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Personalizing users' experience and the ability to perform complex tasks on smart
devices and environments such as smart speakers and smart homes are changing the
way people are doing their daily tasks. Checking the weather and planning to visit a
museum is as simple as asking your smart speaker at home to read out loud the weather
condition and commanding the Intelligent Assistant integrated with the smart speaker
to book a ticket to visit the museum. To improve user experience in physical spaces such
as smart homes, museums, and cities while performing their daily tasks, effective
modeling of users interacting with smart devices is required. The overall goal of this
thesis is to improve users' experience in physical spaces such as smart cities and
environments by modeling user interactions with smart devices. Smart devices hold the
promise to bring the powerful tools of the online world into the physical world, and our
results highlight similarities and differences with user interactions in traditional search
and recommendation settings, and help promote the user experience while interacting
with smart devices.
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1
Introduction

The last decade witnessed a tremendous interest in creating smart devices and envi-
ronments helping users finding their information needs in a more personalized and
effective way. A smart device is “a context-aware electronic device capable of perform-
ing autonomous computing and connecting to other devices wire or wirelessly for data
exchange” [146].

One of the main directions towards the creation of smart devices and environments
is integrating Intelligent Assistants (IAs) such as Apple Siri, Google Now, Microsoft
Cortana and Amazon Alexa in different devices, which has led to the creation of
smart devices such as smart speakers [81] or virtually any other appliance including
smart microwaves [127]. Another main effort for the creation of smart devices and
environments is using the Internet of Things (IoT), which is integrated into physical
spaces that have led to the creation of smart environments such as smart museums and
smart cities [8].

Each of these smart devices and environments provides device-specific means of
user interactions. For example, users interact very differently with smart devices while
exploring archaeological objects in a smart museum compared to users interacting with
a search engine of the museum to explore archaeological objects. To be more specific,
in the smart museum, they might be able to use their RFID tags to unlock the contents
of a smart device sharing information about the museum’s objects. On the other hand,
at the search engine of the museum, they can click on an object to get more information
about them.

Since user interaction differs on these different smart devices and a different user
interaction leads to a different user behavior, there is a need to study user behavior on
these smart devices to provide effective personalized Information Retrieval (IR) systems
and improve user experience in physical spaces such as smart museums, cities, and
homes. For instance, a user may ask their smart speaker for an advice to visit a museum
in Amsterdam, which is the focus of chapters 5 and 6 of this thesis. After confirming
the visit to the museum by the user, the user may sit in their smart car, in which the
direction to the museum is automatically set in its navigation system. At their arrival,
they can visit a smart museum which is using IoT sensor logs and their search engine
click-through logs to provide a personalized experience to the user without asking them
to explicitly share their preferences. This is the main focus of chapter 2 of this thesis.
After the user completed their visit, they may like to have lunch in a restaurant, and use
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their mobile phone to receive personalized and contextualized recommendations, which
is discussed in chapters 3 and 4 with a focus on creating and maintaining reusable test
collections to evaluate contextual suggestion systems.

In this thesis, we study user modeling with an aim of providing a personalized
experience for users interacting with smart devices and evaluating users’ satisfaction
in using smart devices. We first study how to model user behavior to personalize user
experience in smart environments. We use behavior modeling to recommend Point Of
Interests (POI) in a smart museum. Furthermore, we study POI recommendation in the
tourist attraction recommendation domain and a smart city context, in which evaluation
of contextual suggestion systems is challenging due to a low degree of reusability of
available contextual suggestion test collection. Thus, we organized the Text REtrieval
Conference (TREC) contextual suggestion track to create a reusable test collection
for the effective evaluation of contextual suggestion systems. As we use dynamic test
collections in TREC contextual suggestion track causing test collections’ reusability
degrade over time, maintaining and improving reusability of test collection is also
studied in this thesis.

In addition to model users to provide a personalized experience in smart museums
and smart cities, we study user modeling on smart speaker IAs to provide a better user
experience in a smart home context. In particular, we study how to identify tasks and
sessions on smart speakers with an integrated IA such as Amazon Echo, Google Home,
Apple Homepod, and Harmon Kardon Invoke with Microsoft Cortana. We then study
how to model users’ interaction behavior with smart speakers to predict user satisfaction
while fulfilling their information needs in performing a task, which is an implicit signal
to improve the effectiveness of IAs.

1.1 Research Outline and Questions

In this thesis, the main aim is to investigate how to model users interacting with smart
devices to improve their experience in the physical space? To achieve the main aim of
this thesis, the thesis addresses improving users experience in physical spaces by (1)
modeling users interacting with smart devices in a smart museum to recommend POIs
(Chapter 2), (2) creating reusable test collection for offline evaluation of contextual
POI recommendation in a smart city context (Chapter 3), (3) maintaining reusability
of dynamic test collections for effective evaluation and performance improvement of
contextual POI recommendation in a smart city context (Chapter 4), (4) modeling users
interacting with smart speaker IAs to identify tasks and sessions from user interaction
logs (Chapter 5), and (5) modeling users interacting with smart speaker IAs to predict
user satisfaction (Chapter 6). Below, we list the main research question of every chapter.

We first study how to model user behavior based on their interactions with smart
devices in a smart museum to provide personalized recommendations of what to see
after visiting an initial set of POIs with an aim of improving the user experience at
the museum (Chapter 2). The IoT holds the promise to blend real-world and online
behavior in principled ways, yet we are only beginning to understand how to effectively
exploit insights from the online realm into effective applications in smart environments.
We experiment with behavioral user models based on interactions with smart devices

2



1.1. Research Outline and Questions

in a museum, and investigate the personalized recommendation of what to see after
visiting an initial set of POIs, a key problem in personalizing museum visits or tour
guides, and focus on a critical one-shot POI recommendation task—where to go next?
We have logged users’ onsite physical information interactions during visits in an IoT-
augmented museum exhibition at scale. Furthermore, we have collected an even larger
set of interaction logs of the search engine of the museum’s online collection. In doing
this, we answer the following research question:

RQ1 How to model users’ information interaction behavior with IoT having an aim of
providing a personalized onsite POI recommendation?

To answer this research question, we first study the similarities between users’ online
digital and onsite physical information interaction behaviors, and build new behavioral
user models based on the information interaction behaviors in (1) the physical exhibition
space, (2) the online collection, or (3) both. Specifically, we propose a deep neural
multi-layer perceptron (MLP) based on explicitly given users’ contextual information,
and set-based extracted features using users’ physical information interaction behaviors
and similar users’ digital information interaction behaviors.

Next, we study the contextual suggestion task, in which IR systems need to anticipate
users’ information needs and provide responses relevant to the users’ context without
the user having to enter an explicit query. To provide a controlled test collection for
the IR community for development and evaluation of contextual suggestion systems,
we organized the TREC 2016 Contextual Suggestion track that offers a personalized
POI recommendation task, in which participants develop systems to give a ranked list
of suggestions related to a profile and a context pair available in the tasks’ requests
provided by the track organizers. Previously, reusability of the contextual suggestion
track suffered from using dynamic collections and a shallow pool depth. In this test
collection building study for contextual suggestion problem, we answer the following
research question:

RQ2 How to create a reusable test collection for the Contextual Suggestion problem?

To answer this research question, the TREC CS web corpus, consisting of a web
crawl of the TREC contextual suggestion collection, was made available for the TREC
2016 contextual suggestion track participants. The rich textual descriptions of the web
pages make far more information available for each candidate POI in the collection. To
create a reusable test collection, a multi-depth pooling approach extending beyond the
shallow top 5 pool is used.

As dynamic test collections reusability may degrade over time, we study how we
can maintain reusability of dynamic test collections. Search has largely moved to the
web and it’s many portals and services, yet the dynamic nature of this domain makes it
challenging to build reusable test collections. Academic research relies on comparative
evaluation using sharable test collection for studying these tasks, and even industrial
research having access to online evaluation requires offline evaluation based on editorial
judgments for development and analysis. We extensively analyze the test collection
building efforts in the TREC 2014 Contextual Suggestion Track, offering a personalized
POI recommendation task allowing for either fixed corpus (ClueWeb12) submissions or
unrestricted open web submissions. We answer the following research question:

3



1. Introduction

RQ3 Can we build a reusable test collection for a dynamic domain by injecting judged
documents into a test collection with sparse judgments?

To answer RQ3, we first examine reusability of the original TREC contextual
suggestion test collections. We then investigate the expansion of the fixed test collection
by inserting open web pages and judgments. Furthermore, we propose a new reusability
test for non-pooled runs, called Leave In Uniques (LIU), that is a counterpart of the
usual Leave Out Uniques (LOU) for pooled runs.

To improve users experience while interacting with smart speaker IAs in their smart
homes, we study how to model users interaction behavior for predicting user satisfaction
on smart speaker IAs by identifying IAs tasks and sessions (Chapter 5) and then training
a behavioral user model based on user interaction with the smart speaker IAs for user
satisfaction prediction (Chapter 6).

We first focus on task and session identification as it is a key element of system
evaluation and user behavior modeling in IA systems. However, identifying tasks and
sessions for IAs is challenging due to the multi-task nature of IAs and the differences in
the ways they are used on different platforms, such as smart-phones, cars, and smart
speakers. Furthermore, usage behavior may differ among users depending on their
expertise with the system and the tasks they are interested in performing. In this study,
we investigate how to identify tasks and sessions in IAs given these differences. In
particular, we answer the following research question:

RQ4 What is the impact of the learning curve and task domain on task and session
boundaries when interacting with intelligent assistants?

To answer this research question, we analyze data based on the interaction logs of
two IAs integrated with smart-speakers. We fit Gaussian Mixture Models to estimate
task and session boundaries and show how a model with 3 components models user
interactivity time better than a model with 2 components. We then show how session
boundaries differ for users depending on whether they are in a learning-phase or not.
Finally, we study how user inter-activity times differ depending on the domain of the
task that the user is trying to perform.

In the last chapter, by having tasks and sessions identified from users’ raw interaction
logs with smart speakers, we proceed to a user satisfaction prediction study for users
performing a task on smart speakers. IAs are increasingly being used on smart speaker
devices, such as Amazon Echo, Google Home, Apple Homepod, and Harmon Kardon
Invoke with Cortana. Typically, user satisfaction measurement relies on user interaction
signals, such as clicks and scroll movements, to determine if a user was satisfied.
However, these signals do not exist for smart speakers, which creates a challenge
for user satisfaction evaluation on these devices. We answer the following research
question:

RQ5 How to evaluate user satisfaction in Intelligent Assistants based on user queries?

To answer RQ5, we propose a new signal, user intent, as a means to measure user
satisfaction. We propose to use this signal to model user satisfaction in two ways: 1)
by developing intent sensitive word embeddings and then using sequences of these
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intent sensitive query representations to measure user satisfaction; 2) by representing a
user’s interactions with a smart speaker as a sequence of user intents and thus using this
sequence to identify user satisfaction.

1.2 Main Contributions
In this section, we list theoretical, algorithmic and empirical contribution of the thesis.
For each contribution, we list the chapter from which it originates.

1.2.1 Theoretical contributions
1. Introducing position rank bias, temporal bias and crowd bias in users onsite

interaction with smart environments. (Chapter 2)

2. Introducing multi-depth pooling approach extending beyond the shallow top N
pool. The multi-depth pooling approach leads to creation of a test collection that
provides a more reliable evaluation results in ranks deeper than the traditional
pool cut-off. (Chapter 3)

3. Introducing a new reusability test for non-pooled runs, called Leave In Uniques
(LIU), that is a counterpart of the usual Leave Out Uniques (LOU) test for pooled
runs. (Chapter 4)

4. Introducing sequence of query intent as an implicit signal of user satisfaction
measurement on smart speaker intelligent assistants. (Chapter 6)

5. Introducing intent sensitive word embeddings, which can be used as word repre-
sentation input of natural language processing or information retrieval models.
(Chapter 6)

1.2.2 Algorithmic contributions
6. A behavioral user model incorporating both users online digital interaction be-

havior with a search engine and onsite physical interaction behavior with smart
devices in an environment for POI recommendation in smart environment. (Chap-
ter 2)

7. A deep neural behavioral user model for one-shot POI recommendation in a smart
environment. (Chapter 2)

8. Test collection augmentation approach to update test collections with an aim of
maintaining their reusability. (Chapter 4)

9. User satisfaction modeling by representing a user’s interactions with a smart
speaker as a sequence of user intents and thus using this sequence to identify user
satisfaction. (Chapter 6)
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10. User satisfaction modeling by developing intent sensitive word embeddings and
then using sequences of these intent sensitive query representations to measure
user satisfaction. (Chapter 6)

1.2.3 Empirical contributions
11. (a) A dataset for POI recommendation task in a smart environment which includes

real users onsite physical interactions with smart devices in a smart museum and
online digital interactions with the museum search engine. (b) Analysis on
similarity of users online digital interaction behavior to onsite physical interaction
behavior. (c) Analysis of the effect of given seen POIs set-size in the unseen POI
recommendation performance (Chapter 2)

12. (a) The TREC contextual suggestion web corpus, consisting of a web crawl of the
TREC contextual suggestion collection. (b) A dataset consists of endorsements
(end user tags) of the attractions given by the person issuing the request as part of
her profile in the TREC contextual suggestion track. (Chapter 3)

13. (a) Analysis of the reusability of the TREC Contextual suggestion test collections
(i.e., ClueWeb12 and OpenWeb test collections). (b) Expansion of the TREC
Contextual suggestion test collection, which fares much better on the stabler
measures and can be used for the evaluation of runs not contributing to the
original pools. (Chapter 4)

14. (a) Measuring task and session boundary cut-offs in IA systems. (b) Analysis
of the impact of learning phase and domain on task and session length and their
cut-off estimation. (Chapter 5)

15. (a) Statistically significant improvements over several baselines in terms of com-
mon classification evaluation metrics using our proposed user satisfaction models
based on the intent-sensitive query representations. (b) A dataset for user satis-
faction prediction and evaluating the performance of different user satisfaction
prediction models in IAs. (c) Extensive analyses to assess user satisfaction
prediction models in different task types. (Chapter 6)

1.3 Thesis Overview
In Chapter 2, we study how to blend users online interaction behaviors with users onsite
interaction behaviors to train a user behavioral model for onsite POI recommendation
in smart environments to improve user experience in a smart museum; in Chapter 3,
we report our TREC 2016 contextual suggestion track organization effort to create a
reusable test collection for contextual POI recommendation problem in a smart city
context; and in Chapter 4, we detail how to update contextual suggestion test collection
to maintain and improve the test collection reusability.

To improve user experience in performing tasks using smart speaker IAs in their
smart homes, in Chapter 5, we study impacts of contextual factors such as learning
phase on user interaction behavior to effectively identify tasks and sessions in smart
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speaker IAs. Chapter 6 details how intent of users’ utterance can be used as a signal
of user (dis)satisfaction and how we use intent-sensitive query representation for user
behavioral modeling on smart speakers to predict user satisfaction.

Finally, in Chapter 7, we conclude the thesis and discuss limitations and future
directions.

Although chapters of the thesis can be read independently, there is a dependency
between Chapter 5 and 6 as tasks identified in Chapter 5 is an input of the user sat-
isfaction prediction model in Chapter 6. Furthermore, a part of Chapter 4, which is
analyzing reusability of the TREC 2014 contextual suggestion test collection, is one of
the motivations of Chapter 3, in which we create a reusable test collection for evaluation
of personalized contextual suggestion systems.

1.4 Origins
In this section, we list the publications each chapter is based on and explain the role of
each author.

• Chapter 2 is based on the following papers:

– S. H. Hashemi and J. Kamps. Exploiting behavioral user models for point
of interest recommendation in smart museums. New Review of Hypermedia
and Multimedia, 24(3):228–261, 2018 [71]

– S. H. Hashemi and J. Kamps. Where to go next?: Exploiting behavioral
user models in smart environments. In Proceedings of the 25th Conference
on User Modeling, Adaptation and Personalization, pages 50–58. ACM,
2017 [68]

– S. H. Hashemi and J. Kamps. Skip or stay: Users behavior in dealing
with onsite information interaction crowd-bias. In Proceedings of the 2017
Conference on Conference Human Information Interaction and Retrieval,
pages 389–392, 2017 [70]

– S. H. Hashemi, W. Hupperetz, J. Kamps, and M. van der Vaart. Effects of
position and time bias on understanding onsite users’ behavior. In Proceed-
ings of the 2016 ACM on Conference on Human Information Interaction
and Retrieval, CHIIR ’16, pages 277–280. ACM, 2016 [77]

SHH designed the algorithm, ran the experiments, and did most of the writing; JK
contributed to the writing; WH and MV helped in collecting experimental data.

• Chapter 3 is based on the following paper:

– S. H. Hashemi, C. L. A. Clarke, J. Kamps, J. Kiseleva, and E. M. Voorhees.
Overview of the TREC 2016 contextual suggestion track. In Proceeding of
Text REtrieval Conference (TREC), 2016 [76]

SHH designed the algorithm, ran the experiments, and did most of the writing;
JKa helped with the algorithm design and contributed in writing; JKa, CC, JKi,
EV contributed in designing the experiments.
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• Chapter 4 is based on the following papers:

– S. H. Hashemi, C. L. Clarke, A. Dean-Hall, J. Kamps, and J. Kiseleva. An
analysis of test collection building in dynamic domains. Under Submission,
2020 [82]

– S. H. Hashemi, C. L. Clarke, A. Dean-Hall, J. Kamps, and J. Kiseleva. An
easter egg hunting approach to test collection building in dynamic domains.
In NTCIR-EVIA, pages 1–8, 2016 [74]

– S. H. Hashemi, C. L. Clarke, A. Dean-Hall, J. Kamps, and J. Kiseleva.
On the reusability of open test collections. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 827–830, 2015 [72]

SHH designed the algorithm, designed and ran the experiments, and did most of
the writing; JKa helped with the algorithm design and contributed in writing; AD
helped with running the experiments; JKa, CC, AD, JKi, contributed in designing
the experiments.

• Chapter 5 is based on the following paper:

– S. H. Hashemi, K. Williams, A. El Kholy, I. Zitouni, and P. Crook. Impact of
domain and user’s learning phase on task and session identification in smart
speaker intelligent assistants. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 1193–1202,
2018 [80]

This work was done during an internship at Microsoft in 2017. The task was
proposed by IZ; SHH designed the algorithms, ran experiments, and did most of
the writing; KW, AK helped with the algorithms design and running experiments.
KW, AK, IZ, and PC contributed to the writing.

• Chapter 6 is based on the following paper:

– S. H. Hashemi, K. Williams, A. El Kholy, I. Zitouni, and P. Crook. Mea-
suring user satisfaction on smart speaker intelligent assistants using intent
sensitive query embeddings. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 1183–1192,
2018 [81]

This work was done during an internship at Microsoft in 2017. The task was
proposed by IZ; SHH designed the algorithms, ran experiments, and did most of
the writing; KW, AK helped with the algorithms design and running experiments.
KW, AK, IZ, and PC contributed to the writing.

The thesis also indirectly builds on the following papers (listed in reverse chrono-
logical order):
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• M. van Zeelt, F. den Hengst, and S. H. Hashemi. Collecting high-quality dialogue
user satisfaction ratings with third-party annotators. In Proceedings of the 2020
Conference on Human Information Interaction and Retrieval, pages 363–367,
2020 [158]

• K. Williams, S. H. Hashemi, and I. Zitouni. Automatic task completion flows
from web APIs. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1009–1012, 2019
[170]

• S. H. Hashemi and J. Kamps. On the reusability of personalized test collections.
In Adjunct Publication of the 25th Conference on User Modeling, Adaptation and
Personalization, pages 185–189, 2017 [69]

• S. H. Hashemi, J. Kamps, and W. Hupperetz. Busy versus empty museums:
Effects of visitors crowd on users behaviors in smart museums. In Adjunct Publi-
cation of the 25th Conference on User Modeling, Adaptation and Personalization,
pages 333–334, 2017 [79]

• S. H. Hashemi, J. Kamps, and N. O. Amer. Neural endorsement based contextual
suggestion. In Proceeding of Text REtrieval Conference (TREC), 2016 [78]

• S. H. Hashemi, M. Dehghani, and J. Kamps. Parsimonious user and group
profiling in venue recommendation. In Proceeding of Text REtrieval Conference
(TREC), 2015 [73]

• S. H. Hashemi and J. Kamps. Venue recommendation and web search based on
anchor text. In Proceeding of Text REtrieval Conference (TREC), 2014 [67]
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2
Exploiting Behavioral User Models for

Point of Interest Recommendation in
Smart Museums

In this chapter, to improve user experience in smart museums, we focus on modeling
both users onsite physical information interaction behavior with smart devices in a smart
environment and their online digital information interaction behavior with a search
engine to personalize users experience and effectively predict Point Of Interests (POIs)
in the smart environment. Our aim is to answer RQ1: How to model users’ information
interaction behavior with IoT having an aim of providing a personalized onsite POI
recommendation?

2.1 Introduction

The last decade witnessed a surge of interest in the implementation of Internet of Things
(IoT) in different applications, such as smart shopping malls and smart museums, which
provide the infrastructure for understanding users’ physical interaction behavior and
consequently their preferences in interacting with smart environments [12, 14, 57, 70,
77, 89, 136]. This prompts a range of questions: In what ways can tracking people
in their real-life behavior and trying to understanding their interaction behaviors be
helpful? Is it possible to give effective recommendations to users by tracking them using
IoT but without getting any explicit information, like ratings, about their preferences?

Imagine you are at a huge museum like the Louvre in Paris and you want to
explore the museum. Usually, it is impossible to visit every single object in a large
museums like the Louvre in one day. Furthermore, freely roaming through the museum
is more desirable in comparison to the traditional fixed walking route designed in a
non-personalized way. Providing personalized experiences for users is highly valuable
in this context and will help them to visit all the interesting objects of the museum
according to the user’s preferences. In this case, how amazing would it be if a contextual
recommender system can tell you accurately what to visit without relying on extensive
history or explicit feedback from you?

The emergence of applications like the above leads to interest in logging users’ onsite
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Figure 2.1: Interactive POIs in a museum physical space, consisting of a series of pedestals with
screens and actuators integrated into the Roman department of the Allard Pierson Museum of
Archaeology in Amsterdam, The Netherlands.

physical information interactions, creating a new and potentially exponentially growing
data about physical interaction that resembles current online search engine interaction
logs. Although understanding users’ search behavior and their information needs based
on query logs is well-studied [32, 80, 81, 163], to the best of our knowledge, there has
not yet been any study on how to understand users’ behaviors and their information
needs based on similarities between users’ onsite physical and online digital information
interaction behaviors. The main contribution of this chapter is to address this research
problem by learning a behavioral user model using both onsite physical and online
digital user behaviors.

To this aim, users’ onsite physical interactions of visits in a museum and users’
online query logs of a search engine on the same collection are logged. Onsite physical
information interactions are based on unlocking contents of an installed iPad screen
at each POI using RFID tags. For privacy reasons we don’t have shared IDs, hence
users in both sets are un-connected, and we study the typical cold start case where we
have no prior history on a visitor to the smart exhibition in the museum yet we have
historical data of users’ online interactions with the museum search engine. We study
how we can use similarity of users’ online and onsite information interaction behaviors
with an aim of improving onsite POI recommendation at the smart museum. Figure
2.1 shows an example of the museum space with the mentioned installations. In this
way, we log users’ interactions with POIs and track users’ visits in the museum. Figure
2.2 shows the floorplan of an exhibition in a smart museum with an integrated IoT.
As it is shown in Figure 2.2, users behave differently after visiting a set of POIs. The
walk-through graph of three real users after checking in at POI1 and POI2 is plotted.
The blue and red paths show walk-through behaviors of two users tend to check-in at
POIs one after the other but with different preferences. The green path shows a user
who behaves completely different from the other two and does not check-in at POIs one
after the other. This figure shows an example of how different users exhibit different
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S POI8 POI7 POI6 POI5 POI4 POI3

POI2

POI1

C-in

Figure 2.2: Variance in onsite users’ behavior after visiting a set of POIs in a museum exhibition
shown in Figure 2.1. The figure indicates variance of three visitors’ preferences in visiting POIs.
Each of them shown by a different color, and the black edges are the ones walked by all the three
visitors. C -in is the check-in station and the S is the check-out station.

onsite physical behavior, which indicates that understanding and prediction of users’
onsite physical behaviors can be challenging and difficult.

Understanding users’ onsite physical behavior is also challenging as there are
external factors in the environment having impact on users’ behavior. As it is studied
in [77], users’ walk-through behavior and their dwell-time interacting with a POI in
an exhibition is affected by the position of the POI in the exhibition. They have also
observed a decrease in users interests in interacting with technology at the end of an
exhibition compared to the start of the exhibition. These external factors lead to position
and temporal rank bias in the collected onsite sensor logs [77]. Furthermore, users’
behavior is also affected by other visitors around them, which leads to an observation of
crowd-bias in collected onsite interaction logs [70].

Such external factors bring an additional complexity to understand users’ onsite
behavior as it makes users’ behavior a combination of “pure” content preferences
and other factors like the physical constraints. Moreover, there is a difference in how
different users will behave in the presence of external factors as those discussed above.
Therefore, understanding users’ onsite behavior and preferences in order to provide an
effective personalized service in a smart environment is an interesting yet challenging
problem. Understanding users’ onsite behavior and providing effective personalized
POI recommendation become even more challenging in smart museums as in the early
stage of launching a smart museum, we do not have access to considerable amount
of onsite walk-through sensor logs. Thus, taking advantage of other user preferences
signals available for a same collection could be very helpful. To this aim, we study
similarity of users’ online and onsite preferences by using users’ online interaction
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behavior signals to model their onsite interaction behaviors. Specifically, we build a
graph, in which graph nodes are the POIs available in a smart museum and graph edges
are created based on users’ click-through behavior on an online search engine providing
access to the same museum collection. We then define behavioral features based on the
built graph, which are used to create our proposed behavioral user models.

In this chapter, our main aim is to study the RQ1: How to model users’ information
interaction behavior with IoT having an aim of providing a personalized onsite POI
recommendation? Specifically, we answer the following research questions:

1. How to understand users’ onsite physical behavior and create a behavioral user
model that is able to effectively predict relevant unseen POIs?

2. How strong are different users’ interaction behaviors with IoT in understanding
users’ preferences?

2.1. Are online digital behaviors similar to onsite physical behaviors? Does
understanding online digital users’ information interaction behaviors have
a positive effect in learning a model to predict unseen relevant POIs and
complete users’ personalized onsite visits?

2.2. What are the relative importance of each feature extracted based on differ-
ent users’ interaction behaviors in effectiveness of POI recommendation
systems?

3. How effective is behavioral POI recommendation system in one-shot POI recom-
mendation problem?

4. What is the effect of given seen POIs set-size in the unseen POI recommendation
performance?

This chapter builds on and extends the work reported in [68] by providing more
detail and explanations of the approach and it’s relation to related works, and further
analysis such as a study of the impact of number of seen POIs on the performance of
the unseen POI recommendation system. The rest of the chapter is organized as follows.
In Section 2.2, we review related work on recommender systems and their use in the
museum domain, as well as on tracking behavior in smart environments. Our proposed
onsite POI recommendation approach is detailed in Section 2.3. The experimental setup
and results are discussed in Section 2.4 and 2.5. In Section 2.6, we discuss potential
future directions of our study in this chapter. Finally, we present the conclusions and
future work in Section 2.7.

2.2 Related Work

In this section, we discuss related work on context-aware recommendation systems,
POI recommendation systems, recommendation systems in museums, and the Internet
of Things (IoT).
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2.2.1 Context-Aware Recommendation Systems

Traditionally, recommender systems deal with applications having just two types of
entities, users and items. However, creation of more complex and realistic applications
leads to interest in a new line of research about how to incorporate contextual infor-
mation as an extra dimension into the recommendation systems [76]. There are three
ways of incorporating context in the recommender systems: contextual pre-filtering,
contextual post-filtering, and contextual modeling [1]. As the later approach is closer to
our study in this chapter, we will discuss some of the related research in the contextual
modeling.

In order to contextually model the context aware recommendation system, Karat-
zoglou et al. [101] proposed a multiverse recommendation method based on tensor
factorization, which integrates contextual information by modeling data as a User-Item-
Context N-dimensional tensor instead of a traditional 2-dimensional User-Item matrix.
One problem of this method is the data sparseness, which is proportional to the number
of defined contexts in their method. Liu and Aberer [115] proposed to partition the
User-Item matrix by grouping ratings of similar context, which could be helpful to
decrease the data sparseness. The other problem of the multiverse recommendation
method is that it only works for categorical features. To overcome this problem, Rendle
et al. [142] proposed to use factorization machines to model contextual information.
The above studies are done to model contextual information, however none of them are
scalable enough to be effective for the recent exponentially growing data.

2.2.2 POI Recommendation Systems

There have also been many studies to solve the POI recommendation problem in both
academia and industry [65, 187]. They generally try to adapt traditional recommenda-
tion algorithms to the POI recommendation problem. One line of research includes
collaborative filtering and matrix factorization approaches in location-based social net-
works (LBSNs). Berjani and Strufe [19] proposed regularized matrix factorization, in
which they apply personalized collaborative filtering on dimensionally reduced user-POI
matrices to minimize the squared regularized error. In addition to the geographical
aspects, there is research on POI recommendation that in addition to the geographical
dimension also includes the temporal dimension in the matrix factorization framework
[59, 63].

Within the POI recommendation literature, there are some studies that are related
to ours in the sense that they studied users’ check-in behavior [134, 144, 171, 172,
175, 181–183, 185]. As three interesting examples of these related works, Zheng et al.
[182] proposed collaborative location activity filtering. Particularly, they used collective
factorization to recommend locations or activities to users. To this aim, they used
comments having GPS data in a web-based GPS management system as a data source.
Moreover, Ye et al. [172] proposed a collaborative POI recommendation algorithm
based on geographical influence. To this aim, they used users check-in activities in
LBSNs. At last, Scholz et al. [144] studied talk attendance prediction in an academic
conference using a link prediction approach. To this aim, they logged talk attendance
behavior using RFID tags. However, none of the above studies used both the actual users’
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onsite physical information interaction behaviors and users’ online digital click-through
behaviors.

2.2.3 Recommendation Systems in Cultural Heritage

Another line of related work is research on recommender systems for museum visitors.
In museums, although using mobile tour guides cause negative social effects such as less
interaction with visitors’ fellow group members in a group visit, visitors are interested
in using location-aware mobile tour guides, in which they could get information from
the guide and spend more time in exhibitions [112]. As many museums have extensive
collections of objects which makes it impossible to visit all of them in a single day,
requiring visitors to be selective. Thus, personalization become one of the key topics of
research in cultural heritage domain [9].

Grieser et al. [62] studied next exhibition recommendation problem in the museum
space using visitors history. They applied Naive Bayes learning model using textual
description, geospatial proximity and popularity of exhibitions. In their study, popularity
baseline, which is one of our defined baseline in this chapter, was reported as the most
successful next exhibition recommendation model.

Bohnert et al. [20] studied unseen exhibition recommendation using nearest-neighbor
content-based filtering approach by taking visitors explicit ratings of exhibitions as
inputs. They did the study using 41 museum visitors as participants. Moreover, Bar-
tolini et al. [15] study recommendation of diverse multimedia data across several web
repositories, and arrangement of them in visiting paths. They consider location, number
of persons and weather condition as context in their contextual pre-filtering system, and
they did the study based on 90 users as participants.

Apart from different recommendation methods being used in the above studies in the
museum domain, they are limited in term of number of participants in the experiments.
In addition, none of them log and study users’ onsite physical information interactions
behaviors. In this chapter, we log more than 21,000 users’ visits of a museum in a 5
months period in operational practice, and our proposed model is based on users’ both
online digital and onsite physical information interaction behaviors.

In visiting a museum, recommendations can sometimes be very binary, which leads
to either a satisfactory visit or a dis-satisfactory one. For example, a visitor might be in
a situation of deciding a path to take from two available ones. The problem of deciding
which path to target to take in museums has been addressed in [164] by splitting screen
of their mobile tour guide to two parts in order to show both paths and what objects are
in their way in each path. This is a critical problem that the authors address by giving
information to users to decide themselves. In this chapter, we address this problem by a
one-shot POI recommendation system using a deep multilayer perceptron.

Closest in spirit to our work is [70], in which users’ onsite physical behaviors in the
existence of a crowd of users have been studied. They studied skip or stay behavior
prediction in checking in different POIs as a classification problem. Their study is
different from ours as they do not investigate on similarities between users’ physical
and digital behaviors. Furthermore, we study a POI ranking problem in this chapter but
they did research on onsite physical interaction behavior classification problem.

16



2.3. POI Recommendation Using Users’ Behaviors

2.2.4 Internet of Things
The Internet of Things (IoT) is a network of connected physical objects, in which sensors
and actuators are seamlessly embedded in physical environments, and information is
shared across platforms to develop a common operating picture [64]. The IoT was first
introduced by Kevin Ashton in 1999 in supply chain management context [11]. Then,
in the past decade, IoT applied to many applications such as health care systems [28],
smart cities [179] and smart museums [68].

Integration of IoT in physical environments provides not only the possibility to col-
lect information from the environment (i.e., sensing) and interact with the environment
via actuation, command and control [64], but also the opportunity to use the collected
information to provide services to users such as analytics [153] and personalization
[52, 68].

