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Chapter 1
Introduction

In the first half of the twentieth century physicists discovered that elementary par-
ticles do not obey the classical Newtonian laws, instead obeying different laws.
These laws are now known as the laws of quantum mechanics. Quantum me-
chanics has a tremendous influence on information theory and computer science,
leading to new research areas called quantum information theory and quantum
computation.

Incorporating quantum mechanics into information theory has led to new
communication protocols that achieve goals deemed to be impossible by using
classical computational techniques. For example, the quantum leader election
protocol [47, 98] is a method for selecting exactly one of n many members, giving
each member equal chance of being selected. This is analogous to establishing
a fair n-sided die, and such selections are important for distributive systems. If
each member in a distributive system is anonymous, no general classical algorithm
exists that solves the leader election problem in bounded time and with zero
errors. As another example, we can look at the BB84 quantum key distribution
protocol [21], a secure distribution key protocol. Although still susceptible to
some attacks [106], once the BB84 protocol safely finishes, the distributed key
guarantees safety for eternity, unlike classical key distribution schemes.

Many computer programs also benefit from incorporating quantum mechani-
cal techniques. For example, Grover’s search algorithm [63] is an algorithm that
looks for a key in an unsorted database and is proven to be faster than any clas-
sical algorithm. Shor’s factoring algorithm [95] is an algorithm that factorises
an integer into its prime factors. This algorithm runs in bounded error quantum
polynomial time, whereas any known classical algorithm runs in exponential time.

Similar as for classical computing, logic plays a fundamental role in the theory
of quantum computing. The role of logic becomes central when we look at the
design of quantum programs, especially when we look at their specification and
verification. While quantum computation has its own logical system of so-called
quantum circuits formulated directly in the language of quantum mechanics, there

1



2 Chapter 1. Introduction

are other logical systems that operate on a higher level of abstraction. Quantum
logic, which was originally used to clarify properties of quantum physics [30], has
developed into a broader field, with many logics addressing algebraic structures of
quantum systems [39, 44]. A significant recent development is the strengthening
of quantum logic to be able to address quantum computation [51]. This coincides
with the development to formalize the semantics of quantum programs [48] and
the development of model checkers and verification tools for quantum systems
[61, 57, 105].

While the above logical systems are of interest, it was by further work of
a number of researchers that the connection to modal logic and other systems
commonly used in theoretical computer science (dynamic logic and Hoare logic)
was made. Robert Goldblatt introduced orthologic and orthomodular logic for
orthoframes and orthomodular lattices respectively [62]. Orthomodular lattices
[74] are more general algebraic structures than Ṕıron lattices [86], which are more
traditional quantum structures, as they are strongly related to Hilbert spaces.
Alexandru Baltag and Sonja Smets introduced the logic for quantum actions
[10], a propositional dynamic logic (PDL) on quantum dynamic frames. PDL is
traditionally used for the verification of classical computer programs and quantum
dynamic frames were designed to be dual to Ṕıron lattices. Yet another line of
research was initiated by Samson Abramsky and Bob Coecke. They introduced
categorical quantum logic [1, 2]. Other work exists; see for example Maria Dalla
Chiara and Roberto Giuntini’s book on sharp and unsharp quantum logics [44]
and the work by Chadha et al. [37, 38] and Mateus et al. [78].

This thesis is positioned at the interface between quantum logic and quantum
computation. While building on a long tradition of research in quantum logic
(see [44, 76]), this thesis contributes to the field in the following four themes.

• Many logics are designed to reason about specific physical structures. We
can choose to use direct abstractions of Hilbert spaces, or we can use alge-
braic structures with properties which characterise the quantum properties
of Hilbert spaces. Relating these different quantum structures is important
to show where these structures are positioned. Not all quantum structures
capture all properties of Hilbert spaces. Although quantum dynamic frames
are designed to be equivalent to Ṕıron lattices, in this thesis we provide a
formal proof and extend this result to a duality result by considering two
different types of morphisms.

• We design two new logical systems. Both systems are based on the propo-
sitional dynamic quantum logic research of Alexandru Baltag and Sonja
Smets. One of which, called Quantum Hybrid Logic (QHL), adds nominals,
which provide the power to express atoms and bases, but also opens the
door to a complete axiomatisation. The other one, called Probabistic Logic
for Quantum Programs (PLQP) adds probabilities to extend the logic’s ex-
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pressive power and is able to reason about certain quantum communication
protocols.

• In order to design a logic that is fit to reason about quantum structures, one
would benefit from a deductive system. We axiomatise QHL and PLQP,
the two quantum logics described above. One of these two is shown to be
complete. The other one is used to prove the correctness of certain quantum
information protocols.

• Being able to prove the correctness of a protocol is great, but one could
wonder whether or not we can always find such a proof. In the last part of
this thesis we show that a class of Hilbert space based quantum logics, which
includes the Probabilistic Logic for Quantum Programs, is decidable, mean-
ing there is a deterministic procedure to decide whether or not a formula is
true.

These themes are discussed in more details in the following sections.

1.1 Relating algebraic and spatial quantum struc-
tures

There is a long tradition of investigating dualities between algebraic structures
and “spatial” structures, showing that categories of certain algebras and of certain
spaces are equivalent to each other, except that they have opposite directions of
morphisms. A classic example is the Stone duality between Boolean algebras and
fields of sets [97]; see [73] for the Stone duality and vast extensions thereof. For
dualities seen in modal logic, such as the one between complete atomic Boolean
algebras with operators and Kripke frames, see [32, Chapter 5] and [100, Section
5].1 In Chapter 3 we build further on this tradition and study the duality of two
different quantum structures, Ṕıron lattices [86] and quantum dynamic frames
[10], which are abstractions of Hilbert spaces. Hilbert spaces are among the
standard tools for representing quantum systems, and these abstractions highlight
essential properties of quantum systems.

Ṕıron lattices provide an algebraic perspective on Hilbert spaces and focus on
testable properties of the physical system. Testable properties of a physical system
can be represented as closed linear subspaces of a Hilbert space, with the one-
dimensional subspaces being the states of the system. These states form the atoms
of an atomic lattice of closed linear subspaces. A Ṕıron lattice is such a lattice with
the appropriate constraints for it to capture the abstract structure of a generalized

1While duality plays a crucial role both in Kripke semantics and in locale theory [73], the
two fields use the term “frame” to mean quite different structures. In this thesis we always use
“frame” in line with the terminology of Kripke semantics.
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Hilbert space [86]; a Ṕıron lattice that satisfies “Mayet’s condition” [80] captures
the structure of an infinite dimensional Hilbert space over the complex numbers,
reals, or quaternions. Such lattices highlight the algebraic properties of a physical
system, where joins and meets correspond to the disjunction and conjunction
of the properties being tested, and orthocomplementation corresponds to the
negation of the property. This sets the foundation for an algebraic semantics
of quantum logic. However, on the surface, this logical structure is static and
timeless: to express transformations we need to combine several basic operators
in a non-intuitive way.

Quantum dynamic frames provide a dynamic perspective on quantum sys-
tems. The basic ingredients are states which are related to each other via actions
that transform the system from one state to another. In this way a quantum dy-
namic frame is a type of labelled transition system [10]. Relations are constructed
from atomic actions that are either projections (corresponding to tests) or uni-
tary evolutions (reversible actions). These quantum dynamic frames are used for
reasoning about quantum programs via the “logic of quantum programs” [11], a
natural extension of Hoare logic and propositional dynamic logic, which are used
for reasoning about classical programs [65].

Given that Ṕıron lattices focus on testable properties and appear to be static
and quantum dynamic frames focus on states and actions and are dynamic, it
might seem that these two approaches are scarcely related. We show in Chap-
ter 3 that these two approaches are categorically dual to each other, that is, the
category of one is equivalent to the dual (opposite) category of the other. A first
step was given in [10], where it was observed that a quantum dynamic frame gives
rise to a Ṕıron lattice and vice versa. This relationship concerns just the objects of
the categories. We provide a detailed and complete proof of this observation. We
provide a full categorical structure for both Ṕıron lattices and quantum dynamic
frames, and show that these categories are dual to each other. For each of the
frames and the lattices, we consider two types of morphisms. One type is the one
defined by Moore [81] for two simpler categories: state spaces (symmetric anti-
reflexive frames that separate points) and property lattices (complete atomistic
orthocomplemented lattices). These categories are weaker than the ones we con-
sider in this chapter as they do not capture superpositions which are important
to quantum theory. However, the definition of the morphisms used by Moore can
be used for our categories as well. We also define stronger types of morphisms
for both the Ṕıron lattices and quantum dynamic frames. As these morphisms
are strictly stronger than Moore’s, we refer to them as strong and we refer to
the Moore morphisms as weak. Both Ṕıron lattice morphisms act directly on
properties, while both quantum dynamic frame morphisms act directly on states.
These two types of morphisms are dual to each other (have reverse arrows), as is
noted in the morphism of state property spaces discussed in [3].

Our duality result in Chapter 3 shows that quantum dynamic frames and Ṕıron
lattices form categories that are essentially the same (except for the direction of
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morphisms). We also show that this relation can be restricted to the objects
satisfying Mayet’s condition. As Ṕıron lattices satisfying Mayet’s condition have
already been shown to be equivalent to Hilbert spaces, this result clarifies the
close relationship that quantum dynamic frames have with Hilbert spaces. The
structures of both quantum dynamic frames and Ṕıron lattices are each a focal
point of quantum logic, and hence our duality adds a new perspective to the
formal relation between these different quantum structures.

1.2 Designing hybrid and probabilistic quantum
logics (QHL and PLQP)

In Chapter 4 we introduce a quantum hybrid logic (QHL), which means that
next to the standard operators of intersection, quantum join and orhtocomple-
mentation we add a special set of proposition letters called nominals, which refer
to singleton states or atoms. This is the first attempt (as far as the author is
aware) to use hybrid logic to reason about quantum structures. The syntax of
this logic is in fact equivalent to standard hybrid logic (with down arrow) [5], but
the standard deductive system is extended with four new axioms that are used to
capture the properties of a quantum Kripke model which have been introduced
by Zhong [107]. As quantum Kripke models are equivalent to quantum dynamic
frames [107], one could consider this logic to be an extension of the logic for
quantum actions, introduced by Alexandru Baltag and Sonja Smets [10]. Indeed,
in Chapter 4 we show that all operators of the logic for quantum actions are in
fact expressible in this quantum hybrid logic

Quantum information theory gives us a natural reason to introduce nominals.
Many quantum protocols require an orthogonal basis (that is, a measurement) to
be fixed. We could achieve this by adding constants to the language. However,
the specific choice of the basis is not important, only the relation to, for example,
the initial state of a protocol. For some quantum cryptographic protocols, it is
in fact important that one can choose several bases, and as such, a more flexible
way to define a basis is desirable. The nominals allow us to express in an efficient
way what a basis is, without the need to fix a basis beforehand.

The main goal of this logic is to express and prove the correctness of quantum
protocols. As these are all defined on finite dimensional Hilbert spaces, we limit
our attention to finite dimensional quantum Kripke frames in Chapter 4, in order
to provide a completeness result.

The new logical system that we introduce for quantum reasoning in Chapter 5
and Chapter 6 is based on combining already existing formalisms of quantum
logic, modal logic and probability logic. This gives us a Probabilistic Logic of
Quantum Programs (PLQP), that extends a version [12] of the older Logic of
Quantum Program (LQP), introduced in [11] and developed in [12, 13, 15, 14].
While the original version in [11] contains dynamic modalities [π] (for quantum
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programs π) as well as spatial modalities (to talk about subsystems and local
information), the later ones were replaced in [12] with “epistemic” modalities
KI (capturing the information that is ‘known’ to subsystem I, i.e. it is carried
by the local state of subsystem I). In addition to the dynamic and epistemic
modalities, the logic PLQP presented in Chapter 5 and Chapter 6 is endowed
with a probabilistic modality, capturing the probability that a given test (of a
quantum-testable property) will succeed. This is a novel feature, that greatly
enhances the expressivity of the logic, allowing us to use it for the verification of
probabilistic quantum algorithms.

Although very similar there exists certain differences between the languages
introduced in Chapter 5 and Chapter 6. One of the differences between these
languages is the fact that the language in Chapter 5 simplifies the formulas for
locality to describe full separability with respect to a given set of components.
This simplification of the language allows us to highlight the basic properties in
the proof system that are essential to the properties of bases of a finite dimensional
Hilbert space.

1.3 Axiomatising quantum logics (QHL and PLQP)
There is a large literature on axiomatising logics for classical computation. These
include Hoare Logic [68], Propositional dynamic logic [59], other dynamic logics
[65], and temporal logics [69], and they aid in proving correctness of protocols
and programs. With the increased prospects of quantum devices and computers,
there is a growing interest in (axiomatising) quantum logics.

In Chapter 4, we provide a completeness result for the quantum hybrid logic
discussed above with respect to quantum Kripke frames of dimension at most
n. As the language is very similar to standard hybrid logic, this result builds on
a completeness result for a large class of hybrid logics [32, 31]. We show that
part of our quantum hybrid logic falls inside this class for which the completeness
result applies, while another part of our logic needs additional work to prove
completeness.

Chapter 5 lays a foundation for an axiomatization of the probabilistic logic
for quantum programs (PLQP) discussed above. In the non-probabilistic setting,
a sound axiomatization that is relevant to our work was developed in [11] for the
Logic of Quantum Programs, a quantum analogue of the propositional dynamic
logic, which was used to prove the correctness of the Quantum teleportation
protocol and the Quantum Secret Sharing protocol. But the logic of quantum
programs could not express quantities, and could only account for the correctness
of qualitative properties of algorithms and protocols considered.

The proof system introduced in Chapter 5 is shown to be sound, and we use it
to prove the properties of the Quantum Leader Election protocol of [47] and the
BB84 quantum key distribution protocol [21, 22]. These two protocols are just



1.4. Decidability for a class of Hilbert space based quantum logics 7

examples of what our system can prove, and we are sure there are many others.
But our logic also lays a foundation for the further development in axiomatizing
logics for quantum systems, particularly those that involve probability.

There have been other developments in designing axiomatizations of quantum
logics, some of which have been shown to be complete. In [62], Goldblatt devel-
oped a complete axiomatizion of orthologic and orthomodular quantum logic.
There has also been the development of a Gentzen style proofs systems for ortho-
logic [85]. In [92], Selinger uses a graphical language to axiomatize properties for
dagger compact closed categories, and shows in [93, 94] that this axiomatic system
is also complete with respect to finite-dimensional Hilbert spaces. In [2], Abram-
sky and Coecke use a diagrammatic axiomatization for categorical quantum logic
to prove the correctness of Quantum Teleportation, Logic Gate Teleportation,
and Entanglement Swapping protocols. Further work on the graphical calculi
includes Coecke and Kissinger’s book [40] and the recent work on the zx and zw
calculi [64, 72]. An axiomatization of a quantum logic that involves probabilities
is given in [79].

The completeness result in Chapter 4 separates itself from previous complete-
ness results for quantum logics, as we show completeness for a dynamic quantum
logic that builds on the work of [11], and can be viewed as a quantum analogue
of propositional dynamic logic. Similarly, the logic in Chapter 5, that builds on
the same work of [11], can be viewed as a probabilistic quantum analogue of
propositional dynamic logic.

1.4 Decidability for a class of Hilbert space based
quantum logics

Investigations into the decidability of logical systems play an important role in
computer science and automated reasoning. To prove that a logical system is
decidable essentially means that there exists an effective procedure to answer the
question whether a formula is valid (or satisfiable) or not. While we see a long
history of work on the decidability of various logical systems within the area of
Logic and Computer Science, not many results are known about the decidability
of quantum logics. One of the reasons for this is that the investigations into the
decidability of logical systems are typically triggered by the design of automated
reasoning systems. In the context of quantum reasoning and quantum logic, one
would expect that similar decidability questions would be triggered and motivated
by the research in the area of quantum computing. However, traditional quantum
logics were not designed to be directly applicable to quantum algorithms. One
can observe that the original quantum logics were built in order to capture the
properties of single quantum systems living in an infinite-dimensional Hilbert
space. In contrast, the logics that are of interest for quantum computing focus
mainly on compound systems living in finite-dimensional spaces.
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Motivated by the work in quantum computing, we give a general method
for showing the decidability for a whole variety of quantum logics, including in
particular the logic considered in Chapter 6. The idea behind our method comes
from the work of Dunn et. al. in [50], who translated standard quantum logic
over finite-dimensional spaces into (the equational fragment of) the first-order
theory of real numbers (which is known to be decidable due to A. Tarski’s famous
theorem [99]). We extend this method to cover a wider range of quantum logics,
such as the one considered in Chapter 6.

1.5 Overview of the thesis
This thesis is organised as follows. In Chapter 2, we give an overview of the
development of quantum logic and quantum information theory. As it is impos-
sible to give an overview of all past developments, we will only focus on those
lines of research relevant for this thesis. In Section 2.1, we discuss a standard
Hilbert space model of quantum mechanics. In Section 2.2, we give an overview
of some classical, that is non-quantum, logics and some quantum logics relevant
for this thesis, as well as some key concepts of logic in general that one needs
to understand for this thesis. In Section 2.3, we provide examples of quantum
programs and quantum communication protocols. For all of these examples, we
will express their correctness in a quantum logic in later chapters, and for some
of these we will also prove their correctness.

In Chapter 3, we show a duality between two approaches to represent quan-
tum structures abstractly and to model the logic and dynamics therein. One
approach puts forward a “quantum dynamic frame” [10], a labelled transition
system whose transition relations are intended to represent projections and uni-
taries on a (generalized) Hilbert space. The other approach considers a “Ṕıron
lattice” [86], which characterizes the algebra of closed linear subspaces of a (gen-
eralized) Hilbert space. We define categories of these two sorts of structures and
show a duality between them. This result establishes, on one direction of the
duality, that quantum dynamic frames represent quantum structures correctly;
on the other direction, it gives rise to a representation of dynamics on a Ṕıron
lattice.

In Chapter 4, we introduce a quantum hybrid logic, which is shown to be sound
and complete with respect to finite dimensional quantum models, i.e. quantum
Kripke models of dimension at most n for a fixed n ∈ N. While the syntax of
our logical system is equivalent to standard hybrid logic, the deductive system is
extended with quantum axioms that capture the properties of a quantum Kripke
model.

In Chapter 5, we present a sound axiomatization for a probabilistic modal
dynamic logic of quantum programs. The logic can express whether a state is
separable or entangled, information that is local to a subsystem of the whole



1.6. Acknowledgement of intellectual contributions 9

quantum system, and the probability of positive answers to quantum tests of
certain properties. The power of this axiomatization is demonstrated with proofs
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Chapter 2
Preliminaries

In this chapter we discuss the preliminaries necessary to understand the main
contributions in this thesis. We discuss one of the standard models of quantum
mechanics: the Hilbert space model. Next we review some traditional logics by
Birkhoff/von Neumann and Goldblatt, as well as a quantum logic based on propo-
sitional dynamic logic. We then discuss some protocols in quantum computation
as well as several quantum communication protocols.

2.1 Quantum mechanics
The field of quantum mechanics is too big to be fully reviewed in this thesis, so
instead of giving an overview of all the details I will only cover the main points
necessary to understand this thesis. For a broader overview of the field see for
example [6]. The reader is expected to have some knowledge of complex vector
spaces. See for example [104].

The origin of quantum mechanics, which indicates the point of divergence
from classical physics, has been triggered by the experimental discovery of certain
phenomena (e.g. black body radiation) which could not be accounted for in the
available classical paradigm. Several theories have been proposed to explain these
experimental results, all of which are essentially the same quantum theory. These
theories are based on a set of postulates, from which the entire quantum theory
follows. The postulates in this section are taken from [84].

2.1.1 The state space
The mathematical arena in which quantum mechanics is played is called a Hilbert
space. Let us recall the relevant definitions for a Hilbert space. (Taken from [42].)
First we give the definition for an inner product space.
Definition 2.1.1 (Inner product space). A structure V = (V,+, ·, 〈· | ·〉) is a
complex inner product space if

11
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1. (V,+, ·) is a vector space over the field of complex numbers, and

2. 〈· | ·〉 is an inner product, that is, a function 〈· | ·〉 : V × V → C such that
for all x, y, z ∈ V and λ ∈ C we have

(a) conjugate symmetry: 〈x | y〉 = 〈y | x〉,

(b) linearity in the second argument1:
〈x | y + z〉 = 〈x | y〉+ 〈x | z〉 ,
〈x | λy〉 = λ 〈x | y〉 , and

(c) positive definiteness:
〈x | x〉 ≥ 0,
〈x | x〉 = 0 iff x = 0.

We usually denote an inner product space with the vector space V , as we
assume that there will be no confusion about which inner product structure is
used. Each inner product induces a norm, sometimes called the inner product
norm, given by

‖x‖ =
√
〈x | x〉.

We can now give the definition of a complete inner product space.

Definition 2.1.2 (Complete inner product space).

• A sequence ⟪xk⟫k in V is Cauchy iff for every ε > 0 there exists an Nε ∈ N
such that for all n,m > Nε we have ‖xn − xm‖ < ε.

• A sequence ⟪xk⟫k in V converges to a vector x ∈ V iff limk→∞ ‖xn − x‖ = 0.

• An inner product space V is complete iff every Cauchy sequence converges
to some vector in V .

This leads us to the definition of a Hilbert space.

Definition 2.1.3 (Hilbert space). A Hilbert space is a complete inner product
space.

Now we can state the first postulate of quantum mechanics. Note that a unit
vector is a vector x with norm one, i.e. ‖x‖ = 1.

Postulate 1 ([84]). Associated to any isolated physical system is a complex
vector space with an inner product (that is, a Hilbert space) known as the state
space of the system. The system is completely described by its state vector, which
is a unit vector in the system’s state space.

1Some prefer to have linearity in the first argument, which would lead to conjugate linearity
in the second argument.
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Given a state vector |φ〉 we obtain the density operator corresponding to |φ〉
by taking the matrix |φ〉 〈φ|. These are called pure state. Sometimes we do not
know in which pure state the system is, but we do know that with probability pi
the system is in pure state |φi〉. Then we can describe the mixed state by taking
the density operator ρ = ∑

i pi |φi〉 〈φi|.
Let us discuss some important concepts in a Hilbert space.

Definition 2.1.4 (Orthogonality). Let H be a complex Hilbert space. Two
vectors x, y ∈ H are orthogonal, denoted by x ⊥ y, iff 〈x | y〉 = 0. Given a subset
X ⊆ H the orthocomplement of X, denoted by ∼X, is given by

∼X def= {y ∈ H | y ⊥ x for all x ∈ X}.

Two subsets X, Y ⊆ H are orthogonal, denoted by X ⊥ Y , iff x ⊥ y for all x ∈ X
and y ∈ Y . A subset X ⊆ H is a closed linear subspace iff X = ∼∼X.

As we will discuss below, in quantum mechanics the outcome of any exper-
iment that we can perform will correspond to some closed linear subspace of a
Hilbert space. Therefore when combining two (closed linear) subsets K,L ⊆ H,
we are normally not interested in the union of the two sets, but in the smallest
closed linear subset containing both sets, which we call the quantum join.

Definition 2.1.5. Let H be a complex Hilbert space and let K,L ⊆ H be two
subsets. The quantum join of K and L, denoted by K t L, is given by

K t L def= ∼∼(K ∪ L).

Whenever relevant, we often identify a state vector |φ〉 with the singleton set
{|φ〉}. For example, we write |φ〉 t |ψ〉 instead of {|φ〉} t {|ψ〉}. Now we give the
definition of an orthonormal basis.

Definition 2.1.6 (Basis). Let H be a Hilbert space and let I be an index set. A
set {|φi〉}i∈I of vector states |φi〉 ∈ H is called a basis iff

1. ⊔I |φi〉 = H, and

2. ⊔J |φj〉 6= H for any proper subset J ( I.

A basis {|φi〉}i∈I is called normal iff ‖|φ〉‖ = 1 for all i ∈ I. A basis is called
orthogonal iff |φi〉 ⊥ |φj〉 for all i 6= j ∈ I. A basis is called orthonormal iff it is
both orthogonal and normal.

The Hilbert space H has dimension n iff the index set I of a basis has size n,
i.e. |I| = n.

Given a finite dimension n, a complex Hilbert space is isomorphic to Cn, the
complex n-dimensional vector space. In quantum information theory we almost
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always work in a finite dimensional complex Hilbert space. If {|ψi〉}i is an or-
thonormal basis, then we can rewrite |φ〉 as

|φ〉 =
∑
i

〈ψi | φ〉 |ψi〉 .

The basic elements of quantum information theory are called qubits, which is
short for quantum bits. These are described by a unit vector in a 2-dimensional
complex Hilbert space, thus C2. The standard basis is given by

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
.

Here |0〉 and |1〉 correspond to the classical states of a bit 0 and 1. Any other unit
vector of the form |φ〉 = α |0〉+β |1〉, with α, β 6= 0 is said to be in a superposition
of |0〉 and |1〉.2 Another very common basis is called the Hadamard basis, given
by |+〉 = 1√

2(|0〉+ |1〉) and |−〉 = 1√
2(|0〉 − |1〉).

Before we continue to discuss quantum transformations, let us discuss a struc-
ture that is very similar to a Hilbert space, but that is more general. Some quan-
tum structures we discuss in this thesis do not capture all properties of quantum
mechanics, instead they capture all properties of a generalised Hilbert space as
presented in the following definition.

Definition 2.1.7 (Generalised Hilbert space). A generalised Hilbert space is a
module V over a division ring K, with an involution ( )∗ : K → K such that for
k, l ∈ K we have

(k∗)∗ = k

(k · l)∗ = l∗ · k∗

and a Hermitian product 〈 , 〉 : V × V → K such that for x, y, z ∈ V and k ∈ K
we have

〈x+ ky, z〉 = 〈x, z〉+ k〈x, y〉
〈x, y〉∗ = 〈y, x〉

〈x, x〉 = 0⇔ x = 0

and such that for any M ⊆ V we have

∼M +∼∼M = V.

2In Subsection 2.1.3 we will explain that α and β correspond to the probability of measuring
|0〉 and |1〉 respectively.
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2.1.2 Quantum transformations
Transformations within a closed quantum system are described by unitary trans-
formations. Let us recall the relevant definitions of linear algebra.

Definition 2.1.8 (Adjoint operator). Let H be a complex Hilbert space and let
A : H → H be a continuous linear operator on H. The adjoint operator of A
denoted by A† is the unique continuous linear operator A† : H → H such that
for all x, y ∈ H we have

〈Ax | y〉 = 〈x | A†y〉 .

Existence and uniqueness of the adjoint operator follows from the Riesz rep-
resentation theorem [89, 90].

Definition 2.1.9. Let H be a complex Hilbert space. A continuous linear oper-
ator U : H → H is called a unitary transformation iff UU † = I, where I denotes
the identity operator.

With these definitions we can state the second postulate concerning transfor-
mations.

Postulate 2 ([84]). The evolution of a closed quantum system is described by a
unitary transformation. That is, the state |ψ1〉 of the system at time t1 relates
to the state |ψ2〉 of the system at time t2 by a unitary operator U which depends
only on the times t1 and t2,

|ψ2〉 = U |ψ1〉 .

The above postulate assumes a discrete time. We can reformulate this postu-
late for continuous time using the Schrödinger equation:

i~
d |φ〉
dt

= H |φ〉 ,

where ~ is Planck’s constant, a physical constant, and H is the Hamiltonian, a
fixed Hermitian operator. Although some applications in quantum information
theory consider the time needed for an operation to be performed, especially
in quantum cryptology, most applications simple assume each transformation is
finished in a fixed amount of time.

From UU † = I we can show that a unitary transformation respects the inner
product:

〈Uψ | Uφ〉 = 〈U †Uψ | φ〉 = 〈ψ | φ〉 .

As a consequence, we cannot copy qubits, or any other type of quantum in-
formation, which we will show in Theorem 2.1.12. Also note that all unitary
transformations are invertible.
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We define a special unitary transformation called the Hadamard transforma-
tion, which we denote with H.3 The Hadamard transformation sends the stan-
dard basis to the Hadamard basis, more precise, H is defined by H |0〉 = |+〉 and
H |1〉 = |−〉, that is

H = 1√
2

(
1 1
1 −1

)
.

Note that the Hadamard matrix is its own inverse and adjoint.

2.1.3 Quantum measurements
In this subsection we go over the presentation that is most often used in quantum
theory of how measurements are performed on quantum systems.

Definition 2.1.10 (Projections). LetH be a complex Hilbert space. An operator
P : H → H is called a projection iff P = PP †, or equivalently, iff P is self-adjoint
(P = P †) and idempotent (P = P 2).

For each projection P we find that the image =(P ) is a closed linear subspace.
Conversely, if X ⊆ H is a closed linear subspace, then we can define a projection
whose image is X by PX |φ〉 = |ψ〉 where |ψ〉 ∈ X and ‖〈φ | ψ〉‖ ≥ ‖〈φ | χ〉‖
for all |χ〉 ∈ X. Two projections P and Q are orthogonal if their corresponding
closed linear subspaces are orthogonal.

Postulate 3 ([84]). Quantum measurements are described by a collection {Pn}
of orthogonal projections such that⊔

n

=(Pn) = H. (2.1)

The index n refers to the measurement outcomes that may occur in the experi-
ment. If the state of the quantum system is |φ〉 immediately before the measure-
ment then the probability that result n occurs is given by

p(n) = ‖Pn |φ〉‖2 ,

and the state of the system after the measurement is

Pn |φ〉
‖Pn |φ〉‖

.

As a consequence of (2.1) and the orthogonality of the Pn, the probabilities will
sum to one: ∑

n

p(n) =
∑
n

‖Pn |φ〉‖2 = 1.

3We no longer need to refer to the Hamiltonian, and therefore from now on H will refer to
the Hadamard transformation.
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|0〉

|1〉

α

sinα

cosα

|φ〉 If we measure a qubit |φ〉 =
cosα |0〉+sinα |1〉 using the stan-
dard basis {|0〉 , |1〉}, then the
probability of changing into |0〉
is | cosα|2 and the probability of
changing into |1〉 is | sinα|2.

Figure 2.1: A qubit is measured at an angle

Postulate 3 can be stated more generally, allowing different types of measure-
ment operators than just orthogonal projection, see for example [84]. However,
we only consider measurements using orthogonal projections in this thesis, as
these are strong enough to describe all quantum protocols under consideration.

In section 2.1.2 we stated that all quantum transformations are unitary trans-
formations, yet it is important to note that a projection is not a unitary transfor-
mation. However, in this thesis we consider the measurement device to be outside
the quantum system to be measured. So we do not consider a measurement as
a quantum transformation, but as a way to extract classical information from a
quantum system, e.g. the index n of Pn, and the state changes as a price that
we have to pay for this information. We could consider a larger closed quantum
system enclosing both the measurement device and the system to be measured;
then a measurement would be described by a unitary transformation.4

Figure 2.1. illustrates an example of a quantum measurement, i.e. the mea-
surement of a qubit in the standard basis.

2.1.4 Multi-partite systems.
In this subsection we describe how an individual quantum system can be com-
posed of different parts or subsystems.

Definition 2.1.11 (Tensor product). Let V and W be two inner product spaces.
The tensor product, denoted by V ⊗W , is constructed by taking the equivalence
classes over the set of formal sums over the cartesian product

F (V ×W ) def= {
n∑
i=0

λi(vi ⊗ wi) | λi ∈ C, vi ∈ V,wi ∈ W and n ∈ N}.

under the equivalence relation defined by
4This problem is commonly referred to as the measurement problem. Several different solu-

tions to the measurement problem have been proposed, see for example [35, 91, 4].
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1. (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, and

3. λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw).

The inner product of the tensor product V ⊗W is defined by

〈v1 ⊗ w1 | v2 ⊗ w2〉V⊗W = 〈v1 | v2〉V 〈w1 | w2〉W ,

and then expanded linearly to all elements of V ⊗W .
Given a unitary transformation U1 : V → V and U2 : W → W the tensor

product of two unitary transformation is given by putting U1 ⊗ U2(v ⊗ w) =
U1(v) ⊗ U2(w) for all v ∈ V and w ∈ W and then expanded linearly to all
elements of V ⊗W .

Postulate 4 ([84]). The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems. Moreover, if we
have systems numbered 1 through n, and system i is prepared to be in the state
|φi〉, then the joint state of the total system is |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉.

Note that we omit ⊗ whenever possible, thus |φ〉⊗ |ψ〉 is written as |φ〉 |ψ〉 or
sometimes we even write |φψ〉.

As mentioned before, the requirement for unitary transformations to respect
the inner product implies that a unitary transformation cannot copy elements of
a Hilbert space. The following illustrates what this means.

Theorem 2.1.12 (No-cloning theorem [49, 103]). Let H be a complex Hilbert
space. Then there exists no unitary transformation U on H ⊗ H such that
U(|φe〉) = |φφ〉 for all |φ〉 ∈ H, where |e〉 ∈ H is some fixed unit vector.

Proof. Suppose towards a contradiction that we have a unitary transformation
U∗ and some fixed unit vector |e〉 ∈ H such that U∗ |φe〉 = |φφ〉 for all |φ〉 ∈ H.
Take any two unit vectors |φ〉 , |ψ〉 ∈ H such that 〈φ | ψ〉 6= 0, 1. Then we have
U∗ |φe〉 = |φφ〉 and U∗ |ψe〉 = |ψψ〉. If we take the inner product we find

〈φe | ψe〉H⊗H = 〈φ | ψ〉H 〈e | e〉H = 〈φ | ψ〉H , and
〈φφ | ψψ〉H⊗H = 〈φ | ψ〉H 〈φ | ψ〉H = 〈φ | ψ〉2H .

As U∗ preserves the inner product we find 〈φ | ψ〉 = 〈φ | ψ〉2, which contradicts
our assumption that 〈φ | ψ〉 6= 0, 1.

Let us give one example of a unitary transformations that acts on more than
one qubit. The controlled not gate is given by

CNOT(|x〉 |y〉) def= |x〉 |y ⊕ x〉 ,



2.2. Quantum logic 19

where ⊕ is the XOR operator. As a classical gate, that is CNOT(x, y) = (x, y⊕x),
this gate can be used to copy x by taking y = 0. Even as a quantum gate, if we
take |y〉 = |0〉, this gate will copy |x〉 if it is either |0〉 or |1〉. But now consider
the superposition |x〉 = |+〉 = 1√

2(|0〉+ |1〉), then we find

CNOT( 1√
2

(|0〉+ |1〉)⊗ |0〉) = CNOT( 1√
2

(|00〉+ |10〉))

= 1√
2

(CNOT(|00〉) + CNOT(|10〉))) = 1√
2

(|00〉+ |11〉).

This is clearly not a copy of |x〉, because the two qubits are entangled. More-
over, we can use the equalities |0〉 = 1√

2(|+〉 + |−〉) and |1〉 = 1√
2(|+〉 − |−〉) to

obtain
1√
2

(|00〉+ |11〉) = 1√
2

(|−−〉+ |++〉).

Measuring |x〉 = |+〉 in the basis {|−〉 , |+〉} will always have |+〉 as outcome,
whereas measuring the first qubit of 1√

2(|00〉+ |11〉) in the same basis has a 50%
chance of collapsing the first qubit to |−〉.

2.2 Quantum logic
Now that we reviewed the basics of quantum mechanics, we will turn our attention
to quantum logic, the mathematical tool we want to use to analyse quantum
protocols. Although Hilbert spaces have proven to be very successful as a model
for quantum mechanics, from a logical point of view a higher-level of abstraction
that allows us to reason about physical properties and propositions is required.
In classical physics, a property P is a subset of the state space S. A testable
proposition is a property for which there exists an experiment that decides with
certainty whether the current state of the system is in P or in the complement
S \P . In classical physics, if P is a testable property, so is the complement S \P .
In quantum mechanics, we represent a testable property P not by a subset of the
state space S, but by a closed linear subspace in a Hilbert space H. Doing this
indicates that we deviate from the classical scenario, because we can no longer
say that an experiment can decide with certainty on whether the current state of
the system is such that P or its classical (set-theoretic) complement is true. The
classical complement of a testable property is not guaranteed to be a testable
property (i.e. a closed linear subspace of H). In contrast the orthocomplement
P⊥ is a testable property. One should note that singleton states, represented by a
vector |φ〉 are not testable properties, because a measurement cannot distinguish
between |φ〉 and λ |φ〉 for a non-zero λ ∈ C. It does not make sense to distinguish
between for example the states |0〉 and − |0〉 if these states behave completely
similar. This is where quantum logic comes in.
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2.2.1 Standard quantum logic
In 1932 John von Neumann wrote an influential piece of work on the mathematical
and logical foundations of quantum mechanics [101]. The notes on quantum logic
presented in this book were expanded to a full quantum logic in 1936 by Garrett
Birkhoff and John von Neumann [30].

Given a Hilbert spaceH, Birkhoff and von Neumann take the one-dimensional
subspaces of a Hilbert space as the set of states. The testable properties are the
closed linear subspaces. Based on the set of testable properties we can build a
lattice structure. These testable properties form a lattice, where the join is the
quantum join and the meet is the intersection. If based on classical mechanics the
lattice would have been Boolean, but due to the nature of quantum mechanics,
this lattice does not satisfy the distributive law:

P ∧ (Q tR) = (P ∧Q) t (P ∧R). (2.2)

Before we give a counterexample for (2.2) let us introduce some notation: for a
vector v ∈ H let us denote the one-dimensional subspace generated by v with v.
For a set of vectors X ⊆ H, the smallest closed linear subspace containing X (or
generated by X) is denoted with X.

As a counter example for (2.2), take P = |+〉, Q = |0〉 and R = |1〉. We have
seen that |+〉 is a superposition of |0〉 and |1〉, and |0〉 t |1〉 is basically the set of
all superpositions of |0〉 and |1〉. So the left-hand side of (2.2) equals |+〉. But on
the right-hand side of (2.2), both |+〉 ∧ |0〉 and |+〉 ∧ |1〉 are equal to the empty
set, and therefore the quantum join also equals the empty set.

Instead of the distributive law, Birkhoff and von Neumann showed that a
finite dimensional lattice satisfied a weaker law, called the modular law:

P ≤ R =⇒ P t (Q ∧R) = (P tQ) ∧R.

On infinite Hilbert spaces this law fails, but Husimi noted that the orthomodular
law is respected in every Hilbert space [71]:

P ≤ Q =⇒ P t (∼P ∧Q) = Q.

Let us discuss a slightly different flavour of this standard quantum logic, which
is closer related to the logics discussed in this thesis. In this flavour, the logic
expresses properties of a quantum system, by using sentences (or propositions)
φ which refer to a closed linear subspace of the given Hilbert space. Sentences
are constructed recursively from atomic sentences using sentential connectives.
Atomic sentences are the simplest sentences with no internal structure subject
to the analysis of the logic. To what subspace such a sentence p refers can vary.
We use a specific sentence ⊥ to denote any contradiction, i.e., the 0-dimensional
subspace {~0}. Sentential connectives are operators on sentences that take simpler
sentences as arguments and return new, more complex sentences. The grammar
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of the language of standard quantum logic can be given in the following BNF-
format:

φ ::= p | ⊥ | ∼φ | φ ∧ φ | φ t φ (2.3)

This language is built up from a given set VT of propositional variables and a set
CT of propositional constants. In particular VT contains the atomic sentences p
and we work for now with only one propositional constant ⊥, hence CT = {⊥}.
The basic set of atomic sentences and constants will be denoted as AT = VT ∪
CT . We then use our grammar to build more complex sentences from AT via
application of the given quantum connectives. The quantum negation ∼φ will
below be interpreted as the orthocomplement of the subspace of φ; the conjunction
φ∧ψ is used to refer to the intersection of the subspaces φ and ψ; and the quantum
disjunction φ t ψ is used for the closure of the span of the union of φ and ψ.

To set the details of our semantics, we first fix a Hilbert space H and write Σ
for the set of (pure) states, i.e. the rays or one-dimensional subspaces of H. In
this semantics we associate each sentence φ with a subset JφK ⊆ Σ, which gives
it an interpretation. As such s ∈ JφK means that φ is the case at state s ∈ Σ, or
that s satisfies φ.

In standard quantum logic, JφK is typically taken to be a “closed linear sub-
space” of H. Here we use scare quotes because, strictly speaking, JφK ⊆ Σ is a
different type of object than closed linear subspace T ⊆ H; yet we henceforth
refrain from stressing the type difference when the correspondence is obvious.
To denote this correspondence, given any non-zero vector v ∈ H, we write ṽ for
the ray that v belongs to. Moreover, given any subset A ⊆ H that is closed
under scalar multiplication, we write Ã for the corresponding subset of Σ, i.e.,
Ã = { ṽ ∈ Σ | v ∈ A }; on the other hand, given any subset S ⊆ Σ, we write S
for the corresponding subset of H, that is, S = { v ∈ H | ṽ ∈ S } ∪ {~0}, which is
closed under scalar multiplication.5

In our semantics, we define interpretations JφK ⊆ Σ for all the sentences φ
recursively, i.e. along the recursive syntactic construction of φ. First we semanti-
cally interpret each atomic sentence p ∈ AT by a closed linear subspace JpK ⊆ Σ
of H (or, strictly speaking, a subset of Σ such that JpK is a closed linear subspace
of H) of any dimension.6

Definition 2.2.1. An assignment is a function J·K : AT → P(Σ), where P(Σ) is
the powerset of Σ, such that JpK is a closed linear subspace of H for every p ∈ AT .

Since we intend ⊥ to refer to contradiction, we further require that assign-
ments satisfy

5Note that ∅ = {~0}, so that ∅ as a subset of Σ corresponds to the 0-dimensional subspace
{~0} ⊆ H rather than ∅ as a subset of H.

