of the semantics-pragmatics interface, this chapter puts forward a game-
theoretic model of the competition between types of language users, each endowed
with a selection of lexical representations and a particular pragmatic disposition
to act on them. The model traces two evolutionary forces and their interaction:
(i) functional pressure toward communicative efficiency and (ii) learning biases
during the transfer of linguistic knowledge.

We illustrate the model based on a case study on scalar implicatures. In this
case study learning biases that favor simple semantic representations are shown
to foster the evolution of more sophisticated pragmatic reasoning types and so
prevent the lexicalization of scalar implicatures. The picture of the relation-
ship between semantics and pragmatics that this case study suggests is one of
co-evolution. The evolution of lexical representations that enable for systematic
pragmatic enrichments is dependent on mutual reasoning about rational language
use. In the opposite direction, complex semantics that can do away with mutual
reasoning do not necessarily foster pragmatic reasoning and may even be encum-
bered by it.

77
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4.1 Introduction

What is conveyed usually goes beyond what is said. In previous chapters we
discussed Grice’s (1975) influential characterization of the relation between the
literal meaning of expressions and what they may convey in context. Particu-
larly, we saw how the view of pragmatic use and interpretation as a product of
mutual reasoning can be captured by models of rational language use (Chapter
2). In Chapter 3 we then analyzed pragmatic inferences that were driven by con-
textual expectations and beliefs about them. Semantic ambiguity enabled these
inferences to be drawn; but their nature is rather ad hoc. Ultimately, they de-
pend on the context and the course of the dialog(s) agents engage in. There are
other pragmatic inferences that show striking regularities. For example, the use
of ability questions for polite requests (“Could you please . . . ?”), or certain en-
richments of lexical meanings such as that of and to convey a temporal succession
paraphrasable as and then. If we are to understand under which conditions these
regular enrichments emerge and stabilize then vertical change needs to be taken
into account.

A paradigmatic case of a productive and well studied class of systematic prag-
matic enrichments are scalar implicatures (Horn 1984, Hirschberg 1985, Levinson
1983, Geurts 2010; see §2.4). To recapitulate, scalar implicatures refer to infer-
ences where the utterance of a sentence like I own some of Tom Waits’ albums is
taken to convey that the speaker does not own all of them. In the Gricean tra-
dition this inference is viewed as the outcome of the hearer reasoning about the
speaker’s language use: if the speaker owned all albums, she could have used the
word all instead of some, thereby making a more informative statement. Since
she did not, the hearer may conclude that the speaker does not own all of them
(under the assumptions that the speaker is cooperative and knowledgeable; that
is, willing and able to provide more information if relevant).

Scalar implicatures provide a good testbed to study the evolution of regular
pragmatic inferences because they have received much attention, both theoreti-
cally (e.g., Sauerland 2004, Chierchia et al. 2012, van Rooij and de Jager 2012)
as well as experimentally (e.g., Bott and Noveck 2004, Huang and Snedeker 2009,
Grodner et al. 2010, Goodman and Stuhlmüller 2013, Degen and Tanenhaus
2015). While there has been much discussion about many details concerning
scalar implicatures, a position endorsed by a clear majority in the literature is
that a scalar item like some is underspecified to semantically mean some and
maybe all and that the enrichment to some but not all is part of some regular
process with roots in pragmatics.

If this majority view is correct, the question arises how such a division of labor
between semantics and pragmatics could have evolved, why it would be so perva-
sive across natural languages, and why it is that some expressions systematically
draw from it while others semantically conventionalize.

Models of language evolution abound. There are simulation-based models
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studying populations of communicating agents (e.g., Hurford 1989, Steels 1995,
Lenaerts et al. 2005, Steels and Belpaeme 2005, Baronchelli et al. 2008, Steels
2011, Spike et al. 2016) and there are mathematical models of language evolu-
tion, many coming from game theory (e.g., Wärneryd 1993, Blume et al. 1993,
Nowak and Krakauer 1999, Huttegger 2007, Skyrms 2010). Much of this work
has focused on explaining basic linguistic properties such as compositionality and
combinatoriality (e.g., Batali 1998, Nowak and Krakauer 1999, Nowak et al. 2000,
Kirby and Hurford 2002, Kirby 2002, Smith et al. 2003, Gong 2007, Kirby et al.
2015, Verhoef et al. 2014, Brochhagen 2015a, Franke 2016), but little attention
has been paid to the interaction between conventional meaning and pragmatic
use. What is more, many mathematical models explain evolved meaning as a
regularity in the overt behavior of agents, abstracting from complex interactions
between semantic representations and pragmatic use. In contrast, in this chapter
we will look at language users with a richer cognitive make-up. More precisely,
we spell out a model of the co-evolution of conventional meaning and pragmatic
reasoning. The objects of replication and selection are pairs consisting of a set of
lexical meanings and a manner of pragmatic behavior. Put differently, evolution-
ary forces apply on types of linguistic behavior (Chapter 2), resulting from types’
latent semantic and pragmatic properties. This allows us to inspect the influence
that evolutionary dynamics have on the joint outcome of particular divisions of
labor between semantics and pragmatics.

As in previous chapters, rational language use is modeled using probabilis-
tic models of pragmatic language use (e.g., Frank and Goodman 2012, Franke
and Jäger 2016a, Goodman and Frank 2016; see §2.4). Replication and selec-
tion are described by the replicator-mutator dynamic, a general and established
model of evolutionary change in large and homogeneous populations (Hofbauer
1985, Nowak et al. 2000; 2001, Hofbauer and Sigmund 2003, Nowak 2006). This
approach allows us to study the interaction between (i) functional pressure to-
ward communicative efficiency and (ii) infidelity in the transmission of linguistic
knowledge, caused by factors such as inductive learning biases and sparse learn-
ing data. Considering transmission of linguistic knowledge is important because
neither semantic meanings nor pragmatic usage patterns are directly observable.
Instead, language learners have to infer these unobservables from the observable
behavior in which they result. We formalize this process as a form of Bayesian
inference. Our approach thereby contains a well-understood model of iterated
Bayesian learning (Griffiths and Kalish 2005; 2007), but combines it with func-
tional selection, here formalized as the most versatile dynamic from evolutionary
game theory, the replicator dynamic (Taylor and Jonker 1978). Section 4.2 intro-
duces this model.

Section 4.3 discusses the general motivations for the way pressures (i) and (ii)
are modeled and combined in light of previous studies. Section 4.4 then applies
this model to a case study on scalar implicatures. We discuss a setting in which
the majority view of underspecified lexical meanings and systematic pragmatic
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enrichments emerges if selection and transmission infidelity are combined. In
particular, we show that inductive learning biases of Bayesian learners that favor
simpler lexical meanings can prevent the lexicalization of scalar inferences and
lead to the emergence of Gricean-like pragmatic reasoning types. The results of
this case study are critically assessed in the light of the assumptions that feed
our model in Section 4.5.

4.2 A Model of Co-Evolving Lexical Represen-

tations and Pragmatic Behavior

4.2.1 Communicative success and learnability

The idea that language is an adaptation to serve a communicative function is
fundamental to many synchronic and diachronic analyses at least since Zipf’s
(1949) explanation of word frequency rankings as a result of competing hearer
and speaker preferences (e.g., in Martinet 1962, Horn 1984, Jäger and van Rooij
2007, Jäger 2007a, Piantadosi 2014, Kirby et al. 2015). If processes of selection,
such as conditional imitation or reinforcement, favor behavior that fosters commu-
nicative success, languages are driven toward semantic expressivity (e.g., Nowak
and Krakauer 1999, Skyrms 2010; see Chapter 5 for qualification). But pres-
sure toward communicative efficiency is not the only force that shapes language.
Learnability is another, as natural languages need to be learnable to survive their
faithful transmission across generations. Furthermore, even small learning biases
implicit in acquisition can build up and have quite striking effects on an evolving
language in a process of iterated learning (Kirby and Hurford 2002, Smith et al.
2003, Kirby et al. 2014).

While natural languages are pressured for both communicative efficiency and
learnability, these forces may pull in opposite directions (Christiansen and Chater
2008:§7). Their opposition becomes particularly clear when considering the ex-
treme (Kemp and Regier 2012, Kirby et al. 2015). A language consisting of a
single form-meaning association is easy to learn but may fail to convey informa-
tion agents care about. Conversely, a language that lexicalizes a distinct form
for a large number of different meanings may be highly successful in transmitting
information faithfully but challenging to acquire.

4.2.2 The replicator-mutator dynamic

An elegant formal approach to capture the interaction between communicative ef-
ficiency and learnability is the replicator-mutator dynamic (Hofbauer 1985, Nowak
et al. 2000; 2001, Hofbauer and Sigmund 2003, Nowak 2006). In its simplest,
discrete-time formulation, the RMD defines the frequency x′i of each type i in
an infinite population at the next time step as a function of: (i) the frequency



4.2. A Model of Co-Evolving Semantics and Pragmatics 81

xi of each type i before the update step, (ii) the fitness fi of each type i before
the update, and (iii) the probability Qji that an agent who observes the overt
behavior of type j ends up acquiring type i:

x′i =
∑
j

Qji
xjfj∑
h xhfh

. (4.1)

The RMD consists of two components: fitness-based selection and transmission
perturbations. This becomes most transparent when we consider an equivalent
formulation in terms of a step-wise application of the discrete-time replicator
dynamic (Taylor and Jonker 1978) on the initial population vector ~x and its
subsequent multiplication with a stochastic mutation matrix Q:

x′i = (M(RD(~x)))i , (4.2)

where

(RD(~x))i =
xifi∑
h xhfh

and (M(~x))i = (~x ·Q)i =

(∑
j

xjQji

)
i

.

The population vector ~x codifies proportions or frequencies of types in a
population. This population is infinite; its carrying capacity is held constant,∑

i xi = 1. This allows us to track change that does not depend on varying
population sizes nor their growth rates. Nevertheless, the conceptualizations of
replication and mutation with respect to language change suggested below are well
compatible with finite populations (see, e.g., Nowak 2006 and Skyrms 2010:§5 for
proposals that vary the population, its growth, or the frequency of encounters
among types).

If the transmission matrix Q is trivial in the sense that Qji = 1 whenever j = i,
the dynamic reduces to the replicator dynamic. The replicator dynamic is a model
of fitness-based selection in which the relative frequency of type i will increase
with a gradient proportional to its average fitness in the population. Selection
comes into play whenever two or more types replicate at different rates due to
differences in their fitness. As mentioned in Chapter 2, this dynamic is popular
and versatile because it can be derived from many abstract processes of biological
and cultural transmission and selection (for overview and several derivations see
Sandholm 2010). If fitness fi is the same for all types i, the replicator step is
the identity map (RD(~x))i = xi. No difference in fitness translates into a lack of
functional pressure. In such cases the dynamic reduces to a process of iteration
of the transmission bias encoded in Q: the rate by which one type changes into
another after a generational turnover. As detailed below, in this way the process
in (4.1), equivalently (4.2), can contain a model of iterated learning (Griffiths and
Kalish 2005; 2007). In sum, mutation, encoded in Q and understood as learning
in the following, effects selection-independent variation in a population. This
variation is maintained or altered through fitness-based selection. The process
then repeats.
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Figure 4.1: Example.

Example. Consider a simple and abstract coordination game. Agents are of
two types: positive or negative. If agents of different types play with each other,
they obtain a payoff of 0. If negative meets negative, each receives a payoff of
1. If positive meets positive, each gets a payoff of 2. We can now inspect how
replication, mutation, and their combination affect the composition of populations
consisting of agents of these two types.

A population state is completely characterized by the proportion x of nega-
tives. The fitness of negatives in population state x is fn(x) = x. That of positives
is fp(x) = 2−2x. The average fitness is Φ(x) = xfn(x)+(1−x)fp(x) = 3x2−4x+2.
The replicator dynamic will update x to RD(x) = fn(x)x/Φ(x) = x2/Φ(x). This up-
date function is plotted in Figure 4.1a as the dashed blue line. There are three
rest points for which RD(x) = x. These are: x = 0, with the population being
completely positive; x = 1, with the population being completely negative; and
x = 2/3. The former two points are attractors, meaning that nearby points con-
verge to them. Points near x = 2/3 also move toward 0 or 1. This is schematically
pictured in the topmost phase portrait in Figure 4.1b. Put differently, there are
three cases in which fitness-based selection alone will not change the population’s
composition. In cases in which the population does not consist of exactly two
thirds of negatives it will gravitate toward either extreme rest point.

Adding mutation changes the dynamic and its rest points. For instance, let
us assume that Qji = .9 when j = i. This is the proportion of types that will
retain their type after mutation. Conversely, a proportion of .1 will change their
type from positive to negative, and vice-versa. The effects of mutation on its own
are described by M(x) = .9x + .1(1 − x) = .8x + .1, plotted as the linear violet
line in Figure 4.1a. As shown in Figure 4.1b, in this example mutation alone has
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only one stable rest point. It is located at x = .5.
Finally, we can inspect the effects that a combination of replicator and mutator

steps have on a population:

RMD(x) = M(RD(x)) =
.9x2 − .2x+ .2

3x2 − 4x+ 2
.

This function is plotted in red in Figure 4.1a. The rest points are at x = .121,
x = .903 and x = .609. As indicated in Figure 4.1b, the former two are attractors.

4.2.3 Fitness and learnability of lexical meanings and prag-
matic strategies

Moving beyond abstract examples, our goal is to apply the RMD to investigate
the co-evolution of lexical representations and pragmatic behavior. To do so, we
need to fix three things: (i) what the relevant types are, (ii) how fitness derives
from communicative success and (iii) how the mutation matrix Q is computed.
These issues are addressed, one by one, in the following.

Types: Lexica and pragmatic strategies

Types are what evolution operates on (see §2.2). They define an agent’s fitness,
usually through a payoff accrued in single interactions with other agents. Often
types can be identified as the possible acts in a game; for example, either cooper-
ating or defecting in a prisoner’s dilemma. In other cases, they may be thought
of as general properties of an agent that influence her fitness, such as being posi-
tive or negative in our previous example (whatever that means). For our present
purposes, types are identified more concretely by specific assumptions about their
cognitive make-up. Since we are interested in the evolutionary competition be-
tween different lexical representations and ways of using them in communication,
a type is here defined as a pair consisting of a lexicon and a pragmatic strategy
of language use. In other words, a type is defined by her reasoning level and
the semantic conventions she holds to be true; the sender and receiver behavior
resulting from their combination.

As before, a lexicon associates each message with a set of states. A pragmatic
behavior specifies a probabilistic sender rule (a probabilistic choice of message
for each state) and a probabilistic receiver rule (a probabilistic choice of state for
each message) given a lexicon. As discussed in Section 2.4, there are many ways
of making these general notions concrete. Here is what we will assume in the
remainder of this chapter.

Lexica codify the truth-conditions of expressions. As in Section 2.4, for the
case of scalar implicatures we can assume that there are two relevant world states
S = {s∃¬∀, s∀} and two relevant messages M = {msome,mall}. For instance, in
state s∃¬∀ Chris owns some but not all of Tom Waits’ albums while in s∀ Chris
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owns them all. Message msome is short for a sentence like Chris owns some of
Tom Waits’ albums and mall is short for the same sentence with some replaced
by all. Lexica for this case would assign a Boolean truth value to each state-
message pair. The following two lexica are minimal examples for the distinction
between a lexicalized upper-bound for some in Lbound and the widely assumed
logical semantics with only a lower-bound in Llack.

Lbound =

msome mall[ ]
s∃¬∀ 1 0
s∀ 0 1

Llack =

msome mall[ ]
s∃¬∀ 1 0
s∀ 1 1

Pragmatic strategies define dispositions to produce and interpret messages
given a lexicon. We distinguish between two kinds of pragmatic strategies. Literal
interlocutors produce and interpret messages literally, being guided only by their
lexica. Pragmatic interlocutors instead engage in mutual reasoning to inform their
choices. Recall from Section 2.4 that models of rational language use capture
different types of linguistic behavior by a reasoning hierarchy. The hierarchy’s
bottom, level 0, corresponds to literal language use, as in Equations (4.3) and
(4.4). Pragmatic language users of level n+1 act (approximately) rationally with
respect to level-n behavior of their interlocutors, as in Equations (4.5) and (4.6).

ρ0(s | m;L) ∝ pr(s)L[s,m] (4.3)

σ0(m | s;L) ∝ exp(λ L[s,m]) (4.4)

ρn+1(s|m;L) ∝ pr(s)σn(m|s;L) (4.5)

σn+1(m|s;L) ∝ exp(λ ρn(s|m;L)) (4.6)

According to (4.3), a literal receiver’s interpretation of a message depends on
her lexicon and her prior over states, pr ∈ ∆(S), which is here assumed to be
flat (see §2.4 for discussion on the role of priors over states in explaining prag-
matic phenomena and of their role for scalar inferences in particular). Literal
interpreters thereby choose an arbitrary true interpretation for each message ac-
cording to their lexicon. Pragmatic receivers, defined in (4.5), instead use Bayes’
rule to weigh interpretations based on a conjecture about speaker behavior.1

As in previous chapters, sender behavior is regulated by a soft-max parameter
λ ≥ 0 (Luce 1959, Sutton and Barto 1998). As λ increases, choices approximate

1Note that according to definitions (4.3) and (4.5) hearers do not soft-maximize. This is
faithful to the choice we made in Brochhagen et al. (manuscript) and earlier work (Brochhagen
et al. 2016). The disadvantage of keeping these definitions unchanged is that only this chapter
assumes receiver choice to be belief-oriented (see §2.4 for discussion). This slight deviation is
innocuous for this chapter’s purposes. The main predictions with or without soft-maximizing
receivers do not change; but the particular numeric results do. By keeping the definitions as
in previous work, I hope to avoid confusion that might otherwise arise from reporting different
numeric predictions across investigations using the same model and case study.
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strict maximization of expected utilities. Expected utility of a message m in state
s for a level n + 1 sender is here defined as ρn(s|m;L), the probability that the
hearer will assign to or choose the correct meaning. For literal senders, utility
only tracks truthfulness. Literal senders choose any true message with equal
probability but may send false messages as well, with a probability dependent on
λ. Differently from the definition of literal sender behavior in (2.14) and (3.2),
in this chapter we assume level-0 senders to soft-maximize. The reason is that
we want to contrast literal with pragmatic behavior. For this comparison to
be feasible, literal behavior needs to be added to the pool of actual strategies
that players can adopt, rather than serve solely the purpose of getting pragmatic
inference off the ground (see §2.4.2).

