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Chapter 1

Introduction

This thesis is concerned with how one learns from incoming information. It ad-
dresses learning as the process ensuing from observations, from announcements,
from revising one’s beliefs, and from stabilizing on a correct hypothesis. In the
body of work presented here, we study various perspectives on both learning
and its relation with knowledge & belief. Our approach is formal in nature, and
we mostly focus on the process of inferring general conclusions from incoming
data that are spread over more than one step. This process is known as in-
ductive inference (or inductive learning). We use logic systems and mathemati-
cal/computational frameworks in order to analyze multiple mechanisms involved
in said process. To be specific, our work is based on two areas that independently
study dynamics of information: Dynamic Epistemic Logic (DEL) and Formal
Learning Theory (FLT).

What are we if not continual learners. From the early stages of our life and
throughout our adulthood we acquire information on a regular basis. Our hu-
man ancestors learned about their environment both by receiving evidence about
changes in the world —in the form of factual observations and truthful announce-
ments— and by observing actions of others. Learning successfully increased their
ability to advantageously face new challenges, to avoid danger, and to survive. Ac-
quiring truthful information plays a pivotal role in the way humans form beliefs
and act on them. In fact, even with their constrained and limited capabilities
to experience the reality of the world, humans are able to form general theories
about the world. When not falsified, these theories (or hypotheses) may transform
into (a certain kind of) knowledge.

The general concept of learning encompasses the one-step changes in the infor-
mation state of a learner, together with their long-term horizon. To illustrate the
latter, consider when children learn a mother language from a scattered sample
of utterances. Having this capacity seems to be one of the trademarks of human
intelligence. The acquired language is expressively rich and complex, and it allows
children to communicate effectively with people in their community. As natural as
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2 Chapter 1. Introduction

learning may seem to be, understanding its properties and components is not an
easy task. Within the fields of artificial intelligence and cognitive science, analyz-
ing learning has been crucial in the ongoing challenge of modelling and designing
“intelligent” systems.

On the one hand, Dynamic Epistemic Logic (DEL) studies the process of
incorporating new information into one’s prior epistemic/doxastic state in a step-
by-step manner, from a modal logic perspective. On the other, Formal Learning
Theory studies the long-term mechanism of learning, from a mathematical and
computational perspective. In what follows, we present a general overview of the
developments in these two areas that are relevant for this thesis. After that we
point out some of the questions and issues that we solve, and then we provide a
summary of the main contributions of our work.

Dynamic Epistemic Logic is a generic term for a family of modal logics of
information dynamics. It employs mathematical tools to reason about knowledge,
belief, and the flow of information from an agent’s current epistemic/doxastic
state to the next one (Baltag et al., 1998; van Benthem, 2011; van Ditmarsch
et al., 2007). Applications of DEL address issues in epistemology, economics,
artificial intelligence, and theoretical computer science (for a general overview see
e.g., van Ditmarsch et al., 2015a; Baltag and Renne, 2016).

Technically speaking, Dynamic Epistemic Logic incorporates dynamics into
static modal logics for knowledge & belief, which are respectively called epistemic
logic and doxastic logic. This family of modal logics originates from the seminal
work of Hintikka (1962), inspired by the thoughts of von Wright (1951). In his
work, Hintikka (1962) presents a precise modal language to naturally “talk about”
knowledge & belief. These epistemic notions are modelled by interpreting them
as normal modal operators in the standard possible worlds relational semantics
(Kripke semantics). Roughly speaking, a relational (Kripke) model in an epis-
temic/doxastic context represents a “screen shot” of the actual information state
of a learner. DEL was developed as an extension of the aforementioned static logic
in order to capture the step-by-step changes of a learner’s epistemic/doxastic state
brought about by new information (Baltag and Renne, 2016). The standard way
to represent these changes in DEL is with the so-called dynamic modalities. These
modalities encode actions (or updates) that transform a model into a new model
called an updated model. Dynamic operators allow us to analyze in a simple way
the epistemic/doxastic changes after an epistemic action has taken place.

One of the most widely studied epistemic actions is the action of incorporating
a new piece of truthful information received via a public announcement into the
current epistemic state of the learner. The corresponding dynamic modal logic
is the so-called Public Announcement Logic (PAL)(Plaza, 1989; Gerbrandy and
Groeneveld, 1997; van Ditmarsch et al., 2007; Balbiani et al., 2008). Arbitrary
Public Announcement Logic (APAL) and its relatives are natural extensions of
PAL. These logics involve the addition of modal operators —like the arbitrary
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announcement modality in APAL— that quantify over public announcements of
some given type. APAL and PAL are of great interest both philosophically and
from the point of view of applications. Motivations range from supporting an
analysis of Fitch’s paradox by modelling notions of “knowability” (van Benthem,
2004), to determining the existence of communication protocols that achieve cer-
tain goals (see e.g., van Ditmarsch, 2003), and more generally, to epistemic plan-
ning (Bolander and Andersen, 2011). One problem with APAL is that it uses an
infinitary axiomatization. In the seminal paper on APAL, Balbiani et al. (2008)
proved completeness using an infinitary rule and claimed that it can be replaced
by a proposed finitary inference rule in theorem proving.1 The finitary rule, while
natural enough and seemingly suited to capture the universal quantifier implicit
in arbitrary announcement modalities, has been proved to be unsound (Kuijer,
2015). It is therefore not guaranteed that the validities of APAL are recursively
enumerable.

An alternative framework that studies dynamics of doxastic states is the so-
called AGM belief revision developed by Alchourrón et al. (1985). Their work also
includes a formal belief revision mechanism for an agent encountering information
contradicting her current beliefs. Motivated by the AGM intuitions and ideas,
belief revision policies have been incorporated in the dynamic programme for
epistemic & doxastic modal logics (van Benthem, 2007).

All the aforementioned logics have been primarily developed within the rela-
tional semantics approach. As it happens, using relational structures to reason
about various epistemic notions naturally brings with it a simple mathematical
treatment. Therefore, it is not surprising these semantics has been the most widely
adopted and the most developed approach in the epistemic logic literature (van
Ditmarsch et al., 2015a). However, using relational semantics to reason about
learning has its limitations. Various interesting epistemic and doxastic notions
that lie at the core of inductive learning cannot be accounted for. In particular,
we cannot express potential incoming information (or potential evidence) that is
a crucial component of the long term aspect of learning.

Potential evidence has been studied already in the logic literature by using
structures called topological spaces and also by using generalizations of those
called subset spaces (Aiello et al., 2007). In fact, the earliest links between topolog-
ical spaces and logic are from the late 1930’s and 1940’s (Tarski, 1938; McKinsey,
1941; McKinsey and Tarski, 1944) (for further comments on this see e.g. Bezhan-
ishvili et al., 2018). Basic topological notions such as open sets naturally repre-
sent pieces of evidence or, observable properties (see e.g., Toelstra and van Dalen,
1988). In the last decades topology and, more generally, subset spaces have been
used to model information dynamics in DEL (see e.g., Özgün (2017); Bjorndahl
(2018)). The reason for this is that the notion of an open set (in short, open) seems

1This means that from any proof of a theorem from the axioms that uses the infinitary rule
we can obtain a finitary proof of the same theorem, by using the finitary rule instead.
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naturally suited to representing information states (Vickers, 1989). Furthermore,
shrinking an open into a smaller one can account for any kind of evidence gather-
ing leading to knowledge, i.e., a type of epistemic effort (Moss and Parikh, 1992;
Dabrowski et al., 1996; Parikh et al., 2007).

Moss and Parikh (1992) were the first to have talked about epistemic effort in
logic terms. They presented an epistemically motivated bimodal logic to reason
about sets and points using subset space semantics. Their framework, called Topo-
logic, resulted in a novel approach to model epistemic effort such as observational
effort, or information gain via measurement, or announcement (Moss and Parikh,
1992; Dabrowski et al., 1996; Georgatos, 1994, 1997; Parikh et al., 2007). Tech-
nically speaking, epistemic effort is captured by a modal operator called the
effort modality. This modal operator quantifies over collections of opens in a sub-
set space which represent potential incoming evidence. Therefore, in topologic
one can distinguish between the actual information state of the learner and the
potential evidence that she may acquire later on. Moss and Parikh (1992) and
Dabrowski et al. (1996) formalize the learning theoretic notions of learnability
with certainty, verifiability/falsifiability/decidability with certainty using Topo-
logic. Further work are the extensions of topologic that include updates with a
topological interpretation used to model evidence based knowledge and knowa-
bility (Baltag et al., 2017; Özgün, 2017; Bjorndahl, 2018; Bjorndahl and Özgün,
2019).

We now shift our attention to Formal Learning Theory (FLT). Formal Learn-
ing Theory is an umbrella term for a family of mathematical and computational
frameworks that study inductive inference (or inductive learning) by means of a
learning function. Such a term refers to the process of conjecture change using
incoming information that may result in stabilizing on an accurate hypothesis.
Motivations of studying inductive learning range from modelling children language
acquisition (inferring a grammar from inductively given examples of a language)
and scientific inquiry (inferring a general hypothesis from an inductively given
stream of empirical data).2

Inductive inference in the context of scientific inquiry has entertained and
intrigued scientists and philosophers since the 16th-18th century. Bacon (1620),
Mill (1843) and Whewell (1858b,a) in their work independently discuss the im-
portant role of observations in scientific discovery (Klein, 2016; Bogen, 2017). We
quote (Whewell, 1858b, Aphorism XI, p. 6):

Observed facts are connected so as to produce new truths, by superin-
ducing upon them an idea: and such truths are obtained by Induction.

2Formal learning theory often uses recursion-theoretic tools to reason about inductive in-
ference with a computational learner, represented by a recursive function, an algorithm (or
effective procedure) or an inference machine.
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With the emergence of artificial intelligence and machine learning in the
1950’s, the study of inductive inference gained attention in the computer sci-
ence community (for a general overview see e.g., Schulte (2018); Bringsjord and
Govindarajulu (2019)). More recent work on this stems from the pioneering for-
mal studies of Putnam (1963), Solomonoff (1964a,b), and Gold (1967). With the
aim of modelling children language acquisition, Gold’s framework identification
in the limit (or learning in the limit) marked the beginning of a mathematical
and computational treatment for inductive learning.

The learning task in Gold’s model consists of identifying a language (repre-
sented by a set of symbols) amidst a collection of languages on the basis of an
infinite stream of examples from the language. The stream of examples consists
either of positive data (an enumeration of all members of the language) or of
complete data (positive and negative data, labelling all sentences as belonging to
the language or not). Learning in the limit considers a learner to be successful if it
stabilizes on a correct hypothesis after only finitely many mind changes. The fact
that such a learner keeps conjecturing forever (even when she already stabilized
on a correct hypothesis) suggests that she does not necessarily know when her
conjecture is correct. Thus, the learner still entertains the possibility of acquir-
ing contradictory information later on that will force her to change her conjecture
(Gold, 1967). On a slightly simpler approach, finite identification (or learning with
certainty) considers a more restricted notion of a successful learner (Mukouchi,
1992; Lange and Zeugmann, 1992). In this framework, a learner can produce just
one conjecture that must be correct immediately.

In (Gold, 1967), a huge difference in power between learning with positive
data and learning with complete data is exposed. With positive data, a family
of languages containing all finite languages and at least one infinite one is not
learnable. With complete data the learning task becomes almost trivial, since
almost any (computationally interesting) collection of languages can be learnt in
such a way. The difference in learning power between finite identification with
positive information (pfi) and finite identification with complete information (cfi)
has been briefly discussed and settled in Mukouchi (1992). As expected, cfi is more
powerful than pfi. Still, this result and other relevant discussions in the literature
do not provide a detailed analysis that make the differences between pfi and cfi
explicit (for a general overview and discussion see Zeugmann and Lange (1995)).

On a different approach in inductive inference, Kelly (1996) focuses on, what
he calls, reliable learning. In his work, Kelly (1996) addresses possible mathemat-
ical conditions guaranteeing the learner to eventually converge to the truth. He
uses probability theory, topology and logic together with formal epistemology as
a basis for addressing learning theoretic questions.

One can see, from what we have discussed so far, the close proximity of DEL
and FLT, regardless of the distinctness of their methodologies (for a detailed
discussion of this, we refer to Gierasimczuk, 2010, Chapter 3, p. 27–37). This
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proximity has recently gained attention in attempts to jointly analyse scientific
inquiry (inductive learnability), information processing, and other learning theo-
retic notions (for a detailed summary of this connection, see Gierasimczuk et al.,
2014). In particular, the connection between FLT and DEL originates from their
common interest concerning the process of learning that leads to knowledge. Some
of their shared relevant notions are solvability, success, Ockham’s razor, learner,
learning situations, and learning methods, just to mention some. By bringing
both frameworks together we have the step-by-step information changes from
DEL, together with their long-term learning horizon in FLT. A combined study
gives us a way to model the two aforementioned processes in learning.

To the best of our knowledge, all the logics connecting these two areas of
research have been studied with positive information only and mostly for fi-
nite identification within a relational semantics approach (see e.g., Gierasimczuk
(2010)). More recent results are in Dégremont and Gierasimczuk, 2011; Bolander
and Gierasimczuk, 2015, 2017, and for a brief summary see (Gierasimczuk et al.,
2014). Almost nothing of the kind has been developed for learning in the limit. In
more recent work, Baltag et al. (2015) use topology to reason about learning in
the limit and the solvability of inductive problems. In fact, the authors provide a
topological characterization for the class of inductive problems that are solvable.

Issues and open questions that motivate this dissertation. A consid-
erable gap between DEL and FLT for a wider treatment of learning remains to
be filled. In this dissertation we tackle some of the issues, difficulties, and open
questions that lie in between DEL and FLT. We state some of these issues here.

• For all we know, there are no modal logics in the style of DEL that formalize
learning in the limit and other relevant learning theoretic notions.3

• The long standing open question of finding a recursive axiomatization for
a strong version of Arbitrary Public Announcement Logic (APAL) —as
mentioned above.

• The lack of a deeper comparative analysis of the structural and compu-
tational properties of finite identification with positive and with complete
data that prevents us to point out concretely the differences between these
two formalisms. This complicates the task of bringing DEL and FLT closer
together even more.

Contributions of this thesis. We now present a detailed description of our
main contributions to the aforementioned body of work.

We develop the connection between DEL and FLT even further in Part I. Mo-
tivated by the work in (Moss and Parikh, 1992; Dabrowski et al., 1996), (Baltag

3Other frameworks using modal operators —but not in the style of DEL— have been devel-
oped in order to study inductive knowledge and inductive inference, see e.g., (Kelly, 2014).
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et al., 2015) and (Baltag et al., 2017; Özgün, 2017), in Chapter 3 and Chapter
4 we present dynamic modal logics that use the topologic toolkit together with
dynamic modalities to reason, on the one hand, about inductive learning via
observational effort and, on the other, about truthful arbitrary public announce-
ments in multi-agent scenarios.

Our first logic, called Dynamic Logic for Learning Theory (DLLT), uses subset
space semantics and the notion of a learning operator —in the spirit of FLT—
to model inductive learning (learning in the limit) in a novel way. We adopt the
same high degree of freedom that FLT gives to the learner, allowing the choice of
any learning method that produces conjectures based on the data.

Subset space semantics and the concept of epistemic effort in (Moss and
Parikh, 1992; Dabrowski et al., 1996) are precisely what we need in order to cap-
ture the notion of potential incoming evidence that is crucial for modelling learn-
ing in the limit. Semantically, we take intersection spaces (a type of subset spaces
that are closed under finite non-empty intersections), with points interpreted as
possible worlds and neighbourhoods interpreted as observational evidence (or in-
formation states). We endow these structures with a learning function, mapping
every information state to a conjecture, representing the learner’s strongest be-
lief in this state. The language of DLLT has simple observational variables that
capture factual observations about the world. We add dynamic modalities called
observational events built from simple observational variables and using sequen-
tial composition to represent successive observations. With this logic, we are able
to formalize in a simple way other relevant learning theoretic notions such as
inductive knowledge, inductive verifiability, and inductive falsifiability.

The learner in FLT (and therefore in our Dynamic Logic for Learning Theory)
is assumed to satisfy only very few rationality constraints. We are also interested
in studying inductive learning with a fully rational learner. For that purpose,
our second logic Dynamic Logic for AGM Learning (AGML) extends DLLT in
order to model learning in the limit with a fully rational learner in the style
of AGM belief revision theory. Moreover, in AGML we model inductive learn-
ing from partial observations. Partial observations capture the idea of receiving
incomplete reports from fully-determined observations or in case the learner is
not sure which of (finitely) many determined observations has taken place. Such
situations are very common (if not necessary) in empirical sciences. In order to
capture partial observations in our semantics, our models are now with respect
to lattice spaces (intersection spaces that are closed under finite unions). We also
extend the syntax accordingly. We present expressivity, soundness, and complete-
ness results for both logics. We will talk in detail about the technical results with
respect to our two systems DLLT and AGML (our expressivity results and the
complete axiomatization) at the end of Chapter 3.

We then shift our focus to evidence gathering via public announcements and
arbitrary public announcements in scenarios with multiple learners. Our work in
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Chapter 4 is strongly motivated by our aim of solving the long-standing open ques-
tion of providing a recursive axiomatization for APAL. Recall the problem with
the unsound finitary rule proposed for APAL in Balbiani et al. (2008) mentioned
above. We analyze the reasons for this unsoundness, showing that it is due to the
model’s “lack of memory,” namely that information is lost after updates. We fix
this problem by adding to the models a “memory” (recording the initial states
before any updates), and we show that this addition makes the critical inference
rule sound. This results in finding a recursive axiomatization for a strong version
of APAL. A similar problem occurs for APAL’s relative Group Announcement
Logic (GAL). Thus, we do a similar treatment for Group Announcement Logic
succeeding in obtaining a finitary axiomatization for its memory equipped rela-
tive. We prove soundness and completeness for the both memory-enhanced logics.

We then put aside the dynamic logic enterprise and focus purely on finite
identification in FLT. In particular, we are concerned with obtaining a more fine-
grained theoretical analysis of the distinction between finite identification with
positive information (pfi) and with complete (positive and negaitive) information
(cfi). The difference between the two, if not as huge as in the limit case (for a
general overview and discussion see Zeugmann and Lange (1995)) is, as we will
show in Part II of this dissertation, considerable not only in power but also in
character.

We first focus on the structural differences of families of languages that are pfi
and families that are cfi without taking into account the computational aspects
(Chapter 5). Thus, everything we do in this chapter is with respect to non-
effective finite identification. In particular, we investigate whether any finitely
identifiable family is contained in a maximal finitely identifiable one. Maximal
learnable families are of special interest because any learner who can learn a
maximal learnable family can also learn any of its subfamilies. Moreover, it turns
out that we obtain more insight into the class of all learnable families if we
know more about the class of the maximal ones. First, we address this in the
setting of positive data. We get a positive answer for families containing only
finite languages. We then address the question in the setting of complete data. We
provide a strong negative result concerning maximal learnable families for effective
or non-effective finite identification with complete data. Any finitely identifiable
family can be extended to a larger one which is also finitely identifiable. Therefore,
maximal identifiable families do not exist in the case of complete data.

Next, we study how many maximal extensions a positively identifiable family
has. We concentrate mostly on families with only finite languages. Our leading
conjecture is that any positively identifiable family of finite languages either has
only finitely many maximal pfi extensions or uncountably many. As it happens,
the conjecture is reducible to a purely combinatorial mathematical one. In par-
ticular, we address the question for families which all languages have the same
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number of elements. We first solve it for families of only pairs and then for fami-
lies with only n-tuples in general. We also investigate a more complex case, that
is the case for families containing pairs and triples. In all these cases, families
have either finitely many or uncountably many maximal extensions. The case of
families containing pairs and triples is a first step on the way to establish our
conjecture for families of restricted cardinality.

In Chapter 6 we are interested in the computational properties of families of
languages and whether such properties allow pfi or cfi for a family. In particular,
we analyze infinite anti-chains of finite languages, since for such cases it is not
yet clear to what extent cfi and pfi agree or disagree. As it happens, most of the
obvious examples of such anti-chains are finitely identifiable with positive data,
and therefore, also with complete data. Moreover, pfi holds for many maximal
anti-chains of finite languages. What can we say in general about these issues? Is
every anti-chain of finite languages that is cfi also pfi? Is every maximal anti-chain
of finite languages pfi (or cfi)? We will provide negative answers to all of these
questions. For this purpose, we will focus on anti-chains of only singletons and
pairs. The simple structure of these families makes it easy to study their compu-
tational properties. Still, their analysis is not a trivial matter. In particular, we
want to analyse cases when certain subfamilies of a given pfi family are decidable
or recursively enumerable. This will become handy when we construct negative
answers to the questions posed above.

We also investigate a variation of finite identification that considers a learner
who identifies a language as soon as it is objectively certain which language it
is, called a fastest learner. It is clear that such a learner is closer in spirit to
DEL than the standard learner in FLT. Fastest learning was already studied in
(Gierasimczuk and de Jongh, 2013) for the case of positive information. We give
a much more perspicuous example than the one in (Gierasimczuk and de Jongh,
2013) showing that fastest learning is more restrictive than pfi. Our example
makes the difference between pfi and fastest learning much clearer. We also define
a fastest learner for the case of complete information. We show that with fastest
learners, pfi and cfi finally come closer when identifying infinite anti-chains of
finite languages. Finally, we study learning by queries. This is a variation of cfi
which considers a more active learner, namely one that can ask queries to the
teacher. We show that adding this capacity to the learner does not increase her
learning power.

***

In what follows, we give a brief overview of the structure of the thesis and
a short description of each chapter. In general, our chapters start with an intro-
duction, continuing with the developments of its content and concluding with our
final remarks and connections to other relevant work.

In Chapter 2 we provide the logic and mathematical preliminaries that are
needed for this dissertation.
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The main contributions and original work are presented in four chapters di-
vided in two main parts.

In Part I we present various dynamic logic systems addressing different pro-
cesses involved in learning by information gathering.

In Chapter 3 we first present Dynamic Logic for Learning Theory (DLLT)
and use it to formalize learning in the limit. Then we introduce Dynamic Logic
for AGM Learning (AGML) that extends DLLT in order to model learning in
the limit from partial observations with a fully rational learner in the style of
AGM belief revision theory. We present expressivity, soundness, and completeness
results for both logics.

In Chapter 4 we present Arbitrary Public Announcement Logic with Memory
(APALM) and Group Announcement Logic with Memory (GALM), memory-
enhanced variants of APAL and GAL. We give a recursive axiomatization for
each of them and provide expressivity, soundness, and completeness results for
both logics.

In Part II we focus purely on finite identification. We develop a fine-grained
theoretical analysis of the distinction between finite identification with positive
information (pfi) and with complete information (cfi).

In Chapter 5 we focus on the structural differences of families of languages that
are pfi and families that are cfi without taking into account the computational
aspects. We investigate whether any finitely identifiable family is contained in a
maximal finitely identifiable one, first in the positive data case and then in the
complete data case. We then focus on a conjecture of ours that we partially resolve:
any positively identifiable family of finite languages either has only finitely many
maximal positively identifiable extensions or uncountably many.

In Chapter 6 we are interested in the computational properties of families of
languages. In particular, we analyze infinite anti-chains of finite languages. We
provide negative answers to the following questions: is every anti-chain of finite
languages that is cfi also pfi? Is every maximal anti-chain of finite languages pfi
(or cfi)? We then investigate fastest learning and learning by queries.

Origin of the material

• Chapter 3 is based on three papers where the second paper is an extended
version of the first paper:

Baltag, A., Gierasimczuk, N., Özgün, A., Smets, S. and Vargas-Sandoval,
A. L. (2017). A dynamic logic for learning theory. In Proceedings of the 1st
Dynamic Logic: New Trends and Applications (DaĹı 2017), pp. 35–54.
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Baltag, A., Gierasimczuk, N., Özgün, A., Smets, S. and Vargas-Sandoval,
A. L. (2019). A dynamic logic for learning theory. Journal of Logical and
Algebraic Methods in Programming.

Baltag, A., Özgün, A., Vargas-Sandoval, A. L. (2020). The logic of AGM
learning from partial observations. In Proceedings of the 2nd Dynamic Logic:
New Trends and Applications (DaĹı 2019), pp. 35–52.

• Chapter 4 is based on two papers where the latter is an extended version
of the former:

Baltag, A., Özgün, A., Vargas-Sandoval, A. L. (2018). APAL with memory
is better. In Proceedings of 25th Workshop on Logic, Language, Information
and Computation (WOLLIC 2018), pp 106-129.

Baltag, A., Özgün, A., Vargas-Sandoval, A. L. (2018). APAL with memory
is better. Under review.

• Chapter 5 is based on:

de Jongh, D., Vargas-Sandoval, A.L. (2019). Finite identification with pos-
itive and with complete data. In International Tbilisi Symposium on Logic,
Language, and Computation (TbiLLC 2017), pp. 42–63. Springer.

• Chapter 6 is based on the unpublished manuscript:

de Jongh, D., Vargas-Sandoval, A.L. (2020). Finite identification of anti-
chains of finite languages: Positive data vs complete data.





Chapter 2

Background and Technical Preliminaries

In this chapter we present the required background and technical preliminaries
that will be used in the chapters that follow.

This dissertation is divided in two main: Subset Space Logics for Learning and
Finite Identification with positive data and with complete data. In the two chapters
in Part I we propose logic systems to study various notions of learning, knowledge
and belief. In the two chapters in Part II we investigate a mathematical and
recursion-theoretic perspective on learning called finite identification. Sections
2.1 - 2.2 introduce the necessary background for Part I. Sections 2.3 - 2.3 present
the necessary background for Part II.

In Section 2.1 we present some modal logics for knowledge (Epistemic Logic)
and belief (Doxastic Logic) that have been widely studied in the literature. Then,
in Section 2.1.1, we present Public Announcement Logic, which is a dynamic
extension of the aforementioned logics with dynamic modalities acting as model
transformers. In Section 2.2 we introduce a different kind of semantics named
Subset Space semantics which is used in our logic frameworks. We then shift
our attention to the preliminary notions for Part II. In Section 2.3, we recall
recursive sets, recursively enumerable sets and briefly discuss some of its proper-
ties. We introduce Formal Learning Theory (FLT) in Section 2.4 and the relevant
learning theoretic notions used in this thesis. In Section 2.4.1 we present the
learning theoretic framework for inductive learning called identification in the
limit (or, learning in the limit) introduced by Gold (1967). We then state in Sec-
tion 2.4.2 the core notions and results of a more restricted version of a learning
theoretic framework for inductive learning called finite identification (or learning
with certainty), introduced by Mukouchi (1992) and independently by Lange and
Zeugmann (1992).

What we assume from the reader: For Chapter 3 and Chapter 4 in Part
I, we assume knowledge of core notions of classical propositional logic (CPL)
(see e.g. Chagrov and Zakharyaschev, 1997, Section 1.3 for an axiomatization of
classical propositional logic), the basics of modal logic and relational (Kripke)

13
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semantics (see e.g., Blackburn et al., 2001). In this dissertation we use Hilbert-
style systems to formalize syntactically the definitions of the modal logics that
we study. For Chapter 5 and Chapter 6 in Part II, we assume that the reader is
familiar with basic notions in combinatorial mathematics, the theory of computa-
tion and core notions of recursion theory. In particular, we assume knowledge of
computation-theoretic notions such as the Church-Turing Thesis, the existence of
universal Turing machines, partial recursive functions, and total recursive func-
tions. We also assume familiarity with recursive sets, recursively enumerable sets,
the unsolvability of the Halting Problem, and Kleene’s T-predicate.

2.1 Modal Logics for Knowledge and Belief

In this section, we briefly introduce some modal logics for knowledge and belief. In
the late 1940’s and 1950’s, von Wright (1951) and others noticed that the prop-
erties of knowledge and belief, that were being discussed at the moment, can be
expressed in an axiomatic-deductive system (Rendsvig and Symons, 2019). This
idea was further developed and formalized in the pioneering work of Hintikka
(1962). He used relational semantics for modal logic to formalize knowledge and
belief, interpreting those as normal modal operators. As a result, various features
of knowledge and belief can be formally investigated by using normal modal log-
ics. Since then, variations of these modal logics have been studied and being
further developed (Rendsvig and Symons, 2019).

We start by presenting the basic modal language. Then we shift our attention
right away to an epistemic and doxastic approach where normal modal logics
of knowledge and belief are discussed. Throughout this thesis, we use the term
agent or learner to refer to the subject for which epistemic/doxastic state is being
modelled.

2.1.1. Definition. [Basic Modal Language] Let Prop := {p, q, . . .} be a count-
able set of propositional variables. The language of basic modal logic L2 is defined
recursively as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ,
where p ∈ Prop.

We follow the usual rules for the elimination of the parentheses and we employ
the usual abbreviations for the Boolean connectives ∨, → and ↔. We also use ⊥
as an abbreviation for p ∧ ¬p and 3ϕ an abbreviation for ¬2¬ϕ. The modality
2 (in a unimodal language) can be taken to be a knowledge modality K or a
belief modality B (we can also have a bimodal language with both K and B, but,
for illustrative purposes, it suffices to discuss the unimodal languages). Thus,
when talking about knowledge or belief, instead of writing 2ϕ, we write Kϕ and
Bϕ. We often write LK (or Lepis) to denote the epistemic unimodal language and
LB (or Ldox) to denote the doxastic unimodal language.
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Later on in the Chapters 3 and 4, we use 2 explicitly to refer to the effort
modality from Moss and Parikh (1992).

In Table 2.1 we present some of the most widely studied and discussed axioms
and inference rules for knowledge and belief.

Axioms
(K2) 2(ϕ→ ψ)→ 2ϕ→ 2ψ Normality (Kripke’s axiom)
(D2) 2ϕ→ ¬2¬ϕ Consistency
(T2) 2ϕ→ ϕ Factivity
(42) 2ϕ→ 22ϕ Positive Introspection
(.22) ¬2¬2ϕ→ 2¬2¬ϕ Directedness
(.32) 2(2ϕ→ ψ) ∨2(2ψ → ϕ) Connectedness
(52) ¬2ϕ→ 2¬2ϕ Negative Introspection

Rules
(MP) from ` ϕ→ ψ and ` ϕ, infer ` ψ Modus Ponens
(Nec2) from ` ϕ, infer ` 2ϕ

Table 2.1: Some axiom schemes and an inference rule for 2

With Table 2.1 in hand, we can talk about logics that are characterized by
some of these axioms and inference rules. In this dissertation, (CPL) denotes all in-
stances of classical propositional tautologies (see e.g. Chagrov and Zakharyaschev,
1997, Section 1.3). The least subset of L2 that contains (CPL) and (K2), and is
closed under uniform substitution and under the inference rules (MP) and (Nec2)
is the weakest (or smallest) normal modal logic, denoted by K2. In what follows,
L + (ϕ) denotes the smallest modal logic that contains L and ϕ. Below in Ta-
ble 2.2, we present some of the most common logics to represent knowledge and
belief. Having a variety of logics to represent knowledge and belief captures the
idea that we can study agents (or learners) with different reasoning power. For
instance, the systems S42 and S52 are logics of knowledge of widely different
strength.

S42 = KT2 + (42)

S52 = S42 + (52)

KD452 = K2 + (D2) + (42) + (52)

Table 2.2: Some normal epistemic/doxastic modal logics
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Since we work with these logics in an epistemic and doxastic setting, we write
the subscript K instead of 2 when a logic represents knowledge (with formulas
in LK) and we write the subscript B when it represents belief (with formulas in
LB).

In his work, Hintikka (1962) argued for the thesis that S4K is the logic of
knowledge. The system S5K is often used to reason about knowledge in computer
science and logics relevant to it (Fagin et al., 1995; Meyer and Hoek, 1995; van
Ditmarsch et al., 2007).1 The standard and most often adopted system for belief is
the so-called KD45B (see e.g., Baltag et al., 2008; van Ditmarsch et al., 2007). In
this dissertation, all the logics we work with are based on the system S5K for
knowledge and KD45B for belief.2

Before continuing, let us recall the following usual definitions from basic modal
logic (see e.g., Blackburn et al., 2001). An L-derivation/proof is a finite sequence
of formulas (from a language L) such that each element of the sequence is either
an axiom of L, or obtained from the previous formulas in the sequence by one
of the inference rules. We call a formula ϕ ∈ L provable in L, or, equivalently,
a theorem of L, if it is the last formula of some L-proof. In this case, we write
` ϕ (or, equivalently, ϕ ∈ L). For any set of formulas Γ ⊆ L and any formula
ϕ ∈ L, we write Γ ` ϕ if there exist finitely many formulas ϕ1, . . . , ϕn ∈ Γ
such that ` ϕ1 ∧ · · · ∧ ϕn → ϕ. We say that Γ is L-consistent if Γ 6` ⊥, and L-
inconsistent otherwise. A formula ϕ is consistent with Γ if Γ∪{ϕ} is L-consistent
(or, equivalently, if Γ 6` ¬ϕ). We drop mention of L when it is contextually clear. A
rule of inference R is admissible3 in L if the set of theorems of L does not change
when R is added to L. In other words, R is admissible in L if every formula that
can be derived using R is already derivable in L, so, in a sense, having R in L is
redundant.

Formulas in the language L2 can be interpreted in a relational model (also
called Kripke model), defined as follows.

2.1.2. Definition. [Relational frame/model] A relational frame is a pair F =
(X,R) where X is a nonempty set, called set of states (or, set of possible worlds),
and R ⊆ X × X is a binary relation on X called accessibility relation (or, in-
distinguishability relation). A relational model is a tuple M = (X,R, ‖ · ‖) where
(X,R) is a relational frame and ‖ · ‖ : Prop→ P(X) is a valuation map.

1Other logics for knowledge have been considered in the literature, see e.g., Lenzen, 1978
and Stalnaker, 2006, who argued in favour of S4.2K = S4K + (.2K), and van der Hoek, 1993
and Baltag and Smets, 2008 where S4.3K = S4K + (.3K) was studied.

2The system S5K has been criticised by some philosophers for being too strong (see e.g.,
Hintikka, 1962). In this dissertation, we are not going to engage in any kind of discussion
supporting one logic instead of another. Our choice for S5K is to reason about certain learning
theoretic notions.

3The concept of admissible rule was introduced by Lorenzen (1955), for a detailed discussion
see e.g., (Jeřábek, 2005).
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We say M = (X,R, ‖ · ‖) is a relational model based on the relational frame
F = (X,R).

Often we also use W to denote the nonempty set of states. We use the letters
x, y, w, u, v to talk about states (possible worlds) in X (in W ).

In formal epistemology, a relational frame represents the agent’s current un-
certainty about the actual situation via the truth conditions defined recursively
as follows.

2.1.3. Definition. [Relational semantics for L2] Given a relational model M =
(X,R, ‖ · ‖) and a state x ∈ X, truth of a formula in L2 (also called, satisfaction
relation) is defined recursively as follows:

M,x |= p iff x ∈ ‖p‖, p ∈ Prop,
M, x |= ¬ϕ iff M,x 6|= ϕ,
M, x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ,
M, x |= 2ψ iff ∀y ∈ X, xRy implies M, y |= ϕ.

From the definition above we obtain the following,

M,x |= 3ψ iff ∃y ∈ X such that xRy and M, y |= ϕ.

We write [[ϕ]]M to denote the set of states in a model M that satisfy ϕ ∈ L2

and we call it truth set of ϕ (or interpretation of ϕ). In the chapters that follow
in the thesis, we will leave out the subscript M and only write [[ϕ]] when the
model we are referring to is clear from the context. Given a formula ϕ ∈ L2, ϕ is
satisfiable in a model M iff there is a state x in M such that M,x |= ϕ. We say
that a formula ϕ is valid in a relational model M , denoted by M |= ϕ, if for every
x ∈ X, M,x |= ϕ, and is valid in a relational frame F , denoted by F |= ϕ, if
M |= ϕ for every model M based on F . A formula ϕ is valid in a class of models
M, denoted by |=M ϕ if for every model M ∈ M, M |= ϕ. More generally, a
formula ϕ is valid in a class of frames F , denoted by |=F ϕ if for every F ∈ F ,
F |= ϕ. We omit the subscripts whenever the class of models (or the class of
frames) is clear from the context. Given a set of formulas Γ ⊆ L2, a class of
models M and a formula ϕ ∈ L2, Γ |=M ϕ denotes that for all M ∈ M and all
states x in M , if every γ ∈ Γ is satisfied at x, i.e., M,x |= γ, then M,x |= ϕ.

We now state some frame conditions and some notions in the theory of order.

2.1.4. Definition. [Pre/Partial order, Equivalence relation] Given a relational
frame (X,R),

• R is a pre-order if it is reflexive and transitive (see Table 2.3),

• R is a partial order if it is reflexive, transitive and antisymmetric (see Table
2.3), and
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∀x (xRx) Reflexivity
∀x, y, z (xRy ∧ yRz → xRz) Transitivity
∀x, y (xRy → yRx) Symmetry
∀x, y (xRy ∧ yRx→ x = y) Antisymmetry
∀x ∃y (xRy) Seriality
∀x, y, z (xRy ∧ xRz → yRz) Euclideanness
∀x, y (xRy ∨ yRx) Totality(Connected)

Table 2.3: Frame conditions in relational frames

• R is an equivalence relation (often denoted as ∼) if it is reflexive, transitive
and symmetric (see Table 2.3).

We call the relational model (X,∼) an epistemic frame and we call the
relational model M = (X,∼, ‖ · ‖) an epistemic model.

In the following theorem we state some general relational (Kripke) soundness
and completeness results. For a detailed presentation of these results and a further
discussion, we refer to (Chagrov and Zakharyaschev, 1997; Blackburn et al., 2001).

2.1.5. Theorem (Relational Completeness).

• The logic S42 is sound and complete with respect to the class of preordered
sets.

• The logic S52 is sound and complete with respect to the class of frames with
equivalence relations.

• The logic KD452 is sound and complete with respect to the class of serial,
transitive and Euclidean frames.

As an instance of Theorem 2.1.5 we have that the logic S5K is sound and
complete with respect to the class of epistemic frames.

2.1.1 Public Announcement Logic

In this section we present a logic that models knowledge and information change
by public, truthful announcements. Public Announcement Logic (PAL) (Plaza,
1989; Gerbrandy and Groeneveld, 1997; van Ditmarsch et al., 2007) is a dynamic
epistemic logic that formalizes knowledge and knowledge update via public, truth-
ful announcements.

Dynamic Epistemic Logic (DEL) in the study of dynamic modal logics for
knowledge and belief. These logics result from extending the static epistemic
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language presented in Definition 2.1.1 (or extensions of it) with dynamic modal-
ities. A dynamic modality (or, update modality) encodes and describes a model
transforming action (or, update mechanism). In the context of DEL, a model
transforming action is an epistemic action that transforms the initial model into
an updated model. The updated model represents what is known or believed after
the corresponding epistemic action has been performed.

We focus on a special type of dynamic modalities, namely the public announce-
ment modalities and a variation present in an extension of PAL called Arbitrary
Announcement Logic (Balbiani et al., 2008). A public announcement modality
encodes the change in the knowledge and belief states of an agent (or agents)
after a completely trustworthy, truthful public announcement has happened. In
other words, public announcement modalities capture the epistemic action of
learning factual information that has been made public. The basic language of
PAL extends the basic epistemic language Lepis (Definition 2.1.1) as follows.

2.1.6. Definition. [PAL Language] Let Prop := {p, q, . . .} be a countable set
of propositional variables. The language of PAL, denoted by LK!, is defined re-
cursively as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | [ψ]ϕ

where p ∈ Prop.

The formula [ψ]ϕ reads “after ψ is truthfully announced, ϕ holds”. The
standard notation of formulas with public announcement modalities is [ψ!]ϕ, but
to keep the notation simpler we decided to leave out the symbol (!). We only use
the aforementioned symbol as a subscript in LK!.

PAL formulas are interpreted as follows.

2.1.7. Definition. [Relational semantics for LK!] Given a relational modelM :=
(X,R, ‖ · ‖) and the language LK!, the semantic definition of PAL extends Defi-
nition 2.1.3 with the following clause:

M,x |= [ψ]ϕ iff M,x |= ψ implies M |[[ψ]]M , x |= ϕ,

where M |[[ψ]]M := ([[ψ]]M , R ∩ ([[ψ]]M × [[ψ]]M), ‖ · ‖[[ψ]]M ) such that ‖p‖[[ψ]]M =
‖p‖ ∩ [[ψ]]M for any p ∈ Prop. We call M |[[ψ]]M , an updated model.

In what follows, we always refer to the update mechanism for the public
announcement modalities as update.4

A natural extension of PAL is Arbitrary Public Announcement Logic (APAL)
(Balbiani et al., 2008) that results from extending PAL with the arbitrary an-
nouncement modality, �, quantifying over public announcements.

4An update mechanism corresponding to a public announcement modality can also be found
in the relevant literature as hard update or update for hard information (van Benthem, 2011).
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2.1.8. Definition. [APAL Language] Let Prop := {p, q, . . .} be a countable set
of propositional variables. The language of APAL, denoted by LK!�, is defined
recursively as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | [ψ]ϕ | �ϕ

where p ∈ Prop.

The formula �ϕ reads “after any truthful public announcement, ϕ holds”. In
simple words, the modality � expresses what is true after any truthful announce-
ment. The corresponding dual �ϕ := ¬�¬ϕ reads “there is a truthful public
announcement after which ϕ holds”. The resulting logic provides an account to
reason about what is knowable after an announcement, captured by the formula
�Kϕ. We will say more about APAL in Chapter 4 thus, for now, we just present
the semantics of �.

2.1.9. Definition. [Relational semantics for LK!�] Given an epistemic model
M := (X,∼, ‖ · ‖) and the language LK!�, the semantic definition of APAL
extends Definition 2.1.7 with the following clause:

M,x |= �ϕ iff ∀ψ ∈ Lepis,M, x |= [ψ]ϕ.

2.2 Subset Space Semantics

The logics that we consider in Chapters 3 and 4 are interpreted on the so-called
subset space semantics first introduced and investigated by Moss and Parikh
(1992). In this section we present the core notions concerning the subset space
semantics. We briefly state some basic notions and results in topology. For further
explanations on these, we refer to (Engelking, 1989; Kelley, 1991).

2.2.1. Definition. [Subset/Intersection/Lattice/Topological space]

• A subset space is a pair (X,O) where X is a nonempty set of states and
O ⊆ P(X) is a collection of sets of X.

• An intersection space is a subset space (X,O) where O is closed under finite
intersections, i.e., if F ⊆ O is finite then

⋂
F ∈ O.

• A lattice space is an intersection space (X,O) where O is closed under finite
unions, i.e., if F ⊆ O is finite then

⋃
F ∈ O.

• A topological space is a subset space (X, τ) where τ has the following prop-
erties:

– X, ∅ ∈ τ , and
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– τ is closed under finite intersections and arbitrary unions, i.e., if F ⊆ τ
is finite then

⋂
F ∈ τ , and if F ⊆ τ then

⋃
F ∈ τ .

The set X is a space and we call the family τ a topology on X. The elements
in τ are called open sets (or opens) in the space. We refer to the elements in
O (in an intersection space or a lattice space) also as opens. Given x ∈ X and
U ∈ O such that x ∈ U , we call U an open neighbourhood of x (or simply, a
neighbourhood of x) and is often denoted as Ux.

Given C ⊆ X, the set C is closed iff C = X − U for some U ∈ τ .5 We say
that a set A is clopen iff it is both closed and open.

We say that an x ∈ X is an interior point of a set Y ⊆ X if there is an open
neighbourhood U of x such that U ⊆ Y . We denote the set of all interior points
of Y by Int(Y ) and call it the interior of Y . For every Y ⊆ X, Int(Y ) is the
largest open set subset of Y . Note that Int : P(X)→ τ is a map such that for any
A ⊆ X, Int(A) =

⋃
{U ∈ τ : U ⊆ A} and it is called the interior operator. Dually,

for every Y ⊆ X we denote the smallest closed set that contains Y by Cl(Y ).
It is easy to see that Cl(Y ) = X − Int(X − Y ). We let τ := {X − U : U ∈ τ}
denote the family of all closed sets of (X, τ). Note that Cl : P(X)→ τ is a map
such that for any A ⊆ X, Cl(A) =

⋂
{C ∈ τ : A ⊆ C} and it is called the closure

operator.

2.2.2. Definition. [Topological Basis] A family B ⊆ τ is called a basis for
a topological space (X, τ) if every U ∈ τ − {∅} can be written as a union of
elements of B. The elements of B are called basic opens.

Given any family Y = {Yα : α ∈ I} where Yα ⊆ X for all α ∈ I, there is a
unique, smallest topology τ(Y) such that Y ⊆ τ(Y). The topology τ(Y) consists
of all finite intersections of the Yα, all arbitrary unions of such sets, ∅ and X. The
topology τ(Y) is said to be generated by Y and the family Y is called a subbasis
for τ(Y). The set {

⋂
F : F ⊆ Y finite} constitutes a basis for τ(Y).

2.2.3. Definition. [Subspace] Given a subset space (X,O) and a nonempty
subset Y ⊆ X, the subset space (Y,OY ) is called a subspace of (X,O) where
OY := {U ∩ Y : U ∈ O}.

Now we define the subset space semantics as in (Moss and Parikh, 1992;
Dabrowski et al., 1996). For that, we consider a bi-modal extension of the epis-
temic language presented in (Moss and Parikh, 1992; Dabrowski et al., 1996), that
we denote by LK2, and interpret it in subset spaces. We discuss this language
and the semantic definition that follows extensively in Chapter 3.

5For every Y ⊆ X, the set X − Y is the set theoretic complement of Y contained in X.
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2.2.4. Definition. [Language LK2] Let Prop := {p, q, . . .} be a countable set
of propositional variables. The language LK2, is defined recursively as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | 2ϕ

where p ∈ Prop.

2.2.5. Definition. [Subset Space Model] A subset space model is a triple, (X,O, ‖·
‖), where (X,O) is a subset space and ‖ · ‖ : Prop→ P(X) is a valuation map.

• If (X,O) is an intersection space, we call (X,O, ‖ ·‖) an intersection model.

• If (X,O) is a lattice space, we call (X,O, ‖ · ‖) a lattice model.

• If (X, τ) is a topological space, we call (X, τ, ‖ · ‖) a topological model.

2.2.6. Definition. [Subset Space Semantics for LK2] Given a subset space
model M = (X,O, ‖ · ‖) and a pair (x, U) with x ∈ X and U ∈ O, truth of
a formula in LK2 (also called, satisfaction relation) is defined recursively as:

(x, U) |= p iff x ∈ ‖p‖,
(x, U) |= ¬ϕ iff (x, U) 6|= ϕ,
(x, U) |= ϕ ∧ ψ iff (x, U) |= ϕ and (x, U) |= ψ,
(x, U) |= Kϕ iff (∀y ∈ U) ((y, U) |= ϕ) ,
(x, U) |= 2ϕ iff (∀O ∈ O) (x ∈ O ⊆ U implies (x,O) |= ϕ) ,

i.e., (∀O ∈ O) (x ∈ O implies (x, U ∩O) |= ϕ) .

It is useful to note the definition for the semantics of 〈K〉 and 3:

(x, U) |= 〈K〉ϕ iff (∃y ∈ U) ((y, U) |= ϕ) ,
(x, U) |= 3ϕ iff (∃O ∈ O) (x ∈ O ⊆ U and (x,O) |= ϕ) .

Truth set, satisfiability and validity of a formula ϕ ∈ LK2 are defined as for
the relational semantics. Therefore, we apply the same conventions and notation
as in Section 2.1.

2.3 Recursive sets and Recursively enumerable

sets

In this short section we briefly recall some core notions and results concerning
recursive sets and recursively enumerable sets that will become handy especially
in Chapter 6.

2.3.1. Definition. [Recursive/Recursively Enumerable set]
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• A set A ⊆ N is recursive (computable) if its characteristic function,

χA(x) =


1 if x ∈ A,

0 if x /∈ A,

is recursive.

• We can generalize the above notion as follows, a predicate (or relation)
R ⊆ Nn with n ≥ 1 is recursive if its characteristic function χR is recursive.

• A set X ⊆ N is recursively enumerable (r.e.) if X is the domain of some
partial recursive function.

The classes Σn and Πn with n ≥ 0 are defined in the recursion-theoretic
literature as part of the Arithmetical hierarchy (this hierarchy should not be
confused with the Borel hierarchy in Topology that uses a similar notation). Σ1

is the class of predicates that have the form of one or more quantifier ∃ followed
by a recursive predicate, i.e., predicates of the form ∃y1 . . . ∃yn R(x, y1, . . . , yn)
for some recursive predicate R(x, y1, . . . , yn). Π1 is the class of predicates that
have the form of one or more quantifier ∀ followed by a recursive predicate, i.e.,
predicates of the form ∀y1 . . . ∀yn R(x, y1, . . . , yn) for some recursive predicate
R(x, y1, . . . , yn). We also define ∆n := Σn ∩ Πn. ∆1 is the class of recursive
(computable) predicates, thus R(x, y1, . . . , yn) is recursive iff R(x, y1, . . . , yn) is in
∆1. For a detailed discussion about the Arithmetical Hierarchy, see e.g. (Soare,
1999, Chapter IV, p. 60).

The definition above of r.e. set is known to be equivalent to the more intuitive
following definitions:

• A set X ⊆ N is r.e. if there is an algorithm that enumerates the members
of X, i.e., X = {f(n) : n ∈ N} for some recursive function f .

• A set X ⊆ N is r.e. if X = {x : ∃y R(x, y)} for some recursive predicate R ⊆
N×N. This generalizes to the fact that ifX = {x : ∃y1 . . . ∃yn R(x, y1, . . . , yn)}
for some recursive predicate R ⊆ Nn, X is r.e. We then say that X is in
Σ1-form (in short, X is Σ1).

The following theorem is an instance of Post’s theorem where the notion of
recursive set is characterized in terms of recursively enumerable sets, for a detailed
discussion on this see e.g., (Soare, 1999, Theorem 2.2, p. 64–65).

2.3.2. Theorem. A set X ⊆ N is recursive if and only if X and N − X are
recursively enumerable, i.e., X and N−X are Σ1.

2.3.3. Example. Some examples of recursive sets are the following.
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1. N and ∅ are recursive sets.

2. The set of even natural numbers EV EN := {0, 2, 4, . . .} and the set of odd
natural numbers, ODD := N− EV EN , are recursive.

3. Any finite set is recursive.

4. For every partial recursive function λx, the set Wx denotes the domain of
λx. The set K := {x : λx(x) is convergent} = {x : x ∈ Wx} is recursively
enumerable and not recursive.

We say informally that e is a Turing machine if e is an integer that codes a
Turing machine. We define informally Kleene’s T predicate since this is enough
for our purposes. For a detailed definition of the predicate see Kleene (1943) and
for further relevant results (Soare, 1999, p.15, 28, 41).

2.3.4. Definition. [Kleene’s T Predicate] Texy holds iff e is a Turing machine
that on input x performs computation y.

In the standard version of Kleene’s predicate we have that, if Texy then
x, e < y.

The question of existence of a computation y performed by e on input x is the
so-called Halting Problem which was shown to be undecidable by Turing (1937). A
simpler undecidable question is the question of whether Turing machine e stops
on the input e. This question can be defined in terms of the T predicate as follows:

∃y (Teey) iff λe(e) ↓ .

Considering the standard version of Kleene’s predicate, we have the following:

if Teey exists then e can be computed from the y and e ≤ y.

In this thesis we always consider the standard version of Kleene’s predicate. In
this way, the T predicate can be used to generate undecidable sets in Σ1, for
instance K = {x : ∃y (Txxy)} which we already know is recursively enumerable.

The following notion is the one of disjoint pairs of recursively enumerable sets.

2.3.5. Definition. [Recursively inseparable sets] We say that A,B ⊆ N, A ∩
B = ∅, are recursively inseparable iff there is no recursive set C ⊆ N such that
(C ⊇ A and C ∩B = ∅).

For a detailed discussion on recursively inseparable sets, see e.g. (Rogers, 1967,
p. 93). It is well-known that r.e. sets A,B exist which are recursively insepara-
ble. A standard example is the following, let PA be Peano’s arithmetic axiomatic
system and consider the sets A := {ϕ : `PA ϕ} and B := {ϕ : 6`PA ϕ}. The sets
A and B are recursively inseparable (Smullyan, 1958). Another example can be
found in (Soare, 1999, p. 23).
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2.4 Formal Learning Theory

Formal Learning Theory (FLT) addresses mathematically and computationally
the process of inductive inference (or, inductive learning). It focuses on the ques-
tion of how a learner should use partial inductively given information (finite
strings of symbols) to infer systematically general and correct conclusions (see
e.g., Osherson et al., 1986; Jain et al., 1999). Its origins go back to the seminal
papers of Putnam (1963), Solomonoff (1964a,b), and Gold (1967).

In FLT, a learner is modelled by a (recursive) function that receives ele-
ments from a sequence of data and stabilizes on an appropriate value fitting
the data. Technically, a learner is conceived as a system that transforms finite
segments of data into hypotheses.

To illustrate, consider a game between a learner and nature (or teacher) where
the learner needs to identify the current state of the world. We assume that the
incoming information is readable and that all the data that are consistent with
the actual world are eventually presented to the learner. The source of data
is also taken to be truthful (since nature never lies). This game is described as
follows. Initially, there is a class of concepts (or class of realities). Intuitively,
this class represents the uncertainty range of the learner. Nature chooses at the
beginning of the game one of these concepts to be the target concept and starts
providing to the learner pieces of data concerning the target concept. The learner’s
aim is to guess correctly which concept from the class is the one chosen by na-
ture. If the learner succeeds, we say that the learner identifies (or learns) the
target concept. If the learner identifies every concept of the class, we say that the
learner identifies the class of concepts.

It is worth mentioning that the connection between data and concept is like the
one between truthful evidence and hypothesis, observed sentences and grammar.

The concepts we focus on are so-called languages i.e., sets of strings of sym-
bols. Since we can represent strings of symbols by natural numbers, we always
refer to N as our universal set. Thus, languages are sets of natural numbers,
i.e., S ⊆ N. Thus, families of languages are collections of subsets of N. Given
this definition of a language, sequences of data are infinite sequences of natural
numbers.

In what follows, a concept will be always called a language and a class of
concepts will be called a family of languages.

Often in this dissertation, we focus on a special kind of families called indexed
families first introduced and investigated by Angluin (1980). For a survey on
learning indexed families and further developments, see (Lange et al., 2008).

2.4.1. Definition. [Indexed/Canonical Family]

• An indexed family is a collection of non-empty recursive languages S :=
{Si : i ∈ N} for which a computable function g : N×N→ {0, 1} exists such
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that,

g(i, x) =


1 if x ∈ Si,

0 if x /∈ Si.
In other words, S = {Si : i ∈ N} is indexed if for every Si ∈ S the
two-place predicate y ∈ Si is recursive.

• If a family S can be represented as an indexed family, we say that S is
indexable.

• In case all languages are finite and there is a recursive function f such that
for each i, f(i) is the canonical index for Si i.e., Si = Ff(i), then we call S
a canonical family. We often write Fn for the finite set with canonical index
n.

2.4.2. Definition. [Data (information) sequence]

• ε is the empty sequence.

• A positive data presentation (or, positive sequence) of a language S is an
infinite sequence σ+ := x0, x1, . . . of elements of N such that {x0, x1, . . .} =
S.

• A complete data presentation (or, complete sequence) of a language S is an
infinite sequence of pairs σ := (x0, t0), (x1, t1), . . . of N × {0, 1} such that
{xn ∈ N : tn = 1, n ≥ 0} = S and {xm ∈ N : tm = 0,m ≥ 0} = N− S.

• An initial segment of length n of σ and σ+ is indicated by σ[n] and σ+[n],
respectively. Given a family of languages S , we call Seg+ the set of all
initial segments of all positive sequences of languages in S ; and we call
Seg the set of all initial segments of all complete sequences of languages in
S .

• Let σ+ be any positive sequence and σ be any complete sequence (finite
or infinite), we denote as set(σ+) the set of elements that occur in σ+.
Similarly, set1(σ) := {x ∈ N : (x, 1) ∈ σ} and set0(σ) := {x ∈ N : (x, 0) ∈
σ}.

• We say that an initial segment σ+[n] in Seg+ is consistent with a language
S if set(σ+[n]) ⊆ S. Similarly, we say that σ[n] := (x0, t0), . . . , (xn−1, tn−1)
in Seg is consistent with a language S, if set1(σ[n]) := {x ∈ N : (x, 1) ∈
σ[n]} ⊆ S and set0(σ[n]) := {x ∈ N : (x, 0) ∈ σ[n]} ⊆ N− S.

Note that even for finite languages, the sequences of data are infinite. The
reason for this is that we want to consider situations when the learner does not
know the size of the language she investigates (or if it is finite or not).
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2.4.3. Definition. [Positive/Complete/Non-effective learner]

• A learning function with positive data (in short, positive learner) λ :=
Seg+ → N is a recursive map from finite positive sequences to indices
of languages in a given family.

• A learning function with complete data (in short, complete learner) λ :=
Seg → N is a recursive map from finite complete sequences to indices of
languages in a given family.

• We can also allow the learner to abstain from producing a natural num-
ber output. Such a learner is defined as λ := D → N ∪ {↑} where
D ∈ {Seg+, Seg} and ↑ stands for undefined.

• We occasionally relax the condition of the recursivity of the learner, in this
case we say that the learner is non-effective.

2.4.1 Identification in the limit

The model in (Gold, 1967), identification in the limit, has extensively been stud-
ied for learning recursive functions, recursively enumerable languages, and recur-
sive languages with positive data and with complete data. The learning function
outputs infinitely many conjectures, and for a successful learning function these
are required to stabilize into one permanent right one.

Given a learner ϕ, we assume that the domain of ϕ is Seg+ in the case of
positive data, and Seg in the case of complete data.

2.4.4. Definition. [Identification in the Limit] Given an indexed family S , a
learning function λ,

• identifies in the limit with positive data (complete data) a language Si ∈ S
on a sequence σ+ ( on a sequence σ) iff for all but finitely many n ∈ N,
λ(σ+[n]) = j with Sj = Si (λ(σ[n]) = j with Sj = Si),

• identifies in the limit with positive data (complete data) a language Si ∈ S
iff it identifies in the limit with positive data (complete data) Si on every
σ+ (on every σ) for Si,

• identifies in the limit with positive data (complete data) a family S iff
identifies in the limit with positive data (complete data) every language
Si ∈ S .

• A family S of languages is said to be identifiable in the limit from positive
data (or identifiable in the limit from complete data) if there exists a re-
cursive learner λ which identifies in the limit with positive data (complete
data) the family S .
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• We occasionally relax the condition of the recursivity of the learner λ or the
indexicality of S . In such cases λ is said to be a non-effective learner and
S is said to be non-effectively identifiable in the limit from positive data
(or non-effectively identifiable in the limit from complete data).

A characterization of the indexed families that are identifiable in the limit
with positive data was given by Angluin (1980) in terms of tell-tale sets. A finite
tell-tale set is like a “birth mark” for a language and its supersets.

2.4.5. Definition. [Tell-Tale sets] Let S be a family of languages, and let Si ∈
S . A finite set Di is a finite tell-tale set for S if Di ⊆ Si and for all Sj ∈ S if
Di ⊆ Sj, then Sj 6⊂ Si.

2.4.6. Theorem (Characterization Identifiability in the Limit). An in-
dexed family of recursive languages S = {Si : i ∈ N} is identifiable in the limit
from positive data iff there is an effective procedure Φ, that on input i enumerates
all elements of a finite tell-tale set of Si.

In simple words, a family is identifiable in the limit with positive data if for
every language there is a finite set which distinguishes the language from all its
subsets in the family. For an effective identification it is necessary and sufficient
that there is a recursive procedure that enumerates some finite tell-tales for all
the languages in the family.

2.4.2 Finite Identification

Finite identification of a family of languages is defined with respect to a learner
that, on a sequence consistent with some of the languages in the family, can
produce just one conjecture which must be correct immediately. In other words,
the learner abstains from making a conjecture until she makes an immediately
decisive one.

Given a learner ϕ, we assume that the domain of ϕ is Seg+ in the case of
positive data, and Seg in the case of complete data.

2.4.7. Definition. [Finite identification] Given a family S , a learning function
λ,

• finitely identifies with positive data a language Si ∈ S on a sequence σ+ iff
for some n ∈ N, λ(σ+[n]) = j with Sj = Si and λ(σ+[m]) =↑ for all m < n.

• finitely identifies with complete data a language Si ∈ S on a sequence σ iff
for some n ∈ N, λ(σ[n]) = j with Sj = Si and λ(σ[m]) =↑ for all m < n.

• finitely identifies with positive data (complete data) a language Si ∈ S iff
it finitely identifies with positive data (complete data) Si on every σ+ (on
every σ) for Si,
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• finitely identifies with positive data (complete data) a family S iff finitely
identifies with positive data (complete data) every language Si ∈ S .

• A family S of languages is said to be finitely identifiable from positive data
(in short, pfi) (or finitely identifiable from complete data (in short, cfi)) if
there exists a recursive learner λ which finitely identifies with positive data
(complete data) the family S .

• We occasionally relax the condition of the recursivity of the learner λ or
the indexicality of S . In such cases λ is said to be a non-effective learner
and S is said to be non-effectively finitely identifiable from positive data
(in short, nepfi) (or non-effectively finitely identifiable from complete data
(in short, necfi)).

Clearly a family that is pfi is also non-effectively pfi. Similarly for cfi.

A characterization theorem for finitely identifiable families with positive and
with complete data has been provided by Mukouchi (1992) and simultaneously
by Lange and Zeugmann (1992). For this, we give the definition of a definite tell-
tale set and a definite tell-tale pair in Mukouchi’s style. A definite tell-tale set is
like a “definite birth mark” for the language, namely a birth mark that no other
language in the family has. So the definite tell-tale set distinguishes the set from
the other languages in the family.

2.4.8. Definition. [Definite tell-tale sets/pairs]

• Let S be a family of languages, and let Si ∈ S . A finite set Di is a definite
tell-tale set (DFTT) for Si if Di ⊆ Si and for all Sj ∈ S if Di ⊆ Sj, then
Sj = Si.

• A language Si is said to be consistent with a pair of finite sets (B,C) if
B ⊆ Si and C ⊆ N\Si. A pair of finite sets (Di, Di) is a definite tell-tale
pair (in short, d-tell-tale pair) for Si if Si is consistent with (Di, Di), and
for all Sj ∈ S , if Sj is consistent with (Di, Di), then Sj = Si. We refer to
Di as the positive member of the definite tell-tale pair and to Di as its
negative member.

2.4.9. Theorem (Characterization Finite Identifiability).

• A family S of languages is finitely identifiable with positive data (pfi) iff for
every S ∈ S there is a DFTT set DS obtainable in a uniformly computable
way. That is, there exists an effective procedure Φ that on input i, index of
S, produces the canonical index Φ(i) of some definite finite tell-tale set of
S.
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• A family S of languages is finitely identifiable with complete data (cfi) iff
for every S ∈ S there is a definite tell-tale pair (DS,DS) in a uniformly
computable way.

Proof:
See (Mukouchi, 1992, Theorem 7, p. 262) or (Lange and Zeugmann, 1992, Theo-
rem 3, p. 382) for pfi and (Mukouchi, 1992, Theorem 10, p. 264) for cfi. 2

Clearly if a family is pfi then it is cfi. A completely analogous theorem holds
for non-effective learners and non-effective procedures for pfi and cfi.

2.4.10. Corollary. If a family S has two languages such that Si ⊂ Sj, then
S is not nepfi.

2.4.11. Theorem. If S is a canonical family where no Si ∈ S is a proper
subset of any other Sj ∈ S , then S is pfi.

Proof:
For every Si ∈ S , simply take Di = Si as the DFTT. 2

Similarly, if S is any family of finite languages that is an anti-chain with
respect to ⊂, then S is non-effectively pfi.
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Subset Space Logics for Learning
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Chapter 3

Dynamic logics for Inductive Learning
from Observations

3.1 Introduction

Learning from observations is one of the most primitive forms of learning that
we as humans perform. It is a basic action we must do in order to understand
the world that surrounds us. Learning by observing the changes in the world and
also observing others’ actions is how we could avoid danger at the beginning of
humankind which lead us to survive. Even now in modern times, this kind of
learning is crucial for the dangerous art of living. Learning plays a vital role in
which we act and form our beliefs. These are important for choosing our future
steps and planning ahead. Moreover, forming beliefs allows us to form general
theories that, when not falsified, transform into (a certain kind of) empirical
knowledge. This kind of knowledge, that we will call inductive knowledge, is es-
sential for us to make sense of this world. Studying inductive knowledge (and
other complex information processes involved in learning from observations) is
certainly not a trivial matter. It is not surprising that studying some of these
processes has been entertaining scientists from centuries (for an overview, see
e.g., Bogen, 2017 and Schulte, 2018). As it happens, not much has been done
about inductive knowledge, as described above, from a modal logic perspective.
Thus, we are interested in reasoning about some of the aforementioned learning
processes using epistemic logic, in a way that some answers and new insights can
be obtained.

The process of learning consists of incorporating new information into one’s
prior information state. Dynamic epistemic logic (DEL) studies such one-step
information changes from a logical perspective (Baltag et al., 1998; van Ben-
them, 2011; van Ditmarsch et al., 2007), but the general concept of learning
encompasses not only one-step revisions, but also their long-term horizon. In the
long run, learning should lead to knowledge, an epistemic state of a particular
value. Examples include language learning (inferring the underlying grammar

33
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from examples of correct sentences), and scientific inquiry (inferring a theory on
the basis of observations). Our goal in this chapter is to provide simple logics for
reasoning about this process of inductive learning from successful (fully deter-
mined or partial) observations. We do this with respect to two kinds of learners:
a minimally rational learner (as in Formal Learning Theory, satisfying only two
basic rationality constraints) and a fully rational learner (an AGM learner who
satisfies the postulates of belief revision). Understanding inductive inference is
of course an infamously difficult open problem. There are many different ap-
proaches in the literature, from probabilistic and statistical formalisms based on
Bayesian reasoning, Popper-style measures of corroboration, through default and
non-monotonic logics, Carnap-style “inductive logic”, to AGM-style rational be-
lief revision and theory change. However, in the work presented here we do not try
to solve the problem of induction, but only to reason about a (rational) inductive
learner.

In our first framework “A Dynamic Logic for Learning Theory (DLLT)” (Sec-
tion 3.3 ), we adopt the more flexible and open-ended approach of Formal Learning
Theory (FLT) where inductive inference is known as identifiability in the limit,
first introduced and studied by Gold (1967). While most other approaches adopt
a normative stance, aimed at prescribing “the” correct algorithm for forming and
changing rational beliefs from observations (e.g., Bayesian conditioning), or at
least at prescribing some general rationality constraints that any such algorithm
should obey (e.g., the AGM postulates for belief revision), FLT gives the learner
a high degree of freedom, allowing the choice of any learning method that pro-
duces conjectures based on the data (no matter how “crazy” or unjustified are
these conjectures, or how erratic is the process of belief change). In FLT the
only criterion of success is to track the truth in the limit. In other words, the
only thing that matters is whether or not the iterated belief revision process will
eventually stabilise on a conjecture which matches the truth about some given
issue. Essentially, the learner should only obey two requirements: consistency of
conjectures, and that the conjectures fit the evidence. We call such a learner an
unrestricted learner. We are of course not interested in cases of convergence to
the truth “by accident”, but in determining whether or not a given learner is
guaranteed to eventually track the truth; hence, the focus is on “The Logic of
Reliable Inquiry”.1

Our framework DLLT, combines ideas from: Subset Space Logics, as intro-
duced by Moss and Parikh (1992), investigated further in (Dabrowski et al., 1996)
and already merged with the DEL tradition in prior work (Wáng and Ågotnes,
2013a; Balbiani et al., 2013; van Ditmarsch et al., 2014, 2019; Bjorndahl, 2018;
Baltag et al., 2017); the topological approach to Formal Learning Theory (FLT)
initiated by Kelly (1996), also studied and developed in (Baltag et al., 2015); and

1“The Logic of Reliable Inquiry” is the title of a classic text in FLT-based epistemology
(Kelly, 1996).
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the general agenda of bridging DEL and FLT in (Gierasimczuk, 2010). Semanti-
cally, we take intersection spaces (a type of subset spaces that are closed under
finite non-empty intersections), with points interpreted as possible worlds and
neighbourhoods interpreted as observations (or information states) (for a survey
on subset space logics see, e.g., Parikh et al., 2007). We endow these structures
with a learner L, mapping every information state to a conjecture, representing
the learner’s strongest belief in this state.

As in Subset Space Logics, our language features an S5-type knowledge-with-
certainty modality, capturing the learner’s hard information, as well as the so-
called effort modality, which we interpret as “stable truth” (i.e., truth immune
to further observations). To capture observations, we add to the language simple
observational variables o that capture factual observations about the world. More-
over, we add dynamic modalities called observational events that are like PDL
programs, built from simple observations !o and using sequential composition
e; e′ to represent successive observations. We also add a learning operator L(e),
which encodes the learner’s conjecture after having observed an observational
event e. The learner forms a conjecture L(e) with respect to the event’s informa-
tional content pre(e) (its precondition captures the informational content of event
e, defined recursively by taking conjunctions of the preconditions in a sequential
composition e; e′). This can be used to give a natural definition of belief : a learner
believes P iff she knows that P is entailed by her current conjecture.

We succeed in using this logic to characterise various interesting learning the-
oretic notions in Section 3.3.4. In particular, we are able to model inductive
learning as coming to stably believe2 a true fact after observing an incoming se-
quence of true data (corresponding to the key concept in FLT introduced in
(Gold, 1967), identifiability in the limit). We discuss the expressive power of the
language and some of its fragments in Section 3.3.3. In particular, we show that
the dynamic observational modalities are in principle eliminable via reduction
laws. In Sections 3.3.2, 3.3.5 and 4.6 we present a sound and complete axiomati-
sation of DLLT with respect to our learning models. The completeness proof uses
a neighbourhood version of the standard canonical model construction.

The learner in Formal Learning Theory (and therefore in our Dynamic Logic
for Learning Theory) is assumed to satisfy only very few rationality constraints. We
are also interested in studying inductive inference with a fully rational learner. This
is a learner that follows a certain “rational procedure” when she is confronted
with a new piece of truthful evidence that contradicts her prior beliefs. There
are various ways in the literature to define what a rational learner is (for in-
stance, Bayesian conditioning, for an overview, see e.g., Talbott (2016), or truth
maintenance systems studied by Doyle (1979) in computer science). Our choice
is with the so-called AGM postulates for belief revision (the process of changing

2By “stably believing (a proposition)” we here mean that the learner believes that proposition
and her belief in that proposition cannot be defeated by further truthful observations.
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beliefs after receiving a new piece of information). The theory for belief revision
was introduced and studied in the pioneering work of Alchourrón, Gardenförs
and Makinson (1985). The AGM postulates are strongly desirable rationality
constraints, governing the way in which a rational learner forms and revises her
beliefs. In simple words, they express that a learner should accept the new fact,
and, instead of dropping all her prior beliefs, she should maintain as many as
possible without getting a contradiction.

The AGM postulates became some of the most influential accounts for belief
revision in the dynamic logic literature (van Benthem, 2007; van Benthem and
Smets, 2015). Moreover, (Baltag et al., 2015) proved that AGM conditioning is a
“universal learning method”, meaning that: any questions that can be inductively
solved (or solved with certainty) by some learner can also be solved by an AGM
learner. One of the technical advantages of the AGM postulates, when we are
working in a logical framework, is that we can capture them, mathematically, in
various ways. For instance, they can be captured in terms of the properties we
impose on a set-selection function, with a (certain) system of spheres, or with the
so-called plausibility relation defined as a total pre-order (a reflexive and transitive
order) (Grahne, 1998). This flexibility will be useful for our completeness result
of the aforementioned logic.

In Section 3.4 we present a dynamic logic for inductive inference that focuses
on an AGM learner. A learner whose conjectures obey all the AGM postulates for
belief revision (Alchourrón et al., 1985). Semantically, such an “AGM learner”
comes with a family of nested Grove spheres (encoding the learner’s defaults
and her belief-revision policy), or equivalently with a total plausibility (pre)order
on the set of possible worlds. After observing some evidence, the learner forms
a conjecture by applying “AGM conditioning”: essentially, her conjecture en-
compasses the most plausible worlds that fit the evidence. This belief dynamics
is non-monotonic, but only minimally so: it respects the principle of Rational
Monotonicity (equivalent to the so-called “subexpansion” and “superexpansion”
AGM postulates in (Alchourrón et al., 1985)). This principle requires that the
dynamics is just monotonic (putting together the old conjecture with the new
evidence) as long as the old conjecture is consistent with the new evidence.

Our aim is to realize the same program for AGM learners as the one we
achieved for the unrestricted learners: a sound and complete axiomatization, and
to capture the aforementioned learning theoretic notions above. In order to obtain
our completeness result, we had to extend the domain of our learning functions to
partial observations. These type of observations capture the intuition of receiving
partial information. For instance, incomplete reports of a fully-determined obser-
vation or when the learner is not sure which of (finitely) many observations has
taken place. Making conjectures from partial information is very common (if not
necessary) in empirical sciences. In reality most of the time an empirical scien-
tist can only acquire partial information of her object of study. This is due to
many factors, by human perception limitations, time limitations, language limi-
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tations for describing what is observed; and, due to technical and technological
constraints.

Partial observations will be represented in the framework by finite disjunctions
of observations. Technically, we have to move from the framework of intersection
spaces adopted in DLLT (in which the observable properties were closed under
finite intersections) to the one of lattice spaces (in which closure under finite
unions is also required). At the syntactic level, this leads us to extend the recursive
definition of observational events (recall that these are like PDL programs, built
from simple observations !o and using sequential composition e; e′) with non-
deterministic program executions (in short, epistemic non-determinism), e t e′,
to capture the receipt of partial information (after which the learner is not sure
which of the two observations e, e′ has taken place). The language is defined as
before, featuring the S5 knowledge modality, updates, the effort modality and an
AGM learning operator L(e), which encodes the AGM learner’s conjecture (her
strongest belief ) given an observational event e that now can also be of the form
e′′ t e′. Thus, after an observational event e, the learner forms a conjecture L(e)
obtained by applying AGM conditioning, with respect to her plausibility order ≤
and the event’s informational content pre(e).

We present some expressivity results and apply our logic to an example, show-
ing how various concrete properties can be learnt with certainty or inductively by
such an AGM learner. We present a sound and complete axiomatization (which is
a proper extension of the axiomatization for DLLT). However, our completeness
proof is not a straighforward modification of the completeness proof for DLLT. We
implemented some standard techniques in non-monotonic and conditional logics
for the canonical model construction, although with important differences. First,
since we do not allow conditioning on arbitrary formulas, but only on those cor-
responding to (preconditions of) observational events, the proof is more subtle
than those for conditional logics. In particular, it shows that AGM has no need for
conditioning on negated formulas. Second, the completeness proof uses a mixture
of relational and neighbourhood versions of the standard canonical model con-
struction, with further complications due to the presence of the effort modality.

Outline

This chapter is organized as follows. In the introductory Sections 3.2 and 3.2.1 we
start with an example (originally from Moss and Parikh (1992)) that illustrates
inductive learning which has not been addressed in the dynamic logic literature. In
Section 3.3 we present our sound and complete Dynamic Logic for Learning The-
ory for unrestricted learners. We present a recursive axiomatization for this logic
in Section 3.3.2 whose soundness and completeness proofs are given in Sections
3.3.5 and 4.6, respectively. We present some expressivity results in Section 3.3.3
and Section 3.3.4. In Section 3.4 we present our sound and complete Logic for
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AGM learning from partial observations. Expressivity results can be found in
Section 3.4.2. A recursive axiomatization is given in Section 3.4.3, soundness and
completeness can be found in Sections 3.4.4 and 3.4.5, respectively. In Section 3.5
we conclude and connect our work with other work in the literature.

This Chapter is based on (Baltag et al., 2018a) and (Baltag et al., 2020).

3.2 Effort modality and knowledge

In this section we briefly revisit some learning theoretic notions presented in
previous work in the literature that inspired our questions, ideas and results in
the sections that follow. In particular, we discuss these notions on an example
that was first introduced in (Parikh et al., 2007). We then use the example to
reflect about the missing element to capture inductive knowledge (a softer notion
of knowledge than the one of knowledge with certainty) and a learning function
(unrestricted or restricted). Based on the definition of inductive knowledge, we
are able to define inductive learning. For simplicity and to illustrate the basic
intuitions, our analysis will be for an unrestricted learner. We can provide a
similar analysis with respect to a fully rational learner by adapting Example
3.2.1 appropiately.

