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Chapter 1

Introduction

This thesis examines di�erent aspects of the interplay between proof theory and
algebraic semantics for several non-classical propositional logics. We begin with a
short and rather informal introduction providing some context and summarizing
the contents of the thesis in some detail.

1.1 Background

Non-classical logic Much of what this thesis is about is inspired or motivated
by the abstract study of logical systems which, in one way or another, deviate
from so-called classical logic. Such systems are often referred to as non-classical
and are all concerned with di�erent ways in which classical logic may be seen
as being de�cient. For example, one can consider either what classical logic,
arguably, gets �wrong� or what classical logic �leaves out�. Examples of the �rst
kind include intuitionistic logic and its extensions [51] as well as various types
of substructural logics [211, 98, 199], including many-valued [144] and relevance
logics [4, 5]. Examples of the second kind include various types of modal logics [51,
39], such as epistemic [155, 76], as well as temporal and computational logics [128].
Of course this distinction is by no means sharp, with some systems arguably �tting
both, or neither, of these descriptions. For an overview and discussion of some
of the philosophical motivations for a few of the most well-known non-classical
logics, see, e.g., [143, 45].

Part of what makes the study of non-classical logic attractive from a math-
ematical point of view is that it allows us to see di�erences, similarities, and
connections between concepts which are otherwise con�ated or trivial in the clas-
sical setting.

Proof theory One approach for studying non-classical logics is via proof theory,
see, e.g., [246, 204] for textbook accounts. Proof theory is primarily concerned
with constructing and investigating formal calculi for deriving validities of a given
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2 Chapter 1. Introduction

logic. Firstly, we would like to have a calculus allowing us to derive all, and only
those, formulas which belong to the logical system at hand. Secondly, we would
also like to have access to a calculus that is �exible and transparent enough
to allow for meaningful analysis of the structure of possible derivations. Such
analysis may allow us to obtain additional knowledge of the logical system which
we are, for whatever reason, interested in.

The proof formalisms that we shall consider in this thesis are all sequent-
based. That is, we consider systems for manipulating expressions of the form
Γ⇒ Π with Γ and Π �nite sequences of formulas, or, alternatively, terms, pos-
sibly subject to some restrictions. Moreover, we will mainly consider so-called
structural calculi, i.e., calculi extending some basic system with additional rules
for directly manipulating the structure of the sequent-expressions as opposed to
the logical connectives themselves.

In the sequent formalism the role of the rule of modus ponens is played by the
so-called cut-rule

Γ2 ⇒ ψ Γ1, ψ,Γ3 ⇒ Π
Γ1,Γ2,Γ3 ⇒ Π

(cut)

expressing the �transitivity� of the sequent arrow � ⇒ �. One of the most funda-
mental questions concerning any sequent-based calculus is whether the cut-rule
can be dispensed with. If this rule is indeed redundant relative to the rest of
the rules of the calculus this means that the question of whether or not a certain
sequent Γ⇒ Π is derivable can, often but not always, be settled by a backwards
proof-search which proceeds by analyzing the constituents of the sequent. Calculi
with this property are often informally referred to as being analytic although in
many contexts the term �analytic� may simply be taken to mean that the cut-rule
is redundant.

Thus knowing that there is a cut-free calculus for a given logic can often lead
to a (not necessarily optimal) decision procedure for the logic. Moreover, cut-free
calculi can also often be used to deduce additional information about the logic
such as disjunction, variable separation and (uniform) interpolation properties as
well as conservativity results. We refer to [246, Chap. 4] and [98, Chap. 5] for text-
book accounts and further references for some of these applications.1 However,
because cut-free derivations are, in the worst case, much �larger� than derivations
which do make use of the cut-rule it may, as argued by Boolos and others [43, 1],
still be desirable to have the cut-rule, or at least some restricted version of it, in
the calculus.

Many proofs of analyticity for various formalisms are variants of Gentzen's
original argument [116, 117]. To show that the cut-rule is redundant one proves
that any application of the cut-rule can be replaced with one or more applications
of the cut-rule which are however of lower �complexity� or which occur �earlier�
in the derivation. Iterating this process of replacing cuts we eventually obtain a

1For uniform interpolation see also [213, 3, 163, 2].



1.1. Background 3

derivation which does not make use of the cut-rule, see, e.g., [246, Chap. 4.1] for a
detailed argument. These types of arguments are completely constructive in that
they provide a concrete algorithm for transforming any derivation into a cut-free
one. However, since such cut-elimination arguments proceed by considering all
possible combinations of rules, they are generally not very modular in the sense
that simply adding new rules leads to many new cases to be checked.

Unfortunately, the standard cut-elimination procedure sketched above is usu-
ally not very robust and the required symmetry of the rules is easily broken by
adding additional rules to the system. Therefore, the sequent calculus formalism
is not expressive enough to capture many, even relatively simple, logics in an
analytic manner. As a consequence of this a plethora of alternative formalisms,
all in some way building on Gentzen's sequent formalism, have been developed.
As examples we mention hypersequent calculi [200, 215, 10, 12], nested sequent
calculi [177, 90], labeled calculi [95, 248, 81] and display calculi [22, 249]. See
also [63] for a survey of some of these systems, their relations, and history.

Because of their relative simplicity and well-understood connection with al-
gebra, we shall in this thesis primarily be concerned with sequent and hyper-
sequent calculi in the context of intermediate logics, viz., (consistent) exten-
sions of intuitionistic propositional logic, and substructural logics. Other for-
malisms and logics will only be mentioned in passing. Of course, the general
approach taken in this thesis applies equally well, in one form or another, to the
study of other formalisms or other types of non-classical logics. For examples
see [182, 203, 81, 188, 192, 62, 141, 243, 140].

Algebraic semantics Instead of working directly with the syntax, another
approach for studying various types of non-classical logics is to consider their
models. Of course di�erent systems may have very di�erent kinds of �intended�
or �standard� models. However, one uniform approach to provide models for many
di�erent non-classical logics is via algebra [40, 91]. In such cases we may identify
logics with the equational theory2 of their algebraic models. In fact, through the
lens of duality theory the algebraic models can be seen as providing the point of
contact between a logic and its spatio-relational models. For just some examples
of this connection see [127, 80, 108, 109, 70].

In most cases where a non-classical logic includes some form of conjunction
and disjunction the corresponding algebras will all be lattice-based. That is, they
will be lattices possibly equipped with additional operations for interpreting any
additional logical connectives. Concretely, intuitionistic propositional logic, as
well as all of its extensions, has a sound and complete algebraic semantics in the
form of Heyting algebras, see, e.g., [51, Chap. 7]. Similarly, the basic substructural
logic, called the full Lambek calculus, as well as its extensions, has a sound and

2And often also the quasi-equational theory depending on whether a logic is considered to
be a collection of formulas or a consequence relation between formulas.



4 Chapter 1. Introduction

complete algebraic semantics in the form of pointed residuated lattices also known
as FL-algebras, see, e.g., [98, Chap. 2.6.1].

Knowing that a given logic is sound and complete with respect to a given class
of algebras can be helpful in answering speci�c questions about it. Especially if the
algebras involved have already been studied in some other context. Furthermore,
because of the uniformity of the algebraic approach we may also establish general
theorems about the relationships between the syntax and the semantics. For
example in the form of so-called bridge theorems showing that a logic enjoys
a certain property such as interpolation, Beth de�nability, or the disjunction
property if, and only if, the corresponding class of algebras enjoys some associated
property, see, e.g., [96] and [98, Chap. 5] for textbook treatments of this topic3.

Thus from one perspective we can establish syntactic properties of logics by
reasoning about their algebraic models with all the freedom and �exibility this
entails. However, this perspective may also be turned around. That is, we may
also see the close connections between logic and algebra as allowing us to apply
syntactic analysis to obtain insights about classes of algebras, many of which are
of independent interest outside of logic.

Algebraic proof theory The extension of the relationship between logic and
algebra sketched above also covering di�erent types of proof calculi was named
algebraic proof theory by Ciabattoni, Galatos, and Terui [59]. One example of
this is the approach for establishing not the eliminability of the cut-rule from a
sequent-based calculus but rather the admissibility of the cut-rule in the calculus
without the cut-rule. That is, one shows that exactly the same sequents are
derivable in the two systems. This is something which can be done by appealing
to the semantics. For example by showing that the calculus with the cut-rule and
the calculus without the cut-rule are both sound and complete with respect to
the same class of structures.

Concretely, in the case of the sequent calculus FL for basic substructural logic
this can be done by introducing some �non-transitive� structures, called Gentzen
frames, for which the calculus without the cut-rule is complete. Then one shows
that any Gentzen frame W can be �embedded� into a corresponding FL-algebra
W+. As the calculus FL may be soundly interpreted in the class of FL-algebras
and as the �embedding� of a Gentzen frame W into W+ preserves validity of
sequents it follows that a sequent is derivable using the cut-rule if, and only if, it
is also derivable without using the cut-rule. Then in order to check that adding a
new rule to the basic system preserves the redundancy of the cut-rule one simply
has to check if the validity of this new rule is preserved when passing from any
Gentzen frame W to its corresponding algebra W+. Moreover, since each algebra
A determines a Gentzen frame WA the passage from WA to W+

A can be viewed as

3Other examples include: admissibility [227, 162], uni�cation [118] and uniform interpola-
tion [131, 121].



1.1. Background 5

an operation on algebras. In fact, in this particular case this operation turns out
to be the well-known MacNeille completion [21, 59, 97]. Similarly, in the context
of hypersequent calculi an analogous approach can be followed [57, 60]. Again
this leads to a completion of algebras which is appropriately referred to as the
hyper-MacNeille completion.

The strategy of making use of the algebraic semantics to establish analyticity
of proof calculi has a long history going back, in one form or another, to at least
the early 1990s [60, 97, 59, 101, 57, 64, 251, 21, 209, 207, 206, 208, 197], see
also [98, Chap. 7] for a textbook treatment of these techniques and for further
context and references.4 In fact, this method may even be seen as a variant
of the �completeness-via-canonicity� method known from modal logic, e.g., [39,
Chap. 4].

To systematize the approach sketched above, Ciabattoni, Galatos, and Te-
rui [57] de�ned a collection 〈Pn,Nn〉n∈ω of sets of pointed residuated lattice terms
(or equivalently formulas of the full Lambek calculus), and hence by extension
also equations, called the substructural hierarchy , see Figure 1.1. The di�erent
levels measure the nesting of terms having di�erent polarities, with Pn containing
the terms with leading operation having positive polarity, and Nn containing the
terms with leading operation having negative polarity.5

P0 P1 P2 P3 . . .

N0 N1 N2 N3 . . .

Figure 1.1: The substructural hierarchy. Arrows denote set-theoretic inclusion.

Each of the equations associated with the level N2 can e�ectively be trans-
formed into a set of equivalent structural sequent rules. Similarly each set of
equations associated with the level P3 can e�ectively be transformed into a set
of equivalent structural hypersequent rules.6 Conversely, every structural rule is
equivalent to some equations associated with the level N2. Moreover, at least
in the presence of exchange, contraction and weakening, every structural hyper-
sequent rule is equivalent to some equation associated with the level P3. Thus
the levels N2 and P3 can be said to capture syntactically the expressive power
of structural sequent and hypersequent rules. However, there is also an inter-
esting algebraic perspective. Ciabattoni, Galatos, and Terui [59, Thm. 6.3] have

4We also mention [243, 140] for recent applications of this method in the context of higher-
order intuitionistic logic and display calculi for lattice-based logics respectively.

5An operation has positive (negative) polarity if its corresponding left (right) logical rule is
invertible, see, e.g., [59, Sec. 2.2].

6This is only true if we consider the derived level P[
3 or assume that the equations imply

commutativity. In particular, it will be true in the context of intermediate logics.



6 Chapter 1. Introduction

shown that if E is a set of equations associated with the level N2, then E can
e�ectively be transformed into an equivalent set of analytic structural sequent
rules if, and only if, the variety of FL-algebras axiomatized by E is closed under
MacNeille completions. Moreover, in case E implies integrality7 both parts of
this equivalence must be true.

An analogous result holds for the level P3 in the presence of commutativity or,
equivalently, the exchange rule [60, Thm. 7.3]. Namely, if E is a set of equations
associated with the level P3 which implies commutativity, then E can e�ectively
be transformed into an equivalent set of analytic structural hypersequent rules
if, and only if, variety of FL-algebras axiomatized by E is closed under hyper-
MacNeille completions. Again, in case E implies integrality both parts of this
equivalence must be true

Thus the substructural hierarchy provides both axiomatic characterizations
regarding the expressibility of certain formalisms as well as bridge-like theorems
linking existence of proof calculi for some logic to properties of the correspond-
ing algebraic semantics. However, as noted by Je°ábek [167], in the presence of
commutativity the �hierarchy� collapses at the level N3 in the sense that all vari-
eties of commutative pointed residuated lattices can be axiomatized by equations
associated with terms belonging to this level. This suggests that in order to ex-
tend the approach of [57, 59, 60] further a more �ne-grained strati�cation will be
necessary.

MacNeille completions As the results of [57, 58, 59, 60, 21] make clear, the
existence of a structural sequent and hypersequent calculus for a logic is closely
related to the corresponding class of algebras being closed under some type of
completion. Interestingly, the completions involved are, variants of, the well-
known MacNeille completion.8 This type of completion was introduced by Mac-
Neille [196] as a generalization, to arbitrary partially ordered sets, of Dedekind's
�completion by cuts� method [75] for obtaining the real line9 R from the rational
line Q. Moreover, just as the operations of addition, subtraction and multiplica-
tion may be extended from Q to R, the operations on any lattice-based algebra
A may be extended to the MacNeille completion of the underlying lattice of A
to give an algebra of the same type. The MacNeille completion L of any lattice
L is uniquely determined, up to isomorphism, by the property that each element
of L is both the in�mum of the element in L above it and the supremum of
the element in L below it. Thus the MacNeille completion can be viewed as the
�smallest� completion.10 Together these facts make the MacNeille completion a

7That is, the equation x ≤ e, ensuring that the monoidal unit is the greatest element.
8See, however, also [141] which links the existence of structural display calculi with closure

under canonical completions of the corresponding algebraic semantics.
9Technically we should say the extended real line, i.e., the real line together with a least and

greatest element.
10See, e.g., [16, Thm. XII.2.8] for one way to make this statement precise.
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rather natural type of completion to consider. Moreover, viewed as a comple-
tion of partially ordered sets the MacNeille completion enjoys a number of good
categorical properties attesting to its naturality [19].

Nevertheless, in many cases the MacNeille completion does not interact well
with even very simple properties of lattices and lattice-based algebras, see, e.g., [94,
71, 145, 151, 152, 154] for examples of this fact.11 This should be contrasted with
the fact that many lattice-based algebras are closed under canonical completions,
see, e.g., [228, 173, 111, 132, 68] as well as [51, Chap. 10] and [39, Chap. 4�5] for
just some examples of this phenomenon.12 In fact many of these approaches for
establishing canonicity are syntactic in nature and in some ways not unlike the
syntactic methods explored in the context of algebraic proof theory.

Thus the approach of algebraic proof theory establishes a surprising and in-
teresting link between proof theory and completions of lattice-based algebras.
Namely, that in some cases, necessary, and possibly even su�cient, conditions
for a given logic to admit an analytic sequent or hyper-sequent calculus is that
the corresponding class of algebras is closed under MacNeille or hyper-MacNeille
completions. Conversely, turning this perspective on its head, we see that know-
ing that a given class of algebras is such that its corresponding logic admits an
analytic sequent or hyper-sequent calculus can enable us to establish that this
class of algebras is closed under completions.

1.2 What is this thesis about?

This thesis further explores some of the connections between structural proof
theory and algebra. As outlined above, such connections are particularly strong
when it comes to logics associated with the levels P3 and N2 of the substructural
hierarchy. However, as of yet, such logics, and their corresponding classes of al-
gebras, cannot be said to be fully understood. In fact, many interesting algebraic
properties related to the levels N2 and P3 remain largely unexplored. The aim
of this thesis is to gain a better understanding of these two levels. Chapters 2, 3,
and 4 are concerned with various aspects of the level P3 in the context of inter-
mediate logics and Heyting algebras, while Chapter 5 looks at a speci�c equation
associated with the level N2 in the context of residuated lattices.

Structural hypersequent calculi for intermediate logics

One di�culty related to the substructural hierarchy is that because the levels are
de�ned completely syntactically they are not closed under logical equivalence.
Thus it is possible that a logic may be axiomatized both by formulas belonging

11Of course, as shown by Givant and Venema [124] and Theunissen and Venema [245] there
are also exceptions to this phenomenon.

12But see also, e.g., [51, Chap. 6] and [150] for some exceptions.
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to a given level but also by formulas not belonging to that same level. This means
that in general it is not straightforward to show that a logic can, or cannot, be
axiomatized by formulas belonging to a given level.13 Consequently, in order to
understand better the expressive power of each of the levels and hence to be able
to distinguish them, semantic characterizations will be helpful.

In Chapter 2 we look closer at this issue as it applies to the level P3 in the
context of intermediate logics, viz., consistent extensions of intuitionistic propo-
sitional logic. We note that since no proper intermediate logic can be axioma-
tized by N2-formulas [59, Prop. 7.3] and since every intermediate logic can be
axiomatized by N3-formulas [167], in the context of algebraic proof theory for
intermediate logics the level P3 is the most relevant level to consider. Further-
more, because no non-trivial proper intermediate logic admits a structural sequent
calculus, the structural hypersequent calculus formalism is arguably one of the
simplest frameworks in which large classes of intermediate logics can be given a
minimally satisfactory proof theoretic treatment.

As Ciabattoni, Galatos and Terui [57, 60] have shown any intermediate logic
axiomatizable by P3-formulas admits an analytic structural hypersequent calcu-
lus. The primary aim of this chapter is to classify the intermediate logics which
admit such hypersequent calculi in terms of properties of their corresponding
classes of Heyting algebras. This is done by considering the notion of (∧, 0, 1)-
stability which is a stronger version of the notion of (∧,∨, 0, 1)-stability �rst intro-
duced by Guram and Nick Bezhanishvili [25] and further studied in [29, 34, 164].
We show that for an intermediate logic L the following are equivalent.

1. The logic L admits an analytic structural hypersequent calculus.

2. The logic L can be axiomatized by P3-formulas.

3. The logic L is (∧, 0, 1)-stable.

This characterization allows us to prove that certain well-known intermediate
logics, such as the logics of bounded depth BDn, for n ≥ 2, do not admit a
structural hypersequent calculus.

We also draw connections to the work of Lahav [188] and Lellmann [192,
Sec. 6.1] who used the relational semantics to construct cut-free hypersequent
calculi for modal logics characterized by Kripke frames de�ned by so-called sim-
ple sentences. Concretely, we show that all (∧, 0, 1)-stable intermediate logics are
elementary and indeed determined by posets de�nable by so-called simple geo-
metric implications which are a certain type of Π2-sentences closely related to the
simple sentences considered by Lahav and Lellmann.

Finally, we compare the (∧, 0, 1)-stable intermediate logics with the (∧,∨, 0, 1)-
stable intermediate logics. This is done by showing that a (∧,∨, 0, 1)-stable in-
termediate logic L is a (∧, 0, 1)-stable intermediate logic if, and only if, L can be

13See, however, [59, Sec. 7], [167], and [60, Sec. 8] for a discussion of some results related to
this.
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axiomatized by ∨-free formulas. Thus the (∧, 0, 1)-stable intermediate logics may
alternatively be described as the (∧,∨, 0, 1)-stable intermediate logics which are
also co�nal subframe logics.

MacNeille transferability

As reported in the previous section there is an interesting link between comple-
tions of lattice-based algebras and proof theory. For example, analytic structural
hypersequent calculi give rise to universal classes of lattice-based algebras closed
under MacNeille completions. In particular, if V is any variety of Heyting algebras
axiomatized by P3-equations then the universal class Vfsi of its �nitely subdirectly
irreducible members is closed under MacNeille completions [58, Thm. 4.3]. This
is particularly interesting since the only non-trivial varieties of Heyting algebras
closed under MacNeille completions are the variety of all Heyting algebras and
the variety of all Boolean algebras [151]. Drawing on the connection between the
level P3 and the notion of stability established in Chapter 2, in Chapter 3 we look,
from a purely algebraic point of view, at the phenomenon of universal classes of
lattices and lattice-based algebras being closed under MacNeille completions.

Our starting point is the notion of (ideal) transferability originally introduced
by Grätzer [133, Sec. 10(ii)]. A �nite lattice L is (ideal) transferable if for any
lattice K, the lattice L is a sublattice of the lattice of ideals of K only if L
is a sublattice of K. We introduce analogous notions of MacNeille and canoni-
cal transferability and show how �nite transferable lattices give rise to universal
classes of lattices which are closed under completions. Thus the problem of �nding
universal classes of lattice-based algebras closed under MacNeille completions can
in some cases be reduced to the problem of �nding �nite MacNeille transferable
lattices.

While we are mainly interested in MacNeille transferability we also explore the
relationships between ideal, MacNeille, and canonical transferability. Concretely,
we show that under mild assumptions MacNeille transferability entails canonical
transferability which in turn entails ideal transferability.

We provide necessary conditions for a �nite lattice to be MacNeille transfer-
able for the class of all lattices. In particular any such lattice must be distributive.
This highlights some of the crucial di�erences between ideal and MacNeille trans-
ferability. Nevertheless, we show that, just as in the case of ideal transferability,
the concept of (weak) projectivity plays an important role in understanding the
concept of MacNeille transferability.

Using the connection between MacNeille transferability and projectivity, we
obtain an alternative proof of the fact, �rst established by purely syntactic meth-
ods, that if V is any variety of Heyting algebras axiomatized by P3-equations then
the universal class Vfsi is closed under MacNeille completions.

We then focus on MacNeille transferability with respect to the class of Heyting
algebras and the class of bi-Heyting algebras. In this setting we are able to
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say much more about necessary and su�cient conditions for di�erent types of
MacNeille transferability. In particular, we show that all �nite distributive lattices
are MacNeille transferable with respect to the class of bi-Heyting algebras.

Finally, we discuss how canonical and MacNeille transferability of �nite dis-
tributive lattices relates to intermediate logics. In particular we consider the
problem of whether all (∧,∨, 0, 1)-stable logics are (i) canonical, and (ii) elemen-
tary [164, Chap. 3]. In this respect a number of partial results of a positive nature
are obtained.

Hyper-MacNeille completions

As mentioned above in connection with their proof of the admissibility of the cut-
rule in certain types of structural hypersequent calculi, Ciabattoni, Galatos, and
Terui [60] introduced a new type of completion of (pointed) residuated lattices
which they called the hyper-MacNeille completion. Among other things they es-
tablished that any variety of Heyting algebras axiomatized by P3-equations must
be closed under this type of completion. Thus closure under hyper-MacNeille
completions is a necessary condition for a variety of Heyting algebras to be de-
termined by P3-equations and consequently for the corresponding intermediate
logic to admit an analytic structural hypersequent calculus.

In Chapter 4 we consider more closely this type of completion in the con-
text of Heyting algebras. We �rst identify the concept of a De Morgan supple-
mented Heyting algebra as being helpful for understanding the hyper-MacNeille
completions of Heyting algebras. These algebras may be viewed as Heyting alge-
bras equipped with a �co-negation� satisfying both of the De Morgan laws. We
prove that for De Morgan supplemented Heyting algebras the MacNeille and hy-
per-MacNeille completions coincide. This generalizes the fact that the MacNeille
and hyper-MacNeille completions coincide for subdirectly irreducible algebras [60,
Prop. 6.6], at least in the context of Heyting algebras.

We also show that the De Morgan supplemented Heyting algebras are pre-
cisely the Heyting algebras which are isomorphic to Boolean products of �nitely
subdirectly irreducible Heyting algebras. This connection allows us to draw in-
spiration from previous work on MacNeille completions of Boolean products of
lattices [146, 73]. Concretely, we establish the following close connection between
MacNeille and hyper-MacNeille completions of Heyting algebras.

1. The hyper-MacNeille completion of a Heyting algebra A is the MacNeille
completion of some De Morgan supplemented Heyting algebra Q(A).

2. A variety V of Heyting algebras is closed under hyper-MacNeille completions
if, and only if, the class of De Morgan supplemented members of V is closed
under MacNeille completions.

Speci�cally, the last item allows us to turn the question of which varieties of
Heyting algebras are closed under hyper-MacNeille completions into the question
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of which varieties of De Morgan supplemented Heyting algebras are closed under
MacNeille completions.

Our analysis also allows us to show that any �nitely generated variety of
Heyting algebras is closed under hyper-MacNeille completions. From this and
the results of Chapter 2 it follows that being axiomatizable by P3-equations is
not a necessary condition for being closed under hyper-MacNeille completions. In
fact, we obtain that there are varieties of Heyting algebras, such as the variety
BD2 corresponding to the logic of posets having depth at most 2, which are
closed under hyper-MacNeille completions but which are neither axiomatizable
by P3-equations nor �nitely generated.

Finally, we show that the su�cient conditions for the hyper-MacNeille com-
pletion to be regular, identi�ed by Ciabattoni, Galatos, and Terui [60, Thm. 6.11],
are in fact also necessary, at least in the context of Heyting algebras.

Integrally closed residuated lattices

In Chapter 5 we change perspective in two respects. First, we switch from con-
sidering Heyting algebras to considering residuated lattices and various closely
related types of algebras. Second, instead of being concerned with properties
related to hypersequent calculi and P3-equations we look at a speci�c N2-equa-
tion and an equivalent non-standard sequent calculus for the equational theory of
the residuated lattices determined by this equation. As we will see, even though
this equation belongs to the level N2, the approach of Ciabattoni, Galatos, and
Terui [59] cannot be applied to obtain an equivalent cut-free structural sequ-
ent calculus. Nevertheless, we show that algebraic methods can still yield some
proof-theoretical insights, although of a di�erent type than those found in [59].

Concretely, we look at residuated lattices satisfying the equation x\x ≈ e,
or equivalently the equation x/x ≈ e, viz., the so-called integrally closed resid-
uated lattices [92, Chap. XII.3]. These structures encompass a large number of
well-known residuated lattices, such as integral residuated lattices, `-groups [6],
cancellative residuated lattices [13], and GBL-algebras [102]. Moreover, as we
will show, integrally closed residuated lattices are also connected to Dubreil-Ja-
cotin semi-groups [78, 93, 218, 41], pseudo BCI-algebras [165, 178, 181, 79], sir-
monoids [219, 83] and algebras for Casari's comparative logic [48, 49, 50, 210, 198].

By considering a variant of the well-known double negation nucleus on Heyting
algebras, we show that the variety of integrally closed residuated lattices admits
a Glivenko theorem [126, 100] with respect to the variety of `-groups. This al-
lows us to establish the soundness of a non-standard version of the weakening
rule. Variants of this rule have already been considered before in the context of
BCI-algebras [178] and Casari's comparative logic [198]. Adding this rule to the
ordinary sequent calculus for the equational theory of residuated lattices we ob-
tain a sound and complete calculus for the equational theory of integrally closed
residuated lattices. Furthermore, using a standard argument we show that the
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cut-rule is eliminable in this calculus. From this the decidability of the equational
theory of integrally closed residuated lattices follows.

Finally, we use the cut-free calculus for the equational theory of integrally
closed residuated lattices to obtain conservativity results concerning the equa-
tional theories of pseudo BCI-algebras, sirmonoids, and the algebras for Casari's
comparative logic.

What is this thesis not about?

In an e�ort to make it absolutely clear what the scope of this thesis is we will
also say a few words about what is not included in the thesis.

1. The term �proof theory� is used with a wide range of di�erent meanings.
We are in this thesis only concerned with proof theory as it applies to the
study of propositional non-classical logics. In particular, there will be no
mention of type theory, arithmetic, consistency strength, ordinal analysis,
etc.

2. As we are only concerned with propositional logics there will be no discus-
sion of �rst- or higher-order versions of non-classical logics.

3. Although the general approach followed here can also be pursued in the
context of other proof formalisms the only formalism that we consider will
be the (structural) sequent and hypersequent calculus formalism.

Furthermore, we wish to stress that despite the fact that the work of Ciabattoni,
Galatos, and Terui [57, 58, 59, 60], from which much of the work in this thesis
draws inspiration, applies in the setting of substructural logic we are mainly con-
cerned with this work as it applies to the special case of intermediate logics and
hence also Heyting algebras. Substructural logics are only considered in Chap-
ter 5. This is not to say that considering the more general setting of substructural
logics and pointed residuated lattices is not worthwhile, but simply that it has
proven fruitful to �rst try to understand what can be said in the somewhat simple
setting of intermediate logics and their corresponding classes of Heyting algebras.

Prerequisites This thesis is by no means self-contained. Throughout it is
assumed that the reader already knows about, or at least is familiar with, various
concepts and techniques. Therefore, for easy reference, we have included an
appendix covering some of the most central technical preliminaries and providing
references for more details and context.
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1.3 Sources of the material

Much of the material which is found in this thesis has been obtained in close
collaboration with others and parts of it has already appeared elsewhere.

1. Chapter 2 is a reworked version of the paper [190].

2. Chapter 3 is an expanded and slightly reworked version of joint work with
Guram Bezhansihvili, John Harding, and Julia Ilin published as [31].

3. Chapter 4 is based on joint work with John Harding [153].

4. Chapter 5 is a slightly expanded and reworked version of joint work with
José Gil-Férez and George Metcalfe [122] under submission.





Chapter 2

Structural hypersequent calculi for
intermediate logics

In this chapter, based on [190], we look closer at the level P3 of the substructural
hierarchy in the context of intermediate logics, viz., consistent extensions of in-
tuitionistic propositional logic. As Ciabattoni, Galatos and Terui [57, 60] have
shown any intermediate logic axiomatizable by P3-formulas admits an analytic
structural hypersequent calculus. We note that no proper intermediate logic can
be axiomatized by N2-formulas [59, Prop. 7.3] and moreover that every inter-
mediate logic can be axiomatized by N3-formulas [167]. Thus for these reasons,
in the context of algebraic proof theory for intermediate logics, the level P3 is
the most relevant level to consider. Furthermore, because no non-trivial proper
intermediate logic admits a structural sequent calculus, the structural hypersequ-
ent calculus formalism is arguably one of the simplest frameworks in which large
classes of intermediate logics can be given a minimally satisfactory proof theoretic
treatment.1

The primary aim of this chapter is to classify the intermediate logics which
admit such hypersequent calculi in terms of properties of their corresponding
classes of Heyting algebras. This is done by considering the notion of (∧, 0, 1)-
stability which is a stronger version of the notion of (∧,∨, 0, 1)-stability �rst
introduced by Guram and Nick Bezhanishvili [25] and further studied in [29, 34,
164]. We show that for an intermediate logic L the following are equivalent.

1. The logic L admits an analytic structural hypersequent calculus.

2. The logic L can be axiomatized by P3-formulas.

3. The logic L is (∧, 0, 1)-stable.

1However, in [69, 235] a sequent calculus for the logic LC is obtained by adding in�nitely
many rules to a multi-succedent sequent calculus for IPC, and [161] gives a Gentzen-like calculus
for KC in terms of �nitely many rules which are, however, non-local. Finally, [9] gives tableau
calculi for the seven intermediate logics with interpolation.

15
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This characterization allows us to prove that certain well-known intermediate
logics, such as the logics of bounded depth BDn, for n ≥ 2, do not admit a
structural hypersequent calculus.

We also draw connections to the work of Lahav [188] and Lellmann [192,
Sec. 6.1] who used the relational semantics to construct cut-free hypersequent
calculi for modal logics characterized by Kripke frames de�ned by so-called sim-
ple sentences. Concretely, we show that all (∧, 0, 1)-stable intermediate logics are
elementary and indeed determined by posets de�nable by so-called simple geo-
metric implications which are a certain type of Π2-sentences closely related to the
simple sentences considered by Lahav and Lellmann.

Finally, we compare the (∧, 0, 1)-stable intermediate logics with the (∧,∨, 0, 1)-
stable intermediate logics. This is done by showing that a (∧,∨, 0, 1)-stable in-
termediate logic L is a (∧, 0, 1)-stable intermediate logic if, and only if, L can be
axiomatized by ∨-free formulas. Thus the (∧, 0, 1)-stable intermediate logics may
alternatively be described as the (∧,∨, 0, 1)-stable intermediate logics which are
also co�nal subframe logics.

Outline The chapter is structured as follows: Section 2.1 contains an intro-
duction to hypersequent calculi and their algebraic interpretation. Section 2.2
contains the algebraic characterization of intermediate logics with a (cut-free)
structural hypersequent calculus. A number of applications of this characteriza-
tion is provided in Section 2.3. In Section 2.4 the �rst-order conditions de�ning
posets associated with the intermediate logics admitting a cut-free structural hy-
persequent calculi are determined and in Section 2.5 this class of intermediate
logics is compared with the class of (∧,∨, 0, 1)-stable logics. Finally, Section 2.6
contains a brief discussion of some possible directions for further work.

2.1 Hypersequent calculi

In this section we will brie�y review the necessary background on structural
hypersequent calculi. This section is primarily based on [57, 59, 60] but in part
also on [101, 163] and [246, Chap. 3].

By a single-succedent sequent we shall in this chapter understand an expression
of the form s1, . . . , sn ⇒ t, or s1, . . . , sn ⇒ 0, where s1, . . . , sn, t are terms in the
language of Heyting algebras. Thus we may think of the right-hand side as a
sequence of terms of length at most one. We will refer to such sequences as
stoups . A hypersequent is simply a �nite multiset of sequents written as

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn,

where the sequents Γi ⇒ Πi are called the components of the hypersequent. One
may think of a hypersequent as a �meta-disjunction� of sequents. The hyperse-
quent formalism can therefore be thought of as a proof-theoretic framework that
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allows for the manipulation of sequents in parallel, see [11] and in particular [7, 8]
for an interpretation of hypersequent rules as protocols for communication during
concurrent computation.

In order to introduce sequent and hypersequent rules in a systematic manner
it is helpful to work with meta-variables , see, e.g., [101, Sec. 2.1.3] and [163,
Sec. 2.2�2.3] for a good exposition. More precisely we will use

s, t, u, v and their indexed versions as variables for terms,
Γ,∆ and their indexed versions as variables for sequences,
Π,Π0,Π1, . . . as variables for stoups,
S, S0, S1, . . . as variables for sequents,
H,H0, H1, . . . as variables for hypersequents.

A meta-term is a member of the least set Tm which is closed under the rules

if ζ1, ζ2 ∈ Tm then ζ1 ∗ ζ2 ∈ Tm, for each ∗ ∈ {∧,∨,→},

and which contains all term variables as well as the symbols 0 and 1. A meta-
sequent is an expression of the form Υ⇒ Ψ where Υ is a �nite sequence consisting
of sequence-variables and meta-terms and Ψ is either empty, a meta-term or a
stoup variable. A meta-hypersequent is a �nite multiset of meta-sequents and
hypersequent variables. A sequent rule is an expression

Υ1 ⇒ Ψ1 . . . Υm ⇒ Ψm

Υm+1 ⇒ Ψm+1

(r)

where Υm+1 ⇒ Ψm+1 is a meta-sequent, which is called the conclusion, and
Υ1 ⇒ Ψ1, . . . ,Υm ⇒ Ψm are meta-sequents, which are called the premises. A
hypersequent rule is an expression of the form

H | Ξ1 . . . H | Ξm

H | Ξm+1

(r)

whereH is a hypersequent variable and Ξ1, . . . ,Ξm,Ξm+1 are meta-hypersequents.
We call H | Ξ1, . . . , H | Ξm the premises of (r), and H | Ξm+1 the conclusion or
(r). A reduced hypersequent rule is a hypersequent rule of the form,

H | Υ1 ⇒ Ψ1 . . . H | Υm ⇒ Ψm

H | Υm+1 ⇒ Ψm+1 | . . . | Υn ⇒ Ψn

(r)

where H is a hypersequent variable and Υ1 ⇒ Ψ1, . . . ,Υn ⇒ Ψn are meta-sequ-
ents. Thus in a reduced hypersequent rule the type of meta-hypersequents allowed
as premises is restricted.

By an application or instance of a (hyper)sequent rule (r) we understand a
ordered pair consisting of a �nite set of (hyper)sequents, which we call premises,
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and a single (hyper)sequent, which we call the conclusion, obtained by uniformly
instantiating meta-objects occurring in (r) with object of the appropriate type.

For what follows it will be convenient to have �xed a notion of hypersequent
calculus. Therefore, we call a hypersequent calculus any set of rules of the form
HLJ + R, with R a set of reduced hypersequent rules and HLJ the set of rules
displayed in Figure 2.1.

Identity Axioms

H | s⇒ s
(id)

H | Γ2 ⇒ s H | Γ1, s,Γ3 ⇒ Π

H | Γ1,Γ2,Γ3 ⇒ Π
(cut)

External Structural rules

H | Γ⇒ Π | Γ⇒ Π

H | Γ⇒ Π
(ec)

H
H | Γ⇒ Π

(ew)

Internal Structural rules

H | Γ1,Γ2 ⇒ Π

H | Γ1,Σ,Γ2 ⇒ Π
(wl)

H | Γ⇒
H | Γ⇒ u

(wr)

H | Γ1,Σ,Σ,Γ2 ⇒ Π

H | Γ1,Σ,Γ2 ⇒ Π
(cl)

H | Γ1,Σ2,Σ1,Γ2 ⇒ Π

H | Γ1,Σ1,Σ2,Γ2 ⇒ Π
(el)

Left Logical Rules Right Logical Rules

H | 0⇒ Π
(0⇒)

H | Γ⇒ 1
(⇒1)

H | Γ⇒ s H | Γ, t⇒ Π

H | Γ, s→ t⇒ Π
(→ ⇒)

H | Γ, s⇒ t

H | Γ⇒ s→ t
(⇒→)

H | Γ, s⇒ Π

H | Γ, s ∧ t⇒ Π
(∧⇒)1

H | Γ⇒ s H | Γ⇒ t

H | Γ⇒ s ∧ t
(⇒∧)

H | Γ, t⇒ Π

H | Γ, s ∧ t⇒ Π
(∧⇒)2

H | Γ⇒ s

H | Γ⇒ s ∨ t
(⇒∨)1

H | Γ, s⇒ Π H | Γ, t⇒ Π

H | Γ, s ∨ t⇒ Π
(∨⇒)

H | Γ⇒ t

H | Γ⇒ s ∨ t
(⇒∨)2

Figure 2.1: The Hypersequent Calculus HLJ

A derivation in a calculus HLJ + R is a �nite labeled tree such that for any
node ν0, with label l0 and immediate successors ν1, . . . , νn labeled by l1 . . . , ln,
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respectively, there is a rule in HLJ+R having an instance with premises l1, . . . , ln
and conclusion l0. A hypersequent G is derivable in a calculus HLJ+R from a set
of hypersequents H, written H `HLJ+R G, if there exists a derivation in HLJ + R
with leaves labeled by members of H and root labeled by G. In the case where
H is empty we simply write `HLJ+R G.

We say that a hypersequent calculus HLJ + R is cut-free or that the cut-rule
is redundant if any hypersequent derivable in HLJ + R, from an empty set of
premises, can be derived without using the cut-rule.

2.1.1. Remark. One could have introduced a seemingly more general de�nition
of a hypersequent calculus by allowing extensions of HLJ with arbitrary hyperse-
quent rules. However, in the presence of external contraction (ec) and external
weakening (ew), see Figure 2.1, any hypersequent rule is interderivable with a
a �nite set of reduced hypersequent rules. Thus there is no loss of generality in
considering only reduced hypersequent rules.

2.1.2. Remark. It is easy to see that hypersequent calculi are essentially syn-
tactic variants of so-called multi-conclusion calculi [232] and of multi-conclusion
rule systems see, e.g., [166, 36, 28, 29].

In addition to the usual internal and external structural rules such as contrac-
tion, weakening, and exchange the hypersequent framework allows us to consider
a wide range of so-called structural hypersequent rules [57, Sec. 3.1], i.e., reduced
hypersequent rules not involving any of the logical connectives, which operate on
multiple components at once. Thus structural rules have the following form

H | Υ1 ⇒ Ψ1 . . . H | Υm ⇒ Ψm

H | Υm+1 ⇒ Ψm+1 | . . . | Υn ⇒ Ψn

(r)

where each Υi is a, possibly empty, sequence of sequence-variables and term-vari-
ables and each Ψi is empty, a stoup-variable, or a term-variable. Hence structural
rules di�er from arbitrary reduced rules only in that meta-terms are not in gen-
eral allowed. In particular, this means that structural rules can not serve as new
introduction rules for the operations ∧,∨, and →. If R is a set of structural
hypersequent rules we say that HLJ + R is a structural hypersequent calculus .

Despite their relative simplicity structural rules have non-trivial expressive
power.

2.1.3. Example. The structural hypersequent rule

H | Γ1,Σ2 ⇒ Π1 H | Γ2,Σ1 ⇒ Π2

H | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2

(com)
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initially due to Avron [11] determines a hypersequent calculus for the intermediate
logic LC, de�ned as IPC + (p→ q) ∨ (q → p), when added to HLJ. Similarly the
rule

H | Γ1,Γ2 ⇒
H | Γ1 ⇒ | Γ2 ⇒

(co-wc)

determines a hypersequent calculus for the intermediate logic KC, de�ned as IPC+
¬p ∨ ¬¬p, when added to HLJ, see, e.g., [56].

2.1.1 Interpreting hypersequents and hypersequent rules

To each sequent of the form s1, . . . , sn ⇒ t we associate the equation s1∧. . .∧sn ≤
t. Similarly, to each sequent of the form s1, . . . , sn ⇒ we associate the equation
s1 ∧ . . . ∧ sn ≤ 0. In each case we interpret an empty meet as the constant 1.

A hypersequent G is valid on a class K of Heyting algebras, written |=K G,
provided that K |= ε1 or . . . or εn where εi is the equation associated with the i'th
component of G. When K is a singleton, say {A}, we may writeA |= G for |=K G.
As any sequent may be considered a single component hypersequent, the above
also applies to sequents. Moreover, given a �nite set of sequents S = {S1, . . . , Sm}
and a hypersequent G, say Sm+1 | . . . | Sn, we say that S entails G over a class
of Heyting algebras K, written S |=K G, provided that for all A ∈ K

A |= ε1 and . . . and εm =⇒ εm+1 or . . . or εn,

where, for each i ∈ {1, . . . , n} the equation εi is the equation associated with the
sequent Si. In case K is the singleton {A} we write S |=A G in place of S |=K G.

To interpret reduced hypersequent rules a bit more care is needed. For each
term variable t we associate a variable in the language of Heyting algebras t• in
such a way that the map t 7→ t• will be injective. In the evident way this extends
to a map • : Tm→ Tm, from the set of meta-terms Tm to the set Tm of terms in
the language of Heyting algebras. Similarly, for each sequence variable Γ and each
stoup variable Π we associate variables Γ• and Π•, respectively, in the language
of Heyting algebras in such a way that the functions Γ 7→ Γ• and Π 7→ Π• are
both injective.

Given any non-empty sequence Υ consisting of meta-variables for sequences,
and meta-terms we extend the realization inductively as follows,

(Υ,Γ)• = Υ• ∧ Γ• and (Υ, t)• = Υ• ∧ t•.

For each meta-sequent Υ⇒ Ψ we then de�ne its realization to be the equation
Υ• ≤ Ψ•, where we use the convention that Υ• is the term 1 when Υ is empty
and Ψ• is the term 0 when Ψ is empty. In this way we obtain for each sequent
rule

Υ1 ⇒ Ψ1 . . . Υm ⇒ Ψm

Υm+1 ⇒ Ψm+1

(r)
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a quasi-equation
ε1 and . . . and εn =⇒ εm+1, (r•)

where for each i ∈ {1 . . . ,m + 1} the equation εi is the realization of the meta-
sequent Υi ⇒ Ψi. Similarly, we obtain for each reduced hypersequent rule

H | Υ1 ⇒ Ψ1 . . . H | Υm ⇒ Ψm

H | Υm+1 ⇒ Ψm+1 | . . . | Υn ⇒ Ψn

(r)

a universal clause

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (r•)

where again for each i ∈ {1, . . . , n} the equation εi is the realization of the meta-
sequent Υi ⇒ Ψi.

2.1.4. Example. The structural hypersequent rules (com) and (co-wc) corre-
spond to the universal clauses

x1 ∧ z2 ≤ y1 and x2 ∧ z1 ≤ y2 =⇒ x1 ∧ z1 ≤ y1 or x2 ∧ z2 ≤ y2

and
x1 ∧ x2 ≤ 0 =⇒ x1 ≤ 0 or x2 ≤ 0,

respectively.

As we will see, for each quasi-equation or universal clause q one can construct a
sequent or hypersequent rule (r), respectively, such that r• and q are equivalent.

Given a set of (hyper)sequent rules R let K(R) denote the class of Heyting
algebras validating all the quasi-equations (clauses) r• with (r) ∈ R. From the
above it immediately follows that K(R) is a universal class and when R consists
only of sequence rules a quasi-variety. We may then establish the following com-
pleteness theorem which is already known in the setting of multi-conclusions rule
systems, see [166, Thm. 2.2] and [36, Thm. 2.5].

2.1.5. Theorem. Let R be a set of hypersequent rules, S a �nite set of sequents
and G a hypersequent. Then the following are equivalent.

1. S `HLJ+R G.

2. S |=K(R) G.

Proof:
It is easy to verify that each of the rules of the calculus HLJ+R preserves validity
on members of the class K(R) which shows that Item 1 implies Item 2.

Conversely, to see that Item 2 implies Item 1 assume that S 6`HLJ+R G. By
Zorn's Lemma there is a maximal set of sequents T ⊇ S such that T 6`HLJ+R G.
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We then de�ne a binary relation Θ on the set Tm, of terms in the language of
Heyting algebras, as follows

s Θ t if, and only if, T `HLJ+R s⇒ t and T `HLJ+R t⇒ s.

It is straightforward to check that Θ is a congruence on the term algebra Tm
making A = Tm/Θ a Heyting algebra with the property that

s/Θ ≤ t/Θ if, and only if, T `HLJ+R s⇒ t,

for any terms s, t ∈ Tm.
For each S ∈ S, say s1, . . . , sn ⇒ t, we have that T `HLJ+R s1, . . . , sn ⇒ t and

hence also that T `HLJ+R s1 ∧ . . . ∧ sn ⇒ t. It follows that (s1 ∧ . . . ∧ sn)/Θ ≤
t/Θ which shows that the equation associated with the sequent S is true in A
under the natural valuation µ given by u 7→ u/Θ. In case the right-hand side
of the sequent S is empty the argument is completely analogous. Now suppose
towards a contradiction that (A, µ) |= G. Then there must be a component of
G, say s1, . . . , sni ⇒ ti, such that (A, µ) |= s1 ∧ . . . ∧ sni ≤ ti, in which case
(s1 ∧ . . . ∧ sni)/Θ ≤ ti/Θ. But then T `HLJ+R s1 ∧ . . . ∧ sni ⇒ ti and, as the
sequent s1, . . . , sni ⇒ s1 ∧ . . . ∧ sni is derivable in HLJ, an application of the rule
(cut) shows that T `HLJ+R s1, . . . , sni ⇒ ti. Applying the rule (ew) we may
then conclude that T `HLJ+R G, in direct contradiction with the choice of T .
This shows that S 6|=A G.

To see that A ∈ K(R) let (r) ∈ R be given, say

H | Υ1 ⇒ Ψ1 . . . H | Υm ⇒ Ψm

H | Υm+1 ⇒ Ψm+1 | . . . | Υn ⇒ Ψn

(r)

and consider the corresponding universal clause

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (r•)

with the equation εi, say s
i
1(~x) ∧ . . . ∧ siki(~x) ≤ ti(~x) being the realization of the

meta-sequent Υi ⇒ Ψi. If for some terms ~u ∈ Tm we have that

(si1(~u) ∧ . . . ∧ siki(~u))/Θ ≤ ti(~u)/Θ,

for all i ∈ {1, . . . ,m}, then, as before, T `HLJ+R si1(~u), . . . , siki(~u)⇒ ti(~u). Hence
by the rule (ew) we obtain that T `HLJ+R G | si1(~u), . . . , siki(~u)⇒ ti(~u) for all
i ∈ {1, . . . ,m}. But then applying the rule (r) yields that

T `HLJ+R G | sm+1
1 (~u), . . . , sm+1

km+1
(~u)⇒ tm+1(~u) | . . . | sn1 (~u), . . . , snkn(~u)⇒ tn(~u).

We claim that this entails that there must be j ∈ {m+ 1, . . . , n} such that

T `HLJ+R sj1(~u), . . . , sjkj(~u)⇒ tj(~u),
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from which it will follow that (sj1(~u) ∧ . . . ∧ sjkj(~u))/Θ ≤ tj(~u)/Θ and hence that

A |= r•. To establish this claim suppose for a contradiction that there is no such
j ∈ {m+ 1, . . . , n}. Then since T is maximal with the property that T 6`HLJ+R G
we must have that

T ∪ {sj1(~u), . . . , sjkj(~u)⇒ tj(~u)} `HLJ+R G

for each j ∈ {m+ 1, . . . , n}. This combined with the fact that

T `HLJ+R G | sm+1
1 (~u), . . . , sm+1

km+1
(~u)⇒ tm+1(~u) | . . . | sn1 (~u), . . . , snkn(~u)⇒ tn(~u)

shows that
T `HLJ+R G | G | . . . | G

and hence applying the rule (ec) an appropriate number of times we obtain
T `HLJ+R G in direct contradiction with the choice of T . 2

The proof of Theorem 2.1.5 makes ample use of the rule (cut), in particular
to ensure that the relation Θ is transitive. For R a set of so-called analytic
structural rules a very di�erent kind of completeness proof can be given which
avoids making use of the cut-rule whereby showing that the calculus with and
without the cut-rule derives exactly the same hypersequents [57, 60].

2.1.6. Remark. Note that unlike the standard Lindenbaum-Tarski construction
used to establish completeness of sequent calculi the construction in the proof of
Theorem 2.1.5 does not produce free algebras for the universal class of Heyting
algebras validating the corresponding rules. In fact, in universal classes of algebras
free algebras may not exist at all, see, e.g., [135, �53].

2.1.2 Analytic structural clauses

We have seen how any hypersequent rule gives rise to a universal clause. From
the de�nition of structural hypersequent rules it is immediate that if (r) is any
such rule then the corresponding universal clause

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (r•)

is such that for i ∈ {1, . . . , n}, the equation εi is of the form x1 ∧ . . .∧ xki ≤ y or
x1 ∧ . . . ∧ xki ≤ 0 for some, possibly empty, set of variables {x1, . . . , xki , y}. We
will call such universal clauses structural . Given a structural universal clause,

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (q)

with εi being the equation si ≤ ti we call the variables occurring in one or more
of the terms sm+1, . . . , sn left variables and the variables occurring in one or more
of the terms tm+1, . . . , tn right variables . A structural universal clause q is then
called analytic, see [60, Def. 4.12], provided that
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1. Any left variable occurs in exactly one of the terms sm+1, . . . , sn, and in the
term where it occurs it only occurs once.

2. Any right variable occurs in exactly one of the terms tm+1, . . . , tn, and in
the term where it occurs it only occurs once.

3. For each index i ∈ {1, . . . ,m} the term si contains only left variables.

4. For each index i ∈ {1, . . . ,m} the term ti contains only right variables.

Using the so-called Ackermann Lemma, see, e.g., [60, Lem. 4.3], we may
show that any universal clauses in the {∧, 0, 1}-reduct of the language of Heyting
algebras is equivalent to a �nite set of such special clauses. The Ackermann
Lemma, which is straightforward to prove, states that any universal clause

ε1 and . . . and εm =⇒ εm+1 or . . . or s ≤ t or . . . or εn,

is equivalent to each of the following universal clauses

ε1 and . . . and εm and x ≤ s =⇒ εm+1 or . . . or x ≤ t or . . . or εn

ε1 and . . . and εm and t ≤ y =⇒ εm+1 or . . . or s ≤ y or . . . or εn,

where x and y are variables not occurring in the equation s ≤ t nor in any of the
equations εi for i ∈ {1, . . . , n}.

2.1.7. Lemma. Any universal clause in the {∧, 0, 1}-reduct of the language of
Heyting algebras is equivalent to a structural (analytic) clauses.

Proof:
Let

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (q)

with εi denoting the equation si ≤ ti, be a universal clause in the {∧, 0, 1}-reduct
of the language of Heyting algebras. We will write P for the right-hand side of
the clause q and C for the left-hand side of the clause q.

If for some i ∈ {1, . . . ,m} the term si is the constant 0 or the term ti is the
constant 1 then q is equivalent to the universal clause

ε1 and . . . and εi−1 and εi+1 and . . . and εm =⇒ εm+1 or . . . or εn.

If for some j ∈ {m + 1, . . . , n} we have that tj is neither a single variable or the
constant 0 then, letting yj be a variable not already occurring in q, we see by the
Ackermann Lemma that q is equivalent to the universal clause

P and tj ≤ yj =⇒ εm+1 or . . . or εj−1 or sj ≤ yj or εj+1 or . . . εn.
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If for some i ∈ {1, . . . ,m} we have that ti is a term of the form t1i ∧ t2i then q is
equivalent to the universal clause

ε1 and . . . and εi−1 and si ≤ t1i and si ≤ t2i and εi+1 and . . . and εm =⇒ C.

If for some j ∈ {m + 1, . . . , n} either sj is the constant 0 or tj is the constant 1
then q is equivalent to the clause x ≤ x. Consequently, given any universal clause
in the {∧, 0, 1}-reduct of the language of Heyting algebras, applying the above
transformations we obtain an equivalent structural universal clause.

Finally, by [60, Thm. 4.15] any structural clause is equivalent, over the class
of Heyting algebras, to an analytic structural clause. 2

Following [60, Sec. 4.4] we show how to transform any analytic structural
clause q, and therefore by Lemma 2.1.7 any universal clause in the {∧, 0, 1}-
reduct of the language of Heyting algebras, into a structural hypersequent rule,
(q◦), such that the clauses q◦• and q are equivalent and the rules r•◦ and r are
interderivable.

Given a structural analytic clause

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (q)

with εi denoting the equation si ≤ ti, we let L = {x1, . . . , xk} and R = {y1, . . . , yl}
denote the set of left and right variables of q, respectively. We then introduce for
each x ∈ L a sequence variable Γx and similarly for each y ∈ R a stoup variable
Πy. Inductively, we de�ne

1◦ = ∅, (s ∧ x)◦ = s◦,Γx.

Furthermore for each equation εi we introduce sequence variables Γi and Σi. Then
for each of the equations εi of the form si ≤ y we obtain a meta-sequent

Γi, s
◦
i ,Σi ⇒ Πy.

Similarly, for each of the equations εi of the form si ≤ 0 we obtain a meta-sequent

Γi, s
◦
i ,Σi ⇒ .

In both cases we denote by ε◦i the meta-sequent associated with the equation εi.
This allows us to de�ne a structural hypersequent rule

H | ε◦1 . . . H | ε◦m
H | ε◦m+1 | . . . | ε◦n

(q◦)

We say that a structural rule (r) is analytic if it is of the form (q◦) for some
structural analytic clause q. We say that a hypersequent calculus HLJ + R is a
calculus for a variety of Heyting algebras V provided,

V |= s ≤ t if, and only if, `HLJ+R s⇒ t,
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for any terms s, t in the language of Heyting algebras. We will say that a variety
V admits a calculus with a certain property if there is a calculus for V with that
property. Similarly, we say that an intermediate logic L admits a hypersequent
calculus with a given property provided that the corresponding variety V(L) of
Heyting algebras admits a hypersequent calculus with that property. From Theo-
rem 2.1.5 it immediately follows that HLJ+R is a calculus for a variety of Heyting
algebras V if, and only if, the universal class K(R), consisting of Heyting algebras
validating the set of rules R, generates V .

2.1.3 Syntactic characterization

In the following we will recall the purely syntactic characterization due to Cia-
battoni, Galatos, and Terui [57, 60] of the varieties of Heyting algebras admitting
structural hypersequent calculi.

2.1.8. Definition ([61]). Let P0 = N0 be a (countable) set of variables and
de�ne sets of terms Pn,Nn in the language of Heyting algebras by the following
grammar

Pn+1 ::= 1 | 0 | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= 1 | 0 | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

An equation of the form 1 ≈ t is called a Pn-equation or Nn-equation if t ∈ Pn
or t ∈ Nn, respectively. A variety of Heyting algebras is called a Pn-variety or
Nn-variety if it can be axiomatized by Pn-equations orNn-equations, respectively.

A crucial insight is that using the invertible rules of HLJ, i.e., rules the premises
of which are derivable whenever the conclusion is, together with the Ackermann
Lemma [60, Lem. 4.3], any P3-equation can be transformed into an analytic struc-
tural universal clause and consequently into an analytic structural hypersequent
rule. Such rules preserve the redundancy of the cut-rule when added to HLJ [60,
Thm. 6.3]. Thus any variety of Heyting algebras axiomatizable by P3-equations
admits a structural hypersequent calculus in which the cut-rule is redundant.

2.1.9. Theorem ([57, 60]). Let V be a variety of Heyting algebras. Then the
following are equivalent.

1. The variety V admits a structural hypersequent calculus.

2. The variety V admits an analytic structural hypersequent calculus.

3. The variety V is axiomatizable by P3-terms.

Proof:
That Items 1 and 2 are equivalent is established in [57], see also [60], just as the
fact that Item 3 entails Item 1. That Item 1 entails Item 3 may be seen via an
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argument analogous to the one used to prove [59, Prop. 3.10]. We supply the
details. Given a structural hypersequent rule (r) let

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (r•)

with εi denoting the equation si(~x) ≤ ti(~y), be the corresponding structural uni-
versal clause. By Lemma 2.1.7 we may assume that the variables ~x = {x1, . . . , xr}
and ~y = {y1, . . . , yl} are disjoint and that for each k ∈ {1, . . . , n} the terms sk
are, possible empty, meets of variables, i.e., the constant 1, and the terms tk are
either a single variable or the constant 0. In fact, we may assume that none of
the terms si are the constant 1 for i ∈ {1, . . . ,m}. Let ur be the term

n∨
j=m+1

((
m∧
i=1

(si(~x)→ ti(~y))

)
→ (sj(~x)→ tj(~y))

)
.

It is straightforward to verify that ur belongs to P3.
We claim that the variety V of Heyting algebras generated by the universal

classK(r) of Heyting algebra validating r• coincides with the varietyW of Heyting
algebras axiomatized by the equation 1 ≈ ur.

To see this, consider �rst any �nitely subdirectly irreducible Heyting algebra
A such that A |= 1 ≈ ur. Then for any choice of elements a1, . . . , ar, b1, . . . bl ∈ A

1 =
n∨

j=m+1

((
m∧
i=1

(
sAi (~a)→ tAi (~b)

))
→
(
sAj (~a)→ tAj (~b)

))
.

Since A is �nitely subdirectly irreducible it must have a join-irreducible top ele-
ment, see, e.g., Appendix A.4. We must therefore have that

m∧
i=1

(
sAi (~a)→ tAi (~b)

)
≤ sAj (~a)→ tAj (~b),

for some j ∈ {m+1, . . . , n}. Consequently, if sAi (~a) ≤ tAi (~b) for all i ∈ {1, . . . ,m},
then also sAj (~a) ≤ tAj (~b). This shows that A |= r• and therefore that any �nitely
subdirectly irreducible W-algebra belongs to the class K(r) from which we con-
clude that W ⊆ V .

Conversely, letA be a Heyting algebra such thatA |= r• and consider elements
a1, . . . , ar, b1, . . . bl ∈ A. De�ne for each k ∈ {1, . . . , r} an element ck ∈ A by

ck = ak ∧
m∧
i=1

(
sAi (~a)→ tAi (~b)

)
,

For each term sl which is a non-empty meet of variables we may conclude that

sAl (~c) = sAl (~a) ∧
m∧
i=1

(
sAi (~a)→ tAi (~b)

)
.
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In particular, we have that sAi (~c) ≤ tAi (~b), for each i ∈ {1, . . . ,m}. Hence by the

assumption thatA |= r• there must be j ∈ {m+1, . . . , n} such that sAj (~c) ≤ tAj (~b).

Either the term sj is the constant 1 in which case tAj (~b) = 1. Otherwise the term
sj is a non-empty meet of variables and hence

sAj (~a) ∧
m∧
i=1

(
sAi (~a)→ tAi (~b)

)
= sAj (~c) ≤ tAj (~b),

from which it follows that

m∧
i=1

(
sAi (~a)→ tAi (~b)

)
≤ sAj (~a)→ tAj (~b).

In either case, for any choice of elements ~a,~b ∈ A, there is j ∈ {m + 1, . . . , n}
such that

1 =

(
m∧
i=1

(
sAi (~a)→ tAi (~b)

))
→
(
sAj (~a)→ tAj (~b)

)
,

showing that A |= 1 ≈ ur. Therefore K(r) ⊆ W and hence V =W .
It follows that if HLJ + R is an analytic structural sequent calculi for the

variety V then the class K(R) generates V which must then be axiomatized by
the set of P3-equations {1 ≈ ur : r ∈ R}. 2

2.1.10. Remark. Note that the proof of [60, Thm. 6.3] showing the cut-rule
is redundant in any analytic structural hypersequent calculus as de�ned in this
chapter is semantic in nature and as such does not directly yield an explicit pro-
cedure for transforming a derivation using the cut-rule into a cut-free derivation.
However, in concrete cases an explicit cut-elimination procedure may be given,
see, e.g., [55, 56]. We also want to emphasize that it is not the case that the
cut-rule is redundant in every structural hypersequent calculus but only that any
such calculus is e�ectively equivalent to a structural hypersequent calculus in
which the cut-rule is redundant.

