
Dynamic Social Networks Logic

Zoé Christoff∗

Institute for Logic, Language and Computation, University of Amsterdam

Jens Ulrik Hansen∗

Department of Philosophy, Lund University

Abstract

We introduce a general framework for reasoning about dynamic processes
within social networks, such as diffusion phenomena. First, we define the new
Dynamic Social Networks Logic, a dynamic extension of standard hybrid modal
logic. We then provide a complete axiomatization for this logic and give a
terminating and complete tableau system for it. Finally, we show how to apply
the framework to dynamic processes documented in social networks analysis.

Keywords: Modal Logic, Hybrid Logic, Social Networks Analysis, Diffusion in
Social Networks

1. Introduction

Social networks are groups of agents structured by some social relation-
ship/links such as family ties, being colleagues, or “following” on social media
sites – in other words directed or undirected graphs. In the last decade, the
study of social networks, and networks in general, has seen a rapid increase
(classical textbooks include [1, 2, 3]). A variety of aspects of networks have
been studied, such as: how they emerge, how they change, what their struc-
tural properties are, what social roles they play, etc. This paper focuses on
dynamic processes occurring within social networks, such as diffusion of infor-
mation, viruses, trends, opinions, behaviors, etc. What typically characterizes
such processes is that their dynamics is local: whether an agent adopts a be-
havior/opinion/disease/product/trend depends on whether the agents related
to him within the social network have adopted it already. Since social networks
are graphs and since the dynamics depends on local properties, it seems like a
natural choice to develop a dynamic modal logic to reason about such dynamics
in social networks. This is exactly what this paper does.

To make clear the type of phenomena our framework is designed for, let us
start by considering an example: the diffusion of a disease within a population.

∗Corresponding author (Zoe.Christoff@gmail.com, Jens Ulrik.Hansen@fil.lu.se)

Preprint submitted to Elsevier May 18, 2014

Assume that each agent of the population is in either of two states: infected
with the disease or susceptible to it. This type of models is commonly called
“the SI Model” in the network literature [1]. Moreover, assume that the disease
can only be contracted by being in contact with an infected agent. Consider
the social network consisting of agents in a given population, where two agents
are linked if they are in contact with each other. (If an agent a is linked to an
agent b, we will also call b a “neighbor” of a or a “friend” of a.)

Consider now how such an infection spreads through a structured popula-
tion. We first need to determine how contagious the disease is. So assume that
each agent related to an infected agent in the network will get infected too at
the next moment. This means that if some agent is infected to start with, then
all agents related to him will get infected at the next moment, and then all
agents linked to the agents linked to him, and so on. Finally, according to this
rule of contagion, all agents in (the connected component of) the population
will contract the disease after some time. However, note that the social network
structure constrains how fast such a disease would spread and what measures
would be needed to contain it – the shortest network-path from an agent a to the
initially infected agent i determines after how long agent a will get infected. In
this example, the dynamics is essentially captured by the following local trans-
formation rule: If any of your neighbors is infected, become infected yourself at
the next moment of time.

The long term dynamics of such a contagion phenomena can also be investi-
gated. Assuming that once an agent gets infected she will stay infected forever,
each (connected finite component of the) network will reach a stable state where
everybody is infected. However, one could very well imagine a different transfor-
mation rule: after being infected at one moment, an agent immediately recovers
and becomes susceptible at the next moment. According to this new dynamic
rule, agents might keep alternating forever between being infected and being
susceptible and the network might never reach a stable state.

This simple “SI” example can be enriched in several ways. The health status
of an agent could take one of three values instead of two: infected, susceptible,
recovered (the so-called “SIR Model”, see for instance [1]). After being infected,
agents can become “recovered”, which might mean that they have become im-
mune to the disease (alternatively, in some variants of the model, that they died
from it) or that they will move back to being susceptible.

In the above, only the current health status of the agents matters. However,
other features of agents may very well interfere with how their health status will
change. For instance, imagine a genetic mutation such that agents carrying the
mutation are immune to the disease or stay infected for longer. In this case, the
epidemic dynamics reveals more complexity, and the transformation rule needs
to combine several properties of agents.

Two aspects of the above examples will be particularly relevant to this paper.
First of all, agents have certain properties such as health status, genetic type,
age, gender, hair color, etc. For each agent all these properties are instantiated
by particular features (or values), such as infected, has the genetic mutation,
34 years old, female, redhead, etc. For each property the associated possible

2

features will come from some fixed set of values, such as: the three possible
health states, numbers 1 to 150, male or female, colors, etc. This assignment of
values to properties will be captured by a particular kind of atomic propositions
in our logic.

The second thing to remark is that the dynamics is defined in a purely local
way. In the above, an agent change her health status from being susceptible to
being infected if at least one of her neighbors is infected. Other kinds of local
dynamics could be considered: for instance, dying your hair red if all of your
friends have red hair or if at least one of your friends has a friend who has red
hair. This type of local conditions is ideally described by formulas of a modal
language. Thus, using an extension of basic modal logic will provide a natural
way of defining a large variety of dynamic processes on social networks.

Traditionally, network science and logic have co-existed as separated fields.
The type of contagion just mentioned, as well as numerous other diffusion phe-
nomena, have been widely studied in the network science literature (again see for
instance[1, 2, 3]). In parallel, the dynamics of interacting agents has also been
thoroughly addressed within the field of logic [4, 5, 6]. However, only a fraction
of this line of work in logic has taken the social network structure into account1.
Nevertheless, the idea of introducing notions from network science into logic,
is progressively emerging in very recent work [7, 8, 9, 10, 11, 12, 13, 14, 15].
This paper attempts to continue building the bridge between logic and network
analysis.

The first novelty of the paper is the way preexisting modal logics are ex-
tended with a dynamics allowing to model complex locally governed dynamic
phenomena within social network structures. Secondly, the paper provides a
sound and complete axiomatization as well as a sound, complete and terminat-
ing tableau system for the new Dynamic Social Network Logic. In addition to
providing deeper insights into the logic itself, we also discuss its applications to
real examples from the network science.

The paper builds on some of our earlier work: the idea of equipping agents
with different properties with different values was developed in [12], where an
early version of the framework introduced here was used to model specifically
the phenomenon of pluralistic ignorance (see Section 5.1). The idea of using
modal formulas to define dynamics was also introduced in [12] as a way of
significantly generalizing the simple belief dynamics of [11].2 However, contrary
to the more philosophical [12], which focuses more on a particular case study,
this paper contains a general and technical presentation of the logic, as well as
an axiomatization and a terminating tableau system for it, together with an
exemplification of its applications.

On the technical side, our logic will be an extension of standard hybrid logic
[16] since hybrid logic provides relevant additional expressive powers compared

1See section 6 for exceptions
2The way of defining the dynamics is also partly inspired by the events modalities of

Dynamic Epistemic Logic [5, 6].

3

to basic modal logic, such as naming agents and defining more structural prop-
erties at the level of frames, as already noted by [7]. The axiomatization of
our underlying static logic is very similar to the axiomatizations of [17, 16] and
the additional axiomatization of our full dynamic logic borrows the reduction
technique from [5, 6]. The tableau system for the static logic is adapted from
[18], while the tableau system for our dynamic logic is inspired by the technique
of [19].

The outline of the paper is as follows: Section 2 defines the Dynamic Social
Networks Logic. The static part of the logic is introduced first and dynamic
transformation are then added to it to obtain the full Dynamic Social Networks
Logic. Section 3 provides a complete axiomatization of the logic, while section 4
provides a complete and terminating tableau system. Our proofs of termination
and completeness of the tableau system for our full dynamic logic rely heavily
on the corresponding proofs for the static logic, as provided by [18]. We have
therefore included the proofs of termination and completeness for the static
logic in Appendix B, in order to make the paper self-contained. Section 5,
exemplifies how the logic allows reasoning about real-life network behaviors.
Finally, section 6 discusses related work, possible extensions of the framework,
and further research.

2. Dynamic Social Networks Logic

In this section, we introduce a hybrid logic to reason about the dynamics of
properties of agents within social networks. We start with the static part of the
logic, which we call Static social networks logic, to model the states of agents
in a network at a given moment. We then move on to the full Dynamic social
networks logic to represent the evolution of such situations.

2.1. Static social networks logic

As in [7] we will include standard tools from hybrid logic [16] to be able to
talk about the network structure of agents. Hence, following [7], our formulas
will have an indexical reading. The main novelty in our static logic is the
format of the atomic propositions used to talk about properties of the agents.
Recall that we view them as having certain features that are instantiations of
some fixed properties in consideration. Instead of having a set of standard
propositional variables, we use equational statements to talk about features
of agents in networks. We assume that each agent has n different relevant
properties, to each of which is assigned one value from a finite set of possible
values. To avoid any later confusion, let us first make precise the vocabulary
we will be using: we will use the term “property” to refer to for instance age,
gender, health status, etc., and we will use the term “feature” to refer to the
value assigned to such a property, for instance 34 years old, infected, redhead,
etc. In this sense, a property is a “feature variable” and a feature is a value
taken by this variable.

More formally, throughout the rest of this section we will assume a finite set
of feature variables {V1, V2, ..., Vn} representing n different properties of agents,

4

where each variable Vl is associated with a given finite value set Rl. The atomic
propositions (or feature propositions) of our language will then be defined in
the following way:

Definition 1 (Feature propositions). A feature proposition is of the form

Vl = r,

for some l ∈ {1, . . . , n} and some r ∈ Rl. The set of all feature propositions
(for fixed sets of variables and values) will be denoted FP.

The intuition is that the proposition Vl = r is “true” (–the notion of “truth”
will be defined in a moment) of an agent if and only if the agent possesses
feature r of property Vl. For instance, assuming that we have two properties Vg
for gender and Vh for health status, we could write Vg = f to express that an
agent is female and Vh = i to express that that an agent is infected.3

In addition to the finite set of feature propositions (FP), we will assume a
countable infinite set of nominals (NOM) used as names for agents in networks,
just as nominals are used to refer to possible states in traditional hybrid logic
[16]. We can now give the syntax for static social network language:

Definition 2 (Syntax for static social network language LSSN). The syntax of
the static social network language, denoted LSSN , is given by:

ϕ ::= Vl = r | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | Uϕ | @iϕ ,

where Vl = r ∈ FP and i ∈ NOM.

We will use the standard abbreviations for ∨, →, and ↔ and denote the
dual operator of F by 〈F 〉 and the dual of U by 〈U〉. Moreover, we define
∧n
i=1 ϕi :=

∧

ϕ∈{ϕ1,....,ϕn}
ϕ := (...((ϕ1 ∧ ϕ2) ∧ ϕ3) ∧ ...) ∧ ϕn) and

∨

ϕ∈{ϕ1,....,ϕ2}
:= (...((ϕ1 ∨ ϕ2) ∨ ϕ3) ∨ ...) ∨ ϕn). The intuitive meaning of a

formula Fϕ is that “ϕ is true of all my friends” and the intuitive meaning of
a formula @iϕ is that “ϕ is true of the agent named i” – note the indexical
reading of formulas here! The U -operator is the global modality quantifying
over all agents in the network and Uϕ is read as “ϕ is true of all agents in the
network”.

As previously mentioned, we have assumed that a fixed set of feature propo-
sitions FP is given and this assumption will be made throughout the rest of the
paper unless otherwise specified. Whenever we need to be explicit about the
set of feature propositions our language is relative to, we will use the notation
LSSN (FP).

Before defining the semantics, let us first introduce the notion of assignment
and define our models. Intuitively, our assignments will assign specific values to

3Feature propositions can be viewed as a generalization of classical propositional variables.
Given a classical propositional variable P one can add a variable VP and let RP = {1, 0}.
Then VP = 1 will represent that P is true and VP = 0 will represent that P is false (i.e. ¬P).

5

the set of variables, hence determining the features of a given agent:

Definition 3 (Assignment/full assignment). An assignment (or partial assign-
ment) is a partial function from {1, ..., n} to

∏n
l=1Rl. The set of all assignments

is denoted by V. For a given assignment s, the domain of s is denoted by dom(s).
A full assignment is an assignment s such that dom(s) = {1, ..., n}. The set of
all full assignments is denoted Vfull.

The way to think about assignments is that an assignment s assigns a feature
s(l) ∈ Rl to the feature variable Vl, for each l ∈ dom(s). Thus, a full assignment
s assigns a feature s(l) to every feature variable Vl (l ∈ {1, ..., n}).4

Definition 4 (Network model). A network model is a tuple M = (A,≍, g, ν),
where: A is a non-empty set of agents, ≍ is a binary relation on A representing
the network structure, g : NOM → A is a function assigning an agent to each
nominal, and ν : A → Vfull is a valuation assigning a full assignment ν(a) to
each agent a ∈ A, i.e. a complete specification of the features of each agent in
the network. The pair (A,≍) will be referred to as a frame and a model built on
a frame (A,≍) is simply a model obtained by adding a g and a ν to the frame.

For instance, if we have two properties or “feature variables”, health status
and gender, a full assignment assigns one value for each variable to each agent
in the network. In other words, no property of any agent is left undefined in a
model.

With the notion of a model we can now give semantics for the language
LSSN :

Definition 5 (Semantics of LSSN). Given a M = (A,≍, g, ν), an a ∈ A and a
formula ϕ ∈ LSSN , we define the truth of ϕ at a in M inductively by:

M, a |= Vl = r iff ν(a)(l) = r
M, a |= i iff g(i) = a
M, a |= ¬ϕ iff it is not the case that M, a |= ϕ
M, a |= ϕ ∧ ψ iff M, a |= ϕ and M, a |= ψ
M, a |= Uϕ iff for all b ∈ A;M, b |= ϕ
M, a |= Fϕ iff for all b ∈ A; a ≍ b implies M, b |= ϕ
M, a |= @iϕ iff M, g(i) |= ϕ

We say that a formula ϕ is satisfiable if there is a model M = (A,≍, g, ν) and
an agent a ∈ A such that M, a |= ϕ (and unsatisfiable otherwise). If this is the
case, we will also simply say that a satisfies ϕ (taking M to be given). Two
formulas ϕ and ψ are said to be pairwise unsatisfiable if ϕ ∧ ψ is unsatisfiable.
Given a model M = (A,≍, g, ν) and a formula ϕ we write M |= ϕ if M, a |= ϕ
for all a ∈ A. A formula ϕ is said to be valid with respect to a class of frames

4In defining the social network models below, in which we will interpret our language, we
actually only need the notion of full assignments. However, having partial assignments will
simplify things when we define our dynamic social networks logic in sub section 2.2.

