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摘 要

摘 要

社会生活的一个决定性特征是人与人之间的交互。我们的行为往往是对他人
所做事情的反应，而别人再对我们的行为做出反应。这种无休止的纠缠在大量的
场景中都有所体现，包括信息的交流、观点在社交网络中的传播、经济或学术活动
中的竞争与合作，甚至社会关系自身都处在动态变化中。从社会学,经济博弈论到
社会认知论或行动哲学等很多学科都对这些现象进行了研究，本文从逻辑学的角
度出发对其进行探索。社会互动是目前多主体系统逻辑中的一个核心主题，其牵
扯哲学、计算机科学和人工智能等的交叉，由此产生的系统不仅进一步提高了我
们对人类自身行为的理解，而且也被用来设计新的人类或人工主体的行为。本文
是对多主体传统（特别是动态认知逻辑传统）的延续，同时也探究了两个新的逻辑
视角，它们凸显了社会交互中的两个进一步的特征。
第一个主题是处于不利条件下的多主体互动。其中，不同主体有着深层次的

矛盾：他们尽力去改变交互发生的场景（通过物理的或其他的方式）。正如在一些
场景中参与者发现自己受到敌对攻击时所发生的。为了对这些情形简洁清晰地建
模，我们使用了特殊的“图博弈”，其中玩家可以在博弈过程中改变图形（即他们
互动的场景）。在我们的核心博弈中，一个主体（“旅行者”）意图移动到目标区域，
然而另一个主体（“破坏者”）尽可能地去删除图中的链接以阻止旅行者。这些图
博弈特别适合于从逻辑的角度进行分析。通过对现有文献进行扩展，我们对一类
图博弈提供了一个完整的逻辑分析：其中，旅行者当前位置的链接按照某种可定
义的方式被删除。这种“基于一个描述的局部破坏”涵盖了许许多多的场景，并支
持一个丰富的逻辑理论。
虽然上述场景看起来可能有点“负面”，但是链接删除作为一个抽象的技术也

可能是有益的：我们通过下一步关于教、学中主体间的互动来表明这一点。为此，
我们考虑一个更真实的具体场景，并设计了一个更丰富的图博弈，其中，老师对链
接的删除可以表示两种指正：指出学习者已经犯下的错误，或引导学习者远离未
来可能出现的错误。同样的，我们提供了一个逻辑语言去分析这些场景，并展示这
如何为分析学习中的动态提供一个丰富的框架，其比形式化学习理论中的标准场
景更深入地分析了过程上的细节。
如果我们将逻辑方法在以上研究中的作用看作是对社会场景提供更为精确和

详细的分析，那么论文的第二部分对逻辑的使用多多少少是朝向另一方向的，即
去寻找不同场景中抽象的一般结构。在这里我们特别感兴趣的是社会活动中主体
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摘 要

行为上的依赖性。首先，我们从抽象角度探讨了多主体系统中时间上的动态依赖
概念。为了刻画社会交互的时间维度，我们研究了一个能够体现动态系统中函数
依赖性的核心推理的逻辑系统。这需要我们用时态逻辑中的工具去扩展现有的关
于依赖性的模态逻辑，由此我们提出了一个新的关于动态系统中的行为和依赖性
的逻辑。针对这一逻辑体系，我们证明了它的完全性结果和一些其他的性质。此
外，由于文献中关于动态系统的使用大都涉及到状态空间上的一个拓扑，我们也
提供了这样一个扩展，其可以描述这样一种社会交互情形的特征：其中，我们只有
不精确的（即使是可改善的）方式去测量相关的变量。这带来的是一个更为丰富的
逻辑，我们称之为动态连续性依赖。一个看待这些系统的方式是将其作为对当前
进化博弈论中关于社会行为分析的一个概况抽象。
接下来，正如我们的第一部分那样，在研究了抽象的基本理论之后，我们进

而还考虑了更现实的社会场景。论文研究的具体案例是群体中观点或行为的传播。
其中，主体基于周围其他主体的行为来按照自己的阈值更新自身的行为。在这项
工作中，我们强调了信息的关键作用，并提出了一个逻辑来体现如何对我们一贯
以来的分析添加一个认知维度。
最后，我们对全文进行总结，并提出一些我们的分析所带来的新的问题：这不

仅包括多主体系统逻辑中的技术方面的开问题，也包括我们应该如何把社会实体
放在起始位置的概念方面的反思。

关键词：社会交互；图博弈；动态多主体逻辑；依赖性；动态系统；行为传播
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Samenvatting

Samenvatting

Interactie is een centraal aspect van het sociale leven. Onze handelingen reageren
doorgaans op wat naderen hebben gedaan, en anderen reageren weer op ons. Dee voort-
durende vervlechting komt in veel sociale situaties voor, van uitwisselen van informatie
tot het ontwikkelen van publieke opinie, samenwerking en tegenwerking in economis-
che of academische activiteiten, en zelfs sociale relaties zelf zijn voortdurend onderhevig
aan verandering. Hoewel deze verschijnselen al uitvoerig zijn bestudeerd in disciplines
zoals sociologie, economische speltheorie, of sociale epistemologie en filosofie van het
handelen, concentreert dit proefschrift zich op een logisch perspectief. Sociale interactie
is een belangrijk onderwerp in moderne logische analyses van meer-actor systemen, en
de inzichten die op deze manier zijn verworven worden toegepast in het begrijpen van
bestaand sociaal gedrag, maar ook het ontwerpen van nieuwe vormen van gedrag van
mensen en machines. Voortgaand op deze traditie, vooral in zijn dynamisch-epistemische
varianten, onderzoeken wij twee verdere belangrijke aspecten van sociale interactie.

Ons eerste onderwerp is sociale interactie onder ongunstige omstandigheden. Dit
komt voor wanneer actoren diametraal tegenover elkaar staan, en zelfs de (fysieke) omgev-
ing trachten te veranderen waarin hun interactie zich afspeelt, bijvoorbeeld in scenario’s
met een vijandelijke aanval. Om zulke scenario’s helder te modelleren gebruiken we een
speciaal soort ‘graafspelen’ waar spelers de graafstructuur van punten en verbindingen,
die dient als hun speelveld, veranderen tijdens het spel. In ons centrale genre graafspelen
wil een Reiziger een bepaald doelgebied bereiken, terwijl een demon dit zoveel mogelijk
tegenwerkt door verbindingen in de graaf te verwijderen. Zulke spelen lenen zich heel
goed voor logische analyse, en voortgaand op eerdere literatuur, geven we een volledige
analyse van geldig redeneren over graafspelen waar de Demon verbindingen kan weghalen
bij de huidige positie van de Reiziger, volgens een voorhanden zijnde beschrijving. Dit
beeld van ‘lokale sabotage onder een beschrijving’ past op vele sociale scenario’s, en leidt
to een rijke logische theorie van redeneren.

Hoewel deze formulering ‘negatief’ kan klinken, kan weghalen van verbindingen
evengoed gunstig zijn: we bestuderen ook scenario’s van leren en onderwijzen, waar dit
het geval is. In een meer concreet realistisch scenario haalt de Leraar verbindingen weg die
corresponderen met foute redeneerstappen die de Leerling heeft gemaakt, of verbindingen
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die later tot dwaalwegen en fouten zouden leiden. Weer geven we een precieze logische
taal voor zulke scenario’s, en we laten zien hoe het resultaat een rijk model oplevert voor
de procedurele dynamiek van leren en onderwijzen dat een natuurlijke aanvulling vormt
op de bestaande formele leertheorie.

In de onderwerpen tot nut toe verschaffen logische methoden meet detail en precisie
in de analyse van sociale scenario’s. In het volgende deel van dit proefschrift keren we
de richting om: logische methoden helpen nu om algemene abstracte structuren te vinden
die door veel concrete scenario’s heen spelen. Onze speciale interesse is de notie van
afhankelijkheid van gedrag voor actoren in sociale activiteiten.

Om te beginnen onderzoeken we de abstracte notie van afhankelijkheid door de tijd
heen in meer-actor systemen. Om zicht te krijgen op de temporele dimensie van afhanke-
lijk sociaal gedrag, ontwikkelen we een logisch systeem dat fundamenteel redeneren over
functionele afhankelijkheid beschrijft die zich manifesteert in het verloop van tijd. Hier-
voor gebruiken we een combinatie van bestaande modale logica’s van afhankelijkheid met
begrippen uit de temporele logica, en het resultaat is een logica van handelen en afhankeli-
jkheid in dynamische systemen waarvoor we volledigheid en andere eigenschappen bewi-
jzen. Daarenboven, omdat de meeste dynamische systemen in de literatuur een topologie
hebben op hun toestandsruimte, geven we ook een topologische versie van ons systeem die
informatie kan beschrijven over sociale interactie wanneer we alleen niet-exacte (hoewel
verfijnbare) manieren hebben om de relevante variabelen te meten.Het resultaat is een
volledige logica van wat we dynamische continue afhankelijkheid noemen. Dit systeem
kan onder meer worden beschouwd als een veralgemening van huidige analyses van soci-
aal gedrag in de evolutionaire speltheorie.

Vervolgens, net als in ons eerste deel, testen we de ontwikkelde abstracte basistheorie
in een meer realistisch sociaal scenario. We beschouwen in het bijzonder de ontwikke-
ling en verspreiding van meningen of gedrag in sociale gemeenschappen, waar actoren
hun gedrag bijstellen aan de hand van gedrag dat zij hebben geobserveerd by hun buren
in het sociale netwerk, volgens een regel gebaseerd op een drempel van activatie. We be-
nadrukken de essentiële rol van informatie in dit proces, en geven een logische analyse
van de wat noddig is om een epistemische dimensie toe te voegen aan de stijl van analyse
in dit proefschrift.

In een concluderend hoofdstuk maken we de balans op van wat er is bereikt, en wat
zich voor nieuwe taken voordoen. We identificeren vele technische open problemen in de
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logische studie van meer-actoren systemen in onze stijl, maar ook mogelijke conceptuele
heranalyse van hoe men sociale entiteiten het best kan modelleren.

Trefwoorden: sociale interactie; graafspelen; dynamische meer-actor logica’s; afhanke-
lijkheid; dynamische systemen; evolutie van gedrag
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Abstract

Interactions between people are a defining feature of social life. Our actions tend to be
reactions to what others have done, while others again respond to our behavior. This never-
ending entanglement can be observed across a wide range of settings including exchange
of information, spread of opinions in social networks, cooperation and competition in
economic or academic activities, and even social relationships themselves are in dynamic
flux. While these phenomena have been studied in many disciplines, from sociology and
economic game theory to social epistemology or philosophy of action, this dissertation
pursues a logical perspective. Social interaction is a core topic in current logics of multi-
agent systems at the interface of philosophy, computer science and AI, and the resulting
systems have been applied to better understand human behavior, but also to design new
forms of behavior by both human and artificial agents. This dissertation continues within
this multi-agency tradition, especially, that of dynamic-epistemic logics, and explores two
new logical perspectives that highlight two further basic properties of social interaction.

The first topic is multi-agent interaction under adverse circumstances. This arises
when agents are deeply at odds, to the extent that they try to change the very setting (phys-
ical or otherwise) where their interactions take place — as happens, for instance, when
actors in some standard scenario find themselves under hostile attack. For a crisp model-
ing of such scenarios, we use special ‘graph games’ where players can change the graph,
i.e., their playground, during play. In our central game, one agent (the Traveler) wants
to reach some region representing a goal, while the other player (the Demon) obstructs
the Traveler as much as possible by removing edges from the graph. These graph games
turn out to be highly amenable to logical analysis, and extending existing literature on
these scenarios, we provide a complete logical analysis of graph games where obstruction
consists in removing edges at the current position of the Traveler in some definable man-
ner. This ‘local sabotage under a description’ covers many scenarios and supports a rich
logical theory of valid reasoning.

Although the above scenario may look ‘negative’, edge removal as an abstract tech-
nique can also be beneficial: we demonstrate this by next studying the interactions of
agents engaged in learning and teaching. For this purpose, we consider a more realistic
concrete scenario, and design richer graph games where edge removals by a Teacher rep-
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resent corrections of two kinds: pointing out errors already made by a Learner, or steering
the Learner away from potential future mistakes. Again we provide a logical language for
analyzing these scenarios, and we show how this provides a rich framework for analyzing
the dynamics of learning that goes into more procedural details than standard scenarios in
formal learning theory.

One can view the role of logical methods in the preceding cases as providing more
precision and detail in the analysis of social scenarios. The second part of the thesis
uses logic in more or less the opposite direction: finding abstract general structures that
play across many scenarios at the same time. Our particular interest here is the notion of
dependence of behavior for agents engaged in social activities.

First, we explore the abstract notion of dynamic dependence over time in multi-agent
systems. To capture the temporal dimension of social interaction, we develop a logical
system embodying the core reasoning about functional dependence in dynamical systems.
This requires extending existing modal logics of dependence with devices from temporal
logic, and the result is a logic of action and dependence in dynamical systems, for which we
show completeness and other properties. Moreover, since most uses of dynamical systems
in the literature involve a topology on the state space, we also offer an enrichment. We
introduce a topological version of the system that can describe information about social
interaction when we have only imprecise (though refinable) ways of measuring the relevant
variables. The result is a richer logic of what we call dynamic continuous dependence.
One way of viewing these systems is as a generalization of current analyses of social
behavior in evolutionary game theory.

Next, as in our first part, having developed the abstract base theory, we consider what
else needs to come in to deal with more realistic social scenarios. Our case study is that
of diffusion of opinions or behaviors in communities, where agents update their behavior
based on what their neighbors in the social network do, according to some threshold rule.
We highlight the crucial role of information in making this work, and present a logical
case study of what it takes to add an epistemic dimension to our style of analysis so far.

We conclude by taking stock, and pointing at the many new issues raised by our
analysis. These include many technical open problems in the logic of multi-agent systems,
but also conceptual rethinking of how one should represent social entities in the first place.

Keywords: social interaction; graph games; dynamic multi-agent logics; dependence;
dynamical systems; evolution of behaviors
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Motivations

Interactions between people are a defining feature of social life. From the start of our
lives, our actions tend to be reactions to what others have done, while others again respond
to our actions, in an endless cycle. This entanglement of behavior can be observed across
a wide range of settings people find themselves in, such as exchange of information, spread
of opinions in social networks by assent or dissent, cooperation and competition in eco-
nomic (or academic) activities, and even social relationships themselves are in dynamic
flux. While these phenomena have been studied in a wide range of disciplines, from soci-
ology and economic game theory to social epistemology or philosophy of action, there is
also room for a logical perspective. Social interaction is a core topic in current logics of
multi-agent systems at the interface of philosophy, computer science and AI, and the re-
sulting systems have been applied to better understand human behavior, but also to design
new forms of behavior by both human and artificial agents (Shoham and Leyton-Brown,
2008; Wooldridge, 2002).

Dynamic logics of knowledge, belief, and social structures. One important line in this
field which is congenial to this dissertation is logical studies of dynamic phenomena in
social interaction. There are dynamic-epistemic logics for studying exchange of infor-
mation among different agents, including public announcement (Plaza, 1989), private or
semi-private communication (e.g., Baltag et al., 1998; van Benthem et al., 2006; Wang
et al., 2010), and various forms of group knowledge and belief (e.g., Baltag et al., 2018),
as well as epistemic-temporal logics of message passing: Fagin et al. (1995); Parikh and
Ramanujam (2003). While these logics tend to focus on informative single agent interac-
tions, another line of inquiry has focused on group phenomena over time, such as influence
on individual beliefs through social relationships (Liu et al., 2014; Seligman et al., 2011),
peer pressure (Liang and Seligman, 2011), or diffusion of opinions in communities (Bal-
tag et al., 2019b; Christoff and Hansen, 2015; Shi, 2021). Finally, there are also dynamic
logics for analyzing the evolution of social structures among agents, such as creation of
communities (Smets and Velázquez-Quesada, 2020), or structural changes in the presence
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Chapter 1 Introduction

of social conflicts (Pedersen and Slavkovik, 2017).
This tradition of dynamic logics forms the backdrop to the topics in this thesis.1

Continuing in its spirit, we will explore two further basic properties of social life that have
received less attention so far in the logical literature. The first is multi-agent interactions
under adverse informational, and even physical, circumstances that are common in real
life. Our second topic are the bonds created by social interactions: dynamic dependencies
unfolding over time between social actors. We now consider each of these in more detail.

Graph games for changing social and physical environments. Social interactions
usually take place in a physical environment, and players’ goals may be so antagonistic
that they engage in various forms of obstruction and sabotage changing the environment.
This happens, for instance, when actors in some standard scenario find themselves under
hostile attack (a very common phenomenon in ancient societies, or in modern internet sys-
tems). And even without deliberate destructive actions by all or some players, such drastic
changes may occur when a social system has to function in a hostile or malfunctioning
environment. We hasten to add that there are also benign examples of all this, such as
teachers guiding their students toward desirable learning goals by removing distractions
and temptations.

To understand these realistic scenarios, we analyze what happens when agents are
deeply at odds, to the extent that they try to change the very setting (physical or other-
wise) where their interactions take place. For a crisp modeling of the abstract essence
of such scenarios, we will use a special sort of graph games, a widely used technique in
computational logic and graph theory (van Benthem and Liu, 2020). In the games to be
introduced below, players can change the graph, i.e., their playground, during play. In
our central game, one agent (the Traveler) wants to reach some region representing a goal,
while the other player (the Demon) obstructs the Traveler as much as possible. These
graph games are known to be highly amenable to logical analysis, and extending existing
literature on these scenarios, we provide a complete logical analysis of graph games where
obstruction consists in removing edges at the current position of the Traveler in some de-
finable manner. This ‘local sabotage under a description’ covers many social scenarios
and supports a rich logical theory of valid reasoning.

1 The general logical literature on multi-agent systems is much wider than this, and indeed too wide to survey here,
The reader can form an impression of its range by looking at books like Hendricks and Hansen (2016); Shoham
and Leyton-Brown (2008); van Benthem (2014); Wooldridge (2002).
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More concretely, we start from the paradigm of ‘sabotage games’ (van Benthem,
2014), which highlight essential features of competition with potentially disruptive oppo-
nents, while still maintaining tight connections with logic. Here is the classical version:

Sabotage game. A sabotage game is played on a graph, representing the environment, with
a starting-node and a goal-node, or more generally, a goal-region: in each round, a player
Demon first cuts a link anywhere in the graph [so, Demon acts globally], and then the
other player Traveler moves along an edge that is still available where she stands [Traveler
acts locally]. Traveler wins if she arrives at a node in the goal region: if this does not
happen, and no more moves are possible, Demon wins.1

As an important property of these scenarios, it is easy to see that sabotage games are
determined in the sense of game theory, at each position, one of the two players, Traveler
or Demon, has a winning strategy. The reason is that Zermelo’s Theorem applies (Osborne
and Rubinstein, 1994), the games are two-player zero-sum with perfect information, and
also, there is a fixed finite horizon to when the game is over, since Demon has only finitely
many links to cut from.

Although sabotage games may look very simple, they apply in principle to a wide
range of interactive scenarios with adverse circumstances. They also fit well with many
actual parlor games where blocking can be done by devices such as putting pawns on
certain positions to make them inaccessible, and so on (van Benthem and Liu, 2020).
This is no coincidence, the analogy between games people play and the game structure in
serious social activities has often been noticed (e.g., Franklin, 1786; Huizinga, 1949).

However, when we take sabotage to concrete social settings, we often find that more
structure needs to be accounted for. Here is an illustration that may speak best to readers
familiar with crime series (see Figure 1.1):

Example 1.1: Policewoman Alice is on a mission with her colleague Bob, driving
from point 𝑖 to regions 𝑡 and 𝑔 which are the two locations of a criminal gang. However,
Alice does not know that Bob is in fact a corrupt cop who works for that gang. To hinder
Alice, Bob secretly keeps sending their positions to the criminals, while Alice is focused
on driving and does not realize what is happening. As a response to Bob’s messages, the
group takes action: with the information on Alice’s current position in hand, they block
one or more roads (represented by links in the graph) that she may take soon, to guide

1 See Section 1.4.1 for more on sabotage games and its matching system of sabotage modal logic.
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her away from the target locations, or even stop her as early as possible. In this setting,
to reach her destination, what Alice needs to do is to handle traffic conditions that keep
changing.

A road map of a highly simplified situation of this sort might look as follows.

𝑖

𝑠

𝑣

𝑢

𝑡

𝑔

Figure 1.1 Alice’s driving map. Nodes stand for the main locations that she may go through,
directed arrows represent roads as well as her driving direction, and the two kinds of
shape, square and circle, denote different relevant properties of locations.

For simplicity, this scenario can be taken as a game played by two players: Alice and
Bob, where we see the gang just as a tool for Bob to use.1 As in the original sabotage
game, Alice aims to reach her goal region, while Bob tries to stop Alice by blocking roads
(or more technically, removing links). However, compared with the Demon in sabotage
games, Bob’s behavior is now much more target-directed: to stop Alice as early as pos-
sible, he deletes links connected to the current position of Alice. This is a very common
situation, both social actors are localized now, and indeed, they are at the same loca-
tion. This removal of the asymmetry of global Demon and local Traveler in the original
sabotage games has been studied by several authors (e.g., Aucher et al., 2018; Löding and
Rohde, 2003b), and it simplifies the game analysis. In particular, Zhang (2020) has shown
that while the solution complexity of sabotage games with a global Demon is PSPACE-
complete, solving local sabotage games for who has the wining strategy at any given point
only takes polynomial time, a significant jump downward in computational complexity
and intuitive difficulty. Even so, there is an issue of whether reasoning about local sabo-
tage games is easier than that for the original scenarios, and this will in fact be one of our
guiding questions below.

However, the Alice-Bob scenario is still underspecified. Bob’s situation may actually
both better and worse than the above description may have suggested. On the one hand,
the gang may be able to block more than one road at the same time, instead of the single
roads allowed by the original game.2 On the other hand, choices may not be arbitrary,

1 Of course, the gang might have goals that are slightly different from Bob’s. More-agent sabotage games are an
interesting extension of the sabotage set-up that has not been studied systematically so far.

2 The effect of progressively allowing Demon more removals in one round has not been studied systematically, but
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but may have to be guided by a description: the gang may only be able to block all roads
satisfying a certain description. For instance, in blocking your access to websites in a
network, I may have to do different blocking actions depending on what sort of website I
want to block.

Concretely, in the above example, the two properties ‘diamond’ and ‘circle’ represent
two definable choices of sabotage actions. If we assume that Bob has to delete all nodes
satisfying one of these properties, the strategic situation is as follows. If Bob chooses node
𝑠, Alice will move to 𝑣, and Bob must block the link to 𝑔, after which Alice moves to 𝑢.
Here Bob can only block one link to a goal point, and Alice can get to the goal region via
the remaining link. However, if Bob starts by blocking 𝑣, Alice will move to 𝑠, and here,
Bob can delete all square successor nodes, trapping Alice before she ever reaches the goal.
Thus, Bob has a winning strategy with Alice at the initial point. In fact, this analysis tells
us who has the winning strategy at each location for Alice in the original graph.1

Questions for logical analysis. Looking at sabotage-style graph games from the per-
spective of logic, our primary concern is the structure and complexity of reasoning about
them. Players have to reason inside the game about effects of their actions, but as external
observers, we also want to reason about properties of one game, or classes of graph games.
For this, we need to introduce logical syntax, and this is what we shall do in this thesis.

It was already observed in the original paper (van Benthem, 2005) that sabotage
games suggest an unusual kind of modal logic, where ordinary existential modalities 3𝜑
represent available steps by Traveler to accessible points satisfying 𝜑, whereas a new sort
of existential ‘deletion modality’ ⬥𝜑 states that some link can be cut from the graph so as
to make 𝜑 true at the current point. This modal logic was studied in (Löding and Rohde,
2003a) who showed that, despite the apparent simplicity of this modal logic, it is undecid-
able. This is surprising since modal logics of ordinary graph games tend to be decidable
(van Benthem and Liu, 2020): reasoning correctly about social scenarios with environ-
mental change comes at a price.2 Also, while sabotage modal logic is axiomatizable in
principle (this follows from the first-order translation in van Benthem (2005)), a perspic-
uous Hilbert-style axiomatization has long been an open problem, and the best available

we will leave this technical issue aside in what follows.
1 Again, one should appreciate the generality of the scenarios sketched here. One might also implement all of the

above as a real or parlor game where players can manipulate the color of traffic lights, and so on.
2 The complexity may have to do with the fact that ‘modal sabotage logic’ can express much more than just basic

game properties (for more on this, see Aucher et al., 2018).
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result so far seems the recent axiomatization using some small expressive extensions to
the basic language in (van Benthem et al., 2021a).

So, here is our first question: What is the complexity of reasoning about local sab-
otage, and how can we axiomatize it? This question immediately generalizes to local
sabotage with definable link deletion, a topic that had not been studied in the earlier liter-
ature. We will find answers to these questions in Chapter 2 of this dissertation, plus a lot
more information of a theoretical nature that comes with the study of logical languages and
logical systems. The interest of a logical system is not just whether it answers some initial
question: once in existence, it can also generate further motivations by its very nature.

A positive scenario: modeling learning through graph change. Although the sabo-
tage view of social interactions may look a bit ‘negative’, abstract link modifications do
not have any negative nature at all. They could just as well represent the action of a gentle
guiding hand of a parent or teacher removing false paths from the environment of a child.

In particular, the original sabotage game has been interpreted as a scenario of learn-
ing and teaching in (Gierasimczuk et al., 2009). In this reading, points and edges in graphs
stand for different hypotheses and possible inferences conjectured by Learner. A transition
from point 𝑎 to another 𝑏 represents Learner’s inferring 𝑏 from 𝑎, while removing links is
regarded as Teacher’s feedback: helping Learner to eliminate incorrect inferences. While
this is appealing to some extent, and the formal results obtained were suggestive, this in-
terpretation will only become more plausible as a contribution to formal learning theory
if we confront it with more detailed scenarios.

Here is an example that readers of this dissertation may recognize, having served in
one or more of the roles involved:

Example 1.2: After checking a proof written by Learner (𝐿), Teacher (𝑇 ) begins to
talk:

T: “You did not prove the theorem yet.”
L: “Why? I started with the axioms, showed intermediate lemmas step by step, and

finally reached the statement of the theorem.”
T: “Your final step to show the theorem that is the goal is correct, but you in fact

arrived there by accident, as the inference from lemma 𝛼 to lemma 𝛽 in your proof
is wrong.”

L: “Oops! I see. Then, my steps after 𝛽 do not make sense. But, how about a new
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lemma proving 𝛾 from 𝛼? Now I think I can get to the theorem.”
T: “Alas, 𝛾 cannot be inferred from 𝛼 either.”
L: “Sorry.”
T: “No problem: it is just a potential mistake. But actually, you miss another lemma

𝛿 that can be derived from 𝛼. I believe you might be able to show the theorem with
it.”

L: “Thanks! You are right! Now I am going to search for a correct proof with 𝛿.”

This short episode already goes beyond the learning/teaching scenario in (Gierasim-
czuk et al., 2009), and it raises several interesting issues.