2.1.11. Proposition. Any P3-variety can be axiomatized by a set of equations
of the form 1 ≈ u where u is a term in the ∨-free reduct of the language of Heyting
algebras.

Proof:
Any P3-equation is equivalent on (�nitely) subdirectly irreducible algebras to a set
of analytic structural clauses [60, Sec. 4]. As shown in the proof of Theorem 2.1.9
any analytic structural clause is equivalent, on �nitely subdirectly irreducible
Heyting algebras, to an equation of the form 1 ≈ u1 ∨ . . . ∨ un with the terms
u1, . . . , un belonging to the ∨-free reduct of the language of Heyting algebras. It



2.1. Hypersequent calculi 29

is not di�cult to see that any equation in the language of Heyting algebras of the
form 1 ≈ s ∨ t is equivalent to the equation 1 ≈ (s→ x)→ ((t→ x)→ x), for x
a variable not occurring in the term s nor in the term t.

This shows that any variety of Heyting algebras which can be axiomatized by
P3-equation can also be axiomatized by equations of the form 1 ≈ u where u is a
∨-free term. 2

2.1.12. Example. For n ≥ 1 let BT Wn,BWn and BCn, be the varieties deter-
mined by posets of top width at most n, of width at most n, and of cardinality
at most n, respectively. See Appendix A.9 for de�nitions. All of these varieties
have axiomatizations given by equations which are ostensibly P3, and so by Theo-
rem 2.1.9 all of these varieties admit an analytic structural hypersequent calculus.
Concretely, the rules (com) and (co-wc) yield cut-free structural hypersequent
calculi for LC = BW1 and KC = BT W1, respectively, when added to HLJ. For
more concrete examples of structural hypersequent calculus we refer to [57, 55].
Moreover, the variety of Heyting algebras corresponding to the Kuznetsov-Ger£iu
logic [26, 185] is also easily seen to be a P3-variety.

Theorem 2.1.9 thus gives a very simple syntactic description of the class of va-
rieties which admit analytic, and hence cut-free, structural hypersequent calculi.
Our aim is then to supply criteria describing this class of varieties which are syn-
tax independent. Among other things this will allow us to derive negative results
showing that certain well-known varieties of Heyting algebras do not admit such
calculi. Given the correspondence between structural hypersequent calculi and
structural universal clauses we may provide the �rst algebraic characterization of
the class of varieties admitting structural hypersequent calculi.

2.1.13. Proposition. Let V be a variety of Heyting algebras. Then the following
are equivalent.

1. The variety V admits a structural hypersequent calculus.

2. The variety V is generated by a universal class of Heyting algebras axiom-
atized by structural universal clauses.

3. The variety V is generated by a universal class of Heyting algebras axioma-
tized by universal clauses in the {∧, 0, 1}-reduct of the language of Heyting
algebras.

Proof:
The equivalence between Item 1 and Item 2 follows from Theorem 2.1.5 and the
correspondence between structural hypersequent calculi and structural universal
clauses. That Item 2 is equivalent to Item 3 follows from Lemma 2.1.7. 2
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This characterization is, however, not very informative and in the following
section we shall provide a characterization which we believe to be more enlight-
ening.

2.2 Algebraic characterization

In this section we provide a semantic characterization of the varieties of Heyting
algebras, or equivalently intermediate logics, admitting a structural, and therefore
also a cut-free, hypersequent calculus in terms of the algebraic semantics. This
section builds on the theory of stable classes of Heyting algebras as introduced in
[25] and further developed in [29, 34], see also [164] for a thorough treatment of
di�erent concepts of stability in general.

Given a set τ ⊆ {∧,∨,→, 0, 1} we will let τc denote the set τ ∩ {0, 1} and
τo denote the set τ ∩ {∧,∨,→}. Let τ ⊆ {∧,∨,→, 0, 1} and let A and B be
Heyting algebras. We say that a function h : A → B is a τ -homomorphism if
h is a homomorphism between the τ -reducts of A and B. If h : A → B is a
τ -homomorphism we write A →τ B. A τ -homomorphism h : A →τ B is called
a τ -embedding if the function h : A → B is injective. In this case we write
h : A ↪→τ B. We write A ↪→τ B to indicate that there is a τ -embedding from A
to B. We say that an algebra A is a τ -subalgebra of an algebra B provided that
the τ -reduct of A is a subalgebra of the τ -reduct of B. For a class of Heyting
algebras K we write Sτ (K) for the class of τ -subalgebras of members of K.

2.2.1. Definition (cf. [164, Def. 3.3.2]). Let τ ⊆ {∧,∨,→, 0, 1}. A class K of
Heyting algebras is (�nitely) τ -stable provided that wheneverB ∈ K andA ↪→τ B
then A ∈ K for all (�nite) Heyting algebras A.

Let τ ⊆ {∧,∨,→, 0, 1} and let K be a class of Heyting algebras. We say that
a variety of Heyting algebras V is τ -stably generated by K provided that it is
generated by the class ISτ (K). In particular, if V is τ -stably generated by a class
of algebras K then ISτ (K) ⊆ V and so V is generated by some τ -stable class.

A variety is called τ -stably generated provided that it is τ -stably generated
by some class of algebras. Thus a variety is τ -stably generated if, and only, it is
generated by a τ -stable class.

2.2.2. Definition (cf. [164, Def. 3.3.9]). An intermediate logic L is τ -stable if
its corresponding variety of Heyting algebras is τ -stably generated.

The τ -stable logics are all well understood in the case when τ is {∧,→},
{∧,→, 0}, or {∧,∨, 0, 1}. These logics have all been studied before individually.
The (∧,→)-stable logics are known as subframe logics, see, e.g., [51, Chap. 11.3],
and the (∧,→, 0)-stable logics as co�nal subframe logics [254]. The (∧,∨, 0, 1)-
stable logics are also known as stable logics [25]. Expanding the language of
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Heyting algebras we also obtain a notion of (∧,∨,¬, 1)-stable logics known as
co�nal stable logics [29].

Note that if τ ⊆ τ ′ ⊆ {∧,∨,→, 0, 1} then any τ -stable class K must necessarily
also be τ ′-stable. In particular, any (∧, 0, 1)-stably generated variety will be
(∧,∨, 0, 1)-stably generated. By similar reasoning any (∧, 0, 1)-stably generated
variety will also be (∧,∨,¬, 1)-stably generated. Consequently, (∧, 0, 1)-stable
logics will be both (∧,∨, 0, 1)-stable and (∧,∨,¬, 1)-stable.

When τ is either one of the sets {∧,→}, {∧,→, 0} or {∧,∨, 0, 1} we have a
description of the τ -stably generated varieties using the concept of stable clauses.

2.2.3. Definition. Let τ ⊆ {∧,∨,→, 0, 1} and letA be a �nite Heyting algebra.
For each element a ∈ A introduce a �rst-order variable xa, such that the map
a 7→ xa becomes injective. By the τ -stable (universal) clause qτ (A) associated
with A we shall understand the universal clause ∀~x (P (~x) =⇒ C(~x)) where

P (~x) = AND{xc ≈ c : c ∈ τc} and AND{xa • xa′ ≈ xa•a′ : a, a
′ ∈ A, • ∈ τo}

C(~x) = OR{xa ≈ xa′ : a, a
′ ∈ A, a 6= a′}.

2.2.4. Remark. Stable universal clauses may be seen as a propositional version
of diagrams as known from classic Robinson-style model theory, see, e.g., [157,
Chap. 1.4]. Variants of the τ -stable clauses de�ned above have been studied before
under the names stable and canonical multi-conclusion rules [166, 28, 29, 164].

Given a class of Heyting algebras K we denote by Kω the class of �nite mem-
bers of K. Similarly we denote by Ksi and Kfsi the classes of subdirectly irre-
ducible and �nitely subdirectly irreducible members of K, respectively. Evidently,
Kωsi = Kωfsi . The following theorem sums up the characterization of being τ -stably
generated.

2.2.5. Theorem ([164, 3.3.17]). Let V be a variety of Heyting algebras and let
L be its corresponding intermediate logic. Then for τ any of the sets {∧,→},
{∧,→, 0} or {∧,∨, 0, 1} the following are equivalent.

1. The variety V is τ -stably generated.

2. The logic L is τ -stable.

3. The variety V is generated by a τ -stable class of �nite algebras.

4. The variety V is generated by a τ -stable universal class.

5. The variety V is generated by a �nitely τ -stable universal class.

6. The variety V is generated by a universal class of Heyting algebras axiom-
atized by τ -stable universal clauses associated with �nite subdirectly irre-
ducible Heyting algebras.
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7. The class (ISτ (Vfsi))ω ∩ Vfsi is contained in V.

We will prove a version of Theorem 2.2.5 for τ = {∧, 0, 1}. Together with
Proposition 2.1.13 this will provide us with an algebraic characterization of the
varieties of Heyting algebras admitting a structural hypersequent calculus.

2.2.1 (∧, 0, 1)-stably generated varieties

In this subsection we will establish a version of Theorem 2.2.5 for τ = {∧, 0, 1}.
The strategy will be completely similar to the one found in [25, 29, 164]. The
following lemma shows that the τ -stable clause associated with a �nite algebra A
encodes the property of not containing an isomorphic copy ofA as a τ -subalgebra.

2.2.6. Lemma (cf. [29, Prop. 4.2]). Let τ ⊆ {∧,∨,→, 0, 1} and let A,B be Hey-
ting algebras with A �nite. Then the following are equivalent.

1. B 6|= qτ (A).

2. There exists a τ -embedding h : A ↪→τ B.

Proof:
Given a valuation ν on B such that (B, ν) 6|= qτ (A) then we obtain a τ -embed-
ding hν : A ↪→τ B by letting hν(a) = ν(xa). Conversely, given a τ -embedding
h : A ↪→τ B we obtain a valuation νh on B such that (B, νh) 6|= qτ (A) by letting
νh(xa) = h(a). 2

We then show that a universal class of Heyting algebras is (∧, 0, 1)-stable
precisely if it is axiomatizable by (∧, 0, 1)-stable clauses.

2.2.7. Lemma (cf. [29, Prop. 4.5]). Let τ = {∧, 0, 1} and let U be a universal
class of Heyting algebras. Then the following are equivalent.

1. The universal class U is axiomatized by structural universal clauses.

2. The universal class U is τ -stable.

3. The universal class U is �nitely τ -stable.

4. The universal class U is axiomatized by τ -stable clauses.

Proof:
If U is axiomatized by structural universal clauses then U must be τ -stable, since
universal clauses in the τ -reduct of the language of Heyting algebras are preserved
by τ -subalgebras. Moreover, any τ -stable universal class is evidently �nitely τ -
stable.



2.2. Algebraic characterization 33

We show that if U is �nitely τ -stable then U is axiomatized by τ -stable clauses.
Therefore, assume that U is �nitely τ -stable and let

Q = {qτ (A) : |A| < ℵ0,A 6∈ U}.

We claim that for any Heyting algebra B we have that B ∈ U if, and only if,
B |= Q. To see this let Th∀HA(U) be the universal theory, in the language of
Heyting algebras, of U . If B 6∈ U then, by the assumption that U is a universal
class of Heyting algebras, there must be a universal clause q ∈ Th∀HA(U) such that
B 6|= q. Thus, by Lemma A.4.4 we must have a �nite (∧,∨, 0, 1)-subalgebra, in
particular a τ -subalgebra, C ofB such thatC 6|= q, i.e., C 6∈ U whence qτ (C) ∈ Q.
By Lemma 2.2.6 we must have that B 6|= qτ (C) and so B 6|= Q.

Conversely, if B 6|= Q then for some �nite Heyting algebra A 6∈ U we have
B 6|= qτ (A). By Lemma 2.2.6 it follows that A is a τ -subalgebra of B. Since U
is assumed to be �nitely τ -stable we must conclude that B 6∈ U since otherwise
A ∈ U .

Finally, by Lemma 2.1.7 any τ -stable clause is equivalent to a �nite set of
structural universal clauses so if V is axiomatized by τ -stable clauses it will also
be axiomatized by structural universal clauses. 2

2.2.8. Definition. Let τ ⊆ {0,∧,∨,→, 1} and letA be a �nite Heyting algebra.
For each element a ∈ A introduce a variable xa, such that the map a 7→ xa
becomes injective. By the τ -stable equation ετ (A) associated with A we shall
understand the equation

∧
Γ ≤

∨
∆ where

Γ = {xc ↔ c : c ∈ τc} ∪ {xa • xa′ ↔ xa•a′ : a, a
′ ∈ A, • ∈ τo}

∆ = {xa → xa′ : a, a
′ ∈ A, a 6≤ a′}.

The τ -stable equations encode information about �nite Heyting algebras in
almost the same way as the τ -stable clauses. However, a version of Lemma 2.2.6
only holds for so-called well-connected Heyting algebras, that is, Heyting algebras
validating the universal clause

1 ≤ x ∨ y =⇒ 1 ≤ x or 1 ≤ y.

These are exactly the �nitely subdirectly irreducible Heyting algebras, see Ap-
pendix A.4. Consequently, any variety of Heyting algebras is generated by its
class of well-connected members.

We will need the following lemma showing that homomorphic images of a
�nite Heyting algebra A are isomorphic to (∧, 0, 1)-subalgebras of A.

2.2.9. Lemma. Let A and B be �nite Heyting algebras. If B is a homomorphic
image of A, then B ∈ IS∧,0,1(A).
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Proof:
If h : A� B is a surjective Heyting algebra homomorphism, then B is isomorphic
to A/θ, with the congruence θ the kernel of h. As A is �nite the �lter 1/θ must
be a principal �lter, say ↑a for some a ∈ A, whence B is isomorphic to the interval
[0, a]. Evidently, we have a (∧, 0, 1)-embedding g from [0, a] into A, given by,

g(b) =

{
b if b < a,

1 otherwise,

showing that B ↪→∧,0,1 A. 2

We may then establish a version of Lemma 2.2.6 for (∧, 0, 1)-stable equations.

2.2.10. Lemma (cf. [25, Thm. 6.3]). Let A, B be Heyting algebras with A �nite.

1. If B 6|= ε∧,0,1(A), then A ↪→∧,0,1 B.

2. If B is well-connected and A ↪→∧,0,1 B, then B 6|= ε∧,0,1(A).

Proof:
If B 6|= ε∧,0,1(A) then by Lemma A.4.4 we must have a �nite Heyting algebra C
which is a (∧,∨, 0, 1)-subalgebra of B, and so in particular a (∧, 0, 1)-subalgebra
of B, such that C 6|= ε∧,0,1(A). This means that there is a valuation ν on C
such that ν(

∧
Γ →

∨
∆) < 1, where Γ and ∆ are as in De�nition 2.2.8. By

Wronski's Lemma [253, Lem. 1] there exists a subdirectly irreducible Heyting
algebra D together with a Heyting algebra homomorphism π : C� D such that
π(ν(

∧
Γ→

∨
∆)) = cD, where cD denotes the unique co-atom of D. By Lemma

2.2.9 we have that D is a (∧, 0, 1)-subalgebra of C and therefore also a (∧, 0, 1)-
subalgebra of B. We claim thatA is a (∧, 0, 1)-subalgebra ofD and therefore also
a (∧, 0, 1)-subalgebra of B. We obtain a valuation µ on D such that µ(

∧
Γ →∨

∆) = cD by letting µ(xa) = π(ν(xa)). From this it follows that µ(
∧

Γ) = 1 and
µ(
∨

∆) = cD and hence we may conclude that hµ : A→ D given by hµ(a) = µ(xa)
is a (∧, 0, 1)-embedding of A into D.

Conversely, if there is a (∧, 0, 1)-embedding h : A ↪→∧,0,1 B, then de�ning a
valuation νh on B by νh(xa) = h(a) we obtain that νh(

∧
Γ) = 1 by the fact that

h is a (∧, 0, 1)-homomorphism. Moreover, by the fact that h is also a (∧, 0, 1)-
embedding we must have that 1 6≤ νh(xa → xa′) for all xa → xa′ in ∆. Thus,
assuming B to be well-connected we may conclude that 1 6≤ νh(

∨
∆) and there-

fore that ν(
∧

Γ) 6≤ ν(
∨

∆). Thus, νh witnesses that B 6|= ε∧,0,1(A). 2

The following lemma shows that the varieties of Heyting algebras generated by
(∧, 0, 1)-stable universal classes are in fact axiomatized by (∧, 0, 1)-stable equa-
tions. Thus a variety can be axiomatized by (∧, 0, 1)-stable equations precisely
when it can be axiomatized by (∧, 0, 1)-stable universal clauses.
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2.2.11. Lemma. Let V be a variety of Heyting algebras. Then the following are
equivalent.

1. The variety V is axiomatized by a collection of (∧, 0, 1)-stable equations.

2. The variety V is generated by a universal class axiomatized by a collection
of (∧, 0, 1)-stable clauses.

Proof:
We �rst observe that as a consequence of Lemma 2.2.6 and Item 1 of Lemma 2.2.10
the clause q∧,0,1(A) implies the corresponding equation ε∧,0,1(A) for each �nite
Heyting algebra A. Similarly by Lemma 2.2.6 and Item 2 of Lemma 2.2.10 we
have that for each �nite Heyting algebra A the clause q∧,0,1(A) is equivalent to
the corresponding equation ε∧,0,1(A) on �nitely subdirectly irreducible Heyting
algebras.

Assume that V is axiomatized by a collection of (∧, 0, 1)-stable equations, say
{εi}i∈I , and let U be the universal class of Heyting algebras axiomatized by the
corresponding (∧, 0, 1)-stable clauses {qi}i∈I . For each i ∈ I the clause qi entails
the equation εi, whence U ⊆ V . Furthermore, since for each i ∈ I the clause
qi and the equation εi are equivalent on �nitely subdirectly irreducible Heyting
algebras it follows that Vfsi ⊆ U ⊆ V and so the class U must generate the variety
V .

Conversely, assume that V is generated by a universal class U ⊆ V axiomatized
by a collection of (∧, 0, 1)-stable clauses, say {qi}i∈I , and let W be the variety
of Heyting algebras axiomatized by the corresponding (∧, 0, 1)-stable equations
{εi}i∈I . As before we see that Wfsi ⊆ U ⊆ W and hence that W = V . 2

2.2.12. Lemma. Let τ ⊆ {∧,∨, 0, 1} be given. If K is a τ -stable class, then so
is the universal class generated by K.

Proof:
By [46, Thm. V.2.20] we know that the universal class generated by the class K
is the class ISPU(K). Therefore, let {Bi}i∈I be a collection of K-algebras, U an
ultra�lter on I, and A a �nite Heyting algebra. If A 6↪→τ Bi for all i ∈ I then by
Lemma 2.2.6 we have that Bi |= qτ (A) for all i ∈ I and hence by �o±' Theorem
we obtain that

∏
i∈I Bi/U |= qτ (A) and so A 6↪→τ

∏
i∈I Bi/U . Consequently, if

A ↪→τ

∏
i∈I Bi/U then, A ↪→τ Bi for some i ∈ I. Moreover, if B ∈ ISPU(K)

and A is a �nite algebra such that A ↪→τ B, then necessarily A ↪→τ B
′ for some

B′ ∈ PU(K) whence by the above we have that A ∈ K. We have thus shown that
ISPU(K) is a �nitely τ -stable universal class and as such it must be τ -stable by
Lemma 2.2.7. 2
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2.2.13. Theorem. Let V be a variety of Heyting algebras and let L be the cor-
responding intermediate logic. Then the following are equivalent.

1. The logic L is (∧, 0, 1)-stable.

2. The variety V is (∧, 0, 1)-stably generated.

3. The variety V is generated by a (∧, 0, 1)-stable universal class of Heyting
algebras.

4. The variety V is generated by a universal class of Heyting algebras axiom-
atized by (∧, 0, 1)-stable universal clauses.

5. The variety V is generated by a universal class of Heyting algebras axiom-
atized by structural universal clauses.

6. The variety V is axiomatized by (∧, 0, 1)-stable equations.

7. The class IS∧,0,1(Vfsi) is contained in V.

8. The class (IS∧,0,1(Vfsi))ω is contained in V.

9. The variety V is generated by its �nite members and IS∧,0,1(Vωfsi) ⊆ V.

Proof:
Item 1 and Item 2 are equivalent by de�nition. That Item 2 and Item 3 are
equivalent follows from Lemma 2.2.12. The equivalence of Item 3, Item 4 and
Item 5 follows from Lemma 2.2.7. That Item 4 and Item 6 are equivalent is the
content of Lemma 2.2.11.

To see that Item 6 implies Item 7 we observe that if V is axiomatized by
a collection of stable equations {εi}i∈I and B ∈ Vfsi then B |= qi, where qi
is the (∧, 0, 1)-stable clause corresponding to the equation εi. Such clauses are
preserved under (∧, 0, 1)-subalgebras. Consequently, for each A ∈ IS∧,0,1(B) we
have A |= qi and hence A |= εi showing that A ∈ V .

Evidently, Item 7 implies Item 8.
To see that Item 8 implies Item 9 assume that (IS∧,0,1(Vfsi))ω ⊆ V and that ε

is an equation such that V 6|= ε. Then there exists B ∈ Vfsi such that B 6|= ε. By
Lemma A.4.4 we can �nd a �nite (∧, 0, 1)-subalgebraA of B such thatA 6|= ε. By
assumptionA ∈ (IS∧,0,1(Vfsi))ω ⊆ V , showing that every equation which is refuted
by some member of V is also refuted by some �nite member of V and hence that V
is generated by its �nite members. Evidently, IS∧,0,1(Vωfsi) ⊆ (IS∧,0,1(Vfsi))ω ⊆ V .

Finally, we show that Item 9 implies Item 6. Therefore, assume that V is
generated by its �nite members and IS∧,0,1(Vωfsi) ⊆ V . Let K be any set of �nite
Heyting algebras such that no member of K is contained in V and each �nite
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Heyting algebra which is not a member of V is isomorphic to some member of K.
Consider the set of equations,

E = {ε∧,0,1(A) : A ∈ K},

and let W be the variety of Heyting algebras axiomatized by E. We claim that
if B ∈ Wω

fsi then B belongs to V . Otherwise there would be A ∈ K isomorphic
to B, whence B |= ε∧,0,1(A) which by Item 2 of Lemma 2.2.10 is a contradiction.
As we have already seen, since the variety W is axiomatized by (∧, 0, 1)-stable
equations, it must be generated by its �nite members. Consequently, W ⊆ V .
On the other hand since by assumption IS∧,0,1(Vωfsi) ⊆ V we obtain from Item 1 of
Lemma 2.2.10 that B 6|= ε∧,0,1(A) entails A ∈ V for each �nite A 6∈ V and each
B ∈ Vωfsi . Therefore, we may conclude that Vωfsi |= E and since V is generated by
its �nite members also that V |= E, whence V ⊆ W . 2

We now obtain the following algebraic characterization of the intermediate log-
ics admitting a structural hypersequent calculus and therefore by Theorem 2.1.9
also a cut-free structural hypersequent calculus.

2.2.14. Theorem. Let V be a variety of Heyting algebras and let L be its corre-
sponding intermediate logic. Then the following are equivalent.

1. The variety V admits a structural hypersequent calculus.

2. The logic L admits a structural hypersequent calculus.

3. The class (IS∧,0,1(Vfsi))ω is contained in V.

4. The logic L is (∧, 0, 1)-stable.

Proof:
This follows directly from Theorem 2.2.13 and Proposition 2.1.13. 2

2.2.15. Remark. Note that if V is a �nitely axiomatizable variety of Heyting
algebras such that IS∧,0,1(Vfsi) ⊆ V then V admits a structural hypersequent
calculus given by only �nitely many structural hypersequent rules. To see this
simply note that as IS∧,0,1(Vfsi) ⊆ V the variety V is axiomatized by a collection
of (∧, 0, 1)-equations. Since V is �nitely axiomatizable we may conclude that
only �nitely many of the (∧, 0, 1)-stable equations are required to axiomatize
V . Hence by Lemma 2.2.11 V is determined by a �nite number of (∧, 0, 1)-
stable clauses. Thus from the correspondence between (∧, 0, 1)-stable clauses
and structural hypersequent rules we obtain that V indeed admits a structural
hypersequent calculus given by only �nitely many structural hypersequent rules.
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2.3 Consequences of the characterization

We here present a few consequences of our analysis so far. Recall that a variety
of Heyting algebras V is a P3-variety provided that it can be axiomatized by P3-
equations. By Theorem 2.2.14 and Theorem 2.1.9 the P3-varieties are exactly the
varieties of Heyting algebras satisfying any, and therefore all, of the equivalent
conditions of Theorem 2.2.13.

2.3.1. Proposition. Any P3-variety is generated by its �nite members, canon-
ical, and elementarily determined.

Proof:
That any P3-variety is generated by its �nite members is a direct consequence of
Theorem 2.2.13. By Proposition 2.1.11 P3-varieties can be axiomatized by ∨-free
equations. As such they will be canonical as well as elementarily determined, see,
e.g., [254, Thm. 6.8]. 2

2.3.2. Remark. Note that Proposition 2.3.1 entails that every �nitely axioma-
tizable P3-variety is decidable, i.e., has a decidable equational theory. We do
not know if proof search in the corresponding analytic structural calculi yields
optimal bounds on the complexity of the decidability problem. However, uniform
upper bounds on the complexity of the decidability problem for P3-varieties can
likely be obtained, cf. [192, Sec. 6].

Recall from Appendix A.9 that BDn denotes the variety of Heyting algebras
corresponding to the intermediate logic BDn determined by posets of depth at
most n.

2.3.3. Proposition. Let n ≥ 2 be given. The variety BDn does not admit a
structural hypersequent calculus.

Proof:
We know that for n ≥ 2 the variety BDn is not (∧,∨, 0, 1)-stably generated [25,
Thm. 7.4(2)] and so in particular it cannot be (∧, 0, 1)-stably generated. Knowing
this the proposition is an immediate consequence of Theorem 2.2.14. 2

2.3.4. Remark. That structural hypersequent rules could not capture BDn, for
n ≥ 2, had been expected, see., e.g., [61, 62]. However, we have not been able
to �nd any proof of this fact in the literature.2 The variety BD2 does, however,
admit an analytic multi-succedent hypersequent calculus obtained by adding an

2Independently Lellmann has shown, using the relational semantics, that the logics BDn, for
n ≥ 2, cannot be axiomatized by P3-formulas [193].
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additional non-structural hypersequent rule for the introduction of the implication
to a multi-succedent version of the calculus HLJ, see [61]. Furthermore, the
varieties BDn, for n ≥ 2, do admit analytic display calculi [62], analytic labeled
sequent calculi [81] as well as so-called path-hypertableau and path-hypersequent
calculi [54].

As a �nal application of Theorem 2.4.11 we show that for certain varieties
of Heyting algebras the problem of whether or not they can be axiomatized by
P3-equations, and therefore be given a cut-free structural hypersequent calculus,
is decidable.

2.3.5. Proposition. It is decidable whether a �nitely axiomatized variety of
Heyting algebras generated by its �nite members is a P3-variety.

Proof:
We show that there is an e�ective procedure which given a �nite axiomatization
of a variety of Heyting algebras V generated by its �nite members decides whether
V is a P3-variety. Note �rst that membership of the set P3 is a decidable property
of terms.

Let V be a variety of Heyting algebra generated by its �nite members which
is moreover �nitely axiomatizable. Without loss of generality we may assume
that the given axiomatization of V consists of a single equation, say 1 ≈ s. We
�rst note that V , being �nitely axiomatizable, is a P3-variety if, and only if, it
is axiomatizable by �nitely many P3-equations. Moreover, since the class of P3-
terms is such that t1, t2 ∈ P3 entails t1 ∧ t2 ∈ P3 it follows that V is a P3-variety
if, and only if, it is axiomatizable by a single P3-equation.

Since V is both �nitely axiomatizable and generated by its �nite members
the equational theory of V is decidable. Therefore, we may enumerate all the
P3-equations 1 ≈ t such that V |= 1 ≈ t. Since �nitely axiomatizable P3-varieties
are decidable we may check for each P3-equation 1 ≈ t such that V |= 1 ≈ t
whether W |= 1 ≈ s, where W is the variety axiomatized by the equation 1 ≈ t.
It follows that for �nitely axiomatizable and decidable varieties the property of
being a P3-variety is semi-decidable.

On the other hand as V is �nitely axiomatizable and since the property of
being subdirectly irreducible is a decidable property of �nite Heyting algebras,
we may enumerate the �nite subdirectly irreducible members of V . Again, using
the �nite axiomatization of V , for each �nite subdirectly irreducible members
of V we may check if all of its (∧, 0, 1)-subalgebras, of which there are only
�nitely many, belong to V . If V is not a P3-variety then, since by assumption
V is generated by its �nite members, it follows from Theorem 2.2.13 that there
must be some member of Vωfsi having a (∧, 0, 1)-subalgebra which does not belong
to V . Consequently, for varieties of Heyting algebras which are both �nitely
axiomatizable and generated by its �nite members the property of not being a
P3-variety is semi-decidable.
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Putting these observations together we see that given a �nite axiomatization
of a variety of Heyting algebras V generated by its �nite members, it is decidable
whether V is a P3-variety. 2

From Proposition 2.3.5 we then immediately obtain the following.

2.3.6. Corollary. It is decidable whether a �nitely axiomatized intermediate
logic with the �nite model property admits a cut-free structural hypersequent cal-
culus.

2.3.7. Remark. Note that by [51, Thm. 17.21] neither being decidable, hav-
ing the �nite model property (being generated by its �nite members), or being
axiomatizable by ∨-free formulas (equations) are decidable properties of �nitely
axiomatizable intermediate logics (varieties of Heyting algebras).

2.4 Poset-based characterization

As we have already seen, by Proposition 2.1.11 any P3-variety V is axiomatizable
by ∨-free equations and hence elementarily determined , meaning that there exists
a class F of posets �rst-order de�nable in the language of partial orders such that
V is generated by the corresponding class of complex algebras F+ = {P+ : P ∈
F}. See Appendix A.6 for the relevant de�nitions. For an intermediate logic L
the corresponding variety V(L) is elementarily determined if, and only if, the logic
L is elementary, i.e., sound and complete with respect to a �rst-order de�nable
class of posets.

It is known that ∨-free formulas have �rst-order correspondents which are Π2,
i.e., of the form ∀~x∃~yΦ(~x, ~y) with Φ a quanti�er-free formula in the language of
posets, see [222, �7.4] as well as [52, 53]. In this section we identify the Π2-sen-
tences which de�ne the elementary classes of posets determining the P3-varieties,
or equivalently the (∧, 0, 1)-stable logics. We do so using the duality theory for
(∧, 0, 1)-homomorphisms between distributive lattices, see e.g., [32, 127, 110].
However, it will be enough to consider the �nite case.

Given a relation R ⊆ X × Y between sets X and Y for x ∈ X we write
R[x] for the set {y ∈ Y : xRy} and for Z ⊆ Y we write R−1[Z] for the set
{x ∈ X : ∃z ∈ Z (xRz)}. Finally, given two relations R1 ⊆ X×Y and R2 ⊆ Y ×Z
we write R1 ◦ R2 for the relational composition, viz., the relation R ⊆ X × Z
given by

xRz if, and only if, ∃y ∈ Y (xR1y and yR2z).

2.4.1. Definition (cf., e.g., [32, Def. 6.2]). Let P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉
be posets. A relation R ⊆ P × Q is called order-compatible, or a generalized
Priestley morphism, provided that ≤P ◦R◦ ≤Q= R. Moreover, if R−1[Q] = P we
say that R is total and we say that R is onto if for every q ∈ Q there is p ∈ P
such that R[p] = ↑q.



2.4. Poset-based characterization 41

The proof of the following lemma is straightforward.

2.4.2. Lemma. Let R ⊆ P ×Q be an order-compatible relation between posets P
and Q. If p1, p2 ∈ P are such that p1 ≤P p2, then R[p2] ⊆ R[p1].

We are interested in total order-compatible relations between posets because
they correspond to (∧, 0, 1)-homomorphisms between the dual Heyting algebras.
To be precise we have the following theorem.

2.4.3. Theorem ([32, Sec. 7 and Thm. 8.11], [110, Thm. 12] ). Let A and B be
�nite Heyting algebras with dual posets P and Q, respectively. There is a one-
to-one correspondence between (∧, 0, 1)-homomorphisms from A to B and total
order-compatible relations R ⊆ Q × P . Under this correspondence (∧, 0, 1)-em-
beddings correspond to onto total order-compatible relations.

Recall from [203] that a geometric axiom is a �rst-order sentence in the lan-
guage of partial orders of the form,

∀~w (ϕ(~w) =⇒ ∃v ORmj=1ψj(~w, v)),

with ϕ, ψ1, . . . , ψm conjunctions of atomic formulas and the variable v not occur-
ring free in ϕ. A geometric implication is then taken to be a �nite conjunction of
geometric axioms.3

2.4.4. Definition (cf. [188, Def. 2]). We say that a geometric axiom of the form

∀~w (ϕ(~w) =⇒ ∃v ORmj=1ψj(~w, v))

is simple if

(i) There exists w0 ∈ ~w such that ϕ(~w) is the conjunction of the atomic for-
mulas w0 ≤ w with w ∈ ~w such that w 6= w0,

(ii) Every atomic subformula of ψj(~w, v) is of the form w ≤ v or w = v for
w ∈ ~w such that w 6= w0.

A simple geometric implication is then a conjunction of simple geometric axioms.

2.4.5. Remark. Intermediate logics determined by a class of posets de�ned by
geometric implications have been shown to admit so-called labeled sequent calculi
[234, 203, 81]. Thus as a consequence of Proposition 2.4.10 below we obtain
that any (∧, 0, 1)-stable logic admits a cut-free labeled sequent calculus. This
is consistent with the existence of a translation of hypersequents into labeled
sequents, see, e.g., [224] for an overview.

3This name is explained by the fact that any conjunction of geometric axioms is equivalent to
a formula of the form ∀~x(ϕ(~x) =⇒ ψ(~x)), where ϕ and ψ are so-called geometric formulas, i.e.,
�rst-order formulas containing neither the connective � =⇒ � nor the quanti�er �∀�. Conversely,
any �rst-order formula of the form ∀~x(ϕ(~x) =⇒ ψ(~x)) with ϕ and ψ geometric formulas is
equivalent to a geometric implication in the sense used here.
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In the work of Lahav [188] and Lellmann [192, Sec. 6.1] on constructing an-
alytic hypersequent calculi for modal logics, variants of the simple geometric
implications play an important rule. They consider so-called simple formulas ,
viz., �rst-order formulas, in the language with a single binary relation symbol, of
the form ∀~w∃v ψ(~w, v) where ψ(~w, v) is a disjunction of conjunctions of atomic
formulas of the form wRv or w = v. It is easy to verify that on rooted posets any
simple formula is equivalent to a simple geometric implication and vice versa.

2.4.6. Example. The intermediate logics BTWn,BWn,BCn, for n ≥ 1, are all
complete with respect to an elementary class of posets determined by simple geo-
metric implications. Furthermore the logics BDn, for n ≥ 2, are all complete with
respect to an elementary class of posets determined by geometric implications,
namely

∀w1 . . . wn+1(ANDn
i=1(wi ≤ wi+1) =⇒ ORi 6=j(wi = wj)),

which are ostensibly not simple.

2.4.7. Proposition. Let R ⊆ P × Q be a total onto order-compatible relation
between posets P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉, with P rooted. Then for any simple
geometric implication γ, we have that P |= γ implies Q |= γ.

Proof:
Without loss of generality we may assume that γ is a simple geometric axiom,
say, ∀~w (ϕ(~w) =⇒ ∃v ORmj=1ψj(~w, v)).

Assume that P |= γ. Suppose that q0, . . . , qn ∈ Q are such that the formula
ϕ(q0, . . . , qn) holds in Q, then by the assumption that R is an onto order-compat-
ible relation there are p1, . . . , pn ∈ P such that R[pi] = ↑qi for each i ∈ {1, . . . , n}.
Because P is rooted there is p0 ∈ P such that ϕ(p0, p1, . . . , pn) holds and so since
P |= γ there is r ∈ P such that ψj(~p, r) holds in P for some j ∈ {1, . . . ,m}.

We claim that there is an element s ∈ Q such that ψj(~q, s) holds in Q. To
establish this claim we consider separately the case where there are no subformulas
of ψj(~w, v) of the form w = v and the case where there are subformulas of ψj(~w, v)
of this form.

In the �rst case, since R is total, we have s ∈ Q such that rRs. We claim
that ψj(~q, s) holds in Q. To see this, simply observe that if pi ≤P r for some
i ∈ {1, . . . , n} then by Lemma 2.4.2 we have that s ∈ R[r] ⊆ R[pi] = ↑qi, which
implies that qi ≤Q s.

In the second case we have that there is at least one subformula of ψj(~w, v)
of the form w = v and consequently at least one index, say i0, in {1, . . . , n} such
that pi0 = r. Consequently, R[r] = R[pi0 ] = ↑qi0 . We claim that ψj(~q, qi0) holds in
Q. To see this, as before, we observe that if pi ≤P r for some i ∈ {1, . . . , n} then
↑qi0 = R[r] ⊆ R[pi] = ↑qi and hence qi ≤Q qi0 . Similarly, if for some i ∈ {1, . . . , n}
we have pi = r, then ↑qi = R[pi] = R[r] = ↑qi0 and hence qi = qi0 .
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Since the elements q0, . . . , qn ∈ Q were arbitrary with the property that
ϕ(q0, . . . , qn) was true in Q, this shows that Q |= γ. 2

2.4.8. Proposition. Let F be a class of posets de�ned by simple geometric im-
plications and let F+ = {P+ : P ∈ F} be the corresponding set of Heyting algebras.
Then the variety of Heyting algebras generated by the class F+ is (∧, 0, 1)-stably
generated.

Proof:
If P ∈ F and Q is a subposet of P with ↑PQ = Q, then evidently Q satis�es any
simple geometric implication satis�ed by P. Consequently, the variety V must in
fact be determined by the class Fr of rooted posets belonging to F . Furthermore,
because on rooted posets any (simple) geometric implication is equivalent to a
positive �rst-order formula in the language of partial orders we easily see that for
any rooted poset P ∈ F and any order-preserving surjection f : P � Q we have
that Q ∈ F . Consequently, by Lemma A.4.4 and discrete duality we have that
any equation refuted by some algebra P+ with P ∈ Fr is in fact also refuted by
some algebra Q+ with Q a �nite member of Fr. It follows that the variety V is
generated by the class of �nite members of F+

r , i.e., the class (F+
r )ω. Finally,

letting K := {A : ∃B ∈ (F+
r )ω(A ↪→∧,0,1 B)} it follows from Proposition 2.4.7

that K is a (∧, 0, 1)-stable class of Heyting algebras generating V . 2

To establish the converse of Corollary 2.4.8 we need the following lemma which
is essentially an exercise in correspondences theory, see, e.g., [228, 222, 68].

2.4.9. Lemma. For any analytic structural universal clause q there exists a sim-
ple geometric axiom γq such that

P |= γq ⇐⇒ P+ |= q,

for every rooted poset P.

Proof:
Consider an analytic structural universal clause

ε1 and . . . and εm =⇒ εm+1 or . . . or εn, (q)

with εk denoting the equation sk(~x) ≤ tk(~y), for k ∈ {1, . . . , n}. By the assump-
tion that q is analytic we have that each term sk is a, possibly empty, meet of
left variables and each term tk either 0 or a single right variable. Furthermore,
the set ~x = {x1, . . . , xl} of left variables and the set ~y = {y1, . . . , yr} of right
variables are disjoint and each left variable occurs exactly once in exactly one of
the terms sj and similarly each right variable occurs exactly once in exactly one
of the terms tj, with j ∈ {m+ 1, . . . , n}.
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In the following we write Pr(~x, ~y) for the left-hand side of the clause q, and
for k ∈ {1, . . . , n} we let xk1 , . . . , xkrk denote the variables occurring in the term
sk(~x), if any, and let yk0 denote the variable occurring in the term tk(~y), if any.

Let P be a poset. With the notation above we then have that P+ 6|= q if, and
only if, there are upsets U1, . . . , Ul and V1, . . . , Vr of P such that

sP
+

i (~U) ⊆ tP
+

i (~V ), (2.1)

for all i ∈ {1, . . . ,m}, and
sP

+

j (~U) 6⊆ tP
+

j (~V ), (2.2)

for all j ∈ {m+ 1, . . . , n}. We see that Property 2.2 holds if, and only if, there is

pj ∈ P such that pj ∈ sP
+

j (~U) and pj 6∈ tP
+

j (~V ). Since both sP
+

j (~V ) =
⋂rj
d=1 Ujd and

tP
+

j (~U) are upsets of P, this in turn is equivalent to the existence of some pj ∈ P
such that ↑pj ⊆ sP

+

j (~U) and tP
+

j (~V ) ⊆ (↓pj)c. Unraveling the de�nitions of the
terms sj and tj we obtain that Property 2.2 is equivalent to the existence of a
pj ∈ P such that

↑pj ⊆ Uj1 and . . . and ↑pj ⊆ Ujrj and Vj0 ⊆ (↓pj0)c.

The special syntactic shape of the clause q ensures that the left variables ~x only
occur negatively in Pr(~x, ~y) and that the right variables ~y only occur positively
in Pr(~x, ~y). Moreover, every variable among ~x, ~y occurs exactly once somewhere
on the right-hand side of the clause q. This implies that, salva veritate, we may
substitute ↑pj for Ujd and (↓pj0)c for Vj0 everywhere in Equation 2.1. This is
essentially an application of the Ackermann Lemma, see, e.g., [68, Sec. 4] for the
version used here. From this we may conclude, with some renaming, that P+ 6|= q
if, and only if, there are pm+1, . . . , pn ∈ P such that

ri⋂
d=1

↑pid ⊆ (↓pi0)c,

for each i ∈ {1, . . . ,m}. Consequently, P+ |= q if, and only if, for all elements
pm+1, . . . , pn ∈ P there is some i ∈ {1, . . . ,m} such that

ri⋂
d=1

↑pid 6⊆ (↓pi0)c.

We easily see that
⋂ri
d=1 ↑pid 6⊆ (↓pi0)c precisely when there is q ∈ P such that

pid ≤ q for all d ∈ {1, . . . , ri} and q ≤ pi0 . We therefore obtain that

P+ |= q ⇐⇒ P |= ∀~w∃v ORmi=1(ANDrid=1(wid ≤ v) and v ≤ wi0).

Thus q is equivalent to a formula in the �rst-order language of posets. In fact, it
is easy to see that the formula

∀~w∃v ORmi=1(ANDrid=1(wid ≤ v) and v ≤ wi0),
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is equivalent to the formula

∀~w∃v ORmi=1(ANDrid=1(wid ≤ v) and v = wi0).

Thus we obtain a formula ψ(~w, v), which is a disjunction of conjunctions of atomic
formulas of the form w ≤ v and w = v, such that

P+ |= q ⇐⇒ P |= ∀~w∃v ψ(~w, v).

Finally, letting γq be the formula ∀w0∀~w (ANDw∈~w(w0 ≤ w) =⇒ ∃v ψ(~w, v)),
for w0 some fresh �rst-order variable, we obtain a simple geometric axiom such
that γq is equivalent to q on rooted posets. 2

2.4.10. Proposition. Any variety of Heyting algebras generated by a (∧, 0, 1)-
stable universal class of Heyting algebras is elementarily determined by a class of
posets de�ned by simple geometric implications.

Proof:
Let V be a variety of Heyting algebras generated by a (∧, 0, 1)-stable universal
class, say U . By Lemma 2.2.7 is axiomatized by a collection of structural clauses,
say {qi}i∈I , which by Lemma 2.1.7 we may assume to be analytic. By an argu-
ment completely similar to the one presented in the proof of Proposition 2.4.8,
V will be generated by the class F+ := {F+ : ∀i ∈ I (F |= γqi)}, where γi is the
simply geometric implication corresponding to qi obtained from Lemma 2.4.9. 2

We summarize our �ndings by amending Theorem 2.1.9 with additional items.

2.4.11. Theorem. Let V be a variety of Heyting algebras and let L be its corre-
sponding logic. Then the following are equivalent.

1. The variety V admits a structural hypersequent calculus.

2. The variety V admits an analytic structural hypersequent calculus.

3. The logic L admits a structural hypersequent calculus.

4. The logic L admits an analytic structural hypersequent calculus.

5. The variety V is axiomatizable by P3-equations.

6. The logic L is axiomatizable by P3-formulas.

7. The class (IS∧,0,1(Vfsi))ω is contained in V.

8. The logic L is (0,∧, 1)-stable.

9. The variety V is determined by a class of posets de�ned by simple geometric
implications.

10. The logic L is sound and complete with respect to a class of posets de�ned
by simple geometric implications.
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2.5 Comparison with (∧,∨, 0, 1)-stable logics
What we have done so far shows, perhaps somewhat surprisingly, that the seem-
ingly very restrictive notion of (∧, 0, 1)-stability yields interesting and, indeed
well-known, varieties of Heyting algebra, or equivalently, intermediate logics. In
this section we will compare the class of (∧, 0, 1)-stable intermediate logics to the
class of (∧,∨, 0, 1)-stable intermediate logics.

2.5.1. Proposition. The set of (∧, 0, 1)-stable logics is a proper subset of the
set of (∧,∨, 0, 1)-stable logics.

Proof:
Evidently each (∧, 0, 1)-stable logic is also a (∧,∨, 0, 1)-stable logic. To show
that there exist (∧,∨, 0, 1)-stable logics which are not (∧, 0, 1)-stable, consider
the following pair of Heyting algebras

A B

We easily see that A is isomorphic to a (∧, 0, 1)-subalgebra of B but not a
(∧,∨, 0, 1)-subalgebra of B. Let V be the variety axiomatized by the (∧,∨, 0, 1)-
stable equation ε∧,∨,0,1(A) associated with A. Then the intermediate logic L
corresponding to this variety is (∧,∨, 0, 1)-stable [29, Prop. 5.3]. Since B is well-
connected andA 6↪→∧,∨,0,1 B, we may conclude thatB belongs to V [29, Prop. 5.1].
Consequently, assuming that L is (∧, 0, 1)-stable A must also belong to V . But
then A |= ε∧,∨,0,1(A) which, since any �nite well-connected Heyting algebra re-
futes its own (∧,∨, 0, 1)-stable equation [29, Prop. 5.1], is a contradiction. 2

Despite the fact that there are (∧,∨, 0, 1)-stable logics which are not (∧, 0, 1)-
stable, all the examples of (∧,∨, 0, 1)-stable logics considered so far [25, Sec. 7]
are in fact (∧, 0, 1)-stable. The following theorem may be seen as explaining
why this indeed the case. Furthermore, this also provides us with examples of
(∧,∨, 0, 1)-stable logics which are not (∧, 0, 1)-stable.

2.5.2. Theorem. For A a �nite subdirectly irreducible Heyting algebra the fol-
lowing are equivalent.
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1. The (∧,∨, 0, 1)-stable clause q∧,∨,0,1(A) associated with A is equivalent to a
collection of (∧, 0, 1)-stable clauses.

2. The (∧,∨, 0, 1)-stable clause q∧,∨,0,1(A) associated with A is equivalent to
the (∧, 0, 1)-stable clause q∧,0,1(A) associated with A.

3. The lattice reduct of A is projective in the class of distributive lattices.

Proof:
Evidently Item 2 entails Item 1. Conversely, to see that Item 1 entails Item 2, it
su�ces, due to Lemma 2.2.6, to show for any Heyting algebra B that

A ↪→∧,0,1 B if, and only if, A ↪→∧,∨,0,1 B.

Since {∧, 0, 1} ⊆ {∧,∨, 0, 1}, for each Heyting algebra B, we evidently have

A ↪→∧,∨,0,1 B implies A ↪→∧,0,1 B.

To establish the converse let B be given and suppose that A ↪→∧,0,1 B, say via
h : A ↪→ B. If A 6↪→0,∧,∨1 B then B |= q∧,∨,0,1(A) and so since, by assumption,
q∧,∨,0,1(A) is equivalent to collection of (∧, 0, 1)-stable clauses and such clauses are
preserved by (∧, 0, 1)-embeddings we must have that A |= q∧,∨,0,1(A) which is a
contradiction as every Heyting algebra refutes all of the stable clauses associated
with it.

To see that Item 2 entails Item 3 suppose that the lattice reduct of A is not
projective in the class of distributive lattices. We exhibit a Heyting algebra B
such that

A ↪→∧,0,1 B and A 6↪→∧,∨,0,1 B,

showing that the universal clauses q∧,0,1(A) and q∧,∨,0,1(A) are not equivalent. To
this e�ect let P := J(A)∂, be the order dual of J(A), the poset of join-irreducible
elements of A. Note that as A is �nite the Heyting algebra P+ of upsets of P is
isomorphic to A. By Theorem A.7.1, the lattice reduct of A not being projective
entails the existence of a1, a2 ∈ J(A) such that a1 ∧ a2 6∈ J0(A) = J(A) ∪ {0},
in particular a1 and a2 must be incomparable. Let b1, . . . , bn be an anti-chain of
maximal join-irreducible elements below a1 ∧ a2, such that

∨n
i=1 bi = a1 ∧ a2 in

A. Necessarily, n ≥ 2. Given this, let P0 be the poset obtained from P by adding
a new element a0 covering a1, a2 and covered by b1, . . . , bn as shown below

. . .
bnbn−1b1b2

a1 a2

. . .
bnbn−1b1b2

a1 a2

a0
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Thus |P0| = |P |+ 1. Evidently there can be no order-preserving surjection from
P0 onto P. Letting B denote the dual Heyting algebra P+

0 of P0, this shows that
A 6↪→∧,∨,0,1 B. We claim, however, that A ↪→∧,0,1 B. To see this, observe that P
is a subposet of P0, whence by duality we have a surjective map h : B�∧,∨,0,1 A.
Moreover, we may easily verify that h−1(0) = {0} and h−1(1) = {1}. Being
a �nite distributive lattice the meet semi-lattice reduct of A is projective as a
meet semi-lattice by Theorem A.7.4. Therefore, we obtain a meet semi-lattice
homomorphism h : A → B such that h ◦ h is the identity on A. In particular,
h must be injective. Moreover, as h(h(0)) = 0 and h(h(1)) = 1 it follows that
h(0) = 0 and h(1) = 1. Thus we have h : A ↪→∧,0,1 B.

To see that Item 3 entails Item 2 suppose that the lattice reduct of A is
projective in the class of distributive lattices. We claim that the (∧,∨, 0, 1)-sta-
ble clause q∧,∨,0,1(A) associated with A is equivalent to the (∧, 0, 1)-stable clause
q∧,0,1(A) associated with A. As before it su�ces to show that A ↪→∧,0,1 B implies
A ↪→∧,∨,0,1 B. This however follows immediately from Corollary A.7.3. 2

2.5.3. Remark. Theorem 2.5.2 can be seen as explaining why all of the exam-
ples of (∧,∨, 0, 1)-stable logics considered in [25, Sec. 7] are in fact (∧, 0, 1)-stable
logics, as all of these logics are axiomatized by (∧,∨, 0, 1)-stable equations associ-
ated with �nite well-connected Heyting algebras the lattice reducts of which are
projective in the class of distributive lattices.

We conclude this section by showing that the (∧, 0, 1)-stable logics can be
characterized among the (∧,∨, 0, 1)-stable logics as the ones which can be axiom-
atized by ∨-free formulas. For this we will need the following de�nition.

2.5.4. Definition. A poset Q is co�nal in a poset P provided that Q is a sub-
poset of P and for all p ∈ P there is q ∈ Q with p ≤ q.

We will make use of the following well-known characterization of intermediate
logics axiomatizable by ∨-free formulas.

2.5.5. Theorem ([254, Thm. 5.7(ii)]). Let L be an intermediate logic. Then the
following are equivalent.

1. The logic L is axiomatizable by ∨-free formulas.

2. For all posets P and Q with Q co�nal in P, if P 
 L, then Q 
 L.

Intermediate logics satisfying either of the equivalent conditions of Theo-
rem 2.5.5 are called co�nal subframe logics see, e.g., [51, Chap. 11.3]. They
enjoy many good properties such as the �nite model property, canonicity, and
elementarity.



2.5. Comparison with (∧,∨, 0, 1)-stable logics 49

2.5.6. Lemma. Let R ⊆ P × Q be an order-compatible relation between �nite
posets P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉. Then there is a poset P1 co�nal in P and
an order-preserving surjection f : P1 � Q.

Proof:
Let P0 = {p ∈ P : ∃q ∈ Q (R[p] = ↑q)} and let P0 be the corresponding
subposet of P. Then we see that mapping each p ∈ P0 to the necessarily unique
element q ∈ Q such that R[p] = ↑q determines a map g : P0 → Q which must be
surjective as R is onto. Furthermore, because R is order-compatible we have by
Lemma 2.4.2, that p1 ≤P p2 implies R[p2] ⊆ R[p1] and consequently that g is an
order-preserving map from the poset P0 to the poset Q.

Let P1 = P0 ∪ max(P ) and let P1 be the corresponding subposet of P. Ev-
idently P1 is co�nal in P. We then note that for any p ∈ max(P ), since R is
total, we have q ∈ Q such that pRq. Moreover, if for some p0 ∈ P0 we have
p0 ≤P p then by Lemma 2.4.2, R[p] ⊆ R[p0] = ↑g(p0). This shows that the map
f : P0 ∪ max(P ) → Q de�ned by letting f(p) = g(p), if p ∈ P0 and letting f(p)
be some element of R[p] if p ∈ max(P )\P0 is a well-de�ned and order-preserving
surjection from P1 to Q. 2

2.5.7. Lemma. Let R ⊆ P × Q be an order-compatible relation between �nite
posets P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉, with P rooted. Then there is a rooted poset
P1 co�nal in P and an order-preserving surjection f : P1 � Q1 such that Q is
co�nal in the poset Q1.

Proof:
From Lemma 2.5.6 we know that there is a poset P1 co�nal in P together with
an order-preserving surjective f : P1 � Q. Let r be the root of P. If r ∈ P1 then
the proposition follows. If r is not in P1, then letting P ′1 := P1 ∪ {r} we obtain
a rooted poset P′1 co�nal in P. Similarly, by adjoining a new root s to Q we
obtain a rooted poset Q1 in which Q is co�nal. Evidently, the map f extends to
a surjective order-preserving map from P′1 to Q1 by mapping r to s. 2

2.5.8. Proposition. Let L be an intermediate logic. Then the following are
equivalent.

1. L is (∧, 0, 1)-stable.

2. L is a (∧,∨, 0, 1)-stable and axiomatizable by ∨-free formulas.

Proof:
Every (∧, 0, 1)-stable logic is evidently (∧,∨, 0, 1)-stable. Furthermore, by Propo-
sition 2.1.11 every (∧, 0, 1)-stable logic can be axiomatized by ∨-free formulas.
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Conversely, suppose that L is a (∧,∨, 0, 1)-stable logic which can be axioma-
tized by ∨-free formulas. We show that if A and B are �nite Heyting algebras
with B ∈ V(L)fsi and A ↪→∧,0,1 B then A ∈ V(L). Therefore, let P be the dual
poset of B and let Q be the dual poset of A. Since A ↪→∧,0,1 B we have, by
Theorem 2.4.3 a total and onto order-compatible relation R ⊆ P × Q. More-
over, since the algebra B is subdirectly irreducible we have that the poset P is
rooted and hence by Lemma 2.5.7 that Q is co�nal in an image Q1 under an
order-preserving map of a rooted poset P1 co�nal in P. By Theorem 2.5.5 we
must have that P1 
 L. Moreover, since P1 is rooted and L is (∧,∨, 0, 1)-stable
we obtain that Q1 
 L, see [25, Thm. 6.7], and so, again using Theorem 2.5.5,
we see that Q 
 L. We may therefore conclude that A ∈ V(L), as desired. Since
L is (∧,∨, 0, 1)-stable we have that V(L) is generated by its �nite members [25,
Thm. 6.8]. Thus by Theorem 2.2.13 it follows that the logic L is (∧, 0, 1)-stable. 2

2.5.9. Remark. It is known that there are continuum-many (∧,∨, 0, 1)-stable
logics [25, Thm. 6.13] just as it is known that there are continuum-many logics
axiomatized by ∨-free formulas [51, Thm. 11.19]. However, it is not immediately
clear if the techniques used to establish these two results can also be used to con-
struct continuum-many (∧, 0, 1)-stable logics. Thus we leave as open the problem
of determining the cardinality of the set of (∧, 0, 1)-stable logics.

2.6 Summary and concluding remarks

In this chapter we have looked at intermediate logics admitting structural hy-
persequent calculi. Using the correspondence between (analytic) structural hy-
persequent rules and (analytic) structural universal clauses we have shown that
the intermediate logics which admit an analytic structural hypersequent calculus
are precisely the (∧, 0, 1)-stable logics. This supplements the previous syntactic
characterization of logics admitting structural hypersequent calculi [57, 60] with a
purely algebraic characterization. Our semantic characterization has also allowed
us to obtain negative results showing that certain logics, such as BDn, for n ≥ 2,
do not admit a structural hypersequent calculus, let alone an analytic structural
hypersequent calculus. We have also provided a characterization of the (∧, 0, 1)-
stable logics in terms of the relational semantics. In particular, we have shown
that any (∧, 0, 1)-stable logic is sound and complete with respect to a class of
poset de�ned by certain Π2-sentences which we called simple geometric implica-
tions. We have also remarked how the simple geometric implications are related
to the simple sentences appearing in the work of Lahav [188] and Lellmann [192,
Sec. 6.1] concerned with constructing analytic hypersequent calculi for modal log-
ics. Finally, we have compared the (∧, 0, 1)-stable logics to the (∧,∨, 0, 1)-stable
logics and shown that the (∧, 0, 1)-stable logics are exactly the (∧,∨, 0, 1)-stable
logics which can be axiomatized by ∨-free formulas.
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Further directions and open problems As mentioned earlier, the work of
Ciabattoni, Galatos, and Terui [57, 59, 60], on which the �ndings in this chapter
rely, is carried out in the much more general context of substructural logics. It
is therefore natural to ask if a semantic characterization of substructural logics
admitting structural (analytic) sequent and hypersequent calculi similar to the
ones presented in this chapter can also be found for substructural logics. However,
the fact that the comma in the left-hand side of the sequent arrow is interpreted in
a (pointed) residuated lattice as the monoidal product and not as the meet raises
a number of non-trivial technical issues. Nevertheless, one could hope that some
appropriately modi�ed version of (·,∨, e)-stability introduced by Bezhanishvili,
Galatos, and Spada [35, Sec. 4] would also play a role in the substructural setting.

It is also natural to ask for semantic characterizations of intermediate logics
admitting di�erent types of proof calculi, such as structural display calculi, where
good syntactic characterizations already exist [62, 141, 140], or labeled sequent
calculi where good descriptions of the �rst-order theory of the corresponding
posets are available [203, 81].

As we have seen there is a close connection between the (∧, 0, 1)-stable inter-
mediate logics and the modal logics considered by Lahav [188] and Lellmann [192,
Sec. 6.1]. It would be interesting to explore this connection further, e.g., by
providing a purely semantic characterization of the modal logics they consider.
Furthermore, this connections also indicates that the cut-admissibility argument
using the relational semantics due to Lahav should have a counterpart in the
setting of intermediate logics, and similarly, that the algebraic cut-admissibility
arguments used by Ciabattoni, Galatos, Terui, and others should have a coun-
terpart in the setting of modal logics, cf. [21, Sec. 6] for an algebraic proof of
cut-admissibility in sequent calculi for a few modal logics.

Finally, we believe that it would be worthwhile to systematically explore the
consequences of having a cut-free structural hypersequent calculus. For instance:
(i) Conservatity results showing that certain fragments of two logics coincide.
(ii) Interpolation results using the calculi to extract procedures for computing
interpolants and ideally allowing for further analysis of their complexity, see [186,
Sec. 3] and [187] for existing work along these lines. (iii) Complexity results such
as obtaining uniform upper, and ideally optimal, bounds on the complexity of
proof search as, e.g., already considered in the setting of modal logic [192, Sec. 6].





Chapter 3

MacNeille transferability

As we have outlined in the introduction, there is an interesting link between
completions of lattice-based algebras and proof theory. For example, analytic
structural hypersequent calculi give rise to universal classes of lattice-based al-
gebras closed under MacNeille completions. In particular, if V is any variety
of Heyting algebras axiomatized by P3-equations then the universal class Vfsi of
its �nitely subdirectly irreducible members is closed under MacNeille comple-
tions [58, Thm. 4.3]. This is particularly interesting since the only non-trivial
varieties of Heyting algebras closed under MacNeille completions are the variety
of all Heyting algebras and the variety of all Boolean algebras [151]. Drawing
on the connection between the level P3 and the notion of stability established in
Chapter 2, in this chapter, based on [31], we look, from a purely algebraic point
of view, at the phenomenon of universal classes of lattices being closed under
MacNeille completions.

Our starting point is the notion of (ideal) transferability originally introduced
by Grätzer [133, Sec. 10(ii)]. A �nite lattice L is (ideal) transferable if for any
lattice K, the lattice L is a sublattice of the lattice of ideals of K only if L
is a sublattice of K. We introduce analogous notions of MacNeille and canoni-
cal transferability and show how �nite transferable lattices give rise to universal
classes of lattices which are closed under completions. Thus the problem of �nding
universal classes of lattice-based algebras closed under MacNeille completions can
in some cases be reduced to the problem of �nding �nite MacNeille transferable
lattices.

While we are mainly interested in MacNeille transferability, we also explore the
relationships between ideal, MacNeille, and canonical transferability. Concretely,
we show that under mild assumptions MacNeille transferability entails canonical
transferability which in turn entails ideal transferability.

We provide necessary conditions for a �nite lattice to be MacNeille transfer-
able for the class of all lattices. In particular any such lattice must be distributive.
This highlights some of the crucial di�erences between ideal and MacNeille trans-
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ferability. Nevertheless, we show that, just as in the case of ideal transferability,
the concept of (weak) projectivity plays an important role in understanding the
concept of MacNeille transferability.