The following examples illustrate these behaviors using lexica Lbound and Llack

from above. A literal interpreter with lexicon Lbound assigns s∃¬∀ a probability of
ρ0(s∃¬∀ | msome;Lbound) = 1 after hearing msome, while a literal interpreter with
Llack has ρ0(s∃¬∀ | msome;Llack) = 0.5:

ρ0(· | ·, Lbound) =

s∃¬∀ s∀[ ]
msome 1 0
mall 0 1

ρ0(· | ·, Llack) =

s∃¬∀ s∀[ ]
msome .5 .5
mall 0 1

By contrast, pragmatic receivers of level 1 have the following interpretative be-
havior for λ = 1:

ρ1(· | ·, Lbound) ≈
s∃¬∀ s∀[ ]

msome .73 .27
mall .27 .73

ρ1(· | ·, Llack) ≈
s∃¬∀ s∀[ ]

msome .59 .41
mall .35 .65

This is the outcome of reasoning about their level-0 sender counterparts with
λ = 1:

σ0(· | ·, Lbound) ≈
msome mall[ ]

s∃¬∀ .73 .27
s∀ .27 .73

σ0(· | ·, Llack) ≈
msome mall[ ]

s∃¬∀ .73 .27
s∀ .5 .5

With low λ senders choose true messages with more slack. Reasoning over this
behavior therefore also results in a weaker association of messages with only true
states in receivers, but also in a slightly stronger association of msome with s∃¬∀
over s∀ for Llack users. This is because they reason that σ0(msome|s∃¬∀;Llack) >
σ0(msome|s∀;Llack). For λ = 20, there will be less slack in literal sender behavior:

σ0(· | ·, Lbound) ≈
msome mall[ ]

s∃¬∀ 1 0
s∀ 0 1

σ0(· | ·, Llack) ≈
msome mall[ ]

s∃¬∀ 1 0
s∀ .5 .5
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And accordingly less slack in level-1 pragmatic interpretation:

ρ1(· | ·, Lbound) ≈
s∃¬∀ s∀[ ]

msome 1 0
mall 0 1

ρ1(· | ·, Llack) ≈
s∃¬∀ s∀[ ]

msome 0.67 0.33
mall 0 1

Lastly, turning to types that have no bearing on the choices of receivers of level
1, with λ = 1 pragmatic senders of level 1 have:

σ1(· | ·, Lbound) ≈
msome mall[ ]

s∃¬∀ .73 .27
s∀ .27 .73

σ1(· | ·, Llack) ≈
msome mall[ ]

s∃¬∀ .62 .38
s∀ .38 .62

For λ = 20, pragmatic sender behavior of level 1 is instead as follows:

σ1(· | ·, Lbound) ≈
msome mall[ ]

s∃¬∀ 1 0
s∀ 0 1

σ1(· | ·, Llack) ≈
msome mall[ ]

s∃¬∀ 1 0
s∀ 0 1

There are two particularly important things to note. First, in contrast to their
literal counterparts of level 0, pragmatic agents of level 1 using Llack associate
msome preferentially with s∃¬∀. This association is not perfect, and usually less
strong than what agents with a lexicalized upper bound in Lbound can achieve
– with or without pragmatic reasoning. Higher order reasoning beyond level 1
leads to stronger associations of msome and s∃¬∀ also for the receiver. Still, the
case study presented in Section 4.4 will consider sender and receiver behavior at
levels 0 and 1, as the latter are the simplest pragmatic reasoning types which
show a tendency to communicatively attuned pragmatic enrichment. Using only
level 1 reasoning and possibly small λ is therefore a conservative choice that
works against the fitness-based selection of pragmatic language use for a notion
of fitness defined as communicative success, which is introduced next. Second,
when it comes to competition between types of use of lexicon Lbound, pragmatic
reasoning at level 1 is not advantageous. The reason for this is that literal use of
Lbound already endows agents with a behavioral strategy that associates a single
state with a single message (in tendency; depending on λ for senders). For Lbound-
receivers of level 1, reasoning over stochasticity introduced at σ0 will generally
decrease the association of one state with one message. This decrease is only
slight if λ is high, but nevertheless present. That is to say, level-1 reasoning does
not necessarily confer a functional advantage. For some types, such as users of
Lbound, literal signaling is preferable.
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Fitness and fitness-based selection based on communicative success

Under the replicator dynamic the proportion of type i in a population will increase
or decrease as a function of its relative fitness fi. In the context of language evo-
lution, fitness is usually associated with the ability to successfully communicate
with other language users from the same population (e.g., Nowak and Krakauer
1999, Nowak et al. 2000; 2002). Under a biological interpretation the assumption
is that organisms have a higher chance of survival and reproduction if they are
able to share and receive useful information via communication with peers. Un-
der a cultural interpretation the picture is that agents themselves strive toward
communicative success and therefore occasionally adapt or revise their behavior
to achieve higher communicative success (see Benz et al. 2006b:§3.3 and Chapter
2 for discussion).

The replicator equation gives us the means to make the ensuing dynamic
precise, without necessarily committing to a biological or cultural interpretation.
As above, the proportion of types in a given population is codified in a vector ~x,
where xi is the proportion of type i. The fitness of type i is its average expected
utility (EU), given the frequencies of types in the current population:

fi =
∑
j

xjEU(τi, τj) . (4.7)

In cheap talk signaling games, the expected utility EU(τi, τj) for type i when
communicating with type j is the average communicative success of i when talking
or listening to j. If agents are speakers half of the time this yields definition (2.8),
repeated below as (4.8).

EU(τi, τj) = 1/2 EUσ(τi, τj) + 1/2 EUρ(τi, τj) , (4.8)

where EUσ(τi, τj) and EUρ(τi, τj) are the expected utilities for i as a speaker and
as a hearer when communicating with j, defined as follows, where ni and nj are
type i’s and type j’s pragmatic reasoning types and Li and Lj are their lexica:

EUσ(τi, τj) =
∑
s

P ∗(s)
∑
m

σni
(m | s;Li)

∑
s′

ρnj
(s′ | m;Lj)δ(s, s

′) , (4.9)

EUρ(τi, τj) = EUσ(τj, τi) . (4.10)

As usual, we assume that agents are cooperative, with δ(s, s′) = 1 iff s = s′ and
0 otherwise (see §2 as well as definitions (2.4) and (2.5), adapted to our present
purposes as (4.9) and (4.10), respectively).

Learnability

Languages are shaped not only by functionalist forces toward greater commu-
nicative success. While such forces are certainly important for explanations of
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linguistic change, it is equally important to consider whether other forces might
play an explanatory role as well. Another important factor in cultural language
evolution is the fidelity with which linguistic knowledge is transmitted. Among
others, linguistic production can be prone to errors, states or messages may be
perceived incorrectly, and multiple languages may be compatible with the data
learners are exposed to. These sources of uncertainty introduce variation in the
transmission of linguistic knowledge from one generation to the next. In particu-
lar, agents’ inductive biases that apply on the iterated transmission process can
influence language evolution substantially.

In biological evolution, where types are expressed genetically, transmission
infidelity comes into the picture through infrequent and mostly random mutation
and genetic drift (Kimura 1983). However, an agent’s lexicon and pragmatic rea-
soning behavior is likely not inherited genetically. They need to be learned from
observation. Concretely, when agents attempt to acquire the linguistic behavior
of type j, they observe the overt linguistic behavior of type j and need to infer
the covert type that most likely produced the observed behavior. As in biology,
this transmission process is not perfectly accurate.

Iterated learning is a process in which languages are learned repeatedly from
the observation of linguistic behavior of agents who have themselves acquired their
behavior from observation and inference. In the simplest case there is a single
teacher and a single learner in each generation (e.g., Kirby 2001, Brighton 2002).
After sufficient training the learner becomes a teacher and produces behavior that
serves as input for a new learner. Figure 4.2a sketches out this idea.

Due to the pressure toward greater learnability it exerts, iterated learning
alone generally leads to simpler and more regular languages (see Kirby et al. 2014
and Tamariz and Kirby 2016 for recent surveys). Upon reflection, this arguably
intuitive result may give the reader some pause: if iterated learning (at least
in tendency) leads to languages with certain properties, for instance, simplicity
and regularity, then there must, at some stage in the process, exist factors that
would favor languages with these properties over others. Such a factor may be
implicit in the way in which the acquisition process is modeled and what feeds it
– the kind and quantity of input given to learners and the way in which types are
recovered from such input – or it may be an explicit inductive learning bias that
skews the learning process toward particular types. The former kind of factor is
uncovered by understanding the consequences of the modeling choices taken (e.g.,
Griffiths and Kalish 2007). One way to make the latter kind of factor explicit and
transparent is by modeling agents as Bayesian learners. In this way, inductive
learning biases can be encoded in a learning prior over types. Following Griffiths
and Kalish (2007) we accordingly model steps in iterated language acquisition as
processes of Bayesian inference in which learners combine the likelihood of a type
producing the witnessed learning input with prior inductive biases to infer the
type that generated this data.

In a Bayesian setting, inductive biases can be codified in a prior over types,
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P (d|τj) F (τi|d) P (d|τi)

(a)

(b)

(c) τj τi
Qji ∝∑

d P (d|τj)F (τi|d)

Figure 4.2: Acquisition of type i from a teacher of type j (cf. Figure 1 in Grif-
fiths and Kalish 2007). (a) Näıve learners (left-facing) infer types from overt data,
state-message pairs of language use in context, produced by proficient language
users (right-facing). The process then repeats: The former learner, now a profi-
cient language user, goes on to produce data for new learners. (b) Dependencies
in the process. The probability that type j produces datum d, P (d|τj), is given by
her linguistic behavior. The probability of the learner inferring type i from this
datum, F (τi|d), combines inductive biases with the likelihood of type i producing
the witnessed data. (c) Reduction to transition probability Qji: the probability
that type i is adopted when learning from type j.

P ∈ ∆(T ), which reflects the amount of data a learner requires to faithfully
acquire the type of the teacher (cf. Griffiths and Kalish 2007:450). Put differently,
types favored by the prior are easier to learn because they require less data than
less favored types to be inferred, even if they are both compatible with the learning
data at hand.

The extent of the prior’s influence has been shown to heavily depend on the
learning strategy assumed to underlie the inference process. On the one hand,
early simulation results suggested that weak inductive biases could be magnified
by exposing learners to only small data samples (e.g., in Brighton 2002). On
the other hand, Griffiths & Kalish’s (2005, 2007) mathematical characterization
showed that iterated learning alone converges to the prior in the limit. That is,
they showed that the resulting distribution over types corresponds to the learners’
prior distribution and is not influenced by the amount of learning input given to
them. This difference in predictions can be traced back to differences in the
selection of hypotheses from the posterior. Griffith & Kalish’s convergence to the
prior holds for learners that sample from the posterior. That is, for those where
learning directly reflects the posterior over types. More deterministic strategies
such as the adoption of the type with the highest posterior probability, so-called
maximum a posterior estimation (MAP), increase the influence of both the prior
and the data (Griffiths and Kalish 2007, Kirby et al. 2007). In the following,
we use a parameter γ ≥ 1 to modulate between posterior sampling and the
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MAP strategy. When γ = 1 learners sample from the posterior. The learners’
propensity to maximize the posterior grows as γ increases.

Let D be the set of possible data that learners may be exposed to. This
set D contains all sequences of state-message pairs of length k; for example,
〈〈s1,m1〉 , . . . , 〈sk,mk〉〉. As k increases, learners have more data to base their in-
ference on and so tend to recover the true types that generated a given sequence
with higher probability. The mutation matrix Q of the replicator-mutator dy-
namic in (4.1) can then be defined as follows: Qji is the probability that a learner
acquires type i when learning from an agent of type j. The learner observes
length-k sequences d of state-message pairs, but the probability P (d | τj) with
which sequence d = 〈〈s1,m1〉 , . . . , 〈sk,mk〉〉 is observed depends on type j’s lin-
guistic behavior:

P (d = 〈〈s1,m1〉 , . . . , 〈sk,mk〉〉 | τj) =
k∏
i=1

σnj
(mi | si;Lj) , (4.11)

where, as before, nj is j’s pragmatic reasoning type and Lj is j’s lexicon. For a
given observation d, the probability of acquiring type i is F (τi | d), so that:

Qji ∝
∑
d∈D

P (d | τj)F (τi | d) . (4.12)

Q is a stochastic n × n matrix, with n equal to the amount of types. This
means that all of Q’s cells are numbers in the interval [0, 1] and that each row
sums to one. The acquisition probability F (τi | d) given datum d is obtained by
probability matching, γ = 1, or a tendency toward choosing the most likely type,
γ > 1, from the posterior distribution P (· | d) over types given the data, which
is calculated by Bayes’ rule:

F (τi | d) ∝ P (τi | d)γ and (4.13)

P (τi | d) ∝ P (τi)P (d | τi) . (4.14)

Figures 4.2b and 4.2c summarize this learning process.

4.2.4 Model summary

Communicative success and learnability are central to the cultural evolution of
language. These components can be modeled, respectively, as replication based on
a measure of fitness in terms of communicative efficiency relative to the population
at a given time and iterated Bayesian learning. Their interaction is described by
the discrete time replicator-mutator dynamic in (4.1), repeated here:

x′i =
∑
j

Qji
xjfj∑
h xhfh

. (4.15)
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This equation defines the frequency x′i of type i at the next time step, based on
its frequency xi before the step, its fitness fi, and the probability that a learner
infers i when observing the behavior of a type-j agent. Fitness-based selection is
here thought of not as biological (fitness as expected relative number of offspring)
but cultural (fitness as likelihood of being imitated or repeated) evolution, since
the types that the dynamic operates on are pairs consisting of a lexicon and a
pragmatic use pattern. A type’s communicative success depends on how well it
communicates within a population while its learnability depends on the fidelity
by which it is inferred by new generations of learners. The learners’ task is
consequently to perform a joint inference over kinds of linguistic behavior and
lexical meaning.

The model has three parameters: λ regulates the degree to which senders
choose messages that appear optimal from the point of view of the agent’s own
utility measure (which may be unrelated to the expected utility when communi-
cating with a given population; agents do not change their behavior relative to
whom they interact with); k is length of observations for each learner; γ regu-
lates where the learners’ inference behavior lies on a spectrum from probability
matching to acquisition of the most likely teacher type.

4.3 Functional Pressure: Utility vs. Expressiv-

ity

This is not the first model that combines functional pressure with transmission
fidelity. Technically closer to our proposal, although applied to problems far re-
mote from the evolution of unobservable interactions at the semantics-pragmatics
interface, previous game-theoretic models by Nowak and colleagues have used the
RMD in a similar fashion (e.g., Nowak et al. 2001; 2002). These analyses mainly
focused on the kind of transmission fidelity necessary for a linguistic type to be
adopted by a majority of the population. That is, they addressed the question
what value Qii needs to have for populations to converge on type i; rather than
on the question how transmission fidelity and transmission transitions are to be
modeled in a principled manner based on types’ linguistic behavior. This is where,
differently from the work by Nowak and colleagues, (iterated) Bayesian learning
comes into play in our application of the RMD.

In the iterated learning tradition much attention has been devoted to the
effects that bottleneck sizes and learning biases have on learning alone. Models
in this tradition usually lack a communicative element. Language is produced
and acquired, but not used to fulfill a communicative task. Functional pressure
on successful information transfer consequently plays no role. An exception to
this trend is suggested in Kirby et al. 2015. In what follows we discuss aspects of
their proposal and contrast it with our own to further motivate our model.
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Kirby et al. (2015) propose a model that combines a pressure for learnabil-
ity with one for expressivity. At first sight, it may seem that expressivity and
(expected) utility stand for similar concepts. In their own words, “pressure for
expressivity arises from language use in communication” (p. 88); it refers to
a pressure to be “communicatively functional” (p. 89); and, in fact, it can be
“equated [...] with communication” (p. 98). This is also suggested by their lab-
oratory experiment, where this pressure is introduced by having subjects play
a signaling game for multiple rounds (Kirby et al. 2015:§3). Their motivation
for the introduction of a communicative task draws from previous laboratory
experiments using iterated learning. These experiments show that pressure for
learnability alone can lead to the emergence of functionally defective languages
(e.g., Kirby et al. 2008, Silvey et al. 2014; see Fay and Ellison 2013 for a review of
laboratory results). This makes intuitive sense. The simpler form-meaning map-
pings are, the easier they are to faithfully transmit. Learning a language that
maps all meanings to a single form is easier than learning one in which each mean-
ing is associated with a single idiosyncratic form. However, the latter language
would generally be better suited to communicate successfully than the former.
Pressures that apply on actual communication may be necessary to counteract
the drive toward simplicity that learning exerts.

Superficially, it may seem like Kirby et al. have the same pressure in mind as
we. However, when inspecting the model’s details, expressivity turns out capture
a substantially different idea than replication based on communicative fitness.
Note first that Kirby et al.’s (2015) model is a pure iterated learning model.
In our notation, this means that pressure for expressivity needs to apply within
the transmission matrix Q. More precisely, Kirby et al. propose it to affect the
production probabilities of teachers that use ambiguous messages. The pressure
is regulated by an expressivity parameter. The higher this parameter’s value, the
more likely a teacher is to produce a false message if messages true of the state she
is in are ambiguous. In other words, ambiguous lexica are penalized by making
their users more prone to production mistakes. This makes these lexica more
difficult to learn because an increased error rate makes it harder for learners to
infer the true type that generated this data. While this ambiguity penalty could,
in principle, also have consequences for communication with other agents, Kirby
et al.’s (2015) model does not have a communicative element involving receivers.

Let us briefly contrast this pressure for expressivity, in the form of inflated er-
ror rates when using an ambiguous lexicon, and that for higher utility instantiated
by fitness-based replication on a more general level.

Expressivity is absolute and utility relative. Expressivity, as construed
above, concerns the ability of speakers of a lexicon to associate each meaning
with a single form in production. The degree to which a type is expressive is
only determined by the type itself. More precisely, its expressivity is only de-
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termined by the type’s sender behavior. By contrast, utility concerns the ability
to transfer particular information to someone (in a particular fashion if talk is
not cheap). This is a relative notion that depends not only on the speaker but
also on the hearer. Consider, for instance, the two Nash equilibria of the cheap
talk 2-states/messages signaling game in Chapter 2. In one equilibrium, m1 and
m2 are used to signal, respectively, s1 and s2. In the other equilibrium, m1 is
associated with s2 and m2 with s1. Senders in either equilibrium are equally
expressive. However, a sender following the first equilibrium will always fail to
communicate her state to a receiver that followed the second equilibrium, and
vice-versa. Similarly, in Chapter 3 we saw that, under certain conditions, am-
biguous signaling can be as functionally efficient as unambiguous counterparts, if
not more. However, any such advantage is relative to the interlocutor.

Communicative task. Utility makes precise how well a communicative task
is fulfilled relative to a population of interlocutors and their communicative pref-
erences. Communicative outcomes are jointly determined by interlocutors that
happen to be in this population. Expressivity, in virtue of being absolute, is
blind to whether information flows; how well it flows; or to whether some pieces
of information are more valuable than others. To give a pointed example for the
latter case: if s1 stands for a state in which I am hungry and s2 for one in which
I am on fire, then I probably care more about signaling s2 than s1. If one lexicon
allows me to unequivocally convey only s1 and another only s2, then I better pick
the latter. However, both are equally expressive. Even if we ignore the possi-
bility that there might be different preferences over outcomes, production alone
arguably does not adequately capture the task for which language is acquired.
Namely, to communicate with other agents in the population.

From the above, we can conclude that expressivity, or a pure learning setting
for that matter, does not adequately capture “a pressure to be communicatively
functional” (Kirby et al. 2015:89) because it is blind to the task of communicating
information to other agents.

Beyond the difference between utility and expressivity there are other smaller
differences between our proposal and that of Kirby et al. (2015) in how learning
is modeled. However, these differences concern design choices that are well com-
patible. They do not reflect fundamental differences between the two models.2

Having clarified the role of functional pressure, we now turn to an application of
our model to the case of scalar implicatures.

2For instance, in Kirby et al. 2015 näıve learners do not infer a single type, as we have
it, but a distribution over types (see also Burkett and Griffiths 2010). When producing data,
proeficient language users accordingly first need to sample from their posterior over types and,
based on the type that was sampled, produce linguistic evidence for the next learner.
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4.4 Case Study: Scalar Implicatures

The model in Section 4.2 formalizes the evolutionary competition between dif-
ferent sets of lexicalizations and ways of using them. This section looks at a
case study on scalar implicatures. It engages in a formal thought experiment to
address the question: if a population of language users could freely combine dif-
ferent lexica with different pragmatic strategies, what are conditions under which
the majority view of scalar implicatures could have evolved?

Recall that the majority view is that scalar implicatures are non-lexicalized
pragmatic enrichments. Scalar implicature triggers like some, warm or may are
semantically weak expressions for which logically stronger expressions are salient,
e.g., all, hot or must. For instance, some is entailed by all. If the sentence
Chris owns all of Tom Waits’ albums is true, then Chris owns some of Tom
Waits’ albums is also true. However, while weaker expressions such as some
are truth-conditionally compatible with stronger alternatives such as all, this
is not what their use is normally taken to convey. Instead, the use of a less
informative expression when a more informative one could have been used can
license a defeasible inference that stronger alternatives do not hold (cf. Horn
1972, Gazdar 1979). In this way, Chris owns some of Tom Waits’ albums is
strengthened to convey that she owns some but not all albums. According to
the majority view, this is a pragmatic inference, not part of the conventional
meaning.

