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1.1 Introduction

The field of quantum computation was initiated in the early 1980s by Richard
Feynman [Fey82, Fey85], Yuri Manin [Man80, Man99], Paul Benioff [Ben82] and
David Deutsch [Deu85] when they realized that a quantum computer, whose
working is based on the laws of quantum mechanics, could possibly be more
efficient than classical Turing machines for simulating quantum systems. One of
the reasons why quantum computers are believed to be more powerful than their
classical analogue is the peculiar feature called superposition, which is allowed by
quantum mechanics but not classical physics. A fundamental building block of
a classical computer is a bit, which is either in the state 0 or 1. The building
block of a quantum computer is a quantum bit (also called qubit) that can be
in a superposition, i.e., the state of a qubit can be simultaneously 0 and 1, each
associated with an amplitude.

Quantum computation gained significant attention after Shor’s polynomial-
time quantum algorithm [Sho97] in 1994 for factoring integers and computing
discrete logarithms (which break much of today’s public-key cryptography) and

1



2 Chapter 1. Overview

Grover’s quantum algorithm [Gro96] in 1996, which searches for a marked item in
an unstructured dataset quadratically faster than every possible classical search
algorithm. Quantum computing has since blossomed into a major field at the
intersection of physics, mathematics, and computer science. The past two decades
have seen much research in trying to understand what are the tasks for which
quantum provides an advantage.

In the first part of this thesis, our focus will be on quantum algorithms.
In particular, we will consider two natural complexity measures used often to
understand and compare classical and quantum algorithms, gate complexity and
query complexity. Gate complexity deals with the number of gates used in the
implementation of algorithms. In the classical setting we are referring to Boolean
logic gates (such as AND, OR, NAND gates) and in the quantum setting we are
referring to elementary quantum gates (such as Hadamard, CNOT, single-qubit
Pauli gates). However, proving lower bounds on the number of gates required to
solve certain problems is extremely hard. This prompts the question, is there a
simpler measure that allows us to understand the power of quantum computers?
Query complexity is one such information-theoretic measure that is often used to
give unconditional separations between quantum and classical computing.

In the second part of this thesis, we discuss another field that was also concep-
tualized in the early 1980s, computational learning theory. Leslie Valiant’s seminal
paper “A Theory of the Learnable” [Val84] laid the foundation to computational
learning theory, which has since evolved into a field that is used to mathematically
understand and analyze machine learning algorithms. In the last decade, with
the explosion of data and computing power, heuristic approaches such as deep
learning have gained prominence. Deep learning is extremely good in practice for
natural language processing, speech recognition, computer vision, even the games
of Go and chess. Alongside the boom in classical machine learning algorithms, the
last few years have seen an increase in the interest in quantum machine learning,
an interdisciplinary area that uses the powers of quantum physics to improve ma-
chine learning algorithms. Given the practical relevance of machine learning, it is
believed that quantum machine learning algorithms implemented on small-scale
quantum devices may become one of the first interesting and practically relevant
application of quantum computers.

The main motivation behind the research in this thesis is to broadly under-
stand query and gate complexity of quantum algorithms for certain problems and
the sample and query complexity of quantum machine learning algorithms. In this
chapter, we briefly describe the model of query complexity and learning theory
and preview our contributions in this thesis.
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1.2 Quantum algorithms

1.2.1 A brief introduction to the query model

The primary object of study in the first part of this thesis is the following problem.
Let f be a known Boolean function f : {0, 1}N → {0, 1}, i.e., f maps n-bit
strings to either 0 or 1. Suppose an adversary picks an unknown x ∈ {0, 1}N .
Our goal is to compute f(x). Clearly computing f(x) is not possible without
further information. Suppose we can query the adversary by asking questions
only of the form “what is xi”, i.e., the ith bit of x (for some choice of i ∈
{1, . . . , N} of our choice) to which the adversary responds with xi. After the
query, we are allowed to perform arbitrary operations. We repeat this question-
response process a few times before outputting a bit b. In the deterministic
model, the output bit b should equal f(x) with certainty. In the randomized
model (where we allow randomness in the algorithm), the output bit b should
equal f(x) with probability at least 2/3 (where the probability is taken over the
internal randomness of the algorithm). There are other query models which we
do not discuss in this thesis, such as the non-deterministic model, the unbounded-
error model, query complexity computing in expectation, the non-adaptive query
model. The question we are interested in is, how many queries to the adversary
suffice to compute f(x) in the respective query models? Clearly N questions
suffice, because we could simply ask the adversary the following N questions:
“what is x1”, “what is x2”, “what is x3”,. . .,“what is xN” and learn x completely.
Since we now know f and x, we can compute f(x). Can we make fewer than N
queries and still learn f(x)? Query complexity tries to understand this question
for different Boolean functions f under different query models. Note that in
query complexity we are not interested in the number of gates used in between
queries. Gate complexity tries to understand the number of gates used by the
entire algorithm before it can decide f(x).

In this thesis we will be interested in the quantum query model. In the quan-
tum query model, we replace the classical questions “what is xi” by a quantum
superposition of questions. A quantum superposition of questions is commonly
referred to as a quantum query. The central question in the field of quantum
query complexity is to understand to what extent quantum queries can reduce
the query complexity of certain Boolean functions. Although constructing query-
efficient quantum algorithms is the goal, it is also desirable that the number
of quantum gates used in these query algorithms is not much more than their
query complexity.

The beauty of the quantum query model is that almost all existing quan-
tum algorithms work in the query model. In fact, the first few breakthroughs
in quantum algorithms, which piqued the interest of many researchers, were in
the quantum query model (see Deutsch-Josza algorithm [Deu85], Simon’s al-
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gorithm [Sim97], Shor’s factoring algorithm [Sho97]1 and Grover’s search algo-
rithm [Gro96]). The query model captures most problems for which one can
provably show a polynomial or even exponential speed-up in the quantum set-
ting.

1.2.2 Our contributions to quantum algorithms

In this thesis we present three contributions to quantum algorithms. We describe
these results in the following three paragraphs.

Improving the gate complexity of Grover’s search algorithm. As we
described earlier, one of the first successes of quantum computing is Grover’s
search algorithm [Gro96]. Consider the following problem: suppose we have an N -
element unstructured database and we are promised that there is a unique item in
the database that is “marked”. The goal is to find the marked item. To solve the
problem, we are allowed to make “database queries”, which tell us if a single item
is marked or not and our goal is to find the marked item making as few database
queries as possible. Classically, it is not hard to see that in the worst case, we
need to essentially make N database queries in order to find the marked item.

Grover [Gro96] constructed a quantum algorithm that finds the marked item
using O(

√
N) quantum database queries and his algorithm involved O(

√
N logN)

other elementary gates. This quantum algorithm already allows us to quadrat-
ically improve almost all classical search subroutines. In fact many quantum
algorithms use Grover’s search algorithm as a subroutine to improve classical al-
gorithms.

Is Grover’s algorithm optimal? Could there be a better quantum search al-
gorithm? It was shown that Ω(

√
N) quantum queries are necessary [BBBV97]

to solve the search problem, so Grover’s algorithm cannot be improved in terms
of queries. But what about the number of elementary gates? Can this be im-
proved? In Chapter 3 we give a positive answer to this question. We construct
a new search algorithm whose gate complexity is essentially O(

√
N),2 while pre-

serving the query complexity of Grover’s algorithm. Although our improvement
might seem not so significant since we essentially only remove a logarithmic fac-
tor, it is interesting that after two decades of research, the basic quantum search
algorithm can still be improved in some ways!

New characterization of quantum query algorithms. Moving away from
constructing better quantum query algorithms, it is also important to understand

1Although Shor’s algorithm is technically not a query algorithm, the heart of Shor’s algo-
rithm is a quantum query algorithm that solves the period-finding problem exponentially faster
than every classical algorithm.

2Strictly speaking, our gate complexity is O(
√
N log(log∗N)). However, log(log∗N) for all

“practical” purposes is a constant since log(log∗(210000)) ≤ 3.
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their limitations. The flip-side of obtaining new algorithms is showing query lower
bounds, i.e., showing that every quantum algorithm needs to make at least a cer-
tain number of queries before solving a problem. Proving such lower bounds seems
significantly more challenging than constructing specific quantum algorithms. In
this direction, there are two famous techniques to give query lower bounds: the
polynomial method [BBC+01] and the adversary method [Amb00]. The former
method uses that the approximate polynomial degree of a Boolean function (an
algebraic parameter that we define in the next chapter) lower bounds quantum
query complexity and the latter method uses properties of the spectral norm of a
so-called “adversary matrix” to give lower bounds on quantum query complexity.

The polynomial method was initially used to prove lower bounds for the search
problem and other symmetric functions [BBC+01], the collision problem and el-
ement distinctness [AS04]. In the last decade, the adversary method has been
the favoured lower bounding technique primarily because the “negative-weight”
adversary method (which generalized the positive-weight adversary method intro-
duced by Ambainis [Amb02]) was shown to characterize quantum query complex-
ity [HLŠ07, Rei09, Rei11, LMR+11], i.e., upper bounds on the negative-weight
adversary method also gave upper bounds on quantum query complexity. How-
ever, using the adversary method to prove good quantum query bounds appears
to be hard in general!

In this thesis we consider if the polynomial method admits such a converse. If
this were true, this would imply a succinct characterization of quantum algorithms
in terms of polynomials and also give an alternate method (to the adversary
method) to showing quantum query lower bounds. However, Ambainis [Amb06]
already answered this question in the negative. This leaves open: does there exist
a (simple) refinement of approximate polynomial degree that characterizes quan-
tum query complexity? This was explicitly raised in recent works of Aaronson
and others [AA15, AAI+16]. In Chapter 4 we give a positive answer to this ques-
tion. We refine the polynomial method and obtain a new notion of polynomial
degree, called completely bounded approximate degree, that equals quantum query
complexity. Our new characterization of quantum algorithms in terms of polyno-
mials not only refines the well-known polynomial method, but it also gives a new
method for showing upper and lower bounds on quantum query complexity.

Better algorithm to compute the gradient of a multivariate function.
Optimization is a fundamentally important task that touches on virtually every
area of science. Näıvely, since Grover’s search algorithm [Gro96] quadratically
improves upon the classical algorithm for searching in a database, we can simply
use it to speed up all discrete optimization algorithms which involve searching for
a solution among a set of unstructured candidate solutions. However, applying
non-Grover techniques to real-word optimization problems has proven challeng-
ing, because generic problems usually fail to satisfy the delicate requirements of
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these advanced quantum techniques. There have been many works on improv-
ing specific optimization techniques such as the Monte Carlo method [Mon15],
quantum adiabatic optimization [KN98, FGGS00, FGG14], improving optimiza-
tion algorithms for the traveling salesman problem [HP00], Boolean satisfiabil-
ity [Aru14], least-squares fitting [WBL12] and so on.

In this thesis we consider a generic framework of gradient-based optimization,
ubiquitously used in continuous-variable optimization. For f : Rd → R, consider
the following optimization problem: OPT = min{f(x) : x ∈ Rd}. One generic
technique used often to compute OPT is the gradient-descent algorithm. This
begins with an arbitrary xxx ∈ Rd, computes the gradient of f at xxx (denoted∇f(xxx))
and moves to a point xxx′ in the direction of −∇f(xxx). This process is repeated a
few times before the algorithm hopefully obtains a good approximation of OPT.
Given the simplicity and generality of the algorithm, gradient-based methods are
used often in machine learning algorithms.

In Chapter 5 we develop a quantum algorithm that calculates the gradient of
f : Rd → R quadratically faster than classical gradient computation algorithms.
For a class of smooth functions, our quantum algorithm provides an approxi-
mation of the gradient vector ∇f with quadratically better dependence on the
evaluation accuracy of f . To be precise, we show that in order to obtain an
ε-coordinate-wise approximation of the d-dimensional gradient vector ∇f , it suf-
fices to make Õ(

√
d/ε) queries to the oracle encoding f . Furthermore, we show

that most functions arising from quantum optimization algorithms satisfy the
smoothness condition. Using this, we obtain a quadratic quantum improvement
in the complexity of most gradient-based optimization algorithms. In particular,
our quantum improvement quadratically improves the complexity of most ma-
chine learning algorithms that rely on gradient-based methods. We also show
that our quantum algorithm for gradient calculation is optimal (for a class of
smooth functions).

1.3 Learning in a quantum world

1.3.1 A brief introduction

In the second part of this thesis we discuss the theoretical aspects of machine
learning. We first discuss the classical learning model, before discussing its quan-
tum generalization. A concept class C is a collection of n-bit Boolean functions
{c1, . . . , cm} where ci : {0, 1}n → {0, 1}. Suppose an adversary picks an unknown
ci ∈ C. The goal of a learner is to learn the unknown target concept, either
exactly or approximately. There are two models of learning which we discuss in
this thesis.

1. Exact learning : This is similar to the model of query complexity. In exact
learning, the learner can actively query the adversary by asking it questions
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of the form “what is ci(x)” for some x chosen by the learner. Such a query
is referred to as a membership query. This process repeats until the learner
can identify the target concept. In exact learning, we are concerned with the
number of membership queries that suffice to learn ci? Clearly 2n queries
suffice because the learner could query ci on every x ∈ {0, 1}n and learn the
truth table of ci. In exact learning, we would like to understanding if fewer
membership queries suffice to learn the “hardest” function in the concept
class C?

2. PAC learning : The Probably Approximately Correct (PAC) model of learn-
ing is a well-known passive learning model. In PAC learning, there is an
unknown distribution D on the set of n-bit strings. Here the learner can
no longer query ci on an arbitrary input x of its choice, instead the learner
obtains labelled examples (x, ci(x)) where x is drawn according to the un-
known distribution D.3 In PAC learning, it is not even clear that 2n labelled
examples suffice to exactly learn ci because D is an arbitrary unknown dis-
tribution! Instead of identifying the target concept, in the PAC model the
learner needs to output an hypothesis h which is “close” to ci under the
distribution D, i.e., Prx∼D[h(x) 6= ci(x)] ≤ ε (for some ε > 0). In PAC
learning, we are concerned with two measures of complexity, the number of
labelled examples and the time taken to learn the “hardest” function in the
concept class C. They are many variants of PAC learning which we discuss
in subsequent chapters.

The quantum generalization. The quantum generalization of exact learning
is directly motivated by quantum query complexity. Instead of classical queries,
a quantum learner can make quantum queries. The central question is to under-
stand if fewer quantum queries suffice to exactly learn a concept class C. Indeed,
using results from query complexity one can construct concept classes for which
quantum queries can provide an advantage. For example, consider the concept
class on N bits,4 C = {(10 · · · 0), (010 · · · 0), . . . , (0 · · · 01)}. Observe that identify-
ing an unknown concept c ∈ C is equivalent to identifying a unique marked item
in an N -element database. So, we can use Grover’s search algorithm to identify
an unknown c ∈ C using O(

√
N) quantum queries.

Given the advantage of quantum queries in the model of query complexity,
one important goal in quantum learning theory is to understand if fewer quan-
tum queries suffice to learn a concept class C? For a concept class C on N
bits, suppose D(C) and Q(C) are the classical and quantum membership query

3The inability of the learner to query ci on an x of its choice is why PAC learning is a passive
learning model. In contrast, the exact learning model is referred as an active learning model.

4Observe that concepts c : {0, 1}n → {0, 1} can be identified with their N = 2n-bit truth
tables c ∈ {0, 1}N . So a concept class C ⊆ {c : {0, 1}n → {0, 1}} can also be viewed as a subset
of N -bit strings.
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complexities of C respectively. Then Servedio and Gortler [SG04] showed that
D(C) ≤ O(Q(C)3 logN).

The quantum generalization of PAC learning was introduced by Bshouty and
Jackson [BJ99], who defined a quantum example as thestate∑

x

√
D(x)|x, ci(x)〉.

While it is not always realistic to assume access to such (fragile) quantum states,
one can certainly envision scenarios where the data is provided by a coherent
quantum process. Such a quantum example is the natural quantum generalization
of a classical labelled example. In order to see this, suppose a learner chooses to
measure this quantum example state. Then the learner would obtain an (x, ci(x))
pair with probability D(x), just like a classical PAC learner. However, Bshouty
and Jackson [BJ99] exhibited a concept class and distribution D, under which
quantum examples gave a large advantage in learning the concept class compared
to classical examples.

When can we expect quantum examples to help in PAC learning? Are they
useful for every concept class C and distribution D? This leads to another impor-
tant question, understanding the limitations of quantum examples for PAC learn-
ing. Classically, it is well-known that the number of classical examples necessary
and sufficient for PAC learning a concept class C is given by a combinatorial pa-
rameter called the VC dimension of C (denoted VC-dim(C)), named after Vapnik
and Chervonenkis [VC71]. Atıcı and Servedio [AS05] showed that the quantum
sample complexity of PAC learning is at least Ω(

√
VC-dim(C)/ε), which leaves

room to show that quantum examples are possibly advantageous for all concept
classes C and distributions D.

1.3.2 Our contributions to learning theory

In this thesis we present two contributions to quantum learning theory. We
describe these contributions in the following two paragraphs.

Survey on quantum learning theory. In recent times quantum machine
learning has been well-served by a number of survey papers [SSP15, AAD+15,
BWP+17, CHI+17, DB17] and even a book [Wit14]. In contrast, there has not
been much work on understanding quantum learning from a theoretical perspec-
tive. In Chapter 6, we include a survey of quantum learning theory, which we
were invited to write for the SIGACT complexity theory column [AW17a]. We
focus on the theoretical side of quantum machine learning: quantum learning
theory. We describe the main results known for three models of learning, using
classical as well as quantum data: exact learning from membership queries, the
probably approximately correct (PAC) learning model and the agnostic learn-
ing model, which is a more realistic and flexible version of the PAC learning
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model. Apart from information-theoretic results, we also survey results on the
time complexity of learning from membership queries and learning in the PAC
and agnostic models.

Optimal sample complexity of learning algorithms. We saw earlier that
the number of labelled examples necessary and sufficient for a good classical
PAC learner trying to learn C is characterized by the VC dimension of C. What
is the sample complexity when a quantum learner is given access to quantum
examples, in terms of VC-dim(C)? Since a quantum learner could simply measure
the quantum example and obtain a labelled example like the classical PAC learner,
classical upper bounds imply quantum upper bounds. In this thesis we address
the question how many quantum examples are necessary to learn a concept class C
of VC dimension d. In Chapter 7 we show that the number of quantum examples
necessary to learn C is also given by the VC dimension of C (improving upon the
lower bound of Atıcı and Servedio [AS05]). Combining with the classical upper
bound of Hanneke [Han16], our result shows that quantum examples are not more
powerful than classical examples in the PAC model of learning.

What about more realistic learning models? In many learning situations the
examples could possibly be noisy in some way or maybe there is no underlying tar-
get concept at all. The agnostic model of learning, introduced by Haussler [Hau92]
and Kearns et al. [KSS94] takes this into account. It is a well-known result that
the sample complexity of agnostic learning a concept class C is also characterized
by the VC dimension of C (albeit, with a worse dependence on ε). In Chapter 7,
we introduce the model of quantum agnostic learning, which wasn’t defined prior
to our work. We also show that in agnostic learning, quantum examples are not
more powerful than classical examples.
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Quantum algorithms





Chapter 2

Preliminaries and query complexity

This chapter is divided into two parts. In the first part, we introduce some
basic mathematical objects that are used often in this thesis. We then give a
brief introduction to quantum information theory. In the second part, we intro-
duce the model of query complexity. We define the decision tree model and the
quantum query model. For an excellent survey of different query models and
relations between these models, see [BW02] (additionally, the last two years have
seen a few breakthroughs [GPW15, ABB+16, ABK16] in the field of classical and
quantum query complexity, for a more up-to-date relationship between different
query models see Table 2 in [ABK16]). The first new contribution in this thesis
(in Chapter 3) will build upon the quantum search algorithm presented in Sec-
tion 2.5.1 and our second new contribution (in Chapter 4) will give a refinement
of the well-known polynomial method presented in Section 2.4.1.
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2.5.1 Grover’s algorithm . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Quantum lower bound for search . . . . . . . . . . . . 34

2.1 Mathematical objects of interest

Set notation. We shall use R,C,N to denote the set of real numbers, complex
numbers and natural numbers, respectively. For integer n > 0, we denote [n] =
{1, . . . , n}. Also, the power set of [n] is 2[n] = {S : S ⊆ [n]}.

Bit strings. For x, y ∈ {0, 1}d, the bit-wise sum (x⊕ y) ∈ {0, 1}d is the string
given by (x ⊕ y)i = xi ⊕ yi. The Hamming distance d(x, y) is the number of
indices on which x and y differ, |x⊕ y| is the Hamming weight of the string x⊕ y
(which equals d(x, y)). For x ∈ {0, 1}d, denote supp(x) = {i ∈ [d] : xi 6= 0}.
For two bit strings x, y ∈ {0, 1}d, we denote the (2d)-bit string formed by the
concatenation of x and y as (x, y). For x ∈ {0, 1}d, let x̄ ∈ {0, 1}d be the string
given by (x̄)i = 1− xi.

Distributions. We denote random variables in bold, such as A, B. For a
distribution D : {0, 1}n → [0, 1], let supp(D) = {x ∈ {0, 1}n : D(x) 6= 0}. By
x ∼ D, we mean x is sampled according to the distribution D, i.e., Pr[X =
x] = D(x).

Polynomials. A monomial is the product of a real coefficient and the product
of formal variables, each raised to some power. The degree of a monomial is
the sum of the powers of the formal variables. A polynomial is simply a sum of
monomials and the degree of a polynomial is the largest degree of its monomials.
The simplest class of polynomials are univariate polynomials which have only
one formal variable. In general, a degree-k univariate polynomial p : R → R
is an expression of the form p(x) =

∑k
i=0 αix

i where αi ∈ R. More generally,
an n-variate polynomial (sometimes referred to as multivariate polynomials when
the number of formal variables is clear) is a polynomial consisting of n formal
variables. A degree-k multivariate polynomial q : Rn → R is an expression of
the form

q(x1, . . . , xn) =
∑

i1,...,in∈{0,1,...,k}:
i1+···+in≤k

αi1,...,inx
i1
1 · · · xinn , (2.1)

where αi1,...,in ∈ R. A special class of polynomials are multilinear polynomials,
obtained by restricting the sum in Eq. (2.1) to those i1, . . . , in satisfying ij ∈ {0, 1}
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for all j ∈ [n] and
∑n

j=1 ij ≤ k. Alternatively, an n-variate degree-k multilinear
polynomial r : Rn → R can be written as

r(x1, . . . , xn) =
∑
S⊆[n]:
|S|≤k

αS
∏
i∈S

xi,

where αS ∈ R.

Boolean functions and Fourier analysis. Boolean functions f : {0, 1}n →
{0, 1} are basic objects in theoretical computer science and we use them often in
this thesis. For f : {0, 1}n → {0, 1}, we denote

f−1(b) = {x ∈ {0, 1}n : f(x) = b} for b ∈ {0, 1}.

For Boolean function f , let supp(f) = f−1(1).
We introduce the basics of Fourier analysis on the Boolean cube {0, 1}n here,

referring to [O’D14, Wol08] for more. Define the inner product between functions
f, g : {0, 1}n → R as

〈f, g〉 = E
x
[f(x) · g(x)]

where the expectation is taken over the uniform distribution on {0, 1}n. For
S ⊆ [n] (equivalently S ∈ {0, 1}n),1 let χS(x) := (−1)S·x denote the parity of the
variables (of x) indexed by the set S. It is easy to see that the set of functions
{χS}S⊆[n] form an orthonormal basis for the space of real-valued functions over
the Boolean cube. Hence every f can be decomposed as

f(x) =
∑
S⊆[n]

f̂(S)χS(x) for all x ∈ {0, 1}n,

where f̂(S) = 〈f, χS〉 = Ex[f(x) · χS(x)] is called a Fourier coefficient of f .
For a Boolean function f : {0, 1}m → {0, 1} and M ∈ Fm×k2 we define f ◦M :
{0, 1}k → {0, 1} as (f ◦M)(x) := f(Mx) for all x ∈ {0, 1}k (where the matrix-
vector product is over F2).

Vector spaces and matrices. For an n-dimensional vector space, the standard
basis of Cn is denoted by {ei ∈ {0, 1}n : i ∈ [n]}, where ei is the vector with a 1 in
the i-th coordinate and 0’s elsewhere. For a matrix M ∈ Rn×m, let M∗ ∈ Rm×n

be the conjugate transpose of M , i.e., (M∗)ij = Mij. Let Eij be the elementary
matrix defined as Eij = eie

∗
j . A hermitian matrix M is said to be positive

semidefinite (psd) if the associated polynomial xTAx is non-negative for every
vector x ∈ Rn. Alternatively, we say A is psd if all the eigenvalues of M are
non-negative. If M is a psd matrix, we define

√
M as the unique psd matrix

1We will often use this natural bijection between every S ∈ {0, 1}n and supp(S) ∈ 2[n].
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that satisfies
√
M ·
√
M = M , and

√
M(i, j) as the (i, j)-th entry of

√
M . For a

matrix A ∈ Rm×n, we denote the singular values of A by σ1(A) ≥ σ2(A) ≥ · · · ≥
σmin{m,n}(A) ≥ 0. Given a set of d-dimensional vectors U = {u1, . . . , un} ∈ Rd,
the Gram matrix V corresponding to the set U is the n × n psd matrix defined
as V (i, j) = u∗iuj for i, j ∈ [n].

For x ∈ Cn, denote by Diag(x) the n × n diagonal matrix whose diagonal
forms x. Given a matrix X ∈ Cn×n let diag(X) ∈ Cn denote its diagonal vector.
For x ∈ {0, 1}n, denote (−1)x = ((−1)x1 , . . . , (−1)xn). Denote by 1d the d × d
identity matrix.

Unitary matrices are common in quantum information theory. We say a com-
plex n × n matrix is a unitary if UU∗ = U∗U = 1n, where U∗ is the conjugate
transpose of the matrix U .

The O, o,Ω,Θ notation. This is standard notation in complexity theory. For
f, g : N→ R, we use f(n) = O(g(n)) if there exists a constant c > 0 and integer N

such that f(n) ≤ cg(n) for every n ≥ N . Similarly we write f(n) = Õ(g(n)) to
mean that there exists a constant k > 0 such that f(n) = O(g(n) logk(g(n))). We
write f(n) = o(g(n)) to mean limn→∞ f(n)/g(n) = 0. We use f(n) = Ω(g(n))
if there exists a constant c > 0 and integer N such that f(n) ≥ cg(n) for every

n ≥ N . Similarly we write f(n) = Ω̃(g(n)) to mean that there exists a constant
k > 0 such that f(n) = Ω(g(n)/ logk(g(n))). Finally, f(n) = Θ(g(n)), if f(n) =

O(g(n)) and g(n) = O(f(n)) and similarly f(n) = Θ̃(g(n)), if f(n) = Õ(g(n))

and g(n) = Õ(f(n)).

Miscellaneous. We write log for logarithm to base 2, and ln for logarithm
to base e. Let 1[A] be the indicator for A ⊆ {0, 1}n, i.e., 1[A](x) is 1 if x ∈ A
and 0 otherwise. Let δx,y = 1[x=y]. For integer n > 0, let Sn be the set of n!
permutations on [n].

2.2 Quantum information

In this section we give a general introduction to quantum computation. For more
on quantum information we refer to standard textbooks [NC00, KLM06, Wat11]
and lectures notes [Wol13, Chi11].

2.2.1 Quantum states

In this section we define qubits, pure quantum states and density operators.

Qubits. Like classical bits are the building blocks of classical computers, quan-
tum bits, common referred to as qubits, are the basic building blocks of quantum
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computers. Classically, a bit can take the value 0 or 1. The quantum analogue
of the bits 0 and 1 are the qubits |0〉 ∈ C2 and |1〉 ∈ C2 respectively,2 defined
as follows

|0〉 = ( 1
0 ) |1〉 = ( 0

1 ) .

Observe that {|0〉, |1〉} are the standard basis vectors for C2, the space in which
one-qubit states “live”.

Superposition. What makes a qubit different from a classical bit? Quantum
mechanics allows a qubit to be in a superposition, i.e., a quantum state can
informally be both in |0〉 and |1〉, each associated with an amplitude. In other
words a qubit can be in a state of the form

|φ〉 = ( α0
α1 ) = α0|0〉+ α1|1〉,

where α0, α1 ∈ C satisfy |α0|2 + |α1|2 = 1. The coefficients α0 and α1 are referred
to as the amplitudes of |0〉, |1〉 respectively. The complex conjugate of |φ〉 is given
by the row vector

〈φ| = (α∗0 α
∗
1) = α∗0〈0|+ α∗1〈1|.

General states. So far we just saw examples of single-qubit systems. Multi-
qubit basis states are obtained by taking tensor products of single-qubit basis
states; for example, the bases for two-qubit systems are

|0〉 ⊗ |0〉 =

(
1
0
0
0

)
, |0〉 ⊗ |1〉 =

(
0
1
0
0

)
, |1〉 ⊗ |0〉 =

(
0
0
1
0

)
, |1〉 ⊗ |1〉 =

(
0
0
0
1

)
,

where |0〉 ⊗ |1〉 is the basis state of a 2-qubit system where the first qubit is in
state |0〉 and the second qubit is in state |1〉. We can extend this definition to
arbitrary-dimensional qubit states. For b ∈ {0, 1}k, we often shorthand k-qubit
state |b1〉 ⊗ · · · ⊗ |bk〉 as |b1 · · · bk〉 or |b1, . . . , bk〉. A k-qubit pure state |φ〉 can be
written as |φ〉 =

∑
i∈{0,1}k αi|i〉 where the αi’s are complex numbers (called ampli-

tudes) that satisfy
∑

i∈{0,1}k |αi|2 = 1. We can also view |φ〉 as a 2k-dimensional
column vector.

Suppose the k-qubit quantum states |φ〉 and |ψ〉 are represented by unit vec-
tors u, v ∈ C2k . The inner product 〈φ|ψ〉 is a complex number given by u∗v and
the outer product |φ〉〈ψ| is a complex 2k × 2k matrix given by uv∗.

An r-dimensional quantum state ρ (also called a density matrix ) is an r × r
positive semi-definite matrix ρ with trace 1; this can also be written (often non-
uniquely) as ρ =

∑
i pi|φi〉〈φi| and hence can be viewed as a probability distri-

bution over pure states {|φi〉}i∈[m]. We say that ρ is a pure state if ρ satisfies
rank(ρ) = 1, i.e., ρ = |ψ〉〈ψ| for some quantum state |ψ〉.

2The |·〉 is referred to as the “ket” notation and 〈·| is referred as the “bra” notation.
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2.2.2 Quantum operations

Given a k-qubit quantum state ρ, what can we do with it? Quantum mechanics
allows us to either evolve the state to another quantum state σ unitarily or we
can measure the quantum state.

Quantum gates. Suppose ρ is k-qubit quantum state, then quantum mechan-
ics allows us to apply an arbitrary unitary transformation U to ρ. The action
of this transformation on ρ is given by ρ → UρU∗. If ρ is a pure state, i.e.,
ρ = |ψ〉〈ψ|, then unitary transformation acts by left-multiplication on |ψ〉, yield-
ing U |ψ〉. Since every unitary U has an inverse U∗, it follows that every unitary
transformation on quantum states is reversible: one could simply apply U−1 = U∗

and recover ρ (from UρU∗) without losing any information about ρ.
Quantum gates are usually unitaries, acting on at most three qubits. An

important class of single-qubit gates are the Pauli operators {12, X, Y, Z}, whose
action is given by:

12 : |b〉 7→ |b〉, X : |b〉 7→ |b⊕1〉, Y : |b〉 7→ (−1)bi|b⊕1〉, Z : |b〉 7→ (−1)b|b〉

for b ∈ {0, 1}. The corresponding matrix representation of these Pauli matrices
is given by

12 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

In the circuit model these gates are represented as follows

12 X Y Z

Figure 2.1: Pauli gates {12, X, Y, Z} in the circuit model

The single-qubit Hadamard transform corresponds to the unitary map

H : |a〉 7→ |0〉+ (−1)a|1〉√
2

for a ∈ {0, 1}.

We often shorthand the notation |0〉+|1〉√
2

as |+〉 and |0〉−|1〉√
2

as |−〉. The matrix
representation of the Hadamard transform is given by

H =
1√
2

(
1 1
1 −1

)
.

The two-qubit controlled-not gate (referred to as the CNOT gate) corresponds
to the following map: for b1, b2 ∈ {0, 1}, on input |b1, b2〉, the CNOT gate flips b2
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if b1 is 1 and does nothing to b2 if b1 is 0,

CNOT : |0, b2〉 7→ |0, b2〉
CNOT : |1, b2〉 7→ |1, b2 ⊕ 1〉.

The unitary corresponding to the CNOT gate is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The Hadamard and CNOT gate in the circuit model are represented as follows

H

Figure 2.2: Hadamard and CNOT gate in the circuit model

The CNOT gate is sometimes referred to as the controlled-X gate, since on
input |b1, b2〉, the CNOT gate applies Xb1 on the second qubit (where Xb1 is the
matrix X raised to the power b1). For an n-qubit unitary U , one can generalize
the controlled-X gate definition, and define a controlled-U gate acting on n + 1
qubits as follows: for every b1, . . . , bn+1 ∈ {0, 1},

controlled-U : |b1〉|b2, . . . , bn+1〉 7→ |b1〉U b1|b2, . . . , bn+1〉.

The controlled-U gate in the circuit model is represented as follows

... U

Figure 2.3: For an n-qubit unitary U , the controlled-U gate in the circuit model

The three-qubit Toffoli gate is also called the controlled-controlled NOT gate
(referred to as the CCNOT gate). The Toffoli gate flips the last input bit if and
only if the first two input bits are 1:

CCNOT : |b1, b2, b3〉 7→ |b1, b2, b3 ⊕ (b1 · b2)〉 for every b1, b2, b3 ∈ {0, 1}.
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Finally, most quantum algorithms in this thesis will begin by creating the uni-
form superposition state using the n-qubit Hadamard transform, denoted as H⊗n,
whose action on |0n〉 is given by

H⊗n|0n〉 =
1√
2n

∑
a∈{0,1}n

|a〉.

Measurements. Although quantum mechanics allows quantum states to be in
a superposition, an unfortunate aspect of quantum mechanics is that, given a
quantum system containing an unknown k-qubit state |φ〉, it is not possible to
retrieve the 2k-dimensional vector corresponding to |φ〉. In order to obtain any
information from a quantum system, we need to measure the system. Suppose
we are given a quantum system in the state |φ〉 =

∑
i∈{0,1}k αi|i〉 and we would

like to obtain classical information from |φ〉. One näıve possibility is to simply
measure the k qubits. Then, quantum mechanics predicts that we will see an
outcome j ∈ {0, 1}k with probability |αj|2. Since |φ〉 was a unit vector in C2k ,
measuring |φ〉 in the computational basis can be viewed as simply sampling from
the distribution given by the squared-amplitude distribution {|αi|2}i∈[2k]. Suppose
we measure |φ〉 and saw the outcome j, then |φ〉 collapses to |j〉, which cannot
be reused to obtain any other information about |φ〉.

The measurement operation in the circuit model is represented as follows

Figure 2.4: Measurement operation (in the computational basis) in the cir-
cuit model

Of course, there is more to quantum mechanics than just computational basis
measurement. In general, suppose we have a quantum state ρ, then to obtain
classical information from ρ, one can apply an m-outcome quantum measurement,
also called a POVM (positive-operator-valued measure). This POVM is described
by a set of positive semi-definite matrices {Mi}i∈[m] that satisfy

∑
iMi = 1. When

measuring ρ using this POVM, the probability of outcome j is given by Tr(Mjρ)
and the resulting quantum state after the measurement is MjρM

∗
j /Tr(Mjρ).

2.3 Query models

In this section we begin by discussing the classical decision tree model and its
quantum generalization, the quantum query model. The central object here is a
Boolean function f . Let D ⊆ {0, 1}n and suppose f : D → {0, 1} is a Boolean
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function. We say f is a total Boolean function if D = {0, 1}n, i.e., f(x) is defined
on every point on the Boolean cube {0, 1}n. Suppose D ⊂ {0, 1}n, then we say
that f is a partial Boolean function. The need for this distinction between par-
tial and total Boolean functions will become clear when we discuss relationships
between quantum and classical query complexity. In both query models, the goal
is to compute f(x) for an unknown x. The only difference between these models
is the query access to the unknown x. As the name suggests, in the decision tree
model, we are allowed to make classical queries and in the quantum query model,
we can make queries in a quantum superposition.

2.3.1 Decision tree complexity

We now define the deterministic query complexity of f . Promised that x ∈ D, the
goal is to learn f(x), when only given access to x through an oracle that encodes x.
An application of the oracle is usually referred to as a query, which consists of an
index i ∈ [n] and the response of the oracle xi ∈ {0, 1}.3 A deterministic decision
tree is a binary tree A. Each node in A is labeled with some i ∈ [n] and has
two outgoing edges, labeled 0 and 1 (depending on the value of xi). The leaves
of A are labeled with an output bit {0, 1}. Given an input x = x1 · · ·xn, the
tree proceeds at the ith node by evaluating the input bit xi and continuing in the
subtree corresponding to the value of xi ∈ {0, 1}. The output of A is the value of
the leaf that is reached eventually. Apart from making queries, A is also allowed
to perform arbitrary reversible operations in between queries depending on the
response to the previous queries.

We say an decision tree A exactly computes f if the output of the tree A(x)
equals f(x) on every input x ∈ D. Note that we are not concerned with the output
of the algorithm for the xs not in D. The cost of A on input x, denoted C(A, x),
is the number of queries that A makes to the oracle encoding x. Clearly there
are different decision trees that compute f . The deterministic query complexity
of f , denoted D(f), is the “worst-case” cost of the “best” decision tree that
computes f , i.e.,

D(f) = min
A

max
x

C(A, x),

where the first minimum is over all decision trees A that exactly compute f and
the maximum is over x ∈ D.

Clearly D(f) ≤ n for every f since the decision tree A could simply query
every bit of x ∈ {0, 1}n and compute f(x). Also D(f) ≥ 0 for every f . Both these
inequalities are tight, the latter being true for the constant 1 function. In order
to exhibit a function satisfying D(f) = n, let f : {0, 1}n → {0, 1} be the function
defined as follows: f(x) equals 1 if and only if there exists an i ∈ [n] such that

3A natural way to model a classical query to the oracle is by the reversible map that maps
an input (i, b) to (i, b⊕ xi) for i ∈ [n] and b ∈ {0, 1}.
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xi = 1. This function is also referred to as the ORn function on n bits. We claim
that D(ORn) = n. Let A be the best decision tree minimizing the outer min in
D(f). Suppose A makes n−1 queries to the oracle and observes 0 always, then A
knows x almost entirely, except for one bit of x (say, xn is unknown). Observe
that the value of xn could be 1 in which case ORn(0n−1, 1) evaluates to 1, or xn
could be 0 in which case ORn(0n−1, 0) evaluates to 0. This forces A to make n
queries on the worst input in order to compute ORn with certainty.

Randomized query model. The randomized query model adds the power of
randomization to the decision tree model and tries to understand if randomness
can reduce query complexity. A randomized decision tree Aµ is defined as a prob-
ability distribution µ over deterministic decision trees. On input x, a randomized
decision tree first samples a deterministic decision tree A according to µ and then
outputs A(x). The expected cost of Aµ is then defined as

C(Aµ) = E
A∼µ

max
x∈{0,1}n

C(A, x).

A two-sided randomized decision tree is said to compute f : D → {0, 1} with
error ε ≥ 0, if the output of Aµ, on input x ∈ D, is equal to f(x) with proba-
bility at least 1 − ε (where the probability is taken over the randomness of the
algorithm). Finally, the randomized query complexity, denoted Rε(f), is the mini-
mum expected cost of a two-sided randomized decision tree that computes f with
error ε. For notational convenience, we write R(f) as a shorthand for R1/3(f).4

Clearly R(f) ≤ D(f). In fact, it is not hard to see that there could be a saving
in this model. For example, R(ORn) ≤ 2n/3. Indeed, consider a randomized
algorithm that samples 2n/3 indices i ∈ [n] uniformly at random and queries the
xis corresponding to the is it has seen. Suppose the algorithm finds a j such that
xj = 1, then it outputs 1, if not it outputs 0. It is not hard to see that this
algorithm computes ORn with probability at least 2/3, so R(ORn) ≤ 2n/3.

2.3.2 Quantum query complexity

The quantum query model was formally defined by Beals et al. [BBC+01]. In
this model, we are given black-box access to a unitary operator, often called
an oracle Ox, whose description depends in a simple way on some binary input
string x ∈ {0, 1}n. An application of the oracle on a quantum register is referred
to as a quantum query to x. In the standard form of the model, a query acts on
a pair of registers (A,Q), where A is a one-qubit auxiliary register and Q is an
n-dimensional query register. A quantum query to the oracle is a coherent version

4Note that 1/3 is an arbitrary constant often used when discussing query complexity. One
could simply reduce the error probability to ε by repeating the algorithm O(log(1/ε)) times
and taking the majority of the output.
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the classical query and corresponds to the unitary transformation given by

Ox : |b, i〉 → |b⊕ xi, i〉,

where b ∈ {0, 1} and i ∈ [n]. These oracles are also commonly called bit oracles.
Apart from the queries Ox, a quantum query algorithm consists of a fixed

sequence of unitary operations acting on registers (A,Q,W), where W is an ad-
ditional workspace register. A t-query quantum algorithm begins by initializing
the joint register (A,Q,W) in the all-zero state and continues by interleaving a
sequence of unitaries U0, . . . , Ut on (A,Q,W) with oracles Ox acting on (A,Q).
The algorithm concludes by measuring the first register A (as in the figure below)
and returns the measurement outcome.5

...

W

A

Q U0
Ox

U1 . . .
Ox

Ut

Figure 2.5: A t-query quantum algorithm that begins in the all-zero state and
outputs the measurement outcome of register A

For a Boolean function f : {0, 1}n → {0, 1}, the algorithm is said to compute f
with error ε ≥ 0 if for every x, the measurement outcome of register A equals f(x)
with probability at least 1−ε. The bounded-error query complexity of f , denoted
Qε(f), is the smallest t for which such an algorithm exists. Note that in the query
model, we are not concerned with the amount of time (i.e., the number of gates)
it takes to implement the interlacing unitaries, which could be much bigger than
the query complexity itself. From here onwards, unless explicitly mentioned, we
write Q(f) as a shorthand for Q1/3(f). Clearly Q(f) ≤ R(f). In fact, we will see
in the next section that for f = ORn, Q(f) is quadratically smaller than R(f).

For convenience, we will often work with a slightly less standard oracle some-
times referred to as a phase oracle, denoted by Ox,±. The action of Ox,± on the
basis states can be described by

Ox,± : |b, i〉 → (−1)b·xi |b, i〉, (2.2)

where b · xi is the bitwise AND between b and xi. Using the standard “phase
kick-back trick”, the phase oracle can be obtained from the standard oracle Ox,
preceded and followed by a Hadamard on A. Indeed, given access to the bit

5Without loss of generality, we can assume that all intermediate measurements can be de-
ferred to the end of the circuit.
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oracle Ox, we can make a phase query as follows: start with |b, i〉 and apply

the Hadamard gate H = 1√
2

(
1 1
1 −1

)
to the first qubit to obtain (|0〉|i〉 +

(−1)b|1〉|i〉)/
√

2. Apply Ox to obtain

|xi〉|i〉+ (−1)b|1⊕ xi〉|i〉√
2

.

Finally, apply the Hadamard gate to the first qubit and observe that the resulting
state is (−1)b·xi |b, i〉.

Since the Hadamards involved in the intercoversion between Ox and Ox,± can
be undone by the unitaries surrounding the queries in a quantum query algorithm,
using the phase oracle does not reduce generality.

2.3.3 Separations between quantum and classical query
complexity

One of the main attractions of the query model is its simplicity. In order to
analyze the complexity, we need not worry about the time taken by the algorithm,
the amount of space used and the gates/operations involved in the algorithm.
In contrast to other models like circuit complexity, the simplicity in the query
model allows one to prove tight (unconditional) lower bounds and show provable
separations between different query models.

One area of study which has received a lot of attention is the relationship
between the quantum and classical query models: can the quantum query model
give exponential savings compared to the deterministic query model for certain
Boolean functions or is there at most a polynomial advantange in the quantum
query model for a class of Boolean functions? Two famous results in this direc-
tion were the period-finding algorithm (which was a crucial subroutine in Shor’s
factoring algorithm [Sho97]) that finds the period of a periodic function exponen-
tially faster than every classical algorithm, and Grover’s search algorithm [Gro96]
which finds a marked item in an unstructured database using quadratically fewer
quantum queries than a classical search algorithm. Although the speed-up for
the search problem is only quadratic, the search algorithm has found application
in numerous examples. We discuss this further in Section 2.5.1.

We briefly comment on the state-of-the-art separations between R(f), D(f)
and Q(f). For partial Boolean functions, we know of exponential separations be-
tween these measures. The first exponential separation between D(f) and Q(f)
was given by Deutsch and Josza [DJ92]. They exhibited a partial function on N
bits which could be solved using 1 quantum query and showed that every classical
deterministic algorithm would need to make Ω(N) queries. However, a random-
ized algorithm could solve the Deutsch-Jozsa problem efficiently if allowed a small
error probability, so this function didn’t separate R(f) and Q(f). Subsequently,
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Simon [Sim97] defined a partial function which gave an exponential separation be-
tween R(f) and Q(f). Larger separations between R(f) and Q(f) were obtained
(and conjectured) in more recent results of Aaronson and Ambainis [AA15] using
the so-called Forrelation problem and the k-fold variant of the Forrelation prob-
lem.

The situation is completely different for total Boolean functions. Beals et
al. [BBC+01] ruled out the possibility of an exponential speed-up between Q(f)
and D(f) and showed that for total functions, there is at most a polynomial
separation between D(f), R(f), Q(f). It was shown that D(f) ≤ Q(f)6 [BBC+01]
and D(f) ≤ R(f)3 [Nis91] for all total Boolean functions. The question that
remains open is: are these inequalities tight, i.e., do there exist total Boolean
functions f, g for which D(f) ≥ Q(f)6 and D(g) ≥ R(g)3? The largest separation
between D(f) and Q(f) was a quadratic separation for f = ORn, for which
D(f) ≥ R(f) ≥ Q(f)2 (since Grover’s search algorithm [Gro96] shows Q(ORn) ≤
O(
√
n) and R(ORn) = Ω(n)). Larger separations were not known until recently.

In 2015, Ambainis et al. [ABB+16] in a breakthrough result, showed among many
things, explicit total Boolean functions f and g that satisfy D(f) ≥ Q(f)4 and
D(g) ≥ R(g)2. The Boolean function they used to separate these measures
was inspired by the so-called “pointer functions” introduced in the work of Göös,
Pittasi and Watson [GPW15].

2.4 Lower bound methods for quantum query

complexity

Several methods have been proposed over the years to give upper bounds on
quantum query complexity. Almost always, one gives an upper bound on query
complexity by explicitly constructing an algorithm that solves the problem and
analyzing the complexity of the algorithm. In this direction there are a few
general methods used often to construct quantum algorithms, such as quantum
walks [Amb07, MNRS11], span programs [Rei09], learning graphs [Bel12], so-
called bomb query complexity [LL16]. However, in addition to understanding the
advantage provided by quantum query algorithms, it is also important to under-
stand their limitations, which requires proving lower bounds on query complexity.
In order to prove a lower bound, we need to show that every algorithm that solves
a problem needs to make at least a certain number of queries. Proving such a
statement seems very hard since we need to argue about all possible algorithms,
in fact its not even clear how one would prove such a statement.

There are two well-known methods known to give lower bounds for quan-
tum query complexity: polynomial method introduced by Beals et al. [BBC+01]
and the adversary method introduced by Ambainis [Amb00]. The latter was
eventually generalized to the so-called negative-weight adversary method [HLŠ07]
and was shown to characterize quantum query complexity [HLŠ07, Rei09, Rei11,
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LMR+11]. In the next two sections we give a brief overview of these lower
bound techniques.

2.4.1 Polynomial method

Beals et al. [BBC+01] made the following simple, yet beautiful connection between
multilinear polynomials on the Boolean cube and quantum query algorithms,
which gave rise to the polynomial method.

2.4.1. Lemma. Suppose A is a t-query quantum algorithm given oracle access to
an input x ∈ {0, 1}n, then the acceptance probability of A is a degree-(2t) real
multilinear polynomial in x1, . . . , xn.

Proof. Beals et al. [BBC+01] in fact observed something stronger, the amplitude
of every basis state in A after making t queries is a degree-t complex multilin-
ear polynomial. More precisely, they showed the final state of A (in terms of
Figure 2.5) before the measurement of register A can be written as∑

b∈{0,1},i∈[n],w∈{0,1}m
αb,i,w(x)|b, i, w〉,

where αi,b,w(x) is a degree-t complex multilinear polynomial in x1, . . . , xn and W
is assumed to act on m workspace qubits. We now prove this by induction on t.

Base case. Clearly when t = 0, A hasn’t made any queries to x ∈ {0, 1}n, so
the amplitude of the basis states depend only on U0 and are independent of x. In
particular, the amplitudes can be viewed as degree-0 polynomials.

Induction hypothesis. Suppose after t− 1 queries, the state of the quantum
algorithm is given by ∑

b∈{0,1},i∈[n],w∈{0,1}m
βb,i,w(x)|b, i, w〉,

where βb,i,w(x) are complex multilinear polynomials of degree at most t− 1.

Induction step. Suppose A makes one more query. The action of (Ox,±⊗1W)
on a basis state |b, i, w〉 with amplitude βb,i,w(x) can be written as

(Ox,± ⊗ 1W) · βb,i,w(x)|b, i, w〉 = βb,i,w(x)(−1)b·xi|b, i, w〉
= βb,i,w(x)(1− 2b · xi)|b, i, w〉.