6We often use p in such a way that p is the case at exactly one state, in which case JpK is a
singleton consisting of that state. Yet, in general, JpK is any (set of states that corresponds to
a) closed linear subspace, so that p may be the case at several (or no) states.
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1. J⊥K = ∅ = {̃~0} ⊆ Σ (corresponding to the 0-dimensional subspace {~0} ⊆
H).

Now, given an assignment of JpK to all p ∈ AT , we extend it to all the sentences
φ recursively, with the inductive clause for the quantum connectives as follows:

2. J∼φK = ∼JφK, the orthocomplement of JφK (or its corresponding subset of
Σ);

3. Jφ ∧ ψK = JφK ∩ JψK;

4. Jφ t ψK = JφKtJψK = ∼(∼JφK∩∼JψK), the closure of the span of JφK∪JψK.

This gives an interpretation JφK for all the sentences φ in the quantum logic with
∼, ∧, t.

Decidability of standard quantum logic

To prove that a logical system is decidable essentially means that there exists
an effective procedure to answer the question whether a formula is valid (or
satisfiable) or not. Given a quantum logic (including its syntax and Hilbert space
semantics) to reason about a specific quantum system, we can ask if a given
formula in the logic is valid, i.e. true no matter which state the system may be
in. For instance, Pt∼P refers to the whole space and hence is valid, irrespectively
of which subspace P may refer to. Thus, the family of valid formulas captures
the inherent features that ∼, ∧, and t show in the given logic.

One can also regard formulas as terms for subspaces and consider valid equa-
tions among them; e.g., we have P t Q = ∼(∼P ∧ ∼Q) regardless of which
subspaces P and Q may refer to. The decidability result by Dunn et al. [50]
concerns such equational theories. They translated standard quantum logic over
finite-dimensional spaces into (the equational fragment of) the first-order the-
ory of real numbers, which is known to be decidable due to A. Tarski’s famous
theorem [99].

Theorem 2.2.2 (Dunn et al. [50]). Given a finite-dimensional Hilbert space H,
the family of equations (among terms for closed linear subspaces of H) that are
valid in H is decidable, in the sense that there is an effective procedure that, given
any equation, decides whether it is valid in H or not.

2.2.2 Ṕıron lattice
Birkhoff and von Neumann started with a Hilbert space, then they generated a
lattice structure and showed some properties. Ṕıron took a different approach and
asked the following question: if we start from a lattice structure, what properties
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does the lattice need to posses to become a quantum lattice, that is, a lattice that
is formed by the closed linear subspaces of a Hilbert space?

Before we look into the work of Ṕıron, let us first make a remark about the
notation. In Chapter 3 we will establish a categorical duality result between Piron
lattices and the relational structures called Quantum dynamic frames7.

It will be important to distinguish between operators and elements in Ṕıron
lattices and Quantum dynamic frames. Therefore we use small letters p, q, . . . for
elements in Ṕıron lattices, which correspond to testable properties P in Hilbert
spaces (and Quantum dynamic frames). The orthocomplement is denoted with
p⊥ (instead of ∼P ) and the quantum join is denoted with p∨q (instead of P tQ).

The properties that Ṕıron defined are as follows.

Definition 2.2.3. A bounded lattice L is a lattice with a greatest element I
(“top”) and a least element O (“bottom”). An ortholattice L is a bounded lat-
tice (L,≤) that satisfies (1) below. An orthomodular lattice L is an ortholattice
(L,≤,−⊥) that satisfies (2). A propositional system L is an orthomodular lat-
tice (L,≤,−⊥) that satisfies (3)–(5). Lastly, a Piron lattice L is a propositional
system (L,≤,−⊥) that satisfies (6).

1. Orthocomplement: The lattice L is equipped with a map −⊥ : L → L
such that

(a) p⊥⊥ = p;
(b) p ≤ q implies q⊥ ≤ p⊥;
(c) p ∧ p⊥ = O and p ∨ p⊥ = I.

2. Weak Modularity: q ≤ p implies p[q] = q, where p[q] := p ∧ (p⊥ ∨ q).

3. Completeness: For any A ⊆ L, its meet ∧A and join ∨A are in L.

Call a ∈ L an atom if a 6= O and either p = O or p = a holds for every p ∈ L
such that p ≤ a. Write At(L) for the set of atoms of L.

4. Atomicity: For any p 6= O, there is an a ∈ At(L) such that a ≤ p.

5. Covering Law: If a ∈ At(L) and a 6≤ p⊥ then p[a] ∈ At(L).8

6. Superposition Principle: For any two distinct a, b ∈ At(L), there is a
c ∈ At(L), distinct from both a and b, such that a ∨ c = b ∨ c = a ∨ b.9

7A categorical duality is a contravariant equivalence, and this standard definition is reviewed
in more detail in Section 2.2.5. A quantum dynamic frame is a quantum analog of a labelled
transition system, and a precise definition will be given in Section 2.2.3.

8In an orthomodular lattice, this statement of the Covering Law is equivalent to that in [86].
See [86] or [20] for proofs.

9Usually a Piron lattice is defined with the property called irreducibility instead of (6); see,
for example, [102]. Yet a propositional system satisfies (6) iff it is irreducible.
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We say that a Ṕıron lattice L is realisable by a Hilbert space, if there exists a
Hilbert space, such that the lattice of closed linear subspaces is isomorphic with
the Ṕıron lattice L. Ṕıron showed the following theorem.
Theorem 2.2.4 (Ṕıron [86]). Each Ṕıron lattice of dimension at least 4 can be
realised by a generalized Hilbert space.

A generalized Hilbert space is not exactly a Hilbert space. Solér [83] and Mayet
[80] formulated an additional condition under which the Ṕıron lattice is realisable
by a Hilbert space (over the complex numbers, the reals or the quartonians).
However, Mayet’s condition requires the Ṕıron lattice to have infinite height,
and hence the corresponding Hilbert space to have infinite dimension, making
it impractical for many applications in quantum information theory. See [3] for
a more in depth review of the relationship between Ṕıron lattices and Hilbert
spaces.

2.2.3 Modal logic approach
Modal logic

Modal logic is a language for reasoning about relational structures. It is a good
choice that balances being intuitive and expressive with nice complexity proper-
ties. For example, modal logics are the bisimulation invariant fragment of first
order logic [23, 24]. We only review the basic definitions to provide the notation
used in this thesis. An overview of modal logic can be found in [32].

Let us define a standard modal logic. Let Prop be a set of proposition letters.
φ ::= p | ¬φ | φ ∧ φ | �φ,

where p ∈ Prop. The box operator �φ can mean many things, like “at the next
step φ holds”, “somewhere in the future φ holds” or “φ is known”. In our quantum
setting �φ usually means φ holds at all non-orthogonal states, that is, after any
measurement φ still holds.

The semantics is given on Kripke frames, that is, a pair F = (S,R), where S
is a set of states and R ⊆ S × S is a relation. A Kripke model is a Kripke frame
paired with a valuation V : Prop → P(S), where V (p) is the set of states where
p holds.

M, s � p ⇔ s ∈ V (p)
M, s � ¬φ ⇔M, s 2 φ
M, s � φ ∧ ψ ⇔M, s � φ and M, s � ψ

M, s � �φ ⇔ if (s, t) ∈ R, then M, t � φ.

If a formula φ is true at every state in M, we say φ is valid in M and write M � φ.
If φ is valid in all Kripke models M, then we say φ is valid and write � φ. Lastly,
if φ is true in every model based on F , then φ is valid on F and we write F � φ.
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Hybrid logic

Arthur Prior introduced hybrid logic [87]. Compared to modal logic, hybrid logic
is more expressive, at the cost of losing some desirable properties that standard
modal logic has. For example, hybrid logic is no longer bisimilation invariant.
The logic we use in this thesis is more related to the hybrid language introduced
by Patrick Blackburn and Jerry Seligman [33]. Hybrid logic is a modal logic where
we can name states with nominals. The idea is to sort the proposition letters into
two groups: “normal” proposition letters, that act the same as proposition letters
in modal logic, and nominals, that are used to name states in the sense that they
are true at exactly one single state.

Introducing names for states is quite natural for quantum modal logics. We
have seen that Ṕıron lattices are atomic, which implies they have “smallest” ele-
ments called atoms just above⊥, that is, there are no elements smaller than atoms
other than ⊥. In Kripke models these atomic elements correspond to single states,
so nominals allow us to refer to atoms. We can use these nominals to express
properties like a basis, or to define what a projector or unitary transformation
actually does.

Let us define a standard hybrid logic, which extends the standard modal
language with nominals i, variables x, @i-operators to state that a formula holds
at state i and ↓x.-operators which name the current state with x. Let Prop, Nom
and Var be three countable and pairwise disjoint sets of proposition letters.

φ ::= p | i | x | ¬φ | φ ∧ φ | �φ | @kφ | ↓x.φ,

where p ∈ Prop, i ∈ Nom, x ∈ Var and k ∈ Nom ∪ Var. A formula φ is called
closed if for all x ∈ Var all occurrences of x in φ only appear under the scope
of a down arrow ↓x.(·). The Hybrid Language HL is the collection of all closed
formulas.

The models for hybrid logics are Kripke models M = (S,R, V ), where V is a
valuation function V : Prop ∪ Nom → PS with the additional condition that for
all i ∈ Nom we have V (i) = {s} for some s ∈ S. In words, each nominal i holds
at precisely one state s. The semantics for the hybrid operators is given by

• M, s � i iff V (i) = {s},

• M, s � x iff V (x) = {s},

• M, s � @kφ iff M, t � φ, where V (k) = {t}, and

• M, s � ↓x.φ iff M[V (x) := {s}], s � φ, where M[V (x) := {s}] is the model
obtained by extending the valuation V of M by putting V (x) := {s}.

With nominals we can define frame properties that cannot be defined in the
standard modal language. For example, superposition is defined by ♦♦i, i.e. each
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state is reachable from each other state in at most two steps. This implies that
the frame is connected, which we know cannot be defined in the standard modal
language (See [32, p.437]).

Although we can name states with nominals, in general we cannot assume that
all states are named. In fact, in most cases we cannot name all states, because the
model will be uncountably large. For example, the set of one-dimensional sub-
spaces of a two dimensional complex vector space is uncountable. So the quantum
bit is already modelled by an uncountably large Kripke model. Therefore it is
convenient to be able to name states on the fly using ↓x.φ, because to define a
projection we not only need to speak about the properties of the current state,
but also about the properties of the projections of the current state. Note that
we can safely assume the current state is named, for example, i → �♦i defines
symmetry, but we cannot assume each state reachable from the current state is
also named.

Soundness and completeness One goal of this thesis is to make a step to-
wards an automated reasoning system about quantum computation. The choice
of our logical systems are therefore not only motivated by their expressibility
and intuitiveness, but also by computational considerations. The logics should
be expressive enough to be able to handle the algorithms and protocols we wish
to consider, but also simple enough for a computer to automatically check the
correctness.

We will discuss two important parts of the logic: the semantics and the (syn-
tactical) deductive system. Given a logic L, the semantics for a given model M
decides whether or not a formula φ ∈ L holds at a given state s ∈M, denoted by
M, s � φ. If a formula holds at every state in a model, we write M � φ. And if a
formula holds at every state in every model we call the formula valid and write
� φ. The deductive system provides a way to deduce formulas (from axioms)
purely based on syntactical considerations. If we can deduce a formula φ from
the axioms, we write ` φ.

Ideally, we would like the semantics and deductive system to correspond to
each other, that is ` φ iff � φ. In practice, however, we find many examples
which do not satisfy this equation. Soundness, if ` φ then � φ, can be considered
a minimal requirement for any formal logical system. It states that any formula
we prove is actually valid. A logical system that proves formulas that are not
valid, would be rather silly to consider, as it destroys the whole point of a formal
proof system. Therefore every formal logic should be sound, and in particular
every logic considered in this thesis is sound.

The other direction is called completeness, if � φ then ` φ. Completeness
ensures that any tautology, a formula valid in all models under consideration,
can be proven within the formal proof system. In addition, if a deductive system
is complete, then adding any valid axiom will not increase its deductive power.



2.2. Quantum logic 27

In many cases, we are only interested in models with certain properties. Often
we restrict ourself to a class of models and then say that a system is sound and
complete with respect to this class of models.

Completeness of hybrid logic Let us now show a known completeness result
for hybrid logic. Let us first discuss some known lemmas and theorems in hybrid
logic, all of which can be found in [32]. For the first lemma we first need to
provide definitions for a pure formula and a named model.

Definition 2.2.5 (Pure formula). A formula is called pure, if all its atoms are
nominals, i.e. no variables and proposition letters occur in the formula. A formula
ψ is called an instance of φ if there is a function f : Prop ∪ Nom ∪ Var →
Prop∪Nom∪Var such that ψ can be obtained from φ by replacing all occurrences
of a ∈ Prop ∪ Nom ∪ Var by f(a). With a pure instance ψ of φ we mean ψ is a
pure formula and an instance of φ.

Note that a pure formula does not contain any variables and therefore cannot
contain any down arrows either.

Definition 2.2.6 (Named model). A model is called named if all states are named
by a nominal.

The following lemma explains a connection between validity of a pure formula
on a frame and being valid in a named model based on that frame.

Lemma 2.2.7 ([32, Lemma 7.22]). Let F = (S,R) and let M = (S,R, V ) be a
named model based on F . Let φ be a pure formula. Suppose that for all pure
instances ψ of φ we have M � ψ. Then F � φ.

Several complete deductive systems exist for hybrid logic. We will discuss
a small variation on the deductive system given in [32], using an axiom from
[31] to handle the down arrow ↓x.φ. In Figure 2.2 we give the rules, where σ
is a function σ : Prop ∪ Nom ∪ Var → HL(@, ↓) such that nominals are sent to
nominals and variables are sent to variables, that is, σ|Nom : Nom → Nom and
σ|Var : Var → Var. The formula φσ is obtained from φ by uniformly replacing all
occurrences of a ∈ Prop ∪ Nom ∪ Var by σ(a). In Figure 2.3 we state the axioms.

We can prove completeness without the Name and Paste rules using an ordi-
nary canonical model construction. However, with the Name and Paste rules we
can build a named canonical model. With Lemma 2.2.7 in mind, we can see why
a named canonical model leads to a more powerful completeness result. If we add
a pure formula φ to the list of axioms, by construction we have M � φ, where
M is the named canonical model. By Lemma 2.2.7, we now also have F � φ,
where F is the canonical frame. If φ characterises a frame property P , that is,
F � φ iff F has property P , then the named canonical model will automatically
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Rules
MP ` φ→ ψ,` φ =⇒ ` ψ
Subst ` φ =⇒ ` φσ
Gen@ ` φ =⇒ ` @iφ
Gen� ` φ =⇒ ` �φ
Name ` i→ φ =⇒ ` φ if i does not occur in φ
Paste ` @i♦j ∧@jφ =⇒ ` @i♦φ if i 6= j and j does not occur in φ

Figure 2.2: Rules of HL.

Axioms
CT All classical tautologies
K� ` �(p→ q)→ �p→ �q
K@ ` @i(p→ q)→ @ip→ @iq
Selfdual@ ` @ip↔ ¬@i¬p
Ref@ ` @ii
Agree ` @i@jp↔ @jp
Intro ` i→ (p↔ @ip)
DA ` @i(↓x.φ↔ φ[x := i])

Figure 2.3: Standard axioms of HL.
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also satisfy property P . So we do not just obtain completeness of standard hy-
brid logic with respect to the class of all Kripke frames, but also completeness of
standard hybrid logic extended with pure formulas with respect to the class of all
frames characterised by these pure formulas. This will make our lives a lot easier
in Chapter 4.

We will therefore discuss an alternative canonical model construction that
leads to a named canonical model, which is discussed in [32]. To achieve this
named canonical model we need the concept of a named maximal consistent
subset. A maximal consistent subset (MCS) Γ is called named if there is an
k ∈ Γ for some k ∈ Nom. The following lemma introduces a class of named
maximal consistent subsets ∆i induced by an arbitrary MCS Γ, and shows some
desirable properties. Later on, this class of named MCS’s will be used as the set
of states of our named canonical model.

Lemma 2.2.8 ([32, Lemma 7.24]). Let Γ be a maximal consistent subset (MCS).
For every nominal i, let ∆i be {φ | @iφ ∈ Γ}. Then

1. For every nominal i, ∆i is an MCS that contains i.

2. For all nominals i and j, if i ∈ ∆j, then ∆j = ∆i.

3. For all nominals i and j, @iφ ∈ ∆j iff @iφ ∈ Γ.

4. If k is a name for Γ, then Γ = ∆k.

Let Σ be a set of consistent formulas. Our goal is to obtain a canonical
model MΣ in which each state is a maximal consistent subset of quantum hybrid
formulas (MCS) of the form ∆i as described in the above lemma, and MΣ,∆i � Σ
for some i ∈ Nom. If we simply extend Σ to a standard MCS Γ we are faced with
two problems. First we need Γ to be named, that is a k ∈ Nom such that k ∈ Γ
and therefore Γ = ∆k. This will be achieved with the help of the Name rule.

Second, we need there to be enough ∆i inside our MCS Γ, so that we can prove
the existence lemma. For this we need Γ to be pasted. A MCS Γ is called pasted
if for every @i♦φ ∈ Γ there exists a nominal j ∈ Nom such that @i♦j ∧@jφ ∈ Γ.
This second property is achieved with the help of the Paste rule. The following
lemma is an alternative Lindenbaum lemma that establishes that each consistent
set of formulas Σ can be extended to a named and pasted MCS Γ.

Lemma 2.2.9 (Lindenbaum lemma [32, Lemma 7.25]). Let Nom′ be a (countably)
infinite collection of nominals disjoint from Nom, and let HL′ be the language
obtained by adding these new nominals to HL. Then every HL-consistent set of
formulas Σ in HL can be extended to a named and pasted HL′-MCS in language
HL′.

Now we can define the canonical model that we will use in the completeness
result.
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Definition 2.2.10 (Canonical model [32, Definition 7.26]). Let Γ be a named
and pasted MCS. The named canonical model MΓ yielded by Γ is given by MΓ =
(SΓ, RΓ, VΓ), where the set of states is given by SΣ = {∆i | i ∈ Nom}. The
relation RΓ is the standard canonical relation, so ∆i 6⊥ ∆j iff φ ∈ ∆j for every
�φ ∈ ∆i. The valuation VΣ is given by V (φ) = {∆i | φ ∈ ∆i}.

Because we require Γ to be pasted, for every @i♦φ ∈ Γ we have a nominal
j that witnesses the existence of a named successor that satisfies φ, that is,
@i♦j ∧@jφ ∈ Γ. This leads to the existence lemma.

Lemma 2.2.11 (Existence lemma [32, Lemma 7.27]). Let Γ be a named and
pasted MCS and let M = (S,R, V ) be the named canonical model yielded by Γ.
Suppose ∆i ∈ S and that ♦φ ∈ ∆i. Then there is a j ∈ Nom such that ∆iR∆j

and φ ∈ ∆j.

The following truth lemma is a natural consequence of the existence lemma.

Lemma 2.2.12 (Truth lemma [32, Lemma 7.28]). Let Γ be a named and pasted
MCS, let M = (S,R, V ) be the named canonical model yielded by Γ and let ∆i ∈ S.
Then for all formulas φ we have M,∆i � φ iff φ ∈ ∆i.

Note that we need a slightly different proof for the Truth lemma than the one
presented in [32], as they do not discuss the down arrow. However, as noted in
[31], it is easy to see that the only axiom involving the down arrow (Figure 2.3-
DA) will take care of formulas of the form ↓x.φ in the inductive proof of the Truth
Lemma. From the above lemmas we can deduce the desired completeness result.

Theorem 2.2.13 (Completeness [32, Theorem 7.29]). Every consistent set of
formulas Σ in language HL is satisfiable in a countable named model. Moreover,
if Π is a set of pure formulas and HL(Π) is the hybrid logic obtained by adding
all formulas in Π as axioms, then every consistent set of formulas Σ in language
HL(Π) is satisfiable in a countable named model based on a frame which validates
every formula in Π.

Note that we are especially interested in the “moreover” part of the above
theorem in Chapter 4, as this allows us to build a canonical model based on a
quantum frame, rather than an ordinary Kripke frame.

Orthologic

Goldblatt introduced a quantum logic with Kripke style semantics [62] in which
the orthogonal relation, denoted by ∼, plays a key role. For a set of propositions
Prop the set of well formed formulas is given by

φ ::= p | φ ∧ φ | ∼φ.
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where p ∈ Prop. The set of all well formed formulas is denoted by Form. As we
will see below, the special symbol ∼ is a modal operator, similar to �. Goldblatt
also introduced a proof system.We will not give the entire proof system here, but
as an example we state the axioms and the rule concerning ∧

φ ∧ ψ ` φ
φ ∧ ψ ` ψ
if φ ` ψ and φ ` χ, then φ ` ψ ∧ χ

For formulas φ, ψ ∈ Form we write φ ` ψ if there is a finite list of axioms and
applications of rules, where the last equation is φ ` ψ and the premisses of every
applied rule appear earlier in the list.

The model is based on a special type of Kripke frame, called an orthoframe.
An orthoframe is a pair (Σ,⊥), where Σ is a set of states and ⊥ is an orthogonality
relation on Σ, i.e. ⊥ is irreflexive and symmetric. Using this relation we can define
the orthocomplement ∼S of a set S ⊆ Σ by

∼S := {t ∈ Σ | t ⊥ S} = {t ∈ Σ | ∀s ∈ S we have t ⊥ s}.

We call a set P ⊆ Σ biorthogonally closed or testable iff P = ∼∼P . Note that
if we have a Hilbert space H and build an orthoframe by taking Σ as the set of
one-dimensional subspaces of H and ⊥ as expected, then P ⊆ Σ is testable iff P
is a testable property or a closed linear subspace.

A function V : Prop −→ PΣ is a valuation if V (p) ⊆ Σ is testable for every
p ∈ Prop. We extend V to V : Form −→ PΣ by V(φ ∧ ψ) = V(φ) ∩ V(ψ) and
V(∼φ) = ∼V(φ). We call the triple (Σ,⊥,V) an orthomodel. With the valuation
V we have a natural interpretation for formulas in Form: for any s ∈ Σ and
φ ∈ Form

s � φ⇔ φ ∈ V(φ).
We say φ holds at s if s � φ. We write φ � ψ if for every orthomodel (Σ,⊥,V)
and every state s ∈ Σ we have Σ, s � φ implies Σ, s � ψ. Goldblatt proved his
proof system is both sound and complete.

Although orthomodels are able to represent quantum systems, not every or-
thomodel is a quantum system. We call an orthomodel a quantum orthomodel
if the model respects the orthomodular law introduced by Birkhoff and von Neu-
mann, that is φ ∧ (∼φ ∨ (φ ∧ ψ)) � ψ is valid in the model. If we restrict our
attention to quantum orthomodels, we have to weaken the definition of φ � ψ:
for all quantum orthomodels (Σ,⊥, V ), whenever Σ, s � φ we have Σ, s � ψ. As
this is a much weaker requirement, the relation � will contain many more pairs
φ � ψ. Therefore the original proof system is no longer complete. Goldblatt also
introduced a quantum proof system, in particular he added an axiom representing
the orthomodular law introduced by Birkhoff and von Neumann, and he showed
completeness between these new quantum relations.
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Logic for quantum actions

In [9] Alexandru Baltag and Sonja Smets take classical propositional dynamic
logic (PDL, [65]) and combine this with ideas from Goldblatt’s orthologic to
create a quantum propositional dynamic logic called the logic for quantum actions
(LQA). The great benefit of LQA is that dynamic quantum operators are directly
represented in the language. For a set of testable properties T and a set of uniform
transformations U , the syntax is given by

φ ::= > | p | ¬φ | φ ∧ φ | [π]φ
π ::= > | P? | U | π† | π ∪ π | π; π.

Here p is a proposition letter, [π]φ intuitively means the weakest precondition
which ensures we obtain φ after applying program π, P ∈ T is a testable property,
U ∈ U is a unitary transformation, π† is the adjoint of π, π ∪ π′ is the random
choice between program π or π′ and π; π′ is sequential composition.

A dynamic frame is a set of states Σ together with a set of relations { P?−→}P∈T
and a set of relations { U−→}U∈U . Note that using the test relations { P?−→}P∈T we
can define an orthogonal relation ⊥ by

x ⊥ y ⇔ there exists no testable P ∈ T such that x P?−→ y.

So far the definition of LQA is basically the same as classical PDL. The main
difference are the tests P?. In classical PDL it is assumed that any P ⊆ Σ is
testable and that the corresponding relation P?−→ is the diagonal on P , that is
x

P?−→ y implies x = y ∈ P . So classical tests only check if a state x is already
in P and do not change the state. In LQA only orthogonally closed properties
P = ∼∼P are testable and the corresponding relation P?−→ is assumed to be
a partial function f : Σ −→ P . This means that in LQA we cannot test every
property and if a state lies outside the tested property P , a successful test changes
the current state to a state inside P .

Baltag and Smets also introduced several frame properties to ensure that these
Kripke frames correspond to quantum systems. These properties are motivated by
the axiomatic approach by Ṕıron [86], and the duality result given in Chapter 3
will ensure each quantum dynamic frame is indeed realisable by a generalized
Hilbert space.

Definition 2.2.14. A quantum dynamic frame F is a tuple (Σ,L, { P?−→}P∈L) such
that Σ is a set, L ⊆ P(Σ), and P?−→ ⊆ Σ × Σ for each P ∈ L, and that satisfies
the following, where → = ⋃

P∈L
P?−→:

1. L is closed under arbitrary intersection.

2. L is closed under orthocomplement, where the orthocomplement of A ⊆ Σ
is ∼A := {s ∈ Σ | s9 t for all t ∈ A}.



2.2. Quantum logic 33

3. Atomicity: For any s ∈ Σ, {s} ∈ L.

4. Adequacy: For any s ∈ Σ and P ∈ L, if s ∈ P , then s
P?−→ s.

5. Repeatability: For any s, t ∈ Σ and P ∈ L, if s P?−→ t, then t ∈ P .

6. Self-Adjointness: For any s, t, u ∈ Σ and P ∈ L, if s P?−→ t → u, then
there is a v ∈ Σ such that u P?−→ v → s.

7. Covering Property: Suppose s P?−→ t for s, t ∈ Σ and P ∈ L. Then, for
any u ∈ P , if u 6= t then u → v 9 s for some v ∈ P ; or, contrapositively,
u = t if u→ v implies v → s for all v ∈ P .

8. Proper Superposition: For any s, t ∈ Σ there is a u ∈ Σ such that
s→ u→ t.

The main benefit of LQA is the explicit syntax for dynamic operators. This
makes LQA much more suitable to design and verify quantum programs. More-
over, LQA has the classical negation ¬ alongside the orthocomplement∼, whereas
the logics by Birkhoff and von Neumann and Goldblatt only have the orthocom-
plement.

Zhong’s quantum Kripke frame. In [107], Shengyang Zhong provided an
equivalent definition of a quantum dynamic frame that is worth discussing, be-
cause we will use this alternative definition later on in Chapter 4.

Definition 2.2.15 (Zhong’s quantum Kripke frame [107]). A quantum Kripke
frame is a Kripke frame F = (Σ,→) such that

1. s→ s for every s ∈ Σ. (reflexive)

2. s→ t implies that t 6⊥ s, for any s, t ∈ S. (symmetry)

3. For any s, t ∈ Σ, if s 6= t, then there exists a w ∈ Σ such that w → s and
w 9 t. (separation)

4. For every P ⊆ Σ such that ∼∼P = P , if s ∈ Σ \ ∼P , then there exists a
s′ ∈ Σ which is an approximation of s in P , that is, s′ ∈ P and s → w iff
s′ → w for all w ∈ P . (existence of approximation)

5. For any s, t ∈ Σ there exists a w ∈ Σ such that s→ w → t. (superposition)

In Theorem 2.7.25 of [107] Zhong proves the equivalence of a quantum Kripke
frame (Definition 2.2.15) and a quantum dynamic frame (Definition 2.2.14).
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Logic for quantum programs

All logics discussed so far can only express single systems, thus in essence only
reason about one single qubit or about a mutli-partite system about which we
cannot say anything of the different components. As most quantum programs
and protocols use several qubits we need to extend the language to multi-partite
systems in which we can describe the subsystems. Normally if we want to talk
about a quantum system that is build up from several subsystems we take the
tensor product construction. However, in 1979 Foulis and Randall proved there is
no “tensor” construction for quantum logics, which would have the same desired
properties as Hilbert spaces [60]. We can address the problem by applying the
tensor product to the state space only, instead of the entire logic. Baltag and
Smets have also investigated logics for multi-partite systems, where the state
space is a tensor product of Hilbert spaces [11]. This logic is called the Logic of
Quantum Programs (LQP).

We present here a slight variation of LQP, using a “quantum” knowledge
operator KI [13]. For the modality KI , fix a set of natural numbers N , using
i ∈ N as indices for Hilbert spaces Hi that compose the system H = ⊗

i∈N Hi.
(Typically Hi = C2, but not necessarily.) So each subset I ⊆ N is intended to
refer to the subsystem composed of the basic components Hi with i ∈ I, that is,
HI = ⊗

i∈I Hi. In this setting KIφ means that “(the local state of) subsystem I
carries the information that φ is (globally) the case”.

For the semantics of our “local-information modalities” KI , we should think
of the Hilbert space H = ⊗

i∈N Hi as divided into a principal subsystem HI =⊗
i∈I Hi and its “environment” HN\I = ⊗

i∈N\I Hi. Then KIφ is supposed to
mean that the subsystem I carries the information that φ. This idea can be
made precise using the density-operator formalism. For any unit vector v ∈ s,
the pure state s of the global system N can be alternatively described by the
corresponding density operator ρNv . The so-called reduced density operator sI =
trN\I(ρv), obtained by taking the partial trace trN\I over the environment N \I, is
typically a mixed state, which describes the “state” sI of the sub-system I (when
the global system is in state s). The relation of I-indistinguishability between
global states s, t can thus be defined by putting:

s ∼I t ⇐⇒ sI = tI ⇐⇒ trN\I(ρv) = trN\I(ρv) for unit vector v ∈ s, w ∈ t.

Essentially, s ∼I t means that the global states s and t are “locally the same
from the viewpoint of I”. The indistinguishability relation can be alternatively
characterized in terms of I-remote actions: these are unitary transformations
U : H → H having the property that U = IdI ⊗ V , where IdI : HI → HI

is the identity map on subsystem I and V : HN\I → HN\I is some unitary
transformation on its environment. Then it follows that

s ∼I t ⇐⇒ t = U(s) for some I-remote U.
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Axioms
Kripke Axiom [π](p→ q)→ ([π]p→ [π]q)
Testability Axiom �p→ [q?]p
Partial Functionality ¬[p?]q → [p?]¬q
Adequacy p ∧ q → 〈p?〉q
Repeatability T (p)→ [p?]p
Proper Superpositions 〈π〉��p→ [π′]p
Unitary Functionality ¬[U ]q ↔ [U ]¬q
Unitary Bijectivity 1 p↔ [U ;U †]p
Unitary Bijectivity 2 p↔ [U †;U ]p
Adjointness p→ [π]�〈π†〉♦p

Figure 2.4: Some sound axioms of the logic for quantum programs.

Now, using the I-indistinguishability relation, we can define an “epistemic” mo-
dality KI in the way that is standard in epistemic modal logic: i.e., we can say
that subsystem I “knows” (it carries the information) that φ is the case in state
s iff φ is the case in all the states that are I-indistinguishable from s. More
formally,

s ∈ JKIφK
⇐⇒ t ∈ JφK for every t ∼I s
⇐⇒ U(s) ∈ JφK for every I-remote U

Or we can put this as follows: I-remote unitary transformations are symmetries
that tinker with the environment alone, leaving anything in the principal subsys-
tem I intact; so I locally carries the information that φ iff φ is invariant under
those symmetries.

In [11], Baltag and Smets proposed several sound axioms, the axioms for single
system are stated in Figure 2.4. Beside these axioms, they also provided axioms
for multi-partite systems, which are less relevant for this thesis. With these ax-
ioms, Baltag and Smets prove the correctness of teleportation and quantum secret
sharing. On a critical note, LQP cannot express any classical communication nor
any classical knowledge of agents, which for many communication protocols is
a crucial ingredient. To extend the quantum setting with classical components,
Baltag and Smets have recently designed a different system that deals with the
classical-quantum interaction [17]. However in this thesis we restrict our attention
to the pure quantum setting.

2.2.4 Probabilistic logic
Probabilities arise quite naturally in quantum mechanics, as measuring a qubit
that is in a superposition state will have a non-deterministic outcome. While
there is a strong tradition in quantum logics that connects to many-valued logics
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in the algebraic logic tradition, the connection to traditional probabilistic logics
having their own specific proof theory and semantics is not often addressed. In
Chapter 5 we introduce a quantum logic with probabilities partially based on the
work by Fagin, Halpern and Megiddo [54]. Their work considers probabilistic
statements and linear inequalities, for example, 3 Pr(φ) ≤ 1 would mean the
probability that φ is true is less than or equal to 1

3 .
More precisely, given a modal language L containing the symbol tt to denote

truth, i.e. a formula which is always true. We add formulas of the form t ≥ ρ,
where t is a term, that is

φ ::=p | tt | ¬φ | φ ∧ φ | �φ | t ≥ ρ

t ::=ρPr(φ) | t+ t

where p ∈ Prop is a proposition letter and ρ ∈ Q. Given a Kripke model M =
(S,R, V ), the semantics of all standard modal formulas are given as before. Let
us consider a probability function f : P(S) → [0, 1] such that f(S) = 1 and
f(A ∪ B) = f(A) + f(B) if A ∩ B = ∅. We can extend f to terms by putting
f(ρPr(φ)) = ρ · f(JφK) and f(t + t′) = f(t) + f(t′). We then say t ≥ ρ is true if
f(t) ≥ ρ holds in a natural way.

Although several other works on probabilistic logic have appeared, Fagin,
Halpern and Megiddo [54] were the first to introduce a sound and complete proof
system. This deductive system can be split into two parts: one about linear
inequalities and the other about probabilities. The axioms for linear inequalities
are as follows:

I1 t ≥ β ↔ t+ 0 Pr(φ) ≥ β
I2 ∑n

k=1 αk Pr(φk) ≥ β → ∑n
k=1 αjk Pr(φjk) ≥ qβ

for any permutation j1, . . . , jn of 1, . . . , n
I3 ∑n

k=1 αk Pr(φk) ≥ β ∧∑n
k=1 α

′
k Pr(φk) ≥ β′

→ ∑n
k=1(αk + α′k) Pr(φk) ≥ (β + β′)

I4 t ≥ β ↔ dt ≥ dβ if d > 0
I5 t ≥ β ∨ t ≤ β
I6 t ≥ β → t ≥ γ if β > γ

All these axioms appear in our deductive system of a probabilistic quantum
logic. For classical probabilities we have the following axioms:

P1 Pr(tt) = 1
P2 Pr(φ) ≥ 0
P3 Pr(φ ∧ ψ) + Pr(φ ∧ ¬ψ) = Pr(φ).
P4 (φ ≡ ψ)→ Pr(φ) = Pr(q)

Axioms P1, P2, and P4 also hold when we interpret Pr as a quantum prob-
ability. However, P3 needs to be adjusted in the quantum context, because the
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complement in classical logic is exchanged for the orhtocomplement in quantum
logic. Also, quantum probability has more structure than classical probability, so
three more axioms are needed to fully characterize quantum probability, which
we will do in Chapter 5.

2.2.5 Duality
Duality is a notion from category theory. To understand duality let us first go
over some basic definitions in category theory. For a more detailed overview of
category theory, see for example [77]. After we have defined duality, we will
discuss some duality results related to quantum logic.

Category theory

Definition 2.2.16 (Category). A category C consists of objects Obj(C), mor-
phisms Mor(C) and a way to compose morphisms (◦). Each category has to
satisfy the following properties:

• (composition) If f : X → Y and g : Y → Z, then there exists a morphism
g ◦ f : X → Z.

• (associativity) f ◦ (g ◦ h) = (f ◦ g) ◦ h.

• (identity) For all objects X ∈ Obj(C) there exists an identity morphism
1X : X → X such that for each f : X → Y and g : Y → X we have
f ◦ 1X = f and 1X ◦ g = g.

Examples of categories are sets with functions, Hilbert spaces with unitary
transformations or the natural numbers with inequality (≤). A morphism f :
X → Y is called an isomorphism if there exists a g : Y → X such that f ◦g = 1Y
and g ◦ f = 1X . Each category C has a dual category COp, where the arrows of
each morphism are reversed. Thus a morphism f : X → Y in COp means f is a
morphism in C from Y to X.

Given two categories C and D we can define a functor, which is like a function
or morphism between categories.

Definition 2.2.17 (Covariant functor). A functor F : C → D is a function that
sends each object X ∈ Obj(C) to an object F (X) ∈ Obj(D), sends each morphism
f : X → Y in Mor(C) to a morphism F (f) : F (X) → F (Y ) in Mor(D), and
preserves identity and composition, that is:

• (preserves identity) For each X ∈ Obj(C), the identity 1X is send to 1F (X).

• (preserves composition) F (f ◦ g) = F (f) ◦ F (g).
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A functor that satisfies the above conditions is called covariant. A variation
of a covariant functor is the contravariant functor, which reverses the direction
of morphisms. Thus f : X → Y is send to F (f) : F (Y )→ F (X) and F (f ◦ g) =
F (g) ◦ F (f).

Given two functors F : C → D and G : C → D, with the same domain
category and range category, we can define a function from F to G called a
natural transformation.

Definition 2.2.18 (Natural transformation). A natural transformation η : F →
G is a family of morphisms {ηX : F (X) → G(X)}X∈Obj(C) in Mor(D) such that
for each f : X → Y in Mor(C) we have G(f) ◦ ηX = ηY ◦ F (f). That is

X

Y

F (X)

F (Y )

=⇒
G(X)

G(Y )

f F (f) G(f)

ηX

ηY

If ηX is an isomorphism for each X ∈ Obj(C), then we say that F and G are
isomorphic.

We call two categories C and D equivalent if we have two covariant functors
F : C → D and G : D → C such that F ◦G is isomorphic to the identity functor
1D and G◦F is isomorphic to 1C. We call two categories C and D dual if we have
two contravariant functors with the same property.

A quantum duality

The duality result between Piron lattices and quantum dynamic frames presented
in Chapter 3 of this thesis builds on an earlier duality result by David Moore [81].
He showed that a duality result can be obtained between the category of state
spaces (State) and the category of property lattices (Prop). These are more
general structures than quantum dynamic frames and Ṕıron Lattices respectively
and therefore captures only some properties of quantum mechanics.

An object in State is a pair (S,⊥), where S is a set of states and ⊥ is an
orthogonal relation between states which satisfies the following three conditions:

SO1 if s ⊥ t, then t ⊥ s,

SO2 if s ⊥ t, then s 6= t, and

SO3 if s 6= t, then there exists a u ∈ S such that s ⊥ u and t 6⊥ u.

Given a state space (S,⊥) and a set of states A ⊆ S, we define A⊥ := {s ∈
S | s ⊥ t for all t ∈ A}. If A⊥⊥ = A, then A is called biorthogonally closed. A
morphism from (S1,⊥1) to (S2,⊥2) is a partially defined map f : S1 \K1 → S2
such that
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SM1 K1 ∪ f−1(B2) is biorthogonally closed in S1 for each biorthogonally closed
B2 ⊆ S2.

The set K1 is called the kernel of f and is necessarily biorthogonally closed.
An object in Prop is a lattice (L,≤,−⊥) which satisfies the following six

conditions:

PO1 there exists a maximal element 1 ∈ L,

PO2 the greatest lower bound ∧A of an arbitrary non-empty family A exists,

PO3 a = ∧{p⊥ | p ≤ a⊥, p an atom} for each a ∈ L,

PO4 a⊥⊥ = a for each a ∈ L,

PO5 if a ≤ b, then b⊥ ≤ a⊥, and

PO6 a ∧ a⊥ = 1⊥ for each a ∈ L,

where an atom is an element p 6= 1′ such that if x < p, then x = 1′ or x = p. A
morphism from (L1,≤1,−⊥1) and (L2,≤2,−⊥2) is a map h : L1 → L2 such that

PM1 h(∧1A) = ∧
2 h[A] for any A ⊆ L1, and

PM2 if b is an atom of L2, then there exists an atom a of L1, such that b ≤2 h(a).

Moore showed the categories State and Prop are equivalent in [81].

2.3 Quantum information theory
Quantum information theory aims to utilize the properties specific to quantum
mechanics to create information theorectic and computational tools that can ad-
vance the investigations in a number of fields, including computer science, com-
munication theory, network theory, cryptography, etc. The goal is to improve se-
curity of cryptographic protocols, speed up computations and improve efficiency
of codecs.

2.3.1 Quantum computation algorithms
In this subsection we will discuss several quantum algorithms. Quantum com-
putation is believed to exponentially speed up classical computation. The main
benefit for quantum computation is the combination of superposition and entan-
glement. This allows us in some special cases to perform a special kind of parallel
computing called quantum parallelism.
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Deutsch algorithm. The simplest example to illustrate quantum parallelism
is the Deutsch-algorithm [45]. Over the years several improvements have been
made to this algorithm. We will present the Deutsch-algorithm as it can be found
in [84], where the reader can also find a historical overview of the improvements.
The problem is as follows: suppose we are given a classical function f which sends
one bit to one bit. Can we determine whether the function is balanced, i.e. both
0 and 1 are in the image, or constant, i.e. either 0 and 1 are both sent to either 0
or both are sent to 1. With a classical computer we can decide this only by first
calculating f(0) and then f(1), which gives a full description of the function and
therefore we know whether f is balanced or constant.

With a quantum computer we can do better, we can apply the function f
only once and still be able to decide whether f is balanced or constant. However,
as f is not necessarily invertible, we first have to find a unitary transformation
that characterizes f . The unitary transformation is denoted with Uf and acts as
follows

Uf (|x〉 |y〉) = |x〉 |y ⊕ f(x)〉 .

