
Abstract and Concrete Type
Theories

Taichi Uemura

Abstract and Concrete Type
Theories

ILLC Dissertation Series DS-2021-09

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

The investigations were supported by the research programme “The Computa-
tional Content of Homotopy Type Theory” with project number 613.001.602,
which is financed by the Netherlands Organisation for Scientific Research (NWO).

Copyright © 2021 by Taichi Uemura

Printed and bound by Ipskamp Printing.

ISBN: 978-94-6421-376-8

Abstract and Concrete Type
Theories

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen
op vrijdag 9 juli 2021, te 16:00 uur

door

Taichi Uemura

geboren te Mie, Japan

Promotiecommisie

Promotor: prof. dr. S.J.L. Smets Universiteit van Amsterdam
Co-promotor: dr. B. van den Berg Universiteit van Amsterdam

prof. dr. T. Streicher Technische Universität Darmstadt

Overige leden: dr. B. Afshari Universiteit van Amsterdam
prof. dr. S.M. Awodey Carnegie Mellon University
prof. dr. B. Löwe Universiteit van Amsterdam
dr. P.L. Lumsdaine Stockholm University
prof. dr. Y. Venema Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

Acknowledgments ix

1 Introduction 1
1.1 Type theories . 1

1.1.1 Semantics of type theories 2
1.1.2 General type theories . 3

1.2 Abstract type theories . 5
1.2.1 Functorial semantics . 5
1.2.2 Type theories as categories 5
1.2.3 Syntactic presentations of type theories 6
1.2.4 Summary and related work 7

1.3 Homotopy type theory . 8
1.3.1 Realizability models of homotopy type theory 9
1.3.2 Impredicative universe . 9
1.3.3 Propositional resizing . 10
1.3.4 Church’s Thesis . 10
1.3.5 Related work . 11

1.4 Higher dimensional type theories 12
1.4.1 Coherence problems . 12
1.4.2 Solutions to coherence problems 13
1.4.3 General coherence problems and ∞-type theories 13
1.4.4 Related work . 14

1.5 Summary of contributions . 15
1.5.1 Origin of the material . 16

2 Preliminaries 19
2.1 Foundations . 19
2.2 Type theory . 19
2.3 Category theory . 23

v

2.3.1 Higher categories . 25
2.3.2 Presheaves . 25
2.3.3 Compactly generated categories 26
2.3.4 Exponentiable arrows . 28

3 Categories with representable maps 31
3.1 Natural models of type theory . 33

3.1.1 Discrete fibrations . 34
3.1.2 Modeling type theory . 36
3.1.3 Properties of representable maps of discrete fibrations . . . 39

3.2 Type theories . 41

4 Second-order generalized algebraic theories 47
4.1 Running example . 48
4.2 Syntax of SOGATs . 52

4.2.1 Signatures . 52
4.2.2 Expressions . 54
4.2.3 Substitutions . 57
4.2.4 Instantiations . 57

4.3 Inference rules of SOGATs . 58
4.3.1 Declarations . 58
4.3.2 Judgments . 62
4.3.3 Inference rules . 66
4.3.4 Derivations . 69
4.3.5 Well-formedness conditions 71

4.4 Properties of derivations . 71
4.4.1 Stability under substitutions 71
4.4.2 Stability under instantiations 76
4.4.3 Contextual completeness 77

4.5 Second-order generalized algebraic theories 81
4.5.1 Well-ordered presentation 81
4.5.2 Finitary pretheories . 83

4.6 Examples of SOGATs . 83
4.6.1 Martin-Löf type theory . 84
4.6.2 Extensions of Martin-Löf type theory 89
4.6.3 Cubical type theory . 94
4.6.4 Second-order algebraic theories 103
4.6.5 Generalized algebraic theories 105
4.6.6 Bauer et al.’s general type theories 106

4.7 Theories over a SOGAT . 107
4.8 Semantics of SOGATs . 112

4.8.1 Syntactic categories . 112
4.8.2 Interpretations . 114

vi

4.8.3 Functorial semantics . 128
4.8.4 The internal SOGAT of a CwR 133

5 The theory of type theories 137
5.1 Theories and models . 138

5.1.1 The internal language at work 139
5.1.2 Democratic models . 141
5.1.3 The theory-model correspondence 142

5.2 The category of models of a type theory 143
5.2.1 Presentability of the category of models 143
5.2.2 The universal property of the category of models 146

5.3 The category of type theories . 148
5.3.1 Slice type theories . 149
5.3.2 Presentability of the category of type theories 149

5.4 The theory-model correspondence 150
5.4.1 The initial model . 151
5.4.2 Syntactic models generated by compact theories 154
5.4.3 The equivalence of theories and democratic models 156

6 ∞-type theories 159
6.1 The theory of ∞-type theories . 162

6.1.1 Univalent representable maps 164
6.1.2 The representable map classifier 166

6.2 Type-theoretic structures . 166
6.2.1 Finitely complete (∞, 1)-categories 167
6.2.2 Locally cartesian closed (∞, 1)-categories 171
6.2.3 ∞-type theories . 172

6.3 Coherence problems . 173
6.3.1 Coherence for comprehension categories 175
6.3.2 Coherence for finitely complete categories 182
6.3.3 Coherence for finitely complete (∞, 1)-categories 183

7 Models of cubical type theory 189
7.1 A general construction of a model of CTT 191

7.1.1 Axioms for modeling CTT 192
7.1.2 Fibrations . 193
7.1.3 Type constructors . 194
7.1.4 Universes . 196
7.1.5 Higher inductive types . 197
7.1.6 Discrete types . 198

7.2 Internal cubical models . 199
7.2.1 Internal presheaves . 200
7.2.2 Lifting universes . 201

vii

7.2.3 Intervals . 203
7.2.4 Locally decidable propositions 204
7.2.5 Cube categories . 206
7.2.6 W -types with reductions 207
7.2.7 Constant and codiscrete presheaves 208

8 Cubical assembly models of type theory 211
8.1 Assemblies . 212
8.2 Impredicative universe . 214
8.3 Failure of propositional resizing 215

8.3.1 Uniform assemblies . 217
8.3.2 The counterexample . 219

8.4 Markov’s Principle . 219
8.5 Church’s Thesis . 220

8.5.1 Failure of Church’s Thesis in internal cubical models . . . 221
8.5.2 Null types . 223
8.5.3 Church’s Thesis in null types 229

Bibliography 233

Acronym 249

Notation 251

Index 257

Samenvatting 261

Abstract 263

viii

Acknowledgments

I would like to thank my supervisors Benno van den Berg and Thomas Streicher.
Without their help this thesis would never have been completed. They made a
lot of helpful comments on the earlier draft of the thesis to make it more readable
and accessible to a broader audience.

Benno has been my main supervisor since I started my PhD. I really appreciate
all his suggestions for my research, feedback on my papers and talks, and support
for other activities.

I would like to thank Sonja Smets for being my promotor. I would also like to
thank the members of the committee, Bahareh Afshari, Steve Awodey, Benedikt
Löwe, Peter Lumsdaine, and Yde Venema.

I am also grateful to my collaborators, Andrew Swan, John Bourke, and Hoang
Kim Nguyen. Working with them has been pleasant and inspiring experiences.

Over the years, I have benefited, both directly and indirectly, from interac-
tions with people in the HoTT community and the wider logic, computer science,
and category theory communities: Thorsten Altenkirch, Nathanael Arkor, Nick
Bezhanishvili, Martin Bidlingmaier, Kenta Cho, Martijn den Besten, Jonas Frey,
Dan Frumin, Soichiro Fujii, Daniel Gratzer, Chris Kapulkin, Frederik Lauridsen,
Chaitanya Leena Subramaniam, Tadeusz Litak, Robert Passman, Kazuhiko Sak-
aguchi, Genki Sato, Michael Shulman, Bas Spitters, Niels van der Weide, and
Norihiro Yamada.

ix

Chapter 1

Introduction

In this thesis, we study abstract and concrete type theories. We propose an
abstract notion of a type theory while we develop concrete syntactic presentations
of type theories. We establish general results on abstract type theories while
we study concrete models of a specific type theory to obtain consistency and
independence results.

1.1 Type theories

A type theory is a formal system used as a foundation of mathematics, a basis for
programming languages, and a basis for computer proof assistants. As a founda-
tion of mathematics or a basis for computer proof assistants, a type theory checks
the well-formedness of a mathematical expression and the correctness of a proof.
As a basis for programming languages, a type theory checks the specification of
a program.

The job of a type theory is to derive judgments. For example, most type
theories can speak about a judgment of the form a : A which is officially read as
“term a has type A” but informally read as “a is an element of set A”, “program a
satisfies specification A”, or “a is a proof of proposition A”, according to the usage
of the type theory. If a type theory derives a judgment a : A, then we understand
that element a of set A is constructed, program a satisfying specification A is
defined, or proposition A is proved. The judgments that a type theory can derive
are controlled by inference rules associated to the type theory. A type theory
checks whether a judgment can be derived using the inference rules.

A type theory may deal with other forms of judgments. In a dependent type
theory, a type expression may contain term expressions as subexpressions, and
thus one needs another form of a judgment A type meaning that A is a well-formed
type expression. Some complex type theories such as two-level type theory [3,
7] and cubical type theory [41] have more forms of judgments. In this thesis,
we understand type theories in a broad sense: a type theory is a formal system

1

2 Chapter 1. Introduction

specified by a grammar for building judgments and by a set of inference rules
for deriving judgments. Here the form of a judgment is not restricted to the
traditional a : A but can be an arbitrary formal expression.

1.1.1 Semantics of type theories

For a type theory to be reliable, one has to prove that it does not derive wrong
judgments. For example, as a foundation of mathematics or a basis for proof as-
sistants, a type theory must not derive a contradiction. The correctness of a type
theory could be proved by a syntactic argument, but the semantic approach is of-
ten more powerful. For example, if we construct a model of a type theory in which
the judgment expressing a contradiction is interpreted as the empty set, then we
immediately conclude that the type theory does not derive a contradiction.

The semantic approach to the study of a type theory has another advantage.
We can use derivations in the type theory for constructing and reasoning about
elements in a model of the type theory. Precisely, given a model of a type theory,
we extend the type theory by adjoining elements in the model as constants. This
extended theory, called the internal language of the model, admits the interpre-
tation in the model, and thus any derivable judgment over the internal language
gives rise to an element in the model or proves some property on an element in the
model. This is particularly useful when the model comes from a category. Some-
times we have to draw a huge diagram to explain the construction of a certain
morphism in a category, but a few lines will be enough in the internal language
of the category.

The construction of the internal language is formulated as part of the corre-
spondence between theories and models. By a model of a type theory, we mean a
mathematical structure that interprets inference rules of the type theory. We also
consider a theory over a type theory which would need to be explained. A type
theory is specified by a grammar and a set of inference rules, but one can adjoin
some symbols as atoms and judgments as axioms. By a theory over a type theory,
we mean a set of symbols and judgments to be adjoined to the type theory. For
example, first-order logic is a type theory consisting of the usual inference rules
for logical connectives and quantifiers, and then a first-order theory is a theory
over first-order logic since it is a set of operator and relation symbols and axioms.
The internal language of a model of a type theory is a theory over the type theory
consisting of elements in the model. For a good notion of a model of a type theory,
we can conversely construct a model of the type theory from a theory over the
type theory. This model usually consists of derivable judgments over the theory
and is called the syntactic model generated by the theory. In the ideal situation,
the construction of internal languages and the construction of syntactic models
are mutually inverses, and thus theories and models are equivalent.

1.1. Type theories 3

1.1.2 General type theories

The correspondence between theories and models is one of the most fundamen-
tal results in the semantics of type theories, and a lot of examples are found in
the literature: simply typed lambda calculi and cartesian closed categories [106];
first-order theories and hyperdoctrines [150]; generalized algebraic theories and
contextual categories [35]; Martin-Löf theories and locally cartesian closed cate-
gories [149]; and more [148, 46, 120, 16]. These results are proved individually
but share the same idea: the syntactic model generated by a theory consists of
derivable judgments over the theory; the internal language of a model consists
of elements in the model. Thus, it is natural to ask if one can define a general
notion of a type theory and establish the correspondence between theories and
models uniformly for a wide range of type theories.

However, it is hard to say even what a general type theory is exactly, because
the grammar and inference rules of a type theory are extremely flexible. We
would not be able to establish the theory-model correspondence for a type theory
with wild inference rules, and thus we have to limit a class of type theories.
Furthermore, there can be several notions of a model of a type theory, and we
have to choose one particular notion of a model to state the general theory-model
correspondence. For example, display map categories [166], clans [94], categories
with attributes [35], and categories with families [51] are all considered as models
of a dependent type theory. Among these notions of a model, categories with
families are the closest to the syntax of the type theory and considered as a
canonical notion of a model of the type theory.

Hence, we would like to find a class of type theories such that for each type
theory in the class, we can define a canonical notion of a model based on cate-
gories with families and establish the correspondence between theories and mod-
els. Some approaches to general type theories are proposed in the literature.

Logical frameworks

A successful approach to general type theories is logical frameworks [75, 133].
A logical framework is a type theory such that theories over it represent type
theories. The idea is summarized in the slogan “judgments-as-types” [75]: a type
in a logical framework expresses a judgment and a term expresses a derivation.
Some logical frameworks are sufficiently expressive to define a wide range of type
theories and logics including first-order and higher-order logic [75] and fragments
of Martin-Löf type theory [133].

The semantics of type theories defined in a logical framework, however, has
not received much attention. Since a logical framework is a type theory, one can
consider models of a logical framework, but what we want is a notion of a model
of a theory over a logical framework. One could define a model of a theory over a
logical framework as a model of the logical framework equipped with additional

4 Chapter 1. Introduction

structure to interpret the theory, but this does not coincide with the usual notion
of a model of a type theory because the interpretation of the logical framework
is not part of the usual notion of a model of a type theory.

We also note that in the logical framework approach, we have to prove the
adequacy of a logical framework presentation of a type theory. Suppose that we
have a target type theory presented by a set of inference rules and could define
a theory over a logical framework representing the target type theory. Working
with the theory over the logical framework, we can use the full power of the
logical framework, and thus more inference rules are available than the target
type theory. The adequacy theorem asserts that these extra inference rules are
a conservative extension of the target type theory. The adequacy theorem could
be proved for individual logical framework presentations, but it is hard to even
state the general adequacy theorem asserting that any theory over the logical
framework is adequate: for this statement to make sense, we need a general
notion of a type theory outside the logical framework.

Bauer et al.’s general type theories

Recently, Bauer, Haselwarter, and Lumsdaine [20] proposed a general definition
of a type theory based on a careful analysis on the properties of inference rules
of reasonable type theories. A type theory in their sense is defined as a set
of inference rules satisfying certain conditions and coincides with the traditional
presentation of a type theory, and thus there is no need to prove an extra adequacy
theorem. The semantics of type theories in their sense based on categories with
families is also being developed [115]. However, the possible forms of judgments
are fixed, and thus one cannot define in their style some important type theories
such as polymorphic type theory [72, 143, 73], pure type systems [18], two-level
type theory [7, 3], and cubical type theory [41, 5]

Type theories as essentially algebraic theories

Another approach to general type theories is to regard a type theory as a special
kind of essentially algebraic theory. An essentially algebraic theory, originally
introduced by Freyd [59], consists of sorts, operator symbols, and equational
axioms like an ordinary many-sorted algebraic theory, but the operator symbols
can be partial operators whose domains are defined by equations. An inference
rule of a type theory can be regarded as an algebraic operator that takes some
input judgments and returns an output judgment. One can apply an inference rule
only when the input judgments match a certain pattern, and thus an inference rule
is a partial operator whose domain is defined by equations between judgments.
In this way, any type theory generates a certain essentially algebraic theory.

Garner [68] showed that the category of generalized algebraic theories [35] is
monadic over a presheaf category from which we can extract partial operators

1.2. Abstract type theories 5

involved with the basic structure of type dependency. Voevodsky [178] explicitly
described the essentially algebraic theory for the basic structure of type depen-
dency. Isaev [87] proposed a class of essentially algebraic theories and illustrated
how a wide range of type theories are presented by essentially algebraic theories
in that class. However, his definition has the same limitation as Bauer et al.’s:
the possible forms of judgments are fixed.

1.2 Abstract type theories

The first topic of this thesis is a general definition of a type theory for which
we establish the correspondence between theories and models. The idea of our
definition of a type theory comes from Lawvere’s functorial semantics of algebraic
theories [108] and its variants [123, 1].

1.2.1 Functorial semantics

Lawvere’s innovation in the semantics of algebraic theories is to replace theories
by structured categories and models by structure-preserving functors. A (many-
sorted) algebraic theory is usually presented by a set of sorts, a set of operator
symbols, and a set of equational axioms. Given an equational presentation of an
algebraic theory, we can construct a category with finite products such that arrows
are represented by terms over the operator symbols and two parallel arrows are
equal if they are represented by terms provably equal over the equational axioms.
Finite products are used for representing the arity of a term: a term of sort B
over the variables x1 : A1, . . . , xn : An gives rise to an arrow A1 × · · · × An → B
in the associated category with finite products. A model of an algebraic theory
consists of a set for each sort symbol and an operator for each operator symbol
such that the equational axioms hold. By the inductive definitions of terms
and provable equality, any model of an algebraic theory gives rise to a functor
preserving finite products from the associated category with finite products to
the category of sets. Conversely, for any functor preserving finite products from
the associated category with finite products to the category of sets, we have a
model of the algebraic theory. Therefore, the study of models of an algebraic
theory is equivalent to the study of functors preserving finite products. We may
now define an algebraic theory to be a category with finite products and a model
of an algebraic theory to be a functor valued in sets preserving finite products.

1.2.2 Type theories as categories

In the spirit of functorial semantics, we define a type theory to be a category
equipped with certain structure and a model of a type theory to be a structure-
preserving functor. Intuitively, arrows in such a category will be represented

6 Chapter 1. Introduction

by derivations in a type theory. The first attempt is to define a type theory
to be a category with finite limits and some additional structure, because a wide
range of type theories are special essentially algebraic theories [87] and essentially
algebraic theories are identified with categories with finite limits [2]. However, the
definition of a type theory as an essentially algebraic theory given in [87] is tied
to a particular syntactic presentation, and it is not clear what the corresponding
categorical structure would be.

To discover the missing categorical structure, we take a close look at models
of a type theory. The notion of a model of a type theory we have in mind is
categories with families, but we work with an equivalent notion, natural models
introduced by Awodey [12]. The key observation is that a natural model of a type
theory is a diagram in a presheaf category in which some maps are specified to be
representable in the sense of Grothendieck. Thus, for models of a type theory to
be functors, some arrows in the domain should be marked as “representable”. We
call such a category equipped with a class of “representable maps” a category with
representable maps. It turns out that the operators in the essentially algebraic
theory for a type theory [68, 178, 87] are obtained through the right adjoint of
the pullback functor along a representable map. We now define a type theory
to be a category with representable maps and a model of a type theory to be a
functor to a presheaf category that carries representable maps in the type theory
to representable maps of presheaves.

To state the correspondence between theories and models, we also have to
introduce a notion of a theory over a type theory. Confusingly, a theory over a
type theory is also defined as a functor but valued in sets rather than presheaves.
Intuitively, a functor valued in sets assigns a set of symbols or axioms to each
object in the type theory and thus matches our informal definition of a theory
over a type theory: it consists of symbols and axioms.

We have defined a type theory, a model of a type theory, and a theory over
a type theory in terms of categories and functors. Then the correspondence
between theories and models is constructed using pure category theory, and no
complicated syntactic argument is necessary. This correspondence induces an
equivalence between the class of all theories and a class of models. We also give
a characterization of that class of models.

1.2.3 Syntactic presentations of type theories

A type theory is now a certain structured category, but how is it related to the
traditional presentation of a type theory? We certainly need a precise definition
of a syntactic presentation such that any syntactic presentation induces a type
theory and any type theory is induced by some syntactic presentation.

Since our type theories are certain structured categories, it is not difficult to
design a logical framework corresponding to the categorical structure. Indeed,
in the earlier paper [169], the author introduced a logical framework to define

1.2. Abstract type theories 7

syntactic presentations of type theories. However, like the usual logical framework
presentation [75], adequacy is still a theorem that needs to be proved for each
presentation of a type theory separately.

In this thesis, we give an alternative syntactic presentation of a type theory,
extending the general definition of a type theory given by Bauer, Haselwarter,
and Lumsdaine [20]. They defined a type theory as a set of inference rules which
coincides with the traditional presentation of a type theory, and thus there is
no need to prove an extra adequacy theorem. We modify their definition to
fit our categorical notion of a type theory. It turns out that the new syntactic
presentation of a type theory looks essentially the same as the logical framework
presentation given in [169], but the expressive power is limited to eliminate the
need for an extra adequacy theorem.

1.2.4 Summary and related work

We define a general type theory to be a certain structured category and a model
of a type theory to be a structure-preserving functor. With this abstract defini-
tion, the correspondence between theories and models is established for any type
theory. We also provide syntactic presentations of type theories to connect our
abstract type theories with the traditional presentations of type theories.

There have been a lot of notions of a model of a type theory such as com-
prehension categories [90], display map categories [166], categories with families
[51], tribes [94], and natural models [12]. All of them are models of a particular
type theory. If we extend the type theory with some type constructors such as
Π-types, then we have to invent another notion of a model, say natural models
with Π-types. In contrast, our notion of a model is a model of a general type
theory. The notion of a model of a particular type theory such as the type theory
with Π-types is obtained as a special instance of the general notion.

Isaev [87] also proposed a definition of a general type theory and a notion of
a model of a general type theory. In his definition, a type theory is a special
essentially algebraic theory and a model of a type theory is just a model of the
underlying essentially algebraic theory. His notion of a model is equivalent to
a generalization of a contextual category [35], while our notion of a model is
a generalization of a natural model [12] or, equivalently, category with families
[51]. We consider that a natural model is closer than a contextual category to our
informal definition of a model of a type theory as an interpretation of inference
rules, because a contextual category also interprets the length of a context, but
inference rules are usually insensitive to the length of a context. We also note
that since contextual categories are equivalent to generalized algebraic theories
[35], models of a type theory in Isaev’s sense are equivalent to theories over a
type theory in our sense.

The idea of using categorical structure to represent inference rules of a type
theory also appears in the rule framework of Capriotti [33]. In his framework, a

8 Chapter 1. Introduction

type constructor is defined as an object in a certain category with families. A type
constructor defined in his framework is not necessarily semantically well-behaved.
Any type constructor defined in our framework is, in contrast, semantically well-
behaved as we always have the correspondence between theories and models.

1.3 Homotopy type theory

Let us turn our attention to a specific type theory. The development of homotopy
type theory [172] is an important factor in the growing interest in type theory.
Homotopy type theory is based on Martin-Löf’s intensional type theory [124] in
which the identity between two elements a1 and a2 of a type A is represented
by a type Id(a1, a2). A term of type Id(a1, a2) is considered as a witness to the
identity between a1 and a2. There can be different terms of type Id(a1, a2), and
thus Id(a1, a2) behaves like the set of morphisms from a1 to a2 in a groupoid or the
space of paths from a1 to a2 in a space, rather than the proposition that a1 and a2

are equal. Indeed, Martin-Löf’s intensional type theory admits interpretations in
groupoids [81] and in spaces (Kan complexes, to be precise) [102]. More generally,
Martin-Löf’s intensional type theory is closely related to frameworks for abstract
homotopy theory such as model categories [15, 8, 154] and (∞, 1)-categories [103,
99].

Such a homotopy-theoretic interpretation of Martin-Löf’s intensional type the-
ory allows us to prove theorems in abstract homotopy theory inside the type
theory, but since the type theory also admits a set-theoretic interpretation, we
can only prove theorems that hold in both homotopy-theoretic and set-theoretic
settings. To obtain truly homotopy-theoretic results, we have to extend the type
theory with axioms that characterize homotopy-theoretic interpretations. Vo-
evodsky’s univalence axiom, which was formerly called universe extensionality in
the groupoid interpretation [81], asserts that paths between two types are equiv-
alent to invertible maps between the types. This conflicts with a set-theoretic
interpretation and makes the type theory homotopy-theoretic. Postulating the
univalence axiom is not enough to do homotopy theory inside the type theory
because the type constructors in Martin-Löf’s type theory create only discrete
spaces. Higher inductive types are an extension of inductive types to allow us to
construct types representing spaces such as the circle, the sphere, and the torus.
With univalence and higher inductive types, we can state and prove theorems in
homotopy theory inside the type theory. The basic example is the calculation of
the fundamental group of the circle [112].

The univalence axiom and higher inductive types are thus the main theme in
the study of homotopy type theory. In this thesis, we study the univalence axiom
and higher inductive types in relation to other axioms and concepts in type theory
including impredicative universes, the propositional resizing axiom, and Church’s
Thesis. We primarily aim to construct models of univalence with additional

1.3. Homotopy type theory 9

structures and axioms, but some higher inductive types are also obtained through
the construction. The main tool we use is realizability models of a type theory.

1.3.1 Realizability models of homotopy type theory

Realizability is a technique of constructing models of logics and type theories. It
was originally introduced by Kleene [105] as an interpretation of Heyting arith-
metic. The idea is to assign a set of “realizers” to each logical formula, and then
the validity of a formula is verified by constructing a realizer for the formula.
Given a notion of realizability, one can construct a category whose objects are
called assemblies that has enough structure to interpret Martin-Löf’s type theory
[176], and we refer to this model as the assembly model.

The interpretation of Martin-Löf’s type theory in assemblies is set-theoretic
rather than homotopy-theoretic and does not validate the univalence axiom. To
obtain a model of univalence, we internalize an existing construction of models
of univalence in the assembly model. One problem is that the assembly model
does not satisfy classical axioms such as the law of excluded middle and the ax-
iom of choice, and thus we have to choose a construction of models that is valid
in intuitionistic or constructive logic. Voevodsky’s construction of the simplicial
set model [102] is known to be non-constructive [24]. On the other hand, the
construction of cubical set models [22, 23, 41] is described in constructive met-
alogic. The work by Orton and Pitts [134, 135] and Licata et al. [111] formally
shows that the construction of cubical models can be internalized in an extension
of Martin-Löf type theory. Applying the cubical construction to the assembly
model, we have a model of univalence which we refer to as the cubical assembly
model. In this thesis, we study the cubical assembly model to obtain consistency
and independence results.

1.3.2 Impredicative universe

A feature of the assembly model is that it has an impredicative universe. By a
universe in a type theory, we mean a type whose elements are types. A universe u
is impredicative if for an arbitrary type A and for any type family B : A→ u, the
type

∏
x:AB(x) of functions that assign an element of B(x) to each element x of

A belongs to u. An impredicative universe allows us an impredicative definition
of a type. For example, we may define the type of polymorphic endofunctions∏

A:u A -> A as a type in u, but then what we are defining belongs to the range of
the quantification

∏
A:u. It is known that the assembly model has an impredicative

universe [84, 114].

An impredicative universe is useful for representing inductive types in poly-
morphic type theory [73]. For example, the type of natural numbers is represented

10 Chapter 1. Introduction

by ∏
A:u

(A -> A) -> (A -> A)

whose elements are so-called Church numerals. In the context of homotopy type
theory, Shulman [155] proposed the use of polymorphic encoding to represent
higher inductive types, and Awodey, Frey, and Speight [13] and Speight [156]
studied a refinement of polymorphic encoding using the full expressive power of
dependent types.

We show that the cubical assembly model has an impredicative universe to
justify the use of polymorphic encoding in homotopy type theory. By the method
of Orton and Pitts [134, 135] and Licata et al. [111], we can transform the impred-
icative universe in the assembly model into a univalent universe in the cubical
assembly model. This new universe is shown to be impredicative, and thus we
have a universe that is both univalent and impredicative.

1.3.3 Propositional resizing

In homotopy type theory, a type is said to be a proposition if any two elements
of the type are identical. For two nested universes u : û, we have a function from
the universe Prop(u) of propositions in u to the universe Prop(û) of propositions
in û. The propositional resizing axiom [172, Section 3.5] asserts that this function
Prop(u) -> Prop(û) is an equivalence for any nested universes u : û.

The propositional resizing axiom allows us an impredicative definition of a
proposition. For example, the type

∏
P:Prop(u) P -> P usually belongs to a larger

universe, but using the propositional resizing axiom, we may replace it by an
equivalent proposition that belongs to u. Propositional resizing is consistent with
univalence, which follows from the consistency of the law of excluded middle with
univalence [101].

In this thesis, we show the independence of the propositional resizing axiom
from Martin-Löf’s type theory with a univalent universe. Precisely, we show
that for the impredicative universe u in the cubical assembly model, the function
Prop(u) -> Prop(û) is not an equivalence for any larger universe û.

1.3.4 Church’s Thesis

Another important aspect of realizability is that it provides a model of Construc-
tive Recursive Mathematics, a form of constructivism in which the validity of a
proposition is justified by the existence of an algorithm or recursive function. We
can choose recursive functions as realizers, and then the assembly model satisfies a
proposition if it is realized by some recursive function. One of the defining charac-
teristics of Constructive Recursive Mathematics is Church’s Thesis, the principle
asserting that any function on natural numbers is computable by some Turing

1.3. Homotopy type theory 11

machine. The assembly model based on recursive realizability indeed satisfies
Church’s Thesis [176].

In this thesis, we construct a model of univalence that also satisfies Church’s
Thesis to show the consistency of Church’s Thesis with univalence. One might
expect that Church’s Thesis holds in the cubical assembly model based on recur-
sive realizability, but this is not the case. The homotopy-theoretic interpretation
of the statement of Church’s Thesis is quite different from the set-theoretic in-
terpretation, and the existence of a realizer no longer validates Church’s Thesis
under the homotopy-theoretic interpretation.

To obtain a model of univalence and Church’s Thesis, we use the theory of
modalities in homotopy type theory developed by Rijke, Shulman, and Spitters
[146]. Modalities in this context are more restrictive than those studied in modal
logic and close to closure operators in topos theory [119]. The fundamental result
of Rijke et al. is that given a family of propositions and a model of univalence,
one can construct a new model of univalence consisting of those objects in the
original model that “believe that the given propositions are all true” so that the
given propositions are “forced” to be true in the new model. Applying their
result to the statement of Church’s Thesis and the cubical assembly model, we
obtain a model of univalence and Church’s Thesis consisting of those objects in
the cubical assembly model that “believe that any function on natural numbers
is computable by some Turing machine”. Our final task is to show that this new
model interprets the type of contradiction as the empty cubical assembly, and
then Church’s Thesis and univalence do not derive a contradiction.

1.3.5 Related work

Our realizability model relies on the cubical method developed by Orton and
Pitts [134, 135] and Licata et al. [111]. Their method is based on Coquand’s idea
of using the internal type theory of a topos to formulate composition structure
[43]. For categorical accounts of cubical methods, see [66, 147, 60, 10]. There are
other approaches to realizability models of univalence. Van den Berg [174] took
a globular approach and constructed a model of an impredicative and univalent
universe. Although his model is truncated, his impredicative universe further-
more admits propositional resizing. Simplicial approaches are more difficult than
cubical approaches, since Voevodsky’s construction of the simplicial model [102]
is non-constructive [24]. See [157] for an early attempt to a simplicial realizability
model. Recent development of constructive simplicial models [76, 67, 63, 64, 175]
would be the key to a simplicial realizability model.

The propositional resizing axiom was introduced by Voevodsky [177]. The law
of excluded middle implies propositional resizing [172, Exercise 3.10]. The con-
sistency of the law of excluded middle with univalence had been a folklore, and
Kapulkin and Lumsdaine [101] recently gave a full proof. Consequently, propo-
sitional resizing is also consistent with univalence. To the author’s knowledge,

12 Chapter 1. Introduction

our cubical assembly model is the first model of univalence that does not admit
propositional resizing. De Jong and Escardó [49] studied propositional resizing
in relation to principles in order theory such as the existence of a certain com-
plete poset, Zorn’s lemma, Tarski’s greatest fixed point theorem, and Pataraia’s
lemma.

Church’s Thesis has extensively been studied in constructive mathematics; see
[e.g. 21, 167] for standard textbooks. To the author’s knowledge, our cubical as-
sembly model is the first model of univalence that satisfies Church’s Thesis. The
consistency of Church’s Thesis with Martin-Löf’s intensional type theory with-
out univalence under the propositions-as-types interpretation was conjectured by
Maietti and Sambin [122]. Since the interpretation of Church’s Thesis there is
different from the interpretation in univalent type theory, our result does not
prove Maietti and Sambin’s conjecture. In fact, their formulation of Church’s
Thesis is inconsistent with univalence, because their formulation is inconsistent
with function extensionality and univalence implies function extensionality [172,
Section 4.9]. Ishihara et al. [88] proved the consistency of Church’s Thesis with a
variant of Martin-Löf’s intensional type theory. Recently, a proof of Maietti and
Sambin’s original conjecture was announced by Yamada [182].

1.4 Higher dimensional type theories

The final topic of this thesis is a higher-dimensional generalization of a type
theory which we call an ∞-type theory. ∞-type theories are a novel approach to
coherence problems in (higher) categorical semantics of type theories.

1.4.1 Coherence problems

The idea of categorical semantics of type theories is to interpret types as ob-
jects and terms as morphisms in a category. This interpretation works very well
for simple type theories [106], but a naive interpretation of a dependent type
theory in a category causes a coherence problem, a mismatch between levels of
equality. In a dependent type theory, a type expression can contain a term ex-
pression as a subexpression, and thus equality between terms can induce equality
between types. Therefore, equality between types is a fundamental concept in a
dependent type theory. On the other hand, it is not a good idea to speak about
equality between objects in a category because it is not invariant under categor-
ical equivalences. The correct notion of identity between objects in a category
is isomorphisms. Hence, to interpret a dependent type theory in a category, we
have to justify in some way interpreting equations between types as isomorphisms
between objects.

Coherence problems become much more serious in higher categorical seman-
tics of type theories. One of the ultimate goals of homotopy type theory [172] is

1.4. Higher dimensional type theories 13

to interpret type theories in structured (∞, 1)-categories, but the interpretation
is far from obvious. Even the simplest coherence problem of interpreting Martin-
Löf’s intensional identity types in finitely complete (∞, 1)-categories is open [100].
In an (∞, 1)-category, besides equality between objects, equality between mor-
phisms is also too strict, and the correct notion of identity between morphisms
is homotopies. We thus have to justify interpreting equations between terms as
homotopies between morphisms.

There is a stronger form of a coherence problem. The usual coherence prob-
lem is the problem of interpreting a type theory in “non-split” models where the
notion of equality is weaker than the equality in the type theory. Once such an in-
terpretation is justified, we would get the internal language of a non-split model.
In some cases, one can conversely construct a non-split model of the type theory
from a theory over the type theory. Then one may ask if this correspondence be-
tween theories and non-split models is an equivalence in some sense. For example,
Clairambault and Dybjer [39, 40] established the biequivalence between theories
over Martin-Löf extensional type theory and locally cartesian closed categories,
and Kapulkin and Lumsdaine [100] conjectured that theories over Martin-Löf in-
tensional type theory are equivalent to locally cartesian closed (∞, 1)-categories
in a suitable sense.

1.4.2 Solutions to coherence problems

There has been two approaches to coherence problems. Curien [47] and Hofmann
[78] gave solutions to the coherence problem in Seely’s interpretation of Martin-
Löf’s type theory in locally cartesian closed categories [149]. A comparison of
their approaches is found in [48].

Curien [47] solved the coherence problem on the syntactic side. He modified
the type theory by introducing a weaker notion of equality between types which
behaves like isomorphisms between types. It is straightforward to interpret the
modified type theory in categories. His key result is that any two proofs of equality
between types in the modified type theory receives the same interpretation. This
justifies assigning a unique isomorphism to each equation between types in the
original type theory.

Hofmann [78], in contrast, took a semantic approach. His idea is to replace
a non-split model by a split model that is equivalent to the non-split model
in some sense. The interpretation of the type theory in a non-split model is
justified by interpreting the type theory in the split model and passing through
the equivalence.

1.4.3 General coherence problems and ∞-type theories

These approaches to coherence problems work for several type theories, but it is
not easy to formulate general coherence problems and determine for which class

14 Chapter 1. Introduction

of type theories coherence theorems hold. A difficulty is that the notion of a
non-split model is not formulated in the language of type theories and models of
a type theory. The notion of a model of a type theory explained in Section 1.2 is
a split model since it is a generalization of a natural model [12], and there is no
obvious way to define a general notion of a non-split model of a type theory. To
formulate a general coherence problem, we would like to speak about both type
theories and non-split models in the same language.

In this thesis, we introduce a higher dimensional generalization of a type
theory called an ∞-type theory to give a precise and unified formulation of a
coherence problem. Let us call an ordinary type theory a 1-type theory for em-
phasis. Intuitively, an ∞-type theory is a kind of type theory where the notion
of equality is replaced by homotopies. In this sense, an∞-type theory is a higher
dimensional extension of Curien’s modified type theory, though ∞-type theories
are defined as certain structured (∞, 1)-categories and syntactic presentations of
∞-type theories have not been developed.
∞-type theories provide a precise and uniform formulation of general coher-

ence problems. The problem in the usual formulation of a coherence problem is
that the notion of a non-split model is not formulated in the language of type the-
ories and models of a type theory. It turns out that non-split models of a 1-type
theory are often naturally regarded as models of an ∞-type theory. Then the
coherence problem is the problem of interpreting the 1-type theory in models of
the ∞-type theory. Because 1-type theories are special ∞-type theories, general
coherence problems are now formulated in the language of ∞-type theories and
related concepts, which allows us to uniformly treat various coherence problems
in both categorical and (∞, 1)-categorical semantics of type theories.

Of course, this is just a reformulation of the coherence problem, and we
still need some techniques to solve the problem, but this reformulation helps
strengthen a coherence result to the correspondence between theories and non-
split models. We demonstrate that if a certain key lemma is proved, then one
can systematically establish the correspondence between theories and non-split
models. We also discuss that both Curien’s and Hofmann’s approaches to coher-
ence problems can be seen as proofs of the key lemma. The argument given there
is quite general and works for both categorical and (∞, 1)-categorical coherence
problems. As an application to the (∞, 1)-categorical semantics of type theo-
ries, we sketch a positive solution to the internal language conjectures for finitely
complete and for locally cartesian closed (∞, 1)-categories given by Kapulkin and
Lumsdaine [100].

1.4.4 Related work

There are further approaches to coherence problems. Lumsdaine and Warren
[116] introduced a new splitting technique that applies to homotopy theoretic
models for which Hofmann’s splitting does not work. Bidlingmaier [25] considered

1.5. Summary of contributions 15

interpreting a type theory in the category of all locally cartesian closed categories
instead of one locally cartesian closed category. Bocquet [27] introduced a notion
of higher congruence to tackle coherence and conservativity problems. The idea
of higher congruence seems to be related to our ∞-type theories, but we leave it
as future work.

Kapulkin and Lumsdaine [100] conjectured that the type theory with in-
tensional identity types (and Π-types) provides internal languages for (∞, 1)-
categories with finite limits (and pushforwards). Kapulkin and Szumi lo [103]
partly solved this conjecture by giving a certain equivalence between compre-
hension categories with intensional identity types and finitely complete (∞, 1)-
categories, but a full proof of the equivalence of theories over the type theory
and such comprehension categories is left open. One of the ultimate goals of
homotopy type theory is to show that univalent type theory provides internal
languages for yet-to-be-defined elementary (∞, 1)-toposes; see [96, 153, 140] for
proposed definitions of an elementary (∞, 1)-topos. We expect that ∞-type the-
ories are also useful for formulating and solving the internal language conjecture
for elementary (∞, 1)-toposes.

The coherence problem of interpreting a type theory in certain presentable
(∞, 1)-categories is solved by first replacing a presentable (∞, 1)-category by a
well-behaved model category [69, 151] and then applying the 1-categorical coher-
ence theorem of Lumsdaine and Warren [116]. Since the syntactic (∞, 1)-category
of a type theory should not be presentable, this coherence result does not imply
the stronger correspondence between theories and presentable (∞, 1)-categories.

1.5 Summary of contributions

We introduce categories with representable maps as a general definition of type
theories (Chapter 3) and establish the correspondence between theories and mod-
els for any type theory (Chapter 5). We also introduce syntactic presentations
of categories with representable maps called second-order generalized algebraic
theories (Chapter 4). Our notion of a type theory covers a wide range of existing
and future type theories including Martin-Löf type theory [124, 133] and cubical
type theory [41]. Our results formally justify the syntactic construction of models
and the use of internal languages for these type theories.

We further generalize the notion of a type theory to a higher dimensional
one which we call an ∞-type theory (Chapter 6). ∞-type theories provide a
precise and unified formulation of general coherence problems in both categorical
and (∞, 1)-categorical semantics of type theories. As an application, we describe
a positive solution to Kapulkin and Lumsdaine’s internal language conjectures
for finitely complete (∞, 1)-categories and for locally cartesian closed (∞, 1)-
categories [100].

Let us turn our attention to a specific type theory, homotopy type theory. We

16 Chapter 1. Introduction

study realizability models of homotopy type theory to obtain consistency and
independence results (Chapters 7 and 8). Chapter 7 is preliminary to Chapter 8
and is devoted to reviewing the construction of cubical models given by Orton
and Pitts [134, 135] and Licata et al. [111]. In Chapter 8, we show several results
including the consistency of an impredicative universe with the univalence axiom,
the unprovability of the propositional resizing axiom over Martin-Löf type theory
plus the univalence axiom, and the consistency of Church’s Thesis and Markov’s
Principle with the univalence axiom.

The essential dependency between chapters is as follows.

Chapter 3

Chapter 4 Chapter 5

Chapter 7 Chapter 6

Chapter 8

In Chapter 7, we use the syntactic presentation of cubical type theory described
in Section 4.6.3, but the reader need not read all the details of Chapter 4 to
understand the results in Chapters 7 and 8.

1.5.1 Origin of the material

Some chapters in this thesis are based on previous and on-going work as follows. In
the case when the work is co-authored, all authors contributed equally. Chapters 3
and 5 are based on:

[169] T. Uemura. A General Framework for the Semantics of Type Theory. 2019.
arXiv: 1904.04097v2.

The proof of the results in Chapter 5 is the version given in [130]. Chapter 4 is new
but closely related to [169, Section 5]. This chapter also contains an alternative
proof of the results in:

[171] T. Uemura. The Universal Exponentiable Arrow. 2020. arXiv: 2001.

09940v1.

Chapter 6 is based on the unpublished manuscript:

[130] H. K. Nguyen and T. Uemura. ∞-type theories. in preparation.

Chapters 7 and 8 are based on:

https://arxiv.org/abs/1904.04097v2
https://arxiv.org/abs/2001.09940v1
https://arxiv.org/abs/2001.09940v1

1.5. Summary of contributions 17

[170] T. Uemura. “Cubical Assemblies, a Univalent and Impredicative Universe
and a Failure of Propositional Resizing”. In: 24th International Conference
on Types for Proofs and Programs (TYPES 2018). Ed. by P. Dybjer, J. E.
Santo, and L. Pinto. Vol. 130. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, 7:1–7:20. doi: 10.4230/LIPIcs.TYPES.2018.7

[163] A. W. Swan and T. Uemura. On Church’s Thesis in Cubical Assemblies.
2019. arXiv: 1905.03014v1.

https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://arxiv.org/abs/1905.03014v1

Chapter 2

Preliminaries

In this chapter we fix some notations and terminologies and recall general facts
used throughout the thesis.

2.1 Foundations

Unless otherwise mentioned, we freely use classical axioms such as the law of
excluded middle and the axiom of choice. We also assume that there exist as
many Grothendieck universes as we want. For category-theoretic results, just one
or two Grothendieck universes will suffice. For constructing some models of a
type theory with a countable chain of universes, we will need countably many
Grothendieck universes.

2.2 Type theory

In this section, we remind the reader about basic concepts in the syntax and
semantics of dependent type theory to motivate the definition of a model of a
type theory given in Chapter 3 and the syntactic presentation of a type theory
given in Chapter 4. See [e.g. 124, 125, 133, 160, 18, 79] for more information
about dependent type theory.

A type theory is specified by a grammar, possible forms of judgments, and
inference rules. Given a grammar, the set of expressions is determined. A tradi-
tional dependent type theory has the following four judgment forms

� type expressing that something is a type;

� : A expressing that something is a term of type A;

� A1 ≡ A2 type expressing that two types A1 and A2 are judgmentally equal ;

19

20 Chapter 2. Preliminaries

� a1 ≡ a2 : A expressing that two terms a1 and a2 of type A are judgmentally
equal,

where A, A1, A2, a1, and a2 are expressions and is a “hole”. More complex type
theories such as cubical type theory [41] have more judgment forms explained in
later chapters. A context is a list of the form

x1 : A1, . . . , xn : An

where x1, . . . , xn are distinct variables and A1, . . . , An are expressions. A judgment
consists of a context, a judgment form, and, when the judgment form contains
a hole, an expression filling the hole. For example, a judgment in a traditional
dependent type theory is one of the following

Γ ` A type Γ ` a : A Γ ` A1 ≡ A2 type Γ ` a1 ≡ a2 : A

where Γ is a context. Inference rules determine the set of derivable judgments. A
type over a context Γ is an expression A such that the judgment Γ ` A type is
derivable. A term of a type A over a context Γ is an expression a such that the
judgment Γ ` a : A is derivable. For contexts Γ and ∆ = (y1 : B1, . . . , yn : Bn),
a substitution Γ→ ∆ is a list of terms denoted by

(y1 := b1, . . . , yn := bn)

such that Γ ` bi : Bi · (y1 := b1, . . . , yi−1 := bi−1) is derivable, where − · (y1 :=
b1, . . . , yn := bn) denotes the action of the substitution. For a type Γ ` A type,
the context comprehension is the context Γ, x : A with a fresh variable x. We have
a canonical substitution (Γ, x : A)→ Γ and a canonical term Γ, x : A ` x : A.

A model of a traditional dependent type theory should have the following
structure to interpret components of the type theory:

� a category C to interpret contexts and substitutions;

� for any object Γ ∈ C, a set U(Γ) to interpret types over a context;

� for any object Γ ∈ C and any element A ∈ U(Γ), a set E(Γ, A) to interpret
terms in a type over a context;

� action of morphisms in C on U and E to interpret substitution;

� for any object Γ ∈ C and any element A ∈ U(Γ), an object {A} ∈ C, a
morphism p : {A} → Γ, and an element q ∈ E({A}, A · p) to interpret
context comprehension.

These data are part of a category with families of Dybjer [51]. From the meaning
of substitutions, it is required that the sections of {A} → Γ bijectively correspond
to the elements of E(Γ, A). Judgmental equalities Γ ` A1 ≡ A2 type and Γ `

2.2. Type theory 21

a1 ≡ a2 : A are interpreted as equalities in U and E, respectively. A model
of a type theory with various type constructors is defined by adding algebraic
operators between U and E corresponding to inference rules. We note that type
constructors are usually preserved by substitution, and thus the corresponding
algebraic operators must commute with the action of morphisms in C. We recall
some basic type constructors.

Dependent function types Dependent function types, dependent product types,
or Π-types have the following rule for forming a Π-type

Γ ` A type Γ, x : A ` B type

Γ ` Π(A, 〈x〉B) type
,

and rules expressing that the terms of Π(A, 〈x〉B) bijectively correspond to the
terms of B under the assumption x : A, schematically written as

Γ, x : A ` b : B

Γ ` λ(〈x〉b) : Π(A, 〈x〉B)
=======================.

Here the notation 〈x〉B expresses that the variable x is bound in the whole ex-
pression Π(A, 〈x〉B). The corresponding algebraic operators on a model are:

� a map Π that assigns an element Π(Γ, A,B) ∈ U(Γ) to each triple (Γ, A,B)
consisting of an object Γ ∈ C and elements A ∈ U(Γ) and B ∈ U({A}); and

� a bijection λ : E({A}, B) ∼= E(Γ,Π(Γ, A,B)) for any Γ, A, and B.

Dependent pair types Dependent pair types, dependent sum types, or Σ-types
have the formation rule

Γ ` A type Γ, x : A ` B type

Γ ` Σ(A, 〈x〉B) type
,

and elements of Σ(A, 〈x〉B) are pairs.

Γ ` a : A Γ ` b : B · (x := a)

Γ ` (a, b) : Σ(A, 〈x〉B)
===============================

The corresponding algebraic operators on a model are:

� a map Σ that assigns an element Σ(Γ, A,B) ∈ U(Γ) to each triple (Γ, A,B)
consisting of an object Γ ∈ C and elements A ∈ U(Γ) and B ∈ U({A}); and

� a bijection
∑

a∈E(Γ,A)E(Γ, B · a) ∼= E(Γ,Σ(Γ, A,B)) for any Γ, A, and B,

where B · a is the right action of the morphism Γ→ {A} corresponding to
the element a ∈ E(Γ, A).

22 Chapter 2. Preliminaries

Identity types There are two kinds of identity types and both have the same
formation rule.

Γ ` A type Γ ` a1 : A Γ ` a2 : A

Γ ` Id(A, a1, a2) type

The corresponding algebraic operator on a model is a map Id that assigns an
element Id(Γ, A, a1, a2) ∈ U(Γ) for each tuple (Γ, A, a1, a2) consisting of Γ ∈ C,
A ∈ U(Γ), and a1, a2 ∈ E(Γ, A). Extensional identity types are inhabited if and
only if a1 and a2 are judgmentally equal.

Γ ` a1 ≡ a2 : A

Γ ` refl : Id(A, a1, a2)
====================

The corresponding algebraic operator on a model is a bijection {∗ | a1 = a2} ∼=
E(Γ, Id(Γ, A, a1, a2)) for any Γ, A, a1, and a2. Intensional identity types are de-
fined as an inductive type family and has the following introduction, elimination,
and equality rules.

Γ ` a : A

Γ ` refl(a) : Id(A, a, a)

Γ, x1 : A, x2 : A, y : Id(A, x1, x2) ` C type
Γ, x : A ` c : C · (x1 := x, x2 := x, y := refl(x))

Γ ` a1 : A Γ ` a2 : A Γ ` p : Id(A, a1, a2)

Γ ` elimId(〈x1x2y〉C, 〈x〉c, p) : C · (x1 := a1, x2 := a2, y := p)

Γ, x1 : A, x2 : A, y : Id(A, x1, x2) ` C type
Γ, x : A ` c : C · (x1 := x, x2 := x, y := refl(x)) Γ ` a : A

Γ ` elimId(〈x1x2y〉C, 〈x〉c, refl(a)) ≡ c · (x := a)

These rules express that Id(A,−,−) is the type family on (x1 : A, x2 : A) freely
generated by refl(−). One can write down the corresponding algebraic operators
on a model, but we omit them.

Inductive types An inductive type is a type freely generated by a set of con-
structors. The simplest inductive type is the empty type which is the inductive
type with no constructor and has the following rules.

Γ ` 0 type

Γ, x : 0 ` C type Γ ` a : 0

Γ ` elim0(〈x〉C, a) : C · (x := a)

2.3. Category theory 23

A more interesting inductive type is the natural numbers type which has the
following rule.

Γ ` N type Γ ` zero : N

Γ ` n : N

Γ ` succ(n) : N

Γ, n : N ` C type
Γ ` c0 : C · (n := zero) Γ, n : N, x : C ` c1 : C · (n := succ(n)) Γ ` n : N

Γ ` elimN(〈n〉C, c0, 〈nx〉c1, n) : C · (n := n)

Γ, n : N ` C type
Γ ` c0 : C · (n := zero) Γ, n : N, x : C ` c1 : C · (n := succ(n))

Γ ` elimN(〈n〉C, c0, 〈nx〉c1, zero) ≡ c0

Γ, n : N ` C type
Γ ` c0 : C · (n := zero) Γ, n : N, x : C ` c1 : C · (n := succ(n)) Γ ` n : N

Γ ` elimN(〈n〉C, c0, 〈nx〉c1, succ(n)) ≡ c1 · (n := n, x := elimN(〈n〉C, c0, 〈nx〉c1, n))

It is straightforward to write down the corresponding algebraic operators on a
model.

2.3 Category theory

We assume that the reader is familiar with basic concepts of category theory
such as equivalences, adjunctions, and (co)limits. Standard references are [118,
11, 109, 144].

2.3.1. Definition. A category consists of a set C of objects, a set denoted by
C(x, y) or Hom(x, y) for any pair of objects x, y ∈ C whose elements are called
arrows, morphisms, or maps from x to y, an arrow idx ∈ C(x, x) for any object
x ∈ C called the identity on x and an operator ◦ : C(x2, x3) × C(x1, x2) →
C(x1, x3) for any triple of objects x1, x2, x3 ∈ C called the composition satisfying
the associativity law and the unit law.

We fix some notations for constructions of categories.

� Set denotes the category of small sets, that is, sets in the first universe,
and maps between them.

� For a category C of small sets with some structure, we write Ĉ for the
category of sets in the next universe with that structure. For example, Ŝet
is the category of sets in the next universe.

24 Chapter 2. Preliminaries

� For two categories C and D, we write Fun(C,D) or DC for the category of
functors from C to D and natural transformations between them.

� C→ denotes the category of arrows and commutative squares in C.

� For two categories C andD with finite limits, we write Lex(C,D) ⊂ Fun(C,D)
for the full subcategory spanned by the left exact functors, that is, functors
preserving finite limits.

� For a category C, we write k(C) for the largest groupoid contained in C, that
is, the subcategory of C spanned by all the objects and invertible arrows.

We remind the reader about miscellaneous concepts and lemmas.

2.3.2. Definition (Beck-Chevalley condition). Let

C1 C2

D1 D2

G

F1 F2

H

be a commutative (up to natural isomorphism) square of categories and suppose
that F1 and F2 has right adjoints F ∗1 and F ∗2 , respectively. We say this square
satisfies the Beck-Chevalley condition if the natural transformation

C1 C2 C2

D1 D1 D2

G

F1

F2

η2
F ∗1

ε1

H

F ∗2

is invertible, where ε1 is the counit of F1 a F ∗1 and η2 is the unit of F2 a F ∗2 .

2.3.3. Lemma (Two-pullbacks lemma). For a commutative diagram in a cate-
gory

x1 x2 x3

y1 y2 y3

in which the right square is a pullback, the left square is a pullback if and only if
the outer square is a pullback.

We fix some notations.

� For an object x in a category C with finite product, we write ∆x : x→ x×x
for the diagonal arrow, that is, the arrow whose projections on both sides
are the identities.

� We write inl : x→ x+ y and inr : y → x+ y for the coproduct inclusions.

2.3. Category theory 25

2.3.1 Higher categories

For 0 ≤ i ≤ n ≤ ∞, by an (n, i)-category , we mean a weak higher category in
which m-cells are invertible for m > i and m-cells are trivial for m > n. We
mostly work with the following cases:

� a (1, 1)-category is nothing but an ordinary category;

� a (2, 1)-category is a category weakly enriched over groupoids;

� a (2, 2)-category is what is called a bicategory in the literature;

� an (∞, 1)-category is a category weakly enriched over ∞-groupoids.

We understand category-theoretic concepts in a maximally weak sense. For exam-
ple, by a functor between (2, 2)-categories we mean a map preserving composition
up to coherent isomorphism, which is called a pseudo-functor in the literature,
even when the domain and codomain are strict (2, 2)-categories.

For concreteness, we will work with quasicategories [117, 95, 38] as models for
(∞, 1)-categories. By a (2, 1)-category we mean a 2-category in the sense of Lurie
[117], that is, an (∞, 1)-category satisfying certain triviality conditions on higher
cells. A category weakly enriched over groupoids is regarded as a (2, 1)-category
in this sense via the Duskin nerve [50]. The reason for this choice of definition
of a (2, 1)-category is to apply powerful theorems in (∞, 1)-category theory such
as the adjoint functor theorem to (2, 1)-categories and generalize some results in
the thesis to (∞, 1)-categorical analogues.

We fix some notations.

� Unless otherwise mentioned, we view Cat as a (2, 1)-category where the
2-cells are the natural isomorphisms.

� Space denotes the (∞, 1)-category of spaces.

2.3.2 Presheaves

2.3.4. Definition. Let C be a category. A presheaf over C consists of a set A(x)
for any object x ∈ C whose elements are called sections over x and an operator
· : A(x)×C(x′, x)→ A(x′) for any pair of objects x′, x ∈ C called the right action
of C compatible with the identity and composition of C. Since the right action
corresponds to a map C(x′, x) → Set(A(x), A(x′)), a presheaf is equivalent to a
functor Cop → Set.

For an object x ∈ C, we write YC x for the presheaf defined by (YC x)(x′) =
C(x′, x). A presheaf is called representable if it is isomorphic to YC x for some
object x.

26 Chapter 2. Preliminaries

2.3.5. Theorem (The Yoneda Lemma). For any presheaf A over C and any ob-
ject x ∈ C, the map

Hom(YC x,A) 3 a 7→ a(idx) ∈ A(x)

is invertible.

By the Yoneda Lemma, we identify a section a ∈ A(x) with the corresponding
map YC x → A. The assignment x 7→ YC x is part of a functor YC : C →
Fun(Cop,Set) which we refer to as the Yoneda embedding .

2.3.3 Compactly generated categories

We review the theory of compactly generated categories, also known as locally
finitely presentable categories. The notion of a locally finitely presentable cate-
gory was introduced by Gabriel and Ulmer [62], and the standard textbook is
[2]. Although we only explain the 1-categorical case, analogous results hold for
compactly generated (n, 1)-categories for an arbitrary 1 ≤ n ≤ ∞ [117], and we
need the case when n = 2 in order to construct certain compactly generated
(2, 1)-categories.

2.3.6. Definition. A category Ξ is said to be filtered if, for any finite diagram
in Ξ, there exists a cocone over it. By a filtered colimit we mean a colimit indexed
over a filtered category.

2.3.7. Definition. Let X be a category with filtered colimits. An object A ∈ X
is compact if the functor X (A,−) : X → Set preserves filtered colimits.

2.3.8. Definition. Let X be a category. We say a small full subcategory C ⊂ X
is a strong generator if the functor

C• : X 3 A 7→ X (−, A)|C ∈ Fun(Cop,Set)

is faithful and conservative.

2.3.9. Definition. A category is compactly generated if it is cocomplete and
has a strong generator consisting of compact objects.

2.3.10. Theorem (Representation Theorem). Let X be a compactly generated
category. Let C ⊂ X be the full subcategory spanned by the compact objects.

1. C is essentially small and closed under finite colimits.

2. The functor C• : X → Fun(Cop,Set) is fully faithful and its replete image
is Lex(Cop,Set).

2.3. Category theory 27

3. X is the cocompletion of C under filtered colimits.

4. X is the ω-free cocompletion of C, that is, it is the initial cocomplete category
X equipped with a functor C → X preserving finite colimits.

Consequently, we have an equivalence X ' Lex(Cop,Set).

2.3.11. Corollary. Any compactly generated category has small limits.

Let PrR
ω ⊂ Ĉat denote the subcategory spanned by the compactly generated

categories and functors preserving limits and filtered colimits.

2.3.12. Theorem (Limit Theorem). PrR
ω ⊂ Ĉat is closed under small limits

and cotensors with small categories.

The Limit Theorem is particularly useful for constructing new compactly gen-
erated categories out of old ones. We first prepare basic building blocks.

2.3.13. Example. Set is a compactly generated category. Cat is a compactly
generated (2, 1)-category.

2.3.14. Example. Let LAdj denote the category of left adjoints: the objects
are the left adjoints F : C → D between small categories; the morphisms are
the commutative squares satisfying the Beck-Chevalley condition. LAdj is a
compactly generated (2, 1)-category and the forgetful functor LAdj → Cat→

preserves limits and filtered colimits and is conservative.

We can now construct various compactly generated (2, 1)-categories of struc-
tures defined by adjoints.

2.3.15. Example. Let Ξ be a small category. We write Lex(Ξ) for the (2, 1)-
category of small categories with limits of shape Ξ and functors preserving those
limits. This (2, 1)-category fits into the pullback

Lex(Ξ) LAdj

Cat Cat→,

y

C7→(∆:C→CΞ)

and thus Lex(Ξ) is a compactly generated (2, 1)-category and the forgetful functor
Lex(Ξ) → Cat preserves limits filtered colimits and is conservative. The (2, 1)-
category Lex of small categories with finite limits and functors preserving finite
limits is the wide pullback of Lex(Ξ)’s over Cat for all finite categories Ξ, and
thus Lex is compactly generated and the forgetful functor Lex→ Cat preserves
limits and filtered colimits and is conservative.

28 Chapter 2. Preliminaries

2.3.16. Theorem (Adjoint Functor Theorem). For a functor F : X → Y be-
tween compactly generated categories, the following are equivalent:

1. F has a left adjoint preserving compact objects;

2. F preserves limits and filtered colimits.

The Adjoint Functor Theorem ensures that any functor constructed inside
PrR

ω has a left adjoint. A consequence is that compactly generated categories
admit free constructions. For example, the forgetful functor Lex → Cat has a
left adjoint which assigns the free category with finite limits to each category.

2.3.4 Exponentiable arrows

Exponentiable arrows plays a crucial role in this thesis. In this section, we review
the definition and basic properties of exponentiable arrows. Again we describe
in the 1-categorical context, but the results also hold in the (∞, 1)-categorical
context.

2.3.17. Definition. Let C be a category with finite products. We say an object
x ∈ C is exponentiable if the product functor (−× x) : C → C has a right adjoint.

2.3.18. Notation. Let u : y → x be an arrow in a category C with finite limits.
We write u! : C/y → C/x for the functor defined by the composite with u and
u∗ : C/x→ C/y for the right adjoint of u! defined by the pullback along u. When
x is the final object, use the notations y! and y∗ instead of u! and u∗, respectively.

2.3.19. Proposition (Niefield [131]). Let C be a category with finite limits. For
an arrow u : y → x in C, the following are equivalent:

1. u is an exponentiable object of C/x;

2. the pullback functor u∗ : C/x→ C/y has a right adjoint;

3. the fiber product functor (−×x y) : C/x→ C has a right adjoint;

Proof:
Although a proof is found in [131], we provide an alternative proof that also works
in the (∞, 1)-categorical context. The product by u in C/x is the composite

C/x C/y C/x.u∗ u!

Since u! has the right adjoint u∗, Item 2 implies Item 1. The fiber product functor
(−×x y) : C/x→ C is the composite

C/x C/x C.(−×u) x!

2.3. Category theory 29

Since x! has the right adjoint x∗, Item 1 implies Item 3. To show that Item 3
implies Item 2, suppose that the functor (−×x y) has a right adjoint Pu : C → C/x
with unit η. The right adjoint of u∗ is defined by the pullback

• Pu(z)

x Pu(y)

y

ηx

for an object z ∈ C/y. 2

2.3.20. Definition. We say an arrow in a category with finite limits is expo-
nentiable if it satisfies the equivalent conditions of Proposition 2.3.19.

2.3.21. Definition. We say a class of arrows in a category with finite limits is
pullback-stable if it is closed under identities, composition, and pullbacks.

2.3.22. Proposition (Niefield [131]). The class of exponentiable arrows in a
category C with finite limits is pullback-stable.

Proof:
Let

y′ y

x′ x

u′
y

u

v

be a pullback in C. Observe that the fiber product functor (−×x′ y′) is the
composite

C/x′ C/x C.v! (−×xy)

Since v! has the right adjoint v∗, if (−×x y) has a right adjoint, so does (−×x′ y′).
2

Let u : y → x is an exponentiable arrow in a category C with finite limits.
The right adjoint of the pullback functor u∗ is denoted by u∗ and called the
pushforward along u. An exponentiable arrow is viewed as a polynomial from 1
to 1 in the sense of Weber [181]. The polynomial functor Pu associated to u is the
composite

C C/y C/x C.y∗ u∗ x!

By definition, we may view Pu as a functor C → C/x which is nothing but the
right adjoint of (−×x y) : C/x → C. We refer the reader to [65] for information
about polynomials and polynomial functors. Here we recall that polynomials can

30 Chapter 2. Preliminaries

be composed : given two exponentiable arrows u1 : y1 → x1 and u2 : y2 → x2, we
have an exponentiable arrow u1 ⊗ u2 characterized by the natural isomorphism
Pu1⊗u2

∼= Pu1 ◦ Pu2 . Concretely, u1 ⊗ u2 is defined as follows. The codomain of
u1 ⊗ u2 is Pu1(x2). The domain of u1 ⊗ u2 is the pullback

dom(u1 ⊗ u2) y2

Pu1(x2)×x1 y1 x2,

y
u2

εx2

where ε is the counit of the adjunction (−×x1 y1) a Pu1 . Then u1 ⊗ u2 is the
composite

dom(u1 ⊗ u2) Pu1(x2)×x1 y1 Pu1(x2) = cod(u1 ⊗ u2)

which is exponentiable by the stability under composition and pullbacks.

Chapter 3

Categories with representable maps

In this chapter, we introduce the notion of a category with representable maps
(CwR) as an abstract notion of a type theory. This notion covers a wide range
of syntactically presented type theories as we will see in Chapter 4 and has nice
semantic properties proved in Chapter 5.

The idea comes from Lawvere’s functorial semantics of algebraic theories [108]
and its variants [123, 1]. In functorial semantics, theories are identified with struc-
tured categories, and models of a theory are identified with structure-preserving
functors from the structured category corresponding to the theory. For example,
consider the theory of groups whose models are of course groups. A group is a
set A equipped with three operators satisfying certain equational axioms. The
operators form the following diagram of sets.

1 A A× A

A

1 ·

(−)−1 (3.1)

In category theory, a diagram is nothing but a functor, and thus a group would
be a functor F : Cgroup → Set from a suitable category Cgroup. What structure
should Cgroup have? The category Cgroup should contain a diagram

1 x0 x0 × x0

x0

1 ·

(−)−1 (3.2)

so that Eq. (3.1) is the image of Eq. (3.2) by the functor F : Cgroup → Set.
For Eq. (3.2) to make sense, the category Cgroup should have finite products.
For Eq. (3.2) to be sent to Eq. (3.1) by F , the functor F should preserve finite
products. Equational axioms are also explained diagrammatically. For example,

31

32 Chapter 3. Categories with representable maps

associativity is equivalent to that the following diagram commutes.

A× A× A A× A

A× A A

A×·

·×A ·

·

Therefore, the corresponding diagram in Cgroup

x0 × x0 × x0 x0 × x0

x0 × x0 x0

x0×·

·×x0 ·

·

should commute. The diagrams corresponding to the other group axioms should
also commute in Cgroup. The category Cgroup should not contain other non-trivial
arrows nor satisfy other non-trivial equations: otherwise functors Cgroup → Set
preserving finite products would correspond to groups with extra structure or
axioms. Thus, we conclude that our category Cgroup is the category with finite
products presented by the object x0 and arrows in Eq. (3.2) as generators and
the commutative diagrams corresponding to the group axioms as relations.

In the same way, any (many-sorted) algebraic structure can be regarded as
a functor C → Set preserving finite products for some category C with finite
products, because an algebraic structure is a diagram of sets described in the
language of finite products. Thus, algebraic theories are identified with categories
with finite products, and models of an algebraic theory are identified with functors
preserving finite products. The usual specification of an algebraic theory by
operators and axioms is now considered as a presentation of the corresponding
category with finite products: operators are generators and axioms are relations.

Similarly, we will identify type theories with certain structured categories and
models of a type theory with structure-preserving functors. We begin by deter-
mining the language for describing models of a type theory. The notion of a model
of a type theory we have in mind is a natural model introduced by Awodey [12],
which is equivalent to a category with families of Dybjer [51]. The key observation
is that in the natural model semantics, a wide range of type constructors such
as Π-types and Σ-types are described in the language of representable maps of
presheaves, finite limits, and pushforwards along representable maps. In the spirit
of functorial semantics, we identify type theories with categories equipped with
a class of arrows called representable maps, finite limits, and pushforwards along
representable maps so that models of a type theory are identified with functors
preserving these structures. We call such a category equipped with a class of
representable maps a category with representable maps (CwR). The traditional
specification by inference rules is now considered as a presentation of a CwR.

We review natural models of type theory in Section 3.1. A minor change from
the original work by Awodey is that we work with discrete fibrations instead of

3.1. Natural models of type theory 33

presheaves, which makes the algebraic nature of natural models more apparent.
In Section 3.2 we introduce the notion of a CwR and define a type theory to be
just a CwR. A model of a type theory is then defined to be a structure-preserving
functor into a category of discrete fibrations.

3.0.1. Remark. Although the notion of a CwR covers a wide range of type theo-
ries including Martin-Löf type theory [124, 133], univalent type theory [172], and
cubical type theory [41], it cannot cover some important type theories. Character-
istics of type theories considered in this thesis are that contexts are single-layered
and that assumptions in a context can be used at any time, any number of times.
Type theories with “dual-contexts” [e.g. 136, 111, 152] are not of this sort. Sub-
structural type theories such as linear logic [71] are out of scope since assumptions
can be used a limited number of times. Type theories with modality presented in
[26] are not covered since assumptions can be used only under some restriction on
contexts. The elegant framework of Licata, Shulman, and Riley [113] covers a lot
of substructural and modal simple type theories, though its dependently-typed
extension [110] has not been finished. Compared to their framework, our notion
of a type theory is limited but produces nice semantic results proved in Chapter 5.

3.1 Natural models of type theory

We review natural models of type theory [12, 129] which are defined to be repre-
sentable maps of presheaves.

3.1.1. Definition ([Stacks, Tag 0023]). We say a map f : B → A of presheaves
over a category C is representable if, for any object x ∈ C and any section a :
Y x→ A, the presheaf a∗B is representable.

3.1.2. Definition ([12]). A natural model consists of a category C with a final
object and a representable map ∂ : E → U of presheaves over C.

3.1.3. Remark. The fact that a representable map of presheaves models depen-
dent type theory was also observed by Fiore [54] independently of Awodey.

3.1.4. Remark. For a presheaf A over a category C, the following are not equiv-
alent in general:

1. the presheaf A is representable;

2. the final projection A→ 1 is representable.

When C has a final object, Item 2 is equivalent to that the presheaf A is repre-
sentable by some object x ∈ C and C has products with x. Therefore, if C has
finite products, then Items 1 and 2 are equivalent.

https://stacks.math.columbia.edu/tag/0023

34 Chapter 3. Categories with representable maps

Presheaves are known to be equivalent to discrete fibrations. We prefer to
work with discrete fibrations instead of presheaves because the representability
of a map of presheaves is characterized algebraically in terms of discrete fibra-
tions (Proposition 3.1.11).We recall the definition and basic properties of discrete
fibrations in Section 3.1.1. In Section 3.1.2, we review how natural models of
Awodey can model type theories. In Section 3.1.3, we study representable maps
of discrete fibrations in more detail.

3.1.1 Discrete fibrations

3.1.5. Definition. A functor p : A→ C is a discrete fibration if the square

A→ A

C→ C

cod

p→ p

cod

is a strict pullback of categories. We write DFib ⊂ Cat→ for the full subcategory
spanned by the discrete fibrations. For a category C, by a discrete fibration over
C, we mean a discrete fibration of the form A → C. We write DFibC ⊂ Cat/C
for the full subcategory spanned by the discrete fibrations over C.