6

if M |= ϕ for all models M build on some frame from the class. A formula is
said to be just valid if it is valid with respect to the class of all frames. The logic
consisting of the set of all valid formulas will be denoted SSNL and referred to
as the the static social networks logic.

The static logic which we have defined so far allows us to talk about net-
work situations, i.e., to describe the features of agents and the social network
structure. In the next subsection, we will introduce the tools needed to talk
about changes or transformations of such models, in order to represent the
above-mentioned epidemic behaviors, for instance.

2.2. Dynamic transformations

We now extend our logic to deal with the dynamics of networks. We will
make two important design choices. First, we are concerned exclusively with one
particular type of changes within networks: the change of distribution of features
within a social network structure. This means that we assume that agents do
not change names and that the network structure is fixed. Second, we take
a very general point of view in this paper: agents are essentially just bundles
of features with fixed names, and the question of how exactly such network
models should change is so open-ended that we consider that the safest option
is to offer a general framework which can allow for any such type of change, as
long as it is locally definable in terms of our language. Therefore, our setting
can be refined in many ways to accommodate different types of applications and
represent their corresponding dynamics. Our framework allows to “plug-in”: 1)
how many properties of agents are relevant, 2) how many values each of these
properties can take and 3) according to which rules such static models should be
updated, i.e, how those features should be redistributed on the network. In other
words, we are abstracting as much possible from particular diffusion examples
given by the networks analysis literature by building a framework which can
deal with them altogether.

What we want is a way to obtain a new model from a given model through
some dynamic transformation. In this sense, the dynamic modalities which
we will add to our language are comparable to the event models modalities
of Dynamic Epistemic Logic [5, 6]. However, instead of the event models of
Dynamic Epistemic Logic we will talk about dynamic transformations. On the
syntactic level, we will add formulas on the form [D]ϕ for a given dynamic
transformation D.

Definition 6 (Dynamic transformations). A dynamic transformation is a pair
D = (Φ, post) consisting of a non-empty finite set Φ of pairwise unsatisfiable
formulas (from the language LDSN to be defined in Definition 7)5 and a post-

5We have to be a little careful here! To avoid circular definitions we cannot allow the
dynamic transformation D = (Φ, post) to have precondition formulas in Φ involving D itself.
Nevertheless, we can allow formulas of LDSN in Φ constructed on an “earlier stage” in a
simultaneous inductive definition of dynamics transformations and the language LDSN . In

7

condition function post : Φ → V. The set Φ will be referred to as “precondi-
tions”, and given a precondition ϕ ∈ Φ, we will call the assignment post(ϕ) ∈ V
the “post-condition” of ϕ.

Note that the post-conditions are partial assignments and not full assign-
ments. The intuition behind this definition is that if an agent satisfies a ϕ ∈ Φ
(in which case, ϕ is necessarily unique), then after the dynamic transforma-
tion D, a changes her features as specified by post(ϕ). As post(ϕ) is a partial
assignment a does not change all her features, only the ones in dom(post(ϕ)).

In the following we assume a fixed set of dynamic transformations to be
given and denote it by DT. We can now specify the syntax of our dynamic
language:

Definition 7 (Syntax for dynamic social network language LDSN). The syntax
of the dynamic social network language, denoted LDSN , is given by:

ϕ ::= Vl = r | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | Uϕ | @iϕ | [D]ϕ ,

where Vl = r ∈ FP, i ∈ NOM, and D ∈ DT.

As for the static language LSSN , when we need to make it explicit which
set of dynamic transformations DT (and feature propositions FP) a language is
built upon, we use the notation LDSN (DT) (LDSN (FP,DT)).

The semantics of formulas involving dynamic modalities transforms the model
at hand. This is captured by the following definition:

Definition 8 (Transformation updates). Given a model M = (A,≍, g, ν) and
a dynamic transformation D = (Φ, post), the updated model under the trans-
formation D is MD = (A,≍, g, ν′), where ν′ is defined by:

ν′(a)(l) =











post(ϕ)(l) if there is a ϕ ∈ Φ such that M, a |= ϕ

and l ∈ dom(post(ϕ))

ν(a)(l) otherwise

(1)

for all a ∈ A and all l ∈ {1, ..., n}.

As previously mentioned, the intuition is that if an agent satisfies a ϕ ∈ Φ
then, after the dynamic transformation D, she changes her features as specified
by post(ϕ). More formally, assume that an agent a satisfies ϕ and consider the
variable Vl. If l /∈ dom(post(ϕ)), then Vl = r will be true of a after D if, and
only, if Vl = r was true of a before D. On the other hand, if l ∈ dom(post(ϕ)),
then Vl = r will be true of a after D if, and only, if post(ϕ)(l) = r. Note that
the “otherwise” case in (1) takes care of two situations, namely the situation

other words, one should view Definition 6 and Definition 7 as one simultaneous recursive
definition. The issue is similar to the issue of defining the full language of Dynamic Epistemic
Logic [6, Ch. 6].

8

where there are no formulas in Φ true of the agent a, and the situation where
there might be a formula ϕ ∈ Φ true of a, but the feature in question, l, is not
in the domain of post(ϕ).

The semantics of the dynamic language can now be given:

Definition 9 (Semantics of LDSN). Given a M = (A,≍, g, ν), an a ∈ A and
a formula ϕ ∈ LDSN , we define the truth of ϕ at a in M inductively as in
Definition 5 with the additional clause:

M, a |= [D]ϕ iff MD, a |= ϕ.

Satisfiability, validity, and pairwise unsatisfiability are generalized in the obvious
way from Definition 5. The logic consisting of the set of all valid LDSN -formulas
will be denoted DSNL and referred to as Dynamic social networks logic.

Before moving on, let us consider the small example from the introduction
concerning diffusion of a disease again. Here we might have to variables VHS
and VGM keeping track of the health status of of the agents and whether they
have the genetic mutation, i.e. RHS = {susceptible, infected, recovered} and
RGM = {yes, no}. Thus, VHS = susceptible ∧ VGM = yes is true of an agent
if she is susceptible to the disease and she has the genetic mutation. We could
then specify the following dynamic transformation D = (Φ, post), for instance:

Φ : post :
VHS=susceptible∧ VGM =no ∧ 〈F 〉VHS= infected post(HS)= infected
VGM = yes post(HS)=recovered
VHS = infected post(HS)=recovered

This dynamic transformation represents the fact that a susceptible agent with-
out the genetic mutation becomes infected if at least one of her neighbors is
infected, while an agent having the genetic mutation is immediately recovered
and does not get infected. Moreover, after being infected an agent moves to be-
ing recovered. As there is no specification of how agents would move from being
recovered to being susceptible (or infected), recovered agents become immune
to the disease. More complex examples of applications of DSNL can be found
in Section 5.

It follows from Definition 8 that, for every network model M and every dy-
namic transformation D, the updated network model MD always exists. More-
over, no agents from A are deleted when moving to the new model MD. Thus
for every pair (M, a) of a network model M and an agent a of M, and for every
dynamic transformation D, the pair (MD, a) exists. Hence, contrary to pub-
lic announcement logic or traditional dynamic epistemic logic, a formula can be
evaluated in a state (M, a) exactly when it can be evaluated in a state (MD, a).
For this reason, there is no need to give the semantics of the dynamic modality
[D] in term of a conditional clause. Moreover, it implies that dynamic trans-
formations are “functional”, in the sense that each dynamic transformation D
behaves as a function on the class of pointed network models (M, a). This is

9

reflected in the logic by the fact that all dynamic transformations are their own
duals, i.e.

[D]ϕ↔ ¬[D]¬ϕ,

is a validity for all dynamic transformations D and all formulas ϕ. For these
reasons, we can always define the sequential application of the same dynamic
transformation D in a straightforward way as follows:

Definition 10 (MkD). Given a network model M and a dynamic transforma-
tion D, let MkD be defined recursively for all k ∈ N0 by:

M0D := M

M(k+1)D := (MkD)D.

Some interesting behaviors of networks can be observed. Given a network
model M and a dynamic transformation D, an interesting question is whether
the network stabilizes, that is, whether successive updates by D will result in
a network model which does not change under further update by D, i.e. a
fixed-point of the transformation D.

Definition 11 (Stability of a model). A network model M is said to be stable
under a dynamic transformation D, if M = MD. M is said to stabilize under
the dynamic transformation D, if there is a k ∈ N0 such that MkD is stable.

Can our logic say something about such limit behaviors of networks? Yes,
it can: it can capture the notion of stability. Let us explain how to express in
our language that a network is stable.6 Given a model M = (A,≍, g, ν), the
full assignment ν(a) completely describes the features of a, thus the complete
features of a is expressed by:

ϕν(a) :=
n
∧

l=1

Vl = ν(a)(l).

Moreover, note that the set of all possible full assignments V is finite. Thus,
we can “quantify” over it in our language and express that a network model is

6While our language can express stability, it cannot express stabilization. The straight
forward way would be to add the PDL transitive closure construct ∗ to the modality [D].
However, what would be interesting is to find a formula without the 〈D∗〉 operator that defines
that a network stabilizes, just as done in [8] for the case of a logic of preference change. We
will leave this for future research, though. The transitive closure operator ∗ and stabilization
is discussed in more details in the concluding Section 6.

10

stable under D by7:

ϕstable(D) :=
∧

s∈Vfull

(

ϕs → [D]ϕs
)

. (2)

That this is in fact so follows from the following lemma:

Lemma 12. A network model M is stable under D if, and only if,

M |= ϕstable(D).

Let us summarize what we have done so far. First, we have defined a static
logic to talk about features of agents in a social network structure. Then, we
have defined the set of transformations of the distribution of those features
which are locally definable in terms of preconditions and postconditions within
our (restricted) language. Moreover, we have shown that our language can
capture some dynamic properties of network models such as stability. In a
nutshell, we have presented a logic able to describe the type of states of social
networks and the type of change we wanted to capture. In the next section, we
will consider what kind of reasoning about those networks is supported by our
logic, by giving a complete proof-system for it.

3. Axiomatizations

Now that we have seen what can be modeled within our framework, let us
see how we can use our logic to reason about the behavior of networks. In
this section, we will provide sound and complete Hilbert-style proof systems
for the logics of Section 2. The axiomatization we provide for the static logic
SSNL follows that of [17, 16] with a few modifications, while the axiomatization
we provide for the dynamic logic DSNL expands that of the static logic with
“reduction axioms” – a standard technique of Dynamic Epistemic Logic [6].

We will start by giving the Hilbert-style axiomatization of SSNL, however,
before this we need to fix some standard terminology for Hilbert-style proof
systems: A proof of ϕ is a finite sequence of formulas ending with ϕ such
that every formula in the sequence is either an axiom or follows from previous
formulas in the sequence using one of the proof rules. We denote this by ⊢ ϕ.
We use ⊢S for provable in the proof-system for SSNL and ⊢D for provable in
the proof-system for DSNL. In the following, X will thus stand for either S or

7Another way of expressing that a network model is stable would be to follow the line of
[11]. If VL = r is true of some agent and the network is stable, this means that none of the
preconditions ϕ ∈ Φ of D for which post(ϕ) would change the value of Vl can be satisfied
at the agent. Then, for every feature we can write the conjunction of the negation of all
preconditions that would change this feature. Finally, we can take the disjunction over all
possible features and thereby obtain a formula for a network being stable. This, of course,
would result in a much more complex formula, however, it would avoid the explicit use of the
[D] modality.

11

Axioms:

All substitution instances of propositional tautologies
∧n

l=1

(
∨

r∈Rl
Vl=r

)

Char.Prop.1
∧n

l=1

∧

r∈Rl

(

Vl=r →
∧

s∈Rl\{r}
¬Vl=s

)

Char.Prop.2

X(ϕ → ψ) → (Xϕ → Xψ)1 KX

@i(ϕ → ψ) → (@iϕ→ @iψ) K@

@iϕ ↔ ¬@i¬ϕ Selfdual@
@ii Ref@
@i@jϕ ↔ @jϕ Agree

i→ (ϕ ↔ @iϕ) Introduction

〈X〉@iϕ → @iϕ
1 Back

(@i〈X〉j ∧@jϕ) → @i〈X〉ϕ1 Bridge

〈U〉i GM

Rules:

From ϕ and ϕ→ ψ, infer ψ Modus ponens
From ϕ, infer Xϕ1 Necessitation of X

From ϕ, infer @iϕ Necessitation of @

From @iϕ, where i does not occur in ϕ, infer ϕ Name

From (@i〈X〉j ∧@jϕ) → ψ, where i 6= j and j
does not occur in ϕ or ψ, infer @i〈X〉ϕ → ψ1 Paste

1 Here X denotes either F or U .

Figure 1: The Hilbert-style proof system of SSNL

D. For a set of formulas Γ, Γ ⊢X ϕ holds if there are ψ1, ..., ψn ∈ Γ such that
⊢X ψ1 ∧ ... ∧ ψn → ϕ. Given a set of formulas Σ, let X + Σ denote the logic
obtained by adding all the formulas in Σ as axioms. That ϕ is provable in the
logic X + Σ will then be denoted by ⊢X+Σ ϕ. A set of formulas Γ is said to be
X + Σ-inconsistent if Γ ⊢X+Σ ⊥, and X + Σ-consistent otherwise. A formula ϕ
is pure if it does not contain any feature propositions. A set of formulas Σ is
called substitution-closed if it is closed under uniform substitution of nominals
by nominals.

3.1. Complete axiomatization of SSNL

The Hilbert-style axiomatization of SSNL is shown in Figure 1. As previously
mentioned, the axiomatization in fairly standard in the hybrid logic literature
except for the axioms Char.Prop.1 and Char.Prop.2. While Char.Prop.1 ensures
every variable Vl is assigned at least one value, Char.Prop.2 ensures that no
variable Vl is assigned more than at most one value.

Soundness and completeness of this type of axiomatization are also standard
results in the hybrid logic literature (see [17, 16]). Thus, we will skip the proof
of these properties and only state the completeness theorem:

Theorem 1 (Completeness of SSNL). Let Σ be a substitution-closed set of pure
formulas. Every set of formulas that is SSNL + Σ-consistent is satisfiable in a
model whose underlying frame validates all the formulas in Σ.