One is that there may be several kinds of mistakes that need to be addressed: actual
mistakes made, and potential mistakes to be avoided. And this again calls for a rethinking
of sabotage-style scenarios. The latter were ‘history-free’ in that Demon acts only on the
current location of Traveler: how Traveler arrived there is not relevant. But in the present
scenario, the history matters. Teacher’s removing mistakes that were actually made acts on
the history so far (and makes all further moves on that history suspect), while eliminating
potential mistakes affects the future from the current point.1

Making this precise again leads to many further issues. We might stipulate that
Teacher’s pointing out an incorrect step removes the whole actual history after that step, re-
setting Learner to the last point before the mistake. Also, the Teacher may point a Learner
to facts that were ignored, and also, Teacher may point at correct inferences, i.e., links that
should not be cut. In terms of game design, this calls for a more powerful Teacher: in
addition to removing links for wrong transitions, Teacher is also capable of adding links
to graphs. Moreover, the winning conditions may be more complex than in the original
sabotage game. Learner need not win when the goal region is reached (a history-free
condition), but only when that goal region has been reached in the right way.2

Thus we have a new set of questions. How can we model realistic Learner/Teacher
scenarios of the above kind as graph games? And once these are in place, What is a correct
modified logic of graph games for modeling such learning/teaching scenarios? Answers
to these questions will be found in Chapter 3 of this dissertation. It presents a logical

1 Given the abstract nature of graph games, it is technically possible to absorb histories into point of a new graph
which then looks history-free, but this would lose us the intuitive phenomena we are after here, so we will not
explore this style of remodeling.

2 In some original interpretations, the Learner was supposed to maximally seeking problematic escapes into igno-
rance and empty pleasures, while the Teacher sought to guide the student to some educationally desirable region.
But in our new version, the goals of Learner and Teacher may well be aligned.
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analysis of teaching/learning scenarios based on suitably modified and enriched graph
games. This chapter may be seen as an more concrete application-inspired counterpart to
the more theoretical investigation in Chapter 2.

Zooming out to more global logical structures in interaction. Next, having shown the
power of graph games for changing social environments, and investigated their properties
in matching logical systems, we also encounter a potential problem. Generally speaking,
as we shall see, the logics that we found in the first two chapters, though expressive and
capable of formulating many kinds of social scenarios, are complex, indeed undecidable
systems of reasoning. Now we may mitigate this by perhaps restricting attention to just
those fragments consisting of the precise formulas in our modal logics of graph change
that express properties of graph games in a narrower sense. A better approach might be
to identify the general sources of the undecidability, where an interesting perspective is
the amount of memory use identified as a costly computational device in (Areces et al.,
2011). However, the first approach is somewhat ad-hoc, and the second too computation-
ally oriented for our purposes.

Instead, we propose to move away from specifics of computation in graph games
by ‘zooming out’ to more global structures found in social interaction. While our graph
logics went into quite some detail of what happens during a game, ‘zooming in’ on the
game board and the game dynamics, we can also use logical tools to find reasoning patterns
for more global notions driving social interaction.1

Dependent behavior in social settings and finding its minimal logic. Perhaps the most
basic notion in extensive games over time that creates a social ‘bond’ is that of dependence
of actions. Once I commit to a strategy, my actions will come to depend on yours, since
my strategy prescribes a response. Thus, games create dependence patterns among players
that may be considered an essential aspect of social life.

Not surprisingly, logicians have long recognized the importance of dependence, not
just in games, but widely across the sciences and daily life. Pioneering contributions
were made by Hintikka (1973), whose ‘game-theoretic semantics’ stresses the dependence
patterns created by logical ∀∃ quantifier combinations. For more recent versions of logics
of dependence, and independence, cf. Hintikka and Sandu (1997); Väänänen (2007).
However, as they stand, these logics are not suitable for our purposes, since they tend to

1 For a similar approach extracting general social postulates from the specifics of game theory, see (Johansen, 1982).
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have high (second-order) complexity.1 But the reason for our departure from the preceding
logics was precisely that we want to lower complexity, by dropping specific features of
earlier mathematical models, in the ‘content vs. wrappings’ spirit of van Benthem (1996).

Accordingly, we make our tools much weaker, taking our point of departure in a
recent low-complexity modal approach to reasoning about dependence, put forward in
(Baltag and van Benthem, 2021b). Here functional dependence between variables (that
can typically stand for social actors) is defined in a minimal semantic manner, leading to a
decidable core logic of dependence, on top of which the proof-theoretic surplus of specific
application areas where dependence plays a role can be determined from case to case.

Yet, while this is a good start, strategic social interaction has one feature that is not
covered by these systems: namely, dependence over time. We illustrate this with one more
simple graph game.

Example 1.3: On the graph depicted in Figure 1.2, two players, Xanto and Ora, are
playing a game of occupying territories. In each round, Xanto first labels a node with a
letter ‘X’ and then Ora labels a node with ‘O’, thus ‘occupying’ these nodes. Here, a node
can be occupied by a player only if it has not been occupied by anyone yet, and it is not
adjacent to a node occupied by the other player in the previous round.2 A player wins as
soon as the other player cannot legally find a node to occupy.

Figure 1.2 Occupying territories.

In this concrete situation, it is easy to see that Xanto has a winning strategy. More
generally, on all finite centrosymmetric graphs with a centre, the starting player has a
winning strategy: “first occupy the centre, then in subsequent rounds, just occupy the node
centrosymmetric to that chosen by the other player in the previous step”.3 Of course, as
with the earlier graph games, this abstract geometrical game can be given many concrete
interpretations, from warfare to peacefully laying claims to resources.

1 These two approaches also emphasize non-classical features of reasoning about dependence which we think are
orthogonal to the phenomenon of strategic dependence per se.

2 The adjacent relation is represented by the dashed links.
3 For instance, in the above example, after Xanto occupies the centre, if Ora chooses to occupy the node on the top

left, then Xanto can occupy the node on the bottom right.
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What we see in the occupying scenario is dynamic dependence with a time delay: the
winning strategy involves Xanto’s move dependent on that by Ora in the previous round.1

This is again characteristic for social interactions: stable dependencies unfold over time,
with Tit-for-Tat as a prime example: I copy what you did in the previous round, a strategy
that has been claimed to play a crucial role in the very emergence of social cooperation
(Axelrod, 1984).

Even so, all existing dependence logics that we know of ignore this temporal struc-
ture, and hence we arrive at a next set of questions. How can we model dynamic depen-
dence over time? And as an associated issue of reasoning: Is the logic of dynamic depen-
dence still of the same simplicity as that for static dependencies? We will answer these
questions in Chapter 4, providing a precise model, and determining its complete logic.2As
for the complexity of this basic style of reasoning, we suspect that it is decidable, but we
only offer a decidability proof for a (considerable) fragment of the full language.

One general abstract way of thinking about our analysis of strategic dependence over
time in extensive games is in terms of dynamical systems where a number of agents change
state simultaneously in each step, according to some transition function representing a
joint strategy.3 Dependencies then show as correlations between actions of agents across
transition steps. Dynamical systems have a wide range of application in the physical sci-
ences, but they also underlie information-driven social processes (Klein and Rendsvig,
2017; Shi, 2021).4

But dynamical systems also suggest a desirable extension of our analysis so far. They
typically come with an idea of ‘closeness’: is the transition function intuitively continu-
ous, in the sense that small changes lead to small effects — or can there be discontinuous
jumps in social behavior? Mathematically, dynamical systems often come with a topol-
ogy on their state space, and this topological perspective fits well with recent trends in
mathematical epistemology where topologically open sets represent results of possible
measurements that we can take on the state of the system. This considerably extends the
scope of our analysis to include empirical variables that cannot be measured precisely, but

1 Dynamic dependence could also have been illustrated with strategic behavior in our earlier sabotage game, but we
added the occupation scenario to show the variety of simple, yet non-trivial graph games.

2 It should be noted that our analysis is based on strategies in extensive games. The basic modal dependence logic of
Baltag and van Benthem (2021b) has also been applied to games in strategic form as a way of analyzing collective
agency in (Shi and Wang, 2021).

3 For the preceding sequential games, we can let the non-active players perform an identity action.
4 Dynamical systems also underlie computational paradigms such as cellular automata, see Berto and Tagliabue

(2021).
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only approximated by successive measurements. (This principled approximate measura-
bility may hold for physical properties, but it also applies to mental states such as anger or
approval in other agents.) All this leads to further issues: Is there a topological extension
of our dynamic dependence logic, and is it still of the low complexity that we found for the
non-topological case? The first questions will be answered in the affirmative in Chapter
4 below. However, w have not yet managed to settle the second issue of decidability, i.e.,
the precise complexity of this style of reasoning.

Dynamical systems for opinion formation: a case study in adding knowledge. With
the use of dynamical systems, we also approach a significant divide in current logical
studies of agency (e.g., Skyrms, 1990). Traditional agent systems, and the games we have
presented so far, typically assume ‘high rationality’: agents are aware of their situation
and actively seek best responses, based on information and reasoning. But there is also
‘low rationality: the behavior of preprogrammed agents who just follow some hard-wired
update rule, for instance, adopting the opinions of the majority of one’s neighbors in a
graph modeling a social structure with relations such as physical proximity, communica-
tive connectedness, or plain friendship. In this interpretation, agents no longer play on
a given graph: they are themselves nodes in the graph, but these nodes can change their
properties according to some update rule. The contrast, or the interface, between high
and low rationality is of broad significance to understanding human social behavior, or
interactions between human and artificial agents (van Benthem et al., 2021b).

Our final topic in this thesis lies in this area, though it only addresses one crucial
feature of rational agency that manifests itself in both high- and low-rationality settings,
though in different guises. First, as for low rationality, we already mentioned a grow-
ing logical literature on opinion formation over time by communities of agents following
fixed rules of a dynamical system, i.e, hard-wired behavioral strategies, and the long-term
patterns that may come out of such systems. In particular, there is a body of work using
the same techniques as in this dissertation to study so-called ‘threshold models’ from the
social sciences, where behavior gets adopted once the number of neighbors adopting it
passes some threshold (Easley and Kleinberg, 2010). Containing the dynamic logic-style
analysis in Baltag et al. (2019b); Christoff (2016); Liang and Seligman (2011); Liu et al.
(2014), our final offering is an extension of such models to cover more realistic aspects
of opinion formation, in the same spirit of moving toward greater realism as in our earlier
topics.
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Instead of giving a concrete scenario, we merely describe the crucial dimension that
we have in mind. In all our examples so far, we made a tacit assumption that the agents
have complete knowledge of their total environment and the actions of other players. In
the sabotage game, Demon can see where Traveler is located, while Traveler can see the
links cut by Demon. In the teaching game, Teacher and Learner are aware of the rele-
vant network of claims and implications. But in our discussion of dependence, knowl-
edge did start entering. First, the variables in a dependence modeling support a possible
interpretation as agents, and in that case, dependencies between variables represent in-
formativeness relations between agents (Baltag and van Benthem, 2021b). And also, our
topological extension provided a setting where knowledge about exact values of variables
can be improved by means of measurements. This suggests adding an explicit epistemic
dimension to all of our previous topics, in terms of what (highly-)rational agents know,
and can (deliberately) observe about their environment. While this particular direction
would go far beyond the scope of this dissertation (a few thoughts can be found in the
Conclusion chapter, in terms of dynamic-epistemic logics and extensive games with im-
perfect information), the dynamical systems setting presented here does support a simpler
exploration in the low-rationality realm.

Low-rationality agents will not necessarily (perhaps even: necessarily not) reflect on
what they do, but still, their actions can depend crucially, not on mere physical facts but
on information about these facts. Instead of offering further concrete scenarios, we will
just outline the reasons for going this way. Even a robot following a deterministic rule
responding to its environment (say, “pick up a rock from the Mars surface if there is one
in reach of my grabbing arm”) must have sensors giving it information about the presence
of that rock: it acts on the information, not the mere physical fact. But the same happens
in the social scenarios that we are interested in. Consider a social group with friendship
relations where agents will follow the opinion of the majority of their friends. Suppose
also that friendship implies the possibility of communication, and hence of coming to
know the opinions of one’s friends. We might say then that a threshold rule like ‘adopt
the view of the majority of one’s friends’ is hardly usable if one does not know those
opinions. What is called for is rather epistemized update rules such as ‘adopt the majority
view among one’s friends if one knows what that view is’, or, rather less likely: ‘adopt the
majority view among the known views of one’s friends’.

Combining the graph setting with epistemic update rules requires an enriched model-
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ing in terms of agent graphs plus knowledge (cf. e.g., Baltag et al., 2019b; Christoff, 2016;
Liu et al., 2014; Seligman et al., 2011), endowed with suitable update rules. In such a set-
ting with knowledge made explicit, we can also ask quite new questions, such as whether
position in the graph determines social influence. And also, a crucial phenomenon will
be acts of communication where facts about neighbors come to be known.

Combining these ideas with our general approach, Chapter 5 provides a comprehen-
sive proposal for a rich model of opinion formation in social groups via threshold models
that includes modeling agents’ knowledge explicitly. We study this setting and find the
logic representing the basic reasoning about such social dynamical systems. This final
chapter may be seen as a case study for what might be a systematic ‘epistemization’ of
graph games and dependence logics.

This concludes our introduction to the main topics of the dissertation.

1.2 Outline of the thesis

Here is a brief summary of the concrete topics and results in this dissertation.

Chapter 2 looks at social scenarios in which a hostile agent may destroy the play-
ground on which communication and interaction take place, as suggested by Example
1.1. To study such interactions with the techniques of graph games, we give a mathe-
matical model where a player can remove links of the underlying graph with an explicit
description of the targets to be blocked. Afterwards, we develop a modal logic of definable
link deletion, which matches precisely with our games, in that its language is expressive
enough to characterize the actions of players and determine their winning positions. Also,
we settle a range of meta-properties of the resulting logic, using a new type of first-order
translation for the logic. We also provide a notion of bisimulation that leads to a charac-
terization theorem for the logic as a fragment of first-order logic, and allows us to compare
the expressive power of our logic with that of known hybrid modal languages. Next, we
discuss how to axiomatize this logic of link deletion, using dynamic-epistemic logics as
a contrast. Finally, we show that our new modal logic lacks both the tree model property
and the finite model property and that its satisfiability problem is undecidable.

In Chapter 3 we apply graph games with link deletion to social scenarios with positive
goals. Motivated by Example 1.2, the chapter analyzes the interactions between agents in
learning/teaching scenarios and proposes a comprehensive framework of ‘learning games
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with corrections’, to capture realistic features of educational processes. A learner may
make mistakes in the process, or ignore useful available information. On the other hand,
a teacher can correct mistakes made by the learner, or highlight facts ignored by adding
links to the graph. Based on such games, we provide a modal logic of correct learning
whose models can represent correct and wrong inferences, with formulas evaluated at
histories in the process of learning. We connect this richer dynamic language to existing
modal and first-order logics, and again establish results on first-order translation, a match-
ing notion of bisimulation and a characterization theorem. Additionally, we determine
the computational complexity of the logic. In particular, the model checking problem is
PSPACE-complete and the satisfiability problem is undecidable.

In Chapter 4 we turn to abstract dependence of behavior, with agents represented by
variables, in dynamical systems. We first add a temporal dimension to the basic modal
logic of functional dependence, in Baltag and van Benthem (2021b), and study the result-
ing system from both modal and first-order perspectives that, though equivalent, mutually
complete each other. Again using results on bisimulation and translation, we chart the
expressive power of the logic, and also, we present a complete Hilbert-style proof system
based on a representation results for abstract dependence models as dynamical systems,
and prove a decidability result for a significant fragment of the logic. Still in the same
chapter, we also consider richer topological dynamical systems with continuous transi-
tion functions, and extend the analysis to a logical framework for ‘dynamic continuous
dependence’, which is closer to actual practice in the empirical sciences. We identify sev-
eral natural sorts of continuous dependence, and present a Hilbert-style calculus for the
logic of one attractive proposal. This topological perspective brings together dependence
logics and existing ‘dynamic topological logics’ in a way that suggests a range of new
questions in the study of dynamical systems.

Moving a bit closer to social reality, Chapter 5 studies a significant embodiment
of the abstract notion of dependence, namely, the diffusion of behaviors or opinions in
communities. Motivated by (Baltag et al., 2019b; Christoff, 2016), we focus on threshold
models that are commonly used in the social sciences. Here it turns out that, in order
to characterize the phenomena well, an epistemic dimension must be incorporated in our
models, to capture the fact that agents’ reactions to others generally depend on information
flow. Accordingly, our proposed logical system combines more standard update opera-
tors for opinion change with acts of communication and information exchange. Among a
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number of technical results about this setting, we present several proof systems for opinion
update logics with or without epistemic ingredients.

Finally, Chapter 6 summarizes the main results of the dissertation, and identifies a
variety of further directions from more theoretical and more practical points of view.

1.3 Sources of the chapters

• Chapter 2 is based on:

Dazhu Li (2020). Losing connection: the modal logic of definable link deletion.
Journal of Logic and Computation, 30(3):715-743.

• Chapter 3 is based on:

Alexandru Baltag, Dazhu Li, and Mina Young Pedersen (2019). On the right path:
a modal logic for supervised learning. In Proceedings of LORI 2019, Lecture Notes
in Computer Science, 2019, 11813:1-14. (Baltag et al., 2019c)

Alexandru Baltag, Dazhu Li, and Mina Young Pedersen (2021). A modal logic for
supervised learning. Accepted for publication in Journal of Logic, Language and
Information.

• Chapter 4 is based on:

Alexandru Baltag, Johan van Benthem, and Dazhu Li (2021). A logical analysis of
dynamic dependence. Manuscript.

• Chapter 5 is based on:

Alexandru Baltag, Dazhu Li, and Fernando R. Velàzquez-Quesada (2021). A logi-
cal approach to diffusion in social networks. Manuscript.

1.4 Technical preliminaries

In this part, we briefly provide a basic introduction to the technical preliminaries that
are useful to understand the whole work of the dissertation.

1.4.1 Graph games and logics

Graph games are an important technical tool used to capture many social interactions
in the dissertation. There are a number of those games having very tight relations with
logics: sabotage games (van Benthem, 2014), poison games (Blando et al., 2020), Boolean
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network games (Thompson, 2020) and correct learning games (Baltag et al., 2019c, 2021).
We defer the overview of these works to Section 2.7. For now, since the works on sabotage
games and its logic, the sabotage modal logic, play a significant role in the dissertation,
we take them as an example to give the reader a basic feeling on the power of graph games
to capture interactive scenarios and their connections with logics.

A sabotage game SG is played on a graph with a start-node and a goal-node. Also,
there are two players Traveler and Blocker. In each round, Blocker deletes one link from
the graph, and then, to arrive at the goal-node, Traveler moves along a link that is still
available. Finally, the game is zero-sum: Traveler wins if she finally arrives at the goal,
otherwise she loses. Here is an example.

Example 1.4: Consider the graph depicted in Figure 1.3, where 𝑎 is the start-node and
𝐺 is the goal-node. In this setting, who will win? In fact, it turns out that Blocker has
a winning strategy. For instance, Blocker may start by deleting one of the links between
node 𝑐 and 𝐺, then Traveler moves to 𝑏. In the second round, Blocker has to remove the
link between 𝑏 and 𝐺, and Traveler now can move to 𝑐. Then, Blocker deletes the other
link between 𝑐 and 𝐺. Now, it is obvious that Traveler will get stuck finally.

𝑎 𝑏

𝑐 𝐺
Figure 1.3 A graph.

In terms of games, how agents are allowed to act is important: different designs for
their actions definitely give rise to different sorts of games. Here it is useful to briefly
common on the actions of Blocker:

• Stepwise: only one link can be deleted at a time.
• Global: links deleted need not connect the current position of Traveler.

From a logical point of view, sabotage games are captured by the sabotage modal
logic SML. Formally, its language ℒ⬥ is defined as follows:

Definition 1.1: Let P be a countable set of propositional atoms. The language ℒ⬥ of the
sabotage modal logic is generated by the following grammar:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ 3𝜑 ∣ ⬥𝜑
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where 𝑝 ∈ P. Also, define 𝜑 ∨ 𝜓 ∶= ¬(¬𝜑 ∧ ¬𝜓), 𝜑 → 𝜓 ∶= ¬𝜑 ∨ 𝜓 , 𝜑 ↔ 𝜓 ∶= (𝜑 →
𝜓) ∧ (𝜓 → 𝜑), ⊤ ∶= 𝑝 ∨ ¬𝑝, ⊥ ∶= ¬⊤, 2𝜑 ∶= ¬3¬𝜑 and ◾𝜑 ∶= ¬⬥¬𝜑.

Therefore, ℒ⬥ enriches the standard modal language ℒ2 with an additionally sabo-
tage modality ⬥. Intuitively, the standard modality 3 characterizes the actions of Traveler
in a SG, while ⬥ is designed for that of Blocker. This will become clearer after we present
their interpretations.

Formulas of ℒ⬥ are evaluated in the standard relational models ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩,
where 𝑊 is a non-empty set of possible worlds or states, 𝑅 ⊆ 𝑊 × 𝑊 is a binary relation
and 𝑉 ∶ P → 𝒫(𝑊 ) is a valuation function.1 Also, a pair ℱ = ⟨𝑊 , 𝑅⟩ is called a frame.
For each 𝑤 ∈ 𝑊 , ⟨ℳ, 𝑤⟩ is a pointed model. For brevity, we usually write ℳ, 𝑤 instead
of ⟨ℳ, 𝑤⟩. We now introduce the semantics of SML, which is defined inductively by
truth conditions.

Definition 1.2: Let ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩ be a model, 𝑤 ∈ 𝑊 and 𝜑 ∈ ℒ⬥. The semantics
of SML is defined as follows:

ℳ, 𝑤 ⊨ 𝑝 iff 𝑤 ∈ 𝑉 (𝑝)

ℳ, 𝑤 ⊨ ¬𝜑 iff not ℳ, 𝑤 ⊨ 𝜑

ℳ, 𝑤 ⊨ 𝜑 ∧ 𝜓 iff ℳ, 𝑤 ⊨ 𝜑 and ℳ, 𝑤 ⊨ 𝜓

ℳ, 𝑤 ⊨ 3𝜑 iff there exists 𝑣 ∈ 𝑊 s.t. 𝑅𝑤𝑣 and ℳ, 𝑣 ⊨ 𝜑

ℳ, 𝑤 ⊨ ⬥𝜑 iff there are 𝑠, 𝑡 ∈ 𝑊 s.t. 𝑅𝑠𝑡 and ⟨𝑊 , 𝑅 ⧵ {⟨𝑠, 𝑡⟩}, 𝑉 ⟩, 𝑤 ⊨ 𝜑

From the perspective of SG, formula 3𝜑 states that the current position of Traveler
has access to a point such that after she moves there 𝜑 holds, while ⬥𝜑 states that there
is a link such that after Blocker removes the link, 𝜑 is the case. Also, formulas of ℒ⬥

are able to describe winning positions for players in SG. For instance, that for Blocker in
Example 1.4 is as follows:

¬𝑝 ∧ ⬥2(¬𝑝 ∧ ⬥2(¬𝑝 ∧ ⬥2(¬𝑝 ∧ ⬥2(¬𝑝 ∧ ⬥2(¬𝑝 ∧ ⬥2(¬𝑝 ∧ ⬥2⊥))))))

where 𝑝 is a distinguished propositional letter that is true only at the goal-node 𝐺. How-
ever, usually this pattern does not work on infinite games. To capture those for the latter,
in general we need to extend SML with a modal 𝜇-calculus, but we do not consider infinite
games in the dissertation.

1 For any set 𝐴, 𝒫(𝐴) refers to its power set.
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For the logical aspect, augmenting ℒ2 with the sabotage modality increases the ex-
pressive power drastically. For instance, different from the standard modal logic, SML is
able to counter successors of the current point. But meanwhile, this also bring us some side
effects. Say, the complexity of SML is high: its satisfiability problem and model checking
problem have been proved to be undecidable and PSPACE-complete respectively. Also,
validities in SML are not invariant under substitution. Furthermore, although the logic is
axiomatizable, we lack a good Hilbert-style calculus with language ℒ⬥.

1.4.2 Dynamic-epistemic logics

To understand the contents of the dissertation, it is useful to be familiar with some
basics of dynamic-epistemic logics DEL (Baltag et al., 1998; Plaza, 1989; van Benthem,
2011; van Ditmarsch et al., 2007), which are mentioned throughout the dissertation. The
family of the logical frameworks is famous for their success in modelling of and reasoning
about dynamics of epistemic states of agents, induced by learning more about facts. This
part restricts itself to one of the simplest yet best known frameworks within the family
of DEL, i.e., the public-announcement logic PAL for single agent. Here is the formal
language:

Definition 1.3: Let P be a countable set of propositional atoms. The language ℒ𝑝 of
public announcement logic is defined as follows

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ 𝐾𝜑 ∣ [!𝜑]𝜑

where 𝑝 ∈ P. Usually, we call 𝐾 the knowledge operator and [! ] the announcement
operator.

Intuitively, formula 𝐾𝜑 states that the agent knows 𝜑, and [!𝜑]𝜓 expresses if 𝜑 is
announcable, then 𝜓 is the case after 𝜑 is publicly announced. Here the precondition for
announcing a formula 𝜑 is that 𝜑 should be true at the actual state.

Models ℳ = ⟨𝑊 , ∼, 𝑉 ⟩ of PAL are the same as standard relational models, except
that ∼ is an equivalence relation, i.e., it is reflexive, transitive and symmetric. Intuitively,
the relation represents the ‘indistinguishability’ of different situations (from the perspec-
tive of the agent in the model). That is, for any 𝑤, 𝑣 ∈ 𝑊 , 𝑤 ∼ 𝑣 intuitively means that
the agent cannot tell 𝑤 from 𝑣. Formally, the semantics of PAL is as follows:

Definition 1.4: Let ℳ = ⟨𝑊 , ∼, 𝑉 ⟩ be a model of PAL, 𝑤 ∈ 𝑊 and 𝜑 ∈ ℒ𝑝. The
truth conditions for propositional atoms and Boolean connectives are the same as those in
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Definition 1.2. Moreover,

ℳ, 𝑤 ⊨ 𝐾𝜑 iff for all 𝑣 ∈ 𝑊 , if 𝑤 ∼ 𝑣, then ℳ, 𝑣 ⊨ 𝜑

ℳ, 𝑤 ⊨ [!𝜑]𝜓 iff if ℳ, 𝑤 ⊨ 𝜑 then ℳ𝜑, 𝑤 ⊨ 𝜓

where ℳ𝜑 = ⟨𝑊 , ∼𝜑ℳ , 𝑉 ⟩ and 𝑠 ∼𝜑ℳ 𝑡 iff (a). 𝑠 ∼ 𝑡 and (b). ℳ, 𝑠 ⊨ 𝜑 ⇔ ℳ, 𝑡 ⊨ 𝜑.1

Intuitively, the clause for knowledge operator 𝐾𝜑 means that the agent is regarded to
know 𝜑 if all situations considered by her are 𝜑 (i.e., she rules out all situations that are
not 𝜑 from her consideration). It is important to recognize that the resulting ∼𝜑ℳ

is still
an equivalence relation, i.e., the update is well-defined on models of PAL. Intuitively, the
update indicates that: now the agent knows that 𝜑 was the case and all other situations can
be distinguished from those cases. The update has the several salient features:

• Uniform: all links that do not satisfy the condition are removed simultaneously.
• Global: links deleted need not connect the actual world.