First let us briefly present some of the previous ideas concerning the use
of basic topological notions, such as open neighborhoods, in logics of informa-
tion. Vickers (1989) reconstructed general topology as a logic of observation, in
which the points of the space represent possible states of the world, while basic
open neighborhoods of a point are interpreted as information states produced by
accumulating finitely many observations. Moss and Parikh (1992) gave an account
of learning in terms of observational effort. Making the epistemic effort to obtain
more information about the actual world has a natural topological interpretation:
it can be seen as shrinking the open neighborhood which represents the current
information state, thus providing a more accurate approximation of the actual
state of the world (Moss and Parikh, 1992; Dabrowski et al., 1996; Georgatos,
1994, 1997; Parikh et al., 2007). A similar idea was proposed in Formal Epis-
temology (Kelly, 1996; Baltag et al., 2015), where it was combined with more
sophisticated notions of learning borrowed from FLT.

The following example relates the effort modality with knowledge.

3.2.1. Example. [(Parikh et al., 2007, p. 309)] Let us consider some measure-
ment, say of a vehicle’s velocity. Suppose a policeman uses radar gun to determine
whether a car is speeding in a 50-mile speed-limit zone. The property speeding
can be identified with the interval (50,∞). Suppose the radar gun shows 51 mph,
but its accuracy is ±2 mph. The meaning of a speed measurement of 51 ± 2 is
that the car’s true speed v is in the open interval (49, 53). According to Parikh
et al. (2007), “anything which we know about v must hold not only of v itself,
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but also of any v′ in the same interval” (Parikh et al., 2007, p. 300). Since
the interval (49, 53) is not fully included in the “speeding” interval (50,∞), the
policeman does not know that the car is speeding. But suppose that he does
another measurement, using a more accurate radar gun with an accuracy of ±1
mph, which shows 51.5 mph. Then he will come to know that the car is speeding:
the open interval (50.5, 52.5) is included in (50,∞).

. . .
49 50 51 52 53 ∞. . .

PQ

Figure 3.1: Example 3.2.1; P := “the car is speeding”, Q := “the reading of the
radar is 51 mph”

3.2.1 Infallible Knowledge versus Inductive Knowledge

Let us now extend this picture with learning as understood in FLT. We start
by briefly introducing learning frames, the underlying structures of learning. We
will return to it later, with complete definitions, in Section 3.3.1. Our DLLT is
interpreted over such frames and, using them, we will be able to explain and
model various epistemic notions.

First, consider a pair (X,O), where X is a non-empty set of possible worlds ;
O ⊆ P(X) is a non-empty set of information states (or “observables”, or “evi-
dence”). We take O to be closed under finite intersections, i.e., for any O1, O2 ∈ O,
we have O1 ∩ O2 ∈ O (for the fully rational learners, we will consider O to be
also closed under finite unions). The resulting (X,O) is called an intersection
space (a lattice space when we consider a fully rational learner). A learning frame
is a triplet (X,O,L), where L : O → P(X) is a learning function (in short, a
learner), i.e., a map associating to every O ∈ O some “conjecture” L(O) ⊆ X
(see Definition 3.3.1 for the full description of L and how it can be extended to
range over finite sequences of observations).

3.2.2. Definition. [Certain (Infallible) Knowledge] Given a learning frame (X,O,L)
and an information state U ∈ O, the learner is said to:

1. infallibly know a proposition P ⊆ X conditional on observation O if her
conditional information state entails P , i.e, if U ∩O ⊆ P .

2. (unconditionally) know P if U ⊆ P .



40 Chapter 3. Dynamic logics for Inductive Learning from Observations

The possibility of achieving certain knowledge about a proposition P ⊆ X in
a possible world x ∈ X by a learner L if given enough evidence (true at x) is
called learnability with certainty.3

3.2.3. Definition. [Learnability with certainty] Given a learning frame (X,O,L)
and an information state U ∈ O, we say that:

1. P is learnable with certainty in x ∈ U if there exists some observable prop-
erty O ∈ O (with x ∈ O ⊆ U) such that the learner unconditionally knows
P in information state O.

2. Learnability can be used to define verifiability and falsifiability. A propo-
sition P ⊆ X is verifiable with certainty (by the learner) if it is learnable
with certainty by the learner whenever it is true. In other words, if P is
learnable with certainty at all worlds x ∈ P with respect to all information
states U ∈ O that contain x. Dually, a proposition P ⊆ X is falsifiable with
certainty (by the learner) if its negation X − P is learnable with certainty
by the learner whenever P is false. In other words, if X − P is learnable
with certainty at all worlds x 6∈ P with respect to all U ∈ O that contain
x.

3. Finally, a proposition P ⊆ X is decidable with certainty (by the learner) if
it is both verifiable and falsifiable with certainty (by the learner).

We can now reconstruct Example 3.2.1 as an intersection space to talk about
the certain knowledge of the policeman. We take X = (0,∞) as the set of pos-
sible worlds (representing possible velocities of the car, where we assume the car
is known to be moving); O = {(a, b) ∈ Q × Q : 0 < a < b < ∞} is the set of all
open intervals with positive rational endpoints (representing possible measure-
ment results by arbitrarily accurate radars). The pair (X,O) is an intersection
space, and the smallest topology generated by O is the standard topology on real
numbers (restricted to X).

Let us consider the certain knowledge of the policeman. In the informa-
tion state U = (49, 53), the learner/policeman does not know the proposition
P = (50,∞), so he cannot be certain that the car is speeding. However, the
speeding property P is verifiable with certainty: whenever P is actually true, he
could perform a more accurate speed measurement, by which he can get to an
information state in which P is infallibly known. In our example, the policeman
refined his measurement and reached the information state O = (50.5, 52.5), thus
come to know P . In contrast, the property X − P = (0, 50] (“not speeding”) is
not verifiable with certainty: if by some kind of miraculous coincidence, the speed

3When we quantify over learners, learnability with certainty (by some learners) matches the
concept of “finitely identifiable” from Formal Learning Theory defined in Section 2.4.2 from
Chapter 2. See also the PhD thesis of Gierasimczuk (2010).
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of the car is exactly 50 mph, then the car is not speeding, but the policeman will
never know that for certain (since every speed measurement, of any degree of
accuracy, will be consistent both with P and with X − P ). Nevertheless, X − P
is always falsifiable with certainty: if false (i.e., if the speed is in P , so that car
is speeding), then as we saw the policeman will come to infallibly know that (by
some more accurate measurement).

Let us now consider epistemic states weaker than knowledge with certainty,
namely belief.

3.2.4. Definition. [Undefeated Belief] Given a learning frame (X,O,L) and an
information state U ∈ O, the learner L is said to:

1. unconditionally believe (in short, believe) P ⊆ X if L(U) ⊆ P .4

2. believe a proposition P ⊆ X conditional on observation O if L(U ∩O) ⊆ P ;

3. have undefeated belief in a proposition P ⊆ X at world x if she believes P
in every information state O ∈ O that is true at x (i.e., x ∈ O) and is at
least as strong as U (i.e., O ⊆ U). In other words, L has undefeated belief
in a proposition P ⊆ X at world x if

for every O ∈ O such that x ∈ O ⊆ U, L(O) ⊆ P.

This means that, once she reaches information state U , no further evidence
can defeat the learner’s belief in P .

One of the central problems in epistemology is to define a realistic notion
of knowledge that fits the needs of empirical sciences. It should allow fallibil-
ity, while requiring a higher standards of evidence and robustness than simple
belief. One of the main contenders is the so-called Defeasibility Theory of Knowl-
edge, which defines defeasible (fallible) knowledge as true undefeated belief. In
the learning-theoretic context, this gives us an evidence-based notion of inductive
knowledge. This is the kind of knowledge that can be gained by empirical induc-
tion, based on experimental evidence (that is usually partial and incomplete). In
other words, the knowledge obtained in the long run when acquiring an adequate
hypothesis that is consistent with an ongoing stream of truthful empirical data. To
illustrate, one can think of the knowledge a biologist acquires based on her exper-
imental results and measurements on the processes of a certain bacteria. As in the
case of learnability with certainty, inductive learnability of a proposition corre-
sponds to achieving inductive knowledge of the proposition. Inductive verifiability
and falsifiability are defined in terms of inductive learnability.

3.2.5. Definition. [Inductive learning theoretic notions] Given a learning frame
(X,O,L) and an information state U ∈ O, the learner L is said to:

4In the tautological information state X, the learner believes P iff L(X) ⊆ P .
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1. track the truth of P if the following holds: For every x ∈ U , if given enough
evidence L will come to have undefeated belief in P (in the sense defined
above in item 3 from Definition 3.2.4) iff P is true at x. In other words, L
tracks the truth of P if the following holds,

for every x ∈ U there is V ∈ O with x ∈ V ⊆ U such that,
for every O ∈ O with x ∈ O ⊆ V, L(O) ⊆ P

iff
x ∈ P .

2. Dually, the learner L is said to track the falsehood of P iff L tracks the
truth of ¬P .

3. The learner L is said to inductively know a proposition P at world x in U
if L has undefeated belief in P at x in U and L tracks the truth of P in U .

4. A proposition P ⊆ X is inductively learnable (or learnable in the limit)
by L at world x in U if given enough evidence (true at x), L will come
to inductively know P in U ; i.e., if there exists some observable property
O ∈ O of world x (i.e., with x ∈ O ⊆ U) such that L inductively knows P
in information state O.

5. A proposition P ⊆ X is inductively verifiable by L, if P is inductively
learnable by L whenever it is true. In other words, P ⊆ X is inductively
verifiable by L if and only if for every world x ∈ X and every U ∈ O such
that x ∈ U , P is inductively learnable by L at world x in U whenever
x ∈ P . Dually, a proposition P ⊆ X is inductively falsifiable by L, if its
negation X − P is inductively learnable by L whenever P is false. In other
words, P ⊆ X is inductively falsifiable by L if and only if for every world
x ∈ X and every U ∈ O such that x ∈ U , X − P is inductively learnable
by L at world x in U whenever x 6∈ P . A proposition P ⊆ X is inductively
decidable by L if it is both inductively verifiable and inductively falsifiable
by L.

In the context of Example 3.2.1, let us now turn to the inductive knowledge
of the policeman. Both speeding (P ) and non-speeding (X − P ) are inductively
decidable (and thus both inductively verifiable and inductively falsifiable): for
instance, they are inductively decidable by the learner L, defined by putting

L((a, b)) =

{
(a, b), if (a, b) ⊆ P,

(a, b) ∩ (X − P ), otherwise (i.e., (a, b) ∩ (X − P ) 6= ∅).

Intuitively, such a learner is like a fair “judge” who assumes innocence until proven
guilty: she conjectures that the car is not speeding as along as her measurement
is consistent with (X − P ). The dual learner, the “suspicious cop”,
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L((a, b)) =

{
(a, b) ∩ P, if (a, b) ∩ P 6= ∅,
(a, b), otherwise (i.e., if (a, b) ⊆ X − P ),

on the other hand can not inductively decide the speeding issue. Intuitively, this
learner believes the car to be speeding whenever the available evidence cannot
settle the issue, and keeps this conjecture until it is disproven by some more
accurate measurement. In some cases, this policeman will be right “in the limit”:
after doing enough accurate measurements, he will eventually settle on the correct
belief (about speeding or not); though of course (in case the car’s speed is exactly
50 mph) he will never be certain of this. This is because any measurement (a, b)
that contains 50 will intersect P , therefore the policeman will believe that the car
is speeding when in reality it is not. An example of a property which is inductively
decidable but neither verifiable with certainty nor falsifiable with certainty is the
proposition S = [50, 51). It is not verifiable with certainty, since if the car’s speed
is exactly 50 mph, then S is true but the learner will never be certain of this;
and it is not falsifiable with certainty, since if the car’s speed is exactly 51 mph,
then S is false but the learner will never be certain of that. Nevertheless, S is
inductively decidable, e.g., by the learner defined by:

L((a, b)) =


(a, b) ∩ S, if a < 50 < b,

(a, b), if (a, b) ⊆ S or (a, b) ∩ S = ∅,
[51, b), if 50 < a < 51 < b.

Dependence on the Learner. It is easy to see that learnability (verifiability,
falsifiability, decidability) with certainty are learner-independent notions (since
they are directed towards achieving infallible knowledge), so they do not depend
on L, but only on the underlying intersection space. In contrast, the corresponding
inductive notions above are learner-dependent. As a consequence, the interesting
concepts in Formal Learning Theory are obtained from them by quantifying ex-
istentially over learners : given a learning frame, a proposition P is inductively
learnable (verifiable, falsifiable, decidable) if there exists some learner L such that
P is respectively inductively learnable (verifiable, falsifiable, decidable) by L. This
definition can be extended to families of propositions of a given learning frame: a
family of propositions P is inductively learnable (verifiable, falsifiable, decidable)
if there exists some learner L such that every P ∈ P is respectively inductively
learnable (verifiable, falsifiable, decidable) by L. These two notions concerning
inductive learnability (when quantifying over learners) match with the standard
concepts of non-effective5 inductive learning from Formal Learning Theory as
defined in Section 2.4.1 (see also e.g. Jain et al., 1999, Section 1.4.3, p. 10).

5Recall from Section 2.4.1 from Chapter 2 that the notion of non-effective inductive learning
refers to inductive learning without computational features on the learners.
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Topological Characterisations. As it is well-known in learning theory and
formal epistemology (Vickers, 1989; Kelly, 1996), the above notions are topological
in nature:

• P is learnable with certainty at world x iff x is in the interior of P with
respect to the smallest topology generated by O, i.e., x ∈ Int(P ) and
Int(P ) ∈ τ(O);

• P is verifiable with certainty iff P is open in the topology τ(O);

• P is falsifiable with certainty iff P is closed in the topology τ(O);

• finally, P is decidable with certainty iff P is clopen in the topology τ(O).

The corresponding inductive notions can be similarly characterised (see Kelly,
1996), when the smallest topology generated by O, τ(O), satisfies the separation
condition T16: in this case,

• P is inductively verifiable iff it is Σ2 in the Borel hierarchy for this topology
(i.e., a countable union of closed sets); in the same conditions,

• P is inductively falsifiable iff it is Π2 (a countable intersection of open sets),
and

• P is inductively decidable iff it is ∆2 (i.e., Σ2 and Π2).

For a detailed discussion about the Borel Hierarchy, we refer to (Kechris, 1995,
p. 167).

More recently, in (Baltag et al., 2015), these characterisations were gener-
alised to arbitrary topologies satisfying the weaker separation condition T07; in
particular, P is inductively verifiable iff it is a countable union of locally closed
sets. Obviously, T0 is a minimally necessary condition for any kind of learnabil-
ity of the real world from observations. For further explanations of the above
topological separation conditions, we refer to (Engelking, 1989; Kelley, 1991).

3.3 A Dynamic Logic for Learning Theory

In this section we present our sound and complete Dynamic Logic for Learn-
ing Theory for an unrestricted learner who produces conjectures from fully-
determined observations.

6A topology O is T1 iff for every two distinct points x 6= y there exist an open O ∈ O with
x ∈ O and y 6∈ O.

7A topology O is T0 iff points can be distinguished by opens in O; i.e., if x and y satisfy the
same observable properties in O, then x = y.
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3.3.1 Syntax and Semantics

Let Prop = {p, q, . . .} be a countable set of propositional variables, denoting
arbitrary “ontic” (i.e., non-epistemic) facts and PropO = {o, u, v, . . .} a countable
set of observational variables, denoting “observable facts”.

Observational Events. We consider observational events e (or, in short, obser-
vations) by which the learner acquires some evidence about the world. We denote
the set of all observational events by Π and define it by the following recursive
clauses:

e := !> | !o | (e; e)

where o ∈ PropO . We will follow the usual rules for the elimination of the paren-
theses. Intuitively: for every observational variable o, we have a primitive obser-
vational event, denoted by !o, corresponding to the event of observing variable
o. We also denote by !> the null event (in which no new observation has taken
place yet). Observational events are naturally closed under regular operations on
programs, of which we consider only one, e; e′, that represents sequential composi-
tion of fully determined observations (first observation e is made then observation
e′ is made). By a “fully determined observation e” we mean that the observation
is fully determined by the event e. With this condition, we make sure that it is
clear which event determines which observation for the learner.

The Language of DLLT. The dynamic language LΠ of the Dynamic Logic for
Learning Theory is defined recursively as

ϕ := p | o | ¬ϕ | (ϕ ∧ ϕ) | L(e) | Kϕ | [e]ϕ | 2ϕ

where p ∈ Prop, o ∈ PropO , and e ∈ Π. We employ the usual abbreviations for
propositional connectives >,⊥,∨,→,↔, and 〈K〉ϕ, 〈e〉ϕ and 3ϕ denote ¬K¬ϕ,
¬[e]¬ϕ, and ¬2¬ϕ, respectively. Given a formula ϕ ∈ LΠ and e ∈ Π, we
denote by Oϕ and Oe the set of all observational variables occurring in ϕ and e,
respectively.

Intuitively, L(e) denotes the learner’s conjecture given observation e; i.e., her
“strongest belief” after having performed observation e. We read Kϕ as “the
learner knows ϕ (with absolute certainty)”. The operator [e]ϕ is similar to the
update operator in Public Announcement Logic: we read [e]ϕ as “after event e is
observed, ϕ holds”. Finally, 2 is the so-called effort modality from Subset Space
Logic (Moss and Parikh, 1992; Dabrowski et al., 1996); we read 2ϕ as “ϕ is stably
true” (i.e. it is true and will stay true under any further observations).

Now we define the structures that we use to interpret our language LΠ.

3.3.1. Definition. [Learning Frame/Model] A learning frame is a triplet (X,O,
L), where (X,O) is an intersection frame (as given in Definition 2.2.1 in Section
2.2) and L : O → P(X) is a learner, i.e., a map associating to every information
state O ∈ O some conjecture L(O) ⊆ X, and satisfying two properties:
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1. L(O) ⊆ O (conjectures fit the evidence), and

2. if O 6= ∅ then L(O) 6= ∅ (consistency of conjectures based on consistent
evidence).

We can extend L to range over strings of information states
#»

O = (O1, . . . , On)

in a natural way, by putting L(
#»

O) := L(
⋂ #»

O), where
⋂ #»

O := O1 ∩ . . . ∩ On. A
learning model M = (X,O,L, ‖ · ‖) is a learning frame (X,O,L) together with a
valuation map ‖ · ‖ : Prop ∪ PropO → P(X) as above; equivalently, it consists of
an intersection model (X,O, ‖ · ‖) together with a learner L, as defined above.

Intuitively, the states in X represent possible worlds. The tautological ev-
idence X =

⋂
∅ represents the state of “no information” (before anything is

observed), while the contradictory evidence ∅ represents inconsistent informa-
tion. Finally, L(O) represents the learner’s conjecture after observing O, while
L(O1, . . . , On) = L(O1 ∩ . . . ∩ On) represents the conjecture after observing a
finite sequence of observations O1, . . . , On. The fact that O is closed under finite
intersections is important here for identifying any finite sequence O1, . . . , On with
a single observation O = O1 ∩ . . . ∩ On ∈ O. This will become more clear later
when we define the observational updates.

Epistemic Scenarios. As in Subset Space Semantics, the formulas of our logic
are interpreted not at possible worlds, but at so-called epistemic scenarios : pairs
(x, U) of an ontic state x ∈ X and an information state U ∈ O such that x ∈
U . Therefore, only the truthful observations about the actual state play a role
in the evaluation of formulas. Intuitively, x represents the actual state of the
world, while U represents the learner’s current evidence (based on her previous
observations). We denote by ES(M) := {(x, U) | x ∈ U ∈ O} the set of all
epistemic scenarios of model M .

Each observational event e ∈ Π induces a dynamic update of the learner’s
information state. This is encoded in an update function e.

3.3.2. Definition. [Observational updates, update function] An update func-
tion (also denoted by) e : O → O maps any information state U ∈ O to an
updated information state e(U) ∈ O. The map is given by recursion:

!>(U) = U, !o(U) = U ∩ ‖o‖, (e; e′)(U) = e′(e(U)).

The meaning of these clauses should be obvious: the null event !> does not
change the learner’s information state; the single observation of variable o simply
adds ‖o‖ to the current evidence U (so that the learner will know the world is
in U ∩ ‖o‖) and the information state after a sequential composition e; e′ is the
same as the one obtained by updating first with e then with e′.

By the following lemmas, it is easy to see that the update map is appropriately
defined:
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3.3.3. Lemma. Let M = (X,O,L, ‖ · ‖) be a learning model and U ∈ O be an
information state. Then, for all e ∈ Π we have e(U) ∈ O.

Proof:
The proof follows easily by induction on the structure of e. For the base cases !>
and !o, we have !>(U) = U ∈ O and !o(U) = ‖o‖ ∩ U ∈ O by the closure of O
under finite intersections. In the inductive case e; e′, we apply the inductive hy-
pothesis to e and U , yielding that e(U) ∈ O, then we obtain that (e; e′) = e′(e(U))
(by applying again the inductive hypothesis to e′ and e(U)). 2

3.3.4. Lemma. Let M = (X,O,L, ‖ · ‖) be a learning model and U ∈ O be an
information state. Then, for all e ∈ Π, we have e(U) ⊆ U .

Proof:
The proof follows easily by induction on the structure of e. Base cases follows
easily by the definitions of the dynamic updates !> and !o. We only prove the
following inductive case:

Case e := f ; f ′: (f ; f ′)(U) = f ′(f(U)) ⊆ f(U) (by IH on f ′) ⊆ U (by IH on
f). 2

3.3.5. Definition. [Size of events in Π] The size s(e) of an event e ∈ Π is a
natural number recursively defined as:

s(!>) = s(!o) = 1,

s(e; e′) = s(e) + s(e′) + 1.

3.3.6. Lemma. Let M = (X,O,L, ‖ · ‖) be a learning model and U ∈ O be an
information state. Then, for all e, e′ ∈ Π we have: (e; e′)(U) = e(U) ∩ e′(U).

Proof:
The proof follows by induction on the size of (e; e′), with the induction hypothesis:

(IH): for all (f ; f ′) ∈ Π such that s(f ; f ′) < s(e; e′), (f ; f ′)(U) = f(U)∩f ′(U).

Base case e′ :=!>
(e; !>)(U) =!>(e(U)) = e(U) (by the definition of !>(U)) = e(U) ∩ U (by
Lemma 3.3.4)= e(U)∩!>(U) (by the definition of !>(U)).

Base case e′ :=!o
(e; !o)(U) =!o(e(U)) = e(U) ∩ ‖o‖ (by the definition of !o(U)) = e(U) ∩
(‖o‖ ∩ U) (by Lemma 3.3.4)= e(U)∩!o(U) (by the definition of !o(U)).
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Case e′ := f ; f ′

(e; e′)(U) = e′(e(U)) = (f ; f ′)(e(U)) = f(e(U)) ∩ f ′(e(U)) (by IH, since
s(f ; f ′) < s(e; e′)) = (e; f)(U)∩ (e; f ′)(U) = (f(U)∩ e(U))∩ (f ′(U)∩ e(U))
(by IH, since s(e; f) < s(e; e′) and also s(e; f ′) < s(e; e′)) = e(U)∩ (f(U)∩
f ′(U)) = e(U) ∩ (f ; f ′)(U) (by IH, since s(f ; f ′) < s(e; e′)) = e(U) ∩ e′(U).

2

We now proceed with the semantic definition.

3.3.7. Definition. [Semantics] Given a learning model M = (X,O,L, ‖ · ‖)
and an epistemic scenario (x, U), the semantics of the language LΠ is given by
a binary relation (x, U) |=M ϕ between epistemic scenario and formulas, called
the satisfaction relation, as well as a truth set (interpretation) [[ϕ]]UM := {x ∈
U | (x, U) |=M ϕ}, for all formulas ϕ ∈ LΠ. We typically omit the subscript,
simply writing (x, U) |= ϕ and [[ϕ]]U , whenever the model M is understood. The
satisfaction relation is defined by the following recursive clauses:

(x, U) |= p iff x ∈ ‖p‖
(x, U) |= o iff x ∈ ‖o‖
(x, U) |= ¬ϕ iff (x, U) 6|= ϕ
(x, U) |= ϕ ∧ ψ iff (x, U) |= ϕ and (x, U) |= ψ
(x, U) |= L(e) iff x ∈ L(e(U))
(x, U) |= Kϕ iff (∀y ∈ U) ((y, U) |= ϕ)
(x, U) |= [e]ϕ iff x ∈ e(U) implies (x, e(U)) |= ϕ
(x, U) |= 2ϕ iff (∀O ∈ O) (x ∈ O ⊆ U implies (x,O) |= ϕ)

i.e. (∀O ∈ O) (x ∈ O implies (x, U ∩O) |= ϕ)

where p ∈ Prop, o ∈ PropO , and e ∈ Π.
We say that a formula ϕ is valid in a learning model M , and write M |= ϕ, if

(x, U) |=M ϕ for all epistemic scenarios (x, U) ∈ ES(M). We say ϕ is valid, and
write |= ϕ, if it is valid in all learning models.

In our formal language, belief is not a primitive notion, but can be defined as
an abbreviation:

Bϕ := K(L(!>)→ ϕ),

that reads “the learner believes ϕ”. Similarly we can define conditional belief as

Beϕ := K(L(e)→ ϕ),

that reads “the learner believes ϕ conditional on observational event e”.
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3.3.8. Definition. [Precondition (informational content)] To each observational
event e ∈ Π, we associate a formula pre(e) ∈ LΠ, called the precondition of event
e. The definition is by recursion: pre(!>) = >, pre(!o) = o and pre(e; e′) =
pre(e) ∧ pre(e′).

The precondition formula pre(e) captures the “condition of possibility” of the
event e (i.e. e can happen in a world x iff pre(e) is true at (x, U), for any U ∈ O
with x ∈ U), as well as its informational content (the learner’s new information
after e). This leads to the following result:

3.3.9. Lemma. Let M = (X,O,L, ‖ · ‖) be a learning model and U ∈ O be an
information state. Then, for all e ∈ Π we have:

[[pre(e)]]U = e(U) = [[〈e〉>]]U .

Proof:
Equivalence e(U) = [[〈e〉>]]U follows directly from the semantic clause of [e]ϕ
given in Definition 3.3.7. We prove [[pre(e)]]U = e(U) by induction on the struc-
ture of e, using Lemma 3.3.6.

Base case e :=!>
[[pre(!>)]]U = [[>]]U = U =!>(U) (by the definitions of pre(e) and !>(U)).

Base case e :=!o

[[pre(!o)]]U = [[o]]U = U∩‖o‖ =!o(U) (by the definitions of pre(e) and !o(U)).

Case e := f ; f ′

[[pre(f ; f ′)]]U = [[pre(f)∧pre(f ′)]]U (by the definitions of pre(e)) = [[pre(f)]]U

∩ [[pre(f ′)]]U = f(U) ∩ f ′(U) (by IH) = (f ; f ′)(U) (by Lemma 3.3.6).

2

3.3.2 Axiomatization

Table 3.1 presents the axioms and inference rules for the Dynamic Logic for
Learning Theory (DLLT). Further on, in Sections 3.3.5 and 4.6, we will show
that DLLT is sound and complete with respect to the learning models.

Intuitive reading of the axioms and rules. Group Basic Axioms and rules
are quite standard: S5 axioms and rules for K says that the notion of knowledge
with absolute certainty we study in this paper is factive and fully (both posi-
tively and negatively) introspective. (K[e]) and (Nec[e]) together show that dy-
namic modalities [e]ϕ behave like normal modal operators. The reduction axioms
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Table 3.1: The axiom schemas for the Dynamic Logic for Learning Theory
(DLLT)

Basic axioms and rules:
(CPL) all instantiations of propositional tautologies
(KK) K(ϕ→ ψ)→ (Kϕ→ Kψ)
(TK) Kϕ→ ϕ
(4K) Kϕ→ KKϕ
(5K) ¬Kϕ→ K¬Kϕ
(K[e]) [e](ψ → χ)→ ([e]ψ → [e]χ)

(MP) From ` ϕ and ` ϕ→ ψ, infer ` ψ
(NecK) From ` ϕ, infer ` Kϕ
(Nec[e]) From ` ϕ, infer ` [e]ϕ

Learning axioms:
(CC) pre(e)→ 〈K〉L(e) Consistency of

Conjecture
(EC) K(pre(e)↔ pre(e′))→ (L(e)↔ L(e′)) Extensionality of

Conjecture
(SP) L(e)→ pre(e) Success Postulate

Reduction axioms:
(Rp) [e]p↔ (pre(e)→ p)
(Ro) [e]o↔ (pre(e)→ o)
(RL) [e]L(e′)↔ (pre(e)→ L(e; e′))
(R¬) [e]¬ψ ↔ (pre(e)→ ¬[e]ψ)
(RK) [e]Kψ ↔ (pre(e)→ K[e]ψ)
(Re) [e][e′]ψ ↔ [e; e′]ψ
(R2) [e]2ψ ↔ 2[e]ψ

Effort axiom and rule:
(2Ax) 2ϕ→ [e]ϕ, for e ∈ Π
(2Ru) From ` ψ → [e; !o]ϕ, infer ` ψ → [e]2ϕ,

where o 6∈ Oψ ∪Oe ∪Oϕ

are as in Epistemic Action Logic (EAL) (Baltag et al., 1998; Baltag and Renne,
2016) (a.k.a., Action Model Logic from van Ditmarsch et al., 2007), where the
precondition of an observational event e is captured by pre(e), that is, the infor-
mational content of the event e being true. The three learning axioms state the
following: (CC) states that the learner conjectures consistent propositions upon
having received truthful information; (EC) says that the form of the observational
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event (primitive or sequential) is irrelevant for learning, what is important is the
informational content of the observation: observing informationally equivalent
events gives rise to equivalent conjectures. Moreover, (SP) states that what the
learner conjectures fits what is observed, that is, the learner conjectures proposi-
tions that support what she has observed. Finally, we have the Effort rule (2Ru)
and axiom (2Ax) which together explain the dynamic behaviour of the effort
modality. While the latter expresses that if ϕ is stably true than it holds after
any observational event has taken place, the former states that if ϕ holds after
any more informative event has taken place ([e; o]), ϕ is stably true after e has
taken place.

3.3.10. Proposition. The following formulas are derivable in DLLT for all
ϕ ∈ LΠ and e ∈ Π:

1. [e](ϕ ∧ ψ)↔ ([e]ϕ ∧ [e]ψ)

2. 〈e〉ψ ↔ (pre(e) ∧ [e]ψ)

3. from ` ϕ↔ ψ, infer ` [e]ϕ↔ [e]ψ

4. 〈e〉pre(e′)↔ pre(e; e′)

5. from ` pre(e)↔ pre(e′), infer ` [e]ϕ↔ [e′]ϕ

6. [!>]ϕ↔ ϕ (we denote it R[>])

7. from ` ψ → [!o]ϕ, infer ` ψ → 2ϕ (where o /∈ Oψ ∪Oϕ).

Proof:

1. Follows from K[e] and Nec[e] standardly.

2. From 〈e〉ψ := ¬[e]¬ψ and the reduction axiom R¬.

3. From K[e] and Nec[e].

4. The proof goes by induction on the structure of e′. For the derivation of the
base case e′ :=!o: use (2.) in Proposition 3.3.10, the reduction axiom Ro,
CPL and the definition of precondition (Definition 3.3.8) for e; !o, namely
pre(e; !o) = pre(e) ∧ pre(!o).
For the base case e′ :=!>:

1. `〈e〉pre(!>)↔ 〈e〉> (Definition 3.3.8 for !>)

2. `〈e〉> ↔ pre(e) (by (2.) in Proposition 3.3.10, Ro and CPL)

3. `pre(e)↔ (pre(e) ∧ pre(!>)) (CPL, Definition 3.3.8 for !>)

4. `(pre(e) ∧ pre(!>))↔ pre(e; !>) (Definition 3.3.8 for e; !>)

5. `〈e〉pre(!>)↔ pre(e; !>) (CPL, 1, 4)
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We now prove the inductive case e′ := f ; f ′. First note that at this point
of the proof we have that ` 〈e〉pre(f) ↔ pre(e; f) and ` 〈e〉pre(f ′) ↔
pre(e; f ′). The derivation goes as follows:

1. `〈e〉pre(e′)↔ pre(e) ∧ [e]pre(e′) (by (2.) in Proposition 3.3.10)

2. `〈e〉pre(f ; f ′)↔ pre(e) ∧ [e]pre(f ; f ′) (since e′ := f ; f ′)

3. `pre(e) ∧ [e]pre(f ; f ′)↔ pre(e) ∧ [e](pre(f) ∧ pre(f ′))
(Definition 3.3.8 for f ; f ′)

4. ` (pre(e) ∧ [e](pre(f) ∧ pre(f ′)))↔ (pre(e) ∧ ([e]pre(f) ∧ [e]pre(f ′)))
(K[e])

5. ` (pre(e) ∧ ([e]pre(f) ∧ [e]pre(f ′)))↔ (〈e〉pre(f) ∧ 〈e〉pre(f ′))
(CPL and (2.) in Proposition 3.3.10)

6. ` (〈e〉pre(f) ∧ 〈e〉pre(f ′))↔ (pre(e; f) ∧ pre(e; f ′)) (IH on f and f ′)

7. ` (pre(e; f) ∧ pre(e; f ′))↔ (pre(e) ∧ pre(f) ∧ pre(e) ∧ pre(f ′))
(Definition 3.3.8 for e; f and e; f ′)

8. ` (pre(e) ∧ pre(f) ∧ pre(e) ∧ pre(f ′))↔ (pre(e) ∧ pre(f ; f ′))
(CPL and Definition 3.3.8 for f ; f ′)

9. ` (pre(e) ∧ pre(f ; f ′))↔ pre(e; e′)
(since e′ := f ; f ′ and Definition 3.3.8 for e; e′)

10. `〈e〉pre(e′)↔ pre(e; e′) (CPL, 1, 9)

5. Follows by induction on the structure of ϕ using the corresponding reduction
axiom, CPL, and replacement of provable equivalences for the formulas
outside of the dynamic observation operators.

6. Follows by induction on the structure of ϕ and the corresponding reduction
axiom.

7. Suppose ` ψ → [!o]ϕ such that o /∈ Oψ ∪ Oϕ, then we have the following
derivation for ψ → 2ϕ:

1. `ψ → [!o]ϕ (by assumption, o /∈ Oψ ∪Oϕ)

2. `[!o]ϕ→ [!>; !o]ϕ
(by (5.) in Proposition 3.3.10 since ` pre(!o)↔ pre(!>; !o))

3. `ψ → [!>; !o]ϕ (CPL, 1 and 2)

4. `ψ → [!>]2ϕ (by 2Ru)

5. `ψ → 2ϕ (by R[>] and CPL)

2
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In our framework, belief and conditional beliefs (B and Beϕ) are defined in
terms of the operators K and L. The axiomatic system DLLT given in Table 3.1
over the language LΠ can therefore derive the properties describing the type of
belief and conditional belief modalities we intend to formalize here. More precisely,
as stated in Proposition 3.3.11, the system DLLT yields the standard belief
system KD45 for B. More generally, if we replace the (D) axiom for a “weaker”
version (D′) := 〈K〉pre(e) → ¬Be⊥ then we have a weak version of the system
KD45, denoted by wKD45, for conditional beliefs Be.

3.3.11. Proposition (wKD45 system for Conditional Belief). The stan-
dard axioms and rules of the doxastic logic KD45 (see Section 2.1) are derivable
for our belief operator B in the system DLLT. More generally, the following ax-
ioms and rules of the weaker system wKD45 are derivable for our conditional
belief operator Be in the system DLLT:

(NecBe) From ` ϕ, infer ` Beϕ.

(KBe) Be(ϕ→ ψ)→ (Beϕ→ Beψ)

(D′Be) 〈K〉pre(e)→ ¬Be⊥

(4Be) Beϕ→ Be(Beϕ)

(5Be) ¬Beϕ→ Be(¬Beϕ)

Proof:
We first prove (NecBe), (KBe), (D′Be), (4Be) and (5Be) for Be. Then we prove the
system KD45 for B. Recall that Beϕ := K(L(e)→ ϕ) and let e ∈ Π.

(NecBe): From ` ϕ, infer ` Beϕ.

1. `ϕ (assumption)

2. `L(e)→ ϕ (1, CPL)

3. `K(L(e)→ ϕ) (NecK)

(KBe): we need to show that

` K(L(e)→ (ϕ→ ψ))→ (K(L(e)→ ϕ)→ K(L(e)→ ψ)).

1. `(L(e)→ (ϕ→ ψ))→ ((L(e)→ ϕ)→ (L(e)→ ψ)) (CPL)

2. `K((L(e)→ (ϕ→ ψ))→ ((L(e)→ ϕ)→ (L(e)→ ψ))) (NecK)

3. `K(L(e)→ (ϕ→ ψ))→ K((L(e)→ ϕ)→ (L(e)→ ψ)) (KK)

4. `K(L(e)→ (ϕ→ ψ))→ (K(L(e)→ ϕ)→ K(L(e)→ ψ))
(KK , 3, CPL)
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(D′Be): we need to show that

` 〈K〉pre(e)→ 〈K〉L(e).

1. `pre(e)→ 〈K〉L(e) (CC)

2. `K¬L(e)→ ¬pre(e) (contraposition of CC)

3. `K(K¬L(e)→ ¬pre(e)) (NecK)

4. `KK¬L(e)→ K¬pre(e) (KK , 3, MP)

5. `K¬L(e)→ K¬pre(e) (4K)

6. `〈K〉pre(e)→ 〈K〉L(e) (contraposition of 5)

(4Be): we need to show that

` K(L(e)→ ϕ)→ K(L(e)→ K(L(e)→ ϕ)).

1. `K(L(e)→ ϕ)→ (L(e)→ K(L(e)→ ϕ)) (CPL)

2. `KK(L(e)→ ϕ)→ K(L(e)→ K(L(e)→ ϕ)) (NecK , KK , 1, MP)

3. `K(L(e)→ ϕ)→ K(L(e)→ K(L(e)→ ϕ)) (4K)

(5Be): we need to show that

` ¬K(L(e)→ ϕ)→ K(L(e)→ ¬K(L(e)→ ϕ)).

1. `¬K(L(e)→ ϕ)→ (L(e)→ ¬K(L(e)→ ϕ)) (CPL)

2. `K¬K(L(e)→ ϕ)→ K(L(e)→ ¬K(L(e)→ ϕ)) (NecK , KK , 1, MP)

3. `¬K(L(e)→ ϕ)→ K(L(e)→ ¬K(L(e)→ ϕ)) (5K)

The KD45 axioms and rules for B follows from the system wKD45 as a special
case when e :=!>. 2

3.3.12. Proposition (S4 system for Effort). The S4 axioms and rules for
the effort modality 2 are derivable in DLLT.

Proof:
The derivation of (Nec2) easily follows from (Nec[e]) and (2Ru). The T-axiom for
2 follows from (2Ax) for e :=!>.

For the K-axiom:

1. `(2(ϕ→ ψ) ∧2ϕ)→ ([!o](ϕ→ ψ) ∧ [!o]ϕ) (2Ax, for some o /∈ Oϕ ∪Oψ)

2. `([!o](ϕ→ ψ) ∧ [!o]ϕ)→ [!o]ψ (K[e])

3. `(2(ϕ→ ψ) ∧2ϕ)→ [!o]ψ (CPL, 1 and 2)

4. `(2(ϕ→ ψ) ∧2ϕ)→ 2ψ ((7.) in Proposition 3.3.10, o /∈ Oϕ ∪Oψ)
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For the 4-axiom:

1. `2ϕ→ [!o; !u]ϕ (2Ax, for some o, u 6∈ Oϕ)

2. `2ϕ→ [!o]2ϕ (2Ru)

3. `2ϕ→ 22ϕ ((7.) in Proposition 3.3.10)

2

3.3.3 Expressivity of LΠ

In this section we compare the expressive power of LΠ to those of its fragments of
interest. Let L−!

Π denote the fragment of LΠ obtained by removing only the update
operators [e]ϕ. The fragment obtained by further removing the effort modality
2ϕ is called the static fragment and denoted by L−!2

Π . Finally, we denote the
epistemic fragment having only K as its modality by LepisΠ .

As usual in Dynamic Epistemic Logic, the dynamic observational event modal-
ities [e]ϕ are only a convenient way to express complex properties in a succinct
manner, but they can in principle be eliminated.

In some of our inductive proofs, we need a complexity measure on formulas
different from the standard one which is based on subformula complexity. The
standard notion requires only that formulas are more complex than their subfor-
mulas, while we also need that [e]2ϕ is more complex than 2[e]ϕ for all e ∈ Π. We
provide such suitable complexity measure and a strict partial order ≺1 on LΠ in
the Technical Appendix A.

3.3.13. Proposition (Expressivity). The language LΠ is co-expressive with
its fragment L−!

Π . Moreover, this can be proved in DLLT: for every formula ϕ
there exists some formula ϕ′ free of any dynamic modalities, such that ` ϕ ↔
ϕ′. Furthermore, if ϕ contains dynamic modalities then ϕ′ can be chosen such
that ϕ′ ≺1 ϕ.

Proof:
Suppose, towards contradiction, that ϕ is not in L−!

Π , and that ϕ is not provably
equivalent to any formula of lower complexity (in the sense of ≺1 from Lemma
A.1.2) that is in L−!

Π . We construct an infinite descending sequence

ϕ0 �1 ϕ1 �1 . . . �1 ϕn �1 . . .

of provably equivalent formulas, none of which is in L−!
Π . The construction goes

as follows. We first put ϕ0 := ϕ. Then, at step n, assuming given ϕn not in
L−!

Π , and provably equivalent to all the previous formulas, we chose the first dy-
namic modality occurring in ϕn, and apply once to it the relevant Reduction
Axiom (from left to right), obtaining a provably equivalent formula ϕn+1, which
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by Lemma A.1.2 has the property that ϕn+1 ≺1 ϕn. By transitivity of provable
equivalence, ϕn+1 is provably equivalent to ϕ0 = ϕ, and (by transitivity of ≺1)
it is of lower complexity than ϕ0 = ϕ; so, by our assumption above, ϕn+1 is still
not in L−!

Π . But the existence of this infinite descending sequence contradicts the
well-foundedness of ≺1. 2

In the following theorem, we compare the expressive power of the languages
LΠ, L−!2

Π and LepisΠ .

3.3.14. Theorem (Expresivity of fragments of LΠ). The full language
LΠ (and thus L−!

Π ) is strictly more expressive than the static fragment L−!2
Π with

respect to learning models. Moreover, L−!2
Π is strictly more expressive than the

epistemic fragment LepisΠ .

Proof:
For the first claim, consider the following two-state models M1 = (X,O1,L, ‖ · ‖)
and M2 = (X,O2,L, ‖ · ‖) where X = {x, y}, L := O → P(X) is such that
L(O) := O for every O ∈ O and the valuation ‖p‖ = {y}. And, take O1 = {X, ∅}
(the trivial topology on X) and O2 = P(X) (the discrete topology on X). It is
then easy to see that M1, (x, {x, y}) and M2, (x, {x, y}) are modally equivalent
with respect to the language L−!2

Π . However, M2, (x, {x, y}) |= 3K¬p (since {x}
is an open set of M2 and x /∈ ‖p‖ = {y}) whereas M1, (x, {x, y}) 6|= 3K¬p,
since the only open including x is {x, y} and y ∈ ‖p‖ = {y}. To prove that
L−!2

Π is strictly more expressive than the epistemic fragment LepisΠ , consider the
models M ′

1 = (X,O1,L1, ‖ · ‖) and M ′
2 = (X,O2,L2, ‖ · ‖), where X,O1, and

O2 are as above but L1 = L and L2 is such that L2(∅) = ∅, L2({x}) = {x}
and L2({y}) = L2({x, y}) = {y}. It is then easy to see that M ′

1, (x, {x, y}) and
M ′

2, (x, {x, y}) are modally equivalent with respect to the language LepisΠ whereas
M ′

2, (x, {x, y}) 6|= L(!>) (since x 6∈ L2(!>({x, y})) = {y}) but M ′
1, (x, {x, y}) |=

L(!>) (since x ∈ L1(!>({x, y})) = {x, y}). 2

The expressivity diagram in Figure 3.2 summarizes Proposition 3.3.13 and
Theorem 3.3.14.

3.3.4 Expressing belief, inductive learning and learning in
the limit

We investigate how various notions of learnability, already mentioned in Sections
3.2 and 3.2.1, can be expressed in the framework of DLLT. We start with the
notions that were already captured in (Moss and Parikh, 1992). Then we will
see how to define in our language inductive knowledge and inductive learnability,
which cannot be expressed in the language of SSL.
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L−!2
Π

L−!
Π

LΠ

LepisΠ

Figure 3.2: Expressivity diagram (Arrows point to the more expressive languages,
and reflexive and transitive arrows are omitted.)

3.3.15. Proposition. 3Kp is true at (x, U) in a model M iff ‖p‖ is learnable
with certainty at state x. Similarly, p→ 3Kp is valid (i.e., true at all epistemic
scenarios) in a model M iff ‖p‖ is verifiable with certainty. A similar statement
holds for falsifiability with certainty.

Proof:
As we know from Section 3.2.1, ‖p‖ is learnable with certainty in x iff it exists
O ∈ O such that x ∈ O ⊆ ‖p‖. We also know that ‖p‖ is verifiable with
certainty iff ‖p‖ is learnable with certainty at all worlds x ∈ ‖p‖ with respect to
all information states U ∈ O that contain x. Note that the latter, verifiability
with certainty, is equivalent to the following statement: ‖p‖ is open in the smallest
topology generated by O. It is well-known that these properties are expressible in
SSL via the formulas above (Moss and Parikh, 1992), namely 3Kp and p→ 3Kp.

2

In particular, the following validity of our logic expresses the fact that all
observable properties are verifiable with certainty (contrary to the language in
(Moss and Parikh, 1992) with no observational variables):

o→ 3Ko.

By adding the learning operator to subset space logic, DLLT can capture, not
only belief, but also the various inductive notions of knowledge and learnability
we presented in Definitions 3.2.4 and 3.2.5. The notion of infallible knowledge is
obviously very strong: we know very few things with such certainty (maybe some
logical or mathematical truths that require only hard thinking and no empirical
evidence). One needs weaker notions of knowledge if one desires to model the type
of knowledge we can acquire from experimental evidence that is typically partial
and incomplete. This type of knowledge is taken to be fallible, yet resistant to
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truthful evidence gain and stronger than plain belief. In this learning theoretical
context, it is captured by an evidence-based notion of inductive knowledge defined
in terms of undefeated belief and tracking the truth (see Definition 3.2.5). Recall
that we can define belief in our language as Bϕ := K(L(!>)→ ϕ).

3.3.16. Proposition (Inductive learning theoretic notions). Given a
learning model M = (X,O,L, ‖ · ‖) and (x, U) ∈ ES(M),

1. (x, U) |= 2Bp iff the learner L has undefeated belief in ‖p‖ (at world x in
information state U).

2. (x, U) |= K(32Bp↔ p) iff the learner L tracks the truth of ‖p‖ (at world
x in information state U). Similarly, (x, U) |= K(32B¬p ↔ ¬p) iff the
learner L tracks the falsehood of ‖p‖ (at world x in information state U).

3. (x, U) |= 2Bp∧K(32Bp↔ p) iff the learner L inductively knows ‖p‖ (at
world x in information state U).

We denote Kindp := 2Bp ∧K(32Bp↔ p).

4. (x, U) |= 3Kindp iff ‖p‖ is inductively learnable by L (at world x in infor-
mation state U).

5. (x,X) |= 3L(!>) iff (given enough observations) the learner L will even-
tually reach a true conjecture (though she might later fall again into false
ones); and similarly, (x,X) |= 32L(!>) iff (given enough observations) the
leaner will eventually produce only true conjectures thereafter.

6. The formula p→ 3Kindp is valid in M iff ‖p‖ is inductively verifiable by
L. For the corresponding generic notion: ‖p‖ is inductively verifiable (by
some learner) iff p→ 3Kindp is validable in the intersection space (X,O).

7. Similarly, ¬p → 3Kind¬p is valid in M iff ‖p‖ is inductively falsifiable
by L. In other words, ‖p‖ is inductively falsifiable by L iff X − ‖p‖ is
inductively verifiable by L. For the corresponding generic notion: ‖p‖ is
inductively falsifiable (by some learner) iff ¬p → 3Kind¬p is validable in
the intersection space (X,O).

Proof:
Let M = (X,O,L, ‖ · ‖) be a learning model and (x, U) ∈ ES(M).

1. For undefeated belief:

(x, U) |= 2Bp iff ∀V ∈ O such that x ∈ V ⊆ U , (x, V ) |= Bp (Definition
3.3.7 for 2) iff ∀V ∈ O such that x ∈ V , (x, V ) |= K(L(!>)→ p) (abbrevi-
ation for B) iff ∀V ∈ O such that x ∈ V , L(V ) ⊆ [[p]]V (Definition 3.3.7 for
K, L and p, and !>(V ) = V ) iff L has undefeated belief in [[p]]U at world x
(by Definition 3.2.4).
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2. For tracking the truth:

(x, U) |= K(32Bp↔ p) iff ∀y ∈ U , (y, U) |= 32Bp↔ p (Definition 3.3.7
for K) iff ∀y ∈ U , ((y, U) |= 32Bp iff (y, U) |= p) iff ∀y ∈ U ((∃V ∈ O
with y ∈ V ⊆ U such that (y, V ) |= 2Bp) iff y ∈ [[p]]U) (Definition 3.3.7 for
3) iff ∀y ∈ U ((∃V ∈ O with y ∈ V ⊆ U such that L has undefeated belief
in [[p]]V at y) iff y ∈ [[p]]U) (by the proof above for undefeated belief) iff L
tracks the truth of [[p]]U at world x (by Definition 3.2.5).

Tracking the falsehood follows by a similar reasoning.

3. For inductive knowledge: it follows straightforwardly from the proofs above
that (x, U) |= 2Bp∧K(32Bp↔ p) iff L has undefeated belief in [[p]]U and
L tracks the truth of [[p]]U at world x iff [[p]]U is inductively known at world
x (by Definition 3.2.5).

4. For inductive learnability:

(x, U) |= 3Kindp iff ∃V ∈ O such that x ∈ V ⊆ U and (x, V ) |= Kindp
(Definition 3.3.7 for 2) iff there exists some observable V ∈ O of x such
that [[p]]V is inductively known by L at world x (by the proof above for
inductive knowledge) iff [[p]]U is inductively learnable by L at world x (by
Definition 3.2.5).

5. (x,X) |= 3L(!>) iff ∃V ∈ O such that x ∈ V and (x, V ) |= L(!>) (Defini-
tion 3.3.7 for 3) iff ∃V ∈ O such that x ∈ V and x ∈ L(V ) (Definition 3.3.7
for L and since !>(V ) = V ) iff (this already expresses what we wanted) the
learner L will eventually reach a true conjecture at world x. The remaining
case follows standardly.

6. For inductive verifiability:

p → 3Kindp is valid in a learning model M iff for every (x, U) ∈ ES(M),
(x, U) |= p → 3Kindp iff for every (x, U) ∈ ES(M), x ∈ [[p]]U implies
(x, U) |= 3Kindp (CPL, Definition 3.3.7 for p) iff for every (x, U) ∈ ES(M),
if [[p]]U is true at x then [[p]]U is inductively learnable by L at world x (by
the proof above for inductive learnability) iff [[p]]U is inductively verifiable
by L (by Definition 3.2.5). The generic case follows standardly.

7. For inductive falsifiability: follows as in the previous case with respect to
the validity of ¬p→ 3Kind¬p.

2
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3.3.5 Soundness of DLLT

In this section we prove soundness of DLLT. This is not a trivial matter due to
the non-standard rule (2Ru), thus we first need the following lemma.

3.3.17. Lemma. Let M = (X,O,L, ‖·‖) and M ′ = (X,O,L, ‖·‖′) be two learning
models and ϕ ∈ LΠ such that M and M ′ differ only in the valuation of some
o 6∈ Oϕ. Then, for all U ∈ O, we have [[ϕ]]UM = [[ϕ]]UM ′.

Proof:
Follows by subformula induction on ϕ. Let M = (X,O,L, ‖ · ‖) and M ′ =
(X,O,L, ‖ · ‖′) be two learning models such that M and M ′ differ only in the
valuation of some o 6∈ Oϕ, let U ∈ O and e ∈ Π.

Base case ϕ := q ∈ Prop. Follows by the fact that q is not an observa-
tional variable, thus, for all q ∈ Prop we have that ||q|| = ||q||′. Since
M and M ′ have the same set of opens O, for all U ∈ O we have that
[[q]]UM = U ∩ ||q|| = U ∩ ||q||′ = [[q]]UM ′ .

Base case ϕ := o ∈ PropO . Since o ∈ Oϕ, we have that ||o|| = ||o||′. By the
same reasoning as above, [[o]]UM = [[o]]UM ′ .

Case ϕ := L(e)
Note that OL(e) = Oe and for every o ∈ Oe, ||o|| = ||o||′. Therefore, since O
is the same in both models, e(U) ∈ O is the same in both models. Also, L
is the same in both models, thus [[L(e)]]UM = L(e(U)) = [[L(e)]]UM ′ .

The cases for Booleans ϕ := ¬ψ and ϕ := ψ ∧ χ are straightforward.

Case ϕ := Kψ
Note that OKψ = Oψ. Then, by induction hypothesis (IH), we have that
[[ψ]]UM = [[ψ]]UM ′ . We have two case (1) if U = [[ψ]]UM = [[ψ]]UM ′ , then [[Kψ]]UM =
[[Kψ]]UM ′ = U , and (2) if [[ψ]]UM = [[ψ]]UM ′ 6= U , then [[Kψ]]UM = [[Kψ]]UM ′ = ∅.

Case ϕ := [e]ψ
Note that O[e]ψ = Oe ∪ Oψ. Suppose x ∈ [[[e]ψ]]UM . For every o ∈ Oe we
have that ||o|| = ||o||′, thus e(U) ∈ O is the same in both models. We
must show that, x ∈ e(U) implies (x, e(U)) |=M ′ ψ . So suppose x ∈ e(U),
since x ∈ [[[e]ψ]]UM we have that (x, e(U)) |=M ψ. By IH we then have
(x, e(U)) |=M ′ ψ. The other direction follows similarly.
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Case ϕ := 2ψ
Suppose x ∈ [[2ψ]]UM . This means, by the semantics of 2, that for all V ∈ O
with x ∈ V ⊆ U we have that (x, V ) |=M ψ, i.e., that x ∈ [[ψ]]VM . Therefore,
by IH and the fact that O2ψ = Oψ, we obtain x ∈ [[ψ]]VM ′ for all V ⊆
U . Since M and M ′ carry exactly the same collection O, we conclude that
x ∈ [[2ψ]]UM ′ . The opposite direction follows similarly.

2

The following lemma will be useful for the soundness proof of the reduction
axiom (R2).

3.3.18. Lemma. Let M = (X,O,L, ‖ · ‖) be a learning model and U,O ∈ O be
information states. Then, for all e ∈ Π, we have: e(U) ∩O = e(U ∩O).

Proof:
The proof follows by induction on the structure of e for all V ∈ O. Base cases
follow easily by the definitions of the dynamic updates !> and !o. We only prove
the inductive case.

Case e := f ; f ′

(f ; f ′)(U) ∩ O = f ′(f(U)) ∩ O = f ′(f(U) ∩ O) (by IH on f ′ and f(U) ∈ O by
Lemma 3.3.3) = f ′(f(U ∩O)) (by IH on f) = (f ; f ′)(U ∩O). 2

3.3.19. Theorem (Soundness of DLLT). The system DLLT in Table 3.1 is
sound wrt the class of learning models.

Proof:
The soundness proof follows via standard validity check. We here only present
the validity proofs for the three learning axioms, (CC), (EC), (SP), the reduction
axioms RL, R2, and for the Effort-axiom (2Ax) and the Effort-rule (2Ru). The
validity proofs for the other axioms and rules are as usual. Let M = (X,O,L, ‖·‖)
be a learning model and (x, U) ∈ ES(M).

(CC): Suppose (x, U) |= pre(e) with e ∈ Π. We want to show that (x, U) |=
〈K〉L(e), i.e., that there is a y ∈ U s.t. (y, U) |= L(e), i.e., by the semantic
definition of L, that there is a y ∈ U s.t. y ∈ L(e(U)). Recall that L(O) ⊆
O for every O ∈ O (by clause (1.) in Definition 3.3.1), so L(e(U)) ⊆
e(U). Also, L(O) 6= ∅ if O 6= ∅ (by (2.) in Definition 3.3.1). Since x ∈
[[pre(e)]]U = e(U) by Lemma 3.3.9, we have that L(e(U)) 6= ∅, i.e., there is
y ∈ L(e(U)). Since y ∈ L(e(U)) ⊆ U , by the semantics of L, we obtain that
(y, U) |= L(e). Thus (x, U) |= 〈K〉L(e).
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(EC): Suppose (x, U) |= K(pre(e)↔ pre(e′)). This means that x ∈ [[K(pre(e)
↔ pre(e′))]]U . Therefore, by the semantics of K, we obtain that [[pre(e)]]U =
[[pre(e′)]]U . This means that [[pre(e)]]U = e(U) = [[pre(e′)]]U = e′(U). Hence,
since L is a function, we obtain L(e(U)) = L(e′(U)). Therefore, by the se-
mantics fo L, we conclude that [[L(e)]]U = [[L(e′)]]U , i.e., that (x, U) |=
L(e)↔ L(e′).

(SP): Suppose (x, U) |= L(e). By the semantics, we have x ∈ L(e(U)). Since
we have that L(e(U)) ⊆ e(U) = [[pre(e)]]U by clause (1.) in Definition 3.3.1
and Lemma 3.3.9, we obtain that x ∈ [[pre(e)]]U , i.e., that (x, U) |= pre(e).

(RL): From left-to-right: Suppose (x, U) |= [e]L(e′). This means that x ∈
e(U) implies (x, e(U)) |= L(e′), i.e., that x ∈ e(U) = [[pre(e)]]U implies
x ∈ L(e′(e(U))). Then, by the semantics of L, we obtain that (x, U) |=
pre(e)→ L(e; e′). The opposite direction follows similarly.

(R2):

(x, U) |= [e]2ϕ

iff x ∈ e(U) implies (x, e(U)) |= 2ϕ (by the semantics of [e])

iff x ∈ e(U) implies (∀O ∈ O)(x ∈ O implies (x, e(U) ∩O) |= ϕ)
(by the semantics of 2)

iff (∀O ∈ O)((x ∈ e(U) and x ∈ O) implies (x, e(U) ∩O) |= ϕ)

iff (∀O ∈ O)(x ∈ O implies (x ∈ e(U) ∩O implies (x, e(U) ∩O) |= ϕ))

iff (∀O ∈ O)(x ∈ O implies (x ∈ e(U ∩O) implies (x, e(U ∩O)) |= ϕ))
(Lemma 3.3.18)

iff (∀O ∈ O)(x ∈ O implies (x, U ∩O) |= [e]ϕ) (by the semantics of [e])

iff (x, U) |= 2[e]ϕ. (by the semantics of 2)

(2Ax): Suppose (x, U) |= 2ϕ. This mean, by the semantics of 2, that for
all O ∈ O with x ∈ O we have (x, U ∩ O) |= ϕ. By Lemmas 3.3.3 and
3.3.9, we have that [[pre(e)]]U ∈ O for all e ∈ Π and U ∈ O, so in particular
x ∈ [[pre(e)]]U implies (x, U ∩ [[pre(e)]]U) |= ϕ for every e ∈ Π. By the
semantics of [e], we obtain that (x, U) |= [e]ϕ for every observational event
e ∈ Π.

(2Ru): Suppose |= χ → [e; !o]ϕ and 6|= χ → [e]2ϕ, where o /∈ Oχ ∪ Oe ∪
Oϕ. The latter means that there exists a learning model M = (X,O,L, ‖ ·
‖) such that for some U ∈ O and some w ∈ U , we have w /∈ [[χ →
[e]2ϕ]]UM . Therefore w ∈ [[χ ∧ ¬[e]2ϕ]]UM . Thus we have (1): w ∈ [[χ]]UM
and (2): w ∈ [[¬[e]2ϕ]]UM . Because of (2), w ∈ [[〈e〉3¬ϕ]]UM , and, by the

semantics of 〈e〉, w ∈ [[3¬ϕ]]
[[pre(e)]]UM
M . Therefore, applying the semantics of
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2, we obtain (3): there exists V ∈ O s.t. w ∈ V ⊆ [[pre(e)]]UM ⊆ U and
w ∈ [[¬ϕ]]VM .

Now consider the learning model M ′ = (X,O,L, ‖ · ‖′) such that ‖o‖′ = V
and ‖u‖′ = ‖u‖ for all u ∈ PropO such that u 6= o. In order to use Lemma
3.3.17 we must show that M ′ is a learning model. Since X, L, and O are
as in the learning model M , we only need to verify that ‖u‖′ ∈ O for all
u ∈ PropO . As ‖o‖′ = V ∈ O, the condition is satisfied for o. For every
u 6= o, since ‖u‖′ = ‖u‖ and ‖u‖ ∈ O we have ‖u‖′ ∈ O. Therefore, M ′ is a
learning model. Now continuing with our soundness proof, since o /∈ Oχ ∪
Oe∪Oϕ, by Lemma 3.3.17, we obtain [[χ]]UM ′ = [[χ]]UM , [[pre(e)]]UM ′ = [[pre(e)]]UM
and [[¬ϕ]]UM ′ = [[¬ϕ]]UM . Since ‖o‖′ = V ⊆ [[pre(e)]]UM ′ ⊆ U , we have ‖o‖′ =
[[o]]UM ′ . As pre(!o) = o and ‖o‖′ ⊆ U , we obtain ‖o‖′ = [[pre(!o)]]UM ′ . Thus
[[o]]UM ′ = [[pre(!o)]]UM ′ = V . Because of (3) we have that w ∈ [[pre(e)]]UM ′

and w ∈ [[¬ϕ]]VM ′ = [[¬ϕ]]
[[pre(!o)]]U

M′
M ′ = [[〈!o〉¬ϕ]]UM ′ . Thus, w ∈ [[pre(!o)]]UM ′ , so

w ∈ [[pre(e; !o)]]UM ′ = [[pre(e)]]UM ′ ∩ [[pre(!o)]]UM ′ = [[pre(!o)]]UM ′ simply because

[[pre(!o)]]UM ′ = V ⊆ [[pre(e)]]UM ′ . Since w ∈ [[¬ϕ]]
[[pre(!o)]]U

M′
M ′ we obtain w ∈

[[¬ϕ]]
[[pre(e;!o)]]U

M′
M ′ . Putting everything together, w ∈ [[pre(e; !o)]]UM ′ and w ∈

[[¬ϕ]]
[[pre(e;!o)]]U

M′
M ′ , we obtain that w ∈ [[〈e; !o〉¬ϕ]]UM ′ and w ∈ [[χ]]UM ′ . Therefore

w ∈ [[χ ∧ 〈e; !o〉¬ϕ]]UM ′ , which contradicts the validity of χ→ [e; !o]ϕ.

2

3.3.6 Completeness of DLLT

We now move to the completeness proof of our axiomatization DLLT. Although
DLLT is more expressive than Subset Space Logic (interpreted on intersection
spaces), our completeness proof is much simpler, and follows via a canonical model
construction: this is one of the advantages of having the (expressively redun-
dant) dynamic observation modalities. There are two main technical differences
between our construction and the standard canonical model from Basic Modal
Logic. First, this is not a relational (Kripke) model, but a neighborhood model ;
so the closest analogue is the type of canonical construction used in Topological
Modal Logic or Neighborhood Semantics (Aiello et al., 2007). Second, the stan-
dard notion of maximally consistent theory8 is not very useful for our logic, since
such theories do not “internalize” the rule 2Ru. To do this, we need instead to
consider “witnessed” (maximally consistent) theories, in which every occurrence
of a 3ϕ in any “existential context” is “witnessed” by some 〈!o〉ϕ (with o obser-
vational variable). The appropriate notion of “existential contexts” is represented
by possibility forms, in the following sense:

8Recall from Section 2.1 that a set of formulas Γ ⊆ LΠ is consistent if Γ does not derive a
contradiction, and it is maximally consistent if any consistent theory Γ′ ⊇ Γ, Γ′ = Γ.
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3.3.20. Definition. [Pseudo-modalities: necessity and possibility forms] The
set of necessity-form expressions of our language is given by NFLΠ

:= ({ϕ →
| ϕ ∈ LΠ} ∪ {K} ∪ {e : e ∈ Π})∗. For any finite string s ∈ NFLΠ

, we de-
fine pseudo-modalities [s] (called necessity form) and 〈s〉 (called possibility form)
that generalize our dynamic modalities [e] and 〈e〉. These pseudo-modalities are
functions mapping any formula ϕ ∈ LΠ to another formula [s]ϕ ∈ LΠ, and respec-
tively 〈s〉ϕ ∈ LΠ. Necessity forms are defined recursively, by putting: [ε]ϕ := ϕ
(where ε is the empty string), [s, ϕ →]ϕ := [s](ϕ → ϕ), [s,K]ϕ := [s]Kϕ,
[s, e]ϕ := [s][e]ϕ. As for possibility forms, we put 〈s〉ϕ := ¬[s]¬ϕ.

To illustrate, expression [K, !o,3p→, e] constitutes a necessity form such that
[K, !o,3p→, e]ϕ = K[!o](3p→ [e]ϕ).

The following lemma expresses that any necessity form s is characterized by
an observational event e ∈ Π and a formula ψ ∈ LΠ independently of which
formula ϕ ∈ LΠ it is applied to.

3.3.21. Lemma. For every necessity form [s], there exist an observational event
e ∈ Π and a formula ψ ∈ LΠ , with Oψ ∪Oe ⊆ Os , such that for all ϕ ∈ LΠ , we
have

` [s]ϕ iff ` ψ → [e]ϕ.

Proof:
We proceed by induction on the structure of necessity forms. For the empty
string s := ε, take ψ := > and e :=!>, then it follows from classical propositional
logic.

s := s′, η →
` [s′, η →]ϕ iff ` [s′](η → ϕ) (Definition 3.3.20)

iff ` ψ′ → [e](η → ϕ)
(for some ψ′ ∈ LΠ and e ∈ Π with Oψ′ ∪Oe ⊆ Os′ , by IH)

iff ` ψ′ → ([e]η → [e]ϕ) (K[e])

iff ` (ψ′ ∧ [e]η)→ [e]ϕ (CPL)

iff ` ψ → [e]ϕ (ψ := ψ′ ∧ [e]η, thus, Oψ ∪Oe ⊆ Os)

s := s′, K

` [s′, K]ϕ iff ` [s′]Kϕ (Definition 3.3.20)

iff ` ψ′ → [e]Kϕ
(for some ψ′ ∈ LΠ and e ∈ Π with Oψ′ ∪Oe ⊆ Os′ , by IH)

iff ` ψ′ → (pre(e)→ K[e]ϕ) (RK)

iff ` (ψ′ ∧ pre(e))→ K[e]ϕ (CPL)

iff ` 〈K〉(ψ′ ∧ pre(e))→ [e]ϕ
(pushing K back with its dual 〈K〉, since K is an S5 modality)

iff ` ψ → [e]ϕ (ψ := 〈K〉(ψ′ ∧ pre(e)) ∈ LΠ, thus, Oψ ∪Oe ⊆ Os)
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s := s′, e′

` [s′, e′]ϕ iff ` [s′][e′]ϕ (Definition 3.3.20)

iff ` ψ′ → [e][e′]ϕ
(for some ψ′ ∈ LΠ and e ∈ Π with Oψ′ ∪Oe ⊆ Os′ , by IH)

iff ` ψ′ → [e; e′]ϕ (Re)

2

3.3.22. Lemma. The following rule is admissible in DLLT:

if ` [s][!o]ϕ then ` [s]2ϕ, where o 6∈ Os ∪Oϕ.

Proof:
Suppose ` [s][!o]ϕ where o 6∈ Os ∪ Oϕ. Then, by Lemma 3.3.21, there exist
e ∈ Π and ψ ∈ LΠ with Oψ ∪ Oe ⊆ Os such that ` ψ → [e][!o]ϕ. Thus we get
` ψ → [e; !o]ϕ by an instance of Re. Therefore, by the Effort rule (2Ru) we have
` ψ → [e]2ϕ. Then, again by Lemma 3.3.21, we obtain ` [s]2ϕ. 2

3.3.23. Definition. [Maximal O-witnessed theories] For every countable set of
observational variables O, let LO

Π be the language of the logic DLLTO based only
on the observational variables in O. Let NFO

LΠ
denote the set of necessity-form

expressions of LO
Π (i.e., necessity forms involving only observational variables in

O).

• An O-theory is a consistent set of formulas in LO
Π. Here, “consistent” means

consistent with respect to the axiomatization DLLT formulated for LO
Π.

• A maximal O-theory is an O-theory Γ that is maximal with respect to ⊆
among all O-theories; in other words, Γ cannot be extended to another
O-theory.

• An O-witnessed theory is an O-theory Γ such that, for every s ∈ NFO
LΠ

and
ϕ ∈ LO

Π, if 〈s〉3ϕ is consistent with Γ then there is o ∈ O such that 〈s〉〈!o〉ϕ
is consistent with Γ. A maximal O-witnessed theory Γ is an O-witnessed
theory that is not a proper subset of any O-witnessed theory.

The following lemmas will be useful in the proof of Lindenbaum’s Lemma.

3.3.24. Lemma. For every maximal O-witnessed theory Γ, and any ϕ, ψ ∈ LO
Π,

1. either ϕ ∈ Γ or ¬ϕ ∈ Γ,

2. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ,
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3. ϕ ∈ Γ and ϕ→ ψ ∈ Γ implies ψ ∈ Γ.

Proof:
The proofs follow in a standard way as Γ is maximal. 2

3.3.25. Lemma. For every Γ ⊆ LO
Π, if Γ is an O-theory and Γ 6` ¬ϕ for some

ϕ ∈ LO
Π, then Γ∪{ϕ} is an O-theory. Moreover, if Γ is O-witnessed, then Γ∪{ϕ}

is also O-witnessed.

Proof:
Let Γ ⊆ LO

Π be an O-theory and ϕ ∈ LO
Π such that Γ 6` ¬ϕ. We first show that

Γ ∪ {ϕ} is an O-theory. Suppose, toward a contradiction, that Γ ∪ {ϕ} is not an
O-theory, i.e., that Γ ∪ {ϕ} ` ⊥. Thus, there is a finite set ∆ ⊆ Γ such that
∆ ` ¬ϕ and therefore Γ ` ¬ϕ, which contradicts the assumption that Γ 6` ¬ϕ.

Now suppose that Γ is O-witnessed but Γ ∪ {ϕ} is not O-witnessed. By the
previous statement, we know that Γ∪{ϕ} consistent. Therefore, the latter means
that there is s ∈ NFO

LΠ
and ψ ∈ LO

Π such that Γ ∪ {ϕ} is consistent with 〈s〉3ψ
but Γ ∪ {ϕ} ` ¬〈s〉〈!o〉ψ for all o ∈ O. This implies that Γ ∪ {ϕ} ` [s][!o]¬ψ for
all o ∈ O. Therefore, Γ ` ϕ→ [s][!o]¬ψ for all o ∈ O. Note that ϕ→ [s][!o]¬ψ :=
[ϕ →, s][!o]¬ψ, and [ϕ →, s] ∈ NFO

LΠ
. We thus have Γ ` [ϕ →, s][!o]¬ψ for all

o ∈ O. Since Γ is O-witnessed, we obtain Γ ` [ϕ →, s]2¬ψ. By unraveling the
necessity form [ϕ →, s], we get Γ ` ϕ → [s]2¬ψ, thus, Γ ∪ {ϕ} ` [s]2¬ψ, i.e.,
Γ ∪ {ϕ} ` ¬〈s〉3ψ, contradicting the assumption that Γ ∪ {ϕ} is consistent with
〈s〉3ψ. 2

3.3.26. Lemma. If {Γi}i∈N an increasing chain of O-theories such that Γi ⊆
Γi+1, then

⋃
n∈N Γn is an O-theory.

Proof:
Let Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γn ⊆ . . . be an increasing chain of O-theories and sup-
pose, toward contradiction, that

⋃
n∈N Γn is not an O-theory, i.e., suppose that⋃

n∈N Γn ` ⊥. This means that there exists a finite ∆ ⊆
⋃
n∈N Γn such that

∆ ` ⊥. Then, since
⋃
n∈N Γn is a union of an increasing chain of O-theories,

there is some m ∈ N such that ∆ ⊆ Γm. Therefore, Γm ` ⊥ contradicting the fact
that Γm is an O-theory. 2

3.3.27. Lemma (Lindenbaum’s Lemma). Every O-witnessed theory Γ can be
extended to a maximal O-witnessed theory TΓ.
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Proof:
The proof follows by constructing an increasing chain

Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γn ⊆ . . . ,

of O-witnessed theories where Γ0 := Γ, and each Γi will be recursively defined. We
have to guarantee that each Γi is O-witnessed and, in order to do so, we follow
a two-fold construction, where Γ0 = Γ′0 := Γ. Let γn := (sn, ϕn) be the nth-pair
in the enumeration A of all pairs of the form (s, ϕ) consisting of a necessity form
expression s ∈ NFO

LΠ
and a formula ϕ ∈ LO

Π. Note that the empty string ε is in
NFO

LΠ
, so for every formula ϕ ∈ LO

Π the pair (ε, ϕ) is in A, and 〈ε〉ϕ := ϕ by the
definition of possibility forms. We then set

Γ′n =

{
Γn ∪ {〈sn〉ϕn} if Γ 0 ¬〈sn〉ϕn,
Γn otherwise.

By Lemma 3.3.25, each Γ′n is O-witnessed. Therefore, if ϕn is of the form
ϕn := 3θ for some θ ∈ LO

Π, there must exist an o ∈ O such that Γ′n is consistent
with 〈s〉〈!o〉θ (since Γ′n is O-witnessed). We then define

Γn+1 =


Γ′n if Γn 0 ¬〈sn〉ϕn and ϕn is not of the form 3θ,

Γ′n ∪ {〈sn〉〈!o〉θ} if Γn 0 ¬〈sn〉ϕn and ϕn := 3θ for some θ ∈ LO
Π,

Γn otherwise,

where o ∈ O is such that Γ′n is consistent with 〈s〉〈!o〉θ. Again by Lemma
3.3.25, it is guaranteed that each Γn is O-witnessed. Now consider the union
TΓ =

⋃
n∈N Γn. By Lemma 3.3.26, we know that TΓ is an O-theory. To show that

TΓ is O-witnessed, let s ∈ NFO
LΠ

and θ ∈ LO
Π and suppose 〈s〉3θ is consistent

with TΓ. The pair (s,3θ) appears in the enumeration A, thus γm := (sm, ϕm) =
(s,3θ) with sm := s and ϕm := 3θ, for some γm ∈ A. Since 〈sm〉ϕm is consistent
with TΓ and Γm ⊆ TΓ, we know that 〈sm〉3θ is in particular consistent with
Γm. Therefore, by the above construction, 〈s〉〈!o〉θ ∈ Γm+1 for some o ∈ O such
that Γ′m is consistent with 〈s〉〈!o〉θ. Thus, as TΓ is consistent and Γm+1 ⊆ TΓ, we
have that 〈s〉〈!o〉θ is also consistent with TΓ, moreover 〈s〉〈!o〉θ ∈ TΓ. Hence, we
conclude that TΓ is O-witnessed. Finally, TΓ is also maximal by construction:
otherwise there would be an O-witnessed theory T such that TΓ ⊂ T . This implies
that there exists ϕ ∈ LO

Π with ϕ ∈ T but ϕ 6∈ TΓ. Then, by the construction of TΓ,
we obtain Γi ` ¬ϕ for all i ∈ N. Therefore, since TΓ ⊆ T , we have T ` ¬ϕ. Hence,
since ϕ ∈ T , we obtain T ` ⊥ (contradicting T being consistent). 2

3.3.28. Lemma (Extension Lemma). Let O be a set of observational variables
and O′ be a countable set of fresh observational variables, i.e., O ∩ O′ = ∅. Let
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∼
O = O ∪ O′. Then, every O-theory Γ can be extended to an

∼
O-witnessed theory

∼
Γ ⊇ Γ, and hence to a maximal

∼
O-witnessed theory TΓ ⊇ Γ.

Proof:
Let A = {γ0, γ1, . . . , γn, . . .} be an enumeration of all pairs of the form γi :=

(si, ϕi) consisting of any necessity form si ∈ NF
∼
O
LΠ

and every formula ϕi ∈ L
∼
O
Π. We

will recursively construct a chain of
∼
O-theories Γ0 ⊆ . . . ⊆ Γn ⊆ . . . such that:

1. Γ0 = Γ,

2. O′n = {o ∈ O′ : o occurs in Γn} is finite for every n ∈ N (we will verify this
later in the proof). Finally,

3. for every γn := (sn, ϕn) with sn ∈ NF
∼
O
LΠ

and ϕn ∈ L
∼
O
Π:

If Γn 0 ¬〈sn〉3ϕn then there is om “fresh” such that 〈sn〉〈!om〉ϕn ∈ Γn+1. Oth-
erwise we will define Γn+1 = Γn.

