
A TA L E O F T W O S E Q U E N C E S

Interpretable and Linguistically-Informed Deep Learning
for Natural Language Processing

jasmijn bastings

A
 TA

LE O
F TW

O
 SEQ

U
EN

C
ES

Interpretable and Linguistically-Inform
ed D

eep Learning for N
atural Language Processing

Jasm
ijn Bastings





A TA L E O F T W O S E Q U E N C E S

Interpretable and Linguistically-Informed Deep Learning
for Natural Language Processing



ILLC Dissertation Series DS-2020-09

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107

1098 XG Amsterdam
phone: +31-20-525 6051

e-mail: illc@uva.nl
homepage: http://www.illc.uva.nl/

This work was supported by the Netherlands Organisation for Scientific Research
(NWO), VICI 277-89-002.

Copyright © 2020 by Jasmijn Bastings

Cover graphic by Daniel Steger cb, modified for color.
Printed and bound by Printservice Ede.

ISBN: 978-90-830912-1-1



A TA L E O F T W O S E Q U E N C E S

Interpretable and Linguistically-Informed Deep Learning
for Natural Language Processing

academisch proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen
op donderdag 8 oktober 2020, te 16.00 uur

door

Jasmijn Bastings

geboren te Eindhoven



Promotiecommissie

Promotor: Prof. Dr. K. Sima’an Universiteit van Amsterdam
Co-promotor: Dr. I.A. Titov University of Edinburgh
Co-promotor: Dr. W. Ferreira Aziz Universiteit van Amsterdam

Overige leden: Prof. Dr. L. Specia Imperial College London
Prof. Dr. A. Søgaard University of Copenhagen
Dr. R. Fernandez Rovira Universiteit van Amsterdam
Dr. W.H. Zuidema Universiteit van Amsterdam
Prof. Dr. L.W.M. Bod Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



to my mother and sister

for supporting me, for leading the way into science





P U B L I C AT I O N S

Some ideas and figures have appeared previously in the follow-
ing publications:

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani,
and Khalil Sima’an (2017). “Graph Convolutional Encoders
for Syntax-aware Neural Machine Translation.” In: Proceed-
ings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for
Computational Linguistics, pp. 1947–1957.

Jasmijn Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho,
and Douwe Kiela (2018). “Jump to better conclusions: SCAN
both left and right.” In: Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP. Brussels, Belgium: Association for Computational
Linguistics, pp. 47–55.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov (July 2019). “In-
terpretable Neural Predictions with Differentiable Binary
Variables.” In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: As-
sociation for Computational Linguistics, pp. 2963–2977.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov (2018).
“Exploiting Semantics in Neural Machine Translation with
Graph Convolutional Networks.” In: Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers). New Orleans, Louisiana: Association
for Computational Linguistics, pp. 486–492.

For all publications with JB as first author, all code was writ-
ten by JB and all experiments conducted by JB, and JB was
advised by the other authors, who also contributed to the writ-
ing of the original publications. For Marcheggiani et al. (2018),
JB wrote the code and contributed to the experiments, while
writing was done by DM and IT.

vii





C O N T E N T S

1 introduction 3

1.1 Linguistically-informed Deep Learning . . . . . . 4

1.2 Interpretability . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Part I . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Part II . . . . . . . . . . . . . . . . . . . . . . 8

2 background 9

2.1 Neural Machine Translation . . . . . . . . . . . . . 10

2.1.1 Recurrent Encoder-Decoder Models . . . . 11

2.1.2 Encoder-Decoder Models with Attention . 13

2.1.3 Alternative Models . . . . . . . . . . . . . . 15

2.1.4 Early neural machine translation models . 18

2.2 Dealing with infrequent words . . . . . . . . . . . 25

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . 27

i incorporating and inducing structure 29

3 incorporating linguistic structure 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Neural Machine Translation . . . . . . . . . . . . . 35

3.2.1 Encoders . . . . . . . . . . . . . . . . . . . . 35

3.3 Graph Convolutional Networks . . . . . . . . . . . 36

3.4 Syntactic GCNs . . . . . . . . . . . . . . . . . . . . 38

3.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Model 1: BoW + GCN . . . . . . . . . . . . 40

3.5.2 Model 2: Convolutional + GCN . . . . . . . 40

3.5.3 Model 3: Recurrent + GCN . . . . . . . . . 40

3.5.4 Advantages of using GCN layers . . . . . . 41

3.5.5 Multiple GCN layers . . . . . . . . . . . . . 41

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Reordering artificial sequences . . . . . . . 42

3.6.2 Syntax-aware Neural Machine Translation 43

3.6.3 Linguistically-informed NMT . . . . . . . . 48

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . 51

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 55

4 inducing latent structure 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Background . . . . . . . . . . . . . . . . . . . . . . 59

ix



x contents

4.2.1 Deep Generative Models . . . . . . . . . . . 59

4.2.2 Variational Auto-Encoders and the Repa-
rameterization Trick . . . . . . . . . . . . . 60

4.2.3 The Concrete Distribution . . . . . . . . . . 62

4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Graph Component . . . . . . . . . . . . . . 65

4.3.2 Translation Component . . . . . . . . . . . 66

4.3.3 Parameter estimation . . . . . . . . . . . . . 68

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Baselines . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Hyperparameters . . . . . . . . . . . . . . . 69

4.4.3 Evaluation . . . . . . . . . . . . . . . . . . . 69

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . 70

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 76

ii interpretability 77

5 interpretable neural predictions 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Latent Rationale . . . . . . . . . . . . . . . . . . . . 82

5.3 Hard Kumaraswamy Distribution . . . . . . . . . 84

5.3.1 Kumaraswamy distribution . . . . . . . . . 85

5.3.2 Rectified Kumaraswamy . . . . . . . . . . . 85

5.3.3 Reparameterization and gradients . . . . . 86

5.4 Controlled Sparsity . . . . . . . . . . . . . . . . . . 87

5.5 Lagrangian relaxation . . . . . . . . . . . . . . . . 88

5.6 Sentiment Classification . . . . . . . . . . . . . . . 88

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . 90

5.7.1 Multi-aspect Sentiment Analysis . . . . . . 90

5.7.2 Sentiment Classification . . . . . . . . . . . 92

5.7.3 Natural Language Inference . . . . . . . . . 93

5.8 Related Work . . . . . . . . . . . . . . . . . . . . . 96

5.8.1 Interpretability . . . . . . . . . . . . . . . . 96

5.8.2 Learning from rationales . . . . . . . . . . . 98

5.8.3 Sparse Representations . . . . . . . . . . . . 98

5.8.4 Opinion summarization . . . . . . . . . . . 98

5.8.5 Sparse layers . . . . . . . . . . . . . . . . . . 99

5.8.6 Rectified Distributions. . . . . . . . . . . . . 99

5.8.7 Rationalizing Predictions . . . . . . . . . . 100

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . 100

6 testing for strong generalization 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 104



contents xi

6.2 SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 SCAN allows inadequate models to perform well 106

6.4 NACS: actions to commands . . . . . . . . . . . . 108

6.5 Sequence-to-sequence models . . . . . . . . . . . . 109

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . 110

6.6.1 Settings . . . . . . . . . . . . . . . . . . . . . 110

6.6.2 Results and Analysis . . . . . . . . . . . . . 111

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . 114

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . 115

7 conclusions 117

7.1 Linguistically-Informed Deep Learning for NLP . 117

7.2 Interpreting and Analyzing Neural Networks . . 118

7.3 Final words . . . . . . . . . . . . . . . . . . . . . . . 119

iii appendix 121

a interpretable neural predictions 123

a.1 Kumaraswamy distribution . . . . . . . . . . . . . 123

a.1.1 Generalized-support Kumaraswamy . . . . 124

a.1.2 Rectified Kumaraswamy . . . . . . . . . . . 124

a.2 Implementation Details . . . . . . . . . . . . . . . . 125

a.2.1 Multi-aspect Sentiment Analysis . . . . . . 125

a.2.2 Sentiment Classification (SST) . . . . . . . . 126

a.2.3 Natural Language Inference (SNLI) . . . . 127

b additional scan and nacs results 129

bibliography 133



L I S T O F F I G U R E S

Figure 2.1 An example alignment. . . . . . . . . . . . 10

Figure 2.2 The feed-forward network of Allen (1987). 19

Figure 2.3 RAAM . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.4 Dual-Ported RAAM . . . . . . . . . . . . . 21

Figure 2.5 RHAM . . . . . . . . . . . . . . . . . . . . 22

Figure 2.6 The SRN-based model of Castano and
Casacuberta (1997). . . . . . . . . . . . . . 24

Figure 2.7 An example MLA-MT sentence pair. . . . . 24

Figure 3.1 Example of hierarchical structure in lan-
guage. . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.2 An example dependency tree. . . . . . . . 33

Figure 3.3 A 2-layer syntactic GCN . . . . . . . . . . 38

Figure 3.4 GCN mean gate plot on artificial reorder-
ing task . . . . . . . . . . . . . . . . . . . . 43

Figure 3.5 Validation BLEU per sentence length. . . 48

Figure 3.6 Example sentence with semantic role struc-
ture. . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.1 Model architecture. . . . . . . . . . . . . . 59

Figure 4.2 Graphical model of a variational auto-
encoder. . . . . . . . . . . . . . . . . . . . . 62

Figure 4.3 Conditional independences of the latent
graph model. . . . . . . . . . . . . . . . . . 64

Figure 4.4 Computation of head potentials (Concrete
parameters) α. . . . . . . . . . . . . . . . . 65

Figure 4.5 Example latent graphs for English-Japanese. 72

Figure 5.1 Rationale extraction for a beer review. . . 81

Figure 5.2 The HardKuma distribution . . . . . . . . 84

Figure 5.3 MSE for various percentages of extracted
text . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.4 SST results. . . . . . . . . . . . . . . . . . . 94

Figure 5.5 Example of HardKuma attention in SNLI 95

Figure 6.1 SCAN data set examples. . . . . . . . . . . 104

Figure 6.2 SCAN interpretation functions. . . . . . . 107

Figure 6.3 The decoder of Bahdanau et al. (2015) . . 109

Figure A.1 Kuma plots for various (a, b) parameters. 123

Figure A.2 HardKuma attention in SNLI for entail-
ment, contradiction, and neutral. . . . . . 128

xii



L I S T O F TA B L E S

Table 3.1 The number of sentences in our data sets. 44

Table 3.2 Vocabulary sizes. . . . . . . . . . . . . . . 44

Table 3.3 Test results for English-German. . . . . . . 46

Table 3.4 Test results for English-Czech. . . . . . . . 46

Table 3.5 Validation BLEU for English-German and
English-Czech for 1- and 2-layer GCNs. . 47

Table 3.6 Test BLEU, En–De, News Commentary v11. 51

Table 3.7 Test BLEU, En–De, full WMT’16. . . . . . . 51

Table 3.8 Validation BLEU, News Commentary only 52

Table 4.1 Data set statistics. . . . . . . . . . . . . . . 68

Table 4.2 Latent Graph Results . . . . . . . . . . . . 70

Table 4.3 Mean head distance for En-Ja. . . . . . . . 71

Table 4.4 Mean Entropy for En-Ja. . . . . . . . . . . 71

Table 5.1 MSE on the BeerAdvocate test set. . . . . 90

Table 5.2 Rationale Precision and Percentage of se-
lected text. . . . . . . . . . . . . . . . . . . 92

Table 5.3 SNLI results (accuracy). . . . . . . . . . . . 95

Table 6.1 Test scores on the simple and length tasks. 111

Table 6.2 Test scores on the primitive task. . . . . . 112

Table 6.3 Test scores on the ‘jump’ task . . . . . . . 113

Table 6.4 Results for the MT experiment . . . . . . . 114

Table A.1 Beer hyperparameters. . . . . . . . . . . . 126

Table A.2 SST hyperparameters. . . . . . . . . . . . . 127

Table A.3 SNLI hyperparameters. . . . . . . . . . . . 127

Table B.1 Additional SCAN results on simple, length,
and primitive tasks . . . . . . . . . . . . . 129

Table B.2 Additional NACS results on simple, length,
and primitive tasks . . . . . . . . . . . . . 130

Table B.3 SCAN test scores for jump with addi-
tional composed commands. . . . . . . . . 130

Table B.4 NACS test scores for jump with addi-
tional composed commands. . . . . . . . . 131

Table B.5 Results (BLEU) on the Machine Transla-
tion experiment for both directions. . . . . 131

Table B.6 MT accuracy on eight novel sentences . . 131

Table B.7 Machine Translation: accuracy on eight
novel sentences containing ‘tired’ (‘fatigué’).132

xiii



A C R O N Y M S

BLEU Bilingual Evaluation Understudy

BPE Byte Pair Encoding

CNN Convolutional Neural Network

DGM Deep Generative Model

DL Deep Learning

DLVM Deep Latent-Variable Model

ELBO evidence lower bound

HMM Hidden Markov Model

GCN Graph Convolutional Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MLA Miniature Language Acquisition

MSE Mean Squared Error

MT Machine Translation

MTL Multi-task Learning

NER Named Entity Recognition

MLP Multilayer Perceptron

NLP Natural Language Processing

POS Part of Speech

NMT Neural Machine Translation

RAAM Recursive Auto-Associative Memory

RHAM Recursive Hetero-Associative Memory

RNN Recurrent Neural Network

xiv



acronyms xv

SGD Stochastic Gradient Descent

SRL Semantic Role Labeling

SRN Simple Recurrent Network

SMT Statistical Machine Translation

VAE Variational Auto-Encoder

VI Variational Inference

WMT Workshop on Statistical Machine Translation





Be yourself; everyone else is already taken.

— Oscar Wilde

A C K N O W L E D G E M E N T S

What a journey it has been! I remember very clearly the day
I decided that I wanted to go back to academia. I was living
in Sweden, and just a little while earlier Khalil had contacted
me that he wanted to publish one of my Master’s projects at
LREC. This worked out, and so we found ourselves in Iceland
not much later, a country that I instantly fell in love with. Look-
ing back, I believe this was an important moment for me, be-
cause it proved to me that I could be successful in academia. So
it wasn’t so strange that, when I was ready for something new,
I contacted Khalil asking about PhD opportunities. It turns out
he had one, and I remember that I didn’t have long to submit
my application. A few months later I moved to Amsterdam
and so the journey began. Khalil and Ivan, I am very thankful
for the trust that you gave me at that point, after being away
from academia for so long. And I truly hope that I managed to
pay back that trust. I brushed up my machine learning skills,
and soon we were on our way. Not much later Wilker joined
the team. I think this was one of the best decisions that we
made during the PhD, although I don’t remember exactly how
it happened. The beginning was not easy. There was a lot to
learn and once things finally got moving it turned out that an-
other research group had just published something extremely
similar to what we were trying to do, perhaps even better. It
took some time, but then we finally had a breakthrough with
our syntax-aware neural machine translation. What a relief that
was! (Maybe not just for me?) From then on things started to
fall into place. Khalil, Ivan, Wilker, I couldn’t have done it all
without you and I am very thankful for your advice throughout
the years.

I would also like to thank the members of my committee:
Lucia, Anders, Raquel, Jelle, and Rens. Thank you for taking
the time to read and discuss my work.

There are obviously a lot more people to thank. I would like
to start with my office friends: first Raquel, Milos, Phong, and
Sophie, and later Samira, Bas and Bryan. It was a pleasure inter-
acting with you and having you around through all the ups and

1



2 acronyms

downs. Diego, Iacer, Joanna, Marialaura, and Miguel, thanks
for all the good times, and for the many burgers and drinks. It
was really nice having you around. Thanks Tom, for the good
times and the workouts. Thanks Renske for always being there.
And thanks Sander, Tessa, Truke, and Ingrid, it was nice to live
a bit closer to you during the PhD years, and I hope our friend-
ship continues for many years to come. Thanks Alvaro, for be-
ing my oldest friend, and always there to support me.

The list is still not complete. I’d also like to thank all the
other amazing people at UvA and ILLC that I met throughout
the years: Amir, Arnold, Bastiaan, Bushra, Carlos, Desmond,
Dieuwke, Ehsan, Gideon, Giovanni, Hoang, Iris, Joachim, Joost,
Laura, Lena, Maartje, Marco, Marion, Michael, Mostafa, Na-
dine, Nal, Rianne, Ronald, Sara, Sandro, Serhii, Stella, Thomas,
Yfke. Thanks for all the good times we had!

And then there was the amazing ILLC staff. Thanks Jelle
for the many discussions that we had. Thanks Ulle for help-
ing me complete my first TA assignment. Thanks Benno, Leen,
Katia, Raquel, Sonja and Yde. Jenny and Peter, thanks for help-
ing me whenever I needed something, and for sponsoring the
ILLC drinks. (Wilker I hope to ever match your cocktail making
skills!). Thanks Tanja for being there from the very start of my
PhD, and thanks ILLC office, Debbie, Karine, Patty for helping
with whatever issue came up.

I’d also like to thank Douwe, Jason, Marco and Kyunghyun
for having me as an intern in New York. I learned so much, and
I’m still trying to pay it forward.

Finally, thank you Julia, for being by my side for many of the
PhD years, and my family, for supporting me all this time.

While this journey is coming to an end, a new one has already
begun.



1
I N T R O D U C T I O N

“Begin at the beginning,” the King said, very gravely, “and go on
till you come to the end: then stop.”

–— Lewis Carroll, Alice in Wonderland

Deep Learning (DL) – the learning of representations in par-
ticular using deep artificial neural networks – has swiftly taken
over our field of Natural Language Processing (NLP). In a sem-
inal paper, Collobert et al. (2011) were one of the first to show
just how powerful neural networks can be. Instead of training Collobert and

Weston received the
ICML Test of Time
Award for an earlier
version of this work
(Collobert and
Weston, 2008).

separate models with manually-engineered task-specific features,
they trained a single neural network to perform Part of Speech
(POS) tagging, chunking, Semantic Role Labeling (SRL) and Named
Entity Recognition (NER), thereby popularizing Multi-task Learn-
ing (MTL). Before this approach, systems would suffer from er-
ror propagation (with e.g. errors from a POS-tagger propagat-
ing into a parser), or, in an attempt to mitigate that, tasks would
be correlated in the output space only. By using a single neural
network to predict all levels of structures at once, much better
performance could be achieved, with little feature engineering.

Years before, and arguably somewhat ahead of its time, Ben-
gio et al. (2003) showed that an MLP could be effective in lan-
guage modeling (“predicting the next word of a sequence”).1

By using continuous representations, the curse of dimensional-
ity could be used to our advantage. Whereas words such as
‘cat’ and ‘dog’ would be distinct units in an n-gram language
model, a neural network would figure out that they share many
features predictive of the words to come.

Interestingly, none of the techniques in Collobert et al. (2011)
were novel: the Multilayer Perceptron (MLP) and backpropaga-
tion (Rumelhart et al., 1985; Werbos, 1982) were already there
for a while. With improvements in computer hardware, for the
Graphics Processing Unit (GPU) in particular, it seems that the
time was ripe for efficient training of neural networks for lan-
guage processing. A lot more work was to follow.

1 Note that Schwenk and Gauvain (2002) proposed a similar model, while
acknowledging the origin of their algorithm to Yoshua Bengio.

3



4 introduction

Initially, many papers focused on learning high quality dis-
tributed representations for words from unlabeled data. Mikolov
et al. (2013) introduced word2vec with its Skip-gram and CBOW
models, and Pennington et al. (2014) introduced Glove. Both
methods would become popular for learning pre-trained word
embeddings, which can be used as a starting point for a neural
network model trained on a downstream task.

Another milestone was the popularization of Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997). LSTMsThe formulation of

LSTM in use today
is described in e.g.
Gers et al. (2000)

and differs from the
original

formulation: a
forget gate was

added.

are a special kind of Recurrent Neural Network (RNN) (Elman,
1990) that take care of the vanishing gradient problem; a prob-
lem that prevented Elman’s simple RNNs from being trained to
capture longer sequences. Since LSTMs model sequential data,
they are a natural choice for encoding sentences – sequences
of words – for NLP systems. They make for excellent baselines
for most (if not all) NLP tasks, e.g., sentiment analysis, dialogue
systems, and machine translation.

A few years later, Manning (2015) compared the rise of Deep
Learning to a tsunami. By then it was clear that neural networks
are here to stay, and that their performance is undeniable. How-
ever, Manning warned for a Kaggle effect, and that we shouldKaggle is an online

platform for
machine learning

competitions, where
the submission with

the highest score
wins the challenge.

not focus on numbers, e.g. higher POS-tagging accuracy, but to
use our new Deep Learning tools for science, such as analyzing
the change of meaning of words over time.

1.1 linguistically-informed deep learning

In the sub-field of Machine Translation (MT), phrase-based meth-
ods dominated for more than a decade in the yearly WMT eval-
uation challenge (Bojar et al., 2014). This changed quickly after
neural encoder-decoder models were applied to the problem
by Sutskever et al. (2014) and Cho et al. (2014).2 While they did
not beat phrase-based (and syntax-based) MT systems from the
very start, with the introduction of the attention mechanism by
Bahdanau et al. (2015) to increase the resolution, and sub-word
units by Sennrich et al. (2016b) to deal with large (open) vocab-
ularies, now virtually all state-of-the-art systems rely on neural
networks.

The rise of deep learning caused a shift from exploiting lin-
guistic features and structures, such as POS-tags, dependency

2 The next chapter will mention many noteworthy prior works that proposed
neural machine translation before these works. However, they did not reach
the level of performance that these works reached.



1.2 interpretability 5

and constituency trees, to relying solely on the input words,
and treating a sentence as a mere sequence of words. Hence,
Sutskever et al. (2014) is referred to as ‘sequence-to-sequence
learning’.

We have now set the stage for this thesis. With deep learning
becoming more and more popular and breaking performance
records across a variety of NLP tasks, we can naturally ask our-
selves some questions about what that means for the methods
that we used to rely on, and where to go from here.

Objective (Part I)

In the first part of this thesis we investigate the following re-
search questions:

1. Does the performance of deep learning on NLP tasks mean
that linguistic structures are now obsolete?

2. Is there a way to reap the performance benefits of deep
neural networks, while still making use of linguistic struc-
ture such as dependency graphs?

3. Can we induce useful structure in an unsupervised way,
while learning to perform an NLP task?

We will try to answer these questions for the task of machine
translation. Chapter 3 deals with the first two questions, and
looks at dependency trees and semantic role labeling structures.
Since neural networks also excel at predicting those linguistic
structures, in Chapter 4 we investigate if we can predict the
(latent) structure of a sentence at the same time as learning to
perform translation, without relying on the structure.

1.2 interpretability

There are two common criticisms of neural networks. The first
is their lack of interpretability (see, e.g., Belinkov and Glass
(2019)), which is why they are referred to as black boxes. It is
simply hard to grasp what they have learned, and for example,
it is not clear what it means that a particular learned weight
is set to -0.1 after training. The second criticism is that neural
networks have a hunger for labeled data. They need many data
examples to learn a task and to generalize well. In Part II of this
thesis, we look into these criticisms. While there are many ways



6 introduction

to make a model more interpretable, in Chapter 5 we present
one particular method for doing so with an application to text
classification, by uncovering which part of the input text is suf-
ficient for making the correct prediction. We will discuss how
the proposed method fits into the landscape of interpretability
methods.

Instead of designing a model to be more interpretable, we can
also analyze a model as is, without modifying it. In Chapter 6,
we look at how neural networks generalize, which is essential
to learn a task. We, humans, can generalize from only a few ex-
amples; by using the principle of compositionality we can build
complex meanings from simple parts. We look into a method to
investigate the generalization capability of neural sequence-to-
sequence models such as Bahdanau et al. (2015), and identify
and remedy an important issue with the approach. By doing so
we also find that neural networks still have difficulty on tasks
that are easy for humans.

Objective (Part II)

In the second part of this thesis we will address the following
research questions. On the topic of interpretability:

1. Can we make text classifiers more interpretable by hav-
ing them provide an explanation, a rationale, by showing
which part of the input document was used for classi-
fication? And how can we do that while still admitting
gradient-based optimization?

2. Can we control the properties of the explanation?

And regarding generalization:

3. Do neural sequence-to-sequence models generalize sys-
tematically? How do we correctly test for this?

1.3 contribution

This thesis has two main contributions:

1. It proposes a method to add linguistic bias to Neural Ma-
chine Translation (NMT) models using the Syntactic Graph
Convolutional Network (GCN), a special version of GCN
designed for NLP tasks, and shows its effectiveness on



1.4 overview 7

English-German and English-Czech machine translation
task. While we used GCNs to condition on syntax (Bast-
ings et al., 2017) and semantics (Marcheggiani et al., 2018),
they can be used to incorporate any kind of graph struc-
ture into a neural network.

2. It proposes a method to construct interpretable text clas-
sifiers that can be trained using backpropagation. These
text classifiers show which part of the input document is
used for classification, and which part is not used. The
selected part of the document makes for the rationale, the
explanation. The proposed method makes it easier to in-
corporate a (hybrid) binary mask in any end-to-end neu-
ral model, and thus has potential uses outside of the ap-
plications explored in this thesis.

Apart from these main contributions, the thesis contributes a
model that induces a latent graph and conditions on it in the
context of NMT, while keeping the graph-inducing component
completely separate from the NMT model. One important side
contribution is therefore to show how to design and fairly eval-
uate a model conditioning on a latent graph, by not leaking
information between the components and while keeping the
number of parameters the same across comparisons.

Lastly, the thesis advances work on the analysis of neural
networks in NLP. In particular, it fixes an important issue with
the popular SCAN benchmark for testing strong generalization,
by identifying and remedying an issue with (the lack of) target-
side dependencies of the SCAN data set.

1.4 overview

We will now look at a brief overview of the contents of this
thesis. Chapter 2 covers background topics useful for reading
the rest of this thesis. It includes topics such as word alignment,
statistical machine translation, neural machine translation, and
machine translation evaluation. The thesis is then divided into
two parts, which we cover separately.

1.4.1 Part I

Part I deals with linguistically-informed deep learning:
Chapter 3 investigates if neural machine translation models,

making use of deep learning, can still benefit from linguistic



8 introduction

structure. To do so it presents a method to incorporate such
structure into deep neural networks using graph convolutional
networks.

Chapter 4 then explores if we can induce useful structure
with translation as a downstream task, instead of feeding such
structure in the form of linguistic knowledge. It presents a
model with two separate components, so as to make sure pos-
sible improvements arise from the induced structure, and that
induces structure alone.

1.4.2 Part II

Part II deals with the ‘black box’ aspect of neural networks.
While neural networks perform well on NLP tasks, how do we
know if we can trust them? And how do they work?

Chapter 5 focuses on text classification tasks, and presents a
differentiable approach for a model to learn to provide a ratio-
nale, an explanation, together with its predictions.

Chapter 6 looks at the systematic generalization behavior of
neural sequence-to-sequence models, and how to benchmark it.
It finds an issue with a popular benchmark, SCAN, and pro-
poses to remedy it with its inverse problem, NACS.

Finally, Chapter 7 makes concluding remarks for this thesis
and looks into possible future work.



2
B A C K G R O U N D

“It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was

the epoch of incredulity, it was the season of light, it was the season
of darkness, it was the spring of hope, it was the winter of despair.”

–— Charles Dickens, A Tale of Two Cities

This thesis relies heavily on sequence-to-sequence models.
One of the main applications for such models is Machine Trans-
lation (MT), which is concerned with the automatic translation
of a sentence from one language into another. We therefore start
with a thorough treatment of the Neural Machine Translation
(NMT) literature. But before we do so, we should acknowledge
that the ideas for using statistics to map sequences from one
language to another can be traced back all the way to (Weaver,
1949, 1955):

When I look at an article in Russian, I say : “This
is really written in English, but it has been coded
in some strange symbols. I will now proceed to de-
code.”

It took many decades for computers to become powerful enough
for it to be demonstrated in practice. Brown et al. (1990) and
Brown et al. (1993) proposed using the EM-algorithm to induce
word alignments between sentences in a parallel corpus, and
when you have alignments you can also compute the probabil-
ity of a word being the translation of another word. Figure 2.1
shows an example sentence pair and alignment. Word-based
models like this became a stepping stone for the later phrase-
based Statistical Machine Translation (SMT) models (Koehn et
al., 2003; Och and Ney, 2004). By heuristically extracting phrases
from the word alignments, and learning to score and combine
them, translation systems improved dramatically as they could
now take local context into account. Phrase-based systems were
topping the Workshop on Statistical Machine Translation (WMT)
yearly translation evaluation campaign until neural approaches
made their entry (Bojar et al., 2014, 2015).

9



10 background

the white bicycle

le vélo blanc

Figure 2.1: An example alignment.

2.1 neural machine translation

In NMT (Cho et al., 2014; Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014) we model the probability

Pθ(y1,y2, . . . ,yN | x1, x2, . . . xM) (2.1)

of an (e.g., English) target sentence y1,y2, . . . ,yN given a (e.g.,
French) source sentence x1, x2, . . . xM directly using a neural net-
work.1 In short, we will write:

Pθ(y
N
1 | xM1 ) (2.2)

and using the chain rule, we can express it in this way:

Pθ(y
N
1 | xM1 ) =

∏
i=1...N

Pθ(yi | x
M
1 ,yi−11 ) (2.3)

This means that there are no Markov assumptions; the probabil-
ity of output word yi is conditioned on all previously generated
words yi−11 . Just like before we have a parallel corpus with sen-
tence pairs 〈xM1 ,yM1 〉, and our goal is to fit the parameters θ of
our neural network to maximize the log likelihood of the data.
All modern neural models in this section share this objective,
but they differ in their neural architecture.

In the following, we will cover the developments in mod-
ern neural machine translation chronologically, to then discuss
some early work on the topic that was later rediscovered. We
will start with recurrent encoder-decoder models (§2.1.1), then
turn to recurrent models with attention (§2.1.2), alternative ar-
chitectures (§2.1.3), and finally early NMT models (§2.1.4).

1 We will use the convention from machine learning to use x for input and y
for output.



2.1 neural machine translation 11

2.1.1 Recurrent Encoder-Decoder Models

The breakthrough of neural machine translation came with the
encoder-decoder models of Cho et al. (2014) and Sutskever et al.
(2014).2 An encoder module encodes the source sentence into a
vector, while a decoder generates the target sequence one word
at a time from that vector. We will now discuss the encoder and
decoder separately.

2.1.1.1 Encoder

We associate each word type in the source data (and analo-
gously the target data) with an ID, creating the vocabularies
V (src) and V (trg). Each word that we input to our network is
then represented by a one-hot vector: a vector the size of the
vocabulary that consists of all zeros except for one index (at
the position of the word ID) where it contains a one. If we
then multiply the one-hot vector with a word embedding ma-
trix E(src) ∈ Rdemb×|V (src)|, we select the exactly one column from
that matrix: the word embedding for that word.

The input to the neural network is a sequence of one-hot en-
coded vectors x1, . . . , xM. This sequence is then encoded into a
vector by a Recurrent Neural Network (RNN) using the follow-
ing recursive definition:

hj = RNN(E(src)xj, hj−1) (2.4)

where we can use an zero vector for h0, and then feed one
word embedding E(src)xj at each time step. After feeding the
complete input sequence we end up with a final vector c =

hM which, as a result of training, captures the meaning of the
source sentence. In other words, we learn a representation c of
the source sentence xM1 . This vector is called the context vector.

We use RNN as a general recurrent function here, that takes
an input at each time step and updates its hidden state. A cru-
cial insight here was that the simple RNN of Elman (1990) has
difficulty learning to encode long sequences, because of the van-
ishing gradient problem.3 Therefore, Cho et al. (2014) propose
a Gated Recurrent Unit (GRU) as the recurrent function, and

2 For conciseness we will not discuss the earlier approach of Kalchbrenner
and Blunsom (2013), that can also be seen as an encoder-decoder, but that
uses (de)convolutional networks and a simple RNN.

3 See Bengio et al. (1994) and Pascanu et al. (2013) for further background on
the difficulty of training RNNs.



12 background

Sutskever et al. (2014) use the Long Short-Term Memory (LSTM)
of Hochreiter and Schmidhuber (1997).4

2.1.1.2 Decoder

After encoding the source sentence, the decoder predicts the
target sequence one word at a time. The decoder is also a GRU
or LSTM, just like the encoder, but with separate parameters.
Its recursive definition is:5

h(dec)
i = RNN([E(dec)yi−1; c], h(dec)

i−1 ) (2.5)

For each time step i, an output vector oi ∈ R|V (trg)| is computed
in the following way:6

ti =Wt[E(dec)yi−1; c; h(dec)
i ] (2.6)

oi = softmax(Woti) (2.7)

where E(dec)yi−1 is the word embedding of the previous target
word, c the context vector that was computed by the encoder,
and Wo,Wo ′ learned parameters. Since the softmax function
makes the output vector all positive and sum to one, we have
that

P(yN1 | xM1 ) =

N∏
i=1

o>i yi (2.8)

special tokens . In the first decoder RNN step we need to
provide y0, for which we use the special beginning-of-sequence
(BOS) token <s>. At the end of each sentence we append an
end-of-sequence (EOS) token </s>, so that the model can learn
when it is done generating the output. This also allows us to
stop generating when we see the EOS token at test time, when
we do not have the reference sentence and therefore do not
know the length of the translation. A padding token <pad> (dis-
cussed later) is the third special token.

4 The used LSTM implementation follows the definition of Graves (2013),
since the formulation of Hochreiter and Schmidhuber (1997) did not yet
include a forget gate.

5 Sutskever et al. (2014) do not condition on c in this way, instead they condi-
tion on it by initializing the first decoder hidden state h(dec)

0 with a projec-
tion from c.

6 For clarity we leave out the max-out layer that was used in addition to this
in Cho et al. (2014), since it was not adopted by the community.



2.1 neural machine translation 13

2.1.1.3 Learning

We maximize the conditional log-likelihood of the data

max
θ

1

|D|

∑
〈xM1 ,yN1 〉∈D

logP(yN1 | xM1 , θ) (2.9)

where D is our data set of sentence pairs that we assume to
be independent and identically distributed (i.i.d.) and θ are the
parameters of the model.

We optimize our parameters towards this goal by minimizing
the cross-entropy loss:

L(xM1 ,yM1 , θ) =
N∑
i=1

CE(yi, oi) = −

N∑
i=1

log oiy>i (2.10)

where yi ∈ {0, 1}|Vy| is the one-hot encoded target word for time
step i and oi = f(yi−1, h(dec), c) is the output of our decoder for
that time step. The cross-entropy loss expresses that we would
like to give the correct word a probability of 1.0 at the cost of all
other possible words. Since target yi is non-zero only for one
index and zero elsewhere, we obtain the cross-entropy loss by
simply taking the negative log of the output unit at the index
of the target word, i.e., the log-likelihood of the observation.

After computing the cross-entropy loss for each target word,
and summing each of those individual losses, we can use back-
propagation to obtain gradients of the loss with respect to the
parameters θ. To obtain less noisy gradient estimates, and to
speed up training, it is common to compute the loss for mul-
tiple sentences in a minibatch at the same time, and then to
divide the loss by the number of sentences in the minibatch. If
the sentences are not the same length, we simply fill the empty
slots using a special <pad> token which is ignored in the loss.

We then take a small step in the direction of the gradient to
update our parameters. We can do so with SGD (see e.g. Bottou
(2012)) or by using a more advanced optimizer with adaptable
learning rate such as Adam (Kingma and Ba, 2015), which is
the default optimizer for many NMT implementations.