The PAL without public announcement operator is precisely captured by the well-
known proof system S5. Perhaps surprisingly, although PAL has additional dynamic oper-
ators, its expressive power is the same as that of S5, which can illustrated by the following
‘recursion axioms’ for operator [! ]:

[!𝜑]𝑝 ↔ 𝜑 → 𝑝

[!𝜑]¬𝜓 ↔ 𝜑 → ¬[!𝜑]𝜓

[!𝜑](𝜓 ∧ 𝜒) ↔ [!𝜑]𝜓 ∧ [!𝜑]𝜒

[!𝜑]𝐾𝜓 ↔ 𝜑 → 𝐾(𝜑 → [!𝜑]𝜓)

The key spirit of the axioms is that all dynamic formulas can be recursively reduced to
the static fragment of ℒ𝑝. The feasibility of doing this definitely depends heavily on the
method of updates induced by the public announcement operator: even very slight changes
to the features mentioned above may stop the recursive format. However, the collapse of
the public announcement logic into S5 by no means states that they are identical. A piece
of evidence to illustrate this is that: the set of validities of S5 is closed under substitution,
while that of PAL is not.
1 It might be more popular to define ℳ𝜑 = ⟨𝑊 ′, ∼′, 𝑉 ′⟩ as restriction of ℳ to the worlds where 𝜑 is true, i.e,

𝑊 ′ ∶= {𝑤 ∈ 𝑊 ∣ ℳ, 𝑤 ⊨ 𝜑}, ∼′∶=∼ ∩(𝑊 ′ × 𝑊 ′) and 𝑉 ′(𝑝) ∶= 𝑉 (𝑝) ∩ 𝑊 ′. The basic results introduced in
this part also apply to this kind of updates. But, to highlight the intrinsic difference between PAL and SML, it is
useful to adopt the definition involving link-deletion.
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Chapter 2 A logic for graph games with definable link
deletions

2.1 Social interactions under adverse circumstances

Interactions between social agents take many forms, studied in the social sciences,
mathematics, computer science, philosophy, and other fields. Not surprisingly, new per-
spectives and new formal models keep arising. In this chapter, we take a look at inter-
active scenarios where players may obstruct each other by changing the environment in
which their interactions take place. This phenomenon, introduced with various examples
in Chapter 1 is ubiquitous. For instance, in social networks, players may delete or add
friends, and this clearly affects the environment in which they form or transmit their opin-
ions or adjust their behaviors. We start with a mathematical framework that can model
these scenarios in a precise way, namely, graph games.

Let us first recall Example 1.1 introduced in the previous chapter.

𝑖

𝑠

𝑣

𝑢

𝑡

𝑔

Now Alice starts at point 𝑖, and tries to arrive at one of the goal points 𝑡 and 𝑔. However,
Bob, the spy travelling with her, tries to prevent this.1 The game goes in rounds: Bob first
cuts one or more links in the graph, then Alice makes a step along one of the links still
available. Since Bob can cut at most 9 links in all, the game is finite. Alice wins if she
gets to one of the goal regions, and loses if she cannot get there.

This description still leaves the game underspecified, since we must say more about
how Bob is allowed to cut before we can analyze the outcomes of the game. For concrete-
ness, we start with a variant where the properties are not yet essential.

First version. Bob cuts one arrow from Alice’s current position to some reachable node.

In the resulting game on our graph, Alice has a winning strategy: she is always able to
arrives at one of the regions. Bob might start by deleting the link ⟨𝑖, 𝑠⟩, then Alice moves

1 For simplicity, we ignore other members of the criminal group, and just consider the case that it is Bob who is
destroying the roads.
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to node 𝑣. In the second round, Bob must cut ⟨𝑣, 𝑔⟩, and Alice goes to state 𝑢. Finally,
player Alice can always arrive at 𝑡 or 𝑔 whatever link Bob deletes.

In this first version, the game is a local variant of the sabotage game SG (see, e.g.,
van Benthem, 2014). A sabotage game is played on a graph by two players: in each
round, Traveler acts in the same way as Alice, while Bob’s counterpart Blocker first cuts
a link. However, Blocker’s moves in sabotage games are global and allow cutting a link
anywhere in the graph, not necessarily starting at the current position of Traveler. In
contrast, our game restricts the moves available to Blocker, giving him fewer winning
strategies in general (cf. e.g., Areces et al., 2015; Aucher et al., 2018; Rohde, 2005).

However, the real-world scenario that we considered suggest a more drastic deviation
from existing sabotage games. In particular, Bob in fact can destroy the roads with the
properties of the locations that Alice likes. So, our next game models such more terrible
scenario, taking care of both aspects.

Definitive version. In each round, player Bob chooses an available atomic property, and
cuts all links from the position of Alice to nodes with the chosen property.

For example, in the graph depicted in Figure 1.1, when Alice is located at node 𝑠,
Bob can cut both the links ⟨𝑠, 𝑢⟩ and ⟨𝑠, 𝑡⟩ if he chooses the definable property of nodes
marked by the square.

Clearly, with this new version, Bob’s powers of blocking access to information have
increased. Indeed, on the same graph as before, he now has a winning strategy. In the first
round, Bob cuts the link ⟨𝑖, 𝑣⟩, and Alice’s only option is to move to node 𝑠. But then,
Bob can cut both links ⟨𝑠, 𝑢⟩ and ⟨𝑠, 𝑡⟩ simultaneously, and Alice gets stuck and loses.

We will now focus on the logical analysis of our second more realistic game, calling
it the definable sabotage game SdG. Here existing modal logics for sabotage can serve
as an inspiration, given the similarity of the games. But they must be modified, since we
have made the obstructing player both less powerful (given the local nature of his choices)
and more powerful (since he can remove more than one link in general). More concretely,
to analyze the sabotage game, a sabotage modal logic SML is proposed, which extends
standard modal logic with a sabotage modality ⬥𝜑 stating that 𝜑 is true at the evaluation
point after removing some accessibility arrow from the model (see, e.g., Aucher et al.,
2018; Löding and Rohde, 2003a). But what is a suitable logic for SdG? The next section
contains our proposal, called definable sabotage modal logic SdML. We will study this
logic in depth, not just for its connections to the above games, but also as a pilot study
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for throwing light on what is special and what is general about sabotage games, and the
logical theory that already exists for them. In addition, our logic is a test case for how
local sabotage, even though definable in ways reminiscent of dynamic-epistemic logics of
information update, has its own behavior, including significantly higher complexity (cf.
Areces et al., 2012, 2018).

Outline of the chapter. In Section 2.2, we present the syntax and semantics of SdML
(Section 2.2), and some typical logical validities (Section 2.2.2). In Section 2.3, we de-
scribe the non-trivial first-order translation for SdML and check its correctness. In Section
2.4, we first introduce a notion of bisimulation for SdML and investigate some of its model
theory (Section 2.4.1), then we prove a characterization theorem for SdML as a fragment
of first-order logic that is invariant for the bisimulation introduced (Section 2.4.2), and fi-
nally we explore the expressive power of SdML (Section 2.4.3). In Section 2.5, we provide
some further analysis of an axiomatization of SdML. In particular, we illustrate the rela-
tion between SdML and hybrid logics (Section 2.5.1), and study recursion axioms (Section
2.5.2). Next, in Section 2.6, we show that SdML lacks both the tree model property and
the finite model property, and that the satisfiability problem for SdML is undecidable. Fi-
nally, we discuss related work in Section 2.7, and conclude in Section 2.8 with a summary
and outlook on further directions.

2.2 The modal logic of SdG: SdML

In this section, we introduce the language and semantics of logic SdML. After that, to
understand the new device, we illustrate some properties of the logic by means of logical
validities.

2.2.1 Language and semantics

As mentioned above, the definable sabotage modal logic SdML is intended to match
SdG. Therefore its language should be expressive enough to model the actions of the
players. For player Alice, it is natural to think of the standard modality 3, which charac-
terizes the transition from a node to its successors (see, e.g., Blackburn et al., 2001; van
Benthem, 2010). However, to characterize the action of Bob, some dynamic operator is
indispensable.

The language ℒ𝑑 of SdML is a straightforward extension of the standard modal lan-
guage ℒ2. In addition to the modality 2, it also includes a dynamic modal operator [− ].
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The formal definition is as follows:

Definition 2.1: Let P be a countable set of propositional atoms. The language ℒ𝑑 is
defined by the following grammar in Backus-Naur Form:

ℒ𝑑 ∋ 𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ 2𝜑 ∣ [−𝜑]𝜑

where 𝑝 ∈ P. Besides, notions ⊤, ⊥, ∨, →, ↔ and 3 are as usual. For any [−𝜑]𝜓 ∈ ℒ𝑑 ,
we define ⟨−𝜑⟩𝜓 ∶= ¬[−𝜑]¬𝜓 , i.e., ⟨− ⟩ is the dual operator of [− ].

We will often omit parentheses when doing so ought not to cause confusion. The
operator [− ] is our device to model the action of Bob in SdG. This can be clarified
by the semantics of SdML. Formulas of ℒ𝑑 are evaluated in standard relational models
ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩. For any ⟨𝑤, 𝑣⟩ ∈ 𝑅, we also write ⟨𝑤, 𝑣⟩ ∈ ℳ. In addition, we use
𝑅(𝑤) to denote the set {𝑣 ∈ 𝑊 ∣ ⟨𝑤, 𝑣⟩ ∈ 𝑅} of successors of 𝑤. We now introduce the
semantics, which is defined inductively by truth conditions.

Definition 2.2: Let ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩ be a model, 𝑤 ∈ 𝑊 and 𝜑 ∈ ℒ𝑑 . The semantics
for the language ℒ𝑑 is defined as follows:

ℳ, 𝑤 ⊨ 𝑝 iff 𝑤 ∈ 𝑉 (𝑝)

ℳ, 𝑤 ⊨ ¬𝜑 iff ℳ, 𝑤 ⊭ 𝜑

ℳ, 𝑤 ⊨ 𝜑 ∧ 𝜓 iff ℳ, 𝑤 ⊨ 𝜑 and ℳ, 𝑤 ⊨ 𝜓

ℳ, 𝑤 ⊨ 2𝜑 iff for each 𝑣 ∈ 𝑊 , if 𝑅𝑤𝑣, then ℳ, 𝑣 ⊨ 𝜑

ℳ, 𝑤 ⊨ [−𝜑]𝜓 iff ℳ|⟨𝑤,𝜑⟩, 𝑤 ⊨ 𝜓

where ℳ|⟨𝑤,𝜑⟩ = ⟨𝑊 , 𝑅 ⧵ ({𝑤} × {𝑢 ∈ 𝑅(𝑤) ∣ ℳ, 𝑢 ⊨ 𝜑}), 𝑉 ⟩ = ⟨𝑊 , 𝑅 ⧵ ({𝑤} × {𝑢 ∈
𝑊 ∣ ℳ, 𝑢 ⊨ 𝜑}), 𝑉 ⟩ is obtained by deleting all links from 𝑤 to the nodes that are 𝜑.

We let ‖𝜑‖ℳ = {𝑤 ∈ 𝑊 ∣ ℳ, 𝑤 ⊨ 𝜑} denote the truth set of a formula 𝜑 in ℳ.
We omit the superscript for the model when it is clear from the context. A formula 𝜑 is
satisfiable if there exists a pointed model ⟨ℳ, 𝑤⟩ with 𝑤 ∈ ‖𝜑‖. By Definition 2.2, the
truth conditions for Boolean and modal connectives ¬, ∧, 2 are as usual, and [−𝜑]𝜓 states
that 𝜓 is true at the evaluation point after deleting all links from the current point to the
nodes that are 𝜑. Intuitively, by the semantics, formula 𝜑 occurring in [− ] stands for a
property of some successors of the current point, and [−𝜑] represents an action of Bob in
SdG.
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Example 2.1: Recall the driving map of Alice. Assume that the propositional atoms 𝑝
and 𝑞 refer to the properties denoted with circle and square respectively. Then we are able
to express the facts of the game with formulas of ℒ𝑑 . For instance, that ‘after Bob deletes
the links from 𝑣 to the circle point, i.e., 𝑔, Alice still can move to a square node, i.e., 𝑢’
can be expressed as the truth at 𝑣 of the formula [−𝑝]3𝑞. Moreover, ℒ𝑑 can also describe
the winning strategies for players in this example. Say, the formula [−𝑝]2[−𝑞]2⊥ states
that Bob can stop Alice successfully by removing the links from the position of Alice to
the circle nodes in the first round, and cutting the links pointing to the square nodes in the
second round. By our semantics for these formulas, SdML is suitable to capture SdG.

2.2.2 Logical validities

Although the language and semantics of SdML look simple, there are some issues
with the new operator [− ]. To illustrate how it works, we explore some interesting validi-
ties of SdML. First of all, let us consider the following principle:

[−𝜑](𝜑1 → 𝜑2) → ([−𝜑]𝜑1 → [−𝜑]𝜑2) (2-1)

which follows from the semantics of SdML directly. The formula enables us to distribute
[− ] over an implication. It is a common principle that applies to almost all modalities,
such as the standard modality and the public announcement operator (see, e.g., Baltag
et al., 1998). However, operator [− ] also has some distinguishing features. For instance,
the validity

[−𝜑]𝜓 ↔ ⟨−𝜑⟩𝜓 (2-2)

illustrates that [− ] is self-dual and—less obviously—a model update function essentially.
It is not hard to check that the validity of formulas (2-1) and (2-2) is closed under sub-
stitution. Interestingly, this is not a common feature of SdML. Some examples are as
follows:

[−𝜑]𝑝 ↔ 𝑝 (2-3)

[−𝑝]3𝑞 ↔ 3(¬𝑝 ∧ 𝑞) (2-4)

[−𝑝][−𝑞]𝜑 ↔ [−𝑞][−𝑝]𝜑 (2-5)

Principle (2-3) illustrates that operator [− ] does not change the truth value of propositional
atoms. Formula (2-4) allows us to reduce a formula including [− ] to an ℒ2-formula. By
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(2-5), when all formulas occurring in [− ] are propositional atoms, the order of different
operators [− ] can be interchanged.

Actually each propositional atom occurring in formulas (2-3)-(2-5) can be replaced
by any Boolean formula without affecting their validity. However, these schematic validi-
ties fail in general when we consider the deletions for complex properties. See Figure 2.1
for an example showing this phenomenon for principle (2-5).

𝑤𝑣1𝑝 𝑣2 𝑞

Figure 2.1 A model showing that the general schema [−𝜑1][−𝜑2]𝜑 ↔ [−𝜑2][−𝜑1]𝜑 of princi-
ple (2-5) fails in SdML. Let 𝜑1 ∶= 𝑝, 𝜑2 ∶= 33𝑝 and 𝜑 ∶= 3𝑞. Then at point 𝑤
formula [−𝑝][−33𝑝]3𝑞 is true, while [−33𝑝][−𝑝]3𝑞 fails.

Many instances of validity in SdML are not straightforward, and require much more
thought than the often rather obvious validities found in standard logical systems. In par-
ticular, the dynamic modality [− ] creates interesting complexity, since removing links in
a model can have side-effects for truth values of formulas at worlds throughout the model.
Therefore, it is time to make a deeper technical investigation of our logic.

2.3 A first-order translation for SdML

Given the semantics of SdML, a natural question is: is SdML axiomatizable? By
the completeness theorem for first-order logic, validity of first-order logic is effectively
axiomatizable. Therefore, a positive answer to the question can be provided if we can
describe a recursive standard translation for SdML (cf. van Benthem, 1984, 2010).

Obviously, truth conditions for SdML are first-order. So, in there must be a first-order
translation like that for standard modal logic. However we already know from SML that
additional arguments may be needed in the translation: for SML, that extra argument is a
finite set of links (see Areces et al., 2015; Aucher et al., 2015). Interestingly, finding the
translation here requires even more delicate analysis of the extra argument.

To do so, our method is to introduce a new device, being a sequence consisting of
ordered pairs (e.g., ⟨𝑦, 𝜑⟩), to denote the occurrences of [− ] in a formula, where 𝑦 is a
variable and 𝜑 is a property of its successors. Let ℒ1 be the first-order language consisting
of countable unary predicates 𝑃𝑖∈𝑁 , a binary relation 𝑅 and equality ≡.

Definition 2.3: Let 𝑂 be a finite sequence ⟨𝑦0, 𝜓0⟩; ⋯ ; ⟨𝑦𝑖, 𝜓𝑖⟩; ⋯ ; ⟨𝑦𝑛, 𝜓𝑛⟩ (0 ⩽ 𝑖 ⩽ 𝑛)
such that 𝜓0⩽𝑖⩽𝑛 is an ℒ𝑑-formula and 𝑦0⩽𝑖⩽𝑛 is a variable, and 𝑥 be a designated variable.
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The standard translation 𝑆𝑇 𝑂
𝑥 ∶ ℒ𝑑 → ℒ1 is defined recursively as follows:

𝑆𝑇 𝑂
𝑥 (𝑝) = 𝑃 𝑥

𝑆𝑇 𝑂
𝑥 (⊤) = 𝑥 ≡ 𝑥

𝑆𝑇 𝑂
𝑥 (¬𝜑) = ¬𝑆𝑇 𝑂

𝑥 (𝜑)

𝑆𝑇 𝑂
𝑥 (𝜑1 ∧ 𝜑2) = 𝑆𝑇 𝑂

𝑥 (𝜑1) ∧ 𝑆𝑇 𝑂
𝑥 (𝜑2)

𝑆𝑇 𝑂
𝑥 (3𝜑) = ∃𝑦(𝑅𝑥𝑦 ∧ ¬(𝑥 ≡ 𝑦0 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑦 (𝜓0))∧

⋀
0⩽𝑖⩽𝑛−1

¬(𝑥 ≡ 𝑦𝑖+1 ∧ 𝑆𝑇 ⟨𝑦0,𝜓0⟩;⋯;⟨𝑦𝑖,𝜓𝑖⟩
𝑦 (𝜓𝑖+1)) ∧ 𝑆𝑇 𝑂

𝑦 (𝜑))

𝑆𝑇 𝑂
𝑥 ([−𝜑1]𝜑2) = 𝑆𝑇 𝑂;⟨𝑥,𝜑1⟩

𝑥 (𝜑2)

where 𝑦 is a variable which has not been used yet in the translation.

The key inductive clauses in Definition 2.3 concern 3-formulas and [− ]-formulas.
Formula 3𝜑 is translated as a first-order formula with 𝑥 free, stating that the current point
𝑥 has a successor 𝑦 satisfying 𝑆𝑇 𝑂

𝑦 (𝜑), and that this edge is not deleted by the operator [− ]
indexed in the sequence 𝑂. The first-order translation for [−𝜑1]𝜑2 says that the translation
of 𝜑2 is carried out with respect to the sequence 𝑂; ⟨𝑥, 𝜑1⟩, and that this translation is
realized at the current point 𝑥.

According to Definition 2.3, the index sequence 𝑂 may become longer and longer,
but it is always finite. For each formula 𝜑 of ℒ𝑑 , 𝑆𝑇 ⟨𝑥,⊥⟩

𝑥 (𝜑) yields a first-order formula
with only 𝑥 free. Now we use an example to illustrate the translation.

Example 2.2: Consider formula 3[−3𝑝1]2𝑝2. Its translation runs as follows:

𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (3[−3𝑝1]2𝑝2) = ∃𝑦(𝑅𝑥𝑦 ∧ ¬(𝑥 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑦 (⊥))∧

𝑆𝑇 ⟨𝑥,⊥⟩
𝑦 ([−3𝑝1]2𝑝2))

= ∃𝑦(𝑅𝑥𝑦 ∧ ¬(𝑥 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑦 (⊥))∧

𝑆𝑇 ⟨𝑥,⊥⟩;⟨𝑦,3𝑝1⟩
𝑦 (2𝑝2))

= ∃𝑦(𝑅𝑥𝑦 ∧ ¬(𝑥 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑦 (⊥))∧

∀𝑧(𝑅𝑦𝑧 ∧ ¬(𝑦 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑧 (⊥))∧

¬(𝑦 ≡ 𝑦 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑧 (3𝑝1)) → 𝑆𝑇 ⟨𝑥,⊥⟩;⟨𝑦,3𝑝1⟩

𝑧 (𝑝2))

= ∃𝑦(𝑅𝑥𝑦 ∧ ¬(𝑥 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑦 (⊥))∧

∀𝑧(𝑅𝑦𝑧 ∧ ¬(𝑦 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑧 (⊥))∧
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¬(𝑦 ≡ 𝑦 ∧ ∃𝑧′(𝑅𝑧𝑧′ ∧ ¬(𝑧 ≡ 𝑥 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑧′ (⊥))∧

𝑆𝑇 ⟨𝑥,⊥⟩
𝑧′ (𝑝1)) → 𝑆𝑇 ⟨𝑥,⊥⟩;⟨𝑦,3𝑝1⟩

𝑧 (𝑝2))

= ∃𝑦(𝑅𝑥𝑦 ∧ ¬(𝑥 ≡ 𝑥 ∧ ¬𝑦 ≡ 𝑦) ∧ ∀𝑧(𝑅𝑦𝑧∧

¬(𝑦 ≡ 𝑥 ∧ ¬𝑧 ≡ 𝑧) ∧ ¬(𝑦 ≡ 𝑦 ∧ ∃𝑧′(𝑅𝑧𝑧′∧

¬(𝑧 ≡ 𝑥 ∧ ¬𝑧′ ≡ 𝑧′) ∧ 𝑃1𝑧′) → 𝑃2𝑧)

The resulting formula is very complicated. Essentially, it is equivalent to formula
∃𝑦(𝑅𝑥𝑦∧∀𝑧(𝑅𝑦𝑧∧¬∃𝑧′(𝑅𝑧𝑧′ ∧𝑃1𝑧′) → 𝑃2𝑧)), which states that there exists a successor
𝑦 of the current point 𝑥 such that, for each successor 𝑧 of 𝑦, if 𝑧 does not have any 𝑃1-
successors, then 𝑧 is 𝑃2. Example 2.2 can be considered as a small case illustrating that
SdML is succinct notation for a complex part of first-order logic. In order to check the
result, we will prove the correctness of Definition 2.3. In what follows, for any assignment
𝜎, we define 𝜎𝑤

𝑥 (𝑥) = 𝑤, and 𝜎𝑤
𝑥 (𝑦) = 𝜎(𝑦) when 𝑥 ≠ 𝑦. Now let us first introduce the

following lemma:

Lemma 2.1: Let 𝑂 = ⟨𝑦0, 𝜓0⟩; ⋯ ; ⟨𝑦𝑖, 𝜓𝑖⟩; ⋯ ; ⟨𝑦𝑛, 𝜓𝑛⟩ be a finite sequence, 𝑦 a vari-
able not occurring in 𝑂, 𝜎 an assignment, and ⟨ℳ, 𝑤⟩ a pointed model. Assume that 𝜓
is an ℒ𝑑-formula such that:

(a). ℳ, 𝑤 ⊨ 𝜓 iff ℳ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (𝜓)[𝜎𝑤

𝑥 ].
For any variable 𝑧 and 𝑖 ⩽ 𝑛 − 1, suppose that:

(b). ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑧 (𝜓0)[𝜎] iff ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩

𝑧 (𝜓0)[𝜎𝑢
𝑦]; and

(c). ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 ⟨𝑦0,𝜓0⟩;⋯;⟨𝑦𝑖,𝜓𝑖⟩
𝑧 (𝜓𝑖+1)[𝜎] iff ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;⟨𝑦0,𝜓0⟩;⋯;⟨𝑦𝑖,𝜓𝑖⟩

𝑧 (𝜓𝑖+1)[𝜎𝑢
𝑦].

Then, it holds that:

ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂
𝑥 (𝜑)[𝜎] ⇔ ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂

𝑥 (𝜑)[𝜎𝑢
𝑦].

Proof It can be proven by induction on 𝜑. The Boolean cases are routine, and we now
consider other cases.

(1). 𝜑 is 3𝜑1. Assume that ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂
𝑥 (𝜑)[𝜎]. Then in ℳ|⟨𝑢,𝜓⟩ we have

a link ⟨𝜎(𝑥), 𝑣⟩ such that 𝑆𝑇 𝑂
𝑧 (𝜑1), ¬(𝑥 ≡ 𝑦0 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑧 (𝜓0)) and ¬(𝑥 ≡ 𝑦𝑖+1 ∧
𝑆𝑇 ⟨𝑦0,𝜓0⟩;⋯;⟨𝑦𝑖,𝜓𝑖⟩

𝑧 (𝜓𝑖+1)) for any 𝑖 ⩽ 𝑛 − 1, where 𝜎(𝑧) = 𝑣. By the inductive hy-
pothesis, ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂

𝑧 (𝜑1)[𝜎𝑢
𝑦]. Moreover, from assumption (b), we can obtain

ℳ ⊨ ¬(𝑥 ≡ 𝑦0 ∧ 𝑆𝑇 ⟨𝑦,𝜓⟩
𝑧 (𝜓0))[𝜎𝑢

𝑦]. Next, by assumption (c), for any 𝑖 ⩽ 𝑛 − 1, for-
mula ¬(𝑥 ≡ 𝑦𝑖+1 ∧ 𝑆𝑇 ⟨𝑦,𝜓⟩;⟨𝑦0,𝜓0⟩;⋯;⟨𝑦𝑖,𝜓𝑖⟩

𝑧 (𝜓𝑖+1)) is satisfied in ℳ (with the assignment
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𝜎𝑢
𝑦). Furthermore, since ⟨𝜎(𝑥), 𝑣⟩ ∈ ℳ|⟨𝑢,𝜓⟩, we have ℳ, 𝑣 ⊭ 𝜓 if 𝜎(𝑥) = 𝑢. By assump-

tion (a), we have ℳ ⊨ ¬(𝑥 ≡ 𝑦∧𝑆𝑇 ⟨𝑦,⊥⟩
𝑦 (𝜓))[𝜎𝑢

𝑦]. By Definition 2.3, it holds directly that
ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂

𝑥 (𝜑)[𝜎𝑢
𝑦]. Conversely, it is not hard to check that ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂

𝑥 (𝜑)[𝜎𝑢
𝑦]

is followed by ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂
𝑥 (𝜑)[𝜎].

(2). 𝜑 is [−𝜑1]𝜑2. Suppose that ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂
𝑥 (𝜑)[𝜎𝑢

𝑦]. By Definition 2.3, we have
ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂;⟨𝑥,𝜑1⟩

𝑥 (𝜑2)[𝜎𝑢
𝑦]. By the inductive hypothesis, ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂

𝑥 (𝜑1)[𝜎] iff
ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂

𝑥 (𝜑1)[𝜎𝑢
𝑦]. Therefore, the new sequence 𝑂; ⟨𝑥, 𝜑1⟩ satisfies the assumption

(c). Again, by the inductive hypothesis, ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂;⟨𝑥,𝜑1⟩
𝑥 (𝜑2)[𝜎]. From Definition

2.3, we know ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂
𝑥 (𝜑)[𝜎]. When ℳ|⟨𝑢,𝜓⟩ ⊨ 𝑆𝑇 𝑂

𝑥 (𝜑)[𝜎], by an analogous
argument in the converse direction, we can show ℳ ⊨ 𝑆𝑇 ⟨𝑦,𝜓⟩;𝑂

𝑥 (𝜑)[𝜎𝑢
𝑦]. ∎

With Lemma 2.1, we now are able to prove the correctness of the standard translation:

Theorem 2.1: Let 𝜎 be an assignment and 𝜑 ∈ ℒ𝑑 . For any pointed model ⟨ℳ, 𝑤⟩, we
have:

ℳ, 𝑤 ⊨ 𝜑 ⇔ ℳ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (𝜑)[𝜎𝑤

𝑥 ].