The following are immediate from the definition.

3.1.6. Proposition. Discrete fibrations are closed under identities, composi-
tion, and strict pullbacks along arbitrary functors. 2

3.1.7. Proposition. Let f : B → A and p : A → C be functors and suppose
that p is a discrete fibration. Then p ◦ f is a discrete fibration if and only if f is.

Proof:
By the two-pullbacks lemma. 2

The following elementary characterization of discrete fibrations might be more
familiar.

3.1.8. Proposition. For a functor p : A→ C, the following are equivalent:

1. p is a discrete fibration;

2. for any object a ∈ A, the functor p/a : A/a→ C/p(a) is an isomorphism;

3. for any object a ∈ A, any object x′ ∈ C and any arrow u : x′ → p(a), there
exists a unique pair (a′, f) consisting of an object a′ ∈ A and an arrow

3.1. Natural models of type theory 35

f : a′ → a such that p(a′) = x′ and p(f) = u.

∃!a′ a A

x′ p(a) C

∃!f

p

u

We write a · u = a′ and call it the right action of u on a.

Proof:
Items 1 and 2 are equivalent by definition since A/a is the fiber of A→ over
a. Clearly, Item 2 implies Item 3. Item 3 is equivalent to that the functor
p/a : A/a → C/p(a) is bijective on objects for any object a ∈ A. This also
implies that p/a is fully faithful as follows. Let f1 : a1 → a and f2 : a2 → a be
objects of A/a and u : p(a1) → p(a2) an arrow in C/p(a). By assumption, we
have a unique arrow g : a′1 → a2 over u. Then the composite f2 ◦ g : a′1 → a2 is
an arrow over p(f1) : p(a1)→ p(a), and thus a′1 = a1 and f1 = f2 ◦ g. Hence, g is
a unique arrow a1 → a2 in A/a such that p(g) = u. 2

3.1.9. Corollary. For any category C and object x ∈ C, the forgetful functor
C/x→ C is a discrete fibration.

Proof:
Because the functor (C/x)/u → C/y is an isomorphism for any object u : y → x
of C/x. 2

Let C be a category. The presheaves over C and the discrete fibrations over C
are equivalent as follows. For a presheaf A : Cop → Set, the category of elements∫
C A is defined to be the strict pullback

∫
C A Fun(Cop,Set)/A

C Fun(Cop,Set).

y

YC

By construction, the functor
∫
C A→ C is a discrete fibration.

3.1.10. Proposition. For any category C, the construction A 7→
∫
C A is part of

an equivalence of categories∫
C

: Fun(Cop,Set) ' DFibC.

36 Chapter 3. Categories with representable maps

Proof:
For a discrete fibration p : A→ C, we have the presheaf

Cop ∈ x 7→ DFibC(C/x,A) ∈ Set,

which gives an inverse of
∫
C. 2

Under the equivalence Fun(Cop,Set) ' DFibC, the representable presheaf
YC x corresponds to the discrete fibration C/x. We thus say a discrete fibration
over C is representable if it is isomorphic to some C/x and call a map of discrete
fibrations over C of the form a : C/x→ A a section over x.

We prefer to work with discrete fibrations instead of presheaves because of the
following algebraic characterization of representability of a map of presheaves.

3.1.11. Proposition. A map f : B → A of presheaves over a category C is
representable if and only if the functor

∫
C f :

∫
C B →

∫
C A has a right adjoint.

Proof:
For an object (x, a) ∈

∫
C A, the comma category

(∫
C f ↓ (x, a)

)
is equivalent to

the category of commutative squares of the form

Y y B

Y x A,

b

Y u f

a

and this square is a final object in
(∫
C f ↓ (x, a)

)
if and only if it is a pullback.

Thus,
(∫
C f ↓ (x, a)

)
has a final object if and only if the presheaf a∗B is repre-

sentable. 2

3.1.12. Definition. Let C be a category. We say a map f : A→ B of discrete
fibrations over C is representable if it has a right adjoint seen as a functor.

3.1.2 Modeling type theory

A representable map f : B → A of discrete fibrations over C is considered as a
model of dependent type theory. We think of objects Γ ∈ C as contexts, sections
a : C/Γ → A as types over Γ, and sections b : C/Γ → B as terms over Γ. The
type of a term b : C/Γ → B is given by f(b). A morphism u : Γ′ → Γ in C
corresponds to a substitution, and the right action a · u and b · u on sections of
A and B represents the action of the substitution. The representability of f is
used for modeling context comprehension. For a type a : C/Γ→ A, the pullback
a∗B is a representable discrete fibration as f is representable. We write {a} for

3.1. Natural models of type theory 37

the representing object and call it the context comprehension of a (with respect
to f). By definition, {a} fits into the following pullback square.

C/{a} B

C/Γ A

q(a)

p(a)
y

f

a

As Awodey [12] noted, natural models are equivalent to categories with fam-
ilies of Dybjer [51]. An advantage of natural models is that type constructors
such as Π-types and identity types are described inside the category of discrete
fibration over the base category. Since the action of a substitution is represented
by the right action of a morphism in the base category, everything constructed
inside the category of discrete fibrations automatically becomes stable under sub-
stitutions. This simplifies definitions and constructions of type constructors on
natural models.

We observe that type constructors are modeled by maps of discrete fibrations
whose domains and codomains are built out of f : B → A using finite limits and
pushforwards along f . For example, extensional identity types are modeled by a
pullback of the form

B B

B ×A B A.

refl

∆
y

f

Id

The map Id sends a triple (a, b1, b2) consisting of a type a : C/Γ → A and terms
b1, b2 : C/Γ → B of the type a to a type Id(a, b1, b2) : C/Γ → A and models
the formation rule for identity types. The map refl sends a term b : C/Γ → B
of the type a to a term of the type Id(a, b, b) and models the introduction rule
for identity types. Since the square is a pullback, for any term c of Id(a, b1, b2),
the terms b1 and b2 must be equal and c is refl(b1), and thus Id and refl model
extensional identity types.

Type constructors with variable binding are modeled using pushforwards along
f . For example, Π-types are modeled by a pullback of the form

Pf (B) B

Pf (A) A,

λ

Pf (f)
y

f

Π

where Pf = A!f∗B
∗ is the polynomial functor. From the definition of the polyno-

mial functor, a section C/Γ→ Pf (A) correspond to a pair (a1, a2) consisting of a
type a1 : C/Γ→ A and a map a2 : C/Γ×A B → A. By the representability of f ,

38 Chapter 3. Categories with representable maps

we have C/Γ×A B ∼= C/{a1}, and thus a2 is a type over {a1}. Then the map Π
models the formation rule for Π-types. Similarly, a section of Pf (B) corresponds
to a pair consisting of a type a : C/Γ → A and a term b : C/{a} → B, and the
map λ models the introduction rule for Π-types. Since the square is a pullback,
the terms of Π(a1, a2) correspond to the sections of Pf (f) : Pf (B)→ Pf (A) over
(a1, a2) : C/Γ→ Pf (A) which correspond to the terms C/{a1} → B of a2 by the
definition of Pf . Therefore, Π and λ model Π-types.

Σ-types are also explained in terms of polynomial functors. Σ-types are mod-
eled by a pullback of the form

dom(f ⊗ f) B

cod(f ⊗ f) A

pair

f⊗f
y

f

Σ

(3.3)

where ⊗ is the composition of polynomials. From the concrete definition of f ⊗f
[65], one can see that cod(f ⊗ f) ∼= Pf (A) and that a section of f ⊗ f over
a section (a1, a2) : C/Γ → Pf (A) corresponds to a pair (b1, b2) consisting of a
section b1 : C/Γ→ B over a1 and a section b2 : C/Γ→ B over a2 ◦ b′1 where b′1 is
the induced section of C/{a1} → C/Γ. The condition that Eq. (3.3) is a pullback
expresses that the elements of Σ(a1, a2) are precisely the pairs (b1, b2) consisting
of an element b1 of a1 and an element b2 of b2 · a1. The pullback square (3.3) can
be viewed as part of a polynomial pseudo-monad [14], but it is beyond the scope
of this thesis.

Inductive types are also modeled by maps between discrete fibrations. We
explain the simplest case, the empty type, that is, the inductive type without any
term constructor. The formation rule for the empty type is simply modeled by a
global section 0 : C → A. The elimination rule for the empty type is modeled by
a section of the form

Pf (B)

0∗Pf (A) Pf (A)

C A.

Pf (A)
elim0

y

0

Indeed, a section C/Γ→ 0∗Pf (A) corresponds to a type a : C/Γ× {0} → A and
the map elim0 sends such a type a to a term C/Γ×{0} → B of a. Similarly, other
inductive types such as the natural number type and intensional identity types
are modeled by maps between discrete fibrations.

All the type theories considered in the original work by Awodey [12] are mod-
eled by a single representable map of presheaves and some other maps. Extending
natural models by more than one representable maps allows us to model more

3.1. Natural models of type theory 39

complex type theories. Cubical type theory [41] is a motivating example. This
type theory has a formal interval I by which contexts can be extended, but I
is not considered as a type. Thus, the interval is modeled by another discrete
fibration I such that the final projection I → 1 is a representable map, rather
than a global section I : C → A. Since the base category C is required to have
a final object, the representability of I → 1 is equivalent to that the discrete
fibration I is representable and C has products by I (Remark 3.1.4). Then the
context comprehension by I is modeled by the product by I, which coincides with
the interpretation of the interval in the presheaf semantics of cubical type theory
explained in [41]. Another component of cubical type theory is the face lattice
or cofibrant propositions, and it is modeled by an additional representable map
that is also a monomorphism.

3.1.3 Properties of representable maps of discrete fibra-
tions

Representable maps of discrete fibrations are closed under several operations [129,
Theorem 3.3.14]. The following closure properties are relevant for our purpose.

3.1.13. Proposition. Let C be a category. Then the class of representable maps
of discrete fibrations over C is closed under identities, composition, and pullbacks
along arbitrary maps. 2

Pullbacks and right adjoints of representable maps nicely interact.

3.1.14. Lemma. Let

A1 A2

C1 C2

F ′

p1 p2

F

be a commutative square of categories in which p1 and p2 are discrete fibrations
and F has a right adjoint G. Then the square is a pullback if and only if F ′ has
a right adjoint G′ over G.

Proof:
This follows from general facts about fibred adjunctions [77, Chapter 3]. Here we
give an elementary account. Let η and ε denote the unit and counit, respectively,
of the adjunction F a G. Suppose that the square is a pullback. Then A1 is the
category of pairs (x1, a2) consisting of an object x1 ∈ C1 and an object a2 ∈ A2

over F (x1). Given an object a2 ∈ A2 over an object x2 ∈ C2, we define an object

40 Chapter 3. Categories with representable maps

G′(a2) ∈ A1 over G(x2) by the unique lift

G′(a2) a2

F (G(x2)) x2ε

and then G′ is a right adjoint of F ′ over G. Conversely, if G′ is a right adjoint
of F ′ over G, we can construct an inverse of the functor A1 → F ∗A2: given an
object (x1, a2) ∈ F ∗A2, we have an object a1 ∈ A1 over x1 by the unique lift

a1 G′(a2)

x1 G(F (x1)).η

2

3.1.15. Proposition. Let
B1 B2

A1 B2

h

f1 f2

g

be a commutative square of discrete fibrations over a category C. Suppose that f1

and f2 are representable. Then this square is a pullback if and only if it satisfies
the Beck-Chevalley condition.

Proof:
By Proposition 3.1.7, the functors g and h are discrete fibrations. Then use
Lemma 3.1.14. 2

It is known that in the category DFibC every map is exponentiable, but the
pushforward along a representable map is defined algebraically.

3.1.16. Lemma. For any discrete fibration A over a category C, the equivalence
(Cat/C)/A ' Cat/A is restricted to an equivalence (DFibC)/A ' DFibA.

Proof:
By Proposition 3.1.7. 2

3.1.17. Proposition. Let f : B → A be a representable map of discrete fibra-
tions over a category C. The pushforward along f is given by the pullback along
the right adjoint A→ B of f .

3.2. Type theories 41

Proof:
Let g : A → B denote the right adjoint of f . Then the pullbacks along f and g
determine an adjunction

DFibA

a

DFibB.

f∗

g∗

By Lemma 3.1.16, g∗ determines the right adjoint of the pullback functor f ∗ :
DFibC/A→ DFibC/B. 2

3.1.18. Corollary. Let f : B → A be a representable map of discrete fibrations
over a category C. Then the pushforward functor f∗ : DFibC/B → DFibC/A has
a right adjoint.

Proof:
This is because the pullback functor g∗ : DFibB → DFibA has a right adjoint,
where g is the right adjoint of f . 2

3.2 Type theories

We have seen in Section 3.1.2 that models of a type theory are described using
the following concepts:

� representable maps

� finite limits;

� pushforwards along representable maps.

In the spirit of functorial semantics, we identify a type theory with a category
equipped with these structures and a model of the type theory with a structure-
preserving functor. Axiomatizing properties of representable maps in the category
of discrete fibrations over a category in relation to models of a type theory, we
obtain the following notion.

3.2.1. Definition. A category with representable maps (CwR) is a category C
with finite limits equipped with a pullback-stable class RC of exponentiable ar-
rows. Arrows in RC are called representable maps . A morphism of CwRs C → D
is a functor F : C → D preserving finite limits, representable maps, and pushfor-
wards along representable maps. We write CwR for the (2, 1)-category of CwRs,
morphisms of CwRs, and natural isomorphisms.

42 Chapter 3. Categories with representable maps

3.2.2. Example. For any category C, the category DFibC of discrete fibrations
over C is a CwR in which a map is representable if it is representable in the sense
of Definition 3.1.12 by Propositions 3.1.13 and 3.1.17.

3.2.3. Definition. A type theory is a small CwR. A morphism of type theories
is a morphism of CwRs. We write TT for the (2, 1)-category of type theories
which is nothing but CwR.

3.2.4. Definition. Let T be a type theory. A model M of T consists of the
following data:

� a category M(�) with a final object;

� a morphism of CwRs M : T → DFibM(�).

3.2.5. Definition. Let T be a type theory and M and N models of T . A
morphism F :M→N of models of T consists of the following data:

� a functor F� :M(�)→ N (�) preserving final objects;

� for each object x ∈ T , a map of discrete fibrations Fx :M(x)→ N (x) over
F�

satisfying the following conditions:

1. for any arrow u : x→ y in T , the square

M(x) N (x)

M(y) N (y)

Fx

M(u) N (u)

Fy

(3.4)

commutes;

2. when u is a representable map in T , Eq. (3.4) satisfies the Beck-Chevalley
condition.

Note that since the right adjoint of a representable map models context com-
prehension, the Beck-Chevalley condition for Eq. (3.4) means that a morphism
between models of a type theory is required to preserve context comprehension
(up to canonical isomorphism).

Examples of type theories are specified by certain universal properties, and
there are two ways of proving the existence of type theories with universal prop-
erties. One way is to use the presentability of the (2, 1)-category of type theories
proved in Section 5.3. Intuitively, the definition of a CwR is essentially algebraic
in the (2, 1)-categorical sense, and thus we can construct suitable free CwRs anal-
ogously to the construction of free algebras such as free groups, free lattices, and
free categories. The other way is to construct a CwR from a syntactic presentation
of a type theory explained in Chapter 4.

3.2. Type theories 43

3.2.6. Example. Let D denote the free CwR generated by a representable map
∂ : E → U . The universal property of D asserts that a morphism of CwRs
F : D → C is completely determined by the image of the representable map ∂.
Therefore, a model of D is equivalent to the following structure:

� a category M(�) with a final object;

� a representable map M(∂) : M(E) → M(U) of discrete fibrations over
M(�),

that is, a natural model. Thus, D is considered as the dependent type theory
without any type constructors.

3.2.7. Example. Let DΠ denote the free CwR generated by a representable map
∂ : E → U and a pullback of the form

P∂(E) E

P∂(U) U.

λ

P∂(∂)
y

∂

Π

Then a model of DΠ is a natural model (M(�),M(∂) :M(E)→M(U)) equipped
with a pullback of the form

PM(∂)(M(E)) M(E)

PM(∂)(M(U)) M(U).

M(λ)

PM(∂)(M(∂))
y

M(∂)

M(Π)

Hence, DΠ is the dependent type theory with Π-types.

3.2.8. Example. We would need a lot of pages to write down the universal
property of the CwR that represents cubical type theory [41]. Here we only
describe the fundamental structure. Cubical type theory is defined to be the free
CwR generated by the following data:

� a representable map E → U ;

� a representable monomorphism true→ Cof;

� an object I such that the final projection I→ 1 is a representable map;

� a bunch of arrows and equations representing components of cubical type
theory.

44 Chapter 3. Categories with representable maps

We will give a more detailed syntactic presentation of cubical type theory in
Section 4.6.3.

The guiding principle of presenting type theories as CwRs is to express judg-
ment forms as objects. For example, the object U of D corresponds to the judg-
ment form (` type) meaning that something is a type, and the object E ∈ D/U
corresponds to the family of judgment forms (` : A) indexed over types A mean-
ing that something is an element of A. We express a family of judgment forms as
a representable map when contexts in the type theory can be extended by those
judgment forms. For example, in the ordinary syntax of dependent type theory,
a context is a list of term variables x : A but does not contain type variables
x type (unless some form of polymorphism is introduced). Therefore, the arrow
∂ : E → U in D is a representable map while the projection U → 1 is not. We use
finite limits to create equality judgment forms. For example, the diagonal arrow
U → U ×U seen as an object of D/U ×U corresponds to the family of judgment
forms (` A1 ≡ A2 type) indexed over pairs of types (A1, A2) meaning that A1 and
A2 are equal. The pushforward along ∂ creates hypothetical judgment forms. For
example, the object P∂(U) ∈ D/U corresponds to the family of judgment forms
(x : A ` type) indexed over types A meaning that something is a type under the
hypothesis that x is an element of A.

Since objects are judgment forms, arrows are transformations from judgments
to judgments, that is, inference rules. For example, the arrow Π : P∂(U)→ U in
DΠ corresponds to the formation rule for Π-types: it takes types (` A type) and
(x : A ` B type) and returns a type (` Π(A, B) type).

3.2.9. Remark. The judgment-forms-as-objects principle is essentially the same
as the judgments-as-types principle in the context of logical framework [75]. One
change is that in our style, the judgment forms (` type) and (` : A) are
distinguished based on whether they can be put in a context.

In the next few chapters, we will develop a theory of type theories. Chapter 4
is devoted to establishing a connection between CwRs and syntactic presentations
of type theories. We introduce syntactic counterparts of CwRs called second-order
generalized algebraic theories (SOGATs). We associate to each SOGAT a CwR
called the syntactic CwR and show that Definition 3.2.4 gives us the correct notion
of a model of the SOGAT. Syntactic CwRs are also a major source of examples of
CwRs. In Chapter 5 we develop a theory of type theories in a purely categorical
way. We will not use the results of Chapter 4 except for giving examples. The
main result is the theory-model correspondence: we introduce a notion of a theory
over a type theory which is roughly an extension of the type theory by constants;
given a theory over a type theory, we construct a model of the type theory called
the syntactic model ; given a model of a type theory, we construct a theory over
the type theory called the internal language; the syntactic model construction and
the internal language construction are in adjunction and induce an equivalence

3.2. Type theories 45

between the category of theories over a type theory and a full subcategory of the
category of models of the type theory.

There are some remarks on the definition of a CwR.

3.2.10. Remark. The definition of a CwR might remind the reader about sim-
ilar concepts familiar to categorical type theorists such as contextual categories
[35], C-systems [179], display map categories [166], and clans [94]. These are also
categories equipped with a pullback-stable class of arrows. However, the notion of
a CwR and the other notions come from different motivations. While the others
are considered as models of a type theory, CwRs are considered as type theories
themselves.

3.2.11. Remark. We do not require that representable maps in a CwR are
closed under pushforwards since this closure property fails in DFibC unless the
base category C is locally cartesian closed.

3.2.12. Remark. The pushforward along a representable map is used for rep-
resenting variable binding, and this is essentially the same as the use of Π-types
to represent variable binding in logical frameworks [75, 133]. Since logical frame-
works usually have all Π-types, one might think that CwRs are less expressive
than logical frameworks and that categorical presentations of type theories should
be locally cartesian closed, that is, have all pushforwards. It is certainly true that
CwRs are less expressive than logical frameworks, but, as we will see in Sec-
tion 4.6, restricted forms of Π-types are sufficient to define a wide range of prac-
tical type theories, because variable binding in a type theory only occurs at the
“first-order” level, and we do not need higher-order variable binding. Of course,
it is possible to consider type constructors with higher-order variable binding
such as W -types in the absence of Π-types, and Gratzer and Sterling [74] pro-
posed the use of locally cartesian closed categories for presenting type theories
to deal with such higher-order operators. However, the main use of W -types is
to internalize the construction of inductive types in a type theory, and thus it is
natural to assume that the type theory already has Π-types to internalize some
concepts. Then higher-order variable binding can be performed by a combination
of first-order variable binding and Π-types.

A more technical reason for not requiring a CwR to be locally cartesian closed
is that allowing arbitrary pushforwards causes extra difficulty in the study of
models of type theories. An important feature of our notion of a model of a type
theory (Definition 3.2.4) is that the (2, 1)-category of models of a type theory is
compactly generated, as proved in Section 5.2.1. Compactly generated categories
have good properties such as (co)completeness and the special adjoint functor
theorem. If we defined a type theory to be a locally cartesian closed category and
a model of a type theory to be a functor preserving finite limits and arbitrary
pushforwards, then we would not get this feature because functors preserving
pushforwards need not form a compactly generated category. The pushforward

46 Chapter 3. Categories with representable maps

along a representable map of discrete fibrations is special because it is defined by a
pullback (Proposition 3.1.17), and this will be the key to the compact generation
of models.

Chapter 4

Second-order generalized algebraic
theories

In this chapter, we introduce second-order generalized algebraic theories (SO-
GATs) for several reasons. In short, SOGATs are:

1. syntactic counterparts of CwRs;

2. extension of the general definition of dependent type theories given by
Bauer, Haselwarter, and Lumsdaine [20] to allow user-definable judgment
forms;

3. second-order extension of generalized algebraic theories of Cartmell [35];

4. dependently-typed extension of second-order algebraic theories of Fiore and
Mahmoud [57].

The first aspect is the most important in this thesis. In [169] the author intro-
duced a logical framework to give syntactic counterparts of CwRs, but it is not
satisfactory. When defining a type theory as a theory over a logical framework,
one has to prove the adequacy of the definition, that is, the theory over the logical
framework derives the same judgments as the original type theory does. Although
adequacy can systematically be proved for each individual type theory syntacti-
cally [75] or semantically [79], the adequacy of all logical framework presentations
cannot be proved nor even stated unless we have a general notion of a type the-
ory outside the logical framework. What we really want is a general notion of a
syntactic presentation of a type theory such that a wide range of existing type
theories are verified to be instances of that notion by just unfolding the definition.
Bauer, Haselwarter, and Lumsdaine [20] have made a careful analysis on inference
rules in traditional presentations of type theories and proposed a class of syntac-
tic presentations of type theories that fits our requirement. A restriction on their
type theories is that the forms of judgments are fixed, and thus we cannot define
some complex type theories such as cubical type theory [41]. We thus modify

47

48 Chapter 4. Second-order generalized algebraic theories

their definition of type theories to allow users to declare new judgment forms.
It turns out that our syntactic presentations of type theories are considered as
an extension of algebraic theories by dependent types and variable binding. We
thus choose the name “second-order generalized algebraic theory” combining the
dependently-typed extension and the second-order extension of algebraic theories
found in the literature.

4.1 Running example

To explain the syntax and inference rules of SOGATs, we use the dependent type
theory with Π-types as a running example of a type theory. It has two judgment
forms:

� U , for which a judgment A : U expresses that A is a type in the type theory;

� E(A) for any A : U , for which a judgment a : E(A) expresses that a is an
element of A.

The judgment A : U is traditionally written like A type and the judgment a : E(A)
is traditionally written like a : A. Since we allow users to declare their own
judgment forms, every construction of a judgment form should be explicit. The
ordinary presentation of dependent type theory also contains judgment forms
A1 ≡ A2 : U and a1 ≡ a2 : E(A) expressing type equality and term equality,
respectively, but we consider that these equality judgment forms are automatically
generated from U and E(A), respectively. Π-types are specified by the inference
rules listed in Fig. 4.1 where we omit the congruence rules for Π, λ, and @. These
rules are actually templates of inference rules. For example, the first rule template

` A : U x : E(A) ` B : U

` Π(A, B) : U

induces the rule
Γ ` A : U Γ, x : E(A) ` B : U

Γ ` Π(A, 〈x〉B) : U

for any context Γ and expressions A and B, where the notation 〈x〉B means that
the variable x is bound.

The dependent type theory with Π-types will be presented by a SOGAT shown
in Fig. 4.2. This is read as a list of symbols and axioms with which rule templates
are associated. The first two symbols, U and E, introduce judgment forms U
and E(−), respectively. When presenting a type theory as a SOGAT, types in
the SOGAT represent judgment forms in the type theory. The difference between
Type and type is that a type symbol is to be a judgment form by which contexts can
be extended. The next three symbols, Π, λ, and @, correspond to the first three

4.1. Running example 49

` A : U x : E(A) ` B : U

` Π(A, B) : U

` A : U x : E(A) ` B : U x : E(A) ` b : E(B(x))

` λ(A, B, b) : E(Π(A, B))

` A : U x : E(A) ` B : U ` f : E(Π(A, B)) ` a : E(A)

` @(A, B, f, a) : E(B(a))

` A : U x : E(A) ` B : U x : E(A) ` b : E(B(x)) ` a : E(A)

` @(A, B, λ(A, B, b), a) ≡ b(a) : E(B(a))

` A : U x : E(A) ` B : U ` f : E(Π(A, B))

` λ(A, B, 〈x〉@(A, B, f, x)) ≡ f : E(Π(A, B))

Figure 4.1: Π-types

rule templates in Fig. 4.1. We note that a unique rule template is associated with
each symbol, and thus SOGATs are designed to satisfy the tightness condition
of Bauer, Haselwarter, and Lumsdaine [20] which is one of the requirements for
acceptable type theories in their sense. We also note that there is no need to add
the congruence rules for Π, λ, and @ because they can automatically be generated
from the types of these symbols. The last two entries are axioms corresponding
to the last two rule templates in Fig. 4.1.

We take a closer look at associated rule templates. For example, consider the
symbol Π.

Π : (A : ()→ U, B : (x : E(A))→ U)⇒ U (4.1)

The left side of⇒ is called an environment and is a list of metavariables equipped
with certain typing data. In Eq. (4.1), A and B are metavariables. The environ-
ment associated with a symbol is to be the premises of a rule template. We note
that a unique type is assigned to each metavariable, expressing the tightness of
the rule template in the sense of Bauer, Haselwarter, and Lumsdaine [20]. The
right side of ⇒ is the return type of Π and corresponds to the judgment form of
the conclusion of the rule template. Next, consider the metavariable B.

B : (x : E(A))→ U

The left side of → is called a context and is a list of variables equipped with
certain typing data. Contexts over a SOGAT are to be the ordinary contexts
over a type theory.

50 Chapter 4. Second-order generalized algebraic theories

U : ()⇒ Type

E : (A : ()→ U)⇒ type

Π : (A : ()→ U, B : (x : E(A))→ U)⇒ U

λ : (A : ()→ U, B : (x : E(A))→ U, b : (x : E(A))→ E(B(x)))⇒ E(Π(A, B))

@ : (A : ()→ U, B : (x : E(A))→ U, f : ()→ E(Π(A, B)), a : ()→ E(A))

⇒ E(B(a))

: (A : ()→ U, B : (x : E(A))→ U, b : (x : E(A))→ E(B(x)), a : ()→ E(A))

⇒ @(A, B, λ(A, B, b), a) ≡ b(a) : E(B(a))

: (A : ()→ U, B : (x : E(A))→ U, f : ()→ E(Π(A, B)))

⇒ λ(A, B, 〈x〉@(A, B, f, x)) ≡ f : E(Π(A, B))

Figure 4.2: SOGAT for Π-types

Equation (4.1) contains essentially the same information as the first rule tem-
plate of Fig. 4.1, but from Eq. (4.1) it is more apparent that Π is an “algebraic
operator” that takes two arguments A and B. The types of A and B are more com-
plex than those in ordinary algebraic theories. First, SOGATs are dependently-
typed as the metavariable A appears in the type of B. Second, symbols in SOGATs
may bind variables. The context associated with each metavariable in Eq. (4.1)
expresses the variables bound by Π.

Because of this complexity, the definition of a SOGAT takes a few steps. We
introduce a notion of a symbol signature in Section 4.2 which is a set of sym-
bols equipped with certain data on variable bindings. For example, the symbol
signature for dependent type theory with Π-types will be defined as in Fig. 4.3.
Compared to Fig. 4.2, this symbol signature does not tell us the type of each sym-
bol or metavariable, but specifies the number of arguments and bound variables.
A symbol signature thus has enough information to build a set of expressions. In
Section 4.3, we introduce a notion of a pretheory which is a signature equipped
with typing data. It is called a pretheory because the type of each symbol is not
necessarily well-formed. The notion of well-formedness only makes sense after
a set of derivations is determined. We associate a set of inference rules with
each pretheory and then build a set of derivations. We see in Section 4.4 ba-
sic properties of derivations including stability under substitutions and contextual
completeness. A SOGAT is defined in Section 4.5 and should be a well-formed
pretheory, but we further require a SOGAT to be well-ordered and finitary for
technical convenience. These conditions are satisfied by practical pretheories and
ensure that every SOGAT can be decomposed into small pieces so that the analy-
sis of SOGATs becomes much easier. In Section 4.6 we give examples of SOGATs
including Martin-Löf type theory [124, 125] and cubical type theory [41]. We

4.1. Running example 51

U : ()⇒ Type

E : (A : ())⇒ type

Π : (A : (), B : (x))⇒ term

λ : (A : (), B : (x), b : (x))⇒ term

@ : (A : (), B : (x), f : (), a : ())⇒ term

Figure 4.3: Symbol signature for Π-types

also compare SOGATs to second-order algebraic theories, generalized algebraic
theories, and general type theories of Bauer et al. In Section 4.7, we study en-
vironments over a SOGAT in detail which will play a central role in functorial
semantics of SOGATs. Section 4.8 is devoted to developing semantics of SOGATs
valued in CwRs.

4.1.1. Remark. The presentation in Fig. 4.2 might remind the reader about
logical framework encodings of type theories [75, 133, 132, 61]. In a logical
framework, the Π-type constructor is declared as a constant of the function type

(A : U) -> (E(A) -> U) -> U.

The arrows “→” and “⇒” in Fig. 4.2 are not function types and cannot be nested.
Therefore, we are not allowed to write a higher-order operator like

((A→ B)→ C)⇒ D

in a SOGAT. In general, an operator in a SOGAT is of the form

S : (X1 : Γ1 → e1, . . . , Xn : Γn → en)⇒ e,

where Γi is a list of typed variables, and thus S is a “second-order” operator.
SOGATs might thus sound more restrictive than logical framework encodings,
but we will see in Section 4.6 that a bunch of examples of type constructors are
second-order operators. We also emphasize that a wide range of existing type
theories are verified to be instances of SOGATs by just unfolding the definition
so that we do not need extra adequacy theorems to justify using SOGATs as
syntactic presentations of type theories.

4.1.2. Remark. A similar restriction on the order of operators appears in Kaposi
and Kovács’s type theory for specifying higher inductive-inductive types [97, 98].
Their purpose of the restriction is to enforce strict positivity. Their type theory
and SOGATs should be related, but we leave it as future work.

52 Chapter 4. Second-order generalized algebraic theories

4.1.3. Remark. In Sections 4.2 to 4.4, we will work in a constructive metalogic
to leave open the possibility of formalizing the results in a proof assistant and
developing a new proof assistant based on SOGATs. From Section 4.5, we will use
classical axioms to choose certain well-orderings. Perhaps we could keep working
constructively by switching from well-orderings to well-founded relations following
Bauer, Haselwarter, and Lumsdaine [20], but we mainly use well-orderings in the
categorical study of SOGATs where classical axioms are already assumed, and
thus we would not benefit from doing this constructively. We also crucially use the
impredicativity of the internal language of a topos in the semantics of SOGATs.

4.2 Syntax of SOGATs

We introduce three kinds of signatures, variable signatures, metavariable signa-
tures, and symbol signatures. A signature is a set whose elements are called
variables, symbols, etc. such that, for each element, certain data such as the
number of arguments and the number of bound variables for each argument are
specified, but no typing data are specified. Given a symbol signature, a metavari-
able signature, and a variable signature, we build a set of expressions. We discuss
substitution properties on variables and metavariables.

4.2.1 Signatures

We view a signature as a set equipped with some data for each element.

4.2.1. Definition. Let A be a (possibly large) set. A signature valued in A
or A-signature is a family valued in A, that is, a set s equipped with a map
els : s → A. We write (x : a) ∈ s to mean that x ∈ s and els x = a. A finite
A-signature is then denoted by a finite sequence of the form

(x1 : a1, . . . , xn : an)

though the ordering is not relevant.

4.2.2. Definition. A variable signature is a signature valued in the singleton
{0}. Therefore, a variable signature is equivalent to just a set. Elements of a
variable signature are called variables .

4.2.3. Definition. A metavariable signature is a signature valued in variable
signatures. Elements of a metavariable signature are called metavariables .

4.2.4. Definition. By syntactic classes , we mean the formal symbols Type,
type, Prop, prop, and term.

4.2. Syntax of SOGATs 53

4.2.5. Definition. A symbol signature is a signature valued in pairs (µ, c) con-
sisting of a metavariable signature µ and a syntactic class c. For a symbol sig-
nature Σ, we write (S : µ⇒ c) ∈ Σ instead of (S : (µ, c)) ∈ Σ. Elements of a
symbol signature is called symbols . A symbol S : µ⇒ c is said to be:

� a type symbol when c = Type;

� a representable type symbol when c = type;

� a proposition symbol when c = Prop;

� a representable proposition symbol when c = prop;

� a term symbol when c = term.

4.2.6. Example. The signature for the dependent type theory with Π-types is
defined as follows.

U : ()⇒ Type

E : (A : ())⇒ type

Π : (A : (), B : (x))⇒ term

λ : (A : (), B : (x), b : (x))⇒ term

@ : (A : (), B : (x), f : (), a : ())⇒ term

In a symbol signature, we declare judgment forms as type symbols. Type and
term constructors in the target type theory are declared as term symbols in a
symbol signature. A representable type symbol S : µ⇒ type is to be a judgment
form by which contexts can be extended. For example, contexts of the dependent
type theory with Π-types can be extended by a variable of some type x : E(A)
but not by a type variable x : U , and thus only E should be a representable
type symbol. The variable signature γ of a metavariable (X : γ) ∈ µ for a symbol
S : µ⇒ c is understood as the variables bound by the operator S.

4.2.7. Remark. The motivation for including Prop and prop in syntactic classes
comes from cubical type theory [41]. For the signature for cubical type theory,
we will add symbols

Cof : ()⇒ Type

true : (P : ())⇒ prop

to deal with cofibrant propositions; see Section 4.6.3 for details. true(P) is a judg-
ment form but also a judgment by itself meaning that the cofibrant proposition
P is true.

54 Chapter 4. Second-order generalized algebraic theories

The category of signatures

4.2.8. Definition. Let s1 and s2 be signatures valued in a set A. A morphism
r : s1 → s2 of signatures is a map r : s1 → s2 between the underlying sets such
that els1 = els2 ◦ r.

The signatures valued in A and the morphisms of signatures form a category
SigA. Alternatively, it is defined to be the pullback

SigA Ŝet/A

Set Ŝet.

y
dom

SigA shares some nice properties with slice categories, for example:

4.2.9. Proposition. For any (possibly large) set A, the category SigA has col-
imits and the functor SigA → Set is conservative and preserves colimits. 2

4.2.2 Expressions

4.2.10. Definition. Let Σ be a symbol signature and µ a metavariable signa-
ture. We simultaneously define an inductive family ExprΣ,µ(γ, c) indexed over
pairs of a variable signature γ and a syntactic class c, a notion of a substitution,
and a notion of an instantiation as follows.

� For variable signatures γ and δ, a substitution f of δ in γ over Σ and µ,
written Σ, µ ` f : γ → δ, is a map f : δ → ExprΣ,µ(γ, term). We write
SubstΣ,µ(γ, δ) for the set of substitutions Σ, µ ` f : γ → δ.

� For a variable signature γ and a metavariable signature ν, an instantiation
I of ν in µ over Σ and γ, written Σ, µ ` I : γ ⇒ ν, is a dependent
map I :

∏
(Y:δ)∈ν ExprΣ,µ(γ + δ, term). We write InstΣ,µ(γ, ν) for the set of

instantiations Σ, µ ` I : γ ⇒ ν.

� var(x) ∈ ExprΣ,µ(γ, term) for any variable x ∈ γ.

� mvar(X, f) ∈ ExprΣ,µ(γ, term) for any metavariable (X : δ) ∈ µ and any
substitution Σ, µ ` f : γ → δ.

� sym(S, I) ∈ ExprΣ,µ(γ, c) for any symbol (S : ν ⇒ c) and any instantiation
Σ, µ ` I : γ ⇒ ν.

� coetype(A) ∈ ExprΣ,µ(γ,Type) for any A ∈ ExprΣ,µ(γ, type).

� coeprop(p) ∈ ExprΣ,µ(γ,Prop) for any p ∈ ExprΣ,µ(γ, prop).

4.2. Syntax of SOGATs 55

� eq(K, a1, a2) ∈ ExprΣ,µ(γ,Prop) for any K ∈ ExprΣ,µ(γ,Type) and any
a1, a2 ∈ ExprΣ,µ(γ, term).

An element of ExprΣ,µ(γ, c) is called an expression over Σ, µ, and γ. An expres-
sion is called

� a type expression when c = Type;

� a representable type expression when c = type;

� a proposition expression when c = Prop;

� a representable proposition expression when c = prop;

� a term expression when c = term;

� a sort expression when c ∈ {Type, type,Prop, prop}.

We will omit the subscripts Σ and µ when they are clear from the context.

4.2.11. Notation. We introduce the following notations.

x = var(x)

X(f) = mvar(X, f)

X = X() (when X : ())

S(I) = sym(S, I)

S = S() (when S : ()⇒ c)

A = coetype(A)

p = coeprop(p)

(a1 ≡ a2 : K) = eq(K, a1, a2)

4.2.12. Notation. A substitution Σ, µ ` f : γ → δ is written as a key-value list

(y1 := f1, . . . , yn := fn)

when δ = (y1, . . . , yn) or as a list

(f1, . . . , fn)

when the order of the variables y1, . . . , yn is clear from the context. We use a
similar notation for an instantiation.

4.2.13. Notation. We write 〈x1, . . . , xn〉e to emphasize that e is an expression
over a variable signature of the form γ + (x1, . . . , xn). This notation mainly

56 Chapter 4. Second-order generalized algebraic theories

appears in the application of a symbol to mean that the variables x1, . . . , xn are
bound. For example, we have a term expression

Π(A, 〈x〉B(a(x)))

over the symbol signature for the dependent type theory with Π-types (Exam-
ple 4.2.6) and the metavariable signature (A : (), B : (x), a : (x)). We identify a
metavariable X : (x1, . . . , xn) with the expression 〈x1, . . . , xn〉X(x1, . . . , xn). For ex-
ample, we write Π(A, B) instead of Π(A, 〈x〉B(x)) for metavariables (A : (), B : (x)).

The action of morphisms of signatures

Variables signatures, metavariable signatures, and symbol signatures act on ex-
pressions:

� for any morphism r : γ → γ′ of variable signatures, we have a map (r · −) :
ExprΣ,µ(γ, c)→ ExprΣ,µ(γ′, c);

� for any morphism r : µ → µ′ of metavariable signatures, we have a map
(r · −) : ExprΣ,µ(γ, c)→ ExprΣ,µ′(γ, c);

� for any morphism r : Σ→ Σ′ of symbol signatures, we have a map (r · −) :
ExprΣ,µ(γ, c)→ ExprΣ′,µ(γ, c).

The definitions of the action of a morphism of metavariable signatures and the
action of a morphism of symbol signatures are straightforward by induction on
expressions. The action of a morphism of variable signatures is also defined by
induction, but we need little care in the case of sym(S, I). We define the expression
r · sym(S, I) to be sym(S, r · I) where Σ, µ ` r · I : γ′ ⇒ ν is the instantiation
defined by (r · I)(Y : δ) = (r + δ) · I(Y), but r + δ is a morphism different from
r. We thus have to generalize r and construct a map (− · e) : ∀γ′.Sig(γ, γ′) →
ExprΣ,µ(γ′, c) by induction on e ∈ ExprΣ,µ(γ, c).

4.2.14. Proposition. For any monomorphism r of variable (metavariable or
symbol) signatures, the map (r · −) is monic.

Proof:
Straightforward. 2

We thus regard ExprΣ′,µ′(γ
′, c) as a subset of ExprΣ,µ(γ, c) when Σ′ ⊂ Σ,

µ′ ⊂ µ and γ′ ⊂ γ.

4.2. Syntax of SOGATs 57

4.2.3 Substitutions

Substitutions act on expressions. Let e ∈ ExprΣ,µ(γ, c) be an expression. We
define by induction on e a map (e · −) : ∀γ′.SubstΣ,µ(γ′, γ)→ ExprΣ,µ(γ′, c). We
only describe two selected cases, and the other cases are straightforward.

In the case of var(x), we simply define var(x) · f = f(x).
In the case of sym(S, I), we define sym(S, I) · f = sym(S, I · f) where Σ, µ `

I · f : γ′ ⇒ ν is the instantiation defined by (I · f)(Y : δ) = I(Y) · (f + δ) and
Σ, µ ` f+δ : γ′+δ → γ+δ is the substitution defined by (f + δ)(inl x) = inl ·f(x)
and (f + δ)(inr y) = var(inr y).

Variable signatures and substitutions form a category. The identity substi-
tution Σ, µ ` idγ : γ → γ is defined by idγ(x) = var(x). The composition g ◦ f
of two substitutions Σ, µ ` g : γ2 → γ3 and Σ, µ ` f : γ1 → γ2 is defined by
(g ◦ f)(x) = g(x) · f .

4.2.15. Proposition. For any expression e ∈ ExprΣ,µ(γ, c), the following hold:

1. e · idγ = e;

2. e · (g ◦ f) = (e · g) · f for any composable substitutions g and f .

Proof:
By induction on e. 2

Proposition 4.2.15 implies that ExprΣ,µ(−, term) is part of a monad on the
category of variable signatures, that is, on the category of sets: the unit is var :
γ → ExprΣ,µ(γ, term); the Kleisli extension of a map f : δ → ExprΣ,µ(γ, term) is
the action (− · f) : ExprΣ,µ(δ, term) → ExprΣ,µ(γ, term). Then a substitution is
nothing but a morphism in the Kleisli category.

4.2.4 Instantiations

Instantiations act on expressions. Let e ∈ ExprΣ,µ(γ, c) be an expression. We
define by induction on e a map (e · −) : ∀γ′µ′.InstΣ,µ′(γ

′, µ)→ ExprΣ,µ′(γ
′ + γ, c).

We only describe selected two cases, and the other cases are straightforward.
In the case of mvar(X, f), we define mvar(X, f) · I = I(X) · (f · I) where Σ, µ′ `

f · I : γ′+ γ → γ′+ δ is the substitution defined by (f · I)(inl x′) = var(inl x′) and
(f · I)(inr y) = f(y) · I.

In the case of sym(S, I ′), we define sym(S, I ′) · I = sym(S, I ′ ◦ I) where Σ, µ `
I ′ ◦ I : γ′+γ ⇒ ν is the instantiation defined by (I ′ ◦ I)(Y : δ) = I ′(Y) · I. Strictly
speaking, I ′(Y) ·I is an expression over γ′+(γ + δ) while (I ′ ◦ I)(Y : δ) is expected
to be an expression over (γ′ + γ) + δ, and thus we have to insert the action of the
canonical isomorphism γ′ + (γ + δ) ∼= (γ′ + γ) + δ. For readability, we will not
explicitly write the action of such a canonical isomorphism.

58 Chapter 4. Second-order generalized algebraic theories

Metavariable signatures and instantiations form a category-like structure. We
define the identity instantiation Σ, µ ` idµ : 0 ⇒ µ by idµ(X : γ) = mvar(X, idγ).
The composition Σ, µ1 ` J ◦ I : γ1 + γ2 ⇒ µ3 of two instantiations Σ, µ2 ` J :
γ2 ⇒ µ3 and Σ, µ1 ` I : γ1 ⇒ µ2 is defined in the previous paragraph.

4.2.16. Proposition. For any expression e ∈ ExprΣ,µ(γ, c), the following hold:

1. e · idµ = e;

2. e · (J ◦ I) = (e · J) · I for any composable instantiations J and I;

3. (e · f) · I = (e · I) · (f · I) for any substitution Σ, µ ` f : δ → γ and any
instantiation Σ, µ′ ` I : γ′ ⇒ µ;

4. e · (I · f) = (e · I) · (f + γ) for any instantiation Σ, µ′ ` I : γ′ ⇒ µ and any
substitution Σ, µ ` f : δ′ → γ′.

Proof:
By induction on e. 2

4.3 Inference rules of SOGATs

We introduce in Section 4.3.1 contexts, environments, and pretheories which are
variable, metavariable, and symbol signatures, respectively, equipped with certain
typing data. These are special kinds of declarations by which we mean signatures
equipped with extra data. In Section 4.3.2, we introduce a notion of a judgment.
For a pair consisting of a pretheory and an environment, we list a set of inference
rules in Section 4.3.3 and build a set of derivations in Section 4.3.4. Then the
set of derivable judgments is determined, and we introduce the well-formedness
conditions in Section 4.3.5.

4.3.1 Declarations

We introduce a notion of a declaration which is similar to a signature and is a
set of symbols, variables, etc. such that certain typing data is specified for each
element. As special cases, we introduce contexts, environments, and pretheories.
These are not defined as signatures because the possible values of type assignment
depend on the set of symbols or variables. For example, the type of the symbol
Π in the running example

Π : (A : ()→ U, B : (x : E(A))→ U)⇒ U

makes sense only in the presence of the symbols U and E. In general, the type of
a symbol can depend on the whole symbol signature. A SOGAT will also contain

4.3. Inference rules of SOGATs 59

axioms to which proposition expressions are assigned instead of type expressions.
Thus, the assignment should also depend on whether an entry is a symbol or an
axiom. We can formulate this sort of dependency as follows.

4.3.1. Definition. Let A be a set and B : SigA × A → Set a functor pre-
serving monomorphisms where we regard the set A as a discrete category. An
(A,B)-declaration d is an A-signature d equipped with a dependent map vald :∏

x∈dB(d, eld x). We write (x : b) ∈ d to mean that x ∈ d and vald x = b. A finite
declaration is then written as a list of the form

(x1 : b1, . . . , xn : bn).

Although this notation is similar to that of a finite signature, it expresses more
complex data since the set that bi belongs to depends on elxi and the whole
signature (x1, . . . , xn). A morphism d1 → d2 of (A,B)-declarations is a morphism
r : d1 → d2 of A-signatures such that r · (vald1 x) = vald2(r(x)) for any x ∈ d1.

Any pair (f, g) of a map f : A → A′ and a natural transformation g : B ⇒
B′◦

(
Sigf × f

)
: SigA×A→ Set acts on declarations: for any (A,B)-declaration

d, we have the (A′, B′)-declaration (f, g) · d whose underlying A′-signature is f · d
and val(f,g)·d x = g(vald x).

For an A-signature s0, by a relative (A,B)-declaration over s0, we mean
an (A,B(s0 +−1,−2))-declaration. For an (A,B)-declaration d1 and a rela-
tive (A,B)-declaration d2 over d1, the extension d1 . d2 is the (A,B)-declaration
whose underlying A-signature is d1 + d2 and vald1.d2(inlx1) = inl · (vald1 x1) and
vald1.d2(inrx2) = vald2 x2.

4.3.2. Definition. Let d be an (A,B)-declaration. A subdeclaration of d is a
subsignature d′ ⊂ d such that there exists a dependent map vald′ :

∏
x∈d′ B(d′, eld x)

such that r ·(vald′ x) = vald(x) where r : d′ → d is the inclusion. Since B preserves
monomorphisms, such a map vald′ is unique. By definition, any subdeclaration
d′ of d is an (A,B)-declaration and the inclusion d′ → d is a morphism of decla-
rations.

Contexts

4.3.3. Definition. Let Σ be a symbol signature and µ a metavariable signature.
A context over Σ and µ is an (Actx, Bctx)-declaration, where Actx and Bctx are
defined as follows.

� Actx is the two-element set {term, proof}. For an Actx-signature Γ, we write
Γ|term for the variable signature {x | (x : term) ∈ Γ}. An element of the form
(H : proof) ∈ Γ is called a hypothesis .

� Bctx(Γ, term) = ExprΣ,µ(Γ|term, type).

60 Chapter 4. Second-order generalized algebraic theories

� Bctx(Γ, proof) = ExprΣ,µ(Γ|term, prop).

Any morphism of Actx-signatures Γ1 → Γ2 induces a morphism of variable signa-
tures Γ1|term → Γ2|term, and thus Bctx is a functor preserving monomorphisms.

A finite context is written as a list

(x1 : e1, . . . , xn : en)

such that each entry (xi : ei) is either of the following forms:

� (x : A) where x is a variable and A is a representable type expression over
the variables of the context;

� (H : p) where H is a hypothesis and p is a representable proposition ex-
pression over the variables of the context.

Notice that hypotheses are never stored in expressions. The use of hypotheses is
motivated by cubical type theory [41] in which proofs of cofibrant propositions
are never stored in expressions.

Substitutions and instantiations act on (relative) contexts. For a substitution
of the form Σ, µ ` f : Γ′|term → Γ|term, the action of f + id induces a natural
transformation (− · f) : Bctx(Γ +−1,−2) ⇒ Bctx(Γ

′ +−1,−2). We thus have
the relative context ∆ · f over Γ′ for any relative context ∆ over Γ. For an
instantiation of the form Σ, µ′ ` I : Γ′|term ⇒ µ, the action of I induces a natural
transformation (− · I) : Bctx,µ(−1,−2) ⇒ Bctx,µ′(Γ

′ +−1,−2). We thus have the
relative context Γ · I over Γ′ for any context Γ.

Environments

4.3.4. Definition. Let Σ be a symbol signature. An environment over Σ is an
(Aenv, Benv)-declaration, where Aenv and Benv are defined as follows.

� Aenv is the set of pairs (γ, c) consisting of an Actx-signature γ and c ∈
{term, proof}. For an Aenv-signature Φ, we write Φ|term for the metavari-
able signature {(X : γ|term) | (X : (γ, term)) ∈ Φ}. An element of the form
(H : (γ, proof)) ∈ Φ is called an assumption.

� Benv(Φ, (γ, term)) is the set of pairs (Γ, K) denoted by Γ → K consisting
of a context Γ over Σ and Φ|term whose underlying Actx-signature is γ and
K ∈ ExprΣ,Φ|term

(γ|term,Type).

� Benv(Φ, (γ, proof)) is the set of pairs (Γ, P) denoted by Γ → P consisting
of a context Γ over Σ and Φ|term whose underlying Actx-signature is γ and
P ∈ ExprΣ,Φ|term

(γ|term,Prop).

4.3. Inference rules of SOGATs 61

Any morphism of Aenv-signatures Φ1 → Φ2 induces a morphism of metavariable
signatures Φ1|term → Φ2|term, and thus Benv is a functor preserving monomor-
phisms.

A finite environment is written as a list

(x1 : Γ1 → e1, . . . , xn : Γn → en)

such that each entry (xi : Γi → ei) is either of the following forms:

� (X : Γ→ K) where X is a metavariable, Γ is a context over the metavariables
of the environment, and K is a type expression over Γ|term;

� (H : Γ → P) where H is an assumption, Γ is a context over the metavari-
ables of the environment, and P is a proposition expression over Γ|term.

Instantiations act on relative environments. Let I be an instantiation of the
form Σ,Φ′|term ` I : Γ′|term ⇒ Φ|term. The map (γ, c) 7→ (Γ′ + γ, c) acts on
Aenv-signatures: for an Aenv-signature Φ, we have the Aenv-signature (Γ′ + Φ) =
{(x : (Γ′ + γ, c)) | (x : (γ, c)) ∈ Φ}. Extending I by (X : (γ, c)) 7→ X(idΓ′+γ), we
have an instantiation Σ, (Φ′ + (Γ′ + Φ))|term ` I +Γ′ Φ : Γ′|term ⇒ (Φ + Φ)|term.
Then the action of I +Γ′ Φ induces a natural transformation

(− · I) : Benv(Φ +−1, (−2,−3))→ Benv(Φ
′ + (Γ′ +−1), (Γ′ +−2,−3)).

We thus have a relative environment Ψ · I over Φ′ for any relative environment Ψ
over Φ.

Pretheories

4.3.5. Definition. A pretheory is an (Apreth, Bpreth)-declaration, where Apreth

and Bpreth are defined as follows.

� Apreth is the set of pairs (µ, c) where µ is an Aenv-signature and c is either
a syntactic class or the formal symbol proof. For an Apreth-signature T , we
write T |expr for the symbol signature {(S : µ|term ⇒ c) | (S : (µ, c)) ∈ T, c 6=
proof}. An element of the form (H : (µ, proof)) ∈ T is called an axiom.

� Bpreth(T, (µ, c)) with c ∈ {Type, type,Prop, prop} is the set of environments
over T |expr whose underlying Aenv-signature is µ.

� Bpreth(T, (µ, term)) is the set of pairs (Φ, K) denoted by Φ ⇒ K consisting
of an environment Φ over T |expr whose underlying Aenv-signature is µ and
K ∈ ExprT |expr,µ|term

(0,Type).

� Bpreth(T, (µ, proof)) is the set of pairs (Φ, P) denoted by Φ ⇒ P consisting
of an environment Φ over T |expr whose underlying Aenv-signature is µ and
P ∈ ExprT |expr,µ|term

(0,Prop).

62 Chapter 4. Second-order generalized algebraic theories

Any morphism of Apreth-signatures T1 → T2 induces a morphism of symbol signa-
tures T1|expr → T2|expr, and thus Bpreth is a functor preserving monomorphisms.

A finite pretheory is written as a list

(x1 : Φ1 ⇒ e1, . . . , xn : Φn ⇒ en)

such that each entry (xi : Φi ⇒ ei) is either of the following forms:

� (S : Φ⇒ c) where S is a sort symbol, c ∈ {Type, type,Prop, prop}, and Φ is
an environment over the symbols of the pretheory;

� (S : Φ ⇒ K) where S is a term symbol, Φ is an environment over the
symbols of the pretheory, and K is a type expression over Φ|term;

� (H : Φ ⇒ P) where H is an axiom, Φ is an environment over the symbols
of the pretheory, and P is a proposition expression over Φ|term.

The name of a hypothesis, assumption, or axiom is often irrelevant and in
that case we write (: . . .) instead of giving an explicit name (H : . . .).

4.3.6. Example. The dependent type theory with Π-types is defined by the
following pretheory.

U : ()⇒ Type

E : (A : ()→ U)⇒ type

Π : (A : ()→ U, B : (x : E(A))→ U)⇒ U

λ : (A : ()→ U, B : (x : E(A))→ U, b : (x : E(A))→ E(B(x)))⇒ E(Π(A, B))

@ : (A : ()→ U, B : (x : E(A))→ U, f : ()→ E(Π(A, B)), a : ()→ E(A))

⇒ E(B(a))

: (A : ()→ U, B : (x : E(A))→ U, b : (x : E(A))→ E(B(x)), a : ()→ E(A))

⇒ @(A, B, λ(A, B, b), a) ≡ b(a) : E(B(a))

: (A : ()→ U, B : (x : E(A))→ U, f : ()→ E(Π(A, B)))

⇒ λ(A, B, 〈x〉@(A, B, f, x)) ≡ f : E(Π(A, B))

4.3.2 Judgments

4.3.7. Definition. Let Σ be a symbol signature, µ a metavariable signature and
γ a variable signature.

� A type judgment head over Σ, µ, and γ is a pair (a,K) of a term expression
a and a type expression K over Σ, µ, and γ. We write a : K to mean that
(a,K) is a type judgment head.

4.3. Inference rules of SOGATs 63

� A proposition judgment head over Σ, µ, and γ is a proposition expression
P over Σ, µ, and γ.

� A judgment head is either a type judgment head or a proposition judgment
head.

Substitutions and instantiations act on judgment heads by the action of them
on expressions.

4.3.8. Definition. Let Σ be a symbol signature and µ a metavariable signature.
A judgment over Σ and µ is a pair (Γ,H) consisting of a context Γ over Σ and
µ and a judgment head H over Σ, µ, and Γ|term. We write Γ→ H to mean that
(Γ,H) is a judgment.

Instantiations act on judgments. Suppose that we are given an instantiation
of the form Σ, µ′ ` I : Γ′|term ⇒ µ and a judgment Γ → H over Σ and µ. Then
Γ · I is a relative context over Γ′, and we have the extended context Γ′ . (Γ · I).
Then Γ′ . (Γ · I)→ H · I is a judgment over Σ and µ′.

4.3.9. Remark. By definition, the possible judgments are either

� Γ→ a : K for a term expression a and a type expression K, or

� Γ→ P for a proposition expression P .

We do not include judgments for the well-formedness of sort expressions like
Γ→ K Type in ordinary dependent type theory. We do not need such a judgment
because, since any type expression is of the form S(I) for a type symbol S and an
instantiation I, the well-formedness of the type expression is reduced to the well-
formedness of the instantiation I. There is also a reason for explicitly excluding
such a judgment. Recall that when defining a type theory as a SOGAT, a type
expression K over the SOGAT represents a judgment form in the type theory.
Then the judgment Γ → K Type would mean that K is a well-formed judgment
form, but the usual presentation of a type theory does not have such a judgment
on a judgment form. If a SOGAT contained a judgment that does not appear in a
type theory in the real world, we would have to provide some adequacy theorem,
but one of motivations for SOGATs is to avoid this situation.

4.3.10. Example. Consider the pretheory for the dependent type theory with
Π-types (Example 4.3.6). Observe that the only possible type expressions are
either U or E(A) for a term expression A and that the only possible propo-
sition expressions are either (A1 ≡ A2 : U) for term expressions A1 and A2 or
(a1 ≡ a2 : E(A)) for term expression A, a1, and a2. Therefore, the only possible
judgment heads are

A : U a : E(A) A1 ≡ A2 : U a1 ≡ a2 : E(A)

which exactly match the possible judgment heads in the usual presentation of the
dependent type theory with Π-types.

64 Chapter 4. Second-order generalized algebraic theories

Pseudo-judgments

We will introduce the following notations:

� Γ→ f : ∆ meaning that a substitution f is well-formed;

� Γ→ I : Φ meaning that an instantiation I is well-formed;

� Γ→ e ok meaning that a sort expression e is well-formed.

These are all families of judgments, but we treat them as if they were single
judgments so that the action of substitutions and instantiations is defined as
expected. For example, we have (Γ → f : ∆) · g = (Γ′ → f ◦ g : ∆) for another
substitution g : Γ′|term → Γ|term. We call a certain kind of family of judgments a
pseudo-judgment.

4.3.11. Definition. Let Σ be a symbol signature and µ a metavariable signa-
ture. For a context Γ over Σ and µ, a pseudo-judgment over Γ is a family of
judgments of the form {Γ . ∆ξ → Hξ}ξ∈Ξ. A pseudo-judgment over Γ is often
written in the form Γ→ J for some notation J .

Substitutions act on pseudo-judgments. For a pseudo-judgment {Γ . ∆ξ →
Hξ}ξ∈Ξ and a substitution f : Γ′|term → Γ|term, we have the pseudo-judgment
{Γ′ . (∆ξ · f)→ Hξ · f}ξ∈Ξ.

4.3.12. Notation. Let Γ and ∆ be contexts over Σ and µ. For a substitution
Σ, µ ` f : Γ|term → ∆|term, we write

Γ→ f : ∆

for the pseudo-judgment consisting of:

� Γ→ f(x) : A · f for any variable (x : A) ∈ ∆;

� Γ→ p · f for any hypothesis (H : p) ∈ ∆.

For two parallel substitutions f1 and f2, we write

Γ→ f1 ≡ f2 : ∆

for the pseudo-judgment consisting of Γ→ f1(x) ≡ f2(x) : A · f1 for any variable
(x : A) ∈ ∆.

For another substitution g : Γ′|term → Γ|term, we have

(Γ→ f : ∆) · g = (Γ′ → f ◦ g : ∆)

(Γ→ f1 ≡ f2 : ∆) · g = (Γ′ → f1 ◦ g ≡ f2 ◦ g : ∆).

4.3. Inference rules of SOGATs 65

4.3.13. Notation. Let Σ be a symbol signature, Φ and Ψ environments over Σ
and Γ a context over Σ and Φ|term. For an instantiation Σ,Φ|term ` I : Γ|term ⇒
Ψ|term, we write

Γ→ I : Ψ

for the pseudo-judgment consisting of:

� Γ . (∆ · I)→ I(X) : K · I for any metavariable (X : ∆→ K) ∈ Ψ;

� Γ . (∆ · I)→ P · I for any assumption (H : ∆→ P) ∈ Ψ.

For two parallel instantiations I1 and I2, we write

Γ→ I1 ≡ I2 : Ψ

for the pseudo-judgment consisting of Γ . (∆ · I1)→ I1(X) ≡ I2(X) : K · I1 for any
metavariable (X : ∆→ K) ∈ Ψ.

For a substitution f : Γ′ → Γ, we have

(Γ→ I : Ψ) · f = (Γ′ → I · f : Ψ)

(Γ→ I1 ≡ I2 : Ψ) · f = (Γ′ → I1 · f ≡ I2 · f : Ψ).

4.3.14. Notation. Let T be a pretheory, µ a metavariable signature, and Γ a
context over T |expr and µ. For a syntactic class c ∈ {Type, type,Prop, prop} and
an expression e ∈ ExprT |expr,µ(Γ|term, c), we inductively define a pseudo-judgment

Γ→ e ok

as follows:

� Γ → sym(S, I) ok is Γ → I : Ψ for a symbol (S : Ψ⇒ c) ∈ T and an
instantiation T |expr, µ ` I : Γ|term ⇒ Ψ|term;

� Γ→ coetype(A) ok is Γ→ A ok for a representable type expression A;

� Γ→ coeprop(p) ok is Γ→ p ok for a representable proposition expression p;

� Γ → eq(K, a1, a2) ok is the two judgments Γ → a1 : K and Γ → a2 : K for
a type expression K and term expressions a1 and a2.

Alternatively, we may write

Γ→ e Type Γ→ e type Γ→ e Prop Γ→ e prop

to emphasize that e is a type, representable type, proposition, and representable
proposition expression, respectively.

For a substitution f : Γ′ → Γ, we have

(Γ→ e ok) · f = (Γ′ → (e · f) ok).

66 Chapter 4. Second-order generalized algebraic theories

Presuppositions

4.3.15. Definition. The presuppositions of a judgment Γ → H is defined as
follows:

� Γ→ K ok when H is a type judgment head (a : K);

� Γ→ P ok when H is a proposition judgment head P .

4.3.3 Inference rules

Let T be a pretheory and Φ an environment over T |expr. We list up the inference
rules associated with T and Φ. Each rule is of the form

R
Γ→ J
Γ→ H

where R is the name of the rule, Γ is a context, J is a pseudo-judgment over Γ,
and H is a judgment head over Γ. By the definition of a pseudo-judgment, it is
also written in the form

R
{Γ .∆ξ → Hξ}ξ∈Ξ

Γ→ H
.

The upper judgments (Γ . ∆ξ → Hξ)’s are called the premises and the lower
judgment Γ→ H is called the conclusion.

4.3.16. Remark. We note that all the rules except the symmetry and transi-
tivity rules for ≡ are strictly presuppositive in the sense that the presuppositions
of the conclusion are included in the premises, in contrast to the formulation by
Bauer, Haselwarter, and Lumsdaine [20] where the presuppositions of the conclu-
sion are required to be derivable over the premises. This change does not affect
the notion of derivability when certain well-foundedness/well-orderedness condi-
tions are satisfied. The strict presuppositivity is convenient for some inductive
proofs: we will use the induction hypotheses on presuppositions in the proof of
Proposition 4.4.9.

Variables and hypotheses

We add the following rules to introduce variables and hypotheses:

Var(x)
Γ→ A ok

Γ→ x : A

for any variable (x : A) ∈ Γ;

Hyp(H)
Γ→ p ok

Γ→ p

for any hypothesis (H : p) ∈ Γ.

4.3. Inference rules of SOGATs 67

Metavariables and assumptions

We add the following rules to introduce metavariables and assumptions:

MVar(X, f)
Γ→ f : ∆ Γ→ K · f ok

Γ→ X(f) : K · f

for any metavariable (X : ∆→ K) ∈ Φ and any substitution f : Γ|term → ∆|term;

Asm(H, f)
Γ→ f : ∆ Γ→ P · f ok

Γ→ P · f

for any assumption (H : ∆→ P) ∈ Φ and any substitution f : Γ|term → ∆|term.
For a metavariable (X : ∆→ K) ∈ Φ, we also add the congruence rule

≡-MVar(X, f1, f2)
Γ→ f1 ≡ f2 : ∆ Γ→ (X(f1) ≡ X(f2) : K · f1) ok

Γ→ X(f1) ≡ X(f2) : K · f1

for any substitutions f1, f2 : Γ|term → ∆|term.

Symbols and axioms

We add the following rules to introduce term symbols and axioms:

Sym(S, I)
Γ→ I : Ψ Γ→ K · I ok

Γ→ S(I) : K · I

for any term symbol (S : Ψ⇒ K) ∈ T and any instantiations I : Γ|term ⇒ Ψ|term;

Axiom(H, I)
Γ→ I : Ψ Γ→ P · I ok

Γ→ P · I

for any axiom (H : Ψ⇒ P) ∈ T and any instantiation I : Γ|term ⇒ Ψ|term. For a
term symbol (S : Ψ⇒ K) ∈ T , we also add the congruence rule

≡-Sym(S, I1, I2)
Γ→ I1 ≡ I2 : Ψ Γ→ (S(I1) ≡ S(I2) : K · I1) ok

Γ→ S(I1) ≡ S(I2) : K · I1

for any instantiations I1, I2 : Γ|term ⇒ Ψ|term. For sort symbols, we add the
following conversion rules:

TypeConv(S, I1, I2, a)
Γ→ I1 ≡ I2 : Ψ Γ→ a : S(I1) Γ→ S(I2) ok

Γ→ a : S(I2)

TypeConvEq(S, I1, I2, a1, a2)

Γ→ I1 ≡ I2 : Ψ
Γ→ a1 ≡ a2 : S(I1) Γ→ (a1 ≡ a2 : S(I2)) ok

Γ→ a1 ≡ a2 : S(I2)

68 Chapter 4. Second-order generalized algebraic theories

for any (representable) type symbol (S : Ψ⇒ c) ∈ T , any instantiations I1, I2 :
Γ|term ⇒ Ψ|term, and any term expressions a, a1, a2;

PropConv(S, I1, I2)
Γ→ I1 ≡ I2 : Ψ Γ→ S(I1) Γ→ S(I2) ok

Γ→ S(I2)

for any (representable) proposition symbol (S : Ψ⇒ c) ∈ T and any instantia-
tions I1, I2 : Γ|term ⇒ Ψ|term.

4.3.17. Example. We describe some of the rules associated with the symbols
and axioms of the dependent type theory with Π-types (Example 4.3.6). Since
the symbol U takes no argument, the conversion rules are reduced to trivial ones.

Γ→ A : U

Γ→ A : U

Γ→ A1 ≡ A2 : U Γ→ A1 : U Γ→ A2 : U

Γ→ A1 ≡ A2 : U

The usual presentation of dependent type theory does not contain these trivial
rules, but these rules do not affect the notion of derivability. For the symbol E,
we have the conversion rules.

Γ→ A1 ≡ A2 : U Γ→ a : A1 Γ→ A2 : U

Γ→ a : E(A2)

Γ→ A1 ≡ A2 : U
Γ→ a1 ≡ a2 : E(A1) Γ→ a1 : E(A2) Γ→ a2 : E(A2)

Γ→ a1 ≡ a2 : E(A2)

For the symbol Π, we have the formation rule and the congruence rule.

Γ→ A : U Γ . (x : E(A))→ B : U

Γ→ Π(A, 〈x〉B) : U

Γ→ A1 ≡ A2 : U Γ . (x : E(A1))→ B1 ≡ B2 : U
Γ→ Π(A1, 〈x〉B1) : U Γ→ Π(A2, 〈x〉B2) : U

Γ→ Π(A1, 〈x〉B1) ≡ Π(A2, 〈x〉B2) : U

For the symbol λ, we have the introduction rule and the congruence rule.

Γ→ A : U
Γ . (x : E(A))→ B : U Γ . (x : E(A))→ b : E(B) Γ→ Π(A, 〈x〉B) : U

Γ→ λ(A, 〈x〉B, 〈x〉b) : E(Π(A, 〈x〉B))

Γ→ A1 ≡ A2 : U Γ . (x : E(A))→ B1 ≡ B2 : U
Γ . (x : E(A))→ b1 ≡ b2 : E(B1) Γ→ λ(A1, 〈x〉B1, 〈x〉b1) : E(Π(A1, 〈x〉B1))

Γ→ λ(A2, 〈x〉B2, 〈x〉b2) : E(Π(A1, 〈x〉B1))

Γ→ λ(A1, 〈x〉B1, 〈x〉b1) ≡ λ(A2, 〈x〉B2, 〈x〉b2) : E(Π(A1, 〈x〉B1))

4.3. Inference rules of SOGATs 69

One might think that the presupposition Γ→ Π(A, 〈x〉B) : U in the premises of
the introduction rule is redundant because it is derivable from the other premises
by the Π-formation rule. However, there is no reason for a general presupposition
to be derivable from premises. We thus require to provide a derivation of the
presuppositions whenever we use a symbol. That redundancy does not affect the
notion of derivability for reasonable type theories.

Equalities

We add the following rules to make ≡ an equivalence relation:

Refl(K, a)
Γ→ a : K

Γ→ a ≡ a : K
Smtry(K, a1, a2)

Γ→ a1 ≡ a2 : K

Γ→ a2 ≡ a1 : K

Trans(K, a1, a2, a3)
Γ→ a1 ≡ a2 : K Γ→ a2 ≡ a3 : K

Γ→ a1 ≡ a3 : K

for any type expression K and term expressions a, a1, a2, a3.

Substitutions (optional)

The following substitution rules are optional.