Let αb,i,w(x) := βb,i,w(x)(1−2b·xi) be the new amplitude of the basis state |b, i, w〉
after t queries. Clearly αb,i,w(x) has degree at most 1 more than the degree
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of βb,i,w(x), so at most t. The polynomial αb,i,w(x) can be made multilinear
because of the relation x2

i = xi for xi ∈ {0, 1}. Finally, the unitary Ut only
redistributes the amplitudes of the basis states in a linear way and is independent
of x, thereby not increasing the degree of the polynomials in the amplitude. This
concludes the induction step and shows that the amplitudes of A are degree-t
complex polynomials in x1, . . . , xn.

In order to conclude the proof of the lemma, simply observe that the proba-
bility A accepts is given by the probability that the measurement of register A
(in Figure 2.5) results in 1, which is given by

Pr[A outputs 1] =
∑

i∈[n],w∈{0,1}m
|α1,i,w(x)|2. (2.3)

This is clearly a real multilinear polynomial of degree at most 2t (since the degree
of αb,i,w(x) was at most t). 2

In order to put this lemma to use, we need the following definition of approx-
imate degree of a Boolean function f .

2.4.2. Definition (Approximate degree). Let D ⊆ {0, 1}n and ε ≥ 0. The ε-
approximate degree of f : D → {0, 1}, denoted degε(f), is the smallest positive
integer k for which there exists a degree-k multilinear polynomial p : Rn → R
such that

1. |p(x)− f(x)| ≤ ε for every x ∈ D
2. |p(x)| ≤ 1 for every x ∈ {0, 1}n.

For simplicity, let q(x) = Pr[A outputs 1] in Eq. (2.3) and let us assume
deg(q) ≤ 2t. Suppose that A is an optimal t-query quantum algorithm that
computes a Boolean function f : D → {0, 1} with error at most 1/3. It follows
that: for all x ∈ D, if f(x) = 0, then q(x) ∈ [0, 1/3] and if f(x) = 1, then
q(x) ∈ [2/3, 1] (where we used that q(x) ∈ [0, 1]). Clearly q satisfies the require-
ments of Definition 2.4.2 for ε = 1/3, hence Q(f) = t ≥ deg(q)/2 ≥ deg1/3(f)/2.
In general, the polynomial method gives us the following corollary.

2.4.3. Corollary. Let ε ≥ 0 and D ⊆ {0, 1}n. Then for every f : D → {0, 1},
we have that Qε(f) ≥ degε(f)/2.

The polynomial method thus converts the problem of lower bounding quan-
tum query complexity to the problem of proving lower bounds on degε(f). Given
that lower bounds on approximate degree (in particular for univariate polyno-
mials) have been studied for decades in the field of approximation theory, this
corollary allows us to use results from the latter to show lower bounds on quan-
tum query complexity. In fact, in Section 2.5.2, we show that Grover’s search
algorithm is optimal for computing the ORn function, using fundamental results
from approximation theory.
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2.4.2 Adversary method

In this section, we discuss another approach to show lower bounds on quan-
tum query complexity, the quantum adversary method. The original adversary
method was introduced by Ambainis [Amb00] and is often refered to as the
“positive-weight” adversary method. However, it was later shown that this
method cannot be used to prove optimal lower bounds for certain Boolean func-
tions [Zha05, ŠS06].6 Høyer, Lee and Špalek [HLŠ07] extended the work of Ambai-
nis and defined the “negative-weight” adversary method, which can prove strictly
better quantum query lower bounds than the bounds obtained by the positive-
weight adversary method. Subsequently, a series of works by Reichardt and oth-
ers [Rei09, Rei11, LMR+11] showed that the negative-weight adversary method in
fact characterizes quantum query complexity, i.e., the negative-weight adversary
method can also be used to give upper bounds on quantum query complexity. In
this section, we describe the lower bound obtained by the positive-weight adver-
sary method. The negative-weight method is significantly more complicated and
we refer the reader to [HLŠ07],[Chi11, Chapter 22].

Let’s recall the quantum query model discussed in Section 2.3.2. The final
state (before the measurement) of a t-query quantum algorithm computing a
Boolean function f can be written as

|ψtx〉 = UtOxUt−1 · · ·U1OxU0|0 · · · 0〉.

The basic idea of the adversary method is the following: a good T -query quan-
tum algorithm for f should be able to differentiate between an x ∈ f−1(0) and
y ∈ f−1(1), i.e., it should be able to distinguish between |ψTx 〉 and |ψTy 〉. If the
algorithm has made no queries, then it cannot distinguish between x and y and
clearly |〈ψ0

x|ψ0
y〉| = 1. However, every oracle application gives “some information”

about the input string. After T queries, a good algorithm (with error ≤ 1/3)
should be able to distinguish between |ψTx 〉 and |ψTy 〉 with probability at least
2/3. Using the following well-known fact in quantum information theory, which
can be found for instance in [KLM06, Theorem A.9.1], it follows that |〈ψTx |ψTy 〉|
is significantly smaller than 1.

2.4.4. Fact. Let binary random variable b ∈ {0, 1} be uniformly distributed.
Suppose an algorithm is given |ψb〉 (for unknown b) and is required to guess
whether b = 0 or b = 1. It will guess correctly with probability at most
1
2

+ 1
2

√
1− |〈ψ0|ψ1〉|2. In particular, if we can distinguish |ψ0〉 and |ψ1〉 with

probability ≥ 1− δ, then |〈ψ0|ψ1〉| ≤ 2
√
δ(1− δ).

Indeed, by plugging in δ = 2/3, we get |〈ψ0
x|ψ0

y〉| ≤ 17/18. In T queries,
the algorithm goes from having no information about x, y (i.e., |〈ψ0

x|ψ0
y〉| = 1) to

6This is often referred to as the certificate barrier, a combinatorial object which we do not
define here.
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distinguishing x and y with probability ≥ 2/3 (i.e., |〈ψTx |ψTy 〉| ≤ 17/18). Sup-
pose we can upper bound the amount of information provided by a single oracle
application, then we can use this to give a lower bound on T . We make this
formal now.

Instead of picking a single (x, y) ∈ f−1(0)×f−1(1) as above, Ambainis [Amb02]
suggested considering a subset R ⊆ f−1(0)× f−1(1) of hard-to-distinguish (x, y)-
pairs and defining a progress measure as follows:

Φ(t) =
∑

(x,y)∈R

|〈ψtx|ψty〉|.

Let us make a few observations about the progress measure function Φ. First
observe that Φ(t) is not affected by the application of a unitary since unitary
transformations preserve inner product (by definition). Hence, it follows that
Φ(0) = |R|, since |ψ0

x〉 and |ψ0
y〉 are independent of x, y respectively.

Suppose Q(f) = T . Then, there exists a T -query quantum algorithm that can
distinguish |ψTx 〉 and |ψTy 〉 with probability at least 2/3 for every (x, y) ∈ f−1(0)×
f−1(1). In particular, using δ = 1/3 in Fact 2.4.4, we get |〈ψTx |ψTy 〉| ≤ 17/18 for
every (x, y) ∈ f−1(0)× f−1(1). Hence,

Φ(T ) =
∑

(x,y)∈R

|〈ψTx |ψTy 〉| ≤ 17|R|/18.

This implies that |Φ(T ) − Φ(0)| ≥ |R|/18. Suppose we could show that the
change in the progress measure in every step can be upper bounded by ∆, i.e.,
|Φ(t + 1) − Φ(t)| ≤ ∆ for every t, then we obtain a lower bound on T . To see
this, observe that

|Φ(T )− Φ(0)| = |Φ(T )− Φ(T − 1) + Φ(T − 1) + · · · − Φ(1) + Φ(1)− Φ(0)|
≤ |Φ(T )− Φ(T − 1)|+ · · ·+ |Φ(1)− Φ(0)|
≤ T∆,

where the first inequality follows from triangle inequality. Putting together
|Φ(T ) − Φ(0)| ≥ |R|/18 and the inequality above, we get T ≥ |R|/(18∆). Am-
bainis [Amb00] used this idea and proved the following theorem.

2.4.5. Theorem. Let D ⊆ {0, 1}n and f : D → {0, 1}. Suppose R is a relation
R ⊆ f−1(0)×f−1(1) (equivalently, a bipartite graph with vertices labelled by n-bit
strings) with the following properties:

1. Every left-vertex v is related to at least m right-vertices w (i.e., |{w ∈
f−1(1) : (v, w) ∈ R}| ≥ m).

2. Every right-vertex w is related to at least m′ left-vertices v (i.e., |{v ∈
f−1(0) : (v, w) ∈ R}| ≥ m′).
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3. For every i ∈ [N ], every left-vertex v is related to at most ` right-vertices w
satisfying vi 6= wi.

4. For every i ∈ [N ], every right-vertex w is related to at most `′ left-vertices
v satisfying vi 6= wi.

Suppose there exists a quantum algorithm that, on input x ∈ D, outputs f(x) with
high probability, then

∆ ≤ O
(√ ``′

mm′
|R|
)
,

and therefore, the algorithm makes at least |R|/(18∆) = Ω(
√
mm′/``′) queries.

We do not prove the theorem here and refer the interested reader to Ambai-
nis [Amb00]. Although the theorem is fairly simple to state, in order to obtain
interesting lower bounds using this method, it is important to cleverly choose the
relation R that simultaneously maximizes m,m′ and minimizes `, `′. We see one
such example in Section 2.5.2.

2.5 Quantum search in a database

One of the main successes of quantum algorithms so far is Grover’s algorithm
for database search [Gro96, BHMT02]. Here a database of size N is modeled as
a binary string x ∈ {0, 1}N , whose bits are indexed by i ∈ {0, . . . , N − 1}. A
solution is an index i such that xi = 1. The goal of the search problem is to
find such a solution given query access to x. A decision version of the problem
asks if there exists a solution. Note that this decision problem is equivalent to
computing the function ORN : {0, 1}N → {0, 1} which, on input x, evaluates to 1
if and only if |x| ≥ 1.

If our database has Hamming weight |x| = 1, we say it has a unique solution.
In this case, it is not hard to see that one needs to make Ω(N) classical queries in
order to find a solution. In the quantum setting, Grover discovered a surprising
quantum algorithm that finds a solution with high probability using O(

√
N)

database queries and O(
√
N logN) other elementary gates. For the special case

of a database with a unique solution the number of queries is essentially π
4

√
N , and

Zalka [Zal99] showed that this number of queries is optimal. There are variations
of the search problem wherein the database has at least t solutions, and t is a
parameter that could possibly be unknown to the algorithm. In this case, there is
a variant of Grover’s algorithm that, with high probability, finds a solution using
O(
√
N/t) queries and another variant that finds all the solutions using O(

√
Nt)

queries. For a quick summary of the important variations of Grover’s algorithm,
we refer the reader to [Wol10, Appendix A].

While Grover’s search algorithm does not provide an exponential speed-up
like Shor’s factoring algorithm [Sho97] and might seem not-so impressive, the
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search algorithm in various forms and generalizations has been applied as a sub-
routine in many other quantum algorithms. Often the main source of polynomial
speed-ups for these algorithms is due to Grover’s search algorithm. See for exam-
ple [BHT97, BCW98, Amb04, BDH+05, DH96, DHHM06, Dör07, Kot14, LL16,
LMP15, Mon17b].

2.5.1 Grover’s algorithm

We now formally describe Grover’s search algorithm for the following problem:

2.5.1. Definition (Unstructured search). Let n ∈ N and N = 2n. Given a
database modelled as x ∈ {0, 1}N , the goal is to find an index i ∈ [N ] such that
xi = 1 (we refer to such an i as a solution) and output ‘no solutions’ if there
exists no such i.

In order to solve the problem, we assume that we can access the database by
means of phase oracle Ox,±. In fact we will assume something more about these
phase oracles. Grover’s algorithm consists of a sequence of unitaries U0, . . . , Ut
(as in Figure 2.5) which do not act on register A. Hence we can set register A to
the state |1〉. From here onwards, we will ignore register A in Fig. 2.5 and let the
phase oracle correspond to the transformation Ox,± : |i〉 → (−1)xi |i〉.

In order to describe Grover’s algorithm we need the diffusion operator

D = H⊗n(2|0n〉〈0n| − 1N)H⊗n = 2|ψ〉〈ψ| − 1N ,

where |ψ〉 = 1√
N

∑
i∈{0,1}n |i〉 is the uniform superposition state. Grover’s algo-

rithm can then be described by circuit in Figure 2.6.
Let us now verify the correctness of the algorithm. For simplicity, assume

that there is a unique solution at index k, i.e., xk = 1. In order to understand
the action of DOx± on |ψ〉, it is convenient to introduce a “good” state |G〉 and
“bad” state |B〉,

|G〉 = |k〉, |B〉 =
1√

N − 1

∑
i∈{0,1}n\{k}

|i〉.

The state of the algorithm after the first batch of Hadamard gates can then
be written as

|ψ〉 =
1√
N

∑
i∈{0,1}n

|i〉 =
1√
N
|G〉+

√
N − 1

N
|B〉 (2.4)

The whole point of defining |G〉, |B〉 is the following: if we were to measure |ψ〉
in the computational basis, we would obtain |k〉 with probability 1/N and with
probability 1 − 1/N obtain an i for which xi = 0. Grover’s algorithm consists
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...

|0〉
|0〉

|0〉

H

H

H

Ox,± D Ox,± D
. . .

Ox,± Dn

O(
√
N) times

Figure 2.6: Grover’s algorithm. Begin with the all-0 state and apply H⊗n to
create the uniform superposition state. Then apply (Ox,± · D) O(

√
N) many

times and measure the outcome. The final measurement gives us the solution k
with high probability (using an additional classical query, one can easily check
if xk = 1).

of a sequence of O(
√
N) applications of DOx,± that drives the amplitude of |G〉

from 1√
N

to approximately 1 so that a final measurement in Fig. 2.6 yields k with
high probability.

We now explain one application of DOx,± in a geometric manner. Since |G〉
and |B〉 are orthogonal states, let us work in the 2-dimensional space spanned by
the states |G〉 and |B〉. In this direction, let θ be such that sin(θ) = 1√

N
. Then,

from Eq. (2.4), we have |ψ〉 = sin(θ)|G〉 + cos(θ)|B〉. After the first query Ox,±,
the state of the algorithm can be written as

1√
N

∑
i∈{0,1}n

(−1)xi |i〉 = − sin(θ)|G〉+ cos(θ)|B〉,

which is effectively a reflection around the basis state |B〉 (see the second diagram
in Fig. 2.7 for a geometric perspective). In order to understand the action of
D = (2|ψ〉〈ψ| − 1N), let |φ〉 to be a state (in the span of {|G〉, |B〉}) that is
orthogonal to |ψ〉. Then,

D|ψ〉 = |ψ〉, D|φ〉 = −|φ〉,

hence D implements a reflection around the state |ψ〉. As is well-known in linear
algebra, the product of two reflections amounts to a rotation, so the action of
(D · Ox,±) on |ψ〉 can be seen as a rotation towards the good state |G〉. This is
illustrated in Fig. 2.7.

The action of DOx,± on |ψ〉 can be written as

DOx,± : sin(θ)|G〉+ cos(θ)|B〉 → sin(3θ)|G〉+ cos(3θ)|B〉.
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|B〉

|G〉

|ψ〉

|B〉

|G〉

|ψ〉

Ox,±|ψ〉

|B〉

|G〉

|ψ〉

DOx,±|ψ〉

Ox,±|ψ〉

θ

2θ

4θ

Figure 2.7: The first figure expresses |ψ〉 = sin(θ)|G〉+cos(θ)|B〉 in the {|G〉, |B〉}
basis. The action of DOx,± on |ψ〉 is described in two stages: first Ox,± performs
a reflection through |B〉 (second figure), next D performs a reflection through the
dashed |ψ〉 (third figure). The net effect is a rotation of |ψ〉 by an angle 2θ.

More generally, suppose we apply DOx,± t times to |ψ〉 (for some t that we
pick later), we obtain

(DOx,±)t : sin(θ)|G〉+ cos(θ)|B〉 → sin((2t+ 1)θ)|G〉+ cos((2t+ 1)θ)|B〉.

We now want to pick t so that sin2((2t+ 1)θ) is close to 1, so that a measurement
of the final state would yield |G〉 with high probability.7 Ideally, we should pick
t′ = π

4θ
−1/2, so that sin2((2t′+1)θ) = 1, but it is not clear if t′ is even an integer.

Instead, we pick t to be the largest integer less than π
4θ
− 1/2.

Let us analyze the success probability of the algorithm for this choice of t.
First note that |t− ( π

4θ
− 1/2)| ≤ 1. Using this, observe that

sin2((2t+ 1)θ) ≥ sin2
((

2
( π

4θ
− 3

2

)
+ 1
)
θ
)

= sin2(π/2− 2θ)

= 1− sin2(2θ) ≥ 1− 4/N,

where the first inequality used the monotonicity of sin(φ) for φ ∈ [0, π/2] and the
last inequality used that sin(θ) = 1/

√
N .

Let us now analyze the query complexity and gate complexity of Grover’s
algorithm. Using arcsin(φ) ≥ φ for φ > 0, clearly t ≤ π

4

√
N . So, the query

complexity is at most π
4

√
N . In order to analyze the gate complexity, it remains

to analyze the number of gates involved in implementing D (we do not count

7Note that we also need to pick t so that we do not “overshoot” |G〉, i.e., in Fig. 2.7 each
application of Ox,±D is a rotation by 2θ anti-clockwise, so for some t, (DOx,±)t|ψ〉 will get
close to |G〉 and for q ≥ t, (DOx,±)q|ψ〉 will cross over |G〉 and move to the second quadrant in
the 2-dimensional space spanned by the states |G〉 and |B〉.
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the application of a query Ox,± as a gate). Let Dn = 2|0n〉〈0n| − 1N be the n-
qubit unitary that reflects through |0n〉. It is not hard to see that this can be
implemented using O(n) elementary gates and n−1 auxiliary qubits that all start
and end in |0〉 (and that we often will not even write explicitly). Specifically,

one can apply X =

(
0 1
1 0

)
gates to each of the n qubits, then use n − 1

Toffoli gates into n − 1 auxiliary qubits to compute the logical AND of the first
n qubits, then apply −Z to the last qubit (which negates the basis states where
this AND is 0), and reverse the Toffolis and Xs. So, the overall gate complexity
of implementing Dn is 4n − 1. Along with the n Hadamard gates applied at
the start of the algorithm, the overall gate complexity of Grover’s algorithm
is O(

√
N logN).

This concludes the analysis of Grover’s algorithm and in particular shows
that we can solve unstructured search problem using O(

√
N) quantum queries

and O(
√
N logN) elementary gates. Furthermore, we show in the next section

that Grover’s algorithm is in fact optimal in terms of queries, i.e., there ex-
ists no quantum algorithm that can search an unstructured database by making
fewer queries.8 In Chapter 3, we will present another search algorithm that has
essentially the same query complexity of Grover’s algorithm and has gate com-
plexity O(

√
N log(log?N)).

2.5.2 Quantum lower bound for search

The first known query lower bound for quantum algorithms solving the search
problem was shown before Grover’s search algorithm was even discovered! Ben-
nett et al. in 1993 [BBBV97] used the so-called hybrid-method to show that every
quantum algorithm that solves the search problem requires Ω(

√
N) queries. In

this section, we do not describe their proof. Instead, we give two lower bound
proofs for the search problem: using the polynomial method and the positive-
weight adversary method.

Using polynomial method. A priori, it is not clear, how one would use Corol-
lary 2.4.3 to show degree lower bounds for multilinear polynomials p that approxi-
mate a Boolean function (say up to error 1/3). However, for the class of symmetric
Boolean functions, the quest for approximate degree lower bounds can be highly
simplified and the polynomial method seems like a natural approach to lower
bound the quantum query complexity of such functions. A symmetric Boolean
function f : {0, 1}N → {0, 1} is a function whose value at x ∈ {0, 1}N depends
only on |x|, i.e., the Hamming weight of x. One such example is ORN . Clearly
when |x| ≥ 1, we know ORN(x) = 1, and otherwise ORN(x) = 0. A general

8Zalka [Zal99] in fact showed that even the constant in Grover’s algorithm is optimal, i.e.,
one cannot hope to solve unstructured search with fewer than π

4

√
N quantum queries.
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technique used in proving degree lower bounds for symmetric functions is to use
symmetrization to convert multivariate polynomials to a univariate polynomial
and then prove degree lower bounds for these simpler polynomials. Univariate
polynomials have been studied in approximation theory for several decades, which
allows us to borrow results from approximation theory to prove lower bounds on
quantum query complexity.

Let p be a multilinear polynomial. So p can be written as a sum of mono-
mials p(x) =

∑
S⊆[n] cS

∏
i∈S xi for some cS ∈ R. The symmetrized multilinear

polynomial p′ associated with p is defined as

p′(x) =
1

N !

∑
π∈SN

p(π(x)).

Observe that deg(p′) ≤ deg(p). Now, one can show the existence of a univariate
polynomial P : R → R defined as P (|x|) = p′(x) for every x ∈ {0, 1}N that
satisfies deg(P ) ≤ deg(p′).9 In order to see this, first note that by explicitly
writing out every summand in p′(x) in terms of the decomposition p(π(x)) =∑

S⊆[n] cS
∏

i∈S(π(x))i, every monomial in p′ with degree i has the same coeffi-

cient
∑

S:|S|=i cS. Next, suppose x ∈ {0, 1}N satisfies |x| = k, then exactly
(
k
i

)
monomials of degree i evaluate to 1 and the rest evaluate to 0. Using these
two observations we can write p′ as p′(x) =

∑N
i=0

(|x|
i

)
. We now define P to be

P (k) =
∑N

i=0

(
k
i

)
for every k ∈ {0, . . . , N} so that it satisfies P (|x|) = p′(x).

Since the binomial coefficient
(
k
i

)
is a degree-i polynomial in k, it follows that

deg(P ) ≤ deg(p′).
Let p be an N -variate polynomial that approximates ORN up to error 1/3, i.e.,

|p(x)−ORN(x)| ≤ 1/3 for every x ∈ {0, 1}N . Define a univariate polynomial P :
R→ R as above. Abusing notation, let us also define ORN(k) = E|x|=k[ORN(x)].
Then, it follows that

|P (k)−ORN(k)| =
∣∣∣ E
x∈{0,1}N :
|x|=k

[p(x)−ORN(x)]
∣∣∣ ≤ 1/3,

for every k ∈ {0, . . . , N}. In particular, by the property of the ORN function, P
satisfies the following properties: (i) P (0) ∈ [−1/3, 1/3] and (ii) P (k) ∈ [2/3, 4/3]
for every k ∈ [N ]. Nisan and Szegedy [NS94] used a theorem of Ehlich and
Zeller [EZ64] and Rivlin and Cheney [RC66], to show that every univariate poly-
nomial P satisfying property (i) and (ii) must have degree Ω(

√
N).10, Using the

9Note that deg(P ) refers to the degree of the univariate polynomial P and deg(p′) refers to
the degree of the multilinear polynomial p′.

10Nisan and Szegedy [NS94] also construct an explicit polynomial based on the Chebyshev
polynomial that attains this degree bound. The existence of such a polynomial also follows from
Grover’s algorithm. Indeed, using Corollary 2.4.3, it follows that the acceptance probability of
Grover’s algorithm is a degree-O(

√
N) polynomial that approximates the ORN function.
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remark in the previous paragraph, it now follows that, every multilinear polyno-
mial p satisfying |p(x)−ORN(x)| ≤ 1/3 for every x ∈ {0, 1}N , must have degree
Ω(
√
N). Along with Corollary 2.4.3 (the polynomial method), we have that

Q(ORN) = Ω(
√
N), which in particular shows that Grover’s search algorithm is

optimal in terms of the number of queries.

Using the adversary method. In order to prove the lower bound for search,
it suffices to look at the positive-weight adversary method. As discussed in Sec-
tion 2.4.2, the crux in proving a good lower bound using this method is to cleverly
define a relation R ⊆ f−1(0) × f−1(1) that maximizes

√
mm′/``′. In order to

do so, let

R = {(0N , e1), (0N , e2), . . . , (0N , eN)} ⊆ OR−1
N (0)×OR−1

N (1).

Note that m = N and m′ = 1 because the 0N appears in every element of
the relation and the eis appear in exactly one element of the relation. Clearly,
` = `′ = 1. This gives an overall lower bound of Q(f) = Ω(

√
N), yet again

showing that Grover’s algorithm is indeed optimal.



Chapter 3

Gate complexity of quantum search

This chapter is based on the paper “Optimizing the Number of Gates in Quantum
Search”, by S. Arunachalam and R. de Wolf [AW17c].

Abstract. In Chapter 2, we described Grover’s search algorithm to find a solu-
tion in an N -bit database. The algorithm used O(

√
N) queries and O(

√
N logN)

gates. Bennett et al. [BBBV97] showed that every search algorithm needs to
make Ω(

√
N) queries, so the quantum query complexity of the search problem

is Θ(
√
N). In this chapter we are concerned with the number of gates needed

for quantum search algorithms. Grover in 2002 [Gro02] showed how to reduce
the number of gates to O(

√
N log logN) for the special case where the database

has a unique solution, without significantly increasing the number of queries. We
show how to reduce this further to O(

√
N log(r) N) gates for every constant r,

and sufficiently large N . This means that, on average, the circuits between two
queries barely touch more than a constant number of the logN qubits on which
the algorithm acts. For a very large N that is a power of 2, we can choose r such
that the algorithm uses essentially the minimal number π

4

√
N of queries, and only

O(
√
N log(log?N)) other gates.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Overview of the proof . . . . . . . . . . . . . . . . . . . 39

3.3 Gate complexity of exact amplitude amplification . . 41

3.4 Improving the gate complexity for quantum search . 43

3.4.1 Reproving Grover’s optimized construction . . . . . . 43

3.4.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Conclusion and future work . . . . . . . . . . . . . . . 52

37



38 Chapter 3. Gate complexity of quantum search

3.1 Introduction

In this chapter, we will focus on quantum algorithms for the unstructured search
problem defined as follows:

3.1.1. Definition (Unstructured search). Let n ∈ N and N = 2n. Given a
database modelled as x ∈ {0, 1}N , the goal is to find an index i ∈ [N ] such that
xi = 1 (we refer to such an i as a solution) and output ‘no solutions’ if there
exists no such i.

In order to solve this problem, we are allowed to make quantum queries, which
correspond to the transformation

Ox,± : |i〉 → (−1)xi |i〉.

The goal is to find a solution, making as few queries as possible. The standard ver-
sion of Grover’s algorithm (discussed in Section 2.5.1) finds a solution with high
probability using O(

√
N) quantum queries and O(

√
N logN) other elementary

gates. The algorithm can be quickly summarized as follows: it starts from a uni-
form superposition over all database-indices i, and then applies O(

√
N) identical

“iterations,” each of which uses one query and O(logN) other elementary gates.
Together these iterations concentrate most of the amplitude on the solution(s).
A measurement of the final state then yields a solution with high probability.
For the special case of a database with a unique solution its number of iterations
(= number of queries) is essentially π

4

√
N , and Zalka [Zal99] showed that this

number of queries is optimal.
In [Gro02], Grover gave an alternative algorithm to find a unique solution

using slightly more (but still (π
4

+ o(1))
√
N) queries, and only O(

√
N log logN)

other elementary gates. The algorithm is more complicated than the standard
Grover algorithm, and no longer consists of O(

√
N) identical iterations. Still, it

acts on O(logN) qubits, so on average a unitary sitting between two queries acts
on only a tiny O(log logN/ logN)-fraction of the qubits. It is quite surprising
that such mostly-very-sparse unitaries suffice for quantum search.

In this chapter we show how Grover’s reduction in the number of gates can be
improved further: for every fixed r, and sufficiently large N , we give a quantum
algorithm that finds a unique solution in a database of size N using O(

√
N)

queries and O(
√
N log(r) N) other elementary gates.1 To be concrete about the

latter, we assume that the set of elementary gates at our disposal is the Toffoli
(controlled-controlled-NOT) gate, and all one-qubit unitary gates.

Organization. This chapter is organized as follows. In Section 3.2, we begin
by giving a proof sketch of our gate-optimized construction. In Section 3.3, we

1The constant in the O(·) for the number of gates depends on r. The iterated binary

logarithm is defined as log(s+1) = log ◦ log(s), where log(0) is the identity function.
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analyze the query and gate complexity of the well-known amplitude amplification
procedure. In Section 3.4.1, we prove a technical theorem that recovers the result
of Grover [Gro02]. In Section 3.4.2, we prove our main result and present some
questions for future work in Section 3.5.

3.2 Overview of the proof

Here we first give a sketch of our gate-optimized quantum algorithm. Our ap-
proach is recursive: we build a quantum search algorithm for a larger database by
applying amplitude amplification on a search algorithm for a smaller database.2

Let us sketch this in a bit more detail. Suppose we perform r recursions in such
a way that the final algorithm (after r recursions) solves the search problem on
an N -bit database and let N1 (that depends on r) be the smallest database-
size that we begin with. We consider an increasing sequence of database-sizes
N1, . . . , Nr = N , where Ni+1 ≈ 2

√
Ni (of course, N needs to be sufficiently large

for such a sequence to exist). The basic Grover algorithm C(1) can search a
database of size N1 using

Q1 = O(
√
N1), E1 = O(

√
N1 logN1)

queries and gates, respectively. We now use C(1) to construct a search algorithm
for a database with size N2 as follows. Think of the N2-sized database as consist-
ing of N2/N1 N1-sized databases; we can just pick one such (N1)-sized database
uniformly at random and use algorithm C(1) to search for a solution in the (N1)-
sized database. Assuming the (N2)-sized database had a unique solution, the
probability that the random (N1)-sized database picked contained the solution
is N1/N2. We now use O(

√
N2/N1) rounds of amplitude amplification to boost

(to 1) the N1/N2 probability that our randomly chosen (N1)-sized database hap-
pened to contain the unique solution. Each round of amplitude amplification
involves one application of the smaller algorithm C(1), one application of its in-
verse, a reflection through the logN2-qubit all-0 state, and one more query. This
gives a search algorithm C(2) for an N2-sized database that uses

Q2 = O

(√
N2

N1

Q1

)
= O(

√
N2), E2 = O

(√
N2

N1

(E1 + logN2)

)

queries and gates respectively. Note that by our choice of N2 ≈ 2
√
N1 , we have

E1 = O(
√
N1 logN1) ≥ logN2, so E2 = O(

√
N2/N1E1). The same approach

2The idea of doing recursive applications of amplitude amplification to search increasingly
larger database-sizes is reminiscent of the algorithm of Aaronson and Ambainis [AA05] for
searching an N -element database that is arranged in a d-dimensional grid. However, their goal
was to design a search algorithm for the grid with nearest-neighbor gates and with optimal
number of queries (they succeeded for d > 2). It was not to optimize the number of gates. If
one writes out their algorithm as a quantum circuit, it still has roughly

√
N logN gates.
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as above allows us to use C(2) to construct a search algorithm for a database of
size N3. Repeating this construction iteratively gives a recursion

Qi+1 = O

(√
Ni+1

Ni

Qi

)
, Ei+1 = O

(√
Ni+1

Ni

Ei

)
.

The constant factor in the O(·) blows up by a constant factor in each recursion,
so after r steps this unfolds to

Qr = O(exp(r)
√
N), Er = O(exp(r)

√
N logN1).

Since N1, . . . , Nr = N is (essentially) an exponentially increasing sequence, we
have logN1 = O(log(r) N).

The result we prove in this chapter is stronger: it does not have the exp(r)
factor. Tweaking the above idea to avoid this exp(r) factor is somewhat deli-
cate, and will take up the remainder of this chapter. In particular, in order to
get close to the optimal query complexity π

4

√
N , it is important (and different

from Grover’s approach) that the intermediate amplitude amplification steps do
not boost the success probability all the way to 1. The reason is that amplitude
amplification is less efficient when boosting large success probabilities to 1 than
when boosting small success probabilities to somewhat larger success probabili-
ties. Our final algorithm will boost the success probability to 1 only at the very
end, after all r recursion steps have been done. Because the calculations involved
are quite fragile, and tripped us up multiple times, the proofs in the body of the
chapter are given in much detail.

If N is a power of 2, then choosing r = log?N in our result and being careful
about the constants,3 we get an exact quantum algorithm for finding a unique so-
lution using essentially the optimal π

4

√
N queries, and O(

√
N log(log?N)) elemen-

tary gates. Note that our algorithm on average uses only O(log(log?N)) elemen-
tary gates in between two queries, which is barely more than constant. Once in a
while a unitary acts on many more qubits, but the average is only O(log(log?N)).

Possible objections. To pre-empt the critical reader, let us mention two
objections one may raise against the fine-grained optimization of the number of
elementary gates that we do here. First, one query acts on logN qubits, and when
itself implemented using elementary gates, any oracle that’s worth its salt would
require Ω(logN) gates. Since Ω(

√
N) queries are necessary, a fair way of counting

would say that just the queries themselves already have “cost” Ω(
√
N logN),

rendering our (and Grover’s [Gro02]) gate-optimizations moot. Second, to do
exact amplitude amplification in our recursion steps, we allow infinite-precision
single-qubit phase gates. This is not realistic, as in practice such gates would
have to be approximated by more basic gates. Our reply to both would be: fair

3The function log?N is the number of times the binary logarithm must be iteratively applied
to N to obtain a number that is at most 1: log?N = min{r ≥ 0 : log(r)N ≤ 1}.
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enough, but we still find it quite surprising that query-efficient search algorithms
only need to act on a near-constant number of qubits in between the queries on
average. It is interesting that after nearly two decades of research on quantum
search, the basic search algorithm can still be improved in some ways. It may
even be possible to optimize our results further to use O(

√
N) elementary gates,

which would be even more surprising.

3.3 Gate complexity of exact amplitude ampli-

fication

Amplitude amplification is a technique that can be used to efficiently boost quan-
tum search algorithms with a known success probability to higher success prob-
ability. We will invoke the following theorem from [BHMT02] in the proof of our
main theorem later.

3.3.1. Theorem. Let N = 2n. Suppose there exists a unitary quantum al-
gorithm A that uses Q queries and E gates and finds a solution in database
x ∈ {0, 1}N with known probability a, in the sense that measuring A|0n〉 yields a

solution with probability exactly a. Let a′ ∈ [a, 1] and w = d arcsin(
√
a′)

2 arcsin(
√
a)
− 1

2
e. Then

there exists a quantum algorithm B that finds a solution with probability exactly
a′ using w + 1 applications of algorithm A, w applications of A−1, w additional
queries, and 4w(n+2) additional elementary gates. In total, B uses (2w+1)Q+w
queries and w(4n+ 2E + 8) + E elementary gates.

Proof. For the sake of completeness we present the construction of quantum
algorithm B. The idea is to lower the success probability from a in such a way
that an integer number of rounds of amplitude amplification suffice to produce a
solution with probability exactly a′.

Define θ = arcsin(
√
a′)

2w+1
and ã = sin2(θ), where w is defined in the theorem. Let

Rã/a be the one-qubit rotation that maps |0〉 7→
√
ã/a|0〉+

√
1− ã/a|1〉. Call an

(n+ 1)-bit string (i, b) a “solution” if xi = 1 and b = 0. Define the (n+ 1)-qubit
unitary O′x = (1n ⊗XH)Ox(1n ⊗HX). It is easy to verify that O′x puts a “− ”
in front of the solutions (in the new sense of the word), and a “ + ” in front of
the non-solutions.

Let A′ = A⊗Rã/a, and define |U〉 = A′|0n+1〉 to be the final state of this new
algorithm. Let |G〉 be the normalized projection of |U〉 on the (new) solutions
and |B〉 be the normalized projection of |U〉 on the (new) non-solutions. Mea-
suring |U〉 results in a (new) solution with probability exactly sin2(θ), hence we
can write

|U〉 = sin(θ)|G〉+ cos(θ)|B〉.
Define Q = A′Dn+1(A′)−1O′x. This is a product of two reflections in the plane
spanned by |G〉 and |B〉: O′x is a reflection through |G〉, and A′Dn+1(A′)−1 =
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2|U〉〈U |− I is a reflection through |U〉 (similar to the action of DOx,± in Grover’s
search algorithm, see Fig. 2.6). As is well known in the analysis of Grover’s al-
gorithm and amplitude amplification, the product of these two reflections rotates
the state over an angle 2θ. Hence after applying the operator Q w times to |U〉
we have the state

Qw|U〉 = sin((2w + 1)θ)|G〉+ cos((2w + 1)θ)|B〉 =
√
a′|G〉+

√
1− a′|B〉,

since (2w + 1)θ = arcsin(
√
a′). Thus the algorithm A′ can be boosted to success

probability a′ using an integer number of applications of Q.
Our new algorithm B is now defined as QwA′. It acts on n + 1 qubits (all

initially |0〉) and maps

|0n+1〉 7→
√
a′|G〉+

√
1− a′|B〉,

so it finds a solution with probability exactly a′. Algorithm B uses w+ 1 applica-
tions of algorithm A together with elementary gate Rã/a; w applications of A−1

together with R−1
ã/a; w applications of O′x (each of which involves one query to x

and two other elementary gates, counting XH as one gate); and w applications
of Dn+1, each of which takes 4n+ 3 elementary gates (for a proof of this, see last
paragraph of Section 2.5.1). Hence the total number of queries that B makes is
at most (2w+ 1)Q+w and the total number of elementary gates used by B is at
most (2w + 1)E + 4w(n+ 2). 2

Using this theorem, the following remark and corollary follow readily.

3.3.2. Remark. A very simply algorithm to which we can apply this theorem
is A = H⊗n. If our N = 2n-bit database has a unique solution, then the success
probability is a = 1/N . Let a′ = 1/k for some integer k ≥ 2. Then, Theorem 3.3.1
implies an algorithm C(1) that finds a solution with probability exactly 1/k using w
queries and at most O(w logN) other elementary gates, where

w =
⌈ arcsin(

√
a′)

2 arcsin(
√
a)
− 1

2

⌉
≤
⌈√N(1 + 1/k)

2
√
k

− 1

2

⌉
. (3.1)

The inequality above follows from arcsin(z) ≥ z for all z ≥ 0, and sin(1+1/k√
k

) ≥ 1√
k

since sin(z) ≥ z − z3/6 for z ≥ 0.

In order to amplify the probability of an algorithm from 1/k to 1 we use the
following corollary.

3.3.3. Corollary. Let k ≥ 2, n be integers, N = 2n. Suppose there exists
a quantum algorithm D that finds a unique solution in an N-bit database with
probability exactly 1/k using Q ≥

√
k queries and E elementary gates. Then

there exists a quantum algorithm that finds the unique solution with probability 1
using at most π

2
Q
√
k(1 + 2√

k
)2 queries and O(

√
k(n+ E)) elementary gates.
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Proof. Applying Theorem 3.3.1 to algorithm D with a = 1/k and a′ = 1, we
obtain an algorithm that succeeds with probability 1 using at most w′(2Q+1)+Q
queries and O(w′(n+ E)) gates, where

w′ =
⌈ arcsin(1)

2 arcsin(1/
√
k)
− 1

2

⌉
≤ π

4
(
√
k + 1),

using arcsin(x) ≥ x for x ≥ 0 and dπ
4

√
k − 1

2
e ≤ π

4
(
√
k + 1). Hence, the total

number of queries in this new algorithm is at most

π

4
(
√
k + 1)(2Q+ 1) +Q =

π

2
Q(
√
k + 1)

(
1 +

1

2Q
+

2

π(
√
k + 1)

)
≤ π

2
Q(
√
k + 1)

(
1 +

2√
k

)
≤ π

2
Q
√
k
(

1 +
2√
k

)2

,

where we used Q ≥
√
k and π(

√
k + 1) ≥ 2

√
k in the first inequality. The total

number of gates is O(w′(n+ E)) = O(
√
k(n+ E)). 2

The following easy fact will be helpful to get rid of some of the ceilings that
come from Theorem 3.3.1.

3.3.4. Fact. If k ≥ 2 and α ≥ k, then dα
2
(1 + 1

k
)− 1

2
e ≤ α

2
(1 + 2

k
).

3.3.5. Fact. If k ≥ 3 and i ≥ 2, then (2i+ 8) log k < ki+1.

Proof. Fixing i = 2, it is easy to see that 12 log k < k3 for k ≥ 3. Similarly,
fix k = 3 and observe that (2i + 8) log 3 < 3i+1 for all i ≥ 2. This implies the
result for all k ≥ 3 and i ≥ 2, because the right-hand side grows faster than the
left-hand side in both i and k. 2

3.4 Improving the gate complexity for quantum

search

3.4.1 Reproving Grover’s optimized construction

In this section we first prove a technical theorem which will be recursively applied
in proving our main result. Using this theorem, we first recover Grover’s gate-
optimized construction [Gro02].
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3.4.1. Theorem. Let k ≥ 4, n ≥ m+ 2 log k be integers, M = 2m and N = 2n.
Suppose there exists a quantum algorithm G that finds a unique solution in an
M-bit database with a known success probability exactly 1/k, using Q ≥ k + 2
queries and E other elementary gates. Then there exists a quantum algorithm
that finds a unique solution in an N-bit database with probability exactly 1/k,
using Q′ queries and E ′ other elementary gates where,

Q′ ≤ Q
√
N/M(1 + 4/k),

E

(1 + 1/k3)

√
N

M
≤ E ′ ≤ (3n+ E)

√
N

M
(1 + 3/k).

Proof. Consider the following algorithm A:

1. Start with |0n〉.

2. Apply the Hadamard gate to the first n − m qubits, leaving the last m
qubits as |0m〉. The resulting state has a uniform superposition over the
first n−m qubits 1√

N/M

∑
y∈{0,1}n−m |y〉|0m〉.

3. Apply the unitary G to the last m qubits (using queries to x, with the first
n−m address bits fixed).

The final state of algorithm A is

(H⊗(n−m) ⊗ G)|0n〉 =
1√
N/M

∑
y∈{0,1}n−m

|y〉G|0m〉.

The state |y〉G|0m〉 depends on y, because here G restricts to the M -bit database
that corresponds to the bits in x whose n-bit address starts with y. Let t be the
n-bit address corresponding to the unique solution in the database x ∈ {0, 1}N .
Then the probability of observing |t1 . . . tn〉 in the state |t1 . . . tn−m〉G|0m〉 is ex-
actly 1/k. Suppose

√
a is the amplitude of t in the final state of algorithm A,

then we have that a = M
kN

. The total number of queries made by algorithm A
is Q (from Step 3) and the total number of elementary gates is n−m+E (from
Steps 2 and 3).

Applying Theorem 3.3.1 to algorithm A by choosing a′ = 1/k, we obtain an
algorithm B using at most w(2Q+ 1) +Q queries and w(4n+ 2E + 8) +E gates
(from Theorem 3.3.1), where

w =
⌈ arcsin(

√
a′)

2 arcsin(
√
a)
− 1

2

⌉
≤
⌈√1/k(1 + 1/k)

2
√
a

− 1

2

⌉
≤
⌈√N(1 + 1/k)

2
√
M

− 1

2

⌉
≤
√
N(1 + 2/k)

2
√
M

.

The first inequality above uses sin(1+1/k√
k

) ≥ 1√
k

(since sin(z) ≥ z − z3/6 for

z ≥ 0), the second inequality follows from arcsin(z) ≥ z (for z ≥ 0) and the third
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inequality uses Fact 3.3.4 (which we can apply because
√
N/M =

√
2n−m ≥√

22 log k = k by the assumption of the theorem).

The total number of queries in algorithm B is at most

Q′ = w(2Q+ 1) +Q ≤ Q
√
N/M(1 + 2/k) +

1

2

√
N/M(1 + 2/k) +Q

≤ Q
√
N/M(1 + 2/k) +

Q

2k

√
N/M +

Q

k

√
N/M

≤ Q
√
N/M(1 + 4/k),

where we used Q ≥ k+2 and
√
N/M ≥ k ≥ 4 (by the assumption of the theorem)

in the second inequality. Finally, the number of gates in B is

E ′ = w(4n+ 2E + 8) + E ≤
√
N/M(1 + 2/k)(2n+ E + 4) + E

≤ (3n+ E)
√
N/M(1 + 3/k),

where we used
√
N/M ≥ 4 in the second inequality.

It is not hard to see that the number of gates in B is at least

E ′ = w(4n+ 2E + 8) + E ≥ 2wE + E = 2
⌈ arcsin(

√
a′)

2 arcsin(
√
a)
− 1

2

⌉
E + E

≥ 2
( √

1/k

2(1 + 1/k3)
√
M/(kN)

− 1

2

)
E + E

=
E

(1 + 1/k3)

√
N/M.

The inequality follows from arcsin(
√
a′) ≥

√
a′ =

√
1/k and

arcsin(
√
a) = arcsin

(√ M

kN

)
≤
√

M

kN

(
1 +

M

kN

)
≤
√

M

kN

(
1 +

1

k3

)
,

where the first inequality used arcsin(z) ≤ z + z3/2 for all z ∈ [0, 1/2] and the
second inequality used M/N ≤ 1/k2 (by the assumption of the theorem). 2

Suppose we now apply Theorem 3.3.1 once, to an algorithm that finds the
unique solution in an M -bit database with probability 1/ log logN , we then get
the following corollary, which was essentially the main result of Grover [Gro02].

3.4.2. Corollary. Let n ≥ 25 and N = 2n. There exists a quantum algorithm
that finds a unique solution in a database of size N with probability 1, using at
most (π

4
+ o(1))

√
N queries and O(

√
N log logN) other elementary gates.
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Proof. Let m = dlog(n2k3)e and k = log logN . Let C(1) be the algorithm
(described in Remark 3.3.2) on an M -bit database with M = 2m that finds the
solution with probability exactly 1/k. The query and gate complexity of C(1) are

Q1 =
⌈ arcsin(1/

√
k)

2 arcsin(1/
√
M)
− 1

2

⌉
, E1 ≤

⌈ arcsin(1/
√
k)

2 arcsin(1/
√
M)
− 1

2

⌉
logM (3.2)

respectively. In order to apply Theorem 3.4.1 using C(1) as our base algorithm, it
remains to verify m+ 2 log k ≤ n and Q1 ≥ k + 2. Observe that k ≥ 4 and

m+ 2 log k ≤ log(2n2k5) = log(2n2 log5 n) ≤ n,

where the last inequality is true for n ≥ 25. We now lower bound Q1,

Q1 =
⌈ arcsin(1/

√
k)

2 arcsin(1/
√
M)
− 1

2

⌉
≥ 1/

√
k

2 arcsin(1/(nk3/2))
− 1 ≥ 2k − 1. (3.3)

The first inequality uses arcsin(x) ≥ x for x ≥ 0 in the numerator and arcsin(x)
is an increasing function in x ∈ [0, 1] in the denominator (since M = 2m ≥
2logn2k3 = n2k3). The second inequality uses arcsin(z) ≤ z + z3/2 for z ∈ [0, 1/2]
to conclude arcsin(1/(nk3/2)) ≤ 1/(4k3/2).

Hence we can apply Theorem 3.4.1 using C(1) as our base algorithm. This
gives an algorithm C(2) that finds the solution with probability exactly 1/k. The
total number of queries Q2, made by algorithm C(2) is

Q2 =
⌈√M(1 + 1/k)

2
√
k

− 1

2

⌉
︸ ︷︷ ︸

upper bound on Q1 in Eq. 3.2

·
(√

N/M(1 + 4/k)
)

︸ ︷︷ ︸
contribution from Theorem 3.4.1

.

This in turn can be upper bounded by

Q2 ≤
√
M(1 + 2/k)

2
√
k

√
N/M(1 + 4/k) ≤

√
N

4k
(1 + 4/k)2, (3.4)

where the inequality follows from Fact 3.3.4 (since m ≥ 4 log k). Using Theo-
rem 3.4.1, the total number of gates in C(2) is

E2 = O
((

3n+
⌈√M(1 + 1

k
)

2
√
k

− 1

2

⌉
logM︸ ︷︷ ︸

upper bound on E1 in Eq. 3.2

)√N

M
(1 +

3

k
)
)
.

This in turn can be upper bounded by

E2 ≤ O
(√N

k

(3n
√
k(1 + 3/k)√
M

+ (1 + 3/k)2 logM
))

≤ O
(√N

k

(3

k
+ (1 + 3/k)2 logM

))
≤ O

(√N

k

(
1 +

3

k

)3

log logN
)
,

(3.5)
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where we used Fact 3.3.4 in the first inequality, n
√
k(1 + 3/k) ≤

√
M/k (since

m ≥ log(n2k3)) in the second inequality and logM = O(log logN) in the last
inequality. Applying Corollary 3.3.3 to algorithm C(2), we obtain an algorithm
that succeeds with probability 1 using at most(√N

4k
(1 +

4

k
)2
)

︸ ︷︷ ︸
upper bound on Q2 in Eq. 3.4

· π

2

(√
k(1 +

2√
k

)2
)

︸ ︷︷ ︸
contribution from Corollary 3.3.3

≤ π

4

√
N
(

1 +
4√
k

)4

(3.6)

queries and

O
(
n
√
k +
√
N
(

1 +
3

k

)3

log logN
)
≤ O

(√
N
(

1 +
3

k

)3

log logN
)

(3.7)

gates, where the inequality follows from n
√
k = n

√
log logN ≤

√
N log logN

(which is true for n ≥ 25). Since k = log logN , it follows that the query com-
plexity of the final algorithm (given by Eq. (3.6)) can be upper bounded by (π

4
+

o(1))
√
N and the gate complexity (given by Eq. (3.7)) is at mostO(

√
N log logN).

2

3.4.2 Main theorem

We now prove our main theorem (the claim in the abstract will be a corollary
of this). Suppose, we use Theorem 3.4.1 recursively by starting from the im-
proved algorithm in Corollary 3.4.2. This gives query complexity O(

√
N) and

gate complexity O(
√
N log log logN). Doing this multiple times and being care-

ful about the constant (which grows in each step of the recursion), we obtain the
following result:

3.4.3. Theorem. Let k be a power of 2 and N ≥ 216 a sufficiently large power
of 2. For every r ∈ [log?N ], k ∈ {log?N, . . . , dlog logNe}, there exists a quantum
algorithm that finds a unique solution in a database of size N with probability
exactly 1/k, using at most√

N

4k
(1 + 4/k)r queries and

O

(√
N

k
(1 + 6/k)2r−1 max{log k, log(r) N}

)
other elementary gates.