In the following we consider a specific application of the model from Section 4.2
which allows us to address the question if or when scalar inferences might (not)
lexicalize. We consider what is perhaps one of the simplest non-trivial setups that
speak to this matter and reflect on its limitations in Section 4.5. The setup is
introduced in Section 4.4.1. Section 4.4.2 describes simulations and their results.

4.4.1 Setup

To fill the model from Section 4.2 with life, we need to specify the sets of states,
messages, and lexica we consider. Additionally, we want to explore the effects of
a learning bias in favor of simple lexical representations. One way of motivating
and formalizing such a bias is introduced thereafter.

States, messages, lexical representations, and lexica

Consider a state space with three states S = {s∅, s∃¬∀, s∀} and think of it as a
partition of possible worlds into cells where none, some or all of the As are Bs,
for some arbitrary fixed predicates A and B. Eight lexical representations can
be distinguished based on their truth or falsity in three world states, six of which
are not contradictory or tautological (see Table 4.2 below).
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A lexicon L is a mapping M → R from messages to representations. With
three messages there are 63 = 216 possible lexica. Some assign the same repre-
sentations to more than one message and others lexicalize the same representa-
tions but associate them with different messages. Out of these possible lexica,
three kinds are of particular relevance. First, lexica that assign the same lex-
ical representations to more than one message meaning. Such lexica generally
lack in communicative efficiency but may be favored by particular learning bi-
ases nonetheless (see below). Second, lexica that conventionalize upper-bounds
to realize a one-to-one mapping of messages to states. Finally, lexica that do not
lexicalize an upper bound but allow it to be conveyed pragmatically due to the
presence of a stronger lexical item. There are six lexica of the second kind and
six of the third. The following three lexica exemplify each kind:

Lall

mnone msome mall[ ]s∅ 0 0 0
s∃¬∀ 0 0 0
s∀ 1 1 1

Lbound

mnone msome mall[ ]1 0 0
0 1 0
0 0 1

Llack

mnone msome mall[ ]1 0 0
0 1 0
0 1 1

Lexicon Lall is clearly bad for communication: all message and interpretation
choices will be equally likely for all reasoning levels; no information about the
observed world state will be conveyed by its users. In contrast, users of Lbound

can communicate world states perfectly, no matter whether they are literal or
pragmatic users. Users of Llack can also communicate information about the
actual world state but need pragmatic language use to approximate a one-to-one
mapping between message use and states (see Section 4.2.3).

Recall that types are a combination of a lexicon and a manner of language
use. We analyze the model’s predictions in populations of types with one of the
two behaviors introduced earlier: literal or pragmatic. The former correspond
to level-0 reasoners and the latter to ones of level 1. Accordingly, we consider
a total of 432 types. Six are variants of pragmatic language users with Llack-
like lexica. We refer to these as target types because they represent lexica and
language use that conform to the majority view of scalar implicatures. Twelve
types are either literal or pragmatic types with lexica of the Lbound kind. We
refer to these as competitor types, because they are expected to be the target
types’ main contenders in evolutionary competition. Finally, note that while
different types may lexicalize the same representations, they may nevertheless
map different states to different overt messages. More informally, they speak
different languages that lexicalize the same concepts. Consequently, more often
than not different lexica of the same kind fail to understand each other (see
Section 4.3).
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R→2 R ∧R R→2 ¬R
R→1 X ⊆ X R→1 X 6= ∅ R→1 X = ∅
X →1 {A,B} X →1 X ∩X X →1 X ∪X

Table 4.1: Toy grammar in a set-theoretic LOT with weighted rules.

intuitive name s∅ s∃¬∀ s∀ least complex formula complexity

“all” 0 0 1 A ⊆ B 3
“some but not all” 0 1 0 A ∩B 6= ∅ ∧ A 6= ∅ 8
“some” 0 1 1 A ∩B 6= ∅ 4
“none” 1 0 0 A ∩B = ∅ 4
“none or all” 1 0 1 ¬(A ∩B 6= ∅ ∧ A 6= ∅) 10
“not all” 1 1 0 ¬(A ⊆ B) 5

Table 4.2: Available lexical representations and their minimal derivation cost.

An inductive learning bias for semantic simplicity

There is a growing effort to develop empirically testable representational lan-
guages that allow for the measure of semantic complexity. For instance, so-called
languages of thought (LOTs) have been put to test in various rational probabilis-
tic models that show encouraging results (see, e.g., Katz et al. 2008, Piantadosi
et al. under review; 2012, and Piantadosi and Jacobs 2016 for recent discussion).
At its core, a LOT defines a set of operations and composition rules from which
lexical representations can be derived. As a first approximation and for the sake
of concreteness, we follow this approach to motivate and formalize a preference of
learners for simpler semantic representations (Feldman 2000, Chater and Vitányi
2003, Piantadosi et al. 2012a, Kirby et al. 2015, Piantadosi et al. under review).
In a weighed generative LOT a representation’s complexity is a function of its
derivation cost.

Our toy grammar of lexical representations is given in Table 4.1. This gram-
mar uses basic set-theoretic operations to form expressions which can be evaluated
as true or false in states s∅, s∃¬∀, and s∀ from above. Applications of generative
rules have a cost attached to them. Here we simply assume that the formation of
Boolean combinations of representations incurs 2 cost units, while all other rule
applications incur only 1 cost unit. Table 4.2 lists all six lexical representations
relevant here, their truth conditions, and the simplest formula that expresses this
representation in the grammar from Table 4.1.

A complexity measure for lexical representations from Table 4.2 is used to
define a learning bias that favors simpler representations over more complex ones.
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The prior probability of a type is just the prior probability of its lexicon. The
prior of a lexicon is a function of the complexity of the lexical representations
in its image set. Lexica with simpler representations accordingly have a higher
prior. One simple way of defining such priors over lexica (and thereby types) is:

P (τi) ∝
∏

r∈Img(Li)

P (r), (4.16)

P (r) ∝ max
r′

Compl(r′)− Compl(r) + 1 , (4.17)

where Li is type i’s lexicon and Compl(r) is the complexity of the minimal deriva-
tion cost of representation r according to the LOT-grammar (see Table 4.2). Ap-
plied to our space of lexica, this construal assigns the highest probability to a
lexicon of type Lall, which only uses the simplest lexical representation “all” for
all messages. Lexica of type Llack are less likely, but more likely than Lbound (see
Figure 4.4 below).

There are many ways to define priors over lexica (see, e.g., Goodman et al.
2008, Piantadosi et al. 2012a, Kirby et al. 2015) but the key assumption here,
common to all of them, is that simple representational expressions should be fa-
vored over more complex ones. We should stress that these details – from the
generative grammar to its complexity measure – are to be regarded as one con-
venient operationalization of one general approach to explicating learning biases;
this is not a commitment that this general approach is necessarily superior or
that, within it, this particular instrumentalization is the single most plausible.

4.4.2 Simulation results

Recall that there are three parameters: soft-max parameter λ affects how strongly
speakers favor messages that appear best from their subjective point of view; the
bottleneck size k influences how faithfully learners can identify their teacher type;
γ defines the learners’ disposition toward choosing the most likely teacher type
from the posterior distribution. We expect that competitor types (types with
lexica of the kind Lbound) have a fitness advantage over target types (pragmatic
agents with lexica of the kind Llack), especially for very low levels of λ. Selection
based on communicative success alone may therefore not lead to prevalence of
target types in the population. On the other hand, lexica of type Llack are simpler
than those of type Lbound by the postulated measure in (4.16). This may make
them more likely to be adopted by learners, especially when k is low so that
different teacher types are relatively indistinguishable based on their behavior,
and when γ is high. Still, types that use lexica of the kind Lall are in turn even
more likely a priori than those that use lexica of the kind Llack. Simulation results
will shed light on the question whether target types can emerge, and for which
parameter constellations.
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Figure 4.3: Proportion of target types, literal competitor types, pragmatic Lall,
and the population’s majority type, in representative populations after 50 gener-
ations under only pressure for communicative success.

To better understand the joint workings of pressure toward communicative ef-
ficiency and pressure toward learnability, we look at the behavior of the replicator
and mutator step first in isolation, and then in combination. All simulation runs
are initialized with an arbitrary distribution over types, constituting a popula-
tion’s first generation. All reported results are the outcome of 50 update steps.
These outcomes correspond to developmental plateaus in which change is, if not
absent, then at least very slow. In other words, even if the resulting states do not
correspond to an eventual attracting state, they characterize almost stationary
states in which the system remains for a very long time.

As specified in Section 4.2.3, the mutation matrix Q can be obtained by
considering all possible state-message sequences of length k. Given that this
is intractable for large k, the sets of data which learners are exposed to are
approximated by sampling 250 k-length sequences from each type’s production
probabilities.

Replication only: selection based on communicative success

Selection based on communicative success is sensitive to λ since this parameter
influences signaling behavior. This is showcased in Figure 4.3, which shows the
proportion of target types, literal competitor types and pragmatic Lall in three
representative populations after 50 replicator steps. The plot also indicates the
proportion of the majority type: the type with the highest proportion in the
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final population. With low λ many types have very similar behavior, so that
evolutionary selection lacks grip and becomes very slow. The result is a very
long transition with near stagnancy in a rather homogeneous population with
many types. Conversely, higher λ promotes less stochastic linguistic behavior,
widening the gap in communicative success between types and promoting more
homogeneous populations. As suggested by Figure 4.3, the majority in most
populations is not one of the six pragmatic Llack-style types. That is, a pressure
only for communicative success does not lead to a prevalence of target types
under any λ-value. For instance, with λ = 20 1000 independent populations
only had 11 cases in which the target type was the majority type, with a mean
proportion of .003 across populations. By contrast, in 913 cases the majority type
had Lbound with close to an even share between literal (454) and pragmatic types
(459). Overall, competitor types made up a mean proportion of about .48 taken
together.

Iterated learning only: transmission fidelity

The effect of iterated learning without pressure for communicative success using
either posterior sampling (γ = 1) or a stronger tendency toward posterior maxi-
mization (γ = 15) is shown in Figure 4.4 together with the prior over types. The
prior shows that while users of Llack are not the most favored by the inductive
bias (compared, e.g., to Lall) they are nevertheless more advantaged than others,
such as Lbound. This is due to the relatively simple semantics they conventionalize
(see §4.4.1). Crucially, Llack enables its users to convey each state with a single
message when combined with pragmatic reasoning and sufficiently high λ. This
makes it less likely to be confused with other types if the learning data is not
too sparse (k ≥ 5). Put differently, learners have a higher propensity to infer
pragmatic Llack when the teacher’s type produces very similar data, such as when
using Lbound. Moreover, Llack is less likely to be confused with types with dif-
ferent observable behavior because its pragmatic use approximates a one-to-one
form-meaning mapping. As a consequence, a stronger propensity to maximize
the posterior increases the proportions of targets in the population.

However, in contrast to a pressure only for communicative success with high
λ (see Figure 4.3), learnability alone does not succeed in selecting for a single
prevalent type. All six target types tend to coexist at roughly equal proportion.
Each is passed on to the next generation with the same faithfulness and, differ-
ently from a pressure for communicative success, they do not stand in competition
with each other (see §4.3). In 1000 independent populations with λ = 20 and
γ = 15 all majority types were target types, with each reaching approximately
the same proportion of users in the population.

As with pressure only for communicative success, low values of λ make the
differences in observable behavior across types less pronounced and therefore re-
flect the learners’ inductive bias more faithfully. This favors functionally deficient
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Figure 4.4: Proportion of target types, literal competitor types, pragmatic Lall,
and the population’s majority type in representative populations after 50 gener-
ations under only pressure for learnability (λ = 20, k = 5). The learning prior
is shown in the right-most plot with top-most groupings corresponding to types,
literal and pragmatic, with lexica of kinds Llack, Lbound, and Lall.

but a priori preferred types such as those that use Lall. As discussed in Section
4.3, pressure for learnability alone can consequently lead to a spread of commu-
nicatively suboptimal types that are easier to learn. In the extreme, when γ = 1
and λ = 1 all of 1000 independent populations had users of Lall as majority
types. For higher λ, it becomes clear that a high prior (e.g., Lall) is not the only
thing that counts for learnability. As soon as there is information for learners to
discern whether one type is more likely to have generated the data (depending
on λ and k), it becomes paramount for types to produce data that makes them
easily identifiable if they are to be transmitted faithfully. This is to say that the
learning prior is important but far from being the only element that regulates
how iterated learning plays out.

Combining pressures functional pressure and learnability

On its own, a pressure for communicative success or learnability is not sufficient
to have a single target type dominate the population. When pressured for com-
municative success, the communicative advantage of Lbound users leads to their
prevalence. When pressured for learnability, pragmatic Llack is promoted over
functionally similar but semantically more complex alternatives such as Lbound.
Notwithstanding, learnability alone does not foment the propagation of a single



4.4. Case Study: Scalar Implicatures 101

Figure 4.5: Proportion of target types, literal competitor types, pragmatic Lall,
and the population’s majority type in representative populations after 50 gener-
ations under both pressures (k = 5).

target type across the population.

Figure 4.5 illustrates the combined effects of both pressures for a sample of
λ- and γ-values. These results show that an inductive learning bias for simpler
semantics in tandem with functional pressure can lead to the selection of a single
target type, and so to a division of labor between semantics and pragmatics.
The proportion of a single majority target type increases with λ and γ. Pressure
for communicative success magnifies the effects of iterated learning and dampens
the proliferation of multiple types of a kind that are equal in expressivity and
learnability (cf. §4.3). A pressure toward learnability favors the transmission of
simpler semantics and thereby indirectly promotes pragmatic language use.

As before, low λ and γ lead to the prevalence of communicatively suboptimal
types that are a priori favored, such as Lall. An increase in λ leads to the selection
of target types but does not lead to monomorphic populations if learners sample
from the posterior (see the uppermost row in Figure 4.5). Finally, a combination
of high λ and γ leads to increasing proportions of a single majority target type.
This joint influence is summarized in Figure 4.6, which shows the mean difference
between the highest target type and the highest proportion of a type of a different
kind in 1000 independent populations across λ and γ values.3 Higher values of

3As before, we cannot just average across target type proportions. This would not be
informative about whether just one or multiple target types are present in the population. As
illustrated by 4.5 this is particularly important for low λ and γ because multiple types tend to
coexist.
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Figure 4.6: Mean difference between proportion of highest target type and high-
est other type in 1000 independent populations after 50 generations under both
pressures across λ- and γ-values (k = 5).

λ and γ increase the prevalence of a single target type, whereas lower values lead
to less pronounced differences, with a valley resulting from low λ and high γ (cf.
Figure 4.5 with λ = 1 and γ = 15).

Effects of manipulating the sequence length k have not been addressed so
far, but are rather predictable: small values lead to more heterogeneous popu-
lations that reflect the learner’s prior more faithfully. This is due to the fact
that the likelihood that a small sequence was produced by any type is relatively
uniform (modulo prior). By contrast, larger values increasingly allow learners to
differentiate types with different signaling behaviors.

To recapitulate, other than the involvement of pressure on both communica-
tive success and learnability, the resulting proportion of pragmatic Llack users
primarily hinges on three factors. First, the degree, captured by λ, to which
agents try to maximize communicative success from their subjective point of
view. Second, the inductive bias, which leads learners to prefer simpler over more
complex semantic representations in acquisition. Lastly, the learning behavior,
captured by parameter γ, where approximating a MAP strategy magnifies the
effects of the learning bias in tandem with replication.

More broadly, target types, which represent the majority view of scalar im-
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plicatures, can come to dominate the population if three assumptions are met:
(i) language is pressured toward both communicative success and learnability;
(ii) pragmatic language use is an option; (iii) learners prefer simpler over more
complex lexical representations and exhibit a tendency toward the acquisition of
the type that best explains the learning data.

4.5 General Discussion

The approach introduced here combines game-theoretic models of functional pres-
sure toward successful communication (e.g., Nowak and Krakauer 1999), effects
of transmission perturbations on (iterated) language learning (e.g., Griffiths and
Kalish 2007), probabilistic speaker and listener types of varied degrees of prag-
matic sophistication (e.g., Frank and Goodman 2012, Franke and Jäger 2014) as
well as reasoning about unobservable lexical representations (e.g., Bergen et al.
2012; 2016). This allows for a conceptual investigation of the co-evolution of
conventional meaning and pragmatic language use. Main contributions of the
model are (i) its modular separation of functional pressure and learnability on
evolutionary trajectories, (ii) the characterization of language learning as a joint
inference over pragmatic behavior and lexical meaning, and (iii) the possibility
to trace the co-evolution of conventional semantics and pragmatic use.

With respect to (i), in Section 4.3 we discussed a comparable model proposed
by Kirby et al. (2015) and highlighted the difference between a type’s expressivity
and functional pressure. As showcased in Section 4.4, the latter pressure can indi-
rectly select for expressive types, i.e., those that can convey states unequivocally.
By contrast, Kirby et al.’s model only considers the bearing that expressivity has
on the production of learnable data. We see three main reasons for considering
utility rather than just expressivity; and, relatedly, to consider the effects that
communication and learning have on an evolving linguistic system, rather than
only learning. First, learning alone can promote populations with non-negligible
proportions of functionally defective types. This is true both of simulations, e.g.
our Lall-types in Figure 4.4, as well as of laboratory experiments with human
subjects (see §4.3 and references within). Second and more importantly, types
may be equally expressive but their performance as means of information transfer
crucially depend not only on themselves but on the population they find them-
selves in. That is, we contend that adopting an expressive type that generates
learnable data does not in itself capture a type’s arguably central communicative
function of transferring information to peers. Taking communication into con-
sideration allows the model to be responsive to the task for which language is
learned. Lastly, chains of iterated learning alone do not put types in direct com-
petition. Accordingly, learning can lead to polymorphous populations in which
multiple variants of a type coexist (compare the competition of target types in
Figure 4.5 and their lack of competition in Figure 4.4). This latter point of course
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depends on the particulars of a model’s learning component. Here, we explored
the effects that simple transmission chains have, but it is possible to add further
complexity to this process. For example, by letting learners learn from multiple
teachers (Burkett and Griffiths 2010, Brochhagen et al. 2016).

The main result of our case study is that types that correspond to the majority
view of scalar implicatures – that scalar readings are non-lexicalized pragmatic
enrichments – can come to dominate a population. This can happen under the
assumption that simpler semantic representations are more likely to be learned
(Chater and Vitányi 2003). Pragmatic language use can be recruited indirectly
by such preference for simpler lexical representations. Under this view, semantics
and pragmatics play a synergic role: pragmatic use allows maintenance of simpler
representations; pressure toward representational simplicity indirectly promotes
pragmatic over literal language use. As a consequence, iterated transmission and
use of language lead to a regularization that may explain the lack of lexicalization
of systematic pragmatic enrichments.

While the results of this case study are interesting, they also raise a number of
critical issues. First of all, while many favorable parameter settings exist which
lead to a prevalence of target types, other types are usually represented in non-
negligible proportions. This may just be a technical quirk of the mutator step.
But there is a related issue of empirical importance. Several experimental studies
on scalar implicatures suggest that participants can be classified as either semantic
or pragmatic users of, in particular, some (e.g., Bott and Noveck 2004, Nieuwland
et al. 2010, Degen and Tanenhaus 2015). The former consistently accept some
where all would be true as well, the latter do not. Interestingly, in our simulations
when a target type is the majority type, an inflated proportion of the population
uses compatible lexica with a lexicalized upper bound. Particularly in those
parameter settings where the prior influences the outcome less. In other words,
we do find a tendency toward a similar co-existence of semantic and pragmatic
types. Whether this analogy has any further explanatory value is an interesting
path for future exploration.