Subst(f,H)
Γ→ f : ∆ ∆→ H

Γ→ H · f

≡-Subst(f1, f2, a,K)

Γ→ f1 : ∆
Γ→ f2 : ∆ Γ→ f1 ≡ f2 : ∆ ∆→ a : K

Γ→ a · f1 ≡ a · f2 : K · f1

In Section 4.4.1 we will see that these rules are admissible over the other rules in
the sense that given derivations of the premises, one can construct a derivation of
the conclusion. Therefore, the substitution rules do not affect the set of derivable
judgments. In this thesis, we consider the version without the substitution rules.

4.3.4 Derivations

Having defined the set of inference rules, we obtain the set of derivations. A
notion of a derivation is defined in a more general context.

4.3.18. Definition. Let A be a set. A closure rule on A is a pair (P,J)
consisting of a family P of elements of A called the premises and an element

70 Chapter 4. Second-order generalized algebraic theories

J ∈ A called the conclusion. A closure system on A is a family F of closure
rules on A. We write

R
P

J

to mean that R is a closure rule in F with premises P and conclusion J . Any
map f : A→ B acts on closure rules and closure systems component-wise.

4.3.19. Definition. Let F be a closure system on a set A and P a family of
elements of A. We define an inductive family DerivF (P,J) indexed over the
elements J of A as follows:

� prem(J) ∈ DerivF (P,J) for any J ∈P;

� app(R, D) ∈ DerivF (P,J) for any rule R
Q

J
in F and any family of

derivations D ∈
∏
K∈Q DerivF (P,K).

Elements of DerivF (P,J) are called derivations over F from P to J . For a
family Q of elements of A, we define DerivF (P,Q) =

∏
J∈Q DerivF (P,J). We

say J is derivable over F from P if there exists a derivation from P to J .
When J is derivable from the empty family, we simply say J is derivable over
F and write F ` J . For a family Q of elements of A, we write F ` Q when
F ` J for all J ∈ Q.

A derivation can be seen as a labeled tree: prem(J) is a leaf labeled by J ;
and app

(
R, {DK}K∈Q

)
is a node labeled by R with branches {DK}K∈Q.

We have some operations on derivations. Any rule R
P

J
in F is identified

with the derivation app
(
R, {prem(J)}J∈P

)
∈ DerivF (P,J). For a derivation

D ∈ DerivF (P,J) and a family of derivations D′ ∈ DerivF (P ′,P), we have
the composition D ◦ D′ ∈ DerivF (P ′,J) defined by prem(J) ◦ D′ = D′J and
app(R, D) ◦ D′ = app(R, {DK ◦D′}K). Let F be a closure system on a set A
and F ′ a closure system on a set A′. Any map f that sends elements of A to

those of A′ and rules R
P

J
in F to derivations f(R) ∈ DerivP′(f ·P, f(J))

is extended to a map (f · −) : ∀PJ .DerivF (P,J) → DerivF ′(f ·P, f(J))
defined by f · prem(J) = prem(f(J)) and f · app(R, D) = f(R) ◦ {f ·DK}K.

4.3.20. Definition. Let T be a pretheory and Φ an environment over T |expr.
We write DerivT,Φ and T,Φ ` for DerivF and F `, respectively, with F the
family of inference rules associated with T and Φ.

4.4. Properties of derivations 71

4.3.5 Well-formedness conditions

4.3.21. Definition. Let T be a pretheory, Φ an environment over T |expr and Γ
a context over T |expr and Φ|term. We say Γ is well-formed , written T,Φ ` Γ ok, if
T,Φ ` Γ→ e ok for any (x : e) ∈ Γ.

4.3.22. Definition. Let T be a pretheory and Φ an environment over T |expr.
We say Φ is well-formed , written T ` Φ ok, if T,Φ ` Γ ok and T,Φ ` Γ → e ok
for any (x : Γ→ e) ∈ Φ.

4.3.23. Definition. We say a pretheory T is well-formed if the following con-
ditions are satisfied:

1. T ` Φ ok for any sort symbol (S : Φ⇒ c) ∈ T ;

2. T ` Φ ok and T,Φ ` () → e ok for any term symbol or axiom (x : Φ ⇒
K) ∈ T .

4.4 Properties of derivations

Before defining SOGATs, we study basic properties of the derivations associated
with a pretheory and an environment. We show the stability under substitutions
in Section 4.4.1 and the stability under instantiations in Section 4.4.2. We show
in Section 4.4.3 one of the most fundamental properties, contextual complete-
ness which might be more familiar under the name functional completeness or
deduction theorem.

4.4.1 Stability under substitutions

We show that the substitution rules are admissible. Following Bauer, Haselwarter,
and Lumsdaine [20], we prove stronger statements (Propositions 4.4.5 and 4.4.7).
Let T be a pretheory and Φ an environment over T |term. We first observe the
stability under the action of morphisms of contexts.

4.4.1. Proposition. The inference rules are stable under the action of mor-
phisms of contexts: for any morphism of contexts r : Γ → Γ′ and any inference
rule of the form

R
Γ→ J
Γ→ H

where J is a pseudo-judgment over Γ, we have an inference rule

r · R
Γ′ → r · J
Γ′ → r · H

.

72 Chapter 4. Second-order generalized algebraic theories

Proof:
Immediate from the definition of inference rules. 2

4.4.2. Proposition. Any morphism of contexts r : Γ → Γ′ acts on derivations
as

(r · −) : DerivT,Φ(0,Γ→ H)→ DerivT,Φ(0,Γ′ → r · H).

Proof:
We construct by induction on a derivation D ∈ DerivT,Φ(0,Γ→ H) a family of
derivations

∏
r:Γ→Γ′ DerivT,Φ(0,Γ′ → r · H). Since the premises of D is empty, D

must be the application of a rule

R
Γ→ J
Γ→ H

.

By Proposition 4.4.1, the rule R is mapped to a rule

r · R
Γ′ → r · J
Γ′ → r · H

.

Each premise of R is of the form Γ . ∆ξ → Hξ, and the corresponding premise
of r · R is Γ′ . (r ·∆ξ)→ r · Hξ. By the induction hypothesis with the morphism
r + id : Γ . ∆ξ → Γ′ . (r ·∆ξ), any derivation Dξ of Γ . ∆ξ → Hξ is transformed
into a derivation r ·Dξ of Γ′ . (r ·∆ξ)→ r · Hξ . Applying the rule r · R we have
a derivation r ·D of Γ′ → r · H. 2

4.4.3. Corollary (Weakening). If T,Φ ` Γ1 .Γ2 → H, then T,Φ ` Γ1 .∆ .Γ2 →
H for any relative context ∆ over Γ1.

Proof:
Apply Proposition 4.4.2 for the inclusion Γ1 . Γ2 → Γ1 .∆ . Γ2. 2

We now prove the stability under substitution: if T,Φ ` Γ → H and T,Φ `
Γ′ → f : Γ for a substitution f , then T,Φ ` Γ′ → H · f . Following Bauer, Hasel-
warter, and Lumsdaine [20], we strengthen the statement for technical reasons.
A problem is that the assumption T,Φ ` Γ′ → f : Γ is too strong because Γ′ is
not necessarily well-formed. Suppose that we are trying to prove the substitution
property by induction on the derivation and that a rule contains a premise of
the form Γ . ∆ → H′. We would like to use the induction hypothesis for the
substitution f + id : Γ′ . (∆ · f) → Γ . ∆. Unfortunately, we do not have a
derivation of Γ′ . (∆ · f) → f + id : Γ . ∆. We would have to for example derive
Γ′ . (∆ · f)→ x : A · f for any variable (x : A) ∈ ∆, but there is no obvious way
to do that. However, this type checking looks trivial because (x : A · f) ∈ ∆ · f ,

4.4. Properties of derivations 73

and thus skipping it would not cause any problem. We thus prove the stability
under substitution in the form that part of the type checking in Γ′ → f : Γ can
be skipped.

4.4.4. Definition. Let Γ′ and Γ be contexts and Γ0 ⊂ Γ a decidable subset of
variables and hypotheses of Γ. A Γ0-trivial substitution f of Γ in Γ′ consists of
the following data:

� a morphism f : Γ0 → Γ′ of Actx-signatures;

� a substitution f : Γ′|term → Γ|term \ Γ0,

which naturally give rise to a substitution f : Γ′|term → Γ|term, satisfying that
(f(x) : e · f) ∈ Γ′ for any variable or hypothesis (x : e) ∈ Γ0. For a Γ0-trivial
substitution f of Γ in Γ′, we write Γ′ → f : Γ \ Γ0 for the following pseudo-
judgment:

� Γ′ → f(x) : A · f for any variable (x : A) ∈ Γ \ Γ0;

� Γ′ → p · f for any hypothesis (H : p) ∈ Γ \ Γ0.

We will sometimes use the notation Γ′ → f : Γ\Γ0 for a not necessarily Γ0-trivial
substitution f .

4.4.5. Proposition (Substitution). Let f be a Γ0-trivial substitution of Γ in Γ′.
For any derivations of Γ′ → f : Γ \ Γ0 and Γ → H, we have a derivation of
Γ′ → H · f .

Proof:
We construct by induction on a derivation D ∈ DerivT,Φ(0,Γ→ H) a map

∀f.DerivT,Φ(0,Γ′ → f : Γ \ Γ0)→ DerivT,Φ(0,Γ′ → H · f).

Since the premises of D is empty, D must be the application of a rule R
Γ→ J
Γ→ H

.

Each premise of R is of the form Γ . ∆ξ → Hξ. Extending f by the identity
on ∆ξ, we obtain a Γ0 + ∆ξ-trivial substitution f + id of Γ . ∆ξ in Γ . (∆ξ · f).
The pseudo-judgment Γ′ . (∆ξ · f) → f + id : Γ . ∆ξ \ Γ0 + ∆ξ is then obtained
from Γ′ → f : Γ \ Γ0 by the weakening by ∆ξ · f . Thus, by Corollary 4.4.3, any
derivation of Γ′ → f : Γ \ Γ0 is transformed into a derivation of Γ′ . (∆ξ · f) →
f + id : Γ .∆ξ \Γ0 + ∆ξ. Applying the induction hypotheses to (f + id)’s, we can
transform a derivation of Γ → J to a derivation of Γ′ → J · f . Hence, all we
have to do is to construct a derivation

Γ′ → J · f
Γ′ → H · f

for each rule R
Γ→ J
Γ→ H

. The cases other than Var and Hyp are immediate by

checking that the rules are stable under substitutions.

74 Chapter 4. Second-order generalized algebraic theories

Variables For a variable (x : A) ∈ Γ, we construct a derivation

Γ′ → A · f ok

Γ′ → f(x) : A · f
.

There are two cases: (x : A) ∈ Γ0; or (x : A) ∈ Γ \ Γ0. In the former case, by
the Γ0-triviality of f , the value f(x) is a variable and (f(x) : A · f) ∈ Γ′. Then
the rule Var(f(x)) gives us a derivation from Γ′ → A · f ok to Γ′ → f(x) : A · f .
In the latter case, Γ′ → f(x) : A · f is a member of the family of judgments
Γ′ → f : Γ \ Γ0 which has a derivation by assumption.

Hypotheses For a hypothesis (H : p) ∈ Γ, we construct a derivation

Γ′ → p · f ok

Γ′ → p · f
.

This is constructed by case analysis on (H : p) ∈ Γ0 in the same way as the case
of Var. 2

We show that the results of judgmentally equal substitutions are judgmentally
equal.

4.4.6. Definition. Let Γ′ and Γ be contexts and Γ0 ⊂ Γ a decidable subset.
Jointly Γ0-trivial substitutions (f1, f2) of Γ in Γ′ consists of the following data:

� a morphism f : Γ0 → Γ′ of Actx-signatures;

� two substitutions f1, f2 : Γ′|term → Γ|term \ Γ0,

which naturally give rise to two substitutions f1, f2 : Γ′|term → Γ|term, satisfying
that for any variable or hypothesis (x : e) ∈ Γ0, either (f(x) : e · f1) ∈ Γ′ or
(f(x) : e · f2) ∈ Γ′. For jointly Γ0-trivial substitutions (f1, f2) of Γ in Γ′, we write
Γ′ → f1 ≡ f2 : Γ \ Γ0 for the pseudo-judgment consisting of Γ′ → f1(x) ≡ f2(x) :
A · f1 for any variable (x : A) ∈ Γ \ Γ0.

4.4.7. Proposition (Equality substitution). Let (f1, f2) be jointly Γ0-trivial sub-
stitutions of Γ in Γ′. Given derivations of Γ′ → f1 : Γ \ Γ0, Γ′ → f2 : Γ \ Γ0,
Γ′ → f1 ≡ f2 : Γ \ Γ0 and Γ → H, we have derivations of Γ′ → H · f1 and
Γ′ → H· f2 and, when H = (a : K), derivations of Γ′ → a · f1 ≡ a · f2 : K · f1 and
Γ′ → a · f2 ≡ a · f1 : K · f2.

Proof:
By induction on the derivation of Γ→ H. Suppose that the derivation ends with
a rule

R
{Γ .∆ξ → Hξ}ξ∈Ξ

Γ→ H
.

4.4. Properties of derivations 75

The pair (f1 + id, f2 + id) determines jointly (Γ0 + ∆ξ)-trivial substitutions of
Γ . ∆ξ in Γ′ . (∆ξ · fi) for both i = 1, 2. By weakening, we derive Γ′ . (∆ξ · fi) →
f1 + id : Γ . ∆ξ \ Γ0 + ∆ξ, Γ′ . (∆ξ · fi) → f2 + id : Γ . ∆ξ \ Γ0 + ∆ξ, and
Γ′ . (∆ξ · fi) → f1 + id ≡ f2 + id : Γ . ∆ξ \ Γ0 + ∆ξ. Then, by the induction
hypotheses, we derive Γ′ . (∆ξ · fi) → Hξ · f1 and Γ′ . (∆ξ · fi) → Hξ · f2 and,
when Hξ = (aξ : Kξ), derive Γ′ . (∆ξ · fi) → aξ · f1 ≡ aξ · f2 : Kξ · f1 and
Γ′ . (∆ξ · fi) → aξ · f2 ≡ aξ · f1 : Kξ · f2. The goal is to derive Γ′ → H · f1 and
Γ′ → H · f2 and, when H = (a : K), to derive Γ′ → a · f1 ≡ a · f2 : K · f1 and
Γ′ → a · f2 ≡ a · f1 : K · f2. We proceed by case analysis on the rule R. The
case when R is a rule other than Hyp such that the conclusion is a proposition
judgment is straightforward by the stability under substitutions.

Variables Suppose that R is Var(x) for a variable (x : A) ∈ Γ. We first recall
that A must be of the form S(I) for a representable type symbol S : Ψ ⇒ type
and an instantiation I and that Γ→ A ok is an abbreviation of Γ→ I : Ψ. Then,
by the induction hypotheses, we derive Γ′ → I · fi : Ψ, Γ′ → I · f1 ≡ I · f2 : Ψ,
and Γ′ → I · f2 ≡ I · f1 : Ψ. Hence, the rule TypeConv(S, I1, I2, a) justifies the
use of conversion of the form

Γ′ → a : A · f1

Γ′ → a : A · f2

Γ′ → a : A · f2

Γ′ → a : A · f1

.

There are two cases, x ∈ Γ0 or x ∈ Γ \ Γ0. In the latter case, Γ′ → f1(x) :
A · f1, Γ′ → f2(x) : A · f2, and Γ′ → f1(x) ≡ f2(x) : A · f1 are members of
Γ′ → f1 : Γ \ Γ0, Γ′ → f2 : Γ \ Γ0, and Γ′ → f1 ≡ f2 : Γ \ Γ0, respectively. To
derive Γ′ → f2(x) ≡ f1(x) : A · f2, we first derive Γ′ → f1(x) ≡ f2(x) : A · f2

by conversion and then apply the rule Smtry(A · f2, f1(x), f2(x)). In the former
case, there are two cases, (f(x) : A · f1) ∈ Γ′ or (f(x) : A · f2) ∈ Γ′. In both cases,
we derive Γ′ → f(x) : A · f1 and Γ′ → f(x) : A · f2 by the rule Var(f(x)) and
conversion. Then, by the rule Refl(A·fi, f(x)), we derive Γ′ → f(x) ≡ f(x) : A·fi.

Hypotheses The case when R is Hyp(H) is proved by case analysis on H ∈ Γ0

in the same way as the case of Var.

Metavariables Suppose that R is MVar(X, g) for a metavariable (X : ∆→ K) ∈
Φ and a substitution g. Since X(g) · fi = X(g ◦ fi) and (K · g) · fi = K · (g ◦ fi), we
derive Γ′ → X(g) · fi : (K · g) · fi by the rule MVar(X, g ◦ fi) from the induction
hypotheses. Similarly, we apply the rule ≡-MVar to derive Γ′ → X(g) · f1 ≡
X(g) · f2 : (K · g) · f1 and Γ′ → X(g) · f2 ≡ X(g) · f1 : (K · g) · f2.

Term symbols The case when R is Sym is done by the rules Sym and ≡-Sym
in the same way as the case of MVar.

76 Chapter 4. Second-order generalized algebraic theories

Sort symbols Suppose that R is TypeConv(S, I1, I2, a) for a (representable)
type symbol (S : Ψ⇒ c), instantiations I1, I2, and a term expression a. Since
S(I) ·f = S(I · f), we derive Γ′ → a ·fi : S(I2) ·fi by the rule TypeConv(S, I1 ·fi,
I2 · fi, a · fi) from the induction hypotheses. We apply the rule TypeConvEq to
derive the equalities. 2

4.4.2 Stability under instantiations

We show that derivations are stable under instantiations.

4.4.8. Proposition. For any derivations of T,Φ′ ` Γ′ → I : Φ and of T,Φ `
Γ→ H, we have a derivation of T,Φ′ ` Γ′ . (Γ · I)→ H · I.

Proof:
By induction on a derivationD of Γ→ H. The cases other than MVar, ≡-MVar or
Asm are straightforward by checking that the rules are stable under instantiations.

Metavariables Suppose that D ends with the rule MVar(X, f) for a metavari-
able (X : ∆→ K) ∈ Φ and a substitution f . By the induction hypotheses, we
derive Γ′ . (Γ · I) → f · I : Γ′ . (∆ · I) \ Γ′. By assumption, we also derive
Γ′ . (∆ · I)→ I(X) : K · I. Then, by substitution, we derive Γ′ . (Γ · I)→ X(f) · I :
(K · f) · I.

Congruence Suppose thatD ends with the rule≡-MVar(X, f1, f2) for a metavari-
able (X : ∆→ K) ∈ Φ and two substitutions f1 and f2. Again by the induction
hypotheses and substitution, we derive Γ′.(Γ · I)→ X(f1)·I ≡ X(I2)·I : (K · f1)·I.

Assumptions The case of Asm is analogous to the case of MVar. 2

To see the action of judgmentally equal instantiations, we introduce a nota-
tion. For two instantiations Σ, µ′ ` I1, I2 : γ′ ⇒ µ and a context Γ over Σ and µ,
we write Γ · I? for an arbitrary mixture of Γ · I1 and Γ · I2. That is, Γ · I? denotes a
relative context over γ′ whose underlying signature is the same as Γ and, for any
variable or hypothesis (x : e) ∈ Γ, either (x : e · I1) ∈ Γ · I? or (x : e · I2) ∈ Γ · I?.

4.4.9. Proposition. Given derivations of T,Φ′ ` Γ′ → I1 : Φ, T,Φ′ ` Γ′ → I2 :
Φ, T,Φ′ ` Γ′ → I1 ≡ I2 : Φ, and T,Φ ` Γ→ H and an arbitrary choice of Γ · I?,
we have derivations of T,Φ′ ` Γ′ . (Γ · I?)→ H· I1 and T,Φ′ ` Γ′ . (Γ · I?)→ H· I2

and, when H = (a : K), derivations of T,Φ′ ` Γ′ . (Γ · I?)→ a · I1 ≡ a · I2 : K · I1

and T,Φ′ ` Γ′ . (Γ · I?)→ a · I2 ≡ a · I1 : K · I2.

4.4. Properties of derivations 77

Proof:
By induction on derivation D of Γ → H. Suppose that D ends with a rule

R
{Γ .∆ξ → Hξ}ξ∈Ξ

Γ→ H
. By the induction hypotheses, we have derivations of Γ′ .

(Γ .∆ξ) · I? → Hξ · I1 and Γ′ . (Γ .∆ξ) · I? → Hξ · I2 and, when Hξ = (aξ : Kξ),
derivations of Γ′ . (Γ .∆ξ) · I? → aξ · I1 ≡ aξ · I2 : Kξ · I1 and Γ′ . (Γ .∆ξ) · I? →
aξ · I2 ≡ aξ · I1 : Kξ · I2, for an arbitrary choice of (Γ .∆ξ) · I?. In particular, we
can choose (x : e · I1) ∈ (Γ .∆ξ) · I? for all (x : e) ∈ ∆ξ or (x : e · I2) ∈ (Γ .∆ξ)
for all (x : e) ∈ ∆ξ. Then the cases other than MVar, ≡-MVar or Asm become
straightforward: just apply R to derive Γ′ . (Γ · I?) → H · Ii; use congruence to
derive the equalities.

Metavariables Suppose that R is MVar(X, f) for a metavariable (X : ∆→ K) ∈
Φ and a substitution f . We first note that we can freely use conversion between
(K · f) · I1 and (K · f) · I2 in the same way as the variable case of the proof of
Proposition 4.4.7. Since X(f) · Ii = Ii(X) · (f · Ii) and (K · f) · Ii = (K · Ii) · (f · Ii),
we derive Γ′ . (Γ · I?)→ X(f) · Ii : (K · f) · Ii from the induction hypotheses by the
action of the substitution f ·Ii. For the equality Γ′ .(Γ · I?)→ X(f) ·I1 ≡ X(f) ·I2 :
(K · f) · I1, we first derive Γ′ . (Γ · I?)→ I1(X) · (f · I1) ≡ I2(X) · (f · I1) : (K · I1) ·
(f · I1) by assumption and substitution. By the induction hypotheses, we also
derive Γ′ .(Γ · I?)→ f ·I1 ≡ f ·I2 : Γ′ .(∆ · I1)\Γ′. Then, by equality substitution,
we derive Γ′ . (Γ · I?) → I2(X) · (f · I1) ≡ I2(X) · (f · I2) : (K · I1) · (f · I1). By
transitivity, we derive Γ′.(Γ · I?)→ I1(X)·(f · I1) ≡ I2(X)·(f · I2) : (K · I1)·(f · I1),
that is, Γ′ . (Γ · I?)→ X(f) · I1 ≡ X(f) · I2 : (K · f) · I1. For the other equality, use
conversion and symmetry.

Congruence Suppose that R is ≡-MVar(X, f1, f2) for a metavariable (X : ∆→
K) ∈ Φ and substitutions f1 and f2. By the induction hypotheses, we derive
Γ′ . (Γ · I?) → f1 · Ii ≡ f2 · Ii : Γ′ . (∆ · Ii) \ Γ′. Then, by equality substitution,
we derive Γ′ . (Γ · I?)→ Ii(X) · (f1 · Ii) ≡ Ii(X) · (f2 · Ii) : (K · Ii) · (f1 · Ii), that is,
Γ′ . (Γ · I?)→ X(f1) · Ii ≡ X(f2) · Ii : (K · f1) · Ii.

Assumptions The case of Asm is analogous to the case of MVar. 2

4.4.3 Contextual completeness

We show a form of contextual completeness in the sense of Hermida [77]. For
a simply typed lambda calculus T , contextual completeness asserts that for any
types A and B and any context Γ of T , we have a bijective correspondence
between the set of terms Γ, x : A ` b : B defined in T and the set of terms
Γ ` b′ : B defined in the extension of T by a constant a : A. This is a refinement

78 Chapter 4. Second-order generalized algebraic theories

of functional completeness [106] which asserts that the terms Γ ` b′ : A defined
in the extension of T by a constant a : A bijectively correspond to the functions
Γ ` b : A -> B defined in T . Functional completeness is essentially the same as
the usual deduction theorem: proving a proposition B under an assumption A
is equivalent to proving the implication A -> B without the assumption. In the
presence of function types, contextual completeness and functional completeness
are equivalent, but the former also makes sense in the absence of function types.

In the language of SOGATs, a metavariable X : () → A plays the same role
as a constant a : A. We thus formulate contextual completeness in that variables
and metavariables with arity 0 are interchangeable and show that any SOGAT
satisfies contextual completeness.

4.4.10. Definition. Let γ0 be a variable signature. The metavariable replace-
ment γ†0 of γ0 is the metavariable signature{(

x† : ()
)
| x ∈ γ0

}
.

We have a canonical instantiation

(), () ` Ωγ0 : γ0 ⇒ γ†0

defined by Ωγ0

(
x†
)

= x and a canonical substitution

(), γ†0 ` ωγ0 : ()→ γ0

defined by ωγ0(x) = x†.

4.4.11. Proposition. 1. (), () ` ωγ0 · Ωγ0 : γ0 → γ0 is the identity substitu-
tion.

2. (), γ†0 ` Ωγ0 · ωγ0 : ()⇒ γ†0 is the identity instantiation.

Proof:
By definition. 2

4.4.12. Definition. Let Σ be a symbol signature and µ a metavariable signa-
ture. For a context Γ0 over Σ and µ, the metavariable replacement Γ†0 of Γ0 is the
relative environment over µ{(

x† : ()→ e · ωΓ0|term

)
| (x : e) ∈ Γ

}
.

Note that Γ†0|term = (Γ0|term)†. We set ΩΓ0 = ΩΓ0|term and ωΓ0 = ωΓ0|term .

4.4. Properties of derivations 79

4.4.13. Theorem (Contextual completeness). Let T be a pretheory, Φ an envi-
ronment over T |term, and Γ0 a context over T |term and Φ|term. The instantiation
ΩΓ0 and the substitution ωΓ0 induce a bijective correspondence between the follow-
ing sets of derivable judgments.{

T,
(

Φ . Γ†0

)
` Γ1 → H1

}
∼= {T,Φ ` Γ0 . Γ2 → H2}

Contextual completeness is proved by the following two lemmas.

4.4.14. Lemma. If T,
(

Φ . Γ†0

)
` Γ→ H, then T,Φ ` Γ0 . (Γ · ΩΓ0)→ H · ΩΓ0.

Proof:
By induction on derivation. It suffices to transform each rule

R
Γ→ J
Γ→ H

associated with T and Φ . Γ†0 into a derivation

Γ0 . (Γ · ΩΓ0)→ J
Γ0 . (Γ · ΩΓ0)→ H

.

The cases other than MVar, ≡-MVar, or Asm are straightforward.

Metavariable For a metavariable (X : ∆→ K) ∈ Φ . Γ†0 and a substitution
f : Γ→ ∆, we construct a derivation of the form

Γ0 . (Γ · ΩΓ0)→ f · ΩΓ0 : ∆ Γ0 . (Γ · ΩΓ0)→ (K · f) · ΩΓ0 ok

Γ0 . (Γ · ΩΓ0)→ X(f) · ΩΓ0 : (K · f) · ΩΓ0

.

There are two cases: X ∈ Φ or X ∈ Γ†0. In the former case, we just give the
rule MVar(X, f · ΩΓ0). In the latter case, (X : ∆→ K) =

(
x† : 0→ A · ωΓ0

)
for a

variable (x : A) ∈ Γ0 and f is empty. Therefore, the rule MVar(X, f) is of the
form

Γ→ A · ωΓ0 ok

Γ→ x† : A · ωΓ0

and then the goal is to give a derivation of the form

Γ0 . (Γ · ΩΓ0)→ (A · ωΓ0) · ΩΓ0 ok

Γ0 . (Γ · ΩΓ0)→ x : (A · ωΓ0) · ΩΓ0

.

Since ωΓ0 · ΩΓ0 is the identity substitution, the rule Var(x) applies.

Assumptions The case of Asm is analogous to the case of MVar.

80 Chapter 4. Second-order generalized algebraic theories

Congruence Consider the case of ≡-MVar(X, f1, f2) for a metavariable (X :
∆ → K) ∈ Φ . Γ†0 and substitutions f1, f2 : Γ → ∆. Again there are two cases
and the case when X ∈ Φ is straightforward. In the case when X ∈ Γ†0, we have
(X : ∆→ K) =

(
x† : 0→ A · ωΓ0

)
for a variable (x : A) ∈ Γ0 and f1 and f2 are

empty. Then the rule MVar(X, f1, f2) is of the form

Γ→
(
x† ≡ x† : A · ωΓ0

)
ok

Γ→ x† ≡ x† : A · ωΓ0

and the goal is to give a derivation of the form

Γ0 . (Γ · ΩΓ0)→ (x ≡ x : (A · ωΓ0) · ΩΓ0) ok

Γ0 . (Γ · ΩΓ0)→ x ≡ x : (A · ωΓ0) · ΩΓ0

.

This time the rule Refl(A, x) applies. 2

4.4.15. Lemma. If T,Φ ` Γ0 . Γ→ H, then T,
(

Φ . Γ†0

)
` Γ · ωΓ0 → H · ωΓ0.

Proof:
By induction on derivation. It suffices to transform each rule of the form

R
Γ0 . Γ→ J
Γ0 . Γ→ H

associated with T and Φ into a derivation

Γ · ωΓ0 → J · ωΓ0

Γ · ωΓ0 → H · ωΓ0

.

The cases other than Var or Hyp are straightforward.

Variables For a variable (x : A) ∈ Γ0 . Γ, we construct a derivation of the form

Γ · ωΓ0 → A · ωΓ0 ok

Γ · ωΓ0 → x · ωΓ0 : A · ωΓ0

There are two cases: x ∈ Γ0; or x ∈ Γ. In the latter case, we just give the rule
Var(x). In the former case, the goal becomes a derivation of the form

Γ · ωΓ0 → A · ωΓ0 ok

Γ · ωΓ0 → x† : A · ωΓ0

and thus the rule MVar(x†, 0) applies.

4.5. Second-order generalized algebraic theories 81

Hypotheses The case of Hyp is analogous to the case of Var. 2

4.5 Second-order generalized algebraic theories

We will define a SOGAT to be a pretheory that is well-ordered and finitary.
Both requirements are reasonable in the sense that most practical type theories
have these properties. From a theoretical point of view, these properties ensure
that any SOGAT can be decomposed into small pieces, making the analysis of
SOGATs much easier.

4.5.1 Well-ordered presentation

4.5.1. Definition. Let T be a pretheory and Φ an environment over T |expr. We
say a context Γ over T |expr and Φ|term is well-ordered over T and Φ if there exists
a well-ordering < on variables and hypotheses satisfying the following conditions.

1. For any variable or hypothesis (x : e) ∈ Γ, the expression e is over Γ<x|term,
that is, e belongs to the subset Expr(Γ<x|term, c) ⊂ Expr(Γ|term, c). In par-
ticular, Γ<x ⊂ Γ is a subcontext.

2. For any variable or hypothesis (x : e) ∈ Γ, we have T,Φ ` Γ<x → e ok.

By definition and weakening, any well-ordered context is well-formed.

4.5.2. Definition. Let T be a pretheory. We say an environment Φ over T |expr

is well-ordered over T if there exists a well-ordering < on metavariables and
assumptions satisfying the following conditions.

1. For any metavariable or assumption (x : Γ→ e) ∈ Φ, the context Γ and the
expression e are over Φ<x|term. In particular, Φ<x ⊂ Φ is a subenvironment.

2. For any metavariable or assumption (x : Γ→ e) ∈ Φ, the context Γ is well-
ordered over T and Φ<x, and we have T,Φ<x ` Γ→ e ok.

By definition and weakening, any well-ordered environment is well-formed.

4.5.3. Definition. We say a pretheory T is well-ordered if there exists a well-
ordering < on symbols and axioms satisfying the following conditions.

1. For any sort symbol (S : Φ⇒ c) ∈ T , the environment Φ is over T<S|expr.

2. For any term symbol or axiom (x : Φ⇒ e) ∈ T , the environment Φ and the
expression e are over T<x|expr. In particular, T<x ⊂ T is a subpretheory for
any symbol or axiom x ∈ T .

82 Chapter 4. Second-order generalized algebraic theories

3. For any sort symbol (S : Φ⇒ c) ∈ T , the environment Φ is well-ordered
over T<S.

4. For any term symbol or axiom (x : Φ⇒ e) ∈ T , the environment Φ is well-
ordered over T<S, and we have T<S,Φ ` ()→ e ok.

By definition and weakening, any well-ordered pretheory is well-formed.

It is natural to ask if we can make any well-formed pretheory well-ordered.
Unfortunately, it is not the case.

4.5.4. Counterexample. Let T be the following pretheory.

A : ()⇒ type

a : ()⇒ A

B : (x : A)⇒ type

b : ()⇒ B(a)

b′ : ()⇒ B(a)

p : (y : B(a))⇒ prop

H1 : (: (: p(b))→ p(b′), X : ()→ A)⇒ X ≡ a : A

H2 : (X : ()→ A, Y : ()→ B(X), : ()→ p(Y))⇒ p(b′)

Clearly A to H1 are well-ordered. The axiom H2 is not well-formed over A to
H1 because p is applied to Y : B(X) while p expects a term of B(a). However,
H2 is well-formed over T as follows. The idea is that there can be a well-formed
instantiation of the environment of H2 even when the well-formedness of the
environment is not known, so we can use the rule Axiom(H2, I) before confirming
the well-formedness of H2. Let Φ = (X : () → A, Y : () → B(X), : () → p(Y)).
It remains to derive T,Φ ` () → p(Y) ok, that is, T,Φ ` () → Y : B(a). First,
I = (X := a, Y := b) is a well-formed instantiation of (X : () → A, Y : () →
B(X), : () → p(Y)) over the context (: p(b)). Then, by the rule Axiom(H2, I)
we derive T,Φ ` (: p(b)) → p(b′). By the rule Axiom(H1, (X := X)) we derive
T,Φ ` ()→ X ≡ a : A. Thus, by conversion, we derive T,Φ ` ()→ Y : B(a).

4.5.5. Remark. We expect that any well-formed pretheory is nevertheless “equiv-
alent” to a well-ordered one. For example, we obtain a well-ordered pretheory T ′

from the pretheory T in the above counterexample by inserting a new axiom

H1.5 : (: ()→ p(b))⇒ p(b′)

between H1 and H2. Indeed, H1.5 is well-formed over A to H1, and we can derive
(x : A) → x ≡ a : A from H1 and H1.5. Then H2 becomes well-formed over A
to H1.5. Since (: p(b)) → p(b′) was already derivable over T , the pretheories
T and T ′ are equivalent in the sense that they derive the same judgments. In
general, the same method as the well-founded replacement of Bauer, Haselwarter,
and Lumsdaine [20, Section 6.5] would apply, but we leave details as future work.

4.6. Examples of SOGATs 83

4.5.2 Finitary pretheories

4.5.6. Definition. We say a context is finite if its set of variables and hypothe-
ses is finite.

4.5.7. Definition. We say an environment Φ is finitary if for any metavariable
or assumption (x : Γ→ e) ∈ Φ, the context Γ is finite. We say Φ is finite if it is
finitary and the set of metavariables and assumptions is finite.

4.5.8. Definition. We say a pretheory T is finitary if for any symbol or axiom
(x : Φ⇒) ∈ T , the environment Φ is finite.

4.5.9. Proposition. Let T be a finitary pretheory and Φ a finitary environment
over T |expr. Then, any derivation over T and Φ is finite seen as a tree.

Proof:
By the inductive definition of derivations, no derivation tree contains an infinite
branch. When T and Φ, the set of premises of each rule is finite, and thus any
derivation tree is finitely branching. Then, by König’s Lemma, any derivation
tree is finite. 2

4.5.10. Definition. A second-order generalized algebraic theory (SOGAT) is a
well-ordered finitary pretheory.

4.6 Examples of SOGATs

We give a bunch of examples of SOGATs. The fundamental example is the
dependent type theory without any type constructor.

4.6.1. Example. We define the basic dependent type theory (DTT) to be the
following SOGAT.

U : ()⇒ Type

E : (A : ()→ U)⇒ type

We will omit the application of E and consider a term A : U as a representable
type. This would not be confusing unless we add another way to convert a term
of U to a representable type. When working with DTT, we will call a term of U
a type.

4.6.2. Notation. When defining a SOGAT, we will make some arguments of a
symbol or metavariable implicit by marking with [−]. For example, if we introduce
a symbol like

S : ([A : ()→ U], a : ()→ A)⇒ U,

84 Chapter 4. Second-order generalized algebraic theories

then the argument A is treated as implicit, that is, we simply write S(a) instead
of S(A, a) for terms A : U and a : A. This would not be confusing because the
argument A is inferred from the type of a.

Sometimes we will define a term over a SOGAT. When we say that we define
a term

S : (x1 : Γ1 → e1, . . . , xn : Γn → en)⇒ K

followed by a definition

S(x1, . . . , xn) ≡ e,

we mean that we add the following symbol and axiom.

S : (x1 : Γ1 → e1, . . . , xn : Γn → en)⇒ K

: (x1 : Γ1 → e1, . . . , xn : Γn → en)⇒ S(x1, . . . , xn) ≡ e : K

In contrast, when we say that we declare a symbol

S : Φ⇒ K,

we mean that we just add that symbol.
We mainly explain examples of type theories used in later chapters (Chap-

ters 7 and 8). In Section 4.6.1, we present fragments of Martin-Löf type theory
as SOGATs. In Section 4.6.2, we explain extensions of Martin-Löf type the-
ory including the univalence axiom and higher inductive types. Section 4.6.3 is
devoted to cubical type theory which is the subject of Chapters 7 and 8. In
Sections 4.6.4 to 4.6.6, we discuss more general sources of examples of SOGATs.
In Section 4.6.4, we show that SOGATs are a conservative extension of second-
order algebraic theories. We compare SOGATs to generalized algebraic theories
in Section 4.6.5. This time we do not claim that SOGATs are a conservative
extension of generalized algebraic theories because of some technical details. In
Section 4.6.6, we compare SOGATs to Bauer et al.’s type theories.

4.6.1 Martin-Löf type theory

Fragments of Martin-Löf type theory [124, 125, 133, 132] are defined as extensions
of DTT. Components of Martin-Löf type theory such as Π-types, identity types
and inductive types follow a common pattern. Each component has four kinds of
rules:

� type formation rule;

� introduction rule;

4.6. Examples of SOGATs 85

� elimination rule;

� equality or computation rule.

When defining a type theory as a SOGAT, the first three rules are represented
by symbols and the last one is represented by an axiom.

4.6.3. Example. We can extend DTT by dependent product types (Π-types) rep-
resented by the following symbols and axioms.

Π : (A : ()→ U, B : (x : A)→ U)⇒ U

λ : ([A : ()→ U], [B : (x : A)→ U], b : (x : A)→ B(x))⇒ Π(A, B)

@ : ([A : ()→ U], [B : (x : A)→ U], f : ()→ Π(A, B), a : ()→ A)⇒ B(a)

: (A : ()→ U, B : (x : A)→ U, b : (x : A)→ B(x), a : ()→ A)

⇒ @(λ(b), a) ≡ b(a) : B(a)

: (A : ()→ U, B : (x : A)→ U, f : ()→ Π(A, B))⇒ λ(〈x〉@(f, x)) ≡ f : Π(A, B)

The symbols Π, λ, and @ represent the formation, introduction, and elimination
rules, respectively, for Π-types. The two axioms represent the β-equality rule and
the η-equality rule. We introduce the following notations.∏

x:A

B = Π(A, 〈x〉B)

(x1 : A1, . . . , xn : An) -> B =
∏
x1:A1

· · ·
∏
xn:An

B

A -> B = (x : A) -> B (x does not freely occur in B)

λx.b = λ(〈x〉b)

λx1 . . . xn.b = λx1. . . . λxn.b

f(a) = @(f, a)

f(a1, . . . , an) = f(a1) . . . (an)

4.6.4. Example. Dependent sum types (Σ-types) are declared in two ways, as
positive types or as negative types. In both cases, we add the same type formation
rule and introduction rule.

Σ : (A : ()→ U, B : (x : A)→ U)⇒ U

pair : ([A : ()→ U], [B : (x : A)→ U], a : ()→ A, b : ()→ B(a))⇒ Σ(A, B)

In the negative type formulation, we add the following elimination and equality

86 Chapter 4. Second-order generalized algebraic theories

rules.

proj1 : ([A : ()→ U], [B : (x : A)→ U], c : ()→ Σ(A, B))⇒ A

proj2 : ([A : ()→ U], [B : (x : A)→ U], c : ()→ Σ(A, B))⇒ B(proj1(c))

: (A : ()→ U, B : (x : A)→ U, a : ()→ A, b : ()→ B(a))

⇒ proj1(pair(a, b)) ≡ a : A

: (A : ()→ U, B : (x : A)→ U, a : ()→ A, b : ()→ B(a))

⇒ proj2(pair(a, b)) ≡ b : B(a)

: (A : ()→ U, B : (x : A)→ U, c : ()→ Σ(A, B))

⇒ pair(proj1(c), proj2(c)) ≡ c : Σ(A, B)

In the positive type formulation, Σ-types are an inductive type and have the
following elimination and equality rules.

elimΣ : ([A : ()→ U], [B : (x : A)→ U], D : (z : Σ(A, B))→ U,

d : (x : A, y : B(x))→ D(pair(x, y)), c : ()→ Σ(A, B))⇒ D(c)

: (A : ()→ U, B : (x : A)→ U, D : (z : Σ(A, B))→ U,

d : (x : A, y : B(x))→ D(pair(x, y)), a : ()→ A, b : ()→ B(a))

⇒ elimΣ(D, d, pair(a, b)) ≡ d(a, b) : D(pair(a, b))

The negative Σ-type interprets the positive one by defining

elimΣ(D, d, c) = d(proj1(c), proj2(c)).

The positive Σ-type can interpret the eliminators and the first two equalities of the
negative Σ-type, but we cannot derive the last equality pair(proj1(c), proj2(c)) ≡
c. In this thesis, we understand Σ-types in the negative type formulation. We
introduce the following notations.∑

x:A

B = Σ(A, 〈x〉B)

(x : A)× B =
∑
x:A

B

A× B = (x : A)× B (x does not freely occur in B)

(a, b) = pair(a, b)

4.6.5. Example. Identity types are also declared as positive or negative types.
In both cases, we add the same type formation rule and introduction rule.

Id : ([A : ()→ U], a1 : ()→ A, a2 : ()→ A)⇒ U

refl : ([A : ()→ U], a : ()→ A)⇒ Id(a, a)

4.6. Examples of SOGATs 87

In the negative type formulation, called extensional identity types , we add the
following equality rules.

: (A : ()→ U, a1 : ()→ A, a2 : ()→ A, p : ()→ Id(a1, a2))⇒ a1 ≡ a2 : A

: (A : ()→ U, a : ()→ A, p : ()→ Id(a, a))⇒ p ≡ refl(a) : Id(a, a)

In the positive type formulation, called intensional identity types , we add the
following elimination and equality rules.

elimId : ([A : ()→ U], B : ([x1 : A], [x2 : A], y : Id(x1, x2))→ U,

b : (x : A)→ B(refl(x)), [a1 : ()→ A], [a2 : ()→ A], p : ()→ Id(a1, a2))

⇒ B(p)

: (A : ()→ U, B : ([x1 : A], [x2 : A], y : Id(x1, x2))→ U, b : (x : A)→ B(refl(x)),

a : ()→ A)⇒ elimId(B, b, refl(a)) ≡ b(a) : B(refl(a))

We introduce the following notation.

a1 == a2 = Id(a1, a2)

4.6.6. Example. The (negative) unit type is declared as follows.

1 : ()⇒ U

∗ : ()⇒ 1

: (a : 1)⇒ a ≡ ∗ : 1

4.6.7. Example. The empty type is declared as follows.

0 : ()⇒ U

elim0 : (B : (x : 0)→ U, a : ()→ 0)⇒ B(a)

4.6.8. Example. Binary coproduct types are declared as follows.

+ : (A : ()→ U, B : ()→ U)⇒ U

inl : ([A : ()→ U], [B : ()→ U], a : ()→ A)⇒ +(A, B)

inr : ([A : ()→ U], [B : ()→ U], b : ()→ B)⇒ +(A, B)

elim+ : ([A : ()→ U], [B : ()→ U], D : (z : +(A, B))→ U, d1 : (x : A)→ D(inl(x)),

d2 : (y : B)→ D(inr(x)), c : +(A, B))⇒ D(c)

: (A : ()→ U, B : ()→ U, D : (z : +(A, B))→ U, d1 : (x : A)→ D(inl(x)),

d2 : (y : B)→ D(inr(x)), a : A)⇒ elim+(D, d1, d2, inl(a)) ≡ d1(a)

: (A : ()→ U, B : ()→ U, D : (z : +(A, B))→ U, d1 : (x : A)→ D(inl(x)),

d2 : (y : B)→ D(inr(x)), b : B)⇒ elim+(D, d1, d2, inr(b)) ≡ d2(b)

We will write A + B instead of +(A, B). We define 2 to be 1 + 1 and refer to the
constructors inl(∗) and inr(∗) as 0 and 1, respectively.

88 Chapter 4. Second-order generalized algebraic theories

4.6.9. Example. The natural numbers type is declared as follows.

N : ()⇒ U

zero : ()⇒ N

succ : (n : ()→ N)⇒ N

elimN : (A : (x : N)→ U, a : ()→ A(zero), f : ([x : N], y : A(x))→ A(succ(x)),

n : ()→ N)⇒ A(n)

: (A : (x : N)→ U, a : ()→ A(zero), f : ([x : N], y : A(x))→ A(succ(x)))

⇒ elimN(A, a, f, zero) ≡ a : A(zero)

: (A : (x : N)→ U, a : ()→ A(zero), f : ([x : N], y : A(x))→ A(succ(x)),

n : ()→ N)⇒ elimN(A, a, f, succ(n)) ≡ f(elimN(A, a, f, n)) : A(succ(n))

4.6.10. Example. W -types allows us to internally define inductive types and
are declared as follows in the presence of Π-types.

W : (A : ()→ U, B : (x : A)→ U)⇒ U

sup : ([A : ()→ U], [B : (x : A)→ U], a : ()→ A, c : ()→ B(a) -> W(A, B))

⇒ W(A, B)

elimW : ([A : ()→ U], [B : (x : A)→ U], D : (z : W(A, B))→ U, f : (x : A,

z : (y : B(x)) -> W(A, B), w : (y : B(x)) -> D(z(y)))→ D(sup(x, z)),

c : W(A, B))⇒ D(c)

: (A : ()→ U, B : (x : A)→ U, D : (z : W(A, B))→ U, f : (x : A,

z : (y : B(x)) -> W(A, B), w : (y : B(x)) -> D(z(y)))→ D(sup(x, z)),

a : ()→ A, c : ()→ B(a) -> W(A, B))

⇒ elimW(D, f, sup(a, c)) ≡ f(a, c, λy.elimW(D, f, c(y))) : D(sup(a, c))

Notice that we need Π-types (->) to introduce the elimination rule, and thus W -
types do not make sense in the absence of Π-types. The requirement of Π-types
is natural because the job of W -types is to construct inductive types inside a
type theory and thus the type theory is already assumed to be strong enough to
internalize some concepts. Without Π-types, almost nothing can be internalized.

4.6.11. Example. A universe (à la Tarski) is declared as the following symbols.

u : ()⇒ U

elu : (A : ()→ u)⇒ U

We usually require a universe to be closed under type formations. For example,
to make u closed under Π-types, we add the following.

Πu : (A : ()→ u, B : (x : elu(A))→ u)⇒ u

: (A : ()→ u, B : (x : elu(A))→ u)⇒ elu(Πu(A, B)) ≡ Π(elu(A), 〈x〉elu(B(x))) : U

4.6. Examples of SOGATs 89

In some models of a type theory with a universe, equalities of elements of U like
elu(Πu(A, B)) ≡ Π(elu(A), 〈x〉elu(B(x))) hold only up to isomorphism but not on
the nose. We thus consider weaker closure conditions for universes. We say a
universe u is weakly closed under a certain type constructor if u has the type
formation rule restricted to types from u and the same introduction, elimination
and equality rules. For example, to make u weakly closed under Π-types, we add
the following.

Πu : (A : ()→ u, B : (x : elu(A))→ u)⇒ u

λu : ([A : ()→ u], [B : (x : elu(A))→ u], b : (x : elu(A))→ elu(B(x)))

⇒ elu(Πu(A, B))

@u : ([A : ()→ u], [B : (x : elu(A))→ u], f : ()→ elu(Πu(A, B)), a : ()→ elu(A))

⇒ elu(B(a))

: (A : ()→ u, B : (x : elu(A))→ u, b : (x : elu(A))→ elu(B(x)), a : ()→ elu(A))

⇒ @u(λu(b), a) ≡ b(a) : elu(B(a))

: (A : ()→ u, B : (x : elu(A))→ u, f : ()→ elu(Πu(A, B)))

⇒ λu(〈x〉@u(f, x)) ≡ f : elu(Πu(A, B))

For readability, we often omit elu and regard A : u as an element of U . The
subscript u in Πu, λu, and @u is also omitted.

4.6.2 Extensions of Martin-Löf type theory

There are a variety of extensions of Martin-Löf type theory including the univa-
lence axiom and higher inductive types, the main features of homotopy type theory
[172].

Well-behaved finite coproducts

Finite coproducts are not necessarily “well-behaved”. In category theory, finite
coproducts are considered to be well-behaved when the following conditions are
satisfied:

1. finite coproducts are stable under pullbacks, that is, finite coproducts are
preserved by pullback functors;

2. binary coproducts are disjoint, that is, the coproduct inclusions are monomor-
phisms and the pullback of the coproduct inclusions is the initial object.

The first condition is satisfied in any type theory, because pullbacks correspond
to substitutions and any type-theoretic construction is stable under substitutions.
The other condition is not for free, and we need additional axioms. We note that
when finite coproducts are stable under pullbacks, binary coproducts are disjoint

90 Chapter 4. Second-order generalized algebraic theories

if and only if the pullback of the coproduct inclusions is the initial object [34,
Lemma 2.13]. Therefore, we only need the following axiom.

4.6.12. Example. Disjoint finite coproducts are declared by the empty type and
binary coproducts together with the following additional symbol [cf. 121].

: (A : ()→ U, B : ()→ U, a : ()→ A, b : ()→ B, p : ()→ inl(a) ≡ inr(b))⇒ 0

We sometimes need stronger finite coproducts.

4.6.13. Example. Strictly extensive finite coproducts are declared as the empty
type and binary coproducts together with the following additional elimination
rules.

elimU
0 : (a : ()→ 0)⇒ U

: (A : (x : 0)→ U, a : ()→ 0)⇒ A ≡ elimU
0 (a) : U

elimU
+ : ([A1 : ()→ U], [A2 : ()→ U], B1 : (x1 : A1)→ U, B2 : (x2 : A2)→ U,

a : ()→ A1 + A2)⇒ U

: (A1 : ()→ U, A2 : ()→ U, B1 : (x1 : A1)→ U, B2 : (x2 : A2)→ U,

a1 : ()→ A1)⇒ elimU
+(B1, B2, inl(a1)) ≡ B1(a1) : U

: (A1 : ()→ U, A2 : ()→ U, B1 : (x1 : A1)→ U, B2 : (x2 : A2)→ U,

a2 : ()→ A2)⇒ elimU
+(B1, B2, inr(a2)) ≡ B2(a2) : U

: (A1 : ()→ U, A2 : ()→ U, B : (x : A1 + A2)→ U, a : ()→ A1 + A2)

⇒ B(a) ≡ elimU
+(〈x1〉B(inl(x1)), 〈x2〉B(inr(x2)), a) : U

In short, these rules allow us to define a type family (z : A + B) → U by case
analysis on z. In category theory, a coproduct

∐
ξ∈Ξ xξ in C is said to be extensive

if we have an equivalence of categories C/
∐

ξ∈Ξ xξ '
∏

ξ∈Ξ C/xξ [34]. The above
rules express that we have an isomorphism C/

∐
ξ∈Ξ xξ

∼=
∏

ξ∈Ξ C/xξ instead of
an equivalence, and thus we call them strictly extensive. Translating results on
extensive coproducts [34] into type theory, we see that strictly extensive finite
coproducts are disjoint in the presence of Σ-types and extensional identity types.
The converse is almost true: for disjoint finite coproducts, one can construct the
eliminators elimU

0 and elimU
+, but the equation rules only hold up to isomorphism.

4.6.14. Remark. In a type theory such that any type belongs to some universe,
finite coproducts are strictly extensive. Since a type is now a term of a universe,
the ordinary elimination rule works for type families.

Univalence axiom

Voevodsky’s univalence axiom asserts that the identities between two types in a
universe are equivalent to the equivalences between the types. Within Martin-Löf

4.6. Examples of SOGATs 91

type theory with Π-types, Σ-types, and intensional identity types, one can define
a type IsEquiv(f) asserting that a function f is an equivalence.

IsEquiv : ([A : ()→ U], [B : ()→ U], f : ()→ A -> B)⇒ U

See [172, Chapter 4] for various equivalent ways of defining the type IsEquiv(f).
We then define the type of equivalences

Equiv(A, B) =
∑
f:A->B

IsEquiv(f).

The identity functions are equivalences, and we can define a term

id : (A : ()→ U)⇒ Equiv(A, A)

such that the underlying function of id(A) is λx.x. For a universe u, we define a
function

IdToEquiv : (A : ()→ u, B : ()→ u)⇒ Id(A, B) -> Equiv(A, B)

sending refl(A) to id(A) by the elimination rule of intensional identity types. The
univalence axiom is a new symbol of the form

ua : (A : ()→ u, B : ()→ u)⇒ IsEquiv(IdToEquiv(A, B)).

We note that ua is a symbol but called the univalence axiom. This is because the
type IsEquiv(f) is a proposition in a homotopical sense and thus ua is treated as
an axiom in homotopy type theory.

Higher inductive types

Higher inductive types are an extension of inductive types to allow declaring path
constructors as well as point constructors. We work with Martin-Löf type theory
with a well-behaved equality-like type

== : ([A : ()→ U], a1 : ()→ A, a2 : ()→ A)⇒ U.

For example, we may choose extensional or intensional identity types or path
types of cubical type theory (Section 4.6.3).

4.6.15. Example. The circle is declared as a higher inductive type with the
following formation rules and constructors.

Circle : ()⇒ U

base : ()⇒ Circle

loop : ()⇒ base == base

92 Chapter 4. Second-order generalized algebraic theories

The elimination rule varies according to the choice of ==, but the idea is that
Circle is the initial type equipped with a point and a loop on the point, that is,
one can construct a unique function Circle -> A out of a point a : A and a loop
p : a == a. When working with extensional identity types, the type Circle is
not interesting because loop is forced to be refl. When working with intensional
identity types, there is no reason for loop forced to be refl, and we can even prove
that loop is distinct from refl assuming the univalence axiom [172, Section 8.1].

4.6.16. Example. A type A : U is said to be a proposition if (x1 : A, x2 : A) ->

x1 == x2 is inhabited. The propositional truncation builds the universal proposi-
tion under a given type.

Trunc : (A : ()→ U)⇒ U

trunc : ([A : ()→ U], a : ()→ A)⇒ Trunc(A)

sq : ([A : ()→ U], b1 : ()→ Trunc(A), b2 : ()→ Trunc(A))⇒ b1 == b2

Trunc(A) is characterized up to equivalence as the proposition equipped with a
function trunc : A -> Trunc(A) such that, for any proposition P, the function

λf.f ◦ trunc : (Trunc(A) -> P) -> (A -> P)

is invertible. When working with extensional identity types, the propositional
truncation is equivalent to bracket types [16] and squash types [126].

4.6.17. Example. The pushout is declared as a higher inductive type with the
following formation rules and constructors.

PO : ([A : ()→ U], [B1 : ()→ U], [B2 : ()→ U], f1 : (x : A)→ B1,

f2 : (x : A)→ B2)⇒ U

inl : ([A : ()→ U], [B1 : ()→ U], [B2 : ()→ U], [f1 : (x : A)→ B1],

[f2 : (x : A)→ B2], b1 : ()→ B1)⇒ PO(f1, f2)

inr : ([A : ()→ U], [B1 : ()→ U], [B2 : ()→ U], [f1 : (x : A)→ B1],

[f2 : (x : A)→ B2], b2 : ()→ B2)⇒ PO(f1, f2)

push : ([A : ()→ U], [B1 : ()→ U], [B2 : ()→ U], [f1 : (x : A)→ B1],

[f2 : (x : A)→ B2], a : ()→ A)⇒ inl(f1(a)) == inr(f2(a))

4.6.18. Example. In a type theory with extensional identity types, we extend
the notion of strictly extensive finite coproducts to strictly extensive finite col-
imits. Strictly extensive finite colimits are declared as strictly extensive finite

4.6. Examples of SOGATs 93

coproducts, pushouts, and the following additional elimination rules.

elimU
PO : ([A : ()→ U], [B1 : ()→ U], [B2 : ()→ U], [f1 : (x : A)→ B1],

[f2 : (x : A)→ B2], C1 : (y1 : B1)→ U, C2 : (y2 : B2)→ U,

: (x : A)→ C1(f1(x)) ≡ C2(f2(x)) : U, b : PO(f1, f2))⇒ U

: (A : ()→ U, B1 : ()→ U, B2 : ()→ U, f1 : (x : A)→ B1, f2 : (x : A)→ B2,

C1 : (y1 : B1)→ U, C2 : (y2 : B2)→ U,

: (x : A)→ C1(f1(x)) ≡ C2(f2(x)) : U, b1 : B1)

⇒ elimU
PO(C1, C2, inl(b1)) ≡ C1(b1) : U

: (A : ()→ U, B1 : ()→ U, B2 : ()→ U, f1 : (x : A)→ B1, f2 : (x : A)→ B2,

C1 : (y1 : B1)→ U, C2 : (y2 : B2)→ U,

: (x : A)→ C1(f1(x)) ≡ C2(f2(x)) : U, b2 : B2)

⇒ elimU
PO(C1, C2, inr(b2)) ≡ C2(b2) : U

: (A : ()→ U, B1 : ()→ U, B2 : ()→ U, f1 : (x : A)→ B1, f2 : (x : A)→ B2,

C : (y : PO(f1, f2))→ U, b : PO(f1, f2))

⇒ C(b) ≡ elimU
PO(〈y1〉C(inl(y1)), 〈y2〉C(inr(y2)), b) : U

W -types with reductions

W -types with reductions [161] are a special form of higher inductive types in
Martin-Löf type theory with Π-types, extensional identity types, and a universe
Cof. We assume that any elements of any type in Cof are equal

: (P : ()→ Cof, a1 : ()→ P, a2 : ()→ P)⇒ a1 ≡ a2 : P,

so we treat a type in Cof as a proposition. The following are the formation rule
and constructors of non-dependent W -types with reductions.

W : (A : ()→ U, B : (x : A)→ U, P : (x : A)→ Cof, f : (x : A, : P(x))→ B(x))

⇒ U

sup : ([A : ()→ U], [B : (x : A)→ U], [P : (x : A)→ Cof],

[f : (x : A, : P(x))→ B(x)], a : ()→ A, c : ()→ B(a) -> W(A, B, P, f))

⇒ W(A, B, P, f)

: (A : ()→ U, B : (x : A)→ U, P : (x : A)→ Cof, f : (x : A, : P(x))→ B(x),

a : ()→ A, c : ()→ B(a) -> W(A, B, P, f), : ()→ P(a))

⇒ sup(a, c) == c(f(a))

For the same reason as ordinary W -types, we need Π-types to formulate the
elimination rule. The parameter (A, B, P, f) is called a polynomial with reductions .

94 Chapter 4. Second-order generalized algebraic theories

4.6.19. Definition. Suppose that we are working with a type theory with
strictly extensive finite coproducts. The sum of two polynomials with reductions
(A1, B1, P1, f1) and (A2, B2, P2, f2) is defined to be the polynomial with reductions
(A, B, P, f) where

� A ≡ A1 + A2;

� B(inl(x1)) ≡ B1(x1) and B(inr(x2)) ≡ B2(x2);

� P(inl(x1)) ≡ P1(x1) and P(inr(x2)) ≡ P2(x2);

� f(inl(x1)) ≡ f1(x1) and f(inr(x2)) ≡ f2(x2).

Notice that we need the strict extensivity to define the type B by case analysis.

4.6.3 Cubical type theory

Cubical type theory (CTT) is an extension of Martin-Löf type theory with a
builtin interval. We describe CTT in detail because it is the main motivating
example of our notion of a type theory and because we study models of CTT in
Chapters 7 and 8. Among a lot of variants of CTT [22, 23, 5, 6, 41, 134, 135,
36], we only describe CTT in the style of Cohen et al. [41] and its extension by
higher inductive types [44] for concreteness.

The interval

The interval is declared as a representable type equipped with two endpoints .

I : ()⇒ type

0I : ()⇒ I
1I : ()⇒ I

We also add a De Morgan algebra structure [17] on I with 0I as the bottom element
and 1I as the top element in the same say as the ordinary algebraic theory of De
Morgan algebras.

In CTT, a type A : U is considered as an abstract space and a term over the
interval (i : I) → a : A is considered as a line or path in A. The endpoints of
such a line is obtained by the substitution a · (i := 0I) and a · (i := 1I).

a · (i := 0I) a · (i := 1I)
a

A term (i1 : I, i2 : I) → a : A depending on two interval variables expresses a

4.6. Examples of SOGATs 95

square in A. Substituting for i1 and i2, we can obtain edges of such a square.

a · (i1 := 0I, i2 := 0I) a · (i1 := 1I, i2 := 0I)

a

a · (i1 := 0I, i2 := 1I) a · (i1 := 1I, i2 := 1I)

a·(i2:=0I)

a·(i1:=0I) a·(i1:=1I)

a·(i2:=1I)

In general, a term a : A depending on n interval variables expresses an n-
dimensional cube in A.

Cofibrations

Cofibrations are introduced to express more complex shapes than cubes. We first
add the following symbols.

Cof : ()⇒ Type

true : (P : ()→ Cof)⇒ prop

For readability, we omit the application of true and consider a term of Cof as a
representable proposition. Cofibrations are required to be closed under logical
connectives >, ⊥, ∧ and ∨. For example, we add the following for conjunction.

∧ : (P : ()→ Cof, Q : ()→ Cof)⇒ Cof

: (P : ()→ Cof, Q : ()→ Cof, : ()→ P, : ()→ Q)⇒ ∧(P, Q)

: (P : ()→ Cof, Q : ()→ Cof, : ()→ ∧(P, Q))⇒ P

: (P : ()→ Cof, Q : ()→ Cof, : ()→ ∧(P, Q))⇒ Q

Only equalities with the endpoints are included.

(== 0I) : (i : ()→ I)⇒ Cof

(== 1I) : (i : ()→ I)⇒ Cof

We also add the universal quantifier over the interval.

∀I : (P : (i : I)→ Cof)⇒ Cof

: (P : (i : I)→ Cof, : (i : I)→ P(i))⇒ ∀I(P)

: (P : (i : I)→ Cof, : ()→ ∀I(P), i : ()→ I)⇒ P(i)

Note that in [41], the universal quantifier over the interval is defined by quantifier
elimination. The bottom element and disjunction of Cof interact with components

96 Chapter 4. Second-order generalized algebraic theories

of Martin-Löf type theory. For ⊥, we add the following elimination and equality
rules.

elimU
⊥ : (: ()→ ⊥)⇒ U

: (A : (: ⊥)→ U, : ()→ ⊥)⇒ A ≡ elimU
⊥ : U

elimE
⊥ : (A : (: ⊥)→ U, : ()→ ⊥)⇒ A

: (A : (: ⊥)→ U, a : (: ⊥)→ A, : ()→ ⊥)⇒ a ≡ elim⊥ : A

For ∨, we add the following elimination and equality rules.

elimU
∨ : ([P : ()→ Cof], [Q : ()→ Cof], A : (: P)→ U, B : (: Q)→ U,

: (: P, : Q)→ A ≡ B : U, : ()→ ∨(P, Q))⇒ U

: (P : ()→ Cof, Q : ()→ Cof, A : (: P)→ U, B : (: Q)→ U,

: (: P, : Q)→ A ≡ B : U, : ()→ P)⇒ elimU
∨ (A, B) ≡ A : U

: (P : ()→ Cof, Q : ()→ Cof, A : (: P)→ U, B : (: Q)→ U,

: (: P, : Q)→ A ≡ B : U, : ()→ Q)⇒ elimU
∨ (A, B) ≡ B : U

: (P : ()→ Cof, Q : ()→ Cof, A : (: ∨(P, Q))→ U, : ()→ ∨(P, Q))

⇒ A ≡ elimU
∨ (A, A)

elimE
∨ : ([P : ()→ Cof], [Q : ()→ Cof], A : (: ∨(P, Q))→ U, a : (: P)→ A,

b : (: Q)→ A, : (: P, : Q)→ a ≡ b : A, : ()→ ∨(P, Q))⇒ A

: (P : ()→ Cof, Q : ()→ Cof, A : (: ∨(P, Q))→ U, a : (: P)→ A,

b : (: Q)→ A, : (: P, : Q)→ a ≡ b : A, : ()→ P)

⇒ elimE
∨ (A, a, b) ≡ a : A

: (P : ()→ Cof, Q : ()→ Cof, A : (: ∨(P, Q))→ U, a : (: P)→ A,

b : (: Q)→ A, : (: P, : Q)→ a ≡ b : A, : ()→ Q)

⇒ elimE
∨ (A, a, b) ≡ b : A

: (P : ()→ Cof, Q : ()→ Cof, A : (: ∨(P, Q))→ U, a : (: ∨(P, Q))→ A,

: ()→ ∨(P, Q))⇒ a ≡ elimE
∨ (A, a, a) : A

With cofibrations, we can express a sub-polyhedra of a cube. For example, a
term (i1 : I, i2 : I, : (i1 == 0I) ∨ (i2 == 0I) ∨ (i2 == 1I)) → a : A is defined only
on the edges (i1 == 0I), (i2 == 0I), and (i2 == 1I) and expresses the following
“open box”.

a · (i1 := 0I, i2 := 0I) a · (i1 := 1I, i2 := 0I)

a · (i1 := 0I, i2 := 1I) a · (i1 := 1I, i2 := 1I)

a·(i2:=0I)

a·(i1:=0I)

a·(i2:=1I)

4.6. Examples of SOGATs 97

Composition

The composition operation is declared as follows.

comp : (A : (i : I)→ U, P : ()→ Cof, a : (: P, i : I)→ A(i), a0 : ()→ A(0I),

: (: P)→ a0 ≡ a(0I) : A(0I))⇒ A(1I)

: (A : (i : I)→ U, P : ()→ Cof, a : (: P, i : I)→ A(i), a0 : ()→ A(0I),

: (: P)→ a0 ≡ a(0I) : A(0I), : ()→ P)

⇒ comp(A, P, a, a0) ≡ a(1I) : A(1I)

Intuitively, it takes an “open box” as input and returns the “missing face”. For
example, let P be the cofibration (j == 0I) ∨ (j == 1I) over the context (j : I)
and consider the composition comp(〈i〉A,P, a, a0) where () → A : U , (j : I, :
P, i : I) → a : A, (j : I) → a0 : A, and (j : I, : P) → a0 ≡ a · (i := 0I) : A. By
the definition of P , the term a is determined by the two lines a · (j := 0I) and
a · (j := 1I). The condition that a0 ≡ a · (i := 0I) : A over (: P) is equivalent to
that a0 · (j := 0I) ≡ a · (j := 0I, i := 0I) and a0 · (j := 1I) ≡ a · (j := 1I, i := 0I).
Thus, a and a0 form the following “open box”.

• •

• •

a·(j:=0I)

a0

a·(j:=1I)

Then the composition comp(〈i〉A,P, a, a0) with the condition comp(〈i〉A,P, a,
a0) ≡ a · (i := 1I) : A over (: P) gives the “missing face” in this picture.

• •

• •

a·(j:=0I)

a0 comp(〈i〉A,P,a,a0)

a·(j:=1I)

The composition can be decomposed into homogeneous composition and trans-
port .

hcomp : (A : ()→ U, P : ()→ Cof, a : (: P, i : I)→ A, a0 : ()→ A,

: (: P)→ a0 ≡ a(0I) : A)⇒ A

: (A : ()→ U, P : ()→ Cof, a : (: P, i : I)→ A, a0 : ()→ A,

: (: P)→ a0 ≡ a(0I) : A, : ()→ P)⇒ hcomp(A, P, a, a0) ≡ a(1I) : A

transp : (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U,

98 Chapter 4. Second-order generalized algebraic theories

a0 : ()→ A(0I))⇒ A(1I)

: (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U,

a0 : ()→ A(0I), : ()→ P)⇒ transp(A, P, a0) ≡ a0 : A(0I)

Indeed, we can define

hcomp(A, P, a, a0) = comp(〈i〉A, P, a, a0)

transp(A, P, a0) = comp(A, P, 〈i〉a0, a0).

Conversely, comp is definable from hcomp and transp [44]. This decomposition is
relevant for defining higher inductive types.

Type constructors

We can add to CTT various type constructors like Π-types, Σ-types, and the nat-
ural numbers type. In addition to the usual formation, introduction, elimination,
and equality rules, we add rules for interaction with compositions. For example,
comp(Σ(A, B), P, c, c0) should be equal to pair(c1, c2) for suitable terms c1 and c2

defined using comp(A, . . .) and comp(B, . . .), respectively. See [41, Section 4.5] for
details.

One new type constructor is (dependent) path types declared as follows.

Path : (A : (i : I)→ U, a0 : ()→ A(0I), a1 : ()→ A(1I))⇒ U

λI : ([A : (i : I)→ U], a : (i : I)→ A(i))⇒ Path(A, a(0I), a(1I))

@I : ([A : (i : I)→ U], [a0 : ()→ A(0I)], [a1 : ()→ A(1I)], p : ()→ Path(A, a0, a1),

i : ()→ I)⇒ A(i)

: (A : (i : I)→ U, a0 : ()→ A(0I), a1 : ()→ A(1I), p : ()→ Path(A, a0, a1))

⇒ @I(p, 0I) ≡ a0 : A(0I)

: (A : (i : I)→ U, a0 : ()→ A(0I), a1 : ()→ A(1I), p : ()→ Path(A, a0, a1))

⇒ @I(p, 1I) ≡ a1 : A(1I)

: (A : (i : I)→ U, a : (i : I)→ A(i), i : ()→ I)⇒ @I(λI(a), i) ≡ a(i) : A(i)

: (A : (i : I)→ U, a0 : ()→ A(0I), a1 : ()→ A(1I), p : ()→ Path(A, a0, a1))

⇒ λI(〈i〉@I(p, i)) ≡ p : Path(A, a0, a1)

Path types play a similar role to intensional identity types and one can indeed em-
ulate the constructor and eliminator of identity types using path types. However,

4.6. Examples of SOGATs 99

we only have the equality rule up to path. To fix this, a refinement is introduced.

