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Nuance (Fr. nuer — to 
shade) means shade of 
color or meaning, 
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We live in a world where 
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visual, auditory and 
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escape our own confines. escape our own confines. 
This is not to find a 
respite from the noise, 
but in order to awaken 
from it.
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1
Introduction

Humans can learn about new concepts and solve complex problems from
limited, noisy or inconsistent observations and routinely make successful gen-
eralizations based on them. Yet it remains a key challenge for machines to
learn from such imperfect supervision. Most of today’s successes of data-driven
machine learning systems depend on the availability of massive amounts of
high-quality labeled data.

In the context of human learning, the argument of learning with imperfect
supervision has been advanced under the name “poverty of the stimulus,” pro-
posed by Chomsky [48]. It suggests that human children can learn something
as complex as a natural language from limited inputs of variable quality and
need no evidence for much of the knowledge they bring to the learning process.
To explain this, some researchers postulate the innateness of some knowledge.
Following this line of thinking, Chomsky noted [48]:

“My own suspicion is that a central part of what we call “learning” is
actually better understood as the growth of cognitive structures along an
internally directed course under the triggering and partially shaping effect
of the environment.”

Like humans, machines are confronted with the intriguing problem of the
poverty of stimulus in learning and knowledge acquisition, although capturing
such human-level learning abilities in machines, given imperfect supervision,
remains a fundamental challenge in many domains [168]. In machine learning,
a similar discussion has been put forward on how learning algorithms can deal
with the problem of poverty of stimulus. It has been argued that a learner that

1



2 Chapter 1. Introduction

makes no prior assumptions has no rational basis for generalizing over unseen
instances [199], which implies “the futility of unbiased learning”.1

The performance of machine learning models is often strongly correlated with
the amount of available labeled data: the more data you have, the more accurate
your model will be [121, 269]. However, in many real-world applications, large-
scale high-quality training data is not available. This highlights the increasing
need for building models with the ability to learn complex tasks with imperfect
supervision. In this thesis, we use “imperfect supervision” as an umbrella term
covering a variety of situations where the learning process is based on imperfect
training samples [334].

We focus on language understanding and reasoning as a pivotal problem in arti-
ficial intelligence. Understanding language is one of the extraordinary cognitive
abilities of humans. There have been several attempts to study whether non-
human animals can acquire human language [219], like Project Nim,2 a research
project that was mounted in the 1970s to determine whether a chimpanzee,
named Nim Chimpsky, raised in close contact with humans could develop a
limited language. Regardless of whether at the end of the project Nim was
using language to communicate or simply going through a bag of tricks to get
things, Nim’s language was much more limited compared to what a human
child can develop in the early years. This indicates that achieving human-level
understanding and generation of language would not be an easy goal for ma-
chines either and despite the good performance on specific benchmark datasets,
machines are nowhere near the skill of humans at language understanding and
reasoning.

Here, in this thesis, we concentrate on language understanding and reasoning in
more principled ways to improve the learning process than ad-hoc and domain
or task-specific tricks to improve the output. We investigate our ideas on a wide
range of sequence modeling and language understanding tasks.

The main problem we study in this thesis is the poverty of stimulus for learning
algorithms and how to overcome this problem, we focus on i) employing prior
knowledge, ii) augmenting data and learning to learn how to better use the data, and
iii) introducing inductive biases into learning algorithms, all to improve the learning
process. We believe these approaches are important ways to move toward better
machine learning systems that are able to generalize over observed imperfect
supervision signals. As Mitchell [198] already states:

“If biases and initial knowledge are at the heart of the ability to generalize

1There has been a long discussion between rationalists and empiricists in philosophy and
linguistics. Here, we just want to draw a connection between the process of learning in humans
and machines in terms of the poverty of stimulus.

2https://wikipedia.org/wiki/Nim_Chimpsky#Project_Nim

https://wikipedia.org/wiki/Nim_Chimpsky#Project_Nim


1.1. Problem Description and Research Questions 3

beyond observed data, then efforts to study machine learning must focus
on the combined use of prior knowledge, biases, and observation in guiding
the learning process. It would be wise to make the biases and their use
in controlling learning just as explicit as past research has made their
observations and use.”

There are many domains and applications that suffer from the lack of a large
amount of high quality labeled data, since it maybe impossible or economically
unreasonable to create such training datasets. Building machine learning sys-
tems that can learn with imperfect supervision dramatically extends the scope
where AI-powered systems can be applied, and more generally, contributes to
the broader goal of democratizing AI.

1.1 Problem Description and Research Questions

Curating a large amount of high quality labeled training data has become the
primary bottleneck in developing new methods and applications in machine
learning [226]. In practice, to deal with data scarcity in many tasks and appli-
cations, we can use higher-level approaches to provide supervision signals for
training learning algorithms. This can be done for instance by:

• Using distant, or heuristic supervision [62, 79, 83, 85, 226, 226, 229, 251, 290];
• Using incidental signals that exist in the data and the environment inde-

pendently of the tasks and that are co-related to the target tasks [239];
• Introducing a form of structured prior knowledge [66, 68];
• Exploiting noisy and inaccurate labels [31, 137, 172, 189, 216, 217, 226, 228,

284];
• Using indirect supervision, like providing supervision by specifying con-

straints that should hold over the output space [51, 265];
• Applying bootstrapping, self-supervised feature learning, and data aug-

mentation to make statistically efficient reuse of available data [59, 94, 95,
202, 307];

• Using transfer learning to generalize knowledge across domains and
tasks [241];

• Using active learning and response-based supervision in which the model
receives feedback from interacting with an environment [51, 230];

• Zero/one/few-shot learning [99, 259, 260, 294];
• Injecting inductive biases into algorithms to generalize better on unob-

served data [53, 54, 75].
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(a) Part I (b) Part II (c) Part III
Figure 1.1: Different types of imperfection in the supervision that we deal with in each part of
this thesis.

In a general supervised learning scenario, each training sample, which is used as
the supervision signal, consists of a feature vector (also called data instance) and
a label. However, in many domains and applications, there is an imperfection
in the supervision signal. Here, in this thesis, we focus on two main problems:
dealing with noisy training data and dealing with limited training data. We
formulate the main research question addressed in this thesis as follows:

RQ-Main How can we improve the learning process for language understand-
ing tasks, if the supervision signal is noisy in quality or limited in
quantity?

Based on the above terminology, i.e., features versus label and noisy versus limited,
we can presume different types of imperfections in the supervision signal. In
each part of this thesis, we target one or some of these types and proposed
ideas that can improve the learning process with that type of imperfection in
supervision. Figure 1.1 summarizes the different types of imperfection of the
supervision that we consider in each part of this thesis. In Part I of the thesis, we
address the problem of noisy features. We propose robust models that can deal
with non-relevant terms in relevant documents when modeling the notion of
relevance in the context of relevance feedback tasks for document ranking. We
also propose models that are capable of detecting and ignoring unstable features
that change over time when learning representations from data that evolves
over time, as noisy factors in the data. We also partly address the problems
of noisy labels by modeling the relevance in pseudo-relevance feedback tasks
for document ranking, where top-k ranked documents in a retrieval run are
assumed as relevant documents, while this assumption does not hold for all
cases.

The proposed models in Part I organized around the idea of exploring how
the structure of the data can be incorporated as prior knowledge to learn
representations that are more robust against noise and changes in the data over
time. The following research question is central to Part I of the thesis:
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RQ-1 How to use the structure of the data as prior knowledge to learn
robust and effective representations of entities and concepts, when
the data is noisy or variable over time?

In Part II of the thesis, we target the problem of noisy or weak labels. We study
how we can develop neural networks that can learn from weakly annotated
training samples with the ability to go beyond the imperfection of the weak
labels. We study different architectural choices and objective functions for
neural ranking models to find a more noise-tolerant model when learning from
pseudo-labels. We also introduce ideas that meta-learn the fidelity of weakly
annotated labels and modulate the learning process based on the fidelity scores
of weakly labeled samples. In fact, in this part, we make assumptions in the act
of observing the data, like how to select the data based on the fidelity of data
points, which is also a form of incorporating knowledge and biases. In this part,
we address the following research question:

RQ-2 How to design learning algorithms that can learn from weakly
annotated samples, while generalizing over the imperfection in their
labels?

In Part III, we deal with the problem of limited labeled data, for instance, in the
context of bAbI reasoning tasks with 1k training samples. We also study cases
where we have a lot of labeled samples, but with limited coverage, which can
be seen as a limitation in the diversity of feature vectors. For instance, in the
context of algorithmic tasks, with the intention of assessing the ability of models
on length generalization, we have plenty of training data but the distribution
of sample’s length in training is different from the test set. In this part, we
investigate the idea of injecting some inductive biases3 into models in order to
encode modeling assumptions that help the models to be more data efficient
and generalize better. The main research question that is addressed in Part III
is:

RQ-3 How can inductive biases help to improve the generalization and
data efficiency of learning algorithms?

1.1.1 Language Understanding and Sequence Modeling Tasks

We study our research questions in the context of sequence modeling and
natural language understanding, generation, and reasoning tasks. In the course

3Inductive biases are “any biases for choosing one generalization over another, other
than strict consistency with the observed training samples,” as defined by Mitchell [198]. We
elaborate on this definition at the beginning of Part III.
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of this thesis, we cover a wide range of tasks, including:

• Assessing relevance for ranking (Chapter 2, 4, 5);

• (Pseudo)-relevance feedback for document ranking(Chapter 2);

• Contextual suggestion and recommendation [126] (Chapter 2);

• Text classification (over time) [139] (Chapter 3);

• Sentiment analysis [204, 237, 238] (Chapter 5);

• Machine Translation (Chapter 6);

• Natural language reasoning—bAbI tasks [302] (Chapter 6);

• Broad context language modeling [211] (Chapter 6);

• Open-domain question answering [90, 96] (Chapter 6);

• Modeling the structure in natural language sentences—subject-verb agree-
ment task [178] (Chapter 6);

• Learning to execute computer programs [326] (Chapter 6);

• Algorithmic problems, like arithmetic and sequence memorization tasks
[154] (Chapter 6).

Besides the challenges of learning from imperfect supervision in many of these
tasks, some of them are difficult tasks that require, for instance, learning rich
representations, or capturing complex underlying relations, or detecting and
understanding abstract concepts and reasoning about them. Although we
mainly focus on sequence modeling, text processing, and language-related
tasks and evaluate our proposed ideas on these tasks, many of the proposed
algorithms in this thesis can be easily extended to other domains like computer
vision.

In the next section, we present an overview of the thesis and introduce the
structure of the content and summarize different chapters in each part of the
thesis.
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1.2 Thesis Overview

This thesis consists of the introductory matter, followed by five main chapters
that are divided into three parts as described in the previous section. 4 Finally,
it closes off with the Conclusions and Bibliography.

PART I: Structure of the Data as Prior Knowledge

In this part, we explore how taking the general structure of data into account
can help to estimate representations that capture only the significant features
when the data is noisy and highly variant over time. We break our discussions
in this part of the thesis into two chapters:

Chapter 2: Learning neither General, nor Specific, but Significant Represen-
tations

In this chapter, we address the following research question:

RQ-1.1 How to learn robust representations for entities and abstract con-
cepts that are affected by neither undiscerning general, nor noisy
accidental features, given the structural relations in the data?

We introduce significant words language models (SWLM) [62] to learn a representa-
tion for a set of textual entities, where this representation captures all, and only,
the significant shared features from these entities. SWLM adjusts the weights
of features to decrease the weight of noisy terms that are either well explained
by all the entities, i.e., too general or only explained by a specific entity in the
set, i.e., too specific, which eventually results in having the significant features
left in the model. We employ SWLM in two language understanding tasks: the
feedback problem in document ranking [64, 66], and group profiling in content
personalization and recommendation tasks [67, 69]. We show how SWLM is
remarkably robust against noisy features like non-relevant terms in relevant
documents in the feedback task.

Chapter 3: Representational Separability for Hierarchically Structured Data

In this chapter, we address the following research question:

4This thesis consists of papers that contribute to the fields of information retrieval, natural
language processing, and machine learning, thus the terminology used in different parts might
slightly change accordingly.
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RQ-1.2 How to learn separable representations for hierarchically structured
entities that are less sensitive to structural changes in the data and
more transferable across time?

We extend significant words language models to hierarchically structured data and
introduce hierarchical significant words language models (HSWLM) [68, 70] which is
an iterative approach that learns representations for hierarchical entities that are
highly separable as SWLM removes the features that are well explained by either
the ancestors (general features) or individual descendants (specific features).
In this chapter, we discuss what makes separability a desirable property for
classifiers and show how obtaining this property increases the robustness of
representations against the structural changes in the data during the time.

PART II: Learning with Weak Supervision

In this part, we study how we can supervise machine learning systems by
labeling training data programmatically instead of labeling by hand and discuss
how to design neural networks that learn to go beyond the imperfection of the
weakly annotated data. We break this into two chapters:

Chapter 4: Learning from Pseudo-Labels

In this chapter, we address the following research question:

RQ-2.1 How can we train neural networks using programmatically gener-
ated pseudo-labels as a weak supervision signal, in a way that they
exhibit superior generalization capabilities?

We propose to train a neural ranking model using weak labels that are obtained
automatically without human annotators or any external resources (e.g., click
data). We train a set of simple yet effective neural ranking models and study
their effectiveness under various learning scenarios, i.e., point-wise and pair-
wise, different objective functions, and using different input representations [84].
We also discuss how privacy preserving approaches can benefit from models
that are capable of learning from weak signals, where instead of labels from the
original sensitive training data a noisy version is provided [71].

Chapter 5: Learning from Samples of Variable Quality

In this chapter, we focus on the following research question:
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RQ-2.2 Given a large set of weakly annotated samples and a small set of
samples with high-quality labels, how can we best leverage the
capacity of information in these sets to train a neural network?

In this chapter we introduce Learning with Controlled Weak Supervision (CWS) and
Fidelity Weighted Learning (FWL), two semi-supervised approaches for training
neural networks, where we have a large set of data with weak labels and a small
amount of data with true labels. In CWS we train two neural networks in a
meta-learning setup: a target network, the learner, and a confidence network,
the meta-learner. The target network is optimized to perform a given task and
is trained using a large set of unlabeled data that are weakly annotated. We
propose to control the magnitude of the gradient updates to the target network
using the scores provided by the second confidence network, which is trained
on a small amount of supervised data. Thus we avoid that the weight updates
computed from noisy labels harm the quality of the target network model.

FWL is a student-teacher approach in which we modulate the parameter up-
dates to a student network (trained on the task we care about) on a per-sample
basis according to the posterior confidence of its label-quality estimated by a
teacher (who has access to the high-quality labels).

PART III: Injecting Inductive Biases for Data Efficiency

In this part, we discuss injecting inductive biases into learning algorithms as a
way to help them to come up with more generalizable solutions when they are
provided with limited observations. We further discuss how we can improve the
generalization of Transformers [291], the self-attentive feed-forward networks
for sequence modeling, by introducing a recurrent inductive bias into their
architecture.

Chapter 6: Recurrent Inductive Bias for Transformers

In this chapter, we address the following research question:

RQ-3.1 How can we improve the generalization and data efficiency of self-
attentive feed-forward sequence models by injecting a recurrent
inductive bias?

We introduced the Universal Transformer [75], a self-attentive concurrent-
recurrent sequence model, which is an extension of the Transformer model [292].
The Universal Transformer introduces recurrence in depth by repeatedly mod-
ifying a series of vector representations for each position of the sequence in
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parallel, by combining information from different positions using self-attention
and applying a recurrent transition function across all time steps. In the sim-
plest form, a Universal Transformer with a fixed number of iterations is almost
equivalent to a multi-layer Transformer with tied parameters across all its layers.
By sharing weights, we can save massively on the number of parameters that
we are training and fewer parameters means that we learn faster with fewer
data points. We show that the elegant idea of introducing recurrence in depth
enables the Universal Transformer to extrapolate from training data much better
on a range of algorithmic and language understanding tasks [72, 75].

While the three parts of the thesis offer a complete story aligned with the
goal of improving the learning process by incorporating prior knowledge, introducing
the right biases, and making best use of the observations from the data, they can
be read independently. Each of the chapters of the thesis also has its own
independent research questions, proposed ideas, and take home messages, but
we recommend reading them in the order in which they appear in the parts.

1.3 Origins

Next, we present the origins of each chapter in terms of the papers they are
based on.

Part I: Structure of the Data as Prior Knowledge

Chapter 2: Learning neither General, nor Specific, but Significant Representations
• Dehghani, M., Azarbonyad, H., Kamps, J., Hiemstra, D., and

Marx, M. (2016c). Luhn revisited: Significant words language
models. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, CIKM ’16.

• Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016d).
Generalized group profiling for content customization. In CHIIR
’16, CHIIR ’16.

• Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016f).
Significant words language models for contextual suggestion.
Proceedings National Institute for Standards and Technology. NIST
Special Publication: SP, 500.

• Dehghani, M. (2016). Significant words representations of entities.
In Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’16 (SIGIR
Doctoral Consortium Award).

MD designed the models, implemented the algorithms, ran the experiments, and
did most of the writing. HA helped with the implementation and experiments. JK
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and DH helped with designing the model. HA, JK, DH, and MM contributed to
the writing.

Chapter 3: Representational Separability for Hierarchically Structured Data

• Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016e).
On horizontal and vertical separation in hierarchical text classifi-
cation. In The proceedings of ACM SIGIR International Conference on
the Theory of Information Retrieval, ICTIR’16 (Best Paper Award).

• Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016g).
Two-way parsimonious classification models for evolving hierar-
chies. In Proceedings of Conference and Labs of the Evaluation Forum,
CLEF ’16 (Best Paper Honorable Mention).

MD designed the models, implemented the algorithms, ran the experiments, and
did most of the writing. HA helped with the implementation and experiments. JK
helped with designing the model. HA, JK, and MM contributed to the writing.

Part II: Learning with Weak Supervision

Chapter 4: Learning from Pseudo-Labels

• Dehghani, M., Zamani, H., Severyn, A., Kamps, J., and Croft,
W. B. (2017g). Neural ranking models with weak supervision.
In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’17.

• Dehghani, M., Azarbonyad, H., Kamps, J., and de Rijke, M. (2017a).
Share your model instead of your data: Privacy preserving mimic
learning for ranking. In SIGIR Workshop on Neural Information
Retrieval, SIGIR-NeuIR’17.

• Dehghani, M., Rothe, S., Alfonseca, E., and Fleury, P. (2017d).
Learning to attend, copy, and generate for session-based query
suggestion. In Proceedings of The international Conference on Infor-
mation and Knowledge Management, CIKM’17.

MD designed the models, implemented the algorithms, ran the experiments, and
did most of the writing. SR and HZ helped with designing the models. SR helped
with the implementation. HZ, HA, AS, SR, and JK helped with designing the
experiments. EA and PF mentored the (internship) project. HZ, HA, JK, BC, MdR,
SR, AS, and PF helped with the writing.

Chapter 5: Learning from Samples of Variable Quality

• Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., and Schölkopf,
B. (2018). Fidelity-weighted learning. In International Conference
on Learning Representations, ICLR’18.
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• Dehghani, M., Severyn, A., Rothe, S., and Kamps, J. (2017f).
Learning to learn from weak supervision by full supervision.
In NIPS2017 workshop on Meta-Learning, NIPS-MetaLearn’17.

• Dehghani, M., Severyn, A., Rothe, S., and Kamps, J. (2017e).
Avoiding your teacher’s mistakes: Training neural networks with
controlled weak supervision. arXiv preprint arXiv:1711.00313.

MD designed the models, implemented the algorithms, ran the experiments, and
did most of the writing. AM helped with designing the models. AM, SG, JK, and
AS helped with designing the experiments. AM, SG, AS, SR, JK, and BS helped
with the writing.

Part III: Injecting Inductive Biases for Data Efficiency

Chapter 6: Recurrent Inductive Bias for Transformers
• Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser,

Ł. (2019b). Universal transformers. In International Conference on
Learning Representations, ICLR’19.

• Dehghani, M., Azarbonyad, H., Kamps, J., and de Rijke, M. (2019a).
Learning to transform, combine, and reason in open-domain
question answering. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining, WSDM ’19.

MD co-designed the core model (first paper) with SG, and MD extended the model
(second paper). MD implemented the algorithms, ran all the experiments, and helped
with the writing. SG and OV mentored the (internship) project. SG led the writing. OV,
JU, and LK helped with designing the model and designing the experiments. OV, JU, LK,
HA, JK, and MdR helped with the writing.

The thesis also indirectly builds on the following papers (listed in reverse
chronological order):

• Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., and Schölkopf, B. (2019c).
Learning from samples of variable quality. In ICLR workshop on Learning
from Limited Labeled Data, ICLR-LLD’19.

• Dehghani, M. (2018). Toward document understanding for information
retrieval. ACM SIGIR Forum, 51(3).

• Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., and Kamps,
J. (2018a). From neural re-ranking to neural ranking: Learning a sparse
representation for inverted indexing. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, CIKM
’18.
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• Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., and
de Rijke, M. (2018). HiTR: Hierarchical topic model re-estimation for
measuring topical diversity of documents. IEEE Transactions on Knowledge
and Data Engineering.

• Dehghani, M. and Kamps, J. (2018). Learning to rank from samples of
variable quality. In SIGIR 2018 Workshop on Learning from Limited or Noisy
Data for Information Retrieval.

• Zamani, H., Dehghani, M., Diaz, F., Li, H., and Craswell, N. (2018b).
Workshop on learning from limited or noisy data for information retrieval.
In The 41st International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’18.

• Azarbonyad, H., Dehghani, M., Marx, M., and Kamps, J. (2020). Learning
to rank for multi label text classification: Combining different sources of
information. In Journal of Natural Language Engineering.

• Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., and
Kamps, J. (2017a). Words are malleable: Computing semantic shifts in
political and media discourse. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM ’17.

• Kenter, T., Borisov, A., Van Gysel, C., Dehghani, M., de Rijke, M., and
Mitra, B. (2017). Neural networks for information retrieval. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval.

• Dehghani, M., Jagfeld, G., Azarbonyad, H., Olieman, A., Kamps, J., and
Marx, M. (2017b). On search powered navigation. In Proceedings of the
ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR
’17.

• Dehghani, M., Jagfeld, G., Azarbonyad, H., Olieman, A., Kamps, J., and
Marx, M. (2017c). Telling how to narrow it down: Browsing path recom-
mendation for exploratory search. In Proceedings of the 2017 Conference on
Conference Human Information Interaction and Retrieval, CHIIR ’17.

• Dehghani, M., Jagfeld, G., Azarbonyad, H., Olieman, A., Kamps, J., and
Marx, M. (2017c). Telling how to narrow it down: Browsing path recom-
mendation for exploratory search. In Proceedings of the 2017 Conference on
Conference Human Information Interaction and Retrieval, CHIIR ’17.

• Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., and
de Rijke, M. (2017b). Hierarchical re-estimation of topic models for mea-
suring topical diversity. In European Conference on Information Retrieval
(ECIR’17).
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• Dehghani, M., Azarbonyad, H., Kamps, J., Hiemstra, D., and Marx, M.
(2016b). Inoculating relevance feedback against poison pills. In 15th
Dutch-Belgian Information Retrieval Workshop, DIR 2016.

• Dehghani, M., Abnar, S., and Kamps, J. (2016a). The healing power of
poison: Helpful non-relevant documents in feedback. In Proceedings of
the 25th ACM International on Conference on Information and Knowledge
Management, CIKM ’16.

• Quiroz, L., Mennes, L., Dehghani, M., Kanoulas, E., et al. (2016). Distri-
butional semantics for medical information extraction. In CLEF Working
Notes, pages 109–122.

• Hashemi, S. H., Dehghani, M., and Kamps, J. (2015a). Parsimonious
user and group profiling in venue recommendation. Proceedings National
Institute for Standards and Technology, 500.

• Dehghani, M., Azarbonyad, H., Marx, M., and Kamps, J. (2015a). Learning
to combine sources of evidence for indexing political texts. In Proceedings
of the Dutch-Belgian Information Retrieval Workshop.

• Tabrizi, S. A., Dadashkarimi, J., Dehghani, M., Nasr Esfahani, H., and
Shakery, A. (2015). Revisiting optimal rank aggregation: A dynamic
programming approach. In Proceedings of the 2015 International Conference
on The Theory of Information Retrieval, ICTIR ’15.

• Azarbonyad, H., Saan, F., Dehghani, M., Marx, M., and Kamps, J. (2015b).
Are topically diverse documents also interesting? In International Confer-
ence of the Cross-Language Evaluation Forum for European Languages (CLEF).

• Azarbonyad, H., Dehghani, M., Marx, M., and Kamps, J. (2015a). Time-
aware authorship attribution for short text streams. In Proceedings of the
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Information Retrieval, SIGIR ’15.
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ings of the First International Workshop on Entity Recognition and Disambigua-
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The world is structured or at least, humans understand it in structural terms.
We approach new problems armed with extensive prior experience and knowledge
about these structures. When we learn, we either fit the new knowledge into
our existing structured representations or we adjust the existing structure to
better accommodate our new and the old observations [22]. Our brain uses
hierarchies to abstract away fine-grained differences and model different levels
of associations [21]. Using such a structure as a prior, we automatically condense
the information, which not only has the effect of removing impurity of the data
but also eliminates unnecessary details, which eventually helps us to memorize,
think and reason in a more efficient way.

When building intelligent machines, we need to consider that real-world data
can be complex, limited, highly variable, and noisy. However, in many cases,
there is a general structure that the data follows and taking this structure into
account facilitates modeling complex information, adds biases to compensate
for the limited availability of the data, discovers robust knowledge from the
data, and learns representations that are less affected by non-essential features.
In Part I of this thesis, we address one of our research questions:

RQ-1 How to use the structure of the data as prior knowledge to learn
robust and effective representations of entities and concepts, when
the data is noisy or variable over time?

Understanding language is a complex task and given imperfect supervision,
considering no knowledge as a prior in the learning process seems to be unreal-
istic even for humans:

“Narrowly limited extent of the available data [...] leaves little hope that
much of the structure of the language can be learned by an organism
initially uninformed as to its general character.” Chomsky [46]

In this part of the thesis, we focus on transforming textual data into digestible
representations, which is the key step for any data-oriented method employed
for language understanding [23]. We are concerned with questions surrounding
how we can best learn representations that are precise, robust against noise, and
transferable over time for textual entities that can be abstract concepts for which we
have no direct observation, for instance, learning to model topical relevance, given
a set of documents that are labeled as relevant, like learning a representation
for a parliamentary party, given speeches of its member.

In the first chapter of this part, Chapter 2, we address the following research
question:
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RQ-1.1 How to learn robust representations for entities and abstract con-
cepts that are affected by neither undiscerning general, nor noisy
accidental features, given the structural relations in the data?

We introduce significant words language models (SWLM) [62] of a set of documents,
that capture all, and only, the significant shared terms from these documents.
This is achieved by adjusting the weights of terms already well explained by the
document collection as well as the weight of terms that are only explained by in-
dividual documents, which eventually results in having the significant terms left
in the model. We apply the resulting models to two main language understand-
ing applications: the feedback problem in information retrieval [64, 66], and
group profiling in content personalization and recommendation tasks [67, 69].
We further show that SWLM are remarkably robust representations that are
insensitive to the noisy terms and at the same time interpretable by human
inspection.

Then, in the second chapter of this part, Chapter 3, we get down to the following
research question:

RQ-1.2 How to learn separable representations for hierarchically structured
entities that are less sensitive to structural changes in the data and
more transferable across time?

We extend significant words language models to hierarchical structures and intro-
duce hierarchical significant words language models (HSWLM) [68, 70] that learn
representations for hierarchical entities. HSWLM iteratively sparsifies the repre-
sentation of the entities by discarding features that are well explained by their
ancestors, i.e., general features, as well as features that reflect the characteristics
of individual descendants, i.e., specific features. This leads to representations
for entities that are both vertically and horizontally separable, in terms of their
position in the hierarchy. We discuss what makes separability a desirable prop-
erty for classifiers and show how obtaining this property leads to time-agnostic
representations, i.e., representations that are invariant to the structural changes
in the data during the time.

We show that by taking the structure and relations in the data as a prior knowl-
edge into account, we can effectively learn representations that are less affected
by noisy variant factors in the data. This can be also consider as a particu-
lar form of inductive bias that we will further discuss in Part III. We use the
learned representations to solve different language understanding tasks and ob-
serve boosts in performance, in particular, due to the robustness of the learned
representations against noise.



2
Learning neither General, nor Specific, but

Significant Representations

When learning representations of concepts and entities from the data,
there are general features that are propertyless common observations
that do not have enough expressivity to make distinctions, and
specific features that are unreliable rare observations that do not
generalize to all instances. Taking the structure and the relations in
the data into account can help learning representations that capture
only and all significant features and are less affected by the noisy
factors in the data.

2.1 Introduction

Humans instinctively know how to efficiently “select details” that are useful
for recognition and at the same time “abstract away” unnecessary or noisy
details [22, 107, 276]. This is, in fact, a survival trait, since we cannot possibly
save all the detail around us in our brain [278]. Hence, to define objects and
actions, we can extract a subset from an extensive but finite set of existing
features that are neither too specific, nor too general, but significant. In many cases,
this is done by analyzing inheritance (is-a) and composition (has-a) relationships

This chapter is based on [62, 66, 67, 69].
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Figure 2.1: Establishing a set of “Significant Words” based on Luhn [183].

between concepts, entities, and actions [28, 110].

Inspired by the way that human process the information at different levels of
abstraction, in this chapter, we explore ideas to address one of our research
questions:

RQ-1.1 How to learn robust representations for entities and abstract con-
cepts that are affected by neither undiscerning general, nor noisy
accidental features, given the structural relations in the data?

We present our ideas and discussions in the context of language understanding
tasks, in particular learning representations for textual entities for information
retrieval applications. As the modeling approach, we estimate a unigram
language model, or a so-called “bag of words” model, to represent an entity,
like a person, organization, category, etc, given a set of texts connected to the
entity. In fact, we assume that the textual documents associated with an entity
are samples drawn from the distribution of a model that represents the entity
and then estimate the model given these samples.

More specifically, we introduce significant words language models (SWLM) [66, 67,
69] as a family of models aimed at learning representations for an entity, given
a set of documents associated with the entity, so that all, and only, the significant
shared terms are captured in the representations. As a result, representations
learned by these models are not only distinctive but also supported by all the
documents in the set. In short, this is achieved by adjusting the weights of terms
already well explained by all the existing documents in the collection as well as
the weights of terms that are only explained by a specific document in the set,
which eventually results in having the significant terms left in the model.

The general idea of SWLM is inspired by the early work of Luhn [183], in which
he argues that to extract significant words, we need to avoid both common
observations and rare observations. Luhn assumed that frequency data can be
used to measure the significance of words concerning their ability to represent
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a piece of text. Considering Zipf’s Law, he simply devised a counting tech-
nique for finding significant words where he specified two cut-offs based on
collection frequency of terms, an upper and lower (see Figure 2.1), to exclude
non-significant words.

There have been efforts to bring this idea to estimate a more precise language
model, like mixture models [329] and parsimonious language models [136].
These work tried to improve the raw language model by eliminating the effect
of common terms from the model. However, instead of using fixed frequency
cut-offs, they made use of a more advanced way to do this. Hiemstra et al.
stated the following in their paper:

[. . . ] our approach bears some resemblance with early work on
information retrieval by Luhn, who specifies two word frequency
cut-offs, an upper and a lower to exclude non-significant words. The
words exceeding the upper cut-off are considered to be common and
those below the lower cut-off rare, and therefore not contributing
significantly to the content of the document. Unlike Luhn, we do not
exclude rare words and we do not have simple frequency cut-offs
[. . . ]

In a way, the idea of SWLM completes the cycle, implementing the vision of
Luhn. We introduce a meaningful translation of both specificity and generality
against significance in the context of learning representation for an entity given
the set documents associated with it. Then we propose an effective way of
estimating a model in which we learn a distribution over terms that is affected
by neither the common observations nor the rare observations.

While estimating SWLM, as a distribution over terms to represent an entity
given the set of documents associated with it, we cast aside terms that are not
specific enough to reflect features of the entity that makes its representation
distinguishable from other entities. At the same time, we abstract away from
noisy factors of variation that are document specific terms that are not general
enough to describe all the documents as a set representing the entity.

2.1.1 Preliminaries

In Part I of this thesis, i.e., Chapter 2 and 3, an “entity” can refer to a concept, a
person, an organization, a category, or an ideology [62]. The entity can be an
abstract entity for which we have no direct observation, for instance, learning
a representation for a parliamentary party, given speeches of its member, or
learning to model relevance, given a set of documents that are labeled as
relevant. We assume the cases where the entity is associated with a set of textual
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documents. The textual documents associated with an entity, for instance,
for the aforementioned examples, can be speeches given by the person, the
documents published by the organization, the associated text by instances of
the category, and the set of documents describing the ideology. Here, as the
modeling approach, we use “language model” and we stick to the simplest
form of language models, unigram language model, in which we assume that
a word sequence is generated by generating each word independently that
specifies a multinomial distribution over all the words. Thus, the probability of
a sequence of words would be equal to the product of the probability of each
word.

In order to model an observed sequence of words d, we assume it is generated
using a unigram language model q and we would like to infer q, i.e., estimate
the probability of each word w given the model, p(w|q), based on the observed
d.

As the standard and simple of estimating the language model, we can use
maximum likelihood estimator and find the q̂ that gives the observed data the
highest likelihood:

q̂ = arg max
q

p(d|q). (2.1)

By writing down the log-likelihood function and using the Lagrange multiplier
to combine the constraint of swinv p(w|d) = 1 with the original log-likelihood
function, we can get to a new unconstrained optimization problem. Then,
by taking partial derivatives of this function and setting them to zero, we can
obtain the solution for q which gives each word a probability equal to its relative
frequency in d:

p(w|q̂ =
c(w, d)
|d| , (2.2)

where c(w, d) is the count of word w in d and |d| is the length of d that is equal
to total number of word occurrences in d.

The unigram language model clearly makes unrealistic assumptions about inde-
pendent word occurrences in texts. To address this limitation, N-gram language
model captures some limited dependency between words and assumes the
occurrence of a word depends on the proceeding n� 1 words. However, as
the complexity of a language model increases, so does the number of param-
eters and we would need much more data to infer the model. Moreover, the
computational cost of complex language models is also a concern for some
of the large-scale retrieval or classification tasks. In information retrieval, bi-
gram or trigram language models tend not to improve much over the unigram
language model. This might be due to the data sparseness where bigram or
trigram language models overfit, or the information about presence or absence
of words and word frequencies may be sufficient to determine the relevance of
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a document while the exact word order may not be so important, unlike other
language understanding tasks like machine translation or speech recognition.
For machine translation, unigram language models are clearly insufficient and
more sophisticated language models would be needed [328].

Since a language model is a probabilistic model of text data, a direct way of
evaluating a language model would be to assess how well the model fits the
test data, for instance, using the likelihood of the test data given a model to be
evaluated, where a higher likelihood would indicate a better fit, thus a better
language model. However, fitting the data well does not necessarily imply
better performance for the task at hand. To avoid this gap, here we use an
indirect way of evaluating the quality of a language model by assessing their
contribution to the retrieval or classification performance.

2.1.2 Detailed Research Questions

We break down our main research question in this chapter into three concrete
research questions:

RQ-1.1.1 How to estimate a representation for a set of entities that captures
all, and only, the essential shared commonalities of these entities?

RQ-1.1.2 How do significant words language models capture the mutual
notion of relevance for a set of feedback documents and prevent
noisy terms by controlling the contribution of each of the documents
in the feedback model?

RQ-1.1.3 How well can significant words language models profile groups of
entities and how effective are these profiles in content customization
tasks?

In the following sections, we will address these research questions one by one.

2.2 Significant Words Language Models

In this section, we address the first research question of this chapter:

RQ-1.1.1 How to estimate a representation for a set of entities that captures
all, and only, the essential shared commonalities of these entities?

We introduce Significant Words Language Models and describe how to estimate
them. SWLM assumes that terms in the associated documents are drawn from
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three models: 1. A general model, representing common observations, 2. A specific
model, representing partial observations, and 3. A significant words model.
The significant words model is the latent model representing the essential fea-
tures of the entity. The general and specific models, however, are not necessarily
topic-centric models. In a way, they are supposed to represent two distributions
of terms that are not considered as significant information.

Each model is represented using a terms distribution, i.e., a unigram language
model, qsw, qg, and qs. We assume that each term in a document in the set is
generated by sampling from a mixture of these three models independently.
Thus, the probability of appearance of the term t in the document d is as follows:

p(t|d) = ld,sw p(t|qsw) + ld,g p(t|qg) + ld,s p(t|qs), (2.3)

where ld,x stands for p(qx|d) which is the probability of choosing the model qx
given the document d.

We estimate the general and specific models based on patterns of occurrences of
terms in different documents in the set and fix them in the estimation process
as infinitely strong priors. We consider the collection model, i.e., the set of all
documents, qC as an estimation for qg:

p(t|qg) = p(t|qC) =
c(t, C)

Ât02V c(t0, C)
, (2.4)

where c(t, C) is the frequency of term t in the collection. This way, terms that are
well explained by the collection model get high probability and are considered
as general terms.

Furthermore, we establish a definition for “specificity” with regards to our
main goal, which is estimating a representation for a set of documents, as being
supported by part of the documents in the set but not all. We estimate qs to
represent the probability of a term being partially observed as follows, and
normalize all the probabilities to form a distribution:

p(t|qs) = Â
di2D

✓
p(t|qdi) ’

dj2D
j 6=i

(1� p(t|qdj))

◆
, (2.5)

where P(t|qdi) = c(t,di)/Ât02di
c(t0,di). Intuitively, Equation 2.5 defines the probabil-

ity of term t to be a specific term, based on how much this term is important in
one of the documents but not others, marginalizing over all the documents in
the set D. This way, terms that are well explained in only one document but
not others get higher probabilities and are considered as insignificant specific
terms.
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Figure 2.2: Plate diagram of SWLM.

Having the above assumptions, the goal is to fit a log-likelihood model of gen-
erating all terms in the documents in the set to discover the term distribution
of the significant words model, qsw. Let D = {d1, . . . , dD} be the set of docu-
ments associated withe the entity we want to learn a representation for. The
log-likelihood function for the entire set of documents is:

log p(D|U) = Â
d2D

Â
t2V

c(t, d) log

0

@ Â
x2{sw,g,s}

ld,x p(t|qx)

1

A , (2.6)

where c(t, d) is the frequency of the term t in the document d, and U determines
the set of all parameters that should be estimated, U = {ld,sw, ld,g, ld,s}d2D [
{qsw}.

To fit our model, we estimate the parameters using the maximum likelihood
(ML) estimator. Therefore, assuming that documents are represented by a
multinomial distribution over the terms, we solve the following problem:

U⇤ = arg max
U

p(D|U) (2.7)

Assuming that Xd,t = {sw, g, s} is a hidden variable indicating which model
has been used to generate the term t in the document d, we can compute the
parameters using the Expectation-Maximization (EM) algorithm. The stages of
the EM algorithm are as follows:

E-Step

p(Xd,t = x) =
p(qx|d)p(t|qx)

Âx02{sw,g,s} p(qx0 |d)p(t|qx0)
(2.8)

M-Step

p(t|qsw) =
Âd2D c(t, d)p(Xd,t = r)

Ât02V Âd2D c(t0, d)p(Xd,t0 = r)
(2.9)

ld,x = p(qx|d) =
Ât2V c(t, d)p(Xd,t = x)

Âx02{sw,g,s} Ât2V c(t, d)p(Xd,t = x0)
(2.10)

Figure 2.2 represents the plate notation of SWLM. As it is shown, for each doc-
ument the contribution of each of the three models, i.e., ld,x for x 2 {sw, g, s},
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are estimated. It can be seen that the general model, qg, and the specific model,
qs are considered as external observations, which are involved in the estimation
process as infinitely strong priors.

In the next section, we employ SWLM in different applications in order to
assess its effectiveness in modeling an entity given a set of documents that
are associated with the entity. We evaluate SWLM on relevance feedback in
the retrieval task, where we need to model the set of relevant documents or
top-ranked documents in the initial retrieved results and use this model to
expand the user’s query to improve the retrieval performance by shrinking the
vocabulary gap between query and relevant documents. Furthermore, we use
SWLM as a group profiling approach in the task of contextual suggestion to
model preferences of a group of people and augment user profiles with the
profiles of implicit or explicit groups they belong to.

2.3 SWLM for Relevance Feedback

Modeling and assessing “relevance” is an important goal in information re-
trieval and search that requires understanding users’ queries, documents, and
the relation between them. One of the key factors affecting search quality is the
fact that user queries are ultra-short statements of their complex information
needs. Query expansion has been proven to be an effective technique to bring
agreement between user information need and relevant documents [125]. Tak-
ing feedback information into account is a common approach for enriching the
representation of queries and consequently improving retrieval performance.

In True Relevance Feedback (TRF), given a query and a set of judged documents,
either explicitly assessed by the user or implicitly inferred from user behavior,
the system tries to enrich the query representation to improve the performance
of the retrieval. However, feedback information is not available in most practical
settings. An alternate approach is Pseudo Relevance Feedback (PRF), also called
blind relevance feedback, which uses the top ranked documents in the initial
retrieved results for the feedback.

The main goal of feedback systems in the retrieval task is to make use of
feedback documents to estimate a more accurate query model representing
the notion of relevance. However, although documents in the feedback set
contain relevant information, there is always also non-relevant information. For
instance, in PRF, some documents in the feedback set might be non-relevant, or
in TRF, some documents, despite the fact that they are relevant, may contain
off-topic information and act like poison pills [277] by hurting the performance
of feedback systems. Such non-relevant information can distract the feedback
model by adding bad expansion terms, leading to topic drift [130, 188]. It has
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Standard-LM
prize 5.55e-02
nobel 3.36e-02
physics 2.35e-02
science 2.18e-02

...
time 1.68e-02

...
palestinian 1.34e-02
year 1.34e-02

...

General-LM
new 3.70e-03
cent 2.98e-03
two 2.97e-03
dollars 2.76e-03
people 2.71e-03

...
time 2.47e-03

...
year 2.16e-03

...

SMM [329]
prize 6.07e-02
nobel 4.37e-02
awards 3.43e-02
chemistry 3.23e-02
physics 2.82e-02
palestinian 2.18e-02
cesium 2.09e-02
arafat 1.94e-02
university 1.92e-02

...

Specific-LM
insulin 2.25e-02
palestinian 2.15e-02
dehmelt 1.81e-02
oscillations 1.79e-02
waxman 1.69e-02
marcus 1.69e-02
attack 1.61e-02

...
arafat 1.29e-02

...

SWLM
prize 6.02e-02
nobel 4.53e-02
science 2.68e-02
award 2.43e-02
physics 1.94e-02
winner 1.90e-02
won 1.80e-02
peace 1.80e-02
discovery 1.71e-02

...

Figure 2.3: Extracting significant terms from relevant feedback documents. (Topic 374 of the
TREC Robust04 test collection: “Nobel prize winners”.)

been shown that based on this observation, existing feedback systems are able
to improve the performance of the retrieval if feedback documents are not only
relevant, but also have a dedicated interest in the topic [130].

Significant words language model seems a great fit to this situation as it models
the the set of feedback documents by capturing the essential terms representing
a mutual notion of relevance, i.e., a representation of characteristic terms which
are supported by all the feedback documents.

Figure 2.3 shows an example of estimating language models from the set of
top seven relevant documents retrieved for topic 374, “Nobel prize winners,”
of the TREC Robust04 test collection. Terms in each list are selected from the
top-50 terms of the models estimated after stop word removal. Standard-LM is
the language model estimated using MLE considering feedback documents as
a single document. SMM is the language model estimated using the mixture
model [329], one of the most powerful feedback approaches, which generally
tries to remove background terms from the feedback model.

General-LM denotes the probability of terms to be common based on their
overall occurrence in the collection and Specific-LM determines the probability
of terms to be specific in the feedback set, i.e., being frequent in one of the
feedback documents but not others. The way in which the General-LM and
Specific-LM are estimated has been discussed in detail in Section 2.2. And
the last model in the figure is SWLM, which is the extracted latent model
with regards to General-LM and Specific-LM, using significant words language
models.

As can be seen, by considering feedback documents as a mixture of feedback
model and collection model, the mixture model [329] penalizes some general
terms like “time” and “year” by decreasing their probabilities. However, since
some frequent words in the feedback set are not frequent in the whole collection,
their probabilities are boosted, like “Palestinian” and “Arafat,” while they are
not good indicators for the whole feedback set. The point is that although these
terms are frequently observed, they only occur in some feedback documents not
most of them, which means that they are in fact “specific” terms, not significant
terms. By estimating both a general model and a specific model and taking them
into consideration, SWLM tries to control the contribution of each feedback
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document in the feedback model, based on its merit, and prevent the estimated
model to be affected by indistinct or off-topic terms, resulting in a significant
model that reflects the notion of relevance.

Here, we are going to address our second research question of this chapter:

RQ-1.1.2 How do significant words language models capture the mutual
notion of relevance for a set of feedback documents and prevent
noisy terms by controlling the contribution of each of the documents
in the feedback model?

We explain how to estimate SWLM for a set of feedback documents and discuss
its effectiveness in this task along with a set of analyses and ablation studies.

2.3.1 Language Models for Feedback

In information retrieval, language modeling is usually used to represent the user
query by estimating a query language model, qq, based on maximum likelihood
estimation: p(t|qq) = c(t,q)/|q|, where c(t, q) is the frequency of term t in q and
|q| is the total number of terms in the query. Then, after applying smoothing
methods on the language model of documents [330], the KL-divergence is
employed to score documents based on the negative KL-divergence between
the estimated language models of the query and each document document [167]:

Score(d, q) = �D(qq||qd). (2.11)

In the retrieval tasks, there might be a lack of agreement between the user and
the system in the form of the vocabulary missmatch between the user’s query
and relevant documents. To address this problem, a feedback language model,
qF that is estimated given the set of feedback documents is used to expand the
user’s query. A common approach for expanding the query is interpolating qF
with the original query model [2, 329]:

p(t|q0q) = (1� a)p(t|qq) + ap(t|qF ), (2.12)

where a controls the amount of feedback. Thereafter the expanded query model
is used in Equation 2.11 for ranking the documents.

The main goal of feedback methods is to estimate an effective feedback model,
qF , from the set of feedback documents. We can use significant words language
models to represent feedback documents. In this context, the significant words
are in fact words that are reflecting the notion of relevance. We use the ap-
proach described in Section 2.2, where we take the qsw as the qF and use it in
Equation 2.12 for expanding the query.
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Figure 2.4: Plate diagram of RSWLM.

2.3.2 Regularized SWLM

Using the original significant words language models for estimating the feed-
back model, the original query model has not been considered for estimating the
feedback model. Thus, in case where we only have a few relevant documents
in the feedback set for a query, the model could be distracted by non-relevant
information and converge to a local optimum point.

To cope with this problem, and avoid degradation in the performance, a solution
is to involve information from the original query [124]. Inspired by the work by
Tao and Zhai [274], we modify the estimation process of SWLM and estimate
Regularized Significant Words Language Models (RSWLM) by incorporating
the extra knowledge from the query model. We define a prior parameter and
employ maximum a posteriori to fit the model to feedback documents and solve
the following problem:

U⇤ := arg max
U

p(F|U)P(U) (2.13)

We define the a conjugate Dirichlet prior on qsw as follows:

p(qsw) _ ’
t2V

p(t|qsw)
bp(t|qq), (2.14)

where bp(t|qq) is the parameter of the Dirichlet distribution which in fact
performs as the additional pseudo-count for t to push the model qsw to assign a
higher probability to term t as it has a high probability in qq.

Generally speaking, this adds a bias in the estimation process to bend the
feedback model toward the original query model. Here, the value of b controls
the amount of this bias. Taking the conjugate prior into account, we conduct
the MAP estimation by updating Equation 2.9 in the EM algorithm as follows:

p(t|qsw) =
Âd2F c(t, d)p(Xd,t = sw) + bp(t|qq)

Ât02V Âd2F c(t0, d)p(Xd,t0 = sw) + b
(2.15)

So, by modifying the EM algorithm, we consider our observation from the
query model as a pseudo-document which makes the feedback model become
more rigid.
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Table 2.1: Statistics of the collections used for experimental evaluations.

Dataset TREC Track Queries #Docs #Queries
in TRF exp.

Robust04 TREC’04 Robust 301–450 and 601–700 528,155 217
WT10G TREC’09–’10, Web ad-hoc 451-550 1,692,096 81
GOV2 TREC’04–’06 Terabyte Track 701-850 25,178,548 134

Similar to the approach in [274], we initialize b with a large value, and then
dynamically decrease its value in each EM iteration until the point that we have
equal contributions of the original query and the feedback documents.

Figure 2.4 represents the plate notation of regularized significant words lan-
guage models. For each document contributions of each of the three models,
i.e., l’s, are estimated. The general model, qg, and the specific model, qs are con-
sidered as external observations, which are involved in the estimation process
as infinitely strong priors. It is noteworthy that fixing these parameters also
helps to decrease the number of local maximums. As illustrated in the diagram,
b plays the role of regularizing parameter.

Establishing a model consisting only of significant words using the fixed cut-
offs based on frequency of terms, as was originally proposed by Luhn [183],
runs the risk of leaving good expansion terms out, especially trimming the
model toward specific terms may lead to the loss of discriminative relevant
terms that can have a high impact on retrieval effectiveness. SWLM enables us
to reduce this risk as estimating a specific language model using Equation 2.5,
which empowers our estimation process to retain the significant terms that are
globally infrequent, but well supported by the feedback documents.

2.3.3 Experimental Setup

In this section, we describe the test collections used in our experiments as well
as the settings of our experiments. We use the Robust041, WT10G2, and GOV23

test collections, which are different in terms of both size and genre of documents.
Information about each collection is summarized in Table 2.1.