For every γn ∈ A, let O′(n) = {o ∈ O′ : o occurs either in sn or ϕn}. Clearly

every O′(n) is finite. We now construct an increasing chain of
∼
O-theories recur-

sively. We fix Γ0 := Γ and let

Γn+1 =


Γn ∪ {〈sn〉〈!om〉ϕn} if Γn 0 ¬〈sn〉3ϕn,

Γn otherwise,

where m is the least natural number bigger than the indices in O′n ∪ O′(n), i.e.,
om is fresh. To see that O′n∪O′(n) is finite for every n ∈ N, we just need to check
that O′n is finite. First note that since Γ := Γ0 is an O-theory, no observational
variables in O′ occur in Γ0. For each pair γi := (si, ϕi) with i ∈ {0, . . . , n− 1} the
set O′(n) is finite. At each step n of the construction, we can only add finitely
many fresh variables to Γn. Thus, finitely many observational variables in O′ occur
in Γn and so O′n is finite.

We now need to show that
∼
Γ :=

⋃
n∈N Γn is an

∼
O-witnessed theory. We first

show that
∼
Γ is an

∼
O-theory. By Lemma 3.3.26, it suffices to show by induction that

every Γn is an
∼
O-theory. Clearly Γ0 is an

∼
O-theory. For the inductive step suppose

that Γn is consistent but Γn+1 is not. Hence Γn+1 6= Γn, and moreover Γn+1 `
⊥. Then, since Γn+1 = Γn ∪ {〈sn〉〈!om〉ϕn}, we have Γn ` [sn][!om]¬ϕn. There-
fore there exists {θ1, . . . , θk} ⊆ Γn such that {θ1, . . . , θk} ` [sn][!om]¬ϕn. Let
θ =

∧
1≤i≤k θi. Then ` θ → [sn][!om]¬ϕn, so ` [θ →, sn][!om]¬ϕn with om /∈

OΓn ∪Osn ∪Oϕn .
By the admissible rule in Lemma 3.3.22 we obtain that ` [θ →, sn]2¬ϕn, thus
` θ → [sn]2¬ϕn. It follows θ ` [sn]2¬ϕn and therefore θ ` ¬〈sn〉3ϕn. Since
{θ1, . . . , θk} ⊆ Γn, we obtain Γn ` ¬〈sn〉3ϕn. But this would mean Γn =
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Γn+1, contradicting our assumption. Therefore Γn+1 is consistent and thus an
∼
O-theory. Therefore, by Lemma 3.3.26,

∼
Γ is an

∼
O-theory. Condition (3) above

implies that
∼
Γ is also

∼
O-witnessed. Then, by Lindenbaum’s Lemma, there is a

maximal
∼
O-witnessed theory TΓ such that TΓ ⊇

∼
Γ ⊇ Γ. 2

We are now ready to build the canonical model.

Canonical Model for T0. For any consistent set of formulas Φ, consider a maxi-
mally consistent O-witnessed extension Φ ⊆ T0. As our canonical set of worlds, we
take the set Xc := {T : T maximally consistent O-witnessed theory with T ∼K
T0}, where we put

T ∼K T ′ iff ∀ϕ ∈ LO
Π (Kϕ ∈ T → ϕ ∈ T ′) .

As usual, it is easy to see (given the S5 axioms for K) that ∼K is an equivalence
relation. For any formula ϕ, we use the notation ϕ̂ := {T ∈ Xc : ϕ ∈ T}. In par-
ticular, for any observational variable o ∈ O, we have ô = {T ∈ Xc : o ∈ T}. As

the canonical set of information states, we take Oc := {pre(e)
∧

: e ∈ ΠO}. Fi-

nally, our canonical learner is given by Lc( pre(e)
∧

) := L̂(e), and the canoni-
cal valuation ‖ · ‖c is given as ||p||c = p̂ and ||o||c = ô. The learning model
M c = (Xc,Oc,Lc, ‖ · ‖c) is called the canonical model. Note that we use c as
a subscript instead of a superscript for the canonical valuation ‖ · ‖c, this is in
order to avoid confusion with our “open-restriction” notation for the truth set of
a formula [[ϕ]]U .

Before proving that the canonical model is well-defined, we need the following
lemmas.

3.3.29. Lemma. For every maximal O-witnessed theory T , the set {θ ∈ LO
Π :

Kθ ∈ T} is O-witnessed.

Proof:
Observe that, by axiom (TK), {θ : Kθ ∈ T} ⊆ T . Therefore, as T is con-
sistent, the set {θ : Kθ ∈ T} is consistent. Let s ∈ NFO

LΠ
and ϕ ∈ LO

Π

such that {θ : Kθ ∈ T} ` [s][!o]¬ϕ for all o ∈ O. We must show that {θ :
Kθ ∈ T} ` [s]2¬ϕ. By normality of K, T ` K[s][!o]¬ϕ for all o ∈ O. Since
K[s][!o]¬ϕ := [K, s][!o]¬ϕ is a necessity form and T is O-witnessed, we obtain
T ` [K, s]2¬ϕ, i.e., T ` K[s]2¬ϕ. As T is maximal, we have K[s]2¬ϕ ∈ T , thus
[s]2¬ϕ ∈ {θ : Kθ ∈ T}. 2

3.3.30. Lemma. Let T ∈ Xc. Then, Kϕ ∈ T iff ϕ ∈ T ′ for all T ′ ∈ Xc.
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Proof:
From left-to-right follows directly from the definition of Xc and ∼K . For the
right-to-left direction, we prove the contrapositive. Let ϕ ∈ LΠ such that Kϕ 6∈
T . Then, by Lemma 3.3.29 and Lemma 3.3.25, we obtain that {ψ : Kψ ∈
T} ∪ {¬ϕ} is an O-witnessed theory. We can then apply Lindenbaum’s Lemma
(Lemma 3.3.27) and extend it to a maximal O-witnessed theory S such that
ϕ 6∈ S. As {ψ : Kψ ∈ T} ⊆ S, we have S ∈ Xc. 2

3.3.31. Corollary. Let T ∈ Xc. Then, 〈K〉ϕ ∈ T iff there is S ∈ Xc such that
ϕ ∈ S.

3.3.32. Proposition. The canonical model is well-defined, i.e., the canonical
model is a learning model as in Definition 3.3.1.

Proof:
We need to show that the following properties hold:

1. For all o ∈ PropO , ||o||c ∈ Oc: let o ∈ PropO . By the definitions of || · ||c
and Oc, we have ||o||c = ô. As pre(!o) = o, we obtain that ô = pre(!o)

∧

∈ O.

2. If F = {pre(e1)
∧

, . . . , pre(em)
∧

} ⊆ Oc is finite then
⋂
F ∈ Oc: Let F =

{pre(e1)
∧

, . . . , pre(em)
∧

} ⊆ Oc. It is easy to see that
⋂
{pre(e1)
∧

, . . . , pre(em)
∧

} =

pre(e1) ∧ . . . ∧ pre(em)
∧

= pre(e1; . . . ; em)
∧

by the definition of precondition.
Since (e1; . . . ; em) ∈ ΠO, by the definition of Oc in the canonical model we

have pre(e1; . . . ; em)
∧

∈ Oc and thus
⋂
F ∈ Oc.

3. Lc is a well-defined function and a learner : For this, note that Lc(pre(e)
∧

) :=

L̂(e) ⊆ Xc. We will first prove that:

(2a) if pre(e)
∧

= pre(e′)
∧

then Lc(pre(e)
∧

) = Lc(pre(e′)
∧

): Suppose pre(e)
∧

=

pre(e′)
∧

. This means that: ∀T ∈ Xc, pre(e) ∈ T iff pre(e′) ∈ T . Therefore,
we obtain ` pre(e)↔ pre(e′). Then, by (NecK), we have ` K (pre(e)↔ pre(e′)).

Since Lc(pre(e)
∧

) := L̂(e), showing Lc(pre(e)
∧

) = Lc(pre(e′)
∧

) boils down to

showing that L̂(e) = L̂(e′), i.e., that ` L(e) ↔ L(e′), which follows from
axiom (EC) and that ` K (pre(e)↔ pre(e′)).

Next, we must prove that,

(2b) Lc is a learner, i.e., Lc satisfies the properties of a learner given in

Definition 3.3.1. To show this, we first check that Lc(pre(e)
∧

) ⊆ pre(e)
∧

holds. Let T ∈ Lc(pre(e)
∧

). This means, by the definition of Lc(pre(e)
∧

), that
L(e) ∈ T . Since (L(e) → pre(e)) ∈ T (by the axiom (SP)), we have that

pre(e) ∈ T as T is maximally consistent. Thus, T ∈ pre(e)
∧

. Finally we
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show that if pre(e)
∧

6= ∅ then Lc(pre(e)
∧

) 6= ∅. Suppose pre(e)
∧

6= ∅, i.e., there

is T ∈ Xc with T ∈ pre(e)
∧

. This means, by the definition of pre(e)
∧

, that
pre(e) ∈ T . By the axiom (CC), we obtain that 〈K〉L(e) ∈ T . Then, by
Corollary 3.3.31, there is S ∈ Xc such that L(e) ∈ S. Thus, by the definition

of L̂(e), we have S ∈ L̂(e) meaning that L̂(e) = Lc(pre(e)
∧

) 6= ∅.

2

Our aim is to prove a Truth Lemma for the canonical model, which, as usual,
will immediately imply completeness, as usual. For this we need the following
result.

3.3.33. Lemma. Let T ∈ Xc. Then, 2ϕ ∈ T iff [e]ϕ ∈ T for all e ∈ ΠO.

Proof:
The direction from left-to-right follows by the axiom (2Ax). For the direction
from right-to-left, suppose, toward a contradiction, that for all e ∈ ΠO, [e]ϕ ∈ T
and 2ϕ 6∈ T . Then, since T is a maximally consistent theory, 3¬ϕ ∈ T . Since
T is an O-witnessed theory, there is o ∈ O such that 〈!o〉¬ϕ is consistent with
T . Since T is also maximally consistent, we obtain that 〈!o〉¬ϕ ∈ T , i.e., that
¬[!o]ϕ ∈ T , contradicting our initial assumption. 2

3.3.34. Lemma (Truth Lemma). Let M c = (Xc,Oc,Lc, ‖·‖c) be the canonical
model for some T0. For all formulas ϕ ∈ LO

Π, all T ∈ Xc and all e ∈ ΠO, we have:

〈e〉ϕ ∈ T iff (T, pre(e)
∧

) |=Mc ϕ.

Proof:
The proof is by induction on the structure of ϕ and uses the following induction
hypothesis,

(IH): for all ψ subformula of ϕ, and e ∈ ΠO, 〈e〉ψ ∈ T iff (T, pre(e)
∧

) |=Mc ψ.

The base case for propositional and observational variables, as well as Boolean
formulas are straightforward. We only verify the remaining inductive cases. Ob-

serve that at this point of the proof we have that: ∀e, e′ ∈ ΠO, 〈e〉pre(e′)
∧

=

[[pre(e′)]]
pre(e)
∧

Mc since pre(e) is a Boolean formula.
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Case ϕ := L(e′).

〈e〉L(e′) ∈ T iff (pre(e) ∧ [e]L(e′)) ∈ T ((2.) in Proposition 3.3.10)

iff (pre(e) ∧ L(e; e′)) ∈ T (RL and CPL)

iff pre(e) ∈ T and L(e; e′) ∈ T

iff T ∈ pre(e)
∧

and T ∈ L(e; e′)
∧

(Definition of ϕ̂)

iff T ∈ pre(e)
∧

and T ∈ Lc(pre(e; e′)
∧

) (Definition of Lc)

iff T ∈ pre(e)
∧

and T ∈ Lc(〈e〉pre(e′)
∧

)
((4.) in Proposition 3.3.10)

iff T ∈ pre(e)
∧

and T ∈ Lc([[pre(e′)]]pre(e)
∧

Mc )
(by the above observation)

iff (T, pre(e)
∧

) |=Mc L(e′) (semantics)

Case ϕ := Kψ.

〈e〉Kψ ∈ T iff (pre(e) ∧K[e]ψ) ∈ T ((2.) in Proposition 3.3.10 and RK)

iff pre(e) ∈ T and K[e]ψ ∈ T
iff pre(e) ∈ T and (∀T ′ ∼K T )([e]ψ ∈ T ′) (Lemma 3.3.30)

iff pre(e) ∈ T and (∀T ′ ∼K T s.t. pre(e) ∈ T ′)(〈e〉ψ ∈ T ′)
((2.) in Proposition 3.3.10)

iff T ∈ pre(e)
∧

and (∀T ′ ∈ pre(e)
∧

)(T ′, pre(e)
∧

) |=Mc ψ) (IH)

iff (T, pre(e)
∧

) |=Mc Kψ (semantics)

Case ϕ := 〈e′〉ψ.

〈e〉〈e′〉ψ ∈ T iff 〈e; e′〉ψ ∈ T (Re)

iff pre(e; e′) ∧ 〈e; e′〉ψ ∈ T ( (2.) in Proposition 3.3.10)

iff pre(e; e′) ∈ T and 〈e; e′〉ψ ∈ T

iff T ∈ pre(e)
∧

∩ pre(e′)
∧

and T ∈ 〈e; e′〉ψ
∧

iff (T, pre(e)
∧

∩ pre(e′)
∧

) |=Mc ψ (IH)

iff (T, pre(e)
∧

) |=Mc 〈e′〉ψ (semantics)
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Case ϕ := 2ψ. First observe the following,

〈e〉2ψ ∈ T iff e ∧ [e]2ψ ∈ T ((2.) in Proposition 3.3.10)

iff pre(e) ∈ T and 2[e]ψ ∈ T (R2)

iff pre(e) ∈ T and [e′][e]ψ ∈ T ,∀e′ ∈ ΠO (Lemma 3.3.33)

iff pre(e) ∈ T and [e′; e]ψ ∈ T ,∀e′ ∈ ΠO (Re)

iff pre(e) ∈ T and [e; e′]ψ ∈ T ,∀e′ ∈ ΠO

((5.) in Proposition 3.3.10)

For (⇒): suppose 〈e〉2ψ ∈ T . Now let U ∈ Oc such that T ∈ U . By

the definition of Oc we know that U = pre(e′′)
∧

for some e′′ ∈ ΠO. Since

T ∈ pre(e′′)
∧

and by the observation above we obtain, pre(e; e′′) ∈ T and

[e; e′′]ψ ∈ T . Thus, T ∈ pre(e; e′′)
∧

and T ∈ [e; e′′]ψ
∧

. By (2.) in Propo-

sition 3.3.10 we have T ∈ pre(e; e′′)
∧

and T ∈ 〈e; e′′〉ψ
∧

. Since pre(e; e′′)
∧

=

pre(e)
∧

∩pre(e′′)
∧

and 〈e; e′′〉ψ ∈ T , by IH we get (T, pre(e)
∧

∩pre(e′′)
∧

) |=Mc ψ.

Since pre(e′′)
∧

= U was taken arbitrarily in Oc, by the semantics, we obtain

(T, pre(e)
∧

) |=Mc 2ψ.

For (⇐): suppose (T, pre(e)
∧

) |=Mc 2ψ. By the semantics of 2 and the

definition of Oc, we have that for all e′ ∈ ΠO, if T ∈ pre(e)
∧

∩ pre(e′)
∧

then (T, pre(e)
∧

∩ pre(e′)
∧

) |=Mc ψ. Let e′′ ∈ ΠO such that T ∈ pre(e′′)
∧

,

therefore T ∈ pre(e)
∧

∩ pre(e′′)
∧

. Since pre(e)
∧

∩ pre(e′′)
∧

∈ Oc, we obtain, by

the assumption, that (T, pre(e)
∧

∩ pre(e′′)
∧

) |=Mc ψ. Thus, by IH, we have
pre(e; e′′) ∈ T and 〈e; e′′〉ψ ∈ T . By clause (2.) from Proposition 3.3.10
and clause (5.) from Proposition 3.3.10, [e′′; e]ψ ∈ T . By (Re) we have
[e′′][e]ψ ∈ T . Since e′′ was taken arbitrarily, by Lemma 3.3.33, we have
2[e]ψ ∈ T . Then, by (R2), we obtain [e]2ψ ∈ T . Since pre(e) ∈ T and
[e]2ψ ∈ T , we have 〈e〉2ψ ∈ T by (2.) in Proposition 3.3.10.

2

3.3.35. Theorem (Completeness of DLLT). DLLT is complete with respect
to the class of learning models.

Proof:
Let ϕ be an DLLT-consistent formula, i.e., it is an Oϕ-theory. Then, by Lemma
3.3.28, it can be extended to some maximal O-witnessed theory T . Then, we have

〈!>〉ϕ ∈ T i.e., T ∈ 〈̂!>〉ϕ (by (6.) in Proposition 3.3.10). Then, by Truth Lemma

(Lemma 3.3.34), we obtain that (T, pre(!>)
∧

) |=Mc ϕ, where M c = (Xc,Oc,Lc, ‖ ·
‖c) is the canonical model for T . This proves completeness.

2
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3.4 A logic for AGM learning from partial ob-

servations

In this section we extend the logic DLLT, from Section 3.3, to reason about
an AGM learner that produces conjectures from partial observations, i.e., from
partial information.

3.4.1 Syntax and Semantics

In order to capture partial observations, the set of observational events is extended
with epistemic non-determinism, events of the form e t e′. Such events capture,
e.g., situations when a learner obtains indirect evidence from other learners’ re-
ports (which are usually incomplete), or when she observes only some feature
of the evidence, so her information is compatible with multiple fully-determined
events.

Partial Observational Events. We consider partial observational events e (or,
in short, partial observations) by which the learner acquires some evidence about
the world. We denote the set of all partial observational events by Πt which
extends the recursive definition of observational events Π as follows:

e := !> | !o | (e; e) | (e t e)

where !>, !o, e; e′ are as in Π and e t e′ captures epistemic non-determinism:
one of the two observational events e or e′ happens, but the learner is uncertain
which of the two. The reader must not confuse this notion with the one of ontic
non-determinism where the action is non-deterministic. In our framework, the
partial observational event e t e′ is a deterministic action: one of e or e′ took
place deterministically, however the learner cannot distinguish which action from
e and e′ took place.

Observe that Πt is a proper extension of Π. Thus, the language of AGM
learning given below is a proper extension of the DLLT language LΠ from Section
3.3.1.
The Language of AGM Learning. The dynamic language LΠt of AGM
learning from partial observations is defined recursively as

ϕ := p | o | ¬ϕ | (ϕ ∧ ϕ) | L(e) | Kϕ | [e]ϕ | 2ϕ

where p ∈ Prop, o ∈ PropO and e ∈ Πt. We employ the usual abbreviations from
Section 3.3.1. Given a formula ϕ ∈ LΠt , we denote by Oϕ and Oe the set of all
observational variables occurring in ϕ and e, respectively.

As before, L(e) denotes the learner’s conjecture given observation e; i.e., her
“strongest belief” after having performed observational event e. Observe that LΠt

is a proper extension of the DLLT language LΠ since Πt is a proper extension of
Π.
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We interpret LΠt on plausibility learning models in the style of subset space
semantics, as given in turn. Contrary to the learning models defined for DLLT,
here the set of information states O∪ will be also closed under finite unions, i.e,
O∪ forms a lattice.

3.4.1. Definition. [Plausibility Learning Frame/Model, AGM Learner]

• A plausibility learning frame is a triple (X,O∪,≤), where (X,O∪) is a lattice
space9 such that X is a non-empty set of possible worlds (or “ontic states”)
and ∅ 6= O∪ ⊆ P(X) is called partial information states (or “partial ob-
servations”, or simply “evidence”); and ≤ is a total preorder on X, called
plausibility order such that it satisfies the observational version of Lewis’
“Limit Condition”: every non-empty information state O has maximal ele-
ments. More precisely, if for any evidence O ∈ O∪, we put

Max≤(O) := {x ∈ O : y ≤ x for all y ∈ O}

for the set of maximal (“most plausible”) worlds compatible with the ev-
idence, then the Limit Condition requires that Max≤(O) 6= ∅ whenever
O 6= ∅. The plausibility relation x ≤ y reads as “world y is at least as
plausible as world x”.

• A plausibility learning model M = (X,O∪,≤, ‖ · ‖) consists of a plausibility
learning frame (X,O∪,≤) together with a valuation map ‖ · ‖ : Prop ∪
PropO∪ → P(X) that maps propositional variables p into arbitrary sets
‖p‖ ⊆ X and observational variables o into information states ‖o‖ ∈ O∪.

• A learner L≤ : O∪ → P(X) on a plausibility learning frame (X,O∪,≤) is
a function that maps to every information state O ∈ O∪ some conjecture
L≤(O) ⊆ X. An AGM-learner is a learner who, upon having observed
O ∈ O∪, always conjectures the set of most plausible O-states. That is,
L≤ : O∪ → P(X) is an AGM-learner on (X,O∪,≤) if L≤(O) := Max≤(O)
for all O ∈ O∪.

By the observational Limit Condition given in Definition 3.4.1, it is then
guaranteed that L≤(O) 6= ∅ for allO ∈ O∪ withO 6= ∅ (on DLLT, this corresponds
to the condition 2 in Definition 3.3.1). This means that an AGM-learner makes
consistent conjectures whenever the received information is consistent.

Similar to Definition 3.3.2, each observational event e ∈ Πt induces a dynamic
update of the learner’s information state. We now extend such definition with the
appropriate clause for epistemic non-determinism.

9Recall from Section 2.2 in Chapter 2: O∪ is assumed to be closed under finite intersections
and finite unions, i.e., if F ⊆ O∪ is finite then

⋂
F ∈ O∪ and

⋃
F ∈ O∪
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3.4.2. Definition. [Partial Observational updates] A partial observational up-
date function (in short, “update function”) e : O∪ → O∪ maps any information
state U ∈ O∪ to an updated information state e(U) ∈ O∪. The map is given
by recursion as in Definition 3.3.2 with the additional clause for epistemic non-
determinism e t e′: (e t e′)(U) = e(U) ∪ e′(U).

The definition above matches our intuition: et e′(U) is the disjunction of the
information states produced by the two events (since the learner does not know
which of the two happened).

The following lemmas will help us to prove that the update map is appropri-
ately defined:

3.4.3. Lemma. Let M = (X,O∪,≤, ‖ · ‖) be a plausibility learning model and
U ∈ O∪ be a partial information state. Then, for all e ∈ Πt we have e(U) ∈ O∪.

Proof:
The proof follows easily by induction on the structure of e as in the proof of
Lemma 3.3.3. The proof of the remaining case, namely the inductive case e t e′
is as follows: (e t e′)(U) = e(U) ∪ e′(U) (by Definition 3.4.2). By the induction
hypothesis on e(U) and e′(U) we have that e(U) ∈ O∪ and e′(U) ∈ O∪. Since O∪
is closed under finite unions we obtain that (e t e′)(U) = e(U) ∪ e′(U) ∈ O∪. 2

3.4.4. Lemma. Let M = (X,O∪,≤, ‖ · ‖) be a plausibility learning model and
U ∈ O∪ be a partial information state. Then, for all e ∈ Πt, we have e(U) ⊆ U .

Proof:
The proof follows easily by induction on the structure of e as in the proof of
Lemma 3.3.4. We prove the remaining inductive case e := f t f ′:
(f t f ′)(U) ⊆ f ′(U)∪ f(U) ⊆ U (by Definition 3.4.2 and induction hypothesis on
both f and f ′ for any U ∈ O∪, we conclude f ′(U), f(U) ⊆ U). 2

3.4.5. Definition. [Size of events in Πt] The size s(e) of an event e ∈ Πt is
a natural number recursively defined as in Definition A.2.1 with the additional
clause for s(e t e′) as: s(e t e′) = s(e) + s(e′) + 1.

3.4.6. Lemma. Let M = (X,O∪,≤, ‖ · ‖) be a plausibility learning model and
U ∈ O∪ a partial information state. Then, for all e, e′ ∈ Πt we have: (e; e′)(U) =
e(U) ∩ e′(U).

Proof:
The proof follows by induction on the size of (e; e′) as in Lemma 3.3.6 with respect
to the size measure in Definition 3.4.5, with the following induction hypothesis:
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(IH) for all (f ; f ′) ∈ Πt such that s(f ; f ′) < s(e; e′), (f ; f ′)(U) = f(U) ∩
f ′(U).

Here we only prove the remaining inductive case e′ := f t f ′:
(e; e′)(U) = e′(e(U)) = (f t f ′)(e(U)) = f(e(U)) ∪ f ′(e(U)) (by Definition

3.4.2 for f t f ′) = (e; f)(U) ∪ (e; f ′)(U) = (f(U) ∩ e(U)) ∪ (f ′(U) ∩ e(U)) (by
IH, since s(e; f)) < s(e; e′) and s(e; f ′)) < s(e; e′)) = e(U) ∩ (f(U) ∪ f ′(U)) =
e(U) ∩ (f t f ′)(U) (by Definition 3.4.2 for f t f ′) = e(U) ∩ e′(U). 2

The semantic definition for the language LΠt is defined similarly to the se-
mantic definition for LΠ in DLLT but with the appropriate semantic clause for
the AGM learning operator.

3.4.7. Definition. [Semantics for an AGM-learner] Given a plausibility learning
model M = (X,O∪,≤, ‖ · ‖) and an epistemic scenario (x, U), the semantics for
the language LΠt is defined recursively as in Definition 3.3.7 with the following
modification for the clause of the learning operator L(e):

(x, U) |= L(e) iff x ∈Max≤ e(U)

We extend our previous notion of precondition as follows:

3.4.8. Definition. [Precondition of Partial Observational Events] To each par-
tial observational event e ∈ Πt, the precondition of event e is defined by recur-
sion as in Definition 3.3.8 with the additional clause for e t e′: pre(e t e′) =
pre(e) ∨ pre(e′).

As in Definition 3.3.8, here the precondition formula pre(e) captures the “con-
dition of possibility” of the event e. Thus, the event et e′ can happen in a world
x iff pre(e) ∨ pre(e′) is true at (x, U), for any U ∈ O with x ∈ U), as well as its
informational content (the learner’s new information after e t e′).

The following lemma corresponds to Lemma 3.3.9 of DLLT that expresses
what the formula pre(e) captures.

3.4.9. Lemma. Let M = (X,O∪,≤, ‖ · ‖) be a plausibility learning model and
U ∈ O∪ be a partial information state. Then, for all e ∈ Πt we have:

[[pre(e)]]U = e(U) = [[〈e〉>]]U .

Proof:
The proof follows as in the proof of Lemma 3.3.9 by induction on the structure
of e, now using Lemma 3.4.6. We prove the remaining inductive case e := f t f ′:

[[pre(f t f ′)]]U = [[pre(f) ∨ pre(f ′)]]U (by Definition 3.4.8) = [[pre(f)]]U ∪
[[pre(f ′)]]U = f(U) ∪ f ′(U) (by IH) = (f t f ′)(U) (by Definition 3.4.2). 2
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3.4.2 Expressivity of language LΠt

In this section we first compare the expressive power of the language LΠt to those
of its fragments of interest. Then, we investigate how the learnability notions ad-
dressed in Section 3.2.1 can be expressed in LΠt for the corresponding plausibility
learning models.

As it is expected, the full language LΠt and the one obtained by removing
the update modalities L−!

Πt
are equally expressive by the same argument as the

one in the proof of Proposition 3.3.13 in Section 3.3.3. In the following theorem,
we compare the languages L−!

Πt
(and therefore the full language LΠt), the static

language L−!2
Πt

and the epistemic fragment LepiΠt
, obtaining similar results as the

ones in Theorem 3.3.14.

3.4.10. Theorem (Expressivity of LΠt). LΠt is equally expressive as L−!
Πt

,

and they are strictly more expressive than the static fragment L−!2
Πt

with respect to

plausibility learning models. Moreover, L−!2
Πt

is strictly more expressive than the

epistemic fragment LepiΠt
.

Proof:
LΠt is equally expressive as L−!

Πt
: as in the proof of Proposition 3.3.13, use step-

by-step the reduction axioms in Table 3.1 as a rewriting process and prove ter-
mination by the strict partial order ≺1 on LΠt defined in Lemma A.1.2 in the
Technical Appendix A10. For the second claim, consider the following two-state
models M1 = (X,O1

∪,≤, ‖ · ‖) and M2 = (X,O2
∪,≤, ‖ · ‖) where X = {x, y},

≤= {(x, x), (y, y), (x, y)} and the valuation ‖p‖ = {y}. And, take O1
∪ = {X, ∅}

(the trivial topology on X) and O2
∪ = P(X) (the discrete topology on X). It

is then easy to see that M1, (x, {x, y}) and M2, (x, {x, y}) are modally equiv-
alent with respect to the language L−!2

Πt
. However, M2, (x, {x, y}) |= 3K¬p

(since {x} is an open set of M2) whereas M1, (x, {x, y}) 6|= 3K¬p, since the
only open including x is {x, y} and y ∈ ‖p‖ = {y}. To prove that L−!2

Πt
is

strictly more expressive than the epistemic fragment LepiΠt
, consider the models

M ′
1 = (X,O1

∪,≤1, ‖ · ‖) and M ′
2 = (X,O2

∪,≤2, ‖ · ‖), where X,O1
∪, and O2

∪ are
as above but ≤1=≤ and ≤2= {(x, x), (y, y), (y, x)}. It is then easy to see that
M ′

1, (x, {x, y}) and M ′
2, (x, {x, y}) are modally equivalent with respect to the lan-

guage LepiΠt
whereas M ′

1, (x, {x, y}) 6|= L(!>) (since x 6∈Max≤1(!>({x, y})) = {y})
but M ′

2, (x, {x, y}) |= L(!>) (since x ∈Max≤2(!>({x, y})) = {x}). 2

The expressivity diagram in Figure 3.3 summarizes Theorem 3.4.10.

Belief, Inductive Knowledge and Inductive Learnability. We now explore
how the notions of belief, inductive knowledge and inductive learnability can be
expressed within our Dynamic Logic of AGM Learning.

10This is a standard method in Dynamic Epistemic Logic and we refer the reader to (van
Ditmarsch et al., 2007, Chapter 7.4) for further details.
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L−!2
Πt

L−!
Πt

LΠt

LepiΠt

Figure 3.3: Expressivity diagram (Arrows point to the more expressive languages,
and reflexive and transitive arrows are omitted.)

We first recall the definitions of the notions given in Section 3.2.1 but now
with respect to an AGM learner: recall that the notion of infallible knowledge is
in our logic directly represented by the modality K, whose semantic clause mimics
the following definition. The AGM learner is said to infallibly know a proposition
P ⊆ X in a partial information state U ∈ O∪ if her partial information state U
entails P , i.e, U ⊆ P . The possibility of learning a proposition with such certainty
in a possible world x ∈ X by a learner L≤ if given enough evidence (true at x)
is called learnability with certainty. In other words, P is learnable with certainty
at world x if there exists some truthful partial information state O ∈ O∪ (i.e.,
x ∈ O) such that the learner infallibly knows P in information state O.

As in LΠ, the notion of learnability with certainty (anticipated by Parikh
et al., 2007) is characterised in LΠt by the formula 3Kp (following the same
argument as in the proof of Proposition 3.3.15 from Section 3.2.1).

In a partial information state U , we say that the AGM learner believes a
proposition P ⊆ X if her conjecture given U entails P , that is, L≤(U) ⊆ P . This
gives us the standard interpretation of belief on plausibility models (see e.g.,
Board, 2004; van Benthem, 2007; Baltag and Smets, 2008):

(x, U) |= Bϕ iff Max≤ e(U) ⊆ [[ϕ]]U .

Recall that belief can be defined as an abbreviation in LΠ. The same abbreviation
holds in LΠt :

Bϕ := K(L(!>)→ ϕ).

Indeed, it is easy to check that this notion satisfies the semantic clause above.
We say that, in partial information state U and ontic state x, the AGM learner

has undefeated belief in a proposition P ⊆ X if she believes P and will continue to
believe P no matter what new true observations will be made; i.e. iff (x,O) |= BP
for every O ∈ O∪ with x ∈ O. We then say, in a partial information state U , the
AGM learner inductively knows P at world x if the learner has undefeated belief
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in P at x and the learner tracks the truth of P at x. Finally, P is inductively
learnable by the AGM learner L≤ at world x in U if there exists some truthful
partial information state O ∈ O∪ (i.e., x ∈ O ⊆ U) such that L≤ inductively
knows P in information state O at x. Note that these notions correspond to the
learning theoretic notions presented in Section 3.3.4.

3.4.11. Proposition. Given a plausibility learning model M = (X,O∪,≤, ‖ · ‖)
and (x, U) ∈ ES(M), the equivalences (1) to (7) hold as in Proposition 3.3.16
but with respect to the AGM-learner L≤.

Proof:
The proof follows easily as in the proof of Proposition 3.3.16 using the relevant
definitions above with respect to an AGM learner and our semantic definition
(Definition 3.4.7). 2

To illustrate these notions, consider the following example11:

3.4.12. Example. [The alcohol inspector] An alcohol inspector needs to ran-
domly check cars that pass through a security point in a perimetrical highway of
Munich during the October fest to check the driver’s alcohol levels. The maximum
alcoholic-level allowed is 30 points (which corresponds to two small beers). His
alcohol-measuring tool, known as breathalyser, has an accuracy of ±20.

At some point, a young woman gets the stop sign in order to get inspected. The
breathalyser outputs a reading of 40 points. Given the accuracy of the tool, this
first measurement can be represented by the interval (20, 60) ⊆ R. At this point,
the inspector cannot know for sure that the driver has drunk more beers than
allowed. The inspector then borrows a more advanced and accurate breathalyser
from one of his colleagues, with an accuracy of ±5. The more accurate breathal-
yser outputs a reading of 35 points. So the measurement of the second breathalyser
can be represented by the interval (30, 40). Therefore, after the reading of the sec-
ond device, the inspector knows with certainty that the woman has exceeded legal
alcohol limit, so she needs to wait for a couple of hours before driving again and
pay a costly fine. Moreover, let us assume that inspector obeys the legal principle
of “believing in innocence until proven guilty beyond doubt”: so, whenever he is
in doubt (because his measurements do not prove either case), he believes the
driver is not drunk.

This situation can be represented in a plausibility learning frame (X,O∪,�)12,
where (X,O∪) is a lattice with X = [0,∞) ⊆ R as the set of “possible worlds”

11This example is very similar to Example 3.2.1 in Section 3.2. Note that the logical structure
of the story and the mathematical formalization are analogous as the ones for Example 3.2.1. To
avoid repetition (and for the fun of it), here we use a different story.

12We use � to denote the plausibility order in this frame, to distinguish it from the natural
order on X ⊆ R.
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(=possible alcohol levels)13, while the family of partial observations O∪ is the
closure under finite intersections and finite unions of the family of breathalyser
measurements (=single-step total observations) represented by

B = {[0, b) ⊆ R : 0 < b ∈ Q} ∪ {(a, b) ⊆ R : 0 < a, b ∈ Q}.

The sets in B represent all possible readings of arbitrarily accurate breathalysers,
while the sets in O∪ represent all possible information states of the inspector,
based on iterated (and possibly) partial reports of such readings. Finally, the
policy of believing in “innocence until proven guilty” is captured by assuming
that (in the absence of any evidence) the inspector considers all non-drunk states
to be a priori more plausible than all drunk states: i.e. x � y for x > 30 and
y ≤ 30. This policy is not enough to fully determine the plausibility relation. To
make it precise, let us assume for now that the inspector has no other strong belief
on the matter, i.e. he considers all the drunk states to be equally plausible (and
similarly for the non-drunk states). So the relation is given by putting: x � y
iff either y ≤ 30 or else 30 < x, y. It is easy to check that � is indeed a total
preorder.

Consider the propositions drunk D = (30,∞) and not drunk ND = [0, 30]
in the context of this example. We can then ask if the inspector knows with
certainty that the woman is outside the permitted alcohol levels, namely if the
inspector knows proposition D. After the second reading, the inspector knows
with certainty that the woman has drank more than allowed. Thus, given enough
more accurate measurements, the inspector can infallibly know D (whenever D is
actually the case); i.e. D is always learnable with certainty. However proposition
ND is not always learnable with certainty: if the real level of alcohol happens
to be exactly 30, then the driver is not drunk (ND) but the inspector will never
come to infallibly know ND. This is simply because any interval containing 30
has non-empty intersection with D. Still, ND is falsifiable with certainty (since
its negation is learnable with certainty whenever true). A property that is neither
learnable with certainty nor falsifiable with certainty is having alcohol level barely-
above-permitted BAP = (30, 31]. Note that we already talked about such notions
in Example 3.2.1.

Inductive learnability is of course a weaker, more general form of knowledge:
both properties drunk D := (30,∞) and not-drunk ND := [0, 30] are inductively
learnable by the inspector, if endowed with the above plausibility order �. Indeed,

13We are aware of the fact that not having an upper bound for the possible alcohol levels
is not very realistic. One can make a more realistic example by fixing a large enough upper
bound, for instance 50 < m ∈ R, so that X = [0,m). In the corresponding bounded lattice space
(X,O∪), the analysis goes similarly as for [0,∞) but with respect to the base for the subset
topology generated from the standard one in R. We chose to keep the example wrt X = [0,∞),
since this does not make a significant difference in our discussion and our analysis. Moreover,
we want to keep the example as similar as Example 3.2.1 in order to make the analogy explicit
between the relevant learning theoretic notions and the two types of learners.
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if the true alcohol level is some x ∈ ND = [0, 30], then the inspector (in the
absence of any evidence), starts by believing ND (since L�(X) = Max�X =
[0, 30]); and, no matter what further direct evidence (a, b), with a < x < b, the
learner gets, she will still believe ND (since L�((a, b)) = Max�(a, b) ∩ [0, 30] ⊆
[0, 30]). So in this case the inspector inductively knows ND from the start. While
if x ∈ D = (30,∞), then after taking an accurate enough measurement, the
inspector will obtain some evidence (a, b), with 30 < a < x < b. For any further
refinement (a′, b′) ⊆ (a, b) of this evidence, we will have x ∈ (a′, b′) ⊆ (a, b) ⊆
(30,∞) = D, hence L�((a′, b′)) = Max�(a′, b′) = (a′, b′) ⊆ D. Which means
that, after reading (a, b), the inspector achieves inductive knowledge of D: he
will believe D no matter what further observations might be made. The AGM
learner with respect to � is then defined as follows,

L�((a, b)) =


[0, 30], if (a, b) = X

Max�(a, b) ∩ND, if (a, b) ∩ND 6= ∅
Max�(a, b), otherwise (i.e., if (a, b) ⊆ D).

What about the property BAP = (30, 31] of having a barely-above-permitted
alcohol level? This property is in principle also inductively learnable (by some
learners), but not by the above AGM learner! To design an AGM learner who can
inductively learn it, we need to change the plausibility relation, using a different
refinement of the general “innocent until proven guilty” policy. The inspector still
believes all the non-drunk states to be more plausible than all the drunk ones ; but
now, within the drunk-world zone, he has a similarly generous attitude: “if guilty
then barely guilty”. In other words, he considers the barely-above-permitted levels
in BAP = (30, 31] to be more plausible than the way-above-permitted ones in
WAV = (31,∞); and for the rest, he is indifferent, as before. This amounts to
adopting a plausibility order�, given by putting x� y iff: either we have y ≤ 30,
or else we have both 30 < x and y ≤ 31, or otherwise we have 31 < x, y < ∞.
It is easy to check that � is a total pre-order, and moreover that properties D,
ND and BAP are all inductively learnable by an inspector endowed with this
plausibility order and the resulting learning function L�.

3.4.3 Axiomatization

In this section, we present a sound and complete axiomatization for the Dynamic
Logic of AGM Learning from Partial Observations (AGML).

3.4.13. Theorem (Soundness and Completeness of AGML). The sound
and complete axiomatization of AGML with respect to plausibility learning mod-
els is obtained by extending the axiomatic system in Table 3.1 (DLLT) with the
two axioms in Table 3.2 all with respect to the language LΠt. The axioms in Table
3.2 correspond to the AGM postulates Inclusion and Rational Monotonicity.
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AGM Learning axioms:
(Inc) (pre(e) ∧ L(e′))→ L(e; e′)
(RMon) 〈K〉(L(e′)∧ pre(e))→ (L(e; e′)→ (pre(e)∧L(e′)))

Table 3.2: The two additional AGM axioms of (AGML)

Proof:
The soundness proof will be presented in Section 3.4.4 and the completeness proof
in Section 3.4.5. 2

Besides the theorems given in Proposition 3.3.10, we have the following:

3.4.14. Proposition. The following formula is derivable in AGML for all ϕ ∈
LΠt and e ∈ Πt: 〈K〉(L(e′) ∧ pre(e))→ (L(e; e′)↔ (pre(e) ∧ L(e′)).

Proof:
Follows straightforwardly from (RMon) and (Inc). 2

The two AGM learning axioms (Inc) and (RMon) are novel to the current
system. They correspond to the Inclusion and Expansion (Subexpansion and Su-
perexpansion) AGM postulates in (Alchourrón et al., 1985), respectively. These
are better understood in terms of belief. (Inc) states that the learner believes a
proposition P after having observed e only if she initially believes that e entails
P . (RMon) on the other hand says that the learner revises her beliefs in a mono-
tonic way as long as the newly observed event is consistent with her previous
conjecture.

3.4.4 Soundness of AGML

For the soundness of the non-standard rule 2Ru with respect to plausibility
learning models, we follow a similar strategy as the one used for the soundness
of DLLT in Section 3.3.5. For this, we need the following lemma which is the
corresponding counterpart of Lemma 3.3.17.

3.4.15. Lemma. Let M = (X,O∪,≤, ‖ · ‖) and M ′ = (X,O∪,≤, ‖ · ‖′) be two
plausibility learning models and ϕ ∈ LΠt such that M and M ′ differ only in the
valuation of some o 6∈ Oϕ. Then, for all U ∈ O∪, we have [[ϕ]]UM = [[ϕ]]UM ′.

Proof:
Follows by subformula induction on ϕ. Let M = (X,O∪,≤, ‖ · ‖) and M ′ =
(X,O∪,≤, ‖ · ‖′) be two learning models such that M and M ′ differ only in the
valuation of some o 6∈ Oϕ, and let U ∈ O∪. Note that in the proof of Lemma
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3.3.17 the structure of the observational events e does not play any role. Thus,
the base cases and the inductive cases for Booleans, Kϕ, 2ϕ, and [e]ϕ follow as
in the proof of Lemma 3.3.17 (but with respect to the language LΠt). Here we
only prove the case ϕ := L(e). We need to show that [[L(e)]]UM = [[L(e)]]UM ′ . Note
that OL(e) = Oe and for every o ∈ Oe, ||o|| = ||o||′. Therefore, since O∪ is the
same in both models, e(U) ∈ O∪ is the same in both models. Also, ≤ is the same
in both models, thus [[L(e)]]UM = Max≤e(U) = [[L(e)]]UM ′ . 2

3.4.16. Theorem. The system AGML given in Tables 3.1 and 3.2 with lan-
guage LΠt is sound with respect to the class of plausibility learning models.

Proof:
The soundness proof follows via standard validity check as in the proof of Theorem
3.3.19 but with respect to plausibility learning models and language LΠt . Note
that the structure of the observational events that appear in the axioms is not
relevant for the soundness proof of Theorem 3.3.19. Thus, we can follow here the
same reasoning steps as before. In particular, the soundness of the non-standard
(2Ru) follows as in the proof of Theorem 3.3.19 but using Lemma 3.4.15. Here
we only present the proofs of the AGM learning axioms (Inc) and (RMon).

Let M = (X,O,≤, ‖ · ‖) be a learning model, (x, U) ∈ ES(M) and e, e′ ∈ Πt.

(Inc) We need to show that (x, U) |= pre(e)∧L(e′)→ L(e, e′). Suppose (x, U) |=
pre(e)∧L(e′). We need to show that x ∈ [[L(e; e′)]], i.e., that x ∈Max≤(e(U)
∩ e′(U)) (by Definition 3.4.7 and Lemma 3.4.6). By the initial assumption
and the semantic definition (Definition 3.4.7), we have that x ∈ e(U)
and x ∈ Max≤(e′(U)). Let y ∈ e(U) ∩ e′(U). Since y ∈ e′(U) and x ∈
e(U) ∩ Max≤(e′(U)), by Definition 3.4.1 for Max≤(e′(U)) we have that
y ≤ x. Since y was arbitrary in e(U) ∩ e′(U) such that y ≤ x, we have that
x ∈Max≤(e(U) ∩ e′(U)). Therefore (x, U) |= L(e; e′).

(RMon) We need to show that (x, U) |= 〈K〉(L(e′) ∧ pre(e))→ (L(e; e′)→ pre(e) ∧
L(e′))). Suppose (a) (x, U) |= 〈K〉(L(e′)∧ pre(e)) and suppose (b) (x, U) |=
L(e; e′). We need to show that (x, U) |= pre(e)∧L(e′), i.e, that x ∈ e(U) and
x ∈Max≤(e′(U)) (by the semantic definition (Definition 3.4.7) and Lemma
3.3.9). By (a) we have that: there is y ∈ U such that (y, U) |= L(e′) ∧
pre(e). By Definition 3.4.7 it follows that y ∈ e(U) and y ∈Max≤(e′(U)). By
assumption (b), Definition 3.4.7 and Lemma 3.4.6 we have that x ∈
Max≤(e(U) ∩ e′(U)). Since y ∈ e(U) and y ∈ Max≤(e′(U)), we have
y ∈ e(U) ∩ e′(U). By Definition 3.4.1 for Max≤(e(U) ∩ e′(U)) it follows
that y ≤ x. Since y ∈ Max≤(e′(U)), x ∈ e′(U) and y ≤ x, it follows
that x ∈ Max≤(e′(U)). Therefore x ∈ e(U) and x ∈ Max≤(e′(U)), thus
(x, U) |= pre(e) ∧ L(e′).

2
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3.4.5 Completeness of AGML

We prove completeness of AGML via a canonical model construction, although
its construction is not a trivial matter because of the following reasons. First,
we need to consider “witnessed” (maximally consistent) theories as in the canon-
ical model for DLLT in Section 3.3.6 (due to the presence of the Effort rule
2Ru). Recall that in witnessed theories, every occurrence of a 3ϕ in any “exis-
tential context” is “witnessed” by some 〈!o〉ϕ (with o observational variable). This
is represented by possibility forms, exactly as in Definition 3.3.20 but with respect
to LΠt . Second, we need to define the plausibility order in the canonical model,
≤c. The definition of ≤c is inspired by the construction of the so-called order mod-
els from spheres systems and selection models presented in (Grahne, 1998). This
will become clear once we start with the construction.

First note that Lemmas 3.3.21 and 3.3.22 hold for our current language LΠt

(with respect to Πt). This is because the structure of events e do not play any
role throughout the proofs of these lemmas. Thus, in what follows, we will refer
to these lemmas directly as stated in Section 3.3.6 . The reader should keep in
mind that here we consider them with respect to the language LΠt . In a similar
fashion, we use the Lindenbaum’s Lemma and the Extension Lemma (Lemmas
3.3.27 and 3.3.28) as presented in Section 3.3.6. Their proofs with respect to the
language LΠt follow exactly as before. This is because witnessed theories are
defined similarly as for DLLT and the only events that play a role in the proofs
are of the form e :=!o, which are contained in Π ⊆ Πt.

Canonical Model for T0. For any consistent set of formulas Φ, consider a maxi-
mally consistent O-witnessed extension T0 ⊇ Φ. As our canonical set of worlds, we
take the set Xc := {T : T maximally consistent O-witnessed theory with T ∼K
T0}, where we put

T ∼K T ′ iff ∀ϕ ∈ LO
Πt (Kϕ ∈ T implies ϕ ∈ T ′) .

It is easy to see (given the S5 axioms for K) that ∼K is an equivalence relation.
For any formula ϕ, we use the notation ϕ̂ := {T ∈ Xc : ϕ ∈ T}. As the canonical

set of information states, we take Oc
∪ := {pre(e)
∧

: e ∈ ΠO
t}. Towards defining the

canonical plausibility relation ≤c, let

Se =
⋃
{L̂(e′) : pre(e)
∧

⊆ pre(e′)
∧

and e′ ∈ ΠO
t},

and $ = {Se : e ∈ ΠO
t}∪{Xc}. The canonical plausibility order ≤c on Xc is given

by, for any T, T ′ ∈ Xc:

T ≤c T ′ iff ∀S ∈ $ (T ∈ S implies T ′ ∈ S).

As we mentioned before, the definition of ≤c is inspired by the construction of
a sphere system from a set selection model presented in (Grahne, 1998). Roughly
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speaking, while L̂(e′) plays the role of a selection function that picks out a set
of maximally consistent O-witnessed theories given e′ (see e.g., Chellas, 1975;
Grahne, 1998), the collection of sets $ forms a sphere system (see e.g.,Lewis,
1973).

The canonical valuation ‖ · ‖c is given as ||p||c = p̂ and ||o||c = ô. The tuple
M c = (Xc,Oc

∪,≤c, ‖ · ‖c) is called the canonical model.

Before proving that M c = (Xc,Oc
∪,≤c, ‖ · ‖c) is in fact a plausibility learning

model, we first need the following lemmas that will guide us step-by-step through
the properties of the sphere system:

3.4.17. Lemma. For all e, e′ ∈ ΠO
t , if pre(e)
∧

∩ Se′ 6= ∅ then L̂(e) ⊆ Se′.

Proof:
Suppose pre(e)
∧

∩ Se′ 6= ∅. This means, since Se′ =
⋃
{L̂(e′′) : pre(e′)
∧

⊆ pre(e′′)
∧

and e′′ ∈ ΠO
t}, that there is a T ∈ pre(e)

∧

∩ L̂(e′′) for some e′′ ∈ ΠO
t such that

pre(e′)
∧

⊆ pre(e′′)
∧

. Let T ′ ∈ L̂(e) and consider the observational event e t e′′. As

pre(e′)
∧

⊆ pre(e′′)
∧

, we also have pre(e′)
∧

⊆ pre(e t e′′)
∧

= pre(e)
∧

∨ pre(e′′)
∧

. Hence,

L(e t e′′)
∧

⊆ Se′ . Now suppose, toward contradiction, that pre(e)
∧

∩ L(e t e′′)
∧

=

∅. This implies, since L(e t e′′)
∧

⊆ pre(e t e′′)
∧

(by (SP)) = pre(e)
∧

∨ pre(e′′)
∧

, that

L(e t e′′)
∧

⊆ pre(e′′)
∧

. Moreover, as pre(e t e′′)
∧

6= ∅ (by assumption), we also have

L(e t e′′)
∧

6= ∅ (by (CC)). Thus, as L(e t e′′)
∧

∩ pre(e′′)
∧

6= ∅ and pre(e′′)
∧

⊆
pre(e t e′′)
∧

, by Proposition 3.4.14, we have L̂(e′′) = pre(e′′)
∧

∩ L(e t e′′)
∧

. This

implies that pre(e)
∧

∩ L̂(e′′) = pre(e)
∧

∩ (pre(e′′)
∧

∩ L(e t e′′)
∧

) 6= ∅, contradicting

pre(e)
∧

∩ L(e t e′′)
∧

= ∅. Therefore, pre(e)
∧

∩ L(e t e′′)
∧

6= ∅. Then, by Proposition

3.4.14 again, L̂(e) = pre(e)
∧

∩ L(e t e′′)
∧

. As T ′ ∈ L̂(e), we have T ′ ∈ L(e t e′′)
∧

⊆
Se′ , i.e., T ′ ∈ Se′ . 2

3.4.18. Lemma. The following holds for all e ∈ ΠO
t :

1. Xc ∈ $,

2. for all S, S ′ ∈ $, either S ⊆ S ′ and S ′ ⊆ S (nestedness),

3. if pre(e)
∧

6= ∅, then {S ∈ $ : S ∩ pre(e)
∧

6= ∅} has a smallest14 member
(restricted Limit assumption). More precisely, Se is the smallest member of

{S ∈ $ : S ∩ pre(e)
∧

6= ∅}.

Proof:

14Smallest with respect to the subset relation in P(Xc).
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1. By the definition of $.

2. Let S, S ′ ∈ $. If S = Xc or S ′ = Xc, it is trivially the case that either
S ⊆ S ′ or S ′ ⊆ S. Now consider the case S = Se and S ′ = Se′ for some
e, e′ ∈ ΠO

t and suppose that (a) Se 6⊆ Se′ and (b) Se′ 6⊆ Se. This means
that there are T, T ′ ∈ Xc such that T ∈ Se but T 6∈ Se′ , and T ′ ∈ Se′ but

T ′ 6∈ Se. By the definitions of Se and Se′ , we then have T ∈ L̂(e1) and

T ′ ∈ L̂(e2) for some e1, e2 ∈ ΠO
t such that pre(e)
∧

⊆ pre(e1)
∧

and pre(e′)
∧

⊆
pre(e2)
∧

. Moreover, since pre(e)
∧

⊆ pre(e1 t e2)
∧

and pre(e′)
∧

⊆ pre(e1 t e2)
∧

,

we also have L(e1 t e2)
∧

⊆ Se′ ∩ Se. As pre(e)
∧

6= ∅ (or, pre(e′)
∧

6= ∅, since

otherwise we would have either Se ⊆ Se′ or Se′ ⊆ Se), we have pre(e1 t e2)
∧

6=
∅. Thus, by (CC), L(e1 t e2)
∧

6= ∅. Finally, we also have pre(e1)
∧

∩ Se′ = ∅
and pre(e2)
∧

∩ Se = ∅. Therefore, recalling L(e1 t e2)
∧

⊆ Se′ ∩ Se, we have

L(e1 t e2)
∧

6⊆ pre(e1 t e2)
∧

, contradicting (SP). Therefore, either Se ⊆ Se′ or
Se′ ⊆ Se.

3. Suppose pre(e)
∧

6= ∅ and show that Se is the smallest element of {S ∈ $ :

S ∩ pre(e)
∧

6= ∅}.

(a) Se ∈ {S ∈ $ : S ∩pre(e)
∧

6= ∅}: Since pre(e)
∧

6= ∅, we have, by (CC), that

L̂(e) 6= ∅. Moreover, as pre(e)
∧

⊆ pre(e)
∧

, we have L̂(e) ⊆ Se. Then, by (SP),

we obtain that L̂(e) ⊆ pre(e)
∧

∩Se 6= ∅, thus, Se ∈ {S ∈ $ : S ∩ pre(e)
∧

6= ∅}.

(b) Se is the smallest element in {S ∈ $ : S ∩ pre(e)
∧

6= ∅}: Let S ′ ∈
{S ∈ $ : S ∩ pre(e)
∧

6= ∅} and assume that T ∈ Se. The former means that

S ′∩pre(e)
∧

6= ∅. The latter means, by the definition of Se, that T ∈ L̂(e′) for

some e′ ∈ ΠO
t such that pre(e)
∧

⊆ pre(e′)
∧

. By the initial assumption, we have

that S ′∩pre(e′)
∧

6= ∅. Then, by Lemma 3.4.17, we have L̂(e′) ⊆ S ′. Therefore,
T ∈ S ′. As T has been chosen arbitrarily from Se, we conclude that Se ⊆ S ′.

2

3.4.19. Lemma. For all e ∈ ΠO
t , we have L̂(e) = Se ∩ pre(e)

∧

.

Proof:
For (⊆): let T ∈ L̂(e). By (SP), we also have T ∈ pre(e)

∧

. Moreover, since

pre(e)
∧

⊆ pre(e)
∧

, we have L̂(e) ⊆ Se, thus, T ∈ Se. Therefore, T ∈ Se ∩ pre(e)
∧

.

For (⊇): let T ∈ Se ∩ pre(e)
∧

. Then, by the definition of Se, we have that

T ∈ pre(e)
∧

∩ L̂(e′) for some e′ ∈ ΠO
t such that pre(e)
∧

⊆ pre(e′)
∧

. Thus, pre(e; e′)
∧

=

pre(e)
∧

. Then, by (EC), we have L̂(e) = L(e; e′)
∧

. Hence, by (Inc), we obtain that
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pre(e)
∧

∩ L̂(e′) ⊆ L̂(e), thus, T ∈ L̂(e). 2

In the following theorem we prove that the canonical model is well-defined.

3.4.20. Theorem. M c = (Xc,Oc
∪,≤c, ‖ · ‖c) is a plausibility learning model.

Proof:
We need to prove:

1. For all o ∈ PropO , ||o||c ∈ Oc
∪: follows as clause (1) in the proof of Proposi-

tion 3.3.32 with respect to Oc
∪.

2. (Xc,Oc
∪) is a lattice frame: let F be a finite subset of Oc

∪. We need to show
that

⋂
F ∈ Oc

∪ and
⋃
F ∈ Oc

∪. The former follows as in clause (2) from the
proof of Proposition 3.3.32 with respect to Oc

∪. The latter follows similarly
by using t.

3. ≤c is a total preorder on Xc such that Max≤c(pre(e)
∧

) 6= ∅ for all e ∈ Πt
with pre(e)
∧

6= ∅:

(a) ≤c is reflexive: obvious by the definition of ≤c.
(b) ≤c is transitive: let T1, T2, T3 ∈ Xc such that T1 ≤c T2 and T2 ≤c

T3. Moreover, let e ∈ ΠO
t with T1 ∈ Se. Then, since T1 ≤c T2, we have

T2 ∈ Se. Similarly, this implies, by T2 ≤c T3, that T3 ∈ Se. We then
conclude that T1 ≤c T3.

(c) ≤c is total: let T, T ′ ∈ Xc and assume, toward contradiction, that
(c.1) T ′ 6≤c T and (c.2) T 6≤c T ′. (c.1) means that there is S ∈ $ such
that T ′ ∈ S but T 6∈ S. And, similarly, (c.2) means that there is S ′ ∈ $
such that T ∈ S ′ but T ′ 6∈ S ′. But, by (2.) in Lemma 3.4.18, we know
that either S ⊆ S ′ or S ′ ⊆ S. W.l.o.g, suppose that S ⊆ S ′. Then,
T ′ ∈ S implies that T ′ ∈ S ′, which contradicts with (c.2). Therefore,
we have either T ≤c T ′ or T ′ ≤c T .

(d) for all e ∈ ΠO
t such that pre(e)
∧

6= ∅, Max≤c(pre(e)
∧

) 6= ∅:
We first show that Max≤c(pre(e)

∧

) = Se ∩ pre(e)
∧

. Then, by (3.) in

Lemma 3.4.18, we conclude that Max≤c(pre(e)
∧

) 6= ∅.
For (⊆): let T ∈ Max≤c(pre(e)

∧

). This means that T ′ ≤c T for all

T ′ ∈ pre(e)
∧

. We already know that T ∈ pre(e)
∧

. Suppose, toward

contradiction, that T 6∈ Se. As Se ∩ pre(e)
∧

6= ∅ (see the proof of (3.)

in Lemma 3.4.18), there is T ′ ∈ Se ∩ pre(e)
∧

. Since T 6= T ′ and ≤c
is a total order, we have either T <c T ′ or T ′ <c T . But the latter
cannot be the case, since Se ∈ $, T ′ ∈ Se, and T 6∈ Se and the former

contradicts with T ∈Max≤c(pre(e)
∧

). So, we obtain that T ∈ Se.
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For (⊇): let T ∈ Se ∩ pre(e)
∧

, T ′ ∈ pre(e)
∧

and S ∈ $ such that T ′ ∈
S. Since Se is the smallest element of $, we have that Se ⊆ S. Therefore,
T ∈ S. Thus, by the definition of ≤c, we obtain that T ′ ≤c T . Since

T ′ has been chosen arbitrarily from pre(e)
∧

, we conclude that T ∈
Max≤c(pre(e)
∧

).

2

The Truth Lemma corresponding to AGML will mostly follow as the Truth
Lemma with respect to DLLT in Section 3.3.6 (Lemma 3.3.34). The only dif-
ference is with formulas of the form L(e) since its semantic definition is not the
same as the one for DLLT. For proving that particular case, the following lemma
will be useful.

3.4.21. Lemma. For all e ∈ ΠO
t , Max≤c(pre(e)
∧

) = L(e)
∧

.

Proof:
See the proofs of Theorem 3.4.20 item 3.d and Lemma 3.4.19. 2

3.4.22. Lemma (Truth Lemma). Let M c = (Xc,Oc
∪,≤c, ‖·‖c) be the canonical

model for some T0. For all formulas ϕ ∈ LO
Πt, all T ∈ Xc and all e ∈ ΠO

t , we
have:

〈e〉ϕ ∈ T iff (T, pre(e)
∧

) |=Mc ϕ.

Proof:
The proof is by induction on the structure of ϕ and uses the following induction
hypothesis :

(IH): for all ψ subformula of ϕ, and e ∈ ΠO
t , 〈e〉ψ ∈ T iff (T, pre(e)

∧

) |=Mc ψ.

The base case for propositional and observational variables, as well as Boolean
formulas are straightforward. We only verify the inductive case ϕ := L(e′) since
the rest of the inductive cases are as in the proof of Lemma 3.3.34.

Observe that at this point of the proof we have that: ∀e, e′ ∈ ΠO
t , 〈e〉pre(e′)
∧

=

[[pre(e′)]]
pre(e)
∧

Mc since pre(e) is a Boolean formula.
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Case ϕ := L(e′). We have the following sequence of equivalences:

〈e〉L(e′) ∈ T iff (pre(e) ∧ [e]L(e′)) ∈ T ((2.) in Proposition 3.3.10)

iff (pre(e) ∧ L(e; e′)) ∈ T (RL and CPL)

iff pre(e) ∈ T and L(e; e′) ∈ T

iff T ∈ pre(e)
∧

and T ∈ L(e; e′)
∧

(Definition of ϕ̂)

iff T ∈ pre(e)
∧

and T ∈Max≤c(pre(e; e
′)
∧

) (Lemma 3.4.21)

iff T ∈ pre(e)
∧

and T ∈Max≤c(〈e〉pre(e′)
∧

)
((4.) in Proposition 3.3.10)

iff T ∈ pre(e)
∧

and T ∈Max≤c([[pre(e
′)]]
pre(e)
∧

Mc )
(by IH with the above observation)

iff (T, pre(e)
∧

) |=Mc L(e′)
(Lemma 3.4.9 and semantic definition (Definition 3.4.7))

2

3.4.23. Theorem (Completeness of AGML). AGML is complete with re-
spect to the class of plausibility learning models.

Proof:
Let ϕ be an AGML-consistent formula, i.e., it is an Oϕ-theory. Then, by Lemma
3.3.28, it can be extended to some maximal O-witnessed theory T . Then, we have

〈!>〉ϕ ∈ T i.e., T ∈ 〈̂!>〉ϕ (by (6.) in Proposition 3.3.10). Then, by Truth Lemma

(Lemma 3.4.22), we obtain that (T, pre(!>)
∧

) |=Mc ϕ, where M c = (Xc,Oc
∪,≤c

, ‖ · ‖c) is the canonical model for T . This proves completeness. 2

3.5 Conclusions and Open Questions

In this chapter we proposed two dynamic logics for learning from observations that
allow us to reason about inductive inference. The first one with an unrestricted
learner, in the style of Formal Learning Theory, who produces conjectures from
fully determined observations. The second one with an AGM learner (a fully
rational learner) who produces conjectures from partial information.

Our first framework, Dynamic Logic for Learning Theory (DLLT) (Sections
3.3.1 - 3.3.5), is an extension of previously studied Subset Space Logics. It is
a natural continuation of the work bridging Dynamic Epistemic Logic and For-
mal Learning Theory. The syntax, with a topological semantics, features an S5
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knowledge operator, the effort modality, dynamic observation operators in a PDL-
format as “observational events” and a learning operator. The dynamic observa-
tion operators encode the fully determined observational events taking place and
the learning operator encodes the learner’s conjecture after an observational event
occurs. We give a sound and complete axiomatisation for this logic. We showed
how natural learnability properties, such as learnability with certainty and learn-
ability in the limit, can be expressed in DLLT.

Our technical results with respect to our DLLT system (the expressivity re-
sults and the complete axiomatization), as well as the methods used to prove
them (the reduction laws and the canonical neighbourhood model), may look
deceivingly simple. But in fact, achieving this simplicity is one of the major con-
tributions of the work in this chapter. The most well-known relative to DLLT
is Subset Space Logic (SSL) over intersection spaces, completely axiomatized by
Weiss and Parikh (2002) (and, indeed, our operator 2 originates in the effort
modality of the SSL formalism introduced in (Moss and Parikh, 1992; Dabrowski
et al., 1996)). Although less expressive than our logic (since it has no notion of
belief B or conjecture L), the Weiss-Parikh axiomatisation of SSL over inter-
section spaces is in a sense more complex and less transparent (such as is their
completeness proof, which is non-canonical). That axiomatisation consists of the
following list:

S5K The S5 axioms and rules for K

S42 The S4 axioms and rules for 2

Cross Axiom K2ϕ→ 2Kϕ

Weak Directedness 32ϕ→ 23ϕ

Mn (for all n) (2〈K〉ϕ ∧3Kψ1 ∧ . . . ∧3Kψn)→ 〈K〉(3ϕ∧
3Kψ1 ∧ . . . ∧3Kψn)

Although this list looks shorter than our list in Table 3.1, each of our axioms
is simple and readable and has a transparent intuitive interpretation. In contrast,
note the complexity and opaqueness of the last axiom schemata Mn above (having
one schema for each natural number n). Our completeness result implies that all
these complex validities are provable in our simple system (and in fact in the
even simpler system that omits all the axioms that refer to the learner L). This
shows the usefulness of adding the (expressively redundant) dynamic observation
modalities: they help to describe the behaviour of the effort modality 2 in a much
simpler and natural manner, by combining (2Ax) and (2Ru) (which together
capture the meaning of 2 as universally quantifying over observation modalities).

Moreover, our completeness proof is also much simpler (though with some
technical twists). Traditionally, the use of canonical models has been considered
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impossible for Subset Space Logics, and so authors had to use other, more ad-hoc
methods (e.g., step-by-step constructions). The fact that in the work presented
here we can get away with a canonical construction is again due to the addition
of the dynamic modalities.

For our second framework, the Logic of AGM Learning from partial observa-
tions (AGML) (Section 3.4), we enriched the logic DLLT with additional structure
in order to model learners whose conjectures satisfy standard rationality con-
straints (namely, the AGM postulates for belief revision). The standard model
for such learners is provided by “AGM conditioning”: learners are endowed with
a total preorder, describing their prior plausibility relation, and at each step
they believe the set of most plausible states compatible with all the previous
observations. To axiomatize our proposed logic of AGM Learning, we needed to
assume that the learner has access to a wider range of potential information than
in DLLT: not only sequences of fully determined observations, but also partial
observations (representing imprecise information captured by finite unions of ob-
servations). Semantically, this required a technical shift from intersection spaces
to lattice spaces. On the syntactic side, we needed to extended our dynamic
modalities from observations to partial observations (still in the PDL-format),
adding epistemic non-determinism. This lead to a rich evidential setting, with a
more interesting logic and an elegant axiomatization.

On the technical results concerning our logic AGML, note that our move to
partial observations (and so to partial observational events) still requires less
information than the classical axiomatizations of AGM conditioning in the lit-
erature (which assumed full Boolean closure of the set of “conditions”, i.e. the
observable sets formed a Boolean algebra). Still, while this move to partial ob-
servations seems general enough, as well as natural and desirable in itself, it does
require a much wider access to information than the setting in DLLT. So it is fair
to ask the question: is there a way to axiomatize AGM learners without requiring
them to access partial information? In other words, is AGM conditioning over
intersection spaces axiomatizable in a simple, elegant way (similar to our axiom-
atization)? This problem is still open, though we conjecture that the answer is
no. If we are right, this would be an argument for a deeper philosophical point:
it may be that AGM postulates are best suited to “rich” evidential settings, in
which both fully determined and partial observations are available.

The closest relative to AGML, in the subset space logics approach, is the so-
called Topologic (Moss and Parikh, 1992). Topologic consists of S5K , S42, the
Cross Axiom, Weak Directedness, and the Union Axiom,

3ϕ ∧ 〈K〉3ψ → 3(3ϕ ∧ 〈K〉3ψ ∧K3〈K〉(ϕ ∧ ψ)).

Dabrowski et al. (1996) showed that the Union Axiom is sound for lattice spaces. In-
dependently, Dabrowski et al. (1996) and Georgatos (1993, 1994) proved that
Topologic is complete for topological spaces and decidable. Moreover, it was
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proved to be complete for complete lattice spaces (closed under infinitary in-
tersections and unions). However, their completeness proofs involve somewhat
complicated constructions. Once again, note the opaqueness in the Union Axiom
compared to our simple and readable list of axioms for AGML. As for DLLT,
the simplicity in our axiomatic system and in our canonical completeness proof
is due to the presence of the dynamic modalities in our language. In fact, adding
dynamic modalities [ϕ] for arbitrary formulas to SSL (with respect to the seman-
tics given in Bjorndahl (2018)) was studied in (Baltag et al., 2017), which results
in a Dynamic Topologic with a canonical behaviour.

Other recent work involving SSL and closely related to our contribution, are
(Bjorndahl, 2018) and (van Ditmarsch et al., 2014, 2015b). Bjorndahl (2018) in-
troduces dynamic modalities [ϕ] for arbitrary formulas (rather than restricting
to observational variables [o], as we do), though with a different semantics (ac-
cording to which [ϕ] restricts the space to the interior of ϕ, in contrast to our
simpler semantics, that follows the standard definition of update or “public an-
nouncement”). His syntax does not contain the effort modality, or any other form
of quantifying over observations.

The work of van Ditmarsch et al. (2014, 2015b) uses Bjorndahl-style dynamic
modalities in combination with a topological version of the so-called arbitrary
public announcement operator, which is a more syntactic-driven relative of the
effort modality. This syntactic nature comes with a price: the logic of arbitrary
public announcements is much less well-behaved than SSL (or our logic), in par-
ticular it has non-compositional features (the meaning of a formula may depend
on the meaning of all atomic variables, including the ones that do not occur
in that formula). As a consequence, the soundness of (the arbitrary-public an-
nouncement analogue of) our (2Ru) is not at all obvious for their logic, which
instead relies on an infinitary inference rule. Since that rule makes use of infinitely
many premisses, their complete axiomatization is truly infinitary, and impossible
to automatise: indeed, it does not even necessarily imply that the set of their
validities is recursively enumerable (in contrast with our finitary axiomatisation,
which immediately implies such a result). The problems in (van Ditmarsch et al.,
2014, 2015b) are solved in (Baltag et al., 2017) by replacing the arbitrary an-
nouncement modality with the effort modality (or equivalently, extending SSL
with Bjorndahl-style dynamic modalities). In fact, similar problems with respect
to the much older Kripke style Arbitrary Public Announcement Logic (APAL) in
(Balbiani et al., 2008), are solved in the chapter that follows (Chapter 4).

Note that in contrast to the work presented here, all the above papers are
concerned mostly with axiomatisations over topological spaces (rather than the
wider class of intersection spaces or lattice spaces), and that none of them has
any belief B or conjecture operators L. Hence, none of them can be used to capture
any learning-theoretic notions going beyond learning with certainty.





Chapter 4

Arbitrary Public Announcement Logic
with Memory

4.1 Introduction

Since very early in life, while growing up, and through our daily experiences, we
all learn by public announcements. When our parents or the adults taking care of
us become our first teachers, we learn basic facts about ourselves and about the
world we are growing in. The way we learn from announcements went to the next
level during our first years of schooling, by interacting and exchanging information
with our lecturer and our classmates. As a matter of fact, a lot of the knowledge
we obtain, comes from public truthful information. It would be very difficult if
each of us could have to rediscover by ourselves that the Earth rotates around
the sun or that we have billions of bacterias and micro-organisms living in our
body. Unless we are a genius child, we should have obtain this information from
a trustworthy source. Even simpler facts such as “Today is sunny in Amsterdam”
can be learn by anyone living in Rotterdam by checking a trustworthy public
weather-app.

Not surprisingly, scenarios of learning from (public) announcements that in-
volve multiple learners are more complex than single-learner ones. These (multi-
learners) situations happen everyday in every stage of human life. It is then
interesting to question what and how agents can learn from trustworthy public
announcements or public communication with other agents. In other words, we
can question what are the changes brought about in the learners’ knowledge and
beliefs from acquiring completely trustworthy, truthful information (from one or
more agents). Public Announcement Logic (PAL) is a modal logic used to rea-
son precisely about these questions1, first introduced and studied by Plaza (1989,
2007). Various interesting epistemic puzzles and examples have been analysed

1Recall from Chapter 2, Section 2.1.1, that the language of PAL extends the language of EL
with formulas of the form [θ]ϕ that express “after θ is publicly announced, ϕ holds”.
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(and solved) using PAL. One of the most famous ones, with a surprising solution,
is the Muddy Children Puzzle. Its solution reveals that knowledge can be acquired
also from simultaneous and repetitive public announcements of ignorance, e.g.,“I
don’t know if I am muddy”.2 The Muddy Children Puzzle is a clear example
showcasing the “power” of truthful communication to acquire knowledge.

Arbitrary Public Announcement Logic (APAL) and its relatives are natural
extensions of Public Announcement Logic, involving the addition of operators �ϕ
and �ϕ, quantifying over public announcements, [θ]ϕ, of some given type. APAL
and PAL are of great interest both philosophically and from the point of view
of applications. Motivations range from supporting an analysis of Fitch’s para-
dox by modelling notions of “knowability’ (van Benthem, 2004), i.e., what a
learner can come to know by getting new information (expressible as �Kϕ), to
determining the existence of communication protocols that achieve certain goals
(cf. the famous Russian Card problem given at a mathematical Olympiad, see
van Ditmarsch, 2003), and more generally, to epistemic planning (Bolander and
Andersen, 2011). These two frameworks also provide technical tools for a wide
range of conceptual variations that involve quantification over public information
(not necessarily announcements). Some of these variations involve quantifying
over observational updates in the single-agent logics for inductive learnability in
empirical sciences (as in Chapter 3, (Baltag et al., 2018a, 2020)).

Many extensions have been investigated, starting with the original APAL
(Balbiani et al., 2008), and continuing with its variants GAL (Group Announce-
ment Logic) (Ågotnes et al., 2010), Future Event Logic (van Ditmarsch et al.,
2010), FAPAL (Fully Arbitrary Public Announcement Logic) (van Ditmarsch
et al., 2016), APAL+ (Positive Arbitrary Announcement Logic) (van Ditmarsch
et al., 2018), BAPAL (Boolean Arbitrary Public Announcement Logic) (van Dit-
marsch and French, 2017), etc. One problem with the above formalisms, with
the exception of BAPAL, is that they all use infinitary axiomatizations. In the
seminal paper on APAL, Balbiani et al. (2008) proved completeness using an
infinitary rule and claimed that the rule can be replaced by a proposed finitary
rule in theorem proving.3 Many of APAL variants adopted a similar strategy by
replacing the infinitary rule with a similar version of the finitary one proposed
for APAL. However, the soundness of the finitary rule was later disproved by
Kuijer (2015). It is therefore not guaranteed that the validities of these logics are
recursively enumerable.

On the other hand, BAPAL is a very weak version of APAL, allowing �ϕ
to quantify over only purely propositional announcements. APAL+ is known to
be decidable, hence its validities must be r.e., but no recursive axiomatization
is known. Even with a larger formula quantification range (over �) than in BA-

2For a three-child version of the puzzle see e.g. Fagin et al., 1995.
3This means that from any proof of a theorem from the axioms that uses the infinitary rule

we can obtain a finitary proof of the same theorem, by using the finitary rule instead.
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PAL, APAL+ is still very weak, in that it quantifies only over positive epistemic
announcements. Thus, in APAL+ public announcements of ignorance are not
allowed, which are precisely the ones driving the solution process in puzzles such
as the Muddy Children. Thus, a long-standing open question concerns finding a
“strong” version of APAL for which there exists a recursive axiomatization. Here,
by “strong” version we mean one that allows quantification over a sufficiently wide
range of announcements (sufficiently wide to avoid Liar-like circles) as intended
by a similar restriction in the original APAL. Such a question for APAL renders
a similar open question for GAL, namely finding a “strong” version of GAL for
which there exists a recursive axiomatization.

In this chapter, we solve these open questions and focus primarily on the
problem concerning APAL. The framework for the “strong” version of GAL will
be developed analogously, as an extension of the one for APAL. Due to the similar
syntactic and semantic behaviours of the group announcement ([G], representing
what a group of agents can bring about via simultaneous public announcements)
and arbitrary announcement (�) operators, most of our analysis of the latter
also applies to the former. We introduce Arbitrary Public Announcement Logic
with Memory (APALM), obtained by adding to the epistemic models (which
are the intended models in the original APAL) a “memory” of the initial states,
representing the information before any communication took place, and adding
to the syntax operators that can access this memory. We show that APALM is
recursively axiomatizable, providing a sound and complete finitary Hilbert-style
system (in contrast to the original Arbitrary Public Announcement Logic, for
which the corresponding question is still open).