Id : ([A : ()→ U], a0 : ()→ A, a1 : ()→ A)⇒ U

mkId : ([A : ()→ U], a : (i : I)→ A, P : ()→ Cof, : (: P, i : I)→ a(i) ≡ a(0I))

⇒ Id(a(0I), a(1I))

projpath : ([A : ()→ U], [a0 : ()→ A], [a1 : ()→ A], p : ()→ Id(a0, a1), i : ()→ I)
⇒ A

: (A : ()→ U, a0 : ()→ A, a1 : ()→ A, p : ()→ Id(a0, a1))

⇒ projpath(p, 0I) ≡ a0 : A

: (A : ()→ U, a0 : ()→ A, a1 : ()→ A, p : ()→ Id(a0, a1))

⇒ projpath(p, 1I) ≡ a1 : A

projcof : ([A : ()→ U], [a0 : ()→ A], [a1 : ()→ A], p : ()→ Id(a0, a1))⇒ Cof

: (A : ()→ U, a0 : ()→ A, a1 : ()→ A, p : ()→ Id(a0, a1), : ()→ projcof(p),

i : ()→ I)⇒ projpath(p, i) ≡ a0

: (A : ()→ U, a : (i : I)→ A, P : ()→ Cof, : (: P, i : I)→ a(i) ≡ a(0I),

i : ()→ I)⇒ projpath(mkId(a, P), i) ≡ a(i) : A

: (A : ()→ U, a : (i : I)→ A, P : ()→ Cof, : (: P, i : I)→ a(i) ≡ a(0I))

⇒ projcof(mkId(a, P)) ≡ P : Cof

: (A : ()→ U, a0 : ()→ A, a1 : ()→ A, p : ()→ Id(a0, a1))

⇒ mkId
(
〈i〉projpath(p, i), projcof(p)

)
≡ p : Id(a0, a1)

Then one can emulate Martin-Löf’s intensional identity types including the equal-
ity rule; see [41, Section 9.1] for details. Although the new identity types ensure
that CTT interprets Martin-Löf type theory, path types are preferred to identity
types in CTT.

Using path types, Π-types, and Σ-types, we can define a type IsEquiv(f) as-
serting that a function f is an equivalence.

IsEquiv : ([A : ()→ U], [B : ()→ U], f : ()→ A -> B)⇒ U

See [41, Section 5] for details. We then define the type of equivalences

Equiv(A, B) =
∑
f:A->B

IsEquiv(f).

We think of Equiv(A, B) as a subtype of A -> B, so we have f(a) : B for f :
Equiv(A, B) and a : A.

100 Chapter 4. Second-order generalized algebraic theories

Another new type constructor is glueing declared as follows.

Glue : (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B))⇒ U

: Glue : (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B),

: ()→ P)⇒ Glue(P, A, B, f) ≡ A : U

glue : ([P : ()→ Cof], [A : (: P)→ U], [B : ()→ U], [f : (: P)→ Equiv(A, B)],

a : (: P)→ A, b : ()→ B, : (: P)→ b ≡ f(a))⇒ Glue(P, A, B, f)

: (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B),

a : (: P)→ A, b : ()→ B, : (: P)→ b ≡ f(a), : ()→ P)

⇒ glue(a, b) ≡ a : A

unglue : ([P : ()→ Cof], [A : (: P)→ U], [B : ()→ U], [f : (: P)→ Equiv(A, B)],

c : ()→ Glue(P, A, B, f))⇒ B

: (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B),

c : ()→ Glue(P, A, B, f), : ()→ P)⇒ unglue(c) ≡ f(c)

: (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B),

c : ()→ Glue(P, A, B, f))⇒ glue(c, unglue(c)) ≡ c : Glue(P, A, B, f)

: (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B),

a : (: P)→ A, b : ()→ B, : (: P)→ b ≡ f(a))

⇒ unglue(glue(a, b)) ≡ a : A

The glueing operation is closely related to Voevodsky’s proof of univalence in the
simplicial set model [102] (see also [147]), and univalence is indeed provable over
CTT. We can also view the gluing operation as the composition operation for
universes. For example, let P be the cofibration (j == 0I) ∨ (j == 1I) over the
context (j : I) and consider the gluing Glue(P,A,B, f) where (j : I, : P)→ A :
U , (j : I) → B : U , and (j : I, : P) → f : Equiv(A,B). By the definition of P ,
the type A is determined by the two types A · (j := 0I) and A · (j := 1I), and the
equivalence f is determined by f · (j := 0I) and f · (j := 1I). Then A, B, and f
form the following “open box”.

A · (j := 0I) B · (j := 0I)

A · (j := 1I) B · (j := 1I)

f ·(j:=0I)

'

B

f ·(j:=1I)

'

Strictly, this is not an open box because the horizontal arrows are equivalences
rather than paths, but univalence suggests that equivalences between two types
can be regarded as paths. Then the glueing Glue(P,A,B, f) with the condition

4.6. Examples of SOGATs 101

Glue(P,A,B, f) ≡ A over (: P) gives the “missing face” in this picture.

A · (j := 0I) B · (j := 0I)

A · (j := 1I) B · (j := 1I)

f ·(j:=0I)

'

Glue(P,A,B,f) B

f ·(j:=1I)

'

Higher inductive types

Higher inductive types in CTT [44] follow a common pattern and are specified by
the following data:

1. a type formation rule;

2. point constructors;

3. path constructors which are constructors depending on the interval I and
the values at the endpoints are specified;

4. a homogeneous composition structure, which is considered as a kind of con-
structor;

5. when the higher inductive type takes some parameters, a transport structure
and suitable equation rules for it;

6. elimination and equation rules.

A higher inductive type is thus the type freely generated by its point construc-
tors, path constructors, and homogeneous composition structure. We note that
although the homogeneous composition structure is a constructor, we need not
specify the value at the homogeneous composition in the elimination rule, because
any type in CTT carries a canonical composition structure.

4.6.20. Example. The circle is the higher inductive type generated by a point
and a loop on the point. We first add the formation rule and constructors.

Circle : ()⇒ U

base : ()⇒ Circle

loop : (i : ()→ I)⇒ Circle

For the path constructor loop, we specify the endpoints.

: ()⇒ loop(0I) ≡ base : Circle

: ()⇒ loop(1I) ≡ base : Circle

102 Chapter 4. Second-order generalized algebraic theories

We adjoin a homogeneous composition structure as a constructor.

hcompCircle : (P : ()→ Cof, a : (: P, i : I)→ Circle, a0 : ()→ Circle,

: (: P)→ a0 ≡ a(0I) : Circle)⇒ Circle

: (P : ()→ Cof, a : (: P, i : I)→ Circle, a0 : ()→ Circle,

: (: P)→ a0 ≡ a(0I) : Circle, : ()→ P)

⇒ hcompCircle(P, a, a0) ≡ a(1I) : Circle

The elimination and equation rules assert that we can construct a function from
Circle by specifying the values at base and loop (but the value at hcompCircle is not
necessary).

elimCircle : (B : (x : Circle)→ U, b : ()→ B(base), p : (i : I)→ B(loop(i)),

: ()→ p(0I) ≡ b : B(base), : ()→ p(1I) ≡ b : B(base),

a : ()→ Circle)⇒ B(a)

: (B : (x : Circle)→ U, b : ()→ B(base), p : (i : I)→ B(loop(i)),

: ()→ p(0I) ≡ b : B(base), : ()→ p(1I) ≡ b : B(base))

⇒ elimCircle(B, b, p, base) ≡ b : B(base)

: (B : (x : Circle)→ U, b : ()→ B(base), p : (i : I)→ B(loop(i)),

: ()→ p(0I) ≡ b : B(base), : ()→ p(1I) ≡ b : B(base), i : ()→ I)
⇒ elimCircle(B, b, p, loop(i)) ≡ p(i) : B(loop(i))

The circle also has an equation rule for elimCircle(B, b, p, hcompCircle(. . .)) asserting
that this term is computed using the composition structure on B, but we omit it.
There is no transport structure as Circle does not take parameters.

4.6.21. Example. The suspension is the higher inductive type with the follow-
ing formation rule and point and path constructors.

Susp : (A : ()→ U)⇒ U

N : ([A : ()→ U])⇒ Susp(A)

S : ([A : ()→ U])⇒ Susp(A)

merid : ([A : ()→ U], a : ()→ A, i : I)⇒ Susp(A)

: (A : ()→ U, a : ()→ A)⇒ merid(a, 0I) ≡ N : Susp(A)

: (A : ()→ U, a : ()→ A)⇒ merid(a, 1I) ≡ S : Susp(A)

4.6. Examples of SOGATs 103

We omit the homogeneous composition structure and the elimination rule. The
transport structure on suspensions is defined by case analysis as follows.

transpSusp : (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U,

a0 : ()→ Susp(A(0I)))⇒ Susp(A(1I))

: (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U,

a0 : ()→ Susp(A(0I)), : ()→ P)

⇒ transpSusp(A, P, a0) ≡ a0 : Susp(A(0I))

: (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U)

⇒ transpSusp(A, P,N) ≡ N : Susp(A(1I))

: (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U)

⇒ transpSusp(A, P, S) ≡ S : Susp(A(1I))

: (A : (i : I)→ U, P : ()→ Cof, : (: P, i : I)→ A(i) ≡ A(0I) : U,

a0 : ()→ A, i : ()→ I)
⇒ transpSusp(A, P,merid(a0, i)) ≡ merid(transp(A, P, a0), i) : Susp(A(1I))

4.6.22. Example. The propositional truncation is the higher inductive type with
the following formation rule and point and path constructors.

Trunc : (A : ()→ U)⇒ U

trunc : ([A : ()→ U], a : ()→ A)⇒ Trunc(A)

sq : ([A : ()→ U], b0 : ()→ Trunc(A), b1 : ()→ Trunc(A), i : ()→ I)
⇒ Trunc(A)

: (A : ()→ U, b0 : ()→ Trunc(A), b1 : ()→ Trunc(A))

⇒ sq(b0, b1, 0I) ≡ b0 : Trunc(A)

: (A : ()→ U, b0 : ()→ Trunc(A), b1 : ()→ Trunc(A))

⇒ sq(b0, b1, 1I) ≡ b1 : Trunc(A)

We omit the homogeneous composition structure and the elimination rule. The
transport structure is defined in a similar way to suspensions.

4.6.4 Second-order algebraic theories

We see that second-order algebraic theories of Fiore and Mahmoud [57] are nat-
urally transformed into SOGATs.

4.6.23. Definition. A second-order signature Σ = (O, |−|) is specified by a set
of operators O and an arity function |−| : O → N∗ where N∗ denotes the set of
lists of natural numbers. For an operator o ∈ O, we write o : (n1, . . . , nk) to mean
that |o| = (n1, . . . , nk).

104 Chapter 4. Second-order generalized algebraic theories

Θ . Γ ` t1 ≡ t2
((t1, t2) ∈ E)

Θ . Γ ` t ≡ t

Θ . Γ ` t1 ≡ t2

Θ . Γ ` t2 ≡ t1

Θ . Γ ` t1 ≡ t2 Θ . Γ ` t2 ≡ t3

Θ . Γ ` t1 ≡ t3

X1 : (m1), . . . , Xk : (mk) .∆ ` t ≡ s {Θ . Γ, ~xi ` ti ≡ si}1≤i≤k

Θ . Γ,∆ ` t · (Xi := 〈~xi〉ti)1≤i≤k ≡ s · (Xi := 〈~xi〉si)1≤i≤k

Figure 4.4: Second-order equational logic

A context Θ . Γ is specified by a sequence Θ of the form

X1 : (m1), . . . , Xk : (mk),

where X1, . . . , Xk are distinct metavariables and mi’s are natural numbers, and a
sequence Γ = (x1, . . . , xn) of distinct variables. Given a second-order signature
Σ, the terms over Σ in a context Θ . Γ are inductively defined as follows, where
we write Θ . Γ ` t when t is a term in Θ . Γ:

� for any x ∈ Γ, we have Θ . Γ ` x;

� for any (X : (m)) ∈ Θ and any Θ . Γ ` ti for 1 ≤ i ≤ m, we have Θ . Γ `
X(t1, . . . , tm);

� for any operator o : (n1, . . . , nk) and any Θ . Γ, ~xi ` ti for 1 ≤ i ≤ k where
~xi = (xi,1, . . . , xi,ni

), we have Θ . Γ ` o(〈~x1〉t1, . . . , 〈 ~xk〉tk).

Variables ~xi in 〈~xi〉ti are bound and terms are considered up to α-equivalence.

4.6.24. Definition. An equation is a pair of terms in the same context. An
equational presentation (Σ, E) is specified by a second-order signature Σ together
with a set E of equations over it.

Given an equational presentation (Σ, E), the set of derivable equations, writ-
ten Θ . Γ ` t1 ≡ t2, is defined by the inference rules listed in Fig. 4.4.

4.6.25. Remark. As noted in [56, Section 3.5], any equation Θ . Γ ` t1 ≡ t2
can be transformed into an equivalent equation Θ,Γ† . () ` t′1 ≡ t′2 in the empty
variable context, which is understood as the untyped version of contextual com-
pleteness. We thus assume that all the equations in an equational presentation
are in the empty variable context.

4.6. Examples of SOGATs 105

4.6.26. Construction. Let (Σ, E) be an equational presentation. We define a
SOGAT T(Σ, E) as follows. We first define T(Σ) to be the SOGAT consisting of
the following data:

� a representable type symbol ∗ : ()⇒ type;

� a term symbol o : (X1 : ~∗1 → ∗, . . . , Xk : ~∗k → ∗) ⇒ ∗ for any operator
o : (n1, . . . , nk), where ~∗i denotes the context (xi,1 : ∗, . . . , xi,ni

: ∗).

Then terms over (Σ, E) are naturally regarded as term expressions over T(Σ).
Any context Θ . Γ yields an environment Θ∗ and a context Γ∗ defined by Θ∗ =
(X1 : ~∗1 → ∗, . . . , Xk : ~∗k → ∗) when Θ = (X1 : (m1), . . . , Xk : (mk)) and Γ∗ = (x1 :
∗, . . . , xn : ∗) when Γ = (x1, . . . , xn). We then define T(Σ, E) by extending T(Σ)
with an axiom Θ∗ ⇒ t1 ≡ t2 : ∗ for any equation Θ . () ` t1 ≡ t2 in E.

4.6.27. Proposition. Let (Σ, E) be an equational presentation.

1. For any term Θ . Γ ` t over Σ, we have T(Σ, E),Θ∗ ` Γ∗ → t : ∗.

2. An equation Θ .Γ ` t1 ≡ t2 is derivable over E if and only if T(Σ, E),Θ∗ `
Γ∗ → t1 ≡ t2 : ∗.

Proof:
Straightforward by induction. 2

4.6.28. Remark. In a similar way to Construction 4.6.26, we can transform
many-sorted equational presentations of Fiore and Hur [55] into SOGATs. A
change is that we add a representable type symbol σ : ()→ type for any type of
a given signature rather than add a single representable type symbol.

4.6.5 Generalized algebraic theories

A generalized algebraic theory of Cartmell [35] is considered as a SOGAT with
no variable binding. Roughly, a generalized algebraic theory is a SOGAT with
no representable type, proposition, or representable proposition symbols. In the
absence of representable type or representable proposition symbols, the only pos-
sible context is the empty one, and then environments play the same role as
contexts in the theory of generalized algebraic theories.

106 Chapter 4. Second-order generalized algebraic theories

4.6.29. Example. The generalized algebraic theory of categories is represented
as a SOGAT as follows.

Obj : ()⇒ Type

Hom : (X : ()→ Obj, Y : ()→ Obj)⇒ Type

id : (X : ()→ Obj)⇒ Hom(X, X)

comp : ([X1 : ()→ Obj], [X2 : ()→ Obj], [X3 : ()→ Obj], g : ()→ Hom(X2, X3),

f : ()→ Hom(X1, X2))⇒ Hom(X1, X3)

: (X : ()→ Obj, Y : ()→ Obj, f : ()→ Hom(X, Y))

⇒ comp(id(Y), f) ≡ f : Hom(X, Y)

: (X : ()→ Obj, Y : ()→ Obj, f : ()→ Hom(X, Y))

⇒ comp(f, id(X)) ≡ f : Hom(X, Y)

: (X1 : ()→ Obj, X2 : ()→ Obj, X3 : ()→ Obj, X4 : ()→ Obj,

f3 : ()→ Hom(X3, X4), f2 : ()→ Hom(X2, X3), f1 : ()→ Hom(X1, X3))

⇒ comp(f3, comp(f2, f1)) ≡ comp(comp(f3, f2), f1) : Hom(X1, X4)

There are some differences between generalized algebraic theories and SO-
GATs of this sort. First, type equalities are allowed in generalized algebraic the-
ories but not in SOGATs. Therefore, only generalized algebraic theories without
type equalities are regarded as SOGATs. Second, environments over a SOGAT
can contain term equalities but contexts over a generalized algebraic theory can-
not. This is not a big difference because, as Cartmell [35] noted, we can always
add to a generalized algebraic theory symbols and axioms that axiomatize the
equality predicate on a given type.

4.6.6 Bauer et al.’s general type theories

The syntax of SOGATs is inspired by the general definition of dependent type
theories given by Bauer, Haselwarter, and Lumsdaine [20], but there are some
changes.

SOGATs can have judgment forms other than “being a type” and “being an
element of a type”. With this flexibility, we can define complex type theories such
as cubical type theory [41] as SOGATs. Bauer et al.’s type theories are regarded
as SOGATs such that:

� they have two symbols U : ()⇒ Type and E : (A : ()→ U)⇒ type;

� all the other symbols are term symbols;

� all the axioms are equalities.

We have kept distinguishing metavariables from symbols and introduced envi-
ronments, while Bauer et al. introduced metavariable symbols and metavariable

4.7. Theories over a SOGAT 107

extensions. This change is natural from the aspect that SOGATs are a general-
ization of second-order algebraic theories. More importantly, environments will
play a central role in the semantics of SOGATs given in Section 4.8.

In Bauer et al.’s definition, presuppositivity is one of the properties that a type
theory should satisfy, while we include all the presuppositions in the premises of
each inference rule. Because of this change, well-formed pretheories in our sense
and acceptable type theories in their sense do not match. For example, consider
the following pretheory which appears in [20, Example 5.14] and is acceptable in
the sense of Bauer et al.

U : ()⇒ Type

E : (A : ()→ U)⇒ type

u : ()⇒ E(el(u))

el : (a : ()→ E(el(u)))⇒ U

For the rule associated with the symbol u to be well-formed/acceptable, we have
to derive the presupposition () → el(u) : U . The only way of deriving this
is to use the rule associated with the symbol el, and thus we have to derive
()→ u : E(el(u)). If we do not include the presuppositions in the premises of the
rule associated with the symbol u, then we immediately derive ()→ u : E(el(u)).
If we include the presuppositions in the premises of the rule associated with u, then
we have to derive () → el(u) : U to derive () → u : E(el(u)), but () → el(u) : U
was what we are trying to derive. Because of this circularity, this pretheory is
not well-formed in our sense.

Nevertheless, this change on presuppositivity does not affect the notion of
derivability for well-presented/well-ordered theories. For a well-presented type
theory in the sense of Bauer et al., the presuppositions of the rule associated with
each symbol are required to be derivable over the previously introduced rules.
Therefore, we can always provide derivations of the presuppositions on each use
of the rule.

Bauer et al. deal with more general well-founded relations than well-orderings
on symbols and axioms. Assuming classical axioms, this is not a big difference
because one can extend any well-founded relation to a well-ordering.

4.7 Theories over a SOGAT

A type theory is specified by a set of inference rules and gives a way of building a
set of derivable judgments, but one can adjoin some judgments as assumptions.
By a theory over a type theory, we mean a set of judgments adjoined to the type
theory as assumptions. In the language of SOGATs, an environment plays the
role of assumptions, since the set of derivable judgments is produced for each
environment. We further require a theory to be well-ordered and finitary.

108 Chapter 4. Second-order generalized algebraic theories

4.7.1. Definition. Let T be a SOGAT. A T -theory or theory over T is a well-
ordered finitary environment over T . A morphism Φ → Ψ of T -theories is an
instantiation T |expr,Ψ|term ` I : () ⇒ Φ|term such that T,Ψ ` () → I : Φ.
Two morphisms I1, I2 : Φ → Ψ are equivalent when T,Ψ ` () → I1 ≡ I2 : Φ.
The T -theories and the equivalence classes of their morphisms form a cate-
gory Th(T) since derivable judgments are stable under instantiations (Propo-
sitions 4.4.8 and 4.4.9).

4.7.2. Example. The theories over DTT are precisely the generalized algebraic
theories of Cartmell [35]. For example, the generalized algebraic theory of cate-
gories is defined as the following theory over DTT.

Obj : ()→ U

Hom : (x : Obj, y : Obj)→ U

id : (x : Obj)→ Hom(x, x)

comp : ([x1 : Obj], [x2 : Obj], [x3 : Obj], g : Hom(x2, x3), f : Hom(x1, x2))

→ Hom(x1, x3)

: (x : Obj, y : Obj, f : Hom(x, y))→ comp(id(y), f) ≡ f : Hom(x, y)

: (x : Obj, y : Obj, f : Hom(x, y))→ comp(f, id(x)) ≡ f : Hom(x, y)

: (x1 : Obj, x2 : Obj, x3 : Obj, x4 : Obj, f3 : Hom(x3, x4), f2 : Hom(x2, x3),

f1 : Hom(x1, x3))

→ comp(f3, comp(f2, f1)) ≡ comp(comp(f3, f2), f1) : Hom(x1, x4)

4.7.3. Example. Type theories with Π-types are widely used as logical frame-
works [75, 133, 132], that is, type theories for defining type theories. For example,
a fragment of Martin-Löf type theory is defined as the following theory over the
dependent type theory with Π-types.

U : ()→ U

E : (A : U)→ U

Π : (A : U, B : E(A) -> U)→ U

abs : ([A : U], [B : E(A) -> U], b : (x : E(A)) -> E(B(x)))→ E(Π(A, B))

app : ([A : U], [B : E(A) -> U], f : E(Π(A, B)), a : E(A))→ E(B(a))

: (A : U, B : E(A) -> U, b : (x : E(A)) -> E(B(x)), a : E(A))

→ app(abs(b), a) ≡ b(a) : E(B(a))

: (A : U, B : E(A) -> U, f : E(Π(A, B)))→ abs(λx.app(f, x)) ≡ f : E(Π(A, B))

...

In this section, we show that the category Th(T) of T -theories is compactly
generated (Theorem 4.7.10). We begin by constructing colimits of T -theories.

4.7. Theories over a SOGAT 109

4.7.4. Proposition. For any SOGAT T , the category Th(T) is cocomplete.
More precisely:

1. the coproduct of a family of T -theories {Φξ}ξ∈Ξ is given by the disjoint union
of Φξ’s;

2. the coequalizer of a pair of morphisms I1, I2 : Φ→ Ψ is given by Ψ extended
with assumptions HX : Γ · I1 → I1(X) ≡ I2(X) : K · I1 for all metavariables
(X : Γ→ K) ∈ Φ.

Proof:
Let {Φξ}ξ∈Ξ be a family of T -theories. Choosing well-orderings on Ξ and Φξ’s,
one can make the disjoint coproduct

∐
ξ∈Ξ Φξ a well-ordered finitary environment.

The universal property is immediate from the definition of morphisms.
Let I1, I2 : Φ → Ψ be morphisms of T -theories. Let (I1 ≡ I2) be the relative

environment over Ψ consisting of assumptions HX : Γ · I1 → I1(X) ≡ I2(X) : K · I1

for all metavariable (X : Γ→ K) ∈ Φ and well-ordered by HX < HY if X < Y. The
well-formedness of (I1 ≡ I2) is proved by induction on X ∈ Φ. If (I1 ≡ I2)<HX

is
well-formed, then we have T,Ψ . (I1 ≡ I2)<HX

` 0 → (I1)<X ≡ (I2)<X : Φ<X. By
equality instantiation, we have T,Ψ . (I1 ≡ I2)<HX

` Γ · I1 → I2(X) : K · I1, and
thus HX is well-formed over (I1 ≡ I2)<HX

. The universal property is immediate
from the definition of morphisms. 2

4.7.5. Corollary. Any morphism I : Φ→ Ψ in Th(T) factors as an inclusion
of environments followed by an isomorphism.

Proof:
Ψ is isomorphic to the coequalizer Ψ′ of inl, inr ◦ I : Φ→ Φ + Ψ. Then I factors
as

Φ Φ + Ψ Ψ′ Ψ.inl ∼=

2

For some special colimits, there are better constructions.

4.7.6. Proposition. Let Φ be a T -theory. Then Φ is the colimit of the chain
{Φ≤x}x∈Φ.

Proof:
Let Ψ be a T -theory and {Ix : Φ≤x → Ψ}x∈T a cone in Th(T). For x ≤ y, the
restriction of the instantiation Iy to Φ≤x is equivalent to Ix but not necessarily
equal, so we cannot simply take the union of {Ix}x∈T . By transfinite induction,
we replace {Ix}x∈T by some {I ′x}x∈T such that Ix is equivalent to I ′x and the
restriction of I ′y to Φ≤x is equal to I ′x, and then the union of {I ′x}x∈T determines

110 Chapter 4. Second-order generalized algebraic theories

a morphism I : Φ → Ψ whose restriction to Φ≤x is Ix. Let (x : Γ→ e) ∈ T
be a metavariable or assumption and suppose that I ′y is defined for all y < x.

Then the union of
{
I ′y
}
y<x

determines an instantiation I ′<x of Φ<x in Ψ, and the

restriction of Ix to Φ<x is equivalent to I ′<x. By equality instantiation, we derive
Γ · I ′<x → Ix(x) : e · I ′<x. Thus, the extension of I ′<x by x 7→ Ix(x) determines an
instantiation I ′x of Φ≤x in Ψ equivalent to Ix.

Let I1, I2 : Φ → Ψ be two morphisms that agree on every Φ≤x. That is,
T,Φ≤x ` Γ · I1 → I1(X) ≡ I2(X) : K · I1 for any x ∈ T and any metavariable
(X : Γ→ K) ≤ x. Then we have T,Φ ` Γ · I1 → I1(X) ≡ I2(X) : K · I1 for any
metavariable (Φ : Γ→ K) ∈ Φ, and thus I1 and I2 are equal morphisms. 2

4.7.7. Proposition. Let I : Φ1 → Φ2 be a morphism of T -theories. If Φ1 is
extended by a metavariable or assumption (x : Γ→ e), then Φ2 is extended by
(x : Γ · I → e · I) and the square

Φ1 Φ2

Φ1 . (x : Γ→ e) Φ2 . (x : Γ · I → e · I)

I

I+id

is a pushout in Th(T).

Proof:
Let J1 : Φ1 . (x : Γ→ e) → Ψ and J2 : Φ2 → Ψ be morphisms such that J1|Φ1 =
J2 ◦ I, that is, the instantiations J1|Φ1 and J2 ◦ I are equivalent. By equality
instantiation, we derive T,Ψ ` Γ ·(J2 ◦ I)→ J1(x) : e ·(J2 ◦ I) which is equivalent
to T,Ψ ` (Γ · J2) · I → J1(x) : (e · J2) · I. Thus, the extension of J2 by x 7→ J1(x)
determines a morphism J : Φ2 . (x : Γ · I → e · I)→ Ψ such that J ◦ (I + id) = J1

and J |Φ2 = J2.

For two morphisms J1, J2 : Φ2 . (x : Γ · I → e · I) → Ψ, if they agree on
Φ1 . (x : Γ→ e) and Φ2, then clearly J1 = J2. 2

To see that Th(T) is compactly generated, we observe that every T -theory is
built out of finite theories under colimits. By Proposition 4.7.6, any T -theory Φ is
the colimit of the chain {Φ≤x}x∈Φ. We write each step Φ<x → Φ≤x as a pushout
of a morphism between finite T -theories as follows. First, fix a derivation Dx

over Φ<x of the well-formedness condition of each x ∈ Φ. We write y / x when y
appears in Dx, and let /+ and /∗ be the transitive closure and the reflexive and
transitive closure, respectively, of /. Since Dx is finite and Φ is well-ordered, the

4.7. Theories over a SOGAT 111

subtheory Φ/∗x ⊂ Φ≤x is finite. By Proposition 4.7.7, the square of inclusions

Φ/+x Φ<x

Φ/∗x Φ≤x

is a pushout in Th(T).

4.7.8. Lemma. The finite T -theories form a strong generator of Th(T), that
is, the family of functors Hom(Φ,−) : Th(T) → Set indexed over the finite
T -theories is jointly faithful and jointly conservative.

Proof:
Let I : Ψ1 → Ψ2 be a morphism of T -theories. For a T -theory Φ, the map I∗ :
Hom(Φ,Ψ1) → Hom(Φ,Ψ2) is the limit of I∗ : Hom(Φ≤x,Ψ1) → Hom(Φ≤x,Ψ2)
for all x ∈ Φ. Moreover, the map I∗ fits into the following diagram

Hom(Φ≤x,Ψ1) Hom(Φ≤x,Ψ2)

Hom(Φ/∗x,Ψ1) Hom(Φ/∗x,Ψ2)

Hom(Φ<x,Ψ1) Hom(Φ<x,Ψ2)

Hom(Φ/+x,Ψ1) Hom(Φ/+x,Ψ2)

I∗

I∗

I∗

I∗

in which the side squares are pullbacks. Then, by transfinite induction, we see:
if I∗ = I ′∗ : Hom(Φ,Ψ1) → Hom(Φ,Ψ2) for any finite Φ, then I = I ′; and if
I∗ : Hom(Φ,Ψ1)→ Hom(Φ,Ψ2) is invertible for any finite Φ, then I is invertible.
2

4.7.9. Lemma. Any finite T -theory is compact in Th(T).

Proof:
Let {Φξ}ξ∈Ξ be a directed diagram of T -theories and let Φ denote its colimit. Let

Φ′ξ = colimξ′≤ξ Φξ′ . The diagram
{

Φ′ξ
}
ξ∈Ξ

is isomorphic to {Φξ}ξ∈Ξ, but it has a

better property. From the construction of colimits described in Proposition 4.7.4,
the morphism Φ′ξ1 → Φ′ξ2 for ξ1 ≤ ξ2 is an inclusion of environments and Φ is the

directed union of
{

Φ′ξ
}
ξ∈Ξ

. For any derivation of T,Φ ` Γ → H with Γ finite,

there exists a ξ ∈ Ξ such that the context Γ and the judgment head H are over Φ′ξ

112 Chapter 4. Second-order generalized algebraic theories

and T,Φ′ξ ` Γ→ H, because the number of metavariables and assumptions used
in the derivation is finite. Then it follows that any morphism I : Ψ→ Φ with Ψ
finite factors through some Φ′ξ and that, if I1 : Ψ→ Φ′ξ1 and I2 : Ψ→ Φ′ξ2 become
equal in Φ, then they become equal at some ξ ≥ ξ1, ξ2. Hence, for any finite T -
theory Ψ, the functor Th(T)(Ψ,−) : Th(T)→ Set preserves directed colimits. 2

4.7.10. Theorem. For any SOGAT T , the category Th(T) is compactly gener-
ated and the compact objects are those isomorphic to a finite T -theory.

Proof:
By Proposition 4.7.4, Th(T) is cocomplete. By Lemmas 4.7.8 and 4.7.9, Th(T)
has a strong generator consisting of compact objects. Hence, Th(T) is compactly
generated. From the construction of colimits in Proposition 4.7.4, finite T -theories
are closed under finite colimits, and thus any compact object is isomorphic to a
finite T -theory. 2

4.8 Semantics of SOGATs

We give a connection between SOGATs and CwRs. In Section 4.8.1 we construct
a CwR Cl(T) called the syntactic CwR of a SOGAT T . The goal of this section
is to spell out the universal property of Cl(T). We introduce interpretations of
a SOGAT T in a CwR C in Section 4.8.2 and show in Section 4.8.3 that the
interpretations of T in C are equivalent to the morphisms of CwRs from Cl(T) to
C. An interpretation of T is defined to be a function on symbols of T , from which
we can derive the universal property of Cl(T). We also show in Section 4.8.4 that
any CwR is equivalent to the syntactic category of some SOGAT.

4.8.1 Syntactic categories

4.8.1. Definition. Let T be a SOGAT. We define a category Cl(T) as follows.

� The objects are the well-ordered finite environments over T .

� The morphisms Φ → Ψ are the instantiations T,Φ ` () → I : Ψ. We
identify two morphisms I1, I2 : Φ→ Ψ when T,Φ ` ()→ I1 ≡ I2 : Ψ.

Alternatively, Cl(T) is the full subcategory of Th(T)op spanned by the finite
T -theories. We call Cl(T) the syntactic CwR because of Proposition 4.8.4 below.

4.8.2. Proposition. For any SOGAT T , the category Cl(T) has finite limits,
and we have an equivalence

Th(T) ' Lex(Cl(T),Set).

4.8. Semantics of SOGATs 113

Proof:
By Theorem 4.7.10. 2

Recall from Section 4.4.3 that, for a context T,Φ ` Γ ok, we have the rela-
tive environment Γ† over Φ, the substitution T,Φ . Γ† ` () → ωΓ : Γ, and the
instantiation T,Φ ` Γ → ΩΓ : Γ†. Moreover, the action of the substitution ωΓ

and the action of the instantiation ΩΓ are mutual inverses and induce a bijective
correspondence between derivable judgments over Φ .Γ† and derivable judgments
over Γ.

4.8.3. Definition. Let T be a SOGAT. We say a morphism in Th(T)op is a
representable map if it is isomorphic to the projection

Φ . Γ† → Φ

for some well-ordered finite context T,Φ ` Γ ok.

4.8.4. Proposition. Let T be a SOGAT. Then Th(T)op is a CwR and Cl(T) ⊂
Th(T)op is a sub-CwR.

Proof:
The pullback of Φ . Γ† along a morphism I : Φ′ → Φ is given by Φ′ . (Γ · I)†, and
thus representable maps of Th(T)op are closed under pullbacks. The identity on
Φ is isomorphic to the representable map Φ . ()† → Φ. The composite of two
representable maps Φ . Γ† → Φ and Φ . Γ† . ∆† → Φ . Γ† is isomorphic to the
representable map Φ . (Γ . (∆ · ΩΓ))† → Φ. It remains to show the exponentia-
bility of a representable map Φ . Γ† → Φ. By Corollary 4.7.5, any object over
Φ . Γ† is isomorphic to a projection Φ . Γ† .Ψ→ Φ . Γ†. Then the pushforward of
Φ . Γ† . Ψ along the representable map Φ . Γ† → Φ is given by Φ . (Ψ · ΩΓ). Note
that the action of the instantiation ΩΓ changes the arity of metavariables and as-
sumptions from Ψ, but Ψ ·ΩΓ remains finitary because Γ is finite. The universal
property of Φ . (Ψ · ΩΓ) follows from the contextual completeness: the sections
of Φ . (Ψ · ΩΓ) → Φ bijectively correspond to the sections of Φ . Γ† . Ψ → Φ . Γ†.
We have proved that Th(T)op is a category with representable maps. Since the
construction of the pushforward along a representable map preserves finiteness,
Cl(T) ⊂ Th(T)op is a subcategory with representable maps. 2

In the next few sections, we show that the syntactic CwR Cl(T) has an
appropriate universal property as follows.

1. When T is the union of a chain (Tα)α<λ indexed over a limit ordinal λ, the
CwR Cl(T) is the colimit of Cl(Tα)’s. As a special case, the syntactic CwR
of the empty SOGAT is the initial CwR.

2. When T = T ′ . (S : Φ⇒ Type), the CwR Cl(T) is obtained from Cl(T ′) by
freely adjoining the morphism Φ . (X : ()→ S(idΦ))→ Φ.

114 Chapter 4. Second-order generalized algebraic theories

3. When T = T ′ . (S : Φ⇒ type), the CwR Cl(T) is obtained from Cl(T ′) by
freely adjoining the representable map Φ . (x : S(idΦ))† → Φ.

4. When T = T ′ . (S : Φ⇒ Prop), the CwR Cl(T) is obtained from Cl(T ′) by
freely adjoining the monomorphism Φ . (: ()→ S(idΦ))→ Φ.

5. When T = T ′ . (S : Φ⇒ prop), the CwR Cl(T) is obtained from Cl(T ′) by
freely adjoining the representable monomorphism Φ . (: S(idΦ))† → Φ.

6. When T = T ′ . (S : Φ ⇒ K), the CwR Cl(T) is obtained from Cl(T ′) by
freely adjoining the section S(idΦ) of the morphism Φ . (X : ()→ K)→ Φ.

7. When T = T ′ . (: Φ ⇒ P), the CwR Cl(T) is obtained from Cl(T ′) by
freely inverting the monomorphism Φ . (: ()→ P)→ Φ.

4.8.5. Example. Let T0 be DTT (Example 4.6.1). Then the syntactic CwR
Cl(T0) is obtained from the initial one as follows:

1. adjoin an object U ;

2. adjoin a representable map E → U .

In other words, Cl(T0) is the free CwR generated by a representable map ∂ :
E → U . Hence, models of Cl(T0) in the sense of Definition 3.2.4 are equivalent
to natural models. We also note that by Example 4.7.2 and Proposition 4.8.2, we
have an alternative proof of the result of [171]: the essentially algebraic theory
of generalized algebraic theories is identified with the category with finite limits
free generated by an exponentiable arrow.

4.8.6. Example. Let T1 be the extension of DTT with Π-types (Example 4.6.3).
Then the syntactic CwR Cl(T1) is obtained from Cl(T0) by freely adjoining a
pullback of the form

P∂(E) E

P∂(U) U.

λ

P∂(∂)
y

∂

Π

The formation rule Π corresponds to the arrow Π : P∂(U) → U and the con-
structor λ corresponds to the arrow λ : P∂(E) → E. The destructor @ and the
equational axioms correspond to the inverse of the induced arrow P∂(E)→ Π∗E.

4.8.2 Interpretations

Let T be a SOGAT and C a CwR. We introduce a notion of an interpretation of T
in C. Since SOGATs are dependently-typed, the definition of an interpretation is
not simple. Intuitively, an interpretation ϕ of T in C assigns a component of C to

4.8. Semantics of SOGATs 115

each symbol of T and is extended to an interpretation [[−]](ϕ) of all well-formed
environments, contexts, and expressions over T . Moreover, it should satisfy the
following conditions.

� Each sort symbol S : Φ ⇒ c is interpreted as an object ϕS ∈ C/[[Φ]]ϕ
where Φ is interpreted as an object of C. If c is type (Prop, prop), then
ϕS is a representable map (monomorphism, representable monomorphism,
respectively).

� Each term symbol S : Φ ⇒ K is interpreted as a section ϕS of [[K]](ϕ)
where K is interpreted as an object of C/[[Φ]](ϕ).

� For any axiom H : Φ⇒ P , the arrow [[P]](ϕ)→ [[Φ]](ϕ) is invertible where
P is interpreted as a subobject of [[Φ]](ϕ).

There are two problems. First, the naive interpretation of types as objects causes
a coherence problem. To solve the coherence problem, we use the splitting tech-
nique of Hofmann [78]. Second, the definition of an interpretation and the exten-
sion [[−]] of an interpretation are mutually dependent. To resolve this dependency,
we first define an interpretation ϕ of the underlying symbol signature T |expr, ex-
tend it to an interpretation [[−]](ϕ) of all expressions over T |expr, and then define
an interpretation of T to be an interpretation of T |expr satisfying certain well-
formedness conditions. Since there can be meaningless expressions over T |expr,
we have to define the extended interpretation [[e]](ϕ) as a partial interpretation,
following Pitts [138], Streicher [160], and Initiality Project [86]. We will show a
form of soundness: [[e]](ϕ) is defined whenever e is well-formed.

We deal with partiality inside the topos X = Fun(Cop,Set) of presheaves over
C. Hofmann’s splitting of C gives rise to a representable map typeofX : termX →
TypeX of presheaves over C. We think of TypeX and termX as presheaves of
“semantic types” and “semantic terms”, respectively. The fundamental idea is
to interpret a type expression (term expression) over a variable signature γ as a
partial map from termγ

X to TypeX (to termX , respectively) of presheaves. Working
in the topos of presheaves also allows us to reuse the construction in another topos
with sufficient structure. For example, we will use the topos X↙↘ of spans in X
to define a notion of an isomorphism between interpretations.

In this section, we assume that the reader is familiar with basic topos theory
and the internal language of a topos [106, 119, 92, 93].

4.8.7. Remark. One way of understanding the definition of ItprX (T) below is
first to translate complex type dependency into higher-order logic [cf. 91, 53] and
then to interpret the resulting higher-order theory in the topos X .

The internal language of a topos

We extensively use the internal language of a topos [106, 93]. The internal lan-
guage of a topos X is the simply-typed lambda calculus in which the types are

116 Chapter 4. Second-order generalized algebraic theories

the objects in X and the terms are the maps in X . We write t : 1 → Ω for the
subobject classifier and P A for the power object of A, and use the notations

{x : A | P} = λx.P

a ∈ α = α(a)

for terms Γ, x : A ` P : Ω, Γ ` a : A, and Γ ` α : P A. The subobject classifier Ω
supports logical connectives >,⊥,∧,∨, -> and quantifiers ∀,∃.

We further extend the language by the partiality monad. For an object A ∈ X ,
the partial map classifier A⊥ is defined to be Pt(A), where Pt is the polynomial
functor associated with t. In the internal language, A⊥ can be defined to be the
subobject of Ω× P A named by

{(P, α) : Ω× P A | (∀x1x2.x1 ∈ α ∧ x2 ∈ α -> x1 == x2) ∧ ((∃x.x ∈ α)↔ P)}.

In other words, an element of A⊥ is a pair (P, α) consisting of a proposition P and
a function α from P to A. The assignment A 7→ A⊥ is part of a strong monad
and Ω is an algebra for the monad. We thus introduce the “let” notation [127].
Concretely, given terms Γ ` a : A⊥ and Γ, x : A ` P : Ω, we define a term

Γ ` let x⇐ a in P : Ω

to be

proj1(a) ∧ ∀x ∈ proj2(a).P.

When a = (Q,α), the proposition let x⇐ a in P is true if Q is true and P is true
for the unique element x ∈ α. We also introduce the notation

a ↓ := let ⇐ a in >.

We write A ⇀ B for the type A -> B⊥ of partial maps from A to B. Then, for a
partial map f : A ⇀ B and an element a : A, the notation f(a) ↓ means that f
is defined at a. We write dom f for the domain of a partial map f : A ⇀ B, that
is, dom f = {x : A | f(x) ↓} : P A.

Interpretations

Let C be a CwR and X denote the topos of presheaves over C.

4.8.8. Construction. The topos X contains the following objects and maps.

� The weak representable map classifier typeofX : termX → TypeX in the
sense that any representable map of presheaves over C is (not uniquely)
a pullback of typeofX . Concretely, one can define TypeX to be the right
adjoint splitting [158] of the codomain fibration C→ → C.

4.8. Semantics of SOGATs 117

� The subobject typeX ⊂ TypeX spanned by the representable maps in C,
that is, a section Y x → TypeX factors through typeX if and only if the
corresponding arrow y → x in C is a representable map;

� The subobject PropX ⊂ TypeX spanned by the monomorphisms. The pull-
back of typeofX along the inclusion PropX → TypeX is a monomorphism,
and let trueX : PropX → Ω denote the characteristic map.

� The subobject propX = typeX ∩ PropX ⊂ TypeX .

� A pullback of the form

termX termX

termX ×TypeX termX TypeX

reflX

∆
y

typeofX

IdX

defined by (chosen) finite limits in C. Since the diagonal map is a monomor-
phism, IdX factors through PropX .

We view TypeX (typeX , PropX , propX , termX) as a presheaf of “semantic”
types (representable types, propositions, representable propositions, terms, re-
spectively). We will interpret expressions as partial functions on semantic terms:

� define ItprX (γ) = termγ
X for any variable signature γ;

� define ExprX (γ, c) = ItprX (γ) ⇀ cX for any variable signature γ and any
syntactic class c.

We define a presheaf of interpretations of a symbol (metavariable) signature as
follows:

� ItprX (µ) =
∏

(X:γ)∈µ ExprX (γ, term) for any metavariable signature µ;

� ItprX (Σ) =
∏

(S:µ⇒c)∈Σ ItprX (µ) ⇀ cX for any symbol signature Σ;

� ItprX (Σ, µ) = ItprX (Σ)× ItprX (µ).

We also define “semantic” substitutions and instantiations:

� SubstX (γ, δ) = ExprX (γ, term)δ for any variable signatures γ and δ;

� InstX (γ, ν) =
∏

(Y:δ)∈ν ExprX (γ + δ, term) for any variable signature γ and
any metavariable signature ν.

118 Chapter 4. Second-order generalized algebraic theories

The action of semantic substitutions

ExprX (δ, c)× SubstX (γ, δ)→ ExprX (γ, c)

is defined by the composition of partial maps. For the action of semantic instan-
tiations (

ItprX (ν) -> ExprX (γ, c)
)
× InstX (γ′, ν)→ ExprX (γ′ + γ, c),

observe that ExprX (γ′ + γ, c) ∼= ItprX (γ′) -> ExprX (γ, c). We then have a map

ItprX (ν) -> ExprX (γ, c)

→
(

ItprX (γ′) -> ItprX (ν)
)
->
(

ItprX (γ′) -> ExprX (γ, c)
)

∼= InstX (γ′, ν) -> ExprX (γ′ + γ, c),

and the function application defines the action of semantic instantiations.
Let Σ be a symbol signature and µ a metavariable signature. Then the family

of sets Hom(ItprX (Σ, µ),ExprX (γ, c)) indexed over pairs of a variable signature
γ and a syntactic class c has the same structure as ExprΣ,µ(γ, c) defined by the
following operations:

� varX (x) : 1 → ExprX (γ, term) for any variable x ∈ γ defined by the x-th
projection termγ

X → termX ;

� mvarX (X) : ItprX (µ) × SubstX (γ, δ) → ExprX (γ, term) for any metavari-
able (X : δ) ∈ µ defined by the X-th projection followed by the action of
substitutions;

� symX (S) : ItprX (Σ) × InstX (γ, ν) → ExprX (γ, c) for any symbol (S : ν ⇒
c) ∈ Σ defined by the S-th projection followed by the action of instantia-
tions;

� ExprX (γ, type)→ ExprX (γ,Type) induced by the inclusion typeX → TypeX ;

� ExprX (γ, prop)→ ExprX (γ,Prop) induced by the inclusion propX → PropX ;

� eqX : ExprX (γ,Type)×ExprX (γ, term)×ExprX (γ, term)→ ExprX (γ,Prop)
induced by the map IdX .

We then have a unique structure-preserving map

[[−]] : ExprΣ,µ(γ, c)→ Hom
(

ItprX (Σ, µ),ExprX (γ, c)
)
.

It is immediate from the definition that [[−]] preserves the action of substitutions
and instantiations: a substitution Σ, µ ` f : γ′ → γ is interpreted as a map

4.8. Semantics of SOGATs 119

[[f]] : ItprX (Σ, µ) → SubstX (γ′, γ) and [[e · f]] is equal to the action of [[f]] on
[[e]]; an instantiation Σ, µ′ ` I : γ′ ⇒ µ is interpreted as a map [[I]] : ItprX (Σ,

µ′) → InstX (γ′, µ) and [[e · I]] is equal to the action of [[I]] on [[e]]′ where [[e]]′ :
ItprX (Σ) → (ItprX (µ) -> ExprX (γ, c)) is the transpose of [[e]]. As a special case,
[[−]] preserves weakening on both variable signatures and metavariable signatures.

We will define ItprX (T) as a subobject of ItprX (T |expr). For a judgment head
H over Σ, µ, and γ, we define a map

(− |= H) : ItprX (Σ, µ)× ItprX (γ)→ Ω

by

((ϕ, ψ) |= a : K) = let u⇐ [[a]](ϕ, ψ), v⇐ [[K]](ϕ, ψ) in typeofX (u) == v

((ϕ, ψ) |= P) = let v⇐ [[P]](ϕ, ψ) in trueX (v).

For a context Γ over Σ and µ, we define a map

[[Γ]] : ItprX (Σ, µ)→ P
(

ItprX (Γ|term)
)

by

[[Γ]](ϕ) = {ψ ∈ ItprX (Γ|term) | (
∧

(x:A)∈Γ

(ϕ, ψ) |= x : A) ∧ (
∧

(H:p)∈Γ

(ϕ, ψ) |= p)}.

For a judgment Γ→ H, we define a map

(− |= Γ→ H) : ItprX (Σ, µ)→ Ω

by

(ϕ |= Γ→ H) = ∀ψ ∈ [[Γ]](ϕ).(ϕ, ψ) |= H.

We extend the notation |= for a family of judgments by conjunction. For an
environment Φ over Σ, we define a map

[[Φ]] : ItprX (Σ)→ P
(

ItprX (Φ|term)
)

by

[[Φ]](ϕ) = {ψ ∈ ItprX (Φ|term) | (
∧

(X:Γ→K)∈Φ

domψX == [[Γ]](ϕ, ψ)

∧ (ϕ, ψ) |= Γ→ X(idΓ) : K) ∧ (
∧

(H:Γ→P)

(ϕ, ψ) |= Γ→ P)}.

120 Chapter 4. Second-order generalized algebraic theories

For an environment Φ and a judgment Γ→ H over Φ, we define a map

(− |= Φ,Γ→ H) : ItprX (Σ)→ Ω

by

(ϕ |= Φ,Γ→ H) = ∀ψ ∈ [[Φ]](ϕ).(ϕ, ψ) |= Γ→ H.

For a pretheory T , we define a subobject ItprX (T) ⊂ ItprX (T |expr) to be named
by

{ϕ ∈ ItprX (T |expr) | (
∧

(S:Φ⇒c)∈T

domϕS == [[Φ]](ϕ)) ∧ (
∧

(S:Φ⇒K)∈T

domϕS == [[Φ]](ϕ)

∧ ϕ |= Φ, ()→ S(idΦ) : K) ∧ (
∧

(H:Φ⇒P)∈T

ϕ |= Φ, ()→ P)}.

By definition, a map ϕ : A → ItprX (T) assigns to each symbol S : Φ ⇒ c of
T a partial map ϕS in X/A represented by a span

A∗ItprX (Φ|term) domϕS A∗cX
ϕS

whose left leg is a monomorphism. The domain domϕS of this partial map is

required to be named by the map [[Φ]](ϕ) : A→ P
(

ItprX (Φ|term)
)

. When S is a

term symbol Φ⇒ K, the partial map [[K]](ϕ) : A ⇀ TypeX is defined on domϕS
by soundness below, and the following diagram commutes.

termX

domϕS TypeX

typeofX
ϕS

[[K]](ϕ)

For any axiom : Φ ⇒ P of T , the partial map [[P]](ϕ) : A ⇀ PropX is defined
on [[Φ]](ϕ) and factors through termX .

termX

[[Φ]](ϕ) PropX

typeofX

[[P]](ϕ)

4.8.9. Proposition (Soundness). If T,Φ ` Γ→ H, then the topos X satisfies

∀ϕ ∈ ItprX (T).ϕ |= Φ,Γ→ H.

4.8. Semantics of SOGATs 121

Proof:
By induction on derivation. Since equality ≡ is interpreted as the equality in X ,
the congruence rules and the conversion rules are trivial. By construction, the
following hold in the topos X ,

ϕ |= Φ,Γ→ x : A ((x : A) ∈ Γ)

ϕ |= Φ,Γ→ p ((H : p) ∈ Γ)

ϕ |= Φ,Γ→ X(idΓ) : K ((X : Γ→ K) ∈ Φ)

ϕ |= Φ,Γ→ P ((H : Γ→ P) ∈ Φ)

ϕ |= Φ, ()→ S(idΦ) : K ((S : Φ⇒ K) ∈ T)

ϕ |= Φ, ()→ P ((H : Φ⇒ P) ∈ T)

where ϕ ∈ ItprX (T). Therefore, the substitution lemma and the instantiation
lemma below complete the proof. 2

4.8.10. Lemma (Substitution Lemma). The topos X satisfies

∀ϕ ∈ ItprX (T).∀ψ ∈ [[Φ]](ϕ).((ϕ, ψ) |= ∆→ H) -> ((ϕ, ψ) |= Γ→ f : ∆)

-> ((ϕ, ψ) |= Γ→ H · f)

for any judgment ∆→ H over T |expr and Φ|term and any substitution T |expr,Φ|term `
f : Γ|term → ∆|term.

Proof:
Straightforward. 2

4.8.11. Lemma (Instantiation Lemma). The topos X satisfies

∀ϕ ∈ ItprX (T).(ϕ |= Ψ,∆→ H) -> (ϕ |= Φ,Γ→ I : Ψ)

-> (ϕ |= Φ,Γ . (∆ · I)→ H · I)

for any judgment ∆→ H over T |expr and Ψ|term and any instantiation T |expr,Φ|term `
I : Γ|term ⇒ Ψ|term.

Proof:
Straightforward. 2

Well-ordered interpretations

When T is a SOGAT, in which symbols and axioms are well-ordered, the presheaf
ItprX (T) can be described inductively. We begin with interpretations of well-
ordered contexts. For a context Γ over T and Φ, let ItprX (T,Φ) denote the sub-
object of ItprX (T)× ItprX (Φ|term) named by [[Φ]] and ItprX (T,Φ,Γ) the subobject
of ItprX (T,Φ)× ItprX (Γ|term) named by [[Γ]].

122 Chapter 4. Second-order generalized algebraic theories

4.8.12. Proposition. For a well-ordered finite context Γ over T and Φ, we have
the following description of ItprX (T,Φ,Γ).

1. When Γ = (), we have ItprX (T,Φ,Γ) ∼= ItprX (T,Φ).

2. When Γ = Γ′ . (x : A) for a small type T,Φ ` Γ′ → A type, the partial map
[[A]] is defined on [[Γ′]] by soundness, and we have a pullback

ItprX (T,Φ,Γ) termX

ItprX (T,Φ,Γ′) typeX .

y
typeofX

[[A]]

3. When Γ = Γ′ .(H : p) for a small proposition T,Φ ` Γ′ → p prop, the partial
map [[p]] is defined on [[Γ′]] by soundness, and we have a pullback

ItprX (T,Φ,Γ) termX

ItprX (T,Φ,Γ′) propX .

y
typeofX

[[p]]

Proof:
Item 1 is trivial. Item 2 is equivalent to that X satisfies

∀ϕ ∈ ItprX (T,Φ).∀ψ ∈ ItprX (Γ|term).ψ ∈ [[Γ]](ϕ)↔ (ψΓ′ ∈ [[Γ′]](ϕ)

∧ let u⇐ [[A]](ψΓ′) in typeofX (ψx) == u). (4.2)

By definition, ψ ∈ [[Γ]](ϕ) if and only if (ϕ, ψ) |= y : B for any variable (y : B) ∈ Γ
and if (ϕ, ψ) |= p for any hypothesis (H : p) ∈ Γ. For any variable or hy-
pothesis (y : e) of Γ, the expression e is over Γ′ by the well-orderedness of
Γ. Since [[−]] preserves weakening, we see that (ϕ, ψ) |= y : e is equivalent to
(ϕ, ψΓ′) |= y : e for (y : e) ∈ Γ′ and that (ϕ, ψ) |= x : A is equivalent to
let u ⇐ [[A]](ψΓ′) in typeofX (ψx) == u, from which Eq. (4.2) follows. Item 3 is
similarly proved. 2

4.8.13. Corollary. For any well-ordered finite context Γ over T |expr and Φ|term,
the projection map ItprX (T,Φ,Γ)→ ItprX (T,Φ) is representable by representable
maps in C in the sense that, for any section ϕ : YC x→ ItprX (T,Φ), the pullback
ϕ∗ItprX (T,Φ,Γ) is representable by some object y ∈ C and the arrow y → x is a
representable map in C.

Proof:
This is because the map typeofX : termX → typeX has this property. 2

4.8. Semantics of SOGATs 123

4.8.14. Proposition. For a well-ordered finite environment Φ over T , we have
the following description of ItprX (T,Φ).

1. When Φ = (), we have ItprX (T,Φ) ∼= ItprX (T).

2. When Φ = Φ′ . (X : Γ→ K) for a type T,Φ′ ` Γ→ K Type, the partial map

[[K]] is defined on [[Γ]] by soundness. Let [̃[K]] be the pullback

[̃[K]] termX

ItprX (T,Φ′,Γ) TypeX ,

y
typeofX

[[K]]

and we have an isomorphism

ItprX (T,Φ) ∼=
∏

ItprX (T,Φ′,Γ) [̃[K]]

over ItprX (T,Φ′).

3. When Φ = Φ′ . (H : Γ→ P) for a proposition T,Φ′ ` Γ → P Prop, the

partial map [[P]] is defined on [[Γ]] by soundness. Let [̃[P]] be the pullback

[̃[P]] termX

ItprX (T,Φ′,Γ) PropX ,

y
typeofX

[[P]]

and we have an isomorphism

ItprX (T,Φ) ∼=
∏

ItprX (T,Φ′,Γ) [̃[P]]

over ItprX (T,Φ′).

Proof:
Item 1 is trivial. Item 2 is equivalent to that X satisfies

∀ϕ ∈ ItprX (T).∀ψ ∈ ItprX (Φ|term).ψ ∈ [[Φ]](ϕ)↔ (ψΦ′ ∈ [[Φ′]](ϕ)

∧ domψX == [[Γ]](ϕ, ψΦ′) ∧ (∀χ ∈ [[Γ]](ϕ, ψΦ′). let u⇐ ψX(χ),

v⇐ [[K]](ϕ, ψΦ′ , χ) in typeofX (u) == v)).

This is easily verified by the definition of [[Φ]] since [[−]] preserves weakening.
Item 3 is similarly proved. 2

124 Chapter 4. Second-order generalized algebraic theories

4.8.15. Corollary. For any well-ordered finite environment Φ over T , the pro-
jection map ItprX (T,Φ) → ItprX (T) is a representable map of presheaves over
C.

Proof:
The map typeofX : termX → TypeX is a representable map of presheaves over C
by definition. Since representable maps in C is exponentiable, representable maps
of presheaves over C are closed under pushforwards along representable maps in
C. Thus, by Corollary 4.8.13, representable maps of presheaves over C are closed
under pushforwards along the projection ItprX (T,Φ′,Γ)→ ItprX (T,Φ′). 2

4.8.16. Proposition. For a SOGAT T , we have the following description of
ItprX (T).

1. When T is the union of a chain (Tα)α<λ indexed over a limit ordinal λ, we
have an isomorphism

ItprX (T) ∼= lim
α<λ

ItprX (Tα).

As a special case, we have ItprX (T) ∼= 1 when T = ().

2. When T = T ′.(S : Φ⇒ c) for a well-formed finite environment Φ over T ′

and c ∈ {Type, type,Prop, prop}, we have an isomorphism

ItprX (T) ∼=
∏

ItprX (T ′,Φ) cX

over ItprX (T ′).

3. When T = T ′ . (S : Φ⇒ K) for a type T ′,Φ ` () → K Type, the partial

map [[K]] is defined on [[()]] by soundness. Let [̃[K]] be the pullback

[̃[K]] termX

ItprX (T ′,Φ) TypeX ,

y
typeofX

[[K]]

and we have an isomorphism

ItprX (T) ∼=
∏

ItprX (T ′,Φ) [̃[K]]

over ItprX (T ′).

4.8. Semantics of SOGATs 125

4. When T = T ′ . (H : Φ⇒ P) for a proposition T ′,Φ ` () → P Prop, the

partial map [[P]] is defined on [[()]] by soundness. Let [̃[P]] be the pullback

[̃[P]] termX

ItprX (T ′,Φ) PropX ,

y
typeofX

[[P]]

and we have an isomorphism

ItprX (T) ∼=
∏

ItprX (T ′,Φ) [̃[P]]

over ItprX (T ′).

Proof:
Similar to Proposition 4.8.14. 2

Isomorphisms of interpretations

When defining the object ItprX (T), we have only used the objects and the maps
listed in Construction 4.8.8. Furthermore, we do not need the fact that typeofX
is the weak representable map classifier for constructing ItprX (T). Therefore,
the same construction works in an arbitrary topos with sufficient structure. We
define a presheaf of isomorphisms of interpretations by applying the construction
to the topos of spans X↙↘, that is, the category of functors from the category
{0← 01→ 1} to X .

We define a span (π1, π2) : TypeX↙↘ → TypeX × TypeX to be the morphism
part of the internal groupoid associated to the map typeofX : termX → TypeX ,
that is, for a pair of maps (a1, a2) : A → TypeX × TypeX , a section of TypeX↙↘
over (a1, a2) corresponds to an isomorphism a∗1termX ∼= a∗2termX over A. It thus
has the generic isomorphism π∗1termX ∼= π∗2termX , and we have a map of spans

termX termX↙↘ termX

TypeX TypeX↙↘ TypeX

typeofX typeofX↙↘

x y
typeofX (4.3)

such that both squares are pullbacks. Let typeX↙↘ ⊂ TypeX↙↘ be the pullback
of TypeX↙↘ along the inclusion typeX × typeX → TypeX × TypeX . The objects
PropX↙↘ and propX↙↘ are constructed in the same way as those in X . One can
lift IdX and reflX to maps of spans.

126 Chapter 4. Second-order generalized algebraic theories

We define ItprX↙↘(−) in the same way as ItprX (−). Since the projection
X↙↘ → X × X preserves all the structures involved with the construction,
ItprX↙↘(−) is a span of the form

ItprX↙↘(−)→ ItprX (−)× ItprX (−).

For example, we have a span ItprX↙↘(T)→ ItprX (T)× ItprX (T) for any SOGAT
T . Sections of ItprX↙↘(T) are isomorphisms of interpretations.

We would like to make the span ItprX↙↘(−) part of an internal groupoid
in X . Since ItprX↙↘(γ) is the product of copies of termX↙↘ for a variable sig-
nature γ, it carries an internal groupoid structure. However, we cannot make
ItprX↙↘(µ) an internal groupoid for a metavariable signature µ. To see this,
let ϕ1, ϕ2, ϕ3 : A → ItprX (µ) be maps, f1 : A → ItprX↙↘(µ) a section over
(ϕ1, ϕ2), and f2 : A → ItprX↙↘(µ) a section over (ϕ2, ϕ3). These data induce
partial maps in X/A fitting into the diagram in Fig. 4.5 for each metavariable
(X : γ) ∈ µ. One would define the composition of f1 and f2 by taking the pullback
of (f1)X and (f2)X over (ϕ2)X and composing it with the composition operators
on termX↙↘ and ItprX↙↘(γ). However, this would not work because the induced
map dom(f1)X×dom(ϕ2)X dom(f2)X → A∗ItprX↙↘(γ) need not be a monomorphism.
A sufficient condition for this map to be a monomorphism is that the vertical
maps in the middle column in Fig. 4.5 are all isomorphisms. We define a subob-
ject Itpr

∼=
X↙↘(µ) ⊂ ItprX↙↘(µ) in such a way that a map f : A → ItprX↙↘(µ)

over (ϕ, ψ) factors through Itpr
∼=
X↙↘(µ) if and only if the maps dom fX → domϕX

and dom fX → domψX are isomorphisms for any metavariable X in µ. Then, if
f1 and f2 factors through Itpr

∼=
X↙↘(µ), then they can be composed and the com-

position again factors through Itpr
∼=
X↙↘(µ). In this way, Itpr

∼=
X↙↘(µ) is equipped

with an internal groupoid structure.

For the same reason, we cannot define an internal groupoid structure on
ItprX↙↘(Σ) for a symbol signature but can define on a subobject Itpr

∼=
X↙↘(Σ) ⊂

Itpr
∼=
X↙↘(Σ) where a map f : A → ItprX↙↘(Σ) over (ϕ, ψ) factors through

Itpr
∼=
X↙↘(Σ) if and only if for any symbol (S : µ⇒ c) ∈ Σ, the domain dom fS ↪→

A∗ItprX↙↘(µ) factors through A∗Itpr
∼=
X↙↘(µ) and the maps dom fS → domϕS

and dom fS → domψS are isomorphisms.

For the composition operator on ItprX↙↘(T) for a SOGAT T , observe the
following.

4.8.17. Proposition. Let Φ be a well-ordered finite environment Φ over T and
Γ a well-ordered finite context over T and Φ. Then all the squares in the following

4.8. Semantics of SOGATs 127

A∗ItprX (γ) dom(ϕ1)X A∗termX

A∗ItprX↙↘(γ) dom(f1)X A∗termX↙↘

A∗ItprX (γ) dom(ϕ2)X A∗termX

A∗ItprX↙↘(γ) dom(f2)X A∗termX↙↘

A∗ItprX (γ) dom(ϕ3)X A∗termX

(ϕ1)X

(f1)X

(ϕ2)X

(f2)X

(ϕ3)X

Figure 4.5: Composition of isomorphisms of interpretations

diagram are pullbacks.

ItprX (T,Φ,Γ) ItprX↙↘(T,Φ,Γ) ItprX (T,Φ,Γ)

ItprX (T,Φ) ItprX↙↘(T,Φ) ItprX (T,Φ)

ItprX (T) ItprX↙↘(T) ItprX (T)

Proof:
This follows from Propositions 4.8.12 and 4.8.14, since both squares in Eq. (4.3)
are pullbacks. 2

Proposition 4.8.17 implies that a section f : A → ItprX↙↘(T,Φ) over a map
(ϕ, ψ) : A→ ItprX (T,Φ)× ItprX (T,Φ) induces isomorphisms

ϕ∗ItprX (T,Φ,Γ) f ∗ItprX↙↘(T,Φ,Γ) ψ∗ItprX (T,Φ,Γ).
∼= ∼=

For a metavariable (X : Γ→ K) ∈ Φ, the presheaf ϕ∗ItprX (T,Φ,Γ) is precisely the
domain of the partial map ϕX, and thus we have ItprX↙↘(T,Φ) ⊂ ItprX↙↘(T)×
Itpr

∼=
X↙↘(Φ|term). Similarly, ItprX↙↘(T) ⊂ Itpr

∼=
X↙↘(T |expr). One can see that

ItprX (T) is closed under the internal groupoid structure.

128 Chapter 4. Second-order generalized algebraic theories

4.8.3 Functorial semantics

Let T be a SOGAT and C a CwR. We define a groupoid Itpr(T, C) of interpreta-

tions of T in C to be Hom
(

1, ItprX (T)
)

where X is the topos of presheaves over

C and we view ItprX (T) as an internal groupoid with the span ItprX↙↘(T).
The assignment Φ 7→ ItprX (T,Φ) is naturally extended to a functor

ItprX (T,−) : Cl(T)→ X/ItprX (T).

By Corollary 4.8.15, its image is in the class of representable maps over ItprX (T).
Thus, for any interpretation ϕ : 1→ ItprX (T), the composite of ItprX (T,−) and
the pullback functor along ϕ factors through the Yoneda embedding. We refer to
the induced functor Cl(T)→ C as ϕ?.

Cl(T) C

X/ItprX (T) X

ϕ?

ItprX (T,−) YC

ϕ∗

By Proposition 4.8.17, any isomorphism ϕ ∼= ψ of interpretations induces a nat-
ural isomorphism between ϕ? and ψ?, making (−)? a functor

(−)? : Itpr(T, C)→ k(Fun(Cl(T), C)).

By Corollary 4.8.13 and Proposition 4.8.14, we see that ϕ? preserves representable
maps and pushforwards along representable maps, and thus the functor (−)?

factors through CwR(Cl(T), C).

4.8.18. Theorem. For any SOGAT T and any CwR C, the functor (−)? is an
equivalence of groupoids

Itpr(T, C) ' CwR(Cl(T), C).

To give an inverse, let F : Cl(T) → C be a morphism of CwRs. We would
like to construct an interpretation ϕ ∈ Itpr(T, C) such that ϕ? ∼= F . For a type
symbol (S : Φ ⇒ Type) ∈ T , we have a morphism F (Φ . (X : () → S)) → F (Φ)
in C which corresponds to some map F (S) : Y F (Φ) → TypeX of presheaves.
Intuitively, we would define ϕS to be the map F (S), but the formal definition of
an interpretation requires that ϕS is a partial map from ItprX (Φ|term) to TypeX .
We thus have to make a monomorphism Y F (Φ) ↪→ ItprX (Φ|term).

We first choose a pullback square

Y F (Φ . (x : ()→ S)) termX

Y F (Φ) cX

y
typeofX

F (S)

4.8. Semantics of SOGATs 129

for any sort symbol (S : Φ⇒ c) ∈ T . Then, for any sort T,Φ ` Γ → e ok where
e = S(I) for a sort symbol S : Ψ ⇒ c and an instantiation I, we have a map
F (e · ω) : Y F

(
Φ . Γ†

)
→ cX defined by the composite

Y F
(
Φ . Γ†

)
Y F (Ψ) cX

F (I) F (S)
(4.4)

and have a pullback

Y F
(
Φ . Γ† . (x : ()→ e · ω)

)
termX

Y F
(
Φ . Γ†

)
cX .

πx

y
typeofX

F (e·ω)

Let Φ be a well-ordered finite environment over T and Γ a well-ordered fi-
nite context over T and Φ. We view Y F

(
Φ . Γ†

)
as a subobject of Y F (Φ) ×

ItprX (Γ|term) by induction on the length of Γ. When Γ = (), we have F
(
Φ . Γ†

) ∼=
F (Φ). When Γ = Γ0 . (x : A) for a small type T,Φ ` Γ0 → A type, we have the
pullback

Y F
(
Φ . Γ†

)
termX

Y F
(

Φ . Γ†0

)
typeX .

πx

y
typeofX

F (A·ω)

Then the projections Y F (Φ . Γ†) → Y F (Φ . Γ†0) ↪→ F (Φ) × ItprX (Γ0|term) and

Y F (Φ.Γ†)→ termX are jointly monic and thus determine a subobject of Y F (Φ)×
ItprX (Γ|term). When Γ = Γ0 . (H : p) for a small proposition T,Φ ` Γ0 → p type,

we have the composite of monomorphisms Y F (Φ . Γ†) ↪→ Y F (Φ . Γ†0) ↪→ F (Φ)×
ItprX (Γ|term).

Let Φ be a well-ordered finite environment over T . We view Y F (Φ) as a
subobject of ItprX (Φ|term) by induction the length of Φ. When Φ = (), we have
F (Φ) ∼= 1. When Φ = Φ0 . (X : Γ→ K) for a type T,Φ0 ` Γ → K Type, the
object F (Φ) is the pushforward of F

(
Φ0 . Γ

† . (x : K · ω)
)

along the representable
map F

(
Φ0 . Γ

†)→ F (Φ0). We have the pullback

Y F
(
Φ0 . Γ

† . (X : ()→ K · ω)
)

termX

Y F
(
Φ0 . Γ

†) TypeX

πX

typeofX

F (K·ω)

and then F (K · ω) determines a partial map from Y F (Φ0) × ItprX (Γ|term) to
TypeX . Let F (K) : Y F (Φ0) → (ItprX (Γ|term) ⇀ TypeX) denote its transpose.