2.1.2 Encoder-Decoder Models with Attention

Observing that it is difficult to capture the meaning of the
source sentence in a single vector c, Bahdanau et al. (2015) pro-
pose an attention mechanism that dynamically constructs a con-



14 background

text vector ci for each decoder time step i. We will again discuss
the encoder and decoder separately.

2.1.2.1 Encoder

The encoder remains largely the same, except that we now en-
code the source sentence using a bidirectional RNN (Graves
and Schmidhuber, 2005; Schuster and Paliwal, 1997), which con-
sists of a forward RNN (f) that processes the sentence from left
to right (as before), and a backward RNN (b) with separate pa-
rameters that goes from right to left.

hfj = RNN(E(src)xj, hfj−1) hfj ∈ Rd (2.11)

hbj = RNN(E(src)xj, hbj+1) hbj ∈ Rd (2.12)

After obtaining the hidden states we concatenate them for each
position to again have a sequence of hidden states h1, . . . , hM:

hj = [hfj ; hbj ] ∀j∈1,..,M hj ∈ R2d (2.13)

The concatenation doubles the size of the source word repre-
sentations, unless we use bd/2c as the output dimension for
the forward and backward RNN.

2.1.2.2 Decoder

The biggest change that Bahdanau et al. (2015) make is in the
decoder. Different from before, we will use all source represen-
tations hj, not just the last one. We still generate one output
token at a time using an RNN (a GRU or LSTM), but now the
context vector changes for each time step:

h(dec)
i = RNN([E(dec)yi−1; ci], h(dec)

i−1 ) (2.14)

Note how the context vector ci is now indexed with index i.
It is computed using an attention mechanism, that computes a
score between the previous decoder state h(dec)

i−1 and each source
word representation hj:

eij = score
(
h(dec)
i−1 , hj

)
(2.15)

The scores are then turned into a probability distribution over
source positions using a softmax function:

αij =
exp eij∑
k exp eik

∑
k

αik = 1 (2.16)



2.1 neural machine translation 15

Now that we have a weight for each source position, the context
vector ci is defined as a weighted sum:

ci =
M∑
j=1

αijhj (2.17)

There are different ways the score function can be implemented.
The only requirement is that the function takes two vectors (pre-
vious decoder state, encoder state) as input, and returns a scalar
energy term. Bahdanau et al. (2015) use an MLP to do so, also
referred to as ‘additive attention’:

score
(
h(dec)
i−1 , hj

)
= v> tanh

(
Wah(dec)

i−1 +Uahj
)

(2.18)

where va, Wa, and Ua are learned parameters. In a later work,
Luong et al. (2015c) use bilinear attention instead, also referred
to as ‘multiplicative attention’:

score
(
h(dec)
i−1 , hj

)
= h(dec)>

i−1 Wahj (2.19)

input feeding . Luong et al. (2015c) use a slightly differ-
ent sequence of steps for the decoder. Their decoder update is
given by h(dec)

i = RNN
(
[E(dec)yi−1; ti−1], h(dec)

i−1

)
, after which an

‘attention vector’ is computed: ti = tanh
(
Watt[h

(dec)
i ; ci]

)
. The

output vector is then obtained by oi = Woti. Since we feed the
previous attention vector ti−1 to the decoder this is called input
feeding. This sequence also gives a more direct path from input
to prediction compared to Bahdanau et al. (2015).

deeper . It is possible to stack multiple RNN layers on top
of each other to make the model deeper. The first layer takes
word embeddings as input, where each subsequent layer sim-
ply takes the output of the layer below as input. Sometimes a
residual layer is used (He et al., 2016), where the input to a layer
is added to its output. For more details on deeper models and
best practices, see e.g. Wu et al. (2016a).

2.1.3 Alternative Models

While recurrent models have dominated the field ever since
their inception, recently two other non-recurrent architectures
were found to work well on the problem of translation. Those
are Convolutional Neural Network (CNN)-based and the Trans-
former. We will discuss both of these briefly.



16 background

2.1.3.1 Convolutional Models

Gehring et al. (2017b) propose an alternative architecture based
on a Convolutional Neural Network (CNN). We will describe it
briefly, as a simple version of it will be used in the next chapter.

encoder . We encode each sentence using 1-dimensional con-
volutions. We first choose a window size k for our convolutions.
Say we choose k = 5. We then add bk/2c padding tokens to the
left and the right of each sentence. To each word embedding
we add a learned position embedding, so that the model has ac-
cess to the absolute position of each word in the sentence. The
position embedding is a learned vector, just like a word embed-
ding, and position embeddings are learned for each position
up to a certain length (e.g. 50). Then we define a weight matrix
W ∈ Rkd×d for our convolution, where d is the size of our word
embeddings and model. For each word position j, we compute
a new representation with:

hj =W[Exj−bk/2c; . . . ;Exj; . . . ;Exj+bk/2c] (2.20)

that is, we concatenate the word representation (word embed-
ding + position encoding) for word jwith its neighboring words
to make a vector of size kd, and then project it to get a new rep-
resentation for that word. We can do this multiple times, where
with each layer we increase the receptive field of each word
representation.

decoder . The target sentence is encoded in a similar way,
with the addition of a mask so that only previous words are
considered in the window, and not future words. After encod-
ing the source and the target sequence, attention scores are com-
puted between each encoder and decoder word representation
using a dot product:

eij = henc
j · h

dec
i (2.21)

The attention scores are then used to compute a context vector
which is in turn used to predict the next target word.

2.1.3.2 Transformer

Vaswani et al. (2017) propose an architecture, the Transformer,
that only consists of attention mechanisms, and nothing else.
We will again describe the encoder and decoder separately.



2.1 neural machine translation 17

encoder . After looking up the word embedding for an in-
put word, a position encoding is added, and the resulting se-
quence of word embeddings is stacked to form matrix X ∈
RM×d, where M is the sentence length and d the dimensional-
ity of the embeddings. In contrast to the Convolutional model
of Gehring et al. (2017b) that learns position embeddings for
each absolute word position, here a position encoding is a fixed
(not learned) vector. For a word at position i a position encod-
ing is defined as, for even dimensions j: sin

(
i/100002j/d

)
and

uneven dimensions j: cos
(
j/100002j/d

)
. The position encodings

have the same dimensionality as the word embeddings which
allows for summing them. Note that the position encoding for
position i+ k can be expressed as a linear function of the posi-
tion encoding for i, so position encodings allow the model to
learn functions sensitive to relative positions.

We define the following learnable parameters:7

A ∈ Rd×da B ∈ Rd×da C ∈ Rd×do (2.22)

where da is the dimensionality of the attention (inner product)
space and do the output dimensionality. Transforming the input
matrix with these matrices into new word representations H

A ∈ Rd×da B ∈ Rd×da C ∈ Rd×doH = softmax
(
XAB>X>

)︸ ︷︷ ︸
self-attention

XC

(2.23)

which have been updated by attending to all other source words.
The Transformer uses multi-headed attention, in which this
transformation is computed k times, one time for each head
with different parameters A,B,C.

After computing all k Hs in parallel, we concatenate them
and apply layer normalization8 (Ba et al., 2016) and a final feed-
forward layer9:

H = [H(1); . . . ;H(k)] (2.24)
H ′ = layer-norm(X+H) (2.25)

H(enc) = feed-forward(H ′) (2.26)

We set do = d/k, so that H ∈ RM×d. Multiple of these layers can
be stacked by setting X = H(enc) and repeating the computation.

7 This explanation of the Transformer was adapted from Michael Collins
https://youtu.be/jfwqRMdTmLo

8 Layer norm on a vector x is defined as x−µ
σ � g + b, with µ = E[x] and

σ =
√

E[(x − µ)2], using learned parameters g and b.
9 Defined as W ′max(0,Wx + b) + b ′

https://youtu.be/jfwqRMdTmLo


18 background

decoder . The decoder is similar to the encoder, but takes
the stacked target embeddings Y ∈ RN×d as input:

H = softmax
(
YAB>Y>

)︸ ︷︷ ︸
masked self-attention

YC (2.27)

For each target position attention to future input words is inhib-
ited by setting those attention scores to −inf before the softmax.
After obtaining H ′ = layer-norm(Y +H), and before the feed-
forward layer, we compute multi-headed attention again, but
now between intermediate decoder representations H ′ and fi-
nal encoder representations H(enc):

Z = softmax
(
H ′AB>H(enc)>)︸ ︷︷ ︸

src-trg attention

H(enc)C (2.28)

H(dec) = feed-forward(layer-norm(H ′ +Z)) (2.29)

Target words are predicted with a projection H(dec)Wout.

2.1.4 Early neural machine translation models

Even though Cho et al. (2014) and Sutskever et al. (2014) are
widely credited with inventing modern neural machine trans-
lation, there is earlier work where neural networks are applied
to the task. These early approaches typically use simpler archi-
tectures and much smaller data sets, and do not always give a
probability p(y | x) for their translations.

2.1.4.1 Feed-forward

Allen (1987) uses a feed-forward neural network to translate En-
glish sentences into Spanish. Figure 2.2 shows this architecture.Because Allen

(1987) uses a
feed-forward neural

network, only a
fixed number of

input and output
words are
supported.

It is formalized as follows:

x = [x1; x2, . . . , xM] (2.30)
h = σ(Wx + b) (2.31)

y = σ(W(y)h + b(y)) (2.32)

where x is the concatenation of all input vectors, y the con-
catenated outputs, σ the sigmoid activation function, and W ∈
RDh×Di , b ∈ RDh , W(y) ∈ RDy×Dh , b(y) ∈ RDy learned parame-
ters. The English vocabulary only consists of 31 words (encoded
using 5 bits), whereas the Spanish one has 40 words (encoded
using 6 bits). In Spanish adjectives and determiners are marked



2.1 neural machine translation 19

h

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

Figure 2.2: The feed-forward network of Allen (1987) supports 10 in-
put words (each 5 units) and 11 output words (each 6

units), with 1 to 3 hidden layers of 150 units.

for gender, hence the larger vocabulary. 3310 simple sentences
were generated, with a maximum length of 10 for English and
11 for Spanish, out of which 33 were used as a test set. Given
the feed-forward architecture with a fixed input and output
size, only sentences of up to 10 source (11 target) words are
supported. This means that the input layer contains 50 units,
and the output layer 66 units. For shorter sentences unused
word positions are padded.

Allen experiments with three feed-forward architectures to
map the input layer to the output layer: direct mapping (50-
66), one hidden layer of 150 units (50-150-66), and three hidden
layers of 150 units (50-150-150-150-66).

The best and largest model reached a training error of 0.027

which meant an average of 1.3 words incorrect on the test set.
It should be noted that Allen (1987) randomly pairs words

with their binary encoding. This means the distance between
two related words is arbitrary. However, Allen does note that a
hierarchical or similarity based scheme could have been used,
e.g., based on parts of speech, gender, and number features.

2.1.4.2 RAAM

Chrisman (1991) uses a dual-ported version of the Recursive
Auto-Associative Memory (RAAM) architecture of Pollack (1990)
to perform translation. RAAM can encode any kind of tree struc-
ture as long as it has a bounded branching factor, and a list or
sequence is a special case of such a structure. In contrast to the
feed-forward network of Allen (1987), RAAM can encode (and



20 background

xl xh

h

x ′l x ′h

Encoder

Decoder

Figure 2.3: RAAM has input layers xl and xh, a hidden layer h, and
output layers x ′l and x ′h. A sequence can be encoded by
feeding the first item as xl with an empty xh. Subsequent
items can be encoded by copying h to input xh and feed-
ing the item as xl. Decoding works by copying a repre-
sentation to the hidden layer, after which the last item ap-
pears on x ′l and the representation of the remainder of the
sequence on x ′h.

decode) arbitrarily long sentences. This advantage is however
limited in practice by the number of units of its hidden state
and the ability of gradients to propagate. Figure 2.3 shows the
RAAM architecture and explains how it recursively encodes (or
decodes) a sequence.

This basic RAAM can be used to learn representations of sen-
tences in one language, but it cannot perform translation. To en-
able this, Chrisman adds two extra input layers and two extra
output layers to the model, connecting them to the same hidden
layer h. The resulting architecture is shown in Figure 2.4 and is
called the dual-ported RAAM. The idea is now that h is trained
to represent sentences in both the source language as well as
sentences in the target language. This is done by minimizing
multiple loss functions L simultaneously:

1. L
(
dec1(enc1(x)), x

)
(for each subsequence)

2. L
(
dec2(enc2(y)), y

)
(for each subsequence)

3. L
(
dec2(enc1(x)), y

)
(for final sentence representation)

4. L
(
dec1(enc2(y)), x

)
(for final sentence representation)

Here we use x for input (and target) [xl; xh], i.e., the concatena-
tion of the two input layers for the source language. We use y in
a similar way but for the target language. L is the loss function,
defined as:

L(ŷ, y) =
1

2
||ŷ − y||22 (2.33)



2.1 neural machine translation 21

h

xl xh

x ′l x ′h

yl yh

y ′l y ′h

Encoder 1

Decoder 1

Encoder
2

Decoder 2

Figure 2.4: The Dual-Ported RAAM of Chrisman (1991). The architec-
ture can be seen as consisting of two auto-encoders that
share their hidden layers, forcing the representations of
a sentence in two different languages to be close to each
other.

expressing that we want to minimize the Euclidean distance
between the output and the target. We use the shorthands ‘enc’
and ‘dec’ for Encoder and Decoder, respectively.

A corpus of 216 English-Spanish sentence pairs was created
from a vocabulary of 36 English and 36 Spanish words. In con-
trast to Allen (1987), words are encoded with a localist encod-
ing scheme based on linguistic features, such as word category
(e.g., verb, noun, pronoun, determiner, adjective, etc.) and plu-
rality (e.g., first person singular), in a fashion similar to Pollack
(1990).

The hidden layer was set to 40 units, English words had 21

units, and Spanish words 19. After providing the correct out-
put length10, the model was able to translate 89% of unseen
sentences correctly (exact match).

Chrisman (1991) concludes with some suggestions not ex-
plored in the paper, but that will turn out to resurface in mod-
ern NMT systems. These include many-to-1 translation (multi-
ple source languages), auxiliary losses (e.g. sentence classifica-
tion), and what it referred to as a ‘coupled hybrid architecture’
where the two auto-encoders to have their own hidden layers,
but they are coupled using a learned transformation. This last
suggestion is quite reminiscent of the later encoder-decoder
models of Cho et al. (2014) and Sutskever et al. (2014).

10 Chrisman (1991) did not yet make use of an end-of-sequence symbol which
caused some output sentences to be too short.



22 background

xl xh

h

yl yh

Encoder

Decoder

Figure 2.5: RHAM first encodes the source sequence into hidden state
h by repeatedly feeding the next item and copying back
the hidden state to the input, and then directly decodes
h into the target sequence, without the need for auto-
encoding the source and target sequences.

2.1.4.3 RHAM

Forcada and Ñeco (1997) observe that the RAAM-based approach
of Chrisman (1991) requires one-to-one translations: it is not
possible for two sentences in one language to have the exact
same translation. To remedy this they propose Recursive Hetero-
Associative Memory (RHAM). Figure 2.5 shows RHAM. While
the architecture is similar to RAAM, it is used in a different
way: there is no auto-encoding of the source and the target se-
quences, but instead the hidden state is directly decoded into
the target sequence. If the source and target are the same, then
RHAM is identical to RAAM. Forcada and Ñeco also use a end-
of-sequence representation so that it can be detected when to
stop the decoding process.

The training loss consists of the distance of each output with
the encoding of the corresponding target word, as well as a loss
for learning the end-of-sequence representation. Optimization
was done using Alopex (Unnikrishnan and Venugopal, 1994),
which is based on local correlations between weight changes
and the global error measure, and not using backpropagation.11

In contrast to previous work experiments are done on arti-
ficial data sets generated by three automata over the simple
alphabet {0, 1} for both source and target. Because empty in-
puts/outputs are possible, the lengths of the input and output
sequences are not always the same. Important in this paper is
that the data sets contain many-to-one translations, with mul-
tiple source sequences mapping to the same target sequence.

11 A discussion of Alopex is however outside the scope of this thesis. It would
have been possible to use backpropagation to train this model.



2.1 neural machine translation 23

The test set consisted of the longest (9 and 10 items) sequences
which were not used for training. For the most challenging au-
tomaton the generalization performance was 89% using 8 hid-
den units. Using fewer or more hidden decreased the perfor-
mance.

2.1.4.4 Second-order RNN

Neco and Forcada (1997) also experiment on artificial data gen-
erated by automata, however they use a modified second-order12

discrete-time Recurrent Neural Network (RNN) (Giles et al., 1990)
instead of RAAM or RHAM. The modifications that Neco and
Forcada make to the RNN allow it to produce output already
before the complete source sequence has been read. Two extra
output bits are used as control signals: one for advancing the
input (AdvIn), and one for the output length (OutLen). When
AdvIn < 0.5, an empty token is presented to the neural net-
work in the next time step, otherwise the next input token is
presented. OutLen predicts the output length in [0, 1] of the cur-
rent output token. The training loss is based on the squared
difference of the predicted output with the correct output se-
quence and their length difference. The model is trained on four
data sets generated by automata containing sequences of up to
11 items. Generalization is then tested on all sequences up to
15 items. For each of the automata generalization performance
was 93% or higher.

2.1.4.5 SRN

Castano and Casacuberta (1997) use the Simple Recurrent Net-
work (SRN) of Elman (1990) for translation. Figure 2.6 shows
their model. An SRN has a simple recursive formulation to up-
date the hidden state. Given the previous hidden state hi−1 and
input vector for the current time step xi, the new hidden state
is obtained by:

hi = σ(W(h)hi−1 +W(x)xi + b) (2.34)

12 In this context ‘second-order’ refers to how the receptive field of a neu-
ron is defined. A first-order receptive field for a neuron k would be
vk =

∑
jwa,kjhj +

∑
iwb,kixi, whereas a second-order field would be

vk =
∑
i

∑
jwkijhjxi, i.e., using a single weight connecting it to two in-

puts. See Giles et al. (1990) and Haykin (1994).



24 background

xi−1 xi xi+1

h

y

Figure 2.6: The SRN-based model of Castano and Casacuberta (1997).

un cuadrado mediano y claro y un círculo claro tocan a un
círculo y un cuadrado mediano y oscuro
a medium light square and a light circle touch a circle and a
medium dark square

Figure 2.7: An example MLA-MT sentence pair.

where σ is the sigmoid activation function. At each time step
an output is produced using:

yi = φ(W(y)hi + b(y)) (2.35)

where φ is an activation function for the final output, in this
case also a sigmoid.

For better performance a window of words around the current
input word was provided as input at every time step. Input and
output words were represented by one-hot vectors.

Experiments were done on the Miniature Language Acquisi-
tion (MLA) data set of Feldman et al. (1990) which was turned
into an MT data set by Castellanos et al. (1994). It consists of
sentences describing simple visual scenes, together with their
translations. Figure 2.7 shows an example sentence pair. Addi-
tional experiments were done on an extended version of the
data set, where objects could be removed and added, which
caused the vocabularies to grow to 30 words each. 500 and 1500

sentence pairs were used for training on MLA-MT, and 500 and
3000 sentence pairs were used to train on the extended version.
For evaluation, for each of the two tasks, three independently
generated test sets with 2000 sentence pairs were used. The
best model, using 60 hidden units and a window of 3+3 input
words, reached almost 100% test accuracy (exact match).



2.2 dealing with infrequent words 25

2.2 dealing with infrequent words

Naively constructing vocabularies for the source and the target
data by including all word types results in several problems.
First of all the embedding matrices grow large and might be
hard to fit into memory, and it will be difficult to learn a good
representation for infrequent words. To remedy this only the
top-k (e.g. k = 50000) most frequent words can be included,
and excluded words replaced with a special <unk> token. This
has the downside that we can only produce translations using
the most frequent words, and that here and there an <unk>-
token appears in the output.

As an initial solution the <unk>-tokens can be replaced with
the source-token mostly attended to in that time step. (Jean et
al., 2015; Luong et al., 2015b), but this does not fully solve the
problem of having to translate with an open vocabulary.

Sennrich et al. (2016b) propose encoding rare and unknown
words as a sequence of sub-word units. The vocabulary of sub-
word units is computed from the training data using a Byte
Pair Encoding (BPE) method. That name is slightly misleading
because the method operates over characters and not bytes. We
start with all characters found in our training set as our sym-
bols. Each word is represented as a sequence of characters, plus
a special end-of-word symbol. Then, for a fixed number steps,
we perform:

1. Count all symbol pairs

2. Merge the most frequent one into a new symbol

The number of steps (merge operations) determines the num-
ber of created sub-word units, and is the only hyperparameter
of the procedure. A popular number of steps is 32000 (Wu et
al., 2016a), but the best number could be lower and needs to be
determined experimentally (Ding et al., 2019).

2.3 evaluation

So far we have not discussed how to evaluate the quality of
our translations. How do we know our system is working well?
The best but expensive way is to ask humans to evaluate the
translations, but this is slow and expensive. Among many pro-
posals for automatic evaluation, the Bilingual Evaluation Un-
derstudy (BLEU) score of Papineni et al. (2002) is the only met-
ric that is consistently used in the literature. The assumption



26 background

is that good translations resemble the translations of a profes-
sional translator in some way. We therefore require one or more
reference translations for each source sentence in an evaluation
data set, and some way to score each translation. BLEU is based
on modified n-gram precision, which is computed on a per-
sentence basis. Papineni et al. (2002) discuss the following ex-
ample:

Candidate: the the the the the the the.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

A simple unigram precision would result in a score of 7/7,
since each word (the) in the candidate appears in the refer-
ences. However, the candidate is obviously a bad translation.
Modified n-gram precision fixes this by clipping the total count
of each candidate word by the maximum count of that word in
one of the references:

countclip(ngram)=min
(

count(ngram), max_ref_count(ngram)
)

(2.36)

The modified unigram precision of the candidate then becomes
2/7. We can perform a similar computation using bi-grams, tri-
grams, etc. More generally, modified n-gram precision is de-
fined as:

pn =

∑
C∈candidates

∑
ngram∈C countclip(ngram)∑

C ′∈candidates
∑

ngram ′∈C ′ count(ngram ′)
(2.37)

The BLEU metric uses unigrams, bi-grams, tri-grams and 4-grams,
and combines each of the scores using a geometric mean. Since
modified n-gram precision does not penalize for getting the
sentence length wrong, there is an additional brevity penalty
(BP). This makes the final BLEU definition as follows:

BP =

1 if c > r

e1−r/c if c 6 r
(2.38)

BLEU = BP · exp
( 4∑
n=1

1

4
logpn

)
(2.39)

alternative metrics . Various other automatic metrics have
been proposed, each aiming to reach better correlation with hu-
man judgments. METEOR (Denkowski and Lavie, 2014) aligns



2.4 summary 27

the candidate to the reference using word stems, synonyms,
and paraphrases. TER (Snover et al., 2006) measures the editing
effort for a human to change the candidate into the reference.
BEER (Stanojević and Sima’an, 2014; Stanojević and Sima’an,
2015) uses learning-to-rank training, and exploits character n-
grams for measuring lexical accuracy and permutation trees
for measuring word order. ChrF (Popović, 2015) is based ex-
clusively on character n-grams. RIBES (Isozaki et al., 2010) is
another metric that measures word order differences.

comparing bleu scores . One particular issue with BLEU
is that, if the pre- and post-processing of the data (e.g. lowercas-
ing, tokenization) is not exactly the same, the scores of different
systems cannot be compared. Details like these are not always
mentioned in the literature. Post (2018) raises this issue and pro-
vides a tool, SacreBLEU13, to compute BLEU scores from detok-
enized output. SacreBLEU uses an internal tokenizer, provides
a version string on how the score was computed, and contains
the references for many popular benchmarks.

2.4 summary

In this chapter we covered the following topics:

• Neural Machine Translation

– Recurrent encoder-decoder models

– Convolutional models

– Transformer

– Early NMT models

• Evaluation of MT output

13 https://github.com/mjpost/sacreBLEU

https://github.com/mjpost/sacreBLEU




Part I

I N C O R P O R AT I N G A N D I N D U C I N G
S T R U C T U R E

With the success of deep learning, the field of sta-
tistical machine translation abandoned systems that
made use of linguistic structures such as dependency
graphs, and traded them in for neural models that
only need a flat word sequence as input. Do linguis-
tic structures still play a role in modern translation
systems? And how would we incorporate them?





3
I N C O R P O R AT I N G L I N G U I S T I C S T R U C T U R E

While early models for machine translation using neural net-
works quickly reached state-of-the-art performance, they treat
the translation task as a simple sequence-to-sequence transduc-
tion. However, language is hierarchical in nature, and by ex-
ploiting that it should be possible to give an inductive bias
to a neural network that should be beneficial when process-
ing language. In this chapter we take a look at neural machine
translation models, and equip them with a recently proposed
mechanism – syntactic graph convolutional networks – so as to
condition them on the syntactic structure of the input.

chapter highlights

Problem Statement

• Current neural machine translation models treat the prob-
lem of translation as sequence-to-sequence transduction,
without explicitly exploiting the hierarchical nature of lan-
guage.

• Models with the right inductive bias for a task can be
expected to work better on it, especially given less data.

Research Question

• How can we condition neural networks on linguistic struc-
ture, in particular neural machine translation models?

• Does having access to syntactic/semantic information im-
prove translation performance?

Research Contributions

• Syntactic Graph Convolutional Networks (GCNs) are pro-
posed for use in neural machine translation.

• Syntactic GCNs are shown to be effective on English-German
and English-Czech translation tasks.

31



32 incorporating linguistic structure

3.1 introduction

Neural Machine Translation (NMT) (Cho et al., 2014; Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014) is one of the
success stories of using deep learning in Natural Language
Processing (NLP). As we saw in §2.1, NMT treats the problemNMT models are also

referred to as
encoder-decoders or

more generally
sequence-to-

sequence
models.

of translating from one language into another language as a se-
quence transduction problem: an encoder neural network reads
in a sequence of words and a decoder network produces the
translation one word at a time. Quickly after being proposed,
NMT systems started to outperform ‘traditional’ phrase-based
approaches on many language pairs in the yearly WMT news
translation evaluation campaign (see e.g. Bojar et al., 2016 and
Sennrich et al., 2016a), especially after adding an attention mech-
anism (Bahdanau et al., 2015; Luong et al., 2015c).

Despite their early successes, encoder-decoders do not explic-
itly model syntax. They process their input and output sequen-
tially, despite evidence that language is of a hierarchical na-
ture.1 For example, in Berwick and Chomsky (2016), we find
the following two example sentences:

1. birds that fly instinctively swim

2. instinctively birds that fly swim

Just by looking at the words of sentence (1) it is not clear if
the word ‘instinctively’ applies to ‘fly’ or to ‘swim’. However,
in the second sentence, ‘instinctively’ unambiguously modifies
‘swim’. While ‘instinctively’ is closer to ‘fly’ in word distance, it
is closer to ‘swim’ in terms of structural distance. The word ‘fly’
is simply one level deeper than the word ‘swim’, as we can see
when we look at its tree structure in Figure 3.12:

instinctively

birds that fly

swim

Figure 3.1: Example of hierarchical structure in language.

The reason that the aforementioned NMT systems ignore syn-
tax is possibly the lack of simple and effective methods for in-

1 Just how much hierarchy is a matter of debate. See e.g. Frank et al. (2012).
2 Based on Figure 4.1 in Berwick and Chomsky (2016).



3.1 introduction 33

corporating structured information in neural sentence encoders
at the time they were conceived, and the lack of such structure
in the data. While alternative methods do exist, they are either
only implicitly encode structure using MTL (Eriguchi et al., 2017;
Hashimoto and Tsuruoka, 2017a; Luong et al., 2015a; Nădejde
et al., 2017) or are too restrictive by explicitly encoding phrases
(Eriguchi et al., 2016). We will discuss these alternatives at the
end of this chapter.

Our goal is to provide the encoder with access to rich syn-
tactic information. We will let the model decide which aspects
of syntax are beneficial for the translation task, and do not
place hard constraints on the interaction between syntax and
our model. We do so because placing hard syntactic constraints
tends to hurt performance for phrase-based SMT systems (Chi-
ang, 2010; Smith and Eisner, 2006; Zollmann and Venugopal,
2006), and it is plausible that the same claims hold for NMT.

Attention-based NMT systems (Bahdanau et al., 2015; Luong
et al., 2015c) represent source sentence words as continuous fea-
ture vectors in the encoder and use these vectors when generat-
ing a translation. We would like to automatically incorporate in-
formation about the syntactic neighborhood of source words into
these feature vectors, and with that potentially improve quality
of the translation output. Dependency trees represent syntactic
relations between words. For example, in Figure 3.2, Sherpa is
the subject of the predicate climbed, and mountain is its object.
Using dependency trees to obtain syntactic neighborhoods is a
natural choice, since our feature vectors correspond to words.

In order to produce syntax-aware feature representations of
words, we exploit a Graph Convolutional Network (GCN) (Def-
ferrard et al., 2016; Duvenaud et al., 2015; Kearnes et al., 2016;
Kipf and Welling, 2016). GCNs are explained in more detail in
§3.3, but we give a simple introduction here. A GCN can com-
pute a latent feature representation for each node in a given
graph. The representation of a node is based on its k-th or-
der neighborhood, i.e., nodes at most k hops away from the

The Sherpa climbed the mountain

det nsubj

dobj

det

Figure 3.2: An example dependency tree.



34 incorporating linguistic structure

node (Gilmer et al., 2017).3. In our case our nodes are words in
a sentence and the graph is given by a dependency tree. A GCN
is generally simple and computationally inexpensive, and here
we can simply see it as a layer that takes in a word representa-
tion and produces an enhanced word representation.

To support the kinds of graphs for linguistic structures, we
propose using a specific type of GCN, the Syntactic GCN, a vari-
ant sensitive to edge direction and edge labels. Syntactic GCNs
were also shown to be effective for semantic role labeling by
Marcheggiani and Titov (2017). Since we can see a GCN as an
extra layer enhancing our word representations, it is straightfor-
ward to add one to the encoder of an attention-based encoder-
decoder model, because we already have a continuous repre-
sentation for each source word. NMT models are trained end-
to-end, so a GCN ends up capturing linguistic properties (pro-
vided by the graph) that are useful for translation specifically.
Although we could start with word embeddings as initial word
representations, we will see that it is more effective to use a
GCN layer on top of a RNN or CNN layer, enriching their states
with syntactic information.

In this chapter we will focus on dependency syntax and dependency-
based semantic-role labeling structures (Surdeanu et al., 2008)
as our graphs, but we could also condition on AMR seman-
tic graphs (Banarescu et al., 2012)4 and co-reference chains. We
will cover the following research questions:

• How can we condition neural networks on linguistic struc-
ture, in particular neural machine translation models?

• Does having access to syntactic/semantic information im-
prove translation performance?

In the remainder of this chapter, we recap neural machine
translation (§3.2), describe the GCN (§3.3) and syntactic GCN (§3.4),
define our models (§3.5), perform machine translation experi-
ments (§3.6), discuss related work (§3.7), and finally we con-
clude (§3.8).

3 GCNs are one type of Graph Neural Networks; others have been proposed
as well e.g. Graph Attention Networks (Veličković et al., 2018) and Gated
Graph Neural Networks (Li et al., 2016b). These kinds of graph networks
are related and can be unified under a message passing framework (Gilmer
et al., 2017).

4 See Beck et al. (2018) for an example of conditioning on AMR.



3.2 neural machine translation 35

3.2 neural machine translation

We use the attention-based NMT model of Bahdanau et al. (2015)
as our baseline. Even though we already discussed it in §2.1, we
will briefly recap it here.

Given a dataset D consisting of |D| i.i.d. sentence pair ob-
servations 〈x = x1, . . . , xM,y = y1, . . . ,yN〉, we train a neural
network fθ(·) with parameters θ to minimize the negative log-
likelihood

−
1

|D|

∑
〈x,y〉∈D

logpθ(y | x)

using gradient descent (Bottou and LeCun, 2004; Robbins and
Monro, 1951).

We describe our NMT baselines for this chapter in terms of the
encoder, the decoder, and the attention mechanism that condi-
tions the decoder on the encoder. While one baseline is identical
to Bahdanau et al. (2015), in others we modify the encoder.

3.2.1 Encoders

An encoder is a function that takes a source sentence as input
and produces a sequence of continuous representations, one
vector for each word. We will use recurrent, convolutional and
bag-of-words encoders, and will recap them briefly.

recurrent. As we saw in §2.1.1, an RNN can be defined
with the following recursive function:

hj = RNN(E(src)xj, hj−1)

where E(src) is a learned word embedding matrix, and xj the
one-hot encoded input word at time step j.

We will use the function RNN in an abstract way, and it could
be realized using a LSTM (Graves, 2013; Hochreiter and Schmid-
huber, 1997) or a GRU (Cho et al., 2014). In this chapter we fol-
low Bahdanau et al. (2015) in using a bidirectional GRU, consist-
ing of a forward (f) and a backward (b) GRU, capturing the past
and future context of each word:

hj = [hfj ; hbj ] ∀j∈1,..,M hj ∈ R2d (3.1)

where d is the hidden size of each GRU.



36 incorporating linguistic structure

convolutional . A CNN encoder (described in §2.1.3.1) ap-
plies a fixed-size window over the input sequence to capture
the local context of each word (Gehring et al., 2016, 2017b).

hj =W[E(src)xj−bk/2c; . . . ;E
(src)xj; . . . ;E(src)xj+bk/2c]

where k is the size of the window. One advantage of this ap-
proach over the RNN is that it allows for fast parallel computa-
tion, while sacrificing sensitivity to non-local context. To rem-
edy the loss of context, multiple CNN layers can be stacked.

bag of words . In a bag-of-words (BoW) encoder each word
is simply represented by its word embedding. To give the de-
coder a sense of word position, position embeddings (PE) are
added. There are different strategies for defining position em-
beddings, and in this chapter we choose to learn a vector (ran-
domly initialized) for each absolute word position up to a cer-
tain maximum length. We will use a maximum length of 50

here, and use the last position embedding for all positions greater
than that.5 We represent the j-th word as follows:

hj = E(src)xj + pj

where E(src) is the word embedding matrix, xj a one-hot vector,
and pj the j-th position embedding.

3.2.1.1 Decoder

A decoder produces the target sentence conditioned on the
source sentence representations. We will use the decoder of
Bahdanau et al. (2015), which is implemented as a GRU con-
ditioned on an additional input ci, the context vector, which
is dynamically computed at each time step using an attention
mechanism. The probability of a target word yi is now a func-
tion of the decoder RNN state, the previous target word embed-
ding, and the context vector. See §2.1.2.2 for more details.

3.3 graph convolutional networks

In the previous section we discussed three different sentence
encoders: recurrent, convolutional, and bag-of-words. We now
shift our focus to methods that we can use to condition on hier-
archical structure in the form of a graph. We start by covering

5 See 2.1.3 for more background on position encodings.



3.3 graph convolutional networks 37

the Graph Convolutional Network (GCN) as proposed by Kipf
and Welling (2016)6, before modifying it.