We have employed the Lemur toolkit and Indri4 search engine to carry out our
experiments. We have implemented SWLM and RSWLM in the Lemur project
framework. In all our experiments, we only use the “title” field of the TREC
topics as queries. We have used the Porter stemmer for stemming all queries
and document’s terms and removed stopwords using the standard InQuery

1https:// trec.nist.gov/data/robust/04.guidelines.html
2http:// ir.dcs.gla.ac.uk/test_collections/wt10g.html
3http:// ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
4http://www.lemurproject.org/

https://trec.nist.gov/data/robust/04.guidelines.html
http://ir.dcs.gla.ac.uk/test_collections/wt10g.html
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://www.lemurproject.org/
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stopword list. We have used the KL-Divergence model [167], with Dirichlet
smoothing [330], as the retrieval model in all of the experiments, including
initial retrieval as well as feedback runs. We set the Dirichlet smoothing prior
to 1, 000. In the feedback runs, for each collection and each method, we have
performed a full grid search and tuned the three main parameters (the value
of the feedback interpolation coefficient, the number of feedback documents,
and the number of expansion terms) by dividing the queries into three folds
and conducting 3-fold cross-validation with the same split for folding in all the
experiments. Also we have tuned the hyperparameters of each method during
the cross validation.

The Mean Average Precision (MAP) performance measure for top-1, 000 docu-
ments is used as the evaluation metric. Moreover, we report P@10 (precision at
10) for PRF and P@20 (precision at 20) for TRF as the indicators of the precision
for the first result page and first-two result pages, respectively. To avoid the
ranking effect5 [50] in the evaluation of the TRF task, we have used the modi-
fied freezing technique6 in the evaluation of the results of these experiments
[124, 243]. In addition to the above metrics, we also report robustness index,
RI(Q), which is also called reliability of improvement [55]. For a set of queries
Q, the RI measure is defined as: RI(Q) = N+�N�/|Q|, where N+ is the number
of queries helped by the feedback method and N� is the number of queries
hurt.

In our experiments, as the baseline methods, we have used the most popular
unsupervised state-of-the-art methods for the feedback task that are proposed
in the language modeling framework. Our baseline methods are: the maximum
likelihood estimation—without feedback (MLE) [167], the simple mixture model
(SMM) [329], the divergence minimization model (DMM) [329], the relevance
models (RM3 and RM4) [2, 169], the regularized mixture model (RMM) [274],
and the maximum-entropy divergence minimization model (MEDMM) [187].

2.3.4 SWLM for Relevance Feedback

Now, we present the results of applying SWLM on both true and pseudo
relevance feedback tasks.

5In TRF, since relevant documents already seen by the user are usually moved to the top
of the ranking, thereby distorting the feedback evaluation, making it seem really good, while
most of the improvement is gained simply by a reranking of documents already seen. This is
known as “ranking effec”.

6Modified freezing is a technique to eliminate the “ranking effect” and evaluate only the
“feedback effect”. In modified freezing, all relevant documents retrieved on the ith iteration and
used for feedback on the i + lst iteration have their ranks frozen, and all nonrelevant documents
ranked above the last ranked relevant document used for feedback are also frozen.
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Table 2.2: Performance of the modified freezing of the results of different systems on the task of
TRF. ú indicates that the improvements over no feedback and all the baseline feedback methods
are statistically significant, at the 0.05 level using the paired two-tailed t-test with Bonferroni
correction.

Method Robust04 WT10G GOV2

MAP P@20 RI MAP P@20 RI MAP P@20 RI

MLE 0.2725 0.3949 n/a 0.2487 0.3136 n/a 0.3646 0.5318 n/a
SMM 0.3312 0.4829 0.55 0.2582 0.3812 0.31 0.4666 0.5760 0.51
DMM 0.3012 0.4638 0.42 0.2514 0.3609 0.19 0.4219 0.5621 0.42
RM3 0.3411 0.5001 0.63 0.3031 0.3849 0.36 0.4717 0.5851 0.55
RM4 0.3241 0.4766 0.37 0.2887 0.3705 0.31 0.4526 0.5781 0.45
RMM 0.3209 0.4719 0.56 0.2873 0.3760 0.34 0.4400 0.5639 0.57
MEDMM 0.3380 0.4891 0.53 0.3140 0.3920 0.34 0.4701 0.5891 0.61
SWLM 0.3514ú 0.4920 0.64 0.3155 0.3976 0.36 0.4813 0.6016ú 0.64
RSWLM 0.3434 0.4911 0.68 0.3277ú 0.3905 0.39 0.4903ú 0.5899 0.69

SWLM for True Relevance Feedback

True relevance feedback is employed to expand the user query based on either
the explicit “relevant”/“non-relevant” judgments given by the user or implicit
relevancy information inferred from the user behavior during his interaction
with the system, for the top-k results returned by the retrieval system. In our
experiments, we simulated this task. We consider the set of relevant documents
on the top-10 results (first page of the search engine result page) in the ranked
list as the documents judged as relevant by the user to form the feedback set.
In our TRF experiments, like Lv and Zhai [185], we have removed queries that
have no relevant documents in their top-10 results from the test collections.
Information on the number of queries used for TRF in each collection is given
in Table 2.1.

Table 2.2 presents the results of different systems on the TRF task. As can be
seen, SWLM and RSWLM are best performing methods in terms of MAP and
RI in all the collections and in terms of P@20 in the Web collections.

In the TRF task, although we use only documents that are explicitly labeled as
relevant, since documents can be multi-topic, it is still possible that the feedback
mechanism selects terms from non-relevant parts of the relevant documents. In
the Robust04 collection, in which documents are not normally multi-topic, RM3
performs the best in terms of P@20. However, in the Web collections, which is
more likely to contain multi-topic documents, SWLM, by controlling the effect
of individual documents on the feedback model, significantly outperforms all
the baselines.

Unlike the results in Table 2.3, in which RSWLM performs better than SWLM
in terms of all metrics, in TRF, SWLM presents higher performance in terms
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Table 2.3: Performance of different systems on the task of PRF. úindicates that the improvements
over no feedback (MLE) and all the baseline feedback methods are statistically significant, at
the 0.05 level using the paired two-tailed t-test with Bonferroni correction.

Method Robust04 WT10G GOV2

MAP P@10 RI MAP P@10 RI MAP P@10 RI

MLE 0.2501 0.4253 n/a 0.2058 0.3031 n/a 0.3037 0.5147 n/a
SMM 0.2787 0.4416 0.37 0.2193 0.3264 0.23 0.3214 0.5230 0.41
DMM 0.2701 0.4370 0.31 0.2184 0.3170 0.14 0.3026 0.5211 0.29
RM3 0.2937 0.4683 0.40 0.2406 0.3317 0.26 0.3417 0.5360 0.45
RM4 0.2690 0.4402 0.32 0.2323 0.3273 0.18 0.3316 0.5208 0.37
RMM 0.2681 0.4384 0.28 0.2222 0.3209 0.21 0.3112 0.5193 0.33
MEDMM 0.2961 0.4719 0.45 0.2413 0.3440 0.25 0.3396 0.5377 0.43
SWLM 0.2918 0.4674 0.47 0.2462 0.3377 0.28 0.3423 0.5316 0.50
RSWLM 0.2945 0.4704 0.47 0.2506ú 0.3427 0.31 0.3510ú 0.5419 0.53

of P@20. This might be due to the fact that in TRF, there is less noise and
consequently less need to lead the feedback model toward the original query
model. On the other hand, since RSWLM has no bias to the original query, it has
the opportunity to retrieve some documents that are relevant without frequent
occurrence of terms from the original query. Here, we presented the results

of SWLM and RSWLM in the tasks of PRF and TRF compared to the baseline
methods. We show that the new models are more effective than all previous
methods, and also illustrated how they control the contribution of feedback
documents in the feedback model based on their merit. Recall that SWLM
takes a considerable risk by removing specific terms that are the most powerful
retrieval cues if relevant, making the feedback task a critical experiment in
distinguishing relevant and non-relevant terms. These results provide strong
support for the effectiveness of significant words language models, and the
general intuitions on the importance of building accurate models of relevance
underlying them.

SWLM for Pseudo Relevance Feedback

Pseudo relevance feedback aims to expand the query to improve the perfor-
mance of retrieval having no information about the judgments. In PRF, the
underlying assumption is that the initially retrieved documents yield the rel-
evant documents that can be used to refine the query. Thus, assuming the
top-ranked documents F = {d1, . . . , dF} from the initial run as relevant, the
feedback model qF is estimated and used for the query expansion. Table 2.3
presents the results of employing significant words language models, regu-
larized significant words language models as the feedback model as well as
baseline methods on the task of PRF. As can be seen, RSWLM significantly
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(c) GOV2 dataset
Figure 2.5: Contribution of each of the relevance, general, and specific models in the top-100
documents as the feedback set, according to the ls learned in the RSWLM (the average over all
the queries).

outperforms all the baselines in terms of MAP on WT10G and GOV2 collections,
which are noisy Web collections.7 Furthermore, it has the highest reliability
of improvements in terms of the Robustness Index on all collections. On the
PRF task, RSWLM works better than SWLM as it guides the estimator of the
feedback model toward the query model and prevents it from being distracted
by the noise from non-relevant documents.

Although it has been shown that PRF always improves the average performance
of retrieval [125], under some parameter settings, for some topics it decreases
the average precision. This is due to the fact that there might be some non-
relevant documents in the feedback set containing non-relevant terms resulting
in topic drift in the extracted feedback model [37, 129, 130]. Thus, as one of the
main challenging problems in PRF, it is necessary to control the contribution
of different feedback documents for inclusion in the feedback model based on
their merit [130] for a specific query.

2.3.5 Relevance Decomposition

Significant words language models empower our proposed feedback method to
dynamically determine the quality of each document. In Figure 2.5, as a sample,
we take the top-100 documents as the feedback set and illustrate the average
contribution of each of the significant words, general, and specific models in
this documents, according to the ls learned in the regularized significant words
language models.

It is an interesting observation that in all the collections the trend of the change
in the contribution of three models is similar. In most cases, as the ranking goes
down, the contribution of the significant words model decreases, which is in

7Note that we only indicate when (R)SWLM is significantly better than all baseline methods,
they are always significantly better than the non-expansion MLE baseline.
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accordance with the relevance probability of documents based on their ranking.
However, this decay is slower for the Robust04 dataset than for WT10G and
GOV2 datasets. This is likely because Robust04 dataset contains newswire
articles, which are typically high-quality text data with little noise, in contrast to
WT10G and GOV2, which are web collections containing a more heterogeneous
set of documents.

Another interesting observation is that in all the collections we see that the
top ranked documents are more likely to contain specific non-related terms
than general non-related terms. In other words, as the rank of the document
increases, the part of the document which is non-relevant becomes more general.
One assumption would be that the retrieval models tend to rank documents
with specific non-related terms higher than documents with general non-related
terms. However, traditional retrieval models like KL-Divergence do not differ
scores of documents based on their non-relevant part. Another hypothesis
would be that the specificity or generality of non-related parts of documents
is a matter of their length. For example, long documents are more probable
to have specific non-related terms than short documents. We investigated the
length of the retrieved documents based on their ranking in our experiments
and, although the retrieval models in general might have some length bias [181],
we observed no strong correlation between length and the ranking in our runs.

Based on the observation from Figure 2.5, we can conclude that the relevant
component captured by the significant words dominates the ranking (as would
be hoped and expected) and after that the specific component, and lastly the
general component (in line with term weighting methods in the ranking models).
These observations support that the proposed model is indeed more accurately
modeling relevance than standard IR models. More generally, this analysis
shows the analytic potential of the proposed model, for example to analyse the
ranking of partially relevant or multi-topic documents, based on the generality
or specificity of the subtopics involved, which we will defer to future work.

2.3.6 Robustness Against Noise

This section presents analyses resulting from experiments designed to study
the robustness of our proposed feedback approach.

Divergence from Relevance

We designed an experiment to investigate the ability of the each feedback
method to deal with noise in the PRF task, using top retrieved results. We
measure the divergence of the estimated pseudo relevance feedback models,
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Figure 2.6: Divergence of true relevance feedback models and pseudo relevance feedback
models in different systems, for queries with different ratio of relevant documents in top-10
results.

q
pr f
F , from the estimated true relevance models, q

tr f
F , that use only those doc-

uments from the top retrieved that are explicitly annotated as relevant. This
experiment, in fact, study the extent to which a feedback method is able to learn
a representation from a set of relevant and non-relevant documents which is
similar to a representation learned using only the relevant documents.

To this end, we assume that q
tr f
F is a model affected by the least amount of

noise and calculate the JS-Divergence of q
pr f
F and q

tr f
F for all the approaches. To

avoid the effect of the size of the models on the value of divergence, we take
the top-500 terms of each model as the fixed length representation of the model.

Figure 2.6 shows the divergence of q
pr f
F and q

tr f
F for different groups of queries

with different ratios of relevant documents among the top-10 documents, on all
collections. As expected, for queries that only have a few relevant documents in
the top-10, the divergence is high, and when all top-10 documents are relevant,
two models perform similarly. For the Web collections, convergence of q

pr f
F and

q
tr f
F is slower due to the fact that web documents are more noisy and it can be

said that usually non-relevant retrieved documents are farther from relevant
retrieved documents, compared to the Robust04 dataset. According to the plots
in Figure 2.6, in all collections, SWLM and RSWLM have the least divergence
in all the ratios. This means that our proposed models are more robust against
being distracted by non-relevant documents. An interesting observation is that
in all the collections, the behavior of SWLM and RSWLM is almost the same
when at least half of the documents are relevant. In other words, we do not
need regularization if at least half of the documents are of interest to the query’s
topic, either completely or partially.

Dealing with Poison Pills

Although it has been shown that on average, the performance of the results
will be improved after applying feedback [125, 130], for some topics, employing
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Table 2.4: Robustness of different systems against bad relevant documents based on RI(Dr)
measure.

Dataset SMM DMM RM3 RM4 RMM MEDMM SWLM RSWLM

Robust04 0.8663 0.7841 0.8716 0.8681 0.8843 0.8914 0.9319 0.9305
WT10G 0.8504 0.8190 0.8783 0.8961 0.8990 0.9082 0.9583 0.9698
GOV2 0.8456 0.8062 0.8809 0.8519 0.8910 0.8801 0.9386 0.9209

some documents may decrease the average precision of the initial run. As
we discussed, in PRF, it could be due to the fact that the harmful feedback
documents are not relevant. However, this can be the case for TRF, where
a document that is labeled as relevant contains a set of off-topic terms and
expanding the query with these terms when applying feedback leads to a
decrease in the performance. The relevant documents that hurt the performance
of retrieval after feedback are called “poison pills” [64, 125, 277, 299].

Terra and Warren [277] studied the effect of poison pills. They used a single
relevant document for feedback with several systems to find documents that
make the precision drop in all systems. They showed that more than 5% of all
relevant documents perform poorly and in one third of all topics there exists
at least one bad relevant document that can decrease the performance of the
retrieval after applying feedback.

We have investigated this effect in the multiple feedback documents experi-
ments. In these experiments, for each topic with more than ten relevant docu-
ments, we add relevant documents one by one, based on their ranking in the
initial run, to the feedback set and keep track of the change in the performance
of the feedback run after adding each relevant document to the feedback set
compared to the feedback run without its presence in the feedback set.

To evaluate the robustness of different systems against bad relevant documents,
we define a variant of Robustness Index (RI) [55] to be applicable at the document
level instead of the topic level. For a set of relevant documents, Dr, the RI
measure is defined as: RI(Dr) = N+

r �N�r /|Dr| where N+
r and N�r denote the

number of relevant documents that adding them to the feedback set, respec-
tively helps or hurts the performance of the feedback. |Dr| is total number of
tested relevant documents. The higher the value of RI(Dr) is, the more the
method is robust against poison pills. Table 2.4 presents the RI(Dr) of different
systems on different datasets. As can be seen, both systems based on significant
words language models are strongly robust against the effect of bad relevant
documents in all datasets.

Furthermore, we have looked into the results of experiments on all the col-
lections and extracted the set of poison pills, i.e., relevant documents whose
adding to the feedback set decreases the performance of feedback in all the
baseline systems. Overal, we found 118 poison pills and we observed that the
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Figure 2.7: Dealing with poison pills: Effectiveness of different feedback systems faced with a
poison pill (harmful relevant document) in topic 374 of TREC Robust04.

performance of RSWLM in these situations always has the smallest drop and in
92% of the cases, it provides the best average precision after adding the poison
pill.

As discussed by Terra and Warren [277], poison pills are usually relevant doc-
uments that have either a broad topic, or several topics. In these situations,
employing significant words language models enables the feedback system
to control the contribution of these documents and prevents their specific or
general terms from affecting the feedback model. Figure 2.7 shows how using
the significant words language model empowers the feedback system to deal
with the poison pills. In this figure, the performance of different systems on
topic 374 in the Robust04 dataset is illustrated. As can be seen, adding the
seventh relevant document to the feedback set leads to a substantial decrease
in the performance of the feedback in all the systems. The query is “Nobel
prize winners" and the seventh document is about one of the Nobel peace prize
winners, Yasser Arafat, but at the end, it has a discussion concerning Middle
East issues, which contains some highly frequent terms that are non-relevant to
the query (see Figure 2.3). However, RSWLM and SWLM are able to distinguish
this document as a poison pill and by reducing its contribution to the feedback
model, i.e., learning a low value for ld7,sw, they prevent the severe drop in the
feedback performance.

So, our method inoculates the feedback model against poison pills by automati-
cally determining whether adding a specific relevant document to the feedback
set hurts the retrieval performance for a specific topic or not and controls its
effect in the feedback model.
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Figure 2.8: Sensitivity of SWLM and RSWLM to the number of feedback documents.

Sensitivity to the Number of Feedback Documents

In order to investigate the sensitivity of our proposed method to the number
of documents in the task of PRF, which is a proxy to it sensitivity to the noisy
documents in the feedback set, we set all other free parameters to the values
that result in optimal average performance and plot the performance of SWLM
and RSWLM with regard to the number of documents in the feedback set in
Figure 2.8. Both methods have acceptable robustness. SWLM is more sensitive,
especially on the Web collections, when low ranked documents are added, it
is slightly affected by noises. However, RSWLM is strongly robust and less
sensitive to the number of feedback documents.

Furthermore, according to Figure 2.8, the performance of both systems on all
collections is the best when the number of feedback documents are around
10, which is a more or less the same observation in other feedback methods as
well [186]. Moreover, this observation is in accordance with the information
from the plots in Figure 2.5, in which the top-10 documents always possess a
strong contribution of the significant words model, i.e., high values of ld,sw.

2.4 SWLM for Contextual Suggestion

Context is pervasive on the modern web, due to cloud-based and mobile ap-
plications, making every information access interaction part of an eternal user
session. Effective ways to leverage this context are key to further enhancing the
user experience, both in terms of better quality of results as in terms of easier
ways to articulate complex information needs. This requires both effective ways
of personalization to an individual user as well as customization to a profile
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based on groups of users.

For group level analysis, there is a need for extracting a group profile that
captures the essence of the group, separate from the sum of the profiles of its
individual members. This profile should be “specific” enough to distinguish
the preferences of the group from other groups, and at the same time, “general”
enough to capture all shared tastes, expectations, and similarities of its members.

Group profiling can help understand both explicit groups, like Facebook groups,
and implicit groups, like groups extracted by community detection algorithms.
One of the important applications of group profiling is in the contextual sugges-
tion problem [126]. Contextual suggestion is the task of searching for complex
information needs that are highly dependent on both context and user interests.
This task is defined in the form of the personalized point of interest recom-
mendation task, in which the recommender system provides a ranked list of
suggestions given the profile of the user and the context in which the user seeks
for the suggestion.

Using individual preferences for contextual suggestion is not always possible.
For example, sometimes there is a new user in the system with no historical
interactions and no rich information about the preferences,8 or sometimes the
user is not able to determine his/her preferences explicitly. In these situations,
group based contextual suggestion would be beneficial to augment the user’s
profile and suggest content to the user based on the preferences of the groups
that the user belongs to.

In contextual suggestion, given the information of users including their age,
gender, and set of rated places or activities as the user preferences (ratings are
in the range of -1 to 4), the task is to generate a list of ranked suggestions from
a set of candidate attractions, by giving the user information as well as some
information about the context, including location of trip, trip season, trip type,
trip duration, and the type of group the person is travelling with.

We employed SWLM for group profiling to be able to employ group information
in the contextual suggestion task [67, 69, 128]. We use group profiles estimated by
SWLM with respect to the different grouping criteria and investigate how group-
based information helps to improve the general performance on contextual
suggestion task.

In the rest of this chapter, we address our third and last research question of
this chapter:

RQ-1.1.3 How well can significant words language models profile groups of
entities and how effective are these profiles in content customization
tasks?

8Cold start problem in contextual suggestion.
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Table 2.5: Statistics of users groups resulted by grouping based on different critera.
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We explain how to use SWLM as a profiling approach to represent a group
of entities and use this representation to improve the quality of contextual
suggestion task.

2.4.1 Experimental Setup

We use of the TREC 2015 Contextual Suggestion9 batch task dataset to evaluate
the effectiveness of SWLM as a profiling approach for the contextual suggestion
task. The dataset contains information from 207 users including their age,
gender, and set of rated places or activities as the user preferences (rates are in
the range of -1 to 4). The task is to generate a list of ranked suggestions from
a set of candidate attractions, by giving the user information as well as some
information about the context, including location of trip, trip season, trip type,
tripe duration, and the type of group the person is travelling with. Based on
the information in the dataset, we divide users into several groups. Groupings
are based on the users information and context information. Table 2.5 presents
grouping criteria, the groups, and number of users in each group.

2.4.2 SWLM for Group Profiling

We generate group-based rankings of suggestions based on the group profiles
estimated by SWLM to evaluate the quality of the estimated group profiles in
contextual suggestion task. To this end, first we choose one of the grouping
criteria mentioned in Table 2.5 like users’ age. Then we estimate a language
model representing each group as its profile using SWLM. Afterward, regarding
the information of the given request, i.e., the user information and context
information, the group which the user belongs to is selected and based on the
profile of this group as well as the language model of the candidate, we rank
the suggestions.

Beside the group-based ranking, we generate a ranked list of suggestions based
on the preferences of the users, regardless of their group memberships, as a
baseline. To do so, a language model is estimated using the mixture of the
language model representing user preferences weighted by their ratings. Then,

9https://sites.google.com/site/treccontext/trec-2015

https://sites.google.com/site/treccontext/trec-2015
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Figure 2.9: Performance of employing user preferences-based and group-based customization
on contextual suggestion task. Improvements of combining group-based and preferences-based
approach over the preferences-based approach and corresponding group-based approaches are
statistically significant based on one-tailed t-test, with p-value < 0.05.

based on the similarity of the preferences language model and the candidate
language model, we rank the suggestions.

Using SWLM, we learn the contribution of each of specific, and general, group
(which is in fact significant words) models, i.e., luser,s, luser,g, and luser,sw. Having
these parameters enables us to efficiently combine the group-based model with
the preferences-based model for content customization. To this end, we smooth
the preferences-based model of the user with both the group model and the
general model using JM-smoothing [330] employing the learned parameters.

Figure 2.9 presents the performance of: 1) a system that provides suggestions
based on users preferences, 2) different systems that take different grouping
criteria and provide group-based suggestions, 3) different systems that take
different grouping criteria and combine group-based suggestions with user-
based suggestions.

Among the group-based strategies, suggestions based on the duration of the trip
is the most effective strategy. Also age of the user and the type of the group the
user travels with, are rather important while type of the trip is not so important.
This could be due to the fact that most of the time, the user’s interests and
attractions do not change based on the type of trip which could be “business”
or “holiday.” On the other hand, combining the preferences-based suggestions
with group-based suggestions in all grouping strategies leads to improvement.
This means that in case of incompleteness of a user’s profile, customizing the
content based on the groups that user belongs to, implicitly fills the missing
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Figure 2.10: Effect of groups granularity on the performance group profiling.

information and improves the performance of the suggestions. However, this
depends on the quality of the group profiles that should reflect significant (not
general, not specific) characteristics of the groups.

2.4.3 Effect of Group Granularity

In the grouping stage, sometimes users can be grouped based on different levels
of granularity. For example, having the age of users, discretization can be done
using binning with different sizes of bin. In this section, we analyse the effect
of granularity of groups, and consecutively the size of the groups with a fixed
volume of train data, on the quality of group profiling.

We have selected “age” of users as the grouping criterion and tried different
bin sizes for discretization: 5 years, 10 years, 20 years and 40 years. Figure 2.10
shows the quality of groups profiles on different levels of granularity and
consequently on different sizes of groups in the task of contextual suggestion.
Each point in the figure represents a group of users and its position determines
its size and the performance of group-based contextual suggestion for the users
within the group. Moreover the horizontal lines represent overall performance
of different levels of granularity. As can be seen, since the number of sample
users is limited fine-grained grouping leads to having smaller groups. So small
number of samples affects the group profiling quality and slightly decreases
the performance. While coarse-grained grouping leads to having large groups
that leads to not being able to adequately customize the group profile.

In our dataset, 10 years granularity for “age” has the best performance since
the formed groups are big enough so that the group profiling approach is able
to estimate high quality models, and they are small enough so that the group
profiles are easily distinguishable which leads to a more effective customization.
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Figure 2.11: Improvement of the performance of contextual suggestion using group profiles for
users with different rating behavior.

2.4.4 Effect of Rating Behavior

As we showed, using group-based information that is modeled by SWLM helps
to improve the performance of contextual suggestion. To study where this
improvement comes from, we looked into the data to see in which cases adding
group information helps and in which cases it is not effective. We observed
that there is a correlation between the amount of improvement in contextual
suggestion using group-based information and the rating behavior of users.

Figure 2.11 shows the scatter plot of the change in p@10 after employing group-
based information based on different rating tendency. According to the plot,
group-based information works better when the users have a neutral tendency
in their rating (around rate 2) and it is less likely to help when users have rather
strong biases by rating attraction with high or low rates. This could be due to
the fact that in case of having neutral users, we have less strong information
coming from their profile and then group-based information is compensating
this lack of strong signals.

2.5 Related Work

In this section, we discuss related studies to the applications that we evaluated
SWLM on, i.e, in feedback in the retrieval task and group profiling in contextual
suggestion.



2.5. Related Work 45

2.5.1 Relevance Feedback

It has been shown that there is a limitation on providing increasingly better
results for retrieval systems only based on the original query [286]. So, it is
crucial to reformulate the search request using terms that reflect the user’s
information need to improve the performance of the retrieval systems. To ad-
dress this issue, automatic feedback methods for information retrieval were
introduced fifty years ago [234] and have been extensively studied during past
decades. As the earliest relevance feedback approach in information retrieval,
the Rocchio method [234] has been proposed in the vector processing environ-
ments for changing the query vector to be similar to the relevant documents
vectors and dissimilar to the non-relevant documents vectors. Later, proba-
bilistic methods have been proposed to select expansion terms from feedback
documents based on a term weighting approach [233, 285]. With the develop-
ment of language models, several feedback approaches have been proposed
in this framework to improve the query language model [136, 169, 187, 274, 329].
The mixture model [329] is one of the well-known feedback methods in the
language modeling framework, which empirically performs well. The idea
is to extract a discriminative language model of feedback documents by de-
creasing weights of the background terms. As an extension to this model, the
regularized mixture model has been proposed by Tao and Zhai [274], which
not only involves the query model in the estimated feedback model but also
has document-specific mixing coefficients to let different documents have a
different amount of background terms.

In the relevance model (RM) [2, 169] given the query, a model is estimated
as a multinomial distribution over terms that indicates the likelihood of each
term given the query as the evidence, based on the occurrences of the term
together with the query terms in the feedback documents. In a comparable study
conducted by Zhai and Lafferty [329], it has been shown that RM3 as a variant
of the relevance model is one of the best performing methods which is strongly
robust. Divergence minimization [329] tries to estimate a feedback model that
is close to the language model of every feedback document but far from the
collection language model as an approximation of the non-relevant language
model. This method generates a highly skewed feedback model, which makes
it unable to perform well. Lv and Zhai [187] proposed the maximum-entropy
divergence minimization model that, by adding an entropy term, regularizes the
original divergence minimization model leading to significant improvements
in the performance of the original method.

The parsimonious language model [136] is one of the models employed for
feedback [135, 157, 194]. It tries to describe the feedback model using a smaller
number of parameters. Similar to the mixture model, the common words in
the collection are removed from the model in the estimation process, which
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leads to a more lean and mean language model. Zamani and Croft [320],
considering the feedback problem as a recommendation problem, made use
of matrix factorization in order for predicting expansion terms in a weighted
manner.

Besides the ad hoc studies, there have been some initiatives aimed at study-
ing the problem of (pseudo-)relevance feedback in detail. In 2003, Reliable
Information Access (RIA) Workshop [125, 299] was organized with the goal of
understanding the contributions of both system variability factors and topic
variability factors to the overall retrieval variability in feedback. In addition
to the Relevance Feedback track, the Robust track in TREC defined one of the
goals to improve the consistency of feedback systems by focusing on the poorly
performing topics [295].

Arguably, the key issue in feedback is robustness in terms of being able to deal
with non-relevant terms from non-relevant or partially relevant documents.
SWLM addresses the robustness problem head on. This is achieved by using
the information from the collection and other feedback documents to control
the contribution of documents in the feedback model regarding their merit and
to avoid the selection of non-relevant expansion terms.

2.5.2 Group profiling for Content Customization

Group profiling can help understand both explicit groups, like Facebook groups,
and implicit groups, like groups extracted by community detection algorithms.
There is a wide range of applications for group profiling, like understanding
social structures [272], network visualization, recommender systems [5, 143, 252],
and direct marketing [60].

There is various research done on the task of group profiling which, given
the individual attributes and preferences, aims to find out group-level shared
preferences [192, 247]. Tang et al. [272] presented three methods for group
profiling: Aggregation, which tries to find features that are shared by the whole
group; Differentiation, which tries to extract features that can help to differentiate
one group from others; and Egocentric differentiation, which tries to extract
features that can help to differentiate members of one group from the neighbour
members. In recent work, Hu et al. [143] proposed a deep-architecture model
to learn a high level representation of group preferences.

For group recommendation, there is research on building a model of a group
by forming a linear combination of the individual models [148]. Some of them
construct the group’s preference model on the basis of individual preference
models, using a notion of distance between preference models [318]. Some
approaches try to divide the group into several categories of homogeneous
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users and specify the preference model for each subgroup. Then they create the
group model as a weighted average of the subgroup models, with the weights
reflecting the importance of the subgroups [9].

2.6 Conclusion

In this chapter, we focused on addressing RQ-1.1: “How to learn robust repre-
sentations for entities and abstract concepts that are affected by neither undiscerning
general, nor noisy accidental features, given the structural relations in the data?”.
Inspired by a discussion on the early work by Luhn [183] about significant words,
we address RQ-1.1.1 by proposing significant words language models (SWLM)
to estimate a representation for a set of documents that captures significant
terms by avoiding the distracting effect of common observation as well as rare
observation.

To investigate RQ-1.1.2, We utilized SWLM for the relevance feedback problem
and showed that as the feedback model, it presents promising performance on
both true and pseudo relevance feedback. Analyzing the results, we indicated
that the strength of SWLM in feedback is due the fact that it is capable of
controlling the contribution of feedback documents in the feedback model
based on their level of relevancy, which copes with the problem of topic drift in
query expansion. We assessed the robustness of SWLM in different experiments
and showed that in PRF, SWLM has the least vulnerability against noise in the
data both at term-level and document-level. We also employed SWLM as a
group profiling approach for the task of contextual suggestion to study RQ-
1.1.3. Our experimental results showed that using the group representations
estimated by SWLM, we can improve the performance of content customization.

We named our model, significant “words” language model in honor of Luhn,
however, it could be employed in non-textual environments, since in general,
the idea is to extract significant “features” representing the shared essence of a
group of entities.

The process of estimating SWLM leads to a sparse model, i.e., qsw assigns zero
probability to many terms that are identified as either too general or too specific
for representing an entity. Sparsity is a desirable property, for instance, sparse
representations are easier to interpret or more likely to posses separability which
is important for collision resistance hash functions. In Chapter 3, we extend
SWLM to hierarchically structured entities and discuss separability as a key
objective for learning the representations.





3
Representational Separability for

Hierarchically Structured Data

Hierarchies are powerful structures to model different levels of
associations in the data. They can evolve over time in terms of the
relations between entities in the hierarchy. Learning representations
that are agnostic to these changes is not trivial. We can, however,
take the horizontal and vertical dependencies in a hierarchy into
account and learn highly separable representations for entities, that
are less sensitive to the structural changes and more transferable
over time.

3.1 Introduction

Hierarchies are effective and common structures for representing information,
and many domains are naturally organized in a hierarchy. Organizing data in a
hierarchical structure is valuable since it determines relationships in the data
at different levels of resolution and picks out different categories relevant to
each of the various layers of memberships. Besides that, using hierarchies is an
effective way of representing the information as it eases the task of comparison,
which is a critical factor in analogical reasoning [142]. For example, the problem

This chapter is based on [68, 70].
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of deciding whether two entities are analogous can be formalized as the problem
of checking the level of abstraction at which these entities are instances of the
same node in a hierarchy [3].

Taking advantage of the structure in a hierarchy requires modeling and repre-
senting entities, taking their relationship in the hierarchy into consideration.
There are two types of dependencies in the hierarchies: i) Horizontal dependency,
which refers to the relations of entities in the same layer. A simple example
would be the dependency between siblings which have some commonalities
in terms of being descendants of the same entity. ii) Vertical dependency, which
addresses the relations between ancestors and descendants in the hierarchy. For
example, the relation between: root and other entities.

Due to the existence of two-dimensional dependencies between entities in
the hierarchy, modeling them regardless of their relationships might result in
overlapping representations that are not capable of making different entities
distinguishable. Learning representations with minimal overlap is one of the
requirements for collision resistance systems and when the representations
are not well-separated, classification and retrieval systems are less likely to
work well [174]. Thus, two-dimensional separability, i.e., horizontal and vertical
separability, is one of the key requirements of hierarchical classification.

In this chapter, we focus on one of our research questions:

RQ-1.2 How to learn separable representations for hierarchically structured
entities that are less sensitive to structural changes in the data and
more transferable across time?

We introduce hierarchical significant words language models, which extend
the idea of significant words language models to hierarchical structures. We
assume that entities, like people, organizations, concepts, and ideologies are
organized in a hierarchy, and for each entity, there is textual data associated
with the entity with respect to the subhierarchy under the entity, where the data
is generated only at the leaves of the hierarchy. Each entity, as a node in the
hierarchy, is represented by a specific probabilistic language model.

Given the hierarchical structure and the data associated with entities in the
hierarchy, HSWLM iteratively sparsifies the representation of the entities by dis-
carding features that are well explained by their ancestors, i.e., general features,
as well as features that reflect the characteristics of individual descendants, i.e.,
specific features. This leads to representations for entities that are both vertically
and horizontally separable, in terms of their position in the hierarchy, as they
capture only the significant features of entities.

As a concrete example, consider a simple hierarchy of a multi-party parliament
as shown in Figure 3.1, which determines different categories relevant to the
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Figure 3.1: Hierarchical relations in parliament.

different layers of membership in the parliament. We can associate an individual
member of parliament by her speeches, a political party by their member’s
speeches, the opposition by the speeches of members of opposition parties, etc.
In order to represent a party in this hierarchy, a proper representation would
show common characteristics of its members —not members of other parties
(horizontal separation), and capture the party’s generic characteristics— not
unique aspects of the current members captured in the individual member’s
layer or aspects of whether the party is in government or opposition captured
in the status layer (vertical separation).

3.1.1 The Importance of Representational Separability

The concept of separability is of crucial importance especially when the task is
not just ranking a set of items, but making a boolean decision about the labels
of each item in the set. Regarding this concern, Lewis [175] has presented the
Probability Threshold Principle (PTP), as a stronger version of the Probability
Ranking Principle [231], for binary classification, which discusses optimizing a
threshold for separating items regarding their probability of class membership.
PTP is a principle based on the separability in the score space. However, here
we discuss separability in the data representation and later in this chapter we
define a Strong Separation Principle as the counterpart of PTP in the feature space.
Separation in the data or feature space is a favorable property that not only
helps to improve for ranking or classification algorithms but also brings out
characteristic features for human inspection. Figures 3.2a and 3.2b illustrate
two different ways of representing two entities in the status layer of the parlia-
mentary hierarchy, i.e., government and opposition. Each representation is a
probability distribution over terms (a language model) based on the speeches
given by all the members in the corresponding status. In each figure, we sort
the terms based on their weights in one of the representations and plot the
other in the same order. As can be seen, although distributions over terms in
Figure 3.2a for two classes are different, they do not suggest highly separable
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(a) A non-separable representation of data. (b) A well-separable representation of data
Figure 3.2: Probability distribution over terms for data in two different classes, (entities in the
statues layer of the parliament), sorted based on the term weights in one of the classes.

representations for classes. However, estimated language models in Figure 3.2b
provide highly separable distributions over terms for two classes, identifying
the characteristic terms that uniquely represent each class, and can be directly
interpreted.

Besides effectiveness and intractability, two-dimensional separability in repre-
sentations of hierarchical entities increases the robustness of these representa-
tions against changes in the structure of the hierarchy. In other words, when
learning a representation for an entity in a hierarchy, if we remove features
that are based on the dependencies between this entity and other entities, we
will capture only the solid set of features reflecting the main characteristic of
this entity. This means that changes in the structure, i.e., in relations between
entities, will not affect their learned representations.

As an example of the importance of robust representations in evolving hierar-
chies, assume we would learn a representation for the “US president” over the
current data. It is obvious that we need to distinguish the role in office from
the person who is the current president; otherwise the learned representation
would not be valid after the next election. If we can separate the representation
of the function from the representation of the person fulfilling it, for example by
abstracting over several presidents, that would in principle be robust over time.

3.1.2 Detailed Research Questions

We break down our main research question in this chapter into three concrete
research questions:

RQ-1.2.1 What makes separability of representations a desirable property for
classifiers?
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RQ-1.2.2 How can we estimate horizontally and vertically separable represen-
tations for hierarchically structured entities?

RQ-1.2.3 How can separability of representations for hierarchical entities
improve their transferability?

In the following sections, we will address these research questions.

3.2 Separability in the Hierarchies

In this section, we explore the first research question in this chapter:

RQ-1.2.1 What makes separability of representations a desirable property for
classifiers?

In addition to the investigation of the separation property as a general founda-
tional property of classification and defining a Strong Separation Principle, we
discuss the two-dimensional separation property of hierarchical classification.

3.2.1 Separation Property

Separability is a highly desirable property for constructing and operating au-
tonomous information systems [175], and especially classifiers. Here, we present
a step by step argument which shows that based on the classification principles,
having better separability in the feature space leads to better accuracy in the
classification results.

Based on the Probability Ranking Principle (PRP) presented by Robertson [231],
Lewis [175] has formulated a variant of PRP for binary classification:

For a given set of items presented to a binary classification system, there
exists a classification of the items such that the probability of class mem-
bership for all items assigned to the class is greater than or equal to the
probability of class membership for all items not assigned to the class, and
the classification has optimal expected effectiveness.

Since in many applications, autonomous systems need to decide how to classify
an individual item in the absence of entire items set, Lewis has extended the
PRP to the Probability Threshold Principle (PTP):
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For a given effectiveness measure, there exists a threshold p, 0 < p < 1,
such that for any set of items, if all and only those items with probability
of class membership greater than p are assigned to the class, the expected
effectiveness of the classification will be the best possible for that set of
items.

PTP, in fact, discusses optimizing the effectiveness of classifiers by making
items separable regarding their probability of class membership, which is a
discussion on “separability in the score space.” Based on PTP, optimizing a
threshold for separating items is a theoretically trivial task; however, there are
practical difficulties.

The main difficulty refers to the fact that retrieval models are not necessarily
capable of measuring actual probabilities of relevance for documents [8], so they
do not guarantee to generate a set of scores from which the optimum cutoff can
be inferred. In this regard, a great deal of work has been done on analyzing
the score distribution over relevant and non-relevant documents to utilize this
information for finding the appropriate threshold between relevant and non-
relevant documents [7, 8, 156]. The more the score distributions of relevant and
non-relevant documents are separable, the easier it is to determine the optimum
threshold. So, obtaining the separation property in the score distributions of
relevant and non-relevant documents is one of the key focus areas for retrieval
models.

There are two ways to obtain separability in the score distributions. We could
address the complex underlying process of score generation and investigate
ranking functions that yield a separable score distribution, as in the score dis-
tributional approaches [8]. Alternatively, we can investigate ways to provide
existing scoring functions with a highly separable representation of the data.
That is, the “term distribution” directly provides information about the “prob-
ability of relevance” [58] and if there are separable distributions over terms of
relevant and non-relevant documents, a scoring function satisfying PRP will
generate scores that separate the classes of relevant and non-relevant documents.
Thus, a separation property on feature distribution for representing the data is a
favorable property, which follows a better accuracy of classifiers’ decisions.

In this chapter, we investigate the role of separation in the term or feature
spaces, in which we introduce a formal definition for separability and formulate
a principle on the effectiveness of classification based on separation property
and leave a more formal treatment to future work.

As a formal and general definition, we can refer to representation separability
as follows:

DEFINITION 3.1. The representation of an entity is “separable” if, and only if, it has
unique, non-overlapping features that distinguish it from other representations.
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We argued that separability in feature space leads to separability in score space.
Based on this and the given definition of separability, we present the Strong
Separation Principle (SSP), which is a counterpart of the PTP [175] in the feature
space:

For a given set of items presented to a classification system, for each class
there exists at least one feature value d in the representation of items, and
a threshold t, such that for any set of items, if all and only those items
with d > t are assigned to the class, the classification will have the optimal
possible performance for that set of items in terms of a given effectiveness
measure.

SSP, in general, is a stronger version of PTP. In strict binary classification, if
you have PTP, which holds on the whole feature space, SSP will be satisfied,
however in the multi-class case, SSP is stronger and it implies PTP, but not the
other way around.

Based on PTP, there is always an underlying probabilistic scoring function
on the set of all features, which generates membership probabilities as the
scores of items. These scores make items separable with regards to a threshold.
So, the scoring function can be deemed as a mapping function which maps
items to a new feature space in which the score of each item is a single feature
representation of that item (membership probabilities, i.e., scores, in PTP would
be equivalent to d in SSP). Thus, when the SSP holds, the PTP and PRP will also
hold.

One could consider a stronger version of the SSP in which “all” the features
in the representations need to be non-overlapping, but the SSP is sufficient for
optimizing the effectiveness of the classifier. The separation principle can be
formally extended to hierarchical classification in a straightforward way. In the
rest of this section, we will discuss the separation property for the hierarchical
classification and explain how to estimate separable representations with the
aim of satisfying SSP in order to improve the classification effectiveness.

3.2.2 Horizontal and Vertical Separability

In hierarchically structured data, there are two main types of boundaries exist-
ing in the data, horizontal boundaries, and vertical boundaries [68]. Hence, a
separation property should be established in two dimensions. This means that
not only separation between entities’ representation in one layer is required, but
a concept related to separation between the distribution of terms in different
layers is needed.
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The separation between entities in the same layer is a related concept to the
fundamental goal of all classifiers on the data with a flat structure, which is
making the data in different classes distinguishable [246]. However, separation
between entities in different layers is a concept related to difference of abstrac-
tion level and modeling data in different layers in a separable way can help the
scoring procedures to figure out the meaning behind the layers and make their
decisions less affected by the concepts of other unrelated layers, thus leading to
conceptually cleaner and theoretically more accurate models.

Based on Definition 3.1, we formally define horizontal and vertical separability
in the representation of hierarchically structured entities as follows:

DEFINITION 3.2. The representation of an entity in the hierarchy is “horizontally
separable” if, and only if, it is separable compared to other entities in the same layer,
with the same abstraction level.

DEFINITION 3.3. The representation of an entity in the hierarchy is “vertically sepa-
rable” if, and only if, it is separable compared to other entities in the other layers, with
different abstraction levels.

To formalize these concepts, consider an example where we have a simple three
layer hierarchy of text documents with “IsA” relations, where the individual
documents take place in the lowest layer, and each node in the middle layer
determines a category, representing a group of documents, i.e., its children, and
the supernode at the top of the hierarchy deemed to represent all the documents
in all the groups in the hierarchy. There is a key point in this hierarchy to which
we will refer for learning representations for the hierarchical entities: “each
node in the hierarchy is a general representation of its descendants.”

First assume that the goal is to estimate a language model representing category
c, as one of the entities in the middle layer of the hierarchy, and we need the
learned representation to possess horizontal separability. To estimate a horizon-
tally separable representation of a category, which represents the category in
such a way that it is distinguishable from other categories in the middle layer,
the key strategy is to eliminate terms that are common across all the categories
(overlapping features) and preserve only the discriminating ones.

To do so, we consider there is a general model that represents all the common
terms of all the categories in the middle layer, q

g
c . Also, the standard language

model of c is the model estimated from concatenation of all the documents in
c using MLE, qc. We assume that qc is drawn from the mixture of the latent
horizontally separable model, qhs

c , and the general model that represents shared
terms of all categories, q

g
c :

p(t|qc) = lp(t|qhs
c ) + (1� l)p(t|qg

c ), (3.1)
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where l is the mixture coefficient. Regarding the meaning of the relations
between nodes in the hierarchy, the top node in the hierarchy is supposed to be
a general representation of all categories. On the other hand, q

g
c , is supposed to

represent the general features of all the categories in the middle layer. Thus, we
can approximate q

g
c with the estimated model of the top node in the hierarchy,

qall:
p(t|qc) ⇡ lp(t|qhs

c ) + (1� l)p(t|qall). (3.2)

We estimate qall using MLE as follows:

p(t|qall) =
t f (t, all)

Ât0 t f (t0, all)
=

Âc2all Âd2c t f (t, d)
Âc2all Âd2c Ât02d t f (t0, d)

, (3.3)

where t f (t, d) indicates the frequency of term t in document d and qall is in fact
the collection language model.

Now, the goal is to extract qhs
c . With regard to the generative models, when a

term t is generated using the mixture model in Equation 3.2, first a model is
chosen based on l and then the term is sampled using the chosen model. The
log-likelihood function for generating the whole category c is:

log p(t|qhs
c ) = Â

t2c
t f (t, c) log

�
lp(t|qhs

c ) + (1� l)p(t|qall)
�
, (3.4)

where t f (t, c) is the frequency of occurrence of term t in category c. With the goal
of maximizing this likelihood function, the maximum likelihood estimation of
p(c|qhs

c ) can be computed using the Expectation-Maximization (EM) algorithm
by iterating over the following steps:
E-step:

et = t f (t|c) · lp(t|qhs
c )

lp(x|qhs
c ) + (1� l)p(x|qall)

, (3.5)

M-step:
p(x|qhs

c ) =
et

Ât02V e0t
, i.e., normalizing the model, (3.6)

where V is the set of all terms with non-zero probability in qc. In Equa-
tion 3.5, qc is the maximum likelihood estimation of category c: p(t|qc) =
Âd2c c(t,d)/Âd2c Ât02d c(t0,d) and qhs

c represents the horizontally separable model,
which is initialized by the maximum likelihood estimation in the first itera-
tion, similar to qc.

Considering the above process, a horizontally separable model is a model that
is specified by taking out general features that have a high probability in “all”
categories, i.e., collection language model, which is similar to the concept of the
parsimonious language model, introduced by Hiemstra et al. [136].
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Now assume that we want to extract a language model possessing vertical
separability for the category c, i.e., a representation that makes this category
distinguishable from entities both in the lower layer (each individual document)
and the top layer (collection of all documents). In the procedure of making
the representation horizontally separable, we argued that we can reduce the
problem to removing terms representing the top node, which results in a rep-
resentation that is separable from the top node in the upper layer. This means
that we are already half-way towards making a representation vertically sep-
arable; thus, the representation only requires it to be made separable from its
descendant entities in the lower layer. Recall that the representation of each
node is, in fact, a general representation of all its descendants. So making the
representation of a category separable from its descendant documents can be
translated to removing terms that describe individual documents, but not reflect
the shared commonalities of all descendant documents in that category. We call
these terms, document specific terms.

For each category c, we assume there is a model, qs
d, that captures document

specific terms, i.e., terms from documents in that category that are good indi-
cators for individual documents but not supported by all of them. Also, we
assume that the standard language model of c, qc, is drawn from the mixture of
the latent vertically separable model, qvs

c , and qs
d:

p(t|qc) = lp(t|qvs
c ) + (1� l)p(t|qs

d), (3.7)

where l is the mixing coefficient. We estimate qs
d using the following equation:

p(t|qs
d)

normalized ����� Â
di2c

✓
p(t|qdi) ’

dj2c
j 6=i

(1� p(t|qdj))

◆
, (3.8)

where p(t|qdi) = c(t,di)/Ât02di
c(t0,di). This equation assigns a high probability

to a term if it has high probability in one of the document models, but not
others, marginalizing over all the document models. This way, the higher the
probability is, the more specific the term will be. Now, the goal is to extract
the qvs

c . An EM algorithm, similar to Equations 3.5 and 3.6 can be applied for
estimating qvs

c by removing the effect of qs
d from qc.

Considering the above process, a vertically separable representation is a repre-
sentation that is generalized by downweighting specific terms that have a high
probability in one of the descendant documents, but not others.

3.2.3 Two-Dimensional Separability

In order to have fully separable representations in hierarchical classification,
they should own two-dimensional separation property. We define two-dimensional
separability as follows:
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DEFINITION 3.4. The representation of an entity in the hierarchy is “two-dimensionally
separable” if, and only if, it is both horizontally and vertically separable at the same
time.

Intuitively, if a representation of an entity is two-dimensionally separable,
it should capture all, and only, the essential features of the entity taking its
relative position in the hierarchy into consideration. In the next section, we will
discuss how to estimate two-dimensional separable representations for entities
in hierarchies with more than three layers.

3.3 Hierarchical Significant Words Language Mod-
els

In this section, we address the second research question of this chapter:

RQ-1.2.2 How can we estimate horizontally and vertically separable represen-
tations for hierarchically structured entities?