It is easy to check that this transformation is unitary. If we simply apply Uf to
the superposition

1√
2

(|0〉+ |1〉) |0〉 = 1√
2

(|00〉+ |10〉),

we get
1√
2

(|0f(0)〉+ |1f(1)〉).

So, if we measure the first qubit in the standard basis, we have a 50% chance
the second qubit collapses to f(0) and a 50% chance it collapses to f(1). The
solution is to put both input qubits in a superposition, that is,

1√
2

(|0〉+ |1〉) 1√
2

(|0〉 − |1〉) = 1
2(|00〉 − |01〉+ |10〉 − |11〉).

For readability we use the notation x = x⊕ 1. After applying Uf we get

1
2(|0f(0)〉 − |0f(0)〉+ |1f(1)〉 − |1f(1)〉).

We can now rewrite the formula depending on whether f is constant (f(0) = f(1))
or balanced (f(0) 6= f(1)):

1
2((|0〉+ |1〉) |f(0)〉 − (|0〉+ |1〉) |f(0)〉) if f is constant, or
1
2((|0〉 − |1〉) |f(0)〉 − (|0〉 − |1〉) |f(0)〉) if f is balanced.
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After applying the Hadamard transformation on the first qubit (H ⊗ I) we get

1√
2
|0〉 (|f(0)〉 − |f(0)〉) if f is constant, or

1√
2
|1〉 (|f(0)〉 − |f(0)〉) if f is balanced.

So if we measure the first qubit in the standard basis, the outcome is |0〉 if the
function is constant and |1〉 if the function is balanced.

The efficiency of the Deutsch algorithm is compromised by the fact that we use
two input qubits. Clearly there is a classical alternative with two input bits that
does an even better job: simply apply the function f twice in parallel. However,
in 1992 David Deutsch and Richard Jozsa published a generalization called the
Deutsch-Jozsa algorithm [46]. This algorithm decides whether a function f from
{0, 1}2n to {0, 1} is balanced or constant with only one application of f . Here we
only need 2n+1 input qubits, which is better than any known classical algorithm.

The Deutsch-algorithm was the first algorithm that shows that quantum com-
putations are potentially more efficient than classical computations.

Grover’s search algorithm. Grover’s search algorithm was first published
in [63] under the title “Quantum mechanics helps in searching for a needle in
a haystack”. And that is exactly what the algorithm does: it searches for a
particular data point in a large (random) data set. Assume we have a data set
of N points, where we normally assume N = 2n for some n ∈ N, and suppose we
have a function f : N → {0, 1} called a selection function. Our goal is to find an
x ∈ N such that f(x) = 1. The best classical solution, given that the data set is
randomly ordered, is to randomly select an x ∈ N and check whether f(x) = 1
or not. This will lead to an average of N

2 calculations. A quantum computer
can reduce this to about

√
N calculation steps. The procedure is as follows (See

Figure 2.5 for a graphical representation of these steps).

1. Initialize first state |φ0〉 as the superposition of all possible solutions, that
is

|φ0〉 =
N∑
i=1

1√
N
|i〉

2. Flip the sign of the amplitudes of correct solutions, thus if |φk−1〉 = ∑N
i=1 ai |i〉,

then

|φk〉 =
N∑
i=1

(−1)f(i)ai |i〉 .

This operation does not change the probability of measuring the outcomes;
after all, squaring a negative number makes it positive again. But it does



42 Chapter 2. Preliminaries

change the average amplitude, which we can “obtain” using the following
unitary.

Ua |φ〉 = ( 1
N

N∑
i,j=1
|i〉 〈j|)(

N∑
k=1

ak |k〉) = 1
N

N∑
i,j,k=1

ak |i〉 〈j | k〉 =
N∑
i=1

( 1
N

N∑
k=1

ak) |i〉 .

Therefore we can apply step 3 below.

3. Flip all amplitudes around the average.

|φk〉 = (2Ua − I) |φk−1〉 .

4. Iterate step 2 and 3 about π
4

√
N times. Repeating the steps π

4

√
N ensures

the difference between the probability of finding the correct solution and
the probability of finding a wrong solution is maximal.

5. Measure |φk〉 in the standard basis. The probability of finding a particular
element is the square of the amplitude, which makes the difference between
the correct solution and other elements even more pronounced. In most
cases the probability of finding the correct solution is over 90%.

Note that Grover’s search algorithm quadratically speeds-up the search pro-
cess. This is not as impressive or important as an exponential speed-up, but this
speed-up has been mathematically proven, whereas most other quantum algo-
rithms only speed-up the best currently known classical counterpart.

Final remarks. Several other quantum algorithms exist. One of the most
interesting ones was published by Peter Shor in 1994 [95]. He discovered an
algorithm that factors integers into prime numbers in polynomial time10. At this
moment no polynomial classical algorithm is known and for this reason quantum
computers are believed to exponentially speed up computation. Although this is
very impressive, the speed-up of Shor’s factoring algorithm remains unproven.

Quantum computers also have some limitations: in 1973 Holevo proved a
surprising upper bound for quantum information [70]. While we will not discuss
this result here, we can mention that as a consequence of this bound we cannot
transmit more information with n qubits than with n classical bits.

To summarize, we currently know algorithms that potentially make quantum
computers exponentially faster than classical computers. However, it has never
been proven that there exist no classical polynomial time algorithm that factors
integers. On the other hand, we do know algorithms that quadratically speed-up
classical computation.

10Actually, it is called bounded error quantum polynomial time (BQP)
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Step 1: initial state Step 2: flip sign of correct
solution

Step 3: flip all amplitudes
around the average

Step 4: iterate steps 2 and
step 3

Step 5: measure the qubit

Figure 2.5: Grover’s search algorithm explained in pictures.
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2.3.2 Quantum communication protocols
Shor’s fast factoring algorithm creates great complications for the security of
classical communication as this algorithm breaks most electronic cryptographic
protocols currently in use11. On the other hand, the main limitations in quantum
computers caused by the fact that qubits collapse after measurements and the
no-cloning theorem, are actually great benefits for cryptology. By cleverly using
these properties one can develop protocols that can detect eavesdroppers on an
insecure communication channel. For example, in 1984 Bennett and Brassard
invented what is now called the BB84 protocol [21].

BB84. In the BB84 protocol there are two parties, traditionally called Alice
and Bob. Alice and Bob want to establish a shared secret key. This key is just
a random string of 0’s and 1’s, which then can be used to encrypt a message by
simple addition (bitwise XOR).

Alice starts the protocol by creating two random bit strings of the same length,
for example by tossing a coin. Then the first bit string decides what bits to send
and the second bit string decides in what basis to send: either A = {|0〉 , |1〉} or
B = {|−〉 , |+〉}. Remember that |−〉 = 1√

2(|0〉 − |1〉) is a “perfect” superposition
of |0〉 and |1〉, thus measuring |−〉 in the basis {|0〉 , |1〉} has a probability of 50%
for both |0〉 and |1〉 as outcome.

Bob does not know what basis Alice used to send the bits. So after he receives
a qubit he randomly selects a basis by tossing a coin and measures the qubits
in this basis. If he uses the same basis as Alice used to send the bit, then Bob
measures the bit Alice send. If he uses the other basis, he will measure the sent
bit only 50% of the time.

After Alice has sent all bits, she and Bob publicly announce which basis they
used for every bit. Then they delete all bits where they used a different basis.
Now they should both have the same random bit string. See table 2.1 for an
example.

Let us discuss two possible attacks on the protocol by an eavesdropper Eve.
As Eve cannot copy the qubits, she can only measure the qubits or apply a
unitary transformation and send the result on to Bob, or possibly send a newly
made qubit. Let us analyse the case where Eve decides to act as Bob, thus she
randomly selects one of the two above mentioned bases and measures the qubit.
Afterwards she sends the qubit on to Bob. If she uses the same basis as Alice,
the outcome of the measurements is the correct bit and Eve sends the qubit from
Alice unaltered to Bob. On the other hand, if Eve chooses the wrong basis, not
only has she a 50% chance to measure the wrong bit, the qubit from Alice has
changed. Now if Bob measures the qubit in the same basis as Alice (50% chance)
he has a 50% chance the outcome is wrong. Thus in total 12,5% of the final

11There are several proposals for cryptographic protocols that are still considered safe even
if a large quantum computer would be build, see for example [27].
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Alice
Random bits 0 1 1 0 1 1 1 0 1 0
Random bases A A B A A A B A B B
Sends |0〉 |1〉 |+〉 |0〉 |1〉 |1〉 |+〉 |0〉 |+〉 |−〉
Bob
Random bases B A B B A B A A B B
Observes |−〉 |1〉 |+〉 |+〉 |1〉 |−〉 |1〉 |0〉 |+〉 |−〉
Bits 0 1 1 1 1 0 1 0 1 0
Bases agree X X X X X X
Final bits 1 1 1 0 1 0

Table 2.1: An example of the BB84 protocol. (Example taken from [104].)

bit strings Alice and Bob have is different. There is a very easy way to discover
Eve’s attack: Alice and Bob can exchange half of the remaining bits on a public
channel. If too many bits differ, it is very probable Eve was eavesdropping.

There is also a different attack: Eve could apply a unitary transformation.
For example, let us consider CNOT discussed in section 2.3.1. If Alice uses basis
A, then CNOT will create an exact copy. On the other hand, if Alice uses basis
B, the transformation CNOT will create an entangled pair and Bob will measure
the wrong bit 50% of the time and we will end up with the same error rate as in
the measurement attack. So after Alice and Bob compare half of the remaining
bits they will in most cases detect Eve.

In fact, Biham, Boyer, Boykin and Mor proved that BB84 is secure against
any measurement or unitary transformation attack in the sense that Eve always
introduces errors if she learns information about the key [28]. However, this
proof does require that Alice and Bob have an authenticated classical channel,
or equivalently that Eve cannot disturb the classical channel. This is in general
assumed in quantum security proofs. This means safety holes introduced by the
classical channel are ignored.

If we do not assume a secure classical channel there is an obvious attack: the
man in the middle attack [106]. In this attack Eve controls both the quantum
channel and the classical channel. She completely acts like Bob towards Alice and
as Alice towards Bob. As Alice and Bob cannot detect who there talking to, they
will not detect Eve. This attack is very plausible as quantum computers break
many, if not all, classical encryption schemes. On the other hand, there is still a
big advantage of BB84 over most classical protocols. As the shared key of Alice
and Bob at the end of the protocol is a completely random bitstring, the message
encrypted with this bitstring will be secure if the eavesdropper failed to break the
key while the protocol was in progress. In a classical protocol an eavesdropper
could simple record all communication, including the encrypted message, and
then simply break the key even years after the message has been sent. So a
quantum protocol can in the very least limit the time an eavesdropper has to
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break the key.
Many variations on the BB84 protocol exist. For example, the EPR protocol

introduced by Artur K. Ekert in 1991 [52] is a variation on the BB84 protocol.
In this protocol Alice prepares n pairs of entangled qubits and sends one of each
pair to Bob. After receiving all of them they both randomly measure their qubits
in one of three possible bases. After finishing measuring the qubits they publicly
compare the bases they used to measure the qubits and throw away the qubits
measured in different bases. Then, in order to detect a possible eavesdropper,
they compare half of the remaining bits and check if Bell’s inequalities (See [19])
are respected. If so, it is very likely an eavesdropper was listening in. If the
inequalities are violated the obtained bit string is safe and can be used to encode
messages.

Quantum leader election. The Quantum Leader Election protocol is a method
for selecting exactly one of n many members, giving each member an equal chance
of being selected. This is analogous to establishing a fair n-sided die, and such
selections are important for distributive systems. There exists several ways to
solve this problem using quantum theory, e.g. [47, 98]. The ones given in [98]
consider the quantum leader election protocol in anonymous networks. In these
protocols each agent is a different node in a network, but has the same identifier,
and is therefore anonymous. Communication plays a key role in these protocols,
where the protocol takes several rounds to complete. The one given in [47] is the
quantum equivalent of a fair coin, where each agent, although strictly speaking
not necessarily, might be in the same room and only requires one measurement.

As we do not explicitly model communciation we will only discuss the protocol
given in [47]. Given a set N of agents, the protocol assigns a quantum bit (a two
dimensional Hilbert space) to each agent i ∈ N together with a basis {|0〉i , |1〉i}.
Then the following state, called the W -state, is considered:

∑
i∈N

1√
N

(⊗M

j∈N\{i}
|0〉j

)
⊗M |1〉i .

This state entangles the qubits in such a way that, after one of the agents measure
their qubit in the standard basis {|0〉i , |1〉i}, the state will collapse to a state where
only one agent will measures |1〉i and all other agents measure |0〉i, where each
agent has the same probability to measure |1〉i. The agent who measures |1〉i is
then considered to be the newly selected leader.



Chapter 3
Duality for the logic of quantum actions

Summary: In this chapter we show a duality between two approaches to repre-
sent quantum structures abstractly and to model the logic and dynamics therein.
One approach puts forward a “quantum dynamic frame” [10], a labelled transi-
tion system whose transition relations are intended to represent projections and
unitaries on a (generalized) Hilbert space. The other approach considers a “Piron
lattice” [86], which characterizes the algebra of closed linear subspaces of a (gen-
eralized) Hilbert space. We define categories of these two sorts of structures and
show a duality between them. This result establishes, on one direction of the
duality, that quantum dynamic frames represent quantum structures correctly;
on the other direction, it gives rise to a representation of dynamics on a Piron
lattice.

Background: This chapter relates Ṕıron lattices, discussed in Chapter 2.2.2,
to quantum Kripke frames, discussed in Chapter 2.2.3. The definitions of the
morphisms in this Chapter are largely based on the work by David Moore, who
showed several duality results on structures closely related to quantum structures,
which are discussed in Chapter 2.2.5. As duality is a technique from category
theory, some background knowledge on category theory is assumed, which can be
found in Chapter 2.2.5.

This chapter is organised as follows. We define two categories of Piron lattices
in Subection 3.1.1, one with homomorphisms defined by Moore, and the other
with homomorphisms preserving more structure. We define two categories of
quantum dynamic frames in Section 3.1.2, similarly with two sorts of structure-
preserving maps. We define functors from the Piron lattices to the quantum
dynamic frames in Subsection 3.2.1, and the opposite ones in Subsection 3.2.2.
These then form dualities, which will be proven in Subsection 3.2.3, and, in
Subsection 3.2.4, we restrict these dualities to the categories of objects satisfying
Mayet’s condition.

47
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3.1 The Categories
In this section, we define categories of Piron lattices and of quantum dynamic
frames.1 In fact we provide two categories, Lw and Ls, of Piron lattices, and also
two categories, Fw and Fs, of quantum dynamic frames. In each case the two
categories share the same objects, but one (viz., Lw or Fw) has more morphisms
than the other (viz., Ls or Fs); or, in other words, morphisms in the former
preserve less structure than ones in the latter.

3.1.1 Categories of Piron Lattices
Any Hilbert space H gives rise to a lattice (L,≤), where L is the family of closed
linear subspaces and ≤ is set-inclusion ⊆; moreover, the orthocomplement in H
gives a map −⊥ : L → L. Piron [86] axiomatized lattices (L,≤,−⊥) that arise
from Hilbert spaces in this way—lattices satisfying his axioms (in Definition 3.1.1
below) are now called Piron lattices. As he proved, Piron lattices of height at
least 4 correspond to (generalized) Hilbert spaces of dimension at least 4. In this
section we define two categories, Lw and Ls, of Piron lattices. They share the
same objects, but Lw has more morphisms than Ls.

Piron Lattices

Next we provide a set of axioms of a Piron lattice. Lattices satisfying certain
subsets of the axioms have useful names as shown in the following definition.

Definition 3.1.1. A bounded lattice is a lattice with a greatest element I (“top”)
and a least element O (“bottom”). An ortholattice L is a bounded lattice (L,≤)
that satisfies (1) below. An orthomodular lattice L is an ortholattice (L,≤,−⊥)
that satisfies (2). A propositional system L is an orthomodular lattice (L,≤,−⊥)
that satisfies (3)–(5). Lastly, a Piron lattice L is a propositional system (L,≤,−⊥)
that satisfies (6).

1. Orthocomplement: L is equipped with a map −⊥ : L→ L such that

(a) p⊥⊥ = p;
(b) p ≤ q implies q⊥ ≤ p⊥;
(c) p ∧ p⊥ = O and p ∨ p⊥ = I.

2. Weak Modularity: q ≤ p implies p[q] = q, where p[q] := p ∧ (p⊥ ∨ q).

3. Completeness: For any A ⊆ L, its meet ∧A and join ∨A are in L.

Call a ∈ L an atom if a 6= O and either p = O or p = a holds for every p ∈ L
such that p ≤ a. Write At(L) for the set of atoms of L.

1See [7] for an exposition of category theory.
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4. Atomicity: For any p 6= O, there is an a ∈ At(L) such that a ≤ p.

5. Covering Law: If a ∈ At(L) and a 6≤ p⊥ then p[a] ∈ At(L).2

6. Superposition Principle: For any two distinct a, b ∈ At(L), there is a
c ∈ At(L), distinct from both a and b, such that a ∨ c = b ∨ c = a ∨ b.3

Atoms are meant to correspond to one-dimensional subspaces, or rays, of a
Hilbert space; so they satisfy, for instance:

7. a � p iff a ∧ p < a iff a ∧ p = O, for any atom a.

The fact that closed linear subspaces in general are certain sets of rays is expressed
in Piron lattices by

Proposition 3.1.2. Let L be an orthomodular lattice satisfying Completeness
and Atomicity. Then L is atomistic, meaning that every p ∈ L has p = ∨

JpK,
where JpK := {a ∈ At(L) | a ≤ p}.

Proof. First observe that p = q if both q ≤ p and JpK ⊆ JqK, as follows. Suppose
the antecedents. JpK ⊆ JqK means that, for any a ∈ At(L), if a ≤ p then a ≤ q,
which implies a 6≤ q⊥, for otherwise a ≤ q ∧ q⊥ = O. Therefore no a ∈ At(L)
satisfies a ≤ p∧q⊥, that is, p∧q⊥ = O, i.e., p⊥∨q = I. Hence p = p∧(p⊥∨q) = q
by q ≤ p and Weak Modularity.

Let q = ∨
JpK. Then it holds that both q ≤ p and JpK ⊆ JqK. Here ∨JpK ≤ p

because a ≤ p for all a ∈ JpK; and if a ∈ JpK then a ≤ ∨JpK.
The connective p[q] := p ∧ (p⊥ ∨ q) defined in (2) of Definition 3.1.1 is some-

times called the “Sasaki projection” [41]. The monotone map p[−] : L → L
expresses, in Hilbert-space terms, the direct-image4 operation under the projec-
tor onto the subspace p; this should make the conceptual meaning of (2) and
(5) of Definition 3.1.1 transparent. There are many properties an expression of
projectors must satisfy, we list some of them below.

8. p[q] = p ∧ (p⊥ ∨ q) ≤ p.

9. p[a] ∧ a⊥ = p ∧ (p⊥ ∨ a) ∧ a⊥ = (p ∧ a⊥) ∧ (p ∧ a⊥)⊥ = O.

10. If q ≤ p⊥ then p[q] = p ∧ (p⊥ ∨ q) = p ∧ p⊥ = O.

Lemma 3.1.3. For any a, b ∈ At(L), a � b⊥ is equivalent to b[a] = b and to
2In an orthomodular lattice, this statement of the Covering Law is equivalent to that in [86].

See [86] or [20] for proofs.
3Usually a Piron lattice is defined with the property called irreducibility instead of (6); see,

for example, [102]. Yet a propositional system satisfies (6) iff it is irreducible.
4Because of the view of Sasaki projection as a direct-image, we use the notation standardly

used for such. On page 56, we define direct-image for arbitrary functions.
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(a) p[a] = b for some p ∈ L.

Proof. If a � b⊥, then b[a] 6= O by the Covering Law, whereas b[a] ≤ b by (8) for
atom b, and hence b[a] = b. Also, b[a] = b obviously implies (a). Finally, if (a)
p[a] = b, then a 6≤ b⊥, for otherwise b ≤ a⊥ and (9) would imply b = b ∧ a⊥ =
p[a] ∧ a⊥ = O for atom b.

In an ortholattice L, define [p]q := p⊥ ∨ (p ∧ q) = (p[q⊥])⊥, the so-called
“Sasaki hook”, obtaining a monotone map [p]− : L → L. This expresses the
inverse-image operation under the projector onto p.5 In fact, Weak Modularity
amounts to the adjunction6 formed by direct image p[−] and inverse image [p]−
(just as in f [−] a f−1[−] for any function f):

Theorem 3.1.4 (Coecke and Smets [41]). An ortholattice L satisfies Weak Mod-
ularity iff every p[−] is left adjoint to [p]− (written p[−] a [p]−).

−[−] and [−]− are also meant to generalize conjunction and implication (clas-
sical logic has p∧− a p⇒ − for classical implication ⇒). They are supposed to
mean, respectively, the following:

• p[q]: We may have moved to the current state by testing whether p or not
(and receiving the answer “Yes”) when q was the case.

• [p]q: If we test p and receive the answer “Yes”, then q will be the case.

These may help make sense of the unit and counit laws of the adjunction, q ≤
[p](p[q]) and p[[p]q] ≤ q. In fact, it is useful to observe that Weak Modularity
amounts to the equalities among the following six terms.

p[[p]q] def= p ∧ (p⊥ ∨ (p⊥ ∨ (p ∧ q)))=

p[p ∧ q] def=≤Weak
Modularity

p ∧ (p⊥ ∨ (p ∧ q))=

def

p ∧ q
≤

p ∧ [p]q

(3.11)

5Here inverse images are meant to include the kernel.
6An adjunction between two partially ordered sets (S1,≤1) and (S2,≤2) (often called a

Galois connection) is a pair of monotone maps L : S1 → S2 and R : S2 → S1 such that
L(x) ≤2 y iff x ≤1 R(y) for all x ∈ S1 and y ∈ S2, or, equivalently, for which the “unit” law
x ≤1 RL(x) and the “counit” law LR(y) ≤2 y hold. Such L and R are called left and right
adjoints to each other. In fact, adjunction is defined for categories C, D and functors L : C→ D
and R : D → C in general, by requiring certain conditions (that hold trivially in the case of
posets) on the correspondence between morphisms f : L(C) → D and g : C → R(D), or on
natural transformations η : 1C → RL (unit) and ε : LR → 1D (counit). See [7, Definition 9.6
and Proposition 10.1]. We mention a general adjunction in Theorem 3.2.24.
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Morphisms of Piron Lattices

There are options as to how to define morphisms of Piron lattices. The first one
is due to Moore [81, 82].

Definition 3.1.5. A function h : L1 → L2 is a weak homomorphism between two
Piron lattices (L1,≤1,−⊥1) and (L2,≤2,−⊥2) if the following hold:

12. h(∧1A) = ∧
2 h[A] for any A ⊆ L1.

13. (Moore’s condition) if b is an atom of L2, then there exists an atom a of L1,
such that b ≤2 h(a).

These homomorphisms form a category [81, 82]: the composition of two weak
homomophisms is again a weak homomorphism, and the identity map is the iden-
tity. Let us write Lw for this category of Piron lattices and weak homomorphisms.
As a second option we consider the smaller class of morphisms that also preserve
orthocomplement, and as a consequence preserve arbitrary joins including the
bottom.

Definition 3.1.6. A weak homomorphism k : L1 → L2 is a strong homomorphism
between Piron lattices (Li,≤i,−⊥i) (i = 1, 2) if k moreover satisfies

14. k(p⊥1) = k(p)⊥2 for all p ∈ L1.

Clearly, the composition of two strong homomorphisms also preserves the
orthocomplement, and the identity map is a strong homomorphism; so Piron
lattices and strong homomorphisms form a subcategory, Ls, of Lw that is “wide”
in the sense of sharing all the objects. Note that strong homomorphisms preserve
I, O, ∨, −[−] and [−]−, since they preserve ∧ and −⊥.

3.1.2 Categories of Quantum Dynamic Frames
We now proceed to define two categories Fw and Fs for quantum dynamic frames.
Similarly to the Piron lattice categories we defined earlier, they have the same
objects and only differ in their morphisms.

Quantum Dynamic Frames

Any Hilbert space H gives rise to a Kripke frame: a tuple (Σ,L, { P?−→}P∈L) where
Σ is the set of rays in H; L is the family of closed linear subspaces of H, with each
subspace expressed as a set of rays; and, for each closed linear subspace P ∈ L,
P?−→ is the relation on Σ such that s P?−→ t iff the projection of s onto P in H is
t. With these projections we can also define the non-orthogonality relation: s is
not orthogonal to t, written s→ t, iff s

P?−→ t for some P ∈ L. So s is orthogonal
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to t iff s 9 t. Then we can furthermore define the orthocomplement ∼A of any
subset A ⊆ Σ: s ∈ ∼A iff s9 t for all t ∈ A.

The axioms of a quantum dynamic frame given by Baltag and Smets [10] aim
at characterizing Kripke frames (Σ,L, { P?−→}P∈L) that can be abstracted away
from Hilbert spaces in this manner.

Definition 3.1.7. A quantum dynamic frame F is a tuple (Σ,L, { P?−→}P∈L) such
that Σ is a set, L ⊆ P(Σ), and P?−→ ⊆ Σ × Σ for each P ∈ L, and that satisfies
the following, where → = ⋃

P∈L
P?−→:

15. L is closed under arbitrary intersection.

16. L is closed under orthocomplement, where the orthocomplement of A ⊆ Σ
is ∼A := {s ∈ Σ | s9 t for all t ∈ A}.

17. Atomicity: For any s ∈ Σ, {s} ∈ L.

18. Adequacy: For any s ∈ Σ and P ∈ L, if s ∈ P , then s
P?−→ s.

19. Repeatability: For any s, t ∈ Σ and P ∈ L, if s P?−→ t, then t ∈ P .

20. Self-Adjointness: For any s, t, u ∈ Σ and P ∈ L, if s P?−→ t → u, then
there is a v ∈ Σ such that u P?−→ v → s.

21. Covering Property: Suppose s P?−→ t for s, t ∈ Σ and P ∈ L. Then, for
any u ∈ P , if u 6= t then u → v 9 s for some v ∈ P ; or, contrapositively,
u = t if u→ v implies v → s for all v ∈ P .

22. Proper Superposition: For any s, t ∈ Σ there is a u ∈ Σ such that
s→ u→ t.

The above definition differs from the one given in [10] in three ways. First,
we have added (16), since (15) and (17)–(22) do not ensure (16).7 Secondly, the
axiom called Mayet’s condition is part of the definition in [10], but we treat it as
an additional axiom; we will discuss it in Section 3.2.4. Lastly, and perhaps most
importantly, even though frames have unitary operators as part of their structure
in [10], they do not in our definition. We will show how we deal with unitaries in
Subsection 3.1.2.

The following series of lemmas show some basic properties of quantum dy-
namic frames. They will be used to show the duality result later on, but will also
help with conceptual understanding of Definition 3.1.7. We start with one of the
fundamental properties of the relation →, which expresses non-orthogonality.

7For a counterexample, take an arbitrary Hilbert space H of dimension greater than 2; let
Σ be the set of one-dimensional subspaces; let L consist exactly of ∅, Σ, and all singletons
{s} ⊆ Σ; and let relations {s}?−−−→ be the obvious ones. Since s→ t iff s {t}?−−−→ t, it is easy to verify
that (Σ,L, { P?−−→}P∈L) satisfies (15), (17)–(22) but not (16).



3.1. The Categories 53

Lemma 3.1.8. → is reflexive and symmetric.

Proof. By Atomicity and Adequacy, s {s}?−−→ s. So, assuming s → t, we have
s
{s}?−−→ s → t. By Self-Adjointness, there is a u ∈ Σ such that t {s}?−−→ u → s. By

Repeatability, u ∈ {s}, so u = s. This means that t {s}?−−→ s, so t→ s.

This justifies writing s ⊥ t and s 6⊥ t for s 9 t and s → t, our expression of
the symmetric relations of orthogonality and non-orthogonality. Note that s ⊥ t
iff s ∈ ∼{t}, since ∼A = {s ∈ Σ | s ⊥ t for all t ∈ A}.

An important consequence of Lemma 3.1.8 is the following. Let us define the
modal operators �,♦ : P(Σ)→ P(Σ) using → as accessibility; i.e.,

�A = {s ∈ Σ | t ∈ A whenever s→ t},
♦A = {s ∈ Σ | s→ t for some t ∈ A} = ¬�¬A,

where ¬ is the set complement Σ \ −. Clearly, � and ♦ are monotone, and

∼A = {s ∈ Σ | t /∈ A whenever s 6⊥ t} = �¬A = ¬♦A.

Then Lemma 3.1.8 implies the following proposition. There, (23) and (24) are
the modal-logical expressions of reflexivity and symmetry, respectively; (25) is
another way of putting (24), and entails (26) immediately. (27) is by a classic
result in [29]; also see [62] for “orthologic”, the logic of ortholattices, and its
modal-logical representation.

Proposition 3.1.9. The monotone maps �,♦ : P(Σ)→ P(Σ) satisfy:

23. �A ⊆ A ⊆ ♦A for every A ⊆ Σ.

24. A ⊆ �♦A = ∼∼A for every A ⊆ Σ.

25. ♦ a �.

26. �♦� = �, i.e., ∼∼∼ = ∼.

27. Moreover, L∼∼ = {A ⊆ Σ | ∼∼A = A} = {∼A | A ⊆ Σ} forms an
ortholattice with the top Σ, the bottom ∅, orthocomplement ∼, ∧ = ∩
and ∨ = t, which is defined by A t B = ∼∼(A ∪ B) = �(♦A ∪ ♦B) =
∼(∼A ∩ ∼B) for any A,B ⊆ Σ.

Indeed, as we will show (in Proposition 3.1.18), L∼∼ = L. Its “⊆” part is
easily obtained by (15)–(17):

Lemma 3.1.10. For any A ⊆ Σ, ∼A = ⋂
t∈A∼{t} ∈ L.
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For the “⊇” part, we need to reflect upon P?−→, which purports to express
a projector on Hilbert spaces. We show that it is a partial function (Corollary
3.1.13) and that s P?−→ t means that t is the closest state to s inside P , in the
sense that s and t are orthogonal to the same states in P (Proposition 3.1.15).

Lemma 3.1.11. s P?−→ t implies

28. t ∈ P and, for all u ∈ P , if t 6⊥ u then s 6⊥ u.

Proof. Suppose s P?−→ t. By Repeatability, t ∈ P . Assume t 6⊥ u for u ∈ P . Then,
by s P?−→ t→ u, Self-Adjointness yields v ∈ Σ such that u P?−→ v → s. Since u ∈ P
and, by Lemma 3.1.8, u → w implies w → u for all w ∈ P , the Cover Property
(with u

P?−→ v) implies u = v. So v → s yields s 6⊥ u.

Combining this with the Covering Property, we have

Lemma 3.1.12. s P?−→ v implies that v is the unique t ∈ Σ satisfying (28).

Corollary 3.1.13. P?−→ is a partial function for each P ∈ L.

Lemma 3.1.14. If s → u for some u ∈ P , then s
P?−→ t → u for some unique

t ∈ P .

Proof. Suppose s→ u for some u ∈ P . Then u
P?−→ u→ s by Adequacy and the

symmetry of →. Hence by Self-Adjointness s P?−→ t → u for some t ∈ P . The
uniqueness is by Corollary 3.1.13.

Proposition 3.1.15. s P?−→ t is equivalent to each of (28) and

(a) t ∈ P and, for all u ∈ P , t 6⊥ u iff s 6⊥ u.

Proof. (a) obviously implies (28). We then show (28) implies s P?−→ t. Suppose
(28). Then s 6⊥ t since t 6⊥ t by Lemma 3.1.8. So Lemma 3.1.14 yields v ∈ P

such that s P?−→ v, where v = t by Lemma 3.1.12 since t satisfies (28).
Lastly, to show s

P?−→ t implies (a), suppose s P?−→ t. Then the assertion t ∈ P
and the “only if” part of (a) are Lemma 3.1.11; so, for the “if”, assume s 6⊥ u for
u ∈ P . By Lemma 3.1.14, there is a v ∈ Σ such that s P?−→ v 6⊥ u. But s P?−→ t
and Corollary 3.1.13 imply v = t and so t 6⊥ u.

This characterization of P?−→ leads to the characterization of L as the family
L∼∼ of fixed points of∼∼. First, writing stt for {s}t{t} = ∼∼{s, t} = �♦{s, t},
observe

Lemma 3.1.16. Suppose s P?−→ t ∈ P and that there is no u ∈ s t t such that
s→ u ∈ ∼P . Then s = t.
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Proof. By (24), s, t ∈ {s, t} ⊆ ∼∼{s, t} = s t t; so t stt?−−→ t by Adequacy. It is
therefore enough by the Covering Property to show that u → t for all u ∈ s t t
such that s → u. Fix such u; by the supposition, u /∈ ∼P , i.e., u ∈ ¬∼P = ♦P .
Hence Lemma 3.1.14 yields some v ∈ P such that u P?−→ v and so u → v. Then
u ∈ s t t = �♦{s, t} implies v ∈ ♦{s, t}, i.e., either v → s or v → t; this entails
u → t, since Proposition 3.1.15 with s

P?−→ t ∈ P and u
P?−→ v ∈ P implies that

v 6⊥ s iff v 6⊥ t iff u 6⊥ t.

Lemma 3.1.17. ∼∼P = P for every P ∈ L.

Proof. (24) implies P ⊆ ∼∼P . Also, ∼∼P = �♦P ⊆ ♦P by (23). Fix any
s ∈ ∼∼P ⊆ ♦P . Then Lemma 3.1.14 yields t ∈ P with s

P?−→ t ∈ P , whereas
s ∈ ∼∼P means that s → u ∈ ∼P for no u. Hence Lemma 3.1.16 implies
s = t ∈ P .

This and Lemma 3.1.10, combined with Proposition 3.1.9, establish

Proposition 3.1.18. L = {A ⊆ Σ | ∼∼A = A} = {∼A | A ⊆ Σ}, and it forms
an ortholattice (L,⊆,∩,t,Σ,∅,∼).

The following import of Propositions 3.1.18 and 3.1.15 is worth observing.
That is, when orthogonality ⊥ is abstracted from a quantum dynamic frame, ⊥
gives back L and P?−→ using ∼. Here is another characterization of P?−→, using the
frame version of the Sasaki projection P [Q] := P ∩ (∼P tQ).

Proposition 3.1.19. s P?−→ t iff P [{s}] = {t}.

Proof. Recall from Proposition 3.1.15 that s P?−→ t iff (28). Observe

(28) ⇐⇒ t ∈ P and, for all u ∈ P , u ⊥ s implies t ⊥ u

⇐⇒ t ∈ P and t ⊥ u for all u ∈ P ∩ ∼{s}
⇐⇒ t ∈ P ∩ ∼(P ∩ ∼{s})
⇐⇒ t ∈ P ∩ (∼P t {s}) = P [{s}] (by Lemma 3.1.17).

So P [{s}] = {t} implies (28) and so s P?−→ t. On the other hand, if s P?−→ t and
(28), then Lemma 3.1.12 implies P [{s}] = {t}.

Morphisms of Quantum Dynamic Frames

We discuss two options for morphisms on quantum dynamic frames. The first
option is due to Moore [81]. First, given a partial function f : Σ1 ⇀ Σ2 and any
A ⊆ Σ2, define the “weakest preimage” of A under f as

f−1[A] := {s ∈ Σ1 | either f(s) is undefined or defined and f(s) ∈ A}, 8
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and observe that f−1[−] : P(Σ2) → P(Σ1) is right adjoint to the direct-image
operation f [−] : P(Σ1)→ P(Σ2) :: B 7→ {f(s) | s ∈ B and f(s) is defined}.

Definition 3.1.20. A partial function f : Σ1 ⇀ Σ2 is a weak map between quan-
tum dynamic frames (Σi,Li, {

P?−→i}P∈Li
) (i = 1, 2) if f−1[−] “preserves testabil-

ity”, meaning that f−1[P ] ∈ L1 for all P ∈ L2,

Quantum dynamic frames and weak maps form a category, Fw, where iden-
tity maps are identity morphisms. Another option of morphisms is bounded
morphisms, a familiar concept in modal logic (see [32]). These maps preserve
the structure of quantum dynamic frames in the sense of preserving all modal
formulas.

Definition 3.1.21. A function g : Σ1 → Σ2 is a strong map between two quantum
dynamic frames (Σi,Li, {

P?−→i}P∈Li
) (i = 1, 2) if g is a bounded morphism with

respect to →i, that is,

29. if s→1 t, then g(s)→2 g(t); and

30. if g(s)→2 t, then there exists u ∈ Σ1 such that g(u) = t and s→1 u.

It is easy to see that identity maps are strong maps and that strong maps are
composable. So quantum dynamic frames and strong maps form a category, Fs.
(It may be interesting to observe that every strong map with a nonempty domain
is surjective by Proper Superposition.)

Bounded morphisms can be characterized by the � operator as follows, a
characterisation commonly found in modal logic. A proof is found, e.g., in [32]
(see the proofs of Proposition 5.51 (iv) and Proposition 5.52 (iv) in [32]).

Proposition 3.1.22. A function g : Σ1 → Σ2 is a bounded morphism (with
respect to →i) if and only if g−1 commutes with �, in the sense that, for all
B ⊆ Σ2, g−1�2B = �1g

−1B.

An immediate consequence is

Proposition 3.1.23. g−1 of any strong map g : Σ1 → Σ2 preserves ∼ (and
therefore t and −[−] as well).

Proof. g−1 preserves ¬ since g is a total function, and preserves � by Proposition
3.1.22. So g−1 preserves ∼ = �¬.

This in turn immediately shows that Fs is a wide subcategory of Fw.

Proposition 3.1.24. Every strong map g : Σ1 → Σ2 is a weak map.
8The notation f−1[−] disagrees with the definition that may be more standard, in which

f−1[A] does not contain the “kernel” of f . Our f−1[A] contains the kernel.
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Proof. If P ∈ L2, then ∼∼P = P by Lemma 3.1.17, and so Proposition 3.1.23
implies ∼∼g−1[P ] = g−1[∼∼P ] = g−1[P ], which means that g−1[P ] ∈ L1 by
Proposition 3.1.18.

One may wonder how much structure of quantum dynamic frames is preserved
by morphisms of Fw or of Fs, since the definition of Fw-morphism does not involve
P?−→, and that of Fs-morphism involves neither L nor P?−→. The following should
give some reassurance:

Proposition 3.1.25. Given quantum dynamic frames (Σi,Li, {
P?−→i}P∈Li

) for i =
1, 2, any function g : Σ1 → Σ2 is an isomorphism in Fs, iff (a)–(c) below hold,
and iff (a) and (d) hold.

(a) g is a bijection.

(b) For any A ⊆ Σ1, A ∈ L1 iff g[A] ∈ L2.

(c) For any s, t ∈ Σ1 and P ∈ L1, s P?−→ t iff g(s) g[P ]?−−−→ g(t).

(d) For any s, t ∈ Σ1, s→ t iff g(s)→ g(t).

Proof. For “only if” of the first “iff”, take an isomorphism g of Fs. (a) is obvious,
and (b) is by Proposition 3.1.24. (c) holds because Propositions 3.1.19 and 3.1.23
(along with (a)) imply that s P?−→ t iff P [{s}] = {t} iff g[P ][{g(s)}] = {g(t)} iff
g(s) g[P ]?−−−→ g(t).

“If” of the first “iff” and the second “iff” are straightforward.

The characterization in terms of (a)–(c) makes it clear that Fs provides the
right notion of isomorphism for (Σ,L, { P?−→}P∈L). In contrast, isomorphisms in
Fw are rather too weak.9

In addition, functions g : Σ→ Σ satisfying (a) and (d) correspond to unitary
and antiunitary operators on the Hilbert space corresponding to Σ, as implied
by Wigner’s theorem.10 (In fact, (a) and (d) for g : Σ → Σ define “unitaries” in
[10].) This justifies our omission of unitaries from the structure of objects, since
unitaries can be recovered as automorphisms.

9Consider the quantum dynamic frame (Σ,L, { P?−−→}P∈L) of a two-dimensional Hilbert space.
L consists of ∅, Σ and all the singletons. This means that any arbitrary permutation on Σ,
regardless of P?−−→, is an isomorphism in Fw.

10For a short proof of this theorem, see Section 4 of [56]. For more about the significance of
this theorem to theoretic physics, see Section 3-2 of [86].
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3.2 Dualities
In this section we show the dualities between the categories of Piron lattices and
those of quantum dynamic frames. In general, a duality between two categories
C and D is a pair of contravariant functors F : Cop → D and G : Dop → C, such
that F ◦ G is naturally isomorphic to the identity functor 1D on D and G ◦ F
is naturally isomorphic to the identity functor 1C on C.11 Here we first define
contravariant functors between Fw and Lw and between Fs and Ls, and then show
that they form dualities between the corresponding pairs of categories.

3.2.1 From Piron Lattices to Quantum Dynamic Frames
In this subsection, we define a contravariant functor F : Lwop → Fw. Its restric-
tion to Ls gives another functor Fs : Lsop → Fs; we may write Fw for F when the
distinction needs emphasizing.

Mapping of Objects

Recall that, given any Piron lattice L = (L,≤,−⊥), we write At(L) for its set of
atoms and JpK = {a ∈ At(L) | a ≤ p} for every p ∈ L. Now define F (L) to be
the structure (Σ,L, { P?−→}P∈L) given by

• Σ = At(L);

• L = {JpK ⊆ Σ | p ∈ L};

• for each JpK ∈ L, the relation JpK?−−→ ⊆ Σ×Σ such that, for any a, b ∈ At(L),
a

JpK?−−→ b iff p[a] = b.