As the most relevant line of research to our study in this chapter, Evangelatos et al.
present a framework for creating personalized smart environments using wireless sensor
networks. Similar to our proposed behavioral user model, their proposed framework
can take personalized action based on some predefined profiles including information
such as users’ age. However, our proposed personalization model is very different
from their model as we model users behavior based on their implicit interaction signals
collected using sensor logs and personalize a user experience based on the user’s
behavior. Furthermore, their experimental results is based on just 8 users, which is
much lower than the number of users in our experiments based on an operational IoT
museum environment. In fact, our experimental results is based on thousands of users’
onsite and online information interactions logs.

2.3 POI Recommendation Using Users’ Behaviors
This section studies how to predict relevant POIs to the given user and context based
on users’ interaction behaviors, aiming to answer our first research question: How to
understand users’ onsite physical behavior and create a behavioral user model that is able
to effectively predict relevant unseen POIs? To this aim, we first present how the smart
museum and our collected user interaction logs look like. Then, after formally stating
the POI recommendation problem, we detail our proposed behavioral user models and
features extracted for training the model.

2.3.1 POI Recommendation in Smart Museums
There is a growing interests in integration of IoT in museums aiming to provide smart
services for museum visitors [6, 10, 30, 31, 61, 121, 140, 150]. In this study, we focus
on a specific type of smart museums that aims to understanding users’ information in-
teraction behavior based on collected onsite sensor and online click-through interaction
logs. In particular, we define a smart museum as:

• Smart museum is a museum with exhibitions that are richly and invisibly inter-
woven with sensors, actuators, displays, and computational elements, embedded
seamlessly in museum visits, and connected through a continuous network.
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Figure 2.3: An interactive POI in a museum physical space and a RFID tag as a key.

The data used in this chapter is based on the smart exhibition that is part of the
Roman department of the Allard Pierson Museum in Amsterdam, the Netherlands.
We aim at modeling users’ onsite physical interaction behavior in a smart museum by
training a behavioral user model based on a collected sensors’ information interaction
logs. To this aim, in our smart exhibition RFID tags are provided as a key to access
some additional information about objects being shown in the museum. Figure 2.3
shows an example of how these keys are being used to unlock content at each POI.
These keys are given to users at the start of the exhibition.

At the start of the museum exhibition, there is a check-in station, at which users
can enter their preferences in order to personalize the content being shown in all of
the POIs. These preferences are perspectives of the narratives (i.e., Rome, Egypt and
Lowlands), language (i.e., English and Dutch), and the user’s age range (i.e., Adults
and Children). Figure 2.4 shows statistics of a sample of the smart museum visitors’
preferences collected at the check-in station. In this sample, we exclude any user session
that has missing value for any of the three collected preferences. As it is shown in
Figure 2.4, visitors are interested in all available content perspective prepared for POIs.
Furthermore, as the smart museum is in Netherlands and it is expected, visitors usually
preferred Dutch over English content. Moreover, the smart museum is an archaeological
museum and our collected onsite interaction logs indicates that we have more adults
visitors compared to children visitors.

After checking in, users are free to put their tags on RFID readers of some or
all POIs to unlock contents being shown about objects at the POIs. We are mainly
interested in the choice, and order, of POIs visitors choose to interact with. Each POI
contains three different archeological objects. Users are free to interact with POIs in any
order. They can watch short movies, interact with 3D photos of POIs’ objects, or read
contents about objects being shown at POIs. At each POI, users are able to change the
perspective of narratives and learn about objects from different perspectives. However,
their visit will still be personalized based on their preference at the check-in station,
and they will see narratives based on their initial choice at the next POI. At last, users
might check out in a summary station, in which they might leave their name, gender,
birth date and email. By leaving their email, users shows their interests to receive more
content about the exhibition in a post-visit scenario.

In addition to the users’ onsite physical information interaction logs, we have also
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Figure 2.4: Distribution of onsite explicit context chosen by visitors at the check-in station.
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Figure 2.5: A museum’s online collection search engine result page.

collected query and click-through logs of the museum search engine. Specifically,
when users are in the museum website and explore the museum collection, they might
search for an object by issuing a query and then clicking objects being shown in search
engine result page (SERP). They might even not issue a query and just click on objects
recommended by the museum recommender system. By clicking on objects ranked
in the SERP or recommended in the museum search engine first page without issuing
a query, users land on the object page, which is shown in Figure 2.5. In the object
page, the museum recommender system recommends the most similar objects to the
clicked object, which easily lead to click chaining in session. In addition, users might
return to SERP and click on another object. They might also revise their query and
click on objects retrieved for the given revised query. All these online users’ interaction
behaviors leads to click chaining that is the basis of our defined online features, which
are detailed in Table 2.1.

There are other types of the museum search engine sessions which are not useful for
collecting our online features. As all of our online features are based on users’ online
click-through behavior, we exclude sessions with no click in our data pre-processing.
Furthermore, we filter out bot sessions in the data pre-processing.

In smart museums, there are many external factors that might have impact on users’
preferences in visiting POIs. For example, a user might be interested in POIs having
most popular objects in the exhibition. Furthermore, a user’s check-in behavior might
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Figure 2.6: A museum’s online collection search engine landing object page including related
objects recommended to users based on clicking on an object presented in the search engine result
page.
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be affected by location of POIs presented in the museum [77] or even visitors’ crowd
in the museum [70]. In addition to all these external factors, users’ preference play a
major role in their choice to visit an unseen POI after visiting a set of POIs. Users’
behavioral dynamics, due to existence of all these factors, makes it very challenging
to predict users’ next check-in interaction after visiting a set of POIs. To address this
problem, in addition to explicit context given by users at the start of an exhibition, we
try to implicitly capture context by user’s choice of visiting a set of POIs in the physical
environment. In the rest of this section, we first state unseen POI recommendation
problem based on a set of seen objects in a smart museum, and then we detail our
proposed model to address this problem.

2.3.2 Problem Statement

Let u “ tu1, u2, ..., uiu Ä U
i be a subset of users visited a smart environment,

cseen “ tc1, c2, ..., cju Ä C
j
seen a subset of seen or occurred contexts, and pseen “

tp1, p2, ..., pku Ä P
k
seen a subset of seen POIs. Then, let Rseen P Riˆjˆk

seen be a
user-context-POI matrix containing i users, j seen contexts and k seen POIs. Value
ri,j,k P Rseen refers to the visit frequency of user i, in context j to the POI k. In this
chapter, due to the fact that museum visitors rarely check in to a POI more than once,
we have used binary seen or unseen values rather than considering the frequency.

Having above information about users, given a subset of unseen contexts (i.e.,
cunseen “ tc1, c2, ..., cmu Ä C

m
unseen), and a subset of unseen POIs (i.e., punseen “

tp1, p2, ..., pnu Ä P
n
unseen), the behavioral unseen POI recommendation problem is

estimation of ri,m,n P Runseen based on users interaction behaviors with the seen POIs,
in which Runseen P Riˆmˆn

unseen is a user-context-POI matrix containing i users, m unseen
contexts and n unseen POIs.

In order to model the set-based contextual POI recommendation, we cast the context-
aware recommendation problem to a binary classification problem, in which relevant
POIs are labeled 1 and irrelevant ones labeled 0. In this way, we try to learn a behavioral
model to predict relevant unseen POIs to the given user and context based on the user’s
interaction behaviors in the context. Then, relevance probability of POIs to the user and
context pairs will be used to rank the unseen POIs. To this aim, a set of features that
represent users’ interaction behaviors in given contexts is defined.

2.3.3 Feature Set
In order to learn an effective model to rank POIs, we have extracted 18 different features.
As shown in Table 2.1, we have classified features to three sets, namely, explicit context,
onsite and online.

The explicit context features refer to information explicitly given by users about the
context. In our study, we collected users’ gender, their preferred language, their age
range and their chosen perspective of the narratives at the exhibition. Previous study
on these explicit contexts [77] shows that users behave differently in these different
contexts. For example, as it is discussed in [77], children tend to spend less time in
front of the POI about death. Therefore, it seems a reasonable set of features to consider
as explicit contexts. Furthermore, the content being shown in the exhibition at each POI
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Table 2.1: Defined features to predict relevant unseen POIs to users after visiting a set of POIs

Feature Category Description

f1 Explicit Context Gender (e.g., Female)
f2 Explicit Context Language (e.g., English)
f3 Explicit Context Visitor age range (e.g., Adults)
f4 Explicit Context Chosen perspective (e.g., Roman)

f5 Onsite Seen POIs set size.
f6 Onsite Content-based relevance score of a POI candidate to

a profile created using seen POIs’ content that was
shown onsite

f7 Onsite Unseen POI’s PageRank in onsite visits walk-through
weighted graph built based on a train set.

f8 Onsite Unseen POI’s PageRank in onsite visits walk-through
unweighted graph built based on a train set

f9 Onsite Unseen POI’s centrality in onsite visits walk-through
graph built based on a train set.

f10 Onsite Minimum distance of the seen set of POIs to the POI
candidate in the onsite visits walk-through graph built
based on a train set

f11 Onsite Median distance of the seen set of POIs to the POI
candidate in the onsite visits walk-through graph built
based on a train set

f12 Onsite Mean distance of the seen set of POIs to the POI
candidate in the onsite visits walk-through graph built
based on a train set

f13 Online Unseen POI’s PageRank in Online click-through
weighted graph built based on a train set

f14 Online Unseen POI’s PageRank in Online click-through un-
weighted graph built based on a train set

f15 Online Unseen POI’s Centrality in Online click-through
graph built based on a train set

f16 Online Minimum distance of the seen set of POIs to the
POI candidate in the Online click-through graph built
based on a train set

f17 Online Median distance of the seen set of POIs to the POI
candidate in the Online click-through graph built
based on a train set

f18 Online Mean distance of the seen set of POIs to the POI can-
didate in the Online click-through graph built based
on a train set
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is personalized, which implicitly has impact on users onsite interaction behavior.
The second group consists of onsite features which are a set of implicit behavioral

features collected during the interactions in the smart environment. In particular, we
use onsite features extracted based on user walk-through data. Specifically, f5 is the
number of seen POIs, which can be a signal of visitors’ expertise in interacting with the
POIs. In addition, it can be considered as a confidence indicator of some other features’
scores like f6. Whereas f6 is the content-based filtering score of POI candidate based
on the profile built using the seen POIs. This content-based filtering score is calculated
based on the onsite POI descriptions and users’ onsite interactions. That is why it is
considered as one of the onsite features in our feature classification.

In addition to f5 and f6, we build users’ walk-through graph using their onsite
interactions with POIs based on the train set onsite information interaction logs, and
calculate the further f7, f8, f9, f10, f11 and f12 features. Details of these features are
available in Table 2.1. In particular, f7 is unseen POI’s PageRank in the onsite visits
walk-through weighted graph. Weight of a link from POIa to POIb is the number
of times that visitors visited POIb after checking in at POIa. The main motivation
behind using pagerank rather than link popularity of POIs is the fact that pagerank helps
minimizing the effect of position rank bias of the POI1. It is shown in [77] that there is
a position rank bias in smart museums and it is more likely that users check in at POI1,
which is the closest POI from the check-in station. This leads to high degree of both
incoming and outgoing node degree for POI1. Using pagerank give less importance for
incoming links from POIs with many outgoing links (e.g., POI1), which minimizes the
possible bias on users’ behavior based on available external factors. On the other hand,
f9 is centrality feature that can capture popularity in the walk-through graph.

The third group consists of online features refers to a set of features based on online
interaction logs based on the collection information as offered on the museum’s web site.
The features are defined in a similar way as we have modeled the onsite selected POIs
using the onsite users’ interactions logs. However, the feature calculation is entirely
based on the prior online click-through graph of the museum search engine. As said
before, we assume a cold start scenario, where no mapping between users at the smart
exhibition and the online logs, hence no online prior history of the particular visitor.
The online click-through graph is filtered to the objects available at onsite POIs. In this
study, each onsite POI contains 3 different museum objects. We merge all the objects
related to each POI as one node, and the click-through graph’s edges are aggregated
from all the edges of POIs’ objects. As a result, same as onsite walk-through graph,
the online click-through graph has onsite POIs as nodes. Details of these features are
available in Table 2.1.

2.3.4 Learning Model
In order to learn a set-based behavioral POI recommendation model, we have imple-
mented a logistic regression classifier and a deep neural multilayer perceptron with
dropouts to estimate relevance of each POI to the given user after visiting a set of POIs.
The logistic regression classifier and the deep multilayer perceptron have been trained
separately based on each group of features extracted using different users’ information
interaction behaviors to study which user information interaction behavior is more
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effective in understanding users’ preferences in their interactions with the IoT in smart
environment. In the rest of this section, we will detail the logistic regression and the deep
multilayer perceptron implemented for the set-based behavioral POI recommendation.

Logistic Regression

Logistic regression classifier is a linear classifier that transparently helps understand
contribution of each feature in estimation of POIs relevancy. In fact, we would like to
know which trained logistic classifier performs better and why. To this aim, we train
different logistic regression classifiers based on different feature sets using different
users’ interaction behaviors.

In order to learn a logistic classifier, we use variable c P t0, 1u to show relevance
of a POI to a user in a context. Specifically, P✓pc “ 1|u, c, pq is the relevance score of
the POI p to the user u and the context c, in which ✓ is unknown parameters learned
using maximum likelihood estimation (MLE) based on the train set. Given the relevance
judgments r of each POI pk to a user ui and context cj in the train set, the likelihood L

of the train set is as follows:

L “
|U |π

i“1

|C|π

j“1

|Pseen|π

k“1

P✓pc “ 1|ui, cj , pkqrP✓pc “ 0|ui, cj , pkq1´r
,

in which we assume relevance judgments r are generated independently. We model
P✓pc “ 1|ui, cj , pkq by logistic function on a linear combination of features created
based on each specific group of users’ information interaction behaviors. Then, we
optimize the unknown parameters ✓ by maximizing the following log likelihood function:

✓
˚ “ argmax✓

|U |ÿ

i“1

|C|ÿ

j“1

|Pseen|ÿ

k“1

rlogP✓ pc “ 1|ui, cj , pkq

` p1 ´ rq logP✓ pc “ 0|ui, cj , pkq .
In order to turn the logistic classifier scores to probabilities, we have used the

softmax function:
S pyiq “ e

yi

∞
j
eyj

,

in which yi is the logistic classifier score, and Spyiq is the output relevance probability
of our behavioral POI recommendation model. At last, we rank unseen POIs based on
the logistic classifier output probability of POIs’ relevancy being estimated based on
features created using interaction behaviors of a given user in a context.

Deep Neural Multilayer Perceptron

In this subsection, we investigate on a deep neural multilayer perceptron (MLP) by
an aim of improving effectiveness of the POI recommendation to be used in critical
one-shot POI recommendation applications. The motivation behind the critical one-
shot POI recommendation is that an irrelevant recommendation sometimes has a very

25



2. Behavioral User Models for POI Recommendation in Smart Museums

negative effect in users’ experience in a way that they might be incorrectly guided to an
uninteresting department of a museum that leads to a dissatisfied experience. In this
model, for each user in a context, our main goal is to recommend a POI which is highly
relevant to them. In the one-shot POI recommendation, we do not care about relevant
POIs retrieved after rank 1. In the rest of this section, we detail our deep multilayer
perceptron with an aim of improving effectiveness of POI recommendation to be used
for the critical one-shot POI recommendation problem.

In order to learn a set based behavioral POI recommendation and learn users’ onsite
complicated physical behaviors, we have used a deep MLP neural network with 3
hidden layers having 326 units. To learn an effective model and overcome overfitting
problem, we have used a dropout feedforward neural network. Let l P t1, 2, 3u be the
index of the hidden layers of the network. Let zplq be the vector of input to layer l and
y

plq be the vector of outputs from layer l. The dropout neural network is modelled as
follows for any hidden unit i and l P t0, 1, 2u [90, 152]:

r
plq „ Bernoullippq,

ỹ
plq “ r

plq ˚ y
plq
,

z
pl`1q
i “ w

pl`1q
i ỹ

plq ` b
pl`1q
i ,

y
pl`1q
i “ fpzpl`1q

i q,

where r
plq denotes a vector of independent Bernoulli random variables having probabil-

ity p of being 1, ỹplq is thinned outputs created by multiplying a sample of rplq vector by
outputs of layer l (i.e., yplq) and used as input for the next layer l ` 1, wplq and b

plq are
weights and biases at layer l, and f is an activation function, which is rectified linear
units (ReLUs) in our setup. This process is done at each layer.

Following prior research in neural network domain, we have used p “ 0.5 in our
dropout network. This value is reported as a close to optimal value for a wide range of
networks in different applications [152].

In the learning phase, the derivatives of the loss function are backpropagated through
the dropout network. The dropout network is trained using the stochastic gradient
descent (SGD) algorithm with mini batches, which is widely used algorithm for training
neural networks. The learning rates are adjusted based on adaptive gradient algorithm
(AdaGrad) [49]. In the test phase, the sub-network is used without dropout, but the
weights are scaled as W plq

test “ pW
plq.

For the classification purpose and having probabilities as outputs, we have used
Logistic classifier in the last layer. The logistic classifier in the last layer is trained same
as the logistic regression classifier being discussed in previous subsection. The only
difference is that, in the logistic classifier being used in the last layer, we model P✓pc “
1|ui, cj , pkq by logistic function on a linear combination of inputs from the last hidden
layer units’ outputs. At last, the final relevance probability of P✓pc “ 1|ui, cj , pkq is
used to rank unseen POIs based on features created using interaction behaviors of a
given user in a context.
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2.4 Experimental Setup

In this section, we describe our experimental setup. We first describe the data set used
in this chapter, and second detail the evaluation methodology used in this study.

2.4.1 Dataset

The dataset of this study is based on onsite physical and online digital interaction logs
collected at an archeological museum. Onsite physical interaction logs are collected
using sensors available in the museum, and the online digital interaction logs are based
on click-through behavior of users.

In this chapter, 5 months onsite physical interaction logs of the museum with more
than 21,000 sessions is used, which leads to 3,925 high-quality onsite sessions to be
used for evaluation purposes.

The online features, detailed in Table 2.1, have been extracted based on 18,001
high-quality sessions created based on a common time-oriented session identification
approach in search engines using 30 minutes inactivity time as session cut-off boundary
[51, 145]. The main assumption is that a long period of inactivity between a user’s
activities indicates the user is probably no longer active, which leads to ending the
session.

2.4.2 Evaluation Methodology

In our collected onsite information interaction logs, about 16,000 out of 21,000 sessions
either did not have any interactions with POIs or they did not check out at the summary
station, and about 1,000 of them had interactions with all the POIs. In order to avoid
bias over users who are interested in visiting all or none of the POIs at the museum, we
exclude all sessions have checked in at all or none of the POIs at the exhibition. As a
result of this preprocessing step, 3,925 out of 21,000 high-quality onsite information
interaction sessions remain for creating the test collection.

Considering the walk-through graph, for each user in a session and at each checked-
in POI during their visit, we created a test collection using the seen set of POIs, the
user and the explicit contexts as the query and the unseen POIs as the candidates, for
which we have judgments based on the user’s session. Basically, we know which POI
candidates are visited by the user and consider them as relevant POIs. The rest of the
POIs are considered as irrelevant POIs.

Doing the above procedure in building the test collection leads to create a contextual
set-based POI recommendation test collection having 1,083,623 judgments. Table 2.2
shows an example of records created using a user session. To test our proposed model,
in order to avoid overfitting, we have done five-fold cross-validation, in which for each
fold as a test set, three out of the four remained folds randomly sampled and used as a
train set, and the remained fold used as a validation set. We repeat the process for all
the five folds and report the average of the evaluation metrics.
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Table 2.2: An example of records created for the test collection using a user session. The
judgments are based on seen POI set-size 2 and 3

Query context Seen POI set Candidate Relevance

c1 xPOI1,POI2y POI3 0
c1 xPOI1,POI2y POI4 1
c1 xPOI1,POI2y POI5 0
c1 xPOI1,POI2y POI6 0
c1 xPOI1,POI2y POI7 1
c1 xPOI1,POI2y POI8 0
c1 xPOI1,POI2,POI4y POI3 0
c1 xPOI1,POI2,POI4y POI5 0
c1 xPOI1,POI2,POI4y POI6 0
c1 xPOI1,POI2,POI4y POI7 1
c1 xPOI1,POI2,POI4y POI8 0

2.4.3 Evaluation Metrics
For the evaluation of the defined set-based behavioral POI recommendation task, we
cast the problem to a ranking task and use mean reciprocal-rank (MRR), mean average
precision (MAP ) and R-precision (R-Prec) as metrics that are effective to evaluate
proposed models. Moreover, in order to evaluate the one-shot POI recommendation
systems, we use precision at rank 1 (P@1) as an evaluation metric.

The MRR is the average of the reciprocal ranks of the first relevant result for a set
of queries Q as:

MRR “ 1

|Q|
|Q|ÿ

i“1

1

ranki
.

In our experiments, Q is a set of 1,083,623 queries (user and context pairs). In
MRR, ranki represents rank of first relevant POI for a given pair of user and context.
Precision at rank n (i.e., p@n) is used in number of evaluation metrics in this study,
which is defined as follows:

p@n “ # relevant POIs in top n results

n
,

where n is the rank. For a single query, AP is defined as the average of the p@n values
for all relevant POIs as:

AP “
∞N

n“1 p@n ˆ relpnq
R

,

in which N is the number of retrieved POIs candidates, and relpnq is a binary function
indicating the relevance of a POI to a given user and context pair at a given rank. A POI
is relevant to a user and context pair, if the user checks in at the POI at that visit. MAP

is the mean value of the APs computed for all queries. R-Prec is precision at rank R

where R is the number of relevant candidates for the given query. At last, P@1 is the
precision at rank 1.
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2.4.4 Baselines

In this section, we detail the baselines created for the evaluation purposes.

Popularity

The popularity based recommendation ranks POIs candidates according to their popu-
larity scores. According to previous evaluation studies in recommender systems such
as [88], systems recommending very popular items can guarantee that users will like
most of the recommended items. Moreover, the popularity baseline is usually used in
evaluation of personalized recommendation systems and it is informed as a competitive
baseline [116].

In this chapter, the popularity is computed as the number of users who checked in
at each POI. Therefore, regardless of what POI has been already seen by a user, the
popularity baseline recommends the most popular POIs according to other users who
checked in at the POIs before.

Bias-Based Filtering

In both physical and digital worlds, external factors has impact on users’ behavior with
information systems [68, 70, 77]. As a result, assuming existence of the same external
factors in the physical smart environments, we could take advantage of them and predict
the next POI based on users’ status in the environment. Although the bias-based filtering
baseline could be hard-to-beat, it would not be a very useful recommender system in
practice. Such a baseline is not based on users’ interests and their profile. They are just
predicting users next move using biases and external factors in the environment.

As Hashemi et al. [77] discussed, there are some biases in onsite user information
interaction logs. They introduces the walk-through position-bias that shows users tend
to visit POIs one after the other from check-in to check-out stations. They also observed
time-rank bias that indicates users tend to spend less time at the end of exhibitions.
Considering these two biases, the probability of checking in at a POI is proportional to
the distance from the Check-out station. Therefore, in all experiments of this chapter,
the bias-based baseline ranks POIs based on their distance from the check-out station.

Content-Based Filtering

As descriptions of POIs in museums are well curated, they are an informative source of
information that makes content-based filtering as an effective baseline in this domain.
In this study, each POI contains three museum objects with reach descriptions. In order
to build a content-based filtering model, we build a profile of each user after visiting
a set of POIs using Language Modeling framework. Each profile’s language model is
based on all seen objects of pseen.

Since we have profiles of users at each context based on their seen POIs, KL-
Divergence of each unseen POI’s language model and the profile is considered as
content-based filtering scores for ranking unseen POIs.
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Figure 2.7: Effectiveness of different types of users’ interaction behavior in understanding their
onsite preferences.

2.5 Experimental Results
In this section, we provide answer to the research questions stated in the introduction
section.

2.5.1 POI Recommendation using Users’ Information Interaction
Behaviors

This section answer our second research question: How strong are different users’
interaction behaviors with IoT in understanding users’ preferences?

To this aim, we have used each of the three groups of features extracted based on each
information interaction behaviors to train a POI recommendation system. Specifically,
we have trained three different logistic regression classifiers, which are trained based
on: 1) the explicit context features (i.e., Logistic Regression-Explicit Context) 2) the
onsite features (i.e., Logistic Regression-Onsite) and 3) the online features (i.e., Logistic
Regression-Online).

In the rest of this subsection, we first investigate whether users’ online digital
interaction behaviors are similar to the users’ onsite physical behavior. Then, we detail
relative importance of each feature extracted based on features’ weights being learned
by logistic regression classifiers using each type of users’ interaction behaviors with an
aim of understanding users’ behaviors.

Onsite Physical Behavior vs. Online Digital Behavior

We first look at the question: Are online digital behaviors similar to onsite physical
behaviors? Does understanding online digital users’ information interaction behaviors
have a positive effect in learning a model to predict unseen relevant POIs and complete
users’ personalized onsite visits?
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Figure 2.8: Features’ relative importance in POI recommendation trained based on each group of
users’ information interaction behaviors.

In order to answer this research question, we compare POI recommendation systems
trained based on each type of interaction behavior. As shown in Figure 2.7, the POI
recommendation system trained based on users’ online digital interaction behavior is
not only as good as the other POI recommendation systems being trained based on
either explicit context or onsite interaction behaviors, but also is performing better than
them in terms of all common tested information retrieval metrics.

This experiment indicates that availability of the considerable amount of online
interaction logs in comparison to onsite interaction logs leads to training an effective
onsite POI recommendation system based on users’ online digital interaction behaviors.
As we achieve an effective onsite POI recommendation system based on users’ online
digital interaction behaviors, we conclude that there is a similarity between onsite
physical and online digital information interaction behaviors.

31



2. Behavioral User Models for POI Recommendation in Smart Museums

Table 2.3: Set-based one-shot POI recommendation baselines effectiveness

Run P@1 MRR

Content-based Filtering 57.45 75.68
Popularity 60.86 77.67
Bias-Based Filtering 61.57 77.71

Table 2.4: Set-based one-shot POI recommendation effectiveness comparison between the Deep
MLP-Online and the best baseline. * indicates the improvement is statistically significant (⇢ †
0.05)

Run P@1 MRR

Bias-Based Filtering 61.57 77.71
Logistic Regression-Online 56.97 75.73
Deep MLP-Online 75.81 (23.12%*) 86.39 (11.17%*)

Features Relative Importance in Understanding Users’ Interaction Behav-
iors

We now look at the question: What are the relative importance of each feature extracted
based on different users’ interaction behaviors in effectiveness of POI recommendation
systems?

To this aim, we normalize features’ weights being learned in each logistic regression
classifier trained for each group of features separately. Then, average of the normal-
ized features’ weights over the 5-fold cross-validation are reported and compared in
Figure 2.8.

As it is shown in Figure 2.8, among the explicit context interaction, the chosen lan-
guage (i.e., f2) at the start of museum visits is relatively more important in comparison
to other explicit context based features. Furthermore, mean distance of the seen POIs to
a POI candidate in the onsite visits’ walk-through graph (i.e., f12) has relatively more
importance in comparison to other onsite interaction behavior based features. Regarding
the online interaction behaviors, median distance of the seen set of POIs to the given
candidate in the online click-through graph (i.e., f17) is relatively more important than
other online features in the effectiveness of the POI recommendation systems.

2.5.2 One-Shot POI Recommendation Using Users’ Interaction
Behaviors

This section answer our third research question: How effective is behavioral POI
recommendation system in one-shot POI recommendation problem? To this aim, we
first study effectiveness of the discussed baselines in one-shot POI recommendation
problem. Table 2.3 shows effectiveness of the baselines in terms of P@1 and MRR

metrics. Experimental results indicate that the Bias-based filtering baseline performs
better than the other baselines in terms of both one-shot POI recommendation evaluation
metrics. One possible explanation of this could be that users’ interaction behaviors is
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highly affected by external factors in physical environments [70, 77], which leads to
more predictable user behavior in the existence of those external factors. Thus, the bias-
based filtering baseline is even performing slightly better than the popularity baseline,
which is a hard-to-beat baseline according to previous studies in recommendation
systems in cultural heritage [116].

In order to evaluate effectiveness of our proposed one-shot POI recommendation
model, we study effectiveness of the implemented deep multilayer perceptron in one-
shot onsite POI recommendation problem in comparison to the best performed baselines
as well as the logistic regression POI recommendation system. Table 2.4 shows perfor-
mance of the best deep multilayer perceptron (i.e., Deep MLP) and logistic regression
classifiers, trained based on online digital interaction behaviors, in terms of P@1 and
MRR.

In this experiment, we just focus on the results based on P@1 and MRR as in
one-shot POI recommendation problem, we just care about the first ranked unseen
recommended object. Thus, P@1 is the main metric in evaluation of this problem. In
the evaluation of this experiment, we have also used the MRR metric as a representative
of the early precision based metrics.

As it is shown in Table 2.4, the deep MLP significantly improves the best competitive
baseline (i.e., Bias-Based Filtering) in one-shot POI recommendation. In particular,
the deep MLP has 23.12% improvement over the bias-based filtering baseline in terms
of P@1, which is the metric that measures as closely as possible the one-shot POI
recommendation performance. This experimental result shows that our proposed deep
MLP one-shot POI recommendation system results in very high precision, suggesting it’s
practical use to created an enhanced personalized experience for this critical application.

2.5.3 Impact of Seen Set Size
This section answer our research question: What is the effect of given seen POIs set-size
in the unseen POI recommendation performance?

In this experiment, we analyze impact of different seen POIs set-size in the ef-
fectiveness of the final POI recommendations. As it is shown in Figure 2.9, overall
performance of the recommendations are improved while users interact more with the
POIs and see more POIs. However, there are some biases in the users’ onsite informa-
tion interaction logs that add some noises in the observed patterns based on the seen
POIs set-size.

For example, due to the observed position-rank bias in users’ onsite behavior, POI4
has a higher chance of being the fourth seen POIs in users’ visits. It seems the POI4’s
location in the exhibition is the start location of a strong position-bias in which users
tend to visit POIs one after the other, except when there is a crowd of visitors in front of
the next POI. This makes it more difficult to understand users’ preferences in checking in
at unseen POIs. This may explain why there is a slightly decrease in recommendations
performance at seen POI set-size 4.

In real applications, we may always have external factors like the topology of POIs
in the physical space contributing in users’ behavior, which in this case, decreases
recommendations performance at four seen POIs. However, in an experimental environ-
ment that all external factors and biases are avoided, we can improve recommendations
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Figure 2.9: Effects of seen POIs set size on the performance of the best proposed model and
baselines.
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Figure 2.10: Impact of seen POIs set size on one-shot unseen POIs recommendation based on
number of irrelevant candidates in contrast to just one relevant POI (left figure) and relevancy
chance of a random recommended unseen POI (right figure).
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effectiveness by having more seen POIs and creating a richer profiles.
Experimental result shown in Figure 2.9 indicates that the effectiveness of our best

proposed POI recommendation model (MLP-Online) is improved by increasing number
of seen POIs in sessions. However, the improvement is not just due to obtaining more
history about the user profile. Specifically, in one-shot POI recommendation problem,
according to the number of available candidates in different seen POIs set-size, the
one-shot POI recommendation problem becomes easier when a smaller number of
unseen POIs remains, compared to the start of exhibition’s visit.

Figure 2.10 shows what is chance of recommending relevant POI in one-shot
POI recommendation is by randomly recommending a POI at each seen POIs set-
size. Specifically, when seen POIs set-size of a user visit is equal to one, one-shot
POI recommendation system has seven different POI candidates to recommend in
our experiment. As a result, by just randomly recommending a POI, it would have
1{7 „ 14% chance of recommending a relevant POI to the user. On the other hand, if a
user visited six POIs and has two unseen POIs in their visit, we would have 1{2 „ 50%

chance of recommending a relevant POI to the user by randomly recommending a POI.
As it is discussed in this experiment, our proposed model based on online features

is much less affected by the available biases in the users’ onsite information interaction
logs in comparison to all the other models. This experiment shows that the proposed
model is performing better than all the baselines at any seen set-size. In fact, although
one-shot POI recommendation problem is relatively more difficult when a user’s seen
POI set-size is low and have relatively higher number of candidates compared to later
stage of their visit, the improvement is even higher in lower seen set-sizes. One possible
explanation of this is that as the MLP-online trains the one-shot POI recommendation
model based on a larger number of hyper-parameters compared to baselines, it could
be able to have a greater improvement over baselines when the problem is harder to
address. In the next section, we discuss what would be future directions of our study in
POI recommendation in smart environments.

2.6 Future Directions

As shown in this chapter, we have achieved a high performance for next POI recom-
mendation problem using our proposed model. This one step recommendation problem
is a key application for museum exhibition navigation, or more generally next step
recommendation in smart environments, but there are other interesting applications that
suggest themselves. In particular, can we recommend a whole route which may require
additional aspects such as considering length or diversity, that are not captured by the
one step recommendation problem. In future work, we plan to study the problem of
route prediction in smart environments based on seen POIs profile logged by onsite
sensors.