12

We will briefly describe how this axiomatization can be extended to par-
ticular classes of network models. In particular, the completeness with pure
formulas in Theorem 1 allows us to restrict our logic to certain classes of net-
works. For instance, we might want to restrict ourselves to networks where
the relation ≍ is symmetric, corresponding to undirected networks, or networks
where ≍ is irreflexive, i.e. no agent is connected to themselves. Now, it is a
well-known fact [20] that symmetry can be defined by

i→ F 〈F 〉i

and that irreflexivity can be defined by

i→ ¬〈F 〉i.

Thus, adding all substitution instances of the above formulas allows us to derive
complete axiomatizations of the logic of symmetric network models as well as
the logic of irreflexive network models (or the logic of both properties). Note
that, the fact we are using a hybrid logic is essential here as irreflexivity cannot
be defined in basic modal logic [20].

3.2. Complete axiomatization of DSNL

We now move on to give a complete axiomatization of the full dynamic
logic DSNL. The axiomatization is shown in Figure 2. The new axioms are
referred to as reduction axioms. In essence, these reduction axioms allow us to
reduce all talk about dynamic properties to talk about static properties of the
network models. Moreover, the reduction axioms give us a better understanding
of the dynamics transformations. For instance, the intuition behind the first
reduction axiom Red.Ax.Prop. is that if the variable Vl is assigned the value r
after the dynamic transformation D then it can only be the case if before the
transformation either; i) one of the post-conditions of D that specify a change
resulting in Vl = r, is satisfied, or ii) no precondition of D that specify a change
to the variable Vl is satisfied and Vl = r is already true.

The intuition behind the reduction axiom Red.Ax.Nom. is simply that dy-
namic transformations do not change the names of agents. The reduction ax-
iom Red.Ax.∧ says that dynamic transformations commutes with conjunction,
while the reduction axiom Red.Ax.¬ says that dynamic transformations also
commutes with negation. That negation commutes with a dynamic modality
might seem a bit surprising to readers familiar with public announcement logic
or traditional dynamic epistemic logic, however, as dynamic transformations
can always be executed (as discussed after Definition 9), it is not the case that
ϕ is true after a dynamic transformation D if, and only, if ¬ϕ is true after the
dynamic transformation D. The reduction axioms Red.Ax.@, Red.Ax.F , and
Red.Ax.U further state that the modalities @i, F , and U also commute with
dynamic transformations. The fact that dynamic transformation modalities
commute with the other modalities highlight the fact that dynamic transforma-
tions of network models can be reduced to local changes at each agent in the

13

Axioms:

All axioms for SSNL of Figure 1

[D]Vl=r ↔
(
∨

ϕ∈Φ, post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
)

Red.Ax.Prop.

[D]i↔ i Red.Ax.Nom.

[D](ϕ ∧ ψ) ↔ [D]ϕ ∧ [D]ψ Red.Ax.∧

[D]¬ϕ↔ ¬[D]ϕ Red.Ax.¬

[D]@iϕ ↔ @i[D]ϕ Red.Ax.@

[D]Fϕ↔ F [D]ϕ Red.Ax.F

[D]Uϕ↔ U [D]ϕ Red.Ax.U

[D][D′]ϕ↔ [(D;D′)]ϕ Red.Ax.DD

Rules:

All the rules for SSNL of Figure 1

For all dynamic transformations D,D′
∈ DT.

Figure 2: The Hilbert-style proof system of DSNL

network models. As such, the reduction axioms provide new insights about the
behavior of dynamic transformations. All the intuitions about the reduction
axioms are further spelled out in the proof of Lemma 15.

The way we will show completeness of this proof system is the usual way in
Dynamic Epistemic Logic, namely by providing a truth-preserving translation
from DSNL into SSNL. Before this, however, we need to define the composition
of two dynamic transformations as used in the last reduction axiom of Figure 2.8

Definition 13 (Composition of dynamic transformations). Given two dynamic
transformations D = (Φ, post) and D′ = (Φ′, post′), the composition (D;D′) =
(Φ′′, post′′) is such that

Φ′′ = {ϕ ∧ [D]ψ | ϕ ∈ Φ, ψ ∈ Φ′} ∪ {ϕ ∧ [D]
(

∧

ψ∈Φ′

¬ψ
)

| ϕ ∈ Φ}

∪ {
(

∧

ϕ∈Φ

¬ϕ
)

∧ [D]ψ | ψ ∈ Φ′},

8At first sight the last reduction axiom Red.Ax.DD might seem superfluous. However,
as we define our translation from DSNL to SSNL “outside-in” on formulas, we need this
reduction axiom for composition. If one defines the translation “inside-out” on formulas
one would instead need “replacement of equivalents”. Though, “replacement of equivalents”
cannot be derived from the other axioms in standard axiomatizations of public announcement
logic and we suspect it cannot be here either. For an excellent discussion of these subtle issues
concerning axiomatizations of dynamic epistemic logics see [21].

14

and post′′ is such that

post′′(ϕ ∧ [D]ψ)(l) = post′(ψ)(l) , if l ∈ dom(post′(ψ))

post′′(ϕ ∧ [D]ψ)(l) = post(ϕ)(l) , if l ∈ dom(post(ϕ)) \ dom(post′(ψ))

post′′(ϕ ∧ [D]
(

∧

ψ∈Φ′

¬ψ
)

)(l) = post(ϕ)(l) , if l ∈ dom(post(ϕ))

post′′(
(

∧

ϕ∈Φ

¬ϕ
)

∧ [D]ψ)(l) = post′(ψ)(l) , if l ∈ dom(post′(ψ)).

Note that this definition is well-defined as Φ′′ will consist of pairwise unsat-
isfiable formulas. Moreover, while this definition might seem a bit complicated,
this is only due to the fact that we have to take into account the following three
cases for a given agent:

(i) One of the formulas in Φ is satisfied at the agent and afterwards the agent
satisfies one of the formulas in Φ′

(ii) One of the formulas in Φ is satisfied at the agent, but after the dynamic
transformation D the agent does not satisfy any formula in Φ′

(iii) None of the formulas in Φ is satisfied at an agent, but after the dynamic
transformation D the agent does satisfy one of the formula in Φ′

These three cases give rise to the three sets in the definition of Φ′′. Moreover,
these three cases give rise to different definitions of post′′. In the case of (i), there
are three additional sub-cases according to whether a) the partial assignment
post′(ψ) specifies a change of a feature, or b) post′(ψ) does not specify a change
of a feature, but post(ϕ) does, or c) neither a) nor b) is the case. The cases
a) and b) are directly taken care of in the definition of post′′, whereas c) is
indirectly taken care of by the fact that post′′ might be partial assignment.

For composition of dynamic transformations we have the following useful
lemma, which is proven in Appendix A:

Lemma 14. For every network model M and any two dynamic transformations
D and D′ we that:

(MD)D
′

= M(D;D′) (3)

Now, to prove completeness we first need soundness of the reduction axioms
(which, of course, also gives us soundness of the proof system). Soundness of
the reduction axioms is ensured by the following lemma:

15

Lemma 15. For all models M = (A,≍, g, ν) and all a ∈ A, the following hold:

M, a |= [D]Vl=r iff (4)

M, a |=
(

∨

ϕ∈Φ, post(ϕ)(l)=r

ϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))

ϕ) ∧ Vl=r
)

M, a |= [D]i iff M, a |= i (5)

M, a |= [D]¬ϕ iff M, a |= ¬[D]ϕ (6)

M, a |= [D](ϕ ∧ ψ) iff M, a |= [D]ϕ ∧ [D]ψ (7)

M, a |= [D]@iϕ iff M, a |= @i[D]ϕ (8)

M, a |= [D]Fϕ iff M, a |= F [D]ϕ (9)

M, a |= [D]Uϕ iff M, a |= U [D]ϕ (10)

M, a |= [D][D′]ϕ iff M, a |= [(D;D′)]ϕ (11)

Proof. We only provide the proof of (4). The rest of the cases can be found in
Appendix A. Let MD be (A,≍, g, ν′), where ν′ is defined as in (1). Then we
have the following equivalences:

M, a |= [D]Vl = r iff MD, a |= Vl = r

iff ν′(a)(l) = r.

Note that, ν′(a)(l) = r is the case if, and only if, either there is a ϕ ∈ Φ such that
M, a |= ϕ and post(ϕ)(l) = r, or there is no such ϕ, but ν(a)(l) = r. Now, the
first disjunct of this disjunction is equivalent to M, a |=

(
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

while the second is equivalent to M, a |=
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl = r
)

.
Hence,

ν′(a)(l) = r iff

M, a |=
(
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
)

,

and (4) has been proven.

The soundness of the axiomatization of DSNL follows from the soundness of
the axiomatization of SSNL together with Lemma 15. To show completeness we
first define a translation t from LDSN into LSSN . The definition of t : LDSN →
LSSN is shown in Figure 3.

Note that the translation t is not defined inductively on the usual notion
of complexity of a formula. Therefore we cannot prove results regarding t by
induction on this complexity. However, the complexity of the formula imme-
diately succeeding a dynamic transformation decreases trough the translation,
and this we can use. A new complexity measure c can be defined such that c
decreases for every step of the translation. The definition of the new complexity

16

t(Vl = r) = Vl = r

t([D]Vl = r) = t(
(
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
)

)

t(i) = i t([D]i) = t(i)

t(¬ϕ) = ¬t(ϕ) t([D]¬ϕ) = t(¬[D]ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ) t([D](ϕ ∧ ψ)) = t([D]ϕ ∧ [D]ψ)

t(✷ϕ) = ✷t(ϕ)1 t([D]✷ϕ) = t(✷[D]ϕ) 1

t([D][D′]ϕ) = t([(D;D′)]ϕ)

1 Here ✷ is either F , @i, or U .

Figure 3: The translation t : LDSN → LSSN .

measure looks as follows:

Definition 16 (New complexity measure c). Let the new complexity measure
c : LDSN ∪ DT → N, be defined as follows:

c(Vl = r) = 1

c(i) = 1

c(¬ϕ) = 1 + c(ϕ)

c(✷ϕ) = 1 + c(ϕ)

c(ϕ ∧ ψ) = 1 +max(c(ϕ), c(ψ))

c([D]ϕ) = (3 · |Φ|+ 3 + c(D)) · c(ϕ)

c(D) = max{c(ψ) | ψ ∈ Φ}

where ✷ is “@i”, “F”, or “U”, and D = (Φ, post).

For this new complexity measure we can show the following useful result,
namely that the translation of a dynamic formula can be reduced to the trans-
lation of a less complex formula:

Lemma 17. For all i ∈ NOM, all Vl = r ∈ FP, all ϕ, ψ ∈ LDSN , and all
D,D′ ∈ DT the following are true:

1. c([D]i) > c(i)

2. c([D]Vl = r) > c
((
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
))

3. c([D]¬ϕ) > c(¬[D]ϕ)

4. c([D]✷ϕ) > c(✷[D]ϕ)

5. c([D](ϕ ∧ ψ)) > c([D]ϕ ∧ [D]ψ)

6. c([D][D′]ϕ) > c([D;D′]ϕ)

The proof of this lemma is quite cumbersome and involves tedious computa-
tion, thus, we have included it in Appendix A. However, using this lemma and
the new complexity measure allow us to prove that every formula of the logic
DSNL is provably equivalent to its translation in SSNL:

17

Lemma 18. For all LDSN formulas ϕ,

⊢D ϕ↔ t(ϕ) (12)

Proof. The proof goes by induction on the new c-complexity. For c(ϕ) = 1, ϕ
is either of the form Vl = r or of the form i. In both cases ϕ = t(ϕ) and (12) is
trivially satisfied. Now suppose that (12) holds for all ϕ with c(ϕ) ≤ n. Then,
we need to prove that (12) holds for all ϕ with c(ϕ) = n+1. Thus, assume that
ϕ is a formula such that c(ϕ) = n+ 1. We need to distinguish 4 cases:

i) ϕ is of the form ¬ψ. Then, by Def. 16, c(ψ) = n, and by induction
hypothesis, ⊢D ψ ↔ t(ψ). By propositional logic, ⊢D ¬ψ ↔ ¬t(ψ) and
given that t(¬ψ) = ¬t(ψ), it follows that ⊢D ¬ψ ↔ t(¬ψ).

ii) ϕ is of the form ✷ψ, with ✷ as in Def. 16, by which c(ψ) = n. By
induction hypothesis, ⊢D ψ ↔ t(ψ). By necessitation of ✷, K✷ rule and
propositional logic, ⊢D ✷ψ ↔ ✷t(ψ). Since t(✷ψ) = ✷t(ψ), it follows that
⊢D ✷ψ ↔ t(✷ψ).

iii) ϕ is of the form ψ1 ∧ ψ2. This is very similar to the case ii).

iv) ϕ is of the form [D]ψ. We need to check the following sub-cases, corre-
sponding to the 6 points of Lemma 17:

1. ϕ is of the form [D]i. By Lemma 17.1 and induction hypothesis,
⊢D i↔ t(i). By Red.Ax.Nom and the fact that t(i) = t([D]i),
⊢D [D]i ↔ t([D]i).

2. ϕ is of the form [D]Vl = r. For readability, let us denote
(
∨

ϕ∈Φ,post(ϕ)(l)=r ϕ)∨ (¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl = r) by χ. By

Lemma 17.2 and induction hypothesis ⊢D χ↔ t(χ). By Red.Ax.prop
and propositional logic, ⊢D [D]Vl = r ↔ t(χ). Since t([D]Vl = r) =
t(χ), we conclude that ⊢D [D]Vl = r ↔ t([D]Vl = r).

3. ϕ is of the form [D]¬ψ. By Lemma 17.3 and induction hypothesis
⊢D ¬[D]ψ ↔ t(¬[D]ψ). By Red.Ax¬ and propositional logic,
⊢D [D]¬ψ ↔ t(¬[D]ψ) and since t([D]¬ψ) = t(¬[D]ψ), we can con-
clude that ⊢D [D]¬ψ ↔ t([D]¬ψ).

4. ϕ is of the form [D]✷ψ. Similar to the case 3. just using Lemma 17.4
and the reduction axiom Red.Ax.✷ instead.

5. ϕ is of the form [D](ψ1 ∧ ψ2). Similar to the case 3. just using
Lemma 17.5 and and the reduction axiom Red.Ax.∧ instead.

6. ϕ is of the form [D][D′]ψ. Similar to the case 3. just using Lemma 17.6
and and the reduction axiom Red.Ax.DD instead.