We introduce Hierarchical Significant Words Language Models (HSWLM),
which is an extension of Significant Words Language Model that is explained
in Chapter 2 tailored to textual hierarchical entities. HSWLM is, in fact, a
particular arrangement of multiple passes of the procedures of making rep-
resentations of hierarchical entities vertically and horizontally separable, as
they are explained in Section 3.2.2. We use the idea of parsimonious language
models [136] to parsimonize the representation of an entity by down-weighting
terms that do not reflect the significant features of that entity, with regards
to its position in the hierarchy. In the parsimonious language model, given a
raw probabilistic estimation, the goal is to reestimate the distribution so that
non-essential parameters of the raw estimation are down-weighted if they are
well explained in a given background distribution. The proposed approach
for estimating hierarchical significant words language model iteratively reesti-
mates the standard language models of entities to minimize their overlap by
discarding non-essential terms from them.

In the original parsimonious language model [136], the background model is
explained by the estimation of the collection model, i.e., the model representing
all the entities, similar to Equation 3.3. However, with respect to the hierarchical
structure, and our goal in HSWLM for making the representations of entities
separable from each other, we need to use the parsimonization technique in two
different directions: 1) given ancestors of an entity, and 2) given its descendants.
Hence, besides parsimonizing given a single parent entity in the upper layers,
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Algorithm 3.1 Modified Model Parsimonization.
1: procedure PARSIMONIZE(e,B)
2: for all term t in the vocabulary do

3: P(t|qB)
normalized ����� Âbi2B

✓
P(t|qbi)’bj2B

j 6=i
(1� P(t|qbj))

◆

4: repeat
5: E-Step: P[t 2 V ] P(t|qe) · aP(t|q̃e)

aP(t|q̃e)+(1�a)P(t|qB)

6: M-Step: P(t|q̃e) P[t2V ]
Ât02V P[t02V ]

7: until q̃t becomes stable
8: end for
9: end procedure

as the background model, we need to be able to do parsimonization given
multiple descendants in the lower layers. Algorithm 3.1 presents pseudo-code
of the Expectation-Maximization algorithm that is employed in the modified
model parsimonization procedure. In the equation in line 3 of the pseudo-code
in Algorithm 3.1, B is the set of background entities —either one or multiple,
and qbi denotes the model of each background entity, bi, which is estimated
using MLE. In case of having a single ancestor node as the background model,
this equation will be equal to Equation 3.3 and in case of having multiple
descendants as background models, it results in Equation 3.8. In this procedure,
in general, in the E-step, the probabilities of terms are adjusted repeatedly,
and in the M-step, adjusted probabilities of terms are normalized to form a
distribution. Another change in the modified version of model parsimonization,
which practically makes no difference in the final estimation, is that in the E-step,
instead of using t f (t, e), we employ p(t|qe), where qe is the language model
that represents entity e and initially it is estimated using MLE. This is because
in the multi-layer hierarchies, there is more than one parsimonization pass
for a particular entity and after the first round, we need to use the probability
of terms estimated from the previous pass, not the raw information of their
frequency.

Model parsimonization is an almost hyper-parameter free process. The only
hyper-parameter is the standard smoothing parameter l, which controls the
level of parsimonization, so that the lower values of l result in more parsimo-
nious models. The iteration is repeated a fixed number of times or until the
estimates do not change significantly anymore.

The pseudo-code of the overall procedure of estimating HSWLM is presented in
Algorithm 3.2. Before the first round of the procedure, a standard estimation like
maximum likelihood estimation is used to construct the initial representation for
each entity in the hierarchy. Then, representations will be updated in an iterative
process until all the estimated representations of entities become stable. In each
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Algorithm 3.2 Procedure of estimating HSWLM.
1: procedure ESTIMATEHSWLMS

Initialization:
2: for all entity e in the hierarchy do
3: qe  standard estimation for e using MLE
4: end for
5: repeat
6: SPECIFICATION()
7: GENERALIZATION()
8: until models do not change significantly anymore
9: end procedure

iteration, there are two main stages: a Specification stage and a Generalization stage.
In these stages, language models of entities in the hierarchy are iteratively made
“specific,” by taking out terms explained at higher levels, and “general,” by
eliminating specific terms of lower layers, which results in representations that
are both horizontally and vertically separable as it is described in Section 3.2.2.

In the specification stage, the goal is to eliminate the general terms of the lan-
guage model of each entity so that the resulting language model demonstrates
the entity’s specific properties. To do so, the parsimonization method is used
to parsimonize the language model of an entity given its ancestors, from the
root of the hierarchy to its direct parent, as the background estimations. The
order in the hierarchy is of crucial importance here. When a language model of
an ancestor is considered as the background language model, it should demon-
strate the “specific” properties of that ancestor. Due to this fact, it is important
that before considering the language model of an entity as the background
estimation, it has already passed the specification stage, and we have to move
top-down. Pseudo-code of the recursive procedure of specification of entities’
representations in the hierarchy is depicted in Algorithm 3.3.

In the generalization stage, the goal is to refine language models by removing
terms that do not address the concepts in the level of abstraction of the entity’s
layer. To do so, again parsimonization is exploited but given descendants, which
leads to the elimination of specific terms. Here also, before considering the rep-
resentation of an entity as the background model, it should be already passed
the generalization stage, so generalization moves bottom up. Algorithm 3.4
presents the pseudo-code for the recursive procedure of generalization of enti-
ties’ language representations in the hierarchy. In the generalization step, the
background models of descendants are supposed to be specific enough to show
their extremely specific properties. Hence, generalization stages must be ap-
plied to the representations that are output of specification stages: specification
should precede generalization, as shown in Algorithm 3.2 before.
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Algorithm 3.3 Procedure of Specification.
1: procedure SPECIFICATION
2: Queue all entities in breadth first order
3: while Queue is not empty do
4: e Queue.pop()
5: l  e.Depth()
6: while l > 0 do
7: A e.GETANCESTOR(l)
8: PARSIMONIZE(e,A)
9: l  l � 1

10: end while
11: end while
12: end procedure

§ Function GETANCESTOR(l) gives the ancestor of entity e with l edges distance
from it. Function PARSIMONIZE(e,B) parsimonizes qe given background models in
B (Algorithm 3.1).

Algorithm 3.4 Procedure of Generalization.
1: procedure GENERALIZATION
2: Stack all entities in breadth first order
3: while Stack is not empty do
4: e Stack.pop()
5: l  e.Height()
6: while l > 0 do
7: D  e.GETDECEDENTS(l)
8: PARSIMONIZE(e,D)
9: l  l � 1

10: end while
11: end while
12: end procedure

§ Function GETDECEDENTS(l) gives all the decedents of entity e with l edges dis-
tance from it. Function PARSIMONIZE(e,B) parsimonizes qe given background
models in B (Algorithm 3.1).

3.4 HSWLM for Hierarchical Classification

Two-dimensional separability as the main property of HSWLM makes the
learned representations of the entities in the hierarchy less sensitive to the
structural changes, for instance, when the hierarchy evolves over time. In this
section, we address our last research question of this chapter:
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Figure 3.3: Composition of Dutch parliament in 3 periods. VVD: People’s Party for Freedom and
democracy, PvdA: Labour Party, CDA: Christian Democratic Appeal, PVV: Party for Freedom,
SP: The Socialist Party, D66: Democrats 66, GL: Green-Left, CU: Christian-Union.

RQ-1.2.3 How can separability of representations for hierarchical entities
improve their transferability?

Before evaluating the transferability of two-dimensionally separable representa-
tions over time, we intrinsically study the separability of the representations
learned by HSWLM. We use parliamentary data as one of the interesting col-
lections with hierarchically structured data that can evolve over time. The
structure of the parliamentary hierarchy has been shown in Figure 3.1. First,
we introduce the collection we have used, and then we analyze the quality of
HSWLM on providing horizontal and vertical separability over the hierarchy.

3.4.1 Data Collection

We use the Dutch parliamentary data which forms a hierarchical structure that
can evolve over time. The data are collected and annotated as part of Political
Mashup project [221] to make semantically enriched parliamentary proceedings
available as open data [191].

As a brief background, the Dutch parliament is a bicameral parliament that con-
sists of a Senate and a House of Representatives. The House of Representatives
is the main chamber of parliament, where discussion of proposed legislation
and review of the government’s actions takes place. The Dutch parliamentary
system is a multi-party system, requiring a coalition of parties to form the
government [61].

We use data from the parliament or the House of Representatives of the Nether-
lands. We have chosen three interesting periods of parliament, from March
2006 to April 2014, in which eight main parties have about 95% of seats in the
parliament: People’s Party for Freedom and Democracy, Labour Party, Chris-
tian Democratic Appeal, Party for Freedom, The Socialist Party, Democrats 66,
Green-Left, and Christian-Union. The coalition in the first period is between a
left-wing party and a centrist party, in the second period between a right-wing
party and centrist party, and in the third, between a right-wing and left-wing
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party. Figure 3.3 shows the hierarchical structure of the Dutch parliament in
these three different periods.

In order to learn representations for parliamentary entities, first of all, we pre-
pare the data. In the proceedings, there are series of parliamentary speeches
by different MPs following the debate structure. We invert the data matrix so
that for each speaker we collect their speeches as a single document that reflects
the features of that member. Then, for representing the internal entities in the
parliament’s hierarchy, we first consider members as the leaf entities and then
concatenate all leaf documents below internal entities as a single document
which textually represents them: first over parties, and then parties into govern-
ment and opposition, etc. The whole corpus consists of 14.7 million terms from
240,501 speeches and contains 2.1 million unique terms. No stemming and no
lemmatization is done on the data and also stop words, and common words
are not removed in data preprocessing. After data preparation, we estimate
SWLMs for all entities in the hierarchy as it is explained in Section 3.3.

3.4.2 Two-Dimensional Separability of HSWLM

Here we investigate the ability of HSWLM to provide language models for
hierarchical entities that are two-dimensionally separable. Based on the ex-
plained procedure of estimating HSWLM, the language models of entities in
the hierarchy are repeatedly updated, so that the resulting in representations
are both horizontally and vertically separable in the hierarchy. To assess this fact,
we estimate HSWLM on the parliamentary data and look into the separability
between entities in the same layer or in different layers.

Figures 3.4a and 3.4b illustrate the probability distributions over terms based on
the estimated HSWLMs in the status and party layer, respectively. We sort the
probability distribution based on the term weight of the first representation and
plot the other representations in this exact order. As can be seen in the status
layer, Figure 3.4a, the distributions over terms for government and opposition
cover almost separated set of terms. Since in this layer these two entities are
supposed to be against each other, a high level of separability can be expected.
On the other hand, in the party layer, Figure 3.4b, it is possible that two parties
share some ideological issues and consequently share some terms. So, in this
layer, a complete separability of terms would not be practically possible for
all the parties. Nevertheless, HSWLM, to some extent, provides horizontal
separability in this layer.

Besides, we illustrate the horizontal separability of HSWLM of some pairs of
parties. Figures 3.5a, 3.5b, and 3.5c show the separability of representations
of two parties in three cases, respectively: 1) different statuses, 2) both in the
status of opposition, 3) both in the status of government. It can be seen that in
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(a) HSWLM in the status layer. (b) HSWLM in the party layer.
Figure 3.4: Horizontal Separability: probability distribution over terms based on hierarchical
significant words language models in status layer and party layer.

(a) HSWLM of two parties in differ-
ent statuses:CDA and PvdA.

(b) HSWLM of two parties in opposi-
tion: PVV and CDA.

(c) HSWLM of two parties in govern-
ment: VVD and PvdA.

Figure 3.5: Horizontal Separability: probability distribution over terms based on hierarchical
significant words language models in party layer.

all cases of being in the same status or different status the estimated hierarchical
significant words language models are separable. The interesting point is in
Figure 3.5c, which the presents the representations of two government parties
that are strongly separable. This is rooted in the fact that in this period there
was an unusual coalition government consisting of a right-wing and a left-
wing party. So, although they have an agreement in the status layer, their
representation is highly separable in terms of having opposite spectrums in
party layer.

In order to illustrate the vertical separability of HSWLM, we choose two dif-
ferent branches in the hierarchy: one from the leader of one of the opposition
parties to the root, and the other from the leader of one of the government
parties to the root. Figure 3.6a and 3.6b show probability distributions over
words based on HSWLM of all entities in these two branches. They show that
using HSWLM, we can decompose the distribution over all terms into highly
separable distributions, each one representing the language usage related to the
meaning behind the layer of the entity in the hierarchy.

The two-dimensional separation property of HSWLM in the hierarchy is es-
sentially due to the parsimonization effect in two directions. Intuitively, the
horizontal separability is mainly the result of the specification stage. For exam-
ple, when an entity is parsimonized given its direct parent, since the data in
its parent is formed by pooling the data from the entity and its siblings, parsi-
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(a) HSWLM of S. van Haersma Buma (as the member
of parliament - Leader of CDA), CDA (as the party),
Opposition (as the status), and the Parliament.

(b) HSWLM of D. Samson (as the member of parlia-
ment - Leader of PvdA), PvdA (as the party), Govern-
ment (as the status), and the Parliament.

Figure 3.6: Vertical Separability: probability distribution over terms in different layers based on
hierarchical significant words language models in complete paths from the root to the terminal
entities in the hierarchy.

monization makes the representation of the entity separable from its siblings,
which provide horizontal separation in the resulting language models. On the
other hand, vertical separability is mainly due to the generalization stage (and
implicit specification). For example, when an entity is parsimonized given its
children, since they are specified already, parsimonization gets rid of the specific
terms of the lower layer from the entity’s representation.

3.4.3 Separability for Transferability

As an extrinsic evaluation of the hierarchical significant words language models,
we investigate the effectiveness of the learned representations in a classification
task in the parliamentary dataset with an evolving hierarchical structure. The
task is to predict either the party that a member of the parliament belongs to, or
the status of the member’s party, having all the speeches given by that member
in a period, as well as all the speeches given by the members of all parties in a
different period of parliament.

In the parliament, the composition of parties and statuses changes over different
periods (Figure 3.3) and hence the speeches related to different entities can
vary dramatically. Due to this fact, cross period classification is notoriously
challenging [139, 317]. We show that representing entities with HSWLM tackles
the problem of having non-stable representations when the composition of
parliament evolves during the time, by capturing the essence of language
models of parliamentary entities at aggregate levels.

We use SVM as the base classifier.We trained a standard SVM on raw text as
well as a SVM that uses the probabilities of terms in HSWLM as the weights of
features. Using the probabilities estimated by HSWLM as weights for features
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Table 3.1: Results on the task of status classification.
(a) Accuracy of the SVM classifier.

Period Test

2006–10 2010–12 2012–14 All

Tr
ai

n

2006–10 84.14 68.83 87.24 -
2010–12 68.29 78.57 87.91 -
2012–14 68.90 75.97 88.59 -
All - - - 79.87

(b) Accuracy of the SVMHSWLM classifier.

Period Test

2006-10 2010-12 2012-14 All

Tr
ai

n

2006-10 82.32 80.51 89.29 -
2010-12 79.87 74.66 88.58 -
2012-14 78.65 77.27 93.28 -
All - - - 86.98

Table 3.2: Results on the task of party classification.
(a) Accuracy of the SVM classifier.

Period Test

2006–10 2010–12 2012–14 All

Tr
ai

n

2006–10 47.56 29.22 26.84 -
2010–12 29.87 40.90 35.57 -
2012–14 31.09 30.51 44.96 -
All - - - 39.18

(b) Accuracy of the SVMHSWLM classifier.

Period Test

2006-10 2010-12 2012-14 All

Tr
ai

n

2006-10 44.51 46.10 43.62 -
2010-12 40.85 40.25 39.59 -
2012-14 40.24 38.96 42.28 -
All - - - 49.94

can be considered as a feature selection approach that filters out features that
are not essential in accordance to the hierarchical position of entities and make
the data representation more robust by taking out non-stable terms.1 We have
employed conventional 5-fold cross validation for training and testing and
to maintain comparability, we have used the same split for folding in all the
experiments.

Tables 3.1b and 3.2b show the performance of employing SWLM on status
and party classification, respectively. Tables 3.1a and 3.2a indicate the results
of SVM classifier on status and party classification respectively. Comparing
the results in Tables 3.1a and 3.1b, we see that the accuracy of SVM in within
period experiments is sometimes slightly better, but in cross period experiments,
the classifier that uses SWLM of statuses achieves better results. This is also
observed in the results in Table 3.2b compared to the results in Table 3.2a.

For party classification, employing SWLM results in a significant improvement
over the baseline. Hirst et al. [139] discuss that since the status of members
in parliament, compared to their party, has more effect on the content of their
speeches, classifiers tend to pick features related to the status, not the party
ideologies. So, SVM performs very well in terms of accuracy in the within-
period experiments, but this performance is due to the separability of parties
due to their status. Hence, changing the status in cross period experiments,
using the learned representation on other periods fails to predict the party,
so the accuracies drop. This is exactly the point where our proposed method
kicks in. Since for each party, the SWLM is less affected by the status of the
party in that period, the representation remains valid even when the status is

1We have also tried SVM along with a feature selection methods [29, 101] that uses the
Information Gain (IG) to select features as a baselines and reported the results in [68].
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changed. In other words, eliminating the effect of the status layer in the party
representation in the specification stage ensures that the party language model
captures the essential terms related to the party ideology, not its status. Thereby,
it is a stable representation that is transferable over time. We conducted a one-
tailed t-test on the results. In both party and status classification, in all cases
where SWLM performs better than the SVM, the improvement is statistically
significant (p-value < 0.005).

To get a better intuition of the procedure of estimating SWLM, consider the
hierarchical relations of Dutch parliaments in the period of 2006–2010, which
is depicted in Figure 3.3. Assume that the goal is modeling language usage of
“Christian-Union (CU)” as an entity in the party layer. In the speeches from the
members of this party, words like “Chairman” or “Agree” might occur repeatedly.
However, they are not a good point of reference for the party’s ideological
language usage. In the procedure of estimating SWLM of the “Christian-Union,”
these words are removed from the initial estimated standard language model in
the specification stages, since “Chairman” is a general term in the parliamentary
domain and is only able to explain the root entity and “Agree” is somehow
an indicator of language usage of all the “Government” parties. On the other
side, assume that the goal is to model language usage of “Government” as an
entity in the status layer. Speeches from “Christian-Union” members, which
are also counted as “Government” members, may contain words like “Bible” or
“Charity.” It is trivial that involving these party-specific words in the learned
representation for the “Government” in an individual period hurts the compre-
hensiveness. In the procedure of estimating SWLM for the “Government,” in
the generalization stages, these words are discarded from the representation.
This way, the “Government” representation does not lose its validity on other
periods where the “Christian-Union” is not in a Government party.

As another indicator of the effectiveness of SWLM, it outperforms the SVM
bringing all the data together from three different periods in both party and
status classification. This is because it gets the chance of having richer training
data, which leads to more precise models. While in SVM, changes in the
parliamentary composition make speeches diverse, as a result of which it is not
able to learn a concrete model.

3.4.4 Invariance of the Representations

As an intrinsic evaluation of the models, we evaluate the invariance of rep-
resentations learned by our model over different periods—how similar are
representations of a particular entity in the hierarchy when trained on data from
different periods.

To assess this, we use the diversity of entities’ representations in different
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Figure 3.7: Average of JS-Divergence of standard language models and SWLMs for parliamen-
tary entities in three different periods.

periods to measure their (in)variance over time. First, all HSWLMs from differ-
ent periods of each party and each status are smoothed using Jelinek-Mercer
smoothing [330] considering all parliamentary speeches in the corresponding
period as the background collection and with the same value of the smoothing
parameter. Then, we use the Jensen-Shannon divergence as the diversity metric
to measure dissimilarities between each two HSWLMs learned from different
periods and then calculate the average of values for each entity. As the baseline,
the same calculation is done for the standard language models of entities, i.e.,
language models estimated using maximum likelihood estimation. Figure 3.7
shows the diversity of representations in different periods. As can be seen, in
all entities in both party and status layers, the diversity of HSWLM of different
periods is lower than the diversity of standard language models, which shows
that the estimated HSWLMs are more invariant over different periods.

In order to better understand the results in the previous section, we zoomed
in on the period of 2010–2012 and 2012–2014 and looked into the confusion
matrices of cross period experiments and observed that most of the errors made
by SVM are misclassifying members of CDA to PvdA and vice versa. These are
the two parties whose statuses have been changed in these periods.

We investigate representations of these two parties to understand how sep-
aration in the feature representation affects the performance of cross period
classification. To do so, for each of these two classes, in each period, we extract
three probability distributions on terms indicating their importance based on
different weighting approaches: 1) Term Frequency (used as feature weights
in SVM) and 2) probability of terms in HSWLM (used as feature weights in
SVMHSWLM). Then, as a metric to measure separability of features, we use the
Jensen-Shannon divergence to calculate diversity of probability distributions in
three cases: 1) Different Parties in the Same Period, 2) Same Party in Different
Periods 3) Different Parties in Different Periods. To avoid the effect of the num-
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Figure 3.8: Average diversity of the representation of features of CDA and PvdA in different
situations.

ber of features on the value of divergence, we take the top-500 highest scoring
terms of each of the weighting methods as their fixed length representatives.
Figure 3.8 shows the average diversity of distributions in each of the three cases
for each of the three weighting methods.

As expected, the diversity of features for different parties in a single period is
high for both methods. However, when we calculate the diversity of features
for a single party in different periods, feature representations are different
in TF, which causes false negative errors in the classification of these two
parties. When using representations using TF, we get similar representations
for different parties in different periods, probably due to the fact that they share
status. This can lead to false positive errors in the classification.

Considering these observations together reveals that SVM learns representa-
tions on the basis of features that are indicators of issues related to the status of
parties, since they are the most discriminating terms considering one period and
in within period experiments, the performance of SVM is due to the separability
of parties based on their statuses. Hence, after changing the status in the cross
period experiments, the trained model of the previous period generated by
SVM fails to predict the accurate party. In the same way, the status classifier is
affected by different parties forming a government in different periods, leading
to lower accuracies.

This is exactly the point where the strengths of HSWLM kick in. In fact, two-
dimensional separability in the feature representation enables SVMHSWLM to
tackle the problem of having non-stable features in the representation when the
status of a party changes over time. In other words, eliminating the effect of
the status layer in the party representation, which is the result of the horizontal
separation, ensures that the party representation captures the terms related to
the party ideology, not its status. Thereby, SVMHSWLM is not only effective in
within period classification, but also the models learned on the data from one
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period remain valid when the statuses of parties change in other periods.

3.5 Related Work

This section briefly discusses the separation property in the related domains
and reviews principles in information retrieval and text classification that are
associated with the concept of separability. In addition, some research on
classification and topic modeling of hierarchical texts is discussed.

Separability is a property that makes the data representation sufficiently rich to
distinguish instances and consequently enables autonomous systems to easily
interpret the data [174]. For instance, in the classification task, classifiers learn
more accurate data boundaries when they are provided with separable repre-
sentations of data from different classes [175]. The importance of separability
in classifiers has led to the fact that making data separable becomes part of the
classification. As the most familiar instances, SVM transform the data into a
new space where they are linearly separable [36].

Separation is also a pivoting concept in information retrieval (IR). Separat-
ing relevant from non-relevant documents is a fundamental issue in this do-
main [169, 231, 245]. In IR, separation plays a more important role when instead
of giving a ranked list, a decision should be made about the relevancy of docu-
ments, for example in the information filtering task [174]. As another instance, in
the task of relevance feedback, there are some efforts on estimating a distinctive
representation for relevant documents so that it reflects not only their similarity,
but also their difference from the whole collection, i.e., what makes them stand
out or separated [136, 263, 329].

In this chapter, we address the separation property in textual data that is or-
ganizable in a hierarchical structure. In a hierarchy, due to the existence of de-
pendencies between entities, estimating separable representations is a complex
task. There is a range of work on the problem of hierarchical text classifica-
tion [246, 268], which tried to model hierarchical text-based entities. McCallum
et al. [193] proposed a method for learning representation for an entity in the
hierarchy which tackles the problem of data sparseness in lower layer entities.
They used a shrinkage estimator to smooth the representation of each leaf entity
with the representation of its ancestors to make them more reliable. There is
also similar research on XML data processing, as hierarchically structured data,
which tries to incorporate evidence from other layers as the context through
mixing each element language models by its parent’s models [206, 258].

Recently, Song and Roth [262] tackled the problem of representing hierarchical
entities with a lack of training data for the task of hierarchical classification. In
their work, given a collection of instances and a set of hierarchical labels, they
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tried to embed all entities in a semantic space, then they construct a semantic
representation for them to be able to compute meaningful semantic similarity
between them.

Zhou et al. [333] proposed a method that directly tackles the difficulty of model-
ing similar entities at lower levels of the hierarchy. They used regularization so
that the representation of lower level entities have the same general properties
as their ancestors, in addition to some more specific properties. Although these
methods tried to learn representation for hierarchical texts, their concerns were
not making the representations separable. Instead, they mostly addressed the
problem of training data sparseness [120, 193, 262] or presented techniques for
handling large scale data [111, 120, 207, 311].

In terms of modeling hierarchical entities, Kim et al. [159] used Hierarchical
Dirichlet Processes (HDPs) [275] to learn representations for entities in the hi-
erarchies using their own representations as well as representations of their
ancestors. Also, Zavitsanos et al. [327] used HDPs to learn a representation for
entities in a hierarchy employing representations of their descendants. This re-
search tries to bring out precise topic models using the structure of the hierarchy,
but they do not aim to estimate separable representations.

As we discussed in Section 3.4.3, our proposed approach can be employed
as a feature selection method for text classification. Prior research on feature
selection for textual information [101, 104] tried to improve classification accu-
racy or computational efficiency, while our method aims to provide a separable
representation of data that helps train a transferable model. Apart from con-
sidering the hierarchical structure, our goals also differ from prior research on
the transferability of models. For instance, research on constructing dynamic
models for data streams [25, 315] first discovered the topics from data and then
tried to efficiently update the models as data changes over the time, while our
method aims to identify tiny precise representations that are more robust and
remain valid over time. Research on domain adaptation [42, 310] also tried to
tackle the problem of missing features when very different vocabularies are
used in test and training data. This differs from our approach considering the
hierarchical relations, as we aim to estimate separable representations that are
robust against changes in the structure of entities relations, rather than changes
in the corpus vocabulary.

3.6 Conclusion

The wish to learn conceptually accurate representations of data with a structure
consisting of multiple layers, or a hierarchy, prompts us to analyze the data
at different abstraction levels. However, this requires the ability to estimate
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separable representations for hierarchical entities that capture their essential
features taking into account their relative position in the hierarchy.

In this chapter, we focused on addressing RQ-1.2: “How to learn separable rep-
resentations for hierarchically structured entities that are less sensitive to structural
changes in the data and more transferable across time?”. We demonstrated that based
on the ranking and classification principles, the separation property in the data
representation is a desirable foundational property that leads to separability of
scores and consequently improves the accuracy of classifiers’ decisions, which
addressed RQ-1.2.1. We stated this as the “Strong Separation Principle” for
optimizing expected effectiveness of classifiers.

We showed that in order to have horizontally and vertically separable rep-
resentations for hierarchically structured data, they should capture all, and
only, the essential features of the entities taking their position in the hierarchy
into account. Based on this, to address RQ-1.2.2, we introduced hierarchical
significant words language models for estimating separable representations
for hierarchical entities. We studied HSWLMs and demonstrated that the of-
fer separable distributions over terms for different entities both in the case of
being in the same layer or in different layers. To study RQ-1.2.3, we evaluated
the performance of classification over time using separable representations of
data and showed that separability makes the representation more robust and
transferable over time by filtering out non-essential and non-stable feature.

In Part I of the thesis, we have focused on addressing RQ-1: “How to design
learning algorithms that can learn from weakly annotated samples, while generalizing
over the imperfection in their labels?,” by studying how incorporating some prior
knowledge can help improve the robustness of the outcome of the learning
process in noisy and variable environments. We have shown that taking the
structure of the data, which is in fact a form of inductive bias, into account can
help to learn effective representations. Next, in Part II, we will investigate how
we can change the learning process to make it more robust against noise in the
weakly annotated labels.
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Learning with Weak Supervi-
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The unprecedented success of data-driven approaches in machine learning has
turned data into a first-class citizen in machine learning. Most of the times, the
more data you have, the more accurate your model will be [121, 269] and it is
more crucial to provide massive amounts of training data when the models
become more deep and complex. Collecting such training sets by hand is often
infeasible due to the time and expense of labeling data. Besides, hand-labeled
training sets are static and we might need complete relabeling, for instance,
when the modeling goals changes. Thus moving beyond fully supervised
learning, like adopting weak supervision with the hope to overcome the poverty
of stimulus, is a key direction in machine learning research.

Humans can learn from weak and inconsistent signals[48]. However, it seems
difficult to build fault-tolerant machine learning systems that learn, even though
imperfect signals can contain a great deal of valid information. Given the
fact that only a tiny portion of real word applications operate under perfect
conditions, an essential aspect of any practical learning algorithm is the need
to learn from inconsistent data provided by different sensors, noisy or weak
supervision, and even when crucial information is missing from the supervision
signal.

In Part II of this thesis, we address the following research question:

RQ-2 How to design learning algorithms that can learn from weakly
annotated samples, while generalizing over the imperfection in their
labels?

The imperfect samples can come from labels provided by non-expert crowd
workers, be the output of other models that are weaker (for instance, with low
accuracy or coverage), biased, or models trained on data from different related
domains. In this part, we aim to study how we can provide supervision signals
for machine learning systems by labeling training data programmatically in-
stead of labeling by hand [226]. Then, given a vast amount of programmatically
generated labeled data, and maybe a small set of samples with true labels, we
discuss how to design neural networks that leverage the full capacity of the
information in the data and go beyond the imperfection of weakly annotated
data.

In the first chapter of this part, Chapter 4, we address the following research
question:

RQ-2.1 How can we train neural networks using programmatically gener-
ated pseudo-labels as a weak supervision signal, in a way that they
exhibit superior generalization capabilities?

In this chapter, we propose to train a neural ranking model using weak labels
that are obtained automatically without human annotators or any external
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resources (e.g., click data). We train a set of simple yet effective neural ranking
models and study their effectiveness under various learning scenarios, i.e.,
point-wise and pair-wise, different objective functions, and using different
input representations, from using a set of engineered features to encoding
query/document using word embeddings [84]. We also discuss how privacy
preserving approaches can benefit from models that are capable of learning
from weak signals, where instead of labels from the original sensitive training
data a noisy version is provided [71].

Then, in the second chapter of this part, Chapter 5, we focus on the following
research question:

RQ-2.2 Given a large set of weakly annotated samples and a small set of
samples with high-quality labels, how can we best leverage the
capacity of information in these sets to train a neural network?

In this chapter we introduce Learning with Controlled Weak Supervision (CWS) [82,
83] and Fidelity Weighted Learning (FWL) [79, 80], two semi-supervised ap-
proaches for training neural networks, where we have a large set of data with
weak labels and a small amount of data with true labels. In CWS we train two
neural networks in a meta-learning setup: a target network, the learner and
a confidence network, the meta-learner. The target network is optimized to
perform a given task and is trained using a large set of unlabeled data that is
weakly annotated. We propose to control the magnitude of the gradient up-
dates to the target network using the scores provided by the second confidence
network, which is trained on a small amount of supervised data. Thus we
avoid that the weight updates computed from noisy labels harm the quality
of the target network model. FWL is a student-teacher approach in which we
modulate the parameter updates to a student network (trained on the task we
care about) on a per-sample basis according to the posterior confidence of its
label-quality estimated by a teacher (who has access to the high-quality labels).

We show that we can train a neural ranker using a heuristic labeling function as
weak supervision signal and go beyond the performance of this weak annotator,
merely by choosing the right architecture and objective functions, and discuss
how this can benefit learning in a privacy-preserving setup. Given a semi-
supervised setup, we apply our introduced methods, CWS and FWL, to a range
of language understanding tasks and empirically verify that they improve over
semi-supervised alternatives and speeds up the training process.



4
Learning from Pseudo-Labels

In many applications with scarce training data, we can provide
supervision signals for learning algorithms by pseudo-labeling the
data programmatically, rather by hand. This way, we can generate
a much larger training set with low cost. But it requires designing
algorithms that are capable of learning from weakly annotated labels
and of going beyond the imperfection of pseudo-labels.

4.1 Introduction

Neural networks are making great progress in many tasks in computer vi-
sion [165], natural language processing [56], and information retrieval [301].
However, these models are data hungry and their performance is strongly cor-
related with the amount of available labeled data, which is not always readily
available and can be expensive to obtain.

Looking into the research done in this area, most of it targets stable benchmark
tasks where standard large-enough datasets exist to train neural networks. How-
ever, the labeled data becomes a scarce commodity when we stray slightly from
these standard benchmark tasks toward the realm of real-world applications.
In this chapter, we focus on one of our research questions:

This chapter is based on [71, 81, 84].
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RQ-2.1 How can we train neural networks using programmatically gener-
ated pseudo-labels as a weak supervision signal, in a way that they
exhibit superior generalization capabilities?

We aim to study we can provide supervising signal for machine learning sys-
tems, by labeling training data programmatically instead of labeling by hand.
Then, given a vast amount of programmatically generated labeled data, we
discuss how to design neural networks that can go beyond the imperfection
of weakly annotated data. We also study how the ability to learn from noisy
signals can lead to better performance when we have intentionally added noise
to the training signals in a privacy-preserving training setup.

In this chapter, we mainly target the ranking task, as one of the core IR problems,
where despite the advances of neural network-based methods in many other
related tasks like reading comprehension, there has been a little progress, mainly
due to the lack of a large-scale public dataset with query-document pairs labeled
by relevance.

We propose to use a heuristic-based ranking method to generate pseudo-labels
for a large set of unlabeled query-document pairs to train a neural ranking
model given these pseudo-labels as a sort of weak annotations. We try different
architectures, in terms of different objectives and different input representations
and study how they learn the ranking task in weak supervision setup.

Interestingly, we observe that using just training data that are annotated by
a heuristic unsupervised model as the weak annotator, we can outperform
that weak annotator on the test data. Based on our analysis, the achieved per-
formance is generally due to three main factors: First, defining an objective
function that aims to learn the ranking instead of calibrated scoring to relax
the network from fitting to the imperfection of weakly supervised training
data. Second, letting the neural networks learn optimal query/document repre-
sentations instead of feeding them with a representation based on predefined
features. This is a key requirement to maximize the benefits from deep learning
models with weak supervision as it enables them to generalize better. Third
and last, the weak supervision setting makes it possible to train the network on
a massive amount of training data, which is crucial for learning representations.

We further thoroughly analyze the behavior of models to understand what
they learn, what kinda of the relationship is among different models, and how
much training data is needed to go beyond the weak supervision signal. We
also examine the scenario of using the network trained on a weak supervision
signal as a pre-training step. We demonstrate that, in the ranking problem, the
performance of deep neural networks trained on a limited amount of supervised
data significantly improves when they are initialized from a model pre-trained
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on weakly labeled data.

Finally, we study how a neural ranking model that learns from weak/noisy
signals can be effectively employed in a setup in which noise is intentionally
added to the training signal to preserve privacy.

4.1.1 Detailed Research Questions

We break down our main research question in this chapter into three concrete
research questions:

RQ-2.1.1 Can labels from an unsupervised heuristic-based model be used as
programmatically generated weak supervision signal to train an
effective neural network?

RQ-2.1.2 What setup in terms of input representation and learning objective
is most suitable for a neural ranker when training on programmati-
cally generated labeled data?

RQ-2.1.3 How can learning from weak supervision signals help to preserve
privacy while training neural networks on sensitive data?

In the following sections, we will address these research questions.

4.2 Weakly Supervised Neural Rankers

Despite the promising performance from neural networks on many language
understanding tasks [30, 134], ranking has remained a challenging problem.
Besides the inherent difficulty of “assessing relevance,” the lack of availability
of public large-scale datasets that consist of query-document pairs annotated
with relevance labels, makes it difficult to advance data hungry models for this
task.

Thus, the ranking task is one of the areas that requires solutions that enable us
training neural networks, where there is little to no labeled data is available.
One of the main ideas to tackle this problem is to make use of weak human
supervision or weakly labeled data, as it is much cheaper to collect or use
readily available at much larger-scale. This section focuses on addressing the
following questions:

RQ-2.1.1 Can labels from an unsupervised heuristic-based model be used as
programmatically generated weak supervision signal to train an
effective neural network?
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We propose to pseudo-label a large set of unlabeled data using an unsupervised
method and train a neural ranker using these “weak” or “noisy” labels. Given
this setup, we examine various neural ranking models with different ranking
architectures and objectives, i.e., point-wise and pair-wise, as well as different
input representations, from encoding query-document pairs into dense / sparse
vectors to learning query / document embedding representations.

Our results have broad impact as the proposal to use unsupervised traditional
methods as weak supervision signals and is applicable to a variety of IR tasks,
such as filtering or classification, without the need for supervised data. More
generally, our approach unifies the classic IR models with currently emerging
data-driven approaches in an elegant way.

4.2.1 Pseudo-Labeling Unlabeled Data

We use the idea of “Pseudo-Labeling” and propose to leverage a classic unsu-
pervised IR model to annotate a large amount of unlabeled data and infer weak
labels and use this signal to train supervised models as if we had the ground
truth labels. Since the data is generated programmatically, we can generate
billions of training samples with almost no cost.1

We focus on query-dependent ranking as a core IR task. To this aim, we take
a well-performing existing unsupervised retrieval model, such as BM25. This
model plays the role of “pseudo-labeler” in our learning scenario. In more
detail, given a target collection and a large set of training queries (without
relevance judgments), we make use of the pseudo-labeler to rank/score the
documents for each query in the training query set. The goal is to train a ranking
model given the scores/ranking generated by the pseudo-labeler as a weak
supervision signal.

In the following, we describe different neural architectures in detail and finally
investigate their effectiveness when trained on weakly annotated data.

4.2.2 Neural Ranking Architectures

In this section, we introduce three different neural ranking models that are
trained based on different “objectives.” We describe the architecture of the
base neural network shared by these models. We further discuss the three
different “input layers” used in our neural rankers to encode information of
given query-document pairs.

1Weak supervision for training a ranker may refer to using click-through data. Here, we
assume that no external information, e.g., search logs, is available.
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(a) Score model (b) Rank model (c) RankProb model
Figure 4.1: Different ranking architectures.

We define three different ranking models, one point-wise and two pair-wise
models:

Score Model

This architecture models a point-wise ranking model that learns to predict
retrieval scores for query-document pairs. More formally, the goal in this
architecture is to learn a scoring function S(q, d; q) that determines the retrieval
score of document d for query q, given a set of model parameters q. In the
training stage, we are given a training set comprising of training samples, each
of which is a triple x = (q, d, sq,d), where q is a query from training query set Q,
d represents a retrieved document for the query q, and sq,d is the relevance score
(calculated by a weak supervisor), which is acquired using a retrieval scoring
function in our setup. We consider the mean squared error as the loss function
for a given batch of training samples:

L(b; q) =
1
|b|

|b|

Â
i=1

(S({q, d}i; q)� s{q,d}i
)2 (4.1)

where {q, d}i denotes the query and the corresponding retrieved document in
the ith training sample, i.e., xi in the batch b. The conceptual architecture of the
model is illustrated in Figure 4.1a.

Rank Model

In this model, similar to the previous one, the goal is to learn a scoring function
S(q, d; q) for a given pair of query q and document d with the set of model
parameters q. However, unlike the previous model, we do not aim to learn a
calibrated scoring function. In this model, as is depicted in Figure 4.1b, we use
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a pair-wise scenario during training in which we have two point-wise networks
that share parameters and we update their parameters to minimize a pair-wise
loss. Each training sample has five elements: x = (q, d1, d2, sq,d1 , sq,d2). During
the inference, we treat the trained model as a point-wise scoring function to
score query-document pairs.

We have tried different pair-wise loss functions and empirically found that the
model learned based on the hinge loss (max-margin loss function) performs
better than the others. Hinge loss is a linear loss that penalizes examples that
violate the margin constraint. It is widely used in various learning to rank
algorithms, such as Ranking SVM [133]. The hinge loss function for a batch of
training samples is defined as follows:

L(b; q) =
1
|b|

|b|

Â
i=1

max
�

0, #� sign(s{q,d1}i
� s{q,d2}i

)

(S ({q, d1}i; q)� S ({q, d2}i; q))
 

,

(4.2)

where # is the parameter determining the margin of the hinge loss. We found
that as we compress the outputs to the range of [�1, 1], # = 1 works well as the
margin for the hinge loss function.

RankProb Model

The third architecture is based on a pair-wise scenario during both training
and inference (Figure 4.1c). This model learns a ranking function R(q, d1, d2; q)
that predicts the probability of document d1 to be ranked higher than d2 given
q. Similar to the rank model, each training sample has five elements: x =
(q, d1, d2, sq,d1 , sq,d2). For a given batch of training samples, we define our loss
function based on cross-entropy as follows:

L(b; q) = � 1
|b|

|b|

Â
i=1

P{q,d1,d2}i
log(R({q, d1, d2}i; q)) (4.3)

+ (1� P{q,d1,d2}i
) log(1�R({q, d1, d2}i; q)),

where P{q,d1,d2}i
is the probability of document d1 being ranked higher than d2,

based on the scores obtained from training sample xi:

P{q,d1,d2}i
=

s{q,d1}i

s{q,d1}i
+ s{q,d2}i

. (4.4)

A similar loss function has previously been used in RankNet [35]. It is notable
that at inference time we need a scalar score for each document. Therefore, we
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need to turn the model’s pair-wise predictions into a score per document. To do
so, for each document, we calculate the average of predictions against all other
candidate documents, which has O(n2) time complexity and is not practical in
real-world applications. There are some approximations the could be applicable
to decrease the time complexity at inference time [300].

As shown in Figure 4.1, all the described ranking architectures share a neural
network module. In all these models, we opted for a simple feed-forward neural
network that is composed of: input layer z0, l � 1 hidden layers, and the output
layer zl. The input layer z0 provides a mapping y to encode the input query
and document(s) into a fixed-length vector. The exact specification of the input
representation feature function y is given in the next subsection. Each hidden
layer zi is a fully-connected layer that computes the following transformation:

zi = a(Wi.zi�1 + bi); 1 < i < l � 1, (4.5)

where Wi and bi respectively denote the weight matrix and the bias term cor-
responding to the ith hidden layer, and a(.) is the activation function. We use
the rectifier linear unit ReLU(x) = max(0, x) as the activation function, which
is a common choice in the deep learning literature [170]. The output layer zl is a
fully-connected layer with a single continuous output. The activation function
for the output layer depends on the ranking architecture that we use. For the
score model architecture, we empirically found that a linear activation function
works best, while tanh and the sigmoid functions are used for the rank model
and rankprob model, respectively.

Furthermore, to prevent feature co-adaptation, we use dropout as the regular-
ization technique in all the models. Dropout sets a portion of hidden units to
zero during the forward phase when computing the activations, which prevents
overfitting.

4.2.3 Representing Inputs

We explore three definitions of the input layer representation z0 captured by a
feature function y that maps the input into a fixed-size vector which is further
fed into the fully connected layers: (i) a conventional dense feature vector repre-
sentation that contains various statistics describing the input query-document
pair, (ii) a sparse vector containing bag-of-words representation, and (iii) bag-of-
embeddings averaged with learned weights. These input representations define
how much capacity is given to the network to extract a discriminative signal
from the training data and thus result in different generalization behavior of
the networks. It is noteworthy that the input representation of the networks in
the score model and rank model is defined for a pair of a query and a document,
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while the network in the rankprob model needs to be fed by a triple of the query,
the first document, and the second document.

Dense Vector Representation (Dense)

In this setting, we build a dense feature vector composed of features used by
traditional IR methods, e.g., BM25. The goal here is to let the network fit the
function described by the BM25 formula when it receives exactly the same
inputs. In more detail, our input vector is a concatenation (||) of the following
inputs: total number of documents in the collection (i.e., N), average length of
documents in the collection (i.e., avg(ld)D), document length (i.e., ld), frequency
of each query term ti in the document (i.e., t f (ti, d)), and document frequency
of each query term (i.e., d f (ti)). Therefore, for the point-wise setting, we have
the following input vector:

y(q, d) = [N||avg(ld)D||ld||{d f (ti)||t f (ti, d)}1ik], (4.6)

where k is set to a fixed value (5 in our experiments). We truncate longer queries
and do zero padding for shorter queries. For the networks in the rankprob
model, we consider a similar function with additional elements: the length of
the second document and the frequency of query terms in the second document.

Sparse Vector Representation (Sparse)

Next, we move away from a fully featurized representation that contains only
aggregated statistics and let the network performs feature extraction for us. In
particular, we build a bag-of-words representation by extracting term frequency
vectors of query (t f vq), document (t f vd), and the collection (t f vc) and feed the
network with concatenation of these three vectors. For the point-wise setting,
we have the following input vector:

y(q, d) = [t f vc||t f vq||t f vd] (4.7)

For the network in the rankprob model, we have a similar input vector with
both t f vd1 and t f vd2 . Hence, the size of the input layer is 3⇥ vocab size in the
point-wise setting, and 4⇥ vocab size in the pair-wise setting.

Embedding Vector Representation (Embed)

The major weakness of the previous input representation is that words are
treated as discrete units, hence prohibiting the network from performing soft
matching between semantically similar words in queries and documents. In
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this input representation paradigm, we rely on word embeddings to obtain
more powerful representations of queries and documents that could bridge
the lexical chasm. The representation function y consists of three components:
an embedding function E : V ! Rm (where V denotes the vocabulary set
and m is the embedding dimension), a weighting function W : V ! R, and a
compositionality function � : (Rm, Rn)! Rm. More formally, the function y
for the point-wise setting is defined as:

y(q, d) = [�|q|
i=1(E(t

q
i ),W(tq

i ))||�
|d|
i=1 (E(t

d
i ),W(td

i ))], (4.8)

where tq
i and td

i denote the ith term in query q and document d, respectively. For
the network of the rankprob model, another similar term is concatenated with the
above vector for the second document. The embedding function E transforms
each term to a dense m-dimensional float vector as its representation, which is
learned during the training phase. The weighting function W assigns a weight
to each term in the vocabulary set, which is supposed to learn term global
importance for the retrieval task. The compositionality function � projects a
set of n embedding and weighting pairs to an m-dimensional representation,
independent from the value of n. The compositionality function is given by:

�n
i=1 (E(ti),W(ti)) =

n

Â
i=1

cW(ti) · E(ti), (4.9)

which is the weighted element-wise sum of the terms’ embedding vectors. cW
is the normalized weight that is learned for each term, given as follows:

cW(ti) =
exp(W(ti))

Ân
j=1 exp(W(tj))

. (4.10)

All combinations of different ranking architectures and different input repre-
sentations presented in this section can be considered for developing ranking
models.

4.2.4 Training Neural Rankers with Weak Supervision

In this section, we discuss the effectiveness of our neural rankers with dif-
ferent learning objectives (Section 4.2.2) and different input representations
(Section 4.2.3), when they are trained with weakly supervised signals.

In the following, we first describe the train and evaluation data, metrics we
report, and detailed experimental setup. Then we discuss the results.
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Table 4.1: Collections statistics.

Collection Genre Queries # docs length

Robust04 news 301–450,601–700 528k 254
ClueWeb webpages 1–200 50m 1,506

Collections

In our experiments, we used two standard TREC collections: The first collection
(called Robust042) consists of over 500k news articles from different news agen-
cies, that is available in TREC Disks 4 and 5 (excluding Congressional Records).
This collection, which was used in TREC Robust Track 2004, is considered as a
homogeneous collection, because of the nature and the quality of documents.
The second collection (called ClueWeb3) that we used is ClueWeb09 Category
B, a large-scale web collection with over 50 million English documents, which
is considered as a heterogeneous collection. This collection has been used in
the TREC Web Track, for several years. In our experiments with this collection,
we filtered out the spam documents using the Waterloo spam scorer4 [57] with
the default threshold 70%. The statistics of these collections are reported in
Table 4.1.

Training Query Set

To train our neural ranking models, we used the unique queries (only the query
string) appearing in the AOL query logs [215]. This query set contains web
queries initiated by real users in the AOL search engine that were sampled
from a three-month period from March 1, 2006 to May 31, 2006. We filtered
out a large volume of navigational queries containing URL substrings (“http”,
“www.”, “.com”, “.net”, “.org”, “.edu”). We also removed all non-alphanumeric
characters from the queries. We made sure that no queries from the training set
appear in our evaluation sets. For each dataset, we took queries that have at
least ten hits in the target corpus using the pseudo-labeler method. Applying all
these processes, we ended up with 6.15 million queries for the Robust04 dataset
and 6.87 million queries for the ClueWeb dataset. In our experiments, we
randomly selected 80% of the training queries as training set and the remaining
20% of the queries were chosen as the validation set for hyper-parameter tuning.
As the “pseudo-labeler” in our training data, we have used BM25 to score/rank
documents in the collections given the queries in the training query set.

2https:// trec.nist.gov/data/robust/04.guidelines.html
3https:// lemurproject.org/clueweb09/
4http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

https://trec.nist.gov/data/robust/04.guidelines.html
https://lemurproject.org/clueweb09/
http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
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Evaluation Query Sets

We use the following query sets for evaluation that contain human-labeled
judgments: a set of 250 queries (TREC topics 301–450 and 601–700) for the
Robust04 collection that were previously used in TREC Robust Track 2004. A
set of 200 queries (topics 1–200) were used for the experiments on the ClueWeb
collection. These queries were used in the TREC Web Track 2009–2012. We only
used the title of topics as queries.

Evaluation Metrics

To evaluate retrieval effectiveness, we report three standard evaluation metrics:
mean average precision (MAP) of the top-ranked 1, 000 documents, precision of
the top-20 retrieved documents (P@20), and normalized discounted cumulative
gain (nDCG) [149] calculated for the top-20 retrieved documents (nDCG@20).
Statistically significant differences of MAP, P@20, and nDCG@20 values are de-
termined using the two-tailed paired t-test with p_value < 0.05, with Bonferroni
correction.