130 Chapter 4. Second-order generalized algebraic theories

Writing dependent maps as partial maps, we see that F (Φ) fits into the pullback

Y F (Φ) ItprX (Γ|term) ⇀ termX

Y F (Φ0) ItprX (Γ|term) ⇀ TypeX .

y
ItprX (Γ|term)⇀typeofX

F (K)

Then the projections Y F (Φ) → Y F (Φ0) ↪→ ItprX (Φ0|term) and Y F (Φ) →
(ItprX (Γ|term) ⇀ termX) are jointly monic and thus determine a subobject of
ItprX (Φ|term). When Φ = Φ0 . (H : Γ→ P) for a proposition T,Φ0 ` Γ→ P Prop,
we have the composite of monomorphisms Y F (Φ) ↪→ Y F (Φ0) ↪→ ItprX (Φ|term).

We are now ready to define an interpretation ϕ : 1 → ItprX (T). We first
define a global section ϕ : 1→ ItprX (T |expr) as follows.

� For a sort symbol (S : Φ⇒ c) ∈ T , we define ϕS to be the partial map

ItprX (Φ|term) Y F (Φ) cX .
F (S)

� For a term symbol (S : Φ⇒ K) ∈ T , the term S(idΦ) determines a section
of the projection Φ . (X : ()→ K)→ Φ. We define ϕS to be the partial map

ItprX (Φ|term) Y F (Φ) Y F (Φ . (X : ()→ K)) termX .
F (S(idΦ)) πX

For a well-formed sort expression T,Φ ` Γ → e c or term expression T,Φ `
Γ → e : K, we have a partial map F (e · ω) from ItprX (Φ|term,Γ|term) to cX : the
case when e is a sort expression is given by Eq. (4.4); when e is a term expression,
we have the partial map

ItprX (Φ|term,Γ|) Y F
(
Φ . Γ†

)
Y F

(
Φ . Γ† . (X : ()→ K)

)
termX .

F (e·ω) πX

4.8.19. Lemma. 1. For any well-ordered finite environment T ` Φ ok, the

subobject Y F (Φ) ⊂ ItprX (Φ|term) is named by [[Φ]](ϕ) : 1→ P
(

ItprX (Φ|term)
)

.

2. For any well-ordered finite context T,Φ ` Γ ok, the subobject Y F
(
Φ . Γ†

)
⊂

ItprX (Φ|term,Γ|term) is named by [[Γ]](ϕ,−) : ItprX (Φ|term)→ P
(

ItprX (Γ|term)
)

.

3. For any sort expression T,Φ ` Γ → e c or term expression T,Φ ` Γ →
e : K, the partial map F (e · ω) from ItprX (Φ|term,Γ|term) to cX is equal to
[[e]](ϕ,−).

4.8. Semantics of SOGATs 131

Proof:
By induction on the well-orderings on Φ and Γ and the derivation of Γ→ e c or
Γ→ e : K. For Item 1 use Proposition 4.8.14. For Item 2 use Proposition 4.8.12.
2

4.8.20. Lemma. The global section ϕ : 1→ ItprX (T |expr) factors through ItprX (T)
and we have ϕ? ∼= F .

Proof:
Immediate from Lemma 4.8.19. 2

Proof of Theorem 4.8.18:
It remains to show that the functor (−)? is fully faithful. Let ϕ, ψ : 1→ ItprX (T)
be two interpretations and σ : ϕ? ∼= ψ? a natural isomorphism. We construct a
unique isomorphism f : ϕ ∼= ψ such that f ? = σ.

Let (S : Φ⇒ Type) ∈ T be a type symbol. ϕS is a partial map from ItprX (Φ|term)
to TypeX and its domain is ϕ∗ItprX (T,Φ). By the definition of ϕ?, the presheaf
ϕ∗ItprX (T,Φ) is representable by ϕ?(Φ), and thus we may regard ϕS as a map
Yϕ?(Φ) → TypeX . Since ϕ∗StermX ∼= Yϕ?(Φ . (X : () → S(idΦ))) by Proposi-
tion 4.8.14, we have isomorphisms

ϕ∗StermX ψ∗StermX

Yϕ?(Φ) Y ψ?(Φ).

σS
∼=

σΦ

∼=

By the definition of TypeX↙↘ , the isomorphism σS corresponds to a map fS :
Yϕ?(Φ)→ TypeX↙↘ such that the following diagram commutes.

Yϕ?(Φ) TypeX

Yϕ?(Φ) TypeX↙↘

Y ψ?(Φ) TypeX

ϕS

fS

σΦ ∼=

ψS

This essentially defines the S-component of f , but formally it should be a par-
tial map from ItprX↙↘(Φ|term) to TypeX↙↘ . We thus make a monomorphism
Yϕ?(Φ) ↪→ ItprX↙↘(Φ|term) in the same way as the proof of the essential surjec-
tivity. For other sort symbols and term symbols, we can build the components of
f in the same way, and it satisfies f ? = σ by construction. The uniqueness of f

132 Chapter 4. Second-order generalized algebraic theories

is immediate since components of f are determined by components of σ. 2

Propositions 4.8.12, 4.8.14 and 4.8.16 and Theorem 4.8.18 give the syntactic
CwR Cl(T) an appropriate universal property.

1. When T is the union of a chain (Tα)α<λ indexed over a limit ordinal λ, we
have an equivalence

CwR(Cl(T), C) ' lim
α<λ

CwR(Cl(Tα), C).

Hence, Cl(T) is the colimit of Cl(Tα)’s. In the case when T = (), we have
CwR(Cl(T), C) ' 1 and Cl(T) is the initial CwR.

2. When T = T ′ .(S : Φ⇒ Type), we had ItprX (T) ∼=
∏

ItprX (T ′,Φ) TypeX . Then

a global section of ItprX (T) corresponds to a pair consisting of a global
section ϕ : 1→ ItprX (T ′) and a section ϕS : ϕ?(Φ)→ TypeX . Since TypeX
is a weak representable map classifier, the section ϕS corresponds to an
object of C/ϕ?(Φ). Therefore, we have a pullback

CwR(Cl(T), C) k(C→)

CwR(Cl(T ′), C) k(C).

y

evΦ

Hence, Cl(T) is obtained from Cl(T ′) by freely adjoining an object over Φ.

3. Similarly, when T = T ′ . (S : Φ⇒ type), we have a pullback

CwR(Cl(T), C) k(RC)

CwR(Cl(T ′), C) k(C)

y

evΦ

where RC ⊂ C→ is the full subcategory spanned by the representable maps.
Hence Cl(T) is obtained from Cl(T ′) by freely adjoining a representable
map over Φ.

4. Similarly, when T = T ′ . (S : Φ⇒ Prop), we have a pullback

CwR(Cl(T), C) k(SubC)

CwR(Cl(T ′), C) k(C)

y

evΦ

where SubC ⊂ C→ is the full subcategory spanned by the monomorphisms.
Hence, Cl(T) is obtained from Cl(T ′) by freely adjoining a subobject of Φ.

4.8. Semantics of SOGATs 133

5. Similarly, when T = T ′ . (S : Φ⇒ prop), we have a pullback

CwR(Cl(T), C) k
(
SubR

C
)

CwR(Cl(T ′), C) k(C)

y

evΦ

where SubR
C ⊂ SubC is the full subcategory spanned by the representable

monomorphisms. Hence, Cl(T) is obtained from Cl(T ′) by freely adjoining
a representable monomorphism over Φ.

6. When T = T ′ . (S : Φ⇒ K), we had ItprX (T) ∼=
∏

ItprX (T ′,Φ) [̃[K]] where

[̃[K]] is the pullback of termX along [[K]] : ItprX (T ′,Φ) → TypeX . Then
a global section 1 → ItprX (T) corresponds to a pair consisting of a global
section ϕ : 1→ ItprX (T ′) and a section ϕS of ϕ?(Φ . (X : ()→ K))→ ϕ?(Φ).
Therefore, we have a pullback

CwR(Cl(T), C) k
(
C∆
)

CwR(Cl(T ′), C) k(C→)

y

evΦ.(X:()→K)→Φ

where ∆ denotes the category
1

0 0

and thus C∆ is the category of

sections. Hence, Cl(T) is obtained from Cl(T ′) by freely adjoining a section
of Φ . (X : K)→ Φ.

7. Similarly, when T = T ′ . (H : Φ⇒ P), we have a pullback

CwR(Cl(T), C) k(C∼=)

CwR(Cl(T ′), C) k(SubC).

y

evΦ.(H:()→P)→Φ

Hence, Cl(T) is obtained from Cl(T ′) by freely inverting Φ.(H : ()→ P)→
Φ.

4.8.4 The internal SOGAT of a CwR

Given a CwR C, we construct a SOGAT L(C) such that Cl(L(C)) ' C. We call
L(C) the internal SOGAT of C.

We prepare some constructions of SOGATs.

134 Chapter 4. Second-order generalized algebraic theories

4.8.21. Construction. Let T be a SOGAT.

1. For an object Φ ∈ Cl(T), a well-ordered finite context over T and Φ and
a type T,Φ ` Γ → K ok, the SOGAT T .

(
S : Φ . Γ† ⇒ K · ωΓ

)
is the

one obtained from T by freely adjoining a section of the projection Φ .
(X : Γ→ K)→ Φ.

2. For a proposition T,Φ ` Γ→ P ok, the SOGAT T .
(
H : Φ . Γ† ⇒ P · ωΓ

)
is

the one obtained from T by freely inverting the projection Φ.(H : Γ→ P)→
Φ.

3. Repeating Items 1 and 2, we have the SOGAT obtained from T by freely
adjoining a section of the projection Φ .Ψ→ Φ for an arbitrary well-ordered
finite relative environment Ψ over Φ. As a special case, we have the one
obtained from T by freely adjoining a morphism Φ→ Ψ between arbitrary
objects of Cl(T).

4. For two morphisms I1, I2 : Φ→ Ψ in Cl(T), we have a SOGAT T . (I1 ≡ I2)
by adjoining an axiom Φ.(Γ · I)† ⇒ I1(X)·ωΓ·I1 ≡ I2(X)·ωΓ·I1 : (K · I1)·ωΓ·I1
for each metavariable (X : Γ→ K) ∈ Ψ. The SOGAT T . (I1 ≡ I2) is thus
the one obtained from T by freely equalizing I1 and I2.

5. For a morphism I : Φ→ Ψ in Cl(T), we have the SOGAT obtained from T
by freely inverting I, that is, by freely adjoining a morphism I−1 : Ψ → Φ
and equalizing I−1 ◦ I ≡ id and I ◦ I−1 ≡ id.

6. For a morphism I : Φ → Ψ in Cl(T), we have the SOGAT obtained from
T by freely making I a representable map, that is, by adding a small type
symbol S1 : Ψ ⇒ type and a term symbol S2 : Φ ⇒ S1(I) and then freely
inverting the morphism I . (X := S2(idΦ)) : Φ→ Ψ . (X : ()→ S1(idΨ)).

We define L(C) in the following steps.

1. Begin with the empty SOGAT.

2. Add a type symbol x : ()⇒ Type for any object x ∈ C.

3. Add a morphism u : (X : ()→ x)→ (Y : ()→ y) for any arrow u : x→ y in
C.

4. Equalize two morphisms (X := idx(X)), (X := X) : (X : ()→ x)→ (X : ()→ x)
for any object x ∈ C.

5. Equalize two morphisms (X3 := (v ◦ u)(X1)), (X3 := v(u(X1))) : (X1 : ()→ x1)→
(X3 : ()→ x3) for any arrows u : x1 → x2 and v : x2 → x3 in C.

4.8. Semantics of SOGATs 135

6. Invert the canonical morphism (X : ()→ limξ∈Ξ xξ) → limξ∈Ξ(Xξ : ()→ xξ)
for any finite diagram x : Ξ→ C.

7. Make the morphism u : (Y : ()→ y) → (X : ()→ x) representable for any
representable map u : y → x in C.

8. Invert the canonical morphism (Z : ()→ u∗z) → u∗(Z : ()→ z) for any ar-
row v : z → y and any representable map u : y → x in C.

By construction, an interpretation of L(C) in a CwR D is nothing but a morphism
of CwRs C → D. Thus, we have a natural equivalence

CwR(Cl(L(C)),D) ' CwR(C,D)

and then
Cl(L(C)) ' C.

We have proved that every SOGAT generates the syntactic CwR with an ap-
propriate universal property and that every CwR is the syntactic CwR of some
SOGAT. We expect that the construction of syntactic CwRs is part of an equiva-
lence of (2, 1)-categories. To make it precise, we would have to define morphisms
and 2-morphisms of SOGATs and prove the fully faithfulness. Since we mainly
work with CwRs in this thesis and use SOGATs only for presenting some concrete
CwRs, further study of SOGATs is left as future work.

Chapter 5

The theory of type theories

In this chapter, we establish basic results in the semantics of type theory based on
our definition of a type theory (Definition 3.2.3). The initiality theorem/conjecture
asserts that a type theory has an initial model constructed out of the syntax of the
type theory. We give an explicit construction of an initial model of a type theory
and see that the construction coincides with the traditional syntactic construction
when the type theory is presented by a SOGAT. The initial model construction
is extended to the construction of syntactic models generated by certain data.
To make it precise, we introduce a notion of a theory over a type theory, which
intuitively consists of constants and axioms, and construct the syntactic model
generated by a theory. The syntactic model construction has a right adjoint which
assigns to each model a theory called the internal language of the model. One
might expect that the adjunction between theories and models is an equivalence,
but this is not the case. This is because objects in the base category of a syntactic
model look like contexts while in general, a model of a type theory can contain
a lot of junk objects in the base category. We say a model of a type theory is
democratic when all the objects in the base category look like contexts and show
that the syntactic model construction induces an equivalence between theories
and democratic models.

In Section 5.1, we formulate the main result, the equivalence of theories and
democratic models. This result is proved in Section 5.4 after developing technical
lemmas on the (2, 1)-categories of type theories (Section 5.3) and of models of a
type theory (Section 5.2).

5.0.1. Remark. The proof of the main theorem in this thesis is different from
the proof in the earlier paper [169]. In the earlier paper, the author explicitly
constructed the left adjoint, but in this thesis, we use the adjoint functor theorem
for presentable categories to ensure the existence of the left adjoint. The concrete
description of the initial model (Section 5.4.1) is still relevant in the proof in this
thesis to analyze the adjunction, but we do not need the concrete description of
a general syntactic model. The current version of the proof of the equivalence

137

138 Chapter 5. The theory of type theories

of theories and democratic models was obtained through the development of ∞-
type theories (Chapter 6), which is joint work with Hoang Kim Nguyen, and is
designed to work also in the (∞, 1)-categorical context.

5.1 Theories and models

A theory over a type theory is roughly a set of constants and axioms to be adjoined
to the type theory. Proposition 4.8.2 justifies the following definition.

5.1.1. Definition. Let T be a type theory. A theory over T or T -theory is a
left exact functor T → Set. We write Th(T) for the category of T -theories, that
is, the full subcategory of Fun(T ,Set) spanned by the left exact functors.

Models of a type theory and morphisms of models are defined in Defini-
tions 3.2.4 and 3.2.5. Models of a type theory form a (2, 1)-category.

5.1.2. Definition. Let F,G :M→N be morphisms of models of a type theory
T . A 2-morphism σ : F ⇒ G consists of the following data:

� a natural isomorphism σ� : F� ∼= G� :M(�)→ N (�);

� for any object x ∈ T , a natural isomorphism σx : Fx ∼= Gx :M(x)→ N (x)
over σ�.

We write Mod(T) for the (2, 1)-category of models of T , morphisms of models,
and 2-morphisms.

Let T be a type theory and M a model of T . Taking the fiber over the final
object of the base category M(�), we have a T -theory

T DFibM(�) SetM A 7→A1

which we call the internal language of M and is denoted by L(M). The assign-
ment M 7→ L(M) is extended to a functor L : Mod(T)→ Th(T).

The goal of this chapter is to show that the internal language functor induces
an equivalence between theories and democratic models. In Section 5.1.1, we
concretely describe L(M) when T is presented by a certain SOGAT to justify
calling L(M) the internal language of M. We introduce democratic models in
Section 5.1.2. In Section 5.1.3, we state the main theorem which will be proved
in Section 5.4.

5.1. Theories and models 139

5.1.1 The internal language at work

We concretely describe the internal languages of models of some type theories
presented by SOGATs. Let T0 denote DTT which was defined to be the SOGAT
consisting of the following two symbols (Example 4.6.1).

U : ()⇒ Type

E : (A : ()→ U)⇒ type

We also recall that the application of E is omitted. Let T0 = Cl(T0) be the
syntactic CwR. The universal property of T0 is that it is the free CwR generated
by a representable map ∂ : E → U . Concretely, the object U is represented by
the environment (A : () → U), the object E is represented by the environment
(A : () → U, a : () → A), and the representable map ∂ is represented by the
instantiation (A := A).

We first describe components of a T0-theory. Let Φ ∈ Th(T0) ' Lex(T0,Set)
be a T0-theory. Let Y : T op

0 → Lex(T0,Set) denote the Yoneda embedding, so
the component Φ(x) at an object x ∈ T0 is isomorphic to the set of morphisms
of T0-theories Y x → Φ. By the definitions of U and E, a morphism of T0-
theories A : YU → Φ corresponds to a closed type T0,Φ ` () → A : U and an
extension a : YE → Φ of A along Y ∂ : YU → YE corresponds to a closed term
T0,Φ ` ()→ a : A. For open types and terms, observe that the object Pn

∂(1) ∈ T0

is represented by the environment

A1 : ()→ U

A2 : (x1 : A1)→ U

...

An : (x1 : A1, x2 : A2(x1), . . . , xn−1 : An−1(x1, . . . , xn−2))→ U

by the construction of the pushforward along ∂ in T0 = Cl(T0). Then a morphism
Γ : Y(Pn

∂(1))→ Φ corresponds to a context T0,Φ ` Γ ok of length n, an extension
A : Y(Pn

∂(U))→ Φ of Γ along the morphism Y(Pn
∂(1))→ Y(Pn

∂(U)) corresponds
to a type T0,Φ ` Γ → A : U , and an extension a : Y(Pn

∂(E)) → Φ of A along
Y(Pn

∂(∂)) corresponds to a term T0,Φ ` Γ → a : A. We also note that for two
morphisms A1, A2 : Y(Pn

∂(U))→ Φ over Γ (two morphisms a1, a2 : Y(Pn
∂(E))→ Φ

over A), the following are equivalent:

1. A1 and A2 (a1 and a2, respectively) are equal;

2. the induced morphism (A1, A2) : Y(Pn
∂(U × U)) → Φ (morphism (a1, a2) :

Y(Pn
∂(E ×U E)) → Φ, respectively) factors through the codiagonal mor-

phism Y(Pn
∂(U × U))→ Y(Pn

∂(U)) (morphism Y(Pn
∂(E ×U E))→ Y(Pn

∂(E)),
respectively);

140 Chapter 5. The theory of type theories

3. we derive T0,Φ ` Γ → A1 ≡ A2 : U (derive T0,Φ ` Γ → a1 ≡ a2 : A,
respectively).

Now let M be a model of T0 and consider the internal language L(M). By
definition, a morphism Y x→ L(M) corresponds to an element of the fiberM(x)1

over the final object which corresponds to a global section M(�) ' M(�)/1 →
M(x) of discrete fibrations over M(�) by Yoneda. Then a context T0,L(M) `
Γ ok of length n corresponds to a global section Γ : M(�) → M(Pn

∂(1)). Since
M preserves the polynomial functor P∂, such a global section corresponds to a
finite sequence (A1, . . . , An) where

A1 :M(�)→M(U)

A2 :M(�)/{A1} →M(U)

...

An :M(�)/{An−1} →M(U)

are maps of discrete fibrations over M(�) and {−} denotes the context compre-
hension with respect toM(∂). In particular, we have an object {An}. Therefore,
ignoring the length, a context over L(M) corresponds to an object of the base
category M(�) obtained by context comprehension. Under this identification, a
type T0,L(M) ` Γ→ A : U corresponds to a section A :M(�)/Γ→M(U) and
a term T0,L(M) ` Γ→ a : A corresponds to a section a :M(�)/Γ→M(E) over
A. Moreover, we derive T0,L(M) ` Γ → A1 ≡ A2 : U (derive T0,L(M) ` Γ →
a1 ≡ a2 : A) if and only if the corresponding sections A1, A2 :M(�)/Γ→M(U)
(sections a1, a2 : M(�)/Γ → M(E), respectively) are equal. Hence, the inter-
nal language L(M) provides M with a syntactic way of constructing sections of
M(U) and M(E) and proving equalities between them.

The internal language becomes more powerful when we extend T0 by various
type constructors. For example, let T1 be the extension of T0 by Π-types and
intensional identity types, and take the syntactic CwR T1 = Cl(T1). Suppose that
we have a model M of T1, sections A : M(�) → M(U) and B : M(�)/{A} →
M(U), and a section a : M(�) → M(E) over A. We can easily construct a
compound type like

T1,L(M) ` ()→
∏
x:A

a == x -> B(a) -> B(x) : U,

and then we have the corresponding section M(�) →M(U). It is hardly advis-
able to construct such a section in the language of category theory because we
would have to explicitly write morphisms representing weakening and substitution
which are silently performed syntactically.

5.1. Theories and models 141

5.1.2 Democratic models

Syntactic models of a type theory usually have the property that any object in
the base category is a context and thus represented by a finite sequence of types.
We will call such a model democratic, generalizing the notion of a democratic
category with families [39, 40].

5.1.3. Definition. LetM be a model of T , u : y → x a representable map in T ,
Γ ∈M(�) an object and a :M(�)/Γ→M(x) a section. Let qu :M(x)→M(y)
be the right adjoint of M(u). The element qu(a) ∈ M(y) corresponds to a pair
of an object {a}u ∈M(�) and a section qu(a) :M(�)/{a}u →M(y). The counit
pu(a) : u · qu(a)→ a then corresponds to a pullback square of the form

M(�)/{a}u M(y)

M(�)/Γ M(x).

qu(a)

pu(a)
y

M(u)

a

We refer to the object {a}u ∈ M(�) as the context comprehension of a with
respect to u.

5.1.4. Definition. Let M be a model of T . The class of contextual objects
of M is the smallest replete class of objects of M(�) containing the terminal
object and closed under context comprehension. We say M is democratic if all
the objects of M(�) are contextual. We write Moddem(T) the full subcategory
of Mod(T) spanned by the democratic models.

5.1.5. Proposition. Let M be a model of T and M′(�) ⊂M(�) a full subcat-
egory closed under terminal objects. The following are equivalent:

1. the pullback of M : T → DFibM(�) along the inclusion M′(�) → M(�)
determines a model M′ of T and the natural transformation M′ ⇒ M is
a morphism of models of T ;

2. M′(�) ⊂M(�) is closed under context comprehension.

Proof:
Let M′(x) be the pullback

M′(x) M(x)

M′(�) M(�).

y

142 Chapter 5. The theory of type theories

The functor M′ : T → DFibM′(�) preserves finite limits as M does. For a
representable map u : y → x in T , consider the square

M′(y) M(y)

M′(x) M(x).

M′(u) M(u) (5.1)

The following are equivalent: the functorM′(u) has a right adjoint and Eq. (5.1)

satisfies the Beck-Chevalley condition; the composite M′(x) ↪→M(x)
qu−→M(y)

factors throughM′(y). The former is equivalent to thatM′ is a model of T and
the natural transformation M′ ⇒ M is a morphism of models. The latter is
equivalent to that M′(�) is closed under context comprehension. 2

5.1.6. Definition. For a model M of T , we define a model M♥ called the
heart of M as follows: the base categoryM♥(�) is the full subcategory ofM(�)
spanned by the contextual objects; M♥(x) is the pullback of M(x) along the
inclusion M♥(�)→M(�). By Proposition 5.1.5, M♥(�) is indeed a model of T
and the inclusion M♥ →M is a morphism of models.

By construction, M♥ is the largest democratic model contained in M in the
following sense.

5.1.7. Proposition. For any democratic model M of T and any model N of
T , the inclusion N♥ ↪→ N induces an equivalence of groupoids

Moddem(T)
(
M,N♥

)
'Mod(T)(M,N).

2

5.1.3 The theory-model correspondence

The goal of this chapter is to show the following.

5.1.8. Theorem. For any type theory T , the functor L : Mod(T) → Th(T)
has a left adjoint and induces an equivalence

Moddem(T) ' Th(T).

The left adjoint S : Th(T) → Mod(T) of L assigns the syntactic model to
each T -theory.

The outline of the proof of Theorem 5.1.8 is as follows. To obtain the left
adjoint S of L, we apply the adjoint functor theorem for presentable categories.
By definition, the category Th(T) is compactly generated, and thus it remains

5.2. The category of models of a type theory 143

to show that the (2, 1)-category Mod(T) is compactly generated (Section 5.2.1)
and that L preserves limits and filtered colimits. The equivalence Moddem(T) '
Th(T) is proved by concretely describing the left adjoint S. Since Th(T) '
Lex(T ,Set) is generated by representable functors YT op x : T → Set under
filtered colimits and since both L and S preserve filtered colimits, the behavior
of the adjunction S a L is completely determined by the values at representable
functors YT op x. We begin by describing the initial model of T (Section 5.4.1)
which is the syntactic model S(YT op 1) since YT op 1 is the initial object in Th(T).
We then observe that the syntactic model S(YT op x) for an object x ∈ T is
obtained from the initial model of the slice type theory T /x (Section 5.3.1).

5.2 The category of models of a type theory

In this section, we study the (2, 1)-category of models of a type theory T . We
view a model of T as a category-valued functor as follows. A model of T is a pair
(M(�),M) consisting of a category M(�) and a functor M : T → DFibM(�) ⊂
Cat/M(�). Such a pair (M(�),M) can be regarded as a functor M : T . →
Cat where T . is the category obtained from T by adjoining a new final object
�. A morphism F : M → N of models of T is then regarded as a natural
transformation F : M ⇒ N : T . → Cat. One can see that the (2, 1)-category
Mod(T) is the subcategory of Fun(T .,Cat) spanned by the models of T and
the morphisms between them.

5.2.1 Presentability of the category of models

The following result is in collaboration with John Bourke.

5.2.1. Proposition. For any type theory T , the (2, 1)-category Mod(T) is com-
pactly generated. Moreover, the inclusion functor Mod(T) → Fun(T .,Cat) is
conservative and preserves limits and filtered colimits.

5.2.2. Remark. While the author was visiting Masaryk University, John and the
author confirmed that Mod(T) seen as a strict (2, 2)-category belongs to LP of
Bourke [28] in the same way as the proof of Proposition 5.2.1 below. Consequently,
Mod(T) has not only (2, 1)-categorical (co)limits but also bi(co)limits and enjoys
a form of biadjoint functor theorem [29]. For the results in this thesis the (2, 1)-
categorical structure of Mod(T) is enough, and a further (2, 2)-categorical study
of Mod(T) is left as future work.

5.2.3. Lemma. Let cod : DFib → Cat denote the functor that maps a discrete
fibration to its codomain, and we view it as a functor between (2, 2)-categories.
For any (2, 2)-category C, the pullback operator

Fun(C,Cat) 3 F 7→ F ∗DFib ∈ ̂(2, 2)-Cat/C

144 Chapter 5. The theory of type theories

is part of a functor Fun(C,Cat)coop → ̂(2, 2)-Cat/C, where ̂(2, 2)-Cat is the
(3, 2)-category of large (2, 2)-categories.

Proof:
This follows from the fact that cod : DFib→ Cat is a 2-fibration in the sense of
Buckley [32]; see also [107]. For concreteness, we describe the action of natural
transformations and modifications between functors C → Cat.

Let σ : F ⇒ G : C → Cat be a natural transformation. The functor σ∗ :
G∗DFib→ F ∗DFib over C is defined as follows. An object of G∗DFib is a pair
(x,B) consisting of an object x ∈ C and a discrete fibration B over G(x). We
define σ∗(x,B) ∈ F ∗DFib to be (x, σ∗xB) where σ∗xB is the pullback of discrete
fibrations

σ∗xB B

F (x) G(x).

y

σx

Let ϑ : σ V τ : F ⇒ G : C → Cat be a modification. The natural transfor-
mation ϑ∗ : τ ∗ ⇒ σ∗ : G∗DFib → F ∗DFib is defined as follows. Let (x,B) be
an object of G∗DFib. We construct a map ϑ∗ : τ ∗xB → σ∗xB of discrete fibrations
over F (x). An object of τ ∗xB is a pair (y, b) consisting of an object y ∈ F (x) and
a section b of B over τx(y). We define ϑ∗(y, b) ∈ σ∗xB to be

(
y, ϑ∗x,yb

)
where ϑ∗x,yb

is the unique lift

ϑ∗x,yb b

σx(y) τx(y).
ϑx,y

2

Proof of Proposition 5.2.1:
From the definition of a model of T , a functorM : T . → Cat belongs to Mod(T)
if and only if the following conditions are satisfied:

1. M(�) has a terminal object;

2. for any object x ∈ T , the functor M(x)→M(�) is a discrete fibration;

3. for any finite diagram (xξ)ξ∈Ξ in T , the canonical functor M(limξ∈Ξ xξ)→
limξ∈ΞM(xξ) is invertible, where the latter limit is taken in Cat/M(�);

4. for any representable map u : y → x in T , the functor M(u) : M(y) →
M(x) has a right adjoint;

5. for any representable map u : y → x in T and any object z ∈ T /y, the
canonical map M(u∗z)→M(u)∗M(z) in DFibM(�) is invertible.

5.2. The category of models of a type theory 145

Let Mod−(T) ⊂ Fun(T .,Cat) be the subcategory spanned by the functors sat-
isfying Items 1 to 4 and the natural transformations compatible with the terminal
object ofM(�) and the right adjoint ofM(u) for any representable map u in T .
Items 1 to 4 are structures and properties defined by finite limits and adjoints,
and thus it is straightforward to check that Mod−(T) is compactly generated and
the inclusion Mod−(T)→ Fun(T .,Cat) is conservative and preserves limits and
filtered colimits.

The tricky part is Item 5 because functors preserving pushforwards need not
form a compactly generated category. The key idea is that the pushforward
M(u)∗ here is defined by the pullback along the right adjoint ofM(u) (Proposi-
tion 3.1.17), and thus Item 5 is essentially a condition for the preservation of finite
limits. To make it precise, we construct Mod(T) inside PrR

ω . Let u : y → x be a
representable map in T and z ∈ T /y an arbitrary object. Let Mod−,(u,z)(T) ⊂
Mod−(T) denote the full subcategory spanned by the functors satisfying Item 5
for u and z. Since Mod(T) is the wide pullback of all Mod−,(u,z)(T)’s over
Mod−(T), it suffices to construct Mod−,(u,z)(T) inside PrR

ω . By definition, the
evaluation at u defines a functor evu : Mod−(T) → LAdj. Let DFibdom and
DFibcod denote the pullbacks of cod : DFib → Cat along dom : LAdj → Cat
and cod : LAdj → Cat, respectively. The canonical natural transformation
σ : dom⇒ cod induces the pullback functor σ∗ : DFibcod → DFibdom over LAdj
by Lemma 5.2.3. Since σ has a right adjoint τ : cod⇒ dom (in the (2, 2)-category
Fun(LAdj,Cat)), we also have the pullback functor τ ∗ : DFibdom → DFibcod

which is right adjoint to σ∗ by Lemma 5.2.3.

DFibdom

DFibcod DFib

LAdj Cat

τ∗

σ∗

a

dom

cod

σ τa

The evaluations at z and u∗z define functors evz : Mod−(T) → DFibdom and
evu∗z : Mod−(T)→ DFibcod, respectively, over evu, and the counit ε : u∗u∗z →
z induces a natural transformation evε : σ∗ ◦ evu∗z ⇒ evz over evu. Let ρ be the

146 Chapter 5. The theory of type theories

composite of natural transformations

DFibcod

Mod−(T) DFibcod

DFibdom

σ∗

η′

evu∗z

evz

evε

τ∗

where η′ is the unit of the adjunction σ∗ a τ ∗. Then, Mod−,(u,z)(T) is the inverter
of ρ, that is, the pullback

Mod−,(u,z)(T) DFib
∼=
cod

Mod−(T) DFib→cod

y

ρ

where C∼= ⊂ C→ denotes the full subcategory spanned by the invertible arrows.
Indeed, the component of ρ at an object M∈Mod−(T) is

M(u∗z) τ ∗σ∗M(u∗z) ∼= τ ∗M(u∗u∗z) τ ∗M(z) ∼=M(u)∗M(z),
η′ τ∗M(ε)

and Mod−,(u,z)(T) is precisely the full subcategory of Mod−(T) spanned by those
object M such that this canonical map is invertible. Since all the functors in-
volved with this construction preserve limits and filtered colimits, Mod−,(u,z)(T)
is constructed inside PrR

ω . 2

5.2.2 The universal property of the category of models

We view Mod(T) as a (2, 1)-category over Lex(∅) with the functor Mod(T) →
Lex(∅) sending a model of T to its base category and give a universal property,
where Lex(∅) is the (2, 1)-category of categories with limits of shape ∅, that is,
categories with final objects. In this section, we describe the universal property

of Mod(T) in ̂(2, 1)-Cat/Lex(∅). A corollary is that T 7→ Mod(T) is part

of a limit-preserving functor TTop → ̂(2, 1)-Cat/Lex(∅), and thus a universal
property of a type theory T is transferred to Mod(T).

We first redefine discrete fibrations in a manner invariant under equivalence.

5.2. The category of models of a type theory 147

5.2.4. Definition. Let X be a finitely complete (2, 2)-category. We say a map
p : A→ C in X is a right fibration if the square

A→ A

C→ C

cod

p→ p

cod

is a pullback. By a right fibration over C we mean a right fibration of the form
A → C. We write RFib(X)C ⊂ X/C for the full (2, 1)-subcategory spanned by
the right fibrations over C. A discrete fibration over C is a 0-truncated object in
RFib(X)C. We write DFib(X)C ⊂ RFib(X)C for the full subcategory spanned
by the discrete fibrations over C.

5.2.5. Proposition. When X = Cat, the category DFib(Cat)C is equivalent
to DFibC.

Proof:
Recall that any right fibration A over C is equivalent to the category of el-
ements of the groupoid-valued presheaf x 7→ RFib(Cat)C(C/x,A), which is
the right adjoint splitting of A [158]. When A is 0-truncated, the groupoid
RFib(Cat)C(C/x,A) is equivalent to a discrete one, and thus A is equivalent
to an object from DFibC. 2

5.2.6. Definition. We say a map f : B → A in DFib(X)C is a representable
map if it has a right adjoint in X .

We have the following basic properties in the same way as DFibC.

5.2.7. Lemma. For any discrete fibration A over C, the equivalence (X/C)/A '
X/A is restricted to an equivalence DFib(X)C/A ' DFib(X)A. 2

5.2.8. Lemma. Any representable map f : B → A in DFib(X)C is exponen-
tiable, and the pushforward along f is given by the pullback along the right adjoint
A→ B of f . 2

5.2.9. Proposition. For any finitely complete (2, 2)-category X , the category
DFib(X)C is a CwR. Furthermore, any left exact functor F : X → Y induces a
morphism of CwRs DFib(X)C → DFib(Y)F (C).

Proof:
By construction. 2

148 Chapter 5. The theory of type theories

Let Ξ be a (2, 1)-category and C : Ξ → Cat a functor. We have the CwR
DFib(Fun(Ξ,Cat))C. Let T be a type theory. We have equivalences of 2-
groupoids

̂(2, 1)-Cat/Cat((Ξ, C), (Fun(T .,Cat), ev�))

' (transposition)

{�}/ ̂(2, 1)-Cat((T ., �), (Fun(Ξ,Cat), C))
' (definition of T .)

̂(2, 1)-Cat(T ,Fun(Ξ,Cat)/C).

5.2.10. Proposition. Let Ξ be a (2, 1)-category and C : Ξ → Lex(∅) ⊂ Cat
a functor. For a type theory T and a functor F : T → Fun(Ξ,Cat)/C, the
following are equivalent:

1. F factors through DFib(Fun(Ξ,Cat))C and is a morphism of CwRs;

2. the transpose F ′ : Ξ→ Fun(T .,Cat) factors through Mod(T).

Consequently, we have an equivalence of groupoids

̂(2, 1)-Cat/Lex(∅)((Ξ, C), (Mod(T), ev�)) ' ĈwR(T ,DFib(Fun(Ξ,Cat))C).

Proof:
This is immediate from the definitions of DFib(Fun(Ξ,Cat))C and Mod(T). 2

5.2.11. Remark. We can also obtain a stronger universal property viewing
Mod(T) as a (2, 2)-category over Lex(∅).

5.2.12. Corollary. The assignment T 7→Mod(T) is part of a limit-preserving

functor TTop → ̂(2, 1)-Cat/Lex(∅). 2

5.3 The category of type theories

In this section, we study the (2, 1)-category of type theories. Slice type theories
will play an important role in the proof of the theory-model correspondence. We
also show that the (2, 1)-category of type theories is compactly generated, al-
though we do not use it in this chapter. The presentability will be a major source
of examples of higher dimensional type theories (Chapter 6) where syntactic pre-
sentations have not yet been available.

5.3. The category of type theories 149

5.3.1 Slice type theories

Let C be a CwR and x ∈ C an object. The slice category C/x is a CwR in which
an arrow u is a representable map if it is a representable map in C. We show that
C/x is the CwR obtained from C by freely adjoining a global section of x.

5.3.1. Proposition. For any arrow u : x→ y in a CwR C, the pullback functor
u∗ : C/y → C/x is a morphism of CwRs.

Proof:
The pullback functor commutes with any limits and pushforwards. It also pre-
serves representable maps since representable maps are closed under pullbacks. 2

In particular, we have the morphism of CwRs x∗ : C → C/x defined by
the pullback along the final projection x → 1. We regard the diagonal arrow
∆x : x→ x× x as a global section 1x → x∗x in C/x.

5.3.2. Proposition. Let C be a CwR and x ∈ C an object. For any CwR D,
the square

CwR(C/x,D) k(1/D)

CwR(C,D) k(D)

F 7→F (∆x)

(−◦x∗) cod

F 7→F (x)

is a pullback in the (2, 1)-category of groupoids.

Proof:
For a morphism F : C → D and a global section u : 1 → F (x), we have a
morphism

C/x D/F (x) D,F/x u∗

which defines an inverse of the functor CwR(C/x,D)→ CwR(C,D)×k(D)k(1/D).
2

5.3.2 Presentability of the category of type theories

Let Cat+ denote the (2, 1)-category in which the objects are the small categories
equipped with a class of arrows and the morphisms are the functors preserving
the specified arrows. Cat+ fits into the pullback

Cat+ Sub(Set)

Cat Set

y

Hom

150 Chapter 5. The theory of type theories

and thus is compactly generated. We view the (2, 1)-category TT of type theories
as a subcategory of Cat+.

5.3.3. Proposition. The (2, 1)-category TT is compactly generated. Moreover,
the forgetful functor TT → Cat+ preserves limits and filtered colimits and is
conservative.

Proof:
Let Lex+ denote the (2, 1)-category of finitely complete categories equipped with
a pullback-stable class of arrows. It is defined as a full subcategory of Lex×Cat

Cat+. The inclusion Lex+ → Lex ×Cat Cat+ has a left adjoint by taking the
pullback-stable closure of a class of arrows and is closed under filtered colimits.
Then TT fits into the pullback

TT LAdj

Lex+ Cat→,

y

F

where LAdj is the category of left adjoints (so a functor that belongs to LAdj
has a right adjoint), the bottom functor F sends an object C ∈ Lex+ to the pull-

back functor C ◦ → C ◦ , C ◦ is the subcategory of the category of diagrams
x1

x2 x3u

in C spanned by those diagrams such that u is a representable map

and those morphisms whose components at x2 and x3 are invertible, and C ◦ is
similarly defined. By construction, TT is compactly generated and the forgetful
functor TT→ Cat+ preserves limits and filtered colimits and is conservative. 2

5.4 The theory-model correspondence

In this section, we prove Theorem 5.1.8: the internal language functor L :
Mod(T)→ Th(T) has a left adjoint and induces an equivalence Moddem(T) '
Th(T).

5.4.1. Proposition. For any type theory T , the functor L : Mod(T)→ Th(T)
preserves limits and filtered colimits.

Proof:
This is because limits and filtered colimits in Mod(T) and Th(T) are computed
in Fun(T .,Cat) and Fun(T ,Set), respectively. 2

5.4. The theory-model correspondence 151

Then, by the adjoint functor theorem for presentable (2, 1)-categories, the
functor L has a left adjoint S : Th(T) → Mod(T). For a T -theory Φ, we call
S(Φ) the syntactic model generated by Φ.

The goal of this section is to show that the adjunction S a L induces an
equivalence between theories and democratic models. Since Th(T) is the com-
pletion of T op under filtered colimits and any left adjoint preserves colimits, S is
completely determined by the values at the representable functors YT op(x). We
thus concretely describe syntactic models of the form S(YT op(x)) to understand
S. The initial model is the special case when x is the final object of T and studied
in Section 5.4.1. Other syntactic models are described using the initial model of
T /x in Section 5.4.2. We prove the main result in Section 5.4.3.

5.4.1 The initial model

5.4.2. Definition. Recall that the Yoneda embedding YT : T → DFibT pre-
serves all existing limits and pushforwards. Therefore, the pair (T ,YT) is a model
of T . We define the initial model I(T) to be the heart of (T ,YT).

We will show that I(T) is indeed an initial object of Mod(T). Since it is
constructed from the Yoneda embedding, the initiality of I(T) essentially follows
from the Yoneda Lemma.

By definition, the model I(T) is described as follows:

� the base category is Tr, the full subcategory of T spanned by the objects x
such that the final projection x→ 1 is a representable map;

� I(T)(y) = Tr/y defined by the pullback

Tr/y T /y

Tr T

for y ∈ T .

Alternatively, the functor I(T) : T → DFibTr is defined as the left Kan extension
of the Yoneda embedding YTr : Tr → DFibTr along the inclusion Tr ↪→ T .

Tr DFibTr

T

YTr

I(T)

∼=

5.4.3. Example. The construction of the initial model coincides with the tradi-
tional syntactic construction. Let T be a SOGAT. Then the base category of the
initial model I(Cl(T)) is described as follows:

152 Chapter 5. The theory of type theories

� the objects are the well-formed finite environments over T of the form Γ†

for a context Γ;

� the morphisms are the equivalence classes of instantiations.

By contextual completeness, an instantiation of ∆† in Γ† is equivalent to a sub-
stitution of ∆ in Γ. Therefore, the base category is the category of contexts and
substitutions. For an object Φ ∈ Cl(T), a section I(Cl(T))(�)/Γ† → I(Cl(T))(Φ)
is represented by an instantiation of Φ in Γ† which is equivalent to an instantiation
of Φ over Γ by contextual completeness.

5.4.4. Theorem. For any type theory T , the model I(T) is an initial object in
the (2, 1)-category Mod(T).

Proof:
Let M be a model of T . Note that a morphism F : I(T)→M is regarded as a
pair (F�, F) consisting of a functor F� : Tr →M(�) and a natural transformation
F : I(T) ⇒ F ∗�M : T → DFibTr . We first show that there is at most one
morphism I(T)→M up to contractible choice.

Let F : I(T) → M be a morphism. We have the natural transformation
σ : YM(�) ◦ F� ⇒M|Tr : Tr → DFibM(�) whose component at x ∈ Tr is Fx(idx) :
M(�)/F�(x)→M(x). The natural transformation σ is characterized as the one
such that

T

Tr M(�) DFibM(�)

DFibTr

M

F�

Y

χF�

Y

σ

F ∗�

=

T

Tr DFibM(�)

DFibTr

M

I(T)
F

Y

∼=

F ∗�

(5.2)
where χF� is the natural transformation defined by the morphism part of the
functor F�. The Beck-Chevalley condition for a representable map u : y → x
implies that for any object (v : z → x) ∈ Tr/x, the square

M(�)/F�(v∗y) M(y)

M(�)/F�(z) M(x)

Fy(u∗v)

v∗u M(u)

Fx(v)

is a pullback. From the special case when x is the final object, we see that
the canonical map Fy(idy) : M(�)/F�(y) → M(y) is invertible for any object
y ∈ Tr, that is, the natural transformation σ is invertible. Then, since the Yoneda

5.4. The theory-model correspondence 153

embedding is fully faithful, the functor F� is unique up to contractible choice.
The natural transformation F : I(T)⇒ F ∗� ◦M is also unique up to contractible
choice because I(T) is the left Kan extension of the Yoneda embedding along the
inclusion Tr → T .

It remains to construct a morphism F : I(T) →M. Since the base category
M(�) has a final object, if a discrete fibration A overM(�) satisfies that the final
projection A → 1 is a representable map, then A is representable. Then, by the
definition of Tr, the restriction of M : T → DFibM(�) to Tr factors through the
Yoneda embedding. Let F� : Tr →M(�) denote the induced functor.

Tr M(�)

T DFibM(�)

F�

Yσ
∼=

M

Since I(T) is the left Kan extension of the Yoneda embedding along the inclusion
Tr → T , we have a unique natural transformation F : I(T) ⇒ F ∗� ◦ M : T →
DFibTr satisfying Eq. (5.2). It remains to check that F is indeed a morphism of
models. By construction, the functor F� preserves final objects. Let u : y → x be
a representable map in T . We have to show that the square

Tr/y M(y)

Tr/x M(x)

Fy

u M(u)

Fx

satisfies the Beck-Chevalley condition. Since the Beck-Chevalley condition is
verified at each object of Tr/x and since any object (v : z → x) ∈ Tr/x is the
image of idz by the map v : Tr/z → Tr/x, it suffices to show that the composite
of squares

Tr/v
∗y Tr/y M(y)

Tr/z Tr/x M(x)

u∗v

v∗u

Fy

u M(u)

v Fx

(5.3)

satisfies the Beck-Chevalley condition for any arrow v : z → x with z ∈ Tr. By
the definition of F , Eq. (5.3) is isomorphic to

Tr/v
∗y M(�)/F�(v∗y) M(v∗y) M(y)

Tr/z M(�)/F�(z) M(z) M(x).

F�

v∗u

∼=

F�(v∗u)

M(u∗v)

M(v∗u) M(u)

F� ∼= M(v)

(5.4)

154 Chapter 5. The theory of type theories

The right square of Eq. (5.4) is a pullback in DFibM(�) and thus satisfies the
Beck-Chevalley condition by Proposition 3.1.15. The Beck-Chevalley condition
for the left square of Eq. (5.4) asserts that F� preserves pullbacks of representable
maps in Tr, which is true by the definition of F�. 2

5.4.2 Syntactic models generated by compact theories

Recall that the compact objects in Lex(C,Set) for a finitely complete category C
are precisely the representable functors YCop x = Hom(x,−) : C → Set. We may
thus call a T -theory of the form YT op x a compact T -theory . In this section, we
describe the syntactic model S(YT op(x)).

5.4.5. Proposition. For any object x ∈ T , we have a pullback

Mod(T /x) YT op(x)/Th(T)

Mod(T) Th(T).

y

L

Proof:
By Propositions 5.2.10 and 5.3.2, a model of T /x corresponds to a model M of
T equipped with a global section a : M(�) → M(x). Since the base category
M(�) has a final object 1, the global section a corresponds to an element in the
fiber M(x)1 over the final object. We thus have a pullback

Mod(T /x) 1/Set

Mod(T) Set.

y

M7→M(x)1

By the definition of L, the bottom functor is isomorphic to the composite

Mod(T) Th(T) Set.L evx

By Yoneda, we have a pullback

YT op(x)/Th(T) 1/Set

Th(T) Set,

y

evx

and then we obtain the desired pullback by the two-pullbacks lemma. 2

5.4. The theory-model correspondence 155

By Proposition 5.4.5, we get an equivalence

Mod(T /x) ' (YT op(x) ↓ L).

Since the syntactic model S(YT op(x)) is the initial object of (YT op(x) ↓ L), it is
obtained from the initial model I(T /x) of T /x by restricting I(T /x) : T /x →
DFibI(T /x)(�) along x∗ : T → T /x. We thus have a concrete description of
S(YT op(x)) as follows:

� the base category S(YT op(x))(�) is the full subcategory of T /x spanned by
the representable maps y → x;

� for objects y ∈ T and (u : x′ → x) ∈ S(YT op(x))(�), the fiber of S(YT op(x))(y)
over u is T /x(u, x∗y) ∼= T (x′, y).

General syntactic models

Although we do not need concrete descriptions of general syntactic models to
prove the main theorem of this chapter, we can construct general syntactic models
using initial models. Let Φ be a T -theory, that is, a left exact functor Φ : T →
Set. We define a type theory T [Φ] to be the filtered colimit

T [Φ] = colim(x,a)∈
∫
T Φ T /x

in TT. Since T /x is the type theory obtained from T by freely adjoining a
global section of x, the type theory T [Φ] is the one obtained from T by adjoining
a global section a of x for any object x ∈ T and any element a ∈ Φ(x).

5.4.6. Remark. In terms of SOGATs, T [Φ] is the SOGAT obtained by replacing
each metavariable (assumption) of the environment Φ with a term symbol (axiom)
in a similar way to the metavariable replacement.

Since the functor Mod(−) sends colimits of type theories to limits over Lex(∅)

by Corollary 5.2.12, we have a pullback

Mod(T [Φ]) Φ/Th(T)

Mod(T) Th(T)

y

L

by Proposition 5.4.5. Therefore, we have an equivalence

Mod(T [Φ]) ' (Φ ↓ L),

and thus the syntactic model S(Φ) is obtained from the initial model I(T [Φ]) of
T [Φ] by restricting I(T [Φ]) : T [Φ]→ DFibI(T [Φ])(�) along the canonical morphism
T → T [Φ].

156 Chapter 5. The theory of type theories

5.4.3 The equivalence of theories and democratic models

We are now ready to prove the main result: for any type theory T , the restric-
tion of the functor L : Mod(T) → Th(T) to Moddem(T) ⊂ Mod(T) is an
equivalence

Moddem(T) ' Th(T).

This is proved as follows:

1. the unit of the adjunction is invertible (Lemma 5.4.7);

2. the left adjoint S : Th(T) → Mod(T) factors through Moddem(T) ⊂
Mod(T) (Lemma 5.4.8);

3. the restriction of the right adjoint L to Moddem(T) ⊂Mod(T) is conserva-
tive (Lemma 5.4.9), and thus the counit at a democratic model is invertible
by Item 1 and one of the triangle identities.

5.4.7. Lemma. The unit of the adjunction S a L : Th(T)→Mod(T) is invert-
ible.

Proof:
Since both functors S and L preserve filtered colimits, it suffices to show that
the unit is invertible at YT op(x) for every object x ∈ T . From the description of
S(YT op(x)) in Section 5.4.2, the unit is given by the isomorphism YT op(x)(y) =
T (x, y) ∼= L(S(YT op(x)))(y). 2

5.4.8. Lemma. The functor S : Th(T)→Mod(T) factors through Moddem(T) ⊂
Mod(T).

Proof:
Since Moddem(T) ⊂Mod(T) is a coreflective subcategory by Proposition 5.1.7,
it is closed under colimits. Thus, it suffices to show that S(YT op(x)) is democratic
for any object x ∈ T , but this is obvious from the description of S(YT op(x)) in
Section 5.4.2. 2

5.4.9. Lemma. The restriction of L : Mod(T) → Th(T) to Moddem(T) ⊂
Mod(T) is conservative.

For Lemma 5.4.9, we prepare a sublemma.

5.4.10. Lemma. Let F : M → N be a morphism of models of T such that
L(F) : L(M) → L(N) is invertible. Then F induces an isomorphism between
fibers

M(x)Γ → N (x)F�(Γ)

for any object x ∈ T and any contextual object Γ→M(�).

5.4. The theory-model correspondence 157

Proof:
By induction on the contextual object Γ ∈ M(�). The case when Γ = 1 is
immediate from the assumption that L(F) is invertible. Suppose that Γ is {a}u
for some representable map u : y → x in T , contextual object Γ′ ∈ M(�) and
section a : M(�)/Γ′ → M(x). Since M : T → DFibM(�) commutes with
the polynomial functor Pu, the sections M(�)/{a}u → M(z) correspond to the
sections of M(Pu(z)) → M(x) over a. The same argument applies to N and
F (a), and thus we have a commutative diagram

M(z){a}u M(Pu(z))Γ′

N (z){F (a)}u
N (Pu(z))F�(Γ′)

1 M(x)Γ′

1 N (z)F�(Γ′)

F F

a

F

F (a)

in which the front and back squares are pullbacks. Since F is invertible at Γ′ by
the induction hypothesis, we conclude that the map F :M(z){a}u → N (z){F (a)}u
is invertible. 2

Proof of Lemma 5.4.9:
Let F : M → N be a morphism between democratic models of T and suppose
that L(F) : L(M) → L(N) is invertible. We show that F is invertible, that is,
Fx :M(x) → N (x) is invertible for any x ∈ T .. Lemma 5.4.10 implies that the
square

M(x) N (x)

M(�) N (�)

Fx

F�

is a pullback for any x ∈ T . Thus, it suffices to show that the functor F� :
M(�)→ N (�) is an equivalence.

For the fully-faithfulness of F�, we show by induction on ∆ that the map F� :
M(�)(Γ,∆) → N (�)(F�(Γ), F�(∆)) is invertible for any objects Γ,∆ ∈ M(�).
The case when ∆ = 1 is trivial. Suppose that ∆ = {a}u for some representable
map u : y → x in T , object ∆′ ∈ M(�) and section a : M(�)/∆′ → M(x). In

158 Chapter 5. The theory of type theories

the following commutative diagram

M(�)(Γ, {a}u) M(y)Γ

N (�)(F�(Γ), {F (a)}u) N (y)F�(Γ)

M(�)(Γ,∆′) M(x)Γ

M(�)(F�(Γ), F�(∆
′)) N (x)F�(Γ),

F�

M(u)Γ

Fy

N (u)F�(Γ)
f 7→a·f

F� Fx

f 7→F (a)·f

the front and back squares are pullbacks by the definition of {a}u, the maps Fy
and Fx are invertible by Lemma 5.4.10, and the map F� is invertible at ∆′ by the
induction hypothesis. Thus, F� is invertible at {a}u.

For the essential surjectivity of F�, we show by induction on ∆ that, for any
object ∆ ∈ N (�), there exists an object Γ ∈ M(�) such that F�(Γ) ∼= ∆. The
case when ∆ = 1 is trivial. Suppose that ∆ = {b}u for some representable
map u : y → x in T , object Γ′ ∈ N (�) and section b : N (�)/∆′ → N (x). By
the induction hypothesis, we have an object Γ′ ∈ M(�) and an isomorphism
f : F�(Γ

′) ∼= ∆′. By Lemma 5.4.10, we have a section a :M(�)/Γ′ →M(x) such
that F (a) = b · f . Then F�({a}u) ∼= {b}u. 2

Chapter 6

∞-type theories

In this chapter, we introduce a notion of an ∞-type theory to tackle the conjec-
ture that the homotopy theory of type theories with intensional identity types is
equivalent to the homotopy theory of (∞, 1)-categories with finite limits [100].

Once we identify a type theory with a CwR, its higher categorical generaliza-
tion makes sense.

6.0.1. Definition. An (∞, 1)-category with representable maps ((∞, 1)-CwR)
is an (∞, 1)-category C with finite limits equipped with a pullback-stable class
RC of exponentiable arrows. Arrows in RC are called representable maps. A
morphism of (∞, 1)-CwRs C → D is a functor F : C → D preserving finite limits,
representable maps and pushforwards along representable maps.

6.0.2. Definition. An ∞-type theory is a small (∞, 1)-CwR. For 1 ≤ n < ∞,
by an n-type theory, we mean an∞-type theory whose underlying (∞, 1)-category
is an (n, 1)-category.

A 1-type theory in this sense is of course a type theory in the sense of Defini-
tion 3.2.3. It turns out that a model of an ∞-type theory may be regarded as a
non-split model of a 1-type theory that naturally arises in the categorical seman-
tics of type theory. For example, let D be the 1-type theory freely generated by
a representable map ∂ : E → U (Example 3.2.6) and D−1 the 2-type theory freely
generated by a representable map ∂ : E → U . Models of D are ordinary natural
models. Models of D−1 are then (2, 1)-categorical analogue of natural models, that
is, a model of D−1 consists of the following data:

� a (2, 1)-category M(�) with a final object;

� a representable mapM(∂) :M(E)→M(U) of groupoid-valued presheaves
over M(�).

159

160 Chapter 6. ∞-type theories

A groupoid-valued presheaf is a functor M(�)op → Gpd in the (2, 1)-categorical
sense and preserves composition only up to isomorphism. We could try to in-
terpret the action A · f of a substitution in a type theory as the right action
of the groupoid-valued presheaf, but this interpretation satisfies the substitution
law A · (f ◦ g) = (A · f) · g only up to isomorphism. In this sense, models of D−1
are not models of D but seem to interpret components of D with a weaker notion
of equality.

Constructing models of an ∞-type theory is often easier than constructing
models of a 1-type theory. For example, any category C with finite limits induces
a groupoid-valued presheaf Cop 3 x 7→ k(C/x) ∈ Gpd, where the right action is
given by pullbacks, and this is part of a model of D−1 . Since pullbacks are de-
termined up to isomorphism, this presheaf hardly preserves composition strictly.
Therefore, to get a model of D from a category with finite limits, we need a split-
ting technique [78, 116], that is, we have to replace the groupoid-valued presheaf
by a set-valued presheaf.

We are faced with a dilemma: we can easily get models of the 2-type theory D−1
from structured categories; in the real world, however, we work with the 1-type
theory D, not D−1 . We thus want to justify interpreting D in models of D−1 to use
plenty of models of D−1 for the study of D. Such a situation is called a coherence
problem which is traditionally formulated as the problem of interpreting a 1-type
theory in non-split models, but here non-split models are replaced by models of
an ∞-type theory.

Coherence problems become much more serious when we try to interpret a
type theory in structured (∞, 1)-categories. The idea of homotopy type theory is
to interpret Martin-Löf’s intensional type theory in structured (∞, 1)-categories,
but the interpretation is far from obvious because most equations hold only up
to homotopy in (∞, 1)-categories while Martin-Löf type theory features a more
strict notion of equality, judgmental equality. It is not difficult to show that
certain structured (∞, 1)-categories are models of an ∞-type theory, and then a
coherence problem is again the problem of interpreting a 1-type theory in models
of an ∞-type theory.

Once a coherence problem is solved, we can often establish the correspon-
dence between theories and non-split models. For example, Clairambault and
Dybjer [39, 40] showed that theories over Martin-Löf’ extensional type theory are
biequivalent to locally cartesian closed categories. Kapulkin and Lumsdaine [100]
conjectured that theories over Martin-Löf’s intensional type theory are equiva-
lent to locally cartesian closed (∞, 1)-categories in a suitable sense. Such a strong
correspondence between theories and non-split models justifies using the internal
language of a non-split model.

The notion of ∞-type theories provides a precise and unified formulation of
general coherence problems in both 1-categorical and (∞, 1)-categorical semantics
of type theories. We view a coherence problem as the problem of interpreting a
1-type theory in a model of an ∞-type theory. Since 1-type theories are special

161

∞-type theories, a coherence problem is now formulated in the language of ∞-
type theories and related concepts so that we can deal with both 1-categorical
and (∞, 1)-categorical coherence problems in the same language. Of course, this
is just a rephrasing of a coherence problem and does not provide any technique
of solving the problem. However, it does provide a technique of strengthening a
coherence theorem to the correspondence between theories and non-split models.
We demonstrate that if the coherence problem between a 1-type theory T and
an ∞-type theory T is solved, then we can systematically prove that the (∞, 1)-
category Moddem(T∞) of democratic models of T∞ is a localization of the category
Th(T) of theories, that is, Moddem(T∞) is obtained from Th(T) by formally
inverting some morphisms. As an application, we explain the idea of solving the
conjecture by Kapulkin and Lumsdaine [100] that the (∞, 1)-category of finitely
complete (∞, 1)-categories is a localization of the category of theories over the
dependent type theory with intensional identity types.

We introduce basic concepts around ∞-type theories in Section 6.1. There
are two important concepts not found in the theory of 1-type theories: univalent
representable maps; the representable map classifier of right fibrations over an
(∞, 1)-category. ∞-type theories with univalence are considered much better
than ones without univalence. For example, various type-theoretic structures
become unique up to contractible choice under univalence and thus are treated
as properties rather than structures. The representable map classifier is the one
and only source of representable maps of right fibrations: for any (∞, 1)-category
C, we obtain a representable map of right fibrations over C called the generic
representable map for free; any representable map of right fibrations over C is the
pullback of the generic representable map along a unique map.

We study some concrete examples of ∞-type theories in Section 6.2. Unlike
the 1-categorical case, we have not yet found syntactic counterparts of ∞-type
theories, so free constructions are a major source of examples of ∞-type theo-
ries. The most fundamental example of an ∞-type theory is the ∞-analogue
of the dependent type theory with Σ-types, unit type, and extensional identity
types which we refer to as E∞. We show that the (∞, 1)-category Th(E∞) of
theories over E∞ is equivalent to the (∞, 1)-category (∞, 1) -Lex of small (∞, 1)-
categories with finite limits. This is understood as an ∞-analogue of the equiva-
lence of theories with extensional identity types and categories with finite limits
[39, 40]. Although we have not found a syntactic counterpart of E∞, the equiv-
alence Th(E∞) ' (∞, 1) -Lex has an interesting consequence: from a universal
property of E∞, we can derive a universal property of (∞, 1) -Lex.

In Section 6.3, we develop a technique of establishing the correspondence
between theories and non-split models that applies to both 1-categorical and
(∞, 1)-categorical coherence problems. As a special case, we sketch the idea
of solving the internal language conjecture of Kapulkin and Lumsdaine [100]:
the (∞, 1)-category of finitely complete (∞, 1)-categories is a localization of the
category of theories over the type theory with intensional identity types.

162 Chapter 6. ∞-type theories

In this chapter, we assume that the reader is familiar with basic (∞, 1)-
category theory [117, 38, 145].

The contents of this chapter are joint work with Hoang Kim Nguyen [130].

6.1 The theory of ∞-type theories

6.1.1. Definition. A functor p : A → C between (∞, 1)-category is a right
fibration if the square

A→ A

C→ C

cod

p→ p

cod

is a pullback of (∞, 1)-categories. For an (∞, 1)-category C, by a right fibration
over C, we mean a right fibration of the form A → C. We write RFibC ⊂
(∞, 1)-Cat /C for the full subcategory spanned by the right fibrations over C.

6.1.2. Definition. An (∞, 1)-category with representable maps ((∞, 1)-CwR)
is an (∞, 1)-category C with finite limits equipped with a pullback-stable class
RC of exponentiable arrows. Arrows in RC are called representable maps . A
morphism of (∞, 1)-CwRs C → D is a functor F : C → D preserving finite
limits, representable maps and pushforwards along representable maps. We write
(∞, 1)-CwR for the (∞, 1)-category of (∞, 1)-CwRs and morphisms of (∞, 1)-
CwR.

6.1.3. Example. For any (∞, 1)-category C, the (∞, 1)-category RFibC of right
fibrations over C is an (∞, 1)-CwR in which a map is representable if it has a right
adjoint seen as a functor.

6.1.4. Definition. An ∞-type theory is a small (∞, 1)-CwR. A morphism of
∞-type theories is a morphism of (∞, 1)-CwRs. We write ∞-TT for the (∞, 1)-
category of ∞-type theories which is nothing but (∞, 1)-CwR. For 1 ≤ n <∞,
by an n-type theory , we mean an∞-type theory whose underlying (∞, 1)-category
is an (n, 1)-category.

6.1.5. Definition. Let T be an ∞-type theory. A model M of T consists of
the following data:

� an (∞, 1)-category M(�) with a terminal object;

� a morphism of (∞, 1)-CwRs M : T → RFibM(�).

We view a model of T as a functor T . → (∞, 1)-Cat where T . is the (∞, 1)-
category obtained from T by adjoining a new final object �.

6.1. The theory of ∞-type theories 163

6.1.6. Definition. Let T be an ∞-type theory and M and N models of T . A
morphism F :M→N of models of T is a natural transformation F :M⇒N :
T . → (∞, 1)-Cat satisfying the following conditions:

1. the component F� :M(�)→ N (�) preserves final objects;

2. for any representable map u : x→ y in T , the square

M(x) N (x)

M(y) N (y)

Fx

M(u) N (u)

Fy

(6.1)

satisfies the Beck-Chevalley condition.

We write Mod(T) for the subcategory of Fun(T ., (∞, 1)-Cat) spanned by the
models of T and the morphisms between them.

We have presented the proofs in Chapter 5 in such a way that they also work
in the (∞, 1)-categorical context. Therefore, we have analogous results including
the following.

6.1.7. Proposition. The (∞, 1)-category ∞-TT is compactly generated and
limits and filtered colimits of ∞-type theories are computed component-wise.

6.1.8. Proposition. For any ∞-type theory, the (∞, 1)-category Mod(T) is
compactly generated and the forgetful functor Mod(T) → Fun(T ., (∞, 1)-Cat)
preserves limits and filtered colimits and is conservative.

6.1.9. Definition. Let T be an∞-type theory. A theory over T or T -theory is
a left exact functor T → Space where Space is the (∞, 1)-category of spaces. We
write Th(T) for the (∞, 1)-category of T -theories, that is, the full subcategory
of Fun(T ,Space) spanned by the left exact functors.

The internal language functor L : Mod(T) → Th(T) is defined in the same
way as the 1-categorical case. We also have the full subcategory Moddem(T) ⊂
Mod(T) spanned by the democratic models.

6.1.10. Theorem. For any ∞-type theory T , the internal language functor L :
Mod(T)→ Th(T) has a left adjoint and induces an equivalence

Moddem(T) ' Th(T).

164 Chapter 6. ∞-type theories

6.1.1 Univalent representable maps

We review the theory of univalent maps [69, 141, 142] in the context of (∞, 1)-
CwR.

6.1.11. Definition. For objects x and y of an (∞, 1)-category C with finite
products, let Map(x, y) → C denote the right fibration whose fiber over z is
C/z(x× z, y × z) ' C(x× z, y). It is defined by the pullback

Map(x, y) C/y

C C.

y

(x×−)

If Map(x, y) is representable, we write Map(x, y) for the representing object. Let
Eqv(x, y) denote the subfibration of Map(x, y) spanned by the invertible arrows
x×z ' y×z. If Eqv(x, y) is representable, we write Eqv(x, y) for the representing
object.

6.1.12. Definition. Let u : y → x be an arrow in an (∞, 1)-category C with
finite limits. We regard u×x : y×x→ x×x and x×u : x×y → x×x as objects of
C/x×x and define Eqv(u) to be the right fibration Eqv(u× x, x× u)→ C/x×x.
If Eqv(u) is representable, we write Eqv(u) for the representing object.

By definition, an arrow z → Eqv(u) corresponds to a triple (v1, v2, w) con-
sisting of arrows v1, v2 : z → x and an invertible arrow w : v∗1y ' v∗2y over
z.

6.1.13. Definition. Let u : y → x be an arrow in an (∞, 1)-category C with
finite limits such that Eqv(u) is representable. We have a section dide : x →
Eqv(u) over the diagonal ∆ : x→ x× x corresponding to the identity on y. We
say u is univalent if the arrow dide : x→ Eqv(u) is invertible.

For an (∞, 1)-category C with pullbacks, let OC denote the cartesian fibration

over C defined by the codomain functor C→ → C and O(all)
C the largest right

fibration over C contained in OC.

6.1.14. Proposition. Let u : y → x be an arrow in an (∞, 1)-category C with
finite limits such that Eqv(u) is representable. We identify u with the correspond-

ing map of right fibrations C/x→ O(all)
C via Yoneda. The following are equivalent:

1. u is univalent;

6.1. The theory of ∞-type theories 165

2. the square

C/x O(all)
C

C/x× x O(all)
C ×C O(all)

C

u

∆ ∆

u×u

is a pullback of right fibrations over C;

3. u : C/x→ O(all)
C is a monomorphism of right fibrations over C.

Proof:
The same proof as [69, Proposition 3.8 (1)–(3)] works only assuming the repre-
sentability of Eqv(u). 2

6.1.15. Proposition. Let x and y be exponentiable objects in an (∞, 1)-category
C with finite limits.

1. The right fibration Eqv(x, y)→ C is representable.

2. Let D be an (∞, 1)-category with finite limits and F : C → D a left
exact functor. If F sends x and y to exponentiable objects over F (z)
and commutes with exponentiation by x and y, then the canonical arrow
F
(
Eqv(x, y)

)
→ Eqv(F (x), F (y)) is invertible.

Proof:
The right fibration Eqv(x, y) is equivalent to the right fibration BiInv(x, y) of
bi-invertible arrows whose fiber over z ∈ C is the space of tuples (u, v, η, w, ε)
consisting of arrows u : x × z → y × z and v, w : y × z → x × z over z and
homotopies η : v ◦u ' id and ε : u◦w ' id over z. The right fibration BiInv(x, y)
is representable by the exponentiability of x and y. The second assertion is clear
from the construction of the representable object for BiInv(x, y). 2

6.1.16. Corollary. Let u : y → x be a representable map in an (∞, 1)-CwR.

1. The right fibration Eqv(u)→ C/x× x is representable.

2. If u is univalent, so is F (u) for any morphism of (∞, 1)-CwRs F : C → D.

6.1.17. Definition. Let u : y → x be a univalent representable map in an
(∞, 1)-CwR. We say an arrow u′ : y′ → x′ is u-small if there exists a (necessarily
unique) pullback square of the form

y′ y

x′ x.

u′
y

u

166 Chapter 6. ∞-type theories

6.1.2 The representable map classifier

Let C be a small (∞, 1)-category. Since the representability of a map of right
fibrations over C is a local property, we see that the class of representable maps of
right fibrations over C is local in the sense of Lurie [117]. Moreover, for any right
fibration A over C, the space of representable maps over A is essentially small:
for any representable map f : B → A, the cardinality of the fiber of B over a
section a : C/x→ A is bounded by the cardinality of C since a∗B is representable.
Hence, the class of representable maps of right fibrations over C has a classifying
object by [117, Proposition 6.1.6.3] which we refer to as the representable map
classifier .

The representable map classifier is a right fibration OC over C equipped with
a generic representable map ρC : ÕC → OC in the sense that ρC is a representable
map of right fibrations over C and, for any representable map f : B → A of right
fibrations over C, there exists a unique pullback of the form

B ÕC

A OC.

f
y

ρC

By [69, Theorem 3.9], the generic representable map ρC is a univalent repre-
sentable map in RFibC.

6.1.18. Proposition. For any small (∞, 1)-category C with pullbacks, the right

fibration O(all)
C is the representable map classifier.

This is immediate from the following observation.

6.1.19. Lemma. Let C be an (∞, 1)-category with pullbacks and x ∈ C an object.
A map f : A → C/x of right fibrations over C is representable if and only if the
right fibration A is representable.