From lemma 18 and the soundness of the proof system, it follows directly
that all formulas are also semantically equivalent to their translation:

18

Lemma 19. For all LDSN formulas ϕ, all models M = (A,≍, g, ν), and all
a ∈ A,

M, a |= ϕ ⇐⇒ M, a |= t(ϕ)

Note that, translating pure formulas from LDSN results in pure formulas in
LSSN . A general completeness result now follows:

Theorem 2 (Completeness for DSNL). Let Σ be a substitution-closed set of
pure LDSN -formulas. Every set of LDSN -formulas that is D + Σ-consistent is
satisfiable in a model whose underlying frame validates all the formulas in Σ.

Proof. Assume that Γ is D + Σ-consistent. For a set of LDSN -formulas X , let
t(X) := {t(ϕ) | ϕ ∈ X}. Then t(Γ) is S+ t(Σ)-consistent, for assume otherwise:
Then there are ϕ1, ..., ϕn ∈ Γ such that ⊢S+t(Σ) t(ϕ1 ∧ ... ∧ ϕn) → ⊥. But then
also ⊢D+Σ t(ϕ1∧ ...∧ϕn) → ⊥ (using lemma 18 on formulas in Σ) and by lemma
18, ⊢D+Σ ϕ1∧ ...∧ϕn → ⊥, which is a contradiction to Γ being D+Σ-consistent.
Now by Theorem 1, t(Γ) is satisfiable in a model M (which is also a model for
LDSN), and by lemma 19 it follows that Γ is also satisfiable in M.

Finally, for all pure formulas ϕ ∈ Σ, t(ϕ) is a pure formula. Thus by Theo-
rem 1 the underlying frame of M validates all of the formulas t(ϕ) ∈ t(Σ). But
by lemma 19 the underlying frame then also validates all ϕ ∈ Σ.

4. Terminating tableau systems

In this section we will add to the meta-theory of our logics by designing
terminating tableau systems for them. Moreover, the tableau systems provide
decision procedures for the logics which in turn let us automatically verify gen-
eral properties of social network dynamics expressible in our logic. We will start
by providing a tableau system for the static logic SSNL in Section 4.1 before
moving on to a tableau system for the dynamic logic DSNL.

4.1. A tableau system for SSNL

Let us start by providing the tableau rules of the tableau system for SSNL

and explain how tableau proofs work in general. The approach is highly inspired
by the work of Bolander and Blackburn [18, 22]. In fact, the tableau system is
identical to theirs with the exception of rules to deal with our special feature
propositions. The proof of termination, soundness, and completeness are also
more or less identical to the proofs in [18] and thus, they are left out of this
section. However, to make the paper self-contained, as the proofs are reused
in the next section where we consider the full dynamic logic DSNL, we have
included all the proofs in Appendix B.

By a “tableau” we will mean a downward branching tree where each note is
labeled by formulas. The top note will be referred to as the “root” and the final
bottom notes will be referred to as “leaves”. A branch is a finite path from the
root to a leave. Tableaux are expanded using tableau rules. The rules apply to
branches and specify how a given branch can be expanded.

19

σ¬i
(¬)

1

τi

σ¬¬ϕ
(¬¬)

σϕ

σϕ ∧ ψ
(∧)

σϕ
σψ

σ¬(ϕ ∧ ψ)
(¬∧)

σ¬ϕ σ¬ψ

σ@iϕ
(@)

1

τi
τϕ

σ¬@iϕ
(¬@)

1

τi
τ¬ϕ

σ¬Uϕ
(¬U)

1

τ¬ϕ

σUϕ
(U)

2

τϕ

σ¬Fϕ
(¬F)1

σ ≍ τ
τ¬ϕ

σFϕ σ ≍ τ
(F)

τϕ

σϕ σi τi
(Id)

τϕ

(prop.cut)
3

σVl = r1 σVl = r2 . . . σVl = rkl

σϕ σ¬ϕ
(close1)

X

σVl = r σVl = r′

(close2)
4

X

1 The prefix τ is new to the branch. 2 The prefix τ already occurs on the branch.
3 Where Vl and σ already occur on the branch, and Rl = {r1, r2, . . . , rkl}.
4 Where r 6= r′.

Figure 4: Tableau rules for the logic SSNL.

We assume a new countable infinite set of prefixes Pref. We will normally
denote elements of Pref by σ, τ, ρ... and so on. The formulas labeling notes in
the tableaux will be prefixed formulas of the form σϕ, for a σ ∈ Pref and ϕ a
LSSN -formula, or accessibility formulas of the form σ ≍ τ for σ, τ ∈ Pref.9

The tableau rules for the tableau system for SSNL are given in Figure 4. The
rules are to be read in the following way: If a formula above the horizontal line
occurs on a branch, then the branch can be expanded with a note(s) labeled by
the formula(s) below the line. If more than one formula occur above the line,
all these formulas have to occur on a branch before the rule can be applied.
If several formulas occurs below the horizontal line separated by vertical lines,
this means that the branch is split into several new branches each expanded
with a note labeled by the given formula. Ignoring the accessibility formulas
and formulas of the form σi, the formula above the horizontal line in a rule will
be called the premise of the rule and the formula(s) below the horizontal line
the conclusion(s) of the rule.

9The symbol “≍” was also used to represent the network structure in network models,
but here we reuse it for accessibility formulas. Since the accessibility formulas are intended
to specify the network structure of the model constructed in the completeness proof (see
Appendix B) this reuse seems natural. Moreover, there will be no confusion as to when we
are talking about neighbor agents in a network model or about accessibility formulas.

20

The rules (¬F), (@), (¬@) and (¬U) are called prefix generation rules. The
construction of a tableau is done in the usual way with the constrains that no
prefix generation rule is applied twice to the same premise on the same branch
and a formula is never added to the branch if it already occurs on it. If one of
the rules (close1) or (close2) has been applied to a branch, no other rules can
be applied to that branch. A branch of a tableau is called closed if one of the
rules (close1) or (close2) have been applied to it, otherwise the branch is called
open. A tableau is called closed if all its branches are closed, otherwise it is
called open. A tableau proof of a formula ϕ is a closed tableau with σ¬ϕ as the
root formula (for some prefix σ).

Tableaux can been seen as non-deterministic searches for models that satisfy
the root formula. Each branch represents such a possible model. In this way, the
intuition behind the prefixes is that they represent possible worlds in the models.
Thus, a prefixed formula specifies what is “required” to be true in the models we
are looking for and the accessibility formulas specify which accessibility relation
has to hold between the worlds in the models.

To make the tableau system terminate, we add a loop-check mechanism as
the one used in [18]. To define this mechanism we first need some definitions:

Definition 20. For a branch Θ and a prefix σ occurring on Θ, we define the
set:

TΘ(σ) := {ϕ | σϕ occurs on Θ} .

Definition 21 (Urfather). Given a branch Θ, the urfather of σ, written uΘ(σ),
is the earliest introduced prefix τ on Θ such that TΘ(σ) ⊆ TΘ(τ). A prefix σ is
an urfather on Θ if there is a prefix τ on Θ such that σ = uΘ(τ).

Now, in addition to the already mentioned constrains for constructing tableaux,
we add the following loop-check constraint:

(Loop-check) A prefix generation rule is only allowed to be applied
to a formula σϕ on a branch if σ is a urfather on that branch.

With the addition of this constrain we can prove the following theorem:

Proposition 1. Any tableau constructed using the given tableau system for
SSNL is finite.

Now, given a formula ϕ we can start a tableau for σ¬ϕ and keep applying
rules until no more rules are applicable. This process is ensured to stop after
finitely many steps according to Proposition 1. The resulting finite tableau will
either be closed, in which case completeness will ensure that ϕ is valid, or the
tableau will be open, in which case the model construction of the completeness
proof (see Appendix B) provides us with a counter-model to the validity of ϕ.
Thus, we have a decision procedure for the logic SSNL, and it follows that:

Theorem 3 (Decidability of SSNL). The logic SSNL is decidable.

The completeness of the tableau system is, as previously mentioned, shown
in Appendix B. We here state the completeness theorem explicitly though:

21

Theorem 4 (Completeness for SSNL). If ϕ is valid in SSNL, then there is a
tableau proof of ϕ.

An interesting feature of the completeness proofs of tableau systems, as the
one presented in Appendix B, is that they provide a way of constructing models
satisfying particular formulas. This technique can be used for more than just
showing completeness as we be discussed in Section 5.

4.2. A tableau system for DSNL

We extend the tableau system of Section 4.1 to a tableau system for DSNL.
Moreover, we show that this extended tableau system is terminating, sound,
and complete as well. The approach in this section is highly inspired by the
work of Hansen [19]. Again, we will start by providing the tableau rules, then
we will show that the tableau system is terminating before, finally, moving on
to the issues of soundness and completeness.

Before introducing the tableau system, it should be remarked that due to
the translation of DSNL into SSNL, and the sound, complete, and terminating
tableau system for SSNL just given, we could derive a decision procedure for
DSNL by simply first translating any LDSN formula we want to check for validity
into LSSN and then use the decision procedure for SSNL just specified. However,
as argued for dynamic epistemic logics in [19], when searching for actual tableau
proof it can be an advantage to have a direct tableau system for DSNL instead
of always going through the translation into SSNL.

Before giving the tableau rules for DSNL, we define a “one step translation”
of LDSN formulas of the form [D]ϕ.

Definition 22. Define T : {[D]ϕ | D ∈ DT, ϕ ∈ LDSN } → LDSN , by:

T ([D]Vl = r) =
(

∨

ϕ∈Φ, post(ϕ)(l)=r

ϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))

ϕ) ∧ Vl=r
)

T ([D]i) = i

T ([D](ϕ ∧ ψ)) = [D]ϕ ∧ [D]ψ

T ([D]¬ϕ) = ¬[D]ϕ

T ([D]@iϕ) = @i[D]ϕ

T ([D]Fϕ) = F [D]ϕ

T ([D]Uϕ) = U [D]ϕ

T ([D][D′]ϕ) = [D;D′]ϕ

The rules for the tableau system for DSNL are shown in Figure 5. What we
have done is essentially translate the reduction axioms of Figure 2 into tableau
rules and add them to the tableau rules for SSNL. In this way, we are translating
formulas “on-the-fly” and only when needed. As mentioned, this is inspired by
[19].

We will put the same constraints on constructing tableaux as described in
Section 4.1, including the loop-check condition.

22

All the tableau rules for SSNL, from Figure 4, plus the following rules:

σ[D]ϕ
(D)

σT ([D]ϕ)

σ¬[D]ϕ
(¬D)

σ¬T ([D]ϕ)

Figure 5: Tableau rules for the logic DSNL.

We will now consider termination. The termination proof will follow the
structure of the proof of termination for the tableau system for SSNL, which
was sketched in Section 4.1 and given in details in Appendix B. However, we
will need a new notion of what a subformula is to ensure that all formulas
occurring in a tableau are subformulas of the root formula. The complexity
measure c, defined in Definition 16, plays an important role in this new notion
of subformula, which we thus name c-subformula:

Definition 23 (c-subformula). A formula ψ is said to be a c-subformula of a
formula ϕ if the following are satisfied:

• c(ψ) ≤ c(ϕ)

• Every nominal occurring in ψ also occurs in ϕ

With this new notion of c-subformulas, we can prove a couple of useful
lemmas:

Lemma 24. Assume that the set of nominals NOM is finite and let k ∈ N.
Then, there exist only finitely many district formulas ϕ with c(ϕ) ≤ k.

Proof. Assume that the set of nominals NOM is finite and let k ∈ N. Clearly,
only finitely many formulas ϕ without any dynamic transformation modality
and with c(ϕ) ≤ k can be constructed (since we only have finitely many feature
propositions and nominals). Denote this finite set A0. Then, only finitely many
dynamic transformations D = (Φ, post) such that Φ ⊆ A0 exist, as well. Now,
allowing these finitely many dynamic transformation modalities [D] to occur,
again, only finitely many formulas ϕ with c(ϕ) ≤ k can be constructed. Denote
this set of formulas by A1. These formulas can now be used to define a new
finite set of dynamics transformation D = (Φ, post) with Φ ⊆ A1. The recursive
definition of Am could easily continue this way and the sets Am will all remain
finite. Note that due to the requirement c(ϕ) ≤ k, at some point we will not be
able to construct any new dynamics transformation satisfying the requirement
and thus, for some m ∈ N, Am = Am+1 = Am+2 Hence, the set

⋃

m∈N

Am

is a finite union of finite sets and is thus itself finite. Moreover, this set contains
all formulas ϕ with c(ϕ) ≤ k.

23

Lemma 25. For every LDSN formula ϕ, the set of all c-subformulas of ϕ is
finite.

Proof. Let ϕ be a LDSN formula. We might have infinitely many nominals in
our language, but by the second requirement in Definition 23 there can only be
finitely many of them occurring in the c-subformulas of ϕ. Hence, by Lemma 24
we can only construct finitely many formulas ψ with these nominals satisfying
c(ψ) ≤ c(ϕ). Thus, the set of c-subformulas of ϕ must be finite.

Lemma 26. For every tableau rule, except the rules (prop.cut), (close1) and
(close2), the c-complexity of its conclusion(s) is less than (or equal to) the c-
complexity of its premise.

Proof. The proof goes by inspection of all the tableau rules in Figure 4 and
Figure 5. For the rules (D) and (¬D) note that it follows by similar reasoning
as in the proof of Lemma 17.

We can now prove the desired subformula property:

Lemma 27 (c-subformula property). Let T be a tableau with σ0ϕ0 as the root
formula. Then, for every prefixed formula σϕ on T , ϕ is a c-subformula of ϕ0.

Proof. The proof goes by induction on the number of rule applications in T .
Since no rule can introduce any new nominals, it is clear that all nominals
occurring on T must occur in the root formula ϕ0. Moreover, by Lemma 26, no
rule application can increase the c-complexity from the premise to a conclusion
except for the rules (prop.cut), (close1) and (close2). However, (close1) and
(close2) have no conclusions and any conclusion τψ of the (prop.cut) satisfies
c(ψ) = 1, which is less that or equal to c(ϕ0) since ϕ0 is a formula. For these
reasons, it follows that a conclusion of any rule application is a c-subformula
of ϕ0 provided that the premise is a c-subformula of ϕ0. Thus, it follows by
induction on the number of rule applications in T that for all formulas σϕ on
T , ϕ is a c-subformula of ϕ0.

This lemma together with Lemma 25 directly implies the following useful
lemma:

Lemma 28. Let Θ be a branch of a tableau and let σ be a prefix occurring on
Θ. Then the set TΘ(σ) is finite.