Using the connection between MacNeille transferability and projectivity, we
obtain an alternative proof of the fact, �rst established by purely syntactic meth-
ods, that if V is any variety of Heyting algebras axiomatized by P3-equations then
the universal class Vfsi is closed under MacNeille completions.

We then focus on MacNeille transferability with respect to the class of Heyting
algebras and the class of bi-Heyting algebras. In this setting we are able to
say much more about necessary and su�cient conditions for di�erent types of
MacNeille transferability. In particular, we show that all �nite distributive lattices
are MacNeille transferable with respect to the class of bi-Heyting algebras.

Finally, we discuss how canonical and MacNeille transferability of �nite dis-
tributive lattices relate to intermediate logics. In particular we consider the prob-
lem of whether all (∧,∨, 0, 1)-stable logics are (i) canonical, and (ii) elementary
[164, Chap. 3]. In this respect a number of partial results of a positive nature are
obtained.

Outline The chapter is structured as follows: In Section 3.1 we give a brief sum-
mary of the theory of (ideal) transferability. Then in Section 3.2 we introduce a
general notion of transferability and compare di�erent notions of transferability
of �nite lattices. Section 3.3 is concerned with MacNeille transferability of lat-
tices while Section 3.4 focuses on MacNeille transferability relative to the class
of distributive lattices. In Section 3.5 and Section 3.6 we consider MacNeille
transferability relative to classes of Heyting algebras and bi-Heyting algebras,
respectively. In Section 3.7 we show how transferability relates to questions of
canonicity and elementarity of varieties of Heyting algebras and in Section 3.8 we
draw some consequence of our results for the (∧,∨, 0, 1)-stable logics. Finally, we
conclude by discussing some possible directions for further research and listing a
number of concrete open problems in Section 3.9.

3.1 Ideal transferability

We shall here recall some basic de�nitions and results concerning the notion
of transferability due to Grätzer. Since we will be considering other analogous
notions of transferability later in this chapter we shall include the quali�er �ideal�
when talking about what is known in the literature as �transferability� simpliciter.

3.1.1. Definition ([133, Sec. 10(ii)]). A lattice L is ideal transferable if when-
ever there is a lattice embedding h : L ↪→ Idl(K) of L into the ideal lattice Idl(K)
of a lattice K, then there is a lattice embedding h′ : L ↪→ K. It is sharply ideal
transferable if the embedding h′ can be chosen so that h′(a) ∈ h(b) if, and only
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if, a ≤ b, for all a, b ∈ L. If we restrict K to belong to some class of lattices K,
we say L is transferable for, or with respect to, the class K.

Throughout the 1970s and early 1980s an extensive body of work related to
ideal transferability was produced, see [133, 105, 106, 205, 14, 134, 107, 189, 138,
20, 137, 214]. Recently the topic has been taken up again by Wehrung [250]. We
shall here only mention two of the most striking results which will also be useful
later on, referring to [136, pp. 502�503] for a historic account.

3.1.2. Theorem ([136, Thm. 557]). Let L be a �nite lattice. Then the following
are equivalent.

1. The lattice L is ideal transferable for the class of all lattices.

2. The lattice L is sharply ideal transferable for the class of all lattices.

3. The lattice L is projective in the class of all lattices.

4. The lattice L is a sublattice of a free lattice.

5. The lattice L is semi-distributive and satis�es Whitman's condition.

Recall that a lattice is called meet semi-distributive if it satis�es the quasi-equa-
tion

x ∧ y ≈ x ∧ z =⇒ x ∧ y ≈ x ∧ (y ∨ z),

join semi-distributive if it satis�es the quasi-equation

x ∨ y ≈ x ∨ z =⇒ x ∨ y ≈ x ∨ (y ∧ z),

and semi-distributive if it satis�es both. Together with the following universal
clause, know as Whitman's condition, semi-distributivity characterizes the �nite
sublattices of free lattices [202, 174].

x ∧ y ≤ u ∨ v =⇒ x ≤ u ∨ v or y ≤ u ∨ v or x ∧ y ≤ u or x ∧ y ≤ v.

3.1.3. Remark. Note that being semi-distributive and satisfying Whitman's
condition are both decidable properties of �nite lattices. Consequently, the prop-
erty of being ideal transferable, and therefore also sharply ideal transferable, with
respect to class of all lattices is a decidable property of �nite lattices.

The assumption in Theorem 3.1.2 that the lattice L is �nite is necessary.
There exist in�nite lattices which are ideal transferable for the class of all lattices
but not sharply ideal transferable for the class of all lattices, see [244]. Similarly,
as shown by Wehrung [250] even for �nite lattices the equivalence between ideal
transferability and sharp ideal transferable can also fail when restricting to other
classes of lattices such as the variety of modular lattices.

The situation becomes very di�erent when we consider ideal transferability
with respect to the class of distributive lattices.
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3.1.4. Definition. A �nite lattice L is faithfully ideal transferable for some class
of lattices K if for all lattice embeddings h : L ↪→ Idl(K) with K ∈ K there is a
lattice embedding h′ : L ↪→ K such that h(a) = ↓x implies h′(a) = x for all a ∈ L
and x ∈ K.

We will say that a �nite lattice L is simultaneously sharply and faithfully
ideal transferable for some class of lattices K, provided that L is both sharply
and faithfully ideal transferable for K and furthermore for all lattice embeddings
h : L ↪→ Idl(K) with K ∈ K there is a lattice embedding h′ : L ↪→ K witnessing
both that L is sharply and faithfully ideal transferable for K.

3.1.5. Theorem ([105, 205]). Every �nite distributive lattice is simultaneously
sharply and faithfully ideal transferable for the class of all distributive lattices.

Thus any distributive lattice has, up to isomorphism, the same �nite sublat-
tices as its ideal lattice. In fact, sharp and faithful transferability allow us to
say something about the preservations of bounds. If K is a distributive lattice
with a least element 0, then {0} is the least element of Idl(K). In this case it is
easy to see that if L is a �nite distributive lattice and h : L ↪→ Idl(K) is a lattice
embedding which preserves the least element, i.e., h(0) = {0}, then the lattice
embedding h′ : L ↪→ K obtained from Theorem 3.1.5 must map the least element
of L to the least element of K. A similar comment can be made in case K has
a greatest element. In particular, we have that if K is a bounded distributive
lattice then the lattices K and Idl(K) have, up to isomorphism, the same �nite
bounded sublattices.

3.2 General notions of transferability

We here introduce and compare several notions of transferability for di�erent
types of completions. By a completion type for a class of lattices K we shall
understand a class function associating to each lattice K ∈ K a complete lattice
C(K) together with a lattice embedding eC : K ↪→ C(K). In this chapter we shall
only be considering three di�erent completion types: The ideal completion1, the
MacNeille completion, and for bounded lattices the canonical completion. See
Appendix A.8 for de�nitions.

For τ ⊆ {∧,∨, 0, 1}, a τ -lattice is a lattice, or lattice with one or both bounds,
whose basic operations are of type τ . A τ -homomorphism is a homomorphism
with respect to this type, and a τ -embedding is an injective τ -homomorphism.
As in Chapter 2 we will sometimes write h : K ↪→τ K′ to indicate that h is a

1Note that when K is a lattice without a least element the ideal lattice Idl(K) will not
be complete for want of a least element. Nevertheless, we will, with some minor abuse of
terminology, allow ourself to speak about the ideal completion also in such cases.
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τ -embedding of τ -lattice K and K′. Similarly, we write K ↪→τ K′ to indicate
that there exists some τ -embedding from the τ -lattice K to the τ -lattice K′.

Throughout this chapter we will assume that if C is a completion type for a
class K of τ -lattices then C(K) is also a τ -lattice and the embeddings eC : K ↪→
C(K) preserve bounds the type of which belongs to τ , for each K ∈ K. This
assumption is satis�ed by the ideal, the MacNeille, and the canonical completions.

3.2.1. Definition. Let τ ⊆ {∧,∨, 0, 1}, L be a τ -lattice, K a class of τ -lattices
and C be a completion type for K. Then L is (τ, C)-transferable for K if for any
h : L ↪→τ C(K) where K ∈ K, there is h′ : L ↪→τ K. If the embedding h′ can be
chosen so that eC(h′(a)) ≤ h(b) if, and only if, a ≤ b for all a, b ∈ L we say that L
is sharply (τ, C)-transferable for K. Finally, if h′ can be chosen so that h′(a) = x
whenever h(a) = eC(x) for some a ∈ L and x ∈ K, we say that L is faithfully
(τ, C)-transferable for K.

When the completion type C is the ideal completion, MacNeille completion or
the canonical completion we will use the terms τ -ideal transferable, τ -MacNeille
transferable and τ -canonically transferable, respectively, and when τ = {∧,∨}
we will use the terms ideal transferable, MacNeille transferable and canonically
transferable, respectively. Similar conventions apply in the presence of the words
�sharply� and �faithfully�.

As we have seen, the �nite lattices which are ideal transferable for the class
of all lattices are well understood. There are obvious examples of lattices L that
are MacNeille and canonically transferable for the class of all lattices. Any �nite
chain, and the 4-element Boolean lattice provide examples. Since the property
of being modular is not a property of lattices which is preserved by MacNeille
completions [94] nor by canonical completions [147, 150], the pentagon N5 is
neither MacNeille nor canonically transferable for the class of all lattices. In�nite
chains can be problematic, as is seen by a simple cardinality argument. For
example the chain of real numbers embeds into the MacNeille completion of the
chain of rational numbers but of course not into the chain of rational numbers
itself. Such di�culties arise also with the traditional study of ideal transferability.
Therefore, in this chapter we will only consider transferability of �nite lattices.

3.2.1 Transferability and preservation of clauses

Just as in Chapter 2 for every τ ⊆ {∧,∨, 0, 1} and every �nite lattice L we
can �nd a universal clause qτ (L) in the language of τ -lattices such that for any
τ -lattice K we have that

K 6|= qτ (L) if, and only if, L ↪→τ K.

Given τ ⊆ {∧,∨, 0, 1}, a class J of �nite lattices and K a class of τ -lattices we
de�ne,

Kτ (J ) = {K ∈ K : ∀L ∈ J (K |= qτ (L))}.
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When J is a �nite set, say {L1, . . . ,Ln}, we write Kτ (L1, . . . ,Ln) for the class
Kτ (J ). Thus Kτ (J ) consist of the members of K not having any τ -sublattices
isomorphic to a member of J . Typically, K will be a universal class of lattices
or a class of τ -lattice reducts of some variety of τ -lattice based algebras. In this
case the class Kτ (J ) is universal for any choice of τ and J . When K is a class of
τ -lattices and C is a completion type for K such that C(K) belongs to K for all
K ∈ K we say that K is closed under C-completions .

3.2.2. Proposition. Let τ ⊆ {∧,∨, 0, 1}, K be a class of τ -lattices and C a
completion type for K. If J is any class of �nite lattices (τ, C)-transferable for
K then Kτ (J ) is closed under C-completions.

Proof:
Let K ∈ K be given. If C(K) 6∈ Kτ (J ), then there is some L ∈ J such that
K 6|= qτ (L). Consequently, L ↪→τ C(K) and so by the assumption that L is
(τ, C)-transferable for K we have that L ↪→τ K. But then K 6|= qτ (L) and there-
fore K 6∈ Kτ (J ). 2

Proposition 3.2.2 thus provides a template for constructing (universal) classes
of lattices closed under di�erent types of completions.

3.2.2 Relationships between notions of transferability

We �rst compare the �nite ideal and canonically transferable lattices. For a
bounded lattice K, let Kδ denote the canonical completion of the lattice K, as
de�ned in [111].

3.2.3. Proposition. Let K be a class of bounded lattices and let τ ⊆ {∧,∨, 0, 1}.
If a �nite lattice L is τ -canonically transferable for K, then L is τ -ideal transfer-
able for K.

Proof:
Suppose that L is a �nite lattice which is τ -canonically transferable for K and
assume that L ↪→τ Idl(K) for some K ∈ K. The ideal lattice Idl(K) is isomor-
phic to the bounded sublattice of open elements of the canonical extension Kδ

of K [111, Lem. 3.3], whence L ↪→τ K
δ. Therefore, by the assumption that L is

τ -canonically transferable for the class K, we must have that L ↪→τ K, showing
that L is τ -ideal transferable for K. 2

We now compare the �nite canonically and MacNeille transferable lattices.
Recall that for a lattice K we use K to denote the MacNeille completion of K.

3.2.4. Proposition. Let K be a class of bounded lattices closed under ultrapow-
ers and let τ ⊆ {∧,∨, 0, 1}. If a �nite lattice L is τ -MacNeille transferable for K
then L is τ -canonically transferable for K.



3.2. General notions of transferability 59

Proof:
Suppose that L is a �nite lattice which is τ -MacNeille transferable for K and
assume that L ↪→τ Kδ for some K ∈ K. By [112, Thm. 3.2] there is an ultra-
power KX/U of K such that Kδ is isomorphic to a bounded sublattice of KX/U .
Consequently, L ↪→τ KX/U . By assumption KX/U belongs to K and hence
L ↪→τ KX/U . Therefore, KX/U satis�es the universal clause qτ (L) associated
with L and, by �o±' Theorem, so does K. Thus, K has a τ -sublattice that is
isomorphic to L, showing that L is transferable for K. 2

For a lattice K, we let K+ be the result of adding a least element to K if
it does not have one, and adding a greatest element to K if it does not have
one. Note that for a �nite lattice L, there is a lattice embedding of L into K if,
and only if, there is a lattice embedding of L into K+. Following the convention
that the empty set is not an element of the ideal lattice, but is an element of the
MacNeille completion when viewed as a lattice of normal ideals, it is easily seen
that Idl(K) is a sublattice of Idl(K+) and K+ = K.

3.2.5. Proposition. Let K be a class of lattices closed under ultrapowers. If a
�nite lattice L is MacNeille transferable for K then L is ideal transferable for K.

Proof:
Let K be a class of lattices which is closed under ultrapowers, and assume that
L is a �nite lattice MacNeille transferable for K. If there is a lattice embedding
L ↪→ Idl(K) then we also have a lattice embedding L ↪→ Idl(K+). As in the
proof of Proposition 3.2.3 we then obtain an embedding of lattices L ↪→ (K+)δ.
Similarly to the argument in the proof of Proposition 3.2.4 we then obtain that
L is isomorphic to a sublattice of

(K+)X/U = (KX/U)+ = KX/U.

By assumption KX/U ∈ K and consequently we obtain a lattice embedding
L ↪→ KX/U . Finally, since L is �nite �o±' Theorem gives an embedding L ↪→ K
of lattices. 2

3.2.3 Transferability and ultrapowers

Recall, e.g., from [46, Def. II.10.14] that an algebra is locally �nite if all of its
�nitely generated subalgebras are �nite. Evidently, being locally �nite as a lattice
is independent of whether the type of any existing bounds are taken to be part
of the type of the lattice.

3.2.6. Theorem. Let τ ⊆ {∧,∨, 0, 1}, K be class of τ -lattices which are locally
�nite as lattices and C some completion type for K. If K is closed under C-
completions then the following are equivalent.
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1. All �nite lattices are (τ, C)-transferable for K.

2. For all K ∈ K the completion C(K) is isomorphic to a τ -sublattice of an
ultrapower of K.

Proof:
First assume that all �nite lattices are (τ, C)-transferable for K. Let K ∈ K
be given and let τ ′ = τ ∪ {∧,∨}. Any algebra is an ultraproduct of its �nitely
generated subalgebras [46, Thm. V.2.14]. By assumption C(K) ∈ K and as such
must be locally �nite as a lattice and therefore also as a τ ′-lattice. Consequently,
C(K) must be isomorphic to a τ ′-sublattice of an ultraproduct of its �nite τ ′-
sublattices, say

∏
i∈I Li/U . For each such τ ′-sublattice Li of C(K) we must

have that Li ↪→τ C(K) and hence by assumption Li ↪→τ K. From this we may
conclude that

∏
i∈I Li/U ↪→τ KI/U , see, e.g., [179, Prop. 4.2], and hence that

C(K) ↪→τ K
I/U .

Now assume that for all K ∈ K the completion C(K) is isomorphic to a
τ -subalgebra of an ultrapower of K. Then consider a �nite lattice L such that
L ↪→τ C(K) for some K ∈ K. By assumption there is an ultrapower, say KX/U ,
such that C(K) ↪→τ KX/U . But then KX/U 6|= qτ (L) and so by �o±' Theorem
K 6|= qτ (L), showing that L ↪→τ K. 2

Since all distributive lattices are locally �nite we obtain the following corollary
from Theorem 3.1.5.

3.2.7. Corollary. Let τ ⊆ {∧,∨, 0, 1} with {∧,∨} ⊆ τ . For any distributive
τ -lattice D, there is an ultrapower DX/U of D such that Idl(D) ↪→τ D

X/U .

This corollary may be seen as a strong version of the Baker-Hales Theorem [14,
Thm. A], see Lemma 3.3.6 below, showing that for any lattice K the ideal lattice
Idl(K) is a homomorphic image of a sublattice of an ultrapower of K.

3.3 MacNeille transferability for lattices

In the rest of this chapter we will focus on τ -MacNeille transferability with respect
to several classes of lattices for di�erent choices of τ ⊆ {∧,∨, 0, 1}. In this section
we will consider �nite lattices which are τ -MacNeille transferable for the class of
all τ -lattices.

3.3.1 Transferability with both lattice operations

Our �rst result in this respect is an immediate consequence of a result due to
Harding [145] which states that any lattice can be embedded into the MacNeille
completion of a distributive lattice. Consequently, any lattice which is MacNeille
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transferable for a class of lattices containing the class of all distributive lattices
must be a sublattice of a distributive lattice and hence distributive.

3.3.1. Theorem. Let K be a class of lattices containing the class of all distrib-
utive lattices. If L is a �nite lattice MacNeille transferable for K, then L is
distributive.

From Proposition 3.2.5 we obtain that any �nite lattice which is MacNeille
transferable for the class of all lattices is also ideal transferable. Therefore, by
Theorem 3.1.2, it follows that if a �nite lattice is MacNeille transferable for the
class of all lattices it must be a sublattice of a free lattice. Thus Theorem 3.3.1
entails that any �nite lattice MacNeille transferable for the class of all lattices is a
�nite distributive sublattice of a free lattice. Galvin and Jónsson [103] character-
ized the �nite distributive sublattices of free lattices as exactly those that do not
contain a doubly reducible element, viz., an element that is both a non-trivial join
and a non-trivial meet. From this we obtain the following result as an immediate
consequence of Theorem 3.3.1.

3.3.2. Corollary. If a �nite lattice is MacNeille transferable for the class of
all lattices, then it is distributive and has no doubly reducible elements.

3.3.3. Remark. In fact, as one of the earliest results on ideal transferability
Grätzer [134] showed that any lattice which is ideal transferable for the class of
all lattices cannot have any doubly reducible elements.

Galvin and Jónsson [103] further characterized all distributive lattices that
have no doubly reducible elements. This will be of use in later considerations for
us as well. To state their result we will need the following de�nition.

3.3.4. Definition. Let I be a set with a total order ≤I , and for each i ∈ I let
Ki = (Ki,≤i) be a lattice. Then the linear sum, denoted

⊕
I Ki, of the family

{Ki}i∈I is the disjoint union of the sets Ki with the ordering ≤ given by setting
a ≤ b i� a ∈ Ki and b ∈ Kj for some i <I j, or a, b ∈ Ki for some i and a ≤i b.

For any pair of lattices 〈K1,K2〉 we write K1 ⊕K2 for the linear sum of the
family {K1,K2} obtained from the total order 1 < 2. The operation 〈K1,K2〉 7→
K1⊕K2 is evidently an associative operation and so we may unambiguously write
K1 ⊕ . . . ⊕Kn, for lattice K1, . . . ,Kn. In particular, for a lattice K, the lattice
1⊕K will be the result of adding a new bottom element 0 to K, the lattice K⊕1
will be the result of adding a new top element 1 to K, and the lattice 1⊕K⊕ 1
will be the result of doing both.

3.3.5. Theorem ([103]). A distributive lattice has no doubly reducible elements
if, and only if, it is a linear sum of lattices each of which is isomorphic to an
eight-element Boolean algebra, a one-element lattice, or 2×C for a chain C.
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Consequently, the �nite lattices MacNeille transferable for the class of all
lattices must be of the form

⊕n
i=1 Ki with each lattice Ki either the Boolean

algebra 23, the one-element lattice 1, or the direct product 2×C for some �nite
chain C.

3.3.2 Transferability without both lattice operations

If instead of considering MacNeille transferability, i.e., τ -MacNeille transferability
for τ = {∧,∨}, we consider τ -MacNeille transferability for τ ⊆ {∧,∨, 0, 1} such
that {∧,∨} 6⊆ τ , the situation changes considerably. For what follows we will
need the following slight extension of a result of Baker and Hales [14].

3.3.6. Lemma (cf. [14, Thm. A]). For a lattice K, there is a sublattice S of an
ultrapower KX/U of K and an onto lattice homomorphism h : S � Idl(K). If
K has a least (resp. greatest) element, then the least (resp. greatest) element of
KX/U belongs to S and is the only element of S mapped by h to the least (resp.
greatest) element of Idl(K).

Proof:
We follow [14]. Let X be the set of all �nite subsets of K partially ordered
by set inclusion. The collection of principal upsets of X is closed under �nite
intersections and does not contain the empty set and may therefore be extended
to an ultra�lter, say U . Let M be the set of order-preserving maps from X to
K. Then M is a sublattice of KX . Let S be the image of M in KX/U under the
canonical projection. So the elements of S are equivalence classes σ/U of order
preserving functions σ : X → K. De�ne h : S� Idl(K) by letting h(σ/U) be the
ideal generated by the image of σ. In [14] it is shown that h is a well de�ned onto
lattice homomorphism.

If K has a least element 0, then the constant map from X to K taking value
0 belongs to M, and the equivalence class determined by this map is the least
element of KX/U . Since h is onto, it must map least element to least element.
If σ : X → K is order preserving and h(σ/U) is the least element of Idl(K), then
the ideal generated by the image of σ is the zero ideal {0}, whence σ must be
the zero function. So the least element of S is the only element mapped to the
least element of Idl(K). Similarly, if K has a greatest element 1 then the greatest
element of KX/U is the equivalence class of the constant function 1. It belongs
to S, and since h is onto it maps greatest element to greatest element. Suppose
h(σ/U) is the greatest element of Idl(K). Then the element 1 belongs to the ideal
of K generated by the image of σ, and since σ is order-preserving and the partial
order on X is in fact a lattice, 1 must be in the image of σ. But then there is a
�nite subset K0 ⊆ K with σ(K0) = 1. Since σ is order-preserving, σ takes value
1 on the upset of X generated by K0, hence σ is in the equivalence class of the
constant function 1. 2
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3.3.7. Theorem. Let L be a �nite distributive lattice and let τ ⊆ {∧,∨, 0, 1}
be such that {∧,∨} 6⊆ τ . Then L is τ -MacNeille transferable for the class of all
τ -lattices.

Proof:
Assume K is a τ -lattice and that h : L ↪→τ K. By symmetry, we may assume that
τ does not contain ∨. We consider �rst the case that τ does not contain ∧, i.e.,
τ ⊆ {0, 1}. If K is �nite, then K = K and there is nothing to show. Otherwise,
since L is �nite, there is a τ -embedding of L into K.

Assume that τ contains ∧. Viewing the MacNeille completion K as a set of
normal ideals we have an embedding K ↪→∧,0,1 Idl(K0), where K0 is taken to be
the lattice 1⊕K ifK does not have a least element andK otherwise. We therefore
obtain a τ -embedding j : L ↪→τ Idl(K0). By Lemma 3.3.6 we have an ultrapower
(K0)X/U of K0 and a bounded sublattice S ↪→ (K0)X/U with bounded lattice
homomorphism h : S� Idl(K0). Thus we have a diagram

S (K0)X/U

L Idl(K0)

h

j

of τ -homomorphism. Since L is distributive, by Theorem A.7.4, the meet semi-
lattice reduct of L is projective in the class of meet semi-lattices. Therefore, there
is a meet semi-lattice homomorphism g : L→ S making the diagram

S (K0)X/U

L Idl(K0)

h

j

g

commute. Since j is injective, so is g. Since the composite h ◦ g preserves the
bounds whose type belongs to τ , and h is injective on those bounds, this shows
that g preserves bounds whose type is in τ . Thus, S has a τ -sublattice isomorphic
to L, and hence so does (K0)X/U . Therefore, the ultrapower (K0)X/U refutes
the clause qτ (L) associated with L, and hence by �o±' Theorem, so does K0,
whence L ↪→τ K0. If K0 = K, in particular if 0 ∈ τ , then we must have L ↪→τ K.
Otherwise L ↪→τ 1⊕K, in which case K does not have a least element. In par-
ticular 0 6∈ τ and so we may conclude that also L ↪→τ K. 2

3.3.8. Remark. We note that the proof of Theorem 3.3.7 also shows that any
�nite distributive lattice is τ -ideal transferable for the class of all τ -lattices when
τ ⊆ {∧, 0, 1}.
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From Propositions 3.2.2 and Theorem 3.3.7 it follows that if K is any class
of �nite distributive lattice and τ = {∧, 0, 1} then the universal class of Heyting
algebras HAτ (K) consisting of Heyting algebras not containing any τ -sublattice
isomorphic to a member of K is closed under MacNeille completions. This pro-
vides us with an alternative proof of the fact, �rst established by Ciabattoni,
Galatos, and Terui [58, Thm. 4.1], that structural clauses, i.e., universal clauses
in the {∧, 0, 1}-reduct of the language of Heyting algebras, are preserved by Mac-
Neille completions of Heyting algebras.

3.3.3 Adding bounds

We conclude this section by discussing the addition of bounds to a given type.
For a lattice K and k ∈ K, we can consider the principal ideals (↓k)K and

(↓k)K. Using the abstract characterization of the MacNeille completion of a given
lattice as its, up to isomorphism, unique join- and meet-dense completion, it is
easily seen that (↓k)K = (↓k)K. We say that a class K of lattices is closed under
principal ideals if for each K ∈ K and each k ∈ K, the lattice (↓k)K belongs to
K. Similarly, K is closed under principal �lters if each (↑k)K belongs to K.

For τ ⊆ {∧,∨, 0, 1} we write τ0 and τ1 for the sets τ ∪ {0} and τ ∪ {1},
respectively. Similarly, we write τ01 for the set τ ∪ {0, 1}.

3.3.9. Proposition. Let L be a �nite lattice, let τ ⊆ {∧,∨, 0}, and let K be
a class of τ1-lattices that is closed under principal ideals. If L is τ -MacNeille
transferable for K, then L⊕ 1 is τ1-MacNeille transferable for K. Similar results
hold for τ ⊆ {∧,∨, 1} and 1 ⊕ L when K is closed under principal �lters, and
τ ⊆ {∧,∨} and 1⊕ L⊕ 1 when K is closed under both.

Proof:
We prove the result for τ ⊆ {∧,∨, 0}, the case τ ⊆ {∧,∨, 1} follows by symmetry,
and the result for τ ⊆ {∧,∨} follows from these two results combined. Suppose
K ∈ K and h : L ⊕ 1 ↪→τ1 K for some K ∈ K. Let > be the top of L and 1 be
the top of L ⊕ 1. Then h(>) = x for some x < 1 in K. Since the MacNeille
completion is meet-dense, there is k ∈ K with x ≤ k < 1. Then the restriction
h|L : L→ (↓k)K = (↓k)K is a τ -embedding. Since by assumption (↓k)K ∈ K and
L is τ -MacNeille transferable for K, there is a τ -embedding L ↪→ (↓k)K. Since
k < 1, there is evidently also a τ1-embedding of L⊕ 1 into K. 2

3.3.10. Remark. We note that (∧,∨, 0, 1)-MacNeille transferability is an elusive
concept when lattices are not of the form 1⊕ L or L⊕ 1, i.e., when the bottom
element is meet-reducible or the top element join-reducible. For the real unit
interval [0, 1], the bounded lattice K = ([0, 1] × [0, 1]) \ {(1, 0), (0, 1)} has no
complemented elements other than the bounds, while its MacNeille completion
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K = [0, 1] × [0, 1] does. Thus, even the 4-element bounded lattice 2 × 2 is not
(∧,∨, 0, 1)-MacNeille transferable for the class of distributive lattices. We return
to this matter in the Section 3.5 on MacNeille completions of Heyting algebras
where it takes particular signi�cance.

3.4 MacNeille transferability for distributive lat-

tices

One can consider MacNeille transferability for the class of distributive lattices.
However, since distributive lattices are not generally closed under MacNeille com-
pletions [94], to do so one would also have to consider non-distributive lattices.
Therefore, when establishing negative results we consider MacNeille transferabil-
ity for the class DM of distributive lattices whose MacNeille completions are
distributive. This class includes many well-known classes of lattice such as (the
lattice reducts of) Heyting algebras, co-Heyting algebras, and bi-Heyting algebras.
Since MacNeille transferability for DM holds vacuously for any non-distributive
lattice, we consider only the case when a �nite distributive lattice is MacNeille
transferable for DM.

In contrast to Theorem 3.1.5, which says that every �nite distributive lattice
is ideal transferable for the class of all distributive lattices, we have the following.

3.4.1. Theorem. There is a �nite distributive lattice L that is not MacNeille
transferable for the class DM.

Proof:
Consider the lattices L, in Figure 3.1 at the left, and K, in Figure 3.1 at the
right. Here the shaded middle portion of K is ([0, 1]× [0, 1]) \ {(0, 1), (1, 0)}, the
product of two copies of the real unit interval with the �corners� removed. The
MacNeille completion K simply reinserts the missing �corners�, and there is a
lattice embedding of L into the distributive K. Using the fact that [0, 1]× [0, 1]
does not contain a sublattice isomorphic to an eight-element Boolean algebra and
([0, 1] × [0, 1]) \ {(0, 1), (1, 0)} does not have any complemented elements, it is
easily seen that L is not isomorphic to a sublattice of K. 2

Before moving to some positive results, we note that a lattice being projective
in the class of distributive lattices is not the same as it being distributive and
projective in the class of all lattices. The �nite lattices that are projective in the
class of distributive lattices are characterized in [17] as exactly those where the
meet of two join-irreducible elements is either join-irreducible or the least element
0, see Theorem A.7.1.
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KL

Figure 3.1: The distributive lattices L and K.

3.4.2. Theorem. Let τ ⊆ {∧,∨, 0, 1} with {0, 1} 6⊆ τ . Every �nite lattice that
is projective in the class of distributive lattices is τ -MacNeille transferable for the
class of all distributive τ -lattices.

Proof:
Assume that τ ⊆ {∧,∨, 0}. Since the order dual of a projective distributive lattice
is again a projective distributive lattice the case where τ ⊆ {∧,∨, 1} follows by
symmetry.

Let P be a �nite distributive lattice that is projective in the class of distribu-
tive lattices. Let K be a distributive τ -lattice with P ↪→τ K. By Theorem 3.3.7,
we have that P ↪→τ ′ K, where τ ′ = τ\{∨}. Since P is projective among the dis-
tributive lattices, applying Proposition A.7.2 we obtain a τ -embedding P ↪→τ K.
2

Our next theorem will show that there are �nite non-projective distributive
lattices that are MacNeille transferable for the class of distributive lattices. Let
D4 be the seven-element distributive lattice that has a doubly reducible element
shown in Figure 3.2. Since the lattice D4 contains join-irreducible elements whose
meet is a non-zero join-reducible element it is not projective as a distributive
lattice.

3.4.3. Theorem. The lattice D4 is MacNeille transferable for the class of dis-
tributive lattices.

Proof:
Suppose that K is a distributive lattice that does not contain D4 as a sublattice.
We must show that K does not contain D4 as a sublattice. By Theorem 3.3.5,
K is a linear sum of lattices

⊕
I Ki with each Ki isomorphic to either an eight-

element Boolean algebra, a one-element lattice, or 2×C for a chain C, for some
totally order set I. We describe the MacNeille completion of K.
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D4

Figure 3.2: A seven-element non-projective distributive lattice.

Let I denote the MacNeille completion of the totally order set I. For x ∈ I,
let Mx = Kx if x ∈ I, and let Mx be a one-element lattice otherwise. Let 0x be
the least element of Mx and 1x be the greatest element of Mx. Set M =

⊕
I Mx.

If S ⊆ M , let S ′ = {x ∈ I : S ∩Mx 6= ∅}, and let z =
∨
I S
′. Then it is

not di�cult to see that
∨

Mz
(S ∩Mz), where it is understood that the join of the

empty set in Mz is 0z, is the least upper bound of S in M. Similar remarks hold
for the greatest lower bound of S in M. Thus, M is complete and evidently K is
a sublattice of M.

We show that K must be a join- and meet-dense subalgebra of a quotient
of M. To this end de�ne a special covering pair in M to be an ordered pair
(1x, 0y) where x, y ∈ I with x covered by y and either 1x 6∈ Kx or 0y 6∈ Ky.
This implies that 1x is join-irreducible in M, or 0y is meet-irreducible in M, or
both. Let θ be the set of all special covering pairs together with the diagonal
of M2. It is easy to see that special covering pairs cannot overlap, and hence
the relation θ is a lattice congruence on M. Evidently, M/θ is complete and K
may be identi�ed with a sublattice of M/θ. We claim that the quotient M/θ
is the MacNeille completion of K. To see that K is join-dense in M/θ consider
a special covering pair (1x, 0y) such that p = 0y/θ = 1x/θ does not belong to
the image of the embedding a 7→ a/θ of K into M/θ. Then 1x 6∈ Kx and so
1x must be the join in Mx of the non-zero elements of the set Kx, showing that
p =

∨
{a/θ : a ∈ Kx}. Similarly, 0x 6∈ Ky whence p =

∧
{a/θ : a ∈ Ky}. If

a ∈ Mz for some z ∈ I and a is not part of some special covering pair then it is
easy to see that a/θ =

∨
{b/θ : b ∈ ↓a ∩Kz} and a/θ =

∧
{b/θ : b ∈ ↑a ∩Kz}. It

remains to consider elements of I\I. For z ∈ I\I we have that z is the join of the
elements in I strictly below it and the meet of the elements of I strictly above
it. Therefore, letting S =

⋃
{Kx : z > x ∈ I} and S ′ =

⋃
{Ky : z < y ∈ I}, for

a ∈ Mz we must have that a/θ =
∨
{b/θ : b ∈ S} and a/θ =

∧
{b/θ : b ∈ S ′}.

This shows that a 7→ a/θ is indeed a join- and meet-dense embedding of K into
M/θ.

It remains to show that K = M/θ has no doubly reducible elements, and
hence does not have a sublattice that is isomorphic to D4. Along the way, we will
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show that M/θ is in fact distributive. Let z ∈ I. Then Mz is either a one-element
lattice, the MacNeille completion of an eight-element Boolean algebra, which is an
eight-element Boolean algebra, or 2×C for some chain C. The MacNeille com-
pletion 2×C depends on whether C is bounded. If it is, then 2×C = 2 × C.
If C has a greatest, but no least element, then 2×C = (2 × C) \ {(1, 0C)},
and similarly if C has a least, but no greatest element. In any case 2×C is a
sublattice of 2 × C. Therefore, each summand Mz is distributive and has no
doubly reducible elements. Thus, M is distributive and has no doubly reducible
elements. In forming the quotient M/θ we only collapse covering pairs (1x, 0y)
where either 1x is not a proper join, or 0y is not a proper meet, and hence intro-
duce no doubly reducible elements into the quotient. 2

3.4.4. Remark. Note that even though the lattice D4 is not projective in the
class of distributive lattices it is projective in the class of relatively complemented
lattices [250, Thm. 4.2].

Theorems 3.4.1 and 3.4.3 shows that MacNeille transferability for the class
of distributive lattices is rather di�erent than ideal transferability for the class
of distributive lattices. However, it is not clear how robust Theorem 3.4.3 is, in
the sense that the argument provided cannot easily be adapted to show that the
lattice D4 is τ -MacNeille transferable for the class of all bounded distributive
lattices when τ contains one or more bounds.

3.5 MacNeille transferability for Heyting algebras

In this section we consider τ -MacNeille transferability for the classHA of Heyting
algebras for τ = {∧,∨, 0, 1}. Here we treat members of HA as bounded lattices
and note that the notion of MacNeille transferability does not involve the Heyting
implication. Since the MacNeille completion of a Heyting algebra is distributive,
and in fact is a Heyting algebra, see [16, p. 238] or [151, Thm 2.3], results of the
previous section also apply to the class of Heyting algebras as well.

Using Theorem 3.4.2, Proposition 3.3.9, and the fact that for a Heyting algebra
K each principle ideal (↓k)K and �lter (↑k)K are Heyting algebras, gives the
following result.

3.5.1. Theorem. For a �nite distributive lattice P that is projective in the class
of distributive lattices, the lattices 1⊕P and P⊕1 are (∧,∨, 0, 1)-MacNeille trans-
ferable for HA, and for the seven-element distributive lattice D4 of Figure 3.2,
the lattice 1⊕D4 ⊕ 1 is (∧,∨, 0, 1)-MacNeille transferable for HA.

We consider a closely related result, but one that to the best of our knowledge
requires a completely di�erent approach.
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3.5.2. Theorem. For the seven-element distributive lattice D4 shown in Fig-
ure 3.2, the lattice D4 ⊕ 1 is (∧,∨, 0, 1)-MacNeille transferable for HA.

Proof:
Let K be a Heyting algebra and suppose there is a bounded sublattice of K
isomorphic to D4⊕1. Then there are normal ideals P,Q,R, S of K situated as in
Figure 3.3. We will show that K has a bounded sublattice isomorphic to D4⊕ 1.
If there are 0 < p1 < p ∈ P and 0 < q1 < q ∈ Q, then since P ∧ Q = 0 we

P Q

R S

0

1

Figure 3.3: The lattice D4 ⊕ 1 as a bounded sublattice of K

have that p ∧ q = 0, hence also that p1 ∧ q1 = 0. Furthermore, it follows from
applications of the distributive law that

(p ∨ q1) ∧ (q ∨ p1) = ((p ∨ q1) ∧ q) ∨ ((p ∨ q1) ∧ p1)

= ((p ∧ q) ∨ (q1 ∧ q)) ∨ ((p ∧ p1) ∨ (q1 ∧ p1))

= (0 ∨ q1) ∨ (p1 ∨ 0)

= p1 ∨ q1

Consequently, {0, p1, q1, p1 ∨ q1, p ∨ q1, q ∨ p1, p ∨ q, 1} is a bounded sublattice of
K isomorphic to D4 ⊕ 1.

Thus it remains to consider the case where one of the normal ideals P and
Q, say without loss of generality P , is an atom of K. In this case P = ↓p for
some atom p of K. Choose r ∈ R \ S and s ∈ S \ R with p ≤ r, s. Since
K is a Heyting subalgebra of K, see, e.g., [151, Sec. 2], the pseudo-complement
¬p of p in K is the pseudo-complement of p in K. Therefore, ¬p ≥ Q, giving
p ∨ ¬p ≥ P ∨Q = R ∧ S ≥ r ∧ s. It follows that

p ∨ (r ∧ s ∧ ¬p) = (p ∨ (r ∧ s)) ∧ (p ∨ ¬p) = (r ∧ s) ∧ (p ∨ ¬p) = r ∧ s.

Thus, as p ∧ (r ∧ s ∧ ¬p) = 0 we see that {0, p, r ∧ s ∧ ¬p, r ∧ s, r, s, r ∨ s, 1} is a
bounded sublattice of K isomorphic to D4 ⊕ 1. 2
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3.5.3. Remark. Note that in the proof of Theorem 3.5.2 we only made use of
the existence of pseudo-complements and the fact that the embedding a Heyting
algebra into its MacNeille completion preserves pseudo-complements. Since the
MacNeille completion of any pseudo-complemented lattice is again pseudo-com-
plemented and the embedding into the MacNeille completion preserves pseudo-
complements we may in fact conclude that the lattice D4⊕1 is (∧,∨, 0, 1)-trans-
ferable for the class of all pseudo-complemented lattices.

To make further progress with positive results, we consider more restrictive
classes of Heyting algebras. We will make use of Esakia duality for Heyting
algebras, see, e.g., [87, 24] or Appendix A.6. For the Esakia space X of a Heyting
algebra K, the maximum of X, denoted max(X), is the set of maximal elements
of the underlying poset of X.

3.5.4. Definition. Let K be a Heyting algebra with dual Esakia space X and
let n ≥ 1 be a natural number. We say that K and X

(i) have width n if n is the maximal cardinality of an anti-chain in X,

(ii) have top width n if n is the cardinality of the maximum max(X) of X.

We say that K and X have �nite (top) width if they have (top) width n for some
natural number n. We let HAw denote the class of Heyting algebras of �nite
width, and HAt the class of Heyting algebras of �nite top width.

Let K be a Heyting algebra. We call S ⊆ K orthogonal if a ∧ b = 0 for any
distinct a, b ∈ S. An element a of K is regular if a = ¬¬a. Since the regular
elements form a Boolean algebra Rg(K) that is a (∧, 0)-subalgebra of K, see Ap-
pendix A.5, an orthogonal set in Rg(K) is an orthogonal set in K. The following
two lemmas are easily proved, see, e.g., [25, Thm. 7.5(1) and Thm. 7.5(3)].

3.5.5. Lemma. Let K be a Heyting algebra and n ≥ 1 a natural number. Then
K has width at most n if, and only if, the algebra 2n+1 is not isomorphic to a
sublattice of K.

3.5.6. Lemma. Let K be a Heyting algebra and n ≥ 1 a natural number. The
following are equivalent.

1. The algebra K has top width at most n.

2. The algebra 2n+1 ⊕ 1 is not isomorphic to a bounded sublattice of K.

3. The maximal cardinality of an orthogonal set in K is at most n.

4. The cardinality of the algebra Rg(K) is at most 2n.
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If a �nite distributive lattice D is MacNeille transferable for HA, i.e., τ -
MacNeille transferable for τ = {∧,∨}, then by de�nition it is also MacNeille
transferable for HAw. The converse holds as well, since D is a sublattice of a
�nite Boolean algebra, hence of any Heyting algebra that is not of �nite width.
Similar reasoning shows that D⊕1 is MacNeille transferable for HAt if, and only
if, D ⊕ 1 is MacNeille transferable for HA. However, the notion of (∧,∨, 0, 1)-
MacNeille transferability for HAw and HAt di�ers from that of HA. We begin
with the following, �rst recalling that an element a in a Heyting algebra A is
complemented if a ∧ ¬a = 0, or equivalently ¬¬a = a.

3.5.7. Lemma. If K is a Heyting algebra of �nite top width, then the comple-
mented elements of the MacNeille completion K belong to K.

Proof:
Let x be a complemented element of K. Since K is a Heyting subalgebra of
K, for a ∈ K, we have that ¬a is the pseudo-complement of a in both K and
K. Suppose a ≤ x. Then a ≤ ¬¬a ≤ ¬¬x = x and hence the normal ideal
N = {a ∈ K : a ≤ x} must be generated by the regular elements of K below
x. Since K has �nite top width, by Lemma 3.5.6, there are only �nitely many
regular elements of K. The regular elements of K form a join semi-lattice with
¬¬(a∨ b) the least upper bound of a, b in Rg(K). Consequently, there must be a
largest regular element in N , showing that N is a principal ideal of K. Since K
is join-dense in K, we have x =

∨
N , hence x ∈ K. 2

3.5.8. Remark. Lemma 3.5.7 may be false without the assumption of �nite
top width as is seen by considering the MacNeille completion of an incomplete
Boolean algebra.

3.5.9. Theorem.

1. The class of �nite lattices that are (∧,∨, 0, 1)-MacNeille transferable for the
class HAt is closed under �nite products.

2. The class of �nite lattices that are (∧,∨, 0, 1)-MacNeille transferable for the
class HAw is closed under �nite products.

Proof:
Let D1 and D2 be �nite lattices that are (∧,∨, 0, 1)-MacNeille transferable for
HAt. Suppose that K ∈ HAt and h : D1 × D2 ↪→ K is a bounded lattice
embedding. Let h(1, 0) = x and h(0, 1) = y. Then x, y are complemented
elements of K, and since K is of �nite top width, Lemma 3.5.7 implies x, y ∈ K.

The restrictions h | ↓(1, 0) : ↓(1, 0) ↪→ (↓x)K and h | ↓(0, 1) : ↓(0, 1) ↪→ (↓y)K
are bounded lattice embeddings. But ↓(1, 0) and ↓(0, 1) are isomorphic to D1
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and D2 respectively, while (↓x)K and (↓y)K are isomorphic to (↓x)K and (↓y)K
respectively. Since D1 and D2 are (∧,∨, 0, 1)-MacNeille transferable for the class
HAt and the Heyting algebras (↓x)K and (↓y)K belong toHAt, there are bounded
sublattices of (↓x)K and (↓y)K isomorphic to D1 and D2 respectively. Since K
is isomorphic to (↓x)K × (↓y)K, we may conclude that K has a bounded sub-
lattice isomorphic to D1 × D2. The argument for HAw is identical, using that
HAw ⊆ HAt. 2

As we will see below, the class of �nite lattices that are (∧,∨, 0, 1)-MacNeille
transferable for HA is not closed under binary products. In fact, Theorem 3.5.12
shows that the product of any two non-trivial �nite distributive lattices is not
(∧,∨, 0, 1)-MacNeille transferable for the class HA. Thus, the results of Theo-
rem 3.5.9 fail if we replace HAt or HAw by HA. To establish this we require a
preliminary de�nition and lemma.

Let T1, . . . ,Tk be trees with respective roots r1, . . . , rk. Suppose for each
i ∈ {2, . . . , k − 1} there are two distinct maximal nodes tri and t

l
i of the tree Ti

such that tri−1 = tli and Ti−1 ∩ Ti = {tri−1}, and Ti ∩ Tj = ∅ for j /∈ {i− 1, i, i+ 1},
as shown in Figure 3.4.

. . .

tl2 tr2 trk−2 trk−1

r1 r2 rk−1 rk

Figure 3.4: A tree sum of posets.

Let T be the union of the trees Ti. Any poset of this form is called a tree sum.
The following very simple tree sums will play an important role.

3.5.10. Definition. For a natural number n ≥ 1 let Sn be the �nite connected
poset shown in Figure 3.5.

3.5.11. Lemma. For each �nite connected poset P, there is a natural number
n ≥ 1 and an order-preserving map from Sn onto P.

Proof:
By [30, Lem. 16], for every �nite connected poset P there is a tree sum T such
that P is the image of T under an order-preserving map. Therefore, without loss
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. . .

y1 y2 yn−1 yn

x1 x2 xnxn−1

Sn

Figure 3.5: The poset Sn.

of generality, we may assume that P is a tree sum, say
⋃k
i=1 Ti, with nodes labeled

as in Figure 3.4. We then de�ne recursively

n1 = |T1| − 1

ni = ni−1 + |Ti| − 2 for 2 ≤ i ≤ k.

Let n = nk and de�ne an order-preserving map f : Sn → P as follows. Let f
map y1, . . . , yn1−1 bijectively onto T1 \ {r1, t

l
2}. The exact nature of this bijection

is irrelevant. Let f map x1, . . . , xn1 to r1 and yn1 to tl2. For each 2 ≤ i < k let h
map yni−1+1, . . . , yni−1 bijectively onto Ti \ {ri, tli, tri}, map xni−1+1, . . . , xni to ri,
and map yni to t

r
i . Finally, let f map ynk−1+1, . . . , yn bijectively onto Tk\{rk, trk−1}

and map xnk−1+1, . . . , xn to rk. Then f is the desired map. 2

3.5.12. Theorem. Any �nite distributive lattice (∧,∨, 0, 1)-MacNeille transfer-
able for the class HA is directly indecomposable.

Proof:
We �rst consider the case of a �nite directly decomposable distributive lattice D
of the formD1×D2 withD1 andD2 directly indecomposable. We will construct a
Heyting algebraK such thatD is isomorphic to a bounded sublattice ofK but not
to a bounded sublattice of K. This will show that D is not (∧,∨, 0, 1)-MacNeille
transferable for HA.

To this e�ect let X be the Esakia space whose domain is the countable set
{xi, yi, wi, zi : i ≥ 1} ∪ {∞} topologized as the one-point compacti�cation of the
discrete topology on {xi, yi, wi, zi : i ≥ 1} with compacti�cation point ∞ and
whose ordering is as shown in Figure 3.6.

Let K be the Heyting algebra of clopen upsets of X. Since ∅ and X are the
only clopen upsets of X that are also downsets, the only complemented elements
of K are the trivial elements 0, 1. Thus K has no non-trivial complemented
elements and consequently D is not isomorphic to a bounded sublattice of K

It is easy to see that K is in fact a bi-Heyting algebra. Therefore, the elements
of the MacNeille completion of K are the regular open upsets of X, see [151,
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. . . . . .

y1 y2

x1 x2

z1z2

w1w2

∞

X

Figure 3.6: The Easkia space X.

Thm. 3.8]. It follows that {xi, yi : i ≥ 1} and {wi, zi : i ≥ 1} are the new
complemented elements of K. Thus, letting X denote the dual Esakia space
of the algebra K we see that this space is isomorphic to a space with domain
{xi, yi, wi, zi : i ≥ 1}∪{∞1,∞2} topologized as the two-point compacti�cation of
{xi, yi, wi, zi : i ≥ 1}. Consequently, X is the disjoint union of two Esakia spaces
X1 and X2, each of which carries the topology of the one-point compacti�cation
of the discrete topology on {xi, yi : i ≥ 1} and {wi, zi : i ≥ 1}, respectively; see
Figure 3.7.

. . . . . .

y1 y2

x1 x2

z1z2

w1w2

∞1 ∞2

X

Figure 3.7: The Esakia space X.

To show that D is isomorphic to a bounded sublattice of K, by duality, it
is su�ces to show that the Esakia dual Y of D is a continuous order-preserving
image ofX. SinceD is a product of two �nite directly indecomposable distributive
lattice its dual Esakia space must be discrete and order-disconnected. Let Y =
Y1∪Y2 be the decomposition of the dual space Y ofD into its two order-connected
components Y1 and Y2.

We show that there is a continuous order-preserving map from X onto Y .
By Lemma 3.5.11, there are natural numbers n1 and n2 together with order-
preserving onto maps f1 : Sn1 � Y1 and f2 : Sn2 � Y2. We have that X is the
disjoint union of X1 and X2 and we can regard Sn1 as a subposet of the underlying
poset of X1 and Sn2 as a subposet of the underlying poset of X2 in the obvious
way. Let m1 be a minimal element of Y1 that is below f1(yn1) and let m2 be a
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minimal element of Y2 that is below f2(yn2). De�ne

f(s) =


f1(s) if s ∈ Sn1 ,

f2(s) if s ∈ Sn2 ,

m1 if s ∈ X1 \ Sn1 ,

m2 if s ∈ X2 \ Sn2 .

Then f is the desired continuous order-preserving map from X onto Y , showing
that D is a bounded sublattice of K.

The general case may then be established as follows. Consider a �nite directly
decomposable distributive lattice D of the form

∏n
i=1 Di, with n ≥ 3 and each

factor Di directly indecomposable. By the above D1×D2 is a bounded sublattice
of K. Therefore, letting D′ be the direct product

∏n
i=3 Di we must have that D

is isomorphic to a bounded sublattice of the Heyting algebra K×D′ = K×D′,
but not to a bounded sublattice of K×D′. This shows that the lattice D is not
(∧,∨, 0, 1)-MacNeille transferable for the class HA. 2

To conclude this section, we give an example which shows that even in the
setting of Heyting algebras, sharp MacNeille transferability and MacNeille trans-
ferability is not the same.

3.5.13. Proposition. The lattice D4 of Figure 3.2 is not sharply MacNeille
transferable for the class HA.

Proof:
Let K′ be the sublattice of the Euclidean plane R2 with domain

{(x, y) | 0 ≤ x < 1, 0 ≤ y ≤ x} ∪ {(x, y) | 1 < x ≤ 2, 0 ≤ y ≤ 1}.

and let K be the quotient of the lattice K′⊕22, displayed at the left in Figure 3.8,
obtained by identifying the greatest element of lattice K′ with the least element
of lattice 22. It is routine to verify that K is a Heyting algebra. The MacNeille
completion K of K inserts the �missing� line {(1, y) ∈ R2 | 0 ≤ y ≤ 1}. The
black circles in the picture of K at right in Figure 3.8 de�ne a lattice embedding
h from D4 into K. Suppose there is a lattice embedding h′ : D4 ↪→ K that is
sharp, meaning that h′(a) ≤ h(b) if, and only if, a ≤ b, for all a, b ∈ D4. Recall
that D4 is a quotient of the linear sum of two four-element Boolean algebras.
Because h′ is sharp, the maps h and h′ must agree on the top element and the
two co-atoms of D4. Consequently, h′ must map the doubly reducible element
of D4 to the element (2, 1) of K. Since h : D4 ↪→ K maps the bottom element
of D4 to the element (1, 0), it follows that h′ : D4 ↪→ K must map the bottom
element of D4 to some element (a, 0) of K with a < 1. However, there do not
exist elements in K whose meet is (a, 0) for some a < 1 and whose join is (2, 1). 2
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1 2

K

1 2

K

Figure 3.8: The Heyting algebras K and K as sublattices of the Euclidean plane.

3.5.14. Remark. The lattice D4 also plays a central role in the work of Weh-
rung [250] where it is shown that D4 is sharply ideal transferable for a variety of
lattice V if, and only if, V is contained in the variety of lattice generated by the
class of all lattices of length 2.

3.6 MacNeille transferability for bi-Heyting alge-

bras

Restricting attention to the class biHA of bi-Heyting algebras, stronger results
of a positive nature can be obtained. Recall that a Heyting algebra K is a bi-
Heyting algebra if the order dual of K is also a Heyting algebra. We note that the
property of being a bi-Heyting algebra is preserved under MacNeille completions,
see, e.g., [151]. Recall further that a subset U of a topological space X is regular
open provided that IC(U) = U , where I and C denote the interior and closure
operator on X, respectively.

3.6.1. Lemma. Let X be an Esakia space of �nite width. If U, V are regular open
upsets of X, then so is the union U ∪ V .

Proof:
Suppose the width of X is n. Then, by [72, p. 3], X can be covered by n
maximal chains C1, . . . , Cn. By [87, Lem. III.2.8], each of these maximal chains
are closed in X. To show that U ∪ V is regular open, it is enough to show that
IC(U ∪ V ) ⊆ U ∪ V .

Let x ∈ IC(U ∪ V ). Then there is a clopen set F with x ∈ F ⊆ C(U ∪ V ) =
C(U) ∪ C(V ). Let S = {i ≤ n : x ∈ Ci} and T = {i ≤ n : x 6∈ Ci}. Consider the
following statement

U ∩ Ci ⊆ C(V ) for each i ∈ S. (∗)
Suppose (∗) holds. Then since D :=

⋃
{Ci : i ∈ T} is a closed set and x 6∈ D,

there is a clopen F ′ with x ∈ F ′ ⊆ F ⊆ C(U) ∪ C(V ) and F ′ disjoint from
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D. In particular, F ′ ⊆ (F ′ ∩ C(U)) ∪ C(V ). Since C1 ∪ · · · ∪ Cn covers X and
F ′ is disjoint from D, and hence disjoint from each Ci = C(Ci) for i ∈ T , we
have F ′ ∩ C(U) =

⋃
{F ′ ∩ C(U ∩ Ci) : i ∈ S}. Then condition (∗) gives that

F ′ ∩ C(U) ⊆ C(V ), hence F ′ ⊆ C(V ). Thus, x ∈ IC(V ) = V .
Suppose that the condition (∗) does not hold. Then there is i with x ∈ Ci and

U ∩Ci 6⊆ C(V ). Let y ∈ U ∩Ci with y 6∈ C(V ). Note that if x ∈ U , then a fortiori
x ∈ U ∪ V . On the other hand if x 6∈ U , then since x, y belong to the chain Ci
and U is an upset, we must have x < y. Since y 6∈ C(V ), there is a clopen G
with y ∈ G and G disjoint from V . So G is disjoint from C(V ). Since X is an
Esakia space and V is an upset, C(V ) is an upset, see, e.g., [151, Lem. 3.6(3)].
Therefore, the fact that G is disjoint from C(V ) implies that the clopen set ↓G is
disjoint from the closed up C(V ). Thus, F ′′ = F ∩ ↓G is a clopen neighborhood
of x disjoint from C(V ). Since F ′′ ⊆ F ⊆ C(U) ∪ C(V ), we have F ′′ ⊆ C(U).
Consequently, x ∈ IC(U) = U . 2

3.6.2. Proposition. If K is a bi-Heyting algebra of �nite width, then K is a
bounded sublattice of Idl(K).

Proof:
Let X be the dual Esakia space of K. It is well known that Idl(K) is isomor-
phic to the lattice of open upsets of X, and since K is a bi-Heyting algebra, by
[151, Thm 3.8], K is isomorphic to the lattice of regular open upsets of X. By
Lemma 3.6.1, the lattice of regular open upsets of X is a bounded sublattice of
the lattice of open upsets of X. 2

3.6.3. Remark. Note that the assumption of �nite width cannot be dropped
from Proposition 3.6.2 as for example considering the dual Stone spaces of in-
complete in�nite Boolean algebras shows.

As a consequence, we obtain the following, letting biHAw denote the class of
bi-Heyting algebras of �nite width.

3.6.4. Theorem. Let D be a �nite distributive lattice.

1. The lattice D is simultaneously sharply and faithfully MacNeille transferable
for the class biHAw.

2. The lattice D is MacNeille transferable for the class biHA.

Proof:
If K is a bi-Heyting algebra of �nite width and h : D ↪→ K is a lattice embedding,
then since K is a sublattice of Idl(K) by Proposition 3.6.2, we have a lattice



78 Chapter 3. MacNeille transferability

embedding h : D ↪→ Idl(K). Then simultaneous sharp and faithful MacNeille
transferability follows directly from Theorem 3.1.5.

That D is MacNeille transferable for the class of all bi-Heyting algebras then
follows from the fact that D is a sublattice of a �nite Boolean algebra, and hence
by Lemma 3.5.5, of any bi-Heyting algebra of in�nite width. 2

For any �nite lattice L, being simultaneously sharply and faithfully Mac-
Neille transferable with respect to a class of bounded lattices K entails that L is
(∧,∨, 0, 1)-transferable with respect toK. Thus, we obtain the following corollary.

3.6.5. Corollary. Any �nite distributive lattice is (∧,∨, 0, 1)-transferable with
respect to the class of bi-Heyting algebras of �nite width.

This together with Theorem 3.2.6 yields the following result.

3.6.6. Corollary. If K is a bi-Heyting algebra of �nite width then K is iso-
morphic to a bounded sublattice of an ultrapower of K.

3.7 Canonicity and elementarity

In this section we will show how classes of �nite distributive τ -canonically and
τ -MacNeille transferable lattices give rise to varieties of Heyting algebras which
are canonical and elementarily determined, respectively. This will allow us to
obtain results about τ -stable logics in Section 3.8. As we are concerned with
applications to (∧, 0, 1)- and (∧,∨, 0, 1)-stable intermediate logics we will here
mainly focus on the cases τ = {∧, 0, 1} and τ = {∧,∨, 0, 1}.

3.7.1 Transferability and canonicity

We show how τ -canonical transferability can be used to establish canonicity of
varieties of Heyting algebras. If A is a Heyting algebra then the canonical com-
pletion Aδ is also a Heyting algebra and A is not only a sublattice, but in fact a
Heyting subalgebra, of Aδ, see, e.g., [109, Prop. 2].

3.7.1. Proposition. Let τ ⊆ {∧,∨, 0, 1} and let J be a class of �nite dis-
tributive lattices which are all τ -canonically transferable for the class of Heyting
algebras. Then the variety of Heyting algebras generated by the class HAτ (J ) is
canonical.

Proof:
Since all members of J are τ -canonically transferable for the class of Heyting
algebras, we obtain that the class HAτ (J ) is closed under canonical completions
by Proposition 3.2.2. Evidently, HAτ (J ) is a universal class of Heyting algebras
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and by [111, Thm. 6.8] any universal class closed under canonical completions
generates a canonical variety. 2

By Proposition 3.7.1 any �nite lattice which is τ -MacNeille transferable for
the class of all Heyting algebras is also τ -canonically transferable for the class of
all Heyting algebras, whence we obtain the following corollary.

3.7.2. Corollary. Let τ ⊆ {∧,∨, 0, 1} and let J be a class of �nite distributive
lattices which are all τ -MacNeille transferable for the class of Heyting algebras.
Then the variety of Heyting algebras generated by the class HAτ (J ) is canonical.

We will show that the assumption in Proposition 3.7.1 that J is a class of
�nite distributive lattices which are all τ -canonically transferable for the class of
all Heyting algebras can be replaced with a weaker assumption.

3.7.3. Definition. We say that a Heyting algebra is pseudo-�nite if it is a model
of the �rst-order theory, in the language of Heyting algebras, of the class of all
�nite Heyting algebras. Given a class of Heyting algebras K we let Kpf denote
the class of pseudo-�nite members of K.

3.7.4. Remark. It is not di�cult to see that the property of being the reduct of a
co-Heyting algebra is expressible in the �rst-order language of lattices. Thus as all
�nite Heyting algebras are (reducts of) bi-Heyting algebras so are all pseudo-�nite
Heyting algebras. Similarly, it can be shown that any element in a pseudo-�nite
Heyting algebra must be the join of the join-irreducible elements below it and the
meet of the meet-irreducible elements above it.

The following lemma is essentially a variation of [111, Thm. 6.8]. Recall that
for a class of algebras K we write Ksi and Kfsi for the classes of subdirectly
irreducible and �nitely subdirectly irreducible members of K respectively.