Outline

This chapter is organized as follows. In Section 4.2, we introduce the problem with
the unsound finitary rule proposed for the original APAL (and for GAL). We
describe our strategy for solving the unsoundness issue for a strong version of
APAL. We start with the formalization of our framework APALM in Section 4.3,
introducing the syntax and semantics in Section 4.3.1. In Section 4.3.2, we discuss
in detail Kuijer’s counterexample (Kuijer, 2015) for the soundness of the afore-
mentioned finitary rule. In Sections 4.3.3 and 4.3.4, we prove some expressivity
results comparing fragments of the language of APALM and we define the ap-
propriate notion of bisimulation for our logic. We present a sound and complete
finitary axiomatization in Section 4.3.5. In Section 4.4 we present the syntax,
semantics, and axiomatization of our Group Announcement Logic with Memory
(GALM). In Section 4.5 we prove soundness and in Section 4.6 we prove com-
pleteness, for both GALM and APALM. Section 4.7 contains some concluding
remarks and ideas for future work.

This chapter is based on (Baltag et al., 2018b).
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4.2 The “issue” in APAL and our solution

The seminal paper on APAL (Balbiani et al., 2008) proved completeness using
an infinitary rule formalized as follows,

from [s][ρ]ϕ for all ρ ∈ Lepis, infer [s]�ϕ,

where [s] is a pseudo-modality, a function mapping any formula in the language
of APAL into a new formula in the language.4

The authors went on to claim that in theorem-proving the infinitary rule can
be replaced by the following finitary rule:

from χ→ [θ][p]ϕ, infer χ→ [θ]�ϕ,

where the propositional variable p is “fresh”. The “freshness” of the variable
p ∈ P in the rule ensures that it represents any generic announcement. A similar
method is adopted in the completeness proof of GAL in (Ågotnes et al., 2010)
and it was claimed that a similar infinitary rule used in the completeness proof
could be replaced by the finitary rule:

from χ→ [θ][
∧
i∈G

Kipi]ψ, infer χ→ [θ][G]ψ,

where pi’s are “fresh” and [G] is the group announcement operator. These are
natural � and [G]-introduction rules, similar to the introduction rule for the uni-
versal quantifier in First Order Logic (FOL) (and similar to the introduction rule
(2Ru) for the effort modality presented in Chapter 3), and they are based on
the intuition that variables that do not occur in a formula are irrelevant for its
truth value, and thus can be taken to stand for any arbitrary formula (via some
appropriate change of valuation). However, the soundness of the �-introduction
rule was later disproved via a counterexample by Kuijer (2015). Moreover, as we
will observe later on in this chapter, a slightly modified version of Kuijer’s coun-
terexample also proves that the aforementioned [G]-introduction rule is unsound.

Our diagnosis of Kuijer’s counterexample in short (we provide a full analysis
later in Section 4.3.2) is that it makes an essential use of a known undesirable
feature of PAL and APAL, namely their lack of memory : the updated models
“forget” the initial states. As a consequence, the expressivity of the APAL �-
modality reduces after any update. This is what invalidates the above rule.

Our strategy for solving the issue. We fix the problem mentioned above
by adding to the models a memory of the initial epistemic situation W 0, rep-
resenting the information before any non-trivial communication took place (“the
prior”). Since communication – gaining more information – deletes possibilities,
the set W of currently possible states is a (possibly proper) subset of the set

4Such pseudo-modalities are called necessity forms and they are defined in Definition 4.6.1.
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W 0 of initial states. On the syntactic side, we add an operator ϕ0 saying that
“ϕ was initially the case” (before all communication). To mark the initial states,
we also need a constant 0, stating that “no non-trivial communication has taken
place yet”. Therefore, 0 will be true only in the initial epistemic situation. It is
convenient, though maybe not absolutely necessary, to add a universal modality
Uϕ that quantifies over all currently possible states.5

In the resulting Arbitrary Public Announcement Logic with Memory
(APALM), the arbitrary announcement operator � quantifies over updates (not
only of epistemic formulas but) of arbitrary formulas that do not contain the op-
erator � itself. This restriction is necessary to produce a well-defined semantics
that avoids Liar-like vicious circles. In standard APAL, the restriction is with re-
spect to inductive construct �ϕ. Thus, formulas of the form 〈�p〉ϕ are allowed in
original APAL. The expressive powers of APAL and APALM seem to be incom-
parable, and that would still be the case if we dropped the above restriction. As a
result, the range of � is wider than in standard APAL, covering announcements
that may refer to the initial situation (by the use of the operators 0 and ϕ0) or
to all currently possible states (by the use of Uϕ).

We show that the original finitary rule proposed in (Balbiani et al., 2008)
is sound for APALM and, moreover, it forms the basis of a complete recursive
axiomatization.6 Besides its technical advantages, APALM is valuable in its own
respect. Maintaining a record of the initial situation in our models helps us to
formalize updates that refer to the “epistemic past” such as “what you said,
I knew already” (van Benthem, 2002). This may be useful in treating certain
epistemic puzzles involving reference to past information states, e.g. “What you
said did not surprise me” (McCarthy, 1990). The more recent Cheryl’s Birthday
problem also contains an announcement of the form “At first I didn’t know when
Cheryl’s birthday is, but now I know” (although in this particular puzzle the
past-tense announcement is redundant and plays no role in the solution).7 See
(van Benthem, 2002) for more examples.

Note though that the “memory” of APALM is very limited : our models do
not remember the whole history of communication, but only the initial epistemic
situation (before any communication). Correspondingly, in the syntax we do not
have a “yesterday” operator Y ϕ, referring to the previous state just before the
last announcement as in (Renne et al., 2009), but only the operator ϕ0 refer-

5From an epistemic point of view, it would be more natural to replace U by an operator
Ck that describes current common knowledge and quantifies only over currently possible states
that are accessible by epistemic chains from the actual state. We chose to stick with U for
simplicity and leave the addition of Ck to APAL for future work.

6We use a slightly different version of this rule, which is easily seen to be equivalent to the
original version in the presence of the usual PAL reduction axioms.

7Cheryl’s Birthday problem was part of the 2015 Singapore and Asian Schools Math
Olympiad, and became viral after it was posted on Facebook by Singapore TV presenter Ken-
neth Kong.
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ring to the initial state. We think of this “economy” of memory as a (positive)
“feature, not a bug” of our logic: a detailed record of all history is simply not
necessary for solving the problem at hand. In fact, keeping all the history and
adding a Y ϕ operator would greatly complicate our task by invalidating some
of the standard nice properties of PAL and APAL. For instance, the standard
Composition Axiom (stating that any sequence of announcements is equivalent
to a single announcement) fails in the presence of the Y operator. As a conse-
quence, a logic with full memory of all history would loose some of the appealing
features of the APAL operator (e.g. its S4 character: �ϕ → ��ϕ). Moreover,
this would force us to distinguish between “knowability via one communication
step” �ϕ versus “knowability via a finite communication sequence” �∗ϕ, leading
to an unnecessarily complex logic.

So we opt for simplicity, enriching the models and language with just enough
memory to recover the full expressivity of � after updates, and thus establish
the soundness of the �-introduction rule. Such a limited-memory semantics is
sufficient for our purposes, but it also has an intrinsic naturality and simplicity,
similar to the one encountered in some Bayesian models, with their distinction
between “prior” and “posterior” (aka current) probabilities.8

Having established the desired results for APALM, we also study a version
of GAL with the same memory mechanism – Group Announcement Logic with
Memory (GALM) – obtained by extending APALM with group announcement
operators. In this logic, the group announcement operators [G]ϕ quantify over
updates with formulas of the form

∧
i∈GKiϕi, thus, represents what a group of

agents can bring about via simultaneous public announcements. These updates
can have occurrences of every component of the language but � and [G] for the
same reason explained before for APALM. We then show, following the same
steps as for APALM, that the original finitary [G]-introduction rule proposed
in (Ågotnes et al., 2010) is sound for GALM.9 By using this rule, we provide
a complete finitary axiomatization for GALM, thus, prove that it is recursively
axiomatizable.

On the technical side, our completeness proof involves an essential detour into
an alternative semantics for APALM and GALM (pseudo-models), in the style of
Subset Space Logics (SSL) (Moss and Parikh, 1992; Dabrowski et al., 1996). This
reveals deep connections between apparently very different formalisms. Moreover,

8In such models, only the “prior” and the “posterior” information states are taken to be
relevant, while all the intermediary steps are forgotten. As a consequence, all the evidence
gathered in between the initial and the current state can be compressed into one set E, called
“the evidence” (rather than keeping a growing tail-sequence of all past evidence sets). Similarly,
in our logic, all the past communication is compressed in its end-result, namely in the set W
of current possibilities, which plays the same role as the evidence set E in Bayesian models.

9We again use a slightly different version of this rule, which can easily be proven to be
equivalent to the original version in the presence of the PAL reduction axioms. This choice is
clearly cosmetic and made in order to simplify the soundness and completeness proofs.
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this alternative semantics is of independent interest, giving us a more general
setting for modeling knowability and learnability as acknowledge in Chapter 3 (see
also, e.g., Bjorndahl, 2018; Bjorndahl and Özgün, 2017; Bjorndahl and Özgün,
2019). Various combinations of PAL or APAL with subset space semantics have
been investigated in the literature (Balbiani et al., 2013; Wáng and Ågotnes,
2013b,a; van Ditmarsch et al., 2014, 2015b; Bjorndahl, 2018; Baltag et al., 2017),
including a version of SSL with backward looking public announcement operators
that refer to what was true before a public announcement (Balbiani et al., 2016).

Following the SSL-style, our pseudo-models come with a given family of ad-
missible sets of worlds, which in our context represent “publicly announceable”
(or communicable) propositions.10 We interpret � in pseudo-models as the so-
called “effort” modality of SSL, discussed in Chapter 3, denoted as 2. The
effort modality quantifies over updates with announceable propositions regard-
less of whether they are syntactically definable or not. The modality [G] on the
other hand quantifies over updates with those announceable propositions that are
known by some agents in G. The operator [G] is thus modelled as a restricted
version of the effort modality. The finitary �-introduction rule is obviously sound
for the effort modality, because of its more “semantic” character. Similarly, the
finitary [G]-introduction rule is also sound for this effort-like group announce-
ment operator [G]. These observations, together with the important fact that our
models for APALM and GALM (unlike original APAL models) can be seen as a
special case of pseudo-models, lie at the core of our soundness and completeness
proofs.

4.3 Arbitrary Public Announcement Logic with

Memory

In this section we present our Arbitrary Public Announcement Logic with Mem-
ory.

4.3.1 Syntax and Semantics of APALM

Let Prop be a countable set of propositional variables and AG = {1, . . . , n} be a
finite set of agents. The language L of APALM (Arbitrary Public Announcement
Logic with Memory) is recursively defined by the grammar:

ϕ ::= > | p | 0 | ϕ0 | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Uϕ | 〈θ〉ϕ | �ϕ,

where p ∈ Prop, i ∈ AG, and θ ∈ L−� is a formula in the sublanguage L−�
obtained from L by removing the � operator. Given a formula ϕ ∈ L, we de-
note by Pϕ the set of all propositional variables occurring in ϕ. We employ the

10In SSL, the set of admissible sets is sometimes, but not always, taken to be a topology. Here,
it will be a Boolean algebra with epistemic operators.
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usual abbreviations for ⊥ and the propositional connectives ∨,→,↔. The dual
modalities are defined as K̂iϕ := ¬Ki¬ϕ, Eϕ := ¬U¬ϕ, �ϕ := ¬�¬ϕ, and
[θ]ϕ := ¬〈θ〉¬ϕ.11

We read Kiϕ as “ϕ is known by agent i”; 〈θ〉ϕ as “θ can be truthfully an-
nounced, and after this public announcement ϕ is true”. U and E are, respectively,
the universal and existential modalities quantifying over all current possibilities:
Uϕ says that “ϕ is true in all current alternatives of the actual state”. �ϕ and �ϕ
are the (existential and universal) arbitrary announcement operators, quantifying
over updates with formulas in L−�. We can read �ϕ as “ϕ is stably true (under
public announcements)”, i.e., ϕ stays true no matter what (true) announcements
are made. The constant 0, meaning that “no (non-trivial) announcements took
place yet”, holds only at the initial time. Similarly, the formula ϕ0 means that
“initially (prior to all communication), ϕ was true”.

4.3.1. Definition. [Model, Initial Model, and Relativized Model]

• A model is a tuple M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖), where W ⊆ W 0 are
non-empty sets of states, ∼i⊆ W 0×W 0 are equivalence relations labeled by
“agents” i ∈ AG, and ‖·‖ : Prop→ P(W 0) is a valuation function that maps
every propositional variable p ∈ Prop to a set of states ‖p‖ ⊆ W 0. W 0 is the
initial domain, representing the initial informational situation before any
communication took place; its elements are called initial states. In contrast,
W is the current domain, representing the current informational situation,
and its elements are called current states.

• For every model M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖), we define its initial model
M0 = (W 0,W 0,∼1, . . . ,∼n, ‖ · ‖), whose both current and initial domains
are the initial domain of the original model M .

• Given a model M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖) and a set A ⊆ W , we define
the relativized model as M |A = (W 0, A,∼1, . . . ,∼n, ‖ · ‖).

For states w ∈ W and agents i, we will use the notation wi := {s ∈ W : w ∼i s}
to denote the restriction to W of w’s equivalence class modulo ∼i.

4.3.2. Definition. [Semantics] Given a model M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖),
we recursively define a truth set [[ϕ]]M for every formula ϕ ∈ L as follows (we skip
the subscript and simply write [[ϕ]] when the current model M is understood):

11The update operator 〈θ〉ϕ is often denoted by 〈!θ〉ϕ in Public Announcement Logic litera-
ture; we skip the exclamation sign, but we will use the notation 〈!〉 for this modality and [!] for
its dual when we do not want to specify the announcement formula θ (so that ! functions as a
placeholder for the content of the announcement).
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[[>]] = W

[[p]] = ‖p‖ ∩W

[[0]] =

{
W 0 if W = W 0

∅ otherwise

[[ϕ0]] = [[ϕ]]M0 ∩W
[[¬ϕ]] = W − [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[Kiϕ]] = {w ∈ W : wi ⊆ [[ϕ]]}

[[Uϕ]] =

{
W if [[ϕ]] = W

∅ otherwise

[[〈θ〉ϕ]] = [[ϕ]]M |[[θ]]

[[�ϕ]] =
⋃
{[[〈θ〉ϕ]] : θ ∈ L−�}

1. Observation. Note that we have

w ∈ [[�ϕ]] iff w ∈ [[[θ]ϕ]] for every θ ∈ L−�.

What we study in this chapter is information update via public announce-
ments. But the models given in Definition 4.3.1 are too general for this purpose:
their current domain W can be any subset of the initial domain W 0. Our intended
models (which we call “announcement models”) will thus be a subclass of these
models, in which the current domain comes from updating the initial domain
with some public announcement.

4.3.3. Definition. [Announcement Models and Validity] An announcement
model (or a-model, for short) is a model M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖) such
that W = [[θ]]M0 for some θ ∈ L−�; i.e., M can be obtained by updating its
initial model M0 with some formula in L−�. A formula ϕ is APALM valid (or
valid, for short) if it is true in every current state s ∈ W (i.e. [[ϕ]]M = W ) of
every announcement model M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖). We sometimes write
M |= ϕ when [[ϕ]]M = W and also |= ϕ when the formula ϕ is valid.

w
p

p

r

a

b

b a

a

Figure 4.1: An a-model M . Initial states are represented by all nodes in the graph,
current states are the nodes in shaded areas. Valuation is given by labeling each
node with the true atoms, and epistemic relations are represented by arrows with
agent names. Reflexive and transitive arrows are omitted.
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4.3.4. Example. Consider the a-model M = (W 0,W,∼a,∼b, ‖ · ‖) given in Fig-
ure 4.1, where the initial states include all the nodes of the graph and the current
states are the nodes in the shaded area. It is easy to see that the current domain W
is obtained by updating the initial domain by K̂bp: the shaded area corresponds
to [[K̂bp]]M0 . The representation in Figure 4.1 makes it clear that the a-model does
not lose the initial domain and specifies the current domain as a subset of the
initial one. Since W 0 6= W (the shaded area does not cover the whole initial
domain), 0 is false everywhere in the model, that is, [[0]] = ∅. Moreover, while
K̂bK̂aKbr was initially true at w, it currently is not: w ∈ [[(K̂bK̂aKbr)

0]] but
w 6∈ [[K̂bK̂aKbr]] (as [[r]] = ∅).

4.3.2 An Analysis of Kuijer’s counterexample

To understand Kuijer’s counterexample (Kuijer, 2015) to the soundness of the fini-
tary �-introduction rule for the original APAL, recall that, in APAL, � quantifies
only over updates with epistemic formulas. More precisely, the APAL semantics
of � in (Balbiani et al., 2008) is given by

w ∈ [[�ϕ]] iff w ∈ [[[θ]ϕ]] for every θ ∈ Lepi,

where Lepi is the sublanguage generated from propositional atoms p ∈ Prop using
only the Boolean connectives ¬ and ∧, and the epistemic operators Ki. The APAL
semantic clauses for the propositional variables, ¬,∧, and Ki are the same as the
ones given in Definition 4.3.2 with respect to multi-agent epistemic models of the
form M := (W,∼i, ‖ · ‖).

Kuijer takes the formula γ := p ∧ K̂b¬p ∧ K̂aKbp, and shows that

[K̂bp]�¬γ → [q]¬γ.

is valid in epistemic models. (In fact, it is also valid in our a-models.) But then,
by the [!]�-intro rule (or rather, by its weaker consequence (5.) in Proposition
4.3.14), the formula

[K̂bp]�¬γ → �¬γ

should also be valid. We first present Kuijer’s argument for the validity of the
former and then we present the model that contradicts the validity of the lat-
ter. Suppose that [K̂bp]�¬γ → [q]¬γ is not valid in epistemic models, i.e., that
there is an epistemic model N = (W,∼1, . . . ,∼n, ‖ · ‖) and w ∈ W such that
w ∈ [[[K̂bp]�¬γ]] but w 6∈ [[[q]¬γ]]. The latter means that w ∈ [[〈q〉γ]]. Therefore,
w ∈ [[q]] and w ∈ [[γ]]N |[[q]]. The latter implies that w ∈ ‖p‖ and there are two
states w1, w2 in N |[[q]] such that (1) w1 is ∼b-connected to w and w1 6∈ ‖p‖, and
(2) w2 is ∼a-connected to w and w2 ∈ [[Kbp]]N |[[q]]. In other words, the model in
Figure 4.8 is guaranteed to be a submodel of N |[[q]] (all three worlds in N are
retained after the update with q).
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w
p, q

p, q
w2

q
w1

a

b

Figure 4.2: Submodel of N |[[q]]. Reflexive and transitive arrows are omitted.

Moreover, since w ∈ [[[K̂bp]�¬γ]] and w ∈ [[K̂bp]], we also have that w ∈
[[�¬γ]]N |[[K̂bp]]. Note that whether a world satisfies an atomic formula does not
change after any update, thus w ∈ [[q]]N |θ for any θ. In particular, w ∈ [[q]]N |[[K̂bp]].
Then, w ∈ [[�¬γ]]N |[[K̂bp]] implies that w ∈ [[¬γ]](N |[[K̂bp]])|[[q]]N|[[K̂bp]]

= [[¬γ]](N |[[〈K̂bp〉q]])
by the semantic definition for the original APAL. It is not difficult to see that the
model in Figure 4.2 is also a submodel of N |[[〈K̂bp〉q]] (recall that w1 is in N |[[q]]),
thus, w ∈ [[γ]](N |[[〈K̂bp〉q]]). This contradicts the assumption that w ∈ [[[K̂bp]�¬γ]].

We now see that the validity of [K̂bp]�¬γ → �¬γ is contradicted by the
model M in Figure 4.3. The premise [K̂bp]�¬γ is true at w in M , since �¬γ
holds at w in the updated model M |[[K̂bp]] in Figure 4.4a: indeed, the only way
to falsify �¬γ would be by deleting the node u2 from Figure 4.4a while keeping
(all other nodes, and in particular) node u1. But in M |[[K̂bp]], u1 and u2 can not
be separated by epistemic sentences: they are bisimilar.

w
p

p

u1

u2

r

a

b

b a

a

Figure 4.3: An epistemic model M . Worlds are nodes in the graph (for instance
w, u1, u2), valuation is given by labeling the nodes with the true atoms (for
instance p and r), and epistemic relations are given by labeled arrows. Reflexive
and transitive arrows are omitted.

In contrast, the conclusion �¬γ is false at w in M , since in that original model
u1 and u2 could be separated. Indeed, we could perform an alternative update with
the formula p ∨ K̂ar, yielding the epistemic model M |[[p ∨ K̂ar]] shown in Figure
4.4b, in which γ is true at w (contrary to the assertion that �¬γ was true in M).

To see that the counterexample does not apply to APALM, notice that a-
models keep track of the initial states. When we take M as an a-model as drawn
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w
p

p

u1

u2

a

b

b

(a) M |[[K̂bp]]

w
p

p

u1

r

a

b a

(b) M |[[p ∨ K̂ar]]

Figure 4.4: Two updates of M .

in Figure 4.5 (where the initial states and current states collapse) the updated
model M |[[K̂bp]] consists now of the initial structure together with current set of
worlds W in Figure 4.4a. This structure is given in Figure 4.6a, where the nodes
in the shaded area are the current states. But in this model, �¬γ is no longer
true at w (and so the premise [K̂bp]�¬γ was not true in M when considered as
an a-model!). Indeed, we can perform a new update of the a-model M |[[K̂bp]] with
the formula (p ∨ K̂ar)

0, which yields the updated model given in Figure 4.6b:

w
p

p

u1

u2

r

a

b

b a

a

Figure 4.5: M as an a-model. Initial states are nodes in the graphs and current
states are represented by the nodes in shaded areas. Reflexive and transitive
arrows are omitted.

Note that, in this new model, γ is the case at w (- thus showing that �¬γ
was not true at w in M |[[K̂bp]]). So the counterexample simply does not work for
APALM.

Moreover, we can see that the unsoundness of [!]�-intro rule for APAL has to
do with its lack of memory, which leads to information loss after updates: while
initially (in M) there were epistemic sentences (e.g. p∨ K̂ar) that could separate
u1 and u2 , there are no such sentences after the update.

APALM solves this by keeping track of the initial states, and referring back
to them, by means of formulas such as (p ∨ K̂ar)

0.
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w
p

p

u1

u2

r

a

b

b a

a

(a) M |[[K̂bp]], when M is an a-model

w
p

p

u1

u2

r

a

b

b

a

a

a

(b) (M |[[K̂bp]])|[[(p ∨ K̂ar)
0)]]M |[[K̂bp]]

Figure 4.6: Two updates of M , when M is an a-model. Initial states are nodes
in the graphs and current states are represented by the nodes in shaded areas.
Reflexive and transitive arrows are omitted.

4.3.3 Expressivity of APALM

To compare APALM and its fragments with basic epistemic logic (and its exten-
sion with the universal modality), consider the static fragment L−�〈!〉, obtained
from L by removing both the � operator and the dynamic modality 〈ϕ〉ψ; as well
as the present-only fragment L−�,〈!〉,0,ϕ0 , obtained by removing the operators 0
and ϕ0 from L−�〈!〉 (namely, taking out the operators whose interpretations refer
to the initial model). Finally consider the epistemic fragment Lepi, obtained by
further removing the universal modality U from L−�,〈!〉,0,ϕ0 .

In some of our inductive proofs, we need a complexity order on formulas
different from the standard one based on subformula complexity. The standard
notion requires only that formulas are more complex than their subformulas, while
we also need that �ϕ and 〈G〉ϕ are more complex than 〈θ〉ϕ for all θ ∈ L−� (a
similar, but simpler, complexity order was defined for Chapter 3 with respect to
the effort modality and observational updates). To the best of our knowledge, such
a complexity order was first introduced in (Balbiani and van Ditmarsch, 2015) for
the original APAL language from Balbiani et al. (2008). Similar measures have
later been introduced for topological versions of APAL in (van Ditmarsch et al.,
2015b, 2019; Baltag et al., 2017). We define such appropriate complexity order
(≺2) in the Technical Appendix A.2.

We now proceed with the following result.

4.3.5. Proposition. The fragment L−� is co-expressive with the static fragment
L−�〈!〉. In fact, every formula ϕ ∈ L−� is provably equivalent to some formula
ψ ∈ L−�〈!〉 (by using APALM reduction laws, given in Table 4.1 to eliminate
dynamic modalities, as in standard PAL).

Proof:
The strategy for the proof is to use step-by-step the reduction axioms (given in
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Table 4.1, Section 4.3.5), as a rewriting process, and prove termination by ≺2-
induction on ϕ by using Lemma A.2.5 from the Technical Appendix A.A.2. To
see this, suppose towards contradiction that ϕ is a formula in L−�, and moreover
that ϕ is not provably equivalent to any formula of lower complexity (in the sense
of ≺2 from Lemma A.2.5) that is in L−�〈!〉. We construct an infinite descending
sequence

ϕ0 �2 ϕ1 �2 . . . �2 ϕn �2 . . .

of provably equivalent formulas, none of which is in L−�〈!〉. The construction goes
as follows. We first put ϕ0 := ϕ. At step n, assuming that given ϕn ∈ L−� is
not in L−�〈!〉, and provably equivalent to all the previous formulas, we chose the
first dynamic modality occurring in ϕn. We then apply once to this modality the
relevant Reduction Axiom (from left to right), obtaining a provably equivalent
formula ϕn+1. By Lemma A.2.5, ϕn+1 has the property that ϕn+1 ≺2 ϕn. By
transitivity of provable equivalence, ϕn+1 is provably equivalent to ϕ0 = ϕ, and
(by transitivity of ≺2) it is of lower complexity than ϕ0 = ϕ. Thus, by our
assumption above, ϕn+1 is still not in L−�〈!〉. But the existence of this infinite
descending sequence contradicts the well-foundedness of ≺2. 2

4.3.6. Definition. [Initial/Current epistemic model] For every a-model M =
(W 0,W,∼1, . . . ,∼n, ‖ · ‖), we call the epistemic model M initial = (W 0,∼1, . . . ,∼n
, ‖ · ‖) the initial epistemic model of M and M current = (W,∼1 ∩W ×W, . . . ,∼n
∩W ×W, ‖ · ‖ ∩W ) its current epistemic model.

4.3.7. Proposition. The static fragment L−�,〈!〉 (and hence, also L−�) is strictly
more expressive than the present-only fragment L−�,〈!〉,0,ϕ0, which in turn is more
expressive than the epistemic fragment Lepi. In fact, each of the operators 0 and
ϕ0 independently increase the expressivity of L−�,〈!〉,0,ϕ0.

Proof:
Consider the a-model in Figure 4.6a: while u1 and u2 are indistinguishable for
L−�,〈!〉,0,ϕ0 , the sentence (p∨K̂ar)

0 distinguishes the two. This shows that L−�,〈!〉,0
is strictly more expressive than L−�,〈!〉,0,ϕ0 . To see that L−�,〈!〉,ϕ0 is strictly more ex-
pressive than L−�,〈!〉,0,ϕ0 , we just need to consider two a-models M1 = (W 0,W,∼1

, . . . ,∼n, ‖ · ‖) and M2 = (W,W,∼1 ∩W ×W, . . . ,∼n ∩W ×W, ‖ · ‖) such that
W ⊂ W 0. As both models have the same underlying current models, they make
the same formulas of L−�,〈!〉,0,ϕ0 true at the same states in W . However, only M2

makes 0 true (at every state) since it is an initial model. Moreover, it is well-
known that Lepi is strictly less expressive than its extension with the universal
modality (see, e.g., Blackburn et al., 2001, Chapter 7.1). 2

The expressivity diagram in Figure 4.7 summarizes Propositions 4.3.5 and
4.3.7.
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L−�,〈!〉,0,ϕ0

L−�,〈!〉,ϕ0

L−�,〈!〉,0

L−�,〈!〉

L−�

LLepi

Figure 4.7: Expressivity diagram (Arrows point to the more expressive languages,
and reflexive and transitive arrows are omitted.)

4.3.4 APALM Bisimulation

Kuijer’s counterexample shows that the standard epistemic bisimulation is not
appropriate for APALM, so in this section we define a new such notion.

4.3.8. Definition. [APALM Bisimulation] An APALM bisimulation between
a-models M1 = (W 0

1 ,W1,∼1, . . . ,∼n, ‖ · ‖1) and M2 = (W 0
2 ,W2,∼′1, . . . ,∼′n, ‖ · ‖2)

is a total bisimulation B (in the usual sense)12 between the corresponding initial
epistemic models M initial

1 and M initial
2 , with the property that: if s1Bs2, then

s1 ∈ W1 iff s2 ∈ W2 . Two current states s1 ∈ W1 and s2 ∈ W2 are APALM-
bisimilar if there exists an APALM bisimulation B between the underlying a-
models such that s1Bs2.

Since a-models are always of the form M = M0|[[θ]] for some θ ∈ L−�, we have
a characterization of APALM-bisimulation only in terms of the initial models as
stated in Proposition 4.3.11. First we need the following auxiliary Lemmas.

4.3.9. Lemma. Let B be a total epistemic bisimulation between initial epistemic
models M initial

1 and M initial
2 (or equivalently, an APALM-bisimulation between

initial a-models M0
1 and M0

2 ), and let s1 ∈ W 0
1 , s2 ∈ W 0

2 be two initial states such
that s1Bs2. Then we have

s1 ∈ [[α]]M0
1

iff s2 ∈ [[α]]M0
2

for all formulas α ∈ L−�.

12A total bisimulation between epistemic models (W,∼1, . . . ,∼n, ‖ · ‖) and (W ′,∼′1, . . . ,∼′n
, ‖ · ‖′) is an epistemic bisimulation relation (satisfying the usual valuation and back-and-forth
conditions from Modal Logic) B ⊆ W × W ′, such that: for every s ∈ W there exists some
s′ ∈W ′ with sBs′; and dually, for every s′ ∈W ′ there exists some s ∈W with sBs′.
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Proof:
By Proposition 4.3.5, it is enough to prove the claim for all formulas α ∈ L−�,〈!〉.
Let B be an APALM bisimulation between initial a-models M0

1 and M0
2 . The

proof is by subformula induction on α, using the following induction hypothesis
(IH): for all β ∈ Sub(α), we have s1 ∈ [[β]]M0

1
iff s2 ∈ [[β]]M0

2
for all s1 ∈ W 0

1 ,

s2 ∈ W 0
2 such that s1Bs2.

Base case α := >: Since s1 ∈ W 0
1 = [[>]]M0

1
and s2 ∈ W 0

2 = [[>]]M0
2
, we trivially

obtain that s1 ∈ [[>]]M0
1

iff s2 ∈ [[>]]M0
2
.

Base case α := p: Since s1Bs2, s1 ∈ [[p]]M0
1

iff s2 ∈ [[p]]M0
2

follows by Definition
4.3.8, valuation condition.

Base case α := 0: Since M0
1 and M0

2 are initial a-models, by the semantics,
we have s1 ∈ W 0

1 = [[0]]M0
1

and s2 ∈ W 0
2 = [[0]]M0

2
. We therefore trivially obtain

that s1 ∈ [[0]]M0
1

iff s2 ∈ [[0]]M0
2
.

Case α := β ∧ γ and α := ¬β follow straightforwardly by the semantics and
IH.

In the following sequence of equivalencies, we make repeated use of the se-
mantic clauses in Definition 4.3.2.

Case α := β0

s1 ∈ [[β0]]M0
1

iff s1 ∈ [[β]]M0
1
∩W 0

1 iff s2 ∈ [[β]]M0
2
∩W 0

2 (by IH and s2 ∈ W 0
2 ) iff s2 ∈

[[β0]]M0
2
.

Case α := Uβ
s1 ∈ [[Uβ]]M0

1
iff ∀s ∈ W 0

1 , s ∈ [[β]]M0
1

iff ∀s′ ∈ W 0
2 , s

′ ∈ [[β]]M0
2

(since B is total and
IH) iff s2 ∈ [[Uβ]]M0

2
.

Case α := Kiβ
s1 ∈ [[Kiβ]]M0

1
iff (∀s ∈ W 0

1 )(s ∼i s1 implies s ∈ [[β]]M0
1
) iff (∀s ∈ W 0

2 )(s ∼′i
s2 implies s ∈ [[β]]M0

2
) (back and forth condition, IH) iff s2 ∈ [[Kiβ]]M0

2
. 2

4.3.10. Lemma. Let B be a total epistemic bisimulation between initial epistemic
models M initial

1 and M initial
2 (or equivalently, an APALM-bisimulation between

initial a-models M0
1 and M0

2 ), and let s1 ∈ W 0
1 , s2 ∈ W 0

2 be two initial states such
that s1Bs2. Then, for all ϕ ∈ L, we have

s1 ∈ [[〈α〉ϕ]]M0
1

iff s2 ∈ [[〈α〉ϕ]]M0
2

for all formulas α ∈ L−�.

Proof:
Let B be an APALM bisimulation between initial a-modelsM0

1 andM0
2 . The proof

goes by ≺2-induction on ϕ, using Lemma A.2.5 from the Technical Appendix
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A.A.2. We assume the following induction hypothesis (IH): for all ψ ∈ L such
that ψ ≺2 ϕ and all states s1 ∈ W 0

1 , s2 ∈ W 0
2 with s1Bs2, we have: s1 ∈

[[〈α〉ψ]]M0
1

iff s2 ∈ [[〈α〉ψ]]M0
2
, for all α ∈ L−�.

Base cases ϕ := >, ϕ := p, and ϕ := 0 follow directly from Lemma 4.3.9 and
the fact that the formulas 〈α〉>, 〈α〉p, and 〈α〉0 are in L−�.

In the following sequence of equivalencies, we make repeated use of the se-
mantic clauses in Definition 4.3.2.

Case ϕ := ψ0

s1 ∈ [[〈α〉ψ0]]M0
1

iff s1 ∈ [[ψ0]]M0
1 |[[α]]

M0
1

iff s1 ∈ [[ψ]]M0
1
∩ [[α]]M0

1
(since M0

1 |[[α]]M0
1

=

(W 0
1 , [[α]]M0

1
,∼1, . . . ,∼n, ‖ · ‖1)) iff s2 ∈ [[ψ]]M0

2
∩ [[α]]M0

2
(by IH, Lemma 4.3.9:

α ∈ L−�) iff s2 ∈ [[ψ0]]M0
2 |[[α]]

M0
2

(since M0
2 |[[α]]M0

2
= (W 0

2 , [[α]]M0
2
,∼′1, . . . ,∼′n, ‖·‖2))

iff s2 ∈ [[〈α〉ψ0]]M0
2
.

Cases ϕ := Kiψ and ϕ := Uψ follow similarly as in Lemma 4.3.9. We spell
out here only the case ϕ := Uψ. First observe that,
s1 ∈ [[〈α〉Uψ]]M0

1
iff s1 ∈ [[Uψ]]M0

1 |[[α]]
M0

1

iff ∀s ∈ [[α]]M0
1
, s ∈ [[ψ]]M0

1 |[[α]]
M0

1

iff ∀s ∈
[[α]]M0

1
, s ∈ [[〈α〉ψ]]M0

1
.

Suppose s1 ∈ [[〈α〉Uψ]]M0
1

and let s′ ∈ [[α]]M0
2
. Since B is a total bisimulation,

there is s′1 ∈ W 0
1 such that s′1Bs

′. Since α ∈ L−�, by Lemma 4.3.9, we have
s′1 ∈ [[α]]M0

1
. Then, by the above observation, we have s′1 ∈ [[〈α〉ψ]]M0

1
. Thus, by

IH, we obtain that s′ ∈ [[〈α〉ψ]]M0
2
. As s2 ∈ W 0

2 , we then conclude, via similar
steps as in the above observation, that s2 ∈ [[〈α〉Uψ]]M0

2
. The other direction is

similar. For the case ϕ := Kiψ, we also use the back and forth conditions of B.

Case ϕ := 〈θ〉ψ uses the validity of the formula 〈α〉〈θ〉ψ ↔ 〈〈α〉θ〉ψ which can
be easily verified.
s1 ∈ [[〈α〉〈θ〉ψ]]M0

1
iff s1 ∈ [[〈〈α〉θ〉ψ]]M0

1
(by |= 〈α〉〈θ〉ψ ↔ 〈〈α〉θ〉ψ) iff s2 ∈

[[〈〈α〉θ〉ψ]]M0
2

(IH, using ψ ≺2 〈θ〉ψ) iff s2 ∈ [[〈α〉〈θ〉ψ]]M0
2
.

Case ϕ := �ψ
s1 ∈ [[〈α〉�ψ]]M0

1
iff s1 ∈ [[�ψ]]M0

1 |[[α]]
M0

1

iff s1 ∈
⋃
θ∈L−�

[[〈θ〉ψ]]M0
1 |[[α]]

M0
1

iff s1 ∈⋃
θ∈L−�

[[〈α〉〈θ〉ψ]]M0
1

iff s2 ∈
⋃
θ∈L−�

[[〈α〉〈θ〉ψ]]M0
2

(IH, 〈θ〉ψ ≺2 �ψ)

iff s2 ∈
⋃
θ∈L−�

[[〈θ〉ψ]]M0
2 |[[α]]

M0
2

iff s2 ∈ [[�ψ]]M0
2 |[[α]]

M0
2

iff s2 ∈ [[〈α〉�ψ]]M0
2
. 2

4.3.11. Proposition. Let M1 = (W 0
1 ,W1,∼1, . . . ,∼n, ‖·‖1) and M2 = (W 0

2 ,W2,∼′1
, . . . ,∼′n, ‖ · ‖2) be a-models, and let B ⊆ W 0

1 ×W 0
2 . The following are equivalent:

1. B is an APALM bisimulation between M1 and M2;

2. B is a total epistemic bisimulation between M initial
1 and M initial

2 (or equiva-
lently, an APALM bisimulation between M0

1 and M0
2 ), and M1 = M0

1 |[[θ]]M0
1
,

M2 = M0
2 |[[θ]]M0

2
for some common formula θ ∈ L−�.
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Proof:
(1) ⇒ (2): Let B be an APALM bisimulation between M1 and M2. Then it is
obvious (from the definition) that B is also a total bisimulation between M initial

1

and M initial
2 . Since M1 and M2 are a-models, there must exist θ1, θ2 ∈ L−�

s.t. M1 = M0
1 |[[θ1]]M0

1
, M2 = M0

2 |[[θ2]]M0
2
. Hence, W1 = [[θ1]]M0

1
and W2 = [[θ2]]M0

2
. To

show that [[θ1]]M0
1

= [[θ2]]M0
1
, let first s1 ∈ [[θ1]]M0

1
= W1. By the definition of

APALM bisimulation, there must exist s2 ∈ W 0
2 such that s1Bs2. Again by the

definition, s1 ∈ W1 implies that s2 ∈ W2 = [[θ2]]M0
2
. This, together with s1Bs2,

gives us by Lemma 4.3.9 that s1 ∈ [[θ2]]M0
1
. For the converse, let s1 ∈ [[θ2]]M0

1
; by the

definition of APALM bisimulation, there must exist s2 ∈ W 0
2 such that s1Bs2. By

Lemma 4.3.9, we have s2 ∈ [[θ2]]M0
2

= W2, and again by the definition of APALM
bisimulation (and the fact that s1Bs2), this implies that s1 ∈ W1 = [[θ1]]M0

1
. Given

that M1 = M0
1 |[[θ1]]M0

1
and M2 = M0

2 |[[θ2]]M0
2

such that [[θ1]]M0
1

= [[θ2]]M0
1
, we can

take θ := θ2. Then M1 = M0
1 |[[θ1]]M0

1
= M0

1 |[[θ2]]M0
1
.

(2) ⇒ (1): Suppose that B is a total bisimulation between M initial
1 and M initial

2 ,
and M1 = M0

1 |[[θ]]M0
1
, M2 = M0

2 |[[θ]]M0
2

for some common formula θ ∈ L−�. Hence,
W1 = [[θ]]M0

1
and W2 = [[θ]]M0

2
. We need to verify that M1 and M2 are APALM-

bisimilar. For this we just need to verify the property that if s1Bs2, then s1 ∈ W1

holds iff s2 ∈ W2 holds. Suppose s1Bs2 and let s1 ∈ W1 = [[θ]]M0
1
⊆ W 0

1 . By the

totality of the bisimulation B, there must exist some s2 ∈ W 0
2 with s1Bs2. By

Lemma 4.3.9, s1 ∈ [[θ]]M0
1

implies that s2 ∈ [[θ]]M0
2

= W2. The converse is analo-
gous. 2

So, to check for APALM-bisimilarity, it is enough to check for total bisimilarity
between the initial models and for both models being updates with the same
formula.

Next, we verify that this is indeed the appropriate notion of bisimulation,
namely that APALM formulas are invariant under APALM-bisimulation.

4.3.12. Corollary. If s1Bs2 for some APALM-bisimulation relation B between
a-models M1 = (W 0

1 ,W1,∼1, . . . ,∼n, ‖·‖1) and M2 = (W 0
2 ,W2,∼′1, . . . ,∼′n, ‖·‖2),

then s1 in M1 and s2 in M2 satisfy the same APALM formulas, i.e., s1 ∈ [[ϕ]]M1

iff s2 ∈ [[ϕ]]M2 for all ϕ ∈ L.

Proof:
LetB be some APALM-bisimulation relation between a-modelsM1 = (W 0

1 ,W1,∼1

, . . . ,∼n, ‖·‖1) and M2 = (W 0
2 ,W2,∼′1, . . . ,∼′n, ‖·‖2). By Proposition 4.3.11, there

exists some formula θ ∈ L−� such that M1 = M0
1 |[[θ]]M0

1
, M2 = M0

2 |[[θ]]M0
2
. By the

same proposition, B is a total epistemic bisimulation between the initial epistemic
models M initial

1 and M initial
2 . Thus, for every formula ϕ, we have the sequence of

equivalences: s1 ∈ [[ϕ]]M1 iff s1 ∈ [[〈θ〉ϕ]]M0
1

iff (by Lemma 4.3.10) s2 ∈ [[〈θ〉ϕ]]M0
2
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iff s2 ∈ [[ϕ]]M2 . 2

4.3.13. Proposition (Hennessy-Milner). Let M1 = (W 0
1 ,W1,∼1, . . . ,∼n, ‖·

‖1) and M2 = (W 0
2 ,W2,∼′1, . . . ,∼′n, ‖ · ‖2) be a-models with W 0

1 and W 0
2 fi-

nite. Then, s1 ∈ W1 and s2 ∈ W2 satisfy the same APALM formulas iff they
are APALM-bisimilar.

Proof:
We only need to prove the left-to-right direction. Let s1 ∈ W1 and s2 ∈ W2 such
that for all ϕ ∈ L, s1 ∈ [[ϕ]]M1 iff s2 ∈ [[ϕ]]M2 . This implies that for all ϕ ∈ L,
s1 ∈ [[ϕ]]M0

1
iff s2 ∈ [[ϕ]]M0

2
. To see this, let ϕ ∈ L such that s1 ∈ [[ϕ]]M0

1
. This

means, by the semantics, that s1 ∈ [[ϕ0]]M1 . As s1 in M1 and s2 in M2 satisfy
the same APALM formulas, we obtain that s2 ∈ [[ϕ0]]M2 , thus, s2 ∈ [[ϕ]]M0

2
. The

opposite direction is analogous. We then show that the modal equivalence relation
in W 0

1 ×W 0
2 between the models M0

1 and M0
2 is an APALM bisimulation. We thus

need to show the following:

(Totality) For all s ∈ W 0
1 , there exists s′ ∈ W 0

2 such that, s ∈ [[ϕ]]M0
1

iff

s′ ∈ [[ϕ]]M0
2

for all ϕ ∈ L, and for all s′ ∈ W 0
2 , there exists s ∈ W 0

1 such that
s ∈ [[ϕ]]M0

1
iff s′ ∈ [[ϕ]]M0

2
for all ϕ ∈ L.

Let s ∈ W 0
1 and suppose, toward contradiction, that for no element s′ of

W 0
2 we have that s ∈ [[ϕ]]M0

1
iff s′ ∈ [[ϕ]]M0

2
for all ϕ ∈ L. Since W 0

2 is finite,

we can list its elements W 0
2 = {w1, w2, . . . , wn}. The first assumption then

implies that for all wi ∈ W 0
2 , there exists ψi ∈ L such that s ∈ [[ψi]]M0

1
but

wi 6∈ [[ψi]]M0
2
. Thus, s1 ∈ [[E(ψ1∧· · ·∧ψn)]]M0

1
but s2 6∈ [[E(ψ1∧· · ·∧ψn)]]M0

2
,

contradicting the assumption that s1 in M0
1 and s2 in M0

2 satisfy the same
APALM formulas. The second clause follows similarly.

(Valuation) This follows immediately from modal equivalence.

(Forth for ∼i) Let w1, w
′
1 ∈ W 0

1 and w2 ∈ W 0
2 such that w1 ∈ [[ϕ]]M0

1
iff

w2 ∈ [[ϕ]]M0
2

for all ϕ ∈ L and w1 ∼i w′1. Suppose, toward contradiction, that

for no element w′2 ∈ W 0
2 with w2 ∼′i w′2, M0

1 , w
′
1 and M0

2 , w
′
2 satisfy the same

APALM formulas. Since W 0
2 is finite, the set ∼′i(w2) = {t ∈ W 0

2 : w2 ∼′i t} is
finite, thus, we can write ∼′i(w2) = {t1, . . . , tk}. As in the proof of (Totality),
the assumption implies that for all tj with w2 ∼′i tj, there exists ψj ∈ L such

that w′1 ∈ [[ψj]]M0
1

but tj 6∈ [[ψj]]M0
2
. Therefore, w1 ∈ [[K̂i(ψ1∧· · ·∧ψk)]]M0

1
but

w2 6∈ [[K̂i(ψ1 ∧ · · · ∧ ψk)]]M0
2
, contradicting the assumption that M0

1 , w1 and

M0
2 , w2 satisfy the same APALM formulas. Back condition for ∼i follows

analogously.

We have therefore proven that the modal equivalence relation in W 0
1 ×W 0

2

between the models M0
1 and M0

2 is an APALM bisimulation between M0
1 and
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M0
2 . By Proposition 4.3.11, it suffices to further prove that M1 = M0

1 |[[θ]]M0
1
,

M2 = M0
2 |[[θ]]M0

2
for some common formula θ ∈ L−�. It then suffices to show that

[[θ1]]M0
2

= [[θ2]]M0
2
, where W1 = [[θ1]]M0

1
and W2 = [[θ2]]M0

2
.

[[θ2]]M0
2
⊆ [[θ1]]M0

2
: Observe that s1 ∈ [[Uθ0

1]]M1 , since W1 = [[θ1]]M0
1
. Moreover,

as M1, s1 and M2, s2 satisfy the same APALM formulas, we obtain that
s2 ∈ [[Uθ0

1]]M2 . Therefore, for all y ∈ [[θ2]]M0
2
, we have y ∈ [[θ0

1]]M2 , implying
that y ∈ [[θ1]]M0

2
. Hence, [[θ2]]M0

2
⊆ [[θ1]]M0

2
.

[[θ1]]M0
2
⊆ [[θ2]]M0

2
: Observe that s2 ∈ [[Uθ0

2]]M2 , since W2 = [[θ2]]M0
2
. More-

over, as M1, s1 and M2, s2 satisfy the same APALM formulas, we obtain that
s1 ∈ [[Uθ0

2]]M1 . Now suppose, toward contradiction, that [[θ1]]M0
2
6⊆ [[θ2]]M0

2
,

i.e., there is y ∈ W 0
2 such that y ∈ [[θ1]]M0

2
but y 6∈ [[θ2]]M0

2
. By the totality of

the modal equivalence relation, there exists x ∈ W 0
1 such that x ∈ [[θ1]]M0

1

but x 6∈ [[θ2]]M0
1
. The former implies that x ∈ W1. Therefore, by the latter,

we have that x 6∈ [[θ0
2]]M1 . This implies, since s1, x ∈ W1, that s1 6∈ [[Uθ0

2]]M1 ,
contradicting M1, s1 and M2, s2 satisfying the same APALM formulas.

Therefore, we obtain that [[θ1]]M0
2

= [[θ2]]M0
2
. Given that M1 = M0

1 |[[θ1]]M0
1

and

M2 = M0
2 |[[θ2]]M0

2
such that [[θ1]]M0

2
= [[θ2]]M0

2
, we can take θ := θ1. Then M2 =

M0
2 |[[θ2]]M0

2
= M0

2 |[[θ1]]M0
2
. 2

4.3.5 Axiomatization for APALM

In this section, we present in Table 4.1 a complete proof system APALM for our
Arbitrary Public Announcement Logic with Memory (where recall that Pϕ is the
set of propositional variables in ϕ).

Intuitive Reading of the Axioms. Parts (I) and (II) should be obvious.
The axiom R[>] says that updating with tautologies is redundant. The reduction
laws that do not contain 0, U or 0 are well-known PAL axioms. RU is the natural
reduction law for the universal modality. The axiom R0 says that the truth value
of ϕ0 formulas stays the same in time (because the superscript 0 serves as a time
stamp), so they can be treated similarly to atoms. Ax0 says that 0 was initially
the case, and R0 says that at any later stage (after any update) 0 can only be true
if it was already true before the update and the update was trivial (universally
true). Together, these two say that the constant 0 characterizes states where no
non-trivial communication has occurred. Axiom 0-U is a synchronicity constraint:
if no non-trivial communication has taken place yet, then this is the case in all
the currently possible states. Axiom 0-eq says that initially, ϕ is equivalent to
its initial correspondent ϕ0. The Equivalences with 0 express that 0 distributes
over negation and over conjunction. Imp0

� says that if initially ϕ was stably true
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(I) Basic Axioms of system APALM:
(CPL) all classical propositional tautologies and Modus Ponens
(S5Ki) all S5 axioms and rules for knowledge operator Ki

(S5U) all S5 axioms and rules for U operator
(U -Ki) Uϕ→ Kiϕ

(II) Axioms and rules for dynamic modalities [!]:
(K!) Kripke’s axiom for [!]: [θ](ψ → ϕ)→ ([θ]ψ → [θ]ϕ)
(Nec!) Necessitation for [!]: from ` ϕ, infer ` [θ]ϕ.
(RE) Replacement of Equivalents [!]: from ` θ ↔ ρ,

infer ` [θ]ϕ↔ [ρ]ϕ.

Reduction laws:
(R[>]) [>]ϕ↔ ϕ
(Rp) [θ]p↔ (θ → p)
(R¬) [θ]¬ψ ↔ (θ → ¬[θ]ψ)
(RKi) [θ]Kiψ ↔ (θ → Ki[θ]ψ)
(R[!]) [θ][ρ]χ↔ [〈θ〉ρ]χ

(R0) [θ]ϕ0 ↔ (θ → ϕ0)
(RU) [θ]Uϕ↔ (θ → U [θ]ϕ)
(R0) [θ]0↔ (θ → (Uθ ∧ 0))

(III) Axioms and rules for 0 and initial operator 0:
(Ax0) 00

(0-U) 0→ U0
(0-eq) 0→ (ϕ↔ ϕ0)
(Nec0) Necessitation for 0: from ` ϕ, infer ` ϕ0

Equivalences with 0:
(Eq0

p) p0 ↔ p
(Eq0

¬) (¬ϕ)0 ↔ ¬ϕ0

(Eq0
∧) (ϕ ∧ ψ)0 ↔ (ϕ0 ∧ ψ0)

Implications with 0:
(Imp0

U) (Uϕ)0 → Uϕ0

(Imp0
i ) (Kiϕ)0 → Kiϕ

0

(Imp0
�) (�ϕ)0 → ϕ

(IV) Elim-axiom and Intro-rule for �:
([!]�-elim) [θ]�ϕ→ [θ ∧ ρ]ϕ
([!]�-intro) from ` χ→ [θ ∧ p]ϕ, infer ` χ→ [θ]�ϕ

(for p 6∈ Pχ ∪ Pθ ∪ Pϕ).

Table 4.1: The axiomatization APALM. (Here, ϕ, ψ, χ ∈ L, while θ, ρ ∈ L−�.)
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(under any further announcements), then ϕ is the case now. Taken together,
the elimination axiom [!]�-elim and introduction rule [!]�-intro say that ϕ is a
stable truth after an announcement θ iff ϕ stays true after any more informative
announcement (of the form θ ∧ ρ).13

4.3.14. Proposition. The following schemas and inference rules are derivable
in APALM, where ϕ, ψ, χ ∈ L and θ ∈ L−�:

1. from ` ϕ↔ ψ,
infer ` [θ]ϕ↔ [θ]ψ

2. ` 〈θ〉0↔ (0 ∧ Uθ)

3. ` 〈θ〉ψ ↔ (θ ∧ [θ]ψ)

4. ` �ϕ→ [θ]ϕ

5. from ` χ→ [p]ϕ, infer ` χ→ �ϕ
(p 6∈ Pχ ∪ Pϕ)

6. S4 system for �

7. ` (ϕ→ ψ)0 ↔ (ϕ0 → ψ0)

8. ` ϕ00 ↔ ϕ0

9. ` �ϕ0 ↔ ϕ0, and ` �ϕ0 ↔ ϕ0

10. ` (�ϕ)0 → �ϕ0

11. ` (0 ∧ �ϕ0)→ ϕ

12. ` ϕ→ (0 ∧ �ϕ)0

13. ` ϕ→ ψ0 if and only if
` (0 ∧ �ϕ)→ ψ

14. ` [θ](ψ ∧ ϕ)↔ ([θ]ψ ∧ [θ]ϕ)

15. ` [θ][p]ψ ↔ [θ ∧ p]ψ

16. ` [θ]⊥ ↔ ¬θ

Proof:

1. from ` ϕ↔ ψ, infer ` [θ]ϕ↔ [θ]ψ: Follows directly by (K!) and (Nec!).

2. 〈θ〉0 ↔ (0 ∧ Uθ): Follows from the definition of 〈θ〉0 := ¬[θ]¬0 and the
axiom (R¬.)

3. 〈θ〉ψ ↔ (θ ∧ [θ]ψ): Follows from the definition 〈θ〉ψ := ¬[θ]¬ψ and the
axiom (R¬.)

4. �ϕ→ [ρ]ϕ (ρ ∈ L−� arbitrary):

1. `�ϕ↔ [>]�ϕ (R[>])

2. `[>]�ϕ→ [> ∧ ρ]ϕ, (for arbitrary ρ ∈ L−�) ([!]�-elim)

3. `[> ∧ ρ]ϕ→ [ρ]ϕ, (for arbitrary ρ ∈ L−�) (` (> ∧ ρ)↔ ρ and (RE))

4. `�ϕ→ [ρ]ϕ, (for arbitrary ρ ∈ L−�) (1, 3, CPL)
13The “freshness” of the variable p ∈ P in the rule [!]�-intro ensures that it represents any

generic announcement.
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5. from ` χ → [p]ϕ, infer ` χ → �ϕ (p 6∈ Pχ ∪ Pϕ): proof follows analo-
gously to the above case by using (RE), ([!]�-intro) with θ := >, and (R[>]).

6. S4 system for �: the derivation of (Nec) rule for � easily follows from
(Nec!) and (5.) in Proposition 4.3.14. The T-axiom for � follows from (4.)
in Proposition 4.3.14, RE, and R[>].

For the K-axiom:

1. `(�(ϕ→ ψ) ∧�ϕ)→ ([p](ϕ→ ψ) ∧ [p]ϕ)
(p 6∈ Pϕ ∪ Pψ, (4.) in Proposition 4.3.14)

2. `([p](ϕ→ ψ) ∧ [p]ϕ)→ [p]ψ (K!)

3. `(�(ϕ→ ψ) ∧�ϕ)→ [p]ψ (1, 2, CPL)

4. `(�(ϕ→ ψ) ∧�ϕ)→ �ψ (p 6∈ Pϕ ∪ Pψ, (5.) in Proposition 4.3.14)

For the 4-axiom:

1. `�ϕ→ [p ∧ q]ϕ (for some p, q 6∈ Pϕ, (4.) in Proposition 4.3.14)

2. `�ϕ→ [p]�ϕ ([!]�-intro)

3. `�ϕ→ ��ϕ (p 6∈ Pϕ, (5.) in Proposition 4.3.14)

7. (ϕ → ψ)0 ↔ (ϕ0 → ψ0): This is straightforward by the set of axioms
called Equivalences with 0.

8. ` ϕ00 ↔ ϕ0:

1. `0→ (ϕ↔ ϕ0) (0-eq)

2. `(0→ (ϕ↔ ϕ0))0 ( Nec0)

3. `00 → (ϕ↔ ϕ0)0 ((7.) in Proposition 4.3.14)

4. `00 → (ϕ0 ↔ ϕ00) ((7.) in Proposition 4.3.14 and (Eq0
∧))

5. `00 (Ax0)

6. `ϕ0 ↔ ϕ00 (4, 5, MP)

9. �ϕ0 ↔ ϕ0 and ϕ0 ↔ �ϕ0: From left-to-right direction of both cases
follow from the T-axiom for �. From right-to-left direction we will only
prove ϕ0 → �ϕ0 since the remaining implication follows simply by definition
of the dual for �. By an instance of the rule (.5) in Proposition 4.3.14 (�-
intro), it is sufficient to show that ` ϕ0 → [p]ϕ0 for p /∈ Pϕ:

1. `ϕ0 → (p→ ϕ0) (for p /∈ Pϕ, CPL)

2. `ϕ0 → [p]ϕ0 (R0)

3. `ϕ0 → �ϕ0 ( (�-intro) rule for p /∈ Pϕ)
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10. ` (�ϕ)0 → �ϕ0

1. `�ϕ→ ϕ (S4 for �)

2. `(�ϕ→ ϕ)0 (Nec0)

3. `(�ϕ)0 → ϕ0 ((7.) in Proposition 4.3.14, 2, MP)

4. `(�ϕ)0 → �ϕ0 ((9.) in Proposition 4.3.14)

11. ` (0 ∧ �ϕ0)→ ϕ

1. `0→ (ϕ0 ↔ ϕ) (0-eq)

2. `0→ (ϕ0 → ϕ) (CPL)

3. `0→ (�ϕ0 → ϕ) ((9.) in Proposition 4.3.14)

4. `(0 ∧ �ϕ0)→ ϕ (CPL)

12. ` ϕ→ (0 ∧ �ϕ)0

1. `(�¬ϕ)0 → ¬ϕ (Imp0
�)

2. `¬¬ϕ→ ¬(�¬ϕ)0 (contraposition of 1)

3. `¬¬ϕ→ (¬�¬ϕ)0 (Eq0
¬)

4. `ϕ→ (�ϕ)0 (the definition of �)

5. `ϕ→ (00 ∧ (�ϕ)0) (Ax0)

6. `ϕ→ (0 ∧ �ϕ)0 (Eq0
∧)

13. ` ϕ→ ψ0 if and only if ` (0 ∧ �ϕ)→ ψ
From left-to-right: Suppose ` ϕ→ ψ0 and show: ` (0 ∧ �ϕ)→ ψ.

1. `(0 ∧ �ψ0)→ ψ ((11.) in Proposition 4.3.14)

2. `�ϕ→ �ψ0 (by assumption and Nec�)

3. `(0 ∧ �ϕ)→ (0 ∧ �ψ0) (2 and CPL)

4. `(0 ∧ �ϕ)→ ψ (3, 1, CPL)
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From right-to-left: Suppose ` (0 ∧ �ϕ)→ ψ and show ` ϕ→ ψ0.

1. `ϕ→ (0 ∧ �ϕ)0 ((12.) in Proposition 4.3.14)

2. `(0 ∧ �ϕ)→ ψ (assumption)

3. `((0 ∧ �ϕ)→ ψ)0 (Nec0)

4. `(0 ∧ �ϕ)0 → ψ0 ((7.) in Proposition 4.3.14)

5. `ϕ→ ψ0 (1, 4, CPL)

14. [θ](ϕ ∧ ψ)↔ ([θ]ϕ ∧ [θ]ψ): Follows from (K!) and (Nec!).

15. [θ][p]ϕ↔ [θ ∧ p]ϕ

1. `[θ][p]ϕ↔ [〈θ〉p]ϕ (R[!])

2. `[〈θ〉p]ϕ↔ [θ ∧ [θ]p]ϕ ((3.) in Proposition 4.3.14, RE)

3. `[θ ∧ [θ]p]ϕ↔ [θ ∧ (θ → p)]ϕ (Rp, RE)

4. `[θ ∧ (θ → p)]ϕ↔ [θ ∧ p]ϕ (CPL, RE)

5. `[θ][p]ϕ↔ [θ ∧ p]ϕ (1, 4, CPL)

16. [θ]⊥ ↔ ¬θ: this is an easy consequence of (14.) in Proposition 4.3.14,
(Rp), and (R¬).

2

We arrive now at the main result of this section.

4.3.15. Theorem (Soundness and Completeness of APALM). APALM va-
lidities are recursively enumerable. Indeed, the axiom system APALM in Table
4.1 is sound and complete wrt a-models.

Both soundness and completeness proofs are rather involved, thus, given in
separate Sections 4.5 and 4.6, respectively.

4.4 Group Announcement Logic with Memory:

GALM

In this section we turn our focus on the Group Announcement Logic (GAL)
introduced in (Ågotnes et al., 2010). As briefly mentioned in the Introduction,
GAL is also an extension of PAL, involving group announcement operators [G]ϕ
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and 〈G〉ϕ (instead of the arbitrary announcement operators �ϕ and �ϕ). The
group announcement operator can be seen as a restricted version of the arbitrary
public announcement operator in the sense that it quantifies only over updates
with formulas of the form

∧
i∈GKiθi, where θi ∈ Lepi and i ∈ G ⊆ AG. More

precisely, Ågotnes et al. (2010) interpret the operator [G]ϕ on epistemic models
M = (W,∼1, . . . ,∼n, ‖ · ‖) as

w ∈ [[[G]ϕ]] iff for every set {ψi : i ∈ G} ⊆ Lepi, w ∈ [[[
∧
i∈G

Kiψi]ϕ]].

This operator intends to capture communication among a group of agents and
what a coalition can bring about via public announcements. While GAL seems
to provide more adequate tools than APAL to treat puzzles involving epistemic
dialogues, the axiomatization of GAL presented in (Ågotnes et al., 2010) has a
similar shape as the one for APAL in (Balbiani et al., 2008). To recall, Ågotnes
et al. (2010) prove completeness of GAL also by using an infinitary rule and
claims that it is replaceable in theorem-proving by the finitary rule

from ϕ→ [θ][
∧
i∈G

Kipi]ψ infer ϕ→ [θ][G]ψ, (R[G])

where pi 6∈ Pϕ ∪ Pψ ∪ Pθ. However, Kuijer’s counterexample presented in Section
4.3.2 constitutes a counterexample also for the soundness of this rule. Consider
again the formula γ := p ∧ K̂b¬p ∧ K̂aKbp and let G = {a}. We show that while

[K̂bp][G]¬γ → [Kaq]¬γ

is valid in epistemic models, its R[G]-conclusion

[K̂bp][G]¬γ → [G]¬γ

is not. For the former, suppose that [K̂bp][G]¬γ → [Kaq]¬γ is not valid on
epistemic models, i.e., that there is an epistemic model N = (W,∼1, . . . ,∼n
, ‖ · ‖) and w ∈ W such that w ∈ [[[K̂bp][G]¬γ]] but w 6∈ [[[Kaq]¬γ]]. The latter
means that w ∈ [[〈Kaq〉γ]]. Therefore, w ∈ [[Kaq]] and w ∈ [[γ]]N |[[Kaq]]. The latter
implies that w ∈ ‖p‖ and there are two states w1, w2 in N |[[Kaq]] such that (1)
w1 is ∼b-connected to w and w1 6∈ ‖p‖, and (2) w2 is ∼a-connected to w and
w2 ∈ [[Kbp]]N |[[Kaq]]. In other words, the model in Figure 4.8 is guaranteed to be a
submodel of N |[[Kaq]].

Moreover, since w ∈ [[[K̂bp][G]¬γ]] and w ∈ [[K̂bp]], we also have that w ∈
[[[G]¬γ]]N |[[K̂bp]]. Recall that w ∈ [[Kaq]]. Therefore, neither w nor w2 have ∼a-
access to a state in N that makes q false. Furthermore, since Kaq is a positive
knowledge formula14, we have w ∈ [[Kaq]]N |θ for any θ. Then, w ∈ [[[G]¬γ]]N |[[K̂bp]]

14The positive formulas are those that do not express ignorance, namely the formulas that
do not contain subformulas of the form ¬Kaθ for any a ∈ AG and any formula θ in the
corresponding language. Balbiani et al. (2008) proved that APAL positive formulas preserve
truth under arbitrary epistemically definable model restriction (see Proposition 3.16, p. 320).
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Figure 4.8: Submodel of N |[[Kaq]]

implies that w ∈ [[¬γ]](N |[[K̂bp]])|[[Kaq]]N|[[K̂bp]]
= [[¬γ]](N |[[〈K̂bp〉Kaq]]). It is not difficult

to see that the model in Figure 4.8 is also a submodel of N |[[〈K̂bp〉Kaq]] (recall
that w1 is in N |[[Kaq]]), thus, w ∈ [[γ]](N |[[〈K̂bp〉Kaq]]). This contradicts the assump-

tion that w ∈ [[[K̂bp][G]¬γ]]. Therefore, [K̂bp][G]¬γ → [Kaq]¬γ is valid on epis-
temic models. However, model M in Figure 4.3 constitutes a counterexample for
[K̂bp][G]¬γ → [G]¬γ, as w ∈ [[[K̂bp][G]¬γ]]M and w ∈ [[〈KaK̂a(p ∨ r)〉γ]]M , thus,
w 6∈ [[[G]¬γ]].

To the best of our knowledge, there had been no known recursive axiomati-
zation for GAL or a stronger version of it. In this section, we provide a recursive
axiomatization for Group Announcement Logic with Memory (GALM), obtained
by extending the syntax of APALM with group announcement operators inter-
preted on a-models.15

The language LG of GALM is defined recursively, for each group of agents
G ⊆ AG, as:

ϕ ::= > | p | 0 | ϕ0 | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Uϕ | 〈θ〉ϕ | �ϕ | 〈G〉ϕ,

where p ∈ Prop, i ∈ AG, and θ ∈ L−�. The dual modality for this new operator
is defined as [G]ϕ := ¬〈G〉¬ϕ. 〈G〉ϕ and [G]ϕ are the (existential and universal)
group announcement operators, quantifying over updates with formulas of the
form

∧
i∈GKiθi, where θi ∈ L−� and i ∈ G. This restricted quantification over

L−� captures the assumption that each agent can announce only the (�-free and
〈G〉-free) propositions she knows and nothing else. Analogous to the reading of
�, we read [G]ϕ as “ϕ is stably true under group G’s public announcements”,
i.e., “ϕ stays true no matter what group G truthfully announces”.

We introduce the following abbreviation of relativized knowledge for notational
convenience:

Kϕ
i ψ := Ki(ϕ→ ψ),

15We note that the language of the original GAL in (Ågotnes et al., 2010) does not include the
arbitrary announcement operator �. The fragment of GALM without the arbitrary announce-
ment operators can be studied in a similar way. We prefer to work with this large language in
order be able to present the soundness and completeness proofs for APALM and GALM in a
unified way.
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where ϕ, ψ ∈ LG and i ∈ AG. The language LG is also interpreted on models
introduced in Definition 4.3.1.

4.4.1. Definition. Given a model M = (W 0,W,∼1, . . . ,∼n, ‖·‖), the semantics
for LG is defined recursively as in Definition 4.3.2 with the following additional
clause for 〈G〉:

[[〈G〉ϕ]] =
⋃
{[[〈
∧
i∈G

Kiθi〉ϕ]] : {θi : i ∈ G} ⊆ L−�}.

2. Observation. Note that we have

w ∈ [[[G]ϕ]] iff w ∈ [[[
∧
i∈G

Kiθi]ϕ]] for every {θi : i ∈ G} ⊆ L−�.

4.4.2. Proposition. We have [[ϕ]] ⊆ W , for all formulas ϕ ∈ LG.

Proof:
The proof is by ≺2-induction on ϕ, using Lemma A.2.5 from the Technical Ap-
pendix A.A.2 and the following induction hypothesis (IH): for all ψ ∈ LG such
that ψ ≺2 ϕ and all models M = (W 0,W,∼1, . . . ,∼n, ‖·‖), we have [[ψ]] ⊆ W . The
base cases ϕ := >, ϕ := p, and ϕ := 0 are straightforward by the semantics given
in Definition 4.3.2. The inductive cases for Booleans are immediate. Similarly,
the following cases make use of the corresponding semantic clause in Definition
4.3.2.

Case ϕ := ψ0: [[ψ0]] = [[ψ]]M0 ∩W ⊆ W .

Case ϕ := Kiψ: [[Kiψ]] = {w ∈ W : wi ⊆ [[ϕ]]} ⊆ W .

Case ϕ := Uψ: [[Uψ]] ∈ {∅,W}, thus [[Uψ]] ⊆ W .

Case ϕ := 〈θ〉ψ: Since θ ≺2 〈θ〉ψ (by (1.) in Lemma A.2.5), by the IH on θ,
we have that [[θ]] ⊆ W . Moreover, since ψ ≺2 〈θ〉ψ (by (1.) in Lemma A.2.5), by
the IH on ψ, we also have that [[ψ]]M |[[θ]] ⊆ [[θ]] (recall that M |[[θ]] = (W 0, [[θ]],∼1

, . . . ,∼n, ‖·‖)). Therefore, by Definition 4.3.2, we obtain that [[〈θ〉ψ]] = [[ψ]]M |[[θ]] ⊆
[[θ]] ⊆ W .

Case ϕ := �ψ: By (9.) in Lemma A.2.5, it follows that for each θ ∈ L−�,
〈θ〉ψ ≺2 �ψ. Then, by the IH, we have that for all θ ∈ L−�, [[〈θ〉ψ]] ⊆ W . Thus⋃
{[[〈θ〉ψ]] : θ ∈ L−�} ⊆ W , i.e., [[�ψ]] ⊆ W .

Case ϕ := 〈G〉ψ: By (10.) in Lemma A.2.5, it follows that for each θ ∈ L−�,
〈θ〉ψ ≺2 〈G〉ψ. Then, by the IH, we have that for all θi ∈ L−�, [[〈

∧
i∈GKiθi〉ψ]] ⊆

W . Thus
⋃
{[[〈
∧
i∈GKiθi〉ψ]] : θi ∈ L−�} ⊆ W , i.e., [[〈G〉ψ]] ⊆ W . 2

Our a-models given in Definition 4.3.3 are also the intended models for GALM,
so GALM validities are defined with respect to a-models as in Definition 4.3.3. We
can now state the main result of this section.
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4.4.3. Theorem (Soundness and Completeness of GALM). GALM va-
lidities are recursively enumerable. In fact, the sound and complete axiomatization
GALM wrt a-models is obtained by extending APALM with the axiom and rule
given in Table 4.2.

Elim-axiom and Intro-rule for [G]:
([!][G]-elim) [θ][G]ϕ→ [θ ∧

∧
i∈GK

θ
i ρi]ϕ

([!][G]-intro) from ` χ→ [θ ∧
∧
i∈GK

θ
i pi]ϕ, infer ` χ→ [θ][G]ϕ

(for pi 6∈ Pχ ∪ Pθ ∪ Pϕ).

Table 4.2: The additional axioms of GALM

The axiom and rule in Table 4.2 are very similar in spirit and in what they
express to the [!]�-elim axiom and [!]�-intro rule, respectively. Together, the
elimination axiom [!][G]-elim and introduction rule [!][G]-intro say that ϕ is a
stable truth under group G’s announcements after an announcement θ iff ϕ stays
true after any more informative announcement from the group G (of the form
θ ∧

∧
i∈GK

θ
i ρi).

4.5 Soundness of GALM and APALM

As GALM is an extension of APALM, we present the soundness and completeness
proofs directly for the former. The same results for APALM are obtained following
similar steps. For the soundness and completeness proofs of only APALM, we refer
the reader to (Baltag et al., 2018b).

To start with, note that even the soundness of our axiomatic systems is not
a trivial matter. As we saw from Kuijer’s counterexample, the analogues of our
finitary � and [G]-introduction rules were not sound for APAL and GAL, respec-
tively. To prove their soundness on a-models, we need a detour into an equivalent
semantics, in the style of Subset Space Logics (SSL) (Moss and Parikh, 1992;
Dabrowski et al., 1996): pseudo-models. A more direct soundness proof on a-
models is in principle possible, but would require at least as much work as our
detour.

Unlike in standard EL, PAL or DEL, the meaning of an APALM formula (and
therefore of a GALM formula) depends, not only on the valuation of the atoms
occurring in it, but also on the family A of all sets definable by L−�-formulas. The
move from a-models to pseudo-models makes explicit this dependence on the
family A, while also relaxing the demands on A (which is no longer required to
be exactly the family of L−�-definable sets), and thus makes the soundness proof
both simpler and more transparent. Since we will need pseudo-models for our
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completeness proof anyway, we see no added value in trying to give a more direct
soundness proof.

We first introduce an auxiliary notion: pre-models are just SSL models, coming
with a given family A of “admissible sets” of worlds (which can be thought of
as the communicable propositions). We interpret � in these structures as the
so-called “effort modality” of SSL, which quantifies over updates with admissible
propositions in A. Analogously, 〈G〉 quantifies over updates with conjunctions of
those admissible propositions in the scope of an epistemic operator labeled by an
agent in G. Our pseudo-models are pre-models with additional closure conditions
(saying that the family of admissible sets includes the valuations and is closed
under complement, intersection, and epistemic operators). These conditions imply
that every set definable by a �, 〈G〉-free formula16 is admissible, and this ensures
the soundness of our �-elimination and [G]-elimination axioms on pseudo-models.

As for the soundness of the long-problematic � and [G]-introduction rules on
(both pre- and) pseudo-models, this is due to the fact that both the effort modality
and the corresponding [G] operator interpreted on pseudo-models have a more
“robust” range than the arbitrary announcement versions of them: they quantify
over admissible sets, regardless of whether these sets are syntactically definable
or not. Soundness with respect to our a-models then follows from the observation
that they (in contrast to the original APAL models) are in fact equivalent to a
special case of pseudo-models : the “standard” ones, in which the admissible sets
in A are exactly the sets definable by �, 〈G〉-free formulas.

4.5.1. Definition. [Pre-model] A pre-model is a tupleM = (W 0,A,∼1, . . . ,∼n
, ‖ · ‖), where W 0 is the initial domain, ∼i are equivalence relations on W 0,
‖ · ‖ : Prop→ P(W 0) is a valuation map, and A ⊆ P(W 0) is a family of subsets
of the initial domain, called admissible sets (representing the propositions that
can be publicly announced).

Given a set A ⊆ W 0 and a state w ∈ A, we use the notation wAi := {s ∈ A :
w ∼i s} to denote the restriction to A of w’s equivalence class modulo ∼i. We also
introduce the following abbreviation for the semantic counterpart of relativized
knowledge: KA

i B = {w ∈ W 0 : wi ∩ A ⊆ B}.

4.5.2. Definition. [Pre-model Semantics for LG] Given a pre-modelM = (W 0,A,∼1

, . . . ,∼n, ‖·‖), we recursively define a truth set [[ϕ]]A for every formula ϕ and subset
A ⊆ W 0:

16�, 〈G〉-free formulas are the sentences in L−�.
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[[>]]A = A

[[p]]A = ‖p‖ ∩ A

[[0]]A =

{
A if A = W 0

∅ otherwise

[[ϕ0]]A = [[ϕ]]W 0 ∩ A
[[¬ϕ]]A = A− [[ϕ]]A

[[ϕ ∧ ψ]]A = [[ϕ]]A ∩ [[ψ]]A

[[Kiϕ]]A = {w ∈ A : wAi ⊆ [[ϕ]]A}

[[Uϕ]]A =

{
A if [[ϕ]]A = A

∅ otherwise

[[〈θ〉ϕ]]A = [[ϕ]][[θ]]A

[[�ϕ]]A =
⋃
{[[ϕ]]B : B ∈ A, B ⊆ A}

[[〈G〉ψ]]A =
⋃
{[[ψ]]A∩⋂i∈GKA

i Bi
: {Bi : i ∈ G} ⊆ A}

3. Observation. Note that, for all w ∈ A, we have

1. w ∈ [[�ϕ]]A iff ∀B ∈ A(w ∈ B ⊆ A⇒ w ∈ [[ϕ]]B);

2. w ∈ [[[G]ϕ]]A iff w ∈ [[ϕ]]A∩⋂i∈GKA
i Bi

for every {Bi : i ∈ G} ⊆ A ;

3. [[ϕ]]A ⊆ A for all A ∈ A and ϕ ∈ LG.

Observation 3.1 shows that our proposed semantics of � on pre-models fits
with the semantics of the effort modality 2 in SSL (Moss and Parikh, 1992;
Dabrowski et al., 1996). The proof of Observation 3.3 is similar to that of Propo-
sition 4.4.2.