Fixing an arbitrary Piron lattice L = (L,≤,−⊥) (for the duration of this sub-
subsection), we are going to show that F (L) actually forms a quantum dynamic
frame, that is, we will verify that it satisfies the axioms (15)–(22) of a quantum
dynamic frame one by one. It is useful to rewrite Lemma 3.1.3 as (31), as well as
to observe (32):

31. a→ b if and only if a � b⊥, for any a, b ∈ At(L).

32. Since a ∧ a⊥ = O, (7) implies a 6≤ a⊥, and so a→ a by (31).

Observe that J−K is in fact a monotone map preserving a lot of structure.
11Given two functors F1, F2 : C→ D, a natural transformation η from F1 to F2 is a family of

morphisms ηX : F1(X)→ F2(X) for all objects X of C such that for any morphism f : X → Y
of C, ηY ◦ F1(f) = F2(f) ◦ ηX . Then η is moreover called a natural isomorphism if each
component ηX is an isomorphism of D.
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Lemma 3.2.1. J−K : L→ P(Σ) is an order embedding.

Proof. JpK ⊆ JqK implies p = ∨
JpK ≤ ∨

JqK = q by Proposition 3.1.2, whereas
p ≤ q obviously entails JpK ⊆ JqK.

Lemma 3.2.2. J−K : L→ P(Σ) preserves all meets and orthocomplement.

Proof. J∧i∈I piK = ⋂
i∈IJpiK because, for any a ∈ At(L),

a ≤
∧
i∈I
pi ⇐⇒ a ≤ pi for all i ∈ I

⇐⇒ a ∈ JpiK for all i ∈ I ⇐⇒ a ∈
⋂
i∈I
JpiK.

Jp⊥K = ∼JpK because, for any a ∈ At(L),

a ≤ p⊥ ⇐⇒
∨
JpK = p ≤ a⊥ (by Proposition 3.1.2)

⇐⇒ b ≤ a⊥, i.e., a ≤ b⊥, for all b ∈ JpK
⇐⇒ a9 b for all b ∈ JpK (by (31))
⇐⇒ a ∈ ∼JpK

Lemma 3.2.3. F (L) satisfies (15), (16), (17) Atomicity, (18) Adequacy, and
(19) Repeatability.

Proof. (15) and (16) are by Lemma 3.2.2. Let a, b ∈ At(L) and JpK ∈ L. (17):
{a} = JaK ∈ L. (18): If a ∈ JpK, i.e. a ≤ p, then Weak Modularity implies
p[a] = a, i.e., a JpK?−−→ a. (19): If a JpK?−−→ b, then (8) means that b = p[a] ≤ p, i.e.,
b ∈ JpK.

Lemma 3.2.4. F (L) satisfies (20) Self-Adjointness: Given any a, b, c ∈ At(L)
and JpK ∈ L, suppose a JpK?−−→ b→ c. Then c

JpK?−−→ d→ a for some d ∈ At(L).

Proof. b ≤ p and b � c⊥ by Lemma 3.2.3 (19) and by (31); hence p 6≤ c⊥ and
so c 6≤ p⊥. Hence p[c] is an atom by the Covering Law. While c JpK?−−→ p[c] by
definition, we claim p[c]→ a.

Suppose that p[c] 6→ a; Then (31) implies p[c] ≤ a⊥ and so a ≤ (p[c])⊥ = [p]c⊥.
This implies, since a JpK?−−→ b, that b = p[a] ≤ p[[p]c⊥] ≤ c⊥ by (3.11). So (31)
implies b 6→ c, contradicting b→ c.

Lemma 3.2.5. F (L) satisfies (21) Covering Property: Given any a, b, c ∈ At(L)
and JpK ∈ L, suppose a JpK?−−→ b, c 6= b and c ∈ JpK. Then c → d 9 a for some
d ∈ JpK.



60 Chapter 3. Duality for the logic of quantum actions

Proof. Since c 6= b are both atoms, c 6≤ b, and so b⊥[c] is an atom by the Covering
Law. By definition, c Jb⊥K?−−−→ b⊥[c] and so c → b⊥[c]. We claim b⊥[c] ∈ JpK and
b⊥[c] ≤ a⊥, which implies b⊥[c] 9 a by (31).

Since b = p[a] ≤ p by (8) and c ≤ p by supposition, b⊥[c] = b⊥ ∧ (b ∨ c) ≤
b∨c ≤ p, and so b⊥[c] ∈ JpK. Also, b⊥[c] ≤ b⊥ = (p[a])⊥ = [p]a⊥ by (8). Therefore
b⊥[c] ≤ p ∧ [p]a⊥ ≤ a⊥ by (3.11).

Lemma 3.2.6. Given any a, b ∈ At(L), there is a c ∈ At(L) such that a 6≤ c⊥

and c 6≤ b⊥. So, by (31), F (L) satisfies (22) Proper Superposition.

Proof. If a 6≤ b⊥ then c = a works by (32); so assume a ≤ b⊥. It follows that
a 6= b by (32). So, by the Superposition Principle, there is a c ∈ At(L) such that
c 6= a, c 6= b and a ∨ b = a ∨ c = b ∨ c. Then observe a 6≤ c⊥, for otherwise
a ≤ b⊥ ∧ c⊥ = (b ∨ c)⊥ = (a ∨ b)⊥ = a⊥ ∧ b⊥, contradicting (32). Similarly, from
b ≤ a⊥ we have b 6≤ c⊥, i.e., c 6≤ b⊥.

Lemmas 3.2.3 through 3.2.6 establish

Theorem 3.2.7. F (L) is a quantum dynamic frame.

Mapping of Morphisms

To define how F acts on morphisms, we start with the following observation.
Given an Lw-morphism h : L1 → L2, since h preserves all meets, by the adjoint
functor theorem there is a monotone map,

`h : L2 → L1 :: y 7→
∧

y≤2h(x)
x,

that is left adjoint to h as a monotone map, `h a h, that is, for any x ∈ L1 and
y ∈ L2, `h(y) ≤1 x iff y ≤2 h(x). Moreover observe

Lemma 3.2.8. Let h : L1 → L2 be an Lw-morphism. Then `h maps each atom
to either an atom or O1.

Proof. For each b ∈ At(L2), (13) yields a ∈ At(L1) such that b ≤2 h(a), which by
`h a h implies `h(b) ≤1 a, so `h(b) is either an atom or O1.

We define F (h) : F (L2) ⇀ F (L1) for any Lw-morphism h : L1 → L2 to be the
restriction of `h to the atoms of L2 that `h maps to atoms of L1.

Lemma 3.2.9. Given any Lw-morphism h : L1 → L2, F (h) : F (L2) ⇀ F (L1)
has F (h)−1[JpK] = Jh(p)K for any JpK ∈ L1 of F (L1).

Proof. Lemma 3.2.8 and `h a h imply

F (h)−1[JpK] = {b ∈ At(L2) | either `h(b) = O1 or `h(b) ∈ JpK}
= {b ∈ At(L2) | `h(b) ≤1 p}
= {b ∈ At(L2) | b ≤2 h(p)} = Jh(p)K.
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Proposition 3.2.10. (a) For any Lw-morphism h, F (h) is an Fw-morphism.

(b) F preserves identity morphisms and composition.

Proof. (a) F (h)−1[−] preserves testability since Lemma 3.2.9 means that, for any
JpK ∈ L1, F (h)−1[JpK] = Jh(p)K ∈ L2.

(b) For any Piron lattice L, we have `1L
(y) = ∧

y≤x x = y, that is, F (1L) =
1F (L). Given any two weak homomorphisms h1 : L1 → L2 and h2 : L2 → L3, we
have F (h2 ◦ h1) = F (h1) ◦ F (h2) because `hi

a hi implies

(`h1 ◦ `h2)(y) =
∧

`h2 (y)≤2h1(x)
x =

∧
y≤3h2◦h1(x)

x = `h2◦h1(y).

This and Theorem 3.2.7 mean that F is a contravariant functor from Lw to Fw.
We define another functor Fs by restricting F to Ls. Then we have Fs : Lsop → Fs,
since Fs lands in Fs, as in Proposition 3.2.12.

Lemma 3.2.11. Let k : L1 → L2 be an Ls-morphism and suppose At(L2) 6= ∅.
Then `k maps atoms to atoms.

Proof. Since p ≤ k ◦ `k(p) by `k a k, `k(p) = O1 implies p ≤ k ◦ `k(p) = k(O1) =
O2. Thus, for any b ∈ At(L2), `k(b) 6= O1, and so `k(b) ∈ At(L1) by Lemma
3.2.8.

Proposition 3.2.12. For any Ls-morphism k, F (k) is an Fs-morphism.

Proof. Given any strong homomorphism k : L1 → L2, we prove (29) and (30) of
Definition 3.1.21 for F (k) : F (L2)→ F (L1). (29): Observe that, since k preserves
−⊥ and `k a k, any b ∈ At(L2) has b ≤2 k ◦ `k(b) = k ◦ `k(b)⊥⊥ = k(`k(b)⊥)⊥
and so k(`k(b)⊥) ≤2 b⊥. Hence `k(b0) ≤1 `k(b1)⊥ for b0, b1 ∈ At(L2) implies,
by `k a k, that b0 ≤2 k(`k(b1)⊥) ≤2 b1

⊥. Thus, by (31), b0 →2 b1 implies
F (k)(b0) = `k(b0)→1 `k(b1) = F (k)(b1).

(30): Suppose F (k)(b) →1 a for b ∈ At(L2) and a ∈ At(L1). Then `k(b) =
F (k)(b) 6≤1 a

⊥ by (31), and so b 6≤2 k(a⊥) = k(a)⊥ because `k a k and k preserves
−⊥. Therefore, by the Covering Law, k(a)[b] ∈ At(L2), so b Jk(a)[b]K?−−−−−→2 k(a)[b] and
hence b→2 k(a)[b]. Moreover, (8) implies k(a)[b] ≤2 k(a) and so `k(k(a)[b]) ≤1 a
by `k a k. But, because `k(k(a)[b]) is an atom by Lemma 3.2.11, F (k)(k(a)[b]) =
`k(k(a)[b]) = a.

3.2.2 From Quantum Dynamic Frames to Piron Lattices
In this subsection, we define a contravariant functor Gw = G : Fwop → Lw, and
obtain another Gs : Fsop → Ls as the restriction to Fs.
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Mapping of Objects

Given any quantum dynamic frame F = (Σ,L, { P?−→}P∈L), we define G(F) as
(L,⊆,∼). We will show that this G(F) forms a Piron lattice, that is, we will
verify that it satisfies (1)–(6). In Proposition 3.1.18, we established that any
G(F) is an ortholattice; so we carry on to show that G(F) satisfies the other
axioms of a Piron lattice, (2)–(6). We will use the laws of ortholattice as well as
the laws in Proposition 3.1.9 without particular reference.

Lemma 3.2.13. G(F) satisfies (2) Weak Modularity: if Q ⊆ P for any Q,P ∈ L,
then P [Q] = Q.

Proof. Q ⊆ P implies Q ⊆ P [Q] in any ortholattice. For P [Q] ⊆ Q, first observe
P [Q] = P ∩�¬(P ∩�¬Q) ⊆ P ∩ (¬P ∪♦Q) = P ∩♦Q. Fix s ∈ P [Q] ⊆ P ∩♦Q;
so s ∈ P , and Lemma 3.1.14 yields some t ∈ Q with s

Q?−→ t. Then s = t ∈ Q
by Lemma 3.1.16, since there is no u ∈ s t t such that s → u ∈ ∼Q, as follows.
s ∈ P and t ∈ Q ⊆ P imply s t t ⊆ P , where t is the join of L. Therefore
s ∈ P [Q] ⊆ ∼P tQ = ∼(P ∩∼Q) implies (s t t) ∩∼Q ⊆ P ∩∼Q ⊆ ∼{s}, that
is, (s t t) ∩ ♦{s} ∩ ∼Q = ∅.

Thus G(F) is an orthomodular lattice; it will be useful shortly to note that
G(F) therefore satisfies the following consequence of (3.11):

33. p⊥ ∨ (p[q]) = (p ∧ [p]q⊥)⊥ = (p ∧ q⊥)⊥ = p⊥ ∨ q.

Lemma 3.2.14. G(F) satisfies (3) Completeness and (4) Atomicity.

Proof. (3): L has all meets by (15). Given any {Pi ∈ L}i∈I , ∼∼
⋃
i∈I Pi is its join

in L, because, for every Q ∈ L,

Pi ⊆ Q for all i ∈ I ⇐⇒
⋃
i∈I
Pi ⊆ Q ⇐⇒ ∼∼

⋃
i∈I
Pi ⊆ Q.

Here “⇐” of the second equivalence is by ⋃i∈I Pi ⊆ ∼∼⋃i∈I Pi; “⇒” is because
∼∼ is monotone and ∼∼Q = Q. Thus L has all joins.

(4): By (17), singletons {s} ∈ L serve as atoms.

Lemma 3.2.15. G(F) satisfies (5) the Covering Law: if {s} 6⊆ P ∈ L, then
(∼P )[{s}] is a singleton.

Proof. Since s ∈ ¬P = ¬∼∼P = ♦∼P , Lemma 3.1.14 yields t ∈ ∼P with
s
∼P?−−→ t, which implies (∼P )[{s}] = {t} by Proposition 3.1.19.

Lemma 3.2.16. Suppose s 6= t and u 6= s for s, t ∈ Σ and u ∈ s t t. Then
s t u = s t t.
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Proof. Since t is the join in L, s, u ∈ s t t implies s t u ⊆ s t t, and so

(∼{s})[{u}] = ∼{s} ∩ (s t u) ⊆ ∼{s} ∩ (s t t) = (∼{s})[{t}].

Yet, by s 6= u and s 6= t, Lemma 3.2.15 implies that both (∼{s})[{u}] and
(∼{s})[{t}] are singletons. Therefore (∼{s})[{u}] = (∼{s})[{t}]. Hence (33)
implies

s t u = {s} t ((∼{s})[{u}]) = {s} t ((∼{s})[{t}]) = s t t.

Lemma 3.2.17. G(F) satisfies (6) the Superposition Principle: If s, t ∈ Σ are
distinct, then there is a u ∈ Σ distinct from s and t with s t u = t t u = s t t.

Proof. By Lemma 3.2.16, it is enough to find some u ∈ st t distinct from s and t.
We consider two cases: Case 1: s 6⊥ t. Since s stt?−−→ s 6= t ∈ s t t (by Adequacy),
the Covering Property yields some u ∈ st t such that u9 s, which implies u 6= s
by s→ s (Lemma 3.1.8) and u 6= t by t→ s.

Case 2: s ⊥ t. Proper Superposition yields v ∈ Σ such that s→ v → t. Then
v ∈ ♦{t} ⊆ ♦(s t t), so Lemma 3.1.14 yields u ∈ s t t with v

stt?−−→ u. Since
s, t ∈ s t t, therefore by Proposition 3.1.15 s→ v → t implies s→ u→ t, which
means that s 6= u 6= t because s9 t.

By Lemmas 3.2.13, 3.2.14, 3.2.15 and 3.2.17 as well as Proposition 3.1.18, we
have

Theorem 3.2.18. G(F) is a Piron lattice.

Mapping of Morphisms

Here we define how G acts on morphisms. Given an Fw-morphism f : Σ1 ⇀ Σ2,
we can define G(f) : L2 → L1 as f−1[−] (restricted to L2), because f being an
Fw-morphism means that G(f)(P ) ∈ L1 for all P ∈ L2. Then G : Fwop → Lw is
a functor, by Theorem 3.2.18 and

Proposition 3.2.19. (a) For an Fw-morphism f , G(f) is an Lw-morphism.

(b) G preserves identity morphisms and composition.

Proof. (a): f−1[−] : P(Σ2) → P(Σ1), as a right adjoint, preserves all intersec-
tions. So G(f) preserves all meets. Moore’s condition holds since it amounts to
the triviality that, for every s ∈ Σ1, there is a t ∈ Σ2 such that either f(s) is
undefined or else f(s) = t. (b) follows simply because f 7→ f−1[−] is a powerset
functor (from the category of partial functions).

We define a functor Gs : Fsop → Ls as the restriction of G to Fs, since it lands
in Ls by Proposition 3.1.23.
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3.2.3 Natural Isomorphisms of the Functors
Now that we have described the two pairs of functors, F : Lwop → Fw and
G : Fwop → Lw on the one hand and Fs : Fsop → Ls and Gs : Fsop → Ls on the
other, we are ready to prove that each pair forms a duality.

For a set Σ, write ηΣ : Σ → P(Σ) :: s 7→ {s}. Then, for any quantum
dynamic frame F = (Σ,L, { P?−→}P∈L), it is straightforward to check that FG(F) =
(Σ′,L′, { Q?−→}Q∈L′) consists of Σ′ = ηΣ[Σ], L′ = {ηΣ[P ] | P ∈ L}, and ηΣ(s) ηΣ[P ]?−−−→
ηΣ(t) iff s

P?−→ t (by Proposition 3.1.19). So, defining ηF := ηΣ, Proposition 3.1.25
implies
Lemma 3.2.20. Each ηF : F→ FG(F) is an isomorphism in Fs.

Furthermore,
Lemma 3.2.21. η is a natural transformation from 1Fw to Fw ◦Gw.
Proof. Given an Fw-morphism f : F1 ⇀ F2, we have G(f) = f−1[−], and its
left adjoint `G(f) has `G(f)({s}) = ⋂

s∈f−1[P ],P∈L2 P . If f(s) is undefined, then
s ∈ f−1[∅] for ∅ ∈ L2, and so `G(f)({s}) = ∅. If f(s) is defined, then s ∈ f−1[P ]
iff f(s) ∈ P , whereas {f(s)} ∈ L2 by Lemma 3.2.3 (17); thus `G(f)({s}) = {f(s)}.
Therefore FG(f)({s}) is {f(s)} if f(s) is defined and otherwise undefined. This
clearly makes FG(f) ◦ ηF1 = ηF2 ◦ f .

Thus, η is a natural isomorphism both from 1Fw to Fw ◦ Gw and from 1Fs

to Fs ◦ Gs. On the other hand, given any Piron lattice L = (L,≤,−⊥), write
GF (L) = (L,⊆,∼) and define τL : L→ GF (L) by J−K : L→ L.
Lemma 3.2.22. Each τL : L→ GF (L) is an isomorphism in Ls.
Proof. Lemma 3.2.1 means, because J−K is onto L = {JpK | p ∈ L}, that τL is
an order isomorphism; so τL satisfies (12) and (13). Also, it satisfies (14) by
Proposition 3.2.2. Hence τL is an isomorphism in Ls and so in Lw.
Lemma 3.2.23. τ is a natural transformation from 1Lw to Gw ◦ Fw.
Proof. Given any h : L1 → L2, Lemma 3.2.9 implies

GF (h) ◦ τL1(p) = GF (h)(JpK) = F (h)−1[JpK] = Jh(p)K = τL2 ◦ h(p).

Thus τ is a natural isomorphism both from 1Lw to Gw ◦ Fw and from 1Ls to
Gs ◦ Fs. Moreover, it is easy to check that FτL ◦ ηFL :: a ( ∈ At(L)) 7→ {a} =
JaK 7→ ∧

JaK⊆JpK p = a and that GηF ◦ τGF :: P (∈ L) 7→ JP K 7→ ηF
−1[JP K] = {s ∈

Σ | {s} ∈ JP K} = P ; thus Fτ ◦ ηF = 1F and Gη ◦ τG = 1G. Therefore we have
established
Theorem 3.2.24. (F,G, η, τ) and (Fs, Gs, η, τ) form dualities between Fw and
Lw and between Fs and Ls, respectively. Moreover, G a F with η unit and τ
counit, where we write F : Lop → F and G : F→ Lop.



3.2. Dualities 65

3.2.4 Mayet’s Condition
The duality result we have just proven extends to certain (full) subcategories of
Lw, Ls, Fw and Fs; namely, the categories of Piron lattices and quantum dynamic
frames that satisfy the property called Mayet’s condition [80]. As mentioned in
the introduction, this condition added to a Piron lattice captures the structure of
an infinite dimensional Hilbert space over the complex numbers, reals, or quater-
nions.

Definition 3.2.25. By a strong automorphism, let us mean an isomorphism,
either of Ls or of Fs, on the same object. A Piron lattice L = (L,≤,−⊥) is said
to satisfy Mayet’s condition if there is a strong automorphism k : L → L such
that

34. there is a p ∈ L such that k(p) < p, and

35. there is a q ∈ L such that there are at least two distinct atoms below q and
k(r) = r for all r ≤ q.

A quantum dynamic frame F = (Σ,L, { P?−→}P∈L) is said to satisfy Mayet’s condi-
tion if there is a strong automorphism g : Σ→ Σ such that

36. there is a P ∈ L such that g−1[P ] ⊂ P , and

37. there is a Q ∈ L that has at least two distinct elements and such that
g(s) = s for all s ∈ Q.

Using this condition let us define a full subcategory LMw (respectively, LMs ,
FMw or FMs ) of Lw (respectively, Ls, Fw or Fs); that is, the objects of LMw are the
objects of Lw satisfying Mayet’s condition, whereas any pair of objects L1, L2 of
LMw has the same set of morphisms as it has in Lw. Then LMw and LMs are dual
to FMw and to FMs , respectively, which follows from

Proposition 3.2.26. A Piron lattice L satisfies Mayet’s condition iff F (L) sat-
isfies Mayet’s condition. A quantum dynamic frame F satisfies Mayet’s condition
iff G(F) satisfies Mayet’s condition.

Proof. We first show the two “only if” parts. Suppose L = (L,≤,−⊥) satisfies
Mayet’s condition and let k : L → L be a strong automorphism that satisfies
(34) and (35). While F (k) is a strong automorphism, it satisfies (36) and (37) as
follows. We have p, q ∈ L as in (34) and (35). Then F (k)−1[JpK] = Jk(p)K ⊂ JpK by
Lemmas 3.2.9 and 3.2.1. By (35), JqK has at least two elements; also each s ∈ JqK
has s = k(s), which implies by `k a k that `k(s) ≤ s and so F (k)(s) = `k(s) = s
by Lemma 3.2.11.

Suppose F = (Σ,L, { P?−→}P∈L) satisfies Mayet’s condition and let g : Σ → Σ
be a strong automorphism that satisfies (36) and (37). While G(g) is a strong
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automorphism, it satisfies (34) and (35) as follows. (36) means that there is a
P ∈ L such that G(g)(P ) = g−1[P ] ⊂ P . We have Q as in (37); then it contains
two dinstinct singletons, and R ⊆ Q implies G(g)(R) = g−1(R) = R since g
restricted to Q is the identity.

Now the “if” parts follow from the “only if” parts because Mayet’s condition
is stable under isomorphisms in Ls and in Fs. For the first “if”, for instance, if
F (L) satisfies Mayet’s condition, then by the second “only if” GF (L) satisfies it
as well, and so does L.

It immediately follows from this fact that the functors Fw, Gw, Fs, and Gs

restrict to the subcategories LMw , LMs , FMw and FMs , and moreover, by Theorem
3.2.24 (and the fullness of these subcategories),

Theorem 3.2.27. The pair (FM
w , GM

w ) forms a duality between FMw and LMw and
the pair (FM

s , GM
s ) forms a duality between FMs and LMs .



Chapter 4
Completeness of a quantum hybrid logic

Summary: In this chapter we introduce a quantum hybrid logic, which is shown
to be sound and complete with respect to finite dimensional quantum models, i.e.
quantum Kripke models of dimension at most n for a fixed n ∈ N. While the
syntax of our logical system is equivalent to standard hybrid logic, the deduc-
tive system is extended with quantum axioms that capture the properties of a
quantum Kripke model.

Background: In this chapter we will introduce a sound and complete axioma-
tisation for quantum Kripke frames (Definition 2.2.15), which were introduced by
Shengyang Zhong in [107]. In the same publication Zhong showed that these quan-
tum Kripke frames are equivalent to quantum dynamic frames (Definition 2.2.14),
introduced by Smets and Baltag (Chapter 2.2.3). In Chapter 3 we have shown
in Theorem 3.2.24 that quantum dynamic frames, and therefore quantum Kripke
frames, are dual to Ṕıron lattices (Definition 2.2.3). By Theorem 2.2.4, this
means that each quantum Kripke frame is realisable by a generalized Hilbert
space. This validates our claim that the language introduced in this chapter is a
quantum logic.

One key difference with the framework presented in this chapter and the
frameworks from previous work is that we only consider finite structures. In the
research area that deals with quantum information and quantum computation we
normally only work with Hilbert spaces of finite dimension. For a fixed dimension
n ∈ N, all complex Hilbert spaces of dimension n are equivalent to the Hilbert
space Cn. In fact, we normally only consider qubits, that is, vectors in the complex
vector space C2 of dimension 2. If we have N qubits, this becomes a vector in
the tensor product ⊗N C2. For many practical purposes, the limitation to focus
only on finite dimensional frames is acceptable.

The language introduced in this chapter is based on hybrid logic (Chap-
ter 2.2.3). Our completeness result heavily depends on a previously obtained
completeness results in Hybrid logic,which is described in more detail in Chap-
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ter 2.2.3. In this chapter we extend the normal hybrid logic with several axioms.
Most of these axioms are pure formulas, that is, they only contain nominals as
their atoms. By Theorem 2.2.13, this new language will then be sound and com-
plete with respect to all frames validating the new pure axioms.

The chapter is organised as follows. In Section 4.1, we discuss the syntax
and semantics of a quantum hybrid logic and an equivalent definition of a (finite
dimensional) quantum Kripke frame. In Section 4.2, we show that our quantum
hybrid logic can express the dynamic operators of the logic of quantum actions
(see Chapter 2.2.3) and as a consequence is as expressive as the logic of quantum
actions. In Section 4.3, we introduce the deductive system and show completeness.

4.1 Quantum hybrid logic

4.1.1 Syntax
Let Prop, Nom and Var be three countable and pairwise disjoint sets of proposition
letters. The set of all hybrid formulas is given by

φ ::= p | i | x | ¬φ | φ ∧ φ | �φ | @kφ | ↓x.φ,

where p ∈ Prop, i ∈ Nom, x ∈ Var and k ∈ Nom ∪ Var. A formula φ is called
closed if for all x ∈ Var all occurrences of x in φ only appear under the scope of
a down arrow ↓x.(·). The “Quantum” Hybrid Language (QHL) is the collection
of all closed formulas.

4.1.2 Frame and model
Given a set of states S and a (non-orthogonality) relation 6⊥⊆ S × S, we write
s 6⊥ t instead of (s, t) ∈6⊥ and s ⊥ t otherwise. For any P ⊆ S we write ∼P
for the set {s ∈ S | s ⊥ t for all t ∈ P}. With T we denote the set of testable
properties, that is T = {P ⊆ S | P = ∼∼P}.

Definition 4.1.1 (Quantum Kripke Model of finite dimension). Let n be a pos-
itive integer. A Quantum Kripke Frame of dimension at most n (QKFn) F is
a pair (S, 6⊥) consisting of a set of states S and a non-orthogonality relation
6⊥⊆ S × S such that:

1. s = t iff s 6⊥ u implies u 6⊥ t for all u ∈ S, (separation)

2. for all s, t ∈ S there exists a u ∈ S such that s 6⊥ u 6⊥ t. (superposition)

3. for every multi-subset {s1, · · · sn+1} ⊆ S of n + 1 (possibly non-distinct)
states we have si 6⊥ sj for some i 6= j, (maximum basis)
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4. for every finite P ⊆ω S and s ∈ S \ ∼P there exists a t ∈ ∼∼P such that
s 6⊥ u iff t 6⊥ u for all u ∈ ∼∼P , (finite cover law)

A Quantum Kripke Model of dimension at most n (QKMn) is a pair M =
(F , V ) consisting of a QKFn F and a valuation V : Prop ∪ Nom ∪ Var → P(S)
such that |V (i)| = 1 for all i ∈ Nom.

For the remainder of this section let us fix a positive integer n. Given a
quantum Kripke model M of dimension at most n (QKMn), we say a state s ∈ S
is named by i ∈ Nom if V (i) = {s}. We say the model M is named if all states
s ∈ S are named.

We will now prove certain properties of quantum Kripke models of dimension
at most n. Our definition of a QKFn differs from Zhong’s original definition (Defi-
nition 2.2.15) in several ways: We have combined the two conditions “symmetry”
and “separation” into one separation condition. His “existence of approxima-
tion” condition is restated as the “cover law” and “reflexivity” follows from our
new condition “maximum basis”. However, aside from the finite dimension these
two definitions are equivalent. The following lemma shows a QKFn is reflexive,
symmetric and separated.

Lemma 4.1.2. Let F = (S, 6⊥) be a quantum Kripke frame of dimension at most
n (QKFn). Then 6⊥ is reflexive, symmetric and separated, that is:

1. s 6⊥ s for all s ∈ S, (reflexivity)

2. s 6⊥ t iff t 6⊥ s for all s, t ∈ S, (symmetry)

3. s 6= t iff s 6⊥ u and u ⊥ t for some u ∈ S, (alternative separation)

Proof. Note that the alternative separation in this lemma is simply the contra-
positive of separation (Definition 4.1.1-1).

To show reflexivity, take any s ∈ S and let {s1, . . . , sn+1} ⊆ S be the multi-
subset where si = s for every 1 ≤ i ≤ n + 1. Then by maximum basis (Def-
inition 4.1.1-3) we have si 6⊥ sj for some i 6= j, but in this case this means
s 6⊥ s.

To show symmetry, take any s, t ∈ S. We have s = s, so by separation
(Definition 4.1.1-1), we have s 6⊥ u implies u 6⊥ s for all u ∈ S, so in particular
we get s 6⊥ t implies t 6⊥ s. Similarly, from t = t we get t 6⊥ s implies s 6⊥ t, so we
get s 6⊥ t iff t 6⊥ s.

The following lemma collects some properties of the orthocomplement.

Lemma 4.1.3. Let F = (S, 6⊥) be a quantum Kripke frame of dimension at most
n (QKFn). The following statements hold.

1. If P ⊆ Q, then ∼Q ⊆ ∼P .
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2. P ⊆ ∼∼P for all P ⊆ S.

3. ∼P = ∼∼∼P for all P ⊆ S.

Proof. 1. Suppose P ⊆ Q and suppose s ∈ ∼Q. Then s ⊥ t for all t ∈ Q.
Since P ⊆ Q this implies s ⊥ t for all t ∈ P and therefore s ∈ ∼P .

2. For all t ∈ ∼P we have t ⊥ s for all s ∈ P . Therefore, by symmetry
(Lemma 4.1.2-2), for any s ∈ P we have s ⊥ t for all t ∈ ∼P and so
s ∈ ∼∼P for all s ∈ P .

3. By Lemma 4.1.3-2 we already have ∼P ⊆ ∼∼∼P . Moreover, by Lemma
4.1.3-2 we also know P ⊆ ∼∼P , which by Lemma 4.1.3-1 implies ∼∼∼P ⊆
∼P .

The orthocomplement can be regarded as a negation in quantum structures.
We introduce the quantum join t as the dual of ∩ with respect to ∼, that is,
(P t Q) := ∼(∼P ∩ ∼Q) for all subsets P,Q ⊆ S, where S is the set of states.
The following lemma collects some properties of the quantum join.

Lemma 4.1.4. Let F = (S, 6⊥) be a quantum Kripke frame of dimension at most
n (QKFn). The following statements hold.

1. P tQ = ∼∼(P ∪Q) for all P,Q ⊆ S.

2. P ⊆ P tQ for all P,Q ⊆ S.

3. If P,Q ⊆ R, then P tQ ⊆ ∼∼R.

Proof. 1. For this statement it is enough to show ∼(P ∪ Q) = (∼P ∩ ∼Q).
From P ⊆ (P ∪Q) we get ∼(P ∪Q) ⊆ ∼P by Lemma 4.1.3-1. Similar we
get ∼(P ∪Q) ⊆ ∼Q, and therefore ∼(P ∪Q) ⊆ (∼P ∩ ∼Q).
For the other direction, suppose s ∈ (∼P ∩ ∼Q), then s ⊥ t for all t ∈ P
and s ⊥ t for all t ∈ Q. Therefore s ⊥ t for all t ∈ (P ∪ Q), which by
definition means s ∈ ∼(P ∪Q).

2. P ⊆ (P ∪ Q), so by Lemma 4.1.3-2 we have P ⊆ ∼∼P and by applying
Lemma 4.1.3-1 twice we get ∼∼P ⊆ ∼∼(P ∪ Q), so by transitivity P ⊆
∼∼(P∪Q). By Lemma 4.1.4-1 we have ∼∼(P∪Q) = (PtQ), and therefore
P ⊆ (P tQ).

3. Suppose P,Q ⊆ R, then (P ∪Q) ⊆ R. Therefore by Lemma 4.1.3-1 we have
∼∼(P ∪Q) ⊆ ∼∼R, which by Lemma 4.1.4-1 implies (P tQ) ⊆ ∼∼R.
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The following lemma establishes that each subset of the set of states P ⊆ S
has a finite basis for its orthocomplement closure ∼∼P .

Lemma 4.1.5. Let F = (S, 6⊥) be a quantum Kripke frame of dimension at most
n (QKFn). For every (non-empty) subset P ⊆ S there exists a finite subset
Pω ⊆ S such that ∼∼Pω = ∼∼P .

Proof. If P is the empty set, the statement is trivial. Suppose P is non-empty.
We will construct Pω inductively with at most n steps. Let P 0

ω be the empty set.
For the inductive step, suppose Pm

ω is defined such that Pm
ω has m states, which

are pairwise orthogonal, that is, s ⊥ t for all s, t ∈ Pm
ω . We now consider the

following two cases.

• Suppose (∼Pm
ω ∩∼∼P ) 6= ∅. Take any s ∈ (∼Pm

ω ∩∼∼P ) and let Pm+1
ω =

(Pm
ω ∪ {s}).

• Suppose (∼Pm
ω ∩ ∼∼P ) = ∅, the construction terminates and we let Pω =

Pm
ω .

Note that by construction and by symmetry (Lemma 4.1.2-2) each set Pm
ω indeed

consists of m states that are pairwise orthogonal. Therefore by maximum basis
(Definition 4.1.1-3) P n+1

ω cannot exist and the construction must terminate after
at most n steps.

We claim ∼∼Pω = ∼∼P . Suppose not, then there exists an s ∈ ∼∼P
such that s /∈ ∼∼Pω. Therefore there exists a t ∈ ∼Pω such that s 6⊥ t, so
t ∈ S \ ∼(Pω ∪ {s}). By the finite cover law (Definition 4.1.1-4) there exists a
u ∈ ∼∼(Pω ∪ {s}) such that t ⊥ v iff u ⊥ v for all v ∈ ∼∼(Pω ∪ {s}). As
∼∼Pω ⊆ ∼∼(Pω ∪ {s}) and t ∈ ∼Pω, we know u ⊥ v for all v ∈ Pω. As
∼∼(Pω ∪ {s}) ⊆ ∼∼P we know u ∈ ∼∼P . Therefore u ∈ (∼Pω ∩ ∼∼P ) 6= ∅,
which contradicts the construction of Pω.

Corollary 4.1.6. Let F = (S, 6⊥) be a quantum Kripke frame of dimension at
most n (QKFn). Then F satisfies the infinite cover law, which is:

6. for every P ⊆ S and s ∈ S \ ∼P there exists a t ∈ ∼∼P such that s 6⊥ u
iff t 6⊥ u for all u ∈ ∼∼P , (infinite cover law)

4.1.3 Semantics
Definition 4.1.7. Given a Quantum Kripke Model M = (S, 6⊥, V ) of dimension
at most n (QKMn), we inductively define for p ∈ Prop, i ∈ Nom and x ∈ Var

• M, s � p iff s ∈ V (p),

• M, s � i iff V (i) = {s},

• M, s � x iff V (x) = {s},
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• M, s � ¬φ iff M, s 2 φ,

• M, s � φ ∧ ψ iff M, s � φ and M, s � ψ,

• M, s � �φ iff for all t ∈ S if s 6⊥ t then M, t � φ,

• M, s � @kφ iff M, t � φ, where V (k) = {t}, and

• M, s � ↓x.φ iff M[V (x) := {s}], s � φ, where M[V (x) := {s}] is the model
obtained by extending the valuation V of M by putting V (x) := {s}.

We write JφK := {s ∈ S |M, s � φ}. Moreover, we write M � φ iff M, s � φ for
all s ∈ S, and for a QKFn F = (S, 6⊥), we write F � φ iff M = (S, 6⊥, V ) � φ for
every valuation V on F .

Lemma 4.1.8. Given a Quantum Kripke Model M = (S, 6⊥, V ) of dimension
at most n (QKFn), for all φ we have J�¬φK = ∼JφK, and as a consequence
J�♦φK = ∼∼JφK.

Proof. Suppose s ∈ J�¬φK. Then by definition for every t ∈ S such that s 6⊥ t
we have t ∈ J¬φK, which is equivalent to t /∈ JφK. Therefore s ⊥ t for all t ∈ JφK,
which by definition means s ∈ ∼JφK. Similarly, if s ∈ ∼JφK, then s ∈ J�¬φK.

4.2 Dynamic operators
In this section we will show QHL can express dynamic operators similar to tests
as can be found in the logic for quantum actions [10].

Let F = (S, 6⊥) be a quantum Kripke frame of dimension at most n. Let
T := {P ⊆ S | ∼∼P = P} be the set of testable properties. We define a new
relation RP for each P ∈ T in the following way.

RP := {(s, t) ∈6⊥| t ∈ P and s 6⊥ u iff t 6⊥ u for all u ∈ P}.

These relations RP correspond to the projectors onto subspaces P in Hilbert
spaces. Therefore these relations must be partial functions.

Lemma 4.2.1. The relation RP is a partial function for each P ∈ T .

Proof. Let P ∈ T and suppose towards a contradiction (s, t) ∈ RP and (s, t′) ∈
RP for some t 6= t′. By separation, there is a u ∈ S such that t 6⊥ u and
t′ ⊥ u. By definition of RP , both t ∈ P and t′ ∈ P . Therefore u ∈ S \ ∼P . By
Corollary 4.1.6, there exists a v ∈ P such that v 6⊥ w iff u 6⊥ w for all w ∈ P .
Thus we have v 6⊥ t and v ⊥ t′. By definition of RP we have s 6⊥ v and s ⊥ v, a
contradiction.
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Rules
MP ` φ→ ψ,` φ =⇒ ` ψ
Subst ` φ =⇒ ` φσ
Gen@ ` φ =⇒ ` @iφ
Gen� ` φ =⇒ ` �φ
Name ` i→ φ =⇒ ` φ if i does not occur in φ
Paste ` @i♦j ∧@jφ =⇒ ` @i♦φ if i 6= j and j does not occur in φ

Figure 4.1: Rules of QHL(@, ↓).

We introduce a new abbreviation for a dynamic operator.

〈φ?〉ψ := ↓x.♦↓y.(ψ ∧�♦φ ∧�(�♦φ→ ♦x) ∧@x�(�♦φ→ ♦y))

In the following lemma we show that the semantics of 〈p?〉q is connected to the
relations RP with P ∈ T .

Lemma 4.2.2. Let M = (S, 6⊥, V ) be a quantum Kripke model of dimension at
most n. Then we have

M, s � 〈φ?〉ψ iff (s, t) ∈ RP for some t ∈ S and M, t � ψ, where P = ∼∼JφK.

Proof. Suppose M, s � 〈φ?〉ψ. Then there exists a t ∈ S such that s 6⊥ t and
M, t � ψ and

M[V (x) = {s}, V (y) = {t}], t � �♦φ ∧�(�♦φ→ ♦x) ∧@x�(�♦φ→ ♦y),

that is, if we let P = ∼∼JφK, then t ∈ P and t 6⊥ u iff s 6⊥ u for all u ∈ P , or in
other words, (s, t) ∈ RP .

Suppose there exists a t ∈ S such that (s, t) ∈ RP and M, t � ψ, where
P = ∼∼JφK. Then by definition of RP we have

M[V (x) = {s}, V (y) = {t}], t � �♦φ ∧�(�♦φ→ ♦x) ∧@x�(�♦φ→ ♦y).

In other words, M, s � 〈φ?〉ψ.

4.3 Complete deductive system

4.3.1 Deductive system
We have all rules (Figure 4.1) and axioms (Figure 4.2) of HL(@, ↓) as can be
found in the first axiomatisation of [31, Section 5, Figure 3] (Blackburn et. al.
“Pure Extensions, Proof Rules, and Hybrid Axiomatics”). Moreover, we have four
axioms to characterise each of the four properties of a quantum Kripke frame of
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Axioms
CT All classical tautologies
K� ` �(p→ q)→ �p→ �q
K@ ` @i(p→ q)→ @ip→ @iq
Selfdual@ ` @ip↔ ¬@i¬p
Ref@ ` @ii
Agree ` @i@jp↔ @jp
Intro ` i→ (p↔ @ip)
DA ` @i(↓x.φ↔ φ[x := i])

Figure 4.2: Standard axioms of QHL.

Axioms for quantum Kripke frames
Separation ` i↔ �♦i
Superposition ` ♦♦i
Maximum basis ` ∨1≤i 6=j≤n+1 @i♦j

Cover law ` @i♦p→ @i♦↓x.
(
�♦p ∧�(�♦p→ ♦i)

∧@i�(�♦p→ ♦x)

)

Figure 4.3: Axioms for finite quantum Kripke frames.

dimension at most n (Figure 4.3). We refer to this deductive system as QHLn
(finite quantum hybrid logic).

Some properties of QKFn are defined by some of the axioms in Figure 4.3.
Let us recall the definition of frame definability.

Definition 4.3.1 (Frame definability). A modal fromula φ defines (or charac-
terises) a class of frames K, if for all frames F , F is in K iff F � φ.

The following lemma establishes that the first three axioms in Figure 4.3
characterise the first three properties of a quantum Kripke frame of dimension at
most n in Definition 4.1.1.