Having ensured Lemma 28, we can now prove (see Appendix B) Lemma 34
for the tableau system of DSNL, in exactly the same way. However, first we
need Definition 33:

Definition 33. Let Θ be a branch. If a prefix τ has been introduced to the
branch using a prefix generation rule on a formula of the form σϕ we say that
τ is generated by σ and write σ ≺Θ τ .

24

Lemma 34. Let Θ be a tableau branch (constructed using the tableau system
for DSNL). Then Θ is infinite if and only if there exists an infinite chain of
prefixes:

σ1 ≺Θ σ2 ≺Θ σ3 ≺Θ

Finally, we prove a proposition for DSNL similar to Proposition 1.

Proposition 2. Any tableau constructed using the given tableau system for
DSNL is finite.

Proof. With Lemma 34, Lemma 25, and Lemma 27 ensured for the tableau
system of DSNL, we can straight-out adopt the proof of Proposition 1 from
Appendix B, by replacing the notion of “quasi-subformula” by our new notion
of c-subformula.

Now, just as in Section 4.1, we obtain decidability:

Theorem 5 (Decidability of DSNL). The logic DSNL is decidable.

Let us move on to soundness and completeness of the tableau system for
DSNL. Soundness follows from the soundness of the tableau system for SSNL

(shortly described in Appendix B) together with the fact that the new rules (D)
and (¬D) preserve satisfiability, which again follows from Lemma 15.

For completeness, we adopt the approach used to show completeness of the
tableau system for SSNL (in Appendix B). The canonical model is constructed
in the exact same way. We just need to add two extra cases in the proof of the
truth lemma (Lemma 36) for “ϕ = [D]ψ” and “ϕ = ¬[D]ψ” and do the proof
by induction on the new complexity measure c.

Expanded proof of Lemma 36. The case ϕ = [D]ψ. Assume that σ[D]ψ occurs
on Θ. Then by closure under the (D) rule, σT ([D]ψ) also occurs on Θ. However,
c(T ([D]ψ)) < c([D]ψ) by Lemma 17 and it follows by induction that MΘ, σ |=
T ([D]ψ). But then, by Lemma 15 it further follows that MΘ, σ |= [D]ψ.

The case ϕ = ¬[D]ψ is analogous.

With the truth lemma in place, completeness can now be ensured for the
tableau system for DSNL:

Theorem 6 (Completeness for DSNL). If ϕ is valid in DSNL, then there is a
tableau proof of ϕ.

Proof. Just as the proof of Theorem 4 (see Appendix B).

5. Examples of Applications

In this section, we will provide a few examples of the kind of modeling and
reasoning about changes of distribution of features within social networks which
DSNL allows for.

25

5.1. Pluralistic ignorance

Pluralistic ignorance [23] is a phenomenon from social psychology which has
been defined in various ways (see in [24, 25, 26, 23, 27]). We will stick to the
definition from [27]: a collective discrepancy between the agents’ private attitudes
and their public behavior, a situation where all the individuals of a group have
the same private attitude towards some proposition (say a belief in it), but
publicly “display” a conflicting attitude towards it (say a belief in the negation
of it).

For instance, consider a group of students. After a difficult lecture which
none of the students actually understood, it may happen that none of them
asks any question even though the teacher explicitly requested them to do so in
case they did not understand the material. Even though none of the students
actually understood the lecture, each of them believes that everybody else did.
In addition to this simple classroom situation, real-life examples of pluralistic
ignorance in the social and psychological literature also include drinking habits
among college students, attitudes towards norms of racial segregation, and many
more [28, 29, 30, 31].

In [12], we have studied pluralistic ignorance from a dynamic perspective and
we have discussed how the social network structure constrains the dynamics
of its dissolution. Our starting point was to note that such a phenomenon
could not be modeled without distinguishing two properties of agents, their
private belief state, which we call “inner belief” and their publicly observable
behavior, which we call “expressed belief”. As such, the phenomenon could not
be captured by the “one property” framework for modeling belief change under
conformity pressure offered by [11]. At the time, modeling pluralistic ignorance
was our main motivation for designing a framework allowing to model the change
of several properties of agents, and hence for adopting the “multi-property”
approach which we continue pursuing in this paper. Our motivation here is much
more general than the particular phenomenon of pluralistic ignorance, since
we now consider any set of features of agents changing under local influence.
However, we briefly recall below how to model the case of pluralistic ignorance,
as an example of application of our general framework to a well-known dynamic
social phenomenon.

Let two variables VI and VE correspond to the properties of “inner belief”
(private mental state) and “expressed belief” (observable behavior), respectively.
Each variable takes values from the same set: RI = RE = {b, n, u}, where b
represents belief in something (considered as given), n represents the belief
in its negation and u represents the lack of belief in it and in its negation
(“undecidedness”).

To model how a situation will evolve, we need to assume some notion of
social influence, that is, some dynamic transformation encoding how agents
will change their belief states depending on the ones of their neighbors. One
possibility, inspired from the (one-property) influence operator assumed in [11],
is to consider that an agent is “brave enough” to express her actual private
belief (i.e, VE = VI) at the next moment only when she has some “supporting”

26

friend, i.e., some friends expressing what she privately believes or when she has
no “conflicting” friends, i.e., no friend expressing a belief in the negation of what
she privately believes.

Moreover, for simplicity, and to reflect the intuition that influence affects, at
least in good part, the behavioral/visible/displayed side of agents, we consider
that only their behavior is affected by what they observe, not their private be-
lief state. What is important for us is that their behavior (what they display)
depends on asymmetrical information: on the one hand, on what they them-
selves privately believe and, on the other hand, on what their friends/neighbors
publicly express.

Let us define the corresponding dynamic transformation DE = (ΦE , postE):

ΦE = {(VI = b ∧ (〈F 〉VE = b ∨ [F]VE = u)) ∨ [F]VE = b,

(VI = n ∧ (〈F 〉VE = n ∨ [F]VE = u)) ∨ [F]VE = n,

VI = u ∧ ¬[F]VE = b ∧ ¬[F]VE = n}

postE
(

(VI = b ∧ (〈F 〉VE = b ∨ [F]VE = u)) ∨ [F]VE = b
)

(VE) = b

postE
(

(VI = n ∧ (〈F 〉VE = n ∨ [F]VE = u)) ∨ [F]VE = n
)

(VE) = n

postE
(

VI = u ∧ ¬[F]VE = b ∧ ¬[F]VE = n
)

(VE) = u

Consider now a situation of pluralistic ignorance, in the sense that everybody
privately believes something but expresses a belief in its negation. A model M
is in a state of pluralistic ignorance if it satisfies the following formula of our
language:

PIϕ := U(VI = b ∧ VE = n)

Now apply the transformationDE . Having another look at the preconditions
set ΦE , note that none of them is satisfied at any agent. Therefore, none of the
agents will change her behavior (her “expressed belief” state). In other words,
a model in a state of pluralistic ignorance is stable. This corresponds to the
intuition that pluralistic ignorance is a robust phenomenon: in the classroom
example, unless some student does not obey the notion of influence defined by
DE , no student will ask any question, and this no matter how long the teacher
waits.

Now assume a model M slightly different: a unique agent, let it be named
i, is expressing his private belief. Then the following is now satisfied in M and
we will say that the model is in a state of “unstable pluralistic ignorance”:

UPI := @i(VI = b ∧ VE = b) ∧ U
(

¬i→ (VI = b ∧ VB = n)
)

.

It is easy to see that this situation is not stable under the transformation
DE . For instance, considering the case of agent i itself: M, i � [F]VE = n and
therefore M, i � (VI = n ∧ (〈F 〉VE = n ∨ [F]VE = u)) ∨ [F]VE = n. Since we
know that postE

(

(VI = n ∧ (〈F 〉VE = n ∨ [F]VE = u)) ∨ [F]VE = n
)

(VE) = n,
agent i will change his expressed belief state to a state in conflict with his private

27

belief state, as a result of conformity pressure from all agents around him. But
what about i’s neighbors? Consider an arbitrary agent j such that M, i � 〈F 〉j.
Now M, j � VI = b ∧ 〈F 〉VE = b and therefore M, j � (VI = b ∧ (〈F 〉VE =
b ∨ [F]VE = u)) ∨ [F]VE = b. Since we know that postE

(

(VI = b ∧ (〈F 〉VE =

b∨ [F]VE = u))∨ [F]VE = b
)

(VE) = b, agent j will now have an expressed belief
state in agreement with his private state. And similarly for any neighbor of
the initiator i. Hence, agent i and his neighbors have switched their expressed
belief states after one application of the transformation. After one more step,
i’s friends’ friends will express their actual inner state, and then i’s friends’
friends’ friends, and so on. But then, by repeating the transformation n times,
all agents at distance less or equal to n from i will have changed their state
at least once. Will such a cascading effect always reach a stable model? We
have shown in [12] that this will depend on the network structure itself: if the
network graph does not contain any odd cycle path (that is, if the graph is not
two-colorable), then a (connected, symmetric and irreflexive) model in a state
of unstable pluralistic ignorance will always stabilize and it will stabilize in a
state where everybody expresses their actual private belief state, so pluralistic
ignorance will be entirely “dissolved” or reversed. This reflects the intuition
that pluralistic ignorance, in addition to being robust, is also fragile: one agent
expressing his actual private belief state might turn everybody else!10

5.2. Diffusion of microfinance

The fact that social network structures affect the adoption of new technolo-
gies has been well-documented for some time already. The classical example is
the diffusion of hybrid seed corn among Iowa farmers [32] (–additionally, see the
references in [33]). Still, [33] provides some new insights about how social struc-
tures affect the spread of microfinance loans in small Indian villages: detailed
data on various types of social ties and structures in 43 rural villages in Southern
India was collected before a microfinance institution entered the villages. Based
on information from the microfinance institution, [33] then compared the data
on social networks to the actual diffusion of microfinance loans in the villages.

It is argued in [33] that the diffusion of who is informed about the loaning
possibilities is different from the diffusion of who chooses to participate in the
microfinance loaning program. In the diffusion of microfinance, the most in-
teresting parameter is who chooses to participate in the microfinance program.
However, as shown by [33], this could not be estimated for individuals based on
the participation of their neighbors in the social network. Moreover, the people
who did not choose to participate in the microfinance program still passed on
information about the program and thus, the diffusion of who was informed
about the program did depend on whether an individual’s neighbor was already
informed (and chose to pass on the information). Hence, the two diffusion pro-

10For more detail about the discussion of the dissolution of pluralistic ignorance, a proof
of the claim of stabilization and an upper bound on such stabilization, we refer the reader to
[12].

28

cesses of information spreading and endorsement can come apart and as such the
typical “SI Model” described in our introduction is not sufficient to represent
such a dynamics.

The spread of microfinance loans is a good example of why we might need
two feature variables, one representing whether an individual is informed and
one representing whether she has chosen to participate in the loaning program.
The model presented in [33] is a probabilistic model and as such we cannot
completely capture it in our framework. Nevertheless, we can describe some
interesting variations. First, let us use two variables VI and VP , where VI will
keep track of who is informed about the microfinance program, and VP will
keep track of who has actually chosen to take part in the program. As value
set we will assume that RI = RP = {y, n} for “yes” and “no”, with the obvious
interpretation that an agent satisfies VI = y if she is informed about the program
and that she satisfies VP = n if she is not participating in the program.

One could imagine that an agent becomes informed about the microfinance
program as soon as one of her friends is either informed or has chosen to par-
ticipate. However, [33] estimated that people participating in the program were
much more likely to pass on information about it than non-participants. Still,
the non-participants’ passing on of the information could not be neglected ei-
ther. Thus, an alternative principle could be that an agent becomes informed
about the microfinance program if at least one of her friends is participating
or all of her friends are already informed. This suggests the following dynamic
transformation DI = (ΦI , postI) of the diffusion of information about the pro-
gram, where

ΦI = {〈F 〉VP = y ∨ FVI = y}

postI
(

〈F 〉VP = y ∨ FVI = y
)

(VI) = y.

Concerning the diffusion of participation, [33] claims that, in their data at
least, there is no endorsement effect and thus whether an agent chooses to
participate in the microfinance program does not solely depend on whether her
friends have chosen to participate. One could assume that participation depends
on other properties of each agent, for instance whether she needs a loan, whether
she has potential for using such a loan etc. Let us collect all such reasons into
one feature variable VO representing whether an agents is open/responsive to a
loan (assuming that RR = {y, n} as well). Another precondition for choosing
to participate in the micro-loan program is of course that the agent is actually
informed about it. Thus, the diffusion of participation might be modeled by a
dynamic transformation DP = (ΦP , postP), where

ΦP = {VI = y ∧ VO = y}

postP
(

VI = y ∧ VO = y
)

(VP) = y.

With this dynamics we can, for instance, show that if agent j is friend with i
and i participates in the program, then after one step of the dynamics DI , j

29

will be informed, in other words:

(@j〈F 〉i ∧@iVP = y) → [DI]@jVI = y.

A tableau proof of this formula is shown in Figure 6.

1. σ0¬
(

(@j〈F 〉i ∧@iVP = y) → [DI]@jVI = y
)

2. σ0@j〈F 〉i (¬¬) and (∧) on 1.

3. σ0@iVP = y (¬¬) and (∧) on 1.

4. σ0¬[DI]@jVI = y (¬¬) and (∧) on 1.

5. σ0¬@j [DI]VI = y (¬D) on 4.

6. σ1j (¬@) on 5.

7. σ1¬[DI]VI = y (¬@) on 5.

8. σ1¬
((

〈F 〉VP = y ∨ FVI = y
)

(¬D) on 7.

∨
(

¬(〈F 〉Vp = y ∨ FVI = y) ∧ VI = y
))

9. σ1¬(〈F 〉VP = y ∨ FVI = y) (¬¬) and (∧) on 8.

10. σ1¬
(

¬(〈F 〉VP = y ∨ FVI = y) ∧ VI = y
)

(¬¬) and (∧) on 8.

11. σ1¬〈F 〉VP = y (¬¬) and (∧) on 10.

12. σ1¬FVI = y (¬¬) and (∧) on 10.

13. σ2j (@) on 2.

14. σ2〈F 〉i (@) on 2.

15. σ2 ≍ σ3 (¬F) on 14.

16. σ3i (¬F) on 14.

17. σ4i (@) on 3.

18. σ4VP = y (@) on 3.

19. σ3VP = y (Id) on 18., 17. and 16.