Proof. We begin by defining a sequence of integers n1, . . . , nr satisfying nr =
logN and ni−1 = max{(2i+ 6) log k, dlog(n2

i k
3)e} for i ∈ {2, . . . , r}. Note that N

needs to be sufficiently large for such a sequence to exist and we assume this in
the theorem. Also, observe that n1 ≥ 10 log k ≥ 20 (since k ≥ log?N ≥ 4). We
first prove the following claim about this sequence.
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3.4.4. Claim. If i ∈ {2, . . . , r}, then ni−1 + 2 log k ≤ ni .

Proof. We prove this claim using downward induction on i.

Base case. For the base case i = r, we have nr = logN . Note that (2r +
6) log k ≤ dlog(n2

rk
3)e for sufficiently large N and k ≤ log logN , hence nr−1 =

max{(2r + 6) log k, dlog(n2
rk

3)e} = dlog(n2
rk

3)e. Using this, it now follows that

nr−1 + 2 log k = dlog(n2
rk

3)e+ 2 log k ≤ log(2n2
rk

5)

≤ log(2 log2N log5 n) ≤ logN = nr,

where the last inequality assumed N is sufficiently large.

Induction hypothesis. Assume that we have ni + 2 log k ≤ ni+1 for every
i ∈ {j, . . . , r}.
Induction step. We now prove nj−1 + 2 log k ≤ nj by considering the two
possible values for nj−1.
Case 1. nj−1 = (2j + 6) log k. Then we have

nj−1 + 2 log k = (2j + 8) log k ≤ max{(2j + 8) log k, dlog(n2
j+1k

3)e} = nj.

Case 2. nj−1 = dlog(n2
jk

3)e. We first show nj−1 ≤ nj:

nj−1 ≤ dlog(n2
j+1k

3)e
{
≤ (2j + 8) log k = nj if nj = (2j + 8) log k

= nj if nj = dlog(n2
j+1k

3)e,
where the first inequality uses the induction hypothesis and the second inequality
uses nj = max{(2j + 8) log k, dlog(n2

j+1k
3)e}. We can now conclude the induc-

tive step:

nj−1 + 2 log k ≤ log(2n2
jk

5) = 1 + 2 log nj + 5 log k

≤ nj/2 + 5 log k ≤ nj/2 + nj/2 = nj.

In the first inequality above we use nj−1 ≤ log(2n2
jk

3), in the second inequality
we use nj ≥ n1 ≥ 10 log k ≥ 20 (since nj−1 ≤ nj for j ∈ {2, . . . , r} and k ≥ 4) to
conclude 1 + 2 log nj ≤ nj/2 (which is true for nj ≥ 20) and in the last inequality
we use 5 log k ≤ nj/2. 2

Using the sequence n1, . . . , nr, we consider r database-sizes 2n1 = N1 ≤ 2n2 =
N2 ≤ · · · ≤ 2nr = Nr = N . For each i ∈ [r], we will construct a quantum algo-
rithm C(i) on a database of size Ni that finds a unique solution with probability
exactly 1/k. Let Qi and Ei be the query complexity and gate complexity, respec-
tively, of algorithm C(i). We have already constructed the required algorithm C(1)

(described in Remark 3.3.2) on an N1-bit database using

Q1 ≤
⌈√N1(1 + 1/k)

2
√
k

− 1

2

⌉
≤
√
N1(1 + 2/k)

2
√
k
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queries, where the inequality follows from Fact 3.3.4 (since N1 ≥ k10). Also, a
similar argument as in Eq. (3.3) shows that

Q1 ≥
√
N1(1 + 1/k)

2
√
k

− 1 ≥ k + 2,

where the first inequality uses N1 ≥ k10, and the second inequality uses k ≥ 4.
Using Theorem 3.3.1, the number of gates E1 used by C(1) is⌈√N1(1 + 1/k)

2
√
k

− 1

2

⌉
(6 logN1 + 8) + logN1

≤
√
N1(1 + 2/k)√

k
(3 logN1 + 4) + logN1

≤ 4
√
N1(1 + 2/k)√

k
logN1 + logN1

≤ 4
√
N1(1 + 3/k)√

k
logN1,

where we use Fact 3.3.4 (since N1 ≥ k10) in the first inequality and N1 ≥ k10 in
the second and third inequality. It is not hard to see that the number of gates
E1 used by C(1) is at least E1 ≥

√
N1/k.

For i ∈ {2, . . . , r}, we apply Theorem 3.4.1 using C(i−1) as the base algorithm
and we obtain an algorithm C(i) that succeeds with probability exactly 1/k (since
C(1) had success probability exactly 1/k, every algorithm obtained by iteratively
applying Theorem 3.4.1 also has success probability exactly 1/k). We showed
earlier in Claim 3.4.4 that ni−1 + 2 log k ≤ ni and it also follows that k + 2 ≤
Q1 ≤ · · · ≤ Qr (since the database-sizes N1, . . . , Nr are non-decreasing). Hence
both assumptions of Theorem 3.4.1 are satisfied. The total number of queries Qi

used by C(i) is

Qi ≤
√

Ni

Ni−1

Qi−1

(
1 +

4

k

)
. (3.8)

In order to analyze the number of gates used by C(i) we need the following
two claims.

3.4.5. Claim. Ei ≥ 1
(1+1/k3)i

√
Ni
k

for all i ∈ [r].

Proof. The proof is by induction on i. For the base case, we observed earlier

that E1 ≥
√
N1/k. For the induction step assume Ei−1 ≥ 1

(1+1/k3)i−1

√
Ni−1

k
. The

claim follows immediately from the lower bound on E ′ in Theorem 3.4.1 since

Ei ≥
Ei−1

1 + 1/k3

√
Ni/Ni−1 ≥

1

(1 + 1/k3)i

√
Ni

k
.

2
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3.4.6. Claim. Suppose n1 = dlog(n2
2k

3)e. Then ni−1 = dlog(n2
i k

3)e for all i ∈
{2, . . . , r}.

Proof. We prove the claim by induction on i. The base case i = 2 is the
assumption of the claim.

For the inductive step, assume ni−1 = dlog(n2
i k

3)e for some i ≥ 2. Using this,
it follows that

log(n2
i k

4) ≥ dlog(n2
i k

3)e ≥ (2i+ 6) log k = log(k2i+6) (3.9)

where the second inequality is because of the definition of ni−1 = max{(2i +
6) log k, dlog(n2

i k
3)e}. Hence, Eq. (3.9) implies

ni ≥ ki+1 > (2i+ 8) log k

using Fact 3.3.5 (k ≥ 3 and i ≥ 2 hold by the assumption of the theorem and claim
respectively). In particular, this implies ni = max{(2i + 8) log k, dlog(n2

i+1k
3)e}

must be equal to the second term in the max. This concludes the proof of the
inductive step and hence of the claim. 2

Recursively it follows that the number of gates Ei used by C(i) is at most√
Ni

Ni−1

(Ei−1 +3ni)
(

1+
3

k

)
=

√
Ni

Ni−1

Ei−1

(
1 +

3ni
Ei−1

)(
1 +

3

k

)
≤
√

Ni

Ni−1

Ei−1

(
1 + 3ni

(
1 +

1

k3

)i−1

√
k

Ni−1

)(
1 +

3

k

)
≤
√

Ni

Ni−1

Ei−1

(
1 +

3

k
(1 +

1

k3

)i−1)(
1 +

3

k

)
≤
√

Ni

Ni−1

Ei−1

(
1 +

6

k

)2

, (3.10)

where we used Claim 3.4.5 in the first inequality to lower bound Ei−1, ni ≤
√

Ni−1

k3

in the second inequality (which clearly holds if ni−1 = (2i+6) log k ≥ dlog(n2
i k

3)e)
and in the last inequality we used(

1 +
1

k3

)i−1

≤ e(i−1)/k3 ≤ er/k
3 ≤ e1/(log?N)2 ≤ 2,

since r ≤ log?N and k ≥ log?N . Unfolding the recursion in Equations (3.8)
and (3.10), we obtain

Qr ≤
√
Nr

4k

(
1 +

4

k

)r
, Er ≤ 4

√
Nr

k

(
1 +

6

k

)2r−1

logN1.
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It remains to show that logN1 = n1, defined as max{10 log k, dlog(n2
2k

3)e}, is
in fact O(max{log k, log(r) N}). If n1 = 10 log k, then we are done. If n1 =
dlog(n2

2k
3)e, we can use Claim 3.4.6 to write

ni−1 = d2 log ni + 3 log ke ≤ 4 log ni, for i ∈ {2, . . . , r},
where the last inequality follows from k ≤ n

1/3
2 ≤ n

1/3
i (using dlog(n2

2k
3)e ≥

10 log k for the first inequality and Claim 3.4.4 for the second inequality). Since
nr = logN , it follows easily that n1 = O(log(r) N).
We conclude n1 = O(max{log k, log(r) N}). 2

The following is our main result:

3.4.7. Corollary.

• For every constant integer r > 0 and sufficiently large N = 2n, there exist
a quantum algorithm that finds a unique solution in a database of size N
with probability 1, using (π

4
+ o(1))

√
N queries and O(

√
N log(r)N) gates,

• For every ε > 0 and sufficiently large N = 2n, there exist a quantum algo-
rithm that finds a unique solution in a database of size N with probability 1,
using (π

4
+ ε)
√
N queries and O(

√
N log(log?N)) gates.

Proof. Applying Corollary 3.3.3 to algorithm C(r) (as described in Theo-
rem 3.4.3), for some k ≤ log logN to be specified later, we obtain an algorithm
that succeeds with probability 1 using at most(√N

4k

(
1 +

4

k

)r)
︸ ︷︷ ︸

upper bound on Qr from Theorem 3.4.3

· π

2

(√
k
(

1 +
2√
k

)2)
︸ ︷︷ ︸

contribution from Corollary 3.3.3

≤ π

4

√
N
(

1 +
4√
k

)r+2

queries and

O
(√

kn+
√
N
(

1 +
6

k

)2r−1

max{log k, log(r) N}
)

≤ O
(√

N
(

1 +
6

k

)2r

max{log k, log(r) N}
)

gates. To obtain the two claims of the corollary we can now either pick:

• constant r > 0 and k = (c1 log?N)2, where c1 ∈ [1, 2] is chosen to ensure k
is a power of 2. It follows that(

1 +
4√
k

)r+2

=
(

1 +
4

c1 log?N

)r+2

= 1 + o(1)

for constant r. Similarly, (1 + 6/k)2r = 1 + o(1). Since log?N ∈ o(log(r) N)
for every constant r, we have max{log k, log(r) N} = log(r) N . Hence, the
query and gate complexities are (π

4
+o(1))

√
N and O(

√
N log(r) N), respec-

tively.
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• r = log?N and k = (c2(log?N + 2))2, where we choose c2 to be the smallest
number that is at least 4/ ln(1+ε) and that makes k a power of 2. We have(

1 +
4√
k

)r+2

=
(

1 +
4

c2(log?N + 2)

)log?N+2

≤ 1 + ε,

where the inequality used (1 + x)y ≤ exy. Like before, it follows that (1 +
6/k)2r = 1 + o(1). Hence, the query and gate complexities are π

4

√
N(1 + ε)

and O(
√
N log(log?N)), respectively.

2

3.5 Conclusion and future work

In this chapter, we constructed a new quantum algorithm that improves upon
Grover’s search algorithm in terms of gate complexity. In particular, our quantum
algorithm finds the unique solution in an N -bit database using O(

√
N) database

queries and O(
√
N log(log?N)) elementary gates.

Our work could be improved further in a number of directions:

• Can we remove the log(log?N) factor in the gate complexity, reducing this
to the optimal O(

√
N)? This may well be possible, but requires a different

idea than our roughly log? recursion steps, which will inevitably end up
with ω(

√
N) gates.

• Our construction only works for specific values of N . Can we generalize
it to work for all sufficiently large N , even those that are not powers of 2,
while still using close to the optimal π

4

√
N queries?

• Can we obtain a similar gate-optimized construction when the database has
multiple solutions instead of one unique one? Say when the exact number
of solutions is known in advance?

• Most applications of Grover’s algorithm deal with databases with an un-
known number of solutions, and focus only on the number of queries. Are
there application where our reduction in the number of elementary gates
for search with one unique solution is both applicable and significant?



Chapter 4

Refining the polynomial method

This chapter is based on the paper “Quantum query algorithms are completely
bounded forms”, by S. Arunachalam, J. Briët and C. Palazuelos [ABP18]

Abstract. In Chapter 2, we discussed the polynomial method introduced by
Beals et al. [BBC+01] in 1998 to give lower bounds on quantum query complexity.
The polynomial method still remains one of the best-known lower-bound tech-
niques for quantum query complexity. In this chapter, we refine this method by
providing a characterization of quantum query algorithms in terms of polynomials
satisfying a certain (completely bounded) norm constraint. Based on this char-
acterization, we obtain a refined notion of approximate polynomial degree that
equals the quantum query complexity, answering an open question of Aaronson
et al. [AAI+16]. Using this characterization, we show that most polynomials of
degree at least 4 are far from those coming from quantum query algorithms. We
also give a simple and short proof of one of the results of Aaronson et al. show-
ing a surprising equivalence between one-query quantum algorithms and bounded
quadratic polynomials.
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4.1 Introduction

Consider a function f : D → {−1, 1} on the domain D ⊆ {−1, 1}n. In the
black-box model of computation, promised that x ∈ D, the goal is to learn f(x),
when only given access to x through the oracle. An application of the oracle is
usually referred to as a query. The bounded-error quantum query complexity of f ,
denoted Qε(f), is the minimal number of queries a quantum algorithm must make
on the worst-case input x ∈ D to compute f(x) with probability at least 1 − ε,
where ε ∈ [0, 1/2) is usually some fixed but arbitrary positive constant.

For a detailed introduction to quantum query complexity, we refer the reader
to Chapter 2. There, we also discussed the polynomial method and the adver-
sary method to give lower bounds on quantum query complexity. In particular,
it is known that the “negative-weight” adversary method characterizes quantum
query complexity. However, proving lower bounds using negative-weight adver-
sary method appears to be hard in general. In this chapter, our focus will be on
characterizing quantum query complexity from the perspective of polynomials,
which was not known before, to the best of our knowledge.

4.1.1 The polynomial method

The polynomial method is based on a connection between quantum query algo-
rithms and polynomials discovered by Beals et al. [BBC+01]. They observed that
for every t-query quantum algorithm A that on input x ∈ {−1, 1}n returns a ran-
dom sign A(x), there exists a degree-(2t) polynomial p such that p(x) = E[A(x)]
for every x (where the expectation is taken over the randomness of the output).
It follows that if A computes f : {−1, 1}n → {−1, 1} with probability at least
1− ε, then p satisfies |p(x)− f(x)| ≤ 2ε for every x ∈ D and satisfies |p(x)| ≤ 1
for all x.1 The polynomial method thus converts the problem of lower bounding

1In Section 2.4.1, we showed that if A computes f : {−1, 1}n → {0, 1} with error probabil-
ity ≤ ε using t queries, then the probability that A outputs 1 after t queries, on input x, is
given by a degree-(2t) polynomial q(x), which satisfies |q(x)−f(x)| ≤ ε. Let f±(x) = 1−2f(x)
(in order to change the range of f from {0, 1} to {1,−1}), suppose A± outputs {1,−1} instead
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quantum query complexity to the problem of proving lower bounds on the mini-
mum degree of a polynomial p such that |p(x)− f(x)| ≤ 2ε holds for all inputs x.
The minimal degree of such a polynomial is called the approximate (polynomial)
degree and is denoted by degε(f).

Notable applications of this approach showed optimality for Grover’s search
algorithm [BBC+01]2 and collision-finding and element distinctness [AS04]. In
a recent work, Bun et al. [BKT17] use the polynomial method to resolve the
quantum query complexity of several other well-studied Boolean functions.

4.1.2 Converses to the polynomial method.

A natural question is whether the polynomial method admits a converse. If so,
this would imply a succinct characterization of quantum algorithms in terms of
basic mathematical objects. However, Ambainis [Amb06] answered this ques-
tion in the negative, showing that for infinitely many n, there is a function f
with deg1/3(f) ≤ nα and Q1/3(f) ≥ nβ for some positive constants β > α (re-
cently larger separations were obtained in [ABK16, BKT17]). The approximate
degree thus turns out to be an imprecise measure for quantum query complex-
ity in general. These negative results would still leave room for the following
two possibilities:

1. There is a (simple) refinement of approximate polynomial degree that char-
acterizes Qε(f) up to a constant factor.

2. Constant-degree polynomials characterize constant-query quantum algo-
rithms.

These avenues were recently explored by Aaronson and others [AA15, AAI+16].
The first work strengthened the polynomial method by observing that quantum
algorithms give rise to polynomials with a so-called block-multilinear structure.
Based on this observation, they introduced a refined degree measure, bm-degε(f)
which lies between degε(f) and 2Qε(f), prompting the immediate question of how
well that approximates Qε(f). The subsequent work showed, among other things,
that for infinitely many n, there is a function f with bm-deg1/3(f) = O(

√
n)

and Q1/3(f) = Ω(n), thereby also ruling out the possibility that this degree
measure validates possibility (1). The natural next question then asks if there is
another refined notion of polynomial degree that approximates quantum query
complexity [AAI+16, Open problem 3].

of {0, 1} and let p(x) = 1 − 2q(x) (because p is defined as E[A±(x)] = 1 − 2Pr[A±(x) = −1]),
then we get that |p(x)− f±(x)| = 2|q(x)− f(x)| ≤ 2ε.

2The first quantum lower bound for the search problem was proven by Bennett et
al. [BBBV97] using the so-called hybrid method. Beals et al. [BBC+01] reproved their result
using the polynomial method.
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In the direction of the second avenue, [AAI+16] showed a surprising converse
to the polynomial method for bounded quadratic polynomials. Say that a polyno-
mial p ∈ R[x1, . . . , xn] is bounded if it satisfies p(x) ∈ [−1, 1] for all x ∈ {−1, 1}n.

4.1.1. Theorem (Aaronson et al.). There exists an absolute constant C ∈ (0, 1]
such that the following holds. For every bounded quadratic polynomial p, there
exists a one-query quantum algorithm that, on input x ∈ {−1, 1}n, returns a
random sign with expectation Cp(x).

This implies that possibility (2) holds true for quadratic polynomials. It also
leads to the problem of finding a similar converse for higher-degree polynomi-
als, asking for instance whether two-query quantum algorithms are equivalent to
quartic polynomials [AAI+16, Open problem 1].

Organization. In Section 4.2, we give an overview of our results and briefly
sketch our proof techniques. In Section 4.3, we give a brief introduction to normed
vector spaces and C∗-algebras. In Section 4.4, we prove our main theorem char-
acterizing quantum query algorithms. In Section 4.5, we explain the separation
obtained for higher-degree forms. In Section 4.6, we give a short proof of the
main theorem in Aaronson et al. [AAI+16]. Finally, in Section 4.7 we present
some directions for future work.

4.2 Our results

In this chapter, we address the above-mentioned two problems. Our first result is
a new notion of polynomial degree that gives a tight characterization of quantum
query complexity (Definition 4.2.3 and Corollary 4.2.4 below), giving an answer
to [AAI+16, Open problem 3]. Using this characterization, we show that there
is no generalization of Theorem 4.1.1 to higher-degree polynomials, in the sense
that there is no absolute constant C ∈ (0, 1] for which the analogous statement
holds true. This gives a partial answer to [AAI+16, Open problem 1], ruling
out a strong kind of equivalence. Finally, we give a simplified shorter proof of
Theorem 4.1.1. Below we explain our results in more detail.

4.2.1 Quantum algorithms are completely bounded forms

For the rest of the discussion, all polynomials will be assumed to be bounded, real
and (2n)-variate if not specified otherwise. We refer to a homogeneous polynomial
as a form. For α ∈ {0, 1, 2, . . . }2n and x ∈ R2n, we write |α| = α1 + · · ·+α2n and
xα = xα1

1 · · ·xα2n
2n . Then, every form p of degree t can be written as

p(x) =
∑

α∈{0,1,...,t}2n:
|α|=t

cαx
α, (4.1)
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where cα are some real coefficients. Our new notion of polynomial degree is based
on a characterization of quantum query algorithms in terms of forms satisfying a
certain norm constraint. The norm we assign to a form as in Eq. (4.1) is given
by a norm of the symmetric t-tensor Tp ∈ R2n×···×2n with (i1, . . . , it)-coordinate

(Tp)i1,...,it =
cei1+···+eit
|{i1, . . . , it}|!

, (4.2)

where ei is the ith standard basis vector for R2n and |{i1, . . . , it}| denotes the
number of distinct elements in the set {i1, . . . , it}. Note that p can then also be
written as

p(x) =
2n∑

i1,...,it=1

(Tp)i1,...,itxi1 · · ·xit . (4.3)

The relevant norm of Tp is in turn given in terms of an infimum over decom-
positions of the form Tp =

∑
σ∈St T

σ ◦ σ, where the sum is over permutations
of {1, . . . , t}, each T σ is a t-tensor, and T σ ◦ σ is the permuted version of T σ

given by

(T σ ◦ σ)i1,...,it = T σiσ(1),...,iσ(t) .

Finally, the actual norm is based on the completely bounded norm of each of
the T σ. Given a t-tensor T ∈ R2n×···×2n, its completely bounded norm ‖T‖cb is
given by the supremum over positive integers k and collections of k × k unitary
matrices U1(i), . . . , Ut(i), for i ∈ [2n], of the operator norm

∥∥∥ 2n∑
i1,...,it=1

Ti1,...,itU1(i1) · · ·Ut(it)
∥∥∥. (4.4)

4.2.1. Definition (Completely bounded norm of a form). Let p be a form of
degree t and let Tp be the symmetric t-tensor as in Eq. (4.2). Then, the completely
bounded norm of p is defined by

‖p‖cb = inf
{ ∑

σ∈St

‖T σ‖cb : Tp =
∑
σ∈St

T σ ◦ σ
}
. (4.5)

This norm was originally introduced in the general context of tensor products
of operator spaces in [OP99]. In that framework, the definition considered here
corresponds to a particular operator space based on `n1 , but we shall not use this
fact here. Our characterization of quantum query algorithms is as follows.

4.2.2. Theorem (Characterization of quantum algorithms). Let t be a positive
integer and β : {−1, 1}n → [−1, 1]. Then, the following are equivalent.
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1. There exists a form p of degree 2t such that ‖p‖cb ≤ 1 and p((x, 1n)) = β(x)
for every x ∈ {−1, 1}n, where 1n ∈ Rn is the all-ones vector.

2. There exists a t-query quantum algorithm that, on input x ∈ {−1, 1}n,
returns a random sign with expected value β(x).

It may be observed that the content of the polynomial method is contained
in the above statement, since every (2n)-variate form p defines an n-variate poly-
nomial given by q(x) = p((x, 1n)). The above theorem refines the polynomial
method in the sense that quantum algorithms can only yield polynomials of the
form q(x) = p((x, 1n)) where p has completely bounded norm at most one.

Our proof is based on a fundamental representation theorem of Christensen
and Sinclair [CS87] concerning multilinear forms on C∗-algebras that general-
izes the well-known Stinespring representation theorem for quantum channels to
multilinear forms (see also [PS87] and [Pis03, Chapter 5]).

Completely bounded approximate degree. Theorem 4.2.2 motivates the
following new notion of approximate degree for partial Boolean functions.

4.2.3. Definition (Completely bounded approximate degree). For every D ⊆
{−1, 1}n, let f : D → {−1, 1} be a (possibly partial) Boolean function and
let ε ≥ 0. Then, the ε-completely bounded approximate degree of f , denoted
cb-degε(f), is the smallest positive integer t for which there exists a form p of
degree 2t such that ‖p‖cb ≤ 1 as in Eq. (4.5) and we have |p((x, 1n))− f(x)| ≤ 2ε
for every x ∈ D.

As a corollary of Theorem 4.2.2, we get the following characterization of quantum
query complexity.

4.2.4. Corollary. For every D ⊆ {−1, 1}n, f : D → {−1, 1} and ε ≥ 0, we
have cb-degε(f) = Qε(f).

4.2.2 Constant query quantum algorithms

Separations for higher-degree forms. Theorem 4.1.1 follows from our The-
orem 4.2.2 and the fact that for every bounded quadratic form p(x) = xTAx,
the matrix A has completely bounded norm bounded from above by an absolute
constant (independent of n); this is discussed in more detail below. If the same
were true for the tensors Tp corresponding to higher-degree forms p then Theo-
rem 4.2.2 would give higher-degree extensions of Theorem 4.1.1. Unfortunately,
this will turn out to be false for polynomials of degrees greater than 3. Bounded
forms whose associated tensors have unbounded completely bounded norm ap-
peared before in the work of Smith [Smi88], who gave an explicit example with
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completely bounded norm
√

log n. Since ‖p‖cb involves an infimum over decompo-
sitions of Tp, this does not yet imply a counterexample to higher-degree versions
of Theorem 4.1.1. However, such counterexamples are implied by recent work
on Bell inequalities, multiplayer XOR games in particular. It is not difficult to
see that ‖p‖cb is bounded from below by the so-called jointly completely bounded
norm of the tensor Tp, a quantity that in quantum information theory is better
known as the entangled bias of the XOR game whose (unnormalized) game tensor
is given by Tp. One obtains this quantity by inserting tensor products between
the unitaries appearing in Eq. (4.4). Pérez-Garćıa et al. [PGWP+08] and Vidick
and the second author [BV13] gave examples of bounded cubic forms with un-
bounded jointly completely bounded norm. Both constructions are non-explicit,
the first giving a completely bounded norm of order Ω((log n)1/4) and the latter

of order Ω̃(n1/4).

In this chapter, we explain how to get a larger separation by means of a much
simpler (although still non-explicit) construction and show that a bounded cubic
form p given by a suitably normalized random sign tensor has completely bounded
norm ‖p‖cb = Ω(

√
n) with high probability (Theorem 4.5.1). The result presented

here is not new, but it follows from the existence of commutative operator algebras
which are not Q-algebras. Here, we present a self-contained proof which follows
the same lines as in [DJT95, Theorem 18.16] and, in addition, we prove the result
with high probability (rather than just the existence of such trilinear forms). We
also explain how to obtain from this result quartic examples by embedding into
3-dimensional “tensor slices”, which in turn imply counterexamples to a quartic
versus two-query version of Theorem 4.1.1. Finally, we prove that the separations
that we obtain are in fact optimal.

Short proof of Theorem 4.1.1. As shown in [AAI+16], Theorem 4.1.1 is yet
another surprising consequence of the ubiquitous Grothendieck inequality [Gro53]
(Theorem 4.5.8 below), well known for its relevance to Bell inequalities [Tsi87,
CHTW04] and combinatorial optimization [AN06, KN12], not to mention its
fundamental importance to Banach spaces [Pis12]. An equivalent formulation
of Grothendieck’s inequality again recovers Theorem 4.1.1 for quadratic forms
p(x) = xTAx given by a matrix A ∈ Rn×n satisfying a certain norm constraint
‖A‖`∞→`1 ≤ 1, which in particular implies that p is bounded (see Section 4.3 for
more on this norm). Indeed, in that case Grothendieck’s inequality implies that
‖A‖cb ≤ KG for some absolute constant KG ∈ (1, 2) (which is independent of n
and A).3 Normalizing by K−1

G , one obtains Theorem 4.1.1 with C = K−1
G for such

quadratic forms from Theorem 4.2.2. The general version of Theorem 4.1.1 for
quadratic polynomials follows from this via a so-called decoupling argument (see
Section 4.6). This arguably does not simplify the original proof of Theorem 4.1.1,

3KG is the Grothendieck’s constant, whose precise value is unknown and is known [Ree91,
BMMN13] to lie in the interval 1.6769 · · · ≤ KG < 1.7822 · · · .
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as Theorem 4.2.2 relies on deep results itself.
In Section 4.6 we give a short simplified proof, showing that Theorem 4.1.1

follows almost directly from a “factorization version” of Grothendieck’s inequality
(Theorem 4.6.3) that follows from the more standard version (Theorem 4.5.8).
The factorization version was used in the original proof as well, but only as a
lemma in a more intricate argument. In computer science, this factorization
version already found applications in [Tro09, LLV15]. This appears to be its first
occurrence in quantum computing.

4.2.3 Related work

Although there was no converse to the polynomial method until our work, equiv-
alences between quantum algorithms and polynomials have been studied before
in certain models of computation. For example, we do know of such characteriza-
tion in the model of non-deterministic query complexity [Wol03], unbounded-error
query complexity [BVW07, MNR11] and quantum query complexity in expecta-
tion [KLW15]. We remark here that in all these settings, the quantum algorithms
constructed from polynomials were non-adaptive algorithms, i.e., the quantum
algorithm begins with a quantum state, repeatedly applies the oracle some fixed
number of times and then performs a projective measurement. Crucially, these
algorithms do not contain interlacing unitaries that are present in the standard
model of quantum query complexity, hence are known to be a much weaker class
of algorithms.

Our main result is yet another demonstration of the expressive power of C∗-
algebras and operator space theory in quantum information theory; for a survey
on applications of these areas to two-prover one-round games, see [PV16]. The
appearance of Q-algebras (mentioned in the above paragraph on separations)
is also not a first in quantum information theory, see for instance [PGWP+08,
BBLV12, BBLV13].

4.3 Preliminaries

Notation. For x ∈ Cn, let Diag(x) be the n×n diagonal matrix whose diagonal
is x. Given a matrix X ∈ Cn×n, let diag(X) ∈ Cn denote its diagonal vector. For
x ∈ {0, 1}n, denote (−1)x = ((−1)x1 , . . . , (−1)xn). Let e1, e2, . . . , en ∈ Cn be the
standard basis vectors and let Eij = eie

∗
j . Let 1n = (1, . . . , 1) and 0n = (0, . . . , 0)

denote the n-dimensional all-ones (resp. all-zeros) vector.

Normed vector spaces. For parameter p ∈ [1,∞), the p-norm of a vector
x ∈ Rn is defined by ‖x‖`p = (|x1|p + · · · + |xn|p)1/p and for p = ∞ by ‖x‖`∞ =
max{|xi| : i ∈ [n]}. Denote the n-dimensional Euclidean unit ball by Bn

2 = {x ∈
Rn : ‖x‖`2 ≤ 1}. For a matrix A ∈ Rn×n, denote the standard operator norm



4.3. Preliminaries 61

by ‖A‖ and define

‖A‖`∞→`1 = sup
{
‖Ax‖`1 : ‖x‖`∞ ≤ 1

}
.

By linear programming duality, observe that the right-hand side of equality above
can be written as

sup
{
‖Ax‖`1 : ‖x‖`∞ ≤ 1

}
= sup

x,y∈{−1,1}n
xTAy.

We denote the norm of a general normed vector space X by ‖ · ‖X , if there is a
danger of ambiguity. Denote by 1X the identity map on X and by 1d the identity
map on Cd. For normed vector spaces X, Y , let L(X, Y ) be the collection of all
linear maps T : X → Y . We will use the notation L(X) as a shorthand for
L(X,X). The (operator) norm of a linear map T ∈ L(X, Y ) is given by ‖T‖ =
sup{‖T (x)‖Y : ‖x‖X ≤ 1}. Such a map is an isometry if ‖T (x)‖Y = ‖x‖X for
every x ∈ X and a contraction if ‖T (x)‖Y ≤ ‖x‖X for every x ∈ X. Throughout
we endow Cd with the standard Euclidean norm. Note that the space L(Cd) is
naturally identified with the set of d×d matrices, sometimes denoted Md(C), and
we use the two notations interchangeably. For a Hilbert spaceH, we endowH⊗Cd

with the norm given by the inner product 〈f ⊗ a, g ⊗ b〉 = 〈f, g〉H〈a, b〉, making
this space isometric to H ⊕ · · · ⊕ H (d times). This can be extended linearly to
the entire domain. Similarly, we endow L(H)⊗L(Cd) with the operator norm of
the space L(H⊗Cd) of linear operators on the Hilbert space H⊗Cd; with some
abuse of notation, we shall identify the two spaces of operators.

C∗-algebras. We collect a few basic facts of C∗-algebras that we use later and
refer to [Arv12] for an extensive introduction. A C∗-algebra X = (X, ·, ∗) is
a normed complex vector space X, complete with respect to its norm (i.e., a
Banach space), that is endowed with two operations in addition to the standard
vector-space addition and scalar multiplication operations:

1. an associative multiplication · : X × X → X, denoted x · y for x, y ∈ X,
that is distributive with respect to the vector space addition and continuous
with respect to the norm of X, which is to say that ‖x · y‖X ≤ ‖x‖X‖y‖X
for all x, y ∈ X;

2. an involution ∗ : X → X, that is, a conjugate linear map that sends x ∈ X
to (a unique) x∗ ∈ X satisfying (x∗)∗ = x and (xy)∗ = y∗x∗ for every
x, y ∈ X, and such that ‖x · x∗‖X = ‖x‖2

X .

Every finite-dimensional normed vector space is a Banach space. A C∗-algebra X
is unital if it has a multiplicative identity, denoted 1X . The most important
example of a unital C∗-algebra is Mn(C), where the involution operator is the
conjugate-transpose and the norm is the operator norm. A linear map π : X → Y
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from one C∗-algebra X to another Y is a ∗-homomorphism if it preserves the
multiplication operation, π(xy) = π(x)π(y), and satisfies π(x)∗ = π(x∗) for all
x, y ∈ X . For a complex Hilbert space H, a mapping π : X → L(H) is a
∗-representation if it is a ∗-homomorphism. An important fact is the Gelfand–
Naimark Theorem [Mur14, Theorem 3.4.1] asserting that every C∗-algebra ad-
mits an isometric (that is, norm-preserving) ∗-representation for some complex
Hilbert space. Suppose X = (X, ·X , ∗),Y = (Y, ·Y , †) are C∗-algebras, then the
tensor product X ⊗ Y is also a C∗-algebra defined in terms of the standard ten-
sor product of the vector spaces X ⊗ Y with the associative multiplication ·XY
and involution operator � defined as: (x⊗ y) ·XY (x′ ⊗ y′) = (x ·X x′)⊗ (y ·Y y′)
and involution (x ⊗ y)� = x∗ ⊗ y†. This can then be extended linearly to the
entire domain.

Completely bounded norms. We also collect a few basic facts about com-
pletely bounded norms that we use later and refer to [Pau02] for an extensive
introduction. For a C∗-algebra X and positive integer d, we denote by Md(X )
the set of d-by-d matrices with entries in X . Note that this set can naturally
be identified with the algebraic tensor product X ⊗ L(Cd), that is, the linear
span of all elements of the form x ⊗ M , where x ∈ X and M ∈ L(Cd). We
shall endow Md(X ) with a norm induced by an isometric ∗-representation π of X
into L(H) for a Hilbert space H. The linear map π ⊗ 1L(Cd) sends elements
in Md(X ) (or X ⊗ L(Cd)) to elements (operators) in L(H ⊗ Cd). The norm of
an element A ∈ Md(X ) is then defined to be ‖A‖ = ‖(π ⊗ 1L(Cd))(A)‖. The
notation ‖A‖ reflects the fact that this norm is in fact independent of the par-
ticular ∗-representation π. Based on this, we can define a norm on linear maps
σ : X → L(H) as follows:

‖σ‖cb = sup

{
‖(σ ⊗ 1L(Cd))(A)‖

‖A‖ : d ∈ N, A ∈ X ⊗ L(Cd), A 6= 0

}

Tensors and multilinear forms. For vector spaces X, Y over the same field
and positive integer t, recall that a mapping

T : X × · · · ×X︸ ︷︷ ︸
t times

→ Y

is t-linear if for every x1, . . . , xt ∈ X and i ∈ [t], the map

y 7→ T (x1, . . . , xi−1, y, xi+1, . . . , xt)

is linear. A t-tensor of dimension n is a map T : [n]× · · · × [n] → C, which can
alternatively be identified by nt complex numbers T = (Ti1,...,it)

n
i1,...,it=1 ∈ Cn×···×n.
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With abuse of notation we also identify a t-tensor T ∈ Cn×···×n with the t-linear
form T : Cn × · · · × Cn → C given by

T (x1, . . . , xt) =
n∑

i1,...,it=1

Ti1,...,itx1(i1) · · ·xt(it).

Define the norm of a t-tensor T ∈ Rn×···×n by

‖T‖`∞,...,`∞ = sup
{∣∣∣ n∑

i1,...,it=1

Ti1,...,itx1(i1) · · ·xt(it)
∣∣∣ : x1, . . . , xt ∈ {−1, 1}n

}
.

Next, we introduce the completely bounded norm of a t-linear form T : X ×
· · · × X → C on a C∗-algebra X . First, we use the standard identification of
such forms with the linear form on the tensor product X ⊗ · · · ⊗ X given by
T (x1⊗· · ·⊗xt) = T (x1, . . . , xt). We consider a bilinear map � :

(
X ⊗L(Cd),X ⊗

L(Cd)
)
→ X ⊗ X ⊗ L(Cd) for every positive integer d defined as follows. For

x, y ∈ X and Mx,My ∈ L(Cd), let

(x⊗Mx)� (y ⊗My) = (x⊗ y)⊗ (MxMy).

Observe that this operation changes the order of the tensor factors and multi-
plies Mx with My. This operation is associative but not commutative. Extend
the definition of the � operation bi-linearly to its entire domain. Define the
t-linear map Td : Md(X )× · · · ×Md(X )→ L(Cd) by

Td(A1 . . . , At) =
(
T ⊗ 1L(Cd)

)
(A1 � · · · � At).

The completely bounded norm of T is now defined by

‖T‖cb = sup
{∥∥Td(A1, . . . , At)

∥∥ : d ∈ N, Aj ∈Md(X ), ‖Aj‖ ≤ 1
}
.

Note that the definition given in Eq. (4.4) corresponds to the particular case
where the C∗-algebra X is formed by the n × n diagonal matrices. Since every
square matrix with operator norm at most 1 is a convex combination of unitary
matrices (by the Russo-Dye Theorem)4, the completely bounded norm can also
be defined by taking the supremum over unitaries Aj ∈ Md(X ). The completely
bounded norm can be defined more generally for multilinear maps into L(H), for
some Hilbert space H, to yield the definition of this norm for linear maps given
above, but we will not use this here.

4A precise statement and short proof of the Russo-Dye theorem can be found in [Gar84].



64 Chapter 4. Refining the polynomial method

Quantum query complexity. We have discussed the quantum query model in
detail in Chapter 2. Here, we make a remark about the phase oracles used there
(in particular Section 2.3.2). The unitary transformation of the phase oracle Ox,±
corresponds to Ox,± : |b, i〉 → (−1)b·xi |b, i〉 (applied to register (A,Q) in Fig. 2.5).
In the remaining part of this chapter, we abuse notation and let Ox,± correspond
to the (controlled) unitary Diag(((−1)x, 1n)) (instead of Diag((1n, (−1)x))). Ad-
ditionally, to avoid having to write (−1)x later on, we shall work in the equivalent
setting where Boolean functions send {−1, 1}n to {−1, 1}.

4.4 Characterizing quantum query algorithms

In this section we prove Theorem 4.2.2. The main ingredient of the proof is the
following celebrated representation theorem by Christensen and Sinclair [CS87]
showing that completely-boundedness of a multilinear form is equivalent to the
existence of an exceedingly nice factorization.

4.4.1. Theorem (Christensen–Sinclair). Let t be a positive integer and let X be
a C∗-algebra. Then, for every t-linear form T : X × · · · × X → C, we have
‖T‖cb ≤ 1 if and only if there exist Hilbert spaces H0, . . . ,Ht+1 where H0 =
Ht+1 = C, ∗-representations πi : X → L(Hi) for each i ∈ [t] and contractions
Vi ∈ L(Hi,Hi−1), for each i ∈ [t+ 1] such that for every x1, . . . , xt ∈ X , we have

T (x1, . . . , xt) = V1π1(x1)V2π2(x2)V3 · · ·Vtπt(xt)Vt+1. (4.6)

We first show how the above result simplifies when restricting to the special
case in which the C∗-algebra X is formed by the set of diagonal n-by-n matrices.

4.4.2. Corollary. Let m,n, t be positive integers such that t ≥ 2 and m = nt.
Let T ∈ Cn×···×n be a t-tensor. Then ‖T‖cb ≤ 1 if and only if there exist a positive
integer d, unit vectors u, v ∈ Cm and contractions Ui, Vi ∈ L(Cm,Cdn) such that
for every x1, . . . , xt ∈ Cn, we have

T (x1, . . . , xt) = u∗U∗1
(

Diag(x1)⊗ 1d
)
V1 · · ·U∗t

(
Diag(xt)⊗ 1d

)
Vtv. (4.7)

The proof of the above corollary uses the following fact about the completely
bounded norm of ∗-representations of C∗-algebras [Pis03, Theorem 1.6].

4.4.3. Lemma. Let X be a finite-dimensional C∗-algebra, H,H′ be Hilbert spaces,
π : X → L(H) be a ∗-representation and U ∈ L(H,H′) and V ∈ L(H′,H) be
linear maps. Then the map σ : X → L(H′), defined as σ(x) = Uπ(x)V , satisfies
that ‖σ‖cb ≤ ‖U‖‖V ‖.

In addition, we use the famous Fundamental Factorization Theorem [Pau02,
Theorem 8.4]. Below we state the theorem when restricted to finite-dimensional
spaces (see also the remark after [JKP09, Theorem 16]).
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4.4.4. Theorem (Fundamental factorization theorem). Let σ : L(Cn)→ L(Cm)
be a linear map and let d = nm. Then there exist U, V ∈ L(Cm,Cdn) such that
‖U‖‖V ‖ ≤ ‖σ‖cb and for every M ∈ L(Cn), we have σ(M) = U∗(M ⊗ 1d)V .

Proof of Corollary 4.4.2. The set X = Diag(Cn) of diagonal matrices is a
(finite-dimensional) C∗-algebra (endowed with the standard matrix product and
conjugate-transpose involution). Define the t-linear form R : X × · · · × X → C
by R(X1, . . . , Xt) = T (diag(X1), . . . , diag(Xt)).

We first show that ‖R‖cb = ‖T‖cb. Observe that for every positive integer d,
the set {B ∈ Md(X ) : ‖B‖ ≤ 1} can be identified with the set of block-diagonal
matrices B =

∑n
i=1Ei,i ⊗ B(i) of size nd × nd and blocks B(1), . . . , B(n) of

size d× d satisfying ‖B(i)‖ ≤ 1 for all i ∈ [n]. It then follows that

Rd(B1, . . . , Bt) =
n∑

i1,...,it=1

R(Ei1,i1 , . . . , Eit,it)B1(i1) · · ·Bt(it)

=
n∑

i1,...,it=1

Ti1,...,itB1(i1) · · ·Bt(it),

which shows that ‖R‖cb = ‖T‖cb.

Next, we show that Eq. (4.6) is equivalent to Eq. (4.7). The fact that Eq. (4.7)
implies Eq. (4.6) follows immediately from the fact that the map Diag(x) 7→
Diag(x)⊗ 1d is clearly a ∗-representation for X = Diag(Cn). We now show that
by fixing X = Diag(Cn), there exists Hilbert spaces Hi, ∗-representations πi and
contractions Vi such that Eq. (4.6) equals Eq. (4.7). Assume Eq. (4.6). Without
loss of generality, we may assume that each of the Hilbert spaces H1, . . . ,Ht has
dimension at least m. If not, we can expand the dimensions of the ranges and
domains of the representations πi and contractions Vi by dilating with appropriate
isometries into larger Hilbert spaces (“padding with zeros”). For each i ∈ [t], let
Si ⊆ Hi be the subspace

Si = Span
{
πi(xi)Vi+1 · · ·Vtπt(xt)Vt+1 : xi, . . . , xt ∈ X

}
.

Since dim(X ) = n, we have that dim(Si) ≤ m (since Vi ∈ L(Cm,Cdn)). For each
i ∈ [t], let Qi ∈ L(Cm,Hi) be an isometry such that Si ⊆ Im(Qi). Note that Vi+1

is a vector in the unit ball of Ht. Let Qt+1 ∈ L(Cm,Ht) be an isometry such that
Im(Vt+1) ⊆ Im(Qt+1). Note that for each i ∈ [t + 1], the map QiQ

∗
i acts as the

identity on Im(Qi). For each i ∈ {2, . . . , t} define the map σi : X → L(Cm) by
σi(x) = Q∗iViπi(x)Qi+1 and σ1(x) = Q∗1π1(x)Q2. Finally define u = Q∗1V

∗
1 and

v = Q∗t+1Vt+1. Then the right-hand side of Eq. (4.6) can be written as

u∗σ1(x1) · · ·σt(xt)v.

It follows from Lemma 4.4.3 that ‖σi‖cb ≤ 1. Let σ′i : L(Cn)→ L(Cm) be the lin-
ear map given by σ′i(M) = σi(Diag(M11, . . . ,Mnn)) for every M ∈ L(Cm). Then,
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for every diagonal matrix x ∈ X , we have σi(x) = σ′i(x) and ‖σ′i‖cb = ‖σi‖cb. It
follows from Theorem 4.4.4 that there exist a positive integer di and contractions
Ui, Vi : L(Cm,Cdn) such that σi(x) = U∗i (x⊗1di)Vi for every x ∈ X . We can take
all di equal to d = maxi{di} by suitably dilating the contractions Ui, Vi. Setting
u′ = u/‖u‖2 and U ′1 = ‖u‖2U1, and similarly defining v′, V ′i+1 shows that Eq. (4.6)
implies Eq. (4.7). 2

Corollary 4.4.2 implies the following lemma, from which Theorem 4.2.2 eas-
ily follows.

4.4.5. Lemma. Let β : {−1, 1}n → [−1, 1] and t be a positive integer. Then the
following are equivalent.

1. There exists a (2t)-tensor T ∈ R2n×···×2n such that ‖T‖cb ≤ 1 and for every
x ∈ {−1, 1}n and y = (x, 1n), we have

2n∑
i1,...,i2t=1

Ti1,...,i2tyi1 · · · yi2t = β(x).

2. There exists a t-query quantum algorithm that, on input x ∈ {−1, 1}n,
returns a random sign with expected value β(x).

Proof. We first prove that (2) implies (1). As discussed in Section 4.3, a t-query
quantum algorithm with phase oracles initializes the joint register (A,Q,W) in the
all-zero state, on which it then performs a sequence of unitaries U1, . . . , Ut inter-
laced with queries D(x) = Diag((x, 1n))⊗ 1W. Let {P0, P1} be the two-outcome
measurement done at the end of the algorithm and assume that it returns +1 on
measurement outcome zero and −1 otherwise. Note that P0−P1 is a contraction
since P0, P1 are positive semi-definite and satisfy P0 + P1 = 1.

The final state of the quantum algorithm (before the measurement of regis-
ter A) is

|ψx〉 = UtD(x) · · ·U2D(x)U1|0m〉,
where m is the total number of qubits in the joint register (A,Q,W). Hence the
expected value of the measurement outcome is then given by

〈ψx|(P0 − P1)|ψx〉. (4.8)

By assumption, this expected value equals β(x) for every x ∈ {−1, 1}n. For

z ∈ C2n, denote D′(z) = Diag((zn+1, . . . , z2n, z1, . . . , zn))⊗1W and Ũt = U∗t (P0−
P1)Ut. Define the (2t)-linear form T by

T (y1, . . . , y2t) = 〈0m|U∗1D′(y1)U∗2 · · ·D′(yt)ŨtD′(yt+1) · · ·U2D
′(y2t)U1|0m〉.
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Clearly T ((x, 1n), . . . , (x, 1n)) = β(x) for every x ∈ {−1, 1}n. Moreover, by def-
inition, T admits a factorization as in Eq. (4.7). It thus follows from Corol-
lary 4.4.2 that ‖T‖cb ≤ 1. We turn T into a real tensor by taking its real
part T ′ = (T + T )/2, where T is the coordinate-wise complex conjugate of T .
Since for every x ∈ {−1, 1}n and y = (x, 1n), the value T (y, . . . , y) is real, we
have T ′(y, . . . , y) = β(x). We need to show that ‖T ′‖cb ≤ 1. To this end, consider
an arbitrary positive integer d and sequences of unitary matrices V1(i), . . . , V2t(i)
for i ∈ [n], then∥∥∥ 2n∑

i1,...,i2t=1

Ti1,...,i2tV1(i1) · · ·V2t(i2t)
∥∥∥ =

∣∣∣ 2n∑
i1,...,i2t=1

Ti1,...,i2tv
∗V1(i1) · · ·V2t(i2t)w

∣∣∣,
where we assumed that the unit vectors v, w ∈ Cd maximize the operator norm.
Note that ‖T‖cb is given by the supremum over d and Vj(i). Taking the complex
conjugate of the above summands on the right-hand side allows us to express the
above absolute value as∣∣∣ 2n∑

i1,...,i2t=1

Ti1,...,i2t v̄
∗V1(i1) · · ·V2t(i2t) w̄

∣∣∣, (4.9)

where v̄, w̄, Vj(i) denote the coordinate-wise complex conjugates. Since each Vj(i)
is still unitary, it follows that Eq. (4.9) is at most ‖T‖cb and so ‖T‖cb ≤ ‖T‖cb ≤ 1.
Hence, by the triangle inequality, ‖T ′‖cb ≤ (‖T‖cb + ‖T‖cb)/2 ≤ 1 as desired.

Next, we show that (1) implies (2). Let T be a (2t)-tensor as in item (1).
Then it follows from Corollary 4.4.2 that T admits a factorization as in Eq. (4.7),

T (y1, . . . , y2t) = u∗U∗1
(

Diag(y1)⊗ 1d
)
V1 · · ·U∗2t

(
Diag(y2t)⊗ 1d

)
V2tv. (4.10)

Let V0, U2t+1 ∈ L(Cm,C2dn) be isometries. For each i ∈ [2t + 1], define the
map Zi ∈ L(C2dn) by Zi = Vi−1U

∗
i . Observe that each Zi is a contraction and

recall that unitaries are contractions. For the moment, assume for simplicity that
each Zi is in fact unitary. Define two vectors ũ = V0u and ṽ = U2t+1v and observe
that these are unit vectors in C2dn. The right-hand side of Eq. (4.10) then gives us

T (y1, . . . , y2t) =

ũ∗Z1

(
Diag(y1)⊗ 1d

)
Z2

(
Diag(y2)⊗ 1d

)
Z3 · · ·Z2t

(
Diag(y2t)⊗ 1d

)
Z2t+1ṽ.