Lemma 4.3.2. The axioms Separation, Superposition and Maximum basis char-
acterise their corresponding properties from Definition 4.1.1.

Proof. For Separation (` i ↔ �♦i), suppose F = (S, 6⊥) satisfies separation, so
s = t iff s 6⊥ u implies u 6⊥ t for all u ∈ S. Let V be some valuation on F and
let M = (S, 6⊥, V ). Suppose M, s � i. As we have s = s, we have s 6⊥ u implies
u 6⊥ s for all u ∈ S, so we have M, s � �♦i as required.

Suppose M, s � �♦i. Then M, u � ♦i for all s 6⊥ u. As V (i) = {t} for some
t ∈ S, we have u 6⊥ t for all s 6⊥ u, so we have s = t and therefore M, s � i. In
conclusion, if F satisfies separation, then F � i↔ �♦i.
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Now suppose F � i↔ �♦i. Suppose for some s, t ∈ S we have s = t. Let V
be any valuation on F such that V (i) = {s} = {t} and let M = (S, 6⊥, V ). Then
M, s � i and therefore M, s � �♦i. Thus for every s 6⊥ u we have M, u � ♦i.
Since V (i) = {t}, we have s 6⊥ u implies u 6⊥ t as required.

Suppose for some s, t ∈ S we have s 6⊥ u implies u 6⊥ t for all u ∈ S. Let V
be any valuation on F such that V (i) = {t} and let M = (S, 6⊥, V ). Then we
have M, s � �♦i. Therefore we have M, s � i, which implies V (i) = {s}. But
this implies s = t as required. In conclusion, F � i ↔ �♦i implies F satisfies
separation.

For Superposition (♦♦i), suppose F = (S, 6⊥) satisfies superposition, so for
every s, t ∈ S there exists a u ∈ S such that s 6⊥ u and u 6⊥ t. Let V be any
valuation for F . We know V (i) = {t} for some t ∈ S. For any s ∈ S there exists
a u ∈ S such that s 6⊥ u and u 6⊥ t. So F , V, u � ♦i and F , V, s � ♦♦i. Because
s ∈ S was an arbitrary state, we get F , V � ♦♦i.

Suppose for some F = (S, 6⊥) there are s, t such that there exists no u ∈ S
such that s 6⊥ u and u 6⊥ t. Let V be such that V (i) = {t}. Then we have
F , V, s � ¬♦♦i.

For Maximum basis (` ∨1≤i 6=j≤n+1 @i♦j), suppose F = (S, 6⊥) satisfies max-
imum basis, so for every multi-subset X ⊆ S of n + 1 (possibly non-distinct)
states there exists s 6= t ∈ X such that s 6⊥ t. For some valuation V on F
let I ⊆ Nom be any set of n + 1 nominals and let us define the multi-subset
X = {si | i ∈ I and V (i) = {s}. By maximum basis there are i 6= j ∈ I such that
si 6⊥ sj and therefore F , V, si � ♦j and by definition of @iφ we have F , V � @i♦j.
By propositional reasoning we get F , V � ∨i 6=j∈I @i♦j.

Suppose for some F = (S, 6⊥) there is a multi-subset {s1, . . . , sn+1} ⊆ S such
that si ⊥ sj for all i 6= j. Let I ⊆ Nom be a subset of n + 1 nominals and let
V be a valuation such that V (i) = si for all i ∈ I. Then we have F , V, si � ¬♦j
for all i 6= j ∈ I. Therefore we have F , V � ∧i 6=j∈I ¬@i♦j, which is equivalent to
F , V � ¬∨i 6=j∈I @i♦j.

The following theorem establishes all rules and axioms are sound with respect
to quantum Kripke frames of dimension at most n.

Theorem 4.3.3 (Soundness). The rules in Figure 4.1 and the axioms in Fig-
ure 4.2 and Figure 4.3 are sound with respect to the class of all quantum Kripke
frames of dimension at most n (QKFn).

Proof. The rules in Figure 4.1 and the axioms in Figure 4.2 are standard hybrid
logic rules and axioms and are sound with respect to every class of hybrid logic
frames. The soundness of the axioms Separation, Superposition and Maximum
basis from Figure 4.3 are established in Lemma 4.3.2. What is left to show is the
soundness of the axiom Cover law.

Let M = (S, 6⊥, V ) be a quantum Kripke model of dimension at most n and
suppose M, s � @i♦p. Without loss of generality, assume V (i) = {s}, so M, s �
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♦p. Let P = JpK, then there exists a t ∈ P such that s 6⊥ t, which is equivalent to
s ∈ S \∼P . By Corollary 4.1.6, there exists a u ∈ ∼∼P such that s 6⊥ v iff u 6⊥ v
for all v ∈ ∼∼P . As u ∈ ∼∼P and u 6⊥ u by Lemma 4.1.2-1 we have s 6⊥ u. By
Lemma 4.1.8 we have J�♦pK = ∼∼P , so we get

M, s � @i♦↓x.(�♦p ∧�(�♦p→ ♦i) ∧@i�(�♦p→ ♦x)).

4.3.2 Completeness
We will now show that QHL is complete. We will extend the completeness result
discussed in Chapter 2.2.3. Let us briefly repeat the key steps of the proof.

Let Σ be a set of consistent formulas. Our goal is to obtain a canonical
model MΣ in which each state is a maximal consistent subset of quantum hybrid
formulas (MCS), each state is named by an i ∈ Nom and MΣ, s � Σ for some
state s.

We need a special type of MCS in order to obtain our completeness result.
A MCS Γ is called named if there is an i ∈ Γ for some i ∈ Nom. A MCS Γ is
called pasted if for every @i♦φ ∈ Γ there exists a nominal j ∈ Nom such that
@i♦j ∧@jφ ∈ Γ.

By the extended Lindenbaum lemma (Lemma 2.2.9) we can extend Σ to a
named and pasted MCS ΓΣ. From this ΓΣ we can obtain a MCS named by i for
each i ∈ Nom. Let us define ∆i by

∆i := {φ | @iφ ∈ ΓΣ}.

Note we have the axiom @ii, and since any MCS contains all axioms, we will have
i ∈ ∆i. Moreover, since ΓΣ is named, by Lemma 2.2.8 there exists a k ∈ Nom
such that

ΓΣ = ∆k. (4.1)

The set of states of the canonical model MΣ will be SΣ = {∆i | i ∈ Nom}.
The relation 6⊥Σ is the standard canonical relation, so ∆i 6⊥ ∆j iff φ ∈ ∆j for
every �φ ∈ ∆i. The valuation VΣ is given by V (φ) = {∆i | φ ∈ ∆i}. Note that
by Lemma 2.2.8 we have j ∈ ∆i iff ∆i = ∆j, thus |V (i)| = 1 for all nominals
i ∈ Nom.

Theorem 4.3.4 (Completeness). A set of formulas Σ is QHLn consistent iff Σ
is satisfiable in a quantum Kripke model of dimension at most n (QKMn).

Proof. The direction from right to left follows from soundness (Theorem 4.3.3).
For the left to right direction, suppose a set of formulas Σ is QHLn consistent.
Following the steps described above we obtain a named canonical model M =
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(S,R, V ), where S is a set of QHLn maximal consistent sets of formulas1, the
model M is a Hybrid logic model, that is |V (i)| = 1 for each i ∈ Nom, and each
s ∈ S is named by some i ∈ Nom. Moreover, by (4.1) there is an s ∈ S such that
Σ ⊆ s and, because M satisfies the truth lemma (Lemma 2.2.12), we have:

M, s � φ for all φ ∈ Σ.

We will now show M is a quantum Kripke model of dimension at most n, that
is, we will show M satisfies all four properties of Definition 4.1.1.

A pure formula is a formula in which the only atomic proposition letters occur-
ring are nominals (see Definition 2.2.5). The axioms Separation, Superposition
and Maximum basis are all pure formulas, and by Theorem 2.2.13 the model
M satisfies their characteristic properties, which by Lemma 4.3.2 are separation,
superposition and maximum basis (properties 1–3) of Definition 4.1.1.

To prove M satisfies the finite cover law (Definition 4.1.1-4), suppose for some
finite subset P ⊂ω S we have s ∈ S \ ∼P . By definition this means there exists
a v ∈ P such that s 6⊥ v. Given that M is named, s is named by some i ∈ Nom
and each p ∈ P is named by some ip ∈ Nom. Let φ := ∨

p∈P ip, then JφK = P . As
v ∈ P , we note that M, v � φ and by Lemma 4.1.8 note that J�♦φK = ∼∼P .

We have M, v � φ and therefore M, s � ♦φ, so given that V (i) = {s} we
conclude M, s � @i♦φ. Thus by modus ponens M, s � @i♦↓x.(�♦φ∧�(�♦φ→
♦i) ∧@i(�♦φ→ ♦x)). Therefore there exists a t ∈ S such that

• M[V (x) := {t}], t � �♦φ, that is, t ∈ ∼∼P , and

• M[V (x) := {t}], t � �(�♦φ→ ♦i), that is, for all u ∈ S such that t 6⊥ u, if
u ∈ ∼∼P then u 6⊥ s, and

• M[V (x) := {t}], s � �(�♦φ → ♦x), that is, for all u ∈ S such that s 6⊥ u,
if u ∈ ∼∼P then u 6⊥ t.

Combining and rewriting the above three statements we see that there exists a
t ∈ ∼∼P such that s 6⊥ u iff t 6⊥ u for all u ∈ ∼∼P . In conclusion, M satisfies
property 4 of definition 4.1.1.

1Note that S is not the set of all QHLn maximal consistent sets of formulas.





Chapter 5
Deriving the

correctness of quantum protocols in the
probabilistic logic for quantum programs

Summary: In this chapter we present a sound axiomatization for a probabilistic
modal dynamic logic of quantum programs. The logic can express whether a state
is separable or entangled, information that is local to a subsystem of the whole
quantum system, and the probability of positive answers to quantum tests of
certain properties. The power of this axiomatization is demonstrated with proofs
of properties concerning bases of a finite dimensional Hilbert space, composite
systems, entangled and separable states, and with proofs of the correctness of
two probabilistic quantum protocols (the quantum leader election protocol and
the BB84 quantum key distribution protocol).

Background: This chapter introduces a sound axiomatisation for a probabilis-
tic quantum logic. The logic is based on the logic for quantum programs in-
troduced by Baltag and Smets, which we discuss in Chapter 2.2.3. The logic
presented in this chapter is closely related to the probabilistic logic presented in
Chapter 6. The axiomatisation starts from the deductive system for probabilis-
tic logic introduced by Fagin and Halpern, which we discuss in Chapter 2.2.4,
and several sound axioms proposed by Baltag and Smets, which are discussed in
Chapter 2.2.3, in particular Figure 2.4.

This chapter is organized as follows. In Section 5.1, we introduce probabilistic
quantum structures, the basic structures for our semantics, which are mild ab-
stractions of Hilbert spaces. In Section 5.2, we introduce the syntax and semantics
for our probabilistic logic of quantum programs. We then present in Section 5.3
the deductive system and prove some properties in our language, including prop-
erties concerning orthonormal bases. In Section 5.4 we prove the correctness of
the quantum leader election protocol and the BB84 protocol.
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5.1 Probabilistic Quantum Structure
Let H be a finite dimensional Hilbert space with an orthonormal basis ~B =
(~b0, . . . ,~bn−1). Let V ~B denote the set of all functions f : ~B → C. It is well known
that there is a bijective correspondence between the vectors inH and the elements
of V ~B given by mapping every ~v in H to the function ~bi 7→ 〈~v,~bi〉. A state of H is
a one-dimensional subspace s of H. We represent the states of H by a subset of
V ~B, each representing a canonical representative of the one-dimensional subspace.
This subset is the set of complex probability mass function defined as follows.

Definition 5.1.1 (Complex probability mass functions). Let B = {bi | 0 ≤ i <
n} for some positive n ∈ N be an ordered set (which we call an ordered basis). A
function f : B → C is called a complex probability mass function on B if

1. there exists an i ∈ n such that

(a) f(bj) = 0 for all j < i, and
(b) f(bi) ∈ (0, 1] ⊂ R,

2. |f(bi)|2 ∈ [0, 1] for all i ∈ n, and

3. ∑i∈N |f(bi)|2 = 1.

Let SB denote the set of all complex probability mass functions on B.

Note that if f is a complex probability mass function, the function f 2 : B →
[0, 1] is a (real) probability mass function. In this sense, a complex probability
mass function can be seen as an appropriate “square root” of a probability mass
function.

Every function f ∈ V ~B can be converted into a function in S ~B as follows.

Definition 5.1.2 (Strong normalization). Let B = {bi | 0 ≤ i < n} for some
positive n ∈ N be an ordered basis. For every non-zero function f : B → C, where
c = f(bi) for the smallest i such that f(bi) 6= 0, we define the strong normalization
sn(f) of f by

sn(f) : b 7→ c√∑
i |c · f(bi)|2

f(b),

where c is the complex conjugate of c.

It is easy to see that the strong normalization transforms any non-zero func-
tion f : ~B → C into a complex probability mass function. The set of complex
probability mass functions is identified with the set of states of a Hilbert space
by the following proposition.

Proposition 5.1.3. Let H be a Hilbert space with ~B = {~b0, . . . , ~bn−1} an ordered
orthonormal basis. The following both hold.
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1. Given a complex probability mass function f : ~B → C, there exists a unique
unit vector ~v in H, such that for each j, f(~bj) = 〈~v, ~bj〉.

2. Given any state s of H, there is a unique unit vector ~v in s, such that the
function f~v = 〈~v, ·〉 : ~B → C is a complex probability mass function over the
ordered orthonormal basis ~B.

Proof. 1. Given f ∈ S ~B, we define the vector ~v to be

~v =
∑
j∈n

f(~bj)~bj.

Since the basis ~B is orthonormal, it is easy to see that f(~bj) = 〈~v, ~bj〉. By
condition 3 of the definition of a complex probability mass function, ~v is a unit
vector.

2. Let s be a one-dimensional subspace of H, and let ~w be any non-zero
vector in s. We identify ~w with a non-zero function in f~w ∈ V ~B. Let ~v be a vector
corresponding to sn(f~w). As ~v only differs from ~w by a constant multiple, ~v ∈ s.
Furthermore, as sn(f~w) is a complex probability mass function, ~v is a unit vector.
To see that ~v is unique, we observe that for any complex number c 6= 1 and any
complex probability mass function f , the function c · f : ~b 7→ c · f(~b) is not a
complex probability mass function.

Because every state can be represented by a complex probability mass func-
tion, we will use the term state to mean either a one-dimensional subspace or a
complex probability mass function. We will also use the same notation for both
concepts. Also, throughout this chapter, we will identify each natural number
n ∈ N def= {0, 1, 2, . . . } with the set {0, 1, . . . , n − 1} of elements preceding it. If
we write i < N without a lower bound, we intend for i to range from i = 0 to
i = N − 1.

5.1.1 Maps between bases and states
We require the basis to be ordered so that we can have a canonical representation
of each state via a vector representative of its one-dimensional subspace (for the
same reason, vectors are written as ordered tuples, also assuming an order to its
basis). Were we to reorder the basis elements, we could then map each vector
representative in the original ordering to its unique corresponding representative
in the new order (this mapping is, in this context, an identity map on states).
This concept is generalized to change of basis maps as follows.

Definition 5.1.4 (change-of-basis isomorphism). Let B = {bi | i < dB} and
C = {ci | i < dC} be two ordered basis (where C could be a reordering of B).
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A function h : SB → SC is a change-of-basis isomorphism iff there is a bijection
η : C → B (which implies dB = dC) such that for all s ∈ SB and for all i < dC

h(s)(ci) = sn(s ◦ η)(ci).

We call h an order isomorphism if in addition η(ci) = bi for all i < dC . We write
B ∼= C and SB ∼= SC if there is an order isomorphism between SB and SC . We
write s ∼= t for s ∈ SB and t ∈ SC if there is an order isomorphism h : SB → SC ,
such that h(s) = t.

The tensor product of two ordered bases is the Cartesian product of the ele-
ments ordered by the dictionary order.
Definition 5.1.5 (Tensor product). The tensor product of two ordered bases
B = (b0, . . . , bn−1) and C = (c0, . . . , cm−1) is D = (d0, . . . , dnm−1), such that
dk = (bi, cj) where i = bk/mc and j = k mod m. The tensor product of s ∈ SB
and t ∈ SC , denoted s⊗ t, is given by

(s⊗ t)(bi, cj) = s(bi) · t(cj).

It is easy to see that in general (s⊗ t)⊗ r ∼= s⊗ (t⊗ r). As the tensor product
is associative given our strictest notion of isomorphism, we will ignore internal
parentheses when taking tensor products of more than two bases.

5.1.2 Agents and Separability
In most communication protocols we have several agents who are in control of part
of the (quantum) system, but not the whole. The following definitions describe
formally how a probabilistic quantum model is build up from its submodel.
Definition 5.1.6 (multi-agent PQM and components). Let N = {0, . . . , N − 1}
be a finite set of agents. An N-Probabilistic Quantum Model (N-PQM) is a tuple
M = (B0, . . . , BN−1) of ordered bases. Let I ⊆ N . Then MI

def= {Bi | i ∈ I} is
said to be a component of M.

If I = {x1, . . . , xm} ⊆ N for some m < N (where (xi) is strictly increasing),
we write ⊗MI = Bx1 ⊗Bx2 ⊗ · · ·⊗Bxm . We write SM

I (or SI if M is understood
from context) for S⊗MI

, and S (or SM) for SN (or SM
N ). In what follows, given

a finite ordered set J = {x1, . . . , xm} for some m < N , where the sequence (xi)
is strictly increasing, we use the notation (bi)i∈J for the tuple (bx1 , . . . , bxm).
Definition 5.1.7 (Tensor product of Agent components). Let M = (B0, . . . , BN−1)
be an N -PQM, and let I, J ⊆ N , such that I ∩ J = ∅. The M-tensor product
MI ⊗MMJ is defined to be MI∪J , but where for each s ∈ SI and t ∈ SJ , we have
for each sequence (xi) with bxi

∈ Bi that

(s⊗M t)((bxi
)i∈I∪J) = s((bxi

)i∈I) · t((bxj
)j∈J).

Given sets X ⊆ SI and Y ⊆ SJ , let X ⊗M Y
def= {x⊗M y | x ∈ X, y ∈ Y }.
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Note that although ⊗ is not commutative, ⊗M is. Also note that ⊗M is
associative; hence we generally omit parentheses.

Definition 5.1.8 (Separable and entangled states). Given an N -PQM M, a set
J ⊆ N , a partition Π = {X1, . . . , Xk} of N , and a state s ∈ SM, we say than

• s is M-separable in J if there exist sJ ∈ SJ and sN\J ∈ SN\J such that
s ∼= sJ ⊗M sN\J . If s is not M-separable in J we say that s is M-entangled
in J .

• s is M-separable in Π if there exists si ∈ SXi
such that s ∼= s1⊗M · · ·⊗M sk.

If s is not M-separable in Π we say that s is M-entangled in Π. If M is
separable in {{i} | i ∈ N}, we say M is fully separable.

Separability will play an important role in the semantics of the logic we define
in the next section.

5.2 Probablistic quantum logic
In this section, we define the syntax and semantics of our language, and provide
some useful syntactic abbreviations.

5.2.1 Syntax
Let N be a set of agents and let Prop be a (countable) set of proposition letters
denoted with p, q, . . .. The language is three-sorted, with formulas φ, programs
α, and probability terms t, and is defined by

φ ::= p | ¬φ | φ ∧ φ | [α]φ | At(φ) | Sep(φ) | φI | t ≥ ρ

α ::= φ? | α ∪ α | α;α
t ::= ρPr(φ) | t+ t

where p ∈ Prop, I ⊆ N , and ρ ∈ Q. The set of formulas φ is denoted by LN , and
the set of terms t is denoted by Terms.

We have the standard logical connectives ¬φ, φ ∧ ψ and [α]φ with the mean-
ing not φ, φ and ψ and after any successful execution of program α, φ holds
respectively.

Here the programs α are φ?, a quantum test whether or not φ holds; α∪β, an
arbitrary choice between two programs α and β; and α; β, the sequential execution
of two programs α and β.

We also have three non-standard, but useful connectives. At(φ) intuitively
means that φ is only true at one and only one state. Sep(φ) means intuitively
that all states making φ true are separable into each agent, that is, these states
are of the form ⊗M

i<N s{i} for some s{i} ∈ S{i} for each i < N . φI intuitively
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represents the information that the local system I has about φ, that is, if any
measurment that can be performed within the local system I cannot refute φ,
then φI true.

Lastly, we have t ≥ ρ, which intuitively means the probability of t is greater
than or equal to ρ. Here t is a linear combination of Pr(φ), the probability that a
test for φ is successful.

We have chosen the language to express several examples in the simplest
way. However, one could easily imagine ways to extend the expressibility of this
language. For example, we could extend this language with unitary operators
α ::= U | U †, however we do not use these operators in the examples we discuss.

5.2.2 Semantics

The semantics is defined with respect to an N -PQM M. We will make use
of the following concepts. We first observe that from just an ordered basis
B = {b0, . . . , bn−1} we can recover the Hilbert space structure, such as the in-
ner product, as follows. For any two states s, t ∈ SB, we define the inner product
of s and t to be

〈s, t〉 def=
n−1∑
i=0

s(bi)t(bi) (5.1)

where in general z is the complex conjugate of z. Then R
def= {(s, t) | 〈s, t〉 6= 0}

relates any two states that are non-orthogonal. We define the orthocomplement
of a set of states X by

∼X def= {s ∈ S | (s, x) /∈ R for all x ∈ X}

and let T def= {P ⊆ S | P = ∼∼P} be the set of testable properties. For each
P ∈ T we then let

RP
def=
{

(s, t) ∈ S2
∣∣∣t ∈ P and | 〈s, u〉|2 < |〈s, t〉|2 for all u ∈ P \ {t}

}
.

Note that each P ∈ T corresponds to a linear closed subspace in a Hilbert
space and that the relation RP in fact corresponds to the projection onto the
subspace P . It is easy to see that each singleton is testable, and hence that
R = ⋃

P∈T RP .
Given an N -PQM M with carrier set S = S⊗M and a valuation V : Prop→

PS, we interpret formulas by a function J·KM : LN → PS, we interpret each
program α by a relation RM

α ⊆ S × S, and we interpret probability terms by a
family of functions J·KMs : Terms→ R for each s ∈ S as follows (we typically omit
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the superscript when it is understood by context). To interpret formulas φ:

JpK def= V (p),
J¬φK def= S \ JφK,

Jφ ∧ ψK def= JφK ∩ JψK,
J[α]φK def= {s ∈ S | Rα(s) ⊆ JφK} ,

JAt(φ)K def=

S if JφK = {s} for some s ∈ S,
∅ otherwise,

JSep(φ)K def=

S if JφK ⊆ {s ∈ S | s = ⊗M
i∈N s{i}},

∅ otherwise,

JφIK
def=
{
sI ⊗M sN\I

∣∣∣ (sI ⊗M tN\I) ∈ JφK for some tN\I
}
,

Jt ≥ ρK def= {s ∈ S | JtKs ≥ ρ} .

To interpret programs α:

Rφ?
def= RP , where P = ∼∼JφK,

Rα∪β
def= Rα ∪Rβ,

Rα;β
def= Rα;Rβ.

To interpret terms t:

JρPr(φ)Ks def= ρ
∑

t∈RP (s)
|〈s, t〉|2, where P = ∼∼JφK,

Jt1 + t2Ks
def= Jt1Ks + Jt2Ks.

5.2.3 Abbreviations
With this language we can express many notions in quantum mechanics. Some are
so important and natural to use, we introduce abbreviations for them (Figure 5.1).
We have the standard abbreviations tt, ff and ∨. Note that if [¬φ?]ff holds in a
state s, then any test from s will result in a state with property φ, or equivalently,
any non-orthogonal state has property φ. We abbreviate [¬φ?]ff using �φ, where
� can be viewed as the modal operator for the non-orthogonality relation R. We
abbreviate ∼φ by �¬φ for the following reason. The orthocomplement of φ,
denoted by ∼φ, is true at any state s that is orthogonal to the set of states that
make φ true. Equivalently, every state that makes φ true is orthogonal to s, and
hence every state non-orthogonal to s makes ¬φ true. This means that �¬φ
is true at s. With the orthocomplement we can also define the quantum join:
φtψ def= ∼(∼φ∧∼ψ). The quantum join φtψ can be thought of as the smallest
testable property containing φ and ψ.
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ff def= p ∧ ¬p
tt def= ¬ff
〈α〉φ def= ¬[α]¬φ
�φ def= [¬φ?]ff
♦φ def= ¬�¬φ
∼φ def= �¬φ
φ ∨ ψ def= ¬(¬φ ∧ ¬ψ)
φ t ψ def= ∼(∼φ ∧ ∼ψ)

∀φ def= ��φ
∃φ def= ♦♦φ
(φ ≤ ψ) def= ∀(φ→ ψ)
(φ ≡ ψ) def= ∀(φ↔ ψ)
φ ⊥ ψ

def= φ ≤ ∼ψ
T (φ) def= ∼∼φ ≡ φ

I(φ) def= (φ ≡ φI)

Figure 5.1: Abbreviations for formulas
∑n
k=1 ak Pr(φk) def= a1 Pr(φ1) + · · ·+ an Pr(φn)

ρ
∑n
k=1 ak Pr(φk) def= ∑n

k=1 ρak Pr(φk)
t < ρ

def= ¬(t ≥ ρ)
t1 ≥ t2

def= t2 − t1 ≥ 0
t ≤ ρ

def= −t ≥ −ρ
t = ρ

def= t ≥ ρ ∧ t ≤ ρ

t1 ≥ t2
def= t1 − t2 ≥ 0

t1 = t2
def= t1 − t2 = 0

〈φ?〉=ρψ def= Pr(φ) = ρ ∧ 〈φ?〉ψ
〈φ?〉>ρψ def= Pr(φ) > ρ ∧ 〈φ?〉ψ

Figure 5.2: Probabilistic abbreviations

Our quantum models satisfy the superposition principle: every state can reach
any other state in two non-orthogonal steps, that is R;R = S × S. This gives
us the power to express that a formula is valid in a model: ∀φ def= ��φ is true
at a state iff φ is true at every state in the model. With this global modality
we can express many relations between formulas that are globally true, such as
inequality: (φ ≤ ψ) def= ∀(φ→ ψ), equality: (φ ≡ ψ) def= ∀(φ↔ ψ), and orthogonal
formulas: (φ ⊥ ψ) def= (φ ≤ ∼ψ).

As can be seen from the definition of the semantics, the logical operators for
probability Pr(φ) and for tests φ? are only meaningful if the formula φ is testable.
Noting that every testable property is closed under taking double orthocomple-
ment, we can express testability by T (φ) def= (φ ≡ ∼∼φ).

Similarly, in a multi-agent setting, the formula φ must be separable in I for
φI to represent the information I has about φ (that is, I’s local state). We say
that φ is I-local if I(φ) def= (φ ≡ φI), that is, the truth of φ is fully determined by
the local state of I.

In Figure 5.2 we have abbreviations concerning probabilities. All but the last
two are standard abbreviations for terms and pure probabilistic formulas taken
from [54, p. 83]. Concerning the last two, we are often interested in the probability
of successfully testing φ as well as the outcome of a successful test. We abbreviate
this with the formulas 〈φ?〉=ρψ and 〈φ?〉>ρψ.
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MP φ φ→ ψ
ψ

(modus ponens)

Nec φ
[α]φ (necessitation)

US φ
φσ

for some σ : Prop→ LN (substitution)

Figure 5.3: Rules

5.3 Deductive system
Our deductive proof system contains three rules (Figure 5.3), where φσ is ob-
tained from φ by replacing all occurrences of p with σ(p), and a list of axioms
(Figure 5.4), divided into the following five categories: standard propositional
dynamic logic axioms, standard axioms about linear inequalities, basic axioms
for quantum systems, probabilistic axioms for quantum systems and axioms for
quantum systems concerning atoms and separability.

A proof for φ is a finite sequence of formulas, such that the last formula is
φ and every formula is either an axiom listed below or obtained by applying an
inference rule to (a) formula(s) appearing earlier in the sequence.

The three rules in Figure 5.3 are standard, but we can deduce some non-
standard rules concerning the abbreviations ∀, ≤, ≡ and T (·), which will be
given in Lemma 5.3.3.

The axioms for programs and for linear inequalities are standard, so we will
only discuss the axioms in the last three categories.

Basic axioms for quantum systems. The first axiom Q1 states that equiv-
alent formulas have equivalent tests. The second axiom Q2 expresses that by
design when we test for a formula φ we actually test for the smallest closed linear
subset containing JφK, that is ∼∼φ.

For the axioms Q3 to Q9 one should remember that � corresponds to the
non-orthogonality relation and [p?] corresponds to the projection onto P , where
P = ∼∼JpK.

Axiom Q3 is related to the superposition principle, which is the principle that
for every two states there is a third state that is non-orthogonal to both of them
(or any two states can reach each other by two non-orthogonal steps).

Axiom Q4 states that if a successful test for p results in a state satisfying q,
then the state is non-orthogonal to JqK, so we can successfully test for q. Axiom
Q5 corresponds to the fact that each projection is a partial function.

A successful test for a testable property P always results in a state inside
P . When inquiring about a property Q that is not testable, our framework tests
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Axioms for programs
PL All propositional tautologies
K[α] [α](p→ q)→ ([α]p→ [α]q)
PDL1 [α; β]p↔ [α][β]p
PDL2 [α ∪ β]p↔ [α]p ∧ [β]p
Axioms for linear inequalities
I1 t ≥ β ↔ t+ 0 Pr(φ) ≥ β
I2 ∑n

k=1 αk Pr(φk) ≥ β → ∑n
k=1 αjk Pr(φjk) ≥ qβ

for any permutation j1, . . . , jn of 1, . . . , n
I3 ∑n

k=1 αk Pr(φk) ≥ β ∧∑n
k=1 α

′
k Pr(φk) ≥ β′

→ ∑n
k=1(αk + α′k) Pr(φk) ≥ (β + β′)

I4 t ≥ β ↔ dt ≥ dβ if d > 0
I5 t ≥ β ∨ t ≤ β
I6 t ≥ β → t ≥ γ if β > γ
Basic axioms for quantum systems
Q1 (p ≡ q)→ ([p?]r ↔ [q?]r)
Q2 [p?]q ↔ [∼∼p?]q
Q3 ��p↔ ���p
Q4 〈p?〉q → 〈q?〉tt
Q5 〈p?〉q → [p?]q
Q6 [p?]∼∼p
Q7 p→ (q → 〈p?〉q)
Q8 p→ [q?]�〈q?〉♦p
Q9 T (p) ∧ T (q)→ (〈p?〉q ↔ (♦p ∧�(p→ ♦(p ∧ q))))
Probabilistic axioms for quantum systems
P1 Pr(tt) = 1
P2 Pr(p) ≥ 0
P3 Pr(p) = 0↔ ∼p
P4 (p ≡ q)→ Pr(p) = Pr(q)
P5 (p ⊥ q)→ Pr(p t q) = Pr(p) + Pr(q)
P6 ((p ⊥ q) ∧ ∃p ∧ ∃q)→ ∃(〈p?〉=ρp ∧ 〈q?〉=1−ρq)
P7 (p ≤ q) ∧ 〈q?〉=ρ(Pr(p) = τ)→ (Pr(p) = ρτ)
Axioms for atoms and separability
A1 (At(p) ∧ (q 6≡ ff) ∧ (q ≤ p))→ (q ≡ p)
A2 At(p)→ (∃(p ∧ q)↔ (p ≤ q))
A3 (At(p) ∧ (p ≤ ♦q) ∧ T (q))→ At((p t ∼q) ∧ q)
A4 Sep(p)→ (At(p)↔ (∃p ∧ ∧i<N T (p{i})))
A5 Sep(p) ∧ Sep(q) ∧ At(p) ∧ At(q)→ ((p ≡ q)↔ ∧

i<N(p{i} ≡ q{i}))
A6 Sep(p) ∧ Sep(q)→ (∨i<N(p{i} ⊥ q{i})→ (p ⊥ q))

Figure 5.4: Axioms for quantum systems



5.3. Deductive system 89

for the smallest testable property containing Q. Axiom Q6 corresponds to these
facts, where ∼∼p corresponds to the smallest testable property containing p.

If s ∈ P , then the projection is reflexive on s, that is, (s, s) ∈ RP . So if a
state makes p true, a successful test for p always ends up in the same state. This
is captured by axiom Q7.

Axiom Q8 corresponds to the self-adjointness of projections with respect to
the inner product, that is,

〈ProjP (s), t〉 = 〈s,ProjP (t)〉,

where ProjP (s) is the projection of vector s onto the space P (sRP t where t =
sn(ProjP (s))). In non-probabilistic terms, this means that if the projection of s
onto P is non-orthogonal to a state t, then the projection of t onto P is non-
orthogonal to s.

The projection t of a state s onto P should be the closest state to s that is
inside P . This can be expressed by: (s, t) ∈ RP iff for all u ∈ P we have uRs iff
uRt. This statement is partially captured by axiom Q9: looking at the right-to-
left part of the biconditional, if a state s is non-orthogonal to a state satisfying p,
and if all states satisfying p that are non-orthogonal to s are also non-orthogonal
to a state satisfying p∧ q, then the property p∧ q is “close to s”, and a successful
test for p at state s results in a state that satisfies q.

Probabilistic axioms for quantum systems. Axiom P1 and P2 are standard
probability axioms ensuring the probability values are in the interval [0, 1]. Axiom
P3 establishes the correspondence between orthogonality and zero probability.

Equivalent formulas should have equal probabilities, which is captured by
axiom P4. Normally we can add the probabilities of disjoint sets, but in quantum
systems we need the sets to be orthogonal.

Axiom P6 is the probabilistic version of the superposition statement. If p
and q are orthogonal we can superpose them into a state with probability ρ to
p and probability 1 − ρ to q. Axiom P7 relates to conditional probabilities: the
probability of p ∧ q is equal to the probability of p given q (which is τ in the
axiom) times the probability of q (which is ρ in the axiom).

Axioms for atoms and separability. Atoms are the smallest non-empty sets,
therefore any non-empty set smaller than an atom is equal to that atom. This is
captured by axiom A1. As atoms are singleton states, a formula φ is satisfied at
this state if and only if the atom implies φ. This is reflected by axiom A2.

For singleton states s that are non-orthogonal to a testable property Q, we
have (s, t) ∈ RQ iff {t} = ({s} t ∼Q) ∩ Q. In other words the projection of an
atom is again an atom. This is captured by axiom A3.

Axiom A4 provides a characterisation of an atom under the condition that
the formula is separable. Axiom A5 asserts that two fully separable atoms are
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equivalent if and only if each of their local components are equivalent. Axiom
A6 expresses the fact that two fully separable properties are orthogonal if one of
their local components are orthogonal.

Theorem 5.3.1. The rules in Figure 5.3 and the axioms in Figure 5.4 are sound
with respect to multi-agent probabilistic quantum models (N-PQM).

Proof. Many of the axioms are standard from the literature. For example, PL,
K, PDL1, and PDL2 are from propositional dynamic logic (see for example [65]).
The axioms I1–I6 are from [53]. The axioms P1 P2 and variations of P4 are
common among probability logics (see for example [53]). The axioms Q4–Q8 are
from [10] and [96]. The validity of some others may be obvious from the discussion
above. We now prove the soundness of select axioms.

Q9: Suppose p and q are testable, i.e. JpK = ∼∼JpK and JqK = ∼∼JqK. Let
s ∈ J〈p?〉qK. Then, by definition of RJpK there exists a t ∈ S such that (s, t) ∈ RJpK

and t ∈ JpK; since s ∈ J〈p?〉qK, it also holds that t ∈ JqK. As Jp ∧ qK = JpK ∩ JqK,
we have t ∈ Jp ∧ qK. As RJpK corresponds to the projection onto JpK, we know
each state u ∈ JpK that is non-orthogonal to s is also non-orthogonal to t. Since
t ∈ Jp ∧ qK, this means that s ∈ J♦p ∧�(p→ ♦(p ∧ q))K.

Now suppose s ∈ J♦p ∧ �(p → ♦(p ∧ q))K. Then we have s ∈ J♦pK, so s is
non-orthogonal to JpK, and therefore we have (s, t) ∈ RJpK for some unique t ∈ JpK.
Then since s ∈ J�(p→ ♦(p∧ q))K, we know that t ∈ J♦(p∧ q)K; thus there exists
a u ∈ Jp ∧ qK = JpK ∩ JqK, such that tRu. Now

∼∼Jp ∧ qK = ∼∼(JpK ∩ JqK) = ∼∼JpK ∩ ∼∼JqK = JpK ∩ JqK = Jp ∧ qK.

Suppose towards a contradiction t /∈ JqK. Since t /∈ Jp∧ qK = ∼∼Jp∧ qK, we know
there exists a v ∈ ∼Jp ∧ qK such that tRv. Therefore v is non-orthogonal to JpK,
so there exists a unique w ∈ JpK such that (v, w) ∈ RJpK.

Now w (as the projection of v onto JpK) can be characterized by being the
element of JpK where vRu iff wRu for all u ∈ JpK (see, for example, [25, Proposition
2.15]). So we have wRx iff vRx for all x ∈ JpK ⊃ Jp ∧ qK, and therefore we have
w ∈ JpK ∩ ∼Jp ∧ qK. We also have wRt, which implies wRs (because t is the
projection of s onto JpK). Since s ∈ J�(p → ♦(p ∧ q))K we have w ∈ J♦(p ∧ q)K,
contradicting the fact that w ∈ ∼Jp ∧ qK. Thus t ∈ JqK and s ∈ J〈p?〉qK.

P6: Let s ∈ J((p ⊥ q) ∧ ∃p ∧ ∃q)K. Let x ∈ JpK and y ∈ JqK. Since s ∈ Jp ⊥ qK,
JpK ⊆ J∼qK, and hence JpK and JqK are orthogonal, and hence 〈x, y〉 = 0. Consider
the vector z = √ρx +

√
(1− ρ)y. One can easily check that z = sn(z), and is

hence in S. Furthermore, as y ⊥ x, the projection of z onto ∼∼JpK is the vector√
ρx, whose normalization is x ∈ JpK, and hence z ∈ J〈p?〉pK. The probability

of projecting onto ∼∼JpK is then |〈z, x〉|2 = ρ; thus z ∈ J〈p?〉=ρpK. We can
similarly show that z ∈ J〈q?〉=1−ρqK. Therefore z ∈ J〈p?〉=ρp ∧ 〈q?〉=1−ρqK, and
thus s ∈ J∃(〈p?〉=ρp ∧ 〈q?〉=1−ρq)K, as desired.
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P7: Let Q = ∼∼JqK and P = ∼∼JpK. Suppose s ∈ J(p ≤ q) ∧ 〈q?〉=ρ(Pr(p) =
τ)K. Because s ∈ Jp ≤ qK, we have that Jp ≤ qK 6= ∅, and thus JpK ⊆ JqK, giving
us P ⊆ Q. Also, s ∈ J〈q?〉=ρ(Pr(p) = τ)K and hence there exists a t, such that
sRQt, |〈s, t〉|2 = ρ, and t ∈ JPr(p) = τ)K. Then there exists a u ∈ P , such that
tRPu and |〈t, u〉|2 = τ .

Now let η = 〈s, t〉t be the actual vector when projecting s onto Q. Let
ξ = 〈η, u〉u be the actual vector when projecting η onto P . Let ω = 〈s, v〉v be
the actual vector when projecting s onto P . Since P ⊆ Q, ξ = ω (to see this, one
can change the basis so that P is the span of a subset of the basis elements, Q
the span of a larger subset of the basis elements, and then project by removing
the coefficients for basis elements not in the set we are projecting onto). Thus
u = v and 〈η, u〉 = 〈s, u〉. Expanding η, we have 〈s, t〉〈t, v〉 = 〈s, u〉. Hence
ρτ = |〈s, t〉|2|〈t, v〉|2 = |〈s, u〉|2 is the probability of projecting s onto P . Hence
s ∈ JPr(p) = ρτK.

A4: First, we claim that for any ∅ ( I ( N and any p we have JT (pI)∧∃pIK =
S (where S is the whole state space) if and only if it holds that JpIK = {sI}⊗MSN\I
for some fixed sI ∈ SI . Before we prove this claim, let us show the soundness of
A4 with this claim.

Suppose we have that s ∈ JSep(p) ∧ At(p)K. Then JSep(p) ∧ At(p)K = S.
Then JpK = {⊗M

i<N s{i}} for some s{i} ∈ S{i} for each i < N . Therefore we have
Jp{i}K = {s{i}}⊗MSN\{i}, and thus by the claim, p{i} is testable, i.e. JT (p{i})K = S
for each i < N . Because p is an atom, we also know that J∃pK = S. Thus
s ∈ J∃p ∧ ∧i<N T (p{i})K.

Now suppose s ∈ JSep(p) ∧ ∃p ∧ ∧i<N T (p{i})K. Then we have JSep(p) ∧ ∃p ∧∧
i<N T (p{i})K = S. From J∃pK = S we deduce JpK 6= ∅. By JSep(p)K = S we

know JpK ⊆ ⋂
i<NJp{i}K. By the claim we know ⋂

i<NJp{i}K = {⊗M
i<N s{i}} for

some s{i} ∈ S{i} for each i < N . Combining these results we know JpK = {s}, and
therefore p is an atom, i.e. JAt(p)K = S. Therefore, s ∈ JAt(p)K.

To prove the claim, we first note that if JT (q)K = S, we have JqK = ∼∼JqK.
Therefore if s, t ∈ JqK we also have √ρs+

√
1− ρt ∈ JqK for any ρ ∈ [0, 1], because

any state that is orthogonal to both s and t is also orthogonal to √ρs+
√

1− ρt,
so we find √ρs+

√
1− ρt ∈ ∼∼{s, t} ⊆ ∼∼JqK = JqK.

