o
L I -
I g
TN A
" £
< N

”,
»

>,

Dynamical Systems via Domains

Toward a Unified Foundation of
Symbolic and Non-symbolic
Computation

ILLC Dissertation Series DS-2021-10

nTa
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Science Park 107
1098 XG Amsterdam
phone: +31-20-525 6051
e-mail: i1lc@uva.nl
homepage: http://www.illc.uva.nl/

Copyright (©) 2021 by Levin Hornischer

Cover woodcut and photo by Monika Schaber
Printed and bound by GVO drukkers & vormgevers B.V.

ISBN: 978-94-6332-789-3

Dynamical Systems via Domains

Toward a Unified Foundation of
Symbolic and Non-symbolic
Computation

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 13 oktober 2021, te 10.00 uur

door
Levin Adrian Hornischer

geboren te Filderstadt

Promotiecommissie

Promotores: prof.
prof.

Qverige leden: prof.
prof.
prof.
prof.
prof.

dr.
dr.

dr.
dr.
dr.
dr.
dr.

M. van Lambalgen
F'. Berto

J.F.A K. van Benthem
S.J.L. Smets

A. Betti

S. Abramsky

H. Leitgeb

dr. L. Incurvati

Faculteit der Geesteswetenschappen

Universiteit van Amsterdam
Universiteit van Amsterdam

Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam
University of Oxford
Ludwig-Maximilians-Universitat
Minchen

Universiteit van Amsterdam

The research for this doctoral thesis received financial assistance from the
Netherlands Organisation for Scientific Research (NWO) as part of the research
programme PhDs in the Humanities, project number 322-20-017.

Fur Moni, Winni und Jele

Acknowledgments

1 Introduction

2

1.1
1.2

Motivation
Outline.

Contents

Part One: Symbolic computation

Trajectory domains 1: Construction

2.1
2.2

2.3

24

2.5

2.6

2.7

Introduction
Background
2.2.1 Labeled transition systems
2.2.2 Domain and order theory
Two guiding examples
2.3.1 Observing a black box system
2.3.2 Concurrent computation
2.3.3 Summary and outlook
Pre-behavioral transition systems
2.4.1 Definition
242 Comments
2.4.3 Example constructions
Information containment of behaviors

2.5.1 Three definitions of information containment

2.5.2 ... and how they are united
The characterization theorem
2.6.1 Statement
2.6.2 Proof.

Behavioral transition systems

1X

2.7.1 Definitiono
2.7.2 Simplifying assumptions
2.7.3 Examples
2.8 Trajectory domains
2.9 Generalizations of information systems
2.9.1 Scott information systems L.
2.9.2 ... and their generalizations as BTSs
2.10 Conclusiono

Trajectory domains 2: Category
3.1 Imtroduction
3.2 Background
3.2.1 Category of labeled transition systems
3.2.2 Domain theory 0.
3.2.3 Category theoryo
3.2.4 Recap from the previous chapter
3.3 Category of behavioral transition systems
3.3.1 Definition o
3.3.2 Basic properties
3.3.3 Embedding labeled transition systems.
3.3.4 Removing non-approximable behavior
3.4 Trajectory domain functor
3.5 Adjunction between systems and domains
3.5.1 Extensionalizing
3.5.2 Unlabeling and reflexing
3.5.3 Adjunction to domains
3.6 Toward incorporating labels on domains
3.6.1 Marked domainso
3.6.2 An interpretation of relevance logic
3.7 Conclusion

Part Two: Non-symbolic computation

Systems and domains 1: Model

4.1 Introduction

4.2 Background Lo
4.2.1 Domain theory
4.2.2 Dynamical and topological systems

4.3 Observing dynamical systems
4.3.1 Basis or ‘set of possible observations”
4.3.2 The index set or ‘set of observation parameters’
4.3.3 Observed system L.,

4.3.4 Refining observations
4.3.5 Observation probabilities
4.3.6 SUmMmary
4.4 Dynamical domains
4.4.1 Dynamical dcpo’so
4.4.2 Dynamical expanding systems
4.4.3 The limit theorem
4.4.4 Definition of dynamical domains
4.5 The system modeled by a dynamical domain
4.6 Dynamical domain models for systems
4.6.1 For dynamical systems
4.6.2 For topological systems
4.7 Conclusion

Systems and domains 2: Category
5.1 Imtroductiono
5.2 The categorieso
5.2.1 Background oo
5.2.2 Categories of dynamical systems
5.2.3 Categories of measured topological systems
5.2.4 Categories of dynamical domains
5.2.5 Recap from chapter 4
5.2.6 Categories of based measured topological systems
5.2.7 Categories of max-reflective dynamical domains
5.3 The bottom layer of the main diagram
5.3.1 Dynamical systems as category of fractions
5.3.2 Compactification of a system: informally
5.3.3 Compactification of a system: formally
5.4 The system and domain functors
5.4.1 The system functor
5.4.2 The domain functor
5.4.3 Computational and logical compactification coincide
5.5 The systems-domains adjunction
5.5.1 The counit and unit
5.5.2 Triangle identitieso
5.6 Analyzing the systems-domains adjunction
5.6.1 Restricting to equivalence
5.6.2 Max-reflecting a dynamical domain
5.7 Conclusion

x1

6 Systems and domains 3: Application
6.1 Introductiono
6.2 Background
6.2.1 Recap dynamical systems and dynamical domains
6.2.2 Metric entropy
6.2.3 Topological entropy
6.3 Domain-entropy
6.3.1 Definition of domain-entropy
6.3.2 Main theorem on domain-entropy
6.3.3 Normal form for domain-entropy
6.4 Max-entropy oL
6.4.1 Definition of max-entropy
6.4.2 Main theorem on max-entropy
6.5 Conclusion

Part Three: Stability

7 Interlude: symbolic vs. non-symbolic
7.1 Non-symbolic computation as limit of symbolic computation . . .
7.2 Non-symbolic realization of symbolic computation
7.2.1 Symbolic approximation
7.2.2 Ergodicity
7.2.3 Randommess
7.2.4 Stability

8 Stability: Fitch’s paradox and Al-safety
8.1 Introduction
8.2 Examples of stability
8.2.1 Verifiability and falsifiability (observation)
8.2.2 Safety (epistemology) L.
8.2.3 Safety (artificial intelligence) L.
8.2.4 Stability of belief (probabilistic reasoning)
8.2.5 Significance (mathematical modeling)
8.2.6 Further examples
8.3 Four principles of stability
8.3.1 A logic to reason about stability
8.3.2 Formalization and motivation of the principles
8.3.3 The duality between falsification and verification
8.3.4 Constructing sets of questions
8.4 Impossibility via a novel interpretation of Fitch’s paradox
8.4.1 Reinterpretation of Fitch’s paradox
8.4.2 Impossibility oo

x1i

243
243
243
244
245
246
247
247
249
252
258
258
259
262

267
267
269
270
272
277
281

8.5 Impossibility via semantics
8.5.1 Kripke semantics
8.5.2 Topological semantics

8.6 Applications
8.6.1 An extension of Fitch’s paradox
8.6.2 A limitation for Al-safety

8.7 Conclusion

Conclusion

Systems as a category of fractions

A.1 Statement of the theorem
A.2 Topological realizations of systems
A3 Thekeylemma
A.4 Calculus of fractions
A5 Equivalence

Dynamical domain example

B.1 A dynamical domain of binary sequences
B.2 More facts about the dynamical domain
B.3 Words on the components
B.4 Computing max-entropy

Bibliography
Index

List of symbols
Samenvatting

Summary

xiil

327

331
331
335
338
343
344

349
349
355
356
360

363

385

389

393

395

1.1
1.2

2.1
2.2
2.3

3.1

5.1
5.2
5.3
5.4
5.9
5.6

7.1
7.2
7.3

8.1

Al
A2
A3
A4
A5

B.1

List of Figures

An operational semantics for the bubble sort algorithm
Computation as dynamical systems

The North-Southmap
The trajectory domain of the North-South map
The independence diamond

Summary of theresults oL

The main diagramo
(Non-) examples of max-reflective finite Scott domains
The compactification functor
Notational conventions of this subsection
Proof of naturality
Overview of theresults

Non-symbolic computation as limit of symbolic computation . . .
The predator-prey dynamics
A converging system

The four principles and their duals

Calculus of fractions
Equivalence of spans L
Composition of spans
Inverses of morphisms in the localization
Visualization of lemma A.3.1.

Example of word realization

XV

Publications

All chapters of the thesis are single-authored and have not been published previ-
ously (at the time of submission). Papers that aren’t part of this thesis but have
been published within this PhD project are the following:

e L. Hornischer (2019). “Toward a Logic for Neural Networks”. In: The
Logica Yearbook 2018. Ed. by I. Sedlar and M. Blicha. London: College
Publications, pp. 133-148

This is an early exploration of the guiding idea of the thesis: using domain
theory to develop a semantics also for non-symbolic computation including
neural networks. Some of the ideas eventually lead to chapter 2 (though the
chapter itself is quite different) and to the last paper below.

e L. Hornischer (2020). “Logics of Synonymy”. In: Journal of Philosophical
Logic 49, pp. 767-805

This investigates the notion of synonymy (or content identity or strong
equivalence). It axiomatizes various notions of synonymy and characterizes
them as good benchmarks. This paper is cited in chapter 2 when asking
whether the generalization of Scott information systems presented there can
be seen as moving to a stronger underlying notion of equivalence.

e L. Hornischer (2021). “The Logic of Information in State Spaces”. In: The
Review of Symbolic Logic 14.1, pp. 155186

This uses domain theory to describe the information contained in state
spaces (dynamical systems, possible worlds, etc.). This provides a semantics
to the logic HYPE and is applied to study information fusion. This paper is
cited in chapter 8 as a potential tool to further study the notion of ‘state
space stability’ discussed in that chapter.

XVil

Acknowledgments

First of all, I would like to thank my supervisors Michiel van Lambalgen and
Franz Berto: Michiel, thank you for sharing some of your seemingly unbounded
amount of knowledge (even if it can be intimidating when you start quoting page
numbers from books you read 30 years ago); for teaching me how to look at a
problem from many perspectives and to check with the (cognitive) data; for never
going easy on me with critical questions while still being encouraging; for treating
me like a peer in the many courses that we taught together; for trusting me with
a lot of freedom in my research and making plenty of time for me; and for sharing
a passion for music and mountains. Franz, thank you for your refreshing approach
to philosophy (your motto of not taking oneself too seriously stuck with me); for
your enthusiasm and the encouragement that comes with it; for magically being
available 24 /7; for being—and I cannot stress this enough—incredibly supportive;
and for your humor that cannot fail to entertain even in impossible worlds. I am
indebted to you two for your support, guidance, and encouragement making this
PhD project possible!

Next, I would like to thank my committee: Samson Abramsky, Johan van
Benthem, Arianna Betti, Luca Incurvati, Hannes Leitgeb, and Sonja Smets. I feel
very lucky and honored that you have agreed to this task. Your work is a great
inspiration to me, and I am deeply grateful for all the time that you have devoted
to this thesis—especially given its long and often abstract nature. Thank youl!

I have been very fortunate to have spent my PhD at ILLC with its inspiring,
collegial, and interdisciplinary atmosphere. This is made by its people: First, I
would like to thank Arnold, Dean, Ivar, Kaibo, Nadine, and Thomas, for making—
at various time periods over the past four years—the austere sounding ‘Science
Park Room F1.11" a wonderful and welcoming office. Special thanks to Dean for
the many enlightening philosophy comments. Over the years, I had the pleasure
to meet many inspiring, intimidatingly smart, but unbelievably kind people at
ILLC. Thank you for the lunches, coffees, chats, discussions, and much more: in
particular, Ana Lucia, Anna, Anthi, Arnold, Arthur, Aybiike, Bas, Bastiaan, Dean,

Xix

Dieuwke, Ece, Frederik, Gianluca, Giorgio, Giovanni, Ilaria, Iris, Ivar, Julian,
Kaibo, Karolina, Leila, Malvin, Mario G., Milica, Nadine, Peter H., Riccardo,
Robert P., Ronald, Sam, Samira, Simon, Sirin, Thom, Thomas, Tom, Yvette, and
Zoi, as well as you fellow MoLers. A big part of the special atmosphere at ILLC is
also due to its extraordinary staff members: Thank you for keeping a—proverbial
and literal—open door. In particular, for the inspiring encounters over the years,
thank you, Arianna, Bahareh, Benedikt, Benno, Dick, Floris, Jakub, Jelle, Johan,
Luca, Maria, Nick, Robert v.R., and Sonja. And for making everything work and
for always being there, a big thank you to Caitlin, Debbie, Jenny, Karine, Patty,
Peter, and Tanja.

During my PhD, I also had the privilege to do two research visits: At the end
of 2018, T was at the Department of Computer Science at the University of Oxford
visiting Samson Abramsky and his group. Thank you for your great hospitality,
the opportunity to present my work, and the introduction to contextuality. In
this thesis, I've tried to live up to Samson’s wise words about using category
theory to systematize. Special thanks to Sivert and Rui for welcoming me in their
office, and to Karen Barnes for a perfect organization. In winter 2019-20, I was at
the Munich Center of Mathematical Philosophy at LMU Munich visiting Hannes
Leitgeb. Thank you, Hannes, for making this possible, for the insightful meetings,
for making me feel at home, and for encouraging me to present my papers. A
heartfelt thank you to all the MCMPers that made this such a wonderful stay: in
particular, Alessandra, Conrad, Ivano, Lorenzo, Martin, Matteo, Norbert, Sander,
Sena, Timo, and Ursula. On the topic of visits, I would also like to thank Richard
Evans for the truly inspiring conversations during his visit in Amsterdam. In the
same vein, thank you, Laurenz Hudetz, for the stimulating chats during your time
at ILLC. Finally, Franz, you have set up a perfect visit for me to St Andrews,
which we then unfortunately had to cancel last minute due to the pandemic. But
I sincerely hope we can make up for this soon!

Further, I am thankful to the audiences of the events where I could present
some (earlier versions) of the material in this thesis. This includes, among others,
the LoC Seminar in Amsterdam, TULIPS in Utrecht, the Algebra|Coalgebra
Seminar in Amsterdam, OASIS in Oxford, the Logic Colloquium in Munich, and
Logica 2018 in Hejnice. Many thanks to Aybiike Ozgiin for comments on what
is now chapter 8, to Bastiaan van der Weij for comments on chapter 1, and to
Benno van den Berg for comments on chapter 5. Thank you, James Grayot, for
the philosophy discussions and answering my language questions. Thank you,
Bastiaan and Michiel, for the excellent Dutch translation of the summary. And
also thank you, Bastiaan, for all the other invaluable thesis advice. That said, of
course no one but me is responsible for any mistakes. Finally, a big thank you to
my mum, Monika Schaber, for the beautiful cover!

A shout-out to my Amsterdam-related friends: in particular, Ana, Bastiaan,
Dean, Felix, Iris, Jakob, James, Janine, Joannes, Jur, Karin, Moriz, Petra, Ronald,
and Zoi. (And, Zoi, this also extends to your family: you have shown me Greek

XX

hospitality that no words can describe.) Thank you for filling my life with joy,
warmth, and home, with brunches, cakes, and dinners, and with biking, Frisbees,
and bouldering. For being fantastic flatmates during these PhD years, thank you
Bastian (even pandemic-proven!), Ana and Zoi, and Esteban and Max.

I also would like to thank my friends far away from Amsterdam—especially
Conner, Dennis, Leo, Magge, Max, Samu, and Tobi. Thank you for staying close,
for the memorable bike rides and hiking trips, for the now-way-too-long-ago jam
sessions, for keeping digital company during the pandemic, and for all the fun we
had and will have.

Moreover, I am deeply thankful for my loving family: the Hornischers and the
Schabers, including the Abbrechts and the Wiirzs. I would like to mention you
all here, but to keep it short: thank you, Irme, for your constant interest in my
life and work; thank you, grandma and grandpa Hornischer, for your continuous
support and for being proud of me; and thank you, grandma Schaber, for your
wise and calming words!

In particular, I would like to thank my parents, Moni and Winni, and my
sister, Jele. There are so many things that I could say why I'm fortunate, grateful,
proud—and simply happy—to call you family. Knowing that you are always there
for me—from far and close—is invaluable. Even though it has been ‘far’ much
too long during the pandemic, our family calls were a great source of energy for
me. This thesis is dedicated to you. You mean the world to me!

Amsterdam Levin Hornischer
August, 2021.

xx1

Chapter 1

Introduction

Computation can be distinguished into symbolic and non-symbolic. Symbolic
computation is what computers do: A computer program is a more or less human-
readable description of how to manipulate, step by step, a ‘symbolic” input (like
the list of numbers 5,2, 7) to obtain a certain output (say, the ordered list 2,5,7
or the sum 14). This is what we typically think of as ‘computation’. But there
also is a broader sense: non-symbolic computation cannot (only) be viewed as a
rule-based manipulation of symbols.!

The paradigm examples are neural networks: Given the signals from sensory
neurons, your nervous system computes whether that flying something is a danger-
ous wasp or just a harmless fly. But nowhere in that process do ‘symbols’ occur:
There are only neurons, synapses, electrical signals, etc. Symbols like ‘black and
yellow’ or ‘poisonous’ at best emerge as high-level descriptions of the process.
This is not only true for biological neural networks like our nervous system, but
also for artificial neural networks. They are behind the recent boom of artificial
intelligence (AI). For instance, if you use your phone to translate a sentence,
chances are there is a neural network involved. But it doesn’t compute this
translation ‘symbolically’ using grammatical rules and dictionaries. Rather it uses
non-symbolic representations of words as vectors (i.e., long lists of real numbers).
Similar things can be said for other applications of artificial neural networks like
speech recognition or image classification. But there also are more mundane
examples: An old-school mechanical thermostat computes how much hot water
should flow into the radiator to maintain a desired room temperature—without

1Cf., e.g., Bauer (2000), Blum et al. (1998), Bournez and Campagnolo (2008), Edalat (1997),
Hoyrup and Rojas (2009), Pour-El and Richards (1989), Siegelmann and Fishman (1998), and
Weihrauch (2000). This includes analog computation (overviewed by MacLennan 2009). Some
might rather speak of ‘dynamical systems’ than of ‘(non-symbolic) computation’ (Van Gelder
1998). The thesis can also be read as simply being about dynamical systems without the
computational motivation described in this introduction (we come back to this in the ‘reading
guide’ below).

2 Chapter 1. Introduction

any digital (i.e., ‘symbolic’) representation of the temperature.?

Traditionally, symbolic computation and non-symbolic computation are taken
to be diametrically opposed:®> While symbolic computation is human-readable but
cannot generalize beyond clearly defined boundaries, non-symbolic computation is
not interpretable but can learn well from noisy real-world data. While symbolic
computation allows safety verification but needs domain knowledge, non-symbolic
computation doesn’t come with complete certainty but only needs big data. (In
actuality, things are, of course, more nuanced.) Only fairly recently, the focus
shifted to combining the two approaches to obtain ‘the best of both worlds’.
Especially due to the recent proliferation of neural networks, it is becoming
increasingly important to understand their behavior—ideally by relating it to well-
understood symbolic computation. This is what explainable artificial intelligence
(XAI) is all about.*

In this thesis, we work toward a unified foundation of symbolic and non-
symbolic computation. This introduction first explains what that means and
sketches an idea to achieve it (section 1.1). Then we outline how the thesis
develops this idea, including a reading guide (section 1.2). In addition to the
informal main text, there are many footnotes and endnotes with further references
and more technical topics.”

1.1 Motivation

A good starting point is to ask why we have a good understanding of symbolic
computation.

The starting idea Symbolic computation is usually described by computer
programs in some programming language (or more abstractly as, e.g., Turing
machines). Such a program could, for example, implement a sorting algorithm
like bubble sort which, given as input a list of numbers, transforms this input into

2 A classical, but more involved example is the Watt governor which computes the appropriate
setting of a steam engine to generate the desired speed of a flywheel (Van Gelder 1995).
Carmantini (2017, p. 2) discusses a digital thermostat as an example of (symbolic, open-ended,
reactive) computation.

3A testament to this is the at times fierce debate in cognitive science and Al between
the symbolic camp (‘classicists’ or ‘Good Old-Fashioned AT’) and the non-symbolic camp
(‘connectionists’ or ‘subsymbolic AT’). Appeasing voices are, e.g., Marr (1982/2010) or Smolensky
(1988) taking the symbolic to be at a higher level of description than the non-symbolic.

4In as little as the duration of this PhD project, XAl has risen from a rather niche topic
to a main field of AIl. To mention but some recent surveys: Adadi and Berrada (2018), Besold
et al. (2017), Doran, Schulz, and Besold (2017), Goebel et al. (2018), Murdoch et al. (2019), and
Samek et al. (2019). Earlier work is done, e.g., by D’Avila Garcez, Lamb, and Gabbay (2009).

SEndnotes are indicated by Roman numerals and are collected at the end of this chapter.
Compared to the footnotes, they contain some longer, less immediate comments. In the electronic
version, they are clickable (both to get there and to get back).

1.1. Motivation 3

Swaps occurred

()

Go through the pairs of

— ; No swaps
— > | adjacent numbers and swap | ———

if the first is > the second

State 1 State 2 State 3

Figure 1.1: An operational semantics for the bubble sort algorithm.

an ordered list of numbers. However, given such a piece of program code, we don’t
yet understand what exactly it does: this is all too common when looking at some
code in an unfamiliar language. We need a semantics which assigns meaning to
code: i.e., a description of the behavior of the program. There are two standard
ways of doing this: operational semantics and denotational semantics.

Operational semantics describes the program by the changes in the states of a
machine running the program (Plotkin 1981/2004). For bubble sort, this could
look like in figure 1.1: For the list (5,2,7), the machine would start in state 1 with
reading this input. Then it moves to state 2 and goes through the two adjacent
pairs (5,2) and (2,7). Since 5 > 2, it only swaps the first, ending up with (2,5, 7).
Since a swap occurred, it goes again to state 2. Now both adjacent pairs are
ordered correctly, so no swap occurs. Thus, it goes to state 3 where it terminates
with the correct list (2,5,7). Such an operational description can be done at
various levels of detail. We could have split up state 2 into several states further
describing the subprocess of comparing adjacent pairs. We could even go all the
way down to the ‘machine level” where a state describes the memory-entries and
the processor-state of the computer.

Denotational semantics, on the other hand, describes the program by the
function that it computes (Scott 1970). In the sorting example, this is a function
f D — D where D is the set (or data type) of finite lists of integers: f maps a
finite list to the ordered version of that list. To still provide some information on
how this function can be computed, denotational semantics also describes how
the function can be approximated by finite partial functions.

Operational semantics is dynamic and closer to the implementation (or execu-
tion) of the program in terms of machine states. The advantage of the denotational
semantics is that it is static and fairly independent of the implementation (e.g.,
which sorting algorithm exactly is used). Thus, denotational semantics is particu-
larly suited for a structural mathematical theory and analysis (Ong 1995). After
all, there the ‘meaning’ of the program is ‘directly given’ (and doesn’t need to be
‘dynamically constructed’) and it is not restrained by implementational details.!

Domain theory was developed as a ‘mathematical theory of computation’
providing a denotational semantics for programming languages (Scott 1970).

4 Chapter 1. Introduction

Thus, the starting idea of this thesis is: can this method be generalized also to
non-symbolic computation like neural networks? In other words, can we extend
domain-theoretic semantics beyond computational processes described by a precise
programming language to also include more general computational processes?

On understanding Before embarking on this question, let’s discuss how this
helps in the aim of understanding neural networks and non-symbolic computation
more generally. There are two senses of ‘understanding’: specific or structural.

In the specific sense, we (aim to) understand some specific neural network very
well: Why exactly did it classify this image as a stop sign—was it its shape, color,
or location? How did it learn this concept—was it easy or hard? Can we say
which of its weights store this information—making them meaningful to us? This
is analogous to understanding a specific program: not just its computed function
and operational description at various levels of detail, but also its efficiency, its
safety, its required resources, etc.

In the structural sense, we (aim to) understand a whole class of neural networks:
When should two neural networks be considered equivalent—to transfer knowledge
about one to the other? Among equivalent ones, is there a most simple one—
offering a ‘best explanation’ of the data? What are principled ways of combining
networks—to avoid retraining? What are the limits of these networks—to assess
their capabilities? The analogous questions for programs are answered by a
semantics: Two programs are equivalent if they get assigned the same ‘meaning’,
i.e., compute the same function; assessing the capabilities amounts to determining
the class of computed functions, etc.

To be sure, this is not a sharp distinction and there is no better or worse
between these two kinds of understanding: they are complementary parts of a
holistic theory. In symbolic computation, these two understandings are largely
achieved: For a specific understanding of a computer program the tools of, e.g.,
software verification can be used, while a structural understanding is provided
by, e.g., computability theory and domain theory. In non-symbolic computation,
XAI arguably is more focused on the specific understanding, while this thesis
is concerned with the structural understanding of symbolic and non-symbolic
computation.b

SFor other work in this direction (mostly on neural networks), see, e.g., the computational com-
plexity theory for neural networks (overviewed by Sima and Orponen 2003), category-theoretic
approaches (Fong, Spivak, and Tuyeras 2019; Jacobs and Sprunger 2019), the ‘(programming) lan-
guage of machine learning’ (Cheung et al. 2018; Porter 1994), program induction/synthesis (Evans
and Grefenstette 2018; Penkov and Ramamoorthy 2017), algebraic topology and topological
data analysis (Naitzat, Zhitnikov, and Lim 2020; Reimann et al. 2017), dynamical systems
approaches (Carmantini 2017; Milne 2019; Saxe, McClelland, and Ganguli 2014), statistical
mechanics (Bahri et al. 2020), or statistical learning theory (Vapnik 2000). The latter (on p. xii)
motivates this endeavor by the principle ‘nothing is more practical than a good theory’ (going
back to Kurt Lewin).

1.1. Motivation 5

Unified foundation So we work toward a ‘unified foundation’ of symbolic and
non-symbolic computation via a domain-theoretic semantics. More precisely, we’d
at least expect the following:

1. Framework: To talk about symbolic and non-symbolic computation in a
unified manner, we need to capture them in a single framework. So, any
computational process—be it symbolic or non-symbolic—can be described
in this framework.

We’ll argue below that dynamical systems provide this framework.

2. Behavior: To systematically understand symbolic and non-symbolic compu-
tation in a uniform manner, we need to assign to any computational process
(of the framework) a description of its behavior (semantics). This description
should abstract away as much as possible from the implementational details
of the computation and rather focus on the observable behavior or output.

We'll use domain theory: in part 1, for symbolic computation and, in part 2,
for non-symbolic computation.

3. Relationship: To understand non-symbolic computation in terms of symbolic
computation and vice versa, we need to specify what the relationship is
between the (behavior of the) two types of computation.

We'll discuss this in part 3: non-symbolic computation is, in a sense, the
limit of symbolic computation, and it can realize it if it has enough stability.

In the remainder of the present ‘motivation’ section, we describe computation
as dynamical systems (the first expectation). In the next ‘outline’ section, we
describe how the thesis establishes the other two expectations. Before we start,
though, we review dynamical systems. (Those in the know may skip the next
paragraph.)

Crash-course dynamical systems There are many formal notions of dynam-
ical systems, but they share the following intuition. A dynamical system consists
of two ingredients: a state space and a dynamics. The state space describes the
possible states that the system could be in, and the dynamics describes how the
system changes its states over time. A sequence of states following the dynamics
is called a trajectory (or orbit).

Here are some examples: In the case of the thermostat, a state is described
by the current room temperature and the amount of hot water that flows into
the radiator. The dynamics is such that if the system is, for example, in a state
with low room temperature and much inflowing hot water, then, at a later time,
the system is in a state with high room temperature (the hot water heated up
the room) and little inflowing water (the thermostat lowered the inflow since the
room temperature is high). Another example is given by the sorting system of

6 Chapter 1. Introduction

Computation «~ Dynamical systems
—symbolic «~ —time- and space-discrete, possibly non-deterministic
—mnon-symbolic «~ —time-discrete, space-continuous, deterministic

Figure 1.2: Computation as dynamical systems.

figure 1.1: it has three states and the dynamics between them (which states are
possible after the current state) is described by the arrows. For the input (5,2,7),
we’ve seen the trajectory of states 1 — 2 — 2 — 3.