Experimental Setup

All models described in Section 4.2.2 are implemented using TensorFlow [98,
273]. In all experiments, the parameters of the network are optimized employing
the Adam optimizer [161] and using the computed gradient of the loss to per-
form the back-propagation algorithm. All model hyper-parameters were tuned
on the respective validation set using batched GP bandits with an expected
improvement acquisition function [87]. For each model, the size of hidden layers
and the number of hidden layers were selected from [16, 32, 64, 128, 256, 512, 1024]
and [1, 2, 3, 4], respectively. The initial learning rate and the dropout param-
eter were selected from [1⇥ 10�3, 5⇥ 10�4, 1⇥ 10�4, 5⇥ 10�5, 1⇥ 10�5] and
[0.0, 0.1, 0.2, 0.5], respectively. For models with embedding vector representa-
tion, we considered embedding sizes of [100, 300, 500, 1000]. As the training
data, we take the top-1, 000 retrieved documents for each query from training
query set Q, to prepare the training data. In total, we have |Q|⇥ 1000 (⇠ 6⇥ 1010

examples in our data) point-wise example and ⇠ |Q|⇥ 10002 (⇠ 6⇥ 1013 ex-
amples in our data) pair-wise examples. The batch size in our experiments
was selected from [128, 256, 512]. At inference time, for each query, we take
the top-2, 000 retrieved documents using BM25 as candidate documents and
re-rank them by the trained models. In our experiments, we use the Indri5

5https://www.lemurproject.org/indri.php

https://www.lemurproject.org/indri.php
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Table 4.2: Performance of the different models on different datasets. ú or ô indicates that the
improvements or degradations with respect to BM25 are statistically significant, at the 0.05 level
using the paired two-tailed t-test.

Method Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

BM25 0.2503 0.3569 0.4102 0.1021 0.2418 0.2070

Score + Dense 0.1961ô 0.2787ô 0.3260ô 0.0689ô 0.1518ô 0.1430ô

Score + Sparse 0.2141ô 0.3180ô 0.3604ô 0.0701ô 0.1889ô 0.1495ô

Score + Embed 0.2423ô 0.3501 0.3999 0.1002 0.2513 0.2130

Rank + Dense 0.1940ô 0.2830ô 0.3317ô 0.0622ô 0.1516ô 0.1383ô

Rank + Sparse 0.2213ô 0.3216ô 0.3628ô 0.0776ô 0.1989ô 0.1816ô

Rank + Embed 0.2811ú 0.3773ú 0.4302ú 0.1306ú 0.2839ú 0.2216ú

RankProb + Dense 0.2192ô 0.2966ô 0.3278ô 0.0702ô 0.1711ô 0.1506ô

RankProb + Sparse 0.2246ô 0.3250ô 0.3763ô 0.0894ô 0.2109ô 0.1916
RankProb + Embed 0.2837ú 0.3802ú 0.4389ú 0.1387ú 0.2967ú 0.2330ú

implementation of BM25 with the default parameters (i.e., k1 = 1.2, b = 0.75,
and k3 = 1000).

Given the setup we explained above, we train and evaluate our neural rankers
to address our second research question in this chapter:

RQ-2.1.2 What setup in terms of input representation and learning objective
is most suitable for a neural ranker when training on programmati-
cally generated labeled data?

We attempt to break down our experiments and analyses to different parts
addressing several subquestions, and provide empirical answers along with the
intuition and analysis behind each question:

How do the neural models with different training objectives and input rep-
resentations compare?

Table 4.2 presents the performance of all model combinations. Interestingly,
combinations of the rank model and the rankprob model with embedding vector
representation outperform BM25 by significant margins in both collections. For
instance, the rankprob model with embedding vector representation that shows
the best performance among the other methods, surprisingly, improves BM25
by over 13% and 35% on the Robust04 and ClueWeb collections, respectively, in
terms of MAP. Similar improvements can be observed for the other evaluation
metrics.
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Regarding the modeling architecture, in the rank model and the rankprob model,
compared to the score model, we define objective functions that target to learn
ranking instead of scoring. This is particularly important in weak supervision,
as the scores are imperfect values—using the ranking objective alleviates this
issue by forcing the model to learn a preference function rather than reproduce
absolute scores. In other words, using the ranking objective instead of learning
to predict calibrated scores allows the rank model and the rankprob model to
learn to distinguish between examples whose scores are close. This way, some
small amount of noise, which is a common problem in weak supervision, would
not perturb the ranking as easily [323].

Regarding the input representations, embedding vector representation leads to
better performance compared to the other ones in all models. Using embedding
vector representation not only provides the network with more information,
but also lets the network to learn proper representation capturing the needed
elements for the next layers with a better understanding of the interactions
between query and documents. Providing the network with already engineered
features would block it from going beyond the weak supervision signal and
limit the ability of the models to learn latent features that are unattainable
through feature engineering.

Note that although the rankprob model is more precise in terms of MAP, the rank
model is much faster at inference time (O(n) compared to O(n2)), which is a
desirable property in real-life applications.

Why do dense vector representation and sparse vector representation fail to
replicate the performance of BM25?

Although neural networks are capable of approximating arbitrarily complex
non-linear functions, we observe that the models with dense vector represen-
tation fails to replicate the BM25 performance, while they are given the same
feature inputs as the BM25 components (e.g., TF, IDF, average document length,
etc). To ensure that the training converge and there is no overfitting, we have
looked into the training and validation loss values of different models during
the training time. Figure 4.2 illustrates the loss curves for the training and
validation sets per training step for different models. As shown, in models
with dense vector representations, the training losses drop quickly to values
close to zero while this is not the case for the validation losses, which is an
indicator of over-fitting on the training data. Although we have tried differ-
ent regularization techniques, like l2-regularization and dropout with various
parameters, there is less chance for generalization when the networks are fed
with the fully featurized input. Note that over-fitting would lead to poor per-
formance, especially in weak supervision scenarios as the network learns to
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(a) Score-Dense (b) Score-Sparse (c) Score-Embed

(d) Rank-Dense (e) Rank-Sparse (f) Rank-Embed

(g) RankProb-Dense (h) RankProb-Sparse (i) RankProb-Embed
Figure 4.2: Training and validation loss curves for all combinations of different ranking archi-
tectures and input representations.

model imperfection of weak annotations. This phenomenon is also the case for
models with the sparse vector representations, but with less impact. However,
in models with the embedding vector representations, the networks do not
overfit, which helps it to go beyond the weak supervision signals in the training
data.

How are the models related?

To better understand the relationship between different neural models described
above, we compare their performance across the query dimension following
the approach in [200]. We assume that similar models should perform similarly
for the same queries. Hence, we represent each model by a vector, called the
performance vector, whose elements correspond to per query performance of
the model, in terms of nDCG@20. The closer the performance vectors are, the
more similar the models are in terms of the query by query performance. For
the sake of visualization, we reduce the vectors dimension by projecting them to
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BM25Score + Dense

Score + Sparse

Score + Embed

Rank + Dense

Rank + Sparse

Rank + Embed

RankProb + Dense
RankProb + Sparse

RankProb + Embed

Figure 4.3: Proximity of different models in terms of query-by-query performance.

a two-dimensional space, using t-Distributed Stochastic Neighbor Embedding
(t-SNE).6

Figure 4.3 illustrates the proximity of different models according to their per-
formances on the Robust04 collection. Based on this plot, models with similar
input representations (same color) have quite close performance vectors, which
means that they perform similarly for the same queries. This is not necessarily
the case for models with similar architectures (same shape). This suggests that
the amount and the way that we provide information to the networks are the
key factors in the ranking performance.

We also observe that the score model with dense vector representations is the
closest to BM25, which is expected. It is also interesting that models with
embedding vector representation are placed far away from other models which
shows they perform differently compared to the other input representations.

How meaningful are the compositionality weights learned in the embed-
ding vector representation?

In this experiment, we focus on the best performing combination, i.e., the
rankprob model with embedding vector representations. To analyze what the
network learns, we look into the weights W (see Section 4.2.3) learned by the
network. Note that the weighting function W learns a global weight for each
vocabulary term. We notice that in both collections there is a strong linear
correlation between the learned weights and the inverse document Figure 4.4
illustrates the scatter plots of the learned weight for each vocabulary term
and its IDF, in both collections. This is an interesting observation as we do

6https:// lvdmaaten.github.io/tsne/

https://lvdmaaten.github.io/tsne/
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(a) Robust04

(Pearson Correlation: 0.8243)

(b) ClueWeb

(Pearson Correlation: 0.7014)
Figure 4.4: Strong linear correlation between weight learned by the compositionality function
in the embedding vector representation and inverse document frequency.

Table 4.3: Performance of the rankprob model with variants of the embedding vector repre-
sentation on different datasets. ú indicates that the improvements over all other models are
statistically significant, at the 0.05 level using the paired two-tailed t-test, with Bonferroni
correction.

Embedding type Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

Pretrained (external) + Uniform weighting 0.1656 0.2543 0.3017 0.0612 0.1300 0.1401
Pretrained (external) + IDF weighting 0.1711 0.2755 0.3104 0.0712 0.1346 0.1469
Pretrained (external) + Weight learning 0.1880 0.2890 0.3413 0.0756 0.1344 0.1583
Pretrained (target) + Uniform weighting 0.1217 0.2009 0.2791 0.0679 0.1331 0.1587
Pretrained (target) + IDF weighting 0.1402 0.2230 0.2876 0.0779 0.1674 0.1540
Pretrained (target) + Weight learning 0.1477 0.2266 0.2804 0.0816 0.1729 0.1608
Learned + Uniform weighting 0.2612 0.3602 0.4180 0.0912 0.2216 0.1841
Learned + IDF weighting 0.2676 0.3619 0.4200 0.1032 0.2419 0.1922
Learned + Weight learning 0.2837ú 0.3802ú 0.4389ú 0.1387ú 0.2967ú 0.2330ú

not provide any global corpus information to the network in training and the
network is able to infer such global information by only observing individual
training samples.

How well do alternatives for the embedding and weighting functions in the
embedding vector representation perform?

Considering the embedding vector representation as the input representation,
we have examined different alternatives for the embedding function E : (1) em-
ploying pre-trained word embeddings learned from an external corpus (we used
Google News), (2) employing pre-trained word embeddings learned from the
target corpus (using the skip-gram model [195]), and (3) learning embeddings
during the training as explained in Section 4.2.3. Furthermore, for the compo-
sitionality function �, we tried different alternatives: (1) uniform weighting
(simple averaging which is a common approach in compositionality function),
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(a) Robust04 (b) ClueWeb
Figure 4.5: Performance of the rankprob model with learned embeddings, pre-trained embed-
dings, and learned embeddings with pre-trained embeddings as initialization, with respect to
different amounts of training data.

(2) using IDF as fixed weights instead of learning the weighting function W ,
and (3) learning weights during the training as described in Section 4.2.3.

Table 4.3 presents the performance of all these combinations on both collections.
We note that learning both embeddings and weighting functions leads to the
highest performance on both collections. These improvements are statistically
significant. Regardless of the weighting approach, learning embeddings dur-
ing training outperforms the models with fixed pre-trained embeddings. This
supports the hypothesis that with the embedding vector representation the
neural networks learn an embedding that is based on the interactions of query
and documents that tends to be tuned better to the corresponding ranking task.
Also, regardless of the embedding method, learning weights helps models to
get better performance compared to the fixed weightings, with either IDF or uni-
form weights. Although weight learning can significantly affect performance, it
has less impact than learning embeddings.

Note that in the models with pre-trained word embeddings, employing word
embeddings trained on the target collection outperforms those trained on the
external corpus in the ClueWeb collection; while this is not the case for the
Robust04 collection. The reason could be related to the collection size, since the
ClueWeb is approximately 100 times larger than the Robust04.

In addition to the aforementioned experiments, we have also tried initializ-
ing the embedding matrix with a pre-trained word embedding trained on the
Google News corpus, instead of random initialization. Figure 4.5 presents the
learning curve of the models. According to this figure, the model initialized
by a pre-trained embedding performs better than random initialization when
a limited amount of training data is available. When enough training data is
fed to the network, initializing with pre-trained embedding and random values
converge to the same performance. An interesting observation here is that in
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Table 4.4: Performance of the linear RankSVM with different features.

Method Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

RankSVM + Dense 0.1983 0.2841 0.3375 0.0761 0.1840 0.1637
RankSVM + Sparse 0.2307 0.3260 0.3794 0.0862 0.2170 0.1939
RankSVM + (Pretrained (external) + IDF weighting) 0.1539 0.2121 0.1852 0.0633 0.1572 0.1494

Score (one layer with no nonlinearity) + Embed 0.2103 0.3986 0.3160 0.0645 0.1421 0.1322

both collections, these two initializations converge when the models exceed
the performance of the weak supervision source, which is BM25 in our experi-
ments. This suggests that convergence occurs when accurate representations
are learned by the networks, regardless of the initialization.

Are deep neural networks a good choice for learning to rank with weak su-
pervision?

To see if there is a real benefit from using a non-linear neural network in different
settings, we examined RankSVM [150] as a strong-performing pair-wise learning
to rank method with a linear kernel that is fed with different inputs: dense
vector representations, sparse vector representations, and embedding vector
representations. Considering that off-the-shelf RankSVM is not able to learn
embedding representations during training, we use a pre-trained embedding
matrix trained on Google News and fixed IDF weights.

The results are reported in Table 4.4. As BM25 is not a linear function, RankSVM
with the linear kernel is not able to completely approximate it. However, surpris-
ingly, for both dense vector representations and sparse vector representations,
RankSVM works as well as neural networks (see Table 4.2). Also, compared
to the corresponding experiment in Table 4.3, the performance of the neural
network with an external pre-trained embedding and IDF weighting is not
considerably better than RankSVM. This shows that having non-linearity in
neural networks does not help that much when we do not have representation
learning as part of the model. Note that all of these results are still lower than
BM25, which shows that they are not good at learning from weak supervision
signals for ranking.

We have also examined the score model with a network with a single linear
hidden layer, with the embedding vector representation, which is equivalent to
a linear regression model with the ability of representation learning. Comparing
the results of this experiment with Score-Embed in Table 4.2, we can see that
with a single-linear network we are not able to achieve a performance that is
as good as a deep neural network with non-linearity. This shows that the most
important superiority of deep neural networks over other machine learning
methods is their ability to learn an effective representation and take all the inter-
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Table 4.5: Performance of the rankprob model with embedding vector representation in fully
supervised setting, weak supervised setting, and weak supervised plus supervision as fine
tuning. ú indicates that the improvements over all other models are statistically significant, at
the 0.05 level using the paired two-tailed t-test, with Bonferroni correction.

Method Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

Weakly supervised 0.2837 0.3802 0.4389 0.1387 0.2967 0.2330
Fully supervised 0.1790 0.2863 0.3402 0.0680 0.1425 0.1652
Weakly supervised + Fully supervised 0.2912ú 0.4126ú 0.4509ú 0.1520ú 0.3077ú 0.2461ú

actions between query and document(s) into consideration for approximating
an effective ranking/scoring function.

How useful is learning with weak supervision for supervised ranking?

In this set of experiments, we investigate whether employing weak supervision
as a pre-training step helps to improve the performance of supervised ranking,
when a small amount of training data is available. Table 4.5 shows the per-
formance of the rankprob model with the embedding vector representation in
three situations: (1) when it is only trained on weakly supervised data (similar
to the previous experiments), (2) when it is only trained on supervised data,
i.e., relevance judgments, and (3) when the parameters of the network are pre-
trained using the weakly supervised data and then fine-tuned using relevance
judgments. In all supervised scenarios, we performed 5-fold cross-validation
over the queries of each collection and in each step, we used the TREC relevance
judgments of the training set as a supervised signal. For each query with m
relevant documents, we also randomly sampled m non-relevant documents
as negative samples. Binary labels are used in the experiments: 1 for relevant
documents and 0 for non-relevant ones.

The results in Table 4.5 suggest that pre-training the network with a weak su-
pervision signal, significantly improves the performance of supervised ranking.
The reason for the poor performance of the supervised model compared to the
conventional learning to rank models is that the number of parameters is much
larger, hence it needs much more data for training.

In situations when little supervised data is available, it is especially helpful to
use unsupervised pre-training which acts as a network pre-conditioning that
puts the parameter values in the appropriate range that renders the optimization
process more effective for further supervised training [97].

With this experiment, we indicate that the idea of learning from weak supervi-
sion signals for neural ranking models, which is presented in this section, not
only enables us to learn neural ranking models when no supervised signal is
available, but also has substantial positive effects on the supervised ranking
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models with limited amount of training data.

In the next section, we study how learning from weak/noisy label can help
preserve privacy in machine learning, like in situations where additional noise
is intentionally added to the training data to guarantee differential privacy.

4.3 Weakly Supervised Learning for Preserving Pri-
vacy

Deep neural networks perform better as the training dataset grows bigger and
becomes diverse and representative [269] of all possible cases. In many applica-
tions, the datasets that are big and diverse may contain sensitive information
from users, for instance, medical histories of patients in a clinical trial, or search
logs from users of a search engine. It has been shown that a trained model may
inadvertently and implicitly store some of its training data and we can retrieve
some of the information about samples in the training data [256], either directly
by analyzing internal model parameters or indirectly by repeatedly querying
the model as a black-box to gather data and do analysis on those data [102].

We need to design and use learning algorithms that protect the privacy of users,
for instance, by guaranteeing that the output model generalizes away from the
specifics of any individual user. Recently, Papernot et al. [212] proposed Private
Aggregation of Teacher Ensembles (PATE), a generally applicable approach
to providing strong privacy guarantees for training data. PATE uses a noisy
aggregation of the signal that comes from multiple models trained with disjoint
datasets, to train a new model that guarantees a certain level of differential
privacy.

Almost all deferentially private algorithms add noise to introduce ambiguity.
Hence, the training signals become less perfect and employing noise-robust
models can support injecting noise, yielding strong privacy guarantees, while
having a limited impact on accuracy.

Search and retrieval is one of the applications that needs special attention
on preserving the privacy of users’ data and many recent advances rely on
sensitive and private data such as large-scale query logs, users’ search history,
and location information [312]. In this section, we focus on the task of ranking
and assessing the relevance. Here we seek an answer to the third research
question of this chapter:

RQ-2.1.3 How can learning from weak supervision signals help to preserve
privacy while training neural networks on sensitive data?

We present the results of a set of experiments that examine the performance
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of one of the neural ranking architectures proposed in Section 4.2 when it is
employed in PATE, the privacy-preserving framework proposed by Papernot
et al. [212], where the neural ranker is supposed to learn from signals with added
noise. Since PATE is based on the knowledge distillation framework [137], we
first train a neural ranker in a mimic-learning setup where a student ranker is
trained on the signals from a teacher ranker that is trained using labeled data.
Then we use the full privacy preserving pipeline of PATE to train our neural
ranker. It is noteworthy that here, we mainly concern about the performance of
a neural ranker, when it is employed in the PATE’s setup and will not re-discuss
the differential privacy of PATE, as this side of the discussion is presented
thoroughly in the original paper [212].

4.3.1 Mimic Learning to Rank

Using machine learning-based approaches, sharing the trained model instead
of the original data has turned out to be an option for transferring knowledge [1,
212, 256]. The idea of mimic learning is to use a model that is trained based on the
signals from the original training data to annotate a large set of unlabeled data
and use these labels as training signals for training a new model. It has been
shown, for many tasks in computer vision and natural language processing,
that we can transfer knowledge this way and the newly trained models perform
as well as the model trained on the original training data [17, 33, 137, 235].

We follow the knowledge distillation approach [137] for training a neural ranker,
where we have a teacher network that is trained using labeled data, and a
student network that is trained using the signals from the teacher network on
a set of unlabeled data. We have two sets of experiments, in the first one, we
train the teacher model with full supervision, i.e., on the set of queries with
judgments, using 5-fold cross-validation. In the second set of experiments,
the set of queries with judgments is only used for evaluation and we train
the teacher model using the weak supervision setup, i.e., pseudo labels as it
is explained in Section 4.2.1. As the test collection, we use Robust04, which
has been introduced in Section 4.2.4. In all experiments, we use a separate
set of 3 million queries from the AOL query log, preprocessed as explained in
Section 4.2.4.

In all experiments, as the neural rankers, we use rank model,7 which has been
described in Section 4.2.2, with embedding vector representation as the input

7Although in Section 4.2.4 we showed that the best performing model is the rankprob model,
its improvement over the rank model was not statistically significant. Compared to the rankprob
model, the rank model is much more efficient at inference time, as it operates in a point-wise
setup, unlike the rankprob model which runs in a pair-wise mode. We decided to adapt the rank
model for all experiments in this section.
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Table 4.6: Teacher and student neural networks configurations.

Parameter Teacher Student

Number of hidden layers 3 3
Size of hidden layers 512 128
Initial learning rate 1E-3 1E-3
Dropout 0.2 0.1
Embedding size 500 300
Batch size 512 512

Table 4.7: Performance of teacher and student models with different training strategies.

Training strategy model MAP P@20 nDCG@20

Full supervision Teacher 0.1814 0.2888 0.3419
Student 0.2256 0.3111 0.3891

Weak supervision Teacher 0.2716 0.3664 0.4109
Student 0.2701 0.3562 0.4145

representation, which has been explained in Section 4.2.3. The configuration of
teacher and student networks is presented in Table 4.6.

Results obtained from these experiments are summarized in Table 4.7. As the
results suggest, using weak supervision to train the teacher model, the student
model performs as good as the teacher model. In case of training the teacher
with full supervision (labeled data from Robust04), as the original training data
is small, the performance of the teacher model is rather low, which is mostly due
to the fact that the big teacher model overfits on the train data and is not able
to generalize well. However, due to the regularization effect of the knowledge
distillation process, the student model, which is trained on the predictions by
the teacher model significantly outperforms the teacher model [137, 235].

4.3.2 Privacy Preserving Neural Ranker

In Section 4.3.1, we examined the idea of mimic learning to train a neural
ranker regardless of the privacy concerns. It has been shown that there is
a risk of privacy problems, both where the adversary is just able to query
the model, and where the model parameters are exposed to the adversaries
inspection. For instance, Fredrikson et al. [102] show that only by observing
the prediction of the machine learning models they can already approximately
reconstruct part of the training data (model-inversion attack). Shokri et al. [257]
also demonstrate that it is possible to infer whether a specific training point is
included in the model’s training data by observing only the predictions of the
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Figure 4.6: Privacy preserving annotator/model sharing, proposed by Papernot et al. [212].

model (membership inference attack).

In this section, we adapt the Private Aggregation of Teacher Ensembles (PATE) [212]
to train a privacy-preserving neural ranking model. PATE is based on the
student-teacher framework [137], where there are multiple teacher models
trained on disjoint subsets of the data and a student model that learns to
predict an output that is chosen by noisy voting among all of the teachers. The
student model cannot directly access an individual teacher or the underlying
data or parameters. They show that PATE improves privacy/utility trade-offs
by achieving high accuracy while guaranteeing a certain level of differential
privacy.

The general schema of the PATE is illustrated in Figure 4.6. First, the sensitive
training data is divided into n partitions. Then, on each partition, an indepen-
dent neural network model is trained as a teacher. Once all the teachers are
trained, an aggregation step is done using majority voting to generate a single
global prediction. Laplacian noise is injected into the output of the prediction of
each teacher before aggregation. The introduction of this noise is what protects
privacy because it obfuscates the vulnerable cases, where teachers disagree.

The aggregated teacher can be considered as a deferentially private API to
which we can submit the input and it then returns the privacy-preserving
label. There are some circumstances where due to efficiency reasons the model
needs to be deployed on the user device [1]. To be able to generate a shareable
model where the privacy of the training data is preserved, Papernot et al. [212]
train an additional model called the student model. The student model has
access to unlabeled public data during training. The unlabeled public data is
annotated using the aggregated teacher to transfer knowledge from teachers to
student model in a privacy-preserving fashion. This way, if the adversary tries
to recover the training data by inspecting the parameters of the student model,
in the worst case, the public training instances with privacy-preserving labels
from the aggregated teacher are going to be revealed. The privacy guarantee of
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Table 4.8: Performance of the teachers (average) and student models with noisy and non-noisy
aggregation.

Model MAP P@20 nDCG@20

Teachers (avg) 0.2566 0.3300 0.3836

Non-noisy aggregated teacher 0.2380 0.3055 0.3702
Student (non-noisy aggregation) 0.2337 0.3192 0.3717

Noisy aggregated teacher 0.2110 0.2868 0.3407
Student (noisy aggregation) 0.2255 0.2984 0.3559

this approach is formally proved using the differential privacy framework.

As there is no publicly available large-scale data that we can use in our experi-
ments as the initial sensitive labeled data, we use pseudo labels as it is explained
in 4.2.1.8 In our experiments, we split the training data into three partitions,
each contains one million queries annotated by the BM25 method. We train
three identical teacher models. Then, we use the aggregated noisy predictions
from these teachers to train the student network using the knowledge distilla-
tion approach. Configurations of teacher and student networks are similar to
the previous experiments, as they are presented in Table 4.6.

We evaluate the performance in two situations: In the first one, the privacy
parameter, which determines the amount of noise, is set to zero, and in the
second one, the noise parameter is set to 0.05, which guarantees a low privacy
risk [212]. We report the average performance of the teachers before noise, the
performance of noisy and non-noisy aggregated teacher, and the performance
of the student networks in two situations. The results of these experiments are
reported in Table 4.8.

Results in Table 4.8 suggest that by using the noisy aggregation of multiple
teachers as the supervision signal, we can train a neural ranker with accept-
able performance. Compared to the single teacher setup in Section 4.3.1, the
performance of the student network is not as good as the average performance
of teachers, although the student network performs better than the teacher in
the noisy aggregation setup. This is more or less the case for a student together
with a non-noisy aggregated teacher. We believe drops in the performance on
the student networks compared to the results in Section 4.3.1 are not just due to
partitioning, noise, and aggregation. This is also the effect of the change in the
amount of training data for the teachers in our experiments. We expect that in
the case of having enough training data in each partition for each teacher, their
prediction will be more determined and we will have less disagreement in the

8Partitioning the fully supervised training data in our problem leads to very small training
sets which are not big enough to train teacher networks.
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aggregation phase and consequently, we will get better signals for training the
student model.

4.4 Related Work

In this section, we briefly review the neural ranking models in terms of their
general architectures and discuss how the neural models proposed in this
chapter are related to the previous works.

Recently, several attempts have been made to study deep neural networks in IR
applications, which can be generally partitioned into two categories [119, 209,
331]. The first category includes approaches that use the results of trained (deep)
neural networks in order to improve the performance in IR applications. Among
these, distributed word representations or embeddings [195, 218] have attracted
a lot of attention. Word embedding vectors have been applied to term re-
weighting in IR models [332], query expansion [93, 320], query classification [179,
321], etc. The main shortcoming of most of the approaches in this category is
that the objective of the trained neural network differs from the objective of
these tasks. For instance, the word embedding vectors proposed in [195, 218] are
trained based on term proximity in a large corpus, which is different from the
objective in most IR tasks. Zamani and Croft [322] recently proposed relevance-
based word embedding models for learning word representations based on the
objectives that matter for IR applications.

The second category, which the models proposed in this chapter belong to, con-
sists of approach that design and train a (deep) neural network for a specific task,
e.g., question answering [52, 313], click models [27]. A number of the approaches
in this category have been proposed for ranking documents in response to a
given query. These approaches can generally be divided into two groups: late
combination models and early combination models (or representation-focused and
interaction-focused models according to [118]). The late combination models,
following the idea of Siamese networks [32], independently learn a representa-
tion for each query and candidate document and then calculate the similarity
between the two estimated representations via a similarity function. For exam-
ple, Huang et al. [144] proposed DSSM, which is a feed forward neural network
with a word hashing phase as the first layer to predict the click probability given
a query string and a document title. The DSSM model was further improved by
incorporating convolutional neural networks [253].

In contrast, early combination models are designed based on interactions be-
tween the query and the candidate document as the input of a network. For
instance, DeepMatch [182] maps each text to a sequence of terms and trains a
feed-forward network for computing the matching score. The deep relevance
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matching model for ad-hoc retrieval [118] is another example of an early com-
bination model that feeds a neural network with histogram-based features
representing interactions between the query and document. Early combining
enables the model to have an opportunity to capture various interactions be-
tween query and document(s), while with the late combination approach, the
model has only the chance of encoding query and documents independently (at
least at the early layers). Recently, Mitra et al. [200] proposed to simultaneously
learn local and distributional representations, which are early and late combi-
nation models respectively, to capture both exact term matching and semantic
term matching.

Until now, all the proposed neural models for ranking are trained on either
explicit relevance judgements or clickthrough logs. However, a massive amount
of such training data is not always available.

In this chapter, we propose to train neural ranking models using weak supervi-
sion, which is the most natural way to reuse existing supervised learning models
where imperfect labels are treated as ground truth. The basic assumption is that
we can cheaply obtain labels (that are of lower quality than human-provided
labels) by expressing prior knowledge we have about the task at hand by spec-
ifying a set of heuristics, adapting existing ground truth data for a different
but related task (this is often referred to a distant supervision9), extracting a su-
pervision signal from external knowledge-bases or ontologies, crowd-sourcing
partial annotations that are cheaper to get, etc. Weak supervision is a natural
way to benefit from unsupervised data and it has been applied in NLP for
various tasks including relation extraction [24, 123], knowledge-base comple-
tion [141], sentiment analysis [251], etc. There are also similar attempts in IR
for automatically constructing test collections [10] and learning to rank using
labeled features, i.e., features that an expert believes to be correlated with rele-
vance [92]. In this chapter, we make use of traditional IR models as the weak
supervision signal to generate a large amount of training data and train effective
neural ranking models that outperform the baseline methods by a significant
margin.

To circumvent the lack of human-labeled training examples, unsupervised
learning methods aim to model the underlying data distribution, thus learning
powerful feature representations of the input data, which can be helpful for
building more accurate discriminative models especially when little or even
no supervised data is available. A large group of unsupervised neural mod-
els seeks to exploit the implicit internal structure of the input data, which in
turn requires customized formulation of the training objective (loss function),
targeted network architectures and often non-trivial training setups.

9We do not distinguish between weak and distant supervision as the difference is subtle
and both terms are often used interchangeably in the literature.
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A lot of research has been done on the general problem of preserving the privacy
of sensitive data in IR applications, where the question is how should we design
effective IR systems without damaging users’ privacy? One of the solutions so
far is to anonymize the data and try to hide the identity of users [38, 331]. As an
example, Zhang et al. [331] use a differential privacy approach for query log
anonymization. However, there is no guarantee that the anonymized data will
be as effective as the original data.

Modeling privacy in machine learning is a challenging problem and there has
been much research in this area. Preserving the privacy of deep learning models
is even more challenging, as there are more parameters to be safeguarded [220].
Some work has studied the vulnerability of deep neural network as a ser-
vice, where the interaction with the model is only via an input-output black
box [102, 257, 280]. Others have proposed approaches to protect privacy against
an adversary with full knowledge of the training mechanism and access to the
model’s parameters. For instance, Abadi et al. [1] propose a privacy preserving
stochastic gradient descent algorithm offering a trade-off between utility and
privacy. More recently, Papernot et al. [212] propose a semi-supervised method
for transferring the knowledge for deep learning from private training data.
They propose a setup for learning privacy-preserving student models by trans-
ferring knowledge from an ensemble of teachers trained on disjoint subsets
of the data for which privacy guarantees are provided. In this chapter, we
followed their approach to train a privacy preserving neural ranker and showed
that the ideas that we proposed in this chapter on training neural rankers with
weak supervenes helps improve the performance when noise is intentionally
added to the supervision signal.

4.5 Conclusion

In this chapter, we focused on addressing RQ-2.1: “How can we train neural
networks using programmatically generated pseudo-labels as a weak supervision signal,
in a way that they exhibit superior generalization capabilities?”. We proposed to use
unsupervised methods in order to programmatically generate large amounts of
training data [226], as weakly annotated data, to train effective neural ranking
models. We focus on the task of assessing the relevance, i.e., ranking of docu-
ments given a query where no large-scale training set is publicly available. We
examined various neural ranking models with different ranking architectures
and objectives, and different input representations.

To investigate RQ-2.1.1, we used over six million queries to train our models
and evaluated them on Robust04 and ClueWeb 09-Category B collections, in
an ad-hoc retrieval setting. The experiments showed that our best performing



106 Chapter 4. Learning from Pseudo-Labels

model significantly outperforms the BM25 model (our weak supervision signal)
by over 13% and 35% MAP improvements on the Robust04 and ClueWeb
collections, respectively. We also demonstrated that in the case of having a
small amount of training data, we can improve the performance of supervised
learning by pre-training the network on weakly supervised data.

To address RQ-2.1.2, we showed that based on our results, there are three key
ingredients in neural ranking models that lead to good performance with weak
supervision: The first is the proper input representation. Providing the network
with raw data and letting the network learn the features that matter, gives
the network a chance of learning how to ignore imperfection of training data.
The second ingredient is to target the right goal and define a proper objective
function. In the case of having weakly annotated training data, by targeting
some explicit labels from the data, we may end up with a model that learned to
express the data very well, but is incapable of going beyond it. This is especially
the case with deep neural networks where there are many parameters and it is
easy to learn a model that overfits the data. The third ingredient is providing
the network with a considerable amount of diverse training examples. As an
example, during the experiments we noticed that using the embedding vector
representation, the network needs a lot of examples to learn embeddings that
are more effective for retrieval compared to pre-trained embeddings. Thanks
to weak supervision, we can generate as much training data as we need with
almost no cost.

To address RQ-2.1.3, we also study how learning from weak signals can bene-
fit preserving privacy when some noise is intentionally added to the training
signal. We employed Private Aggregation of Teacher Ensembles (PATE) [212]
to train a privacy-preserving neural ranking model, in which we train several
neural rankers on disjoint subsets of the training data and use the noisy aggre-
gated signals from these models on an unlabeled set to train a neural ranker
that in a setup that guarantees a certain level of differential privacy. These
experiments lay the groundwork for the idea of sharing a privacy-preserving
model instead of sensitive data in IR applications. This suggests researchers
from industry are how able to share the knowledge learned from actual users’
data with the academic community, without privacy risks, which leads to a
better collaboration of all researchers in the field.

In this chapter, we mainly focused on the ranking task and explored archi-
tectural ideas that can implicitly help to have neural networks that are less
sensitive to the label noise. In the next chapter, we propose more systematic
approaches that are task and architecture independent and can learn to estimate
the quality of the labels and explicitly control the learning process with respect
to the estimated qualities.



5
Learning from Samples of Variable Quality

Training labels are expensive to obtain and may be of varying qual-
ity, as some may be from trusted expert labelers, while others might
be from heuristics or other sources of weak supervision. This cre-
ates a fundamental quality-versus-quantity trade-off in the learning
process. Do we learn from the small amount of high-quality data or
the potentially large amount of weakly-labeled data? We argue that
if the learner could somehow know and take the label-quality into
account, we could get the best of both worlds.

5.1 Introduction

The success of deep neural networks to date depends strongly on the availability
of labeled data [269]. The more neural networks become deep and complex, the
more it is crucial for them to be trained on massive amounts of training data.
However, in many applications, labeled data is costly to obtain and task-specific
training data is now a critical bottleneck.

Usually, it is possible to obtain small quantities of high-quality labeled data
and large quantities of unlabeled data. The problem of how to best integrate
these two different sources of information during training is an active pursuit

This chapter is based on [79, 82, 83].
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in the field of semi-supervised learning [40]. However, for a large class of tasks
it is also easy to define one or more so-called “weak annotators,” additional
(albeit noisy) sources of weak supervision based on heuristics or “weaker,” biased
classifiers trained on, e.g., non-expert crowd-sourced data or data from related
domains. While easy and cheap to generate, it is not immediately clear if
and how these additional weakly-labeled data can be used to train a stronger
classifier for the task we care about.

All labels are equal, but some labels are more equal than others.1 This holds
generally since in almost all practical applications, machine learning systems
have to deal with data samples of variable quality. For example, in a large dataset
of images, only a small fraction of samples may be labeled by experts and
the rest may be crowd-sourced using, e.g., Amazon Mechanical Turk [293]. In
addition, in some applications, labels are intentionally perturbed due to privacy
issues [71, 213, 296], as we discussed in the Chapter 4.

Formally speaking, in our setup, we assume that we are given a large set of
unlabeled data samples, a heuristic labeling function called the weak annotator,
and a small set of high-quality samples labeled by experts, called the strong
dataset, consisting of tuples of training samples xj and their true labels yj, i.e.,
Ds = {(xj, yj)}N

j=1. We consider the latter to be observations from the true target
function that we are trying to learn. We use the weak annotator to generate
labels for the unlabeled samples. Generated labels are noisy due to the limited
accuracy of the weak annotator. This gives us a weak dataset consisting of tuples
of training samples xi and their weak labels ỹi, i.e., Dw = {(xi, ỹi)}M

i=1. Note
that we can generate a large amount of weak training data Dw at almost no
cost using the weak annotator. In contrast, we only have a limited amount of
observations from the true function, i.e., |Ds|⌧ |Dw|.
The simplest approach in this setup is to expand the strong training set, Ds,
by including the weakly-supervised samples, Dw, which comes down to con-
sidering all samples to be equally important. Alternatively, one may pretrain
on the weak data and then fine-tune on observations from the true function or
distribution. We showed in Chapter 4 that a small amount of expert-labeled
data can be augmented in such a way by a large set of raw data, with labels
coming from a heuristic function, to train a more accurate ranking model. The
downside is that such approaches are oblivious to the amount or source of noise
in the labels. Simply speaking, they do not consider the cause of noise in the
labels and only focus on the effect.

In this chapter, we focus on this issue and try to address the following research
question:

1Inspired by George Orwell quote, Animal Farm, 1945.
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RQ-2.2 Given a large set of weakly annotated samples and a small set of
samples with high-quality labels, how can we best leverage the
capacity of information in these sets to train a neural network?

We argue that treating weakly-labeled samples uniformly (i.e., each weak sam-
ple contributes equally to the final classifier) ignores potentially valuable infor-
mation of the label quality. Instead, we propose two different approaches that
directly model the inaccuracies introduced by the weak annotator and estimate
a “confidence” or “fidelity” score for each weak labeled sample, which can then
be used to modulate the training process and control the extent to which we
learn from these samples given their estimated confidence or fidelity scores.

5.1.1 Detailed Research Questions

We break down our main research question in this chapter into two concrete
research questions:

RQ-2.2.1 When learning from samples of variable quality, can we meta learn
an adjustment for the magnitude of the parameter updates in back-
propagation based on the merit of labels?

RQ-2.2.2 When learning from samples of variable quality, can we reannotate
these samples and provide (hopefully) better labels, associated with
a fidelity score to regulate the learning rate?

In the following sections, we will address these research questions, and support
our ideas with experiments and analyses on different tasks.

5.2 Learning to Learn from Weak Supervision, by
Full Supervision

Using weak or noisy supervision is a straightforward approach to increase the
size of the training data. This is usually done by pre-training the network on a
large set of weakly labeled data and fine tuning it with strong labels [84, 250].
However, these two independent stages do not leverage the full capacity of
information from the small set of strong labels, as it can be useful for learning
how to learn from the weak labels. In particular, in the pre-training stage, we
have to learn from labels of variable quality without any control over how these
labels contribute to the learning process.

In this section, we address the first research question of this chapter:
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RQ-2.2.1 When learning from samples of variable quality, can we meta learn
an adjustment for the magnitude of the parameter updates in back-
propagation based on the merit of labels?

We introduce a semi-supervised method that leverages a small amount of data
with strong labels to improve the learning from a large amount of data with
weak labels. This model, in fact, offers learning from Controlled Weak Supervision
and we refer to it by CWS in the rest of this chapter. CWS has three main
components: (1) A weak annotator, which can be a heuristic model, a weak
or biased classifier, or even a human via crowd-sourcing and it is employed
to annotate a massive amount of unlabeled data, (2) a target network, which
uses a large set of weakly annotated samples by the weak annotator to learn the
main task, (3) and a confidence network, which is trained on a small set with
strong labels to estimate confidence scores for samples annotated by the weak
annotator.

The confidence scores estimated by the confidence network define the magni-
tude of the weight updates applied to the target network during training. This
way, the confidence network helps the target network to avoid the mistakes of
its teacher, i.e., weak annotator, by down-weighting the weight updates from
weak labels that do not look reliable according to confidence network. CWS, in
fact, employs the teacher-student paradigm in which the target network (stu-
dent) and the confidence network (teacher) are trained jointly in a multi-task
fashion and they share parameters of the representation learning layer to share
their understanding of the data.

From a meta-learning perspective [6, 100, 227], the goal of the confidence network
—as the meta-learner— trained jointly with the target network —as the learner—
is to calibrate the learning rate of the target network for each sample in the
batch. I.e., the weights www of the target network fw at step t + 1 are updated as
follows:

wwwt+1 = wwwt �
ht
b

b

Â
i=1

cq(xi, ỹi)rL( fwtwtwt(xi), ỹi), (5.1)

where ht is the global learning rate, L(·) is the loss of predicting ŷ = fw(xi) for
an input xi when ỹ is the weak label; cq(·) is a scoring function learned by the
confidence network taking input instance xi and its noisy label ỹi. Thus, we
can effectively control the contribution to the parameter updates for the target
network from weakly labeled samples based on how reliable their labels are
according to the confidence network (learned on a small supervised data).

Our setup requires running a weak annotator to label a large amount of unla-
beled data, which is done at pre-processing time. For many tasks, it is possible
to use a simple heuristic, a rule-based function, or implicit human feedback
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to generate weak labels. This set is then used to train the target network. In
contrast, a small expert-labeled set is used to train the confidence network,
which estimates how good the weak annotations are, i.e., controls the effect of
weak labels on updating the parameters of the target network.

CWS allows learning different types of neural architectures and various tasks,
where a meaningful weak annotator is available. Later in this chapter we
study the performance of CWS by focusing on two applications: sentiment
classification and document ranking.

5.2.1 Learning from Controlled Weak Supervision

In the following, we describe our recipe for training a multi-task neural network
that jointly learns the confidence score of weakly labeled samples and the main
task using controlled supervised signals. The high-level representation of the
model is shown in Figure 5.1.

Our model comprises a weak annotator and two neural networks: the confi-
dence network and the target network. Formally speaking, the goal of the weak
annotator is to provide weak labels ỹi for all the instances xi 2 Dw [Ds. We have
the assumption that ỹi provided by the weak annotator are imperfect estimates
of strong labels yi, where yi are available for the set Ds, but not for the set Dw.

The goal of the confidence network is to estimate the confidence score c̃j of training
samples. It is learned on samples from the training set Ds, i.e a set of input
xj and its strong label yj as well its weak label, ỹj, that is annotated by the
weak annotator. The score c̃j is then used to control the effect of weakly labeled
samples on updating the parameters of the target network in the backward pass
of backpropagation.

The target network is in charge of handling the main task we want to learn, or in
other words, approximating the underlying function that predicts the correct
labels. Given a data instance, xi and its weak label ỹi from the training set Dw,
the target network aims to predict the label ŷi. The target network parameter
updates are based on noisy labels assigned by the weak annotator, but the
magnitude of the gradient update is based on the output of the confidence
network.

Both networks are trained in a multi-task fashion alternating between the
full supervision and the weak supervision mode. In the full supervision mode,
the parameters of the confidence network get updated using instances from
training set Ds. As depicted in Figure 5.1b, each training instance is passed
through the representation layer mapping inputs to vectors. These vectors are
concatenated with their corresponding weak labels ỹj generated by the weak
annotator. The confidence network, which is a fully connected feedforward
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(a) Full Supervision Mode: Training on batches with strong labels.
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(b) Weak Supervision Mode: Training on batches with weak labels.
Figure 5.1: Learning from controlled weak supervision: Our proposed multi-task network for
learning a target task in a semi-supervised fashion, using a large amount of weakly labeled
data and a small amount of data with strong labels. Faded parts of the network are disabled
during the training in the corresponding mode. Red-dotted arrows show gradient propagation.
Parameters of the parts of the network in red frames get updated in the backward pass, while
parameters of the network in blue frames are fixed during training. (Best viewed in color.)
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network with sigmoid as the output layer, estimates c̃j that is the probability of
taking data instance j into account for training the target network.

In the weak supervision mode, the parameters of the target network are updated
using the training set Dw. As shown in Figure 5.1a, each training instance is
passed through the same representation learning layer and is then processed
by the supervision layer which is a part of the target network predicting the
label for the main task. We also pass the learned representation of each training
instance along with its corresponding label generated by the weak annotator to
the confidence network to estimate the confidence score of the training sample,
i.e., c̃i. The confidence score is computed for each sample from the training set
Dw. These confidence scores are used to weight the gradient updating target
network parameters or in other words the step size during back-propagation.

It is noteworthy that the representation layer is shared between both networks.
Thus, besides the regularization effect of updating the parameters of this layer
with respect to two loses, sharing this layer helps the confidence network to use
the representation learned based on a samples of the set Dw as a rather large set,
as well as the target network to utilize the information from samples of the set
Ds, as a rather clean set. Most importantly, sharing this layer lets the confidence
network and the target network to have the same point of view on data points.

5.2.2 Training the Learner and the Meta-Learner

Here, we explain how we train CWS in which we jointly update the parameters
of the target network, the learner and the confidence network, the meta-learner.
Our optimization objective is composed of two terms: (1) the confidence net-
work loss Lc, which captures the quality of the output from the confidence
network and (2) the target network loss Lt, which expresses the quality for the
main task.

Both networks are trained by alternating between the weak supervision and the
full supervision mode:

Full Supervision Mode: in this mode, the parameters of the confidence network
are updated using training instances drawn from training set Ds. We use the
cross-entropy loss function for the confidence network to capture the difference
between the predicted confidence score of sample j, i.e., c̃j and the target score
cj:

Lc = Â
j2Ds

�cj log(c̃j)� (1� cj) log(1� c̃j). (5.2)

The target score cj indicates how similar the strong and the weak labels are, and
it is calculated with respect to the main task.

Weak Supervision Mode: In this mode, the parameters of the target network
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are updated using training instances from Dw. We use a weighted loss function,
Lt, to capture the difference between the predicted label ŷi by the target network
and target label ỹi:

Lt = Â
i2U

c̃iLi, (5.3)

where Li is the task-specific loss on training sample i and c̃i is the confidence
score of the weakly annotated sample i, estimated by the confidence network.
Note that c̃i is treated as a constant during the weak supervision mode and
there is no gradient propagation to the confidence network in the backward
pass (as depicted in Figure 5.1a).

We minimize two loss functions jointly by randomly alternating between full
and weak supervision modes (for example, using a 1:10 ratio). During training
and based on the chosen supervision mode, we sample a batch of training
instances from Ds with replacement or from Dw without replacement (since
Dw can be very large). Since in our setups usually |Dw| � |Ds|, the training
process oversamples the instance from Ds.

The key point here is that the “main task” and “confidence scoring” task are
always defined to be close tasks and sharing representation will benefit the
confidence network as a kind of implicit data augmentation to compensate the
small amount of data with strong labels. Besides, updating the representation
layer with respect to the loss of the other network acts as a regularization for
each of these networks and helps generalization for both target and confidence
network and consequently less chance for overfitting.

In this section, we introduced an approach that can meta-learn the quality of
labels as confidence scores, jointly with the main task at hand, when learning
with weakly labeled samples that have variable qualities. We showed that we
can incorporate the estimated confidence scores associated with each weakly
labeled sample to control the magnitude of the parameter updates during
training based on the quality of that sample. In the next section, we introduce
another approach that can estimate the quality of samples and regulate the
learning process based on it.

5.3 Fidelity-Weighted Learning

In this section, we address the second research question of this chapter:

RQ-2.2.2 When learning from samples of variable quality, can we reannotate
these samples and provide (hopefully) better labels, associated with
a fidelity score to regulate the learning rate?
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We introduce Fidelity-Weighted Learning (FWL), a Bayesian semi-supervised
approach that leverages a small amount of data with strong labels to generate a
larger training set with fidelity-weighted weakly-labeled samples, which can then be
used to modulate the learning process based on the quality of each weak sample.
By directly modeling the inaccuracies introduced by the weak annotator in this
way, we can control the extent to which we make use of this additional source of
weak supervision: more for confidently-labeled weak samples close to the true
observed data, and less for uncertain samples further away from the observed
data. We use a non-parametric kernel-based method to measure the closeness.

We propose a setting consisting of two main modules. One is called the student
and is in charge of learning a suitable data representation and performing the
main prediction task (similar to the target network in Section 5.2), the other is
the teacher which modulates the learning process by modeling the inaccuracies
in the labels.

Similar to CWS (introduced in Section 5.2), FWL learns to modulate the learning
process based on quality of labels. However, unlike CWS, FWL operates in
three different sequential stages and not only it learns to weight the samples
based on their quality, but also it learns re-estimate a better labels, i.e. correct
the weak labels, during training.

5.3.1 Recipe of the Fidelity-Weighted Learning

In this section, we describe the FWL approach for semi-supervised learning
when we have access to weak supervision (e.g., heuristics or weak annotators).

Our proposed setup comprises a neural network called the student and a
Bayesian function approximator called the teacher. The training process con-
sists of three phases which we summarize in Algorithm 5.1 and Figure 5.2.

Step 1 Pre-train the student on Dw using weak labels generated by the weak annotator.
(See Figure 5.2b.)

The main goal of this step is to learn a task dependent representation of the data
as well as pretraining the student. The student function is a neural network
consisting of two parts. The first part y(·) learns the data representation and
the second part f(·) performs the prediction task (e.g., classification). Therefore
the overall function is ŷ = f(y(xi)). The student is trained on all samples of the
weak dataset Dw = {(xi, ỹi)}M

i=1. For brevity, in the following, we will refer to
both data sample xi and its representation y(xi) by xi when it is obvious from
the context. From self-supervised feature learning point of view, we can say that
representation learning in this step is solving a surrogate task of approximating
the expert knowledge, for which a noisy supervision signal is provided by the
weak annotator.
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Figure 5.2: Illustration of Fidelity-Weighted Learning: Step 1: Pre-train student on weak data,
Step 2: Fit teacher to observations from the true function, and Step 3: Fine-tune student on
labels generated by teacher, taking the confidence into account. Red dotted borders and blue
solid borders depict components with trainable and non-trainable parameters, respectively.
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Step 2 Train the teacher on the strong data (y(xj), yj) 2 Ds represented in terms
of the student representation y(·) and then use the teacher to generate a soft dataset
Dsw consisting of hsample, predicted label, confidencei for all data samples. (See Fig-
ure 5.2b.)