20. σ2¬〈F 〉VP = y (Id) on 11., 6. and 13.

21. σ2F¬VP = y (¬¬) on 20.

22. σ3¬VP = y (F) on 21. and 15.

23. X (close1) on 19. and 22.

Figure 6: A tableau proof of (@j〈F 〉i ∧@iVP = y) → [DI]@jVI = y.

Following this, one can show that after an additional step if the dynamics
DP , j will participate in the program as well. One can also prove more complex
properties such as if there is a path of length three from i to j where all agents
on the path (including i and j), are open to participation in the program and if
i is initially informed, then after three steps of the dynamics, j is participating
in the program.

According to [33], participants in the microfinance program were seven times
more likely to pass on information about the program than non-participants,
while non-participants counted for a third of the passing on of information about
the program. This suggests that individuals were informed by non-participants

30

at a much higher rate than they would be if they needed all of their friends to be
informed first. It might be natural to assume that an agent gets informed when
say more than a third of her friends are informed. This kind of preconditions
based on thresholds are quite common in the models of network science. How-
ever, our current logic cannot capture this. In the next section we will shortly
discuss extensions of our framework to capture such thresholds preconditions
and other interesting traits.

6. Conclusion and further research

The main goal of the present paper was to offer a general framework to reason
about the locally determined dynamics of features distribution in social network
structures. We have given a complete axiomatization and a terminating tableau
system for this logic. Let us conclude by quickly describing the relation from
this work to other work and possible extensions of the framework to contribute
building the bridge between social network analysis and logic.

6.1. Related work

As mentioned in the introduction, our work is largely inspired by the two-
dimensional hybrid setting designed by Seligman et al. in [7, 8, 11]. In line with
this work, we use hybrid logic tools to describe the network structure explicitly
within the logic and the “friendship” modality F to quantify over network-
neighbors. However, instead of a two-dimensional framework, we have proposed
a less complex (but of course less expressive) logic, since we do not include
the possible worlds structure underlying the knowledge or belief states of the
agents. Nevertheless, we can model belief change exactly in the way discussed
by Seligman et al. in [11] within our simpler one-dimensional logic, since in [11]
belief is informally captured by the satisfaction of one out of three mutually
exclusive atomic propositions: an agent either believes that p, or believes that
¬p, or neither believes that p nor that ¬p. Thus, the account of belief change
given by [11] corresponds to a “one property, three values, one (repeated) specific
dynamic transformation” case of our framework. Our work generalizes this idea
of value-change to many properties, many values, and many possible ways of
locally defining the values-change. In this sense, our setting can be seen both
as a generalization and as a simplification of the framework of [11].

Note that another simplification of the very same two-dimensional hybrid
framework of the seminal [7] has been proposed by [9] already. However, while [9]
keeps the multi-agent possible worlds epistemic structure and let go of the social
network dimension, considering that this dimension can be captured by atomic
propositions, we make the very opposite design choice here: we let go of the
epistemically possible states dimension and keep only the hybrid social network
dimension, thus showing that the way belief or knowledge was treated by [7, 11]
can be formally encoded by some atomic propositions. By doing this, we gain in
generality: DSNL can represent any such change of repartition of features over
a structured group of agents, not exclusively a change of knowledge, belief, or

31

preferences. Of course, this simplification has a cost: we loose the possibility
of fully combining epistemic structures and network structures in a dynamic
logic. However, such an account of a properly two-dimensional hybrid dynamic
doxastic logic has also been defined both in [10] and partially in [13]. While [10]
models channel-based communication, [13] investigates how agents in a social
network structure have to communicate in order to merge their beliefs, in the
way defined by [34] for unstructured groups of agents.

While our work is motivated mainly by diffusion phenomena from social
network sciences, some conceptually relevant work was also motivated by com-
munication within structured groups of agents, using different tools: Dynamic
Epistemic Logic events restricted to communication channels [35], information
via interaction structures [36, 37], communication channels in Interpreted Sys-
tems [38], and communication channels in a combination of Interpreted Systems
and Dynamic Epistemic Logic [39].

6.2. Future Research

This paper is a first step towards showing how a simple modal logic could
be used to represent a large class of dynamic processes, such as diffusion, widely
studied in network science. However, our logic has limitations. There are several
possible extensions that will increase its usefulness for reasoning about even
larger classes of models from network science. We will briefly mention such
possible extensions, leaving the details for future work.

First of all, in line with [8], one could add the transitive closure operator F ∗

of the modality F , with the following semantics:

M, a |= F ∗ϕ iff for all b ∈ A; a ≍∗ b implies M, b |= ϕ,

where ≍∗ is the transitive closure of the relation ≍.11 This “community modal-
ity” quantifies over what [8] names an agent’s “community”, that is, the agent’s
friends, the agent’s friends’ friends, the agent’s friends’ friends’ friends, ... etc.
With such a modality one can quantify over all agents in a strongly connected
component and even express that a network is strongly connected [41]. We have
left out this modality in our current logic because it is not relevant to the main
ideas behind our logic. Moreover, it would complicate the axiomatization of
Section 3 and the tableau system of Section 4 considerably.

Occasionally, what is of interest is the limit behavior of diffusion processes
within social networks in the long run. To capture this, a second “transitive
closure” modality that we could add to our framework is the transitive closure
of the dynamic transformation 〈D〉, with the following semantics:

M, a |= 〈D∗〉ϕ iff there is a k ∈ N0 such that MkD, a |= ϕ.

In Section 2, we discussed how to describe stability, but our language as such

11Such transitive closure modalities are also fairly standard in Propositional Dynamic Logic
(PDL) [40].

32

cannot capture stabilization. However, with the 〈D∗〉 modality we can easily
express that a network model M stabilizes under the dynamic transformation
D by the following formula

〈D∗〉ϕstable(D).

However, sometimes, limiting behavior can be reduced to other properties of
the network structures. For instance, [7] gives a characterization of stable and
stabilizing models for the particular transformation under consideration, while
[12] reduces stabilization of some type of network models to the existence of an
odd cycle in the underlying network structure.12 We have chosen not to include
〈D∗〉 in our logic as it is not essential to the ideas we wish to convey. Moreover,
adding 〈D∗〉 is again likely to complicate the axiomatization and tableau system
of our logic – a similar transitive closure operator of Public Announcement Logic
actually leads to an undecidable logic [42].

Another line of extensions concerns more fine-grained thresholds when mod-
eling diffusion phenomena such as the microfinance example of the previous
section. In [7, 11, 8] the changes considered depend exclusively on whether
“all” or “some” of of an agent’s neighbors believe/prefer/know something. Sim-
ilarly, we restrict our notion of “threshold influence” to those thresholds which
are definable using our language LDSN . However, one can argue that many
diffusion phenomena involve numerical thresholds. For instance, in the micro-
finance example of the previous section, it might be more natural to specify
that an agent gets informed if one third of her friends are informed. Another
example is the dynamics induced by coordination (or anti-coordination) games
played in social networks where the threshold to consider will depend on the
payoffs involved in the corresponding game [3, Ch. 19].

To capture these ideas, one could add counting modalities “n of my neigh-
bors” (for any n ∈ N) or proportional modalities like “most of my neighbors”
(or any other given proportion of them). Formally, for any n ∈ N, we could add
a modality [≥nF] with the semantics:

M, a |= [≥nF]ϕ iff |{b ∈ A | b ≍ a and M, b |= ϕ}| ≥ n ,

where |B| denotes the cardinality of the set B. Alternatively we could also add
proportional modalities of the form [≥ p

q
F] for p, q ∈ N with p ≤ q, with the

following semantics:

M, a |= [≥ p
q
F]ϕ iff |{b∈A | b≍a and M,b|=ϕ}|

|{b∈A | b≍a}| ≥ p
q
.

In addition to the already mentioned example of microfinance, the extended
logic could be used to reason about several standard network analysis issues.

12Talking about limiting behavior of social network dynamics using transitive closure modal-
ities is also done in [15] for a particular model of opinion dynamics in social networks. However,
the framework of [15] differs considerably from the present framework as it is based on a Fuzzy
Logic.

33

For instance, the relationships between the density of clusters of a network
structure and the possibility of a complete diffusion or “cascades” under a given
threshold (see e.g. Chapter 19 of [3] for a presentation of a theorem without the
use of logic and [14] for the same result using logical tools considerably different
from our logic).

Finally, another common class of models in network science relies heavily
on probabilistic or undeterministic change, i.e, features changing in a particular
way with a given probability. Recall the “SI” and “SIR” models of epidemic
behavior in social networks from the introduction. Such models may be more
realistic when they consider the probability that an agent gets infected given the
health state of his neighbors. Hence, a desire could be to enrich our logic with
probabilistic tools, for instance dynamic probabilistic modalities. However, this
will require substantial changes to our logic and we leave it as future work to
be done by us or others.

Acknowledgments.

We would like to thank Johan van Benthem, Fenrong Liu and Sonja Smets
for suggestions and comments during the elaboration of this paper. We are
also grateful to the anonymous reviewers of LORI-IV for their precious feed-
back on [12], on which the present paper partially builds. The research of
Zoé Christoff leading to these results has received funding from the Euro-
pean Research Council under the European Communitys Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement no. 283963. Jens Ulrik
Hansen is sponsored by the Swedish Research Council (VR) through the project
“Collective Competence in Deliberative Groups: On the Epistemological Foun-
dation of Democracy”.

References

[1] Newman, M.E.J.: Networks: An Introduction. Oxford University Press
(2010)

[2] Jackson, M.O.: Social and Economic Networks. Princeton University Press
(2010)

[3] Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning
About a Highly Connected World. Cambridge University Press, New York,
USA (2010)

[4] van Benthem, J.: Logical Dynamics of Information and Interaction. Cam-
bridge University Press, The Netherlands (2011)

[5] Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements,
common knowledge and private suspicious. Technical Report SEN-R9922,
CWI, Amsterdam (1999)

[6] van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Syntese Library volume 337. Springer, The Netherlands (2008)

34

[7] Seligman, J., Liu, F., Girard, P.: Logic in the community. In Banerjee, M.,
Seth, A., eds.: Logic and Its Applications. Volume 6521 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2011) 178–188

[8] Zhen, L., Seligman, J.: A logical model of the dynamics of peer pressure.
Electronic Notes in Theoretical Computer Science 278(0) (2011) 275 – 288

[9] Ruan, J., Thielscher, M.: A logic for knowledge flow in social networks.
In Wang, D., Reynolds, M., eds.: AI 2011: Advances in Artificial Intelli-
gence. Volume 7106 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2011) 511–520

[10] Sano, K., Tojo, S.: Dynamic epistemic logic for channel-based agent com-
munication. In Lodaya, K., ed.: Logic and Its Applications. Volume 7750
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013)
109–120

[11] Liu, F., Seligman, J., Girard, P.: Logical dynamics of belief change in the
community. Synthese (2014) 1–29

[12] Christoff, Z., Hansen, J.U.: A two-tiered formalization of social influence.
In Grossi, D., Roy, O., Huang, H., eds.: Logic, Rationality, and Interac-
tion. Volume 8196 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2013) 68–81

[13] Christoff, Z.: A logic for social influence through communication. In
Lorini, E., ed.: Proceedings of Eleventh European Workshop on Multi-
Agent Systems (EUMAS 2013). Volume 1113 of CEUR. (2013) 31–39

[14] Christoff, Z., Rendsvig, R.: Dynamic logics for threshold models and their
epistemic extension. (2014)

[15] Hansen, J.U.: Reasoning about opinion dynamics in social networks. In:
Proceedings of the eleventh conference on logic and the foundations of
game and decision theory (LOFT XI), Bergen, Norway, July 27–30 (2014,
to appear)

[16] Areces, C., ten Cate, B.: Hybrid logics. In Blackburn, P., van Benthem, J.,
Wolter, F., eds.: Handbook of Modal Logic. Elsevier, Amsterdam (2007)
821–868

[17] Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid
axiomatics. Studia Logica 84(2) (2006) 277–322

[18] Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of
Logic and Computation 17(3) (2007) 517–554

[19] Hansen, J.U.: Terminating tableaux for dynamic epistemic logics. Elec-
tronic Notes in Theoretical Computer Science 262 (2010) 141–156 Proceed-
ings of the 6th workshop on Methods for Modalities (M4M-6 2009).

35

[20] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts
in Theoretical Computer Science, 53. Cambridge University Press, United
Kingdom (2001)

[21] Wang, Y., Cao, Q.: On axiomatizations of public announcement logic.
Synthese 190(1) (2013) 103–134

[22] Bolander, T., Blackburn, P.: Terminating tableau calculi for hybrid logics
extending K. Electronic Notes in Theoretical Computer Science 231 (2009)
21–39 Proceedings of the 5th workshop on Methods for Modalities (M4M-5
2007).