A GCN is a multi-layer neural network that operates directly
on a graph, encoding information about the neighborhood of
a node as a real-valued vector. In each GCN layer, information
flows along edges of the graph; in other words, each node re-
ceives messages from all its direct neighbors.

When multiple GCN layers are stacked on top of each other,
information from further away in the graph gets integrated. For
example, imagine we apply two GCN layers to a graph with
nodes, where each node is represented by a vector. In the sec-
ond layer, a node will receive information from its direct neigh-
bors, but this information already includes information from
their respective neighbors. The number of GCN layers regulates
the distance the information travels: with k layers a node re-
ceives information from neighbors at most k hops away.

Formally, consider an undirected graph G = (V,E), where
V is a set of n nodes, and E is a set of edges. Every node is
assumed to be connected to itself, i.e. ∀v ∈ V : (v, v) ∈ E. Now,
let X ∈ Rd×n be a matrix containing all n nodes with their
features, where d is the dimensionality of the feature vectors.
In our case, X will contain word embeddings, but in general it
can contain any kind of features. For a 1-layer GCN, the new
node representations are computed as follows:

hv = ρ

( ∑
u∈N(v)

Wxu + b

)
(3.2)

where W ∈ Rd×d is a weight matrix and b ∈ Rd a bias vector.7

ρ is an activation function, e.g. a ReLU. N(v) is the set of neigh-
bors of v, which we assume here to always include v itself. As
stated before, to allow information to flow over multiple hops,
we need to stack GCN layers. The recursive computation is as
follows:

h(j+1)
v = ρ

( ∑
u∈N(v)

W(j)h(j)
u + b(j)

)
(3.3)

where j indexes the layer, and h(0)
v = xv.

6 For a comprehensive overview of alternative GCN architectures, see Gilmer
et al. (2017).

7 We dropped the normalization factor used by Kipf and Welling (2016), as it
is not used in syntactic GCNs of Marcheggiani and Titov (2017).



38 incorporating linguistic structure

W
(0

)

det W
(0

)

nsubj W (0)
dobj W

(0
)

det

W
(1

)

det W
(1

)

nsubj W (1)
dobj W

(1
)

det

<pad> The Sherpa climbed the mountain <pad>

h(0)

h(1)

h(2)

G
C

N
C

N
N

Figure 3.3: A 2-layer syntactic GCN on top of a CNN. Loop connec-
tions are depicted with dashed edges, syntactic ones with
solid (dependents to heads) and dotted (heads to depen-
dents) edges. Gates and some labels are omitted for clarity.

3.4 syntactic gcns

Marcheggiani and Titov (2017) generalize the GCN to operate
on directed and labeled graphs.8 This makes it possible to use
linguistic structures such as dependency trees, where direction-
ality and edge labels play an important role. They also integrate
edge-wise gates which let the model regulate contributions of
individual dependency edges. We will now look at these modi-
fications, since we will use them in our proposed models.

directionality. In order to deal with directionality of edges,
separate weight matrices are used for incoming and outgoing
edges. We follow the convention that in dependency trees heads
point to their dependents, and thus outgoing edges are used for
head-to-dependent connections, and incoming edges are used
for dependent-to-head connections. Modifying the recursive com-
putation for directionality, we arrive at:

h(j+1)
v = ρ

( ∑
u∈N(v)

W
(j)
dir(u,v) h(j)

u + b(j)
dir(u,v)

)
(3.4)

where dir(u, v) selects the weight matrix associated with the
directionality of the edge connecting u and v (i.e. WIN for u-to-
v, WOUT for v-to-u, and WLOOP for v-to-v). Note that self loops

8 For an alternative approach to integrating labels and directions, see applica-
tions of GCNs to statistical relation learning (Schlichtkrull et al., 2018).



3.5 models 39

are modeled separately, so there are now three times as many
parameters as in a non-directional GCN.

labels . Making the GCN sensitive to labels is straightfor-
ward given the above modifications for directionality. Instead
of using separate matrices for each direction, separate matrices
are now defined for each direction and label combination:

h(j+1)
v = ρ

( ∑
u∈N(v)

W
(j)
lab(u,v) h(j)

u + b(j)
lab(u,v)

)
(3.5)

where we incorporate the directionality of an edge directly in
its label.

Importantly, to prevent over-parametrization, only bias terms
are made label-specific, in other words: Wlab(u,v) = Wdir(u,v).
The resulting syntactic GCN, shown on top of a CNN (see next
section), is illustrated in Figure 3.3.

edge-wise gating . Syntactic GCNs also include gates, which
can down-weight the contribution of individual edges. They
also allow the model to deal with noisy predicted structure, i.e.
to ignore potentially erroneous syntactic edges. For each edge,
a scalar gate is calculated as follows:

g
(j)
u,v = σ

(
h(j)
u · ŵ

(j)
dir(u,v) + b̂

(j)
lab(u,v)

)
(3.6)

where σ is the logistic sigmoid function, and ŵ(j)
dir(u,v) ∈ Rd and

b̂
(j)
lab(u,v) ∈ R are learned parameters for the gate. The computa-

tion becomes:

h(j+1)
v =ρ

(∑
u∈N(v)

g
(j)
u,v
(
W

(j)
dir(u,v) h(j)

u + b(j)
lab(u,v)

))
(3.7)

3.5 models

In this chapter we focus on exploiting structural information on
the source side in the encoder. The hypothesis is that using an
encoder that incorporates syntax will lead to more informative
representations of words, and that these representations, when
used as context vectors by an attentive decoder, will lead to
an improvement in translation quality as measured by BLEU.
Consequently, we will use the decoder of Bahdanau et al. (2015)



40 incorporating linguistic structure

and keep that part of the model constant.9 In all models we use
the GRU (Cho et al., 2014) as the recurrent unit.

We will now discuss three models with encoders of increas-
ing complexity. Each of these models employs a GCN to con-
dition on linguistic structure. They are different in how much
information the word representations contain when they are
fed to the GCN.

3.5.1 Model 1: BoW + GCN

The first and simplest model consists of a bag-of-words encoder
(see §3.2.1)) with a GCN on top. The inputs to the GCN are there-
fore the word embeddings summed with the position embed-
ding for their absolute position in the sentence. Since this en-
coder captures the linear ordering information only in a very
crude way (through the position embeddings), the structural
information provided by GCN should be highly beneficial.

3.5.2 Model 2: Convolutional + GCN

The second model consists of a CNN encoder with a GCN on top,
as shown in Figure 3.3. A CNN encoder is fast, but by definition
only uses a limited window of context for each word. Instead
of the approach used by Gehring et al. (2016), i.e., stacking mul-
tiple CNN layers on top of each other, we use a GCN to enrich
the one-layer CNN representations. Note that, while Figure 3.3
shows a CNN with a window size of 3, we will use a larger
window size of 5 in our experiments. We expect this model to
perform better than BoW + GCN, because of the additional local
context captured by the CNN.

3.5.3 Model 3: Recurrent + GCN

The third and most powerful model employs a bidirectional
GRU. After encoding the source sentence with it, we use the re-
sulting hidden states as input to a GCN. As mentioned before,
this is the most challenging setup, as RNNs have been shown
capable of capturing at least some degree of syntactic infor-
mation without explicit supervision (Linzen et al., 2016), and

9 Note that we do not use a maxout layer in the decoder, as is common prac-
tice.



3.6 experiments 41

hence they should be hard to improve upon by incorporating
treebank syntax.

3.5.4 Advantages of using GCN layers

Instead of relying on linear order only, the GCN layers will allow
the encoder to ‘teleport’ over parts of the input sentence, along
dependency edges, connecting words that otherwise might be
far apart. The model might not only benefit from this teleport-
ing capability however; also the nature of the relations between
words (e.g. dependency relation types) may be useful, and the
GCN can exploit this information (see §3.4 for details).

3.5.5 Multiple GCN layers

Marcheggiani and Titov (2017) did not observe improvements
from using multiple GCN layers when conditioning a semantic
role labeling model on syntactic structure. However, propagat-
ing information from further in the tree should be beneficial
in principle. We hypothesize that the first layer is the most in-
fluential one, capturing most of the syntactic context, and that
additional layers only modestly modify the representations. To
ease optimization, we add a residual connection (He et al., 2016)
between the GCN layers, when using more than one layer:

h(l+1) = GCN(h(l)) + h(l)

where l is the index of the layer, and h(0) is the input to the first
GCN layer.

3.6 experiments

Experiments are performed using the Neural Monkey toolkit10

(Helcl and Libovický, 2017), which implements our baseline
model (Bahdanau et al., 2015) in TensorFlow11. The modifica-
tions to Neural Monkey for running the experiments in this
chapter, including the Syntactic GCN, are available on Github.12

hyperparameters . We use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.001 (0.0002 for CNN

10 https://github.com/ufal/neuralmonkey
11 https://www.tensorflow.org/
12 https://github.com/bastings

https://github.com/ufal/neuralmonkey
https://www.tensorflow.org/
https://github.com/bastings


42 incorporating linguistic structure

models13). The batch size is set to 80. Between layers we apply
dropout with a probability of 0.2, and in experiments with a
GCN we use the same value for edge dropout. We train for 45

epochs, evaluating the BLEU performance of the model every
epoch on the validation set. For testing, we select the model
with the highest validation BLEU. L2 regularization is used
with a value of 10−8. All the model selection (incl. hyperpa-
rameter selections) was performed on the validation set. In all
experiments we obtain translations using a greedy decoder, i.e.,
we greedily select the output token with the highest probability
at each time step.

In the following, we will first conduct an artificial reordering
experiment (§3.6.1), and then machine translation experiments
using dependency syntax (§3.6.2) and (in addition) semantic
role labeling structures (§3.6.3).

3.6.1 Reordering artificial sequences

Before we perform machine translation experiments, we would
like to get an intuition for the capabilities of GCNs. We define
a reordering task where randomly permuted sequences need
to be put back into the original order. We encode the original
order using edges, and test if a GCN-based model can success-
fully exploit them. Note that this task is not meant to provide a
fair comparison to a recurrent baseline. The input (besides the
edges) simply does not carry any information about the orig-
inal ordering, so our baselines cannot possibly solve this task,
since they lack a mechanism to condition on the edges.

data . From a vocabulary of 26 types (a-z), we generate ran-
dom sequences of 3-10 tokens. We then randomly permute them,
pointing every token to its original predecessor with a label
sampled from a set of 5 labels. Additionally, we point every to-
ken to an arbitrary position in the sequence with a label from
a distinct set of 5 ‘fake’ labels. We sample 25000 training and
1000 validation sequences.

model . We use the Recurrent + GCN model, i.e., the encoder
is a bidirectional GRU with a 1-layer GCN on top. We use 32,
64 and 128 units for embeddings, GRU units and GCN layers,
respectively.

13 As Gehring et al. (2016) also observed, Adam seems to be too aggressive for
CNN models, hence we use a lower learning rate.



3.6 experiments 43

results . After 6 epochs of training, the model learns to
put permuted sequences back into order, reaching a validation
BLEU of 99.2. Figure 3.4 shows that the mean values of the bias
terms of gates (i.e., b̂ in Equation 3.6) for real and fake edges are
far apart, suggesting that the GCN learns to distinguish them.
Interestingly, this illustrates why edge-wise gating is beneficial.
A model without gates would not understand which of the two
outgoing arcs is fake and which is genuine, because only biases
b would then be label-dependent. Consequently, it would only
do a mediocre job in reordering. Although using label-specific
matrices W would also help, this would not scale to the real
scenario (see §3.4).

0 50 100 150 200 250
Steps (x1000)

4

2

0

2

4

6

8

M
ea

n 
ga

te
 b

ia
s

real edges
fake edges

Figure 3.4: The mean gate bias for real (useful) and fake (non-useful)
labels suggests the GCN learns to distinguish them.

3.6.2 Syntax-aware Neural Machine Translation

The artificial reordering experiment in the previous section shows
that a GCN layer can do what it was designed for: conditioning
on structural information, including labels, and exploiting it
when useful to solve a task. We now turn to a real scenario,
and condition a machine translation model on syntactic infor-
mation in the form of dependency trees.

data . For the machine translation experiments we use the
English-German and English-Czech News Commentary v11 data
from the WMT16 translation task (Bojar et al., 2016).14 For English-
German we also train on the full WMT16 data set to test our hy-
pothesis in a large data set scenario. As our validation set and
test set we use newstest2015 and newstest2016, respectively.

14 http://www.statmt.org/wmt16/translation-task.html

http://www.statmt.org/wmt16/translation-task.html


44 incorporating linguistic structure

pre-processing . The English sides of the corpora are tok-
enized and parsed into dependency trees by SyntaxNet,15 using
the pre-trained Parsey McParseface model. The Czech and Ger-
man sides are tokenized using the Moses tokenizer.16 Sentence
pairs where either side is longer than 50 words are filtered out
after tokenization.

vocabularies . For the English sides, we construct vocabu-
laries from all words except those with a training set frequency
smaller than three. For our target languages Czech and Ger-
man, to deal with rare words and phenomena such as inflection
and compounding, we learn Byte Pair Encoding (BPE) codes
(see §2.2) as described by Sennrich et al. (2016b). Given the
size of our data sets, and following Wu et al. (2016b), we use
8000 BPE merge operations to obtain robust frequencies for our
subword units. For the larger full WMT data set we use 16000

BPE merge operations. Data set statistics are summarized in Ta-
ble 3.1 and vocabulary sizes in Table 3.2.

Train Val. Test

English-German 226822 2169 2999

English-German (full) 4500966 2169 2999

English-Czech 181112 2656 2999

Table 3.1: The number of sentences in our data sets.

Source Target

English-German 37824 8099 (BPE)
English-German (full) 50000 16000 (BPE)
English-Czech 33786 8116 (BPE)

Table 3.2: Vocabulary sizes.

hyperparameters . We use 256 units for word embeddings,
512 units for GRUs (800 for En-De full data set experiment), and
512 units for convolutional layers (or equivalently, 512 ‘chan-
nels’). The dimensionality of the GCN layers is equivalent to

15 https://github.com/tensorflow/models/tree/master/research/

syntaxnet
16 https://github.com/moses-smt/mosesdecoder

https://github.com/tensorflow/models/tree/master/research/syntaxnet
https://github.com/tensorflow/models/tree/master/research/syntaxnet
https://github.com/moses-smt/mosesdecoder


3.6 experiments 45

the dimensionality of their input. We report results for 2-layer
GCNs, as we find them most effective (see ablation studies be-
low).

baselines . We provide three baselines, each one with a dif-
ferent encoder: (1) a bag-of-words encoder, (2) a convolutional
encoder with window size w = 5, and (3) a recurrent baseline
that uses a bidirectional GRU. All baselines use the decoder of
Bahdanau et al. (2015). See §3.2.1 for details. To account for
model size we add an extra non-linear layer, equivalent to a
GCN with self-loop only, after encoding the source sentence.

evaluation. We report (cased) BLEU scores (Papineni et
al., 2002) using multi-bleu17. To evaluate lexical selection we
also report BLEU1 scores, where only unigrams are considered
when computing BLEU (see §2.3). BLEU4 is the standard BLEU
score using n = 1, .., 4. To evaluate reordering performance
we report Kendall τ reordering scores (see e.g. Stanojević and
Sima’an, 2015). We found that TER (Snover et al., 2006), BEER
(Stanojević and Sima’an, 2014), and RIBES (Isozaki et al., 2010)
(see §2.3) metrics were consistent with those results and re-
sulted in the same ranking.

3.6.2.1 Results

english-german. Table 3.3 shows test results on English-
German. Unsurprisingly, the bag-of-words baseline performs
the worst. We expected the BoW+GCN model to make easy
gains over this baseline, which is indeed what happens. BLEU1

and BLEU4 scores go up by +4.3 and +2.7, respectively. Next we
look at the convolutional encoders. The CNN baseline reaches a
higher BLEU4 score than the BoW models, but interestingly its
BLEU1 score is lower than the BoW+GCN model. The CNN+GCN
model improves over the CNN baseline by +1.9 and +1.1 for
BLEU1 and BLEU4, respectively. The BiRNN, the strongest base-
line, reaches a BLEU4 of 14.9. Interestingly, GCNs still manage
to improve the result by +2.3 BLEU1 and +1.2 BLEU4 points. Fi-
nally, we observe a big jump in BLEU4 by using the full English-
German WMT’16 data set and beam search (with a beam size
of 12). The recurrent baseline (RNN) now reaches 23.3, while
adding a GCN achieves a score of 23.9.

17 Equivalent to SacreBLEU with these settings: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.none+version.1.3.6

BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.3.6
BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.3.6


46 incorporating linguistic structure

Kendall BLEU1 BLEU4

BoW 0.3352 40.6 9.5
+ GCN 0.3520 44.9 12.2

CNN 0.3601 42.8 12.6
+ GCN 0.3777 44.7 13.7

RNN 0.3984 45.2 14.9
+ GCN 0.4089 47.5 16.1

RNN (full) 0.5440 53.0 23.3
+ GCN 0.5555 54.6 23.9

Table 3.3: Test results for English-German.

Kendall BLEU1 BLEU4

BoW 0.2498 32.9 6.0
+ GCN 0.2561 35.4 7.5

CNN 0.2756 35.1 8.1
+ GCN 0.2850 36.1 8.7

BiRNN 0.2961 36.9 8.9
+ GCN 0.3046 38.8 9.6

Table 3.4: Test results for English-Czech.

english-czech . Table 3.4 shows test results on English-Czech.
While it is difficult to obtain high absolute BLEU scores on this
dataset, we can still see similar relative improvements. Again
the BoW baseline scores worst, with the BoW+GCN easily beat-
ing that result. The CNN baseline scores BLEU4 of 8.1, but the
CNN+GCN improves on that, this time by +1.0 and +0.6 for
BLEU1 and BLEU4, respectively. Interestingly, BLEU1 scores for
the BoW+GCN and CNN+GCN models are higher than both
baselines so far. Finally, the recurrent baseline scores a BLEU4

of 8.9, but it is again beaten by the RNN+GCN model with +1.9
BLEU1 and +0.7 BLEU4.

effect of gcn layers . How many GCN layers do we need?
Every layer gives us an extra hop in the graph and expands
the syntactic neighborhood of a word. Table 3.5 shows valida-



3.6 experiments 47

En-De En-Cs
BLEU1 BLEU4 BLEU1 BLEU4

RNN 44.2 14.1 37.8 8.9
+ GCN (1L) 45.0 14.1 38.3 9.6
+ GCN (2L) 46.3 14.8 39.6 9.9

Table 3.5: Validation BLEU for English-German and English-Czech
for 1- and 2-layer GCNs.

tion BLEU scores as a function of the number of GCN layers. For
English-German, using a 1-layer GCN improves BLEU1, but sur-
prisingly has little effect on BLEU4. Adding an additional layer
gives improvements on both BLEU1 and BLEU4 of +1.3 and
+0.73, respectively. For English-Czech, performance increases
with each added GCN layer. Performance stopped improving
when adding a third layer.

effect of sentence length . We hypothesize that GCNs
should be more beneficial for longer sentences: these are likely
to contain long-distance syntactic dependencies which may not
be adequately captured by RNNs but directly encoded in GCNs.
To test this, we partition the validation data into five buck-
ets and calculate BLEU for each of them. Figure 3.5 shows
that GCN-based models outperform their respective baselines
rather uniformly across all buckets. This is a surprising result.
One explanation may be that syntactic parses are noisier for
longer sentences, and this prevents us from obtaining extra im-
provements with GCNs.

discussion. The results suggest that the syntax-aware rep-
resentations provided by the GCN-enhanced models consistently
lead to improved translation performance as measured by BLEU4.
Other metrics, such as TER, BEER, and RIBES, show the same
trend and also rank the GCN models the highest. Consistent
gains in terms of Kendall tau and BLEU1 indicate that improve-
ments correlate with better word order and lexical (BPE sub-
word) selection, two phenomena for which syntax is crucial.



48 incorporating linguistic structure

<=10 11-20 21-30 31-40 41+
Sentence length

8

10

12

14

16

BL
EU

CNN
CNN + GCN
BiRNN
BiRNN + GCN

Figure 3.5: Validation BLEU per sentence length.

Yesterday , HAL was bought by IBM for $1 .

ARGM-TMP

A1 A0

A3

Figure 3.6: Example sentence with semantic role structure.

3.6.3 Linguistically-informed NMT

In the previous section we conditioned NMT models on depen-
dency syntax, which gave rise to the name ‘syntax-aware NMT’.
While the results suggested that this was successful, depen-
dency trees are not the only linguistic structure that we can con-
dition on to bias our model. As mentioned before, a GCN can
condition on any kind of graph structure. Based on Marcheg-
giani et al. (2018), in this section we briefly look at what hap-
pens when we condition on dependency-based Semantic Role
Labeling (SRL) structures. We can condition on these semantic
structures alone, or we can combine them with the dependency
syntax that we used in the previous section. Rather than calling
this approach ‘semantics-aware’ NMT, we will adopt the term
‘linguistically-informed’, proposed later by Strubell et al. (2018)
in the context of SRL, and define it to mean conditioning on
syntax and/or semantics. Syntax and semantics bring comple-
mentary information: where syntax shows how the sentence is
structured, the semantic structure describes its meaning.



3.6 experiments 49

Semantic structures abstract away from the surface form of
a sentence, and can provide us with the answers to the ques-
tion: Who did what to whom, when and where? For example,
imagine we wanted to find events on the web that describe the
big company A buying another company B. We could find a
sentence like ‘A buys B’ but we could also find ‘The amazing B
bought by A for $1’. Many more surface forms could describe
the same events, using synonyms, active or passive construc-
tions, etc. Figure 3.6 shows the SRL structure for an example
sentence, identifying the semantic role ‘to buy’, the actor A0

(the buyer, IBM), the patient A1 (the thing being bought, HAL),
the amount A3, and the time ARGM-TMP. If we expressed the sen-
tence in a different way, we would still obtain the same seman-
tic structure.

Like machine translation itself, the idea of exploiting seman-
tics in MT is an old one (Bar-Hillel, 1960; Weaver, 1955).18 And
even though semantics has been exploited in phrase-based SMT
systems (Aziz et al., 2011; Baker et al., 2012; Bazrafshan and
Gildea, 2013; Jones et al., 2012; Liu and Gildea, 2010; Wu and
Fung, 2009), this study is the first to do so for NMT.

In the following, we will use Propbank-style SRL structures
(Palmer et al., 2005), to be precise their dependency version
(Surdeanu et al., 2008) as shown in Figure 3.6, to condition
our NMT models on semantics. Our hypothesis is that such se-
mantic structures can improve translation quality, and that they
provide complementary improvements compared to when con-
ditioning on syntax alone.

models . We use the two best performing models from the
previous section: the convolutional and the recurrent models.
Like in the previous section, the GCN has three weight matrices:
WIN, WOUT, and WLOOP. When we condition on both syntax
and semantics, we first apply a GCN layer for syntax, and then
another GCN layer (with separate parameters) for semantics.
However, another way to combine the information from the
syntactic and semantic graphs is to share the self-loop weights

18 However, Bar-Hillel (1960) also write: “Fully automatic, high quality transla-
tion is not a reasonable goal, not even for scientific texts.” We can do better
now than could be envisioned back then, even without linguistic input.



50 incorporating linguistic structure

WLOOP, and use graph-specificWIN,WOUT matrices. We change
Equation 3.7 to compute h(j+1)

v as follows:

ρ
(
W

(j)
LOOPh(j)

v +
∑

u∈Nsyn(v)

(
W

(j)
dir(u,v) h(j)

u

)
+
∑

u∈Nsem(v)

(
W
′(j)
dir(u,v) h(j)

u

))
(3.8)

where Wdir(·) are used for the syntactic graph, W ′dir(·) for the
semantic graph, and WLOOP is shared. Bias terms and gates are
left out for clarity.19 In this case (only) N(v) does not contain
node v itself. Later, in the ablation experiments, we will see
that the stacking approach works better. In the following all
test results are therefore reported using the stacking approach.

data . We will use the English-German NewsCommentary
v11 and WMT’16 data from the previous section, with the same
pre-processing (see §3.6.2). To obtain SRL structures, we parse
the English side of the data set with the neural SRL parser of
Marcheggiani et al. (2017).

experiments . Table 3.6 shows the results for models trained
on News Commentary. While conditioning on SRL structures
(+Sem) helps, BLEU does not increase as much over the baseline
as it does for dependency syntax (+Syn). Interestingly though,
combining syntax and semantics does improve over condition-
ing on semantics alone, while it gives a modest boost for the
CNN models. Table 3.7 shows the results for the full WMT’16

setting. Somewhat surprisingly, given that they have generally
fewer edges, conditioning on SRL graphs gives better results
now than conditioning on dependency syntax, while condition-
ing on both gives the best result. It is possible that with more
data, more syntactic information is captured by the RNN, while
SRL structures remain useful.

analysis . To select the hyperparameters and the best way
to combine syntactic and semantic structures, we performed
various ablation experiments on the News Commentary data
set. Table 3.8 shows the results. First, we can see that removing
the self-loop for the baseline results in the same performance,
showing that just adding extra depth is not helpful, and that im-
provements come from syntax/semantics. We can also see that
stacking a semantic GCN on top of syntactic one (+Syn+Sem, as

19 Gates for semantic edges are computed analogously to the syntactic gates,
but with separate parameters.



3.7 related work 51

RNN CNN

Baseline 14.9 12.6
+Sem 15.6 13.4
+Syn 16.1 13.7
+Syn + Sem 15.8 14.3

Table 3.6: Test BLEU, En–De, News Commentary v11.

RNN

Baseline 23.3
+Sem 24.5
+Syn 23.9
+Syn + Sem 24.9

Table 3.7: Test BLEU, En–De, full WMT’16.

done in the above experiments) works better than incorporating
both graphs inside a single GCN layer (+SemSyn). One explana-
tion for why the stacked approach works better is because it
might allow for a greater interaction between the syntactic and
semantic layers.

3.7 related work

The proposals in this chapter are not the only ones that aim to
incorporate linguistic structures in NMT or other neural mod-
els for different NLP tasks. We review various related methods,
both for incorporating linguistic features on the source side (in
the encoder) as for the target side (in the decoder).

linguistic input features . A simpler way to incorpo-
rate linguistic features is to add them as additional input fea-
tures to the word representations. Sennrich and Haddow (2016)
use features such as POS-tags, lemmas and dependency labels.
Each feature has its own embedding matrix, and the distribu-
tional representation of a feature is then concatenated to the
word embedding. While not the same as conditioning on the
full dependency tree, embedding the dependency label with
a word together with other features makes for improvements
of about one BLEU point on WMT’16 German-English, English-



52 incorporating linguistic structure

RNN CNN

Baseline (with 1L self loop) 14.1 12.1
Baseline (without self loop) 14.1 12.1

+Sem (1L) 14.3 12.5
+Sem (2L) 14.4 12.6
+Sem (3L) 14.4 12.7
+Syn (2L) 14.8 13.1

+SemSyn (1L) 14.1 12.7
+Syn (1L) + Sem (1L) 14.7 12.7
+Syn (1L) + Sem (2L) 14.6 12.8
+Syn (2L) + Sem (1L) 14.9 13.0
+Syn (2L) + Sem (2L) 14.9 13.5

Table 3.8: Validation BLEU, News Commentary only

German, and English-Romanian. Vanmassenhove and Way (2018)
use the same technique to incorporate semantic supersense tags
and syntactic supertag features. The technique can also be used
to simply indicate if a word is cased or not (i.e., an extra fea-
ture concatenated to the word embedding indicates if the word
starts with a capital), as is done by Levin et al. (2017), which
could be useful when optimizing for robustness, as it allows
for using the same word embedding for a word invariant of
its case, without losing the information whether the word was
cased or not originally. Alternatively, it is also possible to sim-
ply add tokens in the input sequence that mark a feature, such
as case in this case, as done by Bérard et al. (2019). This has the
downside of making the sequence longer, but allows using an
NMT system out of the box.

linguistic output features . Garcia-Martinez et al. (2016)
use factors on the decoder/target side, in contrast to Sennrich
and Haddow (2016) who use them on the encoder/source side.
They predict the lemma of each output word together with a
number of factors. After prediction these are then mapped to
an inflected word with a mapping function defined a priori.
The approach can increase the effective vocabulary size and re-
duce unknown words, and was shown to be competitive with
BPE in a spoken language translation scenario. Tamchyna et al.



3.7 related work 53

(2017) propose a similar method of predicting lemmas and mor-
phological features. As they predict the lemmas and features as
an interleaved sequence, they can use a standard NMT model,
in contrast to Garcia-Martinez et al. (2016).

tree-to-sequence . Eriguchi et al. (2016) parse English sen-
tences with an HPSG parser and then use a Tree-LSTM (Tai et
al., 2015) to encode the internal nodes of the tree. They still use
a standard decoder, but now word and node representations
have to compete under the same attention mechanism. The ap-
proach proposed in this chapter, conditioning on a graph using
a GCN, can be done in parallel, and results in the same num-
ber of representations as before applying the GCN. In contrast,
Eriguchi et al. (2016) obtain a representation for each node in
the tree, including leaves, and the computation cannot be done
in parallel. It is not trivial how the information from internal
nodes and leaf-nodes is best incorporated into the NMT model,
hence they are treated as equals in this model. Both approaches
require parsing the source side of the parallel data.

linearized parse trees . Instead of employing a model-
ing technique, an alternative way to represent a tree is to lin-
earize it, and then use a sequence-to-sequence model to en-
code or decode it. Aharoni and Goldberg (2017) propose neu-
ral string-to-tree by predicting linearized parse trees instead of
predicting output words alone. For example, the target output
sequence for ‘Jane had a cat.’ would be (ROOT (S (NP Jane )NP

(VP had (NP a cat )NP )VP . )S )ROOT. Currey and Heafield
(2018a) serialize the parse trees of source sentences in a simi-
lar manner and use hierarchical attention (Libovický and Helcl,
2017) to learn source representations based on both the origi-
nal (word) input sequence as well as the serialized parse tree.
Currey and Heafield (2019) again condition on both sequences
and serialized parse trees, but this time using a Transformer
(Vaswani et al., 2017), and obtain modest gains in BLEU in low-
resource scenarios, but not on larger data sets.

multi-task learning . In Multi-task Learning (MTL) (Caru-
ana, 1997) a model (or a part thereof) is supervised by multiple
objectives, so that the learning of one task benefits from the oth-
ers. This can be achieved e.g. by using the encoded source or
target word representations for an additional prediction task.
Sharing model parameters with a syntactic parser is a popu-



54 incorporating linguistic structure

lar approach to obtaining syntax-aware representations in NMT.
Luong et al. (2015a) predict linearized constituency parses as an
additional task. Eriguchi et al. (2017) multi-task with a target-
side RNNG parser (Dyer et al., 2016) and improve on various
language pairs with English on the target side. Nădejde et al.
(2017) multi-task with CCG tagging, and also integrate syntax
on the target side by predicting a sequence of words interleaved
with CCG supertags.

syntactic constraints . Stahlberg et al. (2016) prune a
lattice from a hierarchical phrase-based model (Hiero) and use
it to constrain the search space of an NMT decoder. Hiero trees
are not syntax-aware, but instead constrained by symmetrized
word alignments.

latent structure . Hashimoto and Tsuruoka (2017a) add
a syntax-inspired encoder on top of a bidirectional LSTM layer.
They encode source words as a learned average of potential par-
ents emulating a relaxed dependency tree. While their model is
trained purely on translation data, they also experiment with
pre-training the encoder using treebank annotation and report
modest improvements on English-Japanese. We will discuss this
model in more detail in the next chapter.

graph-to-sequence . After this work was first published,
others have explored further uses of GCNs in NLP. Beck et al.
(2018) propose an alternative method to condition on graphs us-
ing Gated Graph Neural Networks instead of GCNs. As in this
chapter, they condition on dependency trees, but also AMR se-
mantic graphs. In contrast to our approach, theirs allows edges
to have their own representations, which allows them to be in-
corporated in a richer way. Zhang et al. (2018) use GCNs to im-
prove relation extraction using pruned dependency trees. Da-
monte and Cohen (2019) and Song et al. (2018) use them to
condition on AMR graphs to generate sentences that more ac-
curately convey the semantics captured by the graph. Alon et
al. (2019) generate natural language from code snippets, condi-
tioning on the underlying code structure with GCNs. Finally,
De Cao et al. (2019) propose a question answering setup where
entities are nodes in a graph, and relations such as co-reference
are edges, and use GCNs to enable multi-step reasoning.



3.8 conclusion 55

3.8 conclusion

In this chapter we presented a simple and effective approach
to integrating graph-based linguistic structures such as depen-
dency trees and dependency-based SRL structures into NMT mod-
els. We saw consistent BLEU improvements for two challenging
language pairs: English-German and English-Czech.

Since GCNs are capable of encoding any kind of graph-based
structure, their applicability is not limited to the structures we
covered in this chapter. This was demonstrated by subsequent
work, where they were used e.g., to condition on AMR (Beck
et al., 2018), structured code snippets (Alon et al., 2019), and
co-reference structures for question answering (De Cao et al.,
2019).

One downside of the presented approach is that it requires
a method to obtain the structures to condition on. In the next
chapter, we will look at inducing these structures, so that they
no longer need to be provided as input.





4
I N D U C I N G L AT E N T S T R U C T U R E

In the previous chapter we saw that linguistic structure pre-
dicted by a supervised parser can be beneficial for NMT. In this
chapter we will investigate a more challenging setup: we incor-
porate sentence structure as a latent variable in a standard NMT
encoder-decoder and induce it in such a way as to benefit the
translation task, eliminating the need for supervised parsers.

chapter highlights

Problem Statement

• Linguistic structure can be beneficial for NMT, but requires
the translation data set to be parsed.

• These structures are defined over words, but state-of-the-
art NMT systems rely on sub-word units.

Research Question

• Can we eliminate the need for supervised parsers, and
induce a latent structure over a (sub-)word sequence in-
stead?

• How do we induce such a structure, and does it benefit
the translation task?

Research Contributions

• We present a model with two separate components: a
graph sampler and a translation component, with com-
pletely separate parameters.

• We show that it is possible to induce useful graphs over
sub-word sequences for simpler encoders such as bag-
of-words and convolutional encoders, but that on top of
LSTM encoders the sampled graphs become trivial.

57



58 inducing latent structure

4.1 introduction

In the previous chapter we used a Graph Convolutional Net-
work (GCN) to encode linguistic inductive bias about the syn-
tactic and semantic structure of the source sentence, which was
then exploited by an attentive decoder. We saw that this added
inductive bias can be beneficial for Neural Machine Transla-
tion (NMT). To apply our GCN we had to provide an external
syntactic and/or semantic parse for each source sentence at
training and test time. Other works, e.g. Eriguchi et al. (2016)
and Hashimoto and Tsuruoka (2017b), have shown that differ-
ent methods such as multi-task learning can also be successful
at adding such a bias. In this chapter we want to get rid of our
reliance on supervised parsers, and consider a more challeng-
ing setting: We will incorporate sentence structure as a latent
variable in a standard NMT encoder-decoder and induce it in
such a way as to benefit the translation task.

Inducing latent structure while incurring a downstream loss
was previously explored for tasks such as sentiment analysis
and textual entailment (Choi et al., 2018; Kim et al., 2017; Mail-
lard and Clark, 2018; Yogatama et al., 2017), and mainly fo-
cuses on latent trees rather than (more generally) graphs. Inter-
estingly, Williams et al. (2018) showed that these learned tree
structures do not correspond to syntactic or semantic gener-
alizations, but that they can be as useful as having access to
predicted parses.