There are some useful conceptual distinctions. A dynamical system is state-
discrete if its state space is discrete (or ‘countable’) and otherwise state-continuous.
(In the continuous case, there is usually more structure on the state space like
a topology or a probability measure.) For example, the sorting system is state-
discrete (there are only finitely many states) and the thermostat is state-continuous
(the states are given by pairs of real numbers which form a continuum).

A dynamical system is time-discrete if its dynamics takes place in time steps:
for any state we can specify the set of its possible immediate successors under the
dynamics. The sorting system, for instance, is time-discrete. Thus, a trajectory
is a (finite or infinite) sequence xg, z1, x9, ... of states such that each x,.; is a
successor of x,. So the whole numbers N = {0, 1,2,...} play the role of time.
The system is time-continuous if, in contrast, the dynamics describes continuous
change: a state doesn’t have a next state but rather closer and closer states
reached after smaller and smaller time intervals. The thermostat system, for
instance, is time-continuous. Thus, a (maximal) trajectory is a sequence (z;)cr
of states where, for t < t/, state xy can be reached from z; in time ¢’ —¢. So the
real numbers R play the role of time. A common trick to study a time-continuous
system is to fix an ‘updating time interval’ and study the resulting time-discrete
system. In the thermostat example, we could take this interval to be 1 second
and declare the successor of a state to be the state reached after 1 second. For
this reason, we’ll restrict our attention to time-discrete systems.

Finally, we say a time-discrete system is deterministic if each state has a
unique successor state. Otherwise, we call the system non-deterministic.

Computation as dynamical systems Now we get to expectation (1): how
computation can be described by dynamical systems as in figure 1.2.7

Let’s start with symbolic computation. We've already seen that bubble sort
can be described as the time- and space-discrete dynamical system of figure 1.1.
This holds for other examples as well: the general argument is the following.
Turing machines are regarded as the model of symbolic computation. And they
can be described as time- and space-discrete dynamical systems: A state of a

"Although this idea has been around for a while (see, e.g., Giunti 1997; Siegelmann and
Fishman 1998), it arguably deserves more appreciation.

1.1. Motivation 7

Turing machine is described by: (i) what is written on its tape (i.e., its memory),
(ii) which part of the tape is currently observed (and to be altered), and (iii) the
internal state of the machine.® So there are countably many states z = (a, b, c)
where a describes the tape, b the observed part, and ¢ the internal state. The
program of the machine describes the possible transitions. There is a transition
from = = (a,b,c) to 2’ = (a’, ',) iff, roughly, the program says: when in internal
state ¢ reading symbol a(b) at location b of the tape a, change it to a’(b) and leave
everything else unchanged (so a’ = a outside of b) and go to position ¥ and into
internal state ¢’. If the Turing machine is non-deterministic, these dynamics are
non-deterministic, too. Thus, any symbolic computation can be seen as a time-
and space-discrete dynamical system that possibly is non-deterministic. We’ll also
allow some labeling of the system: we can label a state as the initial state and add
labels to transitions between states. So we can describe this class of dynamical
systems as the well-known (countable) labeled transition systems.

Now, let’s consider non-symbolic computation and how it can be described
as time-discrete, space-continuous, and deterministic dynamical systems. Our
paradigm examples are such systems: We've already seen the thermostat. And,
importantly, also artificial neural networks are such systems. A state of the
network describes the activation that each neuron has at that moment. And the
dynamics is given by how this activation propagates through the network: The
activation of any neuron at the next time step is determined by how much input it
receives from its neighboring neurons weighted by the weight on their connection.
So this system is deterministic, time-discrete, and space-continuous (activation
is usually given by real numbers). This describes the ‘run time’ dynamics of the
network. But also its learning dynamics—i.e., computing the best approximation
to some observed data—can be seen as such a system. Then a state describes the
weights on the connections between neurons. And the dynamics is given by the
learning algorithm (e.g., backpropagation): Given some observed data, the current
weight-state is updated according to the algorithm to a new weight-state in which
the network better approximates the observed data. Finally, the general answer
is that ‘real-world systems’—be it physical, chemical, biological, or engineering—
usually are described via differential equations as dynamical systems.? This makes
them deterministic, space-continuous and, after fixing an update time interval,
also time-discrete.!!

Thus, dynamical systems do indeed provide a framework to describe (presum-

8Turing (1936-7, p. 250) writes: “We know the state of the system if we know the sequence of
symbols on the tape, which of these are observed by the computer ..., and the state of mind of
the computer”. The internal state or ‘state of mind’ or ‘m-configuration’ is not to be confused
with the system’s state.

90btaining such a description for the nervous system is a central topic of the field of
computational neuroscience. The dynamics of the nervous system can be observed, e.g., through
EEG and fMRI. Anderson (2015, pp. 22-25) describes what thus can be observed when the
nervous system implements symbolic computation: namely, equation solving.

8 Chapter 1. Introduction

ably) anything that can reasonably be said to be computation—both symbolic and
non-symbolic.’® They capture the essence of a program: what states the system
implementing it can be in (state space) and how they are transformed according
to the program (dynamics). The ‘symbolicity’ of the computation is reflected
in the discreteness of the state space. We deliberately leave open the converse
question: whether any such dynamical system also constitutes computation. In
other words, whether dynamical systems provide an explication of symbolic and
non-symbolic computation. This is a deeply philosophical question.!!
Nonetheless, we do want to provide some evidence that dynamical systems are,
if not an explication, at least a good (qualitative) approzimation to non-symbolic
computation.'? The argument sketch is this: If anything counts as non-symbolic
combination, this should include neural networks. By the universal approximation
theorems (Cybenko 1989; Hornik, Stinchcombe, and White 1989), neural networks
can approximate any dynamical system arbitrarily well.!'' And, plausibly, the
class of non-symbolic computational processes is closed under such approximation

(if effective).!®

1.2 Outline

With this framework in place, we outline the thesis: how it develops a domain-
theoretic semantics for the dynamical systems describing symbolic computation
(part 1) and non-symbolic computation (part 2). This can then be used to relate
symbolic and non-symbolic computation (part 3).

Part 1 (symbolic computation) In chapter 2, we develop the trajectory
domain construction. It assigns to each time- and space-discrete dynamical
system (representing some symbolic computation) its trajectory domain. This is
a structure in the sense of domain theory describing the behavior of the system.

10The reason for saying ‘presumably’ is that this is a thesis, not something that can be proven.
A counterexample would need to provide a clearly computational processes that can in no way be
seen as a dynamical system. This is hard to imagine. In any case, this determines an extremely
general class of systems.

"For some discussion, see the literature on ‘physical computation’ cited in footnote 18 below.
For more general literature on this nexus of dynamical systems, computation, cognition, and
logic, see, e.g., Van Gelder (1995), Giunti (1997), Van Gelder (1998), beim Graben (2004),
Leitgeb (2005), Tabor (2009), and Dewhurst (2016).

120ne may distinguish between a ‘qualitative’ and ‘quantitative’ study of computability (cf. e.g.
Abramsky and Jung 1994, sec. 1.1). In the former, one studies, e.g., the topological, algebraic, or
order-theoretic structure of computation—just as any other structure of classical mathematics.
In the latter, one adds a ‘computability’ or ‘effectiveness’ structure to determine the ‘computable’
elements of these classical structures. (Cf. Bauer (2000) and Pour-El and Richards (1989).)
Here we’re mostly concerned with a qualitative study of computation. Though, adding effective
structure in domain theory is well-understood (Edalat 1997).

13Cf. computable real numbers are closed under effective convergence (Turing 1936-7, p. 256).

1.2. Owutline 9

The idea behind the construction is as follows. In the case of programming
languages, we usually still have information, for example, about what type of
input-output function the program aims to compute. This is not available anymore
for general time- and space-discrete systems, but we still have the trajectories.
Each trajectory is an instance of the behavior of the system. So the rough idea is
that the trajectory domain is the set of the finite and infinite trajectories ordered
by extension: the infinite trajectories are the infinite (‘ideal’) limit-behaviors which
are approximated by the finite (‘real’) behaviors. (This idea is refined by taking
into account that we often want to exclude some trajectories and consider others
to be instances of the same type of behavior; so, really, the trajectory domain
consists of equivalence classes of some set of trajectories.) Thus, the trajectory
domain can be said to describe the (types of) behavior of the system. Chapter 2
describes and axiomatizes this construction.

A main reason why a semantics provides structural understanding is that it not
only assigns meaning to programs (‘syntax’) but also preserves relations between
them (this is known as compositionality). In our case, the crucial relation between
systems is that of simulation: one system S can be simulated by another S’ if
there is a function f : S — S’ assigning states of S to states of S’ preserving the
dynamics.'* So we would expect that the trajectory domain semantics respects
this. Indeed, in chapter 3, we show that the simulation f can be assigned to an
appropriate function from the trajectory domain of S to the trajectory domain
of S".15 Category-theory provides the language to describe this more precisely:
the trajectory domain construction is a functor from systems to domains that, in
many cases, even forms a so-called adjunction. This is in line with the general
idea that syntax (formal) and semantics (conceptual) should be adjoint.!®

Part 2 (non-symbolic computation) When we move to state-continuous
systems, we cannot ‘access’ the states anymore: they are infinitely precise points
in a continuous state space. All we can do is measurements. For example, if the
thermostat system is in state (20.071...,0.183...), we cannot precisely determine
this but only measure that, say, the room temperature is 20°C' plus or minus 1°C'
error in measurement and the incoming hot water flow is ().2%9 plus or minus 0.1
error. So we can only determine the area of the state space in which the system is
in: namely, [19,21] x [0.1,0.3].

These areas (that correspond to measurements) act much like the states in
symbolic computation. While, in the symbolic case, repeated observation yielded a
sequence of states (i.e., a trajectory), it now yields a sequence of areas of the state
space. Thus, we’ll use these sequences to build a domain describing the behavior
of the system with respect to the available observations. We may also increase

Wle., if x — y is a transition in S, then f(z) — f(y) is a transition in S’
15The ‘appropriate functions’ of domain theory are known as Scott-continuous functions.
Y6This is expressed by Lawvere (1969) and explained by Smith (Unpublished).

10 Chapter 1. Introduction

the precision of our measurements and the observation time—thus refining the
available observations. This then also refines the corresponding domain. The
main result of chapter 4 is that, as we keep refining the observations, we obtain
in the limit again a domain. We call this the observation domain of the system.
It is a model of the system since, based on the observations, we can also define
a dynamics on it and, when restricted to its ‘ideal’ elements, this dynamics is
isomorphic to the original system. This model is ‘computational’ since these ideal
elements are approximated by the ‘real’ elements given by finite observations.

Thus, the observation domains provide a semantics (or behavior description)
to the dynamical systems describing non-symbolic computation. Chapter 5 again
verifies that this semantics preserves simulations between dynamical systems. In
fact, it establishes a translation (i.e., categorical equivalence) between dynamical
systems and certain purely domain-theoretic structures that we call dynamical
domains (of which observation domains are examples). This may well be regarded
as the main formal result of the thesis.

To sketch applications of this translation, chapter 6 provides a domain-theoretic
perspective on a central concept of dynamical systems theory: entropy.

Part 3 (stability) Given these semantics for symbolic and non-symbolic com-
putation, we can turn to expectation (3): What is the relationship between the
two types of computation? Chapter 7 is an interlude where we first discuss this
informally.

On the one hand, our semantics suggests the thesis that (the behavior of) non-
symbolic computation is the limit of (the behavior of) symbolic computation:!’
roughly, the observation domain can be expressed as a limit of trajectory domains
describing observation sequences.’

On the other hand, this raises the question of when non-symbolic computation
can be regarded as realizing symbolic computation. As a guiding intuition, we
suggest that the system’s behavior should be fairly stable. For example, from the
behavior of our nervous system recognizing a wasp we can extract the symbolic
rule “if it flies and is black and yellow, it is dangerous”. The reason seems to
be that in most of the ‘continuously many’ inputs where the system recognizes
something flying that is black and yellow, it will compute that it is a dangerous
wasp. So this assessment is stable under a wide range of input states. Other
examples are physical realizations of symbolic computation (like my laptop): as
physical systems these are (described as) continuous dynamical systems and a
terminating computation usually corresponds to a stable state of the system.!®

The interlude chapter sketches what our results together with deep results

"In analogy with profinite groups, one might say that non-symbolic computation is pro-
symbolic computation.

18 For literature on physical computation, see Chalmers (2011), Fredkin and Toffoli (1982),
Gandy (1980), Lloyd (2000), Piccinini (2015), Piccinini (2017), Pitowsky (1990), and Sieg (2002).

1.2. Owutline 11

from ergodic theory can already say about this kind of stable behavior. And it
explores how (algorithmic) randomness may help to ensure this kind of stability.

Chapter 8 then begins investigating these ideas in detail. It starts at the
foundations with a philosophical analysis of the involved concept of stability. This
is done with an eye toward Al-safety: demanding that, like the nervous system,
also artificial neural networks should be stable under small perturbations of the
input.

Reading guide This thesis has grown rather long—apologies! In an attempt to
make up for it, it allows for modular reading. Despite its monographic structure,
each chapter can be read independently. If material from previous chapters is
needed, it is summarized. Every chapter starts with a non-technical introduction
that motivates and summarizes the results. This should allow, for example,
skipping more technical parts of a chapter while still getting the gist of it. The
suggested order of reading is, non-surprisingly, in order of appearance. For a less
formal track, one might skip the category-theoretic chapters 3 and 5 and/or the
entropy-theoretic chapter 6. (The usage of category theory is largely restricted to
formulating the results concisely rather than actually using the theory.) For a less
philosophical track, one might skip chapter 8 on stability.

For clearer (and more common) terminology, we use ‘labeled transition system’
in the case of symbolic computation and simply say ‘dynamical system’ for
(typically time-discrete and space-continuous) deterministic dynamical systems.

Skeptics of the sketched view on computation can also read the thesis without
this computational interpretation. This may include classical computationalists
who like computation but think that, by definition, it cannot be non-symbolic; or
embodied cognitive scientists who like to view cognition as a dynamical system
but wouldn’t call it ‘computation’. Labeled transition systems and dynamical
systems are important mathematical structures in their own right, so our seman-
tics/representation should be useful regardless.

IT.

ITI.

Iv.

12 Chapter 1. Introduction

. Semantics for programming languages is somewhat analogous to semantics for formal languages

or sufficiently regimented fragments of natural languages—as they are considered, e.g., in
the philosophy of language (Speaks 2021). Both assign meaning (or ‘semantic content’) to
expressions of the language. The classical semantic theories & la Frege, Russell, or Tarski
resemble denotational semantics: assigning to an expression a static (mathematical) object
describing its meaning. Inferentialist (or proof-theoretic) semantics loosely resemble operational
semantics: describing the meaning of an expression by its inferential interaction with other
expressions.

As mentioned, we’ll focus on time-discrete systems: Partly since they approximate the time-
continuous systems and partly since artificial neural networks are commonly time-discrete
only. Nonetheless, future work should investigate whether our results extend to time-continuous
systems. One might try adapting our approximation process described in part 2 below by not only
approximating space (through measurements) but also time (increasingly finer discretizations).
(Also cf. the generator theorems for flows (Eberlein 1974).) For an overview of models of
continuous time computation see Bournez and Campagnolo (2008) and Orponen (1997).

More precisely: Given a dynamical system (X,T") with X an uncountable standard Borel space
and T : X — X Borel-measurable (which are very minimal assumptions), we can assume, by
the Borel isomorphism theorem (see e.g. Kechris 1995, thm. 15.6), that X = R. Let € > 0 be
the precision to which we want to approximate (X,T') with a neural network. By the universal
approximation theorem, there is a feedforward neural network N with one input neuron, one
hidden layer, and one output neuron such that NV, regarded as a function N : X — X, is e-close
to T (for an appropriate choice of metric). Let M be the recurrent neural network obtained from
N by feeding the output into the input. Now, consider the activation dynamics of M: Since the
activation-state of M is determined just by the input neuron, we identify an activation-state of
M with the activation s € R = X of the input neuron. So, the state space is X. Regarding the
dynamics, if, M is in state s, then the activation N(s) of the output layer will be fed into the
input layer, so the new state is s’ = N(s). Hence the activation dynamics of M is the dynamical
system (X, N). And (X, N) approximates the original (X, T) up to precision < e. (For more on
universal approximation, see Kratsios (2020).)

In this light, one may view the result of Pour-El and Richards (1981) that computable initial
conditions of physical systems can lead to non-computable solutions. This is taken to show that
these (non-symbolic) systems cannot be simulated by (symbolic) Turing machines (Pitowsky
2002, S169).

Part One

Symbolic computation

Chapter 2
Trajectory domains 1: Construction

Abstract With the aim of providing a denotational semantics (or behavior
description) to the widely used labeled transition systems (LTS), we introduce the
notion of a behavioral transition system (BTS). These are structures M = (A, T, =)
where A is an LTS, T a set of trajectories (or paths) in A, and = an equivalence
relation on T satisfying five axioms. While any trajectory is ‘locally possible’,
T describes which are ‘globally possible’; and = describes when two trajectories
are instances of the same type of behavior—so the equivalence classes represent
possible behaviors. The main result is that, for countable systems, there is,
roughly, a unique way of defining an information containment order between
behaviors and this yields an w-algebraic domain. We call this the trajectory
domain and think of it as the denotation of M. We also show that BTSs (and
their trajectory domains) generalize both Scott information systems and various
models of concurrent computation (and their respective domain constructions).

2.1 Introduction

We're concerned with providing denotational semantics (or behavior description)
to labeled transition systems. Let’s explain:

A labeled transition system (LTS) is a structure (S, i, L, —) where S is a set of
states, ¢ € S is the initial state, L is a set of labels (or actions), and -C S x L x S
is relation, written s—s’. LTSs are a general model of computing systems. They
include ‘sequential’ computing like Turing machines: intuitively, a state consists of
the values stored in the memory of the machine at a given time step, and a label is
a command that can be executed to processes some stored values leading to a new
state. But they also include ‘non-sequential’ computing as in reactive systems:
the system (a standard example is a vending machine) interacts with—i.e., reacts
to—a non-deterministic environment (users can insert coins and select items) in an
open-ended way (the system doesn’t aim to compute a specific outcome).! Due to

LLTSs can also be regarded as time-discrete dynamical systems: they consist of a state space

15

16 Chapter 2. Trajectory domains 1: Construction

this generality, L'T'Ss are prominently used in model checking which is a standard
technique to formally verify that a computing system behaves as intended (Baier
and Katoen 2008). This ranges from the standard examples of ensuring safety in
money transfers or space flight to examples that recently gained prominence: the
verification of neural networks as a way to address the safety concerns raised by
their intransparency.?

As computational models, LTSs describe how the computation proceeds: an
operational description that is dynamic and close to ‘machine implementation’ (i.e.,
the states of the execution of the computation). But, we may ask, what is it that
they compute: is there a denotational description of their behavior that is static and
more ‘machine-independent’ (i.e., abstracting away implementational details and
facilitating mathematical analysis)? In the case of programming languages, these
two complementary advantages are associated with operational and denotational
semantics, respectively (Ong 1995). Roughly speaking, LTSs operationally describe
programming code by how it transforms states of the computer (Plotkin 1981/2004),
and domain theory denotationally describes programming code by the function
that it computes and how it is obtained from other functions (Scott 1970). (If the
semantics coincide, one speaks of full abstraction (Cardone 2021; Ong 1995).%)

Given these advantages, we'd like to develop a denotational semantics (or
behavior description) for any LTS. However, in general—as, e.g., with reactive
systems—we neither have available a programming language (or typed meta-
language) nor an input-output description.* What we still have, though, are the
trajectories: the (finite or infinite) sequences of the form

ay s as o
Sog—>S1—>S9—>S3—>

This is an instance of a possible behavior of the system. However, depending
on the level of abstraction at which we analyze the behavior of the system, we
may want to identify some trajectories as instantiating the same type of behavior
(e.g., two concurrent computations). Moreover, some trajectories may only be
locally possible (from each s; 1 one can move to s; via label «;) but not globally
possible (e.g., some action can only be applied a certain number of times due to,
say, memory constraints).

Thus, to describe the behavior of an LTS A, we’re lead to also specify a set T
of ‘globally possible’ trajectories in A and an equivalence relation = on 7T'. So the
quotient T := T/ = is the set of possible behaviors and can be regarded as the
denotation of A—or, rather, of (A, T,=).

S together with a dynamics — describing how the system can transform from one state into
another.

2For the former, see the textbook of Baier and Katoen (2008). For the latter, to mention but
two references, see Kuper et al. (2018) and Vengertsev and Sherman (2020).

3In a somewhat more abstract setting, also see Abramsky (1991).

4Cf., e.g., Winskel and Nielsen (1995, p. 2) or Carmantini (2017, p. 2).

2.1. Introduction 17

For a satisfying treatment, however, we should expect some more structure
on these denotations (as it also is the case in domain-theoretic semantics for
programming languages). Indeed, we intuitively also would expect T to be ordered
by information containment: behavior [t] is informationally contained in behavior
[t] if each instance ¢ of [t] can be extended to an instance t; of [t']. This poses the
question that we investigate: When can such a notion of information containment
be appropriately defined on T and when does this then form a domain—so T can
satisfyingly be said to be the denotation of the LTS. The answer will be: We
provide some axioms for the structures (A, T, =) to define an appropriate notion of
information containment. For countable systems, it turns out that this notion is,
in a sense, unique and turns T into a domain—indicating that we’ve found a stable
axiomatization. We call structures (A, 7T, =) satisfying these axioms behavioral
transition system (BTS) and, in the countable case, we call T their trajectory
domain.

The chapter is structured as follows: In section 2.2, we provide the relevant
background on labeled transition systems and domain theory.

In section 2.3, we discuss two guiding examples: First, LT'Ss arising from
observing a ‘black box’ system like those in statistical mechanics or neural networks.
Second, L'T'Ss arising as models of concurrent computation. These provide more
concrete motivation for studying the structures (A, T, =) and their set of behaviors
T—in addition to the abstract motivation above.

In section 2.4, we introduce pre-behavioral transition system (pre-BTS) as
structures (A, T, =) satisfying a minimal set of axiom capturing that = describes
‘trajectory equivalence’. In section 2.5, we consider various natural ways of defining
information containment on T and find that they coincide once (A, T, =) is what
we’ll call limit-respecting.

In section 2.6, we then show the main result: Roughly, for a countable pre-BTS
(A,T,=) and a preorder < on T, the following are equivalent: (a) < satisfies
some rather weak properties that we’d expect from an information containment,
(b) the partial order induced by (T, <) is a domain (the trajectory domain), and
(c) the system is limit-respecting and < is one of the coinciding natural notions of
information containment.

This then suggests defining BTSs as pre-BTSs that are limit-respecting. In
section 2.7, we investigate this notion and discuss several examples. In section 2.8,
we describe, for countable systems, their trajectory domain and show that every
w-algebraic domain arises as the trajectory domain of a system.

In section 2.9, we show that countable BTSs and their trajectory domains can
be regarded as a generalization of the well-known Scott information systems and
their induced Scott domains. Finally, in section 2.10, we conclude with some open
questions.

Further related work is discussed in the subsection on concurrent computation
(section 2.3.2): In short, for various models of concurrent computation, it has been
shown that the computation traces or sequences form the domain of concurrent

18 Chapter 2. Trajectory domains 1: Construction

computations under a certain partial order (see that section for references). Our
BTSs provide a general framework containing these models and generalize this
idea considerably (in fact, the main result determines just how much it can be
generalized).

2.2 Background

2.2.1 Labeled transition systems

There is a huge amount of literature on (labeled) transition systems. Here we follow
the handbook article of Winskel and Nielsen (1995) since it offers a particularly
systematic treatment: it not only describes labeled transition systems but also their
connections to other computational models in a structural way (using category
theory).

A transition system is a structure (S,—) where S is a set and — a binary
relation on S. In other words, (S, —) is a directed graph. The elements of S are
called states and s — s a state transition. Often, one also singles out an initial
state i € S and writes (5,4, —). Labeled transition systems are obtained—as the
name suggests—by adding labels:

2.2.1. DEFINITION. A labeled transition system (LTS) A is a structure (S, i, L, —)
where S is a set of states with initial state ¢, L is a set of labels, and —-C S x L x S
is the transition relation. We write s=s' for (s, a,s') €—. Given an LTS A, we
use Sy, 14, Ly, and —4 to refer to its set of states, initial state, set of labels,
and transition relation, respectively. We call A countable if both S and L are
countable sets.

Sometimes, LTSs are defined to be countable. This is indeed the typical
case—especially when regarding L'T'Ss as models of symbolic computation. But,
generally speaking, it is advisable to distinguish considerations of structure from
those of cardinality.® So rather than generally making the countability assumption,
we develop much of our theory without it and explicitly mention the assumption
if we need it.

We use the usual notation for sequences: Formally, a finite or infinite sequence
o over a set A is a partial function ¢ : w — A whose domain is of the form
{n€w:0<n <} where 0 <1 < w is the length of the sequence, denoted |o|.%
If [=0, then o is the empty sequence €. If | = w, then o is infinite; otherwise
o is finite. (So by an ‘infinite sequence’ we always mean a sequence of length w,
i.e., we won’t consider sequences whose length is an ordinal number > w.) We

5The countability assumption would, for example, preclude taking limits of LTSs—just based
on issues of cardinality, not due to structural constraints.
6Here w denotes the first infinite ordinal (so w can be thought of as the set of natural numbers

{0,1,2,...}).

2.2. Background 19

often just write o as 0(0)o(1).... For n € w, we define the restriction o [n as
the restriction of the partial function o to the set {m € w:m < n}. Soif || > n,
then |o [n| = n, and if |o| < n, then o [n = 0. A sequence ¢’ is an ezxtension of
another sequence o (written o < ¢’) if, for all n € w, if o(n) is defined, then o’(n)
is defined and o(n) = ¢’(n). We write 0 < ¢’ if 0 < ¢’ and o # o’.

2.2.2. DEFINITION. Let A = (5,4, L, —) be an LTS. An A-trajectory is a sequence
t = (S0, 0, 8p), (81,01, 87)s -+, (Sp, Ay 1), - - -

of elements of — such that s, = s;41. We then write S0y gy 2y L If £ s
nonempty, we call sg the starting state of t and, if ¢ also is finite, we call the s
of the last entry the ending or last state of t, which we refer to by ‘last(t)’. We
refer to s(t) := so, 80, 57,95 ... and I(t) := ag,aq, ... as the state sequence and
label sequence of t, respectively.

One can also consider morphisms between LTSs: that one system can simulate
the other. Thus, one can form the category of LTSs, but for our present purposes
we don’t need to do this.

2.2.2 Domain and order theory

We recall the basic concepts from order and domain theory that we’ll use. A
standard reference is Abramsky and Jung (1994).

A preorder is a structure (P, <) where P is a set and <C P x P a reflexive
(Vx : x < z) and transitive (Vz,y,2 : ¢ < y,y < z = = < 2) relation. A subset
A C P is directed if it is nonempty and, for all x,y € A, there is z € A with
x,y < z. A partial order is a preorder (P, <) that is antisymmetric (Va,y : x <
yy <z =z=Uy).

If (P, <) is a preorder, the induced partial order (P,<) is the quotient under
the equivalence relation = ~ y iff < y and y < z: To be precise, P is the set
of ~-equivalence classes, which we denote [z]<, and [z]<<[y|< iff x < y (this is
independent of the representatives z and y).

Let (P, <) be a partial order. It has a least element if there is x € P such
that, for any y € P, x < y. If existent, such x is unique and usually denoted L.
A subset A C P has a least upper bound (or supremum) if there is x € P that
is an upper bound (Va € A : a < z) and that is the least one (if y also is an
upper bound of A, then = < y). If existent, such z is unique and denoted \/ A. A
directed complete partial order (dcpo) is a partial order in which every directed
subset has a least upper bound.

Let (D, <) be a dcpo. An element z € D is compact if, for all directed subsets
Aof D, if x <\/ A, then there is a € A such that x < a. We write K(D) for the
set of compact elements of D. Finally, (D, <) is algebraic if, for all z € D, the set
{y € K(D) : y <z} is directed and its least upper bound is z. If K(D) also is

20 Chapter 2. Trajectory domains 1: Construction

countable, we call (D, <) an w-algebraic domain. (The more general concept is
that of a continuous domain, but we don’t need that here.)