We use a Gaussian process (GP) as the teacher to capture the label uncertainty
in terms of the student representation, estimated w.r.t. the strong data. A prior
mean and co-variance function is chosen for GP . The learned embedding
function y(·) in Step 1 is then used to map the data samples to dense vectors
as input to the GP . We use the learned representation by the student in the
previous step to compensate lack of data in Ds and the teacher can enjoy the
learned knowledge from the large quantity of the weakly annotated data. This
way, we also let the teacher see the data through the lens of the student.

The GP is trained on the samples from Ds to learn the posterior mean mpost
(used to generate soft labels) and posterior co-variance Kpost(·, ·) (which repre-
sents label uncertainty). We then create the soft dataset Dsw = {(xt, ȳt)}|Dw[Ds|

t=1 ,
using the posterior GP , input samples xt from Dw [Ds, and predicted labels ȳt
with their associated uncertainties as computed by T(xt) and S(xt):

T(xt) = g(mpost(xt))

S(xt) = h(Kpost(xt, xt))

The re-generated labels, ȳt, which are called soft labels, are equal to strong labels
yt, when xt 2 Ds (with zero uncertainty), and when xt 2 Dw, ȳt are supposed
to be a better labels than the original weak labels ỹt (with an uncertainty that is
estimated by the GP). g(·) transforms the output of GP to the suitable output
space. For example, in classification tasks, g(·) would be the softmax function
to produce probabilities that sum up to one. For multidimensional-output tasks
where a vector of variances is provided by the GP , the vector Kpost(xt, xt) is
passed through an aggregating function h(·) to generate a scalar value for the
uncertainty of each sample. Note that we train GP only on the strong dataset
Ds but then use it to generate soft labels ȳt = T(xt) and uncertainty S(xt) for
samples belonging to Dsw = Dw [Ds.

In practice, we furthermore divide the space of data into several regions and
assign each region a separate GP trained on samples from that region. This
leads to a better exploration of the data space and makes use of the inherent
structure of data. The resulting algorithm, called clustered GP , gave better
results compared to a single GP . We describe the detail of the clustered GP in
Section 5.3.2.

By this division of space, we take advantage of the knowledge learned by
several teachers, each an expert on its specific region of the data space, which
helps in particular when the dimensionality of the input is rather high. As a nice
side-effect, this also solves the scalability issues of GPs in that we can increase
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Algorithm 5.1 Fidelity-Weighted Learning.
1: Train the student on samples from the weakly-annotated data Dw.

2: Freeze the representation-learning component y(.) of the student and train teacher
on the strong data Ds = {(y(xj), yj)}N

j=1. Apply teacher to unlabeled samples xt

to obtain soft dataset Dsw = {(xt, ȳt)}|Dw[Ds|
t=1 where ȳt = T(xt) is the soft label and

for each instance xt, the uncertainty of its label, S(xt), is provided by the teacher.

3: Train the student on samples from Dsw with SGD and modulate the step-size ht
according to the per-sample quality estimated using the teacher (Equation 5.4).

the number of regions until the number of points in each region is tractable
with a single GP , and train these models in parallel.

Step 3 Fine-tune the weights of the student network on the soft dataset, while modulat-
ing the magnitude of each parameter update by the corresponding teacher-confidence in
its label. (See Figure 5.2b.)

The student network of Step 1 is fine-tuned using samples from the soft dataset
Dsw = {(xt, ȳt)}|Dw[Ds|

t=1 where ȳt = T(xt). The corresponding uncertainty
S(xt) of each sample is mapped to a confidence value according to Equation 5.4
below, and this is then used to determine the step size for each iteration of the
stochastic gradient descent (SGD). So, intuitively, for data points where we
have true labels, the uncertainty of the teacher is almost zero, which means
we have high confidence and a large step-size for updating the parameters.
However, for data points where the teacher is not confident, we down-weight
the training steps of the student. This means that at these points, we keep the
student function as it was trained on the weak data in Step 1.

More specifically, we update the parameters of the student by training on Dsw
using SGD:

www⇤ = arg min
www2W

1
N Â

(xt,ȳt)2Dsw

l(www, xt, ȳt) +R(www),

wwwt+1 = wwwt � ht(rl(www, xt, ȳt) +rR(www))

where l(·) is the per-sample loss, ht is the total learning rate, N is the size of the
soft dataset Dsw, www is the parameters of the student network, and R(·) is the
regularization term.

We define the total learning rate as ht = h1(t)h2(xt), where h1(t) is the usual
learning rate of our chosen optimization algorithm that anneals over training
iterations, and h2(xt) is a function of the label uncertainty S(xt) that is com-
puted by the teacher for each data point. Multiplying these two terms gives us
the total learning rate. In other words, h2 represents the fidelity (quality) of the
current sample, and is used to multiplicatively modulate h1. Note that h1 does
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not necessarily depend on each data point, whereas h2 does. We propose

h2(xt) = exp[�bS(xt)], (5.4)

to exponentially decrease the learning rate for data point xt if its corresponding
soft label ȳt is unreliable (far from a true sample). In practice, when using mini-
batches, we implement this by multiplying the loss of each sample in the batch
by its fidelity score and averaging over these fidelity-weighted losses in the
batch when calculating the batch gradient based on that loss. In Equation 5.4, b
is a positive scalar hyper-parameter. Intuitively, a small b results in a student
that listens more carefully to the teacher and copies its knowledge, while a large
b makes the student pay less attention to the teacher, staying with its initial
weak knowledge.

5.3.2 Multi-Teacher FWL using Clustered GP

In this section, we explain the clustered GP which is an effective way of ap-
plying GPwhere the scale of the data increases. Clustered GP suggests using
several GP = {GPci} to explore the entire data space more effectively. Even
though inducing points and stochastic methods make GPs more scalable we
still observed poor performance when the entire dataset was modeled by a
single GP . Therefore, the reason for using multiple GPs is mainly empirical
inspired by [255] which is explained in the following:

We used Sparse Gaussian Process implemented in GPflow. The algorithm is
scalable in the sense that it is not O(N3) as the original GP is, but it introduces
inducing points in the data space and defines a variational lower bound for
the marginal likelihood. The variational bound can be optimized by stochastic
methods, which makes the algorithm applicable in large datasets. However, the
tightness of the bound depends on the location of the inducing points, which
are found through the optimization process.

In [79] (Appendix A), it is empirically observed that a single GP does not give
a satisfactory accuracy on left-out test dataset on our tasks/datasets. This can
be due to the inability of the algorithm to find good inducing points when the
number of inducing points is restricted to just a few. Then we increased the
number of inducing points M which trades off the scalability of the algorithm
because it scales with O(NM2). Moreover, apart from scalability which is partly
solved by stochastic methods, we argue that the structure of the entire space
may not be explored well by a single GP and its inducing points. This can be
due to the observation that our datasets are distributed in a highly sparse way
within the high dimensional embedding space. To cure the problem, one can use
PCA to reduce input dimensions and give a denser representation, but based
on the experiments in [79], it does not result in a considerable improvement.
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We may be able to argue that clustered GP makes better use of the data structure
roughly close to the idea of KISS-GP [305]. In inducing point methods, it is
normally assumed that k⌧ h (k is the number of inducing points and h is the
number of training samples) for computational and storage saving. However,
we have this intuition that few number of inducing points make the model
unable to explore the inherent structure of data [305]. By employing several
GPs, we were able to use a large number of inducing points even when k > h
which seemingly better exploits the structure of datasets. Because our work was
not aimed to be a close investigation of GP, we considered clustered GP as the
engineering side of the work which is a tool to give us a measure of confidence.
Other tools such as a single GP with inducing points that form a Kronecker
or Toeplitz covariance matrix are also conceivable. Therefore, we do not of
course claim that we have proposed a new method of inference for GPs. Here is
practical description of clustered GP algorithm: Clustered GP : Let N be the size
of the dataset on which we train the teacher. Assume we allocate K teachers
to the entire data space. Therefore, each GP sees a dataset of size n = N/K.
Then we use a simple clustering method (e.g., k-means) to find centroids of K
clusters C1, C2, . . . , CK where Ci consists of samples {xi,1, xi,2, . . . , xi,n}. We take
the centroid ci of cluster Ci as the representative sample for all its content. Note
that ci does not necessarily belong to {xi,1, xi,2, . . . , xi,n}. We assign each cluster
a GP trained by samples belonging to that cluster. More precisely, cluster Ci
is assigned a GP whose data points are {xi,1, xi,2, . . . , xi,n}. Because there is no
dependency among different clusters, we train them in parallel to speed-up the
procedure.

The pseudo-code of the clustered GP is presented in Algorithm 5.2. When the
main issue is computational resources (when the number of inducing points
for each GP is large), we can first choose the number n which is the maximum
size of the dataset on which our resources allow us to train a GP , then find the
number of clusters K = N/n accordingly. The rest of the algorithm remains
unchanged.

5.3.3 FWL on a Toy Example

To better understand FWL, we apply FWL to a one-dimensional toy problem to
illustrate the various steps. Let ft(x) = sin(x) be the true function (red dotted
line in Figure 5.3a) from which a small set of observations Ds = {(xj, yj)}N

j=1 is
provided (red points in Figure 5.3b). These observation might be noisy, in the
same way that labels obtained from a human labeler could be noisy. A weak
annotator function fw(x) = 2sinc(x) (magenta line in Figure 5.3a) is provided,
as an approximation to ft(·).
The task is to obtain a good estimate of ft(·) given the set Ds of strong obser-
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Algorithm 5.2 Clustered Gaussian processes.
1: Let N be the sample size, n the sample size of each cluster, K the number of clusters,

and ci the center of cluster i.

2: Run K-means with K clusters over all samples with true labels Ds = {(xj, yj)}N
j=1.

K-means(xj)! c1, c2, . . . , cK

where ci represents the center of cluster Ci containing samples Dci
s =

{xi,1, xi,2, ...xi,n}.

3: Assign each of K clusters a Gaussian process and train them in parallel to approxi-
mate the label of each sample:

GP ci(m
ci
post, Kci

post) = GP(mprior, Kprior)|Dci
s = {(y(xs,ci), ys,ci)}

Tci(xt) = g(mci
post(xt))

Sci(xt) = h(Kci
post(xt, xt))

,
4: where GP ci is trained on Dci

s containing samples belonging to the cluster ci. Other
elements are defined in Section 5.3.1

5: Use trained teacher Tci(.) to evaluate the soft label and uncertainty for samples
from Dsw to compute h2(xt) required for step 3 of Algorithm 5.1. We use T(.) as a
wrapper for all teachers {Tci}.

vations and the weak annotator function fw(·). We can easily obtain a large
set of observations Dw = {(xi, ỹi)}M

i=1 from fw(·) with almost no cost (magenta
points in Figure 5.3a).

As the teacher, we use standard Gaussian process regression2 with this kernel:

k(xi, xj) = kRBF(xi, xj) + kWhite(xi, xj), (5.5)

where

kRBF(xi, xj) = exp

 
kxi � xjk2

22

!
,

kWhite(xi, xj) = constant_value 8xi = xj, and 0 otherwise.

We fit only one GP on all the data points (i.e., no clustering). Also during fine
tuning, we set b = 1. The student is a simple feed-forward network with the
depth of 3 layers and width of 128 neurons per layer. We have used tanh as
the nonlinearity for the intermediate layers and a linear output layer. As the
optimizer, we used Adam [161] and the initial learning rate has been set to 0.001.

2http://gpflow.readthedocs.io/en/latest/notebooks/regression.html

http://gpflow.readthedocs.io/en/latest/notebooks/regression.html
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(a) Training student on 100 samples from the weak function.

(b) Fitting teacher based on 10 observations from the true function.

(c) Fine-tuning the student based on observations from the true function.

(d) Fine-tuning the student based on label/confidence from teacher.
Figure 5.3: Toy example: The true function we want to learn is y = sin(x) and the weak function
is y = 2sinc(x).
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We randomly sample 100 data points from the weak annotator and 10 data
points from the true function. We introduce a small amount of noise to the
observation of the true function to model the noise in the human labeled data.

We consider two experiments:

1. A neural network trained on weak data and then fine-tuned on strong data
from the true function, which is the most common semi-supervised approach
(Figure 5.3c).

2. A teacher-student framework working by the proposed FWL approach.

As can be seen in Figure 5.3d, by taking into account label confidence, FWL
gives a better approximation of the true hidden function, compared to the
standard fine tuning. We repeated the above experiment 10 times. The average
RMSE with respect to the true function on a set of test points over those 10
experiments for the student, were as follows:

1. Student is trained on weak data (blue line in Figure 5.3a): 0.8406,
2. Student is trained on weak data then fine tuned on true observations (blue

line in Figure 5.3c): 0.5451,
3. Student is trained on weak data, then fine tuned by soft labels and confidence

information provided by the teacher (blue line in Figure 5.3d): 0.4143 (best).

5.4 Applying CWS and FWL on Language Under-
standing Tasks

We apply CWS and FWL, two approaches introduced in this chapter for learning
from a vast amount of weakly annotated data, while a small set of labeled data
exist, to two different tasks: document ranking and sentiment classification. Whilst
these two applications differ considerably, as do the exact operationalizations
of the proposed models to these cases, in both cases the human gold standard
data is based on a cognitively complex, or subjective, judgments causing high
interrater variation, increasing both the cost of obtaining labels and the need
for larger sets of labels.

For both tasks, we evaluate the performance of CWS as well as FWL compared
to some baselines that are described in Table 5.1. In the rest of this chapter,
we present results of different experiments and studies and we refer to these
baselines using their id and name (first and the second column in Table 5.1).

3In the document ranking task, as the representation of documents and queries we use
weighted averaging over pretrained embeddings of their words based on their inverse docu-
ment frequency [84]. In the sentiment analysis task, we use skip-thoughts vectors [164].
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Table 5.1: Descriptions of baseline models.

Basic Baselines

1 WA The weak annotator, i.e., the unsupervised method used for annotating the un-
labeled data.

2 NNS Full Supervision Only, i.e., the target network (or the student) trained only on
strong labeled data (Ds).

3 NNW Weak Supervision Only, i.e., the target network (or the student) trained only on
weakly labeled data (Dw).

4 NNW/S+ Weak Supervision + Oversampled Strong Supervision, i.e., the target network
(or the student) trained on samples that are alternately drawn from Dw without
replacement, and Ds with replacement. Since |Ds| ⌧ |Dw|, it oversamples the
strong data.

5 NNW ! NNS Weak Supervision + Fine Tuning, i.e., the target network (or the student) trained
on weak dataset Dw and fine-tuned on strong dataset Ds.

6 NNW ! NNSup
S Weak Supervision + Supervision Layer fine tuning, i.e., the target network (or

the student) trained only on on weak dataset Dw and the supervision layer is
fine-tuned on strong dataset Ds, while the representation learning layer is fixed.

7 NNW ! NNRep
S Weak Supervision + Representation Learning Layer Fine Tuning, i.e., the target

network (or the student) trained only on on weak dataset Dw and the represen-
tation layer is fine-tuned on strong dataset Ds, while the representation learning
layer is fixed.

Controlled Weak Supervision

8 CWS Learning from Controlled Weak Supervision as explained in Section 5.2.
9 CWSJT+ Controlled Weak Supervision with Joint Training is the same as CWS (explained

in Section 5.2.2), except that parameters of the supervision layer in target net-
work are also updated using batches from V, with regards to the strong labels.

10 CWSST Separate Training, i.e., we consider the confidence network as a separate net-
work, without sharing the representation learning layer, and train it on set V.
We then train the target network on the controlled weak supervision signals.

11 CWSCT Circular Training, i.e., we train the target network on set U. Then the confidence
network is trained on data with strong labels, and the target network is trained
again but on controlled weak supervision signals.

12 CWSPT Progressive Training is the mixture of the two previous baselines. Inspired by
[242], we transfer the learned information from the converged target network
to the confidence network using progressive training. We then train the target
network again on the controlled weak supervision signals.

Fidelity Weighted Learning

13 FWL Fidelity Weighted Learning that is explained in Section 5.3.
14 NNWw!NNS

The student trained on the weak data, but the step-size of each weak sample is
weighted by a fixed value 0  w  1, and fine-tuned on strong data. As an
approximation for the optimal value for w, we have used the mean of h2 of our
model (below).

15 FWLunsuprep The representation in the first step is trained in an unsupervised way3 and the
student is trained on samples labeled by the teacher using the confidence scores.

16 FWL\S The student trained on the weakly labeled data and fine-tuned on samples la-
beled by the teacher without taking the confidence into account.
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Figure 5.4: The document ranker used as teacher in CWS and student in FWL.

5.4.1 Document Ranking

This task is a core information retrieval problem and is challenging as the
ranking model needs to learn a representation for long documents and capture
the notion of relevance between queries and documents. Furthermore, as it
was discussed in Chapter 4, the size of publicly available datasets with query-
document relevance judgments is unfortunately quite small (⇠250 queries).
In our experiments, ranking is cast as a regression task. Given each training
sample x as a triple of query q, and two documents d+ and d�, the goal is to
learn a function F : {hq, d+, d�i} ! R, which maps each data sample x to a
scalar output value y indicating the probability of d+ being ranked higher than
d� with respect to q.

The target network in CWS and the student in FWL

We employ the pairwise neural ranker architecture explained in Section 4.2.2 as
the target network in CWS and student in FWL.

Each training instance x consists of a query q, and two documents d+ and d�.
The labels, ỹ and y, are scalar values indicating the probability of d+ being
ranked higher than d� with respect to q.

The Representation Learning Layer. This layer learns a function # : V ! Rm (where
V denotes the vocabulary set, and m is the dimension of embedding) that maps
each word to its embedding as well as a weighting function w : V ! R which
learns the global importance of each word. Then, the learned weights are used
to compose word embeddings to generate query/document embeddings. The
output of this layer is the concatenation of vectors representing query and two
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documents. In our experiments, we initialize the embedding function # with
word2vec embeddings [195] pre-trained on Google News and the weighting
function w with IDF.

The Supervision Layer. This layer receives the vector representation of the inputs
processed by the representation learning layer and outputs a prediction ŷi. We
opt for a simple fully connected feed-forward network with l hidden layers
followed by a sigmoid. We employ the weighted cross entropy loss:

Lt = Â
i2BU

c̃i[�ỹi log(ŷi)� (1� ỹi) log(1� ŷi)], (5.6)

where BDw is a batch of samples from Dw, and c̃i is the confidence score of the
weakly annotated sample i, estimated by the confidence network.

The general schema of the target network (or student) is illustrated in Figure 5.4.
More details are provided in Section 4.2.2.

The weak annotator

The weak annotator in the document ranking task is BM25 [232], a well-known
unsupervised retrieval method. This method heuristically scores a given pair of
query-document based on the statistics of their matched terms. In the pairwise
document ranking setup, ỹi for a given sample xj = (q, d+, d�) is the probability
of document d+ being ranked higher than d�: ỹi = Pq,d+,d� = sq,d+/sq,d++sq,d� ,
where sq,d is the score obtained from the weak annotator.

The confidence network in CWS

The confidence network is a regressor and we use a simple fully connected
feed-forward network. To train the confidence network, the target label cj is
calculated using the absolute difference of the strong label and the weak label:
cj = 1� |yj � ỹj|, where yj is calculated similar to ỹi, but sq,d comes from strong
labels provided by humans.

The teacher in FWL

We use Gaussian Process as the teacher in order to generate soft labels. We pass
the mean of GP through the same function g(·) that is applied on the output
of the student network, where the g(·) is sigmoid for the document ranking
task. Since we have one dimensional regression here, S(xt) is scalar and h(·) is
identity. In the teacher, linear combinations of different kernels are used. For
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the document ranking task, we use sparse variational GP regression4 [279] with
this kernel:

k(xi, xj) = kMatern3/2(xi, xj) + kLinear(xi, xj) + kWhite(xi, xj), (5.7)

where

kMatern3/2(xi, xj) =

 
1 +

p
3kxi � xjk

l

!
exp

 
�
p

3kxi � xjk
l

!
,

kLinear(xi, xj) = s2
0 + xi · xj,

kWhite(xi, xj) = constant_value 8xi = xj, and 0 otherwise.

We empirically found that l = 1 satisfying value for the length scale of the
Matern3/2 kernel. We also set s0 = 0 to obtain a homogeneous linear kernel.
The constant value of KWhite(·, ·) determines the level of noise in the labels. This
is different from the noise in weak labels. This term explains the fact that even
in strong labels there might be a trace of noise due to the inaccuracy of human
labelers. We set the number of clusters to 50 for this task in the clustered GP
algorithm.

Collections

We use two standard TREC collections for the task of ad-hoc retrieval: The first
collection (Robust04) consists of 500k news articles from different news agencies
as a homogeneous collection. The second collection (ClueWeb) is ClueWeb09
Category B, a large-scale web collection with over 50 million English documents,
which is considered to be a heterogeneous collection. Spam documents are
filtered out using the Waterloo spam scorer5 [57] with the default threshold 70%.

Data with strong labels. We take query sets that contain human-labeled judg-
ments: a set of 250 queries (TREC topics 301–450 and 601–700) for the Robust04
collection and a set of 200 queries (topics 1-200) for the experiments on the
ClueWeb collection. For each query, we take all documents judged as relevant
plus the same number of documents judged as non-relevant and form pairwise
combinations among them.

Data with weak labels. We create a query set Q using the unique queries appear-
ing in the AOL query logs [215]. This query set contains web queries initiated
by real users in the AOL search engine that were sampled from a three-month
period from March 2006 to May 2006. We apply standard pre-processing [81, 84]

4http://gpflow.readthedocs.io/en/latest/notebooks/SGPR_notes.html
5http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

http://gpflow.readthedocs.io/en/latest/notebooks/SGPR_notes.html
http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
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on the queries: We filter out a large volume of navigational queries containing
URL substrings (“http”, “www.”, “.com”, “.net”, “.org”, “.edu”). We also remov
all non-alphanumeric characters from the queries. For each dataset, we take
queries that have at least ten hits in the target corpus using our weak annotator
method. Applying all these steps, we collect 6.15 million queries to train on in
Robust04 and 6.87 million queries for ClueWeb. To prepare the weakly labeled
training set Dw, we take the top 1, 000 retrieved documents using BM25 for each
query from training query set Q, which in total leads to ⇠|Q|⇥ 106 training
samples.

Experimental Setup

We conduct 3-fold cross-validation. However, for each dataset, we first tun all
the hyper-parameters of the target network in CWS (and student in the first
step of FWL) in the first step on the set with strong labels using batched GP
bandits with an expected improvement acquisition function [87] and keep the
optimal parameters of the target network (and student) fixed for all the other
experiments. The size and number of hidden layers for the target network
(and student) is selected from {64, 128, 256, 512}. The initial learning rate and
the dropout parameter are selected from {10�3, 10�5} and {0.0, 0.2, 0.5}, re-
spectively. We consider embedding sizes of {300, 500}. The batch size in our
experiments is set to 128. We use ReLU [203] as a non-linear activation function
a in target network (and student). We use the Adam optimizer [161] for training,
and dropout as a regularization technique.

At inference time, for each query, we take the top 2, 000 retrieved documents
using BM25 as candidate documents and re-rank them using the trained models.
We use the Indri6 implementation of BM25 with default parameters (i.e., k1 =
1.2, b = 0.75, and k3 = 1, 000).

Results and Discussion

We conduct k-fold cross validation on Ds (the strong data) and report two
standard evaluation metrics for ranking: mean average precision (MAP) of
the top-ranked 1, 000 documents and normalized discounted cumulative gain
calculated for the top 20 retrieved documents (nDCG@20). Table 5.2 shows the
performance on both datasets. As can be seen, FWL and CWS both provide
significant boosts on the performance on top of the baseline methods over both
datasets.

In the ranking task, the student is designed in particular to be trained on weak

6https://www.lemurproject.org/indri.php

https://www.lemurproject.org/indri.php
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Table 5.2: Performance of CWS and FWL as well as the main baseline methods, described in
Table 5.1, for the document ranking task. úi indicates that the improvements with respect to
the baseline i are statistically significant at the 0.05 level using the paired two-tailed t-test with
Bonferroni correction.

Method Robust04 ClueWeb

MAP nDCG@20 MAP nDCG@20

1 WABM25 0.2503ú2 0.4102ú2 0.1021ú2 0.2070ú2

2 NNS 0.1790 0.3519 0.0782 0.1730
3 NNW 0.2702ú12 0.4290ú12 0.1297ú12 0.2201ú12

4 NNW/S+ 0.2763ú123 0.4330ú123 0.1354ú123 0.2319ú123

5 NNW ! NNS 0.2810ú12346 0.4372ú12346 0.1346ú12346 0.2317ú12346

6 NNW ! NNSup
S 0.2711ú123 0.4203ú123 0.1002ú123 0.1940ú123

7 NNW ! NNRep
S 0.2810ú1234 0.4316ú1234 0.1286ú1234 0.2240ú1234

8 CWS 0.3017ú1234567 0.4511ú1234567 0.1363ú1234567 0.2444ú1234567

13 FWL 0.3124ú1234567 0.4600ú1234567 0.1472ú1234567 0.2453ú1234567

annotations [84], hence training the network only on weak supervision, i.e.,
NNW performs better than NNS. This may be due to the fact that ranking is a
complex task requiring many training samples to learn representations that can
be used to assess the relevance, while relatively few data with strong labels are
available.

Alternating between strong and weak data during training, i.e., NNW/S+ seems
to bring little (but statistically significant) improvement. However, we can
gain better results by the typical fine tuning strategies. Among the fine tuning
experiments, updating all the parameters of the target network (or student), i.e.,
NNW ! NNS, is the best fine tuning strategy. Updating only the parameters of
the representation layer based on the strong labels, i.e., NNW ! NNRep

S , works
better than updating only parameters of the supervision layer, i.e., NNW !
NNSup

S . This supports our designed choice of a shared embedding layer in CWS
which gets updated on the set Ds.

FWL is the best performing model, and CWS achieves 97% of the performance
of FWL. The main advantage of CWS over FWL is that it is trained in a single
stage process and needs to see all the samples in Dw (which is a reasonably
large set) only one time, while FWL has three sequential stages during training
and it needs to iterate two times over all the samples in Dw. Also, employing a
Gaussian Process as part of the model in FWL limits its scalability, while the
components of CWS are all neural networks, and this eases the increase in the
capacity of the model.

As an ablation study on CWS, we tried different training strategies and report
the results in Table 5.3. As shown, CWS and CWSCT perform better than other



130 Chapter 5. Learning from Samples of Variable Quality

Table 5.3: Performance of variants of CWS on different datasets for document ranking task.
Baselines are described in Table 5.1.

Method Robust04 ClueWeb

MAP nDCG@20 MAP nDCG@20

8 CWS 0.3017 0.4511 0.1363 0.2444
9 CWS+

JT 0.2786 0.4367 0.1310 0.2244
10 CWSST 0.2716 0.4237 0.1320 0.2213
11 CWSCT 0.2961 0.4440 0.1378 0.2431
12 CWSPT 0.2784 0.4292 0.1314 0.2207

Table 5.4: Performance of FWL against some of the baselines on different datasets for document
ranking task. Baselines are described in Table 5.1.

Method Robust04 ClueWeb

MAP nDCG@20 MAP nDCG@20

13 FWL 0.3124 0.4607 0.1472 0.2453
14 NNWw!NNS 0.2899 0.4431 0.1320 0.2309
15 FWLunsuprep 0.2211 0.3700 0.0831 0.1964
16 FWL\S 0.2980 0.4516 0.1386 0.2340

strategies. CWSCT is to let the confidence network to be trained separately, while
still being able to enjoy shared learned information from the target network.
Compared to CWS, CWSCT is less efficient as we need two rounds of training
on weakly labeled data.

While it seems reasonable to make use of strong labels for updating all param-
eters of the target network, CWS+JT achieves no better results than CWS. We
speculate that during training, the direction of the parameter optimization is
profoundly affected by the type of supervision signal and while we control
the magnitude of the gradients, we do not change their directions. Hence al-
ternating between two sets with different label qualities (different supervision
signal types, i.e., weak and strong) confuses the supervision layer of the target
network.

In CWSST, the strong dataset, Ds, is too small to train a high-quality confidence
network without taking advantage of the vast amount of weakly annotated
data in Dw to learn better representations, so CWSST is not able to improve
the performance over NNW significantly and also we noticed that this strategy
leads to a slow convergence compared to the NNW . Also, transferring learned
information from the target network to the confidence network via progressive
training, i.e., CWSPT, performs no better than full sharing of the representation
learning layer.

Table 5.4 presents the results of experiments we have done as ablation studies
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Figure 5.5: The sentiment classifier used as teacher in CWS and student in FWL.

on FWL.

Weighting the gradient updates from weak labels during pretraining and fine
tuning the network with strong labels, i.e., NNWw!S seems to work quite well.
Comparing the performance of FWLunsuprep to FWL indicates that, first of all,
learning the representation of the input data downstream of the main task
leads to better results compared to a task-independent unsupervised or self-
supervised way. Also, the dramatic drop in performance compared to FWL,
emphasizes the importance of the preretraining the student on weakly labeled
data.

We can gain improvements by fine tuning the NNW using labels generated by
the teacher without considering their confidence score, i.e., FWL\S. This means
we just augment the fine tuning process by generating a fine tuning set using a
teacher, which is better than Ds in terms of quantity and Dw in terms of quality.
This baseline is equivalent to setting b = 0 in Equation 5.4. However, we see
a big jump in performance when we use FWL to include the estimated label
quality from the teacher, leading to the best overall results.

5.4.2 Sentiment Classification

In sentiment classification, the goal is to predict the sentiment (e.g., positive,
negative, or neutral) of a sentence. Each training sample x consists of a sentence
s and its sentiment label ỹ.
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The target network in CWS and the student in FWL

We use a convolutional model [160] as the target network in CWS and the student
in FWL, which is similar to the state-of-the-art model for Twitter sentiment
classification from Semeval 2015 and 2016 [85, 86, 250, 251].

The Representation Learning Layer The representation learning layer in this task
consists of an embedding function # : V ! Rm, where V denotes the vocabulary
set and m is the dimension of the embedding.

This function maps the sentence to a matrix S 2 Rm⇥|s|, where each column
represents the embedding of a word at the corresponding position in the sen-
tence. We initialize the embedding matrix with word2vec embeddings [195]
pretrained on a collection of 50M tweets.

Matrix S is passed through a convolution layer. In this layer, a set of f filters
is applied to a sliding window of length h over S to generate a feature map
matrix O. Each feature map oi for a given filter F is generated by oi = Âk,j S[i :
i + h]k,jFk,j, where S[i : i + h] denotes the concatenation of word vectors from
position i to i + h. The concatenation of all oi produces a feature vector o 2
R|s|�h+1. The vectors o are then aggregated over all f filters into a feature map
matrix O 2 R f⇥(|s|�h+1).

We also add a bias vector b 2 R f to the result of a convolution. Each convolu-
tional layer is followed by a non-linear activation function (we use ReLU [203])
which is applied element-wise. Afterward, the output is passed to a max pool-
ing layer which operates on columns of the feature map matrix O returning the
largest value: pool(oi) : R1⇥(|s|�h+1) ! R.

The Supervision Layer. This layer is a simple fully connected feed-forward
network with l hidden layers, followed by a softmax. We employ the weighted
cross entropy loss:

Lt = Â
i2BDw

c̃i Â
k2K
�ỹk

i log(ŷk
i ), (5.8)

where BDw is a batch of samples from Dw, and c̃i is the confidence score of the
weakly annotated sample i, and K is the set of classes. The general schema of
the target network (or student) is illustrated in Figure 5.5.

The weak annotator

The weak annotator for the sentiment classification task is a simple lexicon-
based method [122, 163]. We use SentiWordNet03 [19] to assign probabilities
(positive, negative and neutral) for each token in set Dw. We use a bag-of-words
model for the sentence-level probabilities (i.e., just averaging the distributions
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of the terms), yielding a noisy label ỹi 2 R|K|, where |K| = 3 is the number of
classes. We found empirically that using soft labels from the weak annotator
works better than assigning a single hard label.

The confidence network in CWS

In this task, the confidence network is also a regressor and we use a simple fully
connected feed-forward network. The target label cj for the confidence network
is calculated by using the mean absolute difference of the strong label and the
weak label: cj = 1� 1

|K| Âk2K |yk
j � ỹk

j |, where yj is the one-hot encoding of the
sentence label over all classes.

The teacher in FWL

Similar to the ranking task, we use a Gaussian Process as the teacher in order to
generate soft labels. We pass the mean of GP through the same function g(·)
that is applied on the output of the student network, where the g(·) is softmax
for the sentiment classification task. Here in this task, h(·) is an aggregation
function that takes the variance over several dimensions and outputs a single
measure of variance. As a reasonable choice, the aggregation function h(·) in
the sentiment classification task (three classes) is the mean of variances over
dimensions. In the teacher, linear combinations of different kernels are used.
For the sentiment classification task, we use sparse variational GP for multiclass
classification7 [132] with the following kernel:

k(xi, xj) = kRBF(xi, xj) + kLinear(xi, xj) + kWhite(xi, xj) (5.9)

where

kRBF(xi, xj) = exp

 
kxi � xjk2

2l2

!
,

kLinear(xi, xj) = s2
0 + xi.xj,

kWhite(xi, xj) = constant_value 8x1 = x2, and 0 otherwise.

Similar to the ranking task, we set l = 1 as the length scale of the RBF kernel,
s0 = 0 for the linear kernel, and the number of clusters to 30 in the clustered
GP algorithm.

7http://gpflow.readthedocs.io/en/latest/notebooks/multiclass.html

http://gpflow.readthedocs.io/en/latest/notebooks/multiclass.html
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Collections

We test our model on the Twitter message-level sentiment classification of
SemEval-15 Task 10B [238]. Datasets of SemEval-15 subsume the test sets from
previous editions of SemEval, i.e., SemEval-13 and SemEval-14. Each tweet was
preprocessed so that URLs and usernames are masked.

Data with strong labels. We use train (9,728 tweets) and development (1,654
tweets) data from SemEval-13 for training and SemEval-13-test (3,813 tweets) for
validation. To make your results comparable to the official runs on SemEval we
us SemEval-14 (1,853 tweets) and SemEval-15 (2,390 tweets) as test sets [204, 238].

Data with weak labels. We use a large corpus containing 50M tweets collected dur-
ing two months for both, training the word embeddings and creating the weakly
annotated set Dw using the lexicon-based method explained in Section 5.4.2.

Experimental Setup

Similar to the document ranking task, we tune hyper-parameters for the target
network in CWS (and student in the first step of FWL) with respect to the
strong labels of the validation set using batched GP bandits with an expected
improvement acquisition function [87] and keep the optimal parameters fixed
for all the other experiments. The size and number of hidden layers for the
classifier and s selected from {32, 64, 128}. We test the model with both, 1 and
2 convolutional layers. The number of convolutional feature maps and the
filter width is selected from {200, 300} and {3, 4, 5}, respectively. The initial
learning rate and the dropout parameter are selected from {1E � 3, 1E � 5}
and {0.0, 0.2, 0.5}, respectively. We consider embedding sizes of {100, 200} and
the batch size in these experiments was set to 64. The ReLU [203] is used as
a non-linear activation function in target network (and student). The Adam
optimizer [161] is used for training, and dropout as a regularizer.

Results and Discussion

We report Macro-F1, the official SemEval metric, in Table 5.5.

Among all the baselines, FWL is the best performing approach. CWS also
outperforms all the baselines.

For this task, since the amount of data with strong labels is larger than for the
ranking task, the performance of NNS is acceptable. Alternately sampling from
weak and strong data, i.e., NNW/S+ gives better results than either of learning
from just weak or just strong labels. However, pretraining on weak labels and
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Table 5.5: Performance of CWS and FWL as well as the main baseline methods, described in
Table 5.1, for the sentiment classification task. úi indicates that the improvements with respect
to baseline i are statistically significant at the 0.05 level using the paired two-tailed t-test with
Bonferroni correction.

Method SemEval-14 SemEval-15

1 WALexicon 0.5141 0.4471

2 NNS 0.6307ú1 0.5811ú13

3 NNW 0.6719ú12 0.5606ú1

4 NNW/S+ 0.7032ú12367 0.6319ú12367

5 NNW ! NNS 0.7080ú12367 0.6441ú12367

6 NNW ! NNSup
S 0.6875ú123 0.6193ú123

7 NNW ! NNRep
S 0.6932 ú123 0.6102ú123

8 CWS 0.7362 ú1234567 0.6626ú1234567

13 FWL 0.7470 ú12345678 0.6830ú12345678

⇤ SemEvalBest 0.7162 [240] 0.6618 [85]

Table 5.6: Performance of variants of CWS on different datasets for the sentiment classification
task. Baselines are described in Table 5.1.

Method SemEval-14 SemEval-15

8 CWS 0.7362 0.6626
9 CWSJT+ 0.7310 0.6551

10 CWSST 0.7183 0.6501
11 CWSCT 0.7363 0.6667
12 CWSPT 0.7009 0.6118

then fine tuning both the supervision layer and the representation learning
layer on strong labels, further improves the performance.

Besides the baselines, we also report the best performing systems that are also
convolution-based models (Rouvier and Favre 240 on SemEval-14; Deriu et al.
85 on SemEval-15). Both CWS and FWL outperform these methods.

Similar to the ranking task, we have done an ablation study on CWS by trying
different strategies for training CWS. The results of these experiments are
presented in Table 5.6. CWSCT archives the highest performance among all the
training strategies, however, as we discussed in Section 5.4.1, it is not as efficient
as CWS.

In sentiment classification, compared to the ranking task, it is easier to estimate
the confidence score of samples concerning the amount of available supervised
data. Therefore, CWSST improves the performance over NNS in Table 5.5.
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Table 5.7: Performance of FWL against some of the baselines on different datasets for document
ranking task. Baselines are described in Table 5.1.

Method SemEval-14 SemEval-15

13 FWL 0.7470 0.6830
14 NNWw!NNS 0.7166 0.6603
15 FWLunsuprep 0.6588 0.6954
16 FWL\S 0.7202 0.6590

The results of a set of experiments we have done as ablation studies on FWL
are presented in Table 5.7.

Having static weighting on the gradient updates, i.e., NNWw!S, leads to a per-
formance that is better than simple fine tuning, i.e., NNW ! NNS in Table 5.5.
For this task, similar to the ranking task, learning the representation in an un-
supervised task-independent fashion, i.e., FWLunsuprep, does not lead to good
results compared to FWL. Similar to the ranking task, fine tuning NNW based
on labels generated by GP instead of data with strong labels, regardless of the
confidence score, i.e., FWL\S [293], works better than standard fine tuning.

5.5 Discussion and Analysis

In this section, we provide further analyses by investigating the learning pace
in CWS and FWL, the bias-variance trade-off in FWL, the sensitivity of FWL to
the quality of weak labels, and how modulating the learning rate in FWL can
be different from the weighted sampling of training samples.

5.5.1 Faster Learning Pace in CWS

In CWS, controlling the contribution of the weak labels to updating the param-
eters of the model not only improves the performance, but also provides the
network with more solid signals, which speeds up the learning process.

Figure 5.6 illustrates the training/validation loss for both networks compared
to the loss of training the target network with weak supervision, along with
their performance on test sets, with respect to different amounts of training
data for the sentiment classification task we observed a similar pattern for the
document ranking task.

As shown, in training, the loss of the target network in our model, i.e., Lt is
higher than the loss of the network that is trained only on weakly supervised
data, i.e., LNNW. However, since these losses are calculated with respect to the
weak labels (not true labels), having very low training loss can be an indication
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Figure 5.6: Loss of the target network (Lt) and the confidence network (Lc) compared to
the loss of NNW (LNNW) on training/validation set and performance of CWS, NNW, and
weak annotator on test sets with respect to different amount of training data on sentiment
classification.

of overfitting to the imperfection of weak labels. In other words, regardless of
the general problem of lack of generalization due to overfitting, in the setup of
learning from weak labels, predicting labels that are similar to train labels (very
low training loss) is not necessarily a desirable incident.

In the validation set, however, Lt decreases faster than LNNW, which supports
the fact that LNNW overfits to the imperfection of weak labels, while our setup
helps the target network to escape from this imperfection and do an excellent
job on the validation set. In terms of the performance, compared to NNW, the
performance of CWS on both test sets increases very quickly and CWS can
pass the performance of the weak annotator by seeing much fewer instances
annotated by the weak annotator.

5.5.2 A Good Teacher is Better than Many Observations

We look at the rate of learning for the student in FWL as the amount of training
data is varied. This experiment is related to the connection of FWL with Vapnik’s
learning using privileged information (LUPI) [287, 288], thus, we first highlight this
connection.
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Connection with Vapnik’s LUPI

FWL makes use of information from a small set of correctly labeled data to
improve the performance of a semi-supervised learning algorithm. The main
idea behind LUPI comes from the fact that humans learn much faster than
machines. This can be due to the role that an Intelligent Teacher plays in human
learning. In this framework, the training data is a collection of triplets

{(x1, y1, x⇤1), . . . , (xn, yn, x⇤n)}⇠Pn(x, y, x⇤), (5.10)

where each (xi, yi) is a pair of feature-label and x⇤i is the additional information
provided by an intelligent teacher to ease the learning process for the student.
Additional information for each (xi, yi) is available only during training time
and the learning machine must only rely on xi at test time. The theory of
LUPI studies how to leverage such a teaching signal x⇤i to outperform learning
algorithms utilizing only the normal features xi. For example, MRI brain images
can be augmented with high-level medical or even psychological descriptions
of Alzheimer’s disease to build a classifier that predicts the probability of
Alzheimer’s disease from an MRI image at test time. It is known from statistical
learning theory [289] that the following bound for test error is satisfied with
probability 1� d:

R( f )  Rn( f ) + O
✓✓

|F |VC � log s

n

◆a◆
, (5.11)

where Rn( f ) denotes the training error over n samples, |F |VC is the VC dimen-
sion of the space of functions from which f is chosen, and a 2 [0.5, 1]. When
the classes are not separable, a = 0.5 i.e., the machine learns at a slow rate of
O(n�1/2). For easier problems where classes are separable, a = 1 resulting in
a learning rate of O(n�1). The difference between these two cases is severe.
The same error bound achieved for a separable problem with 10 thousand data
points is only obtainable for a non-separable problem when 100 million data
points are provided. This is prohibitive even when obtaining large datasets is
not so costly.

The theory of LUPI shows that an intelligent teacher can reduce a resulting in
a faster learning process for the student. In this chapter, we have proposed a
teacher-student framework for semi-supervised learning. Similar to LUPI, in
FWL a student is supposed to solve the main prediction task while an intelligent
teacher provides additional information to improve its learning. In addition,
we first train the student network so that it obtains initial knowledge of weakly
labeled data and learns a good data representation. Then the teacher is trained
on truly labeled data enjoying the representation learned by the student. This
extends LUPI in a way that the teacher provides privileged information that
is most useful for the current state of student’s knowledge. FWL also extends
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LUPI by introducing several teachers each of which is specialized to correct the
student’s knowledge related to a specific region of the data space.

The theory of LUPI was first developed and proved for support vector ma-
chines by Vapnik as a method for knowledge transfer. Hinton introduced dark
knowledge as a spiritually close idea in the context of neural networks [138]. He
proposed to use a large network or an ensemble of networks for training and
a smaller network at test time. It turned out that compressing knowledge of
a large system into a smaller system can improve the generalization ability.
It was shown in [180] that dark knowledge and LUPI can be unified under a
single umbrella, called generalized distillation. The core idea of these models is
machines-teaching-machines. As the name suggests, a machine is learning the
knowledge embedded in another machine. In our case, the student is correcting
its knowledge by receiving privileged information about label uncertainty from
the teacher.

FWL extends the core idea of LUPI in the following directions:

• Trainable teacher: It is often assumed that the teacher in LUPI framework
has some additional true information. We show that when this extra
information is not available, one can still use the LUPI setup and define
an implicit teacher whose knowledge is learned from the true data. In this
approach, the performance of the final student-teacher system depends
on a clever answer to the following question: which information should
be considered as the privileged knowledge of teacher.

• Bayesian teacher: The proposed teacher is Bayesian. It provides posterior
uncertainty of the label of each sample.

• Mutual representation: We introduced module y(·) that learns a mutual
embedding (representation) for both student and teacher. This is in par-
ticular interesting because it defines a two-way channel between teacher
and student.

• Multiple teachers: We proposed a scalable method to introduce several
teachers such that each teacher is specialized in a particular region of the
data space.

Relevant to this, we performed two types of experiments on all tasks:

• In the first experiment, we use all the available strong data but consider
different percentages of the entire weak dataset.

• In the second experiment, we fix the amount of weak data and provide
the model with varying amounts of strong data.
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(a) Models trained on different amount of weak data.

(b) Models trained on different amount of strong data.
Figure 5.7: Performance of FWL and the baseline model trained on different amount of data.

We use standard fine tuning with similar setups as for the baseline models.
We fixed everything in the model and tried running the fine tuning step with
different values for b 2 {0.0, 0.1, 1.0, 2.0, 5.0} in all the experiments. For the
experiments on the toy problem in Section 5.5.1, the reported numbers are
averaged over 10 trials. In the first experiment (i.e., Figure 5.7a), the size of
sampled data data is: |Ds| = 50 and |Dw| = 100 (fixed) and for the second
experiment (i.e., Figure 5.7a): |Dw| = 100 and |Ds| = 10 (fixed).

Figure 5.7 presents the results of these experiments. In general, for all tasks and
both setups, the student learns faster when there is a teacher. One caveat is in
the case where we have a very small amount of weak data. In this case, the
student cannot learn a suitable representation in the first step, and hence the
performance of FWL is rather low, as expected. It is highly unlikely that this
situation occurs in reality as obtaining weakly labeled data is much easier than
strong data.

The empirical observation of Figure 5.7 that our model learns more with less
data can also be seen as evidence in support of another perspective to FWL, i.e.
learning using privileged information [287].
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Figure 5.8: Effect of different values for b.

5.5.3 Handling the Bias-Variance Trade-off in FWL

As mentioned in Section 5.3.1, b is a hyperparameter that controls the contribu-
tion of weak and strong data to the training procedure. In order to investigate
its influence, we fixed everything in the model and ran the fine tuning step with
different values of b 2 {0.0, 0.1, 1.0, 2.0, 5.0} in all the experiments.

Figure 5.8 illustrates the performance on the ranking (on the Robust04 dataset)
and sentiment classification tasks (on the SemEval14 dataset). For both sen-
timent classification and ranking, b = 1 gives the best results (higher scores
are better). We also experimented on the toy problem with different values
of b in three cases: 1) having 10 observations from the true function (same
setup as Section 5.3.3), marked as “Toy Data” in the plot, 2) having only 5
observations from the true function, marked as “Toy Data *” in the plot, and
3) having f (x) = x + 1 as the weak function, which is an extremely bad ap-
proximator of the true function, marked as “Toy Data **” in the plot. For the
“Toy Data” experiment, b = 1 turned out to be optimal (here, lower scores are
better). However, for “Toy Data *,” where we have an extremely small number
of observations from the true function, setting b to a higher value acts as a
regularizer by relying more on weak signals, and eventually leads to better
generalization. On the other hand, for “Toy Data **,” where the quality of the
weak annotator is extremely low, lower values of b put more focus on the true
observations. Therefore, b lets us control the bias-variance trade-off in these
extreme cases.

We have also tested ĉt = h2(xt) = b/var[S(xt)]. The experiments showed that
the exponential choice gives a better overall performance.

5.5.4 Sensitivity of FWL to the Quality of the Weak Annotator

Our proposed setup in FWL requires defining a so-called “weak annotator” to
provide a source of weak supervision for unlabelled data. In Section 5.5.3 we
discussed the role of the parameter b for controlling the bias-variance trade-off
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Figure 5.9: Performance of FWL versus performance of the corresponding weak annotator in
the document ranking task, on the Robust04 dataset.

by trying two weak annotators for the toy problem. Now, in this section, we
study how the quality of the weak annotator may affect the performance of the
FWL, for the task of document ranking as a real-world problem.

To do so, besides BM25 [232], we use three other weak annotators: a vector
space model [244] with a binary term occurrence (BTO) weighting schema and a
vector space model with the TF-IDF weighting schema, which are both weaker
than BM25, and BM25+RM3 [2] that uses RM3 as the pseudo-relevance feedback
method on top of BM25, leading to better labels.

Figure 5.9 illustrates the performance of these four weak annotators in terms of
their mean average precision (MAP) on the test data, versus the performance of
FWL given the corresponding weak annotator. As expected, the performance of
FWL depends on the quality of the employed weak annotator. The percentage
of improvement of FWL over its corresponding weak annotator on the test data
is also presented in Figure 5.9. As can be seen, the better the performance of the
weak annotator is, the less the improvement of the FWL would be.

5.5.5 From Modifying the Learning Rate to Weighted Sampling

FWL provides confidence scores based on the certainty associated with each
generated label ȳt, given sample xt 2 Dsw. We can translate the confidence
score as how likely including (xt, ȳt) in the training set for the student model
improves the performance, and rather than using this score as the multiplicative
factor in the learning rate, we can use it to bias the sampling procedure of
mini-batches so that the frequency of training samples is proportional to the
confidence score of their labels.