4.5.3. Definition. [Pseudo-models and Validity] A pseudo-model is a pre-model
M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖), satisfying the following closure conditions:

1. ‖p‖ ∈ A, for all p ∈ Prop,

2. W 0 ∈ A,

3. if A ∈ A then (W 0 − A) ∈ A,

4. if A,B ∈ A then (A ∩B) ∈ A,

5. if A ∈ A then KiA ∈ A, where
KiA := {w ∈ W 0 : ∀s ∈ W 0(w ∼i
s⇒ s ∈ A)}.

A formula ϕ ∈ LG is satisfied in a pseudo-model M if [[ϕ]]A = A for all A ∈ A
in M. A formula ϕ ∈ LG is valid in pseudo-models if it is true in all admissible
sets A ∈ A of every pseudo-model M, i.e, [[ϕ]]A = A for all A ∈ A and all M.

4.5.4. Lemma. Given a pseudo-modelM = (W 0,A,∼1, . . . ,∼n, ‖·‖) and A,B ∈
A, we have KA

i B ∈ A.

Proof:
First note that by clause (5.) in Definition 4.5.3 and Boolean operations of sets
we have,
KA
i B = {w ∈ W 0 : wi ∩ A ⊆ B)} = {w ∈ W 0 : ∀s ∈ W 0((s ∈ A and w ∼i s) ⇒
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s ∈ B)}
= {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ (s ∈ A ⇒ s ∈ B))} = {w ∈ W 0 : ∀s ∈
W 0(w ∼i s ⇒ (s ∈ (W 0 − A) or s ∈ B))} = {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ s ∈
(W 0 − A) ∪B)} = Ki((W

0 − A) ∪B).
Then, by Definition 4.5.3.(3-5) and A,B ∈ A, we obtain KA

i B = Ki((W
0 −A) ∪

B) ∈ A. 2

The following result shows that a truth set of any �,〈G〉-free formula is an
admissible set.

4.5.5. Proposition. Given a pseudo-modelM = (W 0,A,∼1, . . . ,∼n, ‖·‖), A ∈
A, and θ ∈ L−�, we have [[θ]]A ∈ A.

Proof:
The proof is by subformula induction on θ. The base cases and the inductive cases
for the Booleans are immediate (using the conditions in Definition 4.5.3).

Case θ := ψ0: By the semantics, [[ψ0]]A = [[ψ]]W 0 ∩ A ∈ A, since [[ψ]]W 0 ∈ A
(by the fact that W 0 ∈ A and IH), A ∈ A (by assumption), and A is closed under
intersection.

Case θ := Kiψ: Note that [[Kiψ]]A = {w ∈ A : wAi ⊆ [[ψ]]A} = A ∩ {w ∈ W 0 :
wAi ⊆ [[ψ]]A} (by Definition 4.5.3) = A ∩ {w ∈ W 0 : ∀s ∈ W 0((s ∈ A and w ∼i
s) ⇒ s ∈ [[ψ]]A)}. We then obtain, by CPL and Boolean operations of sets that
[[Kiψ]]A = A ∩ {w ∈ W 0 : ∀s ∈ W 0(w ∼i s⇒ s ∈ ((W 0 −A) ∪ [[ψ]]A)}. Moreover,
A ∩ {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ s ∈ ((W 0 − A) ∪ [[ψ]]A)} = A ∩ Ki((W

0 −
A) ∪ [[ψ]]A) by (3. to 5.) in Definition 4.5.3 (since A ∈ A and [[ψ]]A ∈ A by
IH). Therefore, [[Kiψ]]A = A ∩Ki((W

0 − A) ∪ [[ψ]]A) is in A.

Case θ := Uψ: By Definition 4.5.3, [[Uψ]]A ∈ {∅, A} ⊆ A.

Case θ := 〈ϕ〉ψ: Since A ∈ A, we have [[ϕ]]A ∈ A (by IH on ϕ), and hence
[[〈ϕ〉ψ]]A = [[ψ]][[ϕ]]A ∈ A (by the semantics and IH on ψ). 2

To prove the soundness of our axioms, we need the following lemmas:

4.5.6. Lemma. Given a pseudo-model M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖), A ∈ A
and θ ∈ L−� such that w ∈ [[θ]]A, w ∈ [[Kθ

i ρ]]A iff w ∈ K
[[θ]]A
i [[ρ]]A for all

ρ ∈ L−�.

Proof:
Observe that K

[[θ]]A
i [[ρ]]A = Ki((W

0− [[θ]]A)∪ [[ρ]]A) (as in Lemma 4.5.4). Moreover,
it’s easy to see that,

[[Kθ
i ρ]]A = [[Ki(θ → ρ)]]A = {w ∈ A : wAi ⊆ [[θ → ρ]]A} = A ∩ {w ∈ W 0 :

∀s ∈ W 0(w ∼i s ⇒ s ∈ ((W 0 − [[θ]]A) ∪ [[ρ]]A))} (since [[θ]]A ⊆ A). We there-
fore obtain that [[Kθ

i ρ]]A = A ∩ Ki((W
0 − [[θ]]A) ∪ [[ρ]]A) (by Boolean operations
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of sets and the defn. of Ki). Thus, [[Kθ
i ρ]]A = A ∩ Ki((W

0 − [[θ]]A) ∪ [[ρ]]A) ⊆
Ki((W

0 − [[θ]]A) ∪ [[ρ]]A) = K
[[θ]]A
i [[ρ]]A. Therefore if w ∈ [[θ]]A ⊆ A, w ∈ [[Kθ

i ρ]]A iff

w ∈ K [[θ]]A
i [[ρ]]A. 2

4.5.7. Lemma. LetM = (W 0,A,∼1, . . . ,∼n, ‖·‖) andM′ = (W 0,A,∼1, . . . ,∼n
, ‖ · ‖′) be two pseudo-models and ϕ ∈ LG such that M and M′ differ only in the
valuation of some p 6∈ Pϕ. Then, for all A ∈ A, we have [[ϕ]]MA = [[ϕ]]M

′
A .

Proof:
The proof follows by subformula induction on ϕ. Let M = (W 0,A,∼1, . . . ,∼n
, ‖ · ‖) and M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖′) be two pseudo-models such that M
and M′ differ only in the valuation of some p 6∈ Pϕ and let A ∈ A. We want to
show that [[ϕ]]MA = [[ϕ]]M

′
A . The base cases ϕ := q(6= p), ϕ := >, ϕ := 0, and the

inductive cases for Booleans are standard.

Case ϕ := ψ0. Note that Pψ0 = Pψ. Then, by IH, we have that [[ψ]]M
′

A =
[[ψ]]MA for every A ∈ A, in particular for W 0 ∈ A. Thus [[ψ]]M

′

W 0 = [[ψ]]MW 0 . Then,
[[ψ]]M

′

W 0 ∩ A = [[ψ]]MW 0 ∩ A for all A ∈ A. By the semantics of the initial operator
on pseudo-models, we obtain [[ψ0]]M

′
A = [[ψ0]]MA .

Case ϕ := Kiψ. Note that PKiψ = Pψ. Then, by IH, we have that [[ψ]]MA =
[[ψ]]M

′
A . Observe that [[Kiψ]]MA = {w ∈ A : wAi ⊆ [[ψ]]MA } and, similarly, [[Kiψ]]M

′
A =

{w ∈ A : wAi ⊆ [[ψ]]M
′

A }. Then, since [[ψ]]MA = [[ψ]]M
′

A , we obtain [[Kiψ]]MA =
[[Kiψ]]M

′
A .

Case ϕ := Uψ. Note that PUψ = Pψ. Then, by IH, we have that [[ψ]]M
′

A =
[[ψ]]MA for every A ∈ A. We have two case: (1) If [[ψ]]M

′
A = [[ψ]]MA = A, then

[[Uψ]]M
′

A = A = [[Uψ]]MA . (2) If [[ψ]]M
′

A = [[ψ]]MA 6= A, then [[Uψ]]M
′

A = [[Uψ]]MA = ∅.
Case ϕ := 〈θ〉ψ. Note that P〈θ〉ψ = Pθ ∪ Pψ. By IH, we have [[θ]]M

′
A = [[θ]]MA

and [[ψ]]M
′

A = [[ψ]]MA for every A ∈ A. By Proposition 4.5.5, we know that [[θ]]MA =
[[θ]]M

′
A ∈ A. Therefore, in particular, we have [[ψ]]M

′

[[θ]]M
′

A

= [[ψ]]M
[[θ]]MA

. Therefore, by

the semantics of 〈!〉 on pseudo-models, we obtain [[〈θ〉ψ]]M
′

A = [[〈θ〉ψ]]MA .

Case ϕ := �ψ. Note that P�ψ = Pψ. Since the same family of sets A is carried
by both models M and M′ and since (by IH) [[ψ]]M

′
A = [[ψ]]MA for all A ∈ A, we

get:

[[�ψ]]M
′

A =
⋃
{[[ψ]]M

′

B : B ∈ A, B ⊆ A} =
⋃
{[[ψ]]MB : B ∈ A, B ⊆ A} = [[�ψ]]MA .

Case ϕ := [G]ψ. Note that P[G]ψ = Pψ. Then, by (IH), we have that
[[ψ]]M

′
B = [[ψ]]MB for every B ∈ A. In particular, [[ψ]]M

′
B = [[ψ]]MB for the B’s of

the form A ∩ KA
i C with A,C ∈ A (recall that pseudo-models are closed un-

der KA
i operation and conjunction, see Definition 4.5.3 and Lemma 4.5.4). Since

the same family of sets A is carried by both models M and M′, we obtain:
[[[G]ψ]]M

′
A =

⋃
{[[ψ]]M

′

A∩
⋂
i∈GK

A
i Bi

: {Bi : i ∈ G} ⊆ A} =
⋃
{[[ψ]]M

A∩
⋂
i∈GK

A
i Bi

: {Bi :
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i ∈ G} ⊆ A} = [[[G]ψ]]MA . 2

4.5.8. Proposition (Soundness of GALM/APALM on pseudo-models).
The system GALM is sound wrt pseudo-models. Therefore, the system APALM
is also sound wrt pseudo-models.

Proof:
The soundness proof follows by validity check. For most of the axioms and rules,
the proof follows simply by spelling out the semantics wrt Definition 4.5.2. We
present here only the soundness of (Nec0), (Imp0

i ), (Imp0
�), the axioms [!]�-elim,

[!][G]-elim and rules [!]�-intro, [!][G]-intro:

Let M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) be a pseudo-model, A ∈ A, and w ∈ A
arbitrarily chosen:

(Nec0): Suppose ϕ is valid in all pseudo-models, i.e., [[ϕ]]A = A for all
A ∈ A′ and every pseudo-model M′. Let M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖)
be a pseudo-model, by assumption we have that [[ϕ]]A = A for all A ∈ A
in M. We need to show that M satisfies ϕ0, i.e., we need to show that
w ∈ [[ϕ0]]A for A ∈ A and w ∈ A arbitrarily chosen. By the semantic
definition (Definition 4.5.2), we must show that w ∈ [[ϕ]]W 0 ∩A. We already
have that w ∈ A. Moreover, since ϕ is valid in all pseudo-models, we have
that w ∈ [[ϕ]]W 0 (since M0 is a pseudo-model). Thus, w ∈ [[ϕ]]W 0 ∩ A.

(Imp0
i ): Suppose w ∈ [[(Kiϕ)0]]A. We need to show that w ∈ [[Kiϕ

0]]A, i.e,
w ∈ {u ∈ A : uAi ⊆ [[ϕ0]]A} by Definition 4.5.2. By the semantic definition
(Definition 4.5.2) of [[ϕ0]]A, we need to show that w ∈ {u ∈ A : uAi ⊆
[[ϕ]]W 0∩A}. Since, by the definition of wAi , we have wAi ⊆ A, we just need to
show that wAi ⊆ [[ϕ]]W 0 . Because of our assumption, w ∈ [[Kiϕ]]W 0∩A = {v ∈
W0 : vi ⊆ [[ϕ]]W 0} ∩ A. Thus wi ⊆ [[ϕ]]W 0 . Since wAi = wi ∩ A ⊆ [[ϕ]]W 0 ∩ A,
we have wAi ⊆ [[ϕ]]W 0 .

(Imp0
�): Suppose w ∈ [[(�ϕ)0]]A. We need to show that w ∈ [[ϕ]]A. Note that

[[(�ϕ)0]]A = [[�ϕ]]W 0 ∩ A. Therefore, w ∈ {u ∈ W 0 : for all B ∈ A(u ∈
B ⊆ W 0 implies u ∈ [[ϕ]]B)} and w ∈ A. Then, by the former and the fact
that w ∈ A ⊆ W 0, we obtain w ∈ [[ϕ]]A.

([!]�-elim): Let ρ ∈ L−� and suppose (1) w ∈ [[[θ]�ϕ]]A and (2) w ∈
[[θ∧ρ]]A. We need to show that w ∈ [[ϕ]][[θ∧ρ]]A . Assumption (1) means that if
w ∈ [[θ]]A then w ∈ [[�ϕ]][[θ]]A . By assumption (2) and since w ∈ [[θ ∧ ρ]]A ⊆
[[θ]]A, we have w ∈ [[�ϕ]][[θ]]A . Thus, by the semantics of �, we have w ∈
{u ∈ [[θ]]A : for all B ∈ A (u ∈ B ⊆ [[θ]]A ⇒ u ∈ [[ϕ]]B}. Therefore, for
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B := [[θ ∧ ρ]]A ⊆ [[θ]]A (since by Proposition 4.5.5, [[θ ∧ ρ]]A ∈ A) we have
w ∈ [[ϕ]][[θ∧ρ]]A .

([!][G]-elim): Let {ρi : i ∈ G} ⊆ L−� and suppose (1) w ∈ [[[θ][G]ϕ]]A and
(2) w ∈ [[θ ∧

∧
i∈GK

θ
i ρi]]A. We need to show that w ∈ [[[θ ∧

∧
i∈GK

θ
i ρi]ϕ]]A,

i.e., w ∈ [[ϕ]][[θ∧∧i∈GKθ
i ρi]]A

. Assumption (1) means that if w ∈ [[θ]]A then

w ∈ [[[G]ϕ]][[θ]]A . I.e., by the semantic clause for [G], we have that if
w ∈ [[θ]]A then for all {Bi : i ∈ G} ⊆ A, w ∈ [[ϕ]]

[[θ]]A∩
⋂
i∈GK

[[θ]]A
i Bi

. By

(2) we have that w ∈ [[θ]]A and w ∈ [[
∧
i∈GK

θ
i ρi]]A. Thus, by (1), we ob-

tain w ∈ [[ϕ]]
[[θ]]A∩

⋂
i∈GK

[[θ]]A
i [[ρi]]A

= [[ϕ]][[θ]]A∩
⋂
i∈G[[Kθ

i ρi]]A
= [[ϕ]][[θ∧∧i∈GKθ

i ρi]]A
(by

Proposition 4.5.5 and Lemma 4.5.6). Thus if w ∈ [[θ ∧
∧
i∈GK

θ
i ρi]]A then

w ∈ [[ϕ]][[θ∧∧i∈GKθ
i ρi]]A

.

([!]�-intro): Suppose χ→ [θ ∧ p]ϕ with p /∈ Pχ ∪ Pθ ∪ Pϕ is valid and χ→
[θ]�ϕ where p /∈ Pχ∪Pθ∪Pϕ is not valid. The latter means that there exists
a pseudo-model M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) such that for some A ∈ A
and some w ∈ A, w /∈ [[χ→ [θ]�ϕ]]MA . Therefore w ∈ [[χ∧¬[θ]�ϕ]]MA . Thus
we have (1) w ∈ [[χ]]MA and (2) w ∈ [[¬[θ]�ϕ]]MA . Because of (2), w ∈
[[〈θ〉3¬ϕ]]MA , and, by the semantics, w ∈ [[3¬ϕ]]M

[[θ]]MA
. Therefore, applying

the semantics of �, we obtain (3) there exists B ∈ A s.t. w ∈ B ⊆ [[θ]]MA ⊆ A
and w ∈ [[¬ϕ]]MB .

Now consider the pre-model M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖′) such that
‖p‖′ := B and ‖q‖′ = ‖q‖ for any q 6= p ∈ Prop. In order to use Lemma 4.5.7
we must show that M′ is a pseudo-model. For this we only need to verify
that M′ satisfies the closure conditions given in Definition 4.5.3. First
note that ‖p‖′ := B ∈ A by the construction of M′, so ‖p‖′ ∈ A. For
every q 6= p, since ‖q‖′ = ‖q‖ and ‖q‖ ∈ A we have ‖q‖′ ∈ A. Since A is
the same for both M and M′, and M is a pseudo-model, the rest of the
closure conditions are already satisfied for M′. Therefore M′ is a pseudo-
model. Now continuing with our soundness proof, since p /∈ Pχ ∪ Pθ ∪ Pϕ,
by Lemma 4.5.7, we obtain [[χ]]M

′
A = [[χ]]MA , [[θ]]M

′
A = [[θ]]MA and [[¬ϕ]]M

′
A =

[[¬ϕ]]MA . Since ‖p‖′ = B ⊆ [[θ]]M
′

A ⊆ A we have ‖p‖′ = [[p]]M
′

A . Because of (3)
we have that w ∈ [[θ]]M

′
A and w ∈ [[¬ϕ]]M

′
B = [[¬ϕ]]M

′

[[p]]M
′

A

= [[〈p〉¬ϕ]]M
′

A . Thus,

w ∈ [[p]]M
′

A , so w ∈ [[θ ∧ p]]M′A = [[θ]]M
′

A ∩ [[p]]M
′

A = [[p]]M
′

A simply because
[[p]]M

′
A ⊆ [[θ]]M

′
A . Since w ∈ [[¬ϕ]]M

′

[[p]]M
′

A

we obtain w ∈ [[¬ϕ]]M
′

[[θ∧p]]M′A

. Putting

everything together, w ∈ [[θ ∧ p]]M′A and w ∈ [[¬ϕ]]M
′

[[θ∧p]]M′A

. Thus we obtain

that w ∈ [[〈θ ∧ p〉¬ϕ]]M
′

A and w ∈ [[χ]]M
′

A which contradicts the validity of
χ→ [θ ∧ p]ϕ.

([!][G]-intro): Suppose χ→ [θ∧
∧
i∈GK

θ
i pi]ϕ with pi /∈ Pχ∪Pθ ∪Pϕ is valid

and χ → [θ][G]ϕ where pi /∈ Pχ ∪ Pθ ∪ Pϕ is not valid. The latter means
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that there exists a pseudo-model M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) such that
for some A ∈ A and some w ∈ A, w /∈ [[χ→ [θ][G]ϕ]]MA . Therefore w ∈ [[χ∧
¬[θ][G]ϕ]]MA . Thus we have (1) w ∈ [[χ]]MA , and (2) w ∈ [[¬[θ][G]ϕ]]MA . Item
(2) means w ∈ [[〈θ〉〈G〉¬ϕ]]MA . Then, by the semantics of 〈!〉, we have w ∈
[[〈G〉¬ϕ]]M

[[θ]]MA
. Therefore by the semantics of 〈G〉 we obtain: (3) there exists

{Bi : i ∈ G} ⊆ A s.t. w ∈ [[¬ϕ]]M
[[θ]]MA ∩

⋂
i∈GK

[[θ]]M
A

i Bi

.

Now consider the pre-model M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖′) such that
‖pi‖′ = Bi and ‖q‖′ = ‖q‖ for any q 6= pi ∈ Prop for all i ∈ G. Ob-
serve that since [[θ]]A ⊆ A, by Boolean operations of sets we obtain that

K
[[θ]]A
i (A ∩ Bi) = K

[[θ]]A
i Bi. In order to use Lemma 4.5.7 we must show that

M′ is a pseudo-model as in the soundness proof of [!]�-intro. First note that
for every q 6= pi, since ‖q‖′ = ‖q‖ and ‖q‖ ∈ A, we have ‖q‖′ ∈ A. Moreover,
since for every i ∈ G, ‖pi‖′ = Bi ∈ A, we conclude that M′ satisfies the
clause (1.) in Definition 4.5.3. Since A is the same for both M and M′,
and M is a pseudo-model, the rest of the closure conditions are satisfied
already. ThereforeM′ is a pseudo-model. Now continuing with our sound-
ness proof, given pi /∈ Pχ∪Pθ ∪Pϕ for all i ∈ G, by Lemma 4.5.7, we obtain
[[χ]]M

′
A = [[χ]]MA and [[θ]]M

′
A = [[θ]]MA . We moreover have that

[[¬ϕ]]M
[[θ]]MA ∩

⋂
i∈GK

[[θ]]M
A

i Bi

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂
i∈GK

[[θ]]M′
A

i Bi

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂
i∈GK

[[θ]]M′
A

i ‖pi‖′

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂
i∈GK

[[θ]]M′
A

i (A∩‖pi‖′)

by the above observation. And by Lemma 4.5.6, we obtain

[[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂
i∈GK

[[θ]]M′
A

i (A∩‖pi‖′)
= [[¬ϕ]]M

′

[[θ]]M
′

A ∩
⋂
i∈GK

[[θ]]M′
A

i ([[pi]]M
′

A )

= [[¬ϕ]]M
′

[[θ∧
∧
i∈GK

θ
i pi]]

M′
A

.

Therefore, w ∈ [[¬ϕ]]M
′

[[θ∧
∧
i∈GK

θ
i pi]]

M′
A

. I.e., w ∈ [[〈θ ∧
∧
i∈GK

θ
i pi〉¬ϕ]]M

′
A . Since

we also have that w ∈ [[χ]]M
′

A , we conclude that w ∈ [[χ∧〈θ∧
∧
i∈GK

θ
i pi〉¬ϕ]]M

′
A ,

contradicting the validity of χ→ [θ ∧
∧
i∈GK

θ
i pi]ϕ.

2

4.5.9. Definition. [Standard Pre-model] A pre-modelM = (W 0,A,∼1, . . . ,∼n
, ‖ · ‖) is standard if and only if A = {[[θ]]W 0 : θ ∈ L−�}.

4.5.10. Proposition. Every standard pre-model is a pseudo-model.

Proof:
Let M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) be a standard pre-model. This implies that
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A = {[[θ]]W 0 : θ ∈ L−�}. We need to show thatM satisfies the closure conditions
given in Definition 4.5.3. Conditions (1) and (2) are immediate.

For (3): let A ∈ A. SinceM is a standard pre-model, we know that A = [[θ]]W 0

for some θ ∈ L−�. Since θ ∈ L−�, we have ¬θ ∈ L−�, thus, [[¬θ]]W 0 ∈ A. Observe
that [[¬θ]]W 0 = W 0 − [[θ]]W 0 , thus, we obtain W 0 − A ∈ A.

For (4): let A,B ∈ A. Since M is a standard pre-model, A = [[θ1]]W 0 and
B = [[θ2]]W 0 for some θ1, θ2 ∈ L−�. Since θ1, θ2 ∈ L−�, we have θ1 ∧ θ2 ∈ L−�,
thus, [[θ1 ∧ θ2]]W 0 ∈ A. Observe that [[θ1 ∧ θ2]]W 0 = [[θ1]]W 0 ∩ [[θ2]]W 0 = A∩B, thus,
we obtain A ∩B ∈ A.

For (5): let A ∈ A. Since M is a standard pre-model, A = [[θ]]W 0 for some
θ ∈ L−�. Since θ ∈ L−�, we have Kiθ ∈ L−�, thus, [[Kiθ]]W 0 ∈ A. Observe that
[[Kiθ]]W 0 = {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ s ∈ [[θ]]W 0)} = Ki[[θ]]W 0 , thus, we
obtain KiA ∈ A. 2

Equivalence between the standard pseudo-models and announcement
models. For Proposition 4.5.13 only, we use the notation [[ϕ]]PSA to refer to
pseudo-model semantics (as in Definition 4.5.2) and use [[ϕ]]M to refer to the
semantics on a-models (as in Definition 4.4.1).

First we need a couple of useful lemmas.

4.5.11. Lemma. The sentence (Ki(ϕ → ψ))0 ↔ Ki(Ki(ϕ → ψ))0 is valid on
pseudo-models.

Proof:
It is easy to see that the direction from left-to-right follows from the fact that
the semantics for ϕ0 is state-independent, and the direction from right-to-left is
an instance of the T-axiom for Ki. 2

4.5.12. Lemma. LetM = (W 0,A,∼1, . . . ,∼n, ‖·‖) be a standard pseudo-model,
A ∈ A and ϕ ∈ LG, then the following holds:

1. [[�ϕ]]A =
⋃
{[[〈θ〉ϕ]]A : θ ∈ L−�},

2. [[〈G〉ϕ]]A =
⋃
{[[〈
∧
i∈GKiθi〉ϕ]]A : {θi : i ∈ G} ⊆ L−�}.

Proof:

1. For (⊆): Let w ∈ [[�ϕ]]A. Then, by the semantics of � in pseudo-models,
there exists some B ∈ A such that w ∈ B ⊆ A and w ∈ [[ϕ]]B. Since M
is standard, we know that A = [[ψ]]W 0 and B = [[χ]]W 0 for some ψ, χ ∈
L−�. Moreover, since B = [[χ]]W 0 ⊆ A = [[ψ]]W 0 , we have B = [[χ]]W 0 ∩
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[[ψ]]W 0 = [[χ0]][[ψ]]W0 = [[χ0]]A, and so w ∈ [[ϕ]]B = [[ϕ]][[χ0]]A = [[〈χ0〉ϕ]]A ⊆⋃
{[[〈θ〉ϕ]]A : θ ∈ L−�}.

For (⊇): Let w ∈
⋃
{[[〈θ〉ϕ]]A : θ ∈ L−�}. Then we have w ∈ [[〈θ〉ϕ]]A =

[[ϕ]][[θ]]A , for some θ ∈ L−�. Moreover, since [[θ]]A ∈ A (by Proposition 4.5.5)
and [[θ]]A ⊆ A (by Observation 3), it follows that w ∈ [[�ϕ]]A (by the seman-
tics of � in pseudo-models).

2. For (⊆): Let w ∈ [[〈G〉ϕ]]A. Then, by Definition 4.5.2, we have

w ∈ [[ϕ]]A∩⋂i∈GKA
i Bi

for some {Bi : i ∈ G} ⊆ A.

Since M is a standard pseudo-model, we know that each Bi = [[ρi]]W 0 and
A = [[ψ]]W 0 for some ρi, ψ ∈ L−�.

Thus, w ∈ [[ϕ]]
[[ψ]]W0∩

⋂
i∈GK

[[ψ]]
W0

i [[ρi]]W0

= [[ϕ]][[ψ]]W0∩
⋂
i∈G[[Ki(ψ→ρi)]]W0 =

[[ϕ]][[ψ]]W0∩[[
∧
i∈GKi(ψ→ρi)]]W0 by Lemma 4.5.6 and the semantics. By the se-

mantics of 0 and Lemma 4.5.11, we obtain [[ϕ]][[ψ]]W0∩[[
∧
i∈GKi(ψ→ρi)]]W0 =

[[ϕ]][[∧i∈G(Ki(ψ→ρi))0]]A = [[ϕ]][[∧i∈GKi(Ki(ψ→ρi))0]]A . Thus, for θi := (Ki(ψ →
ρi))

0, w ∈ [[ϕ]][[∧i∈GKiθi]]A = [[〈
∧
i∈GKiθi〉ϕ]]A.

For (⊇): Let {θi : i ∈ G} ⊆ L−� such that w ∈ [[ϕ]][[∧i∈GKiθi]]A . Note that

[[
∧
i∈GKiθi]]A =

⋂
i∈G[[Kiθi]]A = A ∩

⋂
i∈GK

A
i [[θi]]A. Since M is a standard

pseudo-model, we know that Bi := [[θi]]A ∈ A for every i ∈ G and by our
initial assumption w ∈ [[ϕ]]A∩⋂i∈GKA

i [[θi]]A
, so we obtain w ∈ [[〈G〉ϕ]]A.

2

The following proposition addresses the correspondence between standard
pseudo-models and a-models which is crucial for the aforementioned equivalence.

4.5.13. Proposition.

1. For every standard pseudo-model M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) and ev-
ery set A ∈ A, we denote by MA the model MA = (W 0, A,∼1, . . . ,∼n
, ‖ · ‖). Then:

(a) For every ϕ ∈ LG, we have [[ϕ]]MA
= [[ϕ]]PSA for all A ∈ A.

(b) MA is an a-model, for all A ∈ A.

2. For every a-model M = (W 0,W,∼1, . . . ,∼n, ‖·‖), we denote byM′ the pre-
model M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖), where A = {[[θ]]M0 : θ ∈ L−�}. Then

(a) M′ is a standard pseudo-model.

(b) For every ϕ ∈ LG, we have [[ϕ]]M = [[ϕ]]PSW .
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Proof:

1. Let M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) be a standard pseudo-model. Then,
A ∈ A implies A = [[θ]]PSW 0 ⊆ W 0 for some θ, hence MA = (W 0, A,∼1

, . . . ,∼n, ‖ · ‖) is a model.

(a) The proof is by ≺2-induction (see Lemma A.2.5). The base cases and
the inductive cases for Booleans are straightforward.

Case ϕ := ψ0. We have [[ψ0]]PSA = [[ψ]]PSW 0 ∩ A = [[ψ]]M0
A
∩ A = [[ψ0]]MA

(by Definition 4.5.2, IH, and Definition 4.3.2).

Case ϕ := Kiψ. We have [[Kiψ]]PSA = {w ∈ A : wAi ⊆ [[ψ]]PSA } = {w ∈
A : wi ⊆ [[ψ]]MA

} = [[Kiψ]]MA
(by Definition 4.5.2, IH, and Definition

4.3.2).

Case ϕ := Uψ. By Definitions 4.3.2 and 4.5.2, we have:

[[Uψ]]MA
=

{
A if [[ψ]]MA

= A

∅ otherwise

[[Uψ]]PSA =

{
A if [[ψ]]PSA = A

∅ otherwise

By IH, [[ψ]]PSA = [[ψ]]MA
, therefore, [[Uψ]]PSA = [[Uψ]]MA

.

Case ϕ := 〈ψ〉χ. By Definition 4.3.2, we know that [[〈ψ〉χ]]MA
=

[[χ]]MA|[[ψ]]MA
. Now consider MA|[[ψ]]MA

= (W 0, [[ψ]]MA
,∼1, . . . ,∼n, ‖ ·

‖). By Lemma A.2.5.1 and IH, we have [[ψ]]MA
= [[ψ]]PSA . Moreover, by

the definition of standard pseudo-models, we know that A = [[θ]]PSW 0 for
some θ ∈ L−�. Therefore, [[ψ]]MA

= [[ψ]]PSA = [[ψ]]PS
[[θ]]PS

W0
= [[〈θ〉ψ]]PSW 0 . There-

fore, [[ψ]]MA
∈ A. We then have

[[〈ψ〉χ]]MA
= [[χ]]M[[ψ]]MA

= [[χ]]M
[[ψ]]PS

A

= [[χ]]PS[[ψ]]PSA
= [[〈ψ〉χ]]PSA ,

by the semantics and IH on ψ and on χ (since [[ψ]]PSA ∈ A).

Case ϕ := �ψ. By Definition 4.3.2, (9.) in Lemma A.2.5, IH, the
fact that M is a standard pseudo-model, and (1.) in Lemma 4.5.12 -
applied in this order - we obtain the following equivalences:

[[�ψ]]MA
=
⋃
{[[〈χ〉ψ]]MA

: χ ∈ L−�} =
⋃
{[[〈χ〉ψ]]PSA : χ ∈ L−�} = [[�ψ]]PSA .
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Case ϕ := 〈G〉ψ. By Definition 4.4.1, (10.) in Lemma A.2.5, IH, the
fact that M is a standard pseudo-model, and (2.) in Lemma 4.5.12 -
applied in this order - we obtain the following equivalences:

[[〈G〉ψ]]MA
=
⋃
{[[〈
∧
i∈GKiθi〉ϕ]]MA

: {θi : i ∈ G} ⊆ L−�}
=
⋃
{[[〈
∧
i∈GKiθi〉ϕ]]PSA : {θi : i ∈ G} ⊆ L−�} = [[〈G〉ψ]]PSA .

(b) By part (a), [[ϕ]]M0
A

= [[ϕ]]MW0 = [[ϕ]]PSW 0 for all ϕ. SinceM is standard,

we have A = [[θ]]PSW 0 = [[θ]]M0
A

for some θ ∈ L−�, so MA is an a-model.

2. Let M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖) be an a-model. Since A = {[[θ]]M0 :
θ ∈ L−�} ⊆ P(W 0), the model M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) is a pre-
model. Therefore, the semantics given in Definition 4.5.2 is defined on
M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖).

(a) By Proposition 4.5.10, it suffices to prove that the pre-model M′ =
(W 0,A,∼1, . . . ,∼n, ‖ · ‖) is standard, i.e. that {[[θ]]M0 : θ ∈ L−�} =
{[[θ]]PSW 0 : θ ∈ L−�}. For this, we need to show that for every a-model
M = (W 0,W,∼1, . . . ,∼n, ‖ · ‖), we have [[θ]]M = [[θ]]PSW for all θ ∈ L−�.

We prove this by subformula induction on θ. The base cases and the
inductive cases for Booleans are straightforward.

Case θ := ψ0. Then [[ψ0]]M = [[ψ]]M0 ∩W = [[ψ]]PSW 0 ∩W = [[ψ0]]PSW (by
Definition 4.3.2, IH, and Definition 4.5.2).

Case θ := Kiψ. We have [[Kiψ]]M = {w ∈ W : wi ⊆ [[ψ]]M} = {w ∈
W : wWi ⊆ [[ψ]]PSW } = [[Kiψ]]PSW (by Definition 4.3.2, IH, and Definition
4.5.2).

Case θ := Uψ. By Definitions 4.3.2 and 4.5.2, we have:

[[Uψ]]M =

{
W if [[ψ]]M = W

∅ otherwise

[[Uψ]]PSW =

{
W if [[ψ]]PSW = W

∅ otherwise

By IH, [[ψ]]PSW = [[ψ]]M , therefore, [[Uψ]]PSW = [[Uψ]]M .

Case θ := 〈ψ〉χ. By Definition 4.3.2, we know that [[〈ψ〉χ]]M = [[χ]]M |[[ψ]]M .
Now consider the relativized model M |[[ψ]]M = (W 0, [[ψ]]M ,∼1, . . . ,∼n
, ‖ · ‖). By (1.) in Lemma A.2.5 and IH on ψ, we have [[ψ]]M =
[[ψ]]PSW . Moreover, by the definition of a-models, we know that W =
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[[θ]]M0 for some θ ∈ L−�. Therefore, [[ψ]]M = [[ψ]]M0|[[θ]]M0
= [[〈θ〉ψ]]M0 .

Hence, since 〈θ〉ψ ∈ L−�, the model M |[[ψ]]M is also an a-model
obtained by updating the initial model M0 by 〈θ〉ψ. We then have
[[〈ψ〉χ]]M = [[χ]]M |[[ψ]]M (by Definition 4.3.2) = [[χ]]M |[[ψ]]PSW

(by IH on

ψ) = [[χ]]PS
[[ψ]]PSW

(by IH on χ, M |[[ψ]]M is an a-model) = [[〈ψ〉χ]]PSW (by

Definition 4.5.2).

(b) The proof of this part follows by ≺2-induction on ϕ (where ≺2 is as in
Lemma A.2.5 from the Technical Appendix A.A.2). All the inductive
cases are similar to ones in the above proof, except for the cases ϕ :=
�ψ and ϕ := 〈G〉ψ, shown below.
Case ϕ := �ψ. By Definition 4.3.2, (9.) in Lemma A.2.5, IH, the

fact that M′ is a standard pseudo-model, and (2.) in Lemma 4.5.12 -
applied in that order - we obtain the following equivalences:

[[�ψ]]M =
⋃
{[[〈χ〉ψ]]M : χ ∈ L−�} =

⋃
{[[〈χ〉ψ]]PSW : χ ∈ L−�} = [[�ψ]]PSW .

Case ϕ := 〈G〉ψ. By Definition 4.4.1, (10.) in Lemma A.2.5, IH, the
fact that M′ is a standard pseudo-model and (2.) in Lemma 4.5.12 -
applied in that order - we obtain the following: equivalences,

[[〈G〉ψ]]M =
⋃
{[[〈
∧
i∈GKiθi〉ϕ]]M : {θi : i ∈ G} ⊆ L−�}

=
⋃
{[[〈
∧
i∈GKiθi〉ϕ]]PSW : {θi : i ∈ G} ⊆ L−�} = [[〈G〉ψ]]PSW

2

Due to the correspondence between the standard pseudo-models and a-models,
we obtain the following.

4.5.14. Corollary. Validity on standard pseudo-models coincides with validity
on the a-models.

Proof:
This is a straightforward consequence of Proposition 4.5.13. 2

4.5.15. Corollary (Soundness of GALM/APALM on a-models). The sys-
tem GALM is sound wrt a-models. Moreover, the system APALM is sound wrt
a-models.

Proof:
Follows immediately from Proposition 4.5.8 and Corollary 4.5.14. 2
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It is important to note that the equivalence between standard pseudo-models
and a-models (given by Proposition 4.5.13 above, and underlying our soundness
result) is not trivial. It relies in particular on the equivalence between the ef-
fort modality and the arbitrary announcement operator � (see (1.) in Lemma
4.5.12) and on the equivalence between the purely syntactic and purely semantic
descriptions of the group announcement operator [G] on standard pseudo-models
(see (2.) in Lemma 4.5.12). These equivalences hold only because our models and
language retain the memory of the initial situation. Hence, a similar equivalence
fails for the original APAL and GAL.

4.6 Completeness of GALM and APALM

In this section we prove the completeness of GALM and APALM. First, we show
completeness with respect to pseudo-models, via an innovative modification of the
standard canonical model construction. This is based on a method previously used
in Chapters 3, that makes an essential use of the finitary � and [G]-introduction
rules, by requiring our canonical theories T to be (not only maximally consistent,
but also) “witnessed”. Roughly speaking, a theory T is witnessed if: every �ϕ
occurring in every “existential context” in T is witnessed by some atomic formula
p, meaning that 〈p〉ϕ occurs in the same existential context in T , and if for every
〈G〉ϕ occurring in every “existential context” in T is witnessed by some formula
∧i∈GKipi, meaning that 〈∧i∈GKipi〉ϕ occurs in the same existential context in
T . Our canonical pre-model will consist of all initial, maximally consistent, wit-
nessed theories (where a theory is “initial” if it contains the formula 0). A Truth
Lemma is proved, as usual. Completeness for both pseudo-models and a-models
follows from the observation that our canonical pre-model is standard, hence it is
a standard pseudo-model, and thus equivalent to a genuine a-model.

We now proceed with the details. As in Chapter 3, the appropriate notion of
“existential context” is represented by possibility forms, in the following sense.

4.6.1. Definition. [Necessity forms and Possibility forms] For any finite string
s ∈ ({•0} ∪ {ϕ→ | ϕ ∈ LG} ∪ {Ki : i ∈ A} ∪ {U} ∪ {ρ | ρ ∈ L−�})∗ = NFLG ,
we define pseudo-modalities [s] and 〈s〉. These pseudo-modalities are functions
mapping any formula ϕ ∈ LG to another formula [s]ϕ ∈ LG (necessity form),
respectively 〈s〉ϕ ∈ LG (possibility form). The necessity forms are defined recur-
sively as [ε]ϕ = ϕ, [s, •0]ϕ = [s]ϕ0, [s, ϕ→]ϕ = [s](ϕ → ϕ), [s,Ki]ϕ = [s]Kiϕ,
[s, U ]ϕ = [s]Uϕ, [s, ρ]ϕ = [s][ρ]ϕ, where ε is the empty string. For possibility
forms, we set 〈s〉ϕ := ¬[s]¬ϕ.

Example: [Ki, •0,�p→, 0, U ] is a necessity form such that [Ki, •0,�p→, 0, U ]ϕ =
Ki(�p→ [0]Uϕ)0.
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4.6.2. Definition. [Theories: witnessed, initial, maximal] Let LPG be the lan-
guage of GALM based only on some countable set P of propositional variables. Sim-
ilarly, let NF P

LG denote the corresponding set of strings defined based on LPG
(necessity and possibility forms are as given in Definition 4.6.1).

• A P -theory is a consistent set of formulas in LPG (where “consistent” means
consistent with respect to the axiomatization of GALM formulated for
LPG).

• A maximal P -theory is a P -theory Γ that is maximal with respect to ⊆
among all P -theories; in other words, Γ cannot be extended to another
P -theory.

• A P -witnessed theory is a P -theory Γ such that, for every s ∈ NF P
LG and

ϕ ∈ LPG, (1) if 〈s〉�ϕ is consistent with Γ then there is p ∈ P such that
〈s〉〈p〉ϕ is consistent with Γ (or equivalently: if Γ ` [s][p]¬ϕ for all p ∈ P ,
then Γ ` [s]�¬ϕ), and (2) for every G ⊆ AG, if 〈s〉〈G〉ϕ is consistent with
Γ then there is {pi : i ∈ G} ⊆ P such that 〈s〉〈∧i∈GKipi〉ϕ is consistent with
Γ (or equivalently: if Γ ` [s][∧i∈GKipi]¬ϕ for all pi ∈ P , then Γ ` [s][G]¬ϕ).

• A P -theory Γ is called initial if 0 ∈ Γ.

• A maximal P -witnessed theory Γ is a P -witnessed theory that is not a proper
subset of any P -witnessed theory. A maximal P -witnessed initial theory Γ
is a maximal P -witnessed theory such that 0 ∈ Γ.

4.6.3. Lemma. For every necessity form [s], there exist formulas θ ∈ L−� and
ψ ∈ LG, with Pψ ∪ Pθ ⊆ Ps, such that for all ϕ ∈ LG, we have

` [s]ϕ iff ` ψ → [θ]ϕ.

Proof:
We proceed by induction on the structure of necessity forms. For s := ε, take
ψ := > and θ := >, then it follows from the axiom R[>]. For the inductive cases
we will verify only s := s′, •0; s := s′, η →; s := s′, U ; and s := s′, ρ. The case
s := s′, Ki is analogous to the case s := s′, U .

Case s := s′, •0

` [s′, •0]ϕ iff ` [s′]ϕ0 (by Definition 4.6.1) iff ` ψ′ → [θ′]ϕ0 (for some
ψ′ ∈ LG and θ′ ∈ L−�, by IH) iff ` ψ′ → (θ′ → ϕ0) (by R0) iff `
(ψ′ ∧ θ′)→ ϕ0 iff ` (0 ∧3(ψ′ ∧ θ′))→ ϕ (by (13.) in Proposition 4.3.14)
iff ` ψ → [θ]ϕ (since ψ := 0 ∧3(ψ′ ∧ θ′) ∈ LG and θ := > ∈ L−�).
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Case s := s′, η →

` [s′, η →]ϕ iff ` [s′](η → ϕ) (by Definition 4.6.1) iff ` ψ′ → [θ′](η → ϕ)
(for some ψ′ ∈ LG and θ′ ∈ L−�, by IH) iff ` ψ′ → ([θ′]η → [θ′]ϕ) (by K!)
iff ` (ψ′ ∧ [θ′]η) → [θ′]ϕ iff ` ψ → [θ]ϕ (since ψ := ψ′ ∧ [θ′]η ∈ LG and
θ := θ′ ∈ L−�).

Case s := s′, U

` [s′, U ]ϕ iff ` [s′]Uϕ (by Definition 4.6.1) iff ` ψ′ → [θ′]Uϕ (for some
ψ′ ∈ LG and θ′ ∈ L−�, by IH) iff ` ψ′ → (θ′ → U [θ′]ϕ) (by RU) iff `
(ψ′ ∧ θ′) → U [θ′]ϕ iff ` E(ψ′ ∧ θ′) → [θ′]ϕ (pushing U back with its dual
E, since U is an S5 modality) iff ` ψ → [θ]ϕ (ψ := E(ψ′ ∧ θ′) ∈ LG and
θ := θ′ ∈ L−�).

Case s := s′, ρ

` [s′, ρ]ϕ iff ` [s′][ρ]ϕ (by Definition 4.6.1) iff ` ψ′ → [θ′][ρ]ϕ (for some
ψ′ ∈ LG and θ′ ∈ L−�, by IH) iff ` ψ′ → [〈θ′〉ρ]ϕ (by R[!]) iff ` ψ → [θ]ϕ
(ψ := ψ′ ∈ LG and θ := 〈θ′〉ρ ∈ L−�)

In each case, it is easy to see that Pψ ∪ Pθ ⊆ Ps. 2

4.6.4. Lemma. The following rules are admissible in GALM (the first one also
in APALM):

1. from ` [s][p]ϕ, infer ` [s]�ϕ, where p 6∈ Ps ∪ Pϕ,

2. from ` [s][
∧
i∈GKipi]ϕ, infer ` [s][G]ϕ, where pi 6∈ Ps ∪ Pϕ.

Proof:
For (1), suppose ` [s][p]ϕ. Then, by Lemma 4.6.3, there exist θ ∈ L−� and ψ ∈ LG
such that ` ψ → [θ][p]ϕ. By the auxiliary reduction principle (15.) in Proposition
4.3.14, we get ` ψ → [θ ∧ p]ϕ. By the construction of the formulas ψ and θ, we
know that Pψ ∪ Pθ ⊆ Ps, and so p 6∈ Pψ ∪ Pθ ∪ Pϕ. Therefore, by ([!]�-intro),
we have ` ψ → [θ]�ϕ. Applying again Lemma 4.6.3, we obtain ` [s]�ϕ. The
proof of (2) goes similarly given that (?) [θ][

∧
i∈GKipi]ϕ ↔ [θ ∧

∧
i∈GK

θ
i pi]ϕ is

derivable in GALM (by using the appropriate reduction axioms and RE). Let
s ∈ NF P

LG such that ` [s][
∧
i∈GKipi]ϕ where pi 6∈ Ps∪Pϕ. Then, by Lemma 4.6.3,

we obtain that ` χ → [θ][
∧
i∈GKipi]ϕ. Therefore, by (?), we have that ` χ →

[θ ∧
∧
i∈GK

θ
i pi]ϕ. By the [!][G]-intro rule we then obtain ` χ → [θ][G]ϕ. Again

by Lemma 4.6.3, we get ` [s][G]ϕ. 2

4.6.5. Lemma. For every maximal P -witnessed theory Γ, and every formula
ϕ, ψ ∈ LPG,
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1. Γ ` ϕ iff ϕ ∈ Γ

2. ϕ 6∈ Γ iff ¬ϕ ∈ Γ,

3. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ,

4. ϕ ∈ Γ and ϕ → ψ ∈ Γ implies
ψ ∈ Γ.

5. GALMP ⊆ Γ, where GALMP is
GALM formulated for LPG.

Proof:
The proof is standard. We prove only (5): suppose GALMP 6⊆ Γ. This means
that there is a sentence ψ ∈ LPG such that ψ ∈ GALMP but ψ 6∈ Γ. The former
means that ` ψ, thus, Γ ` ψ. Items (2) and (1) implies that if ψ 6∈ Γ then Γ ` ¬ψ,
contradicting consistency of Γ. 2

4.6.6. Lemma. For every Γ ⊆ LPG, if Γ is a P -theory and Γ 6` ¬ϕ for some
ϕ ∈ LPG, then Γ∪ {ϕ} is a P -theory. Moreover, if Γ is P -witnessed, then Γ∪ {ϕ}
is also P -witnessed.

Proof:
The proof of the first claim is standard. We only prove the second claim. Suppose
that Γ is P -witnessed but Γ∪{ϕ} is not P -witnessed. By the previous statement,
we know that Γ ∪ {ϕ} is consistent. Since Γ ∪ {ϕ} is not P -witnessed, it violates
either (1) or (2) in Definition 4.6.2. First suppose Γ ∪ {ϕ} does not satisfy (1),
that is, there is s ∈ NF P

LG and ψ ∈ LPG such that Γ∪{ϕ} is consistent with 〈s〉�ψ
but Γ ∪ {ϕ} ` ¬〈s〉〈p〉ψ for all p ∈ P . This implies that Γ ∪ {ϕ} ` [s][p]¬ψ for
all p ∈ P . Therefore, Γ ` ϕ→ [s][p]¬ψ for all p ∈ P . Note that ϕ→ [s][p]¬ψ :=
[ϕ →, s][p]¬ψ, and [ϕ→, s] ∈ NF P

LG . We thus have Γ ` [ϕ →, s][p]¬ψ for all
p ∈ P . Since Γ is P -witnessed, we obtain Γ ` [ϕ →, s]�¬ψ. By unraveling the
necessity form [ϕ→, s], we get Γ ` ϕ → [s]�¬ψ, thus, Γ ∪ {ϕ} ` [s]�¬ψ, i.e.,
Γ ∪ {ϕ} ` ¬〈s〉�ψ, contradicting the assumption that Γ ∪ {ϕ} is consistent with
〈s〉�ψ.

Now suppose Γ∪{ϕ} does not satisfy (2). This means that there is s ∈ NF P
LG

and ψ ∈ LPG such that for some group G ⊆ A, the set Γ ∪ {ϕ} is consistent with
〈s〉〈G〉ψ but Γ ∪ {ϕ} ` ¬〈s〉〈

∧
i∈GKipi〉ψ for all {pi : i ∈ G} ⊆ P . This

implies that Γ ∪ {ϕ} ` [s][
∧
i∈GKipi]¬ψ for all {pi : i ∈ G} ⊆ P . There-

fore, Γ ` ϕ → [s][
∧
i∈GKipi]¬ψ for all {pi : i ∈ G} ⊆ P . Note that ϕ →

[s][
∧
i∈GKipi]¬ψ := [ϕ→, s][

∧
i∈GKipi]¬ψ, and [ϕ→, s] ∈ NF P

LG . We thus have
Γ ` [ϕ →, s][

∧
i∈GKipi]¬ψ for all {pi : i ∈ G} ⊆ P . Since Γ is P -witnessed,

we obtain Γ ` [ϕ →, s][G]¬ψ. By unraveling the necessity form [ϕ→, s], we get
Γ ` ϕ → [s][G]¬ψ, thus, Γ ∪ {ϕ} ` [s][G]¬ψ, i.e., Γ ∪ {ϕ} ` ¬〈s〉〈G〉ψ, contra-
dicting the assumption that Γ ∪ {ϕ} is consistent with 〈s〉〈G〉ψ. All together we
obtain that Γ ∪ {ϕ} is P -witnessed. 2

4.6.7. Lemma. If {Γi}i∈N is an increasing chain of P -theories such that Γi ⊆
Γi+1, then

⋃
n∈N Γn is a P -theory.
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Proof:
Let {Γi}i∈N be an increasing chain of P -theories with Γi ⊆ Γi+1 and suppose, to-
ward contradiction, that

⋃
n∈N Γn is not a P -theory, i.e., suppose that

⋃
n∈N Γn `

⊥. This means that there exists a finite ∆ ⊆
⋃
n∈N Γn such that ∆ ` ⊥. Then,

since
⋃
n∈N Γn is a union of an increasing chain of P -theories, there is some m ∈ N

such that ∆ ⊆ Γm. Therefore, Γm ` ⊥ contradicting the fact that Γm is a P -
theory. Hence,

⋃
n∈N Γn is a P -theory. 2

4.6.8. Lemma. For every maximal P -witnessed theory T , both {θ ∈ LPG : Kiθ ∈
T} and {θ ∈ LPG : Uθ ∈ T} are P -witnessed theories.

Proof:
Observe that, by axiom (TKi), {θ ∈ LPG : Kiθ ∈ T} ⊆ T . Therefore, as T is
consistent, the set {θ ∈ LPG : Kiθ ∈ T} is consistent. Let s ∈ NF P

LG , ψ ∈ LPG,
and G ⊆ AG such that {θ ∈ LPG : Kiθ ∈ T} ` [s][p]¬ϕ for all p ∈ P and {θ ∈
LPG : Kiθ ∈ T} ` [s][

∧
i∈GKipi]¬ψ for all {pi : i ∈ G} ⊆ P . By normality of Ki,

T ` Ki[s][p]¬ϕ for all p ∈ P and T ` Ki[s][
∧
i∈GKipi]¬ψ for all {pi : i ∈ G} ⊆ P

. Since Ki[s][p]¬ϕ := [Ki, s][p]¬ϕ and Ki[s][
∧
i∈GKipi]¬ψ := [Ki, s][

∧
i∈GKipi]¬ψ

are necessity forms and T is P -witnessed, we obtain T ` [Ki, s]�¬ϕ and T `
[Ki, s][G]¬ϕ , i.e., T ` Ki[s]�¬ϕ and T ` Ki[s][G]¬ϕ. As T is maximal, we
have Ki[s]�¬ϕ ∈ T and Ki[s][G]¬ϕ ∈ T , thus [s]�¬ϕ ∈ {θ | Kiθ ∈ T} and
[s][G]¬ϕ ∈ {θ | Kiθ ∈ T}. The proof for {θ ∈ LPG : Uθ ∈ T} follows similarly. 2

4.6.9. Lemma (Lindenbaum’s Lemma). Every P -witnessed theory Γ can be
extended to a maximal P -witnessed theory TΓ.

Proof:
The proof proceeds by constructing an increasing chain Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γn ⊆ . . .
of P -witnessed theories, where Γ0 := Γ, and each Γi is recursively defined. Since
we have to guarantee that each Γi is P -witnessed, we follow a two-fold construc-
tion, where Γ0 = Γ+

0 := Γ. Let γ0, γ1, . . . , γn, . . . be an enumeration of all pairs of
the form γi = (si, ϕi) consisting of any necessity form si ∈ NF P

LG and any formula
ϕi ∈ LPG. Let (sn, ϕn) be the nth pair in the enumeration. We then set

Γ+
n =

{
Γn ∪ {〈sn〉ϕn} if Γn 0 ¬ 〈sn〉ϕn,
Γn otherwise.

Note that the empty string ε is in NF P
LG , and for every ψ ∈ LPG we have 〈ε〉ψ := ψ

by the definition of possibility forms. Therefore, the above enumeration of pairs
includes every formula ψ of LPG in the form of its corresponding pair (ε, ψ). By
Lemma 4.6.6, each Γ+

n is P -witnessed. Then, if ϕn is of the form ϕn := �θ for some
θ ∈ LPG, there exists a p ∈ P such that Γ+

n is consistent with 〈sn〉〈p〉θ (since Γ+
n
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is P-witnessed). Similarly, if ϕn is of the form ϕn := 〈G〉θ for some θ ∈ LPG, there
exists {pi : i ∈ G} ⊆ P such that Γ+

n is consistent with 〈sn〉〈
∧
i∈GKipi〉θ. We

then define

Γn+1 =



Γ+
n if Γn 0 ¬〈sn〉ϕn and

ϕn is not of the form �θ or 〈G〉θ,
Γ+
n ∪ {〈sn〉〈p〉θ} if Γn 0 ¬〈sn〉ϕn and

ϕn := �θ for some θ ∈ LPG,
Γ+
n ∪ {〈sn〉〈

∧
i∈GKipi〉θ} if Γn 0 ¬〈sn〉ϕn and

ϕn := 〈G〉θ for some θ ∈ LPG,
Γn otherwise,

where p ∈ P , {pi : i ∈ G} ⊆ P such that Γ+
n is consistent with 〈sn〉〈p〉θ or consis-

tent with 〈sn〉〈
∧
i∈GKipi〉θ, respectively. Again by Lemma 4.6.6, it is guaranteed

that each Γn is P -witnessed. Now consider the union TΓ =
⋃
n∈N Γn. By Lemma

4.6.7, we know that TΓ is a P -theory. To show that TΓ is P -witnessed, first let
s ∈ NF P

LG and ψ ∈ LPG and suppose 〈s〉�ψ is consistent with TΓ. The pair (s,�ψ)
appears in the above enumeration of all pairs, thus (s,�ψ) := (sm, ϕm) for some
m ∈ N. Hence, 〈s〉�ψ := 〈sm〉ϕm. Then, since 〈s〉�ψ is consistent with TΓ and
Γm ⊆ TΓ, we know that 〈s〉�ψ is in particular consistent with Γm. Therefore, by
the above construction, 〈s〉〈p〉ψ ∈ Γm+1 for some p ∈ P such that Γ+

m is consistent
with 〈s〉〈p〉ψ. Thus, as TΓ is consistent and Γm+1 ⊆ TΓ, we have that 〈s〉〈p〉ψ is
also consistent with TΓ. Now, let us check the witnessing condition for 〈G〉. Let
G ∈ A, s ∈ NF P

LG and ψ ∈ LPG and suppose 〈s〉〈G〉ψ is consistent with TΓ. The
pair (s, 〈G〉ψ) appears in the above enumeration of all pairs, thus (s, 〈G〉ψ) :=
(sm, ϕm) for some m ∈ N. Hence, 〈s〉〈G〉ψ := 〈sm〉ϕm. Then, since 〈s〉〈G〉ψ is
consistent with TΓ and Γm ⊆ TΓ, we know that 〈s〉〈G〉ψ is in particular consis-
tent with Γm. Therefore, by the above construction, 〈s〉〈

∧
i∈GKipi〉ψ ∈ Γm+1 for

some {pi : i ∈ G} ⊆ P such that Γ+
m is consistent with 〈s〉〈

∧
i∈GKipi〉ψ. Thus, as

TΓ is consistent and Γm+1 ⊆ TΓ, we have that 〈s〉〈
∧
i∈GKipi〉ψ is also consistent

with TΓ. Hence, we conclude that TΓ is P -witnessed. Finally, TΓ is also maxi-
mal by construction: otherwise there would be a P -witness theory T such that
TΓ ( T . This implies that there exists ϕ ∈ LPG with ϕ ∈ T but ϕ 6∈ TΓ. Then, by
the construction of TΓ, we obtain Γi ` ¬ϕ for all i ∈ N. Therefore, since TΓ ⊆ T ,
we have T ` ¬ϕ. Hence, since ϕ ∈ T , we conclude T ` ⊥ (contradicting T being
consistent). 2

4.6.10. Lemma (Extension Lemma). Let P be a countable set of propositional
variables and P ′ be a countable set of fresh propositional variables, i.e., P ∩P ′ =
∅. Let

∼
P = P ∪ P ′. Then, every initial P -theory Γ can be extended to an initial

∼
P -witnessed theory

∼
Γ ⊇ Γ, and hence to a maximal

∼
P -witnessed initial theory

TΓ ⊇ Γ.
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Proof:
Let γ0, γ1, . . . , γn, . . . an enumeration of all pairs of the form (sn, ϕn) consisting

of any sn ∈ NF
∼
P
LG , and every formula ϕn ∈ L

∼
P
G of the form ϕn := �ψ or ϕn :=

〈G〉ψ with ψ ∈ L
∼
P
G . We will recursively construct a chain of initial

∼
P -theories

Γ0 ⊆ . . . ⊆ Γn ⊆ . . . such that

1. Γ0 = Γ,

2. P ′n := {p ∈ P ′ : p occurs in Γn} is finite for every n ∈ N (we will see why
this is finite later on the proof), and

3. for every γn := (sn, ϕn) with sn ∈ NF
∼
P
LG and ϕn ∈ L

∼
P
G, if Γn 0 ¬〈sn〉�ψ

where ϕn := �ψ then there is pm “fresh” such that 〈sn〉〈pm〉ψ ∈ Γn+1, and,
if Γn 0 ¬〈sn〉〈G〉ψ where ϕn := 〈G〉ψ for some G ⊆ A then there is {pmi :
i ∈ G} where pmi is “fresh” for every i ∈ G such that 〈sn〉〈

∧
i∈GKipmi〉ψ ∈

Γn+1. Otherwise we will define Γn+1 = Γn.

For every γn, let P ′(n) := {p ∈ P ′ | p occurs either in sn or ϕn}. Clearly every

P ′(n) is always finite. We now construct an increasing chain of initial
∼
P -theories

recursively. We set Γ0 := Γ, and let

Γn+1 =


Γn ∪ {〈sn〉〈pm〉ψ} if Γn 0 ¬〈sn〉�ψ and ϕn := �ψ,
Γn ∪ {〈sn〉〈

∧
i∈GKipmi〉ψ} if Γn 0 ¬〈sn〉〈G〉ψ and ϕn := 〈G〉ψ,

Γn otherwise,

where m, mi are, in each case, the least natural number greater than the in-
dices in P ′n ∪ P ′(n), i.e., pm, pmi for all i ∈ G are fresh in each case. To see
that P ′n ∪ P ′(n) is finite for every n ∈ N, we just need to check that P ′n is
finite. First note that since Γ := Γ0 is a P -theory, no propositional variables
in P′ occur in Γ0. For each pair γi := (si, ϕi) with i ∈ {0, . . . , n − 1} the set
P ′(n) is finite. At each step n of the construction, we can only add finitely
many fresh variables to Γn. Thus, finitely many propositional variables in P ′

occur in Γn and so P ′n is finite. We now show that
∼
Γ :=

⋃
n∈N Γn is an ini-

tial
∼
P -witnessed theory. First show that

∼
Γ is a

∼
P -theory. By Lemma 4.6.7, it

suffices to show by induction that every Γn is a
∼
P -theory. Clearly Γ0 is a

∼
P -

theory. For the inductive step suppose Γn is consistent but Γn+1 is not. Hence,
Γn 6= Γn+1 and moreover Γn+1 ` ⊥. Then, Γn+1 = Γn ∪ {〈sn〉〈pm〉ψ} (when
ϕn := �ψ) or Γn+1 = Γn ∪ {〈sn〉〈

∧
i∈GKipmi〉ψ} (when ϕn := 〈G〉ψ). Here

we will only check the latter case since the former case is analogous. Since
Γn+1 = Γn ∪ {〈sn〉〈

∧
i∈GKipmi〉ψ} we have Γn ` [sn][

∧
i∈GKipmi ]¬ψ. Therefore

there exists {θ1, . . . , θk} ⊆ Γn such that {θ1, . . . , θk} ` [sn][
∧
i∈GKipmi ]¬ψ. Let

θ =
∧

1≤i≤k θi. Then ` θ → [sn][
∧
i∈GKipmi ]¬ψ, so ` [θ→, sn][

∧
i∈GKipmi ]¬ψ

with pmi /∈ Pθ ∪ Psn ∪ Pϕn for every i ∈ G. Thus, by the admissible rule (2.) in
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Lemma 4.6.4, we obtain ` [θ→, sn][G]¬ψ, i.e., ` θ → [sn][G]¬ψ. Therefore, θ `
¬〈sn〉〈G〉ψ. Since {θ1, . . . , θk} ⊆ Γn, we therefore have Γn ` ¬〈sn〉〈G〉ψ. But, this
would mean Γn = Γn+1, contradicting our assumption (that Γn+1 6= Γn). There-

fore Γn+1 is consistent and thus a
∼
P -theory. Hence, by Lemma 4.6.7,

∼
Γ is a

∼
P -theory. Condition (3) above implies that

∼
Γ is also

∼
P -witnessed. Then, by Lin-

denbaum’s Lemma (Lemma 4.6.9), there is a maximal
∼
P -witnessed theory TΓ

such that TΓ ⊇
∼
Γ ⊇ Γ. Moreover, since 0 ∈ Γ ⊆

∼
Γ ⊆ TΓ, the set TΓ is in fact a

maximal
∼
P -witnessed initial theory. 2

We are now ready to define our canonical pseudo-model. We first define, for
all maximal P -witnessed theories T, S and for every i ∈ AG:

T ∼U S iff ∀ϕ ∈ LPG (Uϕ ∈ T implies ϕ ∈ S) , and

T ∼i S iff ∀ϕ ∈ LPG (Kiϕ ∈ T implies ϕ ∈ S) .

4.6.11. Lemma. For every i ∈ AG, ∼i ⊆ ∼U .

Proof:
Let i ∈ AG, let T and S be maximal P -witnessed theories such that T ∼i S.
Towards contradiction, suppose that T ∼U S is not the case. From the former
we have that ∀ϕ ∈ LPG (Kiϕ ∈ T implies ϕ ∈ S). From the latter, we have that
there is ψ ∈ LPG such that Uψ ∈ T and ψ 6∈ S. Since ` Uψ → Kiψ and T is a
maximal P -witnessed theory, Uψ → Kiψ ∈ T . Therefore Kiψ ∈ T and ψ 6∈ S,
contradicting that T ∼i S. 2

4.6.12. Definition. [Canonical Pre-Model] Given a maximal P -witnessed ini-
tial theory T0, the canonical pre-model for T0 is a tupleMc = (W c,Ac,∼c1, . . . ,∼cn
, ‖ · ‖c) such that:

• W c = {T : T is a maximal P -witnessed theory such that T0 ∼U T},

• Ac = {θ̂ : θ ∈ LP−�} where ϕ̂ = {T ∈ W c : ϕ ∈ T} for any ϕ ∈ LPG,

• for every i ∈ AG we define:

∼ci = ∼i ∩ (W c ×W c).

• ‖p‖c = {T ∈ W c : p ∈ T} = p̂.

As usual, it is easy to see (given the S5 axioms for Ki and for U) that ∼U and
∼ci are equivalence relations.

To prove that the canonical pre-model is indeed a pseudo-model, we first need
to prove the truth lemma. For that we need the following lemmas.
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4.6.13. Lemma (Existence Lemma for ∼U). Let T be a maximal P -witnessed
theory, α ∈ LP−�, and ϕ ∈ LPG such that α ∈ T and U [α]ϕ 6∈ T . Then, there is a
maximal P -witnessed theory S such that T ∼U S, α ∈ S and [α]ϕ 6∈ S.

Proof:
Let α ∈ LP−� and ϕ ∈ LPG such that α ∈ T and U [α]ϕ 6∈ T . The latter implies
that {ψ ∈ LPG : Uψ ∈ T} 6` [α]ϕ, hence, {ψ ∈ LPG : Uψ ∈ T} 6` ¬¬[α]ϕ. Then,
by Lemmas 4.6.6 and 4.6.8, we obtain that {ψ ∈ LPG : Uψ ∈ T} ∪ {¬[α]ϕ} is a
P -witnessed theory. Note that ` ¬[α]ϕ ↔ (α ∧ [α]¬ϕ) (see (3.) in Proposition
4.3.14). We therefore obtain that {ψ ∈ LPG : Uψ ∈ T} ∪ {¬[α]ϕ} ` α, thus,
{ψ ∈ LPG : Uψ ∈ T} ∪ {¬[α]ϕ} 6` ¬α (since {ψ ∈ LPG : Uψ ∈ T} ∪ {¬[α]ϕ} is
consistent). Therefore, by Lemma 4.6.6, {ψ ∈ LPG : Uψ ∈ T} ∪ {¬[α]ϕ} ∪ {α}
is also a P -witnessed theory. We can then apply Lindenbaum’s Lemma (Lemma
4.6.9) and extend it to a maximal P -witnessed theory S such that S ∼U T , α ∈ S,
and [α]ϕ 6∈ S. 2

4.6.14. Corollary. For ϕ ∈ LG, we have Ûϕ = W c if ϕ̂ = W c, and Ûϕ = ∅
otherwise.

Proof:
If ϕ̂ = W c, suppose Ûϕ 6= W c. The latter means that there is a T ∈ W c such
that Uϕ 6∈ T . Then, by Lemma 4.6.13 (when α := >), there is a maximal P -
witnessed theory S such that T ∼U S and ϕ 6∈ S. Since T0 ∼U T ∼U S and ∼U
is transitive, we have T0 ∼U S, thus, S ∈ W c. Therefore, ϕ̂ 6= W c, contradicting
the initial assumption. If ϕ̂ 6= W c, then there is a T ∈ W c such that ϕ 6∈ T . Since
T ∼U S for all S ∈ W c, we obtain by the definition of ∼U that Uϕ 6∈ S for all
S ∈ W c. Therefore, Ûϕ = ∅. 2

4.6.15. Lemma (Existence Lemma for ∼i). Let T be a maximal P -witnessed
theory, let α ∈ LP−�, and ϕ ∈ LPG be such that α ∈ T and Ki[α]ϕ 6∈ T . Then, there
is a maximal P -witnessed theory S such that T ∼i S, α ∈ S and [α]ϕ 6∈ S.

Proof:
Let α ∈ LP−� and ϕ ∈ LPG such that α ∈ T and Ki[α]ϕ 6∈ T . The latter implies
that {ψ ∈ LPG : Kiψ ∈ T} 6` [α]ϕ, hence, {ψ ∈ LPG : Kiψ ∈ T} 6` ¬¬[α]ϕ. Then,
by Lemmas 4.6.6 and 4.6.8, we obtain that {ψ ∈ LPG : Kiψ ∈ T} ∪ {¬[α]ϕ} is a
P -witnessed theory. Note that ` ¬[α]ϕ ↔ (α ∧ [α]¬ϕ) (see (3.) in Proposition
4.3.14). We therefore obtain that {ψ ∈ LPG : Kiψ ∈ T} ∪ {¬[α]ϕ} ` α, thus,
{ψ ∈ LPG : Kiψ ∈ T} ∪ {¬[α]ϕ} 6` ¬α (since {ψ ∈ LPG : Kiψ ∈ T} ∪ {¬[α]ϕ} is
consistent). Therefore, by Lemma 4.6.6, {ψ ∈ LPG : Kiψ ∈ T} ∪ {¬[α]ϕ} ∪ {α}
is also a P -witnessed theory. We can then apply Lindenbaum’s Lemma (Lemma
4.6.9) and extend it to a maximal P -witnessed theory S such that S ∼i T , α ∈ S,
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and [α]ϕ 6∈ S. 2

4.6.16. Corollary. Let T0 be a maximal P -witnessed theory andMc = (W c,Ac,
∼c1, . . . ,∼cn, ‖ · ‖c) be the canonical pre-model for T0. For all T ∈ Mc, α ∈ LP−�
and ϕ ∈ LPG, if α ∈ T and Ki[α]ϕ 6∈ T then there is a maximal P -witnessed theory
S ∈ W c such that T ∼ci S, α ∈ S and [α]ϕ 6∈ S.

Proof:
Let T ∈ Mc, let α ∈ LP−� and ϕ ∈ LPG be such that α ∈ T and Ki[α]ϕ 6∈ T . By
Lemma 4.6.15, there is a maximal P -witnessed theory S such that T ∼i S, α ∈ S
and [α]ϕ 6∈ S. By Lemma 4.6.11, T ∼U S. Since T0 ∼U T , by transitivity of ∼U
we have T0 ∼U S. Therefore S ∈ W c and so T ∼ci S. 2

4.6.17. Lemma. Every element T ∈ W c is an initial theory (i.e. 0 ∈ T ).

Proof:
Let T ∈ W c. By the construction of W c, we have T0 ∼U T . Since 0 → U0 is an
axiom and T0 is maximal, (0→ U0) ∈ T0. Thus, since 0 ∈ T0, we obtain U0 ∈ T0

(by (4.) in Lemma 4.6.5). Therefore, by the definition of ∼U and since T0 ∼U T ,
we have that 0 ∈ T . 2

4.6.18. Corollary. For all ϕ ∈ LPG, we have ϕ̂ = ϕ̂0.

Proof:
Since 0 ∈ T for all T ∈ W c, we obtain by axiom (0-eq) that ϕ ↔ ϕ0 ∈ T for all

T ∈ W c. Therefore, ϕ̂ = ϕ̂0. 2

4.6.19. Lemma (Truth Lemma). Let Mc = (W c,Ac,∼c1, . . . ,∼cn, V c) be the
canonical pre-model for some T0 (in LPG) and ϕ ∈ LPG. Then, for all α ∈ LP−� we

have [[ϕ]]α̂ = 〈̂α〉ϕ.

Proof:
The proof is by ≺2-induction on ϕ, using the following induction hypothesis (IH):

for all ψ ∈ LPG such that ψ ≺2 ϕ, we have [[ψ]]α̂ = 〈α〉ψ
∧

for all α ∈ LP−�. The
cases for the Boolean connectives are straightforward. The cases for Ki and U
are standard, using ` 〈α〉Kiψ ↔ α ∧ Ki[α]ψ and Corollary 4.6.16 for Ki, and
` 〈α〉Uψ ↔ α ∧ U [α]ψ and Lemma 4.6.13 for U .

Base case ϕ := >. Then [[>]]α̂ = α̂ = 〈α〉>
∧

, by Definition 4.5.2 and the fact
that ` α↔ 〈α〉>.
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Base case ϕ := p. Then [[p]]α̂ = ‖p‖c∩ α̂ = p̂∩ α̂ = p ∧ α
∧

= 〈α〉p
∧

, by Definition
4.5.2, the defn. of ‖ · ‖c, Rp, and (3.) in Proposition 4.3.14.

Base case ϕ := 0. Then [[0]]α̂ = W c if α̂ = W c, and [[0]]α̂ = ∅ otherwise. Also,

〈α〉0
∧

= 0 ∧ Uα
∧

(by (2.) in Propositions 4.3.14) = {T ∈ W c : 0 ∧ Uα ∈ T} =

{T ∈ W c : Uα ∈ T} = Uα
∧

(by Lemma 4.6.17). By Corollary 4.6.14, Uα
∧

= W c if

α̂ = W c, and Uα
∧

= ∅ otherwise. So [[0]]α̂ = 〈α〉0
∧

.

Case ϕ := ψ0. Follows easily from >̂ = W c and R[>], Corollary 4.6.18, and
R0.

Case ϕ := 〈χ〉ψ. Straightforward, using the fact that ` 〈α〉〈χ〉ψ ↔ 〈〈α〉χ〉ψ
(by R[!])

Case ϕ := �ψ.

(⇒) Suppose T ∈ [[�ψ]]α̂. This means, by Definition 4.5.2, that α ∈ T and
there exists B ∈ Ac such that T ∈ B ⊆ α̂ and T ∈ [[ψ]]B (see Observation 3.1). By

the construction of Ac, we know that B = θ̂ for some θ ∈ LP−�. Therefore, T ∈
[[ψ]]B means that T ∈ [[ψ]]θ̂. Moreover, since θ̂ ⊆ α̂ and, thus, θ̂ = α̂ ∩ θ̂ = α ∧ θ

∧
,

we obtain T ∈ [[ψ]]
α ∧ θ
∧. By (1.) in Lemma A.2.5, we have ψ ≺2 �ψ. Therefore,

by IH, we obtain T ∈ 〈α ∧ θ〉ψ
∧

. Then, by axiom ([!]�-elim) and the fact that T

is maximal, we conclude that T ∈ 〈α〉�ψ
∧

.

(⇐) Suppose T ∈ 〈α〉�ψ
∧

, i.e., 〈α〉�ψ ∈ T . Then, since T is a maximal P -
witnessed theory, there is p ∈ P such that 〈α〉〈p〉ψ ∈ T . By (9.) in Lemma A.2.5,
we know that 〈p〉ψ ≺2 �ψ. Thus, by IH on 〈p〉ψ, we obtain that T ∈ [[〈p〉ψ]]α̂. This
means, by Definition 4.5.2 and Observation 3.3, that T ∈ [[ψ]][[p]]α̂ ⊆ [[p]]α̂. Since

p ≺2 �ψ, by IH on p, we obtain that [[p]]α̂ = 〈α〉p
∧

⊆ α̂. By the construction of

Ac, we moreover have 〈α〉p
∧

∈ Ac. Therefore, as T ∈ [[ψ]]
〈α〉p
∧ and 〈α〉p

∧

⊆ α̂, by

Definition 4.5.2, we conclude that T ∈ [[�ψ]]α̂.

Case ϕ := 〈G〉ψ.

(⇒) Suppose T ∈ [[〈G〉ψ]]α̂. This means by Definition 4.5.2 that T ∈ α̂ and
there exists {Bi : i ∈ G} ⊆ Ac such that T ∈ [[ψ]]α̂∩⋂i∈GKα̂

i Bi
. By the construction

of Ac we know that for all i ∈ G, Bi = θ̂i for some θi ∈ LP−�. Therefore T ∈
[[ψ]]α̂∩⋂i∈GKα̂

i θ̂i
. It suffices to show that: α̂∩

⋂
i∈GK

α̂
i θ̂i = α ∧

∧
i∈GK

α
i θi
∧

. First we

need to show that K α̂
i θ̂i = Kα

i θi
∧

. Note that K α̂
i θ̂i = Ki(α̂ → θ̂i) = Ki(α→ θi

∧
)

and Kα
i θi
∧

= Ki(α→ θi)
∧

.

For (⊆): Let T ∈ K α̂
i θ̂i, then for all S ∼ci T , S ∈ α→ θi

∧
. Therefore T ∈

Ki(α→ θi)
∧

and so T ∈ Kα
i θi
∧

.

For (⊇): Let T ∈ Kα
i θi
∧

, this means that Ki(α→ θi) ∈ T . Thus for all S ∼ci T ,

α→ θi ∈ S. Therefore T ∈ K α̂
i θ̂i. Using this, it is easy to see that α̂∩

⋂
i∈GK

α̂
i θ̂i =

α ∧
∧
i∈GK

α
i θi
∧

. We then obtain that T ∈ [[ψ]]
α ∧

∧
i∈GK

α
i θi
∧. Since ψ ≺2 〈G〉ψ,
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by IH we have that T ∈ 〈α ∧
∧
i∈GK

α
i θi〉ψ
∧

. Thus 〈α ∧
∧
i∈GK

α
i θi〉ψ ∈ T . By

([!][G]-elim) we have 〈α〉〈G〉ψ ∈ T .