A function f: D — E between dcpos is (Scott-) continuous if it is monotone
(Vz,y: x <y = f(r) < f(y)) and preserves directed suprema (for all directed
ACD, f(VA) =V f(A). (Note that f(A) := {f(a) : a € A} is directed by
monotonicity.) Two dcpos D and E are isomorphic iff they are order isomorphic,
i.e., there is a surjective f : D — FE such that, for all z,y € D, x < y iff
f(x) < f(y) (the latter implies injectivity, so f is bijective).”

Let (P,<) be a preorder. A subset I C P is an ideal if it is a downset
(Ve,y :x <y,y € I = x € I) and directed. An ideal is principal if it is of the
form |z := {y € P : y < z}. The ideal completion IdI(P,<) of (P,<) is the
set of ideals ordered by inclusion. If (D, <) is an algebraic dcpo, then (D, <) is
isomorphic to IdI(K (D), <) (Abramsky and Jung 1994, prop. 2.2.25).

We’ll use the following simple but fundamental fact about countable directed
preorders (often without explicitly mentioning it).

2.2.3. LEMMA. Let (P, <) be a countable and directed preorder. Then P has a
cofinal chain C' = {¢g,¢1,...} C P, i.e., co < ¢1 < ... and, for all x € P, there is
n with x < ¢,.

PROOF. Since P is countable, write P = {x¢, z1,...}. Construct ¢g < ¢; < ... by:
co := xo (note P is nonempty), and given c,, let k be the least index such that
T > Cp, T, (such upper bounds exists by directedness, whence there also is one
with least index), and define ¢, 1 := 2. Then, by construction, C' is indeed a
chain and cofinal in P.® O

2.3 Two guiding examples

We describe two examples to motivate the abstract structures that we subsequently
investigate. To keep to the point, the discussion will be more intuitive and not
strictly formal.

2.3.1 Observing a black box system

In this subsection, we describe our initial motivation for the present work: observing
a ‘black box’ system like a neural network.

"Equivalently, D and E are isomorphic in the category consisting of dcpos and Scott-
continuous functions (i.e., there are Scott-continuous functions f : D = F : g that compose to
the respective identity functions).

8This proof is given by Schweber (2016). Also see Abramsky and Jung (1994, prop. 2.2.13).

2.3. Two guiding examples 21

Black box system As a guiding example, we consider the following situation:
We're given a ‘black box’ and ‘low-level” deterministic system (X, f) and we'd
like to make sense of it at a higher level through observations. So X is a set
of (low-level) states and f : X — X is a function. We can also write this as
a (unlabeled) transition system with state space X and transitions s — ¢ iff
f(s) = ¢'. The intuitive terms ‘black box’ and ‘high/low level” are best illustrated
by examples.

First, statistical mechanics: A state s is, say, a list of the position and
momentum of each gas particle in a box of gas, and s — ¢ iff, whenever the
system is in state s, the laws of classical mechanics determine s’ as the state in
the next time step. This is a deterministic dynamical system whose laws we fully
understand, but it is a ‘black box’ system in the sense that it is not feasible to
determine the exact state of the system at a given time. Statistical mechanics
is about relating the microscopic or ‘low-level’ description of system states to
macroscopic or ‘high-level’ states like temperature or pressure that are more
meaningful to a human observer.

Second, neural networks: A state s is a list of the value of each weight of a
neural network during a training process, and s — s iff, whenever the system is in
state s, the learning algorithm (e.g., backpropagation) determines s’ as the next
state given a data point d. (Here we could take d as the label for the transition
s — §'.) This, too, is a dynamical system whose laws we fully understand (we
can even program it) and which is deterministic once the order of data points is
fixed. But it is a ‘black box’ system in the sense that it is very difficult to relate
the macroscopic or high-level properties of the system (e.g., whether the network
classifies this image as depicting a cat) to the microscopic or low-level properties
of the states (e.g., which value a certain weight has).?

Given the generality of the structure of (X, f), many more examples are
possible. For illustrative purposes, we consider the well-known North-South
map (Walters 1982, sec. 5.1, ex. 8). It is much simpler than, say, the neural
network example, but it still displays important qualitative similarities: e.g.,
stable fixed points (convergence) and non-stable fixed points (divergence).

The North-South map is the system (X, f) depicted on the left of figure 2.1:
The state space X consists of the points on the circle and the dynamics f: X — X
is defined as follows: If x = p is the ‘North Pole’, then f(x) = . Otherwise, draw
a line from p through x and go to where it intersects the real line (the horizontal
line), then go to the midpoint from the origin ¢ (the South Pole), and draw a line
back to the North Pole: the intersection of this line with the circle is the new state
f(z). Thus, any state x & {p, ¢} will move under the dynamics closer and closer
to the South Pole q. Moreover, both the North Pole p and the South Pole g are
fixed points. However, the North Pole is unstable in the sense that every close-by

9For an overview of the connections between statistical mechanics and deep neural networks,
see (Bahri et al. 2020). Also see our chapter 7.

22 Chapter 2. Trajectory domains 1: Construction

A

W/N\E
N\,

. <
— . Y

[N

Figure 2.1: The North-South map (left) and the observed system under the
partitioning into the four sets N, £/, S, W (right).

state x # p (to which the system might be perturbed to from p) will move away
from p, while the South Pole is stable in the sense that all close-by states x # ¢
will converge back to q.

Observed system Next, what does it mean to observe the system? For simplic-
ity, we'll identify possible observations (i.e., observable properties) with subsets of
the state space: To make observation P if the system is in state s corresponds to
coming to know that s has property P, i.e., that s is in the set P of states that
have property P.

For example, the observable property that the network classifies a given picture
correctly as depicting a cat corresponds to the set P of weight-states where the
network shows this classification behavior. In the North-South map, assume we
have a way to observe whether the system is in the North, Fast, South or West
arc as indicated in the figure.

When we regard the system through these possible observations, we see the
observed system: Its states are the possible observations that we can make, and
P — @ iff there is x € P with f(z) € @Q, i.e., if we make observation P now,
then we can make observation () next. For the North-South map, it is depicted
on the right of figure 2.1. In particular, we neither can have N — S (any orbit
starting in N has to go through W or E to get to S), nor W — W (starting in
W will take one outside W), nor W — E (once orbiting down the left side of the
circle, one cannot go to the right side anymore). Also note that unlike the original
deterministic system, the observed system need not be deterministic.

Observation topology A more general perspective on the observed system
is as follows. (This more technical paragraph can be skipped.) We’ve said that
observable properties are subsets of X, but which subsets are observable properties?
We take it to be those subsets P for which we have finite decision procedure

2.3. Two guiding examples 23

to tell whether the system, in a given state, has the property P or not. In the
‘cat picture’ example, we have such a procedure: given weight state s, input the
picture to the neural network, let it run and see whether it provides a positive
answer (i.e., it has P) or a negative answer (i.e., it doesn’t have P).

Let’s write B for the set of these ‘decisively observable properties’. We treat it
as a variable, but given this intended interpretation it makes sense to demand:

e 3 is a Boolean algebra: if we can decisively observe P and also @), then we
also can decisively observe P¢, PN (@, and P U (Q),

e [3isclosed under f-preimage: if we can decisively observe P, we can decisively
observe f~1(P), because to see whether s is in f~1(P), we see whether f(s)
has P, i.e., we wait one time step and see whether the system has property

P

Y

e 3 is countable: the decision procedures need to be accessible to us, so we at
least need to be able to enumerate them.!°

Note that we're considering decidable observable properties and not semi-decidable
observable properties which, famously, form a topology rather than a Boolean
algebra (Smyth 1983; Vickers 1989). In the North-South map, B could be the
closure under Boolean operations and f-preimages of {N, E, S, W}.

Given our collection B of decisively observable properties, we wonder what are
the possible ways things can be according to these observations. In other words,
what are the possible complete and consistent collections of properties that the
system could have at a given point in time? These are known as the ultrafilters
of B. Every state s induces such an ultrafilter (the set of properties P € B that
s has). If things go well, also every ultrafilter F' determines a unique state (the
state s which has all the properties P € F), and if not, we may think of F' as an
‘imaginary’ state that ‘logically completes’ the state space of the system. The set
of ultrafilters of B is denoted Spec(B) and we may call it the set of logical states
of our system (X, f).

This set Spec(B) of logical states has a natural topology induced by the basic
open sets of the form {F : P € F} for P € B. This is a Stone space: zero-
dimensional, compact, and Hausdorff. (That is the classic Stone duality: the
correspondence between Boolean algebras and Stone spaces.) Since B is countable,
Spec(B) also is second-countable and hence a compact metrizable space.

Moreover, the dynamics f : X — X naturally extends to a dynamics f :
Spec(B) — Spec(B) on the logical states: Since B is closed under preimage, the
function i : B — B given by P — f~1(P) is well-defined. Tt is a Boolean algebra
homomorphism and hence determines, by Stone duality, the continuous function

f : Spec(B) — Spec(B) given by F v+ h™'(F)={P € B: f"Y(P) e F}."!

10Cf. there are only countably many Turing machines.
1We'll see this construction again in section 5.3.2 of chapter 5.

24 Chapter 2. Trajectory domains 1: Construction

For all we ever can observe, the ‘logical’ system (Spec(B), f) simply is the
system (X, f) that we’re observing: any difference between them can, in a sense,
never be observed by us. Thus, we may assume without loss of generality that
(X, f) is a zero-dimensional topological system: X is a zero-dimensional compact
metrizable space and f : X — X is continuous. And B essentially consists of
clopen subsets of X. (We also could have taken these systems as our starting
point, since the study of zero-dimensional topological systems is an important
subfield of dynamical systems theory (Downarowicz and Karpel 2016).)

Trajectories The possible sequences of observations are those trajectories in
the observed system A that result from observing the orbit of some state x of the
underlying system (X, f):

T .= {t .t is an A-trajectory followed by some x € X },

where we say x follows t iff, for k = 0,...,|t], f¥(x) € s(t)(k), i.e., if the system
starts in z, then, after £ time steps, we can make the observation s(t)(k) (the
k-th state of t).

We can expect T' to have two crucial properties:

(a) If t Xt/ € T and t is nonempty, then ¢t € T'.

In words: T is closed under nonempty prefixes.

(b) For all infinite A-trajectories ¢, if, for all n, t [n € T, then t € T..

In words: T is ‘finitary’ or ‘compact’: if ¢ is not in A, we can realize this
after some finite amount of time.

Indeed, concerning (a), if = follows ', then it also follows the initial segment ¢.
Concerning (b), in the observed system of the North-South map, we're in the
fortunate case that all trajectories are followed by some x, so this property holds
vacuously. In the general case of the preceding paragraph, X is compact and
decisively observable properties are clopen. Define A, := (_, f*s(t)(k), ie.,
the set of those z € X that follow ¢ [n. Then (A,), is a decreasing sequence of
non-empty closed subsets of X, so, by compactness, there is = € (), A,, whence
teT.

Trajectory equivalence FEach trajectory represents a possible behavior of the
system, but often we want to move to a higher level of abstraction (or explanation)
where we consider some distinct trajectories to be instances of the same behavior.
For instance, in the neural network example we might want to investigate whether
a certain initial value range for some weights is predictive of a certain classification
behavior at the end of learning (a microscopic explanation of a macroscopic
property). So we consider two observation trajectories t and ¢’ equivalent if,

2.3. Two guiding examples 25

intuitively, initially their values of the weights in question lie in the same range
and the network ends up with the same classification behavior on the test data
set. Thus, trajectory equivalence represents a level of abstraction where we ignore
information that we don’t deem relevant for the intended explanation of the
macroscopic properties.

There are many trajectory equivalence relations that can be defined, and this
chapter is about axiomatizing those that provide a ‘good’ level of abstraction. To
provide some concrete examples, for the North-South map, we can consider two
trajectories equivalent if they have the same length and visit the same sets of
states (which here implies having the same start and end). Intuitively, equivalence
then represents predicability of observations within a certain number of time steps.

In the general case, we may define, for ¢,¢' € T, that t = ¢’ iff |t| = |t/| and if
|t| > 0, there is 1 < i < |¢| such that

(i) Same start: s(¢)(0) = s(¢')(0).

(ii) Consistent observations: (Yi_o f*(s(t)(k)) = Ny f*(s(t')(k)). (So we
might make different observations along ¢ [i and ¢’ | 4, but we cannot
deduce a difference in microscopic states.)

(iii) Same end: last(t | 7) = last(¢’ [i) and, for all n > 0, (i + n) = t'(i + n)
whenever defined.'?

Both in the North-South map and in the general case, we can expect = to
have two crucial properties:

(c) Forall t,t' € T, if t =, then |t| = |t/| and there is i > 1 such that, for all
n>0,tli+n=ti+nt?

In words: Equivalent trajectories have the same length and, after some finite
time, become (and stay) equivalent.

(d) For all nonempty finite ¢,¢' € T with ¢t = ¢/, if tt” € T is finite, then t't" € T
and tt" = ¢'t".1* (If ¢, ¢, or t” are empty, this holds trivially.)

12This is indeed an equivalence relation: Reflexivity and symmetry are clear. For transitivity,
assume ¢t =t' and ¢/ =t”. So |t| = [t'| = |t"], and if > 0, then there are 1 <4, j < |¢| such that
the conditions (i)—(iii) are satisfied for (¢,¢') and (¥,t"), respectively. Let [:= max(i,j) and
show that it satisfies (i)—(iii) for (¢,t").

13Proof: North-South: If t = ¢/, then, by definition, |t| = |¢/|. If they are finite, choose
1:= |t| + 1. If they are infinite, they either both have a tail of N-states or of S-states, and we
choose i large enough such that ¢(i) = ¢'(¢). General: If t = ¢/, then, by definition, |¢| = |t/|. If ¢
is empty, choose 7 = 1, and if ¢ is nonempty, choose ¢ as in the definition of t = ¢'.

14Proof: North-South: The crucial part is to show t’t” € T. Since t = t/, they have the
same last state M. Let M’ be the first state of ¢ (if ¢ is empty the claim is trivial). Since
tt" € T, M — M’ is an A-transition. So the paths ¢’ and #”’ can be concatenated, i.e., t't" is
an A-trajectory. So t't” € T, since any A-trajectory is followed by some state. General: Since
[t| = |¢'] > 0, let 1 < i < |t| be as in the definition of ¢ = t/. Write to := #t” and t; := t't".

26 Chapter 2. Trajectory domains 1: Construction

In words: Extending equivalent trajectories in the same way yields equivalent
trajectories as soon as one extension is in 7.

Possible behavior So we’re looking at a structure (A,7,=) where A is a
countable transition system, T is a set of A-trajectories, and = is an equivalence
relation on 7" such that (a)—(d) are satisfied. An equivalence class [t] describes a
possible behavior of A at the level of abstraction represented by =.

To understand these behaviors, we’re lead to study the structure of the
set of possible behaviors T := T/ =. It is useful to start with the subset
Thn := {t € T : t finite}/ =. On there we have a natural order of information
containment between behaviors: For [t], [t'] € Ty, define

[t] < [t'] & Vi e [t]Ft € [t] : to < ty.

A natural way to extend this to infinite behaviors [t], [¢'] € T is: [t]Z[¢] iff, for all
n there is m such that [t [n] < [t' | m]. (The main result of this chapter will show
that this essentially also is the only natural way.) This definition makes sense:

2.3.1. LEMMA. 1. (T4, <) is a preorder.
2. For finite t,t' € T, if t X t', then [t] < [t].
3. The definition of C 1is independent of the representative.

4. C and < coincide on Tgy,.

PRrOOF. Concerning (1), this is immediate. Concerning (2), let o € [t] and write
tt" =t €T. So (d) implies to <X tot" =:t; € T and t; = t'.

Concerning (3), we show: If ty € [t| and t; € [t'] and [t|C[t], then [to]C[t1]. So
given n, find m such that [to [n] < [t; [m]. Since ty =t, use (c) and let ¢ > 1 be
such that, for all k >0, ¢y [i+ k=1t [i+ k. Choose some k > i,n. So, by (2),
[to [n] < [to [k] = [t | k]. Since [t]C[t'], there is j such that [t [k] < [t | j].
Since ¢’ = t1, use (c) as above and get m > j such that ¢’ [m = t; [m. So, by (2),
[t T3] <[t' | m]=[t1 | m], as needed.

Concerning (4), let t,t' € T be finite. If [t|C[t'], let n := |t[, so there is m
with [t] = [t [n] < [t/ | m] < [t'], where the last step follows by (2). Con-
versely, if [t] < [t'], then, for any n, let m := |t/| and we have, by (2), that
i) <[] <[] =t | m) 0

We have t; € T because ﬂg;lo frti(k) = ﬂ‘kti‘o f¥to(k) (since until 4, the intersections are
identical by assumption, and after i the trajectories are identical), and the latter is nonempty.
And i also witnesses &t = t't".

2.3. Two guiding examples 27

Trajectory domain Now, the key insight into the structure of the set of possible
behaviors T is stated in the following theorem. Its terminology was reviewed in
section 2.2.2.

2.3.2. THEOREM. The partial order (T,) induced by (T, C) is isomorphic to the
ideal completion of (Tn, <), and hence an w-algebraic depo.

In section 2.3.2, we discuss in detail the origins of the proof and the surrounding

ideas in the different setting of concurrent computation. The short answer will be:
although different in setting and detail, the essential idea of the proof is provided
by Droste (1990, thm. 2.3) and Stark (1990, thm. 3). Since the theorem is a
consequence of our main result (theorem 2.6.3 below), we only provide a proof
sketch.
PROOF SKETCH. We show that the mapping [[t]=]c — I(t) := {[t'] € T :
dm . [t'] <[t | m]} is an order-isomorphism. It is readily seen to be well-
defined (i.e., independent of the representative and () is an ideal in Tg,) and an
order-embedding (i.e., [t]C['] iff 1(¢) C I(t')).

So the key is surjectivity. Since the system is assumed to be countable, Ty,
is countable, too. So if D is an ideal of Tg,, it is a countable directed set and
hence has a cofinal chain C' = [tg] < [t1] < By definition of <, we can pick
the ¢; such that each ¢; is an extension of the previous ¢;’s. Let ¢ be the trajectory
having all ¢; as initial segments. By (b), it is in 7. Then I(t) = D: If [t'] € 1(¢),
then [t'] < [t [m] for some m, so, since D is a downset, [t'] € D. If [t'] € D, then,
since the chain is cofinal, there is m such that [t [m] > [t/], whence [t'] € I(¢). O

As an example, let’s consider the trajectory domain of the North-South map
as shown in figure 2.2. We focus on trajectories starting with NV (plus the empty
trajectory) and abbreviate trajectories thus: N —+ N — E — S becomes N2E'S?.
The ellipses ‘hide” a more complicated order involving equivalence classes of the
form written inside the ellipse.

What does the trajectory domain tell us about the system’s behavior? Here
are three examples: First, the fact that it has very few noncompact elements
relates to the system being very ‘convergent’ or ‘non-chaotic’. Second, it highlights
consistent and inconsistent behavior: On the one hand, [[N'W!]] and [[N'E']],
for instance, are inconsistent (i.e., aren’t both informationally contained in some
behavior) which reflects that there are no transitions between W and E. On the
other hand, [[N®]] and [[N4W1]], for instance, are informationally incomparable,
but they both are contained in [[NW1S!]] = [[N*W'S?]]. Third, the fact that
the North Pole is an unstable fixed point is reflected in the fact that its infinite
fixed point behavior [[N“]] is dominated by the infinite non-fixed point behaviors
[[N"W'S%]] and [[N"E'S“]]: because any initial segment N™ can also be realized
by a sufficiently close state x # p which, however, will eventually evolve into an
initial segment N"W1'S! or N"E'S! of the infinite non-fixed point behavior.

28 Chapter 2. Trajectory domains 1: Construction

[N"WES<]] [IN"ERS<]]

N
[V¥]]

[NnEisH)

Figure 2.2: A sketch of the trajectory domain of the North-South map.

2.3.2 Concurrent computation

Curiously, in the study of concurrent computation, we can also find the structure
(A, T,=) of an LTS A together with a set of A-trajectories 7" and an equivalence
relation = on T satisfying properties (a)—(d).

Concurrency Concurrency is a vast field of computer science, and it is usually
sketched along the following lines (Lamport 2015; Winskel and Nielsen 1995). In
sequential computation—as performed, e.g., by Turing machines—, the computing
system performs one task after the other as dictated by its program. In concurrent
computation—e.g., electrical circuits, the internet, or (artificial) neural networks—,
many computing units form a network mutually influencing each other and usually
performing a joint task.

As a result, several execution paths of this system of computing units may be
seen as performing the same task (or computation). To illustrate this, consider
the well-known situation of figure 2.3 (Winskel and Nielsen 1995). Assume the
system is in the ‘global’ state s which describes the state of each computing unit.
Then it could perform either the action « of, say, updating unit 1 or the action
[of updating unit 2. This respectively yields the two new states sy and s;. In
each of these states the respective other unit can be updated, and this happens to

be such that either order of updating yields the same global state s’. Thus, we’d

consider the two distinct execution paths t = s&sgis’ and t' = sislihs’ to be

behaviorally equivalent.

2.3. Two guiding examples 29

,XSI
e

S

s
>
S0
Figure 2.3: The independence diamond.

Models of concurrency There is a plethora of formal models to describe and
reason about the behavior of concurrent systems (Baier and Katoen 2008; Sassone,
Nielsen, and Winskel 1996; Winskel and Nielsen 1995). We’ll mention some
(roughly in increasing generality) that are particularly suited to describe the above
intuition of equivalence of execution paths.

First, Mazurkiewicz trace languages.!® These are structures of the form
(M, L,I) where L is a set of actions, I C L x L is a symmetric and irreflexive
relation, called the independence relation, and M C L<% is a nonempty set of
strings over L that is prefix closed (for all t € L= and «a € L, if taw € M, then
t € M) and I-closed (for all t,¢' € L<¥ and «, B € L, if taft’ € M and alf, then
tBat’ € M). Thus, we think of M as the set of possible finite sequences of actions
(from the set L) that the system can perform, and the independence relation 1
describes which actions can occur concurrently. In the independence diamond, we’d
have a3, so the sequences of actions a5 and Sa would be considered equivalent.
More generally, one defines an equivalence relation ~ on M as the smallest
equivalence relation such that taf5t’ ~ tSat’ whenever ol 3. Its equivalence classes
are called traces. A natural preorder on M is ¢t < t' iff 3t” : tt" ~ ¢’ which becomes
a preorder on traces when quotienting under ~. (For extensions, see, e.g., Katz
and Peled 1992 loosening the constraint on the independence relation to be fixed
for all actions.)

Second, asynchronous transition systems.'® Their idea is to specify the tran-
sition system that gives rise to the possible strings of labels (of a Mazurkiewicz
trace language). So they are structures (A, I) where Ais an LTS and I C L x L
is an irreflexive and symmetric relation, called the independence relation, such
that the following axioms are satisfied: (i) Every label occurs in a transition, (ii)
preforming the action described by a label yields a unique state, and (iii) the
independence diamond is respected, i.e., the lower half of the diamond can be
completed to the upper half, and the left half of the diamond can be completed
to the right half. (See the references for a formal statement.)

15They were introduced by Mazurkiewicz (in 1977); for references and an overview, see Winskel
and Nielsen (1995, sec. 7).

16They were introduced independently by Bednarczyk (in 1988) and Shields (in 1985); for
references and an overview see Winskel and Nielsen (1995, sec. 10).

30 Chapter 2. Trajectory domains 1: Construction

Third, automata with concurrency.!” Their main idea is to generalize the
independence relation to be relative to the state of the transition system and
not fixed for all labels (cf. the extension of trace languages above). Concretely,
an automaton with concurrency relations is a structure (A, (I5)ses,) where A
is a countable LTS and each I, C L x L is a irreflexive and symmetric relation
such that the axioms (i) and (ii) are satisfied and if a/;/3, then the independence
diamond of figure 2.3 can be formed (for details see the references).

Fourth, labeled transition systems with independence.!® They have the same
structure (A,) as asynchronous transition systems, but they are governed by
different axioms (see the references for details). The main difference is that they
allow defining two transitions to be occurrences of the same event if, roughly,
they participate in an appropriate independence diamond. (Other than being an
equivalence relation, the exact definition will not be important for us.)

(We haven’t mentioned two other important models of concurrency: Petri nets
and event structures. Winskel and Nielsen (1995) discuss their close connections
to the models mentioned above.)

Generalization We show that these models essentially have the structure
(A, T,=) of an LTS A together with a set of A-trajectories 7" and an equivalence
relation = on 71"

First, given a Mazurkiewicz trace language (M, L,) we can think of it as
consisting of the one-state LTS A = ({i},i, L, —), where —:= {i} x L x {i} is
the trivial relation, together with the set of A-trajectories T" with label sequences
that are in M:

T:= {t A-trajectory : Vn . [(t [n) € M}

The equivalence relation = on T is the natural extension of ~: t = ¢’ iff JiVn :
I(tTi+n)=~I{ti+n)t?

Moreover, this satisfies properties (a)—(d): Properties (a) and (b) are satisfied
by construction. Concerning (c), if ¢ = ¢/, then JiVn : [(t [i +n) ~I(t' | i + n),
so [t| = |t'| since ~ implies having the same length and, for alln > 0,¢ [i+n =
t' | i+ n. Concerning (d), this is a basic feature of ~ in trace languages (see e.g.
Winskel and Nielsen 1995, prop. 7.1.3).2

17See Bracho and Droste (1994) and Droste (1990).

18See Sassone, Nielsen, and Winskel (1996) and Winskel and Nielsen (1995). Related models
are: the concurrent transition systems of Stark (1990), the geometric approaches of Fajstrup,
Rauflen, and Goubault (2006), Goubault and Jensen (1992), and Pratt (1991), or the transition
systems with independence and multi-arcs of Hildebrandt and Sassone (1997).

19This is an equivalence relation: It clearly is reflexive and symmetric since ~ is. For
transitivity, if ¢ and j witness the equivalence of (¢,¢') and (¢',t"), then k := max(i, j) witnesses
the equivalence of (t,t”): for n > 0 we have I(t [k+n) =1t [i+ (k—i+n)) ~I(t' |
i+ (k—i+n) =1t Tj+k—j+n)=1t"[j+(k—j+n))=1t"k+n).

20Let t,¢' € T be nonempty finite with t+ = ¢/ and " € T finite. Hence, I(t) ~ () and

2.3. Two guiding examples 31

Second, let’s consider asynchronous transition systems and automata with
concurrency. Because of their similarity, we’ll only discuss the latter. With slightly
different terminology, we follow Bracho and Droste (1994) and Droste (1990); for
similar constructions see Stark (1989), Stark (1990), and Katz and Peled (1992).
Let (A, I;) be an automaton with concurrency relations. Let 7" be the set of
all A-trajectories starting in the initial state. Trajectory of equivalence of finite
t,t € T is given by: the reflexive and transitive closure ~ of t ~q ¢’ iff ¢t and ¢
only differ by an independence diamond, i.e., they are of the form

t = t0) ... ti—1) (s,a,81) (s1,08,8) ti+2) ... t(n)
= ¢0) ... t(i—-1) (s,08,82) (s2,00,8) t(i+2) ... t'(n)

for some al,5. We preorder T' by t <t iff Vnadm : 3t; € T it [n <ty ~t' [m.
Bracho and Droste (1994) now take two trajectories ¢ and t’ to be equivalent if ¢ < ¢/
and ¢’ < t. However, we define the finer relation ¢t = ¢ iff 3iVn : ¢t [i+n ~t [i+n.

Notice that ~ for finite trajectories essentially is ~ for trace languages and
that < is the natural extension of the preorder of traces languages to infinite
trajectories. A difference to trace languages is that, apart from the restriction to
start with the initial state, the set of possible trajectories is not constrained any
further.