Let us discuss an illustrative example. In a sample of the onsite sensor logs of
the smart museum being studied in this chapter, we have got 136 visitors who have
checked-in POI1, POI2 and POI4 but decided to skip interacting with POI3. At this
point, it would be interesting to recommend a personalized route to users. According
to our observation, users behave differently in checking-in the remained unseen POIs,
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S POI8 POI7 POI6 POI5 POI4 POI3

POI2

POI1

C-in

Figure 2.11: Users’ unseen POI routes after visiting a set of POIs, namely, POI1, POI2, and POI4
by skipping the POI3. The figure demonstrates two most popular unseen POI routes based on a
real traffic in a smart museum. Each of them shown by a different color, and the black edges are
the ones walked by all the three visitors. C -in is the check-in station and the S is the check-out
station.

namely, POI5, POI6, POI7, and POI8. In particular, 18% (24 out of 136) of the
sampled users chose to visit all the remained POIs one after the other (blue dashed
lines in Figure 2.11), which is the most popular route. The second popular route is
checking-in POI5 and POI6 but skip interacting with POI7 and POI8 (red dashed
lines in Figure 2.11), which was based on 12 % (16 out of 136) of the sampled users’
interactions.

As it is shown above, visitors have different preferences in checking-in different
POIs. Thus, understanding users’ onsite interaction behavior and recommending the
best route to take in smart environments is a challenging problem to study. We do not
discuss ideas on how to model users’ behavior to predict unseen objects’ route, however,
we have observed different behaviors based on some explicit preferences that were given
by visitors. For example, among the 24 visitors who decided to check-in all the remained
POIs of the above example, 10 out of 24 were interested in narratives from “low lands”
perspective in contrast to 7 out of 24 who where interested in narratives from “Rome”
perspective. The rest were interested in narratives from “Egypt” perspective. As we have
observed for the POI recommendation in smart environments problem, using explicit-
context, onsite and online features leads to effective POI recommendation models. Thus,
in the future work, using the mentioned features might be also a reasonable features to
start for the unseen route recommendation problem in smart environments.

As it is discussed in previous section, the seen POI set-size has a direct impact on
number of unseen objects in smart museums, which has effect on difficulty of predicting
relevant POI in the one-shot POI recommendation problem. Similarly, we have studied
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Figure 2.12: Impact of seen POIs set size on unseen POIs route recommendation based on number
of irrelevant candidates in contrast to just one relevant route (left figure) and relevancy chance of
a random recommended unseen POIs route (right figure).

impact of seen POI set-size on number of candidate routes, in which just one of the
routes is the relevant one. Figure 2.12 shows number of candidate routes at each seen
POIs set-size, which is calculated based on the following equation:

Nrc “
nÿ

k“1

n!

pn ´ kq! ,

where k is the size of sequence of unseen predicted POIs, n is the number of unseen
POIs in a user’s session, and Ncr is the total number of route candidates having from
one to n route length (number of POIs in the recommended route). As it is shown in
Figure 2.12, due to the number of irrelevant routes available for each relevant unseen
POIs route, the unseen POI route recommendation is a more challenging problem to
address compared to the next POI recommendation problem. We leave investigation on
this problem in smart environment to a future work.

One could easily think of further extensions of this, using the same kind of tech-
niques to address related problems emphasizing different aspects. Of particular interest
is to look the social aspects of smart exhibition visits, and ways to bring social aspects
into the digital realm. A specific interesting problem to tackle here is recommending
the most similar visitors, rather than items or object, in the smart environment. This
could be a great strategy to bring the social aspect to museum visits. As it is discussed
in [112], using mobile tour guides has negative social effects such as less interaction
with visitors’ fellow group members in a group visit. However, recommending similar
users in a museum who are most likely take a same route and visit same objects, we can
motivate individual users to create a group whose members have similar preference. In
this way, we could have a positive impact on social aspect of museum visits, by showing
the steps of prior, like-minded visitors, and bring the museum and the digital alive.

2.7 Discussion And Conclusions
The main focus of this section is the study of how to build a behavioral user model
for the set-based POI recommendation problem using users’ both onsite and online
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information interaction behaviors. Our study on the strength of using each type of users’
interaction behaviors with IoT in understanding users’ onsite information interaction
preferences shows that POI recommendation systems trained using features extracted
from a combination of both onsite physical and online digital information interaction
behaviors (i.e., online features) performs better than the ones trained by explicitly given
context or onsite information interaction behavior. Therefore, we conclude that there
is a similarity between onsite physical and online digital interaction preferences that
causes an improvement on the onsite POI recommendation effectiveness.

Furthermore, we have studied the critical one-shot POI recommendation problem.
According to our analysis, the learned models based on just basic explicit given contexts
or onsite users’ behaviors do not improve the hard-to-beat defined baselines (i.e.,
popularity and bias-based filtering). However, using a deep multilayer perceptron based
on features extracted by online interaction behaviors leads to a significant improvement
over the best baseline in all the defined evaluation metrics. Specifically, it has a
statistically significant improvement over all baselines with 23% improvement in term
of p@1 and 11% improvement in term of MRR. Therefore, our proposed approach is
very effective in critical one-shot POI recommendation.

Furthermore, we have studied impact of seen objects set size on the performance
of the proposed POI recommendation systems. According to our experiment, the
recommendation performance is generally increased proportional to the seen object set
size. Although external factors have impact on users’ behavior at seen set size four in
the exhibition, our proposed deep MLP model based on online features is less sensitive
to the external factors and performs better than other models and baselines at all seen
objects set sizes.

Our proposed MLP approach achieves 83% precision at rank 1 on the critical one-
shot POI recommendation problem, realizing the high accuracy needed for fruitful
deployment in practical situations. The proposed behavioral user model is generic and
can be widely used in any environment with an integrated Internet of Things (IoT)
infrastructure. Specifically, in the Cultural Heritage domain, the IoT applications hold
the promise to provide a more interactive and multisensory experiences for visitors,
and is expected to be integrated into museum practice in the next years [56, 96]. Our
proposed model exploits online features hence is only applicable in cases where an
online search engine with the similar objects or content related to the POIs is available
for extracting the online features. Although many museums and organizations have
a website with a search engine on their collection, it may not be the case in other
applications in different types of smart environments.

Our general conclusion in this chapter is that it is possible to fruitfully combine
information interactions in the online and physical world for effective recommendation
in smart environments, thereby effectively blending real-world and online behavior in
principled ways. This is an attractive direction, as IoT data is typically far more sparse
than online data due to physical or geographical constraints on users requiring to be
physically in the smart space.

This chapter addressed improving users experience in smart environments such as
smart museums by modeling users interaction with smart devices. In the next chapter,
we focus on creating reusable test collection for improving user experience in tourist
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attraction recommendation domain in smart environments such as smart cities.
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3
Test Collection Building for Contextual

POI Recommender Systems

Providing effective personalized and contextualized POI recommender systems to users
can lead to enhancing user experience in smart environments. To evaluate and improve
personalized and contextualized POI recommender systems, a reusable controlled test
collection can lead to flexibility of an effective offline evaluation of the personalized
and contextualized POI recommender systems.

In this chapter, we address RQ2: How to create a reusable test collection for
the Contextual Suggestion problem? We detail how we organize TREC contextual
suggestion track with an aim of creating reusable test collection for the contextual POI
recommendation problem.

3.1 Introduction

The TREC Contextual Suggestion Track ran for the fifth and last year as an independent
track in 2016 [39–41, 43]. The track has the primary goal of providing reusable test
collection for evaluation of point-of-interest (POI) recommendation systems. The test
collection is open to anyone who is willing to do research in contextual suggestion
problem.

The contextual suggestion track assumes a traveller in a specific context (e.g., a city
and trip type) seeking things to do that reflects their own interests, which is supposed to
be inferred from their interests in the given context and a visited city (seed cities in the
track). Given a user’s contexts and profile including a POI list, their tags/endorsements,
and ratings from the seed cities, participants make recommendations for attractions in a
new context (including the target city as the location).

For example, imagine a group of information retrieval researchers with a November
evening to spend in beautiful Gaithersburg, Maryland. A contextual suggestion system
might recommend a beer at the Dogfish Head Alehouse1, dinner at the Flaming Pit2, or
even a trip into Washington on the metro to see the National Mall3.

1www.dogfishalehouse.com
2www.flamingpitrestaurant.com
3www.nps.gov/nacc
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The track has been operating since 2012, we discuss the final setup as run at TREC
2016. The main changes compared to earlier years were:

1. The track provides a fixed TREC Contextual Suggestion Web corpus as an
additional data to overcome the dynamic nature of the open web.

2. The track provides endorsements (i.e., tags) of venues.

3. The track was split into two phases:

3.1. Phase 1 experiment, which is a collection based task similar to the TREC
2015 Contextual Suggestion Track’s Live Experiment. The main change is
that the track does not require participants set up and register a live server.
However, the track distributes a set of profiles and contexts and collect
responses in a batch wise fashion, as was used in the track until 2014.

3.2. Phase 2 experiment, which is a reranking task similar to the TREC 2015
Contextual Suggestion Track’s Batch Experiment.

4. The track used a multilayer pooling approach that aimed creating a reusable test
collection, which was very challenging in previous years of the track [72, 74] as
is detailed in the next chapter.

The rest of this chapter is organized in the following way. Next, in Section 3.2, we will
detail the track’s tasks. This is followed by a discussion of the resulting test collection
in Section 3.3 and the pooling method in Section 3.4. Then, Section 3.5 details the
evaluation results of all submissions and teams. We conclude the chapter in Section 3.6.

3.2 Task Overview
This section will discuss the tasks of the TREC 2016 contextual suggestion track. The
track followed the setup of 2015 with two distinct phases. In both phase 1 and phase 2
tasks, participants were asked to develop a system that is able to make suggestions for a
specific person based on their given profile and context. As input of the task, the track
organizers provide a set of profiles, a set of contexts and a set of example suggestions
(URLs of pages corresponding to POIs in a given context). Each profile corresponded
to a single user’s preferences in example suggestions of another context or city, their
gender and age, and each context includes information about the target city (i.e., the
target location), a trip type, a trip duration, a type of group the person is travelling with,
and a season the trip will occur in.

Profiles correspond to the stated preferences of real individuals, who either recruited
through crowdsourcing or recruited editorial judges. These assessors first judged
example attractions in seed locations, later returning to judge suggestions proposed by
the phase 1 participants for various contexts. Both for the profile (i.e., seed pages) and
for the suggested recommendations, assessors were able to choose the context or city
for which recommendations were judged.

As output of the phase 1 task, for each context/profile pair, participants were required
to return a ranked list of 50 suggestions. Each suggestion was expected to be relevant
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Table 3.1: TREC Contextual Suggestion track collection example.

Attraction ID City ID URL

TRECCS-00000005-418 418 http://www.greatfallsmt.net/people offices/park rec/gibson.php
TRECCS-00000006-418 418 http://www.mackenzieriverpizza.com
TRECCS-00000007-418 418 http://www.bostons.com
TRECCS-00000008-418 418 http://pink.victoriassecret.com

to the given profile and the context. As output of the phase 2 task, participants were
expected to rerank the given suggestion candidates with respect to the user’s profile and
context and return them as the phase 2 response. To be precise:

Phase 1 Experiments The phase 1 experiment is a collection based task, in which
participants are asked to develop a contextual suggestion system that is able to
make suggestion for a particular person in a specific context. In particular, for
each given request (including profile and context), participants has to retrieve 50
suggestions from the TREC contextual suggestion collection as a response.

Phase 2 Experiments The phase 2 experiment is a reranking task, in which a sug-
gestion candidates set is provided for each request. In fact, all the suggestion
candidates available in phase 2 requests were made by participants in phase 1.
Therefore, we have all the judgments of the suggestions available in the sug-
gestion candidates, which facilitates the reuse of the contextual suggestion test
collection.

The track continues to use a collection of URLs corresponding to POIs in each
context that was released in 2015, see the examples in Table 3.1. For the future studies
on the contextual suggestion problem using the TREC contextual suggestion track qrels,
due to the dynamic nature of the collection, we strongly recommend to use the TREC
Contextual Suggestion Web corpus, which will be introduced in Section 3.3.2.

3.3 Test Collection
This section discusses the resulting test collection. TREC 2016 contextual suggestion
test collection consists of a corpus (including TREC contextual suggestion collection
and the web corpus), a set of requests, and relevance judgments. In addition we have
also released suggestions’ endorsements.

3.3.1 TREC CS Collection
The TREC Contetxual Suggestion collection was collected by asking participants as
volunteers to retrieve suggestion candidates related to each city from the open web in a
pre-task phase. This collection was created in TREC 2015 contextual suggestion track.
The collection consists of a set of attractions. For each attraction there are:

1. An attraction ID, which contains three parts separated by dashes (-)

1.1. The string ‘TRECCS’
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foursquare

20%

yelp

16%
tripadvisor

5%

Others

59%

Figure 3.1: Most popular domains in the TREC Contextual Suggestion Web Corpus.

1.2. An 8 digit number

1.3. A three digit number corresponding to that attraction’s city ID

2. A city ID which indicates which city this attraction is in

3. A URL with more information about the attraction

4. A title

An example of the TREC Contextual Suggestion collection is given in Table 3.1.

3.3.2 TREC CS Web Corpus
In addition to the TREC contextual suggestion collection, which is available since 2015,
we released TREC contextual suggestion web corpus. The TREC CS web corpus is
a web crawl of the suggestions’ URLs available at the TREC contextual suggestion
collection. In this crawl, we have managed to fetch 77.39 % of the whole TREC
Contextual Suggestion collection, which is 956,437 web pages out of 1,235,844 URLs.

This crawl includes web pages from different domains like yelp, tripadvisor and
foursquare. Yelp was the most difficult domain to crawl, and we managed to crawl
about 153K out of 220K yelp web pages available in the TREC contextual suggestion
collection. Figure 3.1 indicates percentage of available POIs from the most popular
tourist attraction domains in the TREC Contextual Suggestion Web corpus. As it is
shown in this figure, Foursquare, Yelp and Tripadvisor are the most popular domains in
the TREC Contextual Suggestion Web corpus.

The TREC Contextual Suggestion Web Corpus includes attraction web pages of 272
different North American cities. In this corpus, there are 3,516.31 tourist attraction web
pages in average per city. The corpus is in a WARC (Web ARChive) format. In order to
have access to the data designated as the TREC CS Web Corpus, organizations must
first fill in a data release Organizational Application Form. Then, the signed form must
be scanned and sent by email to data@list.uva.nl. On receipt of the form, participants
will be sent information on how to download the corpus.
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Friends

49%

Alone
13%

Family

36%
Other

2%

Summer

74%

Spring

18%

Autumn

8%

Weekend trip

52%

Longer

36%
Night out

7% Day trip
5%

Male

57%

Female

43%

Figure 3.2: Example of official phase 1 requests’ contexts and profiles statistics.

3.3.3 Requests
In both phase 1 and phase 2 experiments, each request contains information about

assessors’ preferences as profiles and their chosen context. Moreover, phase 2 requests
contains suggestion candidates related to each profile and context pair. Each profile
consists of a list of attractions the assessor has previously rated, their gender and their
age. For each attraction the profile will include:

1. A rating:

1.1. 4: Strongly interested
1.2. 3: Interested
1.3. 2: Neither interested or uninterested
1.4. 1: Uninterested
1.5. 0: Strongly uninterested
1.6. -1: Not loaded or no rating given

2. Tags/endorsements if it is applicable.

Each context consists of a city name which represents which city the trip will occur
in and several pieces of data about the trip. The context is as follows:

1. A city the trip will occur in (e.g., Seattle)

2. A trip type (e.g., Business)
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1 {"id":743,

2 "body": {

3 "group": "Friends",

4 "season":"Summer",

5 "trip_type":"Holiday",

6 "duration":"Weekend trip",

7 "location":{

8 "state":"TX",

9 "id":306,

10 "name":"Waco",

11 "lat":31.54933,

12 "lng":-97.14667},

13 "person": {

14 "gender": "Male",

15 "age": 28,

16 "id": 15012,

17 "preferences":[

18 {

19 "rating":4,

20 "documentId":"TRECCS-00211395-161",

21 "tags":[

22 "Cocktails",

23 "Restaurants"

24 ]},

25 ...

26 ]

27 }},

28 "candidates":[

29 {"documentId":"TRECCS-00267253-306",

30 "tags":[

31 "Family Friendly",

32 "Restaurants"

33 ]},

34 {"documentId":"TRECCS-00294259-306",

35 "tags":[

36 "Entertainment",

37 "Live Music"

38 ]},

39 ...

40 ]

41 }

Figure 3.3: TREC Contextual Suggestion Track phase 2 request example in JSON format
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3. A trip duration (e.g., Weekend trip)

4. A type of group the person is travelling with (e.g., Travelling with a group of
friends as “Friends”)

5. A season the trip will occur in (e.g., Summer)

An example of the TREC Contextual Suggestion phase 2 request is shown in Figure
3.3. The track organizers provide 438 input requests in total, in which requests having
identifiers from 700 to 922 are used for the official experiments in TREC 2016 contextual
suggestion track. In particular, TREC 2016 Phase 1 test collection consists of judgments
of 61 requests, and TREC 2016 Phase 2 test collection includes all the phase 1 requests
except requests having 707, 912 and 922 as identifiers, hence 58 requests in total. The
difference is a result of some additional judged requests coming available after the
release of the phase 2 requests. Some examples of official phase 1 requests’ context and
profile statistics are shown in Figure 3.2.

In building profiles for the TREC 2016 official requests (request IDs °“ 700), two
seed cities were chosen (Seattle and Detroit). Each seed city had 30 POIs to be judged
as user profiles. Users could choose which seed city to judge. If they just rate POIs of
one of the cities, their profiles have 30 rated POIs. If they rate both of the seed cities’
POIs, their profiles have 60 rated POIs. For example, in Phase 2 official requests, there
are 39 requests having 30 judged example suggestions and 19 requests having 60 judged
example suggestions in their profiles.

In phase 2 requests, due to the use of multi-depth pooling, which will be detailed in
Section 3.4, the size of provided suggestion candidates is varied per request. Specifi-
cally, average number of suggestion candidates over the 58 phase 2 requests is 96.53,
maximum number of suggestion candidates is 119 and minimum number of suggestion
candidates is 79.

The rest of the requests, which were collected in TREC 2015, were used as train
set of the TREC 2016 contextual suggestion track, as the qrels of those requests were
available since TREC 2015. The TREC 2016 identifiers of those requests are same as
the one used in TREC 2015, which facilitates evaluation of these requests based on the
TREC 2015 contextual suggestion test collection. However, we have created a new pool
and new sets of suggestions as suggestion candidates using the multi-depth pooling
approach, which will be discussed in Section 3.4. Therefore, suggestion candidates of
those requests available in TREC 2015 are different from the ones in TREC 2016. In
fact, TREC 2015 batch requests contain a set of suggestion candidates with a very high
probability of being relevant to the request. To make it a more realistic and challenging
problem, we have injected more noise into the original batch requests of TREC 2015,
hence the sets of candidates for the 2015 requests included this year differs from those
of last year.

There are further requests that are based on requests made during the TREC 2015
live tasks. There were left out of the TREC 2015 data, privileging only a single request
per crowdsourced assessor, but judgement are available to be used. As these requests
were not as deeply pooled as the official TREC 2016 requests, they are excluded again
from the official test collection in 2016, but may be released separately at a later date.
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Figure 3.4: An example of how assessors give rating and tags/endorsements to the suggestions.

3.3.4 Relevance Judgments
Relevance judgments were collected through crowdsourcing and by the help of a group
of graduate students. They were asked to rate suggestions in a same scale that presented
in Section 3.3.3.

However, in the qrels, we have shifted the raw assessors’ 5 point scale judgments
with -2, making the judgments in the range -3 to 2, and making a score of 1.0 or
higher correspond to a “interested” or “strongly interested” judgment. Therefore, the
trec eval can be used to evaluate contextual suggestion runs based on all the common
IR measures, included graded measures like NDCG.

3.3.5 Suggestions Endorsements
In addition to the relevance judgments based on the ratings, we also asked the assessors
to endorse the suggestions using the tag field, which is shown in Figure 3.4.

In practice, endorsement was not an easy task for them, and they were not willing to
give tags to all the given suggestions. Therefore, NIST assessors endorsed all the pooled
suggestions, and we include those tags/endorsements to both profiles and suggestion
candidates of the phase 2 requests.

3.4 Pooling Approach
This section discusses the pooling approach used at the TREC 2016 contextual sug-
gestion track. Previously, TREC contextual suggestion organizers used the traditional
pooling approach and pooled all the top-N suggestions of the submissions, in which
N is a pool cut-off. They created a pool using 5 as the pool cut-off. According to
the studies done on the reusability of the TREC contextual suggestion test collection
[67, 72, 74, 75], reusability of the test collection suffered a lot from the personalization
effects and respectively the shallow pool cut-off. To address this issue, we experimented
with a “multi-depth” pooling approach.
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3.4.1 Multi-Depth Pooling

In the multi-depth pooling approach, in addition to the pool cut-off (hard pool cut-off),
we define two others pool cut-offs, namely, soft pool cut-off and very soft pool cut-off.
In the multi-depth pooling approach, we have pooled the following suggestions:

1. All the suggestions/documents ranked higher than the hard pool cut-off by any
of the submissions is pooled. This would guarantee an stable measures up to the
traditional pool cut-off.

2. In addition, if a suggestion/document ranked higher than the soft pool cut-off by
at least one submission, and also ranked higher than the very soft pool cut-off by
at least one run from another participated team, the suggestion is pooled. This
would have effects on having more stable measures deeper than the traditional
hard pool cut-off in the ranking.

Following last years of the TREC contextual suggestion track, we have used 5 as the
hard pool cut-off. In addition, taking into account the effort needed to create the test
collection, we have set 25 as the soft pool cut-off and 50 as the very soft pool cut-off as
this leads to a pool size of about 100 suggestions per request.

The proposed pooling approach would give us more stable evaluation results over
deeper ranks than the traditional pool cut-off. The traditional pooling approach with
5 as the pool cut-off would cost 3,377 judgments for the 61 official phase 1 requests.
Interestingly, the above multi-depth pooling approach spend even less effort than pooling
top-10 documents/suggestions provided by the submissions. Specifically, for the official
qrels of the TREC 2016 contextual suggestion, we have collected 5,898 judgments
using multi-depth pooling approach, in which we have got 5,782 official judgments
after filtering some noises. If we had used the traditional pooling approach with 10 as
the pool cut-off, we would have collected 6,206 judgments.

3.4.2 Fraction of Judged Documents

In multi-depth pooling, we have pooled deeper and expected a larger fraction of judged
documents after the pool cut-off. Figure 3.5 shows a comparison of the cumulative
overlap@N [72] in TREC 2015 and 2016 Contextual Suggestion tracks. As it is shown
in Figure 3.5, the fraction of judged documents gently decreases after the hard pool
cut-off (i.e., 5) in TREC 2016 contextual suggestion test collection. However, in TREC
2015 contextual suggestion track, fraction of judged documents dropped dramatically
after the pool cut-off (i.e., 5). We have also plotted just-in-rank overlap@N in Figure
3.5, in which we just consider fraction of judged and unjudged documents at rank N
and calculate the overlap. This figure indicates that the multi-depth pooling is effective
in minimizing the fraction of unjudged documents in ranks deeper than the pool cut-off.
The larger fraction of judged documents in TREC 2016 helps us to have a more stable
evaluation over ranks deeper than the traditional pool cut-off.
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Figure 3.5: Cumulative and just-in-rank Overlap@N in TREC 2015 and 2016 contextual sugges-
tion test collections.

3.4.3 Reusability
In this section, we study reusability of the phase 1 TREC contextual suggestion test
collection 4. As shown in Figure 3.5, the fraction of judged documents has improved in
ranks deeper than the hard pool cut-off using multi-depth pooling. However, effects of
this improvement on the reusability of the test collection are not a priori clear.

Figure 3.6 demonstrates reusability of the TREC 2016 contextual suggestion rank-
ing (phase 1) test collection based on Leave-One-Team-Out (i.e., LOTO) [22] test.
According to Figure 3.6, the TREC 2016 contextual suggestion phase 1 test collection
should be used with some care based on P@5 metric. The official runs are completely
judged up to rank 5, by design of the pooling approach, but post-submission exper-

4The next chapter addresses a more detailed analysis of the TREC contextual suggestion track test
collection and its reusability.
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Figure 3.6: Leave One Team Out (LOTO) reusability test of the contextual suggestion test
collection created based on multi-depth pooling.

iments not contributing to the pool of judged documents risk being underrated. We
have observed a similar system ranking correlation based on NDCG@5 metric having
Kendall’s ⌧ “ 0.43.

There is also good news: the phase 1 test collection appears to be reusable when
considering the more stable evaluation measures for incomplete test collections. Specif-
ically, the test collection has got perfect system ranking correlation between official
TREC system ranking and the LOTO system ranking based on the Kendall’s ⌧ using
statistical significant inversions using MAP and bpref metrics. In this test, 54% of the
pairwise comparisons are significant based on MAP and we have had 64% significant
differences based on bpref.

Furthermore, the TREC 2016 contextual suggestion phase 2 test collection is per-
fectly reusable by design as it is created for the contextual suggestion reranking and all
relevance judgments of suggestion candidates are available in the test collection.

3.5 Evaluation Results

In this section, we first list our official evaluation measures. Then, we detail the
evaluation results of phase 1 and 2 experiments.
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Table 3.2: Official TREC 2016 Contextual Suggestion Track’s phase 1 submissions of top-5
teams in the ranking evaluated over 61 requests.

Rank RunID NDCG@5 P@5 MRR MAP bpref

1 USI2 0.2826 0.4295 0.6150 0.0868 0.1772
2 IAPLab1 0.2789 0.3770 0.6245 0.0729 0.1672
3 ADAPT-TCD-r1 0.2643 0.4066 0.5777 0.0992 0.2046
4 FUM-IRLAB-3 0.2601 0.3803 0.5824 0.0566 0.1124
5 FUM-IRLAB-1 0.2596 0.4000 0.5501 0.0696 0.1672
6 ADAPT-TCD-r2 0.2595 0.4098 0.5512 0.0895 0.1753
7 USI1 0.2578 0.3934 0.6139 0.0839 0.1769
8 FUM-IRLAB-2 0.2544 0.3705 0.5945 0.0677 0.1315
9 ExPoSe-response-

tags
0.2461 0.3639 0.5206 0.0496 0.1138

10 ExPoSe-response-all 0.2445 0.3541 0.5128 0.0672 0.1413
11 ExPoSe-response-

content
0.2443 0.3541 0.5114 0.0669 0.1416

3.5.1 Evaluation Measures
Three measures are used to rank both phase 1 and phase 2 runs. Our main measure is
NDCG@5; in addition, P@5 and MRR are also used as two other metrics have been
used since 2012 in TREC contextual suggestion track. As early rank cut-off measures
are notably unstable, we also include measures taking more of the ranking into account,
such as P@10, NDCG, MAP, Rprec and bpref, also profiting from the deeper pooling
approach of this year.

The official results for the phase 1 task are shown in Table 3.2. The best phase 1
runs from top-5 teams out of 8 participated teams in phase 1 will be detailed in Section
3.5.2. Table 3.3 shows the official results for the phase 2 task. The best phase 2 runs
from top-5 teams out of 13 participated teams in phase 2 will be summarized in Section
3.5.3.

3.5.2 Best Performing Phase 1 Submissions
The five best performing teams in the phase 1 evaluation are the following:

USI

USI [4]’s best performing phase 1 run is “USI2”, in which they crawled Foursquare
for virtually 600K venues. Using the crawled data, they created positive and negative
category profiles consisting of all categories a user liked/disliked as well as their
corresponding normalized frequencies. The initial category profiles are then used to
measure the similarity between a new venue and a particular user. They created the
initial ranking and picked the top 10 venues for each user to gather extra information
about them. For each user they also created positive and negative frequency-based
venue taste keyword profiles. For the new set of venues, they extracted venue taste
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keywords and measured the similarity between the venues and a particular user. They
reranked the top 10 venues for each user in the initial ranking using a linear combination
of the venue category and taste keyword scores.

IAPLab

Nanjing University’s IAP Lab did not provide a description of their approach by the
time of writing, nor submitted a participants’ paper to the TREC Notebook or TREC
Proceedings. Therefore, we cannot provide a further description of their approach in
the overview paper, apart from noting that their system did well for the phase 1 task.

ADAPT TCD

ADAPT TCD [16] proposed an ontology-based approach, using an ontology that was
constructed using the Foursquare Category Hierarchy. The three models, each based
upon this ontology, are: User Model, Document Model and Rule Model. For the User
Model they build two models, one for each phase of the task, based upon the attractions
that were rated in the user’s profile. In the first phase they use only the positively rated
attractions from each user. In the second phase they use both positive and negatively
rated attractions to build the user model. The Document Model enriches documents
with extra metadata (tags) from Foursquare and categories (concepts) from the ontology
are attached to each document. The Rule model is used to tune the score for each
candidate suggestion based upon the context of the trip and how it aligns with the rules
in the model.

Their best performing run is “ADAPT TCD r1” in which, they build the user positive
model based on the positively rated attractions in the user’s profile. For each of these
attractions, they create an index of all the classes, based on Foursquare data, that these
attractions are an instance of, along with the tag set that was found on that attraction’s
page on Foursquare. They then compute the count per class and then the percentage
of each class in the positive model. For a given place p that a user is travelling to, they
select the documents that match the classes in the positive model. They eliminate the
documents that belong to a class that violates at least one rule in the rule model. They
retain the class percentage breakdown from the user model and map these percentages
to 50 and represented this as a number, x, for each class. Following this, they select the
top x attractions of this class from the retrieved documents after ranking them based on
the features that have been collected in the Document Model from Foursquare, which
are: the average users’ rating, the users’ rating count, the users’ reviews count and the
tag similarity measure between a document’s tag set and the class tag set. After they
select the required number of documents for all classes in the user model, they start to
rank the documents based on the first three features mentioned before and return the
final ranked list. If the number of attractions belonging to a specific class, in a specific
city, do not meet the required number, they compensate for the shortfall by getting more
attractions from the highest ranked class/classes in the user model.
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FUM-IRLAB

FUM-IRLAB [104] followed two main approaches for finding suitable attractions for a
given user: a content-based approach and a category-based approach.

In the content-based approach, all Web pages related to attractions are modeled as
vectors of real numbers using word embedding and document embedding techniques.
Then, similarities between attractions in the profile of a given user and new attractions
are calculated using methods for finding similarities between vectors.

In the category-based method, a subset of attractions is modeled as a vector of
categories. These categories are extracted from the category information of the related
Yelp, TripAdvisor, or Foursquare pages of the attractions. In addition, a user profile
is modeled as a vector of categories, where these are categories extracted based on a
mapping from the tags provided in the user’s profile and the categories extracted for
the attractions. Finally, similarities between attractions and user profiles are calculated
based on similarities between these vectors. They submitted three methods of combining
these two approaches to this track as three different runs.

Their best performing run is “FUM-IRLAB 3”, in which the document-embedding
vectors and the similarities between them are employed to produce a list of the most
similar attractions to each attraction in the user profile. They found that despite a lot of
very related results, this list contains a couple of completely unrelated pages. Hence,
they decided to filter the result set for having a more precise list of attractions. They
made an intersection between these lists with the attractions provided by category-based
approach, making them more precise in the cost of decreasing recall. For each liked
attraction in the user profile, they created a list of similar attractions, and then they
iteratively selected two top attractions from each list and merged them to the final result
set. They continue their iterations until they find 50 results from these lists.

ExPoSe

ExPoSe [44] focused on one of the key steps of contextual suggestion methods is
estimating a proper model for representing different objects in the data like users and
attractions. They used the Significant Words Language Models (SWLM) as an effective
method for estimating models representing significant features of sets of attractions as
user profiles and sets of users as group profile. The SWLM model outperformed the
standard language model, and is robust against negative examples.

For phase 1, the tag based run “ExPoSe response tags” obtained a better score than
the content-based, and the combined run—although the differences between the runs
were small.

3.5.3 Best Performing Phase 2 Submissions
The five best performing teams in the phase 2 evaluation are the following:

DUTH

DUTH [98] have further developed and built upon the two methods they first presented
in Contextual Suggestion 2013, which they have fine-tuned using TREC 2015 data.
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Table 3.3: Official TREC 2016 Contextual Suggestion Track’s phase 2 submissions of top-5
teams in the ranking evaluated over 58 requests (excluding 707, 912, 922).

Rank RunID NDCG@5 P@5 MRR MAP bpref

1 DUTH-rocchio 0.3306 0.4724 0.6801 0.4497 0.4704
2 Laval-batch-3 0.3281 0.5069 0.6501 0.4536 0.4666
3 USI5 0.3265 0.5069 0.6796 0.4590 0.4507
4 DUTH-bcf 0.3259 0.4724 0.5971 0.4606 0.4845
5 USI4 0.3234 0.4828 0.6854 0.4576 0.4494
6 Laval-batch-2 0.3118 0.4345 0.6287 0.4378 0.4721
7 DUTH-knn 0.3116 0.4345 0.6131 0.4456 0.4825
8 bupt-pris-2016-cs.2-

.4-max
0.2936 0.4483 0.6255 0.4318 0.4476

9 Laval-batch-1 0.2889 0.4276 0.6372 0.4397 0.4409
10 UAmsterdamDL 0.2824 0.4448 0.5924 0.4168 0.4452
11 bupt-pris-2016-cs.4-

.2-max
0.2761 0.4241 0.5937 0.4308 0.4465

12 UAmsterdamCB 0.2730 0.4069 0.5631 0.4076 0.4337

They address the task by individually using two classification methods, namely, a
weighted k-NN classifier and a modified Rocchio classifier. Also, as a third method,
they explore the use of election systems, namely Borda Count, as a means of fusing the
results of the two aforementioned classifiers.