3.7.5. Lemma. Let V be a variety of Heyting algebras generated by its �nite
members. If Aδ ∈ V for all A ∈ Vpf

si , then V is canonical.

Proof:
Consider A ∈ V and let κ = |A|. Then A is a homomorphic image of the freely
κ-generated V-algebra FV(κ). Since by assumption V is generated by its �nite
members the algebra FV(κ) embeds into a direct product of �nite subdirectly
irreducible members of V , say

∏
i∈I Ai. Since canonical completions of Heyting

algebras preserve surjective and injective homomorphisms [111, Thm. 5.4] the
algebra Aδ is a homomorphic image of a subalgebra of the algebra (

∏
i∈I Ai)

δ.
Let β(I) be the set of all ultra�lters over the set I. As the dual Stone space

of the Boolean algebra ℘(I) the set β(I) carries a Stone topology. In fact, the
direct product

∏
i∈I Ai has a Boolean product representation over β(I), with
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stalks AU given by the ultraproduct
∏

i∈I Ai/U , for each U ∈ β(I), see, e.g.,
[115, Thm. 3.17].

The canonical completion of a Boolean product is the direct product of the
canonical completions of the stalks, see, e.g., [111, Lem. 6.7], whence,(∏

i∈I

Ai

)δ
=
∏

U∈β(I)

Aδ
U .

By �o±' Theorem the algebra AU is evidently pseudo-�nite for each U ∈ β(I).
Similarly, since the property of being a subdirectly irreducible Heyting algebra
is �rst-order de�nable in the language of lattices AU ∈ Vpf

si , for all U ∈ β(I).
Consequently, by assumption Aδ

U ∈ V for all U ∈ β(I), showing that (
∏

i∈I Ai)
δ

and therefore also Aδ belongs to V . 2

In the rest of this section we will focus on the case τ = {∧, 0, 1} or τ =
{∧,∨, 0, 1}.

3.7.6. Lemma. Let τ be either {∧, 0, 1} or {∧,∨, 0, 1}. If V is a variety of Hey-
ting algebras generated by the universal class HAτ (J ), for some class of �nite
distributive lattices J , then Vfsi ⊆ HAτ (J ).

Proof:
In case τ = {∧, 0, 1} this follows from Lemmas 2.2.6 and 2.2.10 and in case
τ = {∧,∨, 0, 1} from [29, Prop. 5.1, Claim. 5.2]. 2

3.7.7. Proposition. Let τ be either {∧, 0, 1} or {∧,∨, 0, 1}, let J be a class of
�nite distributive lattices, and let V the variety of Heyting algebras generated by
the universal class HAτ (J ). If all members of J are τ -canonically transferable
for the class Vpf

si , then the variety V is canonical.

Proof:
That V is generated by its �nite members follows from Theorem 2.2.5. Thus by
Lemma 3.7.5 it su�ces to show that Aδ ∈ V for all A ∈ Vpf

si .
LetA ∈ Vpf

si be given. IfAδ 6∈ V thenAδ 6∈ HAτ (J ) ⊆ V . But then there will
be D ∈ J such D ↪→τ A

δ. Since A is subdirectly irreducible, by Lemma 3.7.6, we
must have that A ∈ HAτ (J ), whence D 6↪→τ A. This is in direct contradiction
with the assumption that all members of J are τ -canonically transferable for the
class Vpf

si . 2

Since for any variety of Heyting algebras V the class Vpf
si is closed under ultra-

powers combining Propositions 3.7.7 and 3.7.1 we obtain the following corollary.
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3.7.8. Corollary. Let τ be either {∧, 0, 1} or {∧,∨, 0, 1}, let J be a class of
�nite distributive lattices, and let V the variety of Heyting algebras generated by
the class HAτ (J ). If all members of J are τ -MacNeille transferable for the class
Vpf
si , then the variety V is canonical.

3.7.2 Transferability and elementarity

We show how classes of �nite distributive lattices τ -MacNeille transferable for
the class of all Heyting algebras give rise to elementarily determined varieties
of Heyting algebras. Recall that a variety of Heyting algebras V is elementarily
determined if there exists a �rst-order de�nable class of posets F such that V
is generated by the class F+ = {P+ : P ∈ F}, where P+ denotes the dual
Heyting algebra of upsets of the poset P. It is well known that being elementarily
determined implies being canonical, see, e.g., [51, Thm. 10.22].

A version of the following theorem for Boolean algebras with operators can
be found in Givant [123, Thm. 1.35]. We supply a proof of the analogous result
for Heyting algebras.

3.7.9. Theorem (cf. [127, Lem. 3.6.5]). Let {Pi : i ∈ I} be a set of posets and
let U be an ultra�lter on I. Then,

∏
i∈I

P+
i /U

∼=

(∏
i∈I

Pi/U

)+

.

Proof:
The algebra (

∏
i∈I Pi/U)+ is evidently complete and so it su�ces to show that∏

i∈I P
+
i /U is join- and meet-dense in (

∏
i∈I Pi/U)+. To this end we de�ne a map

h :
∏

i∈I P
+
i /U → (

∏
i∈I Pi/U)+ as follows,

h(λ/U) = {p/U ∈
∏
i∈I

Pi/U : Jp ∈ λK ∈ U},

where Jp ∈ λK denotes the set {i ∈ I : p(i) ∈ λ(i)}. Note that if p/U = q/U and
λ/U = σ/U then we have that Jp ∈ λK ∈ U if, and only if, Jq ∈ σK ∈ U , hence h
does in fact de�ne a function from

∏
i∈I P

+
i /U to the powerset of

∏
i∈I Pi/U . To

see that h(λ/U) is indeed an upset for all λ ∈
∏

i∈I P
+
i let p/U ≥ q/U ∈ h(λ/U).

Then letting Jq ≤ pK denote the set {i ∈ I : q(i) ≤ p(i)} we see that

Jp ∈ λK ⊇ Jq ≤ pK ∩ Jq ∈ λK ∈ U,

and hence p/U ∈ h(λ/U). This shows that h is a well-de�ned function from∏
i∈I P

+
i /U to (

∏
i∈I Pi/U)+. Moreover, h is easily seen to be an order embedding.

Given V ∈ (
∏

i∈I Pi/U)+ we have that

V =
∨
{↑(p/U) : p/U ∈ V } and V =

∧
{(↓(p/U))c : p/U 6∈ V }.
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Thus it su�ces to show that the upsets of (
∏

i∈I Pi/U)+ of the form ↑(p/U) and
(↓(p/U))c are in the image of the map h.

Given p ∈
∏

i∈I Pi, we de�ne λ, σ ∈
∏

i∈I P
+
i as follows

λ(i) = ↑p(i) and σ(i) = (↓p(i))c,

and hence we obtain elements λ/U, σ/U ∈
∏

i∈I P
+
i /U . We then observe that

h(λ/U) = {q/U ∈
∏
i∈I

Pi/U : Jq ∈ λK ∈ U}

= {q/U ∈
∏
i∈I

Pi/U : Jp ≤ qK ∈ U}

= {q/U ∈
∏
i∈I

Pi/U : p/U ≤ q/U} = ↑(p/U),

and similarly, letting Jq 6≤ pK denote the complement of the set Jq ≤ pK we see
that

h(σ/U) = {q/U ∈
∏
i∈I

Pi/U : Jq ∈ σK ∈ U}

= {q/U ∈
∏
i∈I

Pi/U : Jq 6≤ pK ∈ U}

= {q/U ∈
∏
i∈I

Pi/U : p/U 6≤ q/U} = (↓(p/U))c,

which concludes the argument. 2

3.7.10. Proposition (cf. [129, Cor. 3.2] and [112, Thm. 4.10]). Let U be a uni-
versal class of Heyting algebras such that A ∈ U for all bi-Heyting algebras A ∈ U ,
then

U− := {P : P+ ∈ U}
is an elementary class of posets.

Proof:
The class U− is evidently closed under isomorphisms. For any poset P the algebra
P+ is in fact a bi-Heyting algebra. Moreover the property of being a bi-Heyting
algebra is preserved by the formation of ultraproducts. Thus by Theorem 3.7.9
the class U− is closed under the formation of ultraproducts and re�ects ultra-
powers, i.e., P belongs to U− whenever some ultrapower of P does. It is a classic
result from model theory, see, e.g., [157, Cor. 8.5.13], that these three properties
characterize the �rst-order de�nable classes of structures in a give language. 2

We conclude this section with a theorem which will play an important role in
the following section.
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3.7.11. Theorem (cf. [112, Thm. 3.8]). Let τ be either {∧, 0, 1} or {∧,∨, 0, 1},
let J be a class of �nite distributive lattices, and let V the variety of Heyting
algebras generated by the universal class HAτ (J ). If all members of K are τ -
MacNeille transferable for the class of bi-Heyting algebras belonging to Vfsi , then
the variety V is elementarily determined and hence canonical.

Proof:
By Theorem 2.2.5 the variety V will be generated by its �nite members. In par-
ticular, letting U be the universal class Vfsi we must have that V is generated by
the class {P+ : P ∈ U−}, where U− = {P : P+ ∈ U}. Thus it su�ces to show that
U− is elementary and hence by Proposition 3.7.10 that A ∈ U for all bi-Heyting
algebras A ∈ U . Therefore, let A ∈ U be a bi-Heyting algebra. If A 6∈ U = Vfsi
then, since the property of being �nitely subdirectly irreducible is preserved by
passing to the MacNeille completion, A 6∈ V and therefore A 6∈ HAτ (J ). Con-
sequently, we must have D ∈ J such that D ↪→τ A. Since by assumption D is
τ -MacNeille transferable for the class of bi-Heyting algebras belonging to Vfsi it
follows that D ↪→τ A. By Lemma 3.7.6 we have that Vfsi ⊆ HAτ (J ) and hence
D 6↪→τ A, which is a contradiction. We may therefore conclude that A ∈ U . 2

3.8 Connections to logic

In this section we will show how the results obtained so far relate to intermediate
logics. Recall from Chapter 2 that an intermediate logic L is τ -stable for some
τ ⊆ {∧,∨, 0, 1} provided that the corresponding variety of Heyting algebras V(L)
is generated by a τ -stable class of Heyting algebras.

We have already seen, Proposition 2.3.1, that all (∧, 0, 1)-stable logics are
canonical and elementarily determined. Using the method developed in this chap-
ter we will establish analogous results for (∧,∨, 0, 1)-stable logics [25, 29, 164].
Unlike (∧, 0, 1)-stable logics it is still not known whether all (∧,∨, 0, 1)-stable
logics are elementarily determined [164, Prob. 2] or even canonical [164, Prob. 1].
We will establish some partial results related to these problems and point to some
strategies for a positive solution.

For a natural number n ≥ 1 we let BT Wn and BWn denote the varieties
of Heyting algebras generated by the class of Heyting algebras of top width at
most n and width at most n, respectively. We let BTWn and BWn denote the
intermediate logics corresponding to the varieties BT Wn and BWn, respectively.
It is not di�cult to see that all the �nitely subdirectly irreducible members of
BT Wn and BWn have top width and width at most n, respectively. Moreover,
these logics are all (∧,∨, 0, 1)-stable [25, Thm. 7.3] and in fact (∧, 0, 1)-stable.

Recall that an intermediate logic L is elementarily determined provided that its
corresponding variety of Heyting algebras V(L) is generated by a class of Heyting
algebras {P+ : P ∈ F} with F a an elementary class of posets.
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Theorems 3.7.11 and 3.3.7 provide an alternative argument to the e�ect that
all (∧, 0, 1)-stable intermediate logics are elementarily determined and therefore
also canonical. Therefore for the rest of this section we will focus on the case
τ = {∧,∨, 0, 1}.

3.8.1. Proposition. Any (∧,∨, 0, 1)-stable logic containing the logic BWn, for
some natural number n ≥ 1, is elementarily determined and hence canonical.

Proof:
Let L be a (∧,∨, 0, 1)-stable logic with BWn ⊆ L, for some n ≥ 1. By Theo-
rem 2.2.5 the variety V(L) is generated by a universal class of Heyting algebras
of the form HA∧,∨,0,1(J ), for some class of �nite distributive lattices J . More-
over, since BWn ⊆ L we have that V(L) ⊆ BWn and so in particular any �nitely
subdirectly irreducible member of V(L) has width at most n.

By Corollary 3.6.5 we have that all members of J are (∧,∨, 0, 1)-MacNeille
transferable for the class of bi-Heyting algebras belonging to Vfsi whence the
proposition is a direct consequence of Theorem 3.7.11. 2

To show that Proposition 3.8.1 includes logics which are not covered by Propo-
sition 2.3.1 we construct a family of (∧,∨, 0, 1)-stable logics none of which are
(∧, 0, 1)-stable but all of which contain BWn for some n ≥ 1. For each natural
number n ≥ 1 let Jn be the set

{D4 ⊕ 1, 2n+1, 1⊕ 2n+1, 2n+1 ⊕ 1, 1⊕ 2n+1 ⊕ 1}.

Let Vn be the variety generated by the (∧,∨, 0, 1)-stable class HA∧,∨,0,1(Jn) and
let Ln be the corresponding intermediate logic.

3.8.2. Proposition. For each n ≥ 1 the logic Ln is (∧,∨, 0, 1)-stable but not
(∧, 0, 1)-stable and contains the logic BWn. Furthermore, the logics Lm and Ln
are di�erent for natural numbers m,n ≥ 1 with m 6= n.

Proof:
Let n ≥ 1 be given. By construction V(Ln) = Vn is generated by the (∧,∨, 0, 1)-
stable class HA∧,∨,0,1(Jn), whence Ln is (∧,∨, 0, 1)-stable.

By [29, Prop. 5.1] a subdirectly irreducible Heyting algebra A validates Ln if,
and only if, none of the algebras in Jn are isomorphic to a bounded sublattice ofA.
From this we may conclude that the algebra 22⊕22⊕1 is a subdirectly irreducible
algebra belonging to Vn. Since D4 ⊕ 1 is isomorphic to a (∧, 0, 1)-sublattice of
this algebra, we deduce from Theorem 2.2.13 that Ln is not (∧, 0, 1)-stable.

Similarly, since non of the subdirectly irreducible members of Vn has a bounded
sublattice of the form 2n+1, 1⊕2n+1, 2n+1⊕1, or 1⊕2n+1⊕1 none of them has
a sublattice isomorphic to 2n+1. By Lemma 3.5.5 it follows that each subdirectly
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irreducible member of Vn is of width at most n, whence Vn ⊆ BWn and therefore
BWn ⊆ L.

Finally, if m > n, then 1 ⊕ 2n+1 ⊕ 1 is a subdirectly irreducible member of
Vm but not of Vn, showing that Vm 6= Vn and therefore that Lm 6= Ln. 2

We conclude this section by making a few observations showing how �nding
a positive answer to the question of whether every (∧,∨, 0, 1)-stable logic is ele-
mentarily determined can be reduced to a question about (∧,∨, 0, 1)-MacNeille
transferability.

By a proper intermediate logic we shall understand an intermediate logic not
equal to IPC.

3.8.3. Proposition. Any proper (∧,∨, 0, 1)-stable intermediate logic contains
the logic BTWn for some natural number n ≥ 1.

Proof:
Let L be a proper (∧,∨, 0, 1)-stable logic. We show that there exist a natural
number n ≥ 1 such that V(L) ⊆ BT Wn, and therefore that BTWn ⊆ L. Suppose
not, then for each natural number n ≥ 1 there is A ∈ V(L) such that A 6∈ BT Wn.
Without loss of generality we may assume that A is subdirectly irreducible. It
follows that A has top width strictly greater than n. By Lemma 3.5.6 we have
that 2n+1 ⊕ 1 is isomorphic to a bounded sublattice of A. Since by assumption
L is a (∧,∨, 0, 1)-stable logic the class of �nite subdirectly irreducible members
of V(L) is closed under taking bounded sublattices, see Theorem 2.2.5. We may
therefore conclude that 2n+1⊕1 belongs to V(L). Moreover, since each �nite sub-
directly irreducible Heyting algebra is a bounded sublattice of 2m ⊕ 1, for some
natural number m, we obtain that V(L) contains all �nite subdirectly irreducible
Heyting algebras. As these generate the variety of all Heyting algebras, it follows
that V(L) = HA, in direct contradiction with the assumption that the logic L is
proper. 2

Two τ -stable universal classes may generate the same variety and hence give
rise to the same τ -stable intermediate logic while one of them is closed under
MacNeille completions and the other is not. For instance, for τ = {∧,∨, 0, 1} the
two classes HAτ (22) and HAτ (1 ⊕ 22) both generate the variety of all Heyting
algebras HA, but by Theorems 3.5.2 and 3.5.12, respectively, HAτ (1 ⊕ 22) is
closed under MacNeille completions while HAτ (22) is not.

However, from Theorem 2.2.5 we know that if L is a (∧,∨, 0, 1)-stable inter-
mediate logic, then the corresponding variety V(L) of Heyting algebras is gener-
ated by a (∧,∨, 0, 1)-stable universal class HA∧,∨,0,1(J ) with J a class of �nite
distributive lattice of the form D⊕1. Thus Proposition 3.8.3 together with The-
orem 3.7.11 entail that all (∧,∨, 0, 1)-stable intermediate logics are elementarily
determined provided that all �nite distributive lattice of the form D ⊕ 1 are
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(∧,∨, 0, 1)-MacNeille transferable for the class of bi-Heyting algebras of �nite top
width. Similarly, invoking Corollary 3.7.8, we obtain that any (∧,∨, 0, 1)-stable
intermediate logic is canonical if all �nite distributive lattice of the form D ⊕ 1
are τ -canonically transferable for the class of pseudo-�nite Heyting algebras of
�nite top width.

3.9 Summary and concluding remarks

In this chapter we have considered three di�erent notions of transferability for
�nite lattices, namely ideal, MacNeille and canonical transferability. Our main
motivation for this was to �nd universal classes of lattices closed under comple-
tions and we have shown how such classes can indeed be obtained from fami-
lies of �nite transferable lattices. We have compared the three notions of ideal,
MacNeille and canonical transferability, showing that, under mild assumptions,
MacNeille transferability implies canonical transferability which in turn implies
ideal transferability.

Our main focus has been on MacNeille transferability. We have provided
necessary conditions for a �nite lattice to be MacNeille transferable for the class
of all lattices just as we have given necessary conditions for a �nite distributive
lattice to be (∧,∨, 0, 1)-MacNeille transferable with respect to the class of all
Heyting algebras.

In terms of su�cient conditions for transferability we have shown that every
�nite projective distributive lattice is (∧, 0, 1)-MacNeille transferable with respect
to the class of all lattices. Moreover, we have shown that every �nite projective
distributive lattice of the form D⊕ 1 or 1⊕D is (∧,∨, 0, 1)-MacNeille transfer-
able with respect to the class of all distributive lattices. However, we have also
seen examples of �nite non-projective distributive lattices which are MacNeille
transferable and (∧,∨, 0, 1)-MacNeille transferable for the class of all distributive
lattices and the class of all Heyting algebras, respectively. Furthermore, we have
shown that every �nite distributive lattice is MacNeille transferable with respect
to the class of all bi-Heyting algebras.

Finally, we have discussed how considerations on MacNeille and canonical
transferability can yield results about canonicity and elementarity of certain
classes of intermediate logics.

Further directions and open problems Although we have mainly consid-
ered notions of MacNeille transferability we believe that the concept of canonical
transferability for various classes of lattices is well worth looking into. We would
also like to look at the notions of transferability in the context of lattices with
operators. In particular, τ -MacNeille and τ -canonical transferability for Heyting
algebras when τ ⊆ {∧,∨,→,¬, 0, 1}. Using [152, Prop. 4.2] the results concerning
MacNeille transferability with respect to the class of Heyting algebras obtained
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in this chapter can be transfered to the setting of S4-algebras for appropriately
de�ned notions of MacNeille transferability of modal algebras. Other than that,
the concept of transferability of modal algebras is still completely unexplored.

Having shown how syntax independent methods can be used to �nd universal
classes of lattice-based algebras closed under various types of completions, we
would like to see if syntactic methods like the ones found in [58] can be of help
for establishing new results about transferability. In particular, adapting the
ALBA-framework, see, e.g., [141, 68, 67], to �nd purely syntactic descriptions
of universal clauses preserved by MacNeille completions of bi-Heyting algebras
seems to be promising, cf. [124, 245]. For an early discussion on syntactic issues
related to ideal transferability see [14, �2.3, �5.2].

We end this chapter with a selection of concrete open problems.

1. Is there a variety of lattices V such that the property of being ideal, or
MacNeille, transferable for V is not a decidable property of �nite lattices?

2. Is every (∧,∨, 0, 1)-stable intermediate logic determined by a (∧,∨, 0, 1)-
stable universal class closed under MacNeille, or canonical, completions?

3. Give a complete characterization of the �nite distributive lattices which are
τ -MacNeille transferable for K in the following cases:

(i) τ = {∧,∨} and K is the class of all lattices,

(ii) τ = {∧,∨} and K is the class of all Heyting algebras,

(iii) τ = {∧,∨, 0, 1} and K is the class of all Heyting algebras,

(iv) τ = {∧,∨, 0, 1} and K is the class of all pseudo-�nite Heyting algebras,

(v) τ = {∧,∨, 0, 1} and K is the class of all bi-Heyting algebras,

(vi) τ = {∧,∨, 0, 1} and K is the class of all bi-Heyting algebras of �nite
top width.





Chapter 4

Hyper-MacNeille completions of Heyting
algebras

In connection with their proof of the admissibility of the cut-rule in certain types
of structural hypersequent calculi, Ciabattoni, Galatos, and Terui [60] introduced
a new type of completion of (pointed) residuated lattices which they called the
hyper-MacNeille completion. Among other things they established that any va-
riety of Heyting algebras axiomatized by P3-equations must be closed under this
type of completion. Thus closure under hyper-MacNeille completions is a neces-
sary condition for a variety of Heyting algebras to be determined by P3-equations
and consequently for the corresponding intermediate logic to admit an analytic
structural hypersequent calculus.

In this chapter, based on [153], we consider more closely this type of com-
pletion in the context of Heyting algebras. We �rst identify the concept of a
De Morgan supplemented Heyting algebra as being helpful for understanding
the hyper-MacNeille completions of Heyting algebras. These algebras may be
viewed as Heyting algebras equipped with a �co-negation� satisfying both of the
De Morgan laws. We prove that for De Morgan supplemented Heyting algebras
the MacNeille and hyper-MacNeille completions coincide. This generalizes the
fact that the MacNeille and hyper-MacNeille completions coincide for subdirectly
irreducible algebras [60, Prop. 6.6], at least in the context of Heyting algebras.

We also show that the De Morgan supplemented Heyting algebras are pre-
cisely the Heyting algebras which are isomorphic to Boolean products of �nitely
subdirectly irreducible Heyting algebras. This connection allows us to draw in-
spiration from previous work on MacNeille completions of Boolean products of
lattices [146, 73]. Concretely, we establish the following close connection between
MacNeille and hyper-MacNeille completions of Heyting algebras.

1. The hyper-MacNeille completion of a Heyting algebra A is the MacNeille
completion of some De Morgan supplemented Heyting algebra Q(A).

2. A variety V of Heyting algebras is closed under hyper-MacNeille completions

89
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if, and only if, the class of De Morgan supplemented members of V is closed
under MacNeille completions.

Speci�cally, the last item allows us to turn the question of which varieties of
Heyting algebras are closed under hyper-MacNeille completions into the question
of which varieties of De Morgan supplemented Heyting algebras are closed under
MacNeille completions.

Our analysis also allows us to show that any �nitely generated variety of
Heyting algebras is closed under hyper-MacNeille completions. From this and the
results of Chapter 2 it follows that being axiomatizable by P3-equations is not a
necessary condition for being closed under hyper-MacNeille completions. In fact,
there are varieties of Heyting algebras, such as the variety BD2 corresponding
to the logic of posets having depth at most 2, which are closed under hyper-
MacNeille completions but which are neither axiomatizable by P3-equations nor
�nitely generated.

Finally, we show that the su�cient conditions for the hyper-MacNeille com-
pletion to be regular, identi�ed by Ciabattoni, Galatos, and Terui [60, Thm. 6.11],
are in fact also necessary, at least in the context of Heyting algebras.

Outline The chapter is structured as follows: Section 4.1 contains some basic
results concerning supplemented distributive lattices. Section 4.2 introduces the
hyper-MacNeille completion of a Heyting algebra. Section 4.3 describes how the
hyper-MacNeille completion of any Heyting algebra can be obtained as the Mac-
Neille completion of its algebra of dense open sections. In Section 4.4 a number of
examples of varieties closed under hyper-MacNeille completions are considered.
Section 4.5 determines central and supplemented elements of the hyper-MacNeille
completion and it is shown that the hyper-MacNeille completion is always Haus-
dor� with �nitely subdirectly irreducible stalks. Section 4.6 gives necessary and
su�cient conditions for the hyper-MacNeille completion to be regular. Finally,
Section 4.7 contains a few concluding remarks.

4.1 Supplemented distributive lattices

We here cover some basic facts about supplemented lattices which will be used
throughout this chapter. Since we will only consider lattices which are bounded
we will simply leave out this quali�er.

4.1.1. Definition. A supplemented lattice is a distributive lattice D such that
every a ∈ D has a supplement, i.e., a, necessarily unique, element ∼ a ∈ D
satisfying 1 = a ∨ b if, and only if, ∼ a ≤ b, for all b ∈ D.

The following examples of supplemented lattices will play an important role.
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4.1.2. Example. The following types of lattice are always supplemented:

(i) Boolean algebras,

(ii) Finite distributive lattices,

(iii) Distributive lattices with a join-irreducible top element.

Evidently, the supplement of an element a in a distributive lattice D is the
least element b ∈ D such that a∨ b = 1. Thus it is easy to see that a distributive
lattice D is supplemented if, and only if, its order dual is pseudo-complemented,
see Appendix A.3. In particular, any result about pseudo-complemented lattices
holds for supplemented lattices in an order dual version.

4.1.3. Lemma. Let D be a supplemented lattice, then for all a, b ∈ D we have

1. ∼(a ∧ b) = ∼ a ∨ ∼ b.

2. ∼(a ∨ b) ≤ ∼ a ∧ ∼ b.

Proof:
As the supplement operation is order-reversing we must have ∼ a∨∼ b ≤ ∼(a∧b)
for all a, b ∈ D. Conversely, since both ∼ a∨∼ b∨a = 1 and ∼ a∨∼ b∨ b = 1, by
distributivity we have that 1 = ∼ a ∨∼ b ∨ (a ∧ b), whence ∼(a ∧ b) ≤ ∼ a ∨∼ b.

To establish Item 2 we simply note that by distributivity 1 = (a∨b)∨(∼ a∧∼ b)
whence ∼(a ∨ b) ≤ ∼ a ∧ ∼ b. 2

However, the equation ∼x∧∼ y ≤ ∼(x∨y) will in general not be satis�ed, as is
easily seen, e.g., by considering the �ve-element lattice 1⊕(2×2). Supplemented
lattices which do satisfy this equation will play an important role.

4.1.4. Definition. A supplemented lattice D is De Morgan supplemented pro-
vided that it validates the equation ∼(x ∨ y) ≈ ∼x ∧ ∼ y.

Again we will list some important examples of such lattices.

4.1.5. Example. The following lattices are supplemented with a De Morgan
supplement:

(i) Boolean algebras,

(ii) Distributive lattices with a join-irreducible top element,

(iii) Any direct or Boolean product of distributive lattices with join-irreducible
top elements.
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4.1.6. Definition. Let D be a supplemented distributive lattice. An element
a ∈ D is co-regular provided that ∼∼ a = a. We denote by CoRg(D) the set of
co-regular elements of D.

Since the co-regular elements are simply the regular elements of the order dual
the following is well known, see also Appendix A.5.

4.1.7. Lemma (cf. [16, Thm. VIII.2.1(xi), Thm. VIII.4.3]). Let D be a supple-
mented lattice.

1. CoRg(D) = {∼ a ∈ D : a ∈ D}.

2. CoRg(D) is a Boolean algebra which is a (∨, 0, 1)-subalgebra of D.

3. The assignment a 7→ ∼∼ a is a supplemented lattice homomorphism from
D onto CoRg(D).

4.1.8. Definition. An element c of a distributive lattice D is central if there
is, a necessarily unique, element c′ ∈ D such that 0 = c ∧ c′ and 1 = c ∨ c′. We
denote by Z(D) the set of central elements of D.

It is easy to see that if D is pseudo-complemented then the central elements
of D are precisely the elements with c ∨ ¬c = 1. Similarly, in a supplemented
lattice the central elements are precisely the elements with c ∧∼ c = 0. If D is a
distributive lattice which is both pseudo-complemented and supplemented then
¬a ≤ ∼ a, for all a ∈ D. Consequently, in any such lattice the central elements
must be those for which the pseudo-complement and supplement coincide.

4.1.9. Proposition (cf. [16, Thm.VIII.7.1]). Let D be a supplemented lattice
then the following are equivalent.

1. Z(D) = CoRg(D).

2. D |= ∼x ∧ ∼∼x ≈ 0.

3. The supplement on D is a De Morgan supplement.

Proof:
That Items 1 and 2 are equivalent is easy to verify just as the fact that Item 3
implies Item 2.

To see that Item 2 entails Item 3 let a, b ∈ D be given. It su�ces to show
that ∼ a ∧ ∼ b ≤ ∼(a ∨ b). We �rst observe that ∼ a ≤ ∼(a ∨ b) ∨ b since
1 = ∼(a ∨ b) ∨ a ∨ b. But then

∼(a ∨ b) ∨ b ∨ ∼∼ a ≥ ∼ a ∨ ∼∼ a = 1,
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and hence also ∼ b ≤ ∼(a ∨ b) ∨ ∼∼ a. From this we then see that

∼(a ∨ b) = ∼(a ∨ b) ∨ 0

= ∼(a ∨ b) ∨ (∼ a ∧ ∼∼ a)

= (∼(a ∨ b) ∨ ∼ a) ∧ (∼(a ∨ b) ∨ ∼∼ a)

≥ ∼ a ∧ ∼ b,

which concludes the proof. 2

4.1.10. Remark. Proposition 4.1.9 shows that the distributive lattices with a
De Morgan supplement are precisely the distributive lattices with order duals
being so-called Stone lattices, see [139] or [16, Chap. VIII.7].

When a distributive lattice is both pseudo-complemented and supplemented
computing in�nitary joins and meets of central elements is particularly easy.

4.1.11. Proposition. Let D be a distributive lattice which is both pseudo-com-
plemented and supplemented. If D is complete then so is Z(D).

Proof:
To see that Z(D) is complete it su�ces to show that any set of central elements
in D has a greatest lower bound in Z(D). Therefore, let {ci}i∈I be a collection of
central elements. As D is complete a greatest lower bound c :=

∧
i∈I ci of the fam-

ily {ci}i∈I exists in D. We claim that c is central with complement c′ :=
∨
i∈I ¬ci.

For all i ∈ I we have ¬ci ∧ c ≤ ¬ci ∧ ci = 0 and hence ¬ci ≤ ¬c. Therefore,
c′ ≤ ¬c which implies that c′ ∧ c = 0. Furthermore, since each ci is central we
have ci ∨ c′ ≥ ci ∨ ¬ci = 1 and hence ∼ c′ ≤ ci. Therefore, ∼ c′ ≤ c which implies
that c′ ∨ c = 1. 2

4.1.12. Remark. Note that Proposition 4.1.11 also proves that if {ci}i∈I is a
collection of central elements in a complete distributive lattice D which is both
pseudo-complemented and supplemented then ¬

∧
i∈I ¬ci =

∨
i∈I ¬¬ci =

∨
i∈I ci.

Consequently, also the join, taken in D, of any family of central elements in D
must be central. This shows that Z(D) is in fact a complete sublattice of D.

4.1.1 Minimal prime �lters

As we will see, the minimum of the dual Esakia space X of a Heyting algebra A
will play an important role in describing the hyper-MacNeille completion of A.
The set of minimal prime �lters will in general not be a closed subset of X and
therefore not a Stone space when equipped with the subspace topology determined
by X. We �rst characterize the distributive lattices with the property that the
minimum of their dual Priestley space is closed. We refer to Appendix A.6 for
basic concepts from duality theory.
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4.1.13. Definition. Let D be a distributive lattice. An element a ∈ D satisfy-
ing

∀b ∈ D (1 = a ∨ b =⇒ b = 1)

is called co-dense. We denote by CoDn(D) the set of co-dense elements of D.

4.1.14. Remark. It is easy to see that in a supplemented lattice D the co-dense
elements are precisely the elements a ∈ D such that ∼ a = 1.

4.1.15. Definition (cf. [237]). A bounded distributive lattice D is called a ∇∗-
lattice if for all a ∈ D there is an element b ∈ D such that a ∨ b = 1 and
a ∧ b ∈ CoDn(D).

Since in any supplemented lattice elements of the form a∧∼ a are always co-
dense it is easy to see that such lattices will be ∇∗-lattices. However, ∇∗-lattices
need not be supplemented, as is easily seen, e.g., by considering the order dual of
the bounded distributive lattice (ω × 2) ⊕ 1, obtained by adding a top element
to the lattice ω × 2, cf. [237, Sec. 4].

As the next proposition shows, the ∇∗-lattices pick out exactly the distributive
lattices, and so in particular the Heyting algebras, for which the set of minimal
prime �lters is closed.

4.1.16. Proposition (cf. [237, Thm. 1]). Let D be a distributive lattice and let
X be its dual Priestley space. Then the following are equivalent.

1. The set min(X) is a closed subset of X.

2. The lattice D is a ∇∗-lattice.

Proof:
First, assume that min(X) is closed in X. Let U be a clopen upset of X. Then
C1 := (U ∩min(X)) and C2 := ↑(X\U) are two disjoint closed down- and upsets,
respectively. Consequently, we have a clopen upset V such that C1 ∩ V = ∅
and C2 ⊆ V , see, e.g., [74, Lem. 11.21(ii)(b)]. It follows that U ∪ V = X and
that U ∩ V is disjoint from min(X). Therefore any clopen upset W such that
W∪(U∩V ) = X must contain min(X) and hence be equal to X. This means that
U ∩ V is co-dense, showing that the lattice of clopen upsets of X is a ∇∗-lattice.

Second, assuming that D is a ∇∗-lattice we show that

min(X) =
⋂
{X\â : a ∈ CoDn(D)},

and so being the intersection of closed sets, the set min(X) must be closed. As-
sume �rst that x ∈ min(X) and that a ∈ CoDn(D). Hence for all b ∈ D we have
that b∨ a = 1 entails b = 1. It follows that the ideal I generated by (D\x)∪ {a}
must be proper and as such it may be extended to a prime ideal, say y ⊇ I ⊇ D\x.
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But then we have that D\y ⊆ x is a prime �lter and so, by the minimality of x,
thatD\y = x whence a 6∈ x. This shows that min(X) ⊆

⋂
{X\â : a ∈ CoDn(D)}.

Conversely, if x ∈
⋂
{X\â : a ∈ CoDn(D)} and y ⊆ x then, since D is a ∇∗-lat-

tice, for any a ∈ x we have b ∈ D such that a ∨ b = 1 and a ∧ b ∈ CoDn(D). So,
as y is a prime �lter, we obtain that either a ∈ y or b ∈ y. Furthermore, since
a∧b ∈ CoDn(D) we have that a∧b 6∈ x, whence b 6∈ x as a ∈ x by assumption. It
follows that b 6∈ y whence a ∈ y. As a ∈ x was arbitrary, we obtain that y = x and
therefore that x ∈ min(X), showing that

⋂
{X\â : a ∈ CoDn(D)} ⊆ min(X). 2

4.1.17. Remark. It is worth noting that the proof of Proposition 4.1.16 shows
that min(X) ⊆

⋂
{XD\â : a ∈ CoDn(D)} holds for any distributive lattice D.

In particular, this means that if a ∈ D is co-dense and x ∈ min(X) then x 6∈ â,
which is to say, a 6∈ x.

4.1.18. Corollary. Let D be a supplemented lattice with dual Priestley space
X. Then min(X) is a closed subspace of X.

The following is most likely already known in the order dual formulation.
However, as we have not be able to �nd a direct reference we include a proof.

4.1.19. Proposition. Let D be a supplemented lattice with dual Priestley space
X. Then min(X) is a Stone space the dual Boolean algebra of which is isomorphic
to CoRg(D).

Proof:
Since D is a supplemented lattice min(X) is a closed subset of X by Corol-
lary 4.1.18. Consequently, being a closed subset of a Stone space, the set min(X)
equipped with the subspace topology is again a Stone space. By [217, Lem. 12] the
dual space of the Stone space min(X) is the homomorphic image of D determined
by the congruence θ de�ned as

aθb if, and only if, ∀x ∈ min(X) (a ∈ x ⇐⇒ b ∈ x).

We show that aθb if, and only if, ∼ a = ∼ b, for all a, b ∈ D. If ∼ a = ∼ b and
x ∈ min(X) is such that a ∈ x then ∼ b = ∼ a 6∈ x, as a∧∼ a is co-dense, and so
b ∈ x as b∨∼ b = 1. Conversely, if ∼ a 6= ∼ b, then ∼ a↔ ∼ b < 1 and so there is
x ∈ X such that∼ a↔ ∼ b 6∈ x. SinceX is a Priestley space, by Proposition A.6.6
there is y ⊆ x, with y ∈ min(X) and consequently ∼ a ↔ ∼ b 6∈ y. Therefore, y
separates ∼ a and ∼ b, say, without loss of generality, ∼ a ∈ y and ∼ b 6∈ y. Since
y is minimal and ∼ a ∧ a is co-dense we have that a 6∈ y. On the other hand as
∼ b 6∈ y we must have b ∈ y, implying that y separates a and b. This shows that
aθb if, and only if, ∼ a = ∼ b.

Recall from Lemma 4.1.7 that a 7→ ∼∼ a is a surjective homomorphism
D � CoRg(D) of supplemented lattice. Since the equation ∼∼∼ x ≈ ∼x is
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always satis�ed in a supplemented lattice, we see that the kernel of this map co-
incides with the congruence θ. From this we may conclude thatD/θ is isomorphic
to CoRg(D), as desired. 2

4.1.2 Hausdor� lattices

Mimicking the construction of the Pierce sheaf of a commutative regular ring
[212] one can represent any lattice as a weak Boolean product over its center,
see Appendix A.2 for de�nitions. We describe the construction for distributive
lattices noting that something very similar can be done for arbitrary lattices, see
[73]. Given a distributive lattice D let X be the dual Stone space of its center
Z(D). Then for each x ∈ X we obtain a congruence ≡x on D by letting

a ≡x b if, and only if, ∃c ∈ x (a ∧ c = b ∧ c).

Then, withDx denoting the quotientD/≡x, it may be shown thatD ↪→
∏

x∈X Dx

is always a subdirect representation of D as a weak Boolean product of the family
{Dx : x ∈ X}. Following [73] we refer to this as the usual representation of D
over its center .

4.1.20. Definition ([73]). A distributive lattice is Hausdor� if the usual rep-
resentation over its center is a Boolean product.

The terminology comes from the fact that when viewing the usual presentation
of a distributive lattice D over its center as a sheaf presentation, then the induced
sheaf space is Hausdor� if, and only if, the lattice D is Hausdor� [195, 146].

4.1.21. Remark. It is easy to verify that when D is a Heyting algebra then
the congruence ≡x is in fact a Heyting algebra congruence and so the embedding
obtained from the usual representation of D over its center is an embedding
of Heyting algebras. A similar remark applies, mutatis mutandis, when D is a
supplemented lattice.

Knowing that a lattice D is Hausdor� will usually not be very useful if the
stalks of D are not in some way simpler than D itself. The case where the stalks
are directly indecomposable or in some other sense irreducible is often of inter-
est. In the following we will determine the Heyting algebras which are Boolean
products of a family of �nitely subdirectly irreducible (fsi) Heyting algebras. The
�nitely subdirectly irreducible Heyting algebras have a particularly simple de-
scription, namely, they are the well-connected Heyting algebras, viz., Heyting
algebras satisfying the universal clause

1 ≈ x ∨ y =⇒ x ≈ 1 or y ≈ 1.

See Appendix A.4 for details.
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4.1.22. Proposition. Let A be a Heyting algebra. If A is a Boolean product
with fsi stalks then A is supplemented with a De Morgan supplement.

Proof:
Suppose that A is a Boolean product of a family of fsi Heyting algebras {Ax :
x ∈ X}. Then for all a ∈ A we have that the set Ja = 1K = {x ∈ X : a(x) = 1}
is clopen. Hence by the patchwork property there is an element a′ ∈ A such that

a′(x) =

{
1 if a(x) < 1,

0 if a(x) = 1.

As each of the stalks Ax of A are well-connected it is easy to see that a′ is
the supplement of a in A. Moreover, because the stalks are well-connected, for
a, b ∈ A and x ∈ X we must have that

(∼(a ∨ b))(x) = 0 ⇐⇒ (a ∨ b)(x) = 1

⇐⇒ a(x) = 1 or b(x) = 1

⇐⇒ (∼ a)(x) = 0 or (∼ b)(x) = 0

⇐⇒ (∼ a ∧ ∼ b)(x) = 0.

Similarly, again using the fact that the stalks are well-connected, we see that

(∼(a ∨ b))(x) = 1 ⇐⇒ (a ∨ b)(x) < 1

⇐⇒ a(x) < 1 and b(x) < 1

⇐⇒ (∼ a)(x) = 1 and (∼ b)(x) = 1

⇐⇒ (∼ a ∧ ∼ b)(x) = 1.

Consequently, since for each c ∈ A and all x ∈ X we have that (∼ c)(x) = 0 or
(∼ c)(x) = 1, this shows that ∼(a ∨ b) = ∼ a ∧ ∼ b. 2

Let A be a Heyting algebra with dual Esakia space X. Since each x ∈ X is a
�lter on A we obtain a Heyting algebra congruence θx on A by

aθxb if, and only if, a↔ b ∈ x.

Moreover, since each x ∈ X is prime, the quotient A/θx is well-connected or
equivalently �nitely subdirectly irreducible.

4.1.23. Lemma. Let A be Heyting algebra with dual Esakia space X. Then A is
a subdirect product of the family {A/θx : x ∈ min(X)}.

Proof:
It su�ces to show that for all a, b ∈ A, if a 6= b then there exists x ∈ min(X) such
that (a, b) 6∈ θx. If a 6= b then a ↔ b < 1 and so there must be a prime �lter x′
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of A not containing a↔ b. Since X is a Priestley space we have that x′ extends
some minimal prime �lter, say x ⊆ x′. Evidently, a↔ b 6∈ x, whence (a, b) 6∈ θx,
as desired. 2

The subdirect presentation of A over the minimum of its dual Esakia space
determined by Lemma 4.1.23 can be seen as a generalized version of the usual
weak Boolean product representation of A over its center. Furthermore, as we
will see in Section 4.3 given a Heyting algebra A with dual Esakia space X,
the space min(X) and the family of quotients {A/θx : x ∈ min(X)} completely
determine the hyper-MacNeille completion of A. We �rst show that when A is
supplemented with a De Morgan supplement then the subdirect representation
of A given by Lemma 4.1.23 is in fact (isomorphic to) the usual representation
of A over the center of A.

4.1.24. Theorem (cf. [247, Thm. 9.5]). Let A be a Heyting algebra. Then the
following are equivalent.

1. The algebra A is supplemented with a De Morgan supplement.

2. The algebra A is a Hausdor� lattice with �nitely subdirectly irreducible
stalks.

Proof:
That Item 2 entails Item 1 has already been established in Proposition 4.1.22.
Thus it only remains to establish the converse implication.

Suppose that A is supplemented with a De Morgan supplement, and let X be
the dual Stone space of the center of A. We must show that Ja = bK is a clopen
subset of X for all a, b ∈ A. Therefore, let a, b ∈ A be given. As the relation ≡x
is in fact a congruence of Heyting algebras we see that

Ja = bK = {x ∈ X : a↔ b ≡x 1}.

Let d be the element a ↔ b. Then for x ∈ X we see that d ≡x 1 if, and only
if, there is c ∈ x such c ≤ d. As any central element is evidently co-regular and
∼∼ d ≤ d we see that c ≤ d, if and only if, c ≤ ∼∼ d, for any central element c of
A. From Proposition 4.1.9 we know that co-regular elements of A are all central.
In particular ∼∼ d must be central. It follows that d ≡x 1 precisely when ∼∼ d
belongs to x. This shows that Ja = bK is the clopen subset ∼̂∼ d of X.

To see that the stalks are Ax are �nitely subdirectly irreducible let x ∈ X
be given and consider a, b ∈ A such that a ∨ b ≡x 1. Then there is c ∈ x such
that c ∧ (a ∨ b) = c, implying that c ≤ a ∨ b. But then ∼∼ c ≤ ∼∼(a ∨ b).
Since the central and the supplemented elements of A coincide we obtain that
c ≤ ∼∼(a∨b). Moreover, using the De Morgan laws we see that c ≤ ∼(∼ a∧∼ b).
As∼(∼ a∧∼ b) is co-regular and therefore central we obtain that∼(∼ a∧∼ b) ∈ x.
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Another use of the De Morgan laws shows that ∼∼ a∨∼∼ b ∈ x and hence that
either ∼∼ a ∈ x or ∼∼ b ∈ x, as x is a prime �lter. In the �rst case we must have
that a ≡x 1 and in the second that b ≡x 1. This shows that Ax is well-connected
and hence �nitely subdirectly irreducible. 2

4.1.25. Remark. We note that (∼(x↔ y)∧x)∨ (¬∼(x↔ y)∧ z) is a discrimi-
nator term on any fsi Heyting algebra, viewed as a supplemented Heyting algebra,
cf. [229, Sec. 5] as well as [241]. Consequently, Theorem 4.1.24 shows that the
class of De Morgan supplemented Heyting algebras forms a discriminator variety
of supplemented Heyting algebras, see, e.g., [46, Chap. IV.9].

When A is supplemented with a De Morgan supplement not only will A be
Hausdor� but, as the following proposition will show, the stalks can be give a
more familiar description.

4.1.26. Proposition. Let A be a supplemented Heyting algebra with dual Esa-
kia space X. Then for any x ∈ min(X) and any a, b ∈ A we have that aθxb if,
and only if, there is c ∈ x ∩ Z(A) such that c ∧ a = c ∧ b.

Proof:
If aθxb then we have that d := a ↔ b ∈ x. Then c := ∼∼ d is a co-regular, and
hence by Proposition 4.1.9 central, element below d. Consequently,

c ∧ a = (c ∧ d) ∧ a = c ∧ (d ∧ a) = c ∧ (d ∧ b) = c ∧ b.

Thus it su�ces to show that c ∈ x. If not, then ∼ c ∈ x but ∼ c = ∼ d and so
d∧∼ d ∈ x which is a contradiction since x is assumed to be minimal and as such
does not contain any co-dense elements. Conversely, if we have c ∈ x∩Z(A) such
that c ∧ a = c ∧ b, then c ≤ a ↔ b and hence a ↔ b ∈ x showing that aθxb, as
desired. 2

By Corollary 4.1.18 we know that when A is a supplemented Heyting algebra
with dual Esakia space X then min(X) is closed in X and hence is a Stone
space in the subspace topology. Moreover, by Propositions 4.1.9 and 4.1.19,
when A is De Morgan supplemented the dual Stone space of the center of A
may be identi�ed with min(X). This, together with Proposition 4.1.26, yields
the following corollary.

4.1.27. Corollary. A Heyting algebra A with dual Esakia space X is supple-
mented with a De Morgan supplement if, and only if, the subdirect embedding
A ↪→

∏
x∈min(X) A/θx is a Boolean product representation of A.

As mentioned before when computing the hyper-MacNeille completion of a
Heyting algebra A the subdirect presentation A ↪→

∏
x∈min(X) A/θx will play an

essential role also when A is not (De Morgan) supplemented.
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4.2 Hyper-MacNeille completions

In this section we will provide the de�nition of the hyper-MacNeille completion of
a Heyting algebra. We �rst give a presentation of the hyper-MacNeille completion
of Heyting algebras which is slightly simpler than the original. We then recall the
original de�nition from [60, Sec. 6.2] and show that the two presentations indeed
determine the same Heyting algebras.

4.2.1 Heyting frames and complete Heyting algebras

To de�ne the hyper-MacNeille completion of a Heyting algebra it will not be
necessary to introduce the notion of a residuated hyper-frame as done in [60,
Sec. 5.1]. Instead, following [242], we will make use of Heyting frames [243,
Sec. 6.1] which are essentially the residuated frames [97] giving rise to complete
Heyting algebras.

4.2.1. Definition ([243]). A structure W = 〈W0,W1, N, ◦, ε, 〉 is called a
Heyting frame provided that

(i) (W0,W1, N) is a polarity,

(ii) 〈W0, ◦, ε〉 is a monoid,

(iii)  : W0 ×W1 → W1 is a function satisfying,

∀w1, w2,∈ W0∀u ∈ W1 ((w1 ◦ w2)Nu ⇐⇒ w2Nw1  u),

∀w ∈ W0∀u ∈ W1 ((w ◦ w)Nu =⇒ wNu),

∀w ∈ W0∀u ∈ W1 (εNu =⇒ wNu),

∀w1, w2 ∈ W0∀u ∈ W1 ((w1 ◦ w2)Nu =⇒ (w2 ◦ w1)Nu).

Recall from Appendix A.8 that any polarity (W0,W1, N) induces a pair of func-
tions

L : ℘(W1)→ ℘(W0) and U : ℘(W0)→ ℘(W1),

de�ned by

L(X) := {w ∈ W0 : ∀u ∈ X (wNu)} and U(Y ) := {u ∈ W1 : ∀w ∈ Y (wNu)},

for X ⊆ W1 and Y ⊆ W0. The composition of these functions determines a
closure operator γN := LU : ℘(W0) → ℘(W0), the closed elements of which form
a complete lattice with meets and joins de�ned as∧

i∈I

Zi =
⋂
i∈I

Zi and
∨
i∈I

Zi = γN

(⋃
i∈I

Zi

)
,

respectively.
The point of introducing the additional structure of a Heyting frame is to

insure that lattice induced by the polarity (W0,W1, N) will be a Heyting algebra.
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4.2.2. Theorem ([243, Lem. 13]). Let W = 〈W0,W1, N, ◦, ε, 〉 be a Heyting
frame. Then the lattice W+ induced by the polarity (W0,W1, N) is a complete
Heyting algebra, with Heyting implication de�ned as

X → Y := {w ∈ W0 : ∀v ∈ X (v ◦ w ∈ Y )},

and with least element γN(∅) and greatest element W0.

It is not di�cult to verify that any Heyting algebraA gives rise to a Heyting frame
WA := 〈A∧,A∧,≤,∧, 1,→〉, such that the induced complete Heyting algebraW+

A

is in fact isomorphic to the MacNeille completion A of A. One can also construct
�Lindenbaum-Tarski� Heyting frames on the basis of sequent and hypersequent
calculi. However, the exact de�nitions are somewhat more intricate, and so for
details we refer to [243, 60, 97, 59].

4.2.2 De�nition and basic properties

Let A = 〈A,∧,∨,→, 0, 1〉 be a Heyting algebra. The algebra A induces two
monoids, namely the monoids A∧ = 〈A,∧, 1〉 and A∨ = 〈A,∨, 0〉. Consequently,
forming the direct product MA := A∨ ×A∧ we obtain a monoid with monoidal
operation ◦ given by

(s, a) ◦ (t, b) := (s ∨ t, a ∧ b),

and unit (0, 1). We then de�ne a relation N ⊆ A2 × A2 by letting

(s, a)N(t, b) if, and only if, s ∨ t ∨ (a→ b) = 1.

Furthermore, letting

(s, a) (t, b) = (s ∨ t, a→ b),

we see that

((s1, a1) ◦ (s2, a2))N(t, b) ⇐⇒ s1 ∨ s2 ∨ t ∨ ((a1 ∧ a2)→ b) = 1

⇐⇒ s2 ∨ (s1 ∨ t) ∨ (a2 → (a1 → b)) = 1

⇐⇒ (s2, a2)N(s1 ∨ t, (a1 → b))

⇐⇒ (s2, a2)N(s1, a1) (t, b).

The monoid MA is evidently commutative and idempotent. Furthermore, for
all (t, b) ∈ A2 we have that (0, 1)N(t, b) if, and only if, t ∨ b = 1. There-
fore, since the Heyting implication is order-reversing in its �rst argument, for
all (s, a), (t, b) ∈ A2 we see that (0, 1)N(t, b) entails (s, a)N(t, b). Thus the struc-
ture JA := (MA,MA, N, ◦, (0, 1), ) is a Heyting frame. Consequently, by The-
orem 4.2.2, we obtain a complete Heyting algebra J+

A . It turns out that this is in
fact a completion of A.
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4.2.3. Proposition (cf. [60, Thm. 5.20]). There is an embedding of Heyting al-
gebras e : A ↪→ J+

A given by b 7→ L(0, b) = {(s, a) ∈ A2 : s ∨ (a→ b) = 1}.

Proof:
As a general fact about closure operators induced by polarities we have that
the elements of the algebra J+

A are precisely the elements of the form L(X) for
X ⊆ A2. In particular this shows that the map e is well de�ned. For each
b ∈ A we have that (0, b) ∈ L(0, b). Consequently, if L(0, b1) ≤ L(0, b2) then
(0, b1) ∈ L(0, b2) whence b1 → b2 = 1 and hence b1 ≤ b2. This shows that the
map e is injective.

Evidently, we have that e(1) = L(0, 1) = A2. Moreover, e(0) = {(s, a) ∈ A2 :
s∨¬a = 1} and so since the Heyting implication is order-preserving in its second
argument we see that (s, a)N(t, b) for all (s, a) ∈ e(0) and all (t, b) ∈ A2. Thus
e(0) ⊆ L(X) for any X ⊆ A2 and hence e(0) must be the least element of the
algebra J+

A . This shows that the map e preserves the bounds.

From the fact that the Heyting implication preserves binary meets in its second
argument, for b1, b2 ∈ A we see that

e(b1 ∧ b2) = {(s, a) ∈ A2 : s ∨ (a→ (b1 ∧ b2)) = 1}
= {(s, a) ∈ A2 : s ∨ ((a→ b1) ∧ (a→ b2)) = 1}
= {(s, a) ∈ A2 : (s ∨ (a→ b1)) ∧ (s ∨ (a→ b2)) = 1}
= {(s, a) ∈ A2 : (s ∨ (a→ b1)) = 1 and (s ∨ (a→ b2)) = 1}
= e(b1) ∩ e(b2)

= e(b1) ∧ e(b2).

Thus the map e preserves binary meets. In particular e must be order-preserving.
Form this we may conclude that e(b1)∨e(b1) ≤ e(b1∨b2) and e(b1 → b2) ≤ e(b1)→
e(b2), for all b1, b2 ∈ A.

In order to show that e preserves binary joins it will be su�cient to show that
e(b1 ∨ b2) ≤ e(b1)∨ e(b2), for all b1, b2 ∈ A. Therefore, let b1, b2 ∈ A be given, and
let (s, a) ∈ e(b1∨ b2). By de�nition we have that e(b1)∨ e(b2) = LU(e(b1)∪ e(b2))
and so to show that (s, a) ∈ e(b1) ∨ e(b2) we must show that (s, a)N(t, b) for
all (t, b) ∈ U(e(b1) ∪ e(b2)). Therefore, let (t, b) ∈ U(e(b1) ∪ e(b2)) be given.
Then (t, b) ∈ U(e(bi)) for each i ∈ {1, 2}. As (0, bi) ∈ U(e(bi)) it follows that
t ∨ (bi → b) = 1 for i ∈ {1, 2}. Consequently, we must have

1 = (t ∨ (b1 → b)) ∧ (t ∨ (b2 → b))

= t ∨ ((b1 → b) ∧ (b2 → b))

= t ∨ ((b1 ∨ b2)→ b).

By the assumption that (s, a) ∈ e(b1∨b2) we also have that s∨(a→ (b1∨b2)) = 1.
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Using distributivity we then see that

1 = (s ∨ (a→ (b1 ∨ b2))) ∧ (t ∨ ((b1 ∨ b2)→ b))

≤ ((s ∨ t) ∨ (a→ (b1 ∨ b2))) ∧ ((s ∨ t) ∨ ((b1 ∨ b2)→ b))

= (s ∨ t) ∨ ((a→ (b1 ∨ b2)) ∧ ((b1 ∨ b2)→ b))

≤ s ∨ t ∨ (a→ b).

This shows that (s, a)N(t, b), as desired.
Finally, to show that e preserves the Heyting implication it su�ces to show

that e(b1) → e(b2) ≤ e(b1 → b2), for all b1, b2 ∈ A. Therefore, let b1, b2 ∈ A be
given. By de�nition the set e(b1)→ e(b2) consist of the elements (s, a) ∈ A2 such
that (s, a) ◦ (s1, a1) ∈ e(b2) for all (s1, a1) ∈ e(b1). Since (0, b1) ∈ e(b1) it follows
that (s, a) ◦ (0, b1) ∈ e(b2), for all (s, a) ∈ e(b1). For each (s, a) ∈ A2 we see that
(s, a) ◦ (0, b1) = (s, a ∧ b1). Therefore, if (s, a) ∈ e(b1) then

s ∨ ((a ∧ b1)→ b2) = s ∨ (a→ (b1 → b2)) = 1,

showing that (s, a) ∈ e(b1 → b2). Therefore, e(b1) → e(b2) ≤ e(b1 → b2), as
desired. 2

4.2.4. Definition (cf. [60, Sec. 6.2]). For a Heyting algebra A we de�ne the
hyper-MacNeille completion of A to be the algebra J+

A , and denote it by A+.

The original de�nition of the hyper-MacNeille completion due to Ciabat-
toni, Galatos, and Terui [60, Sec. 6.2] was based on a slightly di�erent Heyting
frame. Namely, given a Heyting algebra A let F(A2) be the free commutative
monoid on the set A2. For h, g ∈ F (A2) we write h | g for their product in
F(A2). The universal property of F(A2) then induces a monoid homomorphism
(−)∗ : F(A2)→ A∨ by letting (a, b)∗ = a→ b, for each (a, b) ∈ A2. This map has
a section (−)∗ : A → F (A2) given by a 7→ (1, a), which is however not a monoid
homomorphism. We then obtain a monoid M∗

A := F(A2) ×A∧, with monoidal
operation • given by

(h, a) • (g, b) := (h |g, a ∧ b),

and unit (ε, 1), where ε denotes the unit in F(A2). Just as before it is easy to
verify that the structure HA := (M∗

A,M
∗
A, N

∗, •, (ε, 1), ) is a Heyting frame
with

(h, a)N∗(g, b) if, and only if, h∗ ∨ g∗ ∨ (a→ b) = 1,

and

(h, a) (g, b) := (h |g, a→ b).
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4.2.5. Theorem. If A is a Heyting algebra, then the induced Heyting algebras
J+
A and H+

A are isomorphic.

Proof:
To avoid confusion we will here write and U∗ and L∗ for the functions induced
by the relation N∗.

For Z ∈ H+
A let J(Z) := {(h∗, a) : (h, a) ∈ Z}. We claim that this assignment

is an isomorphism between H+
A and J+

A . To see that this assignment indeed
de�nes a map from H+

A to J+
A let Z ∈ H+

A and (s, a) ∈ LU(J(Z)) be given.
Observe that if (g, b) ∈ U∗(Z) then h∗ ∨ g∗ ∨ (a → b) = 1 for all (h, a) ∈ Z.
But then (g∗, b) ∈ U(J(Z)) and so (s, a)N(g∗, b). Consequently, 1 = s ∨ g∗ ∨
(a → b) = (s∗)

∗ ∨ g∗ ∨ (a → b), and hence (s∗, a)N∗(g, b). This shows that
(s∗, a) ∈ L∗U∗(Z) = Z, and therefore (s, a) = ((s∗)

∗, a) ∈ J(Z). We have thus
established that LU(J(Z)) ⊆ J(Z) and hence that J(Z) ∈ J+

A , showing that the
map Z 7→ J(Z) is well de�ned.

To see that this map is in fact an isomorphism we �rst observe that since the
partial orders on H+

A and J+
A are given by set-theoretic inclusion we have that

Z1 ≤ Z2 implies J(Z1) ≤ J(Z2) for all Z1, Z2 ∈ H+
A . Conversely, if J(Z1) ≤ J(Z2)

for some Z1, Z2 ∈ H+
A then for (h, a) ∈ Z1 we have that (h∗, a) ∈ J(Z2), implying

that h∗0 = h for some h0 such that (h0, a) ∈ Z2. Given (g, b) ∈ U∗(Z2) we
then have that (h0, a)N∗(g, b) and hence that (h∗, a) = (h∗0, a)N(g∗, b), whence
(h, a)N∗(g, b) yielding (h, a) ∈ L∗U∗(Z2) = Z2. This shows that Z 7→ J(Z) is an
order embedding. Thus it su�ces to prove that it is also surjective. Therefore,
given Z ∈ J+

A we let

H(Z) = L∗U∗({(s∗, a) : (s, a) ∈ Z}).

Evidently, H(Z) ∈ H+
A . We claim that J(H(Z)) = Z. It is easily seen that

Z ⊆ J(H(Z)). On the other hand, for each (t, b) ∈ U(Z) we have (t∗, b) ∈
U∗({(s∗, a) : (s, a) ∈ Z}). Consequently, if (h, a) ∈ H(Z), then for all (t, b) ∈
U(Z) we have (h, a)N∗(t∗, b) and therefore also (h∗, a)N((t∗)

∗, b) = (t, b). This
implies that (h∗, a) ∈ LU(Z) = Z for all (h, a) ∈ H(Z). From this we may con-
clude that J(H(Z)) ⊆ Z, as desired. 2

The following are completely standard facts, see, e.g., [60, Lem. 5.3], but
included here for easy reference.