This, too, satisfies (a)—(d): Properties (a)—(b) are satisfied by construction.
Concerning (c), if t = ¢, then JiVn : t [i+n ~t [i+ nso [t| = |[t'| (since ~
implies having the same length) and, for all n, t [i+n =t [i +n. Concerning (d),
if t,¢’ € T are nonempty finite with ¢ = ¢’ and ¢¢” € T finite, then t't” is an
A-trajectory (since t ~ t' which implies last(t) = last(¢')) that starts in ¢ (since ¢’
does), so t't" € T, and tt" ~ t't" whence tt" = t't".

Third, for transition systems with independence we may also consider another
notion of trajectory equivalence: ¢ =t iff |t| = |t/| and, for n < [t|, t(n) and t'(n)
are occurrences of the same event. We’ll show that this implies a weaker version
of property (d) that we’ll introduce as part of our more general axiomatization
(see example 2.7.6).

Connections to domain theory There are various connections between mod-
els of concurrency and domain theory.

Based on the partial order of traces, one can construct an event struc-
ture (Winskel and Nielsen 1995, sec. 8.3), and event structures, in turn, can
represent various classes of domains: Winskel and Nielsen (1995, p. 125) provide
a brief summary.

More directly, assume (A, I;) is an automaton with concurrency relations.
Then, for the set of trajectories T" with the preorder < defined as above, the
induced partial order (T, <) is a domain whose compact elements are given by

1(tt") = 1(t)I(t") € M. By said proposition, (t't") = I(#')I(t") € M and I(tt"") ~ [(¢'t"). Hence,
t't" € T (since M is prefixed closed) and ¢t" = t't” (choose ¢ := |tt"]).

32 Chapter 2. Trajectory domains 1: Construction

equivalence classes of finite trajectories in T—see Droste (1990), Bracho and
Droste (1994), and Stark (1990).

Let’s compare this to the connection to domain theory from the black box
system example. There we've motivated the move from trajectories to their
equivalence classes as moving from concrete instances of the system’s behavior to
the behavior at the level of abstraction of interest. Here, in the case of concurrent
computation, the motivation is well put by Stark:

“concurrency is reflected in the [domain] through the existence of
nontrivial upper bounds. Since our goal is to make concurrency explicit,
one might argue that concurrent computations [i.e., equivalence classes],
rather than computation sequences [i.e., trajectories], ought to be the
main focus of attention” (Stark 1990, p. 54).

Moreover, we’ll distinguish the concepts of trajectory equivalence = and infor-
mation containment C, i.e., we don’t define equivalence as mutual information
containment. We’'ll find this separation conceptually useful in searching for the
right axiomatization.

2.3.3 Summary and outlook

To summarize, we've discussed two examples: observing black box systems and
concurrent computation. Both have the structure (A, T, =) of an LTS A together
with a set of A-trajectories T" and an equivalence relation = on T such that
properties (a)—(d) were satisfied. This allowed two things: (i) there is a natural
information containment order on the set of possible behaviors 7'/ =, and (ii) this
in fact forms an w-algebraic domain.?!

Given these examples, it is natural to ask how general they are: In the black
box system example, we ask which abstractions are good ones. Which equivalence
relations on the set of possible trajectories provide a ‘well-structured’ representation
of the types of behaviors of interest? In the concurrency example, we ask which
other notions of concurrency are plausible. Which equivalence relations on the set
of possible trajectories provide the ‘hallmark’ structure identified in the literature:
that the equivalence classes—i.e., concurrent computations—form a domain? For
example, can we circumvent the restriction that concurrent computations cannot
differ in their computation time?

Thus, we ask: What are the minimal demands on the structure (A, T, =) such
that (i) we can define a natural information containment, and what is additionally

21Tn hindsight, it may not be too surprising that, despite their distinct appearance, both
examples had this structure: we could think of equivalent trajectories in the observed system as
being ‘concurrent’ computations done by the black box system (under our interpretation). In
the other direction, it is an interesting question—somewhat similar to hidden-variable theory
discussions in physics—in which cases it is possible to think of concurrent execution paths as
equivalent observation trajectories of an underlying low-level deterministic black box system.

2.4. Pre-behavioral transition systems 33

needed that (ii) this forms a domain? In other words, we don’t ask the analytic
question of building further equivalence relations, but rather the synthetic question
of what the right axioms are for these structures.

As already sketched in the introduction, the answer will be this: First, we
define a ‘pre-BTS’ as the structure (A,T,=) with some very minimal axioms.
Then we investigate what it takes to satisfy the (i)-demand and find one more
axiom which, when added, yields a ‘BTS’. The characterization theorem then
says that satisfying the (i)-demand is essentially equivalent to the much stronger
(ii)-demand.

2.4 Pre-behavioral transition systems

We introduce pre-behavioral transition systems (pre-BTS) as structures (A, 7T, =)
where A is an LTS, T a set of A-trajectories, and = an equivalence relation on
T satisfying some minimal axioms. They are ‘pre’ in the sense that we’ll later
explain why we should add one more axiom, which then yields BTSs. After the
formal definition, we discuss the axioms; in particular, how they relate to the
guiding examples. And we construct basic examples of pre-BTSs.

2.4.1 Definition

Before we define pre-behavioral transition systems, we need the definition of
information containment between finite behaviors whose importance we’ve already
encountered in the examples.

2.4.1. DEFINITION. Let (A, T, =) be a structure where A is an LTS, T a set of
A-trajectories, and = an equivalence relation on 7. Write [t] for the =-equivalence
classes. For finite ¢,¢' € T, define

[t] < [t'] = Vg € [t]TFty € [t] : to X ty.

In words, every realization of behavior [t] can be extended to a realization of
behavior [¢'].

Now we can state the definition of a pre-behavioral transition system.

2.4.2. DEFINITION. A pre-behavioral transition system (pre-BTS) is a triple M =
(A, T,=) where A is an LTS, T is a set of A-trajectories, and = is an equivalence
relation on 7' such that:

1. For all t € T, if ¢ is a nonempty finite initial segment of ¢, then ¢’ € T.

2. For all infinite A-trajectories t, if 0 < ng < mny < ... with ¢ [n; € T and
[t [ng] <[t] ni] (for all ¢ > 0), then t € T

34 Chapter 2. Trajectory domains 1: Construction

3. For all t,t' € T with t = t/, if ¢ is empty, then ¢’ is empty, and if ¢ is finite,
then ¢’ is finite.

4. For all infinite t,¢' € T, if t = t/, then there is ¢,j > 1 such that, for all
n>0,tli+n=t1[j+n.

If M is a pre—BTS, we write M = (AM,TM,EM) and AM = (SM,Z.M,LM,—)M)
and call =), the trajectory equivalence of M. We call M countable if Ay is
countable. It will be useful to have a name for the following stronger version of
axiom (2):

(2)* For all infinite A-trajectories t, if ¢ ¢ T, then there is n > 1 such that
tingT.

To be more precise, we should probably call such M a pre-behavioral labeled
transition systems, but the current name already is enough of a mouthful, so we
omit the term ‘labeled’.

2.4.2 Comments

Finite information containment First, technically, definition 2.4.1 of infor-
mation containment < between finite behaviors would also work for infinite
trajectories. However, then any infinite [t] is maximal: If [¢t] < [¢'], then ¢ € [{]
can be extended to t; € [t'], but, since ¢ is infinite, ¢t = t1, whence [t] = [t/]. This
discards too much structure of 7'/ =. (In example 2.7.7 below, we discuss this in
more detail.) In section 2.5, we discuss how to extend this definition appropriately
to infinite behaviors.

Second, the formal idea behind the definition of < is to ‘lift’ the extension
preorder < on T to the preorder < on equivalence classes (i.e., certain subsets of)
T. Such constructions are well-known: For example, to characterize the Hoare
powerdomain of a continuous domain D with basis (B, <), one ‘lifts’ the relation
< from B to finite subsets of B by defining X <z Y iff Ve € Xdy €Y 1z < y.
(The Hoare powerdomain of D then is isomorphic to the ideal completion of the
set of finite subsets of B ordered by <.) For the Plotkin powerdomain, one also
demands the ‘dual’: Vy € Y3z € X : 2 < y.22 This is then an instance of the
Egli-Milner relation lifting.?® However, in our setting, adding this additional ‘dual’
demand seems to be too strong in general: for [¢] to be informationally contained
in [t'] it need not be the case that every realization of [t] is an extension of a
realization of [t].

22Gee e.g. Abramsky and Jung (1994) for these results about powerdomains.
23This is yet a special case of the notion of ‘relation lifting’ in coalgebra (Kurz and Velebil
2016, example 2.8).

2.4. Pre-behavioral transition systems 35

Comparison to the guiding examples In the guiding examples, we’ve iden-
tified the properties (a)—(d) as restricting the structures (A, T, =), so let’s discuss
how the axioms (1)—(4) of a pre-BTS are generalizations thereof.

First, axiom (1) is just verbatim property (a). Note that we can equivalently
demand that any nonempty initial segment ¢’ of ¢ € T is in T' (because if ¢’ is
infinite, then ¢ =t € T').

Second, property (b) is the stronger version (2)* of axiom (2). The reason
for opting for the weaker version as axiom is that (i) it is enough for the desired
results, (ii) we want the axioms to be as weak as possible, and (iii) it allows system-
atically disregarding ‘non-approximable’ behavior as we’ll see in the next chapter.
However, if the pre-BTS has the property of being bisimulative (definition 2.7.2),
the two versions are equivalent.

Third, axioms (3)—(4) are a weakening of property (c). While property (c)
required equivalent trajectories to have the same length, axiom (3) only demands
them to have the same ‘cardinality type’: one is empty (resp., finite, infinite) iff
the other is empty (resp., finite, infinite). Axiom (4) then is similar to property (c)
but now restricted to infinite trajectories and taking into account the lack of a
‘elobal time’ by allowing distinct offsets ¢ and j (rather than a single 7).

Fourth, property (d) has no analogue axiom, and section 2.5 will be about
finding a much weaker version of property (d) that can then serve as an axiom to
turn a pre-BTS into a BTS.

*

General motivation for pre-BTSs Independent of the guiding examples, the
axioms of a pre-BTS can be motivated generally as follows.

First, the notion of an LTS specifies locally which trajectories are possible.
However, not every trajectory that is locally possible is globally possible.?* Con-
sider, for example, an action « that requires a certain amount of some bounded
resource like storage space. Then there is a bound on how often « can be per-
formed which becomes relevant only at a global scale but not at a local one. Yet,
it is the globally possible trajectories that we’re interested in when we want to
know what the ‘possible behavior’ of the system is.?> So, we need to specify
the globally possible trajectories explicitly as a subset T of the set of all locally
possible trajectories.

This motivates axioms (1) and (2): Regarding (1), nonempty initial segments
of globally possible trajectories should be globally possible as well. (We discuss
the empty trajectory below.)

Regarding (2), its stronger version (2)* demands that if an infinite locally
possible trajectory t is not globally possible, then already some finite initial

24This general situation of local possibility/consistency and global impossibility /inconsistency
is known as contextuality (Abramsky and Brandenburger 2011; Abramsky et al. 2015).

25For example, such additional global constraints on the possible trajectories play a role when
considering liveness property of the system (Van Glabbeek and Hofner 2018; Manna and Pnueli
1991).

36 Chapter 2. Trajectory domains 1: Construction

segment of ¢ fails to be globally possible. Thus, the property of ‘globally possible’
is refutative: if it is false, we can eventually discover that it is false—this is
necessary for it to be a constructive or “finitary” concept. In the example, if an
infinite trajectory ¢ exceeds the storage space with its a-applications, then this
happens already after some finite amount of time. Again, as an axiom, we only
demand the weaker version (2).

Second, as already discussed, globally possible trajectories exhibit possible
behavior of the system. However, they may be instances of the same type
of behavior—as described by an equivalence relation. Two constraints seem
fundamental for this notion of trajectory equivalence: First, axiom (3) requires
that an infinite trajectory is essentially different from a finite one, and a nonempty
trajectory is essentially different from the empty one. Second, axiom (4) requires
that if two infinite trajectories are equivalent, then there is a point from which
on they are (and remain) equivalent. This again is necessary for the notion of
trajectory equivalence to be finitary: we exclude the possibility of two infinite
trajectories that are equivalent without us ever being able to observe that (i.e., we
can never find two of their finite initial segments that are and remain equivalent).?®

On the empty trajectory As already seen in the guiding examples, axiom (1)
doesn’t play a major role in the proofs, but it is very plausible and it makes
things neater (if we consider an initial segment of a trajectory we don’t need
to additionally check that it is in T'). However, one might wonder: Why the
restriction to nonempty initial segment? Why not count the empty trajectory as
‘vacuously’ globally possible (at least as soon as T' is nonempty)? The answer is:
This is very much allowed, but for greater generality we don’t require it per axiom.
The reason is that if it is in 7', then it will always be the least element in the
‘behavior order’, while, in the current phrasing, we could also consider behavior
preorders without (or ‘removed’) least element.

2.4.3 Example constructions

We've already seen that the structures (A,T,=) of the guiding examples (sec-
tion 2.3) are pre-BTSs. So let’s consider some general constructions of a pre-BT'S
starting from an LTS A.

First, here are some natural examples for 7.

2.4.3. EXAMPLE. Let A be an LTS. The set T of all (nonempty) A-trajectories
(starting in i4) satisfies axioms (1) and (2)*, whence also (2).

Second, let’s consider possible choices for =. We can always choose = to be the
identity relation on 7. More interesting examples are obtained by starting with

26This is reminiscent of the idea of learning in the limit (Gold 1967).

2.4. Pre-behavioral transition systems 37

an equivalence on finite trajectories and extending them to infinite trajectories
guided by axiom (4) as a definition.

2.4.4. PROPOSITION. Let A be an LTS and T a set of A-trajectories. Let =, be
an equivalence relation on {t € T : t nonempty finite}. Fort,t' € T, definet =t

uf
(a) both t and t' are empty, or

(b) both t and t' are nonempty finite and t = t', or

(c) both t and t' are infinite and there are i,j > 1 such that, for all n > 0,
tli+n=gt' |j+n.

Then, if T satisfies axioms (1) and (2)* (which are stated without reference to =),
then (A, T,=) is a pre-BTS.

Proor. We first show that = is an equivalence relation on T'. Reflexivity and
symmetry are immediate in each of the cases (a)—(c). For transitivity, assume
t =t =t", and show t = t”. If one of the trajectories is finite, the others must
be finite, too, and t = t” follows since both ‘being empty’ and =g are transitive.
So assume that all trajectories are infinite. There are 7, j > 1 such that, for all
n>0,tli+n=¢t | j+n, and there are k,I > 1 such that, for all m > 0,
t' [k4+m=ot" |1+ m. Without loss of generality, j < k (the case j > k is
analogous). Define ng := k — j. Set i’ := i 4+ ng and j’ := [. Then we have for
n’ > 0 that

L +n =t it (no+n')=ot [j+ (no+n)=t[j+((k—j)+n)
=t Thk+n' = t"[l+n=t"]5+n

whence t = t”, as needed. Now, axioms (1) and (2) hold by assumption, and
axioms (3) and (4) hold by construction. O

The following are some concrete trajectory equivalences built in this manner.

2.4.5. DEFINITION. Let A be an LTS and T a set of A-trajectories. Consider the
following equivalence relations on {t € T : ¢t nonempty finite}:

(a) t =1t iff last(t) = last(t')
(b) t = ' iff |t| = |t| and last(t) = last(t")
(c) t =gt iff I(t) = I(t') and last(t) = last(¢’).

The equivalence relation induced on 7' (as defined in proposition 2.4.4) by (a),
(b), and (c) is called the extensional, temporal, and intensional equivalence on T,
respectively.

38 Chapter 2. Trajectory domains 1: Construction

2.5 Information containment of behaviors

As mentioned, to understand the behavior of a pre-BTS M = (A, T, =), we want
to understand the structure of the set of possible behaviors T/ =. To give it some
notation:

2.5.1. DEFINITION. Let M = (A, T,=) be a pre-BTS. Define T := T/ == {]t] :
t € T} and Ty, := {[t] : t € T finite}. We call the elements of Tg, finite behaviors
and those of T \ Tf, infinite behaviors.

We've already seen that Ty, has the natural information containment preorder
[t] < [t']. The crucial question is how to sensibly extend this to T. This is the
topic of this section: We first provide three natural definition of such extensions
(section 2.5.1) and then we identify a condition which makes them all equivalent
(section 2.5.2).

2.5.1 Three definitions of information containment ...

We’ll discuss three natural candidates for a definition of information containment
also on infinite behaviors. For all of them, the following notion of approximation
is crucial.

2.5.2. DEFINITION. Let M = (A,T,=) be a pre-BTS. For [t| € T, an approzima-
tion to [t] is a pair 7 = (t1, (n;);>0) with ¢ € [t] and 0 < ny < ny < ... an infinite
sequence such that [t7 | ng] < [t7 [ny] < We call [t] approzimable iff there is
an approximation to [t].

Comments: First, this is an example where axiom (1) is handy: We have
tt € [t] C T, and if t' is empty, then t' | n; = t' € T, and if ' is nonempty,
each t' | n; is a nonempty initial segment of ¢! and hence in T, so we can indeed
consider the equivalence classes [t7 | n;].

Second, also note that whether [t] is approximable doesn’t depend on the
representative ¢, so it makes sense to say that [t] (as opposed to t) is approximable.

Third, in general, not every [t] € T is approximable, but any [t] € Tg, has
an approximation 7 = (t, (|t| + 1 + 4);>0) for which [t] = [t [no] = [t [m] =
Non-approximable behaviors are—in a sense—completely ‘out of reach’, and we’ll
reflect this in our definitions of information containment below by demanding
that a non-approximable behavior cannot be informationally contained in an
approximable behavior.

The first two definitions for information containment are the following.

2.5.3. DEFINITION. Let M = (A, T,=) be a pre-BTS. For [t] € Tg, and [t'] € T,
we define:

2.5. Information containment of behaviors 39
1. [t]lky[t] iff for all approximations (¢, (n;)i>0) to [t'], there is an i > 0 such
that [t] < [tT] ny).

2. [t]lFs[t'] iff either [t'] is not approximable or there is an approximation

Then, for [t], [t'] € T, we define:

3. [t|ICy[t'] iff (a) for all [ty] € Thn, if [to]lFv[t], then [to]lFy[t'], and (b) if [¢] is
not approximable, then [¢#'] is not approximable.

4. [()T5[] iff for all [ty] € Tgn, if [to]lFa[t], then [to]lF5[#], and (b) if [#] is not

approximable, then [¢'] is not approximable.

The following two lemmas collect some facts about Cy and C3, respectively,
that show that they indeed are plausible generalization of <. We move their
straightforward but somewhat technical proofs to an appendix.

2.5.4. LEMMA. Let M = (A,T,=) be a pre-BTS. Then
1. (T,Cy) is a preorder.
2. Cy and < coincide on Tgy,.
3. For [t] € Tan and [t'] € T, we have [t]IFy[t'] iff [t|Ty[t].

4. For [t],[t'] € T with [t] approzimable, we have [t|Cy[t'] iff for all [to] € T,
if [to]; [t], then [to]Ty[t'].

5. If [t]
[t'] €

€ T doesn’t have an approximation, then [t] is infinite and for all
T, |

t'1Cv[t].

2.5.5. LEMMA. Let M = (A, T,=) be a pre-BTS. The statements of lemma 2.5.4
remain true after replacing each subscript ¥V by 3.

A third definition for information containment is the following.

2.5.6. DEFINITION. Let M = (A,T,=) be a pre-BTS. For [t],[t'] € T, define
[t]Cdom|t'] iff

(a) for all approximations 7 = (¢1, (n)) to [t] and 7' = (#, (m;)) to [t'], 7/
dominates T, i.e., Vi > 035 > 0:[tT [n;] <[t | my], and

(b) if [t] is not approximable, then [t'] is not approximable.

In general, however, this is not a preorder. This raises the question of how these
three candidates for information containment can be united.

40 Chapter 2. Trajectory domains 1: Construction

2.5.2 ... and how they are united

We face a rather messy situation: We have two natural preorders Cy and C3 and a
natural attempt Cyom which, however, doesn’t always work. The following notion
(definition 2.5.7) provides the precise condition to bring order to this mess—as
the subsequent proposition 2.5.8 shows.

2.5.7. DEFINITION. Let M = (A,T,=) be a pre-BTS. We say M is limit-
respecting if for all infinite t € T and for all infinite sequences 0 < ng < n; < ...
and 0 <mo <my < ..., if[t[ng <[tTnm]<...and [t [me] <[t[m] <..,
then the latter dominates the former, i.e., for all ¢ > 0, there is j > 0 such that
[E 1 ns] <[t Tmy).

This is the minimal definition, but we could also phrase it symmetrically:
A pre-BTS M = (A, T,=) is limit-respecting iff, for all infinite ¢ € T and
0<ng<mn < ...and0 < mg<mg < .., i[t[mn] <[t mn] <...
and [t | mo] < [t [my] < ..., then they mutually dominate each other: i.e.,
Vidg [t T ng] <[t] my] and VE3L: [t [my] < [t]]2

2.5.8. PROPOSITION. Let M = (A, T,=) be a pre-BTS. The following are equiv-
alent:

1. M 1s limit-respecting.
2. By =Ls.

3. For all [t] € T and approzimations (t', (n;)) to [t], we have, for all i > 0,
that [tT | ngly[t].

4- EV = Edom-
5. Cdom 1S a preorder.
6. Cgom s reflexive.

In particular, M is limit-respecting iff all the relations Cy, C3, Cgom coincide and
thus provide a single natural preorder on T.

PROOF. (1)=-(2). Assume that M is limit-respecting. To show Cy = Cg, it
suffices, by definition, to show Iy = IF5. So let [t] € Tg, and [¢'] € T and show
[t]IFy[t'] iff [t]IFs[t’]. If [#] doesn’t have an approximation, both sides are true, so let
7" be an approximation to [t']. If [t]lFy[t], then all approximations to [t'] dominate
[t], so in particular, 7" dominates [t], whence [t]lF3[t']. So assume [t]lF3[¢'] and
show [t|lFy[t].

27Proof: The right-to-left direction is immediate, and for the left-to-right direction apply the
definition of being limit-respecting first to ((n;), (m;)) and then to ((ms), (ny)).

2.5. Information containment of behaviors 41

If [t'] is finite, then, since both I3 and Iy coincide, by lemmas 2.5.4 and 2.5.5,
with < on finite trajectories, we have that [t|lF3[t'] iff [t]lFy[t]. So let [#/] be infinite.

To show [t]IFy[t'], let 7/ = (¢, (m;)) be an approximation to [¢'], and find j > 0
such that [t] < [t} | m;]. Since [t]IFs[t'] and [¢] is approximable,

(¥) there is an approximation T = (t7, (n;)) to [t'] and i > 0 with [t] < [tT | n,].

Since t! = ¢ =t are infinite by axiom (3), there are, by axiom (4), k,1 > 1 such
that, for all n > 0, [t' | k+n] = [t} | [+n]. Let ip > 0 be such that n;, > k. And
let jo > 0 be such that m;, > [. For j > j,, define n(j) := m; — 1 > 0. Define
(n5)i>0 = (Nitio)izo and (m}); := (k +n(j + jo))j>0. Then 0 < ng <nj <...and
0 <my <mj <...2 Moreover, [t | nj] = [tT | nii) < [T 1 nigagi,] = [E7] nlq).
Note that

T mi) =t Tk +n(+ o)) = [t T 1+ n(j + o))
= [t" T 1+ (mypg, — D] = [tF T mji)-

Hence, [t [ml] = [t 1 myp) < [1 mpras] = [1)]
Now, we apply the property that M is limit-respecting to ¢/ and i from (),
and we obtain that there is j; > 0 such that [t! [nj] < [t' | m/]. Thus, we have

[< [tF T] < [T magae) = [E7 T nl] <671l] = (65 1 myqg)-

Hence, for j := ji + jo, we have [t] < [t} | m4], as needed.

(2)=(3). If Cy = L3, then we have, by lemmas 2.5.4 and 2.5.5, that |-y = IF3.
So it suffices to show (3) for IF3 instead of I-y. But this is immediate: If [t] € T
has approximation (t', (n;)), we have, for i > 0, that [t | n;] < [t | ny], so

(3)=(4). Let [t],[t'] € T and show [t|Cy[t'] iff [t]CTaom|t’]-

(=) To show [t|Cgom[t’] we need to show properties (a) and (b). Concerning (a),
consider the approximations 7 = (t', (n;)) to [t] and 7/ = (¢, (m;)) to [¢]. Leti >0
and find j > 0 such that [t' | n;] < [t} | m;]. Indeed, by (3), we have [tT | n;]IFy[t].
Since [t]|Cy[t'], we hence have [tT | n;]lFy[t']. So, for the approximation 7/ to [t'],
there is j > 0 such that [T | n;] < [t} | m,], as needed. Concerning (b), this is
implied by [t|Cy[t].

(<) To show [t]Cy[t'], clause (b) of Cy is given by clause (b) of Cyom, SO
let [to] € Tfn with [to]lFy[t], and show [to]lFy[t']. So let 7/ = (¥, (m;)) be an
approximation to [¢'] and find j > 0 such that [to] < [t} | m;]. Since [t'] is
approximable, also [t] is by clause (b) of Cgom. So let 7 = (¢f,(n;)) be an
approximation to [t]. Since [to]lFy[t], there is i > 0 such that [to] < [T | i]. Since
[t]Cdom[t'], there is j > 0 such that [t | i] < [t* | m;]. Together this yields
[to] < [t* | my], as needed.

ZFor the latter: m{ = k+n(jo) = k + (myj, —1) > mj, — > 0 and, since m; < m;+1 we have
mj =k+n(j+jo) =k+mjijo =1 <k+mjpij, —l=k+n(j+1+jo)=mjy,.

42 Chapter 2. Trajectory domains 1: Construction

(4)=-(5). This holds since Ty = Cyom is a preorder.

(5)=-(6). This is trivial.

(6)=(1). Let t € T be infinite, and consider the strictly increasing n;, m; > 0
with [t [ngl <[t [m] <...and [t [mg] <[t [my] <.... Let i > 0 and find
J > 0 such that [t [n;] < [t [m;]. Note that 7 = (¢,(n;)) and 7" = (¢, (m;))
are approximations to [t]. Since Cgop, is reflexive, we have, by clause (a), that 7/
dominates 7, so there is j > 0 such that [t [n;] < [t [m,], as needed. O

2.6 The characterization theorem

Now we get to the main result of this chapter: the characterization theorem.
For countable systems it roughly says that, once united, the natural information
containment preorders C from the previous section not only are the only sensible
ones, but they also form the algebraic domain (T, E). We first state and discuss
the theorem (section 2.6.1) and then prove it (section 2.6.2).

2.6.1 Statement

We first introduce two more bits of notation.

2.6.1. DEFINITION. Let M = (A,T,=) be a pre-BTS. For a preorder < on T,
define the induced partial order T(M, <) := (T, <). We denote the elements
[[t]=]« or, if clear from context, simply [[t]]. For [t] € T, we define I4([t]) :=
{[to] € Tein - [to] < [¢]}-

2.6.2. DEFINITION. Let M = (A,T,=) be a pre-BTS. We write IdI(Tg,, <) for
the ideal completion of (Tg,, <). We define IdI(Tf,, <) to be IdI(Tg,, <) if all
[t] € T are approximable, and we define it to be Idl(Tg,, <) with an added top
element T if M has non-approximable trajectories. So IdI(T,, <) is an algebraic

domain (if existent, T is a compact element). We still use C to denote the order
relation in Idl(Tg,, <).

Now the characterization theorem reads as follows. After stating it, we discuss
how it indeed provides the answers we were looking for.

2.6.3. THEOREM. Let M = (A, T,=) be a countable pre-BTS. Let < C T x T be
a relation. The following are equivalent.

1. (a) < is a preorder that coincides with < on Tg,.

(b) For [t] € T not approximable and [t'] € T, (i) [t'] < [t], and (i) if
[t] Q[t], then [t'] is not approximable, as well.

2.6. The characterization theorem 43

(¢) Forinfinitet € T and 0 < ng < ny < ... such that [t [ng| <[t | ny] <
.., we have (i) [t] is an <-upper bound, i.e., for all i >0, [t | n;] <[t],
and (i) for all [to] € Ten, if [to] < [t], then there is i > 0 such that

(d) For approzimable [t],[t'] € T, if, for all [to] € Thn, [to] < [t] implies
[to] Q[], then [t] S [t'].
2. (a) For all approzimable [t] € T, I14([t]) is an ideal in (Tg,, <).