(4.11)

In particular, if we define two unit vectors

V1 = (Diag(y)⊗ 1d)Zt · · ·W2(Diag(y)⊗ 1d)Z1ũ,

V2 = Z∗t+1(Diag(y)⊗ 1d)Z
∗
t+2 · · ·Z∗2t(Diag(y)⊗ 1d)Z

∗
2t+1ṽ,

then T (y, . . . , y) = |〈V ∗1 , V2〉|. Based on this, we obtain the quantum query algo-
rithm that prepares V1 and V2 in parallel, each using at most t queries. This is
described in Figure 4.1.



68 Chapter 4. Refining the polynomial method

...

H X X

V U D
ia
g
(x

)

W
2

X

W
∗ 2
t

X

. . .

D
ia
g
(x

)

W
t

X

W
∗ t+

2

D
ia
g
(x

)

W
∗ t+

1

HC

W

Q

Figure 4.1: The registers A,Q,W denote the control, query and workspace regis-
ters. Let U, V be unitaries with Z1ũ and Z∗2t+1ṽ as their first columns, respectively
and for x ∈ {−1, 1}n and y = (x, 1n), let Diag(y) be the query operator. The
algorithm begins by initializing the joint register (A,Q,W) in the all-zero state
and proceeds by performing the displayed operations. The algorithm returns +1
if the outcome of the measurement on A equals zero and −1 otherwise.

To see why this algorithm satisfies the requirements, first note that the algorithm
makes t queries to the input x. For the correctness of the algorithm, we begin
by observing that before the application of the first query, the state of the joint
register (A,Q,W) is

1√
2
(|0〉 ⊗ U |0n〉+ |1〉 ⊗ V |0n〉) = 1√

2
(|0〉 ⊗ Z1ũ+ |1〉 ⊗ Z∗2t+1ṽ).

Before the final Hadamard gate, the state of the joint register is given by

1√
2
|0〉 ⊗

(
(Diag(y)⊗ 1d)Zt · · ·W2(Diag(y)⊗ 1d)Z1ũ

)
+

1√
2
|1〉 ⊗

(
Z∗t+1(Diag(y)⊗ 1d)Z

∗
t+2 · · ·Z∗2t(Diag(y)⊗ 1d)Z

∗
2t+1ṽ

)
.

A standard calculation shows that after the final Hadamard gate, the expected
value of the final measurement outcome is

ũ∗Z1

(
Diag(y)⊗ 1d

)
Z2

(
Diag(y)⊗ 1d

)
Z3 · · ·Z2t

(
Diag(y)⊗ 1d

)
Z2t+1ṽ.

Using Eq. (4.11), it follows that the expected output of the algorithm is precisely
T ((x, 1n), . . . , (x, 1n)) = β(x).

In the general case where the Zis are not necessarily unitary but have operator
norm at most 1, we can use the linear algebra fact that there exists a unitary
matrix Z ′i ∈ C4dn×4dn that has Zi as its upper-left corner (see [AAI+16, Lemma 7]),
through which the algorithm could implement Zi by working on a larger quantum
register. Correspondingly, one could increase the dimension of ũ, ṽ by fixing their
entries to be 0 in the additional dimensions. 2

Using Lemma 4.4.5, we now prove our main Theorem 4.2.2.
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Proof of Theorem 4.2.2. We first show that (2) implies (1). Using the
equivalence in Lemma 4.4.5 (in particular (2) =⇒ (1) in Lemma 4.4.5), there
exists a (2t)-tensor T ∈ R2n×···×2n such that ‖T‖cb ≤ 1 and for every x ∈ {−1, 1}n
and y = (x, 1n), we have

2n∑
i1,...,i2t=1

Ti1,...,i2tyi1 · · · yi2t = β(x).

Define the symmetric 2t-tensor T ′ = 1
(2t)!

∑
σ∈S2t

T ◦ σ. Let p ∈ R[x1, . . . , x2n]

be the form of degree 2t associated with T ′. Since there is a unique symmetric
tensor associated with a polynomial, it follows that T ′ = Tp (where Tp is defined
by Eq. (4.2)). Then, p((x, 1n)) = β(x) for every x ∈ {−1, 1}n. Moreover, if we
set T σ = T for each σ ∈ S2t, it follows from the above decomposition of Tp and
Definition 4.2.1 that ‖p‖cb ≤ ‖T‖cb ≤ 1.

Next, we show that (1) implies (2). Let p be a degree-(2t) form satisfying
‖p‖cb ≤ 1. Suppose Tp as defined in Eq. (4.2) can be written as Tp =

∑
σ∈S2t

T σ ◦
σ and

∑
σ∈S2t

‖T σ‖cb = ‖p‖cb ≤ 1. Define T =
∑

σ∈S2t
T σ. Then, using the

triangle inequality, it follows that ‖T‖cb ≤
∑

σ∈S2t
‖T σ‖cb ≤ 1. Also note that for

every y ∈ R2n,

T (y, . . . , y) =
∑
σ∈S2t

T σ(y, . . . , y) =
∑
σ∈S2t

(T σ ◦ σ)(y, . . . , y) = Tp(y, . . . , y) = p(y).

Using Lemma 4.4.5 (in particular (1) =⇒ (2) in Lemma 4.4.5) for the tensor T ,
the theorem follows. 2

We now prove Corollary 4.2.4, which is an immediate consequence of our
main theorem.

Proof of Corollary 4.2.4. We first prove that cb-degε(f) ≥ Qε(f). Suppose
cb-degε(f) = d, then there exists a degree-(2d) form p satisfying: |p(x, 1n) −
f(x)| ≤ 2ε for every x ∈ D and ‖p‖cb ≤ 1. Let β(x) = p(x, 1n) for every
x ∈ {−1, 1}n. Using our characterization in Theorem 4.2.2, it follows that there
exists a d-query quantum algorithm A, that on input x ∈ D, returns a random
sign with expected value β(x) = p(x, 1n). So, our ε-error quantum algorithm
for f simply runs A and outputs the random sign.

We next show cb-degε(f) ≤ Qε(f). Suppose Qε(f) = t. Then, there exists a
t-query quantum algorithm that, on input x ∈ D, outputs a random sign with
expected value β(x) satisfying |β(x) − f(x)| ≤ 2ε. Note that we could also run
the quantum algorithm for x /∈ D and let β(x) ∈ [−1, 1] be the expected value
of the quantum algorithm for such xs. Using Theorem 4.2.2, we know that there
exists a degree-(2t) form p satisfying β(x) = p(x, 1n) for every x ∈ {−1, 1}n and
‖p‖cb ≤ 1. Clearly p satisfies satisfies the conditions of Definition 4.2.3, hence
cb-degε(f) ≤ t. 2
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4.5 Separations for quartic polynomials

In this section we show the existence of a quartic polynomial p that is bounded
but for which every two-query quantum algorithm A satisfying E[A(x)] = Cp(x)
for every x ∈ {−1, 1}n, must necessarily have C = O(n−1/2). We show this using
a (random) cubic form that is bounded, but whose completely bounded norm is
poly(n), following a construction of [DJT95, Theorem 18.16]. This shows that
Theorem 4.1.1 cannot be generalized from one-query to two-query quantum al-
gorithms.

Given a form p : Rn → R, we define its norm as

‖p‖ = sup{|p(x)| : x ∈ {−1, 1}n}.

Note that the condition ‖p‖ ≤ 1 is equivalent to p being bounded.

4.5.1 Probabilistic counterexample

4.5.1. Theorem. There exist absolute constants C, κ ∈ (0,∞) such that the
following holds. Let5

p(x) =
∑

α∈{0,1,2,3}n: |α|=3

cαx
α

be a random cubic form where the coefficients cα are independent uniformly dis-
tributed {−1, 1}-valued random variables. Then, with probability ≥ 1− Cne−κn,
we have ‖p‖cb ≥ κ

√
n‖p‖.

We shall use the following standard concentration-of-measure results. The
first is the Hoeffding bound [Pol12, Corollary 3 (Appendix B)].

4.5.2. Lemma (Hoeffding bound). Let X1, . . . , Xm be independent uniformly dis-
tributed {−1, 1}-random variables and let a ∈ Rm. Then, for every τ > 0, we have

Pr
[∣∣∣ m∑

i=1

aiXi

∣∣∣ > τ
]
≤ 2e

− τ2

2(a21+···+a
2
m)

The second result is one from random matrix theory concerning upper tail
estimates for Wigner ensembles (see [Tao12, Corollary 2.3.6]).

4.5.3. Lemma. There exist absolute constants C, κ ∈ (0,∞) such that the fol-
lowing holds. Let n be a positive integer and let M be a random n×n symmetric
random matrix such that for j ≥ i, the entries Mij are independent random vari-
ables with mean zero and absolute value at most 1. Then, for every τ ≥ C,
we have

Pr
[
‖M‖ > τ

√
n
]
≤ Ce−κτn.

5Recall that |α| in the definition of p is defined as |α| = ∑i αi.
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We also use the following proposition.

4.5.4. Proposition. Let m,n, t be positive integers, let p ∈ R[x1, . . . , xn] be a
t-linear form, let Tp ∈ Rn×···×n be as in Eq. (4.2) and let A1, . . . , An ∈ L(Rm) be
pairwise commuting contractions. Then,

‖p‖cb ≥
∥∥∥ n∑
i1,...,it=1

(Tp)i1,...,itAi1 · · ·Ait
∥∥∥.

Proof. Consider an arbitrary decomposition Tp =
∑

σ∈St T
σ ◦ σ. Then, the

definition of the completely bounded norm and triangle inequality shows that for
every sequence of commuting contractions A1, . . . , An ∈ L(Rm), we have∑

σ∈St

‖T σ‖cb ≥
∑
σ∈St

∥∥ n∑
i1,...,it=1

T σi1,...,itAi1 · · ·Ait
∥∥

≥
∥∥∑
σ∈St

n∑
i1,...,it=1

T σi1,...,itAi1 · · ·Ait
∥∥.

Since the Ai commute, the above reduces to∥∥∑
σ∈St

n∑
i1,...,it=1

T σi1,...,itAσ−1(i1) · · ·Aσ−1(it)

∥∥ =
∥∥∑
σ∈St

n∑
i1,...,it=1

(T σ ◦ σ)i1,...,itAi1 · · ·Ait
∥∥

=
∥∥ n∑
i1,...,it=1

(Tp)i1,...,itAi1 · · ·Ait
∥∥.

The proposition now follows from the definition of ‖p‖cb and the fact that the
decomposition of Tp was arbitrary. 2

Proof of Theorem 4.5.1. We begin by showing that with probability at
least 1 − 2e−n, we have ‖p‖ = maxx∈{−1,1}n |p(x)| ≤ O(n2). To this end, let us
fix an arbitrary x ∈ {−1, 1}n. Then, p(x) is a sum of at most n3 independent
uniformly distributed random {−1, 1}-random variables. It therefore follows from
Lemma 4.5.2 that

Pr
[
|p(x)| > 2n2

]
≤ 2e−2n,

By the union bound over x ∈ {−1, 1}n, it follows that ‖p‖ > 2n2 with probability
at most 2e−n, which gives the claim.

We now lower bound ‖p‖cb. Let τ > 0 be a parameter to be set later. Let T ∈
Rn×n×n be the random symmetric 3-tensor associated with p as in Eq. (4.2). For
every i ∈ [n], we define the linear map Ai : R2n+2 → R2n+2 by

Aie0 = ei
Aiej = 1

τ
√
n

∑n
k=1 Ti,j,kek+n

Aiej+n = δi,je2n+1

Aie2n+1 = 0.
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Observe that for every i, j, k ∈ [n], we have

e∗2n+1AiAjAke0 = e∗2n+1AiAjek = e∗2n+1Ai

( 1

τ
√
n

n∑
k′=1

Tj,k,k′ek′+n

)
= e∗2n+1

1

τ
√
n

n∑
k′=1

Tj,k,k′δi,k′e2n+1

=
1

τ
√
n
Ti,j,k.

(4.12)

Since T is symmetric, it follows easily that these maps commute, which is to
say that AiAj = AjAi for every i, j ∈ [n]. In addition, we claim that with
high probability, these maps are contractions (i.e., the associated matrices have
operator norm at most 1). To see this, for each i ∈ [n], let Mi be the random
matrix given by Mi = (Ti,j,k)

n
j,k=1. Observe that Mi is symmetric and its entries

have mean zero and absolute value at most 1. By Lemma 4.5.3 and a union
bound, we get that

Pr
[

max
i∈[n]

∥∥Mi

∥∥ > τ
√
n
]
≤ Cne−κτn. (4.13)

for absolute constants κ,C and provided τ ≥ C.
Now, for every Euclidean unit vector u ∈ R2n+2, we have

‖Aiu‖2
2 = |u0|2 +

1

τ 2n

n∑
k=1

∣∣∣ n∑
j=1

ujTi,j,k

∣∣∣2 + |ui+n|2

≤ |u0|2 +
‖Mi‖2

τ 2n

n∑
j=1

|uj|2 + |ui+n|2. (4.14)

It follows from Eq. (4.13) that maxi ‖Mi‖ ≤ τ
√
n with probability at least 1 −

Cne−κτn, which in turn implies that Eq. (4.14) is at most ‖u‖2
2 ≤ 1 and therefore

we have that all Ais have operator norm at most 1.
By Proposition 4.5.4,

‖p‖cb ≥
∥∥ n∑
i,j,k=1

Ti,j,kAiAjAk
∥∥, (4.15)

provided that the Ais are contractions.
By Eq. (4.12), and since |Ti,j,k| ≥ 1/6 for every i, j, k ∈ [n], the left hand

side of Eq. (4.15) is at least n5/2/(36τ), with probability at least 1 − Cne−κτn.
Letting τ be a sufficiently large constant then gives the result. 2

As mentioned in the introduction, one can easily extend this result to the
case of 4-linear forms. To demonstrate the failure of Theorem 4.1.1 for quartic
polynomials, we embed our cubic polynomial into a quartic polynomial, which
also gives a similar separation as in the cubic case.
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4.5.5. Corollary. There exists a bounded quartic form

q(x1, . . . , xn) =
∑

α∈{0,1}n: |α|=4

dαx
α, (4.16)

and pairwise commuting contractions A1, . . . , An ∈ L(R2n+2) such that∥∥∥ n∑
i,j,k,`=1

(Tq)i,j,k,`AiAjAkA`

∥∥∥ ≥ κ
√
n

where κ ∈ (0, 1] is some absolute constant.

Proof. Let p be a bounded multi-linear cubic form such that ‖p‖cb ≥ C
√
n,

the existence of which is guaranteed by Theorem 4.5.1. Let Tp ∈ Rn×n×n be
the random symmetric 3-tensor associated to p. Consider the symmetric 4-
tensor S ∈ R(n+1)×(n+1)×(n+1)×(n+1) defined by S0,j,k,` = Tj,k,`, Si,0,k,` = Ti,k,`,
Si,j,0,` = Ti,j,`, Si,j,k,0 = Ti,j,k for every i, j, k, ` ∈ [n] and Si,j,k,` = 0 otherwise.
Since S is symmetric, there exists a unique multi-linear quartic form q associated
to S. It follows easily that ‖q‖ = 4‖p‖. Moreover, by considering the contrac-
tions Ai used in the proof of Theorem 4.5.1 and defining A0 = 1n+2, it follows
that ‖q‖cb ≥ 4‖p‖cb. The form q/4 is thus as desired. 2

We claim that a form q as in Corollary 4.5.5 gives a counterexample to possible
quartic extensions of Theorem 4.1.1. To see this, suppose there exists a two-
query quantum algorithm A and a C ∈ (0,∞) (independent of n and A) such
that E[A(x)] = Cq(x) for each x ∈ {−1, 1}n. By Theorem 4.2.2, there exists a
(2n)-variate quartic form h such that h(x, 1n) = Cq(x) for each x ∈ {−1, 1}n and
‖h‖cb ≤ 1. We now show that the degree-4 coefficients in h(x, y) are completely
determined by q(x). Indeed, if we expand

h(x, y) =
∑

α,β∈{0,1,2,3,4}n:
|α|+|β|=4

d′α,βx
αyβ,

then, by the definition of q in Eq. (4.16), it follows that∑
α,β∈{0,1,2,3,4}n:
|α|+|β|=4

d′α,βx
α = h(x, 1n) = Cq(x) = C

∑
α∈{0,1}n: |α|=4

dαx
α. (4.17)

In particular, it follows from Eq. (4.17) that d′α,0n = Cdα for all α ∈ {0, 1}n such
that |α| = 4.

In order to lower bound ‖h‖cb, let Th ∈ R(2n)×(2n)×(2n)×(2n) be the symmetric
4-tensor associated to h. By Proposition 4.5.4, we have

‖h‖cb ≥
∥∥∥ 2n∑
i,j,k,`=1

(Th)i,j,k,`BiBjBkB`

∥∥∥,
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for every set of pairwise commuting contractions B1, . . . , B2n. In particular, set
Bi = Ai as in Corollary 4.5.5 for i ∈ [n] and let Bi be the all-zero matrix for i ∈
{n+1, . . . , 2n}. Since the Ais were pairwise commuting in Corollary 4.5.5 (which
clearly commute with the all-zero matrix), the Bis are pairwise commuting. Fi-
nally, observe that for all i, j, k, ` ∈ [n], we have (Th)i,j,k,` = d′α,0n/(|{i, j, k, `}|!),
which is equal to Cdα/(|{i, j, k, `}|!) (by Eq. (4.17)). In particular, using Corol-
lary 4.5.5, we have

‖h‖cb ≥
∥∥∥ 2n∑
i,j,k,`=1

(Th)i,j,k,`BiBjBkB`

∥∥∥ = C
∥∥∥ n∑
i,j,k,`=1

(Tq)i,j,k,`AiAjAkA`

∥∥∥ ≥ Cκ
√
n.

This implies that 1 ≥ ‖h‖cb = C‖q‖cb ≥ Cκ
√
n, and so C ≤ 1/(κ

√
n).

4.5.2 Upper bound on separation for cubic polynomials

In this section, we will prove that the separation we obtained in Theorem 4.5.1
is in fact optimal for degree-3 polynomials.

4.5.6. Theorem. For every degree-3 polynomial p : Rn → R, we have ‖p‖cb ≤
63KG

2

√
n‖p‖, where KG is Grothendieck’s constant (see Theorem 4.5.8).

Before we prove the theorem, we remark that a similar argument can also be
used to show that for every quartic polynomial p : Rn → R, we have ‖p‖cb ≤
O(n‖p‖). We prove the degree-3 case for simplicity.

Our proof of the theorem uses the following polarization identity and the
well-known Grothendieck theorem.

4.5.7. Lemma (Polarization identity [Tho14, Eq. 7]). Let E,F be linear spaces
and T : En → F be a symmetric multilinear map. Define p as

p(x) = T (x, . . . , x) for all x ∈ E.

Then, the polarization identity is given by:

T (x1, . . . , xn) =
1

n!

n∑
k=1

(−1)n−k
∑

S∈{0,1}n:|S|=k

p
(∑
i∈S

xi

)
.

4.5.8. Theorem (Grothendieck). There exists a universal constant KG ∈ (0,∞)
such that the following holds. For every positive integer n and matrix A ∈ Rn×n,
we have

sup
{ n∑
i,j=1

Aij〈ui, vj〉 : d ∈ N, ‖ui‖2, ‖vj‖2 ≤ 1
}
≤ KG ‖A‖`∞→`1 .
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Elementary proofs of this theorem can be found for instance in [AN06]. The
Grothendieck constant KG is the smallest real number for which Theorem 4.5.8
holds true. The problem of determining its exact value, posed in [Gro53], remains
open. The best lower and upper bounds 1.6769 · · · ≤ KG < 1.7822 · · · were proved
by Davie and Reeds [Dav84, Ree91], and Braverman et al. [BMMN13], resp.

Proof of Theorem 4.5.6. The theorem follows immediately from the following
lemma, which gives an upper bound on the completely bounded norm of trilinear
forms in terms of their operator norm.

4.5.9. Lemma. Let T = (Ti,j,k)
n
i,j,k=1 be a sequence of {−1, 1} variables, then

‖T‖cb ≤ KG

√
n‖T‖`∞,`∞,`∞.

Before we prove lemma 4.5.9, we conclude the proof of the theorem. Suppose
Tp is the symmetric 3-linear form defined in Eq. (4.2). Observe that

‖p‖cb ≤ ‖Tp‖cb. (4.18)

Indeed, since the definition of ‖p‖cb has an infimum over decompositions Tp =∑
σ T

σ ◦ σ, one possible decomposition is obtained by letting T σ = Tp/3! for all
σ ∈ S3. Note that this choice of T σs is possible because Tp is symmetric. For this
choice of T σs, we get

∑
σ∈S3
‖T σ‖cb = ‖Tp‖cb, hence showing that ‖p‖cb ≤ ‖Tp‖cb.

Using Lemma 4.5.9, we can now upper bound ‖Tp‖cb ≤ KG

√
n‖Tp‖`∞,`∞,`∞ .

Finally, in order to upper bound ‖Tp‖`∞,`∞,`∞ , we use the polarization identity in
Lemma 4.5.7 to first write

Tp(x1, x2, x3) =
1

3!

3∑
k=1

(−1)3−k
∑

S∈{0,1}3:
|S|=k

p
(∑
i∈S

xi

)
.

Then, using the triangle inequality, it follows that

‖Tp‖`∞,`∞,`∞ = max
x1,x2,x3∈{−1,1}n

|Tp(x1, x2, x3)|

≤ 7

6
max

x∈{−3,...,3}n
|p(x)|

≤ 7 · 27

6
max

x∈{−1,1}n
|p(x)| = 63

2
‖p‖,

(4.19)

where we used that p is a degree-3 polynomial to conclude maxx∈{−α,...,α}n |p(x)| ≤
α3 maxx∈{−1,1}n |p(x)| for all α > 0, in the second inequality.

Putting everything together, we get

‖p‖cb

Eq. (4.18)

≤ ‖Tp‖cb

Lemma 4.5.9

≤ KG

√
n‖Tp‖`∞,`∞,`∞

Eq. (4.19)

≤ 63KG

2

√
n‖p‖.

It remains to prove Lemma 4.5.9, which we do now.
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Proof of Lemma 4.5.9. By definition of the completely bounded norm, our
goal is to upper bound the following quantity

‖T‖cb =
∥∥∥ n∑
i,j,k=1

Ti,j,kAiBjCk

∥∥∥,
where {Ai}, {Bj}, {Ck} are sequences of matrices with operator norm at most 1.
Suppose unit vectors u, v maximize the operator norm of

∑n
i,j,k=1 Ti,j,kAiBjCk.

Let Sk =
∑

ij Ti,j,kB
∗
jA
∗
i , uk = Sku and vk = Ckv, so that

‖T‖cb =
∣∣∣ n∑
k=1

u∗kvk

∣∣∣.
Let x1, . . . , xn be independent and identically distributed {−1, 1}-valued Bern-
oulli random variables. Then, we rewrite ‖T‖cb as follows,

‖T‖cb =
∣∣∣ n∑
k=1

〈uk, vk〉
∣∣∣ =

∣∣∣Ex[〈 n∑
k=1

ukxk,
n∑
`=1

v`x`〉
]∣∣∣, (4.20)

where the second equality used Ex[xixj] = δi,j for every i, j ∈ [n]. Using the
Cauchy-Schwarz inequality twice, we get∣∣∣Ex[〈 n∑

k=1

ukxk,
n∑
`=1

v`x`〉
]∣∣∣ ≤ Ex

[
‖

n∑
k=1

ukxk‖2‖
n∑
`=1

v`x`‖2

]
≤
(
Ex
[
‖

n∑
k=1

ukxk‖2
2

])1/2(
Ex
[
‖

n∑
`=1

v`x`‖2
2

])1/2

.

(4.21)

We now upper bound both terms in the final expression by(
Ex
[
‖

n∑
k=1

ukxk‖2
2

])1/2

︸ ︷︷ ︸
≤KG‖T‖`∞,`∞,`∞

·
(
Ex
[
‖

n∑
`=1

v`x`‖2
2

])1/2

︸ ︷︷ ︸
≤
√
n

≤ KG

√
n‖T‖`∞,`∞,`∞ . (4.22)

For the first underbraced upper bound in Eq. (4.22), fix x ∈ {−1, 1}n and let
Qij =

∑
k Ti,j,kxk. Then,

‖
n∑
k=1

ukxk‖2 = ‖
n∑
k=1

Skxku‖2

= ‖
n∑

i,j,k=1

Ti,j,kxkB
∗
jA
∗
iu‖2

= ‖
n∑

i,j=1

QijB
∗
jA
∗
iu‖2 ≤ ‖

n∑
i,j=1

QijB
∗
jA
∗
i ‖, (4.23)
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where the last inequality is by definition of the operator norm and using that u
is a unit vector. Suppose w, z maximize the final norm expression, then

‖
n∑

i,j=1

QijB
∗
jA
∗
i ‖ = |

n∑
i,j=1

Qij〈Bjw,A
∗
i z〉| ≤ KG max

y,z∈{−1,1}n

∣∣∣ n∑
i,j=1

Qijyizj

∣∣∣, (4.24)

where the last inequality used Grothendieck’s Theorem 4.5.8. Putting together
Eq. (4.23), (4.24) into Eq. (4.21), it now follows that(

Ex
[
‖

n∑
k=1

ukxk‖2
2

])1/2

≤
(

max
x

[
‖

n∑
k=1

ukxk‖2
2

])1/2

= max
x∈{−1,1}n

‖
n∑
k=1

ukxk‖2

Eq. (4.24,4.25)

≤ KG max
x,y,z∈{−1,1}n

n∑
i,j=1

Qijyizj = KG‖T‖`∞,`∞,`∞ .

(4.25)

For the second underbraced upper bound in Eq. (4.22), observe that

Ex
[
‖

n∑
`=1

v`x`‖2
2

]
= Ex

[ n∑
`,`′=1

v`x`v`′x`′
]

=
n∑
`=1

‖v`‖2
2

=
n∑
`=1

‖C`v‖2
2 ≤

n∑
`=1

‖C`‖2 ≤ n,

(4.26)

where we used Ex[xixj] = δi,j in the first equality, the definition of v` = C`v in
the second equality and in the last inequality used that the C`s have operator
norm at most 1. Putting together Eq. (4.20), Eq. (4.21) and Eq. (4.22), we have

‖T‖cb ≤ KG

√
n‖T‖`∞,`∞,`∞ ,

concluding the proof of the lemma. 2

2

4.6 Short proof of Theorem 4.1.1

In this section, we give a short proof of Theorem 4.1.1, restated below for conve-
nience.

4.6.1. Theorem (Aaronson et al.). There exists an absolute constant C ∈ (0, 1]
such that the following holds. For every bounded quadratic polynomial p, there
exists a one-query quantum algorithm that, on input x ∈ {−1, 1}n, returns a
random sign with expectation Cp(x).

We begin by giving a brief sketch of the original proof.
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Proof sketch of Theorem 4.1.1. The first step is to show that without loss
of generality, we may assume that the polynomial p is a quadratic form. This
is the content of the decoupling argument mentioned in the introduction, proved
for polynomials of arbitrary degree in [AAI+16], but stated here only for the
quadratic case.

4.6.2. Lemma. There exists an absolute constant C ∈ (0, 1] such that the fol-
lowing holds. For every bounded quadratic polynomial p, there exists a matrix
A ∈ R(n+1)×(n+1) with ‖A‖`∞→`1 ≤ 1, such that the quadratic form q(y) = yTAy
satisfies q((x, 1)) = Cp(x) for all x ∈ {−1, 1}n.

To prove the theorem, we may thus restrict to a quadratic form p(x) = yTAy
given by some matrix A ∈ R(n+1)×(n+1) such that ‖A‖`∞→`1 ≤ 1. The next step is
to massage the matrix A into a unitary matrix (that can be applied by a quantum
algorithm). To obtain this unitary, the authors use an argument based on two
versions of Grothendieck’s inequality and a technique known as variable splitting,
developed in earlier work of Aaronson and Ambainis [AA15]. The first version of
Grothendieck’s inequality is the one most commonly used in applications [Gro53]
and stated in Theorem 4.5.8.

The second version of Grothendieck’s inequality is as follows.

4.6.3. Theorem (Grothendieck). For every positive integer n and matrix A ∈
R(n+1)×(n+1), there exist u, v ∈ (0, 1](n+1) such that ‖u‖2 = ‖v‖2 = 1 and such that
the matrix

B =
1

KG

Diag(u)−1ADiag(v)−1 (4.27)

satisfies ‖B‖ ≤ ‖A‖`∞→`1, where Diag(w) denotes the square diagonal matrix
whose diagonal is w.

4.6.1 Our contribution.

The first (standard) version of Grothendieck’s inequality (Theorem 4.5.8) easily
implies that every matrix A such that ‖A‖`∞→`1 ≤ 1 has completely bounded
norm at most KG. Combing this fact with our Theorem 4.2.2 and Lemma 4.6.2,
one quickly retrieves Theorem 4.1.1. However, Theorem 4.2.2 is based on the
rather deep Theorem 4.4.1. We observe that Theorem 4.1.1 also follows readily
from the much simpler Theorem 4.6.3 alone (proved below for completeness),
after one assumes that q is a quadratic form as above.

Indeed, Theorem 4.6.3 gives unit vectors u, v such that the matrix B as in
Eq. (4.27) has (operator) norm at most 1. Unitary matrices have norm exactly 1
and of course represent the type of operation a quantum algorithm can implement.
Moreover, since u, v are unit vectors, they represent (log(n + 1))-qubit quantum
states. Using the fact that for w, z ∈ R(n+1), we have Diag(w)z = Diag(z)w, we
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get the following factorization formula (not unlike the one of Corollary (4.4.2),
which is of course no coincidence):

yTAy

KG

= yT Diag(u)BDiag(v)y = uT Diag(y)BDiag(y)v. (4.28)

If we assume for the moment that the matrix B actually is unitary, then the
right-hand side of Eq. (4.28) suggests the simple one-query quantum algorithm
described in Figure 4.2.

...

H X X H

Uv Uu

D
ia
g
(x

)

B

Figure 4.2: Let Uu, Uv be unitaries that have u, v as their first rows, respectively
and for x ∈ {−1, 1}n and y = (x, 1), let Diag(y) be the query operator. The algo-
rithm initializes a (1 + log(n+ 1))-qubit register in the all-zero state, transforms
this state into the superposition 1√

2
(|0〉 ⊗ u + |1〉 ⊗ v), makes a query via the

unitary Diag(y) applied to the (log(n+ 1))-qubit register, applies a controlled-B,
and finishes by measuring the first qubit in the Hadamard basis.

1

2
+

1

2

〈
Diag(u)y,BDiag(v)y

〉
=

1

2
+
yTAy

2KG

,

Now, it is clear that the the expected value of the measurement result is
precisely q((x, 1))/KG, giving Theorem 4.1.1 with C = 1/KG. In case B is
not unitary, one can use the same argument as in the final step of the proof of
Theorem 4.2.2.

4.6.2 Factorization version of Grothendieck’s inequality

For completeness and because of its relevance to Theorem 4.1.1, we here give a
proof of Theorem 4.6.3. The proof relies on the standard version of Grothendieck’s
inequality (Theorem 4.5.8). In addition, the proof makes use of the following
version of the Hahn–Banach theorem [Rud91, Theorem 3.4].

4.6.4. Theorem (Hahn–Banach separation theorem). Let C,D ⊆ Rn be convex
sets and let C be algebraically open. Then the following are equivalent:

• The sets C and D are disjoint.
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• There exists a vector λ ∈ Rn and a constant α ∈ R such that 〈λ, d〉 > α for
every d ∈ D and 〈λ, c〉 ≤ α for every c ∈ C.

Morever, if C and D are convex cones,6 we may take α = 0.

Proof of Theorem 4.6.3. Let M = A/(KG‖A‖`∞→`1). By Theorem 4.5.8 (the
standard Grothendieck inequality), we have that

n∑
i,j=1

Mij〈xi, yj〉 ≤ 1

for all vectors xi, yj with Euclidean norm at most 1. Then, for arbitrary vec-
tors xi, yj, we have

n∑
i,j=1

Mij〈xi, yj〉 ≤ max
i,j∈[n]

‖xi‖2‖yj‖2 ≤
1

2
max
i,j∈[n]

(‖xi‖2
2 + ‖yj‖2

2), (4.29)

where the second inequality is by AM-GM inequality. Define the set K ⊆ Rn×n by

K =

{(
‖xi‖2

2 + ‖yj‖2
2 − 2

n∑
k,`=1

Mk`〈xk, y`〉
)n
i,j=1

: d ∈ N, xi, yj ∈ Rd

}
.

We claim that K is a convex cone. Observe that for every t > 0 and matrix
Q ∈ K specified by the set of vectors {xi}, {yj}, the vectors x′i =

√
txi and

y′j =
√
tyj similarly define tQ, and so K is a cone. We now show K is a convex

set. Let Q,Q′ ∈ K be specified by xi, yj and x′i, y
′
j respectively. Then, for every

λ ∈ [0, 1], the convex combination λQ+ (1−λ)Q′ also belongs to K, as it can be
specified by the vectors (

√
λxi,
√

1− λx′i), (
√
λyj,
√

1− λy′j).
Additionally, it follows from Eq. (4.29) that K is disjoint from the open con-

vex cone Rn×n
<0 of matrices with strictly negative entries. By Theorem 4.6.4 (the

Hahn–Banach separation theorem), we conclude that there exists a nonzero ma-
trix L ∈ Rn×n such that 〈L,Q〉 > 0 for every Q ∈ K and 〈L,N〉 ≤ 0 for every
N ∈ Rn×n

<0 . In particular, the second inequality implies that Lij > 0 for every
i, j ∈ [n]. Let P = L/

∑
ij Lij, so that {Pij}ni,j=1 defines a probability distribution

over [n]2. Then, for every Q ∈ K,

0 ≤ 〈P,Q〉

=
n∑

i,j=1

Pij(‖xi‖2
2 + ‖yj‖2

2)− 2
n∑

k,`=1

Mk`〈xk, y`〉

=
n∑
i=1

σi‖xi‖2
2 +

n∑
j=1

µj‖yj‖2
2 − 2

n∑
k,`=1

Mk`〈xk, y`〉,

6A convex cone K is a set that satisfies: (i) for every x ∈ K and λ > 0, we have λx ∈ K and
(ii) for every x, y ∈ K, we have x+ y ∈ K.
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where σi = Pi1 + · · ·+Pin and µj = P1j+ · · ·+Pnj. Observe that σi, µj are strictly
positive because Pij > 0. Rearranging the inequality above and using bi-linearity,
it follows that for every λ > 0, we have

2
n∑

k,`=1

Mk`〈xk, y`〉 = 2
n∑

k,`=1

Mk`〈λxk, λ−1y`〉

≤ λ2

n∑
i=1

σi‖xi‖2
2 + λ−2

n∑
j=1

µj‖yj‖2
2. (4.30)

Setting

λ =

(∑n
j=1 µj‖yj‖2

2∑n
i=1 σi‖xi‖2

2

)1/4

in Eq. (4.30), we find that

2
n∑

k,`=1

Mk`〈xk, y`〉 ≤
( n∑
i=1

σi‖xi‖2
2

)1/2( n∑
j=1

µj‖yj‖2
2

)1/2

.

In particular, for the case where xk, y` ∈ R, i.e., the scalar case, we have

xTMy ≤ ‖ diag(σ)1/2x‖2‖ diag(µ)1/2y‖2.

This implies

xT
(

Diag(σ)−1/2M Diag(µ)−1/2
)
y ≤ ‖x‖2 · ‖y‖2,

which in particular implies that ‖Diag(σ)−1/2M Diag(µ)−1/2‖ ≤ 1. Using the
definition of M = A/(KG‖A‖`∞→`1), we have

‖Diag(σ)−1/2ADiag(µ)−1/2‖ ≤ KG‖A‖`∞→`1 .

The theorem follows by letting ui =
√
σi, vi =

√
µi for every i ∈ [n]. 2

4.7 Conclusion and future work

In this chapter, we refined the polynomial method by defining a new degree mea-
sure, called the completely bounded approximate degree of a Boolean function
f , that equals the quantum query complexity of f . Thereby, our character-
ization in Corollary 4.2.4 allows us to give upper bounds on quantum query
complexity in terms of a degree measure. Prior to this work, the quantum
adversary method was used as a generic technique to construct quantum algo-
rithms [Rei09, LMR+11, Bel12, Kim13, LL16]. However, showing bounds on the
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generalized adversary method seems hard in general. In contrast, our charac-
terization bypasses the need of the adversary method and gives a potentially
new perspective on constructing quantum algorithms. As a first step, could
we recover results in quantum query complexity such as: Grover’s search al-
gorithm [Gro96], Ambainis’s algorithm for element distinctness [Amb07], or the
algorithm for NAND tree evaluation [ACR+10]. Using the adversary method, Re-
ichardt [Rei11] showed that quantum query complexity composes i.e., Qε(f ◦g) =
Θ(Qε(f)Qε(g)),7 Using our characterization this also implies that cb-degε(f ◦
g) = Θ(cb-degε(f)cb-degε(g)), which was unknown in operator space theory,
as far as we know. An interesting question is, can we show cb-degε(f ◦ g) =
Θ(cb-degε(f)cb-degε(g)) without using Reichardt’s result? This will reprove the
already-known and important result that quantum query complexity composes!
We remark that if cb-degε(f) is replaced with degε(f), then by a result of Sher-
stov [She13], we know that degε(f ◦ g) ≤ O(degε(f) degε(g)). It is an open
question if degε(f ◦ g) ≥ Ω(degε(f) degε(g)) for all total Boolean functions f, g.

7Here f ◦ g : {−1, 1}n2 → {−1, 1} is defined as (f ◦ g)(x1, . . . , xn) = f(g(x1), . . . , g(xn)) for
every xi ∈ {−1, 1}n.



Chapter 5

Quantum gradient-based optimization

This chapter is based on the paper “Optimizing quantum optimization algorithms
via faster quantum gradient computation”, by A. Gilyén, S. Arunachalam and N.
Wiebe [GAW17].

Abstract. Optimization is a fundamentally important task that touches on vir-
tually every area of science. Quantum algorithms are known to provide substan-
tial improvements for several related problems [Gro96, Jor05, HHL09, CKS15,
BS17, AGGW17]. However, applying non-Grover techniques to real-word opti-
mization problems has proven challenging, because generic problems usually fail
to satisfy the delicate requirements of these advanced quantum techniques.

In this chapter, we look at continuous-variable optimization problems and
in particular, we provide a quantum speed-up for gradient-based optimization
methods. We develop a quantum algorithm for computing the gradient of a mul-
tivariate function that improves upon Jordan’s quantum algorithm [Jor05]. Our
quantum algorithm is quadratically better than classical gradient computation
algorithms in terms of query and time complexity (under reasonable continuity
assumptions). Furthermore, we use our improved gradient computation algo-
rithm to improve the complexity of most gradient-based optimization algorithms.
Since gradient-based optimization is ubiquitous in classical machine learning, our
quantum improvement improves upon almost all gradient-based machine learning
algorithms. Finally we briefly mention some results in [GAW17] whose details are
omitted in this chapter.
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5.1 Introduction

The last two decades have seen many quantum algorithms for computational
problems in number theory [Sho97], search problems [Gro96], formula evalua-
tion [ACR+10], Hamiltonian simulation [BCK15], solving linear systems [HHL09]
and machine learning tasks [WKS15, WKS16b].1 However, less attention has
been devoted to developing quantum algorithms for discrete and continuous opti-
mization problems which are possibly intractable by classical computers. Näıvely,
since Grover’s quantum algorithm [Gro96] quadratically improves upon the clas-
sical algorithm for searching in a database, we can simply use it to speed up all
discrete optimization algorithms which involve searching for a solution among a
set of unstructured possible solutions. However, in real-world applications, many
problems have continuous parameters, where an alternative quantum optimiza-
tion approach might fit the problem better.

A handful of quantum algorithms for specific continuous-variable optimization
problems were developed for quantum adiabatic optimization [FGGS00], quan-
tum annealing [KN98], Monte Carlo methods [Mon15], derivative-free optimiza-
tion [Aru14], least squares fitting [WBL12], optimization algorithms for satisfia-
bility and travelling salesman problem [HP00, Aru14] and quantum approximate
optimization [FGG14]. Also, very recently, there has been work on quantum algo-
rithms for solving linear and semi-definite programs [BS17, AGGW17, BKL+17].

1See the “Quantum Algorithm Zoo”: http://math.nist.gov/quantum/zoo/ for a compre-
hensive list of quantum algorithms for computational problems.

http://math.nist.gov/quantum/zoo/
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In this chapter, we consider gradient-based optimization, which is a well-known
technique to handle continuous-variable optimization problems. In particular we
focus on the gradient-descent algorithm, which is a first-order optimization algo-
rithm2 used to find the minimum of a multivariate function f : Rd → R. This
optimization technique is used often in machine learning applications such as
neural networks, support vectors machines and regression. In this direction, Jor-
dan [Jor05] constructed a quantum algorithm that computes the gradient of f
using a single query, however he assumes an unusually strong access model, which
seems unrealistic in practice. In [GAW17], we considered a more realistic access
model and developed an improved quantum algorithm for gradient computation,
which has query and gate complexity Õ(

√
d) (under reasonable continuity as-

sumptions) for most functions. We remark here that our d →
√
d speed-up

doesn’t come by simply applying Grover’s algorithm, instead our speed-up comes
from the quantum Fourier transform. Using this gradient-calculation algorithm
as a subroutine, we improved the complexity of most classical gradient-descent al-
gorithms.

Organization. In Section 5.2, we begin by describing the classical gradient-
based optimization algorithm and describe our quantum improvements to this
classical algorithm. In Section 5.3, we formally analyze Jordan’s algorithm and
its complexity and then present our quantum improvements to his algorithm. In
Section 5.4, we describe a few other results present in [GAW17] which are not
present in this chapter. We conclude in Section 5.5 with some directions for
future research.

5.2 Gradient-based optimization

5.2.1 Classical gradient-based optimization algorithms

In this section, we give a brief description of a classical gradient-based algorithm
for optimization. Consider the multivariate function p : Rd → R and assume for
simplicity that p is bounded by some absolute constant (i.e., there exists a univer-
sal constant C > 0 such that |p(xxx)| ≤ C for all xxx) and differentiable everywhere.
The optimization problem we are interested in is, given p : Rd → R, compute

OPT = min{p(xxx) : xxx ∈ Rd}. (5.1)

First-order iterative methods are optimization techniques that compute an ap-
proximation to OPT, simply using the gradient of p,

∇p =

(
∂p

∂x1

,
∂p

∂x2

, . . . ,
∂p

∂xd

)
(5.2)

2Gradient-descent algorithm is referred to as a first-order method because the algorithm uses
only the first derivative (i.e., gradient) of the objective function that we are trying to optimize.
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It is a well-known fact in calculus that p decreases the fastest in the direction
of −(∇p(xxx)). This simple observation is the basis of gradient-descent optimiza-
tion algorithms.

Now we describe a simple heuristic gradient-descent algorithm for approx-
imating (5.1): pick a random point xxx(0) ∈ Rd, compute ∇p(xxx(0)), and take a
δ0-step in the direction of −∇p(xxx(0)) leading to xxx(1) = xxx(0)− δ0∇p(xxx(0)) (for some
step size δ0 > 0). Repeat this gradient update for T steps (possibly using dif-
ferent step sizes δ in each step), obtaining xxx(T ) which has hopefully approached
some local minimum of (5.1). Finally repeat the whole procedure for N different

starting points
{
xxx

(0)
1 , . . . ,xxx

(0)
N

}
and take the minimum of

{
p(xxx

(T )
1 ), . . . , p(xxx

(T )
N )
}

after T gradient steps, hoping to have a good approximation of OPT. Suppose p
is a convex function, then all local minima are also global minima, so this algo-
rithm will converge to the global minimum. However, if p is not convex, there
is a whole subject related to the topic of convergence analysis of gradient-based
method, which we do not discuss here. Given the generality of the optimiza-
tion problem (5.1) and the simplicity of this heuristic algorithm, gradient-based
techniques are widely used in mathematics, physics and engineering. In practice,
especially for well-behaved functions p (such as convex functions), gradient-based
algorithms are known to converge very quickly to a global optimum and are of-
ten used, e.g., in state-of-the-art algorithms for deep learning [Rud16], which has
been one of the recent highlights in classical machine learning.

5.2.2 Complexity measure and quantum sampling

In this chapter we consider if one can quantumly improve the classical gradient-
descent algorithm described in the previous section. Clearly a key component of
the gradient-descent algorithm is the computation of the gradient of p. In this
chapter, we will be interested in quantumly improving the complexity of gradient
computation. In this direction, Jordan [Jor05] described a quantum algorithm
that computes the gradient of p using a single quantum query. However, his
algorithm assumes that p is close to being linear and he also assumes an unusually
strong oracle access to p. Roughly speaking, Jordan assumes access to a binary
oracle that on input xxx, outputs p(xxx) with a good accuracy (we discuss this in
detail later).

The starting point of our work was the simple realization that it is uncommon
to assume access to the binary oracle in the applications of the gradient-descent
algorithm for optimization problems. We observed that most classical optimiza-
tion procedures evaluate p via sampling, i.e., these procedures output a bit which
is ‘1’ with probability p(xxx). Using this sampling model, we first analyze the
classical complexity of the gradient-descent algorithm described earlier.

It is not hard to see that using empirical estimation it suffices to use O(1/ε2)
samples in order to evaluate p(xxx) with additive error Θ(ε). Provided that p is
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smooth3 we can compute an ε-approximation of ∇ip(xxx) = ∂p
∂xi

by performing

Õ(1) such function evaluations, using standard classical techniques. Hence, we

can compute an ε-approximation of the gradient ∇p(xxx) with Õ(d) function evalu-
ations of precision Θ(ε). The simple gradient-descent algorithm described in the
previous section uses TN gradient computations, therefore the overall algorithm
can be executed using Õ(TNd/ε2) samples.

We then observed that quantum optimization procedures translate the objec-
tive function (i.e., p) to the probability of some measurement outcome. To reflect
this fact, we use an oracular model to represent our objective function that is much
weaker (but more realistic) than the oracle model considered by Jordan [Jor05].
Here we work with a coherent version of the classical random sampling procedure,
i.e., we assume that the function is given by a probability oracle:

Up : |xxx〉|0〉 7→
√
p(xxx)|xxx〉|1〉+

√
1− p(xxx)|xxx〉|0〉 for every xxx, (5.3)

where the continuous input variable xxx is represented as a finite-precision binary
encoding of xxx. In this chapter, we first address the question:

How many queries to Up suffice to compute the gradient of p?

5.2.3 Prior work on quantum gradient methods

Our gradient computation algorithm is based on Jordan’s [Jor05] quantum algo-
rithm, which provides an “exponential” quantum speed-up for gradient compu-
tation in a black-box model. However, as mentioned earlier, Jordan’s algorithm
assumes an unusually strong oracle access model. Bulger [Bul05a] later showed
how to combine Jordan’s algorithm with quantum minimum finding [DH96] to
improve gradient-descent methods.

Recently, Rebentrost et al. [RSPL16] and Kerenidis and Prakash [KP17a] con-
sidered a very different approach, where they represent vectors as quantum states,
which can lead to exponential improvements in terms of the dimension for spe-
cific gradient-based algorithms. Rebentrost et al. [RSPL16] obtained speed-ups
for first and second-order iterative methods (i.e., gradient-descent and Newton’s
method) for polynomial optimization problems. The runtime of their quantum
algorithm achieves poly-logarithmic dependence on the dimension d but scales ex-
ponentially with the number of gradient steps T . Kerenidis and Prakash [KP17a]
described a gradient-descent algorithm for the special case of quadratic optimiza-
tion problems. The algorithm’s runtime scales linearly with the number of steps T
and in some cases can achieve poly-logarithmic dependence on the dimension d
as it essentially implements a version of the HHL algorithm [HHL09] for solving

3 Throughout the chapter, when we say that a function is smooth we mean that it is ana-
lytic and has bounded partial derivatives. We formally define smooth in the preliminaries in
Section 5.3.1.
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linear systems. However, their appealing runtime bound requires a very strong
access model for the underlying data. We remark that, in contrast to these earlier
papers on gradient-based optimization, our algorithm outputs a classical descrip-
tion of the gradient.

5.2.4 Quantum speed-ups for the simple gradient-descent
algorithm

Improved gradient calculation algorithm. Jordan’s algorithm for gradient
computation [Jor05] uses a fairly strong input model, it assumes that p : Rd → R
is given by an η-accurate binary oracle, which on input xxx, outputs p(xxx) in binary
with additive error η.4 Using this oracle, Jordan showed how to compute an
ε-coordinate-wise approximation of ∇p using a single evaluation of the binary
oracle. The algorithm prepares a uniform superposition of evaluation points over
a finite region, then approximately implements the S = O(

√
d/ε2)-th power of a

phase oracle

OS
p : |xxx〉 → eiSp(xxx)|xxx〉,

using a single η = Θ(ε2/
√
d)-accurate evaluation of p, and then applies an inverse

Fourier transformation to obtain an approximation of the gradient. Although
this algorithm only uses a single query, the required precision of the function
evaluation can be prohibitive. In particular, if were to use quantum amplitude
estimation [BHMT02] to implement the binary oracle, then the algorithm would

make Õ(
√
d/ε2) probability oracle queries to evaluate the function with accuracy

η = Θ(ε2/
√
d). In contrast, our new quantum algorithm requires only Õ(

√
d/ε)

queries to a probability oracle. The precise statement can be found in Theo-
rem 5.3.4, and below we give an informal statement.

5.2.1. Theorem (Informal). There is a quantum algorithm, that given probabil-
ity oracle Up (in Eq. (5.3)) access to an analytic function p : Rd → [0, 1] having
bounded partial derivatives at 000, computes an approximate gradient ggg ∈ Rd such
that ‖ggg −∇p(000)‖∞ ≤ ε with high probability, using Õ(

√
d/ε) queries and elemen-

tary gates. We get similar complexity bounds if we are given phase oracle access
to the function.