Their best performing run is “DUTH rocchio”, which is based on a Rocchio-like
classifier. Using a user’s rated venues as training examples, they build a custom query
for the user using a modified Rocchio relevance feedback method. Specifically, they
build a centroid per rating and combine/add those using their corresponding ratings as
contributing factors, offset by 2 so as ratings 0 and 1 provide negative feedback with -2
and -1 weights respectively. Rating 2 is eliminated as neutral.

LavalLakehead

LavalLakehead [124] formulate a customized query according to user profile to retrieve
the 100 initial attractions. Then these 100 candidates are ranked by two independent
ranking models who cover global trend of interests and contextual individual preference
respectively. The first model is a pre-trained regressor on 2015 TREC data thus it can
prioritize popular places and categories loved by all users (E.g. Museums and National
Parks). The second model introduces word embedding to captures individual user
preference. Both user profiles and candidate places are represented as word vectors in
a same Euclidean space. So that a similarity score between user and attraction can be
calculated by measuring their vector distance. In the end, a final ranking is given by
summing up the two models’ scores, and “Laval batch 3” is a result of the combination
of the two above models.
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USI

USI [4]’s best performing phase 2 run is “USI5”, in which they computed a set of
multimodal scores from multiple locationbased social networks (LBSNs) and combined
them with a score that predicts the level of appropriateness of a venue to a given user
context. Briefly, the scores are calculated as follows: positive and negative reviews are
used to create user profiles to train a classifier which then predicts how much a particular
user will like a new venue. Moreover, the frequency-based scores are calculated based
on the venue categories and taste keywords. As for the prediction of appropriateness,
they created two datasets using crowdsourcing and trained a classifier with the features
they extracted from the datasets. A linear combination of all the scores produced the
final ranking of the candidate suggestions.

bupt pris 2016

BUPT [174] collected data by crawling from the Yelp API and Foursquare API. With
attractions marked with rating and tags in the preference list, they calculated users’
average rating for each tag. For tags without a rating of the user in the profile, that is,
the missing ratings, they filled them by Collaborative Filtering. Next, they got the users’
rating for an attraction with either a mean function or a max function. By ranking the
ratings of candidates, they git a ranked list for each user.

Their best performing run is “ bupt pris 2016 cs.2 .4 max”, in which they put a
higher weight on ratings from Foursquare (0.4), a lower weight on ratings from Yelp
(0.2), and used a max function to calculate the users’ rating for attractions.

UAmsterdam

UAmsterdam [78] studied contextual suggestion problem through neural user profiling
and neural category preference modeling by the help of suggestions’ endorsements
being released by the TREC 2016 contextual suggestion track organizers. Their best
performing run is “UAmsterdamDL”, in which they studied how to predict relevant
suggestions to the given user and context using category preference models.

In UAmsterdamDL, they cast the context-aware recommendation problem to a
binary classification problem. In order to learn a user preference model, they have used
a deep neural network with 4 hidden layers having 478 units, in which 123 suggestion-
category relevance features have been used as inputs of the network. In this model,
for each user, preferences in the user’s profile considered as a train set and suggestion
candidates available in the phase 2 requests considered as the test set.

3.6 Conclusions
This section concludes our overview of the TREC 2016 contextual suggestion track. The
track’s main aim is the creation of a reusable test collections for the personalized POI
recommendation task, which has proved a difficult task according to the previous studies
[72, 74]. To this aim, we released the TREC CS web corpus, which is a crawl of the
TREC contextual suggestion test collection. By fixing the test collection’s content, we
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can overcome the dynamic nature of the contextual suggestion collection, and separate
this effect from the personalization effects. We have also used a multi-depth pooling
approach to improves reliability of the contextual suggestion systems scores based
on measures at ranks deeper than the traditional pool cut-off. Moreover, we released
attractions’ endorsements being collected by NIST assessors, and participants showed
considerable interest in using the endorsements to improve their contextual suggestion
systems.

This chapter addressed creating a reusable test collection for evaluation of contextual
suggestion systems in a smart city context. In the next chapter, we focus on maintaining
and improving reusability of dynamic test collections such as the TREC contextual
suggestion track test collection created in this chapter.
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4
An Analysis of Test Collection Building

in Dynamic Domains

As reusability of test collections in dynamic domains may degrade over time, test
collections in dynamic domains may need maintenance with an aim of improving
reusability of the test collection. In this chapter, we address RQ3: Can we build a
reusable test collection for a dynamic domain by injecting judged documents into a
test collection with sparse judgments? We study reusability of the TREC contextual
suggestion test collection. We also show how to expand test collections with an aim of
improving their reusability and how to test reusability of expanded test collections.

4.1 Introduction
Evaluation in Modern Information Retrieval (IR) tasks based on creating test collections
is under threat by different factors such as presenting new tasks and new types of
data. All recent IR research agendas [5, 23, 37, 99] seek ways to embrace these
new challenges, while still retaining the advantages of experimental control in the
Cranfield/TREC paradigm [33]. One particular challenge is to deal with the dynamic
nature of the web and other online sources [147]. Apart from the challenges for assessors
in judging dynamic collections in ways that reflect how real searchers would experience
them while doing the task [162], the dynamic nature of collections contributes to test
collections becoming dated or less representative for the evolving online behavior.
Within years, months, or days, many web pages pooled during test collection building
phase change, become irrelevant, or even disappear. There are also plenty of new web
pages emerging that were not available during test collection building time, but they
have been created after the test collection building. This is a common problem in
web archiving, in which researchers put lots of effort in reconstructing and retrieving
unarchived web pages from the web [91]. Many of these pages are relevant to the test
collection tasks and should be added to the test collection as well as data collection in
order to keep the test collection up-to-date.

The problem of maintaining test collections in dynamic domains with an aim of
creating reusable test collections and maintaining their representativeness is of central
importance as many IR evaluation forums’ (e.g., TREC, CLEF, NTCIR, INEX and
FIRE) test collections can become dated or even outdated due to the dynamic nature
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of the collections. For example, many academic papers on web search still rely on
test collections based on the VLC (1997), .GOV (2002), .GOV2 (2004), ClueWeb
(2009), ClueWeb2 (2012) collections, which are useful in their own right but may fail
to represent crucial aspects of rapidly evolving modern online search. These limitations
of test collections are broadly known, but rarely discussed, and this chapter attempts to
explicitly study some of these limitations in a particular case, explore ways to quantify
their effects on comparative system evaluation, and experiment with some simple
approaches that may help mitigate some of the limitations. This is by no means a
magic wand or silver bullet that will resolve these hard and fundamental challenges.
Rather, our general aim is to promote critical, reflective analysis of the test collections
we build under these hard conditions, hoping to inform researchers using these test
collections about the conditions under which they can be used with reasonable trust in
their reliability, but also flag an appropriate call to caution when not.

This chapter is motivated by the TREC Contextual Suggestion track, investigating
search techniques for complex information needs that are highly dependent on context
and user interests [156]. It offers a personalized venue recommendation task based on
a U.S. city as context, and crowdsourced profiles and judgments. The track suffered
from the delayed availability of the ClueWeb12 collection, and decided to use no static
corpus of documents but accept any page on the web in 2012. In the following years in
TREC 2013 and 2014, the track used ClueWeb12 (consisting of 733,019,372 English
web pages) but kept on allowing open web results by popular request of the track’s
participants. This unique setup of the contextual suggestion track leads to two distinct
sets of judgments: one set consists of judgments of documents contributed by open
web runs, and the other one includes judgments of ClueWeb12 documents provided by
ClueWeb12 runs [40].

This fact raises several questions: Is the open web-based test collection, which
includes the majority of the judgments (i.e., 25 out of 31 pooled runs in 2014), reusable?
Is the ClueWeb12-based contextual suggestion test collection using a fixed corpus
reusable? If not, is it possible to reuse the open web judgments to build a new corpus
in order to create a more reusable test collection? We study the following research
questions:

1. How reusable is the OpenWeb and ClueWeb12 test collections of the TREC
contextual suggestion?

1.1. How reusable is the test collection for evaluating non-pooled systems?

1.2. What is the fraction of judged documents?

1.3. What is the impact of personalization on the fraction of judged documents?

2. How to expand a test collection in order to improve its reusability?

3. How reusable is the expanded test collection containing judged open web docu-
ments?

3.1. How reusable is the expanded test collection for ranking systems?

3.2. Are retrieval models able to retrieve the judged open web documents?

60



4.1. Introduction

This builds on our earlier work in [72, 74], where we found that both the Open Web
and ClueWeb12 test collections of the TREC Contextual Suggestion Track have low
reusability, due to a very low fraction of judged documents beyond the pooling cut-off,
which is in turn due to the personalized setup leading to a low pool depth due for each
context and profile pair. Yet, merging relevant document from the open web runs into
the test collection—a so-called Easter Egg Hunting approach—can improve the fraction
of judged documents up to the point that the expanded test collection is reusable based
on standard LOU reusablity tests.

Although reusability of the TREC Contextual Suggestion test collection is improved
by Easter Egg Hunting approach based on LOU test, the result of the test is questionable
as none of the runs used in the reusability test of the expanded test collection is pooled.
In fact, we need a new reusablity test to evaluate reusability of maintained dynamic
test collections or test collections not created based on pooling. To this aim, we have
simulated pools with different pool depth and done experiments to see what would have
happened if a run had contributed to the pool of judged documents. So, in addition, we
study the following research questions:

4. What is the impact of simulated pooling on the reusability of the expanded test
collection?

4.1. Does non-pooled system ranking change by adding more simulated judg-
ments?

4.2. What is the most effective pool cut-off based on the simulated test collec-
tion?

4.3. How to estimate simulated pooling bias of the test collection in ranking
non-pooled runs?

5. How reusable is the expanded test collection for ranking pooled systems?

5.1. How reusable is the personalized expanded test collection for ranking simu-
lated pooled systems?

5.2. What is the impact of personalization and pool depth on the reusability of
the test collection?

The rest of this chapter is organized as follows. In Section 4.2, we review some
related work on reusable test collection building and reusability tests. Section 4.3 is
devoted to reusability evaluation of the Open Web and ClueWeb12 test collections. Our
proposed test collection building approach is detailed in Section 4.4. The created test
collection reusability is thoroughly evaluated in Section 4.5 for non-pooled runs. Then,
we detailed simulated pooling and our proposed leave-uniques-in test in Section 4.6.
Section 4.7 includes experimental result of the expanded test collection reusability based
on the novel leave-uniques-in test for simulated pooled runs. Finally, we present the
conclusions, discussion and future work in Section 4.8.
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4.2 Related Work
In this section, we will discuss related work on test collection construction, pooling,
reusability and related research in the TREC contextual suggestion track.

4.2.1 Test Collection Building and Pooling
At TREC, it is common to use the classical Sparck Jones and Van Rijsbergen [151]
pooling technique by the National Institute of Standard and Technology (NIST) in
order to create test collections for the comparative evaluation of retrieval systems. The
idea behind pooling is that documents retrieved by a run in ranks deeper than the pool
cut-off, is likely retrieved by another run inside the pool. The reusability of the resulting
test collection depends on the completeness of the relevance judgments. Therefore,
identifying an effective pool depth for building reusable test collections become an
important issue. To this aim, Zobel [186] studied effects of pool depth on the reusability
of test collections that low pool depth tends to lessen reusability of the test collections.

Within the literature on building a reusable test collection based on the pooling
technique, one approach is to sample a more effective set of documents as a pool of
documents to be judged. Cormack et al. [36] proposed iterative searching and judging
technique, in which to retrieve and judge the highest possible number of relevant
documents for each topic, assessors perform multiple searches in documents’ relevance
assessments process.

Moreover, due to the cost of test collection building in creating modern large test
collections, IR researchers investigate on pooling methods that are more feasible in
comparison to traditional pooling in term of the assessment cost. Moffat et al. [125]
argued that the importance of all the pooled documents are not the same in building
reusable test collections that are able to comparatively rank retrieval systems. They
proposed considering of relevance likelihood of documents in creating the pools.

Cormack et al. [36] proposed a move to front pooling approach, which examines
documents in order of their relevance likelihood among submissions. In fact, a submis-
sion that has more recently retrieved a relevant document is assumed to more likely
retrieve another relevant document. Carterette et al. [25] did an experiment with an aim
of judging the minimum number of documents essential to rank the pooled systems
correctly. Specifically, they consider a document whose relevance has the highest effect
in differentiating systems as the next document to judge.

Other work focuses on creating a more effective pool by using more diverse pooled
runs. To this aim, relevance feedback is used to retrieve a new set of results in order
to improve the pool effectiveness [93, 148]. Moreover, in order to build a reusable
test collection, Carterette et al. [26] proposed an experimental design, which collects
evidence for or against three types of reusability (i.e., within-team, between team and
participant comparison) during collecting judgments.

As creating test collections for large dynamic collections using pooling is a very
difficult problem, there are some researches focusing on simulation of judgments and
test collection building phase. Soboroff et al. [149] did an extensive study on evaluating
retrieval system and ranking them without using relevance judgments. Specifically,
they randomly chose relevant documents from a pool of retrieved documents, and state
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that they are able to distinct best performing runs from the worst runs according to the
actual system ranking based on the official TREC qrel. Moreover, Carterette et al. [27]
proposed dynamic test collections, in which they simulate users interaction with an aim
of evaluating retrieval systems.

Rather than focusing on pooling itself, the current chapter focuses on the problem
of how to update an existing test collection with sparse judgments, in case there are
new documents with judgments available. Closest in spirit to our work is Soboroff
[147], who studied how the GOV2 collection becomes outdated due to the changing
Web, looking the effects of pages that disappear and change, and did experiments with
simulated re-judging of changed pages. Soboroff also makes the suggestion to judge
new pages not included in the original corpus, but doesn’t do any experiments on this,
and the current chapter addresses this head-on.

4.2.2 Reusability of Test Collections
There is quite some literature on the reusability of test collections. LOU is the standard
test for evaluating reusability of test collections in ranking non-pooled systems. Leave-
one-run-out (LORO) is a preliminary version of this test that introduced by Zobel [186]
to identify effects of missing relevant documents in evaluating non-pooled systems.
To be more specific, using traditional top-n document pooling has a disadvantage of
identifying a fraction of relevant documents, which underestimates effectiveness of a
technique that did not have an opportunity to contribute to the pool. To estimate this
disadvantage of pooling that contributes negatively in reusability of test collections,
Zobel [186] selected a run, created a pool using all runs, and then excluded all documents
contributed uniquely by the selected run from the pool. They repeated the process for
all the runs contributed in the pool.

In LORO, let r denote a run contributed by one of the participated teams during
test collection building process using pooling, and let Dr denote a set of documents
contributed to the pool by a run r. A set of unique documents contributed by run r is
defined as Ur “ Dr ´ Yr1‰rDr1 . Let J denote the complete set of judged documents.
Then, for each pooled run, the run is evaluated by J´Ur in LORO test. Rank correlation
of the runs ranking based on the LORO test collection and runs ranking based on the
complete set of judged documents J is an indicator of a test collection reusability based
on LORO test.

Since runs contributed by a same team are similar, leaving all contributions of a
team out (i.e. leave-one-team-out (LOTO) [22, 160]) is another reusability test, which
is more critical in case teams submitted several similar runs, thereby reducing the
number of uniquely retrieved documents in individual runs. In LOTO, let t denote
a team contributed to a pool, and let Dt denote a set of documents contributed to
the pool by a team t. A set of unique documents contributed by team t is defined as
Ut “ Dt ´ Yt1‰tDt1 . Then, for each participated team, runs contributed by the team is
evaluated by J ´ Ut in LOTO test. Rank correlation of the runs ranking based on the
LOTO test collection and runs ranking based on the complete set of judged documents J
is an indicator of a test collection reusability based on LOTO test. Sakai [143] proposed
take-just-one-team and take-just-three-team experiments to identify effects of missing
judgments on a number of evaluation metrics (e.g., AP and bpref). In take just one
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team test, for each participated team, runs contributed by the team is evaluated by Dt.
Rank correlation of the runs ranking based on the take-just-one-team test collection and
runs ranking based on the complete set of judged documents J is an indicator of a test
collection reusability based on the test. The difference between take-just-three-team
and take-just-one-team tests is that take-just-three-team test uses YtPTDt rather than
Dt for each team, in which T is a set of chosen teams from the set of teams contributed
in a pool.

We will use the standard reusability tests such as LOU, which simulates that a
pooled run becomes non-pooled, but also propose a counterpart that simulates pooling
for non-pooled runs.

4.2.3 Test Collection Building and Reusability in TREC Contex-
tual Suggestion Track

TREC contextual suggestion track provides a highly personalized and contextualized
task based on dynamic collections. As it is detailed in [72, 75], personalization and
dynamic nature of the track’s data collection contributes negatively in reusability of the
test collection created in TREC 2014. Based on these observations, in order to avoid
creating test collections that are not reusable, the track organizers decided to create a
fixed collection from open Web [42]. However, although a fixed collection has been
used in 2015, the TREC 2015 contextual suggestion track test collection is not reusable
[76].

As it is discussed in [76], it is clear that even by fixing the data collection in TREC
2015, the impact of personalization on the reusability of the TREC contextual suggestion
track test collection is significant. In TREC 2016 contextual suggestion track, as detailed
in the previous chapter, the track organizers proposed multi-depth pooling approach, in
which they tried to minimize pooling bias [76]. As TREC 2015 and 2016 contextual
suggestion tracks use a dynamic collection, our proposed approach can be used to
maintain their test collection reusability in case of a decrease in their reusability due to
the dynamic nature of the collection.

This chapter focuses on the unique, dual setup of the TREC 2014 track, and reports
much of the internal analysis done over the years that motivated the choice to look for
alternatives like the reranking task that was central to the track in later years. While the
re-ranking setup is a pragmatic way to avoid some of the hard problems with (lack of)
reusability, it does so at the cost of a considerable loss of experimental power. Hence
the analysis of this chapter remains valuable, and provides insight into the underlying
deep and fundamental problems of reusable test collection building.

4.3 Test Collection Reusability
This section studies the reusability of the test collection, aiming to answer our first
research question: How reusable is the OpenWeb and ClueWeb12 test collections of
the TREC contextual suggestion? Our main finding is that, according to the LOU test
and the fraction of judged documents detailed in this section, both the Open Web and
ClueWeb12 test collections have a low degree of reusability.
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Table 4.1: TREC 2014 Contextual Suggestion test collection statistics

Subset #context- # Venues Depth avg # judged #Runs #Teams
profile documents

Open Web 299 8,441 5 85 25 14
ClueWeb12 299 2,674 5 27 6 3

4.3.1 Experimental Data
In this chapter, we have used the unique setup of the TREC 2014 Contextual Suggestion
track. This track allows participants to submit their venue recommendation runs’ results
based on either open web (in the form of a valid URL) or ClueWeb12 dataset (in the
form of a valid ClueWeb12 document ID). In TREC 2014, 31 runs submitted by 17
teams (with 14 teams submitting 2 runs). Among these submissions, 6 runs belong to 3
out of 17 teams who made their submissions based on the ClueWeb12 dataset, and the
rest are based on the open web.

In contextual suggestion, a topic consists of a pair of both a context (a North
American city) and a profile (consisting the requester’s likes and dislikes of venues in
another city). For example, a requester’s preferences and their ratings of attraction in
Chicago, IL are used to recommend venues to visit in the new city of Buffalo, NY. Runs
were pooled at depth 5 and in total 299 context-profile pairs, which has 112 judged
documents in average, were judged. A short summary of the TREC 2014 contextual
suggestion test collection is given in Table 4.1.

4.3.2 Leave Out Uniques Analysis
We first look at the question: How reusable is the test collection for evaluating non-
pooled systems? Specifically, we perform both the leave-one-run-out [186] and leave-
one-team-out [22] experiments to see what would have happened if a run had not
contributed to the pool of judged documents.

In order to evaluate the test collection reusability in evaluating non-pooled systems,
Kendall’s ⌧ , which is a standard metric in measuring system rankings correlation, is
used. This metric is formulated as follows:

⌧ “ C ´ D

NpN ´ 1q{2 ,

where C is the number of concordant pairs, D is the number of discordant pairs, and N

is the number of systems in the given two rankings [173]. In addition to the Kendall’s
tau that is not promising in some conditions [24, 35, 173], AP Correlation Coefficient
is used to measure system rankings’ correlation more precisely. AP Correlation is
formulated as follows:

⌧AP “ 2

N ´ 1
¨

nÿ

i“2

p Cpiq
i ´ 1

q ´ 1,

where Cpiq is the number of systems above rank i and correctly ranked [173]. Moreover,
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average percentage difference of common IR metrics considering before and after LOU
test is also measured that will show the effect of being pooled or not in systems’ scores.

Leave One Run Out

In leave-one-run-out (i.e., LORO) experiment, for each pooled run, the run’s unique
judgments are excluded from the test collection and it is evaluated based on the new
test collection in terms of P@5, MAP and bpref.1 Our main aim in this experiment is
finding the correlation of the system ranking in the case that they are pooled and judged
in the test collection building process with the one ranked based on the assumption that
the systems are not pooled.

As it is shown in Figure 4.1, leave-one-run-out system ranking’s correlation with
the actual system ranking for both open Web and ClueWeb12 test collections are lower
than scores reported as reusable test collections in previous researches. Specifically,
Kendall’s ⌧ of the LORO experiment based on the MAP metric are 0.66 and 0.46
for open Web and ClueWeb12 test collections, respectively, which are much lower
than 0.9 that is the threshold usually considered as the correlation of two effectively
equivalent rankings [159]. According to Figure 4.1, even rank correlation based on
bpref metric, which works better than precision based metrics for evaluating systems
based on incomplete test collections, is not acceptable. Moreover, difference between
actual P@5, MAP and bpref and the ones based on LORO test indicates that scores of
systems are considerably underestimated by excluding their unique judgments from the
test collection.

Leave One Team Out

In order to study the reusability problem of the Contextual Suggestion test collection
more precisely, we study a more realistic LOU experiments. According to the observa-
tion made in [72], open web contextual suggestion runs submitted by each team is based
on a similar or a same data collection. Therefore, leave-one-team-out (i.e., LOTO) is
a better indicator of the test collection reusability in evaluating a new non-pooled run,
which might use a completely different collection than the ones used by the pooled runs.
According to this experiment, leaving one team’s judgments out has a dramatic effect
on both Open Web and ClueWeb12 runs’ evaluation. The effect is more considerable
in ClueWeb12 test collection. Specifically, MAP score of 3 out of 6 ClueWeb12 runs
is 0 after leaving their teams’ judgments out of the test collection. In fact, P@5, MAP
and bpref scores are dropped to zero or almost zero in LOTO test of ClueWeb12 test
collection.

In Figure 4.2, result of LOTO test shows that, in some condition, the correlation
of the LOTO system ranking with the actual system ranking based on the official test
collection is higher than correlation measured in the LORO test. This higher rank
correlation is made by the effect of the lack of judgments and low number of systems
contributed in the ClueWeb12 pool. The effect of lack of judgment for the data collection

1The track uses P@5 as main measure, and also supplies MRR and a modified time-based gain (TBG)
measure. As we are dealing with sparse judgments, we opt to include MAP which is know to be very stable,
and bpref which is designed to be stable under incomplete judgments. Experiments (not reported) confirm
that MRR is very unstable and that TBG resembles the P@5 results.
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Figure 4.1: Difference in P@5, MAP, and bpref based on the leave one run out (LORO) test of
OpenWeb runs (top) and ClueWeb12 runs (bottom).

is crystal clear by looking at the mean percentage difference in the LOTO test. It shows
that the scores are dropped to zero or almost zero in LOTO test. Therefore, as the
system ranking based on a tiny fraction of judged documents is not reliable, the higher
LOTO score in comparison to the LORO score does not mean anything concrete and
the number of judgments is insufficient to reach a conclusion.

According to Figures 4.1 and 4.2, the test collection has a low degree of reusability,
and it should be used with extreme care. We will study the causes of this in the rest of
the section, starting with the fraction of judgments in the runs.

4.3.3 Fraction of Judged Pages

We now look at the question: What is the fraction of judged documents? We want
to find out if the Open Web or ClueWeb12 contextual suggestion test collection have
enough judgments for venues suggested in ranks beyond the pooling depth. To this
aim, we have analyzed overlap@N [72] as the fraction of the top-N suggestions that is
judged for the given set of topics:

Overlap@NpxC,P yq “ 1

|xC,P y|
ÿ

xc,pyPxC,P y

#Judged@Npxc, pyq
N

,

67



4. An Analysis of Test Collection Building in Dynamic Domains

0 0.5 1

0

0.5

1

Actual P@5

LO
TO

P@
5

Kendall ⌧ “ 0.39
ap corr = 0.34
avg diff. = 0.78

0 0.1 0.2

0

0.1

0.2

Actual MAP
LO

TO
M

A
P

Kendall ⌧ “ 0.48
ap corr = 0.48
avg diff. = 0.73

0 0.1 0.2

0

0.1

0.2

Actual bpref

LO
TO

bp
re

f

Kendall ⌧ “ 0.64
ap corr = 0.56
avg diff. = 0.44

0 0.1 0.2

0

0.1

0.2

Actual P@5

LO
TO

P@
5

Kendall ⌧ “ 0.60
ap corr = 0.73
avg diff. = 0.95

0 0.02 0.04

0

0.02

0.04

Actual MAP

LO
TO

M
A

P

Kendall ⌧ “ 0.46
ap corr = 0.34
avg diff. = 0.95

0 0.02 0.04

0

0.02

0.04

Actual bpref

LO
TO

bp
re

f

Kendall ⌧ “ 0.46
ap corr = 0.21
avg diff. = 0.87

Figure 4.2: Difference in P@5, MAP, and bpref based on the leave one team out (LOTO) test of
OpenWeb runs (top) and ClueWeb12 runs (bottom).

where #Judged@Npxc, pyq corresponds to the count of judged suggestions for the
given context and profile pair xc, py in the top-N suggestions, and xC,P y is a set
of judged context and profile pairs. According to Figure 4.3, the personalized test
collection overlap is dropped significantly after pool cut-off. This observation indicates
that the test collection is incomplete in terms of recall and consequently, the pooled runs
overlap is relatively low. Overlap@N in ranks deeper than pool cut-off is biased to the
top-5 judgments, and as it is shown in Figure 4.3, overlap at rank intervals deeper than
pool cut-off dropped even more than overlap@N. In particular, overlap at rank intervals
is almost zero after pool cut-off, which shows how serious is the lack of judgments in
ranks deeper than the pool cut-off.

4.3.4 Impact of Personalization and Pool Depth
In this part, we answer the question: What is the impact of personalization on the fraction
of judged documents? Same as the TREC Contextual Suggestion open test collection
[72], personalization and the shallow pool depth affect the ClueWeb12 personalized test
collection’s reusability. As it is discussed above, the personalized contextual suggestion
test collection is not reusable and it should be used with extreme care. However, in
order to build a reusable test collection for the venue recommendation off-line testing,
we first depersonalize the official test collection to see whether the non-personalized
test collection has enough judgments for reliably ranking systems. We have used the
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Figure 4.3: Overlap@n and Overlap@[m-n] over rank intervals in Open Web (top) and ClueWeb12
(bottom) test collections. In each rank interval, m is representative of highest rank in the interval
and n is representative of lowest rank in the interval.

Borda count fusion over profiles to build non-personalized runs based on the pooled
personalized runs. For the evaluation purpose, any suggestion, which judged as a
relevant suggestion for the given city and one of the judged profiles, is counted as
relevant suggestion for the given city.

Figure 4.4 demonstrates that personalization has a considerable effect on the overlap
of the ClueWeb12 test collection, which is mainly for its effect on the pool depth. We
have observed a similar result using Open Web test collection [72]. In order to solve
reusability problem of the test collection that is affected by the shallow pool depth, we
propose a novel approach to improve number of judged documents for each city and
profile pair, which would have a positive effect on test collections reusability.

To summarize, in this section we investigated the reusablity of the TREC contextual
suggestion track’s OpenWeb-based and ClueWeb12-based test collection. The outcome
is rather negative: the system rank correlation in the LOU test is below the reusable
test collections threshold, with MAP and bpref scores close to zero; the fraction of
judged documents after the pooling depth plummets down; and the combination of
shallow pools over personalized runs aggravates the problem considerably. One can
debate whether a 90% system rank correlation is a realistic goal for personalized test
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Figure 4.4: Effect of personalization on Overlap@N . OverlapUP@N is overlap@N based
on the non-personalized test collection

collections, judged to a limited pool depth of 5, in comparison to the traditional ad
hoc search settings. As personalization substantially lowers the fraction of judged
pages, which need not only be topically relevant but also fitting the user’s profile, we
certainly require more stable rankings than observed for the ClueWeb12 test collection.
To address this, we will propose a way to expand or update an existing test collection in
the next section.

4.4 Expanding Test Collections
In this section, we detail how we expand a test collection in order to improve its
reusability. This approach holds the potential to increase the reusability of a test
collection in scenarios such as dynamic domains where documents content changes and
a new (relevant) documents appear [147].

4.4.1 Injecting Judged Documents
Our approach is rather straightforward: in case a fixed test collection becomes outdated
and systems return documents not included in the outdated corpus, we simply judge the
new documents, and merge them into an expanded test collection. We metaphorically
hide the new documents in the old collection as Easter eggs for systems to retrieve as in
an Easter egg hunt.

So assume we have a test collection based on a fixed corpus, which is not reusable.
This test collection is formulated as follows:

TCf “ tpt, d, rq|t : T, d : Df , r : Rfu,
where t is a topic from the judged topics set (i.e., T ), d is a document belongs to the
fixed corpus, and r is a relevance judgment from judgments given for the fixed corpus
(i.e., Rf ). Moreover, consider that we have a set of new pages for the same problem and
a same topic set, of which some or all are judged. This second set of judged documents
has a similar formulation:

TCs “ tpt, d, rq|t : T, d : Ds, r : Rsu,
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where Ds is a set of documents from the secondary collection and Rs is a set of
judgment for some documents of the second corpus (which could be an open collection
like the web).

In order to use the second test collection for expanding the test collection, for each
document d1 P Ds, the document is injected to the fixed collection (i.e., Df ), and
relevance judgments of document d1 (i.e., tpt, d, rq|t : T, d ““ d1, r : Rsu) are added
to the fixed test collection (i.e., Df ). Finally, each judgment in the new test collection is
an instance of the following set:

TCe “ tpt, d, rq|t : T, d : Df Y Ds, r : Rf Y Rsu,

where d is a document judged in either the fixed test collection (i.e., Df ) or the secondary
test collection (i.e., Ds), and r is a relevance judgment based on either the relevance
judgments set created for the fixed collection (i.e., Rf ) or the secondary relevance
judgments set (i.e., Rs).

4.4.2 Expanded Contextual Suggestion Test Collection
The unique setup of TREC Contextual Suggestion track, which is discussed in Sec-
tion 4.3, allows us to test our approach on this test collection. To this aim, we inject the
judged open contextual suggestions into a fixed contextual suggestion collection (i.e.,
ClueWeb12 touristic sub collection, which is provided by the TREC organizers). To be
specific, the ClueWeb12 sub collection contains 176,970 documents focusing on the
touristic domain, and there are 7,434 judged open web documents as candidates to be
merged into this collection.

The expansion of the test collection consists of two steps:

• First, we determine which open web pages are also included in ClueWeb12, based
on the mapping of [67]. We retain the copy of the page in ClueWeb12, as these
pages tend to describe venues and still describe the same entity, although an
alternative is crawl the pages and update them. The qrels are expanded with the
judgments for this page.

• Second, for remaining open web pages, we have either fetched rest of the web
pages from the web or used the touristic aggregators’ websites’ (e.g., Yelp) API
to gather the judged web pages’ textual content. These judged documents are
added to the collection, and the qrels are expanded with the judgments for this
page.

The new qrels are substantially richer. To be specific, the contextual suggestion
ClueWeb12 test collection has 8,043 judgments including 682 relevant judgments,
and we add 25,407 open web judgments including 9,738 relevant judgments into that.

To summarize, in this section we investigated an approach to update or expand a
test collection with a secondary set of judged pages, aiming to increase the reusability
of the resulting test collection. The general approach is to simply “hide” the judged
pages in the original collection, with the goal of systems to retrieve the relevant pages
amongst the rest of the collection. The above scenario is a common case in all dynamic
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Table 4.2: Personalized non-pooled runs and their descriptions. In these runs, personalization is
done based on users’ positive profiles.

Ranker Description

LM JM BQ Language modeling, default JM smoothing (i.e., � = 0.4), Boolean
personalization

LM JM Language modeling, default JM smoothing (i.e., � = 0.4)
LM two-stage Language modeling, default two-stage smoothing (i.e., µ = 2,500

and � = 0.4)
LM JM2 Language modeling, JM smoothing and � = 0.001
LM Dir. Language modeling, default Dirichlet smoothing (i.e., µ = 2,500)
Okapi Okapi, default parameters (i.e., k1 = 1.2, b = 0.75 and k3 = 7)
tfidf tf.idf, default parameters (i.e., k1 = 1.2 and b = 0.75)
Okapi2 Okapi, k1 = 0.001, b = 0.001 and k3 = 0.001
tfidf2 tf.idf, k1 = 0.001 and b = 0.001

domains, such as online services on the web. We applied the approach to the case of
the TREC contextual suggestion track, merging the large set of judged open web pages
into the ClueWeb12 based collection, leading to an updated test collection with a far
greater number of judged documents. In light of the low degree of reusability of the
ClueWeb12 test collection, as discussed in Section 4.3, the hope is that the expanded
test collection will have a higher degree of reusability, which we will investigate in the
next section.