(b) For [t] € T not approximable and [t'] € T, (i) [t'] < [t], and (i) if
[t] Q[t], then [t'] is not approximable, as well.

(¢) For all approximable [t], [t'] € T, [t] Q[t'] iff for all [to] € Thn, if [to] J[t],
then [to] < [t'].

(d) For all trajectoriest € T and 0 < ng < ny < ... such that [t | ng] <
[t [ni] < ..., we have for all [to] € Ten, [to] [t] iff [to] < [t | ni] for
some 1.

3. < s a preorder that coincides with < on Ty, and the mapping

F Tflm_

if [t] is approximable
otherwise

15 a well-defined function and:

(a) ¢ is an isomorphism. In particular, T(M, <) is an w-algebraic domain.

(b) K(T(M,<)) = {[[t] : [t] € Tsn} U{[[t]] € T: [t] not approzimable}.

(¢c) Forall [t € T and 0 < ng < ny < .., if [t Tng) <[t [nm] <...,
<

then [[t]] is the least upper bound in T'(’M, <) of the directed subset
{{ T o]l [t T ma],- } of T(M,).

4. One of the following holds:
(a) <€ {Cy,C3,Cyom} and M is limit-respecting.
(b) 4 =Ly = L.
(¢) 4 =LCv = Chom-
(d) < = Cyom i reflexive.

5. I =0y =LC3=C4om and M 1s limit-respecting.

Here is how the theorem answers the question of which preorders can sensibly
provide an ‘information containment’ ordering on the set of behaviors of a system.
The theorem considers any possible preorder < (or in fact just a relation) that

44 Chapter 2. Trajectory domains 1: Construction

one might have on T. The first two items of the theorem are two formulations of
rather weak demands on < that we would like to be satisfied if < is to provide
any sensible ‘information containment’ relation. The third item shows that these
minimal demands actually are enough to yield some very strong demands that we
would expect in the best case of an informational order of behaviors. The fourth
and fifth item show that there in fact is only one way of defining this information
containment ordering and that this puts an additional demand on the underlying
system: it should be limit-respecting. Let’s discuss this in a bit more detail.

Item 1 lists minimal assumptions on what it means that a preorder < is a
‘sensible extension’ of the information containment preorder < of finite behaviors:
(a) is the demand that < actually is an extension of <. (b) captures the idea
that non-approximable behaviors are ‘completely out of reach’ they form an
<-cluster which is strictly above any other <-cluster. (c) says that if we consider
an infinite trajectory ¢ such that its behavior can be approximated by the behaviors
realized by its initial segments, then (i) each of these initial segments [t [n;] is
informationally contained in [¢], and (ii) if a finite behavior [to] is informationally
contained in [t], then this can in principle be observed (i.e., [to] is already contained
in some step of the approximation). (d) says that, for two approximable behaviors
[t] and [t'], if [t] is not informationally contained in [¢#], then this again can in
principle be observed (i.e., there is some finite behavior that is informationally
contained in [t] but not in [t']).

Item 2 similarly lists an equivalent set of minimal requirements for an informa-
tion containment preorder.

[tem 3 states a very strong demand on an information containment <: that
the partial order that it induces actually is (a) an w-algebraic domain where (b)
the compact (i.e., ‘real’ or finitely accessible) elements precisely are the finite
behaviors and the non-compact (i.e., the ‘ideal’) elements are the infinite behaviors,
and (c) where the limit of a chain of finite behaviors is precisely given by the
infinite behavior realized by a trajectory extending each of the finite behaviors.
In short, ‘finite behavior of the system’ precisely corresponds to ‘compact element
of the domain’ and ‘limit behavior of the system’ precisely corresponds to ‘limit
in the domain’. Thus, questions about the system’s behavior (e.g., concerning
finite observability, consistency, limit behavior) correspond precisely to domain-
theoretic notions (e.g., compactness, being upper bounded, least upper bound).
Of course, we could simply define the ‘trajectory domain’ of a system to be the
ideal completion of Tg,, but this then would precisely lack this correspondence
which is what provides meaning to the ideal completion.

Item 4 says that—focusing on the (a)-condition—that the information con-
tainment preorder < actually has to be one of natural ones Cy, C3, C4o, and the
system has to have the unifying property of being limit-respecting. Similarly for
the other conditions (b)—(d).

Item 5 states that all three natural information containment preorders actually
collapse to the information containment preorder < under consideration and the

2.6. The characterization theorem 45
system is limit-respecting.

2.6.2 Proof

To show the equivalences, we’ll show the following: (3) < (2) = (4) = (5) = (1)
= (2).

(3) = (2) Ad (2)(a). This follows since ¢ is well-defined.

Ad (2)(b). If [¢{] € T is not approximable and [t'| € T, then (([[t']]) C T =
t([[t]), so, qua isomorphism, [[¢']]<[[t]], so [¢'] <[t]. And if [t] < [t], then [[t]@[[],
50, qua isomorphism, T = «([[¢]]) € «([[t']]), so, qua top element, ([[t']]) = T, so
[t'] must be non-approximable (if it were approximable, ([[t']]) = I4([t]) Would be
in IdI(Tg,) and hence not the top element of IdI(Ty)).

Ad (2)(c). By the order isomorphism condition we have, for all approximable
t],[t'] € T that

1] <[] < [N < 1o([t]) € 1a([t]) < V]to] € Tan : [to] D [t] = [to] S [t']

Ad (2)(d). Under the assumptions, I := {[t'] € Tpo : Ji : [¢'] < [t | n]}
is an ideal: It is nonempty, since [t | no] € I. It is a downset and directed
by construction. Moreover, by (3)(c), [[t]] is the least upper bound of A :=
{lt T nol],[[t T ma]],...} in T(M, <). Since ¢ is an isomorphism and since [¢] is
approximable by assumption,

Lo([t) = (1) = u(\/ 4) = \/ a UI< nl) =1,

a€A

where for the last identity we use that < agrees with < on Ty,. Hence, for all
[to] € Thn, we have [to] < [t] iff [to] € I«([t]) iff [to] € I iff [to] < [t | ni] for some i.

(3) <= (2) First note that, by (2)(b)—(c), < is a preorder (reflexive and transi-
tive).?? And by (2)(d), < coincides with < on T, because: Given [t], [t'] € T,
choose n; :== [t/| + 1+, then 0 <ng <mny <...and [t [n;] <[t | ni1] (because
they all equal [t']), whence, for [ty] := [t], we have [t] < [¢'] iff there is i with
] <[t T'ni] = [t').

Next, we show that the mapping ¢ is well-defined. By (2)(a), I4([t]) is indeed
an ideal, whence in IdI(Tg,). And the mapping is unique: For [t], [t'] € T, assume
[t] <[t'] and [t'] < [t] and show either both are non-approximable (and thus both

29Reflexive: Given [t] € T, if [t] is not approximable, then [¢t] < [t] by (2)(b), and if [t] is
approximable, then [¢] < [¢] by (2)(c). Transitive: Given [¢] <[] <[¢"'], if [¢”'] is not approximable,
then, by (2)(b), [t] Q[t"], as needed, so let [t”] be approximable. Then, since [t'] < [t"'], (2)(b)
implies that [¢'] is approximable, too, and similarly [t] < [¢'] implies that [¢] is approximable. So
we can apply (2)(c) to [t] < [t'] < [t”] and get that, for all [tg] € Thn, if [to] < [¢], then [to] < [t”],

s0, by (2)(c), [t] S [t"].

46 Chapter 2. Trajectory domains 1: Construction

get mapped to T) or both are approximable and I4([t]) = I4([t']). If [t] is not
approximable, then, since [t] < [t'], by (2)(b), also [t] is not approximable. So
assume [t] is approximable. Then also [t'] is approximable (for otherwise [t'] < [t]
implies, by (2)(b), that [¢] is not approximable). Then we have I4([t]) = I4([t']),
because if [tg] € I4([t]), then [to] € Tq, and [to] < [t] < [t'], so, by transitivity,
[to] € I4([t']), and similarly for the other direction.

Ad (3)(a) We need to show that ¢ is surjective and an order-isomorphism (this
implies injectivity).

Surjective. If IdI(T¢,) has an added top element T, then T has a non-
approximable element [t], and T has a preimage, namely [[t]]. So we need to show
that, given an ideal I C T, there is an approximable [t] € T such that I = I4([t])
(since then ¢([[t]]) = I).

Since the system M is assumed to be countable, there are only countable many
finite A-trajectories, so Tg, is countable, too. So I is a directed subset of the
countable preorder (Tg,, <), so there is a cofinal sequence C' = ([t;])i>0-

If C stagnates with [t,,] (i.e., for all i > n, [t;] = [t,]), then, for all [t'] € I,
[t'] < [tn] (by cofinality), so I C {[t'] € Ts, : [t'] < [ta]}. We also have D
since [t,] € I and I is a downset. Thus, since < and < agree on Tg,, we have
I'={[t'] € Thn:[t'] < [ta]} ={[t'] € Thin : [t'] < [tn]} = I<([tn]). So [t,], which is
approximable qua finite trajectory, is the required element of T.

So assume C' doesn’t stagnate (i.e., for all [¢;] there is j with [t;] < [t;]).
Without loss of generality, assume that [to] # [e] and [t;] < [t;41] for all ¢ > 0
(otherwise we pick a subsequence of C' with this property which then still is cofinal
in). We construct ¢t € T and 0 < ny < ny < ... as follows. Set t, := ty and
no = [to] > 0 (if np = 0, then [to] = [¢]). Given ¢, € [t;] and n; = [t}|, we can,
since [t;] < [ti1], extend t] to some ;. € [t;11], and since [t;] # [ti;1] we have
n; = |t;| < |ti;1| =t nip1. We define the sequence t(k) = t;(k) for some i such
that |t;] > k. This is well-defined since the ¢ get arbitrarily long and extend each
other. Moreover, we claim that ¢t € T'. First, t is infinite and an A-trajectory since
each t(k) is in — 4 and the ending state of ¢(k) is the starting state of t(k 4 1).
Second, for i > 0, we have t [n; =t, € T and [t [n;] = [t;] < [tis1] = [t | niga].
So axiom (2) implies t € T.

Thus, [t] € T which has the approximation 7 := (¢, (n;)). So it remains to show
I = I4([t]). Indeed, by 2(d) we have for all [to] € T#n, [to] < [t] iff [to] < [t | ny] for
some i. Thus, if [ty] € I, then, by cofiniality, [to] < [t;] = [t | n;] for some i, so
[to] < [t], whence [to] € I4([t]). And if [to] € I«([t]), then [to] < [t], so, for some
i >0, [to] <[t mni]=1It] €I, so,since I is an ideal, [to] € I.

Order-isomorphism. For [t],[t'] € T, we need to show that [[¢t]]<[[']] iff
(1)) < o({[#']])- _

If [t'] is not approximable, then, by 2(b), [t] < [t'], so [[t]]<[[']] and ¢([[t]]) C
T = ([[t']]). So assume that [t'] is approximable.

First, assume [t] is not approximable. Then we cannot have [t] < [t] by 2(b)
and we also cannot have ¢([[t]]) C «([[t']]) since the former is T but the latter is in

2.6. The characterization theorem 47

ldI(Tgp, <).
So assume that both [¢] and [t] are approximable. Then we have

IS & [<[] Vito] € Ton : [to] D[] = [to] <[]
e

o]
& 1o([t]) € La([t]) < (1) < (1D,

as needed.

Ad (3)(b). The compact elements of Idl(Tg,) are the principal ideals (those
of the form |[to] = {[t'] € Thin : [t'] < [to]} for [to] € Thn) and, if existent, the top
element. Qua isomorphism, K (T(M, <)) =~ (K (IdI(Tfn))). So we show

A=Y (K(dI(Tsn))) = {[[t]] : [t] € Tan} U {[[t] € T : [t] not approx.} =: B.

(Q) If [[t]] € A, then ¢([[t]]) is compact. If [t] is not approximable, then
[[t]] € B, so let [t] be approximable. Then «([[t]]) = I4([t]) is an ideal (and not
the top element), so, qua compactness, ¢([[t]]) = |[to] for some [tg] € Tg,. Since <
and < agree on Tg, and [to] is approximable, we further have

([[t]) = Jto] = {[t] € Trin = [¢'] < [to]} = La(fto]) = e([[to]]),

so, since ¢ is injective, [[t]] = [[to]] € B.

(D) Let [[t]] € B, i.e., [t] € T, or [t] is not approximable, and show ¢([[t]]) is
compact. If [¢] is not approximable, then ¢([[t]]) = T is compact, so [[t]] € A. So
[t] € Tfn. Then, since < and < agree on Tr,, we have «([[t]]) = I«([t]) = {[t'] €
Tan : [t'] < [t]} = L[t] is compact, so [[t]] € A.

Ad (3)(c). Let tfj e Tand 0 <ng <ng < ... with [t [no] <[t [n] <.... In
particular, [¢] is approximable. Write A := {[[t | no]], ([t | n1]],... }. Also, each
[t | n;] is, qua finite trajectory, approximable. Then, since ¢ is an isomorphism
and < and < agree on Ty,

L(\/ a \/ UI<1 n;] [to] € Thn = 3i . [to] <[t f”z]}

"D {[to] € Thn : [to] < [} = La () = u([[1])-

Since ¢ is injective, [[t]] =/ 4, as needed.
(2) = (4) We show that (4)(a) holds by showing that (i) < = C3 and (ii) M is
limit-respecting. We first show that

(%) For all [t] € Tg, and approximable [t'] € T, we have [t]IF3[t'] iff [t] < [¢].

(=) If [t]lFs[t'], then, since [t'] is approximable, there is an approximation
(t*, (m;)) to [¢'] and j > 0 such that [t] < [t} | m;]. By (2)(d) applied to t* and
[to] := [t], we have [t] < [tH] = [¢'].

48 Chapter 2. Trajectory domains 1: Construction

(<) Assume [t] < [#']. Since [t'] is approximable, let (t}, (m;)) be an approxi-
mation to [¢']. By (2)(d) applied to t* and [to] := [t], we have that [¢t] < [t'] = [t}]
implies that there is j such that [t] < [t} | m;]. So [t]IFs[t'].

Ad (i). Now, let [t],[t'] € T and show [t] < [¢/] iff [¢t]C3[t/]. If [t/] is not
approximable, then, by (2)(b), [t] < [t']. And by lemma 2.5.5, [t]C5[t']. So assume
that [t'] is approximable. If [t] is not approximable, then, by (2)(b), we cannot
have [t] < [t'] (otherwise [t'] is not approximable). And, by definition of C3, we
also cannot have [t]C5[t'] (since clause (b) is violated).

So let both [t] and [t'] be approximable. Then we have

(2)()

[t] < [t V[to] € Tan : [to] L [t] = [to] < [t

B Vte] € Tan : [tollFalt] = [ollFslt] < [T,

where the last equivalence holds since the clause (b) in the definition of C3 is
trivially satisfied if [t] is approximable.

Ad (ii). Let t € T be infinite and 0 <ng <n; < ...and 0 <mg < mq < ...
such that [t [ng) <[t [n] <...and [t [mo] <[t [my] <.... Let i > 0 and find
J > 0 such that [t [n;] <[t [my].

Note that [t | n]lFs[t] since 7 = (¢, (n;)) is an approximation to [t] and
[t [n;] <[t] n]. Inparticular, [t] is approximable, so, by (), we have [t [n;] <[t].
Now, by (2)(d) applied to t and 0 < my < m; < ... and [tg] = [t [ni], the fact
that [t [n;] <[t] implies that there is j > 0 such that [t [n;] < [t [m;], as needed.

(4) = (5) Each of the conditions (4)(a)—(d) ensures that <isin {Cy, T3, Cyom}
and one of the conditions (1)—(6) of proposition 2.5.8 is satisfied. Thus, that
proposition implies Cy = C3 = Cyo, and M is limit-respecting, and the claim
follows.

(5) = (1) Ad 1(a). This follows from < = Cy and lemma 2.5.4 (1) and (2).

Ad 1(b). Let [t] € T be non-approximable and [t'] € T. Concerning (i), [t'] <[]
follows from < = Cy and lemma 2.5.4 (5). Concerning (ii), if [¢t] < [t], then, by
< = Ly and the definition of Cy, also [t'] is not approximable.

Ad 1(c). Let t € T be infinite and 0 < ng < ny < ... such that [t [ng] <[t |

Concerning (i), let ¢ > 0 and show [t [n;] < [t]. Indeed, (¢,(n;)) is an
approximation to [t] and [t [n;] < [t [n;]. Hence [t | n;]lF3[t], so, by lemma 2.5.5,
[t | n;]C3]t], so the claim follows from < = C3.

Concerning (ii), let [to] € Thn with [to] < [t]. Show that there is ¢ > 0 such that
[to] <[t | ni]. Since < = Cy, we have, by lemma 2.5.4 (3), that [¢o]lFy[t]. Since
(t,(n;)) is an approximation to [t], there is i > 0 such that [tg] < [t | n;]. Since <
coincides with Ty = < on Ty, [to] D[t | i, as needed.

2.7. Behavioral transition systems 49

Ad 1(d). Let [t],[t'] € T be approximable such that, for all [tg] € T#n, [to] <[]
implies [to] J[t']. Show [t] <[t']. Indeed, since < = Cy, we have, by lemma 2.5.4 (4),
that [t|Cy[t'], ie., [t] <[]

(1) = (2) We prove the items in a different order than stated. Ad (2)(b). This
is implied by—or, rather, identical to—(1)(b).

Ad (2)(d). Let t €e T and 0 <my <mny <...bewith [t [ng] <[t [n] < ...
Let [to] € Tgn and show [to] < [t] iff [to] < [t | ny] for some i.

If ¢ is finite, then, there is j such that n; > [¢| and, by (1)(a), we have [to] < [¢]
iff [to] < [t] = [t | n;] iff [to] < [t | ny] for some 4, where the reverse direction
holds since [t [n;] < [t | n;]: if ¢ < j this holds by assumption, and if ¢ > j, then

So let ¢ be infinite. If [¢o] <[t], then, by (1)(c)(ii), there is i such that [to] [t | ny,
whence, by (1)(a), [to] < [t | ni. If [to] < [t | n;] for some i, then, by (1)(c)(i),
[to] < [t [ni] Q[t], so, by (1)(a), [to] < [¢].

Ad (2)(c). One direction already follows from (1)(d). For the other direction,
let [t], [t'] € T be approximable with [t| < [t/]. Let [to] € Tq, with [to] < [t]. Show
[to] < [t'].

Since [t] is approximable, let (¢, (n;)) be an approximation to [t]. Since
[to] <[t] = [tT], there is, by (2)(d) applied to T, some i > 0 such that [to] < [tT | n,].

If ¢T is finite, there is j > i such that n; > ||, so [to] < [tT | n] < [tT [ny] =
[t1] = [t] < [t]. Thus, by (1)(a), [to] < [¢'].

If ¢1 is infinite, then, by applying (1)(c)(i) to t" and (n;), we have [to] < [tT |
i) Q] = 1] < [¢). Thus, by (1)(a), [to) < [#].

Ad (2)(a). Let [t] € T be approximable and show that I4([¢]) is an ideal in
Tfn. Let (7, (n;)) be an approximation to [].

It is nonempty: We have [t7 | ng] < [t | ngl, so, by (2)(d) applied to t', we
have [t | ng] < [t], whence [t! | no] € I4([t]).

It is a downset: Let [t"] < [t'] € I4([t]). So [t"] < [t'] < [t], whence, by (1)(a),
"] < [t], so [t"] € Ia([t])-

It is directed: Let [t'], [t"] € I«([t]) and find [¢o] € 14([t]) such that [t'], [t"] <
[to]. So [t'] < [t] = [t!] and [t"] < [t] = [t!]. Hence, by (2)(d) applied to ¢', there is
i >0 and j > 0 such that [¢'] < [t' | n;] and [¢"] < [t' | n;]. Let k := max(i, j)
and define [to] := [t | k]. Then [t'], [t"] < [to] and [to] < [t! | k], so, by (2)(d)
applied to tT, [to] < [tT] = [t]. Hence [to] € I4([t]).

This completes the proof of theorem 2.6.3.

2.7 Behavioral transition systems

Guided by the previous sections, we define behavioral transition systems (BTSs) as
pre-BTSs that are limit-respecting, and we discuss examples and basic properties.

50 Chapter 2. Trajectory domains 1: Construction

2.7.1 Definition

The preceding two sections strongly suggest one additional axiom for the notion
of a pre-BTS M = (A, T,=): namely, requiring it to be limit-respecting.

First, this will make the three natural candidates for information containment
coincide (and be a preorder). Thus, being limit-respecting ensures that we can
define a satisfying notion of information containment. This was the (i)-requirement
for the structures (A, T, =) that we've identified in section 2.3.3.

Second, for countable pre-BTSs, being limit-respecting ensures that this natural
notion of information containment also is the only one satisfying the rather mild
constraints laid out in item 1 of the characterization theorem (theorem 2.6.3).
So the information containment of the structure (A, T, =) is unique in a certain
sense.

Third, this also implies that the partial order induced by the information
containment preorder is an w-algebraic domain. (We'll call it the trajectory
domain and study it in the next section.) This was the (ii)-requirement for the
structures (A, T, =) that we’ve identified in section 2.3.3.

In short, being limit-respecting is (a) necessary to be able to define a sensible
notion of information containment and (b) it also already is sufficient for that
notion to be in a sense unique and to yield a domain of behaviors. In other words,
there is no other possible axiom in between satisfying the weaker (i)-demand and
the stronger (ii)-demand.

This stability suggests that a good axiomatization for the structures (A, T, =)
is to be a pre-BTS that is limit-respecting.

2.7.1. DEFINITION. A behavioral transition system (BTS) is a pre-BTS M =
(A, T,=) that is limit-respecting (see definition 2.5.7). We call Ty, :=Cy = C3 =
Cdom the information containment preorder of M (see definitions 2.5.3 and 2.5.6).
We drop the subscript ‘M’ when clear from context. We call M countable if A is
countable.

Now that we’ve defined BTSs, it’s high time to consider examples: Both the
‘black box’ and ‘concurrency’ examples from section 2.3 and the examples of
pre-BT'Ss from definition 2.4.5 (extensional, temporal, and intensional equivalence)
are, in fact, BTSs. To see this, and many more examples, it will be useful to first
introduce some simplifying properties.

2.7.2 Simplifying assumptions

We introduce the following simplifying assumptions on a pre-BTS which help to
show being limit-respecting.

2.7.2. DEFINITION. Let M = (A, T,=) be a pre-BTS. We call M

2.7. Behavioral transition systems o1

1. bisimulative if, for all nonempty finite ¢,¢' € T, if t = t' and ttg € T extends
t by one element, then there is a finite extension t't; € T of ¢’ such that
tto = t't;. (Note that t't; need not be a one-element extension.)

2. extendable if, for all nonempty finite ¢,¢' € T, if t = t' and tt” € T is finite,
then t't” € T and tt" = t't".

3. restrictable if, for all nonempty finite ¢,t tto, t't; € T, if t = ¢’ and ttg = t'ty,
then, for any t <ty < tty, there is t' < t3 < t't; with ¢ty = t3.%°

4. full (resp., full.) if T" is the set of all (nonempty) A-trajectories.

5. extenstonal if = is extensional equivalence.

We've encountered (2) as property (d) in section 2.3. The following proposition
states how these properties are simplifying.

2.7.3. PROPOSITION. Let M = (A, T,=) be a pre-BTS. Then
1. M s bisimulative iff for all finite t,t' € T, if t <, then [t] < [t'].

2. We have the following implications:

full, € extens. =
extendable = bisimulative <
full & extens. = limit-respecting
restrictable =

3. If M is bisimulative, then, for allt € T, [t] is approzimable.

4. If M is bisimulative, the information containment C is well-defined (since
M is limit-respecting) and, for all t,t' € T,

[HC[t] < Vn>03m >0:[t [n] < [t' | m].

PROOF. Ad (1). (=) If t is empty, then [t] < [¢'], so let ¢ be nonempty. And if
t =1, then [t] < [t'], so let t < t'. To show [t] < [t'], let ty € [t] and find t; € [t']
with ¢y < ¢;. Consider the one-step extension tt'(n + 1) of t where n := |t| — 1.
Since t = ty, there is a finite extension tot* € T such that tt'(n + 1) = tot'. If
tt'(n+1) = ', we choose t; := tot!, and if not we continue this way: Consider the
one-step extension t#'(n + 1)t'(n + 2) of t#/(n + 1). Since tt'(n + 1) = tot', there is
a finite extension tot't? € T such that tt'(n+ 1)t'(n + 2) = tot't?. Since ¢’ is finite,
we will eventually obtain an extension t; € T of to such that ¢’ = ¢, as needed.

30Note that to and t3 are nonempty initial segments of trajectories in 7" and hence in 7T

52 Chapter 2. Trajectory domains 1: Construction

(<) To show that M is bisimulative, let ¢,¢ € T be finite with ¢t = ¢’ and
tty € T a one-step extension. So tty is finite, too, and, by the assumption, [t] < [tto].
Hence, t' € [t] can be extended to some t't; € T with t't; = tt,.

Ad (2). (full & extensional=-extendable) Let ¢, € T be nonempty finite with
t =t and tt” € T finite. By extensionality, ¢ and ¢’ have the same last state.
Thus, also t't” is an A-trajectory. Since M is full, ¢'t” € T. Since tt” and t't” have
the same last state and are finite, extensionality implies tt” = t't”.

(full. & extensional=-extendable) As above: now t't” is in T since it is a
nonempty A-trajectory (since ¢’ is nonempty).

(extendable=-bisimulative) Let t,#' € T' be nonempty finite with ¢ = ¢’ and
ttg € T a one-step extension. In particular, ¢ty € T is finite. By being extendable,
t'ty € T is a finite extension of ¢ and tty = t'ty, as needed.

(bisimulative=-limit-respecting) Let ¢t € T' be infinite, and let (n;); and (m;); be
strictly increasing sequences of positive integers such that ([t [n;]); and ([t | m;]);
are <-increasing. (In particular, ¢ [n;,t [m; € T for all and j.) Let ¢ > 0 and
find j7 > 0 such that [t [n;] < [t [m;]. Choose j > 0 such that m; > n;. Then
t [n; Xt [m; are finite trajectories in 7. Since M is bisimulative, the equivalent
condition from (1) implies [t [n;] < [t [m,], as needed.

(restrictable=-limit-respecting) Let ¢ € T be infinite, and let (n;); and (m;); be
strictly increasing sequences of positive integers such that ([t [n;]); and ([t | m;]);
are <-increasing. Let ¢ > 0 and find j > 0 such that [t [n;] < [t | m;]. Choose
j > 0 and k£ > i such that n; < m; < ng. To show [t [n;] < [t [my], let
to € [t [n;] and find t, € T with ¢, < t, =t [m;. Since [t [n;| < [t | ng], there
is tot € T with t,ty =t [ng. Write ¢t [np =t [nitg € T and ¢y := ¢ [m;. So
tIn; =t,and t | nitg = t,t; and t [n; 2ty <t | n;tg. By being restrictable,
there is t, < t;, < t,t; such that t3 = t;,. So t;, has the required properties.

Ad (3). Since, by (1), extension implies <, (¢, (i + 1);>0) is an approximation
to [t].

Ad (4). (=) Let n > 0 and find m > 0 such that [t [n] <[t/ [m]. If n =0,
choose m := 0, so let n > 0. As just seen, 7 = (¢, (n;)) with n;, = i + 1 and
7" = (t',(m;)) with m; = j + 1 are approximations to [t] and [t'], respectively.
Since [t|C[t'] and C = Cyom, 7" dominates 7, so, for i :==n —1 > 0, there is j > 0
such that [t [n] = [t [n;] < [t | m,], and we choose m :=m; > 0.