Our goal is to investigate under which conditions induced
latent structures can be beneficial for NMT. Although we would
like these structures to be discrete (for example for better in-
terpretability), we do not enforce discreteness in order to avoid
high-variance estimators. Instead, we induce structure in the
form of weighted densely-connected graphs that can exhibit
various degrees of sparsity.

We propose a probabilistic model with two components:

1. a graph component that stochastically samples a latent graph
conditioned on the source sentence;

2. a graph-informed translation component that conditions on
the sampled graph and the source sentence to predict the
target sentence using a recurrent decoder.

Figure 4.1 shows the architecture. Using two distinct compo-
nents lets us disentangle their effects and study in which con-
ditions useful structure gets induced. To that end, we keep the



4.2 background 59

Encoder

GCN

Decoder

Graph Sampler

BiRNN

Graph component Translation component

Figure 4.1: Model architecture.

architecture of the graph component fixed across experiments
and vary the encoder of the translation component (e.g. RNN,
CNN, or embeddings). We observe that with RNNs, likely due to
their expressiveness, the model makes no or very limited use of
the latent graph apparatus. In contrast, with CNN encoders the
model finds purpose to latent graphs such as encoding useful,
potentially long-distance, dependencies in the source sentences.

4.2 background

There are a few new concepts in this chapter that require our
attention before we continue with the model definition: prob-
abilistic and deep generative models, the reparameterization
trick, and the Concrete distribution.

4.2.1 Deep Generative Models

In contrast to the discriminative models that we have seen so
far, a generative model is described in terms of a collection of
random variables (RVs), and we are interested in learning the
joint distribution over all those variables (Kingma and Welling,
2019). While the generative model describes the data genera-
tion process, it can be turned into a discriminator using Bayes’
rule. We can take an auto-encoder (see e.g. Vincent et al., 2010)
as an example. A discriminative auto-encoder assumes the in-
put x given, projects it into a continuous space z, and predicts a
reconstruction x ′ from z. It is trained with an objective that en-
courages x ′ to be close to the original x: the reconstruction loss.
Importantly, it does not model the input data itself, and there-



60 inducing latent structure

fore has no idea about its distribution. In contrast, the genera-
tive view would be that x was generated from a latent variable
z, and so we are interested in modeling p(x, z) = p(x | z)p(z).
Figure 4.2 shows the graphical model. One advantage is that
now we can express what kind of distribution p(z | x) should
be, for example a Gaussian distribution N(µ;σ2), where mean
µ and variance σ2 are predicted by the neural network. When a
neural network predicts the parameters of a distribution for our
model, we call it a Deep Generative Model (DGM), and a Deep
Latent-Variable Model (DLVM) in particular when the model in-
volves a latent variable. We can also express a preference for
the shape of p(z | x) by keeping it close to a prior p(z) on ex-
pectation, e.g. N(0; 1), a Gaussian with mean 0 and variance 1.
During training our goal is to learn the model parameters θ, so
as to maximize the marginal likelihood

pθ(x) =

∫
pθ(x | z)pθ(z)dz (4.1)

However, this is intractable since we need to integrate over the
entire latent space z. In the next section we will see how we
can learn the parameters without this intractable marginaliza-
tion. We also solve an important issue, which is what we are
truly interested in for this chapter: because during training z
is stochastically sampled from (an approximation of) the distri-
bution pθ(z | x), backpropagation breaks. We will see how a
Variational Auto-Encoder (VAE) solves this issue using the repa-
rameterization trick, and after our exposition of the VAE, we will
use that trick in our model to sample latent graphs without
breaking backpropagation in §4.3.

4.2.2 Variational Auto-Encoders and the Reparameterization Trick

The VAE was concurrently proposed by Kingma and Welling
(2014) and Rezende et al. (2014), and provides a method to
train deep generative models, such as the one we just described,
without the need to integrate over the latent space z. We will
cover the most important parts of the VAE based on Kingma
and Welling (2019), and refer to that work for further details
and derivations.



4.2 background 61

To train our model, we turn it into a discriminator: we follow
the generative view in the opposite direction, and go from x→
z→ x ′. So, we need to compute the posterior distribution

pθ(z | x) =
pθ(x, z)
pθ(x)

(4.2)

but it is intractable, since pθ(x) is intractable. However, we can
approximate pθ(z | x) using an inference model qφ(z | x) that is
also a neural network but with its own variational parameters
φ. Crucially, we choose qφ to be tractable, and fit its parameters
with the goal that qφ(z | x) ≈ pθ(z | x). Formally, we use the
inference model to optimize a lowerbound of the marginal log-
likelihood:

logpθ(x) = Lφ,θ(x) + KL
[
qφ(z | x) || pθ(z | x)

]
(4.3)

where L is called the evidence lower bound (ELBO), computed
as:

Lφ,θ(x) = Eqφ(z|x)

[
log

pθ(x, z)
qφ(z | x)

]
(4.4)

From Eq. 4.3 it becomes clear that the ELBO is indeed a lower
bound, since

Lφ,θ(x) = logpθ(x) − KL
[
qφ(z | x) || pθ(z | x)

]
(4.5)

with the KL-term being 0 at best (when qφ(z | x) = pθ(z | x)),
in which case logpθ(x) remains. By minimizing the negative
ELBO, we maximize a lowerbound of the log likelihood, while
at the same time minimizing the KL-divergence between the
approximation qφ(z | x) and the true posterior pθ(z | x).

We can now estimate the gradient using Monte Carlo, tak-
ing a single sample from qφ(z | x) when we need to compute
its expectation. However, it is not yet clear how gradients flow
through the sampling procedure, and we will discuss that next.

reparameterization trick . One issue that arises is that
we sample from qφ(z | x), which breaks backpropagation since
we cannot compute a gradient through a sample. This is solved
by Kingma and Welling (2014) by using a reparameterization
trick, also called a ‘change of variables’. A sample from qφ(z | x)

is expressed as a (differentiable) transformation of distribution
parameters φ, x, and ε from a fixed noise source. For example,
for Gaussian q, ε ∼ N(0, 1), then z = µ+ σ ∗ ε. Whenever the



62 inducing latent structure

x

z θ

Figure 4.2: A simple graphical model: the variational auto-encoder.
Each observation x is generated from a latent variable z.

CDF of a distribution is invertible, we can use this trick to ob-
tain a sample from it, by first sampling Uniform noise and then
transforming it using the inverse CDF. We will use the trick
when we sample a latent graph later in this chapter. For further
reading, see Kingma and Welling (2019).

4.2.3 The Concrete Distribution

In this chapter we are interested in predicting a structure, a
latent graph, for each source sentence. The structures that we
used in the previous chapter, dependency trees and semantic
role labeling structures, were both discrete. If we want to re-
place those structures, then it makes sense to look for a distri-
bution that allows us to sample discrete vectors.

A first candidate could be using the Gumbel-Max trick. Our
goal is to sample from a categorical distribution D with unnor-
malized class probabilities α = α1, . . . ,αk:

D ∼ Categorical
( α
α0

)
(4.6)

with α0 =
∑k
i=1 αi. To do so we start with k Gumbel random

variables Gk1 , expressed as a transformation of a Uniform ran-
dom variable:

Gk = − log(− log(Uk)) Uk ∼ Uniform(0, 1) (4.7)

The Gumbel-Max trick says that we can obtain a discrete ran-
dom variable as follows:

Categorical
( α
α0

)
∼ arg max

k

logαk +Gk (4.8)

where αk is the potential for P(X = k). In other words, we can
obtain a discrete sample by sampling Gumbel noise, adding
logαk to it, and taking the arg max.1 This is what we wanted,

1 The choice of Gumbel noise seems arbitrary, but it has a theoretical justifica-
tion. See e.g. Hazan et al. (2016).



4.3 model 63

however we still have a remaining issue: we cannot backpropa-
gate through the arg max operator.

The Concrete distribution (Jang et al., 2017; Maddison et al.,
2017), also called the Gumbel-Softmax distribution, starts out
with the Gumbel-Max trick that we just discussed, but then
smooths the arg max operator in order to let gradients pass
through. It is defined as follows:

R(α, λ) ∼ softmax
[

log(α) + [G1, . . . ,Gk]
λ

]
(4.9)

where α are the parameters of the distribution, and λ is the
softmax temperature. This gives a k-dimensional vector of pos-
itive numbers that sum to 1. Compared to the Gumbel-Max
trick, the arg max is replaced by a smoother tempered softmax,
that becomes approximately discrete as the temperature λ→ 0.
Higher temperatures give us less variance, while lower temper-
atures give sparser samples. Hence, Jang et al. (2017) suggest
annealing the temperature during training, even though they
do not do so in their paper. Note how, just like the reparam-
eterization trick that we discussed for the VAE, the Concrete
distribution transforms noise from a fixed random source; it
just happens to use Gumbel noise instead of Uniform noise.

Now that we have a distribution, Concrete, from which we
can get approximately discrete samples (i.e., as the temperature
is lowered more and more values will be close to zero), we are
ready to formalize our model.

4.3 model

Our model is a Deep Generative Model (DGM); a probabilis-
tic model whose components are parameterized by neural net-
works. In this chapter we will therefore describe machine trans-
lation from a probabilistic perspective. We view the source sen-
tence as a random sequence Xm1 , and the target sentence as a
random sequence Yn1 , and model the conditional likelihood of
source-target random sequences. Random variable X takes on
values in vocabulary X of the source language, and random
variable Y takes on values in vocabulary Y of the target lan-
guage. To each source word, we associate a (latent) random
variable Z which selects a position in the source sentence as
that word’s head.2 Formally, Z takes on values in the set of

2 We use the word head in allusion to syntactic heads in dependency graphs,
but note that our notion of head is purely data-driven.



64 inducing latent structure

xm1 z

yy<

n

m

Figure 4.3: Conditional independences of the latent graph model.

source word positions Z = {1, . . . ,m}. A sequence Zm1 of head
variables can be seen as a sequence of m directed edges, each
from Xi to XZi , and for that reason we interpret it as a random
graph.

We start by defining a joint distribution over target sentences
and graphs:

P(yn1 , zm1 | xm1 ) = P(z
m
1 | xm1 )P(y

n
1 | xm1 , zm1 )

=

m∏
i=1

P(zi | x
m
1 )︸ ︷︷ ︸

Graph component

×
n∏
j=1

P(yj | x
m
1 , zm1 ,y<j)︸ ︷︷ ︸

Translation component

(4.10)

where we first generate a graph zm1 conditioned on the source
sentence, and then generate a translation conditioned on the
source and the graph, by generating one target word at a time
without Markov assumptions.

Figure 4.3 shows the graphical model. We can see that the
source sentence is observed (shaded gray), and that the latent
graph (m head distributions z) conditions on it. The target sen-
tence yn1 conditions on both the source sentence xm1 and the
latent graph zm1 . In the next sections will look at the model
components in more detail.

The conditional likelihood of observations is obtained by mar-
ginalizing all possible latent graphs:

P(yn1 | xm1 ) =

m∑
z1=1

· · ·
m∑

zm=1

P(yn1 , zn1 | xm1 )

= EP(Zm1 |xm1 )

[
P(yn1 | xm1 ,Zm1 )

]
.

(4.11)

Since the translation model makes no Markov assumption, this
marginalization is intractable. While we could use a differen-
tiable and unbiased estimator such as the score function method
(Glynn, 1990; Williams, 1992) (also known as REINFORCE), this



4.3 model 65

s1 s2 s3

k1 k2 k3

α11 = q>1 k1 α12 = q>1 k2 α13 = q>1 k3
. . . . . . . . .

. . . . . . . . .

q1

Wk Wk Wk
Wq

Figure 4.4: Computation of head potentials (Concrete parameters) α.

typically suffers from high variance.3 In the following, we will
present an alternative formulation that enables efficient infer-
ence and parameter estimation by means of a continuous relax-
ation and reparameterized gradients.

4.3.1 Graph Component

The graph component conditions on the source sentence xm1
and samples for each source position i an m-dimensional prob-
ability vector

Zi | x
m
1 ∼ Concrete(αi, λ) (4.12)

whose kth component zik represents the relative strength of the
edge from xi to xk. Then, altogether, zm1 can be seen as the ad-
jacency matrix of a weighted fully-connected graph over the
source words. By analogy to dependency parsing, we can see
each zi as the parameter vector of a Categorical distribution
over the candidate heads of xi, which is why we call the Con-
crete parameter αi ∈ Rm a vector of head potentials. Given a
sequence of source word embeddings, we obtain hidden states
ŝm1 using a bi-directional LSTM (Graves and Schmidhuber, 2005;
Schuster and Paliwal, 1997). From these hidden states, we then
create ‘key’ and ‘query’ (or ‘head’ and ‘dependent’, by analogy)
representations for each state ŝi using linear projections:

ki = Wk ŝi qi = Wq ŝi (4.13)

3 Effective variance control techniques do exist (Gu et al., 2015; Tucker et al.,
2017), but they typically require multiple assessments of likelihood terms,
which for memory-intensive NMT models is undesirable.



66 inducing latent structure

with learned parameters Wk , Wq ∈ Rdk×d. We then obtain head
potentials using a scaled dot product:

αik =

 1√
dk

q>i kk if i 6= k

−∞ if i = k
(4.14)

Figure 4.4 shows this graphically. Similar projections are used
by Dozat and Manning (2017) and Vaswani et al. (2017). Impor-
tantly, they break the symmetry of the dot product, which is
crucial to model a directed graph.4

As we saw in §4.2, the Concrete density also takes a temper-
ature parameter λ, which we made a global hyperparameter,
with a decaying scheme described in §4.4.

4.3.2 Translation Component

The translation component conditions on the source sentence
xm1 , a sampled graph zm1 , and a target prefix y<j to sample a
target word

Yj | x
m
1 , zm1 ,y<j ∼ Categorical(πj) (4.15)

for j = 1, . . . ,n. We use an attention-based encoder-decoder
similar to the one in §3.5 to compute the Categorical parame-
ters πj at each time step j. First we obtain an encoding sm1 of
the source sentence, which is independent of the representa-
tions used by the graph component, and then we use a GCN to
enhance these representations given the neighborhood defined
by the graph zm1 . After obtaining such enriched representations
we employ a standard attentive decoder (Luong et al., 2015c).

encoder . Just as we did in §3.5, we experiment with three
different encoders for the translation component:

1. word embeddings summed with position encodings;

2. a single-layer convolutional encoder (Gehring et al., 2017a),
with window size 5, summed with position encdoings;

3. a bi-directional LSTM.

In contrast to §3.5, this time our position encodings are fixed
time series as proposed by Vaswani et al. (2017), instead of a
learned parameter vector per position.

4 We mask out the diagonal (i = k) to demote induction of trivial edges (from
a word to itself).



4.3 model 67

graph convolution. We now employ a Graph Convolu-
tional Network (GCN) (Bastings et al., 2017; Marcheggiani and
Titov, 2017), also used in the previous chapter, to incorporate
graph zm1 into source word representations sm1 :

si = GCN(sm1 , zm1 )[i] (4.16)

Since we induce unlabeled graphs, we do not use any label-
specific GCN parameters. This means that the GCN has a partic-
ularly simple update rule:

GCN
[
S = sm1 ,Z = zm1

]
= ReLU

(
ZSW + SWloop + b

)
(4.17)

where we leave out gates for clarity.

gates . Two scalar gates in [0, 1] are computed for each word
representation sj: one inhibits information from the self-loop
connections, and one inhibits information coming from word j.
We can define the gates as a diagonal matrices:

G = diag
(
σ(WgS)

)
(4.18)

Gloop = diag
(
σ(WgloopS)

)
(4.19)

GCN
[
S = sm1 ,Z = zm1

]
= ReLU

(
ZGSW +GsSWloop)

(4.20)

where gates G scale the strengths of the columns in adjacency
matrix Z, and the self-loop gates Gloop scale the rows of the
representations SWloop. In other words, if the gate for word j in
G is 0.9, then column j in Z is multiplied with 0.9 by computing
ZG. And if the gate for word j in Gloop is 0.5, then row j in
SWloop is multiplied with that amount.

The GCN creates an elegant interface between the graph com-
ponent and the translation component which prevents the for-
mer from “leaking” parameters or representations to the latter.
Graph Z = zm1 is the only information that is shared from the
graph component to the translation component.

decoder . Our decoder is based on Luong et al. (2015c); for
the jth prediction an LSTM attends to the (graph-informed) source
word representations. See §2.1.2.2.



68 inducing latent structure

Train Dev Test Vocabularies

De-En 153K 7282 6750 32010/22823

Ja-En 2M 1790 1812 16384 (SPM)

Table 4.1: Data set statistics.

4.3.3 Parameter estimation

We estimate the parameters of our model to maximize a lower
bound on marginal likelihood∫

pθ(z
m
1 | xm1 ) logpθ(yn1 | xm1 )dzm1 (4.21)

obtained by application of Jensen’s inequality. We get unbiased
gradient estimates for this objective by sampling a single graph
per source sentence. The Concrete density is a location family
(Maddison et al., 2017), thus we can reparameterize samples
from the graph component, enabling parameter estimation via
backpropagation (Kingma and Welling, 2014).

connection to vi . Our lowerbound can be seen as a spe-
cial case of the evidence lowerbound (ELBO) (Jordan et al.,
1999), where we choose to use the generative graph model com-
ponent as a variational approximation, i.e.:

qφ(z
m
1 | xm1 ,yn1 ) , pθ(z

m
1 | xm1 ) (4.22)

Under this Variational Inference (VI) view, our model can be
seen as an instance of a variational auto-encoder (Kingma and
Welling, 2014).

4.4 experiments

We build our models on top of TensorFlow NMT5 (Luong et al.,
2015c) and experiment on German↔English and Japanese↔English
tasks. Data set statistics are summarized in Table 4.1.

de↔en. We train on IWSLT14 with the same splits and pre-
processing as Ranzato et al. (2016). This is a small but popular
data set for which we can compare to strong external baselines.

5 https://github.com/tensorflow/nmt

https://github.com/tensorflow/nmt


4.4 experiments 69

ja↔en. We train on the Asian Scientific Paper Excerpt Cor-
pus (ASPEC) (Nakazawa et al., 2016) as pre-processed by the
WAT 2017 Small-NMT task6 using SentencePiece7 (Kudo, 2018).
We use the provided dev and test sets, and compare against the
benchmark provided by the workshop organizers.

4.4.1 Baselines

For our baselines we train our models without the graph sam-
pler, varying the encoder. We add a dense layer with ReLU acti-
vation and residual connection on top of the encoder, to make
our baselines stronger and to keep the number of parameters
for the translation component equal.8 Doing so makes sure that
the graph-enhanced models do not benefit from extra depth in
the translation component compared to the baselines.

4.4.2 Hyperparameters

We optimize using Adam (Kingma and Ba, 2015). For De-En, we
use 256 hidden units, a learning rate of 3e-4, and dropout 0.3.
For Ja-En, we use 512 units, a learning rate of 2e-4, and dropout
0.2. Word representations (query and key) are projected down
to dk = 256 units when calculating head potentials. Our batch
size is set to 64. Beam search is used with beam size 10 and
with a length penalty of 1.0.

concrete temperature . For the graph component we
define an initial temperature λ0 and apply exponential decay
based on the number of network updates. After t updates, the
temperature is λ0×dbt/tdc with decay rate d and decay steps td.
We set λ0 = 2, d = 0.99, and td 1 epoch.

4.4.3 Evaluation

We use SacréBLEU9 (Post, 2018) to report all BLEU scores. For
German-English we report case-sensitive tokenized BLEU scores
to compare with previous work. For Japanese-English, we re-
port detokenized BLEU for English using the 13a tokenizer
(which is mteval-v13a compatible). For Japanese we report tok-

6 http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/snmt/index.html
7 An alternative to BPE sub-word units.
8 This is identical to a GCN layer with self-loops only.
9 https://github.com/mjpost/sacreBLEU

http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/snmt/index.html
https://github.com/mjpost/sacreBLEU


70 inducing latent structure

IWSLT14 WAT17

Encoder De-En En-De Ja-En En-Ja

Ext. baseline LSTM 27.6 - - 28.5

Baseline Emb. 22.7 17.9 18.1 18.1
Baseline CNN 23.6 19.1 23.0 24.6
Baseline LSTM 27.6 22.4 26.0 28.7

Latent Graph Emb. 24.0 18.7 23.2 24.3
Latent Graph CNN 24.6 20.3 24.6 26.7
Latent Graph LSTM 27.2 22.4 26.0 29.1

Table 4.2: Latent Graph Results

enized BLEU on the segmentation from SentencePiece in accor-
dance with the Small-NMT shared task.

4.4.4 Results

Table 4.2 lists our results. We observe that the baselines with
LSTM encoders outperform the CNN ones, to be followed by
the word embedding baselines. This is not surprising, since the
LSTM is the only baseline that can fully capture the context of
a word. The CNN baseline performs surprisingly well, despite
having a receptive field of only five words.

We observe that substantial gains in BLEU score can be made
when latent graphs are incorporated into models with word
embedding and CNN encoders. This suggests that the graphs
are capturing useful relations outside of the receptive fields
of those encoders. However, for the LSTM encoders the latent
graphs do not seem beneficial overall. We look into this in the
next section.

4.5 discussion

What dependencies are the graphs capturing? The analysis of
our graphs is somewhat nontrivial as they are not truly discrete
and lack gold-truth parse trees.

We first measure the distance between each word and its
most-likely head word. If this distance is small on average, then
words typically select their neighboring word as head, whereas



4.6 related work 71

Mean head distance

Encoder Ja-En En-Ja

Emb. 4.0 ±6.9 3.8 ±5.6

CNN 6.1 ±6.5 6.7 ±7.1

RNN 4.3 ±6.5 2.0 ±5.4

Table 4.3: Mean head distance for En-Ja.

Mean entropy

Encoder Ja-En En-Ja

Emb. 0.49 ±0.18 0.42 ±0.18

CNN 1.21 ±0.28 1.47 ±0.30

RNN 0.51 ±0.20 0.00 ±0.01

Table 4.4: Mean Entropy for En-Ja.

if it is larger then this suggests potentially interesting non-local
dependencies. Table 4.3 lists the average head distances for En-
Ja, together with the variance over all distances. We find that
with LSTM encoders words typically select their heads nearby,
whereas with the other encoders heads are also found further
away. Figure 4.5 indeed shows this for an example sentence. In-
spection reveals that for the LSTM case the graphs became triv-
ial, confirming that it already captures non-local dependencies.

We also wonder how sparse our graphs are. To find out, we
interpret the adjacencies in the graph as Categorical head dis-
tributions and report average entropy (normalized by sentence
length) in Table 4.4. If each word was to select its head uni-
formly, this would result in a value of 28.7. However, we ob-
serve much lower values, indicating that our graphs are rela-
tively sparse.

4.6 related work

We discuss related work on inducing graphs in NMT and on
inducing trees on other tasks.

Hashimoto and Tsuruoka (2017b) induce latent graphs on the
source-side for English-Japanese NMT, optionally pre-training
the graphs using Penn treebank parses of Wall Street Journal



72 inducing latent structure

(a) En-Ja Emb (b) Ja-En Emb

(c) En-Ja CNN (d) Ja-En CNN

(e) En-Ja RNN (f) Ja-En RNN

Figure 4.5: Example latent graphs for English-Japanese.



4.6 related work 73

articles. The latent graphs are therefore semi-supervised, get-
ting supervision from the treebank but not from the translation
data. They report improvements over a vanilla encoder-decoder
with attention, especially in lower resource scenarios, of which
most improvement seems to be related to the pre-training of the
graphs. Since vocabularies are created on the word level, and
not the now more common sub-word/BPE level, some tricks
are used to deal with resulting large vocabulary sizes, such as
speeding up the softmax layer. These tricks and memory re-
quirements make it difficult to make a direct comparison. In
contrast, we induce the latent graphs stochastically instead of
deterministically, and investigate the conditions under which
this is successful with different kinds of encoders.

Tran and Bisk (2018) also induce relaxed graphs determinis-
tically on the source side. However, in contrast to Hashimoto
and Tsuruoka (2017b), they use structured attention (Kim et
al., 2017; Liu and Lapata, 2018) to obtain differentiable non-
projective trees to add a structural bias to the deterministically
induced dense graphs. In contrast, our graphs are sparse and
stochastic, and consist of independently sampled head distribu-
tions.

Both Hashimoto and Tsuruoka (2017b) and Tran and Bisk
(2018) induce graphs on top of LSTM-based sentence encodings
and attend directly to a transformation of the same encodings
and/or additional context vectors. In this chapter, instead, we
introduce a clear-cut separation that largely reduces the risk of
over-parameterization. Our stochastic induction also opens the
possibility to explore other sparsity induction priors (e.g. sym-
metric Dirichlet). In contrast to Hashimoto and Tsuruoka, we
also operate directly on sub-word sequences for En-Ja, elimi-
nating word-level dependency pre-training.

Currey and Heafield (2018b) introduce an unsupervised tree-
to-sequence model for NMT. They adapt the Gumbel Tree LSTM
of Choi et al. (2018), where (hard) decisions about the tree
structure of a sentence are learned using the Straight-through
Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017). A bi-
nary Tree LSTM (Le and Zuidema, 2015; Tai et al., 2015; Zhu et
al., 2015) is used to merge two children into a parent represen-
tation at every step. Since there is no supervision, each pair of
adjacent nodes is considered for merging, and only one of those
is selected by sampling. The process recurses until there is a
single root node, at which point the tree is done. This creates a
problem where it is unclear how to condition on the resulting



74 inducing latent structure

tree, just as in the supervised case of Eriguchi et al. (2016). They
solve this by propagating information from the root of the tree
back into the leaf nodes, which are then used by the decoder.
Their method results in improvements over recurrent baselines
for low resource language pairs, despite that the induced trees
do not resemble linguistic trees.

Apart from work on inducing trees and graphs with NMT as a
downstream loss, there has been lots of prior work on inducing
trees with other tasks as a downstream loss, mostly on natural
language inference (Bowman et al., 2015). All these methods
need to provide a solution to the problem of learning to make
discrete decisions about the tree structure.

Socher et al. (2011) were the first to both parse a sentence
and use the result for a downstream task. However the tree
structure was not induced, but supervised with an auxiliary
task. Bowman et al. (2016a) propose SPINN, which uses an
LSTM to learn a sequence of shift-reduce operations resulting
in a binary tree that is then encoded using a Tree LSTM. The
tree is given during training time, but can be predicted dur-
ing test time. Yogatama et al. (2017) use a similar model, but
without supervision. They learn the shift-reduce operations us-
ing REINFORCE (Williams, 1992) in a completely unsupervised
fashion. Maillard and Clark (2018) also model shift-reduce op-
erations, and induce sentence representations by learning a dif-
ferentiable composition function based on a Tree LSTM that
encodes the complete hypothesis space of a binary bracketing
chart parser. Choi et al. (2018) use a Straight-Through Gumbel
Softmax estimator to learn discrete decisions, and recursively
encode a sentence as described above in the context of NMT for
Currey and Heafield (2018b). They evaluate on SNLI and sen-
timent analysis, and find that the resulting models perform at
least as well as other models. Williams et al. (2018) reimplement
the REINFORCE-based and ST Gumbel-Softmax-based models
of Yogatama et al. (2017) and Choi et al. (2018) to compare them
within the same code base. They find that only the model of
Choi et al. (2018) outperforms a simple LSTM baseline on NLI,
that the resulting trees are not consistent across restarts, that
the parses tend to be shallower than treebank syntax, and that
they do not correspond to Penn Treebank-style parses. How-
ever, the learned trees can be as useful (for natural language
inference) as having access to predicted parses.

While the previous works mostly focused on NLI and sen-
timent classification, a few works focus on inducing structure



4.6 related work 75

using language modeling as a task. Shen et al. (2018) propose
Parsing-Reading-Predict Networks (PRPN), that learn to induce
structure while exploiting it to learn a better language model,
while using backpropagation to learn the parsing network. The
parsing network computes the ‘syntactic distance’ between all
successive words in a sentence, and then makes soft constituent
decisions based on that distance. The reading network com-
putes a memory vector relevant for the current time step, and
the predict network makes the next token prediction based on
all memory vectors syntactically and directly related to the next
token. The model not only achieves good language modeling
performance, its parses are also highly correlated to the con-
stituents in the Penn Treebank WSJ10 data set, the subset of the
Penn Treebank WSJ section that consists of sentences of length
10 or less. Htut et al. (2018) fix a few deficiencies in the ex-
perimental setup of Shen et al. (2018), but conclude that the
results hold and constitute a success in latent tree learning. Fi-
nally, Kim et al. (2019) propose a generative model called Unsu-
pervised Recurrent Neural Network Grammar. They use amor-
tized variational inference to deal with the problem of having
to marginalize over all possible latent trees. To provide a struc-
tural bias they use a neural CRF constituency parser as their
inference network. The model is as good as its supervised coun-
terpart on language modeling for English and Chinese, matches
the unsupervised constituency parsing performance of Shen et
al. (2018) on English, but does worse on Chinese.

linguistic structure . This chapter is also related to work
on exploiting linguistic structure in NMT without inducing it.
Section §3.7 gives an overview.

transformers . In this chapter we induced stochastic graphs
on the source side, which were then incorporated into an NMT
model using a GCN. It is worth noting the relation to Transform-
ers (see Section 2.1.3.2. In a transformer, deterministic graphs
(‘adjacency matrices’) are computed using self-attention. The rep-
resentation of a word (‘a node’) is then a weighted sum over all
representations, where the weight is the value in the adjacency
matrix. This can be seen as graph convolution over a dense
graph, taking the token representations as nodes. A difference
is that in Transformers multiple graphs are independently com-
puted, and the resulting node representations are concatenated
and fed through a feed-forward neural network. This process is



76 inducing latent structure

then repeated for multiple layers. Instead, we learned a single
stochastic graph, which we used to enhance word embedding,
CNN, and LSTM representations.

4.7 conclusion

In this chapter we presented a probabilistic model with sepa-
rate graph induction and translation components. We studied
if our induced latent graphs are beneficial using three differ-
ent encoders. In the case of LSTM encoders the induced graphs
turned out to be (largely) trivial, while for the simpler word
embedding and CNN encoders they contain useful, potentially
long-distance dependencies. One explanation for the trivial graphs
for the LSTM case is the relation to Transformers, where some
heads also show trivial connections, suggesting that structure
may be redundant if representations are already rich enough.



Part II

I N T E R P R E TA B I L I T Y

Even if deep neural networks give us higher accu-
racies on natural language processing tasks such as
sentiment analysis, they do not tell us how they ar-
rive at their predictions. In this part, we delve into
interpretable neural models, and we study how neu-
ral sequence-to-sequence models generalize: do they
generalize like we humans do?





5
I N T E R P R E TA B L E N E U R A L P R E D I C T I O N S

Can we trust the predictions that neural networks make? In this
chapter we focus on text classifiers and make them more inter-
pretable by having them provide a justification—a rationale—for
their predictions. We approach this problem by jointly training
two neural network models: a latent model that selects a ratio-
nale (i.e. a short and informative part of the input text), and a
classifier that learns from the words in the rationale alone. We
achieve interpretability by knowing which part of the input text
is used for prediction, and which part is not.

chapter highlights

Problem Statement

• Neural networks are good at making classifications, but
they do not provide a rationale for how they arrive at
their predictions.

• Current methods to jointly learn how to classify and pro-
vide a rationale rely on the REINFORCE estimator, which
can have high variance.

Research Question

• How can we make text classifiers provide rationales, with-
out resorting to the REINFORCE estimator?

• How can we control the properties, such as the length, of
the rationale?

Research Contributions

• We proposed the HardKuma distribution, which allows
backpropagation through sampled rationales using a stretch-
and-rectify technique.

• Our HardKuma-based rationales achieve better accuracies
than the REINFORCE-based ones.

79



80 interpretable neural predictions

5.1 introduction

Neural networks are bringing incredible performance gains on
text classification tasks (Devlin et al., 2019; Howard and Ruder,
2018; Peters et al., 2018). However, this power comes hand in
hand with a desire for more interpretability, even though its
definition may differ (Lipton, 2016). While it is useful to ob-
tain high classification accuracy, with more data available than
ever before it also becomes increasingly important to justify pre-
dictions. Imagine having to classify a large collection of docu-
ments, while verifying that the classifications make sense. It
would be extremely time-consuming to read each document to
evaluate the results, and doing so would only answer the ques-
tion of what predictions were made, not why they were made.
Importantly, if we do not know why a prediction was made, we
do not know if we can trust it (Molnar, 2019).

Doshi-Velez and Kim (2017) argue that the need for inter-
pretability arises from an incomplete problem definition: while
we might optimize for accuracy, we often also care about some-
thing else, such as safety, fairness, nondiscrimination, robust-
ness, trust, or providing the right to explanation. While each
of these is hard to quantify, if our model is interpretable, if it
can explain its predictions, then at least we have some means to
verify that it complies with these auxiliary criteria. Even though
there are cases where we do not care about interpretability, usu-
ally well-studied and well-performing ones such as optical char-
acter recognition (OCR), clearly in other cases interpretability is
essential, for example when a doctor needs to make a diagnosis
based on the predictions.

In this chapter we will focus on one specific definition of
interpretability that is specific to our application: What if the
model could provide us the most important parts of a docu-
ment, as a justification for its predictions?1 We use a setting that
was pioneered by Lei et al. (2016). A rationale is defined to be a
short yet sufficient part of the input text; short so that it makes
clear what is most important, and sufficient so that a correct
prediction can be made from the rationale alone. One neural
network learns to extract the rationale, while another neural
network, with separate parameters, learns to make a prediction
from just the rationale. Figure 5.1 shows these two neural net-
works. Lei et al. model the rationale extraction by assigning

1 We discuss other approaches to interpretability in §5.8, as well as how our
approach fits into a taxonomy of such approaches.



5.2 latent rationale 81

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the
carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Rationale Extractor

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the
carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Classifier

look: FFFF

Figure 5.1: Rationale extraction for a beer review.

a binary Bernoulli variable to each input word. The rationale
then consists of all the words for which a 1 was sampled. Be-
cause gradients do not flow through discrete samples, the ratio-
nale extractor is optimized using REINFORCE (Williams, 1992).
Penalties on the number of selected words and transitions make
sure the rationales are short and coherent.

In §5.2 we propose an alternative to purely discrete selectors
for which gradient estimation is possible without REINFORCE.
Instead, we rely on the reparameterization of a random vari-
able that exhibits both continuous and discrete behavior using
a stretch-and-rectify technique (Louizos et al., 2018). In §5.3 we
use this technique to construct a new distribution, the Hard Ku-
maraswamy, HardKuma for short. To promote short rationales,
in §5.4 we employ a relaxed form of L0 regularization (Louizos
et al., 2018), penalizing the objective as a function of the ex-
pected proportion of selected text. We also propose the use of
Lagrangian relaxation in §5.5 to target a specific text selection
rate. In §5.6 we provide a model for text classification, which
we use in our experiments in §5.7. We discuss related work in
§5.8 and conclude in §5.9.