We design an experiment to try FWL with this setup (FWLs), in which we keep
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Figure 5.10: Performance of FWL and FWLs with respect to different batch of data for the task
of document ranking (Robust04 dataset) and sentiment classification (SemEval14 dataset).

the architectures of the student and the teacher and the procedure of the first
two steps of the FWL fixed, but we changed the step 3 as follows:

Given the soft dataset Dsw, consisting of xt, its label ȳt and the associated confi-
dence score generated by the teacher, we normalize the confidence scores over
all training samples and set the normalized score of each sample as its proba-
bility to be sampled. Afterwards, we train the student model by mini-batches
sampled from this set with respect to the probabilities associated with each
sample, but without considering the original confidence scores in parameter
updating. This means that the more confident the teacher is about the gener-
ated label for each sample, the more chance that the sample has to be seen by
the student model. Figure 5.10 illustrates the performance of both FWL and
FWLs trained on different amounts of data sampled from Dsw, in the document
ranking and sentiment classification tasks.

As can be seen, compared to FWL, the performance of FWLs increases rapidly
in the beginning but it slows down afterward. We have looked into the sam-
pling procedure and noticed that the confidence scores provided by the teacher
form a rather skewed distribution and there is a strong bias in FWLs toward
sampling from data points that are either in or close to the points in Ds, as
GP has less uncertainty around these points and the confidence scores are
high. We observed that the performance of FWLs gets closer to the performance
of FWL after many epochs, while FWL had already a log convergence. The
skewness of the confidence distribution makes FWLs to have a tendency for
more exploitation than exploration, however, FWL has more chance to explore
the input space, while it controls the effect of updates on the parameters for
samples based on their merit.
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5.6 Related Work

In this section, we position the introduced CWS and FWL approaches relative
to related work.

5.6.1 Learning from Imperfect Data

Learning from imperfect labels has been thoroughly studied in the litera-
ture [103]. The imperfect (weak) signal can come from non-expert crowd
workers, be the output of other models that are weaker (for instance with
low accuracy or coverage), biased, or models trained on data from different
related domains. Among these forms, in the distant supervision setup, a heuris-
tic labeling rule [85, 251] or function [84], which can be relying on a knowledge
base [123, 196, 197] is employed to devise noisy labels.

Learning from weak data sometimes aims at encoding various forms of domain
expertise or cheaper supervision from lay annotators. For instance, in structured
learning, the label space is pretty complex and obtaining a training set with
strong labels is extremely expensive, hence this class of problems leads to a
wide range of works on learning from weak labels [239]. Indirect supervision is
considered as a form of learning from weak labels that is employed in particular
in the structured learning, in which a companion binary task is defined for
which obtaining training data is easier [39, 224].

In the response-based supervision, the model receives feedback from interacting
with an environment in a task, and converts this feedback into a supervision
signal to update its parameters [51, 230, 239]. Constraint-based supervision is
another form of weak supervision in which constraints that are represented as
weak label distributions are taken as signals for updating the model parameters.
For instance, physics-based constraints on the output [265] or output constraints
on execution of logical forms [51].

In the proposed CWS and FWL, we can employ these approaches as the weak
annotator to provide imperfect labels for the unlabeled data, however, a small
amount of data with strong labels is also needed, which puts our model in the
class of semi-supervised models.

Some noise cleaning methods have been proposed to remove or correct misla-
beled samples [31]. There are some studies showing that weak or noisy labels
can be leveraged by modifying the loss function [216, 217, 228, 284] or changing
the update rule to avoid imperfections of noisy data [82, 83, 189].

One direction of research focuses on modeling the pattern of the noise or
weakness in the labels. For instance, methods that use a generative model
to correct weak labels such that a discriminative model can be trained more
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effectively [226, 229, 290]. Furthermore, methods that aim at capturing the
pattern of the noise by inserting an extra layer [109] or a separate module tries
to infer better labels by correcting the noisy labels and then use new labels for
training [83, 266, 293]. Our proposed FWL can be categorized in this class as the
teacher tries to infer better labels and provide certainty information which is
incorporated as the update rule for the student model.

5.6.2 Semi- supervised Learning

In the semi-supervised setup, some ideas were developed to utilize weakly or
even unlabeled data. For instance, the idea of self(incremental)-training [236],
pseudo-labeling [137, 172], and co-training [26] have been introduced for aug-
menting the training set by unlabeled data with predicted labels. Some re-
search has used the idea of self-supervised (or unsupervised) feature learn-
ing [94, 95, 205] to exploit different labelings that are freely available besides or
within the data, and to use them as intrinsic signals to learn general-purpose
features. These features, that are learned using a proxy task, are then used in a
supervised task like object classification/detection or description matching.

As a common approach in semi-supervised learning, the unlabeled set can be
used for learning the distribution of the data. In particular for neural networks,
greedy layer-wise pre-training of weights using unlabeled data is followed by
supervised fine tuning [86, 108, 138, 250, 251]. Other methods learn unsuper-
vised encoding at multiple levels of the architecture jointly with a supervised
signal [210, 303].

5.6.3 Sentiment Classification and Document Ranking

Sentiment classification is one of the key NLP tasks and SemEval provides
standard benchmark datasets for this task [204, 237, 238]. Many models have
been proposed based on neural networks for the sentiment classification task.
For many datasets, the state-of-the-art results are from convolutional-based
models that learn multiple word vector representations [160]. In our work, we
adapt a CNN based architecture, which is proposed to be trained with the
help of weak (distance) supervising [85, 250, 251] and has achieved best results
on some SemEval datasets [86]. Document Ranking is also the core task of IR
and some recent studies have applied neural networks on this task. Two main
groups of models are those that learn representations for query and documents,
independently, and then use a matching function [144, 201, 253], or models that
try to capture interactions between query and document from the beginning [84,
118, 182, 308]. Here, we adapt one of the best rankers among all the previously
proposed neural rankers that can be trained with weak supervision [79, 84, 314].
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5.7 Conclusion

Training neural networks using large amounts of weakly annotated data is an
attractive approach in scenarios where an adequate amount of data with true
labels is not available, a situation which often arises in practice. In this chapter,
to address RQ-2.2: “Given a large set of weakly annotated samples and a small set of
samples with high-quality labels, how can we best leverage the capacity of information
in these sets to train a neural network?,” we introduced two semi-supervised
learning approaches in the presence of weakly labeled data: Learning from
Controlled Weak Supervision (CWS) and fidelity-weighted learning (FWL).

CWS is a meta-learning approach that we proposed to address RQ-2.2.1. It
unifies learning to estimate the confidence score of weak annotations and train-
ing neural networks to learn a target task with controlled weak supervision,
i.e., using weak labels to updating the parameters but taking their estimated
confidence scores into account. This helps to alleviate updates from instances
with unreliable labels that may harm the performance.

FWL is a student-teacher framework that we proposed to address RQ-2.2.2. In
FWL the student network is in charge of learning a target task given a vast
amount of samples with weak labels associated with fidelity scores that are
generated by the teacher network. In FWL, we pretrain the student network on
weak data to learn an initial task-dependent data representation, which we pass
to the teacher along with the strong data. The teacher then learns to predict the
strong data, but crucially, based on the student’s learned representation. This then
allows the teacher to generate new labeled training data from unlabeled data as
well as fidelity scores for each sample in the data. Using samples in the new
dataset, we update the parameters of the student network taking the fidelity
scores into account to modulate the learning rate.

We applied both CWS and FWL to document ranking and sentiment clas-
sification, and empirically verified that they improve over well-performing
alternative semi-supervised methods and speed up the training process. We
observed that the common approach of pre-training and fine tuning is not as
effective. We showed that we can learn to explicitly model label qualities as a
useful property of the data, which is not immediately available, and directly ex-
ploit this property in the learning process to address the fundamental challenge
of training data quality-quantity trade-off.

In Part II to address RQ-2: “How to design learning algorithms that can learn from
weakly annotated samples, while generalizing over the imperfection in their labels?,” we
explored different ideas for developing models that are capable of learning from
weakly annotated data. We started with exploring how different architectural
choices and different objective functions can be employed for learning with
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pseudo-labels that are programmatically generated to augment training data.
Then we studied how to meta-learn the quality of labels and how to incorporate
them in the learning process. In the next part, we study how we can employ
inductive biases as modeling assumptions to design models that are not only
effective, but also data-efficient.





PART

III

Injecting Inductive Biases for
Data Efficiency





151

Generalization is at the heart of many aspects of human cognition. It underlies
our ability to learn language, form and use categories, and learn about causal
relationships, while in many cases we are presented only with limited observa-
tion. The great ability of generalization in human cognition sets a standard to
which artificial intelligence and machine learning research aspires.

This immediately raises questions like “How can human learn so much about
the world from such limited evidence?” and “What makes human so good at
generalization?” The importance of generalization in cognitive science partly
derives from its close relationship to inductive inference. We can define general-
ization as forming predictions about future events based on examples from the
past, which emphasizes its relationship to the classic problem of induction [145].
Having this connection between generalization and induction in mind, we can
cast the question of “how to produce good generalizations?” to the question of
“what makes a good inductive learner?”

To answer this question from a human cognition perspective, as humans de-
velop, they become capable of exploring “more sophisticated hypotheses” about
the structure of their environment [146], which allows them to better infer
their reality status and become better inductive learners. However, humans
sometimes have to make decisions without information from their senses or
testimony from others, no matter how rich their hypothesis space is. In these
cases, their internal dispositions, i.e., “inductive biases”, provides a source of
knowledge that influences their decisions in the absence of experience, explicit
sensory or testimonial proof [116, 261].

In the context of learning algorithms, given the data d, the learner aims at
identifying the hypothesis h from a set of hypotheses H that results in the
highest generalization accuracy. As with human cognition, algorithms that are
able to explore “richer hypothesis spaces” have the potential of being better
inductive learners.8 However, in many cases, the considered hypotheses are
not directly defined by the observed data and to choose among the many
hypotheses that are equally granted by the data, the learner has to inject some
preferences for those hypotheses that are called “inductive biases”.9

Inductive biases are factors that lead a learner to favor one hypothesis over
another that are independent of the observed data. When two hypotheses fit
the data equally well, inductive biases are the only basis for deciding between
them and making it possible to generalize beyond the observed data [198].

This brings us to the discussion of the bias-variance trade-off. We can decompose
the expected generalization error into two parts: the bias of a learning algorithm,

8The idea of expansion of the hypothesis space by adding more layers and non-linearity to
neural networks to make it possible to overcome the constraint of linear separability.

9Biases can be both in inductive and in deductive systems. Systems that learn concepts
from labeled training instances employ inductive bias.
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and its variance [106]. The transition from one source of error to another is
known as the bias-variance trade-off, and much of the research in designing
learning algorithms is about trying to find the sweet spot between bias and
variance for a given problem.

The bias-variance trade-off suggests that the generalization of a learning al-
gorithm depends on the problems at hand and different factors involved in
learning, like the amount of available data. If the learner is provided with
only small amounts of data, then the variance is the real concern and richer
hypothesis spaces may hurt the generalization because they increase variance.
To increase the chance of generalization in these cases is to inject inductive
biases with respect to the problem at hand. However, if the learner is provided
with large amounts of data and needs to be able to solve a variety of problems,
then variance is less of an issue and the bias can be the dominant source of
error, thus the learner needs richer hypothesis spaces to be flexible enough to
accommodate the different solutions, as this reduces bias.

For neural networks, the inductive biases inherent in their architecture is per-
haps the most important factor determining how quickly they train and how
well they generalize beyond the data they observed during training. A well-
known example is the translation invariance assumption in convolutional neural
networks [171] for vision tasks based on a certain symmetry in the data, which
considers that a given feature, of any complexity, can appear anywhere in the
image. Other examples include neural networks that encode rotational invari-
ance [54] or permutation invariance [173, 319]. Having inductive biases gets even
more crucial when we need data efficient models that are able to generalize beyond
observed training data and can learn complex tasks like tasks that need reasoning
or inferring an underlying structure from the data.

In Part III of this thesis, we address the following research question:

RQ-3 How can inductive biases help to improve the generalization and
data efficiency of learning algorithms?

In this part, we focus on some of the sequence processing neural networks and
study the role of inductive biases on the generalization and data efficiency of
these models. Among sequence processing neural networks, recurrent neural
networks (RNNs) have long been the de facto choice for sequence modeling
tasks. The most important facet of RNNs is the recurrence which lets the model
updates its internal state in a loop given the input at each time step. The recur-
rence is simply using information from the previous state which in turn uses
the previous state so on and so forth. In other words, RNNs implement the
“re-occurrence” of referring back to all previous internal states. This adds a “re-
current inductive bias” to the model that may be crucial for several algorithmic
and language understanding tasks [75, 281].
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However, the recurrence in time dictates the inherently sequential computation
which makes RNNs slow to train. Feed-forward and convolutional architec-
tures have recently been shown to achieve superior results on some sequence
modeling tasks such as machine translation [155, 292], with the added advantage
that they concurrently process all inputs in the sequence, leading to easy paral-
lelization and faster training times. Despite these successes, however, popular
feed-forward sequence models like the Transformer [292] fail to generalize in
many simple tasks, e.g., copying strings or even simple logical inference when
the string or formula lengths exceed those observed at training time, while re-
current models handle these tasks with ease because of the inductive recurrent
bias.

In Chapter 6, we study how lack of recurrent inductive bias in Transformer can
lead to the failure of the model on complex reasoning tasks with limited data,
algorithmic tasks where length generalization over training samples is needed,
and structured language understanding tasks, and address the following re-
search question:

RQ-3.1 How can we improve the generalization and data efficiency of self-
attentive feed-forward sequence models by injecting a recurrent
inductive bias?

We introduced Universal Transformer [75], a self-attentive concurrent-recurrent
sequence model, which is an extension of the Transformer model [292]. The
Universal Transformer introduces recurrence in depth by repeatedly modifying
a series of vector representations for each position of the sequence in parallel,
by combining information from different positions using self-attention and
applying a recurrent transition function across all time steps. In the simplest
form, Universal Transformer with a fixed number of iterations is almost equiva-
lent to a multi-layer Transformer with tied parameters across all its layers. By
sharing weights, we can save massively on the number of parameters that we
are training and fewer parameters means learn faster with fewer data points.

We show that the elegant idea of introducing recurrence in depth enables the
Universal Transformer to extrapolate from training data much better on a
range of algorithmic and language understanding tasks [72, 75]. Besides the
recurrence in depth, we propose a simple inductive bias for UTs that lets the
model generalize well to input lengths that are not observed during training. We
also add a dynamic per-position halting mechanism and find that it improves
accuracy on several tasks. It is noteworthy that in contrast to the standard
Transformer, under certain assumptions UTs can be shown to be Turing-complete.





6
Recurrent Inductive Bias for Transformers

Inductive biases are effective means for encoding modeling assump-
tions and improving data efficiency. For many sequence modeling
tasks, recurrent inductive bias is required for generalizing beyond
the observed data, but recent self-attentive feed-forward sequence
models trade recurrence for parallelizability. We can, however, intro-
duce a form of recurrent inductive bias to these models to improve
their generalization while keeping parallelization in the computa-
tions.

6.1 Introduction

A human child achieves the needed complex linguistic knowledge within a
short time, with very limited observation. This cannot be explained easily and
relying on the poverty of stimulus [48] argument, a powerful task-specific bias
is required for learning to understand and generate language. In the context
of learning algorithms, it is well-known that without a certain complexity in
the learning bias, the training data is insufficient to permit learning a model
that generalizes properly to the full range of unseen instances for a specific
task [198]. In other words, to have machines that can generalize, data-driven
learning, which merely relies on previous experience has to come together with

This chapter is based on [72, 75].
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an innately primed learning to facilitate that some of the knowledge is encoded
in the model, in the form of biases, either strong or weak.

Different neural network based models have been proposed for sequence mod-
eling and employed for language understanding and generation tasks. Among
them, convolutional and fully-intentional feed-forward architectures like the
Transformer [291] have recently emerged as viable alternatives to recurrent neu-
ral networks (RNNs) for a range of sequence modeling tasks, notably machine
translation [105, 291]. These parallel-in-time architectures address a signifi-
cant shortcoming of RNNs, namely their inherently sequential computation
which prevents parallelization across elements of the input sequence, whilst
still addressing the vanishing gradients problem as the sequence length gets
longer [140].

The Transformer model relies entirely on a self-attention mechanism [177, 214]
to compute a series of context-informed vector-space representations of the
symbols in its input and output, which are then used to predict distributions
over subsequent symbols as the model predicts the output sequence symbol-
by-symbol. Not only is this mechanism straightforward to parallelize, but as
each symbol’s representation is also directly informed by all other symbols’
representations, this results in an effectively global receptive field across the
whole sequence. This stands in contrast to, e.g., convolutional architectures
which typically only have a limited receptive field.

The Transformer with its fixed stack of distinct layers foregoes RNNs’ inductive
bias towards learning iterative or recursive transformations. Our experiments
indicate that this inductive bias may be crucial for several algorithmic and
language understanding tasks of varying complexity: in contrast to models such
as the Neural Turing Machine [115], the Neural GPU [154] or Stack RNNs [151],
the Transformer does not generalize well to input lengths not encountered
during training.

In this chapter, we address the following research question:

RQ-3.1 How can we improve the generalization and data efficiency of self-
attentive feed-forward sequence models by injecting a recurrent
inductive bias?

We introduce the Universal Transformer (UT), a parallel-in-time recurrent self-
attentive sequence model that can be cast as a generalization of the Transformer
model, yielding increased theoretical capabilities and improved results on
a wide range of challenging sequence-to-sequence tasks. UTs combine the
parallelizability and global receptive field of feed-forward sequence models
like the Transformer with the recurrent inductive bias of RNNs, which seems to
be better suited to a range of algorithmic and natural language understanding
sequence-to-sequence problems. As the name implies, and in contrast to the
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Figure 6.1: The Universal Transformer repeatedly refines a series of vector representations for
each position of the sequence in parallel, by combining information from different positions
using self-attention (see Eq. 6.3) and applying a recurrent transition function (see Eq. 6.5)
across all time steps 1  t  T. We show this process over two recurrent time-steps. Arrows
denote dependencies between operations. Initially, h0 is initialized with the embedding for
each symbol in the sequence. ht

i represents the representation for input symbol 1  i  m at
recurrent time-step t. With dynamic halting, T is dynamically determined for each position
(Section 6.2.1).

standard Transformer, under certain assumptions UTs can be shown to be
Turing-complete (or “computationally universal”, as shown in Section 6.3).

In each recurrent step, the Universal Transformer iteratively refines its rep-
resentations for all symbols in the sequence in parallel using a self-attention
mechanism [177, 214], followed by a transformation (shared across all positions
and time-steps) consisting of a depth-wise separable convolution [44, 152] or
a position-wise fully-connected layer (see Figure 6.1). We also add a dynamic
per-position halting mechanism [114], allowing the model to choose the required
number of refinement steps for each symbol dynamically, and show for the first
time that such a conditional computation mechanism can in fact improve accu-
racy on several smaller, structured algorithmic and linguistic inference tasks
(although it marginally degraded results on MT).

Our strong experimental results show that UTs outperform Transformers and
LSTMs across a wide range of tasks. The added recurrence yields improved
results in machine translation where UTs outperform the standard Transformer.
In experiments on several algorithmic tasks and the bAbI language understand-
ing task, UTs also consistently and significantly improve over LSTMs and the
standard Transformer. Furthermore, on the challenging LAMBADA text un-
derstanding data set UTs with dynamic halting achieve new state of the art
results.

6.1.1 Detailed Research Questions

We break down our main research question in this chapter into two concrete
research questions:
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RQ-3.1.1 How do Universal Transformers combine the recurrent inductive
bias of RNNs with the parallelizability and global receptive field of
the Transformer?

RQ-3.1.2 How effective are Universal Transformers at complex reasoning
tasks with limited data, at algorithmic tasks that need generaliza-
tion over observed training samples, and at real-world language
understanding tasks?

In the following sections, we will address these research questions.

6.2 The Universal Transformer

Here, in this section, we focus on the following research question:

RQ-3.1.1 How do Universal Transformers combine the recurrent inductive
bias of RNNs with the parallelizability and global receptive field of
the Transformer?

The Universal Transformer (UT; see Figure 6.2) is based on the popular encoder-
decoder architecture commonly used in most neural sequence-to-sequence
models [43, 270, 291]. Both the encoder and decoder of the UT operate by apply-
ing a recurrent neural network to the representations of each of the positions
of the input and output sequence, respectively. However, in contrast to most
applications of recurrent neural networks to sequential data, the UT does not
recur over positions in the sequence, but over consecutive revisions of the vector
representations of each position (i.e., over “depth”). In other words, the UT is
not computationally bound by the number of symbols in the sequence, but only
by the number of revisions made to each symbol’s representation.

In each recurrent time-step, the representation of every position is concurrently
(in parallel) revised in two sub-steps: first, using a self-attention mechanism to
exchange information across all positions in the sequence, thereby generating a
vector representation for each position that is informed by the representations
of all other positions at the previous time-step. Then, by applying a transition
function (shared across position and time) to the outputs of the self-attention
mechanism, independently at each position.

As the recurrent transition function can be applied any number of times, this
implies that UTs can have variable depth (number of per-symbol processing
steps). Crucially, this is in contrast to most popular neural sequence models,
including the Transformer [291] or deep RNNs, which have constant depth as
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Figure 6.2: The recurrent blocks of the Universal Transformer encoder and decoder.

a result of applying a fixed stack of layers. We now describe the encoder and
decoder in more detail (See Figure 6.2 for the schema of the complete model.).

ENCODER:

Given an input sequence of length m, we start with a matrix whose rows are
initialized as the d-dimensional embeddings of the symbols at each position of
the sequence H0 2 Rm⇥d. The UT then iteratively computes representations Ht

at step t for all m positions in parallel by applying the multi-headed dot-product
self-attention mechanism from [291], followed by a recurrent transition function.
We also add residual connections around each of these function blocks and
apply dropout and layer normalization [18, 264].
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Before describing the details of the first block of the universal transformer,
i.e., the multi-head attention, we explain the attention mechanism in general
as the main building block of many of state-of-the-art models. An attention
mechanism is usually based on a memory-query paradigm. In this setup,
there exist a memory M that contains a collection of items, each representing
information from a source modality (like the hidden state of the encoder), and a
query q vector that contains information from a target modality (like the hidden
state of the decoder).1 Each item in the memory is associated with a key and
value (ki, and vi), where the key is used to compute the probability that indicates
how well the query matches the item:

ai =
exp( fatt(q, ki)

Â|
j=1 M|exp( fatt(q, kj)

, (6.1)

where the fatt can be the dot product function [184] or a multilayer percep-
tron [20]. Then, given the attention distributions over all items in the memory
which is calculated by querying the memory with query q, we can output a value
that is a sum over all the values in the memory weighted by their probabilities,
which can be fed to other parts of the model for further calculation.

In the Universal Transformer, similar to the Transformer, we use the scaled dot-
product attention which combines queries Q, keys K and values V as follows

ATTENTION(Q, K, V) = SOFTMAX

✓
QKT
p

d

◆
V, (6.2)

where d is the number of columns of Q, K and V. We use the multi-head version
with k heads, as introduced in [291]:

MULTIHEADSELFATTENTION(Ht) = CONCAT(head1, ..., headk)WO (6.3)

where headi = ATTENTION(HtWQ
i , HtWK

i , HtWV
i ),

(6.4)

and we map the state Ht to queries, keys and values with affine projections
using learned parameter matrices WQ 2 Rd⇥d/k, WK 2 Rd⇥d/k, WV 2 Rd⇥d/k

and WO 2 Rd⇥d.

At step t, the UT then computes revised representations Ht 2 Rm⇥d for all m
input positions as follows:

Ht = LAYERNORM(At + TRANSITION(At)) (6.5)

where At = LAYERNORM((Ht�1 + Pt)+ (6.6)

MULTIHEADSELFATTENTION(Ht�1 + Pt)), (6.7)

1In self-attention, queries and memory are from the same modality.
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where LAYERNORM() is defined in [18], and TRANSITION() and Pt are discussed
below.

Depending on the task, we use one of two different transition functions: either a
separable convolution [44] or a fully-connected neural network that consists of
a single rectified-linear activation function between two affine transformations,
applied position-wise, i.e., individually to each row of At.

Pt 2 Rm⇥d above are fixed, constant, two-dimensional (position, time) coordinate
embeddings, obtained by computing the sinusoidal position embedding vectors
as defined in [291] for the positions 1  i  m and the time-step 1  t  T
separately for each vector-dimension 1  j  d, and summing:

Pt
i,2j = sin(i/100002j/d) + sin(t/100002j/d) (6.8)

Pt
i,2j+1 = cos(i/100002j/d) + cos(t/100002j/d). (6.9)

After T steps (each updating all positions of the input sequence in parallel), the
final output of the Universal Transformer encoder is a matrix of d-dimensional
vector representations HT 2 Rm⇥d2 for the m symbols of the input sequence.

DECODER:

The decoder shares the same basic recurrent structure of the encoder. However,
after the self-attention function, the decoder additionally also attends to the
final encoder representation HT of each position in the input sequence using
the same multihead dot-product attention function from Equation 6.3, but with
queries Q obtained from projecting the decoder representations, and keys and
values (K and V) obtained from projecting the encoder representations (this
process is akin to standard attention [20]).

Like the Transformer model, the UT is autoregressive [113]. Trained using
teacher-forcing, at generation time it produces its output one symbol at a time,
with the decoder consuming the previously produced output positions. During
training, the decoder input is the target output, shifted to the right by one
position. The decoder self-attention distributions are further masked so that
the model can only attend to positions to the left of any predicted symbol.
Finally, the per-symbol target distributions are obtained by applying an affine
transformation O 2 Rd⇥V from the final decoder state to the output vocabulary
size V, followed by a softmax which yields an (m⇥ V)-dimensional output
matrix normalized over its rows:

p
⇣

ypos|y[1:pos�1], HT
⌘
= SOFTMAX(OHT) (6.10)

2Note that T in HT denotes time-step T and not the transpose operation.
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Figure 6.3: An unrolled visualization of Universal Transformer with dynamic halting. It
illustrates different numbers of recurrent revisions per position (best viewed in color).

To generate from the model, the encoder is run once for the conditioning input
sequence. Then the decoder is run repeatedly, consuming all already-generated
symbols, while generating one additional distribution over the vocabulary for
the symbol at the next output position per iteration. We then typically sample
or select the highest probability symbol as the next symbol.

6.2.1 Adaptive Computation by Dynamic Halting

In sequence processing systems, certain symbols (e.g., some words or phonemes)
are usually more ambiguous than others. It is therefore reasonable to allocate
more processing resources to these more ambiguous symbols. Adaptive Com-
putation Time (ACT) [114] is a mechanism for dynamically modulating the
number of computational steps needed to process each input symbol (called the
“ponder time”) in standard recurrent neural networks based on a scalar halting
probability predicted by the model at each step.

Inspired by the interpretation of Universal Transformers as applying self-
attentive RNNs in parallel to all positions in the sequence, we also add a
dynamic ACT halting mechanism to each position, i.e., to each per-symbol self-
attentive RNN. Once the per-symbol recurrent block halts, its state is simply
copied to the next step until all blocks halt, or we reach a maximum number of
steps. The final output of the encoder is then the final layer of representations
produced in this way. Figure 6.3 illustrates a Universal Transformer encoder
with T, number of revisions, dynamically determined for each position.

We implement dynamic halting based on ACT [114]. In each step of the UT with
dynamic halting, we are given the halting probabilities, remainders, number
of updates up to that point, and the previous state (all initialized as zeros),
as well as a scalar threshold between 0 and 1 (a hyper-parameter). We then
compute the new state for each position and calculate the new per-position
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halting probabilities based on the state for each position.3 The UT then decides
to halt for some positions that crossed the threshold, and updates the state of
other positions until the model halts for all positions or reaches a predefined
maximum number of steps. The following is a simplified TensorFlow [98] code
that shows the details for the adapted ACT mechanism.

1 # While�loop stops when t h i s p r e d i c a t e i s FALSE
2 # i . e . , a l l ( ( p r o b a b i l i t y < threshold ) & ( counter < max_steps ) ) are

f a l s e
3 def should_continue ( u0 , u1 , h a l t i n g _ p r o b a b i l i t y , u2 , n_updates , u3 ) :
4 re turn t f . reduce_any (
5 t f . log ica l_and (
6 t f . l e s s ( h a l t i n g _ p r o b a b i l i t y , threshold ) ,
7 t f . l e s s ( n_updates , max_steps ) ) )
8 # Do while loop i t e r a t i o n s u n t i l p r e d i c a t e above i s f a l s e
9 ( _ , _ , _ , remainder , n_updates , new_state ) = t f . while_loop (

10 should_continue , ut_with_dynamic_halting , ( s t a t e ,
11 step , h a l t i n g _ p r o b a b i l i t y , remainders , n_updates , p r e v i o u s _ s t a t e

) )

Listing 6.1: UT with dynamic halting.

The following shows the computations in each step:
1 def ut_with_dynamic_halting ( s t a t e , step , h a l t i n g _ p r o b a b i l i t y ,
2 remainders , n_updates , p r e v i o u s _ s t a t e ) :
3 # Ca l c u l a te the p r o b a b i l i t i e s based on the s t a t e
4 p = common_layers . dense ( s t a t e , 1 , a c t i v a t i o n = t f . nn . sigmoid ,
5 use_bias=True )
6 # Mask f o r inputs which have not hal ted yet
7 s t i l l _ r u n n i n g = t f . c a s t (
8 t f . l e s s ( h a l t i n g _ p r o b a b i l i t y , 1 . 0 ) , t f . f l o a t 3 2 )
9 # Mask of inputs which hal ted at t h i s s tep

10 new_halted = t f . c a s t (
11 t f . g r e a t e r ( h a l t i n g _ p r o b a b i l i t y + p * s t i l l _ r u n n i n g ,

threshold ) ,
12 t f . f l o a t 3 2 ) * s t i l l _ r u n n i n g
13 # Mask of inputs which haven ’ t halted , and didn ’ t h a l t t h i s s tep
14 s t i l l _ r u n n i n g = t f . c a s t (
15 t f . l e s s _ e q u a l ( h a l t i n g _ p r o b a b i l i t y + p * s t i l l _ r u n n i n g ,
16 threshold ) , t f . f l o a t 3 2 ) * s t i l l _ r u n n i n g
17 # Add the h a l t i n g p r o b a b i l i t y f o r t h i s s tep to the h a l t i n g
18 # p r o b a b i l i t i e s f o r those inputs which haven ’ t hal ted yet
19 h a l t i n g _ p r o b a b i l i t y += p * s t i l l _ r u n n i n g
20 # Compute remainders f o r the inputs which hal ted at t h i s s tep
21 remainders += new_halted * (1 � h a l t i n g _ p r o b a b i l i t y )

3The current implementation of adaptive computation time does not allow for a fully
end-to-end backpropable gradient of the proposed training loss. However, the discontinuity
of the cost function might not imply that meaningful learning is not possible and in fact, the
experiments in the original paper [114] as well as here in Universal Transformer with adaptive
halting suggest it works fine.
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22 # Add the remainders to those inputs which hal ted at t h i s s tep
23 h a l t i n g _ p r o b a b i l i t y += new_halted * remainders
24 # Increment n_updates f o r a l l inputs which are s t i l l running
25 n_updates += s t i l l _ r u n n i n g + new_halted
26 # Compute the weight to be applied to the new s t a t e and output :
27 # 0 when the input has already halted ,
28 # p when the input hasn ’ t hal ted yet ,
29 # the remainders when i t hal ted t h i s s tep .
30 update_weights = t f . expand_dims ( p * s t i l l _ r u n n i n g +
31 new_halted * remainders , �1)
32 # Apply transformat ion to the s t a t e
33 t rans formed_sta te = t r a n s i t i o n _ f u n c t i o n ( s e l f _ a t t e n t i o n ( s t a t e ) )
34 # I n t e r p o l a t e transformed and previous s t a t e s f o r non�hal ted

inputs
35 new_state = ( ( t rans formed_sta te * update_weights ) +
36 ( p r e v i o u s _ s t a t e * (1 � update_weights ) ) )
37 s tep += 1
38 re turn ( transformed_state , step , h a l t i n g _ p r o b a b i l i t y ,
39 remainders , n_updates , new_state )

Listing 6.2: Computations in each step of the UT with dynamic halting.

6.3 Universality and Relation to other Models

When running for a fixed number of steps, the Universal Transformer is equiv-
alent to a multi-layer Transformer with tied parameters across all its layers.
This is partly similar to the Recursive Transformer, which ties the weights of its
self-attention layers across depth [117].4 However, as the per-symbol recurrent
transition functions can be applied any number of times, another and possibly
more informative way of characterizing the UT is as a block of parallel RNNs
(one for each symbol, with shared parameters) evolving per-symbol hidden
states concurrently, generated at each step by attending to the sequence of
hidden states at the previous step. In this way, it is related to architectures such
as the Neural GPU [154] and the Neural Turing Machine [115].

UTs thereby retain the attractive computational efficiency of the original feed-
forward Transformer model, but with the added recurrent inductive bias of
RNNs. Furthermore, using a dynamic halting mechanism, UTs can choose the
number of processing steps based on the input data.

The connection between the Universal Transformer and other sequence models
is apparent from the architecture: if we limited the recurrent steps to one, it
would be a Transformer. But it is more interesting to consider the relationship
between the Universal Transformer and RNNs and other networks where

4Note that in UT both the self-attention and transition weights are tied across layers.
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recurrence happens over the time dimension. Superficially these models may
seem closely related since they are recurrent as well. But there is a crucial
difference: time-recurrent models like RNNs cannot access memory in the
recurrent steps. This makes them computationally more similar to automata,
since the only memory available in the recurrent part is a fixed-size state vector.
UTs, on the other hand, can attend to the whole previous layer, allowing it to
access memory in the recurrent step.

Given sufficient memory the Universal Transformer is computationally uni-
versal – i.e., it belongs to the class of models that can be used to simulate any
Turing machine, thereby addressing a shortcoming of the standard Transformer
model. In addition to being theoretically appealing, our results show that this
added expressivity also leads to improved accuracy on several challenging se-
quence modeling tasks. This closes the gap between practical sequence models
competitive on large-scale tasks such as machine translation, and computation-
ally universal models such as the Neural Turing Machine or the Neural GPU
[115, 154], which can be trained using gradient descent to perform algorithmic
tasks.

To show this, we can reduce a Neural GPU to a Universal Transformer. Ignoring
the decoder and parameterizing the self-attention module, i.e., self-attention
with the residual connection, to be the identity function, we assume the transi-
tion function to be a convolution. If we now set the total number of recurrent
steps T to be equal to the input length, we obtain exactly a Neural GPU. Note
that the last step is where the Universal Transformer crucially differs from the
vanilla Transformer whose depth cannot scale dynamically with the size of the
input.

A similar relationship exists between the Universal Transformer and the Neural
Turing Machine, whose single read/write operations per step can be expressed
by the global, parallel representation revisions of the Universal Transformer.
In contrast to these models, however, which only perform well on algorithmic
tasks, the Universal Transformer also achieves competitive results on realistic
natural language tasks such as LAMBADA and machine translation.

Another related model architecture is that of end-to-end Memory Networks
[267]. In contrast to end-to-end memory networks, however, the Universal
Transformer uses memory corresponding to states aligned to individual posi-
tions of its inputs or outputs. Furthermore, the Universal Transformer follows
the encoder-decoder configuration and achieves competitive performance in
large-scale sequence-to-sequence tasks.
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6.3.1 On the Computational Power of UT vs Transformer

With respect to their computational power, the key difference between the
Transformer and the Universal Transformer lies in the number of sequential
steps of computation (i.e., in depth). While a standard Transformer executes
a total number of operations that scales with the input size, the number of
sequential operations is constant, independent of the input size and determined
solely by the number of layers. Assuming finite precision, this property implies
that the standard Transformer cannot be computationally universal. When
choosing a number of steps as a function of the input length, however, the
Universal Transformer does not suffer from this limitation. Note that this holds
independently of whether or not adaptive computation time is employed but
does assume a non-constant, even if possibly deterministic, number of steps.
Varying the number of steps dynamically after training is enabled by sharing
weights across sequential computation steps in the Universal Transformer.

An intuitive example are functions whose execution requires the sequential
processing of each input element. In this case, for any given choice of depth T,
one can construct an input sequence of length N > T that cannot be processed
correctly by a standard Transformer. With an appropriate, input-length depen-
dent choice of sequential steps, however, a Universal Transformer, RNNs or
Neural GPUs can execute such a function.
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6.4 Universal Transformer for Sequence Modeling

In this section, we address the following research question:

RQ-3.1.2 How effective are Universal Transformers at complex reasoning
tasks with limited data, at algorithmic tasks that need generaliza-
tion over observed training samples, and at real-world language
understanding tasks?

We evaluate Universal Transformers on a range of algorithmic and language
understanding tasks and discuss the results. In the tasks that are chosen, we
include some with a limited number of training samples, or some with an
incomplete training set (lack of converge), but also tasks that do not suffer
severely from imperfect supervision, to evaluate the performance of our model
in both situations.

In all the experiments, we made sure that the number of trainable parameters
in the UT and the baselines are similar to have fair comparisons in terms of
capacity of the models.

6.4.1 bAbI Question-Answering

The bAbi question answering dataset [302] consists of 20 different synthetic
tasks.5 The aim is that each task tests a unique aspect of language understand-
ing and reasoning, including the ability to reason from supporting facts in a
story, answer true/false type questions, count, understand negation and indefi-
nite knowledge, understand coreferences, time reasoning, positional and size
reasoning, path-finding, and understanding motivations (to see examples for
each of these tasks, please refer to Table 1 and 2 in Section 3 of [302]).

There are two versions of the dataset, one with 1k training samples and the other
with 10k samples. It is important for a model to be data-efficient to achieve
good results using only the 1k training samples. Moreover, the original idea
is that a single model should be evaluated across all the tasks (not tuning per
task), which is the train joint setup in Tables 6.1 and 6.2.

Solving all the bAbI tasks by training a model on the 1k training dataset is
challenging as some of the tasks are rather complex and with only 1k samples
for each task, its hard for most of models to generalize well. So data efficiency
should be a key property to be considered here. We tried a standard Transformer
and observed that it does not achieve good results on bAbI tasks.6 However,

5https://research.fb.com/downloads/babi
6We experimented with different hyper-parameters and different network sizes, but it

always overfits.

https://research.fb.com/downloads/babi
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Table 6.1: Average error and number of failed tasks (> 5% error) out of 20 (in parentheses; lower
is better in both cases) on the bAbI dataset under the different training/evaluation setups. We
indicate state-of-the-art where available for each, or ‘-’ otherwise.

Model 10K samples 1K samples

train single train joint train single train joint

Previous best results:

QRNet [249] 0.3 (0/20) - - -
Sparse DNC [223] - 2.9 (1/20) - -
GA+MAGE [91] - - 8.7 (5/20) -
MemN2N [267] - - - 12.4 (11/20)

Our results:

Transformer [291] 15.2 (10/20) 22.1 (12/20) 21.8 (5/20) 26.8 (14/20)
Universal Transformer (this work) 0.23 (0/20) 0.47 (0/20) 5.31 (5/20) 8.50 (8/20)
UT w/ dynamic halting (this work) 0.21 (0/20) 0.29 (0/20) 4.55 (3/20) 7.78 (5/20)

we have designed a model based on the Universal Transformer which achieves
state-of-the-art results bAbI task.

To encode the input, similar to [131], we first encode each fact in the story by
applying a learned multiplicative positional mask to each word’s embedding,
and summing up all embeddings. We embed the question in the same way, and
then feed the (Universal) Transformer with these embeddings of the facts and
questions.

As originally proposed, models can either be trained on each task separately
(“train single”) or jointly on all tasks (“train joint”). Table 6.1 summarizes our
results. We conducted 10 runs with different initializations and picked the best
model based on performance on the validation set, similar to previous work.
Both the UT and UT with dynamic halting achieve state-of-the-art results on all
tasks in terms of average error and number of failed tasks,7 in both the 10K and
1K training regime. Tables 6.2 presents the results of best and average results of
10 runs breakdown by task.

To understand the working of the model better, we analyzed both the attention
distributions and the average ACT ponder times for this task.

First, we observe that the attention distributions start out very uniform, but get
progressively sharper in later steps around the correct supporting facts that are
required to answer each question, which is indeed very similar to how humans
would solve the task.

Second, with dynamic halting we observe that the average ponder time (i.e.,
depth of the per-symbol recurrent processing chain) over all positions in all
samples in the test data for tasks requiring three supporting facts is higher

7Defined as > 5% error.
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Table 6.2: Detailed results on the bAbI question answering tasks.
Best seed run for each task (out of 10 runs)

Task id 10K 1K

train single train joint train single train joint

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.5
3 0.4 1.2 3.7 5.4
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.5
6 0.0 0.0 0.0 0.5
7 0.0 0.0 0.0 3.2
8 0.0 0.0 0.0 1.6
9 0.0 0.0 0.0 0.2
10 0.0 0.0 0.0 0.4
11 0.0 0.0 0.0 0.1
12 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.6
14 0.0 0.0 0.0 3.8
15 0.0 0.0 0.0 5.9
16 0.4 1.2 5.8 15.4
17 0.6 0.2 32.0 42.9
18 0.0 0.0 0.0 4.1
19 2.8 3.1 47.1 68.2
20 0.0 0.0 2.4 2.4

avg err 0.21 0.29 4.55 7.78

failed 0 0 3 5

Average (±var) over all seeds (for 10 runs)

Task id 10K 1K

train single train joint train single train joint

1 0.0 ±0.0 0.0 ±0.0 0.2 ±0.3 0.1 ±0.2
2 0.2 ±0.4 1.7 ±2.6 3.2 ±4.1 4.3 ±11.6
3 1.8 ±1.8 4.6 ±7.3 9.1 ±12.7 14.3 ±18.1
4 0.1 ±0.1 0.2 ±0.1 0.3 ±0.3 0.4 ±0.6
5 0.2 ±0.3 0.8 ±0.5 1.1 ±1.3 4.3 ±5.6
6 0.1 ±0.2 0.1 ±0.2 1.2 ±2.1 0.8 ±0.4
7 0.3 ±0.5 1.1 ±1.5 0.0 ±0.0 4.1 ±2.9
8 0.3 ±0.2 0.5 ±1.1 0.1 ±0.2 3.9 ±4.2
9 0.0 ±0.0 0.0 ±0.0 0.1 ±0.1 0.3 ±0.3
10 0.1 ±0.2 0.5 ±0.4 0.7 ±0.8 1.3 ±1.6
11 0.0 ±0.0 0.1 ±0.1 0.4 ±0.8 0.3 ±0.9
12 0.2 ±0.1 0.4 ±0.4 0.6 ±0.9 0.3 ±0.4
13 0.2 ±0.5 0.3 ±0.4 0.8 ±0.9 1.1 ±0.9
14 1.8 ±2.6 1.3 ±1.6 0.1 ±0.2 4.7 ±5.2
15 2.1 ±3.4 1.6 ±2.8 0.3 ±0.5 10.3 ±8.6
16 1.9 ±2.2 0.9 ±1.3 9.1 ±8.1 34.1 ±22.8
17 1.6 ±0.8 1.4 ±3.4 43.7 ±18.6 51.1 ±12.9
18 0.3 ±0.4 0.7 ±1.4 2.3 ±3.6 12.8 ±9.0
19 3.4 ±4.0 6.1 ±7.3 50.2 ±8.4 73.1 ±23.9
20 0.0 ±0.0 0.0 ±0.0 3.2 ±2.5 2.6 ±2.8

avg 0.73 ±0.89 1.12 ±1.62 6.34 ±3.32 11.21 ±6.65
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Figure 6.4: Ponder time of UT with dynamic halting (trained on 1k data with joint training) for
encoding facts in a story and question in a bAbI task#3 requiring three supporting facts.

(3.8±2.2) than for tasks requiring only two (3.1±1.1), which is in turn higher
than for tasks requiring only one supporting fact (2.3±0.8). This indicates
that the model adjusts the number of processing steps with the number of
supporting facts required to answer the questions.

Finally, we observe that the histogram of ponder times at different positions is
more uniform in tasks requiring only one supporting fact compared to two and
three, and likewise for tasks requiring two compared to three. Especially for
tasks requiring three supporting facts, many positions halt at step 1 or 2 already
and only a few get transformed for more steps (see, for example, Figure 6.4).
This is particularly interesting as the length of stories is indeed much higher in
this setting, with more irrelevant facts which the model seems to successfully
learn to ignore in this way.

Similar to dynamic memory networks [166], there is an iterative attention pro-
cess in UTs that allows the model to condition its attention over memory on the
result of previous iterations.

Figures 6.5, 6.6, 6.7, and 6.8 present visualizations of the self-attention distribu-
tions on bAbI tasks for some examples from Task 1, 2, and 3. The visualization
of attention weights is over different time steps based on different heads over
all the facts in the story and a question.

In all these examples, we visualize the attention distributions when transform-
ing the question representation (right hand side) in the encoder. Different color
bars on the left side indicate attention weights based on different heads (4 heads
in total) over facts and the question.

Although attention distributions are not necessarily explanations of the process
or the outcome [147], these examples illustrate that there is a notion of temporal
states in UT, where the model updates its states (memory) in each step based
on the output of previous steps, and this chain of updates can also be viewed as
steps in a multi-hop reasoning process.

The results of the Universal Transformer on bAbI tasks is a proxy of ability
of the model to learn to do some basic reasoning, while being data efficient.
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An example from tasks 1: (requiring one supportive fact to solve)

Story:
John travelled to the hallway.
Mary journeyed to the bathroom.
Daniel went back to the bathroom.
John moved to the bedroom

Question:
Where is Mary?

Model’s output:
bathroom

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4
Figure 6.5: Visualization of the attention distributions, when encoding the question: “Where is
Mary?”.
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An example from tasks 2: (requiring two supportive facts to solve)

Story:
Sandra journeyed to the hallway.
Mary went to the bathroom.
Mary took the apple there.
Mary dropped the apple.

Question:
Where is the apple?

Model’s output:
bathroom

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4
Figure 6.6: Visualization of the attention distributions, when encoding the question: “Where is
the apple?”.
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An example from tasks 2: (requiring two supportive facts to solve)

Story:
John went to the hallway.
John went back to the bathroom.
John grabbed the milk there.
Sandra went back to the office.
Sandra journeyed to the kitchen.
Sandra got the apple there.
Sandra dropped the apple there.
John dropped the milk.

Question:
Where is the milk?

Model’s output:
bathroom

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4
Figure 6.7: Visualization of the attention distributions, when encoding the question: “Where is
the milk?”.
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An example from tasks 3: (requiring three supportive facts to solve)

Story:
Mary got the milk.

John moved to the bedroom.
Daniel journeyed to the office.
John grabbed the apple there.
John got the football.
John journeyed to the garden.
Mary left the milk.
John left the football.
Daniel moved to the garden.
Daniel grabbed the football.
Mary moved to the hallway.
Mary went to the kitchen.
John put down the apple there.
John picked up the apple.
Sandra moved to the hallway.
Daniel left the football there.
Daniel took the football.
John travelled to the kitchen.
Daniel dropped the football.
John dropped the apple.
John grabbed the apple.
John went to the office.
Sandra went back to the bedroom.
Sandra took the milk.
John journeyed to the bathroom.
John travelled to the office.
Sandra left the milk.
Mary went to the bedroom.
Mary moved to the office.
John travelled to the hallway.
Sandra moved to the garden.
Mary moved to the kitchen.
Daniel took the football.
Mary journeyed to the bedroom.
Mary grabbed the milk there.
Mary discarded the milk.
John went to the garden.
John discarded the apple there.

Question:
Where was the apple before the bathroom?

Model’s output:
office
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(a) Step 1

(b) Step 2
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(c) Step 3

(d) Step 4
Figure 6.8: Visualization of the attention distributions, when encoding the question: “Where was
the apple before the bathroom?”.
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Table 6.3: Accuracy (higher better) on the algorithmic tasks. ⇤Note that the Neural GPU was
trained with a special curriculum to obtain the perfect result, while other models are trained
without any curriculum.

Model Copy Reverse Addition

char-acc seq-acc char-acc seq-acc char-acc seq-acc

LSTM 0.45 0.09 0.66 0.11 0.08 0.0
Transformer 0.53 0.03 0.13 0.06 0.07 0.0
Universal Transformer 0.76 0.29 0.83 0.41 0.32 0.02
UT w/ randomized offset 0.91 0.35 0.96 0.46 0.34 0.02
Neural GPU⇤ 1.00 1.00 1.00 1.00 1.00 1.00

This is mainly due to recurrent inductive bias in the Universal Transformer as
well as the fact that sharing parameters across depth decreases the number of
parameters which helps the model generalize better.

6.4.2 Algorithmic Tasks

Generic neural network architectures cannot generalize well in algorithmic and
numerical tasks requiring arithmetic operations such as addition, multiplication
etc., even when they may successfully fit any given training data in such tasks,
and sometimes they cannot even achieve that [283]. This can be even harder
when the distribution of samples’ length is different in train and test set.

We trained UTs on three algorithmic tasks, namely Copy, Reverse, and (inte-
ger) Addition, all on strings composed of decimal symbols (‘0’-‘9’). In all the
experiments, we train the models on sequences with maximum length of 40
and evaluated on sequences with maximum length of 400 [154] to assess the
ability of the models on length generalization. In fact, the limitation in training
data in this task is the lack of coverage over all possible samples (all possible
length), not the number of training samples.

As an additional inductive bias for UTs on these tasks, when calculating the
positional embedding, we use positions starting with randomized offsets per
sample. This way, we further encourage the model to learn position-relative
transformations, which improves length generalization. Results are shown
in Table 6.3. Both UT and UT with randomized position offset outperform
LSTM and vanilla Transformer by a wide margin on all three tasks. The Neural
GPU reports perfect results on this task [154], however, we note that this result
required a special curriculum-based training protocol, e.g., training on harder
(longer) samples only after the model crossed a curriculum progress threshold
on easier samples (shorter).
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Table 6.4: Character-level (char-acc) and sequence-level accuracy (seq-acc) results on the Memo-
rization LTE tasks, with maximum length of 55.

Copy Double Reverse

Model char-acc seq-acc char-acc seq-acc char-acc seq-acc

LSTM 0.78 0.11 0.51 0.05 0.91 0.32
Transformer 0.98 0.63 0.94 0.55 0.81 0.26
Universal Transformer 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.5: Character-level (char-acc) and sequence-level accuracy (seq-acc) results on the Program
Evaluation LTE tasks with maximum nesting of 2 and length of 5.