By definition of JpIK, any s ∈ JpIK is of the form sI ⊗M sN\I . Suppose sI ⊗M

sN\I , tI ⊗M tN\I ∈ JpIK such that sI 6= tI . Without loss of generality we may also
assume sN\I 6= tN\I , because if sI ⊗M sN\I ∈ JpIK, then sI ⊗M s′N\I ∈ JpIK for any
other s′N\I ∈ SN\I . If we look at the sum √ρ(sI ⊗M sN\I) +

√
1− ρ(tI ⊗M tN\I),

with ρ 6= 0, 1, it is not hard to see that this sum is not equal to uI⊗MuN\I for any
uI ∈ SI and uN\I ∈ SN\I . In other words, √ρ(sI⊗M sN\I)+

√
1− ρ(tI⊗M tN\I) /∈

JpIK.
Combining the above two results, we have that if JpIK 6= ∅ and JT (pI)K = S,

then JpIK = {sI} ⊗M SN\I for some fixed sI ∈ SI .
For the other direction, we have that {sI} ⊗M SN\I is isomorphic to SN\I ,
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1 tt PL
2 tt→ (p→ 〈tt?〉p) Q7 + US
3 p→ 〈tt?〉p MP(1,2)
4 〈tt?〉p→ ♦p (5.3) + US
5 p→ ♦p PL(3,4)
6 〈tt?〉p→ [tt?]p Q5 + US
7 p→ [tt?]p PL(3,6)
8 [tt?]p→ p PL(3) + US
9 〈tt?〉p→ p PL(7) + US
10 p→ [tt?]�〈tt?〉♦p Q8 + US
11 p→ �♦p PL(8,9,10) + US

Figure 5.5: A proof of ` p→ ♦p and ` p→ �♦p.

because every vector in the space spanned by {sI}⊗MSN\I is a constant multiple
of an element of {sI} ⊗M SN\I . Hence {sI} ⊗M SN\I represents a subspace, and
is therefore bi-orthogonally closed. Every topologically closed linear subspace is
bi-orthogonally closed [30], and it is well-known that every subspace of a finite
dimensional Hilbert space is isomorphic to Cn and therefore topologically closed.
This finishes the proof of the claim.

5.3.1 Deducible basic properties
We will now use our system to deduce several properties that are standard in
most quantum logics, like weak modularity. In the first lemma we will show the
connection between projections (〈φ?〉) and non-orthogonality (♦). Also we show
non-orthogonality is both reflexive and symmetric.

Lemma 5.3.2. The following formulas are deducible.

` 〈p?〉tt↔ ♦p (5.2)
` 〈p?〉q → ♦q (5.3)
` p→ ♦p (reflexivity) (5.4)
` p→ �♦p (symmetry) (5.5)

Proof. To prove ` 〈p?〉tt ↔ ♦p, we first observe that ` p ≡ ¬¬p. Then using
universal substitution on Q1 and propositional logic, we obtain ` ¬[p?]ff ↔
¬[¬¬p?]ff, which is precisely what ` 〈p?〉tt↔ ♦p abbreviates.

To prove ` 〈p?〉q → ♦q, observe by axiom Q4 that ` 〈p?〉q → 〈q?〉tt, where
the right side is equivalent to ♦q. The proofs for ` p→ ♦p and ` p→ �♦p can
be found in Figure 5.5.

With a proof of reflexivity, we can deduce the following four bidirectional rules
(each column has both directions):
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Lemma 5.3.3. The following rules hold true:

` p
` ∀p

` p→ q
` p ≤ q

` p↔ q
` p ≡ q

` p↔ ∼∼p
` T (p)

` ∀p
` p

` p ≤ q
` p→ q

` p ≡ q
` p↔ q

` T (p)
` p↔ ∼∼p

Proof. The upper row follows from two applications of necessitation; the lower row
follows from reflexivity (Lemma 5.3.2-(5.4), which is equivalent to ` �p→ p).

Throughout this text we will often apply the above lemma without reference.
The following lemma states that every atom is non-empty.

Lemma 5.3.4. The following formula is deducible.

` ∃p↔ (p 6≡ ff).

As a consequence ` At(p)→ (p 6≡ ff).

Proof. p 6≡ ff abbreviates ¬��(p↔ ff), which is equivalent to ♦♦((p ∧ ¬ff) ∨
(¬p∧ ff)). By standard modal reasoning, this is equivalent to ♦♦p, or in abbre-
viated form ∃p.

We have ` p ≤ tt, so by A2 we have ` At(p) → ∃(p ∧ tt) and as we have
` p ≡ (p ∧ tt) we have ` At(p)→ (p 6≡ ff).

The following lemma collects several properties of the orthocomplement, in
particular the three defining properties p ≤ ∼∼p, p ≤ q implies ∼q ≤ ∼p, and
(p∧∼p) ≡ ff. Note that the first property p ≤ ∼∼p is weaker than the standard
property found in many quantum logics p ≡ ∼∼p, but the latter only holds in
quantum models that only consider testable properties.

Lemma 5.3.5 (Orthocomplement). The following formulas are deducible.

` p ≤ ∼∼p (5.6)
` (p ≤ q)→ (∼q ≤ ∼p) (5.7)
` (p ∧ ∼p) ≡ ff (5.8)
` ∼p ≡ ∼∼∼p (5.9)
` p ⊥ q ↔ q ⊥ p (5.10)

Proof. The proofs of these formulas can be found in Figure 5.6.

As shown in [11], the set of testable properties T contains all singletons
and is closed under taking orthocomplement and intersections. The following
lemma establishes the latter property. The former property will be deduced in
Lemma 5.3.11, because we first need to show weak modularity.
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1 p→ �♦p Lem. 5.3.2
2 p→ ∼∼p Abb.(1)
3 p ≤ ∼∼p Lem. 5.3.3
4 ��(p→ q)→ ��(¬q → ¬p) ML
5 ��(p→ q)→ ���(¬q → ¬p) Q3
6 ��(p→ q)→ ��(�¬q → �¬p) ML(5)
7 (p ≤ q)→ (∼q ≤ ∼p) Abb.(6)
8 �¬p→ ¬p Lem. 5.3.2
9 (p ∧�¬p)→ ff PL(8)
10 (p ∧ ∼p) ≡ ff Lem. 5.3.3
11 ∼p ≤ ∼∼∼p US(3)
12 (p ≤ ∼∼p)→ (∼∼∼p ≤ ∼p) US(7)
13 (∼∼∼p ≤ ∼p) MP(3,12)
14 ∼p ≡ ∼∼∼p PL(11,13)
15 (p ≤ ∼q)→ (∼∼q ≤ ∼p) US(7)
16 (p ≤ ∼q)→ (q ≤ ∼p) PL(2,15)
17 (p ⊥ q)→ (q ⊥ p) Abb.(16)
18 (q ⊥ p)→ (p ⊥ q) US(17)
19 (p ⊥ q)↔ (q ⊥ p) PL(17,18)

Figure 5.6: A proof of ` p ≤ ∼∼p, ` (p ≤ q) → (∼q ≤ ∼p), ` ∼p ≡ ∼∼∼p,
` (p ≤ q)→ (∼q ≤ ∼p) and ` (p ⊥ q)↔ (q ⊥ p).
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1 ∼p ≡ ∼∼∼p (5.9)
2 T (∼p) Abb.(1)
3 (p ∧ q) ≤ ∼∼(p ∧ q) (5.6)
4 (p ∧ q) ≤ p PL
5 ∼∼(p ∧ q) ≤ ∼∼p (5.7)
6 ∼∼(p ∧ q) ≤ ∼∼q US(5)
7 ∼∼(p ∧ q) ≤ (∼∼p ∧ ∼∼q) PL(5,6)
8 (T (p) ∧ T (q))→ ((∼∼p ∧ ∼∼q) ≡ (p ∧ q)) ML
9 (T (p) ∧ T (q))→ (∼∼(p ∧ q) ≤ (p ∧ q)) ML(7,8)
10 (T (p) ∧ T (q))→ ((p ∧ q) ≡ ∼∼(p ∧ q)) PL(3,9)
11 (T (p) ∧ T (q))→ T (p ∧ q) Abb.(10)

Figure 5.7: A proof of T (∼p) and ` T (p) ∧ T (q)→ T (p ∧ q)

Lemma 5.3.6 (Testable properties). The following formulas are deducible.

` T (∼p) (5.11)
` T (p) ∧ T (q)→ T (p ∧ q) (5.12)

Proof. The proof of these formulas can be found in Figure 5.7.

The following lemma collects several properties of the quantum join. Most
of these properties are intuitive when one thinks of the quantum join p t q as
the smallest closed linear subspace containing both p and q. For (5.17), if r is
orthogonal to both p and q, then r is orthogonal to each element in the span of
p and q, which is the quantum join p t q.

Lemma 5.3.7 (Quantum join). The following formulas are deducible.

` p ≤ (p t q) (5.13)
` (p t q) ≡ (∼∼p) t (∼∼q) (5.14)
` (T (p) ∧ T (q))→ (∼(p ∧ q) ≡ (∼p t ∼q)) (5.15)
` ∼(p t q) ≡ (∼p ∧ ∼q) (5.16)
` ((r ⊥ p) ∧ (r ⊥ q))↔ (r ⊥ (p t q)) (5.17)
` (p t ∼p) ≡ tt (5.18)
` (T (r) ∧ (p ≤ r) ∧ (q ≤ r))→ ((p t q) ≤ r) (5.19)

Proof. The proof for the first five formulas can be found in Figure 5.8.
To show ` (pt∼p) ≡ tt, we observe by Lemma 5.3.5-(5.8) that ` (p∧∼p) ≡

ff. Hence ` ¬(p ∧∼p) ≡ tt. By modal logic, we have that ` ∼(p ∧∼p) ≡ �tt.
Using necessitation and propositional logic, we have ` tt ≡ �tt. The desired
result follows from this and modal logic.

To prove (5.19), we use Lemma 5.3.5-(5.7) to get ` (p ≤ r) → (∼r ≤ ∼p)
and ` (q ≤ r)→ ∼r ≤ ∼p, and hence ` (p ≤ r) ∧ (q ≤ r)→ (∼r ≤ (∼p ∧ ∼q)).
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1 p ≤ ∼∼p Lem 5.3.5
2 (∼p ∧ ∼q) ≤ ∼p PL + Lem. 5.3.3
3 ∼∼p ≤ ∼(∼p ∧ ∼q) Lem. 5.3.5 + US
4 p ≤ ∼(∼p ∧ ∼q) ML(1,3)
5 p ≤ (p t q) Abb.(4)
6 ∼p ≡ ∼∼∼p Lem. 5.3.5
7 ∼(∼p ∧ ∼q) ≡ ∼(∼∼∼p ∧ ∼∼∼q) ML(6)
8 (p t q) ≡ (∼∼p t ∼∼q) Abb.(7)
9 (T (p) ∧ T (q))→ (∼(p ∧ q) ≡ ∼(∼∼p ∧ ∼∼p)) ML
10 (T (p) ∧ T (q))→ (∼(p ∧ q) ≡ (∼p t ∼q)) Abb.(9)
11 T (∼∼(∼p ∧ ∼q)) Lem.5.3.6
12 ∼∼(∼p ∧ ∼q) ≡ (∼p ∧ ∼q) Abb.(11)
13 ∼(p t q) ≡ (∼p ∧ ∼q) Abb.(12)
14 (r ⊥ p)↔ ∀(r → ∼p) Abb.
15 (r ⊥ q)↔ ∀(r → ∼q) Abb.
16 ((r ⊥ p) ∧ (r ⊥ q))↔ ∀(r → (∼p ∧ ∼q)) PL(14,15)
17 T (∼p ∧ ∼q) Lem 5.3.6
18 (∼p ∧ ∼q)↔ ∼∼(∼p ∧ ∼q) Lem. 5.3.3(17)
19 ((r ⊥ p) ∧ (r ⊥ q))↔ ∀(r → ∼∼(∼p ∧ ∼q)) PL(16,18)
20 ((r ⊥ p) ∧ (r ⊥ q))↔ (r ⊥ (p t q)) Abb.(19)

Figure 5.8: A proof of ` p ≤ p t q, ` (p t q) ≡ (∼∼p t ∼∼q), (T (p) ∧ T (q)) →
(∼(p∧ q) ≡ (∼pt∼q)), ∼(pt q) ≡ (∼p∧∼q), and ` ((r ⊥ p)∧ (r ⊥ q))↔ (r ⊥
(p t q)).

Using Lemma 5.3.5-(5.7) again we have ` (p ≤ r) ∧ (q ≤ r) → ∼(∼p ∧ ∼q) ≤
∼∼r. Adding T (r) to the antecedent, the desired result follows from the previous
observation and modal logic.

We need a more general version of Lemma 5.3.7-(5.17) that considers the
quantum join of n formulas instead of just two.

Corollary 5.3.8. For all finite n and for all sets of formulas B of size n, the
following formula is deducible.

`
∧
b∈B

(p ⊥ b)→ p ⊥
⊔
B (5.20)

` ∃p ∧ (p ≤
⊔
b∈B

b)→
∨
b∈B

(p 6⊥ b) (5.21)

Proof. We prove this by induction on n. For n = 1 the statement holds trivially.
Now suppose the statement holds for n. Let B be a set of formulas of size n and
let bn+1 be a formula. By the induction hypothesis we have ` (∧b∈B p ⊥ b) →
(p ⊥ ⊔B). By Lemma 5.3.7-(5.17) we have ` (p ⊥ bn+1) ∧ (p ⊥ ⊔B) → (p ⊥
(⊔B) t bn+1). Combining the two results gives the desired result.
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1 q ≤ (∼p t q) Lem. 5.3.7
2 (q ≤ p)→ (q ≤ (p ∧ (∼p t q))) ML(1)
3 p→ ♦p Lem. 5.3.2
4 (q ≤ p)→ (q ≡ (p ∧ q)) ML
5 T (p)→ ((p ∧ (∼p t q)) ≡ (p ∧�¬(p ∧�¬q))) ML
6 (q ≤ p)→ (�¬(p ∧�¬q)↔ �(p→ ♦(p ∧ q))) ML(4)
7 (q ≤ p)→ (p ∧�¬(p ∧�¬q)→ ♦p ∧�(p→ (♦(p ∧ q)))) PL(3,6)
8 (T (p) ∧ T (q) ∧ ♦p ∧�(p→ ♦(p ∧ q)))→ 〈p?〉q Q9
9 (T (p) ∧ T (q) ∧ (q ≤ p))→ ((p ∧ (∼p t q))→ 〈p?〉q) PL(5,7,8)
10 p→ ([p?]q → q) Q7
11 〈p?〉q → [p?]q Q5
12 (p ∧ 〈p?〉q)→ q PL(10,11)
13 (T (p) ∧ T (q) ∧ (q ≤ p))→ ((p ∧ (∼p t q))→ q) PL(9,12)
14 (T (p) ∧ T (q) ∧ (q ≤ p))↔ ∀(T (p) ∧ T (q) ∧ (q ≤ p)) Lem. 5.3.3
15 (T (p) ∧ T (q) ∧ (q ≤ p))→ ((p ∧ (∼p t q)) ≤ q) Nec(13,14)
16 (T (p) ∧ T (q) ∧ (q ≤ p))→ (q ≡ (p ∧ (∼p t q))) ML(2,15)

Figure 5.9: A proof of ` (T (p) ∧ T (q) ∧ (q ≤ p))→ (q ≡ (p ∧ (∼p t q))).

For (5.21), Note that ` (∃p∧ (p ≤ ⊔B)→ (p 6⊥ ⊔B). Thus by the contrapos-
itive of (5.20), we have ` (∃p ∧ (p ≤ ⊔B)→ ∨

b∈B(p 6⊥ b).

One of the main difference between classical logic and quantum logic is the
lack of distributivity. Classical models satisfies distributivity (p ∧ (q ∨ r) = (p ∧
q) ∨ (p ∧ r)), but quantum models only satisfy a weaker version of distributivity
called weak modularity, which we will show in the following lemma.

Lemma 5.3.9 (Weak modularity). The following formula is deducible.

` T (p) ∧ T (q) ∧ (q ≤ p)→ (q ≡ p ∧ (∼p t q)).

Proof. The proof can be found in Figure 5.9.

We also need the dual of weak modularity, which we will show in the following
corollary.

Corollary 5.3.10. The following formula is deducible.

` T (q) ∧ (p ≤ q)→ (q ≡ p t (∼p ∧ q))

Proof. This is basically the dual of Lemma 5.3.9, that is, taking the orthocom-
plement. See Figure 5.10.

With weak modularity we can show each atom is testable.
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1 (p ≤ q)→ (∼q ≤ ∼p) Lem. 5.3.5
2 T (∼p) Lem. 5.3.6
3 (∼q ≤ ∼p)→ (∼q ≡ ∼p ∧ (∼∼p t ∼q)) Lem. 5.3.9
4 (p ≤ q)→ (∼∼q ≡ ∼(∼p ∧ (p t ∼q))) ML(1,2,3)
5 (p ≤ q)→ (∼∼q ≡ (∼∼p t ∼(p t ∼q))) Lem. 5.3.7
6 (p ≤ q)→ (∼∼q ≡ (p t (∼p ∧ ∼∼q))) Lem. 5.3.7
7 (T (q) ∧ (p ≤ q))→ (q ≡ p t (∼p ∧ q)) ML(6)

Figure 5.10: A proof of ` (T (q) ∧ (p ≤ q))→ (q ≡ p t (∼p ∧ q)).

Lemma 5.3.11. The following formula is deducible.

At(p)→ T (p).

Proof. By Lemma 5.3.5 we have ` p ≤ ∼∼p, and by Lemma 5.3.2-(5.4) we
have ` ∼∼p ≤ ♦∼∼p. So we can deduce ` p ≤ ♦∼∼p. By Lemma 5.3.6
we have ` T (∼∼p). Therefore we can apply axiom A3 and (5.9) to deduce
` At(p)→ At((pt∼p)∧∼∼p). By Lemma 5.3.7 we have ` (pt∼p) ≡ tt, so we
can deduce ` At(p)→ At(∼∼p). By Lemma 5.3.4 we have ` At(p)→ (ff 6≡ p),
and we already have ` p ≤ ∼∼p, so we can deduce ` At(p) → (p ≡ ∼∼p) by
axiom A1. This is equivalent to the desired result.

5.3.2 Deducible probabilistic properties
The following lemma collects several deducible properties of probabilistic quan-
tum logic.

Lemma 5.3.12. The following formulas are deducible:

` ♦p↔ Pr(p) > 0 (5.22)
` Pr(p) + Pr(∼p) = 1 (5.23)
` Pr(p) = Pr(∼∼p) (5.24)
` T (p)→ (p↔ Pr(p) = 1) (5.25)
` p→ Pr(p) = 1 (5.26)

Proof. The proof of (5.22) is in Figure 5.11.
We now show (5.23). By Lemma 5.3.5 we have ` p ⊥ ∼p and ` p t ∼p, and

hence by axiom P1, P4 and P5 we obtain the desired result ` Pr(p)+Pr(∼p) = 1.
We now show (5.24). By uniform substitution in (5.23) we have ` Pr(∼p) +

Pr(∼∼p) = 1. From this we can use the inequality axioms to show the second
result ` Pr(p) = Pr(∼∼p).

We now show (5.25). Since T (p) abbreviates p ≡ ∼∼p, from the axiom
` Pr(p) = 0↔ ∼p it follows that ` T (p)→ p↔ Pr(∼p) = 0. From the inequality



5.3. Deductive system 99

1 Pr(p) 6= 0↔ ♦p P3 + PL
2 Pr(p) > 0↔ ♦p PL(1) + P2

Figure 5.11: A proof of ` ♦p↔ Pr(p) > 0.

axioms and propositional reasoning we obtain the third result ` T (p) → p ↔
Pr(p) = 1.

We now show (5.26). By Lemma 5.3.5 we also have ` p → ∼∼p and `
T (∼(∼p)), combining this with ` Pr(p) = Pr(∼∼p) we obtain the last result
` p→ Pr(p) = 1.

The following lemma shows that probability (Pr(·)) is monotone.

Proposition 5.3.13. The following formula is deducible.

` p ≤ q → Pr(p) ≤ Pr(q).

Proof. First, by (5.6) and modal logic, we have ` p ≤ q → p ≤ ∼∼q and by
Lemma 5.3.6, we have ` T (∼∼q). Therefore by Corollary 5.3.10 we have ` p ≤
q → ∼∼q ≡ p t (∼p ∧ ∼∼q). Hence by P4, ` p ≤ q → P (∼∼q) = P (p t (∼p ∧
∼∼q)). Note that ` p ⊥ (∼p ∧ ∼∼q), since clearly ` ∼p ∧ ∼∼q ≤ ∼p. Thus by
P5, ` Pr(pt(∼p∧∼∼q)) = Pr(p)+Pr(∼p∧∼∼q). By (5.24), ` Pr(q) = Pr(∼∼q).
Using inequality axioms, we obtain ` p ≤ q → Pr(q) = Pr(p) + Pr(∼p ∧ ∼∼q).
The desired result follows from this and the inequality axioms.

Axiom P5 only considers a pair of orthogonal states, but can be generalised
to a finite set of n pairwise orthogonal states.

Lemma 5.3.14. For all n, the following formula is deducible.

`

 ∧
i<j<n

bi ⊥ bj

→
Pr(

⊔
i≤n

bi) =
∑
i<n

Pr(bi)
 .

Proof. We prove this by induction. For n = 2, the statement holds by Axiom
P5. Now suppose the statement holds for n (IH). Given the induction hypothesis
(IH), the proof of

`

 ∧
i<j<n+1

bi ⊥ bj

→
Pr(

⊔
i≤n

bi) =
∑
i<n+1

Pr(bi)
 .

is given in Figure 5.12.

Using Lemma 5.3.14 we obtain a nice characterisation for the quantum join of
a set of orthogonal states involving probabilities, which we show in the following
corollary.
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1 ∧
i<j<n+1(bi ⊥ bj)→ (bn ⊥

⊔
i<n bi) Cor. 5.3.8

2 Pr(⊔i<n+1 bi) = Pr((⊔i<n bi) t bn) Abb.
3 (bn ⊥

⊔
i<n bi)→ (Pr((⊔i<n bi) t bn) = Pr(⊔i<n bi) + Pr(bn)) P5

4 ∧
i<j<n(bi ⊥ bj)→ Pr(⊔i<n bi) = ∑

i<n Pr(bi) (IH)
5 ∧

i<j<n+1(bi ⊥ bj)→ Pr(⊔i<n+1 bi) = ∑
i<n+1 Pr(bi) I1–I3

Figure 5.12: A proof of ` ( ∧
i<j<n

bi ⊥ bj)→ (Pr( ⊔
i≤n

bi) = ∑
i<n

Pr(bi)).

Corollary 5.3.15. For all finite n the following formula is deducible.

`
∧

i<j≤n
(bi ⊥ bj)→ ((

⊔
i<n

bi) ≡ (
∑
i<n

Pr(bi) = 1)).

Proof. For n ≥ 2 we know ` T (⊔i<n bi) is derivable by Lemma 5.3.6, so by Lemma
5.3.12-(5.25), we have ` (Pr(⊔i≤n bi) = 1)↔ ⊔

i≤n bi. By lemma 5.3.14, we know

`

 ∧
i<j≤n

bi ⊥ bj

→ Pr(
⊔
i≤n

bi) =
∑
i≤n

Pr(bi).

Combining these results we get our desired result.

Similar to axiom P5, we can generalise axiom P7 by considering the quantum
join of a finite set of formulas.

Lemma 5.3.16. The following formula is deducible.

` 〈
⊔
i≤n

bi?〉=ρ
∧
i≤n

(Pr(bi) = ρi)→
∧
i≤n

(Pr(bi) = ρρi)

Proof. By modal logic we have

` 〈
⊔
i≤n

bi?〉=ρ
∧
i≤n

(Pr(bi) = ρi)→
∧
i≤n
〈
⊔
i≤n

bi?〉=ρ(Pr(bi) = ρi).

By Lemma 5.3.7-(5.13), we also know ` bi ≤
⊔
j≤n bj, so the statement follows

from axiom P7 and propositional logic.

5.3.3 Deducible properties of a basis.
Since the notion of an orthonormal basis is very important in the two protocols
that we will discuss in Section 5.4, as well as many other protocols, we discuss
the definition of a basis and prove several properties.

Let M be an N -PQM and let B be a finite set of formulas. The set B is called
an orthosubbasis of M if the following formula is satisfied in M:

SubBasis(B) def=
∧
b∈B

(b 6≡ ff) ∧
∧

b6=b′∈B
(b ⊥ b′) ∧ (

⊔
b∈B

b ≡ tt).



5.3. Deductive system 101

In the following lemma we show that the probabilities of elements in an ortho-
subbasis B add up to 1.

Lemma 5.3.17. For a finite set of formulas B the following formula is deducible.

` SubBasis(B)→
∑
i

Pr(bi) = 1.

Proof. This lemma follows directly from the definition of an orthosubbasis com-
bined with Lemma 5.3.14 and axiom P1.

An orthosubbasis B is an orthobasis if any proper superset of B is not a
subbasis. This happens precisely when B consists only of atoms.

Basis(B) def= SubBasis(B) ∧
∧
b∈B

At(b).

We are going to show that each basis has the same number of elements. In
order to show this, we will first show that within a quantum join we can replace
one atom p by another atom q without changing the quantum join p t r, so long
as these two atoms are “close” enough (q is also under the join, but not under r).

Lemma 5.3.18. The following formula is deducible.

` (At(p) ∧ At(q) ∧ T (r) ∧ (q ≤ (p t r)) ∧ (q � r))→ ((p t r) ≡ (q t r))

Proof. Let us abbreviate the antecedent with

Ant := At(p) ∧ At(q) ∧ T (r) ∧ (q ≤ (p t r)) ∧ (q � r).

By Lemma 5.3.7-(5.13), we know ` r ≤ (pt r) and together with the assumption
q ≤ (pt r) from the antecedent and ` T (pt r) by Lemma 5.3.6, we get ` Ant→
(q t r ≤ p t r) by Lemma 5.3.7-(5.19). As ` Ant → (q � r) we get by basic
reasoning ` Ant → (q t r � r), and by the above ` Ant → (p t r � r). Thus
` Ant→ (p � r).

Because ` Ant→ T (r) we have ` Ant→ (p � r ↔ p � ∼∼r). Hence, we have
` Ant→ (p � ∼∼r). Unpacking the notation, this is equivalent to ` Ant→ ∃(p∧
♦∼r). Because ` Ant→ At(p), we find that ` Ant→ (∃(p∧♦∼r)↔ (p ≤ ♦∼r))
by A2. Hence, ` Ant→ (p ≤ ♦∼r).

Since ` Ant→ ((qtr) ≤ (ptr)), we know that ` Ant→ (((qtr)∧∼r) ≤ ((pt
r)∧∼r)). Applying A1 and A3 we obtain ` Ant→ (((qtr)∧∼r) ≡ ((ptr)∧∼r)).
Now we can apply weak modularity (Corollary 5.3.10) to get the desired result.

` Ant→ (q t r) ≡ (r t ((q t r) ∧ ∼r)) ≡ (r t ((p t r) ∧ ∼r)) ≡ (p t r).
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The following lemma uses the previous lemma to establish that a quantum
join of n formulas can contain at most n orthogonal states.

Lemma 5.3.19. For any finite n and any set B of size n and any set C of finite
size m > n, the following is deducible.

` (
∧

a∈B∪C
At(a) ∧

∧
c 6=c′∈C

(c ⊥ c′))→
∨
c∈C

(c �
⊔
B).

Proof. We prove this by induction on n. For n = 1, the formula follows immedi-
ately from A1 and Lemma 5.3.4.

Suppose the formula holds true for any set B of size smaller than n and any
set C of size bigger than the size of B (IH). Consider the following formula (which
is the negation of the desired formula):

χ
def=

∧
a∈B∪C

At(a) ∧
∧

c 6=c′∈C
(c ⊥ c′)) ∧

∧
c∈C

(c ≤
⊔
B).

It suffices to prove ` χ→ ff. Take any order on B = {b0, . . . , bn−1}. We will use
Lemma 5.3.18 to replace each b by a c one by one, such that the quantum join
remains the same.

First step, remove b0: By the induction hypothesis (IH) and propositional
logic, there exists a c0 ∈ C such that ` χ→ c0 �

⊔B\{b0}. Given that c0 ≤
⊔B,

At(b0) and At(c0) are also provable from χ, we can apply Lemma 5.3.18 and
obtain ` χ→ (⊔B ≡ (⊔(B \ {b0}) t {c0})).

Steps 2–n. Suppose we have a set C ′ of l elements such that for B′ =
{bl, . . . , bn−1} we have

` χ→ (
⊔
B ≡ (

⊔
B′ t

⊔
C ′)).

Now we remove bl and obtain a cl ∈ C \ C ′ in a completely similar way as in step
1, such that

` χ→ (
⊔
B ≡ (

⊔
(B′ \ {bl}) t

⊔
(C ′ ∪ {cl}))).

Final step. After n steps we have a set C ′ ( C such that ` χ→ (⊔B ≡ ⊔ C ′).
We know there exists a c ∈ C \ C ′ for which we have ` χ → ∧

c′∈C′ c ⊥ c′ and
therefore by Corollary 5.3.8, we have ` χ→ (c ⊥ ⊔ C ′), which means ` χ→ (c �⊔B). Recall that c ≤ ⊔B is a conjunct of χ. Thus ` χ→ ff.

Now we can show that each basis contains the same number of atoms.

Theorem 5.3.20. For any two finite sets of formulas B and C such that |B| = |C|
the following formula is deducible.

` Basis(B) ∧
∧
c∈C

At(c) ∧
∧

c′∈C\{c}
(c ⊥ c′)

→ Basis(C).
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Proof. We first abbreviate the antecedent with:

Ant := Basis(B) ∧
∧
c∈C

At(c) ∧
∧

c′∈C\{c}
(c ⊥ c′)

 .
We wish to show that ` Ant → Basis(C). As many conditions for C to be a
basis are already in Ant, it suffices to show that ` Ant → (⊔ C ≡ tt). Since
` Ant → Basis(B), it suffices to show ` Ant → (⊔ C ≡ ⊔B). To prove this, we
follow a similar construction as was given in the inductive step for Lemma 5.3.19.
We enumerate B = {b0, . . . , bn−1}, and will replace these elements with elements
of C one by one.

First step, remove b0: by Lemma 5.3.19, there is a c0 ∈ C, such that ` Ant→
c0 �

⊔B \ {b0}. Just as we did in the proof of Lemma 5.3.19, we then apply
Lemma 5.3.18 and obtain ` Ant → (⊔B ≡ (⊔(B \ {b0}) t {c0})). Note that the
only difference between this step and that of the proof of Lemma 5.3.19 is that
we applied Lemma 5.3.19 directly rather than used induction. Steps 2–n differ
from those of Lemma 5.3.19 in precisely the same way.

In the final step we have obtained a set C ′ ⊆ C such that ` Ant→ (⊔B ≡ ⊔ C ′)
and |B| = |C ′|. But we know that |C| = |B| and therefore C = C ′ (thus instead of
a contradiction we get the desired result).

Corollary 5.3.21. If M � Basis(B) and M � Basis(C) then |B| = |C|.

For most protocols we do not just require a basis for the whole system, but
a basis for each local subsystem. In those cases the basis for the whole system
will be the tensor product of the basis for the local subsystems. We will refer to
these basis as locally orthogonal (fully) separable orthobasis (LOSB), which can
be expressed by

LOSB(B) def= Basis(B) ∧
∧
b∈B

Sep(b) ∧
∧
i<N

∧
b∈B

∨
c∈B

(b{i} 6≡ c{i})

∧
∧
i<N

∧
b∈B

∧
c∈B

(b{i} ≡ c{i} ∨ b{i} ⊥ c{i}).

The second to last conjunct of the four conjuncts asserts that each local compo-
nent has dimension at least two, and the last conjunct asserts that local compo-
nents that are not equal must be orthogonal.

The following lemma states that any LOSB B is the tensor product of its local
states.

Lemma 5.3.22. For a finite set of formulas B, Let BN be the set of functions
from {0, . . . , N − 1} to B. The following formula is deducible:

` LOSB(B)→
∧

f∈BN

∨
b∈B

∧
i<N

(b{i} ≡ f(i){i}).
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Proof. Let χ be the negation of what we are trying to prove:

χ := LOSB(B) ∧ ¬
 ∧
f∈BN

∨
b∈B

∧
i<N

(b{i} ≡ f(i){i})
 .

It suffices to show that ` χ→ ff. First note that

` χ→ (
∨

f∈BN

∧
b∈B

∨
i<N

(b{i} 6≡ f(i){i})).

Furthermore by definition of LOSB and propositional logic, for every f ∈ BN and
b ∈ B,

` LOSB(B)→ ((b{i} 6≡ f(i){i})→ (b{i} ⊥ f(i){i})).

Thus
` χ→ (

∨
f∈BN

∧
b∈B

∨
i<N

(b{i} ⊥ f(i){i})).

By A6 we have ` χ → (∨f∈BN

∧
b∈B(b ⊥ f(i))). Then by Lemma 5.3.8, ` χ →

(∨f∈BN (f(i) ⊥ ⊔B)). Written another way, we have ` χ → (∨f∈BN (⊔B ≤
∼f(i))).

By modal reasoning ` tt ≡ ∼ff and by Lemma 5.3.5-(5.7), ` (φ 6≡ ff) ↔
(∼φ 6≡ tt). As for each i < N , f(i) ∈ B and f(i) 66≡ ff is a conjunct of
SubBasis(B) and hence a conjunct of χ, we have that ` χ → (∼f(i) 6≡ tt). As
` (φ ≤ ψ) ∧ (ψ 6= tt) → (φ 6= tt), we have from this and ` χ → (∨f∈BN (⊔B ≤
∼f(i))) that ` χ → (⊔B 6= tt). This together with the fact that ⊔B = tt is a
conjunct of SubBasis(B) and hence of χ gives us that ` χ→ ff.

Given two LOSBs B and C, we can construct a new LOSB D, such that for
all i < N , either for all d ∈ D we have d{i} ≡ b{i} for some b ∈ B or for all d ∈ D
we have d{i} ≡ c{i} for some c ∈ C. The following lemma proves this fact.

Lemma 5.3.23. Let B, C and D be three sets of proposition letters of equal size,
i.e. |B| = |C| = |D|. The following formula is deducible:

` Ant→ LOSB(D).

where

Ant def= LOSB(B) ∧ LOSB(C) ∧
∧
d∈D

Sep(d) ∧
∧

d6=d′∈D
d 6≡ d′

∧
∧
i<N

(
∧
d∈D

∨
b∈B

d{i} ≡ b{i}) ∨ (
∧
d∈D

∨
c∈C

d{i} ≡ c{i})

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Proof. In order to show ` Ant → LOSB(D) it suffices to show that Basis(D),∧
d∈D Sep(d), ∧

i<N

∧
d∈D

∧
d′∈D

(
(d{i} ≡ d′{i}) ∨ (d{i} ⊥ d′{i})

)
, (5.27)

and ∧
i<N

∧
d∈D

∨
d′∈D

(d{i} 6≡ d′{i}) (5.28)

are provable from Ant.
By extracting a conjunct from Ant, we already have ` Ant→ ∧

d∈D Sep(d).
As an intermediate step, we show that ` Ant → ∧

d∈D At(d). By axiom A4
we have ` Ant → T (b{i}) and ` Ant → T (c{i}) for all b ∈ B, c ∈ C and i < N .
As Ant asserts the equivalence of each d{i} with either b{i} or c{i}, propositional
reasoning gives us ` Ant → T (d{i}) for all d ∈ D and i < N . So, by axiom A4,
we have ` Ant→ At(d) for all d ∈ D.

We next show that (5.27) is provable from Ant. By propositional logic, using
the conjunct for LOSB(B) and for LOSB(C), we have

` Ant→
∧
i<N

(χ(B) ∨ χ(C)),

where

χ(B) :=
∧

d,d′∈D

∨
b,b′∈B

((d{i} ≡ b{i}) ∧ (d′{i} ≡ b′{i}) ∧ ((b{i} ≡ b′{i}) ∨ (b{i} ⊥ b{i}))).

Then by modal logic we have

` χ(B)→
∧

d,d′∈D
((d{i} ≡ d′{i}) ∨ (d{i} ⊥ d{i}))

and similarly
` χ(C)→

∧
d,d′∈D

((d{i} ≡ d′{i}) ∨ (d{i} ⊥ d{i}))

Putting these together, we obtain by propositional logic

` Ant→
∧
i<N

∧
d∈D

∧
d′∈D

(
(d{i} ≡ d′{i}) ∨ (d{i} ⊥ d′{i})

)
To show ` Ant → Basis(D), by Theorem 5.3.20, it remains to show that

` Ant → ∧
d 6=d′∈D d ⊥ d′. For each d, d′ ∈ D, because Sep(d) is a conjunct of Ant

for each d ∈ D, and because ` Ant→ ∧
d∈D At(d), we apply axiom A5 to get

` Ant→
∧

d,d′∈D
((d ≡ d′)↔

∧
i

(d{i} ≡ d′{i})).

Then
` Ant→

∧
d6=d′∈D

∨
i

(d{i} 6≡ d′{i}).
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Because
` Ant→

∧
d∈D

∧
d′∈D

∧
i<N

(
(d{i} ≡ d′{i}) ∨ (d{i} ⊥ d′{i})

)
,

we have by propositional logic

` Ant→
∧

d6=d′∈D

∨
i

(d{i} ⊥ d′{i})

Thus by axiom A6, ` Ant→ ∧
d6=d′∈D(d ⊥ d′).

To show (5.28), let us fix an i < N and let φ(i,B) be

φ(i,B) :=
∨
d∈D

∧
d′∈D

(d{i} ≡ d′{i}) ∧
∧
d∈D

∨
b∈B

(d{i} ≡ b{i}).

So for a fixed i we assume the negation of (5.28) and we assume all d ∈ D are
equal to some b ∈ B at location i. We wish to show ` Ant ∧ φ(i,B)→ ff.

By definition of ≡ and modal reasoning, the first conjunct of φ(i,B) implies∧
d,d′∈D(d{i} ≡ d′{i}), that is, all d ∈ D are locally equivalent at location i. Com-

bined with the second conjunct we get

` Ant ∧ φ(i,B)→
∨
b∈B

∧
d∈D

(d{i} ≡ b{i}).

As LOSB(B) is a conjunct of Ant, we have∧
b∈B

∨
b′∈B

(b{i} 6≡ b′{i}).

Moreover, we have ∧
b,b′∈B

(
(b{i} ≡ b′{i}) ∨ (b{i} ⊥ b′{i})

)
.

Using propositional reasoning we obtain

` Ant ∧ φ(i,B)→
∨
b∈B

∧
d∈D

(d{i} ⊥ b{i}).

By axiom A6, this implies

` Ant ∧ φ(i,B)→
∨
b∈B

∧
d∈D

(d ⊥ b).

Now we can apply Corollary 5.3.8

` Ant ∧ φ(i,B)→
∨
b∈B

(b ⊥
⊔
D).

We have already shown that ` Ant → Basis(D), and as ⊔D ≡ tt is a conjunct
of Basis(D) we conclude

` Ant ∧ φ(i,B)→ ff.
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We can show this result for any i < N and replacing B by C. As a result we get

` Ant ∧
∨
i<N

∨
d∈D

∧
d′∈D

(d{i} ≡ d′{i})→ ff.

This is equivalent to the desired result:

` Ant→
∧
i<N

∧
d∈D

∨
d′∈D

(d{i} 6≡ d′{i}).

5.4 Examples
In this section we will discuss how to express and prove correctness for two quan-
tum protocols: the quantum leader election protocol (Section 5.4.1) and the BB84
quantum key distribution protocol (Section 5.4.2).

5.4.1 Example 1: Quantum Leader Election
The quantum leader election protocol aims to randomly select a leader in a group
of agents such that each agent has equal probability to be selected as the leader.
There exists several ways to solve this problem using quantum theory, e.g. [47, 98].
The ones given in [98] rely heavily on communication, and as we do not explicitly
model communication, we will discuss the version given in [47], which omits
explicit communication.

Given a set N of agents, the protocol assigns a quantum bit (a two dimensional
Hilbert space) to each agent i ∈ N together with a basis {|0〉i , |1〉i}. Then the
following state, called the W -state, is considered:

∑
i∈N

1√
N

(⊗M

j∈N\{i}
|0〉j

)
⊗M |1〉i .

This state entangles the qubits in such a way that, after the agents measure their
qubit, only one agent measures |1〉 and all other agents measure |0〉.

In our logic, we express and prove the existence of the W -state, showing that
it has the desired probabilistic behaviour. Our formula for correctness applies
not only to the case where each agent has a qubit, but where each agent has
a Hilbert space with dimension at least 2 (no smaller than a qubit). We could
alternatively have enforced the property that each agent has precisely one qubit
using as a conjunct

LOSB(B)→
∧
i<N

∧
b,c,d∈B

(
(b{i} ⊥ c{i})→

(
(d{i} ≡ b{i}) ∨ (d{i} ≡ c{i})

))
,

and the proofs in this section would have been essentially the same.
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Let B be a LOSB. Then an ordered subset W = {W i | i ∈ N + 1} ⊂ B is
Quantum Leader Election compatible (QLE compatible) if the following formula
is satisfied (somewhere in) M:

QLE(W) def=
∧
i∈N

(W i
{i} 6≡ WN

{i}) ∧
∧

j∈N\i
(W i
{j} ≡ WN

{j})
 .