4.5 Reusability of the Expanded Test Collection
In this section, we look at the question: How reusable is the expanded test collection
containing judged open web documents? Our main finding is that the experimental
results show that the expanded test collection is reusable based on the LOU test.

4.5.1 Leave Out Uniques
We evaluate reusability of the test collection by discussing the correctness of the non-
pooled system ranking based on the expanded test collection. Specifically, we look
at the following research question: How reusable is the expanded test collection for
ranking systems?

To test reusability of the expanded test collection, we build nine different person-
alized non-pooled contextual suggestion runs using language modeling with different
smoothing approaches, okapi and tf.idf retrieval models. All these models built based on
Indri IR tool. We intentionally pick optimal and suboptimal parameter settings so that
we have a realistic variation in retrieval effectiveness. Our main goal of building these
non-pooled runs is to investigate whether the expanded test collection is able to discrim-
inate high quality non-pooled runs from the low quality ones or not. A short summary
of these runs is given in Table 4.2. We also build nine non-personalized non-pooled
runs based on the Indri, which is going to be used in evaluating the non-personalized
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Figure 4.5: Difference in P@5, MAP, and bpref based on the leave one run out (LORO) test on
the expanded test collection.

expanded test collection reusability. These runs are similar to the personalized runs, and
use the context or city in combination with a generic set of touristic categories used for
all the profiles.

In this experiment, we would like to test whether the expanded test collection is
effective enough in ranking high quality runs higher than the low quality ones or not.
To this aim, two groups of personalized runs are built to retrieve suggestions relevant to
the given city name and profile. One of them is a group of runs based on personalized
query expansion using a group of defined touristic categories (i.e., LM JM BQ, LM JM,
LM two-stage, LM JM2 and LM Dir.). The other one is based on retrieving relevant
suggestions to the given city name, and then ranking suggestions based on similarity
of suggestions to the given profile (i.e., Okapi, tfidf, Okapi2 and tfidf2). We know that
the second group of runs might miss some suggestions relevant to the given profile that
the city name is not mentioned explicitly in their contents. For example, some of the
relevant suggestions might include name of a city close to the given city name rather
than the city name. Moreover, in the second group, rather than using language modeling,
less effective retrieval models like tfidf and okapi are used. We expect lower rank for
the second group of runs in comparison to the first more effective runs.

As it is shown in Table 4.4, the expanded test collection is able to discriminate
these two groups of runs, and also rank relatively reasonable within each group of runs.
On the other hand, Table 4.3 indicates system ranking of the same runs based on the
official TREC test collection, which shows that the official test collection is not able to
rank systems in a logical order. In order to test reusability of the test collection, LOU
test is done using LORO test. According to Figure 4.5, the actual system ranking is
exactly same as the LORO system ranking, and they have the highest rank correlation
in terms of Kendall’s ⌧ and AP correlation. Specifically, Kendall’s ⌧ and AP correlation
of this test is 1, which presents the strongest possible evidence for the reusability of the
expanded test collection for ranking non-pooled personalized systems.

However, some of these non-pooled runs retrieve similar set of suggestions, due
to the fact that all of these runs are based on a same index and same personalization
approach. This effect the outcome of the LORO test, which may be too optimistic, and
it is not possible to do the more critical LOTO test in this particular setup. The effect of
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Table 4.3: Personalized non-pooled system ranking based on MAP using official test collection
and their overlap

Run P@5 MAP bpref Overlap@50
(%) (%)

LM Dir. 2.94 0.41 2.15 11.49
okapi 1.87 0.26 1.61 14.39
tfidf 1.74 0.26 1.59 14.30
okapi2 2.01 0.24 1.50 13.97
tfidf2 2.01 0.24 1.46 13.78
LM JM2 0.40 0.07 0.98 3.81
LM JM BQ 0.33 0.06 0.83 3.33
LM JM 0.40 0.06 0.83 3.31
LM two-stage 0.40 0.06 0.80 3.19

Table 4.4: Personalized non-pooled system ranking based on MAP using expanded test collection
and their overlap

Run P@5 MAP bpref Overlap@50
(%) (%)

LM JM BQ 14.72 05.55 18.49 31.57
LM JM 13.85 05.29 18.35 31.45
LM two-stage 13.51 05.25 18.44 31.49
LM JM2 13.24 05.19 18.23 31.43
LM Dir. 7.16 2.30 10.05 27.28
okapi 2.14 0.62 3.41 17.69
tfidf 2.07 0.58 3.24 17.44
okapi2 2.07 0.46 2.71 16.28
tfidf2 2.07 0.46 2.59 16.08

the runs’ similarity on doing LORO experiment motivates us to run another experiment
to test the effectiveness of the expanded test collection in ranking new systems in the
next section. But first we investigate whether the runs do indeed retrieve the judged
documents we added to the expanded test collection.

4.5.2 Retrieving Judged Documents
In order to evaluate effectiveness of the expanded test collection, we study the research
question: Are retrieval models able to retrieve the judged open web documents? Recall
that in this section we use a new set of runs on the expanded test collection, based on the
touristic subset of ClueWeb and the Open Web runs, making these results not directly
comparable to those in Section 4.3.

Figure 4.6 shows overlap@N of the non-pooled runs with expanded test collection as
well as the official contextual suggestion test collection. This experiment indicates that
the injecting judged documents approach has a considerable impact on the personalized
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Figure 4.6: Overlap@N of non-pooled runs: official test collection versus expanded test collection
for personalized runs.

Table 4.5: Non-personalized non-pooled system ranking based on MAP using official test
collection and their overlap

Run P@5 MAP bpref Overlap@50
(%) (%)

LM Dir. 11.49 0.79 2.99 30.08
okapi 4.68 0.47 2.41 30.68
tfidf 3.83 0.44 2.38 30.38
okapi2 4.68 0.39 2.12 28.72
tfidf2 5.11 0.38 2.17 29.14
LM JM BQ 3.83 0.18 1.20 9.74
LM JM 3.83 0.18 1.23 9.87
LM JM2 3.83 0.18 1.26 10.04
LM two-stage 3.83 0.17 1.19 9.65

test collection fraction of judgments. In particular, overlap@50 is improved from 0.14
to 0.26, which is 85% improvement in the fraction of judgments.

As discussed in Section 4.3, depersonalization of the contextual suggestion has a
great impact on the fraction of judged documents. Therefore, effectiveness of non-
personalized non-pooled runs in hunting injected judged documents in the ClueWeb12
tourist sub collection is also studied. Table 4.6 indicates that injecting judged documents
in a fixed corpus has a great impact on the non-personalized test collection fraction
of judgments. In addition, same as personalized expanded test collection, the system
ranking based on the non-personalized expanded test collection is reasonable. However,
according to Table 4.5, system ranking of the same runs based on the official TREC test
collection shows that the official test collection overlap is poor and it is not able to rank
non-personalized systems in a logical order.

To summarize, in this section we investigated the reusability of the expanded con-
textual suggestion test collection. The result is positive: we determined the reusability
by doing a LOU analysis, leading to perfect system rank agreement over a set of nine
systems. While all these systems did not contribute to the pool, the stability of the
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Table 4.6: Non-personalized non-pooled system ranking based on MAP using expanded test
collection and their overlap

Run P@5 MAP bpref Overlap@50
(%) (%)

LM JM BQ 48.94 15.30 22.91 87.10
LM two-stage 50.21 15.27 22.85 87.14
LM JM 49.36 15.21 22.84 87.14
LM JM2 49.36 15.14 22.81 87.19
LM Dir. 26.81 05.82 12.74 66.38
okapi 4.68 0.91 3.87 36.42
tfidf 3.83 0.86 3.80 36.29
okapi2 4.68 0.71 3.30 33.36
tfidf2 5.11 0.70 3.35 33.95

ranking is a reassuring outcome. In order to explain the ranking stability we looked at
whether systems are indeed retrieving the inserted judged pages, and found that a fair
and stable fraction of judged documents is retrieved, more than doubling the fraction of
judged documents, and that this fraction is gently decreasing of the ranking. The effect
of personalization remains large, and de-personalized versions of the qrels ignoring the
profile lead to substantially higher fractions of retrieved judged documents. This gives
strong support to the test collection expansion approach proposed in this chapter. The
positive results hold for the system rank comparison among a set of non-pooled runs,
and with shallow pools we may expect a substantial pooling effect when comparing
pooled and non-pooled runs, which we will investigate in the next section.

4.6 Impact of Simulated Pooling on the Reusability
In this section, we answer the question: What is the impact of simulated pooling on the
reusability of the expanded test collection? We propose a counterpart to the LOU test
that simulates the impact of pooling in a Leave In Uniques test. Our main contribution
is that this approach is a stricter and more powerful reusability test, that may uncover
risks to a fair comparison of pooled and non-pooled runs even prior to judgments being
available.

4.6.1 Simulated pool and its impact on the reusability
As all the nine runs used in evaluating reusability of the expanded test collections are
non-pooled runs, testing reusability of the expanded test collection based on LOU test
does not lead to a definite conclusion of the test collection reusability. In fact, the LOU
test is designed to test reusability of test collections based on pooled runs. Therefore, the
reusability of the expanded test collection remained unanswered in previous sections.

In addition to LOU test that is discussed in last Section, in this part, we answer
the question: Does non-pooled system ranking change by adding more simulated
judgments? In fact, we would like to analyze whether the test collection is stable in
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ranking non-pooled systems or it might change by adding simulated judgments.
In this experiment, for each non-pooled run, we artificially simulate judgments

of unjudged documents based on the same distribution of relevant documents in that
specific run. To this aim, a weighted random variable, whose weight is the fraction of
relevant documents among the judged documents up to the rank of the given unjudged
document, is used to simulate the judgment. If relevance judgment of a document is
available in our test collection, we do not use a simulated judgment for the document.
If relevance judgment of a document is not available in our test collection, we use
simulated judgment as it is discussed above. In this case, the final simulated judgment
of a document is selected based on majority votes of the 9 runs have been used in this
experiment. In the cases that a document gets equal number of relevant and irrelevant
votes, the final simulated judgment is considered as relevant. Using simulated judgments,
we build 50 different test collections, which in addition to judgments of the original
test collection for the judged documents have the simulated judgments for the unjudged
ones with different simulated pool depth from 1 to 50.

In Figure 4.7, Kendall’s ⌧sig , which only consider significant inversions [35], of the
system ranking based on the expanded test collection with the one based on simulated
ones having simulated judgments up to depth N is measured. In this experiment, we use
a paired Student’s t-test with ↵ “ 0.05 to find significant inversions (i.e., p † ↵). As it
is shown in this Figure, the rank correlation has a lot of rise and fall up to pool depth 33,
but it is much more stable having deeper pools from depth 34 to 50.

This experiment indicates that the expanded test collection is more similar to the
simulated test collections having deep pools rather than test collections having shallow
simulated pools. We had a similar observation based on overlap@N metric, which
demonstrates that the expanded test collection has high overlaps in all of the pool depths.
This is a good signal that shows using this expanded test collection let us evaluate
systems based on IR metrics at deep ranks.

Moreover, according to the rank correlation of the system rankings based on the
expanded test collection and the most complete simulated test collection, the expanded
test collection is stable and can be used as a reusable test collection for offline testing.
Specifically, ⌧sig of the system ranking based on the MAP metric measured by the
expanded test collection with the system ranking based on the complete simulated
judged test collection is 1.0, which is considered as the correlation of two effectively
equivalent rankings [159]. We make the same observation based on Kendall’s ⌧ , but
with lower rank correlation scores due to inversions in case of very small differences
(not presented in details here).

4.6.2 Simulated test collection pool cut-off
In this part, we look at the question: What is the most effective pool cut-off based on
the simulated test collection?

In order to study the effective pool depth of the simulated pools, we study the rank
correlation of the system ranking based on the deepest simulated pool (with 50 pool
depth) with system rankings based on different simulated pool depths. Also according
to Figure 4.7, the system ranking based on the test collection with pool depth beyond
rank 35 is quite similar to the one evaluated by complete pool depth, and adding more
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Figure 4.7: Kendall ⌧sig of system ranking based on the expanded test collection (as a ground
truth) and simulated test collection having different pool depth.

judgments by increasing pool depth does not have significant effect on system rankings
based on MAP.

4.6.3 Simulated Pooling Effect and Leave Uniques In Test
We now look at the following research question: How to estimate simulated pooling
bias of the test collection in ranking non-pooled runs?

As we created a new expanded test collection, none of the runs on the expanded
corpus was pooled, and none of the pooled open web runs retrieves more than a fraction
of pages in the corpus. Hence, we propose a variant of the LOU test that simulates the
pooling effect.

In the previous experiments, we observe the test collection is reusable for ranking
non-pooled systems, but the test collection effectiveness in ranking pooled systems is
questionable. To this aim, we propose Leave-One-Run/Team-In test for evaluating test
collections effectiveness in ranking pooled systems in the case that the test collection is
not built based on pooling approach.

In Leave-One-Team-In (LOTI) test, in principle, for each team has not contributed
in the pool, all the unjudged documents of the team’s non-pooled runs have to be judged
up to a given pool depth and then added to the qrel. The team’s non-pooled runs are
evaluated based on the LOTI qrel created for the team. This test is done for all the teams
not contributed in the pool. The system ranking correlation between the system ranking
based on the original qrel and the system ranking based on the LOTI test indicates
effects of pooling in the system ranking using the test collection. Specifically, if the
system ranking correlation is lower than a defined threshold, the test collection is not
reusable.

In Leave-One-Run-In (LORI) test, for each non-pooled run, all the unjudged doc-
uments of the non-pooled run have to be judged up to a given pool depth and then
added to the qrel. Then, the non-pooled run is evaluated based on the LORI qrel. This
test is done for all the non-pooled runs. The system ranking correlation between the
system ranking based on the original qrel and the system ranking based on the LORI
qrel indicates effects of pooling in the system ranking using the test collection. Same as
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LOTI test, if the system ranking correlation is lower than a defined threshold, the test
collection is not reusable based on the LORI reusability test.

In this study, as we do not have different teams’ runs that retrieve and rank documents
based on the created extended corpus, we are not able to do the LOTI test. However, as
it is detailed in Table 4.2, we have 9 different runs created based on the extended corpus
as a data collection. Using these 9 non-pooled runs, we have done the LORI test using
simulated judgments.

In this experiment, for each non-pooled run, the same distribution of relevant
documents in that specific run is used to artificially simulate judgments of unjudged
documents. To this aim, we simulate the judgment for each topic based on a weighted
random variable, whose weight is the fraction of relevant documents among the judged
documents up to the rank of the given unjudged document. For each run, we judge their
unjudged documents and make 50 different simulated pools having pool depth from 1
to 50. The simulated judgments of the unique contribution of each run in the simulated
pool, is used to create the LORI qrel. The simulated judgments of documents retrieved
by multiple runs up to the simulated pool cut-off, is estimated by a weighted random
variable having the following weight:

w “ # relevant simulated judgment of document d

# runs retrieved the document d up to the pool depth

In this way, final simulated judgments of all the non-unique documents retrieved by
multiple runs are estimated and then added to the LORI qrel.

To summarize, in this test, we leave simulated unique judgments up to pool depth of
each simulated pooled run in the expanded test collection (i.e., the one that does not
include simulated judgments), and evaluate them based on the new test collection. This
is done for all the non-pooled runs, and the rank correlation of the non-pooled system
ranking (as a ground truth) and the simulated pooled system ranking is an indication of
the test collection reusability in ranking pooled and non-pooled systems. The proposed
leave uniques in test is very practical to evaluate reusability of expanded test collections
being maintained or test collections not built based on pooling. Moreover, this test can
be used to evaluate reusability of test collections while building them using TREC-style
pooling. In fact, at each point of time in test collection building, leave uniques in test
can indicates whether pooling deeper will improve reusability or the test collection is
effective enough in ranking retrieval systems. More investigation on this line of research
based on leave uniques in test remains as a future work.

4.7 Reusability Based on Leave One Run In Test
In this section, we investigate on reusability of the expanded test collection using
LORI test in order to answer the research question: How reusable is the expanded test
collection for ranking pooled systems? Our main finding is that on this critical test, the
expanded test collection is shown to be reusable for ranking personalized non-pooled
and pooled runs based on the stable MAP and bpref metrics, but should be used with
care on more unstable P@5 metric.
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Figure 4.8: Difference in P@5, MAP, and bpref based on the leave one run in (LORI) test with
pool depth 5 (top) and pool depth 50 (bottom) on the expanded test collection.

4.7.1 Reusability of Personalized Runs

In this part, we answer the following research question: How reusable is the personal-
ized expanded test collection for ranking simulated pooled systems? Fraction of judged
documents and the effectiveness of simulating judgments for the unjudged documents
plays an important role in the LORI test. In particular, in this experiment, non-pooled
runs have 25% judged documents in average and about 75% of the judgments in LORI
experiment is simulated. Therefore, using a more effective approach for simulating judg-
ments might change the rank correlation scores, and using 0.9 as a heuristic threshold of
two equivalent rankings in testing effectiveness of test collections in LORI experiment
is perhaps overly strict, so we will not treat it as a dichotomous cut-off but rather as a
soft target.

Figure 4.8 shows the rank correlation metrics and score difference of runs in LORI
test with simulated pool depth equal to 5 and 50. According to these figures, same as
incomplete test collections, bpref is more stable and less overestimated in comparison
to MAP and P@5. Specifically, Kendall’s ⌧ based on bpref in the LORI test having pool
depth 5 is 0.94, which suggests that the expanded test collection is reusable for ranking
personalized runs based on bpref metric. We have had a similar conclusion based on the
LORI test with 50 as the pool depth.

As can be expected, the deeper simulated pools are more stable for system ranking
based on MAP metric. In contrast to the Kendall’s ⌧ based on MAP in the LORI test
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Figure 4.9: Difference in P@5, MAP, and bpref based on the leave one run in (LORI) test with
pool depth 5 (top) and pool depth 50 (bottom) for the non-personalized expanded test collection.
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with 5 as the pool depth, which is 0.61, the Kendall’s ⌧ based on MAP in the LORI
test having pool depth 50 is 0.89. The experiment shows that if a test collection created
based on the pool depth 5 be used for ranking personalized runs based on MAP metric,
the system ranking would not be same as the system ranking based on MAP using the
expanded test collection. On the other hand, if a test collection created based on the
pool depth 50 be used for ranking personalized runs based on MAP metric, the system
ranking would be very similar to the system ranking based on MAP using the expanded
test collection. The Kendall’s ⌧ = 0.89 is just 1 percent less than the threshold usually
considered as two effectively equivalent rankings in LOU test. Factoring in the noise
due to the simulations being done in the LORI test, we consider this to suggest that the
expanded test collection is reusable for ranking personalized systems based on MAP
metric.

Unlike the earlier LORO test, which looked favorable at all measures, the outcome
on the LORI test is mixed. Although the expanded test collection seems reusable
based on MAP and bpref metrics, it suggests a low degree of reusability for ranking
personalized runs based on P@5 metric. Specifically, the Kendall’s ⌧ based on P@5 in
the LORI test with 5 and 50 as the pool depths are 0.67 and 0.44, respectively, which is
far less than the heuristic 0.9 threshold usually considered as two effectively equivalent
rankings in LOU test. This result suggests that the comparison of pooled and non-pooled
systems should be done with care based on early precision metrics like P@5, as this
measure is biased toward the pooled runs. This call to caution is not unexpected, as the
early precision measure is known to be less stable and the test collection is build under
challenging conditions, in particular the relatively shallow pools due to personalization
over profiles.

4.7.2 Impact of Personalization and Pool Depth
In this part, we investigate on the following research questions: What is the impact of
personalization and pool depth on the reusability of the test collection? According to
the last experiment, low fraction of judged documents in personalized runs affects on
the LORI test based on the P@5 as an early precision metric. Therefore, reusability
of the non-personalized expanded test collection, which has a high overlap with the
non-pooled runs, in ranking pooled systems is evaluated.

Figure 4.9 shows the evaluation of non-personalized expanded test collection based
on LORI test with simulated pool depth equal to 5 and 50. According to these figures,
the non-personalized test collection is strongly reusable in ranking pooled systems based
on P@5, MAP and bpref metrics. Specifically, Kendall’s ⌧ of the LORI experiment
having pool depth 5 is 0.94 based on all the tested metrics, which is higher than 0.9, the
threshold usually considered as the correlation of two effectively equivalent rankings.
We have got a similar result for the LORI test having pool depth 50. This means that
the non-personalized expanded test collection is strongly reusable for ranking non-
personalized pooled systems based on both early precision metrics and more stable
metrics in incomplete test collections.

To summarize, in this section we investigated the reusability of the expanded test
collection for ranking pooled systems based on the proposed variant of the LOU test
in order to simulate the pooling effect of a set of non-pooled runs. This critical test
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suggests that the expanded test collection is reusable for ranking personalized non-
pooled and pooled runs based on MAP and bpref metrics, but not based on P@5 metric.
We investigated the impact of personalization on the reusability, and found that the
non-personalized test collection has a high degree of reusability based on all metrics
including P@5, highlighting the challenges of test collections that use personalization
and shallow pooling.

4.8 Discussion and Conclusions

In this chapter, we investigated the challenges of expanding or updating a test collection
in a dynamic domain. We experimented with a novel approach to reusable test collection
building, where we inject judged pages into an existing corpus, and have systems retrieve
pages from the extended corpus with the aim to create a reusable test collection. In
a way, we metaphorically hide the Easter eggs for systems to retrieve. The approach
was motivated by, and applied to, the TREC Contextual Suggestion Track offering a
personalized venue recommendation task, which allowed both submissions from a fixed
corpus (ClueWeb12) as well as from the open web.

Our main research question was: Can we build a reusable test collection for a
dynamic domain by injecting judged documents into a test collection with sparse judg-
ments? Specifically, we answer following research questions: Our first research question
was: How reusable is the OpenWeb and ClueWeb12 test collections of the TREC con-
textual suggestion? The outcome is rather negative: the system rank correlation in the
LOU test is below 50%, with MAP and bpref scores close to zero; the fraction of judged
documents after the pooling depth plummets down; and the combination of shallow
pools over personalized runs aggravates the problem considerably. Our second research
question was: How to expand a test collection in order to improve its reusability? Our
approach is to simply “hide” the judged pages in the original collection, with the goal
of systems to retrieve the relevant pages amongst the rest of the collection. The above
scenario is a common case in all dynamic domains, such as online services on the web.
We applied it to the case of the TREC contextual suggestion track, merging the large set
of judged open web pages into the ClueWeb12 based collection, leading to an updated
test collection with a far greater number of judged documents. Our third research
question was: How reusable is the expanded test collection containing judged open
web documents? The result is positive: we determined the reusability by doing a LOU
analysis, leading to perfect system rank agreement over a set of nine systems. We found
that a fair and stable fraction of judged documents is retrieved, more than doubling
the fraction of judged documents, and that this fraction is gently decreasing over the
ranking. The effect of personalization remains large, and de-personalized versions of
the qrels ignoring the profile lead to substantially higher fractions of retrieved judged
documents. Our fourth research question was: What is the impact of simulated pooling
on the reusability of the expanded test collection? We proposed a variant of the LOU
test in order to simulate the pooling effect of a set of non-pooled runs. Our fifth and
final research question was: How reusable is the expanded test collection for ranking
pooled systems? This critical test indicates that the expanded test collection is reusable
for ranking personalized runs based on the stable MAP and bpref metrics. However,
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the expanded test collection is not reusable for ranking personalized runs based on
P@5 metric, which is an early precision based metric known to be less stable. Our
investigation on the impact of personalization on the reusability shows that the non-
personalized test collection has a high degree of reusability for all the metrics including
the P@5 as the early precision metric, highlighting the challenges of test collections
that use personalization and shallow pooling.

The leave uniques in reusability test is of independent interest, as it adds a new and
critical test for analysing the reusability of the test collections we create and (re)use
as official benchmarks deciding on the superiority of technical advances to systems.
This test can be a pragmatic choice in case a test collections is not created based on
pooling, or a test collections is updated or expanded for maintenance purposes, or any
other scenario in which the traditional LOU test is not applicable. The fact it relies
on simulated judgments makes it attractive as an analytic instrument, as it can provide
useful guidance on many of the crucial parameters and decision about pooling prior to
relevance assessments—think of the inclusion or exclusion of some runs, or the depth
of pooling per eligible system.

Our general conclusion is that the proposed approach to update or expand a test
collection offers novel and cost effective ways to build new test collections, and to refresh
and update existing test collections. This offers new ways of effective maintenance of
test collections for offline evaluation in dynamic domains such as the web. Moreover, the
proposed leave-uniques-in test is an effective way of evaluating reusability of different
test collections in different test collection building phases, and relies on simulated rather
than human relevance judgments, making it particularly attractive for what-if type of
analysis prior to committing to the high costs and effort of the relevance assessment
stage.

There are some open questions to address in future work. How general can the
approach be applied? The case of the TREC contextual suggestion track had a unique
configuration with both a fixed offline test collection and judged results from the
open web, which greatly facilitated the experiments of this chapter. The general case
underlying the approach is dynamic data, such as almost all web data, and the track
setup even models this with a crawled web collection from 2012 in combination with
live web results from 2014. Our experimental data started with very sparse judgments
(ClueWeb12) in combination with a considerable higher number of added pages and
judgments (open web), how much is the impact in case the initial test collection was
more complete? Web data is highly dynamic, with considerable numbers of new pages
appearing in the index continuously making offline test collection age fast [137]. This
leads to many high ranked but unjudged pages creating an obvious need to update the
offline tests, and ways to reuse old judgments are of obvious value. How sensitive is the
approach to the quality of the judgments on the inserted pages? Clearly adding just any
labeled data may have some risks, as the judgments may be noisy or made under very
different task assumptions, or even give opportunities for spamming [131]. We assume
the new and old judgments are created in a similar way, typically by trusted editorial
judges or through crowdsourcing platforms as used in this chapter.

One of the impacts of the analysis as reported in this chapter was to add an extra
stage to the test collection building efforts in the TREC Contextual Suggestion Track.
As the popular open web as data collection presented a considerable factor mitigating
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the reusability of the resulting test collection, a multistage stage test collection building
approach was adopted at TREC 2015. The TREC 2015 contextual suggestion track [42]
started with an early collection building stage where participants contributed any URL
to build a fixed “open web” collection that restricted the URLs or pages eligible to be
returned. It was followed by a “Live” task in which participants submitted their runs that
could only retrieve pages from the earlier collection of URLs. As many participants still
restricted their Live runs to particular portals or parts of the collection, a second “Batch”
task was added as a reranking task on a given set of URLs extracted from the pools of the
“Live” runs. The Batch task of 2015 was added during the track, and proved so popular
it became the main task in the TREC 2016 contextual suggestion track [76], in which,
as detailed in the previous chapter, we also released the complete crawled content of the
whole collection. This “Batch” mode of evaluation circumvented many of the problems
analysed in this chapter, and by definition satisfies all pooling effects and reusability
tests based on these, as all runs retrieve the exact same set. Although a pragmatic
solution to create a reusable test collection, it does so at the cost of experimental power
and doesn’t solve the fundamental underlying problems analysed in this chapter.

In the last three chapters, we addressed improving user experience in physical spaces
such as smart museums and cities by modeling users interacting with smart devices to
provide an effective personalized POI recommender system, creating a reusable test
collection for personalized POI recommendation offline evaluation, and maintaining
reusability of the personalized test collection. In the next two chapters, we focus
on modeling users interacting with smart speaker IAs to improve user experience at
physical spaces such as smart homes.
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5
Impact of Domain and User’s Learning

Curve on Task and Session Identification
in Smart Speaker Intelligent Assistants

In the rest of the thesis, we focus on modeling users behavior on smart speaker intelligent
assistants. In this chapter, we address RQ4: What is the impact of the learning curve and
task domain on task and session boundaries when interacting with intelligent assistants?
We study impact of learning phase and domain as contextual factors on users interaction
behavior while interacting with intelligent assistants and then estimate task and session
boundaries in smart speaker intelligent assistants.

5.1 Introduction
There is a growing interest in integrating Intelligent Assistant (IA) Systems in different
devices with an aim of providing enriched experiences for users [21]. For instance,
IAs such as Apple Siri, Google Now, Microsoft Cortana and Amazon Alexa have been
integrated with Desktop computers, smart phones, and smart speakers. However, user
behavior varies in different contexts [76, 100, 155], like platform, input method, etc.
For example, users can click on IA responses and change their view-port in interacting
with an IA on smart-phones or desktops [109, 169], which is not available in smart
speakers. Therefore, due to behavioral dynamics in interacting with IAs, their evaluation
on different platforms is challenging, suggesting that different means of evaluation for
different platforms may be necessary.

Understanding user behavior and evaluating user satisfaction in interacting with
IAs on mobile phones and Desktop computers has previously been studied [94, 103,
109, 110, 119, 168, 169]; however, to our knowledge, there have been no studies inves-
tigating user satisfaction and IA effectiveness for smart speakers, which are becoming
increasingly popular. For instance, one study found that there was a 128.9% increase in
the number of smart speaker users in the United States in 2017 compared to 20161. In
this thesis, we use the phrase smart speaker to refer to a wireless speaker device that

1https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-
130-This-Year/1015812
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integrates an intelligent assistant. For the purpose of this study, we focus on devices
that have no screen and where the only method of communicating with the device is
via voice. Smart speakers can be used for many tasks, such as arranging meetings
and controlling home devices via home-automation. This multi-task nature of smart
speakers creates a multi-task experience for users, where a task refers to a single goal or
information need that the user wishes to satisfy [92]. Furthermore, a series of tasks can
be composed to form a session, which refers to a short period of contiguous time spent
to fulfill one or multiple tasks [97]. Evaluating the satisfaction of users for tasks and
sessions is a critical component of IA evaluation; however, it is not obvious how one
should define task and session boundaries for IAs.

Identifying sessions based on user inactivity thresholds as a session timeout is the
most common session identification approach in Information Retrieval (IR) [34, 51,
119, 145]. The basic idea is to define an inactivity window that can be used to separate
sessions. The idea was first proposed by Catledge and Pitkow [29], in which they
use client-side tracking to examine browsing behavior. They reported the mean time
between logged events is 9.3 minutes and, by choosing to add 1.5 standard deviation to
the mean, they proposed a 25.5 minutes inactivity threshold. Over time, this threshold
has smoothed out to 30 minutes. Recently, Halfaker et al. [66] proposed a session
identification approach by fitting a mixture of Gaussians and reported 1 hour as an inter-
activity time threshold as session boundary being appropriate for most user initiated
actions. User inter-activity time is the time difference between two consequent user
actions in interacting with an information system. An extension of this work for IAs
was presented in [118], where it was shown that the session boundary for an IA on a
Desktop Computer was 2 minutes. The experiment was also repeated for Web search
and shown to be 24.1 minutes. The differences between these three studies suggests
that there is no single session boundary that is applicable across platforms.

Furthermore, previous research has considered the session boundary as a fixed
threshold for all IA users. However, in this study, we show that there is no single
approach to modeling task and session boundaries. Instead, task and session boundaries
are affected by contextual factors such as a user’s experience in using the system and
the task they are trying to accomplish. Specifically, the multi-task nature of IAs leads to
different types of user experiences compared to traditional IR systems. Furthermore,
there is often a learning curve associated with being new to an IA. In addition to this,
tasks related to some IA domains require a longer time to be fulfilled compared to other
domains. Therefore, using a single task and session boundary cut-off over all domains
and users expertise levels is not ideal for evaluation.

In this chapter, we study the impact that learning curves and usage domains have
on task and session boundary cutoffs. Specifically, we jointly identify task and session
boundary by fitting a 3-component Gaussian Mixture Model (GMM) on users inter-
activity times in interacting with smart speakers. We focus on smart speakers as they
have not been studied before and, as previously mentioned, it is expected that user
behavior will differ from that of other platforms. However, our findings are applicable
to other platforms as well.

In particular, our main aim in this chapter is to study the research question RQ4:
What is the impact of the learning curve and task domain on task and session boundaries
when interacting with intelligent assistants? Specifically, we answer the following
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research questions:

1. How does one effectively measure task and session boundary cut offs in intelligent
assistant systems?

2. Do user learning curves have an impact on session boundary cut-offs?

3. What is the impact of the domain on task and session boundary cut-offs?

Our contributions include: (1) applying an unsupervised approach using a Gaussian
Mixture Model (GMM) with 3 components to jointly identify task and session boundary
cut-offs; (2) a detailed study of the impact of the learning curve on task and session
boundary cut-offs; (3) an analysis of the impact of usage domain on inactivity thresholds
for task and session identifications.

In making these contributions, the rest of the chapter is organized as follows. In
Section 5.2, we review related work on task and session boundary identification. The
session boundary cut-off estimation based on a GMM is described in Section 5.3. Then,
we thoroughly analyze the impact of the learning curve and domain on task and session
boundary cut-off in Section 5.4 and 5.5. Finally, we present conclusions and future
work in Section 5.6.

5.2 Related Work
User session have been extensively used in IR to develop metrics for web analytics and
user behavioral understanding. To create sessions, three main group of approaches have
been used in the literature, namely, navigation-oriented, query-refinement oriented and
time-oriented approaches.