(⇐) Suppose T ∈ 〈α〉〈G〉ψ
∧

, i.e., 〈α〉〈G〉ψ ∈ T . Since T is a maximal P -
witnessed theory, there is {pi : i ∈ G} ⊆ P such that 〈α〉〈

∧
i∈GKipi〉ψ ∈ T . By

(10.) in Lemma A.2.5, we know that 〈
∧
i∈GKipi〉ψ ≺2 〈G〉ψ. Thus, by IH

on 〈
∧
i∈GKipi〉ψ, we obtain that T ∈ [[〈

∧
i∈GKipi〉ψ]]α̂. This means, by Defi-

nition 4.5.2, that T ∈ [[ψ]][[∧i∈GKipi]]α̂ . By IH on
∧
i∈GKipi, we obtain that

T ∈ [[ψ]]
〈α〉
∧
i∈GKipi
∧. By (3.) in Proposition 4.3.14 and the reduction axioms

(RKi) and (Rp), it is easy to see that the formula 〈α〉
∧
i∈GKipi ↔ α∧

∧
i∈GK

α
i pi

is derivable in GALM. Therefore,

[[ψ]]
〈α〉
∧
i∈GKipi
∧= [[ψ]]

α ∧
∧
i∈GK

α
i pi
∧= [[ψ]]α̂∩⋂i∈GKα̂

i p̂i
.

Thus T ∈ [[ψ]]α̂∩⋂i∈GKα̂
i p̂i

. Since Bi := p̂i ∈ Ac for every i ∈ G, we obtain that

T ∈ [[〈G〉ψ]]α̂. 2

4.6.20. Corollary. The canonical pre-modelMc is standard and hence a pseudo-
model.

Proof:
Ac = {θ̂ : θ ∈ LP−�} = {〈̂>〉θ : θ ∈ LP−�} = {[[θ]]>̂ : θ ∈ LP−�} = {[[θ]]W c : θ ∈
LP−�}. 2

4.6.21. Lemma. For every ϕ ∈ LPG, if ϕ is consistent then {0,�ϕ} is an initial
Pϕ-theory.

Proof:
Let ϕ ∈ LPG s.t. ϕ 6` ⊥. By the Equivalences with 0 in Table 4.1, we have
` ⊥0 ↔ (p ∧ ¬p)0 ↔ (p0 ∧ ¬p0) ↔ (p ∧ ¬p) ↔ ⊥. Therefore, ` ψ → ⊥0

iff ` ψ → ⊥ for all ψ ∈ LPG. Then, by (13.) in Proposition 4.3.14, we obtain
` ϕ→ ⊥ iff ` (0∧�ϕ)→ ⊥. Since ϕ 6` ⊥, we have 0∧�ϕ 6` ⊥, i.e., {0,�ϕ} is a
Pϕ-theory. By definition, it is an initial one. 2

4.6.22. Corollary. GALM is complete with respect to standard pseudo-models.

Proof:
Let ϕ be a consistent formula. By Lemma 4.6.21, {0,�ϕ} is an initial Pϕ-theory. By
Extension and Lindenbaum Lemmas, respectively, we can extend Pϕ to some
P ⊇ Pϕ and extend {0,�ϕ} to some maximal P -witnessed theory T0 such that
(0 ∧ �ϕ) ∈ T0. So T0 is initial and we can construct the canonical pseudo-model
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Mc for T0. Since �ϕ ∈ T0 and T0 is P -witnessed, there exists p ∈ P such that
〈p〉ϕ ∈ T0. By Truth Lemma (applied to α := p), we get T0 ∈ [[ϕ]]p̂. Hence, ϕ is
satisfied at T0 in the set p̂ ∈ Ac. 2

4.6.23. Theorem. APALM is complete with respect to standard pseudo-models.

The completeness proof for APALM with respect to standard pseudo-models
is obtained by following the same steps in the completeness proof of GALM with-
out the parts required for the operator 〈G〉. This involves, for example, defining
the witnessed theories only with respect to � and modifying the auxiliary lemmas
accordingly. The reader can also see (Baltag et al., 2018b) for all the details in
the completeness proof of APALM.

4.6.24. Corollary (Completeness on a-models). GALM and APALM
are complete with respect to a-models.

Proof:
GALM completeness follows immediately from Corollaries 4.6.22 and 4.5.14.
APALM completeness follows from Theorem 4.6.23 and Corollary 4.5.14. 2

4.7 Conclusions and Future Work

The work presented in this chapter solves the open question of finding a strong
variant of APAL and GAL that is recursively axiomatizable. Our system APALM
is inspired by our analysis of Kuijer’s counterexample (Kuijer, 2015), which leads
us to add to APAL a “memory” of the initial situation. We then used similar
methods to obtain a recursive axiomatization for the memory-enhanced variant
GALM of GAL.

The soundness and completeness proofs crucially rely on a Subset Space-like
semantics and on the equivalence between the effort modality and the arbitrary
announcement modality (and on the equivalence between their [G] counterparts),
thus revealing the strong link between these two formalisms.

We just want to note again that the aforementioned issue persists in many
of APAL and GAL variants with infinitary axiomatizations. As far as we know,
there is no complete axiomatization for Coalition Announcement Logic (CAL):
a coalition logic introduced by Pauly (2002) in the style of DEL where the ac-
tions that agents can perform are restricted to public announcements. In fact,
the same affair renders to any logic that contains coalition announcement opera-
tors (Ågotnes and Van Ditmarsch, 2008; Van Ditmarsch, 2012; Ågotnes and van
Ditmarsch, 2014; Ågotnes et al., 2016). The open question of finding a complete
axiomatization for a strong version of CAL was resolved recently in (Galimullin
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and Alechina, 2018). The authors introduce a combination of an extension of
GAL and CAL and present a sound and complete infinitary axiomatization with
two infinitary rules that resemble the infinitary rule in GAL. We believe that
a memory-enhanced variant of the logic in (Galimullin and Alechina, 2018) is
recursively axiomatizable. We leave these questions for future work.

We have a further comment on the connection with the yesterday opera-
tor. The limited form of memory provided by APALM is in fact enough to simu-
late the yesterday operator Y ϕ on any given model, by using context-dependent
formulas. For instance, the dialogue in Cheryl’s birthday puzzle (Albert: “I don’t
know when Cheryl’s birthday is, but I know that Bernard doesn’t know it ei-
ther”; Bernard: “At first I didn’t know when Cheryl’s birthday is, but I know
now”; Albert: “Now I also know”), can be simulated by the following sequence
of announcements17: first, the formula 0 ∧ ¬Kac ∧Ka¬Kbc is announced (where
0 marks the fact that this is the first announcement), then (¬Kbc)

0 ∧ Kbc is
announced, and finally Kac is announced.

For another example: if instead we change the story so that the third an-
nouncement (by Albert) is “I knew you knew it (just before you said so)”, then
the last step of this alternative scenario corresponds to announcing the formula
([0 ∧ ¬Kac ∧ Ka¬Kbc]KaKbc)

0 (saying that, just after the first announcement
but before the second, Albert knew that Bernard knew the birthday). This shows
how the logic can simulate the use of any (iterated) Y ’s in concrete examples,
although at the cost of repeating the relevant part of history inside the announce-
ment in order to mark the exact time when the announced formula was meant to
be true.

A more systematic treatment of the yesterday operator on (a version of) our
announcement models and its connection to arbitrary and group announcements
are topics for future research. Yet another line of further work concerns other
meta-logical properties, such as decidability and complexity, of APALM and
GALM.

17Here, we use the abbreviation Kac =
∨
{Ka(d ∧m) : d ∈ D,m ∈ M}, where D is the set

of possible days and M is the set of possible months, to denote the fact that Albert knows
Cheryl’s birthday and, similarly, use Kbc for Bernard.
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Chapter 5

Structural differences between pfi & cfi

5.1 Introduction

The groundbreaking work of Gold (1967) started a new era for developing math-
ematical and computational frameworks for studying the formal process of learn-
ing. The model in (Gold, 1967), identification in the limit, has been studied for
learning recursive functions, recursively enumerable languages, and recursive lan-
guages with positive data and with complete data. The learning task consists of
identifying a language amidst a family of languages on the basis of an infinite
stream of inputs concerning the language. The stream consists of either posi-
tive information: an enumeration of all members of the language, or complete
information labelling all sentences as belonging to the language or not.

The learning function will output infinitely many conjectures, and for a suc-
cessful learning function these are required to stabilize into one permanent right
one. In Gold’s model, a huge difference in power between learning with positive
data and with complete data is exposed. With positive data a family of languages
containing all finite languages and at least one infinite one is not learnable. With
complete data the learning task becomes almost trivial (for a general overview
and further developments see Zeugmann and Lange (1995)).

Inspired by Gold’s model and results, Angluin (1980) work focuses on indexed
families of recursive languages, i.e., families of decidable languages with a uni-
form decision procedure for membership (for a summary of Angluin’s results, see
Angluin and Smith, 1983). Such families naturally occur as the sets of languages
generated by many types of grammars. In particular, Angluin (1980) gave a char-
acterization of cases in which Gold’s learning task can be executed. Her work
shows that many non-trivial families of recursive languages can be learned by
means of positive data only. A few years later, Mukouchi (1992) and simultane-
ously Lange and Zeugmann (1992), introduced the framework of finite identifica-
tion in the Angluin style for both positive and complete data. The learning task is
as in Gold’s model with the difference that the learning function can only output
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a single conjecture. Mukouchi (1992) presents an Angluin style characterization
theorem for positive and complete finite identification. As expected, finite identifi-
cation with complete data is more powerful than with positive data only. However,
the distinction is much less huge than in Gold’s framework. The work in (Muk-
ouchi, 1992) did not draw much attention until recently, when Gierasimczuk and
de Jongh (2013) further developed the theory of finite identification.

The difference between finite identification with positive and with complete
data, if not as huge as in the limit case (for a detailed overview see, Zeugmann
and Lange (1995)), is as we will show in this chapter, considerable not only in
power but also in character.

In this chapter, we focus on a more fine-grained theoretical analysis of the
distinction between finite identification with positive data and with complete data
in the Angluin style. Our goal is to formally study the issue of the difference in
learning power stemming from, on the one hand, positive and, on the other hand,
positive and negative data. Here, we will focus only on the structural properties
a family needs to have in order to be pfi or cfi. In the following chapter (Chapter
6), we will address this question with a different perspective, namely with respect
to the computational features of a family that allow it to be pfi or cfi.

We start our analysis with finite identification of finite families. Here, the
distinction between positive and complete data comes out very clearly: the dif-
ference is exactly described by the fact that with positive data families can only
be identified if they are anti-chains with respect to the subset relation ⊂.

Then, we investigate whether any finitely identifiable family is contained in a
maximal finitely identifiable one. Maximal learnable families are of special interest
because any learner which can learn a maximal learnable family can also learn
any of its subfamilies. Moreover, it will turn out that we obtain more insight in
the class of all learnable families if we know more about the class of the maximal
ones. First, we address this in the setting of positive data. Simple examples of
positively identifiable families are often maximal, like the set of all sets of exactly n
elements for a fixed natural number n. If we widen the question to the existence of
a non-effectively finitely identifiable maximal extensions of positively identifiable
families, we get a positive answer for families containing only finite languages. We
point out obstacles to generalising this result to arbitrary families containing also
infinite languages, this wider question remains an open problem.

We then come to study the complete data setting. Surprisingly, we provide a
strong negative result concerning maximal learnable families for effective or non-
effective finite identification with complete data: any finitely identifiable family
can be extended to a larger one which is also finitely identifiable, ergo maximal
identifiable families do not exist in the case of complete data. The positive answer
for positively identifiable families with finite languages brings about a natural
follow-up question: how many maximal extensions does a positively identifiable
family have? Addressing this question is not a trivial matter, therefore we conduct
a case-by-case analysis. For instance, we prove that any family containing only
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pairs of natural numbers has either only finitely many or uncountably many
maximal non-efficient pfi extensions. We formulate this as a conjecture: any family
of finite languages can only have finitely many maximal non-efficient pfi extensions
or uncountably many. We are able to extend our result concerning families of pairs
to families containing only n-tuples of natural numbers for a fixed n. We call these
families equinumerous families. Moreover, we succeed in proving that this is also
the case for families which languages have only two or three elements (i.e., families
of pairs and triples). This is a first step in an attempt to prove our conjecture
for families of finite languages with bounded cardinality. The general conjecture
about families with finite sets of unbounded cardinality remains out of reach for
the time being.

In all the sections that follow, we will refer as pfi and cfi to finitely identifiable
from positive data and finitely identifiable from complete data respectively.

Outline

This chapter is structured as follows. In Section 5.2, we briefly discuss the rel-
evance of negative data (and complete data) in empirical studies for learning,
and the lack of a theoretical analysis for it in the literature. In Section 5.3 we
study finite identification of finite families. Then, we investigate whether any
finitely identifiable family is contained in a maximal finitely identifiable one in
Section 5.4. We address this question first in the setting of positive data. Then
in Section 5.4.1, we address the question in the setting of complete data. In Sec-
tion 5.5, we study how many maximal extensions a positively identifiable fam-
ily has. In Subsection 5.5.1 we address general conditions for a family to have
uncountably many maximal nepfi extensions. In Subsections 5.5.3 and 5.5.4 we
address the question for equinumerous families, first for subfamilies of only pairs
and then for subfamilies with only n-tuples. In Subsection 5.5.5 we address a
more complex case, for families containing pairs and triples. In Section 5.6 we
conclude with final remarks and we give some directions for future research.

This Chapter is based on (de Jongh and Vargas-Sandoval, 2019).

5.2 The ignored value of negative data

The motivation for studying learning in this formal way is no longer predomi-
nantly first language learning by children as it was for Gold. His motivation for
concentrating on positive data was because of indications that children do not
use negative data when they learn their native language (Gold, 1967), but this
is no longer believed in general. A large amount of theoretical and experimental
work in computational linguistics (see e.g. Mitkov, 2005) has been conducted to
analyze and test the intuition that there is a powerful contribution of “negative”



156 Chapter 5. Structural differences between pfi & cfi

data for improving and speeding up children language acquisition (see e.g. Saxton
et al., 2005; Hiller and Fernández, 2016).

Formal learning theory goes beyond its linguistic purpose with more recent
work that merges with Dynamic Epistemic Logic. Since the pioneering topological
approach to Formal Learning Theory (FLT) initiated by Kelly (1996) (also studied
and developed in (Baltag et al., 2015)), the general agenda of bridging DEL and
FLT was deeply developed in (Gierasimczuk, 2010). Since then, the FLT-DEL
merge gained some attention from the epistemic logicians. Substantial but scarce
work combining these two fields of study, has been conducted in the last years for
finite identification (learning with certainty) (see e.g., Gierasimczuk (2010)), and
also for identifiability in the limit (learning in the limit) (for a framework using
modal operators but not in the style of DEL, see e.g., Kelly (2014)).

Recall that in Chapter 3, inspired on identification in the limit (learning in
the limit), we introduced two logics with subset space semantics to reason about
inductive inference for two types of learners (Baltag et al., 2018a, 2020). For
finite identification, Dégremont and Gierasimczuk (2011) show that finite iden-
tification of languages (sets) can be modelled in dynamic epistemic logic via a
suitable translation of finite identification’s basic concepts (data stream, class
of languages, and languages) into the semantics of dynamic epistemic logic and
alternatively of epistemic temporal logic. The purpose for this translation is to
comprehend more deeply the semantics of learning, as in formal learning the-
ory, and to analyse its multiple dimensions, including ways of formalisation (for
more results on this, see e.g. Bolander and Gierasimczuk, 2015, 2017). Moreover,
regarding the step by step information changes of dynamic epistemic logic, the
study of fastest learning with respect to finite identification in (Gierasimczuk and
de Jongh, 2013) gives the indication that the effectiveness of the procedure of
retrieving specific information, needs to be studied seriously.

All these work, has been done with positive data only, leaving a gap for the
complete data case. Filling this gap is particularly interesting for finite identifi-
cation, since we already know by Gold’s results that learning in the limit with
complete data is not interesting enough (the learning task becomes almost triv-
ial). Therefore, a step towards filling this gap, is to have a detailed analysis of
the differences between finite identification with positive data and with complete
data.

5.3 Finite families of languages

This section is dedicated to finite families of languages. A pair of simple but strik-
ing results already provides a good insight in a feature underlying the difference
between finite identification on positive and on complete data. The feature of a
finite family that allows it to be pfi is purely a structural one, namely being an
anti-chain.
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5.3.1. Theorem. A finite family of languages S is pfi iff no language S ∈ S
is a proper subset of another S ′ ∈ S , i.e., S is an anti-chain.

Proof:
For (⇒): follows straightforwardly by contraposition from Corollary 2.4.10. For
(⇐): take any language Si in S . Since Si * Sj for any j 6= i, choose nij =
µn{n ∈ Si − Sj} where µ denotes the standard recursive minimum function in
recursion theory.1 and let Di = {nij : j 6= i}. Let us verify that Di is a DFTT
for Si: clearly it is finite because the family is finite, so {nij : j 6= i} is finite and
Di ⊆ Si. By construction, if Di ⊆ Sk ∈ S then i = k. Since our construction
involves a finite number of steps, it is effective and thus S is pfi. 2

In contrast, we obtain the following result for complete data.

5.3.2. Theorem. Any finite collection of languages S = {S1, . . . , Sn} is cfi.

Proof:
Let S be any finite family of languages and let Si any language in S . Take any
j 6= i, then Si−Sj 6= ∅ or Sj−Si 6= ∅. If Si−Sj 6= ∅, take the smallest nij ∈ Si−Sj
to be in Di. If Sj − Si 6= ∅, take the smallest mij ∈ Sj − Si to be in Di. Repeat
this for all j ≤ n. The pair of sets obtained in that manner is consistent with
Si by construction, in fact they form a tell-tale pair for Si. Note that this pair
cannot be consistent with any other language Sk ∈ S such that Sk 6= Si simply
by construction. Since i was arbitrary, by Mukouchi’s characterization theorem
for complete data we have that S is cfi. 2

5.4 Looking for maximal learnable families

In this section we start by noting that being an anti-chain of finite languages
is equivalent to being a nepfi family of finite languages. Then, we investigate
whether any finitely identifiable family is contained in a finitely identifiable family
which is maximal with respect to inclusion (⊆). We first address the question for
nepfi families (recall that nepfi families are not always indexed), later on we
will address it for pfi. We provide a positive result for maximal nepfi extensions
of families with finite languages. For families containing infinite languages this
question remains open. The case of necfi (and of cfi) is rather different, as we
will show in Section 5.4.1 that maximal necfi extensions for cfi families never
exist. First consider the following proposition.

1µn(. . . n . . .) is the least integer n such that the expression . . . n . . . is true (if this integer
exists). For more details of the minimum function (or, minimization operator), the reader can
look at any book of Recursion Theory, see e.g., (Rogers, 1967, p. xviii).
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Not all anti-chains are nepfi, see the family in the proposition that follows just
now. When all languages in the family are finite, being an anti-chain is equivalent
to being a nepfi family, as we will see in Lemma 5.4.3.

5.4.1. Proposition. The family of all co-singletons, {N − {i} : i ∈ N}, is an
anti-chain which is cfi but not nepfi.

Proof:
Let S := {N−{i} : i ∈ N} and let Si = N−{i} denote the language with index
i. It is clearly cfi since (∅, {i}) is a tell-tale pair for every Si ∈ S . It is not nepfi
since there are no DFTTs for any Si ∈ S . To see this, towards contradiction
suppose Si ∈ S has a DFTT. Let Di be a DFTT for Si ∈ S . Since Di is finite,
there is a j 6= i such that Di ⊆ N − {j} and j /∈ Di. Therefore, Di ⊆ Sj with
j /∈ Di and j 6= i, thus Sj 6= Si. Thus, Di is not a DFTT for Si. Therefore, S is
not nepfi. 2

The following lemmas will be useful for the proof of Theorem 5.4.4.

5.4.2. Lemma. If C is a chain with respect to (⊆) of anti-chains of languages
S then

⋃
C is an anti-chain.

Proof:
Towards contradiction, suppose

⋃
C is not an anti-chain but every S ∈ C is an

anti-chain. Thus, there is X, Y ∈
⋃

C such that X ⊆ Y or Y ⊆ X. W.l.o.g.
suppose X ⊆ Y . Since C is a chain, we have that X, Y ∈ S for some S ∈ C .
It follows that S is not an anti-chain, contradicting that it is. 2

5.4.3. Lemma. A family of finite languages is nepfi if and only if is an anti-
chain.

Proof:
For (⇒): follows directly by the contrapositive of Corollary 2.4.10. For (⇐): take
Di := Si for every Si ∈ S . Clearly Di ⊆ Si and it is finite. Also the following
holds, if Di ⊆ Sj for some Sj ∈ S , Si = Sj. Thus Di is a DFTT of Si ∈ S . 2

A fortiori this lemma implies that a cfi anti-chain of finite languages is nepfi.
Necfi cannot improve on nepfi regarding anti-chains of finite languages. Later we
will see that this is different for cfi and pfi (see Proposition 6.4.7).

In what follows we will not distinguish anti-chains of finite languages and nepfi
families of finite languages.

We now proceed to the main result in this section.
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5.4.4. Theorem (Existence of maximal nepfi families). Every indexed fam-
ily of finite languages which is pfi is contained in a maximal family of finite lan-
guages which is nepfi.

Proof:
Let S be an indexed pfi family of finite languages. If S is not maximal, we can
choose

S ′ ∈ P(N)<ω such that Si * S ′ ∧ S ′ * Si

for all Si ∈ S . Let S1 = S ∪ {S ′} be the obvious extension. We continue with
the same procedure used for S to extend S1 and so on so forth. We will have a
chain of families of languages of the form,

S ⊆ S1 ⊆ S2 ⊆ . . . .

By Lemmas 5.4.2 and 5.4.3 it follows that Smax :=
⋃
n∈N Sn is a nepfi family of

finite languages and it is clearly a maximal nepfi extension of S . 2

We want to remark a couple of things from the proof of Theorem 5.4.4. Recall
from Chapter 2, an identification is non-effective if at least one of the two following
situations holds: 1) the learning function is not recursive, and 2) the family is not
effectively indexed. Nothing in the proof guarantees that the resulting maximal
nepfi extension Smax of a family S is effectively indexable (even though at each
step the family Sn was effectively indexable). Another relevant observation is that
if infinite languages are present in the family, such an argument cannot be applied
since not every family which is an anti-chain is nepfi (see Proposition 5.4.1). Even
if the starting family is a nepfi family, the resulting maximal extension, using
Lemma 5.4.2, might not be nepfi. See the following example:

5.4.5. Example. Consider the finite family of co-singletons S := {S0, S1} such
that S0 := N − {0} and S1 := N − {1}. This family is clearly nepfi, the DFTT
for S0 is {1} and the DFTT for S1 is {0}. Let Si := N − {i}. Now consider the
following chain of anti-chains,

C := S ⊆ S ∪ {S2} ⊆ (S ∪ {S2}) ∪ {S3} ⊆ . . . .

Clearly each family of the chain is an indexed nepfi family. Note that the family⋃
C is precisely the family of all co-singletons, i.e.,

⋃
C := {N − {i} : i ∈ N}.

By Proposition 5.4.1, we know that this family is not nepfi.

This example leads to the following.

1. Open Question. Do maximal nepfi families always exist for arbitrary (ne)pfi
families?
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This question can be formulated as a purely combinatorial mathematical ques-
tion. Even though it is not clear what happens when a family has an infinite
language, we conjecture that any pfi family has a maximal nepfi extension. An
answer to this conjecture, involves a more complex and deep structural analysis
which we leave for future work.

We did answer negatively the question restricted to maximal pfi families in
Theorem 6.3.14 from Chapter 6.

5.4.1 Do maximal necfi/cfi families exist?

In this section we address the question whether every necfi family is contained
in a maximal one. Surprisingly, we show that the answer is negative, even for cfi
families. All the results in this section will be stated for necfi families, but the
same results follow for cfi families. Before addressing the main results, we first
focus on a couple of useful propositions and we provide some notation.

Let S be the complement family of any necfi family S , i.e., S = {S : S ∈ S }
where S = N − S. Note that for every sequence σ of complete data for a family
S there is a mirror image of σ, say sequence σ (presented in exactly the same
order), for the necfi family S with inverted values of 0’s and 1’s. So (k, 1)j is in
σ iff (k, 0)j is in σ, for any j ∈ N.

5.4.6. Proposition. If a family S is necfi then S is necfi as well. Similarly,
if a family S is cfi then S is cfi as well.

Proof:
Let λ be a (ne)cfi learner for S . We can define a (ne)cfi learner λ for S as
follows:

λ(σ[n]) =↑ iff λ(σ[n]) =↑ and λ(σ[n]) = S iff λ(σ[n]) = S,

for every n ∈ N. Clearly λ is a recursive learner for S if λ is recursive. 2

5.4.7. Corollary. If either S or S is (ne)cfi then S and S are (ne)cfi.

This is not the case for nepfi families, since for instance the family of all
singletons S s is nepfi (and pfi) but its complement family, namely the family of
all co-singletons, is clearly not nepfi (see Proposition 5.4.1). This is because no
finite subset of a co-singleton can determine which co-singleton it is.

Consider any language S, then a direct successor of S is a language S ∪ {n}
such that n /∈ S. For every non-cofinite language Si ⊆ N let Suc(Si) be the set
of all direct successors of Si and let SucS (Si) := Suc(Si)∩S , i.e., the set of all
distinct direct successors of Si that are also languages in the family S .

Consider the following example.
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5.4.8. Example. Take the family

S = {{0}, {0, 1}, {0, 1, 2}, . . . , {0, 1, 2, 3, . . . , n}, . . .}.

This family is necfi (it is also cfi). To illustrate, consider the language {0}. Clearly,
the pair ({0}, {1}) is a definite tell-tale pair for {0}.

Note that for each language Si ∈ S , there are infinitely many sets in S that
contain Si. Moreover, there are infinitely many languages that properly contain a
direct successor of Si. Still, there are only finitely many direct successors that are
languages in S , in fact there is only one. Now, consider the extension S ∪{{0, n} :
n ∈ N, n > 1}. This extension is not necfi, since the language {0} no longer has
a definite tell-tale pair. This is because any possible pair ({0}, D{0}) with a finite
D{0} will be consistent with infinitely many languages in S .

In the proposition that follows, we show that a necfi family can only have
finitely many direct successors of any language in the family. The purpose of this
proposition is simply to ensure there is always room for a new language in a necfi
family.

5.4.9. Proposition. If S is necfi then SucS (Si) is finite for every Si in S .

Proof:
Let S be a necfi family and Si ∈ S . Towards a contradiction, suppose there are
infinitely many languages which contain a direct successor of Si in S . Thus, we
assume that SucS (Si) has infinitely many elements.

Since S is necfi we have a definite tell-tale pair for Si, namely (Di, Di). First
note that Di ⊆ Sk for any Sk ∈ SucS (Si). Since Di is finite, the contradiction will
follow by showing that Di only serves to disambiguate between a finite number
of languages in SucS (Si) ⊆ S . We prove the following: Di ∩ Sk 6= ∅ only for
finitely many Sk ∈ SucS (Si).

First note that Di is finite and for all distinct direct successors Sl, Sk ∈
SucS (Si), Sl = Si ∪ {nl} 6= Si ∪ {nk} = Sk for some nl, nk ∈ N. Since Di is
the negative member of the definite tell-tale pair for Si, Di∩Si = ∅. Thus, if Sk ∈
SucS (Si) and Di∩Sk 6= ∅ then nk ∈ Di∩Sk. Since for each Sk, Sl ∈ SucS (Si) we
have some nl, nk such that nl 6= nk and Di is finite, Di can only intersect finitely
many languages in Sk ∈ SucS (Si).

Continuing with the main proof, take Sk ∈ SucS (Si) such that Sk ∩ Di =
∅. We have such a language Sk ∈ SucS (Si) by the previous claim and our initial
assumption, that the set SucS (Si) is infinite. Since also Sk ⊇ Si ⊇ Di, the
existence of such Sk implies that (Di, Di) is not a definite tell-tale pair for Si.
This contradicts our initial assumption on (Di, Di).

Since the choice of the definite tell-tale pair (Di, Di) was arbitrary it follows
that SucS (Si) must be finite. 2

Next comes the main result of this section.
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5.4.10. Theorem (Non-existence of maximal necfi/cfi families). Maximal
necfi extensions do not exist for any necfi family S .

Proof:
Let S be an arbitrary necfi family. It is sufficient to prove that a proper extension
of S exists which is necfi. We can assume that S has a non-cofinite language,
and such language we fix as Si. This is simply because of the following: if all
languages in S are cofinite, then all languages in the complement family S are
finite. Thus we can find a necfi extension S ′ for S by proving the theorem for
S . By proposition 5.4.6 we know that S ′ is necfi. Note that S ′ is an extension
of our original family S . Indeed, we can assume that Si ∈ S is not cofinite. We
proceed with the main proof. We start by proving the following claim.

Claim: For any definite tell-tale pair (Di, Di) of Si, there exists n ∈ N such
that n /∈ Di ∪ Si.

Let (Di, Di) be any definite tell-tale pair of Si and consider the negative
member in the pair, Di. Since Si is not cofinite we know that Si has infinitely
many direct successors, i.e., the set Succ(Si) is infinite. By Proposition 5.4.9 we
have that S contains only finitely many languages in Succ(Si), i.e., SuccS (Si) is
finite. Since Di is also finite, there are infinitely many m ∈ N such that m /∈ Di

and m /∈ S ′ for any S ′ ∈ SuccS (Si). Take an n ∈ N satisfying these characteristics
and let Di∪{n} the respective direct successor for Di. The set Di∪{n} is precisely
the candidate for extending S .

Now, if n satisfies the claim above, we show that the family S ′ := S ∪{Di ∪
{n}} is necfi. To show that S ′ is a proper extension of S , towards contradiction
suppose Di ∪ {n} = Sk for some Sk ∈ S . Since Di ⊆ Sk and S is necfi, the
pair (Di, Di) cannot be consistent with Sk. Thus, there is x ∈ Sk such that
x ∈ Di. By our assumption, x = n which contradicts our choice for n, namely
that n /∈ Di. Thus S ′ is a proper extension of S .

To show that S ′ is necfi, we show that each Sk ∈ S ′ has a definite tell-tale
pair (Dk, Dk). We first claim that the pairs

(Di ∪ {n}, Di) and (Di, Di ∪ {n})

are the definite tell-tale pairs for the languages Di ∪ {n} and Si respectively
in the extension S ′. Clearly these pairs allow disambiguation between Si and
Di ∪ {n}. Note that (Di, Di ∪ {n}) (for Si) is not consistent with any other
language Sk ∈ S such that Si 6= Sk since that would contradict that (Di, Di) is a
definite tell-tale pair for Si in S . Now we will check that the definite tell-tale pair
for Di ∪ {n}, namely (Di ∪ {n}, Di), is not consistent with any other language
in S . If Di ∪ {n} ⊆ Sk for some Sk then Di ⊂ Sk. Since S is necfi and (Di, Di)
a definite tell-tale pair for Si, there is x ∈ Di such that x ∈ Sk. Analogously, if
Di ⊆ N− Sk, there is x ∈ Di such that x /∈ Sk. It follows that (Di ∪ {n}, Di) is a
definite tell-tale pair for the new language Di ∪ {n} in the extension S ′.
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We now define the definite tell-tale pairs for the rest of the languages in
S ′. Let Sk ∈ S ′ − ({Si} ∪ {Di ∪ {n}}). If Dk 6⊆ Di ∪ {n} with (Dk, Dk) the
definite tell-tale pair for Sk in S , then the definite tell-tale pair with respect to
S ′ will be exactly (Dk, Dk). Otherwise (if Dk ⊆ Di∪{n}), we consider two cases:

1. Dk ⊆ Sk ⊆ Di ∪ {n}.
First note that Sk = Di∪{n} is not possible since S ′ is a proper extension
of S . So Sk ⊂ Di ∪ {n}. Moreover Sk ⊆ Di since otherwise n ∈ Sk and
Sk 6⊆ Di and this implies that there is x ∈ Sk − Di such that x 6= n,
contradicting that Sk ⊂ Di ∪ {n}. Thus Sk ⊆ Di. Now, note that the pair
(Dk, Dk ∪ {n}) is not consistent with the language Di ∪ {n}, and thus,
allows disambiguation between Sk and Di∪{n} (and any other language in
S ). Thus (Dk, Dk ∪ {n}) is the definite tell-tale pair for Sk in S ′.

2. Dk ⊆ Di ∪ {n} with n ∈ Dk and Dk 6⊆ Di.
Since Sk = Di ∪ {n} is not possible, there is xk ∈ Sk − Di such that
xk 6= n. Note that the pair (Dk ∪ {xk}, Dk) is not consistent with Di ∪ {n}
(and with any other language in S ′). Therefore, (Dk∪{xk}, Dk) is a definite
tell-tale pair for Sk in S ′.

Note that there are only finitely many subsets of Di ∪ {n}, so we only need to
take care of finitely many Sk ∈ S for which Dk ⊆ Di ∪ {n} is the case.

Thus, there is a definite tell-tale pair for every language in S ′ and, therefore,
the family S ′ := S ∪ {Di ∪ {n}} is necfi. 2

There are other ways of extending a necfi family than the one described in
Theorem 5.4.10 as in the case for the family in Example 5.4.8. The family S =
{{0}, {0, 1}, {0, 1, 2}, . . . , {0, 1, 2, 3, . . . , n}, . . .} is necfi (it is also cfi). Note that
for S = {0} we can extend S with S ∪ {2} and preserve necfi (also cfi) even
though a tell-tale pair for S is ({0}, {1, 2}). Moreover we can extend it with
S ∪ {3}, S ∪ {4} and so on, and preserve necfi (and cfi).

The question concerning more possibilities (and the limitations) in which a
cfi family can be extended, involves almost a purely combinatorial analysis. Even
though we find this question intriguing, we think that it goes a bit further from
the main purpose of this thesis, thus we leave this for future work.

5.5 Counting maximal extensions

Given that all anti-chains (nepfi families) of finite languages have a maximal nepfi
extension (see Theorem 5.4.4), in this section we study their structure. Moreover,
we investigate how many there are for nepfi families with finite languages. We
conjecture the following.
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1. Conjecture. Every nepfi family of finite languages has only finitely many
or uncountably many maximal nepfi extensions.

By the above, this conjecture comes down to a purely combinatorial math-
ematical statement: each (⊆) anti-chain of finite sets has only finitely many or
uncountably many extensions to a maximal such anti-chain. An answer to this
conjecture can shed light to a more refined characterization for nepfi families
(and pfi families), namely to distinguish the finitiely extendable families, i.e., the
ones that have only finitely many maximal nepfi extensions from the more sparse
ones. In a way, maximal families give us the feeling of being “almost complete”,
since we cannot add anything more to the family and preserve its structural prop-
erties. Thus, the finitely extendable families are the ones for which, in principle,
we can keep track of its maximal extensions since there are only finitely many.
We prove our conjecture for the special case of equinumerous families, families
containing only n-tuples for a fixed n ∈ N. We address this first for the simple
cases of families of singletons and families of pairs. The analysis for those simple
cases will be useful when we address the more general case. Then, we study the
more complex case of families containing pairs and triples and prove Conjecture
1 for such families.

In this section our work is purely combinatorial. We are after structural
properties only, so we ignore whether a family of languages is or can be represented
as an indexed family. We also ignore whether the maximal extension is pfi or
just nepfi. All the results here will be with respect to counting maximal nepfi
extensions of a given family and their structure.

Consider the following example.

5.5.1. Example. Let S s = {{i} : i ∈ N} be the family of all singletons. Clearly
it is maximal with respect to nepfi. However, if we take out one of the singletons,
say {0}, we obtain a nepfi subfamily S s

0 which is no longer maximal and its only
nepfi extension is S s. If we remove {1} from S s

0 , we can maximally extend this
family in two different ways, either adding {0, 1} or adding {0} and {1}. Thus
we have two independent maximal nepfi extensions for S s

1 .

We can repeat the effective deletion-procedure described in Example 5.5.1
finitely many times and still obtain finitely many extensions. For regaining max-
imality, we are indeed “restricted” in the structural sense. The following lemma
illustrates this.

5.5.2. Lemma. Let S be a maximal nepfi family and let S ′ be a maximal nepfi
extension of S − {{x}} where {x} ∈ S . Then for all S ∈ S ′ which are not in
S − {{x}}, S is of the form {x} ∪ A, for some A ⊆ Si ∈ S − {{x}}.

Proof:
Let S and S ′ as described in the lemma. Since S ′ is an anti-chain that extends
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S − {{x}} and S is a maximal anti-chain, any new language S ∈ S ′ needs to
have x as an element. Thus any S ∈ S ′ − (S − {{x}}) is such that x ∈ S. Let
A = S − {{x}}. We will prove that A ⊂ Si for some Si ∈ S − {{x}}. By maxi-
mality of S , A itself could not be added to S and preserve nepfi. Thus, either
A ⊂ Si or Si ⊆ A for some Si ∈ S −{{x}}. The latter cannot be since if Si ⊆ A
then Si ⊆ A ∪ {x} and S ′ should be an anti-chain. Therefore A ⊂ Si. 2

It is not always the case that we obtain only finitely many maximal extensions
for a given nepfi/pfi family. In the following example we see that even when the
languages are all finite, we may still obtain uncountably many maximal nepfi
extensions.

5.5.3. Example. Let S = {{0} ∪ S ′} where S ′ = {{i, j, k} : i, j, k ∈ N −
{0}}. Clearly S is a maximal nepfi family. Consider S ′, by lemma 5.5.2 in
order to regain maximality, the languages to add must be of the form {0} ∪ A
for some A ⊆ Si and some Si ∈ S ′. Therefore we have the following procedure
for constructing uncountably many maximal nepfi extensions of S ′: For each
B ⊆ N−{0} add the triples of the form {0, n,m} with n 6= m and n,m ∈ B and
all the pairs of the form {0, c} with c /∈ B. This construction is for all B ⊆ N−{0},
thus S ′ has uncountably many maximal nepfi extensions.

5.5.1 Uncountably many maximal nepfi extensions

We dedicate this subsection to study cases in which we can obtain uncountably
many maximal nepfi extensions of a given family. We first address some cases of
families with finite languages similar to example 5.5.3. After studying these cases,
we exhibit some sufficient conditions for a family in order to have uncountably
many maximal extensions.

In what follows, we denote as pairs, triples and n-tuples the unordered sets
with 2, 3 and n elements respectively. Thus, an n-tuple (or, k-tuple) is a language
with cardinality n ∈ N+ (k ∈ N+).2

Consider the following example that uses the fact (discussed in Section 5.5.3)
that the family of all pairs, S 2, is maximal nepfi.

5.5.4. Example. Let S be the family {{0}, {1}} ∪ {{i, n} : i, n ∈ N− {0, 1}}.
This is clearly a nepfi family because every language is mutually incomparable
with any other language in the family. Moreover it is maximal nepfi precisely
because any other subset of N is either a subset or a superset of {{i, n} : i, n ∈
N − {0, 1}}, or a superset of {0}, {1}. Now consider the subfamily S ′ = S −
{{0}, {1}}. Note that S ′ = S 2 − {{0, a}, {1, b} : a, b ∈ N, a 6= 0, b 6= 1}. We will
see that S ′ has uncountably many maximal nepfi extensions. Clearly S is one,
and for every B ⊆ N, the family S ′ ∪ {{0, 1, b} : b ∈ B} ∪ {{0, c}, {1, c} : c /∈ B}

2We use the standard notation for the set of all positive natural numbers N+.
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is a maximal nepfi extension of S ′. So we have uncountably many maximal nepfi
extensions of S ′.
Consider now the similar maximal nepfi family {{0}} ∪ {{i, n} : i, n ∈ N− {0}}
and take the nepfi subfamily {{i, n} : i, n ∈ N−{0}}. It turns out that {{i, n} :
i, n ∈ N− {0}} has only two maximal nepfi extensions, namely S 2 and {{0}} ∪
{{i, n} : i, n ∈ N−{0}} itself. Although, note that {{i, n} : i, n ∈ N−{0}} has
infinitely many non-maximal nepfi extensions. To see this, observe that we can
add to {{i, n} : i, n ∈ N− {0}} one by one pairs of the form {0, n} with n ∈ N.

By a similar combinatorial argument as in Example 5.5.4, we straightforwardly
obtain the following result.

5.5.5. Proposition. For every finite set {0, 1, . . . ,m} with m > 0, the subfamily
S 2

N−{0,1,...,m} = {{i, n} : n ∈ N, i ∈ {0, 1, . . . ,m}, n 6= i}, of the family of all pairs

S 2, has uncountably many maximal nepfi extensions.

Proof:
Simply because S 2

N−{0,1,...,m} ⊂ S 2 − {{0, a}, {1, b} : a, b ∈ N, a 6= 0, b 6= 1} and,
by Example 5.5.4, the latter has uncountably many maximal nepfi extensions. 2

From Example 5.5.3 we know that the subfamily S 3 − {{0, a, b} : a, b ∈ N}
already has uncountably many maximal nepfi extensions. Therefore any subfamily
S 3

N−{0,1,...,m} obtained by removing all triples of the form {i, a, b} with a, b ∈ N,

i ∈ {0, 1, . . . ,m} and a, b 6= i has uncountably many maximal nepfi extensions for
any m ∈ N. Since a similar combinatorial argument works for any subfamily of
quadruples, quintuples etc, we can generalize this result to all families of n-tuples,
S n, with n ∈ N such that n ≥ 3.

5.5.6. Proposition. Let n ∈ N such that n ≥ 3 and S n be the class of all n-
tuples. Any subfamily S n

N−{0,1,...,m} obtained by removing all n-tuples of the form

{i, x1, . . . , xn−1} with xj ∈ N, i ∈ {0, 1, . . . ,m} has uncountably many maximal
nepfi extensions for any m ∈ N.

5.5.2 The class of families with only singletons

We dedicate this small section to study subfamilies of the family of all singletons,
i.e., subfamilies S ⊆ S s. We will present a simple argument that shows Conjec-
ture 1 for such families. The structural simplicity of these families allows us to
compute its maximal nepfi extensions in a simple generic manner. This will be
clear in the proof of the following proposition.

5.5.7. Proposition. Let S ⊆ S s be a family of only singletons. The family
S has finitely many maximal nepfi extensions or uncountably many.
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Proof:
Let S ⊆ S s be a family of only singletons and let X := {n ∈ N : {n} ∈ S }.
First note that, if S ∪ {Y } is an anti-chain, Y ⊆ N − X. Adding any new
language Z to S such that Z ∩ X 6= ∅ and Z /∈ S , will impair the anti-chain
condition, i.e., S ∪ {Z} is not an anti-chain. To see this, consider z ∈ Z ∩ X,
then {z} ∈ S and so {z} ⊆ Z. We consider the following cases:

1. N − X is finite, (i.e., X is cofinite). Since N − X is finite, the number of
anti-chains that we can construct with languages in P(N −X) are finitely
many. Moreover, there are only finitely many distinct maximal anti-chains
C with elements in P(N −X). Such maximal anti-chains are precisely the
ones that when added to S we obtain a maximal nepfi family. It follows
that S has only finitely many maximal nepfi extensions.

2. N−X is countable, (i.e., X is not cofinite). Using a combinatorial argument,
we will construct uncountably many maximal nepfi extensions of S . For
every B ⊆ N−X, consider the family

S ′ := S ∪ {{b} : b ∈ B} ∪ {{c1, c2} : c1, c2 ∈ (N−X)−B}.

Clearly S ′ is an anti-chain of finite languages that extends S i.e., it is a
nepfi extension of S . Moreover, it is easy to see that S ′ is a maximal nepfi
extension of S ′. Clearly, since adding any other language to S ′ will impair
the anti-chain condition.

2

5.5.3 The class of families with only pairs

In this subsection we study subfamilies of the family of all pairs, i.e., subfamilies
S ⊆ S 2. We will prove our Conjecture 1 for such families. This will also bring
some general insights into equinumerous families of languages with more than
two elements. First we need some definitions.

5.5.8. Definition. [Sets NUM(Y), PAIRS(Y), nTUP (Y) and the family S Y ]

• Let Y = {Y1, . . . Yn} be any set of pairs in S 2, let NUM(Y) be the set
of all numbers which appear in the pairs Y1, . . . Yn, and let PAIRS(Y)
be the set of all pairs formed by elements in NUM(Y). Finally, let S Y

be the subfamily of all pairs which are not in PAIRS(Y), i.e., S Y =
S 2 − PAIRS(Y).

• We can easily generalize the definition above to the family S n of all n-
tuples for n ≥ 3. We denote as nTUP (Y) the set of all n-tuples formed by
elements in NUM(Y) and S Y = S n − nTUP (Y).
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The combinatorial notion of Sperner family explains why, and in what way,
for every finite set of pairs Y = {Y1, . . . Yn}, the subfamily S Y has finitely many
maximal nepfi extensions.

5.5.9. Definition. [Sperner family on a set] A Sperner family (or Sperner sys-
tem) on a set X ⊆ N is a family of subsets of X in which none of the sets is
contained in any other. Equivalently, a Sperner family on X is an anti-chain in
the inclusion lattice over the power set of X, i.e., an anti-chain which elements
are in P(X).

From here on we will refer to Sperner families as anti-chains. The number of
different anti-chains on a set of n elements is counted by the so-called Dedekind
numbers. Determining these numbers is known as the Dedekind problem. The
number of anti-chains on sets of n elements for n ∈ N are 2, 3, 6, 20, 168, 7581, . . .
respectively. Concretely, we have for a set with 0 elements the anti-chains ∅ and
{∅}, which is why the Dedekind number of a set with 0 elements is 2.

5.5.10. Lemma. Let S Y ⊆ S 2 be the family corresponding to some finite set of
pairs Y = {Y1, . . . Yn}. For every maximal nepfi extension S of S Y and every
S ∈ (S −S Y), S ⊆ NUM(Y).

Proof:
Towards contradiction, suppose there is a maximal nepfi extension S 6= S 2 of
S Y such that for some S ∈ (S −S Y), S 6⊆ NUM(Y). Thus, there is z ∈ S such
that z /∈ NUM(Y). Note that S cannot be a singleton simply because {z} is con-
tained in infinitely many {z, w} ∈ S Y ⊆ S . Thus a w 6= z exists in S such that
{w, z} /∈ PAIRS(Y). Therefore {w, z} ∈ S Y simply by definition of S Y . But
since {w, z} ⊆ S ∈ S , S cannot be nepfi extension of S Y contradicting our
initial assumption. 2

5.5.11. Proposition. For every finite set of pairs Y = {Y1, . . . Yn}, the num-
ber of maximal nepfi extensions of the subfamily S Y ⊆ S 2 is bounded by the
Dedekind number of the set NUM(Y) = {y1, . . . , ym} or in other words, by
the number of anti-chains in NUM(Y) = {y1, . . . , ym}. Moreover, the maximal
nepfi extensions of S Y correspond to the maximal singleton-free anti-chains on
NUM(Y). All such extensions are pfi.

Proof:
Let Y = {Y1, . . . Yn} be any finite set of pairs and S Y ⊆ S 2 the corresponding
family. By Lemma 5.5.10 we know that for every maximal nepfi extension S of
S Y , if S ∈ (S −S Y) then S ⊆ NUM(Y) = {y1, . . . , ym}. Therefore, for every
maximal nepfi extension S of S Y we have that (S −S Y) ⊆ P(NUM(Y)) which
is finite. Clearly, (S −S Y) must be an anti-chain in P(NUM(Y)). By definition
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of S Y , every x ∈ N is contained in some pair in S Y . Therefore, every maximal
nepfi extension S of S Y corresponds to some anti-chain in P(NUM(Y)) without
singletons. Moreover, since S ⊇ S Y is maximal nepfi, (S −S Y) is precisely a
maximal singleton-free anti-chain in P(NUM(Y)). For the other direction, if we
extend S Y with any maximal singleton-free anti-chain C in P(NUM(Y)) then
clearly the resulting family S is a maximal nepfi extension. Simply because any
S ∈ (S −S Y) has S itself as a DFTT set. Thus, there is a finite description of
the anti-chain C and their DFTTs which clearly makes the resulting family S a
pfi family. 2

So far we know the following about subfamilies of S 2: (1) By Proposition
5.5.11, any subfamily of S 2 obtained by removing finitely many pairs from S 2

has only finitely many maximal nepfi extensions; (2) by Example 5.5.4 and Propo-
sition 5.5.5, we know that any subfamily of S 2 obtained by removing all pairs
of the form {i, n} with n ∈ N and i ∈ {0, 1, . . . ,m} (of which there are infinitely
many) has either 2 maximal nepfi extensions (m = 0) or uncountably many
(m > 0 ). What happens when we consider subfamilies obtained by removing in-
finitely many arbitrary pairs? The answer to this question will also clarify what
happens to subfamilies of all n-tuples S n for any n ≥ 3.

We will first bring somewhat more structure in the removal of finitely many
pairs. This will assist us later in the more complicated cases. In particular, we will
study what happens when we remove from S 2 a specific group of pairs called a 2-
cluster. A family that results from removing a finite 2-cluster can be extended by
any language formed with numbers in the 2-cluster. This will become clear later
on, when we prove Proposition 5.5.19. Then we will address the case of removing
infinitely many pairs. We provide a complete overview of our investigations of
the number of maximal nepfi extensions of subfamilies of S 2 and will be able
to conclude that every subfamily of S 2 has either finitely or uncountably many
maximal nepfi extensions.

5.5.12. Definition. [2-cluster] We say that G ⊆ S 2 is a 2-cluster in S 2 if
PAIRS(G) = G (see Definition 5.5.8) and |G| > 1.

Clearly for every Y ⊆ S 2, PAIRS(Y) is a 2-cluster in S 2. The minimal-in-
size 2-clusters of S 2 are the ones that contain three pairs. The decision not to
allow 2-clusters to have just a single pair is crucial for the cases considered in
Proposition 5.5.16. In such cases, we construct uncountably many maximal nepfi
extensions for a given family of pairs. The case for when we take out countably
many single arbitrary pairs which do not form any 2-cluster, will be treated
independently later on.

5.5.13. Lemma. For any finite set Y ⊆ S 2, Y ⊆ PAIRS(Y) and this is the
minimal 2-cluster that contains Y.
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Proof:
Straightforward from Definition 5.5.12. 2

To illustrate the lemma above, let Y = {{1, 2}, {2, 3}}. Then the minimal
2-cluster that contains Y is PAIRS(Y) = {{1, 2}, {1, 3}, {2, 3}}. We have many
finite 2-clusters that contain PAIRS(Y) and therefore Y . For instance the 2-
cluster G = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}}.

The following proposition follows from Proposition 5.5.11, but proving it by
itself clarifies matters about 2-clusters which will be useful in later proofs.

5.5.14. Proposition. Let G1, . . . ,GN with N ∈ N+ be a finite set of finite 2-
clusters. Then the family

S 2 − (G1 ∪ . . . ∪ GN)

has finitely many maximal nepfi extensions.

Proof:
Take G ⊇ G1 ∪ . . . ∪ GN the minimal 2-cluster that contains all G1, . . . ,GN ,
which exists by lemma 5.5.13. By Proposition 5.5.11, S G has finitely many
maximal nepfi extensions, and therefore S 2 − (G1 ∪ . . . ∪ GN) as well, since
S 2 − (G1 ∪ . . . ∪ GN) ⊇ S G. 2

5.5.15. Definition. [Maximal 2-cluster/Greatest set of 2-clusters outside S ]

• We say that a 2-cluster G ⊂ S 2 is a maximal 2-cluster outside S ⊂ S 2 if
G ∩S = ∅ and for any 2-cluster G ′ ⊇ G outside S it holds that G ′ = G.

• Let N ∈ N+, we say that G := {G1, . . . ,GN} is the greatest set of 2-clusters
outside S , if it is the set of all maximal 2-clusters outside S .

The result that follows addresses the cases when a subfamily of S 2 has un-
countably many maximal extensions.

5.5.16. Proposition. Let S ⊆ S 2.

1. If there is an infinite 2-cluster outside S ; or

2. if {G1,G2, . . .} is a countable sequence of disjoint finite 2-clusters such that⋃∞
i=1 Gi ⊆ (S 2 −S ); or

3. if for more than one k ∈ N we have that {{k,m} : m ∈ N− {k}} ∩S = ∅;

then S has uncountably many maximal nepfi extensions.

Proof:
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1. Let G be an infinite 2-cluster outside S , let {{a1, b1}, {a2, b2}, . . .} be an
enumeration of G and let {a1, b1}, {a2, b2} be the first two elements in
the enumeration of G. By definition of 2-cluster (defn. 5.5.12) we have
that {a1, a2}, {a1, b2}, {b1, a2}, {b1, b2} are also in G. Thus they are outside
S . Then S can be extended in at least two different ways where the exten-
sions are nepfi; by adding {a1, b1}, {a2, b2} or by adding {a1, b1, a2}, {a2, b2,
a1}. These two ways of extending S , namely S1a and S1b, are mutually
exclusive. At step k, we repeat this procedure for both of the extensions
resulting from the previous step, namely S(k−1)a and S(k−1)b. We use the
first couple of elements {amk , bmk}, {amk+1, bmk+1} in G that have not been
used before. As before, we obtain two nepfi extensions for S(k−1)a and two
nepfi extensions for S(k−1)b.

By repeating this procedure, we are constructing a binary tree which branches
correspond to chains of nepfi families that extend S . By a standard combi-
natorial argument, we obtain uncountably many maximal nepfi extensions
for S .

2. Let G1, . . . ,Gn, . . . be a countable sequence of finite 2-clusters such that⋃∞
i=1 Gi ⊆ (S 2 −S ), and suppose the 2-clusters are pair-wise disjoint. For

each Gi consider NUM(Gi), the set of all numbers that appear in some
pair of the 2-cluster Gi. Then we can extend S in two different ways:
(1) by adding the 2-cluster PAIRS(Gi) = Gi, or (2) by adding the set
NUM(Gi). Note that these two ways of extending S are mutually ex-
clusive. Therefore, and since we have countably many 2-clusters Gi, by a
well-known combinatorial argument, we have uncountably many maximal
nepfi extensions for S .

3. Suppose that for more than one k ∈ N we have that {{k,m} : m ∈
N} ∩S = ∅. Note that we already proved in Example 5.5.4 that the sub-
family S ′ = {{i, n} : i, n ∈ N − {0, 1}} of S 2 has uncountably many
maximal nepfi extensions. Therefore any subfamily of S ′ has uncountably
many as well. Clearly every S satisfying the condition just mentioned will
be isomorphic to a subfamily of S ′. Therefore S has uncountably many
maximal nepfi extensions.

2

In the following we address when a subfamily of S 2 has finitely many maximal
nepfi extensions. First we address the case when X ⊆ S 2−S is an unrelated set
of pairs outside of S . The elements in such X do not have a specific structure,
namely they do not form 2-clusters nor a family of the form {{k, x} : x ∈ N−{k}}.

5.5.17. Definition. [Unrelated pairs outside a family] We say that X ⊆ S 2−S
is an unrelated set of pairs outside of S if X contains no 2-cluster and does not
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contain a family of the form {{k,m} : m ∈ N − {k}} for any k ∈ N, i.e.,
S ∩ {{k,m} : m ∈ N − {k}} 6= ∅ for every k ∈ N. Whenever X := S 2 −S , X
is the maximal unrelated set of pairs outside of S .

5.5.18. Proposition. If X = S 2 − S is the maximal unrelated set of pairs
outside of S , any maximal nepfi extension of S contains X . Moreover, S 2 is
the only maximal nepfi extension of S .

Proof:
It suffices to show that we can only add to S pairs in X if we want the extension
to be an anti-chain. Take Y ⊆ N such that Y /∈ X . We will show that S ∪{Y } is
not an anti-chain. Suppose Y := {y}, then since S ∩{{y,m} : m ∈ N−{y}} 6= ∅,
S ∪ {Y } will not be an anti-chain. Suppose Y := {x, y}. Since Y /∈ X it must
be that Y ∈ S already. Suppose Y := {x, y, z} and consider the 2-cluster
G := {{x, y}, {x, z}, {y, z}}. Since X contains no 2-cluster, there is a pair in
G that is already contained in S . Again the extension is not an anti-chain. By
a similar argument, we cannot add any larger set to S . It follows that the only
possible maximal nepfi extension of S is S ∪ X = S 2. 2

5.5.19. Proposition. Let S ⊆ S 2 such that S 2 −S =
⋃

G ∪ K ∪ X where
G = {G1, . . . ,GN} with N ∈ N+ is the greatest set of finite 2-clusters outside S ,
K := {{k,m} : m ∈ N−{k}} for one fixed k ∈ N, and X = S 2− (S ∪

⋃
G ∪K)

is an unrelated set of pairs outside S ∪
⋃

G ∪ K. For any nepfi extension S ′ of
S and any A ∈ S ′ −S , either A ⊆ NUM(

⋃
G ) ∪ {k}, A ∈ K or A ∈ X .

Proof:
Towards contradiction, suppose there is S ′ ⊇ S such that A ∈ S ′ is such
that A 6⊆ NUM(

⋃
G ) ∪ {k}, A /∈ K and A /∈ X . First note that since A 6⊆

NUM(
⋃

G ), A /∈
⋃

G . Since A 6⊆ NUM(
⋃

G ) ∪ {k}, there is y ∈ A such that
y /∈ NUM(

⋃
G ) ∪ {k}. Therefore y 6= k. Note that A cannot be a singleton, say

{y}, simply because {{y, n} : n ∈ N − {y}} ∩ S 6= ∅. So there is a language
S ∈ S such that {y} ⊂ S. Thus, there is z 6= y such that {z, y} ⊆ A. Note that
the only pairs that are not in S are in

⋃
G ∪K∪X , thus A 6= {z, y} since we are

supposing A /∈
⋃

G , A /∈ K and A /∈ X . Therefore, we have that x ∈ A exists with
x 6= z, y and so {x, z, y} ⊆ A. Note that PAIRS({x, z, y}) 6⊆ (S 2 −S ). Other-
wise, since PAIRS({x, z, y}) is a 2-cluster, G is the greatest set of finite 2-clusters
outside S and the sets X and K contain no 2-cluster, PAIRS({x, z, y}) ⊆ Gi
for some i ∈ {1, . . . , N} which cannot be since y /∈ NUM(

⋃
G ) ∪ {k}. Therefore

PAIRS({x, z, y}) ∩S 6= ∅, i.e., there is a pair {a, b} ⊆ {x, z, y} ⊆ A such that
{a, b} ∈ S . This contradicts that A ∈ S ′ −S where S ′ is a nepfi extension of
S . Thus, A ⊆ NUM(

⋃
G ) ∪ {k}, A ∈ K or A ∈ X . 2
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5.5.20. Corollary. Let S ⊆ S 2, G , K and X as in Proposition 5.5.19. If S ′

is a maximal nepfi extension of S then S ′ −S is of the form C ∪X where C is
a maximal anti-chain in P(NUM(

⋃
G ) ∪ {k}) or of the form D ∪ K ∪ X where

D is a maximal anti-chain in P(NUM(
⋃

G )).

Proof:
Note that since X is a unrelated set outside S ∪

⋃
G ∪K, X∩(

⋃
G ∪K) = ∅. Thus,

it is easy to see that any singleton-free anti-chain C ∈ P(NUM(
⋃

G ) ∪ {k}) to-
gether with X form an anti-chain, i.e., C ∪ X is an anti-chain. By Proposition
5.5.19 and maximality of S ′, S ′−S is of the form C ∪X where C is a maximal
anti-chain in P(NUM(

⋃
G )∪{k}) or of the form D∪K∪X where D is a maximal

anti-chain in P(NUM(
⋃

G )). 2

The corollary above shows that any maximal nepfi family of such a family
S is characterized by some specific anti-chains of which there are only finitely
many. Thus, we obtain the following result.

5.5.21. Proposition. Let S ⊆ S 2 such that S 2 −S =
⋃

G ∪ K ∪ X where
G = {G1, . . . ,GN} with N ∈ N+ is the greatest set of finite 2-clusters outside S ,
K := {{k,m} : m ∈ N−{k}} for some fixed k ∈ N, and X = S 2−(S ∪

⋃
G ∪K)

is the maximal unrelated set of pairs outside S ∪
⋃

G ∪ K. The family S has
finitely many maximal nepfi extensions.

Proof:
Let the greatest set of 2-clusters outside S be the finite set G = {G1, . . . ,GN},
K := {{k,m} : m ∈ N−{k}} ⊆ S 2−S and X = S 2−(S∪

⋃
G∪K) the maximal

unrelated set of pairs outside S ∪
⋃

G ∪K. First note that, X ∩ (Gi ∪K) = ∅ for
every i ∈ {1, . . . , N}. By Proposition 5.5.19, we can only extend S with a set A
such that A ⊆ NUM(

⋃
G ) ∪ {k}, A ∈ K or A ∈ X .

By Corollary 5.5.20, every maximal nepfi extension of S will contain the set
X . Moreover, any maximal nepfi extension of S is uniquely characterized by
some maximal anti-chain in P(NUM(

⋃
G ) ∪ {k}) or by D ∪ K where D is a

maximal anti-chain in P(NUM(
⋃

G )). This is sufficient because the number of
maximal anti-chains in P(NUM(

⋃
G )∪ {k}) and in P(NUM(

⋃
G )) is bounded

by d + d′ where d and d′ are the Dedekind numbers of NUM(
⋃

G ) ∪ {k} and
NUM(

⋃
G ) respectively. Clearly both numbers d and d′ are finite. Thus S has

only finitely many maximal nepfi extensions. 2

By Proposition 5.5.14, Proposition 5.5.16, Proposition 5.5.18 and Proposition
5.5.21 we have the following result.

5.5.22. Theorem. Any subfamily S of S 2 has either finitely many maximal
nepfi extensions or uncountably many.
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Proof:
Follows by the fact that all the possible cases of subfamilies of S 2 were covered in
Proposition 5.5.14, Proposition 5.5.16, Proposition 5.5.18 and Proposition 5.5.21.

2

The proof of Theorem 5.5.22 allows us to obtain a similar general result for
subfamilies whose languages have exactly cardinality n with n ≥ 3, i.e., subfam-
ilies of the family of all n-tuples S n for any n ≥ 3. However, there are some
subtle details so that we need to tread carefully. Therefore we dedicate the fol-
lowing section to the class of all subfamilies of S n.

5.5.4 The class of families with only n-tuples (n ≥ 3)

Here we generalize all the notions and results obtained for subfamilies of S 2 to
subfamilies of S n with n ≥ 3. In fact, we will mostly consider subfamilies of S 3

and conduct our analysis on those. This analysis will clarify, straightforwardly,
what happens in the general case of equinumerous families, namely families S ⊆
S n for a fixed (but arbitrary) n ≥ 3.

Recall that an n-tuple (or, k-tuple) is a language with cardinality n, k ∈ N+.
To start with, we can straightforwardly generalize Proposition 5.5.11 with the

following result.

5.5.23. Proposition. For every finite set of n-tuples Y = {Y1, . . . , Ym}, the
number of maximal nepfi extensions of the subfamily S Y ⊆ S n is bounded by the
number of anti-chains in the finite set NUM(Y). Moreover, the maximal nepfi
extensions of S Y correspond to the maximal anti-chains in NUM(Y) and such
anti-chains contain no k-cardinality language for any 1 ≤ k ≤ n− 1 .

Before continuing, we need some definitions.

5.5.24. Definition. [n-cluster] We say that G ⊆ S n is an n-cluster in S n if
the set nTUP (G) of all n-tuples formed by numbers in NUM(G) (see Definition
5.5.8) is exactly G and |G| > 1, i.e., if nTUP (G) = G.

Clearly for every Y ⊆ S n, nTUP (Y) is an n-cluster in S n.

5.5.25. Definition. [Maximal n-cluster/Greatest set of n-clusters outside S ]

• We say that an n-cluster G ⊂ S n is a maximal n-cluster outside S ⊂ S n

if G ∩S = ∅ and for any n-cluster G ′ ⊇ G outside S it holds that G ′ = G.

• We say that G := {G1, . . . ,GN} with N ∈ N+ is the greatest set of n-clusters
outside S , if it is the set of all maximal n-clusters outside S .
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5.5.26. Lemma. For any finite set Y ⊆ S n, Y ⊆ nTUP (Y), and this is the
minimal n-cluster that contains Y.

Proof:
Straightforward from Definition 5.5.24. 2

The following proposition will be strengthened later on in Proposition 5.5.36,
but what we want to emphasize here is that for this simple case things go as for
the families of pairs.

5.5.27. Proposition. Let N ∈ N+ and G1, . . . ,GN be a finite set of n-clusters.
Then the family S n− (G1∪ . . .∪GN) has finitely many maximal nepfi extensions.

Proof:
The proof goes as in the case for S 2, taking the minimal n-cluster that contains all
G1, . . . ,GN , which by lemma 5.5.26 we know exists. By Proposition 5.5.23 we know
that S G has finitely many maximal nepfi extensions, and S n− (G1∪ . . .∪GN) ⊇
S G, so S n − (G1 ∪ . . . ∪ GN) has finitely many as well. 2

For readability in the proofs that follow, we will denote TRIP (Y) the 3-cluster
3TUP (Y).

5.5.28. Example. Consider the family S 3 − {{0, 1, b} : b ∈ N − {0, 1}}. This
family is very similar to the family studied in Example 5.5.3, namely the family
S 3 − {{0, a, b} : a, b ∈ N}, however S 3 − {{0, 1, b} : b ∈ N − {0, 1}} has
only finitely many nepfi extensions. To see this, note that we cannot extend
it with any singleton. Not even with {0} or {1} since there are triples Si, Sj in
S 3−{{0, 1, b} : b ∈ N−{0, 1}} that contain {0} and {1} respectively (note that
Si, Sj cannot contain both singletons). The only pair we can add to S is {0, 1},
by the way the family S 3−{{0, 1, b} : b ∈ N−{0, 1}} is defined. Any other pair
will be contained in a triple of the family. Analogously it is easy to see that for
any set Y ⊆ N such that |Y | ≥ 4, there is Si in S 3 − {{0, 1, b} : b ∈ N− {0, 1}}
such that Si ⊆ Y . Thus the only two maximal nepfi extensions are S 3 and
S 3 − {{0, 1, b} : b ∈ N− {0, 1}} ∪ {0, 1}.

Recall from Example 5.5.3, that S 3 − {{0, a, b} : a, b ∈ N} has uncount-
ably many maximal nepfi extensions. What is different in S 3 − {{0, a, b} :
a, b ∈ N} that it allows for uncountably many maximal nepfi extensions, whereas
S 3 − {{0, 1, b} : b ∈ N} does not? The difference lies in the elements that are
fixed and the ones that remain “free” in the triples that are discarded from the
families. Whenever we fix two elements in the triples we are preventing the com-
binatorics to act out, since with only one “free” element in the triple, there is not
much that combinatorics can do. However, with two non-fixed entries we can build
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uncountably many nepfi extensions just as in Example 5.5.3. The following propo-
sition generalizes what happens in Example 5.5.28, namely families obtained by
removing from S 3 finitely many families of the form {{k,m, a} : a ∈ N−{k,m}}
for k and m fixed.

5.5.29. Proposition. The family S 3−
⋃N
i=1{{ki,mi, a} : a ∈ N−{ki,mi}} for

some N ∈ N+ and some pairs {ki,mi} ∈ S 2 has finitely many nepfi maximal
extensions.

Proof:
Let S := S 3 −

⋃N
i=1{{ki,mi, a} : a ∈ N − {ki,mi}}. Consider N families of

the form {{ki,mi, a} : a ∈ N − {ki,mi}} for some N ∈ N+ such that for any
i ∈ {1, 2, . . . , N}, S ∩ {{ki,mi, a} : a ∈ N − {ki,mi}} = ∅. First we will prove
that we cannot add any other n-tuple with n ≥ 5 to S . For this it suffices to
see that we can only add finitely many quadruples, namely {ki,mi, kj,mj} for
any i, j ∈ {1, 2, . . . , N}. This is because if we could add an n-tuple for n ≥ 5,
then we could add any quadruple of elements in the tuple. Let us prove it then
by contradiction, suppose there is a quadruple {a, b, c, d} 6= {ki,mi, kj,mj} for
any i, j ∈ {1, 2, . . . , N} and such quadruple can extend S and preserve the anti-
chain condition, i.e., the extension is nepfi. It is sufficient to verify the worst case
scenario in which it differs in just one element from all the admissible quadruples
{ki,mi, kj,mj}. Suppose a 6= k1, k2, . . . , kN . It suffices to verify the case for a 6= k1

because the others follows similarly. Note that {a, b, c, d} = {a,m1, k2,m2}. Nec-
essarily, the triple {a,m1, k2} ∈ S . This is because otherwise the 3-cluster
TRIP ({{a,m1, k2}, {k1,m1, k2, }}) ⊆ S 3 − S , which contradicts our assump-
tion on S . Thus, since {a,m1, k2} ∈ S , we cannot use {a,m1, k2,m2} to extend
S and remain nepfi. 2

The result above does not apply when we consider infinitely many distinctive
pairs {ki,mi} such that S ∩ {{ki,mi, a} : a ∈ N − {ki,mi}} = ∅. We will see
later on in this section, that in the case of infinitely many pairs there are un-
countably many maximal nepfi extensions. The following proposition generalizes
what happens in examples 5.5.3 and 5.5.28.

5.5.30. Proposition. Let n ≥ 3 and S n the corresponding family. Let {a1, . . . , ak}
be a fixed k-tuple of elements in N for some 1 ≤ k ≤ n− 1.

1. If 1 ≤ k ≤ n− 2, the family

S n − {{a1, . . . , ak, xk+1, . . . , xn} ∈ S n : xi ∈ N− {a1, . . . , ak}}

has uncountably many maximal nepfi extensions.
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2. If k = n− 1 and N ∈ N+, the family

S n −
N⋃
i=1

{{ai,1, . . . , ai,n−1, b} ∈ S n : b ∈ N− {ai,1, . . . , ai,n−1}},

has finitely many maximal nepfi extensions.

Proof:
For (1): it will be shown when we prove Proposition 5.5.31. For (2): it will be
shown when we prove Proposition 5.5.33-5.5.34. 2

As we mentioned before, the proof for the generalization of Theorem 5.5.22
needs to be treated carefully since there are cases that do not correspond exactly
to the ones for the subfamilies of S 2. In the proof of Proposition 5.5.31 with
respect to a subfamily of S 3 (corresponding to the generalisation of Proposition
5.5.16), there are more cases of a similar kind in which the subfamily has un-
countably many maximal extensions. The cases (1) to (3) in Proposition 5.5.31,
correspond to the cases (1) to (3) in Proposition 5.5.16, case (4) only appears
for subfamilies of S n when n ≥ 3. The general proof for S n when n ≥ 3 is
basically the same as the proof for S 3. Therefore, here we present the proofs for
subfamilies of S 3 only.

5.5.31. Proposition. Let S ⊆ S n. If S satisfies one of the following cases:

1. S n −S contains an infinite n-cluster, or

2. there is an infinite sequence of finite n-clusters {G1,G2, . . .} such that (
⋃∞
i=1 Gi)

⊆ S n −S , or

3. for infinitely many (n− 1)-tuples {a1, . . . , an−1} ∈ S n−1,
{{a1, . . . , an−1, x} ∈ S n : x ∈ N− {a1, . . . , an−1}} ∩S = ∅, or

4. for some k ∈ N+ such that k ≤ n− 2 and some k-tuple {a1, . . . , ak} ∈ S k,
{{a1, . . . , ak, xk+1, . . . , xn} ∈ S n : x ∈ N− {a1, . . . , ak}} ∩S = ∅,

then S has uncountably many maximal nepfi extensions.

Proof:
The proof is with respect to S ⊆ S 3, using a similar notation as the one used
in the proof for subfamilies of S 2.

For (1.) and (2.), the proofs go exactly as their S 2 counterparts, i.e., as in
the proof of Proposition 5.5.16.

For (3.). Suppose there are infinitely many families of the form {{ki,mi, a} :
a ∈ N−{ki,mi}} such that

⋃∞
i=1{{ki,mi, a} : a ∈ N−{ki,mi}} ⊆ S 3−S . Thus

we have an infinite set of the form {k1,m1, k2,m2, . . . , kn,mn, . . .}. Note that
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there is no difference between ki and mi, but we distinguish them since they
are paired together and this will be relevant for our proof. For each quadruple
{ki,mi, kj,mj} ⊆ {k1,m1, k2,m2, . . . , kn,mn, . . .}, we can maximally extend S
with either the pairs {ki,mi}, {kj,mj} or with {ki,mi, kj,mj} itself and with the
rest of the pairs {kl,ml} 6⊆ {ki,mi, kj,mj} such that {kl,ml} /∈ S . Since there
are countably many quadruples of this form, by a straightforward combinatorial
argument we obtain uncountably many maximal extensions. Note that whether
the families {{ki,mi, a} : a ∈ N − {ki,mi}} are disjoint or not does not matter
for the argument of the proof. For the worst case scenario, suppose they all share
the element {0} i.e., 0 = ki for every i ∈ N+. Then there will still be infinitely
many m’s which are different from each other. Therefore we will have that for
every triple {0,m1,m2} we can add either {0,m1,m2} or {0,m1}, {0,m2} and we
again obtain uncountably many maximal nepfi extensions.

For (4.), the proof follows the same procedure as the one presented in Example
5.5.3 when there is only one k ∈ N such that {(k, a, b) : a, b ∈ N − {k}} ∩S =
∅. This is because, for every non-empty B ⊆ N, we can add to S the anti-chain

{{k, b} : b ∈ B − {k}} ∪ {{k, c1, c2} : ci ∈ N− (B ∪ {k})}

and the resulting extension is a maximal nepfi family. For the case that for more
than one k ∈ N, {(k, a, b) : a, b ∈ N−{k}} ∩S = ∅, the proof goes exactly as its
S 2 counterpart, i.e., as in the proof of Proposition 5.5.16.

In all these cases, S has uncountably many maximal extensions. 2

The following results, Proposition 5.5.35 and Proposition 5.5.36, are the suit-
able generalisations of Proposition 5.5.18 and Proposition 5.5.21 respectively. Lemma
5.5.32 and Propositions 5.5.32-5.5.33 will be useful for proving Proposition 5.5.34
which will be strengthened later on in Proposition 5.5.36. Then, we will address
the appropriate notion of a unrelated set of n-tuples outside of a certain family
S ⊆ S n concerning Proposition 5.5.35.

5.5.32. Lemma. Let a family S ⊆ S n, S ′ a nepfi extension of S and X =
S n −S a set of n-tuples with the following properties:

1. X does not contain any n-cluster,

2. X does not contain any family of the form {{a1, . . . , ak, xk+1, . . . , xn} ∈
S n : x ∈ N− {a1, . . . , ak}} for a k-tuple {a1, . . . , ak} with 1 ≤ k ≤ n− 2,

3. for just a finite set P := {{ai,1, . . . , ai,n−1} : 1 ≤ i ≤ N} with (n− 1)-tuples
{ai,1, . . . , ai,n−1} ∈ S n−1,
Ai := {{ai,1, . . . , ai,n−1, x} ∈ S n : x ∈ N − {ai,1, . . . , ai,n−1}} ⊆ X , i.e.,
Ai ∩S = ∅,

then every Y ∈ S ′ is such that Y ∈ X , Y ∈ P or Y is an m-tuple in NUM(P)
with m ≥ n− 1.
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Proof:
The proof is with respect to S ⊆ S 3, using a notation similar to the one in the
proof for subfamilies of S 2. Let N ∈ N+ be the number of pairs {k,m} such that
the families are as described in condition (3.). Let P = {{k1,m1}, . . . , {kN ,mN}}
be the set of those pairs and KMi := {{ki,mi, z} : z ∈ N − {ki,mi}} their
respective associated families. Note that for every i ∈ {1, . . . , N}, KMi∩S = ∅.

The proof follows by a reasoning similar to the one in the proof of Proposition
5.5.18. Let Y ⊆ N be such that S ′ := S ∪ Y is an anti-chain, we will show that
Y can only be a triple in X (so it can be a triple in

⋃N
i=1KMi), a pair in P or an

m-tuple with m ≥ 2 formed by elements in NUM(P) (note that this excludes the
singletons). We will show that adding any other set Y (that is not as described
above) to S will impair the anti-chain condition. In what follows, when we say
that “we cannot add Y to S ” we mean that adding Y to S will impair the
anti-chain condition. Suppose Y is the singleton {a} for an arbitrary a ∈ N. By
the condition (2.) on X , we have {{a, y, z} : y, z ∈ N−{a}}∩S 6= ∅. Thus there
is a triple of the form {a, y, z} contained in S and therefore Y cannot be added
to S .

Suppose Y is a pair {a, b} /∈ P . Then {{a, b, z} : z ∈ N{a, b}} ∩S 6= ∅. Thus
there is a triple {a, b, z} ∈ S such that {a, b} ⊆ {a, b, z}, so we cannot add Y to
S .