Proof The proof is by induction on the structure of 𝜑. The cases for Boolean and modal
connectives are straightforward. When 𝜑 is [−𝜑1]𝜑2, the following equivalences hold:

ℳ, 𝑤 ⊨ [−𝜑1]𝜑2 iff ℳ|⟨𝑤,𝜑1⟩, 𝑤 ⊨ 𝜑2

iff ℳ|⟨𝑤,𝜑1⟩ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (𝜑2)[𝜎𝑤

𝑥 ]

iff ℳ ⊨ 𝑆𝑇 ⟨𝑥,𝜑1⟩;⟨𝑥,⊥⟩
𝑥 (𝜑2)[𝜎𝑤

𝑥 ]

iff ℳ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩;⟨𝑥,𝜑1⟩
𝑥 (𝜑2)[𝜎𝑤

𝑥 ]

iff ℳ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (𝜑)[𝜎𝑤

𝑥 ]

The first equivalence follows from the semantics directly. By the inductive hypothesis, for
any pointed model ⟨ℳ1, 𝑢⟩, we have ℳ1, 𝑢 ⊨ 𝜑2 iff ℳ1 ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑥 (𝜑2)[𝜎𝑢
𝑥], therefore the

second equivalence holds. Again, by the inductive hypothesis, we obtain ℳ, 𝑤 ⊨ 𝜑1 iff
ℳ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑥 (𝜑1)[𝜎𝑤
𝑥 ]. Therefore, the assumption (a) in Lemma 2.1 is satisfied. Besides,

it is not hard to see that assumptions (b) and (c) in the lemma are also satisfied here. So,
by Lemma 2.1, the third equivalence holds. Since no variable can satisfy the translation
of ⊥, the fourth one holds. The last one holds directly by Definition 2.3. ∎

Remark 2.1: The first-order translation for SdML is quite different from that for sabo-
tage modal logic. To translate a formula of sabotage modal logic, it suffices to maintain a
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finite set of ordered pairs of nodes encoding the links already deleted. However it fails for
SdML, since the number of links cut by [− ] may be infinite. In addition, we should also
take care of the order of [− ] in a formula (recall Figure 2.1). Our finite sequence of or-
dered pairs of nodes and properties solves these problems and yields a suitable translation
for SdML.

Finally, we end by answering the question stated at the outset of this section, which
follows directly from Definition 2.3 and Theorem 2.1:

Corollary 2.1: From the completeness theorem for first-order logic, it follows that logic
SdML is axiomatizable.

2.4 Bisimulation and expressivity for SdML

Through the standard translation, we can translate a formula of SdML into first-order
logic syntactically. In this section, we investigate the other aspect, i.e., model theory, for
its expressive power. Let us begin with considering the notion of bisimulation for SdML.

2.4.1 Bisimulation for SdML

After expanding the standard modal language ℒ2 with the operator [− ], formulas of
ℒ𝑑 are not invariant under the standard bisimulation (Blackburn et al., 2001) any longer.

To show this, let us first introduce a notion of definable sabotage modal equivalence
(notation, ↭𝑑) between pointed models: ⟨ℳ1, 𝑤⟩ ↭𝑑 ⟨ℳ2, 𝑣⟩ iff for each 𝜑 ∈ ℒ𝑑 ,
ℳ1, 𝑤 ⊨ 𝜑 iff ℳ2, 𝑣 ⊨ 𝜑.

Proposition 2.1: Formulas of ℒ𝑑 are not invariant under the standard bisimulation.

Proof It suffices to give an example. Consider two models ℳ1 and ℳ2 as depicted in
Figure 2.2. By the definition of the standard bisimulation, we know that both ⟨ℳ1, 𝑤1⟩
and ⟨ℳ1, 𝑤2⟩ are bisimilar to ⟨ℳ2, 𝑣1⟩, and that ⟨ℳ1, 𝑤3⟩ is bisimilar to ⟨ℳ2, 𝑣2⟩. How-
ever, we have ℳ1, 𝑤1 ⊨ [−𝑞]33𝑞 and ℳ2, 𝑣1 ⊭ [−𝑞]33𝑞. Therefore, it follows that
bisimulation does not imply definable sabotage modal equivalence. ∎

So, what is a suitable notion of bisimulation for SdML? Before answering this ques-
tion, we first introduce some auxiliary definitions.

Definition 2.4: For any model ℳ = {𝑊 , 𝑅, 𝑉 } and 𝑤 ∈ 𝑊 , we say a set 𝑈 ⊆ 𝑊 of
possible worlds is definable relative to 𝑅(𝑤) in ℳ iff there exists an ℒ𝑑-formula 𝜑 with

29



Chapter 2 A logic for graph games with definable link deletions

𝑤1
𝑝

𝑤2
𝑝

𝑤3𝑞

ℳ1

𝑣1 𝑝

𝑣2 𝑞

ℳ2

𝑍
𝑍

𝑍

Figure 2.2 Two bisimilar models ℳ1 and ℳ2 (the bisimulation runs via the dashed lines labelled
with ‘𝑍’).

𝑈 = 𝑅(𝑤) ∩ ‖𝜑‖. Also, define ℳ|⟨𝑤,𝑈⟩ ∶= ⟨𝑊 , 𝑅 ⧵ ({𝑤} × 𝑈), 𝑉 ⟩ that is obtained by
removing links {𝑤} × 𝑈 from model ℳ.

Take any formula 𝜑 of ℒ𝑑 . It is not hard to see that the model ℳ|⟨𝑤,‖𝜑‖⟩ is identical
to ℳ|⟨𝑤,𝜑⟩. Now we introduce a new notion of bisimulation for our logic SdML.

Definition 2.5: Let ℳ1 = ⟨𝑊1, 𝑅1, 𝑉1⟩ and ℳ2 = ⟨𝑊2, 𝑅2, 𝑉2⟩ be two models. We say
a non-empty relation 𝑍𝑑 is a definable sabotage bisimulation (d-bisimulation) between
pointed models ⟨ℳ1, 𝑤⟩ and ⟨ℳ2, 𝑣⟩ (notation, ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩) if the following
conditions are satisfied:
Atom: If ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩, then ℳ1, 𝑤 ⊨ 𝑝 iff ℳ2, 𝑣 ⊨ 𝑝, for each 𝑝 ∈ P,
Zig3: If ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩ and there exists 𝑤′ ∈ 𝑊1 such that 𝑅1𝑤𝑤′, then there

exists 𝑣′ ∈ 𝑊2 such that 𝑅2𝑣𝑣′ and ⟨ℳ1, 𝑤′⟩𝑍𝑑⟨ℳ2, 𝑣′⟩,
Zag3: If ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩ and there exists 𝑣′ ∈ 𝑊2 such that 𝑅2𝑣𝑣′, then there exists

𝑤′ ∈ 𝑊1 such that 𝑅1𝑤𝑤′ and ⟨ℳ1, 𝑤′⟩𝑍𝑑⟨ℳ2, 𝑣′⟩,
Zig[− ]: If ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩ and 𝑈 is definable relative to 𝑅1(𝑤) in ℳ1, then it holds

that ⟨ℳ1|⟨𝑤,𝑈⟩, 𝑤⟩𝑍𝑑⟨ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩, 𝑣⟩,
Zag[− ]: If ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩ and 𝑈 ′ is definable relative to 𝑅2(𝑣) in ℳ2, then it holds

that ⟨ℳ1|⟨𝑤,𝑍−1
𝑑 (𝑈′)⟩, 𝑤⟩𝑍𝑑⟨ℳ2|⟨𝑣,𝑈′⟩, 𝑣⟩.

where 𝑍𝑑(𝑈) ∶= {𝑣′ ∈ 𝑅2(𝑣) ∣ ⟨ℳ1, 𝑤′⟩𝑍𝑑⟨ℳ2, 𝑣′⟩ for some 𝑤′ ∈ 𝑈}, and
𝑍−1

𝑑 (𝑈 ′) ∶= {𝑤′ ∈ 𝑅1(𝑤) ∣ ⟨ℳ1, 𝑤′⟩𝑍𝑑⟨ℳ2, 𝑣′⟩ for some 𝑣′ ∈ 𝑈 ′}. We also write
⟨ℳ1, 𝑤⟩↔𝑑⟨ℳ2, 𝑣⟩ if there exists a d-bisimulation 𝑍𝑑 such that ⟨ℳ1, 𝑤⟩𝑍𝑑⟨ℳ2, 𝑣⟩.

Here the conditions for 3 are as usual, which do not change the model but change
the evaluation point along the accessibility relation. In contrast, those for [− ] keep the
evaluation point fixed but remove some links from the model. Besides, in standard modal
logic, given any family of bisimulations {𝑍𝑖}𝑖∈𝐼 between two models ℳ and 𝒩 , the set-
theoretic union ⋃{𝑍𝑖}𝑖∈𝐼 is again a bisimulation (see van Benthem, 2010). By Definition
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2.5, this also holds for the new notion: the union of any family of d-bisimulations between
two models is also a d-bisimulation. This observation is useful in various aspects, say, it
can help us to simplify a given model to a smaller equivalent one.

Remark 2.2: It is worth noting that the clauses for our dynamic operator in Definition
2.5 are quite different from those defined by Areces et al. (2012); Fervari (2014) for the
standard sabotage operator or relevant modalities. In particular, a special kind of definable
sets are used. This is in line with the truth condition for [− ]: we need to consider the
properties of successors when updating the model at the current point. However, the usage
of those definable sets also makes our notion of d-bisimulation intricate, since it essentially
involves universally quantifying over all ℒ𝑑-formulas (recall Definition 2.4). That is, the
notion defined in Definition 2.5 is syntax-dependent and thus not purely structural. It
is a natural and interesting open problem whether this notion can be replaced by a fully
structural one.1

As a concrete illustration of the d-bisimulation introduced here, it is easy to see that
the pointed models ⟨ℳ1, 𝑤1⟩ and ⟨ℳ2, 𝑣1⟩ in Figure 2.2 are not d-bisimilar. Next we
show that formulas of SdML are invariant for d-bisimulation:

Theorem 2.2: For any pointed models ⟨ℳ1, 𝑤⟩ and ⟨ℳ2, 𝑣⟩, if ⟨ℳ1, 𝑤⟩↔𝑑⟨ℳ2, 𝑣⟩,
then ⟨ℳ1, 𝑤⟩ ↭𝑑 ⟨ℳ2, 𝑣⟩.

Proof We prove it by induction on the syntax of 𝜑. Let ⟨ℳ1, 𝑤⟩↔𝑑⟨ℳ2, 𝑣⟩.
(1). 𝜑 ∈ P. By Definition 2.5, it holds directly that ℳ1, 𝑤 ⊨ 𝜑 iff ℳ2, 𝑣 ⊨ 𝜑.
(2). 𝜑 is ¬𝜓 . By the inductive hypothesis, ℳ1, 𝑤 ⊨ 𝜓 iff ℳ2, 𝑣 ⊨ 𝜓 . Consequently,

we know that ℳ1, 𝑤 ⊨ 𝜑 iff ℳ2, 𝑣 ⊨ 𝜑.
(3). 𝜑 is 𝜑1 ∧ 𝜑2. By the inductive hypothesis, for each 𝑖 ∈ {1, 2}, ℳ1, 𝑤 ⊨ 𝜑𝑖 iff

ℳ2, 𝑣 ⊨ 𝜑𝑖. Thus it holds that ℳ1, 𝑤 ⊨ 𝜑 iff ℳ2, 𝑣 ⊨ 𝜑.
(4). 𝜑 is 3𝜓 . If ℳ1, 𝑤 ⊨ 𝜑, then there exists 𝑤1 ∈ 𝑊1 such that 𝑅1𝑤𝑤1 and

ℳ1, 𝑤1 ⊨ 𝜓 . By Zig3, there exists 𝑣1 ∈ 𝑊2 s.t. 𝑅2𝑣𝑣1 and ⟨ℳ1, 𝑤1⟩↔𝑑⟨ℳ2, 𝑣1⟩. By

1 Instead of answering it, we refer the reader interested in this question to (Baltag and Cinà, 2018; Demey, 2011)
which may be useful to solve this problem. Similar to our case, a non-structural notion of bisimulation for condi-
tional belief on epistemic plausibility models is given by Demey (2011), which also discusses different methods,
mainly by enhancing the logic or putting some special restrictions on models, to optimize the notion. Different
from those methods used by Demey (2011), with the help of a notion of selection function, Baltag and Cinà (2018)
provide a solid notion of bisimulation for conditional belief, behaving as desired both on plausibility models and
on evidence models.
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𝑤1

𝑤2

𝑣

ℳ1 ℳ2

Figure 2.3 Two d-bisimilar models (the d-bisimulation runs through the dashed lines).

the inductive hypothesis, ℳ1, 𝑤1 ⊨ 𝜓 iff ℳ2, 𝑣1 ⊨ 𝜓 . It is followed by ℳ2, 𝑣1 ⊨ 𝜓
immediately. Consequently it holds that ℳ2, 𝑣 ⊨ 𝜑. Similarly, we can obtain ℳ1, 𝑤 ⊨ 𝜑
from ℳ2, 𝑣 ⊨ 𝜑 by Zag3.

(5). 𝜑 is [−𝜑1]𝜑2. Assume that ℳ1, 𝑤 ⊨ 𝜑. Define 𝑈 = ‖𝜑1‖ℳ1 ∩ 𝑅1(𝑤).
Clearly, this set is definable relative to 𝑅1(𝑤) in ℳ1. By the truth condition for [− ],
we have ℳ1|⟨𝑤,𝑈⟩, 𝑤 ⊨ 𝜑2. From Zig[− ], we know that ⟨ℳ1|⟨𝑤,𝑈⟩, 𝑤⟩ is d-bisimilar to
⟨ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩, 𝑣⟩. By the inductive hypothesis, we have ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩, 𝑣 ⊨ 𝜑2. To show
ℳ2, 𝑣 ⊨ 𝜑, we now prove that for any 𝑣′ ∈ 𝑅2(𝑣), 𝑣′ ∈ ‖𝜑1‖ℳ2 iff 𝑣′ ∈ 𝑍𝑑(𝑈).

Let 𝑣′ ∈ 𝑅2(𝑣). Suppose that 𝑣′ ∈ 𝑍𝑑(𝑈). Then, there is a 𝑤′ ∈ 𝑈 such that
⟨ℳ1, 𝑤′⟩𝑍𝑑⟨ℳ2, 𝑣′⟩. By the inductive hypothesis, we obtain 𝑣′ ∈ ‖𝜑1‖ℳ2 . For the
other direction, let us assume that 𝑣′ ∈ ‖𝜑1‖ℳ2 . Since 𝑅2𝑣𝑣′, by Zag3 we know that 𝑤
has a successor 𝑤′ with ⟨ℳ1, 𝑤′⟩𝑍𝑑⟨ℳ2, 𝑣′⟩. Consequently, by the inductive hypothe-
sis, ℳ1, 𝑤′ ⊨ 𝜑1. So, 𝑤′ ∈ 𝑈 . From the definition of 𝑍𝑑(𝑈), we have 𝑣′ ∈ 𝑍𝑑(𝑈).

Therefore, ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩ is identical to ℳ2|⟨𝑣,𝜑1⟩. Consequently, ℳ2, 𝑣 ⊨ 𝜑. Simi-
larly, by Zag[− ], ℳ1, 𝑤 ⊨ 𝜑 follows from ℳ2, 𝑣 ⊨ 𝜑. ∎

As an application of Theorem 2.2, let us consider a simple example:

Example 2.3: Consider the models ℳ1 and ℳ2 depicted in Figure 2.3. By Definition
2.5, it holds that ⟨ℳ1, 𝑤1⟩↔𝑑⟨ℳ2, 𝑣⟩ and ⟨ℳ1, 𝑤2⟩↔𝑑⟨ℳ2, 𝑣⟩. From Theorem 2.2, we
know that ⟨ℳ1, 𝑤1⟩ ↭𝑑 ⟨ℳ2, 𝑣⟩ and ⟨ℳ1, 𝑤2⟩ ↭𝑑 ⟨ℳ2, 𝑣⟩. Therefore, SdML cannot
distinguish between nodes 𝑤1(2) and 𝑣.

Furthermore, we can also show a weaker result for the other direction: for 𝜔-saturated
models, the converse of Theorem 2.2 holds as well. For each finite set 𝑌 , we denote the
expansion of ℒ1 with a set 𝑌 of constants with ℒ𝑌

1 , and denote the expansion of ℳ to ℒ𝑌
1

with ℳ𝑌 .
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Definition 2.6: A model ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩ is 𝜔-saturated if, for every finite subset 𝑌 of
𝑊 , the expansion ℳ𝑌 realizes every set 𝛤 (𝑥) of ℒ𝑌

1 -formulas whose finite subsets 𝛤 ′(𝑥)
are all realized in ℳ𝑌 .

From a standard modal point of view, Definition 2.6 requires that the evaluation point
has some successors satisfying the set 𝛤 of formulas if for any finite subset of 𝛤 there are
accessible states satisfying it. Besides, in terms of operator [− ], this definition requires
that after an update at the evaluation state, if every finite subset of 𝛤 is satisfied by the
evaluation point, then the whole of 𝛤 is satisfied by the point in the new model.

Not all models are 𝜔-saturated, but every model can be extended to an 𝜔-saturated
model with the same first-order theory (see, e.g., Chang and Keisler, 1973). From Defini-
tion 2.3, we know that each model ℳ has an 𝜔-saturated extension with the same theory
of SdML. For brevity, we use the set 𝕋 𝑑(ℳ, 𝑤) = {𝜑 ∈ ℒ𝑑 ∣ ℳ, 𝑤 ⊨ 𝜑} to denote the
SdML theory of 𝑤 in ℳ. With Definition 2.6, we end this part by the following result:

Theorem 2.3: For any 𝜔-saturated ⟨ℳ1, 𝑤⟩ and ⟨ℳ2, 𝑣⟩, if ⟨ℳ1, 𝑤⟩ ↭𝑑 ⟨ℳ2, 𝑣⟩,
then ⟨ℳ1, 𝑤⟩↔𝑑⟨ℳ2, 𝑣⟩.

Proof We prove this by showing that ↭𝑑 satisfies the definition of d-bisimulation.
(1). For each 𝑝 ∈ P, by the definition of ↭𝑑 , it holds that ℳ1, 𝑤 ⊨ 𝑝 iff ℳ2, 𝑣 ⊨ 𝑝.

This satisfies the condition of Atom.
(2). Let 𝑤1 ∈ 𝑊1 such that 𝑅1𝑤𝑤1. We show that point 𝑣 has a successor 𝑣1 with

⟨ℳ1, 𝑤1⟩ ↭𝑑 ⟨ℳ2, 𝑣1⟩. For each finite subset 𝛤 of 𝕋 𝑑(ℳ1, 𝑤1), it holds that:

ℳ1, 𝑤 ⊨ 3⋀ 𝛤 iff ℳ2, 𝑣 ⊨ 3⋀ 𝛤

iff ℳ2 ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (3⋀ 𝛤 )[𝜎𝑣

𝑥]

iff ℳ2 ⊨ ∃𝑦(𝑅𝑥𝑦 ∧ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑦 (⋀ 𝛤 ))[𝜎𝑣

𝑥]

Therefore every finite subset 𝛤 of 𝕋 𝑑(ℳ1, 𝑤1) is satisfiable in the set of successors of
node 𝑣. From Definition 2.6, we know that 𝑣 has a successor 𝑣1 where 𝕋 𝑑(ℳ1, 𝑤1) is
true. Thus, ⟨ℳ1, 𝑤1⟩ ↭𝑑 ⟨ℳ2, 𝑣1⟩. The proof of the Zig3 clause is completed.

(3). Similar to (2), we can prove that the condition of Zag3 is satisfied.
(4). Take any definable set 𝑈 = ‖𝜑‖ℳ1 ∩ 𝑅1(𝑤) relative to 𝑅1(𝑤) in ℳ1. We prove

Zig[− ] by showing ⟨ℳ1|⟨𝑤,𝑈⟩, 𝑤⟩ ↭𝑑 ⟨ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩, 𝑣⟩. For each finite subset 𝛤 of
𝕋 𝑑(ℳ1|⟨𝑤,𝑈⟩, 𝑤), the following sequence of equivalences holds:

ℳ1, 𝑤 ⊨ [−𝜑] ⋀ 𝛤 iff ℳ2, 𝑣 ⊨ [−𝜑] ⋀ 𝛤
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iff ℳ2|⟨𝑣,𝜑⟩, 𝑣 ⊨ ⋀ 𝛤

iff ℳ2|⟨𝑣,𝜑⟩ ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (⋀ 𝛤 )[𝜎𝑣

𝑥]

From the proof of Theorem 2.2, we know that ℳ2|⟨𝑣,𝜑⟩ is exactly ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩. So, it
follows that each finite subset of 𝕋 𝑑(ℳ1|⟨𝑤,𝑈⟩, 𝑤) is true at 𝑣 in ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩. Then, by
Definition 2.6, the theory 𝕋 𝑑(ℳ1|⟨𝑤,𝑈⟩, 𝑤) is true at 𝑣 in ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩. It is followed
directly by ⟨ℳ1|⟨𝑤,𝑈⟩, 𝑤⟩ ↭𝑑 ⟨ℳ2|⟨𝑣,𝑍𝑑 (𝑈)⟩, 𝑣⟩.

(5). Similar to (4), we can show that the condition of Zag[− ] is satisfied.
Thus, we conclude that ⟨ℳ1, 𝑤⟩↔𝑑⟨ℳ2, 𝑣⟩. The proof is completed. ∎

2.4.2 Characterization of SdML

With the notion of d-bisimulation, we can characterize SdML as the one-free-variable
fragment of first-order logic that is invariant for d-bisimulation, where a first-order formula
𝛼(𝑥) is invariant for d-bisimulation just in case that for all pointed models ⟨ℳ1, 𝑤1⟩ and
⟨ℳ2, 𝑤2⟩ such that ⟨ℳ1, 𝑤1⟩↔𝑑⟨ℳ2, 𝑤2⟩, ℳ1 ⊨ 𝛼(𝑥)[𝜎𝑤1

𝑥 ] iff ℳ2 ⊨ 𝛼(𝑥)[𝜎𝑤2
𝑥 ].

Theorem 2.4: An ℒ1-formula is equivalent to the translation of an ℒ𝑑-formula iff it is
invariant for d-bisimulation.

Proof The direction from left to right holds directly by Theorem 2.2. For the converse
direction, let 𝛼 be an ℒ1-formula with one free variable 𝑥. Assume that 𝛼 is invariant for
d-bisimulation. Now we consider the following set:

ℂ𝑑(𝛼) = {𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (𝜑) ∣ 𝜑 ∈ ℒ𝑑 and 𝛼 ⊨ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑥 (𝜑)}.

The result holds from the following two claims:
(i). If ℂ𝑑(𝛼) ⊨ 𝛼, then 𝛼 is equivalent to the translation of an ℒ𝑑-formula.
(ii). ℂ𝑑(𝛼) ⊨ 𝛼, i.e., for any ⟨ℳ, 𝑤⟩, ℳ ⊨ ℂ𝑑(𝛼)[𝜎𝑤

𝑥 ] entails ℳ ⊨ 𝛼[𝜎𝑤
𝑥 ].

We show (i) first. Suppose that ℂ𝑑(𝛼) ⊨ 𝛼. From the compactness and deduction
theorems of first-order logic, it holds that ⊨ ⋀ 𝛤 → 𝛼 for some finite subset 𝛤 of ℂ𝑑(𝛼).
The converse can be shown by the definition of ℂ𝑑(𝛼): ⊨ 𝛼 → ⋀ 𝛤 . Thus it holds that
⊨ 𝛼 ↔ ⋀ 𝛤 proving the claim.

As to the claim (ii), let ⟨ℳ, 𝑤⟩ be a pointed model such that ℳ ⊨ ℂ𝑑(𝛼)[𝜎𝑤
𝑥 ].

Consider the set 𝛴 = 𝑆𝑇 ⟨𝑥,⊥⟩
𝑥 (𝕋 𝑑(ℳ, 𝑤)) ∪ {𝛼}. We now show that:

(a). The set 𝛴 is consistent.
(b). ℳ ⊨ 𝛼[𝜎𝑤

𝑥 ], thus proving claim (ii).
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Suppose that 𝛴 is not consistent. By the compactness of first-order logic, it follows
that ⊨ 𝛼 → ¬ ⋀ 𝛤 for some finite subset 𝛤 of 𝛴. But then, by the definition of ℂ𝑑(𝛼), we
obtain ¬ ⋀ 𝛤 ∈ ℂ𝑑(𝛼), which is followed by ¬ ⋀ 𝛤 ∈ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑥 (𝕋 𝑑(ℳ, 𝑤)). However, it
contradicts to 𝛤 ⊆ 𝑆𝑇 ⟨𝑥,⊥⟩

𝑥 (𝕋 𝑑(ℳ, 𝑤)). Hence (a) holds.
Now we show that (b) holds as well. Since 𝛴 is consistent, it can be realized by some

pointed model, say, ⟨ℳ′, 𝑤′⟩. Note that both the pointed models have the same SdML
theory, thus ⟨ℳ, 𝑤⟩ ↭𝑑 ⟨ℳ′, 𝑤′⟩. Now take two 𝜔-saturated elementary extensions
⟨ℳ𝜔, 𝑤⟩ and ⟨ℳ′

𝜔, 𝑤′⟩ of ⟨ℳ, 𝑤⟩ and ⟨ℳ′, 𝑤′⟩ respectively. It can be shown that such
extensions always exist (see, e.g., Chang and Keisler, 1973). By the invariance of first-
order logic under elementary extensions, from ℳ′ ⊨ 𝛼[𝜎𝑤′

𝑥 ] we know that 𝛼 is satisfied
by ⟨ℳ′

𝜔, 𝑤′⟩. Moreover, by Theorem 2.3 and the assumption that 𝛼 is invariant for d-
bisimulation, formula 𝛼 is satisfied by ⟨ℳ𝜔, 𝑤⟩ as well. By the elementary extension, we
obtain ℳ ⊨ 𝛼[𝜎𝑤

𝑥 ] that entails the claim (ii). Consequently, the proof is completed. ∎

Just as with SML, the key model-theoretic argument using saturation needed special
care, but now with new modifications matching the above translation of SdML (cf. Aucher
et al., 2018).

2.4.3 Exploring expressive power

So far, we have already been able to show whether or not a first-order property be-
longs to the fragment identified by Theorem 2.4. In this section, we show several concrete
examples, which will also present a comparison between SdML and SML with respect to
their expressive power.

Example 2.4: Consider the first-order property 𝛼1(𝑥) ‘The current point is irreflexive
and has successors, each of which only has access to the current point’, i.e., 𝛼1(𝑥) ∶=
¬𝑅𝑥𝑥 ∧ ∃𝑦𝑅𝑥𝑦 ∧ ∀𝑦(𝑅𝑥𝑦 → 𝑅𝑦𝑥 ∧ ∀𝑧(𝑅𝑦𝑧 → 𝑧 ≡ 𝑥)). From Example 2.3, we know
that this property is not invariant for d-bisimulation. For instance, formula 𝛼1(𝑥) is true at
state 𝑤1 in ℳ1 but fails at 𝑣 in ℳ2. Thus this property is not definable in SdML.

Interestingly, the result may be quite different if we change the first-order property in
Example 2.4 slightly, say,

Proposition 2.2: The first-order property 𝛼+
1 (𝑥) ‘The current point is irreflexive and has

successors, each of which is a dead end or only has access to dead ends and the current
point’, i.e., 𝛼+

1 (𝑥) ∶= ¬𝑅𝑥𝑥 ∧ ∃𝑦(𝑅𝑥𝑦 ∧ ¬∃𝑧𝑅𝑦𝑧) ∧ ∃𝑦(𝑅𝑥𝑦 ∧ ∃𝑧𝑅𝑦𝑧) ∧ ∀𝑦(𝑅𝑥𝑦 →
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¬∃𝑧𝑅𝑦𝑧 ∨ (𝑅𝑦𝑥 ∧ ∃𝑧(𝑅𝑦𝑧 ∧ ¬∃𝑢𝑅𝑧𝑢) ∧ ∀𝑧(𝑅𝑦𝑧 → 𝑧 ≡ 𝑥 ∨ ¬∃𝑢𝑅𝑧𝑢))), is definable in
logic SdML.