Proof sketch. The main new ingredient of our algorithm is the use of higher-
degree central-difference formulas, a technique borrowed from calculus. We use
the fact that for a one-dimensional analytic function h : R→ R having bounded
derivatives at 0, there exists a log(1/ε)-degree central-difference formula to com-
pute an ε · log(1/ε)-approximation of h′(0) using ε-accurate evaluations of h at

4This input model captures functions that are evaluated numerically using, say, an arithmetic
circuit. Typically, the number of one- and two-qubit gates needed to evaluate such functions
up to n digits precision is polynomial in n and d.
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log(1/ε) different points around 0. We apply this result to one-dimensional slices
of the d-dimensional function p : Rd → R. The main technical challenge in our
proof is to show that if p is smooth, then for most such one-dimensional slices, the
k-th order directional derivatives increase by at most an O((

√
d)k)-factor com-

pared to the partial derivatives of p. As we show this implies that it is enough to
evaluate the function p with Õ(ε/

√
d)-precision in order to compute the gradient.

After the function evaluations, our algorithm ends by applying a d-dimensional
quantum Fourier transform providing a classical description of an approximate
gradient, similarly to Jordan’s algorithm. 2

Improving gradient-based algorithm. Using our quantum gradient calcu-
lation algorithm, we briefly describe how to improve the simple gradient-descent
algorithm described in Section 5.2.1. As discussed in Section 5.2.2, we assume that
we have access to a probability oracle (5.3) and for simplicity, let us assume that
the objective function p is smooth. First, we improve the complexity of ε-accurate
function evaluations to O(1/ε) using amplitude estimation [BHMT02]. Then,
similar to [Bul05a, LPL14], we improve the parallel search for finding a global
minimum using the quantum minimum-finding algorithm [DH96, AGGW17]. Ad-
ditionally, using our quantum algorithm for gradient computation, we get a
quadratic improvement in terms of the dimension d. In particular, this shows
that we can speed up the gradient-based optimization algorithm quadratically
in almost all parameters, except the number of iterations T . The results are
summarized below in Table 5.1:

Method: Classical +Amplitude +Grover +This
algorithm estimation search chapter

Complexity: Õ(TNd/ε2) Õ(TNd/ε) Õ(T
√
Nd/ε) Õ(T

√
Nd/ε)

Table 5.1: Quantum speed-ups for a simple gradient-descent algorithms

Remark about T . Since gradient-descent is ubiquitous in optimization, it
has been optimized extensively in the classical literature, yielding significant re-
ductions in the number of steps T , see for example accelerated gradient methods
[Nes83, BT09, JKK+17]. We think it should be possible to combine some of
these classical results with our quantum speed-up, because our algorithm out-
puts a classical description of the gradient, unlike other recent developments on
quantum gradient-descent methods [RSPL16, KP17a]. However, there could be
some difficulty in applying classical acceleration techniques, because they often
require unbiased samples of the approximate gradient, which might be difficult
to achieve using quantum sampling.
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5.3 Quantum gradient calculation algorithm

5.3.1 Preliminaries

We quickly recap some notation that we need for this section and give a quick
overview about the oracles that we encounter often in this section.

Notation. We use bold letters for vectors xxx ∈ Rd. For a set of vectors S ⊆ Rd,
we let yyy + rS = {yyy + rvvv : vvv ∈ S}. For xxx ∈ Rd, let ‖xxx‖∞ = maxi∈[d] |xi| and

‖xxx‖ = (
∑d

i=1 x
2
i )

1/2. For x, yx, yx, y ∈ Rd, let xxx · yyy =
∑d

i=1 xiyi. For M ∈ Rd×d we use
‖M‖ for the operator norm of M .

We will need the following definitions in higher-order calculus.

5.3.1. Definition (Index-sequences). For k > 0, we refer to α ∈ [d]k as a d-
dimensional length-k index-sequence. For a vector rrr ∈ Rd we define rrrα :=∏

j∈[k] rαj . Also, for a k-times differentiable function, we define

∂αf := ∂α1∂α2 · · · ∂αkf.

5.3.2. Definition (Analytic function). We say that the function f : Rd → R is
analytic if f can be written as

f(xxx) =
∞∑
k=0

1

k!

∑
α∈[d]k

xxxα · ∂αf(000). (5.4)

5.3.3. Definition (Smooth function). We say a function f : Rd → R is smooth
with constant c > 0 if it satisfies the following: f is analytic and for every k ∈N,
xxx ∈ Rd and α ∈ [d]k, we have

|∂αf(xxx)| ≤ ckk
k
2 . (5.5)

Oracle access. As mentioned earlier, many quantum optimization procedures
assuming access to the objective function p via a probability oracle, defined as fol-
lows

Up : |xxx〉|0〉 →
√
p(xxx)|xxx〉|1〉+

√
1− p(xxx)|xxx〉|0〉 for every xxx, (5.6)

where the continuous input variable xxx is represented as a finite-precision binary
encoding of xxx. However, for most of the quantum techniques that we employ to
improve the gradient-descent algorithm, it is more natural to work with a phase
oracle, acting as

Op : |xxx〉 → eip(xxx)|xxx〉 for every xxx. (5.7)
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For technical reasons we assume that we can perform fractional queries as
well, defined as follows: for r ∈ [−1, 1], the action of the fractional oracle Orp is
given by

Orp : |x〉|~0〉 → eirp(x)|x〉|~0〉 for every xxx.

Using the Linear Combination of Unitaries (LCU) techniques [BCC+15], we
show [GAW17] how to efficiently simulate a phase oracle with precision ε, us-
ing O(log(1/ε)) queries to the probability oracle Up. Similarly, we show that
under some reasonable conditions, we can simulate the probability oracle Up with
ε precision, using O(log(1/ε)) queries to the phase oracle Op. Finally, we show an
efficient inter-conversion between the probability oracle and fractional query ora-
cle. For the purposes of our chapter the efficient simulation, between probability,
phase and fractional query oracles, essentially means that we can interchangeably
work with any of these oracles using whichever fits our setting best. We are not
aware of any prior result that shows this simulation and we believe that our oracle
conversion techniques could be useful for other applications.

5.3.2 Overview of Jordan’s algorithm

Sketch of the algorithm. Stephen Jordan constructed a surprisingly sim-
ple quantum algorithm [Jor05, Bul05b] that can approximately calculate the d-
dimensional gradient of a function f : Rd → R with a single evaluation of f .
In contrast, using standard classical techniques, one would use d + 1 function
evaluations to calculate the gradient at a point xxx ∈ Rd: one can first evalu-
ate f(xxx) and then, for every i ∈ [d], evaluate f(xxx + δeeei) (for some δ > 0) to get
an approximation of the gradient in direction i using the standard formula

∇if(xxx) ≈ f(xxx+ δeeei)− f(xxx)

δ
.

The basic idea of Jordan’s quantum algorithm [Jor05] is simple and uses the
following two observations. If f is twice differentiable at xxx, then using Taylor’s
theorem for multivariate functions, we have f(xxx+ δδδ) = f(xxx) +∇f · δδδ +O(‖δδδ‖2),
which in particular implies that for small ‖δδδ‖, the function f is very close to being
affine linear. The second observation is that, using the value of f(xxx+δδδ), one can
implement a fractional query oracle:

O2πSf : |δδδ〉 → e2πiSf(xxx+δδδ)|δδδ〉 ≈ e2πiSf(xxx)e2πiS∇f ·δδδ|δδδ〉, (5.8)

where the approximation uses f(xxx+δδδ) ≈ f(xxx) +∇f ·δδδ for small ‖δδδ‖. The role of
the scaling factor S is to make make the phases appropriate for the final quantum
Fourier transform.

We now describe Jordan’s algorithm. Assume that all real vectors are ex-
pressed up to some finite amount of precision. In order to compute the gradient
at xxx, let Gd

xxx be a sufficiently small discretized d-dimensional grid around xxx. The
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algorithm starts with a uniform superposition |ψ〉 = 1√
|Gdxxx |

∑
δδδ∈Gdxxx
|δδδ〉 and applies

the phase oracle O2πSf (in Eq. (5.8)) to |ψ〉. Next, the following linear map (which
is unitarily equivalent to the quantum Fourier transform)

QFTGdxxx
: |x〉 → 1√

Gd
xxx

∑
k∈Gdxxx

e−2πi|Gdxxx|xk|k〉

is applied to the resulting state and each register is measured to obtain the gra-
dient of f at xxx approximately. Due to approximate linearity of the phase (see
Eq. (5.8)), observe that the QFTGdxxx

map will approximately give us the gradi-
ent. This algorithm uses O2πSf once and Jordan showed how to implement O2πSf

using one sufficiently precise binary oracle evaluation.

Complexity of the algorithm. It remains to pick the parameters of the grid
and the constant S in Eq. (5.8). For simplicity, assume that ‖∇f(xxx)‖∞ ≤ 1,
and suppose we want to approximate ∇f(xxx) ε-coordinate-wise accuracy, with
high success probability. Under the assumption that “the 2nd partial derivatives
of f have a magnitude of approximately D2”, Jordan argues5 that choosing Gd

xxx

to be a d-dimensional hypercube with edge length ` ≈ ε
D2

√
d

and with N ≈ 1
ε

equally spaced grid points in each dimension, the quantum algorithm yields an

ε-approximate gradient by setting S = N
`
≈ D2

√
d

ε2
. Moreover, since the Fourier

transform is relatively insensitive to local phase errors it suffices to implement
the phase Sf(xxx+ δδδ) up to some constant, say 1% accuracy.

Our improvements. We improve on the results of Jordan [Jor05] in a couple
of ways.

1. We first remark that the analysis of the quantum algorithm presented by
Jordan [Jor05] is not complete. During the derivation of the above param-
eters, Jordan makes the assumption that the third and higher-order terms
of the Taylor expansion of p around xxx are negligible, however it is not clear
from his work [Jor05] how to actually handle the case when they are non-
negligible. This could be a cause of concern for the runtime analysis, since
these higher-order terms potentially introduce a dependence on the dimen-
sion d, which was indeed the case when we rigorously analyzed Jordan’s
algorithm using the probability oracle.

2. As discussed in Section 5.2.2, we realized that in applications of the gradient-
descent algorithm for optimization problems, instead of the η-accurate bi-
nary oracle, it is natural to assume access to the probability oracle, which we

5We specifically refer to equation (4) in [Jor05] (equation (3) in the arXiv version), and
the discussion afterwards. Note that our precision parameter ε corresponds to the uncertainty
parameter σ in [Jor05].
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showed to be equivalent to the phase oracle Of : |xxx〉 → eip(xxx)|xxx〉 (and frac-
tional query oracles). In order to use Jordan’s original algorithm to obtain
the gradient with ε-accuracy, one needs to implement the query oracle OS

f

for the parameter S ≈ D2

√
d

ε2
, which can be achieved using dSe consecutive

(fractional) queries. Although this would give a square-root dependence
on d it scales as O(1/ε2) with the precision.

In this work, we improve the quadratic dependence on 1/ε to essentially linear.
Additionally, we rigorously prove the square-root scaling with d under reasonable
assumptions on the derivatives of p, which was absent in the prior work of Jor-
dan [Jor05]. We describe the algorithm in the next section, but first present our
main result, whose proof is deferred to the end of this section.

5.3.4. Theorem. Suppose p : Rd → R is smooth (as in Definition 5.3.3) with
constant c > 0. Let ε ≤ c. Then, there is a quantum algorithm that, on input
xxx ∈ Rd, outputs an ε-approximate gradient ∇̃p(xxx) ∈ Rd such that

‖∇p(xxx)− ∇̃p(xxx)‖∞ ≤ ε,

with probability at least 1−δ, using Õ( c
√
d
ε

log
(

1
δ

)
) queries to the phase oracle Op.

Note that in this theorem, just as in the rest of this chapter, we assume that f
is analytic on Rd rather than on a compact domain of Rd. This assumption is not
necessary but makes the statements simpler. It is straightforward to translate
the results when the function is only defined on a subset of Rd. However, a finite
domain imposes restrictions to the evaluation points of the function.

5.3.3 Rigorous analysis of Jordan’s algorithm

We now describe Jordan’s algorithm in more detail and provide a generic anal-
ysis of its behavior. In the next subsection we improve the results presented
here using our finite difference methods. Before describing the algorithm, we
introduce appropriate representation of our qubit strings suitable for fixed-point
arithmetics.

5.3.5. Definition. For every b ∈ {0, 1}n, let j(b) ∈ {0, . . . , 2n−1} be the integer
corresponding to the binary string b = (b1, . . . , bn). We label the n-qubit basis
state |b1〉|b2〉 · · · |bn〉 by |x(b)〉, where

x(b) =
j(b)

2n
− 1

2
+ 2−n−1.

We denote the set of corresponding labels as

Gn :=

{
j(b)

2n
− 1

2
+ 2−n−1 : j(b) ∈ {0, . . . , 2n − 1}

}
.
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Note that there is a bijection between {j(b)}b∈{0,1}n and {x(b)}b∈{0,1}n , so we will
use |x(b)〉 and |j(b)〉 interchangeably. In the rest of this section we always label
n-qubit basis states by elements of Gn.

5.3.6. Definition. For x ∈ Gn we define the state |x〉 as follows

QFTGn : |x〉 → 1√
2n

∑
k∈Gn

e2πi2nxk|k〉.

5.3.7. Claim. This unitary QFTGn is the same as the usual quantum Fourier
transform up to conjugation with a tensor product of n single-qubit unitaries.

Proof. For bit strings b, c ∈ {0, 1}n, let x(b) ∈ Gn and j(b) ∈ {0, . . . , 2n − 1}, be
as defined in Definition 5.3.5. Then QFTGn acts on |j(b)〉 ≡ |x(b)〉 as

QFTGn : |x(b)〉

→ 1√
2n

∑
x(c)∈Gn

e2πi2nx(b)x(c) |x(c)〉

≡ 1√
2n

∑
j(c)∈{0,...,2n−1}

e
2πi2n

(
j(b)

2n
− 1

2
+2−n−1

)(
j(c)

2n
− 1

2
+2−n−1

)
|j(c)〉

≡ 1√
2n

∑
j(c)∈{0,...,2n−1}

e
2πi

(
j(b)j(c)

2n
−(j(b)+j(c))( 1

2
+2−n−1)+(2n−2− 1

2
+2−n−2)

)
|j(c)〉.

Using the usual quantum Fourier transform

QFTn : |j(b)〉 → 1√
2n

∑
j(c)∈{0,...,2n−1}

e2πi2−nj(b)j(c) |j(c)〉

and the phase unitary

U : |j(b)〉 → e2πi(−j(b)( 1
2

+2−n−1)+(2n−2− 1
2

+2−n−2)/2)|j(b)〉 for j(b) ∈ {0, . . . , 2n − 1},

observe that

QFTGn = U ·QFTn ·U.
Writing j(b) in binary, we can express U as a tensor product of n phase gates. 2

Now we are ready to describe Jordan’s quantum gradient calculation algorithm
and give a rigorous analysis of it.
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Algorithm 1 Jordan’s quantum gradient calculation algorithm

Registers: Use n-qubit input registers |x1〉|x2〉 · · · |xd〉 with each qubit set
to |0〉.
Labels: Label the n-qubit states of each register with elements of Gn as in
Definition 5.3.5.
Input: A function f : Gd

n → R with phase-oracle Of access such that

Oπ2n+1

f |x1〉|x2〉· · ·|xd〉 = e2πi2nf(x1,x2,...,xd)|x1〉|x2〉· · ·|xd〉.

1: Init Apply a Hadamard transform to each qubit of the input registers.
2: Oracle call Apply the modified phase oracle Oπ2n+1

f on the input registers.

3: QFT−1
Gn

Fourier transform each register individually:

|x〉 → 1√
2n

∑
k∈Gn

e−2πi2nxk|k〉.

4: Measure each input register, denote the measurement outcome from the jth
register by kj.

5: Output (k1, k2, . . . , kd) as the estimation for the gradient.

5.3.8. Lemma. Let N = 2n, c ∈ R and ggg ∈ Rd such that ‖ggg‖∞ ≤ 1/3. If
f : Gd

n → R is such that

|f(xxx)− ggg · xxx− c| ≤ 1

42πN
, (5.9)

for all but a 1/1000 fraction of the points x ∈ Gd
n, then the output of Algo-

rithm 1 satisfies:

Pr [|ki − gi| >4/N ] ≤ 1/3 for every i ∈ [d].

Proof. First, note that |Gn| = N from Definition 5.3.5. Consider the following
quantum states

|φ〉 :=
1√
Nd

∑
xxx∈Gdn

e2πiNf(xxx)|xxx〉 and |ψ〉 :=
1√
Nd

∑
xxx∈Gdn

e2πiN(ggg·xxx+c)|xxx〉.

Note that |φ〉 is the state we obtain in Algorithm 1 after line 2 and |ψ〉 is its
“ideal version” that we try to approximate with |φ〉. Observe that the “ideal” |ψ〉
is actually a product state:

|ψ〉 = e2πiNc
( 1√

N

∑
x1∈Gn

e2πiNg1·x1|x1〉
)
⊗ · · · ⊗

( 1√
N

∑
xd∈Gn

e2πiNgd·xd |xd〉
)
.
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It is easy to see that after applying the inverse Fourier transform to each
register separately (as in line 3) to |ψ〉, we obtain the state( 1

N

∑
(x1,k1)∈G2

n

e2πiNx1(g1−k1)|k1〉
)
⊗ · · · ⊗

( 1

N

∑
(xd,kd)∈G2

n

e2πiNxd(gd−kd)|kd〉
)
.

Suppose we make a measurement and observe (k1, . . . , kd). As shown in the
analysis of phase estimation [NC02], we have the following6: for every i ∈ [d] (for
a fixed accuracy parameter κ > 1), the following holds:

Pr
[
|ki −∇if | >

κ

N

]
≤ 1

2(κ− 1)
.

By fixing κ = 4, we obtain the desired conclusion of the theorem, i.e., if we had
access to |ψ〉 (instead of |φ〉), then for each coordinate, we would get a 4/N -
approximation of the gradient with probability at least 5/6. It remains to show
that this probability does not change more than 1/3 − 1/6 = 1/6 if we apply
the Fourier transform to |φ〉 instead of |ψ〉. Observe that the difference in the
probability of any measurement outcome on these states is bounded by twice the
trace distance between |ψ〉 and |φ〉,

‖|ψ〉〈ψ| − |φ〉〈φ|‖Tr = 2

√
1− |〈ψ|φ〉|2 ≤ 2‖|ψ〉 − |φ〉‖. (5.10)

Since the Fourier transform is unitary and does not change the Euclidean distance,
it suffices to show ‖|ψ〉 − |φ〉‖ ≤ 1/12 in order to conclude the theorem. Let
S ⊆ Gd

n denote the set of points satisfying Eq. (5.9).

‖|φ〉−|ψ〉‖2

=
1

Nd

∑
xxx∈Gdn

∣∣e2πiNf(xxx) − e2πiN(ggg·xxx+c)
∣∣2

=
1

Nd

∑
xxx∈S

∣∣e2πiNf(xxx) − e2πiN(ggg·xxx+c)
∣∣2+ 1

Nd

∑
xxx∈Gdn\S

∣∣e2πiNf(xxx) − e2πiN(ggg·xxx+c)
∣∣2

≤ 1

Nd

∑
xxx∈S

|2πNf(xxx)− 2πN(ggg · xxx+ c)|2+ 1

Nd

∑
xxx∈Gdn\S

4 (using |eiz − eiy| ≤ |z − y|)

=
1

Nd

∑
xxx∈S

(2πN)2 |f(xxx)− (ggg · xxx+ c)|2+ 4
|Gd

n \ S|
Nd

≤ 1

Nd

∑
xxx∈S

(
1

21

)2

+
4

1000
(by the assumptions of the theorem)

≤ 1

441
+

1

250
<

1

144
=

(
1

12

)2

. 2

6Note that our Fourier transform is slightly altered, but the same proof applies as in [NC02,
Eq. (5.34)]. In fact this result can be directly translated to our case by considering the unitary
conjugations proven in Remark 5.3.7.
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In the following theorem we assume that we have access to (a high power
of) a phase oracle of a function f that is very well approximated by an affine
linear function ggg · zzz + c on a hypergrid with edge-length r ∈ R around some
yyy ∈ Rd. These assumptions were made informally by Jordan [Jor05] as well. We
show that if the relative precision of the approximation is precise enough, then
Algorithm 1 can compute an approximation of the gradient ggg with small query
and gate complexity.

5.3.9. Theorem. Let c ∈ R and r, δ, ε ≤ 1. Fix yyy ∈ Rd. Let nε = dlog(4/(rε))e,
n1 = dlog(3r)e and n = nε + n1. Suppose ‖g‖∞ ≤ 1 and f :

(
yyy + rGd

n

)
→ R sat-

isfies

|f(yyy + rxxx)− ggg · rxxx− c| ≤ εr

8 · 42π
(5.11)

for all but a 1/1000 fraction of the points xxx ∈ Gd
n. Then, given access to a phase

oracle O′f : |xxx〉 → e2πi2nεf(yyy+rxxx)|xxx〉 acting on H = Span{|xxx〉 : xxx ∈ Gd
n}, Algorithm 1

outputs a vector g̃gg ∈ Rd such that

Pr [ ‖g̃gg − ggg‖∞ ≤ε] ≥ 1− δ,

using O(log
(
d
δ

)
) queries to O′f and Õ

(
d log

(
d
δ

)
log
(
1/ε
))

other gates.

Proof. Let N1 := 2n1 , N := 2n, and h(xxx) := f(yyy+rxxx)
N1

, then using Eq. (5.11), it
follows that ∣∣h(x)− ggg · rxxx

N1

− c

N1

∣∣ ≤ εr

8 · 42πN1

≤ 1

42πN
.

Note that O′f = O2πN
h . Using Lemma 5.3.8, it follows that, with probability

at least 2/3, Algorithm 1 outputs a g̃gg such that, for every i ∈ [d], we have∣∣g̃i − r
N1
gi
∣∣ ≤ 4

N
with probability at least 2/3. In particular, we have that∣∣N1

r
g̃i − gi

∣∣ ≤ 4N1

rN
=

4

rNε

≤ ε.

By repeating the procedure O(log(d/δ)) times and taking the median coordinate-
wise, we get a vector g̃ggmed, such that, with probability at least (1 − δ), we have
‖g̃ggmed − ggg‖∞ ≤ ε.

The gate complexity statement follows from the fact that the complexity of
Algorithm 1 is dominated by that of the d independent quantum Fourier trans-
forms, each of which can be approximately implemented using O(n log n) gates
(see [Wol13, Section 4.5]). We repeat the procedure O(log(d/δ)) times, which
amounts to O(d log(d/δ)n log n) gates. The final median computation can be

done in Õ(log(d/δ)n log n) gates overall. So the final gate complexity is given by
O(d log(d/δ)n log n), which gives the stated gate complexity by observing that
n = O(log(1/ε)). 2
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5.3.4 Improved quantum gradient algorithm using higher-
degree methods

Theorem 5.3.9 shows that Jordan’s algorithm works well if the function is very
close to a linear function over a large hypercube. However, in general even highly
regular functions tend to quickly diverge from their linear approximations. To
tackle this problem we borrow ideas from numerical analysis and use higher-degree
finite-difference formulas to extend the range of approximate linearity.

Now we describe the general central-difference approximation formulas, which
are the basis for our improvements. Central-difference formulas (see e.g., [Li05])
are often used to give precise approximations of derivatives of a function f :
Rd → R.7 These formulas yield precise approximations of directional derivatives
too, and thus we use them to approximate the gradient of a high-dimensional func-
tion.

5.3.10. Definition. Let m ≥ 1. The degree-(2m) central-difference approxima-
tion of a function f : Rd → R is:

f(2m)(xxx) :=
m∑

`=−m
6̀=0

(−1)`−1

`

(
m
|`|

)(
m+|`|
|`|

)f(`xxx). (5.12)

The corresponding central-difference coefficients for ` ∈ {−m, . . . ,m}\{0} are
given by

a
(2m)
` :=

(−1)`−1

`

(
m
|`|

)(
m+|`|
|`|

) and a
(2m)
0 := 0.

Using this definition, we prove the following lemma, which gives bounds on the
coefficients a

(2m)
` in the central-difference formulas. A proof of this lemma can be

found in [GAW17, Appendix A].

5.3.11. Lemma. Suppose m ∈ N and f : R→ R is (2m+ 1)-times differentiable.
Then for all δ ∈ R+∣∣f ′(0)δ − f(2m)(δ)

∣∣ =

∣∣∣∣∣f ′(0)δ −
m∑

`=−m

a
(2m)
` f(`δ)

∣∣∣∣∣ ≤ e−
m
2

∥∥f (2m+1)
∥∥
∞ |δ|

2m+1,

(5.13)

where
∥∥f (2m+1)

∥∥
∞ := supξ∈[−`δ,`δ] |f (2m+1)(ξ)| and a

(2m)
` coefficients are defined as

in Definition 5.3.10. Moreover

m∑
`=−m

∣∣∣a(2m)
`

∣∣∣ < 2
m∑
`=1

1

`
≤ 2 lnm+ 2. (5.14)

7There are a variety of other related formulas [Li05], but we stick to the central-difference
because the absolute values of the coefficients using this formula scale favourably with the
approximation degree.
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This lemma shows that if a function f : R → R is (2m + 1)-times continuously
differentiable, then for small enough δ the approximation error in (5.12) is up-
per bounded by a factor proportional to δ2m+1. If

∥∥f (2m+1)
∥∥
∞ ≤ cm for all m

and we choose δ < 1/c, then the approximation error becomes exponentially
small in m, motivating the use of higher-degree methods in our modified gradient
calculation algorithm. In [GAW17, Appendix A], we generalized Lemma 5.3.11
to higher-degree functions f : Rd → R and proved the following result about
analytic functions. This theorem essentially shows that the right hand side of
Eq. (5.12) is a good approximation to ∇f(000)yyy (where the approximation factor
depends on m, d).

5.3.12. Theorem. Let R > 0. Suppose f : Rd → R is smooth with con-
stant c > 0. Then,

|∇f(000)yyy − f(2m)(yyy)| ≤
∞∑

k=2m+1

(
8Rcm

√
d
)k
,

for all but a 1/1000 fraction of points yyy ∈ R ·Gd
n.

We are now ready to use this result and prove our main theorem. Our main
gradient calculation algorithm is similar to Jordan’s orginal algorithm. Instead
of the binary oracle, we assume access to the fractional query oracle and we apply
Jordan’s algorithm (i.e., Algorithm 1) to the finite difference approximation f(2m)

of the gradient instead of the function f itself. Under reasonable smoothness
assumptions, we show that the complexity of Algorithm 1 when applied to func-
tions evaluated using a central-difference formula, is Õ(

√
d/ε). This gives us our

main theorem, which we restate below for convenience.

5.3.13. Theorem. Suppose f : Rd → R is smooth with constant c > 0. Fix
ε ≤ c. Then, there is a quantum algorithm that, on input xxx ∈ Rd, outputs an
ε-approximate gradient ∇̃f(xxx) ∈ Rd such that

‖∇f(xxx)− ∇̃f(xxx)‖∞ ≤ ε,

with probability at least 1−δ, using Õ( c
√
d
ε

log
(

1
δ

)
) queries to the phase oracle Of .

Proof. Let g(yyy) := f(xxx + yyy) for every y ∈ Rd. By Theorem 5.3.12 we
know that for a uniformly random yyy ∈ R · Gd

n we have |∇g(000)yyy − g(2m)(yyy)| ≤∑∞
k=2m+1

(
8Rcm

√
d
)k

with probability at least 999/1000. Now we choose R

such that this infinite summation becomes smaller that εR
8·42π

. For that, let
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R−1 = 8cm
√
d
(

81 · 4 · 42πcm
√
d/ε
)1/(2m)

, then

∞∑
k=2m+1

(
8Rcm

√
d
)k

=
(

8Rcm
√
d
)2m+1

∞∑
k=0

(
8Rcm

√
d
)k

≤ ε

81 · 4 · 42πcm
√
d

(
81 · 4 · 42πcm

√
d/ε
)−1
2m

∞∑
k=0

(
8

9

)k
(by our choice of R)

≤ ε

8cm
√
d · 4 · 42π

(
81 · 4 · 42πcm

√
d/ε
)−1
2m

(since
∑∞

k=0

(
8
9

)k ≤ 9)

=
εR

4 · 42π
.

Using Theorem 5.3.9, we can compute an approximate gradient with O(log(d/δ))
queries to OS

g(2m)
, where S = O( 1

εR
). Observe that

OS
g(2m)
|yyy〉 = eiSg(2m)(yyy)|yyy〉 = eiS

∑m
`=−m a

(2m)
` g(`yyy)|yyy〉.

Using the relation g(yyy) = f(xxx + yyy), it is easy to see that the number of phase
queries to Of to implement a modified oracle call OS

g(2m)
is

m∑
`=−m

⌈∣∣∣a(2m)
`

∣∣∣S⌉ ≤ 2m+ S
m∑

`=−m

a
(2m)
` ≤ 2m+ S (2 lnm+ 2) , (5.15)

where the second inequality used Eq. (5.14). Then OS
g(2m)

can be implemented

using O( logm
εR

+ m) fractional queries to Of . By choosing m = log(c
√
d/ε) the

query complexity becomes8

O
( logm

εR
+m

)
= O

(c√d
ε
m logm

)
= O

(c√d
ε

log

(
c
√
d

ε

)
log log

(
c
√
d

ε

))
.

(5.16)
2

The above achieves, up to logarithmic factors, the desired 1/ε scaling in the

precision parameter and also the
√
d scaling with the dimension. This improves

the results of [Jor05] both quantitatively and qualitatively.

8We remark that if we strengthen the ckk
k
2 upper bound assumption on the derivatives to

ck, then we could improve the bound of Theorem 5.3.12 by a factor of k−k/2. Therefore in the
definition of R−1 we could replace m by

√
m which would quadratically improve the log factor

in (5.16).
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5.4 Other results

In [GAW17], there were many other results which we did not include in this
chapter. In this section, we briefly summarize those results and give proof sketches
of some results there.

5.4.1 Smoothness of probability oracles

We show that the seemingly strong requirement of Theorem 5.3.4 is naturally sat-
isfied by probability oracles arising from typical quantum optimization protocols.
In such protocols, probability oracles usually correspond to the measurement
outcome probability of some orthogonal projector Π on the output state of a
parametrized circuit U(xxx) acting on some fixed initial state |ψ〉, i.e.,

p(xxx) = 〈ψ|U(xxx)†ΠU(xxx)|ψ〉.
Usually the parametrized circuit can be written as

U(xxx) = U0

d∏
j=1

(
eixjHj

)
Uj,

where the Ujs are fixed unitaries and the Hjs are fixed Hermitian operators. We
can assume without loss of generality that ‖Hj‖ ≤ 1/2. Under these conditions
we can show that p is analytic, and all partial derivatives of p are upper bounded
by 1 in magnitude, i.e., p is smooth and satisfies the conditions of Theorem 5.3.4.
For more details, see [GAW17, Lemma 25-26].

5.4.2 Lower bounds for gradient computation

An interesting question is whether we can improve the classical O(d/ε2)-gradient
computation algorithm by a super-quadratic factor? At first sight it would very
well seem possible considering that our algorithm gains a speed-up using the
quantum Fourier transform. However, we show that in general this is not pos-
sible for smooth non-polynomial functions, and give a lower bound of Ω(

√
d/ε)

for the complexity of a generic quantum gradient calculation algorithm. The pre-
cise statement can be found in [GAW17, Theorem 25], and below we state the
theorem informally.

5.4.1. Theorem (Informal). Let ε, d > 0. There exists a family of smooth func-
tions F ⊆ {f : Rd → R} such that the following holds. Every quantum algo-
rithm A that makes T queries to the phase oracle Of and for every f ∈ F , A
outputs, with probability ≥ 2/3, an approximate gradient ggg ∈ Rd satisfying

‖ggg −∇f(000)‖∞ < ε,

needs to make T = Ω(
√
d/ε) queries.
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Proof sketch. We exhibit a family of functions F for which the corresponding
phase oracles {Of : f ∈ F} are hard to distinguish form each other, but the
functions in F can be uniquely identified by calculating their gradient at 000 with
accuracy ε. In particular, this implies that calculating an approximation of the
gradient vector for these functions must be at least as hard as distinguishing the
phase oracles corresponding to functions in F . At this point, we use the so-
called hybrid method [BBBV97] to show that distinguishing the phase oracles Of

corresponding to functions f ∈ F requires Ω(
√
d/ε) queries.

Using our efficient oracle-conversion technique between probability oracles and
phase oracles, which incurs an Õ(1) overhead, the above lower bound implies an

Ω̃(
√
d/ε) query lower bound on ε-accurate gradient calculation for the probability

oracle input model. 2

Our lower bound for this family F shows that our gradient-calculation al-
gorithm is in fact optimal up to poly-logarithmic factors for a specific class of
smooth functions. We expect that our lower bound can be improved by ex-
tending its scope to a broader class of smooth functions with higher regularity,
therefore showing optimality of our algorithm for a larger class of functions.

We are not aware of any prior work showing quantum query lower bounds
on gradient-calculation. In fact most query lower bounds in quantum computing
apply to settings where the input unitaries come from a discrete set which might
correspond to some discrete computational problem. We know of only very few
examples9 where lower bounds are proven for a continuous set of unitary input
oracles. The adversary method (discussed in Chapter 2), was also not long ago
adapted to this continuous input setting by Belovs [Bel15].

5.4.3 Quantum variational eigensolvers and QAOA

In recent years, quantum adiabatic optimization algorithms (QAOA) [PMS+14,
WHT15, FGG14] are favoured methods for providing low-depth quantum algo-
rithms for solving important problems in quantum simulation and optimization.
Current quantum computers are limited by decoherence, hence the option to solve
optimization problems using very short circuits can be enticing even if such al-
gorithms are polynomially more expensive than alternative strategies that could
possibly require long gate sequences. Since these methods are typically envisioned
as being appropriate only for low-depth applications, comparably less attention
is paid to the question of what their complexity would be, if they were executed
on a fault-tolerant quantum computer. In [GAW17], we consider the case that
these algorithms are in fact implemented on a fault-tolerant quantum computer
and show that the gradient calculation step in these algorithms can be performed
quadratically faster compared to the earlier approaches that were tailored for pre-

9Quantum phase estimation is probably the best-known example.
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fault-tolerant applications. Variational quantum eigensolvers (VQEs) are widely
used to estimate the eigenvalue corresponding to some eigenstate of a Hamil-
tonian. The idea behind these approaches is to begin with an efficiently pa-
rameterizable ansatz to the eigenstate. For the example of ground state energy
estimation, the ansatz state is often taken to be a unitary coupled cluster ex-
pansion. The terms in that unitary coupled cluster expansion are then varied to
provide the lowest energy for the groundstate. Obtaining the optimal parame-
ters in the ansatz involves a minimization problem. In [GAW17], we translate
this optimization problem to one, which can be solved using our gradient-descent
quantum algorithm and has quadratically better dependence on d.

5.4.4 Quantum auto-encoders

Classically, one application of neural networks is auto-encoders, which are net-
works that encode information about a data set into a low-dimensional repre-
sentation. Auto-encoding was first introduced by Rumelhart et al. [RHW86].
Informally, the goal of an auto-encoding circuit is the following: given a set of
high-dimensional vectors, the goal is to learn a representation of the vectors hope-
fully of low dimenension, so that computations on the original data set can be
“approximately” carried out by working only with the low-dimensional vectors.
More precisely the problem in auto-encoding is: Given K < N and m data vec-
tors {v1, . . . , vm} ⊆ RN , find an encoding map E : RN → RK and decoding map
D : RK → RN such that the average squared distortion ‖vi − (D ◦ E)(vi)‖2 is
minimized:10

min
E,D

∑
i∈[m]

‖vi − (D ◦ E)(vi)‖2

m
. (5.17)

What makes auto-encoding interesting is that it does not assume any prior
knowledge about the data set. This makes it a viable technique in machine
learning, with various applications in natural language processing, training neural
networks, object classification, prediction or extrapolation of information, etc.

Given that classical auto-encoders are ‘work-horses’ of classical machine learn-
ing [Azo94], it is also natural to consider a quantum variant of this paradigm.
Very recently such quantum auto-encoding schemes have been proposed by Wan
Kwak et al. [WDK+16] and independently by Romero et al. [ROA16]. Inspired by
their work we provide a slightly generalized description of quantum auto-encoders
by ‘quantizing’ auto-encoders the following way: we replace the data vectors vi
by quantum states ρi and define the maps E ,D as quantum channels transform-
ing states back and forth between the Hilbert spaces. A natural generalization

10There are other natural choices of dissimilarity functions that one might want to minimize,
for a comprehensive overview of the classical literature see [Bal12].
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of squared distortion for quantum states ρ, σ that we consider is 1 − F 2(ρ, σ),11

giving us the following minimization problem

min
E,D

∑
i∈[m]

1− F 2 (ρi, (D ◦ E)(ρi))

m
. (5.18)

When the input states are pure, i.e., ρi = |ψi〉〈ψi|, then F 2 (|ψ〉〈ψ|, σ) = 〈ψ|σ|ψ〉.
So, the above minimization problem is equivalent to the maximization problem

max
E,D

∑
i∈[N ]

〈ψi| [(D ◦ E)(|ψi〉〈ψi|)] |ψi〉
m

. (5.19)

Observe that 〈ψ| [(D ◦ E)(|ψ〉〈ψ|)] |ψ〉 is the probability of finding the output
state (D ◦ E)(|ψ〉〈ψ|) in state |ψ〉 after performing the projective measurement
{|ψ〉〈ψ|, I − |ψ〉〈ψ|}. Thus we can think about this as maximizing the probability
of recovering the initial pure state after encoding and decoding, which is a natural
measure of the quality of the quantum auto-encoding procedure. In [GAW17], we
translate this probability maximization problem to one, which can be solved using
our gradient-descent quantum algorithm and has quadratically better dependence
on d.

5.5 Conclusion and future work

We gave a new approach to quantum gradient calculation that is asymptotically
optimal (up to logarithmic factors) for a class of smooth functions, in terms of
the number of queries needed to estimate the gradient within fixed error with
respect to the max-norm. This is based on several new ideas including the use
of differentiation formula originating from high-degree interpolation polynomials.
These high-degree methods quadratically improve the scaling of the query and
time complexity with respect to the approximation quality compared to what one
would see if the results from Jordan’s work were used. We also provided lower
bounds on the query complexity of the problem for certain smooth functions
revealing that our algorithm is essentially optimal for a class of functions. While
it has proven difficult to find natural applications for Jordan’s original algorithm,
we provide in this chapter several applications of our gradient-descent algorithm
to areas ranging from machine learning to quantum chemistry simulation. These
applications are built upon a method we provide for interconverting between
phase and probability oracles. The polynomial speed-ups that we see for these

11Note that some authors (including [ROA16]) call F ′(ρ, σ) = F (ρ, σ)2 the fidelity, defined

as F (ρ, σ) = Tr
(√√

ρσ
√
ρ
)

. The distortion measure we use here is P (ρ, σ) =
√

1− F 2(ρ, σ),

which is called the purified (trace) distance [TCR10].
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applications is made possible by our improved quantum gradient algorithm via
the use of this interconversion process.

More work remains to be done in generalizing the lower bounds for functions
that have stronger promises on the high-order derivatives. It would be inter-
esting to see how quantum techniques can speed-up more sophisticated higher-
level, e.g., stochastic gradient-descent methods. Another interesting question is
whether quantum techniques can provide further speed-ups for calculating higher-
order derivatives, such as the Hessian, using ideas related to Jordan’s algorithm,
see [Jor08, Appendix D]. Such improvements might open the door for improved
quantum analogues of Newton’s method and in turn substantially improve the
scaling of the number of epochs needed to converge to a local optima in quantum
methods. Another interesting direction is, whether we could improve the number
of steps T in the gradient-descent algorithm? This improvement in T might be
interesting and might have applications to boosting [FSA99] and quantum semi-
definite programming (SDP) solvers [BS17, AGGW17].
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Chapter 6

Survey of quantum learning theory

This chapter is based on the paper “A survey of quantum learning theory”, by S.
Arunachalam and R. de Wolf [AW17a].

Abstract. In this chapter, we survey quantum learning theory: the theoretical
aspects of machine learning using quantum computers. We describe the main re-
sults known for three models of learning: exact learning from membership queries,
and Probably Approximately Correct (PAC) and agnostic learning from classi-
cal or quantum examples. In the first part of the chapter, we will consider the
query complexity and sample complexity of learning algorithms and in the sec-
ond part of the chapter we consider the time complexity of algorithms in these
learning models.
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6.5.2 Sample complexity of agnostic learning . . . . . . . . 127
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6.1 Introduction

Machine learning entered theoretical computer science in the 1980s with the work
of Leslie Valiant [Val84], who introduced the model of “Probably Approximately
Correct” (PAC) learning, building on earlier work of Vapnik and others in statis-
tics, but adding computational complexity aspects. This provided a mathemat-
ically rigorous definition of what it means to (efficiently) learn a target concept
from given examples. In the three decades since, much work has been done in
computational learning theory: some efficient learning results, many hardness
results, and many more models of learning. We refer to [KV94b, AB09, SB14]
for general introductions to this area. In recent years practical machine learning
has gained an enormous boost from the success of deep learning in important
big-data tasks like image recognition, natural language processing, and many
other areas; this is theoretically still not very well understood, but it often works
amazingly well.

Given the successes of both machine learning and quantum computing, com-
bining these two strands of research is an obvious direction. Indeed, soon after
Shor’s algorithm, Bshouty and Jackson [BJ99] introduced a version of learning
from quantum examples, which are quantum superpositions rather than random
samples. They showed that Disjunctive Normal Form (DNF) can be learned effi-
ciently from quantum examples under the uniform distribution; efficiently learn-
ing DNF from uniform classical examples (without membership queries) was and
is an important open problem in classical learning theory. Servedio and oth-
ers [AS05, AS09, SG04] studied upper and lower bounds on the number of quan-
tum membership queries or quantum examples needed for learning, and more
recently the author of this thesis and de Wolf obtained optimal bounds on quan-
tum sample complexity [AW17b] (we discuss this in detail in the next chapter).

Much research in quantum machine learning has been on using quantum
techniques to improve specific algorithms which are important in classical ma-
chine learning. In this direction, Aı̈meur et al. [ABG06, ABG13] showed quan-
tum speed-up in learning contexts such as clustering via minimum spanning
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tree, divisive clustering, and k-medians, using variants of Grover’s search algo-
rithm [Gro96]. In the last few years there has been a flurry of interesting results
applying various quantum algorithms (Grover’s algorithm, but also phase esti-
mation, amplitude amplification [BHMT02], and the HHL algorithm for solving
well-behaved systems of linear equations [HHL09]) to machine learning prob-
lems. Examples include Principal Component Analysis [LMR13b], support vec-
tor machines [RML13], k-means clustering [LMR13a], quantum recommendation
systems [KP17b], and more recent works related to neural networks [WKS16b,
WKS16a]. Recently, there has also been work [GAW17] on using quantum tech-
niques to improve gradient-based optimization algorithms which are ubiquitous in
classical machine learning. Some of this work—like most of application-oriented
machine learning in general—is heuristic in nature rather than mathematically
rigorous. Some of these new approaches are suggestive of exponential speed-ups
over classical machine learning, though one has to be careful about the underly-
ing assumptions needed to make efficient quantum machine learning possible: in
some cases these also make efficient classical machine learning possible. Aaron-
son [Aar15] gives a brief but clear description of the issues. These developments
have been well-served by a number of recent survey papers [SSP15, AAD+15,
BWP+17, CHI+17, DB17] and even a book [Wit14].

In contrast, in this chapter we focus on the theoretical side of quantum ma-
chine learning: quantum learning theory.1 We will describe (and sketch proofs of)
the main results that have been obtained in three main learning models. These
will be described in much more detail in the next sections, but below we give a
brief preview.

Exact learning. In this setting the goal is to learn a target concept from the
ability to interact with it. For concreteness, we focus on learning target concepts
that are Boolean functions c : {0, 1}n → {0, 1}. Considering concept classes
over {0, 1}n has the advantage that the n-bit x in a labeled example (x, c(x))
may be viewed as a “feature vector”. This fits naturally when one is learning a
type of objects characterized by patterns involving n features that each can be
present or absent in an object, or when learning a class of n-bit Boolean functions
such as small decision trees, circuits, or DNFs. However, we can (and sometimes
do) also consider concepts c : [N ]→ {0, 1}.

In the framework of exact learning, the target concept is some unknown
c : {0, 1}n → {0, 1} coming from a known concept class C of functions, and
our goal is to identify c exactly, with high probability, using membership queries
(which allow the learner to learn c(x) for x of his choice). If the measure of com-
plexity is just the number of queries, the main results are that quantum exact

1The only other paper we are aware of to survey quantum learning theory is an unpublished
manuscript by Robin Kothari from 2012 [Kot12] which is much shorter but partially overlaps
with ours; we only saw this after finishing a first version of our survey [AW17a].
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learners can be at most polynomially more efficient than classical, but not more.
If the measure of complexity is time, then under reasonable complexity-theoretic
assumptions some concept classes can be learned much faster from quantum mem-
bership queries (i.e., where the learner can query c on a superposition of x’s) than
is possible classically.

PAC learning. In this model of learning one also wants to learn an unknown
c : {0, 1}n → {0, 1} from a known concept class C, but in a more passive way than
with membership queries: the learner receives several labeled examples (x, c(x)),
where x is distributed according to some unknown probability distribution D
over {0, 1}n. The learner gets multiple i.i.d. labeled examples. From this lim-
ited “view” on c, the learner wants to generalize, producing a hypothesis h that
probably agrees with c on “most” x, measured according to the same D. This
is the classical Probably Approximately Correct (PAC) model. In the quan-
tum PAC model [BJ99], an example is not a random sample but a superposition∑

x∈{0,1}n
√
D(x)|x, c(x)〉. Such quantum examples can be useful for some learn-

ing tasks with a fixed distribution D (e.g., uniform D) but it turns out that in
the usual distribution-independent PAC model, quantum and classical sample
complexity are equal up to constant factors, for every concept class C. When the
measure of complexity is time, under reasonable complexity-theoretic assump-
tions, some concept classes can be PAC learned much faster by quantum learners
(even from classical examples) than is possible classically.

Agnostic learning. In this setting, a learner wants to approximate a distribu-
tion on {0, 1}n+1 by finding a good hypothesis h to predict the last bit from the
first n bits. A “good” hypothesis is one that is not much worse than the best
predictor available in a given class C of available hypotheses. The agnostic model
has more freedom than the PAC model and allows to model more realistic situ-
ations, for example when the data is noisy or when no “perfect” target concept
exists. Like in the PAC model, it turns out quantum sample complexity is not
significantly smaller than classical sample complexity in the agnostic model.

Organization. This chapter is organized as follows. In Section 6.2 we first
introduce a few quantum subroutines that we use often. In Section 6.3, we in-
troduce the classical and quantum learning models. In Section 6.4 and 6.5, we
describe the main results obtained for information-theoretic measures of learning
complexity, namely query complexity of exact learning and sample complexities
of PAC and agnostic learning. In Section 6.6 we discuss known results in learning
quantum objects. In Section 6.7 we survey the main results known about time
complexity of quantum learners. We conclude in Section 6.8 with a summary of
the results and some open questions for further research.
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6.2 Quantum subroutines

6.2.1 Grover’s algorithm

We have already discussed Grover’s search algorithm in Chapter 2, for finding a
solution in N -bit database using O(

√
N) quantum queries in Section 2.5. In this

chapter, we will invoke the following more recent application of Grover’s algo-
rithm.

6.2.1. Theorem ([Kot14],[LL16, Theorem 5.6]). Suppose x ∈ {0, 1}N . There
exists a quantum algorithm that satisfies the following properties:

• if x 6= 0N , then let d be the first (i.e., smallest) index satisfying xd = 1;
the algorithm uses an expected number of O(

√
d) queries to x and outputs d

with probability at least 2/3;

• if x = 0N then the algorithm always outputs “no solution” after O(
√
N)

queries.

6.2.2 Fourier sampling

A very simple but powerful quantum algorithm is Fourier sampling. An intro-
duction to Fourier analysis can be found in Section 2.1. Consider a function
f : {0, 1}n → R. The Fourier decomposition of f is f =

∑
S f̂(S)χS. Parseval’s

identity says that
∑

S f̂(S)2 = Ex[f(x)2]. Note that if f has range {±1} then

Parseval implies that the squared Fourier coefficients f̂(S)2 sum to 1, and hence
form a probability distribution. Fourier sampling means sampling an S with
probability f̂(S)2. Classically this is a hard problem, because the probabilities

f̂(S)2 depend on all 2n values of f (since f̂(S) = 1
2n

∑
x f(x)χS(x)). However,

the following quantum algorithm due to Bernstein and Vazirani [BV97] does it
exactly using only 1 query and O(n) gates.

1. Start with |0n〉.

2. Apply Hadamard transforms to all n qubits, obtaining 1√
2n

∑
x∈{0,1}n |x〉.

3. Query Of ,
2 obtaining 1√

2n

∑
x f(x)|x〉.

4. Apply Hadamard transforms to all n qubits to obtain

1√
2n

∑
x

f(x)
( 1√

2n

∑
S

(−1)x·S|S〉
)

=
∑
S

f̂(S)|S〉.

5. Measure the state, obtaining S with probability f̂(S)2.

2Here we view f ∈ {1,−1}2n as being specified by its truth-table, so Of : |x〉 → f(x)|x〉.
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6.3 Learning models

In this section we will define the three main learning models that we focus on:
the exact model of learning introduced by Angluin [Ang87], the PAC model
of learning introduced by Valiant [Val84], and the agnostic model of learning
introduced by Haussler [Hau92] and Kearns et al. [KSS94]. Below, a concept
class C will usually be a set of functions c : {0, 1}n → {0, 1}, though we can also
allow functions c : [N ]→ {0, 1}, or treat such a c as an N -bit string specified by
its truth-table.