(<) We show [t|C35[t']. Clause (b) of C3 is vacuously satisfied, since any |[t]
is approximable. For clause (a), let [to] € Tg, with [¢o]lF3[t] and show [to]lF3[t'].
Since M is a limit-respecting, the orders C3 and Cy agree, so, by lemmas 2.5.5
and 2.5.4, [to]lF3[t] implies [to]lFy[t]. Again, 7 = (¢, (i + 1);) and 7" = (¥, (j + 1);)
are approximations to [t] and [t'], respectively. Thus, since [to]lFy[t], there is
i > 0 such that [to] < [t [i+ 1]. By the assumption, there is m > 0 such that
[t i+ 1] <[t' | m]. Hence, for j :=m, [to]) < [t' | m|] < [t | j + 1], whence
[to]lF3[t']. O

2.7. Behavioral transition systems 23

2.7.3 Examples

We discuss several examples (and non-examples) of BTSs. The first three are
‘positive’ in the sense of providing BTSs, while the last three are ‘negative’ in the
sense of showing that various assumptions that we’ve discussed are not vacuous.

We start with the two guiding examples of ‘black box systems’ and ‘concurrency’
and the extensional, temporal, and intensional equivalence construction: they are
all extendable BTSs.

2.7.4. EXAMPLE. (1). In the guiding examples from section 2.3, we’ve considered
structures (A,T,=) where A is an LTS, T a set of A-trajectories, and = an
equivalence relation on 7" such that properties (a)—(d) are satisfied. Such structures
are extendable BTSs: As seen before, properties (a)—(c) ensure that they are
pre-BTSs and property (d) is that of being extendable.

(2). If Ais an LTS, T the set of all (nonempty) A-trajectories (starting in i,)
as in example 2.4.3, and = any of the examples from definition 2.4.5 (extensional,
temporal, or intensional equivalence), then M := (A, T,=) is a extendable BTS:

Indeed, we know already that M is a pre-BTS, so we need to show that M
is extendable. This is done as in the ‘full & extensional’ case above: If t,t' € T
are nonempty finite with ¢t = ¢’ and ¢t” € T finite, then, for all the above choices
of =, we have last(t) = last(¢’). Thus, also t't" is an A-trajectory. And t't" is a
(nonempty if ¢’ is nonempty) A-trajectory (that starts in i if ¢’ starts in i4), so
t't" is again in T'. Finally, tt” = t't” for any of the above choices for =: since t = t/,
tt” and t't” have the same last state, and the same length if ¢t and ¢’ have the same
length, and the same label-sequence if ¢t and ¢’ have the same label-sequence.

There is a natural way to generalize extensional equivalence: rather than
demanding the last states to be identical, one can demand them to be in a
bisimulation relation. (This is a generalization since the identity relation on states
is a bisimulation.) This yields bisimulative BTSs and does justice to the term
‘bisimulative’.

2.7.5. EXAMPLE. Let A be an LTS and let ~C S4 X S4 be a bisimulation (see
e.g. Sangiorgi 2012, ch. 1): for all s &~ s’ and o € Ly,

e Forth: If 33>30, then there is s; € S4 with &5, and s &~ s;.
e Back: If &5, then there is so € Sy with s—s¢ and so ~ 1.

Also assume that = is an equivalence relation. This is the case if ~ is identity
(as in extensional equivalence). The coarsest choice is bisimilarity: s ~ s’ iff there
is a bisimulation & such that s ~ 5.

Let T be the set of all A-trajectories and let = be generated (in the sense of
proposition 2.4.4) by: for t,t' € T nonempty finite, ¢ = ¢’ iff last(t) ~ last(t').

54 Chapter 2. Trajectory domains 1: Construction

So M = (A, T,=) is a pre-BTS, and we see that it is bisimulative: Assume
t,t" € T are nonempty finite with ¢ = ¢’ and tty € T is a one-step extension. Write
to = (s,,80). Then s = last(t) ~ last(t) =: s’. By the forth condition, there
is 5, € Sy with s'%5s; and sg ~ s1. Let t't; := t/(s',, s1). Since T is the set of
all A-trajectories, t't; € T, and, since last(tty) = so ~ s1 = last(t't;), we have
tto = t'ty.

Next, here are examples of restrictable BTSs:

2.7.6. EXAMPLE. (1). Insection 2.3.2, we've introduced transition systems A with
independence I and said that the independence relation I induces an equivalence
relation on the set T of all A-trajectories: t = ¢’ iff |t| = |¢'| and, for n < |¢], t(n)
and t'(n) are occurrences of the same event. This straightforwardly yields a pre-
BTS M = (A, T,=), and M is restrictable: Assume ¢, tty,t't; € T are nonempty
finite with ¢t = ¢’ and ttqg = t't;. If t <ty < tty, let n be such that t, = tty | n,
then, since tto and t't; are the same sequences of events, also t, = ttg [n and
ts := t't; | n are the same sequences of events, and, since [t| = |t'|, t' < t3 <X tt;.

(2). In model checking, one adds to an LTS A an interpretation function I
assigning each state s € S a subset I(s) of a set of atomic propositions (see
e.g. Baier and Katoen 2008). Intuitively, I(s) is the set of basic properties of s
(or observations about s). The trace of a trajectory t = S0 5, 2L .. then is
the sequence I(sg), 1(s1),.... So we can choose T as the set of all A-trajectories
and = as having the same trace (i.e., being ‘observationally equivalent’). This
straightforwardly yields a pre-BTS M = (A, T,=), and M is restrictable similarly
as in (1) above.

Now to the ‘negative’ examples. First, we now can see more precisely why
we generally cannot appropriately define information containment for infinite
behaviors just like for finite behaviors:

2.7.7. EXAMPLE. Consider the following LTS A:

< s

S
~_—

and let T be the set of all A-trajectories and = extensional equivalence. In
particular, M = (A, T, =) is a countable bisimulative pre-BTS.

Assume we’d define information containment for all behaviors like for finite
ones: [t] < [t'] iff Yty € [t|Ft1 € [t1] : to = t1. As discussed, saying that this
is an appropriate definition of information containment means that < satisfies
one of the equivalent items (1)—(5) of theorem 2.6.3. But then < = C;; and,
by proposition 2.7.3 (4), [t] < [¥'] iff VnIm : [t | n] < [t' | m]. So these two
characterizations of [t] < [t'] should be equivalent.

However, consider the two infinite A-trajectoriest =7 — s — i — s — ... and
t'=1—1—1i—.... Then Vnam : [t [n] < [t' | m] (since there is always a path

2.7. Behavioral transition systems 5}

from last(t | n) to last(t' [m)). But we do not have Vt, € [t|3t; € [t1] : to = ty:
Otherwise ¢ can be extended to t; = t/, whence t = t; and t = t/, so ¢t and ¢’ would
have the same tail.

The following example shows that the countability assumption in theorem 2.6.3
is necessary. The assumption was used when showing that ¢ is surjective by
employing the fact that a countable directed set has a cofinal chain. This fact
fails for uncountable directed sets, and the usual counterexample inspires the
example (see e.g. Abramsky and Jung 1994, exercise 2.3.9 (6)).

2.7.8. ExaMPLE. Consider the LTS A = (S, 1, L, —) where S is the set of finite
subsets of the real numbers (so A is uncountable), i := (), L := {a}, and 5 = &'
iff s Cs'. Let M := (A, T,=) where T is the set of all A-trajectories and = is
extensional equivalence. So M is an uncountable BTS, and we show that (T, E)
is not an w-algebraic domain: it even fails to be a dcpo. Indeed, A := {[[t]] : t €
T nonempty finite} is a directed subset of T, but A cannot have an upper bound
[[t]] € T for some ¢ € T, since then |J, s(t)(n) = R (using proposition 2.7.3) would
be countable.

Finally, here is a small example to illustrate how being limit-respecting can
fail in a pre-BTS.

2.7.9. ExaMPLE. Consider the following unlabeled transition system A where
state s; has the color red and the states sy and s3 have the color green:

red green
—

31_733;>
?

Let T be the set of all A-trajectories starting in ¢ and = is generated by: for
t,t' € T nonempty finite, ¢t =t iff last(¢) and last(¢) have the same color.

So M = (A, T,=) is a pre-BTS, but it is not limit-respecting: Consider
t=1i— 8 — Sy — 8 — ... € T. Let (n;) be the sequence 2 < 4 < ... of even
numbers, and let (m;) be the sequence 1 < 3 < ... of odd numbers. So ¢ | n; ends
in the green state sy and t [m; ends in the red state s;. Hence t [n; =1 [niq
and, in particular, [t [n;] <[t | niq]. Similarly, [¢ [m;] <[t [m;41]. However,
for ¢ := 0 there is no j > 0 such that [t [n;] < [t [m;] because ty =i — s3 €T
ends in a green state and hence is in [t [n;], but the only extensions are of the
form ¢y := ¢ — s3 — s3 — ... and hence never end in a red state, so cannot be in

56 Chapter 2. Trajectory domains 1: Construction

2.8 Trajectory domains

As mentioned, the additional axiom of being limit-respecting is not only enough
to define a sensible information containment ordering, it also is sufficient, in the
countable case, for this ordering to yield a domain of behaviors:

2.8.1. DEFINITION. Let M = (A,T,=) be a countable BTS. In the notation
of theorem 2.6.3, we call the w-algebraic dcpo T(M) := T(M,C) = (T,CE) the
trajectory domain of M.

This raises the question: which w-algebraic domains can be obtained (up to
isomorphism) as trajectory domains of countable BT'S? The answer is: all of
them.!

2.8.2. THEOREM. For every w-algebraic domain D, there is a countable BTS M
such that D is isomorphic to T(M). Moreover, M can be chosen to be full. and
extensional.

PROOF. If D is the empty domain, choose A := ({i},,0,0) and T as the set of
all nonempty A-trajectories (i.e., T'=()) and = as extensional equivalence (i.e.,
==()). So M := (A,T,=) is a BTS that is countable full, and extensional and
T(M)=0=D.

So let D be nonempty. Define the LTS A = (S, i, L, —) by:

e S := K(D) (since D is nonempty, the set of compact elements K (D) is
nonempty),

e i is any fixed element of K (D).
e L = {a} for some object a.
e s 5 ¢ iff s<s (in D).

Let T be the set of all nonempty A-trajectories, and let = be extensional equiva-
lence. So M := (A, T,=) is a full, and extensional BTS and M is countable since
A is countable (because K (D) is countable).

We show that (Tg,, <) = (K(D),<). Then, by theorem 2.6.3 and the fact
that M has no non-approximable elements,

T(M) 2 1dl(Tgn) = dI(Tg) = IdI(K (D)) = D,

3n the context of concurrent computation (section 2.3.2), this question has been investigated
for the domain constructions used there: see Droste (1990), Bracho and Droste (1994), and Stark
(1990). Given that BTSs are a considerable generalization of the transition systems considered
there, we should expect a considerable larger class of domains—indeed, the largest possible as
the theorem shows.

2.9. Generalizations of information systems 57

where the last isomorphism is a basic fact about algebraic domains.

We define ¢ : Th, — K (D) by ¢([t]) = last(t). This is well-defined: If [t] € T,
for t € T', then t is finite nonempty, so last(t) is defined. And if [t] = [t'], then
last(t) = last(t') by extensional equivalence. This is injective: If [¢] # [¢'], then
t # ', so last(t) # last(t'). And surjective: If + € K(D), then t := 25z is a
nonempty finite trajectory in A, so [t] € Tg, and (([t]) = last(t) = x.

It remains to show that ¢ is an order-isomorphism. Let [t], [t'] € T, and show
(1] < [T ff o ([t]) < o([2]).

Assume [t] < [t']. Hence t can be extended to t; = t'. So there is a trajectory
from last(t) to last(t;) = last(#'). Since s = s’ implies s < §', we have (([t]) =
last(t) < last(t') = «([t']).

Assume ([t]) < «([t']). Then last(t) = «([t]) < «([t']) = last(t'). So t; :=
t(last(t), o, last(t')) € T is an extension of ¢ with t; = t/. Since M is bisimulative,
1] < [ta] = [¢). a

An important corollary is that for every BTS there is a particularly simple
one which has the same behavior:

2.8.3. COROLLARY. For every countable BTS M there is a countable full. and
extensional BTS N such that M and N have the same behavior in the sense that
their trajectory domains are isomorphic.

2.9 Generalizations of information systems

We argue that we can regard the notion of a BTS and their induced trajectory
domains as a generalization of the well-known notion of a Scott information system
and their induced Scott domains.

2.9.1 Scott information systems ...

Scott information systems were introduced by Scott (1982). They are important
both as a technical tool for ‘doing domain theory’ (by representing Scott domains
through their more manageable bases) and as a conceptual tool for motivating
domains and providing connections to other fields (event structures, logic, locale
theory, etc.). For references see Winskel (1993, sec. 12) and Abramsky and Jung
(1994, sec. 8.1.4), and for a general categorical treatment see Edalat and Smyth
(1993). Here we'll use the definition of Winskel (1993, ch. 12).

2.9.1. DEFINITION. An information system is a triple I = (U, Con,) where U is
a countable set (information tokens), Con is a non-empty class of finite subsets of
U (consistent sets), and = C (Con \ {0}) x U (entailment relation) such that

1. If X CY € Con, then X € Con.

58 Chapter 2. Trajectory domains 1: Construction

2. If a € U, then {a} € Con.
3. If X F a, then X U {a} € Con.
4. If a € X € Con, then X I a.

5. f XY € Conand X Y (i.e., X Fbforall b €Y), then Y F a implies
X Foa.

An element of I is a subset x C U such that

1. #0
2. If X C x is finite, then X € Con.
3. If X Cx and X I a, then a € x.

The set of elements of I is denoted |I]. For X € Con, define X := {a € U : X I a}.

The point of information systems is that they induce domains (see e.g. Winskel
1993, prop. 12.8): Ds([/) := (|I|, C) is an w-algebraic dcpo where every nonempty
subset with an upper bound has a least upper bound.??> The compact elements
are of the form X for () # X € Con.

Some useful basic facts are the following:

2.9.2. LEMMA. Let I = (U, Con,) be an information system. Then
1. Monotonicity: ForY C X € Con, if Y - a, then X I~ a.
2. If X € Con and X + {ay,...,a,} (n>1), then X U{ay,...,a,} € Con.

3. IfX,Y € Con and XY (ie, X+ Y and Y F X), then X =Y.

PROOF. Ad (1). By axiom 1, Y € Con. By axiom 4, X Fbforallbe Y C X, so
X FY. Since Y I+ a, axiom 5 implies X F a.

Ad (2). First, we have X F ay, so, by axiom 3, X U {a;} € Con. Now,
we proceed inductively for i = 2,... ,n: Assume X U {ay,...,a,_1} € Con, and
show X U{ay,...,a;} € Con. We have X F ;. By monotonicity, since X C X U
{CLl, R ,ai_l} S COI’], also XU{CLl, . 7CL¢_1} Foa;. By axiom 3, XU{al, cee ai_l}U
{a;} € Con, as needed.

Ad (3). Let a € U and show X F a iff Y F a. If X F a, then, since Y F X
axiom 5 implies Y I a. Similarly for the other direction. O

32Such domains hence are Scott domains without, possibly, a least element, whence they also
are called Scott predomains.

2.9. Generalizations of information systems 59

2.9.2 ... and their generalizations as BTSs

We show that we can interpret an information system [as a countable BTS Mj
such that the trajectory domain T(M;) of M is isomorphic to the domain Ds(])
induced by I. In that sense, we can regard BTSs and the trajectory domain
construction as a generalization of information systems and the ‘set of elements’
construction.

The main intuition for the BTS M; that interprets I = (U, Con,) is to think
of the consistent sets X € Con as trajectories (modulo order) through the space
of information tokens U that satisfy the global constraint of being consistent.
Formally, we do this as follows.

2.9.3. DEFINITION. Let I = (U, Con,F) be an information system. Define M; :=
(A, T,=) as follows:

e S, :=UU/{i} where i is some object not in U.

L] ’iA = 1.

L :={a} (i.e., A essentially is ‘unlabeled” and we omit labels in —).
e a —biff a,b € Sy (so »= 54 x Sy is the trivial relation).
e T := the set of all A-trajectories ¢ with the following properties:

(a) tis nonempty (i.e., |t| > 0) and of the form i — a; — as — ... for
a; € U. (Hence, if ¢ is finite, then last(t) = ay.)

(b) For all n > 1, if n < ¢, then {ay,...,a,} € Con.

(For t € T finite, let S(t) be the set of states occurring in ¢ and S;(t) :=
S(t)\ {i}. Note S;(t) € Con by (b).)

is the equivalence induced by: for ¢,¢ € T finite nonempty, ¢t = t' iff
(t) = Si(t).

»n

Thus, the ‘globally possible’ trajectories through the space S of information tokens
(together with an additional starting state i) are precisely those with consistent
initial segments. And two such finite trajectories are behaviorally equivalent if
they contain the same information, i.e., the information that can be deduced from
the information tokens that they visit is the same.

Thus, one way that BTSs generalize Scott information systems, is as follows:
In information systems, two consistent trajectories ¢ and ¢’ of information tokes are
considered to be equivalent if, roughly, they are entailment equivalent: t—=-¢'. This
‘logic’ is monotonic and insensitive to count and order of premises. Thus, one could
move to non-monotonic or resource sensitive logics (like linear logic) and their

60 Chapter 2. Trajectory domains 1: Construction

respective notion of equivalence =, to obtain more general (BTS representations
of) information systems.

We discuss this further in the next section, but now let’s prove the two
announced claims:

2.9.4. PROPOSITION. [If I s an information system, then M is a countable
bisimulative BTS.

PrOOF. We first show that M| is a pre-BTS. We show that 7" satisfies axioms (1)
and (2)*; then the claim follows by proposition 2.4.4.

Concerning axiom (1), let ¢ be a nonempty finite initial segment of t € T,
and show t' € T. By definition, ¢ is of the form i — a; — ay — ... and t’ is of
the form i — a; — ay — ...a, for some 1 < n < [t|. And, since t € T, we in
particular have, for all 1 < m < n = |t/| < |t|, that {aq,...,a,} € Con. Hence
terl.

Concerning (2)*, let ¢ be an infinite A-trajectory such that ¢ ¢ T, and find
n > 1 such that ¢ [n € T. So t fails to have property (a) or (b). If it fails (a),

it is not of the form i — a; — as — ..., i.e., t either doesn’t start with ¢ or it
goes back to ¢ after having started with ¢. Thus, some nonempty initial segment
of t fails to be of the form ¢ — a; — ay — ..., and we can choose n > 1 large

enough such that ¢ [n includes that initial segment, whence ¢ [n € T. So assume
t has (a) but fails (b), whence t is of the form i — a; — a3 — ... but there is
n > 1 with n < |t| and {ay,...,a,} & Con. Then ¢ [n fails to have property (b),
sot[ngT.

Next, note that M is countable since A is countable (since S4 is countable
because U is countable). So it remains to show that M; is bisimulative.

So let t, ¢ € T be finite nonempty with ¢ = ¢’ and ¢ty € T a one-step extension.
We need to find an extension t't; € T such that ttg = t't;. (In fact, we’ll show
that we can choose t't; as one-step extension, t00.)

Since t,t' € T are finite, they are of the form t =i — a1 = a3 — ... = a,
andt' =i —a} - ay — ... —>a,, forn,m>1andty=a, —b.

We claim that ¢ty :==i — a} — ay, — ... = a, = bisin T. Since — is the
trivial relation, t't; is an A-trajectory and it satisfies (a). So we need to show that it
satisfies (b). It suffices to show {a},...,a,,, b} € Con. Since tty € T, we know that
{ai,...,a,,b} € Con. Since t = #', we have Sj(t) = S;(¥'). So, for a; € S;(t'), we
have S;(t) - a}. Since Si(t) = {a1,...,a,} C{ai,...,a,,b} € Con, monotonicity
implies S;(t)U{b} I a}. Hence, by lemma 2.9.2 (2), S;(t)u{b}U{ai, ..., a;,,} € Con.
Then {a},...,al,,b} is a subset of a set in Con and hence in Con by axiom 1.

So it remains to show ¢ty = t't;. Note that S;(tty) = S;(t) U {b} and S;(t'ty) =
Si(t") U {b}, so it suffices to show S;(t) U {b} = S;(¥') U{b}. Since S;(t') U {b}

33For some benchmark axiomatizations of logical equivalence (or synonymy) that are finer
than classical logic, see Hornischer (2020).

2.9. Generalizations of information systems 61

and S;(t) U {b} are in Con this follows from lemma 2.9.2 (3) once we can show
Si(t") U {b}HES,(t) U {b}.

Concerning -, let ¢ € S;(t) U {b} and show S;(t') U {b} I c. If ¢ = b, then
c € Si(t") U {b} € Con, and the claim follows by axiom 4. So let ¢ € S;(t) € Con.
Then, again by axiom 4, S;(t) F ¢, so ¢ € S;(t) = S;(t'), so S;(t') F ¢. Since
Si(t") € S;(¢) U {b} € Con, monotonicity implies S;(¢') U {b} F ¢. The other
direction is shown analogously. O

2.9.5. PROPOSITION. If I is an information system, then T(M;) = Ds(I).

ProOF. Write M; = (A, T,=). We claim that ¢ : K(T(M;)) — K(Ds(I)) defined
by [[t]] — Si(t) is a well-defined isomorphism. Then the claim follows since T (M)
and Ds(I) are algebraic domains (so they are isomorphic to the ideal completion

of their compact elements). To do so, we show:

1. If t € T is finite, then () # S;(t) € Con, whence S;(t) is a compact element
of D5<[)

2. For all finite t, ¢ € T, [t] < [t'] iff S;(t) C Si(t').

3. If x is a compact element of Dg(7), then there is a finite trajectory ¢t € T
with S;(t) = .

Then (1) shows that, for [[t]] € K(T(M;)), we have that «([[t]]) € K(Ds(I))
and (2) shows that the mapping is well-defined. Moreover, ¢ is injective by (2)
and surjective by (3). Finally, it is an order-isomorphism by (2).

Ad (1). So t is of the form i — a; — ... = a, with n > 1 and S;(¢) =
{ai,...,a,} € Con is nonempty.

Ad (2). Let ¢, € T be finite. Sot =i —a; — ... > a, and t' =i — a} —
... —a, forn,m>1.

(=) If [t] < [t'], then t can be extended to t; € T with ¢; = t/. Hence
Si(t) € S;(t1) are in Con, so, by monotonicity, S;(t) C S;(t1) = Si(t').

(<) Assume S;(t) C S;(#"). Consider

/ /
b=t a, = ay — ... = a,.

This is an A-trajectory since ¢ ends in a, and — 4 is the trivial relation. We will
show that t; € T and t; = ¢/. Then, because M is bisimulative, [¢t] < [t1] = [t'],
as needed.

To do so, we’ll first show that

62 Chapter 2. Trajectory domains 1: Construction

Indeed, let a € S;(t1) = S;(t) U S;(t') and show S;(t') F a. If a € S;(t') € Con,
then, by axiom 4, S;(t') - a. So let a € S;(t). Then, again by axiom 4, S;(t) - a.
So a € S;(t) C S;(t'), whence S;(t') - a.

In particular, S;(t;) € Con: By (%), we have S;(t') F {ai,...,a,}, so, by
lemma 2.9.2 (2), S;(t1) = S;(t') U{ay,...,a,} € Con.

Now we show t; € T'. Indeed, the A-trajectory t; is of the right form, whence
it satisfies (a), and, since S;(t;) € Con, also subsets thereof are in Con, so t;
satisfies (b).

So it remains to show that t; = t': We have S;(t1), Si(t') € Con and S;(t') F
Si(t1) by (*) and S;(t;) F S;(t') because of axiom 4 and S;(t') C S;(t1) € Con. So
lemma 2.9.2 (3) implies S;(t1) = S;(t’), as needed.

Ad (3). If z is a compact element of Ds(I), then z = X for) # X € Con. In
particular, X = {ay,...,a,} is finite nonempty. Then t :=i — a; — ... = a, is

a finite A-trajectory satisfying (a) and (b), sot € T. And S;(t) = X = z. O

2.10 Conclusion

We conclude with six open questions for future work.

First, arguably the most pressing question by now is about the category of
BTSs: We’ve introduced and studied BTSs as objects, but how do they relate
to each other, i.e., what are morphisms between BTSs? Does this capture the
common idea of one system being simulated in another? Does the trajectory
domain construction respect these relations, i.e., is functorial?®* After all, a lesson
from Winskel and Nielsen (1995) is that only with this categorical structure can
we consider BTSs as a computational model that we can fruitfully relate to other
computation models. We'll study these (and more) questions in the next chapter
and provide a positive answer.

Second, we’ve seen that BTSs generalize Scott information systems. Further
work should investigate this, for example, by considering (as indicated) various
classes of ‘generalized information systems’ that correspond to processing informa-
tion according to various finer substructural logics. We explore one direction in
the next chapter by showing that the trajectory domains provide an interpretation
to relevance logic. Another direction could be to consider the closely related linear
logic:

Third, in the game semantics for linear logic of Abramsky and Jagadeesan
(1994), the meaning of a formula is a game and a proof for the formula is a

34We may regard this as one implication of the equivalence between operational and denotations
semantics that the full abstraction problem (mentioned in the introduction) asks for: equivalence
(i.e., isomorphism) in the operational semantics implies equivalence (i.e., isomorphism) in the
denotational semantics. We discuss this further in the next chapter.

2.10. Conclusion 63

winning strategy for this game.?® Using their notation for a game, it is tempting
to try to view a game as a BTS (A,T,=): the state space S = M x {P,0O}
is the set of moves M labeled by whether it is a move of Player or Opponent
and the transition relation is the trivial one, T' = 7 U 7 consists of the set =
of finite trajectories that are possible in the game (where Player and Opponent
are alternating) together with the set 7 of infinite trajectories all whose initial
segments are in 7, and trajectory equivalence is chosen in way to capture strategies
(maybe indistinguishability by strategies?). Can this game semantics fruitfully be
captured this way? And, to come full circle, how does this relate to the solution to
the full abstraction problem (mentioned in the introduction) which this semantics
provided (Abramsky and McCusker 1999)?

Fourth, how do these different logical perspectives relate to existing logics
for LTSs like linear temporal logic (see e.g. Baier and Katoen 2008), and could
they provide a domain theory for trajectory domains ‘in logical form’ (Abramsky
1991)7

Fifth, Bratteli-Vershik diagrams play an important role in the study of zero-
dimensional topological systems. (See Downarowicz and Karpel 2016 for a brief
introduction and references.) At least superficially, they have some ‘BTS-like’
structure: they are certain graphs, their space of infinite paths represents dynamical
systems, and also orders on the space of all finite and infinite paths are considered.
Can they be fruitfully captured as BTSs?

Sixth, an algebraic way to analyze a graph (i.e., an unlabeled transition system)
is through its Leavitt path algebra (Abrams, Ara, and Siles Molina 2017): These
algebras can be seen as algebraic analogues of C*-algebras and are constructed
based on the idea of identifying certain paths of the underlying graph. Is there a
connection?

Appendix

PROOF OF LEMMA 2.5.4. Item (1), that (T, Cy) is a preorder, is immediate from
the definition. Before getting to the other items, we show two claims:

(C1) For all [t] € Thn, [t]lFv[t].

Proof: To show [t]lFy[t], let 7 = (¢!, (n;)) be an approximation to [t], and find
i > 0 such that [t] < [t' | n;]. Indeed, since [t] = [tT] and ¢ is finite, also ¢! is finite.
Since (n;) is indefinitely increasing, there is i such that n; > |t']. Then we have
[t] = [tT] = [t' | n], which implies [t] < [tT | ny].

(C2) For [t], [t'] € Thn, [t]lFy[t'] implies [t] < ['].
Proof: Assume [t]IFy[t']. Consider the approxunatlon = (t', (n;)) to [t'] with
n; :=|t'| + 1 + 4. Then there is i > 0 such that [t] < [t [n;] = [], as needed.

35For more on the topic of ‘games in logic’ see Van Benthem (2014) or Hodges and Viininen
(2019).

64 Chapter 2. Trajectory domains 1: Construction

Ad (2). Let [t], [t'] € Thn, and show [t]Ty[t'] iff [t] < [t']. Assume [t]Ty[t']. For
[to] := [t] we have, by (C1), [to]lFv[t]. Hence [to] = [t]IFv[t]. By (C2), [t] < [t'].