Proof Consider the following formulas of SdML:

(𝐵1) 32⊥ ∧ 33⊤

(𝐵2) 2(3⊤ → 32⊥ ∧ 3(32⊥ ∧ 33⊤) ∧ 2(2⊥ ∨ (32⊥ ∧ 33⊤)))

(𝐵3) [−2⊥]2(32⊥ ∧ 2(¬2⊥ → ¬32⊥))

Let 𝜑+
1 ∶= (𝐵1 ∧ 𝐵2 ∧ 𝐵3). This formula is satisfiable, say, it is true at ⟨ℳ1, 𝑤1⟩ depicted

in Figure 2.2. Let ⟨ℳ, 𝑢⟩ be a pointed model. It is not hard to see that ℳ, 𝑢 ⊨ 𝜑+
1 if

ℳ ⊨ 𝛼+
1 (𝑥)[𝜎𝑢

𝑥]. Now assume that ℳ, 𝑢 ⊨ 𝜑+
1 . Formula (𝐵1) states that, the current

point 𝑢 has some successors 𝑢1 that are dead ends, and some successors 𝑢2 which have
successors. By (𝐵2), each 𝑢2 reaches some dead end 𝑢3, and some point 𝑢4 which is
similar to 𝑢: it has some successors which are dead ends, and some successors that also
have successors. After cutting the links from node 𝑢 to dead ends, from (𝐵3) it holds that
𝑢2 still can see some dead ends, and that 𝑢4 cannot reach dead ends any longer. Therefore
we obtain 𝑢2 ≠ 𝑢 and 𝑢4 = 𝑢. Consequently, ℳ ⊨ 𝛼+

1 (𝑥)[𝜎𝑢
𝑥]. So we conclude that

ℳ ⊨ 𝛼+
1 (𝑥)[𝜎𝑢

𝑥] iff ℳ, 𝑢 ⊨ 𝜑+
1 for any pointed model ⟨ℳ, 𝑢⟩. ∎

Through observation, we can find that the property 𝛼+
1 (𝑥) expands the current point

and its successors in 𝛼1(𝑥) with some successors that are dead ends. But the former one
is definable in SdML and the latter one is not. What is the reason for this?

Let ⟨ℳ, 𝑢⟩ be a pointed model that is d-bisimilar to ⟨ℳ1, 𝑤1⟩ depicted in Figure 2.2.
By Definition 2.5, we know that 𝑢 can reach some dead end 𝑢1, and some 𝑢2 that has access
to some dead ends. Except those dead ends, 𝑢2 can also see some point 𝑢3 that is similar
to 𝑢: 𝑢3 can reach some dead end and some node that has successors. Furthermore, after
cutting the links from 𝑢 to the dead ends, 𝑢2 still can see some dead ends, but 𝑢3 cannot
reach any dead ends now. So we have 𝑢2 ≠ 𝑢 and 𝑢3 = 𝑢. In such a way, we conclude that
the property 𝛼+

1 (𝑥) is invariant under d-bisimulation.

Example 2.5: Consider the property ‘There exist 𝑛 successors of the current point’. It
is essentially not invariant for d-bisimulation. For an illustration, see Figure 2.4. Hence
this property is not definable in SdML.

In contrast, as noted by Aucher et al. (2018), SML can count successors of the current
state. Moreover, it is also expressive enough to define the length of a cycle. That is, for
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𝑤

𝑤2 𝑤1

𝑣

𝑣1

Figure 2.4 Two d-bisimilar models showing logic SdML cannot count the successors of the cur-
rent point. For instance, the property ‘there exist 2 successors’ is true at point 𝑤 in
the model to the left, but fails at 𝑣 to the right.

each positive natural number 𝑛 ∈ ℕ, there exists a SML formula 𝜑 such that, for any
ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩ and 𝑤 ∈ 𝑊 , ℳ, 𝑤 ⊨ 𝜑 iff ⟨𝑊 , 𝑅⟩ is a cycle of length 𝑛.1 Is this
property definable in SdML?

Example 2.6: Recall the two models depicted in Figure 2.3. The underlying frame of
ℳ1 is a cycle of length 2, while that of ℳ2 is a cycle of length 1. So, logic SdML cannot
define the length of a cycle.

Intuitively, these differences between SdML and SML stem from the features of [− ]
and the standard sabotage modality ⬥. In SML, each occurrence of ⬥ in a formula deletes
exactly one link. However, in SdML, [− ] operates uniformly, which blocks the logic to
define the first-order properties in Example 2.5-2.6. But, the current results do not mean
that SdML is necessarily less expressive than SML, and the relation between these two
logics remains to be clarified.

2.5 From SdML to hybrid logics

While an effective first-order translation shows that validity in SdML is effectively
axiomatizable, it gives no concrete information about a more ‘modal’ complete set of proof
principles. In this section, following the techniques developed by dynamic-epistemic log-
ics (see, e.g., Baltag et al., 1998; van Benthem, 2011), we try to axiomatize SdML by
means of recursion axioms.

The principles for Boolean cases are as usual. However, as for [−𝜑]2𝜓 , there is a
problem. From the typical method of recursion axioms used in dynamic-epistemic logics,
we know that dynamic operators can be pushed inside standard modalities. But it fails
for SdML, since that after pushing [− ] under a standard modality over successors of the
current world, the model change is not local in the successors any longer and it takes place
somewhere else (cf. Aucher et al., 2018).

1 For a further study of the expressivity of the sabotage-style logics (including SML), we refer to (Areces et al., 2012,
2015; Fervari, 2014) that also include comparisons of the expressivity of those logics.
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Hence the principle for [−𝜑]2𝜓 should illustrate the position where the change hap-
pens. To do so, a natural method is to seek help from hybrid logics (Areces and ten Cate,
2007; Blackburn and Seligman, 1995), which enable us to name nodes and specific edges
in a model. This intuition is in line with the results presented in (van Benthem et al.,
2020), which shows a complete axiomatization for a logic of stepwise point deletion with
the help of hybrid operators.1

Precisely, we will extend SdML with nominals, at-operator @ and down-arrow op-
erator ↓, and the resulting logic is called HSdML. Let P = {𝑝, 𝑞, 𝑟, ⋯} be a countable set
of propositional atoms, and N = {𝑖, 𝑗, 𝑘, ⋯} be a countable set of nominals disjoint from
P. The language of HSdML is defined in the following way:

𝜑 ∶∶= 𝑖 ∣ 𝑝 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ 3𝜑 ∣ [−𝜑]𝜑 ∣ @𝑖𝜑 ∣↓𝑖 𝜑

where 𝑝 ∈ P and 𝑖 ∈ N. Models ℳ = ⟨𝑊 , 𝑅, 𝑉 ⟩ of HSdML are defined as usual except
that 𝑉 now is a function from P∪N to 𝒫(𝑊 ). In particular, for any nominal 𝑖, the valuation
𝑉 (𝑖) is a singleton set. The truth condition for nominals is the following:

ℳ, 𝑤 ⊨ 𝑖 ⇔ 𝑉 (𝑖) = {𝑤}.

Truth conditions for propositional atoms, ¬, ∧, 3 and [− ] are the same as those
defined in Definition 2.2. Besides, given a nominal 𝑖 and a formula 𝜑, formula @𝑖𝜑 states
that 𝜑 is true at the point named by 𝑖. Formally, it is defined by the following clause:

ℳ, 𝑤 ⊨ @𝑖𝜑 ⇔ ℳ, 𝑣 ⊨ 𝜑 where {𝑣} = 𝑉 (𝑖).

Finally, formula ↓𝑖 𝜑 says that after naming the evaluation point 𝑖 formula 𝜑 holds,
and its truth condition is defined as follows:

⟨𝑊 , 𝑅, 𝑉 ⟩, 𝑤 ⊨↓𝑖 𝜑 ⇔ ⟨𝑊 , 𝑅, 𝑉 𝑤
𝑖 ⟩, 𝑤 ⊨ 𝜑

where 𝑉 𝑤
𝑖 (𝑖) = {𝑤}, and 𝑉 𝑤

𝑖 (𝑗) = 𝑉 (𝑗) when 𝑖 ≠ 𝑗. In what follows, let us denote by
ℋ(↓) the hybrid logic without operator [− ]. Now, with formulas of the form ↓𝑖 3 ↓𝑗 𝜑,
we can manipulate links by naming pairs of points (see Areces et al., 2016).

1 Also suggested in (Areces et al., 2018; Aucher et al., 2018), extending sabotage-style logics with hybrid operators
may be an interesting method to axiomatize those logics.
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2.5.1 SdML and hybrid logics

As a warm-up, we briefly discuss the relation between SdML and hybrid logics. In
particular, the following translation illustrates that SdML can be reduced to ℋ(↓). Similar
to the standard translation defined in Definition 2.3, a finite sequence 𝑂 will be used.

Definition 2.7: Let 𝑂 be a finite sequence of ordered pairs consisting of nominals and
ℒ𝑑-formulas, denoted with ⟨𝑖0, 𝜓0⟩; ⋯ ; ⟨𝑖𝑚, 𝜓𝑚⟩; ⋯ ; ⟨𝑖𝑛, 𝜓𝑛⟩ (0 ⩽ 𝑚 ⩽ 𝑛). The hybrid
translation 𝑇 𝑂 ∶ ℒ𝑑 → ℋ(↓) is recursively defined as follows:

𝑇 𝑂(𝑝) = 𝑝

𝑇 𝑂(⊤) = ⊤

𝑇 𝑂(¬𝜑) = ¬𝑇 𝑂(𝜑)

𝑇 𝑂(𝜑1 ∧ 𝜑2) = 𝑇 𝑂(𝜑1) ∧ 𝑇 𝑂(𝜑2)

𝑇 𝑂(3𝜑) = ↓𝑖 3(¬(@𝑖𝑖0 ∧ 𝑇 ⟨𝑖,⊥⟩(𝜓0))∧

⋀
0⩽𝑚⩽𝑛−1

¬(@𝑖𝑖𝑚+1 ∧ 𝑇 ⟨𝑖0,𝜓0⟩;⋯;⟨𝑖𝑚,𝜓𝑚⟩(𝜓𝑚+1)) ∧ 𝑇 𝑂(𝜑))

𝑇 𝑂([−𝜓]𝜑) = ↓𝑖 𝑇 𝑂;⟨𝑖,𝜓⟩(𝜑)

where 𝑖 is a nominal has not been used yet in the translation.

In the inductive clauses, formula3𝜑 becomes a ℋ(↓)-formula saying that the current
state, named by 𝑖, has access to a point satisfying the translation of 𝜑, and that the link is
not deleted by [− ] indexed in 𝑂. The translation of [−𝜓]𝜑 illustrates that the translation
of 𝜑 now should be taken with respect to 𝑂; ⟨𝑖, 𝜓⟩, and that the result is true at 𝑖. Generally
speaking, the truth value of a ℋ(↓)-formula at the evaluation point may depend on the ini-
tial valuation of nominals occurring in it. However, this is not problematic: by Definition
2.7, for each 𝜑 ∈ ℒ𝑑 , 𝑇 ⟨𝑖,⊥⟩(𝜑) yields a ℋ(↓)-formula with at most one nominal 𝑖 that is
unbounded by ↓, but no points can satisfy property ⊥ no matter what the initial valuation
of 𝑖 is. Now we show the correctness of Definition 2.7.

Theorem 2.5: Let 𝜑 be a formula of ℒ𝑑 . For any pointed model ⟨ℳ, 𝑤⟩, it holds that:

ℳ, 𝑤 ⊨ 𝜑 ⇔ ℳ, 𝑤 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜑).

Proof The proof is by induction on the structure of 𝜑. The Boolean cases are straightfor-
ward, and we only show the non-trivial cases.
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(1). When 𝜑 is 3𝜓 , the following equivalences hold:

ℳ, 𝑤 ⊨ 𝜑 iff there exists 𝑣 ∈ 𝑊 s.t. 𝑅𝑤𝑣 and ℳ, 𝑣 ⊨ 𝜓

iff there exists 𝑣 ∈ 𝑊 s.t. 𝑅𝑤𝑣 and ℳ, 𝑣 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜓)

iff ℳ, 𝑤 ⊨ 3𝑇 ⟨𝑖,⊥⟩(𝜓)

iff ℳ, 𝑤 ⊨↓𝑗 3(¬(@𝑗𝑖 ∧ 𝑇 ⟨𝑗,⊥⟩(⊥)) ∧ 𝑇 ⟨𝑖,⊥⟩(𝜓))

iff ℳ, 𝑤 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜑)

The first equivalence holds by the semantics of SM𝑑L. The second one follows from the
inductive hypothesis. The third and fourth equivalences follow by the semantics of ℋ(↓).
The last one holds by Definition 2.7.

(2). When 𝜑 is [−𝜑1]𝜑2, we have the following equivalences:

ℳ, 𝑤 ⊨ [−𝜑1]𝜑2 iff ℳ|⟨𝑤,𝜑1⟩, 𝑤 ⊨ 𝜑2

iff ℳ|⟨𝑤,𝜑1⟩, 𝑤 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜑2)

iff ℳ, 𝑤 ⊨↓𝑗 𝑇 ⟨𝑗,𝜑1⟩;⟨𝑖,⊥⟩(𝜑2)

iff ℳ, 𝑤 ⊨↓𝑗 𝑇 ⟨𝑖,⊥⟩;⟨𝑗,𝜑1⟩(𝜑2)

iff ℳ, 𝑤 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜑)

The first equivalence follows directly from the semantics of SM𝑑L. By the inductive hy-
pothesis, for any ⟨ℳ1, 𝑣⟩, it holds that ℳ1, 𝑣 ⊨ 𝜑2 iff ℳ1, 𝑣 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜑2), so the second
equivalence holds. Consequently, we have the third equivalence.1 Since no point has the
property ⊥, the fourth one holds. Finally, the last equivalence holds by Definition 2.7.

Therefore, for each 𝜑 ∈ ℒ𝑑 , it holds that ℳ, 𝑤 ⊨ 𝜑 iff ℳ, 𝑤 ⊨ 𝑇 ⟨𝑖,⊥⟩(𝜑). ∎

In the way described, we can reduce SdML to ℋ(↓). So, the latter one is essen-
tially equivalent to logic HSdML. But, can we reduce ℋ(↓) to SdML? First note that the
following property is definable in ℋ(↓):

Proposition 2.3: The property ‘there exist 𝑛 successors of the current point’ is definable
in ℋ(↓).

Proof We prove it by building the desired formula. Let 𝑛 be a positive natural number.
Consider the following ℋ(↓)-formula:

1 It is worth noting that this step is not trivial. Precisely, we also need a lemma similar to the one used in the proof
of Theorem 2.1.
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↓𝑖 (3 ↓𝑖1 (@𝑖3 ↓𝑖2 (⋯ (@𝑖3 ↓𝑖𝑛 (@𝑖2( ⋁
1⩽𝑚⩽𝑛

𝑖𝑚 ∧ ⋀
1⩽𝑚<𝑚′⩽𝑛

¬@𝑖𝑚𝑖𝑚′ )) ⋯)))⏟
𝑛+2

The formula states that the current point 𝑖 has successors 𝑖1, ⋯ , 𝑖𝑛, that each node reach-
able from 𝑖 must be some 𝑖𝑚, where 1 ⩽ 𝑚 ⩽ 𝑛, and that for any different 𝑚 and 𝑚′ such
that 1 ⩽ 𝑚, 𝑚′ ⩽ 𝑛, 𝑖𝑚 is distinct from 𝑖𝑚′ . Thus, there exist 𝑛 successors of the current
point iff the stated hybrid formula holds at that point. ∎

But Example 2.5 showed that this property is not definable in SdML. Consequently,
we have the following result:

Proposition 2.4: ℋ(↓) is more expressive than SdML on models.

Therefore SdML can be viewed as a fragment of ℋ(↓). Any hybrid logic at least
as expressive as ℋ(↓) is more expressive than SdML. Even so, the hybrid translation
described in Definition 2.7 suggests that it may be viable to analyze validity in the logic
SdML with expressive resources similar to those of ℋ(↓).

2.5.2 Digression on recursion axioms

One attractive format for axiomatizing logics of model change are recursion axioms
in the style of dynamic-epistemic logics. As mentioned already, Boolean cases are avail-
able for SdML as well. We begin with the principle for [− ]:1

Proposition 2.5: Let 𝜑, 𝜓 and 𝜒 be ℒ𝑑-formulas. Then it holds that

[−𝜑][−𝜓]𝜒 ↔↓𝑖 [− ↓𝑗 (𝜑 ∨ @𝑖[−𝜑]@𝑗𝜓)]𝜒 (2-6)

where 𝑖 and 𝑗 are new nominals.

Proof Let ⟨ℳ, 𝑤⟩ be a pointed model. We prove it by showing that ℳ|⟨𝑤,𝜑⟩|⟨𝑤,𝜓⟩ and
ℳ|⟨𝑤,↓𝑗 (𝜑∨@𝑖[−𝜑]@𝑗𝜓)⟩ are identical, where 𝑤 ∈ 𝑉 (𝑖). Suppose not, then there must be
some 𝑣 ∈ 𝑊 such that ⟨𝑤, 𝑣⟩ ∈ ℳ|⟨𝑤,𝜑⟩|⟨𝑤,𝜓⟩ and ⟨𝑤, 𝑣⟩ ∉ ℳ|⟨𝑤,↓𝑗 (𝜑∨@𝑖[−𝜑]@𝑗𝜓)⟩, or
that ⟨𝑤, 𝑣⟩ ∈ ℳ|⟨𝑤,↓𝑗 (𝜑∨@𝑖[−𝜑]@𝑗𝜓)⟩ and ⟨𝑤, 𝑣⟩ ∉ ℳ|⟨𝑤,𝜑⟩|⟨𝑤,𝜓⟩.

Now consider the first case. From ⟨𝑤, 𝑣⟩ ∉ ℳ|⟨𝑤,↓𝑗 (𝜑∨@𝑖[−𝜑]@𝑗𝜓)⟩, we know that
ℳ, 𝑣 ⊨ 𝜑 ∨ @𝑖[−𝜑]@𝑗𝜓 where 𝑣 ∈ 𝑉 (𝑗). By ⟨𝑤, 𝑣⟩ ∈ ℳ|⟨𝑤,𝜑⟩|⟨𝑤,𝜓⟩, it follows that
ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊭ 𝜓 . Since ℳ|⟨𝑤,𝜑⟩|⟨𝑤,𝜓⟩ is a submodel of ℳ|⟨𝑤,𝜑⟩, we obtain ⟨𝑤, 𝑣⟩ ∈

1 Actually, the principle for [− ] is not necessary to show a complete set of recursion axioms (cf. van Benthem,
2014).
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ℳ|⟨𝑤,𝜑⟩. Consequently, it holds that ℳ, 𝑣 ⊭ 𝜑, thus, ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ 𝜓 . So we have
arrived at a contradiction.

Next we consider the second case. By ⟨𝑤, 𝑣⟩ ∈ ℳ|⟨𝑤,↓𝑗 (𝜑∨@𝑖[−𝜑]@𝑗𝜓)⟩, it holds that
ℳ, 𝑣 ⊨ ¬𝜑∧@𝑖[−𝜑]@𝑗¬𝜓 where 𝑣 ∈ 𝑉 (𝑗). Then we know ⟨𝑤, 𝑣⟩ ∈ ℳ|⟨𝑤,𝜑⟩. Besides,
by ⟨𝑤, 𝑣⟩ ∉ ℳ|⟨𝑤,𝜑⟩|⟨𝑤,𝜓⟩, we obtain ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊭ 𝜓 that entails a contradiction. ∎

Consider formula ↓𝑖 [− ↓𝑗 (𝜑 ∨ @𝑖[−𝜑]@𝑗𝜓)]𝜒 . By the semantics, it is true at
⟨ℳ, 𝑤⟩ iff 𝑤 is 𝜒 in ℳ|⟨𝑤,↓𝑗 (𝜑∨@𝑖[−𝜑]@𝑗𝜓)⟩, where 𝑉 (𝑖) = {𝑤}. Intuitively, the new
model is obtained by removing all links from 𝑤 to the 𝜑-points and the points which are
𝜓 after removing the links from 𝑤 to 𝜑-points. This is exactly what [−𝜑][−𝜓]𝜒 states.

We now move to the case for 2. It seems like that the following result will work:

Proposition 2.6: For each [−𝜑]2𝜓 ∈ ℒ𝑑 , the following equivalence holds:

[−𝜑]2𝜓 ↔↓𝑖 2 ↓𝑗 (¬𝜑 → @𝑖[−𝜑]@𝑗𝜓) (2-7)

where 𝑖 and 𝑗 are new nominals.

Proof Let ⟨ℳ, 𝑤⟩ be a pointed model. For the direction from left to right, we suppose
for reductio that ℳ, 𝑤 ⊨ [−𝜑]2𝜓 and ℳ, 𝑤 ⊭↓𝑖 2 ↓𝑗 (¬𝜑 → @𝑖[−𝜑]@𝑗𝜓). Then it
holds that 𝑤 (∈ 𝑉 (𝑖)) has a successor 𝑣 (∈ 𝑉 (𝑗)) such that ℳ, 𝑣 ⊨ ¬𝜑 ∧ @𝑖[−𝜑]@𝑗¬𝜓 .
From ℳ, 𝑤 ⊨ [−𝜑]2𝜓 , it follows that ℳ|⟨𝑤,𝜑⟩, 𝑤 ⊨ 2𝜓 . Since ℳ, 𝑣 ⊨ ¬𝜑, we ob-
tain ⟨𝑤, 𝑣⟩ ∈ ℳ|⟨𝑤,𝜑⟩. Thus it holds that ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ 𝜓 . Moreover, ℳ, 𝑣 ⊨ ¬𝜑 ∧
@𝑖[−𝜑]@𝑗¬𝜓 entails ℳ, 𝑤 ⊨ [−𝜑]@𝑗¬𝜓 . Consequently, it holds that ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ ¬𝜓 ,
which entails a contradiction.

For the converse direction, assume that ℳ, 𝑤 ⊨↓𝑖 2 ↓𝑗 (¬𝜑 → @𝑖[−𝜑]@𝑗𝜓) and
ℳ, 𝑤 ⊭ [−𝜑]2𝜓 . Then there exists 𝑣 ∈ 𝑊 such that ⟨𝑤, 𝑣⟩ ∈ 𝑅 ⧵ ({𝑤} × ‖𝜑‖) and
ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ ¬𝜓 . Consider the case that 𝑤 and 𝑣 are named by 𝑖 and 𝑗 respectively.
It holds that ℳ|⟨𝑤,𝜑⟩, 𝑤 ⊨ @𝑗¬𝜓 , so ℳ|⟨𝑤,𝜑⟩, 𝑤 ⊨ @𝑖[−𝜑]@𝑗¬𝜓 . Furthermore, from
⟨𝑤, 𝑣⟩ ∈ 𝑅⧵({𝑤}×‖𝜑‖), we know ⟨𝑤, 𝑣⟩ ∈ 𝑅 and ℳ, 𝑣 ⊨ ¬𝜑. Thus we have ℳ, 𝑤 ⊭↓𝑖

2 ↓𝑗 (¬𝜑 → @𝑖[−𝜑]@𝑗𝜓). This completes the proof. ∎

In formula (2-7), ↓𝑖 2 ↓𝑗 (¬𝜑 → @𝑖[−𝜑]@𝑗𝜓) states that for each successor 𝑣 of the
current point 𝑤, if 𝑣 is not 𝜑, then 𝑣 is 𝜓 after deleting all links from 𝑤 to the 𝜑-points.
However, although formula (2-7) is valid, it is not the solution to an axiomatization of
SdML: the formula of the form @𝑖[−𝜑]@𝑗𝜓 blocks the recursion format, even though we
have that:
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Proposition 2.7: For any 𝑝 ∈ P, ℒ𝑑-formulas 𝜑, 𝜓 and 𝜒 , and nominal 𝑖, the following
equivalences hold:

[−𝜑]@𝑖𝑝 ↔ @𝑖𝑝 (2-8)

[−𝜑]@𝑖¬𝜓 ↔ ¬[−𝜑]@𝑖𝜓 (2-9)

[−𝜑]@𝑖(𝜓 ∧ 𝜒) ↔ [−𝜑]@𝑖𝜓 ∧ [−𝜑]@𝑖𝜒 (2-10)

[−𝜑]@𝑖2𝜓 ↔↓𝑗 @𝑖2 ↓𝑘 (¬(𝜑 ∧ @𝑖𝑗) → @𝑗[−𝜑]@𝑘𝜓) (2-11)

where 𝑗 and 𝑘 are new nominals.

Proof The validity of (2-8)-(2-10) is straightforward. We now consider formula (2-11).
Let ⟨ℳ, 𝑤⟩ be a pointed model. From left to right, we suppose towards a contradiction that
ℳ, 𝑤 ⊨ [−𝜑]@𝑖2𝜓 and ℳ, 𝑤 ⊭↓𝑗 @𝑖2 ↓𝑘 (¬(𝜑 ∧ @𝑖𝑗) → @𝑗[−𝜑]@𝑘𝜓). Let 𝑢 be a
point such that 𝑉 (𝑖) = {𝑢}. Then it holds that ℳ, 𝑢 ⊨ 3 ↓𝑘 (¬(𝜑∧@𝑖𝑗)∧@𝑗[−𝜑]@𝑘¬𝜓)
where 𝑤 ∈ 𝑉 (𝑗). Therefore there exists some point 𝑣 such that 𝑅𝑢𝑣, 𝑣 ∈ 𝑉 (𝑘) and
ℳ, 𝑣 ⊨ ¬(𝜑 ∧ @𝑖𝑗) ∧ @𝑗[−𝜑]@𝑘¬𝜓 . By ℳ, 𝑣 ⊨ ¬(𝜑 ∧ @𝑖𝑗), it holds that ⟨𝑢, 𝑣⟩ ∈
ℳ|⟨𝑤,𝜑⟩. From ℳ, 𝑣 ⊨ @𝑗[−𝜑]@𝑘¬𝜓 , we obtain ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ ¬𝜓 , which contradicts
to ℳ, 𝑤 ⊨ [−𝜑]@𝑖2𝜓 .

From right to left, suppose that ℳ, 𝑤 ⊨↓𝑗 @𝑖2 ↓𝑘 (¬(𝜑 ∧ @𝑖𝑗) → @𝑗[−𝜑]@𝑘𝜓)
and ℳ, 𝑤 ⊭ [−𝜑]@𝑖2𝜓 . Let 𝑢 be a point such that 𝑉 (𝑖) = {𝑢}. Then there exists some
point 𝑣 such that ⟨𝑢, 𝑣⟩ ∈ ℳ|⟨𝑤,𝜑⟩ and ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ ¬𝜓 . From ℳ, 𝑤 ⊨↓𝑗 @𝑖2 ↓𝑘

(¬(𝜑 ∧ @𝑖𝑗) → @𝑗[−𝜑]@𝑘𝜓), it holds that ℳ, 𝑣 ⊨ @𝑗[−𝜑]@𝑘𝜓 where 𝑤 ∈ 𝑉 (𝑗) and
𝑣 ∈ 𝑉 (𝑘). Consequently, we have ℳ|⟨𝑤,𝜑⟩, 𝑣 ⊨ 𝜓 which entails a contradiction.

The proof is completed. ∎

In the rest of this section, we are not going to present a solution to this issue. Actually
we conjecture that there exists no a recursion axiom for [−𝜑]2𝜓 in HSdML, which is
contrasted with our initial intuition. However, given Corollary 2.1, there must be some
sort of recursion axioms for it. Thus a question arises:

Open problem. Could there be a complete set of recursion axioms for SdML?