82 interpretable neural predictions

5.2 latent rationale

We would like to make neural text classifiers interpretable by (i)
uncovering which parts of the input text contribute features for
classification, and (ii) making decisions based on just a fraction
of the input text (a rationale). Figure 5.1 illustrates our setup.
Lei et al. (2016) approach (i) by inducing binary latent selectors
that control which input positions are available to a neural net-
work that learns features for classification/regression, and (ii)
by regularizing their models using sparsity-inducing penalties
on latent assignments. In this section we take a probabilistic
view of their approach, which will then more naturally lead to
the method that we propose in this chapter.

In text classification, an input sequence x = 〈x1, . . . , xn〉 is
mapped to a distribution over target labels:

Y | x ∼ Categorical
(
f(x; θ)

)
, (5.1)

where a neural network f(·; θ) parameterizes the distribution,
with θ denoting the parameters of the neural network layers
of f. In other words, neural network maps from data space
(e.g. sentences, short paragraphs, or premise-hypothesis pairs)
to the categorical parameter space (i.e. a vector of class proba-
bilities). A target y is typically a categorical outcome, such as
a sentiment class or an entailment decision, but with an appro-
priate choice of likelihood it could also be a numerical score
(continuous or integer).2

Lei et al. (2016) augment this model with a collection of latent
variables which we denote by z = 〈z1, . . . , zn〉. These variables
are responsible for regulating which portions of the input x
contribute with predictors (i.e. features) to the classifier. The
model formulation changes as follows:

Zi | x ∼ Bernoulli
(
gi(x;φ)

)
for i = 1, . . . , |x|

Y | x, z ∼ Categorical
(
f(x� z; θ)

) (5.2)

where a neural network g(·;φ) predicts a sequence of n Bernoulli
parameters, one per latent variable, and the classifier is modi-
fied so that zi indicates whether or not xi is available for encod-
ing. We can think of the sequence z as a binary gating mecha-
nism used to select a rationale, which we denote by x� z.3

2 E.g., Gaussian for regression, Poisson for ordinal regression.
3 We use an element-wise product (also known as Hadamard product) here

to select those xi for which zi is nonzero.



5.3 hard kumaraswamy distribution 83

We estimate the parameters of this model by maximizing a
lower bound E(φ, θ) on the log-likelihood of the data derived
by application of Jensen’s inequality:4

logP(y | x) = log EP(z|x,φ) [P(y | x, z, θ)]
JI
> EP(z|x,φ) [logP(y | x, z, θ)] = E(φ, θ) .

(5.3)

These latent rationales approach the first objective, namely,
uncovering which parts of the input text contribute features
for a decision. However, mind that a neural network controls
the Bernoulli parameters, and nothing prevents it from select-
ing the entire input sequence, thus defaulting to a standard text
classifier. Therefore, to promote short rationales, Lei et al. (2016)
impose sparsity-inducing penalties on latent selectors. They pe-
nalize for the total number of selected words, L0 in (5.4), as
well as for the total number of transitions, fused lasso in (5.4),
and approach the following optimization problem

min
φ,θ

−E(φ, θ) + E
[
λ0L0(z) + λ1Lasso(z)

]
(5.4)

via gradient-based optimization, where λ0 and λ1 are small
fixed hyper-parameters. This objective is intractable, and the
lowerbound in particular requires marginalization of O(2n) bi-
nary sequences. For that reason, Lei et al. sample latent assign-
ments and work with gradient estimates using REINFORCE
(Williams, 1992).

To summarize: the key ingredients are binary latent variables
and sparsity-inducing regularization, both resulting in non-dif-
ferentiability. In this chapter we propose to replace the Bernoulli
variables by rectified continuous random variables (Socci et al.,
1998), as they exhibit both discrete and continuous behavior.
They also allow for using the reparameterization trick (Kingma
and Welling, 2014), so gradient estimation is possible without
REINFORCE. Following Louizos et al. (2018), we construct one
such variable and relax L0 regularization so as to promote short
rationales with a differentiable objective. In §5.3 we introduce
this distribution, and in §5.4 we employ a Lagrangian relax-
ation to target a pre-specified text selection rate. Finally, in §5.6
we present an example for sentiment classification.



84 interpretable neural predictions

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
Kuma(0.5, 0.5)
StretchedKuma(0.5, 0.5, 0.1, 1.1)
HardKuma(0.5, 0.5, 0.1, 1.1)

Figure 5.2: The HardKuma distribution: we start from a
Kuma(0.5, 0.5), and stretch its support to the inter-
val (−0.1, 1.1), finally we collapse all mass before 0 to {0}

and all mass after 1 to {1}.

5.3 hard kumaraswamy distribution

In this section we introduce a novel distribution that exhibits
both continuous and discrete behavior, and is an essential part
of our model. With non-negligible probability, samples from
this distribution evaluate to exactly 0 or exactly 1. We construct
our distribution in three steps:

1. we start from a distribution over the open interval (0, 1)
(see dotted curve in Figure 5.2);

2. we stretch its support from l < 0 to r > 1 in order to
include {0} and {1} (see dashed curve in Figure 5.2);

3. we collapse the probability mass over the interval (l, 0]
(left shaded area) to {0}, and similarly, the probability mass
over the interval [1, r) (right shaded area) to {1} (see solid
curve and bars in Figure 5.2).

This stretch-and-rectify technique was proposed by Louizos et
al. (2018), who rectified samples from the BinaryConcrete (or

4 This can be seen as variational inference (Jordan et al., 1999) where we per-
form approximate inference using a data-dependent prior P(z | x,φ).



5.3 hard kumaraswamy distribution 85

GumbelSoftmax) distribution (Jang et al., 2017; Maddison et
al., 2017). Here we adapt their technique to the Kumaraswamy
distribution motivated by its close resemblance to a Beta distri-
bution, for which we have stronger intuitions. For example, its
two shape parameters transit rather naturally from unimodal
to bimodal configurations of the distribution. In the following,
we introduce our new distribution formally.5

5.3.1 Kumaraswamy distribution

The Kumaraswamy distribution (Kumaraswamy, 1980) is a two-
parameters distribution over the open interval (0, 1). We denote
a Kumaraswamy-distributed variable by K ∼ Kuma(a,b), with
a ∈ R>0 and b ∈ R>0 controlling the shape of the distribu-
tion. The dotted curve in Figure 5.2 illustrates the density of
Kuma(0.5, 0.5). Appendix A.1 provides more details, including
the pdf and cdf of the Kumaraswamy.

The Kumaraswamy is a close relative of the Beta distribu-
tion, though not itself an exponential family, with a simple cdf
whose inverse

F−1K (u;a,b) =
(
1− (1− u)

1/b
)1/a

, (5.5)

for u ∈ [0, 1], can be used to obtain samples

F−1K (U;α,β) ∼ Kuma(α,β) (5.6)

by transformation of a uniform random source U ∼ U(0, 1). We
can use this fact to reparameterize expectations (Nalisnick and
Smyth, 2016):

EK [ψ(k)] = EU(0,1)

[
ψ(F−1K (u;α,β))

]
. (5.7)

where ψ is a function making use of the Kuma variable.

5.3.2 Rectified Kumaraswamy

We stretch the support of the Kumaraswamy distribution to
include 0 and 1. The resulting variable T ∼ Kuma(a,b, l, r) takes

5 We use uppercase letters for random variables (e.g. K, T , and H) and low-
ercase for assignments (e.g. k, t, h). For a random variable K, fK(k;α) is
the probability density function (pdf), conditioned on parameters α, and
FK(k;α) is the cumulative distribution function (cdf).



86 interpretable neural predictions

on values in the open interval (l, r) where l < 0 and r > 1, with
cdf

FT (t;a,b, l, r) = FK((t− l)/(r− l);a,b) . (5.8)

We now define a rectified random variable, denoted by H ∼

HardKuma(a,b, l, r), by passing a sample T ∼ Kuma(a,b, l, r)
through a hard-sigmoid, i.e. h = min(1, max(0, t)). The result-
ing variable is defined over the closed interval [0, 1]. Although
there is 0 probability of sampling t = 0, sampling h = 0 cor-
responds to sampling any t ∈ (l, 0], a set whose mass under
Kuma(t|a,b, l, r) is available in closed form:

P(H = 0) = FK
(
−l
r−l ;a,b

)
. (5.9)

That is because all negative values of t are deterministically
mapped to zero. Similarly, samples t ∈ [1, r) are all determinis-
tically mapped to h = 1, whose total mass amounts to

P(H = 1) = 1− FK
(
1−l
r−l ;a,b

)
. (5.10)

See Figure 5.2 for an illustration. Appendix A.1 provides the
complete derivations.

5.3.3 Reparameterization and gradients

reparameterization. Because we built our rectified vari-
able on a Kumaraswamy, we can use the reparameterization
trick, and construct it by transforming random noise from a
uniform variable U ∼ U(0, 1). First we sample from U, then
transform the result into a Kumaraswamy variable via the in-
verse cdf (5.11a), then shift and scale the result to cover the
stretched support (5.11b), and finally, we apply a rectifier in
order to get a sample in the closed interval [0, 1] (5.11c).

k = F−1K (u;a,b) (5.11a)
t = l+ (r− l)k (5.11b)
h = min(1, max(0, t)) , (5.11c)

We denote this h = s(u;a,b, l, r) for short.

gradients . The transformation has two discontinuity points,
namely, t = 0 and t = 1. The probability of sampling t = 0 or
t = 1 is zero however, so these points are not a problem for dif-
ferentiability. We can consider the case where we need deriva-
tives of a function L(u) of the underlying uniform variable u,



5.4 controlled sparsity 87

as when we compute reparameterized gradients in variational
inference. Using the chain rule we can write:

∂L

∂u
=
∂L

∂h
× ∂h
∂t
× ∂t
∂k
× ∂k
∂u

, (5.12)

The term ∂L
∂h depends on a differentiable observation model and

poses no challenge; the term ∂h
∂t is the derivative of the hard-

sigmoid function, which is 0 for t < 0 or t > 1, 1 for 0 < t < 1,
and undefined for t ∈ {0, 1}; the term ∂t

∂k = r− l follows directly
from (A.4, left); the term ∂k

∂u = ∂
∂uF

−1
K (u;a,b) depends on the

Kumaraswamy inverse cdf (A.3) and also poses no challenge.
Thus the only two discontinuities happen for t ∈ {0, 1}, which is
a 0 measure set under the stretched Kumaraswamy: we say this
reparameterization is differentiable almost everywhere, a useful
property which essentially circumvents the non-differentiable
points of the rectifier.

5.4 controlled sparsity

Following Louizos et al. (2018), we relax the non-differentiable
penalties by computing them on expectation under our latent
model p(z | x,φ). Thanks to the tractable Kumaraswamy cdf,
the expected value of L0(z) is known in closed form

Ep(z|x) [L0(z)]
ind
=

n∑
i=1

Ep(zi|x) [I[zi 6= 0]]

=

n∑
i=1

1− P(Zi = 0) ,

(5.13)

where P(Zi = 0) = FK
(
−l
r−l ;ai,bi

)
. This quantity is a tractable

and differentiable function of the parameters φ of the latent
model. We can also compute a relaxation of fused lasso by com-
puting the expected number of zero-to-nonzero and nonzero-
to-zero changes:

Ep(z|x)

[
n−1∑
i=1

I[zi=0, zi+16=0]

]
+Ep(z|x)

[
n−1∑
i=1

I[zi6=0, zi+1=0]

]
ind
=

n−1∑
i=1

P(Zi=0)(1− P(Zi+1=0)) + (1− P(Zi=0))P(Zi+1=0)

(5.14)



88 interpretable neural predictions

In both cases, we make use of the assumption that latent vari-
ables are independent given x. In Appendix A.2.1.2 we dis-
cuss how to estimate the regularizers for a model p(zi | x, z<i)
that conditions on the prefix z<i of sampled HardKuma assign-
ments.

5.5 lagrangian relaxation

We can use the regularizers to promote sparsity, but just how
much text will our final model select? Ideally, we target specific
values r and solve a constrained optimization problem. In prac-
tice, constrained optimization is very challenging. Since we de-
rived differentiable sparsity-inducing regularizers, we employ
Lagrangian relaxation instead (Boyd et al., 2004), and approach
an unconstrained problem:

max
λ∈R+

min
φ,θ

−E(φ, θ) + λ>(R(φ) − r) (5.15)

where R(φ) is a vector of regularizers, e.g. expected L0 and ex-
pected fused lasso, and λ is a vector of Lagrangian multipliers
λ. During training we update λ according to the update scheme
used in Rezende and Viola (2018). Note how this approach dif-
fers from the treatment of Lei et al. (2016) shown in (5.4) where
regularizers are computed for assignments, rather than on ex-
pectation, and where λ0, λ1 are fixed hyper-parameters.

5.6 sentiment classification

As a concrete example, consider the case of sentiment classifi-
cation where x is a sentence and y is a 5-way sentiment class
(from very negative to very positive). The model consists of

Zi ∼ HardKuma(ai,bi, l, r) for i = 1, . . . , |x|
Y | x, z ∼ Categorical(f(x� z; θ))

(5.16)

where the shape parameters a,b = g(x;φ), i.e. two sequences
of n strictly positive scalars, are predicted by a neural net, and
the support boundaries (l, r) are fixed hyper-parameters.



5.6 sentiment classification 89

We first specify an architecture that parameterizes latent se-
lectors and then use a reparameterized sample to restrict which
parts of the input contribute encodings for classification:6

ei = emb(xi)
hn1 = birnn(en1 ;φr)
ui ∼ U(0, 1)

ai = fa(hi;φa)
bi = fb(hi;φb)
zi = s(ui;ai,bi, l, r)

(5.17)

where emb(·) is an embedding layer, birnn(·;φr) is a bidirec-
tional encoder, fa(·;φa) and fb(·;φb) are feed-forward trans-
formations with softplus outputs, and s(·) turns the uniform
sample ui into the latent selector zi (see §5.3). We then use the
sampled z to modulate inputs to the classifier:

ei = emb(xi)

h(fwd)
i = rnn(h(fwd)

i−1 , zi ei; θfwd)

h(bwd)
i = rnn(h(bwd)

i+1 , zi ei; θbwd)

o = fo(h
(fwd)
n , h(bwd)

1 ; θo)

(5.18)

where rnn(·; θfwd) and rnn(·; θbwd) are recurrent cells such as
LSTMs (Hochreiter and Schmidhuber, 1997) that process the
sequence in different directions, and fo(·; θo) is a feed-forward
transformation with softmax output. Note how zi modulates
features ei of the input xi that are available to the recurrent
composition function.

We then obtain gradient estimates of E(φ, θ) via Monte Carlo
(MC) sampling from

E(φ, θ) = EU(0,I)
[
logP(y|x, sφ(u, x), θ)

]
(5.19)

where z = sφ(u, x) is a shorthand for element-wise application
of the transformation from uniform samples to HardKuma sam-
ples. This reparameterization is the key to gradient estimation
through stochastic computation graphs (Kingma and Welling,
2014; Rezende et al., 2014).

deterministic predictions . At test time we make pre-
dictions based on what is the most likely assignment for each
zi. We arg max across configurations of the distribution, namely,
zi = 0, zi = 1, or 0 < zi < 1. When the continuous interval is
more likely, we take the expected value of the underlying Ku-
maraswamy variable.

6 We describe architectures using blocks denoted by
layer(inputs; subset of parameters), boldface letters for vectors, and
the shorthand vn1 for a sequence 〈v1, . . . , vn〉.



90 interpretable neural predictions

SVM (Lei et al., 2016) 0.0154

BiLSTM (Lei et al., 2016) 0.0094

BiRCNN (Lei et al., 2016) 0.0087

BiLSTM 0.0089

BiRCNN 0.0088

Table 5.1: MSE on the BeerAdvocate test set.

5.7 experiments

We perform experiments on multi-aspect sentiment analysis to
compare with previous work, as well as experiments on senti-
ment classification and natural language inference. All models
were implemented in PyTorch7. Appendix A.2 provides imple-
mentation details.

goal . When rationalizing predictions, our goal is to perform
as well as systems using the full input text, while using only
a subset of the input text, leaving unnecessary words out for
interpretability. Since the classifier only sees the rationales, and
can learn only from those and not the full input text, it is a
challenge (but not impossible) to do as well as the full-text case.

5.7.1 Multi-aspect Sentiment Analysis

In our first experiment we compare directly with previous work
on rationalizing predictions (Lei et al., 2016). We replicate their
setting for multi-aspect sentiment analysis.

data . A pre-processed subset of the BeerAdvocate8 data set
is used (McAuley et al., 2012). It consists of 220,000 beer reviews,
where multiple aspects (e.g. look, smell, taste) are rated. As
shown in Figure 5.1, a review typically consists of multiple sen-
tences, and contains a 0-5 star rating (e.g. 3.5 stars) for each
aspect. Lei et al. mapped the ratings to scalars in [0, 1].

model . We use the models described in §5.6 with two small
modifications: 1) since this is a regression task, we use a sig-

7 https://pytorch.org/
8 https://www.beeradvocate.com/

https://pytorch.org/
https://www.beeradvocate.com/


5.7 experiments 91

moid activation in the output layer of the classifier rather than
a softmax,9 and 2) we use an extra RNN to condition zi on z<i:

ai = fa(hi, si−1;φa) (5.20a)
bi = fb(hi, si−1;φb) (5.20b)
si = rnn(hi, zi, si−1;φs) (5.20c)

For a fair comparison we follow Lei et al. by using RCNN10

cells rather than LSTM cells for encoding sentences on this task.
Since this cell is not widely used, we verified its performance in
Table 5.1. We observe that the BiRCNN performs on par with
the BiLSTM (while using 50% fewer parameters), and similarly
to previous results.

evaluation. A test set with sentence-level rationale anno-
tations is available. The precision of a rationale is defined as the
percentage of words with z 6= 0 that is part of the annotation.
We also evaluate the predictions made from the rationale using
Mean Squared Error (MSE).

baselines . For our baseline we reimplemented the approach
of Lei et al. (2016) which we call Bernoulli after the distribution
they use to sample z from. We also report their attention base-
line, in which an attention score is computed for each word,
after which it is simply thresholded to select the top-k percent
as the rationale.

results . Table 5.2 shows the precision and the percentage
of selected words for the first three aspects. The models here
have been selected based on validation MSE and were tuned to
select a similar percentage of words (‘Sel.’). We observe that our
Bernoulli reimplementation reaches a precision (’Prec.’) similar
to previous work, doing a little bit worse for the ‘look’ aspect.
Our HardKuma managed to get even higher precision, and it
extracted exactly the percentage of text that we specified (see
§5.5).11 Figure 5.3 shows the MSE for all aspects for various
percentages of extracted text. We observe that HardKuma does

9 From a likelihood learning point of view, we would have assumed a Logit-
Normal likelihood, however, to stay closer to Lei et al. (2016), we employ
mean squared error.

10 An RCNN cell can replace any LSTM cell and works well on text classifica-
tion problems. See appendix A.2.

11 We tried to use Lagrangian relaxation for the Bernoulli model, but this led
to instabilities (e.g. all words selected).



92 interpretable neural predictions

Method
Look Smell Taste

Prec. Sel. Prec. Sel. Prec. Sel.

Attention (Lei et al.) 80.6 13 88.4 7 65.3 7

Bernoulli (Lei et al.) 96.3 14 95.1 7 80.2 7

Bernoulli (reimpl.) 94.8 13 95.1 7 80.5 7

HardKuma 98.1 13 96.8 7 89.8 7

Table 5.2: Precision (% of selected words that was also annotated as
the gold rationale) and selected (% of words not zeroed
out) per aspect. In the attention baseline, the top 13% (7%)
of words with highest attention weights are used for classi-
fication. Models were selected based on validation loss.

better with a smaller percentage of text selected. The perfor-
mance becomes more similar as more text is selected.

5.7.2 Sentiment Classification

We also experiment on the Stanford Sentiment Treebank (SST)
(Socher et al., 2013). There are 5 sentiment classes: very neg-
ative, negative, neutral, positive, and very positive. Here we
use the HardKuma model described in §5.6, a Bernoulli model
trained with REINFORCE, as well as a BiLSTM.

results . Figure 5.4a shows the classification accuracy for
various percentages of selected text. We observe that HardKuma
outperforms the Bernoulli model at each percentage of selected
text. HardKuma reaches full-text baseline performance already
around 40% extracted text. At that point, it obtains a test score
of 45.84, versus 42.22 for Bernoulli and 47.4±0.8 for the full-text
baseline.

analysis . We wonder what kind of words are dropped when
we select smaller amounts of text. For this analysis we exploit
the word-level sentiment annotations in SST, which allows us to
track the sentiment of words in the rationale. Figure 5.4b shows
that a large portion of dropped words have neutral sentiment,
and it seems plausible that exactly those words are not im-
portant features for classification. We also see that HardKuma
drops (relatively) more neutral words than Bernoulli.



5.7 experiments 93

0% 20% 40% 60% 80% 100%
Selected Text

0.008

0.009

0.010

0.011

0.012

0.013

M
SE

Figure 5.3: MSE of all aspects for various percentages of extracted text.
HardKuma (blue crosses) has lower error than Bernoulli
(red circles; open circles taken from Lei et al. (2016)) for
similar amount of extracted text. The full-text baseline
(black star/dashed line) gets the best MSE.

5.7.3 Natural Language Inference

In Natural language inference (NLI), given a premise sentence
x(p) and a hypothesis sentence x(h), the goal is to predict their
relation y which can be contradiction, entailment, or neutral.
As our dataset we use the Stanford Natural Language Inference
(SNLI) corpus (Bowman et al., 2015).

baseline . We use the Decomposable Attention model (DA)
of Parikh et al. (2016).12 DA does not make use of LSTMs, but
rather uses attention to find connections between the premise
and the hypothesis that are predictive of the relation. Each
word in the premise attends to each word in the hypothesis,
and vice versa, resulting in a set of comparison vectors which
are then aggregated for a final prediction. If there is no link
between a word pair, it is not considered for prediction.

model . Because the premise and hypothesis interact, it does
not make sense to extract a rationale for the premise and hy-
pothesis independently. Instead, we replace the attention be-
tween premise and hypothesis with HardKuma attention. While
in the baseline a similarity matrix is softmax-normalized across

12 Better results e.g. Chen et al. (2017) and data sets for NLI exist, but are not
the focus of this paper.



94 interpretable neural predictions

0% 20% 40% 60% 80% 100%
Selected Text

30%

35%

40%

45%

50%

A
cc

ur
ac

y

(a) SST validation accuracy for various percentages of extracted text. Hard-
Kuma (blue crosses) has higher accuracy than Bernoulli (red circles) for
similar amount of text, and reaches the full-text baseline (black star/-
dashed line, 46.3± 2σ with σ = 0.7) around 40% text.

ve
ry 

ne
ga

tiv
e

ne
ga

tiv
e

ne
utr

al

po
sit

ive

ve
ry 

po
sit

ive

14
6

99
2

18
23

1

15
11

39
4

11
9

60
3 33

78

80
3

26
4

11
2

48
9

38
06

79
5

29
9

Total
HardKuma
Bernoulli

(b) The number of words in each sentiment class for the full validation set,
the HardKuma (24% selected text) and Bernoulli (25% text).

Figure 5.4: SST results.



5.7 experiments 95

Model Dev Test

LSTM (Bowman et al., 2016a) – 80.6
DA (Parikh et al., 2016) – 86.3

DA (reimplementation) 86.9 86.5
DA with HardKuma attention 86.0 85.5

Table 5.3: SNLI results (accuracy).

rows (premise to hypothesis) and columns (hypothesis to premise)
to produce attention matrices, in our model each cell in the at-
tention matrix is sampled from a HardKuma parameterized by
(a,b). To promote sparsity, we use the relaxed L0 to specify
the desired percentage of non-zero attention cells. The result-
ing matrix does not need further normalization.

results . With a target rate of 10%, the HardKuma model
achieved 8.5% non-zero attention. Table 5.3 shows that, even
with so many zeros in the attention matrices, it only does about
1% worse compared to the DA baseline. Figure 5.5 shows an
example of HardKuma attention, with additional examples in
Appendix A.2. We leave further explorations with HardKuma
attention for future work.

<s
>

T
he

m
an

is w
al

ki
ng

hi
s

ca
t

.

<s>

Young

man

walking

dog

 0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0

 0  0 77 21  0  0  0  0

 0  0  0  0 88  0  0  0

 0  0  0  0  0  0 86  0

Figure 5.5: Example of HardKuma attention between a premise
(rows) and hypothesis (columns) in SNLI (cell values
shown in multiples of 10−2).



96 interpretable neural predictions

5.8 related work

This chapter has connections with work on interpretability, learn-
ing from rationales, sparse structures, and rectified distribu-
tions. We discuss each of those areas.

5.8.1 Interpretability

Machine learning research has been focusing more and more on
interpretability (Gilpin et al., 2018). However, there are many
nuances to it (Lipton, 2016), such as different definitions and
ways of evaluating when it is achieved. After defining a taxon-
omy of interpretability methods, we place our work in the con-
text of the most relevant other approaches, in particular those
that are applicable to text.

taxonomy. We can make a taxonomy of approaches to in-
terpretability according to the following criteria (Molnar, 2019):

• Intrinsic/Post-hoc: is the method intrinsically interpretable,
or do we try to interpret a model after it has been trained?

• Result of the method: what does the method produce?
E.g. feature importance values, learned weights, an inter-
pretable approximation, or data points.

• Model specific/model agnostic? Can the method be ap-
plied to any machine learning model, or only to a specific
subset?

• Local/Global: does the method explain one single predic-
tion, or does it globally explain the model?

We could say that our method, as well as Lei et al. (2016), is
intrinsically interpretable, since the model learns to provide ratio-
nales during training, even though neural networks themselves
are not intrinsically interpretable. The result is highlighted text,
or per-word feature importance, for each document. The method
is model specific, since we built it for text classification, although
it could be applied to other tasks. Finally, our method high-
lights what is important for individual examples (the rationale),
so in that sense it provides local explanations. Note, however,
that the mechanism to provide rationales was trained globally
on the whole dataset, and unlike LIME (see below) was not
approximated to explain just this single example.



5.8 related work 97

We will now describe other methods for interpretability along
the first axis: intrinsic or post-hoc.

intrinsically interpretable models . One strategy is
to extract a simpler, interpretable model from a neural network,
though this comes at the cost of performance. Popular options
are linear and logistic regression, decision rules, and decision
trees. For example, Thrun (1995) extract if-then rules from an-
other model, while Craven and Shavlik (1996) extract decision
trees. Note however that, while it is clear how a decision tree
arrives at a decision, if it contains a large amount of nodes its in-
terpretability can be questioned. Friedman and Popescu (2008)
proposed RuleFit, which learns an interpretable model that, un-
like linear models, also detects feature interactions.

post-hoc explanations . Another strategy is to try and
interpret an already trained model, in contrast to Lei et al. (2016)
and our approach where the rationale is jointly modeled in the
original model. The advantage of such an approach is that we
can use lots of already trained models, or can focus on training
one to the highest performance, and then worry about inter-
pretability afterwards. Ribeiro et al. (2016) make any classifier
interpretable by approximating it locally with a linear proxy
model in an approach called LIME. LIME works by (1) perturb-
ing the input text by randomly dropping (or masking) input
words, (2) passing these perturbations through the model to
get predictions, and (3) fitting a linear model to the set of per-
turbations and predicted labels. The coefficients of the linear
model are now used as feature importance and serve as the
explanation. LIME relies on a few hyper-parameters, such as
kernel width, and while its advantage is that it can explain any
black-box model, its disadvantages are that setting the hyper-
parameters differently might result in different explanations,
and that it is relatively expensive to generate explanations, be-
cause many (by default, 5000) perturbations need to be passed
through the model. The fact that (the original version of) LIME
drops input words, breaking sentence structure, led to another
method called LIMSSE (Poerner et al., 2018). In contrast to
LIME, LIMSSE generates perturbations by sampling n-grams
(of size 1-6) from the original input, which at least keep struc-
ture intact locally, but can still result in unnatural inputs. Alvarez-
Melis and Jaakkola (2017) propose a framework that returns
input-output pairs that are causally related, and similar to LIME



98 interpretable neural predictions

they achieve this by perturbing inputs, albeit in a more sophis-
ticated way by sampling from a variational auto-encoder (Bow-
man et al., 2016b). In contrast to LIME, their result is not a
simpler local approximation, but a summary of operation. The
above methods are related to Li et al. (2016a), who investigated
how representation erasure (e.g., removing a word type from
the test set) influences the predictions. Removing a word type
from the test set throughout results in a more global impor-
tance score for that word, rather than one that approximates its
importance on a single example.

Shapley values, originally from Shapley (1953) and used for
explanation by Štrumbelj and Kononenko (2014), are a method
from game theory that allow us to fairly (i.e., taking into ac-
count coalitions of features) distribute the prediction among
the input features, resulting in feature importance scores. Lund-
berg and Lee (2017) combine LIME and Shapley values in a
method called SHapley Additive exPlanations (SHAP). They
also compute Shapley values for a single data example, but
the result of the method is a linear model explaining that ex-
ample just like LIME. The example perturbations are weighted
by a SHAP kernel, and performing linear regression with that
kernel results in Shapley values.

5.8.2 Learning from rationales

Our work is different from approaches that aim to improve clas-
sification using rationales as an additional input (Zaidan and
Eisner, 2008; Zaidan et al., 2007; Zhang et al., 2016). Instead,
our rationales are latent and we are interested in uncovering
them. We only use annotated rationales for evaluation.

5.8.3 Sparse Representations

There is also work on making word vectors more interpretable.
Faruqui et al. (2015) make word vectors more sparse, and Her-
belot and Vecchi (2015) learn to map distributional word vec-
tors to model-theoretic semantic vectors.

5.8.4 Opinion summarization

Similarly to Lei et al. (2016), Titov and McDonald (2008) extract
informative fragments of text by jointly training a classifier and



5.8 related work 99

a model predicting a stochastic mask, while relying on Gibbs
sampling to do so. Their focus is on using the sentiment labels
as a weak supervision signal for opinion summarization rather
than on rationalizing classifier predictions.

5.8.5 Sparse layers

Also arguing for enhanced interpretability, Niculae and Blon-
del (2017) propose a framework for learning sparsely activated
attention layers based on smoothing the max operator. They
derive a number of relaxations to max, including softmax it-
self, but in particular, they target relaxations such as sparsemax
(Martins and Astudillo, 2016) which, unlike softmax, are sparse
(i.e. produce vectors of probability values with components that
evaluate to exactly 0). Their activation functions are themselves
solutions to convex optimization problems, to which they pro-
vide efficient forward and backward passes. The technique can
be seen as a deterministic sparsely activated layer which they
use as a drop-in replacement to standard attention mechanisms.
In contrast, in this paper we focus on binary outcomes rather
than K-valued ones. Niculae et al. (2018) extend the framework
to structured discrete spaces where they learn sparse parame-
terizations of discrete latent models. In this context, parameter
estimation requires exact marginalization of discrete variables
or gradient estimation via REINFORCE. They show that distri-
butions are often sparse enough for exact marginal inference.

Peng et al. (2018) propose SPIGOT, a proxy gradient to the
non-differentiable arg max operator. This proxy requires an arg max
solver (e.g. Viterbi for structured prediction) and, like the straight-
through estimator (Bengio et al., 2013), is a biased estimator.
Though, unlike ST it is efficient for structured variables. In con-
trast, in this work we chose to focus on unbiased estimators.

5.8.6 Rectified Distributions.

The idea of rectified distributions has been around for some
time. The rectified Gaussian distribution (Socci et al., 1998), in
particular, has found applications to factor analysis (Harva and
Kaban, 2005) and approximate inference in graphical models
(Winn and Bishop, 2005). Louizos et al. (2018) propose to stretch
and rectify samples from the BinaryConcrete (or GumbelSoft-
max) distribution (Jang et al., 2017; Maddison et al., 2017). They
use rectified variables to induce sparsity in parameter space via



100 interpretable neural predictions

a relaxation to L0. We adapt their technique to promote sparse
activations instead. Rolfe (2017) learns a relaxation of a discrete
random variable based on a tractable mixture of a point mass at
zero and a continuous reparameterizable density, thus enabling
reparameterized sampling from the half-closed interval [0,∞).
In contrast, with HardKuma we focused on giving support to
both 0s and 1s.

5.8.7 Rationalizing Predictions

In this chapter we used the framework of Lei et al. (2016) where
one component generates a (binary) mask over the inputs (the
rationale), and the other component learns to predict by seeing
only the input features (tokens) not masked out. The result of
methods like ours and Lei et al. are models that are transparent
about the input features that they use, rendering them more
interpretable. In a follow-up work, Yu et al. (2019) view this
setup as a cooperative game between the two components, and
make the component that generates the mask sensitive to the
prediction outcome, and use an adversary to make sure useful
information is not left out of the rationale. However, they do
not compare to our work.

Very recently, a new benchmark ERASER was proposed by
DeYoung et al. (2019) that can be used to evaluate rationales
from models like ours. It is in line with a recent call by Jacovi
and Goldberg (2020) for a more nuanced evaluation of expla-
nations, and faithfulness in particular. ERASER can be used
to evaluate both ‘plausibility’ (computing the overlap with hu-
man annotations) and ‘faithfulness’ (how much the rationale
influences the prediction). Faithfulness is split into comprehen-
siveness (i.e., were all features that are required for a prediction
part of the rationale?), and sufficiency (i.e., is there enough sig-
nal in the rationale to obtain a prediction?).

5.9 conclusions

In this chapter we presented a differentiable approach to extrac-
tive rationales, including an objective that allows for specifying
how much text is to be extracted. To allow for reparameterized
gradient estimates and support for binary outcomes we intro-
duced the HardKuma distribution. Apart from extracting ratio-
nales, we showed that HardKuma has further potential future



5.9 conclusions 101

uses, which we demonstrated on premise-hypothesis attention
in SNLI.

One advantage of our approach, and that of Lei et al. (2016),
is that the provided rationales are designed to be faithful and
trained to be as sufficient as possible given the constraints (e.g.,
how much text is to be selected). However, it must be noted
that there is a possibility that the rationale extractor module
can make decisions in its own. For example, it could commu-
nicate to the generator by always leaving out a certain word
for a certain class. While we did not observe this behavior, it is
difficult to rule out.

Very recently the ERASER benchmark (DeYoung et al., 2019)
was proposed. It will be interesting to evaluate approaches like
ours more thoroughly, and to investigate the relation between
the constraints (e.g., percentage of selected text) and measures
such as sufficiency and comprehensiveness.





6
T E S T I N G F O R S T R O N G G E N E R A L I Z AT I O N

If you were told what to dax means, then could you dax twice?
Chances are that you could, for example if to dax means doing
a crazy dance. We – humans – can generalize patterns after see-
ing only a few examples. We know what it means to do some-
thing twice. It is not at all given that neural networks share this
generalization capability; they tend to require lots of training
examples to learn. In this chapter we study how the generaliza-
tion capabilities of neural networks can be tested.

chapter highlights

Problem Statement

• Lake and Baroni (2018) proposed SCAN to test strong gen-
eralization of neural networks, but it is not clear if doing
well on SCAN implies strong generalization.

Research Question

• Can we replicate and corroborate the results by Lake and
Baroni (2018) using attention and early stopping?

• Is SCAN a good enough test for strong generalization in
neural sequence-to-sequence models, and if not, how do
we improve it?

Research Contributions

• We found that SCAN does not always test for strong gen-
eralization, since it lacks target-side dependencies.