6.3.1 Exact learning

Classical exact learning. In the exact learning model, a learner A for a con-
cept class C is given access to a membership oracle MQ(c) for the unknown target
concept c ∈ C that A is trying to learn. Given an input x ∈ {0, 1}n, MQ(c)
returns the label c(x). A learning algorithm A is an exact learner for C if:

For every c ∈ C, given access to the MQ(c) oracle:
with probability at least 2/3, A outputs an h such that h(x) = c(x)
for all x ∈ {0, 1}n.3

This model is also sometimes known as “oracle identification”: the idea is that C
is a set of possible oracles, and we want to efficiently identify which c ∈ C is our
actual oracle, using membership queries to c. The query complexity of A is the
maximum number of invocations of the MQ(c) oracle which the learner makes,
over all concepts c ∈ C and over the internal randomness of the learner. The
query complexity of exactly learning C is the minimum query complexity over all
exact learners for C.4

Each concept c : {0, 1}n → {0, 1} can also be specified by its N -bit truth-table
(with N = 2n), hence one may view the concept class C as a subset of {0, 1}N .
For a given N and M , define the (N,M)-query complexity of exact learning as the
maximum query complexity of exactly learning C, maximized over all C ⊆ {0, 1}N
such that |C| = M .

Quantum exact learning. In the quantum setting, instead of having access
to an MQ(c) oracle, a quantum exact learner is given access to a QMQ(c) oracle,
which corresponds to the map QMQ(c) : |x, b〉 → |x, b⊕ c(x)〉 for x ∈ {0, 1}n, b ∈
{0, 1}. For a given C, N,M , one can define the quantum query complexity of

3We could also consider a δ-exact learner who succeeds with probability 1 − δ, but here
restrict to δ = 1/3 for simplicity. Standard amplification techniques can reduce this 1/3 to any
δ > 0 at the expense of an O(log(1/δ)) factor in the complexity.

4This terminology of “learning C” or “C is learnable” is fairly settled though slightly unfor-
tunate: what is actually being learned is of course a target concept c ∈ C, not the class C itself,
which the learner already knows from the start.
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exactly learning C, and the (N,M)-quantum query complexity of exact learning
as the quantum analogues (where the learner is given access to the QMQ(c)
oracle) to the classical complexity measures.

6.3.2 Probably approximately correct (PAC) learning

Classical PAC model. In this section we will be concerned mainly with
the PAC (Probably Approximately Correct) model of learning introduced by
Valiant [Val84]. For further reading, see standard textbooks in computational
learning theory such as [KV94b, AB09, SB14]. In the classical PAC model, a
learner A is given access to a random example oracle PEX(c,D) which generates
labeled examples of the form (x, c(x)) where x is drawn from an unknown distri-
bution D : {0, 1}n → [0, 1] and c ∈ C is the target concept that A is trying to
learn. For a concept c ∈ C and hypothesis h : {0, 1}n → {0, 1}, we define the
error of h compared to the target concept c, under D, as

errD(h, c) = Prx∼D[h(x) 6= c(x)].

A learning algorithm A is an (ε, δ)-PAC learner for C, if the following holds:

For every c ∈ C, distribution D, given access to the PEX(c,D) oracle:
A outputs an h such that errD(h, c) ≤ ε with probability at least 1−δ.

Note that the learner has the freedom to output an hypothesis h which is not
itself in the concept class C. If the learner always produces an h ∈ C, then it is
called a proper PAC learner.

The sample complexity of A is the maximum number of invocations of the
PEX(c,D) oracle which the learner makes, over all concepts c ∈ C, distribu-
tions D, and the internal randomness of the learner. Clearly there are different
PAC-learners that learn C. The (ε, δ)-PAC sample complexity of a concept class
C is the minimum sample complexity over all (ε, δ)-PAC learners for C.

Quantum PAC model. The quantum PAC learning model was introduced by
Bshouty and Jackson in [BJ99]. The quantum PAC model is a generalization of
the classical PAC model, instead of having access to random examples (x, c(x))
from the PEX(c,D) oracle, the learner now has access to superpositions over
all (x, c(x)). For an unknown distribution D : {0, 1}n → [0, 1] and concept
c ∈ C, a quantum example oracle QPEX(c,D) acts on |0n, 0〉 and produces a
quantum example ∑

x∈{0,1}n

√
D(x)|x, c(x)〉,

we leave QPEX undefined on other basis states. Such a quantum example is
the natural quantum generalization of a classical random sample.5 While it is

5We could also allow complex phases for the amplitudes
√
D(x); however, these will make

no difference for the results presented here.
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not always realistic to assume access to such (fragile) quantum states, one can
certainly envision learning situations where the data is provided by a coherent
quantum process.

A quantum learner is given access to some copies of the state generated by
QPEX(c,D) and performs a POVM where each outcome is associated with a
hypothesis. A learning algorithm A is an (ε, δ)-PAC quantum learner for C if:

For every c ∈ C, distributionD, given access to the QPEX(c,D) oracle:
A outputs an h such that errD(h, c) ≤ ε, with probability at least 1−δ.

The sample complexity of the learning algorithm A is the maximum number invo-
cations of the QPEX(c,D) oracle, maximized over all c ∈ C, distributions D, and
the learner’s internal randomness. The (ε, δ)-PAC quantum sample complexity of
a concept class C is the minimum sample complexity over all (ε, δ)-PAC quantum
learners for C.

Observe that from a quantum example
∑

x

√
D(x)|x, c(x)〉, we can obtain∑

x

√
D(x)(−1)c(x)|x〉 with probability 1/2: apply the Hadamard transform to

the last qubit and measure it. With probability 1/2 we obtain the outcome 1,
in which case the remaining state is

∑
x

√
D(x)(−1)c(x)|x〉. If D is the uniform

distribution, then the obtained state is exactly the state needed in step 3 of the
Fourier sampling algorithm described in Section 6.2.2.

How does the model of quantum examples compare to the model of quantum
membership queries? If the distribution D is known, a membership query can
be used to create a quantum example: the learner can create the superposition∑

x

√
D(x)|x, 0〉 and apply a membership query to the target concept c to obtain

a quantum example. On the other hand, as Bshouty and Jackson [BJ99] already
observed, a membership query cannot be simulated using a small number of
quantum examples. Consider for example the learning problem corresponding
to Grover search, where the concept class C ⊆ {0, 1}N consists of all strings of
weight 1, i.e., C = {ei : i ∈ [N ]}. We know that Θ(

√
N) quantum membership

queries are necessary and sufficient to exactly learn the target concept with high
probability. However, it is not hard to show that, under the uniform distribution,
one needs Ω(N) quantum examples to exactly learn the target concept with high
probability. Hence simulating one membership query requires at least Ω(

√
N)

quantum examples.

6.3.3 Agnostic learning

Classical agnostic model. The PAC model assumes that the labeled exam-
ples are generated perfectly according to a target concept c ∈ C. However, in
many learning situations that is not a realistic assumption, for example when the
examples are noisy in some way or when we have no reason to believe there is an
underlying target concept at all. The agnostic model of learning introduced by
Haussler [Hau92] and Kearns et al. [KSS94], takes this into account.



6.4. Results on query complexity 117

Agnostic learning is the following: for a distribution D : {0, 1}n+1 → [0, 1], a
learnerA is given access to an AEX(D) oracle that generates examples of the form
(x, b) drawn from the distribution D. We define the error of h : {0, 1}n → {0, 1}
under D as

errD(h) = Pr(x,b)∼D[h(x) 6= b].

When h is restricted to come from a concept class C, the minimal error achievable
is optD(C) = minc∈C{errD(c)}.

In agnostic learning, a learner A needs to output a hypothesis h whose error
is not much bigger than optD(C). A learning algorithm A is an (ε, δ)-agnostic
learner for C if:

For every distribution D on {0, 1}n+1, given access to AEX(D):
A outputs an h ∈ C such that errD(h) ≤ optD(C) + ε with probability
at least 1− δ.

Note that if there is a c ∈ C which perfectly classifies every x with label y for
(x, y) ∈ supp(D), then optD(C) = 0 and we are in the setting of proper PAC
learning. The sample complexity of A is the maximum number of invocations
of the AEX(c,D) oracle which the learner makes, over all distributions D and
over the learner’s internal randomness. The (ε, δ)-agnostic sample complexity of a
concept class C is the minimum sample complexity over all (ε, δ)-agnostic learners
for C.

Quantum agnostic model. The model of quantum agnostic learning was first
studied in [AW17b]. For a joint distribution D : {0, 1}n+1 → [0, 1] over the set
of examples, the learner has access to an QAEX(D) oracle which acts on |0n, 0〉
and produces a quantum example

∑
(x,b)∈{0,1}n+1

√
D(x, b)|x, b〉 (we again leave

QAEX(D) undefined on other basis states). A learning algorithm A is an (ε, δ)-
agnostic quantum learner for C if:

For every distribution D, given access to the QAEX(D) oracle:
A outputs an h ∈ C such that errD(h) ≤ optD(C) + ε with probability
at least 1− δ.

The sample complexity ofA is the maximum number invocations of the QAEX(D)
oracle over all distributions D and over the learner’s internal randomness. The
(ε, δ)-agnostic quantum sample complexity of a concept class C is the minimum
sample complexity over all (ε, δ)-agnostic quantum learners for C.

6.4 Results on query complexity

In this section, we begin by proving bounds on the quantum query complexity
of exactly learning a concept class C in terms of a combinatorial parameter γ(C),
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which we define shortly, and then sketch the proof of optimal bounds on (N,M)-
quantum query complexity of exact learning.

Throughout this section, we will specify a concept c : {0, 1}n → {0, 1} by its
N -bit truth-table (with N = 2n), hence C ⊆ {0, 1}N . For a set S ⊆ {0, 1}N , we
will use the “N -bit majority string” MAJ(S) ∈ {0, 1}N defined as: MAJ(S)i = 1
iff |{s ∈ S : si = 1}| ≥ |{s ∈ S : si = 0}|.

6.4.1. Definition. (Combinatorial parameter γ(C)) Let C ⊆ {0, 1}N be a con-
cept class of size |C| > 1, and let C ′ ⊆ C. For i ∈ [N ] and b ∈ {0, 1}, define

γ′(C ′, i, b) =
|{c ∈ C ′ : ci = b}|

|C ′|

as the fraction of concepts in C ′ that satisfy ci = b. Let

γ′(C ′, i) = min{γ′(C ′, i, 0), γ′(C ′, i, 1)}

be the minimum fraction of concepts that can be eliminated by learning ci. Let

γ′(C ′) = max
i∈[N ]
{γ′(C ′, i)}

denote the largest fraction of concepts in C ′ that can be eliminated by a query.
Finally, define

γ(C) = min
C′⊆C,
|C′|≥2

γ′(C ′) = min
C′⊆C,
|C′|≥2

max
i∈[N ]

min
b∈{0,1}

γ′(C ′, i, b).

This complicated-looking definition is motivated by the following learning algo-
rithm. Suppose the learner wants to exactly learn an unknown c ∈ C. Greedily,
the learner would query c on the “best” input i ∈ [N ], i.e., the i that eliminates
the largest fraction of concepts from C irrespective of the value of ci. Suppose j
is the “best” input (i.e., i = j maximizes γ′(C, i)) and the learner queries c on
index j, then at least a γ(C)-fraction of the concepts in C will be inconsistent
with the query-outcome, and these can now be eliminated from C. Call the set
of remaining concepts C ′, and note that |C ′| ≤ (1− γ(C))|C|. The outermost min
in γ(C) guarantees that there will be another query that the learner can make
to eliminate at least a γ(C)-fraction of the remaining concepts from C ′, and so
on. We stop when there is only one remaining concept left. Since each query
will shrink the set of remaining concepts by a factor of at least 1− γ(C), making
T = O((log |C|)/γ(C)) queries suffices to shrink C to {c}.

6.4.1 Complexity of exactly learning C in terms of γ(C)

Bshouty et al. [BCG+96] showed the following bounds on the classical complexity
of exactly learning a concept class C (we already sketched the upper bound above).
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6.4.2. Theorem ([BCG+96, SG04]). Every classical exact learner for concept
class C has to use Ω(max{1/γ(C), log |C|}) membership queries. For every C, there

is a classical exact learner which learns C using O( log |C|
γ(C) ) membership queries.

In order to show a polynomial relation between quantum and classical exact
learning, Servedio and Gortler [SG04] showed the following lower bounds.

6.4.3. Theorem ([SG04]). Let N = 2n. Every quantum exact learner for con-

cept class C ⊆ {0, 1}N has to make Ω(max{ 1√
γ(C)

, log |C|
n
}) membership queries.

Proof sketch. We first prove the Ω(1/
√
γ(C)) lower bound. We will use the

positive-weight adversary bound of Ambainis [Amb00], discussed in Section 2.4.2.
In order to put this bound to use, we need to construct a relation R ⊆ D × D,
that maximizes Ω(

√
mm′/``′), where D ⊆ {0, 1}N .

Now we want to apply this lower bound to a quantum exact learner for concept
class C. We can think of the learning algorithm as making queries to an N -bit
input string and producing the name of a concept c ∈ C as output. Suppose
C ′ ⊆ C is a minimizer in the definition of γ(C) (i.e., γ′(C ′) = γ(C)). Define
c̃ = MAJ(C ′). Note that c̃ need not be in C ′ or even in C, but we can still consider
what our learner does on input c̃. We consider two cases:

Case 1: For every c ∈ C ′, the probability that the learner outputs c when run
on the typical concept c̃, is < 1/2. In this case we pick our relation R = {c̃}×C ′.
Calculating the parameters for the adversary bound, we have m = |C ′|, m′ = 1,
` ≤ γ′(C ′)|C ′| (because for every i, c̃i 6= ci for a γ′(C ′, i)-fraction of the c ∈ C ′ and
γ′(C ′, i) ≤ γ′(C ′) by definition), and `′ = 1. Since, for every c ∈ C ′, the learner
outputs c with high probability on input c, the final states on every pair of R-
related concepts will be Ω(1) apart. Using Theorem 2.4.5, the number of queries
that our learner needs to make is Ω(

√
mm′/``′) = Ω(1/

√
γ′(C ′)) = Ω(1/

√
γ(C))

(because C ′ minimized γ(C)).
Case 2: When c̃, there exists a specific c ∈ C ′ that the learner gives as

output with probability ≥ 1/2 when run on input c̃. In this case we pick R =
{c̃} × (C ′\{c}), ensuring that the final states on every pair of R-related concepts
will be Ω(1) apart. We now have m = |C ′| − 1, m′ = 1, ` ≤ γ′(C ′)|C ′| (for the
same reason as in Case 1), and `′ = 1. Since (|C ′| − 1)/|C ′| = Ω(1), the adversary
bound again yields an Ω(1/

√
γ(C)) bound.

We now prove the Ω((log |C|)/n) lower bound by an information-theoretic ar-
gument, as follows. View the target string c ∈ C as a uniformly distributed
random variable. If our algorithm can exactly identify c with high success prob-
ability, it has learned Ω(log |C|) bits of information about c (formally, the mutual
information between c and the learner’s output is Ω(log |C|)). From Holevo’s the-
orem [Hol73], since a quantum query acts on only n + 1 qubits, one quantum
query can yield at most O(n) bits of information about c. Hence Ω((log |C|)/n)
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quantum queries are needed. 2

Both of the above lower bounds are in fact individually optimal. First, if one
takes C ⊆ {0, 1}N to consist of the N functions c for which c(i) = 1 for exactly
one i, then exact learning corresponds to the unordered search problem with 1
solution. Here γ(C) = 1/N , and Θ(

√
N) queries are necessary and sufficient

thanks to Grover’s algorithm. Second, if C is the class of N = 2n linear functions
on {0, 1}n, C = {c(x) = a · x : a ∈ {0, 1}n}, then Fourier sampling gives an
O(1)-query algorithm (see Section 6.7.3). In addition to these quantum-classical
separations based on Grover and Fourier sampling, in Section 6.7.3 we also men-
tion a fourth-power separation between Q(C) and D(C) due to Belovs [Bel13],
for the problem of learning certain k-juntas. Combining Theorems 6.4.2 and
6.4.3, Servedio and Gortler [SG04] showed that the classical and quantum query
complexity of exact learning are essentially polynomially related for every C.

6.4.4. Corollary ([SG04]). If concept class C has classical and quantum mem-
bership query complexities D(C) and Q(C), respectively, then D(C) = O(nQ(C)3).

6.4.5. Remark. In work in progress [ACLW18], we improved this upper bound
by a logarithmic factor. In particular, we showed that for a concept class C ⊆
{0, 1}N , we have

D(C) ≤ O
(Q(C)2 log |C|

logQ(C) + 1

)
. (6.1)

Observe that this bound is tight for the concept class C = {ei : i ∈ [N ]}, which
satisfies D(C) = N , Q(C) = Θ(

√
N) and |C| = N and for the concept class of

linear functions C = {c(x) = a · x : a ∈ {0, 1}n}, which satisfies D(C) = n,
Q(C) = 1 and |C| = 2n. Combining with Theorem 6.4.3, our upper bound in
Eq. (6.1) yields D(C) ≤ O(nQ(C)3/ logQ(C)), improving upon the upper bound
of Servedio and Gortler [SG04, Theorem 1.1].

We briefly give the proof idea here. We first construct a distributional learner
such that: for every distribution µ on C, the µ-distributional learner has success
probability at least 2/3 measured under µ. The queries made by the learner is
chosen as follows. We use the negative-weight adversary method to show the exis-
tence of an index i ∈ [N ] that satisfies the following: suppose the learner queries
the unknown concept at index i, then the number of concepts in C consistent
with the query outcome reduces at least by a (1 − 1

Q(C)2 )-factor. We then de-

fine C ′ by restricting to the concepts in C consistent with the query outcome. We
again use the adversary method to find an index i′ which the learner should query
and define C ′′ based on the query outcome at index i′. We repeat this process
until a unique concept remains. Using an information-theoretic argument, we

show that repeating this process O(Q(C)2 log |C|
logQ(C)+1

) times suffice to find the unknown
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concept. Eq. (6.1) follows for distributional learners because each round uses at
most one membership query. In order to conclude the proof, we invoke the Yao
principle [Yao77] to show the existence of a classical learner who, on input c ∈ C,
outputs the label for c with probability at least 2/3.

6.4.2 (N,M)-query complexity of exact learning

In this section we focus on the (N,M)-quantum query complexity of exact learn-
ing. Classically, the following characterization is easy to prove.

6.4.6. Theorem (Folklore). The (N,M)-query complexity of exact learning is
Θ(min{M,N}).

Proof sketch. Clearly N is an upper bound since C ⊆ {0, 1}N . For M ≤ N ,
using one query we can eliminate at least one concept from C, so M queries suffice.
For the lower bounds, consider the concept class C ′ = {ei : i ∈ [N ]}. Clearly we
need Ω(N) queries to exactly learn a c ∈ C. Suppose M ≤ N , just pick a subset
of C ′ of size M and the query complexity of exactly learning this subset of C ′ is
at least Ω(M). 2

In the quantum context, the (N,M)-query complexity of exact learning has
been completely characterized by Kothari [Kot14]. He improved upon a sequence
of works [AIK+04, AIK+07, AIN+09], and showed the following theorem.

6.4.7. Theorem ([Kot14]). The (N,M)-quantum query complexity of exact lear-

ning is Θ(
√
M) for M ≤ N and Θ

(√
N logM

log(N/ logM)+1

)
for N < M ≤ 2N .

Proof sketch. We first sketch the lower bound proofs before moving on to
showing the upper bound.

Lower bounds. Consider first the case M ≤ N . Suppose C ⊆ {c ∈ {0, 1}N :
|c| = 1} satisfies |C| = M . Then, exactly learning C is as hard as the unordered
search problem on M bits, which requires Ω(

√
M) quantum queries. For the case

N < M ≤ 2N , we need the following lemma.

6.4.8. Lemma. There exists C ⊆ {0, 1}N of size |C| ≤ M , such that the query
complexity of exactly learning C is Ω(

√
(N − k + 1)k) for every k that satisfies(

N
k−1

)
+
(
N
k

)
≤M .

Proof. Let C ⊆ {0, 1}N be the set of N -bit strings with Hamming weight k− 1
or k (for some k satisfying

(
N
k−1

)
+
(
N
k

)
≤M , so that |C| ≤M). Suppose A is an

quantum exact learning algorithm for C. Being able to learn a concept c ∈ C, in
particular implies that A can distinguish between two concepts x and y such that
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|x| = k and |y| = k − 1. Using the positive-weight adversary method, it follows
that every A satisfying this property has to make Ω(

√
(N − k + 1)k) queries to

the unknown concept.6 2

The fact below shows that a sufficiently large k exists satisfying the require-
ment of the lemma above.

6.4.9. Fact. For every N < M ≤ 2N , there exists k ∈ Ω
(

logM
log(N/ logM)+1

)
such

that
(
N
k−1

)
+
(
N
k

)
≤M .

The proof of this combinatorial fact is not too hard and we refer the reader
to [Kot14, Lemma 5]. Combining this fact along with Lemma 6.4.8, the lower
bound in the theorem follows.

Upper bounds. We now sketch the proofs of the upper bound. We use the
following notation: for u ∈ {0, 1}n and S ⊆ [n], let uS ∈ {0, 1}|S| be the string
obtained by restricting u to the indices in S.

We first describe a quantum algorithm that gives a worse upper bound than
promised, but is easy to explain. Suppose C ⊆ {0, 1}N satisfies |C| = M . Let
c ∈ C be the unknown target concept that the algorithm is trying to learn. The
basic idea of the algorithm is as follows: use the algorithm of Theorem 6.2.1
to find the first index p1 ∈ [N ] at which c and MAJ(C) differ. This uses an
expected O(

√
p1) quantum queries to c (if there is no difference, i.e., c = MAJ(C),

then the algorithm will tell us so after O(
√
N) queries and we can stop). We

have now learned the first p1 bits of c. Let C1 = {z[N ]\[p1] : z ∈ C, z[p1−1] =

MAJ(C)[p1−1], zp1 = MAJ(C)p1} ⊆ {0, 1}N−p1 be the set of suffixes of the concepts
in C that agree with MAJ(C) on the first p1−1 indices and disagree with MAJ(C)
on the p1th index. Similarly, let c1 = c[N ]\[p1] be the “updated” unknown target
concept after restricting c to the coordinates {p1 + 1, . . . , N}. Next, we use the
same idea to find the first index p2 ∈ [N − p1] such that (c1)p2 6= MAJ(C1)p2 .
Repeat this until only one concept is left, and let r be the number of repetitions
(i.e., until |Cr| = 1).

In order to analyze the query complexity, first note that, for k ≥ 1, the k-th
iteration of the procedure gives us pk bits of c. Since the procedure repeated r
times, we have p1 + · · · + pr ≤ N . Second, each repetition in the algorithm
reduces the size of Ci by at least a half, i.e., for i ≥ 2, |Ci| ≤ |Ci−1|/2. Hence one
needs to repeat the procedure at most r ≤ O(logM) times. The last run will use

6In order to apply the positive-weight adversary method (Theorem 2.4.5), we could use the
relation R ⊆ f−1(0)×f−1(1) defined as: R = {(x, x+ei) : x ∈ {0, 1}N , |x| = k−1, i /∈ supp(x)}.
For this R, observe that m = N−k+1,m′ = k, ` = `′ = 1, which gives us the Ω(

√
(N − k + 1)k)

lower bound.
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O(
√
N) queries and will tell us that we have learned all the bits of c. It follows

that the total number of queries the algorithm makes to c is

r∑
k=1

O(
√
pk) +O(

√
N) ≤ O

√r
√√√√ r∑

k=1

pk

+O(
√
N) ≤ O(

√
N logM),

where we used the Cauchy-Schwarz inequality first and our upper bounds on
r ≤ O(logM) and

∑
i pi ≤ N in the second inequality.7

This algorithm is an O(
√

log(N/ logM))-factor away from the promised upper
bound. Tweaking the algorithm to save the logarithmic factor uses the following
lemma by [Heg95]. It shows that there exists an explicit ordering and a string
si such that replacing MAJ(Ci) in the basic algorithm leads to faster reduction
of |Ci|.

6.4.10. Lemma ([Heg95, Lemma 3.2]). Let L ∈ N and C ⊆ {0, 1}L. There exists
s ∈ {0, 1}L and permutation π : [L] → [L], such that for every p ∈ [L], we have

|Cp| ≤ |C|
max{2,p} , where Cp = {c ∈ C : c{π(1),...,π(p−1)} = s{π(1),...,π(p−1)}, cπ(p) 6= sπ(p)}

is the set of strings in C that agree with s at π(1), . . . , π(p − 1) and disagree
at π(p).

We now describe the final algorithm.

1. Set C1 := C, N1 := N , and c1 := c.

2. Repeat until |Ck| = 1

a. Let sk ∈ {0, 1}Nk be the string and πk : [Nk] → [Nk] be the permuta-
tion obtained by applying Lemma 6.4.10 to Ck (with L = Nk)

b. Search for the first (according to πk) disagreement between sk and ck

using the algorithm of Theorem 6.2.1. Suppose we find a disagree-
ment at index πk(pk) ∈ [Nk], i.e., sk and ck agree on the indices
Ik = {πk(1), . . . , πk(pk − 1)}

c. Set Nk+1 := Nk − pk, ck+1 := ck
[Nk]\(Ik∪{πk(pk)}) and

Ck+1 := {u[Nk]\(Ik∪{πk(pk)}) : u ∈ Ck, uIk = skIk , uπk(pk) 6= sk
πk(pk)

}

3. Output the unique element of Ck.

Let r be the number of times the loop in Step 2 repeats and suppose in the k-
th iteration we learned pk bits of c. Then we have

∑r
k=1 pk ≤ N . The overall

query complexity is T = O(
∑r

k=1

√
pk). Earlier we had |Ck+1| ≤ |Ck|/2 and hence

7One has to be careful here because each run of the algorithm of Theorem 6.2.1 has a small
error probability. Kothari shows how this can be handled without the super-constant blow-up
in the overall complexity that would follow from näıve error reduction.
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r ≤ O(logM). But now, from Lemma 6.4.10 we have |Ck+1| ≤ |Ck|/max{2, pk}.
Since each iteration reduces the size of Ck by a factor of max{2, pk}, we have∏r

k=1 max{2, pk} ≤ M . Solving this optimization problem, i.e.,

min T =
r∑

k=1

√
pk s.t.

r∏
k=1

max{2, pk} ≤M,

r∑
k=1

pk ≤ N,

Kothari showed that

T = O(
√
M) if M ≤ N, and T = O

(√ N logM

log(N/ logM) + 1

)
if M > N.

2

Kothari [Kot14], improving upon [SG04, AS05], resolved a conjecture of Hun-
ziker et al. [HMP+10] by showing the following upper bound for quantum query
complexity of exact learning.

6.4.11. Theorem ([Kot14]). For every concept class C, there is a quantum exact

learner for C using O
(√

1/γ(C)
log(1/γ(C)) log |C|

)
quantum membership queries.

Proof sketch. The proof is very similar to the upper bound in Theorem 6.4.7,
analyzed in terms of γ(C) instead of (N,M). Consider the algorithm described
in the proof of Theorem 6.4.7. In step (2b), learning an index at which sk and ck

differ, reduces the size of Ck by a factor of (1 − γ(Ck)) ≤ (1 − γ(C)). If a
disagreement in step (2b) was found at index πk(pk) (i.e., ck and sk agree on the
indices Ik = {πk(1), . . . , πk(pk−1)} and differ on πk(pk)), then this reduces the size
of Ck by a factor at most (1−γ(C))pk . Using this, we can now replace the constraint∏r

k=1 max{2, pk} ≤ M by M
∏r

k=1(1− γ(C)pk ≥ 1, since the target concept will
remain in C after r rounds. It also easily follows that

∑
k pk ≤ (logM)/γ(C).

Solving this new optimization problem

min T =
r∑

k=1

√
pk s.t. M

r∏
k=1

(1− γ(C))pk ≥ 1,
r∑

k=1

pk ≤
logM

γ(C) ,

Kothari showed that

T = O
(√ 1/γ(C)

log(1/γ(C)) log |C|
)
.

2

Moshkin [Mos83] introduced another combinatorial parameter, which Hegedűs
[Heg95] called the extended teaching dimension EXT-TD(C) of a concept class C
(we shall not define EXT-TD(C) here, see [Heg95] for a precise definition). Build-
ing upon the work of [Mos83], Hegedűs proved the following theorem.
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6.4.12. Theorem ([Mos83],[Heg95, Theorem 3.1]). Every classical exact learner
for concept class C has to use Ω(max{EXT-TD(C), log |C|}) membership queries.
In the other direction, for every C, there is a classical exact learner which learns C
using O

(
EXT-TD(C)

log(EXT-TD(C)) log |C|
)

membership queries.

Comparing this with Theorem 6.4.2, observe that both 1/γ(C) and EXT-TD(C)
give lower bounds on classical query complexity, but the upper bound in terms
of EXT-TD(C) is better by a logarithmic factor. Also for analyzing quantum
complexity, EXT-TD(C) may be a superior parameter.

6.5 Results on sample complexity

6.5.1 Sample complexity of PAC learning

One of the most fundamental results in learning theory is that the sample com-
plexity of C is tightly determined by a combinatorial parameter called the VC
dimension of C, named after Vapnik and Chervonenkis [VC71] and defined as fol-
lows.

6.5.1. Definition. (VC dimension) Let C be a concept class over {0, 1}n. A
set S = {s1, . . . , st} ⊆ {0, 1}n is said to be shattered by a concept class C if
{(c(s1) · · · c(st)) : c ∈ C} = {0, 1}t. In other words, for every labeling ` ∈ {0, 1}t,
there exists a c ∈ C such that (c(s1) · · · c(st)) = `. The VC dimension of C
(denoted VC-dim(C)) is the size of a largest S ⊆ {0, 1}n that is shattered by C.

In order to get a good intuition for this definition, in Figure 6.1 we consider
two examples of concept classes C ⊆ {0, 1}2 containing 9 concepts.

Blumer et al. [BEHW89] gave a surprising connection between the combinato-
rial parameter VC-dim(C) and sample complexity of PAC learning. They proved
that the (ε, δ)-PAC sample complexity of a concept class C with VC dimension d,
is lower bounded by Ω(d/ε+ log(1/δ)/ε),8 and they proved an upper bound that
was worse by only a log(1/ε)-factor. In recent work, Hanneke [Han16] (improv-
ing on Simon [Sim15]) got rid of this logarithmic factor,9 showing that the lower
bound of Blumer et al. is in fact optimal. Combining these bounds, we have the
following theorem.

8It is not hard to see that the VC dimension of a concept class C also lower bounds the
classical query complexity of exactly learning C. By restricting to the concepts in the shattered
set (for e.g., in Fig. 6.1, we could restrict {c1, c3, c7, c9} ⊆ C1 to the first two columns), an exact
learning algorithm needs to make Ω(VC-dim(C)) many queries to identify an unknown concept
with high probability.

9Hanneke’s learner is not proper, meaning that its hypothesis h is not always in C. It is still
an open question whether the log(1/ε)-factor can be removed for proper PAC learning. Our
lower bounds in this chapter hold for all learners, quantum as well as classical, and proper as
well as improper.
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Concept class C1 Truth table
c1 0 1 0 1
c2 0 1 1 0
c3 1 0 0 1
c4 1 0 1 0
c5 1 1 0 1
c6 0 1 1 1
c7 0 0 1 1
c8 0 1 0 0
c9 1 1 1 1

Concept class C2 Truth table
c1 0 1 1 0
c2 1 0 0 1
c3 0 0 0 0
c4 1 1 0 1
c5 1 0 1 0
c6 0 1 1 1
c7 0 0 1 1
c8 0 1 0 1
c9 0 1 0 0

Figure 6.1: In the first table, the first two columns contain {0, 1}2, i.e., restricting
the concepts {c7, c1, c3, c9} to the first two columns we see all possible instanti-
ations of {0, 1}2. This shows that VC-dim(C1) ≥ 2 and observe that no three
columns contain {0, 1}3, hence VC-dim(C1) = 2. In the second table the last
three columns contain {0, 1}3, hence showing VC-dim(C2) ≥ 3 and since there are
only 9 concepts it is impossible to contain {0, 1}4 in any four columns.

6.5.2. Theorem ([BEHW89, Han16]). Let C be a concept class that satisfies

VC-dim(C) = d + 1. Then, Θ
(
d
ε

+ log(1/δ)
ε

)
examples are necessary and suffi-

cient for an (ε, δ)-PAC learner for C.

This characterizes the number of samples necessary and sufficient for a clas-
sical PAC learning in terms of the VC dimension. How many quantum examples
are needed to learn a concept class C of VC dimension d? Trivially, upper bounds
on classical sample complexity imply upper bounds on quantum sample com-
plexity. For some fixed distributions, in particular the uniform one, we will see in
Section 6.7 that quantum examples can be more powerful than classical examples.

However, PAC learning requires a learner to be able to learn c under all possible
distributions D, not just uniform. In Chapter 7, we show that quantum examples
are not more powerful than classical examples in the PAC model, improving over
the results of [AS05, Zha10].

6.5.3. Theorem ([AW17b]). Let C be a concept class with VC-dim(C) = d + 1.

Then, for every δ ∈ (0, 1/2) and ε ∈ (0, 1/20), Ω
(
d
ε

+ 1
ε

log 1
δ

)
examples are

necessary for an (ε, δ)-quantum PAC learner for C.

The proof of this is fairly technical and we prove it in the next chapter. Using
the upper bound from Theorem 6.5.2 and the lower bound above, it follows that
classical and quantum sample complexity are equal up to constant factors for
every concept class C.
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6.5.2 Sample complexity of agnostic learning

The following theorem characterizes the classical sample complexity of agnostic
learning in terms of the VC dimension.

6.5.4. Theorem ([VC74, Sim96, Tal94]). Let C be a concept class that satisfies

VC-dim(C) = d. Then, Θ
(
d
ε2

+ log(1/δ)
ε2

)
examples are necessary and sufficient for

an (ε, δ)-agnostic learner for C.

The lower bound was proven by Vapnik and Chervonenkis [VC74] (see also
Simon [Sim96]), and the upper bound was proven by Talagrand [Tal94]. Shalev-
Shwartz and Ben-David [SB14, Section 6.4] call Theorems 6.5.2 and 6.5.4 the
“Fundamental Theorem of PAC learning”. It turns out that the quantum sample
complexity of agnostic learning is equal (up to constant factors) to the classical
sample complexity.

6.5.5. Theorem ([AW17b]). Let C be a concept class with VC-dim(C) = d.

Then, for every δ ∈ (0, 1/2) and ε ∈ (0, 1/10), Ω
(
d
ε2

+ 1
ε2

log 1
δ

)
examples are

necessary for an (ε, δ)-quantum agnostic learner for C.

The proof of the agnostic lower bound is similar to the proof Theorem 6.5.3
and we defer it to the next chapter.

We just saw that in sample complexity for the PAC and agnostic models,
quantum examples do not provide an advantage. Gavinsky [Gav12] introduced a
model of learning called “Predictive Quantum” (PQ), a variation of the quantum
PAC model. He exhibited a relational concept class that is polynomial-time
learnable in PQ, while any “reasonable” classical model requires an exponential
number of labeled examples to learn the class.

6.6 The learnability of quantum states

Full-state tomography. So far, we considered learning concept classes of Bool-
lean functions. In addition to learning classical objects, one may also consider the
learnability of quantum objects. Here, a learner is given copies of an unknown
quantum state ρ and the goal is to end up with a classical description of a
quantum state σ that is in some sense close to ρ—and which sense of “closeness”
we require makes a huge difference. Learning such a good approximation of ρ in
trace distance is called state tomography.10

In general, an (log d)-qubit state ρ is a Hermitian d× d matrix of trace 1, and
hence described by roughly d2 real parameters. Suppose we restrict attention to
allowing only two-outcome measurements on the state ρ. Such a measurement is

10Trace norm of a matrix A is ‖A‖tr = 1
2

∑
i |λi|, where the λis are the eigenvalues of A.



128 Chapter 6. Survey of quantum learning theory

specified by two positive semi-definite operators E and 1d−E, and the probability
for the measurement to yield the first outcome is Tr(Eρ). Since a two-outcome

measurement gives at most one bit of information about ρ, Ω̃(d2) measurement
results are necessary to learn a σ that is entry-wise very close to ρ. Recently, Haah
et al. [HHJ+16] showed that this lower bound is true even for learning a σ that is
close to ρ up to constant trace distance. Additionally, Haah et al. [HHJ+16] and
O’Donnell and Wright [OW16] showed that O(d2/ε2) copies of ρ are sufficient to
produce a state σ with trace distance ‖ρ− σ‖tr ≤ ε.

Learning from measurements. Because of the exponential scaling in the
number of qubits, the number of measurements needed for tomography of an
arbitrary state on, say, 100 qubits is already prohibitively large.

Aaronson [Aar07] studied how well a quantum state ρ can be learned from
measurement results, i.e., instead of being given ρ like in state tomography, we are
given Tr(Eiρ) where Ei is drawn from a known collection of 2-outcome measure-
ments. In this setting, Aaronson showed an interesting and surprisingly efficient
PAC-like result: from O(n) measurement results, with measurements chosen i.i.d.
according to an unknown distribution D on the set of all possible two-outcome
measurements, we can construct an n-qubit quantum state σ that has roughly the
same expectation value as ρ for “most” two-outcome measurements. In the latter,
“most” is again measured under the same D that generated the measurements,
just like in the usual PAC setting where the “approximate correctness” of the
learner’s hypothesis is evaluated under the same distribution D that generated
the learner’s examples. The output state σ can then be used to predict the be-
havior of ρ on two-outcome measurements, and it will give a good prediction for
most measurements. Accordingly, O(n) rather than exp(n) measurement results
suffice for “pretty good tomography”: to approximately learn an n-qubit state
that is, maybe not close to ρ in trace distance, but still good enough for most
practical purposes. More precisely, Aaronson’s result is the following.

6.6.1. Theorem ([Aar07]). For every δ, ε, γ > 0, there exists a learner satisfying
the following: for every distribution D on the set of two-outcome measurements,
given T = n · poly(1/ε, 1/γ, log(1/δ)) measurement results (E1, b1), . . . , (ET , bT )
where each Ei is drawn i.i.d. from D and bi is a bit with Pr[bi = 1] = Tr(Eiρ),
with probability ≥ 1− δ the learner produces the classical description of a state σ
such that

PrE∼D [|Tr(Eσ)− Tr(Eρ)| > γ] ≤ ε.

Note that the “approximately correct” motivation of the original PAC model
is now quantified by two parameters ε and γ, rather than only by one parameter ε
as before: the output state σ is deemed approximately correct if the value Tr(Eσ)
has additive error at most γ (compared to the correct value Tr(Eρ)), except with
probability ε over the choice of E. We then want the output to be approximately
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correct except with probability δ, like before. Note also that the theorem only
says anything about the sample complexity of the learner (i.e., the number T of
measurement results used to construct σ), not about the time complexity, which
may be quite bad in general.

Proof sketch. The proof invokes general results due to Bartlett and Long [BL98]
and Anthony and Bartlett [AB00] about learning classes of probabilistic func-
tions11 in terms of their γ-fat-shattering dimension. This generalizes VC dimen-
sion from Boolean to real-valued functions, as follows. For some set E , let C be
a class of functions f : E → [0, 1]. We say that the set S = {E1, . . . , Ed} ⊆ E
is γ-fat-shattered by C if there exist α1, . . . , αd ∈ [0, 1] such that for all Z ⊆ [d]
there is an f ∈ C satisfying:

1. If i ∈ Z, then f(Ei) ≥ αi + γ.

2. If i 6∈ Z, then f(Ei) ≤ αi − γ.

The γ-fat-shattering dimension of C is the size of a largest S that is shattered
by C.12

For the application to learning quantum states, let E be the set of all n-qubit
measurement operators. The relevant class of probabilistic functions corresponds
to the n-qubit density matrices:

C = {f : E → [0, 1] | ∃ n-qubit ρ s.t. ∀E ∈ E , f(E) = Tr(Eρ)}.

Suppose the set S = {E1, . . . , Ed} is γ-fat-shattered by C. This means that for
each string z ∈ {0, 1}d, there exists an n-qubit state ρz from which the bit zi can
be recovered using measurement Ei, with a γ-advantage over just outputting 1
with probability αi. Such encodings z 7→ ρz of classical strings into quantum
states are called quantum random access codes. Using known bounds on such
codes [ANTV02], Aaronson shows that d = O(n/γ2). This upper bound on the
γ-fat-shattering dimension of C can then be plugged into [AB00, BL98] to get
the theorem. 2

In a recent work, Aaronson [Aar17] considered the problem of shadow tomog-
raphy , which we define informally now. Suppose ρ is an unknown d-dimensional
quantum state and {E1, . . . , Em} is a collection of known 2-outcome measure-
ments. As always, the learner needs to learn ρ, but instead of outputting a
description of σ that is close to ρ like in full-state tomography, here the learner
needs to output Tr(Eiρ) up to additive error ε for every i ∈ [m]. Also, instead of
obtaining measurement results (Ei, bi) (like in Theorem 6.6.1), in shadow tomog-
raphy the learner is given k copies of ρ (like in state tomography) and the goal

11A probabilistic function f over a set S is a function f : S → [0, 1].
12Note that if the functions in C have range {0, 1} and γ > 0, then this is just our usual VC

dimension.
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is to minimize k (as a function of m, d, 1/ε), the number of copies that suffice to
perform shadow tomography.

Clearly, one way to solve shadow tomography is to ignore the measurements
{E1, . . . , Em} completely and perform full-state tomography using copies of ρ. As
we discussed earlier, it suffices to obtain O(d2/ε2) copies [OW16, HHJ+16] of ρ
in order to estimate ρ up to trace distance ε. Another possibility to solve shadow
tomography is to use O(1/ε2) copies of ρ and estimate Tr(Eiρ) up to additive
precision ε for every i ∈ [m]. For this it suffices to obtain O(m/ε2) copies of
ρ. Aaronson improved both these bounds exponentially by showing that shadow
tomography can be solved using k = poly(log d, logm, 1/ε) copies of ρ. Although
the proof of his result is fairly technical, we state his theorem and describe why
there is an exponential savings in m, d below.

6.6.2. Theorem ([Aar17]). For every ε, δ ∈ [0, 1] and integers m, d > 0, given
k = poly(logm, log d, 1/ε, log(1/δ)) copies of an unknown d-dimensional quantum
state ρ, and a known collection of 2-outcomes measurements {E1, . . . , Em}, there
exists a learner who, with probability at least 1 − δ, outputs a set of numbers
b1, . . . , bm ∈ [0, 1] such that |Tr(Eiρ)− bi| ≤ ε for every i ∈ [m].

Proof sketch. For simplicity, we let ε = δ = 1/3. The proof is based on the
idea of postselected learning introduced by Aaronson [Aar05a] in the context of
one-way communication complexity.13 Here, there are two parties Alice and Bob,
who together want to solve a certain task. Suppose Alice is given a d-dimensional
quantum state ρ (unknown to Bob) and they have common knowledge of a set of 2-
outcome measurements {E1, . . . , Em}. Alice needs to “describe” ρ to Bob in such
a way that Bob can predict Tr(Eiρ) (say up to additive error 1/3) for every i ∈ [m].

Clearly an upper bound on the communication cost of this game is Õ(min{d2,m})
bits, since Alice can either send the d2 entries of ρ up to a certain precision or send
estimates of Tr(Eiρ) for every i ∈ [m]. Surprisingly, Aaronson [Aar05a] proposed

a protocol involving only Õ(min{log d, logm}) qubits, which we sketch first.
Bob begins by simply “guessing” the state Alice possesses. Initially Bob as-

sumes ρ0 = 1d/d, the maximally mixed state, and he keeps updating his guess.
At the tth round, suppose Bob’s current guess is ρt (whose classical description is
also known to Alice), Alice helps Bob by telling him the index j ∈ [m] on which
|Tr(Ejρt)−Tr(Ejρ)| is the largest and sends him an approximation of b = Tr(Ejρ).
Using this information, Bob updates ρt → ρt+1 as follows: let q = O(log log d) and
Ft be a two-outcome measurement on ρ⊗qt that applies the POVM {Ej,1d −Ej}
(say, they correspond to 0, 1 outcome respectively) to each of the q copies of ρt
and accepts if and only if the number of 1-outcomes was at least (b − 1/3)q.14

13The “one-way communication” refers to the fact that communication is only allowed in one
direction, i.e., Alice can send bits to Bob, not vice versa.

14We are implicitly assuming here that b ≥ 1/3. There is an extra argument for this assump-
tion which we skip here.
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Suppose ρ′t+1 is the state obtained by postselecting on Ft accepting ρ⊗qt , then ρt+1

is the state obtained by tracing out the last q− 1 registers of ρ′t+1. Alice and Bob
continue with this process for T rounds until Bob has a satisfactory ρ′. Aaronson
showed that after T = Õ(log d) rounds, with probability at least 2/3, Bob will
have ρ′ which satisfies |Tr(Eiρ)− Tr(Eiρ

′)| ≤ 1/3 for all i ∈ [m].

We now get back to proving the theorem. In shadow tomography, there is no
Alice, and Bob is replaced by a quantum learner. So, at the tth stage, without any
assistance, the learner needs to figure out j ∈ [m] for which |Tr(Ejρt)−Tr(Ejρ)| is
large! It is easy to decide if such a j ∈ [m] exists using a variant of the Quantum
OR lemma [HLM17]. To be precise, Aaronson used the Quantum OR lemma
to show that, given O(logm) copies of ρt, there is a subroutine that outputs
“yes” if there exists a j ∈ [m] for which |Tr(Ejρt)− Tr(Ejρ)| ≥ 2/3 and outputs
“no” if |Tr(Ejρt)−Tr(Ejρ)| ≤ 1/3 for every i ∈ [m]. However, the communication
protocol in the previous paragraph crucially used that, in the “yes” instance of the
subroutine, Bob knows j (not just the existence of j) in order to update ρt → ρt+1.
Aaronson fixes this by using a simple binary search over {E1, . . . , Em} to find such
a j. Putting these ideas together, Aaronson shows that using poly(log d, logm)
copies of ρ, the learner can solve the shadow tomography problem. 2

Learning specific quantum states. Recently, there were a couple of works
on learning the class of stabilizer states. Let S be a subgroup of the n-qubit Pauli
group {±1,±i} · {12, X, Y, Z}⊗n. A state |ψ〉 is said to be stabilized by S, if for
every S ∈ S, |ψ〉 is a +1 eigenstate of S. A stabilizer state is defined as the
unique state stabilized by a subgroup S of size |S| = 2n. Stabilizer states are
interesting because, by the Gottesmann-Knill theorem [Got98], these states can
be simulated efficiently on a classical computer.

Rocchetto [Roc17] considered whether the class of stabilizer states can be
learnt in a PAC-like setting. Here, the learner is given examples of the form
(Ei,Tr(Eiρ)), where ρ = |ψ〉〈ψ| is an unknown stabilizer state and Ei is a POVM
element drawn from an unknown distribution over the set of two-outcome mea-
surements. In this setting, Rocchetto showed that stabilizer states are efficiently
learnable in both query and time complexity. Montanaro [Mon17a] considered
another setting where the learner obtains copies of the unknown n-qubit stabi-
lizer state |ψ〉 and goal is to identify |ψ〉. Montanaro constructed a quantum
algorithm that identifies an unknown stabilizer state given n copies of the state
and runs in time O(n3).

Another line of work, in a similar spirit of learning quantum objects, Cheng et
al. [CHY16] studied how many states are sufficient to learn an unknown quantum
measurement. Here the answer turns out to be linear in the dimension of the
space, so exponential in the number of qubits. Learning an unknown quantum
state becomes a dual problem to their question and using this connection they
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can reprove the results of Aaronson [Aar07] in a different way.

6.7 Time complexity

In many ways, the best measure of efficient learning is low time complexity.
While low sample complexity is a necessary condition for efficient learning, the
information-theoretic sufficiency of a small sample is not much help in practice if
finding a good hypothesis still takes much time.15 In this section we describe a
number of results where the best quantum learner has much lower time complexity
than the best known classical learner.

6.7.1 Time-efficient quantum PAC learning

When trying to find examples of quantum speed-ups for learning, it makes sense
to start with the most famous example of quantum speed-up we have: Shor’s
algorithm for factoring integers in polynomial time [Sho97]. It is widely assumed
that classical computers cannot efficiently factor Blum integers (i.e., integers that
are the product of two distinct primes of equal bit-length, each congruent to 3
mod 4).

Prior to Shor’s discovery, Kearns and Valiant [KV94a] had already constructed
a concept class C based on factoring, as an example of a simple and efficiently-
representable concept class with small VC dimension that is not efficiently learn-
able. Roughly speaking, each concept c ∈ C corresponds to a Blum integer N ,
and a positively-labeled example for the concept reveals N . A concise description
of c, however, depends on the factorization of N , which is assumed to be hard
to compute by classical computers. Servedio and Gortler [SG04] observed that,
thanks to Shor’s algorithm, this class is efficiently PAC learnable by quantum
computers. They similarly observed that the factoring-based concept class de-
vised by Angluin and Kharitonov [AK95] to show hardness of learning even with
membership queries, is easy to learn by quantum computers.

6.7.1. Theorem ([SG04]). If there is no efficient classical algorithm for factor-
ing Blum integers, then

1. there exists a concept class that is efficiently PAC learnable by quantum
computers but not by classical computers;

2. there exists a concept class that is efficiently exactly learnable from mem-
bership queries by quantum computers but not by classical computers.

15As is often the case: for many concept classes, finding a polynomial-sized hypothesis h that
is consistent with a given set of examples is NP-hard.
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One can construct classical one-way functions based on the assumption that
factoring is hard. These functions can be broken (i.e., efficiently inverted) using
quantum computers. However, there are other classical one-way functions that
we do not known how to break with a quantum computer. Surprisingly, Servedio
and Gortler [SG04] managed to construct concept classes with quantum-classical
separation based on any classical one-way function—irrespective of whether that
one-way function can be broken by a quantum computer! The construction builds
concepts by combining instances of Simon’s problem [Sim97] with the pseudoran-
dom function family that one can obtain from the one-way function.