Another important issue that is not addressed in the model are potential
costs associated with pragmatic reasoning. Here, we simply assumed that literal
and pragmatic reasoning strategies exist from the start and are equally costly
to apply. In contrast, empirical results suggest that the computation of a scalar
implicature may involve additional cognitive effort (e.g., Breheny et al. 2006, De
Neys and Schaeken 2007, Huang and Snedeker 2009, Tomlinson Jr. et al. 2013;
but see also Foppolo and Marelli 2017 for evidence to the contrary). Extensions
of the model presented here to include processing costs for pragmatic language
use would be straightforward but interesting future work. It seems plausible
that effects of reasoning cost may trade off with the frequency with which a given
scalar expression is used (see Chapter 5 on the effects that frequency can have). It
may be that frequently drawn scalar implicatures lexicalize to avoid cost, whereas
infrequent ones are derived on-line to avoid more complex lexical representations
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during acquisition. Such a prediction would lend itself to empirical testing in line
with recent interest in differences between various scalar implicature triggers (van
Tiel et al. 2014).

Our case study could be criticized as follows: all it shows is that scalar impli-
catures do not lexicalize because upper bounds are dispreferred lexical represen-
tations; the result is just due to learning. This criticism would be too superficial
and highly unjust. Dispreferred lexical representations can thrive under evolu-
tionary selection. Lexicalized upper-bounds can dominate a population because
they may boost communicative success. But they do not have to. Moreover, even
without selective pressure for communicative success, it is not necessarily the case
that the types that are most likely a priori will dominate. The dynamics of iter-
ated learning are not that trivial. Iterated learning does not necessarily promote
the a priori more likely type, but tends to promote a type i based on a gradient
of how many other types might likely mutate into i, so to speak. Taken together,
without an explicit model of the interaction between pressure for communicative
success and learnability, it is far from trivial to judge whether, or when, preferred
or dispreferred representations evolve (see §2.3 where we argued for dynamic over
static analyses this reason, among others, and Chapter 6 for general discussion on
this matter). This is why a major contribution of this chapter is the arrangement
of many different ingredients into a joined model of the co-evolution of lexical
meaning and pragmatic use.

What is more, it is not that we just assumed a prior disadvantage of lexicalized
upper bounds. We tried to motivate and formalize a general assumption about
lexical representations’ complexity with a concrete, albeit provisional proposal.
The specification of a learning bias in terms of a “grammar of representations”
can and should be seen critically, however. Much depends on the primitives of
such a grammar. For instance, the lexical representation “none or all” is the most
complex in Table 4.2. But consider adding a new primitive relation between sets
A ^ B which is true if and only if ¬(A ∩ B 6= ∅ ∧ A 6= ∅). The lexical represen-
tation “none or all” would then be one of the simplest. Clearly, further research,
empirical and conceptual, into the role of representational complexity, processing
costs and learning biases is needed. The model here makes a clear and impor-
tant contribution nonetheless: it demonstrates how simplicity of representations
can interact with use and evolutionary selection and shows that for simple rep-
resentations to emerge it may require pragmatic strategies to compensate their
potential functional deficiencies. Hence a model of co-evolving semantics and
pragmatics is needed. Future work should also include the possibility that rep-
resentational simplicity may itself be a notion that is subject to evolutionary
pressure (cf. Thompson et al. 2016), as well for the evolution of elements that
define the agents’ cognitive make-up: λ and γ.

Finally, this case study should not be interpreted as a proposal for a definite
explanation of how scalar implicatures evolved. Other factors should be consid-
ered eventually even if they will lead to much more complex modeling. One such
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factor is the observation that non-lexicalized upper bounds allow a broader range
of applicability. For example, when the speaker is not certain as to whether all is
true. This may suggest an alternative and purely functionalist argument for why
upper-bounded meanings do not conventionalize: should contextual cues provide
enough information to the hearer to identify whether a bound is intended to be
conveyed pragmatically, then this is preferred over expressing it overtly through
longer expressions. For example, by saying some but not all explicitly. Impor-
tantly, although morphosyntactic disambiguation may be dispreferred due to its
relative length and complexity (Piantadosi et al. 2012b), it allows speakers to en-
force an upper-bound and override contextual cues that might otherwise mislead
the hearer. In a nutshell, this explanation posits that scalar implicatures fail to
lexicalize because, all else being equal, speakers prefer to communicate as econom-
ically as possible and pragmatic reasoning enables them to do so (cf. Chapter 3).
What this alternative argument does not explain is why functional pressure does
not lead to the emergence of different, equally costly lexical items to express dif-
ferent knowledge states of the speaker (Horn 1984:252-267, Horn 1972, Traugott
2004, van der Auwera 2010). For instance, to the emergence of two expressions
for each weak scalar expression; one with and one lacking an upper-bound. That
is, it does not explain why English and other languages do not have a monomor-
phemic dual expression for, e.g., some that lexicalizes an upper-bound. If this
hypothetical expression existed, it could be deployed to signal that the speaker
knows that some but not all holds, and unbounded some could exclusively signal
epistemic uncertainty. Looking at pressure from learnability might come in again.

Beyond scalar implicatures, the model can generate predictions about likely
lexicalization trajectories of pragmatic inferences, or a lack thereof. In this realm
an interesting issue is whether proposed principles, such as the semantic conven-
tionalization of once highly context-dependent inferences if they become regular
enough (Levinson 2000, Traugott 2004), can be given a formal rationale and in-
form postulated directionalities of change. The present chapter made a first start
and gave a framework for exploring these issues systematically.

4.6 Conclusion

The cultural evolution of meaning is influenced by intertwined pressures. We set
out to investigate this process by putting forward a model that combines a pres-
sure toward successful information transfer with perturbations that may arise in
the transmission of linguistic knowledge in acquisition. Its objects of selection
and replication are pairs of lexical meanings and patterns of language use. This
allows the model to trace the interaction between conventional meaning and prag-
matic use. Additionally, it takes the challenge seriously of neither semantics nor
pragmatics being directly observable. Instead, learners need to infer these unob-
servables from overt data that results from their combination. These components
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and their mutual interaction were highlighted in a case study on the lack of lex-
ical upper-bounds in weak scalar expressions that showed that, when pressured
for learnability and communicative success, the former force drives for simpler
semantic representations inasmuch as pragmatics can compensate for functional
disadvantages in use. That is, the relative learning advantage of simpler seman-
tics in combination with functional pressure in use may offer an answer to why
natural languages fail to lexicalize certain systematic pragmatic inferences. And,
more broadly, lead to a division of labor between semantics and pragmatics.





Chapter 5

Evolution of Ambiguity

Each city receives its form from the desert it opposes.

Italo Calvino, Invisible Cities

In Chapter 3 we showed that semantic ambiguity can be functionally advanta-
geous provided that interlocutors’ (beliefs about) contextual information agrees,
leading to successful disambiguation; or that they interact multiple times so that
speakers come to anticipate receivers’ interpretative behavior when faced with
ambiguous signals. The extent to which this advantage crystallizes was shown
to depend on the context(s) in which interaction takes places. More precisely,
on the objective distributions over states that govern these contexts. A central
assumption that this analysis built on was that conventionalized form-meaning
associations enabled for the exploitation of ambiguity in the first place. That is,
we assumed that interlocutors based their signaling behavior on lexica in which
preferred messages are semantically associated with two or more states. The
present chapter seeks to fill the gap covered by this assumption by elucidating
whether and when conventional semantic meaning that enables for functional am-
biguity exploitation evolves. We do so by considering not only horizontal but also
vertical change, using the model from Chapter 4.

Our results suggest that semantic ambiguity can indeed evolve if there is
functional pressure for efficient information transfer and pressure for learnability.
However, this only happens if the world is such that communication and learning
take place in a mixture of contexts, each governed by a different state distribu-
tion. In particular, for ambiguous semantics to survive their faithful transmission
across generations, communication needs to take place in informative contexts in
which different states are frequent. This is necessary for näıve learners to receive
sufficient evidence that a signal is semantically associated with multiple states.
Should communication instead take place in a homogeneous world in which only
a single state is frequent, or in one in which no state is frequent relative to others,
then unambiguous semantics conventionalize.

109
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5.1 The Evolution of Ambiguity: A Puzzle to

be Explained?

As mentioned in Chapter 3, much work on the emergence and stability of lin-
guistic conventions has focused on conditions under which unambiguous signaling
emerges (e.g., Lewis 1969, Steels 1998, Skyrms 2010; see Spike et al. 2016 for
a recent review). By contrast, investigations of pragmatic inference in terms of
rational language use standardly take as their starting point some kind of se-
mantic underspecification (e.g., Franke and Jäger 2016a, Goodman and Frank
2016); or they consider other factors that introduce uncertainty over meaning.
For instance, a noisy channel (Bergen and Goodman 2015). After all, a shared
one-to-one form-meaning mapping in an environment that allows for noiseless
communication leaves little to no room for pragmatic refinement.

How can these two strains of research be consolidated? One the one hand,
language use can come to exploit ambiguity through pragmatic reasoning. On
the other hand, work on language emergence tells us that the association of
multiple states with a single message is “bad news” (Skyrms 2010:68); at least
when communicative success hinges on distinguishing these states, and players
have at least as many messages available as there are states.

On a general level, this apparent contrast is easy to dispel. Work on the
emergence and transmission of language usually explains evolved meaning as a
regularity in the overt behavior of agents, abstracting from complex interactions
between semantic conventions and pragmatic use. That is, a distinction between
semantics and pragmatics is seldom, if ever, drawn. This means that this line
of research should not be viewed as explaining regularities in underlying rela-
tionships of form and semantic meaning, but rather as explaining regularities
in the overt linguistic behavior of members of a population (Lewis 1969); call
them signaling strategies or pragmatic language use. Once an interaction be-
tween semantic meaning and factors that influence how it is deployed in context
are factored in, the bad news about ambiguity need to be qualified: an outcome
is suboptimal only if language use, operating over semantic meaning, gives rise
to uncertainty over states. Under this view, the apparent tension between these
two strains of research disappears.1

In short, ambiguous signaling behavior, but not necessarily ambiguity at the
semantic level, is functionally disadvantageous and puzzling from an evolutionary
perspective. In Chapter 3 we surveyed many functional advantages ambiguity can
confer, such as smaller vocabularies; greater signal compression; reuse of preferred

1Of course, if no information beyond conventional semantic meaning is at play then semantics
is directly reflected by overt signaling behavior. One may argue this to be true of particular
natural language phenomena, or of certain cases of non-human signaling. However, it should be
relatively uncontroversial to argue for a distinction between semantics and pragmatics where
contextual information or mutual reasoning are involved, as in context-driven disambiguation
(Chapter 3) or in certain pragmatic inferences (Chapter 4).
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forms that are easier to produce or parse; or coordination on novel meaning, for
example, in the form of metaphors. What we then want to understand is under
which conditions ambiguous semantic conventions evolve and stabilize provided
that actual signaling behavior can sometimes turn ambiguity to its advantage.

In light of the synchronic functional advantages of ambiguity, the main chal-
lenge we face concerns vertical change. This challenge can be framed as follows.
Linguistic knowledge needs to survive its faithful transmission across generations,
being iteratively passed on to näıve learners. These learners need to infer unob-
servables, such as semantic meaning, from the overt linguistic behavior of their
teachers. If patterns of language use are not to be functionally disfavored, they
have to exhibit (a tendency toward) unambiguous signaling in a given context.
This gives rise to the following tension: it is functionally advantageous to signal
unambiguously but this can disadvantage the acquisition of ambiguous seman-
tics since the overt behavior that learners witness may not suggest underlying
ambiguity.

This chapter’s goal is twofold. First, we want to complement our analysis of
signaling with ambiguous messages from Chapter 3 by elucidating under which
conditions lexica that allow for functional ambiguity exploitation evolve. Second,
we want to explore the predictions of our model from Chapter 4 by applying it on a
different question; looking at a different type space, as well as a different inductive
bias; and to analyze the influence that communication and learning in different
contexts have on language evolution at the semantics-pragmatics interface.

Section 5.2 summarizes the model from Chapter 4 and introduces the setup
we focus on. Section 5.3 shows our main results. We discuss them in Section 5.4
and conclude in Section 5.5.

5.2 Model Summary and Setup

As before, we model the interaction between functional pressure and learnability
using the replicator-mutator dynamic (Hofbauer 1985, Nowak et al. 2000; 2001,
Hofbauer and Sigmund 2003, Nowak 2006). The discrete RMD, defined in (4.1)
and repeated below, describes change in an infinite population ~x as a function of
(i) the frequency xi of each type i before the update, (ii) the fitness fi of each
type i, and (iii) the probability Qji that a learner witnessing overt behavior of
type j will end up with type i (see Section 4.2 for details and discussion).

x′i =
∑
j

Qji
xjfj∑
h xhfh

. (5.1)

The fitness of type i is defined as its expected utility in the population. Intuitively,
fitness indicates how well a type communicates with members of her community.
The transmission matrixQ codifies transition probabilities. These give the fidelity
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with which a type is passed on to the next generation of signalers. Qji is the
probability of type i being acquired when learning from type j.

Learning is here defined as a process of (iterated) Bayesian learning in which a
learner infers a type from the observable behavior of her parent/teacher (Griffiths
and Kalish 2005; 2007). The value of Qji depends on two factors. First, it depends
on the probability P (d | τj) of witnessing datum d when learning from type
j. This is the likelihood that a teacher of type j produces particular messages
when in particular state. Second, Qji also depends on the probability F (τi | d)
that the learner infers witnessed datum d to have been generated by type i:
F (τi | d) ∝ P (τi | d)γ where P (τi | d) ∝ P (τi)P (d | τi). The learning prior,
P (τi) ∈ ∆(T ), codifies inductive biases that the learner may bring to the task.
The combination of the prior with the likelihood of type i producing d yields the
learner’s posterior. The posterior, in turn, is regulated by parameter γ ≥ 1 which
controls whether learners sample from it, F (τi | d)1 = P (τi | d), or whether they
instead have a tendency to maximize the posterior. This tendency grows as γ
increases.

On the one hand, a fitness differential between types leads to the selection
of fitter types. In linguistic terms, this amounts to a pressure for successful
and efficient communication. On the other hand, if Qji 6= 1 for j = i, then the
transmission of linguistic knowledge from one generation to the next is perturbed.
This can have striking effects on an evolving linguistic system. In particular, if the
faithfulness to which a type is passed on depends on its learnability, as assumed
here, then types are also pressured for being inferable from overt and possibly
sparse linguistic input.

The fitness of a type depends on the company it keeps and the context(s) of
interaction in which communication takes place. A type may be well equipped to
communicate with some types but may fail to do so when interacting with others.
Moreover, it may be better equipped to communicate some states than others. If
the distribution over states that governs a context (dis)favors certain states, then
this may also affect a type’s fitness. In Chapter 4 we tacitly considered a single
and uniform objective distribution over states. In this chapter, we analyze how
variation in a distribution over state distributions, i.e., variation in the frequency
in which agents find themselves in different contexts, can affect the evolution of
ambiguous semantics. We first introduce this idea and its consequences in general
terms. The type space we inspect by simulation is introduced afterward.

5.2.1 Contexts and objective state distributions

Our analysis of ambiguity in Chapter 3 showed that the functional (dis)advantage
semantic ambiguity confers depends on the context of interaction and the distri-
bution over states P ∗ that governs it. In the extreme, if there are two states s1

and s2 but P ∗(s1) = 1 then it is irrelevant whether an ambiguous but preferred
message could be used to signal state s2. Senders would never find themselves
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in this state. Drawing from Chapter 3, we want to inspect how the contexts in
which communication takes place influence the kind of semantic conventions a
population adopts.

There are two straightforward ways in which the influence of state frequen-
cies could be inspected in detail. The first is to consider a single distribution
P ∗ that changes over time. The second is to consider a distribution over state
distributions, C ∈ ∆(P ∗), which regulates the frequency in which agents find
themselves in a context governed by a particular P ∗. The second alternative is
what we assume in the following. It has the advantage of not having to define a
rate of contextual change and additionally allows us to easily inspect how the fre-
quency in which communication happens in certain contexts affects the evolution
of ambiguity.

In terms of fitness, we simply need to add C to the computation of expected
utility (cf. definitions (4.9) and (4.10) for unique P ∗).2 For discrete C and S,
the expected utility of type i communicating with type j as a speaker, EUσ(τi, τj),
and as a hearer, EUρ(τi, τj), are defined as follows:

EUσ(τi, τj) =
∑
P ∗

C (P ∗)
∑
s

P ∗(s)
∑
m

σni
(m | s; P;Li)∑

s′

ρnj
(s′ | m; prj;Lj) (δ(s, s′)− cσ(m)) ;

(5.2)

EUρ(τi, τj) =
∑
P ∗

C (P ∗)
∑
s

P ∗(s)
∑
m

σnj
(m | s; P;Lj)∑

s′

ρni
(s′ | m; pri;Li) δ(s, s

′),
(5.3)

where, as before, ni and nj are type i’s and type j’s pragmatic reasoning types,
Li and Lj are their lexica, pri and prj are their subjective priors over states, and
P is the sender’s belief about the receiver’s prior over states (see below for a
review on how signaling behavior is defined). As before, fitness is defined as:

fi =
∑
j

xjEU(τi, τj) , (5.4)

where

EU(τi, τj) = 1/2 EUσ(τi, τj) + 1/2 EUρ(τi, τj) . (5.5)

In terms of learning, we will assume that learners are aware of the context
in which the linguistic input they receive is produced. To this end, we need to

2Differently from Chapter 4 but following the motivations for ambiguous signaling given in
Chapter 3, messages are assumed to carry some cost for senders in this chapter.
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distinguish between a context of interaction and the distribution over states that
governs this context. The former is what learners witness, together with the state
and message produced in this context. More precisely, where before the learners’
input was k-length sequences of 〈s,m〉-pairs, now learners observe sequences of
indexed 〈s,m〉c-pairs with c ∈ C being the context in which m was observed to
signal s. In short, language use is situated in context and learners are aware of
this.

The true distribution in context c is P ∗c , but P ∗c itself is not accessible to learn-
ers. They are only able to distinguish one context from another. The distribution
over state distributions C nevertheless has an impact on learning as it affects the
data teachers produce. For k-length datum d = 〈〈s1,m1〉1 , . . . , 〈sk,mk, 〉k〉 we
now have that:

P (d | τj) =
k∏
i=1

C (P ∗i ) P ∗i (si) σnj
(mi | si; P;Lj) , (5.6)

where, as before, nj is j’s pragmatic reasoning type and Lj is j’s lexicon.
To illustrate the effect that the existence of multiple contexts of language use

has on learning, consider a situation with two states, s1 and s2, three contexts,
u, v, and w, and their respective distributions P ∗u (s1) = .9, P ∗v (s1) = 1 and
P ∗w(s2) = 1. Let there be only two types, i and j. Both always use message m
to signal s1. However, one uses m′ and the other uses m′′ to signal s2, m′ 6= m′′.
If C (P ∗v ) = 1 then the data they produce will be indistinguishable. Message m
is not informative about whether i or j generated the learning input and all that
learners witness in this case are sequences of observations of the form 〈s1,m〉v.
Less extremely, if C (P ∗u ) = 1, then some data sequences may contain messages
uttered in s2. These messages can tease i and j apart. The linguistic input that
learners receive will be even more informative if C (P ∗w) > .1.

The same issue arises for types that use an ambiguous message to signal
different states in different contexts. If C is degenerate, their overt linguistic
behavior will be indistinguishable from that of a type that uses an unambiguous
lexicon. Intuitively, if bat is used to refer to baseball bats in a sports context but
to refer to animals in a zoo, there will be little evidence for the ambiguity of bat
if communication happens almost exclusively in one of the two contexts.