• To remedy this we proposed NACS, which requires target-
side dependencies to be captured.

• Results on generalization tests show that strong general-
ization remains an open problem.

103



104 testing for strong generalization

jump
JUMP

turn around left
LTURN LTURN LTURN LTURN

jump thrice and turn left twice
JUMP JUMP JUMP LTURN LTURN

jump opposite left after walk twice
WALK WALK LTURN LTURN JUMP

walk opposite left twice and run
LTURN LTURN WALK LTURN LTURN WALK RUN

Figure 6.1: SCAN maps commands to actions.

6.1 introduction

Can recurrent sequence-to-sequence models exhibit the same
strong generalization that humans are capable of, by virtue of
our capacity to infer the meaning of a phrase from its con-
stituent parts (i.e., compositionality)? This is what Lake and
Baroni (2018) investigate, providing empirical tests for this long-
standing goal (Fodor and Pylyshyn, 1988). Compositional gen-
eralization might be a fundamental component in making mod-
els drastically less sample-thirsty than they currently are. Lake
and Baroni introduce the SCAN data set (§6.2), meant to study
such generalization to novel examples. It consists of simple
command-action pairs, in which more complex commands are
composed of simpler ones. Figure 6.1 shows a few examples.

SCAN consists of three kinds of generalization tests, namely
with respect to:

1. a random subset of the data (‘simple’);

2. commands with action sequences longer than those seen
during training (‘length’);

3. commands that compose a primitive in novel ways that
was only seen in isolation during training (‘primitive’).

In the latter case, the training set would for example only in-
clude the command ‘jump’ in isolation (not composed with
other words or phrases), after which the test set includes all
other commands containing ‘jump’, e.g. ‘jump opposite left af-
ter walk twice’.



6.2 scan 105

In this chapter we take a closer look at SCAN. We start with
the observation (§6.3) that the target-side dependencies in the
data are simple, a consequence of SCAN being generated from
a phrase-structure grammar. We will see (§6.6) that this favors
simple sequence-to-sequence models (§6.5) to obtain good ac-
curacies (even models that do not have access to previous out-
puts), because they have the right inductive bias. However, these
simple models are not interesting, do not use composition in
any interesting way, and their performance is therefore not a
realistic indicator of their generalization capability. We hence
propose NACS (§6.4) as a more realistic alternative: SCAN with
commands and actions flipped, i.e., mapping actions back to
their original commands. This is harder, because different com-
mands may map to the same action sequence, and it introduces
target-side dependencies, so that previous outputs need to be
remembered.

We will see that well-tuned attention-based models do achieve
a certain degree of generalization on SCAN, and, as hypothe-
sized, simpler models do better there. However, the models still
struggle in the more demanding NACS setup, which is offered
as a challenge for future work.

6.2 scan

SCAN stands for Simplified version of the CommAI Naviga-
tion tasks (Mikolov et al., 2016). Each example in SCAN is con-
structed by first sampling a command X = (x1, . . . , xT ) from a
finite phrase-structure grammar with start symbol C:

C→ S and S | S after S | S

S→ V twice | V thrice | V

V → D[1] opposite D[2] | D[1] around D[2] | D | U

D→ U left | U right | turn left | turn right
U→ walk | look | run | jump

For each command, the corresponding target action sequence
Y = (y1, . . . ,yT ′) then follows by applying a set of interpretation
functions, such as

JjumpK = JUMP
Ju around left K = LTURN JuK LTURN JuK

LTURN JuK LTURN JuK
Jx1 after x2K = Jx2K Jx1K



106 testing for strong generalization

of which only the last function requires global reordering, which
occurs at most once per command. Figure 6.1 shows examples
of commands and their action sequences as obtained by the
interpretation functions. The commands can be decoded com-
positionally by a learner by discovering the interpretation func-
tions, enabling generalization to unseen commands. The total
data set is finite but large: it contains 20910 unambiguous com-
mands. Figure 6.2 lists the full set of interpretation functions.

6.3 scan allows inadequate models to perform well

We observe an important property of the data set generation
process for SCAN: the temporal dependencies of the action
sequence are limited to the phrasal boundaries of each sub-
phrase, and each sub-phrase spans at most 24 actions (in the
case of “jump around left thrice” which causes three repetitions
of LTURN JUMP LTURN JUMP LTURN JUMP LTURN JUMP).
Crucially, even rules that require repetition (such as ‘thrice’), as
well as global reordering, can be resolved by simple counting
and without remembering previously generated outputs, due
to the limited depth of the phrase-structure grammar (see e.g.
Rodriguez and Wiles, 1998).

This observation has two important implications:

1. Because SCAN is largely a phrase-to-phrase transduction
problem, any machine learning method that aims at solv-
ing SCAN needs to include an alignment mechanism be-
tween the source and target sequences. Such an alignment
mechanism could work fairly accurately by simply ad-
vancing a pointer. Somewhat contrary to the observation
by Lake and Baroni (L&B), we therefore hypothesize that
an attention mechanism (Bahdanau et al., 2015) always
helps when a neural conditional sequence model (Cho et
al., 2014; Sutskever et al., 2014) is used to tackle any vari-
ant of SCAN.

2. We speculate that any algorithm with strong long-term
dependency modeling capabilities can be detrimental in
terms of generalization, because such an approach might
inappropriately capture spurious target-side regularities
in the training data. We thus hypothesize that less powerful
decoders generalize better on to unseen action combinations
on SCAN when equipped with an attention mechanism.



6.3 scan allows inadequate models to perform well 107

Jwalk K = WALK
JlookK = LOOK
JrunK = RUN
JjumpK = JUMP

Jturn leftK = LTURN
Jturn rightK = RTURN

Ju leftK = LTURN JuK
Ju rightK = RTURN JuK

Jx twiceK = JxK JxK
Jx thriceK = JxK JxK JxK

Jturn around leftK = LTURN LTURN LTURN LTURN
Jturn around rightK = RTURN RTURN RTURN RTURN
Ju around leftK = LTURN JuK LTURN JuK LTURN JuK LTURN JuK
Ju around rightK = RTURN JuK RTURN JuK RTURN JuK RTURN JuK

Jturn opposite leftK = LTURN LTURN
Jturn opposite rightK = RTURN RTURN
Ju opposite leftK = Jturn opposite leftK JuK
Ju opposite rightK = Jturn opposite rightK JuK
Jx1 and x2K = Jx1K Jx2K
Jx1 after x2K = Jx2K Jx1K

Figure 6.2: The interpretation functions for translating SCAN com-
mands to actions.



108 testing for strong generalization

To summarize: good performance on SCAN does not necessarily
indicate the capability of a model to strongly generalize. SCAN
favors simpler models that need not (or do not) capture target-
side temporal dependencies, which might not work well on
more realistic sequence-to-sequence problems, such as machine
translation, where strong auto-regressive models are needed for
good results (Bahdanau et al., 2015; Kaiser and Bengio, 2016).

6.4 nacs : actions to commands

By simply flipping the source xm1 and target yn1 of each example,
we obtain a data-set that suddenly features strong target-side
dependencies. Even when the mapping p(y | x) from the source
to target is simple, the opposite p(x | y) ∝ p(y | x)p(x) is non-
trivial due to the complexity of the prior p(x). The inclusion of
p(x) naturally induces strong dependencies among the output
tokens, while maintaining the original properties of SCAN that
were intended to test various aspects of systematic generaliza-
tion.

NACS naturally makes the mapping that needs to be learned
stochastic and multi-modal (sensitive to both commands and
actions). For instance, an action sequence of the form Jx1KJx2K
could be mapped to either Jx1 and x2K or Jx2 after x1K, both of
which are correct. In order for a model to decide whether to
output “and” or “after”, it is necessary for it to remember what
has already been generated (i.e., Jx1K or Jx2K).

Another example is LTURN LTURN LTURN LTURN, which can be
translated into either “turn around left” or two repetitions of
“turn opposite left”. Deciding whether to output “and” after the
first phrase requires the model to remember whether “around”
was generated previously.

In §6.6 we experimentally evaluate the proposed NACS task
using the same scenarios as SCAN (‘simple’, ‘length’ and ‘prim-
itive’). We observe that NACS prefers more advanced mod-
els that could capture long-term dependencies in the output
(now a command sequence) better. However, we notice that
even these powerful models, equipped with GRUs and atten-
tion, cannot systematically generalize to this task, as was also
observed by Lake and Baroni (2018). Based on this observation,
we believe that NACS (or perhaps a combination of SCAN and
NACS) is better suited for evaluating any future progress in
this direction.



6.5 sequence-to-sequence models 109

si

ti

oi

ci

yiE(dec)yi−1

si−1

e
s

et

c
s

c
t

s
t

ss

t
o

Figure 6.3: The decoder of Bahdanau et al. (2015)

6.5 sequence-to-sequence models

In this section, we briefly describe the sequence-to-sequence
models we use for evaluating on SCAN and its proposed sib-
ling NACS. For a detailed description see §2.1.1.

We directly model the probability of a target sequence given
a source sequence p(yn1 | xm1 ). Our encoder-decoder is modeled
after Cho et al. (2014) and our attention-based encoder-decoder
after Bahdanau et al. (2015). The attention-based decoder is a
function that takes as input the previous target word embed-
ding E(dec)yi−1, the context vector ci, and the previous decoder
hidden state si−1: si = f(E(dec)yi−1, ci, si−1). See Figure 6.3.

The prediction for the current time step is then made from
a pre-output layer ti =WeE

(dec)yi−1 +Wcci +Wssi. We do not
apply a max-out layer and directly obtain the output by oi =
Woti. For the encoder-decoder without attention, the prediction
is made directly from decoder state si. We vary the recurrent
cell, experimenting with simple RNN (Elman, 1990), GRU (Cho
et al., 2014), and LSTM cells (Hochreiter and Schmidhuber, 1997).
For conciseness we only report results with RNN and GRU cells
in the main text, and LSTM results in Appendix B.

In this chapter we investigate the properties of both SCAN
and NACS using recurrent sequence-to-sequence models for
evaluation. We leave the investigation of alternative architec-
tures (see, e.g., Chen et al., 2018; Gehring et al., 2017b; Vaswani
et al., 2017) for future work.



110 testing for strong generalization

6.6 experiments

6.6.1 Settings

Our models are implemented in PyTorch and trained using
mini-batch SGD with an initial learning rate of 0.2, decayed
by 0.96 each epoch. We use a batch size of 32, 256 hidden units
(64 for embeddings), and a dropout rate of 0.2. We test on all
SCAN/NACS tasks1, as well as on the Fr-En Machine Transla-
tion (MT) task that L&B used. The reported results are averaged
over three runs for each experiment. Models with attention are
marked as such with +Attn, e.g. ‘GRU +Attn’.

validation set. L&B split each SCAN subtask into a train-
ing set (80%) and a test set (20%). They train for a fixed num-
ber of updates (100k) and evaluate on the test set. Because any
training run without early stopping may have missed the op-
timal solution (Caruana et al., 2001), we believe their results
may not reflect the reality as closely as they could. We thus
augment each of the SCAN variants with a validation set that
follows the training distribution but contains examples that are
not contained in the corresponding training set. This allows us
to incorporate early stopping in our experiments so that they
are better benchmarks for evaluating future progress. For each
experiment we remove 10% of the training examples to be used
as a validation set.

evaluation. Following L&B we measure performance ac-
cording to sequence-level accuracy, i.e., whether the generated
sequence entirely matches the reference. This metric is also
used for early stopping. For NACS, an output (command) is
considered correct if its interpretation (‘back-mapping’) pro-
duces the input action sequence.

ablations . To test our hypothesis, we remove the connec-
tions from the previous target word embedding E(dec)yi−1 to the
decoder state and the pre-output layer (es and et in Figure 6.3),
so that the current prediction is not informed by previous out-
puts. If our hypothesis in §6.3 is correct, then these simpler
models should still be able to make the correct predictions on
SCAN, but not on NACS.

1 https://github.com/bastings/NACS

https://github.com/bastings/NACS


6.6 experiments 111

Simple Length

SCAN NACS SCAN NACS

GRU 100.0 ±0.0 99.0 ±0.1 14.4 ±0.8 12.9 ±1.2

RNN +Attn 100.0 ±0.0 99.8 ±0.1 9.6 ±0.9 19.4 ±0.7

RNN +Attn -Dep 100.0 ±0.0 61.1 ±0.3 11.7 ±3.2 0.5 ±0.2

GRU +Attn 100.0 ±0.0 99.8 ±0.1 18.1 ±1.1 17.2 ±1.9

GRU +Attn -Dep 100.0 ±0.0 51.2 ±1.2 17.8 ±1.7 2.0 ±1.4

L&B best 99.8 - 20.8 -
L&B best overall 99.7 - 13.8 -

Table 6.1: Test scores on the simple and length tasks. +Attn marks
attention, -Dep has the connections from the previous target
word embedding removed (es and et in Figure 6.3). L&Bbest

is the best reported score by L&B, and L&Bbest overall is the
score for their best-scoring model all tasks considered.

6.6.2 Results and Analysis

simple and length . Table 6.1 shows the results on the
first two SCAN and NACS tasks: ‘simple’ and ‘length’. We can
see that that all model variants perform (near) perfectly on the
SCAN simple task, where generalization to a random subset of
the data is tested. While this is impressive, results for the sev-
ered models (+Attn -Dep) on the simple task for NACS show
that it is possible to have a perfect accuracy on SCAN, while
at the same time failing to do well on NACS.2 Crucially, these
results show that a (near) perfect score on SCAN does not im-
ply strong generalization. A model can exploit the determin-
ism and lack of target-side temporal dependencies of SCAN by
developing a simple translation strategy such as advancing a
pointer and translating word by word, and the use of such a
simple strategy is not revealed by SCAN.

For the length experiment accuracies are low, and it seems
difficult to generalize to sequences longer than those seen dur-
ing training. Interestingly, the severed (-Dep) simple RNN does
slightly better than the non-severed model. Also on the length
task we can see that NACS is harder to solve, and that the sev-
ered models have no chance at all at solving it.

2 The LSTM models follow a similar pattern. See Appendix B.



112 testing for strong generalization

Turn left Jump

SCAN NACS SCAN NACS

GRU 53.4 ±11.7 47.5 ±4.7 0.0 ±0.0 0.0 ±0.0

RNN +Attn 81.1 ±14.7 44.1 ±0.9 1.9 ±1.2 0.3 ±0.3

RNN +Attn -Dep 92.0 ±5.8 18.6 ±1.0 2.7 ±1.7 0.0 ±0.0

GRU +Attn 59.1 ±16.8 55.9 ±3.5 12.5 ±6.6 0.0 ±0.0

GRU +Attn -Dep 90.8 ±3.6 16.9 ±1.2 0.7 ±0.4 0.0 ±0.0

L&B best 90.3 - 1.2 -
L&B best overall 90.0 - 0.1 -

Table 6.2: Test scores on the primitive (turn left, jump) task. +Attn
marks attention, -Dep has the connections from the pre-
vious target word embedding removed (es and et in Fig-
ure 6.3). L&Bbest is the best reported score by L&B, and
L&Bbest overall is the score for their best-scoring model all
tasks considered.

primitive . Table 6.2 shows the results for the two ‘primi-
tive’ task. In the first, ‘turn left’ is used as the primitive, and
in the second ‘jump’ is used. Remember that in this setting all
commands that are not exactly the chosen command (‘turn left’
or ‘jump’) by itself, are part of the test set, while all other com-
mands make the training and validation set.

We observe remarkably higher scores for the ‘turn left’ task.
That task benefits from TURNL occurring on the target-side in
other contexts during training, which is not the case for ‘jump’.3

Again, we see that NACS is harder than SCAN, and impor-
tantly, the severed (-Dep) models seem to have an advantage
here on SCAN, even though they are too simple for more real-
istic scenarios. The results for ‘jump’ are strikingly low. It seems
really difficult to generalize to new commands composed with
it. We will discuss this next.

additional jump commands . Note that for the ‘primi-
tive’ task there is no evidence in the training data that ‘jump’
is a verb, and it might be difficult to learn a good embed-
ding for it. This might explain the poor generalization perfor-
mance. For that reason, Table 6.3 shows results where an in-

3 See Lake and Baroni (2018) for a discussion.



6.6 experiments 113

1 2 4 8 16 32

RNN +Attn

SC
A

N

35.0 ±2.8 48.6 ±8.1 77.6 ±2.6 89.2 ±3.8 98.7 ±1.3 99.8 ±0.1

RNN +Attn -Dep 29.5 ±10.5 53.3 ±10.2 82.4 ±4.7 98.8 ±0.8 99.8 ±0.1 100.0 ±0.0

GRU +Attn 58.2 ±12.0 67.8 ±3.4 80.3 ±7.0 88.0 ±6.0 98.3 ±1.8 99.6 ±0.2

GRU +Attn -Dep 70.9 ±11.5 61.3 ±13.5 83.5 ±6.1 99.0 ±0.4 99.7 ±0.2 100.0 ±0.0

L&B 0.1 0.1 4.1 15.3 70.2 89.9

RNN +Attn

N
A

C
S

2.8 ±0.8 9.3 ±7.3 24.7 ±4.2 43.7 ±4.4 57.1 ±5.2 69.1 ±2.1

RNN +Attn -Dep 0.4 ±0.1 0.9 ±0.2 2.4 ±0.3 3.9 ±0.3 9.3 ±0.3 15.9 ±1.4

GRU +Attn 5.5 ±1.8 9.2 ±2.8 11.0 ±1.5 21.9 ±2.4 23.5 ±0.6 42.0 ±1.5

GRU +Attn -Dep 0.1 ±0.1 0.6 ±0.2 2.0 ±0.2 3.2 ±0.2 5.8 ±1.1 10.9 ±0.8

Table 6.3: Test scores on the ‘jump’ task with additional commands.
+Attn marks attention, -Dep has the es and et connections
removed (Figure 6.3). The test set contains all jump com-
mands except the 32 used for training. Columns indicate
how many commands with ‘jump’ were added to the train-
ing set, such as ‘jump around left thrice.’

creasing (small) amount of additional (composed) ‘jump’ com-
mands were added to the training data. We can see that perfor-
mance quickly goes up when adding more commands.4 Again,
the simpler models (+Attn -Dep) perform better here on SCAN,
but not on NACS.

machine translation. For the final experiment we re-
peat the basic English-French MT experiment of Lake and Ba-
roni (2018) in both directions. Note that this data contains only
very short sentence pairs, and is not at all comparable to the
larger-scale MT experiments of the previous chapters. However,
it is slightly more realistic than SCAN and NACS. Table 6.4
shows that models that perform well on NACS also perform
well here, with the GRU outperforming the other cells (see Ap-
pendix B for other cell types).

In a setting similar to the ‘primitive’ task, we also added the
sentence pair “I am daxy”/“je suis daxiste” to the training set,
with the goal to test if eight novel sentences that contain ‘daxy’
are correctly translated. In our setting with mini-batching and
early-stopping, the GRU gets 70.8% (En-Fr) and 54.2% (Fr-En) of
the daxy-sentences right, which is surprisingly good compared
to the 12.5% reported in Lake and Baroni (2018).

4 L&B performed this experiment without attention, which we show has a
large positive impact.



114 testing for strong generalization

En-Fr Fr-En

GRU +Attn 32.1 ±0.3 37.5 ±0.6

GRU +Attn -Dep 30.2 ±0.3 35.9 ±0.3

Table 6.4: Results (BLEU) on the Machine Translation experiment for
both directions using a GRU. See Appendix B for results
using SRN and LSTM cells.

6.7 related work

Ever since Fodor and Pylyshyn (1988) conjectured that neural
networks are unable to show strong generalization, many at-
tempts were made to show that the opposite is true, leading to
inconclusive evidence. For example, Phillips (1998) found that
feed-forward nets and RNNs do not always generalize to novel
2-tuples on an auto-association task, while Wong and Wang
(2007) and Brakel and Frank (2009) found that RNNs can show
systematic behavior in a language modeling task.

In the context of analyzing RNNs, Rodriguez and Wiles (1998)
found that a simple RNN can develop a symbol-sensitive count-
ing strategy for accepting a simple (palindrome) context-free
language. Weiss et al. (2018) show that LSTMs and simple RNNs
with ReLU-activation can learn to count unboundedly, while
GRUs cannot. Linzen et al. (2016) probed the sensitivity of LSTMs
to hierarchical structure (not necessarily in novel constructions).
Instead of a binary choice, with SCAN a sequence-to-sequence
model productively generates an output string.

Liska et al. (2018) found that a small number of identical
RNNs trained with different initializations show compositional
behavior on a function composition task, suggesting that more
specific architectures may not be necessary. Loula et al. (2018)
extend the ‘primitive’ experiment that we also conducted in
this chapter to settings where the model only needs to recom-
bine functional words such as ‘around’ and ‘right’ that are seen
many times during training. This setup remedies the issue that
we discussed that it might be difficult to learn the embedding
of a word only seen in isolation, such as ‘jump’ in the ‘primi-
tive’ experiment. Loula et al. find that models can generalize if
they see a pattern often enough times. For example, seeing ‘X
around right’ during training enables generalization to ‘jump
around right’. However, models still fail to generalize in more
compositional ways, such as infering ‘around right’ after learn-



6.8 conclusions 115

ing ‘right’ during training. Dessì and Baroni (2019) also look at
the SCAN tasks, but replace the recurrent networks with con-
volutional ones. They find that convolutional neural networks
perform better on SCAN, but do not generalize in a system-
atic way. Lake and Baroni (2018) introduced the SCAN data set
to study systematic compositionality in recurrent sequence-to-
sequence models, including gating mechanisms and attention.
This chapter complements that work and aims to facilitate fu-
ture progress by showing that SCAN does not necessarily test
for strong generalization. Baroni (2019) reviews the recent ad-
vances in understanding the systematic generalization behav-
ior of neural networks, including the ones we discussed here,
in more detail. He argues that the findings as discussed here
should be of interest to linguists and cognitive scientists, be-
cause they provide a fresh perspective on the possible com-
putational strategies related to linguistic productivity beyond
rule-based compositionality, including how to generalize less
systematically.

More recently, Keysers et al. (2020) contribute to the gen-
eralization debate a carefully constructed question answering
dataset that is a lot more realistic than SCAN, even though, like
SCAN, it does not have any ambiguity like real language. They
make sure that the generalization that is measured is about
combining known parts (atoms), which they call ‘compound di-
vergence’, and show that accuracy is negatively correlated with
the ability to recombine known parts. Finally, Ruis et al. (2020)
proposed a grounded version of SCAN, gSCAN, that grounds
a generalization task in a grid world. Also in this grounded
setting they show that models have difficulty generalizing.

6.8 conclusions

In the quest for strong generalization, benchmarks measuring
progress are an important component. The existing SCAN bench-
mark allows too simple models to shine, without the need for
compositional generalization. In this chapter we proposed NACS
to remedy that. NACS still requires systematicity, while intro-
ducing stochasticity and strong temporal dependencies on the
target side. Arguably, a good benchmark needs at least those
properties, in order not to fall prey to trivial solutions, which do
not work on more realistic use-cases for sequence-to-sequence
models such as machine translation.





7
C O N C L U S I O N S

This thesis covered two main topics: linguistically-informed deep
learning for NLP, and interpreting and analyzing neural net-
works for NLP. We will now go over the main findings.

7.1 linguistically-informed deep learning for nlp

In Chapter 3 we asked the question if neural networks can ben-
efit from linguistic structure in the form of dependency trees
and dependency-based semantic role labeling structures. To an-
swer this question, we first conditioned an attention-based neu-
ral machine translation model on dependency trees obtained
by parsing the training data with SyntaxNet. We saw consis-
tent improvements in BLEU score when conditioning on depen-
dency syntax, even though the margin got smaller as we used
more training data. After conditioning on just syntactic trees,
we also wondered if semantic role labeling structures can be
beneficial, and found that they can have somewhat complemen-
tary strengths. While we focused on recurrent models in this
chapter, later work by Currey and Heafield (2019) reached sim-
ilar conclusions for a Transformer architecture, where improve-
ments can be achieved for lower resource scenarios, with the
performance gap closing when adding more data. An interest-
ing avenue for future work is to explore what happens exactly
when more data is added, and if there is still a role for lin-
guistic structures as data sets grow. Even if the gap closes with
more training data, there are many languages in the world for
which we do not have data sets as large as those available for
English, and therefore it remains relevant to look at incorpo-
rating linguistic information in deep neural networks. Another
avenue for future work is to investigate if the performance gap
closes because syntax and semantics are already successfully
captured by a model, and to find better ways to extract such
knowledge. While there is some evidence that this happens to
some extent (e.g. Linzen et al., 2016), the linguistic rules that
are captured might not be optimal or complete, which could
hurt generalization.

117



118 conclusions

In Chapter 4 we wondered if we could do away with the ex-
ternally parsed structures, and induce them instead with trans-
lation as a downstream task. We used a probabilistic model
with separate graph induction and translation components, and
studied if our induced latent graphs are beneficial using three
different encoders. In the case of LSTM encoders the induced
graphs turned out to be quite trivial, reminiscent of how some
individual Transformer heads turn out to be trivial, while for
the simpler word embedding and CNN encoders they contain
useful, potentially long-distance dependencies. Other works,
e.g. Williams et al. (2018), also induced structure, and also found
that this structure does not resemble linguistic structure such
as treebank syntax, even though it can be beneficial for a certain
task. Recently, much focus has gone into the study of how much
linguistic information is captured by pre-trained sentence en-
coders such as BERT (Devlin et al., 2019). For example, it is pos-
sible to uncover syntactic distance from the representations of
these models (Hewitt and Manning, 2019), and using diagnostic
classifiers (Hupkes et al., 2018) or ‘probes’ they can be shown to
contain information usable for e.g., POS-tagging, parsing, and
semantic role labeling (see e.g., Tenney et al., 2019a,b; Voita
and Titov, 2020). Despite this progress in analysis, it remains
an open question if syntactic knowledge is a byproduct of task-
specific learning of continuous representations, and how sys-
tematic such knowledge is. Very recently, Raganato et al. (2020)
show that, for a Transformer, each head but one can be given a
fixed attention pattern based on positional information (e.g., at-
tend to the previous token) without a loss in performance, and
sometimes even at a gain. This exemplifies that we are still not
sure how much structure is, and should be captured by neu-
ral network models for NLP. As we find more answers, insights
that are obtained from research in this direction also have the
potential to inform the field of linguistics.

7.2 interpreting and analyzing neural networks

In Chapter 5 we focused on interpretability, and made a neu-
ral text classifier interpretable by having it show which parts
of the input document are used for classification, and which
parts aren’t. This explanation is what we called the rationale. In
contrast to previous work, we proposed a method that allows
for training such a model using backpropagation, without hav-
ing to rely on the high-variance REINFORCE estimator. Our



7.3 final words 119

method made use of a stretch-and-rectify technique (Louizos
et al., 2018) that we used to devise a novel distribution, the
HardKuma. In addition, we proposed using a Lagrangian re-
laxation to target a specific text selection rate, which makes
it easy to find a trade-off between interpretability and classi-
fication performance. With our method we found that we can
produce rationales that overlap more with human annotations
than previous work. For future research, the HardKuma could
be used to make different kinds of models more interpretable,
such as those used for question answering or fact checking.
While our method modifies a model to make it interpretable,
recently there has been a lot of interest in methods that try to
interpret already trained models (see e.g., Poerner et al., 2018).
It would make sense to compare these various methods, e.g.,
using the ERASER benchmark (DeYoung et al., 2019). One par-
ticular challenge is to find a way to better apply post-hoc meth-
ods to textual data; in particular to find ways to generate more
natural input perturbations. A final concern regarding evalua-
tion is faithfulness (see e.g., Jacovi and Goldberg, 2020). If we
are concerned about uncovering the true reasoning process of
a model, then evaluating rationales with human annotations
might not be adequate.

In Chapter 6 we investigated the generalization properties of
sequence-to-sequence models, such as the ones we use for neu-
ral machine translation. We looked at a popular benchmark,
SCAN, and found that it allows too simple models to shine,
without the need for compositional generalization. We proposed
to turn the SCAN problem around, which resulted in the NACS
tasks. NACS still requires systematicity, while introducing sto-
chasticity and strong temporal dependencies on the target side.
Arguably, a good benchmark needs at least those properties, in
order not to fall prey to trivial solutions, which do not work on
more realistic use-cases for sequence-to-sequence models such
as machine translation. The importance of the point made in
this chapter also is made clear by the fact that other, newer
benchmarks, such as Keysers et al. (2020), like SCAN also do
not have ambiguity and therefore fail to be fully effective tests.

7.3 final words

Our field has seen a rapid adoption of deep neural networks
to solve a multitude of NLP tasks. Observing that, this thesis
contributes in two ways:



120 conclusions

• we investigated the potential of explicit linguistic bias in
end-to-end neural models, and advanced the field by con-
tributing techniques and experimental results;

• we proposed a method to make neural predictions more
interpretable, and an improved benchmark for studying
generalization performance.

While it is undeniable that lots of work needs to happen in both
these areas, this thesis tried to contribute in a positive way to
more understanding of the black box neural networks now that
they have become ubiquitous.



Part III

A P P E N D I X





A
I N T E R P R E TA B L E N E U R A L P R E D I C T I O N S

a.1 kumaraswamy distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
(0.5, 0.5)
(5, 1)
(2, 2)
(2, 5)
(0.1, 0.1)
(1.0, 1.0)

Figure A.1: Kuma plots for various (a, b) parameters.

A Kumaraswamy-distributed variable K ∼ Kuma(a,b) takes
on values in the open interval (0, 1) and has density

fK(k;a,b) = abka−1(1− ka)b−1 , (A.1)

where a ∈ R>0 and b ∈ R>0 are shape parameters. Its cumula-
tive distribution takes a simple closed-form expression

FK(k;a,b) =
∫k
0
fK(ξ|a,b)dξ (A.2a)

= 1− (1− ka)b , (A.2b)

with inverse

F−1K (u;a,b) =
(
1− (1− u)

1/b
)1/a

. (A.3)

123



124 interpretable neural predictions

a.1.1 Generalized-support Kumaraswamy

We can generalize the support of a Kumaraswamy variable by
specifying two constants l < r and transforming a random vari-
able K ∼ Kuma(a,b) to obtain T ∼ Kuma(a,b, l, r) as shown in
(A.4, left).

t = l+ (r− l)k k = (t− l)/(r− l) (A.4)

The density of the resulting variable is

fT (t;a,b, l, r) (A.5a)

= fK
(
t−l
r−l ;a,b

) ∣∣∣∣dkdt

∣∣∣∣ (A.5b)

= fK
(
t−l
r−l ;a,b

) 1

(r− l)
(A.5c)

where r− l > 0 by definition. This affine transformation leaves
the cdf unchanged, i.e.

FT (t0;a,b, l, r) =
∫ t0
−∞ fT (t;a,b, l, r)dt

=

∫ t0
−∞ fK

(
t−l
r−l ;a,b

) 1

(r− l)
dt

=

∫ t0−l
r−l

−∞ fK(k;a,b)
1

(r− l)
(r− l)dk

= FK

(
t0−l
r−l ;a,b

)
.

(A.6)

Thus we can obtain samples from this generalized-support Ku-
maraswamy by sampling from a uniform distribution U(0, 1),
applying the inverse transform (A.3), then shifting and scaling
the sample according to (A.4, left).

a.1.2 Rectified Kumaraswamy

First, we stretch a Kumaraswamy distribution to include 0 and
1 in its support, that is, with l < 0 and r > 1, we define T ∼

Kuma(a,b, l, r). Then we apply a hard-sigmoid transformation
to this variable, that is, h = min(0, max(1, t)), which results in a
rectified distribution which gives support to the closed interval
[0, 1]. We denote this rectified variable by

H ∼ HardKuma(a,b, l, r) (A.7)



A.2 implementation details 125

whose distribution function is

fH(h;a,b, l, r) =
P(h = 0)δ(h) + P(h = 1)δ(h− 1)

+ P(0 < h < 1)
fT (h;a,b, l, r)1(0,1)(h)

P(0 < h < 1)

(A.8)

where

P(h = 0) = P(t 6 0)

= FT (0;a,b, l, r) = FK(− l/(r− l);a,b)
(A.9)

is the probability of sampling exactly 0, where

P(h = 1) = P(t > 1) = 1− P(t < 1)

= 1− FT (1;a,b, l, r)
= 1− FK((1− l)/(r− l);a,b)

(A.10)

is the probability of sampling exactly 1, and

P(0 < h < 1) = 1− P(h = 0) − P(h = 1) (A.11)

is the probability of drawing a continuous value in (0, 1). Note
that we used the result in (A.6) to express these probabilities
in terms of the tractable cdf of the original Kumaraswamy vari-
able.

a.2 implementation details

a.2.1 Multi-aspect Sentiment Analysis

Our hyperparameters are taken from Lei et al. (2016) and listed
in Table A.1. The pre-trained word embeddings and data sets
are available online at http://people.csail.mit.edu/taolei/
beer/. We train for 100 epochs and select the best models based
on validation loss. For the MSE trade-off experiments on all
aspects combined, we train for a maximum of 50 epochs.

For the Bernoulli baselines we vary L0 weight λ1 among {0.0002, 0.0003, 0.0004},
just as in the original paper. We set the fused lasso (coherence)
weight λ2 to 2 ∗ λ1.

For the HardKuma models we set a target selection rate to
the values targeted in Table 5.2, and optimize to this end using
the Lagrange multiplier. We chose the fused lasso weight from
{0.0001, 0.0002, 0.0003, 0.0004}.

http://people.csail.mit.edu/taolei/beer/
http://people.csail.mit.edu/taolei/beer/


126 interpretable neural predictions

Optimizer Adam
Learning rate 0.0004

Word embeddings 200D (Wiki, fixed)
Hidden size 200

Batch size 256

Dropout 0.1, 0.2
Weight decay 1 ∗ 10−6

Cell RCNN

Table A.1: Beer hyperparameters.

a.2.1.1 Recurrent Unit

In our multi-aspect sentiment analysis experiments we use the
RCNN of Lei et al. (2016). Intuitively, the RCNN is supposed
to capture n-gram features that are not necessarily consecutive.
We use the bigram version (filter width n = 2) used in Lei et al.
(2016), which is defined as:

λt = σ(W
λxt +Uλht−1 + bλ)

c(1)t = λt � c(1)t−1 + (1− λt)�W1xt

c(2)t = λt � c(2)t−1 + (1− λt)� (c(1)t−1 +W2xt)

ht = tanh
(

c(2)t + b
)

a.2.1.2 Expected values for dependent latent variables

The expected L0 is a chain of nested expectations, and we solve
each term

Ep(zi|x,z<i) [I[zi 6= 0] | z<i]
= 1− FK

(
−l
r−l ;ai,bi

) (A.12)

as a function of a sampled prefix, and the shape parameters
ai,bi = gi(x, z<i;φ) are predicted in sequence.

a.2.2 Sentiment Classification (SST)

For sentiment classification we make use of the PyTorch bidi-
rectional LSTM module for encoding sentences, for both the
rationale extractor and the classifier. The BiLSTM final states



A.2 implementation details 127

are concatenated, after which a linear layer followed by a soft-
max produces the prediction. Hyperparameters are listed in Ta-
ble A.2. We apply dropout to the embeddings and to the input
of the output layer.