Program Control Addition

Model char-acc seq-acc char-acc seq-acc char-acc seq-acc

LSTM 0.53 0.12 0.68 0.21 0.83 0.11
Transformer 0.71 0.29 0.93 0.66 1.00 1.00
Universal Transformer 0.89 0.63 1.00 1.00 1.00 1.00

6.4.3 Learning to Execute (LTE)

As another class of sequence-to-sequence learning problems, we also evaluate
UTs on Learning to Execute (LTE) tasks. LTE is a set of tasks indicating the
ability of a model to learn to execute computer programs and was proposed
by Zaremba and Sutskever [326]. These tasks include two subsets: 1) program
evaluation tasks (program, control, and addition) that are designed to assess
the ability of models for understanding numerical operations, if-statements,
variable assignments, the compositionality of operations, and more, as well as
2) memorization tasks (copy, double, and reverse).

The difficulty of the program evaluation tasks is parameterized by their length
and nesting. The length parameter is the number of digits in the integers that
appear in the programs (so the integers are chosen uniformly from [1, length]),
and the nesting parameter is the number of times we are allowed to combine
the operations with each other. Higher values of nesting yield programs with
deeper parse trees. For instance, here is a program that is generated with length
= 4 and nesting = 3.

Input:
j=8584
for x in range(8):
j+=920

b=(1500+j)
print((b+7567))

Target:
25011

We use the mix-strategy discussed in [326] to generate the datasets. Unlike [326],
we do not use any curriculum learning strategy during training and we make no
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Table 6.6: Accuracy on the subject-verb agreement number prediction task (higher is better).

Model Number of attractors

0 1 2 3 4 5 Total

Previous best results [316]:

Best Stack-RNN 0.994 0.979 0.965 0.935 0.916 0.880 0.992
Best LSTM 0.993 0.972 0.950 0.922 0.900 0.842 0.991
Best Attention 0.994 0.977 0.959 0.929 0.907 0.842 0.992

Our results:

Transformer 0.973 0.941 0.932 0.917 0.901 0.883 0.962
Universal Transformer 0.993 0.971 0.969 0.940 0.921 0.892 0.992
UT w/ ACT 0.994 0.969 0.967 0.944 0.932 0.907 0.992

D (UT w/ ACT - Best) 0 -0.008 0.002 0.009 0.016 0.027 -

use of target sequences at test time. Tables 6.4 and 6.5 present the performance
of an LSTM model, Transformer, and Universal Transformer on the program
evaluation and memorization tasks, respectively. UT achieves perfect scores in
all the memorization tasks and also outperforms both LSTMs and Transformers
in all program evaluation tasks by a wide margin.

6.4.4 Subject-Verb Agreement

Next, we consider the task of predicting number-agreement between subjects
and verbs in English sentences [178]. Succeeding in this task is a strong indicator
that a model can learn to approximate syntactic structure and therefore it was
proposed by Linzen et al. [178] as a proxy for assessing the ability of different
models to capture hierarchical structure in natural language.

Two experimental setups were proposed by Linzen et al. [178] for training a
model on this task: 1) training with a language modeling objective, i.e., next
word prediction, and 2) as binary classification, i.e., predicting the number of
the verb given the sentence. We follow the experimental protocol of Linzen et al.
[178] for solving the task using a language modeling training setup, i.e., a next
word prediction objective, followed by calculating the ranking accuracy of the
target verb at test time.

In this task, in order to have different levels of difficulty, “agreement attractors”
are used, i.e., one or more intervening nouns with the opposite number from
the subject with the goal of confusing the model. In this case, the model
needs to correctly identify the head of the syntactic subject that corresponds
to a given verb and ignore the intervening attractors in order to predict the
correct form of that verb. Here are some examples for this task in which
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subjects and the corresponding verbs are in boldface and agreement attractors
are underlined: Our results are summarized in Table 6.6. The best LSTM with

No attractor: The boy smiles.
One attractor: The number of men is not clear.
Two attractors: The ratio of men to women is not clear.
Three attractors: The ratio of men to women and children is not clear.

attention from the literature achieves 99.18% on this task [316], outperforming a
vanilla Transformer [282]. UTs significantly outperform standard Transformers,
and achieve an average result comparable to the current state of the art (99.2%).
However, we see that UTs (and particularly with dynamic halting) perform
progressively better than all other models as the number of attractors increases
(see the last row, D). The recurrent inductive bias, i.e., the fact that we can
repeat the computations in depth, helps the Universal Transformer to capture
the hierarchical relations and better model the structure of the data.

6.4.5 LAMBADA Language Modeling

The LAMBADA task [211] is a language modeling task consisting of predicting
a missing target word given a broader context of 4–5 preceding sentences.
The dataset was specifically designed so that humans are able to accurately
predict the target word when shown the full context, but not when only shown
the target sentence in which it appears. It, therefore, goes beyond language
modeling, and tests the ability of a model to incorporate broader discourse and
longer term context when predicting the target word.8 Here is a sample from
the dataset:

Context:
“Yes, I thought I was going to lose the baby.”
“I was scared too,” he stated, sincerity flooding his eyes.
“You were?” “Yes, of course. Why do you even ask?”
“This baby wasn’t exactly planned for.”

Target sentence:
“Do you honestly think that I would want you to have a ________?”

Target word:
miscarriage

The LAMBADA task consists in predicting the target word given the whole
passage (i.e., the context plus the target sentence). A “control set” is also
provided which was constructed by randomly sampling passages of the same
shape and size as the ones used to build LAMBADA, but without filtering them
in any way. The control set is used to evaluate the models at standard language
modeling before testing on the LAMBADA task, and therefore to ensure that

8http://clic.cimec.unitn.it/ lambada/appendix_onefile.pdf

http://clic.cimec.unitn.it/lambada/appendix_onefile.pdf
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Table 6.7: LAMBADA language modeling (LM) perplexity (lower better) with accuracy in
parentheses (higher better), and Reading Comprehension (RC) accuracy results (higher better).
‘-’ indicates no reported results in that setting. We have done the ablation study experiments
(last two rows of the table) only in the language modeling setup.

Model LM Perplexity & (Accuracy) RC Accuracy

control dev test control dev test

Neural Cache [112] 129 139 - - - -
Dhingra et al. [88] - - - - - 0.5569

Transformer 142 (0.19) 5122 (0.0) 7321 (0.0) 0.4102 0.4401 0.3988
LSTM 138 (0.23) 4966 (0.0) 5174 (0.0) 0.1103 0.2316 0.2007
UT base, 6 steps (fixed) 131 (0.32) 279 (0.18) 319 (0.17) 0.4801 0.5422 0.5216
UT w/ dynamic halting 130 (0.32) 134 (0.22) 142 (0.19) 0.4603 0.5831 0.5625

UT base, 8 steps (fixed) 129(0.32) 192 (0.21) 202 (0.18) - - -
UT base, 9 steps (fixed) 129(0.33) 214 (0.21) 239 (0.17) - - -

low performance on the latter cannot be attributed simply to poor language
modeling.

The task is evaluated in two settings: as language modeling (the standard setup)
and as reading comprehension. In the former (more challenging) case, a model is
simply trained for the next-word prediction on the training data, and evaluated
on the target words at test time (i.e., the model is trained to predict all words,
not specifically challenging target words). In the latter setting, introduced by
Chu et al. [49], the target sentence (minus the last word) is used as the query for
selecting the target word from the context sentences.9

The results are shown in Table 6.7. Universal Transformer achieves state-of-the-
art results in both the language modeling and reading comprehension setup,
outperforming both LSTMs and vanilla Transformers. Note that achieving good
results on the control set only shows a model’s strength in standard language
modeling.

Our best fixed UT results used 6 steps. However, the average number of steps
that the best UT with dynamic halting took on the test data over all positions
and samples was 8.2±2.1. In order to see if the dynamic model did better simply
because it took more steps, we trained two fixed UT models with 8 and 9 steps
respectively (see last two rows). Interestingly, these two models achieve better
results compared to the model with 6 steps, but do not outperform the UT with
dynamic halting. This leads us to believe that dynamic halting may act as a useful
regularizer for the model via incentivizing smaller numbers of steps for some
of the input symbols, while allowing more computation for others.

9Note that the target word appears in the context 81% of the time that lets selecting the
word from context, which is simpler than generating it. However, the task is impossible to be
solve in the remaining 19% of the cases.
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Table 6.8: Machine translation results on the WMT14 En-De translation task trained on 8xP100
GPUs in comparable training setups. All base results have the same number of parameters.

Model BLEU

Universal Transformer small 26.8
Transformer base [291] 28.0
Weighted Transformer base [4] 28.4
Universal Transformer base 28.9

6.4.6 Machine Translation

We trained a UT on the WMT 2014 English-German translation task in order to
evaluate its performance on a large-scale sequence-to-sequence task. Results
are summarized in Table 6.8.

We used the same setup as reported in [291]. We trained on the standard WMT
2014 English-German dataset that consist of about 4.5 million sentence pairs.
Sentences were encoded using byte-pair encoding [30] that has a shared source-
target vocabulary of about 37000 tokens. During training, we used the Adam
optimizer[162] with b1 = 0.9, b2 = 0.98 and # = 10�9. We varied the learning
rate over the course of training using similar to [291].

The UT with a fully-connected recurrent transition function (instead of separable
convolution) and without ACT improves by 0.9 BLEU over a Transformer and
0.5 BLEU over a Weighted Transformer with approximately the same number
of parameters [4].

6.4.7 Open-Domain Question Answering

As another real-world language understanding task, we adapt a model based
on UT for the Open-domain question answering task. Open-domain question
answering aims to satisfy users who are looking for a direct answer to a com-
plex information need. This requires querying large open-domain knowledge
sources like the Web. Inferring the answer to a question given multiple docu-
ments that potentially contain the answer, is at the heart of the open-domain
question answering task. Most open-domain question answering systems de-
scribed in the literature first retrieve relevant documents or passages, select one
or a few of them as the context, and then feed the question and the context to a
reading comprehension system to extract the answer [34, 41, 89, 248]. However,
the information needed to answer complex questions is not always contained
in a single, directly relevant document that is ranked high. In many cases, there
is a need to read multiple documents, combine them, and reason over the facts
from these documents to be able to give the correct answer to the question.

For example, in Figure 6.9, in order to infer the correct answer to the question:
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Figure 6.9: Example complex question answering that requires that information from multiple
documents be combined and some amount of reasoning over the information extracted from
those documents (best viewed in color).

“Who is the Spanish artist, sculptor and draughtsman famous for co-founding the
Cubist movement?” given the top-ranked document, a reading comprehension
system most likely will extract “Georges Braque” as the answer, which is not
the correct answer. In this example, in order to infer the correct answer, one
has to go down the ranked list, gather and encode facts, even those that are
not immediately relevant to the question, like “Malaga is a city in Spain,” which
can be inferred from a document at rank 66, and then in a multi-step reasoning
process, infer some new facts, including “Picasso was a Spanish artist” given
documents at ranks 12 and 66, and “Picasso, who was a Spanish artist, co-founded
the Cubist” given the previously inferred fact and the document ranked third.

In this example, and in general in many cases in open-domain question answer-
ing, a piece of information in a low-ranked document that is not immediately
relevant to the question, may be useful to fill in the blanks and complete in-
formation extracted from the top relevant documents and eventually support
inferring the correct answer. However, most open-domain question answering
methods focus on only one or a few candidate documents by filtering out the
less relevant documents to avoid dealing with noisy information and operate
over the selected set of documents to extract the answer [176, 297, 298].

We propose a new architecture, called TraCRNet (pronounced Tracker Net, that
combines Transformer and Universal Transformer to improve open-domain
question answering by explicitly operating on a larger set of candidate doc-
uments during the whole question answering process and learning how to
aggregate and reason over information from these documents in an effective
way while trying not to be distracted by noisy documents. Given the candidate
documents and the question, to generate the answer, TraCRNet first Transforms
them into vectors by applying a stack of Transformer blocks with self-attention
over words in each document in a layer called Input Encoding. Then, it updates
the learned representations from the first stage by Combining and enriching
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them through a multihop Reasoning process by applying multiple steps of the
Universal Transformer in a layer called Multihop Reasoning.

Returning to the example in Figure 6.9, after learning representations for each
top-ranked document and the question, TraCRNet updates them by applying
multiple steps of the Universal Transformer. Given the self-attention mechanism
and inductive bias of the Universal Transformer, in the first step, TraCRNet
can update the representation of document D#12 by attending to D#66 (as they
are related by both mentioning Malaga) and augment the information in D#12
with the fact that “Malaga is city in Spain,” so the updated vector of D#12 has
the fact that “Picasso is a Spanish artist” encoded in itself. Then, in the next
step of reasoning, TraCRNet can update the representation of D#3 by attending
over the vector representing D#12 estimated in the previous step, and enrich
the information in D#3 with the fact that “Picasso is a Spanish artist,” and the
updated vector of D#3 has the fact that “Picasso, who was a Spanish artist
co-founded Cubism” encoded in it. After that, during answer generation, the
decoder can attend to the final vector representing D#3 and give the correct
answer.

TraCRNet has a number of desirable features. First, all the building blocks
of TraCRNet are based on self-attentive feed-forward neural networks, hence
per-symbol hidden state transformations are fully parallelizable, which leads
to an enormous speedup during training and a super fast input encoding
during inference time compared to RNN based models. Second, while there is
no recurrence in time in our model, the recurrence in depth in the Universal
Transformer used in the Multihop Reasoning layer, adds the inductive bias to the
model that is needed to go beyond understanding each document separately
and combine their information in multiple steps. Third, TraCRNet has the
global receptive field of the Transformer based models [75, 292], which helps
it to better encode a long document during Input Encoding as well as perform
better inference over a rather large set of documents during Multihop Reasoning.
And fourth, the hierarchical usage of a self-attention mechanism, first over
words and then over documents, helps TraCRNet to control its attention both
at word and document levels, making it less fragile to noisy input, which is
of key importance while encoding many documents. All these properties of
TraCRNet come together and lead to an effective and efficient architecture for
open-domain question answering.

We employ TraCRNet on two public open-domain question answering datasets,
SearchQA and Quasar-T, and achieve results that meet or exceed the state-of-
the-art.
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Figure 6.10: An overview of the TraCRNet architecture.

TraCRNet

In the setup we consider here, the model is given a question q and a set of
n relevant documents Cq = {Dq

1, Dq
2, . . . , Dq

n} retrieved from the web using a
search engine as the input, and the goal is to “generate” the answer aq to the
question q based on the supporting document(s) in the set Cq.

This is different from the standard Reading Comprehension (RC) tasks [134, 309].
First of all, in RC a single document (passage) is given, from which the answer
should be extracted. Secondly, in RC, a strong supervision on the positions of
the answer spans is available during training. We also assume that the utilized
information or techniques to retrieve relevant documents are not available to the
model, therefore there is no leverage for getting better-supporting documents.

TraCRNet is based on the encoder-decoder architecture, where we have a
hierarchy of transformer-based models in the encoder, where the model can
attend first over words and then over documents [81]. At the bottom, in the Input
Encoding layer, we encode each document in Cq as well as the question with
transformer blocks with tied parameters that are fed by word-level embeddings.
Then, we feed the encoded documents and the question from this layer to the
Multihop Reasoning layer which is, in fact, a universal transformer block where
representations of all documents and the question get iteratively updated using
multiple steps of self-attention. Then, we use a stack of transformer decoder
blocks as the Output Decoder layer to generate the answer. The general schema
of TraCRNet is depicted in Figure 6.10. Below, we explain the details of each of
these layers in the model.

Input encoding The Input Encoding layer is in charge of encoding each of the
documents and the question to single vectors given their words’ embeddings.
For this layer, we used a stack of N Transformer Encoder blocks that is followed
by a depth-wise separable convolution [45, 153] and then a pooling function to
get a single vector representation for the whole document or the question (see
the Transformer Encoder in Figure 6.10). Depth-wise separable convolution is
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defined by a convolution on each of the feature channels separately, followed
by a point-wise convolution that is applied to project them to a feature vector
with the desirable depth (see [45] for more details).

Multihop reasoning Multihop Reasoning is the layer in which the Universal
Transformer is employed to combine evidence from all documents with re-
spect to the question within a multi-step process with the capacity of multihop
reasoning. In TraCRNet, the input of the Universal Transformer Encoder is
the set of vectors each representing a document in Cq or the question, that are
computed by the Input Encoding layer (see the Universal Transformer Encoder

in Figure 6.10).

In each step of the Universal Transformer, given Ht 2 R(|Cq|+1)⇥d and the
dimension d of the input vectors, we add two embeddings to Ht: a Rank
Embedding that encodes the rank of documents given by the retrieval system,
also used to distinguish the question from documents (similar to the positional
embedding in token level inputs) and the Step Embedding. We use Equation6.8
to calculate these embeddings. In our experiments, we use depthwise separable
convolution [45] as the Transition(·) function.

In the multihop reasoning layer, the representations of all the documents and
question learned from the previous layer get updated during T steps of iterating
over the Universal Transformer Encode block. Self-attention in this layer allows
the model to understand each of the documents based on the information in all
the documents as well as the question. In addition, the depth-wise recurrency
in the Universal Transformer establishes connections among documents at each
step and lays the ground for performing multihop reasoning to solve cases
similar to what we have shown in Example 6.9.

Output decoder After T steps of refining the representations of documents and
the question in the Universal Transformer Encoder, the final output is a matrix
of d-dimensional vector representations H 2 R(|Cq|+1)⇥d for all the documents
in Cq and the question q.

We use a stack of N Transformer Decoder blocks (see the Transformer Decoder

in Figure 6.10) to decode the answer. To generate answers from the model at
inference time, we run the model autoregresively [113], where the model con-
sumes the previously generated symbols at each time step in order to generate
the distribution over the vocabulary for the next symbol. From this distribution,
we select the symbol with the highest probability as the next symbol.

Datasets

We have conducted experiments on two publicly available open-domain ques-
tion answering datasets: SearchQA [96] and Quasar-T [90]. In both of these
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datasets, candidate documents (passages) for each question have already been
retrieved using a search engine and we do not add any extra documents to
these result sets. On both datasets, human performance is evaluated in a setup
where the human subjects try to find the answers to the given question from
the same documents retrieved by the IR model.

SearchQA SearchQA10 is a dataset of 140k question-answer pairs crawled from
J! Archive, and augmented with text snippets retrieved using the Google search
engine. For each question-answer pair, on average, about 50 web page snippets
have been collected. In our experiments, we do not use the additional meta-data
in the dataset like the snippet’s URL.

Quasar-T Quasar-T11 consists of 43k open-domain trivia questions and their
answers obtained from various internet sources. The set of candidate documents
for each question is retrieved using “Lucene” from the ClueWeb09 corpus as
the background corpus. In this dataset, for each question-answer pair, a set of
100 unique passages were collected as candidate documents.

Model configuration and experimental setup

We use WordPiece embeddings [306] with a 32k token vocabulary. In both Input
Encoder and Output Decoder layers, we use a stack of 6 Transformer blocks with
hidden_size = 512, num_attention_heads = 8, and batch_size = 2, 048. The rest
of the hyper-parameters are set to the default values of the Transformer model.
In the Multihop Reasoning layer, we have a Universal Transformer Encoder
with hidden_size = 512 and num_attention_heads = 4. We set the number of
recurrent steps in depth to 12. The rest of the hyper-parameters are set to the
default values of the Universal Transformer model. We train with the batch
size of 4, 096 tokens. We use Adam with learning rate of 1⇥ 10�9, b1 = 0.9,
b2 = 0.98, L2 weight decay of 1⇥ 10�04, learning rate warmup over the first
16, 000 steps, and linear decay of the learning rate. We use a dropout probability
of 0.1 on all layers. Since in our model answers are generated using the decoder
instead of extracting from the context, to improve the quality of generation,
we pretrain all the parameters of the Transformer decoder downstream of the
task of language modeling. The embeddings are shared between encoder and
decoder, thus the Input Embedding layer also enjoys the pretraining. This helps to
improve the performance especially in terms of metrics that consider the exact
match of the generated answer with the ground truth. During the training of the
model, we use teacher-forcing, i.e., the decoder input is the gold target, shifted
to the right by one position which is the usual setup for training autoregressive
models [304].

10https://github.com/nyu-dl/SearchQA
11https://github.com/bdhingra/quasar

https://github.com/nyu-dl/SearchQA
https://github.com/bdhingra/quasar
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In our experiments, TraCRNet and its variants are trained on 8 P100 GPUs
for 800k training steps. For both datasets, a prepared version by Wang et al.
[297] is used in our experiments to train and evaluate the TraCRNet as well
as all the baselines. As the Cq, we consider top-50 top documents for the
SearchQA, and top-100 for the Quasar-T. Following previous work on reading
comprehension and open-domain question answering [34, 176, 254, 297, 298] as
our evaluation metrics we adopt the F1 score, that loosely measures the average
overlap between the predicted answer and the ground truth answer, and Exact
Match (EM) that measures the percentage of predictions that match one of the
ground truth answers exactly.12

Results and Discussion

Baselines We compare our results with the best reading comprehension and
open-domain question answering models as well as research that achieves state-
of-the-art on the SearchQA and Quasar-T datasets. To have a true apples-to-
apples comparison, we only consider baselines that use no additional resources
to solve the task for these datasets. We use the following methods as baselines:

1. BiDAF [248], which is a reading comprehension model with bi-directional
attention flow network that uses the concatenation of top-ranked candidate
documents as the context.

2. R3 [297], which is a reinforcement learning approach that uses a ranker for
selecting the most confident paragraph to train the reading comprehension
model.

3. Wang et al. [298]’s model, which learns to re-rank the answers extracted
by applying the R3 model on multiple documents based on coverage and
strength of each of the documents given the question.

4. Lin et al. [176]’s model, which is the most recent paper achieving state-of-
the-art performance on the datasets we use for evaluation. They propose
to decompose the process into a document selection to filter out noisy para-
graphs, and a paragraph reader to extract the correct answer from the filtered
documents. Finally, they aggregate multiple answers to obtain the final
answer.

Table 6.9 presents the results of the baseline models, TraCRNet, and the human
performance on both datasets.

12We use the tool from SQuAD [225] for evaluation.
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Table 6.9: Performance of TraCRNet compared to the baseline models.

model SearchQA Quasar-T

EM F1 EM F1

BiDAF [248] 28.6 34.6 25.9 28.5
R3 [297] 49.0 55.3 35.3 41.7
Wang et al. [298] 57.0 63.2 42.3 49.6
Lin et al. [176] 58.8 64.5 42.2 49.3
TraCRNet 52.9 65.1 43.2 54.0

Human Performance 43.9 – 51.5 60.6

Main results TraCRNet outperforms all the baselines and achieves a new state-
of-the-art (to the best of our knowledge) on the Quasar-T dataset and performs
as good as the best performing baseline on the SearchQA dataset. The main
advantage of TraCRNet over the baselines is that it makes “full” use of the
information of “all” the candidate documents in Cq. The models proposed by
Lin et al. [176] and Wang et al. [298] are the strongest baselines on these datasets.
Although they try to capture evidence from multiple sources by reranking
or aggregating answers extracted from different documents, they filter out
documents that are less likely to help at the beginning of the process. In this
fashion, they lose the chance of using information from documents that are
not directly relevant, like documents #12 or/and #66 in Example 6.9. However,
TraCRNet keeps operating on the full set of candidate documents during the
whole process and learns to what extent each document contributes to infer the
final answer.

In SearchQA, we notice that for most of the questions, the answer can be
extracted given a single document and in many cases, no multi-document
multihop reasoning is required. Therefore, since TraCRNet generates the answer,
as opposed to the baseline models that extract the answer from context, it gets a
lower EM score. However, in terms of F1 score, TraCRNet slightly improves
over the best baseline.

Effect of multihop reasoning In order to investigate the effect of the Multihop
Reasoning layer, we handicap TraCRNet by removing this layer and evaluate it
in two cases:

1. TraCRNetd
no-mhr, in which the decoder has access to document- level repre-

sentations from the encoder, and

2. TraCRNetw
no-mhr where pooling operation is removed and the decoder has

access to word-level representations from the encoder.

Table 6.10 presents the results of the model in these situations.
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Table 6.10: Performance of TraCRNet with and without the Multihop Reasoning layer; numbers
in parenthesis indicate percentage of performance loss.

model SearchQA Quasar-T

EM F1 EM F1

TraCRNet 52.9 65.1 43.2 54.0
TraCRNetd

no-mhr 48.6 (�8%) 61.7 (�5%) 36.4 (�16%) 43.6 (�19%)
TraCRNetw

no-mhr 50.2 (�5%) 59.3 (�9%) 38.1 (�12%) 40.2 (�25%)

(a) Attention distribution when transforming the document at rank 12, in step#3 of multihop reasoning.

(b) Attention distribution when transforming the question, in step#7 of multihop reasoning.
Figure 6.11: Visualization of multi-head self-attention on Multihop Reasoning layer of TraCRNet.
(Best viewed in color.)

On all measures and datasets, the performance drops when we remove the
Multihop Reasoning layer. The drop in the performance is larger on the Quasar-
T dataset than on the SearchQA dataset. We noticed that trivia questions in
Quasar-T, in many cases, contain clauses that should be considered together
with and/or operations to be able to give the correct answer. For instance, to
answer the question “What Australian food was discovered by John McAdam,”
we should consider that “the food is Australian” and “the food is discovered
by John McAdam.” In this situation, the chance of having multiple documents
each containing one of these facts increases. Thus, having multiple supporting
documents and the need for reasoning (similar to Example 6.9) will be the exact
point where the advantage of the Multihop Reasoning layer kicks in.

Another observation here is that when we remove the Multihop Reasoning layer,
passing word-level embeddings from the encoder to the decoder leads to better
EM scores, but not to improved F1 scores. The main reason is that, in this
situation, access to the input words from the decoder is more explicit. This
helps the model to get closer to answer extraction than pure answer generation.
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For the test example that is presented in Figure 6.9, we observed that all baseline
models output “Georges Braque” which is extracted from the document at
rank 1. However, unlike all the baselines, TraCRNet returns the correct answer.
We looked into the attention distributions in the Multihop Reasoning layer of
TraCRNet at different steps (of the employed Universal Transformer with 12
depth-wise recurrent steps). We were able to find a relation between attention
distributions and the reasoning steps that are needed to give the correct answer
to this question. We illustrate this in Figure 6.11.

Figure 6.11a presents the attention distribution over all documents and the
question while encoding the document at rank 12 at step 3. TraCRNet has a
high level of attention for the document at rank 66 using heads 1 and 4 (blue
and red) as well as for the question using head 3 (green) while transforming
the document at rank 12. This is in accordance with the fact that the model
first needs to update the information encoded in the document at rank 12
with the fact that “Malaga is a city in Spain” from the document at rank 66.
Later, at step 7, while encoding the question (Figure 6.11b), TraCRNet attends
over document 12, which has information about “Picasso who is a Spanish
artist” (updated in step 3) using heads 1 and 4 and document 3, which contains
information about “Picasso as a co-founder of Cubism” using head 2 (green).

Impact of the number of documents

As we explained before, unlike most of the previous work that filters candidate
documents and narrows down the set of documents under consideration to
either a single document or a small set of highly relevant documents before
applying an answer extractor to them, TraCRNet uses the full set of candidate
documents retrieved by the search engine during the entire process of gener-
ating the answer. This is of great advantage as our analysis shows that, for
some questions, the correct answer can only be extracted when considering
information from low-ranked documents that are not immediately relevant to
the question. However, this can potentially come at the cost of (1) efficiency, as
we need to process a larger input, and of (2) performance, as there will be more
noisy and non-relevant documents when we go down the ranked list of candi-
date documents. Making use of self-attentive feed-forward neural networks as
building blocks of TraCRNet brings the ability of full per-symbol parallelization
and leads to an enormous speedup on encoding the input documents. This lets
the model encode a larger set of candidate documents efficiently.

To study how the performance of TraCRNet is affected by the number of can-
didate documents, we train and evaluate TraCRNet as well as R3 [297] and
Lin et al. [176]’s model on the Quasar-T dataset, using different numbers of
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Figure 6.12: Performance in terms of F1 of TraCRNet and baselines (R3 [297] and Lin et al.
[176]’s model) with different numbers of candidate documents on Quasar-T dataset.

candidate documents associated with each question.13 Figure 6.12 presents
the performance of these models when they are fed with the top-5, top-10,
. . . , top-100 retrieved documents. As can be seen, although Lin et al. [176]’s
model is pretty good at staying robust when noise increases (it is designed to
learn from distant supervision), increasing the number of candidate documents
eventually leads to a small drop in performance of both baselines due to the
noise in the low-ranked documents. However, TraCRNet not only controls the
effect of noisy low-ranked documents by calibrating their effect on inferring the
final answer through self-attention, but it also keeps improving as we increase
the number of documents as it can exploit any useful information contained
in low-ranked documents which can help better understand the question or
perform reasoning.

6.5 Conclusion

In this chapter we focused on addressing RQ-3.1: “How can we improve the gener-
alization and data efficiency of self-attentive feed-forward sequence models by injecting
a recurrent inductive bias?” We introduced the Universal Transformer to address
RQ-3.1.1, a generalization of the Transformer model that extends its theoretical
capabilities, by introducing the recurrent inductive bias in depth. The Univer-
sal Transformer addresses a key shortcoming of the standard Transformer. It
combines the following key properties into one model:

Weight sharing: Following intuitions behind weight sharing found in CNNs
and RNNs, we extend the Transformer with a simple form of weight sharing

13In this experiment, we just change the initial number of candidates, but we train baseline
models with their original setups and do not impose any assumption (e.g., fixing the candidate
list) on them.
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that strikes an effective balance between inductive bias and model expressivity,
which we show extensively on both small and large-scale experiments.

Conditional computation: In our goal to build a computationally universal
machine, we equipped the Universal Transformer with the ability to halt or
continue computation through the ACT mechanism, which shows stronger
results compared to the fixed-depth Universal Transformer.

We have employed the Universal Transformer on a wide range of challenging
sequence modeling tasks to address RQ-3.1.2. We showed that the Universal
Transformer as an strong data-efficient model achieves state-of-the-art results
on the bAbI tasks, which is a set of language understanding a reasoning tasks,
with limited number of data. We also evaluated the UT on a set of algorithmic
tasks in which a strong length generalization is needed and showed that with
inductive biases injected in the model, we can improve the generalization. We
also evaluated the UT on real-world tasks like machine translation, question
answering, and broad context language modeling, where it achieves strong
results.

In Part III of the thesis, we focused on addressing RQ-3: “How can inductive
biases help to improve the generalization and data efficiency of learning algorithms?”.
we explored the idea of injecting inductive biases into learning algorithms to
improve their data-efficiency and generalization. This is, in a sense, defining an
“innate” abstract knowledge for the learning algorithms that can help overcome
the challenging problem of the poverty of stimulus.





7
Conclusion

The success of today’s supervised machine learning algorithms in complex tasks
depends strongly on the availability of large scale high quality labeled data. In
practice, however, for many applications and domains, the available training
data is limited or noisy and it is difficult to build machines that can learn with
such imperfect training data. In contrast, humans are capable of uncovering the
underlying concepts, relations, and structure of sparsely observed data with
variable quality and use that knowledge to go far beyond the scarcity of the
data and routinely make successful generalizations based on them.

The argument of the poverty of stimulus [48] in human learning suggests that
the observed data is not rich enough for selecting a correct target hypothesis
without postulating an a priori knowledge [47]. In line with this, when de-
signing machine learning algorithms, pure data-driven learning, which relies
only on previous experience, does not seem to be able to learn generalizable
solutions [198]. Similar to human’s innately primed learning, having part of
the knowledge encoded in the learning algorithms in the form of strong or
weak biases, can help them learn solutions that better generalize to unseen
samples [199].

In this thesis, we focused on this problem of the poverty of stimulus for learning
algorithms. We argued that even noisy and limited signals can contain a great
deal of valid information that can be incorporated along with prior knowledge
and biases that are encoded into learning algorithms in order to solve complex
problems. We study how to improve the learning with imperfect supervision
signals in the context of language understanding and sequence modeling tasks.

195
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7.1 Research Questions and Conclusions

We referred to “imperfect supervision” as a general term covering a variety of
situations where the learning process is based on imperfect training examples.
This imperfection can be in the number or coverage of training examples like
learning from incomplete supervision, where only a limited subset of data is
labeled or no labeled data is available. The imperfection can also refer to the
labeling process like in inexact supervision where only coarse-grained annotations
are provided or inaccurate supervision where the given labels are noisy and they
are not always ground truth [334]. We also consider situations where not only
the labels in the training data but also feature vectors can be limited, noisy, or
subject to change over time.

We formulated the main research question of the thesis as:

RQ-Main How can we improve the learning process for language understand-
ing tasks, if the supervision signal is noisy in quality or limited in
quantity?

We broke down our main research question into three questions and addressed
each of them in each part of this thesis. The first question, that we addressed in
Part I of the thesis, was:

RQ-1 How to use the structure of the data as prior knowledge to learn
robust and effective representations of entities and concepts, when
the data is noisy or variable over time?

In Part I, we focused on learning representations for entities and abstract con-
cepts, like topical relevance, a political conviction, etc., given data in which the
features and labels can be noisy or subject to change over time.

First, in Chapter 2 informed by a discussion of the early work by Luhn [183]
about significant words we introduced Significant Words Language Models (SWLMs)
that estimate a representation for an entity or concept that is associated with a
set of textual documents in a way that the estimated representation captures
significant features by avoiding the distracting effect of common features as
well as rare features. We evaluated SWLMs on a set of problems including
(pseudo-)relevance feedback in document ranking and group profiling in con-
textual suggestion and recommendation, and showed that we can improve the
quality and robustness of representations by making them dependent less on
general or specific features, but rely more on significant features.

Then, in Chapter 3, we extended our discussions in Chapter 2 to hierarchi-
cal structures and introduced Hierarchical Significant Words Language Models
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(HSWLMs) for estimating separable representations for hierarchical entities.
We demonstrated that based on ranking and classification principles, the sepa-
ration property in the data representation is a desirable foundational property
which leads to separability of scores and consequently improves the accuracy
of classifiers’ decisions.

We showed that in order to have horizontally and vertically separable repre-
sentations for hierarchically structured data, they should capture all, and only,
the essential features of the entities taking their position in the hierarchy into
account, which is the key idea behind HSWLMs. We evaluated the performance
of classification over time using separable representations learned by HSWLMs
and showed that separability makes the model more robust and transferable
over time by filtering out non-essential and non-stable features.

The main conclusion of Part I is that incorporating prior knowledge can help
to improve the robustness of the outcome of the learning process in noisy and
variable environments. We showed that taking the general structure of the data
as prior knowledge, which is, in fact, a form of inductive bias, can help to learn
representations that are not only effective but also less affected by noisy factors
in the data.

The second question, which we addressed in Part II of the thesis, was:

RQ-2 How to design learning algorithms that can learn from weakly
annotated samples, while generalizing over the imperfection in their
labels?

In Part II, we focused on how to augment the training data using a vast amount
of data that are not hand-labeled, but weakly annotated using, for instance,
a heuristic function. We discuss how to train learning algorithms using such
weak labels and how to learn properties of the weakly annotated data, like the
quality of labels and incorporate those in the learning process.

First, in Chapter 4, we proposed to use unsupervised methods in order to
programmatically generate large amounts of training data [226], as weakly
annotated data, to train effective neural ranking models. We focus on the task
of assessing the topical relevance, i.e., ranking documents given a query. We
examined various neural ranking models with different ranking architectures
and objectives, and different input representations.

We found that providing the network with raw data and letting the network
learn the features that matter, gives the network a chance of learning how to
ignore imperfection in the training data. Also we showed in the case of having
weakly annotated training data, by targeting some explicit labels from the data,
we may end up with a model that has learned to express the data very well,
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but is incapable of going beyond it. We also observed that when learning from
weakly annotated data, it is crucial to provide the network with a considerable
amount of diverse training examples to help the model learn at the edge of its
capacity.

Then, in Chapter 5, we proposed a set of systematic approaches that are tasks
and architecture independent and can meta-learn the quality of the labels and
explicitly control the learning process with respect to the estimated qualities.
We introduced two semi-supervised learning approaches in the presence of
weakly labeled data: Learning from Controlled Weak Supervision (CWS) and fidelity-
weighted learning (FWL). CWS is a meta-learning approach that unifies learning
to estimate the confidence score of weak annotations and training neural net-
works to learn a target task with controlled weak supervision, i.e., using weak
labels to update the parameters but taking their estimated confidence scores
into account. FWL is a student-teacher framework in which the student net-
work is in charge of learning a target task given a vast amount of samples with
weak labels associated with fidelity scores that are generated by the teacher
network. We applied both CWS and FWL to document ranking and sentiment
classification and empirically verified that they improve the learning process in
terms of performance and convergence time.

The main conclusion of part II is that we can design models that are capable
of learning from weakly annotated data by defining proper training objectives.
We also found that we can use the data to meta-learn some properties of the
data, like the quality of labels and incorporate these properties in the learning
process.

The last question, that we addressed in Part III of the thesis, was:

RQ-3 How can inductive biases help to improve the generalization and
data efficiency of learning algorithms?

In Part III, we focused on sequence processing neural networks and studied
the role of inductive biases, like recurrent inductive bias, on the generalization
and data efficiency of these models on different language understanding and
sequence modeling tasks.

In Chapter 6, we argued that the lack of recurrent inductive bias in feed-forward
self-attentive models, like the Transformer, can lead to the failure of the model
on complex reasoning tasks with limited data, algorithmic tasks where length
generalization over training samples is needed, and structured language un-
derstanding tasks. We proposed the Universal Transformer, a self-attentive
concurrent-recurrent sequence model, in which we introduce recurrence in
depth by repeatedly modifying a series of vector representations for each po-
sition of the sequence in parallel. The key idea of the universal transformer is
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sharing the parameters across the layers which forms a recurrent inductive bias
in depth and saves massively on the number of parameters and leads to a more
data efficient model.

We also discussed other assumptions whose encoding them in a model as induc-
tive biases can help to extrapolate from training data and to better generalizing
at test time. We also introduced variants of the Universal Transformer with con-
ditional computations and showed that it can achieve stronger results compared
to the fixed-depth Universal Transformer.

The main conclusion of Part III is that injecting inductive biases into learn-
ing algorithms can improve their data-efficiency and generalization. These
inductive biases are in fact innate prior knowledge for the learning algorithms
that can eventually help overcoming the challenging problem of the poverty of
stimulus.

7.1.1 Contributions

Here is a list of main contributions of this thesis to solving problems in informa-
tion retrieval, natural language processing, and machine learning:

• We proposed approaches for learning robust and time agnostic representa-
tions for documents, given the relations in the data as prior knowledge.

• We presented a new family of models, significant words language models,
that capture only and all essential features for representing a set of docu-
ments and showed they are not only easily inspectable by human, but also
effective in many tasks, like classification, (pseudo)-relevance feedback
for document ranking, and contextual suggestion.

• We proposed using heuristic unsupervised models as weak labelers to
create a large-scale weakly annotated training set, for tasks where no
such training set is available like document ranking. We further studied
the effectiveness of different general architectures for neural rankers and
various objective functions when learning with weak supervision. This
provided excellent groundwork for many researchers to apply deep neural
networks on search and ranking problems.

• We proposed approaches for learning to learn from weak supervision, by
jointly optimizing for the objectives of the main task as well as learning
and incorporating the fidelity of labels. The proposed ideas have been
used already by many other researchers on applications/tasks where the
labels in the training set are of variable qualities.
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• We proposed a Turing complete version of the transformer model, the
universal transformer, in which we introduce recurrence-in-depth that
increases generalization and effectiveness of the model due to the in-
troduced recurrent inductive bias. We also used adaptive computation
and sowed effectiveness of efficiency of the model in several sequence
modeling tasks.

The general conclusion of this thesis is that there are a number of effective
approaches to improve the process of learning with imperfect supervision.
Specifically, by (i) employing prior knowledge in learning algorithms (Part I), (ii)
augmenting data and learning to learn how to better use the data (Part II), and (iii)
introducing inductive biases to learning algorithms (Part III).

More generally, we focused on language understanding tasks, like assessing
relevance on textual documents, machine translation, question answering, and
natural language reasoning. In these tasks, to address the problem of imperfect
supervision, i,e, when the training data or training labels are noisy in quality
or limited in quantity, we developed ideas that result in a better “product”, i.e
better performance in terms of prediction outcomes. However they also result
in a better learning “process” resulting in better models that are able to extract
valuable cues from imperfect signals and capture key aspects of the task at
hand.

7.2 Towards Building Machines that Deal with the
Poverty of Stimulus

There has been a long discussion between empiricists and rationalists in the
context of human learning concerning the extent to which we are dependent
on our experiences and observations in our effort to gain knowledge [190].
Empiricists claim that sensory observations (data) are the ultimate source of all
our concepts and knowledge, while rationalists claim that there are significant
ways in which our concepts and knowledge are gained independently of our
experiences and observations.

A similar discussion has been raised in machine learning in the context of learn-
ing algorithms. Some machine learning researchers believe that the intrinsic
complexity of the world means we should not build any prior knowledge into
our systems: “seeking an improvement that makes a difference in the shorter
term, researchers seek to leverage their human knowledge of the domain, but
the only thing that matters in the long run is the leveraging of computation.”1

1“The Bitter Lesson” by Rich Sutton: http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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Other machine learning researchers, on the other hand, emphasize the fact
that “there are no predictions without assumptions, no generalization without
inductive bias” and believe that the complexity of the world, as a matter of
fact, leads to crippling intractability for the approaches on which empiricists
proposes to rely and argue that only with the right prior knowledge and the
right inductive biases, we can get a handle on that complexity.2

In practice, we do not apply either rigorous empiricist or rationalist approaches
in machine learning. When we pursue more explanatory rationalist approaches,
we always recognize the importance of observations and the data as the means
by which reality affects our understanding. When taking a data-driven ap-
proach, we make use of reasoning at least in the act of observing data, i.e.,
choices such as how data is selected, assumptions we make, biases to our algo-
rithms, and the overall architectures of our solution. In order to build machines
that can create knowledge a truce between these two main approaches is essen-
tial. There is no doubt that the success of deep learning is very much a success
of scale and in general, machine learning methods that survive the test of time
and make breakthrough progress tend to scale. But incorporating knowledge
or inductive biases has its own success stories and the question here is more
about “what” that knowledge or biases should be and “when” and “how” it
should be incorporated.

While finding the right inductive biases is hard, they can enable progress on
intractable problems or situations where we cannot rely on arbitrarily scaling
of computation such as settings with noisy or limited data, which characterizes
most real-world applications. Besides, scalability can be defined in many di-
mensions, if a method is “scalable” with more data and computation, it has a
chance of succeeding only in a subset of problems that we can gather infinite
data for them. However, we can define “scale,” as in “scale to new problems,”
which is, in fact, the ability of generalization, where inductive biases can play
crucial roles to achieve it, especially when considering the problem of poverty
of stimulus.

We are enthusiastic about recent developments in machine learning models that
are able to learn with imperfect supervision. By combining ideas on how to
incorporate general prior knowledge, how to better use the data and meta learn
its properties, and how to inject the right inductive biases, we hope that further
improvements presented in this thesis will help us build learning algorithms
that are more powerful, more data efficient, and more generalizable, and in a
bigger picture, help machines to get closer to human-level intelligence.

2“Do we still need models or just more data and compute?” by Max Welling: https:
//staff.fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdf

https://staff.fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdf
https://staff.fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdf




BIBLIOGRAPHY 203

Bibliography
[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K.,

and Zhang, L. (2016). Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 308–318. ACM.

[2] Abdul-jaleel, N., Allan, J., Croft, W. B., Diaz, O., Larkey, L., Li, X., Smucker,
M. D., and Wade, C. (2004). Umass at trec 2004: Novelty and hard. In
TREC-13.

[3] Abrantes, P. (1999). Analogical reasoning and modeling in the sciences.
Foundations of Science, 4(3):237–270.

[4] Ahmed, K., Keskar, N. S., and Socher, R. (2017). Weighted transformer
network for machine translation. arXiv preprint arXiv:1711.02132.

[5] Amer-Yahia, S., Roy, S. B., Chawlat, A., Das, G., and Yu, C. (2009). Group
recommendation: Semantics and efficiency. VLDB, 2:754–765.

[6] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul,
T., and de Freitas, N. (2016). Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pages 3981–
3989.

[7] Arampatzis, A., Kamps, J., and Robertson, S. (2009). Where to stop reading
a ranked list?: Threshold optimization using truncated score distributions.
In SIGIR ’09, pages 524–531.

[8] Arampatzis, A. and van Hameran, A. (2001). The score-distributional
threshold optimization for adaptive binary classification tasks. In SIGIR ’01,
pages 285–293.

[9] Ardissono, L., Goy, A., Petrone, G., Segnan, M., and Torasso, P. (2003).
Intrigue: personalized recommendation of tourist attractions for desktop and
hand held devices. Applied Artificial Intelligence, 17(8-9):687–714.

[10] Asadi, N., Metzler, D., Elsayed, T., and Lin, J. (2011). Pseudo test collec-
tions for learning web search ranking functions. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval, pages 1073–1082. ACM.

[11] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., and
Kamps, J. (2017a). Words are malleable: Computing semantic shifts in
political and media discourse. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM ’17.



204 Chapter 7. Conclusion

[12] Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., and
de Rijke, M. (2018). HiTR: Hierarchical topic model re-estimation for mea-
suring topical diversity of documents. IEEE Transactions on Knowledge and
Data Engineering.

[13] Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., and
de Rijke, M. (2017b). Hierarchical re-estimation of topic models for measur-
ing topical diversity. In European Conference on Information Retrieval (ECIR’17).

[14] Azarbonyad, H., Dehghani, M., Marx, M., and Kamps, J. (2015a). Time-
aware authorship attribution for short text streams. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’15.

[15] Azarbonyad, H., Dehghani, M., Marx, M., and Kamps, J. (2020). Learning
to rank for multi label text classification: Combining different sources of
information. In Journal of Natural Language Engineering.

[16] Azarbonyad, H., Saan, F., Dehghani, M., Marx, M., and Kamps, J. (2015b).
Are topically diverse documents also interesting? In International Conference
of the Cross-Language Evaluation Forum for European Languages (CLEF).

[17] Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In
Advances in neural information processing systems, pages 2654–2662.

[18] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv
preprint arXiv:1607.06450.

[19] Baccianella, S., Esuli, A., and Sebastiani, F. (2010). Sentiwordnet 3.0: An
enhanced lexical resource for sentiment analysis and opinion mining. In
LREC, volume 10, pages 2200–2204.

[20] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation
by jointly learning to align and translate. CoRR, abs/1409.0473.

[21] Ballard, D. H. (2015). Brain Computation As Hierarchical Abstraction. The
MIT Press.

[22] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.
(2018). Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261.

[23] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning:
A review and new perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1798–1828.



BIBLIOGRAPHY 205

[24] Bing, L., Chaudhari, S., Wang, R. C., and Cohen, W. W. (2015). Improv-
ing distant supervision for information extraction using label propagation
through lists. In EMNLP ’15, pages 524–529.

[25] Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In ICML,
pages 113–120.

[26] Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data
with co-training. In Proceedings of the Eleventh Annual Conference on Computa-
tional Learning Theory, COLT’ 98, pages 92–100.

[27] Borisov, A., Markov, I., de Rijke, M., and Serdyukov, P. (2016). A neural
click model for web search. In WWW ’16, pages 531–541.

[28] Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal
function. Trends in cognitive sciences, 12(5):201.

[29] Brank, J., Grobelnik, M., Milic-Frayling, N., and Mladenic, D. (2002). Fea-
ture selection using linear support vector machines. Technical Report MSR-
TR-2002-63, Microsoft Research.

[30] Britz, D., Goldie, A., Luong, M.-T., and Le, Q. (2017). Massive exploration
of neural machine translation architectures. arXiv preprint arXiv:1703.03906.

[31] Brodley, C. E. and Friedl, M. A. (1999). Identifying mislabeled training
data. Journal of artificial intelligence research, 11:131–167.

[32] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signa-
ture verification using a "siamese" time delay neural network. In NIPS ’93,
pages 737–744.

[33] Bucilua, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model com-
pression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 535–541. ACM.

[34] Buck, C., Bulian, J., Ciaramita, M., Gajewski, W., Gesmundo, A., Houlsby,
N., and Wang, W. (2018). Ask the right questions: Active question reformu-
lation with reinforcement learning. In International Conference on Learning
Representations.

[35] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
and Hullender, G. (2005). Learning to rank using gradient descent. In ICML
’05, pages 89–96.

[36] Burges, C. J. (1998). A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery, 2(2):121–167.



206 Chapter 7. Conclusion

[37] Carpineto, C. and Romano, G. (2012). A survey of automatic query expan-
sion in information retrieval. ACM Comput. Surv., 44(1):1:1–1:50.

[38] Carpineto, C. and Romano, G. (2013). Semantic search log k-anonymization
with generalized k-cores of query concept graph. In ECIR’13, pages 110–121.

[39] Chang, M.-W., Srikumar, V., Goldwasser, D., and Roth, D. (2010). Struc-
tured output learning with indirect supervision. In Proceedings of the 27th
International Conference on Machine Learning, ICML’10, pages 199–206.

[40] Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-Supervised Learning.
The MIT Press, 1st edition.

[41] Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). Reading wikipedia
to answer open-domain questions. In 55th Annual Meeting of the Association
for Computational Linguistics, pages 1870–1879.

[42] Chen, M., Weinberger, K. Q., and Blitzer, J. (2011). Co-training for domain
adaptation. In Advances in Neural Information Processing Systems 24, pages
2456–2464.

[43] Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078.

[44] Chollet, F. (2016). Xception: Deep learning with depthwise separable
convolutions. arXiv preprint arXiv:1610.02357.

[45] Chollet, F. (2017). Xception: Deep learning with depthwise separable
convolutions. In Conference on Computer Vision and Pattern Recognition.

[46] Chomsky, N. (1965). Aspects of the Theory of Syntax. The MIT Press, Cam-
bridge.