[23] O’Gorman, H.J.: The discovery of pluralistic ignorance: An ironic lesson.
Journal of the History of the Behavioral Sciences 22(October) (1986) 333–
347

[24] Krech, D., Crutchfield, R.S.: Theories and Problems of Social Psychology.
New York: McGraw-Hill (1948)

[25] Halbesleben, J.R.B., Buckley, M.R.: Pluralistic ignorance: historical de-
velopment and organizational applications. Management Decision 42(1)
(2004) 126–138

[26] Miller, D.T., McFarland, C.: When social comparison goes awry: The
case of pluralistic ignorance. In Suls, J., Wills, T., eds.: Social comparison:
Contemporary theory and research. Erlbaum, Hillsdale, NJ (1991) 287–313

[27] Bjerring, J.C., Hansen, J.U., Pedersen, N.J.L.L.: On the rationality of
pluralistic ignorance. Synthese (2014) 1–26

[28] Miller, D.T., McFarland, C.: Pluralistic ignorance; when similarity is in-
terpreted as dissimilarity. Journal of Personality and Social Psychology 53
(1987) 298–305

[29] Prentice, D.A., Miller, D.T.: Pluralistic ignorance and alcohol use on
campus: Some consequences of misperceiving the social norm. Journal of
Personality and Social Psychology 64(2) (1993) 243–256

[30] Fields, J.M., Schuman, H.: Public beliefs about the beliefs of the public.
The Public Opinion Quarterly 40(4) (1976) 427–448

[31] O’Gorman, H.J., Garry, S.L.: Pluralistic ignorance – a replication and
extension. The Public Opinion Quarterly 40(4) (1976) 449–458

[32] Ryan, B., Gross, N.C.: The diffusion of hybrid seed corn in two iowa
communities. Rural sociology 8(1) (1943) 15–24

[33] Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffu-
sion of microfinance. Science 341(6144) (2013)

36

[34] Baltag, A., Smets, S.: Protocols for belief merge: Reaching agreement via
communication. Logic Journal of the IGPL 21(3) (2013) 468–487

[35] Roelofsen, F.: Exploring logical perspectives on distributed information
and its dynamics. Master’s thesis, University of Amsterdam (2005)

[36] Pacuit, E., Parikh, R.: Reasoning about communication graphs. In van
Benthem, J., Gabbay, D., Löwe, B., eds.: Interactive Logic: Selected Papers
from the 7th Augustus de Morgan Workshop. Texts in Logic and Games.
Amsterdam University Press (2008) 135–157

[37] Apt, K.R., Witzel, A., Zvesper, J.A.: Common knowledge in interaction
structures. In: Proceedings of the 12th Conference on Theoretical Aspects
of Rationality and Knowledge. TARK ’09, New York, NY, USA, ACM
(2009) 4–13

[38] Parikh, R., Ramanujam, R.: A knowledge based semantics of messages.
Journal of Logic, Language and Information 12(4) (2003) 453–467

[39] Wang, Y., Sietsma, F., van Eijck, J.: Logic of information flow on com-
munication channels. In Grossi, D., Kurzen, L., Velzques-Queseda, F.R.,
eds.: Logic and Interactive Rationality, Yearbook 2009, Amsterdam, ILLC
(2010)

[40] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cam-
bridge (2000)

[41] Gate, J., Stewart, I.A.: The expressibility of fragments of hybrid graph
logic on finite digraphs. Journal of Applied Logic 11(3) (2013) 272–288

[42] Miller, J.S., Moss, L.S.: The undecidability of iterated modal relativization.
Studia Logica 79(3) (2005) 373–407

37

Appendix A: Proofs of Section 3.2

In this appendix we provide the missing proofs of Section 3.2.

Lemma 14. For every network model M and any two dynamic transformations
D and D′ we that:

(MD)D
′

= M(D;D′) (13)

Proof. LetM = (A,≍, g, ν) be an arbitrary network model and letD = (Φ, post)
and D′ = (Φ′, post′) be two dynamic transformations. First note that (D;D′) is
always defined. Moreover, from Definition 8 it follows that we can write MD =
(A,≍, g, ν′), (MD)D

′

= (A,≍, g, ν1) and M(D;D′) = (A,≍, g, ν2). Hence, to
show the equality (13) we only need to show that ν1 = ν2. That is we need to
show that for all a ∈ A and all l ∈ {1, ..., n}:

ν1(a)(l) = ν2(a)(l). (14)

Now, let a ∈ A and l ∈ {1, ..., n} be given. We first distinguish two cases:
(a) there is ϕ ∈ Φ such that M, a |= ϕ and l ∈ dom(post(ϕ)), and (b) there is
no such ϕ.

Consider the case (a). In this case, by Definition 8, we have that ν′(a)(l) =
post(ϕ)(l). Now consider the following two sub-cases: (a.i) there is a ψ ∈ Φ′

such that MD, a |= ψ and l ∈ dom(post′(ψ), and (a.ii) there is no such ψ.
Consider the sub-case (a.i). In this case, according to Definition 8, ν1(a)(l) =

post′(ψ)(l). Note also that now ϕ ∧ [D]ψ is satisfiable at a in M and hence, by
Definiton 8 and Definition 13

ν2(a)(l) = post′′(ϕ ∧ [D]ψ)(l) = post′(ψ)(l) = ν1(a)(l).

Consider the sub-case (a.ii). By Definition 8 we have that ν1(a)(l) = post(ϕ)(l)
and by Definition 13 (the second or third case for post′′) it follows that ν2(a)(l) =
post(ϕ)(l), as well.

Now consider the case (b). In this case, by Definition 8, we have that
ν′(a)(l) = ν(a)(l). Consider again the following two sub-cases: (b.i) there is a
ψ ∈ Φ′ such that MD, a |= ψ and l ∈ dom(post′(ψ), and (b.ii) there is no such
ψ.

Consider the sub-case (b.i). In this case, by Definition 8, we have that
ν1(a)(l) = post′(ψ)(l). On the other hand, by Definition 13 (the first or fourth
case for post′′) it follows that ν2(a)(l) = post′(ψ)(l), as well.

Consider finally the sub-case (b.ii). FromDefinition 8 it follows that ν1(a)(l) =
ν(a)(l). Since there are no ϕ ∈ Φ or ψ ∈ Φ′ such that l ∈ dom(post(ϕ)) or
l ∈ dom(post′(ψ)) clearly from Definition 13, l is not in dom(post′′(χ)) for any
χ ∈ Φ′′. Hence, by Definition 8, ν2(a)(l) = ν(a)(l), as well. This completes the
proof.

38

Lemma 15. For all models M = (A,≍, g, ν) and all a ∈ A, the following hold:

M, a |= [D]Vl=r iff (15)

M, a |=
(

∨

ϕ∈Φ, post(ϕ)(l)=r

ϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))

ϕ) ∧ Vl=r
)

M, a |= [D]i iff M, a |= i (16)

M, a |= [D]¬ϕ iff M, a |= ¬[D]ϕ (17)

M, a |= [D](ϕ ∧ ψ) iff M, a |= [D]ϕ ∧ [D]ψ (18)

M, a |= [D]@iϕ iff M, a |= @i[D]ϕ (19)

M, a |= [D]Fϕ iff M, a |= F [D]ϕ (20)

M, a |= [D]Uϕ iff M, a |= U [D]ϕ (21)

M, a |= [D][D′]ϕ iff M, a |= [(D;D′)]ϕ (22)

Proof. Proof of (15). This was provided in Section 3.2.
Proof of (16). Note that M, a |= [D]i if, and only if, MD, a |= i. But since

the function g assigning agents to nominals does not change under the update
with D, MD, a |= i if, and only if, M, a |= i

Proof of (17)-(22). The proofs of (17)− (22) are very similar, so we only do
the cases (17), (20), and (22).

Proof of (17). We have the following equivalences:

M, a |= [D]¬ϕ iff MD, a |= ¬ϕ

iff MD, a 6|= ϕ

iff M, a 6|= [D]ϕ

iff M, a |= ¬[D]ϕ.

Proof of (20). We have the following equivalences:

M, a |= [D]Fϕ iff MD, a |= Fϕ

iff MD, b |= ϕ, for all b ∈ A with a ≍ b

iff M, b |= [D]ϕ, for all b ∈ A with a ≍ b

iff M, a |= F [D]ϕ.

Proof of (22). By Lemma 14, we have the following equivalences:

M, a |= [D][D′]ϕ iff MD, a |= [D′]ϕ

iff (MD)D
′

, a |= ϕ

iff M(D;D′), a |= ϕ

iff M, a |= [(D;D′)]ϕ.

39

Lemma 17. For all i ∈ NOM, all Vl = r ∈ FP, all ϕ, ψ ∈ LDSN , and all
D,D′ ∈ DT the following are true:

1. c([D]i) > c(i)

2. c([D]Vl = r) > c
((
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
))

3. c([D]¬ϕ) > c(¬[D]ϕ)

4. c([D]✷ϕ) > c(✷[D]ϕ)

5. c([D](ϕ ∧ ψ)) > c([D]ϕ ∧ [D]ψ)

6. c([D][D′]ϕ) > c([D;D′]ϕ)

Proof. Let D = (Φ, post), K = 3 · |Φ|+ 3, and |Φ| = n.

1. It suffices to note that c(i) = 1, while c([D]i) = K + c(D).

2. Since c(Vl = r) = 1,
c([D]Vl = r) = K + c(D) = 3n+ 3 + c(D)
It is easy to check that:

a) c(
∨

ψ∈Φ ψ) ≤ 3n− 3 +max{c(ψ) | ψ ∈ Φ}
Now note that |{ψ ∈ Φ | post(ψ)(l) = r}| ≤ n and therefore:
c(
∨

ψ∈Φ,post(ψ)(l)=rψ
)

≤ 3n− 3 +max{c(ψ) | ψ ∈ Φ}

b) c(¬(
∨

ψ∈Φψ ψ) ∧ Vl=r) ≤ 3n− 1 +max{c(ψ) | ψ ∈ Φ}
Again, note that |{ψ ∈ Φ | l ∈ dom(post(ψ))}| ≤ n and therefore:
c
(

¬(
∨

ψ∈Φ, l∈dom(post(ψ))ψ) ∧ Vl=r
)

≤ 3n− 1 +max{c(ψ) | ψ ∈ Φ}

c) c(
(
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
)

) =

3 +max(c(
∨

ψ∈Φ,post(ψ)(l)=rψ
)

, c
(

¬(
∨

ψ∈Φ, l∈dom(post(ψ))ψ) ∧ Vl=r
)

)

d) It follows from the above that:
c(
(
∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)

∨
(

¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
)

) ≤

3n+ 2 +max{c(ψ) | ψ ∈ Φ} =
3n+ 2 + c(D)

3. For the case of the negation, it is easy to compare:

a) c([D]¬ϕ) = (K + c(D)) · c(¬ϕ) = (K + c(D)) · (1 + c(ϕ)) =
K + c(D) +K · c(ϕ) + c(D) · c(ϕ)

b) c(¬[D]ϕ) = 1 + (K + c(D)) · c(ϕ) =
1 +K · c(ϕ) + c(D) · c(ϕ)

4. The case of ✷ is entirely similar to the case of negation:

a) c([D]✷ϕ) = K + c(D) +K · c(ϕ) + c(D) · c(ϕ)

b) c(✷[D]ϕ) = 1 +K · c(ϕ) + c(D) · c(ϕ)

5. For the case of conjunction:

a) c([D](ϕ ∧ ψ)) =
(K + c(D)) · c(ϕ ∧ ψ) =
(K + c(D)) · (1 +max(c(ϕ), c(ψ))) =
K + c(D) + (K + c(D)) ·max(c(ϕ), c(ψ))

40

b) c([D]ϕ ∧ [D]ψ) =
1 +max(c([D]ϕ), c([D]ψ)) =
1 +max((K + c(D)) · c(ϕ), (K + c(D)) · c(ψ)) =
1 + (K + c(D)) ·max(c(ϕ), c(ψ))

6. Let D′ = (Φ′, post′), K ′ = 3 · |Φ′| + 3, and |Φ′| = n′. Moreover, let
D;D′ = (Φ′′, post′′), K ′′ = 3 · |Φ′′| + 3, and |Φ′′| = n′′ for D;D′ given by
Definition 13:

a) c([D][D′]ϕ) =
(K + c(D)) · c([D′]ϕ) =
(K + c(D)) · ((K ′ + c(D′)) · c(ϕ) =
(K ·K ′ +K ′ · c(D) +K · c(D′) + c(D) · c(D′)) · c(ϕ)

b) Recall that c(D;D′) = max{c(χ) | χ ∈ Φ′′}, where, according to
Definition 13, each formula χ ∈ Φ′′ is of one of the following three
types:

i) χ = ϕ ∧ [D]ψ, for some ϕ ∈ Φ and some ψ ∈ Φ′.
c(ϕ ∧ [D]ψ) =
1 +max(c(ϕ), c([D]ψ)) =
1 +max(c(ϕ), (K + c(D)) · c(ψ))
Since we know that c(D) ≥ c(ϕ) and c(D′) ≥ c(ψ),
we can infer that c(χ) ≤ 1 + ((K + c(D)) · c(D′)).

ii) χ = ϕ ∧ [D]
(
∧

ψ∈Φ′ ¬ψ
)

, for some ϕ ∈ Φ. Let |Φ′| = n′.

c(ϕ ∧ [D]
(
∧

ψ∈Φ′ ¬ψ
)

) =

1 +max(c(ϕ), c([D](
∧

ψ∈Φ′ ¬ψ
)

)) ≤
1 +max(c(ϕ), (K + c(D)) · (n′ +max{c(ψ) | ψ ∈ Φ′})) =
1 +max(c(ϕ), (K + c(D)) · (n′ + c(D′)))=
1 + (K + c(D)) · (n′ + c(D′))

iii) χ =
∧

ϕ∈Φ ¬ϕ ∧ [D]ψ, for some ψ ∈ Φ′.
c(
∧

ϕ∈Φ ¬ϕ ∧ [D]ψ) =
1 +max(n+max{c(ϕ) | ϕ ∈ Φ}, (K + c(D)) · c(ψ)) =
1 +max(n+ c(D), (K + c(D)) · c(ψ)) =
(since K > n)
1 + (K + c(D)) · c(ψ)
Since c(ψ) ≤ c(D′), we can infer that
c(χ) ≤ 1 + (K + c(D)) · c(D′).

From i),ii) and iii) we can conclude that:
c(D;D′) ≤ 1 + (K + c(D)) · (n′ + c(D′)) and therefore that:
c([D;D′]ϕ) ≤ (K ′′ + 1 + (K + c(D)) · (n′ + c(D′))) · c(ϕ)

c) To terminate the proof, we need to compare c([D][D′]ϕ) with c([D;D′]ϕ).
Ignoring the complexity of ϕ, since it is a coefficient in both, we need
to compare the following coefficients 1) and 2) below:

1) (K + c(D)) · (K ′ + c(D′)) =
K ·K ′ +K ′ · c(D) +K · c(D′) + c(D) · c(D′)

41

2) K ′′ + 1 + (K + c(D)) · (n′ + c(D′)) =
K ′′ + 1 +K · n′ + n′ · c(D) +K · c(D′) + c(D) · c(D′)
Simplifying even more, what we want to show is the following:
K ·K ′ +K ′ · c(D) > K ′′ + 1 +K · n′ + n′ · c(D)

Let us now use the fact that, by definition, K = 3n + 3,K ′ =
3n′ + 3,K ′′ = 3n′′ + 3. Note that we can also give an upper
bound to n′′ = |Φ′′|. There are at most n · n′ formulas ∈ Φ′′

of the above type i), at most n of type ii) and at most n′ of
type iii). It follows that n′′ ≤ n · n′ + n + n′ and therefore:
K ′′ = 3n′′ + 3 ≤ 3nn′ + 3n+ 3n′ + 3.