In sum, the existence of multiple contexts that differ in state frequency not
only affects whether or to which degree players find themselves in a context that
may be (dis)favorable to their type, communication-wise. It also affects the data
that learners witness. Both of these factors are central to the issue at hand given
that (i) a functional advantage for semantic ambiguity depends on the distribution
over states and consequently it also depends on the frequency in which agents
find themselves in a context (Chapter 3), and that (ii) for semantic ambiguity to
be faithfully transmitted, overt language use in context needs to suggest that a
message is conventionally associated with multiple states.
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5.2.2 Type space

As before, a type is a combination of a lexicon and a disposition to use it to
communicate in context. In the following, the latter will correspond to the level-
1 behavior of (boundedly) rational language users as they were defined in Chapter
3. We repeat the relevant definitions for player i below.

ρ0(s | m; pri;L) ∝ L[s,m] pr
i(s); (5.7)

σ0(m | s;L) ∝ L[s,m] − cσ(m); (5.8)

ρ1(s | m; pri;L) ∝ exp(λ
σ0(m | s;L)pri(s)∑
s′ σ

0(m | s′;L)pri(s′)
); (5.9)

σ1(m | s; P;L) ∝ exp(λ((

∫
P(θ)ρ0(s | m; θ;L)dθ)− cσ(m))). (5.10)

Recall that the level-1 receiver defined in (5.9) results from reasoning about level-
0 sender behavior in (5.8). Receiver i’s tendency to maximize utility from her
own perspective grows as λ increases and pri is her subjective prior over states.
Such a receiver takes senders to signal following the semantic conventions she
holds true, codified in her lexicon Li, and combines this behavioral expectation
with her contextual expectations, codified in pri ∈ ∆(S).

The level-1 sender in (5.10) is our generalization of rational sender behavior.
This sender reasons about literal level-0 receiver behavior, as defined in (5.7).
This reasoning process involves the sender’s beliefs about her addressee’s prior
over states P, with priors parametrized in θ. Intuitively, if in the context of
interaction a rational sender believes her addressee to expect state s1 rather than
state s2, then she may attempt to exploit this expectation by sending a preferred
ambiguous message in s1, but not in s2. As with receiver behavior, λ regulates
the strength of the sender’s tendency to maximize utility from her subjective
perspective.

In Chapter 3 we saw that, over time, simple adaptive dynamics can lead inter-
locutors’ priors over states to converge to the true distribution P ∗ that governs a
context. In the following, we relax the assumption of a non-common prior to allow
for a more succinct analysis, abstracting away from proximate causes that lead
interlocutors that share a set of semantic conventions to coordinate on ambiguous
signals in informative contexts. We assume all types’ priors to correspond to P ∗.

Following our setup in Chapter 3, sender i’s beliefs about her interlocutor’s
prior, P, are Dirichlet distributed with weights for state s set to q × pri(s) + 1.
As q increases, so does the sender’s belief that the receiver’s prior is close to her
own. In this setup, this is equivalent to the belief that the receiver’s prior is close
to true P ∗. On the lower end, q = 0 corresponds to full uncertainty about the
receiver’s prior.

For the simulations in Section 5.3 we assume λ and q to be common as well.
The reason for these simplifying assumptions is that we want to trace change



116 Chapter 5. Evolution of Ambiguity

in types’ lexica and the effects the context of interaction has on the evolution
of ambiguous semantics, rather than to consider a situation where competition
hinges on variation in priors over states, q-values, λ-values, or reasoning levels.
Accordingly, and in contrast to Chapter 4, we assume all types to be level-1
reasoners. Type i is therefore fully determined by her lexicon Li.

Turning to the space of lexica that we consider, recall that in Chapter 3 we had
a lexicon that specified the truth-conditions of three messages for two states, with
cσ(m1) = .4 = cσ(m2) and cσ(m3) = .1 as message cost. Following this setup, we
consider a space of lexica that is made up of all possible state-message mappings
for this 2-states/3-messages game that lexicalize no contradictory message.

We will think of messages as being of the form This is an x, with a different x
in each state (see below for details on how this changes how the learners’ inductive
bias is conceptualized and further motivation). This yields three possible message
meanings: either s1 ∨ s2, if the message is true in both states; s1 ∧¬s2, if true in
s1 but false in s2; or ¬s1 ∧ s2, if false in s1 but true in s2. With three messages
there are 33 = 27 lexica, and accordingly 27 types in our type space.

The restriction to non-contradictory messages does not imply that every mes-
sage is necessarily employed. To see this, consider the following two lexica:

Lt =

m1 m2 m3[ ]
s1 1 0 1
s2 0 1 1

La2 =

m1 m2 m3[ ]
s1 1 1 1
s2 0 1 1

Lexicon Lt is one of our target lexica. It associates preferred message m3 with both
s1 and s2 but also lexicalizes unambiguous messages to signal these states. Lexicon
La2 exemplifies a lexicon with two ambiguous messages: m3 and m2. Assume that
senders strongly believe their interlocutors to expect s2. For instance, that it is
believed with certainty that pr(s2) = .9. In this case, rational users of both lexica
alike would use preferred m3 when in state s2, and unequivocal m1 when in state
s1. Message m2 is not used in s2 because it is more costly than m3. Crucially, the
fact that m2 is ambiguous in La2 but unambiguous in Lt does not need to lead
to a difference in their overt signaling behaviors. Whether there is an observable
contrast between certain types will depend on the frequency in which they find
themselves in contexts that lead them to behave in different ways. That is, it will
depend on the distribution over state distributions C .

Our analysis will focus on two kinds of types. The first use lexica with ambigu-
ous m3 and unambiguous m1 and m2, as exemplified by Lt above. We call these
target types because their lexica correspond to the ones we analyzed in Chap-
ter 3: they enable for the use of preferred m3 in both states, but also lexicalize
unambiguous alternatives that are employed when uncertain about their inter-
locutors’ contextual expectations. The second kind are unambiguous competitor
types that do not lexicalize ambiguous messages. Lexicon Lu, below, illustrates
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such a lexicon. There are two target types and six competitor types in total.

Lu =

m1 m2 m3[ ]
s1 1 0 1
s2 0 1 0

La3 =

m1 m2 m3[ ]
s1 1 1 1
s2 1 1 1

Relative to the entire type space, target types are rather conservative when it
comes to how much lexical ambiguity they harbor. They are more ambiguous
than competitor types. However, other lexica, such as La2 and La3, lexicalize
more ambiguous messages.

The functional competition between targets and competitors is relatively straight-
forward. Target types can exhibit more flexible signaling behavior by using pre-
ferred m3 in both states. However, in uninformative contexts they might opt for
more costly m1 and m2. By contrast, competitor types have a safe unambiguous
signaling strategy from the get-to, but are disadvantaged against targets if C
favors a mixture of distributions over states with both frequent s1 and s2. As in
Chapter 4, target types and other users of ambiguous lexica will tend to exhibit
more stochastic behavior than competitors. Particularly if λ is low.

5.2.3 Inductive learning bias

In Chapter 4 learners had to infer the semantic meaning of quantifiers such as all
or some. These meanings were expressed by formulae to explore the effects that
an inductive bias that favors simple semantic representations over more complex
ones has. In the following we conceptualize the relevant meanings to be inferred
from messages as object extensions. The reason for this shift, beyond the fact
that lexical ambiguity is a natural and intuitive form of ambiguity, is that it
allows us to explore the consequences of a learning constraint often associated
with the difficulty of learning ambiguous lexical labels: the mutual exclusivity
bias (Markman and Wachtel 1988, Merriman et al. 1989, Clark 2009). In other
words, we want to see whether ambiguous semantics of the target type can evolve
if they are a priori dispreferred by learners over those that competitor types
lexicalize, and do so motivated by a well studied acquisition bias.

Mutual exclusivity refers to a learning constraint that plays an important
role in the acquisition of novel linguistic labels. Markman and Wachtel (1988)
famously registered it in a series of experiments. For instance, in their first
experiment they instructed 3-year-olds to “Show me the l” where l was a novel
linguistic label. Children had to pick between two objects: one with a name they
already knew and one that they did not know the name of. For example, children
had to decide whether l referred to a banana (known name) or a lemon wedge
press (unknown name). Overall, Markman and Wachtel found that children show
a strong tendency to infer that the novel label applies to the object they do not
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know the name of. This tendency has been taken to suggest a learning bias for
linguistic labels to be mutually exclusive.

Following Markman and Wachtel’s study, mutual exclusivity has attracted
much attention. To name a couple of details under active investigation, there seem
to be age differences in how strong this bias is (e.g., Halberda 2003, Bion et al.
2013); it has been suggested that it extends well into adulthood (e.g., Halberda
2006); and mutual exclusivity seems to be stronger in monolingual learners than
in plurilingual ones (e.g., Bialystok et al. 2010). These findings have led some to
argue the bias to be shaped by a learner’s linguistic experience, being more of
a malleable word learning strategy than a fixed preference (Houston-Price et al.
2010).

Merriman et al. (1989) suggest a number of functions for mutual exclusivity.
For instance, it may aid learners’ word learning process by serving as a heuris-
tic to map labels to objects. On this front its effect is akin to the pragmatic
strengthening that results from mutual reasoning about rational language use: if
the speaker wanted to refer to the object with the known name she would have
used the known label, since she did not, the name must apply to the unlabeled ob-
ject. Mutual exclusivity may also aid in reorganizing and correcting the semantic
conventions a learner entertains. For example, the extension of a known word,
say dog, may be corrected upon learning a novel label for an object assumed to
fall under its extension, say wolf. Without such a bias, the hypothesis that dog
also applies to wolves would remain intact.

The mutual exclusivity bias is evidently not absolute. Children and adults
alike do learn and use near-synonyms, such as leaves and foliage, and words
below and above the so-called basic-level, e.g., not only dog but also dalmatian
and animal. More generally, they come to master multiple ways to refer to an
object, be it baseball bat, baseball club, bat, club, or thing.

We implement mutual exclusivity as a learning prior that favors lexica that do
not map multiple messages to a single object. For L ∈ {0, 1}|S|×|M | and writing
L[s∗] for the row in L corresponding to s:

P (L) ∝ exp(|S| − b
∑
s∈S

count(L[s∗]); (5.11)

count(L[s∗]) =

{ ∑
m∈M

L[s,m] − 1 if
∑
m∈M

L[s,m] > 0

0 otherwise.
(5.12)

Parameter b ∈ [0; 1] regulates the strength of the mutual exclusivity bias. Since
types differ from one another only in terms of their lexica, the prior probability
of a type is that assigned to its lexicon: P (τi) = P (Li). If b = 0 the prior is flat.
For b > 0 mutual exclusivity leads to the distinction of four kinds of lexica in our
type space. From most to least favored these are: (i) lexica that associate only
one state with two messages, such as the competitor lexicon Lu, (ii) those that
associate two states with two messages each, such as target Lt, (iii) those that
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Figure 5.1: Prior over types for different values of parameter b. The arrow shows
the group to which target types belong when types are ordered from most to least
favored.

associate one state with three messages and one with two, such as La2, and (iv)
fully ambiguous lexica that associate all messages with all states, as La3.

Figure 5.1 shows the prior for different values of b. As can be read off from
these plots, if the prior is not flat then six types fall within the most favored
category; 14 fall within the second-most favored category; six into the third-most
favored category; and fully ambiguous La3 is alone in the least favored category.

5.2.4 Summary

Our goal is to see whether, and if so under which conditions, ambiguous semantics
evolve. Drawing from previous chapters, we focus on the effects that functional
pressure and pressure for learnability have, relative to the frequency in which
agents find themselves in a context. In particular, we focus on how these factors
influence the evolution of ambiguous lexica of the target type, exemplified by Lt
above.

The frequency by which players find themselves in context ci, governed by
P ∗i ∈ ∆(S), is controlled by C . We expect the main contenders of target types to
be users of unambiguous lexica of the Lu-kind. First, because learners prefer the
latter lexica a priori in virtue of associating less messages with the same state.
Second, if C favors either only a (close to) degenerate context, a (close to) uniform
one, or a mixture between these two, then Lu-style lexica can be functionally
advantageous: they do not depend on pragmatics to disambiguate ambiguous
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signals, nor is there a functional advantage to associating multiple states with a
single message if either (i) contexts do not allow for safe ambiguity exploitation,
or (ii) they always favor the same state with high probability (Chapter 3).

5.3 Simulation Results

Our setup involves six parameters: q regulates the degree to which senders be-
lieve the receiver’s prior over states to be close to theirs; λ regulates how strongly
senders/receivers favor messages/interpretations that appear best from their sub-
jective point of view; sequence length k influences how much input learners receive
and consequently how faithfully they can identify their teacher’s type (relative to
how closely the teacher’s overt behavior resembles that of other types in the popu-
lation); γ modulates the strength of learners’ tendency to maximize the posterior;
b controls the strength of the mutual exclusivity bias; and C is the distribution
over state distributions which determines how frequently agents find themselves
in a particular context.

As in Chapter 4, we begin by inspecting functional pressure and pressure for
learnability in isolation in order to gain a better understanding of their effects
on this type space. We focus mainly on the influence of C over that of other
parameters. As detailed below, C regulates much of the types’ competition and
transmissibility. Once its influence is factored in, the effect of the remaining
parameters are consistent with the trends reported in Chapter 3 and 4.

Each population is randomly initialized. All reported simulations correspond
to population states after 500 update steps. These outcomes correspond to de-
velopmental plateaus in which change is, if not absent, then at least very slow.
As before, computing Q for large k is intractable. We therefore approximate the
mutation matrix by sampling 1000 k-length sequences from each type’s produc-
tion probabilities. For expository ease, we consider only three distributions over
states. These are P ∗1 (s1) = .9, P ∗2 (s1) = .1, and P ∗3 (s1) = .5. In words, in context
c1 state s1 is much more frequent than s2. Context c2 reversely favors state s2.
Context c3 is uniform. To keep our notation simple, we write C (P ∗i ) as Ci.

Figure 5.2 contains the space that C spans. As exemplified by the five circular
nodes in this figure, we will explore our model’s predictions at the points of the
3-simplex in which C1 + C2 + C3 = 1.

Drawing from the preceding discussion, we expect that a distribution over
state distributions with either high C1, or high C2, or a mixture of only one of
the former with C3 will not lead to a prevalence of target types. In such cases,
competitor types using Lu-style lexica will be as – if not more – functionally
advantageous while being easier to learn. By contrast, and in accordance to
our analysis in Chapter 3, we expect a distribution C that spreads its probability
across contrasting state distributions, P ∗1 and P ∗2 , somewhat evenly to be the most
conducive for target types, at least when it comes to fitness-relative replication.
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C1 = 1/2 = C3

Figure 5.2: The standard 3-simplex. Edge values range from 0 to 1. C is degen-
erate at the three vertices with a node. It is uniform at the simplex’ center.

5.3.1 Functional pressure only

Players’ signaling behavior depends on q and λ. The value of q, however, only
affects senders of types with lexica that allow for the exploitation of ambiguity
but also lexicalize unambiguous alternatives. In particular, with sufficiently high
λ, low q leads target senders to avoid using preferred m3 because they do not
believe ambiguous signals to be safe. Instead, if fueled by large enough q they
will use preferred but ambiguous m3 in salient states (see Chapter 3). For the
remainder, we fix q = 40 to the effect that target types have a tendency to send
m3 in s1 if in c1; in s2 if in c2; and to avoid ambiguity if in uniform c3. This enables
us to investigate under which conditions exploitable ambiguity of the target kind
emerges.

The influence of C and λ on expected utility is straightforward. In a world in
which C1 and C2 are high but C3 is low, target types have a functional advantage
over other types when communicating with other agents of equal type. This
difference in expected utility becomes more pronounced the higher λ is. For
instance, for λ = 1 and C1 = .45 = C2, EU(τi, τi) for all types ranges from
approximately .5 to .55. The two target types and the six competitor types all
come close to the latter value. For the same C but λ = 20 the expected utility
of type i communicating with others of its type ranges from approximately .76
to .92. Under these circumstances, the two target types alone have the highest
expected utility when communicating with their own type, trailed by competitor
types. If C favors either only context c1 or context c2 then target types do as well
as competitors for λ > 10 but worse for lower values. For example, if C1 = .9 and
C2 = C3. Finally, in a world in which c3, governed by a uniform distribution over
states, is more frequent than either c1 or c2, target types lose their functional



122 Chapter 5. Evolution of Ambiguity

advantage. Part of the reason for this is that if players find themselves more
often in uniform c3 than in c1 or c2 then using m3 to signal exclusively either one
of the states is better than to avoid its use altogether. Moreover, as mentioned
above, the use of Lt-style lexica carries a risk of misunderstanding that types with
unambiguous m3 do not suffer from. If C favors contexts where only s1 or only
s2 is frequent, then it is more advantageous to have a lexicon that unequivocally
associates m3 with the frequent state.

Taking stock, there are two central things to note in terms of expected utility.
First, higher λ leads to a starker contrast between types. This is not only true of
EU(τi, τi) nor particular to this type space, but is a more general consequence of
the rationality parameter λ. Low values promote stochastic behavior that blurs
differences that some types would exhibit if they had a stronger tendency toward
expected utility maximization. Second, as aforementioned, whether target types
have a functional advantage depends on C . If C1 and C2 are both high, Lt-style
lexica are particularly advantageous. Conversely, competitors and other types
that use m3 only in a single state do better than target types if C3 is higher than
at least either C1 or C2; or if a single context is much more frequent than others.
This makes intuitive sense. The functional advantage that the exploitation of m3

in both s1 and s2 can confer does not come to bear its fruits if the world is such
that players only communicate either s1 or s2, or if the context is uninformative
and ambiguity is avoided.

Inspecting only expected utility, and more so only a fragment of it, can be
misleading. After all, fitness and replication depend on the population agents
find themselves in. Figure 5.3 shows (i) the mean difference between the high-
est proportion of target types and the highest other type in 1000 independent
populations, as well as (ii) the mean difference between the highest proportion of
competitor types and the highest other type for λ ∈ {1, 5, 20} across values of C
(see Figure 5.2). This figure shows that functional pressure alone promotes target
types only in the small region in which both C1 and C2 are high, and C3 is very
low; and only if λ is high. The converse is true of competitor types, who only
thrive when λ is low and the environment leads to frequent communication in
uniform c3. As for the remaining types, none of them comes close to establishing
itself in the population under these parameter constellations.

Overall, these results suggest that, for most values of C , the functional ad-
vantage of target ambiguous lexica is not strong enough to promote either variant
of this type. The outcomes in which competitor types come to dominate should
also be seen critically. They result from leveraging the erratic signaling behavior
effected in other types by low λ.

5.3.2 Learnability only

As may be intuited from Figure 5.1, which shows the learners’ prior, if 0 < b < 1
then its particular value only has a slight impact on differences in the learnability
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Figure 5.3: Effects of functional pressure alone across C for (a) λ = 1, (b) λ = 10
and (c) λ = 20. The upper-row, Ldft , shows the mean difference between the
highest proportion of target types and the highest other type in 1000 independent
populations after 500 replicator steps for (a), (b), and (c). The lower-row, Ldfu ,
shows the mean difference between the highest proportion of competitor types
and the highest other type in these populations.

between targets and competitors. For illustratory purposes, we focus on b = .3
in the following. Main differences in learnability instead come from the posterior
parameter γ and the distribution over state distributions C . As in Chapter 4 and
in somewhat analogous fashion to the effects that λ has on signaling behavior,
higher γ increases differences in the learnability of types. As for C , the fidelity
by which target types are transmitted is high relative to that of other types if at
least two contexts are highly frequent. For example, if C1 = .45 = C2 target types
are transmitted with a fidelity of approximately .6 for γ = 1 and .98 for γ = 15
(k = 5, b = .3). Their transmission fidelity is instead low if learners witness
data predominantly in a single context. For example, if C1 = .9 and C2 = C3

then the probability of passing on target types diminishes to approximately .1
for γ = 1 and to almost zero if γ = 15 (k = 5, b = .3). This is expected given
that learners that are frequently exposed to only c1 or only c2 have a hard time
distinguishing whether their teachers’ lexica are ambiguous. If b > 0, this lack
of evidence increases the probability that learners acquire unambiguous lexica of
the competitor kind. What is more, even without a bias for mutual exclusivity,
unambiguous lexica are easier to learn because competitors’ behavior is fairly
deterministic compared to that of types with ambiguous lexica. Even if q is high,
the latter will occasionally use different messages for the same state in the same
context. As before, larger learning sequences (regulated by k) allow learners to
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Figure 5.4: Effects of pressure for learnability alone across C with λ = 20 for (a)
γ = 1 and k = 5, (b) γ = 15 and k = 5, and (c) γ = 15 and k = 10 (b = .3).
The upper-row, Ldft , shows the mean difference between the highest proportion of
target types and the highest other type in 1000 independent populations after 500
mutator steps for (a), (b), and (c). The lower-row, Ldfu , shows the mean difference
between the highest proportion of competitor types and the highest other type
in these populations.

recover the type of their teacher with greater accuracy. The trends just mentioned
nevertheless remain.