[47] Chomsky, N. (1971). Problems of knowledge and freedom: The Russell lectures.
Courier Corporation.

[48] Chomsky, N. (1980). Rules and representations. Behavioral and brain sciences,
3(1):1–15.

[49] Chu, Z., Wang, H., Gimpel, K., and McAllester, D. (2017). Broad context
language modeling as reading comprehension. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, volume 2, pages 52–57.

[50] Cirillo, C., Chang, Y., and Razon, J. (1969). Evaluation of feedback retrieval
using modified freezing, residual collection, and test and control groups.
Scientific Report No. ISR-16 to the National Science Foundation.



BIBLIOGRAPHY 207

[51] Clarke, J., Goldwasser, D., Chang, M.-W., and Roth, D. (2010). Driving
semantic parsing from the world’s response. In Proceedings of the fourteenth
conference on computational natural language learning, pages 18–27.

[52] Cohen, D. and Croft, W. B. (2016). End to end long short term memory
networks for non-factoid question answering. In ICTIR ’16, pages 143–146.

[53] Cohen, T. and Welling, M. (2016). Group equivariant convolutional net-
works. In International conference on machine learning, pages 2990–2999.

[54] Cohen, T. S. and Welling, M. (2017). Steerable cnns. In International Confer-
ence on Learning Representations.

[55] Collins-Thompson, K. and Callan, J. (2007). Estimation and use of un-
certainty in pseudo-relevance feedback. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’07, pages 303–310.

[56] Collobert, R. and Weston, J. (2008). A unified architecture for natural
language processing: Deep neural networks with multitask learning. In
Proceedings of the 25th international conference on Machine learning, pages 160–
167. ACM.

[57] Cormack, G. V., Smucker, M. D., and Clarke, C. L. (2011). Efficient and
effective spam filtering and re-ranking for large web datasets. Inf. Retr.,
14(5):441–465.

[58] Crestani, F., Lalmas, M., Van Rijsbergen, C. J., and Campbell, I. (1998). “is
this document relevant?... probably...”: A survey of probabilistic models in
information retrieval. ACM Comput. Surv., 30(4):528–552.

[59] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018).
Autoaugment: Learning augmentation policies from data. arXiv preprint
arXiv:1805.09501.

[60] Custers, B. (2003). Effects of unreliable group profiling by means of data
mining. In Discovery Science, pages 291–296.

[61] de Swaan, A. (1973). Coalition Theories and Cabinet Formations: A Study of
Formal Theories of Coalition Formation Applied to Nine European Parliaments after
1918, volume 4 of Progress in Mathematical Social Sciences. Elsevier, New York.

[62] Dehghani, M. (2016). Significant words representations of entities. In
Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’16.



208 Chapter 7. Conclusion

[63] Dehghani, M. (2018). Toward document understanding for information
retrieval. ACM SIGIR Forum, 51(3).

[64] Dehghani, M., Abnar, S., and Kamps, J. (2016a). The healing power of
poison: Helpful non-relevant documents in feedback. In Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,
CIKM ’16.

[65] Dehghani, M., Azarbonyad, H., Kamps, J., Hiemstra, D., and Marx, M.
(2016b). Inoculating relevance feedback against poison pills. In 15th Dutch-
Belgian Information Retrieval Workshop, DIR 2016.

[66] Dehghani, M., Azarbonyad, H., Kamps, J., Hiemstra, D., and Marx, M.
(2016c). Luhn revisited: Significant words language models. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge
Management, CIKM ’16.

[67] Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016d). Gen-
eralized group profiling for content customization. In CHIIR ’16, CHIIR
’16.

[68] Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016e). On
horizontal and vertical separation in hierarchical text classification. In The
proceedings of ACM SIGIR International Conference on the Theory of Information
Retrieval, ICTIR’16.

[69] Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016f). Signifi-
cant words language models for contextual suggestion. Proceedings National
Institute for Standards and Technology. NIST Special Publication: SP, 500.

[70] Dehghani, M., Azarbonyad, H., Kamps, J., and Marx, M. (2016g). Two-way
parsimonious classification models for evolving hierarchies. In Proceedings of
Conference and Labs of the Evaluation Forum, CLEF ’16.

[71] Dehghani, M., Azarbonyad, H., Kamps, J., and de Rijke, M. (2017a). Share
your model instead of your data: Privacy preserving mimic learning for
ranking. In SIGIR Workshop on Neural Information Retrieval, SIGIR-NeuIR’17.

[72] Dehghani, M., Azarbonyad, H., Kamps, J., and de Rijke, M. (2019a). Learn-
ing to transform, combine, and reason in open-domain question answering.
In Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, WSDM ’19.

[73] Dehghani, M., Azarbonyad, H., Marx, M., and Kamps, J. (2015a). Learning
to combine sources of evidence for indexing political texts. In Proceedings of
the Dutch-Belgian Information Retrieval Workshop.



BIBLIOGRAPHY 209

[74] Dehghani, M., Azarbonyad, H., Marx, M., and Kamps, J. (2015b). Sources
of evidence for automatic indexing of political texts. In Proceedings of European
Conference on IR Research, ECIR’15.

[75] Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, Ł. (2019b).
Universal transformers. In International Conference on Learning Representations,
ICLR’19.

[76] Dehghani, M., Jagfeld, G., Azarbonyad, H., Olieman, A., Kamps, J., and
Marx, M. (2017b). On search powered navigation. In Proceedings of the ACM
SIGIR International Conference on Theory of Information Retrieval, ICTIR ’17.

[77] Dehghani, M., Jagfeld, G., Azarbonyad, H., Olieman, A., Kamps, J., and
Marx, M. (2017c). Telling how to narrow it down: Browsing path recom-
mendation for exploratory search. In Proceedings of the 2017 Conference on
Conference Human Information Interaction and Retrieval, CHIIR ’17.

[78] Dehghani, M. and Kamps, J. (2018). Learning to rank from samples of
variable quality. In SIGIR 2018 Workshop on Learning from Limited or Noisy
Data for Information Retrieval.

[79] Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., and Schölkopf, B. (2018).
Fidelity-weighted learning. In International Conference on Learning Representa-
tions, ICLR’18.

[80] Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., and Schölkopf, B. (2019c).
Learning from samples of variable quality. In ICLR workshop on Learning from
Limited Labeled Data, ICLR-LLD’19.

[81] Dehghani, M., Rothe, S., Alfonseca, E., and Fleury, P. (2017d). Learning to
attend, copy, and generate for session-based query suggestion. In Proceed-
ings of The international Conference on Information and Knowledge Management,
CIKM’17.

[82] Dehghani, M., Severyn, A., Rothe, S., and Kamps, J. (2017e). Avoiding
your teacher’s mistakes: Training neural networks with controlled weak
supervision. arXiv preprint arXiv:1711.00313.

[83] Dehghani, M., Severyn, A., Rothe, S., and Kamps, J. (2017f). Learning to
learn from weak supervision by full supervision. In NIPS2017 workshop on
Meta-Learning, NIPS-MetaLearn’17.

[84] Dehghani, M., Zamani, H., Severyn, A., Kamps, J., and Croft, W. B. (2017g).
Neural ranking models with weak supervision. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’17.



210 Chapter 7. Conclusion

[85] Deriu, J., Gonzenbach, M., Uzdilli, F., Lucchi, A., De Luca, V., and Jaggi, M.
(2016). Swisscheese at semeval-2016 task 4: Sentiment classification using
an ensemble of convolutional neural networks with distant supervision.
Proceedings of SemEval, pages 1124–1128.

[86] Deriu, J., Lucchi, A., De Luca, V., Severyn, A., Müller, S., Cieliebak, M.,
Hofmann, T., and Jaggi, M. (2017). Leveraging large amounts of weakly
supervised data for multi-language sentiment classification. In Proceedings
of the 26th international International World Wide Web Conference, WWW’17,
pages 1045–1052.

[87] Desautels, T., Krause, A., and Burdick, J. W. (2014). Parallelizing
exploration-exploitation tradeoffs in gaussian process bandit optimization.
Journal of Machine Learning Research, 15(1):3873–3923.

[88] Dhingra, B., Jin, Q., Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2018).
Neural models for reasoning over multiple mentions using coreference. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 42–48.

[89] Dhingra, B., Liu, H., Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2017a).
Gated-attention readers for text comprehension. In 55th Annual Meeting of
the Association for Computational Linguistics, pages 1832–1846.

[90] Dhingra, B., Mazaitis, K., and Cohen, W. W. (2017b). Quasar: Datasets for
question answering by search and reading. arXiv preprint arXiv:1707.03904.

[91] Dhingra, B., Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2017c). Lin-
guistic knowledge as memory for recurrent neural networks. arXiv preprint
arXiv:1703.02620.

[92] Diaz, F. (2016). Learning to rank with labeled features. In ICTIR ’16, pages
41–44.

[93] Diaz, F., Mitra, B., and Craswell, N. (2016). Query Expansion with Locally-
Trained Word Embeddings. In Proceedings of Association for Computational
Linguistics.

[94] Donahue, J., Krähenbühl, P., and Darrell, T. (2017). Adversarial feature
learning. In ICLR2017.

[95] Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M., and Brox,
T. (2016). Discriminative unsupervised feature learning with exemplar con-
volutional neural networks. IEEE transactions on pattern analysis and machine
intelligence, 38(9):1734–1747.



BIBLIOGRAPHY 211

[96] Dunn, M., Sagun, L., Higgins, M., Guney, V. U., Cirik, V., and Cho, K.
(2017). Searchqa: A new q&a dataset augmented with context from a search
engine. arXiv preprint arXiv:1704.05179.

[97] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and
Bengio, S. (2010). Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11:625–660.

[98] et al., M. A. (2015). TensorFlow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org.

[99] Finn, C., Abbeel, P., and Levine, S. (2017a). Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1126–1135. JMLR. org.

[100] Finn, C., Abbeel, P., and Levine, S. (2017b). Model-agnostic meta-learning
for fast adaptation of deep networks. In ICML.

[101] Forman, G. (2003). An extensive empirical study of feature selection
metrics for text classification. J. Mach. Learn. Res., 3:1289–1305.

[102] Fredrikson, M., Jha, S., and Ristenpart, T. (2015). Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 1322–1333.

[103] Frénay, B. and Verleysen, M. (2014). Classification in the presence of label
noise: a survey. IEEE transactions on neural networks and learning systems,
25(5):845–869.

[104] Gabrilovich, E., Smola, A., and Tishby, T. (2010). Feature generation and
selection for information retrieval. In Workshop of SIGIR, 2010.

[105] Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017).
Convolutional sequence to sequence learning. CoRR, abs/1705.03122.

[106] Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and
the bias/variance dilemma. Neural computation, 4(1):1–58.

[107] Gentner, D. and Markman, A. B. (1997). Structure mapping in analogy
and similarity. American psychologist, 52(1):45.

[108] Go, A., Bhayani, R., and Huang, L. (2009). Twitter sentiment classification
using distant supervision. CS224N Project Report, Stanford, 1(12).

[109] Goldberger, J. and Ben-Reuven, E. (2017). Training deep neural-networks
using a noise adaptation layer. In ICLR2017.



212 Chapter 7. Conclusion

[110] Goodwin, G. P. and Johnson-Laird, P. (2005). Reasoning about relations.
Psychological review, 112(2):468.

[111] Gopal, S. and Yang, Y. (2013). Recursive regularization for large-scale
classification with hierarchical and graphical dependencies. In SIGKDD,
pages 257–265.

[112] Grave, E., Joulin, A., and Usunier, N. (2016). Improving neural language
models with a continuous cache. arXiv preprint arXiv:1612.04426.

[113] Graves, A. (2013). Generating sequences with recurrent neural networks.
CoRR, abs/1308.0850.

[114] Graves, A. (2016). Adaptive computation time for recurrent neural net-
works. arXiv preprint arXiv:1603.08983.

[115] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines.
CoRR, abs/1410.5401.

[116] Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., and Tenenbaum, J. B.
(2010). Probabilistic models of cognition: Exploring representations and
inductive biases. Trends in cognitive sciences, 14(8):357–364.

[117] Gulcehre, C., Denil, M., Malinowski, M., Razavi, A., Pascanu, R., Her-
mann, K. M., Battaglia, P., Bapst, V., Raposo, D., Santoro, A., et al. (2018).
Hyperbolic attention networks. arXiv preprint arXiv:1805.09786.

[118] Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep relevance matching
model for ad-hoc retrieval. In CIKM ’16, pages 55–64.

[119] Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft,
W. B., and Cheng, X. (2019). A deep look into neural ranking models for
information retrieval. arXiv preprint arXiv:1903.06902.

[120] Ha-Thuc, V. and Renders, J.-M. (2011). Large-scale hierarchical text classi-
fication without labelled data. In WSDM, pages 685–694.

[121] Halevy, A., Norvig, P., and Pereira, F. (2009). The unreasonable effective-
ness of data. IEEE Intelligent Systems.

[122] Hamdan, H., Béchet, F., and Bellot, P. (2013). Experiments with dbpedia,
wordnet and sentiwordnet as resources for sentiment analysis in micro-
blogging. In Second Joint Conference on Lexical and Computational Semantics,
volume 2, pages 455–459.

[123] Han, X. and Sun, L. (2016). Global distant supervision for relation extrac-
tion. In AAAI’16, pages 2950–2956.



BIBLIOGRAPHY 213

[124] Harman, D. (1992). Information Retrieval, chapter Relevance Feedback and
Other Query Modification Techniques, pages 241–263. Prentice-Hall, Inc.

[125] Harman, D. and Buckley, C. (2009). Overview of the reliable information
access workshop. Inf. Retr., 12(6):615–641.

[126] Hashemi, S. H., Clarke, C. L., Kamps, J., Kiseleva, J., and Voorhees, E. M.
(2016). Overview of the trec 2016 contextual suggestion track. In TREC 2016.
NIST.

[127] Hashemi, S. H., Dehghani, M., and Kamps, J. (2015a). Parsimonious user
and group profiling in venue recommendation. Proceedings National Institute
for Standards and Technology, 500.

[128] Hashemi, S. H., Dehghani, M., and Kamps, J. (2015b). Parsimonious user
and group profiling in venue recommendation. In TREC 2015. NIST.

[129] He, B. and Ounis, I. (2009a). Finding good feedback documents. In CIKM
’09, pages 2011–2014.

[130] He, B. and Ounis, I. (2009b). Studying query expansion effectiveness. In
ECIR’09, pages 611–619.

[131] Henaff, M., Weston, J., Szlam, A., Bordes, A., and LeCun, Y. (2016).
Tracking the world state with recurrent entity networks. arXiv preprint
arXiv:1612.03969.

[132] Hensman, J., Matthews, A. G. d. G., and Ghahramani, Z. (2015). Scalable
variational gaussian process classification. In Proceedings of AISTATS.

[133] Herbrich, R., Graepel, T., and Obermayer, K. (1999). Support vector
learning for ordinal regression. In ICANN ’99, pages 97–102.

[134] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suley-
man, M., and Blunsom, P. (2015). Teaching machines to read and comprehend.
In Advances in Neural Information Processing Systems, pages 1693–1701.

[135] Hiemstra, D., Kamps, J., Kaptein, R., and LI, R. (2008). Parsimonious lan-
guage models for a terabyte of text. In The Sixteenth Text REtrieval Conference
Proceedings, TREC 2007. NIST.

[136] Hiemstra, D., Robertson, S., and Zaragoza, H. (2004). Parsimonious
language models for information retrieval. In SIGIR ’04, pages 178–185.

[137] Hinton, G., Vinyals, O., and Dean, J. (2014). Distilling the knowledge
in a neural network. In NIPS 2014 Deep Learning Workshop. arXiv preprint
arXiv:1503.02531.



214 Chapter 7. Conclusion

[138] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algo-
rithm for deep belief nets. Neural Comput., 18(7):1527–1554.

[139] Hirst, G., Riabinin, Y., Graham, J., and Boizot-Roche, M. (2014). Text to
ideology or text to party status? From Text to Political Positions: Text analysis
across disciplines, 55:93–15.

[140] Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2003). Gradi-
ent flow in recurrent nets: the difficulty of learning long-term dependencies.
A Field Guide to Dynamical Recurrent Neural Networks.

[141] Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., and Weld, D. S. (2011).
Knowledge-based weak supervision for information extraction of overlap-
ping relations. In HLT ’11, pages 541–550.

[142] Holyoak, K. J. (2012). Analogy and relational reasoning. The Oxford
handbook of thinking and reasoning.

[143] Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., and Cao, W. (2014). Deep modeling
of group preferences for group-based recommendation. In AAAI.

[144] Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013).
Learning deep structured semantic models for web search using clickthrough
data. In CIKM ’13, pages 2333–2338.

[145] Hume, D. (2003). A treatise of human nature. Courier Corporation.

[146] Inhelder, B. and Piaget, J. (1958). The growth of logical thinking from child-
hood to adolescence: An essay on the construction of formal operational structures,
volume 22. Psychology Press.

[147] Jain, S. and Wallace, B. C. (2014). Attention is not explanation. CoRR,
abs/1902.10186.

[148] Jameson, A. and Smyth, B. (2007). The adaptive web. In Brusilovsky, P.,
Kobsa, A., and Nejdl, W., editors, Recommendation to Groups, pages 596–627.
Springer-Verlag, Berlin, Heidelberg.

[149] Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation
of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446.

[150] Joachims, T. (2002). Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM.

[151] Joulin, A. and Mikolov, T. (2015). Inferring algorithmic patterns with
stack-augmented recurrent nets. In Advances in Neural Information Processing
Systems, NIPS’15.



BIBLIOGRAPHY 215

[152] Kaiser, L., Gomez, A. N., and Chollet, F. (2017). Depthwise separable
convolutions for neural machine translation. CoRR, abs/1706.03059.

[153] Kaiser, L., Gomez, A. N., and Chollet, F. (2018). Depthwise separable
convolutions for neural machine translation. In International Conference on
Learning Representations.

[154] Kaiser, L. and Sutskever, I. (2016). Neural GPUs learn algorithms. In
International Conference on Learning Representations, ICLR’16.

[155] Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves,
A., and Kavukcuoglu, K. (2016). Neural machine translation in linear time.
CoRR, abs/1610.10099.

[156] Kanoulas, E., Pavlu, V., Dai, K., and Aslam, J. (2009). Modeling the score
distributions of relevant and non-relevant documents. In ICTIR’09, volume
5766, pages 152–163. Springer Berlin Heidelberg.

[157] Kaptein, R., Kamps, J., and Hiemstra, D. (2009). The impact of positive,
negative and topical relevance feedback. In The Seventeenth Text REtrieval
Conference Proceedings, TREC 2008. NIST.

[158] Kenter, T., Borisov, A., Van Gysel, C., Dehghani, M., de Rijke, M., and
Mitra, B. (2017). Neural networks for information retrieval. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval.

[159] Kim, D.-k., Voelker, G., and Saul, L. K. (2013). A variational approximation
for topic modeling of hierarchical corpora. In ICML, ICML’13, pages 55–63.

[160] Kim, Y. (2014). Convolutional neural networks for sentence classification.
In Association for Computational Linguistics.

[161] Kingma, D. and Ba, J. (2014a). Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

[162] Kingma, D. P. and Ba, J. (2014b). Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980.

[163] Kiritchenko, S., Zhu, X., and Mohammad, S. M. (2014). Sentiment analysis
of short informal texts. Journal of Artificial Intelligence Research, 50:723–762.

[164] Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba,
A., and Fidler, S. (2015). Skip-thought vectors. In Advances in neural informa-
tion processing systems, pages 3294–3302.



216 Chapter 7. Conclusion

[165] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

[166] Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I.,
Zhong, V., Paulus, R., and Socher, R. (2016). Ask me anything: Dynamic
memory networks for natural language processing. In International Conference
on Machine Learning, pages 1378–1387.

[167] Lafferty, J. and Zhai, C. (2001). Document language models, query models,
and risk minimization for information retrieval. In SIGIR ’01, pages 111–119.

[168] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).
Building machines that learn and think like people. Behavioral and Brain
Sciences, 40.

[169] Lavrenko, V. and Croft, W. B. (2001). Relevance based language models.
In SIGIR ’01, pages 120–127.

[170] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.

[171] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551.

[172] Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on Challenges in
Representation Learning, ICML, volume 3, page 2.

[173] Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and Teh, Y. W. (2018). Set
transformer. arXiv preprint arXiv:1810.00825.

[174] Lewis, D. D. (1992). Representation and Learning in Information Retrieval.
PhD thesis, UMass Amherst, Amherst, MA, USA.

[175] Lewis, D. D. (1995). Evaluating and optimizing autonomous text classifi-
cation systems. In SIGIR ’95, pages 246–254.

[176] Lin, Y., Ji, H., Liu, Z., and Sun, M. (2018). Denoising distantly supervised
open-domain question answering. In 56th Annual Meeting of the Association
for Computational Linguistics, pages 1736–1745.

[177] Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B., and Bengio,
Y. (2017). A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130.



BIBLIOGRAPHY 217

[178] Linzen, T., Dupoux, E., and Goldberg, Y. (2016). Assessing the ability of
lstms to learn syntax-sensitive dependencies. Transactions of the Association of
Computational Linguistics, 4(1):521–535.

[179] Liu, X., Gao, J., He, X., Deng, L., Duh, K., and Wang, Y.-y. (2015). Rep-
resentation learning using multi-task deep neural networks for semantic
classification and information retrieval. In NAACL ’15, pages 912–921.

[180] Lopez-Paz, D., Bottou, L., Schölkopf, B., and Vapnik, V. (2016). Uni-
fying distillation and privileged information. In ICLR’16. arXiv preprint
arXiv:1511.03643.

[181] Losada, D. E. and Azzopardi, L. (2008). An analysis on document length
retrieval trends in language modeling smoothing. Inf. Retr., 11(2):109–138.

[182] Lu, Z. and Li, H. (2013). A deep architecture for matching short texts. In
NIPS ’13, pages 1367–1375.

[183] Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM J.
Res. Dev., 2(2):159–165.

[184] Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches
to attention-based neural machine translation. CoRR, abs/1508.04025.

[185] Lv, Y. and Zhai, C. (2009a). Adaptive relevance feedback in information
retrieval. In CIKM ’09, pages 255–264.

[186] Lv, Y. and Zhai, C. (2009b). A comparative study of methods for esti-
mating query language models with pseudo feedback. In CIKM ’09, pages
1895–1898.

[187] Lv, Y. and Zhai, C. (2014). Revisiting the divergence minimization feed-
back model. In CIKM ’14, pages 1863–1866.

[188] Macdonald, C. and Ounis, I. (2007). Expertise drift and query expansion
in expert search. In CIKM ’07, pages 341–350.

[189] Malach, E. and Shalev-Shwartz, S. (2017). Decoupling" when to update"
from" how to update". In NIPS2017.

[190] Markie, P. (2004). Rationalism vs. empiricism.

[191] Marx, M. and Schuth, A. (2010). Dutchparl 1.0 a corpus of parliamentary
documents in dutch. In DIR, pages 82–83.

[192] Masthoff, J. (2011). Group recommender systems: Combining individ-
ual models. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors,
Recommender Systems Handbook, pages 677–702. Springer US.



218 Chapter 7. Conclusion

[193] McCallum, A., Rosenfeld, R., Mitchell, T. M., and Ng, A. Y. (1998). Im-
proving text classification by shrinkage in a hierarchy of classes. In ICML,
pages 359–367.

[194] Meij, E., Weerkamp, W., Balog, K., and de Rijke, M. (2008). Parsimonious
relevance models. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’08,
pages 817–818.

[195] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Dis-
tributed Representations of Words and Phrases and their Compositionality.
In NIPS ’13, pages 3111–3119.

[196] Min, B., Grishman, R., Wan, L., Wang, C., and Gondek, D. (2013). Distant
supervision for relation extraction with an incomplete knowledge base. In
HLT-NAACL, pages 777–782.

[197] Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision
for relation extraction without labeled data. In Association for Computational
Linguistics, pages 1003–1011.

[198] Mitchell, T. M. (1980). The need for biases in learning generalizations.
Technical report, Department of Computer Science, Laboratory for Computer
Science Research, Rutgers University.

[199] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., 1 edition.

[200] Mitra, B., Diaz, F., and Craswell, N. (2017a). Learning to match using
local and distributed representations of text for web search. In WWW ’17,
pages 1291–1299.

[201] Mitra, B., Diaz, F., and Craswell, N. (2017b). Learning to match using
local and distributed representations of text for web search. In WWW ’17,
pages 1291–1299.

[202] Miyato, T., Maeda, S.-i., Ishii, S., and Koyama, M. (2018). Virtual adver-
sarial training: a regularization method for supervised and semi-supervised
learning. IEEE transactions on pattern analysis and machine intelligence.

[203] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning, ICML’10, pages 807–814.

[204] Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., and Stoyanov, V. (2016).
Semeval-2016 task 4: Sentiment analysis in twitter. Proceedings of SemEval,
pages 1–18.



BIBLIOGRAPHY 219

[205] Noroozi, M. and Favaro, P. (2016). Unsupervised learning of visual
representations by solving jigsaw puzzles. In European Conference on Computer
Vision, pages 69–84. Springer.

[206] Ogilvie, P. and Callan, J. (2004). Hierarchical language models for xml
component retrieval. In INEX, pages 224–237.

[207] Oh, H.-S., Choi, Y., and Myaeng, S.-H. (2011). Text classification for a
large-scale taxonomy using dynamically mixed local and global models for a
node. In ECIR, pages 7–18.

[208] Olieman, A., Azarbonyad, H., Dehghani, M., Kamps, J., and Marx, M.
(2014). Entity linking by focusing dbpedia candidate entities. In Proceedings
of the First International Workshop on Entity Recognition and Disambiguation,
ERD ’14.

[209] Onal, K. D., Altingovde, I. S., Karagoz, P., and de Rijke, M. (2016). Getting
started with neural models for semantic matching in web search. arXiv
preprint arXiv:1611.03305.

[210] Ororbia II, A. G., Giles, C. L., and Reitter, D. (2015). Learning a deep
hybrid model for semi-supervised text classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, EMNLP’15.

[211] Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N. Q., Bernardi, R.,
Pezzelle, S., Baroni, M., Boleda, G., and Fernandez, R. (2016). The lambada
dataset: Word prediction requiring a broad discourse context. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics,
volume 1, pages 1525–1534.

[212] Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I., and Talwar, K.
(2017a). Semi-supervised knowledge transfer for deep learning from private
training data. In ICLR. arXiv preprint arXiv:1610.05755.

[213] Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I., and Talwar, K.
(2017b). Semi-supervised knowledge transfer for deep learning from private
training data. In ICLR. arXiv preprint arXiv:1610.05755.

[214] Parikh, A., Täckström, O., Das, D., and Uszkoreit, J. (2016). A decompos-
able attention model. In Empirical Methods in Natural Language Processing.

[215] Pass, G., Chowdhury, A., and Torgeson, C. (2006). A picture of search. In
InfoScale ’06.

[216] Patrini, G., Nielsen, F., Nock, R., and Carioni, M. (2016). Loss factorization,
weakly supervised learning and label noise robustness. In International
Conference on Machine Learning, pages 708–717.



220 Chapter 7. Conclusion

[217] Patrini, G., Rozza, A., Menon, A., Nock, R., and Qu, L. (2017). Making
neural networks robust to label noise: a loss correction approach. In CVPR.
arXiv preprint arXiv:1609.03683.

[218] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global Vectors
for Word Representation. In EMNLP ’14, pages 1532–1543.

[219] Pepperberg, I. M. (2017). Animal language studies: What happened?
Psychonomic bulletin & review, 24(1):181–185.

[220] Phan, N., Wang, Y., Wu, X., and Dou, D. (2016). Differential privacy
preservation for deep auto-encoders: an application of human behavior
prediction. In AAAI, pages 1309–1316.

[221] PoliticalMashup (2015). Political mashup project. http://politicalmashup.nl/
and http://schema.politicalmashup.nl/ . Netherlands Organization for Scientific
Research.

[222] Quiroz, L., Mennes, L., Dehghani, M., Kanoulas, E., et al. (2016). Distribu-
tional semantics for medical information extraction. In CLEF Working Notes,
pages 109–122.

[223] Rae, J., Hunt, J. J., Danihelka, I., Harley, T., Senior, A. W., Wayne, G.,
Graves, A., and Lillicrap, T. (2016). Scaling memory-augmented neural
networks with sparse reads and writes. In Advances in Neural Information
Processing Systems, pages 3621–3629.

[224] Raghunathan, A., Frostig, R., Duchi, J., and Liang, P. (2016). Estimation
from indirect supervision with linear moments. In International Conference on
Machine Learning, pages 2568–2577.

[225] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+
questions for machine comprehension of text. In Conference on Empirical
Methods in Natural Language Processing, pages 2383–2392.

[226] Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and Ré, C. (2016). Data
programming: Creating large training sets, quickly. In Advances in Neural
Information Processing Systems, pages 3567–3575.

[227] Ravi, S. and Larochelle, H. (2016). Optimization as a model for few-shot
learning. In ICLR.

[228] Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., and Rabinovich,
A. (2015). Training deep neural networks on noisy labels with bootstrapping.
In ICLR2015-Workshop.

http://politicalmashup.nl/
http://schema.politicalmashup.nl/


BIBLIOGRAPHY 221

[229] Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. (2017). Holoclean: Holistic
data repairs with probabilistic inference. PVLDB, 10(11):1190–1201.

[230] Riezler, S., Simianer, P., and Haas, C. (2014). Response-based learning for
grounded machine translation. In Association for Computational Linguistics,
pages 881–891.

[231] Robertson, S. (1977). The probability ranking principle in ir. Journal of
Documentation, 33(4):294–304.

[232] Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance frame-
work: Bm25 and beyond. Foundations and Trends in Information Retrieval,
3(4):333–389.

[233] Robertson, S. E. and Jones, K. S. (1976). Relevance weighting of search
terms. JASIS, 27(3):129–146.

[234] Rocchio, J. (1971). Relevance Feedback in Information Retrieval, pages 313–
323. Prentice-Hall, Inc. reprinted from Scientific Report ISR-9, Computation
Laboratory, Harvard University, August 1965.

[235] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio,
Y. (2014). Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

[236] Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised
self-training of object detection models. In Seventh IEEE Workshop on Applica-
tions of Computer Vision.

[237] Rosenthal, S., Farra, N., and Nakov, P. (2017). Semeval-2017 task 4: Senti-
ment analysis in twitter. In Proceedings of the 11th International Workshop on
Semantic Evaluation, SemEval’17, pages 502–518.

[238] Rosenthal, S., Nakov, P., Kiritchenko, S., Mohammad, S. M., Ritter, A., and
Stoyanov, V. (2015). Semeval-2015 task 10: Sentiment analysis in twitter. In
Proceedings of the 9th international workshop on semantic evaluation, SemEval’15,
pages 451–463.

[239] Roth, D. (2017). Incidental supervision: Moving beyond supervised
learning. In AAAI, pages 4885–4890.

[240] Rouvier, M. and Favre, B. (2016). Sensei-lif at semeval-2016 task 4: Polarity
embedding fusion for robust sentiment analysis. Proceedings of SemEval, pages
202–208.

[241] Ruder, S. (2019). Neural Transfer Learning for Natural Language Processing.
PhD thesis, National University of Ireland Galway.



222 Chapter 7. Conclusion

[242] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural
networks. arXiv preprint arXiv:1606.04671.

[243] Ruthven, I. and Lalmas, M. (2003). A survey on the use of relevance
feedback for information access systems. Knowl. Eng. Rev., 18(2):95–145.

[244] Salton, G. and Yang, C.-S. (1973). On the specification of term values in
automatic indexing. Journal of documentation, 29(4):351–372.

[245] Saracevic, T. (1975). Relevance: A review of the literature and a framework
for thinking on the notion in information science. JASIST, 26:321–343.

[246] Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM Comput. Surv., 34(1):1–47.

[247] Senot, C., Kostadinov, D., Bouzid, M., Picault, J., and Aghasaryan, A.
(2011). Evaluation of group profiling strategies. In IJCAI, pages 2728–2733.

[248] Seo, M., Kembhavi, A., Farhadi, A., and Hajishirzi, H. (2017). Bidirectional
attention flow for machine comprehension. In International Conference on
Learning Representations.

[249] Seo, M., Min, S., Farhadi, A., and Hajishirzi, H. (2016). Query-reduction
networks for question answering. arXiv preprint arXiv:1606.04582.

[250] Severyn, A. and Moschitti, A. (2015a). Twitter sentiment analysis with
deep convolutional neural networks. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 959–962. ACM.

[251] Severyn, A. and Moschitti, A. (2015b). Unitn: Training deep convolutional
neural network for twitter sentiment classification. In Proceedings of the 9th
International Workshop on Semantic Evaluation (SemEval 2015), Association for
Computational Linguistics, Denver, Colorado, pages 464–469.

[252] Shang, S., Hui, Y., Hui, P., Cuff, P., and Kulkarni, S. (2014). Beyond per-
sonalization and anonymity: Towards a group-based recommender system.
In SAC, pages 266–273.

[253] Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G. (2014). Learning semantic
representations using convolutional neural networks for web search. In
WWW ’14, pages 373–374.

[254] Shen, Y., Huang, P.-S., Gao, J., and Chen, W. (2017). Reasonet: Learning to
stop reading in machine comprehension. In 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1047–1055.



BIBLIOGRAPHY 223

[255] Shen, Y., Seeger, M., and Ng, A. Y. (2006). Fast gaussian process regression
using kd-trees. In Advances in neural information processing systems, pages
1225–1232.

[256] Shokri, R. and Shmatikov, V. (2015). Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 1310–1321. ACM.

[257] Shokri, R., Stronati, M., and Shmatikov, V. (2016). Membership inference
attacks against machine learning models. arXiv preprint arXiv:1610.05820.

[258] Sigurbjörnsson, B., Kamps, J., and de Rijke, M. (2004). An element-based
approach to xml retrieval. In INEX, pages 19–26.

[259] Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for
few-shot learning. In Advances in Neural Information Processing Systems, pages
4077–4087.

[260] Socher, R., Ganjoo, M., Manning, C. D., and Ng, A. (2013). Zero-shot
learning through cross-modal transfer. In Advances in neural information
processing systems, pages 935–943.

[261] Sodian, B. and Wimmer, H. (1987). Children’s understanding of inference
as a source of knowledge. Child development, pages 424–433.

[262] Song, Y. and Roth, D. (2014). On dataless hierarchical text classification.
In AAAI, pages 1579–1585.

[263] Sparck Jones, K., Robertson, S., Hiemstra, D., and Hugo, Z. (2003). Lan-
guage modeling and relevance. In Language Modeling for Information Retrieval,
pages 57–71.

[264] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958.

[265] Stewart, R. and Ermon, S. (2017). Label-free supervision of neural net-
works with physics and domain knowledge. In AAAI, pages 2576–2582.

[266] Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., and Fergus, R. (2015a).
Training convolutional networks with noisy labels. In Workshop contribution
at ICLR 2015.

[267] Sukhbaatar, S., szlam, a., Weston, J., and Fergus, R. (2015b). End-to-end
memory networks. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 28,
pages 2440–2448. Curran Associates, Inc.



224 Chapter 7. Conclusion

[268] Sun, A. and Lim, E.-P. (2001). Hierarchical text classification and evalua-
tion. In ICDM, pages 521–528.

[269] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting
unreasonable effectiveness of data in deep learning era. arXiv preprint
arXiv:1707.02968.

[270] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence
learning with neural networks. In Advances in Neural Information Processing
Systems, pages 3104–3112.

[271] Tabrizi, S. A., Dadashkarimi, J., Dehghani, M., Nasr Esfahani, H., and
Shakery, A. (2015). Revisiting optimal rank aggregation: A dynamic pro-
gramming approach. In Proceedings of the 2015 International Conference on The
Theory of Information Retrieval, ICTIR ’15.

[272] Tang, L., Wang, X., and Liu, H. (2011). Group profiling for understanding
social structures. TOIS, 3(1):15:1–15:25.

[273] Tang, Y. (2016). Tf.learn: Tensorflow’s high-level module for distributed
machine learning. arXiv preprint arXiv:1612.04251.

[274] Tao, T. and Zhai, C. (2006). Regularized estimation of mixture models for
robust pseudo-relevance feedback. In SIGIR ’06, pages 162–169.

[275] Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical
dirichlet processes. Journal of the American Statistical Association, 101(476):1566–
1581.

[276] Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D.
(2011). How to grow a mind: Statistics, structure, and abstraction. science,
331(6022):1279–1285.

[277] Terra, E. and Warren, R. (2005). Poison pills: Harmful relevant documents
in feedback. In CIKM ’05, pages 319–320.

[278] Timpf, S. (1999). Abstraction, levels of detail, and hierarchies in map
series. In International conference on spatial information theory, pages 125–139.
Springer.

[279] Titsias, M. K. (2009). Variational learning of inducing variables in sparse
gaussian processes. In International Conference on Artificial Intelligence and
Statistics, pages 567–574.

[280] Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Ristenpart, T. (2016).
Stealing machine learning models via prediction apis. In USENIX Security.



BIBLIOGRAPHY 225

[281] Tran, K., Bisazza, A., and Monz, C. (2018a). The importance of being
recurrent for modeling hierarchical structure. In Proceedings of NAACL’18.

[282] Tran, K., Bisazza, A., and Monz, C. (2018b). The importance of being
recurrent for modeling hierarchical structure. In Proceedings of NAACL’18.

[283] Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., and Blunsom, P. (2018).
Neural arithmetic logic units. In Advances in Neural Information Processing
Systems, pages 8046–8055.

[284] Vahdat, A. (2017). Toward robustness against label noise in training deep
discriminative neural networks. In NIPS ’17.

[285] Van Rijsbergen, C., Harper, D., and Porter, M. (1981). The selection of
good search terms. IP&M, 17:77–91.

[286] Van Rijsbergen, C. J. (1986). A new theoretical framework for information
retrieval. SIGIR Forum, 21(1-2):23–29.

[287] Vapnik, V. and Izmailov, R. (2015). Learning using privileged information:
similarity control and knowledge transfer. Journal of machine learning research,
16(20232049):55.

[288] Vapnik, V. and Vashist, A. (2009). A new learning paradigm: Learning
using privileged information. Neural networks, 22(5):544–557.

[289] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

[290] Varma, P., He, B., Iter, D., Xu, P., Yu, R., De Sa, C., and Ré, C. (2017).
Socratic learning: Correcting misspecified generative models using discrimi-
native models. arXiv preprint arXiv:1610.08123.

[291] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017a). Attention is all you need. CoRR.

[292] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., and Polosukhin, I. (2017b). Attention is all you need. In
Advances in Neural Information Processing Systems, pages 5998–6008.

[293] Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., and Belongie, S.
(2017). Learning from noisy large-scale datasets with minimal supervision.
In The Conference on Computer Vision and Pattern Recognition.

[294] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching
networks for one shot learning. In Advances in neural information processing
systems, pages 3630–3638.



226 Chapter 7. Conclusion

[295] Voorhees, E. M. (2003). Overview of the trec 2003 robust retrieval track.
In TREC 2003, pages 69–77.

[296] Wainwright, M. J., Jordan, M. I., and Duchi, J. C. (2012). Privacy aware
learning. In Advances in Neural Information Processing Systems, pages 1430–
1438.

[297] Wang, S., Yu, M., Guo, X., Wang, Z., Klinger, T., Zhang, W., Chang, S.,
Tesauro, G., Zhou, B., and Jiang, J. (2018a). R3: Reinforced reader-ranker for
open-domain question answering. In The Thirty-Second AAAI Conference on
Artificial Intelligence, pages 5981–5988.

[298] Wang, S., Yu, M., Jiang, J., Zhang, W., Guo, X., Chang, S., Wang, Z.,
Klinger, T., Tesauro, G., and Campbell, M. (2018b). Evidence aggregation
for answer re-ranking in open-domain question answering. In International
Conference on Learning Representations.

[299] Warren, R. H. and Liu, T. (2004). A review of relevance feedback experi-
ments at the 2003 reliable information access (ria) workshop. In SIGIR ’04,
pages 570–571.

[300] Wauthier, F. L., Jordan, M. I., and Jojic, N. (2013). Efficient ranking from
pairwise comparisons. In ICML’13, pages 109–117.

[301] Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2005). Exponential family
harmoniums with an application to information retrieval. In Advances in
neural information processing systems, pages 1481–1488.

[302] Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin,
A., and Mikolov, T. (2015). Towards ai-complete question answering: A set
of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

[303] Weston, J., Ratle, F., Mobahi, H., and Collobert, R. (2012). Deep learning
via semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages
639–655. Springer.

[304] Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–280.

[305] Wilson, A. G. and Nickisch, H. (2015). Kernel interpolation for scalable
structured gaussian processes. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15,
pages 1775–1784.

[306] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,
Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural



BIBLIOGRAPHY 227

machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144.

[307] Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., and Le, Q. V. (2019). Unsupervised
data augmentation. arXiv preprint arXiv:1904.12848.

[308] Xiong, C., Dai, Z., Callan, J., Liu, Z., and Power, R. (2017a). End-to-end
neural ad-hoc ranking with kernel pooling. In SIGIR ’17, pages 55–64.

[309] Xiong, C., Zhong, V., and Socher, R. (2017b). Dynamic coattention net-
works for question answering. In International Conference on Learning Repre-
sentations.

[310] Xue, G.-R., Dai, W., Yang, Q., and Yu, Y. (2008a). Topic-bridged plsa for
cross-domain text classification. In SIGIR ’08, pages 627–634.

[311] Xue, G.-R., Xing, D., Yang, Q., and Yu, Y. (2008b). Deep classification in
large-scale text hierarchies. In SIGIR, pages 619–626.

[312] Yang, G. H. and Zhang, S. (2017). Differential privacy for information
retrieval. In Proceedings of the ACM SIGIR International Conference on Theory of
Information Retrieval, pages 325–326.

[313] Yang, L., Ai, Q., Guo, J., and Croft, W. B. (2016). anmm: Ranking short
answer texts with attention-based neural matching model. In CIKM ’16,
pages 287–296.

[314] Yang, W., Lu, K., Yang, P., and Lin, J. (2019). Critically examining the
“neural hype”: Weak baselines and the additivity of effectiveness gains from
neural ranking models. arXiv preprint arXiv:1904.09171.

[315] Yao, L., Mimno, D., and McCallum, A. (2009). Efficient methods for
topic model inference on streaming document collections. In SIGKDD, pages
937–946.

[316] Yogatama, D., Miao, Y., Melis, G., Ling, W., Kuncoro, A., Dyer, C., and
Blunsom, P. (2018). Memory architectures in recurrent neural network lan-
guage models. In International Conference on Learning Representations.

[317] Yu, B., Kaufmann, S., and Diermeier, D. (2008). Classifying party af-
filiation from political speech. Journal of Information Technology & Politics,
5(1):33–48.

[318] Yu, Z., Zhou, X., Hao, Y., and Gu, J. (2006). Tv program recommendation
for multiple viewers based on user profile merging. User Modeling and User-
Adapted Interaction, 16(1):63–82.



228 Chapter 7. Conclusion

[319] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R.,
and Smola, A. J. (2017). Deep sets. In Advances in neural information processing
systems, pages 3391–3401.

[320] Zamani, H. and Croft, W. B. (2016a). Embedding-based query language
models. In ICTIR ’16, pages 147–156.

[321] Zamani, H. and Croft, W. B. (2016b). Estimating embedding vectors for
queries. In ICTIR ’16, pages 123–132.

[322] Zamani, H. and Croft, W. B. (2017). Relevance-based word embedding.
In SIGIR ’17.

[323] Zamani, H. and Croft, W. B. (2018). On the theory of weak supervision
for information retrieval. In Proceedings of the 2018 ACM SIGIR International
Conference on Theory of Information Retrieval, ICTIR ’18, pages 147–154.

[324] Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., and Kamps, J.
(2018a). From neural re-ranking to neural ranking: Learning a sparse repre-
sentation for inverted indexing. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM ’18.

[325] Zamani, H., Dehghani, M., Diaz, F., Li, H., and Craswell, N. (2018b).
Workshop on learning from limited or noisy data for information retrieval.
In The 41st International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’18.

[326] Zaremba, W. and Sutskever, I. (2015). Learning to execute. CoRR,
abs/1410.4615.

[327] Zavitsanos, E., Paliouras, G., and Vouros, G. A. (2011). Non-parametric
estimation of topic hierarchies from texts with hierarchical dirichlet processes.
J. Mach. Learn. Res., 12:2749–2775.

[328] Zhai, C. (2008). Statistical language models for information retrieval.
Synthesis Lectures on Human Language Technologies, 1(1):1–141.

[329] Zhai, C. and Lafferty, J. (2001a). Model-based feedback in the language
modeling approach to information retrieval. In CIKM ’01, pages 403–410.

[330] Zhai, C. and Lafferty, J. (2001b). A study of smoothing methods for
language models applied to ad hoc information retrieval. In SIGIR ’01, pages
334–342.

[331] Zhang, Y., Rahman, M. M., Braylan, A., Dang, B., Chang, H.-L., Kim,
H., McNamara, Q., Angert, A., Banner, E., Khetan, V., et al. (2016). Neural
information retrieval: A literature review. arXiv preprint arXiv:1611.06792.



BIBLIOGRAPHY 229

[332] Zheng, G. and Callan, J. (2015). Learning to Reweight Terms with Dis-
tributed Representations. In SIGIR ’15, pages 575–584.

[333] Zhou, D., Xiao, L., and Wu, M. (2011). Hierarchical classification via
orthogonal transfer. In ICML, pages 801–808.

[334] Zhou, Z.-H. (2018). A brief introduction to weakly supervised learning.
National Science Review, 5(1):44–53.





Summary
Learning with Imperfect Supervision for Language Understanding

Humans learn to solve complex problems and uncover underlying concepts and
relations given limited, noisy or inconsistent observations and draw successful
generalizations based on them. This rests largely on the poverty of the stimulus
argument, or what is sometimes called Plato’s problem: “How do we know so
much when the evidence available to us is so meagre?”

In contrast, the success of today’s data-driven machine learning models is often
strongly correlated with the amount of available high quality labeled data
and teaching machines using imperfect supervision remains a key challenge. In
practice, however, for many applications, large-scaled high-quality training
data is not available, which highlights the increasing need for building models
with the ability to learn complex tasks with imperfect supervision, i.e., where
the learning process is based on imperfect training samples.

When designing learning algorithms, pure data-driven learning, which relies
only on previous experience, does not seem to be able to learn generalizable
solutions. Similar to human’s innately primed learning, having part of the
knowledge encoded in the learning algorithms in the form of strong or weak
biases, can help learning solutions that better generalize to unseen samples.

In this thesis, we focus on the problem of the poverty of stimulus for learning
algorithms. We argue that even noisy and limited signals can contain a great
deal of valid information that can be incorporated along with prior knowledge
and biases that are encoded into learning algorithms in order to solve complex
problems. We improve the process of learning with imperfect supervision by (i)
employing prior knowledge in learning algorithms, (ii) augmenting data and learning
to learn how to better use the data, and (iii) introducing inductive biases to learning
algorithms . These general ideas are, in fact, the key ingredients for building any
learning algorithms that can generalize beyond (imperfections in) the observed
data.

We concentrate on language understanding and reasoning, as one of the extraor-
dinary cognitive abilities of humans, as well as a pivotal problem in artificial
intelligence. We try to improve the learning process, in more principled ways
than ad-hoc and domain or task-specific tricks to improve the output. We
investigate our ideas on a wide range of sequence modeling and language
understanding tasks.
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Samenvatting
Leren met Imperfecte Supervisie om Taal te Begrijpen

Mensen leren complexe problemen op te lossen en onderliggende concepten en
relaties te ontdekken op basis van beperkte, ruizige of inconsistente observaties
en kunnen daarmee succesvol generaliseren. Dit berust grotendeels op het
argument van de armoede van de stimulus, ofwel het probleem van Plato: “Hoe
weten we zoveel wanneer het beschikbare bewijs zo mager is?”
Daarentegen is het succes van machine leren vaak sterk gecorreleerd met de
hoeveelheid beschikbare hoge kwaliteit, gelabelde data. Machine leren met
beperkt gelabelde data of met imperfecte supervisie blijft een belangrijke uitdag-
ing. In de praktijk is echter vaak geen grote hoeveelheid gelabelde data van
hoge kwaliteit beschikbaar. Hierdoor ontstaat een toenemende behoefte om
modellen te ontwerpen die complexe taken met imperfecte supervisie kun-
nen oplossen, oftewel waarbij het leerproces op imperfect gelabelde data is
gebaseerd.

Bij het ontwerpen van algoritmen lijken methodes die enkel op basis van eerdere
ervaringen leren geen generaliserende oplossingen op te leveren. Net als bij
menselijk leren, waarbij een deel van de kennis van nature aanwezig is, kunnen
ook leeralgoritmen mogelijk beter generaliseren wanneer een deel van de kennis
gecodeerd wordt in het algoritme in de vorm van voorkennis.
In dit proefschrift richten we ons op het probleem van de armoede van de stim-
ulus voor machine leren. Wij stellen dat zelfs beperkte, ruizige signalen nuttige
informatie kunnen bevatten. Zulke signalen kunnen, samen met voorkennis die
wordt gecodeerd in de algoritmen, gebruikt worden om complexe problemen
op te lossen. We verbeteren het leerproces met imperfecte supervisie door (i)
voorkennis in leeralgoritmen toe te passen, (ii) data kunstmatig aan te vullen en te
leren hoe de data beter te gebruiken is, en (iii) inductieve bias in de leeralgoritmen te
introduceren. Deze algemene ideeën zijn in feite de belangrijkste ingrediënten
voor het bouwen van leeralgoritmen die beter kunnen generaliseren bij beperkt
gelabelde data.
We concentreren ons op het begrijpen van en redeneren met taal, één van
de unieke cognitieve vaardigheden van de mens en een cruciaal probleem
in de kunstmatige intelligentie. We proberen het leerproces te verbeteren op
principiële manieren die ad-hoc en domein- of taakspecifieke trucs vermijden.
We onderzoeken onze ideeën aan de hand van een breed scala van taken zoals
het modelleren van sequenties en taalbegrip.
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