Conversely, assume [t] < [t']. To show [t]|Cy[t'], first observe that condition (b)
is trivially satisfied since [t] is finite and hence approximable. For condition (a), let
[to] € Tsin with [to]lFy([t], and show [to]ly[t']. So let (¢, (m;)) be an approximation
to [¢'] and find j > 0 such that [to] < [t* | m;]. Since ¢’ is finite, also ¢ is finite,
so there is j > 0 such that m; > |t}|. By (C2), [to]lFv[t] implies [to] < [¢]. Hence,
to] < [t] < [t'] = [t}] = [t} | m,], as needed.

Ad (3). Let [t] € T, and [t'] € T and show [t|lFy[t'] iff [t]Sy[t]. If [t]Ty[t],
then, by (C1), [t]lFy[t], so, by condition (a), [¢]IFy[t'].

Conversely, assume [t]IFy[t']. To show [t]Cy[t'], condition (b) is trivially satisfied
since [t] is finite and hence approximable, and for condition (a) let [to] € Tsn
with [to]lFy[t], and show [to]lFy[t']. So let (¢}, (m;)) be an approximation to [t']
and find j > 0 such that [ty] < [t} | m;]. Since [t]lFy[t'], there is j > 0 such that
[t] < [t* | m;]. By (C2), [to]lFv[t] implies [to] < [t]. So [to] < [t} | m,], as needed.

Ad (4). This follows from (3) and the definition of Cy which, for approximable
[t], [t'] € T, reduces to just condition (a).

Ad (5). If [t] € T doesn’t have an approximation, then [t] is infinite (since
all finite trajectories have an approximation) and, for [t'] € T, we have [t']|Cy[t]
because condition (a) holds vacuously since [to]lFy[t] holds vacuously, and condi-
tion (b) holds vacuously since [t] is not approximable. O

PROOF OF 2.5.5. Item (1), that (T,Cy) is a preorder, is immediate from the
definition. Before getting to the other items, we show two claims:

(C1) If [t] € T#n, then [t]IF3[t].

Proof: We have that (t, (|t| + 1+);>0) is an approximation to [t] and [t] <
[t] |t| + 1+ 0], whence [t]IF5[t].

(C2) For [t], [t'] € Thn, if [t]IF3[t'], then [t] < [¢'].

Proof: Since [t'] is finite, it is approximable, so [t]lF5[t'] holds because there
is an approximation (, (m;)) to [¢'] and j > 0 such that [t] < [t} | m;]. Choose
k > j big enough such that my > [t}| (#* is finite since it is equivalent to the finite
t'). Then [t] < [tF | my] < [tF | mg] = [t}] = [t'], as needed.

Ad (2). Let [t],[t'] € Tgn. And show [t|Ca[t'] iff [t] < [t/]. Assume [t|C3[t'].
By (C1), [t]lF3[t], so, by condition (a), [t]lF3[t'], so, by (C2), [t] < [t'].

Conversely, assume [t] < [t']. To show [t|C3[t'], condition (b) is satisfied since
[t] is approximable, and for condition (a), let [to] € Tq, with [to]lF3[t], and show
[to]lF3[t’]. Consider the approximation (¢, (|t’'| + 14 j);) to [t'] and j := 0. Then
t] <[t']=1[tT|t'| +1+ j], as needed.

Ad (3). Let [t] € T, and [¢'] € T, and show [t]lF3[t’] iff [t]C3]t]. Assume
[t]|=35[t']. For [to] := [t] we have, by (C1), [to]lF3[t], so [t] = [to]lFa[t'].

Conversely, assume [t|lF5[t']. To show [t|C5[t'], condition (b) is satisfied since
[t] is approximable, and for condition (a), let [to] € Tq, with [¢]lF3[t], and show
[to]lF3[t']. TIf ['] is not approximable, then [to]lF3[t'], so let [t'] be approximable

2.10. Conclusion 65

and (t*, (m;)) an approximation to [¢']. Since [t]IFs[t] (and ['] is approximable),
there is j > 0 such that [t] < [t} | m;]. By (C2), [to]lFs[t] implies [to] < [t]. So
[to] < [tF | m;], as needed.

Ad (4). This follows from (3) and the definition of C3 which, for approximable
elements, reduces to just condition (a).

Ad (5). If [t] € T doesn’t have an approximation, then [t] is infinite (since
all finite trajectories have an approximation) and, for [t'] € T, we have [t'|C5]t]
because condition (a) holds vacuously since [to]lF3[t] holds vacuously, and condi-
tion (b) holds vacuously since [t] is not approximable. O

Chapter 3
Trajectory domains 2: Category

Abstract In the previous chapter, we provided a denotational semantics
to labeled transition systems (LTS): We introduced the notion of a behavioral
transition system (BTS) which extends an LTS by some structure to specify its
behavior, and, for countable systems, we constructed their trajectory domain
which serves as their denotation (or ‘behavior description’). In this chapter, we
complete this construction category-theoretically: We introduce the category
(w)BTS of (countable) BTSs and show that the trajectory domain construction
extends to a functor T : wBTS — wALG into the category of w-algebraic domains.
The main result is that we build an adjunction between a subcategory of wBTS
and a version of wWALG: thus, the well-known ‘computational model’ of w-algebraic
domains can be embedded into (i.e., can be abstracted from) the computational
model of BTSs. We also note that the trajectory domain construction naturally
leads to a new interpretation of relevance logic in terms of LTSs.

3.1 Introduction

Labeled transition systems (LTS) are a widely used computational model providing
operational semantics to systems (or processes): in the previous chapter, we’ve
mentioned as examples computer programs (or Turing machines more generally),
reactive systems interacting with a nondeterministic environment, model checking,
concurrent computation, or observing dynamical systems. So they can be seen as
a general model of symbolic computation. An LTS provides operational meaning
in the sense of describing the possible states of the system and their dynamics,
i.e., how the system can transform from one state to another.! In the previous
chapter, we constructed a corresponding denotational semantics: a more system-
independent and static description of the possible behavior of the system that
facilitates mathematical analysis.

IThe states could be fairly ‘low-level” (e.g., describing the tape and internal state of a Turing
machine) or more ‘high-level’ (e.g., bundling together low-level states with a similar function).

67

68 Chapter 3. Trajectory domains 2: Category

To this end, we introduced the notion of a behavioral transition system (BTS).
This extends an LTS A by two more entities to specify its behavior: First, a
set T of A-trajectories that not only are ‘locally’ possible (each step being a
possible transition in the LTS), but also ‘globally’ possible (e.g., reflecting memory
constraints); and second, an equivalence relation on 7' to say that two trajectories
are instances of the same (type of) behavior (e.g., two concurrent versions of
the same computation). So an equivalence class describes a possible behavior of
A (relative to T and =), and the set of equivalence classes T'/ = describes the
possible behavior—and thus acts like a denotation of the LTS. We defined BTSs
as such structures M = (A, T, =) satisfying five axioms capturing the intended
interpretation. We’ve shown that, for countable systems, there is essentially a
unique way of defining an information containment order on 7'/ = turning it into
an w-algebraic domain (a well-behaved partial order studied in domain theory).
We wrote T(M) for this domain and called it the trajectory domain of M.

This left open the issue of extending this to a category-theoretic treatment—
which is the purpose of this chapter. But why is this important? The short answer
is: only then do we have a complete description of BTSs as a computational model.
This is necessary to show that the trajectory domain semantics is ‘compositional’
(as we'd expect of a semantics) and to understand the relations to other com-
putational models. But it also is needed for a structural understanding of the
class of BTSs: for example, to see whether a BTS suggested as a model for the
safety verification of a reactive system is equivalent to another (simpler) one or to
analyze it into subsystems. Let’s explain.

Computational models as categories A lesson from Winskel and Nielsen
(1995) is that computational models (like LTSs) are fruitfully regarded as cate-
gories: the objects are instances of the computational model (i.e., any LTS) and
the morphisms are simulations between instances of the model (one LTS being
simulated in another).? For example, consider the following two LTSs: A on the
left and B on the right.

s r
B
I 4l
o
So > S1

S rDa

We can simulate A in B by mapping s, — r and s’ — ' (and a — «, 8 — f):
then any transition in A is simulated by a transition in B. (For the precise
definition see section 3.2.1.) Thus, we can form the category LTS in which we
can not just talk about LTSs (objects) but also about their relationships given by
simulations (morphisms).

2 Also see Sassone, Nielsen, and Winskel (1996).

3.1. Introduction 69

Somewhat more liberally, we may also think of the category of wALG of
w-algebraic domains with Scott-continuous functions (formally defined in sec-
tion 3.2.2) as a computational model.> A domain D can be regarded as the
data type of the possible (interim) outputs of a (type of) computational pro-
cess.* For example, such a process may be that of computing an increasingly
precise binary representation of a real number z in the unit interval [0, 1], say
T = \/5/2 = 0.7071..., so the interim outputs are 1,10,101,....> Then D may
be taken as the set of all finite or finite binary sequences ordered by extension.
A morphism, i.e., Scott-continuous function f : D — E maps D-outputs to
FE-outputs in a computational way: to obtain a finite approximation to the output
f(x) we only need a finite approximation to the input z.

Two advantages of this view of a computational model as a category are the
following (Winskel and Nielsen 1995). First, constructions within the computa-
tional model (e.g., forming products of LTSs or domains) can now be characterized
category-theoretically: i.e., purely ‘structurally’ without reference to the notational
details of the computational model. Second, one can compare computational
models even if they are stated in very different terms: If C and D are categories
representing two computational models, a functor F : C — D turns an instance A
of C into an instance F(A) of D, and it turns a simulation f : A — B in C into
a simulation F(f) : F(A) — F(B) in D. Most importantly, we can also formally
reconstruct the idea that model D is more abstract than (i.e., can be embedded
into) model C: we also have functor G : D — C in the other direction such that,
roughly, if we start with B in D and build G(B) to go to C and then build F(G(B))
to go back to D, then we’re back to where we started. Formally, F and G form a
(co-) reflective adjunction (as defined in section 3.2.3).

Inspired by this, our categorical treatment of BTSs and their trajectory domains
establishes the following four results.

Result 1 We define the category BTS of BTSs where the morphisms are also
based on the notion of simulation (as for LTSs). We show that BT'Ss do indeed
structurally extend LTSs: We have the forgetful functor G : BTS — LTS that
assigns each BTS to its underlying LTS, and this is part of a coreflective adjunction.
So, the computational model LTS can indeed be embedded into BTS. We also
show that we can ‘systematically’ ignore the ‘pathological’ non-approximable
behavior in a BTS (i.e., infinite behavior that cannot be represented as limit of
finite behavior). In categorical terms, the inclusion from the category BTS, of

3This is not explicitly mentioned by Winskel and Nielsen (1995), but see their section 8 on
event structures (in particular, the domain of configurations).

4See, e.g., Scott (1970), Abramsky and Jung (1994) or Stoltenberg-Hansen, Lindstrém, and
Griffor (1994, esp. the preface).

5The output starts with 1 since x is in the upper half of [0,1], i.e., x € [%, 1]. It continues
with 0 since is in the lower half of [,1], i.e., z € [, 2]. It then continues with 1 since z is in

2014
the upper half of [1, 2], etc.

70 Chapter 3. Trajectory domains 2: Category

approximable BTSs (where every behavior is approximable) to the category BTS
has a right adjoint (and hence forms a reflective adjunction).

Result 2 We show that the trajectory domain construction T is functorial:
As mentioned, for a countable BTS M, the trajectory domain T(M) is an w-
algebraic domain. Here we show that T also maps simulations between systems
to Scott-continuous functions between their trajectory domains. In categorical
terms, writing wBTS for the full subcategory of BTS consisting of countable BTS,
T : wBTS — wWALG is a functor. Thus, the denotational semantics provided by
the trajectory domains is ‘compositional’: it preserves the fundamental simulation
relations between BTSs. A corollary is that equivalence in the operational se-
mantics (i.e., isomorphism between LTSs) implies equivalence in the denotational
semantics (i.e., isomorphism of trajectory domains). We further discuss this point
in the open questions.

Result 3 Thus, we may ask whether the computational model wALG is an
abstraction of the computational model wBTS, obtained through the trajectory
domain functor.

We tackle this question for the mildly restricted subcategory wBTS; of wBTS:
First, as justified before, we restrict us to approximable BT'Ss (hence the a). Second,
instead of the general partial simulations where transitions may be simulated by
inaction, we restrict us to synchronous simulations where transitions are always
simulated by transitions (hence the s). We're also led to a mild restriction on
wALG: First, the Scott-continuous functions between trajectory domains that come
from simulations are always compactness preserving (they map finite behavior to
finite behavior). Second, the distinguishedness of the initial state of the system is,
in some cases, reflected by the distinguishedness of an element of the trajectory
domain (namely the behavior ending in the initial state). This leads us to consider
the category iALG whose objects are pairs (D, ¢) of an w-algebraic domain D with
a distinguished compact element ¢ and whose morphisms are Scott-continuous
functions preserving compactness and the distinguished element.

With these details out of the way, we show that there is indeed an adjunction

Abs
wBTS: ~ L 7 IALG
&_/
Emb
which we obtain as a composition of three reflective adjunctions. Thus, we

can indeed think of the computational model IALG as an abstraction of the
computational model wBTS;.

Result 4 Fourth, while speculating on how this adjunction may be extended
to partial simulations, we make the surprising observation that LTSs and their

3.2. Background 71

trajectory domains provide an interpretation of relevance logic. The importance
of this is that relevance logic is often criticized for only having a formal but not a
‘concrete’ semantics.

Related work Much of the related work that we’ve already discussed in chap-
ter 2 is also done at a categorical level: For example, the work on the correspon-
dence of operational and denotational semantics for programming languages (Car-
done 2021; Ong 1995) or the connections between concurrent computation and
domain theory (Bracho and Droste 1994; Winskel and Nielsen 1995). As men-
tioned, here we consider denotational semantics for LT'Ss directly (without recourse
to a programming language), and BTSs may be viewed as a generalization of
various LTS-based models of concurrency. Also, our focus here is not on providing
a categorical equivalence between ‘system-based’ categories and ‘domain-based’
categories (cf. Bracho and Droste 1994). Rather, we focus on reflective adjunctions
(which, as discussed above, still have a strong computational interpretation) with
the aim of establishing connections to categories of domains that are close to the
standard ones of domain theory.

Outline The chapter is structured as follows. In section 3.2, we make sure that
this chapter is self-contained: we provide the relevant background on labeled
transition systems and domain theory, and we summarize the previous chapter.

In section 3.3, we define the category BTS of behavioral transition systems
and show the adjunctions LTS = BTS and BTS = BTS,. In section 3.4, we show
that the trajectory domain construction is a functor T : wBTS — wALG.

In section 3.5, we develop the adjunction wBTS] = iALG. And in section 3.6,
we speculate on possible extensions of the adjunction and sketch the interpretation
of relevance logic. In section 3.7, we conclude with some open questions. A
summary of the categories and their established connections is given in figure 3.1.

3.2 Background

We provide the relevant background on labeled transition systems (section 3.2.1),
domain theory (section 3.2.2), and category theory (section 3.2.3). Then we
summarize the relevant parts from the previous chapter (section 3.2.4).

3.2.1 Category of labeled transition systems

In the previous chapter, we’ve already recalled the notion of a labeled transition
system (LTS) following the handbook article of Winskel and Nielsen (1995). In
this chapter, we continue following this article and use the same standard notion
for sequences: if o is a finite or infinite sequence, |o| < w is its length, o | n is the
restriction to its first n elements, and < denotes sequence extension.

72 Chapter 3. Trajectory domains 2: Category

3.2.1. DEFINITION. A labeled transition system (LTS) A is a structure (5,14, L, —)
where S is a set of states with initial state i, L is a set of labels, and —-C S x L x S
is the transition relation. We write s—s' for (s, a, s') €—. Given an LTS A, we
use Sga, 14, La, and — 4 to refer to its set of states, initial state, set of labels,
and transition relation, respectively. We call A countable if both S and L are
countable sets. An A-trajectory is a sequence

t = (S0, 20, 8g), (81,01, 87)s -+, (Sp, Wy 8,), - -

of elements of — such that s, = s;;;. We then write sp—2s;—.... If ¢ is
nonempty, we call so the starting state of t and, if ¢ also is finite, we call the s of
the last entry the ending or last state of t, which we refer to by ‘last(¢)’.

A natural notion of morphism between LTSs is given by the idea of a simulation:
A simulation of an LTS A in the LTS B (or an interpretation of A in B) is a
way to map the states and labels of A to states and labels of B such that an
A-transition is mimicked by a B-transition under this mapping. There at least
two ways to understand ‘mimicked’. The most general way is that of a partial
simulation: an A-transition either is mapped to a B-transition or is ignored and
hence interpreted as ‘inaction’. A more specific way is that of a synchronous
simulation: here we don’t allow the ‘inaction’ interpretation, whence every action
in A is interpreted by an action in B. Thus, the original LTS A and the host LTS
B (in which A is simulated) run ‘in sync’. Formally, this is spelled out as follows.
(For more background, see Winskel and Nielsen (1995).)

3.2.2. DEFINITION. Let A = (Sa,i4,La,—4) and B = (Sg,ip, L, —p) be two
LTSs. An LTS-morphism f: A — B is a pair (0, \) where 0 : Sy — Sp is a total
function and A : Ly — Lp is a partial function such that

1. O'(iA) = iB
2. if s 45, then O'(S)ﬂBO'(S/) if A(a) is defined, and otherwise o(s) = o(s’).

If fis an LTS-morphism, we write f = (o7, A\y). We call f synchronous if Ay is
total.

3.2.3. DEFINITION. Labeled transition systems together with their morphisms
form the category LTS. The identity morphism id4 is (idg,,idz,) (where idx
denotes the identity function on the set X). Morphism composition is pairwise
function composition: go f = (5,00, Ay 0 Af).5

Note that an LTS-morphism f : A — B sends A-trajectories to B-trajectories:
If ¢ is an A-trajectory, it is of the following form

6Composition of two partial functions is defined by Ay o Af(a) := Ay(Af()) if both A¢(a)
and Ag(As()) are defined, and otherwise A\, o A¢(ax) is undefined.

3.2. Background 73

t = t(0) t(1) t(2)
= 80%86 3131—>s’1 322)3’2

with 8, = s,,,. For each t(n), we have f(t(n)) := o(s,) =0 (s,) if A(a,) is defined
and otherwise f(t(n)) := (o(sy),0(s),)) is a pair of two identical elements, which
we call an idle pair.” We write f*(¢) for the sequence f(¢(0))f(¢(1))f(¢(2))...
and we write f(t) for the B-trajectory obtained from f*(¢) after removing all idle
pairs.

Here are some basic facts (which we often use without explicit reference).

3.2.4. LEMMA. Let f: A— B and g : B — C be LTS-morphisms, and let t and
t' be A-trajectories. Then

~

CIFE =t then f(t) < (V).
2. [F(0)] < J¢].
3. Forn >0, we have f(t [n) =< f(t) | n.

4. For allm > 0, there is m > 0 such that f(t) [n= f(t [m). In words: an
initial segment of f(t) is determined by an initial segment of t.

5. If f is synchronous, then, for alln >0, f(t) [n= f(t [n).

S

g(f(t)) =go f(t). In words: applying g to the B-trajectory f(t) is the same
as applying g o f to the A-trajectory t.

ProoF. Ad (1). If t < ¢/, then f*(t) < f*(t'), so f(t) = f(t').

Ad (2). Since idle pairs are only deleted but never added, we have |f ()] <
O) | =]

Ad (3). We have t | n = t, so, by (1), f(t [n) = f(t). Since, by (2),
|f(t Tn)| <[t Tn| <n, wehave f(t [n) = f(t) | n.

Ad (4). By induction on n: If n = 0, we choose m := 0. For n+ 1, if f(¢)(n)
is not defined, then f(¢) [n+ 1 = f(¢) [n and the claim follows by induction
hypothesis. So assume f(t)(n) is defined. So f(t) [n+ 1= (f(¢) [n)f(¢t)(n). By
induction hypothesis, let m,, be such that f(¢) [n = f(t [m,). If, for all m > m,,,

t(m) is a transition whose label is not in the domain of A, then none of these
transitions will contribute to f(t), whence f(t) = f(t | my) = f(t) [n, so f(t)(n)

" The name alludes to the concept of an idle transition (Winskel and Nielsen 1995): one fixes
a symbol * (which no LTS is allowed to use as a label) which is interpreted as the ‘do nothing
action’. So every LTS can be extended by adding all transitions of the form s—s which are called
idle transitions. Then partial simulations can be rephrased as mapping (proper) transitions to
(proper) transitions if defined or to idle transitions if undefined (and the latter are essentially
the idle pairs above). Albeit elegant, we don’t use this to keep notation minimal (but we’ll
encounter this idea again in section 3.6).

74 Chapter 3. Trajectory domains 2: Category

wouldn’t be defined. So let m > m,, be minimal such that the label of £(m) is in the
domain of A, Then f(t [m) = f(t | my) f(£(m)) = (f(2) | n)f(t)(n) = F(£) | n+1,
as needed.

Ad (5). If f is synchronous, each Af(«) is defined, so no f(t(n)) is idle, so
F(t 1) = £(t) In.

Ad (6). If f(t(n)) = (s,s) is an idle pair, define g(f(t(n)) := (04(s),0,4(s)),
and accordingly write

t — {0) #(1) #(2) #(3)
@) = f(0) f(E(1)) f(t(2)) f(E(3))
g (f (1) = g(f(t0)) g(f(t(1))) g(f(t(2))) g(f(t(3)))

For each n > 0 with #(n) = s=s’ defined, we have the following equivalences:

g(f(t(n))) is idle iff f(t(n)) is idle or it is a transition but g is not defined
on it iff A¢(«) is not defined or it is defined but A\y(Af(c)) is not defined iff
Agof () is not defined iff go f(t(n)) is idle.

And if g(f(t(n))) and, equivalently, g o f(t(n)) are not idle (i.e., are transitions),
then

g(F(tn))) = 9(07(5) LD 04(5)) = 04(05(5) 22 s (04(5))

= Ugof(s)mo-gof(sl) =go f(t(n)).

Hence g*(f*(t)) = (g o f)*(t), whence g(f(t)) = go f(t). O

Thus, while trajectory length—i.e., ‘computation time’—may get shorter along
a partial simulation, it remains the same along a synchronous simulation (which,
again, explains the name).

3.2.2 Domain theory

We recall some basic domain theory. A standard reference is Abramsky and Jung
(1994). A partial order (D, <) is directed complete (in short, a depo) if any directed
subset A C D has a least upper bound \/ A (also called supremum). (A is directed
if A is nonempty and any two elements of A have an upper bound in A.) An
element ¢ of a decpo D is compact if, for all directed subsets A C D, if \/ A > ¢,
there is a € A with a > ¢. The set of compact elements of D is written K (D). A
dcpo D is algebraic if, for all x € D, the set {c € K(D) : ¢ < z} is directed and
has supremum z. Finally, an w-algebraic dcpo is an algebraic dcpo where K (D)
is countable.

A function f : D — E between dcpos is Scott-continuous if it is monotone and
preserves all directed suprema, i.e., if A C D is directed, then f(\/ A) =\ f(A).

3.2. Background 75

We write wALG for the category of w-algebraic dcpos with Scott-continuous
functions.
A wuseful fact to establish continuity is the following.

3.2.5. LEMMA. Let f: D — E be a monotone function between two w-algebraic
domains. Assume that for every w-chain C C K (D) we have f(\/ C) <\ f(C).

Then f is continuous.

PRrROOF. Let A C D be directed and show f(\/ A) =V f(A). Since f is mono-
tone, we have >, and for < we show that, if A’ C K(D) is directed, then
F(VA) <V f(A): Indeed, A’ is directed and countable, so it has a cofinal chain
C=ayp<a <..,s0\A=)\C, whence, by assumption, f(\/ A") = f(\/C) <
V f(C) <V f(A). Now take A" :={z € K(D) : 3a € A.x < a}: by algebraicity,
A’ is still directed and \/ A" =\ A, s0 f(VA) = f(VA) <\ f(A) <V f(A). O

We'll also use the following two facts on reconstructing Scott-continuous
functions between algebraic domains from monotone functions between their
compact elements (i.e., their bases). (For the more general theory on reducing
domains to bases see Abramsky and Jung (1994, sec. 2.2.6).)

3.2.6. LEMMA. Let D and E be algebraic domains and f : K(D) — K(E) an
order-isomorphism. Then f: D — E defined by

:\/{f(c):xzceK(D)}
1s a well-defined order isomorphism extending f.

PROOF. Well-defined: Since D is algebraic, {¢ € K(D) : x > ¢} is directed, so,
since f is monotone, {f(c) : z > ¢ € K(D)} is a directed subset of E and hence
has a least upper bound.

Monotone If <y, then {f T >c D)} C{f(c):y>ce K(D)},
so f(z) =V {f(c):z>ce K(D g\/{f) y>c€K()} = f(a).

Surjectlve If y € E, then B ={d e K(E) y > d} is directed with \/ B = y.
Since f is an order-isomorphism, A := f~(B) is directed in D. Let z := \/ A.
We show f(z) =y, i.e. ,V{f(¢):z>ce K(D)} =\ B. Concerning <, given
z = f(c) for some \/A =x>cc¢€ K(D), we have, since c¢ is compact, ¢ < a
for some a € A = f71(B), so z = f(¢) < f(a) € B, so z < \/ B. Concerning
> given d € B C K(FE), note that ¢ := f~!(d) is in A since f(c) =d € B. So
de {f(c):z>ce K(D)}, whence d < \/ {f(c) : 2 >ce€ K(D)}.

Order-respecting: Let z,y € D with f(m) < f(y) and show x < y. It suffices to
show, for ¢ € K(D), that ¢ < z implies ¢ < y (then r = \/{c e K(D):c<az} <
V{ce K(D):c<y}=y). If c <z, then f(c <\/{f cx>ce K(D)} <
V{f(c) :y > ce K(D)}. Since f(c) is compact in F, there is y > ¢ € K(D)
with f(c) < f(), so, since f is an order-isomorphism, ¢ < ¢’ < y, as needed.

76 Chapter 3. Trajectory domains 2: Category

Extension: If 2 € D is compact, we have f(z) = Vi({c e KD):c<
w}) = f(x) since f(z) is defined and, by monotonicity, an upper bound of
f({c € K(D) : ¢ < z}), and, since f(z) is in this set, it also is a least upper
bound. O

3.2.7. LEMMA. Let f,g: D — E be Scott-continuous functions between algebraic
domains. If f and g agree on compact elements, then f = g.

ProoF. For x € D, we have

f(a:):f(\/{ceK(D):ch}) :\/f({CEK(D):CSx})
:\/g({ceK(D):ch}) :g(\/{ceK(D):ch}) = g(z),

as needed. O

3.2.3 Category theory

We only use the basic concepts of a category, a functor, and an adjunction; as
found in standard references like Leinster (2014) or the classic Mac Lane (1998).
We follow the slightly more general terminology of Sassone, Nielsen, and Winskel
(1996) and Winskel and Nielsen (1995) and call an adjunction reflective (resp.,
co-reflective) if the counit (resp., unit) is a natural isomorphism. This generalizes
the usual terminology of a subcategory D of a category C being reflective (resp.,
co-reflective) if the inclusion | : D — C has a left adjoint (resp., right adjoint).

3.2.4 Recap from the previous chapter

The previous chapter provides an extensive discussion and motivation of the
notion of a behavioral transition system (BTS) and its axiomatization. As already
mentioned, the main idea was to extend an LTS A by a set T of ‘globally possible’
trajectories and an equivalence relation = on 7' indicating when two trajectories
are instances of the same (type of) behavior. To support this interpretation, the
resulting structures (A, T, =) should satisfy five axioms:

3.2.8. DEFINITION. A behavioral transition system (BTS) is a structure M =
(A, T,=) where A is an LTS, T is a set of A-trajectories, and = is an equivalence
relation on T such that the following holds. (For finite ¢t,t' € T, [t] < [t'] :&
Vo € [t]3t; € [t'] : to = t1; we just write < if clear from context.)