Suppose Y is a pair such that Y 6⊆ NUM(P). W.l.o.g. suppose Y = {a, k1}
with a /∈ NUM(P). Note that the triple {k1,m1, a} ∈ KM1 and {a, k1} ⊆
{k1,m1, a}. Since {a, k1} /∈ P , it follows that {{a, k1, z} : z ∈ N−{a, k1}}∩S 6=
∅. Thus by the definition of S there must be a triple of the form {a, k1, x}
contained in S for some x ∈ N. Therefore, we cannot add Y to S .

If Y is a triple not in X then, by definition of S , Y was already in S . Sup-
pose Y is a quadruple with at least one element that is not an element in
NUM(P). First consider Y = {a, k1, k2, k3} such that a /∈ NUM(P), k1, k2, k3 ∈
NUM(P) but the pairs formed by k1, k2, k3 are not in P , i.e., for instance
{k1, k2} /∈ P . By the condition (1.) on X , the 3-cluster of elements in Y ,
i.e., G3(Y ), is not contained in X . Thus, there is a triple T ∈ G3(Y ) such that
T /∈ X . Since S = S 3 − X , we have T ∈ S . Since T ⊆ Y , we cannot add Y
to S . Now we consider the case Y = {a, k1,m1, k2} when a /∈ NUM(P) and
{k1,m1} ∈ P . By the condition (1.) on X , X has no 3-clusters, and so the 3-
cluster formed by elements in Y , G3(Y ), is such that G3(Y ) ∩S 6= ∅. So there
must be a triple T ⊆ Y such that T ∈ S . Therefore, we cannot add Y to S . By
a similar argument, Y cannot be an m-tuple formed by some elements outside of
NUM(P), for any m ≥ 4. Thus Y ∈ X or Y ∈ P or Y is an m-tuple with all
elements in NUM(P) and m ≥ 2. 2

Some additional notation will be useful for the next result. Consider the set
P := {{ai,1, . . . , ai,n−1} : 1 ≤ i ≤ N} defined in clause (3.) from the proposition
above. Given a subsetQ ⊆ P , IQ := {1 ≤ i ≤ N : {ai,1, . . . , ai,n−1} ∈ Q}. We can
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generalize this notion for enumerations of languages of the form V := {V1, V2, . . .},
i.e., given U ⊆ V , IU := {i : Vi ∈ U}.

5.5.33. Proposition. If S ⊆ S n, X = S n − S are as in Lemma 5.5.32,
and if Smax is a maximal nepfi extension of S , then Smax −S has one of the
following forms,

1. X , or

2. X −
⋃
j∈IQ∪IR Aj ∪Q ∪ C

with Q ∪ R ⊆ P such that Q ∩ R = ∅ and C ∈ P(NUM(R)) a maximal
anti-chain without singletons.

Proof:
The proof is with respect to S ⊆ S 3. Let P = {{k1,m1}, . . . , {kN ,mN}} be
the set of pairs as described in Lemma 5.5.32 and KMi := {{ki,mi, z} : z ∈
N−{ki,mi}} their respective associated families. Let Smax be any maximal nepfi
extension of S . First note that by reasoning similar to the one in the proof of
Proposition 5.5.29, there are only finitely many m-tuples formed by elements
in NUM(P) and therefore there are only finitely many maximal anti-chains in
P(NUM(P)). By Proposition 5.5.32, if Y ∈ Smax−S then Y ∈ X , Y ∈ P or Y
is an m-tuple with all elements in NUM(P) and m ≥ 2. Thus, by a combinatorial
argument and since Smax is a maximal anti-chain, it is easy to see that Smax−S
can only have one of the following forms: X , or

X −
⋃
j∈IQ

KMj ∪Q

with Q ⊆ P and R = ∅, or

X −
⋃
j∈IR

KMj ∪ C

with R ⊆ P , Q = ∅ and C ∈ P(NUM(R)) a maximal anti-chain without single-
tons, or a combination of both, i.e., an anti-chain of the form

X −
⋃

j∈IQ∪IR

KMj ∪Q ∪ C

with Q∪R ⊆ P such that Q∩R = ∅ and C ∈ P(NUM(R)) a maximal anti-chain
without singletons. 2

5.5.34. Proposition. If S ⊆ S n and X = S n −S are as in Lemma 5.5.32,
S has only finitely many maximal nepfi extensions.
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Proof:
Follows straightforwardly by Proposition 5.5.33 since there are only finitely many
such anti-chains and therefore finitely many ways to construct a maximal nepfi
extension of S . 2

Let S ⊆ S n and let X be as in Lemma 5.5.32. Consider the set X ′ =
X −

⋃
j∈IP Aj. Note that such an X ′ not only satisfies the conditions in Lemma

5.5.32 but also that for no (n− 1)-tuples {ai,1, . . . , ai,n−1} ∈ S n−1, it is the case
that Ai := {{ai,1, . . . , ai,n−1, x} ∈ S n : x ∈ N−{ai,1, . . . , ai,n−1}} ⊆ X . In such a
case, we say that X ′ is the maximal unrelated set of n-tuples outside of S .

5.5.35. Proposition. Let S ⊆ S n and let X = S n − S be the maximal
unrelated set of n-tuples outside of S . Any maximal nepfi extension of S contains
X .

Proof:
Follows by Proposition 5.5.33. 2

5.5.36. Proposition. Let S ⊆ S n and let there be no infinite n-cluster in
S n −S . If S satisfies the following,

1. there are at most finitely many finite n-clusters G := G1, . . . ,GN such that
(
⋃N
i=1 Gi) ⊆ S n −S ,

2. for at most finitely many (n− 1)-tuples {ai,1, . . . , ai,n−1} ∈ S n−1 such that
Ai := {{ai,1, . . . , ai,n−1, x} ∈ S n : x ∈ N − {ai,1, . . . , ai,n−1}} is that Ai ∩
S = ∅,

3. for all k ∈ N+ such that k ≤ n− 2 and all k-tuples {a1, . . . , ak} ∈ S k it is
the case that
{{a1, . . . , ak, xk+1, . . . , xn} ∈ S n : x ∈ N− {a1, . . . , ak}} ∩S 6= ∅, and

4. X = S n − (S ∪
⋃

G ∪
⋃
Ai) is the maximal unrelated set of pairs outside

S ∪
⋃

G ∪
⋃
Ai,

then S has finitely many maximal nepfi extensions.

Proof:
The proof is with respect to S ⊆ S 3, using a notation similar to the one in the
proof for subfamilies of S 2. Let S ⊆ S 3 be such that there are only finitely many
maximal 3-clusters G1, . . . ,GN with (

⋃N
i=1 Gi) ⊆ (S 3−S ). It is sufficient to show

the proposition for the case that there are two pairs {k1,m1} and {k2,m2} such
that KMi := {{ki,mi, a} : a ∈ N − {k,m}} ⊆ S 3 −S for i ∈ {1, 2}. W.l.o.g
consider the family S = S 3 − ((

⋃N
i=1 Gi) ∪ KM1 ∪ KM2 ∪ X ) where X =



182 Chapter 5. Structural differences between pfi & cfi

S 3− (S ∪
⋃N
i=1 Gi∪KM1∪KM2) is the maximal unrelated set of triples outside

of S ∪
⋃N
i=1 Gi ∪ KM1 ∪ KM2. We want to show that there are only finitely

many maximal nepfi extensions of S . Note that by condition (3.), for all k ∈ N,
{{k, a, b} : a, b ∈ N− {k}} ∩S 6= ∅.

In what follows, when we say “we can add Y to S ” we mean that we can add
Y to S without impairing the anti-chain condition (nepfi condition). Similarly,
when we say “we cannot add Y to S ” we mean that adding Y to S will impair
the anti-chain condition.

First we will prove that we can only add finitely many n-tuples with n ≥ 4
to S . For this, it suffices to see that we can only add finitely many quadruples
different from {k1,m1, k2,m2}. This is because if we can add an n-tuple for n ≥
4, then we can add any quadruple of elements in the tuple. Let us prove it
then by contradiction. Suppose there are infinitely many distinct quadruples
{ai, bi, ci, di} 6= {k1,m1, k2,m2} for i ∈ N which can be added to S . It is sufficient
to check the case in which they differ from {k1,m1, k2,m2} in one element only.

W.l.o.g. suppose ai 6= k1 for every i ∈ N and so {ai, bi, ci, di} = {ai,m1, k2,m2}.
Since we are considering them to be distinct from one another, we have that for ev-
ery i, j ∈ N, {ai,m1, k2,m2} 6= {aj,m1, k2,m2}. Note that either {ai,m1, k2} ∈ S
or {ai,m1, k2} /∈ S . The former cannot be the case since then we cannot add
{ai,m1, k2,m2} to S . So it must be the case that {ai,m1, k2} /∈ S . Since also
{k1,m1, k2, } /∈ S , there is a 3-cluster TRIP ({{ai,m1, k2}, {k1,m1, k2, }}) =
TRIP (NUM({ai,m1, k2, k1})) ⊆ S 3 −S . Thus for every i ∈ N,

TRIP ({{ai,m1, k2}, {k1,m1, k2, }}) ⊆ Gj

for some j ∈ {1, . . . , N}. It follows that there are infinitely many triples of the
form {ai,m1, k2} in NUM(

⋃N
i=1 Gi) which cannot be since NUM(

⋃N
i=1 Gi) con-

tains only finitely many triples. Thus we can only add finitely many quadruples
to S , i.e., finitely many n-tuples.

Now note that we can only add triples in X ∪ KM1 ∪ KM2 (this includes
the triples formed by elements in {k1,m1, k2,m2}), and the ones formed by ele-
ments in NUM(

⋃N
i=1 Gi). Note also that we can only add the pairs {k1,m1} and

{k2,m2} since any other pair {a, b} will be such that the family AB = {{a, b, x} :
x ∈ N−{a, b}}∩S 6= ∅. Thus, adding {a, b} impairs the anti-chain condition for
the extension. Similarly, we cannot add any singleton because of our initial as-
sumption, namely that for any k ∈ N, {k, x, y : x, y ∈ N−{k}}∩S 6= ∅. As in the
case of S 2, for any maximal nepfi extension Sm of S and any A ∈ Sm−S ′ we
have that either A ⊆ NUM(

⋃N
i=1 Gi), A ⊆ {k1,m1, k2,m2}, A ∈ KM1, A ∈ KM2

or A ∈ X .
By an argument similar to the one used in the proof of Proposition 5.5.33 (and

also in Proposition 5.5.19 and in Corollary 5.5.20), any maximal nepfi extension
of S is characterized by a maximal antichain having one of the following forms

C ∪ X
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with C a maximal anti-chain in P(NUM(
⋃N
i=1 Gi) ∪ P({k1,m1, k2,m2}),

D ∪KM1 ∪ KM2 ∪ X

with D a maximal anti-chain in P(NUM(
⋃N
i=1 Gi),

B ∪ KM1 ∪ X or H ∪KM2 ∪ X

with B a maximal anti-chain in P(NUM(
⋃N
i=1 Gi) ∪ P({k1,m1}) and H a maxi-

mal anti-chain in P(NUM(
⋃N
i=1 Gi) ∪ P({k2,m2}). There are only finitely many

such anti-chains. Thus S can only have finitely many nepfi extensions. 2

We then have the following generalisation of Theorem 5.5.22.

5.5.37. Theorem. Let n ∈ N+. Any subfamily S of the family of all n-tuples
S n has either finitely many maximal nepfi extensions or uncountably many.

Proof:
For n = 1 the proof follows from Proposition 5.5.7. For n = 2 it follows from The-
orem 5.5.22. For n ≥ 3 the proof follows by the fact that we cover all the possible
cases for subfamilies of n-tuples with n ≥ 3 in Proposition 5.5.23, Proposition
5.5.27, Proposition 5.5.30, Proposition 5.5.31, Proposition 5.5.34, and Proposi-
tion 5.5.36. 2

5.5.5 Families with pairs and triples

In this section we study how many maximal nepfi extensions a family S ⊆
S 2 ∪ S 3 has. In agreement with our general conjecture (but not trivially so),
such a family has either finitely many or uncountably many maximal nepfi exten-
sions. The theorems we have for subfamilies of S n do not apply straightforwardly
to subfamilies of S 2 ∪ S 3 since the combinatorics are not as simple. Thus we
need to study these families more carefully.

In what follows we will always consider families of pairs and triples that have
non-empty intersection with S 2 and also with S 3, i.e., S ∩S 2 6= ∅ and S ∩
S 3 6= ∅. This is because the cases when S ∩ S 2 = ∅ are reduced to cases
of families of only triples. Similarly for when S ∩ S 3 = ∅, these families are
subfamilies of S 2 (already analyzed in Section 5.5.4).

Our general strategy for studying such families, is to start by taking a maximal
family S ⊆ S 2 ∪ S 3 and to consider different subfamilies of S that result
from taking out sets of languages (either pairs or triples). Then we analyze how
many maximal extensions we can obtain from this resulting subfamily. As an
illustration, consider the following example.
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5.5.38. Example. Take the family S = E2∪O3∪E1O2 where E2 = {{e, f} : e 6=
f ∈ EV EN}, O3 = {{o, p, q} : o 6= p 6= q ∈ ODD} and E1O2 = {{e, o, p} : e ∈
EV EN and o 6= p ∈ ODD}. This family is clearly maximal nepfi. Now consider
the subfamily S ′ = S −{{2, 4}} and the subfamily S ′′ = S −{{2, 4}, {6, 8}}. It
is easy to see that S ′ has only two maximal nepfi extensions, namely S and
S ′ ∪ {{2, 4, o} : o ∈ ODD}. And S ′′ has four maximal nepfi entensions: S ′′ ∪
{{2, 4, o} : o ∈ ODD} ∪ {{6, 8}}, S ′′ ∪ {{2, 4}} ∪ {{6, 8, o} : o ∈ ODD}, S ′′ ∪
{{2, 4, o} : o ∈ ODD} ∪ {{6, 8, o} : o ∈ ODD} and S itself. Thus, if we take
out a finitely number of pairs from S , we regain finitely many maximal nepfi
extensions.

An important question comes up concerning the strategy described above,
namely if this strategy is enough to treat all the cases for families S ′ ⊆ S 2 ∪
S 3. The answer to this question is positive if we find a way to characterize
maximal families and then use these to compute any family S ′ ⊆ S 2∪S 3. More
concretely, to compute any family S ′ from a maximal nepfi family S ⊆ S 2∪S 3

by taking out certain languages. Surprisingly, we manage to do such thing, which
was extremely useful for obtaining a simple analysis for such families. Before
presenting the full description of the aforementioned characterization, we fix some
notation and present an example.

Given a family S , we denote Sp and St to be the sets of pairs and triples
respectively of S .

Let Sp be a set of pairs. A first try to obtain a maximal family of pairs and
triples, is to extend Sp with the following anti-chain of triples St = {{a, b, c} :
{a, b}, {b, c}, {a, c} /∈ Sp}, i.e., {a, b, c} ∈ St iff {a, b}, {b, c}, {a, c} /∈ Sp. The
resulting family S seems like a good candidate for a generic maximal nepfi
family of S 2 ∪S 3. Actually, such a family S = Sp ∪St is characteristic for a
generic description of a nepfi family of S 2 ∪S 3, but to obtain maximality, we
need more. Example 5.5.39 illustrates that a family with Sp and St as we just
described is not always maximal. It also illustrates how we can extend the family
S = Sp ∪St with pairs so that the resulting family is indeed maximal nepfi.

5.5.39. Example. Let Sp be the following set of pairs, {0, 1} /∈ Sp, {0, n} ∈ Sp

for all n > 1 and {1,m} ∈ Sp for all m > 1. Consider the family S = Sp ∪St

such that St = {{a, b, c} : {a, b}, {b, c}, {a, c} /∈ Sp}. Note that any triple of the
form {0, 1, n} is not in St, since {0, n} or {1, n} is in Sp and this will impair
the anti-chain condition. But S is not maximal nepfi because we can add the
pair {0, 1} and remain nepfi, i.e., S ∪ {{0, 1}} is nepfi. Moreover, S ∪ {{0, 1}}
is maximal nepfi.

We can characterize all maximal nepfi families of triples and pairs as described
in Proposition 5.5.40. An important fact to remember is that, in this section, we
only consider families that contain both pairs and triples, i.e., Sp 6= ∅ and St 6= ∅
(otherwise this characterization does not hold).
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5.5.40. Proposition. Let S ′
p be any set of pairs. A family of the form S ′ =

S ′
p ∪ S ′

t ⊆ S 2 ∪ S 3 is nepfi iff S ′
t ⊆ St := {{a, b, c} : {a, b}, {b, c}, {a, c} /∈

S ′
p}. Moreover, there is a maximal nepfi extension S = Sp ∪ St ⊇ S ′ such

that St := {{a, b, c} : {a, b}, {b, c}, {a, c} /∈ S ′
p} and Sp := {{x, y} : {x, y, z} /∈

St for any z ∈ N}.

Proof:
The proof for the first part of the proposition is straightforward since S ′

p and
S ′
t ⊆ {{a, b, c} : {a, b}, {b, c}, {a, c} /∈ Sp} form clearly an anti-chain and so

S ′
p∪S ′

t is nepfi. We will now see that S is maximal nepfi when St := {{a, b, c} :
{a, b}, {b, c}, {a, c} /∈ S ′

p} and Sp := {{x, y} : {x, y, z} /∈ St for any z ∈
N}. First note that we can write Sp also in terms of S ′

p. For this, note that
we can also describe the set St := {{a, b, c} : {a, b}, {b, c}, {a, c} /∈ S ′

p} as

St = {{a, b, c} : ∀{x, y} ∈ S ′
p, {x, y} 6⊆ {a, b, c}}.

So,
{a, b, c} /∈ St iff ¬(∀{x, y} ∈ S ′

p, {x, y} 6⊆ {a, b, c}).
Therefore, we can also write the set Sp := {{x, y} : {x, y, z} /∈ St for any z ∈

N} as
Sp = {{x, y} : ∀c ∈ N ¬(∀{x, y} ∈ S ′

p, {x, y} 6⊆ {a, b, c})}.
This way, both sets Sp and St are described in terms of S ′

p. Clearly S is an
anti-chain. Since we exhausted in St all the triples that we can add to S ′

p without
impairing the anti-chain condition, we cannot add any other triple to S ′

p∪St. Sim-
ilarly, we cannot add any more pairs to S ′

p than the ones in Sp ⊇ S ′
p since, by

construction, we exhausted them in Sp. Adding another pair not in Sp will im-
pair the anti-chain condition for the resulting extension S = Sp∪St. It is easy to
see that adding singletons or any larger set than a triple will also impair the anti-
chain condition. Therefore we cannot add anything more to the family Sp ∪St

and thus it is maximal nepfi. 2

Note that by Theorem 5.4.4 we know that any family S ′ := S ′
p ∪S ′

t has a
maximal nepfi extension. It follows from Proposition 5.5.40 that S ′ has a maximal
nepfi extension that is also of only pairs and triples.

5.5.41. Corollary. Any nepfi family of only pairs and triples has a maximal
nepfi extension of pairs and tripels, i.e., has a maximal nepfi extension of the
form S := Sp ∪St.

Proof:
Let S ′ := S ′

p∪S ′
t be any family of pairs and triples. By Proposition 5.5.40, S ′

t ⊆
{{a, b, c} : {a, b}, {b, c}, {a, c} /∈ S ′

p}. Take St := {{a, b, c} : {a, b}, {b, c}, {a, c} /∈
S ′
p} and let Sp be such that S ′

p ⊆ Sp and satisfies

{x, y} ∈ Sp iff {x, y, z} /∈ St for any z ∈ N.
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By Proposition 5.5.40, the family S := Sp ∪St ⊇ S ′ is maximal nepfi. 2

We now proceed with our case-by-case analysis to show that every family of
pairs and triples has either finitely many or uncountably many maximal nepfi
extensions. The procedure we follow simulates the one we did for subfamilies of
S 2 (and subfamilies of S n). We will first see what happens to families that result
from taking out finitely many pairs (or finitely many triples) from a maximal nepfi
family S = Sp ∪St. Then we will address, simultaneously, families that result
when we take out infinitely many languages and the rest of families that result
from taking out finitely many ones from S = Sp∪St. First consider the following
useful lemmas.

Let Yp be the set of pairs obtained from some triple in St, i.e., Yp := {{b, c} :
{y, b, c} ∈ St for some y ∈ N}.

5.5.42. Lemma. Let S := Sp ∪St be a nepfi family.

1. If Sp has finitely many pairs, there are infinitely many triples that are not
contained in St.

2. If Sp has infinitely many pairs, there are infinitely many triples that are
not contained in St.

3. If St has infinitely many triples, there are infinitely many pairs that are not
contained in Sp.

4. If S := Sp ∪St is a maximal nepfi and St has finitely many triples, there
are only finitely many pairs that are not contained in Sp.

Proof:

1. Take for instance Sp := {{a, b}}, the set of triples {{a, b, y} : y ∈ N−{a, b}}
is infinite and {{a, b, y} : y ∈ N− {a, b}} ∩St = ∅.

2. Follows straightforwardly from case (1.).

3. For every triple {x, y, z} ∈ St, the pairs {x, y}, {x, z}, {y, z} are not in
Sp. Since St is infinite, Yp is also infinite. Thus we obtain infinitely many
pairs that are not in Sp.

4. Since there are only finitely many triples in St, we obtain only finitely many
pairs in Yp and these pairs that are not in Sp. By maximality of S those
are the only pairs that are not in Sp.

2
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5.5.43. Lemma. Let S := Sp∪St be a maximal nepfi family. For every x ∈ N,
there is an infinite subfamily Sx ⊆ S such that all languages in Sx contain x.

Proof:
Let x ∈ N. Using maximality of S with respect to nepfi, we will construct an
infinite subfamily Sx ⊆ S such that any language in Sx contains x. For this,
first note that either {x, y1} ∈ Sp or {x, y1, z1} ∈ St (but not both since S is
an antichain) for some y1 6= z1 ∈ N such that x 6= y1 and x 6= z1. Otherwise, we
could add the singleton {x} to S , contradicting that S is maximal nepfi. W.l.o.g
suppose {x, y1} ∈ Sp. Now let y2 ∈ N such that y2 /∈ {x, y1}, by maximality of
S we have that either {x, y2} ∈ Sp or {x, y2, z2} ∈ St (but not both) such
that y2 6= z2 ∈ N and z2 /∈ {x, y1}. Otherwise, we could add either {x, y2} or
{x, y2, z2} to S without impairing the anti-chain condition, contradicting that
S is maximal nepfi. W.l.o.g suppose {x, y2, z2} ∈ St.

By an inductive argument, we can implement the previous procedure for any
ym ∈ N with m ≥ n and ym /∈ {x, y1, y2, z2, . . . , ym}, such that either {x, ym+1} ∈
Sp or {x, ym+1, zm+1} ∈ St with ym+1 6= zm+1 and zm+1 /∈ {x, y1, y2, z2, . . . , ym}.
W.l.o.g suppose {x, ym+1} ∈ Sp.

Therefore, Sx := {{x, y1}, {x, y2, z2}, . . . , {x, ym+1}, . . .} is the desired sub-
family. 2

5.5.44. Proposition. Let S := Sp∪St be a maximal nepfi family and {a, b} ∈
Sp. The family S ′ := S − {{a, b}} has two maximal nepfi extensions.

Proof:
Consider the family of triples that contains the pair {a, b}, namelyAB := {{a, b, y} :
{a, b}, {b, y}, {a, y} /∈ Sp}. By maximality and Lemma 5.5.43, it is easy to see
that adding any set that is not in {{a, b}} ∪AB to S ′ will impair the anti-chain
condition. Clearly the only two maximal extensions of S ′ := S − {{a, b}} are
S and S ′ ∪ AB. 2

5.5.45. Proposition. Let S := Sp∪St be a maximal nepfi family and {a, b, c} ∈
St. The family S ′ := S − {{a, b, c}} has two maximal nepfi extensions.

Proof:
By maximality and Lemma 5.5.43, it is easy to see that adding any set that
is not in {{a, b, c}} ∪ PAIRS({a, b, c}) to S ′ will violate the anti-chain condi-
tion. Thus, the only two maximal extensions of S ′ := S −{{a, b, c}} are S and
S ′ ∪ PAIRS({a, b, c}). 2
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5.5.46. Lemma. Let S := Sp ∪St be a maximal nepfi family and let {a, b} ∈
Sp. For any y ∈ N, either {a, y} ∈ Sp or {a, y, z} ∈ St for some z ∈ N. Simi-
larly, either {b, y} ∈ Sp or {b, y, z} ∈ St for some z ∈ N.

Proof:
Let S := Sp ∪ St be a maximal nepfi family and let {a, b} ∈ Sp. Let y ∈ N
and towards a contradiction, suppose {a, y} /∈ Sp and {a, y, z} /∈ St for all
z ∈ N. Then we can extend S with the pair {a, y} or with triples of the form
{a, y, z} with z ∈ N contradicting nepfi maximality of S . Thus, either {a, y} ∈ Sp

or {a, y, z} ∈ St for some z ∈ N. Follows similarly for {b, y}, {b, y, z}. 2

5.5.47. Proposition. Let S := Sp ∪St be a maximal nepfi family. Let F :=
{{a1, b1}, . . . , {an, bn}} ⊆ Sp be a finite set of pairs (analogously, F be a finite set
of triples contained in St). The family S ′ = S − F has finitely many maximal
nepfi extensions.

Proof:
Let F := {{a1, b1}, . . . , {an, bn}} ⊆ Sp be a finite set of pairs. We investigate
which languages we can add to S ′ = S − F without impairing the anti-chain
condition. First note that by Lemma 5.5.46, we can add to S ′ a triple of the
form {ai, bi, y} only if {ai, y}, {bi, y} are not in Sp. We know by Proposition
5.5.44, that the only way to extend S − {{a, b}} for any {a, b} ∈ F and obtain
a maximal anti-chain is by adding {a, b} or adding the whole family AB :=
{{a, b, y} : {a, b}, {b, y}, {a, y} /∈ Sp}. Thus, by a similar argument, it is easy to
see that we can only add to S −F combinations of pairs in F and families of the
form ABi := {{ai, bi, y} : {ai, bi} ∈ F and {b, y}, {a, y} /∈ Sp} without impairing
the anti-chain condition. Thus by a combinatorial argument, S − F has only
finitely many maximal nepfi extensions.

To illustrate the strategy of the proof for the case when F ⊆ Sp, here we
just show it for a set of two distinctive pairs F = {{a, b}, {c, d}}. Since S is an
anti-chain, we have that AB := {{a, b, y} : {a, b}, {b, y}, {a, y} /∈ Sp} ∩St = ∅
and CD := {{c, d, y} : {c, d}, {c, y}, {d, y} /∈ Sp} ∩ St = ∅. The only maximal
anti-chain extensions of S −F are the following four families: S ,

(S −F) ∪ {{a, b}} ∪ CD,

(S −F) ∪ {{c, d}} ∪ AB,

and (S −F) ∪ AB ∪ CD. To see this, we prove the following claim:

Claim: let Z ⊆ N be not a language in S ′ such that Z /∈ F , Z /∈ AB and
Z /∈ CD, then (S −F) ∪ {Z} is not an anti-chain.

First note that if Z is a singleton, by maximality of S and Lemma 5.5.43,
there must be a pair or a triple in (S −F ) that contains Z. Thus, the anti-chain
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condition would be impaired if we add Z. If Z is a pair not contained in F , by
maximality we have that either Z ∈ Sp − F or there is a triple T ∈ St such
that Z ⊆ T . In both cases the anti-chain condition would be impaired if we add
Z. If Z is a triple so that Z /∈ AB ∪CD, by maximality of S there is a pair P in
Sp − F such that P ⊆ Z. Thus, the anti-chain condition does not hold or Z is
already in St contradicting our assumption about Z.

Suppose Z = {z1, z2, z3, z4} and let G3(Z) be the smallest 3-cluster with el-
ements in Z. We have two cases: 1) there is x ∈ Z such that x /∈ {a, b, c, d},
and 2) Z = {a, b, c, d}. For case 1), suppose w.l.o.g. that Z = {a, b, c, x} with
x 6= d. Thus by maximality of S there is a triple {z1, z2, x} ∈ G3(Z) such that
either {z1, z2, x} ∈ St or PAIRS({z1, z2, x}) ∩Sp 6= ∅. In both cases there is a
language of S −F contained in Z, thus (S −F)∪{Z} is not an anti-chain. For
case 2), we have by maximality of S that, for instance, the pair {a, c} ∈ (S −F)
or a triple of the form {a, c, y} for some y ∈ N is in (S − F) (and similarly for
the pairs {b, c}, {a, d} and {b, d}). Thus (S −F) ∪ {Z} is not an anti-chain.

The argument for when F ⊆ St will follow in a similar way (noting the ar-
gument in Proposition 5.5.45) and it also suffices to showcase the argument for
when F has only two triples. 2

5.5.48. Corollary. Let S := Sp ∪ St be a maximal nepfi family and G :=
{G1, . . . ,Gn} a finite set of finite 2-clusters in Sp (analogously, a finite set of
finite 3-clusters in St). The family S ′ := S − G has finitely many maximal
extensions.

Proof:
Follows by Proposition 5.5.47 with F :=

⋃n
i=1 Gi. 2

Observe that we still need to analyse the case when F is a finite set of both
pairs and triples. Before addressing that, we need to study the case when we take
out families of the form KMi := {{ki,mi, a} : a ∈ N − {ki,mi}} ⊆ St for some
pair {ki,mi} ∈ S 2. We will discuss these cases further on, in Proposition 5.5.55
and Proposition 5.5.56.

First we will see, in the following propositions, the case when we take out
an infinite family of finite 2-clusters or an infinite 2-cluster (or an infinite family
of finite 3-clusters or an infinite 3-cluster respectively) from a maximal family
S = Sp ∪St.

5.5.49. Proposition. Let S := Sp ∪ St be a maximal nepfi family and G :=
{G1,G2 . . .} a countable family of finite disjoint 2-clusters contained in Sp (anal-
ogously, countably many finite 3-clusters in St). The family S ′ := S − G has
uncountably many maximal extensions.
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Proof:
Follows by the same reasoning as in Proposition 5.5.16 and as in case (2.) from
Proposition 5.5.31. 2

5.5.50. Proposition. Let S := Sp ∪St be a maximal nepfi family and G an
infinite 2-cluster contained in Sp (analogously, an infinite 3-cluster in St). The
family S ′ := S − G has uncountably many maximal extensions.

Proof:
The proof uses the same argument as in the proof for the case (1.) in Proposition
5.5.16. 2

Recall from Section 5.5.2 when we study families of pairs that result by remov-
ing from S 2 families of the form {{k, x} : x ∈ N−{k}} for a fixed k ∈ N. We will
now analyze similar cases for families containing pairs and triples. Given a maxi-
mal nepfi family S := Sp∪St, we want to analyze how many maximal nepfi ex-
tensions we can recover for a family of the form S ′ := S −{{k, x} : x ∈ N−{k}}
for a fixed k ∈ N. First we need the following lemma.

5.5.51. Lemma. Let S := Sp∪St be a maximal nepfi family, let Yp := {{b, c} :
{y, b, c} ∈ St for some y ∈ N} and for some fixed k ∈ N the family Kp :=
{{k, x} : x ∈ N − {k}} ⊆ Sp. Then for every B ∈ P(Yp), the family KBt :=
{{k, b, c} : {b, c} ∈ B and b, c 6= k} is such that KBt ∩St = ∅.

Proof:
First note that Yp is precisely the set of all pairs that are not in S . This
is because if P ∈ Yp then there is a triple T ∈ S such that P ⊆ T , i.e.,
Yp = S 2 −S = S 2 −Sp. Let B ∈ P(Yp) be arbitrary. Note that for every pair
{b, c} ∈ B such that b, c 6= k, the pairs {k, b}, {k, c} ∈ Kp ⊆ Sp. Therefore any
triple of the form {k, b, c} with b, c ∈ B is not in St since otherwise the anti-chain
condition will be impaired. Therefore KBt ∩St = ∅. 2

5.5.52. Proposition. Let S := Sp ∪ St be a maximal nepfi family and for
some fixed k ∈ N, Kp := {{k, x} : x ∈ N− {k}} ⊆ Sp. We obtain the following:

1. If St is infinite, the subfamily S ′ := S−Kp has uncountably many maximal
extensions.

2. If St is finite, the subfamily S ′ := S − Kp has finitely many maximal
extensions.

Proof:
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1. Since St is infinite, by Lemma 5.5.42 we have infinitely many pairs in
Yp := {{b, c} : {y, b, c} ∈ St for some y ∈ N} that are not in Sp. Thus,
we have uncountably many sets B ∈ P(Yp) such that B ∩ Sp = ∅. Thus,
for any B ⊆ Yp, the family S ′ ∪ KBt ∪ {{k, x} : x ∈ N − NUM(B)} is
a maximal nepfi extension of S . Therefore, we obtain uncountably many
maximal extensions.

2. First note that we can only add to S ′ a set of the form {k}, {k, x} or
{k, x, y} without impairing the anti-chain condition. By maximality of S ,
any other triple will be in St or will contain a pair that is in S ′

p. It follows
that we cannot add any language larger than a triple since adding it will
impair the anti-chain condition. Now let us proceed by counting the maximal
nepfi extensions. Clearly S is a maximal nepfi extension of S ′. By lemma
5.5.51, the structure of S ′ and our initial observation, the family S ′ ∪ {k}
is also a maximal nepfi extension. By our initial observation and since we
have only finitely many B ⊆ Yp, we have only finitely many maximal nepfi
extensions of the form S ′ ∪KBt ∪ {{k, x} : x ∈ N−NUM(B)}. Alltogether
we obtain only finitely many maximal nepfi extensions for S ′.

2

The following result is the corresponding counterpart of Proposition 5.5.5.

5.5.53. Proposition. Let S := Sp ∪ St be a maximal nepfi family and for
at least two k1, k2 ∈ N, the family Kip := {{ki, x} : x ∈ N − {ki}} ⊆ Sp for
i ∈ {1, 2}. The family S ′ := S −

⋃
i∈{1,2}Kip has uncountably many maximal

extensions.

Proof:
The proof follows by a similar argument as in the proof of Proposition 5.5.5
(and Example 5.5.4). Note that any triple of the form {k1, k2, x} with x ∈ N
is not in S ′. Moreover, the pairs {k1, k2}, {k1, x}, {k2, x} are not in S ′. Thus,
for every B ⊆ N, the family S ′ ∪ {{k1, b} : b ∈ B − {k1}} ∪ {{k1, k2, c} : c ∈
N− (B ∪ {k1, k2})} is a maximal nepfi extension of S ′. We obtain uncountably
many maximal nepfi extensions of S ′. 2

Recall from Example 5.5.3 and the discussion that followed, that we saw a big
difference between families of the form

S 3 − {{k, x, y} : x, y ∈ N− {k}} for a fixed k ∈ N

and families of the form

S 3 − {{k,m, y} : y ∈ N− {k,m}} for a fixed pair {k,m} ∈ S 2,
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when counting their maximal nepfi extensions. We now address these cases for
families of pairs and triples. Given a maximal nepfi family S := Sp∪St, we will
see how many maximal nepfi extensions we can obtain for families of the form
S − {{k, x, y} : x, y ∈ N − {k}} for a fixed k ∈ N and for families of the form
S − {{k,m, y} : y ∈ N− {k,m}} for a fixed pair {k,m} ∈ S 2.

5.5.54. Proposition. Let S := Sp ∪ St be a maximal nepfi family and for
some k ∈ N the family Kt := {{k, x, y} : x, y ∈ N − {k}} ⊆ St for a fixed
k ∈ N. The family S ′ := S −Kt has uncountably many maximal extensions.

Proof:
First note that if {k, x, y} ∈ St, the pairs {k, x}, {k, y}, {x, y} /∈ Sp. Therefore
we can add these pairs to S ′. Moreover, by maximality of S , we can only add
to S ′ a set of the form {k}, {k, x} or {k, x, y}. Let B ⊆ N, by a similar argument
as in the proof of case (4.) from Proposition 5.5.31 (and the proof of Proposition
5.5.5), the family S ′ ∪{{k, x, y} : x, y ∈ B−{k}}∪ {{k, z} : z ∈ N− (B ∪{k})}
is a maximal nepfi extension for S ′. Thus, we obtain uncountably many maximal
nepfi extensions of S ′. 2

5.5.55. Proposition. Let S := Sp∪St be a maximal nepfi family and KMi :=
{{ki,mi, a} : a ∈ N−{ki,mi}} ⊆ St for some pair {ki,mi} ∈ S 2. The following
follows:

1. The family S ′ := S −
⋃N
i=1{{ki,mi, a} : a ∈ N− {ki,mi}} for a finite set

of pairs {{ki,mi} : N ∈ N, 1 ≤ i ≤ N} has finitely many maximal nepfi
extensions.

2. The family S ′ := S −
⋃∞
i=1{{ki,mi, a} : a ∈ N − {ki,mi}} for infinitely

many pairs {ki,mi} ∈ S 2 has uncountably many maximal nepfi extensions.

Proof:
First note that if {k, x, y} ∈ St, the pairs {k, x}, {k, y}, {x, y} /∈ Sp. So we can
add these pairs to S ′.

1. Follows by the same reasoning as in the proof of Proposition 5.5.29.

2. Follows by the same reasoning as in the proof of case (3.) in Proposition
5.5.31.

2

Now we address the case when we take out finitely many of both pairs and
triples from a maximal nepfi family.
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5.5.56. Proposition. Let S := Sp ∪St be a maximal nepfi family. Let F :=
Fp ∪ Ft ⊆ Sp ∪ St be a finite set of pairs and triples. The family S − F has
finitely many maximal nepfi extensions.

Proof:
The proof follows by a similar argument as in the proof of Proposition 5.5.47 but
using case (1.) from Proposition 5.5.55. We do this by simplifying the problem,
namely we will check how many maximal nepfi extensions a certain “simpler”
family has. The simpler family results from taking out only triples from a maximal
nepfi family that is very similar to our original family S .

Let Fp := {{a1, b1}, . . . , {an, bn}}. Recall from Proposition 5.5.47 that for ev-
ery {ai, bi} ∈ Fp, there is a family ABi := {{ai, bi, y} : {ai, bi}, {bi, y}, {ai, y} /∈
Sp} such that St ∩ ABi = ∅. Now consider the maximal nepfi family S ′ =
(S − Fp) ∪

⋃n
i=1ABi and let F+

t := Ft ∪
⋃n
i=1ABi. Note that S ′ − F+

t =
S − (Fp ∪ Ft) = S − F . By Proposition 5.5.47 and case (1.) from Proposition
5.5.55 we have that S ′ − F+

t has finitely many maximal nepfi extensions. Thus
S −F has only finitely many as well. 2

To finish with our analysis of subfamilies of pairs and triples, we need to
analyse families that result from taking out infinitely many pairs and triples from a
maximal nepfi family that we did not cover in previous propositions. In particular,
we rule out all the cases in which the resulting family will have uncountably many
maximal nepfi extensions. For our purpose, we prove two propositions, the first
when the set of triples St is finite and the second when St is infinite.

The following Lemma will be useful for the case when St is finite.

5.5.57. Lemma. Let S := Sp ∪ St be a maximal nepfi family such that St

is finite and let X := Xp ∪ Xt be an infinite family such that X ⊆ S and the
following conditions are satisfied:

1. Xp contains only finitely many 2-clusters, the family of such 2-clusters is
denoted by G2;

2. Sp −Xp has no 2-clusters;

3. Xt contains only finitely many 3-clusters, the family of such 3-clusters is
denoted by G3;

4. St −Xt has no 3-clusters;

5. Xp contains at most one family of the form Kp := {{k, x} : x ∈ N − {k}}
for some k ∈ N; and

6. Xt contains no family of the form Kt := {{k, x, y} : x, y ∈ N−{k}} for any
k ∈ N.
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We can construct only finitely many maximal anti-chains that extend S −X with-
out impairing the anti-chain condition using specifically the following languages:
languages in X − (Kp ∪ G2 ∪ G3), pairs in Kp, the singleton {k}, languages in
NUM(Gi2) for some Gi2 ∈ G2 and languages in NUM(Gi3) for some Gi3 ∈ G3.

Proof:
It suffices to prove the case when Xp contains one family of the form Kp :=
{{k, x} : x ∈ N−{k}} for some k ∈ N. First we will analyse why we can add the
aforementioned languages to the family S −X without impairing the anti-chain
condition. Then we will see that there are only finitely many maximal anti-chains
formed with such sets that can extend S −X . In what follows, when we say that
“we can add a language Z to S − X” we will always mean that we can add the
language Z to S −X without impairing the anti-chain condition.

Now we proceed with the proof. Let G2 := {Gi2 : N ∈ N+, 1 ≤ i ≤ N} and
let G3 := {Gi3 : M ∈ N+, 1 ≤ i ≤ M}. Note that for every 2-cluster Gi2 ∈ G2,
Gi2 ⊆ X ⊆ S . Thus, any triple formed by elements in NUM(Gi2) is not in St.
Otherwise, S will not be an anti-chain. Note also that we can add such triples
to S − X . Moreover, we can add any language in P(NUM(Gi2)) that is not a
singleton simply because any pair or triple obtained from elements in NUM(Gi2)
is not in S −X . This holds for every 2-cluster in G2.

Analogously, note that for every 3-cluster Gi3 ∈ G3, PAIRS(Gi3) ∩Sp = ∅. So
we can add the whole family PAIRS(Gi3) to S −X . Then it follows by a similar
argument as the one before, that we can add any language in P(NUM(Gi3)) that
is not a singleton. This holds for every 3-cluster in G3.

We shift our attention to the singleton {k}. Note that since Kp := {{k, x} :
x ∈ N−{k}} ⊆ X ⊆ S , any triple that contains k is not in St. Therefore we can
add the singleton {k} to S −X . Clearly, we can add X to the family S −X .

Finally, note that since P(NUM(Gi2)) is finite, it contains at most finitely
many anti-chains and the same holds for P(NUM(Gi3)).

Recall that G2 := {Gi2 : N ∈ N+, 1 ≤ i ≤ N} and G3 := {Gi3 : M ∈ N+, 1 ≤ i ≤
M}. For every Gi2 ∈ G2, let Ci = {Cij : 1 ≤ j ≤ ni} be the set of all maximal anti-
chains in P(NUM(Gi2)) that do not contain singletons and for every Gi3 ∈ G3 let
Hi = {Hi

k : 1 ≤ k ≤ mi} be the set of all maximal anti-chains in P(NUM(Gi3))
that do not contain singletons. With all the previous observations considered, it
is easy to see that the maximal anti-chains constructed with the aforementioned
languages that we can add to S −X are: X itself, anti-chains of the form

X − (Kp ∪ G2 ∪ G3) ∪ {k} ∪
N⋃
i=1

Cij ∪
M⋃
i=1

Hi
k

for some Cij ∈ Ci and some Hi
k ∈Hi; and anti-chains of the form

X − (Kp ∪ G2 ∪ G3) ∪ Kp ∪
N⋃
i=1

Cij ∪
M⋃
i=1

Hi
k
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for some Cij ∈ Ci and some Hi
k ∈Hi. Obviously, these are only finitely many. 2

5.5.58. Proposition. Let S := Sp ∪St and let X := Xp ∪ Xt ⊆ Sp ∪St be
as in Lemma 5.5.57. The family S ′ := S − X has only finitely many maximal
nepfi extensions.

Proof:
It suffices to prove the case when Xp contains one family of the form Kp :=
{{k, x} : x ∈ N − {k}} for some k ∈ N. We will prove that we can only add to
S ′ := S−X languages in X−(Kp∪G2∪G3) pairs in Kp, the singleton {k}, subsets
of NUM(Gi2) for some Gi2 ∈ G2 that are not singletons, and subsets of NUM(Gi3)
for some Gi3 ∈ G3 that are not singletons, so that the extension remains an anti-
chain. Then, as in the proof for Lemma 5.5.57, the maximal nepfi extensions of
S ′ := S − X are obtained by adding to it maximal anti-chains formed with
the aforementioned languages. By Lemma 5.5.57, S ′ := S −X has only finitely
many maximal extensions.

Let ADD be the family of all the languages described as in Lemma 5.5.57. In
what follows, we will show that we can only extend S ′ := S −X with elements
in ADD without impairing the anti-chain condition.

Let Z ⊆ N such that Z /∈ ADD. We will show that (S −X ) ∪ {Z} is not an
anti-chain. Suppose Z is a singleton {z} 6= {k}. Note that by our assumption on
Xp, for all k′ ∈ N such that k′ 6= k, we have that K ′p ∩ (Sp − Xp) 6= ∅ holds or,
by maximality of S , K ′t ∩ (St − Xt) 6= ∅ holds. Thus there is a language in S
that contains Z, so (S − X ) ∪ {Z} is not an anti-chain. Note that since Kp is
originally in S (since it is in Xp), the family Kt := {{k, x, y} : x, y ∈ N − {k}}
has empty intersection with Xt, i.e., Kt ∩ Xt = ∅. Suppose Z is a pair not in
Xp. By maximality of S and Proposition 5.5.40, either Z ∈ Sp already or there
is a triple T ∈ St such that Z ⊆ T . Thus adding Z impairs the anti-chain
condition. Analogously, Z cannot be a triple that is not in Xt (or in St) since
(S −X )∪{Z} in not an anti-chain. Suppose Z is a quadruple {z1, z2, z3, z4} such
that Z 6⊆ NUM(Gi2) for any Gi2 ∈ G2 and Z 6⊆ NUM(Gi3) for any Gi3 ∈ G3. Note
that Sp nor St contain no 2-clusters or 3-clusters besides from the ones in G2

and in G3. It follows that the 2-cluster and the 3-cluster of elements in Z, namely
G2(Z) and G3(Z), are such that G2(Z) ∩Sp 6= ∅ and G3(Z) ∩St 6= ∅. Therefore
there is a language in S = Sp ∪St that is contained in Z. Thus (S −X )∪{Z}
is not an anti-chain. The argument follows similarly for any larger n-tuple Z such
that Z 6⊆ NUM(Gi2) for any Gi2 ∈ G2 and Z 6⊆ NUM(Gi3) for any Gi3 ∈ G3. This
shows that we can only extend S −X with elements in ADD without impairing
the anti-chain condition. 2

Now the remaining case, namely when St is infinite. First we need the follow-
ing lemma.
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5.5.59. Lemma. Let S be a maximal nepfi family of pairs and triples such that
St is infinite and let X := Xp ∪ Xt be an infinite family such that X ⊆ S and
the following conditions are satisfied:

1. Xp contains only finitely many 2-clusters, the family of such 2-clusters is
denoted by G2;

2. Sp −Xp has no 2-clusters;

3. Xt contains only finitely many 3-clusters, the family of such 3-clusters is
denoted by G3;

4. St −Xt has no 3-clusters;

5. Xp does not contain any family of the form Kp := {{k, x} : x ∈ N − {k}}
for any k ∈ N;

6. Xt does not contain any family of the form Kt := {{k, x, y} : x, y ∈ N−{k}}
for any k ∈ N; and

7. Xt has at most finitely many families of the form KMi := {{ki,mi, a} : a ∈
N− {ki,mi}}.

Let KM1, . . . ,KMN for some N ∈ N+ be the families contained in Xt. We
can construct only finitely many maximal anti-chains that extend S −X without
impairing the anti-chain condition using specifically the following languages: lan-
guages in X − (

⋃N
i=1KMi ∪ G2 ∪ G3), pairs in {ki,mi}, complete families of the

form KMi, languages in NUM(Gi2) for some Gi2 ∈ G2 and languages in NUM(Gi3)
for some Gi3 ∈ G3.

Proof:
First we will analyse why we can add the aforementioned languages to the family
S − X without impairing the anti-chain condition. Then we will see that there
are only finitely many maximal anti-chains formed with such sets that can extend
S −X .

In what follows, when we say that “we can add a language Z to S − X” we
will always mean that we can add the language Z to S − X without impairing
the anti-chain condition.

Now we proceed with the proof. Clearly, we can add X to the family S−X . Let
G2 := {Gi2 : M2 ∈ N+, 1 ≤ i ≤ M2} and let G3 := {Gi3 : M3 ∈ N+, 1 ≤ i ≤ M3}.
Note that for every 2-cluster Gi2 ∈ G2, any triple formed by elements in NUM(Gi2)
is not in St, otherwise S will not be an anti-chain. But note that we can add
such triples to S −X . Moreover, we can add any language in P(NUM(Gi2)) that
is not a singleton simply because any pair or triple obtained from elements in
NUM(Gi2) is not in S − X . This holds for every 2-cluster in G2. Analogously,
note that for every 3-cluster Gi3 ∈ G3, PAIRS(Gi3) ∩ Sp = ∅. So we can add
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the whole family PAIRS(Gi3) to S − X . Then it follows by a similar argument
as the one before, that we can add any language in P(NUM(Gi3)) that is not a
singleton. This holds for every 3-cluster in G3.

We shift our attention towards the families KMi with i ∈ {1, . . . , N} and
the corresponding pairs {ki,mi}. Note that since KMi := {{ki,mi, x} : x ∈
N − {ki,mi}} ⊆ X ⊆ S , the pair {ki,mi} is not in Sp. Therefore, for every
i ∈ {1, . . . , N}, we can add the pair {ki,mi} or the family KMi (but not both
simultaneously) to S −X . Moreover, we can add combinations of pairs {ki,mi}
and families KMj whenever i 6= j. Note that such combinations are just finitely
many.

Finally, note that since P(NUM(Gi2)) is finite, it contains at most finitely
many anti-chains and the same holds for P(NUM(Gi3)). Recall that G2 := {Gi2 :
M2 ∈ N+, 1 ≤ i ≤ M2} and G3 := {Gi3 : M3 ∈ N+, 1 ≤ i ≤ M3}. For every
Gi2 ∈ G2, let Ci = {Cij : 1 ≤ j ≤ ni} be the set of all maximal anti-chains in
P(NUM(Gi2)) that do not contain singletons and for every Gi3 ∈ G3 let Hi =
{Hi

k : 1 ≤ k ≤ mi} be the set of all maximal anti-chains in P(NUM(Gi3)) that do
not contain singletons. With all the previous observations considered, it is easy to
see that the maximal anti-chains constructed with the aforementioned languages
and that we can add to S −X are: X itself, anti-chains of the form

X − (
N⋃
i=1

KMi ∪ G2 ∪ G3) ∪
N⋃
i=1

KMi ∪
M2⋃
i=1

Cij ∪
M3⋃
i=1

Hi
k

for some Cij ∈ Ci and some Hi
k ∈Hi; anti-chains of the form

X − (
N⋃
i=1

KMi ∪ G2 ∪ G3) ∪
N⋃
i=1

{{ki,mi}} ∪
M2⋃
i=1

Cij ∪
M3⋃
i=1

Hi
k,

for some Cij ∈ Ci and some Hi
k ∈Hi; anti-chains of the form

X − (
N⋃
i=1

KMi ∪ G2 ∪ G3) ∪ {ki,mi} ∪
N⋃
j 6=i

KMj ∪
M2⋃
i=1

Cij ∪
M3⋃
i=1

Hi
k,

for some Cij ∈ Ci and some Hi
k ∈Hi; anti-chains of the form

X − (
N⋃
i=1

KMi ∪ G2 ∪ G3) ∪
N⋃
j 6=i

{{kj,mj}} ∪ KMi ∪
M2⋃
i=1

Cij ∪
M3⋃
i=1

Hi
k,

for some Cij ∈ Ci and some Hi
k ∈Hi; and anti-chains of the form

X − (
N⋃
i=1

KMi ∪ G2 ∪ G3) ∪
⋃
j∈IA

{{kj,mj}} ∪
⋃

i∈N−IA

KMi ∪
M2⋃
i=1

Cij ∪
M3⋃
i=1

Hi
k,
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for some Cij ∈ Ci, some Hi
k ∈ Hi, some set A ⊆ {{k1,m1}, . . . , {kN ,mN}} and

IA := {1 ≤ j ≤ N : {kj,mj} ∈ A}. Clearly, there are only finitely many maximal
anti-chains constructed in this way. 2

5.5.60. Proposition. Let S := Sp ∪St and X := Xp ∪Xt ⊆ Sp ∪St be as in
Lemma 5.5.59. The family S ′ := S − X has only finitely many maximal nepfi
extensions.

Proof:
The proof follows the same strategy as in the one in the proof for Proposition
5.5.58. Namely, one needs to show that we can only add to S ′ := S − X lan-
guages as the ones described in Lemma 5.5.59. We call such family of languages
the admissible languages and we denote it as ADD. So any language Z ⊆ N that
is not in ADD cannot de added to S −X without impairing the anti-chain condi-
tion. To illustrate, note that we cannot add any singleton Z = {z} to S −X . This
is because, by our initial assumption, Xp and Xt do not contain any families of
the form Kp and Kt respectively for any k ∈ N. Then, by maximality of S , for
every k ∈ N we have a pair or a triple in Sp or St respectively that contains
k. In particular we have a pair or a triple in Sp or St respectively that contains
z. By a case-by-case reasoning we can see that we cannot add any Z which is
not in ADD. Therefore, by Lemma 5.5.59 S ′ := S − X has only finitely many
maximal nepfi extensions. 2

By Proposition 5.5.40 to Proposition 5.5.60 we obtain the following result.

5.5.61. Theorem. Any family S := Sp ∪ St ⊆ S 2 ∪ S 3 (of only pairs and
triples) has only finitely many maximal nepfi extensions or uncountably many.

Proof:
The strategy of the proof is to show that any family of pairs and triples S :=
Sp ∪ St can be computed with a suitable maximal nepfi family of the form
S ′ := S ′

p ∪ S ′
t and a family of pairs and triples X where S ′ − X = S is as

described in the cases shown in Proposition 5.5.44 to Proposition 5.5.60.
First note that by Corollary 5.5.41, every family S := Sp ∪St that is not

maximal nepfi, has a maximal nepfi extension of the form S ′ := S ′
p∪S ′

t (so also
of only pairs and triples). Therefore, we can compute any family S := Sp ∪St

using a maximal nepfi family of the form S ′ := S ′
p∪S ′

t and a family of pairs and
triples X so that S ′ − X = S . Thus it suffices to argue about S ′ := S ′

p ∪S ′
t

and X for our purposes.
Note that any maximal family S ′ := S ′

p ∪ S ′
t and any X either have the

properties described in some proposition from Proposition 5.5.44 to Proposition
5.5.56 or they do not. If they do not (i.e., if S ′ := S ′

p ∪ S ′
t and X are not

as described in one of these propositions) then they must be as in Proposition
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5.5.58 or as in Proposition 5.5.60 (since the disjunction of these two corresponds
to the negation of the disjunction of the propositions from Proposition 5.5.44
to Proposition 5.5.56). Thus we cover all the possible cases of families of pairs
and triples. By Proposition 5.5.44 to Proposition 5.5.60 we have that any family
S := Sp ∪ St of only pairs and triples has only finitely many maximal nepfi
extensions or uncountably many. 2

We believe that generalizing the main results from this section with respect
to nepfi subfamilies of S n ∪S n+1 will follow a similar strategy, guided by the
same intuition. Due to the more complicated combinatorics involved, treating
such families is not a simple task. Due to time constraints, we leave the study of
the aforementioned families for future work.

5.6 Conclusions and future work

This chapter provides a detailed analysis and novel results on the structural dif-
ference between finite identification with positive data and with complete data. In
particular, we study the structural properties of families which are finitely identi-
fiable with positive data, in comparison with families that are only finitely iden-
tifiable with complete data. Our work solves questions that concern maximality
with respect to finite identification. On one hand, we prove that there always
exist a maximal non-effectively finitely identifiable family of an identifiable one
that contains only finite languages. On the other hand, we prove that neither
maximal cfi families nor maximal non-effective cfi families exist.

We also study the question that concerns the number of maximal finitely
identifiable extensions with positive data. Expressly, for the cases of equinumer-
ous families and for families which contain only pairs or triples. We prove that
all these families have either finitely many or uncountably many maximal nepfi
extensions. Directions of future work involve the general open question (with a
combinatorial flavour) of how many maximal nepfi extensions a pfi family of fi-
nite languages has. In the light of our results, we conjecture that there are either
finitely many or uncountably many. The next step is to investigate subfamilies
containing only n-tuples and m-tuples for fixed numbers n and m. The answer for
families of only pairs and triples support our conjecture for those. Then, it should
follow an analysis of the question for families of languages of bounded cardinality,
although dealing with such families involves a much more complex combinatorial
analysis. We believe the answer will bring interesting insights, not only for finite
identification but for discrete mathematics and combinatorics as well.

Some of the results presented in this chapter, use the fact that being an anti-
chain of finite languages is a necessary and sufficient condition for a family to be
nepfi. Recall that this is not the case when infinite languages are present in the
family, as we saw for the family of co-singletons which is cfi only. A similar ques-



200 Chapter 5. Structural differences between pfi & cfi

tion but concerning pfi is intriguing, namely, are anti-chains of finite languages
always pfi? or at least cfi? In the following chapter (Chapter 6) we provide a
first step in investigating the case of non-canonical anti-chains. We will present
a, non-canonical but still computable, anti-chain of finite languages which is not
pfi but also not cfi. Whether such an anti-chain exists which is cfi but not pfi
is still an intriguing open question. Certainly a possible example will be hard to
construct.



Chapter 6

Computational differences between pfi
and cfi

6.1 Introduction

In this chapter, we study the computational differences and links between finite
identification with positive and with complete data. Most of the results in Chapter
5 were with respect to nepfi of necfi families. Thus, the computational features of
the family and effectiveness of its identification were being ignored. Here, we are
interested in the computational properties of a family of languages and whether
such properties allow pfi or cfi for the family in question. In particular, we analyze
infinite anti-chains of finite languages, since for such cases it is not yet clear what
the connection (or difference) is between cfi and pfi. As it happens, in most of
the obvious examples of such anti-chains, both cfi and pfi hold (for instance, all
the anti-chains of finite languages presented in Chapter 5). Moreover, for many
maximal anti-chains of finite languages pfi holds. What can we say in general
about these issues? Is every cfi anti-chain of finite languages pfi? Is every maximal
anti-chain of finite languages pfi (or cfi)? In the sections that follow, we will
provide negative answers to these questions.

We start with a short Section 6.2, where we extend the characterization the-
orem for finite identification of families with recursive languages in (Mukouchi,
1992; Lange and Zeugmann, 1992). For this, we prove a characterization theorem
in Mukouchi style for finite identification of families with recursively enumerable
languages. We will see that the indexedness property of the families in question is
crucial for our result. Then, we focus on anti-chains of only singletons and pairs
(i.e., nepfi families of singletons and pairs). Such families will be used to construct
examples of the following kind:

• a canonical pfi family with no maximal pfi extension,

• a non-canonical pfi family,

201
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• a non-canonical maximal nepfi family which is not pfi and not cfi, and

• a non-canonical anti-chain of finite languages which is cfi but not pfi.

Surprisingly, we will see in Sections 6.3.1, 6.3.2 and 6.4 that all such families
exist. The simple structure of these families makes it easy to study their computa-
tional properties. Still, the analysis of these families is not a trivial matter. First,
we focus on the computational properties of a subfamily of an, arbitrarily given,
indexed nepfi family. In particular, we want to analyse cases when certain sub-
families of a given (ne)pfi family are decidable or recursively enumerable. As it
happens in Chapter 5, some of the results in our analysis here are in terms of
maximal pfi families. We show that for maximal pfi families with more than one
pair, the set of singletons in the family is decidable. Since the examples in the
list above are families containing more than one pair, we will mainly focus on
those. We prove that such maximal families can be made canonical. Also, we in-
vestigate the close connection between the property of indexability of a given nepfi
family and the r.e. property of a certain subfamily. We show that if an indexed
family is nepfi then the subfamily of all its pairs is recursively enumerable.

Considering our list above, we present in Section 6.3.1 a family of finite lan-
guages coded standardly by canonical codes which does not have an effectively
finitely identifiable maximal extension. Recall that infinite anti-chains of finite
languages when the indexing of the languages is by canonical indices are always
positively identifiable. In Section 6.3.2 we study non canonical families. We con-
struct a non-canonical anti-chain which structural properties allow it to be pfi. We
also present a non-canonical cfi family which is not an anti-chain and therefore
is not pfi. Then, in Section 6.4, we exhibit a couple of examples of an indexable
anti-chain of singletons and pairs that cannot be given a canonical indexing and
is not pfi (and not cfi). One of these examples is a maximal anti-chain. We then
present our example of a non-canonical anti-chain which is cfi but not pfi. This
shows that finite identification with complete data of infinite anti-chains of finite
languages is more powerful than with positive data only. This is a surprising re-
sult since families of finite languages which are anti-chains seem to be the domain
of pfi par excellence. This result clearly shows the power of negative information
in finite identification.

In Section 6.5 we study fastest finite identification which concerns a special
kind of learner for finite identification, namely a fastest learner. Intuitively, a
fastest learner identifies a language as soon as it is objectively certain which lan-
guage it is. A family is positively identified in the fastest way iff all the DFTTs
for all the languages in the family are uniformly available and recognizable by
some recursive learning function. Gierasimczuk and de Jongh (2013) proved, by
presenting a rather witty but complicated example, that fastest learning with
positive data is more restrictive than pfi. Here, we present a much simpler ex-
ample, that makes the distinction between these two ways of identification more
transparent. Moreover, it provides a rather general way of constructing similar
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examples. Then, we extend the definition in (Gierasimczuk and de Jongh, 2013),
to reason about fastest learning with complete data. We show that every cfi anti-
chain for which a fastest cfi learner exists, is also pfi. This means that in fastest
learning there is no difference between cfi and pfi with respect to anti-chains of
finite languages.

In Section 6.6 we were inspired by the work of Angluin (1987), where the
problem of identifying languages from its members and non members by a learner
asking queries is studied. In such a framework, the learner is allowed to produce
queries and more than one conjecture, whereas the data presented by the teacher
is meant to be, in a way, useful for the identification process. More precisely, the
teacher presents the language to the learner by answering membership queries and
testing its conjectures. We entertain a similar idea to study finite identification
with a learner that can produce queries, finite identification from queries (in short,
learning from queries). This learning notion seems to be closer to a more realistic
learning scenario between a teacher and an active learner than the standard one
in finite identification. By an active learner, we mean a learner that can ask
questions to the teacher about the concept being learnt. The standard learner in
cfi (and pfi) is, in some sense, a passive learner since it only receives the default
information that nature (or teacher) fixed beforehand.

In our learning model, the learner receives answers from a teacher (or from
nature) about her queries, and can produce either another query or a conjecture
that concerns the target language. The identification process stops after one con-
jecture is produced. The learner can also abstain, in which case she will receive
from the teacher a new element from a complete sequence chosen initially by the
teacher from the target language. The query learner is a composition of two func-
tions that act one after the other. One function produces the queries, and after
the teacher gives an answer to her query, the second function produces a conjec-
ture. This conjecture is based on the sequence of all the previous data from the
teacher. We will see that a cfi learner and a query learner are very similar. In fact,
we show that a family is cfi learnable if and only if it is learnable by queries. We
also study a strict query learner, one that never abstains and always produces a
query. We see that the class of families for which a strict query learner exists is
also equivalent to cfi.

Outline

This chapter is structured as follows. In Section 6.2 we prove a characterization
theorem in Mukouchi style for finite identification of families with recursive lan-
guages. In Section 6.3.1 we study families of singletons and pairs. Then we present
in Section 6.3.1 a pfi anti-chain of singletons and pairs for which a maximal pfi
extension never exists. In Section 6.3.2 we study non canonical families and prove
that non-canonical pfi anti-chains of finite languages exist. In Section 6.4, we give
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an example of an indexable non-canonical anti-chain of singletons and pairs that
is not pfi and not cfi. Then, we construct an example of a non-canonical anti-
chain of singletons and pairs that is cfi but not pfi. In Section 6.5 we study fastest
learning with positive data and with complete data. We introduce and study
learning by queries in Section 6.6. In Section 6.7 we present our final remarks
and conclusions.

This Chapter is based on an unpublished manuscript (de Jongh and Vargas-
Sandoval, 2020).

6.2 Extended Characterization Theorem

We dedicate this small section to a simple generalization of the Characterization
Theorem from Mukouchi (1992), proved simultaneously by Lange and Zeugmann
(1992), with respect to families which languages are recursively enumerable.

Recall that the aforementioned theorem, provides a characterization of finitely
identifiable families with positive data and with complete data in terms of def-
inite tell-tale sets. Before proving the theorem for families which languages are
recursively enumerable, we recall the standard Characterization theorem in the
style of Mukouchi (1992).

6.2.1. Theorem (Characterization Theorem).

• A family S of languages is finitely identifiable with positive data (pfi) iff for
every Si ∈ S there is a DFTT set Di obtainable in a uniformly computable
way. That is, there exists an effective procedure Φ that on input i (index of
Si) produces the canonical index Φ(i) of some definite finite tell-tale set of
Si.

• A family S of languages is finitely identifiable with complete data (cfi) iff
for every Si ∈ S there is a tell-tale pair (Di,Di) in a uniformly computable
way.

Proof:
See (Mukouchi, 1992, Theorem 7, p. 262) or (Lange and Zeugmann, 1992, Theo-
rem 3, p. 382) for pfi and (Mukouchi, 1992, Theorem 10, p. 264) for cfi. 2

Clearly if a family is pfi then it is cfi.

6.2.2. Definition. [Canonical sequence] Let S := {Si : i ∈ N} be an indexed
family of languages. The canonical positive sequence (in short, canonical sequence)
for Si ∈ S , σcan, is defined in the following way:

σcan(0) = µn(n ∈ Si)
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and

σcan(n) =


n if n ∈ Si

σcan(n− 1) otherwise.

where µ denotes the standard recursive minimum function in recursion theory.1

We now present the main result from this section. A characterization theorem
for families of recursively enumerable languages. In this case the indexing will
be a recursive function F (i, j) that enumerates Si, so that the first element in
the enumeration is F (i, 0), the second element is F (i, 1) and so on, i.e., Si =
{F (i, 0), F (i, 1), . . . F (i, n), . . .}. Note that F (i, j) produces σcan, the canonical
positive sequence for Si. The argument of the proof follows a similar to the one
for recursive languages but with the appropriate changes.

6.2.3. Theorem. An indexed family S where all languages are recursively enu-
merable is pfi if and only if there is a uniform recursive procedure Φ such that for
each i, Φ(i) is a DFTT for Si.

Proof:
For (⇒): suppose S is pfi and let Si ∈ S a r.e. language in the family. Since S
is pfi, there is a recursive learner λ such that for some k ∈ N, λ(F (i, k− 1)) halts
with output j such that Sj = Si. Thus the learner recognises language Si on the k-
th element in the sequence obtained by F (i, j). The set Di = {F (i, 0), F (i, 1), . . . ,
F (i, k−1)} will be a DFTT for Si. Clearly, since λ identifies Si on initial segment
σcan[k] from σcan that results form F (i, 0), F (i, 1), . . . , F (i, k − 1). Note that we
can repeat this process for any other language in the family.

For (⇐): follows as in the proof of the original theorem for recursive lan-
guages. Suppose there is a uniform recursive procedure that produces a definite
tell-tale set Di for any Si ∈ S . We will construct a pfi learner λ such that for
any Si ∈ S and any sequence of Si, σ

+, λ outputs i (see Definition 2.4.7). Let
Si ∈ S and σ+ be any positive sequence of Si. Consider the following recursive
function,

λ(σ+[n− 1]) =


µi(set(σ+[n− 1]) ⊆ Si) if i < n, Di ⊆ set(σ+[n− 1]) and

∀k < n− 1, λ(σ+[k]) =↑,

↑ otherwise.

1µn(. . . n . . .) is the least integer n such that the expression . . . n . . . is true (if this integer
exists). For more details of the minimum function (or, minimization operator), the reader can
look at any book of Recursion Theory, see e.g., (Rogers, 1967, p. xviii).
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where µ is the standard primitive recursive minimum function. For an n ∈ N
large enough, the elements of Di will occur in the positive sequence σ+ for Si (or
even before the elements in some Dj for some Sj ∈ S such that Sj = Si) Thus,
after having observed Di in the initial segment σ+[n − 1] of σ+, the learner λ
recognizes that this DFTT corresponds to Si. Since Si was taken arbitrarily, we
have that λ is a pfi learner for the family S . 2

The result in Theorem 6.2.3 is a sharp contrast with the case of identifica-
tion in the limit. The characterization theorem for indexed families of recursively
enumerable languages in (de Jongh and Kanazawa, 1996) is considerably more
complex than Angluin’s Characterization Theorem for recursive languages (An-
gluin, 1980). We will not exploit this result in this thesis to investigate which of
our results will extend to this more general case, but is conformly something to
explore in the future.

6.3 Families of singletons and pairs

In this section we study families of only singletons and pairs S ⊆ S 1 ∪S 2. We
first study some of the computational properties of such families. Because of their
structural simplicity, we can characterize some of their computational properties
with respect to pfi and cfi. First, we will focus on the computational properties of
a subfamily of an, arbitrarily given, indexed nepfi family. In particular, we want
to analyse cases when certain subfamilies of a given (ne)pfi family are decidable
or recursively enumerable. Some of the most interesting examples of anti-chains
that we will study in Sections 6.3.1, 6.3.2 and 6.4 are families of only singletons
and pairs containing more than one pair, so we will focus on those.

We start with a simple lemma that characterizes maximal nepfi families of
singletons and pairs.

6.3.1. Lemma. If S ⊆ S 1 ∪ S 2 is maximal nepfi then S ∩ S 2 = {{a, b} :
{a}, {b} /∈ S ∩S 1}.

Proof:
Follows straightforwardly by the definition of maximal anti-chain. 2

Note that for families of only singletons and pairs, the DFTTs have a very
limited shape. In particular, for the singletons there is no other possibility for
a DFTT than to be the singleton itself. On the contrary, for the pairs it will
not always be necessary that the DFTTs are pairs. It will depend on the other
elements of the family and their relation with the pair in question. We will see in
Lemma 6.3.3 that for a maximal nepfi family of singletons and pairs with more
than one pair, the DFTTs of the pairs are precisely the pairs.

To illustrate, consider the following example.
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6.3.2. Example. Take the family S := {{0, 1}}∪{{i} : i /∈ N−{0, 1}}. Clearly
it is maximal pfi, the DFTTs for the singletons are the singletons themselves but
for the pair {0, 1} it could be either the singleton {0}, {1} or the pair itself. Thus,
the pair has more DFTTs than just the trivial one, so more DFTTs than only
the language itself. We observed that something else happens when we consider
maximal families with more than one pair. As it turns out, for such maximal
families, the DFTTs can only be the languages themselves. To illustrate our
intuition, consider now the family S = {{0, 1}} ∪ {{2, 3}} ∪ {{i} : i /∈ N −
{0, 1, 2, 3}}. First note that this family is not maximal pfi. The only way to
make it maximal is to add the languages {0, 2}, {0, 3}, {1, 2}, {1, 3}. The resulting
maximal family is then S ∪ {{0, 2}, {0, 3}, {1, 2}, {1, 3}} and the only possible
DFTTs are the languages themselves.

6.3.3. Lemma. If S ⊆ S 1 ∪S 2 is maximal nepfi and has more than one pair
then the only DFTT for each Si ∈ S is Si itself, i.e., if Di ⊆ Si is a DFTT for
Si then Di = Si.

Proof:
If Si is a singleton then clearly the only possible DFTT is Si itself. If Si = {a, b},
by maximality of S and since S contains more than one pair, there must be
{c} /∈ S such that the pairs {a, c}, {b, c} ∈ S , otherwise S ∪ {{a, c}, {b, c}}
would be a nepfi extension of S contradicting maximality. So the only possi-
ble DFTT for Si is the pair itself. Thus the only possible DFTT for Si ∈ S is
Di = Si. 2

For the case of families with only pairs and triples the situation is not so
clear. The combinatorics make the analysis of these families more complex. For
instance, the family S = {{0, 1, 2}} ∪ {{3, 4, 5}} ∪ (S 2 − (PAIRS({0, 1, 2}) ∪
PAIRS({3, 4, 5})) is a counterexample to the analogue of Lemma 6.3.3. This is
because it is maximal pfi and, for instance, the pairs {0, 1}, {3, 4} are DFTTs of
the corresponding triples. Thus, neither an analogue of Lemma 6.3.1 (as we saw
in Proposition 5.5.40) nor of Lemma 6.3.3 hold in this case. A natural question
is, can we have some kind of counterpart of Lemma 6.3.3 that holds for families
S ⊆ S 2∪S 3 and for families with larger languages? We do not have an answer
to that question.

Let us move on to a couple of nice results that follow from the lemmas above.

6.3.4. Proposition. If a family S ⊆ S 1 ∪ S 2 is maximal pfi and has more
than one pair then X ∈ S ∩S 1 is decidable, i.e., the set S(S ) := {i : {i} ∈ S }
is decidable.

Proof:
We need to show that S(S ) := {i : {i} ∈ S } is decidable. Since S is pfi, there
is an effective procedure that outputs a DFTT for every language in S . Thus we
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can run through all the DFTTs of the languages in S and see whether for i ∈ N,
{i} occurs as DFTT or a pair {i, j} occurs as DFTT for some j 6= i. If Di := {i}
is the case, we know that i ∈ S(S ) and i /∈ S(S ) otherwise. 2

This proposition characterizes the maximal pfi families of singletons and pairs
completely: they consist of a recursive set of singletons plus all pairs of natural
numbers in its complement.

6.3.5. Proposition. If S ⊆ S 1 ∪S 2 is a maximal pfi family with more than
one pair, S can be represented canonically.

Proof:
Let S ⊆ S 1∪S 2 be a maximal pfi family. We can run a positive sequence σ+

j for
some Sj ∈ S . Let m0 be the first element that appears in the sequence σ+

j . Since
S ∩S 1 is decidable (by Proposition 6.3.4), we know whether {m} ∈ S ∩S 1. If
{m} ∈ S ∩S 1, since S is an anti-chain, it follows that Sj = {m} ∈ S , which
produces a canonical index for Sj. If {m} /∈ S ∩ S 1, we wait until the next
element different than m0 appears in σ+

j , namely m1. Since S ⊆ S 1 ∪S 2 and
it is a maximal anti-chain, it follows that Sj = {m0,m1} ∈ S , which produces a
canonical index for Sj. Since Sj and σ+

j were chosen arbitrarily, S is canonical.
2

We will see in Proposition 6.3.20 that the pfi family S T
2 = {{2i} ∪ {2y + 1 :

Tiiy} : i ∈ N} where T is Kleene’s T -predicate cannot be made canonical. Thus,
a generalization of Proposition 6.3.5 to all pfi families of singletons and pairs does
not hold.

We saw in Theorem 5.4.10 that maximal cfi (and necfi) families do not ex-
ist. Still, what can we say about cfi families of singletons and pairs that contain
a maximal pfi one? The following result gives us the possibility of characterizing
all possible cfi extensions of maximal pfi families of singletons and pairs. In fact,
as we saw in Proposition 5.4.9, Proposition 6.3.6 can be generalized straightfor-
wardly for any family of finite languages. This is important when one is interested
in seeing how far one can go with positive information only and only then add
negative information to get more results.

To illustrate, consider the family of all singletons S s := {{i} : i ∈ N}. We
know that S s is pfi (and cfi) since every language is its own DFTT. Moreover,
we know that it is maximal pfi since adding any other language will impair the
anti-chain condition (necessary for pfi). Still, we can add languages to S s and
check for cfi. In fact, any extension of S s that results from adding only finitely
many supersets of some {i} is a cfi family.

6.3.6. Proposition. If S ⊆ S 1 ∪ S 2 is cfi and there is {i} ∈ S , there are
only finitely many pairs of the form {i, j} in S .
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Proof:
Follows from Proposition 5.4.9 in Chapter 5. 2

6.3.7. Proposition. If an indexed family S ⊆ S 1 ∪S 2 is nepfi then the set
of languages which are pairs is r.e., i.e., the set P (S ) := {i : |Si| = 2} is r.e.

Proof:
We provide a recursion theoretic argument for this proof. Since S is indexable,
the predicate x ∈ Si is recursive. Note that:

j ∈ {i : |Si| = 2} iff ∃ k ∃ m, k 6= m (k,m ∈ Sj).

The predicate (∃ k ∃m, k 6= m (k,m ∈ Sj)) is r.e.2 Therefore the set {i : |Si| = 2}
is r.e. 2

By a similar argument, the predicate ∃k(i ∈ Sk and ∃j(j 6= i and j ∈ Sk)) is
r.e. Therefore the set {i : ∃j ({i, j} ∈ S )} is r.e. Note that the predicate in {i :
|Si| = 2} talks about the languages whereas the predicate in {i : ∃j ({i, j} ∈ S )}
talks about the elements in the languages.

6.3.1 The non-existence of maximal pfi families

In this section we investigate whether any finitely identifiable family is contained
in a pfi family which is maximal with respect to inclusion. For the more common
pfi families, maximal pfi extensions do exist. Nevertheless, this is not always the
case. We will give an example of a canonical family (and thus a pfi family) which
does not have a maximal pfi extension.

Before presenting our main result, first we prove the following useful lemmas.