Proof:
By definition. 2

Proof of Proposition 6.1.18:
By Lemma 6.1.19, the space of representable maps over C/x is equivalent to

k(C/x) which is the fiber of O(all)
C over x. 2

6.2 Type-theoretic structures

In this section, we explore connections between ∞-type-theoretic structures and
(∞, 1)-categorical structures. In Section 6.2.1 we define an ∞-type theory E∞

6.2. Type-theoretic structures 167

such that
Th(E∞) ' (∞, 1) -Lex (6.2)

where the right side is the (∞, 1)-category of small (∞, 1)-categories with finite
limits. Moreover, E∞ is an ∞-analogue of Martin-Löf type theory with Σ-types,
unit type, and extensional identity types. Therefore, Eq. (6.2) is understood as an
∞-analogue of the equivalence of theories with Σ-types, unit type, and extensional
identity types and categories with finite limits [39, 40]. Another way of viewing
Eq. (6.2) is that E∞ is a presentation of the (∞, 1)-category (∞, 1) -Lex. This
presentation has the advantage that the ∞-type theory has a simple universal
property from which we can derive a universal property of (∞, 1) -Lex.

In Section 6.2.2 we define an ∞-type theory EΠ
∞ such that theories over EΠ

∞
are equivalent to locally cartesian closed (∞, 1)-categories. Since∞-type theories
themselves are also (∞, 1)-categories with structure, we can even find an ∞-
type theory R∞ such that theories over R∞ are equivalent to ∞-type theories
(Section 6.2.3).

6.2.1 Finitely complete (∞, 1)-categories

We define an ∞-type theory E∞ such that theories over E∞ are equivalent to
(∞, 1)-categories with finite limits.

6.2.1. Definition. Let C be an (∞, 1)-CwR and ∂ : E → U a representable
map in C.

� A unit type structure on ∂ is a pullback square of the form

1 E

1 U.

∗

y
∂

1

� A Σ-type structure on ∂ is a pullback square of the form

dom(∂ ⊗ ∂) E

cod(∂ ⊗ ∂) U.

pair

∂⊗∂
y

∂

Σ

� An Id-type structure on ∂ is a pullback square of the form

E E

E ×U E U.

refl

∆
y

∂

Id

168 Chapter 6. ∞-type theories

When ∂ is univalent, these are properties of ∂ rather than structures as follows.

6.2.2. Proposition. Let ∂ : E → U be a univalent representable map in an
(∞, 1)-CwR. Then unit type structures, Σ-type structures, and Id-type structures
are unique up to contractible choice. Moreover, we have the following:

1. ∂ has a unit type structure if and only if all the identity arrows are ∂-small;

2. ∂ has a Σ-type structure if and only if ∂-small maps are closed under com-
position;

3. ∂ has an Id-type structure if and only if ∂-small maps are closed under
equalizers: for any ∂-small map u : y → x, any object x′ ∈ C/x and any
arrows v1, v2 : x′ → y in C/x, the equalizer x′′ → x′ of v1 and v2 in C/x is
∂-small.

Proof:
Since those structures are defined by pullbacks of ∂, they are unique up to con-
tractible choice by univalence. The rest is straightforward. 2

6.2.3. Definition. By a finitely complete universe in an (∞, 1)-CwR, we mean
a univalent representable map equipped with a unit type structure, a Σ-type
structure, and an Id-type structure. We define E∞ to be the free ∞-type theory
generated by a left exact universe ∂ : E → U .

6.2.4. Theorem. The functor ev� : Moddem(E∞)→ (∞, 1)-Cat factors through
(∞, 1) -Lex and induces an equivalence

Moddem(E∞) ' (∞, 1) -Lex .

6.2.5. Corollary. We have an equivalence Th(E∞) ' (∞, 1) -Lex.

Proof:
By Theorem 6.1.10. 2

To prove Theorem 6.2.4, we prepare a few lemmas.

6.2.6. Lemma. An arrow in E∞ is a representable map if and only if it is ∂-
small.

Proof:
Let E′∞ denote the (∞, 1)-CwR whose underlying (∞, 1)-category is the same as
E∞ and representable maps are the ∂-small maps. E′∞ is indeed an (∞, 1)-CwR
because ∂-small maps are closed under identities and composition by Proposi-
tion 6.2.2. By the initiality of E∞, the inclusion E′∞ → E∞ has a section, and
thus E′∞ ' E∞. 2

6.2. Type-theoretic structures 169

6.2.7. Definition. Let M be a model of an ∞-type theory T . By a display
map, we mean a morphism f : ∆ → Γ in M(�) that is equivalent over Γ to
pu : {a}u → Γ for some representable map u : y → x in T and some section
a :M(�)/Γ→M(x). By definition, display maps are stable under pullbacks and
any morphism of models of T preserves pullbacks of display maps.

6.2.8. Lemma. Let M be a model of E∞. An arrow f : ∆ → Γ in M(�) is a
display map if and only if the map f : M(�)/∆ → M(�)/Γ of right fibrations
over M(�) is M(∂)-small.

Proof:
By Lemma 6.2.6. 2

Proof of Theorem 6.2.4:
Let M be a democratic model of E∞. To show that M(�) has finite limits, it
remains to show that it has pullbacks. It suffices to show that all the morphisms of
M(�) are display maps, which also proves that any morphism between democratic
models of E∞ preserves finite limits in the base categories. By Proposition 6.2.2
and Lemma 6.2.8, the class of display maps in M(�) is closed under identities,
composition, and equalizers. Since M is democratic, the final projection Γ → 1
is a composite of display maps for any object Γ ∈M(�). Then, for any morphism
f : Γ→ ∆ inM(�), we can form the graph 〈f〉 of f by the equalizer of f ◦π1, π2 :
Γ × ∆ → ∆. The projection 〈f〉 → Γ × ∆ → ∆ is a display map and Γ is
equivalent over ∆ to 〈f〉, and thus f is a display map.

We have proved that the functor ev� : Moddem(E∞) → (∞, 1)-Cat fac-
tors through (∞, 1) -Lex. We construct an inverse of ev� : Moddem(E∞) →
(∞, 1) -Lex. Let C be an (∞, 1)-category with finite limits. The representable

map classifier ρC : ÕC → OC is a univalent representable map and, since C has
finite limits, representable maps of right fibrations over C are closed under equaliz-
ers. Therefore, ρC is a finitely complete universe in RFibC and thus determines a
model OC of E∞. Since the map C/x→ C/1 is representable for any object x ∈ C,
the model OC is democratic. Proposition 6.1.18 ensures that the construction
C 7→ OC is functorial.

We show that the construction C 7→ OC is an inverse of ev�. By definition, the
base category of OC is C. For the other equivalence, letM be a democratic model
of E∞. We show that M is naturally equivalent to OM(�). By the definition of
the representable map classifier, we have a unique pullback

M(E) ÕM(�)

M(U) OM(�).

M(∂)
y

ρM(�)

f

170 Chapter 6. ∞-type theories

We show that the map f is a monomorphism and surjective. Since M(∂) is
univalent, the map f is a monomorphism by [69, Corollary 3.10]. By Proposi-
tion 6.1.18, the objects of OM(�) are the morphisms ofM(�). Then, Lemma 6.2.8
implies that the image of f is the class of display maps in M(�). Since all the
morphisms in M(�) are display maps, we conclude that f is surjective. 2

Consider the image of the representable map ∂ : E → U by the inclusion

E∞ → Th(E∞)op 'Moddem(E∞)op ' (∞, 1) -Lexop .

For an (∞, 1)-category C with finite limits, we have

Th(E∞)(YEop
∞ (U),L(OC)) ' RFibC(C,OC)

' k(C)

Th(E∞)(YEop
∞ (E),L(OC)) ' RFibC

(
C, ÕC

)
' k(1/C).

Hence, the object U corresponds to the free finitely complete (∞, 1)-category 〈α〉
generated by an object α, the object E corresponds to the free finitely complete
(∞, 1)-category 〈γ : 1→ α〉 generated by an object α and a global section γ : 1→
α, and the arrow ∂ : E → U corresponds to the inclusion ι : 〈α〉 → 〈γ : 1→ α〉.
Since Th(E∞)op ' (∞, 1) -Lexop is the ω-free completion of E∞, we see that
∂ remains exponentiable in (∞, 1) -Lexop. We thus regard (∞, 1) -Lexop as an
(∞, 1)-CwR in which the representable maps are the pullbacks of ι, and then ι
is a finitely complete universe in (∞, 1) -Lexop. From the universal property of
E∞, we have the following universal property of (∞, 1) -Lexop.

6.2.9. Corollary. Let X be an (∞, 1)-CwR that has small limits and f : B →
A a finitely complete universe in X . Then there exists a unique morphism of
(∞, 1)-CwRs F : (∞, 1) -Lexop → X that sends ι to f and preserves small limits.

We also have truncated versions of Theorem 6.2.4.

6.2.10. Definition. For 1 ≤ n < ∞, we define EnEn to be the ∞-type theory
obtained from E∞ by forcing ∂ : E → U to be (n− 1)-truncated. Note that, by
univalence, U is forced to be n-truncated, and thus En is an (n+ 1)-type theory.

6.2.11. Theorem. For any 1 ≤ n < ∞, the functor ev� : Moddem(En) →
(∞, 1)-Cat factors through the (n+ 1, 1)-category (n, 1) -Lex of finitely complete
(n, 1)-categories and induces an equivalence

Moddem(En) ' (n, 1) -Lex .

6.2. Type-theoretic structures 171

Proof:
A democratic model of En is nothing but a democratic model M of E∞ such
that the map M(∂) : M(E) → M(U) is (n− 1)-truncated. It then follows
that the base category M(�) is an (n, 1)-category with finite limits. Conversely,
if C is an (n, 1)-category with finite limits, then the generic representable map

ρC : ÕC → OC is (n− 1)-truncated. 2

6.2.2 Locally cartesian closed (∞, 1)-categories

We show a result similar to Theorem 6.2.4 for locally cartesian closed (∞, 1)-
categories.

6.2.12. Definition. Let C be an (∞, 1)-CwR and ∂ : E → U a representable
map in C. A Π-type structure on ∂ is a pullback square of the form

P∂(E) E

P∂(U) U

λ

P∂(∂) ∂

Π

The following is immediate from the definition.

6.2.13. Proposition. Let ∂ : E → U be a univalent representable map in an
(∞, 1)-CwR. Then Π-type structures on ∂ are unique up to contractible choice.
Moreover, ∂ has a Π-type structure if and only if ∂-small maps are closed under
pushforwards along ∂-maps.

6.2.14. Definition. We define EΠ
∞ to be the free ∞-type theory generated by

a finitely complete universe ∂ : E → U with a Π-type structure.

6.2.15. Theorem. The functor ev� : Moddem
(
EΠ
∞
)
→ (∞, 1)-Cat factors through

(∞, 1)-LCCC and induces an equivalence

Moddem
(
EΠ
∞
)
' (∞, 1)-LCCC,

where (∞, 1)-LCCC is the (∞, 1)-category of small locally cartesian closed (∞, 1)-
categories and functors preserving finite limits and pushforwards.

Proof:
The proof is analogous to that of Theorem 6.2.4. 2

172 Chapter 6. ∞-type theories

6.2.3 ∞-type theories

Since the structure of an ∞-type theory looks type-theoretic, we could find an
∞-type theory such that theories over it are equivalent to ∞-type theories.

6.2.16. Definition. Let ∂1 : E1 → U1, ∂2 : E2 → U2 and ∂3 : E3 → U3 be
representable maps in an (∞, 1)-CwR. A (∂1, ∂2, ∂3)-Π-type structure is a pullback
square of the form

P∂1(E2) E3

P∂1(U2) U3.

λ

P∂1
(∂2)

y
∂3

Π

The following is immediate from the definition.

6.2.17. Proposition. If ∂3 is univalent, then (∂1, ∂2, ∂3)-Π-type structures are
unique up to contractible choice. Moreover, there exists a (∂1, ∂2, ∂3)-Π-type struc-
ture if and only if the pushforward of any ∂2-small map along any ∂1-small map
is ∂3-small.

6.2.18. Definition. We define R∞ to be the free ∞-type theory generated by
the following data:

� a finitely complete universe ∂ : E → U ;

� a subobject R ⊂ U . We write ∂R for the pullback of ∂ along the inclusion
R→ U ;

� a unit type structure and a Σ-type structure on ∂R;

� a (∂R, ∂, ∂)-Π-type structure.

6.2.19. Definition. LetM be a model of R∞. We say a morphism inM(�) is
a representable map if it is a context comprehension with respect to ∂R. Using
the (∂R, ∂, ∂)-Π-type structure, we see that display maps are closed under push-
forwards along representable maps. In particular, ifM is democratic, thenM(�)
is an ∞-type theory and any morphism between democratic models induces a
morphism of ∞-type theories. Hence, we have a functor

ev� : Moddem(R∞)→∞-TT .

6.2.20. Theorem. The functor ev� : Moddem(R∞)→∞-TT is an equivalence.

Proof:
Similar to Theorem 6.2.4. For an ∞-type theory C, we regard the class RC of
representable maps in C as a subfibration of OC. Then the representable map
classifier ρC : ÕC → OC and the subobject RC ⊂ OC determine a democratic
model of R∞. 2

6.3. Coherence problems 173

6.3 Coherence problems

One of motivations for ∞-type theories is to tackle coherence problems in cate-
gorical semantics of type theory. Traditionally, a category C with finite limits is
considered as a “model” of dependent type theory: contexts are interpreted as
objects of C; types over a context Γ are interpreted as objects of C/Γ; terms are in-
terpreted as sections. For a type A over a context Γ and a substitution f : Γ′ → Γ,
the action A · f is interpreted as the pullback f ∗A ∈ C/Γ′. However, there is a
mismatch between levels of equality: the substitution law A · (f ◦ g) = (A · f) · g
holds on the nose in the type theory; but we only have a coherent isomorphism
(f ◦ g)∗A ∼= g∗f ∗A in the category. Therefore, a category with finite limits is only
a non-split model of dependent type theory.

Theorem 6.2.11 suggests that it is more natural to consider categories with
finite limits as models of a 2-type theory rather than of a 1-type theory, and we
have not found any coherence problems in proving Theorem 6.2.11. Therefore,
switching from 1-type theory to ∞-type theory, coherence problems seem to dis-
appear. Of course, this does not solve anything because we just rephrase non-split
models of a type theory by models of an ∞-type theory, and the problem is now
how the ∞-type theory considered there is related to the original 1-type theory.
We can deal with the situation in a broader context. Let T be a 1-type theory
and suppose that we have an∞-type theory T∞ that looks like an∞-analogue of
T . In many cases, we cannot find any non-trivial morphism between T and T∞
but can find a span of ∞-type theories

T T −∞ T∞,τ γ
(6.3)

where τ is a truncation-like morphism and γ inverts some arrows in T −∞ .

6.3.1. Example. Let E denote the free 1-type theory generated by a repre-
sentable map ∂ : E → U equipped with Σ-types, unit type, and extensional
identity types. We cannot obtain a morphism between E and E1 preserving the
generating representable map ∂: the object U is 0-truncated in E while not in E1;
the representable map ∂ is univalent in E1 while not in E. We thus introduce an
intermediate 2-type theory E−1 defined in the same way as E1 but without univa-
lence of ∂ : E → U . Then E is obtained from E−1 by forcing U to be 0-truncated,
and E1 is obtained from E−1 by forcing ∂ to be univalent, yielding a span

E E−1 E1.
τ γ

(6.4)

6.3.2. Example. Let I denote the free 1-type theory generated by a repre-
sentable map ∂ : E → U equipped with Σ-types, unit type, and intensional
identity types and I∞ the free∞-type theory with the same structure as I. Then
I is obtained from I∞ by forcing U and E to be 0-truncated. Intensional identity

174 Chapter 6. ∞-type theories

types in the ∞-type theory I∞ is defined as a commutative square

E E

E ×U E U

refl

∆ ∂

Id

equipped with an arrow representing the elimination rule. If the induced arrow
refl′ : E → Id∗E is inverted, then the intensional identity types become extensional
ones. Therefore, E∞ is obtained from I∞ by inverting refl′ and by forcing ∂ to be
univalent, and thus we have a span

I I∞ E∞.τ γ
(6.5)

The span (6.3) induces a functor from Th(T) to Th(T∞) by the composite

Th(T) Th(T −∞) Th(T∞),τ∗ γ!

where for a morphism of ∞-type theories F : T1 → T2, we write F ∗ : Th(T2) →
Th(T1) for the precomposition functor and F! for its left adjoint. We say the span
(6.3) is a presentation of T∞ by T if the functor

γ! ◦ τ ∗ : Th(T)→ Th(T∞)

is a localization functor in the sense of Cisinski [38], that is, the induced functor
L(Th(T))→ Th(T∞) is an equivalence where L(Th(T)) is obtained from Th(T)
by freely inverting those morphisms inverted by γ! ◦ τ ∗. This condition implies:

1. any T∞-theory is represented by a T -theory;

2. any morphism I : Φ→ Ψ in Th(T∞) between T -theories is represented by
a zigzag of morphisms in Th(T)

Φ Φ01 Φ1 . . . Ψ
I+
1 I−1 I+

2 I−n

where I−i ’s become invertible in Th(T∞).

Roughly, all we can do with the ∞-type theory T∞ are emulated by the 1-type
theory T . Since Th(T∞) 'Moddem(T∞), the equivalence L(Th(T)) ' Th(T∞)
justifies using the 1-type theory T as an internal language for democratic models
of the ∞-type theory T∞.

In this section, we develop a technique of proving that the span (6.3) is a
presentation of T∞ by T . In general, it is difficult to prove that a functor is a
localization functor. It is known that when a functor preserves certain colimits,
one can verify that the functor is a localization functor by checking a couple of

6.3. Coherence problems 175

conditions called the left approximation property [38]. We thus first show that
the functor γ! ◦ τ ∗ preserves certain colimits. Since γ! preserves all colimits, the
real problem is whether τ ∗ preserves certain colimits. In fact, this is what people
refer to as a coherence problem.

To see why this is a coherence problem, we observe that the classical solutions
to coherence problems by Hofmann [78] and Curien [47] essentially proves that
the functor τ ∗ preserves certain colimits. Hofmann’s approach is to replace a non-
split model by a split model equivalent to the original non-split model in some
sense. This shows that the functor τ ∗ : Moddem(T) ' Th(T) → Th(T −∞) '
Moddem(T −∞) is surjective in some sense. The preservation of certain colimits is
a consequence of this surjectivity. Curien introduced a type theory with explicit
coercion in which equality between types is replaced by isomorphisms. His key
result is that in the initial theory, any two parallel isomorphisms are equal. An
∞-type theory is considered as a higher dimensional extension of the type theory
with explicit coercion in the sense that equality is replaced by homotopies. Then,
Curien’s result can be rephrased as follows: any two parallel homotopies in the
initial T −∞ -theory are equal. This means that the initial T −∞ -theory does not
contain any non-trivial homotopies, from which it follows that the functor τ ∗ :
Th(T)→ Th(T −∞) preserves initial objects.

Once we prove that the functor τ ∗ preserves certain colimits, it is not dif-
ficult to check the left approximation property. We explain this by examples.
In Section 6.3.1 we consider the simplest case when T is the syntactic CwR of
DTT whose models are natural models and non-split models are comprehension
categories. In Section 6.3.2, we extend the result to a general coherence theorem
for dependent type theories with various type constructors such as Σ-types, unit
type, extensional identity types, and Π-types. Finally, in Section 6.3.3, we dis-
cuss the coherence problem for intensional identity types and finitely complete
(∞, 1)-categories. We give a sketch of the proof that the span (6.5) is a presen-
tation of E∞ by I, which is a positive solution to the conjecture by Kapulkin
and Lumsdaine [100] that the homotopy theory of theories over the type theory
with intensional identity types is equivalent to the homotopy theory of finitely
complete (∞, 1)-categories.

6.3.1 Coherence for comprehension categories

A comprehension category [90, 89] is a cartesian fibration D → C equipped with
a functor p : D → C→ over C sending cartesian arrows to pullback squares. In
this thesis, we only consider the case when D is a right fibration over C. For any

176 Chapter 6. ∞-type theories

section A : C/Γ→ D, we have a pullback

C/ dom(p(A)) C∆

C/Γ D C→

y

A p

where C∆ is the category of sections in C. Hence, the pullback p∗C∆ → D is a
representable map of right fibrations over C. Conversely, any representable map
of right fibrations induces a comprehension category. We thus identify a compre-
hension category with the corresponding representable map of right fibrations.

6.3.3. Definition. Let D denote the syntactic CwR of DTT. It is characterized
as the free 1-type theory generated by a representable map ∂ : E → U . We define
D1 to be the free 2-type theory generated by a 0-truncated univalent representable
map ∂ : E → U . Let D−1 be the free 2-type theory generated by a 0-truncated
representable map ∂ : E → U . By definition, D is obtained from D−1 by forcing
U to be 0-truncated, and D1 is obtained from D−1 by forcing ∂ to be univalent.
Therefore, we have a span

D D−1 D1.
τ γ

(6.6)

We note that a model of D−1 is nothing but a comprehension category. We
could say that a model of D1 is a univalent comprehension category in the sense
that the corresponding representable map of right fibrations is univalent. A com-
prehension category p : D → C→ is univalent in this sense if and only if it is
fiberwise fully faithful on isomorphisms, that is, the functor pΓ : DΓ → k(C/Γ)
is fully faithful for any object Γ ∈ C. Therefore, a univalent comprehension cat-
egory is identified with a category C equipped with a class of arrows D ⊂ C→
that is stable under pullbacks. It is almost a display map category [166] or a clan
[94], but the specified arrows are not required to be closed under composition. In
this section, we sketch how the coherence problem for univalent comprehension
categories is solved.

6.3.4. Theorem. The span (6.6) is a presentation of D1 by D.

Although this time we only deal with (2, 1)-categories, we use the general
theory of localizations of (∞, 1)-categories [38, Chapter 7] in order to leave open
the possibility of higher dimensional generalization. The outline is as follows.

1. We make Th(D) a category with weak equivalences and cofibrations in which
the weak equivalences are those morphisms inverted by γ! ◦ τ ∗ such that the
functor γ! ◦ τ ∗ : Th(D)→ Th(D1) is right exact. Let L(Th(D)) denote the
localization.

6.3. Coherence problems 177

2. We show that the functor γ!◦τ ∗ satisfies the left approximation property : for
any cofibrant object Φ ∈ Th(D) and any morphism γ!τ

∗Φ→ Ψ in Th(D1),
there exist a morphism Φ → Ψ′ in Th(D) and an equivalence γ!τ

∗Ψ′ ' Ψ
under γ!τ

∗Φ.

Then, the left derived functor L(Th(D)) → Th(D1) is an equivalence by [38,
Proposition 7.6.15].

We first recall the notion of a category with weak equivalences and cofibra-
tions. There are some variations of this notion [30, 180, 139, 164], and here we
take Cisinski’s definition [38].

6.3.5. Definition. A category with weak equivalences and cofibrations is a cate-
gory C equipped with two classes of arrows Weq and Cof satisfying the conditions
below. Arrows in Weq are called weak equivalences and arrows in Cof are called
cofibrations . An object x of C is cofibrant if the initial injection 0 → x is a cofi-
bration. An arrow is said to be a trivial cofibration if it is both a weak equivalence
and a cofibration.

1. C has an initial object.

2. All the identities are trivial cofibrations, and weak equivalences and cofi-
brations are closed under composition.

3. The weak equivalences satisfy the 2-out-of-3 property: if u and v are a
composable pair of arrows and if two of u, v, and vu are weak equivalences,
then so is the rest.

4. Cofibrations are stable under pushouts along arbitrary arrows: if i : x→ y
is a cofibration and u : x→ x′ is an arbitrary arrow, then the pushout u!y
exists and the arrow x′ → u!y is a cofibration.

5. Trivial cofibrations are stable under pushouts along arrows between cofi-
brant objects: for any pushout square

x x′

y y′

u

i
p

i′

v

in which x and x′ are cofibrant and i is a cofibration, if i is a weak equiva-
lence, then so is i′.

6. Any arrow u : x→ y with cofibrant domain factors into a cofibration x→ y′

followed by a weak equivalence y′ → y.

For a category with weak equivalences and cofibrations, the localization L(C) is
the (∞, 1)-category obtained from C by adjoining formal inverses of weak equiv-
alences.

178 Chapter 6. ∞-type theories

6.3.6. Definition. Let C be a category with weak equivalences and cofibrations
and D an (∞, 1)-category with finite colimits. A functor F : C → D is right
exact if it sends trivial cofibrations between cofibrant objects to invertible arrows
and preserves initial objects and pushouts of cofibrations along arrows between
cofibrant objects.

Any right exact functor F : C → D induces the left derived functor L(C)→ D
[38, Remark 7.5.27]. If, in addition, F sends all weak equivalences to invertible
arrows, then the left derived functor coincides with the one induced by the uni-
versal property of the localization L(C) [38, Lemma 7.5.24]. In this case, one can
show that the left derived functor L(C) → D is an equivalence by verifying the
following left approximation property by [38, Proposition 7.6.15]:

1. an arrow in C is a weak equivalence if it becomes invertible in D;

2. for any cofibrant object x in C and any arrow u : F (x) → y in D, there
exists an arrow u′ : x→ y′ in C and an equivalence F (y′) ' y under F (x).

We now define weak equivalences and cofibrations in Th(D).

6.3.7. Definition. We define weak equivalences in Th(D) to be those mor-
phisms inverted by γ! ◦ τ ∗.

By definition, the first half of the left approximation property is satisfied.

6.3.8. Definition. The generating cofibrations in Th(D) are the following mor-
phisms:

� Y(Pn
∂(1))→ Y(Pn

∂(U)) for n ≥ 0;

� Y(Pn
∂(∂)) : Y(Pn

∂(U))→ Y(Pn
∂(E)) for n ≥ 0;

� Y(Pn
∂(∆)) : Y(Pn

∂(E ×U E))→ Y(Pn
∂(E)) for n ≥ 0.

The class of cofibrations in Th(D) is the closure of the generating cofibrations
under retracts, pushouts along arbitrary morphisms, and transfinite composition.
Cofibrations in Th

(
D−1
)

and Th(D1) are defined in the same way. We note that
the functors τ! and γ! preserve generating cofibrations.

Intuitively, cofibrant objects are well-behaved objects with respect to weak
equivalences. For a pushout in Th(D)

Y(Pn
∂(1)) Φ

Y(Pn
∂(U)) Φ′,

p

6.3. Coherence problems 179

Φ′ is an extension of Φ by a type. Similarly, the pushouts of Y(Pn
∂(∂)) and

Y(Pn
∂(∆)) create extensions by a term and by a term equality, respectively. There-

fore, a cofibrant D-theory is obtained from the empty theory by adjoining types,
terms, and equations between terms. Equations between types are not well-
behaved because they are too strict when we try to interpret types as objects in
a category.

By definition, Th(D) satisfies Items 1 to 4 of Definition 6.3.5. For Item 6, the
small object argument from model category theory [82] ensures that any morphism
in Th(D) factors into a cofibration followed by a trivial fibration.

6.3.9. Definition. We say a morphism I : Φ → Ψ in Th(D), Th
(
D−1
)

or
Th(D1) is a trivial fibration if it has the right lifting property with respect to
cofibrations: for any commutative square

A Φ

B Ψ

i I

where i is a cofibration, there exists a diagonal filler denoted by the dotted arrow.
By a standard argument in model category theory [82], I is a trivial fibration
if and only if it has the right lifting property with respect to the generating
cofibrations. Since Th(D), Th

(
D−1
)

and Th(D1) are compactly, the small object
argument proves that any morphism factors as a transfinite composite of pushouts
of generating cofibrations followed by a trivial fibration.

Thus, Item 6 of Definition 6.3.5 follows from the following lemma proved later.

6.3.10. Lemma. Any trivial fibration in Th(D) is inverted by the functor γ! ◦ τ ∗.

The hardest part is to verify Item 5 of Definition 6.3.5. We first observe that
the functors τ ∗ : Th(D)→ Th

(
D−1
)

and γ∗ : Th(D1)→ Th
(
D−1
)

are fully faith-
ful. Recall that theories and democratic models are equivalent (Theorems 5.1.8
and 6.1.10). Observe that the reindexing functors τ ∗ : Mod(D)→Mod

(
D−1
)

and
γ∗ : Mod(D1) → Mod

(
D−1
)

preserve democratic models. Therefore, the func-
tors τ ∗ : Th(D)→ Th

(
D−1
)

and γ∗ : Th(D1)→ Th
(
D−1
)

are identified with τ ∗ :

Moddem(D) → Moddem
(
D−1
)

and γ∗ : Moddem(D1) → Moddem
(
D−1
)
, respec-

tively. By the definitions of D, D−1 , and D1, we see that τ ∗ exhibits Moddem(D)
as the full subcategory of Moddem

(
D−1
)

spanned by those democratic models
M of D−1 such that the right fibration M(U) is 0-truncated, and γ∗ exhibits
Moddem(D1) as the full subcategory of Moddem

(
D−1
)

spanned by those demo-
cratic modelsM of D−1 such that the representable mapM(∂) :M(E)→M(U)
is univalent. We may thus regard Th(D) 'Moddem(D) as a full subcategory of
Th
(
D−1
)
'Moddem

(
D−1
)
. The key lemma is as follows.

180 Chapter 6. ∞-type theories

6.3.11. Lemma. Any cofibrant D−1 -theory belongs to Th(D).

This in particular implies that the inclusion τ ∗ : Th(D)→ Th
(
D−1
)

preserves
initial objects and pushouts of cofibrations along morphisms between cofibrant
objects. Since γ! : Th

(
D−1
)
→ Th(D1) preserves arbitrary colimits as it is a left

adjoint, the composite γ!◦τ ∗ also preserves initial objects and pushouts of cofibra-
tions along morphisms between cofibrant objects. Then Item 5 of Definition 6.3.5
follows. This also proves that the functor γ! ◦ τ ∗ is right exact.

The left approximation property is proved by a combinatorial argument. We
first observe that in Th(D1), all the morphisms are cofibrations. This is because
the codiagonal Y(Pn

∂(∆)) : Y(Pn
∂(U × U))→ Y(Pn

∂(U)) becomes a cofibration in
Th(D1) thanks to the univalence of ∂ : E → U . Then, the small object argument
shows that any morphism I : γ!τ

∗Φ→ Ψ in Th(D1) is a transfinite composite of
pushouts of generating cofibrations. Since the generating cofibrations in Th(D)
are the same as those in Th(D1), we can copy the construction of I into Th(D)
and have an approximation of I by a morphism in Th(D).

We take a closer look at Lemmas 6.3.10 and 6.3.11. Lemma 6.3.10 is proved
by concretely describing the functor γ! ◦ τ ∗ in terms of democratic models.

6.3.12. Construction. For a democratic model M ∈Moddem(D), the demo-
cratic model γ!M of D1 is constructed as follows:

� the base category is the same as M;

� the objects of (γ!M)(U) are the same as M(U), but the morphisms from
A′ to A are the pullback squares

{A′} {A}

Γ′ Γ;

g

y

f

� the sections of (γ!M)(E) over A :M(�)/Γ→ (γ!M)(U) are the sections of
{A} → Γ.

Then, for a trivial fibration F :M→N in Moddem(D), the morphism γ!F :
γ!M→ γ!N is an equivalence. The idea is that the lifting property with respect to
the generating cofibrations implies that the map (γ!F)U : (γ!M)(U)→ (γ!N)(U)
is essentially surjective, full, and faithful.

Lemma 6.3.11 could be proved either semantically, following Hofmann [78],
or syntactically, following Curien [47]. By “semantically”, we mean that we work
with democratic models instead of theories. Given a democratic modelM of D−1 ,
we can construct a democratic model SpM of D as follows. The base category
of SpM is the same as M. The discrete fibration (SpM)(U) is the so-called

6.3. Coherence problems 181

right adjoint splitting [158] of the right fibration M(U). It is equipped with a
fiberwise surjective map εU : (SpM)(U)→M(U) of right fibrations overM(�).
The discrete fibration (SpM)(E) is the pullback ofM(E) along εU , and then εU
is part of a morphism ε : SpM→M of democratic models of D−1 . The fiberwise
surjectivity of εU implies that the morphism ε : SpM→M has the right lifting
property with respect to the morphism Y(Pn

∂(1))→ Y(Pn
∂(U)). The other lifting

properties follow from the definition of (SpM)(E), and thus ε is a trivial fibration.
In summary, for any democratic model M of D−1 , we have a democratic model
SpM of D and a trivial fibration ε : SpM→M in Moddem

(
D−1
)
. In particular,

if M is cofibrant, then ε has a section by the lifting property, and thus M is a
retract of SpM.

0 SpM

M M

ε

Since Moddem(D) ⊂Moddem
(
D−1
)

is closed under retracts, any cofibrant demo-

cratic model of D−1 belongs to Moddem(D).
A syntactic proof of Lemma 6.3.11 has not yet been completed, but Curien’s

argument [47] can be seen as a proof of Lemma 6.3.11. He introduced a type
theory with explicit conversion where the usual conversion rule

Γ ` a : A1 Γ ` A1 ≡ A2 type

Γ ` a : A2

is replaced by an explicit conversion rule like

Γ ` a : A1 Γ ` A1 ≡ A2 type

Γ ` cA1,A2 · a : A2

so that the use of conversion is recorded in the term cA1,A2 ·a. Thus, the judgment
A1 ≡ A2 type expresses that A1 and A2 are homotopic rather than equal, and the
expression cA1,A2 · a is the action of the homotopy. In this sense, a type theory
with explicit conversion is 2-dimensional, and we expect that it is a syntactic
presentation of a 2-type theory. One of Curien’s results is that in his type theory
with explicit conversion, any two proofs of a type equation A1 ≡ A2 type are
equal [47, Theorem 6]. Lemma 6.3.11 essentially asserts that the same result
holds when we extend the type theory by type constants, term constants, and
equations between terms. Recall that a democratic model M of D−1 belongs to
Moddem(D) if the right fibration M(U) is 0-truncated, that is, any two parallel
homotopies between types in M are equal. Thus, Lemma 6.3.11 is equivalent
to that if Φ is a D−1 -theory presented by type constants, term constants, and
equations between terms but no equations between types, then any two parallel
homotopies between types derivable over Φ are equal.

182 Chapter 6. ∞-type theories

6.3.2 Coherence for finitely complete categories

We consider coherence problems for various extensions of D including the type
theory E with Σ-types, unit type, and extensional identity types. Let T be a
1-type theory.

6.3.13. Assumption. T is obtained from D by the following operations:

1. adjoin a new arrow x→ U ;

2. for an arrow A : x→ U , adjoin a new section x→ E over A;

3. for a pair of parallel sections a1, a2 : x→ E over the same arrow A : x→ U ,
equalize a1 and a2.

6.3.14. Example. Type theories with type constructors such as Π-types, Σ-
types, identity types, unit type, and inductive types are constructed by the op-
erations of Assumption 6.3.13.

By the same construction as T , we also obtain a 2-type theory T −1 from D−1
and a 2-type theory T1 from D1. These fit into the span

T T −1 T1.
τ γ

(6.7)

The goal is to show that the span (6.7) is a presentation of T1 by T , under an
extra assumption explained below. We follow the proof of Theorem 6.3.4. We
choose generating cofibrations in the same way as Th(D). Again the key lemmas
are Lemmas 6.3.10 and 6.3.11, and we can prove them by verifying the following.

6.3.15. Lemma. For any democratic model M of T −1 , the democratic model
SpM of D can be extended to a model of T such that ε : SpM → M is a
morphism of models of T −1 .

6.3.16. Assumption. For any democratic modelM of T , the democratic model
γ!M of D1 constructed in Construction 6.3.12 can be extended to a democratic
model of T1 and satisfies the universal property in Moddem(T1).

Lemma 6.3.15 is derivable from Assumption 6.3.13, but we have not found a
nice sufficient condition for Assumption 6.3.16. Practically, Assumption 6.3.16 is
verified by checking that all the arrows adjoined to T “respect isomorphisms”.
For example, the Π-type formation rule respects isomorphisms in the sense that
for any isomorphisms of types ` f : A1

∼= A2 and x : A1 ` g : B1(x) ∼= A2(f(x)),
we have an isomorphism Π(A1, B1) ∼= Π(A2, B2). For a democratic model M
of D, since morphisms in fibers of (γ!M)(U) are isomorphisms of types, any
Π-type structure on M induces a map of right fibrations Π : (γ!M)(P∂(U)) →
(γ!M)(U) which is part of a Π-type structure on γ!M. A difficulty in formulating

6.3. Coherence problems 183

the notion of “respecting isomorphisms” is that whether a type formation rule
respects isomorphisms depends on other components adjoined to T . For example,
the fact that the Π-type formation rule respects isomorphism does not follow from
the Π-type formation rule alone, but we also need the introduction, elimination,
and equality rules for Π-types to prove it. Another example is the formation
rule for an inductive type which respects isomorphisms only in the presence of
extensional identity types. Therefore, the validity of Assumption 6.3.16 depends
on the interaction of components of T adjoined in Assumption 6.3.13.

6.3.17. Lemma. For any right fibration A over a category C and any map f :
B → A from a discrete fibration B over C, there exists a map f ′ : B → SpA such
that ε ◦ f ′ = f .

Proof:
For a section b : C/x → B, the composite f ◦ b : C/x → A determines a section
f ′(b) : C/x → SpA by the definition of SpA. This construction is natural in
x, and thus f ′ determines a map B → SpA of discrete fibrations over C. By
construction, ε ◦ f ′ = f . 2

Proof of Lemma 6.3.15:
Let A : x→ U be one of the arrows adjoined to T . By Lemma 6.3.17, we have a
lift

(SpM)(x) M(x)

(SpM)(U) M(U),

ε

(SpM)(A) M(A)

ε

and thus SpM models A and ε preserves the structure. Lifting the other compo-
nents ofM is straightforward because (SpM)(E) is the pullback ofM(E) along
ε. 2

6.3.18. Theorem. The span (6.7) is a presentation of T1 by T for any 1-type
theory T satisfying Assumptions 6.3.13 and 6.3.16.

6.3.19. Example. It is straightforward to check that the type theory E satisfies
Assumption 6.3.16. Therefore, the span Eq. (6.4) is a presentation of E1 as E.
We then derive from Theorem 6.2.11 that the (2, 1)-category Lex is a localization
of Th(E).

6.3.3 Coherence for finitely complete (∞, 1)-categories

Kapulkin and Lumsdaine [100, Conjecture 3.7] conjectured that the homotopy
theory of contextual categories with unit type, Σ-types, and intensional identity

184 Chapter 6. ∞-type theories

types is equivalent to the homotopy theory of finitely complete (∞, 1)-categories.
Contextual categories with these type constructors are equivalent to democratic
models of the type theory I considered in Example 6.3.2, and thus their conjecture
is equivalent to that the (∞, 1)-category (∞, 1) -Lex of finitely complete (∞, 1)-
categories is a localization of the category Moddem(I) ' Th(I). The following
theorem gives a positive solution to their conjecture.

6.3.20. Theorem. The span

I I∞ E∞.τ γ

in 6.3.2 is a presentation of E∞ by I.

6.3.21. Corollary. The (∞, 1)-category (∞, 1) -Lex of finitely complete (∞, 1)-
category is a localization of Th(I).

Proof:
By Corollary 6.2.5. 2

6.3.22. Remark. The precise statement of the conjecture by Kapulkin and Lums-
daine is that a specific functor between categories with weak equivalences in-
duces an equivalence between the localizations. We will see that the functor
γ! ◦ τ ∗ : Moddem(I)→Moddem(E∞) ' (∞, 1) -Lex coincides with their functor.

The idea of the proof of Theorem 6.3.20 is the same as Theorem 6.3.4: make
Th(I) a category with weak equivalence and cofibrations; prove that the functor
γ! ◦τ ∗ : Th(I)→ Th(E∞) is right exact; prove that the functor γ! ◦τ ∗ has the left
approximation property. This time equality between terms is too strict compared
to homotopies in an (∞, 1)-category, and thus we should exclude the codiagonals
Y(Pn

∂(E ×U E))→ Y(Pn
∂(E)) from the generating cofibrations.

6.3.23. Definition. The generating cofibrations in Th(I) are the following mor-
phisms:

� Y(Pn
∂(1))→ Y(Pn

∂(U)) for n ≥ 0;

� Y(Pn
∂(∂)) : Y(Pn

∂(U))→ Y(Pn
∂(E)) for n ≥ 0.

We note that this choice of generating cofibrations is the same as Kapulkin and
Lumsdaine’s [100, Definition 3.10].

Again the key lemmas are Lemmas 6.3.10 and 6.3.11. For Lemma 6.3.10, we
have used a concrete description of the functor γ! ◦ τ ∗ in terms of democratic
models. By a standard argument in the categorical semantics of homotopy type
theory [e.g. 9, Theorem 3.2.5], the base categoryM(�) of a democratic modelM

6.3. Coherence problems 185

of I is a category with weak equivalences and fibrations. Then the localization
L(M(�)) is an (∞, 1)-category with finite limits [165, 38]. The democratic model
γ!M is obtained by Theorem 6.2.4. From this description, the functor γ! ◦ τ ∗ :
Moddem(I)→Moddem(E∞) ' (∞, 1) -Lex is the same as the one considered by
Kapulkin and Lumsdaine [100].

For Lemma 6.3.11, we develop a splitting technique. Techniques of replacing
a structured (∞, 1)-category by a model of a 1-type theory have not been estab-
lished unless the structured (∞, 1)-category is presentable [69, 151], but Shul-
man’s result [151] of replacing any Grothendieck (∞, 1)-topos by a certain well-
behaved model category is useful for splitting non-presentable (∞, 1)-categories,
as he already mentioned [151, Remark 1.4]. Recall that a democratic model
of I∞ is a pair consisting of an (∞, 1)-category M(�) and a representable map
M(∂) : M(E) → M(U) of right fibrations over M(�) equipped with certain
type constructors. Shulman [151] showed that any Grothendieck (∞, 1)-topos
is the localization of some type-theoretic model topos. Since the (∞, 1)-category
RFibM(�) of right fibrations over M(�) is a Grothendieck (∞, 1)-topos, it is the
localization γX : X → RFibM(�) of some type-theoretic model topos X . Then the
mapM(∂) :M(E)→M(U) is the image by γX of some fibration ∂X : EX → UX
between fibrant objects in X .

6.3.24. Lemma. We can choose ∂X : EX → UX that has unit type, Σ-types, and
intensional identity types.

By Lemma 6.3.24, we have a unique morphism I → X of CwRs, where we
choose arbitrary maps as representable maps in X . Then the composite with the

Yoneda embedding I → X → D̂FibX determines a model of I. We define SpM
to be the heart of this model. We can construct a trivial fibration ε : SpM→M
in Moddem(I∞), and then every cofibrant democratic model of I∞ belongs to
Moddem(I) by the retract argument.

The proof of Lemma 6.3.24 is a little subtle. The intensional identity types on
M(∂) can be lifted to ones on ∂X , but unit types and Σ-types cannot be lifted.
Recall that ∂X has Σ-types if and only if pullbacks of ∂X maps are closed under
composition. SinceM(∂) has Σ-types, pullbacks ofM(∂) are closed under com-
position. However, the pullbacks of M(∂) correspond to the homotopy pullbacks
of ∂X via the localization functor γX : X → RFibM(�), and thus we can say
nothing about the composition of pullbacks of ∂X . To fix this, we replace ∂X by
a fibration ∂′X : E ′X → U ′X such that pullbacks of ∂′X are homotopy pullbacks of
∂X .

By [151, Theorem 5.22], there exists a univalent fibration ∂′′X : E ′′X → U ′′X

186 Chapter 6. ∞-type theories

between fibrant objects and a pullback

EX E ′′X

UX U ′′X

∂X
y

∂′′X

ι

such that ∂′′X has unit type and Σ-types. Let U ′X be the object of X such that a
map A → U ′X corresponds to a triple (f1, f2, g) consisting of maps f1 : A → UX
and f2 : A → U ′′X and a homotopy equivalence g : f ∗1EX ' f ∗2E

′′
X over A. By

definition, we have a factorization UX
ι′−→ U ′X

ι′′−→ U ′′X of ι, and ι′ is a homotopy
equivalence by the univalence of ∂′′X . Let ∂′X be the pullback of ∂′′X along ι′′, and
then ∂X is the pullback of ∂′X along ι′. Since ι′ is a homotopy equivalence, we still
have γX (∂′X) ' M(∂). By construction, the pullbacks of ∂′X are the maps that
are both a pullback of ∂′′X and a homotopy pullback of ∂X . Then, ∂′X has unit
type and Σ-types. Indeed, since pullbacks of ∂′′X and homotopy pullbacks of ∂X
are closed under composition, pullbacks of ∂′X are closed under composition.

We end this section with discussion about variants of Theorem 6.3.20. Al-
though the splitting technique developed here works for Theorem 6.3.20, it is not
straightforward to generalize it to extensions by Π-types and inductive types. The
strategy used in Section 6.3.2 does not work. We could prove Lemma 6.3.15 if T
is obtained from I by adjoining types and terms, but type constructors of interest
have equality rules which are stricter than homotopies in (∞, 1)-categories.

A minor modification of the proof of Lemma 6.3.24 works for Π-types. By
extending I, I∞, and E∞ with Π-types, we obtain a span of ∞-type theories

IΠ IΠ
∞ EΠ

∞.
τ γ

(6.8)

We follow the proof of Lemma 6.3.24, but we further require the fibration ∂′′X to
also have Π-types. There is a size issue: we cannot guarantee that ∂′′X lives in
the same Grothendieck universe as ∂X does unless sufficiently many inaccessible
cardinals exist [128]. We can thus only prove that any cofibrant democratic model
of IΠ

∞ is a retract of a democratic model IΠ in a larger Grothendieck universe.
Nevertheless, this is enough to prove that any cofibrant democratic model of IΠ

∞
belongs to Moddem

(
IΠ
)
, and we have the following.

6.3.25. Theorem. Assuming that our ambient Grothendieck universe belongs to
a larger Grothendieck universe, the span (6.8) is a presentation of EΠ

∞ by IΠ.

6.3.26. Corollary. Assuming that our ambient Grothendieck universe belongs
to a larger Grothendieck universe, the (∞, 1)-category (∞, 1)-LCCC of locally
cartesian closed (∞, 1)-categories is a localization of Th

(
IΠ
)
.

6.3. Coherence problems 187

Proof:
By Theorem 6.2.15. 2

The splitting technique developed here does not work for inductive types,
because having inductive types is not a closure property of small maps. We
would thus have to develop a better splitting technique. Alternatively, we should
develop a syntactic proof of Lemma 6.3.11 which we expect works for a wide
range of type constructors including ordinary and higher inductive types without
any size issue. Of course, this is challenging since we have not known even what
a syntactic presentation of an ∞-type theory would be.

Chapter 7

Models of cubical type theory

In this and the next chapters we consider particular examples of type theories,
univalent type theory and cubical type theory (CTT). By univalent type theory, we
mean the extension of Martin-Löf type theory with Voevodsky’s univalence axiom
[172, Section 2.10] which asserts that equalities between two types are equivalent
to invertible functions between the types. Combined with higher inductive types
[172, Chapter 6], the univalence axiom provides proofs of theorems in homotopy
theory that can be interpreted in an arbitrary Grothendieck (∞, 1)-topos [151]
and formalized in computer proof assistants [19, 31].

One disadvantage of the formulation of the univalence axiom and higher in-
ductive types in [172] is that it lacks good computational behavior. Since the
univalence axiom is added as a new symbol without any computation rule, terms
containing the univalence axiom cannot be reduced to simpler ones. Some equal-
ity rules for higher inductive types hold only up to intensional equality rather
than judgmental equality. CTT [41] is another extension of Martin-Löf type the-
ory which provides a computational justification for the univalence axiom and
higher inductive types: univalence is derivable in CTT; CTT satisfies canonicity
[83]; CTT admits computational semantics [4]; higher inductive types in CTT
have judgmental equality rules for path constructors [44]. From a semantic point
of view, cubical methods are a good source of models of univalent type theory [22,
23, 10]. Cubical methods work in a constructive metalogic in contrast to Voevod-
sky’s simplicial model [102] which is not valid constructively [24]. This suggests
that one can build a cubical model over a base category other than Set such as
the category of assemblies which we will study in Chapter 8. Indeed, Orton and
Pitts [134, 135] and Licata et al. [111] gave a general way of constructing a model
of CTT inside an (extension of) intuitionistic dependent type theory based on
the idea of Coquand [43] of using the internal dependent type theory of a topos
to formulate fibrations of cubical sets.

This chapter is mostly devoted to reviewing the method of constructing a
model of CTT from a model of extensional type theory given by Orton and Pitts

189

190 Chapter 7. Models of cubical type theory

[134, 135] and Licata et al. [111]. One new contribution is the construction of
some higher inductive types which is joint work with Andrew Swan [163]. We
consider four type theories.

� We temporarily define the good type theory to be the extension of DTT with
Π-types, Σ-types, extensional identity types, unit type, strictly extensive
finite colimits, natural numbers type, and propositional truncation.

� We introduce quasi-cubical type theory (qCTT) which is a type theory sat-
isfying the axioms of Orton and Pitts [134, 135] for modeling CTT.

� We consider CTT in the style of Cohen et al. [41] with Π-types, Σ-types, de-
pendent path types, identity types, unit type, finite coproducts, and natural
numbers type.

� By univalent type theory , we mean the extension of DTT with Π-types,
Σ-types, intensional identity types, unit type, finite coproducts, natural
numbers type, and a countable chain of univalent universes.

The construction of a model of CTT is divided into two steps. First, given a
model of the good type theory, we construct a model of qCTT consisting of
cubical objects (Section 7.2). The second step is to transform a model of qCTT
into a model of CTT applying the method of Orton and Pitts [134, 135] and Licata
et al. [111] (Section 7.1). If we start from a model of the good type theory with
a countable chain of universes, then we obtain a model of CTT with a countable
chain of univalent universes as univalence is derivable over CTT, and thus it is
considered as a model of univalent type theory.

We deal with universes separately for two reasons. First, the axioms for
constructing univalent universes cannot be fully internalized in a type theory in
our sense by the “no-go” theorem of Licata et al. [111]. Although they introduced
a new type theory called crisp type theory to internalize their construction, that
type theory has dual-contexts and is beyond the scope of this thesis. We thus
need external assumptions on a model of qCTT to construct univalent universes.
Second, there are a few options for the style of universes such as a hierarchy of
predicative universes and an impredicative universe. We would therefore like a
modular construction that works for any style of universes. We also deal with
some selected higher inductive types separately.

The type theories considered in this chapter are all defined as SOGATs; see
Section 4.6 for how type constructors and universes are defined. The reader need
not read all the details of Chapter 4 to understand the results in this and the
next chapters. All we need here is that a symbol

S : (X1 : Γ1 → e1, . . . , Xn : Γn → en)⇒ e

7.1. A general construction of a model of CTT 191

in a SOGAT expresses an inference rule

Γ1 ` X1 : e1 . . . Γn ` Xn : en

` S(X1, . . . , Xn) : e

and that a model of a SOGAT is an interpretation of the inference rules. For
example, part of a model of CTT is as follows:

� a category M(�) with a final object;

� a representable map M(E)→M(U) of discrete fibrations over M(�);

� a representable monomorphism M(true) → M(Cof) of discrete fibrations
over M(�);

� a discrete fibrationM(I) overM(�) such that the final projectionM(I)→
1 is a representable map;

� a bunch of maps between discrete fibrations over M(�) interpreting the
inference rules of CTT.

We freely use the internal language of a modelM described in Section 5.1.1, so we
may call a section ofM(U) a type for example. Again, an informal understanding
of the internal language is enough to read this and the next chapters: the internal
language of a model of a type theory is the extension of the type theory where
elements of the model are adjoined as constants.

7.0.1. Remark. Although we work with CTT in the style of Cohen et al. [41] for
concreteness, the method also works for other styles of CTT. In the original work
by Orton and Pitts [134, 135], the reversal on the interval is dropped. Angiuli
et al. [5] gave a similar way of constructing a model of cartesian cubical type
theory. The work by Cavallo, Mörtberg, and Swan [37] does not depend on any
particular style of CTT, and different styles of models are obtained as special
cases.

7.1 A general construction of a model of CTT

We first introduce a type theory called quasi-cubical type theory (qCTT) and
explain how to transform a model of qCTT into a model of CTT. We explain
qCTT in Section 7.1.1. Given a modelM of qCTT, we construct in Section 7.1.2
a modelMfib of CTT consisting of fibrations in the same way as the construction
of a universe given by Licata et al. [111]. In Section 7.1.3, we describe how Mfib

models the type constructors of CTT. In Section 7.1.4, we see that if M models
a universe, then so doesMfib under suitable extra assumptions. We construct in
Section 7.1.5 selected higher inductive types in Mfib when M models W -types
with reductions. In Section 7.1.6 we introduce discrete types in M which are
automatically fibrations.

192 Chapter 7. Models of cubical type theory

7.1.1 Axioms for modeling CTT

By quasi-cubical type theory (qCTT), we mean a type theory satisfying the axioms
of Orton and Pitts [134, 135] for modeling CTT. In this section, we rephrase
their axioms in the language of SOGATs, that is, we define qCTT as a SOGAT
extending the good type theory with certain symbols and axioms. We first add
the interval as a type.

I : ()⇒ U

0I : ()⇒ I
1I : ()⇒ I

We also add a De Morgan algebra structure on I. We add a propositional universe
of cofibrations , that is, a universe whose elements are regarded as propositions.

Cof : ()⇒ U

true : (P : Cof)⇒ U

: (P : Cof, a1 : true(P), a2 : true(P))⇒ a1 ≡ a2 : true(P)

We make Cof weakly closed (Example 4.6.11) under Σ-types, unit type, finite
disjunctions, Π-types over I, and equalities with the endpoints 0I and 1I.

We further add some axioms. The endpoints of the interval should be distinct
to obtain a non-trivial model.

: (: ()→ 0I ≡ 1I : I)⇒ ⊥

We also require I to be connected .

: (P : (i : I)→ 2)⇒ (∀i:IP(i) == 0) ∨ (∀i:IP(i) == 1) (7.1)

We will need the following propositional extensionality of cofibrations to construct
a composition structure on identity types.

: (P : ()→ Cof, Q : ()→ Cof, : (: P)→ Q, : (: Q)→ P)⇒ P ≡ Q : Cof

Using Π-types, Σ-types, and extensional identity types, we can define the type
of isomorphisms Iso(A, B) between A and B. The following isomorphism extension
structure (on Cof valued in U) will be used for defining the glueing operation.

isoext1 : (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Iso(A, B))⇒ U

: (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Iso(A, B), : ()→ P)

⇒ isoext1(P, A, B, f) ≡ A : U

isoext2 : (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Iso(A, B))

⇒ Iso(isoext1(P, A, B, f), B)

: (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Iso(A, B), : ()→ P)

⇒ isoext2(P, A, B, f) ≡ f : Iso(A, B)

7.1. A general construction of a model of CTT 193

7.1.2 Fibrations

We define a type Comp(A) of composition structures on A inside qCTT. It is a
type in the form of

Comp : (A : (i : I)→ U)⇒ U

such that a term of the form (A : (i : I) → U) ⇒ Comp(A) corresponds to a
composition operation. It is indeed definable in qCTT as

Comp(A) ≡ (P : Cof, a : P -> (i : I) -> A(i), a0 : A(0I)) -> (P -> a0 == a(0I))

-> ((a1 : A(1I))× (P -> a1 == a(1I)).

We also define the type of homogeneous composition structures HComp(A) ≡
Comp(〈i〉A) for A : ()→ U .

Let M be a model of qCTT. Since the final projection M(I)→ 1 is a repre-
sentable map, the exponentiation byM(I) has a right adjoint by Corollary 3.1.18
which we refer to as

√
. Let Mfib(U) be the pullback

Mfib(U)
√

(M(E))

M(U)
√

(M(U))

y

M(Comp)′

(7.2)

whereM(Comp)′ is the transpose ofM(Comp) :M(U)M(I) →M(U). We define
Mfib(E) to be the pullback of M(E) along the map Mfib(U)→M(U).

7.1.1. Theorem (Orton and Pitts [134, 135]). For any model M of qCTT, the
representable mapsMfib(E)→Mfib(U),M(true)→M(Cof), andM(I)→ 1 are
part of a model Mfib of CTT. Moreover, the forgetful map Mfib →M preserves
Π-types, Σ-types, unit type, finite coproducts, and natural numbers type.

Proof:
Since ⊥ is isomorphic to the empty type, we have the eliminator elimE

⊥. The
disjointness of finite coproducts implies that for any cofibrations P : Cof and
Q : Cof, the square

P ∧ Q Q

P P ∨ Q

is a pushout, and thus we have the eliminator elimE
∨ . By the strict extensivity of

finite colimits, we also have the eliminators elimU
⊥ and elimU

∨ .

194 Chapter 7. Models of cubical type theory

By definition, Mfib models the composition operation. Indeed, the transpose
of the square (7.2) gives us a map

Mfib(U)M(I) M(E)

M(U)M(I) M(U).

comp

M(Comp)

It remains to construct type constructors including path types and glueing
which we will explain in Section 7.1.3 below. 2

7.1.3 Type constructors

Type constructors onMfib are constructed in the following steps. The formation,
introduction, elimination, and equality rules are defined inside qCTT. We then
have to prove that a compound type carries a composition structure whenever its
parameters do, but we often omit the construction of the composition structure
because it is identical to the equality rule presented in [41].

Π-types, Σ-types, unit type, finite coproducts, and natural numbers type on
Mfib are the same as those on M. We note that we need the connectedness of
I for the composition structures on finite coproducts and the natural numbers
type. The connectedness of I implies that any path p : I → A + B uniquely
factors through either inl : A → A + B or inr : B → A + B. Thus, if we know
that p(0I) belongs to A, then p factors through A. For types A : (i : I) → U and
B : (i : I)→ U with composition structures, the composition comp(〈i〉A(i)+B(i),
P, c, c0) is defined by case analysis on c0 : A(0I) + B(1I). When c0 ≡ inl(a0) for
a0 : A(0I), the connectivity of I implies that c : (i : I, : P) → A(i) + B(i) is of
the form 〈i〉inl(a(i)) for a unique a : (i : I, : P) → A(i). Then the composition
is defined by

comp(〈i〉A(i) + B(i), P, 〈i〉inl(a(i)), inl(a0)) ≡ inl(comp(A, P, a, a0)).

The case when c0 ≡ inr(b0) is symmetric. For the composition comp(〈i〉N, P, n,
n0) for the natural numbers type, we proceed by induction on n0 : N. When
n0 ≡ zero, we have (i : I, : P) → n(i) ≡ zero : N by the connectedness of I and
define

comp(〈i〉N, P, 〈i〉zero, zero) ≡ zero.

When n0 ≡ succ(n′0), we have (i : I, : P) → n(i) ≡ succ(n′(i)) : N for a unique
n′ : (i : I, : P)→ N by the connectedness of I and define

comp(〈i〉N, P, 〈i〉succ(n′(i)), succ(n′0)) ≡ succ(comp(〈i〉N, P, n′, n′0)).

7.1. A general construction of a model of CTT 195

One may notice that comp(〈i〉N, P, n, n0) ≡ n0 for any n0 by induction. In fact,
the type N is discrete (Section 7.1.6) and we can define comp(〈i〉A, P, a, a0) ≡ a0

for any discrete type A.
It remains to construct path types, identity types, and glueing.

Path types and identity types

The (dependent) path type

Path : (A : (i : I)→ U, a0 : ()→ A(0I), a1 : ()→ A(1I))⇒ U

is defined by

Path(A, a0, a1) ≡ {p : (i : I) -> A(i) | p(0I) == a0 ∧ p(1I) == a1}.

The introduction, elimination, and computation rules are obvious.
The identity type

Id : ([A : (i : I)→ U], a0 : ()→ A, a1 : ()→ A)⇒ U

is defined by

Id(a0, a1) ≡ (p : Path(〈i〉A, a0, a1))× {Q : Cof | Q -> ∀i:Ip(i) == a0}

which is a variant of Swan’s construction [162]. The introduction, elimination,
and computation rules are obvious. We note that we need the propositional
extensionality of cofibrations to construct a composition operation on Id(a0, a1).
Recall from [41, Section 9.1] that for A : (i : I) → U , a0 : (i : I) → A(i), and
a1 : (i : I)→ A(i), the composition operation for 〈i〉Id(a0(i), a1(i)) is defined by

comp(〈i〉Id(a0(i), a1(i)), P, 〈i〉(p(i), Q(i)), (p0, Q0))

≡ (comp(〈i〉Path(〈i′〉A(i), a0(i), a1(i)), P, p, p0), P ∧ Q(1I)).

For this to be well-defined, we have to derive P -> P ∧ Q(1I) == Q(1I). It is imme-
diate that P -> (P∧Q(1I)↔ Q(1I)), and then use the propositional extensionality.

Glueing

We would like to construct the glueing

Glue : (P : ()→ Cof, A : (: P)→ U, B : ()→ U, f : (: P)→ Equiv(A, B))⇒ U.

From the introduction, elimination, and computation rules for glueing, Glue(P, A,
B, f) must be isomorphic to

Glue′(P, A, B, f) ≡ (x : P -> A)× {y : B | P -> f(x) == y}.

196 Chapter 7. Models of cubical type theory

We have a canonical isomorphism g′ : (: P) → Iso(Glue′(P, A, B, f), A) defined
by the first projection with inverse λx.(x, f(x)). However, the glueing in CTT
requires the judgmental equality (: P)→ Glue(P, A, B, f) ≡ A : U . To fix this, we
use the isomorphism extension structure to obtain a type Glue(P, A, B, f) and an
isomorphism g : (: P) → Iso(Glue′(P, A, B, f),Glue(P, A, B, f)) such that (: P) →
Glue(P, A, B, f) ≡ A : U and (: P)→ g ≡ g′ : Iso(Glue′(P, A, B, f), A).

7.1.4 Universes

Suppose that M is a model of qCTT that also models a universe u with closure
properties sufficient to define Comp inside u. In the same way asMfib(U), we can
form the discrete fibration Mfib(u) of fibrations in M(u).

Mfib(u)
√

(M(elu))

M(u)
√

(M(u))

y

M(Comp)′

To say thatMfib(u) is a universe inMfib, we have to show thatMfib(u) isM(U)-
small and carries a composition structure. We need additional assumptions on
M to derive these. Recall that the composition structure for a universe is con-
structed using glueing [41, Section 7.1]. Since the construction of glueing inMfib

depends on the isomorphism extension structure, we need an isomorphism exten-
sion structure valued in u. ForMfib(u) to beM(U)-small, it is enough to assume
that the functor

√
preserves M(U)-small objects, that is, for any global section

A : M(�) →M(U), we have a global section
√

(A) : M(�) →M(U) such that√
(A)∗M(E) ∼=

√
(A∗M(E)).

7.1.2. Remark. We cannot realize
√

as a local operator
√

: M(U) → M(U)
unless M is trivial [111, Theorem 5.1].

If M models nested universes u : û, then we require that
√

preserves M(û)-
small objects to ensure that Mfib(u) is Mfib(û)-small. To summarize:

7.1.3. Theorem (Licata et al. [111]). Let M be a model of qCTT. Suppose that
M models a universe u containing Cof and I and weakly closed under Π-types,
Σ-types, and extensional identity types and thatM has an isomorphism extension
structure on Cof valued in u. If the functor

√
preservesM(U)-small objects, then

we have a universe Mfib(u) in Mfib weakly closed under Π-types, Σ-types, path
types, identity types, and glueing. When u is contained in a larger universe u : û
and
√

preserves M(û)-small objects, Mfib(u) is contained in Mfib(û).

7.1. A general construction of a model of CTT 197

7.1.5 Higher inductive types

We assume that M models W -types with reductions with respect to Cof. We
construct some higher inductive types in the model of CTTMfib. The idea is to
internalize the argument of Coquand, Huber, and Mörtberg [44] using W -types
with reductions. The contents of this section are joint work with Andrew Swan
[163].

To begin with, we give a way of freely adjoining a homogeneous composition
structure to a type in M.

7.1.4. Definition. Given a type A, we define the local fibrant replacement LFR(A)
to be the W -type with reductions W(A0, B0, P0, f0) where

� the type A0 is A + Cof;

� B0(inl(x)) ≡ 0 and B0(inr(P)) ≡ ((i : I)× ((i == 0I) ∨ P));

� P0(inl(x)) ≡ ⊥ and P0(inr(P)) ≡ P;

� f0(inr(P)) ≡ 1I.

The constructor sup is decomposed into two constructors.

supinl : (a : ()→ A)⇒ LFR(A)

supinr : (P : ()→ Cof, c : (i : I, : (i == 0I) ∨ P)→ LFR(A))⇒ LFR(A)

The second one is equivalent to the following.

supinr : (P : ()→ Cof, c : (: P, i : I)→ LFR(A), c0 : ()→ LFR(A),

: (: P)→ c0 == c(0I))⇒ LFR(A)

The reduction is then given by

: (P : ()→ Cof, c : (: P, i : I)→ LFR(A), c0 : ()→ LFR(P),

: (: P)→ c0 == c(0I), : ()→ P)⇒ supinr(P, c, c0) == c(1I).

Therefore, LFR(A) is the type obtained from A by freely adjoining a homogeneous
composition structure supinr.

7.1.5. Example. Given a type A in Mfib, the suspension Susp(A) is defined as
follows. We first take the following pushout in M.

A× 2 2

A× I Susp′(A)
p

Then Susp(A) := LFR(Susp′(A)) is an initial Susp A-algebra in the sense of [44,
Section 2.2] and then the same proof works.

198 Chapter 7. Models of cubical type theory

7.1.6. Example. Given a type A in Mfib, the propositional truncation Trunc(A)
is defined to be the W -type with reductions for the sum of the polynomial with
reductions (A0, B0, P0, f0) of Definition 7.1.4 and the following polynomial with
reductions (A1, B1, P1, f1):

� A1 ≡ I;

� B1(i) ≡ 2;

� P1(i) ≡ (i == 0I) ∨ (i == 1I);

� f1(0I) ≡ 0 and f1(1I) ≡ 1.

The constructor sup is decomposed into two constructors.

supinl : (a : ()→ A0, c : (y : B0(a))→ Trunc(A))⇒ Trunc(A)

supinr : (i : ()→ I, c : 2→ Trunc(A))⇒ Trunc(A)

The first one is decomposed as in Definition 7.1.4 and gives an inclusion A ->

Trunc(A) and a homogeneous composition structure on Trunc(A). The second one
is equivalent to

supinr : (c0 : Trunc(A), c1 : Trunc(A), i : ()→ I)⇒ Trunc(A)

and the reductions are

: (c0 : Trunc(A), c1 : Trunc(A))⇒ supinr(c0, c1, 0I) == c0

: (c0 : Trunc(A), c1 : Trunc(A))⇒ supinr(c0, c1, 1I) == c1.

Therefore, supinr constructs a path between arbitrary two points of Trunc(A),
forcing Trunc(A) to be a proposition. We can define a composition structure for
the propositional truncation in the same way as [44, Section 3.3.4].

7.1.6 Discrete types

We introduce a class of types for which composition structures are trivial.

7.1.7. Definition. We say a type A : U in qCTT is discrete if ∀p:I->A∀i:Ip(i) ==
p(0I) is inhabited. This is equivalent to that the function λxi.x : A -> (I -> A) is
an isomorphism with inverse λp.p(0I).

7.1.8. Example. The connectivity of I (Eq. (7.1)) is equivalent to that the type
2 is discrete. Indeed, both the connectivity of I and the discreteness of 2 assert
that any function I -> 2 is constant.

7.1.9. Proposition. Any closed discrete type A : M(�) → M(U) carries a
composition structure.

7.2. Internal cubical models 199

Proof:
Given P : Cof, a : P -> (i : I) -> A and a0 : A such that P -> a0 == a(0I),
we define a1 ≡ a0. By the discreteness, a is constantly a0, and thus we have
P -> a1 == a(1I). 2

7.1.10. Proposition. Let A :M(�)→M(U) be a discrete closed type and B :
M(�)/{A} → M(U) an arbitrary type. Then B carries a composition structure
if and only if it carries a homogeneous composition structure.

Proof:
A composition structure on B is given by a map of the form

(M(�)/{A})M(I) M(E)

M(U)M(I) M(U).

BM(I)

M(Comp)

Since A is discrete, the diagonal map ∆ : M(�)/{A} → (M(�)/{A})M(I) is an
isomorphism. Therefore, a composition structure on B is equivalent to a map of
the form

M(�)/{A} M(E)

M(U) M(U)M(I) M(U)

B

∆ M(Comp)

which is nothing but a homogeneous composition structure on B. 2

7.1.11. Proposition. Discrete types are closed under Π-types, Σ-types, unit
type, path types, finite coproducts, and natural numbers type. Moreover, for any
discrete type A, the path type Path(〈i〉A, a0, a1) coincides with the extensional iden-
tity type a0 == a1.

Proof:
Straightforward. 2

7.2 Internal cubical models

Orton and Pitts [134, 135] showed that the category of cubical sets satisfies their
axioms for modeling CTT. Since their proof works in a constructive metalogic,
we can internalize the construction of cubical models in an arbitrary model of

200 Chapter 7. Models of cubical type theory

extensional type theory. In this section, we review the construction of cubical
models. Precisely, we construct a model of qCTT consisting of cubical objects in
a model of the good type theory M. The outline is as follows.

1. Choose a category C in M called a cube category (Section 7.2.5) and build
a model PShMC of the good type theory consisting of cubical objects inM,
that is, presheaves in M over C.

2. C must contain a special object I called an interval (Section 7.2.3). The
interval of qCTT is interpreted as the representable presheaf YC I.

3. Cofibrations of qCTT are interpreted as locally decidable propositions (Sec-
tion 7.2.4).

4. Any universe in M can be lifted to a universe in PShMC (Section 7.2.2).

5. If M models W -types, then PShMC models W -types with reductions with
respect to locally decidable propositions (Section 7.2.6).

In Section 7.2.7, we introduce constant and codiscrete presheaves which automat-
ically carry composition structures in the cubical model.

7.2.1 Internal presheaves

We begin by defining categories and presheaves in M. Let C0 : M(�) →M(U)
and C1 : M(�)/{C0} × {C0} → M(U) be types, and let dom, cod : {C1} →
{C0} denote the first and second, respectively, projections. AlthoughM(�) need
not have general pullbacks, it has pullbacks along the projections dom and cod.
Therefore, a category structure on the graph (dom, cod) : {C1} → {C0} × {C0}
makes sense. By a category inM, we mean a category inM(�) whose underlying
graph is of this form. We use similar notations to ordinary categories in the
internal language of M: we refer to the type C0 as C; we may write Hom(x, y)
for C1(x, y). A presheaf over C also makes sense and it is defined to be an object
A ∈ M(�)/{C0} equipped with a right C-action act : cod∗A → dom∗A which is
denoted by · in the internal language of M.

7.2.1. Definition. Let C be a category in a modelM of the good type theory.
A presheaf over C valued in M(U) is a presheaf over C whose underlying object
over {C0} is of the form {A} for a section A :M(�)/{C0} →M(U).