4.2.6. Lemma. For all Z ∈ A+ and all b ∈ A we have that

1. Z =
∧
{L(t, b) ∈ A+ : Z ⊆ L(t, b)},

2. Z =
∨
{LU(s, a) ∈ A+ : (s, a) ∈ Z},

3. LU(0, b) = L(0, b).
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Proof:
We �rst observe that since LU(−) is an order-preserving function on ℘(A2) such
that LU(Z) = Z for all Z ∈ A+, we must have

Z = LU(Z) =
∧
{L(t, b) ∈ A+ : (t, b) ∈ U(Z)},

for each Z ∈ A+. Now, Item 1 follows from the easy observation that (t, b) ∈
U(Z) if, and only if, Z ⊆ L(t, b).

To see that Item 2 holds note that if (s, a) ∈ Z then LU(s, a) ⊆ LU(Z) = Z,
hence

∨
{LU(s, a) ∈ A+ : (s, a) ∈ Z} ⊆ Z. Conversely, since (s, a) ∈ LU(s, a) we

have that Z ⊆
⋃
{LU(s, a) ∈ A+ : (s, a) ∈ Z} yielding,

Z = LU(Z) ⊆ LU
(⋃
{LU(s, a) ∈ A+ : (s, a) ∈ Z}

)
=
∨
{LU(s, a) ∈ A+ : (s, a) ⊆ Z}.

Finally, to see that Item 3 holds we observe that since (0, b) ∈ U(0, b) then
LU(0, b) ⊆ L(0, b). Conversely, if (u, c) ∈ U(0, b) then 1 = u ∨ (c → b) and so if
(s, a) ∈ L(0, b) then 1 = s ∨ (a→ b) yielding

1 = u ∨ s ∨ ((a→ b) ∧ (b→ c)) ≤ u ∨ s ∨ (a→ c).

This shows that (s, a)N(u, c) and so since (u, c) ∈ U(0, b) was arbitrary that
L(0, b) ⊆ LU(0, b). 2

Recall that an embedding of algebras e : A ↪→ B is essential if for any homo-
morphism h : B→ C we have that h is a monomorphism whenever h◦ e : A→ C
is a monomorphism. The MacNeille completion A ↪→ A of a Heyting algebra
A is always an essential extension. We show that the same is the case for the
hyper-MacNeille completion.

4.2.7. Lemma. An embedding of Heyting algebras e : A ↪→ B is essential if for
all b ∈ B with b < 1 there is a ∈ A with a < 1 such that b ≤ e(a).

Proof:
Suppose that e : A ↪→ B is an embedding of Heyting algebras satisfying the con-
ditions of the lemma. Let h : B → C be a Heyting algebra homomorphism such
that h ◦ e : A ↪→ C is an embedding. As congruences of Heyting algebras are
determined by the equivalence class of the top element 1, to see that h is an
embedding, it su�ces to show that h−1(1) = 1. Therefore, let b ∈ B be such that
b < 1. Then by assumption we have a ∈ A with a < 1 such that b ≤ e(a). But
then h(b) ≤ h(e(a)) < 1, showing that b 6∈ h−1(1). 2
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4.2.8. Lemma. Let A be a Heyting algebra and let (t, b) ∈ A2 then L(t, b) ≤
L(0, t ∨ b). Moreover, L(0, t ∨ b) 6= 1 when L(t, b) 6= 1.

Proof:
We claim that t ∨ (a→ b) ≤ (a→ (t ∨ b)) and therefore that s ∨ t ∨ (a→ b) = 1
implies s∨ (a→ (t∨ b)) = 1 for all (s, a) ∈ A2, showing that L(t, b) ≤ L(0, t∨ b).
We have that

t ∨ (a→ b) ≤ (a→ (t ∨ b)) ⇐⇒ a ∧ (t ∨ (a→ b)) ≤ t ∨ b
⇐⇒ (a ∧ t) ∨ (a ∧ (a→ b)) ≤ t ∨ b
⇐⇒ (a ∧ t) ∨ (a ∧ b) ≤ t ∨ b
⇐⇒ a ∧ (t ∨ b) ≤ t ∨ b,

establishing the desired result. Finally, it is easily seen that if t ∨ b = 1 then
L(t, b) = 1 thus if L(t, b) 6= 1 then, as a 7→ L(0, a) is an injection, we must have
L(0, t ∨ b) 6= 1. 2

4.2.9. Proposition. If A is a Heyting algebra, then e : A ↪→ A+ is an essential
extension.

Proof:
Since the set {L(t, b) ∈ A+ : (t, b) ∈ A2} is meet-dense in A+ this is now a direct
consequence of Lemma 4.2.7 and Lemma 4.2.8. 2

4.2.3 Hyper-MacNeille completions of De Morgan supple-

mented lattices

As established in [60, Prop. 6.6] the hyper-MacNeille completion coincides with
the MacNeille completion for subdirectly irreducible algebras. We will show that
in fact the hyper-MacNeille completion coincides with the MacNeille completion
for an even larger class of algebras, namely the class of supplemented Heyting
algebras with a De Morgan supplement or equivalently the class of Boolean prod-
ucts of fsi Heyting algebras.

4.2.10. Lemma. If A is supplemented with a De Morgan supplement, then

L(t, b) = L(0,∼ t→ b) and U(s, a) = U(0,∼ s ∧ b),

for all (s, a), (t, b) ∈ A2.
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Proof:
Since A is De Morgan supplemented we have that ∼(s ∨ t) = ∼ s ∧ ∼ t for all
(s, a), (t, b) ∈ A2. Consequently, for (t, b) ∈ A2 we have that

L(t, b) = {(s, a) ∈ A2 : 1 = s ∨ t ∨ (a→ b)}
= {(s, a) ∈ A2 : ∼(s ∨ t) ≤ a→ b}
= {(s, a) ∈ A2 : ∼(s ∨ t) ∧ a ≤ b}
= {(s, a) ∈ A2 : ∼ s ∧ ∼ t ∧ a ≤ b}
= {(s, a) ∈ A2 : ∼ s ∧ a ≤ ∼ t→ b}
= {(s, a) ∈ A2 : ∼ s ≤ a→ (∼ t→ b)}
= {(s, a) ∈ A2 : 1 = s ∨ (a→ (∼ t→ b))}
= L(0,∼ t→ b)

Similarly, for (s, a) ∈ A2 we have that

U(s, a) = {(t, b) ∈ A2 : 1 = s ∨ t ∨ (a→ b)}
= {(t, b) ∈ A2 : ∼ s ∧ ∼ t ∧ a ≤ b}
= {(t, b) ∈ A2 : ∼ t ≤ (∼ s ∧ a)→ b}
= {(t, b) ∈ A2 : 1 = t ∨ ((∼ s ∧ a)→ b)}
= U(0,∼ s ∧ a),

which concludes the proof. 2

4.2.11. Proposition. If A is supplemented with a De Morgan supplement, then
A+ is isomorphic to A.

Proof:
By Lemmas 4.2.10 and 4.2.6 we have that A is both join- and meet-densely em-
bedded into A+. As A+ is complete we may conclude that A+ is isomorphic to
the MacNeille completion A of A. 2

It is worth noting that Proposition 4.2.11 applies to Boolean algebras.

4.2.12. Corollary. If A is a Boolean algebra, then A+ is isomorphic to the
MacNeille completion of A.

Furthermore, since the Heyting algebras with a De Morgan supplement are
precisely the Boolean products with fsi stalks, we obtain the following corollary.

4.2.13. Corollary. Let A be a Heyting algebra. If A is a Boolean product of
fsi Heyting algebras, then A+ is isomorphic to A.
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Thus to determine the hyper-MacNeille completion of an arbitrary Heyting
algebra we must as a special case be able to determine the MacNeille completion
of Boolean products of fsi Heyting algebras. Unfortunately, not much is known
about how to compute MacNeille completions of Boolean products of lattices.
However, what we do know is the following.

Let D be any distributive lattice1 and let D ↪→
∏

x∈X Dx be the usual weak
Boolean product representation ofD over its center as de�ned in Subsection 4.1.2.
It can be shown, see [146, 73], that there is a homomorphic image of a subalgebra
of the direct product

∏
x∈X Dx called, the algebra of dense open sections of D and

denote by R(A), with the property that D is join- and meet-densely embedded
in R(D) whenever D is Hausdor�2. However, the algebra R(D) need not be
complete. Nevertheless, there are natural criteria for R(D) to be complete and
therefore the MacNeille completion ofD. Namely, as established by Harding [146],
when the size of the stalks of D are uniformly bounded on a dense open set, then
R(D) will be complete.

4.2.14. Proposition ([146, Prop. 4]). Let D be any Hausdor� lattice and let X
be the dual Stone space of the center of D. If there is a natural number n and a
dense open U ⊆ X such that Dx has size at most n for all x ∈ U , then D = R(D).

From this, and the fact that De Morgan supplemented Heyting algebras are
Hausdor�, we immediately obtain the following corollary.

4.2.15. Corollary. Let A be a De Morgan supplemented Heyting algebra with
dual Esakia space X. If there is a natural number n and a dense open U ⊆ min(X)
such that |A/θx| ≤ n for all x ∈ U , then A+ is isomorphic to R(A).

This discussion also shows that in general there is little hope of giving a bet-
ter description of the hyper-MacNeille completion of an arbitrary Heyting algebra
without �rst being able to determine the MacNeille completions of Boolean prod-
ucts of (fsi) Heyting algebras. In fact, in Section 4.3 we will obtain a description
of the hyper-MacNeille completion of an arbitrary Heyting algebra A as the Mac-
Neille completion of some Boolean product of fsi Heyting algebras.

4.3 Algebras of dense open sections

In this section we will show that the hyper-MacNeille completion of Heyting
algebra A is the MacNeille completion of some Hausdor� Heyting algebra Q(A)
determined byA. This makes the hyper-MacNeille completion ofA much like the

1For what follows the assumption that the lattice in question is distributive is not essential,
see [73].

2In fact, a slightly weaker condition su�ces, see [73, Lem. 6.8].



4.3. Algebras of dense open sections 109

MacNeille completion of a Boolean product, where the subdirect representation
A ↪→

∏
x∈min(X) A/θx plays the role of a Boolean product representation.

Given a Heyting algebra A with dual Esakia space X we will always con-
sider A as a subalgebra of

∏
x∈min(X) A/θx. Consequently, for a ∈ A and x ∈

min(X), we have that a(x) denotes the image of a under the canonical projection∏
x∈min(X) A/θx � A/θx. It is easy to verify that for a ∈ A and x ∈ min(X),

a(x) = 1 if, and only if, a ∈ x.

For any f, g ∈
∏

x∈min(X) A/θx, we let

Jf = gK := {x ∈ min(X) : f(x) = g(x)},

and likewise, mutatis mutandis, for Jf < gK and Jf ≤ gK.
As we have seen, the algebra of dense open sections plays a crucial role when

considering MacNeille completions of Boolean products of lattices. This is also
the case when considering hyper-MacNeille completions. However, in this case we
will be working with a sheaf of algebras the base space of which is not necessarily
compact and so in particular not a Stone space.

4.3.1. Lemma. Let A be a Heyting algebra with dual Esakia space X. For each
a ∈ A and each x ∈ min(X) ∩ â there is s < 1 such that a ∨ s = 1 and x 6∈ ŝ.

Proof:
Since x is minimal we have that {x} and ↑(X\â) are disjoint closed down- and
upsets, respectively. As X is a Priestley space we have clopen upset ŝ such that
{x} ∩ ŝ = ∅ and ↑(X\â) ⊆ ŝ. It follows that x 6∈ ŝ. Furthermore, we see that

â ∨ s = â ∪ ŝ ⊇ â ∪ ↑(X\â) = X,

from which it follows that a ∨ s = 1. 2

Recall from Appendix A.6 that any Priestley space (X,≤, τ) gives rise to
two spectral spaces (X, τ ↑) and (X, τ ↓) with τ ↑ the collection of open upsets of
(X,≤, τ) and τ ↓ the collection of open downsets of (X,≤, τ).

4.3.2. Proposition. Let A be a Heyting algebra with (X,≤, τ) its dual Esakia
space. The subspace topology on min(X) inherited from the Priestley topology τ
on X coincides with the subspace topology on min(X) inherited form the spectral
topology τ ↓ on X.

Proof:
Since τ ↓ ⊆ τ it su�ces to show that for each basic open U ∈ τ there is V ∈ τ ↓
such that U ∩min(X) = V ∩min(X). The sets of the form â, and ã = X\â, with
a ∈ A, form a basis for the topology τ . Consequently, as ã ∈ τ ↓ for all a ∈ A
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we only need to show that the elements of the form â ∩min(X) are open in the
subspace topology on min(X) inherited from τ ↓. To see this let x ∈ â ∩min(X)
be given. By Lemma 4.3.1 we have sx < 1 such that a ∨ sx = 1 and x ∈ s̃x.
Furthermore, if y ∈ s̃x ∩min(X) then y 6∈ ŝx and therefore sx(y) < 1. As A/θy
is well-connected this entails that a(y) = 1 and hence y ∈ â. This shows that
x ∈ s̃x ∩min(X) ⊆ â ∩min(X) from which it follows that the set â ∩min(X) is
open the subspace topology on min(X) inherited from τ ↓. 2

In this section we will always consider min(X) as a topological space equipped
with the subspace topology inherited from the spectral space (X, τ ↓). That is,
the topology determined by basic opens of the form ŝ ∩min(X) for s ∈ A. Note
that by Proposition 4.3.2 the sets Js = 1K for s ∈ A are open in this topology.

Given a Heyting algebra A with dual Esakia space X we would like to equip
the disjoint union of the quotients {A/θx : x ∈ min(X)} with a topology allowing
us to talk about continuity of elements of the direct product

∏
x∈min(X) A/θx. In

order to avoid cumbersome notation we will always assume that the underlying
sets of the algebras A/θx are disjoint, knowing that we can always replace them
with isomorphic copies to satisfy this assumption.

4.3.3. Proposition. Let A be a Heyting algebra with dual Esakia space X. The
collection of sets

O(a, s) := {a(x) : x ∈ Js < 1K},

with (s, a) ∈ A2, forms a basis for a topology on
⋃
x∈min(X) A/θx.

Proof:
We have that each element of

⋃
x∈min(X)A/θx is of the form c(x) for some c ∈ A

and some x ∈ min(X). Because x is a prime �lter and as such proper, we must
have s ∈ A such that s 6∈ x, implying that s(x) < 1. This shows that the sets of
the form O(a, s) cover

⋃
x∈min(X)A/θx.

If c ∈ A and x ∈ min(X) are such that c(x) belongs to O(a1, s1) ∩ O(a2, s2)
then we have that c(x) = a1(x) = a2(x) and s1(x) < 1 and s2(x) < 1. In
particular, for a := a1 ↔ a2 we have a(x) = 1, implying that x ∈ â. Consequently,
by Lemma 4.3.1 we must have s ∈ A with s < 1 such that s ∨ a = 1 and x 6∈ ŝ.
This means that s(x) < 1 and that s(y) < 1 entails a(y) = 1, which is to say that
a1(y) = a2(y) whenever s(y) < 1, for all y ∈ min(X). From this we may conclude
that,

c(x) ∈ O(a1 ∧ a2, s ∨ s1 ∨ s2) ⊆ O(a1, s2) ∩ O(a2, s2),

by using the fact that each of the factors A/θy are fsi Heyting algebras and as
such well-connected, implying that (s ∨ s1 ∨ s2)(y) < 1 if, and only if, s(y) < 1,
s1(y) < 1, and s2(y) < 1. 2
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Given a Heyting algebra A with dual Esakia space X we will equip the (dis-
joint) union

⋃
x∈min(X) A/θx with the topology determined by the family {O(a, s) :

(s, a) ∈ A2}.
Recall that a function f : X → Y between topological spaces is continuous at

a point x ∈ X provided that for any open neighborhood V of f(x) there is an open
neighborhood U of x such that f [U ] ⊆ V . Furthermore, a function f : X → Y
between topological spaces is continuous on a set U ⊆ X if f is continuous at
each x ∈ U .

4.3.4. Lemma. Let A be a Heyting algebra with dual Esakia space X, f ∈∏
x∈min(X) A/θx and x ∈ min(X). Then f is continuous at x if, and only if,

there is (sx, ax) ∈ A2 such that sx(x) < 1 and

∀y ∈ min(X) (sx(y) < 1 =⇒ ax(y) = f(y)).

Proof:
Suppose �rst that there is (sx, ax) ∈ A2 such that sx(x) < 1, and sx(y) < 1
entails ax(y) = f(y) for all y ∈ min(X). Then given any open neighborhood V
of f(x), since the sets O(a, s), with (a, s) ∈ A2, form a basis for the topology on
the co-domain, we have (s, a) ∈ A2 such that f(x) ∈ O(a, s) ⊆ V . This entails
that f(x) = a(x) and s(x) < 1. But then Js ∨ sx < 1K is an open neighborhood
of x such that f [Js ∨ sx < 1K] ⊆ O(a, s) ⊆ V , showing that f is continuous at x.

Conversely, suppose that f is continuous at x. Evidently there must be an
element ax ∈ A with ax(x) = f(x) and an element sx ∈ A such that s(x) < 1.
We then have that O(ax, sx) is an open neighborhood of f(x). Consequently,
since f is continuous at x there must be an open neighborhood of x, say U , such
that f [U ] ⊆ O(ax, s). As the sets Jt < 1K, with t ∈ A, form a basis for the
topology on the domain we must have sx ∈ A with Jsx < 1K ⊆ U and hence
f [Jsx < 1K] ⊆ O(ax, s), showing that sx(y) < 1 entails ax(y) = f(y) for all
y ∈ min(X). 2

4.3.5. Definition. For a Heyting algebra A with dual Esakia space X let D(A)
be the set of elements of

∏
x∈min(X) A/θx which are continuous on some dense open

subset of min(X).

4.3.6. Remark. Note that A ↪→
∏

x∈min(X) A/θx is not in general a Boolean

product; the base space min(X) might not be compact and the patchwork prop-
erty is not guaranteed to hold. Therefore, the subalgebra of

∏
x∈min(X) A/θx

consisting of elements which are continuous at every point will not necessarily
coincide with the algebra A, but might be larger.

For f ∈
∏

x∈min(X) A/θx we let Uf be the interior of the set of points at which

f is continuous. Thus f ∈ D(A) if, and only if, Uf is a dense open set.
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4.3.7. Proposition. Let A be a Heyting algebra with dual Esakia space X.
Then D(A) is a Heyting subalgebra of the direct product

∏
x∈min(X) A/θx.

Proof:
It is easy to see that the least and the greatest elements of

∏
x∈min(X) A/θx are con-

tinuous everywhere and so belong to D(A). Let f1, f2 ∈ D(A) and ∗ ∈ {∧,∨,→}
be given. We claim that f1 ∗ f2 is continuous on Uf1 ∩ Uf2 . To see this let
x ∈ Uf1 ∩ Uf2 be given. By Lemma 4.3.4 we have pairs (s1

x, a
1
x), (s

2
x, a

2
x) ∈ A2

witnessing that f1 and f2 are continuous on x. If (s1
x ∨ s2

x)(y) < 1 for some
y ∈ min(X), since the algebra A/θy is well-connected, s1

x(y) < 1 and s2
x(y) < 1

whence (a1
x ∗ a2

x)(y) = (f1 ∗ f2)(y). Similarly, we have that (s1
x ∨ s2

x)(x) < 1.
Thus by, again by Lemma 4.3.4, the pair (s1

x ∨ s2
x, a

1
x ∗ a2

x) witnesses that f1 ∗ f2

is continuous at x. Since the intersection of two dense open sets is again dense
open this concludes the proof. 2

Given a Heyting algebra A and f ∈ D(A) we de�ne

∆(f) := {(s, a) ∈ A2 : ∀x ∈ Uf (s(x) < 1 =⇒ a(x) ≤ f(x))}

4.3.8. Proposition. Let A be a Heyting algebra. Then ∆(f) belongs to A+ for
all f ∈ D(A).

Proof:
We need to show that ∆(f) = LU(∆(f)). Therefore, as we always have ∆(f) ⊆
LU(∆(f)), it su�ces to argue that LU(∆(f)) ⊆ ∆(f). We �rst observe that for
all x ∈ Uf , since f is continuous at x we have by Lemma 4.3.4 a pair (sx, ax) ∈ A2

such that sx(x) < 1, and ax(y) = f(y) whenever sx(y) < 1. Suppose that a
choice of such pairs (sx, ax) has been made for each x ∈ Uf . Then for x ∈ Uf
and (s, a) ∈ ∆(f) we must have that Uf ⊆ Jsx ∨ s ∨ (a → ax) = 1K. As the set
Jsx∨s∨(a→ ax) = 1K is closed in min(X) and Uf is dense, we may conclude that
sx ∨ s ∨ (a→ ax) = 1, for all (s, a) ∈ ∆(f). But then (sx, ax) ∈ U(∆(f)), for all
x ∈ Uf . Consequently, if (s, a) ∈ LU(∆(f)) it follows that s ∨ sx ∨ (a→ ax) = 1
for all x ∈ Uf . As sx(x) < 1 it follows that s(x) < 1 implies a(x) ≤ ax(x) = f(x),
for each x ∈ Uf , and hence (s, a) ∈ ∆(f). 2

4.3.9. Lemma. For any Heyting algebra A and f1, f2 ∈ D(A) we have that
∆(f1) ≤ ∆(f2) if, and only if, Jf1 ≤ f2K contains a dense open set.

Proof:
We �rst observe that for each x ∈ Uf1 we have (sx, ax) ∈ ∆(f1) for any pair
(sx, ax) ∈ A2 witnessing the fact that f1 is continuous at x. Thus, if ∆(f1) ≤
∆(f2), then for x ∈ Uf1 we have that (sx, ax) ∈ ∆(f2), implying that sx(y) < 1
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entails ax(y) ≤ f2(y). As sx(x) < 1 and ax(x) = f1(x), we see that the dense
open set Uf1 is a subset of Jf1 ≤ f2K.

Conversely, if Jf1 ≤ f2K contains a dense open set, say U , then for all y ∈
U ∩Uf1 and all (s, a) ∈ ∆(f1) we have that s(y) < 1 implies a(y) ≤ f2(y). Given,
x ∈ Uf2 we let (sx, ax) ∈ A2 be a pair witnessing that f2 is continuous at x. Then
we have that U ∩ Uf1 ⊆ Jsx ∨ s ∨ (a → ax) = 1K. Since the intersection of two
dense open sets is again a dense open set and since Jsx ∨ s ∨ (a → ax) = 1K is
closed we must have that sx ∨ s ∨ (a→ ax) = 1, for all x ∈ Uf2 . Since sx(x) < 1
for each x ∈ Uf2 , we obtain that s(x) < 1 implies a(x) ≤ ax(x) = f2(x), for all
such x ∈ Uf2 . This proves that (s, a) ∈ ∆(f2), as desired. 2

Let Θ be the relation on D(A) de�ned by letting

f1Θf2 if, and only if, Jf1 = f2K contains a dense open set.

Since the collection of dense open sets is closed under binary intersections, we
see that Θ is in fact a Heyting algebra congruence. Thus by Proposition 4.3.7 we
have that D(A)/Θ is a homomorphic image of a subalgebra of the direct product∏

x∈min(X) A/θx. In particular, for any Heyting algebra A, the algebra D(A)/Θ
belongs to any variety of Heyting algebras containing A.

4.3.10. Definition (cf. [146]). By the algebra of dense open sections of a Hey-
ting algebra A we shall understand the algebra D(A)/Θ, which we will denote
by Q(A).

4.3.11. Remark. The construction of the algebra Q(A) from the algebra A is
akin to the construction of the maximal ring of quotients of a commutative semi-
simple ring [18], in particular of the ring of all real-valued functions on some
completely regular space, see, e.g., [89, Chap. 2]. Of course, for each Boolean
algebra B the MacNeille completion B considered as a Boolean ring is exactly
the maximal ring of quotients of B considered as a Boolean ring [44].

4.3.12. Proposition. Let A be a Heyting algebra. Then there is an order-
embedding Q(A) ↪→ A+ of posets.

Proof:
We claim that the map f/Θ 7→ ∆(f) is an order-embedding. That this maps is
well de�ned follows directly from Lemma 4.3.9. To see that it is order-preserving
we observe that if f1/Θ ≤ f2/Θ then f1/Θ = f1/Θ ∧ f2/Θ = (f1 ∧ f2)/Θ whence
Jf1 = f1 ∧ f2K contains a dense open set. Since Jf1 ≤ f2K = Jf1 = f1 ∧ f2K we
obtain from Lemma 4.3.9 that ∆(f1) ≤ ∆(f2).

Similarly, to see that the map is also order-re�ecting we observe that if
∆(f1) ≤ ∆(f2) then the set Jf1 ≤ f2K = Jf1 = f1 ∧ f2K contains a dense open set
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and therefore f1/Θ = f1/Θ ∧ f2/Θ which shows that f1/Θ ≤ f2/Θ. 2

In the following we will show that this embedding is both join- and meet-dense
and therefore that Q(A) ∼= A+.

4.3.13. Definition. Let A be a Heyting algebra with dual Esakia space X. For
(s, a), (t, b) ∈ A2 we de�ne functions f(t, b), g(s, a) ∈

∏
x∈min(X) A/θx as follows

f(t, b)(x) =

{
1 if t(x) = 1

b(x) otherwise
and g(s, a)(x) =

{
0 if s(x) = 1

a(x) otherwise

4.3.14. Lemma. For any Heyting algebra A and any (s, a), (t, b) ∈ A2 the func-
tions g(s, a) and f(t, b) are everywhere continuous.

Proof:
Let (t, b) ∈ A2 be given. By Lemma 4.3.4 we have that f(t, b) is continuous at
x ∈ X if, and only if, there is (s, a) ∈ A2 such that s(x) < 1, and s(y) < 1
entails a(y) = f(t, b)(y) for all y ∈ min(X). From the de�nition of f(t, b) we
see that a(y) = f(t, b)(y) precisely when a(y) = t(y) = 1 or when t(y) < 1 and
a(y) = b(y). Given this it is easy to see that if t(x) < 1, then (t, b) witnesses that
f(t, b) is continuous at x. Thus the set of points at which f(t, b) is continuous
contains the open set Jt < 1K. Moreover, if s ∈ A is such that

Jt < 1K ∩ Js < 1K = ∅,

then s(y) < 1 entails t(y) = 1 for all y ∈ min(X), and so for any x ∈ Js < 1K
we have that (s, 1) will witness that f(t, b) is continuous at x. Consequently, we
obtain that f(t, b) is continuous on the open set

Jt < 1K ∪
⋃
{Js < 1K : Jt < 1K ∩ Js < 1K = ∅} = Jt < 1K ∪ I(Jt = 1K),

where I(−) denotes the interior operator on min(X). By Proposition 4.3.2 we
have that I(Jt = 1K) = Jt = 1K and so f(t, b) is continuous everywhere.

A similar argument shows that for each (s, a) ∈ A2 the corresponding function
g(s, a) is continuous everywhere. 2

4.3.15. Proposition. For any Heyting algebra A and any (s, a), (t, b) ∈ A2 we
have that

∆(f(t, b)) = L(t, b) and ∆(g(s, a)) = LU(s, a).
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Proof:
Let X denote the dual Esakia space of A. Using the fact that f(t, b) is continuous
everywhere we see that

∆(f(t, b)) = {(s, a) : ∀x ∈ Uf(t,b) (s(x) < 1 =⇒ a(x) ≤ f(t, b)(x))}
= {(s, a) : ∀x ∈ min(X) (s(x) < 1 =⇒ (t(x) < 1 =⇒ a(x) ≤ b(x)))}
= {(s, a) : min(X) ⊆ Js ∨ t ∨ (a→ b) = 1K}
= {(s, a) : s ∨ t ∨ (a→ b) = 1}
= L(t, b).

To see that ∆(g(s, a)) = LU(s, a), we �rst show that ∆(g(s, a)) ⊆ LU(s, a).
Therefore, let (s0, a0) ∈ ∆(g(s, a)) be given and let (t, b) ∈ U(s, a). Then s ∨
t ∨ (a → b) = 1, showing that s(x) < 1 implies t(x) < 1 or a(x) ≤ b(x). Since
g(s, a) is continuous everywhere we have that s0(x) < 1 implies a0(x) ≤ g(s, a)(x)
for all x ∈ min(X). If t(x) < 1 and s0(x) < 1 then either s(x) = 1 or a(x) ≤
b(x). In the former case g(s, a)(x) = 0 and so a0(x) ≤ b(x). In the latter case,
a0(x) ≤ g(s, a)(x) = a(x) ≤ b(x). In either case a0(x) ≤ b(x). This shows that
s0 ∨ t ∨ (a0 → b) = 1, i.e., (s0, a0) ∈ L(t, b). Since (t, b) ∈ U(s, a) was arbitrary
we may then conclude that (s0, a0) ∈ LU(s, a).

Finally, we show that LU(s, a) ⊆ ∆(g(s, a)). For each x ∈ min(X) we
have (tx, bx) ∈ A2 witnessing that g(s, a) is continuous at x. That is to say
tx(x) < 1 and tx(y) < 1 implies bx(y) = g(s, a)(y) for all y ∈ min(X). It is
not di�cult to see that this entails that s ∨ tx ∨ (a → bx) = 1 and hence that
(tx, bx) ∈ U(s, a). Consequently, we have that if (s0, a0) ∈ LU(s, a) then in par-
ticular, s0∨ tx∨(a0 → bx) = 1 for all x ∈ min(X). But then, as tx(x) < 1 for each
x ∈ min(X), we may conclude that s0(x) < 1 entails a0(x) ≤ bx(x) = g(s, a)(x).
This shows that (s0, a0) ∈ ∆(g(s, a)). 2

Since by Lemma 4.2.6 the sets {L(t, b) ∈ A+ : (t, b) ∈ A2} and {LU(s, a) ∈
A+ : (s, a) ∈ A2} are meet- and join-dense in A+, respectively, we obtain that the
order-embedding Q(A) ↪→ A+ given by Proposition 4.3.12 is both meet- and join-
dense. Consequently, since A+ is complete, the MacNeille completion of Q(A)
must be isomorphic, as a poset and therefore also as a Heyting algebra, to A+.
We have thus established the following theorem.

4.3.16. Theorem. Let A be a Heyting algebra. Then A+ ∼= Q(A).

4.3.17. Remark. Constructing di�erent types of completions of lattice-based
algebras using sheaf representations is by no means a new idea as references
[44, 146, 73] show. We point to two more examples of this phenomenon. Given
a completely regular Baire space X, the Dedekind completion of the Riesz space
C(X) of real-valued continuous functions with domain X may be obtained as the
Riesz space consisting of certain bounded real-valued functions from X which are
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continuous on a dense set and identi�ed by equality on a dense set [77, Thm. 6.1],
see also [89, Chap. 4]. Similarly, lateral completions of `-groups may be obtained
from sheaf representations in a way resembling the construction of Q(A), see
[226].

On the face of it Theorem 4.3.16 does not appear to say much about the hyper-
MacNeille completion of A. Nevertheless, since the algebra Q(A) may have a
richer structure thanA, some useful information can still be gained. For example,
the algebra Q(A) will always belong to any variety containing A. Moreover, as
the following proposition shows, this algebra will always be supplemented with a
De Morgan supplement.

4.3.18. Proposition. For any Heyting algebra A the algebra Q(A) is supple-
mented with a De Morgan supplement.

Proof:
We show that D(A) is supplemented with a De Morgan supplement. It is then
easy to see that the congruence Θ will also be a congruence with respect to the
supplementation operation.

Let X denote the dual Esakia space of A. Then for f ∈ D(A) we de�ne f̃ by

f̃(x) =

{
0 if f(x) = 1

1 otherwise.

It is not hard to see that f̃ is a supplement of f in
∏

x∈min(X) A/θx and that it

satis�es the De Morgan laws. Thus, it remains to be shown that f̃ is continuous
on a dense open set. Therefore, let Uf be the interior of the set of points at which
f is continuous. By assumption Uf is a dense open set. We show that the set of

points at which f̃ is continuous contains the open set (Jf < 1K∩Uf )∪ I(Jf = 1K).
If x ∈ Jf < 1K ∩ Uf then we have that f is continuous at x with f(x) < 1.

Consequently, we must have (s, a) ∈ A2 such that s(x) < 1, and s(y) < 1 implies
a(y) = f(y), for all y ∈ min(X). It is then easy to see that (s ∨ a, 1) witnesses

that f̃ is continuous at x. If x ∈ I(Jf = 1K) then we have s ∈ A such that

x ∈ Js < 1K ⊆ Jf = 1K and hence (s, 0) witnesses that f̃ is continuous at x.
Finally, we show that (Jf < 1K∩Uf )∪I(Jf = 1K) is dense. Therefore, let Js < 1K

be a non-empty basic open subset of min(X). If Js < 1K ∩ Uf ∩ Jf < 1K = ∅
then, as Uf is dense, we have that Js < 1K ∩ Jf < 1K = ∅ and hence that
Js < 1K ⊆ Jf = 1K. But since Js < 1K is a non-empty open set we must have that
Js < 1K ∩ I(Jf = 1K) 6= ∅. 2

4.3.19. Remark. From Proposition 4.3.18 and Theorem 4.1.24 we obtain that
the algebra Q(A) is Hausdor� with fsi stalks for all Heyting algebras A.
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4.3.1 MacNeille completions of De Morgan supplemented

Heyting algebras

From Proposition 4.3.18 and Theorem 4.3.16 it follows that one can understand
the hyper-MacNeille completions of Heyting algebras by looking at MacNeille
completions of De Morgan supplemented Heyting algebras.

4.3.20. Proposition. The MacNeille completion of a De Morgan supplemented
Heyting algebra is again a De Morgan supplemented Heyting algebra.

Proof:
Let A be a De Morgan supplemented Heyting algebra. It is well known that the
MacNeille completion of a Heyting algebra is also a Heyting algebra, see, e.g.,
[151, Thm. 2.3]. We show that A is also supplemented.

For x ∈ A we claim that z :=
∨
{∼ a ∈ A : x ≤ a ∈ A} is the supplement of

x in A. To see this, we �rst note that if y ∈ A is such that y ∨ x = 1 then for
each a ∈ S with a ≥ x we have that y∨ a = 1. Consequently, for each b ∈ A with
b ≥ y we have ∼ a ≤ b. Since A is meet-dense in A this shows that ∼ a ≤ y and
hence that z ≤ y. To see that x∨ z = 1, consider a ∈ A such that x∨ z ≤ a then
x ≤ a and z ≤ a from which we may conclude that ∼ a ≤ a and therefore that
a = 1. Since A is meet-dense in A we then obtain that x ∨ z = 1. This shows
that

∨
{∼ a ∈ A : x ≤ a ∈ A} is indeed the supplement of x in A.

It remains to show that the supplement on A is a De Morgan supplement. By
Proposition 4.1.9 it su�ces to show that ∼x∧∼∼x = 0 for all x ∈ A. Therefore,
let x ∈ A be given. By the above we have that ∼x =

∨
{∼ a ∈ A : x ≤ a ∈ A}.

Since A is a Heyting algebra it follows that

∼x ∧ ∼∼x =
∨
{∼ a ∧ ∼ b : x ≤ a ∈ A, ∼x ≤ b ∈ A}.

If a, b ∈ A are such that x ≤ a and ∼x ≤ b, then ∼ b ≤ ∼∼x ≤ x ≤ a and
therefore ∼ a ≤ ∼∼ b. It then follows that ∼ a∧∼ b ≤ ∼∼ b∧∼ b. But as A was
assumed to be supplemented with a De Morgan supplement, by Proposition 4.1.9,
we obtain that ∼∼ b ∧ ∼ b = 0. We may then conclude that ∼x ∧ ∼∼x = 0, as
desired. 2

Given any class K of Heyting algebras we denote by Kdms the class of De
Morgan supplemented members of K.

4.3.21. Theorem. A variety of Heyting algebras V is closed under hyper-Mac-
Neille completions if, and only if, the class Vdms is closed under MacNeille com-
pletions.

Proof:
Let V be a variety of Heyting algebras. For each A ∈ V we have that Q(A) be-
longs to V and hence to Vdms by Proposition 4.3.18. Thus if V is such that Vdms
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is closed under MacNeille completions, then Q(A) belongs to V for all A ∈ V .
Therefore, by Theorem 4.3.16 the variety V is closed under hyper-MacNeille com-
pletions. Conversely, if V is closed under hyper-MacNeille completions, then in
particular A+ ∈ V for each A ∈ Vdms . However, by Proposition 4.2.11 we have
that A+ is isomorphic to A and hence A ∈ V . Finally, by Proposition 4.3.20
we may conclude that A ∈ Vdms , showing that this class is indeed closed under
MacNeille completions. 2

As we will see in the following section, MacNeille completions of supplemented
Heyting algebras are already fairly easy to work with compared to the general
case.

4.4 Varieties closed under hyper-MacNeille com-

pletions

In this section we discuss two methods of �nding varieties of Heyting algebras
closed under hyper-MacNeille completions based on the results obtained so far.
We also give more direct descriptions of the hyper-MacNeille completion of special
classes of Heyting algebras.

4.4.1 ALBA-type arguments

The existence of a supplement operation makes it possible to use syntactic meth-
ods analogous to the ones developed in [124, 245], or, alternatively, ALBA-type
methods as in, e.g., [68, 236, 141, 255], to establish preservation of equations un-
der MacNeille completions. In particular, this allows us to prove that there are
varieties of Heyting algebras closed under hyper-MacNeille completions which
are not determined by P3-equations. Consider, for example, the variety BD2 of
Heyting algebras satisfying the equation

1 ≈ x2 ∨ (x2 → (x1 ∨ ¬x1)). (bd2)

This variety is not determined by P3-equations, see Proposition 2.3.3. Neverthe-
less, we claim that the variety BD2 is closed under hyper-MacNeille completions.
By Theorem 4.3.21 it su�ces to show that the class of supplemented members of
BD2 is closed under MacNeille completions.

We �rst observe that on supplemented Heyting algebras the de�ning equation
for BD2 is equivalent to the equation

∼x2 ∧ x2 ≤ x1 ∨ ¬x1. (4.1)

Let A be a supplemented Heyting algebra. Since the set A is both join- and meet-
dense in A we have that A validates Equation (4.1) if, and only if, the following
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two-sorted quasi-equation holds

(a ≤ ∼x2 ∧ x2 and x1 ∨ ¬x1 ≤ b) =⇒ a ≤ b, (4.2)

where a, b are understood to be universally quanti�ed over A and x1, x2 universally
quanti�ed over A. This is essentially mimicking the �approximation� step of the
ALBA algorithm. The crucial observation is that the polarities have been reversed
in the antecedent and so the operations now appear in a position where they are
invertible. This shows that the quasi-equation (4.2) is equivalent to the quasi-
equation

(a ≤ ∼x2 and a ≤ x2 and x1 ≤ b and ¬x1 ≤ b) =⇒ a ≤ b. (4.3)

Finally, it is not di�cult to see that the quasi-equation (4.3) is equivalent to the
quasi-equation

(a ≤ ∼ a and ¬b ≤ b) =⇒ a ≤ b. (4.4)

This last step is essentially a version of what is known as the Ackermann Lemma or
theminimal valuation argument in the context of correspondence theory, see, e.g.,
[68]. Now, the quasi-equation (4.4) only depends on A, it is expressing that every
co-dense element is below every dense element. Moreover, the above reasoning
also shows that the quasi-equation (4.4) is equivalent to the equation (4.1) on all
supplemented Heyting algebras. Hence since by assumption A belongs to BD2,
the quasi-equation (4.4) is valid on A and hence A belongs to BD2.

It is not di�cult to show that a similar kind of argument works for other
varieties of Heyting algebras such that LC and KC.

4.4.2 Hyper-MacNeille completions of �nitely generated va-

rieties

There is another way to provide examples of varieties of Heyting algebras closed
under hyper-MacNeille completions but not necessarily determined by P3-equa-
tions. Namely, by �nding conditions on a variety of Heyting algebras V ensuring
that the algebra of dense open sections Q(A) is complete for all A ∈ V .

4.4.1. Lemma. Let A be a Heyting algebra with dual Esakia space X and let
f, g ∈ D(A). If f/Θ = g/Θ then f(x) = g(x) for all x ∈ min(X) at which both
f and g are continuous.

Proof:
Suppose that f and g are both continuous at x ∈ min(X). By Lemma 4.3.4 there
are (s, a), (t, b) ∈ A2 such that s(x), t(x) < 1 and,

Js < 1K ⊆ Jf = aK and Jt < 1K ⊆ Jg = bK.
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Consider the open set U = Js ∨ t ∨ (a ↔ b) < 1K. It is easy to see that
U ∩ Jf = gK = ∅. As f/Θ = g/Θ the set Jf = gK contains a dense open set
and consequently has a non-empty intersection with every non-empty open set.
We may therefore conclude that U = ∅ and hence that s ∨ t ∨ (a ↔ b) = 1.
Because the factor A/θx is well-connected and both s(x) < 1 and t(x) < 1 we
must have that (a↔ b)(x) = 1, proving that f(x) = a(x) = b(x) = g(x). 2

The proof of the following theorem follows that of [146, Prop. 4] closely.

4.4.2. Theorem (cf., [146, Prop. 4]). Let A be a Heyting algebra with dual Esa-
kia space X. If the cardinalities of the quotients {A/θx : x ∈ min(X)} are
uniformly bounded on a dense open set of min(X), then Q(A) is complete.

Proof:
Assume that there exists n ∈ ω and dense open set U ⊆ min(X) such that
|A/θx| ≤ n for all x ∈ U . We show that for any non-empty set T ⊆ D(A) the
set {f/Θ : f ∈ T} has a least upper bound in Q(A), from which it follows that
Q(A) is complete. Therefore, let a non-empty set T ⊆ D(A) be given. For each
f ∈ T �x a dense open set Uf on which f is continuous, and let UT :=

⋃
f∈T Uf .

Now pick g ∈
∏

x∈min(X) A/θx such that g(x) =
∨
{f(x) : f ∈ T and x ∈ Uf} for

each x ∈ UT ∩ U . We show that g is continuous on a dense open set. To this
end we prove that each non-empty open set V ⊆ min(X) contains a non-empty
open set on which g is continuous. Given a non-empty open set V ⊆ min(X) let
SV be the set of �nite sequences of triples (si, ai, fi)

k
i=1, with (si, ai) ∈ A2 and

fi ∈ D(A), such that,

(i) V ⊇ Js1 < 1K ⊇ Js2 < 1K ⊇ . . . ⊇ Jsk < 1K 6= ∅,

(ii) Jsi < 1K ⊆ Jfi = aiK for each i ∈ {1, . . . , k},

(iii) the chain f1(x) ≤ (f1 ∨ f2)(x) ≤ . . . ≤
(∨k

i=1 fi

)
(x) is strictly increasing,

for each x ∈ Jsk < 1K.

Since V is non-empty open and T is non-empty we have that there exists at least
one sequence in SV of length 1. Since the sets of the form Js < 1K are open and
as such have non-empty intersection with the set U , we have that the maximal
length of a sequence in SV is at most n. Therefore, let (si, ai, fi)

q
i=1 be a sequence

in SV of maximal length. We claim that g is continuous at any point of Jsq < 1K.
Let a :=

∨q
i=1 ai, by Lemma 4.3.4 it su�ces to show that g agrees with a on

Jsq < 1K. If this is not the case then we have x ∈ Jsq < 1K such that a(x) 6= g(x)
By construction fi is continuous at x for all i ∈ {1, . . . , q} and so we must have
that a(x) ≤ g(x). So since a(x) 6= g(x) we must have fq+1 ∈ T with x ∈ Ufq+1

and fq+1(x) 6≤ a(x). Because fq+1 is continuous at x we have by Lemma 4.3.4 a
pair (s, aq+1) ∈ A2 such that x ∈ Js < 1K ⊆ Jfq+1 = aq+1K. In particular, we must
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have that aq+1(x) 6≤ a(x). Thus letting sq+1 = sq ∨ s ∨ (aq+1 → a), we obtain
that Jsq < 1K ⊇ Jsq+1 < 1K 3 x. Moreover, Jsq+1 < 1K ⊆ Js < 1K ⊆ Jfq+1 = aq+1K.
Finally, if y ∈ Jsq+1 < 1K then (

∨q
i=1 fi)(y) = a(y) < (a∨ aq+1)(y) = (

∨q+1
i=1 fi)(y).

Consequently, the chain f1(y) ≤ (f1∨f2)(y) ≤ . . . ≤ (
∨q+1
i=1 fi)(y) must be strictly

increasing. This shows that (si, ai, fi)
q+1
i=1 ∈ SV , contradicting the choice of q as

the maximal length of a sequence in SV .
We now show that g/Θ is the least upper bound of the set {f/Θ : f ∈ T}.

Given f ∈ T we have that Jf ≤ gK contains the dense open set U ∩ Uf and
consequently, that f/Θ ≤ g/Θ. Thus g/Θ is an upper bound of {f/Θ : f ∈ T}.
Suppose that h/Θ ∈ Q(A) is also an upper bound of {f/Θ : f ∈ T}. Then for
each f ∈ T we have that (f ∨h)/Θ = h/Θ and so by Lemma 4.4.1 we obtain that
f(x) ≤ h(x) for all x at which both f and h are continuous. Thus if h is continuous
at x, then f(x) ≤ h(x) for all f ∈ T such that x ∈ Uf . Consequently, letting Uh be
a dense open set of points at which h is continuous we have that g(x) ≤ h(x) for
all points in the dense open set UT∩U∩Uh, proving that g/Θ ≤ h/Θ, as desired. 2

Thus in case the cardinalities of the algebras {A/θx : x ∈ min(X)} are uni-
formly bounded on a dense open subset of min(X) we have that A+ = Q(A).
By Jónsson's Lemma, see [172, Sec. 6] or Appendix A.2, if V is a congruence
distributive variety generated by a �nite set of �nite algebras K, then the �nitely
subdirectly irreducible members of V must all be a homomorphic image of a subal-
gebra of some member of K. Since all varieties of Heyting algebras are congruence
distributive, we obtain that if A belongs to a �nitely generated variety of Hey-
ting algebras V , then the cardinalities of the algebras {A/θx : x ∈ min(X)} are
uniformly bounded by the cardinality of any algebra generating V . Since Q(A)
always belongs to any variety containing A we obtain the following corollary.

4.4.3. Corollary. If V is a �nitely generated variety of Heyting algebras, then
V is closed under hyper-MacNeille completions.

Again, using the characterization from Chapter 2 of varieties of Heyting al-
gebras determined by P3-equations it is not hard to come up with examples of
�nitely generated varieties of Heyting algebras which are not axiomatizable by
such equations, e.g., the variety generated by the Heyting algebra (2 × 2) ⊕ 1,
obtained by adding a new top element to the four element Boolean algebra. Note,
however, that not all varieties determined by P3-equations are �nitely generated.

4.4.3 Isolated minimal points

We conclude this section by considering Heyting algebras A for which the hyper-
MacNeille completion is easily determined in terms of the quotients A/θx, with
x ∈ min(X), where X is the dual Esakia space of A.

When the isolated points of min(X) are dense then the algebra of dense open
sections, and therefore also the hyper-MacNeille completion, of A is particularly
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easy to describe. For a topological space X we denote by iso(X) the set of isolated
points of X.

4.4.4. Proposition. If A is a Heyting algebra with dual Esakia space X and
iso(min(X)) a dense subset of min(X), then A+ ∼=

∏
x∈iso(min(X)) A/θx.

Proof:
As the MacNeille completion of a direct product is the direct product of the
MacNeille completions of the factors, by Theorem 4.3.16 it su�ces to show that
Q(A) ∼=

∏
x∈iso(min(X)) A/θx. As the set of isolated points of min(X) is assumed

to be dense, it follows that for f, g ∈
∏

x∈min(X) A/θ we have f/Θ = g/Θ if, and

only if, f and g agree on all the points of iso(min(X)). Consequently, we have an
order-embedding Q(A) ↪→

∏
x∈iso(min(X)) A/θx given by f/Θ 7→ f | iso(min(X)),

i.e., restricting a representative to the set of isolated points. Moreover, since
any function is continuous at any isolated point this map must be surjective and
therefore Q(A) ∼=

∏
x∈iso(min(X)) A/θx, as desired. 2

4.4.5. Remark. The fact that the hyper-MacNeille completion coincides with
the MacNeille completion for Heyting algebras with a De Morgan supplement, in
particular for Boolean algebras, shows that Proposition 4.4.4 is not true uncondi-
tionally. In the Boolean case the only non-trivial �nitely subdirectly irreducible
Boolean algebra is the two element chain 2. Consequently, if Proposition 4.4.4
were to hold in general then the MacNeille completion of any Boolean algebra
would be isomorphic to a power of 2. This, however, is not the case as the latter
is always atomic but the former not. In fact, for any Boolean algebra B with
dual Stone space X we have that min(X) = X. Since for Boolean algebras the
MacNeille and the hyper-MacNeille completions coincide, Proposition 4.4.4 im-
plies that if B is a Boolean algebra with iso(X) dense in X then B ∼= 2iso(X).
It is well known, see, e.g., [180, Prop 7.18], that the isolated points of X are in
one-to-one correspondence with the atoms of B and that iso(X) is dense in X if,
and only if, B is atomic. Thus as a special case of Proposition 4.4.4 we obtain
the easily veri�able fact that B ∼= ℘(At(B)), for atomic Boolean algebras B with
At(B) the set of atoms of B.

For any Heyting algebra A with dual Esakia space X, given distinct elements
x, y ∈ min(X) we can always �nd ax,y ∈ A with ax,y(x) = 1 and ax,y(y) 6= 1.
Suppose one choice of such ax,y has been made for each x 6= y. If min(X) is �nite
we may then de�ne elements ax =

∧
{ax,y : y 6= x} and a′x =

∨
{ay : y 6= x}

of A. It is clear that ax(y) = 1 if, and only if, y = x. That a′x(y) = 1 if,
and only if, y 6= x follows from the assumption that A/θx is �nitely subdirectly
irreducible and hence well-connected. As Ja′x < 1K = {x} we may then conclude
that min(X) is a discrete space. Thus as a special case of Proposition 4.4.4 we
obtain the following corollary.
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4.4.6. Corollary. Let A be a Heyting algebra with dual Esakia space X. If
min(X) is �nite then A+ ∼=

∏
x∈min(X) A/θx.

4.5 Central and supplemented elements

Even though in the general case a complete and transparent description of the
hyper-MacNeille completion A+ of A might be out of reach, we will still be able
to determine a number of properties of A+ both absolutely as well as in terms of
data given by A. Most importantly, we will show that A+ is always supplemented
with a De Morgan supplement or equivalently by Theorem 4.1.24 a Hausdor�
lattice with �nitely subdirectly irreducible stalks. Furthermore, we will be able
to determine the center of A+.

4.5.1. Theorem. If is A a Heyting algebra then A+ is a Hausdor� lattice with
fsi stalks.

Proof:
By Theorem 4.1.24 it su�ces to show that A+ is supplemented with a De Morgan
supplement. From Theorem 4.3.16 we know that A+ is the MacNeille completion
of the Heyting algebra Q(A). As this algebra is supplemented with a De Morgan
supplement it follows from Proposition 4.3.20 that so is A+. 2

Thus A+ will always have a somewhat well-behaved Boolean product repre-
sentation. In this section we will make some initial attempts at understanding
the local structure of A+ for an arbitrary Heyting algebra A. We will give a de-
scription of the center Z(A+) of A, but the stalks of A+ do not appear to admit
a simple description. In fact, let A be a complete Heyting algebra which is also
a Hausdor� lattice with fsi stalks at least one of which is incomplete, e.g., the
lattice described in [73, Prop. 7.9]. Then A+ = A = A. This shows that the
stalks of the hyper-MacNeille completion of an arbitrary Heyting algebra will not
necessarily be complete.

Recall that for any Heyting algebra A we have an embedding of Heyting
algebras e : A ↪→ A+ given by e(a) = L(0, a), where

L(t, b) = {(s, a) ∈ A2 : s ∨ t ∨ (a→ b) = 1},

for all (t, b) ∈ A2.

4.5.2. Proposition. Let A be a Heyting algebra and let c ∈ A. Then L(c, 0) is a
central element of A+. Moreover, L(c, 0) = 1 precisely when c = 1, and L(c, 0) =
0 precisely when c ∈ CoDn(A).



124 Chapter 4. Hyper-MacNeille completions of Heyting algebras

Proof:
We claim that L(c, 0) ∨ ¬L(c, 0) = 1. To see this we make two observations.
Firstly, (i) by de�nition of the Heyting implication in A+

¬L(c, 0) = {(t, b) ∈ A2 : ∀(s, a) ∈ L(c, 0) ((s ∨ t, a ∧ b) ∈ L(0, 0))}.

Consequently, (c, 1) ∈ ¬L(c, 0), since if (s, a) ∈ L(c, 0), then 1 = s ∨ c ∨ ¬a =
(s∨ c)∨¬(a∧ 1), and hence (s∨ c, a∧ 1) ∈ L(0, 0). Secondly, (ii) (d, 1) ∈ L(c, 0)
for all d ∈ A such that 1 = c ∨ d.

Then let L(t, b) ∈ A+ be such that L(c, 0)∨¬L(c, 0) ⊆ L(t, b). Then L(c, 0)∪
¬L(c, 0) ⊆ L(t, b), hence by (i) we must have (c, 1) ∈ L(t, b) and therefore also
that 1 = c∨ t∨ (1→ b) = c∨ (t∨ b). Consequently, (t∨ b, 1) ∈ L(c, 0) by (ii). But
then (t∨ b, 1) ∈ L(t, b) and hence 1 = t∨ (t∨ b)∨ (1→ b) = t∨ b. This, however,
entails that L(t, b) = A2 since for (s, a) ∈ A2 we always have t∨b ≤ s∨t∨(a→ b).
By Lemma 4.2.6(1) we must have that L(c, 0)∨¬L(c, 0) = A2, showing that L(c, 0)
is indeed central.

Finally, we see that L(c, 0) = 1 if, and only if, s∨c∨¬a = 1 for all (s, a) ∈ A2,
which is easily seen to happen only when c = 1. Similarly, L(c, 0) = L(0, 0) if,
and only if, s∨c∨¬a = 1 implies s∨¬a = 1 for all (s, a) ∈ A2. As all elements of
A are of the form s∨¬a we obtain that L(c, 0) = L(0, 0) if, and only if, c∨ d = 1
implies d = 1, which is to say that c is co-dense. 2

4.5.3. Proposition. The map Φ: A→ Z(A+) given by c 7→ L(c, 0) is a bounded
lattice homomorphism.

Proof:
We have already seen that Φ(0) = 0 and that Φ(1) = 1. Furthermore, for
c, d ∈ A we have

Φ(c ∧ d) = {(s, a) ∈ A2 : 1 = s ∨ (c ∧ d) ∨ ¬a}
= {(s, a) ∈ A2 : 1 = (s ∨ c ∨ ¬a) ∧ (s ∨ d ∨ ¬a)}
= {(s, a) ∈ A2 : 1 = s ∨ c ∨ ¬a and 1 = s ∨ d ∨ ¬a}
= Φ(d) ∧ Φ(d).

To see that Φ(c ∨ d) = Φ(c) ∨ Φ(d) we �rst note that Φ(c ∨ d) ≥ Φ(c) ∨ Φ(d)
since Φ is order-preserving. For the converse, let (s, a) ∈ Φ(c ∨ d) be given. To
show (s, a) ∈ Φ(c)∨Φ(d) we must show that (s, a) ∈ LU(Φ(c)∪Φ(d)). Therefore,
let (t, b) ∈ U(Φ(c) ∪ Φ(d)) be given. From (s, a) ∈ Φ(c ∨ d) we may deduce
(s ∨ c, a) ∈ Φ(d) and hence that s ∨ c ∨ t ∨ (a → b) = 1, as (t, b) ∈ U(Φ(d)).
Therefore, letting u := s∨t∨(a→ b) we see that (u, 1) ∈ Φ(c). As (t, b) ∈ U(Φ(c))
it follows that

1 = u ∨ t ∨ (1→ b) = u ∨ t ∨ b = s ∨ t ∨ (a→ b) ∨ t ∨ b = s ∨ t ∨ (a→ b).
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Because (t, b) ∈ U(Φ(c)∪Φ(d)) was arbitrary, this shows (s, a) ∈ LU(Φ(c)∪Φ(d)),
from which we may conclude that Φ(c ∨ d) ≤ Φ(c) ∨ Φ(d). 2

By Proposition 4.1.9 we know that in a distributive lattice which is De Mor-
gan supplemented the central and the co-regular elements coincide. To obtain a
description of the co-regular elements of A+ requires that we �rst compute the
supplements of elements of the form L(t, b).

4.5.4. Lemma. Let A be a Heyting algebra and let (t, b) ∈ A2. Then ¬Φ(t ∨ b)
is the supplement of L(t, b) in A+.

Proof:
By the de�nition of the Heyting implication in A+ we have that

Z1 → Z2 = {(s, a) ∈ A2 : ∀(t, b) ∈ Z1 ((s ∨ t, a ∧ b) ∈ Z2)},

for Z1, Z2 ∈ A+. In particular,

¬L(t ∨ b, 0) = {(s, a) ∈ A2 : ∀(s′, a′) ∈ L(t ∨ b, 0) (s ∨ s′ ∨ ¬(a ∧ a′) = 1)}.

We �rst show that L(t, b)∨Z = 1 entails ¬L(t∨ b, 0) ≤ Z, for all Z ∈ A+. Since
Z =

∧
{L(t′, b′) : Z ≤ L(t′, b′)} it su�ces to establish the claim for elements of the

form L(t′, b′). Therefore, assume L(t, b)∨L(t′, b′) = 1, then since L(t, b), L(t′, b′) ≤
L(t∨t′, b∨b′) we must have that L(t∨t′, b∨b′) = 1 and hence t∨t′∨b∨b′ = 1. From
this it follows that (t′ ∨ b′, 1) ∈ L(b ∨ t, 0). Consequently, if (s, a) ∈ ¬L(t ∨ b, 0)
then in particular we must have (s∨(t′∨b′), a∧1) ∈ L(0, 0), i.e., s∨t′∨b′∨¬a = 1.
But then,

1 = s ∨ t′ ∨ b′ ∨ ¬a ≤ s ∨ t′ ∨ b′ ∨ (a→ b′) = s ∨ t′ ∨ (a→ b′),

showing that (s, a) ∈ L(t′, b′). Thus, we have shown ¬L(t ∨ b, 0) ≤ L(t′, b′).
To see that L(t, b) ∨ ¬L(t ∨ b, 0) = 1 we �rst observe that since (t ∨ b, 1) ∈

¬L(t ∨ b, 0) we have that if ¬L(t ∨ b, 0) ≤ L(t′, b′) then t ∨ b ∨ t′ ∨ b′ = 1
meaning that (t′ ∨ b′, 1) ∈ L(t, b). Consequently, if also L(t, b) ≤ L(t′, b′) then
(t′∨b′, 1) ∈ L(t′, b′) and hence t′∨b′ = 1 from which we may conclude L(t′, b′) = 1.
So L(t, b) ∨ ¬L(t ∨ b, 0) ≤ L(t′, b′) entails L(t′, b′) = 1. Since the elements of the
form L(t′, b′) are meet-dense in A+ we obtain that L(t, b) ∨ ¬L(t ∨ b, 0) = 1, as
desired. 2

Since Φ: A → Z(A+) is a homomorphism of bounded lattices, the quotient
A/ker Φ is a bounded sublattice of Z(A+).

4.5.5. Proposition. Let A be a Heyting algebra. Then Z(A+) is the MacNeille
completion of the free Boolean extension of the distributive lattice A/ker Φ.
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Proof:
Since A/ker Φ embeds into Z(A+) as a bounded distributive lattice we have
that the free Boolean extension B(A/ker Φ) of A/ker Φ is a Boolean subalgebra
of Z(A+). This follows from the fact that the category of Boolean algebras
and Boolean algebra homomorphisms is a re�ective subcategory of the category
of bounded distributive lattices and bounded lattice homomorphism with the
free Boolean extension a re�ector preserving monomorphisms [16, Cor. V.4.3].
Since A+ is complete and supplemented we have that Z(A+) is complete by
Proposition 4.1.11. Moreover, all meets and joins in Z(A+) are computed as in
A+. As both Z(A+) and B(A/ker Φ) are Boolean algebras it su�ces to show that
B(A/ker Φ) is meet-dense in Z(A+).

Therefore let Z ∈ A+ be a central element. Then ∼Z = ¬Z. By Lemma 4.2.6
the elements of the form L(t, b) are meet-dense in A+. Consequently, since each
element in the image of Φ is central we may conclude that

Z = ¬∼Z

= ¬∼
(∧{

L(t, b) ∈ A+ : Z ≤ L(t, b)
})

= ¬
(∨{

∼L(t, b) ∈ A+ : Z ≤ L(t, b)
})

= ¬
(∨{

¬Φ(t ∨ b) ∈ A+ : Z ≤ L(t, b)
})

=
∧{
¬¬Φ(t ∨ b) ∈ A+ : Z ≤ L(t, b)

}
=
∧{

Φ(t ∨ b) ∈ A+ : Z ≤ L(t, b)
}
,

where we used that by Lemma 4.5.4 ∼L(t, b) = ¬Φ(t∨ b), for all (t, b) ∈ A2. This
shows that the image of Φ is meet-dense in Z(A+). 2

Thus one way to understand the structure of Z(A+) is to understand the
structure of the distributive lattice A/ker Φ. We will do so by showing how the
dual Priestley space of A/ker Φ can be obtained from the dual space of A in a
natural way.