Navigation-oriented approaches take advantage of browsing patterns based on
HTTP referrers and URLs associated with each request. Cooley et al. [34] proposed
an approach to identify sessions, which is based on detecting the start and end of a
session based on navigation behavior of users. The beginning of a navigation behavior
(without a referrer) shows the start of a session and the end of a session is a point that
the navigational trail can not be traced to a previous request.

Although navigation-oriented approaches are effective in identifying task (address-
ing a single information need) [129], the complexity of this approach and its develop-
mental focus on tasks over sessions makes them inadequate for session identification
[66].

Session identification based on query refinements has also been shown to be only
effective in identifying single information need sessions (i.e., task in our definition)
[87, 92, 132, 133, 138]. Specifically, Jansen et al. [92] defined a session as “a series of
interactions by the user toward addressing a single information need”, which is very
similar to the definition of task in our study, which we discuss in more detail in Section
5.3. Jansen et al. showed that the query content is a better signal in identifying tasks
compared to a session boundary based on a time-oriented approach.
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He et al. [87] and Ozmutlu et al [132, 133] proposed a task identification approach
based on detecting topic shifts using lexical query reformulations. Moreover, Radlinski
and Joachims [138] proposed an approach to identify the topic relevance of a sequence
of queries, which is effective for task identification. However, their extensive focus
on tracing user queries in order to determine if they address a single information need
limits the use in identifying sessions.

Time-oriented session identification approaches are based on estimating an inactivity
threshold between logged user interactions. If there is a long period of inactivity between
a user’s activities, it is likely the user is no longer active, which leads to ending the
session and creating a new session when the user returns. The time-oriented session
identification was first proposed by Catledge and Pitkow [29], in which they use client-
side tracking to examine browsing behavior. They reported 25.5 minutes inactivity
threshold as the session boundary, which has been smoothed out to 30 minutes over
time and is the value commonly used in the literature [51, 145].

Although the time-oriented approach has been widely used for session identification,
some studies have criticized the effectiveness of the time-oriented approach in identify-
ing sessions [97, 120, 126]. Jones and Klinker [97] proposed a supervised approach for
automated segmentation of users’ query streams into hierarchical units of search goals
and missions and reported that the 25.5 minutes threshold is not effective and performs
“no better than random” in identifying search tasks. However, they also reported that
the time-oriented approach is more effective for session identification compared to task
identification.

On the other hand, Halfaker et al. [66] proposed a session identification approach
based on a GMM modeled to fit the within-session and between-session user inter-
activity times. In contrast to Jones and Klinker [97], Halfaker et al. [66] showed that the
global inactivity threshold is an effective session identification approach and reported
1 hour as an inter-activity time threshold, which is appropriate for most user initiated
actions. The main disagreement between these two studies is on task identification, for
which Jones and Klinker [97] criticize time-oriented approaches as being ineffective,
but not session identification. We adopt an approach similar to Halfaker et al. [66] to
jointly estimate task and session boundaries using a mixture of Gaussians fit on users
inter-activity times.

Recently, Mehrotra et al. [118] applied a 2-component GMM to estimate session
boundary in IAs. The authors showed that the session boundary in Microsoft Cortana
on Desktop is much shorter than the common 30 minutes session boundary cut-off in
traditional search engines. Our work is similar to the cited work in that we also fit a
GMM; however, we show that there is no single appropriate fixed session boundary
cut-off for IAs and that the session boundary is dependent on contextual factors, such as
user expertise.

The research presented in this study is different from the other time-oriented session
identification studies as it empirically shows that the task and session boundary cut-off
is not static and fixed for all users. Specifically, in Section 5.4 and 5.5, we show how the
user learning curve and task domains impact task and session boundary cut-offs in IAs.

90



5.3. Session Boundary Cutoff Estimation

5.3 Session Boundary Cutoff Estimation
This section presents an unsupervised approach for task and session identification using
GMMs in order to answer our first research question: How does one effectively measure
task and session boundary cut offs in intelligent assistant systems?

5.3.1 Definitions
In IR, there are three common ways of defining sessions. A session may refer to: “(1) a
set of queries to satisfy a single information need; (2) a series of successive queries; or
(3) a short period of contiguous time spent querying and examining results.” [66, 97]
However, in search engine log analysis literature, it is common to use definition (1) as
a task definition, in which a user performs a series of interactions to address a single
information need [51, 92].

In IAs, users usually take a sequence of steps with an aim of achieving a goal to
solve one or more tasks [109]. Since IAs have the ability to keep context from previous
queries, this allows for task chaining where the context of one task can be used as input
to the next. Considering the multi-task nature of the IA usage, we therefore define tasks
and sessions as follows:

• Task is a single information need that can be satisfied by at least one query and
one IA generated response.

• Session is a short period of contiguous time spent to fulfill one or multiple tasks.

Note, that our session definition is similar to the definition of sessions in [97]. Table
5.1 shows an example of a sequence of user’s interactions to fulfill three tasks over the
course of two sessions. In this example, using common time-based session boundaries
in the IR literature [29, 66, 118] lead to 2 sessions. In the first session, the user is
trying to complete two tasks: one for setting an appointment and one for sending a text
message to someone. After completing these two tasks, the user had about 1 hour of
inactivity before querying the IA for fulfilling the third task on controlling media, which
leads to creating the second session.

5.3.2 Fitting Mixture of Gaussians
As previously mentioned, using a time-based threshold has been the most common
approach in identifying search sessions [51, 145]. Halfaker et al. [66] proposed a
methodology based on GMMs to identify clusters of user activities and argue that the
regularity with which these activity clusters appear provide a good estimate of inactivity
thresholds for defining sessions. More recently, Mehrotra et al. [118] showed that the
2-component GMM is an effective approach to identify sessions in interactions with IA.
They also show that using a 2-component GMM leads to finding a 24.1 minutes session
boundary for a well-known commercial search engine, which is close to findings of
previous studies [51, 145]

In this chapter, we follow the same methodology that is based on GMMs [66, 118].
However, we focus on jointly identifying tasks and sessions by estimating task and
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Table 5.1: An example of a user’s sessions in a smart speaker.

User Utterance and System Response Timestamp

Session 1
Task 1: Calendar review and setting an appointment

U1: What does my day look like tomorrow? 7/14/2017 7:28:45 PM
S1: You don’t have anything scheduled for tomorrow.
U2: Set an appointment with Mary at 14:30 for tomorrow. 7/14/2017 7:28:53 PM
S2: Alright, I can add appointment with Mary to your
calendar for tomorrow at 14:30. Sound good?
U3: Yes, thanks! 7/14/2017 7:28:58 PM

Task 2: Sending a text

U4: Text Alex and ask if he is available for a short meeting
tomorrow 7/14/2017 7:30:37 PM
S4: Sorry, I can’t send messages here. Try the app
on your phone or PC.
U5: Send a message on skype to Alex and ask if he is
available for a short meeting tomorrow 7/14/2017 7:31:03 PM
S5: Sending a message to Alex, skype

Session 2
Task 3: Playing music and controlling media

U6: Play jazz music on Spotify. 7/14/2017 8:38:05 PM
S6: And now, the playlist Coffee Table Jazz on Spotify.
U7: Set the volume to 40%. 7/14/2017 8:38:17 PM
S7: I’ve set the volume to 40%.

session boundary cut-offs using a 3-component GMM. Jointly identifying task and
session boundaries helps having a more accurate Gaussian fits on the inter-activity
times of user interactions with the IA, and thus having a more accurate task and session
boundary identification. We will detail 2- and 3-component GMM methodologies in the
rest of this section.

In order to apply the GMM model to identify the inter-activity type component
clusters, we pre-process the users interaction logs of IA usage in order to obtain per-user
inter-activity times, which is essential to apply the GMM for identifying tasks and
sessions. We plot a histogram based on logarithmically scaled inter-query times in
seconds and look for evidence of one or two valleys. We follow Halfaker et al. [66] in
using the visual inspection method to set the number of component clusters in the GMM.
They proposed a visual inspection based on the number of observed valleys in the users
inter-activity times as a better approach to define number of clusters compared to other
statistical cluster separation measures like Davies-Bouldin Index (DBI) [38]. In Figure
5.2c, an example of observed valleys in users’ inter-activity times histogram is shown
by black arrows. After identifying the number of clusters, we fit a K-component GMM
[17] on the logarithmically scaled inter-query times via Expectation Maximization. We
fit both 2- and 3- component GMMs depending on what we observe in the histogram of
inter-query times. In the next section, we describe the use of a 2-component GMM and
then follow that with a discussion of when it is appropriate to use a 3-component GMM.
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Fitting Mixture of Two Gaussians

The main assumption behind fitting a 2-component GMM for identifying sessions is that
the inter-activity times of user interactions contains two component clusters: (1) within
session inter-activity times (e.g., the time difference between user query U1 and U2 in
Table 5.1); and (2) between session inter-activity times (e.g., the time difference between
user query U5 and U6 in Table 5.1). If two clusters have been visually inspected, we fit
the 2-component GMM on the logarithmically scaled inter-query times using following
Expectation Maximization:

fpx, ✓q “
Kÿ

k“1

pkNpx;mk�kq,

in which, K “ 2 for a 2-component GMM and Npx;mk�kq is a Gaussian distribution
with mean mk and standard deviation �k. We follow [17, 66, 118] in parameter esti-
mation using Expectation Maximization, where the goal is to maximize the likelihood
function with respect to the mixing coefficients, the means and the covariances of the
components as the parameters.
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As previously mentioned, the assumption in fitting a 2-component GMM is that the
components represent two main aspects: within-session and between-session interac-
tivity times. Therefore, if there is an effective fit of the bimodal components, a good
estimate of inter-activity time threshold for identifying sessions is the point where the
inter-activity time is equally likely to be within the first Gaussian fit (within-session)
and the second Gaussian fit (between-session). The reflection of the point on the x-axis,
which is the estimate of task or session boundary, is shown by dotted lines in Figure
5.1a and other figures of K-component GMMs.

Fitting Mixture of Three Gaussians

In fitting a 2-component GMM, we assume that user interactivity occurs either within-

session or between sessions. However, the multi-task nature of IA lends itself to three
interactivity time behaviors. For instance, a user of an IA may perform a sequence of
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interactions to complete a task followed by a brief pause, which we refer to as between-

task inter-activity time. They may then complete another task followed by a long
period of inactivity. Therefore, we have three inter-activity periods: (1) within-task

inter-activity times (e.g., the time difference between user query U1 and U2 in Table
5.1); (2) between-task inter-activity times (e.g., the time difference between user query
U3 and U4 in Table 5.1); and (3) between-session inter-activity times (e.g., the time
difference between user query U5 and U6 in Table 5.1), noting that the combination
of (1) and (2) represent within-session inter-activity time since a session is made up of
multiple tasks. Table 5.1 shows an example of a user’s sessions having all the above
three inter-activity time behaviors. The multi-task behavior of users in interacting with
IA motivates us to fit a 3-component GMM on users inter-activity time with an aim of
both task and session identification by modeling all the above users inter-activity time
behaviors. Jointly modeling both task and session boundary leads to a better fit on users’
inter-activity times compared to 2-component GMM, and thus better estimation of task
and session boundaries.

Given an effective fit of the three component GMM, we can deduce the following:
(1) an estimate of the inter-activity time threshold for identifying tasks is the point where
the inter-activity time is equally likely to be within the first Gaussian fit (within-task)
and the second Gaussian fit (between-tasks); (2) an estimate of inter-activity time
threshold for session identification is the point where the inter-activity time is equally
likely to be within the second Gaussian fit (between-tasks) and the third Gaussian fit
(between-sessions). The reflection of these points on the x-axis is shown by dotted lines
in 3-component GMM diagrams, which are estimations of task and session boundaries.

In comparing our approach, the 3-component GMM has been applied in the literature
for boundary identification but with a different perspective and application. Halfaker
et al. [66] applied a 3-component GMM to model a low-frequency cluster, which
represents an extended break corresponding to a life-event with a mode of around 2.5
months. They also fit the 3-component GMM on inter-activity times to have a better
fit on the Movielens2 dataset. They report that in addition to the within-session and
between-session interactivity times, they observed an additional component cluster at
a high-frequency intervals. They argue that the high-frequency intervals is due to a
rapid rating behavior that the Movielens interface allows for. They have observed a
similar high-frequency intervals in Movielens searches, for which they stated “we are
less sure on how to explain the high frequency component of MovieLens searches. It
could be that, unlike when performing a web search (AOL) or reading encyclopedic
content (Wikimedia), users’ movie searches are more likely to benet from more rapid
iteration”.

In contrast to Halfaker et al. [66] interpretation, we have shown that the 3-component
GMM fitted on user inter-activities is not always about modeling an additional low-
frequency or high-frequency clusters to better fit within-session and between-session
inter-activity time distributions. Instead, we propose that fitting a 3-component GMM
enables us to jointly identifying task and session boundaries. In the most recent work on
session identification in IAs [118], a 2-component GMM was used to fit inter-activity
times and therfore was not able to fit the three inter-activity clusters that appear in IAs.

2https://grouplens.org/datasets/movielens/
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Figure 5.1: Task boundary cut off evaluation based on task boundary crowdsourced labels.

To the best of our knowledge, this is the first study to fit a 3-component GMM to model
IA user inter-activity times and, as will be shown in the rest of this section, is often
more effective than 2-components models.

5.3.3 Evaluation
In this section, we first evaluate the effectiveness of GMMs in task boundary identifica-
tion based on a crowdsourced labeled data. Then, using system-generated task boundary
labels, we evaluate effectiveness of the 3-component GMM in identifying within-task
distributions. All the experimental results of this section are based on interactions of
users with all expertise development level and all available domains.

Evaluation Based on Crowdsourced Labels

To evaluate the effectiveness of the GMM in identifying tasks, we use a dataset of tasks
from an IA on desktop computers where the task boundaries were collected through
crowdsourcing [119]. The target was identifying the boundary of each task within a
session.

To collect the task identification labels for a user session, crowdsource workers
judges if the user was trying to find the same information as the previous query by
issuing the current query [119]. They could read the user’s query or listen to the user’s
utterances, read or listen to system response, look at the original timestamp of queries,
and see a screenshot of a search result page if landing on a search engine result page from
the IA. In order to obtain a high-quality task boundary labels, at least 5 crowdsource
workers judged each session and the final label is based on a majority vote. The dataset
contains 600 IA Desktop sessions, which are divided by judges into around 2000 tasks.
Using the crowdsourced labeled data, we can plot the actual Gaussian distribution of
within-task and between-task inter-activity times. Therefore, the intersection of the
within-task and between-task distributions is the point where the inter-activity time is
equally likely to be in either component and is therefore taken as the task boundary.
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Figure 5.2: Task boundary cut off evaluation based on the system task boundary labels.

Figure 5.1a shows the within-task and between-task inter-activity time distributions
based on the crowdsourced labels, in which the task boundary is 25.5 „ 45 seconds.
Furthermore, Figures 5.1b and 5.1c show the user 2- and 3-component GMM fits of
inter-activity times based only on the inter-activity times and not any labeled data.

The experimental results show that the intersection point of within-task and between-
task Gaussian fits for both the 2- and 3-components GMMs is 25.4 „ 42 seconds. The
task boundary estimation based on the GMMs is very close to the 45 seconds actual
task boundary based on the labeled data. Therefore, in both the case of the 2- and
3-component GMMs, the data suggests that fitting a Gaussian provides a reasonable
approach for modeling task boundaries. Note, the data used in this study was sampled
at the session level [118]. Therefore we do not have multiple sessions per user, which
makes it impossible to model between-session inter-activity times. This explains why
the 2- and 3-component GMMs lead to the same task boundary since the GMMs only
need to model the within-task and between-task components. The dataset used in
the next section contains multiple sessions per user, which allows us to compare the
effectiveness of the 2- and 3-component models.

Evaluation Based on System Task Boundary Labels

In the previous section, we showed the effectiveness of GMMs in identifying tasks. In
this section, we evaluate the effectiveness of the 3-component GMM in fitting inter-
activity times compared to the 2-component GMM. To achieve this, we make use of a
high-quality task boundary classifier being used in a commercial IA. The commercial
IA provides services for a variety of tasks and it can trace a user’s interactions toward
fulfilling a task, with the aim of identifying the task completion status, such as completed,
in-progress and canceled. Using the task completion status, the IA can identify task
boundaries of user interactions, which we call “system task boundary”. As was the case
with the crowdsourced data, we do not have access to a session completion status in the
IA. However, we do have access to multiple sessions per user, which allows us to model
the between-session inter-activity times. However, for our evaluation we only focus
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measuring within-task and between-task inter-activity times, which is available based
on the system task boundary. Due to the fact that we do not have access to the system
session boundary as it is defined in this chapter, we do not evaluate the between-session
inter-activity times.

To evaluate the 3-component GMM in modeling within-task and between-task
inter-activity times, we sampled about 300K queries issued in a two months period of
a commercial smart speaker usage. Figure 5.2a shows the IA identified within-task
and between-task inter-activity time Gaussian distributions based on the system task
boundary labels. The intersection of the within-task and between-tasks Gaussians
based on the system task boundary leads to a 2

5 „ 30 seconds boundary as the task
boundary. Figures 5.2b and 5.2c show the fit of 2- and 3-component GMMs on the
inter-activity times without using the system task boundary labels. The intersection
point of the within-task and between-task distributions of the 2-components GMM
leads to 2

6.8 „ 111 seconds threshold as the task boundary. The intersection point
of within-task and between-task distributions of the 3-components GMM estimates
2
4.3 „ 20 seconds as task boundary cut-off. According to this result, the difference

between 3-components GMM task boundary estimation and the system task boundary
is 10 seconds, which shows the 3-component GMM based task boundary estimation is a
more accurate approach to estimate task boundary cut-offs compared to the 2-component
GMM based task boundary estimation with a 81 seconds difference.

We also measure the KL-divergence of the system task boundary labeled data distri-
bution and the GMM fit via expectation maximization. KL-divergence is a similarity
measure of two distributions and KL-divergence of two Gaussian distributions is given
by [123]:

KLpp, qq “ ´
ª
ppxq log qpxq dx `

ª
ppxq log ppxq dx

“ 1

2
log p2⇡�2

2q ` �
2
1 ` pµ1 ´ µ2q2

2�2
2

´ 1

2
p1 ` log2⇡�

2
1q

“ log
�2

�1
` �

2
1 ` pµ1 ´ µ2q2

2�2
2

´ 1

2
,

where, �1 and �2 are the standard deviations of the first and second Gaussian distri-
butions, and µ1 and µ2 are the means of the first and seconds Gaussian distributions.
A smaller KL-divergence value indicates a more similar Gaussian distributions. The
KL-divergence of the system task boundary labeled within-task Gaussian from the
within-task Gaussian fit of the 2- and 3-component mixture models are 0.4917 and
0.2544, respectively. According to this result, compared to the 2-component GMM,
the 3-component GMM leads to a more effective and accurate within-task Gaussian
distribution of user inter-activity times.

To summarize this section, we presented results of fitting 2- and 3-component GMM
for task and session identification. The evaluation results show that the 3-component
GMM leads to more accurate Gaussian fits of users inter-activity times and a more
precise task boundary cut-offs compared to the 2-components GMM. Thus, in the rest
of this chapter, we use 3-component GMM to study the impact of domain and user
learning-curve on the task and session boundaries. In the next section, we investigate
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the impact of learning curve on task and session boundaries by segmenting users by
their levels of expertise.

5.4 Impact of learning-curve on Session Boundary Cut-
off

This section studies the impact of the learning-curve on session boundary cut-offs,
aiming to answer our second research question: Do user learning curves have an impact
on session boundary cut-offs? We begin by describing our data and then define the
learning-curve in user behavior when interacting with an IA. We then discuss how
session boundaries differ for the learning-curve and a so called normal usage phase.

5.4.1 Experimental Data
This study is based on two random samples of users interaction logs with two different
commercial IAs being used on smart speakers. In the rest of the chapter, we refer
to them as Dataset 1 and Dataset 2. Both Dataset 1 and Dataset 2 are based on user
interactions with the speaker from the first day they start using it. This enables us to
evaluate the impact of learning-curve on session boundary cut-offs.

Dataset 1 consists of interaction logs of 2,087 users collected from March 2017 to
September 2017. Users of Dataset 1 issued 731,128 queries in this period, which is 350
queries per user on average. Dataset 1 contains a total of 644,225 tasks. The dataset has
query timestamps and domain classifications of the queries.

Dataset 2 consists of interaction logs of 20 users with an average usage period of
264 days. The dataset includes 69,649 queries, which is 3,482 queries per user on
average. Although the Dataset 2 has fewer users, the average number of queries per
user is larger than Dataset 1. Furthermore, the queries span a larger time frame, which
enables a longer term analysis.

5.4.2 Learning-curve Definition
According to research in library search and search engines [50, 51, 84, 113, 165], domain
expertise enhances search performance, and the development of search expertise over
time has been observed in prior studies [157, 165, 166]. Specifically, White et al [165]
showed that non-expert domain expertise develop over time.

In this chapter, we focus on the impact of the learning-curve phase on IA task and
session identification. Smart speakers often provide a new experiences for users who
are not familiar with them. Therefore, users who are new to using smart speakers are
generally non-experts and curious to interact with the IA, which motivates them to query
the smart speaker more frequently when they first start using it compared to the normal
usage. We name this stage of the new user usage as the learning-curve phase, in which
users try to learn the device functionality and satisfy their curiosity. In this chapter,
the period after the learning-curve phase is named normal-phase. The difference in
users’ behavior in learning-curve and normal phase has been also observed in Figure
5.3. Figure 5.3 shows impact of learning-curve on average number of queries issued per
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Figure 5.3: Impact of learning on average number of queries per day.
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Figure 5.4: Dataset 1 users’ interactivity time distribution from 1st day to 15th days of their
usage.

day. Learning-curve is modeled by users’ expertise based on number of usage days in
this diagram.

Figure 5.3 indicates that the average number of queries issued by users drops after 8
usage days with no significant increase in average number of queries after the 8th day in
both Dataset 1 and Dataset 2 interaction logs. For example, average number of queries
drops from 42.18 and 40.79 in seventh and eighth days, respectively, to 36.99 and 19.83
average number of queries in the ninth and tenth days for Dataset 1 users. We observed
a similar pattern, yet with less considerable drops, for Dataset 2. Specifically, average
number of queries in Dataset 2 is 22.2, 13.55, 11.75, and 9.95, for days 7, 8, 9, and 10,
respectively.
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5.4.3 Identifying Session Boundary Cutoff in learning-curve

In addition to our observation in Figure 5.3, Figure 5.4 shows a per day basis analysis
of users inter-activity times in Dataset 1. Plotting the inter-activity times of new users
in their first fifteen days of using smart speakers leads to a histogram where there is no
evidence of a trimodal Gaussian distributions in users’ inter-activity times in first eight
days. However, in this experiment, we have observed that after the eighth usage day, an
additional valley appears in the histogram, which is shown by a black arrow. According
to the observations in Figures 5.3 and 5.4, we chose to consider any user interactions
logged in the first eight days of their usage as part of the learning-curve phase, in which
users are curious and issue many queries. The rest we define as their normal phase. We
know that using a 8 days learning-curve phase based on our observations is a strong
assumption. For example, we could have chosen 7 or 9 days as the learning-curve phase.
Identifying an accurate learning-curve phase is not the main focus of this experiment.
In this experiment, we are interested in showing that the task and session boundaries
are different in learning-curve phase compared to the normal-phase. In the rest of this
section, we detail task and session boundary cut-offs on Dataset 1 and Dataset 2 in users
learning-curve compared to their normal phase.

In Figure 5.5, we have plotted histograms of Dataset 1 and Dataset 2 users inter-
activity times in their learning-curve as well as their normal phase. In Figures 5.5a and
5.5c, we fit a 2-component GMM on user inter-activity times in their learning-curve to
estimate task boundary cut-off. The intersection point of the within-task and between-
task Gaussian distributions (task boundary) of the learning-curves are 2

6.9 „ 119 and
2
6.3 „ 79 seconds for Dataset 1 and Dataset 2 users, respectively, which are similar to

the 2 minutes task boundary cut-off of Microsoft Cortana on Desktop [118]. During the
learning-curve phase, as we do not observe a tri-modal Gaussian distribution in user
inter-activity times shown in Figures 5.5a and 5.5c, there is not any clear evidence of
sessions in user inter-activity time distribution. One possible explanation of it is that
users are more curious to try the IA to learn its functionality in their learning-curve
phase rather than querying the IA in a session-based scenario to fulfill one or more
information needs.

Furthermore, Figures 5.5b and 5.5d show a fit of the 3-component GMM on the
normal-phase inter-activity times. The intersection point of the within-task and between-
task inter-activity times distribution (the task boundary cut-off) is 25.8 „ 56 and 2

6.5 „
91 seconds for Dataset 1 and Dataset 2, respectively. In addition, we identify the session
boundary cut-off based on the intersection point of the between-task and between-
session inter-activity times distribution, which is 210.8 seconds „ 30 minutes and
2
11.5

seconds „ 48minutes for Dataset 1 and Dataset 2, respectively.
Although the 48 minutes inactivity threshold to identify IA sessions seems long

compared to the common 30 minutes session boundary cut-off in search engines, we
suspect that the smart speakers domains of usage might contribute in this difference.
Specifically, many of the queries are related to domains like controlling media and
listening to music in smart speakers, which requires a longer session duration compared
to the typical search engine sessions. Figure 5.6 shows the top-5 popular domains being
used in Dataset 1. Apart from the control media, the rest of the top-5 popular domains
are short-term tasks based on number of queries per task. That is one of the possible
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(a) Learning-curve for Dataset 1 users (b) Normal phase for Dataset 1 users

(c) Learning-curve for Dataset 2 users (d) Normal Phase for Dataset 2 users

Figure 5.5: Impact of learning-curve on task and session boundary. The difference between
mean of the learning-curve and the normal-phase inter-activity times distributions is statistically
significant based on t-test (⇢ † 0.05).

explanations why the task and session cut-offs in Dataset 1 are relatively short.
To summarize, in this section, we studied the impact of a learning-curve on session

boundary cut-off and showed that there is not any evidence of sessions having multiple
tasks during the learning-curve phase. By contrast, during the normal-phase, we
observed evidence of both tasks and sessions in users inter-activity times.

5.5 Impact of Usage Domain on Session Boundary
Cutoff

The final question we address in this chapter is how different domains and tasks affect
session boundaries. We investigate whether there is a dependency between session
boundary and the domain of a user’s information needs. This section answers our third
research question: What is the impact of the domain on task and session boundary
cut-offs?
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Figure 5.6: The top-5 popular generic domains in dataset1.
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Figure 5.7: Impact of domains on session boundary. The difference between mean of the control-
media and all domain inter-activity times distributions is statistically significant based on t-test
(⇢ † 0.05).

As it is shown in Figure 5.6, about 37 % of the smart speaker usage in Dataset
1 is in control-media domain. Therefore, we focus on this domain and study how
task and session boundaries in this domain differ from those of other domains. The
control-media domain contains queries with intents, such as query media, play music
and volume up. In this experiment, we preprocessed the inter-activity times for each
day of data. Specifically, we analyzed user queries each day and, if all the queries of a
user’s interactions in a day is in control-media domain, we consider the inter-activity
times of the user in the day as control-media inter-activity times. Otherwise, the user’s
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inter-activity times in the day is in all domains category. The control-media inter-activity
times is 11.6 % of the all user inter-activity times. All the available domain labels of
users’ queries available in Dataset 1 come from a high-quality commercial domain
classifiers.

Figure 5.7 shows a fit of three Gaussians on users’ inter-activity times of control-
media domain against all domains together. As it is shown in Figure 5.7a, in control-
media domain usages, the task boundary cut-off is 26.5 „ 91 seconds and the session
boundary cut-off is 211.5 seconds „ 48minutes. In contrast, the 3-component GMM
fit on all domains inter-activity times lead to 2

6.3 „ 79 seconds task boundary cut-off
and 2

10.9 seconds „ 32 minutes session boundary cut-off estimations.
These results indicate that estimating task and session boundary cut-offs for all

domains may be misleading. Instead the data suggest that task and session boundary
cut-off identification should be done per domain or on a group of similar domains.
Furthermore, we have observed that the difference between the mean of control-media
inter-activity times distribution and the mean of all domain inter-activity times distri-
bution is statistically significant based on t-test with ⇢ † 0.05, which supports our
conclusion in this section.

5.6 Discussion and Conclusions

In this section, we will first discuss impact of our study in downstream applications and
computational costs of our proposed task and session identification model. We then
briefly detail conclusions.

5.6.1 Discussion

Impact on Downstream Applications

Task and session identification is a key element of many IR applications such as
evaluation studies based on user interaction logs, user modeling, and personalization.
Specifically, in user satisfaction prediction based on implicit signals from user inter-
actions, which is an emerging metric to evaluate Web search engines [84], task and
session identification is potentially having a direct impact on effectiveness of a user
satisfaction classifier.

Table 5.1 shows an example of a user session in a smart speaker. In task 2 of this
example, if a task identifier indicates that the task is terminated after system response to
the user’s fourth query (U4), an effective user satisfaction classifier would most likely
classify the task as a dis-satisfactory (DSAT) task. However, if a task identifier indicates
system response to the user’s fifth query (U5) as the end of the task, the effective user
satisfaction classifier would most likely classify the task as a satisfactory (SAT) task.
Session identification would also have a similar impact on session-level user satisfaction
prediction, for which we do not provide an example because of space limitation in
this chapter. Our main point is that the task and session identification could have a
direct impact on user interaction log based studies such as user satisfaction prediction
problem.
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Cost

our proposed task and session identification model is a time-oriented approach and time-
oriented approaches calculate task or session boundary once off-line then use it on-line
without any re-estimation, it is computationally cost-effective compared to navigation-
oriented and query-refinement oriented approaches. In fact, we just need to estimate
task and session boundary once and then use it for a downstream application, which is
almost as cheap as using the 30 minutes session boundary for session identification in
search engine query logs.

Contextual Factor

In this chapter, we have studied impact of contextual factors on task and session
boundaries. We decided to focus on domain and learning-curve because our observations
shows that they are important contextual factors to be aware of while modeling users’
behavior. They were also easy to measure. Our main aim was to show that contextual
factors do matter and these are just two examples of them. We agree that additional
study is required to investigate other contextual factors such as location, which we leave
for future works.

5.6.2 Conclusion
In this chapter, we investigated the impact of the learning-curve and usage domain on
task and session boundary cut-off for two different IAs being used in smart speakers.
We experimented with an application of a 3-component Gaussian mixture model to
fit user inter-activity times with the aim of jointly identifying both task and session
boundary cut-offs in IA user interaction logs. Our main research question was: What
is the impact of the learning curve and task domain on task and session boundaries
when interacting with intelligent assistants? Specifically, we answer following research
questions:

Our first research question was: How does one effectively measure task and session
boundary cut offs in intelligent assistant systems? We evaluated 2- and 3-component
GMMs in task and session boundary estimation based on crowdsourced task boundary
cut-off labels and system generated task labels. Our results show that fitting a GMM on
user inter-activity times is an effective approach to estimate task and session boundary
cut-offs in IA usage on smart speakers. Furthermore, our experimental results show
that using a 3-component GMM leads to a better estimation of task boundary cut-offs
compared to a 2-component GMM.

Our second research question was: Do user learning curves have an impact on
session boundary cut-offs? We showed how an additional inter-activity time cluster
appears in normal phase, which is not available in learning-curve phase. We concluded
that while using 2-component GMM leads to a reasonable fit of users inter-activity times
in their learning-curve phase, fitting a 3-component GMM is more effective during
the normal-phase. In fact, there is not significant evidence of sessions having multiple
tasks in learning-curve phase, and users tend to accomplish tasks more frequently in
learning-curve phase compared to normal-phase of their usage.
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Our third research question was: What is the impact of the domain on task and
session boundary cut-offs? According to the experimental results, task and session
boundaries differ across domains and therefore the domain of a task should be considered
when measuring these boundaries.

In summary, our general conclusion of this chapter is that task and session boundary
cut-offs are not static but are instead dependent on contextual factors like the user’s
learning curve and their usage domains. In the next chapter, we use the estimated task
boundary to identify tasks from the smart speaker interaction logs, and then predict user
satisfaction on the identified tasks.
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6
Measuring User Satisfaction on Smart

Speaker Intelligent Assistants Using
Intent Sensitive Query Embeddings

To improve the user experience in interacting with smart speakers at a physical space
such as smart homes, in this chapter, we address RQ5: How to evaluate user satisfaction
in Intelligent Assistants based on user queries? We focus on using sequence of user’s
utterances to model users behaviors interacting with smart speaker intelligent assistants
to measure their satisfaction in performing a task.

6.1 Introduction
There is a growing interests in integrating intelligent assistants (IAs) such as Apple Siri,
Google Now, Microsoft Cortana and Amazon Alexa in different devices [21]. This has
led to the creation of smart devices, such as smart phones and smart speakers. Each of
these smart devices provides device specific means of interaction. For example, smart
speakers do not include any screen interface and therefore users interact with them via
voice. This is in contrast to IAs on Desktop computers and mobile phones, which have
clicks and gestures as user interactions [119, 169]. Since user behavior differs on these
different platforms and in different contexts [68, 76, 100, 155] there may be a need to
develop different means of evaluation for different platforms.