1. For all t € T, if t is a nonempty finite initial segment of ¢, then ¢’ € T.

3.2. Background 7

2. For all infinite A-trajectories t, if 0 < ng < ny < ... with ¢t [n; € T and
[t [ni] <[t] ni (for all i > 0), then t € T

3. For all t,t' € T with t = t/, if ¢ is empty, then ¢’ is empty, and if ¢ is finite,
then t' is finite.

4. For all infinite t,t' € T, if t = t/, there is i, j > 1 such that, for all n > 0,
tli+n=t1[j+n.

5. For all infinite t € T and 0 < ng <n; < ...and 0 < mg < my < ..., if
[t T nol <[t Tm] <...and [t [mo] <[t | m] <... then, for all i > 0,
there is j > 0 such that [t [n;] < [t [my].

We call M countable if A is countable.

A simple construction of a BTS from an LTS A is as follows: Let T" be a set of
A-trajectories that is closed under nonempty finite initial segments (axiom 1) and
satisfies the following strengthening of axiom 2:

(2)* For all infinite A-trajectories ¢, if ¢ ¢ T, then there is n > 1 such that
tingT.

For example, T' could be the set of all A-trajectories. Define = as extensional
equivalence: for t,t' € T, define t = ' iff

e both t and t’ are empty, or

e both t and ¢’ are nonempty finite and last(t) = last(¢’), or

e both ¢ and ¢ are infinite and there are 7,j > 0 such that, for all n > 0,
tli+n) =1(j+n)

Then, as shown in the previous chapter, M := (A, T, =) is a BTS.
In a BTS, we can define an ‘information containment’ order. (In the previous
chapter, we’ve discussed various equivalent definitions.)

3.2.9. DEFINITION. Let M = (A,T,=) be a BTS. Let t € T. We write [t] :=
{t € T :t =t}. An approzimation to [t] is a pair (¢, (n;)i>0) with t7 € [t]
and (n;) a strictly increasing sequence of positive integers such that the sequence
([t" 1 m4])s is <p-increasing. We call ¢ approzimable if there is an approximation
to [t]. For t,¢' € T we define [t]C,,[t] iff

(a) For all approximations 7 = (t7,(n;)) to [t] and 7/ = (#, (m;)) to [t], 7/
dominates T, i.e., Vi > 035 > 0: [tT | n;] <pr [t} | my].

(b) If [t] is not approximable, then [t'] is not approximable.

78 Chapter 3. Trajectory domains 2: Category

As shown in the previous chapter, T, is a preorder on T'/= that coincides with <
on equivalence classes of finite trajectories. We call it the information containment
preorder of M and just write C if M is clear from context.

This definition simplifies if M = (A, T, =) is bisimulative: i.e., for all nonempty
finite ¢t,¢' € T, if t = t' and ¢y € T extends t by one element, then there is a finite
extension t; € T of t’ such that ¢ty = t;. (Equivalently, for all finite ¢,¢' € T, if
t < t', then [t] < [t'].) As shown in the previous chapter, then, for all t,t' € T', we
have

T[] < Vn>03m>0:[t [n| <[t' | m)]

The characterization theorem of the previous chapter shows that, for countable
BTSs, the information containment preorder is, in a sense, unique and the partial
order induced by the information containment preorder is an w-algebraic domain.

3.2.10. DEFINITION. Let M = (A,T,=) be a countable BTS. Let T(M) be
the partial order induced by (7'/=,Cj): its elements are equivalence classes
[t]=le == {[t'] € T/=: [t'|Calt], [t]Ear[t'] }, which often just denote [[t]], and they
are ordered by [[t]|C,[[t'] iff [t]C[t']. We often write T, = Ty, We call T(M)
the trajectory domain of M.

Below we see, as this notation suggests, that the trajectory domain construction
T(M) extends to a functor.

3.3 Category of behavioral transition systems

We define the category BTS of behavioral transition systems (section 3.3.1) and
we prove some basic facts about its morphisms (section 3.3.2). Then we show that
the category LTS can be ‘embedded’ into BTS (section 3.3.3) and that we can
ignore non-approximable behavior (section 3.3.4).

3.3.1 Definition

The notion of morphism for LTSs extends naturally to BTSs by requiring that they
additionally preserve the structure we care about: globally possible trajectories
should be mapped to globally possible trajectories and information containment
should be preserved.

3.3.1. DEFINITION. Let M = (A, T, =) and N = (An, Ty, =n) be BTSs. A
BTS-morphism f: M — N is an LTS-morphism f : Ay; — Ax such that

1. For all ¢t € T, f(t) e Ty.

3.3. Category of behavioral transition systems 79

2. For all t,t € Ty, if [t|Cy[t'], then [f(1)|Txn[f ()]
We call f synchronous if it is a synchronous LTS-morphism.

3.3.2. PROPOSITION. We can form the category BTS whose objects are BTSs
and whose morphisms are BTS-morphisms. The identity morphism is idy; =
(ids,,,idL,,) and morphism composition is given by pairwise function composition.

PROOF. Since LTS-morphisms already form a category, we need to check that (a)
the identity LT'S-morphism indeed satisfies the additional conditions (1) and (2)
on BTS-morphism, and that (b) compositions of BT'S-morphisms are again BTS-
morphism. Now, (a) is immediate, so let f : M — N and g : N — K be
BTS-morphism and show go f = (0,00, A\, 0 A\f) again satisfies conditions (1)
and (2). Indeed, concerning (1), if t € Ty, then f(t) € T, so g(f(t)) € Tk, so,
using lemma 3.2.4, go f(t) = g(f(t)) € Tk. And concerning (2), if t,t' € Ty, and
A1z, then [F(H]SLF(2)], 50 lg(F () llg(f()). So, since g((2)) = go(t)
and g(f(#')) = g o f(t'), we have [g o f(1)|Ek[[g o f(')]. =

We define various subcategories of BTS that we’ll use below.

3.3.3. DEFINITION. Let BTS® be the (wide) subcategory of BTS where morphisms
are required to be synchronous. Let wBTS be the full subcategory of BTS
consisting of countable BTS. For further properties p of BTSs, let BTS, be the
full subcategory of BTS whose objects have property p. Examples of p that we’ll
use are the following: If M = (A,T,=) is a BTS, we say M is

f full if T is the set of all A-trajectories.

e extensional if = is extensional equivalence.

u unlabeled if the label set L4 is a singleton.

r reflexive if, for all s € Sy and a € Ly, s=s.

a approximable if every t € T is approximable.

y antisymmetric if <j; is antisymmetric (i.e., a partial order).®

Thus, for example, wBTS, is the full category of BTS consisting of countable and
approximable BTSs. And wBTSg, is the full subcategory of BTS® consisting of
countable, full, extensional, and antisymmetric BTSs. More generally, the naming
pattern is this: Categories are denoted by three upper case, sans serif letters. The
countability restriction on objects is so prominent to deserve a place at the front

8Since the letters a (as in antisymmetric) and s (as in antisymmetric) are already taken,
the next best mnemonic seems to be the letter y which appears rather idiosyncratically in
‘antisymmetric’.

80 Chapter 3. Trajectory domains 2: Category

(i.e., a prefixed w). Restrictions on morphisms are noted as suffixed superscripts.
And restrictions on objects (other than the countability restriction) are noted as
suffixed subscripts. If there are several properties, we don’t need any notation to
separate them since a single letter stands for a unique property.

In the previous chapter we've established f&e = bisimulative = a.

3.3.2 Basic properties

We show two basic properties about BTS-morphisms: First, that their definition
simplifies considerably for various subcategories of BTS. And second, that they
preserve approximability.

3.3.4. PROPOSITION. Let M = (Ap, Tar,=n) and N = (An, Ty, =n) be BTSs
and [: Ay — Anx an LTS-morphism. Then:

1. Assume M is approzimable and N s bisimulative. Then f is a BTS-
morphism iff

(a) for allt € Ty, f(t) € Ty, and
(b) for all nonempty finite t,t" € T, if [t] <ar [t'], then [f(t)] <y [f(t)].

2. In (1), clause (b) is implied by
(c) for all nonempty finite t,t' € Ty, if t =p U, then f(t) =n f(F).
Moreover, if N additionally is antisymmetric, then (b) also implies (c).

3. If M and N are full and extensional, then f already is a BTS-morphism.

ProoF. Ad (1). (=) If f is a BTS-morphism, it has property (a) by definition.
Concerning (b), let ¢, € Ty be nonempty finite with [t] <,; [t/]. Since C coincides
with < on finite trajectories, we have [t|C,,[t'], whence, since f is a BTS-morphism,
[f(O]SN[f(t)], whence, since f(t) and f(t') are finite, [f(t)] <y [f(t)]

(<) Assume f satisfies properties (a) and (b). By property (a), clause (1) of
being a BTS-morphism is satisfied. For clause (2), let ¢, € Ty, with [t]Z,[t'], and
show [f(t)]En[f(t')]. As noted in section 3.2.4, we have, since N is bisimulative,
[fOIEN[f@E)] I VnIm = [f(t) [n] <y [f(t') | m]. Solet n > 0 and find m > 0
such that [f(¢) | n] <y [f(t') | m].

If ¢ is empty, then we can choose m := 0 since then [f(t) [n| =[] <y [¢] =
[f(t") | m]. So let t be nonempty.

Since M is approximable, let (¢, (n;)) and (t*, (m;)) be approximations to [t]
and [t'], respectively. Also let k > 0 be such that f(¢) [n= f(t [k). Let i > 0 be
big enough such that n; > k > 0. Since N is bisimulative and f(t [k) < f(¢t | ni),

3.3. Category of behavioral transition systems 81

we have [f(t) [n] = [f(t [k)] <y [f(t | n;)]. Since [t]C,[t'], there is j > 0 such
that [t [n;] <pr [t' [m;]. We claim that we can choose m :=m.

If t' [m; is empty, then also t [n; is empty (otherwise it cannot be extended
to a trajectory equivalent to ¢’ [m;), so t is empty (otherwise, since n; > 0, also
t [n; is nonempty). Hence also f(t) is empty, so [f(t) [n] = [¢] <y [f(t') | m;],
as needed.

So assume t' [m; is nonempty. Since n; > 0 and ¢ is nonempty, also ¢ | n; is
nonempty. And ¢t [n; and t' | m; are in T); qua nonempty initial segments of
the trajectories ¢ and t' in T, respectively. Since [t [n;] <ps [t | m;], clause (b)
implies

[F(@&) Tn] = [f(ETR)] <y [T n:)] <y [fE Tmy)] <w [f(E) T my)],

where the last step follows since f(t' [m;) < f(¥') [m; and N is bisimulative.

Ad (2). First, we show, in the setting of (1), that (c)=(b).

Indeed, let ¢, ¢ € Ty be nonempty finite with [t] <ps [t']. So ¢ can be extended
to t; € Ty with t; =) . In particular, ¢; also is nonempty finite. So, by (c),
f(t) =2 f(t1) =n f(t'). Since N is bisimulative, [f(t)] <y [f(t1)] = [f(t')].

Next, assume that N additionally is antisymmetric and show (b)=-(c).

Indeed, let t,t' € Ty, be nonempty finite with ¢t =), t’. By reflexivity of C,
[IEum[t] and []Ept], so, by (b), we have [f()]En[f(#)] and [f(¢)]En[f(1)].
Since Cpy coincides with <y on finite trajectories and <y is antisymmetric, we
have [f(1)] = [f(#')], so f(t) =n f(T').

Ad (3). Let M and N be full and extensional. In particular, M is approximable
and N is bisimulative. By (1) and (2), it suffices to show that clauses (a) and (c) are
satisfied. Indeed, (a) is satisfied since N is full. For (c), let ¢,¢' € Ty be nonempty
finite with ¢t =), /. Since =) is extensional equivalence, last(t) = last(t'). Hence

last(f(t)) = os(last(t)) = or(last(t)) = last(f(t)),

so, since =y is extensional equivalence, f(t) =y f(t). O

3.3.5. PROPOSITION. Let f: M — N be a BTS-morphism. If [t] is approximable
in M, then [f(t)] is approzimable in N.

PROOF. By assumption, there is an approximation (¢, (n;)) to [t]. It suffices to
show that f(t') is approximable in N: Then, since t = tT, we have, by reflexivity
of C, [t]E[t1], whence, since f preserves C, [f(t)|Cxn[f(t")]. By definition of C,
this implies that, if [f(¢)] is non-approximable, also [f(¢)] is non-approximable.
So if [f(t1)] is approximable, also [f(t)] is.

If f(t) is finite, it is approximable, so let it be infinte (so also t' is infinite).
Hence |f(t' | n;)| grows unboundedly (otherwise there is m such that all transitions
tT(m’) with m’ > m get mapped by f to undefined transitions, so f(¢') is finite).
Let (n;;);>0 be a subsequence such that 0 < [f(t7 [ng,)| < [F(¢F | ng,,)]

82 Chapter 3. Trajectory domains 2: Category

Now, define m; := |f(t' | n;;)|. Note that f(t' | n;,) = f(t') | m;." Then
0 <mg <my <...and, for any j >0, we have [t" | n;,] <u [t! | n;,,], so, since
f preserves C which coincides with < on finite trajectories, we have

[f(tT) rmj] = [f(tT rn%)] <N [f(tT rnij+1)] - [f(tT) rmj-‘rl]'

Hence, (f(t'), (m;)) is an approximation to f(¢') in N. O

3.3.3 Embedding labeled transition systems

We have the forgetful functor G : BTS — LTS that maps a BTS M = (A, T, =)
to the underlying LTS A and that maps a BTS-morphism f : M — N to
G(f):=f: Ay — Ay. Conversely, we show that there also is an optimal way of
turning an LTS into a BTS, i.e., the forgetful functor G has a left adjoint F:

F

LTS _ T~ BTS

G

and the unit of the adjunction is an isomorphism. Thus, the computational model
LTS can be abstracted from (i.e., embedded into) the computational model BTS.
Spelled out, this means the following.

3.3.6. PROPOSITION. The forgetful functor G : BTS — LTS is a right adjoint:
For each B in LTS there is F(B) in BTS and an isomorphism ng : B — G(F(B))
such that, for every M in BTS and every g : B — G(M), there is a unique
morphism f : F(B) — M with G(f) ong = g.

PRrROOF. Construction of F(B). Define F(B) := (B,Tp,=p) with Tp := () and
=p:= (). Thisis a BTS: B is an LTS, Ty is a set of B-trajectories, and =p is an
equivalence relation on T, and it vacuously satisfies the axioms (1)—(5).

Construction of ng. Define np :=idp = (ids,,id.,) : B — B = G(F(B)). This,
in particular, is an isomorphism in LTS.

Universality. Now, let M = (A,T,=) be in BTS and let g : B — G(M) be
a morphism, and find a unique f : F(B) — M with G(f) onp = g. Uniqueness
is immediate: if f, f’ are such morphisms, then f = foidg = G(f)ong =g =

9Proof: Since t' [n;, < tt, we have f(t7 [ng;) < f(t1), so f(t! [ny,) = f(E7) 1 |f(¢F [ny,)| =
F(E) 1 my.

3.3. Category of behavioral transition systems 83

G(f")ong = f'oidg = f’. For existence, it suffices to show that f :=¢g: F(B) - M
is a BT'S-morphism (since it automatically has the property G(f)ong = goidg = g).
Indeed, it is an LTS-morphism B — G(M) of the underlying LTSs and, since
Tp = 0, it vacuously satisfies the axioms (1)—(2) of BTS-morphisms. O

3.3.4 Removing non-approximable behavior

We show that we can systematically ignore the ‘pathological’ non-approximable
behavior: The operation A of ‘removing’ non-approximable trajectories from a
BTS yields an approximable BTS and is optimal in the sense of being right-adjoint
to the inclusion

A

BTS T’ BTS..

Spelled out, this means the following.

3.3.7. THEOREM. The inclusion | : BTS, — BTS s a left adjoint: For each M
in BTS there is A(M) in BTS, and epr : A(M) — M such that, for every N in
BTS, and every f : N — M, there is a unique morphism g : N — A(M) with

emog=1f.

Proor. Construction of A(M). Write M = (A, T,=). Define
T":={t € T : [t] approximable in M }.

Define A(M) := (A,T",='), where = is the restriction of the equivalence relation
= on 7 to the subset T". So T" is a set of A-trajectories and =" an equivalence
relation on 77, so, to verify that A(M) is in BTS,, we need to show that it satisfies
axioms (1)—(5) and is approximable.

We signal notions in A(M) by an apostrophe (e.g., <" or [t]). We first show
four claims.

(C1). For finite t,t' € T, we have [t]’ <’ [¢']' iff [¢] < [t'].

Proof: For finite t € T’, we have, since finite trajectories are approximable
and since finite trajectories can only be equivalent to finite trajectories, that
[t ={t eT ¢ =t} ={t' e T :t =t} = [t]. Hence, [t]/ < [t/] iff
Vto € [1]/3ty € [t) : to < ty iff Vo € [t)Tty € [t'] : to =ty iff [t] < [¢].

(C2). If (7, (n;)) is an approximation to [t] in M, it is also an approximation
to [t] in A(M), and vice versa.

84 Chapter 3. Trajectory domains 2: Category

Proof: So the n; > 0 are strictly increasing and ([t' | n;]) is <-increasing and
t" € [t]. In particular, t' € T also is approximable, so t' € T”, whence also all
tT | n; are in T". Hence t € [t] and ([t' | n]'); is, by (C1), <'-increasing. So
(t, (n;)) is an approximation to [t in A(M).

Conversely, if (¢7, (n;)) is an approximation to [t]' in A(M), then (n;) is strictly
increasing and ([t7 | n;]") is <'-increasing and t' € [t]'. So also t! € [t] and, by (C1),
([t' I ng)) is <-increasing, so (¢!, (n;)) is an approximation to [t] in M.

(C3). In particular, each t € 7" is approximable in A(M).

Proof: By definition of 7", [t] has an approximation in M, which is, by (C2),
an approximation in A(M), so t is approximable in A(M).

(C4). For t,t' € T', [t|/CT'[t']" iff [t]C[t].

Proof: (=) Assume [t]'C’[t']’, and show [t|C[¢']. Sincet € T”, [t] is approximable
in M, so the (b)-condition of C is satisfied, and we need to show the (a)-condition.
So let (1, (n;)) and (¢, (m;)) be approximations in M to [t] and [t'], respectively,
and let ¢ > 0. By (C2), these also are approximations in A(M) to [t and [t']’,
respectively. Since [¢{)/C/'[t'], there is j > 0 such that [t | n;) < [tF | my],
so, by (C1), [t' | n;] < [t} | m4], as needed. (<) Assume [t]C[t], and show
[t]'C[t']’. Since, by (C3), [t]" is approximable in A(M), the (b)-condition of C’ is
satisfied, and we need to show the (a)-condition. So let (¢', (n;)) and (¢, (m;))
be approximations in A(M) to [t]" and [t']’, respectively, and let ¢ > 0. By (C2),
these are also approximations in M to [t] and [t'], respectively, Since [t|C[t'], there
is 7 > 0 such that [tT | n;] <[t} | my], so, by (C1), [t7 [ng) <" [t} | my].

Now, concerning axiom (1), assume t’ < ¢t € 7" with ¢’ nonempty finite. So
t' is approximable, and it is in 7" qua nonempty initial segment of t € T" C T,
whence ¢/ € T".

Concerning axiom (2), assume ¢ is an infinite A-trajectory and 0 < ng < ny <

~with ¢t [n; € TV and [t [n;]' <' [t | nix1]). Then t [n; € T and, by (C1),
[t [n;] <[t | ni1]. This implies that [t] is approximable in M, and, since M
satisfies this axiom (2), t € T". Hence t € T".

Concerning axiom (3), if ¢, € 7" with t =" ', then t,t' € T with t = ¢, so, if
t is empty, also t’ is empty, and if ¢ is finite, also t’ is finite, as needed.

Concerning axiom (4), if ¢,#' € T" are infinite with ¢t =’ ¢/, then ¢,¢' € T are
infinite with ¢ = t/, so there is 4, 7 > 1 such that, foralln > 0,¢ [i+n =t | j+n,
whence, since these trajectories are in 7" (qua nonempty finite initial segments of
trajectories in T"), t [¢ +n ="t' | j + n, as needed.

Concerning axiom (5), assume ¢ € 7" is infinite and (n;) and (m;) are strictly
increasing with ([t [n,;)"); and ([t [m;]’); <'-increasing. By (C1), ([t | n;]); and
([t T m;]); are <-increasing. So, for all ¢ > 0, there is j > 0 with [t [n;] < [t | m;],
so, by (C1), [t [n;) <" [t | m;]’, as needed.

Finally, A(M) is approximable by (C3).

Construction of ey. Write A = (5,4, L, —) for the underlying LTS of M.
Let €y := (idg,idy) be the identity LTS-morphism. To show that it is a BTS-
morphism, we need to verify properties (1) and (2). Concerning (1), if t € 77,

3.4. Tragectory domain functor 85

then €y(t) =t € T since 7" C T'. Concerning (2), if t,t' € T" with [t]'C'[t']’, then,
by (C4), [en ()] =] = [ear(t)]-

Universality. Now, let N be in BTS, and f: N — M a BTS-morphism. We
need to find a unique morphism g : N — A(M) with ey 0 g = f.

Uniqueness is immediate: if g, ¢’ are such morphisms, we have, since €,; is
the identity LTS-morphism, ¢ = €yy 09 = f = epr 0 ¢ = ¢'. For existence,
we need to show that g := f : N — A(M) is a BTS-morphism. It is an LTS-
morphism Ay — A, so we need to show that it satisfies properties (1) and (2) of
a BTS-morphism.

Concerning (1), if ¢t € T, then, qua BTS-morphism N — M, f(t) € T. Since
[t] is approximable in N (since N is in BTS,), [f(¢)] is, by proposition 3.3.5,
approximable in M, so f(t) € T".

Concerning (2), assume t,t' € Ty with [t|Cy[t']. Since f is a BTS-morphism
N — M, we have [f(t)|C[f(t')]. Since f(t), f(t') € T", we have, by (C4), that
[fOVZ[f()], as needed. O

We also note that the adjunction restricts to the countable case.

A
wBTS* ~ T~ wBTS:
&T/

Indeed, if M is in wBTS®, then the LTS A underlying M is countable, so, since
A is also the LTS underlying A(M), also A(M) is countable and hence in wBTS®.
Moreover, the morphism €y, : A(M) — M is in wBTS® since it is synchronous
(A, 1s the identity).

3.4 Trajectory domain functor

We show that the trajectory domain construction is functorial: it naturally
extends to a functor from the category wBTS to the category wALG of w-algebraic
domains with Scott-continuous functions. This will follow easily from the following
proposition.

3.4.1. PROPOSITION. Let M and N be in wBTS and f : M — N a BTS-
morphism. Then the function T(f) : T(M) — T(N) given by [[t]] — [[f(t)]]
is well-defined and Scott-continuous.

PRrOOF. Well-defined: Since t € Ty, f(t) € Ty, so [[f(¢)]] € T(N), and if [[t]] =
[[t'], then [t]Z[t'] and [t'|C[t], so, by clause (2) of BTS-morphisms, [f(¢)]Z[f(t')]
and [f(t)]C[f(t)], so [[f(®)]] = [[f(¢)]]. Similarly, we see that T(f) is monotone.

Thus, T(f) is a monotone function between the two w-algebraic domains T (M)
and T(NV). So to show that it is continuous, it suffices, by lemma 3.2.5, to show

that, for an w-chain C' C K(T(M)), we have T(f)(\/ C)C\/ T(f)(C).

86 Chapter 3. Trajectory domains 2: Category

Now, C'is of the form [[to]|C[[t:]]C ... for ¢; € T, whence [to] < [t;] <.... If
C' has a greatest element (i.e., ‘stagnates’ with some [t;]), the claim is immediate
by monotonicity. So we can assume without loss of generality that the chain is
strictly increasing, doesn’t start with [¢], and all ¢, are finite (if some ¢, were
infinite, it must be non-approximable since it is compact, so it would be maximal).

Let t, :=to € [to] and ng := |ty| > 0. Then we can extend ¢ to t| € [t1] and
have ny := |t}] > |ty| = no. We continue and extend #] to t, € [ts], etc., and define
t € T by: t(n) := t},(n) for some k with |t;| > n. Then C = [[t [no]] <[t [ni]] <
..., 80, by the characterization theorem (from the previous chapter), \/ C' = [[t]].
Moreover, T(f)(C) = {[[f (¢ I no)Il, [f (£ I na)]], -}

By monotonicity, [f(¢)] is a C-upper bound of T(f)(C). So if f(t) is finite,
there is a big enough n; such that f(t) = f(t | n;), so [[f(¥)]] € T(f)(C) is the
least upper bound, i.e., T(f)(\/ C) =T(f)([[t]])) =V T(f)(O).

So assume f(¢) is infinite. For each n; define m; := |f(t | n;)|. Then
f(t T ny) = f(t) | m; (since f(t [n;) is an initial segment of f(¢) of length m;).
Note that m; < mg1 and [f(t) [mu] = [f(t [ny)] < [f(t T ni)] = [f(E) T misal.
And the m; grow unboundedly (if not, f(¢) would be finite). Pick a subsequence
(my;); that is strictly increasing with m;, > 0. Then we have, by the characteriza-
tion theorem, that [[f(¢)]] = V.[[f(¢) [m;]]. And since [f(¢) [m;] € T(f)(C), we

have T(f)(V C) = T[] = [[F@1) = VIF(#) T m]EV T(f)(C), as needed. O

3.4.2. THEOREM. We have the trajectory domain functor T : wBTS — wALG
which sends a BTS M to its trajectory domain T(M) and which sends a BTS-
morphism f : M — N to the Scott-continuous function T(f) : T(M) — T(N)

defined by [[t]] — [[f()]].

PROOF. It remains to check that T satisfies the compositionality conditions.
Indeed, T(idy;) maps [[t]] to [[idas(t)]] = [[t]] and hence is the identity on T(M).
Andif f: M — N and g : N — K are BTS-morphisms, then we have, for all
t € Ty, that go f(t) = g(f(t)), hence

T(g) o TN ([[EN) = T (TNHUMHDN) = T(@)([fB)]])

so T(go f) =T(g) o T(f). O

Three comments: First, when restricting to approximable BTSs, any simulation
between BTSs is turned by T into a Scott-continuous function that preserves
compactness (i.e., maps compact elements to compact elements): If f: M — N is
in wBTS, and [[t]] € T(M) is compact, then ¢ is a finite trajectory, so T(f)([[t]]) =
[[f(®)]] € T(N) is compact since f(t) is finite.

Second, the fact that T(f) preserves compactness is, in a sense, the consequence
of LTS-morphisms being ‘uniform’ or ‘context insensitive’: Whether a state s

3.5. Adjunction between systems and domains 87

or label a in A is mapped to a state s’ or label o/ in B has to be determined
without reference to the context—i.e., trajectory—in which s and « occur. Thus,
one might consider generalized BTS-morphisms that can be sensitive to context
(but are insensitive to informationally equivalent trajectories) as Scott-continuous
functions T(M) — T(INV). Here, tough, we stick to the standard definition.

Third, since T is a functor, it maps isomorphisms to isomorphisms. So
equivalence in operational semantics in the sense of isomorphism of countable
BTSs implies equivalence in denotational semantics in the sense of isomorphism of
the trajectory domains. In the context of the discussion of full abstraction (Cardone
2021; Ong 1995), this is the difficult direction in establishing the coincidence of
operational and denotational semantics (since in that setup the denotational
semantics usually is too rich). Here it is the other way round since the denotation
abstracts away information as will become clear in the next section. We discuss
this further in section 3.7.

3.5 Adjunction between systems and domains

As motivated in the introduction, the functor T : wBTS — wALG invites the
question whether the computational model wALG is an abstraction of the com-
putational model wBTS. In this section, we tackle this question—as explained
in the introduction—Dby establishing an adjunction wBTS; = iALG obtained as a
composition of the following three reflective adjunctions:

E U T;
_—
WBTSS ~ 1 WwBTSL, L wBTSL ., L iALG
a (\I_/ ey &I_/ eyur \/_B/

The following three subsections establish these three adjunctions in turn (from left
to right) and also formally define (and recall) the involved categories and functors.

Thus, we can indeed think of the computational model iALG as an abstraction
of the computational model wBTS:.

3.5.1 Extensionalizing

Recall that if a BTS M is full and extensional, it in particular is approximable,
so we have the inclusion | : wBTSg,, — wBTS;. (To recall, f stands for