4.5.6. Proposition. The kernel of the map Φ: A→ Z(A+) consists of the pairs
(c, d) ∈ A2 such that

∀a ∈ A (1 = a ∨ c ⇐⇒ 1 = a ∨ d).

Proof:
We have that Φ(c) = Φ(d) precisely when

∀(s, a) ∈ A2 (1 = s ∨ c ∨ ¬a ⇐⇒ 1 = s ∨ d ∨ ¬a).

Thus as any element of A is of the form s∨¬a, for some (s, a) ∈ A2 the statement
of the proposition follows. 2
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4.5.7. Remark. The distributive lattice congruence ker Φ has also been studied
in its order dual version by Speed, see, [238, Sec. 5] and [237].

In order to characterise the dual Priestley space of the distributive lattice
A/ker Φ the following lemma will be useful.

4.5.8. Lemma. Let D be a distributive lattice with dual Priestley space X. Then
CoDn(D) = {a ∈ D : min(X) ∩ â = ∅}.

Proof:
By Remark 4.1.17 min(X) ⊆

⋂
{X\â : a ∈ CoDn(D)}. Thus for each a ∈

CoDn(D) we have that min(X) ⊆ X\â, which implies that min(X) ∩ â = ∅.
Conversely, if a 6∈ CoDn(D) then we have c < 1 such that a ∨ c = 1. Conse-
quently, for any x ∈ X either a ∈ x or c ∈ x. Since c < 1 we have a prime �lter
x ∈ X such that c 6∈ x. Moreover, since X is a Priestley space we must have
y ⊆ x for some y ∈ min(X). But then c 6∈ y whence a ∈ y, i.e., y ∈ â, showing
that â ∩min(X) 6= ∅. 2

4.5.9. Proposition. Let A be a Heyting algebra with dual Esakia space X.
Then the dual Priestley space of A/ker Φ is the closure in X of the set min(X).

Proof:
Under the correspondence between homomorphic images of a distributive lattice
and closed subspaces of its dual space, see, e.g., [217, Lem. 12], we have that the
dual Priestley space of A/ker Φ is determined by the closed set

Y = {x ∈ X : ∀(a, b) ∈ ker Φ (a ∈ x ⇐⇒ b ∈ x)}.

We show that this set coincides with the closure of min(X).
First we determine the closure of min(X). As the sets â = {x ∈ X : a ∈ x},

for a ∈ A, and their complements form a basis for the topology on X, the closure
C(S) of any set S ⊆ A consist of points x satisfying

∀a ∈ A ((a ∈ x =⇒ ∃y ∈ S(a ∈ y)) and (a 6∈ x =⇒ ∃y ∈ S(a 6∈ y))).

By Proposition A.6.6 any prime �lter on A contains a minimal prime �lter, and
so for all a ∈ A, if a 6∈ x for some x ∈ X then also a 6∈ y for some minimal prime
�lter y ∈ X. Therefore, we may conclude that

C(min(X)) = {x ∈ X : ∀a ∈ A (a ∈ x =⇒ â ∩min(X) 6= ∅)} = X\
⋃

a∈CoDn(A)

â.

where the last equality follows from Lemma 4.5.8. We then observe that if x ∈ Y ,
then since x is proper we must have that 0 6∈ x and hence a 6∈ x, for all a ∈ A
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such that (a, 0) ∈ ker Φ. By Proposition 4.5.6 it follows that (a, 0) ∈ ker Φ if, and
only if, a ∈ CoDn(A), whence

Y ⊆ X\
⋃
{â : a ∈ CoDn(A)} = C(min(X)).

Lastly, we observe that min(X) ⊆ Y . To see this, let x ∈ min(X) be given and
suppose that (a, b) ∈ ker Φ with a ∈ x. By Lemma 4.3.1 we have s ∈ A with
s < 1 such that a ∨ s = 1 and s 6∈ x. Since (a, b) ∈ ker Φ we have that b ∨ s = 1
and hence b ∈ x, from which we may conclude that x ∈ Y . This shows that

min(X) ⊆ Y ⊆ C(min(X)),

and since Y is closed this entails Y = C(min(X)), as desired. 2

The Stone space of the free Boolean extension of a distributive lattice D
is the underlying Stone space of the dual Priestley space of D, see, e.g., [130,
Prop. 1.1.14]. Moreover, the MacNeille completion of a Boolean algebra B is
isomorphic to RO(X), the algebra of regular open subsets of dual Stone space X
of B, see, e.g., [151, Thm. 3.8]. Putting these two facts together we obtain that
for any Heyting algebra with dual Esakia space X the center of A+ is isomorphic
to the algebra of regular opens of the Stone space C(min(X)). It is not di�cult
to show that if X ⊆ Y is a dense subspace of a topological space Y , then the
map U 7→ U ∩ X is an isomorphism of Boolean algebras RO(Y ) and RO(X).
Consequently, since min(X) is dense in C(min(X)), when both are considered as
subspaces of X, we obtain the following description of the center of A+.

4.5.10. Corollary. If A is a Heyting algebra with dual Esakia space X, then
Z(A+) is isomorphic to RO(min(X)).

Finally, we compare the center of A+ to that of Q(A), the algebra of dense
open sections of A.

4.5.11. Proposition. For any Heyting algebra A, the center of Q(A) is iso-
morphic to the center of A+.

Proof:
Let X denote the dual Esakia space of A. For each open U of min(X) let
χU denote the characteristic function for U . We show that U 7→ χU/Θ is an
isomorphism from RO(min(X)) to Z(Q(A)).

To see that this map is indeed well de�ned let U be an open subset of min(X).
If x ∈ U , then, since U is open, we have s ∈ A such that x ∈ Js < 1K ⊆ U .
Thus by Lemma 4.3.4, the pair (s, 1) will witness that χU is continuous at x. If
x ∈ I(min(X)\U), then we have s ∈ A such that x ∈ Js < 1K ⊆ min(X)\U . Thus
the pair (s, 0) will witness that χU is continuous at x. We have thus shown that
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χU is continuous on the dense open set U ∪ I(min(X)\U). Therefore, χU ∈ D(A)
for all open subsets U of min(X). Furthermore, for each open U ⊆ min(X),
letting U ′ = I(min(X)\U), we see that χU ∧ χU ′ = 0 and that χU ∨ χU ′ agrees
with 1 on the dense open set U ∪ U ′. Consequently, χU will be central in Q(A)
with complement χU ′ .

Evidently, U 7→ χU/Θ is an order-preserving map. If U1, U2 ∈ RO(min(X))
are such that χU1/Θ ≤ χU2/Θ then we have a dense open subset U contained in
JχU1 ≤ χU2K. But then U∩U1 ⊆ U2 and hence IC(U∩U1) ⊆ IC(U2) = U2. Because
U is dense we have that IC(U ∩ U1) = IC(U1) = U1 and therefore U1 ⊆ U2. This
show that U 7→ χU/Θ is also order-re�ecting and hence an order-embedding.

For each open subset U of min(X) we have that χU and χIC(U) agree on a
dense open set, namely U ∪ (min(X)\C(U)). Therefore, since IC(U) is always a
regular open subset of min(X), to establish that the map U 7→ χU/Θ is surjective
it su�ces to show that for f/Θ central in Q(A) we have f/Θ = χU/Θ for some
open subset U of min(X).

Suppose that f ∈ D(A) is such that f/Θ is central in Q(A). Then there
is f ′ in D(A) with f ′/Θ the complement of f/Θ in Q(A). Let U be a dense
open set on which both f and f ′ are continuous. Let V1 = Jf = 1K ∩ U and
V0 = Jf = 0K∩U . If x ∈ V1 then by Lemma 4.3.4 we have (sx, ax) ∈ A2 such that
sx(x) < 1, and sx(y) < 1 implies ax(y) = f(y), for all y ∈ min(X). Consequently,
the set Jsx < 1K∩Jax = 1K∩U is an open neighborhood of x contained in V1. This
shows that V1 is open. Similarly, we see that V0 is open. We claim that V1 ∪V0 is
dense. By assumption the sets Jf ∨ f ′ = 1K and Jf ∧ f ′ = 0K both contain dense
open sets, say U1 and U0. As each of the quotients A/θx is well-connected we
obtain that if x ∈ U1 ∩ U2 then f(x) = 1 or f(x) = 0. Consequently, the dense
open U ∩ U1 ∩ U2 is contained in V1 ∪ V0, which must therefore be dense. This
shows that f/Θ = χU/Θ. 2

Since Z(A+) is complete we obtain that the center of Q(A) is a complete
Boolean algebra for each Heyting algebra A. Even if the algebra Q(A) is itself
not always complete, some suprema are guaranteed to exist. Recall from [73]
that in a lattice L with a least element 0 a family of elements {ai ∈ L : i ∈ I} is
pairwise disjoint if ai ∧ aj = 0 for i 6= j. Recall further that a lattice L with a
least element is orthogonally complete if for any family of pairwise disjoint central
elements {ci ∈ Z(L) : i ∈ I} and every I-indexed family {ai ∈ L : i ∈ I}, the
family {ai ∧ ci ∈ L : i ∈ I} has a least upper bound in L.

4.5.12. Proposition. The algebra Q(A) is orthogonally complete for any Hey-
ting algebra A.

Proof:
Let X denote the dual Esakia space of A and let {ci ∈ Z(Q(A)) : i ∈ I} be
a family of pairwise disjoint central elements of Q(A). By Proposition 4.5.11
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we have a family {Ui ∈ RO(min(X)) : i ∈ I} of pairwise disjoint regular open
subsets of min(X) such that ci = χUi/Θ. Let U :=

⋃
i∈I Ui. Given a family

{fi/Θ ∈ Q(A) : i ∈ I} we de�ne f ∈
∏

x∈min(X) A/θx by letting f(x) = fi(x) if

x ∈ Ui and f(x) = 0 if x 6∈ U . Evidently, f is continuous on the dense open set
U ∪ I(min(X)\U) and therefore a member of D(A). We claim that f/Θ is the
least upper bound of the family {fi/Θ∧χUi/Θ ∈ Q(A) : i ∈ I}. By construction
of f we have that fi ∧ χUi ≤ f and hence f/Θ must be an upper bound of the
family {fi/Θ ∧ χUi/Θ ∈ Q(A) : i ∈ I}. If g/Θ is another upper bound of this
family, then for each i ∈ I we have a dense open Vi with Vi ⊆ Jfi ∧ χUi ≤ gK.
Consequently, letting W :=

⋃
i∈I(Vi ∩ Ui), we see that W ⊆ Jf ≤ gK. Given open

V with W ∩ V = ∅ we must have that Vi ∩Ui ∩ V = ∅ for all i ∈ I. As each Vi is
dense this entails that Ui ∩ V = ∅ for each i ∈ I and hence that V ⊆ min(X)\U .
It follows that W ∪ I(min(X)\U) is a dense open set. Since f agrees with 0 on
I(min(X)\U) we obtain that W ∪ I(min(X)\U) ⊆ Jf ≤ gK and therefore that
f/Θ ≤ g/Θ. 2

4.5.13. Remark. Let D be a Hausdor� lattice with X the dual Stone space of
its center. IfD has complete stalks on a dense subset ofX, then by [73, Thm. 7.8],
the lattice D is complete if, and only if, it is orthogonally complete. This together
with Proposition 4.5.12 and Jónsson's Lemma can be used to give an alternative
proof of the fact that �nitely generated varieties of Heyting algebras are closed
under hyper-MacNeille completions.

4.6 Regular hyper-MacNeille completions

Recall that a completion e : D ↪→ C of a lattice D is regular if the embedding
preserves all in�ma and suprema which exist in D. The MacNeille completion of
a lattice is always regular while for instance the canonical completions is never
regular except in trivial cases, see, e.g., [148, Sec. 3]. There is at least one
variety of Heyting algebras which is not closed under MacNeille completions but in
which every algebra regularly embeds into some complete algebra belonging to the
variety, namely the variety V(3) generated by the three element chain, see, [149].
It is currently not known whether there are other varieties of Heyting algebras
with this property. In this section we will give necessary and su�cient conditions
for the completion e : A ↪→ A+ to be regular. In particular, this will show that
the hyper-MacNeille completion will not provide examples of varieties of Heyting
algebras which are not closed under MacNeille completions but nevertheless admit
regular completions.

4.6.1. Definition (cf. [60, Def. 6.10]). A distributive lattice D is called exter-
nally distributive if

(∀s ∈ S (a ∨ s = 1)) =⇒ a ∨
∧

S = 1,
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for all S ∪ {a} ⊆ D such that S has a greatest lower bound in D.

4.6.2. Remark. Any supplemented Heyting algebra is externally distributive.
However, not every externally distributive Heyting algebra is supplemented. To
see this, consider any non-supplemented algebra with only essentially �nite meets
such as the linear sum ω⊕ (2× ω∂). Of course, for complete distributive lattices
being externally distributive is equivalent to being supplemented.

4.6.3. Lemma. Let A be a Heyting algebra. Then for all (t, b) ∈ A2 and all c ∈ A
we have that (t, b) ∈ U(0, c) if, and only if, L(0, c) ⊆ L(t, b).

Proof:
First let (t, b) ∈ A2 and c ∈ A be such that (t, b) ∈ U(0, c). Then t∨ (c→ b) = 1.
If (s, a) ∈ L(0, c) we have s ∨ (a→ c) = 1. From this it follows that

1 = (t ∨ (c→ b)) ∧ (s ∨ (a→ c))

≤ ((s ∨ t) ∨ (c→ b)) ∧ ((s ∨ t) ∨ (a→ c))

= (s ∨ t) ∨ ((a→ c) ∧ (c→ b))

≤ s ∨ t ∨ (a→ c).

Consequently, (s, a) ∈ L(t, b) and hence L(0, c) ⊆ L(t, b). Conversely, let (t, b) ∈
A2 and c ∈ A be such that L(0, c) ⊆ L(t, b). Since (0, c) ∈ L(0, c) we must have
that (0, c) ∈ L(t, b) and hence that (t, b) ∈ U(0, c). 2

4.6.4. Theorem (cf. [60, Prop. 6.11]). If A is an externally distributive Heyting
algebra then the embedding e : A ↪→ A+ is regular.

Proof:
Let C ⊆ A be a subset with a greatest lower bound in A. Then we have that

e
(∧

C
)

=
{

(s, a) ∈ A2 : 1 = s ∨ (a→
∧

C)
}

=
{

(s, a) ∈ A2 : 1 = s ∨
∧
{a→ c ∈ A : c ∈ C}

}
=
{

(s, a) ∈ A2 : ∀c ∈ C (1 = s ∨ (a→ c))
}

=
⋂
c∈C

L(0, c)

=
∧
c∈C

e(c).

where the third equality from the top follows from the assumption that A is
externally distributive. Similarly let C ⊆ A be a subset with a least upper bound
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in A. Then we have that

U
(

0,
∨

C
)

=
{

(t, b) ∈ A2 : 1 = t ∨ (
∨

C → b)
}

=
{

(t, b) ∈ A2 : 1 = t ∨
∧
{c→ b ∈ A : c ∈ C}

}
=
{

(t, b) ∈ A2 : ∀c ∈ C (1 = t ∨ (c→ b))
}

=
⋂
c∈C

U(0, c).

where again the third equality from the top follows from the assumption that A
is externally distributive. By Lemma 4.6.3 we then obtain that

e
(∨

C
)

= L
(

0,
∨

C
)

= LU
(

0,
∨

C
)

= L
(⋂
{U(0, c) : c ∈ C}

)
= L

({
(t, b) ∈ A2 : ∀c ∈ C (L(0, c) ⊆ L(t, b))

})
=
⋂
{L(t, b) : ∀c ∈ C (L(0, c) ⊆ L(t, b))}

=
⋂{

L(t, b) :
⋃
c∈C

L(0, c) ⊆ L(t, b)

}
=
∨
c∈C

L(0, c)

=
∨
c∈C

e(c).

Thus e preserves all existing meets and joins in A. 2

Using the fact that the hyper-MacNeille completion of a Heyting algebra is
always supplemented we also obtain that being externally distributive is in fact
a necessary condition for the hyper-MacNeille completion to be regular. More
precisely we have the following.

4.6.5. Theorem. Let A be a Heyting algebra and let e : A ↪→ A+ be the embed-
ding a 7→ L(0, a), then the following are equivalent.

1. The embedding e : A ↪→ A+ is regular.

2. The embedding e : A ↪→ A+ is meet-regular.

3. The algebra A is externally distributive.
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Proof:
We have already seen, Theorem 4.6.4, that A being externally distributive is a
su�cient condition for the embedding e : A → A+ to be regular. Thus it suf-
�ces to show that A is externally distributive if the embedding e is meet-regular.
Therefore, assume that S ⊆ A is a subset having a greatest lower bound in A and
that a ∈ A is such that s∨ a = 1 for all s ∈ S. Using the fact that every element
in the image of e is supplemented we see that ∼ e(a) ≤ e(s) for each s ∈ S. From
this it follows that ∼ e(a) ≤

∧
s∈S e(s) and so by meet-regularity we obtain that

∼ e(a) ≤ e(
∧
S) and therefore that 1 = e(a)∨ e(

∧
S) = e(a∨

∧
S), showing that

a ∨
∧
S = 1. 2

4.6.6. Remark. Let A1 be the Heyting algebra of empty and co-�nite subsets of
the natural numbers. It is easy to see that A1 belongs to the variety of Heyting
algebras V(3) generated by the chain 3 and hence to any variety of Heyting
algebras properly containing the variety of Boolean algebras. The algebra A1 is
evidently not externally distributive. Let V be a variety of Heyting algebras such
that BA ( V ( HA. Since V is not closed under MacNeille completions [151]
we must have an algebra A2 ∈ V such that A2 6∈ V . In particular A2 must be
incomplete. It follows that the direct product A3 := A1 ×A2 is an incomplete
member of the variety V which is not externally distributive. Furthermore we
must have that A3 does not belong to V and that the embedding e : A3 ↪→ A+

3

is not regular. This shows that hyper-MacNeille completions will not in any
immediate way yield non-trivial varieties of Heyting algebras, other than the
variety of Boolean algebras, admitting regular completions.

4.7 Summary and concluding remarks

In this chapter we have looked at the hyper-MacNeille completion, �rst intro-
duced by Ciabattoni, Galatos, and Terui [60], from a more algebraic perspective.
In particular we have shown how in the context of Heyting algebras tools from
universal algebra and duality theory can be used to obtain both new results, as
well as new proofs of some already known facts, about the hyper-MacNeille com-
pletion. Concretely, we have identi�ed the notion of a De Morgan supplemented
Heyting algebra as central for understanding the hyper-MacNeille completion of
Heyting algebras. We have shown that the MacNeille and hyper-MacNeille com-
pletions coincide for De Morgan supplemented Heyting algebras. Moreover, we
have established that the hyper-MacNeille completion of a Heyting algebra A
is the MacNeille completion of some De Morgan supplemented Heyting algebra
Q(A) belonging to the variety generated by A. As a consequence of this, we
obtained that a variety of Heyting algebras is closed under hyper-MacNeille com-
pletions if, and only if, the class of its De Morgan supplemented members is closed
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under MacNeille completions. Using this characterization we have provided ex-
amples of varieties of Heyting algebras closed under hyper-MacNeille completions
but not axiomatizable by P3-equations. In particular, we have shown that all
�nitely generated varieties of Heyting algebras must be closed under hyper-Mac-
Neille completions. We have also provided a description of the center of the
algebra Q(A) for an arbitrary Heyting algebra A and shown that Q(A) is al-
ways orthogonally complete. Finally, we have identi�ed necessary and su�cient
conditions for the hyper-MacNeille completion to be regular.

Further directions and open problems One obvious question which remains
to be answered is how to use our new perspective on the hyper-MacNeille comple-
tion to show that all varieties of Heyting algebras axiomatized by P3-equations
are closed under hyper-MacNeille completions [60, Thm. 6.8]. One would hope
that the results about varieties of Heyting algebras axiomatized by P3-equations
obtained in Chapter 2 should turn out to be helpful in relation to this problem.

As we have seen the hyper-MacNeille completion is always a Hausdor� Heyting
algebra with �nitely subdirectly irreducible stalks. Thus one possible strategy for
determining which varieties of Heyting algebras are closed under hyper-MacNeille
completions would be to obtain a better description of the stalks of A+. It is
tempting to conjecture that for any Heyting algebra A with dual Esakia space X
the stalks of A+, and therefore A+ itself, belong to the variety of Heyting algebras
generated by the algebras A/θx for x ∈ min(X).

Another line of further investigation would be to establish a relationship be-
tween the hyper-MacNeille completion of a Heyting algebra A and the canonical
completion of A. We also believe that it will be worthwhile to systematically
develop syntactic methods for showing that equations are preserved under Mac-
Neille completions of (De Morgan) supplemented Heyting algebras. As mentioned
in Section 4.4 this can either be done pursuing topological methods presented by
Givant and Venema [124] and Theunissen and Venema [245] or by emulating
ALBA-like arguments, see, e.g., [68, 236, 141, 255], with the MacNeille comple-
tion taking the place of the canonical completion.

Finally, we would like to have a better understanding of the class operation
which takes a Heyting algebra A to its algebra of dense open sections Q(A). In
particular, we would like to understand exactly how it relates to seemingly similar
constructions in other areas of algebra.



Chapter 5

Integrally closed residuated lattices

In this chapter, based on [122], we change perspective in two respects. First, we
switch from considering Heyting algebras to considering residuated lattices and
various closely related types of algebras. Second, instead of being concerned with
properties related to hypersequent calculi and P3-equations we look at a speci�c
N2-equation and an equivalent non-standard sequent calculus for the equational
theory of residuated lattices determined by this equation. As we will see, even
though this equation belongs to the levelN2, the approach of Ciabattoni, Galatos,
and Terui [59] cannot be applied to obtain an equivalent cut-free structural sequ-
ent calculus. Nevertheless, we show that algebraic methods can still yield some
proof-theoretical insights, although of a di�erent type than those found in [59].

Concretely, we look at residuated lattices satisfying the equation x\x ≈ e,
or equivalently the equation x/x ≈ e, viz., the so-called integrally closed resid-
uated lattices [92, Chap. XII.3]. These structures encompass a large number of
well-known residuated lattices, such as integral residuated lattices, `-groups [6],
cancellative residuated lattices [13], and GBL-algebras [102]. Moreover, as we
will show, integrally closed residuated lattices are also connected to Dubreil-Ja-
cotin semi-groups [78, 93, 218, 41], pseudo BCI-algebra [165, 178, 181, 79], sir-
monoids [219, 83] and algebras for Casari's comparative logic [48, 49, 50, 210, 198].

We show that any integrally closed residuated lattice satis�es the equation
x\e ≈ e/x. Consequently, we may expand the type of integrally closed residuated
lattices with an additional unary operation, interpreted in each integrally closed
residuated lattice A as the function mapping a ∈ A to the element a\e = e/a,
which we denote by −a. Composing this operation with itself gives rise to a
nucleus on any integrally closed residuated lattice analogous to the well-known
double negation nucleus on Heyting algebras. Using this nucleus we show that
the variety IcRL of integrally closed residuated lattices admits a Glivenko the-
orem [126, 100] with respect to the variety LG of `-groups. That is, for any
residuated lattice terms s, t we have

LG |= s ≤ t if, and only if, IcRL |= −−s ≤ −−t.

135
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This relationship between the varieties IcRL and LG allows us to establish the
soundness, with respect to the variety IcRL, of the following non-standard ver-
sion of the weakening rule

Γ,Π⇒ u |=LG ∆⇒ e

Γ,∆,Π⇒ u
(LG-w)

where the premise |=LG ∆⇒ e may be understood as a side-condition for weak-
ening. Variants of this rule have already been considered before in the context of
BCI-algebras [178] and Casari's comparative logic [198]. Adding this rule to the
ordinary sequent calculus for the equational theory of residuated lattices we ob-
tain a sound and complete calculus for the equational theory of integrally closed
residuated lattices. Furthermore, using a standard argument we show that the
cut-rule is eliminable in this calculus. From this the decidability of the equational
theory of integrally closed residuated lattices follows.

Finally, we use the cut-free calculus for the equational theory of integrally
closed residuated lattices to obtain conservativity results concerning the equa-
tional theories of pseudo BCI-algebra, sirmonoids, and the algebras for Casari's
comparative logic.

Outline The chapter is structured as follows: In Section 5.1 we establish some
basic facts about the structure of integrally closed residuated lattices and in Sec-
tion 5.2 we use these to prove that the variety of integrally closed residuated
lattices enjoys the Glivenko property with respect to the variety of `-groups.
Then in Section 5.3 we construct a sequent calculus for the equational theory of
the variety of integrally closed residuated lattices which we show admits cut-elim-
ination. Section 5.4 contains a discussion of the relationship between integrally
closed residuated lattices and sirmonoids, while in Section 5.5 the relationship
between integrally closed residuated lattices and the algebras for Casari's com-
parative logic is discussed. Finally, Section 5.6 contains a few concluding remarks.

5.1 The structure of integrally closed residuated

lattices

In this section we establish some basic facts about the structure of integrally closed
residuated lattices. We refer to Appendix A.3 for the de�nition of residuated
lattices. By an integrally closed residuated lattice we shall understand a residuated
lattice satisfying the equations

x\x ≈ e and x/x ≈ e.

We denote by IcRL the variety of integrally closed residuated lattices. As we
shall see the equations x\x ≈ e and x/x ≈ e are in fact equivalent and so either
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one of them su�ces to de�ne the variety IcRL relative to the variety of all
residuated lattices.

Recall that an element a of a residuated lattice A is idempotent provided that
a2 = a. The following proposition shows that the property of being integrally
closed is completely determined by the structure of the idempotent elements.

5.1.1. Proposition. Let A be a residuated lattice. Then the following are equiv-
alent.

1. The residuated lattice A is integrally closed.

2. The residuated lattice A satis�es the quasi-equations

xy ≤ x =⇒ y ≤ e and yx ≤ x =⇒ y ≤ e.

3. The monoidal unit e is the largest idempotent element of A.

Proof:
That Item 1 implies Item 2 follows immediately by applying residuation. That
Item 2 implies Item 3 is likewise easy to see. We show that all elements of A
of the form a\a and a/a are idempotent from which it follows that Item 3 im-
plies Item 1. Therefore, let a ∈ A be given. Since a(a\a) ≤ a we must have
a(a\a)(a\a) ≤ a(a\a) ≤ a and hence (a\a)2 ≤ (a\a). On the other hand, since
e ≤ a\a we also have a\a ≤ (a\a)2, which shows that a\a is indeed idempotent.
The fact that the element a/a is idempotent for all a ∈ A follows from a com-
pletely analogous argument. 2

5.1.2. Remark. This shows that the variety IcRL of integrally closed resid-
uated lattices is (·,∨, e)-stable in the sense of de�nition [35, Def. 4.6], even in
the stronger sense that any residuated lattice which is a (·,∨, e)-subalgebra of an
integrally closed residuated lattice must also be integrally closed.

Thus Proposition 5.1.1 shows that whether or not a residuated lattice is inte-
grally closed is completely determined by the structure of its underlying partially
ordered monoid. We note that partially ordered monoids with a largest idem-
potent element are special instances of what is known as Dubreil-Jacotin semi-
groups which have been studied extensively, see, e.g., [41, Chap. 12�13] and [42,
Chap. 3.25] for an overview. Proposition 5.1.1 also allows us to easily identify
many examples of integrally closed residuated lattices. For example any integral
residuated lattice is integrally closed. Similarly any cancellative residuated lat-
tice [13] must be integrally closed. In particular, any `-group will be integrally
closed. Consequently, any direct product of an integral residuated lattice and an
`-group must be integrally closed, whence, by [102, Cor. 5.3], all GBL-algebras
will be integrally closed. Of these four types of algebras only integral residuated
lattices and `-groups will play a role in this chapter. We refer to Appendix A.3
for de�nitions.
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5.1.3. Lemma. Any upper or lower bounded integrally closed residuated lattice is
integral.

Proof:
Suppose that > is the greatest element of an integrally closed residuated lattice
A. Then > · a ≤ > and hence a ≤ >\> = e for all a ∈ A. So A is integral.
Moreover, any residuated lattice with a least element ⊥ has a greatest element,
namely ⊥\⊥, and so any lower bounded integrally closed residuated lattice must
also be integral. 2

Since every �nite residuated lattice is bounded, we obtain the following descrip-
tion of �nite integrally closed residuated lattices.

5.1.4. Corollary. A �nite residuated lattice is integrally closed if, and only if,
it is integral.

Also, since there are integrally closed residuated lattices that are not integral, e.g.,
any non-trivial `-group, the variety IcRL of integrally closed residuated lattices
does not have the �nite model property.

5.1.5. Corollary. IcRL is not generated by its �nite members.

A residuated lattice A is called e-cyclic if the two unary operations

a 7→ a\e and a 7→ e/a

on A coincide. The next result shows that integrally closed residuated lattices
are e-cyclic and that either one of the de�ning equations for this variety, relative
to the variety RL of all residuated lattices, su�ces to imply the other.

5.1.6. Proposition. Any residuated lattice satisfying either x\x ≈ e or x/x ≈ e
is e-cyclic and integrally closed.

Proof:
Let A be a residuated lattice satisfying x\x ≈ e, noting that the case where A
satis�es x/x ≈ e is symmetrical. Consider any a ∈ A. By residuation, a(a\e) ≤ e,
so a(a\e)a ≤ a, giving (a\e)a ≤ a\a = e and hence a\e ≤ e/a. But also
(e/a)a ≤ e, so a ≤ (e/a)\e ≤ e/(e/a), giving a(e/a) ≤ e and hence e/a ≤ a\e. So
A satis�es x\e ≈ e/x, i.e., A is e-cyclic.

Consider now again any a ∈ A. Since, as shown above, (a\e)a ≤ e, we also
have a ≤ (a\e)\e. But then, using the fact that the equation x\(y/z) ≈ (x\y)/z
is valid in all residuated lattices,

a/a ≤ ((a\e)\e)/a = (a\e)\(e/a) = (a\e)\(a\e) = e.
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Hence A satis�es x/x ≈ e and is therefore integrally closed. 2

For any e-cyclic residuated lattice A and a ∈ A, we write −a to denote the
element a\e = e/a of A. We will consider the type of e-cyclic residuated lattices to
be 〈2, 2, 2, 2, 2, 1, 0〉, with the additional unary operation interpreted as a 7→ −a
on any e-cyclic residuated lattice. The next lemma collects some useful properties
of this operation.

5.1.7. Lemma. Each of the following equations and quasi-equations axiomatizes
the variety IcRL relative to the variety of e-cyclic residuated lattices:

(i) −(x\y) ≈ −y/−x,

(ii) −(y/x) ≈ −x\−y,

(iii) x(−x)y ≤ e =⇒ y ≤ e,

(iv) y(−x)x ≤ e =⇒ y ≤ e.

Proof:
To see that the equation (i) axiomatizes the variety IcRL relative to the variety
of e-cyclic residuated lattices, letA be any e-cyclic residuated lattice and consider
a, b ∈ A. Since a(−a)b ≤ b, it follows that (−a)b ≤ a\b ≤ −−(a\b) and hence
−(a\b)(−a)b ≤ e, yielding −(a\b) ≤ −b/−a. Note also that

a(a\b)(−b/−a)(−a) ≤ b(−b) ≤ e.

Hence if A is integrally closed, it follows that (a\b)(−b/−a) ≤ (−a)/(−a) = e,
implying −b/−a ≤ −(a\b), which shows that A satis�es −(x\y) ≈ −y/−x.
Conversely, if A satis�es −(x\y) ≈ −y/−x, then we have that

a\a ≤ (−a/−a)(a\a) = −(a\a)(a\a) ≤ e,

implying that A satis�es x\x ≈ e and so is integrally closed. The proof showing
that the equation (ii) axiomatizes the variety IcRL relative to the variety of
e-cyclic residuated lattices is symmetrical.

To see that the quasi-equation (iii) axiomatizes the variety IcRL relative
to the variety of e-cyclic residuated lattices, consider �rst any integrally closed
residuated lattice A and a, b ∈ A. If a(−a)b ≤ e, then (−a)b ≤ −a and hence
b ≤ −a\−a = e, implying that A satis�es x(−x)y ≤ e =⇒ y ≤ e. Suppose
next that A is an e-cyclic residuated lattice that satis�es x(−x)y ≤ e =⇒ y ≤ e
and consider a ∈ A. Then a(−a)(−a\−a) ≤ e yields −a\−a ≤ e. But also
−a(a/a)a ≤ e, implying a/a ≤ −a\−a ≤ e. Therefore, A satis�es x/x ≈ e and
so is integrally closed. The proof showing that the quasi-equation (iv) axiom-
atizes the variety IcRL relative to the variety of e-cyclic residuated lattices is
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symmetrical. 2

For any e-cyclic residuated lattice A, the map α : A→ A given by

a 7→ −−a

is a nucleus on the induced partially ordered monoid 〈A,≤, ·, e〉, i.e., an increasing,
order-preserving, idempotent map satisfying α(a)α(b) ≤ α(ab) for all a, b ∈ A,
see, e.g., [100, Lem. 5.2]. Consequently, the image of A under α can be equipped
with the structure of a residuated lattice

Aα = 〈α[A],∧,∨α, ·α, \, /, e〉,

where a ∨α b := α(a ∨ b) and a ·α b := α(a · b), for all a, b ∈ α[A]. See Section A.5
of the appendix for details.

Suppose now that A is an integrally closed residuated lattice satisfying the
equation −−x ≈ x. Then for any a ∈ A we have,

a(−a) = −−(a(−a)) = −(a\(−−a)) = −(a\a) = −e = e.

That is, A satis�es the equation x(x\e) ≈ e and is therefore an `-group. In this
case, the operation a 7→ −a is the group inverse operation and α is therefore the
identity map on A, whence A = Aα. On the other hand, if A is an integral
residuated lattice, then −a = e for all a ∈ A and α maps every element to the
unit e, so Aα is trivial. More generally, if A is integrally closed, then α and its
image enjoy the following properties. Call a homomorphism h : A→ B between
residuated lattices A and B e-principal provided that h−1(eB) ⊆ ↓eA, cf. [41,
Chap. 12.2].

5.1.8. Proposition. Let A be an integrally closed residuated lattice.

1. The map α : A→ Aα is a surjective homomorphism of residuated lattices.

2. The residuated lattice Aα is an `-group.

3. Any homomorphism h : A → G with G an `-group factors through the `-
group Aα.

4. The residuated lattice Aα is, up to isomorphism, the unique e-principal
homomorphic image of A which is an `-group.

Proof:
To establish Item 1 we �rst note that any nucleus on the induced partially ordered
monoid of a residuated lattice preserves the monoidal structure and joins, see,
e.g., [98, Thm. 3.34(2)]. By parts (i) and (ii) of Lemma 5.1.7, this nucleus also
preserves the residual operations. Moreover, α(e) = e. It therefore su�ces to
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show that α preserves binary meets. First note that since (−a)(−−a) ≤ e, also
a(−a)(−−a) ≤ a, and, since b(−b) ≤ e, it follows that a(−a)b(−b)(−−a) ≤ a.
Similarly, a(−a)b(−b)(−−b) ≤ b, and hence

a(−a)b(−b)(−−a ∧ −−b) ≤ a ∧ b ≤ −−(a ∧ b).

By residuation, a(−a)b(−b)(−−a∧−−b)(−(a∧b)) ≤ e, and hence, applying part
(iii) of Lemma 5.1.7 twice, (−−a ∧ −−b)(−(a ∧ b)) ≤ e. By residuation again,

−−a ∧ −−b ≤ −−(a ∧ b).

Since α is order-preserving, −−(a ∧ b) = −−a ∧ −−b, as desired.
To establish Item 2 we observe that by Item 1 Aα is an integrally closed

residuated lattice. But also for any a ∈ A, we have −−α(a) = α(α(a)) = α(a),
so Aα satis�es the equation −−x ≈ x and is therefore an `-group.

For Item 3 suppose that h : A→ G is a homomorphism of residuated lattices
with G an `-group. We claim that kerα ⊆ kerh. To see this let a, b ∈ A be
given such that (a, b) ∈ kerα, meaning that −−a = −−b. But then from the
assumption that h is a homomorphism we obtain −−h(a) = −−h(b). Since
G is assumed to be an `-group this entails that h(a) = h(b), which implies
(a, b) ∈ kerh. By the universal property of quotients we obtain a homomorphism
h : Aα → G, such that h = h ◦ α.

Finally, to establish Item 4 we �rst observe that by Items 1 and 2 the algebra
Aα is a homomorphic image of A which is an `-group. Furthermore, we see that
if a ∈ A is such that α(a) = e then a ≤ e, as α, being a nucleus on A, is increas-
ing. This shows that α : A � Aα is indeed e-principal. Now assume that G an
`-group and h : A � G is a surjective e-principal homomorphism of residuated
lattices. Then by Item 3 we must have a, necessarily surjective, homomorphism
h : Aα � G. Now if (a, b) ∈ A2 belongs to kerh then since G is an `-group, and
so in particular integrally closed, we have h(a\b) = h(a)\h(b) = e. Consequently,
as h is assumed to be e-principal we obtain that a\b ≤ e. By Lemma 5.1.7(i) it
follows that e ≤ −(a\b) = −b/−a, whence −a ≤ −b. A completely analogous
argument shows that −b ≤ −a, and hence that −a = −b. But then −−a = −−b,
which shows that (a, b) ∈ kerα. Consequently, kerh ⊆ kerα from which we may
conclude that h is injective and hence an isomorphism. 2

The following theorem may be seen as a version of an analogous theorem for
ordered semi-groups see, e.g., [78], [92, Thm. XII.3.1] and [41, Thm. 12.5].

5.1.9. Theorem. Let A be a residuated lattice. Then the following are equiva-
lent.

1. The residuated lattice A is integrally closed.

2. The residuated lattice A admits an e-principal homomorphic image which
is an `-group.



142 Chapter 5. Integrally closed residuated lattices

Proof:
That Item 1 entails Item 2 follows from Proposition 5.1.8. To see that Item 2
entails Item 1, assume that G is an `-group, and so in particular integrally closed,
with an e-principal homomorphism h : A� G. Then since h preservers the resid-
uals, we immediately see that h(a\a) = h(a)\h(a) = e, for all a ∈ A. Since h is
e-principal this entails that a\a ≤ e for each a ∈ A, showing that A is integrally
closed. 2

The connection between integrally closed residuated lattices and `-groups al-
lows us to deduce that certain properties are enjoyed by the former by knowing
that they are enjoyed by the latter. The following proposition serves as an exam-
ple of this.

5.1.10. Proposition. Every integrally closed residuated lattice is torsion-free,
i.e., satis�es the quasi-equation

xn ≈ e =⇒ x ≈ e,

for every natural number n ≥ 1.

Proof:
LetA be an integrally closed residuated lattice. We prove by induction on natural
numbers n ≥ 1 that A satis�es the quasi-equation xn ≈ e =⇒ x ≈ e. The case
n = 1 is trivial. For the inductive step, suppose that n > 1 and an = e for some
a ∈ A. Then, since α : A → Aα is a homomorphism, α(a)n = α(an) = α(e) =
e. But `-groups are torsion-free, see, e.g., [6, Prop. 1.1.6(b)], so α(a) = e and
therefore −a = −−−a = −α(a) = −e = e. Moreover, since by assumption an = e
we also have an−1 ≤ −a by residuation. From this we see that

e = (−a)an = (−a)aan−1 ≤ an−1 ≤ −a = e.

Hence an−1 = e and, by the induction hypothesis, a = e. 2

We turn our attention now to varieties of integrally closed residuated lattices.
Given any class K ⊆ IcRL, we denote by Kα the class {Aα | A ∈ K} ⊆ LG,
recalling that LG denotes the variety of `-groups.

5.1.11. Proposition. Let V be any variety of integrally closed residuated lat-
tices.

1. The class Vα forms a variety of `-groups.

2. If V is de�ned relative to IcRL by a set of equations E, then Vα is de�ned
relative to LG by E.
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Hence the map V 7→ Vα is an interior operator on the lattice of subvarieties of
IcRL whose image is the lattice of subvarieties of LG.

Proof:
Let V be a variety of integrally closed residuated lattices de�ned relative to IcRL
by a set of equations E and let W be the variety of `-groups de�ned relative to
LG by E. ClearlyW =Wα ⊆ Vα. But also each Aα ∈ Vα is, by Proposition 5.1.8,
an `-group and a homomorphic image of A ∈ V . So Vα ⊆ W .

The second item of the proposition then follows from the observation that
Vα = V if, and only if, V ⊆ LG. 2

5.2 A Glivenko theorem for `-groups

In this section we will establish a correspondence between the validity of equa-
tions in an integrally closed residuated lattice A and the corresponding `-group
Aα, analogous to the one between Heyting algebras and Boolean algebras �rst
established by Glivenko [126], see also [16, Thm. IX.5.3]. In addition, we will
consider the relationship between the equational theories of integrally closed and
integral residuated lattices as well as the quasi-equational theories of integrally
closed residuated lattices and `-groups.

We will here denote by Tm the term algebra for residuated lattices over a
�xed countably in�nite set of variables.

5.2.1. Lemma. For any integrally closed residuated lattice A and s, t ∈ Tm,

Aα |= s ≤ t if, and only if, A |= −−s ≤ −−t.

Proof:
Suppose �rst that A |= −−s ≤ −−t. Since Aα is a homomorphic image of A,
also Aα |= −−s ≤ −−t. But Aα is an `-group, and so Aα |= s ≤ t.

Now suppose that A 6|= −−s ≤ −−t. Then there exists a homomorphism
ν : Tm → A such that ν(−−s) 6≤ ν(−−t). Since α is a homomorphism from A
to Aα, we obtain a homomorphism α ◦ ν : Tm→ Aα such that

(α ◦ ν)(s) = α(ν(s)) = −−ν(s) = ν(−−s) 6≤ ν(−−t) = α(ν(t)) = (α ◦ ν)(t).

Hence Aα 6|= s ≤ t as required. 2

Following [100], we will say that a variety V of residuated lattices admits the
(equational) Glivenko property with respect to a variety W of residuated lattices
if for all s, t ∈ Tm, both of the equivalences

V |= e/(s\e) ≤ e/(t\e) if, and only if, W |= s ≤ t,
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and
V |= (e/s)\e ≤ (e/t)\e if, and only if, W |= s ≤ t,

are satis�ed. It may then easily be observed that if V is a variety of e-cyclic
residuated lattices, this simpli�es to the condition,

V |= −−s ≤ −−t if, and only if, W |= s ≤ t.

Let us also note the following useful consequence of this property.

5.2.2. Proposition. If V is a variety of residuated lattices admitting the Gli-
venko property with respect to a variety of residuated lattices W, then for all
s ∈ Tm,

V |= s ≤ e if, and only if, W |= s ≤ e.

Proof:
The equation x ≤ e/(x\e) and quasi-equation x ≤ e =⇒ e/(x\e) ≤ e are valid
in all residuated lattices. Hence for all s ∈ Tm,

W |= s ≤ e ⇐⇒ V |= e/(s\e) ≤ e/(e\e)

⇐⇒ V |= e/(s\e) ≤ e

⇐⇒ V |= s ≤ e,

establishing the proposition. 2

For integrally closed residuated lattices, we obtain the following pivotal result.

5.2.3. Theorem. Any variety V of integrally closed residuated lattices admits
the Glivenko property with respect to the variety of `-groups Vα.

Proof:
Suppose that Vα |= s ≤ t. For any A ∈ V , it follows that Aα |= s ≤ t, and hence
A |= −−s ≤ −−t, by Lemma 5.2.1. So V |= −−s ≤ −−t. The other implication
follows from the fact that Vα ⊆ V and Vα |= −−x ≈ x. 2

In particular, the decision problem for the equational theory of a variety of
integrally closed residuated lattices V is at least as di�cult as the decision problem
for the equational theory of the corresponding variety of `-groups Vα.

Applying Theorem 5.2.3 to the variety of all integrally closed residuated lat-
tices we obtain the following.

5.2.4. Corollary. The variety of integrally closed residuated lattices admits
the Glivenko property with respect to the variety of `-groups, and hence for all
s ∈ Tm,

LG |= s ≤ e if, and only if, IcRL |= s ≤ e.
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As the next result demonstrates, IcRL is in fact the largest variety of resid-
uated lattices which admits the Glivenko property with respect to the variety of
all `-groups.

5.2.5. Theorem. Let V be a variety of integrally closed residuated lattices that
is axiomatized relative to IcRL by equations of the form s ≤ e. Then V is the
largest variety of residuated lattices admitting the Glivenko property with respect
to the variety Vα.

Proof:
By Theorem 5.2.3, V admits the Glivenko property with respect to Vα. Now sup-
pose thatW is any variety of residuated lattices admitting the Glivenko property
with respect to Vα. By assumption, V is axiomatized relative to IcRL by a set
of equations E of the form s ≤ e, so, by Proposition 5.1.11, the variety Vα is
axiomatized relative to LG by E. But also by Proposition 5.2.2, all members of
the varietyW must satisfy all the equations in E as well as x\x ≤ e. SoW ⊆ V . 2

Applying Theorem 5.2.5 to the varieties IRL and Triv of all integral and all
trivial residuated lattices, respectively, we obtain the following.

5.2.6. Corollary.

1. The variety IcRL is the largest variety of residuated lattices that admits
the Glivenko property with respect to the variety LG.

2. The variety IRL is the largest variety of residuated lattices that admits the
Glivenko property with respect to the variety Triv .

It is not the case that every variety V of integrally closed residuated lattices
is the largest variety of residuated lattices admitting the Glivenko property with
respect to the corresponding variety Vα of `-groups. For example, if V is the
variety of commutative integrally closed residuated lattices then Vα is the variety
of Abelian `-groups. However, for any integral residuated lattice A, the `-group
Aα is trivial, so the largest variety admitting the Glivenko property with respect
to the variety of Abelian `-groups must contain all integral residuated lattices.

5.2.1 Two additional translations

We conclude this section by describing further syntactic relationships existing
between the variety IcRL and the varieties IRL and LG. Recall, e.g., from
[170, Sec. 5] that for any residuated lattice A, the negative cone of A is the
residuated lattice A− with universe A− = {a ∈ A | a ≤ e}, monoid and lattice
operations inherited from A, and residuals de�ned by

a\−b := (a\b) ∧ e and b/− a := (b/a) ∧ e,
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for a, b ∈ A−. For each term s ∈ Tm we de�ne a corresponding term s− by the
following recursion:

e− = e and x− = x ∧ e for each variable x,

(s ∗ t)− = s− ∗ t− for ∗ ∈ {∧,∨, ·},

(s\t)− = (s−\t−) ∧ e and (s/t)− = (s−/t−) ∧ e.

It is then straightforward, see, e.g., [170, Lem. 5.10], to prove that for any resid-
uated lattice A and s, t ∈ Tm,

A− |= s ≈ t if, and only if, A |= s− ≈ t−.

Since the negative cone of an integrally closed residuated lattice is integral and
an integral residuated lattice is integrally closed, we obtain the following result.

5.2.7. Proposition. For any s, t ∈ Tm,

IRL |= s ≈ t if, and only if, IcRL |= s− ≈ t−.

Thus the decision problem for the equational theory of integrally closed residuated
lattices is at least as di�cult as the decision problem for integral residuated
lattices.

Corollary 5.2.4 shows how the equational theory of `-groups may be inter-
preted in the equational theory of integrally closed residuated lattices. We now
show that also the quasi-equational theory of `-groups can be interpreted in the
quasi-equational theory of integrally closed residuated lattices. To this end we
de�ne for each term s ∈ Tm a corresponding term sα by the following recursion:

eα = e and xα = −−x for each variable x,

(s ∗ t)α = sα ∗ tα for ∗ ∈ {∧, \, /},

(s · t)α = −−(sα · tα) and (s ∨ t)α = −−(sα ∨ tα).

5.2.8. Proposition (cf. [168, Prop. 28]). For each quasi-equation q in the lan-
guage of residuated lattices there is a quasi-equation qα e�ectively computable from
q such that

LG |= q if, and only if, IcRL |= qα.

Proof:
Suppose that q is the quasi-equation

s1 ≈ t1 and . . . and sm ≈ tm =⇒ sm+1 ≈ tm+1,
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with {x1, . . . , xk} the set of variables occurring in q. Let ρ be the following
conjunction of equations,

−−x1 ≈ x1 and . . . and −−xk ≈ xk.

We then let qα be the quasi-equation,

ρ and sα1 ≈ tα1 and . . . and sαm ≈ tαm =⇒ sαm+1 ≈ tαm+1.

A straightforward induction shows that for any s ∈ Tm the term function (sα)A

on A induced by the term sα and the term function sAα on Aα induced by the
term s agree on their common domain, viz., {a ∈ A : −−a = a}.

Now assume that LG |= q. To see that IcRL |= qα let A be an integrally
closed residuated lattice and let a1, . . . , ak ∈ A be such that −−ai = ai, for all
i ∈ {1, . . . , k}, and (sαj )A(~a) = (tαj )A(~a) for all j ∈ {1, . . . ,m}. Then by the above

observation we have that sAα
j (~a) = tAα

j (~a), for all j ∈ {1, . . . ,m}. Consequently,
as LG |= q we have that Aα |= q from which we may conclude that

(sαm+1)A(~a) = sAα
m+1(~a) = tAα

m+1(~a) = (tαm+1)A(~a).

This shows that A |= qα and therefore also that IcRL |= qα. To establish
the converse implication we observe that since all `-groups satisfy the equation
x ≈ −−x it follows that LG |= s ≈ sα for each s ∈ Tm. Consequently, the
quasi-equations q and qα are equivalent on any `-group and so as LG ⊆ IcRL we
obtain that

IcRL |= qα =⇒ LG |= q,

as desired. 2

This shows that the word problem for integrally closed residuated lattices is
at least as di�cult as the word problem for `-groups.

5.3 Proof theory and decidability

In this section we will construct a sequent calculus for the equational theory of in-
tegrally closed residuated lattices by adding a non-standard weakening rule to the
standard sequent calculus RL, presented in Figure 5.1, for the equational theory
of residuated lattices. We prove that this calculus admits cut-elimination and ob-
tain as a consequence a proof of the decidability, indeed PSPACE-completeness,
of the equational theory of integrally closed residuated lattices.

In the following we shall by a (single-succedent) sequent understand an ex-
pression of the form Γ⇒ t where Γ is a �nite, possible empty, sequence of
terms s1, . . . , sn ∈ Tm and t ∈ Tm. Sequent rules, calculi, and derivations
are de�ned in the usual way, see, e.g., [98, 199] or Chapter 2. We say that
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Identity Axioms Cut Rule

s⇒ s
(id)

Γ2 ⇒ s Γ1, s,Γ3 ⇒ u

Γ1,Γ2,Γ3 ⇒ u
(cut)

Left Operation Rules Right Operation Rules

Γ1,Γ2 ⇒ u

Γ1, e,Γ2 ⇒ u
(e⇒)

⇒ e
(⇒e)

Γ2 ⇒ s Γ1, t,Γ3 ⇒ u

Γ1, t/s,Γ2,Γ3 ⇒ u
(/⇒)

Γ, s⇒ t

Γ⇒ t/s
(⇒/)

Γ2 ⇒ s Γ1, t,Γ3 ⇒ u

Γ1,Γ2, s\t,Γ3 ⇒ u
(\⇒)

s,Γ⇒ t

Γ⇒ s\t
(⇒\)

Γ1, s, t,Γ2 ⇒ u

Γ1, s · t,Γ2 ⇒ u
(·⇒)

Γ1 ⇒ s Γ2 ⇒ t
Γ1,Γ2 ⇒ s · t

(⇒·)

Γ1, s,Γ2 ⇒ u

Γ1, s ∧ t,Γ2 ⇒ u
(∧⇒)1

Γ⇒ s
Γ⇒ s ∨ t

(⇒∨)1

Γ1, t,Γ2 ⇒ u

Γ1, s ∧ t,Γ2 ⇒ u
(∧⇒)2

Γ⇒ t
Γ⇒ s ∨ t

(⇒∨)2

Γ1, s,Γ2 ⇒ u Γ1, t,Γ2 ⇒ u

Γ1, s ∨ t,Γ2 ⇒ u
(∨⇒)

Γ⇒ s Γ⇒ t
Γ⇒ s ∧ t

(⇒∧)

Figure 5.1: The Sequent Calculus RL

a sequent s1, . . . , sn ⇒ t is valid in a class K of residuated lattices, written as
|=K s1, . . . , sn ⇒ t, if K |= s1 · · · sn ≤ t, where the empty product in a residuated
lattice is understood to be the monoidal unit e. A sequent is derivable in the
calculus RL if, and only if, it is valid in the variety RL of all residuated lattices,
see, e.g., [98, 199], and RL admits cut-elimination, i.e., there is an algorithm that
transforms any derivation of a sequent in RL into a derivation of the sequent that
does not use the cut-rule.

We de�ne IcRL to be the sequent calculus consisting of the rules of RL together
with the non-standard rule

Γ,Π⇒ u |=LG ∆⇒ e

Γ,∆,Π⇒ u
(LG-w)

where the premise |=LG ∆⇒ e may be understood as a side-condition for weak-
ening that is decidable [158], indeed co-NP-complete [99]. In fact, the condition
|=LG ∆⇒ e can be understood proof-theoretically as requiring a derivation in
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some calculus for `-groups, such as the hypersequent calculus admitting cut-elim-
ination provided in [99]. Thus the rule (LG-w) may be viewed as a special case
of the standard weakening rule

Γ,Π⇒ u
Γ,∆,Π⇒ u

(w)

in which the sequence ∆ is restricted by some (decidable) side-condition.

5.3.1. Proposition. A sequent is derivable in the calculus IcRL if, and only if,
it is valid in all integrally closed residuated lattices.

Proof:
Assume �rst that s1, . . . , sn ⇒ t is a sequent valid in all integrally closed resid-
uated lattices. We show that s1, . . . , sn ⇒ t is derivable in the calculus IcRL via
a Lindenbaum-Tarski algebra construction. Namely, as usual, it is easy to verify
that the binary relation Θ on Tm de�ned by

u Θ v if, and only if, the sequents u⇒ v and v ⇒ u are derivable in IcRL,

is a congruence on the term algebra Tm. Moreover, since the sequent x\x⇒ e
is derivable in IcRL, the quotient Tm/Θ will be an integrally closed residuated
lattice which must satisfy

u/Θ ≤ v/Θ if, and only if, the sequents u⇒ v is derivable in IcRL.

Consider the homomorphism from Tm to Tm/Θ mapping each term u to the
equivalence class u/Θ. Since by assumption the equation s1 · · · sn ≤ t is true in
the residuated lattice Tm/Θ, it follows that s1 · · · sn/Θ ≤ t/Θ and hence that
the sequent s1 · · · sn ⇒ t is derivable in IcRL. An application of (cut) with the
derivable sequent s1, . . . , sn ⇒ s1 · · · sn shows that also s1, . . . , sn ⇒ t is derivable
in IcRL.

Conversely, to show that any sequent derivable in IcRL is valid in all inte-
grally closed residuated lattices, we recall, e.g., from [98, 199], that the rules
of RL preserve validity of sequents in RL and it therefore su�ces to show that
the rule (LG-w) preserves validity in IcRL. Suppose that |=IcRL Γ,Π⇒ u and
|=LG ∆⇒ e. Writing s1, s2, and t for the products of the terms in Γ, Π, and ∆,
respectively, we have that IcRL |= s1s2 ≤ u and LG |= t ≤ e. By Corollary 5.2.4,
we obtain that IcRL |= t ≤ e and hence that IcRL |= s1ts2 ≤ u, yielding that,
|=IcRL Γ,∆,Π⇒ u, as desired. 2

5.3.2. Proposition. The calculus IcRL admits cut-elimination.
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Proof:
It su�ces, as usual, to prove that if there are cut-free derivations d1 of the sequent
Γ2 ⇒ s and d2 of the sequent Γ1, s,Γ3 ⇒ u in IcRL, i.e.,

... d1

Γ2 ⇒ s

... d2

Γ1, s,Γ3 ⇒ u
Γ1,Γ2,Γ3 ⇒ u

(cut)

then there is a cut-free derivation of the sequent Γ1,Γ2,Γ3 ⇒ u in IcRL. We
proceed by induction on the lexicographically ordered pair 〈c, h〉 where c is the
term complexity of s and h is the sum of the heights of the derivations d1 and
d2. The cases where the last steps in the derivations d1 and d2 are applications
of rules of RL are standard, see, e.g., [98, Chap. 4.1]. We therefore just consider
the cases where the last step is an application of the rule (LG-w). Suppose �rst
that Γ2 = Π1,∆,Π2 and d1 ends with

... d′1
Π1,Π2 ⇒ s |=LG ∆⇒ e

Π1,∆,Π2 ⇒ s
(LG-w)

By the induction hypothesis, we obtain a cut-free derivation d3 of the sequent
Γ1,Π1,Π2,Γ3 ⇒ u in IcRL, and hence a cut-free derivation in IcRL ending with

... d3

Γ1,Π1,Π2,Γ3 ⇒ u |=LG ∆⇒ e

Γ1,Π1,∆,Π2,Γ3 ⇒ u
(LG-w)

Suppose next that Γ3 = Π1,∆,Π2 and d2 ends with

... d′2
Γ1, s,Π1,Π2 ⇒ u |=LG ∆⇒ e

Γ1, s,Π1,∆,Π2 ⇒ u
(LG-w)

By the induction hypothesis, we obtain a cut-free derivation d3 of the sequent
Γ1,Γ2,Π1,Π2 ⇒ u in IcRL, and hence a cut-free derivation in IcRL ending with

... d3

Γ1,Γ2,Π1,Π2 ⇒ u |=LG ∆⇒ e

Γ1,Γ2,Π1,∆,Π2 ⇒ u
(LG-w)

The analogous case where Γ1 = Π1,∆,Π2 is very similar.
Suppose �nally that Γ1, s,Γ3 = Π1,∆1, s,∆2,Π2 and d2 ends with

... d′2
Π1,Π2 ⇒ u |=LG ∆1, s,∆2 ⇒ e

Π1,∆1, s,∆2,Π2 ⇒ u
(LG-w)
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By Proposition 5.3.1, we have that |=IcRL Γ2 ⇒ s and hence that |=LG Γ2 ⇒ s.
But then also |=LG ∆1,Γ2,∆2 ⇒ e and so we obtain a cut-free derivation in IcRL
ending with

... d′2
Π1,Π2 ⇒ u |=LG ∆1,Γ2,∆2 ⇒ e

Π1,∆1,Γ2,∆2,Π2 ⇒ u
(LG-w)

This takes care of all the possible cases and so concludes the proof. 2

The cut-elimination argument of Proposition 5.3.2 applies also to sequent
calculi for other varieties of integrally closed residuated lattices. First, let V be any
variety of residuated lattices axiomatized relative to RL by a set of equations in
the {∨, ·, e}-reduct of the language of residuated lattices. It is shown in [97, Sec. 3]
that V can then be axiomatized by so-called simple equations, viz., equations of
the form s ≤ t1 ∨ . . . ∨ tn where each of s, t1, . . . , tn is either e or a product of
variables and s contains at most one occurrence of any variable. Moreover, a
sequent calculus for the equational theory of V that admits cut-elimination is
obtained by adding to the calculus RL for each such equation s ≤ t1 ∨ . . . ∨ tn, a
so-called simple rule

Γ,Ψ(t1),Π⇒ u . . . Γ,Ψ(tn),Π⇒ u

Γ,Ψ(s),Π⇒ u

where Ψ(e) is the empty sequence and Ψ(x1 · · ·xm), for not necessarily distinct
variables x1, . . . , xm, is the sequence of meta-variables Γx1 , . . . ,Γxm . We then
obtain a sequent calculus for the equational theory of the variety W of integrally
closed members of V that also admits cut-elimination by adding the rule

Γ,Π⇒ u |=Wα ∆⇒ e

Γ,∆,Π⇒ u
(Wα-w)

In particular, a sequent calculus for the equational theory of commutative inte-
grally closed residuated lattices is obtained by adding to IcRL the (left) exchange
rule

Γ1,Π2,Π1,Γ2 ⇒ u
Γ1,Π1,Π2,Γ2 ⇒ u

(el)

and replacing LG with the variety AbLG of Abelian `-groups in the rule (LG-w).

We use the cut-elimination of Proposition 5.3.2 to establish the decidability
of the equational theory of IcRL.

5.3.3. Theorem. The equational theory of integrally closed residuated lattices is
decidable, indeed PSPACE-complete.
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Proof:
For PSPACE-hardness, it su�ces to recall that the equational theory of inte-
gral residuated lattices is PSPACE-complete [160, Thm. 5.2] and consider the
translation described in Proposition 5.2.7. For inclusion, it su�ces by Savitch's
theorem [230] to observe that a non-deterministic PSPACE algorithm for decid-
ing validity of sequents is obtained by guessing and checking a cut-free derivation
in IcRL, recording only the branch of the derivation from the root to the current
point. Note that for the application of the rule (LG-w), we use the fact that the
equational theory of LG is co-NP complete [99] and therefore in PSPACE. 2

The decidability of the equational theory of integrally closed residuated lat-
tices should be contrasted with the following fact.

5.3.4. Proposition. The quasi-equational theory of integrally closed residuated
lattice is undecidable.

Proof:
Since the word problem for `-groups is undecidable [125] so is the quasi-equa-
tional theory of `-groups. Consequently, we obtain from Proposition 5.2.8 that
the quasi-equational theory of IcRL is likewise undecidable. 2

We continue with a few more consequences of Propositions 5.3.1 and 5.3.2.

5.3.5. Proposition. Any freely generated integrally closed residuated lattice sat-
is�es Whitman's condition

x1∧x2 ≤ y1∨ y2 =⇒ x1∧x2 ≤ y1 or x1∧x2 ≤ y2 or x1 ≤ y1∨ y2 or x2 ≤ y1∨ y2.