Figure 5.4 shows how pressure for learnability alone plays out. As above,
this figure shows (i) the mean difference between the highest proportion of target
types and the highest other type in 1000 independent populations, as well as (ii)
the mean difference between the highest proportion of competitor types and the
highest other type in these populations across values of C for two values of γ and
k. As expected, target types do not fare well if there is no functional pressure at
play. Competitor types fare better the higher γ, k, and – to a lesser degree – b
are, but also fail to take over populations. As stressed in Chapter 4, pressure for
learnability alone leads to the coexistence of multiple types, and consequently to
highly polymorphic populations (see also Nowak 2006).

5.3.3 Functional pressure and learnability

We ascertained that neither pressure on its own leads to the prevalence of am-
biguous target types. Nor does it lead to any other clear victor for that matter.
While the expected utility of target types when communicating among themselves
is high, functional pressure alone only leads to their selection in a small region
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Figure 5.5: Effects of both pressures across C for (a) λ = 1, γ = 1 and k = 5,
(b) λ = 20, γ = 15 and k = 5, and (c) λ = 20, γ = 15 and k = 10 (b = .3).
The upper-row, Ldft , shows the mean difference between the highest proportion
of target types and the highest other type in 1000 independent populations after
500 replicator-mutator steps for (a), (b), and (c). The lower-row, Ldfu , shows
the mean difference between the highest proportion of competitor types and the
highest other type in these populations.

that favors contexts c1 and c2. Learnability disfavors target types and, as before,
leads to polymorphic populations without a pronounced majority type. Next, we
turn to the outcome effected by a joint pressure for learnability and for efficient
and faithful information transfer.

Figure 5.5 shows the joint effect of both pressures for two values of λ, γ and
k. As in Chapter 4 the emergence and stability of monomorphic populations is
mainly influenced by λ and γ. If rationality is low and learners sample from the
posterior (Figure 5.5a), there is not sufficient functional differentiation between
types nor high transmission fidelity to allow for a stable and pronounced evolu-
tionary outcome. By contrast, Figure 5.5b already showcases how the distribution
over state distributions affects the evolutionary process: the center of the simplex
favors near monomorphic populations of target types; its edges, and particularly
frequent c3, favor populations composed of unambiguous competitor types. This
outcome is more pronounced for higher k because transmission fidelity increases
(compare Figure 5.5b and Figure 5.5c).

These results stand to reason in light of our preceding discussion. Target types
are easier to transmit in environments that allow them to showcase ambiguity
exploitation of preferred m3 to communicate s1 in context c1, in which this state is
highly frequent; that of m3 to communicate s2 in context c2 for analogous reasons;
and ambiguity avoidance when in uniform c3. The contribution of c3 mainly lies
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in allowing learners to tease target types apart from more ambiguous types, while
frequent communication in c1 and c2 confers them with a functional advantage
over unambiguous competitors (see Figure 5.3). This advantage disappears if C3

is higher than C1 and C2.

In sum, the model predicts the emergence and stability of ambiguous target
types, but not under all circumstances. Ambiguous target types evolve only if the
world is such that agents find themselves in varied contexts; show a tendency to
signal optimally according to their subjective perspective; and show a tendency
to adopt the most likely type inferable from the overt behavior of their teachers.

5.4 General Discussion

Lexica that allow for the safe exploitation of preferred messages in informative
contexts but lexicalize less ambiguous alternatives used to signal in uninformative
ones can evolve and be taken up by a population. This can happen provided that
the world is such that communication takes place in a mixture of these contexts.
In general terms, this result reflects the fact that flexible types that can react to
varied environments are typically favored over those that are narrowly specialized
to few environments. Conversely, specialization wins over flexibility when there
is little to no environmental variation. This is often true of biological as well as
cultural evolution (Christiansen and Chater 2008:493).

These predictions add to the plausibility of our synchronic analysis of ambigu-
ity in Chapter 3. The lexicon we assumed evolves in a mixture of the environments
in which we predicted ambiguity exploitation to be functionally advantageous,
and iterated communication to lead to coordination even without a common prior.
Additionally, they strengthen the approach we followed in Chapter 4, where we
argued that understanding phenomena at the semantics-pragmatics interface may
require taking functional pressure as well as learnability into consideration. As
in the case of scalar implicatures, either pressure on its own fell short from pro-
viding a justification for the pervasiveness of the property in question. However,
the joint influence of both pressures suggests plausible conditions under which it
emerges and stabilizes.

As for the particulars of ambiguity, learnability and in particular mutual ex-
clusivity are important for they keep the transmission of more ambiguous lexica
at bay. In this respect, learning plays a regularizing role. While more ambiguous
lexica often lead to overt signaling behavior that is indistinguishable from that of
target or competitor types, inferring them from the overt behavior of other agents
is more difficult; even more so if there is at least a slight bias for mutual exclu-
sivity. The contribution of functional pressure is straightforward and in line with
what we have stressed throughout this and past chapters: it puts types in direct
competition and promotes monomorphic populations. Under the right contextual
conditions, this favors the selection of ambiguous target types and leads to their
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prevalence even if disfavored in learning.
The main difference between our application of the replicator-mutator dy-

namic in Chapter 4 and the present chapter concerns the involvement of a distri-
bution over state distributions. Our motivation for its inclusion was to analyze the
effects that the context of interaction has on language evolution where it is known
to play an important role, as is the case for disambiguation. The connection be-
tween ambiguity and frequency is well established. Zipf (1949) already suggested
that frequent words show a tendency to be associated with more meanings. Ad-
ditionally, frequent words are typically short, predictable, and phonotactically
unmarked (see, e.g., Dautriche 2015, Dautriche et al. 2017 and references within
Chapter 3). Our results square well with this connection but do not support the
idea that frequent words will inevitably be ambiguous. Instead, they suggest a
qualification: ambiguity survives over time only when multiple meanings asso-
ciated with a preferred form are frequent and appear in contrasting contexts in
which one state is markedly more expected than the other. In our setup, state s1

was frequent and expected in context c1, and state s2 was frequent and expected in
context c2. Frequent communication in both contexts is what (i) endows speakers
of ambiguous lexica with a functional advantage over unambiguous ones and (ii)
allows learners to infer that a message is semantically associated with two states
from overt language use. The conclusion that message frequency unconditionally
breeds ambiguity does not follow because the functional advantage of semantic
ambiguity hinges on receivers being able to correctly infer different states across
contexts. Either there are multiple contexts in which this is possible, or there is
a single one in which a preferred message may lexicalize to signal the frequent
meaning exclusively (see Figure 5.5 and Chapter 3). As shown in Figure 5.4,
if a single context with a frequent state is more frequent, then an unambiguous
lexicon is also easier to learn. According to our analysis, the relationship between
frequency and ambiguity is consequently as follows: a preference for certain forms
in language use leads to semantic ambiguity inasmuch as ambiguity is safe to be
exploited in use and inferable by learners from their observable behavior. This
leads frequent meanings to show a tendency to be associated with a single form if
they appear in contrasting contexts, where these meanings tend to be recoverable.

The idea that the true distribution over states can have an impact on an
evolving linguistic system has also been explored by Perfors and Navarro (2014),
although only within the iterated learning tradition. That is, without a com-
municative task involving language use (see §4.3 for discussion). Perfors and
Navarro’s premise is nevertheless similar to ours: learning can be affected not
only by the production and inference algorithms of teachers and learners, but
also by the environment in which language is used. Differently from here, they
not only assume that P ∗ affects the frequency in which data is produced but also
that the observation of states (without accompanying linguistic material) is in-
formative for the learner. In their own words, “it might be that language carries
with it certain assumptions about what events are possible or probable in the
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world” therefore “simply observing meaningful events x may bias the learner to
prefer some languages over others” (Perfors and Navarro 2014:779). In general
terms, I agree with their assessment that the types in a population can be infor-
mative about the environment in which linguistic behavior takes place. After all,
utility and fitness are functions of P ∗ and the population. In turn, they shape
what types emerge, spread, and stabilize. In this sense, well-adapted types may
show traces of the environment in which they emerged. However, the stronger
hypothesis that the environment is informative for learners raises two intertwined
issues.

First, focusing on learning only, it is an empirical question whether this infor-
mation is used, or even extractable, by näıve learners who have yet to acquire a
type. To the best of my knowledge, this claim has not been sufficiently addressed
in the literature to decide one way or another. The good news is that the preci-
sion in which Perfors and Navarro’s (2014) and our model are formulated allow
for the investigation of this issue in a straightforward matter; by asking about
the extent to which learners are aware of P ∗ prior to or during type acquisition;
and, if they are aware at all, whether and how this affects learning.

Second, and more generally, it is doubtful that much can be learned from the
environment alone for it to be informative about the types that interact in it.
The reason is simply that it is hard, if not impossible, to read off which factor
contributes to an evolutionary outcome and to what degree, by observing only
the outcome itself. We have already seen that linguistic outcomes can result from
non-trivial interactions between pressures that apply on cultural evolution under
idealized conditions. Add more realistic complexity to these factors, as well as
biological and social influence, and it seems difficult to maintain this hypothesis.
As with the first issue, we do not have strong evidence to decide either way, but
past and present research suggest caution on this front. We return to this issue
in Chapter 6 for a broader assessment of linguistic outcomes, the processes likely
to give rise to them, and what models can tell us about these matters.

Another analysis close in spirit is that of Santana (2014) who analyzed the
evolution of ambiguity using the replicator(-mutator) dynamic as well. Differently
from here, Santana stipulated a fixed mutation rate and assumed contextual
information to always be informative about the state in play. That is, based
on the contextual information at their disposition, receivers knew with certainty
that some states did not obtain at a given interaction. We instead used (iterated)
Bayesian learning to model transmission fidelity, assumed a common prior but
no information about the particular state in play, and had varied objective state
distributions that enabled for ambiguous signals to be exploited in multiple ways.
This enabled us to tackle the challenge that the pervasiveness of ambiguity poses
in light of the known problems it raises for language acquisition.

Our setup gives room for further analysis and refinement as we focused only on
three concrete state distributions rather than on a larger space of distributions.
Or, arguably even more naturally, on an infinite one. This choice was mainly
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driven by pragmatic considerations about simple setups. On the one hand, it
is relatively straightforward to analyze the predictions of, for instance, Dirichlet
distributed C . On the other hand, the qualitative results reported above are not
expected to be affected by this. However, it would certainly make the analysis
and our exposition more complex. We have already discussed the choice to fix
q and that of a common prior over states above, as well as that of common
parameters such as λ, γ and k, together with possible refinements, in Section 4.5.
At this point, I should reiterate that these choices are particular to the questions
addressed. Different questions or additional empirical evidence might call for a
relaxation or refinement of these assumptions (cf. Chapter 3).

5.5 Conclusion

This chapter addressed the question under which conditions (un)ambiguous lex-
ical meanings (fail to) lexicalize. In particular, we focused on how variation in
the context in which communication and learning take place can affect such evo-
lutionary outcomes. Semantic ambiguity is predicted to evolve when the world
is varied, enabling for the relatively safe pragmatic exploitation of preferred mes-
sages in contrasting informative contexts. A world that instead favors a single
context promotes specialization over flexibility. Preferred messages are then pre-
dicted to be semantically associated with single states unambiguously, thereby
reducing unnecessary risk introduced by uncertainty in signaling. The same is
true of signaling among less rational agents, where specialization in the form of
unambiguous lexical conventions safeguards against mistakes.





Chapter 6

General discussion

Conventions are like fires: under favorable conditions, a sufficient
concentration of heat spreads and perpetuates itself. The nature of
the fire does not depend on the original source of heat. Matches may
be the best fire starters, but that is no reason to think of fires
started otherwise as any the less fires.

David Lewis, Convention: A Philosophical Study

Communication is a complex social affair of which much is still little un-
derstood. It is therefore unsurprising that models of language, its use, and its
transmission do not purport to provide fully accurate descriptions but involve
substantial abstraction and simplification. We turn to such models not for their
detail or exactness but for their explanatory force, with the goal “[...] to re-
fine, systematize, and expand the menu of available explanations” (Ylikoski and
Aydinonat 2014:23) by uncovering likely “systematic patterns of counterfactual
dependence” (Woodward 2004:191). This investigation used models to better
understand the relationship between factors that shape language (use) and prop-
erties or outcomes evidenced in natural language. In what follows, we reflect
on our analysis along these more general lines. Section 6.1 discusses what the
past chapters suggest about the relationship between semantics and pragmatics.
Section 6.2 reviews methodological challenges faced by this kind of research. We
argue that meeting these challenges calls for a pluralistic approach, in which we
view our own efforts as being embedded.

6.1 On Semantics and Pragmatics

At the beginning of this investigation we posed two broad questions. The first
question concerned the role of pragmatics in light of semantics. The second
question reversely asked about the role of semantics in light of pragmatics. We
can now reflect on how much headway we made in answering these questions.

131
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Why leave to pragmatics what semantics can do? At first sight, it may
seem as if semantic conventions ought to be as precise and constraining as possible.
Under the assumption that such conventions are largely shared by interlocutors,
this would leave less room for uncertainty and ensuing misunderstanding. The
maxim for optimal linguistic design this view suggests is that to each meaning
ought unequivocally correspond a unique form. Even under this view, it would
still be useful to recruit mutual reasoning or contextual information in situations
in which some uncertainty is unavoidable. Factors that may promote such sup-
plementary reliance on pragmatics include open communities, changing and noisy
environments, as well as change in semantic conventions effected by synchronic
and diachronic processes yet to be adopted by all. In other words, even under the
view that semantics should do much of the heavy lifting necessary for commu-
nication to succeed, pragmatics may still come into play to quench uncertainty
where it is unavoidable.

This investigation focused on cases where relying on pragmatics was not neces-
sary but an option; either in terms of linguistic choice or as a viable evolutionary
outcome. In the case of ambiguity, we looked at lexica with unambiguous alter-
natives (Chapter 3), and analyzed the evolutionary competition of such lexica
against less and more ambiguous alternatives (Chapter 5). In the case of scalar
implicatures, we analyzed the evolutionary competition of lexica that rely on
pragmatics to convey upper-bounds for weak scalar alternatives and those that
enforce such bounds lexically (Chapter 4). The reason for looking at such cases
was to elucidate whether pragmatics fulfills other roles as well. Roles where it
comes into play not only due to environmental or biological constraints that ne-
cessitate it. Overall, the past chapters paint a different picture of the relationship
between semantics and pragmatics than that of pragmatics playing solely a sup-
plementary role.

Pragmatics, broadly construed, endows interlocutors with flexibility to react
to different contexts of interaction by scaffolding on underspecified semantic con-
ventions (Chapter 3 and 5). Intuitively, less precise semantics leave more room
for pragmatic refinement. Such pragmatic refinement can offer better fits to the
context of interaction and interlocutors involved in it than fixed precise semantics
as it enables for linguistic material to be flexibly repurposed. Put differently, laxer
semantic conventions endow pragmatic language users with the ability to convey
a wide array of speaker meanings in an efficient, effective, and flexible manner.
In this way, an utterance such as “I am cool” can inform the hearer about the
speaker’s wellbeing; be used to decline an offer; describe temperature, popularity,
trustworthiness; or something different altogether. Whether this ability confers its
users with a functional advantage ultimately depends on the context(s) in which
communication takes place (Chapter 3 and 5). Generally speaking, and ignoring
side conditions such as agents’ rationality and their beliefs about each other’s
expectations, the more varied yet informative contexts are, the more functionally
advantageous it can be to rely on contextual information to guide inference.
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Additionally, leaving to pragmatics what semantics could – in principle – do,
may be explained not only in functional terms. In some cases, underspecified
semantics may also be easier to acquire than more precise counterparts (Chapter
4). The explanation of pragmatic recruitment then lies not (solely) on commu-
nicative advantages that it can confer but on factors that shape the semantic
conventions that enable for pragmatic inference in the first place. In this case,
their learnability.

While in both Chapter 4 and Chapter 5 our analysis ultimately involved an
interaction between functional pressure and learnability, there are some impor-
tant differences between these explanations. In the first case we have an adaptive
trait: the evolution of semantics that enable for pragmatic ambiguity exploita-
tion is, to a large extent, a consequence of selection for greater communicative
efficiency. If the environment allows for pragmatic inference to be advantageous
then a balance between constraining semantic conventions and their pragmatic
refinement is struck. The second case is not that of an adaptation per se, but
rather a consequence of linguistic knowledge being shaped by its cultural trans-
mission, with pragmatic reasoning enabling for the maintenance of underspecified
semantics without incurring functional deficiencies.1

These predictions rest on relatively weak assumptions about agents’ cognitive
capacities. For ambiguity exploitation or scalar inferences to evolve, we only
required agents to reason about each other’s literal signaling behavior (level-1
reasoning); for them to exhibit a tendency toward utility maximization from
their subjective perspective; and for them to exhibit a tendency toward posterior
maximization in language acquisition. This is a desirable prediction when it
comes to explanations of pervasive outcomes with multiple evolutionary starting
points (Paternotte and Grose 2017). It suggests the (model internal) requirements
for the emergence of these synergies between semantics and pragmatics to be
relatively low, which is what we would expect of pervasive and cross-linguistically
well attested properties.

Why leave to semantics what pragmatics can do? The above should not
be taken to suggest that semantics plays a supplementary role to pragmatics
either.

First, we should not forget that shared semantic conventions are often nec-
essary to get pragmatic reasoning off the ground (Chapter 2). Silence, a grunt,

1One might argue that the learning algorithm employed in language acquisition or learners’
inductive biases are adaptations on their own. This may well be so (see Christiansen and Chater
2008 for arguments to the contrary), but the point here is just that there is a difference. The
former case, where there is a clear functional advantage, is an instance of “selection in action”
(Ridley 2002:10): the type in question outcompetes alternatives in terms of communicative
efficiency. The latter case is one where the type evolves by a combination of a functional ad-
vantage over some types and a learnability advantage over others that do not rely on pragmatic
reasoning in communication.
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or an utterance in a language the hearer does not speak arguably seldom con-
strain the space of possible meanings sufficiently to ensure that communication
succeeds. Moreover, systematic pragmatic inferences, such as scalar implicatures,
build on semantic constraints and their relationship to one another. As put by
Searle (1971:190), often “meaning something when one says something is more
than just contingently related to what the sentence means in the language one is
speaking.”

Second, our analysis suggests that there are conditions under which more
constraining semantics emerge as natural and stable evolutionary outcomes. This
can happen when the context of interaction is static, leaving no evolutionary grip
for ad hoc pragmatic inferences to latch on underspecified semantics (Chapter
5); or it can happen when rationality is low (Chapter 4 and 5). In either case
semantic specialization wins over the potential for refinement that pragmatics
fosters.