Optimizer Adam
Learning rate 0.0002

Word embeddings 300D Glove (fixed)
Hidden size 150

Batch size 25

Dropout 0.5
Weight decay 1 ∗ 10−6

Cell LSTM

Table A.2: SST hyperparameters.

a.2.3 Natural Language Inference (SNLI)

Our hyperparameters are taken from Parikh et al. (2016) and
listed in Table A.3. Different from Parikh et al. is that we use
Adam as the optimizer and a batch size of 64. Word embed-
dings are projected to 200 dimensions with a trained linear
layer. Unknown words are mapped to 100 unknown word classes
based on the MD5 hash function, just as in Parikh et al. (2016),
and unknown word vectors are randomly initialized. We train
for 100 epochs, evaluate every 1000 updates, and select the best
model based on validation loss. Figure A.2 shows a correct and
incorrect example with HardKuma attention for each relation
type (entailment, contradiction, neutral).

Optimizer Adam
Learning rate 0.0001

Word embeddings 300D (Glove, fixed)
Hidden size 200

Batch size 64

Dropout 0.2

Table A.3: SNLI hyperparameters.



128 interpretable neural predictions

<s
>

T
he

tw
o

do
gs

ar
e

bl
ac

k

.

<s>

Two

black

dogs

running

 0  0  0  0  0  0  0

 0  0  0  0  0  0  0

 0  0  0  0  0 100  0

 0  0  0 90  0  0  0

 0  0  0 23  0  0  0

(a) Entailment (correct)

<s
>

F
ou

r

pe
op

le

in a ki
tc

he
n

co
ok

in
g

.

<s>

Four

people

in

a

kitchen

 0  0  0  0  0  0  0  0

 0 89  0  0  0  0  0  0

 0  0 53  0  0  0  0  0

 0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0

 0  0  0  0  0 100 74  0

(b) Entailment (incorrect)

<s
>

T
hr

ee

ca
ts

ra
ce

on a tr
ac

k

.

<s>

Three

dogs

racing

on

racetrack

 0  0  0  0  0  0  0  0

 0 84  0  0  0  0  0  0

 0  0 100  0  0  0 18  0

 0  0  0 87  0  0 43  0

 0  0  0  0  0  0  0  0

 0  0 33 48  0  0 73  0

(c) Contradiction (correct)

<s
>

a co
up

le

on a m
ot

or
cy

cl
e

<s>

A

person

on

a

motorcycle

.

 0  0  0  0  0  0

 0  0  0  0  0  0

 0  0 15  0  0  0

 0  0  0  0  0  0

 0  0  0  0  0  0

 0  0  0  0  0 89

 0  0  0  0  0  0

(d) Contradiction (incorrect)

<s
>

T
he

y

ar
e

in th
e

de
se

rt

.

<s>

People

walking

through

dirt

.

 0  0  0  0  0  0  0

 0  0  0  0  0  0  0

 0  0  0  0  0  0  0

 0  0  0  0  0  0  0

 0  0  0  0  0 81  0

 0  0  0  0  0  0  0

(e) Neutral (correct)

<s
>

A do
g

fo
un

d

a bo
ne

<s>

A

dog

gnawing

on

a

bone

.

 0  0  0  0  0  0

 0  0  0  0  0  0

 0  0 89 13  0 12

 0  0  0  0  0 47

 0  0  0  0  0  0

 0  0  0  0  0  0

 0  0 12 14  0 76

 0  0  0  0  0  0

(f) Neutral (incorrect)

Figure A.2: HardKuma attention in SNLI for entailment, contradic-
tion, and neutral.



B
A D D I T I O N A L S C A N A N D N A C S R E S U LT S

We follow the experiments of §6.6, but include the full set of
results with all three types of cells (simple RNN, GRU, LSTM).

Simple Length Turn left Jump

RNN 75.6 ±5.4 0.2 ±0.0 26.7 ±12.8 0.0 ±0.0

GRU 100.0 ±0.0 14.4 ±0.8 53.4 ±11.7 0.0 ±0.0

LSTM 99.8 ±0.1 10.1 ±2.0 56.5 ±0.8 0.1 ±0.0

RNN +Attn 100.0 ±0.0 9.6 ±0.9 81.1 ±14.7 1.9 ±1.2

RNN +Attn-Dep 100.0 ±0.0 11.7 ±3.2 92.0 ±5.8 2.7 ±1.7

GRU +Attn 100.0 ±0.0 18.1 ±1.1 59.1 ±16.8 12.5 ±6.6

GRU +Attn-Dep 100.0 ±0.0 17.8 ±1.7 90.8 ±3.6 0.7 ±0.4

LSTM +Attn 100.0 ±0.0 15.6 ±1.6 83.8 ±16.8 9.7 ±2.9

LSTM +Attn-Dep 100.0 ±0.0 12.5 ±1.3 57.6 ±3.8 0.8 ±0.5

L&B best 99.8 20.8 90.3 1.2
L&B best overall 99.7 13.8 90.0 0.1

Table B.1: SCAN test scores on the simple, length, and primitive (turn
left and jump) tasks. For ‘+Attn-Dep’ models we removed
the connections from the previous target word embedding
to the decoder state and the pre-output layer.

129



130 additional scan and nacs results

Simple Length Turn left Jump

RNN 26.9 ±0.2 0.2 ±0.1 26.4 ±12.0 0.0 ±0.0

GRU 99.0 ±0.1 12.9 ±1.2 47.5 ±4.7 0.0 ±0.0

LSTM 99.1 ±0.1 10.9 ±1.3 42.9 ±2.9 0.0 ±0.0

RNN +Attn 99.8 ±0.1 19.4 ±0.7 44.1 ±0.9 0.3 ±0.3

RNN +Attn-Dep 61.1 ±0.3 0.5 ±0.2 18.6 ±1.0 0.0 ±0.0

GRU +Attn 99.8 ±0.1 17.2 ±1.9 55.9 ±3.5 0.0 ±0.0

GRU +Attn-Dep 51.2 ±1.2 2.0 ±1.4 16.9 ±1.2 0.0 ±0.0

LSTM +Attn 99.1 ±0.2 17.1 ±2.0 48.3 ±1.7 0.0 ±0.0

LSTM +Attn-Dep 38.9 ±0.9 1.0 ±0.5 17.2 ±1.2 0.0 ±0.0

Table B.2: NACS test scores on the simple, length, and primitive (turn
left and jump) tasks. For ‘+Attn-Dep’ models we removed
the connections from the previous target word embedding
to the decoder state and the pre-output layer.

0 1 2 4 8 16 32

RNN 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.5 ±0.3 1.4 ±0.3

GRU 0.1 ±0.0 0.2 ±0.1 0.6 ±0.2 2.5 ±1.1 3.3 ±0.9 13.1 ±2.4 42.4 ±2.5

LSTM 0.1 ±0.0 0.3 ±0.2 1.3 ±0.2 3.8 ±1.8 2.5 ±1.1 6.5 ±2.7 21.3 ±1.4

RNN +Attn 3.5 ±3.0 35.0 ±2.8 48.6 ±8.1 77.6 ±2.6 89.2 ±3.8 98.7 ±1.3 99.8 ±0.1

RNN +Attn-Dep 2.7 ±1.7 29.5 ±10.5 53.3 ±10.2 82.4 ±4.7 98.8 ±0.8 99.8 ±0.1 100.0 ±0.0

GRU +Attn 12.5 ±6.6 58.2 ±12.0 67.8 ±3.4 80.3 ±7.0 88.0 ±6.0 98.3 ±1.8 99.6 ±0.2

GRU +Attn-Dep 0.7 ±0.4 70.9 ±11.5 61.3 ±13.5 83.5 ±6.1 99.0 ±0.4 99.7 ±0.2 100.0 ±0.0

LSTM +Attn 7.8 ±0.9 40.2 ±9.3 37.7 ±10.7 50.3 ±13.9 62.2 ±7.7 94.0 ±2.7 98.6 ±1.0

LSTM +Attn-Dep 0.8 ±0.6 39.0 ±6.5 43.6 ±17.6 66.0 ±1.6 86.1 ±2.3 98.7 ±1.6 99.8 ±0.2

L&B 0.1 0.1 0.1 4.1 15.3 70.2 89.9

Table B.3: SCAN test scores for jump with additional composed com-
mands.



additional scan and nacs results 131

0 1 2 4 8 16 32

RNN 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.2 ±0.0 0.7 ±0.2 0.4 ±0.0 0.8 ±0.1

GRU 0.0 ±0.0 0.3 ±0.2 0.4 ±0.1 0.3 ±0.2 1.0 ±0.4 5.8 ±0.1 20.8 ±2.2

LSTM 0.0 ±0.0 0.6 ±0.4 0.5 ±0.3 0.7 ±0.0 1.0 ±0.3 3.7 ±0.4 11.4 ±1.2

RNN +Attn 0.3 ±0.3 2.8 ±0.8 9.3 ±7.3 24.7 ±4.2 43.7 ±4.4 57.1 ±5.2 69.1 ±2.1

RNN +Attn-Dep 0.0 ±0.0 0.4 ±0.1 0.9 ±0.2 2.4 ±0.3 3.9 ±0.3 9.3 ±0.3 15.9 ±1.4

GRU +Attn 0.0 ±0.0 5.5 ±1.8 9.2 ±2.8 11.0 ±1.5 21.9 ±2.4 23.5 ±0.6 42.0 ±1.5

GRU +Attn-Dep 0.0 ±0.0 0.1 ±0.1 0.6 ±0.2 2.0 ±0.2 3.2 ±0.2 5.8 ±1.1 10.9 ±0.8

LSTM +Attn 0.0 ±0.0 2.1 ±0.2 3.7 ±0.9 6.6 ±0.5 12.5 ±2.5 21.8 ±2.6 34.2 ±1.7

LSTM +Attn-Dep 0.0 ±0.0 0.4 ±0.2 0.9 ±0.1 1.5 ±0.2 1.9 ±0.3 3.2 ±0.6 7.4 ±0.9

Table B.4: NACS test scores for jump with additional composed com-
mands.

En-Fr Fr-En

RNN +Attn 29.1 ±0.4 34.9 ±0.8

RNN +Attn-Dep 27.5 ±0.7 32.9 ±0.8

GRU +Attn 32.1 ±0.3 37.5 ±0.6

GRU +Attn-Dep 30.2 ±0.3 35.9 ±0.3

LSTM +Attn 31.5 ±0.2 36.9 ±1.1

LSTM +Attn-Dep 28.7 ±0.2 34.0 ±0.1

Table B.5: Results (BLEU) on the Machine Translation experiment for
both directions.

En-Fr Fr-En

RNN +Attn 79.2 ±15.6 41.7 ±5.9

RNN +Attn-Dep 66.7 ±5.9 41.7 ±5.9

GRU +Attn 70.8 ±11.8 54.2 ±5.9

GRU +Attn-Dep 58.3 ±5.9 45.8 ±11.8

LSTM +Attn 75.0 ±10.2 41.7 ±15.6

LSTM +Attn-Dep 50.0 ±10.2 41.7 ±5.9

Table B.6: Machine Translation: accuracy on eight novel sentences
containing ‘daxy’ (‘daxiste’).



132 additional scan and nacs results

En-Fr Fr-En

RNN +Attn 66.7 ±5.9 20.8 ±5.9

RNN +Attn-Dep 66.7 ±5.9 29.2 ±15.6

GRU +Attn 62.5 ±0.0 33.3 ±5.9

GRU +Attn-Dep 66.7 ±5.9 25.0 ±20.4

LSTM +Attn 66.7 ±5.9 25.0 ±10.2

LSTM +Attn-Dep 62.5 ±0.0 25.0 ±17.7

Table B.7: Machine Translation: accuracy on eight novel sentences
containing ‘tired’ (‘fatigué’).



B I B L I O G R A P H Y

Roee Aharoni and Yoav Goldberg (2017). “Towards String-To-
Tree Neural Machine Translation.” In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Vancouver, Canada: Association for
Computational Linguistics, pp. 132–140.

Robert B Allen (1987). “Several studies on natural language and
back-propagation.” In: Proceedings of the IEEE First Interna-
tional Conference on Neural Networks. Vol. 2. S 335. IEEE Pis-
cataway, NJ, p. 341.

Uri Alon, Omer Levy, and Eran Yahav (2019). “code2seq: Gener-
ating Sequences from Structured Representations of Code.”
In: International Conference on Learning Representations.

David Alvarez-Melis and Tommi Jaakkola (2017). “A causal
framework for explaining the predictions of black-box sequence-
to-sequence models.” In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. Copen-
hagen, Denmark: Association for Computational Linguis-
tics, pp. 412–421.

Wilker Aziz, Miguel Rios, and Lucia Specia (July 2011). “Shal-
low Semantic Trees for SMT.” In: Proceedings of the Sixth
Workshop on Statistical Machine Translation. Edinburgh, Scot-
land: Association for Computational Linguistics, pp. 316–
322.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton (2016).
“Layer normalization.” In: arXiv preprint arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio (2015).
“Neural Machine Translation by Jointly Learning to Align
and Translate.” In: Proceedings of the International Conference
on Learning Representations (ICLR). San Diego, CA.

Kathryn Baker, Michael Bloodgood, Bonnie J Dorr, Chris Callison-
Burch, Nathaniel W Filardo, Christine Piatko, Lori Levin,
and Scott Miller (2012). “Modality and negation in simt use
of modality and negation in semantically-informed syntac-
tic mt.” In: Computational Linguistics 38.2, pp. 411–438.

Laura Banarescu et al. (2012). “Abstract meaning representation
(AMR) 1.0 specification.” In: Conference on Empirical Methods
in Natural Language Processing, pp. 1533–1544.

133



134 bibliography

Yehoshua Bar-Hillel (1960). “The present status of automatic
translation of languages.” In: Advances in computers. Vol. 1.
Elsevier, pp. 91–163.

Marco Baroni (2019). “Linguistic generalization and composi-
tionality in modern artificial neural networks.” In: CoRR
abs/1904.00157. arXiv: 1904.00157.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani,
and Khalil Sima’an (Sept. 2017). “Graph Convolutional En-
coders for Syntax-aware Neural Machine Translation.” In:
Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. Copenhagen, Denmark: Asso-
ciation for Computational Linguistics, pp. 1947–1957.

Marzieh Bazrafshan and Daniel Gildea (Aug. 2013). “Semantic
Roles for String to Tree Machine Translation.” In: Proceed-
ings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Sofia, Bulgaria:
Association for Computational Linguistics, pp. 419–423.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn (July 2018).
“Graph-to-Sequence Learning using Gated Graph Neural
Networks.” In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers). Melbourne, Australia: Association for Computational
Linguistics, pp. 273–283.

Yonatan Belinkov and James Glass (Mar. 2019). “Analysis Meth-
ods in Neural Language Processing: A Survey.” In: Transac-
tions of the Association for Computational Linguistics 7, pp. 49–
72.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. (1994).
“Learning long-term dependencies with gradient descent is
difficult.” In: IEEE transactions on neural networks 5.2, pp. 157–
166.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin (2003). “A neural probabilistic language model.”
In: Journal of machine learning research 3.Feb, pp. 1137–1155.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013).
“Estimating or propagating gradients through stochastic neu-
rons for conditional computation.” In: arXiv preprint arXiv:1308.3432.

Alexandre Bérard, Ioan Calapodescu, and Claude Roux (2019).
“Naver Labs Europe’s Systems for the WMT19 Machine Trans-
lation Robustness Task.” In: arXiv preprint arXiv:1907.06488.

Robert C Berwick and Noam Chomsky (2016). Why only us: Lan-
guage and evolution. MIT press.

https://arxiv.org/abs/1904.00157


bibliography 135

Ondřej Bojar et al. (June 2014). “Findings of the 2014 Work-
shop on Statistical Machine Translation.” In: Proceedings of
the Ninth Workshop on Statistical Machine Translation. Balti-
more, Maryland, USA: Association for Computational Lin-
guistics, pp. 12–58.

Ondřej Bojar et al. (Sept. 2015). “Findings of the 2015 Work-
shop on Statistical Machine Translation.” In: Proceedings of
the Tenth Workshop on Statistical Machine Translation. Lisbon,
Portugal: Association for Computational Linguistics, pp. 1–
46.

Ondřej Bojar et al. (Aug. 2016). “Findings of the 2016 Confer-
ence on Machine Translation.” In: Proceedings of the First
Conference on Machine Translation: Volume 2, Shared Task Pa-
pers. Berlin, Germany: Association for Computational Lin-
guistics, pp. 131–198.

Léon Bottou (2012). “Stochastic gradient descent tricks.” In: Neu-
ral networks: Tricks of the trade. Springer, pp. 421–436.

Léon Bottou and Yann LeCun (2004). “Large scale online learn-
ing.” In: Advances in neural information processing systems,
pp. 217–224.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christo-
pher D. Manning (Sept. 2015). “A large annotated corpus
for learning natural language inference.” In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing. Lisbon, Portugal: Association for Computational
Linguistics, pp. 632–642.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav
Gupta, Christopher D. Manning, and Christopher Potts (Aug.
2016a). “A Fast Unified Model for Parsing and Sentence Un-
derstanding.” In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers). Berlin, Germany: Association for Computational Lin-
guistics, pp. 1466–1477.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai,
Rafal Jozefowicz, and Samy Bengio (Aug. 2016b). “Gener-
ating Sentences from a Continuous Space.” In: Proceedings
of The 20th SIGNLL Conference on Computational Natural Lan-
guage Learning. Berlin, Germany: Association for Computa-
tional Linguistics, pp. 10–21.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe (2004).
Convex optimization. Cambridge university press.

Philémon Brakel and Stefan Frank (2009). “Strong systematicity
in sentence processing by simple recurrent networks.” In:



136 bibliography

31th Annual Conference of the Cognitive Science Society (COGSCI-
2009). Cognitive Science Society, pp. 1599–1604.

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent
J Della Pietra, Fredrick Jelinek, John D Lafferty, Robert L
Mercer, and Paul S Roossin (1990). “A statistical approach
to machine translation.” In: Computational linguistics 16.2.

Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra,
and Robert L Mercer (1993). “The mathematics of statisti-
cal machine translation: Parameter estimation.” In: Compu-
tational linguistics 19.2, pp. 263–311.

Rich Caruana (1997). “Multitask learning.” In: Machine learning
28.1, pp. 41–75.

Rich Caruana, Steve Lawrence, and C Lee Giles (2001). “Over-
fitting in neural nets: Backpropagation, conjugate gradient,
and early stopping.” In: Advances in neural information pro-
cessing systems, pp. 402–408.

Asuncion Castano and Francisco Casacuberta (1997). “A con-
nectionist approach to machine translation.” In: Fifth Euro-
pean Conference on Speech Communication and Technology.

Antonio Castellanos, Isabel Galiano, and Enrique Vidal (1994).
“Application of OSTIA to machine translation tasks.” In:
International Colloquium on Grammatical Inference. Springer,
pp. 93–105.

Mia Xu Chen et al. (2018). “The Best of Both Worlds: Combining
Recent Advances in Neural Machine Translation.” In: arXiv
preprint arXiv:1804.09849.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang,
and Diana Inkpen (2017). “Enhanced LSTM for Natural Lan-
guage Inference.” In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers). Vancouver, Canada: Association for Computational
Linguistics, pp. 1657–1668.

David Chiang (July 2010). “Learning to Translate with Source
and Target Syntax.” In: Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics. Uppsala,
Sweden: Association for Computational Linguistics, pp. 1443–
1452.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio (Oct. 2014). “Learning Phrase Representations us-
ing RNN Encoder–Decoder for Statistical Machine Transla-
tion.” In: Proceedings of the 2014 Conference on Empirical Meth-



bibliography 137

ods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, pp. 1724–1734.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee (2018). “Learning
to compose task-specific tree structures.” In: Thirty-Second
AAAI Conference on Artificial Intelligence.

Lonnie Chrisman (1991). “Learning recursive distributed repre-
sentations for holistic computation.” In: Connection Science
3.4, pp. 345–366.

Ronan Collobert and Jason Weston (2008). “A unified architec-
ture for natural language processing: Deep neural networks
with multitask learning.” In: Proceedings of the 25th interna-
tional conference on Machine learning. ACM, pp. 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa (2011). “Natural lan-
guage processing (almost) from scratch.” In: Journal of Ma-
chine Learning Research 12.Aug, pp. 2493–2537.

Mark Craven and Jude W Shavlik (1996). “Extracting tree-structured
representations of trained networks.” In: Advances in neural
information processing systems, pp. 24–30.

Anna Currey and Kenneth Heafield (2018a). “Multi-Source Syn-
tactic Neural Machine Translation.” In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Pro-
cessing. Brussels, Belgium: Association for Computational
Linguistics, pp. 2961–2966.

— (July 2018b). “Unsupervised Source Hierarchies for Low-
Resource Neural Machine Translation.” In: Proceedings of
the Workshop on the Relevance of Linguistic Structure in Neu-
ral Architectures for NLP. Melbourne, Australia: Association
for Computational Linguistics, pp. 6–12.

— (2019). “Incorporating Source Syntax into Transformer-Based
Neural Machine Translation.” In: Proceedings of the Fourth
Conference on Machine Translation. Florence, Italy: Associa-
tion for Computational Linguistics, pp. 24–33.

Marco Damonte and Shay B. Cohen (June 2019). “Structural
Neural Encoders for AMR-to-text Generation.” In: Proceed-
ings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapo-
lis, Minnesota: Association for Computational Linguistics,
pp. 3649–3658.

Nicola De Cao, Wilker Aziz, and Ivan Titov (June 2019). “Ques-
tion Answering by Reasoning Across Documents with Graph
Convolutional Networks.” In: Proceedings of the 2019 Confer-



138 bibliography

ence of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Associa-
tion for Computational Linguistics, pp. 2306–2317.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst
(2016). “Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering.” In: Advances in Neural In-
formation Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 3837–3845.

Michael Denkowski and Alon Lavie (2014). “Meteor universal:
Language specific translation evaluation for any target lan-
guage.” In: Proceedings of the ninth workshop on statistical ma-
chine translation, pp. 376–380.

Roberto Dessì and Marco Baroni (July 2019). “CNNs found
to jump around more skillfully than RNNs: Compositional
Generalization in Seq2seq Convolutional Networks.” In: Pro-
ceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, pp. 3919–3923.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(2019). “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding.” In: Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Minneapolos, USA: Association for
Computational Linguistics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman,
Caiming Xiong, Richard Socher, and Byron C. Wallace (2019).
ERASER: A Benchmark to Evaluate Rationalized NLP Models.
arXiv: 1911.03429 [cs.CL].

Shuoyang Ding, Adithya Renduchintala, and Kevin Duh (2019).
“A Call for Prudent Choice of Subword Merge Operations.”
In: MT Summit. arXiv: 1905.10453.

Finale Doshi-Velez and Been Kim (2017). “Towards A Rigor-
ous Science of Interpretable Machine Learning.” In: arXiv e-
prints, arXiv:1702.08608, arXiv:1702.08608. arXiv: 1702.08608
[stat.ML].

Timothy Dozat and Christopher D. Manning (2017). “Deep Bi-
affine Attention for Neural Dependency Parsing.” In: Pro-
ceedings of the International Conference on Learning Representa-
tions (ICLR). Toulon, France.

https://arxiv.org/abs/1911.03429
https://arxiv.org/abs/1905.10453
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608


bibliography 139

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael
Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan
P Adams (2015). “Convolutional networks on graphs for
learning molecular fingerprints.” In: Advances in neural in-
formation processing systems, pp. 2224–2232.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah
A. Smith (June 2016). “Recurrent Neural Network Gram-
mars.” In: Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics:
Human Language Technologies. San Diego, California: Associ-
ation for Computational Linguistics, pp. 199–209.

Jeffrey L Elman (1990). “Finding structure in time.” In: Cognitive
science 14.2, pp. 179–211.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka
(Aug. 2016). “Tree-to-Sequence Attentional Neural Machine
Translation.” In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers). Berlin, Germany: Association for Computational Lin-
guistics, pp. 823–833.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho (2017).
“Learning to Parse and Translate Improves Neural Machine
Translation.” In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short
Papers). Vancouver, Canada: Association for Computational
Linguistics, pp. 72–78.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer,
and Noah A. Smith (2015). “Sparse Overcomplete Word Vec-
tor Representations.” In: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Beijing, China: Association for Com-
putational Linguistics, pp. 1491–1500.

Jerome A Feldman, George Lakoff, Andreas Stolcke, and Susan
Hollbach Weber (1990). “Miniature language acquisition: A
touchstone for cognitive science.” In: Proceedings of the 12th
Annual Conference of the Cognitive Science Society. Citeseer,
pp. 686–693.

Jerry A Fodor and Zenon W Pylyshyn (1988). “Connectionism
and cognitive architecture: A critical analysis.” In: Cognition
28.1-2, pp. 3–71.

Mikel L Forcada and Ramón P Ñeco (1997). “Recursive hetero-
associative memories for translation.” In: International Work-



140 bibliography

Conference on Artificial Neural Networks. Springer, pp. 453–
462.

Stefan L Frank, Rens Bod, and Morten H Christiansen (2012).
“How hierarchical is language use?” In: Proceedings of the
Royal Society B: Biological Sciences 279.1747, pp. 4522–4531.

Jerome H Friedman, Bogdan E Popescu, et al. (2008). “Predic-
tive learning via rule ensembles.” In: The Annals of Applied
Statistics 2.3, pp. 916–954.

Mercedes Garcia-Martinez, Loïc Barrault, and Fethi Bougares
(2016). “Factored Neural Machine Translation Architectures.”
In: International Workshop on Spoken Language Translation (IWSLT’16).
Seattle, United States.

Jonas Gehring, Michael Auli, David Grangier, and Yann N. Dauphin
(2016). “A Convolutional Encoder Model for Neural Ma-
chine Translation.” In: CoRR abs/1611.02344.

Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin
(July 2017a). “A Convolutional Encoder Model for Neural
Machine Translation.” In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1:
Long Papers). Vancouver, Canada: Association for Computa-
tional Linguistics, pp. 123–135.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and
Yann N Dauphin (2017b). “Convolutional sequence to se-
quence learning.” In: Proceedings of the 34th International Con-
ference on Machine Learning. Vol. 70. JMLR, pp. 1243–1252.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins
(Oct. 2000). “Learning to Forget: Continual Prediction with
LSTM.” In: Neural Computation 12.10, pp. 2451–2471.

C Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee,
and Dong Chen (1990). “Higher order recurrent networks
and grammatical inference.” In: Advances in neural informa-
tion processing systems, pp. 380–387.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl (2017). “Neural Message Passing for
Quantum Chemistry.” In: Proceedings of the 34th International
Conference on Machine Learning, ICML. Sydney, Australia, pp. 1263–
1272.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael
Specter, and Lalana Kagal (2018). “Explaining Explanations:
An Overview of Interpretability of Machine Learning.” In:
2018 IEEE 5th International Conference on Data Science and Ad-
vanced Analytics (DSAA). IEEE, pp. 80–89.



bibliography 141

Peter W. Glynn (Oct. 1990). “Likelihood Ratio Gradient Esti-
mation for Stochastic Systems.” In: Commun. ACM 33.10,
pp. 75–84.

Alex Graves (2013). “Generating sequences with recurrent neu-
ral networks.” In: arXiv preprint arXiv:1308.0850.

Alex Graves and Jürgen Schmidhuber (2005). “Framewise phoneme
classification with bidirectional LSTM and other neural net-
work architectures.” In: Neural Networks 18.5, pp. 602–610.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih
(2015). “MuProp: Unbiased backpropagation for stochastic
neural networks.” In: International Conference on Learning Rep-
resentations.

Markus Harva and Ata Kaban (2005). “A variational Bayesian
method for rectified factor analysis.” In: Proceedings. 2005
IEEE International Joint Conference on Neural Networks, 2005.
Vol. 1. IEEE, pp. 185–190.

Kazuma Hashimoto and Yoshimasa Tsuruoka (Sept. 2017b). “Neu-
ral Machine Translation with Source-Side Latent Graph Pars-
ing.” In: Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, pp. 125–135.

— (2017a). “Neural Machine Translation with Source-Side La-
tent Graph Parsing.” In: CoRR abs/1702.02265.

Simon Haykin (1994). Neural networks: a comprehensive founda-
tion. Prentice Hall PTR.

Tamir Hazan, George Papandreou, and Daniel Tarlow (2016).
Perturbations, Optimization, and Statistics. MIT Press.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016).
“Deep residual learning for image recognition.” In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

Jindřich Helcl and Jindřich Libovický (2017). “Neural Monkey:
An Open-source Tool for Sequence Learning.” In: The Prague
Bulletin of Mathematical Linguistics 107, pp. 5–17.

Aurélie Herbelot and Eva Maria Vecchi (2015). “Building a shared
world: mapping distributional to model-theoretic semantic
spaces.” In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, Portugal: As-
sociation for Computational Linguistics, pp. 22–32.

John Hewitt and Christopher D. Manning (June 2019). “A Struc-
tural Probe for Finding Syntax in Word Representations.”
In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Hu-



142 bibliography

man Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Lin-
guistics, pp. 4129–4138.

Sepp Hochreiter and Jürgen Schmidhuber (1997). “Long short-
term memory.” In: Neural computation 9.8, pp. 1735–1780.

Jeremy Howard and Sebastian Ruder (2018). “Universal Lan-
guage Model Fine-tuning for Text Classification.” In: Pro-
ceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Melbourne, Aus-
tralia: Association for Computational Linguistics, pp. 328–
339.

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman (2018).
“Grammar Induction with Neural Language Models: An
Unusual Replication.” In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. Brus-
sels, Belgium: Association for Computational Linguistics,
pp. 4998–5003.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema (2018).
“Visualisation and ’diagnostic classifiers’ reveal how recur-
rent and recursive neural networks process hierarchical struc-
ture.” In: Journal of Artificial Intelligence Research 61, pp. 907–
926.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh,
and Hajime Tsukada (Oct. 2010). “Automatic Evaluation of
Translation Quality for Distant Language Pairs.” In: Proceed-
ings of the 2010 Conference on Empirical Methods in Natural
Language Processing. Cambridge, MA: Association for Com-
putational Linguistics, pp. 944–952.

Alon Jacovi and Yoav Goldberg (2020). Towards Faithfully Inter-
pretable NLP Systems: How should we define and evaluate faith-
fulness? arXiv: 2004.03685 [cs.CL].

Eric Jang, Shixiang Gu, and Ben Poole (2017). “Categorical Repa-
rameterization with Gumbel-Softmax.” In: Proceedings of the
International Conference on Learning Representations (ICLR). Toulon,
France.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua
Bengio (July 2015). “On Using Very Large Target Vocabu-
lary for Neural Machine Translation.” In: Proceedings of the
53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, pp. 1–10.

https://arxiv.org/abs/2004.03685


bibliography 143

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Her-
mann, and Kevin Knight (Dec. 2012). “Semantics-Based Ma-
chine Translation with Hyperedge Replacement Grammars.”
In: Proceedings of COLING 2012. Mumbai, India: The COL-
ING 2012 Organizing Committee, pp. 1359–1376.

Michael I. Jordan, Zoubin Ghahramani, TommiS. Jaakkola, and
LawrenceK. Saul (1999). “An Introduction to Variational Meth-
ods for Graphical Models.” In: Machine Learning 37.2, pp. 183–
233.

Łukasz Kaiser and Samy Bengio (2016). “Can active memory
replace attention?” In: Advances in Neural Information Pro-
cessing Systems, pp. 3781–3789.

Nal Kalchbrenner and Phil Blunsom (2013). “Recurrent Contin-
uous Translation Models.” In: Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing.
Seattle, Washington, USA, pp. 1700–1709.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande,
and Patrick Riley (2016). “Molecular graph convolutions:
moving beyond fingerprints.” In: Journal of computer-aided
molecular design 30.8, pp. 595–608.

Daniel Keysers et al. (2020). “Measuring Compositional Gener-
alization: A Comprehensive Method on Realistic Data.” In:
International Conference on Learning Representations.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush
(2017). “Structured Attention Networks.” In: Proceedings of
the International Conference on Learning Representations (ICLR).
Toulon, France.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro, Chris
Dyer, and Gábor Melis (June 2019). “Unsupervised Recur-
rent Neural Network Grammars.” In: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers). Minneapolis, Minnesota: As-
sociation for Computational Linguistics, pp. 1105–1117.

Diederik P. Kingma and Jimmy Ba (2015). “Adam: A Method
for Stochastic Optimization.” In: Proceedings of the Interna-
tional Conference on Learning Representations (ICLR). San Diego,
USA.

Diederik P. Kingma and Max Welling (2014). “Auto-Encoding
Variational Bayes.” In: International Conference on Learning
Representations (ICLR). Banff, Canada.



144 bibliography

Diederik P. Kingma and Max Welling (June 2019). “An Introduc-
tion to Variational Autoencoders.” In: arXiv e-prints, arXiv:1906.02691,
arXiv:1906.02691. arXiv: 1906.02691 [cs.LG].

Thomas N. Kipf and Max Welling (2016). “Semi-Supervised
Classification with Graph Convolutional Networks.” In: CoRR
abs/1609.02907.

Philipp Koehn, Franz J. Och, and Daniel Marcu (2003). “Statis-
tical Phrase-Based Translation.” In: Proceedings of the 2003
Human Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics,
pp. 127–133.

Taku Kudo (July 2018). “Subword Regularization: Improving
Neural Network Translation Models with Multiple Subword
Candidates.” In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers). Melbourne, Australia: Association for Computational
Linguistics, pp. 66–75.

Ponnambalam Kumaraswamy (1980). “A generalized probabil-
ity density function for double-bounded random processes.”
In: Journal of Hydrology 46.1-2, pp. 79–88.

Brenden M. Lake and Marco Baroni (2018). “Generalization
without systematicity: On the compositional skills of sequence-
to-sequence recurrent networks.” In: International Conference
on Machine Learning (ICML).

Phong Le and Willem Zuidema (June 2015). “Compositional
Distributional Semantics with Long Short Term Memory.”
In: Proceedings of the Fourth Joint Conference on Lexical and
Computational Semantics. Denver, Colorado: Association for
Computational Linguistics, pp. 10–19.

Tao Lei, Regina Barzilay, and Tommi Jaakkola (2016). “Ratio-
nalizing Neural Predictions.” In: Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics,
pp. 107–117.

Pavel Levin, Nishikant Dhanuka, and Maxim Khalilov (2017).
“Machine translation at Booking.com: Journey and lessons
learned.” In: arXiv preprint arXiv:1707.07911.

Jiwei Li, Will Monroe, and Dan Jurafsky (2016a). “Understand-
ing Neural Networks through Representation Erasure.” In:
CoRR abs/1612.08220. arXiv: 1612.08220.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel
(2016b). “Gated graph sequence neural networks.” In: Inter-
national Conference on Learning Representations.

https://arxiv.org/abs/1906.02691
https://arxiv.org/abs/1612.08220


bibliography 145

Jindřich Libovický and Jindřich Helcl (July 2017). “Attention
Strategies for Multi-Source Sequence-to-Sequence Learning.”
In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Van-
couver, Canada: Association for Computational Linguistics,
pp. 196–202.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg (2016). “As-
sessing the Ability of LSTMs to Learn Syntax-Sensitive De-
pendencies.” In: Transactions of the Association for Computa-
tional Linguistics 4, pp. 521–535.