We interpret this formula as follows. The last element WN should be seen as
the tensor product ⊗M

i∈N 0i, where 0i is the qubit for agent i corresponding to
the classical bit 0 (one of the basis elements of the qubit). For i < N , the
element W i is similarly a tensor product of classical bits, where each component
k 6= i is similarly 0k, but where component k = i is 1k instead. Note that we
are interpreting basis elements of the components as classical bits, rather than
defining the basis elements of the components with respect to pre-determined
classical bits.

The correctness of the quantum leader election is expressed by

QLE-Cor(B) def= LOSB(B)→
∨

W⊂N+1B

(
QLE(W) ∧ ∃

∧
i<N

Pr(W i) = 1
N

)
,

where W ⊂N+1 B ranges over all subsets {W 0, . . . ,WN} of B of size N + 1.
We will first show that for any set B = {b0, . . . , bn−1} of n pairwise orthogonal

properties we have a state that has probability 1
n

for each property in B. Let us
define

Ort(B) def=
∧
i<n

(T (bi) ∧ (bi 6≡ ff)) ∧
∧

i<j<n

bi ⊥ bj.

Proposition 5.4.1. For all n ≥ 1 and for any set B = {b0, . . . , bn−1} of n
formulas, the following formula is deducible.

` Ort(B)→ ∃
(∧
i∈n

Pr(bi) = 1
n

)
.

Proof. With induction: for n = 1 we have ` Ort(B) → (b 6≡ ff), which by
Lemma 5.3.4 implies ` Ort(B) → ∃b. By Lemma 5.3.12-(5.26), we have ` b →
Pr(b) = 1, so we have ` Ort→ ∃(Pr(b) = 1), which finishes the case n = 1.

Induction hypothesis (IH): suppose for n we have

` Ort(Bn)→ ∃(
∧
i∈n

Pr(bi) = 1
n

).

Let Bn+1 = Bn ∪ {bn}. In Figure 5.13 we show how to deduce

` Ort(Bn+1)→ ∃
 ∧
i≤n+1

Pr(bi) = 1
n+ 1


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1 Ort(Bn+1)→ ∃bn Lem. 5.3.4
2 Ort(Bn+1)→ ∃

(∧
i<n Pr(bi) = 1

n

)
IH

3 Ort(Bn+1)→ (bn ⊥
⊔
i∈n bi) Cor. 5.3.8

4 Ort(Bn+1)→ (∧i<n Pr(bi) = 1
n
) ≤ (⊔i<n bi) Cor. 5.3.15

5 Ort(Bn+1)→ (bn ⊥ (∧i<n Pr(bi) = 1
n
) ML(3,4)

6 Ort(Bn+1)→ ∃
(
〈bn?〉= 1

n+1
bn ∧ 〈q?〉= n

n+1
q
)

with q = ∧
i<n Pr(bi) = 1

n
P6

7 Ort(Bn+1)→ ∃
(
Pr(bn) = 1

n+1 ∧
∧
i<n Pr(bi) = 1

n+1)
)

Lem. 5.3.16
8 Ort(Bn+1)→ ∃

(∧
i≤n+1 Pr(bi) = 1

n+1

)
PL(8)

Figure 5.13: A proof of Ort(Bn+1)→ ∃( ∧
i≤n+1

Pr(bi) = 1
n+1).

The following theorem proves the correctness of the quantum leader election.

Theorem 5.4.2. For any finite set of formulas B, the following formula is de-
ducible: ` QLE-Cor(B), that is,

` LOSB(B)→
∨

W⊂N+1B

(
QLE(W) ∧ ∃

∧
i<N

Pr(W i) = 1
N

)
,

where W ⊂N+1 B ranges over all subsets {W 0, . . . ,WN} of B of size N + 1.

Proof. For any W = {W 0, . . . ,WN} ⊂N+1 B we can extract conjuncts from
LOSB(B) and apply Lemma 5.3.11 to obtain ` LOSB(B) → Ort(W). It is easy
to see that for any W ′ ⊂N W , we have that ` Ort(W)→ Ort(W ′). Thus by this
and Proposition 5.4.1, we have for any W ⊂N+1 B

` LOSB(B)→ ∃
( ∧
i<N

Pr(W i) = 1
N

)
. (5.29)

To show that ` LOSB(B) → ∨
W⊂N+1B QLE(W), we select any b ∈ B to be

WN . Note that

` LOSB(B)→
∨

{bi|i<N}⊂B

( ∧
i<N

(bi{i} 6≡ WN
{i})

)
. (5.30)

For a given set V = {bi | i < N} ⊂ B and each i < N , let fVi : {0, . . . , N−1} → B,
such that fVi (j) = WN if i 6= j and fVi (i) = bi. Then for each i < N , we can
apply Lemma 5.3.22 using fVi to obtain a W i ∈ B such that W i

{i} ≡ bi{i} 6≡ WN
{i}

and W i
{j} ≡ WN

{j} for any j 6= i. By (5.30) we know that for some V ⊂ B the
resulting set W = {W 0, . . . ,WN−1,WN} will be QLE compatible. Hence, by
using Lemma 5.3.22 and (5.30), we obtain ` LOSB(B) → ∨

W⊂N+1B QLE(W).
The desired result follows from this, (5.29), and propositional logic.
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5.4.2 Example 2: BB84
The BB84 protocol is designed to provide two agents with the same random
bitstring, to be used as a key for both encryption and description. The protocol
works as follows: the first agent Alice has the ability to produce qubits in two
different basis: {|0〉 , |1〉} and {|−〉 , |+〉}. Alice chooses two equally sized random
bitstrings; the first is the message to be sent, the second determines the basis in
which each individual bit of the message bitstring is sent. She sends the qubits
to Bob, who has choosen a random bitstring as well in order to determine which
basis he uses to measure each received qubit. After all qubits have been sent
and measured, Alice and Bob publicly compare the basis bitstring they have
used to create and measure the qubits respectively. On those positions where
the basis bitstring matches, the corresponding bit in the message bitstring should
correspond as well. On all other positions, those bits in the message bitstring
could be different and are thus discarded. In the end, Alice and Bob have a
corresponding random bitstring which is in general about half the size of the
random bitstring Alice started with. Of course, this is in the ideal situation
where no eavesdropper disturbs the channel. This section proves properties of
this ideal situation.

We first need to characterize the message space. Let us fix the number of
qubits at N and let M be the tensor product of N identical two dimensional
quantum models. Let B1 and B+ be two LOSB’s that are locally probabilistically
far apart (PFA), that is

PFA(B1,B+) def= LOSB(B1) ∧ LOSB(B+)

∧
∧
b∈B1

∧
c∈B+

∧
i<N

(
b ≤ (Pr(c{i}) = 1

2) ∧ c ≤ (Pr(b{i}) = 1
2)
)

Intuitively, B1 represents the N tensor product of the local basis {|0〉 , |1〉}, and
B+ represents the N tensor product of the local basis {|−〉 , |+〉}. We introduce
two new abbreviations for the remainder of this section:

m{i} ∈ {0, 1} def=
∨
b∈B1

m{i} ≡ b{i},

m{i} ∈ {−,+} def=
∨
b∈B+

m{i} ≡ b{i}.

The message space M of 4N proposition letters can be defined by requiring
each proposition to be locally equivalent either to some b ∈ B1 or to some b ∈ B+.

Mes(M) def=
∧
m∈M

Sep(m) ∧
∧
m∈M

 ∧
i<N

∨
a∈B1∪B+

(m{i} ≡ a{i}) ∧
∧

m′∈M\{m}
(m 6≡ m′)

 .
Let k be some element of M. This represents Ann’s message and choice of basis
for each component.
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For any string s ∈ {1,+}N , let si denote the i’th coordinate. We define the
set of propositions Bs ⊆M by

Bs :=
{
b ∈M

∣∣∣ b{i} ≡ b′{i} for some b′ ∈ Bsi
and for all i < N

}
.

In words, Bs is the set of formulas where the i’th coordinate of each element b
of Bs is in {0, 1} if the i’th coordinate of s is 1, and where the i’th coordinate
of b in {−,+} otherwise. Note that by Lemma 5.3.23, for each s ∈ {1,+}N the
resulting set Bs is an LOSB.

Furthermore, given a string s ∈ {1,+}N , define the term-abbreviation:

• Prs(φ) def= ∑
b∈Bs

Pr(b ∧ φ)

• PrM(φ) def= ∑
s∈{1,+}N

1
2N Prs(φ)

The term Prs(φ) represents the probability of φ holding true after measuring the
state using basis Bs, in the event that φ is testable (φ needs to be testable for
this reading to hold). The term PrM(φ) represents the probability of φ holding
true after using a randomly selected one of the 2N chosen bases of states in M.

The correctness of the BB84 protocol, when there is no eavesdropper, can be
expressed by

Ant→ Pr
M

(Match) = 1,

where
Ant def= PFA(B1,B+) ∧Mes(M) ∧ k

and Match states that at those coordinates where the choice of basis of Alice and
Bob agree, Bob’s measured result agrees with Alice’s original message k. Formally
this is expressed by

Match def=
∧
i<N

(
BasisOf(k{i})→

∨
{m ∈M | m{i} ≡ k{i}}

)
,

where

BasisOf(k{i}) =


∨{m ∈M | m{i} ∈ {0, 1}} if k{i} ∈ {0, 1},∨{m ∈M | m{i} ∈ {−,+}} if k{i} ∈ {−,+}.

The probability of Match being equal to 1 reflects that without interference Bob
should have received Ann’s message perfectly among those coordinates where
they used the same basis.

Theorem 5.4.3. The following formula is deducible.

` Ant→ Pr
M

(Match) = 1.
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Proof. We will first show ` Ant → Prs(Match) = 1 for all s ∈ {1,+}N . The
desired result will then follow from the inequality axioms. By Lemma 5.3.23, we
know ` Ant→ LOSB(Bs), and therefore by Lemma 5.3.17, ` Ant→ ∑

b∈Bs
Pr(b) =

1. So to show that PrM(Match) = ∑
s∈{1,+}N

1
2N Prs(Match) = 1 it is enough to

show that ` Ant→ Pr(b) = Pr(b ∧Match) for all b ∈M.
Let us define

Matchi
def=
(
BasisOf(k{i})→

∨
{m ∈M | m{i} ≡ k{i}}

)
.

Thus Match = ∧
i<N Matchi. We will show that for each b ∈M,

`
∧
i<N

(Ant→ (Pr(b) = 0 ∨ (b ≡ (b ∧Matchi)), (5.31)

hence
` Ant→

(
Pr(b) = 0 ∨ (b ≡ (b ∧

∧
i<N

Matchi))
)

Before we prove (5.31), let us show how to proof the main statement of the
theorem. By P4, ` (b ≡ (b ∧ Match) → Pr(b) = Pr(b ∧ Match). By Propo-
sition 5.3.13, ` (Pr(b ∧ Match) ≤ Pr(b)). Thus by P2 and inequality axioms
` Pr(b) = 0 → Pr(b) = Pr(b ∧Match). Hence, from (5.31) we use these steps to
arrive at ` Ant→ Pr(b) = Pr(b ∧Match).

To prove (5.31), let us fix an i < N . We will discuss several cases, expressed
by the following formulas:

φ
def= (b{i} ≡ k{i})

ψ
def= (b{i} 6≡ k{i}) ∧ (b{i} ∈ {0, 1} ↔ k{i} ∈ {0, 1})

χ
def= (b{i} 6≡ k{i}) ∧ (b{i} ∈ {0, 1} ↔ k{i} 6∈ {0, 1})

By propositional logic, we have ` φ ∨ ψ ∨ χ.
Case φ: First note that we have

` Ant ∧ φ→ b ≤
(
BasisOf(k{i})→

∨
{m ∈M | m{i} ≡ k{i}}

)
,

because φ = (b{i} ≡ k{i}) ensures b ∈ {m ∈M | m{i} ≡ k{i}}. Rewriting, we have
` Ant∧φ→ (b ≡ (b∧Matchi)). Hence ` Ant∧φ→ (Pr(b) = 0∨(b ≡ (b∧Matchi)).

Case ψ: By extracting conjuncts from Ant, we have ` Ant∧ψ → LOSB(B1)∧
LOSB(B+). Expanding ψ, we have

` (Ant ∧ ψ)→
(
b{i} ∈ {0, 1} ∧ k{i} ∈ {0, 1}

)
∨
(
b{i} ∈ {−,+} ∧ k{i} ∈ {−,+}

)
.

Thus by propositional logic, ` Ant ∧ ψ → (b{i} ⊥ k{i}) for each i < N . By axiom
A6, ` Ant∧ψ → (b ⊥ k) and therefore by axiom P3, ` Ant∧ψ → (k ≤ Pr(b) = 0).
By Lemma 5.3.2-(5.4), ` Ant ∧ ψ → Pr(b) = 0. Hence ` Ant ∧ ψ → ((Pr(b) =
0) ∨ (b ≡ (b ∧Matchi)).
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Case χ: By expanding χ, we have

` (Ant ∧ χ)→
(
b{i} /∈ {0, 1} ∧ k{i} ∈ {0, 1}

)
∨
(
b{i} 6∈ {−,+} ∧ k{i} ∈ {−,+}

)
.

By this and modal logic, we have that ` Ant ∧ χ → (b ≤ ¬BasisOf(k{i})). Thus
` Ant∧χ→ (b ≤ Matchi), which is equivalent to ` Ant∧χ(b ≡ b∧Matchi). Thus
` Ant ∧ χ→ (Pr(b) = 0 ∨ (b ≡ (b ∧Matchi)).

Now we have ` Ant ∧ ω → (Pr(b) = 0 ∨ (b ≡ (b ∧ Matchi)), for each ω ∈
{φ, ψ, χ}. Together with ` φ ∨ ψ ∨ χ, and repeating for each i < N , we have
(5.31).





Chapter 6
PLQP & Company: Decidable Logics

for Quantum Algorithms

Summary: In this chapter we introduce a probabilistic modal (dynamic and
epistemic) quantum logic PLQP for reasoning about quantum algorithms. We
illustrate its expressivity by using it to encode the correctness of the well-known
quantum search algorithm. We also provide a general method (extending an idea
employed in the decidability proof in [50]) for proving the decidability of a range of
quantum logics, interpreted on finite-dimensional Hilbert spaces. We give general
conditions for the applicability of this method, and in particular we apply it to
prove the decidability of PLQP.

Background: The logical system that we introduce for quantum reasoning in
this chapter is similar to the one introduced in Chapter 5 and is based on com-
bining the well-known formalisms of quantum logic, modal logic and probability
logic (see Chapter 2). This gives us a Probabilistic Logic of Quantum Programs
(PLQP), that extends a version [12] of the older Logic of Quantum Program
(LQP), introduced in [11] and developed in [12, 13, 15, 14]. While the original
version in [11] had dynamic modalities [π] (for quantum programs π) as well as
spatial modalities (to talk about subsystems and local information), the later ones
were replaced in [12] with “epistemic” modalities KI (capturing the information
that is ‘known’ to subsystem I, i.e. it is carried by the local state of subsystem I).
In addition to the dynamic and epistemic modalities, the logic PLQP presented
in this chapter is endowed with a probabilistic modality, capturing the probability
that a given test (of a quantum-testable property) will succeed. This is a novel
feature, that greatly enhances the expressivity of the logic, allowing us to use it
for the verification of probabilistic quantum algorithms.

Let us briefly summarise some notational conventions from Chapter 2.2.1. In
standard quantum logic, JφK is typically taken to be a “closed linear subspace”
of H. Here we use scare quotes because, strictly speaking, JφK ⊆ Σ is a different
type of object than a closed linear subspace T ⊆ H; yet we henceforth refrain
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116 Chapter 6. PLQP & Company: Decidable Logics for Quantum Algorithms

from stressing the type difference when the correspondence is obvious. To denote
this correspondence, given any non-zero vector v ∈ H, we write ṽ for the ray
that v belongs to. Moreover, given any subset A ⊆ H that is closed under scalar
multiplication, we write Ã for the corresponding subset of Σ, i.e., Ã = { ṽ ∈
Σ | v ∈ A }; on the other hand, given any subset S ⊆ Σ, we write S for the
corresponding subset of H, that is, S = { v ∈ H | ṽ ∈ S } ∪ {~0}, which is closed
under scalar multiplication.1

The structure of this chapter is as follows. In Section 6.1, we introduce the
logic PLQP, and give its semantics in terms of finite-dimensional Hilbert space.
Next we illustrate this logic’s expressive power, by using it to encode the cor-
rectness of the quantum search algorithm in Section 6.2. We lay out our recipe
for decidability proofs in full generality in Subsection 6.3.1, and then we demon-
strate this recipe by applying it to PLQP in Subsection 6.3.3. In the final Sub-
section 6.3.4, we briefly illustrate how our proof method can be applied to other
logics, in particular to quantum logics with propositional (and action) quanti-
fiers, and to logics whose semantics is based on mixed states (as opposed to pure
states).

6.1 Probabilistic Logic of Quantum Programs
In Chapter 2.2.1 we introduced the syntax and semantics of standard quantum
logic, which can be used to express interesting properties of quantum systems by
using the quantum connectives ∼, ∧ and t. Yet in the context of quantum logic
it is fruitful to consider more connectives besides the given ones, including the
classical Boolean connectives. In [15, 16] it has been argued that adding classical
connectives allows one to express even more quantum properties than standard
quantum logic can. Also, it is often useful to have propositional constants other
than ⊥. For instance, to express the correctness of a quantum communication
protocol, we may want an atomic sentence c to invariably refer to (the state |̃β00〉
corresponding to) the Bell-state vector |β00〉; then we add to the semantics the
constraint JcK = {|̃β00〉}. In this section we build a new vocabulary to introduce
PLQP, the Probabilistic Logic of Quantum Programs. PLQP is an extension of
the “epistemic” version [12] of the Logic of Quantum Programs (LQP), originally
introduced in [11, 13], obtained by adding a probabilistic-test modality.

Syntax The language of this logic consists of two layers, one for sentences φ
and the other for programs π, and is defined by double recursion.2 To define

1Note that ∅ = {~0}, so that ∅ as a subset of Σ corresponds to the 0-dimensional subspace
{~0} ⊆ H rather than ∅ as a subset of H.

2This allows for some sentences to be constructed using program terms and some program
terms to be constructed using sentences.
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terms π for programs, we are given a set of action variables VU and a set of action
constants CU . We use AU = VU ∪CU to denote atomic action terms, all of which
are intended to refer to unitary transformations. We formally define sentences
φ and program terms π of PLQP in the following BNF format, where p ∈ AT ,
u ∈ AU , I ⊆ N for a (fixed) set N of natural numbers, and r is a rational number
in [0, 1]:

φ ::= p | φ ∧ φ | ¬φ | [π]φ | KIφ |
>r
Prφ

π ::= u | φ? | π; π | π ∪ π

In addition to the standard propositional connectives for (classical) negation and
conjunction, PLQP has dynamic modalities [π] (one for each program term π),
“epistemic” modalities KI (one for each I ⊆ N) and probabilistic modalities Pr>r
(one for each rational number r ∈ [0, 1]). Their intended meaning is as follows:

• π is a program (such as a quantum logical gate or a quantum test), and is
used to construct sentences via the dynamic modality [π].

• u is an atomic action term that refers to a unitary transformation, e.g. a
quantum gate such as the Hadamard, CNOT or Toffoli gate.

• φ? is the program that refers to the successful test of a sentence φ.

• π1; π2 is the program given by the sequential composition of π1 and π2
(applying first π1 and then π2).

• π1 ∪ π2 is the program given by the indeterministic choice between π1 and
π2 (either π1 or π2 is executed).

• Using the dynamic modality [π], the sentence [π]φ means that “φ will be
the case after (any successful execution of) π”.

• For the modality KI , fix a set of natural numbers N , using i ∈ N as indices
for Hilbert spaces Hi that compose the system H = ⊗

i∈N Hi. (Typically
Hi = C2, but not necessarily.) So each subset I ⊆ N is intended to refer
to the subsystem composed of the basic components Hi with i ∈ I, that
is, HI = ⊗

i∈I Hi. In this setting KIφ means that “(the local state of)
subsystem I carries the information that φ is (globally) the case”.

• For a rational number r in the interval [0, 1], Pr>r φ means that “testing
property φ (on the current state) will succeed with probability > r”.
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In this language, we can define additional connectives via the following abbrevi-
ations:

⊥ def= φ ∧ ¬φ
> def= ¬⊥
∼φ def= [φ?]⊥
φ t ψ def= ∼(∼φ ∧ ∼ψ)
φ ∨ ψ def= ¬(¬φ ∧ ¬ψ)
φ→ ψ

def= ¬(φ ∧ ¬ψ)
〈π〉φ def= ¬[π]¬φ
♦φ def= 〈φ?〉>

�φ def= ¬♦¬φ
Eφ

def= ♦♦φ
Aφ

def= ¬E¬φ
Pr6r φ def= Pr>(1−r)∼φ
Pr<r φ def= ¬Pr>r φ
Pr>r φ def= ¬Pr6r φ
[φ?>r?]ψ def= Pr>r φ→ [φ?]ψ

In particular, classical disjunction ∨ is the De Morgan dual of ∧ under classical
negation ¬, whereas quantum disjunction t is the De Morgan dual of ∧ under
quantum negation ∼. For instance, in C2, let p refer to the state |̃0〉; then
∼p refers to |̃1〉, but ¬p refers to all the states in C2 except |̃0〉—so, whereas
∼(p t ∼p) is a contradiction, ¬(p ∨ ∼p) refers to all the states where |̃0〉 and
|̃1〉 are superposed. We use → for the classical material implication, and define
a series of abbreviations for the opposite and strict versions of the probabilistic
operator: Pr6r, Pr>r, Pr<r. The sentence ♦φ expresses that “the test of whether
φ is the case or not can succeed”, and � is the classical dual of ♦. Similarly 〈π〉φ
is the classical dual of ¬[π]¬φ. We also introduce a universal modality Aφ and
an existential modality Eφ; they respectively mean that “φ is the case not just
in the current state but in every state of the system” and “φ is the case in some
state of the system”. The intended interpretation for the construct [φ?>r]ψ is that
“if the test of φ will succeed with probability > r, then ψ will be the case after
any successful execution of the test”.3

We may refer to [π], 〈π〉, �, ♦, A, E andKI as modalities, in the spirit of modal
logic [34] and in particular of dynamic logic [65] and epistemic logic [67, 55]. All
the above introduced syntactic constructs are justified by the semantic conditions
we will lay out shortly.

Semantics Just as in Chapter 2.2.1, we fix a Hilbert space H and take the
corresponding state space Σ. An assignment J·K assigns subsets of Σ to atomic
sentences p ∈ AT , and binary relations on Σ to atomic action terms u ∈ AU . The
semantics is given by recursively extending such an assignment J·K to all sentences
and all terms, interpreting each sentence φ with a set JφK ⊆ Σ of states, and each
program π with a binary relation JπK ⊆ Σ× Σ on states.

Definition 6.1.1. An assignment is a function J·K from AT ∪ AU such that
3We can also think of [−?6r], [−?>r], [−?<r], 〈−?>r〉, 〈−?6r〉, 〈−?>r〉, and 〈−?<r〉, but as

they play no essential role in this article we omit them here.
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• For every p ∈ AT , JpK ⊆ Σ corresponds to a closed linear subspace of H.

• For every u ∈ AU , JuK : Σ→ Σ corresponds to a unitary transformation on
H.

• Every constant symbol c ∈ CT ∪ CU is interpreted as intended, such as in
(1).

To extend J·K, we interpret classical negation ¬ and disjunction ∨ classically:4

1. s ∈ J¬φK iff s /∈ JφK, so that J¬φK = Σ \ JφK, the Boolean complement of
JφK;

2. s ∈ Jφ ∨ ψK iff either s ∈ JφK or s ∈ JψK, so that Jφ ∨ ψK = JφK ∪ JψK.

To formally define the semantics of dynamic modalities [π], we introduce π-
transition relations among states: s JπK−→ t means that “ the successful execution
of program π at state s moves the system to state t”. Specifically, for program
u ∈ AU , i.e., the action by the unitary transformation JuK : Σ → Σ, we have
s

JuK−→ t iff JuK(s) = t. Also, for program φ?, i.e., the test of whether a given
sentence φ is the case or not, let us write ProjJφK : H → H for the projection
onto the closed linear subspace of H that JφK generates, i.e., ∼∼JφK; then we set
s

Jφ?K−→ t iff {ProjJφK(v) | v ∈ s } = t. We also set s Jπ1;π2K−→ t iff s
Jπ1K−→ u

Jπ2K−→ t for
some u ∈ Σ, and s

Jπ1∪π2K−→ t iff either s Jπ1K−→ t or s Jπ2K−→ t.
Now, given the transition relations JπK−→, the intended meaning of [π]φ can be

formalized in the manner of Hennessy-Milner logic for labelled transition systems
[66]:

3. s ∈ J[π]φK ⇐⇒ t ∈ JφK whenever s JπK−→ t.

Plugging the specific transition relations JuK−→ and Jφ?K−→ above into this, we have:

4. J[u]φK = { s | JuK(s) ∈ JφK } = JuK−1JφK.

5. J[φ?]ψK = { s | ProjJφK(v) ∈ JψK for all v ∈ s } = ˜ProjJφK
−1[JψK].

6. J[π1; π2]φK = J[π1][π2]φK.

7. J[π1 ∪ π2]φK = J[π1]φ ∧ [π2]φK.
4In quantum logic, JφK lies in the lattice LH of closed linear subspaces of H. In contrast, for

φ containing classical connectives, JφK is not in general a closed linear subspace (though it is
closed under scalar multiplication and lies in the powerset P(Σ) of Σ). Nevertheless we do not
drop the constraint that JpK is a closed linear subspace for any atomic p.
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(4) and (5) mean that J[u]ψK and J[φ?]ψK are the pre-images, or the “weakest
preconditions”, of JψK under JuK and ProjJφK. It is also worth noting that (5)
implies

8. J[φ?]ψK = ∼JφK t (JφK ∩ JψK), the so-called “Sasaki hook” from JφK to JψK.

Moreover, with ψ = ⊥, by (1) we can verify

9. J[φ?]⊥K = { s | ProjJφK(v) = ~0 for all v ∈ s } = ∼JφK.

10. J♦φK = J〈φ?〉>K = J¬[φ?]⊥K = { s | s Jφ?K−→ t for some t ∈ Σ }.

In addition, we can show

11. JAφK = J��φK = Σ if JφK = Σ; otherwise JAφK = ∅.5

For the semantics of our “local-information modalities” KI , we should think
of the Hilbert space H = ⊗

i∈N Hi as divided into a principal subsystem HI =⊗
i∈I Hi and its “environment” HN\I = ⊗

i∈N\I Hi. Then KIφ is supposed to
mean that the subsystem I carries the information that φ. This idea can be
made precise using the density-operator formalism. For any unit vector v ∈ s,
the pure state s of the global system N can be alternatively described by the
corresponding density operator ρNv . The so-called reduced density operator sI =
trN\I(ρv), obtained by taking the partial trace trN\I over the environment N \I, is
typically a mixed state, which describes the “state” sI of the sub-system I (when
the global system is in state s). The relation of I-indistinguishability between
global states s, t can thus be defined by putting:

s ∼I t ⇐⇒ sI = tI ⇐⇒ trN\I(ρv) = trN\I(ρw) for unitary v ∈ s, w ∈ t.

Essentially, s ∼I t means that the global states s and t are “locally the same
from the viewpoint of I”. The indistinguishability relation can be alternatively
characterized in terms of I-remote actions: these are unitary transformations
U : H → H having the property that U = IdI ⊗ V , where IdI : HI → HI

is the identity map on subsystem I and V : HN\I → HN\I is some unitary
transformation on its environment. Then it follows that

s ∼I t ⇐⇒ t = U(s) for some I-remote U .

Now, using the I-indistinguishability relation, we can define an “epistemic” mo-
dality KI in the way that is standard in epistemic modal logic: i.e., we can say
that subsystem I “knows” (it carries the information) that φ is the case in state
s iff φ is the case in all the states that are I-indistinguishable from s. More
formally,

5See [11], 499f., for a proof.
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12. s ∈ JKIφK
⇐⇒ t ∈ JφK for every t ∼I s
⇐⇒ U(s) ∈ JφK for every I-remote U

.

Or we can put this as follows: I-remote unitary transformations are symmetries
that tinker with the environment alone, leaving anything in the principal subsys-
tem I intact; so I locally carries the information that φ iff φ is invariant under
those symmetries.

The probability connective Pr>r is interpreted straightforwardly via Born’s
rule:

13. s ∈ JPr>r φK ⇐⇒ 〈v|ProjJφK |v〉 > r for all unit vectors v ∈ s.

The constraints we have reviewed so far give the semantics of PLQP.

Definition 6.1.2. Given a language L of PLQP, by an PLQP model over a
Hilbert space H (for L) we mean a pair consisting of the set Σ of states in H and
any valuation map J·K (for L) that extends an assignment (Definition 6.1.1) and
satisfies (3), (1), (4)–(7), (12), (13). We say that a sentence φ of L is PLQP-valid
in H, and write H �PLQP φ, or H � φ for short, if φ is true everywhere in Σ
regardless of the assignments, that is, if JφK = Σ for all PLQP models (Σ, J·K)
over H. Lastly, we define the logic PLQPH, the PLQP (in L) of H, as the set of
sentences of L that are PLQP-valid in H; that is,

PLQPH = {φ ∈ L | JφK = Σ for all PLQP models (Σ, J·K) over H}.

6.2 Applying PLQP to the Quantum Search Al-
gorithm

The connectives of PLQP, which we reviewed above in Section 6.1, serve many
purposes. In this section, we show that PLQP is expressive enough to capture
the correctness of the quantum search algorithm [63].

Let us fix a quantum system H of n + 1 qubits, for n > 2; we write N =
{0, . . . , n − 1} and N + 1 = {0, . . . , n} and use i ∈ N + 1 as indices for qubits.
We also write 2 = {0, 1}, so that any g : N → 2 is an assignment of 0 and 1 to
the qubits in N . Now, by a classical state, we mean |g〉 = ⊗i∈N |g(i)〉i for any
g : N → 2. A unitary operator O on H is called an oracle if there is exactly one
classical state |f̂〉 such that, for every classical state |g〉 and b ∈ 2,

O(|g〉 ⊗ |b〉n) =

 |g〉 ⊗ |1− b〉n if g = f̂ ,

|g〉 ⊗ |b〉n otherwise.

The quantum search algorithm lets us find such a classical state |f̂〉, given an
oracle O.
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Algorithm and Correctness Criterion The algorithm goes as follows:

i. Set each qubit i ∈ N in the state |0〉i and the qubit n in |1〉n.

ii. Apply the Hadamard gate to each qubit in N + 1.

iii. (a) Apply the oracle O to N + 1.
(b) Apply the Hadamard gate to each qubit in N .
(c) Apply to N the conditional phase shift gate PN , whose matrix represen-
tation has (PN)00 = 1, (PN)ii = −1 if 0 < i < n, and (PN)ij = 0 if i 6= j.
(d) Apply the Hadamard gate to each qubit in N .

iv. Repeat (iii) k times, where k is the largest natural number less than π
4

√
2n.

v. Measure the qubits in N .

This algorithm is correct if |g〉 = |f̂〉 with probability greater than 0.5, where
|g〉 is the classical state of the qubits in N after measurement. PLQP can express
this correctness, when a language LPLQP of PLQP has

• For each i ∈ N+1, propositional constants 0i and 1i. J0iK (resp., J1iK) is the
property of being in an i-separated state whose i-local state is generated by
|0〉i (resp., |1〉i).

• For each i ∈ N+1, an action constant Hi for the i-local action that performs
the Hadamard transform on qubit i and does not affect the other qubits.

• An action constant P for the N -local action which performs the conditional
phase shift gate on N and whose matrix is PN ⊗ Idn. Here Idn is the matrix
for the identity map on qubit n and ⊗ is the Kronecker product of two
matrices.

• An action variable O (we use it to refer to the oracle).

PLQP Expression For any propositional variable p ∈ VT , let CState(p) be a
formula of PLQP stating that if p then the system must be in an N -separated
state whose N -local state is classical. Also, let Ora(O) be a formula of PLQP
stating that O is an oracle. More precisely, given any f : N → 2 let us write f
for the sentence ∧i∈N f(i)i, and then

CState(p) := Ep ∧ A
(
p→

∨
f :N→2

f
)
,

Ora(O) :=
∨

f :N→2
A


(
f ∧ 0n → [O](f ∧ 1n)

)
∧
(
f ∧ 1n → [O](f ∧ 0n)

)
∧

∧
g:N→2,g 6=f


(
g ∧ 0n → [O](g ∧ 0n)

)
∧
(
g ∧ 1n → [O](g ∧ 1n)

)


 .
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Note that, since J∨f :N→2 fK is not a closed linear subspace, if JCState(p)K = Σ
then all the states in JpK are N -separated and there is a single f : N → 2 such
that |f(i)〉i generate the N -local states of all the states in JpK. Now, writing
0 : N → 2 for the constant 0 :: i 7→ 0 and [π]k for the k-times iteration of [π] (for
k as in step (iv) of the algorithm), consider

QSA := Ora(O) ∧ CState(p) ∧ A
(
p ∧ 0n → [O]1n

)
∧ A

(
p ∧ 1n → [O]0n

)
∧ 0 ∧ 1n

→ [H0; · · · ;Hn][O;H0; · · · ;Hn−1;P ;H0; · · · ;Hn−1]kP>0.5p.

This formula QSA expresses the correctness of the quantum search algorithm, in
the sense that the algorithm is correct for an (n + 1)-qubit system H iff QSA is
valid in H.

6.3 Decidability Proof
The goal of this section is to provide a general method for proving decidability
not just for PLQP but in fact for a wide range of logics of Hilbert spaces. The
section proceeds as follows. In subsection 6.3.1, we lay out the core idea of the
method in conceptual terms, by illustrating how it works with PLQP in particular.
From this illustration, we extract in subsection 6.3.2 a precise lemma that can be
applied to show a wider range of logics of Hilbert spaces to be decidable. Then,
in subsection 6.3.3, we show how to apply this lemma to the particular case of
PLQP, establishing its decidability. We close the section by briefly mentioning,
in subsection 6.3.4, other kinds of logics to which the lemma can be applied.

6.3.1 Proof Recipe, the Core Idea
The core idea of our method of proving a given logic of a Hilbert space to be
decidable is to rewrite the semantics for the logic entirely (and effectively) in the
first-order theory of complex numbers, which is decidable due to Tarski’s [99]
theorem. In this subsection, we describe how this idea works by taking the case
of PLQP as an example. (Our discussion in this subsection is not meant to be a
rigorous proof, but rather a conceptual illustration; we turn this illustration into
rigorous proofs in subsections 6.3.2 and 6.3.3.)

Let us write C for the set of complex numbers, LC = (+, ·, ∗, 0, 1) for the
first-order language of C with ∗ for the complex conjugate, and TC for the theory
of C in LC, whose decidability follows from Tarski’s [99] theorem. The key to our
proof method is the following fact, which Dunn et al. [50] also used in an essential
step of their proof.

Fact 6.3.1. When H ∼= Cn is a Hilbert space of dimension n ∈ N, its closed
linear subspaces are exactly the kernels of n× n complex matrices.
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This means the following, for any atomic sentence p ∈ AT and any n×n matrix
p̂ and n-vector ~v of variables of LC. For every assignment J·K (see Definition 6.1.1),
some value of p̂ in Cn×n corresponds to the subspace JpK,6 in the sense that

~v ∈ JpK ⇐⇒ p̂~v = ~0, i.e.,
p11v1 + · · ·+ p1nvn = 0
∧ · · ·
∧ pn1v1 + · · ·+ pnnvn = 0

(6.14)

for every value of ~v in Cn. On the other hand, every value of p̂ corresponds (in the
same sense) to JpK for some assignment J·K. Note here that p̂~v = ~0 is a formula
of LC. Then we can expand (6.14) into a decidability proof as follows.

First, here is a proof that p is decidably not valid—even though we hardly
need a proof that propositional variables p are never valid, the case still serves as
a basis for our decidability proof. From (6.14) it immediately follows that, given
any particular J·K and any value of p̂ that corresponds to JpK, p is true everywhere
in H iff the formula p̂~v = ~0 holds of all values of ~v in Cn; that is,

JpK = H ⇐⇒ ∀~v.~v ∈ JpK ⇐⇒ ∀~v. p̂~v = ~0.

This further implies that p is valid in H, written H � p (see Definition 6.1.2), iff
p̂~v = ~0 holds not just of all values of ~v but moreover of all values of p̂ in Cn×n;
that is,

H � p, i.e., JpK = H for all J·K ⇐⇒ ∀~v. p̂~v = ~0 for all values of p̂
⇐⇒ TC ` ∀p̂∀~v. p̂~v = ~0.

Due to the quantifiers, ∀p̂∀~v. p̂~v = ~0 is a closed sentence of LC with no constant
symbols except 0; therefore, by the decidability of TC, it is decidable that the last
equivalent does not hold. The upshot is this: The formula p̂~v = ~0 of LC, regarded
as an n-ary formula with variables ~v and particular values of p̂ as parameters,
defines the subset JpK of H to which the parameters correspond;7 so quantifying
over both ~v and p̂ gives the closed sentence of LC that decides whether p is valid
in H or not (and in this case, it is not).

We extend this case to all the sentences φ of a language LPLQP of PLQP and
not just atomic ones; that is, if for each φ we can find an n-ary formula φδ(~v, x̄)
of LC that defines JφK ⊆ H (perhaps with values of x̄ as parameters), then we
can decide whether φ is valid in H or not by universally quantifying over ~v and
x̄. Schematically, what we just saw is the left column below, and we extend it

6An assignment J·K assigns to p a set JpK ⊆ Σ corresponding to a closed linear subspace of
H, and JpK is that subspace. See p. 116 for more on this notation.

7Particular values of p̂ as parameters may be undefinable in LC; but they do not hinder our
proof, since in the end we quantify over p̂ and obtain closed sentences of LC.
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into the right.

p̂~v = ~0 defines JpK ⊆ H, φδ(~v, x̄) defines JφK ⊆ H,
~v ∈ JpK ⇐⇒ C � p̂~v = ~0, ~v ∈ JφK ⇐⇒ C � φδ(~v, x̄),
JpK = H ⇐⇒ C � ∀~v. p̂~v = ~0, JφK = H ⇐⇒ C � ∀~v. φδ(~v, x̄),
H � p ⇐⇒ C � ∀p̂ ∀~v. p̂~v = ~0, H � φ ⇐⇒ C � ∀x̄∀~v. φδ(~v, x̄).

Here, however, the last step on the right is not quite correct, since φ may contain
an expression for which parameters cannot be arbitrary. For instance, consider a
particular subspace JpK and unitary transformation JuK, as well as values of p̂ and
û corresponding to them respectively. Then, as we will explain in more detail in
subsection 6.3.3, the formula ([u]p)δ that defines J[u]pK ⊆ H is p̂(û~v) = ~0, so that

J[u]pK = H ⇐⇒ C � ∀~v. p̂(û~v) = ~0.

Yet it would be a mistake to carry on to say

H � [u]p ⇐⇒ C � ∀û∀p̂∀~v. p̂(û~v) = ~0, (6.15)

because, whereas any value of p̂ corresponds to a linear subspace, not every
value of û is good in the sense of corresponding to a unitary transformation.
Still, there is a formula of LC defining the range of good values of û—namely,
Un(x̂) := px̂†x̂ = x̂x̂† = Idnq,8 which states that x̂ is an n × n unitary matrix.
Therefore, instead of (6.15), we can correctly have

H � [u]p ⇐⇒ C � ∀û∀p̂ (Un(û)→ ∀~v. p̂(û~v) = ~0).

In a more general form, for each sentence φ of LPLQP we will need a pair of
formulas of LC, written φδ(~v, x̄) and φρ(x̄), that “interprets” φ in the sense that

16. φδ(~v, c̄) defines JφK ⊆ H with parameters c̄ (hence the superscript δ for
“defining”), when the values c̄ of the variables x̄ correspond to the assign-
ment J·K, and

17. φρ(x̄) defines the range of good values c̄ of x̄ (hence the superscript ρ for
“range”),

so that

H � φ ⇐⇒ C � ∀x̄ (φρ(x̄)→ ∀~v. φδ(~v, x̄)).

We need an effective procedure that yields such an interpreting pair of formulas
φδ(~v, x̄), φρ(x̄) to every sentence φ. For this purpose, it is enough by induction
to have

8We use the quotation marks p·q loosely to identify formulas of LC with its scopes, so that
the distinction is clearer between the equality sign within formulas of LC and an equation among
formulas of LC.
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• an effective procedure that yields pδ and pρ to every atomic sentence p;

• for each (n-ary) connective �, an effective procedure that, given any φi
δ

and φi
ρ, yields �(φ1, . . . , φn)δ and �(φ1, . . . , φn)ρ.

6.3.2 Proof Recipe, Precisely and Generally
In the previous subsection we laid out the core idea of our decidability proof
taking PLQP as an example. In this subsection we abstract essential elements
from this idea and put them in a more precise form that can be applied more
generally to a wider range of logics than just PLQP. First, we generalize the
notion of PLQP models to the following.

Definition 6.3.2. Given a language L (that may be modal or not), by a Cn-
interpretation of L we mean a map J·K that assigns to each sentence φ of L a
subset JφK ⊆ Cn. Also, given any class I of Cn-interpretations of L, we say that
a sentence φ of L is I-valid, and write I � φ, if JφK = Cn for all J·K ∈ I; moreover,
by the logic of I (in L), we mean the set of I-valid sentences of L.

This definition clearly subsumes that of PLQP models (Σ, J·K) over a Hilbert
space H ∼= Cn; each (Σ, J·K) is (isomorphic to) a Cn-interpretation J·K.