Proof:
Let F(κ) be the free integrally closed residuated lattice on κ-many generators
and let s1, s2, t1, t2 be residuated lattice terms in at most κ-many variables. If
in F(κ) we have s

F(κ)
1 ∧ sF(κ)

2 ≤ t
F(κ)
1 ∨ tF(κ)

2 , then IcRL |= s1 ∧ s2 ≤ t1 ∨ t2,
and so by Proposition 5.3.1 the sequent s1 ∧ s2 ⇒ t1 ∨ t2 must be derivable in
the calculus IcRL. Consequently, by Proposition 5.3.2 there must be a cut-free
derivation of the sequent s1 ∧ s2 ⇒ t1 ∨ t2 in the calculus IcRL. By inspecting
the rules of IcRL we see that the last rule applied in a cut-free derivation of the
sequent s1 ∧ s2 ⇒ t1 ∨ t2 must either be one of the rules (∧⇒)1 or (∧⇒)2, or
one of the rules (⇒∨)1 or (⇒∨)2. In the former case we obtain that either the
sequent s1 ⇒ t1 ∨ t2 or the sequent s2 ⇒ t1 ∨ t2 is derivable in IcRL. In the latter
case we obtain that either the sequent s1 ∧ s2 ⇒ t1 or the sequent s1 ∧ s2 ⇒ t2 is
derivable in IcRL. Consequently, by Proposition 5.3.1 we have that there must be
i ∈ {1, 2} such that IcRL |= s1 ∧ s2 ≤ ti or IcRL |= si ≤ t1 ∨ t2. But then we

may conclude that s
F(κ)
1 ∧ sF(κ)

2 ≤ t
F(κ)
i or s

F(κ)
i ≤ t

F(κ)
1 ∨ tF(κ)

2 for some i ∈ {1, 2},
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showing that the algebra F(κ) satis�es Whitman's condition. 2

Following [98, Chap. 5.1.1] we say that a variety of residuated lattices V enjoys
the disjunction property provided that

V |= e ≤ s ∨ t implies V |= e ≤ s or V |= e ≤ t,

for all residuated lattice terms s, t. By an argument very similar to the proof of
Proposition 5.3.5 we obtain the following result �rst established, in a much more
general context, by Hor£ík and Terui via an algebraic argument.

5.3.6. Proposition ([160, Sec. 3]). The variety IcRL enjoys the disjunction
property.

Proof:
Let s, t be residuated lattice terms such that IcRL |= e ≤ s∨ t. Then by Propo-
sition 5.3.1 the sequent e⇒ s∨ t is derivable in the calculus IcRL. Consequently,
by Proposition 5.3.2 there must be a cut-free derivation of the sequent e⇒ s ∨ t
in the calculus IcRL. By inspecting the rules of IcRL we see that the last rule
applied in a cut-free derivation of the sequent e⇒ s ∨ t must be either the rule
(e⇒), or one of the rules (⇒∨)1 or (⇒∨)2. In the latter case we may imme-
diately conclude that either the sequent e⇒ s or the sequent e⇒ t is derivable
in IcRL. In the former case we obtain that the sequent ⇒ s ∨ t has a cut-
free derivation in the calculus IcRL, which by the same reasoning as above can
only be the case if the sequent ⇒ s or the sequent ⇒ t is derivable in IcRL.
In all cases Proposition 5.3.1 then yields that IcRL |= e ≤ s or IcRL |= e ≤ t. 2

We conclude this section by discussing how some simpler proof formalisms
fail to capture the equational theory of IcRL in an analytic manner. Evidently,
the equations x\x ≈ e and x/x ≈ e belong to the class N2 described in [59], but
are not acyclic in the sense de�ned there. Therefore, the method for construct-
ing equivalent analytic sequent calculi in that paper does not apply. Indeed, the
de�ning equations for IcRL cannot be equivalent to any set of analytic structural
sequent rules as de�ned in [59] and including the simple rules of [97]. If this were
the case, then, by [59, Thm. 6.3], the variety IcRL would be closed under Mac-
Neille completions. However, by Lemma 5.1.3, any bounded, hence in particular
complete, integrally closed residuated lattice is integral. Consequently, the com-
pletion of an integrally closed residuated lattice A will be integrally closed only if
A is already integral. This shows that the variety IcRL is not closed under Mac-
Neille completions. Furthermore, since IcRL is not a subvariety of the variety
of integral residuated lattices we must have a subdirectly irreducible integrally
closed residuated lattice which is not integral whence its MacNeille completion
will not be integrally closed. Thus the class of subdirectly irreducible integrally
closed residuated lattices is not closed under MacNeille completions and so by
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[60, Prop. 6.6] it follows that the variety IcRL is also not closed under hyper-
MacNeille completions. Consequently, by [60, Thm. 6.8], the equations x\x ≈ e
and x/x ≈ e are also not equivalent to any collection of analytic structural hy-
persequent rules.

5.4 Sirmonoids and pseudo BCI-algebras

In this section we relate suitable reducts of integrally closed lattices to semi-
integral residuated partially ordered monoids, studied in [219, 83], and pseudo
BCI-algebras, de�ned in [79] as non-commutative versions of BCI-algebras [165].

A residuated partially ordered monoid is a structure M = 〈M,�, ·, \, /, e〉 such
that

(i) The structure 〈M, ·, e〉 is a monoid,

(ii) The structure 〈M,�〉 is a partial order,

(iii) The structure 〈M, ·, \, /〉 is an algebra of type 〈2, 2, 2〉 satisfying

y � x\z ⇐⇒ x · y � x ⇐⇒ x � z/y.

Such a structure is called semi-integral if the monoidal unit e is a maximal element
of 〈M,�〉. We will refer to semi-integral residuated partially ordered monoids as
sirmonoids . We call an element a in a residuated partially ordered monoid M
square-increasing provided that a � a2.

5.4.1. Proposition. Let M = 〈M,�, ·, \, /, e〉 be a residuated partially ordered
monoid. Then the following are equivalent.

1. The residuated partially ordered monoid M is semi-integral.

2. The residuated partially ordered monoid M satis�es

x � y ⇐⇒ x\y = e ⇐⇒ y/x = e.

3. The monoidal unit e is the largest square-increasing element of M.

Proof:
Assume �rst that M is semi-integral. Let a, b ∈ M be given. If a � b, then by
residuation e � a\b and e � b/a, whence a\b = e and b/a = e by semi-integrality.
Of course, if a\b = e then in particular e � a\b and hence by residuation a � b.
Similarly, if b/a = e then a � b.

Next assume that M is such that a � b ⇐⇒ a\b = e ⇐⇒ b/a = e, for
all a, b ∈ M . Then if a ∈ M is a square-increasing element, i.e., a � a2 then
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e = a\a2. However, by residuation we have that a � a\a2, showing that the
monoidal unit e is the largest square-increasing element of M.

Finally, assume that the monoidal unit e is the largest square-increasing el-
ement of M. If a ∈ M is such that e � a then, since the monoidal operation
preserves the order, we must have a � a2, whence a is square-increasing and
consequently a � e, showing that M is semi-integral. 2

5.4.2. Remark. By Proposition 5.4.1 every semi-integral residuated partial or-
dered monoid M must be such that the monoidal unit e is the largest idempotent
element of M. Thus every such structure is a so-called integral Dubreil-Jacotin
semi-group, see [41, Chap. 13.3]. However the converse is not true. To see this,
consider any residuated latticeA = 〈A,∧,∨, ·, \, /, e〉. Letting ≤ be the lattice or-
der on A we obtain a residuated partially ordered monoid M≤

A = 〈A,≤, ·, \, /, e〉.
Since ≤ is a lattice order it is easy to see that M≤

A is semi-integral if, and only if,
A is integral. Thus, if A is any non-integral integrally closed residuated lattice,
e.g., a non-trivial `-group, then the corresponding residuated partially ordered
monoid M≤

A will have the monoidal unit as its largest idempotent element but
will not be semi-integral.

It is not di�cult to verify that any sirmonoid satis�es the following equations
and quasi-equation:

(i) ((x\z)/(y\z))/(x\y) ≈ e,

(ii) (y/x)\((z/y)\(z/x)) ≈ e,

(iii) e\x ≈ x,

(iv) x/e ≈ x,

(v) (x · y)\z ≈ y\(x\z),

(vi) x\y ≈ e & y\x ≈ e =⇒ x ≈ y.

Conversely, as the following proposition shows, any structure 〈S, ·, \, /, e〉 sat-
isfying (i)�(vi) gives rise to a sirmonoid.

5.4.3. Proposition. Let S = 〈S, ·, \, /, e〉 a structure satisfying (i)�(vi) above.
Then 〈S,�, ·, \, /, e〉 is a sirmonoid with the relation � on S de�ned by

a � b if, and only if, a\b = e.

Moreover, any sirmonoid arises in this way.
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Proof:
We �rst observe that if a, b ∈ S are such that a\b = e then

b/a = ((e\b)/e)/(e\a) = ((e\b)/(a\b))/(e\a) = e.

And similarly, if b/a = e then a\b = e. We may therefore conclude that

a � b ⇐⇒ a\b = e ⇐⇒ b/a = e,

for all a, b ∈ S.
We then show that the relation � is indeed a partial order. To see this, we

�rst observe that by Items (ii), (iii), and (iv),

a\a = e\(a\a) = (e/e)\(a\a) = (e/e)\((a/e)\(a/e)) = e,

for each a ∈ A. Hence the relation � is re�exive. To see that � is transitive,
let a, b, c ∈ S be such that a � b and b � c. Then b/a = c/b = e whence by
Items (iii) and (ii) we see that

c/a = e\(e\(c/a)) = (b/a)\((c/b)\(c/a) = e,

showing that a � c. Hence the relation � is transitive. Since by assumption S
satis�es the quasi-equation (vi) the relation � is antisymmetric and therefore a
partial order on S.

It remains to establish the residuation property. For this we �rst show that
the equation x\(z/y) ≈ (x\z)/y is satis�ed by the structure S. To see this, let
a, b, c ∈ S be given. Applying Items (i) and (iii) we �rst observe that

(c/(a\c))/a = ((e\c)/(a\c))/(e\a) = e,

whence a � c/(a\c). An application of Item (ii) then shows that

((a\c)/b)\((c/(a\c))\(c/b)) = e,

and hence that (a\c)/b � (c/(a\c))\(c/b). Lastly, applying Items (i) and (iv)
shows that the operation x 7→ x\d is antitone for each d ∈ S and so we may
conclude that

(a\c)/b � (c/(a\c))\(c/b) � a\(c/b).
Therefore, by transitivity of the relation �, we obtain that (a\c)/b � a\(c/b).
That a\(c/b) � (a\c)/b is shown by a completely symmetric argument, so that
we have a\(c/b) = (a\c)/b

Applying Item (v) we then see that,

(a · b) � c ⇐⇒ (a · b)\c = e

⇐⇒ b\(a\c) = e

⇐⇒ b � a\c
⇐⇒ (a\c)/b = e

⇐⇒ a\(c/b) = e

⇐⇒ a � c/b,



5.4. Sirmonoids and pseudo BCI-algebras 157

for all a, b, c ∈ S. Thus 〈S,�, ·, \, /, e〉 is indeed a residuated partially ordered
monoid which is evidently semi-integral.

Finally, as any sirmonoid 〈S,�, ·, \, /, e〉 is such that the structure 〈S, ·, \, /, e〉
satis�es (i)�(vi) the last part of the proposition follows from Proposition 5.4.1. 2

It follows that a sirmonoid may be identi�ed with an algebraic structure S =
〈S, ·, \, /, e〉 of type 〈2, 2, 2, 0〉 satisfying (i)�(vi). We let SiRM denote the quasi-
variety of sirmonoids.

5.4.4. Proposition. A residuated lattice is integrally closed if, and only if, its
{·, \, /, e}-reduct is a sirmonoid.

Proof:
Let A be a residuated lattice. If its {·, \, /, e}-reduct is a sirmonoid, then, by
Proposition 5.4.3 the relation � on A given by

a � b ⇐⇒ a\b = e ⇐⇒ b/a = e,

is a partial order and so must in particular be re�exive. We must therefore have
that a\a = a/a = e for all a ∈ A, i.e., A is integrally closed.

Conversely, suppose that A is integrally closed. It is easy to see that the
equation ((x\z)/(y\z))/(x\y) ≈ e is satis�ed in any `-group whence by Corol-
lary 5.2.4 we have that IcRL |= ((x\z)/(y\z))/(x\y) ≤ e. Since the equa-
tion e ≤ ((x\z)/(y\z))/(x\y) holds in any residuated lattice we may conclude
that indeed A |= ((x\z)/(y\z))/(x\y) ≈ e. A similar argument shows that
A |= (y/x)\((z/y)\(z/x)) ≈ e. As any residuated lattice satis�es the remaining
items (iii)�(vi) of the quasi-equational de�nition of a sirmonoid we obtain that
the {·, \, /, e}-reduct of A is indeed a sirmonoid. 2

5.4.5. Remark. By Proposition 5.4.4 any integrally closed residuated lattice
A = 〈A,∧,∨, ·, \, /, e〉 gives rise to two residuated partially ordered monoids,
namely M≤

A = 〈A,≤, ·, \, /, e〉, where ≤ is the lattice order determined by A, and
M�

A = 〈A,�, ·, \, /, e〉, where � is the partial order determined by the residuals
of A, i.e., a � b, if, and only if, e = a\b. We always have that the order � is
stronger then ≤ and that they coincide if, and only if, A is integral.

An algebraic structure B = 〈B, \, /, e〉 of type 〈2, 2, 0〉 satisfying the equations
(i)-(iv) and quasi-equation (vi) is called a pseudo BCI-algebra, see, [79, 83]. The
{\, /, e}-reduct of any sirmonoid is clearly a pseudo BCI-algebra. More notably,
we have the following result �rst established by Raftery and van Alten [219,
Thm. 2] in the commutative setting.

5.4.6. Theorem ([83, Thm. 3.3]). Every pseudo BCI-algebra is a subreduct of a
sirmonoid.
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It follows from Theorem 5.4.6 that the quasi-equational theory of sirmonoids
is a conservative extension of the quasi-equational theory of pseudo BCI-algebras.

We �rst observe that the analogue of Theorem 5.4.6 fails in the context
of sirmonoids and integrally closed residuated lattices. That is, not every sir-
monoid is a subreduct of an integrally closed residuated lattice. By Proposi-
tion 5.1.10, {·, \, /, e}-subreducts of integrally closed residuated lattices must sat-
isfy the quasi-equation xn ≈ e =⇒ x ≈ e for any natural number n ≥ 1.
However, it follows from Proposition 5.4.8 below that there are sirmonoids that
do not satisfy all of these quasi-equations. On the other hand, it is known that
any sirmonoid satisfying x � e is a subreduct of an integral, and hence integrally
closed, residuated lattice [184].

The quasi-equational theory of integrally closed residuated lattices is, as we
have just seen, not a conservative extension of the quasi-equational theory of
sirmonoids. However, as we will show in Theorem 5.4.14, such a conservative
extension result does hold if we restrict to equational theories. To establish this
we follow the strategy developed in Sections 5.1 and 5.3.

5.4.1 A Glivenko theorem for groups

In order to obtain a version of Theorem 5.2.3 in the setting of sirmonoids we
need to show how groups may be identi�ed with a certain class of sirmonoids.
For this we need a few basic facts about sirmonoids. We �rst note that since any
sirmonoid satis�es the equations x\x ≈ e and x/x ≈ e, an argument completely
similar to the proof of the �rst part of Proposition 5.1.6 shows that any sirmonoid
satis�es the equation x\e ≈ e/x. Consequently, as before, we denote by −a the
element a\e = e/a for a ∈ S. Thus we may consider the type of sirmonds to be
〈2, 2, 2, 1, 0〉 with the unary operation interpreted on all sirmonoids as a 7→ −a.

5.4.7. Lemma. The following equations are satis�ed by any sirmonoid.

(i) −(x\y) ≈ (−y)/(−x),

(ii) −(y/x) ≈ (−x)\(−y),

(iii) −(x · y) ≈ y\(−x),

(iv) −(x · y) ≈ (−y)/x.

Proof:
Let S be a sirmonoid. Notice that for a, b ∈ S we have a(−b)b � a and therefore
−b � a\(a/b). That is, (−b)\(a\(a/b)) = e. But also (−b)b(a\(a/b)) � a\(a/b)
and hence b(a\(a/b)) � (−b)\(a\(a/b)) = e, yielding a\(a/b) � b\e = −b. So S
satis�es x\(x/y) ≈ −y. Analogously, S satis�es (x\y)/y ≈ −x and hence for all
a, b ∈ S,

(−b)/(−a) =
(
(a\b)\((a\b)/b)

)
/(−a) =

(
(a\b)\(−a)

)
/(−a) = −(a\b).
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That is, S satis�es the equation −(x\y) ≈ (−y)/(−x). A symmetric argument
shows that S also satis�es the equation −(y/x) ≈ (−x)\(−y).

To see that the equation −(xy) ≈ y\(−x) is valid let a, b ∈ S be given. Then

−(a · b) = (a · b)\e = b\(a\e) = b\(−a),

which implies that this equation is indeed valid.
Finally, recall from the proof of Proposition 5.4.3 that, being a sirmonoid, S

satis�es the equation x\(z/y) ≈ (x\z)/y. From this it follows that

−(a · b) = b\(−a) = b\(e/a) = (b\e)/a = (−b)/a,

for all a, b ∈ S. Consequently, S satis�es the equation −(x · y) ≈ (−y)/x. 2

5.4.8. Proposition ([82],[83, Sec. 2]). The class of sirmonoids satisfying the equa-
tion −−x ≈ x is term equivalent to the variety of groups.

Proof:
Given a group G = 〈G, ·, −1, e〉, let S(G) be the structure 〈G, ·, \, /, e〉 de�ned by
letting

a\b := a−1 · b and b/a := b · a−1,

for a, b ∈ G. It is straightforward to show that this de�nes a sirmonoid in which
the equation −−x ≈ x is satis�ed. Conversely, given a sirmonoid S = 〈S, ·, \, /, e〉
satisfying the equation −−x ≈ x we observe, by Lemma 5.4.7(iii), that

a(−a) = −−(a(−a)) = −(−a\−a) = −e = e,

for each a ∈ S. Similarly,

(−a)a = −−((−a)a) = −(a\−−a) = −(a\a) = −e = e,

for each a ∈ S. Thus the element −a is the inverse of a ∈ S in the monoid 〈S, ·, e〉
which is therefore a group which we shall denote by G(S).

Evidently, G(S(G)) = G for all groups G. Conversely, given any sirmonoid S
satisfying the equation −−x ≈ x, Lemma 5.4.7 shows that for a, b ∈ S, we have

(−a)b = −−((−a)b) = −(−b/−a) = (−−a)\(−−b) = a\b.

Similarly, b(−a) = b/a, showing that S(G(S)) = S, which concludes the proof. 2

In light of Proposition 5.4.8 we will call a sirmonoid a group provided that it
satis�es the equation −−x ≈ x. We denote by Grp the class of such sirmonoids.

As before, given any sirmonoid S = 〈S, ·, \, /, e〉 we obtain a nucleus α : S → S
on the partially ordered monoid 〈S,�, ·, e〉 given by a 7→ −−a. Consequently, for
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each sirmonoid S = 〈S, ·, \, /, e〉 we have a corresponding residuated partially
ordered monoid

Sα = 〈α[S],�, ·α, \, /, e〉, where a ·α b := α(a · b).

Following the terminology of Section 5.1 we call a homomorphism h : S → T of
sirmonoids S and T e-principal provided that h−1(eT) ⊆ ↓eS. We then obtain
the following analogue of Proposition 5.1.8.

5.4.9. Proposition. Let S be a sirmonoid.

1. The map α : S→ Sα is a surjective homomorphism of sirmonoids.

2. The sirmonoid Sα is a group.

3. Any homomorphism h : S → G of sirmonoids with G a group factors
through the group Sα.

4. The sirmonoid Sα is, up to isomorphism, the unique e-principal homomor-
phic image of S which is group.

Proof:
To establish Item 1 we observe that since α : S → S is a nucleus on the partially
ordered monoid 〈S,�, ·, e〉 and α(e) = e, it follows that α is a surjective monoid
homomorphism between 〈S, ·, e〉 and 〈α[S], ·α, e〉. Moreover, by Lemma 5.4.7 we
see that for all a, b ∈ S,

α(a\b) = −−(a\b) = −((−b)/(−a)) = (−−a)\(−−b) = α(a)\α(b).

Analogously, α(b/a) = α(b)/α(a), so α is a sirmonoid homomorphism.
To see that Item 2 holds we note that since α is a homomorphism, any equation

satis�ed by S is also satis�ed by Sα. In particular Sα satis�es Items (i)�(v) of
the de�nition of a sirmonoid. Moreover, since Sα is a {\, /, e}-subreduct of S it
follows that Sα also satis�es Item (vi) of the de�nition of a sirmonoid. To prove
that Sα is a group, it su�ces to show that it satis�es the equation −−x ≈ x.
But α is idempotent and hence −−α(a) = α(α(a)) = α(a) for every a ∈ S, as
required.

For Item 3 assume that h : S→ G is a homomorphism of sirmonoids with G a
group and let a, b ∈ kerα be given. Then −−a = −−b whence −−h(a) = −−h(b)
and consequently, by the assumption that G is a group also h(a) = h(b). This
shows that kerα ⊆ kerh and therefore we obtain an induced homomorphism of
sirmonoids h : Sα → G such that h = h ◦ α.

Finally, to establish Item 4 we �rst note that the homomorphism α : S→ Sα
is an e-principal surjection. Consider a surjective e-principal homomorphism of
sirmonoids h : S � G with G a group. If (a, b) ∈ kerh then since G is a group
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we must have that a\b ∈ h−1(e). By e-principality it follows that a\b � e. But
then e � −(a\b) = −b/−a whence −a � −b. Similarly −b � −a, showing that
−a = −b and hence that (a, b) ∈ kerα. Consequently, kerh ⊆ kerα whence the
induced map h : Sα � G must be an isomorphism. 2

In every sirmonoid S = 〈S,�, ·, \, /, e〉 the map a 7→ −a is both antitone,
by residuation, and monotone, because S |= −(x\y) ≈ −y/−x. Therefore, as
S |= −−−x ≈ −x, we must have that

S |= −s � −t if, and only if, S |= −s ≈ −t,

for all terms s, t in the language of sirmonoids. Consequently, for any sirmonoid
S the nucleus image α[S] consists precisely of the set of maximal elements of
the poset 〈M,�〉. In particular, for any group G the order � must be discrete,
whence

G |= s � t if, and only if, G |= s ≈ t,

for all sirmonoid terms s, t.
The proof of the following result now mirrors the proof of Lemma 5.2.1 and

is therefore omitted.

5.4.10. Lemma. For any sirmonoid S and residuated monoid terms s, t,

Sα |= s ≈ t if, and only if, S |= −−s ≈ −−t.

Given any class K of sirmonoids, we let Kα denote the corresponding class of
groups {Sα | S ∈ K}. The proof of the following Glivenko-style result proceeds
very similarly to the proof of Proposition 5.1.11 and is therefore omitted.

5.4.11. Proposition. Let Q be any quasi-variety of sirmonoids de�ned relative
to SiRM by a set of equations E. Then Qα is a variety of groups de�ned relative
to Grp by E, and for any residuated monoid terms s, t,

Qα |= s ≈ t if, and only if, Q |= −−s ≈ −−t.

In particular, we obtain the following Glivenko-style property for SiRM with
respect to the variety of groups.

5.4.12. Corollary. For any residuated monoid terms s, t,

Grp |= s ≈ t if, and only if, SiRM |= −−s ≈ −−t.

We use this result to prove that the equational theory of IcRL is a conserva-
tive extension of the equational theory of SiRM. We call a sequent s1, . . . , sn ⇒ t
an m-sequent if s1, . . . , sn, t are residuated monoid terms, and say that it is valid
in a class K of sirmonoids, denoted |=K s1, . . . , sn ⇒ t, if K |= s1 · · · sn � t,
recalling that the empty product is understood to be the monoidal unit e.
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5.4.13. Proposition. An m-sequent is derivable in the calculus IcRL if, and
only if, it is valid in all sirmonoids.

Proof:
Suppose �rst that Γ⇒ t is an m-sequent which is valid in all sirmonoids. By
Proposition 5.4.4, it is also valid in all integrally closed residuated lattices, and
hence, by Proposition 5.3.1, derivable in the calculus IcRL.

To establish the converse implication it su�ces to show that all the rules of
IcRL apart from (cut) preserve validity in SiRM. For the key case of (LG-w),
suppose that |=SiRM Γ,Π⇒ u and |=LG ∆⇒ e. Letting s1, s2, and t denote the
products of the terms in Γ, Π, and ∆, respectively, we obtain SiRM |= s1s2 � u
and LG |= t ≤ e. We claim that Grp |= t ≈ e. Otherwise, the equation t ≈ e
would fail in the free group on countably in�nitely many generators. Since this
group can be totally ordered, see, e.g., [62, Thm. 3.4], we would then have an
`-group in which e < t, contradicting LG |= t ≤ e. Hence, by Corollary 5.4.12, we
obtain SiRM |= t � e. So SiRM |= s1ts2 � u; that is, |=SiRM Γ,∆,Π⇒ u. 2

5.4.14. Theorem. The equational theory of integrally closed residuated lattices
is a conservative extension of the equational theories of sirmonoids and pseudo
BCI-algebras.

Proof:
Since the equational theory of sirmonoids is a conservative extension of the equa-
tional theory of pseudo BCI-algebras, see Theorem 5.4.6, it su�ces to show that
the equational theory of integrally closed residuated lattices is a conservative ex-
tension of the equational theory of sirmonoids. Therefore, let s, t be terms in the
language of sirmonoids. By Proposition 5.4.4 we have that

SiRM |= s ≈ t implies IcRL |= s ≈ t.

Conversely, if IcRL |= s ≈ t, then both of the m-sequents s⇒ t and t⇒ s are
valid in IcRL and hence, by Proposition 5.3.1, derivable in the calculus IcRL.
But then by Propositions 5.4.13 we must have SiRM |= s ≈ t. We have thus
shown that

SiRM |= s ≈ t if, and only if, IcRL |= s ≈ t,

for all terms s, t in the language of sirmonids. 2

By the previous result and the fact that the equational theory for IcRL is
sound and complete with respect to the cut-free version of the calculus IcRL,
we obtain that the sequent calculus consisting of the rules of IcRL restricted to
m-sequents and omitting the rules for ∧ and ∨ is sound and complete for the
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variety of sirmonoids and admits cut-elimination. Similarly, if we further remove
the rules for ·, we obtain a sound and complete calculus for the variety of pseudo
BCI-algebras that admits cut-elimination.

5.4.15. Corollary. The equational theories of sirmonoids and pseudo BCI-
algebras are decidable.

Similar results hold for BCI-algebras [165], axiomatized relative to pseudo
BCI-algebras by the equation x\y ≈ y/x, and sircomonoids [219], axiomatized
relative to sirmonoids by the equation x\y ≈ y/x or the equation x · y ≈ y · x.
In particular, the equational theory of commutative integrally closed residuated
lattices is a conservative extension of the equational theories of sircomonoids and
BCI-algebras. Let us remark also that the decidability of the equational theory of
BCI-algebras was �rst establish in [178] using a sequent calculus with a restricted
version of the rule (LG-w).

We conclude this section by noting that by an argument completely analogous
to the proof of Proposition 5.2.8 we obtain the following.

5.4.16. Proposition. For each quasi-equation q in the language of sirmonoids
there is a quasi-equation qα e�ectively computable from q such that

Grp |= q if, and only if, SiRM |= qα.

Since the word problem for groups is undecidable, see, e.g., [225, Chap. 12.8],
so is the quasi-equational theory of groups, leading to the following corollary.

5.4.17. Corollary. The quasi-equational theory of sirmonoids is undecidable.

5.5 Casari's comparative logic

The results of the previous sections extend with only minor modi�cations to the
setting of pointed residuated lattices, or FL-algebras, viz., residuated lattices with
an extra constant operation f. As before, we call such an algebra integrally closed
if it satis�es the equation x\x ≈ e, or equivalently, the equation x/x ≈ e. It is
then straightforward to prove analogues of Lemma 5.1.3 and Proposition 5.1.6,
simply adding the word �pointed� before every occurrence of the word �residuated
lattice�.

An `-group can be identi�ed with an integrally closed pointed residuated lat-
tice satisfying (x\e)\e ≈ x and f ≈ e. However, to show that the map α : A→ A
given by a 7→ −−a on an integrally closed pointed residuated lattice A de�nes a
homomorphism onto an `-group Aα = 〈α[A],∧,∨α, ·α, \, /, e, α(f)〉, we need also
that α(f) = e. Assuming this condition, we obtain analogues of Propositions 5.1.8
and 5.1.11, and Theorem 5.2.3 for integrally closed pointed residuated lattices sat-
isfying the equation f\e ≈ e. Note, however, that our de�nition of the Glivenko
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Identity Axioms Cut Rule

s⇒ s
(id)

Γ2 ⇒ s,∆1 Γ1, s,Γ3 ⇒ ∆2

Γ1,Γ2,Γ3 ⇒ ∆1,∆2
(cut)

Structural Rules

Γ1,Π2,Π1,Γ2 ⇒ ∆

Γ1,Π1,Π2,Γ2 ⇒ ∆
(el)

Γ⇒ ∆1,Σ2,Σ1,∆2

Γ⇒ ∆1,Σ1,Σ2,∆2
(er)

Left Operation Rules Right Operation Rules

Γ1,Γ2 ⇒ ∆

Γ1, e,Γ2 ⇒ ∆
(e⇒)

⇒ e
(⇒e)

f ⇒
(f⇒)

Γ⇒ ∆1,∆2

Γ⇒ ∆1, f,∆2
(⇒ f)

Γ2 ⇒ s,∆2 Γ1, t,Γ3 ⇒ ∆1

Γ1, s→ t,Γ2,Γ3 ⇒ ∆1,∆2
(→⇒)

Γ, s⇒ t,∆

Γ⇒ s→ t,∆
(⇒→)

Γ1, s, t,Γ2 ⇒ ∆

Γ1, s · t,Γ2 ⇒ ∆
(·⇒)

Γ1 ⇒ s,∆1 Γ2 ⇒ t,∆2

Γ1,Γ2 ⇒ s · t,∆1,∆2
(⇒·)

Γ1, s,Γ2 ⇒ ∆

Γ1, s ∧ t,Γ2 ⇒ ∆
(∧⇒)1

Γ⇒ ∆1, s,∆2

Γ⇒ ∆1, s ∨ t,∆2
(⇒∨)1

Γ1, t,Γ2 ⇒ ∆

Γ1, s ∧ t,Γ2 ⇒ ∆
(∧⇒)2

Γ⇒ ∆1, t,∆2

Γ⇒ ∆1, s ∨ t,∆2
(⇒∨)2

Γ1, s,Γ2 ⇒ u Γ1, t,Γ2 ⇒ ∆

Γ1, s ∨ t,Γ2 ⇒ ∆
(∨⇒)

Γ⇒ ∆1, s,∆2 Γ⇒ ∆1, t,∆2

Γ⇒ ∆1, s ∧ t,∆2
(⇒∧)

Figure 5.2: The Sequent Calculus InCPRL

property for pointed residuated lattices now diverges from the de�nition of [100],
which considers the operations a 7→ f/(a\f) and a 7→ (f/a)\f.

We now turn our attention to a particular class of algebras introduced by
Casari in [49], see also [48, 50, 210, 198], to model comparative reasoning in
natural language. For any commutative pointed residuated lattice A, we write
a → b for the common result of a\b and b/a; we also de�ne ¬a := a → f and
a + b := ¬a → b and say that A is involutive if it satis�es ¬¬x ≈ x. We call an
involutive commutative integrally closed pointed residuated lattice satisfying the
equation f → e ≈ e, or equivalently the equation f · f ≈ f, a Casari algebra, also
called a lattice-ordered pregroup in [49]. We denote the variety of Casari algebras
by CA and the variety of Abelian `-groups (Casari algebras satisfying f ≈ e)
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by AbLG. The reasoning described above yields the following Glivenko-style
property for Casari algebras, �rst established in [198].

5.5.1. Proposition ([198, Prop. 1]). For any pointed residuated lattice terms
s,t,

AbLG |= s ≤ t if, and only if, CA |= −−s ≤ −−t.

A sequent calculus for the equational theory of Casari algebras was de�ned by
Metcalfe in [198]. We consider here multi-succedent sequents de�ned as expres-
sions of the form Γ⇒ ∆ where Γ and ∆ are �nite, possibly empty, sequences of
pointed residuated lattice terms. Generalizing our de�nition for single-succedent
sequents, we say that a multi-succedent sequent s1, . . . , sn ⇒ t1, . . . , tm is valid in
a class K of pointed residuated lattices, denoted by |=K s1, . . . , sn ⇒ t1, . . . , tm, if
K |= s1 · · · sn ≤ t1 + · · · + tm, where the empty product is understood as being
the monoidal unit e and the empty sum as being the constant f.

The multi-succedent sequent calculus CA consists of the calculus InCPRL for
involutive commutative pointed residuated lattices de�ned in Figure 5.2 extended
with the rule

Γ1 ⇒ ∆1 |=AbLG Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

(AbLG-w)

The next proposition collects some results from [198], noting that these can also
be easily established using the methods of the previous sections.

5.5.2. Proposition ([198, Thms. 3, 4, and 7]).

1. A multi-succedent sequent is derivable in the calculus CA if, and only if, it
is valid in CA.

2. The calculus CA admits cut-elimination.

3. The equational theory of Casari algebras is decidable.

We are now able to establish the main result of this section.

5.5.3. Theorem. The equational theory of Casari algebras is a conservative ex-
tension of the equational theories of commutative integrally closed residuated lat-
tices, sircomonoids, and BCI-algebras.

Proof:
The equational theory of commutative integrally closed residuated lattices is a
conservative extension of the equational theories of sircomonoids and BCI-alge-
bras by Theorem 5.4.14. Hence it su�ces to show that the equational theory of
Casari algebras is a conservative extension of the equational theory of commuta-
tive integrally closed residuated lattices.
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Let CIcRL be the sequent calculus CA restricted to single-succedent sequents,
i.e., sequents of the form Γ⇒ t where the constant f does not occur in Γ or t.
Then a single-succedent sequent is derivable in the calculus CIcRL if, and only
if, it is valid in all commutative integrally closed residuated lattices. It therefore
su�ces to show that if a single-succedent sequent is derivable in the calculus CA,
then it is also derivable in the calculus CIcRL. To this end, a simple induction on
the height of a cut-free derivation shows that whenever a sequent Γ⇒ ∆ not con-
taining any occurrence of the constant f is derivable in CA, the sequence ∆ must
be non-empty. In particular, no sequent of the form Γ⇒ , where the constant
f does not occur in Γ, is derivable in CA. But then a straightforward induction
on the height of a cut-free derivation shows that any single-succedent sequent
derivable in CA, must also be derivable in CIcRL. 2

5.6 Summary and concluding remarks

In this chapter we have investigated the structure of integrally closed residuated
lattices. In particular, we have shown that the variety of integrally closed residu-
ated lattices enjoys the Glivenko property with respect to the variety of `-groups.
This fact was then used to establish the soundness of a certain non-standard
weakening rule giving rise to a cut-free sequent calculus for the equational the-
ory of integrally closed residuated lattices. As a direct consequence we obtained
the decidability of the equational theory of integrally closed residuated lattices.
Finally, we showed how the integrally closed residuated lattices enjoys a close
connection to many other well-known structures, such as Dubreil-Jacotin semi-
groups, (pseudo) BCI-algebras, sir(co)monoids and algebras for Casari's compar-
ative logic.

Further directions and open problems As we have seen the {∧,∨}-free sub-
reducts of a integrally closed residuated lattices are always sirmonoids. However,
as we have also seen not all sirmonoids are subreducts of integrally closed resid-
uated lattices. We leave the characterization of the quasi-variety of sirmonoids
which are subreducts of integrally closed residuated lattice as an open problem. In
fact, the analogous problem for groups, see, e.g., [6, Thm. 5.9] and [66, Thm. 2.2],
appears to be open [88, Rem. 3.9].

Finally, we believe that it would be worthwhile to investigate the concept of
non-standard structural rules in a more systematic way, by (i) identifying side-
conditions on di�erent kinds of structural rules which are compatible with the
standard cut-elimination procedure, and (ii) determining more varieties of resid-
uated lattices with an equational theory admitting an analytic sequent calculus
consisting of the rules from RL together with a set of non-standard structural
rules.



Appendix A

Technical preliminaries

This appendix contains a brief account of some of the central technical background
for this thesis. Almost everything presented here is already known and in most
cases well known. We did not aim at providing an extensive historical account of
the material but simply to de�ne concepts and explain results used in the thesis.
Often the references we give to a de�nition or result will not necessarily be to the
original sources.

A.1 Partially ordered sets

For the material covered in this section see, [74, 85] and [98, Chap. 3.1]

Posets A partially ordered set, or poset , is a structure P = 〈P,≤〉 with ≤ a
binary relation on a set P which is (i) re�exive, (ii) transitive, and (iii) anti-
symmetric, i.e., for all p, q, r,∈ P ,

(i) p ≤ p,

(ii) p ≤ q and q ≤ r implies p ≤ r,

(iii) p ≤ q and q ≤ p implies p = q.

If p ≤ q we say that p is less than or equal to q which in turn is said to be greater
than or equal to p. In case p ≤ q and p 6= q we write p < q and say that p is
strictly less than q which in turn is said to be strictly greater than p.

In�ma and suprema Let P = 〈P,≤〉 be a poset and let S ⊆ P . We call p ∈ P
a lower, respectively upper bound of S provided that p ≤ s, respectively p ≥ s,
for all s ∈ S. We denote by L(S) and U(S) the collection of lower and upper
bounds of S, respectively. A poset P = 〈P,≤〉 is called a meet semi-lattice if
every two elements p, q of P have a greatest lower bound in P, denoted by p ∧ q,
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and called the meet or in�mum of p and q. Similarly, a poset P = 〈P,≤〉 is called
a join semi-lattice if every two elements p, q of P have a least upper bound in P,
denoted by p ∨ q, and called the join or supremum of p and q. A poset which
is both a meet and a join semi-lattice is called a lattice. A lattice P = 〈P,≤〉 is
called distributive provided that

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r),

for all p, q, r ∈ P .

Bounds A poset with a least, or greatest, element is called lower bounded, or
upper bounded, respectively. A bounded poset is a poset which is at the same
time lower and upper bounded. Least and greatest elements are also referred to
as bottom and top elements, respectively. The least element of a lower bounded
poset is sometimes referred to as the root of the poset. Hence lower bounded
posets may also be referred to as being rooted.

Complete posets A poset P is complete provided that every subset S ⊆ P
has a greatest lower bound in P, denoted

∧
S, and called the meet or in�mum of

S. As is easily seen this is equivalent to requiring that every subset S ⊆ P has
a least upper bound in P, denoted

∨
S, and called the join or supremum of S.

Any complete poset is necessarily a bounded lattice.

Order duals Given any partial order P = 〈P,≤〉 we obtain another partial
order ≤∂ on P by letting

p ≤∂ q if, and only if, q ≤ p,

for all p, q ∈ P . We will refer to the poset P∂ := 〈P,≤∂〉 as the order dual of the
poset P. It is easy to see that if P is a lattice then so is P∂. Moreover, if P is a
complete or distributive lattice, then so is P∂.

Irreducible elements An element p in a lattice P = 〈P,≤〉 is called meet-
irreducible if p = q ∧ r entails p = q or p = r for all q, r ∈ P . An element p
in a complete lattice P = 〈P,≤〉 is called completely meet-irreducible if p =

∧
S

entails p ∈ S for all subsets S ⊆ P . In case P is upper bounded we will in
addition require (completely) meet-irreducible elements to be di�erent from the
top element of P. An element p in a (complete) lattice P is called (completely)
join-irreducible provided p is (completely) meet-irreducible in the order dual P∂.

Filters A non-empty subset F ⊆ P of a poset P = 〈P,≤〉 is called a �lter if it
is (i) upward closed and (ii) downward directed, i.e., for all p, q ∈ P ,

(i) if p ∈ F and p ≤ q, then q ∈ F ,
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(ii) if p, q ∈ F there is r ∈ F such that r ≤ p and r ≤ q.

We note that when P is a meet semi-lattice, condition (ii) may be replaced with
the requirement that F is closed under binary meets, i.e., that p ∧ q ∈ F for
all p, q ∈ F . A �lter is proper if its set-theoretic complement is non-empty.
Evidently, in a poset P = 〈P,≤〉, any set of the form {q ∈ P : p ≤ q}, for p ∈ P ,
is a �lter. Filters of this form are called principal . A subset F ⊆ P of a poset
P is a normal �lter provided that UL(F ) = F . It is not hard to see that any
non-empty normal �lter is indeed a �lter. An ideal of P is then de�ned to be a
�lter of the order dual P∂. Similarly, a normal ideal of P is a normal �lter of the
order dual P∂.

Maps between posets A function f : P → Q between posets P = 〈P,≤P 〉 and
Q = 〈Q,≤Q〉 is called order-preserving provided that

p ≤P q implies f(p) ≤Q f(q), for all p, q ∈ P .

Similarly, a function f : P → Q between posets P and Q is called order-reversing ,
or antitone, if f is an order-preserving map from the poset P to the poset Q∂.
An order-preserving function f : P → Q between posets P = 〈P,≤P 〉 and Q =
〈Q,≤Q〉 is called an order-re�ecting provided that

f(p) ≤Q f(q) implies p ≤P q, for all p, q ∈ P .

A function between posets which is both order-preserving and order-re�ecting
is called an order-embedding . A subposet of a poset P = 〈P,≤P 〉 is a poset
Q = 〈Q,≤Q〉 such that Q ⊆ P and the inclusion map from Q to P is an order-
embedding. An isomorphism is a surjective order-embedding and two posets are
said to be isomorphic if there exists an isomorphism between them.

Closure and interior operators An order-preserving function f : P → P on
a poset P = 〈P,≤〉 is called a closure operator provided that

p ≤ f(p) and ff(p) ≤ f(p) for all p ∈ P .

An interior operator on a poset P is then a closure operator on the order dual P∂.
If f : P → P is a closure (interior) operator on a poset P we call the elements in
the image f [P ] := {f(p) ∈ P : p ∈ P} f -closed (f -open) or simply closed (open)
if the map f is clear from the context. One may readily verify that the closed
(open) elements are precisely the �xed points of f , i.e., the elements p ∈ P such
that f(p) = p. We denote by Pf the poset obtained by restricting the order on P
to the set of closed (open) elements.

A.1.1. Proposition. Let f : P→ P be a closure operator on a poset P.
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1. If S ⊆ f [P ] has a greatest lower bound
∧
S in P then

∧
S ∈ f [P ].

2. If T ⊆ f [P ] has a least upper bound
∨
T in P then f(

∨
T ) is the least upper

bound of T in Pf .

In particular, if P is a (complete) lattice then Pf will also be a (complete) lattice.

A corresponding proposition holds, mutatis mutandis, of the open elements of any
interior operator.

Adjoints An adjunction from a poset P = 〈P,≤P 〉 to a poset Q = 〈Q,≤Q〉 is a
pair (f, g) of order-preserving maps f : P → Q and g : Q→ P such that

f(p) ≤Q q if, and only if, p ≤P g(q), for all p ∈ P and q ∈ Q.

The pair (f, g) is called an adjoint pair with the map f called the left or lower
adjoint of the map g which in turn is called the right or upper adjoint of f . We
say that an order-preserving map f : P → Q has an upper adjoint if there is an
order-preserving map g : Q → P making (f, g) an adjoint pair. The notion of
having a lower adjoint is de�ned analogously. A Galois connection1 from a poset
P to a poset Q is an adjunction from the poset P to the poset Q∂.

A.1.2. Proposition. Let f : P → Q be an order-preserving map between com-
plete posets.

1. The map f has an upper adjoint if, and only if, f preserves all suprema.

2. The map f has a lower adjoint if, and only if, f preserves all in�ma.

A.1.3. Proposition. Let (f, g) be a Galois connection from a poset P to poset
Q.

1. The maps g ◦ f : P→ P and f ◦ g : Q→ Q are both closure operators.

2. The (g ◦ f)-closed elements of P are precisely the element in g[Q] and the
(f ◦ g)-closed elements of Q are precisely the element in f [P ].

3. The posets Pg◦f and Q∂
f◦g are isomorphic.

A.2 Universal algebra

Unless stated otherwise all the material in this section can be found in [46, 16, 65].
We assume that the reader is familiar with the most basic concepts of model
theory, from, e.g., [157].

1Also in places referred to as an antitone Galois connection.
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A.2.1 Types, algebras, terms, and equations

Operations Given a natural number n ∈ ω and a set A, an operation of arity
n on A is a function f : An → A. An operation on a set A is then an operation
on A of arity n for some n ∈ ω. We take the empty product A0 to be a singleton
set and hence operations of arity 0 may be identi�ed with elements of A.

Types A �nitary algebraic type, or simply type, is a function Ω: κ → ω, for
some cardinal κ. The cardinal κ is called the order of Ω and is denoted by
o(Ω). A subtype of a type Ω is a type Ω0 together with an injective function
i : o(Ω0) ↪→ o(Ω) such that Ω0(α) = Ω(i(α)) for all α < o(Ω0)

Algebras An Ω-algebra or algebra of type Ω, or simply algebra if the type is
understood from the context, is a pair A = 〈A,O〉 with A a non-empty set, called
the carrier or universe of A, and O an o(Ω)-indexed list 〈fα〉α<o(Ω) of operations
on A such that the operation fα has arity Ω(α). As we will only be concerned
with algebras with �nitely many operations a type may simply be indicated by a
�nite list of natural numbers. By a class of similar algebras we will understand
a class of Ω-algebras K for some �xed but unspeci�ed type Ω. We will generally
use the same symbol to denote the operations with index α on all algebras of a
�xed type Ω. Furthermore, in the presence of multiple algebras of the same type
it can be useful to indicate that an operation fα, for α < o(Ω), belongs to an
algebra A by writing fA

α .

Reducts Let Ω be a type and Ω0 a subtype. An Ω0-algebraB = 〈B,O′〉 is called
an Ω0-reduct of an Ω-algebra A = 〈A,O〉 provided that A = B and fB

α = fA
i(α),

for all α < o(Ω0).

Languages To each type Ω and each cardinal λ corresponds a language LλΩ
consisting of a function symbol Fα of arity Ω(α) for each α < o(Ω), together with a
set of variables Xλ = {xξ : ξ < λ} of cardinality λ. We will also use x, y, z, u, v, w
to denote members of Xλ. Each Ω-algebra is a model of the language LλΩ in
the standard sense, interpreting each function symbol Fα with index α as the
operation fα with the same index. In practice, given a class of Ω-algebras we will
not explicitly distinguish between an operation and its corresponding function
symbol.

Terms Let Ω: κ → ω be a type and let λ be a cardinal. For each X ⊆ Xλ

We de�ne the set Tm(Ω, X) of Ω-terms with variables in X by the following
recursion:

(i) any variable xξ ∈ X belongs to Tm(Ω, X),
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(ii) if α < o(Ω) and t1, . . . , tΩ(α) belong to Tm(Ω, X), then Fα(t1, . . . , tΩ(α))
belongs to Tm(Ω, X).

In case X = Xλ we write Tm(Ω, λ) for the set Tm(Ω, X). Furthermore, when
the type is clear from the context we will simply talk about terms and denote
the set of terms in at most λ-many variables by Tm(λ), or simply Tm in case
λ = ℵ0. Given a term t and set of variables X = {xξ1 , . . . , xξn} we may write
t(xξ1 , . . . , xξn) to indicate that t ∈ Tm(Ω, X) and say that the variables occurring
in t are among X . Note that every term belongs to t ∈ Tm(Ω, X) for some �nite
set X.

Term functions Given a type Ω along with an Ω-algebra A for any Ω-term
t(xξ1 , . . . , xξn) we de�ne a function tA : An → A, called the term function of arity
n determined by t, by the following recursion:

(i) if t is the variable xξi ∈ X, then for all a1, . . . , an ∈ A,

tA(a1, . . . , an) = ai,

(ii) if t is the term Fα(t1, . . . , tΩ(α)) for α < o(Ω) and t1, . . . , tΩ(α) are terms in
Tm(Ω, X), then for all a1, . . . , an ∈ A,

tA(a1, . . . , an) = fA
α (tA1 (a1, . . . , an), . . . , tAΩ(α)(a1, . . . , an)).

A function f : An → A is called a term function if f = tA for some Ω-term
t(xξ1 , . . . , xξn).

Term equivalence Given types Ω1 and Ω2, an Ω1-algebra A1 is said to be
term equivalent to an Ω2-algebra A2 provided that the algebras A1 and A2 have
the same universe and for every α < o(Ω1) there exists an Ω2-term t such that
fA1
α = tA2 and conversely for every α < o(Ω2) there exists an Ω1-term s such that
fA2
α = sA1 . We say that a class K1 of Ω1-algebras is term equivalent to a class
K2 of Ω2-algebras provided that any member of K1 is term equivalent to some
member of K2 and vice versa.

Equations Let X ⊆ Xλ be given. An Ω-equation in X is a pair of terms
s, t ∈ Tm(Ω, X), written s ≈ t. A universal Ω-clause in X is an expression of the
form

ε1 and . . . and εm =⇒ εm+1 or . . . or εn,

where m ∈ ω and εi is an Ω-equation for all i ∈ {1, . . . , n}. A universal Ω-clause
of the form

ε1 and . . . and εm =⇒ εm+1,
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is called a quasi Ω-equation in X . Again when the type Ω is clear from the
context we will simply refer to equations, quasi-equations and universal clauses
in X. Similarly, when the set of variables X is clear from the context we simply
speak of equations, quasi-equations and universal clauses. Given equations ε1 and
ε2 we will write

ε1 ⇐⇒ ε2

to denote the conjunction of the quasi-equations

ε1 =⇒ ε2 and ε2 =⇒ ε1.

Validity We say that an Ω-algebraA validates , or satis�es , an equation s ≈ t in
some �nite set X = {xξ1 , . . . , xξk} provided that the corresponding term functions
sA, tA : Ak → A coincide. In this case we write A |= s ≈ t. Note that this notion
does not depend of the choice of �nite X such that s, t ∈ Tm(Ω, X). Similarly,
an Ω-algebra A validates , or satis�es , a universal Ω-clause

s1 ≈ t1 and . . . and sm ≈ tm =⇒ sm+1 ≈ tm+1 or . . . or sn ≈ tn, (q)

in X = {xξ1 , . . . , xξk}, written A |= q, provided that for all a1, . . . , ak ∈ A if

sAi (a1, . . . , ak) = tAi (a1, . . . , ak)

for each i ∈ {1, . . . ,m}, then there is j ∈ {m+ 1, . . . , n} such that

sAj (a1, . . . , ak) = tAj (a1, . . . , ak).

Again this notion is independent of the choice of �nite X such that all the terms
si, ti with i ∈ {1, . . . , n} belong to Tm(Ω, X). If Q is a set of clauses we write
A |= Q to indicate that A |= q for all q ∈ Q.

Valuations A valuation on an Ω-algebra A is a function ν : X → A for some
X ⊆ Xλ. We say that an Ω-equation s ≈ t in X = {xξ1 , . . . , xξk} is true under a
valuation ν : X → A on an Ω-algebra A, written (A, ν) |= s ≈ t, provided that

sA(ν(xξ1), . . . , ν(xξk)) = tA(ν(xξ1), . . . , ν(xξk)).

Similarly, a universal Ω-clause

s1 ≈ t1 and . . . and sm ≈ tm =⇒ sm+1 ≈ tm+1 or . . . or sn ≈ tn, (q)

in X = {xξ1 , . . . , xξk} is true under a valuation ν : X → A on an Ω-algebra A,
written (A, ν) |= q, provided that if

sAi (ν(xξ1), . . . , ν(xξk)) = tAi (ν(xξ1), . . . , ν(xξk))

for each i ∈ {1, . . . ,m}, then there is j ∈ {m+ 1, . . . , n} such that

sAj (ν(xξ1), . . . , ν(xξk)) = tAj (ν(xξ1), . . . , ν(xξk)).

It is not di�cult to see that an equation or universal clause is satis�ed on an
algebra A if, and only if, it is true under all valuations.
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A.2.2 Operations on class of similar algebras

Homomorphisms A homomorphism from an Ω-algebras A to an Ω-algebra B
is a function h : A→ B such that

h(fA
α (a1, . . . , aΩ(α))) = fB

α (h(a1), . . . , h(aΩ(α))),

for all α < o(Ω) and all a1, . . . , aΩ(α) ∈ A. We write h : A → B to indicate
that h is a homomorphism from an algebra A to an algebra B of the same type.
Similarly, we write A → B to indicate that there is a homomorphism from the
algebra A to the algebra B.

Subalgebras An injective homomorphism between two algebras of the same
type is called an embedding . We write h : A ↪→ B to denote that h is an
embedding from A to B and A ↪→ B to denote that there is an embedding from
A to B. An isomorphism is a surjective embedding and two algebras of the same
type are isomorphic if there is an isomorphism between them. A subalgebra of
an algebra A is an algebra B of the same type such that B ⊆ A and the identity
function on A restricted to B is an embedding from B to A. When Ω0 is a
subtype of a type Ω we call an Ω0-subalgebra of the Ω0-reduct of an Ω-algebra A
an Ω0-subreduct of A. Given any Ω-algebra A the collection of its subalgebras is
closed under arbitrary intersections. Consequently, for every subset S ⊆ A there
is a least, with respect to the partial order of set-theoretic inclusion, subalgebra of
A containing the set S. We denote this algebra by 〈S〉 and call it the subalgebra
generated by S. We say that an algebra A is generated by a subset S ⊆ A if
A = 〈S〉. An algebra is �nitely generated if it is generated by one of its �nite
subsets. An algebra A is locally �nite provided that all of its �nitely generated
subalgebras are �nite. A class of algebras K is locally �nite if all of its members
are.

Homomorphic images A homomorphic image of an algebra A is an algebra
B of the same type such that there is a surjective homomorphism from A onto
B. We write h : A� B to denote that h is a surjective homomorphism from A
to B and A� B to denote that B is a homomorphic image of A.

Congruences A binary relation R ⊆ A2 on a set A is compatible with an
operation f : An → A if

f(a1, . . . , an)Rf(b1, . . . , bn),

for all a1, b1, . . . an, bn ∈ A such that aiRbi for all i ∈ {1, . . . , n}. A congruence on
an Ω-algebra A is an equivalence relation θ ⊆ A2 compatible with the operation
fα for all α < o(Ω). The set of congruences on an algebra A is closed under arbi-
trary intersections and hence forms a complete lattice under the partial order of
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set-theoretic inclusion. We denote this lattice by Con(A). We let ∆, or ∆A, de-
note the least element and ∇, or ∇A, the greatest element of the lattice Con(A).
Evidently, ∆A is the identity relation on any algebra A and ∇A is the relation
A2. We call an algebra A congruence distributive when the lattice Con(A) is dis-
tributive. Similarly, we call a class of similar algebras K congruence distributive
provided all members of K are congruence distributive. The compatibility condi-
tion insures that the set A/θ of equivalence classes under a congruence relation θ
on an Ω-algebra A may be equipped with the structure of an Ω-algebra which we
denote by A/θ. Namely, letting a/θ denote the equivalence class of a ∈ A under
θ, we de�ne for all α < o(Ω) an operation fα on A/θ by

fA/θ
α (a1/θ, . . . , aΩ(α)/θ) = fA

α (a1, . . . , aΩ(α))/θ,

for all a1, . . . , aΩ(α) ∈ A. The projection map πθ given by a 7→ a/θ is then a
surjective homomorphism of Ω-algebras and so any congruence of A determines
a homomorphic image of A. The algebra A/θ is often referred to as the quotient
of A under θ or simply a quotient of A.

Kernels Conversely, any homomorphism h : A → B of Ω-algebras determines
a congruence

kerh = {(a, b) ∈ A2 : h(a) = h(b)}
on A, called the kernel of h. Given any congruence θ on A such that θ ⊆ kerh
we obtain a homomorphism h : A/θ → B of Ω-algebras with the property that
h = h ◦ πθ by letting h(a/θ) = h(a), for all a ∈ A. In diagrammatic form:

A B

A/θ

πθ

h

h

The map h is injective, if, and only if, kerh ⊆ θ. Consequently, if h : A � B
is a surjective homomorphism of Ω-algebras, then the quotient A/kerh of A is
isomorphic toB. This establishes a bijective correspondence between congruences
on A and homomorphic images of A.

Reduced and direct products A direct product or simply product of a family
of Ω-algebras {Ai : i ∈ I} is an Ω-algebra, denoted by

∏
i∈I Ai, with carrier

set the Cartesian product
∏

i∈I Ai of the family {Ai : i ∈ I} of the underlying
universes and operations given by

f
∏
i∈I Ai

α (a1, . . . , aΩ(α))(i) = fAi
α (a1(i), . . . , aΩ(α)(i)),

for all α < o(Ω), all a1, . . . , aΩ(α) ∈
∏

i∈I Ai and all i ∈ I. The algebras Ai are
often called the factors of the direct product

∏
i∈I Ai. For each i ∈ I the map
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given by a 7→ a(i) is a surjective homomorphism from
∏

i∈I Ai to Ai. We denote
this map by πi and refer to it as the canonical projection. In case I = ∅ we will
use the convention that the direct product

∏
i∈I Ai is a trivial algebra , i.e., a one

element algebra. Given a family of Ω-algebras {Ai : i ∈ I}, any two elements
a1, a2 of

∏
i∈I Ai give rise to a subset of I

Ja1 = a2K = {i ∈ I : a1(i) = a2(i)},

called the equalizer of a1, a2. A �lter over a set I is a �lter of the partially ordered
set 〈℘(I),⊆〉 of subsets of I. Given any family {Ai : i ∈ I} of similar algebras
each �lter F over I determines a congruence θF on the direct product

∏
i∈I Ai

given by

a1 θF a2 ⇐⇒ Ja1 = a2K ∈ F.

The resulting algebra
∏

i∈I Ai/θF , denoted by
∏

i∈I Ai/F , is called a reduced
product and in case F is an ultra�lter over I, i.e., a proper maximal �lter of the
poset 〈℘(I),⊆〉, an ultraproduct . For an ultra�lter U over a set I and an algebra
A we call the ultraproduct of the family {Ai : i ∈ I}, obtained by letting Ai = A
for all i ∈ I, an ultrapower of A and denote it by AI/U . We will be using the
convention that a reduced product on the empty family is a trivial algebra. The
central result about ultraproducts is due to �os, see, e.g., [157, Thm. 8.5.3] for a
proof.

A.2.1. Theorem (�os). Let Ω be a type, {Ai : i ∈ I} a non-empty family of
Ω-algebras, and χ a sentence in the �rst-order language of Ω-algebras. Then for
any ultra�lter U on I we have∏

i∈I

Ai/U |= χ if, and only if, {i ∈ I : Ai |= χ} ∈ U.

In particular, any Ω-algebra is elementarily equivalent to any of its ultrapowers.

Subdirect products Let {Ai : i ∈ I} be a family of Ω-algebras. An Ω-algebra
A is a subdirect product of the family {Ai : i ∈ I} provided that

(i) the algebra A is a subalgebra of the direct product
∏

i∈I Ai,

(ii) for each i ∈ I the canonical projection πi :
∏

i∈I Ai � Ai is surjective when
restricted to A, i.e., πi[A] = Ai.

A subdirect embedding is an embedding e : A ↪→
∏

i∈I Ai of similar algebras such
that the image of A under e is a subdirect product of the family {Ai : i ∈ I}.
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Boolean products Let {Ax : x ∈ X} be a family of similar algebras indexed
by a set X carrying a Stone or Boolean topology, i.e., topology which is compact,
Hausdor�, and zero-dimensional. We call a subdirect product A of the family
{Ax : x ∈ X} a weak Boolean product if,

(i) the equalizer Ja1 = a2K is open for all a1, a2 ∈ A,

(ii) for each a1, a2 ∈ A and each clopen2 subset U of X there is a3 ∈ A such
that

Ja1 = a3K = U and Ja2 = a3K = X\U.

The last condition is often referred to as the patchwork property . A Boolean
product A of the family {Ax : x ∈ X} is a weak Boolean product where for all
a1, a2 the equalizer Ja1 = a2K is also closed and hence clopen. If A is isomorphic
to a (weak) Boolean product of {Ax : x ∈ X} we may refer to X as the base
space, the factors Ax as the stalks of A, and the elements of A as sections . This
terminology comes from the fact that a Boolean product is essentially the same
as an algebra of global sections of a sheaf of algebras over a Boolean space, see,
e.g., [47].

Class operations Given a class of similar algebras K we denote by

(i) I(K) the class of all algebras isomorphic to some member of K,

(ii) S(K) the class of all subalgebras of some member of K,

(iii) H(K) the class of all homomorphic images of some member of K,

(iv) P(K) the class of all products of families of members of K,

(v) PR(K) the class of all reduced products of families of members of K,

(vi) PU(K) the class of all ultraproducts of families of members of K,

(vii) PS(K) the class of all subdirect products of families of members of K,

(viii) PB(K) the class of all Boolean products of families of members of K.

A.2.3 Subdirectly irreducible algebras

An algebra A is (�nitely) subdirectly irreducible if for each subdirect embedding
e : A ↪→

∏
i∈I Ai of similar algebras (with I �nite) there is an index i ∈ I such

that the homomorphism πi ◦ e : A → Ai is an isomorphism. Given a class K of
similar algebras we denote by

2That is, simultaneously closed and open.
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(i) Ksi the class of subdirectly irreducible members of K.

(ii) Kfsi the class of �nitely subdirectly irreducible members of K.