Zachary Chase Lipton (2016). “The Mythos of Model Interpretabil-
ity.” In: ICML Workshop on Human Interpretability in Machine
Learning (WHI 2016).

Adam Liska, Germán Kruszewski, and Marco Baroni (2018).
“Memorize or generalize? Searching for a compositional RNN
in a haystack.” In: CoRR abs/1802.06467. arXiv: 1802.06467.

Ding Liu and Daniel Gildea (Aug. 2010). “Semantic Role Fea-
tures for Machine Translation.” In: Proceedings of the 23rd
International Conference on Computational Linguistics (Coling
2010). Beijing, China: Coling 2010 Organizing Committee,
pp. 716–724.

Yang Liu and Mirella Lapata (2018). “Learning Structured Text
Representations.” In: Transactions of the Association for Com-
putational Linguistics 6, pp. 63–75.

Christos Louizos, Max Welling, and Diederik P. Kingma (2018).
“Learning Sparse Neural Networks through L0 Regulariza-
tion.” In: International Conference on Learning Representations.

João Loula, Marco Baroni, and Brenden Lake (Nov. 2018). “Rear-
ranging the Familiar: Testing Compositional Generalization
in Recurrent Networks.” In: Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-
works for NLP. Brussels, Belgium: Association for Computa-
tional Linguistics, pp. 108–114.

Scott M Lundberg and Su-In Lee (2017). “A Unified Approach
to Interpreting Model Predictions.” In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Curran Associates, Inc., pp. 4765–4774.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals,
and Lukasz Kaiser (2015a). “Multi-task Sequence to Sequence
Learning.” In: CoRR abs/1511.06114.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wo-
jciech Zaremba (July 2015b). “Addressing the Rare Word

https://arxiv.org/abs/1802.06467


146 bibliography

Problem in Neural Machine Translation.” In: Proceedings of
the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, pp. 11–19.

Thang Luong, Hieu Pham, and Christopher D. Manning (Sept.
2015c). “Effective Approaches to Attention-based Neural
Machine Translation.” In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon,
Portugal: Association for Computational Linguistics, pp. 1412–
1421.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh (2017).
“The Concrete Distribution: A Continous Relaxation of Dis-
crete Random Variables.” In: Proceedings of the International
Conference on Learning Representations (ICLR). Toulon, France.

Jean Maillard and Stephen Clark (July 2018). “Latent Tree Learn-
ing with Differentiable Parsers: Shift-Reduce Parsing and
Chart Parsing.” In: Proceedings of the Workshop on the Rele-
vance of Linguistic Structure in Neural Architectures for NLP.
Melbourne, Australia: Association for Computational Lin-
guistics, pp. 13–18.

Christopher D. Manning (2015). “Computational Linguistics and
Deep Learning.” In: Computational Linguistics 41.4, pp. 701–
707. eprint: https://doi.org/10.1162/COLI_a_00239.

Diego Marcheggiani and Ivan Titov (2017). “Encoding Sentences
with Graph Convolutional Networks for Semantic Role La-
beling.” In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Copenhagen, Den-
mark: Association for Computational Linguistics, pp. 1506–
1515.

Diego Marcheggiani, Anton Frolov, and Ivan Titov (Aug. 2017).
“A Simple and Accurate Syntax-Agnostic Neural Model for
Dependency-based Semantic Role Labeling.” In: Proceedings
of the 21st Conference on Computational Natural Language Learn-
ing (CoNLL 2017). Vancouver, Canada: Association for Com-
putational Linguistics, pp. 411–420.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov (2018).
“Exploiting Semantics in Neural Machine Translation with
Graph Convolutional Networks.” In: Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers). New Orleans, Louisiana: Association
for Computational Linguistics, pp. 486–492.

https://doi.org/10.1162/COLI_a_00239


bibliography 147

Andre Martins and Ramon Astudillo (2016). “From softmax
to sparsemax: A sparse model of attention and multi-label
classification.” In: International Conference on Machine Learn-
ing, pp. 1614–1623.

Julian McAuley, Jure Leskovec, and Dan Jurafsky (2012). “Learn-
ing attitudes and attributes from multi-aspect reviews.” In:
Data Mining (ICDM), 2012 IEEE 12th International Conference
on. IEEE, pp. 1020–1025.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean (2013). “Distributed representations of words and
phrases and their compositionality.” In: Advances in neural
information processing systems, pp. 3111–3119.

Tomas Mikolov, Armand Joulin, and Marco Baroni (2016). “A
roadmap towards machine intelligence.” In: International Con-
ference on Intelligent Text Processing and Computational Lin-
guistics. Springer, pp. 29–61.

Christoph Molnar (2019). Interpretable Machine Learning. A Guide
for Making Black Box Models Explainable. https://christophm.
github.io/interpretable-ml-book/.

Maria Nădejde, Siva Reddy, Rico Sennrich, Tomasz Dwojak,
Marcin Junczys-Dowmunt, Philipp Koehn, and Alexandra
Birch (Sept. 2017). “Predicting Target Language CCG Su-
pertags Improves Neural Machine Translation.” In: Proceed-
ings of the Second Conference on Machine Translation. Copen-
hagen, Denmark: Association for Computational Linguis-
tics, pp. 68–79.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchimoto, Masao
Utiyama, Eiichiro Sumita, Sadao Kurohashi, and Hitoshi
Isahara (May 2016). “ASPEC: Asian Scientific Paper Excerpt
Corpus.” In: Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC 2016). Portorož,
Slovenia: European Language Resources Association (ELRA),
pp. 2204–2208. isbn: 978-2-9517408-9-1.

Eric Nalisnick and Padhraic Smyth (2016). “Stick-breaking vari-
ational autoencoders.” In: arXiv preprint arXiv:1605.06197.

Ramon P Neco and Mikel L Forcada (1997). “Asynchronous
translations with recurrent neural nets.” In: Proceedings of
International Conference on Neural Networks (ICNN’97). Vol. 4.
IEEE, pp. 2535–2540.

Vlad Niculae and Mathieu Blondel (2017). “A regularized frame-
work for sparse and structured neural attention.” In: Ad-
vances in Neural Information Processing Systems, pp. 3338–
3348.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


148 bibliography

Vlad Niculae, André F. T. Martins, and Claire Cardie (2018).
“Towards Dynamic Computation Graphs via Sparse Latent
Structure.” In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, pp. 905–911.

Franz Josef Och and Hermann Ney (2004). “The Alignment
Template Approach to Statistical Machine Translation.” In:
Computational Linguistics 30.4, pp. 417–449.

Martha Palmer, Daniel Gildea, and Paul Kingsbury (2005). “The
proposition bank: An annotated corpus of semantic roles.”
In: Computational linguistics 31.1, pp. 71–106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu
(2002). “BLEU: a method for automatic evaluation of ma-
chine translation.” In: Proceedings of the 40th annual meet-
ing on association for computational linguistics. Association for
Computational Linguistics, pp. 311–318.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszko-
reit (2016). “A Decomposable Attention Model for Natural
Language Inference.” In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing. Austin,
Texas: Association for Computational Linguistics, pp. 2249–
2255.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio (2013).
“On the difficulty of training recurrent neural networks.” In:
International conference on machine learning, pp. 1310–1318.

Hao Peng, Sam Thomson, and Noah A. Smith (2018). “Back-
propagating through Structured Argmax using a SPIGOT.”
In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Mel-
bourne, Australia: Association for Computational Linguis-
tics, pp. 1863–1873.

Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning (2014). “GloVe: Global Vectors for Word Representa-
tion.” In: Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer (2018).
“Deep Contextualized Word Representations.” In: Proceed-
ings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, pp. 2227–2237.



bibliography 149

Steven Phillips (1998). “Are feedforward and recurrent networks
systematic? Analysis and implications for a connectionist
cognitive architecture.” In: Connection Science 10.2, pp. 137–
160.

Nina Poerner, Hinrich Schütze, and Benjamin Roth (July 2018).
“Evaluating neural network explanation methods using hy-
brid documents and morphosyntactic agreement.” In: Pro-
ceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Melbourne, Aus-
tralia: Association for Computational Linguistics, pp. 340–
350.

Jordan B Pollack (1990). “Recursive distributed representations.”
In: Artificial Intelligence 46.1-2, pp. 77–105.

Maja Popović (Sept. 2015). “chrF: character n-gram F-score for
automatic MT evaluation.” In: Proceedings of the Tenth Work-
shop on Statistical Machine Translation. Lisbon, Portugal: As-
sociation for Computational Linguistics, pp. 392–395.

Matt Post (Oct. 2018). “A Call for Clarity in Reporting BLEU
Scores.” In: Proceedings of the Third Conference on Machine
Translation: Research Papers. Belgium, Brussels: Association
for Computational Linguistics, pp. 186–191.

Alessandro Raganato, Yves Scherrer, and Jörg Tiedemann (2020).
Fixed Encoder Self-Attention Patterns in Transformer-Based Ma-
chine Translation. arXiv: 2002.10260 [cs.CL].

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Woj-
ciech Zaremba (2016). “Sequence level training with recur-
rent neural networks.” In: Proceedings of the International Con-
ference on Learning Representations (ICLR).

Danilo J. Rezende and Fabio Viola (Oct. 2018). “Taming VAEs.”
In: arXiv e-prints, arXiv:1810.00597, arXiv:1810.00597. arXiv:
1810.00597 [stat.ML].

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra
(2014). “Stochastic Backpropagation and Approximate Infer-
ence in Deep Generative Models.” In: Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Bei-
jing, China, 21-26 June 2014, pp. 1278–1286.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin (2016). ““Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier.” In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Demonstrations. San Diego, California: Association for
Computational Linguistics, pp. 97–101.

https://arxiv.org/abs/2002.10260
https://arxiv.org/abs/1810.00597


150 bibliography

Herbert Robbins and Sutton Monro (Sept. 1951). “A Stochas-
tic Approximation Method.” In: The Annals of Mathematical
Statistics 22.3, pp. 400–407.

Paul Rodriguez and Janet Wiles (1998). “Recurrent neural net-
works can learn to implement symbol-sensitive counting.”
In: Advances in Neural Information Processing Systems, pp. 87–
93.

Jason Tyler Rolfe (2017). “Discrete variational autoencoders.”
In: ICLR.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt,
and Brenden M. Lake (2020). A Benchmark for Systematic Gen-
eralization in Grounded Language Understanding. arXiv: 2003.
05161 [cs.CL].

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams
(1985). Learning internal representations by error propagation.
Tech. rep. California Univ San Diego La Jolla Inst for Cog-
nitive Science.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van
den Berg, Ivan Titov, and Max Welling (2018). “Modeling
relational data with graph convolutional networks.” In: Eu-
ropean Semantic Web Conference. Springer, pp. 593–607.

Mike Schuster and Kuldip K. Paliwal (Nov. 1997). “Bidirectional
recurrent neural networks.” In: IEEE Transactions on Signal
Processing 45.11, pp. 2673–2681.

Holger Schwenk and Jean-Luc Gauvain (2002). “Connectionist
language modeling for large vocabulary continuous speech
recognition.” In: 2002 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Vol. 1. IEEE, pp. I–765.

Rico Sennrich and Barry Haddow (2016). “Linguistic Input Fea-
tures Improve Neural Machine Translation.” In: Proceedings
of the First Conference on Machine Translation (WMT16). Vol. abs/1606.02892.
Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch (Aug. 2016a).
“Edinburgh Neural Machine Translation Systems for WMT
16.” In: Proceedings of the First Conference on Machine Trans-
lation. Berlin, Germany: Association for Computational Lin-
guistics, pp. 371–376.

— (Aug. 2016b). “Neural Machine Translation of Rare Words
with Subword Units.” In: Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association for Compu-
tational Linguistics, pp. 1715–1725.

https://arxiv.org/abs/2003.05161
https://arxiv.org/abs/2003.05161


bibliography 151

Lloyd S Shapley (1953). “A value for n-person games.” In: Con-
tributions to the Theory of Games 2.28, pp. 307–317.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and Aaron Courville
(2018). “Neural Language Modeling by Jointly Learning Syn-
tax and Lexicon.” In: International Conference on Learning Rep-
resentations.

David Smith and Jason Eisner (June 2006). “Quasi-Synchronous
Grammars: Alignment by Soft Projection of Syntactic De-
pendencies.” In: Proceedings on the Workshop on Statistical
Machine Translation. New York City: Association for Com-
putational Linguistics, pp. 23–30.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micci-
ulla, and John Makhoul (2006). “A study of translation edit
rate with targeted human annotation.” In: In Proceedings of
Association for Machine Translation in the Americas, pp. 223–
231.

Nicholas D. Socci, Daniel D. Lee, and H. Sebastian Seung (1998).
“The Rectified Gaussian Distribution.” In: Advances in Neu-
ral Information Processing Systems 10. Ed. by M. I. Jordan, M.
J. Kearns, and S. A. Solla. MIT Press, pp. 350–356.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y.
Ng, and Christopher D. Manning (July 2011). “Semi-Supervised
Recursive Autoencoders for Predicting Sentiment Distribu-
tions.” In: Proceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing. Edinburgh, Scotland, UK.:
Association for Computational Linguistics, pp. 151–161.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christo-
pher D. Manning, Andrew Ng, and Christopher Potts (Oct.
2013). “Recursive Deep Models for Semantic Composition-
ality Over a Sentiment Treebank.” In: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Process-
ing. Seattle, Washington, USA: Association for Computa-
tional Linguistics, pp. 1631–1642.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea
(July 2018). “A Graph-to-Sequence Model for AMR-to-Text
Generation.” In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers). Melbourne, Australia: Association for Computational
Linguistics, pp. 1616–1626.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill Byrne (Aug.
2016). “Syntactically Guided Neural Machine Translation.”
In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Berlin,



152 bibliography

Germany: Association for Computational Linguistics, pp. 299–
305.

Miloš Stanojević and Khalil Sima’an (June 2014). “BEER: BEtter
Evaluation as Ranking.” In: Proceedings of the Ninth Work-
shop on Statistical Machine Translation. Baltimore, Maryland,
USA: Association for Computational Linguistics, pp. 414–
419.

Miloš Stanojević and Khalil Sima’an (2015). “Evaluating MT
systems with BEER.” In: The Prague Bulletin of Mathematical
Linguistics 104.1, pp. 17–26.

Miloš Stanojević and Khalil Sima’an (Oct. 2014). “Fitting Sen-
tence Level Translation Evaluation with Many Dense Fea-
tures.” In: Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, pp. 202–206.

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and
Andrew McCallum (2018). “Linguistically-Informed Self-Attention
for Semantic Role Labeling.” In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguis-
tics, pp. 5027–5038.

Erik Štrumbelj and Igor Kononenko (2014). “Explaining predic-
tion models and individual predictions with feature contri-
butions.” In: Knowledge and information systems 41.3, pp. 647–
665.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís Màrquez,
and Joakim Nivre (Aug. 2008). “The CoNLL 2008 Shared
Task on Joint Parsing of Syntactic and Semantic Dependen-
cies.” In: CoNLL 2008: Proceedings of the Twelfth Conference on
Computational Natural Language Learning. Manchester, Eng-
land: Coling 2008 Organizing Committee, pp. 159–177.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le (2014). “Sequence
to Sequence Learning with Neural Networks.” In: Neural In-
formation Processing Systems (NIPS). Montreal, Quebec, Canada,
pp. 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning
(2015). “Improved Semantic Representations From Tree-Structured
Long Short-Term Memory Networks.” In: Proceedings of the
53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, pp. 1556–1566.



bibliography 153

Aleš Tamchyna, Marion Weller-Di Marco, and Alexander Fraser
(Sept. 2017). “Modeling Target-Side Inflection in Neural Ma-
chine Translation.” In: Proceedings of the Second Conference on
Machine Translation. Copenhagen, Denmark: Association for
Computational Linguistics, pp. 32–42.

Ian Tenney, Dipanjan Das, and Ellie Pavlick (July 2019a). “BERT
Rediscovers the Classical NLP Pipeline.” In: Proceedings of
the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational
Linguistics, pp. 4593–4601.

Ian Tenney et al. (2019b). “What do you learn from context?
Probing for sentence structure in contextualized word rep-
resentations.” In: International Conference on Learning Repre-
sentations.

Sebastian Thrun (1995). “Extracting rules from artificial neural
networks with distributed representations.” In: Advances in
neural information processing systems, pp. 505–512.

Ivan Titov and Ryan McDonald (June 2008). “A Joint Model of
Text and Aspect Ratings for Sentiment Summarization.” In:
Proceedings of ACL-08: HLT. Columbus, Ohio: Association
for Computational Linguistics, pp. 308–316.

Ke Tran and Yonatan Bisk (2018). Inducing Grammars with and
for Neural Machine Translation.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson,
and Jascha Sohl-Dickstein (2017). “REBAR: Low-variance,
unbiased gradient estimates for discrete latent variable mod-
els.” In: Advances in Neural Information Processing Systems
30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Curran Asso-
ciates, Inc., pp. 2624–2633.

KP Unnikrishnan and Kootala P Venugopal (1994). “Alopex: A
correlation-based learning algorithm for feedforward and
recurrent neural networks.” In: Neural Computation 6.3, pp. 469–
490.

Eva Vanmassenhove and Andy Way (July 2018). “SuperNMT:
Neural Machine Translation with Semantic Supersenses and
Syntactic Supertags.” In: Proceedings of ACL 2018, Student Re-
search Workshop. Melbourne, Australia: Association for Com-
putational Linguistics, pp. 67–73.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin (2017). “Attention is all you need.” In: Advances in
Neural Information Processing Systems, pp. 6000–6010.



154 bibliography

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio (2018). “Graph At-
tention Networks.” In: International Conference on Learning
Representations.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Ben-
gio, and Pierre-Antoine Manzagol (2010). “Stacked denois-
ing autoencoders: Learning useful representations in a deep
network with a local denoising criterion.” In: Journal of ma-
chine learning research 11.Dec, pp. 3371–3408.

Elena Voita and Ivan Titov (2020). Information-Theoretic Prob-
ing with Minimum Description Length. arXiv: 2003 . 12298

[cs.CL].
Warren Weaver (1949). “The mathematics of communication.”

In: Scientific American 181.1, pp. 11–15.
— (1955). “Translation.” In: Machine translation of languages 14,

pp. 15–23.
Gail Weiss, Yoav Goldberg, and Eran Yahav (2018). “On the

practical computational power of finite precision RNNs for
language recognition.” In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2:
Short Papers). Melbourne, Australia: Association for Compu-
tational Linguistics.

Paul J Werbos (1982). “Applications of advances in nonlinear
sensitivity analysis.” In: System modeling and optimization.
Springer, pp. 762–770.

Adina Williams, Andrew Drozdov, and Samuel R. Bowman
(2018). “Do latent tree learning models identify meaning-
ful structure in sentences?” In: Transactions of the Association
for Computational Linguistics 6, pp. 253–267.

Ronald J Williams (1992). “Simple statistical gradient-following
algorithms for connectionist reinforcement learning.” In: Ma-
chine learning 8.3-4, pp. 229–256.

John Winn and Christopher M Bishop (2005). “Variational mes-
sage passing.” In: Journal of Machine Learning Research 6.Apr,
pp. 661–694.

Francis CK Wong and William SY Wang (2007). “Generalisation
towards combinatorial productivity in language acquisition
by simple recurrent networks.” In: Integration of Knowledge
Intensive Multi-Agent Systems, 2007. KIMAS 2007. Interna-
tional Conference on. IEEE, pp. 139–144.

Dekai Wu and Pascale Fung (June 2009). “Semantic Roles for
SMT: A Hybrid Two-Pass Model.” In: Proceedings of Hu-
man Language Technologies: The 2009 Annual Conference of the

https://arxiv.org/abs/2003.12298
https://arxiv.org/abs/2003.12298


bibliography 155

North American Chapter of the Association for Computational
Linguistics, Companion Volume: Short Papers. Boulder, Col-
orado: Association for Computational Linguistics, pp. 13–
16.

Yonghui Wu et al. (2016a). “Google’s Neural Machine Trans-
lation System: Bridging the Gap between Human and Ma-
chine Translation.” In: CoRR abs/1609.08144. arXiv: 1609.
08144.

— (2016b). “Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation.” In:
CoRR abs/1609.08144.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette,
and Wang Ling (2017). “Learning to Compose Words into
Sentences with Reinforcement Learning.” In: International
Conference on Learning Representations (ICLR). Toulon, France.

Mo Yu, Shiyu Chang, Yang Zhang, and Tommi Jaakkola (Nov.
2019). “Rethinking Cooperative Rationalization: Introspec-
tive Extraction and Complement Control.” In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, pp. 4094–4103.

Omar Zaidan and Jason Eisner (Oct. 2008). “Modeling Annota-
tors: A Generative Approach to Learning from Annotator
Rationales.” In: Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing. Honolulu, Hawaii:
Association for Computational Linguistics, pp. 31–40.

Omar Zaidan, Jason Eisner, and Christine Piatko (2007). “Using
“Annotator Rationales” to Improve Machine Learning for
Text Categorization.” In: Human Language Technologies 2007:
The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Confer-
ence. Rochester, New York: Association for Computational
Linguistics, pp. 260–267.

Ye Zhang, Iain Marshall, and Byron C. Wallace (Nov. 2016).
“Rationale-Augmented Convolutional Neural Networks for
Text Classification.” In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing. Austin,
Texas: Association for Computational Linguistics, pp. 795–
804.

Yuhao Zhang, Peng Qi, and Christopher D. Manning (2018).
“Graph Convolution over Pruned Dependency Trees Improves
Relation Extraction.” In: Proceedings of the 2018 Conference

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144


156 bibliography

on Empirical Methods in Natural Language Processing. Brus-
sels, Belgium: Association for Computational Linguistics,
pp. 2205–2215.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo (2015). “Long
short-term memory over recursive structures.” In: Interna-
tional Conference on Machine Learning, pp. 1604–1612.

Andreas Zollmann and Ashish Venugopal (2006). “Syntax Aug-
mented Machine Translation via Chart Parsing.” In: Proceed-
ings of the Workshop on Statistical Machine Translation. StatMT
’06. New York City, New York: Association for Computa-
tional Linguistics, pp. 138–141.



A B S T R A C T

A Tale of Two Sequences: Interpretable and Linguistically-Informed
Deep Learning for Natural Language Processing

Deep Learning (DL) has swiftly taken over our field of NLP.
It caused a shift from exploiting linguistic features and struc-
tures, such as POS-tags, dependency and constituency trees, to
relying solely on the input words, and treating a sentence as a
mere sequence of words. As performance records in NLP bench-
marks keep being broken, we can ask ourselves: are linguistic
structures now obsolete? Is there still a way to make use of
them?

In the first part of this thesis, we try to answer these ques-
tions in the context of machine translation. We find that we
can exploit a Graph Convolutional Network (GCN) to condi-
tion a neural machine translation model on linguistic input
structures, and we show empirically that we can gain perfor-
mance improvements while conditioning on syntactic depen-
dency structures, semantic role labeling structures, and both.
In addition to conditioning on explicit linguistic structure, we
also investigate if we can induce structure in a machine transla-
tion setting. We find that it is possible to learn useful structure
on top of word embeddings and CNN representations, while ob-
taining trivial (mostly diagonal) structure on top of LSTM rep-
resentations. This latent structure is related to the now popular
Transformer model, which can be seen as performing graph
convolution over dense graphs.

In the second part of the thesis, we look at two common crit-
icisms of neural networks: (1) their lack of interpretability, and
(2) their hunger for labeled data to generalize well. We first
study neural text classifiers, and make them interpretable by
having them provide an explanation, a rationale, for their pre-
dictions. This is done by showing exactly which part of the
input text is used for classification, rendering the model more
transparent than a model that does not provide a rationale. We
show that our method is more aligned with human rationales
than previous work. Finally, we investigate generalization of
neural networks. In particular, we look at the SCAN benchmark
and find obtaining a high score does not have to imply strong

157



158 bibliography

generalization behavior, due to the simple nature of the data
set. We propose a remedy for this problem in the form of the
NACS data set.



S A M E N VAT T I N G

Een Verhaal over Twee Sequenties: Interpreteerbare en Taalkundig-
geïnformeerde Deep Learning voor Natuurlijke Taalverwerking

Deep Learning (DL) heeft het vakgebied van natuurlijke taalver-
werking (NLP) abrupt overgenomen. Het veroorzaakte een ver-
schuiving van het benutten van taalkundige kenmerken en struc-
turen, zoals POS-tags, dependentiebomen en syntaxisbomen,
naar het uitsluitend gebruikmaken van woorden, en het be-
handelen van een zin als niets anders dan een opeenvolging
van woorden. Aangezien prestatierecords in NLP-benchmarks
keer op keer worden verbroken, kunnen we ons afvragen: zijn
taalkundige structuren nu achterhaald? Of is er toch nog een
manier om er gebruik van te maken?

In het eerste deel van dit proefschrift proberen we deze vra-
gen te beantwoorden in de context van automatische vertaling.
We zien dat we een Graph Convolutional Network (GCN) kun-
nen gebruiken om een neuraal vertalingsmodel op taalkundige
structuren te conditioneren, en we laten empirisch zien dat we
prestatieverbeteringen kunnen behalen met het conditioneren
op dependentiestructuren, semantische structuren, en beide. Bo-
venop het conditioneren op expliciete taalkundige structuren,
onderzoeken we ook of we structuur kunnen induceren met een
automatisch vertalingsmodel. We zien dat het mogelijk is om
nuttige structuur te leren bovenop woordembeddings en CNN
representaties, terwijl we triviale (veelal diagonale) structuur
krijgen bovenop LSTM representaties. Deze latente structuur is
gerelateerd aan het inmiddels populaire Transformer model,
dat gezien kan worden als het toepassen van graph convolu-
tion over een volledige graaf.

In het tweede deel van het proefschrift nemen we een kijk
op twee kritiekpunten van neurale netwerken: (1) hun gebrek
aan interpreteerbaarheid, en (2) hun honger naar geannoteerde
data om goed te generaliseren. Eerst bestuderen we neurale
textclassificatiemodellen, die we interpreteerbaar maken door
hen een uitleg, een rationalisering, te laten geven voor hun pre-
dicties. Dit doen we door te laten zien welke delen van de in-
voer worden gebruikt voor classificatie, en daardoor een model
te creëren dat transparanter is dan een model dat geen uitleg

159



160 bibliography

geeft. We laten zien dat onze methode beter aansluit bij de
uitleg die mensen geven dan eerdere methodes. Tenslotte on-
derzoeken we generalisatie van neurale netwerken. In het bij-
zonder kijken we naar de SCAN benchmark, en zien we dat
het behalen van een hoge score geen sterke generalisatie hoeft
te betekenen, vanwege de eenvoud van de dataset. We komen
met een simpele oplossing voor dit probleem in de vorm van
de NACS dataset.



Titles in the ILLC Dissertation Series:
ILLC DS-2009-01: Jakub Szymanik

Quantifiers in TIME and SPACE. Computational Complex-

ity of Generalized Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz

Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes

A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman

Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel

Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax

Subjectivity after Wittgenstein. Wittgenstein’s embodied and

embedded subject and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh

Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi

Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig

Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager

"Now that you mention it, I wonder...": Awareness, Atten-

tion, Assumption

ILLC DS-2009-11: Michael Franke

Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman

More Than the Sum of Its Parts: Compact Preference Repre-

sentation Over Combinatorial Domains

ILLC DS-2009-13: Stefan Bold

Cardinals as Ultrapowers. A Canonical Measure Analysis

under the Axiom of Determinacy.

ILLC DS-2010-01: Reut Tsarfaty

Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper

Playing with Information

ILLC DS-2010-03: Cédric Dégremont

The Temporal Mind. Observations on the logic of belief change

in interactive systems

ILLC DS-2010-04: Daisuke Ikegami

Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen

Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang

Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher

Use theories of meaning between conventions and social

norms

ILLC DS-2010-08: Amélie Gheerbrant

Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine

Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer

Logic, Algebra and Topology. Investigations into canonical

extensions, duality theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk

Knowing One’s Limits. Logical Analysis of Inductive Infer-

ence

ILLC DS-2010-12: Martin Mose Bentzen

Stit, Iit, and Deontic Logic for Action Types

ILLC DS-2011-01: Wouter M. Koolen

Combining Strategies Efficiently: High-Quality Decisions

from Conflicting Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada

Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen

The Meaning of Structure: the Value of Link Evidence for

Information Retrieval

ILLC DS-2011-04: Junte Zhang

System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen

Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein

Effective Focused Retrieval by Exploiting Query Context

and Document Structure

ILLC DS-2011-07: Jop Briët

Grothendieck Inequalities, Nonlocal Games and Optimiza-

tion



ILLC DS-2011-08: Stefan Minica

Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal

Modalities Through the Looking Glass: A study on coalge-

braic modal logic and their applications

ILLC DS-2011-10: Lena Kurzen

Complexity in Interaction

ILLC DS-2011-11: Gideon Borensztajn

The neural basis of structure in language

ILLC DS-2012-01: Federico Sangati

Decomposing and Regenerating Syntactic Trees

ILLC DS-2012-02: Markos Mylonakis

Learning the Latent Structure of Translation

ILLC DS-2012-03: Edgar José Andrade Lotero

Models of Language: Towards a practice-based account of

information in natural language

ILLC DS-2012-04: Yurii Khomskii

Regularity Properties and Definability in the Real Number

Continuum: idealized forcing, polarized partitions, Haus-

dorff gaps and mad families in the projective hierarchy.

ILLC DS-2012-05: David García Soriano

Query-Efficient Computation in Property Testing and Learn-

ing Theory

ILLC DS-2012-06: Dimitris Gakis

Contextual Metaphilosophy - The Case of Wittgenstein

ILLC DS-2012-07: Pietro Galliani

The Dynamics of Imperfect Information

ILLC DS-2012-08: Umberto Grandi

Binary Aggregation with Integrity Constraints

ILLC DS-2012-09: Wesley Halcrow Holliday

Knowing What Follows: Epistemic Closure and Epistemic

Logic

ILLC DS-2012-10: Jeremy Meyers

Locations, Bodies, and Sets: A model theoretic investigation

into nominalistic mereologies

ILLC DS-2012-11: Floor Sietsma

Logics of Communication and Knowledge

ILLC DS-2012-12: Joris Dormans

Engineering emergence: applied theory for game design

ILLC DS-2013-01: Simon Pauw

Size Matters: Grounding Quantifiers in Spatial Perception

ILLC DS-2013-02: Virginie Fiutek

Playing with Knowledge and Belief

ILLC DS-2013-03: Giannicola Scarpa

Quantum entanglement in non-local games, graph parame-

ters and zero-error information theory

ILLC DS-2014-01: Machiel Keestra

Sculpting the Space of Actions. Explaining Human Action

by Integrating Intentions and Mechanisms

ILLC DS-2014-02: Thomas Icard

The Algorithmic Mind: A Study of Inference in Action

ILLC DS-2014-03: Harald A. Bastiaanse

Very, Many, Small, Penguins

ILLC DS-2014-04: Ben Rodenhäuser

A Matter of Trust: Dynamic Attitudes in Epistemic Logic

ILLC DS-2015-01: María Inés Crespo

Affecting Meaning. Subjectivity and evaluativity in grad-

able adjectives.

ILLC DS-2015-02: Mathias Winther Madsen

The Kid, the Clerk, and the Gambler - Critical Studies in

Statistics and Cognitive Science

ILLC DS-2015-03: Shengyang Zhong

Orthogonality and Quantum Geometry: Towards a Rela-

tional Reconstruction of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh

Correspondence and Canonicity in Non-Classical Logic

ILLC DS-2015-05: Facundo Carreiro

Fragments of Fixpoint Logics: Automata and Expressive-

ness

ILLC DS-2016-01: Ivano A. Ciardelli

Questions in Logic

ILLC DS-2016-02: Zoé Christoff

Dynamic Logics of Networks: Information Flow and the

Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer

What do we need to hear a beat? The influence of attention,

musical abilities, and accents on the perception of metrical

rhythm



ILLC DS-2016-04: Johannes Marti

Interpreting Linguistic Behavior with Possible World Mod-

els

ILLC DS-2016-05: Phong Lê

Learning Vector Representations for Sentences - The Recur-

sive Deep Learning Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger

Aligning the Foundations of Hierarchical Statistical Ma-

chine Translation

ILLC DS-2016-07: Andreas van Cranenburgh

Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman

Position-based Quantum Cryptography and Catalytic Com-

putation

ILLC DS-2016-09: Teresa Piovesan

Quantum entanglement: insights via graph parameters and

conic optimization

ILLC DS-2016-10: Paula Henk

Nonstandard Provability for Peano Arithmetic. A Modal

Perspective

ILLC DS-2017-01: Paolo Galeazzi

Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio

The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera

Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà

Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld

Communication and Computation: New Questions About

Compositionality

ILLC DS-2017-06: Peter Hawke

The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün

Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama

Computational Modelling of Artificial Language Learning:

Retention, Recognition & Recurrence

ILLC DS-2017-09: Miloš Stanojević

Permutation Forests for Modeling Word Order in Machine

Translation

ILLC DS-2018-01: Berit Janssen

Retained or Lost in Transmission? Analyzing and Predict-

ing Stability in Dutch Folk Songs

ILLC DS-2018-02: Hugo Huurdeman

Supporting the Complex Dynamics of the Information Seek-

ing Process

ILLC DS-2018-03: Corina Koolen

Reading beyond the female: The relationship between percep-

tion of author gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg

Anticipating Affordances: Intentionality in self-organizing

brain-body-environment systems

ILLC DS-2018-05: Joachim Daiber

Typologically Robust Statistical Machine Translation: Un-

derstanding and Exploiting Differences and Similarities Be-

tween Languages in Machine Translation

ILLC DS-2018-06: Thomas Brochhagen

Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder

Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam

Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega

Games for functions: Baire classes, Weihrauch degrees, trans-

finite computations, and ranks

ILLC DS-2018-10: Chenwei Shi

Reason to Believe

ILLC DS-2018-11: Malvin Gattinger

New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin

Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam

Algebraic complexity, asymptotic spectra and entanglement

polytopes



ILLC DS-2019-01: Carlos Vaquero

What Makes A Performer Unique? Idiosyncrasies and com-

monalities in expressive music performance

ILLC DS-2019-02: Jort Bergfeld

Quantum logics for expressing and proving the correctness

of quantum programs

ILLC DS-2019-03: András Gilyén

Quantum Singular Value Transformation & Its Algorith-

mic Applications

ILLC DS-2019-04: Lorenzo Galeotti

The theory of the generalised real numbers and other topics

in logic

ILLC DS-2019-05: Nadine Theiler

Taking a unified perspective: Resolutions and highlighting

in the semantics of attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik

Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen

Cuts and Completions: Algebraic aspects of structural proof

theory

ILLC DS-2020-01: Mostafa Dehghani

Learning with Imperfect Supervision for Language Under-

standing

ILLC DS-2020-02: Koen Groenland

Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen

Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn

A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink

Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes

Hierarchy and interpretability in neural models of language

processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval

On the Path to the Truth: Logical & Computational Aspects

of Learning

ILLC DS-2020-08: Philip Schulz

Latent Variable Models for Machine Translation and How

to Learn Them

ILLC DS-2020-09: Jasmijn Bastings

A Tale of Two Sequences: Interpretable and Linguistically-

Informed Deep Learning for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari

Perceiving and communicating magnitudes: Behavioral and

electrophysiological studies