Next, we generalize the correspondence between values of variables p̂, û as
parameters and values JpK, JuK of assignments J·K. In the case of PLQP, take
variables p̂, û, . . . of LC for all the atomic expressions p, u, . . . of LPLQP, and
observe the following (18)–(20). Here we write var(LC) for the set of variables of
LC. Also, for any α : var(LC) → C and any list x̄ = (x1, . . . , xm) of variables of
LC, we write α(x̄) for the list (α(x1), . . . , α(xm)).

18. For each assignment J·K, there is an assignment α : var(LC)→ C of values to
p̂, û, . . . that corresponds to J·K. (Indeed there are many, since, for instance,
values c11, . . . , cnn and 2c11, . . . , 2cnn of p̂ correspond to the same subspace
of Cn.)

19. On the other hand, not every assignment α : var(LC) → C is good in the
sense of corresponding to some J·K. Yet, if α is good, it corresponds to a
unique J·K.

20. Moreover, for any finite list of variables, say û, there is a formula of LC
(i.e., x̂†x̂ = x̂x̂† = Idn) that the value α(û) has to satisfy in order for
α : var(LC)→ C to be good.

Recall that a partial function R from a set X onto a set Y is a relation R ⊆ X×Y
such that

• for every y ∈ Y there is some x ∈ X with Rxy, and
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• for every x ∈ X there is at most one y ∈ Y with Rxy,

and that we write dom(R) := {x ∈ X | Rxy for some y ∈ Y }. Then (18) and
(19) together mean that the correspondence is a partial function from the set
of assignments α : var(LC) → C (of values to p̂, û, . . .) onto the set of PLQP
models J·K, and moreover that dom(R), with R for the correspondence, is the set
of good assignments α. So we generalize the correspondence as in Definition 6.3.3
below. As preliminary notation, let us write Cvar(LC) for the set of assignments
α : var(LC)→ C. Also, given any (n+m)-ary formula ψ(x1, . . . , xn, y1, . . . , ym) of
LC and m-tuple c1, . . . , cm ∈ C, we write ψ(C, c1, . . . , cm) for the set that ψ(x̄, ȳ)
defines with parameters c̄ in place of ȳ, that is,

ψ(C, c1, . . . , cm) := { (b1, . . . , bn) ∈ Cn | C � ψ[b1, . . . , bn, c1, . . . , cm] } ⊆ Cn.

Then we enter the following definition, whose first sentence generalizes (18) and
(19) with the part before “such that”, and (20) with the part after.

Definition 6.3.3. Given any class I of Cn-interpretations, a C-coding of I is a
partial function R from Cvar(LC) onto I such that, for every finite list of variables
x̄ = (x1, . . . , xm) ⊆ var(LC) of LC, there is an m-ary formula ρx̄(ȳ) of LC defining
the set {α(x̄) ∈ Cm | α ∈ dom(R) }, that is, ρx̄(C) = {α(x̄) ∈ Cm | α ∈
dom(R) }. Moreover, we say that a C-coding is effective if there is an effective
procedure of giving such ρx̄(ȳ) to any given finite x̄.9

In the case of PLQP, the correspondence between values of p̂, û, . . . and J·K
contributes to the decidability proof in combination with an interpretation of
sentences φ of LPLQP in terms of pairs of formulas φδ(~v, x̄), φρ(x̄) of LC. In other
words, the essential property we require of the correspondence is to guarantee
that the interpretation satisfies (16) and (17); or, in the new notation, with R for
the correspondence, (16) and (17) amount respectively to

21. R(α, J·K) entails JφK = φδ(C, α(x̄)),

22. φρ(C) = ρx̄(C).

Therefore we generalize the PLQP case to Definition 6.3.4 and Lemma 6.3.5.
The idea is to use (21) as the essential part of Definition 6.3.4, and, for (22), to
show that ρx̄(x̄) plays the role in the proof of Lemma 6.3.5 that φρ(x̄) played in
subsection 6.3.1. So we first enter

Definition 6.3.4. Fix a finite-dimensional Hilbert space H ∼= Cn, any class I
of Cn-interpretations of a language L, and any C-coding R of I. Then, for any
sentence φ of L, we say that a formula φδ(v1, . . . , vn, x̄) of LC (with a specific
tuple of variables x̄) translates φ in R, or is an R-translation of φ, if (21) holds
for every α : var(LC)→ C and J·K ∈ I.

9The effectiveness of a C-coding R does not assume any such property as recursiveness on
R itself.
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Then we prove the following lemma, which shows, among other things, that
ρx̄(x̄) serves as the desired formula φρ(x̄), thereby interpreting φ together with
φδ(~v, x̄).

Lemma 6.3.5. Fix a finite-dimensional Hilbert space H ∼= Cn, any class I of
Cn-interpretations of a language L, and any effective C-coding R of I. Suppose
a sentence φ of L has an R-translation. Then it is decidable whether I � φ or
not.

Proof. Suppose a formula φδ(~v, x̄) of LC translates φ in R. This entails both

23. for each c̄ ∈ ρx̄(C), there is J·K ∈ I such that JφK = φδ(C, c̄);

24. for each J·K ∈ I, there is c̄ ∈ ρx̄(C) such that JφK = φδ(C, c̄).

To show (23), suppose c̄ ∈ ρx̄(C). This means that c̄ = α(x̄) for some α ∈ dom(R),
i.e., α such that R(α, J·K) for some J·K. Hence JφK = φδ(C, α(x̄)) = φδ(C, c̄)
because φδ(~v, x̄) translates φ in R. (24) holds because, for any J·K, there is α
such that R(α, J·K) (since R is onto), and so JφK = φδ(C, α(x̄)) and α(x̄) ∈ ρx̄(C).
Then (23) and (24) respectively imply the “⇒” and “⇐” parts of (∗) in

I � φ, i.e., JφK = Cn for every J·K ∈ I (∗)⇐⇒ C � ∀~v. φδ(~v, c̄) for every c̄ ∈ ρx̄(C)
⇐⇒ C � ∀x̄ (ρx̄(x̄)→ ∀~v. φδ(~v, x̄)),

and it is decidable, by Tarski’s [99] theorem, whether the last equivalent is true
or not.

This finally gives the following, which encapsulates our recipe for decidability
proofs.

Lemma 6.3.6. For every finite-dimensional Hilbert space H ∼= Cn and every
class I of Cn-interpretations of a language L, the logic of I is decidable if

25. L is recursively enumerable;

26. there is an effective C-coding R of I;

27. the set of atomic sentences of L is effectively R-translatable, meaning that
there is an effective procedure that yields an R-translation to any given
atomic sentence p of L;

28. each (n-ary) connective � of L effectively preservesR-translatability, mean-
ing that there is an effective procedure that, given any sentences φi of L
(1 6 i 6 n) and any R-translations thereof, yields an R-translation of
�(φ1, . . . , φn).

Proof. If (25)–(28) hold, we can effectively combine the effective procedures into a
single effective procedure that, given any sentence φ of L, yields a pair of formulas
of LC that interprets φ in I. Hence Lemma 6.3.5 implies Lemma 6.3.6.
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6.3.3 Application of Our Recipe to PLQP
We provided above a general recipe for decidability proofs in the form of Lemma
6.3.6. As an instance of its application, we take PLQP(H) and prove it decidable;
that is, we prove

Theorem 6.3.7. Let LPLQP be a language of PLQP. For any n ∈ N and any
Hilbert space H ∼= Cn, the logic PLQP(H) = {φ ∈ LPLQP | H � φ } is decidable.

By Lemma 6.3.6, it is enough to show (25)–(28) about LPLQP and the class I
of (Cn-interpretations corresponding to) PLQP models over H. (25) is clear. For
(26), let us fix variables ~v = (v1, . . . , vn) of LC, and moreover take an effective
map from the atomic expressions of LPLQP to the (n × n)-tuples of variables of
LC, assigning

• p̂ = (p11, . . . , pij, . . . , pnn) to each atomic sentence p ∈ AT of LPLQP and

• û = (u11, . . . , uij, . . . , unn) to each atomic action term u ∈ AU of LPLQP,

so that all these variables of LC are distinct. Moreover, let Um(x̂) for m ∈ N be a
formula of LC stating that x̂ is an m×m unitary matrix, that is, Um(x̂) = px̂†x̂ =
x̂x̂† = Idmq. Now define a relation R ⊆ Cvar(LC) ×I so that, for α : var(LC)→ C
and a PLQP model (Σ, J·K), R(α, J·K) iff

• for each u ∈ AU , C � Un[α(û)], that is, α(û) is a unitary matrix,

• for each p ∈ AT , JpK is the kernel of the matrix α(p̂), and

• for each u ∈ AU , JuK is the unitary transformation given by the unitary
matrix α(û).

Then we have (26), as R is clearly an effective C-coding of I with formulas ρx̄(ȳ)
given by

• ρp̂(ŷ) = p0 = 0q for every propositional variable p ∈ VT .

• ρû(ŷ) = Un(ŷ) for every action variable u ∈ VU .

• Suitable conditions for constant symbols c ∈ CT ∪ CU .10

10For instance, if c is an action constant for the Hadamard gate, ρĉ(ŷ) is a formula of LC
stating that ŷ is a matrix corresponding to the gate. Also, even though we defined ⊥ as an
abbreviation φ∧¬φ on p. 118, if we treated ⊥ as a propositional constant for the contradiction,
then we would set ρ⊥̂(ŷ) = pŷ = Idnq for some n × n matrix ⊥̂ of variables of LC, so that
∀x̄ (φρ(x̄)→ φδ(~v, x̄)) for φ = ⊥ would be ∀⊥̂ (⊥̂ = Idn → ⊥̂~v = ~0). On the other hand, if the
interpretation of c has no suitable formula ρĉ(ŷ) in LC (e.g., if it involves numbers undefinable
in LC), then the interpretation cannot have a C-coding and Lemma 6.3.6 cannot be applied.
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• For general x̄, write A = { a ∈ AT ∪AU | x̄∩ â 6= ∅ } and B = { aij | a ∈ A
but aij /∈ x̄ }. Then let ρx̄(ȳ) be such that ρx̄(x̄) = p∃z1, . . . , zm

∧
a∈A ρâ(â)q

for {z1, . . . , zm} = B.

For (27) and (28), given any sentence φ of LPLQP we write par(φ) = ⋃{ â |
a ∈ AT ∪AU occurs in φ }; we use par(φ) as the (variables for) parameters in our
R-translation φδ(~v, par(φ)) of φ. Our definition of φδ(~v, par(φ)) goes recursively
along the construction of φ. For atomic p ∈ AT , we have par(p) = p̂, so let our
R-translation of p be pδ(~v, par(p)) = pp̂~v = ~0q; then

Fact 6.3.8. The set AT of atomic sentences of LPLQP is effectively R-translat-
able.

Proof. The assignment of par(p) = p̂ and pδ(~v, par(φ)) to p ∈ AT is clearly
effective. For each p ∈ AT , pδ(~v, par(p)) translates p in R because R(α, J·K)
means by definition that JpK is the kernel of the matrix α(p̂), so that JpK = {~c ∈
Cn | α(p̂)~c = ~0 } = pδ(C, α(p̂)).

Thus (27). We then give φδ(~v, par(φ)) to compound φ recursively and check
(28) with each connective of LPLQP. For the simplest one of ∧, (3) implies that
Jφ ∧ ψK = JφK ∩ JψK for each PLQP model J·K. Hence, given φδ(~v, par(φ)) and
φδ(~v, par(ψ)), we set

(φ ∧ ψ)δ(~v, par(φ ∧ ψ)) = pφδ(~v, par(φ)) ∧ ψδ(~v, par(ψ))q

(which makes sense since par(φ ∧ ψ) = par(φ) ∪ par(ψ)), so that

(φ ∧ ψ)δ(C, α(par(φ ∧ ψ))) = φδ(C, α(par(φ))) ∩ ψδ(C, α(par(ψ)))

for every α : var(LC)→ C. Then we have

Fact 6.3.9. ∧ effectively preserves R-translatability.

Proof. par(φ ∧ ψ) = par(φ) ∪ par(ψ) and (φ ∧ ψ)δ(~v, par(φ ∧ ψ)) are given
clearly effectively. Moreover, if R(α, J·K), the hypothesis that φδ(~v, par(φ)) and
ψδ(~v, par(ψ)) translate φ and ψ in R, respectively, implies that

(φ ∧ ψ)δ(C, α(par(φ ∧ ψ))) = φδ(C, α(par(φ))) ∩ ψδ(C, α(par(ψ)))
= JφK ∩ JψK = Jφ ∧ ψK.

Thus (φ ∧ ψ)δ(~v, par(φ ∧ ψ)) interprets φ ∧ ψ in R.

Let us take another case; viz., [φ?], which involves adding new parameters.
(8) implies that J[φ?]ψK = ∼JφK t (JφK ∧ JψK). So, writing

∼F (~v, x̄) = p∀~w (F (~w, x̄)→ 〈~v〉 ~w = 0)q, G t H = p∼(∼G ∧ ∼H)q
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for formulas F (~v, x̄), G and H of LC, we set

([φ?]ψ)δ(~v, par([φ?]ψ)) = p∼φδ(~v, par(φ)) t (φδ(~v, par(φ)) ∧ ψδ(~v, par(ψ)))q

(which makes sense since par([φ?]ψ) = par(φ) ∪ par(ψ)). Then [φ?] effectively
preserves R-translatability; the proof is similar to the one above for Fact 6.3.9,
except that here we need Fact 6.3.8 to make sure φδ(~v, par(φ)) translates φ in R.

For KI , (12) implies that JKIφK = {~v ∈ H | (IdI ⊗ U)(~v) ∈ JφK for all
unitary transformations U on HN\I }. So, with HN\I ∼= Cm, we take ŷ =
(y11, . . . , yij, . . . , ymm) and set

(KIφ)δ(~v, par(KIφ)) = p∀ŷ (Um(ŷ)→ φδ((IdI ⊗ ŷ)(~v), par(φ)))q

(which makes sense since par(KIφ) = par(φ)). Then with an obvious routine we
can show that KI effectively preserves R-translatability.

For Pr>r, rather than using (13) straightforwardly, we observe that it implies

v ∈ J
>r
PrφK ⇐⇒ | 〈v〉w|2 > r||v||2||w||2 for some non-zero w ∈ ∼∼JφK.

So we enter the following (which makes sense since par(Pr>r φ) = par(φ)):11

(
>r
Prφ)δ(~v, par(

>r
Prφ)) = p∃~w

(
~w 6= ~0 ∧ ∼∼φδ(~w, par(φ))

∧ | 〈~v〉 ~w|2 > r||~v||2||~w||2

)
q.

Then we can show, again routinely, that Pr>r effectively preserves R-translat-
ability.

We can treat other connectives using the rest of the constraints in a similar
manner; we list the clauses in Table 6.1. (The second half of Table 6.1 lists
connectives definable in PLQP, in case one may choose a different combination
of connectives than PLQP, e.g., without ¬.)

And it is routine to check

Fact 6.3.10. Each of the connectives listed above effectively preserves R-trans-
latability.

Thus (28), and therefore, by Lemma 6.3.6, this completes our proof of Theo-
rem 6.3.7.

6.3.4 More Applications of Our Recipe
In Subsection 6.3.3 we applied our decidability-proof recipe to PLQP; yet the
recipe covers a much wider range of logics. In this subsection we mention other
applications of our method.

11In LC, we write x2 and x > y as short for x · x and ∃z (z = z∗ ∧ x = y + z2), the latter of
which expresses a preorder relation that, when restricted to reals, agrees with the usual order
of reals.
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pδ(~v, par(p)) = pp̂~v = ~0q
(φ ∧ ψ)δ(~v, par(φ ∧ ψ)) = pφδ(~v, par(φ)) ∧ ψδ(~v, par(ψ))q
(¬φ)δ(~v, par(¬φ)) = pφδ(~v, par(φ))→ ~v = ~0q
([u]φ)δ(~v, par([u]φ)) = pφδ(û~v, par(φ))q

([φ?]ψ)δ(~v, par([φ?]ψ)) = p

(
∼φδ(~v, par(φ))
t (φδ(~v, par(φ)) ∧ ψδ(~v, par(ψ))

)
q

(KIφ)δ(~v, par(KIφ)) = p∀ŷ (Um(ŷ)→ φδ((IdI ⊗ ŷ)(~v), par(φ)))q

(Pr>r φ)δ(~v, par(Pr>r φ)) = p∃~w
(

~w 6= ~0 ∧ ∼∼φδ(~w, par(φ))
∧ | 〈~v〉 ~w|2 > r||~v||2||~w||2

)
q

(∼φ)δ(~v, par(∼φ)) = p∼φδ(~v, par(φ))q
(φ t ψ)δ(~v, par(φ t ψ)) = pφδ(~v, par(φ)) t ψδ(~v, par(ψ))q
(φ ∨ ψ)δ(~v, par(φ ∨ ψ)) = pφδ(~v, par(φ)) ∨ ψδ(~v, par(ψ))q
(♦φ)δ(~v, par(♦φ)) = p∼φδ(~v, par(φ))→ ~v = ~0q
(Aφ)δ(~v, par(Aφ)) = p∀~w (φδ(~w, par(φ)))q

Table 6.1: The recursive definition of R-translations φδ(~v, par(φ)) of φ

Quantum Versions of Modal Logics with Propositional Quantifiers In
quantum reasoning we often say that there are testable properties (closed linear
subspaces) or quantum actions (unitary transformations) satisfying such and such
properties, and it can be useful to express this idea within a logical language.
Thus one may choose to add propositional quantifiers (ranging over closed linear
subspaces) and action quantifiers (ranging over unitary transformations) to the
dynamic-logic-style syntax of PLQP, so that the new syntax has

φ ::= · · · | ∀p. φ | ∀u. φ

for variable symbols p ∈ VT and u ∈ VU , and the semantics has

29. s ∈ J∀p. φK iff s ∈ JφK′ for every assignment J·K′ 'p J·K,

30. s ∈ J∀u. φK iff s ∈ JφK′ for every assignment J·K′ 'u J·K,

where we write J·K′ 'a J·K if Ja′K′ = Ja′K for all a′ ∈ VT ∪ VU except possibly a.
This is essentially a quantum (and probabilistic) version of K. Fine’s “Modal

Logics with Propositional Quantifiers” [58]. But, while most of the classical
versions of these logics are undecidable, the quantum version turns out to be
decidable! Indeed, our general recipe immediately provides a decidability proof
for the extended logic; we just need to set

(∀p. φ)δ(~v, par(∀p. φ)) = p∀p̂ (ρp̂(p̂)→ φδ(~v, par(φ)))q,
(∀u. φ)δ(~v, par(∀u. φ)) = p∀û (ρû(û)→ φδ(~v, par(φ)))q
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and then routinely show that ∀p and ∀u preserve translatability.
The contrast in computational complexity between the classical and the quan-

tum Modal Logics with Propositional Quantifiers is easily explained by noting
that our quantum quantifiers have a restricted range: the propositional quan-
tifiers range only over linear subspaces (and the action quantifiers over unitary
maps). This is natural in a quantum context, since only linear subspaces repre-
sent experimentally meaningful (testable) properties. In contrast, in the classical
versions, the propositional quantifiers range over all subsets of the state space,
and thus they are essentially second-order quantifiers.

Logics for Mixed States All the logics we reviewed in Chapter 2.2.1 and
6.1 were about pure states, in the sense that JφK were sets of pure states. On
the other hand, mixed states play a significant role in quantum reasoning, and
therefore one may consider a semantics given in terms of mixed states, so that
JφK are then sets of density matrices on H. It is easy to see our recipe for the
decidability proof readily extends to such a semantics (although Definition 6.3.2
needs modifying so that JφK ⊆ Cn×n).





Chapter 7
Conclusions

In this chapter we summarise the results of this thesis and look at possible new
directions of research that build on the results of this thesis. In Section 7.1 you
will find a summery by themes. In Section 7.2, we discuss new questions and new
research directions in the three themes mentioned in the introduction: relating
different quantum structures, axiomatising the quantum logics and decidability.

7.1 Summary
Relating algebraic and spatial quantum structures. In Chapter 3, we
provided duality results connecting Piron lattices and quantum dynamic frames.
We introduced the categories Lw and Ls of Ṕıron lattices with weak and strong
homomorphisms respectively. We introduced the categories Fw and Fs of quantum
dynamic frames with weak and strong homomorphisms respectively. We have
defined a functor Fw from Lw to Fw and a functor Gw from Fw to Lw. We similarly
have functors Fs and Gs between Ls and Fs. We have shown that (Fs, Gs) forms a
duality between categories Ls and Fs and that (Fw, Gw) forms a duality between
categories Lw and Fw. We have also shown that these dualities are preserved
when restricting these categories to those objects that satisfy Mayet’s condition.
This result establishes, on one direction of the duality, that quantum dynamic
frames represent quantum structures correctly; on the other direction, it gives
rise to a representation of dynamics on a Ṕıron lattice.

Desinging new quantum logics. In Chapter 4, we have introduced a quan-
tum hybrid logic and an alternative definition of quantum Kripke frames, which
we have shown are equivalent to the original definition of quantum Kripke frames
(Definition 2.2.15), except they have finite dimension n. This logic is shown to
be at least as expressive as the logic for quantum actions and can express atomic
propositions using nominals, allowing us to express, for example, a basis.
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In Chapter 5 and Chapter 6, we introduced two logics that build on earlier
work on dynamic quantum logic [11, 15, 16], which developed quantum versions
of propositional dynamic logic. Those earlier logics could prove the correctness
of many non-probabilistic quantum protocols, but they were not suited for those
protocols where probabilities play an essential role. The two different versions of
the logic PLQP introduced in these chapters overcome this limitation by adding
a quantum-probabilistic operator. The version in Chapter 5 adds a separability
operator, to discuss important properties of quantum theory, like a particular type
of basis. As a consequence, we showed that PLQP can express the correctness
of three probabilistic quantum protocols, viz. the BB84 protocal, the quantum
search algorithm and a quantum leader election protocol.

Axiomatising quantum logics. In Chapter 4, we have introduced four new
axioms to charactarise the properties of a quantum Kripke frame. We showed that
these axioms combined with a standard aximatisation of hybrid logic is complete
with respect to quantum Kripke frames of dimension at most n.

In Chapter 5, we lay a foundation for an axiomatisation of probabilistic quan-
tum logics in the style of propositional dynamic logic. The axiomatisation pro-
vided in this work is powerful enough to prove the correctness of quantum pro-
tocols, such as the quantum leader election of [47] and the BB84 quantum key
distribution [21]. As probability plays an important role in so many quantum
protocols, we expect that our logic can be used and adapted to a much wider
range of quantum protocols.

Decidability of a class of Hilbert space based quantum logics. In Chap-
ter 6 we introduce a general proof method to show that a Hilbert space based
(quantum) logic is decidable. We use this method to show that PLQP introduced
in this chapter is decidable. We believe this result to be of interest for research in
both quantum logic and quantum computation, as it shows that quantum logic
has a great computational advantage over its classical variants (which are known
to be undecidable).

7.2 Future work

How do probabilistic quantum structures relate to each other? The
quantum structures discussed in Chapter 3 are concerned with non-probabilistic
single quantum systems. Future work may involve forming dualities between
algebraic and set theoretic quantum structures that are even richer. Adding
probability to the setting may be a useful step to take, and there exist dualities
involving probability already, such as [75].
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How do quantum structures based on the non-orthogonality relation
relate to each other? Another line of future investigation is to develop cat-
egories and duality or correspondence results relating to a variation of quantum
dynamic frames that do not have parametrized relations, but rather just the
non-orthogonality relation.

Can we find a complete axiomatisation for the Probabilstic Logic for
Quantum Programs (PLQP)? In Chapter 5, we introduced a sound ax-
iomatisation for PLQP. In Chapter 4, we introduced a complete axiomatisation
for Quantum Hybrid Logic (QHL). One could consider to change the syntax of
PLQP so that it extends QHL and add to the deductive systems of Chapter 4 the
axioms from Chapter 5. This could be the basis for a richer completeness result.
Incorporating multi-partite systems will be a greater challenge, as there exists no
obvious definition of a tensor product for quantum Kripke models (as shown by
Randall and Foulis in [88]).

Can we extend PLQP so that it can express the creation of the W -
state? The sound axiomatisation discussed in Chapter 5 may pave the way for
more powerful axiomatic systems of stronger logics. For example, an axiomatic
analysis of the construction of the W -state is left for future work; such an analysis
would benefit from a more powerful logic that explicitly reasons about unitary
operations. When involving unitaries for quantum protocols and programs, it
would be further beneficial to either characterise commonly used logic gates, such
as the Hadamard gate, or to include them as constants.

Can we extend PLQP so that it can express classical and quantum
communication? Another potential extension of PLQP is to add the power
to explicitly express both the quantum and classical communication involved in
various protocols. This may help in expressing important properties of a com-
munication rich variant of the quantum leader election protocol given in [98], as
well as the relationships among the classical and quantum communication in the
quantum teleportation protocol. This line of work would build further on the
idea of a quantum dynamic epistemic logic mentioned in [18] and on the work
in [17]. We also hope that future work will clarify the prospects for a complete
proof system.

Can we find a more efficient decidability algorithm? The result in Chap-
ter 6 concerns decidability, but one could also be concerned about the actual
decision procedures and their complexity. We referred to Tarski’s [99] theorem
because it was the first to show TC to be decidable; yet there have been more effi-
cient procedures proposed for TC, such as one by Collins [43] (see also [36]), that
improve the particular decision procedure Tarski gave. Given the applicability of
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our logic, it would be of practical value to devise more efficient procedures, or to
find useful fragments for which more efficient procedures are available.
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Samenvatting

In de eerste helft van de twintigste eeuw ontdekten natuurkundigen dat de al-
lerkleinste deeltjes van ons universum de klassieke wetten van Newton niet re-
specteren, in plaats daarvan volgen ze de wetten die nu bekend staan als de
quantum mechanica. Quantum mechanica heeft een enorme invloed gehad op in-
formatie theorie: het toepassen van de nieuwe technieken uit de quantum mechan-
ica heeft geleid tot nieuwe communicatie protocollen die eigenschappen bezitten
waarvan men denkt dat ze met klassieke computer technieken onmogelijk zijn.
Ook bestaan er quantum computer algoritmes die bewezen sneller zijn dan hun
klassieke tegenhangers.

Net zoals logica een fundamentele rol speelt voor klassieke informatie theorie,
zal de quantum logica een rol gaan spelen voor quantum informatie theorie. De rol
van logica zal belangrijk worden bij het ontwerpen van computer algoritmes, zeker
bij het specificiëren en verifiëren. Dit proefschrift concentreert zich op het verband
tussen quantum logica en quantum informatie theorie en brengt resultaten in de
volgende vier thema’s.

Algebräısche en ruimtelijke structuren relateren. In Hoofdstuk 3 bestu-
deren we een dualiteit tussen twee verschillende quantum structuren: Ṕıron tralies
en dynamische quantum modellen. Beide zijn abstracties van Hilbert ruimtes,
een van de standaard modellen voor het representeren van een quantum systeem.
Beide structuren benadrukken andere eigenschappen van een quantum systeem en
door ze te verbinden via een dualiteit kunnen we laten zien hoe deze eigenschappen
gerelateerd zijn aan elkander.

Ṕıron tralies geven een algebräısch perspectief op een Hilbert ruimte en de fo-
cus ligt met name op de testbare eigenschappen van een fysiek quantum systeem.
De definitie van een Ṕıron tralie legt zulke beperkingen op een standaard tralie
dat het precies de structuur van een algemene Hilbert ruimte1 representeert. Een
Ṕıron tralie die daarnaast ook voldoet aan Mayet’s conditie, representeert een

1Algemene Hilbert ruimte zijn bijna, maar niet helemaal gelijk aan een Hilbert ruimte.
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oneindig dimensionale Hilbert ruimte over de complexe getallen, de reële getallen
of de quaternionen. Dynamische quantum modellen zijn een vorm van gemerkte
transitie systemen en geven een dynamisch perspectief op fysieke quantum syste-
men.

Om een volledige categorische structuur te creëren, koppelen we zowel Ṕıron
tralies als dynamische quantum modellen aan twee verschillende type morfismen.
Het eerste type is gëıntroduceerd door Moore voor zwakkere structuren die een
aantal quantum eigenschappen, zoals superpositie, niet representeren. Het tweede
type door onszelf gëıntroduceerd is een sterkere variant die meer structuur be-
houdt.

Ons dualiteitsresultaat in Hoofdstuk 3 laat zien dat de categorieën van Ṕıron
tralies en dynamisch quantum modellen in essentie hetzelfde zijn (met uitzonde-
ring van de richting van de morfismen). We laten tevens zien dat de dualiteit
beperkt kan worden tot objecten die voldoen Mayet’s condities. Aangezien het al
aangetoond is dat Ṕıron tralies equivalent zijn met Hilbert ruimtes, laat dit resul-
taat ook de sterke relatie zien tussen dynamische quantum modellen en Hilbert
ruimtes. Zowel Ṕıron tralies als dynamische quantum structuren zijn belangrij-
ke structuren in de quantum logica, en ons dualiteitsresultaat laat nieuw licht
schijnen op het wiskundige verband tussen deze twee structuren.

Het ontwerpen van hybride en probabilistiche quantum logica’s. In dit
proefschrift introduceren we twee nieuwe logische systemen: Quantum Hybride
Logica (QHL) en Probabilistische Logica voor Quantum Programma’s (PLQP).

In Hoofdstuk 4 introduceren we quantum hybride logica (QHL). Dit betekent
dat we naast de “standaard” quantum modale operatoren zoals negatie (¬),
doorsnede (∧) en orthogonaliteit (�), we een extra verzameling propositie let-
ters hebben, de nominalen, speciaal voor het benoemen van een enkel punt (of
atoom) in ons model. De syntax van deze nieuwe logica is in feite exact hetzelfde
als de standaard hybride logica (met een hier-pijl operator), maar het deductief
systeem wordt uitgebreid met vier nieuwe axioma’s die de eigenschappen van
de door Zhong gëıntroduceerde quantum Kripke modellen representeren. Voor
het volledigheidsresultaat moet dat model nog uitgebreid worden met een nieuwe
eigenschap, die er voor zorgt dat het model een eindige dimensie heeft. Deze
nieuwe eigenschap zorgt er tevens voor dat de QHL het concept van een basis
kan uitdrukken.

We laten zien dat de taal de standaard eigenschappen van de quantum logica
kan uitdrukken, zoals het orthogonale complement en de quantum vereniging.
Aangezien quantum Kripke modellen equivalent zijn aan dynamische quantum
modellen, kunnen we deze taal beschouwen als een uitbreiding op de Logica voor
Quantum Acties (LQA), die door Baltag en Smets is gëıntroduceerd. En inder-
daad laten we in Hoofdstuk 4 zien dat alle operatoren van deze logica uitdrukbaar
zijn in QHL.
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De nieuwe logische systemen voor quantum redeneren die worden gëıntro-
duceerd in Hoofdstuk 5 en Hoofdstuk 6 komen tot stand door de al bestaande
systemen voor quantum logica, modale logica en probabilistische logica te com-
bineren. Dit geeft ons een probablistische uitbreiding van de al bestaande Logica
van Quantum Programma’s (LQP). De taal bevat dynamische modaliteiten [π]
voor quantum programma’s π en epistemische modaliteiten KI voor het uit-
drukken van de informatie die beschikbaar is voor het subsysteem I. Naast de
dynamische en epistemische modaliteiten, voegen we probabilistische modaliteiten
toe, die de kans uitdrukt dat een gegeven test (van een quantum testbare eigen-
schap) zal slagen. Dit is een nieuwe aanvulling op de al bestaande logica’s die de
uitdrukbaarheid van de logica enorm uitbreidt. Hierdoor wordt deze formele taal
geschikt voor het verifiëren van probabilistische quantum algoritmes.

In Hoofdstuk 5 drukken we de correctheid uit van het BB84 quantum sleutel
protocol en van het quantum leiderverkiezingsprotocol. In Hoofdstuk 6 drukken
we de correctheid van Grover’s zoekalgoritme uit.

Het axiomatiseren van quantum logica’s (QHL en PLQP). In Hoofd-
stuk 4, geven we een correctheids- en volledigheidsresultaat voor de quantum
hybride logica die hierboven beschreven is in de context van quantum Kripke
modellen met een dimensie van ten hoogste n. Aangezien de taal zeer veel lijkt
op standaard hybride logica, bouwen we verder op een volledigheidsresultaat dat
al bestaat voor een grote groep hybride logica’s. We laten zien dat een deel van
onze quantum hybride logice binnen deze groep valt, terwijl een ander deel ex-
tra werk vereist om volledigheid te bewijzen. We laten zien dat drie van de vier
nieuwe axioma’s een model eigenschap definiëren. Dat wil zeggen, het model bezit
een bepaalde eigenschap dan en slechts dan als het model het axioma valideert.

In Hoofdstuk 5 leggen we een fundering voor een axiomatisering van de hierbo-
ven beschreven probabilistische logica voor quantum programma’s (PLQP). We
laten zien dat ons nieuwe bewijssysteem correct is. We bewijzen een lange lijst
van lemma’s met basis (en minder basis) eigenschappen van quantum theorie,
zoals onder andere eigenschappen van het orthogonale complement, de quantum
vereniging en een orthogonale basis. Het bewijssysteem samen met deze lange
lijst van lemma’s gebruiken we vervolgens om de correctheid van het quantum
leiderverkiezingsprotocol en het BB84 quantum sleutel distributie protocol te be-
wijzen. Deze twee protocollen zijn bedoeld als voorbeeld wat met ons system
bewezen kan worden, maar we zijn er zeker van dat er meer mogelijk is. Deze
logica is enkel bedoeld als eerste stap en vraagt om verder onderzoek naar in het
bijzonder probabilistische quantum logica’s.

Beslisbaarheid voor een groep van op Hilbert ruimte gebaseerde quan-
tum logica’s. In het laatste deel van dit proefschrift laten we zien dat een
grote groep op Hilbert ruimte gebaseerde quantum logica’s, waaronder de hier-
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boven beschreven Probabilistische Logica voor Quantum Programma’s (PLQP),
beslisbaar is. Een beslisbaarheidsbewijs voor een logica bestaat in essentie uit
het laten zien dat er een effective procedure bestaat om the controleren of een
formule valide (of vervulbaar) is of niet.

We laten een algemene methode zien voor het bewijzen van beslisbaarheid voor
een groot aantal quantum logica’s, waaronder de logica in Hoofdstuk 6. Het idee
achter deze methode komt van het werk van Dunn et. al. Zij vertaalde standaard
quantum logica over eindig dimensionale ruimtes naar eerste order theorie van
reële getallen, die beslibaar is vanwege Tarski’s beroemde stelling. We breiden
deze methode uit naar een veel grotere groep van quantum logica’s, door een
inductieve methode te introduceren die checkt of er voor een taal een effectieve
vertaling bestaat naar de eerste order theorie van de reële getallen. Simpel gezegd,
als een propositionele of atomistische formule effectief vertaald kan worden, en
elke n-voudige operator behoud deze effectieve vertaling, dan is de taal als geheel
beslisbaar. Deze methode passen we toe op PLQP en daarmee laten we zien dat
deze beslisbaar is.



Abstract

In the first half of the twentieth century physicists discovered that elementary
particles do not obey the classical Newtonian laws, instead obeying different
laws. These laws are now known as the laws of quantum mechanics. Quan-
tum mechanics has a tremendous influence on information theory and computer
science. Incorporating quantum mechanics into information theory has led to
new communication protocols that achieve goals deemed to be impossible by
using classical computational techniques. Quantum mechanics also offers great
opportunities for computer science: several alogrithms incorporating quantum
mechanical techniques have been proven to be proven faster than any classical
algorithm.

Similar as for classical computing, logic plays a fundamental role in the theory
of quantum computing. The role of logic becomes central when we look at the
design of quantum programs, especially when we look at their specification and
verification. This thesis is positioned at the interface between quantum logic and
quantum computation and contributes to the field in the following four themes.

Relating algebraic and spatial quantum structures. In Chapter 3 we
study the duality of two different quantum structures, Ṕıron lattices and quantum
dynamic frames, which both are abstractions of Hilbert spaces, a standard tool
for representing quantum systems. Both structures emphasize different properties
of a quantum system and relating them shows how these different properties are
connected.

Ṕıron lattices provide an algebraic perspective on Hilbert spaces and focus
on testable properties of a quantum physical system. A Ṕıron lattice is such a
lattice with the appropriate constraints for it to capture the abstract structure
of a generalized Hilbert space, which is not exactly, but quite close to a normal
Hilbert space. A Ṕıron lattice that satisfies “Mayet’s condition” captures the
structure of an infinite dimensional Hilbert space over the complex numbers,
reals, or quaternions. Quantum dynamic frames are a type of labelled transition
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systems and provide a dynamic perspective on quantum systems.
To provide a full categorical structure for both Ṕıron lattices and quantum

dynamic frames, we consider two types of morphisms for each of the frames and
the lattices. One type is that defined by Moore for two weaker structures that
do not capture superposition, an important property of quantum theory: state
spaces (symmetric anti-reflexive frames that separate points) and property lattices
(complete atomistic orthocomplemented lattices). We also define stronger types
of morphisms for both the Ṕıron lattices and quantum dynamic frames. Both
Ṕıron lattice morphisms act directly on properties, while both quantum dynamic
frame morphisms act directly on states.

Our duality result in Chapter 3 shows that quantum dynamic frames and Ṕıron
lattices form categories that are essentially the same (except for the direction of
morphisms). We also show that this relation can be restricted to the objects
satisfying Mayet’s condition. As Ṕıron lattices satisfying Mayet’s condition have
already been shown to be equivalent to Hilbert spaces, this result clarifies the
close relationship that quantum dynamic frames have with Hilbert spaces. The
structures of both quantum dynamic frames and Ṕıron lattices are each a focal
point of quantum logic, and hence our duality adds a new perspective to the
formal relation between these different quantum structures.

Designing hybrid and probabilistic quantum logics (QHL and PLQP).
We design two new logical systems: Quantum Hybrid Logic (QHL) and Probabistic
Logic for Quantum Programs (PLQP).

In Chapter 4 we introduce a quantum hybrid logic (QHL), which means that
next to the “standard modal operators” of negation (¬), intersection (∧) and non-
orthogonality (�), we add a special set of proposition letters called nominals,
which refer to singleton states or atoms. The syntax of this logic is in fact
equivalent to standard hybrid logic (with down arrow), but the standard deductive
system is extended with four new axioms that are used to capture the properties
of a quantum Kripke model which have been introduced by Zhong, with one new
condition, which states the model has to have finite dimension. The axiom for
this extra condition also shows QHL can express the concept of a basis.

We show the language can express standard quantum properties like ortho-
complement and quantum join. As quantum Kripke models are equivalent to
quantum dynamic frames, one could consider this logic to be an extension of the
logic for quantum actions, introduced by Alexandru Baltag and Sonja Smets. In-
deed, in Chapter 4 we show that all operators of the logic for quantum actions
are in fact expressible in this quantum hybrid logic

The new logical system that we introduce for quantum reasoning in Chapter 5
and Chapter 6 is based on combining already existing formalisms of quantum
logic, modal logic and probability logic. This gives us a Probabilistic Logic of
Quantum Programs (PLQP), that extends a version of the older Logic of Quan-
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tum Program (LQP). The language contains dynamic modalities [π] (for quantum
programs π) as well as “epistemic” modalities KI (capturing the information that
is ‘known’ to subsystem I, i.e. it is carried by the local state of subsystem I). In
addition to the dynamic and epistemic modalities, the logic PLQP presented in
Chapter 5 and Chapter 6 is endowed with a probabilistic modality, capturing the
probability that a given test (of a quantum-testable property) will succeed. This
is a novel feature, that greatly enhances the expressivity of the logic, allowing us
to use it for the verification of probabilistic quantum algorithms.

In Chapter 5 we express the BB84 protocol and the quantum leader elec-
tion protocol. In Chapter 6 we express the correctness of the Grover’s search
algorithm.

Axiomatising quantum logics (QHL and PLQP). In Chapter 4, we pro-
vide a soundness and a completeness result for the quantum hybrid logic discussed
above with respect to quantum Kripke frames of dimension at most n. As the
language is very similar to standard hybrid logic, this result builds on a complete-
ness result for a large class of hybrid logics. We show that part of our quantum
hybrid logic falls inside this class for which the completeness result applies, while
another part of our logic needs additional work to prove completeness. We show
that three of the four new axioms define a frame property. That is, a frame has
a certain property if and only if it validates the corresponding axiom.

Chapter 5 lays a foundation for an axiomatization of the probabilistic logic
for quantum programs (PLQP) discussed above. The proof system introduced is
shown to be sound. We also show a long list of basic and less basic properties
of quantum theory concerning orthocomplement, quantum join and orthogonal
bases. We use the deductive system and the list of basic properties to prove
the properties of a Quantum Leader Election protocol and the BB84 quantum
key distribution protocol. These two protocols are just examples of what our
system can prove, and we are sure there are many others. But our logic also
lays a foundation for the further development in axiomatizing logics for quantum
systems, particularly those that involve probability.

Decidability for a class of Hilbert space based quantum logics. In the
last part of this thesis we show that a class of Hilbert space based quantum
logics, which includes the Probabilistic Logic for Quantum Programs, is decidable.
To prove that a logical system is decidable essentially means that there exists
an effective procedure to answer the question whether a formula is valid (or
satisfiable) or not.

We give a general method for showing the decidability for a whole variety of
quantum logics, including in particular the logic considered in Chapter 6. The
idea behind our method comes from the work of Dunn et. al. who translated stan-
dard quantum logic over finite-dimensional spaces into (the equational fragment
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of) the first-order theory of real numbers, which is known to be decidable due to
Tarski’s famous theorem. We extend this method to cover a wider range of quan-
tum logics, by showing an inductive way to check if a language can be effectively
translated. Basically, if each atomic sentence can be effectively translated to a
defining first-order formula and each n-ary operator preserves this translatability,
then the language is decidable. The method is applied to the language PLQP,
which is therefore shown to be decidable.
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