Smart speaker devices with integrated IAs such as Amazon Echo, Google Home,
Apple Homepod, and Harmon Kardon Invoke with Cortana have become increasingly
popular in recent years. As we mentioned before, one study found that there was a
128.9% increase in the number of smart speaker users in the United States in 2017
compared to 20161. Therefore, measuring the effectiveness of IAs on these popular
smart devices is becoming increasingly important.

An emerging metric for evaluating Information Retrieval (IR) and IA systems is
user satisfaction, which is often based on user interaction data [2, 54, 83, 85, 95, 105,
107, 109, 110]. User satisfaction is a subjective measure of a user’s experience with an

1https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-
130-This-Year/1015812
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U1: Can you call Alex on Skype?

U2: Set an appointment with Alex at 14:30 for 
tomorrow.

U3: Yes, thanks!

S1: Calling Alex, Skype!

S2: Alright, I can add appointment with Alex to your 
calendar for tomorrow at 14:30. Sound good?

A conversation with Alex in Skype!

(a) SAT session example.

U1: Can you call Alex on Skype?

U2: Play Alex songs on Spotify!

U3: Stop! Play Alex Ambrose songs on Spotify!

U4: Cancel!

S1: Calling Alex, Skype!

S2: Calling Alex, Skype!

S3: Searching Web for play Alex Ambrose songs on 
Spotify!

A conversation with Alex in Skype!

(b) DSAT session example.

Figure 6.1: SAT/DSAT user session example in smart speaker IA.

information system, which indicates to some extent if the user’s desire or goal is fulfilled
[102]. User satisfaction evaluation in IAs on mobile phones and Desktop computers has
previously been studied [94, 103, 109, 110, 119, 168, 169]; however, to our knowledge,
there have been no studies investigating user satisfaction and IA effectiveness for smart
speakers. In this chapter, we use the phrase smart speaker to refer to a wireless speaker
device that integrates an IA. For the purpose of this study, we focus on devices that have
no screen and where the only method of communicating with the device is via voice.

Many implicit signals have been studied for measuring user satisfaction in Web
search or for IAs on desktops and mobile devices. Some examples of signals include:
clicks followed by a long dwell-time [55, 84, 95, 106, 107], mouse movements [119],
touch gestures [109, 169], and browser view-port interactivity [111]. However, besides
user queries, none of these implicit user satisfaction signals are available for smart
speakers due to voice being the only method of interaction. Therefore, evaluating user
satisfaction with IAs on smart speakers presents a new challenge, which is finding an
effective implicit user satisfaction feedback signal.

Since queries are the only means by which users interact with smart speakers,
they represent a natural starting point for measuring user satisfaction. In fact, the
reformulation of a query is a well known signal for user dissatisfaction [86]. In this
sense, one can think of queries as not only representing a user’s information need, but
also as providing an implicit feedback signal similar to the case of a click in Web search
or a touch on mobile phones. In this chapter, a query is considered more generic than
the typical query used in IR literature. Specifically, in this study, queries could be
typical Web queries or command-like queries (e.g., device control commands). Figure
6.1a shows an example of a SAT session, in which a user tries to complete a “setting
an appointment” task after making a call to Alex. We hypothesize that the sequence
of user queries can be a beneficial implicit user satisfaction (SAT) signal. Specifically,
issuing the query “Yes, thanks” after the query “Set an appointment with Alex at 14:30
for tomorrow.” might be an indicator of user satisfaction. However, the user saying
“Cancel” after the query might be an indicator of user dissatisfaction (DSAT).
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Furthermore, Figure 6.1b indicates an example of a DSAT session. In this session,
a user asks the smart speaker to play a song by Alex on Spotify after making a call to
Alex (i.e., U2). However, the IA does not detect the user intent properly as it wrongly
determines that the context is still making a call, which leads to an undesirable system
response. As the system response is not satisfactory, the user tries to stop the IA
from giving a wrong response and issues a similar query again (i.e., U3). The system
responds by searching the Web for the user query, which is not satisfactory for the
user as she has stopped the smart speaker by saying “Cancel”. As can be seen by
these examples, a sequence of queries can lead to an implicit feedback signal of user
satisfaction. The question then arises on how one should use these queries to measure
user satisfaction and, as the specific focus of this chapter, how one can find effective
query representations for measuring user satisfaction.

In this chapter, we hypothesize that the intent of a user query can function as an
implicit signal for measuring user satisfaction, where intent refers to the meaning of
the query [139]. For instance, the query “Set an appointment with Alex at 14:30 for
tomorrow.” has “create calendar entry” intent. If this is followed by a ”confirm” intent,
then we may conclude the user was satisfied. In contrast, if it was followed by a
”reject” intent then we may conclude the user was dissatisfied. Based on this intuition,
we propose to measure user satisfaction based on representations of user queries that
are intent sensitive. We propose to do this in two ways. In the first way, we define
Intent Sensitive Word Embeddings (ISWEs), which are word embeddings that not only
represent the semantics of words, but also semantics of the intents associated with words.
For example, although the queries “Yes, thanks” and “Cancel” occur in similar word
contexts, (e.g., “Set an appointment with Alex at 14:30” Ñ “Yes, thanks!” and “Set an
appointment with Alex at 14:30” Ñ “Cancel”), they have very different intents, i.e.,
“confirm” for the former and “reject” for the latter. Our proposed methods for producing
ISWEs scatters these words with different intents in the representation space. We use
this sequence of ISWEs to measure user satisfaction based on a series of user queries.

In the second approach, we consider each query as a single unit having a single
intent and train query representations based on a sequence of query intents. For example,
“play some jazz music” is a single query having a single intent of “play music”, and
“Set an appointment with Alex at 14:30” Ñ “Yes” is an example of a task containing
two queries with intents “create calendar entry” and “confirm”. Therefore, these would
represent sequences of length 1 and 2, respectively, and we use these sequences of
intents as input to our proposed user satisfaction prediction model. This approach
differs from our other proposed approach since in ISWE we use intents to derive intent
sensitive word embeddings. In this approach we forgo the words and only focus on the
intent of the entire query.

In this chapter, our main aim is to study the research question RQ5: How to evaluate
user satisfaction in Intelligent Assistants based on user queries? Specifically, we answer
the following research questions:

1. How to model intent-sensitive query representations for user satisfaction predic-
tion?

2. How effective is the proposed intent-sensitive user satisfaction model in evaluat-
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ing intelligent assistants on smart speakers?

Our contributions include: (1) a user satisfaction prediction model that predicts
user satisfaction based on just user query sequences; (2) proposing a novel intent-
sensitive word embedding (ISWE) that can capture query term intents by learning
word representations based on both word neighbor context and query intent; and (3)
an unsupervised intent embedding approach based on the Skip-gram model that learns
intent representations for each query.

In making these contributions, the rest of this chapter is organized as follows. In
Section 6.2, we review related work. Section 6.3 is devoted to task and user satisfaction
definitions. The proposed user satisfaction prediction model and intent-sensitive query
representation learning methods are described in Section 6.4. Section 6.5 presents
experimental results of our study. Finally, we present our conclusions and discuss future
work in Section 6.6.

6.2 Related Work

Related work falls into two categories: we first review user satisfaction in search and
intelligent assistants, and then we discuss related work on word embeddings.

6.2.1 User Satisfaction
Online evaluation have been widely used to control and improve IR system effectiveness
[13, 46, 48, 154]. An emerging metric for evaluating Web search engines is user
satisfaction based on implicit signals from user interactions [2, 54, 83, 85, 95, 105,
107, 109, 110]. User satisfaction in search is a subjective measure of a user’s search
experience, which is addressed by the extent to which a user’s specified desire or goal is
fulfilled [102]. User satisfaction is different from traditional relevance measures in IR
such as MAP and Precision, which are based on relevance of the retrieved results for a
given query. In user satisfaction, user experience and their success in fulfilling a goal
plays a major role, which has been addressed based on user interaction signals in web
search [83, 86, 105, 107] and intelligent assistants [109, 110, 119, 168, 169].

One of the common signals that has been used for user satisfaction prediction is a
click followed by a long dwell-time [55, 84, 95, 106, 107]. Hassan et al. [86] propose
query reformulation as a signal of user dissatisfaction and they show that incorporating
query features and query reformulation in user satisfaction prediction outperforms an
approach based on click features alone.

Session and SERP features such as time to the first click and average number of
clicks per query have been also studied in personalized and customized search satis-
faction prediction [84]. Furthermore, gesture features, such as reading time and touch
actions, have been used in search satisfaction prediction [109] and good abandonment
detection [169] in mobile web search. In addition, tracking the browser viewport on
mobile devices has been also studied as an implicit signal for user search satisfaction
[111].
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To model user satisfaction, Hassan et al. [85] model the search process as a sequence
of actions, such as queries and clicks, and built two Markov models for identifying
satisfactory and dissatisfactory search sequences. They further shows that using a
semi-supervised search success prediction approach based on sequence of actions can
lead to an improvement over the supervised approach [83]. More recently, Mehrotra
et al. [119] proposed user satisfaction prediction in Desktop intelligent assistants based
on fine-grained actions, such as mouse movements.

Our work is different from all the above user satisfaction prediction models in two
aspects. First, we focus on user satisfaction prediction with IA on smart speakers, in
which the only means of interaction is via voice queries. In fact, none of the past works
are applicable in user satisfaction on smart speakers, except the query reformulation
proposed in [86]. Our proposed approach is different from the query reformulation as
we use a sequence of query terms to predict user satisfaction. Furthermore, we propose
user intent as a new signal to measure user satisfaction.

6.2.2 Word Embeddings
Recently, continuous word embeddings have gained popularity in different IR tasks, such
as query and document language models [58, 177], neural ranking models [45, 178, 180],
and query expansion [7, 47, 176]. In particular, Zamani and Croft [176] propose a
theoretical framework for query embedding vectors representation based on individual
vocabulary term embeddings. Furthermore, they propose using word embeddings to
weight terms that do not occur in the query, yet are semantically related to the query
terms in the query language model. More recently, Ai et al. [3] proposed a hierarchical
embedding model that jointly learns distributed representations for query, product and
users in a personalized product search.

Zamani and Croft [178] recently showed that the linear context is not sufficient for
learning an effective word embeddings for IR tasks, and they propose learning word
representations based on query-document relevance information. In addition, Rekabsaz
et al. [141] propose post filtering of related terms by global context relatedness measures
to avoid topic shifting in retrieval models. Furthermore, Mehrotra and Yilmaz [117]
propose learning query representations based on task context in search logs.

Although, incorporating additional signals to improve word embeddings in IR is
very new, there have been plenty of research in NLP to improve word representations
by using metadata [184], semantic lexicons [135], syntactic word relations [114] and
document topics [53]. Our work is different from the above as we propose a novel
Intent Sensitive Word Embedding (ISWE) method that can leverage information from a
query’s intent to improve query term representations. We are the first who modify the
Skip-gram model [122] to capture query term intents and use them as input to a user
satisfaction prediction model.

6.3 Task Satisfaction
In this section, we first define tasks and sessions as they apply to IAs, and then we define
task satisfaction in IAs. In IAs, users usually take a sequence of steps to achieve a goal
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Table 6.1: An example of a user’s task satisfaction in an IA on a smart speaker.

User Utterance and System Response User Satisfaction

Task 1: Calendar review

U1: What does my day look like tomorrow?
S1: You don’t have anything scheduled for tomorrow. SAT

Task 2: Sending a text

U2: Text Alex and ask if he is available for a short meeting
tomorrow
S2: Sorry, I can’t send messages here. Try the app
on your phone or PC. DSAT

Task 3: Calling on Skype

U3: Can you call Alex on Skype?
S3: Calling Alex, skype SAT

Task 4: setting an appointment

U4: Set an appointment with Alex at 14:30 for tomorrow.
S4: Alright, I can add appointment with Alex to your
calendar for tomorrow at 14:30. Sound good?
U5: Yes, thanks! SAT

to solve one or more tasks [109]. Since IAs can keep context from previous queries,
this allows for task chaining where the context of one task can be used as input to the
next. Considering the multi-task nature of the users’ behaviors in IA, we follow the task
and session definitions as proposed in [80]:

• A Task is a single information need that can be satisfied by at least one query and
one IA generated response.

• A Session is a short period of contiguous time spent to fulfill one or multiple
tasks.

Given the definitions of tasks and session, we define task satisfaction as follows:

• Task satisfaction is how successful a user is in completing a single information
need using at least one query and receiving at least one IA generated response.

IA generated responses are not always in the form of replying to a user query in a
dialogue manner. For some queries such as “Stop”, a proper IA response could be
simply stopping whatever the IA was doing. Table 6.1 shows an example of a user’s
task satisfaction in an IA session. In this example, the user is performing four tasks,
including: reviewing her calendar; sending a text; calling on Skype; and setting an
appointment. These tasks are part of a session, in which the user is organizing a meeting
with Alex. Tasks 1 and 2 in Table 6.1 show examples of satisfactory (SAT) and a
dissatisfactory (DSAT) tasks, respectively.

To summarize, in this section, we have defined task and sessions in IAs, and then we
have defined task satisfactions in IAs. In the next section, we detail the task satisfaction
prediction problem in smart speaker IAs and describe our proposed task satisfaction
prediction model.
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6.4 Task Satisfaction Prediction
This section first presents user satisfaction prediction problem based on a sequence
of user queries. We then detail our proposed user satisfaction prediction and query
representation learning models.

6.4.1 Satisfaction Classification Model
The task of user satisfaction prediction based on a sequence of user queries can be
regarded as a sequence classification problem. To be more specific, a user starts querying
the IA at time stamp t0 and can keep querying the IA up to time stamp tn in a task
or a session. Therefore, we can represent a user’s set of interactions with an IA on a
smart speaker as a sequence of queries qt0 , qt1 , qt2 , ..., qtn´1 , qtn , where qt is a query q

at time stamp t. Given a sequence s of queries qt P Q, the task is to predict whether the
sequence of queries leads to a satisfactory (SAT) or a dissatisfactory (DSAT) experience
in a task. In particular, using a variable c P t0, 1u, the goal is to find the most likely
class c, given a sequence s.

Considering the sequential nature of user queries and its variable length in accom-
plishing tasks in IA, we propose to use a Long Short Term Memory (LSTM) Recurrent
Neural Network (RNN) to model user satisfaction because of the following reasons: 1)
LSTMs have been shown to be effective in different sequence classification problems
such as text classification [60], sentence similarity [128] and satisfaction prediction in
the case of good abandonment [167]. 2) LSTMs are more effective than standard RNNs
in their ability to model long time dependencies.

The LSTM updates a hidden layer representation sequentially using time steps
relying on four components: 1) a memory state ct, 2) an input gate it, 3) a forget gate ft,
and 4) an output gate ot. The input and forget gates control what gets stored in memory
based on each input and the current state. The output gate controls how the memory
state impacts other units. In an LSTM, updates at each time step t are as follows:

it “ �pWixt ` Uiht´1 ` biq
ft “ �pWfxt ` Ufht´1 ` bf q
ot “ �pWoxt ` Uoht´1 ` boq

rct “ tanhpWcxt ` Ucht´1 ` bcq
ct “ it d rct ` ft d ct´1

ht “ ot d tanhpctq,

where xt is an input at time step t, rct is the candidate value for the state of the
memory cell, and ht is the output of the unit. The Wi, Wf , Wo, and Wc are the weight
matrices for the current input. The Ui, Uf , Uo, and Uc are the weight matrices for the
previous output, and bi, bf , bo and bc are bias vectors.

In this study, we use the LSTM model defined above to model the sequence of
queries issued by a user to accomplish a task. The input xt in our model is an intent-
embedding of a user’s queries. In Section 6.4.2, we describe in detail how we acquire
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these embeddings.
In our model, the embedding layer is connected to a block of LSTM units. To prevent

over-fitting problem, we have used a dropout at the LSTM layer, which randomly drops
units and their connections to avoid unit co-adapting [90, 152]. Following previous
work, we have used p “ 0.5 in our dropout network as this value has been reported as a
close to optimal value for a wide range of networks in different applications [152]. The
output of the last time step in the LSTM feed to a standard feed-forward neural network
that contains a single output neuron that uses the sigmoid activation function.

In the learning phase, the derivatives of the loss function are backpropagated through
the neural network. Our neural network is trained using the stochastic gradient descent
(SGD) algorithm with mini batches, which is widely used algorithm for training neural
networks. In order to do hyper-parameter optimization in the learning phase, we have
used random search [18], which has been reported to be as good as or better than the
grid search in hyper-parameter optimization of neural networks [18].

The random search has been done using a continuous parameter space in range of
r0.0001, 0.1s for the learning rate. The chosen learning rates by the random search are
adjusted based on the Adam optimization algorithm [108].

6.4.2 Query Representation Learning
We presented our LSTM-based model for user satisfaction prediction in the previous
section. We mentioned that the inputs to our model were embeddings that represented
the query. In this section, we describe two different representations. One representation
is based on an Intent Sensitive Word Embedding (ISWE) while the other is based on
unsupervised intent embeddings. Specifically, we answer the research question: How to
model intent-sensitive query representations for user satisfaction prediction?

Intent-Sensitive Word Embeddings

To learn query representations based on query terms, we explored different word
representation models. The word2vec Skip-gram model is one of the state of the
art approaches to learn vector representations of words. Word embeddings trained
using the Skip-gram model have been shown to be very useful in many tasks [47, 53].
However, in many of the previous efforts, embeddings were generated without taking
into consideration the targeted task leading to generic embeddings that might not serve
the task well.

For example, Skip-gram model leads to word representations considering “Stop”
and “Start” words as being similar. However, although “Stop” and “Start” might be
similar based on linear neighbor word context in sessions (e.g., “start my jazz playlist
on Spotify!” and “stop my jazz playlist on Spotify!”), they lead to different queries
having completely different intents.

In the rest of this section, we explain our proposed intent sensitive word embedding
approach. In our approach, we augment the standard Skip-gram model word embeddings
with the query intent information to avoid learning similar representations for words
who have similar linear context but different intents. This way, we generate more
effective and task oriented word representations compared to the original Skip-gram
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word embeddings. The main idea is to add more information when the immediate
linear context of the word is not very informative. We train word embeddings based
on our proposed Intent-Sensitive Skip-gram model for a query q P Q, having intent
ı P I , and containing a sequence of words w1, w2, ..., wT . The objective of the Intent-
Sensitive word embedding Skip-gram model is to maximize the log-likelihood of context
word-intent pair wı

t`j given the target word wt:

1

T

Tÿ

t“1

ÿ

´b§j§b,j‰0

log ppwı
t`j |wtq,

in which, b is the size of training context (b “ 10 in all of our experiments), and ı is
intent of the query in which the word occurred.

In order to train the Intent Sensitive Word Embeddings (ISWEs), we have collected
intent labels of about 900K IA queries. To collect queries intent labels, we use an
in-house micro-tasking platform that outsources crowdwork to judges who regularly
perform intent labeling tasks. We presented one query to the judges at a time and they
select intent of the given query from a predefined set of intents. The annotations include
queries having 266 unique intents like “create calendar entry” and “make call” from 30
different usage domains in IA such as “calendar” and “communication”.

We also use negative sampling as discussed in [122]. In negative sampling, having
a dataset D of observed pw, cıq pairs of word w and intent-sensitive context cı, we
generate the set D1 including random pw, cıq pairs assuming they are incorrect. The
probability of a pw, cıq coming from the data is denoted by ppD “ 1|w, cıq and
ppD “ 0|w, cıq “ 1 ´ ppD “ 1|w, cıq is the probability of pw, cıq coming from the
negative examples. Ideally, the ppD “ 1|w, cıq must be high for the word and context
pairs observed in the data and low for the random negative samples. The negative
sampling training objective is as follows:

argmaxvw,vcı

¨

˝
ÿ

pw,cıqPD
log �pvcı ¨ vwq `

ÿ

pw,cıqPD1
log �p´vcı ¨ vwq

˛

‚,

where �pxq “ 1{p1 ` e
xq, vw and vcı are d-dimensional vectors which are model

parameters to be learned using stochastic-gradient updates over the whole corpus
including both observed and negative sampled word and context pairs (i.e., D Y D

1). In
all of our experiments in this chapter, we set d “ 100. To create the negative sample, we
follow Mikolov et al. [122] in creating n negative samples pw, cı1q, pw, cı2q, ..., pw, cınq
where each c

ı
j sampled based on its unigram distribution raised to the 3/4 power.

According to experiments detailed in [122], n in the range of 5-20 are useful for
small training datasets. Thus, following other successful Skip-gram with negative
sampling experiments [114], we have chosen 15 as the negative sample size for each
positive observed sample in our dataset.

The above objective optimization leads to word and intent-sensitive context pairs
having similar embeddings for the pairs observed in the data while scattering negative
sampled pairs. In ISWE, words appearing in a similar intent-sensitive context (i.e.,
context-word and query-intent) should have similar embeddings. We feed a sequence of
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Figure 6.2: User satisfaction prediction model based on sequence of query terms as input.

queries, in which each query contains a sequence of ISWE query terms, to the proposed
task satisfaction prediction model discussed in Section 6.4.1. Figure 6.2 shows an
example of how we feed ISWE query term representations to the satisfaction prediction
network. Effectiveness of the learned query representation in predicting user satisfaction
is discussed in Section 6.5.

Unsupervised Intent Embedding

In this model, we choose to forgo the individual words of a query and instead choose
to represent the entire query by its intent. To model intent embeddings, we propose
using the Skip-gram model [122], which is common for learning word embeddings in
NLP [53, 114, 130]. In our proposed Intent2Vec Skip-gram model, each intent ı P I

is associated with a vector vi P R
d, where I is the intent vocabulary, and d is the

embedding dimension. In all of our experiments, we set d “ 100. The training objective
of the Intent2Vec model is to find intent representation, which are effective to predict
the intent of surrounding queries in a task or a session. Formally, given a sequence of
intents ı1, ı2, ..., ıT in a session, the objective of the Intent2Vec Skip-gram model is to
maximize the following function:

1

T

Tÿ

t“1

ÿ

´b§j§b,j‰0

log ppıt`j |ıtq,

in which, b is the size of training context, which is set to b “ 10 in all of the experiments
in this chapter. To train the intent embedding, we have used negative sampling as
presented in Section 6.4.2 and chose 15 as the number of negative samples for each
positive sample observed in our dataset.

In order to train query representations based on the Intent2Vec model, we sampled
about 500K IA queries issued in a 3 month period of a commercial smart speaker usage.
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Figure 6.3: User satisfaction prediction model based on sequence of query intents as input.

This dataset does not have any relation with the 900K queries dataset used for training
ISWE. We use a high-quality production-level offline intent classifier to assign intents
to each query. Our query sample has 181 unique intents like “check weather” and
“volume down” from 23 different domains such as “weather” and “media-control”. As
previously mentioned, Intent2Vec trains intent embeddings based on neighboring query
intents. Thus, to train intent embeddings, Intent2Vec requires a sequence of queries
issued in each session as an input. In order to create a sequence of query intents for each
session, we need to identify sessions from the raw IA log data. To do this we follow the
approach of [80] to identify session boundaries, which leads to creation of about 69K
sessions based on the one hour session boundary identified using the approach presented
in [80]. Using sessions as input of I2V leads to training intent embeddings based on a
larger context size compared to training the intent embeddings on tasks. Training the
intent embeddings on sessions provides representations that considers both within task
and cross-task contexts in IA sessions.

To predict task satisfaction, we feed a sequence of query intent representations to
the model discussed in Section 6.4.1. Figure 6.3 shows an example of how we feed a
sequence of queries to the user satisfaction prediction network. We first assign an intent
to each user query using a high-quality production-level offline intent classifier. We
then feed a sequence of intent embeddings query representations to the user satisfac-
tion prediction network. In our proposed user satisfaction prediction models, we just
consider users’ queries as input and we do not use system responses, which are directly
controlled by the IA, as input and feature to the user satisfaction prediction model. By
excluding system responses, we avoid using endogenous features (i.e., features that the
search engine has control over [167]) in our online user satisfaction prediction model.
Evaluation of the model is available in Section 6.5.

In this section, we have defined the task satisfaction problem and our proposed model
to address the problem. We have also described the intent-sensitive word representation
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learning and Intent2Vec query-intent representation learning models with an aim of
learning effective query representations for task satisfaction prediction. In the next
section, we present a set of experiments evaluating these models.

6.5 Experimental Evaluation
In this section, we evaluate our proposed models by answering the research question:
How effective is the proposed intent-sensitive user satisfaction model in evaluating
intelligent assistants on smart speakers?

6.5.1 User Satisfaction Judgment Crowdsourcing
This study is based on a random sample of users interaction logs with a commercial
IA being used on a smart speaker during August, September and October, 2017. Our
random sample includes user sessions having one to ten queries. As it is not easy
to collect explicit feedback about actual users’ satisfaction, crowdsourced judgments,
which have been widely used to obtain labeled data for different problems including user
satisfaction in IAs [119, 169], is used. To collect user satisfaction judgments, we use an
in-house micro-tasking platform that outsources crowdwork to judges who regularly
perform relevance judgment tasks. We removed all the personal identifiable information
(PII) from the sessions before sending them for judgment.

A detailed guideline including a video explaining how to judge user satisfaction was
shown to the judges. We presented a whole session to judges, and asked them to assess
query-level satisfaction and session level satisfaction of a user in the given session. We
also collected task identification labels for a user session, in which crowdsource workers
judged whether the user was trying to fulfill the same information need as the previous
query by issuing the current query. To judge user satisfaction and task identification,
judges could read or listen to the user’s query, read system response, look at the original
timestamp of queries, and read or listen to the user’s previous or future queries.

In order to obtain a high-quality user satisfaction labels, at least 3 and at most 5
crowdsource workers judged each session. Qualifying tests and spam detection were
used to filter out low-quality judgments. The final label used for satisfaction is based on
a majority vote. We randomly sampled over 1700 user sessions in the smart speaker IA
and collected user satisfaction labels for them. We measure inter-rater agreement using
Fleiss’ Kappa [54].

The goal of this study is to measure task satisfaction. To create tasks, we used the
majority vote as task boundary labels. Specifically, we create tasks based on sequence
of queries issued by a user up to a point that the task is ended using the task boundary
collected labels. In our collected dataset, the crowdsourced task boundary labels led
to 3105 tasks including 6920 query-level satisfaction labels. The Kappa value is 0.42
for the collected query-level user satisfaction labels and 0.72 for the collected task
boundary labels.

After creating the tasks, we need to assign a label to each task. In Figure 6.4, we
have shown the correlation between percentage of satisfactory queries in a session
and the session satisfaction probability based on the crowdsourced session satisfaction
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Figure 6.4: Impact of percentage of satisfactory queries in a session on session satisfaction. This
chart is based on a crowdsourced judgments collected in Section 6.5.1.

collected labels. According to our observation on session-level user satisfaction in
Figure 6.4, having from 60% to 70% user query-level satisfaction in a session leads
to session-level satisfaction in 76% of the cases. Overall, having at least 60% user
query-level satisfaction leads to 93% session-level satisfaction compared to just 19%
user satisfaction for tasks having less than 60% user query-level satisfaction. Therefore,
we have intuitively used the 60% threshold for task-level satisfaction labels, which
means that if 60% or more of queries issued in a task are labeled SAT, then we label the
task as SAT.

6.5.2 Baselines
We consider three baselines when evaluating our models.

1. Query reformulation (QR) [86] is one of the defined baselines, which classifies
a task as DSAT if the last query of a user in the task is a reformulation of the
second to last query with no user interaction after the last query. Otherwise, it
classifies the task as a SAT experience. We use the method of [86] to determine if
a query was reformulated.

2. The second baseline is a variant of the generative model (GM) [83], which uses
a sequence of query terms to predict satisfaction. The GM is a mixture model
composed of SAT and DSAT components. Give a sequence of interactions, the
goal during classification is to identify whether the sequence was generated
by the SAT or DSAT components of the mixture model [83]. The model was
originally used to predict search success based on a sequence of actions in a
session including clicks, query reformulation and queries. We use the query terms
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Table 6.2: Nearest neighbors of three examples in different representation spaces based on cosine
similarity. Both word2vec skip-gram baseline and the intent-sensitive word embeddings are
trained on a same dataset.

Word good

Word2Vec Skip-gram nice, great, wonderful, bad, lovely
Intent-Sensitive WE nice, great, wonderful, fine, decent

Word yes

Word2Vec Skip-gram yeah, not, okay, no, ok
Intent-Sensitive WE yeah, yep, sounds, correct, ok

Word cancel

Word2Vec Skip-gram delete, remove, erase, edit, set

Intent-Sensitive WE remove, delete, disable, dismiss, clear

as sequence of actions in the GM as they are the only means of user interactions
in smart speaker IAs.

3. In order to evaluate effectiveness of our proposed ISWE in user satisfaction
predictions (ISWE-LSTM), we have defined another baseline based on our pro-
posed user satisfaction prediction model detailed in Section 6.4, yet using original
Skip-gram representations of query terms as input to the network (W2V-LSTM).

6.5.3 Experimental Result
We conduct experiments to evaluate the effectiveness of the proposed ISWE in capturing
word-intent and the intent-sensitive user satisfaction models in differentiating between
SAT and DSAT tasks. We also measure the impact of task-type on user satisfaction
and the effectiveness of the proposed models in predicting satisfaction in tasks having
different types. Specifically, we address the following research questions in this section:

1. How effective are the intent-sensitive word embeddings in estimating word simi-
larity by capturing word-intent compared to the Skip-gram word2vec model?

2. How effective is the intent-sensitive user satisfaction model compared to the user
satisfaction prediction baselines?

3. How effective is the intent-sensitive user satisfaction model in different task
types?

Intent-Sensitive Word Embeddings in Word Similarity

The word representations learned by our proposed ISWE are expected to capture word
intent. Table 6.2 shows three different examples of the nearest neighbors of words based
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Table 6.3: Task satisfaction prediction result. * indicates statistical significant improvements
based on Student’s paired t-test and Wilcoxon signed-rank test (⇢ † 0.05).

Classifier P R Acc. F1

QR 0.5117 0.5059 0.6248 0.5086

GM 0.6056 0.6068 0.6345 0.6062

W2V-LSTM 0.6513 0.6209 0.6910 0.6356

I2V-LSTM 0.6254 0.5528 0.6566 0.5862

ISWE-LSTM 0.6891* 0.6669* 0.7174* 0.6778*

Impr. over GM (%) 13.80% 9.90% 13.07% 11.81%
Impr. over W2V-LSTM (%) 5.80% 7.41% 3.82% 6.63%

on cosine similarity. As it is shown in Table 6.2, in contrast to the Skip-gram word2vec
embeddings that is not capable of capturing word-intent by putting words like “yes” and
“no” very close in the representation space, ISWE can effectively capture word-intent by
scattering words having different intents. For example, Table 6.2 indicates that the top-5
similar words to word “yes” based on cosine similarity of word2vec Skip-gram word
representations are “yeah”, “not”, “okay”, “no” and “ok”, which includes words with
very different query-intents. On the other hand, the top-5 similar words to word “yes”
based on cosine similarity of ISWE word representations are “yeah”, “yep”, “sounds”,
“correct” and “ok”, which is an example of how ISWE captures word-intent in the word
representations.

Capturing word-intent in the word representations can be very beneficial for user
satisfaction prediction, as understanding user query intent incorrectly can lead to a
DSAT experience. For example IA might proactively ask a user “You have a reminder.
Should I read it?”. Then, if the user says “no” and the IA starts reading the reminder, the
user would have a DSAT experience. However, if a user satisfaction prediction model
cannot capture the user’s intent, then it might classify the task to the SAT category as it
considers words “yes” and “no” as very similar words.

ISWE performs better than the standard skip-gram word embeddings because the
objective function of the ISWE does not just depend on words linear context in sentences.
In fact, query-intent plays a major role in the objective function, which scatters words
having different intents. In the next part, we discuss effectiveness of our proposed
intent-sensitive user satisfaction model compared to the baselines.

Impact of Intent Sensitive Word Embeddings on User Satisfaction

We now answer our research question: How effective is the intent-sensitive user satis-
faction model compared to the user satisfaction prediction baselines?

Table 6.3 shows the user satisfaction prediction results of the proposed intent-
sensitive user satisfaction prediction models compared to the baselines. In these ex-
periments, the classification threshold is 0.5. The experiment is based on a 5-fold
cross validation, where three folds were used for training, one for validation, and one
for testing. We repeat the process for all the five folds and report the average of the
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Table 6.4: Satisfactory session distribution over different task type.

Task Type Distribution Sat Task Percentage

Single-Query 54.33% 60.05 %
Two-Turn 18.20% 63.00 %
Multi-Turn 27.47% 77.02 %

evaluation metrics. According to our experimental results, the query reformulation
baseline performs poorly in the prediction of user satisfaction. One possible explanation
for this is the dialogue nature of queries, where users might refine their queries to give
more details about their information needs. It also has a huge bias toward predicting the
SAT class, which could be the second possible explanation of its poor performance. On
the other hand, the generative model performs much better than the query reformulation
baseline, which provides a good baseline for our proposed model evaluation.