In the case of a static context, e.g., when there is a single context governed
by a fixed distribution over states, populations may adopt functionally efficient
semantic conventions that do not rely on pragmatics but are semantically well-
tailored to the context. In other words, if there are no situations in which the
flexibility that pragmatics enables for can be cashed out then leaving to prag-
matics what (shared) semantics can do is either functionally disadvantageous; or,
at best, a neutral trait (Chapter 3 and 5). Moreover, in this case semantics that
are narrowly specialized to the context are also easier to acquire than those that
harbor ambiguity (Chapter 5).

The other important case in which semantic precision may be favored over
pragmatic recruitment is relative to agents’ rationality. Pragmatic inference in-
volving mutual reasoning needs to be fueled by some degree of rationality. Less
constraints on the semantic side ask more of reasoners: they not only need to
learn the semantic conventions of their community but also need to appropriately
deploy them pragmatically to achieve communicative goals. Less rational agents
are accordingly better served with more constrained form-meaning associations
that leave less room for uncertainty and misunderstanding. Reversely, less is often
more if agents are rational (in tendency, see Chapter 4 and 5 for qualification).

Taking stock, we can see semantics as providing (near-)global constraints on
form-meaning associations taken to be shared by a community. Pragmatics en-
dows language users with the ability to refine upon them locally, depending on the
context of interaction and on whom one interacts with (Chapter 3). Of course,
for pragmatic language use to lead to successful coordination, the mechanisms
through which semantic conventions are refined also need to be shared and mutu-
ally recognized. If the sophistication of agents is low or the environment is static
enough for the distinction between global and local to collapse then semantics
can take over most of the functions suggested above. Reversely, communication
of ecologically rational agents in rich environments foments the kind of divisions
of labor between semantics and pragmatics we see in natural language.
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While these results may be intuitive after the fact, we showed that divisions of
labor between semantics and pragmatics arise from complex interactions between
(i) agents’ cognitive make-ups (signaling behavior or learning mechanisms), (ii)
relevant pressures (functional pressure on efficient communication or learnability),
and (iii) the context(s) in which communication takes place. The outcome of such
interactions can effect linguistic change that is adopted by a population, but also
to the coexistence of different divisions of labor (Chapter 4). The latter result is
important as it highlights the fact that semantic conventions and pragmatic rules
operating on them are unobservable by themselves. Language users and learners
witness only the observable effects of their interaction. Different divisions of
labor can therefore lead to largely indistinguishable overt signaling behavior and
coexist.

6.2 Change, Outcomes, and Factors of Influence

Just as biological evolution, linguistic change has no foresight. If agents adapt
and thereby optimize information transfer, they do so with respect to their in-
terlocutors and the context of interaction in the present (Chapter 3; Pate and
Goldwater 2015); not with regard to longer term optimizations of their language
(use). That is to say that pervasive properties of natural language (use) are not
products of explicit deliberation or design undertaken by their users. As already
noted in the introduction, the behavior of an individual at a given time is con-
sequently not necessarily informative about the effects that linguistic pressures
have (had) on her language and behavior in longer time stretches.

In Section 2.2 we expanded on this issue from a methodological perspective.
Among others, we argued that explanations of linguistic properties need be ex-
plicit about how relevant factors that may give rise to them interact. First, this
is necessary to add force to the explanation of a linguistic property. An explana-
tory analysis should add to our understanding of the conditions under which a
property comes to light or changes, and why this happens. Second, modeling the
interaction of relevant factors explicitly is necessary because they can interact
in non-trivial ways, rendering direct inference from factors to outcomes difficult,
if not impossible. Framed more positively: a better understanding of linguistic
properties is gained through the inspection of the interaction of factors such as
individual-level behavior, the environment in which communication takes place,
the communicative task at hand, population dynamics and transmission pertur-
bations that affect how linguistic knowledge is passed on.

Analogous difficulties are faced in the opposite direction: if the interaction
between language (use) and pressures that apply on it are non-trivial, then we
are seldom justified to draw strong inferences from outcomes about the factors
that may have caused them.

While well known, we raise these general issues because they easily creep into
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evolutionary analysis. More so if it is seemingly intuitive. One illustrative case
where there is growing interest in using evolutionary outcomes as diagnostics for
underlying causes is found in the iterated learning literature. Recall that even
weak inductive learning biases can have striking effects on an evolving linguistic
system (Chapter 4 and 5). Much effort has accordingly been devoted to inves-
tigating what kind of biases there are. Some prominent examples are mutual
exclusivity (Merriman et al. 1989, Clark 2009; see Chapter 5), simplicity (Chater
and Vitányi 2003, Kirby et al. 2015; see Chapter 4), regularization (Hudson Kam
and Newport 2005) and generalization (Smith 2011). If inductive biases can
come to play such an important role, we might reasonably expect outcomes of
iterated learning to show traces of the biases that shaped them. That is, we
might expect “that systems of knowledge or behaviour [such as language and its
properties] transmitted by iterated learning evolve to reflect the biases of indi-
viduals involved in transmission” (Kirby et al. 2014:110; see also, e.g., Kalish
et al. 2007). As already argued in Chapter 5 in relation to Perfors and Navarro
2014 and rephrased above, it is nevertheless questionable how much we can learn
about biases, or any other factors, from an outcome alone. Iterated learning, one
may want to argue, presents a special case in this respect. The mathematical
characterization of Griffiths and Kalish (2005; 2007) suggests that, under certain
conditions, language evolution through iterated learning converges to the prior.2

Accordingly, we may expect human experiments using iterated learning to not
only show traces of but actually reveal which biases are at play (e.g., Jacoby
and McDermott 2017). This idea is problematic without qualification. Learning
and typology certainly influence each other. After all, learnability is a necessary
condition for culturally transmitted properties to see the light of day. However,
learning outcomes and typology are by no means faithful reflections of each other
(Bowerman 2010), and, more often than not, “iterated learning is doing more
than just revealing the prior biases of learners” (Cornish 2011:173), as discussed
in Section 4.5. Additionally, other factors and forces than learning biases may
also systematically perturb the transmission of linguistic knowledge and thereby
contribute to the shaping of language. Beyond the role that functional pressure
on efficient communication plays, we saw that state frequencies can also affect
the iterated transmission of linguistic knowledge (Chapter 5; see also Perfors and
Navarro 2014). Additionally, whether learners tend to maximize the posterior
(Kirby et al. 2007), the size of the population from which learners receive their
input as well as whether biases are heterogeneous (Ferdinand and Zuidema 2009)
can, among many others, also influence whether outcomes come to reflect induc-
tive biases faithfully.

2In a nutshell, the main conditions are that there is a transmission chain – not influenced
by factors beyond learning itself, such as language use or the environment –, that every agent
uses the same production and learning algorithms, that they all have the same prior, and that
they sample from the posterior (γ = 1 in our notation; see Griffiths and Kalish 2005; 2007 for
details).
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Another source of transmission perturbation that we have neglected so far but
deserves brief mention in relation to this discussion is noisy perception: agents’
imperfect perception of the world. The general idea is straightforward. If the
world is not always perceived accurately, regular stochastic errors in the percep-
tion of states can lead teachers to produce utterances that deviate from their
production behavior had they witnessed the state correctly. Similarly, learners
may mistake utterances as applying to different states than the ones witnessed
by the teacher who produced them. For instance, when learning the meaning of
a vague adjective such as tall from utterances like “Jean is tall”, agents may have
diverging representations of how tall Jean actually is, even if she is in a shared
perceptual environment. Over time, this may lead to the emergence of certain
linguistic properties, in this case vagueness, not for functional reasons nor because
of an inductive bias, but solely due to perceptual factors.

In Brochhagen and Franke (2017), we looked at some effects that noisy per-
ception can have on iterated learning. The three simple case studies we analyzed
are reproduced in Appendix C. The finding relevant to this discussion is that,
indeed, regularities in misperceptions of states can have striking and possibly ex-
planatory effects on language evolution. Such misperceptions can lead to biases
of inferring the “wrong” teacher type if noise makes some types err in a way that
resembles the noiseless behavior of other types. That is, such an environmental
factor can, in principle, induce transmission perturbations that look as if there
was a cognitive bias in favor of a particular type, simply because that type better
explains the noisy behavior.

We mention noisy perception to underscore the issue raised by the relation be-
tween linguistic outcomes and their causes. If our arguments in the past chapters
and the results that followed from them are on the right track, then actual com-
munication and the environment in which it takes place can play non-negligible
roles in shaping a linguistic outcome. Reasoning on the basis of a subset of fac-
tors will deliver correct explanations only if we accurately identified the ones that
are relevant to the phenomenon at hand. Taken together with the difficulty of
disentangling the effects that different factors have on a complex evolving system
such as language, our general methodological takeaway is that a pluralistic stance
needs to be adopted. What is needed are models that allow us to ask whether lin-
guistic phenomena are due to learning (biases), environmental factors, functional
pressure, or interactions thereof. The models we proposed in this investigation
allow us to do exactly this. The application of the replicator-mutator dynamic
in Chapter 4 can tease apart functional pressure and effects of iterated learning;
its variant in Chapter 5 allows for the analysis of the effects that different state
frequencies have on communication and learning; and the noisy iterated Bayesian
learning model in Appendix C is a neutral model of cultural evolution that ap-
peals to neither functional competition nor differential learnability among types
(see also Reali and Griffiths 2009). As showcased throughout this investigation,
this family of models is well compatible with probabilistic models of language use
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at the individual level, or other formalisms of linguistic choice for that matter.
This speaks to their applicability to a wide-range of questions concerning natural
language, its use, and its transmission. This investigation applied them to novel
questions about the relationship between semantics and pragmatics, delivering
some, if modest, answers.



Chapter 7

Conclusion

Human rational behavior (and the rational behavior of all physical
symbol systems) is shaped by a scissors whose two blades are the
structure of task environments and the computational capabilities of
the actor.

Herbert A. Simon, Invariants of Human Behavior

This investigation focused on the effects that solutions to two fundamental
problems have on a changing linguistic system. The first problem is that of suc-
cessful and efficient information transfer between boundedly rational agents. The
second problem is that of the transmission of linguistic knowledge from proficient
agents to näıve ones, who have not yet come to acquire semantic conventions or
pragmatic dispositions to act on them. Solutions to both problems influence each
other. The knowledge acquired by learners is, to a large extent, a product of
solutions to the first problem. In turn, the linguistic means available to agents to
solve the first problem are influenced by what they learn from others. We focused
on the bearing of these solutions on conditions under which reliance on pragmatic
inference is (not) favored over less equivocal semantic codification of information
to be conveyed. In a nutshell, we showed that pragmatic recruitment in tandem
with semantic underspecification offers greater flexibility to repurpose linguistic
material, and that it can allow for the maintenance of simpler semantics that
are easier to learn. In both cases communication comes to leverage contextual
information and mutual reasoning – the unsaid – even if matters could be com-
municated more explicitly. Reversely, low rationality in choice or little variation
in the information context provides can lead to stronger reliance on semantics
over pragmatics.

In Chapter 3, we analyzed under which conditions safe functional exploitation
of semantic ambiguity can come about. In particular, we showed that even when
contextual expectations vary from one agent to the next, ambiguity can be a use-
ful property for semantic conventions to harbor; because it allows interlocutors to
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flexibly repurpose linguistic material to better suit their communicative prefer-
ences. Our analysis predicts that the challenge faced when not having a common
contextual prior is overcome if interlocutors interact multiple times, thereby en-
abling them to adapt their linguistic behavior to each other. These predictions
are, by and large, borne out in experimental data.

A particularly interesting issue left open in this chapter concerns the dialog-
initial adoption of Anti-Horn-like signaling, as attested in Kanwal et al.’s (2017)
data. Neither the model I proposed nor the experimental setup of Kanwal et
al. explain this behavior satisfactorily. More importantly, I think that there
is more to be said about it than that it is a mere product of chance or error.
As stressed in Section 3.5, to understand why speakers start an interaction by
associating an infrequent meaning with a preferred form, a better understanding
of the formation of contextual expectations and beliefs about them is needed.

Chapters 4 and 5 looked at population-level dynamics at the interface between
semantics and pragmatics. Chapter 4 focused on factors that may explain a divi-
sion of labor between them. In particular, on scalar implicatures and their (lack
of) lexicalization. Chapter 5 asked under which contextual conditions of use and
learning underspecified semantic conventions are both learnable and functionally
efficient, thereby coming to ingrain themselves in a population. To answer these
questions, we proposed an application of the replicator-mutator dynamic, which
tracks effects of functional pressure on successful and efficient communication
and pressure for learnability. We showed how this model can be combined with
probabilistic models of rational language use and highlighted the kind of novel
questions about change at the semantics-pragmatics interface it allows us to ask.
In particular, by taking the challenge serious that neither semantics nor pragmat-
ics are directly unobservable; only the behavior effected by their joint interaction
is available for agents to base their inference on.

One of the main open issues from Chapter 4 concerns the inductive learning
bias in favor of simpler lexical representations we assumed. The good news is
that much effort is being devoted to the development of diagnostics and stud-
ies to further our understanding of the nature and relationship between lexical
representations, their complexity, and their acquisition. For the time being, this
assumption should however be seen critically. This will hopefully motivate future
research to speak to this matter.

Finally, I would like to see the analysis in Chapter 5 be supplemented with
actual frequency data. This would add strength to the prediction that (lexical)
ambiguity is diachronically persistent if meanings attached to a form are frequent
and tend appear in contrasting contexts.

While, hopefully, progress was made, these open issues show that this investi-
gation is not exhaustive. In terms of particular phenomena, I have answered some
questions; and hope that the material worked out in each chapter goes some way
to address more; or that it at least provides a good starting point to ask fruitful
ones.
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In more general terms, when it comes to the semantics-pragmatics interface
what this investigation offered is an outline of future directions to take and a num-
ber of tools to embark in them. On this front, our contribution lies in the modular
characterization that allows for isolated and joint inspection of functional pres-
sure and learnability on evolutionary trajectories, as well for the inspection of how
frequency and perception modulate these forces and, together, shape linguistic
knowledge and behavior. For now only a rather constrained space of phenomena
and factors was explored, leaving us with the modest predictions formulated in
Chapter 6.





Appendix A

The following tables supplement the simulation results reported in Section 3.4.
All outcomes correspond to the mean of 104 independent simulations with λ = 20,
cσ(m1) = .4 = cσ(m2), and cσ(m3) = .1. The results in Table A.1 were obtained
from the simple update mechanism of P presented in Section 3.3, in (3.5), and
those in Table A.2 from its “preemptive” refinement in Section 3.4, in (3.9).

10 iterations 30 iterations 50 iterations

r P ∗(s1) EUσ (SD) JSD EUσ (SD) JSD EUσ (SD) JSD EUmax
σ

0.5 .61 (.08) .03 .62 (.07) .00 .62 (.06) .00 .75
0.1 0.7 .62 (.09) .03 .64 (.09) .01 .67 (.10) .00 .81

0.9 .64 (.10) .03 .68 (.12) .01 .71 (.13) .00 .87
0.5 .59 (.08) .01 .61 (.06) .01 .61 (.06) .00 .75

0.5 0.7 .62 (.10) .01 .66 (.10) .00 .68 (.10) .00 .81
0.9 .66 (.12) .00 .70 (.13) .00 .72 (.13) .00 .87
0.5 .59 (.08) .02 .61 (.06) .01 .61 (.06) .00 .75

1 0.7 .62 (.10) .01 .66 (.10) .00 .68 (.10) .00 .81
0.9 .67 (.12) .01 .70 (.13) .00 .72 (.13) .00 .87

Table A.1: Mean sender expected utility and JSD of interlocutors’ priors in 104

independent games. EUmax indicates the maximum expected utility reachable for
a given P *.
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10 iterations 30 iterations 50 iterations

r P ∗(s1) EUσ (SD) JSD EUσ (SD) JSD EUσ (SD) JSD EUmax
σ

0.5 .59 (.12) .03 .59 (.12) .01 .58 (.11) .02 .75
0.1 0.7 .67 (.14) .03 .76 (.09) .01 .79 (.05) .00 .81

0.9 .77 (.12) .03 .86 (.01) .01 .87 (.00) .00 .87
0.5 .58 (.12) .02 .58 (.12) .03 .58 (.11) .03 .75

0.5 0.7 .72 (.11) .01 .79 (.05) .00 .80 (.02) .00 .81
0.9 .83 (.05) .01 .87 (.00) .00 .87 (.00) .00 .87
0.5 .58 (.12) .02 .58 (.12) .03 .58 (.12) .03 .75

1 0.7 .73 (.11) .01 .79 (.05) .00 .80 (.02) .00 .81
0.9 .84 (.04) .00 .87 (.00) .00 .87 (.00) .00 .87

Table A.2: Mean sender expected utility and JSD of interlocutors’ priors in 104

independent games using “preemptive” belief updates. EUmax indicates the max-
imum expected utility reachable for a given P *.
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95% highest posterior density and mean of subjects’ marginal posterior for λ
together with predicted RMSE. Each pair of subjects corresponds to a dyad in
the game.

Subject 1 (RMSE = 0.197) Subject 2 (RMSE = 0.188)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 22.479 31.040 4.499 39.788 23.254 31.951 4.783 41.873

Subject 3 (RMSE = 0.196) Subject 4 (RMSE = 0.183)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 14.181 19.866 2.901 25.333 22.650 32.095 4.951 41.828

Subject 5 (RMSE = 0.009) Subject 6 (RMSE = 0.136)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 25.421 35.808 5.365 46.263 23.728 33.872 5.072 43.541

Subject 7 (RMSE = 0.007) Subject 8 (RMSE = 0.348)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 25.673 35.844 5.402 46.491 5.162 7.573 1.307 10.193

Subject 9 (RMSE = 0.162) Subject 10 (RMSE = 0.011)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 17.310 29.285 5.680 39.157 25.546 35.978 5.392 46.306

Subject 11 (RMSE = 0.155) Subject 12 (RMSE = 0.161)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 16.759 24.628 4.166 32.830 21.273 29.875 4.695 39.553

Subject 13 (RMSE = 0.145) Subject 14 (RMSE = 0.418)

HPD min mean SD HPD max HPD min mean SD HPD max
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λ 22.626 30.994 4.502 39.993 8.348 12.018 1.857 15.461

Subject 15 (RMSE = 0.493) Subject 16 (RMSE = 0.433)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 8.708 12.435 2.041 16.508 12.257 17.100 2.670 22.556

Subject 17 (RMSE = 0.308) Subject 18 (RMSE = 0.394)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 20.218 28.133 4.172 36.612 9.110 13.258 2.095 17.424

Subject 19 (RMSE = 0.208) Subject 20 (RMSE = 0.0)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 12.402 16.867 2.425 21.751 21.042 31.133 5.217 41.414

Subject 21 (RMSE = 0.191) Subject 22 (RMSE = 0.189)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 16.468 23.265 3.490 30.184 17.145 23.318 3.438 30.577

Subject 23 (RMSE = 0.189) Subject 24 (RMSE = 0.191)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 16.054 23.036 3.634 30.077 16.788 23.296 3.559 30.529

Subject 25 (RMSE = 0.188) Subject 26 (RMSE = 0.484)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 15.304 22.383 3.727 29.752 3.738 5.314 0.796 6.826

Subject 27 (RMSE = 0.326) Subject 28 (RMSE = 0.191)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 19.914 27.638 4.316 36.331 16.659 23.159 3.627 30.655

Subject 29 (RMSE = 0.19) Subject 30 (RMSE = 0.188)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 15.358 22.500 3.738 29.411 16.520 22.660 3.586 30.160

Subject 31 (RMSE = 0.189) Subject 32 (RMSE = 0.188)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 15.013 22.051 3.707 29.164 15.343 22.348 3.706 29.927

Subject 33 (RMSE = 0.15) Subject 34 (RMSE = 0.453)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 17.223 24.629 3.849 31.969 4.259 6.055 0.990 8.090
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Subject 35 (RMSE = 0.322) Subject 36 (RMSE = 0.414)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 6.998 10.183 1.783 14.000 6.605 9.444 1.614 12.743

Subject 37 (RMSE = 0.0) Subject 38 (RMSE = 0.0)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 21.435 31.147 5.074 40.896 21.266 31.212 5.169 41.269

Subject 39 (RMSE = 0.227) Subject 40 (RMSE = 0.141)

HPD min mean SD HPD max HPD min mean SD HPD max
λ 15.153 21.749 3.429 28.416 25.497 35.532 5.307 45.470





Appendix C

This appendix reproduces the noisy iterated learning model from Brochhagen and
Franke 2017 together with the three illustrative case studies found therein.