Through the above considerations, we understand why ℋ(↓) fails to do the job. In
fact, there may be no easy solution, short of going to full first-order logic. All this suggests
that, despite the axiomatizability in principle (as observed in Section 2.3), the structure
of the logical validities of SdML is computationally complex. This suspicion will be
confirmed in the next section, where we prove the undecidability of the logic.
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2.6 Undecidability of SdML

Up to now, we have already shown that logic SdML is more expressive than the
standard modal logic. Meanwhile, it is also a fragment of the hybrid logic ℋ(↓). It is well-
known that the satisfiability problem for standard modal logic is decidable. In contrast,
as noted by Blackburn and Seligman (1995), logic ℋ(↓) is undecidable. So, is SdML
decidable or not?

Actually, there are some decidable fragments of ℋ(↓). For instance, ten Cate and
Franceschet (2005) show that after removing all formulas containing a nesting of 2, ↓ and
2, ℋ(↓) becomes decidable. But in this section, we will present a negative answer to the
question above, i.e., the satisfiability problem for SdML is undecidable. Interestingly, we
will also identify the source of its high complexity. Before these results, we first show that
SdML lacks both the tree model property and the finite model property.

Theorem 2.6: The logic SdML does not have the tree model property.

Proof Consider the following formulas:

(𝑅1) 𝑝 ∧ 3𝑝 ∧ 3¬𝑝

(𝑅2) 2(𝑝 → 3𝑝 ∧ 3¬𝑝)

(𝑅3) [−¬𝑝]22𝑝

Let 𝜑𝑟 ∶= (𝑅1 ∧ 𝑅2 ∧ 𝑅3). We now show that for any ℳ = {𝑊 , 𝑅, 𝑉 } and 𝑤 ∈ 𝑊 , if
ℳ, 𝑤 ⊨ 𝜑𝑟, then the evaluation point 𝑤 is reflexive. By (𝑅1), 𝑤 has some 𝑝-successor(s)
and some ¬𝑝-successor(s). Formula (𝑅2) states that each its 𝑝-successor 𝑤1 also has at
least one 𝑝-successor 𝑤2 and at least one ¬𝑝-successor 𝑤3. From (𝑅3) we know that after
deleting all links from 𝑤 to the ¬𝑝-points, 𝑤1 does not have ¬𝑝-successors any longer. If
node 𝑤1 is not 𝑤, then 𝜑𝑟 cannot be true at 𝑤. That is to say, for each 𝑣 ∈ 𝑊 , if 𝑅𝑤𝑣 and
ℳ, 𝑣 ⊨ 𝑝, then 𝑣 = 𝑤, i.e., 𝑅(𝑤) ∩ 𝑉 (𝑝) = {𝑤}. So if formula 𝜑𝑟 is true, the evaluation
point must be reflexive (with at least one ¬𝑝-successor). Besides, formula 𝜑𝑟 is true at 𝑣1

in the model ℳ2 depicted in Figure 2.2, so it is satisfiable. This completes the proof. ∎

In addition, SdML also lacks the finite model property. To show this, inspired by the
methods of Blackburn and Seligman (1995), we will construct a ‘spy point’, i.e., a special
point which has access in one step to any reachable point in the model.

Theorem 2.7: The logic SdML does not have the finite model property.
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Proof Let 𝜑∞ be the conjunction of the following formulas:

(𝐹1) 𝑠 ∧ 𝑝 ∧ 2¬𝑠 ∧ 3𝑝 ∧ 3¬𝑝 ∧ 2(¬𝑝 → 2⊥)

(𝐹2) 2(𝑝 → 3𝑠 ∧ 3¬𝑠 ∧ 2𝑝)

(𝐹3) 2(𝑝 → 2(𝑠 → 2¬𝑠 ∧ 3¬𝑝))

(𝐹4) [−¬𝑝]22(𝑠 → ¬3¬𝑝)

(𝐹5) 2(𝑝 → 2(¬𝑠 → 3𝑠 ∧ 3¬𝑠 ∧ 2𝑝))

(𝐹6) 2(𝑝 → 2(¬𝑠 → 2(𝑠 → 2¬𝑠 ∧ 3¬𝑝)))

(𝐹7) [−¬𝑝]22(¬𝑠 → 2(𝑠 → ¬3¬𝑝))

(Spy) 2(𝑝 → 2(¬𝑠 → [−¬𝑠]23(𝑝 ∧ 2𝑠)))

(Irr) 2(𝑝 → [−𝑠]23𝑠)

(No-3cyc) ¬3(𝑝 ∧ [−𝑠]3[−𝑠]33(¬𝑠 ∧ 2¬𝑠))

(Trans) 2(𝑝 → [−𝑠]22(¬𝑠 → [−¬𝑠]23(2¬𝑠 ∧ 32𝑠)))

First, the formula 𝜑∞ is satisfiable. For instance, it is true at point 𝑤 in the model
depicted in Figure 2.5. Now we show that for any ℳ = {𝑊 , 𝑅, 𝑉 } and 𝑤 ∈ 𝑊 , if
ℳ, 𝑤 ⊨ 𝜑∞, then 𝑊 is infinite. For brevity, define 𝐵 = {𝑣 ∈ 𝑊 ∣ 𝑣 ∈ 𝑅(𝑤) ∩ 𝑉 (𝑝)},
i.e., 𝐵 is the set of the 𝑝-successors of 𝑤. In the following proof, we assume that all
previous conjuncts hold.

By (𝐹1), the evaluation point 𝑤 is (𝑠 ∧ 𝑝), and it cannot see any 𝑠-points. In par-
ticular, 𝑤 cannot see itself. Also, 𝑤 has some 𝑝-successor(s) (i.e., 𝐵 ≠ ∅) and some
¬𝑝-successor(s) (i.e., 𝑅(𝑤) ⧵ 𝐵 ≠ ∅). In addition, each point in 𝑅(𝑤) ⧵ 𝐵 is a dead end.

From formula (𝐹2), we know that each element in 𝐵 can see some (𝑠 ∧ 𝑝)-point(s)
and (¬𝑠∧𝑝)-point(s), but cannot see any ¬𝑝-points. Hence each point in 𝐵 has a successor
distinct from itself.

According to formula (𝐹3), for any 𝑤1 ∈ 𝐵, each its 𝑠-successor can see some ¬𝑝-
point(s), but cannot see any 𝑠-points.

By (𝐹4), after removing all links from 𝑤 to ¬𝑝-points, for each 𝑤1 ∈ 𝐵, each of its
𝑠-successors 𝑤2 has no ¬𝑝-successors. Thus (𝐹4) shows that each 𝑤1 ∈ 𝐵 can see point
𝑤, and that for each 𝑠-point 𝑤2 ∈ 𝑊 , if 𝑤2 is a successor of 𝑤1, then 𝑤2 must be 𝑤.

Formulas (𝐹2)-(𝐹4) show the properties of the (¬𝑠 ∧ 𝑝)-points accessible from the
point 𝑤 in one step. Similarly, formulas (𝐹5), (𝐹6) and (𝐹7) play the same roles as (𝐹2),
(𝐹3) and (𝐹4) respectively, but focusing on showing the properties of the (¬𝑠 ∧ 𝑝)-points
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Figure 2.5 An infinite model for formula 𝜑∞.

that are accessible from 𝑤 in two steps. In particular, (𝐹7) guarantees that every (¬𝑠 ∧ 𝑝)-
point 𝑤1 accessible from 𝑤 in two steps can also see 𝑤, and that for each 𝑠-point 𝑤2 ∈ 𝑊 ,
if 𝑤2 is a successor of 𝑤1, then 𝑤2 must be 𝑤.

Formula (Spy) states that for each (¬𝑠 ∧ 𝑝)-point 𝑤1 accessible from 𝑤 in two steps,
after removing the links from 𝑤1 to the ¬𝑠-points, each successor 𝑤2 of 𝑤1 has a 𝑝-
successor 𝑤3 that only has 𝑠-successors. Furthermore, point 𝑤2 must be 𝑠. By (𝐹7), we
know that 𝑤2 = 𝑤. In addition, by (𝐹2), 𝑤3 should have some ¬𝑠-successor(s) if the
update induced by [−𝑠] does not take place at 𝑤3. So we have 𝑤3 = 𝑤1. In such a way,
(Spy) makes the evaluation point 𝑤 be a spy point, and ensures that each (¬𝑠 ∧ 𝑝)-point
𝑤1 accessible from 𝑤 in two steps is also accessible from 𝑤 in one step. By (Irr), for
each 𝑤1 ∈ 𝐵, after removing ⟨𝑤1, 𝑤⟩ each successor of 𝑤1 still can see 𝑤. Therefore,
each 𝑤1 ∈ 𝐵 is irreflexive. Besides, (No-3cyc) disallows cycles of length 2 or 3 in 𝐵, and
(Trans) forces the accessibility relation 𝑅 to transitively order 𝐵.

Hence 𝐵 is an unbounded strict partial order, thus it is infinite and so is 𝑊 . Now
we have already shown that 𝜑∞ is satisfiable, and that for each pointed model ⟨ℳ, 𝑤⟩, if
ℳ, 𝑤 ⊨ 𝜑∞, then ℳ is an infinite model. This completes the proof. ∎

Now, by encoding the ℕ × ℕ tiling problem, we show that SdML is undecidable. A
tile 𝑡 is a 1 × 1 square, of fixed orientation, with colored edges right(𝑡), left(𝑡), up(𝑡) and
down(𝑡). The ℕ × ℕ tiling problem is: given a finite set 𝑇 of tile types, is there a function
𝑓 ∶ ℕ × ℕ → 𝑇 such that right(f(n,m))=left(f(n+1,m)) and up(f(n,m))=down(f(n,m+1))?
This problem is known to be undecidable (see Harel, 1985).

Following the ideas of Blackburn and Seligman (1995), we will use three modali-
ties 3𝑠, 3𝑢 and 3𝑟. Correspondingly, a model ℳ = {𝑊 , 𝑅𝑠, 𝑅𝑢, 𝑅𝑟, 𝑉 } now has three
accessibility relations. We will construct a spy point over the relation 𝑅𝑠. The relations
𝑅𝑢 and 𝑅𝑟 represent moving up and to the right, respectively, from one tile to the other.
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In addition, the operator [− ] will work in the usual way, i.e., all of the three kinds of
relations should be cut if the current point has some particular successors via them.1 Let
us see the details.

Theorem 2.8: The satisfiability problem for SdML with three binary accessibility rela-
tions 𝑅𝑠, 𝑅𝑢 and 𝑅𝑟 is undecidable.

Proof Let 𝑇 = {𝑇1, ⋯ , 𝑇𝑛} be a finite set of tile types. For each 𝑇𝑖 ∈ 𝑇 , we use 𝑢(𝑇𝑖),
𝑑(𝑇𝑖), 𝑙(𝑇𝑖), 𝑟(𝑇𝑖) to represent the colors of its up, down, left and right edges respectively.
Also, we code each tile type 𝑇𝑖 with a fixed propositional atom 𝑡𝑖. Now we will define a
formula 𝜑𝑇 such that 𝜑𝑇 is satisfiable iff 𝑇 tiles ℕ × ℕ. Consider the following formulas:

(𝑀1) 𝑠 ∧ 𝑝 ∧ 2𝑠¬𝑠 ∧ 3𝑠𝑝 ∧ 3𝑠¬𝑝 ∧ 2𝑠(¬𝑝 → 2𝑠⊥)

(𝑀2) 2𝑠(𝑝 → 3𝑠⊤ ∧ 2𝑠(𝑠 ∧ 3𝑠¬𝑝))

(𝑀3) [−¬𝑝]2𝑠2𝑠(𝑠 ∧ ¬3𝑠¬𝑝)

(𝑀4) 2𝑠(𝑝 → 3†⊤ ∧ 2†(¬𝑠 ∧ 𝑝 ∧ 3𝑠⊤ ∧ 2𝑠(𝑠 ∧ 3𝑠¬𝑝))) † ∈ {𝑢, 𝑟}

(𝑀5) [−¬𝑝]2𝑠2†2𝑠¬3𝑠¬𝑝 † ∈ {𝑢, 𝑟}

(𝑀6) 2𝑠(𝑝 → 2†(3𝑢⊤ ∧ 3𝑟⊤ ∧ 2𝑢(¬𝑠 ∧ 𝑝) ∧ 2𝑟(¬𝑠 ∧ 𝑝))) † ∈ {𝑢, 𝑟}

(𝑀7) 2𝑠(𝑝 → [−𝑠]2†(3𝑠𝑠 ∧ ¬3†¬3𝑠𝑠)) † ∈ {𝑢, 𝑟}

(Spy) 2𝑠(𝑝 → 2†[−¬𝑠]2𝑠3𝑠(𝑝 ∧ 2𝑢⊥ ∧ 2𝑟⊥)) † ∈ {𝑢, 𝑟}

(Func) 2𝑠(𝑝 → [−𝑠]2†[−¬𝑠]3𝑠3𝑠(𝑝 ∧ ¬3𝑠𝑠 ∧ 3†⊤∧

2†(2𝑢⊥ ∧ 2𝑟⊥)) † ∈ {𝑢, 𝑟}

(No-UR) 2𝑠(𝑝 → [−𝑠]2𝑢2𝑟3𝑠𝑠 ∧ [−𝑠]2𝑟2𝑢3𝑠𝑠)

(No-URU) 2𝑠(𝑝 → [−𝑠]2𝑢2𝑟2𝑢3𝑠𝑠)

(Conv) 2𝑠(𝑝 → [−𝑠]3𝑢[−𝑠]3𝑟[−¬𝑠]3𝑠3𝑠(𝑝 ∧ ¬3𝑠𝑠∧

2𝑟(3𝑢⊤ ∧ 3𝑟⊤) ∧ 3𝑢¬3𝑠𝑠 ∧ 3𝑟3𝑢(2𝑢⊥ ∧ 2𝑟⊥)))

(Unique) 2𝑠(𝑝 → ⋁
1⩽𝑖⩽𝑛

𝑡𝑖 ∧ ⋀
1⩽𝑖<𝑗⩽𝑛

(𝑡𝑖 → ¬𝑡𝑗))

(Vert) 2𝑠(𝑝 → ⋀
1⩽𝑖⩽𝑛

(𝑡𝑖 → 3𝑢 ⋁
1⩽𝑗⩽𝑛, 𝑢(𝑇𝑖)=𝑑(𝑇𝑗 )

𝑡𝑗))

(Horiz) 2𝑠(𝑝 → ⋀
1⩽𝑖⩽𝑛

(𝑡𝑖 → 3𝑟 ⋁
1⩽𝑗⩽𝑛, 𝑟(𝑇𝑖)=𝑙(𝑇𝑗 )

𝑡𝑗))

1 There is also no problem if we use three kinds of dynamic operators that correspond to the three accessibility
relations respectively. In the proof of Theorem 2.8, these three kinds of links are disjoint.

47



Chapter 2 A logic for graph games with definable link deletions

Define 𝜑𝑇 as the conjunction of the formulas above. Let ℳ = {𝑊 , 𝑅𝑠, 𝑅𝑢, 𝑅𝑟, 𝑉 }
be a model and 𝑤 ∈ 𝑊 such that ℳ, 𝑤 ⊨ 𝜑𝑇 . We show that ℳ is a tiling of ℕ × ℕ. For
brevity, define 𝐺 = {𝑣 ∈ 𝑊 ∣ 𝑣 ∈ 𝑅𝑠(𝑤) ∩ 𝑉 (𝑝)} where 𝑅𝑠(𝑤) = {𝑣 ∈ 𝑊 ∣ 𝑅𝑠𝑤𝑣}, and
we will use its elements to represent the tiles. In the following proof, we also assume that
all previous conjuncts hold.

Formula (𝑀1) is similar to (𝐹1) occurring in the proof of Theorem 2.7, except that
(𝑀1) only concerns the relation 𝑅𝑠.

By (𝑀2), each tile 𝑤1 has some successor(s) via the relation 𝑅𝑠, and each such suc-
cessor 𝑤2 is (𝑠 ∧ 𝑝) and also has some (¬𝑠 ∧ ¬𝑝)-successor(s) via 𝑅𝑠. It is worthy to note
that formulas (𝑀1) and (𝑀2) illustrate that 𝑅𝑠 is irreflexive.

Formula (𝑀3) ensures that each tile 𝑤1 can see 𝑤 via 𝑅𝑠, and that for each (𝑠 ∧ 𝑝)-
point 𝑤2 ∈ 𝑊 , if 𝑤2 is accessible from 𝑤1 via 𝑅𝑠, then 𝑤2 = 𝑤.

(𝑀4) states that each tile has some successor(s) via 𝑅𝑢 and some successor(s) via
𝑅𝑟. Furthermore, each point accessible from a tile via 𝑅𝑢 or 𝑅𝑟 is very similar to a tile: it
is (¬𝑠 ∧ 𝑝), and has some (𝑠 ∧ 𝑝)-successor(s) 𝑤1 via relation 𝑅𝑠 where each 𝑤1 can see
some (¬𝑠 ∧ ¬𝑝)-point(s) via 𝑅𝑠.

By formula (𝑀5), each 𝑤1 ∈ 𝑊 accessible from a tile via 𝑅𝑢 or 𝑅𝑟 can see 𝑤 by
𝑅𝑠. Also, for each (𝑠 ∧ 𝑝)-point 𝑤2 ∈ 𝑊 , if it is accessible from 𝑤1 via 𝑅𝑠, then 𝑤2 = 𝑤.

Formula (𝑀6) ensures that each 𝑤1 ∈ 𝑊 accessible from some tile via 𝑅𝑢 or 𝑅𝑟 also
has some successor(s) via 𝑅𝑢 and some successor(s) via 𝑅𝑟. Besides, each its successor
via 𝑅𝑢 or 𝑅𝑟 is (¬𝑠 ∧ 𝑝).

From formula (𝑀7), it follows that both 𝑅𝑢 and 𝑅𝑟 are irreflexive and asymmetric.
By (Spy), we know that the evaluation point 𝑤 is a spy point via the relation 𝑅𝑠.
Note that formula (𝑀4) shows that each tile has some tile(s) above it and some tile(s)

to its right. Now, with (Func), we have that each tile has exactly one tile above it and
exactly one tile to its right.

By (No-UR), no tile can be above/below as well as to the left/right of another tile.
Formula (No-URU) disallows cycles following successive steps of the 𝑅𝑢, 𝑅𝑟, and 𝑅𝑢

relations, in this order. Furthermore, (Conv) ensures that the tiles are arranged as a grid.
Formula (Unique) guarantees that each tile has a unique type. (Vert) and (Horiz)

force the colors of the tiles to match properly.
Thus we conclude that ℳ is indeed a tiling of ℕ × ℕ.

Next we show the other direction required for our proof. Suppose the function 𝑓 ∶
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ℕ × ℕ → 𝑇 is a tiling of ℕ × ℕ. Define a model ℳ = {𝑊 , 𝑅𝑠, 𝑅𝑢, 𝑅𝑟, 𝑉 } as follows:

𝑊 = (ℕ × ℕ) ∪ {𝑤, 𝑣}

𝑅𝑠 = {⟨𝑤, 𝑣⟩} ∪ {⟨𝑤, 𝑥⟩ ∣ 𝑥 ∈ ℕ × ℕ} ∪ {⟨𝑥, 𝑤⟩ ∣ 𝑥 ∈ ℕ × ℕ}

𝑅𝑢 = {⟨⟨𝑛, 𝑚⟩, ⟨𝑛, 𝑚 + 1⟩⟩ ∣ 𝑛, 𝑚 ∈ ℕ}

𝑅𝑟 = {⟨⟨𝑛, 𝑚⟩, ⟨𝑛 + 1, 𝑚⟩⟩ ∣ 𝑛, 𝑚 ∈ ℕ}

𝑉 (𝑠) = {𝑤}

𝑉 (𝑝) = {𝑤} ∪ (ℕ × ℕ)

𝑉 (𝑡𝑖) = {⟨𝑛, 𝑚⟩ ∈ ℕ × ℕ ∣ 𝑓(⟨𝑛, 𝑚⟩) = 𝑇𝑖}, for each 𝑖 ∈ {1, ⋯ , 𝑛}

𝑉 (𝑞) = ∅, for any other propositional atoms 𝑞

In particular, 𝑤 is a spy point in ℳ. By construction, we know that ℳ, 𝑤 ⊨ 𝜑𝑇 . ∎

It is important to notice that the three relations used in the proof above can be re-
duced to one, by using an argument analogous to the one presented in (Hoffmann, 2015)
which uses propositional symbols to appropriately encode the relations 𝑅𝑢 and 𝑅𝑟.1 Thus,
perhaps surprisingly, given the simple-looking syntax and semantics of SdML, the com-
plexity of its logic is high. What is the reason for this high complexity, as contrasted
with decidability of dynamic-epistemic logics of link deletion (cf. van Benthem and Liu,
2007)? For SML, the reason offered by Aucher et al. (2018) is the stepwise nature of link
deletion, and this is confirmed by the result of van Benthem et al. (2020) showing how
a very simple stepwise variant of public announcement logic is undecidable. However,
our case is different, since links are cut in a uniform definable way: the only remaining
potential culprit is then the locality.

To see the effects of this feature, recall the above formula (2-7). We already saw in
Section 2.5.2 that a formula of the form @𝑥[−𝜑]@𝑦𝜓 blocks the recursion format. In
contrast, let us consider a global version Sg

dML of SdML. Now formula [−𝜑]𝜓 states that
𝜓 is true at the evaluation point after deleting all links to 𝜑-worlds, i.e.,

⟨𝑊 , 𝑅, 𝑉 ⟩, 𝑤 ⊨ [−𝜑]𝜓 ⇔ ⟨𝑊 , 𝑅 ⧵ {⟨𝑠, 𝑡⟩ ∈ 𝑅 ∣ ℳ, 𝑡 ⊨ 𝜑}, 𝑉 ⟩, 𝑤 ⊨ 𝜓.

1 More directly, we can also show the undecidability of SdML (with one accessibility relation) by reduction from
other undecidable logics. Closely related to our work, Areces et al. (2018) prove the undecidability results for
several sabotage-style logics, such as SML and its local variant, by reductions from an undecidable memory logic.
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Given the global change made in this semantics, here is a valid recursion axiom for 2:

[−𝜑]2𝜓 ↔ 2(¬𝜑 → [−𝜑]𝜓).

Indeed, following the general method for modal logics of definable model change provided
by van Benthem and Liu (2007), one can find a complete set of recursion axioms for Sg

dML:

Proposition 2.8: The logic Sg
dML is axiomatizable and decidable.

The complexity effect of the local behavior of SdML also show at a crucial step in
our proof of undecidability. In the proof of Theorem 2.8, formula (Conv) forces the tiles
to satisfy a first-order convergence property, i.e.,

∀𝑡∀𝑡1∀𝑡2(𝑅𝑢𝑡𝑡1 ∧ 𝑅𝑟𝑡1𝑡2 → ∃𝑡3(𝑅𝑟𝑡𝑡3 ∧ 𝑅𝑢𝑡3𝑡2)).

As noted by van Benthem (2010), this property can give logics high complexity.
By contrast, convergence is not definable in Sg

dML, even though we expand the model
with some extra tools (e.g., a spy point). Roughly speaking, given two tiles 𝑡1 and 𝑡2 that
have the same properties, we still can distinguish between them with SdML, say, their
properties will be different after cutting some links starting from 𝑡1; however, we cannot
do this with Sg

dML, since links are cut in a global way.1

The more general issue arising here goes beyond our specific logics of sabotage:

Open problem. Does making update operations local (world-relative) generate undecid-
ability in general for decidable dynamic-epistemic logics?

This would provide an alternative diagnosis to the comparison of sabotage and update
offered by Aucher et al. (2018), closer to the modified dynamic-epistemic logics studied
by Belardinelli et al. (2017).

2.7 Related work

Graph games and logics. The work of this chapter is primarily inspired by existing
work on sabotage games, sabotage modal logic and their variants (see, e.g., Aucher et al.,
2015, 2018; Gierasimczuk et al., 2009; Rohde, 2005; van Benthem, 2014). So far, several
properties of SML have been studied. As illustrated, the first-order translation for SML
is described independently by Areces et al. (2015); Aucher et al. (2015), which together

1 From a technical point of view, to show that Sg
dML cannot define the convergence property, we need its notion of

bisimulation, which is easily defined.
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with Areces et al. (2012) also propose a suitable notion of bisimulation for SML that solves
an important open problem mentioned by Löding and Rohde (2003a). Besides, Löding
and Rohde (2003a) show that the multi-modal version of SML has a PSPACE-complete
model checking problem and an undecidable satisfiability problem. These two results are
improved by (Areces et al., 2012, 2015), which show that they also hold for SML. For the
latest developments in sabotage modal logics, we refer the reader to (Aucher et al., 2018)
that also has extensive references to current work on related modal logics for definable
graph change.

Meanwhile, a number of authors have studied other graph games using matching
modal logics. For instance, in poison games, originating in graph theory, instead of delet-
ing links, a player can poison a node to make it inaccessible to her opponent. Poison
games have been recently studied in the modal logics of Blando et al. (2020), using the
close similarities between these systems and variants of so-called memory logics (Areces,
2007; Areces et al., 2011) in the hybrid tradition. In another tradition, that of Boolean
network games, Thompson (2020) has proposed a logic of local fact change which can
characterize Nash equilibria, providing a new way of looking at the interaction between
graph games, network games and logics of control.

It remains to note that this chapter fits with the general program recently proposed
by van Benthem and Liu (2020) for a much broader study of analysis and design for graph
games in tandem with matching modal logics. In particular, it proposes various mean-
ingful new games, and identifies general questions behind the match between logics and
games.

Logics with model modifiers. In addition to SML, our logic SdML is also closely related
to other logics with model modifiers. Recently, an important series of research is the
work on relation-changing logics (e.g., Areces et al., 2012, 2015, 2016, 2018; C. Areces
and R. Fervari and G. Hoffmann, 2014), which include modalities to swap, delete or add
links. It is worth noting that they also investigate a special type of local SML, whose
dynamic operator refers to a model transition that cuts a link from the current state and
then evaluates a formula at the target of the deleted arrow. A general view on these logics
is presented in (Fervari, 2014), which studies various meta-properties, such as expressive
power, complexity, tableaux methods and their relations with dynamic-epistemic logics.

Different from relation-changing logics, van Benthem et al. (2020) develop a logic
of stepwise point deletion. This work is helpful to understand the complexity jumps be-
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tween dynamic-epistemic logics of model transformations and logics of freely chosen
graph changes recorded in current memory. Moreover, techniques developed by van Ben-
them et al. (2020) also shed light on the long-standing open problem of how to axiomatize
sabotage-style modal logics and related ones.

Finally, more akin to the above-mentioned (Thompson, 2020), Aucher et al. (2009)
study global and local modifiers that update the valuation at the evaluation point, and
show that adding all those local modifiers dramatically increases the expressive power of
the logic without them.

Dynamic-epistemic logics. Throughout the chapter, dynamic-epistemic logics (see, e.g.,
Baltag et al., 1998; van Benthem, 2011) have been used as a decidable contrast to our sys-
tems. Technically, SdML has resemblances to several recent logics for local announce-
ments. Belardinelli et al. (2017) introduce a logic to characterize both global and local
announcements. Similar to our set-up, it has definable updates of links, but there is a
crucial difference: the logic is more expressive than public announcement logic, but its
satisfiability problem still is decidable. It is important to recognize that the decidability
result cannot be treated as a negative answer to the open problem proposed in Section
2.6, although it is noted by Belardinelli et al. (2017) that locality is also a distinguishing
feature of that framework. Roughly speaking, the accessibility relations studied in that
paper are equivalent relations and locality is defined with respect to agents, which is quite
different from our work.