For a presheaf Γ (valued in M(U)), let
∫
C Γ denote its category of elements,

that is, the internal category defined by the span Γ←− cod∗Γ
act−−→ Γ. Internalizing

the standard construction of a presheaf model of type theory [e.g. 79], we have
a model PShMC of DTT consisting of presheaves over C. Concretely, we define a
category PShMC (�) and a representable map PShMC (E)→ PShMC (U) of discrete
fibrations over PShMC (�) as follows:

7.2. Internal cubical models 201

� the base category PShMC (�) is the category of presheaves over C;

� the sections PShMC (�)/Γ→ PShMC (U) are the presheaves over
∫
C Γ valued

in M(U);

� the sections of PShMC (E) over A : PShMC (�)/Γ→ PShMC (U) are the global
sections of the presheaf {A} over

∫
C Γ;

� the context comprehension of A : PShMC (�)/Γ→ PShMC (U) is given by the
presheaf {A}.

We note that types and terms over Γ ∈ PShMC (�) are closed types and terms
in PShM∫

C Γ. Therefore, when constructing something from types and terms in
an arbitrary presheaf model, we may assume that the input types and terms are
closed.

7.2.2. Proposition. For any modelM of the good type theory and any category
C inM, the representable map PShMC (E)→ PShMC (U) is part of a model PShMC
of the good type theory.

Proof:
All the type constructors except Π-types are computed pointwise. For a presheaf
A over C and a presheaf B over

∫
C A, the presheaf Π(A,B) is defined by

Π(A,B)(x) = {b :
∏
x′:C

∏
f:Hom(x′,x)

∏
a:A(x′)

B(x′, a) | ∀x′,x′′:C∀f:Hom(x′,x)∀g:Hom(x′′,x′)∀a:A(x′)

b(x′, f, a) · g == b(x′′, f ◦ g, a · g)}

for x : C with right action

b · g = λx′fa.b(x′, g ◦ f, a).

2

7.2.2 Lifting universes

It is known that any Grothendieck universe can be lifted to a universe in an
arbitrary presheaf category [80]. This construction is performed inside a model
of a sufficiently rich type theory. Let M be a model of the good type theory.
Suppose thatM also models a universe (u, elu). Then, for a category C inM, the
model PShMC also models the universe as follows. Using Π-types, Σ-types, and
extensional identity types, we can define a type Fun(Cop,M(u)) of presheaves
over C valued in M(u). We then define M(u)C to be the presheaf over C defined
by

M(u)C(x) = Fun((C/x)op,M(u))

202 Chapter 7. Models of cubical type theory

for x : C with right action defined by precomposition. We define a presheaf
M(elu)C over

∫
CM(u)C by

M(elu)C(x, A) = A(id(x))

for (x, A) :
∫
CM(u)C. By definition, for any presheaf Γ ∈ PShMC (�), the sections

PShMC (�)/Γ→M(u)C bijectively correspond to the presheaves over
∫
C Γ valued

inM(u). Unless otherwise mentioned, we understand that PShMC interprets the
universe u as M(u)C.

7.2.3. Proposition. IfM(u) is (weakly) closed under Σ-types (extensional iden-
tity types, unit types, disjoint finite coproducts, natural numbers type, proposi-
tional truncation), so is PShMC (u). If M(u) is (weakly) closed under Π-types,
Π-types indexed over C0 and C1, Σ-types, and extensional identity types, then
PShMC (u) is (weakly) closed under Π-types.

Proof:
By construction. 2

7.2.4. Proposition. If M(u) is a propositional universe, then so is PShMC (u).
If, in addition, M(u) is weakly closed under finite disjunctions (satisfies the
propositional extensionality axiom, has an isomorphism extension structure), so
is PShMC (u). If M(u) has an isomorphism extension structure valued in another
universe M(u′), then PShMC (u) has an isomorphism extension structure valued
in PShMC (u′).

Proof:
By construction, it is immediate that PShMC (u) is a propositional universe. The
closure property and propositional extensionality are also obvious. The isomor-
phism extension structure is to be a natural transformation that takes an ob-

ject x : C, presheaves P : (C/x)op → M(u), A :
(∫
C/x P

)op

→ M(U), and

B : (C/x)op →M(U), and a natural transformation f :
∫
y:C/x P(y) × A(y) -> B(y)

such that f(y) : A(y) -> B(y) is an isomorphism for any y : C/x satisfying
P, and returns a presheaf isoext1(P, A, B, f) : (C/x)op → M(U) and an invert-
ible natural transformation isoext2(P, A, B, f) :

∫
y:C/x isoext1(P, A, B, f)(y) -> B(y)

such that isoext1(P, A, B, f)(y) ≡ A(y) and isoext2(P, A, B, f)(y) ≡ f(y) for any
y : C/x satisfying P. By the isomorphism extension structure on M(u), we have
a type isoext1(P, A, B, f)(y) : M(U) and an isomorphism isoext2(P, A, B, f)(y) :
isoext1(P, A, B, f)(y) ∼= B(y) for any object y : C/x, and these satisfy the required
equations. The right action of an arrow z : y′ → y in C/x on isoext1(P, A, B, f) is

7.2. Internal cubical models 203

defined to be the unique map that makes the following diagram commute.

isoext1(P, A, B, f)(y) isoext1(P, A, B, f)(y′)

B(y) B(y′)

isoext2(P,A,B,f)(y) ∼= isoext2(P,A,B,f)(y′)∼=

B(z)

Then isoext2(P, A, B, f) becomes a natural isomorphism by construction. The iso-
morphism extension structure valued in another universe is constructed in the
same way. 2

7.2.3 Intervals

7.2.5. Definition. Let C be a category with a terminal object inM. An interval
in C is an object I : C such that the product with I exists and I is equipped with
a De Morgan algebra structure.

Given an interval I in C, we interpret the interval of qCTT in presheaves over
C as PShMC (I) := YC I.

7.2.6. Proposition. IfM models a propositional universe Cof and if the equal-
ity predicate on Hom(x, I) belongs to M(Cof), then the equality predicate on the
representable presheaf YC I belongs to PShMC (Cof).

Proof:
By construction. 2

7.2.7. Lemma. For a presheaf A over C, the exponential AYC I is given by

AYC I(x) ∼= A(x× I).

Proof:
This is an internal version of Proposition 3.1.17. 2

7.2.8. Proposition. The interval in PShMC is connected.

Proof:
As noted in Example 7.1.8, the interval is connected if and only if 2 is discrete.
The type 2 is interpreted in PShMC as the constant presheaf at the two-element
type in M. Then, by Lemma 7.2.7, we have 2I ∼= 2 in PShMC . 2

204 Chapter 7. Models of cubical type theory

7.2.9. Proposition. IfM models a universe u, then PShMC (u) is weakly closed
under Π-types over YC I.

Proof:
By Lemma 7.2.7, PShMC (u)YC I(x) is isomorphic to the type of presheaves over
C/x × I valued in u. Then we obtain ΠI : PShMC (u)YC I → PShMC (u) by sending
a presheaf A over C/x× I to the presheaf ΠI(A) over C/x defined by

ΠI(A)(y) = A(y× I)

for y : C/x. 2

7.2.10. Proposition. The functor
√

preserves PShMC (U)-small objects.

Proof:
Let A : PShMC (�) → PShMC (U) be a global section, that is, a presheaf over C
valued in M(U). By Lemma 7.2.7, the presheaf

√
(A) over C is given by

√
(A)(x) =

∫
y:C

Hom(y× I, x) -> A(y),

where the end is defined using Π-types, Σ-types, and extensional identity types,
and thus

√
(A) is valued in M(U). 2

In the same way, we can show the following.

7.2.11. Corollary. IfM models a universe u weakly closed under Π-types over
C0 and C1, Σ-types, and extensional identity types, then the functor

√
preserves

PShMC (u)-small objects.

7.2.4 Locally decidable propositions

In the good type theory, the type 2 is called the decidable subobject classifier.

7.2.12. Definition. We say a proposition P is decidable if P + ¬P is inhabited.

The type 2 classifies the decidable propositions in the following sense. We
define a proposition

true : (x : 2)⇒ U

by true(x) ≡ (x == 0). For any decidable proposition P : (x : A) → U , we have a
function χP : A -> 2 defined by χP(x) ≡ 0 if P(x) and χP(x) ≡ 1 if ¬P(x). This
function χP is uniquely characterized by the property that

(x : A) -> (P(x)↔ true(χP(x))).

We regard 2 as a propositional universe with the proposition true.

7.2. Internal cubical models 205

7.2.13. Proposition. 2 is weakly closed under Σ-types, unit type, and finite
disjunctions, satisfies the propositional extensionality axiom, and has an isomor-
phism extension structure valued in U and an isomorphism extension structure
valued in an arbitrary universe.

Proof:
Since decidable propositions are closed under Σ-types, unit type, and finite dis-
junctions, 2 is weakly closed under these type constructors. The propositional
extensionality is obvious. For an isomorphism extension structure, let P : ()→ 2
be a decidable proposition, A : (: P)→ U and B : ()→ U types and f : (: P)→
Iso(A, B) an isomorphism. By the strict extensivity of the coproduct 2 = 1 + 1,
we can proceed by case analysis on P. When P is 0, we have true(P) ∼= > and
then define isoext1(0, A, B, f) ≡ A and isoext2(0, A, B, f) ≡ f. When P is 1, we
have true(P) ∼= ⊥ and then define isoext1(1, A, B, f) and isoext2(1, A, B, f) by the
elimination rule for the empty type. An isomorphism extension structure valued
in a universe is defined in the same way. 2

Let C be a category in M with an interval I. By Proposition 7.2.13, the
universe PShMC (2) satisfies most of the requirements for Cof in qCTT. However,
it is never the case that the equality predicate on YC I is decidable while 0I and
1I are distinct. If the equality predicate on YC I is decidable, then the equality
predicate on Hom(x, I) is decidable for any x : C and the decision is preserved
by precomposition in the sense that if f1, f2 : x → I are distinct, then so are
f1 ◦ g, f2 ◦ g : x′ → I for any g : x′ → x. In particular, the two projections
I × I → I are equal as they are equalized by the diagonal arrow I → I × I. It
then follows that 0I, 1I : 1 → I are equal. We thus seek another universe for the
interpretation of Cof.

Applying the construction of a universe described in Section 7.2.2 to M(2),
we obtain the universe M(2)C in PShMC . By construction, M(2)C classifies lo-
cally decidable propositions , that is, presheaves P such that P (x) is a decidable
proposition for any object x. Local decidability is a much milder condition than
decidability: the equality predicate on YC I is locally decidable if and only if the
equality predicate on Hom(x, I) is decidable for any object x : C. The universe
M(2)C also inherits good properties from M(2).

7.2.14. Proposition. Let M be a model of the good type theory and C a cate-
gory in M. Then the universe M(2)C in PShMC is weakly closed under Σ-types,
unit type, and finite disjunctions, satisfies the propositional extensionality axiom,
and has an isomorphism extension structure valued in U and an isomorphism
extension structure valued in a universe obtained by the method of Section 7.2.2.

Proof:
By Propositions 7.2.4 and 7.2.13. 2

206 Chapter 7. Models of cubical type theory

7.2.5 Cube categories

We work in the good type theory. Let Fin : (x : ()→ N)⇒ U be the type defined
by Fin(x) = {y : N | y < x}. We define a category B as follows. The objects
are the natural numbers. The morphisms x → y are the functions (Fin(x) ->

2) -> (Fin(y) -> 2). Finite products in B are given by the addition. The hom
set Hom(x, y) is isomorphic to Fin

(
22x×y) and thus the equality predicate on

Hom(x, y) is decidable. We choose an interval I to be 1 : N. From the standard
Boolean algebra structure on 2, the interval I is a Boolean algebra in B. In
particular, I is a De Morgan algebra in B. We call a presheaf over B a cubical
object.

7.2.15. Theorem (Orton and Pitts [134, 135]). For any model M of the good
type theory, the representable map PShMB (E)→ PShMB (U), the universeM(2)B,
and the interval YB I are part of a model PShMB of qCTT. Hence, we have the
model

(
PShMB

)
fib

of CTT by Theorem 7.1.1.

Proof:
We have already seen that PShMB is a model of the good type theory in Propo-
sition 7.2.2. By Proposition 7.2.14, M(2)B is a propositional universe with suffi-
cient closure properties, propositional extensionality, and an isomorphism exten-
sion structure valued in U . By Proposition 7.2.9,M(2)B is closed under Π-types
over YB I. The equality predicate on YB I belongs toM(2)B by Proposition 7.2.6
and the decidability of morphisms in B. The interval YB I is connected by Propo-
sition 7.2.8. For the endpoints of YB I to be distinct, it suffices to show that the
endpoints 0I, 1I : 0 → I in B (0 : N is the final object in B) are distinct at any
object n : B, that is, the composites with the final projection n→ 0 are distinct,
but this is obvious by the definition of B. 2

7.2.16. Proposition. Let M be a model of the good type theory. Suppose that
M models a universe u weakly closed under all the type constructors of the good
type theory. Then M(u)B is a universe in PShMB containing Cof and I and
weakly closed under all the type constructors of qCTT. Hence, we have a universe
in
(
PShMB

)
fib

by Theorem 7.1.3 and Proposition 7.2.10. Moreover, any hierarchy
of universes u : û is preserved by this construction by Corollary 7.2.11.

Proof:
The closure properties of u include 2 : u and N : u, and thusM(u)B contains Cof
and I. The other closure properties are proved in Proposition 7.2.3. 2

The category B is not the only choice of the base category. What we need in
the proof of Theorem 7.2.15 is:

1. the equality predicate on Hom(x, I) is decidable for any object x : C;

7.2. Internal cubical models 207

2. the endpoints 0I, 1I : 1→ I in C are distinct at any object x : C.

We say C is a cube category if these conditions are satisfied. For example, assuming
sufficient inductive types inM, we may choose C to be the opposite of the category
of free De Morgan algebras on finite types as in [41]. As Cohen et al. [41] remarked,
the free De Morgan algebra over a finite type has decidable equality. This is
because equalities between elements of a free De Morgan algebra are tested by
homomorphisms to the four-element De Morgan algebra {0, x, y, 1} with 1−x = x,
1−y = y, x∧y = 0, and x∨y = 1; see [104] for an elementary proof. The interval
I is the free De Morgan algebra on the singleton type and the endpoints 0I and 1I
are the morphisms I→ 2 of De Morgan algebras sending the generator to 0 and
1, respectively. Since 0 and 1 remain distinct in any free De Morgan algebras, we
see that the endpoints are distinct at any object x : C.

7.2.6 W -types with reductions

This section is joint work with Andrew Swan [163]. We assume that M models
W -types. Let C be a category in M. We construct W -types with reductions in
PShMC with respect to the universeM(2)C of locally decidable propositions. The
following category-theoretic result was proved by Swan.

7.2.17. Theorem (Swan [161]). Let X be a locally cartesian closed category with
finite colimits and disjoint coproducts and W -types, and let C be an internal cate-
gory in X . Then the category of internal presheaves over C has all locally decidable
W -types with reductions.

The W -types with reductions obtained by Theorem 7.2.17 are stable under
reindexing only up to isomorphism, while in a model of a type theory everything
must be strictly stable under reindexing. We thus apply a splitting technique to
obtain a strictly stable one.

Let Γ be a context in PShMC , A a type over Γ, B a type over {A}, P a
cofibration over {A}, and f : P → B a map over A. Unwinding the defini-
tion, Γ is a presheaf over C, A is a presheaf over

∫
C Γ valued in M(U), B is

a presheaf over
∫
C A valued in M(U), and P is a presheaf over

∫
C A valued in

M(2). The W -type with reductions W(A,B, P, f) must be a presheaf over
∫
C Γ.

Let (x, c) be an object of
∫
C Γ. By Yoneda, the element c corresponds to a map

c : C/x →
∫
C Γ of discrete fibrations over C. Pulling back along c, we have

a polynomial with reductions (c∗A, c∗B, c∗P, c∗f) in the category of presheaves
over C/x. Let W′(c∗A, c∗B, c∗P, c∗f) be the W -type with reductions obtained
by Theorem 7.2.17. We then define the value of the presheaf W(A,B, P, f) at
(x, c) to be the fiber of W′(c∗A, c∗B, c∗P, c∗f) over idx : C/x. By construction,
W(A,B, P, f) is strictly stable under reindexing along a map Γ′ → Γ.

208 Chapter 7. Models of cubical type theory

7.2.7 Constant and codiscrete presheaves

Let C be a cube category in a model M of the good type theory. We introduce
two constructions of types in

(
PShMC

)
fib

out of types in M, constant presheaves
and codiscrete presheaves.

For a closed type A :M(�)→M(U), we define the constant presheaf ∆A by
(∆A)(x) = A with the trivial right C-action. For a closed type A : M(�) →
M(U), we define the codiscrete presheaf ∇A : PShMC (�) → PShMC (U) by
(∇A)(x) = Hom(1, x) -> A for x : C with composition as the right C-action. For a
type B :M(�)/{A} →M(U), we define ∇AB : PShMC (�)/{∆A} → PShMC (U)
by (∇AB)(x, a) = (∇B(a))(x) for (x, a) :

∫
C∆A.

Categorically, ∆ and ∇ are understood as the left and right, respectively,
adjoints of the evaluation ev1 : PShMC →M at the final object 1 : C.

M PShMC

∆

∇

ev1

a
a

We also note that ev1 ◦∆ ∼= id and ev1 ◦ ∇ ∼= id by definition. Furthermore, ∆
preserves the type constructors of the good type theory up to isomorphism.

7.2.18. Proposition. For any closed type A, the constant presheaf ∆A is a
discrete closed type of PShMC .

Proof:
By Lemma 7.2.7,, we have (∆A)I(x) ∼= (∆A)(x× I) = A = (∆A)(x) for any
x : C. 2

7.2.19. Lemma. For any closed type A, the codiscrete presheaf ∇A carries a
composition structure, where we choose M(2)C as the universe of cofibrations,
and is a proposition with respect to path types.

Proof:
For a composition structure, it is enough to construct a homogeneous compo-
sition structure as ∇A is a closed type. Unwinding the definition, a homo-
geneous composition structure on ∇A is a natural transformation hcomp that
takes an object x : C, a functor P : (C/x)op

-> 2, a natural transformation
a :

∫
y:C((f : Hom(y, x))× P(f)× Hom(y, I)) -> (∇A)(y), and an element a0 :

(∇A)(x) such that ∀y:C∀f:Hom(y,x)P(f) -> a0 · f == a(f, 0I) and returns an element
hcomp(P, a, a0) : (∇A)(x) such that ∀y:C∀f:Hom(y,x)P(f) -> hcomp(P, a, a0) · f ==

a(f, 1I). We define hcomp(P, a, a0) : Hom(1, x) -> A by

hcomp(P, a, a0)(f) =

{
a(f, 1I)(id1) if P(f) == 0
a0(f) if P(f) == 1

7.2. Internal cubical models 209

for f : Hom(1, x). Then it is natural in x and satisfies the required condition.
For ∇A to be a proposition, we construct a natural transformation p that

takes an object x : C, elements a0, a1 : (∇A)(x), and a morphism i : Hom(x, I)
and returns an element p(a0, a1, i) : (∇A)(x) such that p(a0, a1, 0I) == a0 and
p(a0, a1, 1I) == a1. We define p(a0, a1, i) by

p(a0, a1, i)(f) =

{
a0(f) if i · f == 0I
a1(f) otherwise

for f : Hom(1, x). Then it is natural in x and satisfies the required conditions. 2

7.2.20. Proposition. For any closed type A and any type B over A, the codis-
crete presheaf ∇AB carries a composition structure, where we choose M(2)C as
the universe of cofibrations, and is a proposition with respect to path types.

Proof:
From the definition of ∇AB, this is confirmed point-wise. We thus just apply
Lemma 7.2.19. 2

Chapter 8

Cubical assembly models of type theory

In this chapter, we study models of univalent type theory and CTT in cubical
assemblies obtained by applying the method described in Chapter 7 to the model
of extensional type theory in assemblies.

An interesting feature of the assembly model is that it has a proof-relevant
impredicative universe. We say a universe is impredicative if it is weakly closed
under dependent products over arbitrary types. The subobject classifier of a topos
is an impredicative universe in this sense but proof-irrelevant in the sense that
any type classified by the universe has at most one element. It is known that
any impredicative universe in a Grothendieck topos is proof-irrelevant because
of the result of Freyd [58] that any small complete category is a preorder. In
contrast, the impredicative universe in the assembly model is proof-relevant and
admits an interpretation of polymorphic type theory such as System F [73] and
the Calculus of Constructions [45]. In Section 8.2, we construct an impredicative
universe in the cubical assembly model by applying the construction of universes
given in Chapter 7. Since univalence is derivable over CTT, this universe is also
univalent, and thus univalence is consistent with impredicativity.

When a type theory has an impredicative universe u, the inclusion from u-small
types to all types has a reflection. In general, this reflection is not an equivalence,
because if u itself belongs to u then one can derive a contradiction (Girard’s para-
dox). However, if we restrict our attention to propositions, there is a possibility
that the reflection of propositions to u-small propositions gives an equivalence.
This is a formulation of the propositional resizing axiom [172, Section 3.5] in the
presence of an impredicative universe. The impredicative universe in the assem-
bly model of extensional type theory admits this form of propositional resizing.
Van den Berg [174] constructed a proof-relevant, impredicative, and univalent
universe satisfying propositional resizing, but this universe is 1-truncated in the
sense that it classifies a class of 0-truncated types. It is unknown whether there
is an untruncated, proof-relevant, impredicative, and univalent universe, and we
show in Section 8.3 that the impredicative universe in the cubical assembly model

211

212 Chapter 8. Cubical assembly models of type theory

of CTT does not admit propositional resizing.
Another important aspect of the assembly model is that it is a model of Con-

structive Recursive Mathematics, a form of constructivism based on algorithms
or recursive functions. In Constructive Recursive Mathematics, the following two
principles are accepted.

Markov’s Principle If it is not the case that an algorithm does not terminate,
then the algorithm terminates.

Church’s Thesis For any function on natural numbers, there exists an algo-
rithm to compute the function.

The assembly model of extensional type theory satisfies these principles. We con-
struct a model of univalent type theory to show the consistency of the univalence
axiom and the main principles of Constructive Recursive Mathematics. We show
in Section 8.4 that Markov’s Principle holds in the cubical assembly model. On
the other hand, Church’s Thesis does not hold in the cubical assembly model
and, even worse, the negation of Church’s Thesis holds in any cubical model
constructed by the method given in Chapter 7. Nevertheless, we can find a re-
flective subuniverse of cubical assemblies in which Church’s Thesis and Markov’s
Principle hold. We prove these results on Church’s Thesis in Section 8.5.

The contents of Sections 8.2 and 8.3 are based on the author’s paper [170].
Sections 8.4 and 8.5 are joint work with Andrew Swan [163].

8.0.1. Remark. The results in Sections 8.4 and 8.5 also hold when we begin
with any model of extensional type theory satisfying Markov’s Principle and
Church’s Thesis instead of the assembly model. For example, we may take the
effective topos [85] which includes the category of assemblies and is categorically
more well-behaved than the category of assemblies. However, the impredicative
universe in the assembly model fails to be impredicative in the effective topos
if types are interpreted as arbitrary objects of the effective topos. Indeed, the
internal category given by Hyland [84] is only weakly complete, and one has to
interpret types as assemblies to model polymorphic type theory.

8.1 Assemblies

We review the assembly model of type theory. The standard references are [176,
114, 85, 137, 89].

Let e · n denote the partial operator on natural numbers that is defined if e is
a code of a partial recursive function and if the value at n is defined and returns
the output.

8.1.1. Definition. An assembly or ω-set is a set A equipped with a non-empty
set EA(a) of natural numbers for any a ∈ A. When n ∈ EA(a), we say n is a

8.1. Assemblies 213

realizer for a or n realizes a. A morphism f : A → B of assemblies is a map
f : A → B between the underlying sets such that there exists a natural number
e such that, for any a ∈ A and n ∈ EA(a), the application e · a is defined and
belongs to EB(f(a)). In that case, we say f is tracked by e or e is a tracker of f .
We write Asm for the category of assemblies and their morphisms.

8.1.2. Remark. Assemblies can be more generally defined for an arbitrary par-
tial combinatory algebra [176]. An assembly in the sense of Definition 8.1.1 is an
assembly for Kleene’s first model K1. All the results in Sections 8.2 and 8.3 holds
for an arbitrary non-trivial partial combinatory algebra.

We make Asm part of a model of the good type theory. The base category
Asm(�) is the category of assemblies. The sections Asm(�)/A → Asm(U) are
the families of assemblies indexed over the underlying set of A. The sections
of Asm(E) over a section B : Asm(�)/A → Asm(U) are the dependent maps
b :
∏

a∈AB(a) such that there exists a natural number e such that for any a ∈ A
and n ∈ EA(a), the application e · n is defined and belongs to EB(a)(b(a)). The
context comprehension {B} is the assembly whose underlying set is

∑
a∈AB(a)

and set of realizers is
{
〈n1, n2〉 | n1 ∈ EAa, n2 ∈ EB(a)(b)

}
, where 〈n1, n2〉 is a fixed

effective encoding of tuples of natural numbers.
We refer the reader to [176, 114, 89] for how to model various type construc-

tors. Propositional truncation might not appear explicitly in the literature. It is
known [16] that propositional truncation in extensional type theory corresponds
to image factorization in category theory. From the construction of coequaliz-
ers in Asm [176, Theorem 1.5.2], the image Im f of a morphism of assemblies
f : B → A is given by the set-theoretic image {a ∈ A | ∃b∈Bf(b) = a} with
realizers EIm f (a) =

⋃
b∈f−1(a) EB(b). Then, for a family of assemblies B over A,

the propositional truncation Trunc(B) is the family of assemblies over A defined
by Trunc(B)(a) = {∗ | ∃b∈B(a)>} with realizers ETrunc(B)(a)(∗) =

⋃
b∈B(a) EB(a)(b).

By Theorem 7.2.15, we have the model
(
PShAsm

B

)
fib

of CTT which we will
refer to as CAsm. We call an object of CAsm a cubical assembly .

8.1.3. Remark. We can choose a different cube category. The choice of cube
category does not matter for the results in this chapter.

For any Grothendieck universe U , we have an assembly AsmU whose underly-
ing set is the U -small assemblies and any natural number realizes any element of
AsmU . The inclusion AsmU ⊂ Asm determines a family of assemblies and thus
AsmU is a universe in the model Asm. The universe AsmU is closed under all
the type constructors of the good type theory. We thus apply Proposition 7.2.16
to obtain universes in CAsm.

It is known that the model Asm has W -types and an explicit construction
is found in [173, Section 2.2]. We thus apply the constructions in Sections 7.1.5
and 7.2.6 to obtain higher inductive types in CAsm including suspensions and
propositional truncation.

214 Chapter 8. Cubical assembly models of type theory

8.2 Impredicative universe

8.2.1. Definition. We say a universe u : U is impredicative if it is weakly closed
under Π-types over arbitrary types. Precisely, u is required to be equipped with
a type formation rule

Πu : (A : ()→ U, B : (x : A)→ u)⇒ u

and the introduction, elimination, and equality rules for Π-types. Notice that A

need not belong to the universe u.

With an impredicative universe, one can represent inductive types as certain
types of polymorphic functions [73]. For example, the natural numbers type is
defined to be

N ≡ ΠA:uA -> (A -> A) -> A (8.1)

with zero zero ≡ λAxf.x : N and successor succ ≡ λn.λAxf.f(n(A, x, f)) : N -> N.
By the impredicativity, the type N belongs to u. We have the non-dependent
elimination rule for N

recN : ([A : ()→ u], a : ()→ A, f : (x : A)→ A, n : ()→ N)⇒ A

: (A : ()→ u, a : ()→ A, f : (x : A)→ A)⇒ recN(a, f, zero) ≡ a : A

: (A : ()→ u, a : ()→ A, f : (x : A)→ A, n : ()→ N)

⇒ recN(a, f, succ(n)) ≡ f(recN(a, f, n)) : A

defined by recN(a, f, n) ≡ n(A, a, f). However, the general elimination rule for
N is not derivable [159, 70]. In the presence of identity types, we can refine the
definition (8.1) by equipping with certain coherence data, and then it satisfies the
elimination principle under some restriction on truncation levels [156]. Identity
types also allow us to represent higher inductive types as types of polymorphic
functions [155, 13]. In this section, we construct a model of a universe that is
both impredicative and univalent to justify the use of an impredicative universe
in homotopy type theory.

The model Asm of the good type theory has an impredicative universe PER.
The underlying set of the assembly PER is the set of partial equivalence relations
on the set of natural numbers n, that is, symmetric and transitive relations. Any
natural number realizes any R ∈ PER. The family of assemblies elPER is defined
as elPER(R) = N/R, the set of R-equivalence classes on {n ∈ N | (n, n) ∈ R}, with
realizers EN/R(A) = A. The universe PER classifies modest families.

8.2.2. Definition. We say a family of assemblies B over A is modest if for any
a ∈ A and b1, b2 ∈ B(A), if b1 and b2 have a common realizer then b1 = b2.

N/R is modest for anyR ∈ PER. Conversely, for a modest family of assemblies
B over A, we have a morphism R : A→ PER defined by (n1, n2) ∈ R(a) if there
exists some b ∈ B(a) realized by both n1 and n2.

8.3. Failure of propositional resizing 215

8.2.3. Proposition. The universe PER in Asm is weakly closed under all the
type constructors of the good type theory, Π-types over arbitrary types and W -
types.

Proof:
This is proved by checking that modest assemblies are closed under those type
constructors. See [84, 114, 89] for details. An explicit construction of W -types is
found in [173, Section 2.2]. 2

8.2.4. Remark. The universe PER does not satisfy equalities of type construc-
tors such as elPER

(∏
a∈AR(a)

)
=
∏

a∈A elPER(R(a)), simply because elements of
the left side are sets of natural numbers while elements of the right side are
functions. Therefore, PER is only weakly closed under type constructors.

8.2.5. Theorem. The model of CTT CAsm has a univalent and impredicative
universe.

Proof:
Apply Proposition 7.2.16 to construct a universe in CAsm out of PER. The
impredicativity is inherited from PER. Univalence is derivable in CTT. 2

8.3 Failure of propositional resizing

In a type theory with a well-behaved equality type ==, a type A is a proposition
if

IsProp(A) := ∀x1:A∀x2:Ax1 == x2

is inhabited. For a universe u, we define the universe of propositions by

Prop(u) := {A : u | IsProp(A)}.

For a larger universe û the inclusion u -> û induces a function Prop(u) -> Prop(û).
The propositional resizing axiom [172, Section 3.5] asserts that the function
Prop(u) -> Prop(û) is an equivalence.

The propositional resizing axiom (for all universes) implies that the universe
Prop(u) is impredicative in a slightly weaker sense. Given a type A : û in a larger
universe and a proposition B : A → Prop(u), we have Π(A, B) : Prop(û) and then
use the propositional resizing axiom to get a type Π′(A, B) : Prop(u) equivalent to
Π(A, B). We have the introduction and elimination rules for Π′(A, B) transported
from Π(A, B), but the equality rules hold only up to ==.

Suppose that u is an impredicative universe. Then the universe Prop(u) is also
impredicative because propositions are closed under arbitrary Π-types, but this

216 Chapter 8. Cubical assembly models of type theory

does not imply the propositional resizing axiom. Nevertheless, we can find the
best approximation of a proposition in û by a proposition in u. For a proposition
P : Prop(û), we define

γ(P) := ∀X:Prop(u)(P -> X) -> X

which belongs to Prop(u) because Prop(u) is impredicative. We have a canonical
function ηP : P -> γ(P) defined by

ηP(x) = λXf.f(x).

8.3.1. Proposition. For an impredicative universe u and a larger universe û,
the function Prop(u) -> Prop(û) is an equivalence if and only if the function
ηP : P -> γ(P) is an equivalence for any P : Prop(û).

Proof:
Straightforward. 2

The definition of the function ηP makes sense for any proposition P not nec-
essarily in a larger universe, and thus we can formulate propositional resizing in
the presence of an impredicative universe as follows.

8.3.2. Definition. We say an impredicative universe u admits propositional re-
sizing if the function ηP : P -> γ(P) is an equivalence for any proposition P.

The impredicative universe PER in the model Asm of the good type theory
admits propositional resizing. A proposition in Asm is a family of assemblies
P : A→ Asm such that the underlying set of P (a) has at most one element for
any a ∈ A. Then, by definition, any proposition in Asm is a modest family of
assemblies and thus belongs to PER.

8.3.3. Remark. The fact that PER admits propositional resizing implies that
any monomorphism of assemblies is classified by some morphism into Prop(PER).
This does not imply that Prop(PER) is a subobject classifier in the category Asm
(there is no subobject classifier in Asm as it is not an elementary topos) because
we do not have the uniqueness of a characteristic morphism. For example, both
partial equivalence relations {(0, 0)} and {(1, 1)} classify the same assembly, the
singleton {∗}.

In this section, we show that the impredicative universe in CAsm does not
admit propositional resizing, that is, we construct a proposition P valued in the
impredicative universe such that the function ηP : P -> γ(P) is not an equivalence.

8.3.4. Remark. Assuming Grothendieck universes, CAsm also has predicative
universes, but it is unknown whether these predicative universes satisfy the propo-
sitional resizing axiom.

8.3. Failure of propositional resizing 217

8.3.1 Uniform assemblies

The key idea to a counterexample to propositional resizing is the orthogonality of
modest and uniform assemblies [176]: if B is modest and A is uniform and well-
supported, then the morphism b 7→ λa.b : B → BA is an isomorphism. Since the
impredicative universe PER classifies modest assemblies,

∏
X:PER(A -> X) -> X has

a section for any uniform, well-supported assembly A. There is still a possibility
that A does not have a section in which case A and

∏
X:PER(A -> X) -> X are

never equivalent.
We first extend the notion of uniformity for presheaves in Asm.

8.3.5. Definition. An assembly A is uniform if there exists an n ∈ N realizing
all the elements of A, that is,

⋂
a∈A EA(a) is non-empty. We say a presheaf A

over a category C in Asm is uniform if every A(x) is uniform.

8.3.6. Definition. In the good type theory, we say a type A is well-supported
if the truncation Trunc(A) is inhabited.

From the construction of propositional truncation in Asm, we have the fol-
lowing characterization of well-supported presheaves.

8.3.7. Proposition. A presheaf A over a category C in Asm is well-supported
(in the model PShAsm

C) if and only if there exists a natural number e such that,
for any x ∈ C0 and n ∈ EC0(x), there exists an a ∈ A(x) such that the application
e · n is defined and belongs to EA(a).

By definition, a modest assembly cannot distinguish elements with a common
realizer, while elements of a uniform assembly have a common realizer. There-
fore, a modest assembly “believes a uniform assembly has at most one element”.
Formally, the following holds.

8.3.8. Proposition. Let C be a category in Asm. For any uniform presheaf A
over C and any presheaf B over C valued in PER, the precomposition function

trunc∗ := λf.f ◦ trunc : (Trunc(A) -> B) -> (A -> B)

is an isomorphism. In particular, if, in addition, A is well-supported, then the
function λyx.y : B -> (A -> B) is an isomorphism.

Proof:
Since trunc is a regular epi, trunc∗ is a monomorphism. We show that trunc∗

is a regular epi witnessed by the code of the identity function. Let x ∈ C be
an object and f : YC x × A → B a morphism of presheaves tracked by e. We
have to show that there exists a morphism f ′ : YC x × Trunc(A) → B tracked
by e such that f ′ ◦ (YC x× trunc) = f . By the construction of propositional

218 Chapter 8. Cubical assembly models of type theory

truncation, it suffices to show that f(u, a1) = f(u, a2) for any arrow u : x′ → x
and any elements a1, a2 ∈ A(x′). Since B is modest, it suffices to find a realizer
for both f(u, a1) and f(u, a2). Since A is uniform, A(x′) has a common realizer
m ∈

⋂
a∈A(x′) EA(x′)(a), and we have e · 〈n,m〉 ∈ EB(x′)(f(u, a1))∩EB(x′)(f(u, a2))

for some n ∈ EHom(x′,x)(u). 2

We now have a sufficient condition for a failure of propositional resizing.

8.3.9. Theorem. Let A : CAsm(�) → CAsm(U) be a closed type and B :
CAsm(�)/{A} → CAsm(U) a type. Suppose that B is uniform and well-
supported but does not have a section. Then the function η : B -> γ(B) is
not an equivalence.

Proof:
By Proposition 8.3.8, we see that γ(B) = ∀X:Prop(u)(B -> X) -> X has a section
while B does not by assumption. 2

We consider constructing a counterexample as in Theorem 8.3.9 out of a type
in Asm.

8.3.10. Theorem. Let A : Asm(�) → Asm(U) be a closed type and B :
Asm(�)/{A} → Asm(U) a type. Suppose that B is uniform and well-supported
but does not have a section. Then ∇AB is a proposition with respect to path types
such that the function η : ∇AB -> γ(∇AB) is not an equivalence.

Proof:
By Theorem 8.3.9, it suffices to show that the type ∇AB : CAsm(�)/{∆A} →
CAsm(U) is uniform and well-supported but does not have a section. Since
ev1(∇AB)(x, a) ∼= B(a), the presheaf ∇AB cannot have a section as B does not.

To show the uniformity, let x ∈ C be an object and a ∈ A an element. Since B
is uniform, there exists a common realize n ∈

⋂
b∈B(a) EB(a)(b). Then the code of

the constant function at n realizes all the elements of ∇AB(x, a) = Hom(1, x) ->
B(a).

For the well-supportedness, let e be a natural number such that, for any a ∈ A
and n ∈ EA(a), there exists a b ∈ B(a) such that e · n is defined and belongs
to EA(a)(b). Then the code f of the function mapping 〈n,m〉 to the code of the
constant function at e ·m realizes that ∇AB is well-supported. Indeed, for any
x ∈ C0, n ∈ EC0(x), a ∈ A and m ∈ EA(a), the code f ·〈n,m〉 realizes the constant
function Hom(1, x) 3 u 7→ b ∈ B(a) for some b ∈ B(a) such that e ·m ∈ EB(a)(b).
2

8.4. Markov’s Principle 219

8.3.2 The counterexample

We construct a closed typeA : Asm(�)→ Asm(U) and a typeB : Asm(�)/{A} →
Asm(U) satisfying the assumptions of Theorem 8.3.10 so that the codiscrete
presheaf ∇AB is a proposition with respect to path types such that the function
η : ∇AB -> γ(∇AB) is not an equivalence. We define A to be the assembly

(N,EA(n) = {m ∈ N | m > n})

and B(n) to be the assembly(
{m ∈ N | m > n},EB(n)(m) = {n,m}

)
.

Then B is uniform because n realizes all the elements of B(n). The code of the
identity function realizes that B is well-supported. To see that B does not have
a section, suppose that a section f :

∏
n∈AB(n) is tracked by e. Then, for any

m > n, we have e ·m ∈ {n, f(n)}. This implies that m ≤ e · (m+ 1) ≤ f(0) for
any m, a contradiction.

8.4 Markov’s Principle

Constructive Recursive Mathematics is a form of constructivism in which the
validity of a proposition is justified by the existence of an algorithm or recursive
function. In Constructive Recursive Mathematics, Markov’s Principle

∀P :N→2¬(∀n:N¬P (n))→ ∃n:NP (n)

is accepted. Informally, this principle states that for an algorithm P that answers
“yes” or “no” for each input, if it is not the case that P answers “no” for any input,
then there exists an n for which P answers “yes”. The validity of this principle is
justified by an algorithm to find a witness n from a given algorithm P . Indeed, we
can sequentially execute P for 0, 1, 2, . . . until P answers “yes”. The assumption
that it is not the case that P answers “no” for any input guarantees that this
algorithm terminates.

In a type theory with propositional truncation, ∃n:NP(n) is defined to be
Trunc(

∑
n:N P(n)), but Markov’s Principle is equivalent to a proposition defin-

able without propositional truncation. Indeed, for any P : N -> 2, the proposition
∃n:NP(n) is equivalent to the type∑

n:N

P(n)×
∏
m:N

P(m)→ n ≤ m

whose elements are the least natural numbers satisfying P. This type is a proposi-
tion because the least element is unique. Therefore, Markov’s Principle in a type
theory with sufficient structure is equivalent to

MP =
∏

P:N->2

((
∏
n:N

P(n) -> 0) -> 0) ->
∑
n:N

P(n)×
∏
m:N

P(m) -> n ≤ m.

220 Chapter 8. Cubical assembly models of type theory

8.4.1. Proposition. For any category C in the model of the good type theory in
assemblies for Kleene’s first model K1, the presheaf model of the good type theory
PShAsm

C satisfies Markov’s Principle.

Proof:
This is because Asm satisfies Markov’s Principle and the constant presheaf func-
tor Asm→ PShAsm

C preserves type-theoretic structures. 2

8.4.2. Corollary. The model CAsm of CTT in cubical assemblies for Kleene’s
first model K1 satisfies Markov’s Principle.

8.5 Church’s Thesis

Church’s Thesis is one of the defining characteristics of Constructive Recursive
Mathematics. It asserts that any function on natural numbers is computable:

∀f :N→N∃e:N∀n:N∃m:NT(e, n,m) ∧ U(m) = f(n)

where T : N × N × N → 2 and U : N → N are Kleene’s computation predicate
and result extraction function, respectively, meaning that T(e, n,m) is true if e
is the code of a (deterministic) Turing machine, the computation of e terminates
for input n, and m is the code of the computation, and that U(m) is the output
of the computation.

Since T and U are primitive recursive, they are definable inside a type theory
with natural numbers type. Recall that, in a type theory with propositional trun-
cation, the existential quantifier ∃x:AP is defined to be Trunc(

∑
x:A P). Since there

is at most one natural number m satisfying T(e, n, m), the type
∑

m:N T(e, n, m) ∧
U(m) == f(n) is already a proposition. Therefore, Church’s Thesis in a type theory
with sufficient structure is equivalent to

CT =
∏

f:N->N

Trunc(
∑
e:N

∏
n:N

∑
m:N

T(e, n, m)× U(m) == f(n)).

We show in Section 8.5.1 that the negation of Church’s Thesis holds in any
cubical model obtained by the method of Chapter 7. To obtain a model of
univalent type theory satisfying Church’s Thesis, we use the theory of modalities
in homotopy type theory [146]. The idea is to collect those types who “believe
that Trunc(

∑
e:N

∏
n:N

∑
m:N T(e, n, m)× U(m) == f(n)) is contractible for any f :

N -> N”. Such types are called null types. We review properties of null types
in Section 8.5.2. Finally, we prove in Section 8.5.3 that Church’s Thesis holds in
null types in the cubical assembly model. We also see that the same technique
applies to obtain a model of univalent type theory satisfying Brouwer’s Continuity
Principle.

8.5. Church’s Thesis 221

8.5.1 Failure of Church’s Thesis in internal cubical models

Let M be a model of the good type theory and construct a model
(
PShMC

)
fib

of
CTT as in Theorem 7.2.15 for a cube category C. We also assume thatM models
W -types so that

(
PShMC

)
fib

models propositional truncation.

8.5.1. Theorem. The negation of Church’s Thesis holds in
(
PShMC

)
fib

.

We prepare a couple of lemmas.

8.5.2. Lemma. The mapping ∆ : M →
(
PShMC

)
fib

sending a type A to the
constant presheaf at A preserves Π-types, Σ-types, identity types, and natural
numbers type.

Proof:
Straightforward. 2

8.5.3. Lemma. “Untruncated” Church’s Thesis∏
f:N->N

∑
e:N

∏
n:N

∑
m:N

T(e, n, m)× U(m) == f(n)

is inconsistent with the type theory with Π-types, Σ-types, and extensional identity
types.

Proof:
It is known [168] that Church’s Thesis is inconsistent with the axiom of choice
and function extensionality. Under the propositions-as-types interpretation, the
type theory with Π-types and Σ-types satisfies the axiom of choice (the type-
theoretic axiom of choice). Function extensionality holds in the type theory with
Π-types and extensional identity types. Hence, untruncated Church’s Thesis is
inconsistent with the type theory with Π-types, Σ-types, and extensional identity
types. 2

8.5.4. Remark. The consistency of untruncated Church’s Thesis with the type
theory with Π-types, Σ-types, and intensional identity types has been an open
problem since it was conjectured by Maietti and Sambin [122]. Ishihara et al.
[88] proved that untruncated Church’s Thesis is consistent with a variant of the
type theory where the congruence rule for the λ-abstraction is dropped. Recently,
Yamada [182] announced a proof of Maietti and Sambin’s conjecture by a com-
bination of realizability and game semantics. We also note that, as the proof
of Lemma 8.5.3 shows, untruncated Church’s Thesis is inconsistent with func-
tion extensionality. In particular, since univalence implies function extensionality
[172, Section 4.9], untruncated Church’s Thesis is inconsistent with the univalence
axiom.

222 Chapter 8. Cubical assembly models of type theory

Proof of Theorem 8.5.1:
We define a type A : (f : ()→ N -> N)⇒ U by

A(f) =
∑
e:N

∏
n:N

∑
m:N

T(e, n, m)× U(n) == f(n)

so that CT =
∏

f:N->N Trunc(A(x)). By Lemma 8.5.2, the constant presheaf func-
tor ∆ :M→

(
PShMC

)
fib

preserves the interpretation of A. Therefore, Church’s

Thesis is interpreted in
(
PShMC

)
fib

as∏
f:∆(M(N)->M(N))

Trunc(∆M(A))(f).

We construct the following two functions in
(
PShMC

)
fib

:

�
∏

f:∆(M(N)->M(N)) Trunc(∆M(A))(f) ->
(
∇M(N)->M(N)M(A)

)
(f);

�
(∏

f:∆(M(N)->M(N))

(
∇M(N)->M(N)M(A)

)
(f)
)
->
(
PShMC

)
fib

(0).

Then we readily get a function
(∏

f:∆(M(N)->M(N)) Trunc(∆M(A))(f)
)
-> 0.

For the former function, it suffices to give a function

(∆M(A))(f) ->
(
∇M(N)->M(N)M(A)

)
(f)

for all f : ∆(M(N) ->M(N)) because the codomain is a proposition by Propo-
sition 7.2.20. By the adjunction ev1 a ∇ where ev1 is the evaluation at the final
object 1 : C, it suffices to give a function ev1(∆M(A))(f) -> M(A)(f) for all
f :M(N) ->M(N). Since ev1(∆M(A)) ∼=M(A), just give the identity.

For the latter function, observe that

∏
f:∆(M(N)->M(N))

(
∇M(N)->M(N)M(A)

)
(f) ' ∇

 ∏
f:M(N)->M(N)

M(A)(f)


by checking that both sides have the same universal property and that(

PShMC
)

fib
(0) ' ∇M(0).

Then apply ∇M(−) to the function (
∏

f:N->N A(f)) -> 0 obtained from the in-
consistency of untruncated Church’s Thesis (Lemma 8.5.3). 2

8.5. Church’s Thesis 223

8.5.2 Null types

In the previous section, we have seen that the cubical assembly model does not sat-
isfy Church’s Thesis. To get a model of univalent type theory satisfying Church’s
Thesis, we use the theory of modalities and localization in homotopy type theory
[146]. The idea is to construct a new model from the cubical assembly model in
which some propositions are forced to be true. Recall that Church’s Thesis is of
the form

∀x:ATrunc(B(x))

for a type B : (x : A) → U . We cannot directly force Church’s Thesis itself to be
true because its negation holds in the cubical assembly model. However, the type
Trunc(B(x)) for each x : A is non-empty in the cubical assembly model because the
assembly model of extensional type theory satisfies Church’s Thesis. Hence, there
is a chance to force Trunc(B(x)) to be true for any x : A, and then ∀x:ATrunc(B(x))
becomes true.

In this thesis, we use a special case of localization called nullification.

8.5.5. Definition. We define a type IsNull : ([A : ()→ U], P : (x : A) → U, B :
()→ U)⇒ U in univalent type theory by

IsNull(P, B) ≡ ∀xIsEquiv(λ(y : B).λ(: P(x)).y).

A term of IsNull(P, B) is called a P-null structure on B. By a P-null type, we mean
a type equipped with a P-null structure. Although the notion of a P-null structure
makes sense for any family of types P, in this thesis, we only consider the case
when P is a proposition. A P-nullification operator is the following structure.

L : (B : ()→ U)⇒ U

: (B : ()→ U)⇒ IsNull(P,L(B))

η : ([B : ()→ U], b : ()→ B)⇒ L(B)

: (B : ()→ U, C : ()→ U, : ()→ IsNull(P, C))⇒ IsEquiv(λ(f : L(B) -> C).f ◦ η)

Intuitively, a P-null type is a type who “believes P(x) is true for any x : A”,
and thus we expect that P-null types form a model in which P is true. We review
properties of null types.

8.5.6. Proposition. Null types are closed under Π-types indexed over an arbi-
trary type, Σ-types, unit type, and intensional identity types.

Proof:
The closure property under Π-types and unit type is immediate. For Σ-types, see
[146, Theorem 2.19]. For identity types, let B be a P-null type. We show that the
function

λpz.p : y1 == y2 -> (P(x) -> y1 == y2)

224 Chapter 8. Cubical assembly models of type theory

is an equivalence for any x : A and y1, y2 : B. It suffices to show that the total
function

(
∑
y2:B

y1 == y2) -> (
∑
y2:B

P(x) -> y1 == y2)

is an equivalence for any x : A and y1 : B. Since the domain is contractible, it
suffices to show that the codomain is contractible, but we have∑

y2:B

P(x) -> y1 == y2 '
∑

y2:P(x)->B

∏
z:P(x)

y1 == y2(z) (B is P-null)

' P(x) ->
∑
y2:B

y1 == y2 (type-theoretic axiom of choice)

and P(x) ->
∑

y2:B y1 == y2 is contractible. 2

For a universe u, we define a subuniverse uP ⊂ u by

uP ≡ {C : u | IsNull(P, C)}.

8.5.7. Proposition. If P is u-small, the universe uP has a P-null structure.

Proof:
Assuming that a P-nullification operator exists, this follows from [146, Theorem
3.11] because the nullification at a family of propositions induces a lex modality
by [146, Corollary 3.12], but we can extract from their proof an explicit inverse
of the function λCz.C : uP -> (P(x) -> uP) without reference to the nullification.
For C : P(x) -> uP, the type

∏
z:P(x) C(z) belongs to uP by Proposition 8.5.6 and

satisfies (
∏

z:P(x) C(z)) ' C(z′) for any z′ : P(x) because P(x) is a proposition. We

also have (P(x) -> C) ' C for any C : uP by definition, and thus λC.
∏

z:P(x) C(z) is
the inverse of λCz.C. 2

8.5.8. Proposition. Any nullification operator preserves propositions.

Proof:
This follows from [146, Corollary 3.9]. 2

The following illustrates that a P-nullification operator “forces P to be true”.

8.5.9. Corollary. For any P-nullification operator L and any a : A, the type
L(P(a)) is contractible.

8.5. Church’s Thesis 225

Proof:
By Proposition 8.5.8, L(P(a)) is a proposition, and thus it suffices to show that it is
inhabited. Since L(P(a)) is P-null, it is enough to give a function P(a) -> L(P(a)),
but we already have η : P(a) -> L(P(a)). 2

8.5.10. Corollary. For any P-nullification operator L and any P-null type B,
the P-null proposition L(Trunc(B)) is the propositional truncation of B in P-null
types, that is, for any P-null proposition Q, the canonical function (L(Trunc(B)) ->
Q) -> (B -> Q) is an equivalence.

Proof:
By definition. 2

LetM be a model of univalent type theory, A :M(�)→M(U) a closed type
and P :M(�)/{A} →M(U) a proposition. We defineMP (U) to be the discrete
fibration of P -null types in M, that is, the pullback

MP (U) M(E)

M(U) M(U).

y

IsNull(P,−)

Let MP (E) denote the pullback of M(E) along the map MP (U) → M(U).
From the closure properties of null types, we have the following.

8.5.11. Proposition. For any closed type A : M(�) →M(U) and any propo-
sition P : M(�)/{A} → M(U), the representable map MP (E) → MP (U) is
part of a model of type theory MP with Π-types, Σ-types, unit type, intensional
identity types, and univalent universes. Moreover, the forgetful map MP → M
preserves Π-types, Σ-types, unit type, and intensional identity types. If M has a
P -nullification operator, then MP has propositional truncation.

Null types in internal cubical models

Let M be a model of qCTT. We show additional closure properties of P -null
types in Mfib when P is a proposition in Mfib and well-supported in M.

8.5.12. Proposition. If P is well-supported inM, then any discrete closed type
B :Mfib(�)→Mfib(U) has a P -null structure.

Proof:
We show that for any a : A, the function f := λb.λx.b : B -> (P (a) -> B) is an
isomorphism in M, and then f is, in particular, an equivalence in Mfib. Since

226 Chapter 8. Cubical assembly models of type theory

P is well-supported, f is injective. To prove surjectivity, let g : P (a) -> B be
an arbitrary function. By the well-supportedness of P , there exists some element
x : P (a). We show that f(g(x)) == g, and then f is surjective witnessed by g(x).
By function extensionality, it suffices to show that f(g(x))(x′) == g(x′) for any
x′ : P (a). By definition, f(g(x))(x′) == g(x). Since P is a proposition in Mp, we
have a path p : I -> P (a) between x and x′. By the discreteness of B, the path
g ◦ p : I -> B is constant, which implies that g(x) == g(x′). 2

8.5.13. Corollary. If P is well-supported in M, then the type Mfib(0) has a
P -null structure. Therefore, if M is non-trivial (that is, the empty type does
not have a section), then the model of univalent type theory (Mfib)P is also non-
trivial.

8.5.14. Corollary. If P is well-supported in M, then the type Mfib(N) has a
P -null structure.

8.5.15. Corollary. If P is well-supported in M, then P -null types are closed
under binary coproducts.

Proof:
Let B0 and B1 be two P -null types in Mfib. Then the coproduct B0 + B1 is
equivalent to

∑
x:2 B(x), where B is defined by B(0) ≡ B0 and B(1) ≡ B1, and

is P -null by Propositions 7.1.11, 8.5.6 and 8.5.12. 2

8.5.16. Corollary. IfM models a countable chain of universes and P is well-
supported in M, then (Mfib)P is a model of univalent type theory. Moreover,
the forgetful map (Mfib)P →Mfib preserves Π-types, Σ-types, unit type, identity
types, finite coproducts, and natural numbers type.

To construct a P -nullification operator, we assume that M models W -types
with reductions with respect to cofibrations. Rijke, Shulman, and Spitters [146]
gave a general construction of a localization operator. Recall that a type B is
P -null if the function

λy.λ .y : B -> (P (x) -> B) (8.2)

an equivalence for any x : A. Therefore, to obtain the P -nullification of B, we
have to adjoin inverses of the functions (8.2). We first construct a higher inductive

8.5. Church’s Thesis 227

type JP (B) which adjoint right inverses of the functions (8.2).

JP : (B : ()→ U)⇒ U

α : ([B : ()→ U], b : ()→ B)⇒ JP (B)

ext : ([B : ()→ U], [a : ()→ A], f : (z : P (a))→ JP (B))⇒ JP (B)

isext : ([B : ()→ U], [a : ()→ A], f : (z : P (a))→ JP (B), c : ()→ P (a), i : I)
⇒ JP (B)

: (B : ()→ U, a : ()→ A, f : (z : P (a))→ JP (B), c : ()→ P (a))

⇒ isext(f, c, 0I) ≡ ext(f) : JP (B)

: (B : ()→ U, a : ()→ A, f : (z : P (a))→ JP (B), c : ()→ P (a))

⇒ isext(f, c, 1I) ≡ f(c) : JP (B)

Then the P -nullification operator is defined to be JP̂ where P̂ :Mfib(�)/A+A→
Mfib(U) is a type defined as follows:

� P̂ (inl(x)) ' P (x);

� P̂ (inr(x)) is the following pushout in Mfib.

P (x) 1

1 P̂ (inr(x))
p

(8.3)

See [146, Section 2.2] for details. Since the pushout (8.3) is equivalent to the
suspension Susp(P (x)) which is constructed in Example 7.1.5, all we have to do
is to construct the higher inductive type JP .

8.5.17. Definition. For a type A in M, we define Cone(A) to be the following
pushout in M.

A 1

A× I Cone(A)

(idA,0I)
p

inl

inr

Let B be a type inMfib. We define JP (B) to be the W -type with reductions
for the sum of the following three polynomials with reductions (Ai, Bi, Pi, fi).

� (A0, B0, P0, f0) is as in Definition 7.1.4. This part adds to JP (B) a homoge-
neous composition structure.

� A1 ≡ B, B1(y) ≡ 0, and P1(y) ≡ ⊥. This part adds to JP (B) the constructor
α : B -> JP (B).

228 Chapter 8. Cubical assembly models of type theory

� A2 ≡
∑

x:A Cone(P (x)) and B2(x, z) ≡ P (x). We define P2 : A2 -> Cof by
P2(x, inl(∗)) ≡ ⊥ and P2(x, inr(z, i)) ≡ (i == 1I) which is well-defined since
⊥ == (0I == 1I) by propositional extensionality. We define f2 : (x : A2) ->

P2(x) -> B2(x) by f2(x, inr(z, 1I)) ≡ z.

From the last part we have a constructor

sup2 : (a : ()→ A2, d : (z : B2(a))→ JP (B))⇒ JP (B)

which splits into two parts

supinl : ([a : ()→ A], d : (z : P (x))→ JP (B))⇒ JP (B)

supinr : ([a : ()→ A], c : ()→ P (a), i : ()→ I, d : (z : P (x))→ JP (B))⇒ JP (B)

satisfying

: (a : ()→ A, c : ()→ P (a), d : (z : P (x))→ JP (B))

⇒ supinl(d) ≡ supinr(c, 0I, d) : JP (B).

The reduction is then given by

: (a : ()→ A, c : ()→ P (a), d : (z : P (x))→ JP (B))

⇒ supinr(c, 1I, d) ≡ d(c) : JP (B).

Thus, supinl and supinr define the constructors ext and isext, respectively.
By construction, JP is the inductive type with the required constructors and

a homogeneous composition structure. It remains to define a transport struc-
ture. Suppose that A, P , and B are parameterized by i : I and constant over a
cofibration Q. Let D(i) = JP (i)(B(i)). For an element d0 : D(0I), the transport

transp(D, Q, d0) : D(1I)

is defined by induction on d0. Recall that the constructors for JP are hcomp, α,
ext, and isext. The first two cases are straightforward. Suppose that d0 ≡ ext(f0)
for a0 : A(0I) and f0 : P (0I, a0) → D(0I). By the Kan filling operation [41,
Section 4.4], we have a path a : (i : I) → A(i) such that a(0I) ≡ a0 and
(: Q, i : I)→ a(i) ≡ a0. We then define

transp(D, Q, ext(f0)) ≡ ext(f1)

where

f1 : (z : P (1I, a(1I)))→ D(1I)

f1(z) ≡ transp(D, Q, f0(transp(〈i〉P (1− i, a(1− i)), Q, z)))

8.5. Church’s Thesis 229

The case when d0 ≡ isext(f0, c0, j) for a0 : A(0I), f0 : P (0I, a0) → D(0I), c0 :
P (0I, a0), and j : I is not immediate. The first attempt is to define transp(D, Q,
ext(f0, c0, j)) to be isext(f1, c1, j) where f1 is defined in the same way as the case of
ext and c1 ≡ transp(〈i〉P (i, a(i)), Q, c0). However, isext(f1, c1, j) does not satisfy
isext(f1, c1, 1I) ≡ transp(D, Q, f0(c0)) which is one of the boundary conditions
for the recursion principle for the higher inductive type D(0I) = JP (0I)(B(0I)).
The problem is that transp(〈i〉P (1 − i, a(1 − i))) is only a homotopy inverse
to transp(〈i〉P (i, a(i))). We fix this using the hcomp constructor, following the
construction of pushouts in [44, Section 2.3]. We define a cofibration Q′ to be
Q ∨ (j == 0I) ∨ (j == 1I) and then define

d′ : (: Q′, i : I)→ D(1I)

d′0 : ()→ D(1I)

by

d′0 ≡ isext(f1, c1, j)

d′(i) ≡ isext(f0, c0, j) (if Q)

d′(i) ≡ ext(f1) (if j == 0I)

d′(i) ≡ transp(D, Q, f0(p(i))) (if j == 1I)

where p is a canonical path from transp(〈i〉P (1 − i, a(1− i)), Q, transp(〈i〉P (i,
a(i)), Q, c0)) to c0 constant over Q. We then define

transp(D, Q, isext(f0, c0, j)) ≡ hcomp(D(1I), Q
′, d′, d′0).

Since p(1I) ≡ c0, we have the required boundary condition

hcomp(D(1I), Q
′, d′, d′0) ≡ transp(D, Q, f0(c0))

when j == 1I.

8.5.3 Church’s Thesis in null types

Recall that Church’s Thesis is a proposition of the form

∀x:ATrunc(B(x))

where A is a closed type and B is a type over A, both defined only using Π-types,
Σ-types, unit type, identity types, finite coproducts, and natural numbers type.

8.5.18. Theorem. Let A be a closed type and B a type over A both definable only
using Π-types, Σ-types, unit type, identity types, finite coproducts, and natural
numbers type. For a model M of qCTT with W -types with reductions and a
countable chain of universes, if M(B) is well-supported, then the proposition

∀x:ATrunc(B(x))

holds in the model of univalent type theory (Mfib)P where P = Trunc(Mfib(B)).

230 Chapter 8. Cubical assembly models of type theory

Proof:
By Proposition 7.1.11, A and B are discrete and the forgetful map Mfib → M
preserves the interpretation of A and B including the interpretation of identity
types which are interpreted in Mfib as path types and interpreted in M as ex-
tensional identity types. Since M(B) is well-supported by assumption, the trun-
cation P = Trunc(Mfib(B)) is well-supported in M. Then Mfib(A) and Mfib(B)
are P -null types by Proposition 8.5.12. The proposition ∀x:ATrunc(B(x)) is then
interpreted in (Mfib)P as

∀x:Mfib(A)L(Trunc(Mfib(B)(x)))

by Corollary 8.5.10, where L is a P -nullification operator. This type is equal to
∀x:Mfib(A)L(P (x)) and is inhabited by Corollary 8.5.9. 2

8.5.19. Corollary. Let A and B be as in Theorem 8.5.18. For a model M
of the good type theory with W -types and a countable chain of universes, if
∀x:ATrunc(B(x)) holds in M, then it also holds in the model of univalent type
theory

((
PShMB

)
fib

)
P

where P = Trunc
((

PShMB
)

fib
(B)
)
.

Proof:
The assumption that ∀x:ATrunc(B(x)) holds in M is equivalent to that M(B) is
well-supported. B is interpreted in PShMB as the constant presheaf atM(B), and
thus PShMB (B) is also well-supported. Then apply Theorem 8.5.18. 2

8.5.20. Example. We can apply Corollary 8.5.19 for Church’s Thesis∏
f:N->N

Trunc(
∑
e:N

∏
n:N

∑
m:N

T(e, n, m)× U(m) == f(n)).

Since the model of the good type theory in assemblies for Kleene’s first model K1

satisfies Church’s Thesis, we obtain a model of univalent type theory satisfying
Church’s Thesis.

We now prove that univalent type theory is consistent with the main principles
of Recursive Constructive Mathematics.

8.5.21. Theorem. Martin-Löf type theory remains consistent when all of the
following extra structure and axioms are added.

1. Propositional truncation.

2. The axiom of univalence.

3. Church’s Thesis.

8.5. Church’s Thesis 231

4. Markov’s Principle.

Proof:
By constructing a non-trivial model. We begin with the model CAsm of CTT
in cubical assemblies for Kleene’s first model K1. Let CAsm′ be the model in
null types of univalent type theory satisfying Church’s Thesis obtained in Ex-
ample 8.5.20. Since CAsm satisfies Markov’s Principle by Corollary 8.4.2 and
since null types are closed under the type constructors used in the definition of
Markov’s Principle by Corollary 8.5.16, CAsm′ also satisfies Markov’s Principle.
Since CAsm is non-trivial, so is CAsm′ by Corollary 8.5.13. 2

We can use Theorem 8.5.18 and Corollary 8.5.19 for other principles.

8.5.22. Example. Brouwer’s Principle is written as follows.

∀F:(N->N)->N∀f:N->N∃n:N∀g:N->N(∀m:Nm < n -> f(m) == g(m)) -> F(f) == F(g)

Thus, by Corollary 8.5.19, we can construct a model of univalent type theory
satisfying Brouwer’s Principle out of a model of the good type theory satisfying
Brouwer’s Principle.

It is known that Brouwer’s Principle holds in the effective topos [176, Propo-
sition 3.1.6] and thus in assemblies for Kleene’s first model K1. We thus obtain
a new proof of the following result originally proved by Coquand using cubical
stacks [42].

8.5.23. Theorem. Martin-Löf type theory remains consistent when all of the
following extra structure and axioms are added.

1. Propositional truncation.

2. The axiom of univalence.

3. Brouwer’s Principle.

We can moreover combine those principles.

8.5.24. Example. Let (A1, B1) and (A2, B2) be two types as in Theorem 8.5.18.
Let A ≡ A1 + A2 and define B by B(inl(x1)) ≡ B1(x1) and B(inr(x2)) ≡ B2(x2). Then
we have

∀x:ATrunc(B(x))↔ (∀x1:A1Trunc(B1(x1))) ∧ (∀x2:A2Trunc(B2(x2))).

Therefore, if a model M of the good type theory with W -types and a count-
able chain of universes satisfies both ∀x1:A1Trunc(B1(x1)) and ∀x2:A2Trunc(B2(x2)),
then so does the model

((
PShMB

)
fib

)
P

of univalent type theory where P =

Trunc
((

PShMB
)

fib
(B)
)
.

232 Chapter 8. Cubical assembly models of type theory

Therefore, any finite set of propositions of the form ∀x:ATrunc(B(x)), where A

and B are as in Theorem 8.5.18, satisfied by Asm is consistent with the univalence
axiom. By the compactness argument, we see that the set of all such propositions
is consistent with the univalence axiom.

Some important principles of Constructive Recursive Mathematics are not
covered by Corollary 8.5.19. The axiom of countable choice

(∀n:N∃a:AP (n, a))→ ∃f :N→A∀n:NP (n, f(n))

is valid in the category of assemblies, but it is uncertain if it holds in cubical
assemblies. We cannot apply Corollary 8.5.19 for two reasons: A ranges over
all types and P ranges over all propositions; the statement is not of the form
∀x:ATrunc(B(x)). Extended Church’s Thesis is important since it characterizes
Kleene realizability over Heyting Arithmetic [167]. It roughly asserts that certain
partial functions on natural numbers are computable. A problem here is that it
is not clear what a good notion of a partial function is in univalent type theory.
Escardó and Knapp [52] studied partial functions in univalent type theory, but a
form of countable choice is needed for their definition to work well.

Bibliography

[1] J. Adámek, J. Rosický, and E. M. Vitale. Algebraic Theories. Vol. 184.
Cambridge Tracts in Mathematics. Cambridge University Press, 2011.
doi: 10.1017/CBO9780511760754.

[2] J. Adámek and J. Rosický. Locally Presentable and Accessible Cate-
gories. Vol. 189. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1994. doi: 10.1017/CBO9780511600579.

[3] T. Altenkirch, P. Capriotti, and N. Kraus. “Extending Homotopy Type
Theory with Strict Equality”. In: 25th EACSL Annual Conference on
Computer Science Logic (CSL 2016). Ed. by J.-M. Talbot and L. Reg-
nier. Vol. 62. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016, 21:1–21:17. doi: 10.4230/LIPIcs.CSL.2016.21.

[4] C. Angiuli. “Computational Semantics of Cartesian Cubical Type The-
ory”. PhD thesis. Carnegie Mellon University, 2019. url: https://
www.cs.cmu.edu/~cangiuli/thesis/thesis.pdf.

[5] C. Angiuli, G. Brunerie, T. Coquand, K.-B. Hou (Favonia), R. Harper,
and D. R. Licata. Syntax and Models of Cartesian Cubical Type Theory.
2019. url: https://github.com/dlicata335/cart-cube.

[6] C. Angiuli, K.-B. Hou (Favonia), and R. Harper. “Cartesian Cubical
Computational Type Theory: Constructive Reasoning with Paths and
Equalities”. In: 27th EACSL Annual Conference on Computer Science
Logic (CSL 2018). Ed. by D. Ghica and A. Jung. Vol. 119. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 6:1–6:17. doi:
10.4230/LIPIcs.CSL.2018.6.

[7] D. Annenkov, P. Capriotti, N. Kraus, and C. Sattler. Two-Level Type
Theory and Applications. 2019. arXiv: 1705.03307v3.

233

https://doi.org/10.1017/CBO9780511760754
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.4230/LIPIcs.CSL.2016.21
https://www.cs.cmu.edu/~cangiuli/thesis/thesis.pdf
https://www.cs.cmu.edu/~cangiuli/thesis/thesis.pdf
https://github.com/dlicata335/cart-cube
https://doi.org/10.4230/LIPIcs.CSL.2018.6
https://arxiv.org/abs/1705.03307v3

234 Bibliography

[8] P. Arndt and K. Kapulkin. “Homotopy-Theoretic Models of Type The-
ory”. In: Typed Lambda Calculi and Applications: 10th International
Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceed-
ings. Ed. by L. Ong. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 45–60. doi: 10.1007/978-3-642-21691-6_7.

[9] J. Avigad, K. Kapulkin, and P. L. Lumsdaine. “Homotopy limits in
type theory”. In: Mathematical Structures in Computer Science 25.5
(2015), pp. 1040–1070. doi: 10.1017/S0960129514000498.

[10] S. Awodey. “A cubical model of homotopy type theory”. In: Annals of
Pure and Applied Logic 169.12 (2018). Logic Colloquium 2015, pp. 1270–
1294. doi: 10.1016/j.apal.2018.08.002.

[11] S. Awodey. Category Theory. Oxford Logic Guides. Oxford University
Press, 2010.

[12] S. Awodey. “Natural models of homotopy type theory”. In: Mathe-
matical Structures in Computer Science 28.2 (2018), pp. 241–286. doi:
10.1017/S0960129516000268.

[13] S. Awodey, J. Frey, and S. Speight. “Impredicative Encodings of (Higher)
Inductive Types”. In: Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science. LICS ’18. Oxford, United King-
dom: ACM, 2018, pp. 76–85. doi: 10.1145/3209108.3209130.

[14] S. Awodey and C. Newstead. Polynomial pseudomonads and dependent
type theory. 2018. arXiv: 1802.00997v1.

[15] S. Awodey and M. A. Warren. “Homotopy theoretic models of identity
types”. In: Mathematical Proceedings of the Cambridge Philosophical
Society 146.1 (2009), pp. 45–55. doi: 10.1017/S0305004108001783.