1) K ·K ′ +K ′ · c(D) =
(3n+ 3) · (3n′ + 3) + (3n′ + 3) · c(D) =
9nn′ + 9n+ 9n′ + 9 + 3n′ · c(D) + 3 · c(D)

2) K ′′ + 1 +K · n′ + n′ · c(D) ≤
(3nn′ + 3n+ 3n′ + 3) + 1 + (3n+ 3) · n′ + n′ · c(D)=
3nn′ + 3n+ 3n′ + 4 + 3nn′ + 3n′ + n′ · c(D)=
6nn′ + 3n+ 6n′ + 4 + n′ · c(D)

Hence, we can conclude that c([D][D′]ϕ) > c([D;D′]ϕ).

Appendix B: Termination and Completeness of the tableau system
for SSNL

In this appendix we prove that the tableau system for SSNL, given by Fig-
ure 4 and the constraints mentioned in Section 4.1, is both terminating and
complete. The proofs are more or less just adoptions of the proofs given in [18],
however, we will need to refer to these proofs when proving the corresponding
results for the tableau system for DSNL proven in Section 4.2. Hence, we provide
the proofs in details here.

We will start by showing termination. All tableaux referred to in this ap-
pendix will tableaux constructed using the tableau system for SSNL.

6.3. Termination of the tableau system for SSNL

We first prove, a subformula property that is essential for termination of the
tableau system. To state and prove this we need the following definition:

Definition 29 (Quasi-subformula). For feature propositions, we make the con-
vention that Vl = r is a subformula of Vl = r′ for all r, r′ ∈ Rl. Then, a formula
ϕ is said to be a quasi-subformula of ψ if ϕ is a subformula of ψ, or if ϕ has
the form ¬χ and χ is a subformula of ψ.

Lemma 30. For every formula ϕ, the set of quasi-subformulas of ϕ is finite.

Proof. This easily follows from Definition 29.

42

Lemma 31. Let T be a tableau with root formula σϕ. If the formula τψ occurs
on T , then ψ is a quasi-subformula of ϕ.

Proof. The proof goes by induction on the application of rules. For all rules,
it easy to check that if they have quasi-subformulas as premises the conclusion
will also be a quasi-subformula.

From this lemma it easily follows, that

Lemma 32. For all tableau branches Θ and prefixes σ occurring on Θ, the set
TΘ(σ) is finite.

Proof. Let Θ be a tableau branch with root formula σ0ϕ0 and σ an arbitrary
prefix occurring on Θ. Then, from Lemma 31,

TΘ(σ) ⊆ {ϕ | ϕ is a quasi-subformula of ϕ0}.

Since Lemma 30 implies that the set on the right is finite, it follows that TΘ(σ)
is finite, as well.

Definition 33. Let Θ be a branch. If a prefix τ has been introduced to the
branch using a prefix generation rule on a formula of the form σϕ we say that
τ is generated by σ and write σ ≺Θ τ .

In similar manners as in [18], we can now show that:

Lemma 34. Let Θ be a tableau branch. Then Θ is infinite if and only if there
exists an infinite chain of prefixes:

σ1 ≺Θ σ2 ≺Θ σ3 ≺Θ

Proof. The “if” direction is obvious. For the other direction, assume that Θ
is infinite. Then Θ contains infinitely many distinct prefixes. For, assume
towards a contradiction that Θ only contains finitely many prefixes. Then,
from Lemma 32 it follows that there are only finitely many prefixed formulas.
Furthermore, if there is only finitely many prefixes there can only be finitely
many accessibility formulas of the form σ ≍ τ . Thus, it follows that Θ is finite,
which is a contradiction. Thus, Θ contains infinitely many prefixes.

Now, as proved in Lemma 4.2 of [18], the set of prefixes on Θ together with
the relation ≺Θ constitutes a well-founded, finitely branching tree and since the
set of prefixes is infinite, so is this tree. However, then it follows from König’s
Lemma that the tree have an infinite branch, which exactly is an infinite chain
of prefixes:

σ1 ≺Θ σ2 ≺Θ σ3 ≺Θ

We now have what it takes to prove termination of the tableau system:

Proposition 1. Any tableau constructed using the given tableau system for
SSNL is finite.

43

Proof. Assume towards a contradiction that there is an infinite tableau con-
structed using the tableau system. Since tableaux are finitely branching trees,
the infinite tableau will contain an infinite branch Θ and by Lemma 34 an
infinite chain of prefixes

σ1 ≺Θ σ2 ≺Θ σ3 ≺Θ

Now, let

A = {ϕ | ϕ is a quasi-subformula of the root formula} .

Note that A must be finite by Lemma 30. For each i > 0, let Θi be the initial
segment of Θ up to, but not including, the first occurrence of σi+1 on Θ. Now,
by Lemma 31 all the sets

TΘ1(σ1), T
Θ2(σ2), . . .

are subset of the set A. Thus, since A is finite, we can find i and j with i < j
such that TΘi(σi) = TΘj(σj). Since the first occurrence of σi+1 on Θ is before
the first occurrence of σj+1 on Θ, Θi is an initial segment of Θj . Then, clearly
TΘi(σi) ⊆ TΘj(σi), and we obtain that

TΘj (σj) ⊆ TΘj (σi).

Now, since σi is introduced earlier than σj on Θ, σj cannot be a urfather on
Θj. By definition, the first formula (on Θ) not on Θj is of the form σj+1ψ and
because of σj ≺Θ σj+1, σj+1ψ must have been introduced on Θ by applying a
prefix generating rule to a formula of the form σjϕ occurring on Θj. However,
this contradicts the loop-check constraint as σj is not an urfather on Θj . Hence,
we have reached a contradiction and there cannot be a infinite tableau.

6.3.1. Soundness and completeness of the tableau system

We now turn to soundness and completeness of the tableau system. Sound-
ness is proved in the standard way for tableau systems and is straight forward
by noticing that all the rules of Figure 4 preserve satisfiability (in the same
model). This is easy to see and we leave the details for the reader. Soundness
now follows by the following short reasoning: If a tableau proof exists for ϕ
(i.e. a closed tableau with σ¬ϕ at the root), then ϕ has to be valid. If not,
¬ϕ would be satisfiable and since the rules preserve satisfiability all formulas
on each of the branches would have to be satisfiable simultaneously for each
branch. However, this would contradict that all the branches are closed.

Completeness is also proved in the standard way. That is, from a special kind
of open branch we construct a model that will be a model of the root formula.
Completeness now follows by the following short reasoning: If ϕ is valid, there
has to be a tableau proof for ϕ (i.e. a closed tableau with σ¬ϕ at the root). If
not, all tableaux with σ¬ϕ at the root would be open. Especially, there would
be a open tableau of a special kind with an open branch from which we could

44

construct a model satisfying ¬ϕ, which would contradict that ϕ is valid.
Now, constructing a model from a special kind of open branch is the key step

in the completeness proof and requires substantially more work, to which we
now turn. First, we need some more terminology and lemmas. We call a tableau
saturated if no more rules can be applied to it that satisfy the constraints. We
call a branch saturated if it is a branch of a saturated tableau. Thus, saturation
of a branch Θ means that Θ is closed under application of every rule except for
application of prefix generation rules blocked by the loop-check condition. Note
that, due to Proposition 1 we can always extend a tableau to a finite saturated
tableau.

Before we can prove completeness we need to prove a few properties of
urfathers. Again these are taken from [18].

Lemma 35 (Urfather Lemma). Let Θ be a saturated branch and let σ and τ be
prefixes occurring on Θ. Then the following holds:

(i) For every formula ϕ, if σϕ occurs on Θ, then uΘ(σ)ϕ will also occur
on Θ.

(ii) If there is a nominal i such that both σi and τi occur on Θ, then
uΘ(σ) = uΘ(τ).

(iii) σ is an urfather on Θ if, and only if, uΘ(σ) = σ.

Proof. Proof of (i): This follows directly from the definition of an urfather.
Proof of (ii): Since Θ is saturated it is closed under all applications of the

(Id) rule. Thus, if σi and τi both occur on Θ then TΘ(σ) = TΘ(τ). Now, uΘ(σ)
and uΘ(τ) and the earliest introduced prefixes such that TΘ(σ) ⊆ TΘ(uΘ(σ))
and TΘ(τ) ⊆ TΘ(uΘ(τ)). Hence, uΘ(σ) and uΘ(τ) must be identical.

Proof of (iii): If uΘ(σ) = σ then clearly σ is an urfather by definition. Now
assume that σ is an urfather, i.e. there is a prefix ρ such that σ = uΘ(ρ). For
uΘ(σ), we have that

TΘ(ρ) ⊆ TΘ(σ) ⊆ TΘ(uΘ(σ)).

Thus, if uΘ(σ) was introduced on Θ before σ, it would contradict that σ is the
urfather of ρ. But then, since uΘ(σ) is the earliest introdcued prefix such that
TΘ(σ) ⊆ TΘ(uΘ(σ)), uΘ(σ) = σ must be the case.

As in [18], we can now define a canonical modelMΘ = 〈AΘ,≍Θ, gΘ, νΘ〉 for
every open saturated branch Θ in the following way:

AΘ = {σ | σ is an urfather on Θ} ;

≍Θ = {(σ, uΘ(τ)) ∈ AΘ × AΘ | σ ≍ τ occurs on Θ} ;

gΘ(i) =

{

σ , if σi occurs on Θ,

σ0, if σi does not occur on Θ
;

νΘ(σ)(l) = r iff σVl = r occurs on Θ ;

45

where σ0 is just some fixed element of AΘ.
Let us see why this is well-defined. First, note that gΘ(i) is well-defined for

all i ∈ NOM. This is clear if there is no urfather σ such that σi occurs on Θ.
If there is σ such that σi occurs on Θ, then this urfather σ is unique by (ii) of
Lemma 35. ν(σ)(l) is well-defined for each σ ∈ AΘ and l ∈ {1, ..., n}. First of
all, there is a r ∈ Rl such that σVl = r occurs on Θ by the closure under the
(prop.cut)-rule. Moreover, there cannot be r, r′ ∈ Rl with r 6= r′ such that
both σVl = r and σVl = r′ occur on Θ since this would contradict that Θ was
open (by the (close2)-rule).

The key step is the completeness of the tableau system is the following truth
lemma:

Lemma 36 (Truth lemma). Let Θ be an open saturated branch of the tableau
system. For any urfather σ on Θ and any formula ϕ; if σϕ occurs on Θ, it
holds that MΘ, σ |= ϕ.

Proof. The proof goes by induction on the complexity of ϕ.
The base cases. The cases ϕ = Vl = r and ϕ = i for Vl = r ∈ FP and

i ∈ NOM follow directly from the definition of MΘ. For the case ϕ is of the
form ¬Vl = r, assume that σ¬Vl = r occurs on Θ. Since Θ is an open branch
σVl = r does not occur on Θ and thus ν(σ)(l) 6= r by definition of νΘ. However,
this implies that MΘ, σ |= ¬Vl = r. For the case ϕ is of the form ¬i, assume
that σ¬i occurs on Θ. Then clearly σi cannot occur on the open branch Θ and
thus, gΘ(i) 6= σ by the definition of gΘ. Hence, MΘ, σ |= ¬i.

The induction cases. The cases where ϕ = ψ∧χ, ϕ = ¬(ψ∧χ), or ϕ = ¬¬ψ
are straight forward.

The case ϕ = Fψ. Assume that σFψ occurs on Θ and that σ ≍Θ τ . We
need to show that MΘ, τ |= ψ. Since, σ ≍Θ τ , there is a prefix ρ such that
τ = uΘ(ρ) and σ ≍ ρ occurs on Θ. By closure under the (F)-rule. ρψ must
occur on Θ. By (i) of Lemma 35, τψ also occurs on Θ and by the induction
hypothesis we get that MΘ, τ |= ψ, as needed.

The case ϕ = ¬Fψ. Assume that σ¬Fψ occurs on Θ. Then, since σ is an
urfather and Θ is saturated, σ ≍ τ and τ¬ψ also occur on Θ for some prefix τ .
From τ¬ψ being on Θ is follows, by (i) of Lemma 35, that uΘ(τ)¬ψ occurs on
Θ. Furthermore, by the induction hypothesis, it follows that MΘ, uΘ(τ) |= ¬ψ.
From σ ≍ τ being on Θ is follows that σ ≍Θ uΘ(τ) and thus, MΘ, σ |= ¬Fψ
follows.

The case ϕ = @iψ. Assume that σ@iψ occurs on Θ. Since Θ is saturated
and σ is an urfather, there is a prefix τ such that τi and τψ both occur on Θ.
But then, by (i) of Lemma 35, uΘ(τ)i and uΘ(τ)ψ occur on Θ, as well. Now, by
the definition of gΘ, gΘ(i) = uΘ(τ) and by induction, MΘ, uΘ(τ) |= ψ. Hence,
MΘ, σ |= @iψ.

The case ϕ = ¬@iψ. Assume that σ¬@iϕ occurs on Θ. Since Θ is saturated
and σ is an urfather, τi and τ¬ϕ occur on Θ, for some prefix τ . Then, by (i) of
Lemma 35 uΘ(τ)i and uΘ(τ)¬ϕ also occur on Θ. By the induction hypothesis
this implies thatMΘ, uΘ(τ) |= i andMΘ, uΘ(τ) |= ¬ϕ. Hence, MΘ, σ |= ¬@iϕ.

46

The case ϕ = Uψ. Assume that σUψ occurs on Θ and assume that τ ∈ AΘ.
Then τ occurs on Θ and saturation implies that τψ occurs on Θ, as well. By
induction it follows that MΘ, τ |= ψ. Since τ ∈ AΘ was arbitrary, MΘ, τ |= ψ
must be the case for all τ ∈ AΘ. Thus, MΘ, σ |= Uψ.

The case ϕ = ¬Uψ. Assume that σ¬Uψ occurs on Θ. Since σ is an urfather
and Θ is saturated, there is a prefix τ , such that τ¬ψ occurs on Θ. Then, by (i)
of Lemma 35 it follows that uΘ(τ)¬ψ occurs on Θ, as well. But then, it follows
from the induction hypothesis that MΘ, uΘ(τ) |= ¬ψ, which further implies
that M, σ |= ¬Uψ.

From this truth lemma completeness easily follows:

Theorem 4 (Completeness for SSNL). If ϕ is valid in SSNL, then there is a
tableau proof of ϕ.

Proof. The proof goes by contraposition. Assume there is no tableau proof of ϕ.
This means that there is tableau starting with σ¬ϕ that has an open saturated
branch Θ. From this branch we can build the canonical model MΘ. Finally, it
follows from Lemma 36 that MΘ, σ |= ¬ϕ, which further implies that ϕ cannot
be valid.

47