Hybrid logics. Another highly relevant line of research for this chapter is hybrid logics
(Areces and ten Cate, 2007; Blackburn and Seligman, 1995), an area from which we have
taken several basic techniques. As far as we know, Blackburn and Seligman (1995) are the
first to present the method of constructing a spy point, the main tool that is used to prove
the undecidability of our logic SdML. Besides, Areces et al. (2016) show how relation-
changing logics such as SML can be seen as fragments of hybrid logics, and identify
various decidable fragments of those logics with the help of hybrid translations. This
fits with our findings in Section 2.5.1. Conversely, as mentioned in Section 2.6, Areces
et al. (2018) prove the undecidability results for a number of relation-changing logics
by reduction from memory logic. However, no such translations from hybrid logic or
memory logic into SdML exist in an obvious way. Finally, Hansen (2011) merges a hybrid
logic with public announcement logic. Different from the operator [− ] in SdML, the
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announcement modality there operates in a global way, making it possible to axiomatize
the logic by means of recursion axioms.

Reactive modal logic. Finally, it is important to recognize that SdML shares a typical
feature with the reactive modal logic (Gabbay, 2008, 2013), i.e., the accessibility relation
of models is changed during the interpretation process of formulas. However, there are
also various typical differences. For instance, unlike our case, the update studied by Gab-
bay (2008, 2013) is not definable. In addition, the language of reactive modal logic is the
standard modal language ℒ2, but formulas are evaluated in the so called reactive Kripke
models instead of standard relational models. In contrast, the language ℒ𝑑 of SdML is
an extension of ℒ2, and the truth conditions for Boolean connectives and 2 are as usual.
More importantly, the level of updates in our work is different from that of Gabbay (2008,
2013). In our proposal, language ℒ𝑑 is equipped with a dynamic operator [− ] to encode
the desired changes. Precisely, for any pointed model ⟨ℳ, 𝑤⟩ and formula [−𝜑]𝜓 , the
update [−𝜑] produces another model ℳ|⟨𝑤,𝜑⟩ and formula 𝜓 now is evaluated at 𝑤 in the
new model. Different from this, reactive Kripke models extend standard relational mod-
els with a special kind of links from points or links to links, which get activated during
the modal process and change the model. Therefore, deletion in our work is a metalevel
notion, while it is brought into the object level in (Gabbay, 2008, 2013).1

2.8 Summary and future work

Summary. In the chapter, we started with some basic observations on interactions of
agents in our social reality, from a particular perspective: the multi-agent communica-
tion with agents deeply at odds, in that they try to change the background in which their
interactions are performed. To characterize those situations formally, we appealed to the
techniques of graph games and explored a notion of definable sabotage games, where play-
ers could remove links with an explicit definition. As illustrated, different readings of the
destruct actions would enable the framework to capture many interesting interactions in
various social contexts.

Moreover, our games had a natural relation with logics. As we have shown, our
logical system SdML contained proper operators matching with players’ actions, and fur-
thermore, it was also helpful to define their winning positions. The logic, as a formal tool

1 Similar to our case, all kinds of updates studied in the work on relation-changing logics (e.g., SML) are also
metalevel notions.
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to reason the games, would throw light on many crucial problems involved with the social
situations mentioned above. Say, when some agents in a social network break off their re-
lations with others step by step, does an agent of particular importance remain reachable
via intermediate ones? After indicating the applications of the logic, we also explored
many important properties of the logic, including:

• We presented a first-order translation for the logic, showed a characterization theo-
rem with regard to a novel notion of definable sabotage bisimulation.

• We probed options for a perspicuous axiomatization for SdML using recursion ax-
ioms in an extended hybrid language.

• We proved that the logic does not have the finite model property and its satisfiabil-
ity problem is undecidable. Moreover, we identified the feature causing the high
complexity.

Together, these results show that our new perspective on social interaction as mod-
eled by graph games has some mathematical substance, and allows us to investigate the
potential sources of complexity in reasoning about social scenarios. Moreover, we believe
that this tool for analysis might combine well with those offered by other formal models
of agency, in particular, those offered by game theory.

Further research. Immediate technical open problems for our logic SdML resemble
those in the literature for SML. For instance, we would like to have a good Hilbert-style
proof theory, which may perhaps be found by analyzing semantic tableaux for SdML.
Another open problem is the axiomatization and complexity of the schematic validities of
our language, that remain valid under arbitrary substitutions for atoms.

In terms of generality, one would like to establish the precise connections between our
logic SdML and other modal logics for graph games in the cited literature. For instance,
the difference in expressive power that we noted in Section 2.4 between SdML and SML
does not preclude the existence of faithful embedding either way.1

As a final technical issue, we mentioned the contrast between locality and stepwise
link deletion as sources of undecidability, discussed in Section 2.6. One could also merge
these in a stepwise version of our logic, denoted Ss

dML. Clearly, its validities are different
from those of SdML: for instance, [− ] is no longer self-dual. Our methods from Section
6 should also be able to prove its undecidability, but we have not yet been able to do so.

1 Given the various new translations between logics of point deletion and link deletion in (van Benthem et al.,
2021a), there may also be more to the connections between our logics and the earlier system MLSR) of stepwise
point removal in van Benthem et al. (2020).
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We end by stepping back to reality. In our introduction, we mentioned social net-
works, where adding links (gaining friends or neighbors) is as important as deleting links
(losing friends or neighbors). A connection between our logic and existing logics for so-
cial networks (Liu et al., 2014), now adding various graph games played over these, would
be a natural next step for the modeling techniques offered in this chapter.

Indeed, this chapter can be considered a case study for the general program put for-
ward in van Benthem and Liu (2020) for a much broader study of analysis and design
for graph games in tandem with matching modal logics. In particular, this program ex-
tends to a much broader range of games, including families of parlor games in actual use,
and it includes the explicit design of various meaningful new games, while identifying
general questions behind the match between game design and logic design. Of the steps
towards greater realism that arise in such a program, we mention the possibility of more
complex independent goals for players in social scenarios than we have considered, which
may line up to some extent, though perhaps not completely. An equally urgent extension
is the introduction of imperfect information and the crucial role of knowledge and igno-
rance in scenarios where players cannot perfectly observe each other’s moves. In general,
such games may have only probabilistic equilibria, and our logics would have to acquire
interfaces with probability.
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Chapter 3 Interactions in learning and teaching - A graph
game approach

3.1 Introduction: correct learning games

The preceding chapter showed how graph games with link deletions in sabotage style
provide us with a precise tool to model a number of social interactions under adverse cir-
cumstances. But the technique of link modifications presented there itself is absolutely
neutral, and its very abstraction also enables us to analyze more ‘positive’ scenarios. This
is exactly what we will show in the chapter: as we shall see, graph games with link modifi-
cations can also highlight the interactive nature of teaching and learning, and characterize
a number of interesting features highlighted Example 1.2 in Chapter 1. In a scenario of
learning and teaching, there are many natural questions that need to be asked. For instance,
and perhaps most prominently,

• When can we say that the learner in question has succeeded in learning?
• Can the learner achieve the goal under the guidance of her teacher?

Different mathematical frameworks for such scenarios may give different answers.
As observed and elaborated in Gierasimczuk et al. (2009), the original sabotage game

SG defined in earlier chapters can be used as a concise model for capturing teaching
scenarios where teacher drag perhaps unwilling students to a state of knowledge on some
topic at hand. In this chapter, we restrict ourselves to cases where Learner (i.e., Traveler)
is eager to learn, and Teacher (i.e., Blocker) is helpful. That is, reaching the correct node
is the goal of both Learner and Teacher, which roughly depicts a guided learning situation.
To demonstrate the intuition behind the correspondence between SG and those scenarios,
consider the following reading that is closely related to Example 1.2:

A teaching-interpretation of SG: theorem proving. In this context, the starting node
intuitively is given by axioms, the goal node stands for the theorem to be proved, other
nodes represent lemmas conjectured by Learner, and edges capture Learner’s possible
inferences between them. Inferring is represented by moving along edges. The informa-
tion provided by Teacher can be treated as his feedback, i.e., removing edges to eliminate
wrong inferences. The success condition is given by the winning condition: the learning
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process has been successful if Learner reaches the goal node, i.e., proving the theorem.1

Following the direction, we would like to enrich the notion of sabotage games with
further ingredients that are able to provide insights into the questions involving Example
1.2 in Chapter 1 and those above, and meanwhile capture more realistic features of learning
processes. In particular, we are going to highlight the following aspects of the interactions
of Learner and Teacher:

• There are correct inferences as well as incorrect ones, but Learner cannot distinguish
the difference between them.

• Teacher does not have to act in each round: in fact, the requirement that Teacher
needs to act in each round may cause undesired outcomes, which can be easily
illustrated by a simple example of sabotage games. Also, it is not necessary that all
correct inferences between different hypotheses have already been conjectured by
Learner: during the process of learning, ‘possibilities may also be ignored due to the
more questionable practice if assuming that one of the theories under consideration
must be true. And complexity can come to be ignored through convention or habit’
(see pp. 260 Kelly et al., 1997). In this case, Teacher might point out the facts
ignored.

• Links removed represent mistakes. So, whether or not a link deleted has occurred
in Learner’s current proof (i.e., the current process of the learning) matters. If the
proof includes a wrong inference, any further steps of the proof should not make
sense. However, if a potential transition having not occurred in the proof is wrong,
Learner can continue with her current position.

• The well-known Gettier cases (Gettier, 1963) indicate that reaching the right con-
clusion may also be unreliable: Learner should reach the goal in a correct way. So,
a solid success condition for learning should ask Learner to come to the conclusion
in a coherent way.

To capture these features, we are going to propose a new framework, called correct
learning games CLG. The notion differs from SG on several accounts. Before its defini-
tion, let us define some auxiliary notions.

Let 𝑆 = ⟨𝑤0, 𝑤1, ⋯ , 𝑤𝑛⟩ be a non-empty, finite sequence. We denote by 𝑒(𝑆) the last
element of 𝑆, and 𝑆; 𝑣 the sequence extending 𝑆 with the element 𝑣. Define 𝑆𝑒𝑡(𝑆) ∶=

1 The interpretation can be easily adapted to characterize other situations of learning. For the general correspondence
between SG and learning models, we refer to (Gierasimczuk et al., 2009).
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{⟨𝑤0, 𝑤1⟩, ⟨𝑤1, 𝑤2⟩, ⋯ , ⟨𝑤𝑛−1, 𝑤𝑛⟩}, denoting the set of links occurring in the sequence.
When 𝑆 is a singleton, 𝑆𝑒𝑡(𝑆) ∶= ∅. Also, for any ⟨𝑤𝑖, 𝑤𝑖+1⟩ ∈ 𝑆𝑒𝑡(𝑆), 𝑆|⟨𝑤𝑖,𝑤𝑖+1⟩ ∶=
⟨𝑤0, 𝑤1, ⋯ , 𝑤𝑢⟩, where ⟨𝑤𝑢, 𝑤𝑢+1⟩ = ⟨𝑤𝑖, 𝑤𝑖+1⟩ and ⟨𝑤𝑢, 𝑤𝑢+1⟩ ≠ ⟨𝑤𝑗 , 𝑤𝑗+1⟩ for any
𝑗 < 𝑖. Intuitively, 𝑆|⟨𝑤𝑖,𝑤𝑖+1⟩ is obtained by deleting all elements occurring after 𝑤𝑢

from 𝑆, where ⟨𝑤𝑢, 𝑤𝑢+1⟩ is the first occurrence of ⟨𝑤𝑖, 𝑤𝑖+1⟩ in 𝑆. Say, when 𝑆 =
⟨𝑎, 𝑏, 𝑐, 𝑎, 𝑏⟩, we have 𝑆|⟨𝑎,𝑏⟩ = ⟨𝑎⟩. Now let us introduce CLG.

Definition 3.1: A correct learning game CLG ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , ⟨𝑠⟩, 𝑔⟩ is given by a graph
⟨𝑊 , 𝑅𝐿, 𝑅𝑇 ⟩, the starting node 𝑠 and the goal node 𝑔. A position of the game is a tuple
⟨𝑅𝑖

𝐿, 𝑆 𝑖⟩. The initial position ⟨𝑅0
𝐿, 𝑆0⟩ is given by ⟨𝑅𝐿, ⟨𝑠⟩⟩. Round 𝑛 + 1 from position

⟨𝑅𝑛
𝐿, 𝑆𝑛⟩ is as follows: first, Learner moves from 𝑒(𝑆𝑛) to any of its 𝑅𝐿-successors 𝑠′;

then Teacher does nothing or acts out one of the following three choices:
(a). Extend 𝑅𝑛

𝐿 with some ⟨𝑣, 𝑣′⟩ ∈ 𝑅𝑇 ;
(b). Transfer 𝑆𝑛; 𝑠′ to (𝑆𝑛; 𝑠′)|⟨𝑣,𝑣′⟩ by cutting ⟨𝑣, 𝑣′⟩ from 𝑆𝑒𝑡(𝑆𝑛; 𝑠′) ⧵ 𝑅𝑇 ;
(c). Delete some ⟨𝑣, 𝑣′⟩ ∈ (𝑅𝑛

𝐿 ⧵ 𝑅𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆𝑛; 𝑠′) from 𝑅𝑛
𝐿.

The resulting position, denoted ⟨𝑅𝑛+1
𝐿 , 𝑆𝑛+1⟩, is ⟨𝑅𝑛

𝐿, 𝑆𝑛⟩ (when Teacher does nothing),
⟨𝑅𝑛

𝐿 ∪ {⟨𝑣, 𝑣′⟩}, 𝑆𝑛; 𝑠′⟩ (when he chooses (a)), ⟨𝑅𝑛
𝐿 ⧵ {⟨𝑣, 𝑣′⟩}, (𝑆𝑛; 𝑠′)|⟨𝑣,𝑣′⟩⟩ (if he acts

as in (b)), or ⟨𝑅𝑛
𝐿 ⧵ {⟨𝑣, 𝑣′⟩}, 𝑆𝑛; 𝑠′⟩ (if he chooses (c)). It ends if Learner arrives at 𝑔

through an 𝑅𝑇 -path ⟨𝑠, ⋯ , 𝑔⟩ or cannot make a move, with both players winning in the
former case and losing in the latter.

Intuitively, the clause for Learner illustrates that she cannot distinguish the links start-
ing from the current position. The sequence 𝑆 𝑖 is her current learning process, which may
include mistakes; 𝑅𝐿 represents Learner’s possible inferences; and 𝑅𝑇 is the correct infer-
ences. For any position ⟨𝑅𝑛

𝐿, 𝑆𝑛⟩, 𝑆𝑒𝑡(𝑆𝑛) ⊆ 𝑅𝑛
𝐿. Besides, (b) and (c) focus on the case

where Teacher eliminates wrong transitions, but there is an important difference. Action
(b) concerns the case where Teacher gives Learner a counterexample to show that she has
gone wrong somewhere in her current process, so Learner should move back to the con-
jecture right before the wrong transition. In contrast, (c) illustrates that Teacher eliminates
a wrong transition conjectured having not occurred in Learner’s process yet, therefore it
does not modify Learner’s current process.

From the winning condition, we know that both the players cooperate with each other.
It is important to recognize that Learner’s action does not conflict with her cooperative
nature: to achieve the goal, she tries to move in each round. For an example of CLG, see
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Figure 3.1 A CLG. In this graph, 𝑅𝐿 is labelled with ‘𝐿’ and 𝑅𝑇 with ‘𝑇 ’. The starting node is

𝑎 and the goal node is 𝐺. We show that players have a winning strategy by depicting
the game to play out as follows. Learner begins by moving along the only available
edge to node 𝑏. Teacher in his turn can make ⟨𝑒, 𝑓⟩ ‘visible’ to Learner by adding
it to 𝑅𝐿. Then, Learner proceeds to move along ⟨𝑏, 𝑐⟩, and Teacher extends ⟨𝑏, 𝑒⟩
to 𝑅𝐿. Afterwards, Learner continues on the only option ⟨𝑐, 𝐺⟩. Although she now
has already arrived at the goal node, her path ⟨𝑎, 𝑏, 𝑐, 𝐺⟩ is not an 𝑅𝑇 -sequence. So,
Teacher can remove ⟨𝑏, 𝑐⟩ moving Learner back to node 𝑏. Next, Learner has to move
to 𝑒, and Teacher can delete ⟨𝑒, 𝐺⟩ from 𝑅𝐿. Finally, Learner can arrive at the goal
node 𝐺 in 2 steps with Teacher doing nothing. Now we have 𝑆𝑒𝑡(⟨𝑎, 𝑏, 𝑒, 𝑓 , 𝐺⟩) ⊆
𝑅𝑇 , so they win.

Table 3.1 Correspondence between theorem proving and correct learning games.

Theorem proving Correct learning games
Axioms Starting node
Theorem Goal node
Lemmas conjectured by Learner Other states except the starting state and the

goal state
Learner’s possible inference from 𝑎 to 𝑏 𝑅𝐿-edge from 𝑎 to 𝑏
Correct inference from 𝑎 to 𝑏 𝑅𝑇 -edge from 𝑎 to 𝑏
Inferring 𝑏 from 𝑎 Transition from 𝑎 to 𝑏
Proof for 𝑎 𝑅𝐿-sequence from the starting node to 𝑎
Correct proof for 𝑎 𝑅𝐿-sequence 𝑆 from the starting node to 𝑎

and 𝑆𝑒𝑡(𝑆) ⊆ 𝑅𝑇

Giving a counterexample to the inference
from 𝑎 to 𝑏 in the proof 𝑆

Modifying 𝑆 to 𝑆|⟨𝑎,𝑏⟩ (⟨𝑎, 𝑏⟩ ∈ 𝑆𝑒𝑡(𝑆))

Giving a counterexample to the conjectured
inference from 𝑎 to 𝑏 not in the proof 𝑆

Deleting ⟨𝑎, 𝑏⟩ from 𝑅𝐿 (⟨𝑎, 𝑏⟩ ∉ 𝑆𝑒𝑡(𝑆))

Pointing out a potential inference from 𝑎 to
𝑏 not conjectured by Learner before

Extending 𝑅𝐿 with ⟨𝑎, 𝑏⟩

Figure 3.1. The correlation between the situation of theorem proving and CLG is shown
in Table 3.1.

Remark 3.1: The interpretation of CLG in Table 3.1 can be easily adapted to charac-
terize other paradigms in formal learning theory, such as language learning and scientific
inquiry. More generally, any single-agent games, such as solitaire and computer games,
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can be converted into CLG. Say, the player (Learner) does not know the correct moves
well, but she knows the starting position and the goal position, and has some conjectures
about the moves of the game. Besides, she can be taught by Teacher: she just attempts to
play it, while Teacher instructs her positively (by revealing more correct moves) or nega-
tively (by pointing out incorrect moves, in which case Learner may have to be moved back
to the moment previous to the first incorrect move, if she made any).

Finally, we end this part by a preliminary comparison of CLG and SG.
First, note that Learner in a SG can win only if the graph contains a sequence of

edges from the starting node to the goal. Similarly, in a CLG, players cannot win when
there exists no 𝑅𝑇 -path from the starting node to the goal node. From the perspective
of learning, both these two conditions are reasonable: the interaction between Learner
and Teacher makes sense only when the goal is learnable. However, it is important to
recognize that in both SG and CLG, the existence of such a path cannot guarantee their
winning.

Also, there are several notable differences between SG and CLG. In a SG, Learner
knows the underlying graph well, and is always on one of the paths with which she can
finally arrive at the goal (if they exist). Therefore, she has the ability to move to a suitable
node in the next round. In contrast, the player in a CLG does not have this ability: all
𝑅𝐿-links starting from her current position looks ‘the same’ from her perspective, and
she is not able to guarantee that her movements are always the good ones (even though
sometimes she may move to some ‘good’ nodes by chance). As to Teacher, compared with
that of SG, the player in CLG is more powerful: he now is not only able to remove links,
but also able to add new edges to the graph. However, from another aspect, the ability
of Teacher in CLG is more restrictive as well: he can only delete the wrong translations
from the graph.

An interesting issue worth studying is the precise relationship between SG and CLG.
One observation involving this is as follows. Given a SG including a path with which the
players can win, we can build a CLG by labelling the links of the path with both ‘𝐿’ and
‘𝑇 ’ and all others in the initial graph with ‘𝑇 ’ only. In the CLG constructed, with the
same path as that of the initial SG, the players can also win: Learner just moves (in each
round there exists only one 𝑅𝐿-successor of her current position), and Teacher does not
need to do anything. The observation is restrictive, but it seems there does not exist an
obvious way to encode SG into CLG generally. We leave this for future work.
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In the remainder of this chapter, we will study CLG from a modal perspective, to
reason about players’ strategic abilities in the learning/teaching game. As mentioned al-
ready, sabotage modal logic SML is a suitable tool to characterize the original game SG,
which extends the basic modal logic with a sabotage modality ⬥𝜑, stating that there is an
edge such that, 𝜑 is true at the evaluation node after deleting the edge from the model.
However, given the differences between SG and CLG, we are going to develop a richer
modal logic of correct learning CLL to capture the CLG framework.

Outline. Section 3.2 introduces CLL along with its application to CLG and some
preliminary observations. Section 3.3 studies the expressivity of CLL. Section 3.4 inves-
tigates the model checking problem and satisfiability problem for CLL. We end this part
by Section 3.5 on conclusion and future work.

3.2 A modal logic of correct learning

In this section, we introduce the language and semantics of CLL, and analyze its ap-
plications to CLG. Also, we make various observations, including some logical validities
and relations between CLL and other existing logics.

3.2.1 Language and semantics

We begin by considering the action of Learner. In SML, the standard modality 3

characterizes the transition from a node to its successors and corresponds well to Learner’s
actions in SG. However, operator 3 is not any longer sufficient in our case. Note that after
Teacher cuts a link ⟨𝑤, 𝑣⟩ from Learner’s current process 𝑆, Learner should start from
𝑤 with the new path 𝑆|⟨𝑤,𝑣⟩ in the next round. Therefore, the desired operator should
remember the history of Learner’s movements, similar to the case of memory logics.

To capture Teacher’s action, a natural place to start is by defining operators corre-
sponding to link addition and deletion. There is already a body of literature on logics of
these modalities, such as the sabotage operator ⬥ and the bridge operator (Areces et al.,
2012, 2015, 2018). As mentioned, each occurrence of ⬥ in a formula deletes exactly one
link, whereas the bridge operator adds links stepwise to models. Yet, including these two
modalities is still not enough: we need to take into account if or not a link deleted by
Teacher occurs in the path of Learner’s movements. We now introduce the language ℒ𝑠

of CLL.

Definition 3.2: Let P be a countable set of propositional atoms. The language ℒ𝑠 is
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recursively defined in the following way:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ ⟐𝜑 ∣ ⟨−⟩on𝜑 ∣ ⟨−⟩off𝜑 ∣ ⟨+⟩𝜑

where 𝑝 ∈ P. Notions ⊤, ⊥, ∨ and → are as usual. Also, we use ⊡, [−]on, [−]off and [+]
to denote the dual operators of ⟐, ⟨−⟩on, ⟨−⟩off and ⟨+⟩ respectively.

Intuitively, ⟐𝜑 states that 𝜑 holds after extending the current path with one of its
successors. ⟨−⟩on𝜑 reads 𝜑 is the case after deleting a link on the current path, while
⟨−⟩off𝜑 states that after removing a link that is not on the path, 𝜑 holds. We use different
subscripts ‘on’ and ‘off ’ to indicate the two situations. Instead of link deletion, ⟨+⟩𝜑
shows that after extending the model with a particular link, 𝜑 holds. Roughly, operator
⟐ is used to capture the actions of Learner in CLG, and operators ⟨+⟩, ⟨−⟩on and ⟨−⟩off

characterize those of Teacher. This will become clear after we introduce the semantics.
Several fragments of ℒ𝑠 will be studied in the chapter. For brevity, we use a notational

convention listing in subscript all modalities of the corresponding language. For instance,
ℒ⟐ is the fragment of ℒ𝑠 that has only the operator ⟐ (besides Boolean connectives ¬
and ∧); ℒ⟨−⟩off

has only the modality ⟨−⟩off; ℒ⟐⟨−⟩on
has only ⟐ and ⟨−⟩on, etc. We now

proceed to define the models.

Definition 3.3: A model of CLL is a tuple ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩, where 𝑊 is a non-
empty set of possible worlds, 𝑅𝑖∈{𝐿,𝑇 } ⊆ 𝑊 × 𝑊 are two binary relations and 𝑉 ∶ P →
𝒫(𝑊 ) is a valuation function. ℱ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 ⟩ is a frame. Let 𝑆 be an 𝑅𝐿-sequence,
i.e., 𝑆𝑒𝑡(𝑆) ⊆ 𝑅𝐿. We name ⟨ℳ, 𝑆⟩ a pointed model, and 𝑆 an evaluation sequence.

For brevity, usually we write ℳ, 𝑆 instead of ⟨ℳ, 𝑆⟩. Also, we use 𝔐 to denote
the class of pointed models and 𝔐• the class of pointed models whose sequence 𝑆 is a
singleton. Let ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩ be a model, 𝑤 ∈ 𝑊 and 𝑖 ∈ {𝐿, 𝑇 }. We use
𝑅𝑖(𝑤) ∶= {𝑣 ∈ 𝑊 ∣ 𝑅𝑖𝑤𝑣} to denote the set of 𝑅𝑖-successors of 𝑤 in ℳ. For any se-
quence 𝑆, define 𝑅𝑖(𝑆) ∶= 𝑅𝑖(𝑒(𝑆)), i.e., the 𝑅𝑖-successors of a sequence 𝑆 are exactly
the 𝑅𝑖-successors of its last element. Moreover, ℳ⊖⟨𝑢, 𝑣⟩ ∶= ⟨𝑊 , 𝑅𝐿⧵{⟨𝑢, 𝑣⟩}, 𝑅𝑇 , 𝑉 ⟩
is the model obtained by removing ⟨𝑢, 𝑣⟩ from 𝑅𝐿, and ℳ ⊕ ⟨𝑢, 𝑣⟩ ∶= ⟨𝑊 , 𝑅𝐿 ∪
{⟨𝑢, 𝑣⟩}, 𝑅𝑇 , 𝑉 ⟩ is obtained by extending 𝑅𝐿 in ℳ with ⟨𝑢, 𝑣⟩. Now let us introduce
the semantics of CLL.

Definition 3.4: Let ⟨ℳ, 𝑆⟩ be a pointed model and 𝜑 ∈ ℒ𝑠. The semantics of CLL is
defined as follows:
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ℳ, 𝑆 ⊨ 𝑝 iff 𝑒(𝑆) ∈ 𝑉 (𝑝)
ℳ, 𝑆 ⊨ ¬𝜑 iff ℳ, 𝑆 ⊭ 𝜑

ℳ, 𝑆 ⊨ 𝜑 ∧ 𝜓 iff ℳ, 𝑆 ⊨ 𝜑 and ℳ, 𝑆 ⊨ 𝜓
ℳ, 𝑆 ⊨ ⟐𝜑 iff ∃𝑣 ∈ 𝑅𝐿(𝑆) s.t. ℳ, 𝑆; 𝑣 ⊨ 𝜑

ℳ, 𝑆 ⊨ ⟨−⟩on𝜑 iff ∃⟨𝑣, 𝑣′⟩ ∈ 𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇 s.t. ℳ ⊖ ⟨𝑣, 𝑣′⟩, 𝑆|⟨𝑣,𝑣′⟩ ⊨ 𝜑
ℳ, 𝑆 ⊨ ⟨−⟩off𝜑 iff ∃⟨𝑣, 𝑣′⟩ ∈ (𝑅𝐿 ⧵ 𝑅𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆) s.t. ℳ ⊖ ⟨𝑣, 𝑣′⟩, 𝑆 ⊨ 𝜑

ℳ, 𝑆 ⊨ ⟨+⟩𝜑 iff ∃⟨𝑣, 𝑣′⟩ ∈ 𝑅𝑇 ⧵ 𝑅𝐿 s.t. ℳ ⊕ ⟨𝑣, 𝑣′⟩, 𝑆 ⊨ 𝜑

Therefore, a propositional atom 𝑝 is true at a sequence 𝑆 iff the last element of 𝑆 is
𝑝. Also, formula ⟐𝜑 states that 𝑆 has an 𝑅𝐿-successor 𝑣 s.t. 𝜑 is true at 𝑆; 𝑣. Besides,
⟨−⟩on𝜑 means that after deleting a link ⟨𝑣, 𝑣′⟩ from 𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇 , 𝜑 is true at 𝑆|⟨𝑣,𝑣′⟩.
Moreover, ⟨−⟩off𝜑 states that 𝜑 holds at 𝑆 after cutting some link from (𝑅𝐿⧵𝑅𝑇 )⧵𝑆𝑒𝑡(𝑆).
Both the conditions for ⟨−⟩on and ⟨−⟩off require that the link deleted cannot be an 𝑅𝑇 -edge.
Intuitively, whereas ⟨−⟩on depicts the case when Teacher deletes a link from Learner’s path
𝑆, ⟨−⟩off captures the situation that the link deleted does not occur in 𝑆. Finally, ⟨+⟩𝜑
means that after extending 𝑅𝐿 with a new link of 𝑅𝑇 , 𝜑 holds at the current sequence.