Iterated Bayesian Learning with State-Noise

Other stochastic factors beyond learning biases in P (τ) can influence the adop-
tion of a linguistic type τ based on the observation of 〈s,m〉-sequences. One
further potential source of “transmission noise” are regular stochastic errors in
the perception of world states.

We denote the probability that the teacher (learner) observes state st (sl)
when the actual state is sa as PN(st | sa) (PN(sl | sa)). The probability that sa
is the actual state when the learner observes sl is therefore:

PN(sa | sl) ∝ P (sa) PN(sl | sa) .

Assuming a finite state space for convenience, the probability that the teacher
observes st when the learner observes sl is:

PN(st | sl) =
∑
sa

PN(sa | sl) PN(st | sa) .

The probability that a teacher of type τ produces data that is perceived by the
learner as a sequence dl of 〈sl,m〉-pairs is:

PN(dl | τ) =
∏

〈sl,m〉∈dl

∑
st

PN(st | sl) P (m | st, τ) .

We assume that learners, even if they (in tendency) perform rational Bayesian
inference of the likely teacher type τ based on observation 〈sl,m〉, do not also
reason about state-noise perturbations. In contrast to, e.g., noisy-channel models
that have agents reason over potential message corruption caused by noise (e.g.
Bergen and Goodman 2015), our learners are not proficient language users that
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could leverage knowledge about the world and its linguistic codification to infer
likely state misperception.1 In this case the posterior probability of τ given the
learner’s perceived data sequence dl is as before: P (τ | dl) ∝ P (τ) P (dl | τ). Still,
state-noise affects the probability PN(τj → τi) that the learner adopts τi given a
teacher of type τj, because it influences the probability of observing a sequence
dl (with F (τi | d) as before):

PN(τj → τi) ∝
∑
d∈Dk

PN(dl | τj)F (τi | d) .

Noise free iterated Bayesian learning is obtained as a special case when the
perceived state is always the actual state.

Case Studies

We present three case studies that show how iterated learning under noisy percep-
tion can lead to the emergence of linguistic phenomena. The studies are ordered
from more to less obvious examples in which state-noise may be influential and
explanatory: (i) vagueness, (ii) meaning deflation, and (iii) underspecification in
the lexicon.

No case study is meant to suggest that state-noise is the definite and only
explanation of the phenomenon in question. Instead, our aim is to elucidate the
role that transmission perturbations beyond inductive biases may play in shaping
the cultural evolution of language. We therefore present minimal settings that
isolate potential effects of state-noise in iterated learning.

Vagueness

Many natural language expressions are notoriously vague and pose a challenge
to logical analysis of meaning (e.g., Williamson 1994). Vagueness also challenges
models of language evolution since functional pressure toward maximal informa-
tion transfer should, under fairly general conditions, weed out vagueness (Lipman
2009). Many have therefore argued that vagueness is intrinsically useful for com-
munication (e.g., van Deemter 2009, De Jaegher and van Rooij 2011, Franke et al.
2011, Blume and Board 2014). Others hold that vagueness arises naturally due
to limits of perception, memory, or information processing (e.g., Franke et al.
2011, O’Connor 2014, Lassiter and Goodman 2015). We follow the latter line
of exploration here, showing that vagueness can naturally arise under imperfect
observability of states (see Franke and Correia 2017 for a different evolutionary
dynamic based on the same idea).

1To do so, agents would have to infer or come equipped with knowledge about PN (·|sa),
which could itself be subject to updates. We stick to the simpler case of noise-free inference
here, but as long as the actual state is not always recoverable our general results also hold for
agents that reason about noise.
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Figure C.1: Noisy iterated learning (γ = 1, SD = 0.4, k = 20).

Setup. We analyze the effects of noisy perception on the transmission of a sim-
ple language with 100 states, s ∈ [0; 99], and two messages, m ∈ {m1,m2}. The
probability that agents perceive actual state sa as st/sl is given by a (discretized)
normal distribution, truncated to [0; 99], with sa as mean and standard deviation
SD. Linguistic behavior is fixed by a type τ ∈ [0; 99] which is the threshold of
applicability of m1: P (m1 | s, τ) = δs≥τ = (1 − P (m2 | s, τ)). In words, if a
speaker observes a state that is as large or larger than its type, then message m1

is used (e.g., tall), otherwise m2 is used (e.g., small).

Results. The effects of a single generational turnover under noisy transmission
of a population that initially consisted exclusively of type τ = 50 is depicted in
Figure C.1. As learners try to infer this type from observed language use, even
small SD will lead to the emergence of vagueness in the sense that there is no
longer a crisp and determinate cut-off point for message use in the population.
Instead, borderline regions in which m1 and m2 are used almost interchangeably
emerge. For larger SD, larger borderline regions ensue. The size of such regions
further increases over generations with growth inversely related to γ and k. As
is to be expected, if k is too small for learners to discern even strikingly different
types, then iterated learning under noisy perception leads to heterogeneous pop-
ulations with (almost) no state being (almost) exclusively associated with m1 or
m2.

Discussion. Transmission perturbations caused by noisy state perception reli-
ably give rise to vague language use even if the initial population had a perfectly
crisp and uniform convention. Clearly, this is a specific picture of vagueness. As
modeled here for simplicity, each speaker has a fixed and non-vague cut-off point
τ in her lexicon. Still, the production behavior of a type-τ speaker in actual state



152 Appendix C

sa is probabilistic and “vague”, because of noisy perception:

PN(m | sa, τ) =
∑
st

P (st | sa)P (m | st, τ) .

An extension toward types as distributions over thresholds is straightforward
but the main point would remain: systematic state-noise perturbs a population
toward vagueness.

Of course, convergence on any particular population state will also depend on
the functional (dis)advantages of particular patterns of language use. Functional
pressure may therefore well be necessary for borderline regions to be kept in
check, so to speak. Which factor or combination thereof plays a more central role
for the emergence of vagueness is an empirical question we do not address here.
Instead, we see these results as adding strength to the argument that one way in
which vagueness may arise is as a byproduct of interactions between agents that
may occasionally err in their perception of the environment. If state perception is
systematically noisy and learners are not aware of this, some amount of vagueness
may be the natural result.

Deflation

Meaning deflation is a diachronic process by which a form’s once restricted range
of applicability broadens. Perhaps the most prominent example is Jespersen’s
cycle (Dahl 1979), the process by which emphatic negation, such as French ne
... pas, broadens over time and becomes a marker for standard negation. As
argued by Bolinger (1981), certain word classes are particularly prone to slight and
unnoticed reinterpretation. When retrieving their meaning from contextual cues,
learners may consequently continuously spread their meaning out. For instance,
Bolinger discusses how the indefinite quantifier several has progressively shifted
from meaning a respectable number to broader a few in American English. We
follow this line of reasoning and show how state confusability may lead to meaning
deflation. Other formal models of deflationary processes in language change have
rather stressed the role of conflicting interests between interlocutors (Ahern and
Clark 2014) or asymmetries in production frequencies during learning (Schaden
2012, Deo 2015).

Setup. The setup is the same as that of the previous case study, except that
we now trace the change of a single message m, e.g., emphatic negation, without
a fixed antonym being sent whenever m does not apply. This is a crude way of
modeling use of markers of emphasis or high relevance for which no corresponding
“irrelevance marker” exists. Learners accordingly observe positive examples of
use 〈s,m〉 but do not positively observe situations in which m did not apply to a
particular state. This causes asymmetry in the learning data because some types
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will reserve their message only for a small subset of the state space and otherwise
remain silent. Learners take the absence of observations into account but cannot
know what it is that they did not observe. We assume that learners are aware of
k so that:2

P (τ |dl) ∝ Binom(successes = k − |dl|, trials = k,

succ.prob =
τ−1∑
i=0

P (s = i))
∏
s∈dl

P (m|s, τ) .

As before, the second factor corresponds to the likelihood of a type producing
the perceived data. The first is the probability of a type not reporting k − |d|
events for a total of k events. P ∈ ∆(S) is assumed to be uniform. In words,
a long sequence of data consisting of mostly silence gives stronger evidence for
the type producing it having a high threshold of applicability even if the few
state-message pairs observed may be equally likely to be produced by types with
lower thresholds.

Results. The development of an initially monomorphic population consisting
only of τ = 80 is shown in Figure C.2. Even little noise causes a message to
gradually be applied to larger portions of the state space. The speed of meaning
deflation is regulated by SD, k, and to lesser degree γ. In general, more state
confusion due to higher SD, shorter sequences, or less posterior maximization will
lead to more learners inferring lower types than present in the previous generation.

Discussion. In contrast to the previous case study, we now considered the ef-
fects of noisy perception under asymmetric data generation where overt linguistic
evidence is not always produced, i.e., acquisition in a world in which not every
state is equally likely to lead to an observable utterance. The outcome is nev-
ertheless similar to the previous one: Noisy perception can cause transmission
perturbations that gradually relax formerly strict linguistic conventions. In con-
trast to the case of vagueness, if there are no relevant competing forms, e.g.,
small vs. tall, asymmetry in production and noise will iteratively increase the
state space that a form carves out.

Scalar Expressions

Why does regular pragmatic strengthening not lead to wide-spread lexicalization
of upper-bounded meanings in weak scalar expressions? To address this question,

2Knowing k allows learners to compute the likelihood of a type not reporting k − |dl| state
observations. A better but more complex alternative is to specify a prior over k with learners
performing a joint inference on k and the teacher’s type. For simplicity, we opt for the former,
albeit admittedly artificial, assumption.
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Figure C.2: Noisy iterated learning (γ = 1, SD = 0.4, k = 30).

in Chapter 4 we explored an evolutionary model that combines functional pressure
and iterated learning. This analysis assumed a prior that favors a lack of upper-
bounds relative to their lexicalization. Here, we demonstrate that state-noise
can mimic the effects of such a cognitive learning bias in a reduced type space
consisting only of users of lexica Lbound and Llack. As in Chapter 4, a type is a
pair of either of these two lexica and level-0 or level-1 behavior (see Chapter 4
for details).

Setup. As pragmatic users of Llack are (almost) indistinguishable from types
with Lbound, the emergence of a predominance of Llack in a repeatedly learning
population must come from transmission biases. A learning bias in favor of Llack

in the learners’ priors will lead to its predominance (Chapter 4), but here we
assume no such cognitive bias. Rather we assume state-noise in the form of
parameters ε and δ. The former is the probability of perceiving actual state
s∃¬∀ as s∀, P (s∀|s∃¬∀) = ε, and P (s∃¬∀|s∀) = δ. For instance, states may be
perceived differently because different numbers of objects must be perceived (e.g.,
quantifiers and numerals) or they may be more or less hard to accurately retrieve
from sensory information (e.g., adjectives).

Results. To quantify the effects of the dynamics we ran a fine-grained param-
eter sweep over ε and δ with 50 independent simulations per parameter config-
uration. Each simulation started with a random initial population distribution
over types and applied iterated learning with state-noise for 20 generations, af-
ter which no noteworthy change was registered. Mean proportions of resulting
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Figure C.3: Mean proportion of pragmatic Llack users after 20 generations (γ = 1,
k = 5).

pragmatic users of Llack under different noise signatures are shown in Figure C.3.
These results suggest that when δ is small and ε high, iterated noisy transmission
can lead to populations consisting of almost exclusively English-like lexica with
pragmatic language use. Similar results are obtained for larger k or γ.

Discussion. The main goal of this case study was to show that noisy perception
may mimic effects of learning biases. In the case of Chapter 4 the assumed bias
was one for simplicity; learners had an a priori preference for not codifying upper-
bounds lexically, which increased their propensity to infer pragmatic Llack over
Lbound even if the witnessed data could not tease them apart. We assumed no
such bias but nevertheless arrived at evolutionary outcomes that are comparable
to those predicted if the bias were present. However, this result strongly depends
on the types involved. Whether a type thrives under a particular noise signature
depends on the proportion of types confused with it during transmission. The
addition or extraction of a single type therefore leads to different results.

I should stress that the evolution of weak scalar expressions lacking an upper-
bound does not obtain in larger type spaces such as the one in Chapter 4, whereas
the noise-free model with functional pressure in that chapter robustly leads to this
outcome. What is more, it is unclear what role noisy perception should play in the
selection of underspecified meaning. These results should therefore be taken as
suggestive but not indicative of a relationship between the two. Our aim here was
mainly conceptual and technical in nature. In the context of this investigation,
they serve to underscore the discussion in Chapter 6.
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Samenvatting

Wat wordt overgebracht gaat vaak verder dan wat er wordt gezegd. In plaats van
het te vermijden, floreert alledaagse communicatie in het impliciete; in het onuit-
gesprokene; in het contextueel bepaalde. Dit onderzoek concentreert zich op deze
kwestie door te vragen waarom, en onder welke voorwaarden, taal(gebruik) het
onuitgesprokene ter hand neemt terwijl de zaken ook explicieter overgebracht had-
den kunnen worden. Preciezer gezegd proberen we op een fundamenteel niveau te
begrijpen waarom het werk verdeeld wordt tussen semantiek en pragmatiek. Dit
doen we door te kijken naar de voorwaarden waaronder eigenschappen die van
deze werkverdeling gebruik maken voortkomen. We analyseren deze voorwaarden
door speltheoretische modellen van rationeel taalgebruik, reinforcement learn-
ing, (gëıtereerd) Bayesiaans leren, en populatiedynamiek zoals de repliceerder-
muteerderdynamiek op nieuwe manieren te combineren.

Onze analyse traceert taalverandering zowel op het niveau van gëıtereerde in-
teracties als op het populatieniveau. Beide niveaus brengen hun eigen perspectief
mee en schijnen daarmee hun eigen licht op een gegeven eigenschap van taal.
Dit maakt het mogelijk om verschillende, doch verweven, antwoorden op vragen
zoals waarom alledaagse communicatie doorspekt is met semantische ambigüıteit;
onder welke voorwaarden pragmatische inferenties mogelijk (niet) lexicalizeren;
en, meer algemeen, wat voor werkverdelingen tussen semantiek en pragmatiek we
kunnen verwachten voort te zien komen uit het krachtenveld en omgevingsfac-
toren die taal vormgeven te verkennen.

Op het niveau van gëıtereerde interacties, analyseren we het opzettelijk ge-
bruik van ambigue uitdrukkingen in dialoog. Aan de hand van eerdere verklarin-
gen van ambigüıteit beargumenteren we dat context een belangrijke rol speelt in
het mogelijk maken van de risicoloze uitbuiting van ambigüıteit. We slaan echter
wat gaten in deze uitleg door de aanname dat dialoogpartners toegang hebben
tot dezelfde contextuele informatie te betwijfelen en uiteindelijk op te geven.
Deze kwestie ontvouwt zich in een grotere, waar het samenspel tussen context,
de gesprekspartners’ subjectieve contextuele verwachtingen, en hun opvattingen
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over elkaars verwachtingen een belangrijke rol spelen. We beredeneren dat de
gezamenlijke uitkomst van deze factoren de voorwaarden bepaalt waaronder een
functioneel voordeel voor ambigüıteit kristaliseert. Om deze ideeën tastbaar te
maken stellen we een model van rationeel taalgebruik voor en koppelen het model
aan simpele adaptieve dynamieken. We laten zien dat het model empirisch on-
derbouwde patronen van ambigu taalgebruik met succes voorspelt.

Op het populatieniveau staan eigenschappen emergent aan interacties aan
de semantiek-pragmatiek interface voor uitdagingen die niet alleen taalgebruik,
maar ook hun getrouwe overdracht over generaties omvatten. Nog semantiek nog
pragmatiek zijn direct observeerbaar. In plaats daarvan zien leerlingen alleen het
gedrag waarin de combinatie van semantiek en pragmatiek resulteert. Dit levert
een probleem op omdat verschillende combinaties kunnen resulteren in (bijna)
niet te onderscheiden zichtbare gedrag. In preciezere zin vragen we wanneer en
waarom reguliere pragmatische inferenties wel (of niet) lexicalizeren, en wanneer
semantische onderspecificatie ofwel wordt behouden ofwel plaatsmaakt voor pre-
ciezere uitdrukkingen. Om deze vragen aan te pakken formuleren we een model
van de (co)evolutie van semantiek en pragmatiek. Het model houdt de effecten
bij van functionele druk richting efficiënte informatieoverdracht en de effecten
van druk richting leerbaarheid op zowel aparte als gecombineerde evolutionaire
trajecten. We combineren dit model met modellen van pragmatisch taalgebruik
op het niveau van het individu en dompelen het model onder in verschillende
taalgebruik- en leeromgevingen.



Abstract

What is conveyed often goes beyond what is said. Rather than avoiding it, natural
communication seems to thrive in the implicit; in the unsaid; in the contextu-
ally determined. This investigation centers around this issue by asking why and
under which conditions language (use) may come to leverage or accommodate
the unsaid when matters could be conveyed more explicitly. More precisely, at
a fundamental level, we seek to better understand why there is a division of la-
bor between semantics and pragmatics. We do so by looking at the conditions
under which properties that draw from this division arise, which we analyze by
combining, in novel ways, game-theoretic models of rational language use, rein-
forcement learning, (iterated) Bayesian learning, and population dynamics such
as the replicator-mutator dynamic.

Our analysis traces linguistic change at the level of iterated interactions as well
as at that of populations. Both levels come with their own perspective and thereby
shed their own light on a given linguistic property. This allows us to explore
different yet connected answers to questions such as why natural communication
is rife with semantic ambiguity; under which conditions systematic pragmatic
inferences may (fail to) lexicalize; and, more generally, what kinds of divisions of
labor between semantics and pragmatics we can expect to arise from pressures
and environmental factors that shape language.

At the level of iterated interactions, we analyze the deliberate use of ambigu-
ous expressions in dialog. With previous explanations of ambiguity, we argue
that context plays an important role in allowing for the safe exploitation of am-
biguity. However, we inject some wrinkles into this explanation by calling into
question and giving up the assumption that interlocutors have access to the same
contextual information. This issue unravels into a larger one, where the interplay
between context, interlocutors’ subjective contextual expectations, and their be-
liefs about each other’s expectations play an important role. We argue that the
joint outcome of these factors determines the conditions under which a functional
advantage for ambiguity crystallizes. We propose a model of rational language
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use and couple it with simple adaptive dynamics to capture these ideas, and show
that it succeeds in predicting empirically attested patterns of ambiguous language
use.

At the population level, properties that draw from interactions at the semantics-
pragmatics interface face challenges not only in language use, but also in their
faithful transmission across generations. Neither semantics nor pragmatics are
directly observable. Learners instead only witness the behavior in which their
combination results. This raises an issue because different divisions could re-
sult in (almost) indistinguishable overt linguistic behavior. More precisely, we
ask why and when regular pragmatic inferences do (not) lexicalize, and when
semantic underspecification is either maintained or gives way to more precise ex-
pressions. To address these questions, we formulate a model of the (co-)evolution
of semantics and pragmatics. This model tracks the effects of functional pressure
toward efficient information transfer and the effects of pressure for learnability
on separate as well as on combined evolutionary trajectories. We combine this
model with individual-level models of pragmatic language use, and couch it in
different environments of language use and learning.
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Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
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