As it is shown in Table 6.3, the intent-sensitive user satisfaction based on ISWE
query representations leads to a significant improvement over all the baselines in terms
of all the defined evaluation metrics. Specifically, it improves task satisfaction prediction
over the generative model from 0.6062 to 0.6778 in terms of F1 metric. The proposed
model also has a statistically significant improvement over the task prediction based on
the Skip-gram query representation, in which the F1 metric is improved from 0.6356

to 0.6778.
One possible explanation of the improvements achieved by the ISWE-LSTM over

the I2V-LSTM is that in contrast to the I2V-LSTM model getting sequence of queries
as an input, the ISWE-LSTM gets sequence of intent-sensitive query terms as an
input. Therefore, effectiveness of the ISWE-LSTM is less affected by single-query
tasks. Furthermore, ISWE-LSTM has improvements over other baselines that also use
query terms as input, because the ISWE model takes advantage of the query intents for
satisfaction prediction.

Our experimental results shows that the user satisfaction prediction based on In-
tent2Vec query-intent representations (I2V-LSTM) does not lead to an improvement
over the generative model in terms of the F1-measure. However, as it is shown in
Table 6.4, 54.33% of tasks in our crowdsourced dataset contain a single query, which
is not ideal for training the user satisfaction prediction based on a sequence of intents.
We suspect that the I2V-LSTM would do better for long tasks having multiple queries
compared to single query tasks. We investigate this in the next experiment.

Impact of Task Type on User Satisfaction

In our final experiment, we answer our research question: How effective is the intent-
sensitive user satisfaction model in different task types?

The dialogue nature of user queries in IAs leads to tasks, in which users might issue
multiple queries to accomplish a single information need. However, although users are
capable of having long conversation with the IA, the majority of tasks are single query
tasks in smart speakers [80]. In Table 6.4, we categorized tasks into three different types:
1) Single-Query tasks are tasks having a single query and a single system response, 2)
Two-Turn tasks are those tasks where the user issues a second query after receiving a
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Figure 6.5: Effectiveness of intent-sensitive user satisfaction models compared to the baselines in
different task types.
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system response to their first query, and 3) Multi-turn tasks are tasks having more than
two user queries (i.e., multiple turns).

According to Table 6.4, users seem more satisfied in tasks having multiple queries.
One possible explanation of such a behavior is that the IA retains the context of the
dialogue, and shorter sessions are more probable to be sessions that IA was not able to
retain the dialogue context and consequently the user abandoned the task.

As the user satisfaction level varies based on the defined task-types, and user
behavior might be different in each of them, we investigate user satisfaction prediction
for each task-type separately. Figure 6.5 details our proposed intent-sensitive user
satisfaction prediction models effectiveness compared to the baselines in different task
types. As expected, the query reformulation approach does not work well for the single
query tasks as it assign SAT labels to all tasks. The query reformulation does not work
well in two-turn and multi-turn tasks either, which shows that query reformulation is a
poor approach for measuring user satisfaction in IAs on smart speakers. The generative
model performs better for two-turn tasks compared to multi-turn tasks. We observed
similar results for W2V-LSTM model in terms of precision and F1.

Figure 6.5 shows that our proposed intent-sensitive models perform better than all
the baselines in single-query and multi-turn task-types in terms of all common metrics;
however, the effectiveness of the generative model, W2V-LSTM and ISWE-LSTM
in user satisfaction prediction in two-turn sessions are similar. In fact, the generative
model and W2V-LSTM perform slightly better than ISWE-LSTM. The generative
model performs better than W2V-LSTM and ISWE-LSTM in terms of recall of two-turn
tasks, and W2V-LSTM is better than generative model and ISWE-LSTM in terms of
precision. However, in terms of F1 as a more fair metric to evaluate classification, the
genarative model, W2V-LSTM and ISWE-LSTM perform very similar.

Furthermore, as it is shown in Figure 6.5, the I2V-LSTM model improves as task
length increases. As expected, the I2V-LSTM improves the task satisfaction predic-
tion based on F1 score from 56.33 in single-query tasks to 61.28 in multi-turn tasks.
Specifically, in single-query tasks, the I2V-LSTM performs poorly because of using a
single query-intent as input to the sequence classification. In two-turn tasks, I2V-LSTM
performance is improved as it uses a sequence of 2 intent representations in contrast to a
single intent representation in single-query tasks. Using longer sequence of intents leads
to a better understanding and prediction of user satisfaction in I2V-LSTM model, which
makes the I2V-LSTM model the best performing user satisfaction model for multi-turn
tasks in terms of F1.

To summarize, in this section, we have presented experimental results and shown
effectiveness of ISWE compared to the original Skip-gram word2vec in capturing word-
intents and learning query representation for user satisfaction prediction. Then, we
discussed satisfaction in different task-types. In contrast to two-turn tasks, in which
the generative model, W2V-LSTM and ISWE-LSTM models perform similarly, our
experimental results indicates that the I2V-LSTM intent-sensitive user satisfaction
prediction model is the best performing system in terms of F1, which is our main
evaluation metric. Moreover, due to using intent-sensitive word-level representations
of queries, ISWE-LSTM intent-sensitive user satisfaction prediction model is the best
approach for single-query tasks.
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6.6 Conclusion
In this chapter, we investigated the user satisfaction prediction problem in intelligent
assistants (IAs) on smart speakers, in which the only means of user interactions with the
IA is a sequence of user queries. Our main research question was: How to evaluate user
satisfaction in Intelligent Assistants based on user queries? To do this, we proposed a
new implicit signal from user queries to predict user satisfaction, which is query intent.
Using the query intent, we proposed an intent-sensitive user satisfaction prediction
model. Learning effective query representations as input of the user satisfaction pre-
diction model is one of the main contributions of this chapter. To train intent-sensitive
query representations, we proposed two intent-sensitive models.

We first proposed an intent-sensitive word embeddings (ISWE) learning model,
which is a modification of the popular word2vec Skip-gram model. According to
our experimental results, the ISWE are very effective in capturing query term intents
compared to the original Skip-gram model. Second, we proposed an unsupervised
Intent2Vec Skip-gram model to capture linear context of query intents in user sessions.

According to our experiments, incorporating ISWE as the input to a user satisfaction
prediction model based on a sequence of query terms leads to a statistically significant
improvement over all the defined baselines. Furthermore, we further evaluated the
effectiveness of the proposed intent-sensitive user satisfaction prediction models in
different task types and showed that the proposed intent-sensitive user satisfaction
model based on ISWE performs better than the baselines in single-query and multi-
turn task-types, yet performs similar to baselines in two-turn task-type in terms of the
common classification metrics. One possible explanation for this could be the nature of
queries used in the training phase of ISWEs. The training set for learning the ISWEs
was query and intent pairs without considering the whole task context. Therefore, the
learned ISWEs are optimized for a single-query level context, and consequently the
user satisfaction prediction model based on ISWE performs better in single-query task
type. Furthermore, our experimental results indicate that compared to the two-turn task
type, our proposed user satisfaction prediction based on ISWE performs better than
baselines in multi-turn task type as it gets more inputs about the task-context by getting
more queries as input. In addition, the experimental results indicate that the number of
queries in a task (task length) has a positive impact on the user satisfaction prediction
based on a sequence of Intent2Vec query intent representations, which leads to the best
performing system in terms of F1 in multi-turn task-type.

We have not studied more advance neural network architectures, as it is not the
focus of this chapter and we leave this to future work. Furthermore, other query features
could be added to the intent-sensitive user satisfaction prediction model with the aim of
improving the satisfaction measurement results. We also leave this for future work.
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7
Discussions and Conclusions

In this chapter, we first revisit our research questions introduced in Chapter 1 and
summarize main findings and implications of our research in Section 7.1. Then, in
Section 7.2, we describe the main results and limitations of our work and the possible
future directions.

7.1 Main Findings
The main aim of this thesis is to study how to model users interacting with smart
devices to improve their experience in the physical space? To study our main aim, we
first focused on modeling users interacting with smart environments to improve user
experience in physical spaces such as a smart museum. We then investigated creating
and maintaining a reusable test collection for evaluation and performance improvement
of the contextual suggestion systems to improve user experience. At last, we improved
user experience in performing tasks with their smart speaker IAs at their smart homes
by identifying tasks and sessions, and then predicting user satisfaction while performing
a task.

In this section, we revisit the research questions and summarize our findings regard-
ing each research question.

7.1.1 POI Recommendation in Smart Environments
We started with the task of onsite POI recommendation in a smart environment with an
integrated Internet of Things (IoT) and asked:

RQ1 How to model users’ information interaction behavior with IoT having an aim of
providing a personalized onsite POI recommendation?

To answer this question, we tracked users’ onsite physical interactions in a smart
museum by logging their check-in behavior. In addition, by logging users click-through
behavior, we tracked users’ online digital interactions at the smart museum website
while using the museum’s search engine to explore their collection. We then trained a
model to learn from users’ interaction behavior to predict a POI that a user is interested
in and going to interact with. In particular, the behavioral user model predicts relevant
unseen POIs to the given user and context based on the user’s interaction behaviors in
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the context. We cast the context-aware recommendation problem to a ranking problem,
in which the relevance probability of POIs to the user and context pairs were used to
rank the unseen POIs.

We defined three types of users’ interaction with IoT, namely, explicit context given
by the user while interacting with smart devices, onsite physical interaction with smart
devices, and online digital interaction with the objects being shown in the smart devices.
We then studied the strength of using each type of user interaction behavior with IoT
in understanding users’ onsite information interaction preferences. The experimental
result showed that the POI recommendation system trained using features extracted
from a combination of both onsite physical and online digital information interaction
behaviors (i.e., online features) performs better than the ones trained by explicitly given
context or onsite information interaction behavior. Therefore, we conclude that there
is a similarity between onsite physical and online digital interaction preferences that
causes an improvement in the onsite POI recommendation effectiveness in the smart
museum.

We further studied the critical one-shot POI recommendation problem. According
to our experimental results, learning a deep multilayer perceptron based on features
extracted by online interaction behaviors led to a significant improvement over the hard-
to-beat defined baselines in terms of all the defined evaluation metrics. Specifically, it
had a statistically significant improvement over the best defined baseline with a 23%
improvement in terms of p@1 and 11% improvement in terms of MRR. Thus, our
proposed model trained using online features is very effective in the critical one-shot
onsite POI recommendation in the smart museum.

Furthermore, we analyzed the impact of seen objects set size on the performance of
the onsite POI recommendations. Our experimental result showed that recommendation
performance is generally increased proportionally by the seen object set size. However,
due to external factors such as onsite interaction biases, the proposed model based on
just onsite physical interaction behavior is more sensitive to seen set size compared
to the proposed model based on online digital interaction behavior. In addition, our
proposed deep MLP model based on online features is more robust in different seen set
sizes and performs better than other models and baselines at all seen objects set sizes.

Our general conclusion of this chapter is that it is possible to combine information
interactions in the online digital and onsite physical world for effective onsite POI
recommendation in smart environments, thereby effectively blending real-world and
online behavior in principled ways. As data of user interactions with IoT is typically
far more sparse than users’ online interaction data due to physical or geographical
constraints on users requiring to be physically in the smart space, this line of research is
an attractive direction for both academia and industry.

7.1.2 Test Collection Building for Contextual POI Recommender
Systems

Creating effective POI recommender systems and constantly improving their perfor-
mance in smart environments requires a reusable test collection. To create a reusable
test collection for the evaluation of personalized context-aware recommender systems
in smart environments such as smart cities, we organized TREC 2016 contextual sug-
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gestion track and answered our second research question:

RQ2 How to create a reusable test collection for the Contextual Suggestion problem?

To create a reusable test collection for the contextual suggestion, which has been
proved to be a difficult task due to the dynamic nature of the collection and personaliza-
tion effect on the pool depth [72, 74], we first released the TREC CS web corpus. The
TREC CS web corpus is a crawl of the TREC contextual suggestion test collection. To
overcome the dynamic nature of the contextual suggestion collection and separate this
effect from the personalization effects, we fixed the TREC 2016 contextual suggestion
test collection’s content by releasing the TREC CS web corpus. We then used a multi-
depth pooling approach to improves the reliability of the contextual suggestion systems
scores based on measures at ranks deeper than the traditional pool cut-off.

Our experimental results indicated that the fraction of judged documents gently
decreases after the hard pool cut-off in the TREC 2016 contextual suggestion test
collection. This result is an improvement over the stability of the fraction of judged
documents in the TREC 2015 contextual suggestion test collection, in which the fraction
of judged documents dropped dramatically after the pool cut-off.

Furthermore, Leave-One-Team-Out (LOTO) reusability test showed that the TREC
2016 contextual suggestion test collection should be used with some care based on the
P@5 metric. However, the test collection appears to be reusable based on the more stable
evaluation measures for incomplete test collections. Specifically, the test collection has
got a perfect system ranking correlation between official TREC system ranking and the
LOTO system ranking based on the Kendall’s ⌧ using statistical significant inversions
using MAP and bpref metrics.

At last, we created a fixed test collection and cast the contextual suggestion task
from ranking to a reranking problem in Phase 2 of the experiments. The Phase 2
experiment is a reranking task, in which a set of suggestion candidates is provided
for each request. Thus, we have all the judgments of the suggestions available in the
suggestion candidates, which facilitates the reuse of the contextual suggestion test
collection by design. However, the TREC contextual suggestion ranking test collection
is not reusable based on early precision-based metrics such as P@5, and the test
collection reusability may degrade due to the dynamic nature of the test collection.

In the next chapter, we discuss our approach for maintaining and improving the
reusability of personalized ranking test collections. Specifically, the next chapter
focuses on maintaining the test collection created for contextual suggestion ranking in
this chapter.

7.1.3 Test Collection Maintenance in Dynamic Domains
Although we have achieved the creation of a reusable test collection for contextual POI
ranking using MAP and bpref metrics, the created test collection is built based on open
web pages that make maintaining the reusability of the test collection challenging due
to the dynamic nature of the collection. As the reusability of the created test collection
for the contextual POI recommendation may degrade in the future, we studied a corpus
and a test collection expansion approach to maintain and improve the reusability of

129



7. Discussions and Conclusions

test collections in the dynamic domain. In this study, we answered our third research
question:

RQ3 Can we build a reusable test collection for a dynamic domain by injecting judged
documents into a test collection with sparse judgments?

To answer the research question, we first analyzed reusability of the open web-based
and ClueWeb12-based TREC 2014 contextual suggestion track test collections built
by following a same experimental design. Our findings indicated that both open Web-
based and ClueWeb12-based TREC 2014 contextual suggestion track test collections
are not reusable based on Leave Out Uniques (LOU) experiments and system rank
correlation metrics. Our experimental results indicated that shallow pool depth and
personalized nature of the problem contributed negatively to the reusability of both of
the test collections.

We then experimented with the ClueWeb12-based test collection expansion using
Web pages available in the Open Web test collection to improve the reusability of the
ClueWeb12-based test collection. Our approach was simply adding judged pages of the
open Web test collection to the existing ClueWeb12-based test collection and corpus.
We then had retrieval systems to retrieve those relevant judged open Web pages from
the expanded corpus. Our experimental results showed that the retrieval systems were
able to retrieve a fair and stable fraction of the added relevant open Web pages, which
led to a more consistent system ranking based on the contextual suggestion evaluation
metrics and LOU test.

Specifically, the LOU reusability test showed a perfect system rank agreement over
a set of nine retrieval systems. Furthermore, we found that the fraction of judged
pages from the retrieved pages by the nine retrieval systems improved significantly
compared to the original ClueWeb12-based test collection, and the fraction of judged
pages decreased gently over the retrieved page ranking.

As the nine retrieval models were not pooled runs, the LOU test is not fully evaluat-
ing the pooling bias of the test collection. In order to simulate the pooling effect of a set
of non-pooled runs in reusability of a test collection, we proposed a variant of the LOU
test which leaves uniques contribution of either a team or a run in the test collection
(i.e., Leave One Team In (LOTI) and Leave One Run In (LORI)). The critical LORI
and LOTI tests indicated that the expanded test collection is reusable for evaluation of
personalized systems using the stable MAP and bpref metrics but not based on the P@5
which is known to be less stable due to being an early precision metric.

Our further investigation on reusability of the expanded test collection using the
critical LOTI and LORI tests using non-personalized retrieval systems showed that the
expanded test collection is reusable based on all the selected common metrics including
P@5, which is an early precision-based metric. This experimental result emphasized
once more on the challenges of test collection building for personalization tasks with
shallow pooling.

Our general conclusion in this chapter is that our proposed test collection expansion
approach is effective for maintenance and improving the reusability of test collections
for offline evaluation in dynamic domains such as the Web.

In the previous chapters, to improve user experience in physical spaces such as smart
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museums and cities, we developed an effective contextual POI recommender system
in smart environments, created a reusable test collection for evaluation of contextual
POI recommendation, and proposed an approach to maintain reusability of contextual
POI recommendation test collections. In the next two chapters, we focus on improving
user experience in interacting with smart speaker IAs at physical spaces such as smart
homes.

7.1.4 Task and Session Identification on Smart Speakers
To improve user experience on smart speaker IAs, we first need to segment smart
speaker IAs interaction logs into tasks and sessions, which is a key element of online
evaluation. Thus, we focused on modeling user interaction behavior on smart speakers
to first identify tasks and sessions from user interaction raw logs and then use the
identified tasks as inputs of a user satisfaction prediction model to measure task-level
user satisfaction on smart speaker IAs.

To identify tasks and sessions, we first experimented with an application of a 3-
component Gaussian Mixture Model (GMM) to fit user inter-activity times on smart
speakers to jointly identifying task and session boundary cut-offs based on smart speaker
IA interaction logs. We further investigated the impact of learning phase and usage
domain on task and session boundary cut-offs based on user interaction logs of two
different IAs being used in smart speakers to identify task and sessions more accurately
and answer our fourth research question:

RQ4 What is the impact of the learning curve and task domain on task and session
boundaries when interacting with intelligent assistants?

To answer the research question, we first experimented with 2- and 3-components
GMM to estimate task and session boundary cut-offs on smart speaker IAs. Our
experimental results indicated that GMM is an effective model to identify tasks and
sessions in smart speaker IAs. Furthermore, based on the experimental results, the
3-components GMM estimates task boundary cut-offs on smart speaker IAs better than
the 2-components GMM. However, when we had a deeper analysis on the impact of
contextual factors on task and session boundaries, we observed different user interaction
behavior in different context on smart speakers.

Learning phase was one of the contextual factors studied in this part of the thesis.
Our experimental results showed that user inter-activity times in the learning phase
of the smart speaker usage has 2 main clusters of inter-activity times, which means
2-component GMM is a more rational model for task or session identification compared
to the 3-component GMM in the learning phase. However, our experimental results
indicated that a new cluster of inter-activity times appeared after the learning phase
(normal phase) of the smart speaker usage, which made 3-component GMM a more
rational choice for task and session identification compared to the 2-component GMM.
Our experimental results led to a conclusion that while using 2-component GMM is a
reasonable fit of users inter-activity times in their learning phase, fitting a 3-component
GMM is more effective during the normal-phase.

In addition to the learning phase, we did experiments on impact of the task domain
on task and session boundaries. The experimental results showed that task and session
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boundaries differ across domains. Thus, our general conclusion of this chapter is that
task and session boundary cut-offs are not static and they are dependent to contextual
factors such as learning phase and domain of the usage.

In the next chapter, the identified tasks from the smart speaker IAs interaction logs
is used as input of a user satisfaction prediction model for improving user experience
with smart speaker IAs at smart home physical spaces.

7.1.5 User Satisfaction Prediction on Smart Speakers
Finally, we focused on modeling users interaction behavior on smart speakers to predict
their satisfaction while performing a task with smart speaker IAs, which is a key
element of improving smart speaker IA performance and improving users experience
at a smart home physical space. IA tasks used in experiments of this chapter are
identified by the task identification approach presented in the previous chapter. We
studied user satisfaction prediction on smart speaker IAs, in which the only means of
user interactions with the IA is a sequence of user utterances, and answered our last
research question:

RQ5 How to evaluate user satisfaction in Intelligent Assistants based on user queries?

To answer the last research question, as user utterance is the only means of user
interaction with smart speakers, we did extensive experiments on training effective
query representation to be used in user satisfaction prediction models. According to the
experimental results, our proposed intent sensitive word embeddings (ISWE) learning
model are very effective in capturing query term intents compared to the original Skip-
gram model. Furthermore, our proposed unsupervised Intent2Vec Skip-gram model
captures linear context of query intents in user sessions

Our experimental results indicated that incorporating ISWE as the input to a user
satisfaction prediction model based on a sequence of query terms leads to a statistically
significant improvement over all the defined baselines. We further evaluated the effec-
tiveness of the proposed intent-sensitive user satisfaction prediction models in different
task types and showed that the proposed intent-sensitive user satisfaction model using
ISWE query representation performs better than the baselines in single-query and multi-
turn task-types, yet performs similar to baselines in two-turn task-type in terms of the
common classification metrics. A possible explanation for this experimental result is
that ISWE was trained using a set of queries and their intent without considering the
corresponding task context. Thus, the learned ISWEs are optimized for a single-query
level context. Furthermore, our experimental results showed that compared to the two-
turn task type, our proposed user satisfaction prediction based on ISWE performs better
than baselines in the multi-turn task type as it gets more inputs about the task-context
by getting more queries as input. In addition, the experimental results indicated that
the number of queries in a task (task length) has a positive impact on user satisfaction
prediction based on a sequence of Intent2Vec query intent representations.

Our general conclusion of this chapter is that query intent is an effective implicit
signal from user queries to predict user satisfaction. According to the experimental
results, our proposed user satisfaction prediction model using ISWE is the best model for
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the single-turn tasks, which are the majority of the tasks on smart speakers. Furthermore,
using Intent2Vec query representation in our user satisfaction prediction model led to
the best performing user satisfaction model on smart speakers IAs for multi-turn tasks
in terms of the F1 evaluation metric.

7.2 Discussion and Future Work

As a general conclusion of the thesis, user experience with smart devices in physical
spaces can be improved by user interaction behavior modeling. To this aim, we either
reused an already well-known user interaction signal such as click-through interaction
or proposed a new user interaction signal such as user intent.

Modeling users interacting with Web search engines has been studied extensively in
the literature. However, modeling users interacting with smart environments with an aim
of exploring information is relatively less studied and has challenges such as data sparsity
and cold start problem in personalization. We found similarity between user online
behavior interacting with search engine of a museum and onsite behavior interacting
with smart devices in a smart museum. Specifically, modeling users interacting with
both onsite IoT sensors and online search engine result pages can improve onsite POI
recommender systems and users experience in physical spaces such as smart museums.

Furthermore, creating and maintaining reusable test collections for offline evaluation
of personalized contextual suggestion is challenging. Personalization, shallow pool
depth and dynamic nature of the test collection contribute negatively in the reusability of
the test collection. However, personalization is important aspect of contextual suggestion
systems that can have direct impact on user experience. Thus, creating reusable test
collections for personalized contextual suggestion systems is crucial for improving
performance of contextual suggestion systems and providing better user experience in
physical spaces such as smart cities. To create a reusable personalized test collection,
we created an archive of the TREC contextual suggestion test collection Open web
pages to reduce the negative impact of the dynamic nature of the test collection on their
reusability. In addition, we experimented with a test collection expansion approach
for maintaining reusability of the test collection. To try fixing the negative impact
of a shallow pool depth in traditional top-n pooling approach on their reusability, we
proposed an approach to have a cost-effective pooling approach that leads to creation of
test collections, which are less sensitive to a defined pool depth.

At last, modeling users interacting with smart speakers IAs leads to understanding
the users’ behavior better, prediction of their satisfaction while interacting with the smart
device and then improving their experience with smart speaker IAs located in a physical
space such as their smart home. In particular, different contextual factors such as
learning phase and domain of usage have impact on users interaction behavior on smart
speakers. Modeling users effectively by considering these contextual factors in task and
session identification, which is a key element of task and session level evaluation of
smart speakers, leads to a more accurate task identification model and consequently a
more effective task-level user satisfaction prediction model. In addition, by modeling
users interacting with smart speakers to measure user satisfaction, we effectively predict
user satisfaction, which is an important signal to improve user experience on smart
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speaker IAs in physical spaces such as smart homes.

Our current understanding of how users interact with emerging smart devices is
fragmented at best, and this thesis is one of the first to explore this important topic. Both
novel devices and applications are being invented, and users evolved by discovering
novel use cases and conventions. Rather than offering definite final answers, this
thesis hopes to have done some important initial steps, with every step prompting more
research questions to explore.

Although we experimented with real data extracted from production environments in
Chapters 2, 5, and 6, one of the limitations of this thesis is not seeing the improvement
in user experience based on our proposed models in physical spaces such as smart
environments in a production environment. Thus, an interesting line of research for
future work would be applying the lessons learned in this thesis into a production
environment and observe an actual impact on user experience. In [170], we have
incorporated user satisfaction in IAs to improve user experience and providing more
effective IA that is capable of performing complex tasks.

In this thesis, we studied user behavioral modeling for unseen POI recommendation
in smart museums. As a future work, Modeling users’ onsite and online interaction
behavior with the aim of route recommendations in a smart museum is a direction
of research that can improve users’ satisfaction at their museum visits. One of the
limitations of using smart devices in smart museums is reducing the social aspects of
museum visits [71]. To bring social aspects of museum visits to users’ experience at a
smart museum, similar people recommendation in the physical space based on onsite
physical and online click-through interaction behavior can lead to the creation of groups
with similar interests. In this way, museum visitors would enjoy a group visit at a smart
museum, in which group members have similar interests, without sharing any personal
information.

As it was discussed in detail in chapter 3 and 4 of the thesis, personalization and
shallow pool depth contributed negatively to the reusability of the TREC Contextual
Suggestion track test collections. We proposed a cost-effective approach for creating
reusable test collections for personalized contextual suggestion systems in chapter 3.
However, we are in an early stage of tackling reusable personalized test collection
creation, and further research is required. Thus, a cost-effective reusable personalized
test collection creation remains an important line of research for future work.

In chapter 5 of the thesis, we studied task and session identification on smart speaker
IAs. We observed that user behaviors differ on smart speaker IAs compared to IAs
on desktop computers or mobile devices. As there is an interest in integrating IAs in
different smart devices, including smart cars and watches, task and session identification
should be studied on the other smart devices with an integrated IA to improve evaluation
of smart device’s performance in future works.

Different smart devices provide various means of user interactions. Thus, user
behavior may be different in these devices, which makes the applicability of current
user satisfaction prediction models on the other smart devices questionable. A line
of research for future work is user satisfaction prediction in using IAs on other smart
devices such as smart cars.

Furthermore, we have not studied more advance neural network architecture for user
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satisfaction prediction in the thesis as it was not the main focus of the research. Trying
some other neural network architectures such as attention networks and transformers to
improve user satisfaction prediction on smart speakers is left for future work. As we are
planning to use more complex neural network architectures in future work, addressing
the explainability of the proposed user satisfaction prediction models to clarify why a
user is dissatisfied can be an effective step towards the improvement of user experience
in interacting with smart devices in physical spaces.

Our proposed Intent Sensitive Word Embeddings (ISWE) can be used as word
representation for any natural language processing problem that has words as input.
This presents new opportunities such as incorporating ISWE in language understanding
problems such as slot tagging and intent classification. At last, incorporating user
satisfaction as a metric to optimize task completion flows in IAs and improve their
performance in a production environment remains a line of research for future work.

Apart from all the technical challenges, as we are modeling users interacting with
smart devices, there are societal and ethical challenges too, in how to ensure privacy
preserving personalization, fair personalization, explainable user models, and trans-
parency in what data is shared or used locally. This is an important line of research,
which is left for future work. Smart devices hold the promise to bring the powerful tools
of the online world into the physical world, and our results highlight similarities and
differences with user interactions in traditional search and recommendation settings,
and help promote the user experience while interacting with smart devices.
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Summary

Modeling users interacting with smart devices
Personalizing users’ experience and the ability to perform complex tasks on smart
devices and environments such as smart speakers and smart homes are changing the
way people are doing their daily tasks. Checking the weather and planning to visit a
museum is as simple as asking your smart speaker at home to read out loud the weather
condition and commanding the Intelligent Assistant (IA) integrated with the smart
speaker to book a ticket to visit the museum. To improve user experience in physical
spaces such as smart homes, museums, and cities while performing their daily tasks,
effective modeling of users interacting with smart devices is required.

The overall goal of this thesis is to improve users’ experience in physical spaces
such as smart cities and environments by modeling user interactions with smart devices.
In Chapter 2, we model users’ behavior in interacting with smart devices in a smart
museum to recommend unseen archaeological objects to visit without asking users to
provide any information about their preferences. To understand users’ preferences, we
have studied both users’ onsite physical interaction behavior in the physical space and
their online digital interaction behavior at the search engine of the museum. We found
similarities and differences in users’ online and onsite interaction behaviors, which
leads to incorporating both online digital and onsite physical user interactions in training
an effective point of interest recommender system for a smart museum.

In Chapter 3 and Chapter 4 of the thesis, we focus on creating and maintaining
reusable test collections for the evaluation of contextual suggestion systems to rank
tourist attractions for users in a smart city context. Creating and maintaining a reusable
test collection for offline evaluation of personalized contextual suggestion systems is
challenging due to the personalized and dynamic nature of the test collection. However,
personalization is an important aspect of contextual suggestion systems as it can have a
direct impact on the user experience. Thus, we create a reusable test collection for the
evaluation of personalized contextual suggestion systems and proposed an approach for
maintaining the reusability of dynamic test collections.

Furthermore, to measure how satisfied users are in using smart devices such as smart
speakers in their smart homes, Chapter 5 of this thesis is allocated to identifying tasks
and sessions on smart speaker IAs using a time-oriented approach in analyzing smart
speaker IA interaction logs. Then, Chapter 6 details our proposed user satisfaction
prediction model on smart speaker IAs to measure user satisfaction while performing
a task to improve users’ experience in using smart speakers. In this thesis, we show
how different contextual factors such as the learning curve of users have impacts on
users’ behavior on smart speaker IAs that lead to different task and session boundaries
estimation on different contextual situations. Furthermore, we propose users’ utterance
intent as a signal to measure user satisfaction on smart speaker IAs and show how incor-
porating users’ intent in query representation learning can improve a user satisfaction
prediction model and consequently users’ experience with smart speakers.
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Samenvatting

Het modelleren van gebruikers en hun interacties met
slimme apparaten

Slimme apparaten en omgevingen, zoals slimme speakers en slimme huizen, veranderen
dagelijkse taken als het uitvragen van het weerbericht en het plannen van een muse-
umbezoek. Een weerbericht kan bij een slimme speaker worden opgevraagd en een
museumticket kan via een Intelligente Assistent (IA) op zon speaker worden gekocht.
Zulke apparaten kunnen complexe taken uitvoeren en bieden een gepersonaliseerde
gebruikerservaring. Om de dagelijkse gebruikerservaring van slimme apparaten in
fysieke ruimtes zoals huizen, musea en steden te verbeteren is het nodig om gebruikers
en hun interactie met slimme apparaten te modelleren.

The primaire doel van dit proefschrift is om de gebruikerservaring in fysieke ruimtes
zoals slimme steden en slimme omgevingen te verbeteren door het modelleren van ge-
bruikersinteracties met slimme apparaten. Hoofdstuk twee beschrijft een gedragsmodel
van gebruikers van slimme apparaten in een slim museum. Het wordt gebruikt om
archeologische voorwerpen die een gebruiker nog niet heeft gezien aan te bevelen.
Hierbij hoeft de gebruiker zelf haar voorkeuren niet op te geven. Om deze voorkeuren
toch te begrijpen, hebben we zowel fysieke interacties in het museum als digitale inter-
acties met de zoekmachine van het museum bestudeerd. We vonden overeenkomsten
en verschillen tussen het fysieke en digitale gedrag en gebruikten daarom beide bij het
trainen van een aanbevelingssysteem voor interessepunten in het museum.

Hoofdstukken drie en vier gaan over het samenstellen en onderhouden van herbruik-
bare test collecties voor het evalueren van contextuele suggestiesystemen die toeristische
attracties in een slimme stad voor een gebruiker rangschikken. De collecties kunnen
gebruikt worden om contextuele aanbevelingssystemen offline te evalueren. Het maken
en onderhouden van zulke collecties is ingewikkeld doordat ze gepersonaliseerd en
dynamisch zijn. Het gepersonaliseerde karakter kan een grote invloed hebben op de
gebruikerservaring van contextuele aanbevelingssystemen. Daarom presenteren we een
herbruikbare test collectie voor het evalueren van gepersonaliseerde contextuele aan-
bevelingssystemen en stellen we een aanpak voor het behouden van de herbruikbaarheid
van dynamische test collecties voor.

Hoofdstuk vijf is toegewijd aan het meten van de tevredenheid van gebruikers van
slimme speakers in slimme huizen. Specifiek worden uit interactielogs van gebruikers
met IAs taak- en sessiegrenzen herkend met een tijd-gebaseerde aanpak. Hierna volgt
in hoofdstuk zes een model voor het voorspellen van gebruikerstevredenheid tijdens
het uitvoeren van een taak met een slimme speaker. Doel is om de gebruikerservaring
te verbeteren. We laten in dit proefschrift zien hoe verschillende contextuele factoren
zoals de leercurve van gebruikers hun interactie met een IAs beı̈nvloeden en hoe deze
factoren zich verhouden tot taak- en sessiegrenzen in verschillende contextuele situaties.
Verder stellen we voor om uitingen van gebruikersintenties als signaal voor gebruiker-
stevredenheid in te zetten en laten we zien hoe het meenemen van gebruikersintenties
bij het leren van een voorstelling van de gebruikersvraag kan helpen bij het voorspellen
van de gebruikerstevredenheid en zo dus ook de gebruikerservaring met slimme speaker
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