[16] S. Awodey and A. Bauer. “Propositions As [Types]”. In: J. Log. and
Comput. 14.4 (Aug. 2004), pp. 447–471. doi: 10.1093/logcom/14.4.
447.

[17] R. Balbes and P. Dwinger. Distributive lattices. University of Missouri
Press, Columbia, Mo., 1974, pp. xiii+294.

[18] H. P. Barendregt. “Lambda Calculi with Types”. In: Handbook of Logic
in Computer Science (Vol. 2). Ed. by S. Abramsky, D. M. Gabbay, and
S. E. Maibaum. New York, NY, USA: Oxford University Press, Inc.,
1992, pp. 117–309. url: https://hdl.handle.net/2066/17231.

[19] A. Bauer, J. Gross, P. L. Lumsdaine, M. Shulman, M. Sozeau, and
B. Spitters. “The HoTT Library: A Formalization of Homotopy Type
Theory in Coq”. In: Proceedings of the 6th ACM SIGPLAN Conference
on Certified Programs and Proofs. CPP 2017. Paris, France: ACM, 2017,
pp. 164–172. doi: 10.1145/3018610.3018615.

https://doi.org/10.1007/978-3-642-21691-6_7
https://doi.org/10.1017/S0960129514000498
https://doi.org/10.1016/j.apal.2018.08.002
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1145/3209108.3209130
https://arxiv.org/abs/1802.00997v1
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1093/logcom/14.4.447
https://doi.org/10.1093/logcom/14.4.447
https://hdl.handle.net/2066/17231
https://doi.org/10.1145/3018610.3018615

Bibliography 235

[20] A. Bauer, P. G. Haselwarter, and P. L. Lumsdaine. A general definition
of dependent type theories. 2020. arXiv: 2009.05539v1.

[21] M. J. Beeson. Foundations of constructive mathematics. Vol. 6. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathemat-
ics and Related Areas (3)]. Springer-Verlag, Berlin, 1985, pp. xxiii+466.
doi: 10.1007/978-3-642-68952-9.

[22] M. Bezem, T. Coquand, and S. Huber. “A Model of Type Theory in Cu-
bical Sets”. In: 19th International Conference on Types for Proofs and
Programs (TYPES 2013). Ed. by R. Matthes and A. Schubert. Vol. 26.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 107–
128. doi: 10.4230/LIPIcs.TYPES.2013.107.

[23] M. Bezem, T. Coquand, and S. Huber. “The Univalence Axiom in
Cubical Sets”. In: Journal of Automated Reasoning 63.2 (Aug. 2019),
pp. 159–171. doi: 10.1007/s10817-018-9472-6.

[24] M. Bezem, T. Coquand, and E. Parmann. “Non-Constructivity in Kan
Simplicial Sets”. In: 13th International Conference on Typed Lambda
Calculi and Applications (TLCA 2015). Ed. by T. Altenkirch. Vol. 38.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 92–
106. doi: 10.4230/LIPIcs.TLCA.2015.92.

[25] M. E. Bidlingmaier. An interpretation of dependent type theory in a
model category of locally cartesian closed categories. 2020. arXiv: 2007.
02900v1.

[26] L. Birkedal, R. Clouston, B. Mannaa, R. Ejlers Møgelberg, A. M. Pitts,
and B. Spitters. “Modal dependent type theory and dependent right ad-
joints”. In: Mathematical Structures in Computer Science 30.2 (2020),
pp. 118–138. doi: 10.1017/S0960129519000197.

[27] R. Bocquet. Coherence of strict equalities in dependent type theories.
2020. arXiv: 2010.14166v1.

[28] J. Bourke. “Accessible aspects of 2-category theory”. In: J. Pure Appl.
Algebra 225.3 (2021), pp. 106519, 43. doi: 10.1016/j.jpaa.2020.
106519.

[29] J. Bourke, S. Lack, and L. Vokř́ınek. Adjoint functor theorems for ho-
motopically enriched categories. 2020. arXiv: 2006.07843v1.

[30] K. S. Brown. “Abstract homotopy theory and generalized sheaf coho-
mology”. In: Transactions of the American Mathematical Society 186
(1973), pp. 419–458. doi: 10.2307/1996573.

https://arxiv.org/abs/2009.05539v1
https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.1007/s10817-018-9472-6
https://doi.org/10.4230/LIPIcs.TLCA.2015.92
https://arxiv.org/abs/2007.02900v1
https://arxiv.org/abs/2007.02900v1
https://doi.org/10.1017/S0960129519000197
https://arxiv.org/abs/2010.14166v1
https://doi.org/10.1016/j.jpaa.2020.106519
https://doi.org/10.1016/j.jpaa.2020.106519
https://arxiv.org/abs/2006.07843v1
https://doi.org/10.2307/1996573

236 Bibliography

[31] G. Brunerie, K.-B. Hou (Favonia), E. Cavallo, J. Cockx, C. Sattler, C.
Jeris, M. Shulman, et al. Homotopy Type Theory in Agda. url: https:
//github.com/HoTT/HoTT-Agda.

[32] M. Buckley. “Fibred 2-categories and bicategories”. In: Journal of Pure
and Applied Algebra 218.6 (2014), pp. 1034–1074. doi: 10.1016/j.
jpaa.2013.11.002.

[33] P. Capriotti. “Models of Type Theory with Strict Equality”. PhD thesis.
University of Nottingham, 2016. arXiv: 1702.04912v1.

[34] A. Carboni, S. Lack, and R. F. C. Walters. “Introduction to extensive
and distributive categories”. In: Journal of Pure and Applied Algebra
84.2 (1993), pp. 145–158. doi: 10.1016/0022-4049(93)90035-R.

[35] J. W. Cartmell. “Generalised algebraic theories and contextual cate-
gories”. PhD thesis. Oxford University, 1978.

[36] E. Cavallo and A. Mörtberg. A unifying cartesian cubical type theory.
2019. url: https://github.com/mortberg/gen-cart/blob/master/
unifying-cartesian.pdf.

[37] E. Cavallo, A. Mörtberg, and A. W. Swan. “Unifying Cubical Mod-
els of Univalent Type Theory”. In: 28th EACSL Annual Conference
on Computer Science Logic (CSL 2020). Ed. by M. Fernández and A.
Muscholl. Vol. 152. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2020, 14:1–14:17. doi: 10.4230/LIPIcs.CSL.2020.14.

[38] D.-C. Cisinski. Higher Categories and Homotopical Algebra. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2019.
doi: 10.1017/9781108588737.

[39] P. Clairambault and P. Dybjer. “The Biequivalence of Locally Cartesian
Closed Categories and Martin-Löf Type Theories”. In: Typed Lambda
Calculi and Applications. Ed. by L. Ong. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 91–106. doi: 10.1007/978-3-642-21691-
6_10.

[40] P. Clairambault and P. Dybjer. “The biequivalence of locally carte-
sian closed categories and Martin-Löf type theories”. In: Mathematical
Structures in Computer Science 24.6 (2014), e240606. doi: 10.1017/
S0960129513000881.

[41] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. “Cubical Type The-
ory: A Constructive Interpretation of the Univalence Axiom”. In: 21st
International Conference on Types for Proofs and Programs (TYPES
2015). Ed. by T. Uustalu. Vol. 69. Leibniz International Proceedings

https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT-Agda
https://doi.org/10.1016/j.jpaa.2013.11.002
https://doi.org/10.1016/j.jpaa.2013.11.002
https://arxiv.org/abs/1702.04912v1
https://doi.org/10.1016/0022-4049(93)90035-R
https://github.com/mortberg/gen-cart/blob/master/unifying-cartesian.pdf
https://github.com/mortberg/gen-cart/blob/master/unifying-cartesian.pdf
https://doi.org/10.4230/LIPIcs.CSL.2020.14
https://doi.org/10.1017/9781108588737
https://doi.org/10.1007/978-3-642-21691-6_10
https://doi.org/10.1007/978-3-642-21691-6_10
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1017/S0960129513000881

Bibliography 237

in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 5:1–5:34. doi: 10.4230/LIPIcs.TYPES.
2015.5.

[42] T. Coquand. Cubical stacks. 2018. url: http://www.cse.chalmers.
se/~coquand/stack.pdf.

[43] T. Coquand. Internal version of the uniform Kan filling condition. 2015.
url: http://www.cse.chalmers.se/~coquand/shape.pdf.

[44] T. Coquand, S. Huber, and A. Mörtberg. “On Higher Inductive Types
in Cubical Type Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’18. Oxford, United
Kingdom: ACM, 2018, pp. 255–264. doi: 10.1145/3209108.3209197.

[45] T. Coquand and G. Huet. “The Calculus of Constructions”. In: Infor-
mation and Computation 76.2 (1988), pp. 95–120. doi: 10.1016/0890-
5401(88)90005-3.

[46] R. L. Crole. Categories for Types. Cambridge University Press, 1994.
doi: 10.1017/CBO9781139172707.

[47] P.-L. Curien. “Substitution up to Isomorphism”. In: Fundam. Inform.
19.1/2 (1993), pp. 51–85.

[48] P.-L. Curien, R. Garner, and M. Hofmann. “Revisiting the categori-
cal interpretation of dependent type theory”. In: Theoretical Computer
Science 546 (2014), pp. 99–119. doi: 10.1016/j.tcs.2014.03.003.

[49] T. de Jong and M. H. Escardó. Predicative Aspects of Order Theory in
Univalent Foundations. 2021. arXiv: 2102.08812v3.

[50] J. W. Duskin. “Simplicial matrices and the nerves of weak n-categories.
I. Nerves of bicategories”. In: Theory Appl. Categ. 9 (2002), pp. 198–308.
url: http://www.tac.mta.ca/tac/volumes/9/n10/9-10abs.html.

[51] P. Dybjer. “Internal Type Theory”. In: Types for Proofs and Programs:
International Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995 Se-
lected Papers. Ed. by S. Berardi and M. Coppo. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 120–134. doi: 10.1007/3-540-
61780-9_66.

[52] M. H. Escardó and C. M. Knapp. “Partial Elements and Recursion
via Dominances in Univalent Type Theory”. In: 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017). Ed. by V. Goranko
and M. Dam. Vol. 82. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017, 21:1–21:16. doi: 10.4230/LIPIcs.CSL.2017.21.

https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
http://www.cse.chalmers.se/~coquand/stack.pdf
http://www.cse.chalmers.se/~coquand/stack.pdf
http://www.cse.chalmers.se/~coquand/shape.pdf
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1016/j.tcs.2014.03.003
https://arxiv.org/abs/2102.08812v3
http://www.tac.mta.ca/tac/volumes/9/n10/9-10abs.html
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.4230/LIPIcs.CSL.2017.21

238 Bibliography

[53] A. Felty. “Encoding the calculus of constructions in a higher-order
logic”. In: [1993] Proceedings Eighth Annual IEEE Symposium on Logic
in Computer Science. 1993, pp. 233–244. doi: 10.1109/LICS.1993.
287584.

[54] M. Fiore. Discrete Generalised Polynomial Functors. Talk at ICALP
2012. 2012. url: http : / / www . cl . cam . ac . uk / ~mpf23 / talks /

ICALP2012.pdf.

[55] M. Fiore and C.-K. Hur. “Second-Order Equational Logic (Extended
Abstract)”. In: Computer Science Logic. Ed. by A. Dawar and H. Veith.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 320–335. doi:
10.1007/978-3-642-15205-4_26.

[56] M. Fiore and O. Mahmoud. Functorial Semantics of Second-Order Al-
gebraic Theories. 2014. arXiv: 1401.4697v1.

[57] M. Fiore and O. Mahmoud. “Second-Order Algebraic Theories”. In:
Mathematical Foundations of Computer Science 2010. Ed. by P. Hliněný
and A. Kučera. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 368–380. doi: 10.1007/978-3-642-15155-2_33.

[58] P. Freyd. Abelian categories. Reprint available at http://www.emis.

de/journals/TAC/reprints/articles/3/tr3abs.html. Harper and
Row, 1964.

[59] P. Freyd. “Aspects of topoi”. In: Bulletin of the Australian Mathemati-
cal Society 7.01 (Aug. 1972), pp. 1–76. doi: 10.1017/S0004972700044828.

[60] D. Frumin and B. van den Berg. “A homotopy-theoretic model of func-
tion extensionality in the effective topos”. In: Mathematical Structures
in Computer Science (2018), pp. 1–27. doi: 10.1017/S0960129518000142.

[61] Y. Fu. “Categorical properties of logical frameworks”. In: Mathematical
Structures in Computer Science 7.1 (1997), pp. 1–47. doi: 10.1017/
S0960129596002058.

[62] P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Vol. 221. Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, 1971.
doi: 10.1007/BFb0059396.

[63] N. Gambino and S. Henry. Towards a constructive simplicial model of
Univalent Foundations. 2021. arXiv: 1905.06281v3.

[64] N. Gambino, S. Henry, C. Sattler, and K. Szumi lo. The effective model
structure and ∞-groupoid objects. 2021. arXiv: 2102.06146v2.

[65] N. Gambino and J. Kock. “Polynomial functors and polynomial mon-
ads”. In: Mathematical Proceedings of the Cambridge Philosophical So-
ciety 154.1 (2013), pp. 153–192. doi: 10.1017/S0305004112000394.

https://doi.org/10.1109/LICS.1993.287584
https://doi.org/10.1109/LICS.1993.287584
http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://doi.org/10.1007/978-3-642-15205-4_26
https://arxiv.org/abs/1401.4697v1
https://doi.org/10.1007/978-3-642-15155-2_33
http://www.emis.de/journals/TAC/reprints/articles/3/tr3abs.html
http://www.emis.de/journals/TAC/reprints/articles/3/tr3abs.html
https://doi.org/10.1017/S0004972700044828
https://doi.org/10.1017/S0960129518000142
https://doi.org/10.1017/S0960129596002058
https://doi.org/10.1017/S0960129596002058
https://doi.org/10.1007/BFb0059396
https://arxiv.org/abs/1905.06281v3
https://arxiv.org/abs/2102.06146v2
https://doi.org/10.1017/S0305004112000394

Bibliography 239

[66] N. Gambino and C. Sattler. “The Frobenius condition, right properness,
and uniform fibrations”. In: Journal of Pure and Applied Algebra 221.12
(2017), pp. 3027–3068. doi: 10.1016/j.jpaa.2017.02.013.

[67] N. Gambino, C. Sattler, and K. Szumi lo. The constructive Kan-Quillen
model structure: two new proofs. 2019. arXiv: 1907.05394v1.

[68] R. Garner. “Combinatorial structure of type dependency”. In: Journal
of Pure and Applied Algebra 219.6 (2015), pp. 1885–1914. doi: 10.

1016/j.jpaa.2014.07.015.

[69] D. Gepner and J. Kock. “Univalence in locally cartesian closed ∞-
categories”. In: Forum Mathematicum 29.3 (Jan. 2017). doi: 10.1515/
forum-2015-0228.

[70] H. Geuvers. “Induction Is Not Derivable in Second Order Dependent
Type Theory”. In: Typed Lambda Calculi and Applications. Ed. by S.
Abramsky. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 166–
181. doi: 10.1007/3-540-45413-6_16.

[71] J.-Y. Girard. “Linear logic”. In: Theoretical Computer Science 50.1
(1987), pp. 1–101. doi: 10.1016/0304-3975(87)90045-4.

[72] J.-Y. Girard. “Une Extension De L’Interpretation De Gödel a L’Analyse,
Et Son Application a L’Elimination Des Coupures Dans L’Analyse Et
La Theorie Des Types”. In: Proceedings of the Second Scandinavian
Logic Symposium. Ed. by J. Fenstad. Vol. 63. Studies in Logic and the
Foundations of Mathematics. Elsevier, 1971, pp. 63–92. doi: 10.1016/
S0049-237X(08)70843-7.

[73] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Vol. 7. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989. url: http://www.paultaylor.eu/stable/Proofs+

Types.html.

[74] D. Gratzer and J. Sterling. Syntactic categories for dependent type the-
ory: sketching and adequacy. 2021. arXiv: 2012.10783v2.

[75] R. Harper, F. Honsell, and G. Plotkin. “A Framework for Defining
Logics”. In: J. ACM 40.1 (Jan. 1993), pp. 143–184. doi: 10.1145/

138027.138060.

[76] S. Henry. A constructive account of the Kan-Quillen model structure
and of Kan’s Ex∞ functor. 2019. arXiv: 1905.06160v1.

[77] C. Hermida. “Fibrations, Logical Predicates and Indeterminates”. PhD
thesis. University of Edinburgh, 1993. url: https://www.lfcs.inf.
ed.ac.uk/reports/93/ECS-LFCS-93-277/.

https://doi.org/10.1016/j.jpaa.2017.02.013
https://arxiv.org/abs/1907.05394v1
https://doi.org/10.1016/j.jpaa.2014.07.015
https://doi.org/10.1016/j.jpaa.2014.07.015
https://doi.org/10.1515/forum-2015-0228
https://doi.org/10.1515/forum-2015-0228
https://doi.org/10.1007/3-540-45413-6_16
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1016/S0049-237X(08)70843-7
http://www.paultaylor.eu/stable/Proofs+Types.html
http://www.paultaylor.eu/stable/Proofs+Types.html
https://arxiv.org/abs/2012.10783v2
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://arxiv.org/abs/1905.06160v1
https://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-277/
https://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-277/

240 Bibliography

[78] M. Hofmann. “On the interpretation of type theory in locally cartesian
closed categories”. In: Computer Science Logic. Ed. by L. Pacholski
and J. Tiuryn. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995,
pp. 427–441. doi: 10.1007/BFb0022273.

[79] M. Hofmann. “Syntax and Semantics of Dependent Types”. In: Se-
mantics and Logics of Computation. Ed. by A. M. Pitts and P. Dyb-
jer. Publications of the Newton Institute. Cambridge University Press,
1997, pp. 79–130. doi: 10.1017/CBO9780511526619.004.

[80] M. Hofmann and T. Streicher. Lifting Grothendieck Universes. 1997.
url: http : / / www . mathematik . tu - darmstadt . de / ~streicher /

NOTES/lift.pdf.

[81] M. Hofmann and T. Streicher. “The groupoid interpretation of type the-
ory”. In: Twenty-five years of constructive type theory (Venice, 1995).
Vol. 36. Oxford Logic Guides. New York: Oxford Univ. Press, 1998,
pp. 83–111. doi: 10.1093/oso/9780198501275.003.0008.

[82] M. Hovey. Model categories. Vol. 63. Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 1999, pp. xii+209.

[83] S. Huber. “Canonicity for Cubical Type Theory”. In: J. Autom. Reason.
63.2 (2019), pp. 173–210. doi: 10.1007/s10817-018-9469-1.

[84] J. M. E. Hyland. “A small complete category”. In: Annals of Pure and
Applied Logic 40.2 (1988), pp. 135–165. doi: 10.1016/0168-0072(88)
90018-8.

[85] J. M. E. Hyland. “The Effective Topos”. In: The L. E. J. Brouwer
Centenary Symposium. Ed. by A. Troelstra and D. van Dalen. Vol. 110.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1982,
pp. 165–216. doi: 10.1016/S0049-237X(09)70129-6.

[86] Initiality Project. url: https://ncatlab.org/nlab/show/Initiality+
Project.

[87] V. Isaev. Algebraic Presentations of Dependent Type Theories. 2018.
arXiv: 1602.08504v3.

[88] H. Ishihara, M. E. Maietti, S. Maschio, and T. Streicher. “Consistency
of the intensional level of the Minimalist Foundation with Church’s
thesis and axiom of choice”. In: Archive for Mathematical Logic (Jan.
2018). doi: 10.1007/s00153-018-0612-9.

[89] B. Jacobs. Categorical Logic and Type Theory. 1st. Elsevier Science,
1999.

[90] B. Jacobs. “Comprehension categories and the semantics of type de-
pendency”. In: Theoretical Computer Science 107.2 (1993), pp. 169–
207. doi: 10.1016/0304-3975(93)90169-T.

https://doi.org/10.1007/BFb0022273
https://doi.org/10.1017/CBO9780511526619.004
http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://doi.org/10.1093/oso/9780198501275.003.0008
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1016/0168-0072(88)90018-8
https://doi.org/10.1016/0168-0072(88)90018-8
https://doi.org/10.1016/S0049-237X(09)70129-6
https://ncatlab.org/nlab/show/Initiality+Project
https://ncatlab.org/nlab/show/Initiality+Project
https://arxiv.org/abs/1602.08504v3
https://doi.org/10.1007/s00153-018-0612-9
https://doi.org/10.1016/0304-3975(93)90169-T

Bibliography 241

[91] B. Jacobs and T. Melham. “Translating dependent type theory into
higher order logic”. In: Typed Lambda Calculi and Applications. Ed.
by M. Bezem and J. F. Groote. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, pp. 209–229. doi: 10.1007/BFb0037108.

[92] P. T. Johnstone. Sketches of an Elephant : A Topos Theory Com-
pendium Volume 1. Vol. 43. Oxford Logic Guides. Oxford University
Press, 2002.

[93] P. T. Johnstone. Sketches of an Elephant : A Topos Theory Com-
pendium Volume 2. Vol. 44. Oxford Logic Guides. Oxford University
Press, 2002.

[94] A. Joyal. Notes on clans and tribes. 2017. arXiv: 1710.10238v1.

[95] A. Joyal. Notes on quasi-categories. 2008. url: http://www.math.
uchicago.edu/~may/IMA/Joyal.pdf.

[96] A. Joyal. What is an elementary higher topos? Talk at Reimagining The
Foundations Of Algebraic Topology, April, 2014. 2014. url: https:

//www.msri.org/workshops/689/schedules/18227.

[97] A. Kaposi and A. Kovács. “A Syntax for Higher Inductive-Inductive
Types”. In: 3rd International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2018). Ed. by H. Kirchner. Vol. 108.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 20:1–
20:18. doi: 10.4230/LIPIcs.FSCD.2018.20.

[98] A. Kaposi and A. Kovács. “Signatures and Induction Principles for
Higher Inductive-Inductive Types”. In: Log. Methods Comput. Sci. 16.1
(2020). doi: 10.23638/LMCS-16(1:10)2020.

[99] K. Kapulkin. “Locally cartesian closed quasi-categories from type the-
ory”. In: Journal of Topology 10.4 (2017), pp. 1029–1049. doi: 10.

1112/topo.12031.

[100] K. Kapulkin and P. L. Lumsdaine. “The homotopy theory of type theo-
ries”. In: Adv. Math. 337 (2018), pp. 1–38. doi: 10.1016/j.aim.2018.
08.003.

[101] K. Kapulkin and P. L. Lumsdaine. The law of excluded middle in the
simplicial model of type theory. 2020. arXiv: 2006.13694v2.

[102] K. Kapulkin and P. L. Lumsdaine. “The simplicial model of Univalent
Foundations (after Voevodsky)”. In: Journal of the European Mathe-
matical Society (2021). doi: 10.4171/JEMS/1050.

[103] K. Kapulkin and K. Szumi lo. “Internal languages of finitely complete
(∞, 1)-categories”. In: Selecta Math. (N.S.) 25.2 (2019), Art. 33, 46.
doi: 10.1007/s00029-019-0480-0.

https://doi.org/10.1007/BFb0037108
https://arxiv.org/abs/1710.10238v1
http://www.math.uchicago.edu/~may/IMA/Joyal.pdf
http://www.math.uchicago.edu/~may/IMA/Joyal.pdf
https://www.msri.org/workshops/689/schedules/18227
https://www.msri.org/workshops/689/schedules/18227
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://doi.org/10.23638/LMCS-16(1:10)2020
https://doi.org/10.1112/topo.12031
https://doi.org/10.1112/topo.12031
https://doi.org/10.1016/j.aim.2018.08.003
https://doi.org/10.1016/j.aim.2018.08.003
https://arxiv.org/abs/2006.13694v2
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1007/s00029-019-0480-0

242 Bibliography

[104] L. H. Kauffman. “De Morgan algebras—completeness and recursion”.
In: Proceedings of the Eighth International Symposium on Multiple-
Valued Logic (Rosemont, Ill., 1978). IEEE, Long Beach, Calif., 1978,
pp. 82–86.

[105] S. C. Kleene. “On the Interpretation of Intuitionistic Number Theory”.
In: The Journal of Symbolic Logic 10.4 (1945), pp. 109–124. doi: 10.
2307/2269016.

[106] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical
Logic. Cambridge University Press, 1986.

[107] M. Lambert. Discrete 2-Fibrations. 2020. arXiv: 2001.11477v1.

[108] F. W. Lawvere. “Functorial Semantics of Algebraic Theories”. Reprint
available at http://www.tac.mta.ca/tac/reprints/articles/5/

tr5abs.html. PhD thesis. Columbia University, 1963.

[109] T. Leinster. Basic Category Theory. Vol. 143. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2014. doi: 10.
1017/CBO9781107360068.

[110] D. Licata, M. Riley, and M. Shulman. A Fibrational Framework for
Substructural and Modal Dependent Type Theories. Talk at HoTTEST.
Mar. 2019. url: https://www.youtube.com/watch?v=-DP0wY2FBs4.

[111] D. R. Licata, I. Orton, A. M. Pitts, and B. Spitters. “Internal Uni-
verses in Models of Homotopy Type Theory”. In: 3rd International Con-
ference on Formal Structures for Computation and Deduction (FSCD
2018). Ed. by H. Kirchner. Vol. 108. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 22:1–22:17. doi: 10.4230/LIPIcs.

FSCD.2018.22.

[112] D. R. Licata and M. Shulman. “Calculating the Fundamental Group of
the Circle in Homotopy Type Theory”. In: Proceedings of the 2013 28th
Annual ACM/IEEE Symposium on Logic in Computer Science. LICS
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 223–
232. doi: 10.1109/LICS.2013.28.

[113] D. R. Licata, M. Shulman, and M. Riley. “A Fibrational Framework for
Substructural and Modal Logics”. In: 2nd International Conference on
Formal Structures for Computation and Deduction (FSCD 2017). Ed.
by D. Miller. Vol. 84. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017, 25:1–25:22. doi: 10.4230/LIPIcs.FSCD.2017.25.

[114] G. Longo and E. Moggi. “Constructive natural deduction and its ’ω-set’
interpretation”. In: Mathematical Structures in Computer Science 1.2
(1991), pp. 215–254. doi: 10.1017/S0960129500001298.

https://doi.org/10.2307/2269016
https://doi.org/10.2307/2269016
https://arxiv.org/abs/2001.11477v1
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1017/CBO9781107360068
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.youtube.com/watch?v=-DP0wY2FBs4
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1017/S0960129500001298

Bibliography 243

[115] P. L. Lumsdaine. What are we thinking when we present a type theory?
Talk at the HoTTEST Conference. 2020. url: https://www.youtube.
com/watch?v=kQe0knDuZqg.

[116] P. L. Lumsdaine and M. A. Warren. “The Local Universes Model: An
Overlooked Coherence Construction for Dependent Type Theories”. In:
ACM Trans. Comput. Logic 16.3 (July 2015), 23:1–23:31. doi: 10 .

1145/2754931.

[117] J. Lurie. Higher Topos Theory. Vol. 170. Annals of Mathematics Stud-
ies. Princeton University Press, 2009. url: https://www.math.ias.
edu/~lurie/papers/HTT.pdf.

[118] S. Mac Lane. Categories for the Working Mathematician. 2nd. Vol. 5.
Graduate Texts in Mathematics. New York, NY: Springer New York,
1998. doi: 10.1007/978-1-4757-4721-8.

[119] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. New
York, NY: Springer New York, 1992. doi: 10.1007/978- 1- 4612-

0927-0.

[120] M. E. Maietti. “Modular correspondence between dependent type the-
ories and categories including pretopoi and topoi”. In: Mathematical
Structures in Computer Science 15.6 (2005), pp. 1089–1149. doi: 10.
1017/S0960129505004962.

[121] M. E. Maietti. “The Internal Type Theory of a Heyting Pretopos”. In:
Types for Proofs and Programs, International Workshop TYPES’96,
Aussois, France, December 15-19, 1996, Selected Papers. Ed. by E.
Giménez and C. Paulin-Mohring. Vol. 1512. Lecture Notes in Computer
Science. Springer, 1996, pp. 216–235. doi: 10.1007/BFb0097794.

[122] M. E. Maietti and G. Sambin. “Toward a minimalist foundation for
constructive mathematics”. In: From Sets and Types to Topology and
Analysis. Ed. by L. Crosilla and P. Schuster. Oxford University Press,
2005. doi: 10.1093/acprof:oso/9780198566519.003.0006.

[123] M. Makkai and G. E. Reyes. First Order Categorical Logic. Model-
Theoretical Methods in the Theory of Topoi and Related Categories.
Vol. 611. Lecture Notes in Mathematics. Springer-Verlag Berlin Heidel-
berg, 1977. doi: 10.1007/BFb0066201.

[124] P. Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”.
In: Studies in Logic and the Foundations of Mathematics 80 (1975),
pp. 73–118. doi: 10.1016/S0049-237X(08)71945-1.

[125] P. Martin-Löf. Intuitionistic type theory. Vol. 1. Studies in Proof Theory.
Lecture Notes. Notes by Giovanni Sambin. Bibliopolis, Naples, 1984,
pp. iv+91.

https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest_conference_2020.html
https://www.youtube.com/watch?v=kQe0knDuZqg
https://www.youtube.com/watch?v=kQe0knDuZqg
https://doi.org/10.1145/2754931
https://doi.org/10.1145/2754931
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1017/S0960129505004962
https://doi.org/10.1017/S0960129505004962
https://doi.org/10.1007/BFb0097794
https://doi.org/10.1093/acprof:oso/9780198566519.003.0006
https://doi.org/10.1007/BFb0066201
https://doi.org/10.1016/S0049-237X(08)71945-1

244 Bibliography

[126] N. P. Mendler. “Quotient types via coequalizers in Martin-Löf type
theory”. In: Proceedings of the Logical Frameworks Workshop. 1990,
pp. 349–361.

[127] E. Moggi. “Notions of computation and monads”. In: Information and
Computation 93.1 (1991). Selections from 1989 IEEE Symposium on
Logic in Computer Science, pp. 55–92. doi: 10.1016/0890-5401(91)
90052-4.

[128] G. L. Monaco. “Dependent products and 1-inaccessible universes”. In:
Theory and Applications of Categories 37.5 (2021), pp. 107–143. url:
http://www.tac.mta.ca/tac/volumes/37/5/37-05abs.html.

[129] C. Newstead. “Algebraic models of dependent type theory”. PhD the-
sis. Carnegie Mellon University, 2018. url: https://sites.math.

northwestern.edu/~newstead/thesis-clive-newstead.pdf.

[130] H. K. Nguyen and T. Uemura. ∞-type theories. in preparation.

[131] S. B. Niefield. “Cartesianness: topological spaces, uniform spaces, and
affine schemes”. In: Journal of Pure and Applied Algebra 23.2 (1982),
pp. 147–167. doi: 10.1016/0022-4049(82)90004-4.

[132] B. Nordström, K. Petersson, and J. M. Smith. “Martin-Löf’s Type The-
ory”. In: Handbook of Logic in Computer Science. Ed. by S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum. Vol. 5. Oxford University Press,
2001.

[133] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-
Löf ’s Type Theory: An Introduction. Oxford University Press, 1990.
url: http://www.cse.chalmers.se/research/group/logic/book/.

[134] I. Orton and A. M. Pitts. “Axioms for Modelling Cubical Type Theory
in a Topos”. In: 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016). Ed. by J.-M. Talbot and L. Regnier. Vol. 62. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 24:1–24:19.
doi: 10.4230/LIPIcs.CSL.2016.24.

[135] I. Orton and A. M. Pitts. “Axioms for Modelling Cubical Type Theory
in a Topos”. In: Logical Methods in Computer Science 14 (4 Dec. 2018).
doi: 10.23638/LMCS-14(4:23)2018.

[136] F. Pfenning and R. Davies. “A judgmental reconstruction of modal
logic”. In: Mathematical Structures in Computer Science 11.4 (2001),
pp. 511–540. doi: 10.1017/S0960129501003322.

[137] W. Phoa. An introduction to fibrations, topos theory, the effective topos
and modest sets. Tech. rep. ECS-LFCS-92-208. The University of Ed-
inburgh, 2006. url: http://www.lfcs.inf.ed.ac.uk/reports/92/
ECS-LFCS-92-208/.

https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
http://www.tac.mta.ca/tac/volumes/37/5/37-05abs.html
https://sites.math.northwestern.edu/~newstead/thesis-clive-newstead.pdf
https://sites.math.northwestern.edu/~newstead/thesis-clive-newstead.pdf
https://doi.org/10.1016/0022-4049(82)90004-4
http://www.cse.chalmers.se/research/group/logic/book/
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.1017/S0960129501003322
http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-208/
http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-208/

Bibliography 245

[138] A. M. Pitts. “Categorical Logic”. In: Handbook of Logic in Computer
Science: Volume 5: Logic and Algebraic Methods. USA: Oxford Univer-
sity Press, Inc., 2001, pp. 39–123.

[139] A. Rădulescu-Banu. Cofibrations in Homotopy Theory. 2009. arXiv:
math/0610009v4.

[140] N. Rasekh. A Theory of Elementary Higher Toposes. 2018. arXiv: 1805.
03805v2.

[141] N. Rasekh. Complete Segal Objects. 2018. arXiv: 1805.03561v1.

[142] N. Rasekh. Univalence in Higher Category Theory. 2021. arXiv: 2103.
12762v1.

[143] J. C. Reynolds. “Towards a theory of type structure”. In: Programming
Symposium. Ed. by B. Robinet. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1974, pp. 408–425. doi: 10.1007/3-540-06859-7_148.

[144] E. Riehl. Category Theory in Context. Dover Books, 2017. url: https:
//math.jhu.edu/~eriehl/context.pdf.

[145] E. Riehl and D. Verity. Elements of ∞-Category Theory. 2021. url:
http://www.math.jhu.edu/~eriehl/elements.pdf.

[146] E. Rijke, M. Shulman, and B. Spitters. “Modalities in homotopy type
theory”. In: Log. Methods Comput. Sci. 16.1 (2020), Paper No. 2, 79.
doi: 10.23638/LMCS-16(1:2)2020.

[147] C. Sattler. The Equivalence Extension Property and Model Structures.
2017. arXiv: 1704.06911v4.

[148] R. A. G. Seely. “Categorical Semantics for Higher Order Polymor-
phic Lambda Calculus”. In: The Journal of Symbolic Logic 52.4 (1987),
pp. 969–989. doi: 10.2307/2273831.

[149] R. A. G. Seely. “Locally cartesian closed categories and type theory”.
In: Math. Proc. Cambridge Philos. Soc. 95.1 (1984), pp. 33–48. doi:
10.1017/S0305004100061284.

[150] R. A. G. Seely. “Hyperdoctrines, natural deduction and the Beck con-
dition”. In: Zeitschrift für mathematische Logik und Grundlagen der
Mathematik 29.10 (1983), pp. 505–542. doi: 10.1002/malq.19830291005.

[151] M. Shulman. All (∞, 1)-toposes have strict univalent universes. 2019.
arXiv: 1904.07004v2.

[152] M. Shulman. “Brouwer’s fixed-point theorem in real-cohesive homotopy
type theory”. In: Mathematical Structures in Computer Science 28.6
(2018), pp. 856–941. doi: 10.1017/S0960129517000147.

https://arxiv.org/abs/math/0610009v4
https://arxiv.org/abs/1805.03805v2
https://arxiv.org/abs/1805.03805v2
https://arxiv.org/abs/1805.03561v1
https://arxiv.org/abs/2103.12762v1
https://arxiv.org/abs/2103.12762v1
https://doi.org/10.1007/3-540-06859-7_148
https://math.jhu.edu/~eriehl/context.pdf
https://math.jhu.edu/~eriehl/context.pdf
http://www.math.jhu.edu/~eriehl/elements.pdf
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1704.06911v4
https://doi.org/10.2307/2273831
https://doi.org/10.1017/S0305004100061284
https://doi.org/10.1002/malq.19830291005
https://arxiv.org/abs/1904.07004v2
https://doi.org/10.1017/S0960129517000147

246 Bibliography

[153] M. Shulman. Towards elementary infinity-toposes. Talk at Vladimir Vo-
evodsky Memorial Conference, IAS, September 2018. 2018. url: https:
//www.youtube.com/watch?v=ld4YL787dAk.

[154] M. Shulman. “Univalence for inverse diagrams and homotopy canon-
icity”. In: Mathematical Structures in Computer Science 25.05 (2015),
pp. 1203–1277. doi: 10.1017/s0960129514000565.

[155] M. Shulman. Higher Inductive Types via Impredicative Polymorphism.
2011. url: https://homotopytypetheory.org/2011/04/25/higher-
inductive-types-via-impredicative-polymorphism/.

[156] S. Speight. “Impredicative Encodings of Inductive Types in Homo-
topy Type Theory”. MA thesis. Carnegie Mellon University, 2017. url:
http://www.cs.ox.ac.uk/people/sam.speight/publications/

sams-hott-thesis.pdf.

[Stacks] The Stacks Project Authors. Stacks Project. 2020. url: https : / /

stacks.math.columbia.edu.

[157] W. P. Stekelenburg. Constructive Simplicial Homotopy. 2016. arXiv:
1604.04746v1.

[158] T. Streicher. Fibred Categories à la Jean Bénabou. 2020. arXiv: 1801.
02927v11.

[159] T. Streicher. “Independence of the induction principle and the axiom of
choice in the pure calculus of constructions”. In: Theoretical Computer
Science 103.2 (1992), pp. 395–408. doi: 10 . 1016 / 0304 - 3975(92)

90021-7.

[160] T. Streicher. Semantics of type theory. Correctness, Completeness and
Independence Results. Progress in Theoretical Computer Science. Birkhäuser
Basel, 1991, pp. xii+298. doi: 10.1007/978-1-4612-0433-6.

[161] A. W. Swan. W -Types with Reductions and the Small Object Argument.
2018. arXiv: 1802.07588v1.

[162] A. W. Swan. “An Algebraic Weak Factorisation System on 01-Substitution
Sets: A Constructive Proof”. In: Journal of Logic & Analysis 8 (2016),
pp. 1–35. doi: 10.4115/jla.2016.8.1.

[163] A. W. Swan and T. Uemura. On Church’s Thesis in Cubical Assemblies.
2019. arXiv: 1905.03014v1.

[164] K. Szumi lo. “Homotopy Theory of Cofibration Categories”. In: Homol-
ogy, Homotopy & Applications 18.2 (2016), pp. 345–357. doi: 10.4310/
HHA.2016.v18.n2.a19.

[165] K. Szumi lo. “Two Models for the Homotopy Theory of Cocomplete
Homotopy Theories”. PhD thesis. University of Bonn, Nov. 2014. arXiv:
1411.0303v1.

https://www.youtube.com/watch?v=ld4YL787dAk
https://www.youtube.com/watch?v=ld4YL787dAk
https://doi.org/10.1017/s0960129514000565
https://homotopytypetheory.org/2011/04/25/higher-inductive-types-via-impredicative-polymorphism/
https://homotopytypetheory.org/2011/04/25/higher-inductive-types-via-impredicative-polymorphism/
http://www.cs.ox.ac.uk/people/sam.speight/publications/sams-hott-thesis.pdf
http://www.cs.ox.ac.uk/people/sam.speight/publications/sams-hott-thesis.pdf
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://arxiv.org/abs/1604.04746v1
https://arxiv.org/abs/1801.02927v11
https://arxiv.org/abs/1801.02927v11
https://doi.org/10.1016/0304-3975(92)90021-7
https://doi.org/10.1016/0304-3975(92)90021-7
https://doi.org/10.1007/978-1-4612-0433-6
https://arxiv.org/abs/1802.07588v1
https://doi.org/10.4115/jla.2016.8.1
https://arxiv.org/abs/1905.03014v1
https://doi.org/10.4310/HHA.2016.v18.n2.a19
https://doi.org/10.4310/HHA.2016.v18.n2.a19
https://arxiv.org/abs/1411.0303v1

Bibliography 247

[166] P. Taylor. “Internal completeness of categories of domains”. In: Cat-
egory Theory and Computer Programming: Tutorial and Workshop,
Guildford, U.K. September 16–20, 1985 Proceedings. Ed. by D. Pitt, S.
Abramsky, A. Poigné, and D. Rydeheard. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1986, pp. 449–465. doi: 10.1007/3-540-17162-
2_137.

[167] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Vol-
ume I. Vol. 121. Studies in Logic and the Foundations of Mathematics.
Elsevier Science Publishers B.V., 1988.

[168] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Vol-
ume II. Vol. 123. Studies in Logic and the Foundations of Mathematics.
Elsevier Science Publishers B.V., 1988.

[169] T. Uemura. A General Framework for the Semantics of Type Theory.
2019. arXiv: 1904.04097v2.

[170] T. Uemura. “Cubical Assemblies, a Univalent and Impredicative Uni-
verse and a Failure of Propositional Resizing”. In: 24th International
Conference on Types for Proofs and Programs (TYPES 2018). Ed.
by P. Dybjer, J. E. Santo, and L. Pinto. Vol. 130. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 7:1–7:20. doi: 10.

4230/LIPIcs.TYPES.2018.7.

[171] T. Uemura. The Universal Exponentiable Arrow. 2020. arXiv: 2001.
09940v1.

[172] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. Institute for Advanced Study, 2013.
url: http://homotopytypetheory.org/book/.

[173] B. van den Berg. “Predicative topos theory and models for constructive
set theory”. PhD thesis. University of Utrecht, 2006. url: https://
staff.fnwi.uva.nl/b.vandenberg3/thesis/mythesis.pdf.

[174] B. van den Berg. “Univalent polymorphism”. In: Ann. Pure Appl. Logic
171.6 (2020), pp. 102793, 29. doi: 10.1016/j.apal.2020.102793.

[175] B. van den Berg and E. Faber. Effective Kan fibrations in simplicial
sets. 2020. arXiv: 2009.12670v1.

[176] J. van Oosten. Realizability: an introduction to its categorical side.
Vol. 152. Studies in Logic and the Foundations of Mathematics. El-
sevier B. V., Amsterdam, 2008, pp. xvi+310.

[177] V. Voevodsky. A universe polymorphic type system. 2012. url: https:
//ncatlab.org/ufias2012/files/Universe+polymorphic+type+

sytem.pdf.

https://doi.org/10.1007/3-540-17162-2_137
https://doi.org/10.1007/3-540-17162-2_137
https://arxiv.org/abs/1904.04097v2
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://arxiv.org/abs/2001.09940v1
https://arxiv.org/abs/2001.09940v1
http://homotopytypetheory.org/book/
https://staff.fnwi.uva.nl/b.vandenberg3/thesis/mythesis.pdf
https://staff.fnwi.uva.nl/b.vandenberg3/thesis/mythesis.pdf
https://doi.org/10.1016/j.apal.2020.102793
https://arxiv.org/abs/2009.12670v1
https://ncatlab.org/ufias2012/files/Universe+polymorphic+type+sytem.pdf
https://ncatlab.org/ufias2012/files/Universe+polymorphic+type+sytem.pdf
https://ncatlab.org/ufias2012/files/Universe+polymorphic+type+sytem.pdf

248 Bibliography

[178] V. Voevodsky. B-systems. 2014. arXiv: 1410.5389v1.

[179] V. Voevodsky. Subsystems and regular quotients of C-systems. 2016.
arXiv: 1406.7413v3.

[180] F. Waldhausen. “Algebraic K-theory of spaces”. In: Algebraic and geo-
metric topology: proceedings of a conference held at Rutgers Univ., New
Brunswick, USA, July 6 - 13, 1983. Ed. by A. Ranicki, N. Levitt, and
F. Quinn. Springer, 1985, pp. 318–419. doi: 10.1007/BFb0074449.

[181] M. Weber. “Polynomials in categories with pullbacks”. In: Theory and
Applications of Categories 30.16 (2015), pp. 533–598. url: http://
www.tac.mta.ca/tac/volumes/30/16/30-16abs.html.

[182] N. Yamada. Game semantics of Martin-Löf type theory, part III: its
consistency with Church’s thesis. 2020. arXiv: 2007.08094v2.

https://arxiv.org/abs/1410.5389v1
https://arxiv.org/abs/1406.7413v3
https://doi.org/10.1007/BFb0074449
http://www.tac.mta.ca/tac/volumes/30/16/30-16abs.html
http://www.tac.mta.ca/tac/volumes/30/16/30-16abs.html
https://arxiv.org/abs/2007.08094v2

Acronym

(∞, 1)-CwR (∞, 1)-category with representable maps. 159, 162

CTT cubical type theory. 94, 189

CwR category with representable maps. 31, 32, 41

DTT basic dependent type theory. 83

qCTT quasi-cubical type theory. 190–192

SOGAT second-order generalized algebraic theory. 44, 47, 83

249

Notation

∆ Diagonal map. 24
Γ† Metavariable replacement of Γ. 78
Γ|term Underlying variable signature of Γ. 59
Ω Instantiation associated to metavariable re-

placement. 78
Ω Subobject classifier. 116
Φ|term Underlying metavariable signature of Φ. 60
γ† Metavariable replacement of γ. 78
ω Substitution associated to metavariable re-

placement. 78√
Right adjoint of the exponentiation by inter-
val. 193

0I End point. 94, 192
1I End point. 94, 192∫
C A Category of elements. 35, 200
∇A Codiscrete presheaf at A. 208
∆A Constant presheaf at A. 208
A⊥ Partial map classifier. 116
{a} Context comprehension of a. 36
a ∈ α Membership relation. 116
∇AB Codicsrete presheaf at B over ∆A. 208
A -> B Function type. 85
A ⇀ B Type of partial maps. 116
Γ→ a : K Type judgment. 63
Asm Assembly model. 213
Asm Category of assemblies. 213
Asm Assumption introduction rule. 67
a · u Right action of u. 25, 35, 200

251

252 Notation

{a}u Context comprehension of a with respect to u.
141

Axiom Axiom introduction rule. 67
B Category of powers of 2. 206
C→ Category of arrows of C. 24

Ĉ Category of larger objects. 23
C. Right cone. 143, 162
C∆ Category of sections. 133, 176
C↙↘ Category of spans in C. 125
Cr Category of representable objects in C. 151
CAsm Cubical assembly model. 213
Cat (2, 1)-Category of categories. 25
Cl Syntactic category. 112
Cof Universe of cofibrations. 95, 192
CwR Category of categories representable maps. 41
(∞, 1)-CwR (∞, 1)-category of (∞, 1)-categories with rep-

resentable maps. 162
DΠ Dependent type theory with Π-types. 43
D Basic dependent type theory. 43, 176
Deriv(P,J) Set of derivations from P to J . 70
DFib Category of discrete fibrations. 34
DFibC Category of discrete fibrations over C. 34
En Extensional (n+ 1)-type theory. 170
EΠ
∞ Extensional∞-type theory with Π-types. 171

E∞ Extensional ∞-type theory. 168
E Extensional type theory. 173
[[e]] Interpretation. 118
EA(a) Set of realizers. 212
Γ→ e c Well-formedness judgment. 65
Γ→ e ok Well-formedness judgment. 65
Eqv(u) Right fibration of equivalences. 164
Eqv(u) Representing object for Eqv(u). 164
Eqv(x, y) Right fibration of equivalences. 164
Eqv(x, y) Representing object for Eqv(x, y). 164
ExprΣ,µ(γ, c) Set of expressions. 54
ExprX (γ, c) Presheaf of semantic expressions. 117

F! Left adjoint of F ∗. 174
F ∗ Precomposition functor. 174
Γ′ → f1 ≡ f2 : Γ \ Γ0 Partially trivial substitution equality judg-

ment. 74
Γ→ f1 ≡ f2 : ∆ Substitution equality judgment. 64
Γ′ → f : Γ \ Γ0 Partially trivial substitution judgment. 73

Notation 253

Γ→ f : ∆ Substitution judgment. 64
Σ, µ ` f : γ → δ A substitution. 54
f(a) ↓ Application is defined. 116
Fun(C,D) Category of functors C → D. 24
Γ→ H Judgment. 63
H : Γ→ P Assumption. 61
H : Φ⇒ P Axiom. 62
Hyp Hypothesis introduction rule. 66
Σ, µ ` I : γ ⇒ ν An instantiation. 54
I Intensional type theory. 173
I Interval. 94, 192
Γ→ I1 ≡ I2 : Ψ Instantiation equality judgment. 65
Γ→ I : Ψ Instantiation judgment. 65
inl Left inclusion of coproduct. 24
inr Right inclusion of coproduct. 24
InstΣ,µ(γ, ν) Set of instantiations of ν over γ. 54
InstX (γ, ν) Presheaf of semantic instantiations. 117
I(T) Initial model of T . 151
ItprX (−) Presheaf of interpretations. 117, 120, 121

Itpr(T, C) Groupoid of interpretations. 128
ϕ |= J ϕ satisfies J . 120
K1 Kleene’s first model. 213
k(C) The largest groupoid contained in C. 24
L Nullification. 223
LAdj Category of left adjoints. 27
(∞, 1)-LCCC (∞, 1)-category of (∞, 1)-LCCCs. 171
let u⇐ a in b Let notation. 116

Lex(Ξ) Category of categories with limits of shape Ξ.
27

Lex Category of categories with finite limits. 27
(n, 1) -Lex (n+ 1, 1)-category of finitely complete (n, 1)-

categories. 170
(∞, 1) -Lex (∞, 1)-category of finitely complete (∞, 1)-

categories. 167
Lex(C,D) Category of left exact functors C → D. 24
L(M) Internal language of M. 138, 163
M♥ Heart of M. 142
Map(x, y) Right fibration of maps. 164
Map(x, y) Representing object for Map(x, y). 164
Mfib Model consisting of fibrations. 193
Mod(T) Category of models of T . 138, 163

Moddem(T) Category of democratic models of T . 141, 163

254 Notation

MP Model consisting of P -null types. 225
M(u)C Universe lifting. 201
≡-MVar Metavariable congruence rule. 67
MVar Metavariable introduction rule. 67

ρC : ÕC → OC Representable map classifier. 166

O(all)
C Right fibration of all maps. 164
OC Codomain fibration. 164
P A Power object. 116
Γ→ P Proposition judgment. 63
Pu Polynomial functor. 29
γ(P) Reflection of proposition P into an impredica-

tive universe. 216
ηP Unit P -> γ(P). 216
PER Universe of partial equivalence relations. 214
PropConv Proposition conversion rule. 68
PrR

ω (2, 1)-category of compactly generated cate-
gories. 27

PShMC Presheaf model in M. 201
pu(a) First context projection. 37
qu(a) Second context projection. 37
RC Class of representable maps in C. 41
R∞ ∞-type theory for ∞-type theories. 172
Refl Reflexivity rule. 69
S(Φ) Syntactic model generated by Φ. 151
s1 . s2 Extension of declaration. 59
S : µ⇒ c Symbol of syntactic class c. 53
S : Φ⇒ c Sort symbol. 62
Set Category of sets. 23
SigA Category of signatures valued in A. 54
S : Φ⇒ K Term symbol. 62
Smtry Symmetry rule. 69
Space (∞, 1)-category of spaces. 25
SubstΣ,µ(γ, δ) Set of substitutions of δ in γ. 54
SubstX (γ, δ) Presheaf of semantic substitutions. 117
≡-Subst Equality substitution rule. 69
Subst Substitution rule. 69
≡-Sym Symbol congruence rule. 67
Sym Symbol introduction rule. 67
T Kleene’s computation predicate. 220
T |expr Underlying symbol signature of T . 61
T [Φ] Extension of type theory by global sections.

155

Notation 255

Th(T) Category of T -theories. 108
Th(T) Category of T -theories. 138, 163
T,Φ ` J J is derivable over T and Φ. 70
T,Φ ` Γ ok Γ is a well-formed context over T and Φ. 71
T ` Φ ok Φ is a well-formed environment over T . 71
Trans Transitivity rule. 69
TT Category of type theories. 42
∞-TT (∞, 1)-category of ∞-type theories. 162
TypeConv Type conversion rule. 67
TypeConvEq Equality conversion rule. 67
U Kleene’s result extraction function. 220
u∗ Pullback along u. 28
u! Postcomposition with u. 28
u∗ Pushforward along u. 29
Var Variable introduction rule. 66
v ⊗ u Composition of polynomials. 30
x∗ Pullback along x→ 1. 28
x! Forgetful functor C/x→ C. 28
x : a Entry of a signature. 52
(x : A) -> B Dependent function type. 85
(x : A)×B Dependent pair type. 86
{x : A | P} Set comprehension. 116
x : b Entry of a declaration. 59
λx.b Lambda abstraction. 85
〈x1, . . . , xn〉e x1, . . . , xn are bound in e. 55
[X : Γ→ K] Implicit argument. 83
X : Γ→ K Metavariable. 61
Y Yoneda embedding. 25
(y1 := f1, . . . , yn := fn) Substitution. 55
(Y1 := I1, . . . , Yn := In) Instantiation. 55

Index

2-morphism
– of models of a type theory, 138

adjoint functor theorem, 28
arrow

exponentiable –, 29
univalent –, 164

assembly, 212
cubical –, 213
modest –, 214
uniform –, 217

assumption, 60
axiom, 61

Beck-Chevalley condition, 24
Brouwer’s Principle, 231

category, 23, 200
– of elements, 35, 200
– with representable maps, 41

syntactic –, 112
– with weak equivalences and cofi-

brations, 177
compactly generated, 26
comprehension –, 175
cube –, 207
filtered –, 26

Church’s Thesis, 220, 230
untruncated –, 221

circle, 91, 101
class

pullback-stable –, 29

closure rule, 69
closure system, 70
cofibration, 95, 177, 192

– of D-theories, 178
generating –, 178

– of I-theories
generatinc –, 184

colimit
filtered, 26
strictly extensive –, 92

compact
– object, 26
– theory over a type theory, 154

composition, 97, 193
homogeneous –, 97, 193

conclusion, 66, 70
connected, 192
context, 59

finite –, 83
well-formed –, 71
well-ordered –, 81

context comprehension, 37, 141
contextual completeness, 79
coproduct, 87

disjoint –, 90
strictly extensive –, 90

cubical type theory, 94

declaration, 59
relative –, 59
sub-, 59

declare, 84

257

258 Index

define, 84
derivation, 70
discrete fibration, 34, 147

representable –, 36
display map, 169

endpoint, 94
environment, 60

finitary –, 83
finite –, 83
well-formed –, 71
well-ordered –, 81

exponentiable
– arrow, 29
– object, 28

expression, 55
proposition –, 55
representable proposition –, 55
representable type –, 55
sort –, 55
term –, 55
type –, 55

extension
– of a declaration, 59

filtered
– category, 26

finitary
– environment, 83
– pretheory, 83

finite
– context, 83
– environment, 83

functor
localization –, 174
right exact –, 178

generalized algebraic theory, 105, 108
glueing, 100, 195
good type theory, 190

heart
– of a model of a type theory, 142

higher inductive type, 91, 101

hypothesis, 59

inference rule, 66
∞-category

– with representable maps, 162
∞-type theory, 162
instantiation, 54
internal language

– of a model of a type theory, 138
– of a topos, 115

interpretation, 128
interval, 94, 192, 203
isomorphism extension structure, 192

judgment, 63
derivable –, 70

judgment head, 63
proposition –, 63
type –, 62

Kleene’s first model, 213

left approximation property, 178
local fibrant replacement, 197
localization, 177

Markov’s Principle, 219
Martin-Löf type theory, 84
metavariable, 52
metavariable replacement

– of a context, 78
– of a variable signature, 78

model
– of a type theory, 42

democratic –, 141
initial –, 151
syntactic –, 151

– of an ∞-type theory, 162
morphism

– of assemblies, 213
– of categories with representable

maps, 41
– of declarations, 59
– of∞-categories with representable

maps, 162

Index 259

– of ∞-type theories, 162
– of models of a type theory, 42
– of models of an ∞-type theory,

163
– of signatures, 54
– of theories over a second-order

generalized algebraic theories,
108

– of type theories, 42

n-type theory, 162
natural model, 33
(n, i)-category, 25
null structure, 223
nullification, 223

object
cofibrant –, 177
compact –, 26
contextual –, 141
exponentiable –, 28

partial equivalence relation, 214
partial map classifier, 116
polynomial

– with reductions, 93
polynomial functor, 29
premise, 66, 69
presentation

– of an∞-type theory by a 1-type
theory, 174

presheaf, 25, 200
codiscrete –, 208
constant –, 208
representable –, 25
uniform –, 217

presupposition, 66
pretheory, 61

finitary –, 83
well-formed –, 71
well-ordered –, 81

proposition, 92, 215
decidable –, 204
locally decidable –, 205

propositional extensionality, 192
propositional resizing axiom, 215, 216
propositional truncation, 92, 103, 198
pseudo-judgment, 64
pushforward, 29
pushout, 92

quasi-cubical type theory, 192

realizer, 213
representable

– discrete fibration, 36
– presheaf, 25

representable map
– in a category with representable

maps, 41
– in an ∞-category with repre-

sentable maps, 162
– of discrete fibrations, 36, 147
– of environments, 113
– of presheaves, 33
generic –, 166

representable map classifier, 166
right fibration, 147

second-order algebraic theory, 103
second-order generalized algebraic the-

ory, 83
internal –, 133

section
– of a discrete fibration, 36
– of a presheaf, 25

signature, 52
metavariable –, 52
symbol –, 53
variable –, 52

strictly extensive
– colimit, 92
– coproduct, 90

strong generator, 26
substitution, 54

jointly partially trivial –, 74
partially trivial –, 73

sum

260 Index

– of polynomials with reductions,
94

suspension, 102, 197
symbol, 53

proposition –, 53
representable proposition –, 53
representable type –, 53
term –, 53
type –, 53

syntactic class, 52

theory
– over a second-order generalized

algebraic theory, 108
– over a type theory, 138

compact –, 154
– over an ∞-type theory, 163

tracker, 213
transport, 97
trivial cofibration, 177
trivial fibration

– of D-theories, 179
two-pullbacks lemma, 24
type

dependent function –, 21
dependent pair –, 21
dependent product –, 21, 85
dependent sum –, 21, 85
discrete –, 198
empty –, 22, 87
Id-, 167
identity –, 22, 86, 195

extensional –, 22, 87
intensional –, 22, 87

natural numbers –, 23, 88
null –, 223
path –, 98, 195
Π-, 21, 85, 171, 172
Σ-, 21, 85, 167
unit –, 87, 167
W -, 88

– with reductions, 93
well-supported –, 217

type theory, 42

univalence axiom, 91
univalent type theory, 190
universe, 88

finitely complete –, 168
impredicative –, 214
weakly closed –, 89

variable, 52

weak equivalence, 177
weak representable map classifier, 116
well-formed

– context, 71
– environment, 71
– pretheory, 71

well-ordered
– context, 81
– environment, 81
– pretheory, 81

Yoneda embedding, 26
Yoneda lemma, 26

Samenvatting

In dit proefschrift bestuderen we zowel abstracte als concrete typentheorieën.
Naast een abstract begrip van een typentheorie om algemene resultaten in de
semantiek van typentheorie te kunnen bewijzen, introduceren we ook een manier
om een typentheorie syntactisch te presenteren. Dit laatste gebruiken we om
een concrete typentheorie te kunnen bestuderen en daarvoor consistentie- en on-
afhankelijksresultaten te bewijzen.

In Hoofdstuk 3 ontwikkelen we een abstract begrip van een typentheorie. Met
Awodey’s theorie van natuurlijke modellen van een typentheorie, waarin modellen
van een typentheorie worden beschreven in termen van representeerbare afbeeldin-
gen tussen discrete vezelingen, als uitgangspunt, geven we een abstracte definitie
van een typentheorie als een categorie met representeerbare afbeeldingen. Een
model van een typentheorie wordt dan gedefin̈ıeerd als een structuurbehoudende
functor naar een categorie van discrete vezelingen.

In Hoofdstuk 4 introduceren we “tweede-orde gegeneraliseerde algebräısche
theorieën”: deze geven een syntactische presentatie van een typentheorie en
zijn gëınspireerd door een definitie van een algemene typentheorie afkomstig
van Bauer, Haselwarter en Lumsdaine. Deze presentatie komt overeen met de
traditionele presentatie van een typentheorie gegeven door een grammatica en
afleidingsregels. We laten zien dat elke tweede-orde gegeneraliseerde algebräısche
theorie een typentheorie genereert met een passende universele eigenschap en dat,
omgekeerd, elke typentheorie wordt voortgebracht door een tweede-orde gegener-
aliseerde algebräısche theorie.

In Hoofdstuk 5 ontwikkelen we de semantiek van typentheorie gebaseerd op de
definities die we in Hoofdstuk 3 hebben ingevoerd. Opmerkelijk genoeg kunnen de
resultaten in dit hoofdstuk zuiver categorisch worden bewezen en wordt nergens
gebruik gemaakt van de syntactische presentatie die we in Hoofdstuk 4 hebben
gëıntroduceerd. Het belangrijkste resultaat is dat er voor elke typentheorie een
correspondentie bestaat tussen theorieën en modellen van die typentheorie. Dit
resultaat geeft een formele rechtvaardiging voor het gebruik van de interne taal

261

262 Samenvatting

van een model van een typentheorie.
De definitie van een typentheorie als een categorie met extra structuur stelt

ons in staat om hoger-dimensionale generalisaties te definiëren. In Hoofdstuk
6 bestuderen we ∞-typentheorieën, de (∞, 1)-categorische generalisatie van een
typentheorie. ∞-typentheorieën blijken een nuttig hulpmiddel te zijn om die co-
herentieproblemen te begrijpen en aan te pakken die ontstaan in de (hogere) cat-
egorische semantiek van typentheorie. We laten zien dat zogeheten niet-gespleten
modellen van een typentheorie op een natuurlijke manier als modellen van een
∞-typentheorie kunnen worden opgevat en dat coherentieproblemen in de (hoger-
dimensionale) categorische semantiek kunnen worden geformuleerd in de taal van
de ∞-typentheorieën en aanverwante begrippen. We passen dit toe door een
bewijs te schetsen van een vermoeden van Kapulkin en Lumsdaine dat zegt dat
typentheorie met intensionele identiteitstypen een interne taal is voor (∞, 1)-
categorieën met eindige limieten.

Vanaf Hoofdstuk 7 richten we onze aandacht op een concrete typentheorie,
namelijk univalente typentheorie. Deze typentheorie kan worden gepresenteerd
als een tweede-orde gegeneraliseerde algebräısche theorie en daarmee als een type-
ntheorie in de zin van Hoofdstuk 3. Hoofdstuk 7 is voor het grootste gedeelte
gewijd aan het herformuleren van de interne constructie van modellen van een
univalente typentheorie gegeven door Orton en Pitts en Licata et al. in termen
van ons begrip van een model van een typentheorie.

Tenslotte bestuderen we in Hoofdstuk 8 concrete modellen van univalente
typentheorie. Door de constructie uit Hoofdstuk 7 toe te passen op het assembly
model van extensionele typentheorie krijgen we het cubical assembly model, een
model van univalente typentheorie. We gebruiken dit cubical assembly model om
consistentie- en onafhankelijkheidsresultaten te bewijzen. We laten zien dat het
cubical assembly model een univalent en impredicatief universum bevat en dat het
univalentie-axioma daarom consistent is met het bestaan van een impredicatief
universum. Dit impredicatieve universum voldoet niet aan het “propositional re-
sizing axiom” in dat we in het cubical assembly model een propositie kunnen
construeren dat niet equivalent is aan een propositie in het impredicatieve uni-
versum. Dit laat zien dat het “propositional resizing axiom” niet bewijsbaar is
in de univalente typentheorie. Verder bestuderen we de relatie tussen het cubical
assembly model en Constructieve Recursieve Wiskunde. We laten zien dat het
cubical assembly model aan het Principe van Markov voldoet, maar niet aan de
These van Church. Door gebruik te maken van de theorie van modaliteiten in de
homotopietypentheorie die door Rijke, Shulman en Spitters is ontwikkeld, kunnen
we een reflectief deeluniversum van het cubical assembly model construeren waarin
zowel het Principe van Markov als de These van Church gelden. Daarmee laten
we zien dat deze principes van de Constructieve Recursieve Wiskunde consistent
zijn met univalente typentheorie.

Abstract

In this thesis, we study abstract and concrete type theories. We introduce an
abstract notion of a type theory to obtain general results in the semantics of type
theories, but we also provide a syntactic way of presenting a type theory to allow
us a further investigation into a concrete type theory to obtain consistency and
independence results.

In Chapter 3, we introduce an abstract notion of a type theory. After review-
ing the theory of natural models of a type theory introduced by Awodey where
models of a type theory are described in terms of representable maps of discrete
fibrations, we introduce a notion of a category with representable maps as an
abstract definition of a type theory. A model of a type theory is defined to be a
structure-preserving functor to a category of discrete fibrations.

In Chapter 4, we introduce a syntactic presentation of a type theory called
a second-order generalized algebraic theory, inspired by the definition of general
type theories given by Bauer, Haselwarter, and Lumsdaine. This presentation
coincides with the traditional presentation of a type theory by a grammar and
inference rules. We show that every second-order generalized algebraic theory gen-
erates a type theory with an appropriate universal property and that, conversely,
every type theory is generated by some second-order generalized algebraic theory.

In Chapter 5, we develop the semantics of type theories based on the def-
initions introduced in Chapter 3. Remarkably, the results in this chapter are
theorems in pure category theory and do not depend on the syntactic presenta-
tions introduced in Chapter 4. The main result is the correspondence between
theories and models for any type theory. This formally justifies the use of the
internal language of a model of a type theory.

Once a type theory is defined as a category with certain structure, its higher
dimensional generalization makes sense. We study an (∞, 1)-categorical gener-
alization of a type theory called an ∞-type theory in Chapter 6. It turns out
that ∞-type theories are a useful tool for understanding and tackling coherence
problems which arise in the categorical and higher categorical semantics of type

263

264 Abstract

theories. We see that so-called non-split models of a type theory are naturally
regarded as models of an∞-type theory and that coherence problems in both cat-
egorical and higher categorical semantics of type theories can be formulated in the
language of∞-type theories and related concepts. As an application, we sketch a
solution to Kapulkin and Lumsdaine’s conjecture that the dependent type theory
with intensional identity types provides internal languages for finitely complete
(∞, 1)-categories.

From Chapter 7, we turn our attention to a concrete type theory, univalent
type theory. This type theory can be presented by a second-order generalized
algebraic theory and thus defined as a type theory in the sense introduced in
Chapter 3. Chapter 7 is mostly devoted to rephrasing the internal construction
of models of univalent type theory given by Orton and Pitts and Licata et al. in
terms of our notion of a model of a type theory.

Finally, in Chapter 8, we study concrete models of univalent type theory. Ap-
plying the construction explained in Chapter 7 to the assembly model of the ex-
tensional type theory, we have a model of univalent type theory called the cubical
assembly model. We use the cubical assembly model to obtain consistency and in-
dependence results. We show that the cubical assembly model has a univalent and
impredicative universe, and thus univalence is consistent with an impredicative
universe. This impredicative universe does not satisfy the propositional resizing
axiom in that we can construct a proposition in the cubical assembly model that
is not equivalent to any proposition in the impredicative universe. Hence, the
propositional resizing axiom is not provable over univalent type theory. We then
study the cubical assembly model in relation to Constructive Recursive Math-
ematics. We show that the cubical assembly model satisfies Markov’s Principle
but does not satisfy Church’s Thesis. Using the theory of modalities in homotopy
type theory developed by Rijke, Shulman, and Spitters, we construct a reflective
subuniverse of the cubical assembly model in which both Markov’s Principle and
Church’s Thesis hold. Thus, these principles of Constructive Recursive Mathe-
matics are consistent with univalent type theory.

Titles in the ILLC Dissertation Series:

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning
Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Artificial Language Learning: Retention, Recog-
nition & Recurrence

ILLC DS-2017-09: Miloš Stanojević
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in
Dutch Folk Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author
gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-environment
systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-
ploiting Differences and Similarities Between Languages in Machine Transla-
tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum pro-
grams

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep
Learning for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiologi-
cal studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure
on rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J.Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

	Acknowledgments
	Introduction
	Type theories
	Semantics of type theories
	General type theories

	Abstract type theories
	Functorial semantics
	Type theories as categories
	Syntactic presentations of type theories
	Summary and related work

	Homotopy type theory
	Realizability models of homotopy type theory
	Impredicative universe
	Propositional resizing
	Church's Thesis
	Related work

	Higher dimensional type theories
	Coherence problems
	Solutions to coherence problems
	General coherence problems and ∞-type theories
	Related work

	Summary of contributions
	Origin of the material

	Preliminaries
	Foundations
	Type theory
	Category theory
	Higher categories
	Presheaves
	Compactly generated categories
	Exponentiable arrows

	Categories with representable maps
	Natural models of type theory
	Discrete fibrations
	Modeling type theory
	Properties of representable maps of discrete fibrations

	Type theories

	Second-order generalized algebraic theories
	Running example
	Syntax of SOGATs
	Signatures
	Expressions
	Substitutions
	Instantiations

	Inference rules of SOGATs
	Declarations
	Judgments
	Inference rules
	Derivations
	Well-formedness conditions

	Properties of derivations
	Stability under substitutions
	Stability under instantiations
	Contextual completeness

	Second-order generalized algebraic theories
	Well-ordered presentation
	Finitary pretheories

	Examples of SOGATs
	Martin-Löf type theory
	Extensions of Martin-Löf type theory
	Cubical type theory
	Second-order algebraic theories
	Generalized algebraic theories
	Bauer et al.'s general type theories

	Theories over a SOGAT
	Semantics of SOGATs
	Syntactic categories
	Interpretations
	Functorial semantics
	The internal SOGAT of a CwR

	The theory of type theories
	Theories and models
	The internal language at work
	Democratic models
	The theory-model correspondence

	The category of models of a type theory
	Presentability of the category of models
	The universal property of the category of models

	The category of type theories
	Slice type theories
	Presentability of the category of type theories

	The theory-model correspondence
	The initial model
	Syntactic models generated by compact theories
	The equivalence of theories and democratic models

	∞-type theories
	The theory of ∞-type theories
	Univalent representable maps
	The representable map classifier

	Type-theoretic structures
	Finitely complete (∞,1)-categories
	Locally cartesian closed (∞,1)-categories
	∞-type theories

	Coherence problems
	Coherence for comprehension categories
	Coherence for finitely complete categories
	Coherence for finitely complete (∞,1)-categories

	Models of cubical type theory
	A general construction of a model of CTT
	Axioms for modeling CTT
	Fibrations
	Type constructors
	Universes
	Higher inductive types
	Discrete types

	Internal cubical models
	Internal presheaves
	Lifting universes
	Intervals
	Locally decidable propositions
	Cube categories
	W-types with reductions
	Constant and codiscrete presheaves

	Cubical assembly models of type theory
	Assemblies
	Impredicative universe
	Failure of propositional resizing
	Uniform assemblies
	The counterexample

	Markov's Principle
	Church's Thesis
	Failure of Church's Thesis in internal cubical models
	Null types
	Church's Thesis in null types

	Bibliography
	Acronym
	Notation
	Index
	Samenvatting
	Abstract