6.3.8. Lemma. Let S be a maximal canonical nepfi family. For every finite set
Y ∈ N, we can decide whether Y ∈ S , i.e., S is decidable.

Proof:
Let Y ∈ N be arbitrary. First note that if Y 6∈ S ′ then Y ⊂ Si or Si ⊂ Y
for some Si ∈ S , otherwise Y can be added to S as a new element without
impairing the anti-chain condition (nepfi condition), which would make S non-
maximal nepfi. To decide whether Y ∈ S , by canonicity, we simply run through
S0, S1, S2, . . . until we meet Si which is Y itself, or a sub- or superset of Y . Thus
S is decidable. 2

Recall that a canonical anti-chain is pfi. Thus, a canonical nepfi family is pfi.

2This follows from the so-called Existential Quantifier Theorems, see e.g.,Rogers, 1967, The-
orem X and Corollary XI, p. 66.
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6.3.9. Lemma. Let S be a maximal decidable nepfi family of finite languages. The
family S is canonical, i.e., there is a recursive function f such that for each i,
f(i) is a canonical index for Si, and so, Si = Ff(i).

Proof:
We run the canonical sequence (see Definition 6.2.2), σcan, for some Sj ∈ S . The
construction of f(i) is in stages. At stage n, set(σcan[n]) is computed and we ask
whether set(σcan[n]) ∈ S . Note that the latter is possible because S is decid-
able. To illustrate, suppose m0 ∈ N is the first element that appears in σcan. Since
S is decidable, there is a decision procedure which ensures whether {m0} ∈ S or
{m0} /∈ S . If {m0} ∈ S , the procedure ends and produces a canonical index for
Sj. Otherwise (if {m0} /∈ S ), more elements from σcan will be given. Thus, wait
until the next element different from m0 appears in σcan (which has to occur since
{m0} /∈ S ), namely m1, and check whether the language {m0,m1} ∈ S . Con-
tinue until the decision procedure confirms that a language S formed by elements
that appear in the corresponding initial segment of σ+

j is in S . Note that this
must happen exactly when S = Sj since S is an anti-chain. Since Sj was taken
arbitrarily, this procedure produces a canonical index for Sj ∈ S . We then con-
tinue with σcan for Sj+1 and in the same manner we get a canonical index for
Sj+1. Thus, S is canonical. 2

6.3.10. Proposition. Let S be a maximal decidable nepfi family of finite lan-
guages. The family S is decidable iff S is canonical.

Proof:
Follows straightforwardly from Lemmas 6.3.8 and 6.3.9. 2

Consider π(m,n) : N× N→ N the standard recursive pairing function (Can-
tor’s pairing function).3 Let π1 and π2 be the standard first and second inverse
functions of π respectively, i.e., π1(π(m,n)) = m and π2(π(m,n)) = n.

6.3.11. Lemma. Let A = {Ai : i ∈ N} and B = {Bi : i ∈ N} two indexed
families. The family A ∪ B is indexable.

Proof:
Consider the indexing, A ∪ B := {Ci : i ∈ N} where C2i = Ai and C2i+1 = Bi for
all i ∈ N. Since A and B are indexed, the predicates (x ∈ Ai) and (x ∈ Bi) are
both recursive and, thus, x ∈ C2i and x ∈ C2i+1 are recursive. 2

3In simple words, a recursive pairing function is a process to uniquely encode two natural
numbers into a single natural number. Cantor’s pairing function defined as π(m,n) = (m +
n)(m + n + 1)/2 + n is a primitive recursive pairing function frequently used in the recursion
theoretic literature, see e.g., (Rogers, 1967, p. 64).
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In the special case of canonical families, the lemma above gets simplified with
respect to r.e. sets of natural numbers in the following manner. If A = {ai : i ∈ N}
and B = {bi : i ∈ N} are two indexed families. The family A ∪ B is indexable
(A ∪ B := {ci : i ∈ N} where c2i = ai and c2i+1 = bi for all i ∈ N). Since
every r.e. set is indexable, this version of the lemma can be linked directly to the
standard theorem in recursion theory stating that the union of two r.e. sets is
r.e. (see e.g., Rogers, 1967, Theoreom XIII, p.68).

We are now ready to prove the main result from this section.

6.3.12. Theorem. Let A ⊆ N and B ⊂ N − A be two recursively inseparable
r.e. sets which are not recursive. Let S := {{a} : a ∈ A} ∪ {{b, c} : b, c ∈
B with b 6= c}. The family S can be given as an indexed family which is canonical,
pfi and there is no canonical maximal pfi extension of S .

Proof:
First note that since both A and B are r.e. we have a recursive enumeration of
A = {ai : i ∈ N} and B = {bi : i ∈ N}. Let Bp := {ci : i ∈ N} be a recur-
sive enumeration of all pairs bn, bm ∈ B with bn 6= bm, i.e., ci = π(bm, bn) with
bn, bm ∈ B and bn 6= bm. Clearly Bp is also indexed. Let A := {{ai} : ai ∈ A} and
B := {{b, c} : b, c ∈ B with b 6= c}. Since A and Bp are indexed, the families A
and B are also indexed. By Lemma 6.3.11, the union of two indexed families is
an indexable family, thus S := A ∪ B can be given as a canonical indexed fam-
ily. To see this explicitly, let S2π(i,k)+1 = {π1(ci), π2(ci)} and S2i = {ai}, clearly
the predicates x ∈ S2π(i,k)+1 and x ∈ S2i are recursive. Note that it is pfi since
any language serves as its own DFTT (as in the proof of Theorem 2.4.11). Now,
towards a contradiction, suppose there is a maximal canonical pfi family extend-
ing S , say S ′. Because of maximality and canonicity of S ′, we can decide by
Lemma 6.3.8, whether Y ∈ S ′ or Y 6∈ S ′ for each finite set Y ⊆ N. Since S ′

is decidable, the set A′ ⊇ A of singletons in S ′ is recursive. Since S ′ is an
anti-chain, A′ ∩ B = ∅. Thus A′ := {ai : {a}i ∈ A′} separates A from B and this
contradicts the inseparability of A and B. 2

We can strengthen Theorem 6.3.12 to conclude that S has no maximal pfi
extension at all.

Note that the family Bp := {{π1(ci), π2(ci)} : ci ∈ Bp} (as in Theorem 6.3.12)
shows that Lemma 6.3.8 does not apply to non-maximal canonical families since
Bp is canonical.

6.3.13. Lemma. There is a canonical non-maximal pfi family which is not de-
cidable.

Proof:
The family Bp above is clearly pfi and canonical. To see that Bp is not decidable,
towards contradiction suppose Bp is decidable. It follows that Bp and thus B are
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also decidable. Therefore B is recursive, which cannot be. 2

Observe that in the theorem above, we are talking about the languages of the
family whereas in the theorem that follows we talk about the elements in the
languages of the family.

6.3.14. Theorem. The family S of Theorem 6.3.12 has no maximal pfi exten-
sion at all.

Proof:
Let S ′ ⊇ S be a maximal pfi family. On this supposition, we will define recursive
A′, B′, such that A ⊆ A′ and B ⊆ B′, A′ ∩ B′ = ∅, A′ ∪ B′ = N which leads to
a contradiction (since A and B are recursively inseparable). Let {Sn : n ∈ N} be
an indexing of S ′. For each i determine whether i ∈ A′ or i ∈ B′ as follows. Since
S ′ is indexed and maximal, we can find the first n such that i ∈ Sn. Now con-
sider Dn the DFTT of Sn. We distinguish two possibilities: (1) Dn = {i}, and
(2) Dn 6= {i}. In case (1) put i ∈ A′. Note that A ⊆ A′, because if i ∈ A then
{i} ∈ S and thus {i} ∈ S ′. Note also that {i} ⊂ Sn is, in this case, impossible
since S ′ is pfi and thus an anti-chain. In case (2) put i ∈ B′, this means {i} is
not a DFTT. Note that B ⊆ B′, because if i ∈ B then {i, k}, {i, j} ∈ S ⊆ S ′

for some j 6= i, j 6= k, i 6= k because of the definition of B. So Dn 6= {i} because
S ′ is pfi. Therefore A′, B′ have been constructed as required, which is a con-
tradiction. 2

This theorem applies not only to extensions to families with infinite members
but also to non-canonical indexed families of only finite languages. We will see
later on, in Section 6.3, that the latter kind of family exists.

6.3.2 Non-canonical families

In this section we will study non-canonical families. Here we are interested in an-
alyzing some of the features that prevent a family to be canonical. In particular,
we want to explore the connection between canonicity and pfi (and cfi). We prove
that there is a non-canonical cfi family (not an anti-chain) which is not pfi. Then,
we present a non-canonical anti-chain which is pfi and cannot be made canon-
ical. Such anti-chain is pfi mainly because of its structural properties, pointing
out again the importance of the structure of a family for being pfi.

We start by noting that not every family of finite languages is a canonical
family. To see this, consider the following examples presented in (Gierasimczuk
and de Jongh, 2013).

Recall that in the standard version of Kleene’s predicate with respect to Tiiy,
we have the following: if Tiiy exists then i can be computed from the y and
i ≤ y. In what follows, we always consider the standard version of Kleene’s
predicate.
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6.3.15. Proposition. The indexed family S T
0 := {{0} ∪ {y : Tiiy} : i ∈ N}

where T is Kleene’s predicate is not canonical and not pfi.

Proof:
It holds that, given a y, the predicate Tiiy is uniformly decidable (i.e., recursive)
since i has to be smaller than y. However, the existence of such y is undecidable
(the predicate ∃y T iiy is r.e.). Then, S T

0 is an indexed but not canonical family,
as is clear from the fact that we cannot decide whether S ∈ S T

0 has one or two
elements (we will prove this in the proof of Theorem 6.3.17 below). Moreover, it
is not pfi because contains languages which are proper subsets of other languages
in the family. 2

6.3.16. Example. Let us slightly modify the family in Proposition 6.3.15, to be
S T

1 := {{i} ∪ {y : Tiiy} : i ∈ N}. We might wrongly think that this family is
pfi. The confusion arises from the idea that once we had seen i occur in the data
we will be able to decide Si. However, i could be precisely the computation y for
some other j. In fact, whenever y is such that Tjjy exists and corresponds to
i the learner cannot decide whether she sees Si or Sj. Note that if Tjjy exists
(appearing in the data), the index j can be computed from the y (since j ≤ y). The
problematic feature of S T

1 preventing pfi is that, in general, S T
1 is not an anti-

chain. For instance, in the case i is precisely the computation y such that Tjjy
exist for j but ¬(∃z Tyyz) (for instance when i a code for the empty set). In this
case, we will have that Sy = {y}, {y} ⊂ {j}∪{y : Tjjy}, and so Sy ⊂ Sj. However,
this family is cfi. To see this, we define the definite tale-tell pair (Di, Di) for each
Si such that Di = {i} and Di = {j : Tjji}. Note that this works precisely because
j ≤ i.

We now prove that S T
1 is not canonical.

6.3.17. Theorem. The indexed family S T
1 := {{i} ∪ {y : Tiiy} : i ∈ N} where

T is Kleene’s predicate, cannot be given as a canonical family.

Proof:
We provide a recursion-theoretic argument for this proof. Towards a contradiction,
suppose that the computable function f enumerates S as {Ff(i) : i ∈ N}. Note
that if Tiiy exists then the index i can be computed from the y and i ≤ y. Thus,
by how the Si’s are defined and our initial assumption, we know the following,

∃z(Tiiz) iff ∀x(x ∈ Ff(i) and ∀y < x(y /∈ Ff(i))) implies Ff(i) 6= {x})

Note that the left part of the biconditional, namely ∃z(Tiiz), is a r.e. predi-
cate.4 However, the right part of the biconditional is clearly a Π1 predicate simply

4This is the so-called Halting Problem, see Section 2.3. For a detailed discussion, see e.g.,
(Rogers, 1967, Section 1.9, p. 24)
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because f is computable and no existential-quantifier occurs in the predicate. It
follows that both predicates are ∆1, and so they are recursive. However, it is
known that the predicate ∃z(Tiiz) is not recursive. Therefore, a family S which
languages are of the form Si = {i}∪{y : Tiiy} cannot be represented as a canon-
ical family. 2

6.3.18. Corollary. There is a non-canonical family of finite languages which
is cfi and not pfi.

Proof:
Follows from Theorem 6.3.17 and the argument in Example 6.3.16 that the family
S T

1 is a non-canonical cfi family which is not pfi. 2

As we mentioned in Example 6.3.16, the family S T
1 is not an anti-chain. Later

on in Section 6.4, we will present a non-canonical cfi anti-chain of singletons and
pairs which is not pfi.

6.3.19. Corollary. The indexed family S T
0 is not canonical and cannot be

given as a canonical family.

A natural question then arises, is there a non-canonical anti-chain which is
pfi? We answer this question positively in the proposition that follows.

6.3.20. Proposition. The indexed family S T
2 := {{2i}∪{2y+1 : Tiiy} : i ∈ N}

where T is Kleene’s predicate is pfi but is not canonical and cannot be given as a
canonical family.

Proof:
First observe that the 2i element in each Si is an even number whereas the other
element 2(µyT iiy) + 1 (if it exists, where µ is the standard recursive minimum
function) is always an odd number. It is easy to see that, for each Si ∈ S T

2 the
set {2i} is a DFTT of Si. Moreover, {2y + 1} is also a DFTT of Si. To see the
latter, note that after 2y+ 1 appears in the data, the learner can compute i since
i < y. In other words, if a learner encounters an odd number in the stream of
data, she will know that this number does not correspond to the index of the
language but it can be computed.

To see that S T
2 cannot be given as a canonical family, note that by a simi-

lar argument as in the proof of Theorem 6.3.17, S T
2 is not canonical. Moreover,

S T
2 has the following property 1): {2i} ∈ S T

2 is co-r.e. and not r.e. because
¬∃y(Tiiy). Now towards contradiction, suppose S ′ ⊇ S T

2 is a canonical anti-
chain. Let {S ′j : j ∈ N} be an enumeration of S ′. Then, {2i} ∈ S ′ iff {2i} ∈ S T

2

simply because S T
2 and S ′ are anti-chains such that S T

2 ⊆ S ′. Thus the prop-
erty 1) no longer holds for S T

2 . But {2i} ∈ S ′ ⇔ ∃j({2i} = S ′j) and
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∃j({2i} = S ′j) is a r.e. predicate, which is impossible since S T
2 is not r.e. There-

fore S T
2 cannot be indexed canonically. 2

The fact that S T
2 is pfi relies on the structural properties of the family and has

nothing to do with whether the family is canonical or not. The families presented
above (in Proposition 6.3.15, Example 6.3.16 and Proposition 6.3.20), make clear
the fact that canonicity is not a necessary condition for a family to be pfi or cfi.

6.4 Non-pfi anti-chains of singletons and pairs

We saw in Lemma 5.4.3 (in Chapter 5) that nepfi families of finite languages
and such anti-chains correspond to the same class of families. We will see that
this is not the case for pfi families since effectiveness plays a crucial role in pfi. In
this section, we present a maximal non-canonical (computable) anti-chain of fi-
nite languages which is not pfi (and not cfi). This clarifies the fact that, even
for families of finite languages with “structurally nice properties”, like being a
maximal anti-chain, pfi and cfi are not guaranteed. Surprisingly, we then prove
that for infinite anti-chains of finite languages, cfi is more powerful than pfi. For
this, we present a non-canonical cfi anti-chain of singletons and pairs which is not
pfi.

We start this section by listing what we know so far concerning canonical and
non-canonical anti-chains of finite languages:

• Canonical families which are anti-chains are always pfi.

• Cfi families of finite sets which are not canonical and not pfi do exist, for
instance the family S T

1 = {Si : Si = {i} ∪ {y : Tiiy}} where T is Kleene’s
T -predicate.

• Pfi families which are not canonical do exist, for instance S T
2 := {{2i} ∪

{2y + 1 : Tiiy} : i ∈ N} where T is Kleene’s predicate (in Proposition
6.3.20).

The following proposition presents the strategy and prepares the stage for the
main results in this section.

6.4.1. Proposition. Let A ⊆ N r.e. and B = N−A co-r.e. There is an indexed
nepfi family S = {Si : i ∈ N} ⊆ S 1 ∪S 2 such that for any Si ∈ S with i ∈ A,
Si = {i, a} with a ∈ A and Si = {i} otherwise.

Proof:
We enumerate the setA = {a0, a1, a2, . . .}. For each Si we construct Si in stages. At
stage 0, let i ∈ Si. At stage k, we check whether k is a computation showing that
i ∈ A. If not, do nothing. If k is a computation for i ∈ A we put the first a ∈ A
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such that a > k, a 6= i and a /∈ Si′j′ for i′, j′ < i, j (the first a that has not been
assigned before in Si). Let S be the family of all such Si. By construction it is
an anti-chain so it is nepfi, and for any Si ∈ S such that i ∈ A, Si = {i, a}
with a ∈ A, Si = {i} otherwise. Clearly, S is indexed. The resulting family
S is not maximal because of the following: let i, j ∈ A such that Si = {i, ak}
and Sj = {j, am} have been constructed for some ak, am in A. Note that the pair
{ak, am} is not in S . This is because Sak must be a pair, such that ak is paired
with the smallest element in A with certain properties that has not been used
before, namely an. Thus, an cannot be am since am has been paired with j. Thus,
the family S ∪ {ak, am} is an anti-chain that extends S , thus it is nepfi. 2

We are now ready to present a non-canonical anti-chain which is not pfi and
a maximal anti-chain which is not pfi.

6.4.2. Proposition. Consider the r.e. set K := {x : ∃y (Txxy)} where T is
Kleene’s predicate. There is a family S such that S contains all {i} for i /∈ K
and some {c, d} with c, d ∈ K which is an indexable anti-chain and not pfi.

Proof:
First note that K is not recursive. Let B ⊂ K be an infinite recursive. Let
C := {y : ∃x (Txxy)}, noting that C = {y : ∃x < y (Txxy)} and therefore C
is recursive. Let C := {c0, c1, . . .} be an enumeration of C. We will construct an
indexed family S = {S0, S1, S2, . . .} as follows,

S2i =


{i, b} if Tiiy for y ∈ C and b = min{z ∈ B : z > y},

{i} otherwise.

Furthermore, S2j+1 = {i, b′} computed from cj where Tiicj, b = min{z ∈ B :
z > cj}, Tbby for some y ∈ C and b′ = min{z ∈ B : z > y}. Both b and b′

always exist because B is an infinite subset of K. Note that S2b = {b, b′} and thus
b 6= b′. Clearly, i will occur in more than one pair.

Altogether, if i /∈ K then S2i = {i}. If i ∈ K then S2i will have two elements,
i and some b ∈ B ⊆ K such that b > y > i; and, S2j+1 will have two elements, i
and some b′ ∈ B ⊆ K such that b′ > y > b > cj > i.

We will show that S is indexed. Clearly, i ∈ S2i and i ∈ S2j+1. Consider
x 6= i, then

x ∈ S2i iff ∃y < x(Tiiy and x = min{z ∈ B : y < z}),

x ∈ S2j+1 iff ∃y < x(Tbby, b = min{z ∈ B : cj < z},
T iicj and x = min{z ∈ B : y < z}).
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These two predicates are recursive. Thus, the family S is indexed.
We will now show that S is not pfi. Towards a contradiction, suppose λ is

a pfi learner for S . Take i > 0 and m ∈ N and suppose λ has received the
segment σ+[m] = i, i, . . . , i for some m ∈ N. Note that any such σ+[m] is an
initial segment of some positive data sequence for some language in S . If i ∈ K,
by our construction above, there are at least two languages that contain i so
λ(σ+[m]) =↑. If i /∈ K, the segment σ+[m] = i, i, . . . , i corresponds to a positive
data sequence σ+ for S2i = {i}. Thus, λ needs to give value 2i at some point and
so

∃m, λ(σ+[m]) 6=↑ .
Altogether, and since (i ∈ N−K iff ∃m, λ(σ+[m]) 6=↑), we obtain that N−K is
r.e. which is a contradiction (since K is not recursive). Therefore, S is not pfi.

2

We want to emphasize a few things about the proof of Proposition 6.4.2. First,
observe that the languages in S are all distinct from one to another, i.e., there
are no Si, Sj ∈ S with Si = Sj and i 6= j. This family will play a crucial role
later on, when we prove Theorem 6.5.8 of Section 6.5. Second, that it can be
generalized to a family constructed in this matter using any r.e. set W which is
not recursive. This is because any r.e. set contains an infinite recursive set B (see
e.g., Rogers, 1967), so the proof will follow as for K. Finally, note that S is not
a maximal anti-chain. This is simply because for every i, k ∈ K − B the family
S ∪ {i, k} is a nepfi extension of S . In fact, the non-maximality of S follows
from the next proposition.

6.4.3. Proposition. Consider the r.e. set K := {x : ∃y (Txxy)} where T is
Kleene’s predicate. The family S such that S contains all {i} for i /∈ K and
all {c, d} for c, d ∈ K is an indexable maximal anti-chain i.e., a maximal nepfi
family.

Proof:
Let B ⊂ K be an infinite recursive set and let C := {y : ∃x (Txxy)}, noting
that C = {y : ∃x < y (Txxy)}. We will construct an indexed family S =
{S0, S1, S2, . . .} as follows. First, let S2n+1 = {c, d} with c 6= d if n ∈ N codes a
pair of computations of c and d being elements of K, i.e., if n = π(y, z) such that
π is Cantor’s pairing function, Tccy and Tddz. Now if i does not code such a pair
then S2i will be enumerated as follows:

S2i =


{i, b} if Tiiy for y ∈ C and b = min{z ∈ B : z > y},

{i} otherwise.

In other words, whenever Tiiy holds for some y ∈ C, we pair i with the
smallest element in B greater than y such that Tiiy.
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We will show that S is indexed. Observe that by construction, for every
n ∈ N, if n = π(c, d) then c, d ∈ S2n+1. Thus, (x ∈ S2n+1) is recursive, moreover
S2n+1 can be computed from n with its canonical index. Regarding S2i, i ∈ S2i,
and consider x 6= i. Then,

x ∈ S2i iff ∃y < x(Tiiy and x = min{z ∈ B : y < z}),

which is recursive. Therefore, S is indexed.
By construction, the resulting family S is an anti-chain and therefore nepfi. It

is a maximal anti-chain simply because of the following, for any set X ⊆ N which
is not a singleton nor a doubleton clearly S ∪ X is not an anti-chain. If X is
a singleton, then either X ∈ S , or X ⊂ S2n+1 for some n that codes a pair
of computations or X ⊂ S2i for some i ∈ K. If X is a doubleton, then either
X = S2n+1 for some n, X = S2i for some i ∈ K or Si = {i} ⊂ X. In both cases
S ∪X is not an anti-chain. Thus, S is a maximal anti-chain. 2

We want to remark a couple of things from Proposition 6.4.3. First, as it
happens for Proposition 6.4.2, Proposition 6.4.3 can be generalized to a family
constructed in this matter using any r.e. set W which is not recursive. Second
the following obvious fact, consider any set of singletons and extend it with the
family of pairs formed by the elements in its complement. The resulting family is
always nepfi. This gives us the following result.

6.4.4. Corollary. If an (indexable) family of singletons and pairs S is maxi-
mal nepfi and not pfi then S 1 ∩S is non-r.e. and S 2 ∩S is r.e.

Proof:
Follows straighforwardly from Proposition 6.3.4, Proposition 6.3.7 and the gen-
eral version of Proposition 6.4.3. 2

Given the result above, the family in Proposition 6.4.3 is a generic example of
a maximal indexed nepfi extension for any pfi family of singletons and pairs. This
gives us a partial answer for the Open Question 1 posed in Chapter 5 with respect
to maximal indexed nepfi families of only singletons and pairs.

6.4.5. Proposition. The family in Proposition 6.4.3 is a non-canonical anti-
chain which is not pfi.

Proof:
Towards contradiction, suppose S is canonical. By Proposition 6.3.10, S is de-
cidable. This implies that S ∩ S 1 is also decidable, and therefore, N − K is
decidable which cannot be since N − K is non-r.e. Towards contradiction, sup-
pose S is pfi. This implies, by Proposition 6.3.4 and a similar argument as before,
that N−K is decidable, which cannot be since N−K is non-r.e. 2
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6.4.6. Proposition. The family in Proposition 6.4.3 is not cfi.

Proof:
Towards contradiction, suppose S is cfi. If b, c ∈ K then {b, c} = Lj for some
Lj ∈ S . We will show that for any definite tell-tale pair (Dj, Dj) for Lj, Dj =
{b, c}. Towards contradiction and w.l.o.g., suppose TTP := ({b}, {x0, . . . , xn−1})
with xi 6= c is a definite tell-tale pair for Lj. Take m = min{y ∈ K : y >
b, c and i ≤ n−1, y > xi} (clearly suchm exists). Sincem ∈ K, {b,m} ∈ S . Note
that the proposed definite tell-tale pair TTP is consistent with the language
{b,m} but {b,m} 6= {b, c}, contradicting that TTP is a definite tell-tale pair for
{b, c}. Thus, if (Dj, Dj) is a definite tell-tale for Lj, Dj = {b, c}.

If i /∈ K, {i} = Lj for some Lj ∈ S . Thus, by maximality of S , Dj = {i} is
the positive element of any tell-tale pair (Dj, Dj) for {i}. Clearly, since Dj 6= ∅
because N−K is infinite.

We now continue with the main proof. Take any x ∈ N and any c ∈ K. Then
either {x} ∈ N or {x, c} ∈ N. Moreover, either {x} or {x, c} corresponds to the
set Dj of a definite tell-tale pair (Dj, Dj) for some Lj ∈ S . Thus, (Dj := {x} iff
x /∈ K) which gives a decision procedure for K and that cannot be. 2

Contrary to the results of Section 5.3, cfi identification is more powerful on
infinite anti-chains of infinite languages than pfi identification (see Proposition
5.4.1, where we prove that the anti-chain of co-singletons is not even nepfi). The
case of infinite anti-chains of finite languages is not so simple. Nevertheless, as
the following proposition shows, cfi is more powerful than pfi in that case.

6.4.7. Proposition. There is a non-canonical cfi anti-chain of finite languages
which is not pfi.

Proof:
Consider the r.e. set K := {x : ∃y (Txxy)} where T is Kleene’s predicate and
B ⊆ K ∪ {0} a recursive subset. Let C := {y : ∃x (Txxy)}, noting that C =
{y : ∃x < y (Txxy)} and therefore C is recursive. Using these three sets we will
construct a non-canonical cfi family which is not pfi.

Take an arbitrary k0 ∈ K and let k1 = min{k ∈ B : Tk0k0n for n < k}. Let
S := {Si : i ∈ N} such that S0 = S1 = S2 = {k0, k1}. For any n ≥ 1 and i ≥ 1,

S3n =


{k0, k1} if n /∈ C,

{x1, x2} if n ∈ C, Tx1x1n and x2 = min{z ∈ B : z > n}.

S3n+1 =


{k0, 0} if n /∈ C,

{x1, 0} if n ∈ C such that Tx1x1n.
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S3i+2 =


{i} if i /∈ K,

{i, x2} if i ∈ K, Tx1x1n for some n ∈ C and x2 = min{z ∈ B : z > n}.

Since C is recursive, the languages S3n and S3n+1 can be computed from n with
their canonical index. For the languages S3i+1, we always include i and we also
include x2 whenever we find n showing that i ∈ K. Note that for all x ∈ K − B
there are exactly two y, z ∈ N such that {x, y}, {x, z} ∈ S and these languages
contain x. To see this, note that the y and z are precisely 0 and x2 = min{x ∈ B :
x > n} with n ∈ C from the description of the languages. Observe that x2 ∈ S3n

and x2 ∈ S3i+2, so S3n and S3i+2 are identical if x1 in S3n is the same as i in
S3i+2.

For x ∈ B there may be more than two elements y ∈ N pairing with x, but
all such y ∈ N are smaller than x (this happens if x acts as x2 in S3n or in
S3i+2). Thus, there are only finitely many of such y ∈ N. In fact, they can all
be computed, but this does not seem relevant. The resulting family is clearly an
anti-chain since i can occur in S as the singleton {i} only if i /∈ K and thus it
will not pair with an element of K.

We now first prove that the resulting family is indexed. For this, we only have
to check whether x ∈ S3n, x ∈ S3n+1 and x ∈ S3i+2 are recursive (since x ∈ S0,
x ∈ S1 and x ∈ S2 clearly are recursive). As mentioned before, the languages
S3n and S3n+1 can be computed from n with their canonical index, thus x ∈ S3n,
x ∈ S3n+1 are recursive. Now let us check it for S3i+2. Clearly, i ∈ S3i+2. Consider
x 6= i, then

x ∈ S3i+2 iff ∃y < x(Tiiy and x = min{z ∈ B : y < z}),

which is recursive. Thus, the family S is indexed.
Next we show that S is not pfi. Towards a contradiction, suppose λ is a pfi

learner for S . Take i > 0 and m ∈ N and suppose λ has received the segment
σ+[m] = i, i, . . . , i for some m ∈ N. Note that any such σ+[m] is an initial
segment of some positive data sequence for some language in S . If i ∈ K,
by our construction above, there are at least two languages that contain i so
λ(σ+[m]) =↑. If i /∈ K, the segment σ+[k] = i, i, . . . , i corresponds to a positive
data sequence σ+ for S3i+2 = {i}. Thus, λ needs to make a conjecture at some
point and so

∃m, λ(σ+[m]) 6=↑ .

Altogether, and since (i ∈ N−K iff ∃m, λ(σ+[m]) 6=↑), we obtain that N−K is
r.e., which is a contradiction since K is not recursive. Therefore, S is not pfi.

Finally, we will show that S is cfi. For S0, S1 and S2, a definite tell-tale pair
is (S0, ∅) (recall that S0 = S1 = S2). For S3n and S3n+1, the definite tell-tale pairs
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are (S3n, ∅) and (S3n+1, ∅) respectively. This is simply because the languages S3n

and S3n+1 can be computed from n with their canonical index. For S3i+2, first note
the following: if (D3i+2, D3i+2) is a definite tell-tale pair for S3i+2, the positive set
in (D3i+2, D3i+2) cannot have two elements, i.e., D3i+2 6= S3i+2. This is because
such a definite tell-tale exists only if i ∈ K but we cannot decide this. It turns out
that we can take the positive set of the definite tell-tale pair of S3i+2 to be the
singleton {i}. Thus, if i /∈ B then ({i}, {0}) is a definite tell-tale pair for S3i+2. To
see this, consider the following. First, i ∈ S3i+2 always. If i /∈ B, by construction
of S we have the following cases:

i ∈ K − B: we have S3i+2 = {i, x2} with Tiin for some n and x2 > n and
thus n ∈ C. Therefore, the learner must be able to disambiguate S3i+2 from
the language S3n+1 = {i, 0}. Clearly, {{i}, {0}} allows disambiguation and
so it is a definite tell-tale pair for S3i+2 = {i, x2}.

i /∈ K: we have S3i+2 = {i}, thus the pair {{i}, {0}} works as a definite
tell-tale pair for S3i+2 = {i}.

Now, if i ∈ B, ({i}, {0, . . . , i − 1}) is a definite tell-tale pair for S3i+2. To see
this, note that i may appear also in finitely many other pairs in S of the
form {x, i} where x < i (when i = x2 as in the construction above). Thus,
it is good enough if we put the negative set in the definite tell-tale pair as
D3i+2 = {0, . . . , i − 1}. Clearly, ({i}, {0, . . . , i − 1}) will ensure disambiguation
between S3i+2 and the other languages containing i. Altogether, S is cfi. 2

In the section that follows, we will see that some “special” cfi anti-chains, are
always pfi, namely the ones that can be learnt in the fastest way.

6.5 Fastest learning

In this section we focus on fastest learning with positive data, as defined by
Gierasimczuk and de Jongh (2013), and formalize it for complete data. Intu-
itively, a fastest learner identifies a language as soon as it is objectively certain
which language it is. Recall that a learner in DEL updates her information state
as soon as new factual information has been made available. In those terms, a
fastest learner is closer in spirit to a learner in DEL than the standard learner in
FLT. Formally, a family is positively identified in the fastest way if all the DFTTs
for all the languages in the family are uniformly available and recognizable by some
recursive learning function. Such a learning function is called a fastest learner.

We present a much simpler example than the one in (Gierasimczuk and
de Jongh, 2013) to show that not every pfi family is identifiable by a fastest
learner. Then, we extend the definition in (Gierasimczuk and de Jongh, 2013), to
reason about fastest learning with complete data. Finally, we show that every cfi
anti-chain for which a fastest cfi learner exists, is also pfi.
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Consider the following definition of fastest learning from Gierasimczuk and
de Jongh (2013). Let S be any indexed family, for every Si ∈ S we denote
DFTTi the set of all the DFTTs of Si.

6.5.1. Definition. [Fastest pfi] Let S be an indexed family of languages. We
say that S is finitely identifiable with positive data in the fastest way, or fastest
pfi in short, if and only if there is a learning function λ, such that, for each σ+

and i ∈ N,

λ(σ[n]) = j for some Sj = Si iff ∃Dk
i ∈ DFTTi s.t. Dk

i ⊆ set(σ+[n])

and 6 ∃Dl
i ∈ DFTTi s.t. Dl

i ⊆ set(σ+[n− 1]).

We will call such λ a fastest learning function (or a fastest learner).

The definition above, is easily seen to be equivalent to the following more
intuitive form:

λ(σ+[n]) = j for some Sj = Si iff set(σ+[n]) ∩S = {Si}
and set(σ+[m]) ∩S 6= {Si} for m < n.

It is easy to see that the family of all pairs, S 2, is fastest pfi. This is simply
because for any Si ∈ S 2, the only possible DFTT for Si is the language itself. In
fact, for every n ∈ N, the family S n is fastest pfi.

We find the following theorem and definition by Gierasimczuk and de Jongh
(2013) useful for getting more intuition about fastest learning. Theorem 6.5.3
states an equivalence between indexed families learnable in the fastest way and
indexed families for which a complete dftt-function exists. In simple terms, a com-
plete dftt-function for an indexed family S is a recursive function that identifies
all the DFTTs of every language Si in the family.

6.5.2. Definition. [Complete dftt-function] Let S be an indexed family of lan-
guages. The complete dftt-function for S is a recursive function νcdftt : P<ω(N)×
N→ {0, 1}, such that:

1. νcdftt(D, i) = 1 if and only if D is a DFTT of Si,

2. for every i ∈ N there is a finite D ⊆ N, such that νcdftt(D, i) = 1.

6.5.3. Theorem (Gierasimczuk and de Jongh (2013)). An indexed fam-
ily S is finitely identifiable in the fastest way iff there is a complete dftt-function
for S .

Now let us move on to showing, in our way, that fastest learning is more
restrictive than pfi learning. First, we need a definition and some useful proposi-
tions.
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6.5.4. Definition. Let S and S ′ be two indexed families of languages. We
call the sum of S and S ′ the family S ⊕S ′ := {(S ⊕ S ′)i : i ∈ N} such that,
(S ⊕ S ′)i = {2n : n ∈ Si} ∪ {2n+ 1 : n ∈ S ′i}.

6.5.5. Definition. [Singled valued families] We say that an indexed family of
languages S is single valued if each language occurs only once in the family, i.e.,
there are no Si, Sj ∈ S such that Si = Sj and i 6= j.

6.5.6. Proposition. Let S and S ′ be two single valued indexed anti-chains. If
S or S ′ is pfi then S ⊕S ′ is pfi.

Proof:
Suppose S is pfi. We will prove that by using the learner ν for S we can con-
struct a pfi learner λ for S ⊕ S ′. In simple terms, λ will identify the part
{2n : n ∈ Si} from every (S ⊕ S ′)i using the learner ν. Let σ+ be any positive
sequence for a language (S ⊕S ′)i ∈ S ⊕S ′. For every n ∈ N such that σ+[n] :=
〈σ+(0), . . . , σ+(n)〉 we define λ(〈σ+(0), . . . , σ+(n)〉) = ν(〈τ+(0)/2, . . . , τ+(k)/2〉)
where 〈τ+(0), . . . , τ+(k)〉 is the subsequence of 〈σ+(0), . . . , σ+(n)〉 of its even
members, and λ(ε) = ν(ε) =↑.

Now we will see that λ is a pfi learner for S ⊕S ′. Let σ+ be any positive
sequence for a language (S⊕S ′)i. Note that the sequence τ+(0)/2, . . . , τ+(k)/2, . . .
obtained from σ+, is a positive sequence for the corresponding language Si ∈
S . Recall that ν is a pfi learner for S , thus ν identifies the language Si ∈ S
with respect to the sequence τ+(0)/2, . . . , τ+(k)/2, . . .. Since S is single valued,
Si ∈ S corresponds only to the language (S ⊕ S ′)i. Thus by construction of λ,
λ(〈σ+(0), . . . , σ+(n)〉) = i. For S ′ the proof is analogous. Thus, S ⊕S ′ is pfi.

2

Observe that in the proof of Proposition 6.5.7 the learner λ can be sure about
her output i precisely because S and S ′ are single valued. To illustrate, suppose
there is Sj ∈ S such that Sj = Si and j 6= i but S ′j 6= S ′i in S ′. Then, λ cannot
distinguish on the basis of ν between the languages (S⊕S ′)i and (S⊕S ′)j which
are normally not the same.

6.5.7. Proposition. Let S and S ′ be two single valued indexed nepfi families
such that S ⊕S ′ is fastest pfi. Then, both families S and S ′ are pfi.

Proof:
Suppose there is a fastest pfi learner λ′ for S ⊕S ′. Thus, there is an effective
uniform procedure that produces all the DFTTs of any language (S ⊕ S ′)i ∈
S ⊕ S ′. W.l.o.g. we will use λ′ to construct a fastest learner ν ′ for S ′. Take
any positive sequence σ+ for some S ′i ∈ S ′ and assume 〈σ+(0), . . . , σ+(n)〉 is
a sequence such that a DFTT, D, exists with D ⊆ {σ+(0), . . . , σ+(n)} and no
such DFTT exists for {σ+(0), . . . , σ+(n− 1)}. Note that such n exists since S ′ is
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nepfi. Now note that {2σ+(0) + 1, . . . , 2σ+(n) + 1} contains a DFTT for (S⊕S ′)i
namely Y = {2x + 1 : x ∈ D} and {2σ+(0) + 1, . . . , 2σ+(n − 1) + 1} contains
no DFTT. thus ν ′(〈σ+(0), . . . , σ+(n)〉) = λ′(〈2σ+(0) + 1, . . . , 2σ+(n) + 1〉) = i
because λ′ is a fastest learner for S ⊕S ′. It follows that, ν ′ is a fastest learner
for S ′ and therefore S ′ is pfi. We can follow a similar reasoning to show that S
is pfi. 2

6.5.8. Theorem. Fastest learning with positive data is more restrictive than pfi
learning on anti-chains of finite languages.

Proof:
We will construct a pfi family which is not learnable by any fastest learner. Take
for S any single valued pfi family which is an anti-chain together with the non-pfi
but nepfi single valued indexed family we constructed in Proposition 6.4.2 (in fact,
any nepfi but not pfi single valued indexed family will do). We denote the latter
family by S ′ = {S ′i : i ∈ N}. Take the sum S ⊕S ′ = {(S ⊕ S ′)i : i ∈ N}. Since
S is pfi, by Proposition 6.5.7, S ⊕S ′ is also pfi. Now, note that S ⊕S ′ is not
fastest learnable, because otherwise by Proposition 6.5.7, S ′ would be pfi which
is not the case. 2

The following proposition shows that every cfi anti-chain of finite languages
for which a fastest cfi learner exists, is pfi. We first need to define what a fastest
cfi learner is and give some notation.

Let us take a cfi family S and a language Si ∈ S and consider the family
TTPi of all the tell-tale pairs of Si.

For every complete data sequence σ of some S ∈ S and n ∈ N, let set1(σ[n]) :=
{m ∈ N : (m, 1) ∈ σ[n]} and set0(σ[n]) := {m ∈ N : (m, 0) ∈ σ[n]}. In simple
words, set1(σ[n]) is the set of all the elements in the finite segment σ[n] that
are in S and, analogously, set0(σ[n]) is the set of the elements that are in the
complement of S. We can now define the notion of a fastest cfi learner as follows.

6.5.9. Definition. Let S be an indexed family of languages. We say that S
is finitely identifiable with complete data in the fastest way, or fastest cfi in short,
if and only if there is a learning function λ, such that, for each σ and i ∈ N,

λ(σ[n]) = j for some Sj = Si iff ∃(Dk
i , D

k

i ) ∈ TTPi(
Dk
i ⊆ set1(σ[n]) and D

k

i ⊆ set0(σ[n])
)
,

and 6 ∃(Dl
i, D

l

i) ∈ TTPi(
Dl
i ⊆ set1(σ[n− 1]), D

l

i ⊆ set0(σ[n− 1])
)
.

We will call such λ a fastest cfi learning function (or a fastest cfi learner).



6.6. Finite identification from queries 225

The definition above, is easily seen to be equivalent to:

λ(σ[n]) = j for some Sj = Si iff {S ∈ S : S is consistent with the pair

(set1(σ[n]), set0(σ[n]))} = {Si}
and ∀m < n,

{S ∈ S : S is consistent with the pair

(set1(σ[m]), set0(σ[m]))} 6= {Si}.

Similar to the fastest pfi learner, a fastest cfi learner needs access to all tell-
tale pairs of all languages in the corresponding family in a uniform way. Then the
learner makes a conjecture on the basis of the first tell-tale pair that appears in
the sequence in question.

6.5.10. Proposition. If S is an indexable antichain of finite languages for
which a fastest cfi learner exists, then it is pfi.

Proof:
Let S be an indexable antichain of finite languages such that λ is a fastest cfi
learner for S . Using λ, we will show that there is a uniform effective procedure
that outputs a DFTT for every Si ∈ S . Now let σ+ be any positive sequence
for any language Si ∈ S . Using σ+ we can construct step-by-step a complete
data sequence σ := (σ+(0), 1), (σ+(1), 1), (σ+(2), 1) . . . , that will correspond to
Si ∈ S . Note that since S is an antichain and every language is finite, (Si, ∅) is a
tell-tale pair for Si ∈ S and λ recognizes the tell-tale pair whenever it appears in a
complete sequence. Clearly, after some n ∈ N, Si ⊆ set(σ1[n]) and ∅ ⊆ set(σ0[n])
and there is no other pair (D,D) ∈ TTPi for which D ⊆ set(σ1[n − 1]) and
D ⊆ set(σ0[n − 1]) is the case. Thus λ(σ[n]) = j for some Sj = Si. Therefore
Di = set(σ1[n]) is a DFTT for Si. Since our choice of Si ∈ S and of a sequence
for Si was arbitrary, it follows that S is pfi. 2

This does not generalize to indexed families with infinite languages. The anti-
chain of co-singletons is an obvious counterexample, because it is easy to see that
its standard cfi learner is a fastest learner.

Of course, one can prove by a similar construction as in Theorem 6.5.8 that
fastest cfi learning is restrictive with respect to cfi learning, but it follows already
immediately from Proposition 6.5.7 and Proposition 6.5.10.

6.5.11. Corollary. Fastest cfi learning is more restrictive than cfi learning.

6.6 Finite identification from queries

In this section we study finite identification from queries or, in short, learning
from queries. Our work is inspired by the work of Angluin (1987), where the prob-
lem of identifying languages from its elements and the elements in its complement
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by asking queries is studied. The learner can produce queries and more than one
conjecture, whereas the teacher presents the language to the learner by answering
membership queries and testing the learner’s conjectures. When a conjecture is
not correct, the teacher then gives a “counter-example” to the learner, a string
in the symmetric difference of the target language and the one conjectured.

Following our notation and methodology, we entertain a similar but simplified
idea to study finite identification with a learner that can produce queries. This
learning notion turns out to be close to cfi learning. In this model, the learner
receives answers from nature (or a teacher) to her queries, and can produce either
another query or a conjecture that aims at the target language. Clearly, after one
conjecture is produced the identification procedure stops. The learner can also
abstain, in which case she will receive from nature (or teacher) a new element
from a complete sequence chosen initially by nature from the target language (as
if the leaner is a standard cfi learner).

The query learner will be a composition of two functions that act one after the
other. One function produces the queries, and after nature (or a teacher) gives an
answer to her query, the second function produces a conjecture. The conjecture
is based on the sequence of all the previous data from nature. We will show that
an indexed family is cfi learnable if and only if it is learnable by queries. We will
also study a strict query learner, one that never abstains and always produces a
query. We will see that the class of families for which a strict query learner exists
is also equivalent to cfi.

Recall that we call Seg the set of all initial segments of all complete se-
quences. We say that an initial segment σ[n] := 〈(x0, t0), . . . , (xn−1, tn−1)〉 in
Seg is consistent with a language S, if {x ∈ N : (x, 1) ∈ σ[n]} ⊆ S and
{x ∈ N : (x, 0) ∈ σ[n]} ⊆ N− S.

6.6.1. Definition. [Query learner]

• Given a complete sequence σ of some language S and an initial segment
τ [n] := 〈(x0, t0), . . . , (xn−1, tn−1)〉 in Seg consistent with S, a question func-
tion α : Seg → N ∪{#} is a recursive function such that when α(τ [n]) = xn,
we say that α produces a query and when α(τ [n]) = # we say that α ab-
stains. When α(τ [n]) ∩ S ∈ N or α(τ [n]) ∩ S − N has been decided, we say
that an answer has been provided.

• A query learner is a pair of recursive functions Ω := (α, λ) with a cfi learner
λ : Seg → N ∪ ↑ and a question function α : Seg → N ∪ {#}. We
define λ(σ[0]) =↑ for the empty sequence σ[0] = ε. To differentiate from cfi
learners, we will call λ the conjecture function in Ω.

• Given a complete sequence σ of some language S and a query learner Ω :=
(α, λ), we call σΩ the sequence produced by Ω from a complete sequence σ. As
usual, σΩ(n) denotes the n-th element of the sequence and σΩ[n] the initial
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segment of length n, i.e., σΩ[n] := 〈σΩ(0), . . . , σΩ(n−1)〉. For every n ∈ N,
the sequence σΩ is defined recursively as follows: σ[0] = σΩ[0] = ε,

σΩ(n) =



∅ if λ(σΩ[n]) = j for some j ∈ N,

(α(σΩ[n]), 1) if λ(σΩ[n]) =↑ and α(σΩ[n]) ∈ N ∩ S,

(α(σΩ[n]), 0) if λ(σΩ[n]) =↑ and α(σΩ[n]) ∈ N− S,

σ(m) if λ(σΩ[n]) =↑, α(σΩ[n]) = #

and σ(m) is the first element of σ that

does not appear in σΩ[n].

Intuitively, after λ(σ[0]) =↑, a query learner, at each step of the process,
first uses the question function, α, to possibly output a query xn (which will be
answered by nature or by a teacher with xn ∈ N ∩ S or xn ∈ N − S in each
case, with S the target language). The query produced by α is based on an initial
segment σΩ[n] (starting with the empty initial segment). Then the learner uses
the conjecture function, λ, to produce a conjecture, where, as usual, ↑ stands for
undefined. Observe that given a language S and a complete sequence σ for S, for
every n ∈ N, σΩ(n) is consistent with σ. To illustrate, if nature answers x ∈ N∩S
for some query x produced by Ω, (x, 1) must appear in σ because σ is a complete
sequence for S. Thus, set(σΩ[n]) ⊆ set(σ).

In what follows, we will always consider that the answers come from nature
(an analysis with respect to a teacher is essentially the same).

6.6.2. Definition. [Finitely identifiable from queries] Let S = {Si : i ∈ N} be
an indexed family of languages and let Ω := (α, λ) be a query learner.

• Given a complete sequence σ of a language Si ∈ S . We say that Ω identifies
Si on σ, if for some n ∈ N, λ(σΩ[n]) = j for some j ∈ N such that Si = Sj
and stops.

• We say that Ω identifies Si on every complete sequence σ of Si, if for every
σ of Si, Ω identifies Si on σ.

• A family S is finitely identifiable by the query learner Ω iff for every Si ∈ S ,
Ω identifies Si on every complete sequence σ of Si.

• A family S is finitely identifiable from queries (qfi) iff there is a recursive
query learner Ω := (α, λ) such that for every Si ∈ S , Ω identifies Si on
every complete sequence σ of Si.
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As in the case of nepfi and necfi, we occasionally relax the condition of index-
ability of the family in question and the condition of recursivity of both functions
in the query learner Ω. In such cases, Ω is said to be a non-effective query learner
and S is said to be non-effectively finitely identifiable from queries (in short,
neqfi). The next theorem is the corresponding counterpart of the Characteriza-
tion Theorem by Mukouchi (1992), and Lange and Zeugmann (1992, 1996) with
respect to learning by queries.

6.6.3. Theorem (Characterization of qfi families). An indexed family S
of languages is finitely identifiable with queries (qfi) iff for every Si ∈ S there
is a definite tell-tale pair (Di,Di) in a uniformly computable way. That is, there
exists an effective procedure Φ that on input i, index of Si, produces the canonical
index Φ(i) of some definite finite tell-tale pair of Si.

Proof:
Follows by a similar reasoning as in the proof of the Characterization Theorem
for complete data in (Mukouchi, 1992).

For (⇒): Suppose there is a uniform computable procedure that produces
a definite tell-tale pair (Di, Di) for every Si ∈ S . We will construct a query
learner Ω := (α, λ) for S using the definite tell-tale pairs. Take α a recursive
function such that for any initial segment τ ∈ Seg, α(τ) = # and take any cfi
learner λ for S . By the Characterization Theorem in (Mukouchi, 1992), we know
λ exists. Clearly Ω = (α, λ) is a query learner for S , since obviously σΩ = σ
where σ is the complete data sequence initially chosen.

For (⇐): Suppose S is qfi. There is a query learner Ω := (α, λ) that iden-
tifies every Si ∈ S on any complete sequence σ for Si. Let Si ∈ S , let σ be
any complete sequence of Si and consider any σΩ produced by Ω from σ. Then
there is n ∈ N such that λ(σΩ[n]) = j with Sj = Si and for any l < n,
λ(σ[l]) =↑. Let (Di, Di) be such that Di := {(yk, tk) ∈ σΩ[n] : tk = 1} and
Di := {(yk, tk) ∈ σΩ[n] : tk = 0}. Clearly (Di, Di) is a definite tell-tale pair for
Si. Obviously both Di and Di are finite. Towards contradiction, suppose (Di, Di)
is consistent with another language Sk ∈ S such that Si 6= Sk. Then, nature can
extend the segment σΩ[n] with a complete sequence σ′ consistent with Sk. Note
that σ′ will also be a complete sequence for Sk since the initial segment was con-
sistent with Sk. But Ω will still identify σ′ as a sequence for Si. This contradicts
that Ω := (α, λ) is a query learner for S and that it identifies Sk. Thus (Di, Di)
is a definite tell-tale pair for Si. 2

6.6.4. Proposition. An indexed family S is cfi learnable iff S is finitely iden-
tifiable by queries.

Proof:
Follows straightforwardly by the Characterization Theorem for complete data by
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Mukouchi (1992) (also by Lange and Zeugmann (1992, 1996)) and from Theorem
6.6.3. 2

Consider a query learner who always produces a query and never abstains.

6.6.5. Definition. [Strict query learner]

• A strict query learner is a query learner Ω := (α, λ) with λ : Seg → N ∪ ↑
and α : Seg → N, such that α(τ) = xn ∈ N and after an answer is produced,
namely (xn, tn), λ(τ, (xn, tn)) produces a conjecture i ∈ N or ↑.

• Given a language S and a strict query learner Ω := (α, λ), for every n ∈ N,
the sequence σΩ is defined recursively as follows: σΩ[0] = ε,

σΩ(n) =



∅ if λ(σΩ[n]) = j for some j ∈ N,

(α(σΩ[n]), 1) if λ(σΩ[n]) =↑ and α(σΩ[n]) ∈ N ∩ S,

(α(σΩ[n]), 0) if λ(σΩ[n]) =↑ and α(σΩ[n]) ∈ N− S.

6.6.6. Definition. [Finitely identifiable by a strict query learner] Let S =
{Si : i ∈ N} be an indexed family of languages. The learning notions defined in
Definition 6.6.2 are defined similarly for a strict query learner Ω := (α, λ).

One could think that the properties described in Definition 6.6.5 would restrict
the capabilities of a query leaner. We will show that this is not the case, a family
S is learned by a query learner if and only if it is learned by a strict query
learner. In fact, the class of cfi families is equivalent to the class of strict-qfi
families. First we need some definition and notation.

6.6.7. Definition. [Finite canonical complete sequence] Let S be an indexed
family and Φ be an effective procedure such that Φ(i) = (Di, Di) is a definite tell-
tale pair for i. A sequence representation of (Di, Di) is a finite sequence Φseq(i) :=
(xi0, t

i
0), (xi1, t

i
1), . . . , (xik, t

i
k) where,

• {xi0, . . . , xik} = Di ∪Di,

• for each j ≤ k, tij = 1 iff xij ∈ Di and tij = 0 iff xij ∈ Di, and

• for each x ∈ Di ∪Di, the corresponding pair (x, t) occurs only once.

We will call such a sequence a finite canonical complete sequence for i (in short,
finite canonical sequence for i).
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In other words, we choose for each i ∈ N a finite canonicial sequence Φseq(i)
such that

(x, 1) occurs in Φseq(i) if and only if x ∈ Di

and
(x, 0) occurs in Φseq(i) if and only if x ∈ D0.

Therefore, Φseq(i) is an initial segment of a complete sequence which pairs cor-
respond exactly to the elements in the definite tell-tale pair produced by Φ on
input i.

The notion presented in the following definition will be useful for the proof of
the Characterization theorem for strict-qfi families in Mukouchi style.

6.6.8. Definition. Let S be an indexed family, let Sj, Si ∈ S , let Ω := (α, λ)
be a strict query learner and let Φseq(i) = (xi0, t

i
0), (xi1, t

i
1), . . . , (xik, t

i
k) be a fi-

nite canonical sequence for Si ∈ S . Let τ be any initial segment of Φseq(i) of
length m < k and α(τ) = xim+1 such that (xim+1, t

i
m+1) ∈ Φseq(i) (i.e., α queries

xim+1). We say that (xim+1, t
i
m+1) fits the answer to the query xim+1 with respect to

Sj if (xim+1 ∈ Sj and tim+1 = 1) or (xim+1 ∈ N− Sj and tim+1 = 0).
Equivalently, given a sequence σ of Sj, we can say that (xim+1, t

i
m+1) fits the

sequence σ of Sj if σ(n) = (xim+1, t
i
m+1) for some n ∈ N.

6.6.9. Theorem (Characterization of strict-qfi families). An indexed
family S of languages is finitely identifiable with queries by a strict query learner
(strict-qfi) iff for every Si ∈ S there is a definite tell-tale pair (Di,Di) in a uni-
formly computable way. That is, there exists an effective procedure Φ that on input
i, index of Si, produces the canonical index Φ(i) of some definite finite tell-tale
pair of Si.

Proof:
For (⇒): Suppose there is a uniform computable procedure that produces a
definite tell-tale pair (Di, Di) for every Si ∈ S . We will construct a strict query
learner Ω := (α, λ) for S using the definite tell-tale pairs. Suppose Sj ∈ S for
some j ∈ N is the target language. For every i ∈ N, consider a finite canonical
sequence Φseq(i) = (xi0, t

i
0), (xi1, t

i
1) . . . , (xik, t

i
k) as defined above. We run through

all the sequences Φseq(i) in the natural order. At each stage n ∈ N, the learner
considers Φseq(i) at x, i.e., the learner will produce a query x corresponding to
(x, t) of Φseq(i). We introduce the identification procedure in stages 0 and 1 then
we describe it generally for any stage k > 1.

At stage 0, the learner issues ↑. At stage 1, the learner considers Φseq(0) and
queries α((x0

0, t
0
0)) = p1((x0

0, t
0
0)) = x0

0 where p1 is the standard pair projection
function that returns the first element of a pair. Thus, the learner queries the
first element of Φseq(0) so that σΩ(0) = (x0

0, t
0
0).

If (x0
0, t

0
0) fits the answer to the query x0

0 and (x0
0, t

0
0) is the final element of

the sequence Φseq(0) then the learner has confirmed (D0, D0). Thus, she issues 0
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and stops (and thus S0 = Sj). If (x0
0, t

0
0) is not the final element of the sequence

Φseq(0), at stage 2, the learner issues ↑ and continues with Φseq(0) producing the
query α((x0

0, t
0
0), (x0

1, t
0
1)) = p1((x0

1, t
0
1)) = x0

1 so that σΩ(1) = (x0
1, t

0
1).

If (x0
0, t

0
0) does not fit the answer to the query x0

0, the learner issues ↑ on (x0
0, t

0
0),

i.e., λ((x0
0, t

0
0)) =↑. Then the learner is in stage 2 and considers Φseq(1). The

learner then queries α((x0
0, t

0
0), (x1

0, t
1
0)) = p1((x1

0, t
1
0)) = x1

0, i.e., queries the first
element of Φseq(1), such that σΩ(1) = (x1

0, t
1
0).

Generally, at stage k, if (xim, t
i
m) is the (m + 1)-th element in Φseq(i) and

p1((xim, t
i
m)) = xim is queried, then,

i) if (xim, t
i
m) fits the answer to the query xim, then, σΩ(k − 1) = (xim, t

i
m) and

a) if (xim, t
i
m) is not the last element of Φseq(i), the learner issues ↑ on the

sequence seen so far. Then, on stage k+1, the learner queries the next
element in Φseq(i), namely p1((xim+1, t

i
m+1)) = xim+1.

b) if (xim, t
i
m) is the last element of Φseq(i), the learner issues i and stops

(then Si = Sj).

ii) if (xim, t
i
m) does not fit the answer to the query xim, the learner issues ↑ on

the sequence seen so far and σΩ(k − 1) = σΩ(k − 2). Then, on stage k + 1,
the learner considers (xi+1

0 , ti+1
0 ) and queries p1((xi+1

0 , ti+1
0 )) = xi+1

0 , i.e., it
queries the first element in Φseq(i+ 1).

Note that in each step of the process k, σΩ(k − 1) = (x, t) ∈ Dj when t = 1 and
σΩ(k − 1) = (x, t) ∈ Dj when t = 0. Since Sj was arbitrarily chosen, the strict
query learner described in this procedure finitely identifies any language from S .

For (⇐): The proof goes as the corresponding proof (this direction of the
biconditional) of Theorem 6.6.3, but with respect to a strict query learner Ω :=
(α, λ) and the corresponding σΩ produced by Ω for some Si ∈ S . 2

6.7 Conclusion and future research

In this chapter, we studied the computational differences and links between finite
identification with positive and with complete data. In particular, we analyzed
infinite indexed anti-chains of finite languages (i.e., nepfi indexed families of finite
languages). For these cases it was not clear what the connection (or difference)
between cfi and pfi is. Given our findings in Chapter 5 that nepfi and necfi differ
strongly regarding the existence of maximal families, we concentrated first on
the description and existence of maximal families in the pfi case. To do so, we
restricted our analysis to a class of simple anti-chains, namely the ones with only
singletons and pairs. Considering such anti-chains we were able to find exam-
ples of the following kind. First, we presented a family of finite languages coded
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standardly by canonical codes (and hence pfi) which does not have an effectively
finitely identifiable maximal extension. Next, we constructed a non-canonical anti-
chain for which the structural properties allow it to be pfi. Then, we exhibited
an example of an indexable anti-chain that cannot be given a canonical indexing,
and that is not pfi and not cfi. Due to the structural properties of anti-chains of
finite languages, cfi seems to be closer to pfi. Indeed, for many cases of cfi anti-
chains of finite languages pfi holds (it holds in most of the obvious examples). We
showed that this is not always the case. For this, we presented an example of a
non-canonical anti-chain that is cfi but not pfi. This shows that finite identifica-
tion with complete data of infinite anti-chains of finite languages is more powerful
than with positive data only.

We then studied fastest learning (or fastest identification) for positive data as
introduced in (Gierasimczuk and de Jongh, 2013). We provided an alternative ex-
ample to the one in (Gierasimczuk and de Jongh, 2013) to show that not every pfi
family can be fastest identified. We extended the definition in (Gierasimczuk and
de Jongh, 2013), to reason about fastest learning with complete data. We proved
that every cfi anti-chain for which a fastest cfi learner exists, is also pfi. This shows
that in fastest learning there is no difference between cfi and pfi with respect to
anti-chains of finite languages.

Then we investigated another variation of finite identification, learning from
queries. For this, we consider an active learner that can ask to the teacher ques-
tions about the concept being learnt. The query learner is a composition of two
functions that act one after the other. One function produces the queries, and
after the teacher gives an answer to her query. The second function produces a
conjecture. The query learner’s conjecture is based on the sequence of all the pre-
vious data from the teacher. We showed that a family is cfi learnable if and only
if it is learnable by queries. This result also holds for the case when the learner
never abstains and always produces a query.

Directions of future work involve investigating how our results stand up in
the context of other types of learning and their consequences for the study of
learning in Dynamic Epistemic Logic (DEL). In particular, studying the connec-
tion between fastest learning and learning with certainty via updates in DEL
and the relationship with learning in the limit with a restricted number of mind
changes. Considering a learner that can make at most two conjectures in learning
in the limit will be very close to a pfi learner. However, since all families of sin-
gletons and pairs are identified in this restricted version of learning in the limit,
such a variation is still more powerful than finite identification.



Appendix A

Technical Specifications of Part I

A.1 Complexity order on formulas in DLLT and

in AGML

The following lemma guarantees the necessary complexity order for the proofs of
Lemmas 3.3.13 and 3.4.10 in Sections 3.3 and 3.4 respectively from Chapter 3.

For the definition that follows, note that pre(e) is a boolean formula (see
Definition 3.4.8).

A.1.1. Definition. [Subformula] Given a formula ϕ ∈ LΠt , the set Sub(ϕ) of
subformulas of ϕ is recursively defined as

Sub(ϕ) = {ϕ} if ϕ is >, o or, p,

Sub(¬ϕ) = Sub(ϕ) ∪ {¬ϕ},
Sub(Kϕ) = Sub(ϕ) ∪ {Kϕ},

Sub(ϕ ∧ ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {ϕ ∧ ψ},
Sub(L(e)) = Sub(pre(e)) ∪ {L(e)},
Sub([e]ψ) = Sub(pre(e)) ∪ Sub(ψ) ∪ {[e]ψ},
Sub(2ϕ) = Sub(ϕ) ∪ {2ϕ}.

Any formula in Sub(ϕ)− {ϕ} is called a proper subformula of ϕ.

A.1.2. Lemma. There is a well-founded strict partial order ≺1 on formulas in
LΠt (and therefore in LΠ since LΠt properly extends LΠ) called ‘complexity order’,
satisfying the following conditions:

• if ϕ is a proper subformula of ψ then ϕ ≺1 ψ,

• (pre(e)→ p) ≺1 [e]p,
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• (pre(e)→ o) ≺1 [e]o,

• (pre(e)→ L(e; e′)) ≺1 [e]L(e′),

• ([e]ϕ ∧ [e]ψ) ≺1 [e](ϕ ∧ ψ),

• (pre(e)→ K[e]ϕ) ≺1 [e]Kϕ,

• 2[e]ϕ ≺1 [e]2ϕ.

Proof:
A complexity measure c : LΠt → N that gives such a strict partial order on LΠt

can be defined similarly as the one in (van Ditmarsch et al., 2007, Definition 7.21)
as follows:

c(>) = c(o) = c(p) = 1,

c(ϕ ∧ ψ) = 1 +max(c(ϕ), c(ψ)),

c(L(e)) = 1 + c(pre(e)),

c(¬ϕ) = c(Kϕ) = c(2ϕ) = 1 + c(ϕ),

c([e]ϕ) = (5 + c(pre(e))) · c(ϕ).

We then define ≺1⊆ LΠt×LΠt as ϕ ≺1 ψ iff c(ϕ) < c(ψ). The lemma then follows
via easy calculations using c. For this, it is useful to note that c(pre(e)) < c([e]ϕ).

To illustrate, we will show that (pre(e)→ L(e; e′)) ≺1 [e]L(e′), i.e., we need to
show that c(pre(e)→ L(e; e′)) < c([e]L(e′)). First note that for every ϕ, ψ ∈ LΠt ,
c(ϕ → ψ) = c(¬(¬¬ϕ ∧ ¬ψ)) = 2 + max(2 + c(ϕ), 1 + c(ψ)). Also note that for
every e ∈ Πt, 1 ≤ c(pre(e)). Clearly we also have that c(pre(e)) < c(pre(e; e′)).
We obtain the following equivalences. On the one hand,

c(pre(e)→ L(e; e′)) =2 +max(2 + c(pre(e)), 1 + c(L(e; e′)))

=2 +max(2 + c(pre(e)), 2 + c(pre(e; e′)))
(calculating c(L(e; e′)))

=4 +max(c(pre(e)), c(pre(e; e′)))

=4 + c(pre(e; e′)) (by the observation above)

=5 +max(c(pre(e)), c(pre(e′)))
(calculating c(pre(e) ∧ pre(e)))

On the other, by easy calculations we obtain that,

c([e]L(e′)) = 5 + c(pre(e)) + 5 · c(pre(e′)) + c(pre(e)) · c(pre(e′)).

Then, if c(pre(e)) ≤ c(pre(e′)) we have that

c(pre(e)→ L(e; e′)) = 5 + c(pre(e′))

< 5 + 5 · c(pre(e′)) (since 1 ≤ c(pre(e′)))

< c([e]L(e′)).
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If c(pre(e′)) ≤ c(pre(e)) we have that

c(pre(e)→ L(e; e′)) = 5 + c(pre(e))

< 5 + c(pre(e)) + c(pre(e)) · c(pre(e′))
(since 1 ≤ c(pre(e′)))

< c([e]L(e′)).

In both cases we obtain that c(pre(e)→ L(e; e′)) < c([e]L(e′)). 2

A.2 Complexity order on formulas in APALM

and GALM

We need an appropriate complexity order on APALM formulas (and on GALM
formulas) for some of our inductive proofs in Chapter 4. The language of GALM
extends the language of APALM, therefore it is enough to define the complex-
ity order for the formulas in the language of GALM, LG. First we need some
definitions.

A.2.1. Definition. [Size of formulas in LG] The size s(ϕ) of a formula ϕ ∈ LG
is a natural number recursively defined as:

s(>) = s(p) = s(0) = 1,

s(¬ϕ) = s(ϕ0) = s(Kiϕ) = s(Uϕ) = s(�ϕ) = s(〈G〉ψ) = s(ϕ) + 1,

s(ϕ ∧ ψ) = s(〈ϕ〉ψ) = s(ϕ) + s(ψ) + 1.

A.2.2. Definition. [�, G-Depth of formulas in LG] The �, G-depth d(ϕ) of for-
mula ϕ ∈ LG is a natural number recursively defined as:

d(>) = d(p) = d(0) = 1,

d(¬ϕ) = d(ϕ0) = d(Kiϕ) = d(Uϕ) = 1 + d(ϕ),

d(ϕ ∧ ψ) = d(〈ϕ〉ψ) = 1 +max{d(ϕ), d(ψ)},
d(�ϕ) = d(〈G〉ϕ) = 2 + d(ϕ).

Finally, we define our intended complexity relation ≺2 as lexicographic merge
of �, G-depth and size, exactly as in (Balbiani and van Ditmarsch (2015)):

A.2.3. Definition. For any ϕ, ψ ∈ LG, we put

ϕ ≺2 ψ iff either d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and s(ϕ) < s(ψ).
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A.2.4. Definition. [Subformula] Given a formula ϕ ∈ LG, the set Sub(ϕ) of
subformulas of ϕ is recursively defined as

Sub(ϕ) = {ϕ} if ϕ is >, p or 0 ,

Sub(¬ϕ) = Sub(ϕ) ∪ {¬ϕ},
Sub(ϕ0) = Sub(ϕ) ∪ {ϕ0},

Sub(Kiϕ) = Sub(ϕ) ∪ {Kiϕ},
Sub(Uϕ) = Sub(ϕ) ∪ {Uϕ},

Sub(ϕ ∧ ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {ϕ ∧ ψ},
Sub(〈ϕ〉ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {〈ϕ〉ψ},
Sub(�ϕ) = Sub(ϕ) ∪ {�ϕ},

Sub(〈G〉ϕ) = Sub(ϕ) ∪ {〈G〉ϕ}.

A.2.5. Lemma. There exists a well-founded strict partial order ≺2 on LG called
‘complexity order’, satisfying the following conditions:

1. if ϕ is a subformula of ψ, then
ϕ ≺2 ψ,

2. (θ → p) ≺2 [θ]p,

3. (θ → ¬[θ]ψ) ≺2 [θ]¬ψ,

4. (θ → Ki[θ]ψ) ≺2 [θ]Kiψ,

5. [〈θ〉ρ]ϕ ≺2 [θ][ρ]ϕ,

6. (θ → ϕ0) ≺2 [θ]ϕ0,

7. (θ → U [θ]ϕ) ≺2 [θ]Uϕ,

8. (θ → (Uθ ∧ 0)) ≺2 [θ]0,

9. 〈θ〉ϕ ≺2 �ϕ, for all θ ∈ L−�.

10. 〈θ〉ϕ ≺2 〈G〉ϕ, for all θ ∈ L−�.

Proof:
The proof is via easy arithmetic calculations following the definitions above. Note
that, Definition A.2.2 is redundant for the cases restricted to language L−�. 2
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Ågotnes, T., Balbiani, P., van Ditmarsch, H., and Seban, P. (2010). Group
announcement logic. Journal of Applied Logic, 8(1):62–81.
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Samenvatting

Dit proefschrift is een studie vanuit verschillende gezichtspunten op leren en op
het verband van leren met kennis en geloof (als mening, overtuiging) binnen een
formele aanpak. Hierbij concentreren we ons grotendeels op inductief redeneren,
inductief leren (inductive inference), het proces van het trekken van algemene
conclusies uit binnenkomende informatie. Ons werk is geworteld in twee gebieden
waarin, onafhankelijk van elkaar, de dynamiek van informatie wordt bestudeerd,
Dynamische Epistemische Logica (DEL) en Formele Leertheorie (FLT).

In Deel I onderzoeken we de dynamiek van informatie die komt uit waarne-
mingen, of uit waarheidsgetrouwe mededelingen.

In Hoofdstuk 3 presenteren we twee dynamische modale logicas voor het re-
deneren over leren in de geest van FLT op grond van waarnemingen. Onze eer-
ste logica gebruikt deelverzamelingsruimte-semantiek en het standaardbegrip van
een leerfunctie om leren in de limiet te modelleren. Onze tweede logica breidt het
eerste raamwerk uit om leren in de limiet te modelleren op grond van partiële
waarnemingen met een volledig rationele leerder in de stijl van de AGM-theorie
van geloofsherijking (belief revision). We presenteren resultaten over de uitdruk-
kingskracht, correctheid en volledigheid voor beide logicas.

In Hoofdstuk 4, verschuiven we onze aandacht naar het verzamelen van in-
formatie via openbare mededelingen en via willekeurige openbare mededelingen
in scenarios met meer dan een leerder. We lossen problematische kwesties op die
zich voordoen in het werk van Balbiani et al. (2008) aangaande de incorrecte fini-
taire regel die daar wordt voorgesteld voor de oorsronkelijke willekeurige openbare
mededelingenlogica (Arbitrary Public Announcement Logic, APAL). Dit brengt
ons ook tot een oplossing voor de lang openstaande vraag naar het vinden van
een recursieve axiomatisering van een sterke versie van APAL (en de daarmee
verbonden groepsmededelingslogica, Group Announcement Logic, GAL).

In Deel II, richten we ons volledig op het leermodel in FLT van eindige identi-
ficatie. We verkrijgen een meer verfijnde theoretische analyse van het onderscheid
tussen eindige identificatie met positieve informatie (pfi) en met volledige (posi-
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tieve en negatieve) informatie (cfi). We laten zien dat het onderscheid tussen pfi
en cfi, alhoewel niet zo enorm groot als bij het leren in de limiet, aanzienlijk is,
niet alleen in kracht van leren maar ook in de aard ervan.

In Hoofdstuk 5 richten we ons uitsluitend op de structurele verschillen tussen
pfi families en cfi families, voorbijgaande aan computationele aspecten. We on-
derzoeken of iedere eindig identificeerbare famile bevat is in een maximale eindig
identificeerbare. Dit levert een positief antwoord op in het geval van positieve
data voor families met alleen eindige talen, maar een sterk negatief resultaat in
het geval van volledige data dat laat zien dat iedere eindig identificeerbare familie
uitgebreid kan worden tot een grotere familie die ook eindig identificeerbaar is. We
bestuderen ook hoeveel maximale uitbreidingen een positief identificeerbare fa-
milie heeft. We laten ons leiden door het vermoeden, gedeeltelijk bevestigd in dit
proefschrift, dat iedere positief eindig identificeerbare familie van eindige talen,
òf slechts eindig veel maximale pfi uitbreidingen heeft, òf niet-aftelbaar vele.

In Hoofdstuk 6 bestuderen we de computationele eigenschappen van een fa-
milie van talen. In het bijzonder bestuderen we oneindige antiketens van eindige
talen. We verschaffen negatieve antwoorden op de vragen: Is iedere antiketen van
eindige talen die cfi is ook pfi? Is iedere maximale antiketen van eindige talen
pfi (of cfi)? We onderzoeken ook een variant van eindige identificatie met een
leerder die een taal identificeert zodra het objectief zeker is welke taal het is en
we exploreren de relatie tussen pfi en cfi in dit raamwerk. Tenslotte bestuderen
we een variant van cfi met een leerder die vragen kan stellen aan de leraar.

Over het geheel genomen brengt dit proefschrift aan de ene kant Dynami-
sche Epistemische Logica en Formele Leertheorie dichter bij elkaar, resulterend in
nieuwe logicas voor de dynamiek van informatie die verschillende leertheoretische
begrippen formaliseren. Aan de andere kant gebruikt het instrumenten uit de
combinatoriek en recursietheorie om een gedetailleerde analyse te geven van de
verschillen tussen eindige identificatie met positieve data en eindige identificatie
met volledige data.



Abstract

In this dissertation we study various perspectives on learning and its relation
to knowledge and belief within a formal approach. We mostly focus on inductive
inference (or, inductive learning), the process of inferring general conclusions from
incoming information. Our work is based in two areas that, independently, study
dynamics of information, Dynamic Epistemic Logic (DEL) and Formal Learning
Theory (FLT).

In Part I we investigate information dynamics from, on the one hand, incoming
observations and, on the other, from incoming truthful announcements.

In Chapter 3 we present two dynamic modal logics to reason about learning
from incoming observations in the spirit of FLT. Our first logic uses subset space
semantics and the standard notion of a learning function to model learning in the
limit. Our second logic extends the first framework in order to model learning
in the limit from partial observations with a fully rational learner in the style of
AGM belief revision theory. We present expressivity, soundness and completeness
results for both logics.

In Chapter 4, we shift our focus to information gathering via public announce-
ments and arbitrary public announcements in scenarios with multiple learners. We
resolve problematic issues encountered in the work of Balbiani et al. (2008) con-
cerning the unsound finitary rule proposed for the original Arbitrary Public An-
nouncement Logic (APAL). This leads us also to solving the long standing open
question of finding a recursive axiomatization for a strong version of APAL (and
its variant Group Announcement Logic (GAL)).

In Part II, we focus completely on the learning model of finite identification in
FLT. We obtain a more fine-grained theoretical analysis of the distinction between
finite identification with positive information (pfi) and with complete (positive
and negative) information (cfi). We show that the difference between pfi and cfi,
if not as huge as in learning in the limit, is considerable not only in power but
also in character.

In Chapter 5, we focus purely on the structural differences between families
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that are pfi and families that are cfi, ignoring computational aspects. We inves-
tigate whether any finitely identifiable family is contained in a maximal finitely
identifiable one. We get a positive answer in the setting of positive data for families
containing only finite languages. We provide a strong negative result in the setting
of complete data showing that any finitely identifiable family can be extended to
a larger one which is also finitely identifiable. We also study how many maxi-
mal extensions a positively identifiable family has. Our leading conjecture, which
we partially resolve, is that any positively identifiable family of finite languages
either has only finitely many maximal pfi extensions or uncountably many.

In Chapter 6 we study the computational properties of a family of languages. In
particular, we analyze infinite anti-chains of finite languages. We provide negative
answers to the questions: is every anti-chain of finite languages that is cfi also
pfi? Is every maximal anti-chain of finite languages pfi (or cfi)? We also inves-
tigate a variation of finite identification that considers a learner who identifies a
language as soon as it is objectively certain which language it is and explore the
connection between pfi and cfi in this setting. We then study a variation of cfi
which considers a learner that can ask queries to the teacher.

Overall, this dissertation, on the one hand brings closer together Dynamic
Epistemic Logic and Formal Learning Theory, resulting in novel logics of infor-
mation dynamics that formalize various learning theoretic notions. On the other
hand, it uses tools in combinatorics and recursion theory to provide a detailed
analysis of the differences between finite identification with positive data and
finite identification with complete data.
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