Evidently, we always have Ksi ⊆ Kfsi . The property of being (�nitely) subdirectly
irreducible is completely determined by the structure of the congruence lattice.

A.2.2. Theorem ([46, Thm. II.8.4]). Let A be a non-trivial algebra.

1. The algebra A is subdirectly irreducible if, and only if, the least congruence
∆A is completely meet-irreducible in the lattice Con(A).

2. The algebra A is �nitely subdirectly irreducible if, and only if, the least
congruence ∆A is meet-irreducible in the lattice Con(A).

It follows that a non-trivial algebra A is subdirectly irreducible precisely when
Con(A) has a second least element, namely

⋂
{θ ∈ Con(A) : θ 6= ∆A}. A central

fact is the following result, originally due to Birkho�, showing that any algebra
of any type always has �enough� subdirectly irreducible quotients, see, e.g., [46,
Thm. II.8.6] for a proof.

A.2.3. Theorem (Birkho�). Any algebra is isomorphic to a subdirect product of
its subdirectly irreducible homomorphic images.

A.2.4 Varieties, quasi-varieties, and universal classes

Let Ω be a type. By an equational Ω-theory we understand a set of Ω-equations
in the countably in�nite set of variables Xℵ0 . The notions of quasi-equational and
universal Ω-theories are de�ned completely analogously. A class K of Ω-algebras
is called

(i) a variety if it is the class of models of some equational Ω-theory,

(ii) a quasi-variety if it is the class of models of some quasi-equational Ω-theory,

(iii) a universal class if it is the class of models of some universal Ω-theory.

These types of classes are completely determined by the closure properties with
respect to certain class operations. The �rst item of the following theorem is due
to Birkho�, the second item is due to Mal'cev, and the last item appears to be
folklore. For proofs, see, e.g., [46, Thm. II.11.9, Thm. V.2.25, Thm. V.2.20].

A.2.4. Theorem (Birkho�, Mal'cev). Let K be a non-empty class of similar al-
gebras.

1. The class K is a variety if, and only if, its is closed under the formation of
direct products, homomorphic images, and subalgebras.
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2. The class K is a quasi-variety if, and only if, it is closed under the formation
of reduced products, subalgebras, and isomorphic copies,

3. The class K is a universal class if, and only if, its is closed under the
formation of ultraproducts, subalgebras, and isomorphic copies.

It turns out that these closure conditions may be expressed more succinctly. The
�rst item of the following theorem is due to Tarski, the second item is due to
Mal'cev, and the last item appears to be folklore. For proofs, see, e.g., [46,
Thm. II.9.5, Thm. V.2.20, Thm. V.2.25].

A.2.5. Theorem (Tarski, Mal'cev). Let K be a non-empty class of similar alge-
bras.

1. The class K is a variety if, and only if, K = HSP(K),

2. The class K is a quasi-variety if, and only if, K = ISPR(K),

3. The class K is a universal class if, and only if, K = ISPU(K).

We say that a variety V of similar algebras is generated by a class K ⊆ V if V
is the least variety containing the class K, or equivalently, if V = HSP(K). Thus
a class K generates a variety V if, and only if, K ⊆ V and each equation which
is refuted by some algebra in V is also refuted by some algebra in K. We say
that V is �nitely generated if it is generated by a �nite class of �nite algebras.
Finally, we say that a class is �nitely approximable or has the �nite model property
if it is generated by the class of its �nite members. Similar de�nitions apply,
mutatis mutandis, to quasi-varieties and universal classes. The following is then
an immediate consequence of Theorems A.2.3 and A.2.5(1).

A.2.6. Theorem (Birkho�). Any variety of similar algebras is generated by its
(�nitely) subdirectly irreducible members.

A.2.5 Jónsson's Lemma

The following useful property of congruence distributive varieties is sometimes
referred to as Jónsson's Lemma [172, Sec. 3]. See also [46, Thm. IV.6.8] or [169,
Cor. 1.5] for proofs.

A.2.7. Theorem (Jónsson). Let V be a congruence distributive variety of simi-
lar algebras. If V is generated by K ⊆ V, then

Vfsi ⊆ HSPU(K),

and consequently,
V = IPSHSPU(K).
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In particular, since PU(K) ⊆ I(K) whenever K is a �nite set of �nite similar
algebras, see, e.g., [46, Lem. IV.6.5], we must have that if V is a �nitely generated
congruence distributive variety, then

Vfsi ⊆ HS(K),

for any �nite set of �nite algebras K generating V . From this it follows that in
a �nitely generated congruence distributive variety all �nitely subdirectly irre-
ducible algebras are �nite.

A.2.6 Free algebras

Let Ω be a type and let K be a class of Ω-algebras, A ∈ K and S ⊆ A. For a
cardinal λ we say that A is freely λ-generated over K provided that

(i) the cardinality of S is λ,

(ii) the set S generates the algebra A,

(iii) for any B ∈ K and function f : S → B there is a homomorphism h : A→ B
of Ω-algebras making the following diagram

S B

A

commute.

An algebra A is freely generated over K, for K some class of similar algebras
if it is freely λ-generated over K for some cardinal λ. It is easy to show that
if λ is a cardinal and A, B are both freely λ-generated over a class of similar
algebras K, then A and B must be isomorphic as Ω-algebras. Consequently, for
each cardinal λ there is (up to isomorphism) at most one member of K which is
freely λ-generated over K. In case there exists a member of K which is freely λ-
generated over K we denote it, or rather some (canonically chosen) representative
of it, by FK(λ) and call it the free λ-generated K algebra or the free K algebra
on λ-many generators. A free K-algebra is then a member of K which is a freely
λ-generated over K for some cardinal λ. The following result is originally due to
Birkho�, see, e.g., [46, Thm. II.10.12] for a proof.

A.2.8. Theorem (Birkho�). Let Ω be a type and let K be any class of Ω-algebras
such that ISP(K) ⊆ K. Then free λ-generated K-algebras exist for all cardinals
λ > 0. Moreover, if Ω(α) = 0 for some α < o(Ω) then free λ-generated K-algebras
exist for all cardinals λ.
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In particular any variety of similar algebras has free λ-algebras for all cardi-
nals λ > 0. We conclude by noting that if V is a variety of Ω-algebras and
s(xξ1 , . . . , xξn), t(ξ1, . . . , xξn) are Ω-terms, with n ≥ 1, then

V |= s ≈ t if, and only if, FK(λ) |= s ≈ t,

for all λ ≥ n, see, e.g., [46, Cor. II.11.15] for a proof. In particular, any variety is
generated by its free algebras.

A.3 Algebras

We here recall the de�nitions of the various algebraic structures which play a role
in this thesis.

Semi-groups A semi-group is an algebra A = 〈A, ·〉 of type 〈2〉 satisfying the
equation

x · (y · z) ≈ (x · y) · z.
In any semi-group 〈A, ·〉 we may simply write ab for the product a · b. Similarly,
we may also leave out parentheses writing a·b·c for the element a·(b·c) = (a·b)·c.
Finally, for a ∈ A and natural number n ≥ 1 we write an for the n-fold product
of a with itself, i.e., a1 = a and an+1 = ana. A monoid is an algebra A = 〈A, ·, e〉
of type 〈2, 0〉, with 〈A, ·〉 a semi-group, satisfying the equations

x · e ≈ e and e · x ≈ e.

We refer to the element e as the (monoidal) unit of A. If a, b ∈ A are elements
of a monoid A = 〈A, ·, e〉 such that

a · b = e and b · a = e,

we call b the inverse of a and vice verse. A group is a monoid in which every
element has an inverse. It is not di�cult to show that any element of a monoid
can have at most one inverse. Thus, a group may be identi�ed with an algebra
A = 〈A, ·, −1, e〉 of type 〈2, 1, 0〉, with 〈A, ·, e〉 a monoid, satisfying the equations

x · x−1 ≈ e and x−1 · x ≈ e.

An algebra A with a semi-group reduct 〈A, ·〉 is commutative provided that the
equation

x · y ≈ y · x,
is satis�ed. Similarly, an algebra A with a semi-group reduct 〈A, ·〉 is idempotent
if the equation

x · x ≈ x,

is satis�ed.
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Lattices A semi-lattice, respectively bounded semi-lattice, is an idempotent,
commutative semi-group, respectively, monoid. A lattice is an algebra 〈L,∧,∨〉
of type 〈2, 2〉 with 〈L,∧〉 and 〈L,∨〉 a pair of semi-lattices satisfying the equations

x ≈ x ∨ (x ∧ y) and x ≈ x ∧ (x ∨ y).

A bounded lattice is an algebra 〈L,∧,∨, 0, 1〉 of type 〈2, 2, 0, 0〉 such that 〈L,∧,∨〉
is a lattice and 〈L,∧, 1〉 and 〈L,∨, 0〉 are bounded semi-lattices. A lattice L =
〈L,∧,∨〉 is distributive if either one of the following two equivalent equations are
satis�ed

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

We denote by DL the class of distributive lattices.

Lattices as algebras and as posets Given a lattice L = 〈L,∧,∨〉 we obtain a
partial ordered set 〈L,≤〉 by letting a ≤ b if, and only if, a∧b = a, or equivalently
a∨b = b. This partial order is such that every pair of elements a, b ∈ L has a least
upper bound, namely a ∨ b, and a greatest lower bound, namely a ∧ b. Thus the
poset 〈L,≤〉 is a lattice in the sense of Section A.1. Conversely, given any poset
P = 〈P,≤〉 which is a lattice in the sense of Section A.1 we obtain an algebra
〈P,∧,∨〉 by letting a∧ b be the greatest lower bound of a and b in P and similarly
letting a∨ b be the least upper bound of a and b in P. Given any type Ω with the
property that all Ω-algebra have a lattice reduct, for Ω-terms s and t we will let
the expression s ≤ t be an abbreviation for the equation s ∧ t ≈ s and also refer
to it as an equation.

Pseudo-complemented distributive lattice A pseudo-complemented distrib-
utive lattice is an algebra 〈D,∧,∨,¬, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that the struc-
ture 〈D,∧,∨, 0, 1〉 is a bounded distributive lattice satisfying the quasi-equations

x ∧ y ≤ 0 ⇐⇒ y ≤ ¬x.

Similarly, a supplemented distributive lattice is an algebra 〈D,∧,∨,∼, 0, 1〉 of type
〈2, 2, 1, 0, 0〉 such that 〈D,∧,∨, 0, 1〉 is a bounded distributive lattice satisfying
the quasi-equations

1 ≤ x ∨ y ⇐⇒ ∼x ≤ y.

Thus a bounded distributive lattice is the reduct of a supplemented distributive
lattice if, and only if, its order dual is the reduct of a pseudo-complemented
distributive lattice and vice versa. The class of pseudo-complemented (supple-
mented) distributive lattices forms a variety, see, e.g., [16, Thm. VIII.3.1]. An
element a ∈ A of a pseudo-complement distributive lattice 〈D,∧,∨,¬, 0, 1〉 is
called central or complemented if a∨¬a = 1. A Boolean algebra is a pseudo-com-
plemented distributive lattice in which every element is central. Consequently,
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Boolean algebras may be identi�ed with pseudo-complemented distributive lat-
tices satisfying the equation

x ∨ ¬x ≈ 1

or supplemented distributive lattices satisfying the equation

x ∧ ∼x ≈ 0.

Thus the class of Boolean algebras forms a variety which we denote by BA.

Residuated lattices A lattice-ordered monoid is an algebra 〈A,∧,∨, ·, e〉 of
type 〈2, 2, 2, 0〉 with 〈A,∧,∨〉 a lattice and 〈A, ·, e〉 a monoid satisfying the equa-
tion

x · (y ∨ z) · w ≈ (x · y · w) ∨ (x · z · w).

A residuated lattice-ordered monoid or simply residuated lattice is an algebra
〈A,∧,∨, ·, \, /, e〉 of type 〈2, 2, 2, 2, 2, 0〉 such that 〈A,∧,∨, ·, e〉 is a lattice-ordered
monoid satisfying the following quasi-equations

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

The class of residuated lattices is in fact a variety, see, e.g., [98, Thm. 2.7], which
we denote by RL. A residuated lattice 〈A,∧,∨, ·, \, /, e〉 is integral if it satis�es
the equation

x ≤ e.

We denote by IRL the variety of integral residuated lattices. A pointed residuated
lattice, or FL-algebra, is an algebra 〈A,∧,∨, ·, \, /, e, f〉 of type 〈2, 2, 2, 2, 2, 0, 0〉
such that 〈A,∧,∨, ·, \, /, e〉 is a residuated lattice. We will use the convention
that a property de�ned for residuated lattices holds for an FL-algebra provided
it holds for its residuated lattice reduct.

`-groups A lattice-ordered group, or simply `-group, is a residuated lattice
〈A,∧,∨, ·, \, /, e〉 satisfying the equation

(e/x) · x ≈ e.

It is not di�cult to see that the class of `-groups is term equivalent to the class
of algebras A = 〈A,∧,∨, ·, −1, e〉 of type 〈2, 2, 2, 1, 0〉 such that

(i) the structure 〈A,∧,∨, ·, e〉 is a lattice-ordered monoid,

(ii) the structure 〈A, ·, −1, e〉 is a group.

We denote the variety of all `-groups by LG.
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Heyting algebras A Heyting algebra is an algebra 〈A,∧,∨,→, 0, 1〉 of type
〈2, 2, 2, 0, 0〉, with 〈A,∧,∨, 0, 1〉 a bounded lattice, satisfying the quasi-equations

x ∧ y ≤ z ⇐⇒ y ≤ x→ z

or equivalently, see, e.g., [16, Thm. IX.4.1], the equations

(i) x ∧ (x→ y) ≈ x ∧ y,

(ii) x ∧ (y → z) ≈ x ∧ ((x ∧ y)→ (x ∧ z)),

(iii) z ∧ ((x ∧ y)→ x) ≈ z.

Consequently, the class of Heyting algebras is a variety which we denote by HA.
The Boolean algebras are up to term equivalence the Heyting algebras satisfying
the equation

x ∨ ¬x ≈ 1,

where ¬x is an abbreviation for the term x → 0. Thus the variety of Boolean
algebras may be identi�ed with a subvariety of Heyting algebras. Furthermore,
we note that the class of Heyting algebras is term equivalent to the class of
commutative, integral and idempotent FL-algebras satisfying the equation

f ≤ x.

Consequently, the variety of Heyting algebras may be identi�ed with a subvariety
of FL-algebras.

Bi-Heyting algebras A co-Heyting algebra is an algebra 〈A,∧,∨,←, 0, 1〉 of
type 〈2, 2, 2, 0, 0〉, with 〈A,∧,∨, 0, 1〉 a bounded lattice, satisfying the quasi-equa-
tions,

z ≤ x ∨ y ⇐⇒ z ← x ≤ y.

A bi-Heyting algebra3 is then an algebra 〈A,∧,∨,→,←, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉
such that 〈A,∧,∨,→, 0, 1〉 is a Heyting algebra and 〈A,∧,∨,←, 0, 1〉 is a co-Hey-
ting algebra. Since any bounded distributive lattice can be the reduct of at most
one Heyting algebra and at most one co-Heyting algebra, we will say that a Hey-
ting algebra is a bi-Heyting algebra when its bounded lattice reduct is also the
reduct of a co-Heyting algebra.

A.4 Heyting algebras

We here collected a number of useful facts about Heyting algebras, see, e.g, [16,
Chap. IX] or [221].

3Sometimes also called a double Heyting algebra, see, e.g., [229].
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Pseudo-complements For any Heyting algebra A = 〈A,∧,∨,→, 0, 1〉 we de-
�ne a unary operation ¬ : A → A by ¬a := a → 0, for all a ∈ A. One may then
easily verify that the algebra 〈A,∧,∨,¬, 0, 1〉 is a pseudo-complemented distrib-
utive lattice.

In�ma and suprema If A is a Heyting algebra and {a} ∪ S ∪ T ⊆ A is such
that S has a greatest lower bound in A and T has a least upper bound in A, then

a ∧
∨

T =
∨
t∈T

(a ∧ t),
∨

T → a =
∧
t∈t

(t→ a), and a→
∧

S =
∧
s∈S

(a→ s).

In particularly, ¬
∨
T =

∧
t∈T ¬t. In fact, this holds true of any pseudo-comple-

mented distributive lattice.

Filters and congruences It is easy to verify that a non-empty intersection of
a family of �lters is again a �lter. Since any Heyting algebra A has a greatest
element, namely 1, any �lter on A must contain 1 whence it follows that the
intersection of any non-empty family of �lters on A is again non-empty and hence
a �lter. Consequently, the collection of �lters on A forms a complete lattice, with
partial order given by set-theoretic inclusion, which we denote by Fil(A). Given
any �lter F on a Heyting algebra A one may show that the relation θF on A
de�ned by

a θF b if, and only if, (a→ b) ∧ (b→ a) ∈ F,

is a Heyting algebra congruence on A. Conversely, given any Heyting algebra
congruence θ on A the equivalence class 1/θ of the top element 1 is �lter on A.
This establishes a one-to-one correspondence between Heyting algebra congru-
ences and �lters on A.

A.4.1. Proposition ([16, Lem.IX.4.4]). For any Heyting algebra A there is an
isomorphism of lattices Con(A) and Fil(A).

In particular, since Fil(A) is readily seen to be a distributive lattice for any Hey-
ting algebra A, it follows that the variety HA of Heyting algebras is congruence
distributive.

Subdirectly irreducible Heyting algebras As another application of Propo-
sition A.4.1 we obtain an intrinsic description of the subdirectly irreducible and
�nitely subdirectly irreducible Heyting algebras.

A.4.2. Theorem ([16, Thm.IX.4.5]). A Heyting algebra is subdirectly irreducible,
if and only if, it has a second greatest element.
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It is easy to see that any upper bounded lattice with a second greatest element
must satisfy the universal clause

x ∨ y ≈ 1 =⇒ x ≈ 1 or y ≈ 1.

Upper bounded distributive lattices satisfying this clause are called well-con-
nected . Thus all subdirectly irreducible Heyting algebras are well-connected but
not vice versa. The following is already known but since we have been unable to
�nd a direct reference we provide an argument here.

A.4.3. Proposition. A Heyting is �nitely subdirectly irreducible, if, and only
if, it is well-connected.

Proof:
Let A be a �nitely subdirectly irreducible Heyting algebra and suppose that
a1, a2 ∈ A are such that a1 ∨ a2 = 1, then the principal �lters ↑ai = {b ∈ A : ai ≤
b}, for i ∈ {1, 2} are such that ↑a1 ∩ ↑a2 = {1}. Letting θi be the corresponding
congruences θ↑ai , for i ∈ {1, 2}, we have, by Proposition A.4.1, that θ1∧θ2 = ∆A.
Consequently, by Theorem A.2.2(2), θi = ∆A for some i ∈ {1, 2}. But then
↑ai = {1}, and hence ai = 1, which shows that A is well-connected.

Conversely, let A be a well-connected Heyting algebra and let θ1, θ2 be con-
gruences on A such that θ1 ∧ θ2 = ∆A and θ2 6= ∆A. Then by Proposition A.4.1
we must have a2 ∈ 1/θ2 with a2 6= 1. Now, for each a1 ∈ 1/θ1 we must have that
a1 ∨ a2(θ1 ∧ θ2)1 and hence that a1 ∨ a2 = 1. By the assumption that A is well-
connected we obtain that a1 = 1 for each a1 ∈ 1/θ1 showing that 1/θ1 = {1} and
hence by Proposition A.4.1 that θ1 = ∆A. Thus ∆A is meet-irreducible in the lat-
tice Con(A), whence A is �nitely subdirectly irreducible by Theorem A.2.2(2). 2

Finite model property We conclude this section by establishing that the
variety of Heyting algebras enjoys the �nite model property. In fact, a stronger
statement holds which is useful on its own. Given Heyting algebras A and B we
write B ↪→∧,∨,0,1 A to indicate that the bounded lattice reduct of B is a subreduct
of A.

A.4.4. Lemma ([29, Lem. 4.3]). Let A be a Heyting algebra and q a universal
clause in the language of Heyting algebras. If A 6|= q then there is a �nite Heyting
algebra B ↪→∧,∨,0,1 A such that B 6|= q.

From this it follows that every equation which is refuted on some Heyting algebra
is also refuted on some �nite Heyting algebra. Therefore, the equational theory
of the class of �nite Heyting algebras coincides with the equational theory of all
Heyting algebras. From this the following theorem is an immediate consequence.

A.4.5. Theorem. The variety of Heyting algebras is generated by its �nite mem-
bers.
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A.5 Nuclei

We here introduce the concept of nuclei on partially ordered monoids and dis-
cuss some of their most fundamental properties. Nuclei were �rst considered by
Schmidt and Tsinakis [231], Simmons [233], and Rosenthal [223] in the context
of implicative semi-lattices, locales, and quantales, respectively. Our exposition
follows closely the one in [98, Chap. 3.4.11] and [97, Sec. 2].

Nuclei A partially ordered monoid is a structure 〈P,≤, ·, e〉 such that 〈P,≤〉 is
a poset and 〈P, ·, e〉 is a monoid with the property that

p ≤ q implies r · p ≤ r · q and p ≤ q implies p · r ≤ q · r,

for all p, q, r ∈ P . One may readily verify that if 〈P,≤, ·〉 is a partially ordered
monoid then so is the order dual 〈P,≤∂, ·〉. A residuated partially ordered monoid
is a structure 〈P,≤, \, /, ·, e〉 with 〈P,≤, ·, e〉 a partially ordered monoid such that

p · r ≤ q if, and only if, r ≤ p\q if, and only if, p ≤ q/r,

for all p, q, r ∈ P .

A.5.1. Proposition (See, e.g., [98, Lem.3.33]). Let P = 〈P,≤, ·, e〉 be a par-
tially ordered monoid and let γ : P → P be a closure operator on 〈P,≤〉. Then
the following are equivalent.

1. γ(p) · γ(q) ≤ γ(p · q), for all p, q ∈ P .

2. γ(γ(p) · γ(q)) = γ(p · q), for all p, q ∈ P .

In case P is a residuated partially ordered monoid, say 〈P,≤, ·, \, /, e〉, the above
conditions are equivalent to the condition that the elements p\γ(q) and γ(q)/p are
closed for all p, q ∈ P .

A nucleus on a partially ordered monoid 〈P,≤, ·, e〉 is a closure operator γ : P → P
on the poset 〈P,≤〉 satisfying either of the equivalent conditions of Proposi-
tion A.5.1. A co-nucleus on a partially ordered monoid 〈P,≤, ·, e〉 is then a
nucleus on the order dual 〈P,≤∂, ·, e〉.

Retractions Given a partially ordered monoid P = 〈P,≤, ·, e〉 with a nucleus
γ : P → P we let Pγ be the structure 〈γ[P ],≤, ·γ, γ(e)〉 with p ·γ q = γ(p · q)
for all p, q ∈ γ[P ]. Similarly, given a residuated partially ordered monoid P =
〈P,≤, ·, \, /, e〉 and a nucleus γ : P → P we let Pγ be the structure 〈γ[P ],≤
, ·γ, \, /, γ(e)〉. By Proposition A.5.1, p\q, q/p ∈ γ[P ] for each p, q ∈ γ[P ], and
so this is indeed well de�ned. In both cases we refer to the structure Pγ as the
γ-retraction of P.
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A.5.2. Proposition (See, e.g., [98, Thm.3.34(1)(2)]). If P is a (residuated) par-
tially ordered monoid and γ : P → P is a nucleus, then Pγ is also a (residuated)
partially ordered monoid. Furthermore, the map γ : P� Pγ is an order-preserv-
ing monoid homomorphism.

Given a lattice-ordered monoid A = 〈A,∧,∨, ·, e〉 and a nucleus γ : A → A
on the induced partially ordered monoid 〈A,≤, ·, e〉 we let Aγ be the struc-
ture 〈γ[A],∧,∨γ, ·γ, γ(e)〉 with the operation ∨γ de�ned as in Proposition A.1.1,
i.e., a ∨γ b = γ(a ∨ b), for all a, b ∈ A. Similarly, given a residuated lattice
A = 〈A,∧,∨, ·, \, /, e〉 with a nucleus γ : A → A we let Aγ be the structure
〈γ[A],∧,∨γ, ·γ, \, /, γ(e)〉. In both cases we refer to the structure Aγ as the γ-re-
traction of A.

A.5.3. Proposition (See, e.g., [98, Thm.3.34(1)(2)]). IfA is a (residuated) lat-
tice-ordered monoid and γ : A → A is a nucleus on the induced partially ordered
monoid 〈A,≤, ·, e〉, then Aγ is also a (residuated) lattice-ordered monoid. Fur-
thermore, the monoid homomorphism γ : A� Aγ is join-preserving.

Regular elements If A = 〈A,∧,∨,¬, 0, 1〉 is a pseudo-complemented distrib-
utive lattice then the map a 7→ ¬¬a is a nucleus on the induced partially ordered
monoid 〈A,≤,∧, 1〉 see, e.g., [16, Thm. VIII.2.1]. The closed elements determined
by this nucleus are usually called regular and the set of all such elements is de-
noted by Rg(A). Since both the least element 0 and the greatest element 1 of
A are closed with respect to this nucleus we obtain as a special case of Propo-
sition A.5.3 that the set of regular elements carries the structure of a bounded
lattice Rg(A) := 〈Rg(A),∧,∨¬¬, 0, 1〉.

A.5.4. Proposition (See, e.g., [16, Thm. VIII.4.3]). Let A = 〈A,∧,∨,¬, 0, 1〉
be a pseudo-complemented distributive lattice. Then Rg(A) is a Boolean algebra
and the map a 7→ ¬¬a is a homomorphism of pseudo-complemented lattices.

By order duality we then obtain that if A = 〈A,∧,∨,∼, 0, 1〉 is a supplemented
distributive lattice then the map a 7→ ∼∼ a is a co-nucleus on the induced par-
tially ordered monoid 〈A,≤,∨, 0〉. The open elements determined by the co-nu-
cleus a 7→ ∼∼ a are called co-regular. We denote by CoRg(A) the set of co-
regular elements of A. Completely analogously to Proposition A.5.4 we obtain
that the set CoRg(A) of co-regular elements of any supplemented distributive lat-
tice A carries the structure of a Boolean algebra which we denote by CoRg(A).
Finally, since any Heyting algebra A = 〈A,∧,∨,→, 0, 1〉 determines a pseudo-
complemented distributive lattice, namely 〈A,∧,∨,¬, 0, 1〉 we obtain a nucleus
a 7→ ¬¬a on the induced partially ordered monoid 〈A,≤,∧, 1〉. As before we
refer to closed elements of this nucleus as the regular elements of A and denote
the corresponding Boolean algebra by Rg(A).
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A.6 Dualities

We here review some di�erent types of dualities for various classes of bounded
distributive lattices and Heyting algebras. We will assume that the reader is
familiar with the rudiments of category theory, see, e.g., [194, 191].

A.6.1 Discrete duality

We �rst consider certain subcategories of the category of bounded distributive
lattices and bounded lattice homomorphisms for which the opposite categories
admit a fairly natural description. The material presented here can be found in
[23, Sec. 7], [119, Sec. 4�5], and [252].

Up- and downsets Given a poset P = 〈P,≤〉 and U ⊆ P we de�ne

↓U := {p ∈ P : ∃q ∈ U (p ≤ q)} and ↑U := {p ∈ P : ∃q ∈ U (q ≤ p)}.

A subset U of a poset P = 〈P,≤〉 is upward closed, or simply an upset , if ↑U = U .
A downward closed, or simply downset , of a poset P is then an upset of its
order dual P∂. The collection of all upsets of a poset P, ordered by set-theoretic
inclusion, is a lattice which we denote by P+.

Perfect lattices For any poset P the lattice P+ will be complete and completely
distributive in the sense that arbitrary meets distribute over arbitrary joins and
vice versa, see, e.g., [220, Def. 3]. We call a complete and completely distributive
lattice perfect4 provided that every element is the join of the set of completely join-
irreducible elements below it, see, e.g., [115, Thm. 2.1] or [74, Thm. 10.29] for an
alternative characterization of such lattices. Conversely, any perfect distributive
latticeD will be isomorphic to P+ for some poset, which we denote byD+, namely
the order dual of the poset J∞(D) = 〈J∞(D),≤〉 of completely join-irreducible
elements with the partial order determined by D.

Birkho�-Raney duality Any order-preserving function f : P → Q between
posets P and Q induces a complete lattice homomorphism, i.e., a function pre-
serving arbitrary meets and joins, f+ : Q+ → P+ by letting f+(U) := f−1(U) for
all upsets U of Q. By Proposition A.1.2 any complete bounded lattice homo-
morphism h : D → E between perfect lattices has a lower adjoint h+ : E → D.
It is easy to verify that h+ maps completely join-irreducible elements to com-
pletely join-irreducible elements and hence restricts to an order-preserving map
from the poset J∞(E) to the poset J∞(D). Consequently, we may consider h+

as an order-preserving map from the poset E+ to the poset D+. This gives rise

4These lattices are also known as: bi-algebraic, doubly algebraic [115], completely join-
generated [119] or completely prime-algebraic [252].
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to a dual equivalence of categories originally due to Raney [220] in the form of a
representation theorem.

A.6.1. Theorem (Raney). The category of perfect distributive lattices and com-
plete lattice homomorphisms is dually equivalent to the category of posets and
order-preserving functions.

As the functors involved map �nite objects to �nite objects we obtain the following
corollary originally due to Birkho� [37] in the form of a representation theorem.

A.6.2. Corollary (Birkho�). The category of �nite distributive lattices and
bounded lattice homomorphisms is dually equivalent to the category of �nite posets
and order-preserving maps.

We note the following useful properties of this duality which is straightforward
to establish.

A.6.3. Proposition. Let f : P→ Q be an order-preserving map between posets.

1. The map f : P → Q is surjective if, and only if, the corresponding homo-
morphism f+ : Q+ → P+ is injective.

2. The map f : P→ Q is injective if, and only if, the corresponding homomor-
phism f+ : Q+ → P+ is surjective.

de Jongh-Troelstra duality It it not di�cult to see that for any poset P the
lattice P+ is a Heyting algebra with Heyting implication de�ned by

U → V = P\↓(U\V ),

for all upsets U, V of P. As observed by de Jongh and Troelstra [171], for any
order-preserving map of posets f : P → Q, the induced lattice homomorphism
f+ : Q+ → P+ will be a homomorphism of Heyting algebras if, and only if, the
map f : P→ Q is a so-called p-morphism5, meaning that for all p ∈ P and q ∈ Q,

f(p) ≤Q q implies f(r) = q for some r ∈ P such that p ≤P r.

This, in combination with Theorem A.6.1, yields the following duality.

A.6.4. Theorem. The category of perfect Heyting algebras and complete Hey-
ting algebra homomorphisms is dually equivalent to the category of posets and
p-morphisms.

Since the functors involved map �nite objects to �nite objects the duality restricts
to �nite objects.

A.6.5. Corollary. The category of �nite Heyting algebras and Heyting algebra
homomorphisms is dually equivalent to the category of �nite posets and p-mor-
phisms.

5Sometimes also called strongly isotone [171], bounded [39], or open [119].
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A.6.2 Topological duality

We now describe the opposite categories of both the category of bounded distrib-
utive lattices and bounded lattice homomorphism and the category of Heyting
algebras and Heyting algebra homomorphisms. We will assume that the reader
is familiar with basic concepts from topology, see, e.g., [84] or [74, App. A]. A
thorough treatment of the material covered here can be found in [74, 201, 27, 109].

Ordered topological spaces A Priestley space is a, possibly empty, partially
ordered, compact, and totally ordered disconnected topological space, i.e., a tuple
〈X,≤, τ〉 such that

(i) The pair 〈X,≤〉 is a partial order,

(ii) The pair 〈X, τ〉 is a compact topological space,

(iii) For every x, y ∈ X such that x 6≤ y there is a clopen upset U of X such
that x ∈ U and y 6∈ U .

We will often refer to a Priestley space 〈X,≤, τ〉 by the set X. We note that not
every poset can be equipped with a topology resulting in a Priestley space. Given
a Priestley space 〈X,≤, τ〉 we write min(X) and max(X) for the sets of minimal
and maximal elements of X, respectively. The following useful property was �rst
observed by Esakia [87], see also [33, Thm. 2.3.24] for a proof.

A.6.6. Proposition. Let 〈X,≤, τ〉 be a Priestley space. Then for each x ∈ X
there are x0 ∈ min(X) and x1 ∈ max(X) such that x0 ≤ x ≤ x1.

Priestley duality The collection ClpUp(X) of all clopen upsets of a Priestley
space X evidently forms a bounded distributive lattice, with meets and joins
being set-theoretic intersection and union, respectively. We denote this lattice
by X∗. Conversely, let D = 〈D,∧,∨, 0, 1〉 be a bounded distributive lattice. A
proper �lter F of D is prime if

a ∨ b ∈ F implies a ∈ F or b ∈ F for all a, b ∈ D.

We denote the set of prime �lters of D by D∗. Given any a ∈ D we obtain two
sets of prime �lters

â := {x ∈ D∗ : a ∈ x} and ã := {x ∈ D∗ : a 6∈ x}.

The family {â, ã : a ∈ D} generates a topology τ on the set D∗ such that the re-
sulting partially ordered topological space 〈D∗,⊆, τ〉 is a Priestley space. We refer
to this space as the dual Priestley space of D. If f : X → Y is a function between
Priestley spaces X and Y , which is both continuous and order-preserving, then
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we obtain a homomorphism of bounded distributive lattices f ∗ : Y ∗ → X∗ by let-
ting f ∗(U) := f−1(U) for all Y ∈ ClpUp(Y ). Conversely, for any homomorphism
h : D → E of bounded distributive lattices we obtain a function h∗ : E∗ → D∗
which is both continuous and order-preserving by letting h∗(x) := h−1(x) for
all x ∈ E∗. This determines the following dual equivalence of categories �rst
established by Priestley [216].

A.6.7. Theorem (Priestley). The category of bounded distributive lattices and
bounded lattice homomorphisms is dually equivalent to the category of Priestley
spaces and continuous order-preserving maps.

Spectral spaces For any bounded distributive lattice 〈D,∧,∨, 0, 1〉 each of the
families {â : a ∈ D} and {ã : a ∈ D} also generates a topology on the set of
prime �lters of D, denoted by τ ↑ and τ ↓ respectively. The resulting topological
spaces 〈D∗, τ ↑〉 and 〈D∗, τ ↓〉 are what is known as spectral spaces and all spectral
spaces arise in this way [156]. The lattice D may be recovered as the lattice of
compact open subsets of the space 〈D∗, τ ↑〉 while its order dual may be recovered
as the lattice of compact open subsets of the space 〈D∗, τ ↓〉. This forms the basis
of a purely topological description of the opposite category of the category of
bounded distributive lattices and bounded lattice homomorphisms originally due
to Stone in the form of a representation theorem [240].

Stone duality It is easy to see that the topology on any Priestley space is both
Hausdor� and zero-dimensional, i.e., has a basis of clopen sets. Zero-dimensional
compact Hausdor� spaces are known as Stone spaces6. Thus any Stone space
may be identi�ed with a Priestley space in which the partial order is trivial,
i.e., is the equality relation. It is not hard to show that a bounded distributive
lattice is a Boolean algebra if, and only if, its dual Priestley space is a Stone
space. Furthermore, since the category of Boolean algebras and Boolean algebra
homomorphisms is a full subcategory of the category of bounded distributive
lattices and bounded lattice homomorphisms, we obtain, as a special case of
Theorem A.6.7, the following theorem originally due to Stone [239] in the form
of a representation theorem.

A.6.8. Theorem (Stone). The category of Boolean algebras and Boolean algebra
homomorphisms is dually equivalent to the category of Stone spaces and continu-
ous maps.

Esakia duality An Esakia space is a Priestley space in which ↓U is open for
any open set U . A bounded distributive lattice is a (reduct of a) Heyting algebra
precisely when its dual Priestley space is an Esakia space, in which case we refer

6Often also referred to as Boolean spaces.
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to it as its dual Esakia space. Just as in the discrete case, a bounded lattice
homomorphism h : A→ B between Heyting algebras is a Heyting algebra homo-
morphism if, and only if, the dual continuous order-preserving map h∗ : B∗ → A∗
is a p-morphism. Consequently, we obtain the following dual equivalence of cat-
egories originally established by Esakia [86].

A.6.9. Theorem (Esakia). The category of Heyting algebras and Heyting alge-
bra homomorphisms is dually equivalent to the category of Esakia spaces and
continuous p-morphisms.

Finally, we note that a completely analogous version of Proposition A.6.3 holds
for all the topological dualities discussed above.

A.7 Projective lattices

We here collect a few useful results concerning (weakly) projective distributive
lattices and semi-lattices.

Projectivity Let K be a class of similar algebras. An algebra P ∈ K is said
to be weakly projective in, or relative to K see, e.g., [16, Chap. I.20.13], if any
diagram

A

P B

of homomorphisms between K-algebras can be completed to a commutative dia-
gram

A

P B

of homomorphism between K-algebras. Since we are only considering weakly
projective algebras in this thesis we will simply use the word projective to mean
weakly projective.

Finite projective distributive lattices Given a bounded distributive lattice
D = 〈D,∧,∨, 0, 1, 〉 we let J0(D) denote the poset of join-irreducible elements of
D including the least element 0, and let J0(D) denote the underlying set of this
poset. Recall that DL denotes the class of distributive lattices.

A.7.1. Theorem ([17]). For any �nite distributive lattice D the following are
equivalent.
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1. The lattice D is projective in the class DL.

2. For all a, b ∈ J0(D) the meet a ∧ b belongs to J0(D).

From this it may be deduced that a �nite distributive lattice is projective if, and
only if, its order dual is, see also [15, Thm. 7.1]. Given any two algebras A,B
with (semi-)lattice reducts and appropriate τ ⊆ {∧,∨} we write h : A →τ B to
indicate that h : A → B is a function preserving all the operations from τ and
h : A ↪→τ B (h : A�τ B) to indicate that h is moreover injective (surjective). In
case the reducts have one or more bounds we use similar notation for appropriate
τ ⊆ {∧,∨, 0, 1}. The following useful property of �nite projective distributive
lattices is a straightforward consequence of [17, Thm. 4]. However, as we have
been unable to �nd a direct reference we supply a proof.

A.7.2. Proposition. Let P = 〈P,∧,∨, 0, 1〉 be a �nite distributive lattice which
is projective in the class DL and let D be a (lower bounded) distributive lattice.
Then for any h : P→∧ D (h : P→∧,0 D) there is g : P→∧,∨ D (g : P→∧,∨,0 D).
Furthermore, the function g is injective whenever h is.

Proof:
Let h : P→∧ D be given. Since P is assumed to be projective in the class DL it
follows from Theorem A.7.1 that the poset J0(P) is a meet semi-lattice which is
a subalgebra of the meet semi-lattice reduct of P. Consequently, restricting h to
J0(P) we obtain a function h0 : J0(P) ↪→∧ D. Because the lattice reduct of P is
projective in the class DL, it follows from [17, Thm. 4] that by letting

g(a) :=
∨
{h0(b) ∈ D : J0(P ) 3 b ≤ a},

we obtain a function g : P →∧,∨ D. If D is lower bounded with least element 0
then g(0) = h0(0) = h(0) and so g(0) = 0, provided that h(0) = 0.

For the last part of the statement assume that the function h is injective.
Since the function h preserves meets, it follows that h must be order-re�ecting.
It is easy to see that g(a) ≤ h(a) for all a ∈ P . It follows that if a, b ∈ P are such
that g(a) ≤ g(b), then for all c ∈ J0(P ) with c ≤ a we have

h(c) = g(c) ≤ g(a) ≤ g(b) ≤ h(b),

and consequently c ≤ b. Because P is �nite a must be a join of the join-irreducible
elements below it and hence a ≤ b. This shows that g is injective. 2

Recall that an upper bounded distributive lattice is well-connected precisely
when its top element is join-irreducible. Knowing this the following is an imme-
diate consequence of Proposition A.7.2 above.

A.7.3. Corollary. Let P = 〈P,∧,∨, 0, 1〉 be a well-connected �nite distributive
lattice which is projective in the class DL and let D be a bounded distributive
lattice. Then for any h : P →∧,0,1 D there is g : P →∧,∨,0,1, D which is injective
whenever h is.
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Finite projective semi-lattices We conclude this section by recalling a useful
description of a large class of projective meet semi-lattices.

A.7.4. Theorem ([159, Cor. 5.4]). The meet semi-lattice reduct of any �nite dis-
tributive lattice is projective in the class of meet semi-lattices.

As an immediate consequence we obtain that for any surjection h : D �∧ E
between �nite distributive lattices there must be a function g : E→∧ D such that
h ◦ g is the identity on E. In particular, the function g must be injective.

A.8 Lattice completions

We here collect some basic facts and de�nitions concerning di�erent types of
completions of lattices.

Completions A lattice L = 〈L,∧,∨〉 is complete provided that every subset S
of L has a least upper bound, denoted by

∨
S and referred to as the join of S,

or equivalently every subset S of L has a greatest lower bound, denoted by
∧
S

and referred to as the meet of S. A completion of a lattice L is a complete lattice
C together with an embedding of lattices L ↪→ C. A lattice completion L → C
which preserves all existing meets (joins) in L is calledmeet-regular (join-regular).
A lattice completion which is both meet-regular and join-regular is called regular .

Polarities We now describe a general template for constructing completions of
lattices going back to Birkho� [38, Chap. IV], see, e.g., also [104, 108, 148, 113].
A polarity is a tuple (W0,W1, N) where N ⊆ W0 ×W1 is a binary relation. Any
polarity (W0,W1, N) induces a pair of functions

LN : ℘(W1)→ ℘(W0) and UN : ℘(W0)→ ℘(W1)

given by

LN(X) = {w ∈ W0 : ∀u ∈ X (wNu)} and UN(Y ) = {w ∈ W1 : ∀v ∈ Y (vNw)}.

In cases where no confusion can arise we may simply omit the subscripts. It
is easy to see that, considered as maps between posets W0 = 〈℘(W0),⊆〉 and
W1 = 〈℘(W1),⊆〉, both LN and UN are antitone and satisfy

Y ⊆ LN(X) if, and only if, X ⊆ UN(Y ),

for all X ∈ ℘(W1) and Y ∈ ℘(W0). Consequently, these maps form a Galois
connection from the poset W0 to the poset W1. Therefore, by Proposition A.1.3
we obtain two closure operators LNUN : W0 →W0 and UNLN : W1 →W1, which
we denote by γN and δN respectively. Since the poset W0 is complete, it follows
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from Proposition A.1.1 that the set of γN -closed elements forms a complete lattice
under set-theoretic inclusion with meets and joins given by

∧
i∈I

Zi :=
⋂
i∈I

Zi and
∨
i∈I

Zi := γN

(⋃
i∈I

Zi

)
,

for all sets {Zi : i ∈ I} of γN -closed elements. A similar construction is given by
considering the δN -closed sets resulting in a complete lattice which is the order
dual of the lattice of γN -closed sets.

Ideal completions Given a lattice L with a least element, the set of ideals is
closed under arbitrary intersections and hence by Proposition A.1.1 we obtain
a closure operator on the poset 〈℘(L),⊆〉 by mapping every subset to the least
ideal containing it. In case L does not contain a least element we obtain a
closure operation on the poset 〈℘(L)\{∅},⊆〉 by mapping any non-empty set to
the least ideal containing it. In either case we obtain by Proposition A.1.1, a
lattice consisting of all ideals of L which we denote by Idl(L). The map a 7→ ↓a
is evidently a lattice embedding from L into Idl(L). In case L has a least element
the lattice Idl(L) will be complete and hence a completion of L called the ideal
completion. If L does not have a least element then neither does Idl(L). In
particular, this lattice will not be complete. However, the lattice Idl0(L) obtained
by adding a least element to Idl(L) will be complete and hence a completion of L.
Nevertheless, we may in some cases still refer to Idl(L) as the ideal completion of L
even when L lacks a least element. For any lattice L the ideal completion Idl(L),
or Idl0(L) in case L lacks a least element, of L may alternatively be characterized
as the, up to isomorphism, unique completion e : L ↪→ C of L satisfying the
following two properties

(i) every element of C is a join of elements of the set e[L],

(ii) all subsets {a}∪T ⊆ L satisfy e(a) ≤
∨
e[T ], if, and only if, there is a �nite

subset T0 ⊆ T such that a ≤
∨
T0.

In case D is a bounded distributive lattice the ideal completion Idl(D) may be
identi�ed with the lattice of all open upsets of the dual Priestley space of D, see,
e.g., [27, Cor. 6.3].

MacNeille completions Since the set of normal ideals of any lattice L is closed
under arbitrary intersections we obtain a closure operator on the poset 〈℘(L),⊆〉
by mapping every subset to the least normal ideal containing it. Recall that,
unlike ideals, normal ideals are allowed to be empty. Thus by Proposition A.1.1
we obtain a complete lattice which we denote by L. As before we may readily
verify that the map a 7→ ↓a is a lattice embedding. Thus L is a completion of
L which we call the MacNeille completion. The MacNeille completion L of a
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lattice L may alternatively be characterized as the, up to isomorphism, unique
completion e : L ↪→ C of L with the following two properties

(i) every element of C is a meet of elements of the set e[L],

(ii) every element of C is a join of elements of the set e[L].

A completion satisfying (i) is often referred to as being meet-dense, while a com-
pletion satisfying (ii) is often referred to as being join-dense. From these two
properties it can be deduced that the MacNeille completion is always regular. In
case D is a bounded distributive lattice the MacNeille completion of D may be
identi�ed with the lattice of so-called regular open upsets of the dual Priestley
space of D, i.e., open upsets U of D∗ such that JD(U) = U, where for S ⊆ D∗,
we denote by J(S) and D(S) the largest open upset contained in S and the least
closed upset containing S, respectively. Note that this lattice will not necessarily
be distributive. When D is the (reduct of a) bi-Heyting algebra we have that
JD(U) = IC(U), for all open upsets U of D∗, with I(−) and C(−) denoting the
interior and closure operator respectively. We refer to [151, Sec. 3] for details.

Canonical completions Let L be a bounded lattice. As shown by Gehrke and
Harding [111] there is, up to isomorphism, a unique completion e : L ↪→ C of L
with the following three properties

(i) every element of C is a meet of joins of elements of the set e[L],

(ii) every element of C is a join of meets of elements of the set e[L],

(iii) all subsets S, T ⊆ L satisfy that
∧
e[S] ≤

∨
e[T ], if, and only if, there are

�nite subsets S0 ⊆ T and T0 ⊆ T such that
∧
S0 ≤

∨
T0.

This completion is called the canonical completion7 of L and is denoted by Lδ.
Various special cases of this type of completion have been studied independently
see, e.g., [175, 176, 114, 120]. The canonical completion of any bounded distribu-
tive lattice is again a bounded distributive lattice [114] and similarly the canonical
completion of any Heyting algebra is again a Heyting algebra [109, Sec. 2]. In
case D is a bounded distributive lattice, the lattice Dδ may be identi�ed with the
lattice of all upsets of the dual Priestley space of D, see, e.g., [114, Sec. 2].

A.9 Intermediate logics

We here review the basic de�nitions concerning intermediate logics. For an in
depth treatment of intermediate logics see, e.g., [51].

7Often also referred to as the canonical extension.
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The language of intuitionistic propositional logic Fix a countable set of
propositional letters Pℵ0 := {pn : n ∈ ω}. For each P ⊆ Pℵ0 let Fm(P) be the set
of formulas produced by the following grammar

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ, p ∈ P.

We write Fm for Fm(Pℵ0) and call the elements of this set formulas in the language
of intuitionistic propositional logic. In this language both the connectives ↔ and
¬ as well as the constant > are de�nable, e.g., as (ϕ → ψ) ∧ (ψ → ϕ), ϕ → ⊥,
and ⊥ → ⊥, respectively. If P = {pn1 , . . . , pnk} we may write ϕ(pn1 , . . . , pnk) to
indicate that ϕ belongs to Fm(P).

Intermediate logics By an intermediate (propositional) logic we shall under-
stand any proper subset of Fm containing the formulas

(i) p0 → (p1 → p1),

(ii) (p0 → (p1 → p2))→ ((p0 → p1)→ (p0 → p2)),

(iii) (p0 ∧ p1)→ p0,

(iv) (p0 ∧ p1)→ p1,

(v) p0 → (p1 → (p0 ∧ p1)),

(vi) p0 → (p0 ∨ p1),

(vii) p1 → (p0 ∨ p1),

(viii) (p0 → p2)→ ((p1 → p2)→ ((p0 ∨ p1)→ p2))),

(ix) ⊥ → p0,

and closed under the rules

ϕ→ ψ ϕ

ψ
(MP)

and

ϕ(pn1 , . . . , pnk)

ϕ(ψ1, . . . , ψk)
(Sub)

where ϕ(ψ1, . . . , ψk) denotes the result of uniformly substituting, for all i ∈
{1, . . . , k}, the formula ψi for the propositional letter pni . Since the collection
of intermediate logics is evidently closed under arbitrary intersections there will
be a least, with respect to set-theoretic inclusion, intermediate logic which we
will call (the) intuitionistic propositional logic8 and denote by IPC.

8Also called (the) intuitionistic propositional calculus.
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Algebraic semantics To any formula ϕ ∈ Fm we may associate a Heyting
algebra term tm(ϕ) in the evident way. Consequently, to any non-trivial variety
of Heyting algebras V we may associate a collection of formulas

LV := {ϕ ∈ Fm : V |= tm(ϕ) ≈ 1},

which is easily seen to be an intermediate logic. Conversely, to any intermediate
logic L we may associate a class of Heyting algebra equations,

E(L) := {tm(ϕ) ≈ tm(ψ) : ϕ↔ ψ ∈ L}

and hence also a variety of Heyting algebras

V(L) := {A ∈ HA : A |= E(L)},

which must necessarily be non-trivial. This establishes a one-to-one correspon-
dence between the class of non-trivial varieties of Heyting algebras and inter-
mediate logics. One part of this correspondence may be viewed as an algebraic
completeness theorem.

A.9.1. Theorem. Let L be an intermediate logic and let ϕ ∈ Fm. Then,

ϕ ∈ L if, and only if, V(L) |= tm(ϕ) ≈ 1.

Thus any intermediate logic is completely determined by its corresponding variety
of Heyting algebras.

Relational semantics The algebraic completeness of IPC together with the
discrete duality for Heyting algebras A.6.1 leads to an alternative semantics for
IPC based on posets. This is the so-called Kripke semantics [183], see also [142].
A valuation on a poset Q = 〈Q,≤〉 is a function V : P → Q+. We may then
de�ne the relation 
 between tuples 〈Q, V, q〉, with q ∈ Q, and formulas ϕ ∈ Fm
by the following recursion:

Q, V, q 
 ⊥ never,

Q, V, q 
 pi if, and only if, q ∈ V (pi),

Q, V, q 
 ϕ ∧ ψ if, and only if, Q, V, q 
 ϕ and Q, V, q 
 ψ,
Q, V, q 
 ϕ ∨ ψ if, and only if, Q, V, q 
 ϕ or Q, V, q 
 ψ,
Q, V, q 
 ϕ→ ψ if, and only if, for all r ≥ q, Q, V, r 
 ϕ implies Q, V, r 
 ψ.

If Q, V, q 
 ϕ for all q ∈ Q we write Q, V 
 ϕ. Similarly, if Q, V 
 ϕ for all
valuations V on Q we simply write Q 
 ϕ. Finally if F is a class of posets
we write F 
 ϕ if Q 
 ϕ for all Q ∈ F . A straightforward induction on the
complexity of ϕ ∈ Fm shows that

Q 
 ϕ if, and only if, Q+ |= tm(ϕ) ≈ 1,

where tm(ϕ) is the Heyting algebra term associated with the formula ϕ.
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Basic properties of intermediate logics Let L be an intermediate logic and
let F be a class of posets. We say that

(i) the logic L is sound with respect to the class F if ϕ ∈ L implies F 
 ϕ for
all ϕ ∈ Fm,

(ii) the logic L is complete with respect to the class F if F 
 ϕ implies ϕ ∈ L
for all ϕ ∈ Fm,

(iii) the logic L is determined, or characterized, by the class F if L is both sound
and complete with respect to F ,

(iv) the logic L is (Kripke) complete if is determined by some class of posets,

(v) the logic L has the �nite model property if it is determined by some class of
�nite posets,

(vi) the logic L is elementary if it is determined by a �rst-order de�nable class
of posets,

(vii) the logic L is canonical if the corresponding variety V(L) is closed under
canonical completions.

It is not hard to see that an intermediate logic L is complete if, and only if, the
corresponding variety of Heyting algebras V(L) is generated by {P+ : P ∈ F} for
some class of posets F . In particular, since all �nite Heyting algebras are of the
form P+ for some poset P we have that L enjoys the �nite model property if, and
only if, the variety V(L) is generated by its �nite members. Finally, since the
canonical completion of any Heyting algebra is a perfect lattice we have that any
canonical logic is necessarily complete.

Some intermediate logics Given a set of formula Φ in the language of intuitio-
nistic propositional logic we write IPC+Φ to denote the least set of formulas in the
language of intuitionistic propositional logic which contains the set IPC∪Φ and is
closed under the rules (MP) and (Sub). In case Φ is �nite, say Φ = {ϕ1, . . . , ϕn},
we write IPC + ϕ1 + . . . + ϕn in place of IPC ∪ Φ. We here give a list of some
of the intermediate logics which we often consider in this thesis. For any natural



A.9. Intermediate logics 201

number n ≥ 1 we de�ne

BWn := IPC +
n∨
i=0

(
pi →

∨
j 6=i

pj

)
,

BTWn := IPC +
n∨
i=0

(∧
j<i

pj → ¬¬pi

)
,

BCn := IPC +
n∨
i=0

(∧
j<i

pj → pi

)
,

BDn := IPC + βn,

where the formula βn is de�ned by the following recursion:

β1 := p0 ∨ ¬p0 and βn+1 := pn+1 ∨ (pn+1 → βn).

The logic BW1 is often called the Gödel-Dummett logic and is denoted by LC
while the logic BTW1 is often called the Jankov logic, or the logic of weak excluded
middle, and is denoted by KC. The width of a poset P is the least cardinal κ such
that any anti-chain in P is of size at most κ. Similarly, the top width of a poset
P is the cardinality of the set of maximal element of P. Finally, the depth of
a poset P is the least cardinal κ such that any chain in P is of size at most κ.
With these de�nitions the following characterizations may be established for any
natural number n ≥ 1, see, e.g., [51, Chap. 2.5].

1. The logic BWn is the logic determined by the class of posets of width at
most n.

2. The logic BTWn is the logic determined by the class of posets of bounded
top width at most n.

3. The logic BCn is the logic determined by the class of posets of cardinality
at most n.

4. The logic BDn is the logic determined by the class of posets of bounded
depth at most n.

Furthermore, all these logics are canonical and enjoy the �nite model property,
see, e.g., [51, Chap. 10�11].
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Samenvatting

In dit proefschrift, met de titel Snede en Completeringen: Algebraïsche aspecten
van structurele bewijstheorie, kijken we naar verschillende aspecten van het samen-
spel tussen structurele bewijstheorie en algebraïsche semantiek voor verschillende
niet-klassieke propositionele logica's. We verkennen verbanden tussen bewijsthe-
orie en algebra zoals ze betrekking hebben op structurele sequenten en hyperse-
quenten calculi voor intermediaire and substructurele logica's. Deze verdanden
zijn in het bijzonder sterk voor logica's die worden geassocieerd met de niveaus P3

en N2 van de substructurele hiërarchie van Ciabattoni, Galatos en Terui. Daarom
onderzoeken we verschillende algebraïsche aspecten van deze twee niveaus, waar-
bij completeringen van tralies and tralie-algebra's een prominente rol spelen.

Hoofdstuk 2 gaat over de kwestie welke intermediaire logica's een structurele
hypersequenten calculus toelaten. Deze vraag wordt beantwoord door de notie
van (∧, 0, 1)-stabiele logica's te introduceren, welke een versterking is van de notie
van (∧,∨, 0, 1)-stabiele logica's, geïntroduceerd door Guram en Nick Bezhan-
ishvili. We laten zien dat de (∧, 0, 1)-stabiele logica's precies de intermediaire
logica's zijn die een structurele hypersequenten calculus toelaten. We onder-
zoeken deze logica's verder op zichzelf en laten zien, in het bijzonder, dat ze
correct en volledig zijn ten opzichte van een eerste-orde de�nieerbare klasse van
partieel geordende verzamelingen.

In Hoofdstuk 3 introduceren we verschillende noties van MacNeille en canon-
ieke overdraagbaarheid voor eindige tralies, analoog aan Grätzers notie van ideaal-
overdraagbaarheid. We demonstreren hoe eindige overdraagbare tralies leiden tot
universele klasses van tralies gesloten onder completeringen. We concentreren ons
hoofdzakelijk op het leveren van de noodzakelijke of voldoende voorwaarden voor
een eindig distributief tralie om MacNeille overdraagbaar tralie voor verschillende
klasses van Heytingalgebra's te zijn. Als laatste bespreken we hoe MacNeille en
canonieke overdraagbaarheid van eindige distributieve tralies gerelateerd zijn aan
het probleem van het bepalen van de elementairheid en canonicteit van (∧,∨, 0, 1)-
stabiele logica's.
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Hoofdstuk 4 bevat een verkenning van het concept hyper-MacNeille comple-
tering, geïntroduceerd door Ciabattoni, Galatos en Terui, zoals het van toepass-
ing is in de context van Heytingalgebra's. We isoleren de notie van een De
Morgan gesupplementeerde Heytingalgebra als centraal voor het begrip van de
hyper-MacNeille completeringen van Heytingalgebra's. We laten zien dat de
MacNeille en hyper-MacNeille completeringen overeenkomen voor De Morgan
gesupplementeerde Heytingalgebra's. Verder laten we zien dat de hyper-Mac-
Neille completering van een Heytingalgebra de MacNeille completering van een
De Morgan gesupplementeerde Heytingalgebra is. Als laatste geven we noodza-
kelijke en voldoende voorwaarden voor de hyper-MacNeille completering van een
Heytingalgebra om een reguliere completering te zijn.

Uiteindelijk stellen we, in Hoofdstuk 5, een eigenschap vast, in de stijl van
Glivenko, voor de variëteit van integraal gesloten geresidueerde tralies in relatie
tot de variëteit van tralie-groepen. Dit wordt gebruikt voor een niet-standaard se-
quenten calculus voor de equationele theorie van integraal gesloten geresidueerde
tralies. Met deze calculus bewijzen we de beslisbaarheid van de equationele theo-
rie van integraal gesloten geresidueerde tralies. Ten slotte vergelijken we de equa-
tionele theorie van integraal gesloten geresidueerde tralies met de equationele the-
orieën van pseudo BCI-algebras, semi-integrale geresidueerde partieel geordende
monoïden en algebras voor Casaris comparatieve logica.



Abstract

In this thesis, entitled Cuts and Completions: Algebraic aspects of structural proof
theory, we look at di�erent aspects of the interplay between structural proof the-
ory and algebraic semantics for several non-classical propositional logics. Con-
cretely, we explore connections between proof theory and algebra as they relate
to structural sequent and hypersequent calculi for intermediate and substructural
logics. Such connections are particularly strong for logics associated with the lev-
els P3 and N2 of the substructural hierarchy introduced by Ciabattoni, Galatos,
and Terui. Therefore, we investigate di�erent algebraic aspects of these two levels.
Among the algebraic aspects considered, completions of lattices and lattice-based
algebras take on a prominent role.

In Chapter 2 we consider the question of which intermediate logics admit a
structural hypersequent calculus. This question is answered by introducing the
notion of (∧, 0, 1)-stable logics which is a strengthening of the notion of (∧,∨, 0, 1)-
stable logics introduced by Guram and Nick Bezhanishvili. We show that the
(∧, 0, 1)-stable logics are precisely the intermediate logics which admit a structural
hypersequent calculus. We further investigate these logics in their own right,
showing in particular that they are all sound and complete with respect to a
�rst-order de�nable class of partially ordered sets.

In Chapter 3 we introduce various notions of MacNeille and canonical trans-
ferability for �nite lattices analogous to Grätzer's notion of (ideal) transferability.
We show how �nite transferable lattices give rise to universal classes of lattices
closed under completions. We focus mainly on providing necessary or su�cient
conditions for a �nite distributive lattice to be MacNeille transferable for di�erent
classes of Heyting algebras. Lastly, we discuss how MacNeille and canonical trans-
ferability of �nite distributive lattices is related to the problem of establishing the
elementarity and the canonicity of (∧,∨, 0, 1)-stable logics.

Chapter 4 contains an investigation of the concept of hyper-MacNeille com-
pletions introduced by Ciabattoni, Galatos, and Terui as it applies in the setting
of Heyting algebras. We single out the notion of a De Morgan supplemented Hey-
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ting algebra as being central for understanding the hyper-MacNeille completions
of Heyting algebras. We show that the MacNeille and hyper-MacNeille comple-
tions coincide for De Morgan supplemented Heyting algebras. Furthermore, we
show that the hyper-MacNeille completion of any Heyting algebra is the Mac-
Neille completion of some De Morgan supplemented Heyting algebra. Lastly, we
provide necessary and su�cient conditions for the hyper-MacNeille completion of
a Heyting algebra to be a regular completion.

Finally, in Chapter 5 we establish a Glivenko-style property for the variety of
integrally closed residuated lattices with respect to the variety of lattice-ordered
groups. This is used to construct a non-standard sequent calculus for the equa-
tional theory of integrally closed residuated lattices. Using this calculus we prove
the decidability of the equational theory of integrally closed residuated lattices.
Lastly, we compare the equational theory of integrally closed residuated lattices
with the equational theories of pseudo BCI-algebras, semi-integral residuated par-
tially ordered monoids, and algebras for Casari's comparative logic.
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