6.7.2. Theorem ([SG04]). If classical one-way functions exist, then there is a
concept class C that is efficiently exactly learnable from membership queries by
quantum computers but not by classical computers.

6.7.2 Learning DNF from uniform quantum examples

As we saw in Section 6.3, Bshouty and Jackson [BJ99] introduced the model
of learning from quantum examples. Their main positive result is to show that
Disjunctive Normal Form (DNF) formulas16 are learnable in polynomial time
from quantum examples under the uniform distribution. For learning DNF un-
der the uniform distribution from classical examples, the best upper bound is
quasi-polynomial time [Ver90]. With the added power of membership queries,
where the learner can actively ask for the label of any x of his choice, DNF for-
mulas are known to be learnable in polynomial time under uniform D [Jac97],
but polynomial-time learnability without membership queries is a longstanding
open problem.

The classical polynomial-time algorithm for learning DNF using membership
queries is Jackson’s harmonic sieve algorithm [Jac97]. Roughly speaking it does
the following. First, one can show that if the target concept c : {0, 1}n → {0, 1}
is an s-term DNF (i.e., a disjunction of at most s conjunctions of variables and
negated variables) then there exists an n-bit parity function that agrees with c
on a 1/2 + Ω(1/s) fraction of the 2n inputs. Moreover, the Goldreich-Levin al-
gorithm [GL89] can be used to efficiently find such a parity function with the
help of membership queries. This constitutes a “weak learner”: an algorithm to
find a hypothesis that agrees with the target concept with probability at least
1/2+1/poly(s). Second, there are general techniques known as “boosting” [Fre95]
that can convert a weak learner into a “strong” learner, i.e., one that produces a
hypothesis that agrees with the target with probability 1−ε rather than probabil-
ity 1/2 + 1/poly(s). Typically such boosting algorithms assume access to a weak
learner that can produce a weak hypothesis under every possible distribution D,
rather than just uniform D. The idea is to start with distribution D1 = D, and

16A formula is said to be a DNF if and only if it is a disjunction of conjunctions of one or
more literals. An example of a DNF is (x1 ∧ x2 ∧ x4) ∨ (x3 ∧ x5 ∧ x2) ∨ (x5 ∧ x7 ∧ x6).
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use the weak learner to learn a weak hypothesis h1 w.r.t. D1. Then define a new
distribution D2 focusing on the inputs where the earlier hypothesis failed; use
the weak learner to produce a weak hypothesis h2 w.r.t. D2, and so on. After
r = poly(s) such steps the overall hypothesis h is defined as a majority function
applied to (h1, . . . , hr).

17 Note that when learning under fixed uniform D, we can
only sample the first distribution D1 = D directly. Fortunately, if one looks at the
subsequent distributions D2, D3, . . . , Dr produced by boosting in this particular
case, sampling those distributions Di can be efficiently “simulated” using sam-
ples from the uniform distribution. Putting these ideas together yields a classical
polynomial-time learner for DNF under the uniform distribution, using member-
ship queries. Jackson et al. [JTY02] showed how quantum membership queries
can improve Jackson’s classical algorithm for learning DNF with membership
queries under the uniform distribution [Jac97].

The part of the classical harmonic sieve that uses membership queries is the
Goldreich-Levin algorithm for finding a parity (i.e., a character function χS) that
is a weak hypothesis. The key to the quantum learner is to observe that one can
replace Goldreich-Levin by Fourier sampling from uniform quantum examples
(see Section 6.2.2). Let f = 1 − 2c, which is just c in ±1-notation. If χS has

correlation Ω(1/s) with the target, then f̂(S) = Ω(1/s) and Fourier sampling
outputs that S with probability Ω(1/s2). Hence poly(s) runs of Fourier sampling
will with high probability give us a weak hypothesis. Because the state at step 3
of the Fourier sampling algorithm can be obtained with probability 1/2 from
a uniform quantum example, we do not require the use of membership queries
anymore. Describing this algorithm (and the underlying classical harmonic sieve)
in full detail is beyond the scope of this chapter, but the above sketch hopefully
gives the main ideas of the result of [BJ99].

6.7.3. Theorem ([BJ99]). The concept class of s-term DNF is efficiently PAC
learnable under the uniform distribution from quantum examples.

6.7.3 Learning linear functions and juntas from uniform
quantum examples

Uniform quantum examples can be used for learning other things as well. For
example, suppose f(x) = a · x mod 2 is a linear function over F2. Then the
Fourier spectrum of f , viewed as a ±1-valued function, has all its weight on χa.
Hence by Fourier sampling we can perfectly recover a with O(1) quantum sample
complexity and O(n) time complexity. In contrast, classical learners need Ω(n)
examples to learn f , for the simple reason that each classical example (and even
each membership query, if those are available to the learner too) gives at most
one bit of information about the target concept.

17Note that this is not proper learning: the hypothesis h need not be an s-term DNF itself.
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A more complicated and interesting example is learning functions that depend
(possibly non-linearly) on at most k of the n input bits, with k � n. Such
functions are called k-juntas , since they are “governed” by a small subset of the
input bits. We want to learn such f up to error ε from uniform (quantum or
classical) examples. A trivial learner would sample O(2k log n) classical examples
and then go over all

(
n
k

)
possible sets of up k variables in order to find one that is

consistent with the sample. This gives time complexity O(nk). The best known
upper bound on time complexity [MOS04] is only slightly better: O(nkω/(ω+1)),
where ω ∈ [2, 2.38] is the optimal exponent for matrix multiplication.

Time-efficiently learning k-juntas under the uniform distribution for k =
O(log n) is a notorious bottleneck in classical learning theory, since it is a spe-
cial case of DNF learning: every k-junta can be written as an s-term DNF with
s < 2k, by just taking the OR over the 1-inputs of the underlying k-bit function.
In particular, if we want to efficiently learn poly(n)-term DNF from uniform ex-
amples (still an open problem, as mentioned in the previous section) then we
should at least be able to efficiently learn O(log n)-juntas (also still open).

Bshouty and Jackson’s DNF learner from uniform quantum examples implies
that we can learn k-juntas using poly(2k, n) quantum examples and time (for
fixed ε, δ). Atıcı and Servedio [AS09] gave a more precise upper bound.

6.7.4. Theorem ([AS09]). There exists a quantum learning algorithm for the
class of k-juntas under the uniform distribution that uses O(k log(k)/ε) uniform
quantum examples, O(2k) uniform classical examples, and time O(nk log(k)/ε +
2k log(1/ε)) time.

Proof sketch. The idea is to first use Fourier sampling from quantum examples
to find the k variables (at least the ones with non-negligible influence), and then
to use O(2k) uniform classical examples to learn (almost all of) the truth-table
of the function on those variables.

View the target k-junta f as a function with range ±1. Let the influence of
variable xi on f be

Infi(f) =
∑
S:Si=1

f̂(S)2 = Ex
[(f(x)− f(x⊕ ei)

2

)2]
= Prx[f(x) 6= f(x⊕ ei)],

where x ⊕ ei is x after flipping its ith bit. If Si = 1 for an i that is not in the
junta, then f̂(S) = 0. Hence Fourier sampling returns an S such that Si = 1 only
for variables in the junta. Infi(f) is exactly the probability that Si = 1. Hence
for a fixed i, the probability that i does not appear in T Fourier samples is

(1− Infi(f))T ≤ e−T Infi(f).

If we set T = O(k log(k)/ε) and let V be the union of the supports of the T
Fourier samples, then with high probability V contains all junta variables except
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those with Infi(f) � ε/k (the latter ones can be ignored since even their joint
influence is negligible).

Now use O(2k log(1/ε)) uniform classical examples. With high probability,
at least 1 − ε/2 of all 2|V | possible settings of the variables in V will appear,
and we use those to formulate our hypothesis h (say with random values for the
few inputs of the truth-table that we didn’t see in our sample, and for the ones
that appeared twice with inconsistent f -values). One can show that, with high
probability, h will disagree with f on at most an ε-fraction of {0, 1}n. 2

In a related result, Belovs [Bel13] gives a very tight analysis of the num-
ber of quantum membership queries (though not the time complexity) needed to
exactly learn k-juntas whose underlying k-bit function is symmetric. For exam-
ple, if the k-bit function is OR or Majority, then O(k1/4) quantum membership
queries suffice. For the case of Majority, Θ(k) classical membership queries are
required, giving a fourth-power separation between quantum and classical mem-
bership query complexity of exact learning (see Corollary 6.4.4).

Learning k-Fourier-sparse functions. In work in progress [ACLW18], we
consider exact learning of the concept class of k-Fourier-sparse Boolean functions

C = {c : {0, 1}n → {−1, 1} : |supp(ĉ)| ≤ k}

using uniform examples. Note that the concept class of k-juntas studied by
Atıcı and Servedio [AS09] is a special case of 2k-Fourier-sparse Boolean func-
tions. Learning Fourier-sparse Boolean functions has been studied for over a
decade under the name of sparse recovery [HIKP12, APVZ14] having applica-
tions in compressed sensing and the data stream model. Classically, Haviv and
Regev [HR16] showed that Θ̃(nk) uniform examples of the form (x, c(x)) (where x
sampled according to the uniform distribution on {0, 1}n) are necessary and suf-
ficient to exactly learn C.

In [ACLW18] we consider the setting where a quantum learner is given uniform
quantum examples 1√

2n

∑
x |x, c(x)〉. We show that O(k2 log k) quantum examples

suffice to exactly learn an unknown concept in C and Ω(k log k) quantum examples
are necessary to learn C (importantly our bounds are independent of n). Our
upper bound uses two observations. First given uniform quantum examples, a
quantum learner can sample from the Fourier distribution {ĉ(S)2}S∈{0,1}n (we
discussed this in Section 6.3.2). Second, Gopalan et al. [GOS+11, Theorem 12]
showed that the Fourier coefficients of a k-Fourier-sparse Boolean function c :
{0, 1}n → {−1, 1} are integer multiples of 21−blog kc. Putting these together, the
probability to see every S (such that ĉ(S) 6= 0) when sampling from the Fourier
distribution is at least 1/k2. So if a quantum learner takes O(k2 log k) samples
from the Fourier distribution, then with high probability it would obtain the k
non-zero Fourier coefficients of the unknown c. We conclude the proof by using
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a similar argument as Haviv and Regev [HR16] to exactly learn the unknown c.
We are still in the process of improving this upper bound. Our lower bound
proof is similar to the information-theoretic proof in [AW17b] (a proof of which
is presented in the next chapter).

6.8 Conclusion and future work

Quantum learning theory studies the theoretical aspects of quantum machine
learning. In this chapter we surveyed what is known about this area. Specifically

• Query complexity of exact learning. The number of quantum member-
ship queries needed to exactly learn a target concept can be polynomially
smaller than the number of classical membership queries, but not much
smaller than that.

• Sample complexity. For the distribution-independent models of PAC and
agnostic learning, quantum examples give no significant advantage over clas-
sical random examples: for every concept class, the classical and quantum
sample complexities are the same up to constant factors. In contrast, for
some fixed distributions (e.g., uniform) quantum examples can be much
better than classical examples.

• Time complexity. There exist concept classes that can be learned su-
perpolynomially faster by quantum computers than by classical computers,
for instance based on Shor’s or Simon’s algorithm. This holds both in the
model of exact learning with membership queries, and in the model of PAC-
learning. If one allows uniform quantum examples, DNF and juntas can be
learned much more efficiently than we know how to do classically.

We end with a number of directions for future research.

• Bshouty and Jackson [BJ99] showed that DNF (i.e., disjunctions of con-
junctions of variables and negations of variables) can be efficiently learned
from uniform quantum examples. Is the same true of depth-3 circuits?
And what about constant-depth circuits with unbounded fan-in AND/OR
or even threshold gates, i.e., the concept classes AC0 and TC0—might even
these be efficiently learnable from uniform quantum examples or even PAC-
learnable? The latter is one of Scott Aaronson’s “Ten Semi-Grand Chal-
lenges for Quantum Computing Theory” [Aar05b]. Classically, the best
upper bounds on time complexity of learning AC0 are quasi-polynomial un-
der the uniform distribution [LMN93], and roughly exp(n1/3) in the PAC
model (i.e., under all possible distributions) [KS04]; see [DS16] for a re-
cent hardness result.
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• Atıcı and Servedio [AS05] asked if for every C, the upper bound in Corol-
lary 6.4.4 can be improved to D(C) ≤ O(nQ(C) + Q(C)2)? Note that this
bound is saturated for the concept class of C = {ei : i ∈ {0, . . . , N}}
(where D(C) = Ω(N) and Q(C) = O(

√
N)) and also for the concept class

C = {c(x) = a · x : a ∈ {0, 1}n} (where D(C) = Ω(n) and Q(C) = O(1)).

• Can we learn k-Fourier-sparse Boolean functions using O(k log k) uniform
quantum examples?

• Can we characterize the classical and quantum query complexity of exactly
learning a concept class C in terms of the combinatorial parameter γ(C), or
in terms of the extended teaching dimension of C?

• Can we find more instances of concept classes where quantum examples are
beneficial when learning w.r.t. some fixed distribution (uniform or other-
wise), or some restricted set of distributions?

• Can we find examples of quantum speed-up in Angluin’s [Ang87] model of
equivalence queries plus membership queries?

• Most research in quantum learning theory has focused on concept classes
of Boolean functions. What about learning classes of real-valued or even
vector-valued functions?

• Can we find a proper quantum PAC learner with optimal sample complexity,
i.e., one whose output hypothesis lies in C itself? Or a proper efficient
quantum learner for DNF using uniform quantum examples?

• Can we find practical machine learning problems with a large provable quan-
tum speed-up?

• Can we use quantum machine learning for “quantum supremacy”, i.e., for
solving some task using 50–100 qubits in a way that is convincingly faster
than possible on large classical computers? (See for example [AC17] for
some complexity results concerning quantum supremacy.)



Chapter 7

Quantum sample complexity

This chapter is based on the paper “Optimal Quantum Sample Complexity of
Learning Algorithms”, by S. Arunachalam and R. de Wolf [AW17b].

Abstract. In the previous chapter we discussed the PAC and agnostic learning
models and saw that the VC dimension of a concept class C captures the number
of classical examples needed to learn an unknown target concept in these models.

Specifically, in the classical PAC model Θ
(
d
ε

+ log(1/δ)
ε

)
examples are necessary

and sufficient for a learner to output, with probability 1− δ, an hypothesis h that
is ε-close to the target concept c (measured under D). In the related classical
agnostic model, where the samples need not come from a c ∈ C, we know that

Θ
(
d
ε2

+ log(1/δ)
ε2

)
examples are necessary and sufficient to output an hypothesis

h ∈ C whose error is at most ε worse than the error of the best concept in C.
In this chapter, we will analyze quantum sample complexity. We will prove

Theorem 6.5.3 (showing an Ω
(
d
ε

+ log(1/δ)
ε

)
lower bound for PAC quantum sample

complexity) and Theorem 6.5.5 (showing an Ω
(
d
ε2

+ log(1/δ)
ε2

)
lower bound for

agnostic quantum sample complexity). Along with the classical upper bound,
this shows that quantum and classical sample complexity are in fact equal up to
constant factors in both the PAC and agnostic models.
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7.1 Sample complexity and VC dimension

In this section, we quickly recap from the previous chapter, the PAC model of
learning and the agnostic model of learning before describing our results.

7.1.1 The PAC setting

Leslie Valiant’s Probably Approximately Correct (PAC) model [Val84] gives a
precise complexity-theoretic definition of what it means for a concept class to
be (efficiently) learnable. Let C ⊆ {f : {0, 1}n → {0, 1}} be a concept class.
The goal of a learning algorithm (the learner) is to probably approximate some
unknown target concept c ∈ C from random labeled examples of the form (x, c(x))
where x is distributed according to some unknown distribution D over {0, 1}n.
After processing a number of such examples (hopefully not too many), the learner
outputs some hypothesis h. We say that h is ε-approximately correct (w.r.t. the
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target concept c) if its error probability under D is at most ε: Prx∼D[h(x) 6=
c(x)] ≤ ε. Note that the learning phase and the evaluation phase (i.e., whether a
hypothesis is approximately correct) are according to the same distribution D—
as if the learner is taught and then tested by the same teacher. An (ε, δ)-learner
for the concept class C is one whose hypothesis is probably approximately correct:

For all target concepts c ∈ C and distributions D:
Pr[the learner’s output h is ε-approximately correct] ≥ 1− δ,

where the probability is over the sequence of examples and the learner’s inter-
nal randomness. Of course, we want the learner to be as efficient as possible.
Its sample complexity is the worst-case number of examples it uses, and its time
complexity is the worst-case running time of the learner. In this chapter, we fo-
cus on sample complexity. This allows us to ignore technical issues of how the
runtime of an algorithm is measured, and in what form the hypothesis h is given
as output by the learner.

The sample complexity of a concept class C is the sample complexity of the
most efficient learner for C. It is a function of ε, δ, and of course of C itself. One of
the most fundamental results in learning theory is that the sample complexity of C
is tightly determined by the VC dimension of C. Knowing this VC dimension (and
ε, δ) already tells us the sample complexity of C up to constant factors. Blumer
et al. [BEHW89] proved that the sample complexity of C is lower bounded by
Ω(d/ε + log(1/δ)/ε) and in a very recent work, Hanneke [Han16] (improving on
Simon [Sim15]) showed that the lower bound of Blumer et al. is in fact optimal:
the sample complexity of C in the PAC setting is

Θ
(d
ε

+
log(1/δ)

ε

)
. (7.1)

7.1.2 The agnostic setting

The PAC model assumes that the labeled examples are generated according to
a target concept c ∈ C. However, in many learning situations that is not a
realistic assumption, for example when the examples are noisy in some way or
when we have no reason to believe there is an underlying target concept at all.
The agnostic model of learning, introduced by Haussler [Hau92] and Kearns et
al. [KSS94], takes this into account. Here, the examples are generated according to
a distributionD on {0, 1}n+1. The error of a specific concept c : {0, 1}n → {0, 1} is
defined to be errD(c) = Pr(x,b)∼D[c(x) 6= b]. When we are restricted to hypotheses
in C, we would like to find the hypothesis that minimizes errD(c) over all c ∈ C.
However, it may require very many examples to do that exactly. In the spirit of
the PAC model, the goal of the learner is now to output an h ∈ C whose error is
at most an additive ε worse than that of the best (= lowest-error) concepts in C.
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Like in the PAC model, the optimal sample complexity of such agnostic learn-
ers is tightly determined by the VC dimension of C: it is

Θ
( d
ε2

+
log(1/δ)

ε2

)
, (7.2)

where the lower bound was proven by Vapnik and Chervonenkis [VC74] (see
also Simon [Sim96]), and the upper bound was proven by Talagrand [Tal94].
Shalev-Shwartz and Ben-David [SB14, Section 6.4] call Eq. (7.1) and Eq. (7.2)
the “Fundamental Theorem of PAC learning.”

Organization. For an introduction to the classical and quantum learning mod-
els, see Chapter 6. In Section 7.2, we formally state our results and give proof
sketches of our bounds. In Section 7.3, we present some preliminaries in quantum
information theory, state some important facts that we use often and describe
the pretty good measurement. In Section 7.4 we prove our information-theoretic
lower bounds both for classical and quantum learning. In Section 7.5 we prove
an optimal quantum lower bound for PAC and agnostic learning by viewing the
learning process as a state identification problem. In Section 7.6 we mention
two additional results on learning under classification noise and distinguishing
codeword states. We conclude in Section 7.7 with some open questions for fur-
ther work.

7.2 Our results

In this chapter we are interested in quantum sample complexity. Here a quantum
example for some concept c : {0, 1}n → {0, 1}, according to some distribution D,
corresponds to an (n+ 1)-qubit state∑

x∈{0,1}n

√
D(x)|x, c(x)〉.

How many quantum examples are needed to learn a concept class C of VC
dimension d? Since a learner can just measure a quantum example in order
to obtain a classical example, the upper bounds on classical sample complexity
trivially imply the same upper bounds on quantum sample complexity. But what
about the lower bounds? Are there situations where quantum examples are more
powerful than classical? Indeed there are. In the previous chapter, we already
mentioned the results of Bshouty and Jackson [BJ99] for learning DNF under the
uniform distribution without membership queries. Another good example is the
learnability of the concept class of linear functions over F2, C = {c(x) = a ·x : a ∈
{0, 1}n}, again under the uniform distribution D using the Bernstein-Vazirani
algorithm [BV97].
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Atıcı and Servedio [AS09] considered learning k-juntas from quantum exam-
ples under the uniform distribution. However, PAC learning requires a learner to
learn c under all possible distributions D, not just the uniform one. The success
probability of the Bernstein-Vazirani algorithm deteriorates sharply when D is far
from uniform, but that does not rule out the existence of other quantum learners
that use o(n) quantum examples and succeed for all D.

Our main result in this chapter is that quantum examples are not actually
more powerful than classical labeled examples in the PAC model and in the
agnostic model: we prove that the lower bounds on classical sample complexity of
Eq. (7.1) and Eq. (7.2) hold for quantum examples as well. Accordingly, despite
several distribution-specific speed-ups, quantum examples do not significantly
reduce sample complexity if we require our learner to work for all distributions D.
This should be contrasted with the situation when considering the time complexity
of learning, where Servedio and Gortler [SG04] considered a concept class that
can be PAC-learned in polynomial time by a quantum computer, even with only
classical examples, but that cannot be PAC-learned in polynomial time by a
classical learner unless Blum integers can be factored in polynomial time (which
is widely believed to be false).

Earlier work on quantum sample complexity had already gotten close to ex-
tending the lower bound of Eq. (7.1) to PAC learning from quantum examples.
Atıcı and Servedio [AS05] first proved a lower bound of Ω(

√
d/ε+d+ log(1/δ)/ε)

using the so-called “hybrid method.” Their proof technique was subsequently
pushed further by Zhang [Zha10] to

Ω
(d1−η

ε
+ d+

log(1/δ)

ε

)
for arbitrarily small constant η > 0. (7.3)

Here we optimize these bounds, removing the η and achieving the optimal lower
bound for quantum sample complexity in the PAC model (Eq. (7.1)).

We also show that the lower bound (Eq. (7.2)) for the agnostic model extends
to quantum examples. As far as we know, in contrast to the PAC model, no
earlier results were known for quantum sample complexity in the agnostic model.

We have two different proof approaches, which we sketch below.

7.2.1 Proof sketch: An information-theoretic argument

In Section 7.4 we give a fairly intuitive information-theoretic argument that gives
optimal lower bounds for classical sample complexity, and that gives nearly-
optimal lower bounds for quantum sample complexity. Let us first see how we can
prove the classical PAC lower bound of Eq. (7.1). Suppose S = {s0, s1, . . . , sd} is
shattered by C (we now assume VC dimension d+ 1 for ease of notation). Then
we can consider a distribution D that puts probability 1 − 4ε on s0 and proba-
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bility 4ε/d on each of s1, . . . , sd.
1 For every possible labeling (`1 . . . `d) ∈ {0, 1}d

of s1, . . . , sd there will be a concept c ∈ C that labels s0 with 0, and labels si
with `i for all i ∈ {1, . . . , d}. Under D, most examples will be (s0, 0) and hence
give us no information when we are learning one of those 2d concepts. Suppose
we have a learner that ε-approximates c with high probability under this D us-
ing T examples. Informally, our information-theoretic argument has the following
three steps:

1. In order to ε-approximate c, the learner has to learn the c-labels of at least
3/4 of the s1, . . . , sd (since together these have 4ε of the D-weight, and we
want an ε-approximation). As all 2d labelings are possible, the T examples
together contain Ω(d) bits of information about c.

2. T examples give at most T times as much information about c as one ex-
ample.

3. One example gives only O(ε) bits of information about c, because it will tell
us one of the labels of s1, . . . , sd only with probability 4ε (and otherwise it
just gives c(s0) = 0).

Putting these steps together implies T = Ω(d/ε).2 This argument for the PAC
setting is similar to an algorithmic-information argument of Apolloni and Gen-
tile [AG98] and an information-theoretic argument for variants of the PAC model
with noisy examples of Gentile and Helmbold [GH01].

As far as we know, this type of reasoning has not yet been applied to the
sample complexity of agnostic learning. To get good lower bounds there, we
consider a set of distributions Da, indexed by d-bit string a. These distributions
still have the property that if a learner gets ε-close to the minimal error, then it
will have to learn Ω(d) bits of information about the distribution (i.e., about a).
Hence the first step of the argument remains the same. The second step of
our argument also remains the same, and the third step shows an upper bound
of O(ε2) on the amount of information that the learner can get from one example.
This then implies T = Ω(d/ε2). We can also reformulate this for the case where
we want the expected additional error of the hypothesis over the best classifier
in C to be at most ε, which is how lower bounds are often stated in learning
theory. We emphasize that our information-theoretic proof is simpler than the
proofs in [AB09, Aud09, SB14, KP16].

This information-theoretic approach recovers the optimal classical bounds on
sample complexity, but also generalizes readily to the quantum case where the

1We remark that the distributions used here for proving lower bounds on quantum sam-
ple complexity have been used by Ehrenfeucht et al. [EHKV89] for analyzing classical PAC
sample complexity.

2The other part of the lower bound of Eq. (7.1) does not depend on d and is fairly easy
to prove.
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learner gets T quantum examples. To obtain lower bounds on quantum sample
complexity we use the same distributions D (now corresponding to a coherent
quantum state) and basically just need to re-analyze the third step of the ar-
gument. In the PAC setting we show that one quantum example gives at most
O(ε log(d/ε)) bits of information about c, and in the agnostic setting it gives
O(ε2 log(d/ε)) bits. This implies lower bounds on sample complexity that are
only a logarithmic factor worse than the optimal classical bounds for the PAC
setting (Eq. (7.1)) and the agnostic setting (Eq. (7.2)). This is not quite optimal
yet, but already better than the previous best known lower bound (Eq. (7.3)).
The logarithmic loss in step 3 is actually inherent in this information-theoretic
argument: in some cases a quantum example can give roughly ε log d bits of
information about c, for example when c comes from the concept class of lin-
ear functions.

7.2.2 Proof sketch: A state-identification argument

In order to get rid of the logarithmic factor we then try another proof approach,
which views learning from quantum examples as a quantum state identification
problem: we are given T copies of the quantum example for some concept c
and need to ε-approximate c from this. In order to render ε-approximation of c
equivalent to exact identification of c, we use good linear error-correcting codes,
restricting to concepts whose d-bit labeling of the elements of the shattered set
s1, . . . , sd corresponds to a codeword. We then have 2Ω(d) possible concepts, one
for each codeword, and need to identify the target concept from a quantum state
that is the tensor product of T identical quantum examples.

State-identification problems have been well studied, and many tools are avail-
able for analyzing them. In particular, we will use the so-called “Pretty Good
Measurement” (PGM, also known as “square root measurement” [HJS+96]) intro-
duced by Hausladen and Wootters [HW94]. The PGM is a specific measurement
that one can always use for state identification, and whose success probability is
no more than quadratically worse than that of the very best measurement.3 In
Section 7.5 we use Fourier analysis to give an exact analysis of the average success
probability of the PGM on the state-identification problems that come from both
the PAC and the agnostic model. This analysis could be useful in other settings as
well. Here it implies that the number of quantum examples, T , is lower bounded
by Eq. (7.1) in the PAC setting, and by Eq. (7.2) in the agnostic setting.

Using the Pretty Good Measurement, we are also able to prove lower bounds
for PAC learning under random classification noise, which models the real-world
situation that the learning data can have some errors. Classically in the random
classification noise model (introduced by Angluin and Laird [AL88]), instead of

3Even better, in our application the PGM is the optimal measurement, though this is not
essential for our proof.
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obtaining labeled examples (x, c(x)) for some unknown c ∈ C, the learner obtains
noisy examples (x, bx), where bx = c(x) with probability 1− η and bx = 1− c(x)
with probability η, for some noise rate η ∈ [0, 1/2). Similarly, in the quantum
learning model we could naturally define a noisy quantum example as an (n+ 1)-
qubit state ∑

x∈{0,1}n

√
(1− η)D(x)|x, c(x)〉+

√
ηD(x)|x, 1− c(x)〉.

Using the PGM, we are able to show that the quantum sample complexity of
PAC learning a concept class C under random classification noise is:

Ω
( d

(1− 2η)2ε
+

log(1/δ)

(1− 2η)2ε

)
. (7.4)

We remark here that the best known classical sample complexity lower bound (see
[Sim96]) under the random classification noise is equal to the quantum sample
complexity lower bound proven in Eq. (7.4).

Related work. The use of Fourier analysis in analyzing the success probability
of the Pretty Good Measurement in quantum state identification appears in a
number of earlier works. By considering the dihedral hidden subgroup problem
(DHSP) as a state identification problem, Bacon et al. [BCD06] show that the
PGM is the optimal measurement for DHSP and prove a lower bound on the
sample complexity of Ω(log |G |) for a dihedral group G using Fourier analysis.
Ambainis and Montanaro [AM14] view the “search with wildcard” problem as
a state identification problem. Using ideas similar to ours, they show that the
(x, y)-th entry of the Gram matrix for the ensemble depends on the Hamming
distance between x and y, allowing them to use Fourier analysis to obtain an
upper bound on the success probability of the state identification problem using
the PGM.

7.3 Preliminaries

7.3.1 Quantum information theory

We will introduce the basics of information theory here, referring to [CT91] for
more on classical information theory and [NC02, Wat11] for more on quantum
information theory.

We denote random variables in bold, such as A,B. For a probability vector
(p1, . . . , pk) (where

∑
i∈[k] pi = 1), the entropy function is defined as

H(p1, . . . , pk) = −
∑
i∈[k]

pi log pi.
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When k = 2, with p1 = p and p2 = 1− p, we denote the binary entropy function
as H(p). For a state ρAB on the Hilbert space HA ⊗ HB, we let ρA be the
reduced state after taking the partial trace over HB. The entropy of a quantum
state ρA is defined as S(A) = −Tr(ρA log ρA). The mutual information is defined
as I(A : B) = S(A) + S(B) − S(AB), and conditional entropy is defined as
S(A|B) = S(AB)− S(B). Classical information-theoretic quantities correspond
to the special case where ρ is a diagonal matrix whose diagonal corresponds to the
probability distribution of the random variable. Writing ρA in its eigenbasis, it
follows that S(A) = H(λ1, . . . , λdim(ρA)), where λ1, . . . , λdim(ρA) are the eigenvalues
of ρ. If ρA is a pure state, S(A) = 0.

7.3.2 The pretty good measurement

Consider an ensemble of d-dimensional quantum states, E = {(pi, |ψi〉)}i∈[m],
where

∑
i∈[m] pi = 1. Suppose we are given an unknown state |ψi〉 sampled

according to the probabilities and we are interested in maximizing the average
probability of success to identify the state that we are given. For a POVM speci-
fied by positive semidefinite matricesM = {Mi}i∈[m], the probability of obtaining
outcome j equals 〈ψi|Mj|ψi〉. The average success probability is defined as

PM(E) =
m∑
i=1

pi〈ψi|Mi|ψi〉.

Let P opt(E) = maxM PM(E) denote the optimal average success probability of E ,
where the maximization is over the set of valid m-outcome POVMs.

For every ensemble E , the so-called Pretty Good Measurement (PGM) is a
specific POVM (depending on the ensemble E) that does reasonably well against
E . The PGM is defined as follows: let |ψ′i〉 =

√
pi|ψi〉, and E ′ = {|ψ′i〉 : i ∈

[m]} be the set of states in E , renormalized to reflect their probabilities. Define
ρ =

∑
i∈[m] |ψ′i〉〈ψ′i|. The PGM is the set of measurement operators {|νi〉〈νi|}i∈[m]

where |νi〉 = ρ−1/2|ψ′i〉 (the inverse square root of ρ is taken over its non-zero
eigenvalues). It is not hard to verify this is a valid POVM:

m∑
i=1

|νi〉〈νi| = ρ−1/2
( m∑
i=1

|ψ′i〉〈ψ′i|
)
ρ−1/2 = 1d.

Suppose P PGM(E) is defined as the average success probability of identifying
the states in E using the PGM, then clearly P PGM(E) ≤ P opt(E) (because P opt(E)
is a maximization over all valid POVMs). Barnum and Knill [BK02] furthermore
proved that P opt(E) can be at most quadratically lesser than P PGM(E).

7.3.1. Theorem (Barnum and Knill [BK02]). Let E = {(pi, |ψi〉)}i∈[m] be an en-
semble of d-dimensional quantum states, where

∑
i∈[m] pi = 1. Let P opt(E) and
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P PGM(E) denote the average success probability of identifying the states in E using
the optimal m-outcome POVM and the PGM respectively. Then,

P opt(E)2 ≤ P PGM(E) ≤ P opt(E).

Proof. The upper bound on P PGM(E) is trivial. For completeness we give a
simple proof of P opt(E)2 ≤ P PGM(E) below (similar to [Mon07]). Let G be the
Gram matrix for the set E ′, i.e., G(i, j) = 〈ψ′i|ψ′j〉 for i, j ∈ [m]. It can be verified

that
√
G(i, j) = 〈ψ′i|ρ−1/2|ψ′j〉. Hence

P PGM(E) =
∑
i∈[m]

pi|〈νi|ψi〉|2 =
∑
i∈[m]

|〈νi|ψ′i〉|2

=
∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2 =
∑
i∈[m]

√
G(i, i)2.

SupposeM is the optimal measurement that maximizes P opt(E). Since E consists
of pure states, by a result of Eldar et al. [EMV03], we can assume without loss
of generality that the measurement operators in M are rank-1, so Mi = |µi〉〈µi|
for some |µi〉. Note that

∑
i∈[m]

〈µi|ρ1/2|µi〉2 ≤
∑
i,j∈[m]

|〈µi|ρ1/2|µj〉|2

= Tr
( ∑
i∈[m]

|µi〉〈µi|ρ1/2
∑
j∈[m]

|µj〉〈µj|ρ1/2
)

= Tr(ρ) = 1
(7.5)

Then, using the Cauchy-Schwarz inequality, we have

P opt(E) =
∑
i∈[m]

|〈µi|ψ′i〉|2 =
∑
i∈[m]

|〈µi|ρ1/4ρ−1/4|ψ′i〉|2

≤
∑
i∈[m]

〈µi|ρ1/2|µi〉〈ψ′i|ρ−1/2|ψ′i〉

≤
√∑

i∈[m]

〈µi|ρ1/2|µi〉2
√∑

i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2

≤
√∑

i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2

=
√
P PGM(E),

where the last inequality used Eq. (7.5). 2

The above shows that for all ensembles E , the PGM for that ensemble is
not much worse than the optimal measurement. In some cases the PGM is
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the optimal measurement. In particular, an ensemble E is called geometrically
uniform if E = {Ui|ϕ〉 : i ∈ [m]} for some Abelian group4 of matrices {Ui}i∈[m]

and state |ϕ〉. Eldar and Forney [EF01] showed P opt(E) = P PGM(E) for such E .

7.3.3 Known results and required claims

The following theorems characterize the sample complexity of classical PAC
and agnostic learning.

7.3.2. Theorem ([BEHW89, Han16]). Let C be a concept class that satisfies

VC-dim(C) = d + 1. Then, Θ
(
d
ε

+ log(1/δ)
ε

)
examples are necessary and suffi-

cient for an (ε, δ)-PAC learner for C.

7.3.3. Theorem ([VC74, Sim96, Tal94]). Let C be a concept class that satisfies

VC-dim(C) = d. Then, Θ
(
d
ε2

+ log(1/δ)
ε2

)
examples are necessary and sufficient for

an (ε, δ)-agnostic learner for C.

We will use the following theorem from the theory of error-correcting codes:

7.3.4. Theorem. For every sufficiently large integer n, there exists an integer
k ∈ [n/4, n] and a matrix M ∈ Fn×k2 of rank k, such that the associated [n, k, d]2
linear code {Mx : x ∈ {0, 1}k} has minimal distance d ≥ n/8.

We will need the following claims later

7.3.5. Claim. Let f : {0, 1}m → R and let M ∈ Fm×k2 . Then the Fourier coeffi-

cients of f ◦M are f̂ ◦M(Q) =
∑

S∈{0,1}m:MTS=Q f̂(S) for all Q ⊆ [k] (where MT

is the transpose of the matrix M).

Proof. Writing out the Fourier coefficients of f ◦M

f̂ ◦M(Q) = E
z∈{0,1}k

[(f ◦M)(z)(−1)Q·z]

= E
z∈{0,1}k

[ ∑
S∈{0,1}m

f̂(S)(−1)S·(Mz)+Q·z
]

(Fourier expansion of f)

=
∑

S∈{0,1}m
f̂(S) E

z∈{0,1}k
[(−1)(MTS+Q)·z] (using 〈S,Mz〉 = 〈MTS, z〉)

=
∑

S:MTS=Q

f̂(S). (using Ez∈{0,1}k(−1)(z1+z2)·z = δz1,z2)

2

4Abelian group consists of a set G of elements and an operation ◦ : G2 → G such that: (i)
for every gi 6= gj 6= gk ∈ G, we have gi ◦ (gj ◦ gk) = (gi ◦ gj) ◦ gk and gigj = gjgi, (ii) there
exists an identity e ∈ G such that e ◦ g = g ◦ e = g for every g ∈ G, (iii) for every g ∈ G, there
exists g−1 such that g ◦ g−1 = g−1 ◦ g = e.
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7.3.6. Claim. max{(c/
√
t)t : t ∈ [1, c2]} = ec

2/(2e).

Proof. The value of t at which the function
(
c/
√
t
)t

is the largest, is obtained

by differentiating the function with respect to t,

d

dt

(
c/
√
t
)t

= (c/
√
t)t
(

ln(c/
√
t)− 1/2

)
.

Equating the derivative to zero we obtain the maxima (the second derivative can
be checked to be negative) at t = c2/e. 2

7.3.7. Fact. For all ε ∈ [0, 1/2] we have H(ε) ≤ O(ε log(1/ε)), and (from the
Taylor series)

1−H(1/2 + ε) ≤ 2ε2/ ln 2 +O(ε4).

7.3.8. Fact. For every positive integer n, we have that
(
n
k

)
≤ 2nH(k/n) for all

k ≤ n and
∑m

i=0

(
n
i

)
≤ 2nH(m/n) for all m ≤ n/2.

The following facts are well-known in quantum information theory, which can
be found for instance in [KLM06, Theorem A.9.1]

7.3.9. Fact. Let binary random variable b ∈ {0, 1} be uniformly distributed.
Suppose an algorithm is given |ψb〉 (for unknown b) and is required to guess
whether b = 0 or b = 1. It will guess correctly with probability at most 1

2
+

1
2

√
1− |〈ψ0|ψ1〉|2.

Note that if we can distinguish |ψ0〉 and |ψ1〉 with probability ≥ 1 − δ,
then |〈ψ0|ψ1〉| ≤ 2

√
δ(1− δ).

7.3.10. Fact. (Subadditivity of quantum entropy): For an arbitrary bipartite
state ρAB on the Hilbert space HA ⊗HB, it holds that S(ρAB) ≤ S(ρA) + S(ρB).

7.4 Information-theoretic lower bounds

Upper bounds on sample complexity carry over from classical to quantum PAC
learning, because a quantum example becomes a classical example if we just
measure it. Our main goal is to show that the lower bounds also carry over.
All our lower bounds will involve two terms, one that is independent of C and
one that is dependent on the VC dimension of C. In Section 7.4.1 we prove
the VC-independent part of the lower bounds for the quantum setting (which
also is a lower bound for the classical setting), in Section 7.4.2 we present an
information-theoretic lower bound on sample complexity for PAC learning and
agnostic learning which yields optimal VC-dependent bounds in the classical case.
Using similar ideas, in Section 7.4.4 we obtain near-optimal bounds in the quan-
tum case.
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7.4.1 VC-independent part of lower bounds

7.4.1. Lemma ([AS05]). Let C be a non-trivial concept class.5 For every δ ∈
(0, 1/2), ε ∈ (0, 1/4), a (ε, δ)-PAC quantum learner for C has sample complexity
Ω(1

ε
log 1

δ
).

Proof. Since C is non-trivial, we may assume there are two concepts c1, c2 ∈ C
defined on two inputs {x1, x2} as follows c1(x1) = c2(x1) = 0 and c1(x2) = 0,
c2(x2) = 1. Consider the distribution D(x1) = 1−ε and D(x2) = ε. For i ∈ {1, 2},
the state of the algorithm after T queries to QPEX(ci, D) is

|ψi〉 =
(√

1− ε|x1, 0〉+
√
ε|x2, ci(x2)〉

)⊗T
.

It follows that 〈ψ1|ψ2〉 = (1− ε)T . Since the success probability of an (ε, δ)-PAC
quantum learner is ≥ 1 − δ, Fact 7.3.9 implies 〈ψ1|ψ2〉 ≤ 2

√
δ(1− δ). Hence

T = Ω(1
ε

log 1
δ
). 2

7.4.2. Lemma. Let C be a non-trivial concept class. For every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), a (ε, δ)-agnostic quantum learner for C has sample complex-
ity Ω( 1

ε2
log 1

δ
).

Proof. Since C is non-trivial, we may assume there are two concepts c1, c2 ∈ C
and there exists an input x ∈ {0, 1}n such that c1(x) 6= c2(x). Consider the
two distributions D− and D+ defined as follows: D±(x, c1(x)) = (1 ± ε)/2 and
D±(x, c2(x)) = (1∓ε)/2. Let |ψ±〉 be the state after T queries to QAEX(D±), i.e.,

|ψ±〉 =
(√

(1± ε)/2|x, c1(x)〉+
√

(1∓ ε)/2|x, c2(x)〉
)⊗T

.

It follows that 〈ψ+|ψ−〉 = (1 − ε2)T/2. Since the success probability of an (ε, δ)-
agnostic quantum learner is ≥ 1 − δ, Fact 7.3.9 implies 〈ψ+|ψ−〉 ≤ 2

√
δ(1− δ).

Hence T = Ω( 1
ε2

log 1
δ
) 2

7.4.2 Optimal lower bound on classical PAC sample com-
plexity

7.4.3. Theorem. Let C be a concept class with VC-dim(C) = d + 1. Then for
every δ ∈ (0, 1/2) and ε ∈ (0, 1/4), every (ε, δ)-PAC learner for C has sample

complexity Ω
(
d
ε

+ log(1/δ)
ε

)
.

5We refer to a concept class C as being trivial if either C contains only one concept, or C
contains two concepts c0, c1 with c0(x) = 1− c1(x) for every x ∈ {0, 1}n.
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Proof. Consider an (ε, δ)-PAC learner for C that uses T examples. The d-
independent part of the lower bound, T = Ω(log(1/δ)/ε), even holds for quantum
examples and was proven in Lemma 7.4.1. Hence it remains to prove T = Ω(d/ε).
It suffices to show this for a specific distribution D, defined as follows. Let
S = {s0, s1, . . . , sd} ⊆ {0, 1}n be some (d+ 1)-element set shattered by C. Define

D(s0) = 1− 4ε and D(si) = 4ε/d for all i ∈ [d].

Because S is shattered by C, for each string a ∈ {0, 1}d, there exists a concept
ca ∈ C such that ca(s0) = 0 and ca(si) = ai for all i ∈ [d]. We define two
correlated random variables A and B corresponding to the concept and to the
examples, respectively. Let A be a random variable that is uniformly distributed
over {0, 1}d; if A = a, let B = B1 . . .BT be T i.i.d. examples from ca according
to D. We give the following three-step analysis of these random variables:

1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).

Proof. Let random variable h(B) ∈ {0, 1}d be the hypothesis that the
learner produces (given the examples in B) restricted to the shattered
set s1, . . . , sd. Note that the error of the hypothesis errD(h(B), cA) equals
dH(A, h(B)) · 4ε/d, because each si where A and h(B) differ contributes
D(si) = 4ε/d to the error. Let Z be the indicator random variable for the
event that the error is ≤ ε. If Z = 1, then dH(A, h(B)) ≤ d/4. Since
we are analyzing an (ε, δ)-PAC learner, we have Pr[Z = 1] ≥ 1 − δ, and
H(Z) ≤ H(δ). Given a string h(B) that is d/4-close to A, A ranges over

a set of only
∑d/4

i=0

(
d
i

)
≤ 2H(1/4)d possible d-bit strings (using Fact 7.3.8),

hence H(A | B,Z = 1) ≤ H(A | h(B),Z = 1) ≤ H(1/4)d. We now lower
bound I(A : B) as follows:

I(A : B) = H(A)−H(A | B)

≥ H(A)−H(A | B,Z)−H(Z)

= H(A)− Pr[Z = 1] ·H(A | B,Z = 1)

− Pr[Z = 0] ·H(A | B,Z = 0)−H(Z)

≥ d− (1− δ)H(1/4)d− δd−H(δ)

= (1− δ)(1−H(1/4))d−H(δ).

2. I(A : B) ≤ T · I(A : B1).

Proof. This inequality is essentially due to Jain and Zhang [JZ09, Lemma 5],
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we include the proof for completeness.

I(A : B) = H(B)−H(B | A) = H(B)−
T∑
i=1

H(Bi | A)

≤
T∑
i=1

H(Bi)−
T∑
i=1

H(Bi | A)

=
T∑
i=1

I(A : Bi),

where the second equality used independence of the Bi’s conditioned on A,
and the inequality uses Fact 7.3.10. Since I(A : Bi) = I(A : B1) for all i,
we get the inequality.

3. I(A : B1) = 4ε.

Proof. View B1 = (I,L) as consisting of an index I ∈ {0, 1, . . . , d} and a
corresponding label L ∈ {0, 1}. With probability 1−4ε, (I,L) = (0, 0). For
each i ∈ [d], with probability 4ε/d, (I,L) = (i,Ai). Note that I(A : I) = 0
because I is independent of A; I(A : L | I = 0) = 0; and I(A : L | I =
i) = I(Ai : L | I = i) = H(Ai | I = i) −H(Ai | L, I = i) = 1 − 0 = 1 for
all i ∈ [d]. We have

I(A : B1) = I(A : I) + I(A : L | I) =
d∑
i=1

Pr[I = i] · I(A : L | I = i) = 4ε.

Combining these three steps implies T = Ω(d/ε). 2

7.4.3 Optimal lower bound on classical agnostic sample
complexity

7.4.4. Theorem. Let C be a concept class with VC-dim(C) = d. Then for every
δ ∈ (0, 1/2) and ε ∈ (0, 1/4), every (ε, δ)-agnostic learner for C has sample

complexity Ω
(
d
ε2

+ log(1/δ)
ε2

)
.

Proof. The d-independent part of the lower bound, T = Ω(log(1/δ)/ε2), even
holds for quantum examples and was proven in Lemma 7.4.2. For the other part,
the proof is similar to Theorem 7.4.3, as follows. Assume an (ε, δ)-agnostic learner
for C that uses T examples. We need to prove T = Ω(d/ε2). For shattered set
S = {s1, . . . , sd} ⊆ {0, 1}n and a ∈ {0, 1}d, define distribution Da by

Da(i, `) = (1 + (−1)ai+`4ε)/2d for all (i, `) ∈ [d]× {0, 1}.
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Again let random variable A ∈ {0, 1}d be uniformly random, corresponding
to the values of concept ca on S, and B = B1 . . .BT be T i.i.d. samples from Da.
Note that ca is the minimal-error concept from C w.r.t. Da, and concept cã has
additional error dH(a, ã) · 4ε/d. Accordingly, an (ε, δ)-agnostic learner has to
produce (from B) an h(B) ∈ {0, 1}d, which, with probability at least 1 − δ, is
d/4-close to A. Our three-step analysis is very similar to Theorem 7.4.3; only the
third step changes:

1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).

2. I(A : B) ≤ T · I(A : B1).

3. I(A : B1) = 1−H(1/2 + 2ε) = O(ε2).

Proof. View the Da-distributed random variable B1 = (I,L) as index I ∈ [d]
and label L ∈ {0, 1}. The marginal distribution of I is uniform; conditioned
on I = i, the bit L equals Ai with probability 1/2 + 2ε. Hence

I(A : L | I = i) = I(Ai : L | I = i) = H(Ai | I = i)−H(Ai | L, I = i)

= 1−H(1/2 + 2ε).

Using Fact 7.3.7, we have

I(A : B1) = I(A : I) + I(A : L | I) =
d∑
i=1

Pr[I = i] · I(A : L | I = i)

= 1−H(1/2 + 2ε) = O(ε2).

Combining these three steps implies T = Ω(d/ε2). 2

In the theorem below, we optimize the constant in the lower bound of the sam-
ple complexity in Theorem 7.4.4. In learning theory such lower bounds are often
stated slightly differently. In order to compare the lower bounds, we introduce
the following. We first define an ε-average agnostic learner for a concept class C
as a learner that, given access to T samples from an AEX(D) oracle (for some un-
known distribution D), needs to output a hypothesis hXY (where (X,Y) ∼ DT )
that satisfies

E
(X,Y)∼DT

[errD(hXY)]− optD(C) ≤ ε.

Lower bounds on the quantity (E(X,Y)∼DT [errD(hXY)] − optD(C)) are generally
referred to as minimax lower bounds in learning theory. For concept class C,
Audibert [Aud08, Aud09] showed that there exists a distribution D, such that if
the agnostic learner uses T samples from AEX(D), then

E
(X,Y)∼DT

[errD(hXY)]− optD(C) ≥ 1

6

√
d

T
.
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Equivalently, this is a lower bound of T ≥ d
36ε2

on the sample complexity of
an ε-average agnostic learner. We obtain a slightly weaker lower bound that is
essentially T ≥ d

62ε2
:

7.4.5. Theorem. Let C be a concept class with VC-dim(C) = d. Then for every
ε ∈ (0, 1/10], there exists a distribution for which every ε-average agnostic learner

has sample complexity at least d
ε2
·
(

1
62
− log(2d+2)

4d

)
.

Proof. The proof is similar to Theorem 7.4.4. Assume an ε-average agnos-
tic learner for C that uses T samples. For shattered set S = {s1, . . . , sd} ⊆
{0, 1}n and a ∈ {0, 1}d, define distribution Da on [d] × {0, 1} by Da(i, `) =
(1 + (−1)ai+`βε)/2d, for some constant β ≥ 2 which we shall pick later.

Again let random variable A ∈ {0, 1}d be uniformly random, corresponding
to the values of concept ca on S, and B = B1 . . .BT be T i.i.d. samples from Da.
Note that ca is the minimal-error concept from C w.r.t. Da, and concept cã has
additional error dH(a, ã) ·βε/d. Accordingly, an ε-average agnostic learner has to
produce (from B) an h(B) ∈ {0, 1}d, which satisfies EA,B[dH(A, h(B))] ≤ d/β.

Our three-step analysis is very similar to Theorem 7.4.4; only the first step
changes and we discuss that below:

1. I(A : B) ≥ d(1−H(1/β))− log(d+ 1).

Proof. Define random variable Z = dH(A, h(B)), then E[Z] ≤ d/β. Note
that given a string h(B) that is `-close to A, A ranges over a set of only(
d
`

)
≤ 2H(`/d)d possible d-bit strings (using Fact 7.3.8), hence H(A | B,Z =

`) ≤ H(A | h(B),Z = `) ≤ H(`/d)d. We now lower bound I(A : B)

I(A : B) = H(A)−H(A | B)

≥ H(A)−H(A | B,Z)−H(Z)

= d−
d+1∑
`=0

Pr[Z = `] ·H(A | B,Z = `)−H(Z)

≥ d− E
`∈{0,...,d}

[H(`/d)d]− log(d+ 1) (since Z ∈ {0, . . . , d})

≥ d− dH
(E`[`]

d

)
− log(d+ 1) (using Jensen’s inequality)

≥ d− dH(1/β)− log(d+ 1), (using E[Z] ≤ d/β)

where for the third inequality we used the concavity of the binary entropy
function to conclude E`[H(`/d)] ≤ H(E`[`]/d) (by Jensen’s inequality), and
for the fourth inequality we used that β ≥ 2.

2. I(A : B) ≤ T · I(A : B1).

3. I(A : B1) = 1 − H(1/2 + βε/2) ≤ β2ε2/ ln 4 + O(ε4) (using Fact 7.3.7 in
the inequality).
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Combining these three steps implies

T ≥ d ln 4

ε2
·
(1−H(1/β)

β2 +O(ε2)
− log(d+ 1)

β2d+O(dε2)

)
.

Using ε ≤ 1/10, β = 4 to optimize this lower bound, we obtain T ≥ d
ε2
·
(

1
62
−

log(2d+2)
4d

)
. 2

7.4.4 Quantum PAC sample complexity lower bound

Here we will “quantize” the above two classical information-theoretic proofs,
yielding lower bounds for quantum sample complexity (in both the PAC and
the agnostic setting) that are tight up to a logarithmic factor.

7.4.6. Theorem. Let C be a concept class with VC-dim(C) = d + 1. Then, for
every δ ∈ (0, 1/2) and ε ∈ (0, 1/4), every (ε, δ)-PAC quantum learner for C has

sample complexity Ω
(

d
ε log(d/ε)

+ log(1/δ)
ε

)
.

Proof. The proof is analogous to Theorem 7.4.3. We use the same distribu-
tion D, with the Bi now being quantum samples

|ψa〉 =
∑

i∈{0,1,...,d}

√
D(si)|i, ca(si)〉.

The AB-system is now in the following classical-quantum state:

1

2d

∑
a∈{0,1}d

|a〉〈a| ⊗ |ψa〉〈ψa|⊗T .

The first two steps of our argument are identical to Theorem 7.4.3. We only need
to re-analyze step 3:

1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).

2. I(A : B) ≤ T · I(A : B1).

3. I(A : B1) ≤ H(4ε) + 4ε log(2d) = O(ε log(d/ε)).

Proof. Since AB is a classical-quantum state, we have

I(A : B1) = S(A) + S(B1)− S(AB1) = S(B1),

where the first equality follows from definition and the second equality uses
S(A) = d since A is uniformly distributed in {0, 1}d, and S(AB1) = d
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since the matrix σ = 1
2d

∑
a∈{0,1}d |a〉〈a| ⊗ |ψa〉〈ψa| is block diagonal with 2d

rank-1 blocks on the diagonal. It thus suffices to bound the entropy of the
singular values of the reduced state of B1, which is

ρ =
1

2d

∑
a∈{0,1}d

|ψa〉〈ψa|.

Let σ0 ≥ σ1 ≥ · · · ≥ σ2d ≥ 0 be its singular values. Since ρ is a density
matrix, these form a probability distribution. Note that the upper-left
entry of the matrix |ψa〉〈ψa| is D(s0) = 1 − 4ε, hence so is the upper-
left entry of ρ. This implies σ0 ≥ 1 − 4ε. Consider sampling a number
N ∈ {0, 1, . . . , 2d} according to the σ-distribution. Let Z be the indicator
random variable for the event N 6= 0, which has probability 1 − σ0 ≤ 4ε.
Note that H(N | Z = 0) = 0, because Z = 0 implies N = 0. Also,
H(N | Z = 1) ≤ log(2d), because if Z = 1 then N ranges over 2d elements.
We now have

S(ρ) = H(N) = H(N,Z) = H(Z) +H(N | Z)

= H(Z) + Pr[Z = 0] ·H(N | Z = 0) + Pr[Z = 1] ·H(N | Z = 1)

≤ H(4ε) + 4ε log(2d)

= O(ε log(d/ε)). (using Fact 7.3.7)

Combining these three steps implies T = Ω
(

d
ε log(d/ε)

)
. 2

7.4.5 Quantum agnostic sample complexity lower bound

7.4.7. Theorem. Let C be a concept class with VC-dim(C) = d. Then for every
δ ∈ (0, 1/2) and ε ∈ (0, 1/4), every (ε, δ)-agnostic quantum learner for C has

sample complexity Ω
(

d
ε2 log(d/ε)

+ log(1/δ)
ε2

)
.

Proof. The proof is analogous to Theorem 7.4.4, with the Bi now being
quantum samples for Da, |ψa〉 =

∑
i∈[d],`∈{0,1}

√
Da(i, `)|i, `〉. Again we only need

to re-analyze step 3:

1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).

2. I(A : B) ≤ T · I(A : B1).

3. I(A : B1) = O(ε2 log(d/ε)).

Proof of step 3. As in step 3 of the proof of Theorem 7.4.6, it suffices to
upper bound the entropy of

ρ =
1

2d

∑
a∈{0,1}d

|ψa〉〈ψa|.
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We now lower bound the largest singular value of ρ. Consider |ψ〉 =
1√
2d

∑
i∈[d],`∈{0,1} |i, `〉. Then,

〈ψ|ψa〉 =
1

d

∑
i∈[d]

1

2

(√
1 + 4ε+

√
1− 4ε

)
=

1

2

(√
1 + 4ε+

√
1− 4ε

)
≥ 1− 2ε2 −O(ε4),

where the last inequality used the Taylor series expansion of
√

1 + x. This
implies that the largest singular value of ρ is at least

〈ψ|ρ|ψ〉 =
1

2d

∑
a∈{0,1}d

|〈ψ|ψa〉|2 ≥ 1− 4ε2 −O(ε4).

We can now finish as in step 3 of the proof of Theorem 7.4.6:

I(A : B1) ≤ S(ρ) ≤ H(4ε2) + 4ε2 log(2d) = O(ε2 log(d/ε)),

using Fact 7.3.7 in the equality.

Combining these three steps implies T = Ω
(

d
ε2 log(d/ε)

)
. 2

7.5 A lower bound by analysis of state identifi-

cation

In this section we present a tight lower bound on quantum sample complexity
for both the PAC and the agnostic learning settings, using ideas from Fourier
analysis to analyze the performance of the Pretty Good Measurement. The core
of both lower bounds is a technical theorem which we prove first.

7.5.1 A technical theorem.

7.5.1. Theorem. For m ≥ 10, let f : {0, 1}m → R be defined as f(z) = (1 −
β |z|
m

)T for some β ∈ (0, 1] and T ∈ [1,m/(e3β)]. For k ≤ m, let M ∈ Fm×k2 be a

matrix with rank k. Suppose A ∈ R2k×2k is defined as A(x, y) = (f ◦M)(x + y)
for x, y ∈ {0, 1}k, then

√
A(x, x) ≤ 2

√
e

2k/2

(
1− β

2

)T/2
e11T 2β2/m+

√
Tmβ for all x ∈ {0, 1}k.

Proof. The structure of the proof is to first diagonalize A, relating its eigenval-
ues to the Fourier coefficients of f . This allows to calculate the diagonal entries
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of
√
A exactly in terms of those Fourier coefficients. We then upper bound those

Fourier coefficients using a combinatorial argument.
We first observe the well-known relation between the eigenvalues of a matrix P

defined as P (x, y) = g(x + y) for x, y ∈ {0, 1}k (where the addition in x + y is
defined over F2), and the Fourier coefficients of g.

7.5.2. Claim. Suppose g : {0, 1}k → R and P ∈ R2k×2k is defined as P (x, y) =
g(x+ y), then the eigenvalues of P are {2kĝ(Q) : Q ∈ {0, 1}k}.
Proof. Let H ∈ R2k×2k be the matrix defined as H(x, y) = (−1)x·y for
x, y ∈ {0, 1}k. It is easy to see that H−1(x, y) = (−1)x·y/2k. We now show
that H diagonalizes P :

(HPH−1)(x, y) =
1

2k

∑
z1,z2∈{0,1}k

(−1)z1·x+z2·yg(z1 + z2)

=
1

2k

∑
z1,z2,Q∈{0,1}k

(−1)z1·x+z2·yĝ(Q)(−1)Q·(z1+z2)

=
1

2k

∑
Q∈{0,1}k

ĝ(Q)
∑

z1∈{0,1}k
(−1)(x+Q)·z1

∑
z2∈{0,1}k

(−1)(y+Q)·z2

= 2kĝ(x)δx,y

where the second equality used the Fourier expansion of g and the last equality
used

∑
z∈{0,1}k [(−1)(a+b)·z] = 2kδa,b.

The eigenvalues of P are the diagonal entries, {2kĝ(Q) : Q ∈ {0, 1}k}. 2

We now relate the diagonal entries of
√
A to the Fourier coefficients of f :

7.5.3. Claim. For all x ∈ {0, 1}k, we have

√
A(x, x) =

1

2k/2

∑
Q∈{0,1}k

√ ∑
S∈{0,1}m:MTS=Q

f̂(S).

Proof. Since A(x, y) = (f ◦M)(x + y), by Claim 7.5.2 it follows that H (as
defined in the proof of Claim 7.5.2) diagonalizes A and the eigenvalues of A are

{2kf̂ ◦M(Q) : Q ∈ {0, 1}k}. Hence, we have

√
A = H−1 · diag

({√
2kf̂ ◦M(Q) : Q ∈ {0, 1}k

})
·H,

and the diagonal entries of
√
A are

√
A(x, x) =

1

2k/2

∑
Q∈{0,1}k

√
f̂ ◦M(Q) =

1

2k/2

∑
Q∈{0,1}k

√ ∑
S∈{0,1}m:MTS=Q

f̂(S),
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where the second equality used Claim 7.3.5. 2

In the following lemma, we give an upper bound on the Fourier coefficients
of f , which in turn (from the claim above) gives an upper bound on the diagonal
entries of

√
A.

7.5.4. Lemma. For β ∈ (0, 1], the Fourier coefficients of f : {0, 1}m → R defined

as f(z) = (1− β |z|
m

)T , satisfy

0 ≤ f̂(S) ≤ 4e
(

1− β

2

)T(Tβ
m

)q
e22T 2β2/m, for all S such that |S| = q.

Proof. In order to see why the Fourier coefficients of f are non-negative, we first
define the set U = {u⊗Tx }x∈{0,1}m where ux =

√
1− β|0, 0〉+

√
β/m

∑
i∈[m] |i, xi〉.

Let V be the 2m × 2m Gram matrix for the set U . For x, y ∈ {0, 1}m, we have

V (x, y) = (u∗xuy)
T =

(
1− β +

β

m

m∑
i=1

〈xi|yi〉
)T

=
(

1− β +
β

m
(m− |x+ y|)

)T
=
(

1− β |x+ y|
m

)T
= f(x+ y).

By Claim 7.5.2, the eigenvalues of the Gram matrix V are {2mf̂(S) : S ∈ {0, 1}m}.
Since the Gram matrix is psd, its eigenvalues are non-negative, which implies
that f̂(S) ≥ 0 for all S ∈ {0, 1}m.

We now prove the upper bound in the lemma. By definition,

f̂(S) = E
z∈{0,1}m

[(
1− β |z|

m

)T
(−1)S·z

]
= E

z∈{0,1}m

[(
1− β

2
+

β

2m

m∑
i=1

(−1)zi
)T

(−1)S·z
]

=
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)`
E

z∈{0,1}m

[ m∑
i1,...,i`=1

(−1)z·(ei1+···+ei`+S)
]

=
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)` m∑
i1,...,i`=1

1[ei1+···+ei`=S]

where the second equality used |z| =
∑

i∈[m](1 − (−1)zi)/2 and the last equality

used Ez∈{0,1}m [(−1)(z1+z2)·z] = δz1,z2 . We will use the following claim to upper
bound the combinatorial sum in the quantity above.
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7.5.5. Claim. Fix S ∈ {0, 1}m with Hamming weight |S| = q. For every ` ∈
{q, . . . , T}, we have

m∑
i1,...,i`=1

1[ei1+···+ei`=S] ≤
{
`! ·m(`−q)/2

/(
2(`−q)/2((`− q)/2)!

)
if (`− q) is even

0 otherwise

Proof. Since |S| = q, we can write S = er1+· · ·+erq for distinct r1, . . . , rq ∈ [m].

There are
(
`
q

)
ways to pick q indices in (i1, . . . , i`) (without loss of generality,

let them be i1, . . . , iq) and there are q! factorial ways to assign (r1, . . . , rq) to
(i1, . . . , iq). It remains to count the number of ways that we can assign values to
the remaining indices iq+1, . . . , i` such that eiq+1 + · · · + ei` = 0. If ` − q is odd,
then there is no setting of iq+1, . . . , i` that will satisfy eiq+1 + · · ·+ ei` = 0, so the
left-hand side of the claim is equal to 0. From now on assume `− q is even. We
upper bound the number of such assignments by partitioning the ` − q indices
into pairs and assigning the same value to both indices in each pair.

We first count the number of ways to partition a set of `−q indices into subsets

of size 2. This number is exactly (` − q)!
(

2(`−q)/2((` − q)/2)!
)−1

. Furthermore,

there are m possible values that can be assigned to the pair of indices in each of the
(`− q)/2 subsets such that ei + ej = 0 within each subset. Note that assigning m
possible values to each pair of indices in the (`−q)/2 subsets overcounts, but this
rough upper bound is sufficient for our purposes.

Combining the three arguments, we conclude

d∑
i1,...,i`=1

1[ei1+···+ei`=S] ≤
(
`
q

)
q! · (`− q)! ·m(`−q)/2

2(`−q)/2((`− q)/2)!
,

which yields the claim. 2

Continuing with the evaluation of the Fourier coefficient and using the claim
above, we have

f̂(S) =
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)` m∑
i1,...,i`=1

1[ei1+···+ei`=S]

≤
T∑
`=q

(
T

`

)(
1− β

2

)T−`( β

2m

)`
`! ·m(`−q)/2

/(
2(`−q)/2

(`− q
2

)
!
)

=
(

1− β

2

)T( 2

m

)q/2 T∑
`=q

(
T

`

)
`!
( β

m(2− β)

)`(m
2

)`/2/(`− q
2

)
!,

where we used Claim 7.5.5 in the inequality. We now use some binomial identities
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to upper bound this further

f̂(S) ≤
(

1− β

2

)T( 2

m

)q/2 T∑
`=q

(
T · β

m
·
√
m

2

)`/(`− q
2

)
!

=
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

( Tβ√
2m

)r 1

(r/2)!
(substituting r ← (`− q))

≤
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

( Tβ√
2m

)r er/2

(r/2)r/2
(using n! ≥ (n/e)n)

=
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

(√eTβ√
mr

)r
≤
(

1− β

2

)T(Tβ
m

)q T∑
r=0

(√eTβ√
mr

)r
(since the summands are ≥ 0)

=
(

1− β

2

)T(Tβ
m

)q( de3T 2β2/me∑
r=0

(√eTβ√
mr

)r
+

T∑
r=de3T 2β2/me+1

(√eTβ√
mr

)r)
,

where the first inequality also used β < 1 and
(
T
`

)
`! ≤ T `. Note that by the

assumptions of the theorem, we have T 2e3β2/m ≤ Tβ ≤ T , which allowed us
to split the summation into two pieces in the last equality. At this point, we
upper bound both pieces in the last equation separately. For the first piece, using

Claim 7.3.6 it follows that
(√

eTβ√
mr

)r
is maximized at r = dT 2β2/me. Using this

we get

de3T 2β2/me∑
r=0

(√eTβ√
mr

)r
≤
(

2 +
e3T 2β2

m

)
edT

2β2/me/2 ≤ 2e22T 2β2/m+1, (7.6)

where in first inequality we upper bound every term using Claim 7.3.6 and the
second inequality uses 2 + x ≤ 2ex for x ≥ 0 and e3 + 1/2 ≤ 22. For the second
piece, we use

T∑
r=de3T 2β2/me+1

(√eTβ√
mr

)r
≤

T∑
r=de3T 2β2/me+1

(1

e

)r
≤

T∑
r=1

(1

e

)r
=

1− e−T
e− 1

≤ 2/3. (7.7)

So we finally get

f̂(S) ≤
(

1− β

2

)T(Tβ
m

)q(
2e22T 2β2/m+1 + 2/3

)
(using Eq. (7.6), (7.7))

≤ 4e
(

1− β

2

)T(Tβ
m

)q
e22T 2β2/m (since 22T 2β2/m > 0)
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2

The theorem follows by putting together Claim 7.5.3 and Lemma 7.5.4:

√
A(x, x) =

1

2k/2

∑
Q∈{0,1}k

√ ∑
S∈{0,1}m:MTS=Q

f̂(S) (using Claim 7.5.3)

≤ 1

2k/2

∑
Q∈{0,1}k

∑
S∈{0,1}m:MTS=Q

√
f̂(S)

=
1

2k/2

∑
S∈{0,1}m

√
f̂(S)

=
1

2k/2

m∑
q=0

∑
S∈{0,1}m:|S|=q

√
f̂(S)

≤ 2
√
e

2k/2

(
1− β

2

)T/2
e11T 2β2/m

m∑
q=0

(
m

q

)(Tβ
m

)q/2
(using Lemma 7.5.4)

=
2
√
e

2k/2

(
1− β

2

)T/2
e11T 2β2/m

(
1 +

√
Tβ

m

)m
(using binomial theorem)

≤ 2
√
e

2k/2

(
1− β

2

)T/2
e11T 2β2/m+

√
Tmβ,

where the first inequality used the lower bound from Lemma 7.5.4, the second
equality used ∪Q{S : MTS = Q} = {0, 1}m since rank(M)=k and the last
inequality uses (1 + x)t ≤ ext for x, t ≥ 0. 2

7.5.2 Optimal lower bound for quantum PAC sample com-
plexity

We can now prove our tight lower bound on quantum sample complexity in the
PAC model:

7.5.6. Theorem. Let C be a concept class with VC-dim(C) = d + 1, for suffi-
ciently large d. Then for every δ ∈ (0, 1/2) and ε ∈ (0, 1/20), every (ε, δ)-PAC

quantum learner for C has sample complexity Ω
(
d
ε

+ 1
ε

log 1
δ

)
.

Proof. The d-independent part of the lower bound is Lemma 7.4.1. To prove
the d-dependent part, define a distribution D on a set S = {s0, . . . , sd} ⊆ {0, 1}n
that is shattered by C as follows:

D(s0) = 1− 20ε and D(si) = 20ε/d for all i ∈ [d].
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Now consider a [d, k, r]2 linear code (for k ≥ d/4, distance r ≥ d/8) as shown
to exist in Theorem 7.3.4 with the generator matrix M ∈ Fd×k2 of rank k. Let
{Mx : x ∈ {0, 1}k} ⊆ {0, 1}d be the set of codewords in this linear code; these
satisfy dH(Mx,My) ≥ d/8 whenever x 6= y. For each x ∈ {0, 1}k, let cx be
a concept defined on the shattered set as: cx(s0) = 0 and cx(si) = (Mx)i for
all i ∈ [d]. The existence of such concepts in C follows from the fact that S is
shattered by C. From the distance property of the code, we have Prs∼D[cx(s) 6=
cy(s)] ≥ 20ε

d
d
8

= 5ε/2. This in particular implies that an (ε, δ)-PAC quantum
learner that tries to ε-approximate a concept from {cx : x ∈ {0, 1}k} should
successfully identify that concept with probability at least 1− δ.

We now consider the following state identification problem: for x ∈ {0, 1}k, de-
note

|ψx〉 =
∑

i∈{0,...,d}

√
D(si)|si, cx(si)〉.

Let the (ε, δ)-PAC quantum sample complexity be T . Assume T ≤ d/(20e3ε),
since otherwise T ≥ Ω(d/ε) and the theorem follows. Suppose the learner has
knowledge of the ensemble E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}, and is given
|ψx〉⊗T ∈ E for a uniformly random x. The learner would like to maximize the
average probability of success to identify the given state. For this problem, we
prove a lower bound on T using the PGM defined in Section 7.3.2. In particular,
we show that using the PGM, if a learner successfully identifies the states in E ,
then T = Ω(d/ε). Since the PGM is the optimal measurement6 that the learner
could have performed, the result follows. The following lemma makes this lower
bound rigorous and will conclude the proof of the theorem.

7.5.7. Lemma. For every x ∈ {0, 1}k, let |ψx〉 =
∑

i∈{0,...,d}

√
D(si)|si, cx(si)〉,

and E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}. Then7

P PGM(E) ≤ 4e

2d/4+Tε
e8800T 2ε2/d+4

√
5Tdε.

Before we prove the lemma, we first show why it implies the theorem. Since
we observed in Section 7.3.2 that P opt(E) = P PGM(E), a good learner satisfies
P PGM(E) = Ω(1) (say for δ = 1/4), which in turn implies

Ω(max{d, Tε}) ≤ O(min{T 2ε2/d,
√
Tdε}).

6For x ∈ {0, 1}k, define unitary Ucx : |si, b〉 → |si, b + cx(si)〉 for all i ∈ {0, . . . , d}. The
ensemble E is generated by applying {Ucx}x∈{0,1}k to |ϕ〉 =

∑
i∈{0,...,d}

√
D(si)|si, 0〉. View

cx = (0,Mx) ∈ {0, 1}d+1 as a concatenated string where Mx is a codeword of the [d, k, r]2
code. Since the 2k codewords of the [d, k, r]2 code form a linear subspace, {Ucx}x∈{0,1}k is an
Abelian group. From the discussion in Section 7.3.2, we conclude that the PGM is the optimal
measurement for this state identification problem.

7We made no attempt to optimize the constants here.
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Note that if Tε maximizes the left-hand side, then d ≤ Tε and hence T ≥ Ω(d/ε).
The remaining cases are Ω(d) ≤ T 2ε2/d and Ω(d) ≤

√
Tdε. Both these state-

ments give us T ≥ Ω(d/ε). Hence the theorem follows, and it remains to prove
Lemma 7.5.7:
Proof. Let E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} and G be the 2k× 2k Gram matrix
for E ′. As we saw in Section 7.3.2, the success probability of identifying the states
in the ensemble E using the PGM is

P PGM(E) =
∑

x∈{0,1}k

√
G(x, x)2.

For all x, y ∈ {0, 1}k, the entries of the Gram matrix G can be written as:

G(x, y) =
1

2k
〈ψx|ψy〉T =

1

2k

(
(1− 20ε) +

20ε

d

d∑
i=1

〈cx(si)|cy(si)〉
)T

=
1

2k

(
(1− 20ε) +

20ε

d
(d− dH(Mx,My))

)T
=

1

2k

(
1− 20ε

d
dH(Mx,My)

)T
,

(7.8)

where Mx, My ∈ {0, 1}d are codewords in the linear code defined earlier. Define
f : {0, 1}d → R as f(z) = (1 − 20ε

d
|z|)T , and let A(x, y) = (f ◦M)(x + y) for

x, y ∈ {0, 1}k. Note that G = A/2k. Since we assumed T ≤ d/(20e3ε), we can
use Theorem 7.5.1 (by choosing m = d and β = 20ε) to upper bound the success
probability of successfully identifying the states in the ensemble E using the PGM.

P PGM(E) =
∑

x∈{0,1}k

√
G(x, x)2

=
1

2k

∑
x∈{0,1}k

√
A(x, x)2 (since G = A/2k)

≤ 4e

2k

(
1− β

2

)T
e22T 2β2/d+2

√
Tdβ (using Theorem 7.5.1)

=
4e

2k

(
1− 10ε

)T
e8800T 2ε2/d+4

√
5Tdε (substituting β = 20ε)

≤ 4e

2k+Tε
e8800T 2ε2/d+4

√
5Tdε (using (1− 10ε)T ≤ e−10εT ≤ 2−εT )

The lemma follows by observing that k ≥ d/4. 2

2



166 Chapter 7. Quantum sample complexity

7.5.3 Optimal lower bound for quantum agnostic sample
complexity

We now use the same approach to obtain a tight lower bound on quantum sample
complexity in the agnostic setting.

7.5.8. Theorem. Let C be a concept class with VC-dim(C) = d, for sufficiently
large d. Then for every δ ∈ (0, 1/2) and ε ∈ (0, 1/10), every (ε, δ)-agnostic

quantum learner for C has sample complexity Ω
(
d
ε2

+ 1
ε2

log 1
δ

)
.

Proof. The d-independent part of the lower bound is Lemma 7.4.2. For the d-
dependent term in the lower bound, consider a [d, k, r]2 linear code (for k ≥ d/4,
distance r ≥ d/8) as shown to exist in Theorem 7.3.4, with generator matrix
M ∈ Fd×k2 of rank k. Let {Mx : x ∈ {0, 1}k} ⊆ {0, 1}d be the set of 2k codewords
in this linear code; these satisfy dH(Mx,My) ≥ d/8 whenever x 6= y. To each
codeword x ∈ {0, 1}k we associate a distribution Dx as follows:

Dx(si, b) =
1

d

(1

2
+

1

2
(−1)(Mx)i+bα

)
, for (i, b) ∈ [d]× {0, 1},

where S = {s1, . . . , sd} is a set that is shattered by C, and α is a parameter
which we shall pick later. Let cx ∈ C be a concept that labels S according to
Mx ∈ {0, 1}d. The existence of such cx ∈ C follows from the fact that S is
shattered by C. Note that cx is the minimal-error concept in C w.r.t. Dx. A
learner that labels S according to some string ` ∈ {0, 1}d has additional error
dH(Mx, `) ·α/d compared to cx. This in particular implies that an (ε, δ)-agnostic
quantum learner has to find (with probability at least 1 − δ) an ` such that
dH(Mx, `) ≤ dε/α. We pick α = 20ε and we get dH(Mx, `) ≤ d/20. However,
since Mx was a codeword of a [d, k, r]2 code with distance r ≥ d/8, finding an `
satisfying dH(Mx, `) ≤ d/20 is equivalent to identifying Mx, and hence x.

Now consider the following state identification problem: for x ∈ {0, 1}k, let

|ψx〉 =
∑

(i,b)∈[d]×{0,1}

√
Dx(si, b)|si, b〉.

Let the (ε, δ)-agnostic quantum sample complexity be T . Furthermore, assume
that T ≤ d/(100e3ε2), since otherwise T ≥ Ω(d/ε2) and the theorem follows.
Suppose the learner has knowledge of the ensemble E = {(2−k, |ψx〉⊗T ) : x ∈
{0, 1}k}, and is given |ψx〉⊗T ∈ E for uniformly random x. The learner would like
to maximize the average probability of success to identify the given state. For this
problem, we prove a lower bound on T using the PGM defined in Section 7.3.2.
In particular, we show that using the PGM, if a learner successfully identifies the
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states in E , then T = Ω(d/ε2). Since the PGM is the optimal measurement8 that
the learner could have performed, the result follows. The following lemma makes
this lower bound rigorous and will conclude the proof of the theorem.

7.5.9. Lemma. For x ∈ {0, 1}k, let |ψx〉 =
∑

(i,b)∈[d]×{0,1}

√
Dx(si, b)|si, b〉, and

E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}. Then

P PGM(E) ≤ 4e

e(d ln 2)/4+25Tε2
e220000T 2ε4/d+20

√
Tdε2 .

Before we prove the lemma, we first show why it implies the theorem. Since we
observed above that P opt(E) = P PGM(E), a good learner satisfies P PGM(E) =
Ω(1) (say for δ = 1/4), which in turn implies

Ω(max{d, Tε2}) ≤ O(min{T 2ε4/d,
√
Tdε2}).

Like in the proof of Theorem 7.5.6, this implies a lower bound of T = Ω(d/ε2)
and proves the theorem. It remains to prove Lemma 7.5.9:

Proof. Let E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} and G be the 2k × 2k Gram
matrix for the set E ′. As we saw in Theorem 7.3.1 in Section 7.3.2, the success
probability of identifying the states in the ensemble E using the PGM is

P PGM(E) =
∑

x∈{0,1}k

√
G(x, x)2.

For all x, y ∈ {0, 1}k, the entries of G can be written as:

2k ·G(x, y) = 〈ψx|ψy〉T

=
( ∑

(i,b)∈[d]×{0,1}

√
Dx(i, b)Dy(i, b)

)T
=
( 1

2d

∑
(i,b)∈[d]×{0,1}

√
(1 + 10ε(−1)(Mx)i+b)(1 + 10ε(−1)(My)i+b)

)T
=
( 1

2d

∑
(i,b):

(Mx)i=(My)i

(1 + 10ε(−1)(Mx)i+b) +
1

2d

∑
(i,b):

(Mx)i 6=(My)i

√
1− 100ε2

)T

=
(d− dH(Mx,My)

d
+

√
1− 100ε2

d
dH(Mx,My)

)T
=
(

1− 1−
√

1− 100ε2

d
dH(Mx,My)

)T
.

8For x ∈ {0, 1}k, define unitary Ucx =
∑
i∈[d] |si〉〈si|⊗X(Mx)i , where X is the NOT-gate, so

X(Mx)i |b〉 = |b+ (Mx)i〉 for b ∈ {0, 1}. The ensemble E is generated by applying {Ucx}x∈{0,1}k
to |ϕ〉 = 1√

d

∑
(i,b)∈[d]×{0,1}

√
1
2 + 1

2 (−1)bα|si, b〉. Since the 2k codewords of the [d, k, r]2 code

form a linear subspace, {Ucx}x∈{0,1}k is an Abelian group. From the discussion in Section 7.3.2,
we conclude that the PGM is the optimal measurement for this state identification problem.
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where we used α = 20ε in the third equality.

Let β = 1−
√

1− 100ε2, which is at most 1 for ε ≤ 1/10. Define f : {0, 1}d →
R as f(z) = (1 − β

d
|z|)T , and let A(x, y) = (f ◦ M)(x + y) for x, y ∈ {0, 1}k.

Then G = A/2k. Note that T ≤ d/(100e3ε2) ≤ d/(e3β) (the first inequality is
by assumption and the second inequality follows for ε ≤ 1/10 and β ≤ 1). Since
we assumed T ≤ d/(100e3ε2), we can use Theorem 7.5.1 (by choosing m = d and
β = 1 −

√
1− 100ε2) to upper bound the success probability of identifying the

states in the ensemble E :

P PGM(E) =
∑

x∈{0,1}k

√
G(x, x)2

=
1

2k

∑
x∈{0,1}k

√
A(x, x)2 (since G = A/2k)

≤ 4e

2k

(
1− β

2

)T
e22T 2β2/d+2

√
Tdβ (using Theorem 7.5.1)

≤ 4e

2k

(
1− β

2

)T
e220000T 2ε4/d+20

√
Tdε2

≤ 4e

2k

(
1− 25ε2

)T
e220000T 2ε4/d+20

√
Tdε2 (using

√
1− 100ε2 ≤ 1− 50ε2)

≤ 4e

ek ln 2+25Tε2
e220000T 2ε4/d+20

√
Tdε2 ,

where we used β = 1 −
√

1− 100ε2 ≤ 100ε2 in the second inequality and (1 −
x)t ≤ e−xt for x, t ≥ 0 in the last inequality. The lemma follows by observing
that k ≥ d/4. 2

2

7.6 Additional results.

In this section we mention two additional results that can also be obtained using
our main Theorem 7.5.1.

7.6.1 Lower bound for PAC learning under random clas-
sification noise

In the theorem below, we show a lower bound on the quantum PAC sample
complexity under the random classification noise model with noise rate η. Recall
that in this model, for every c ∈ C and distribution D, ε, δ > 0, given access to
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copies of the η-noisy state,∑
x∈{0,1}n

√
(1− η)D(x)|x, c(x)〉+

√
ηD(x)|x, 1− c(x)〉,

a (ε, δ)-PAC quantum learner is required to output an hypothesis h such that
errD(c, h) ≤ ε with probability at least 1− δ.

7.6.1. Theorem. Let C be a concept class with VC-dim(C) = d + 1, for suffi-
ciently large d. Then for every δ ∈ (0, 1/2), ε ∈ (0, 1/20) and η ∈ (0, 1/2), every
(ε, δ)-PAC quantum learner for C in the PAC setting with random classification

noise rate η, has sample complexity Ω
(

d
(1−2η)2ε

+ log(1/δ)
(1−2η)2ε

)
.

Proof sketch. One can use exactly the same proof technique as in Lemma 7.4.1
and Theorem 7.5.6. We only sketch the inner product calculation in Eq. (7.8)
here. Let {cx : x ∈ {0, 1}k} be the 2k concepts and D be the distribution

D(s0) = 1− 20ε and D(si) = 20ε/d for all i ∈ [d],

as defined in Theorem 7.5.6. The η-noisy quantum examples corresponding to
these concepts are

|ψx〉 =
∑

i∈{0,...,d}

(
√
D(si)(1− η)|si, cx(si)〉+

√
D(si)η|si, 1− cx(si)〉).

Then,

〈ψx|ψy〉 =(1− η)
(

1− 20ε+
20ε

d

∑
i∈{0,...,d}

〈cx(si)|cy(si)〉
)

+ η
(

1− 20ε+
20ε

d

∑
i∈{0,...,d}

〈1− cx(si)|1− cy(si)〉
)

+ 2
√
η(1− η) · 20ε

d

∑
i∈{0,...,d}

〈cx(si)|1− cy(si)〉

= 1− 20ε

d

(
1− 2

√
η(1− η)

)
dH(Mx,My),

where the second equality used
∑

i〈cx(si)|cy(si)〉 = d − dH(Mx,My) as well as∑
i〈cx(si)|1− cy(si)〉 = dH(Mx,My). Now let ε′ = ε(1− 2

√
η(1− η)) and carry

on with the proof of Theorem 7.5.6. We get a lower bound of

T = Ω
( d
ε′

)
= Ω

( d

ε(1− 2
√
η(1− η))

)
= Ω

( d

ε(1− 2η)2

)
,

where we used 1− 2
√
η(1− η) ≤ (1− 2η)2, which holds for η ≤ 1/2. 2
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7.6.2 Distinguishing codeword states

Ashley Montanaro (personal communication) alerted us to the following interest-
ing special case of our PGM-based result.

Consider an [n, k, d]2 linear code {Mx : x ∈ {0, 1}k}, where M ∈ Fn×k2 is
the rank-k generator matrix of the code, k = Ω(n), and distinct codewords have
Hamming distance at least d.9 For every x ∈ {0, 1}k, define a codeword state
|ψx〉 = 1√

n

∑
i∈[n] |i, (Mx)i〉. These states form an example of a quantum finger-

printing scheme [BCWW01]: 2k states whose pairwise inner products are bounded
away from 1. How many copies do we need to identify one such fingerprint?

Let E = {(2−k, |ψx〉) : x ∈ {0, 1}k} be an ensemble of codeword states. Con-
sider the following task: given T copies of an unknown state drawn uniformly from
E , we are required to identify the state with probability ≥ 4/5. From Holevo’s
theorem one can easily obtain a lower bound of T = Ω(k/ log n) copies, since the
learner should obtain Ω(k) bits of information (i.e., identify k-bit string x with
probability ≥ 4/5), while each copy of the codeword state gives at most log n
bits of information. In the theorem below, we improve that Ω(k/ log n) to the
optimal Ω(k) for constant-rate codes.

7.6.2. Theorem. Let E = {|ψx〉 = 1√
n

∑
i∈[n] |i, (Mx)i〉 : x ∈ {0, 1}k}, where

M ∈ Fn×k2 is the generator matrix of an [n, k, d]2 linear code with k = Ω(n).
Then Ω(k) copies of an unknown state from E (drawn uniformly at random) are
necessary to be able to identify that state with probability at least 4/5.

One can use exactly the proof technique of Theorem 7.5.6 to prove the the-
orem. Suppose we are given T copies of the unknown codeword state. Assume
T ≤ n, since otherwise T ≥ n ≥

√
kn and the theorem follows. Observe that

the Gram matrix G for E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} can be written as

G(x, y) = 1
2k

(
1 − |M(x+y)|

n

)T
for x, y ∈ {0, 1}k. Using Theorem 7.5.1 (choos-

ing β = 1 and m = n) to upper bound the success probability of successfully
identifying the states in the ensemble E using the PGM, we obtain

P PGM(E) ≤ 4e

2k+T
e22T 2/n+2

√
Tn.

As in the proof of Theorem 7.5.6, this implies the lower bound of Theorem 7.6.2.
We omit the details of the calculation.

9Note that throughout this chapter C was a concept class in {0, 1}n and d was the VC
dimension of C. The use of n, d in this section has been changed to conform to the convention
in coding theory.
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7.7 Conclusion and future work

The main result of this chapter is that quantum examples give no significant im-
provement over the usual random examples in passive, distribution-independent
settings. Of course, these negative results do not mean that quantum machine
learning is useless. In the previous chapter we already mentioned improvements
from quantum examples for learning under the uniform distribution; improve-
ments from using quantum membership queries; and improvements in time com-
plexity based on quantum algorithms like Grover’s and HHL. Quantum machine
learning is still in its infancy, and we hope for many more positive results.

We end by identifying a number of open questions for future work:

• We gave lower bounds on sample complexity for the rather benign random
classification noise. What about other noise models, such a malicious noise?

• What is the quantum sample complexity for learning concepts whose range
is [k] rather than {0, 1}, for some k > 2? Even the classical sample com-
plexity is not fully determined yet [SB14, Section 29.2].

• Classically, it is still an open question whether the log(1/ε)-factor in the
upper bound of [BEHW89] for (ε, δ)-proper PAC learning is necessary. A
weaker result (possibly easier to prove) would be to give a (ε, δ)-quantum
proper PAC learner without this log(1/ε)-factor.

• In the introduction we mentioned a few examples of learning under the
uniform distribution where quantum examples are significantly more pow-
erful than classical examples. Can we find more such examples of quantum
improvements in sample complexity in fixed-distribution settings?
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Abstract

In this thesis, we present results in two directions of research. In the first part we
study query and gate complexity of quantum algorithms for certain problems and
in the second part we study sample and query complexity of quantum machine
learning algorithms.

Part I: Quantum algorithms

In the first part we present three contributions to quantum algorithms, which we
briefly summarize below.

Chapter 3. We look at the following basic search problem: suppose there is
an unstructured database consisting of N elements and one of the elements is
“marked”. Our goal is to find the marked element. To solve this problem we
are allowed to make queries which tell us if an element is marked or not. Ideally
we would like to find the marked element making as few queries as possible.
Classically, in the worst case one would need to make essentially N queries to
find the marked element.

Grover [Gro96] constructed a quantum algorithm that solves this problem
using O(

√
N) quantum queries and O(

√
N logN) other elementary gates. It is

known that the number of quantum queries necessary to solve the search problem
is Ω(

√
N), so Grover’s algorithm cannot be improved in terms of queries. In this

chapter we describe a new quantum algorithm to solve the search problem, whose
gate complexity is essentially O(

√
N), while preserving the query complexity of

Grover’s algorithm.

Chapter 4. The flip-side of obtaining new quantum algorithms is showing
query lower bounds, i.e., showing that every quantum algorithm needs to make
at least a certain number of queries in order to solve a problem. In this direc-
tion there are two famous techniques to give query lower bounds, the polynomial
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method [BBC+01] and the adversary method [Amb00, HLŠ07]. The adversary
method is known to characterize quantum query complexity, i.e., one can obtain
upper bounds on quantum query complexity using the adversary method.

A natural question is whether the polynomial method admits such a converse
as well. In this chapter we give a positive answer to this question by intro-
ducing a new degree-measure called the completely bounded approximate degree
(denoted cb-deg) of a Boolean function. We show that for a Boolean function
f , this cb-deg(f) equals the quantum query complexity of f . Our succinct char-
acterization of quantum algorithms in terms of polynomials not only refines the
polynomial method, but it also gives a new technique for showing upper and lower
bounds on quantum query complexity.

Chapter 5. Optimization is an important task that touches on virtually every
area of science. For f : Rd → R, consider the following optimization problem:
OPT = min{f(x) : x ∈ Rd}. One generic technique used often to compute OPT is
the gradient-descent algorithm. This begins with an arbitrary xxx ∈ Rd, computes
the gradient of f at xxx (denoted ∇f(xxx)) and moves to a point xxx′ in the direction
of −∇f(xxx). This process is repeated a few times before the algorithm hopefully
reaches a good approximation of OPT. Given the simplicity and generality of the
algorithm, gradient-based methods are ubiquitous in machine learning algorithms.

An integral part of the gradient-based algorithm is the gradient computation
step. Can the gradient computation step be improved using quantum techniques?
In this chapter we develop a quantum algorithm that calculates the gradient of
f : Rd → R quadratically faster than classical methods. To be precise, we show
that in order to obtain a ε-coordinate-wise approximation of the d-dimensional
gradient vector ∇f at a given point xxx, it suffices to make O(

√
d/ε) queries to the

oracle encoding f . Using our quantum gradient calculation algorithm coupled
with other quantum subroutines, we provide a quadratic quantum improvement
to the complexity of almost all gradient-based optimization algorithms.

Part II: Quantum learning theory

In the second part we present two contributions to quantum learning theory,
which we briefly summarize below.

Chapter 6. In the last decade, with the explosion of data and information, ma-
chine learning has gained prominence. Alongside the boom in classical machine
learning, the last few years have seen an increase in the interest in quantum ma-
chine learning, an interdisciplinary area that uses the powers of quantum physics
to improve classical machine learning algorithms.

In this chapter, we survey the theoretical side of quantum machine learning:
quantum learning theory. We describe the main results known for three models
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of learning, using classical as well as quantum data: exact learning from mem-
bership queries, the probably approximately correct (PAC) learning model and
the agnostic learning model. Apart from information-theoretic results, we also
survey results on the time complexity of learning from membership queries and
learning in the PAC and agnostic models.

Chapter 7. Leslie Valiant’s PAC model of learning gives a complexity-theoretic
definition of what it means for a concept class C (i.e., a collection of Boolean
functions) to be (efficiently) learnable. In the PAC model, our goal is to approx-
imately learn an unknown Boolean function from C given random examples for
that function. It is well-known that the number of random examples necessary
and sufficient to PAC-learn C is given by a combinatorial parameter, the VC
dimension of C.

In this chapter we ask if a quantum learner can PAC-learn C given fewer
quantum examples. We give a negative answer by showing that the number of
quantum examples necessary and sufficient to PAC-learn C is also given by the VC
dimension of C. We consider more realistic and flexible versions of PAC learning,
i.e., agnostic learning and learning under random classification noise. In both
these learning models, we show that quantum examples are not more powerful
than classical examples.





Samenvatting

In dit proefschrift worden resultaten gepresenteerd in twee onderzoeksrichtin-
gen. In het eerste deel bestuderen we query en gate-complexiteit van quantu-
malgoritmes voor bepaalde problemen. Het tweede deel omvat sample en query-
complexiteit van quantum machine learning algoritmes.

Deel I: Quantum algoritmes

In het eerste deel behandelen we drie bijdragen aan quantumalgoritmes, die we
hier kort samenvatten.

Hoofdstuk 3. We bekijken het volgende simpele zoekprobleem: er is een onge-
structureerde database vanN elementen en één van de elementen is “gemarkeerd”.
Het doel is om het gemarkeerde element te vinden. Om dit op te lossen mogen we
queries doen die ons vertellen of een element gemarkeerd is, en we willen graag
zo min mogelijk van deze queries doen. Voor een klassiek algoritme kost het in
het ergste geval N queries om het gemarkeerde element te vinden.

Grover [Gro96] heeft een quantumalgoritme bedacht dat dit probleem oplost
met O(

√
N) quantum queries en O(

√
N logN) andere elementaire gates. Het is

bekend dat het aantal benodigde queries om dit probleem op te lossen Ω(
√
N) is,

dus Grovers algoritme kan niet worden verbeterd wat betreft het aantal queries.
In dit hoofdstuk beschrijven we een nieuw quantumalgoritme om dit zoekprob-
leem op te lossen met een gate-complexiteit van ongeveer O(

√
N) en met dezelfde

query-complexiteit als Grovers algoritme.

Hoofdstuk 4. Naast quantumalgoritmes zijn er quantum query-ondergrenzen.
Deze laten zien dat elk quantum algoritme minimaal een bepaald aantal queries
moet doen om een probleem op te lossen. In deze richting bestaan twee bek-
ende technieken om ondergrenzen aan te tonen. Dit zijn de polynoom-methode
[BBC+01] en de adversary methode [Amb00, HLŠ07]. De adversary methode
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staat bekend om zijn karakterisatie van quantum query-complexiteit omdat het
ook bovengrenzen geeft op het aantal benodigde queries.

Een natuurlijke vraag is of de polynoom-methode ook bovengrenzen kan geven.
In dit hoofdstuk geven we een positief antwoord op deze vraag door het intro-
duceren van de zogeheten “completely bounded approximate degree” (afgekort
cb-deg) van een Booleaanse functie. We laten zien dat voor een Booleaanse
functie f , de cb-deg(f) gelijk is aan de quantum query-complexiteit van f . Onze
beknopte karakterisatie van quantumalgoritmes in termen van polynomen verfijnt
niet alleen de polynoommethode maar geeft ook nieuwe technieken om onder- en
bovengrenzen te bepalen voor query-complexiteit.

Hoofdstuk 5. Optimalisatie is in praktisch alle gebieden van de wetenschap
belangrijk. Laat f : Rd → R en beschouw het optimalisatieprobleem OPT =
min{f(x) : x ∈ Rd}. Een generieke techniek om OPT uit te rekenen is het gradi-
ent descent algoritme. In dit algoritme wordt de gradiënt van f in xxx (uitgerekend
∇f(xxx)) om zo naar een punt xxx′ in de richting van −∇f(xxx) te gaan. Dit wordt
een aantal keer herhaald om hopelijk een goede benadering van OPT te vinden.
Vanwege de eenvoud en algemeenheid van dit algoritme komen gradient descent
methoden overal in machine learning algoritmes voor.

Een belangrijke stap van dit algoritme is de berekening van de gradiënt. Kan
deze berekening worden versneld met quantum technieken? In dit hoofdstuk ont-
wikkelen we een quantumalgoritme dat de gradiënt van f kwadratisch sneller
uitrekent dan de klassieke methode. Om in elke coördinaat een ε-benadering te
verkrijgen van de d-dimensionale gradiëntvector∇f in xxx, voldoet het om O(

√
d/ε)

queries te doen naar de functie f . Door ons quantum gradiëntalgoritme met an-
dere quantumalgoritmes te combineren verkrijgen we een kwadratische verbeter-
ing voor de complexiteit van bijna alle gradient descent optimalisatiealgoritmes.

Deel II: Quantum learning theorie

In het tweede deel geven we twee bijdragen aan de quantum learning theorie, hier
kort samengevat.

Hoofdstuk 6. Door de explosieve toename van de beschikbaarheid van data is
machine learning erg groot geworden. Daarnaast is er in de laatste paar jaar ook
interesse ontstaan voor quantum machine learning, een interdisciplinair vakgebied
dat de kracht van quantummechanica gebruikt om machine learning algoritmes
te verbeteren.

In dit hoofdstuk geven we een overzicht van de theoretische kant van quantum
machine learning: de quantum leertheorie. We geven de voornaamste resultaten
die bekend zijn voor drie modellen van learning voor zowel klassieke als quantum
data: exact leren via membership queries, het probably approximately correct
(PAC) model, en het agnostisch leren model. Naast de informatietheoretische
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resultaten beschouwen we ook resultaten over de tijdcomplexiteit van het leren
in deze modellen.

Hoofdstuk 7. Het PAC model van Leslie Valiant geeft een complexiteitstheo-
retische definitie van wat het voor een conceptklasse C (een verzameling Booleaanse
functies) betekent om efficiënt leerbaar te zijn. In het PAC model is het doel om
een benadering van een onbekende functie uit C te leren door het bekijken van
willekeurige voorbeelden van deze functie. Het is bekend dat het aantal voor-
beelden dat noodzakelijk en voldoende is om C te PAC-leren gegeven wordt door
een combinatorische parameter, de VC-dimensie van C.

In dit hoofdstuk stellen we de vraag of het quantum PAC-leren van C met
minder quantum-voorbeelden kan. We geven een negatief antwoord door te laten
zien dat het aantal benodigde samples in dit geval ook gelijk is aan de VC-dimensie
van C. We beschouwen realistischere en flexibelere versies van PAC-leren zoals
agnostisch leren en leren met ruis. In beide modellen laten we zien dat quantum-
voorbeelden niet krachtiger zijn dan klassieke samples.
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Affecting Meaning. Subjectivity and evaluativity in gradable adjectives.

ILLC DS-2015-02: Mathias Winther Madsen
The Kid, the Clerk, and the Gambler - Critical Studies in Statistics and Cog-
nitive Science



ILLC DS-2015-03: Shengyang Zhong
Orthogonality and Quantum Geometry: Towards a Relational Reconstruction
of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh
Correspondence and Canonicity in Non-Classical Logic

ILLC DS-2015-05: Facundo Carreiro
Fragments of Fixpoint Logics: Automata and Expressiveness

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
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Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
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