A formula 𝜑 is satisfiable if there exists ⟨ℳ, 𝑆⟩ ∈ 𝔐 with ℳ, 𝑆 ⊨ 𝜑. Also, validity
in a model and in a frame is defined as usual. Note that the relevant class of pointed models
to specify CLL is 𝔐•. Hence, CLL is the set of ℒ𝑠-formulas that are valid w.r.t. 𝔐•.

For any ⟨ℳ, 𝑆⟩ and ⟨ℳ′, 𝑆′⟩, we say that they are learning modal equivalent (no-
tation: ⟨ℳ, 𝑆⟩ ↭𝑙 ⟨ℳ′, 𝑆′⟩) iff ℳ, 𝑆 ⊨ 𝜑 ⇔ ℳ′, 𝑆′ ⊨ 𝜑 for any 𝜑 ∈ ℒ𝑠. Besides,
𝕋 𝑙(ℳ, 𝑆) ∶= {𝜑 ∈ ℒ𝑠 ∣ ℳ, 𝑆 ⊨ 𝜑} denotes the CLL theory of 𝑆 in ℳ. It is easy to see
that two pointed models are learning modal equivalent if, and only if, they have the same
CLL theory. In addition, we define a relation U ⊆ 𝔐 × 𝔐 with ⟨⟨ℳ, 𝑆⟩, ⟨ℳ′, 𝑆′⟩⟩ ∈ U
iff ⟨ℳ′, 𝑆′⟩ is ⟨ℳ, 𝑆; 𝑤⟩ for some state 𝑤 with ⟨𝑒(𝑆), 𝑤⟩ ∈ 𝑅𝐿, ⟨ℳ ⊖ ⟨𝑣, 𝑣′⟩, 𝑆|⟨𝑣,𝑣′⟩⟩
for some ⟨𝑣, 𝑣′⟩ ∈ 𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇 , ⟨ℳ ⊖ ⟨𝑣, 𝑣′⟩, 𝑆⟩ for some ⟨𝑣, 𝑣′⟩ ∈ (𝑅𝐿 ⧵ 𝑅𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆),
or ⟨ℳ ⊕ ⟨𝑣, 𝑣′⟩, 𝑆⟩ for some ⟨𝑣, 𝑣′⟩ ∈ 𝑅𝑇 ⧵ 𝑅𝐿. We can also iterate this order, to talk
about models reachable in finitely many U-steps, obtaining the relation U∗.

3.2.2 Application: winning strategies in CLG

From Definition 3.4, it is easy to know that language ℒ𝑠 is able to capture the actions
of both players in CLG. Also, our logic is expressive enough to describe the winning
strategy (if there is one) for players in finite graphs.1

1 Generally speaking, to define the existence of winning strategies for players, we need to extend CLG with some
fixpoint operators. We leave this for future inquiry.
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Given a finite CLG, let 𝑝 be a distinguished atom holding only at the goal node.
Generally, the winning strategy of Learner and Teacher can be described by formulas of
the following form:

⊡ ○0 ⊡ ○1 ⊡ ⋯ ○𝑛 ⊡(𝑝 ∧ [−]on⊥) (3-1)

where ○𝑖 is blank or one of ⟨−⟩on, ⟨−⟩off and ⟨+⟩, for each 𝑖 ⩽ 𝑛 ∈ ℕ. In formula (3-
1), the recurring ⊡ operator depicts Learner’s actions and ○𝑖 Teacher’s response. The
proposition 𝑝 signalizes Learner’s arrival at the goal, and [−]on⊥ states that there are no
edges in Learner’s path that Teacher can cut. Hence, we conclude that Learner has reached
the goal in a coherent way. Recall the example of CLG in Figure 3.1. Formula ⊡⟨+⟩ ⊡
⟨+⟩ ⊡ ⟨−⟩on ⊡ ⟨−⟩off ⊡ ⊡(𝑝 ∧ [−]on⊥) holds at the starting node 𝑎, so there exists a
winning strategy in this specific CLG.

It is worthwhile to emphasis that in formula (3-1) we use ⊡, other than ⟐, to char-
acterize the actions of Learner, which may be different from some other cases.1 However,
the modality ⊡ used in formula (3-1) does not indicate that Learner is unwilling to learn.
Essentially, it illustrates that she has no idea where to move in the next step, and we would
claim that the form is in line with the spirit of CLG where Learner may move in wrong
directions: Learner cannot distinguish different ways to the goal. In effect, all Learner
can do in a CLG is to move as much as possible. Meanwhile, Teacher has to make some
correct inferences ‘visible’ to Learner, and put Learner on track no matter what happens.
Therefore, the form of formula (3-1) does not violate the cooperative nature of Learner.2

Remark 3.2: In SG we know that links cut by Teacher represent wrong inferences.
However, SG does not tell us anything about the links that remain in the graph. Therefore,
winning strategies of the players in SG cannot guarantee against situations like Gettier
cases. In contrast, the formula [−]on⊥ in formula (3-1) ensures that Teacher is not allowed
to remove any more links from Learner’s path. In CLG, a Gettier-style case is that Learner
arrives at the goal node with some ⟨𝑢, 𝑣⟩ ∈ 𝑅𝐿 ⧵𝑅𝑇 occurring in her path, so Teacher now
would be able to cut those links. Therefore Gettier cases cannot be winning strategies in
correct learning games.

1 For instance, in sabotage games, we use 3 to capture actions of Learner in formulas describing winning strategies
if they exist (see Gierasimczuk et al., 2009).

2 In contrast, one extreme case of non-cooperative variants of CLG might be that Learner is allowed to stay at her
current position in each round: she makes no efforts to reach the goal node.
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3.2.3 Preliminary observations

In this section, we make some preliminary observations on CLL. In particular, we
discuss the relations between CLL and other related logics, present some logical validities,
and study some basic features of CLL. Let us begin with the relation between ℒ⟐ and the
standard modal logic.

Proposition 3.1: Let ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩ be a model. For any ⟨ℳ, 𝑆⟩ ∈ 𝔐 and
𝜑 ∈ ℒ⟐, it holds that

ℳ, 𝑆 ⊨ 𝜑 ⇔ ⟨𝑊 , 𝑅𝐿, 𝑉 ⟩, 𝑒(𝑆) ⊨ 𝜑∗

where 𝜑∗ ∈ ℒ2 is a standard modal formula obtained by replacing every occurrence of
⟐ in 𝜑 with 3.

Proof The proof is done by induction on the syntax of 𝜑 ∈ ℒ⟐. The Boolean cases are
trivial. When 𝜑 is ⟐𝜓 , it holds that:

ℳ, 𝑆 ⊨ 𝜑 ⇔ there exists 𝑣 ∈ 𝑅𝐿(𝑒(𝑆)) such that ℳ, 𝑆; 𝑣 ⊨ 𝜓
⇔ there exists 𝑣 ∈ 𝑅𝐿(𝑒(𝑆)) such that ⟨𝑊 , 𝑅𝐿, 𝑉 ⟩, 𝑣 ⊨ 𝜓∗

⇔ ⟨𝑊 , 𝑅𝐿, 𝑉 ⟩, 𝑒(𝑆) ⊨ 𝜑∗

The first equivalence follows from Definition 3.4 directly. By the inductive hypothesis,
the second one holds. The last one holds by the semantics of the standard modal logic. ∎

Therefore, essentially the fragment ℒ⟐ of ℒ𝑠 is the standard modal logic. Moreover,
the operator ⟨−⟩off is much similar to the sabotage operator ⬥:

Proposition 3.2: Let ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩ be a model, and 𝑅 = 𝑅𝐿 ⧵ 𝑅𝑇 . For any
⟨ℳ, 𝑤⟩ ∈ 𝔐• and 𝜑 ∈ ℒ⟨−⟩off

, we have

ℳ, 𝑤 ⊨ 𝜑 ⇔ ⟨𝑊 , 𝑅, 𝑉 ⟩, 𝑤 ⊨ 𝜑′

where 𝜑′ ∈ ℒ⬥ is a SML formula obtained by replacing each occurrence of ⟨−⟩off in 𝜑
with ⬥.

Proof It goes by induction on the structure of 𝜑 ∈ ℒ⟨−⟩off
. The Boolean cases are straight-

forward. When 𝜑 is ⟨−⟩off𝜓 , it holds that:

ℳ, 𝑤 ⊨ 𝜑 ⇔ there exists ⟨𝑣, 𝑣′⟩ ∈ (𝑅𝐿 ⧵ 𝑅𝑇 ) such that ℳ ⊖ ⟨𝑣, 𝑣′⟩, 𝑤 ⊨ 𝜓
⇔ there exists ⟨𝑣, 𝑣′⟩ ∈ 𝑅 such that ⟨𝑊 , 𝑅 ⧵ {⟨𝑣, 𝑣′⟩}, 𝑉 ⟩, 𝑤 ⊨ 𝜓′

⇔ ⟨𝑊 , 𝑅, 𝑉 ⟩, 𝑤 ⊨ ⬥𝜓′
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This completes the proof. ∎

Next, the following result captures the relation between ℒ⟐⟨+⟩ and the ‘bridge modal
logic BML’ (i.e., the modal logic extending the standard modal logic with the bridge op-
erator):

Proposition 3.3: Let ℳ = ⟨𝑊 , 𝑅𝐿, 𝑊 × 𝑊 , 𝑉 ⟩ be a model. For any ⟨ℳ, 𝑆⟩ ∈ 𝔐
and 𝜑 ∈ ℒ⟐⟨+⟩, it holds that

ℳ, 𝑆 ⊨ 𝜑 ⇔ ⟨𝑊 , 𝑅𝐿, 𝑉 ⟩, 𝑒(𝑆) ⊨ 𝜑⋆

where 𝜑⋆ is a BML formula obtained by replacing every occurrence of ⟐ in 𝜑 with 3.1

Proof This goes by induction on the syntax of 𝜑. The Boolean cases are trivial. The case
for ⟐ is similar to that of the proof of Proposition 3.1. When 𝜑 is ⟨+⟩𝜓 , it holds that:

ℳ, 𝑆 ⊨ 𝜑 ⇔ ∃⟨𝑣, 𝑣′⟩ ∈ (𝑅𝑇 ⧵ 𝑅𝐿) s.t. ℳ ⊕ ⟨𝑣, 𝑣′⟩, 𝑆 ⊨ 𝜓
⇔ ∃𝑣, 𝑣′ ∈ 𝑊 s.t. ⟨𝑣, 𝑣′⟩ ∉ 𝑅𝐿 and ⟨𝑊 , 𝑅𝐿 ∪ {⟨𝑣, 𝑣′⟩}, 𝑉 ⟩, 𝑒(𝑆) ⊨ 𝜓⋆

⇔ ⟨𝑊 , 𝑅𝐿, 𝑉 ⟩, 𝑒(𝑆) ⊨ ⟨+⟩𝜓⋆

The proof is completed. ∎

From Proposition 3.1-3.3, we know that several fragments of CLL are similar to some
existing logics. Yet, as a whole, different operators of CLL interact with each other. For
instance, for any ⟨ℳ, 𝑤⟩ ∈ 𝔐•, formula [−]on𝜑 is valid, as 𝑆𝑒𝑡(𝑤) = ∅. However,
⟐¬[−]on𝜑 is satisfiable. This presents a drastic difference between CLL and other logics
mentioned so far: in those logics, it is impossible that the evaluation point has access to
a node satisfying a contradiction. To understand how operators in CLL work, we present
some other validities.

Proposition 3.4: Let 𝑝 ∈ P and 𝜑, 𝜓 ∈ ℒ𝑠. All the following formulas are validities of
logic CLL (w.r.t. 𝔐•):

𝑝 ∧ ⟐⊤ → ⊡[−]on𝑝 (3-2)

○ (𝜑 → 𝜓) → (○𝜑 → ○𝜓) ○ ∈ {[−]off, [+]} (3-3)

⊡𝑛 [−]on(𝜑 → 𝜓) → (⊡𝑛[−]on𝜑 → ⊡𝑛[−]on𝜓) 𝑛 ∈ ℕ (3-4)

⟐𝑛⟨−⟩on𝜑 → ⋁𝑚<𝑛
⟐𝑚⟨−⟩off𝜑 1 ⩽ 𝑛 ∈ ℕ (3-5)

1 By abuse of notation, for any 𝜑 ∈ ℒ⟐⟨+⟩, 𝜑⋆ is a formula of the bridge modal logic.
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𝑤 𝑤1
𝑝

𝑤2
𝑞

𝐿 𝑇

Figure 3.2 A case showing that validities of ℒ⟐⟨−⟩on
are not closed under substitution. Consider

the general schema 𝜑 ∧ ⟐𝜓 → ⊡[−]on𝜑 of formula (3-2). Let 𝜑 ∶= ⟐𝑝 and
𝜓 ∶= ⊡𝑞. It holds that ℳ, 𝑤 ⊨ ⟐𝑝 ∧ ⟐ ⊡ 𝑞. But, since 𝑤 has exactly one
𝑅𝐿-successor 𝑤1 and ⟨𝑤, 𝑤1⟩ ∉ 𝑅𝑇 , we have ℳ, 𝑤 ⊭ ⊡[−]on⟐𝑝.

𝑤
𝑝

𝑤1𝐿𝐿

Figure 3.3 A model of 𝜑𝕋 . It is not hard to see that 𝜑𝕋 is true at 𝑤.

Their validity holds immediately by the semantics. Formula (3-2) states that, for
any singleton 𝑤, if it is 𝑝 and has some 𝑅𝐿-successors, then any of its extensions ⟨𝑤, 𝑣⟩
with 𝑣 ∈ 𝑅𝐿(𝑤) is [−]on𝑝, no matter whether ⟨𝑤, 𝑣⟩ ∈ 𝑅𝑇 or not. Principles (3-3) and
(3-4) show that all operators [−]off, [+] and [−]on are normal operators. Formula (3-5)
illustrates that in some situations, a formula containing ⟨−⟩on can be reduced to another
formula containing ⟨−⟩off.

Note that principle (3-2) is not a schema. Although it will still be valid if we replace
propositional atoms occurring in it with any other Boolean formulas, substitution fails
generally. See Figure 3.2 for an example, which essentially illustrates the following result:

Proposition 3.5: ℒ⟐⟨−⟩on
and CLL are not closed under substitution.

Moreover, CLL and ℒ⟐⟨−⟩on
also have other features very different from the standard

modal logic. For instance,

Proposition 3.6: Both ℒ⟐⟨−⟩on
and CLL lack the tree model property.

Proof Let 𝜑𝕋 be the conjunction of the following:

(𝕋1) 𝑝 ∧ ⟐𝑝 ∧ ⟐¬𝑝

(𝕋2) ⊡ (𝑝 → ⟐𝑝 ∧ ⟐¬𝑝)

(𝕋3) ⊡ (¬𝑝 → ⟨−⟩on(⊡𝑝 ∧ ⊡ ⊡ 𝑝))

It is not hard to see that formula 𝜑𝕋 ∈ ℒ⟐⟨−⟩on
is satisfiable w.r.t. 𝔐• (see Figure 3.3).

We now show that, for any ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩ and 𝑤 ∈ 𝑊 , ℳ, 𝑤 ⊨ 𝜑𝕋 entails
𝑅𝐿𝑤𝑤. By (𝕋1), it follows that 𝑤 ∈ 𝑉 (𝑝), and it can reach some 𝑤1 ∈ 𝑉 (𝑝) and some
𝑤2 ∉ 𝑉 (𝑝) via 𝑅𝐿. Besides, (𝕋2) states that, via 𝑅𝐿, each such 𝑤1 can also reach some 𝑝-
node 𝑤3 and ¬𝑝-node 𝑤4. Finally, from (𝕋3) we know that 𝑤 can only reach one ¬𝑝-point
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by 𝑅𝐿 and that 𝑤1 does not have ¬𝑝-successors via 𝑅𝐿 any longer after cutting ⟨𝑤, 𝑤2⟩.
So, ⟨𝑤, 𝑤2⟩ = ⟨𝑤1, 𝑤4⟩. Therefore, 𝑅𝐿𝑤𝑤. The proof is completed. ∎

As observed, CLL has some distinguishing features. In the sections to come we will
make a deeper investigation into our logic.

3.3 Expressive power of CLL

In this section, we study the expressivity of CLL. First, we will show that CLL is still
a fragment of FOL even though it looks complicated. After this, a suitable notion of bisim-
ulation for CLL is introduced. Finally, we provide a van Benthem style characterization
theorem for the logic.

3.3.1 First-order translation

Given the complicated semantics, is CLL still a fragment of FOL? In this part we
will provide a positive answer to this question, by describing a translation from CLL to
FOL.

It is not hard to see that the first-order language here cannot be ℒ1 used to translate
logic SdML given in Section 2.3, as we now have two relations. Let ℒ†

1 be the first-order
language consisting of countable unary predicates 𝑃𝑖∈ℕ, two binary relations 𝑅𝑖∈{𝐿,𝑇 },
and equality ≡. Take any finite, non-empty sequence 𝐸 of variables. Let 𝑦, 𝑦′ be two
fresh variables not appearing in 𝐸. When there exists ⟨𝑥, 𝑥′⟩ ∈ 𝑆𝑒𝑡(𝐸) with 𝑥 ≡ 𝑦 and
𝑥′ ≡ 𝑦′, we define 𝐸|⟨𝑦,𝑦′⟩ ∶= 𝐸|⟨𝑥,𝑥′⟩. Now let us define the first-order translation.

Definition 3.5: Let 𝐸 = ⟨𝑥0, 𝑥1, ⋯ , 𝑥𝑛⟩ be a finite sequence (non-empty) of variables
without any variable occurring more than once, and 𝐸− and 𝐸+ two finite sets (maybe
empty) of ordered pairs of variables. The first-order translation 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−) from
𝜑 ∈ ℒ𝑠 to first-order formulas is as follows:

𝔗(𝑝, 𝐸, 𝐸+, 𝐸−) = 𝑃 𝑒(𝐸)

𝔗(¬𝜑, 𝐸, 𝐸+, 𝐸−) = ¬𝔗(𝜑, 𝐸, 𝐸+, 𝐸−)

𝔗(𝜑 ∧ 𝜓, 𝐸, 𝐸+, 𝐸−) = 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−) ∧ 𝔗(𝜓, 𝐸, 𝐸+, 𝐸−)

𝔗(⟐𝜑, 𝐸, 𝐸+, 𝐸−) = ∃𝑦(( ⋁
⟨𝑥,𝑥′⟩∈𝐸+

(𝑒(𝐸) ≡ 𝑥 ∧ 𝑦 ≡ 𝑥′) ∨ (𝑅𝐿𝑒(𝐸)𝑦∧

¬ ⋁
⟨𝑣,𝑣′⟩∈𝐸−

(𝑒(𝐸) ≡ 𝑣 ∧ 𝑦 ≡ 𝑣′))) ∧ 𝔗(𝜑, 𝐸; 𝑦, 𝐸+, 𝐸−))

68



Chapter 3 Interactions in learning and teaching - A graph game approach

𝔗(⟨−⟩on𝜑, 𝐸, 𝐸+, 𝐸−) = ∃𝑦∃𝑦′
( ⋁

⟨𝑥,𝑥′⟩∈𝑆𝑒𝑡(𝐸)⧵(𝐸−∪𝐸+)
(𝑦 ≡ 𝑥 ∧ 𝑦′ ≡ 𝑥′)∧

𝑅𝐿𝑦𝑦′ ∧ ¬𝑅𝑇 𝑦𝑦′ ∧ 𝔗(𝜑, 𝐸|⟨𝑦,𝑦′⟩, 𝐸+, 𝐸− ∪ {⟨𝑦, 𝑦′⟩}))
𝔗(⟨−⟩off𝜑, 𝐸, 𝐸+, 𝐸−) = ∃𝑦∃𝑦′

(¬ ⋁
⟨𝑥,𝑥′⟩∈𝑆𝑒𝑡(𝐸)∪𝐸−∪𝐸+

(𝑦 ≡ 𝑥 ∧ 𝑦′ ≡ 𝑥′)∧

𝑅𝐿𝑦𝑦′ ∧ ¬𝑅𝑇 𝑦𝑦′ ∧ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸− ∪ {⟨𝑦, 𝑦′⟩}))
𝔗(⟨+⟩𝜑, 𝐸, 𝐸+, 𝐸−) = ∃𝑦∃𝑦′

(¬ ⋁
⟨𝑥,𝑥′⟩∈𝐸−∪𝐸+

(𝑦 ≡ 𝑥 ∧ 𝑦′ ≡ 𝑥′) ∧ ¬𝑅𝐿𝑦𝑦′∧

𝑅𝑇 𝑦𝑦′ ∧ 𝔗(𝜑, 𝐸, 𝐸+ ∪ {⟨𝑦, 𝑦′⟩}, 𝐸−))

where 𝑦, 𝑦′ are variables having not been used yet in the translation. In addition, given a
set 𝛷 of ℒ𝑠-formulas, we denote by 𝔗(𝛷, 𝐸, 𝐸+, 𝐸−) the set {𝔗(𝜑, 𝐸, 𝐸+, 𝐸−) ∣ 𝜑 ∈ 𝛷}
of first-order translations of formulas in 𝛷.

From the perspective of correct learning games, sequence 𝐸 stands for Learner’s cur-
rent process, and 𝐸+, 𝐸− represent links having already been added and deleted respec-
tively. In any translation, both sets 𝐸+ and 𝐸− may be extended. For any their extensions
𝐸+ ∪ 𝑋 and 𝐸− ∪ 𝑌 , it holds that 𝑋 ∩ 𝑌 = ∅. This is in line with our semantics: links
deleted are different from those added. Furthermore, unlike the standard modal logic,
generally the translation does not yield a formula with only one free variable. But, it does
so when setting 𝐸, 𝐸+ and 𝐸− to be a singleton, ∅ and ∅ respectively.

Note that in Definition 3.5, the sequence 𝐸 includes no variable appearing more than
once, and it is easy to see that any modification of 𝐸 in a translation still has this property.
Specifically, this requirement is used to guarantee that assignments are well-defined. Let 𝜎
be an assignment, 𝑆 a sequence of points in a model, and 𝐸 a sequence of variables with
the same size as 𝑆. In what follows, when writing 𝜎𝐸∶=𝑆 , we mean a new assignment
that is the same as 𝜎 except assigning variables in 𝐸 to the corresponding elements in 𝑆.
Since all variables in 𝐸 appear only once, no variable in the sequence can be assigned to
different elements in 𝑆. With Definition 3.5, we have the following result:

Lemma 3.1: Let 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−) be a translation with 𝐸+ ∩ 𝐸− = ∅, and 𝑦, 𝑦′ two
fresh variables. For any 𝜎 and ℳ, it holds that ℳ ⊖ ⟨𝑣, 𝑣′⟩ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−)[𝜎] iff
ℳ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸− ∪ {⟨𝑦, 𝑦′⟩})[𝜎𝑦(′)∶=𝑣(′)], for any ⟨𝑣, 𝑣′⟩ ∈ 𝑅𝐿 ⧵ 𝑅𝑇 ; and ℳ ⊕
⟨𝑣, 𝑣′⟩ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−)[𝜎] iff ℳ ⊨ 𝔗(𝜑, 𝐸, 𝐸+ ∪ {⟨𝑦, 𝑦′⟩}, 𝐸−)[𝜎𝑦(′)∶=𝑣(′)], for any
⟨𝑣, 𝑣′⟩ ∈ 𝑅𝑇 ⧵ 𝑅𝐿.
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Proof The proofs for these two cases are similar, and both of them can be shown by
induction on the syntax of formulas. We focus on the first one, and only prove the cases for
propositional atoms and ⟨−⟩on. Assume that ⟨𝑣, 𝑣′⟩ ∈ 𝑅𝐿⧵𝑅𝑇 , and 𝑅−

𝐿 ∶= 𝑅𝐿⧵{⟨𝑣, 𝑣′⟩}.
(1). Formula 𝜑 is 𝑝 ∈ P. By Definition 3.5, ℳ ⊖ ⟨𝑣, 𝑣′⟩ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−)[𝜎] iff

ℳ⊖⟨𝑣, 𝑣′⟩ ⊨ 𝑃 𝑒(𝐸)[𝜎]. From the definition of ℳ⊖⟨𝑣, 𝑣′⟩, it follows that ℳ⊖⟨𝑣, 𝑣′⟩ ⊨
𝑃 𝑒(𝐸)[𝜎] iff ℳ ⊨ 𝑃 𝑒(𝐸)[𝜎]. Again, by Definition 3.5, it holds that ℳ ⊨ 𝑃 𝑒(𝐸)[𝜎] iff
ℳ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸− ∪ {⟨𝑦, 𝑦′⟩})[𝜎𝑦(′)∶=𝑣(′)].

(2). Formula 𝜑 is ⟨−⟩on𝜓 . We have the following equivalences:

ℳ ⊖ ⟨𝑣, 𝑣′⟩ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸−)[𝜎]
⇔ ℳ ⊖ ⟨𝑣, 𝑣′⟩ ⊨ ∃𝑢∃𝑢′( ⋁

⟨𝑧,𝑧′⟩∈𝑆𝑒𝑡(𝐸)⧵(𝐸−∪𝐸+)
(𝑢 ≡ 𝑧 ∧ 𝑢′ ≡ 𝑧′) ∧ 𝑅−

𝐿𝑢𝑢′∧

¬𝑅𝑇 𝑢𝑢′ ∧ 𝔗(𝜓, 𝐸|⟨𝑢,𝑢′⟩, 𝐸+, 𝐸− ∪ {⟨𝑢, 𝑢′⟩}))[𝜎]
⇔ ℳ ⊨ ∃𝑢∃𝑢′( ⋁

⟨𝑧,𝑧′⟩∈𝑆𝑒𝑡(𝐸)⧵(𝐸+∪𝐸−∪{⟨𝑦,𝑦′⟩})
(𝑢 ≡ 𝑧 ∧ 𝑢′ ≡ 𝑧′) ∧ 𝑅𝐿𝑢𝑢′∧

¬𝑅𝑇 𝑢𝑢′ ∧ 𝔗(𝜓, 𝐸|⟨𝑢,𝑢′⟩, 𝐸+, 𝐸− ∪ {⟨𝑢, 𝑢′⟩, ⟨𝑦, 𝑦′⟩}))[𝜎𝑦(′)∶=𝑣(′)]
⇔ ℳ ⊨ 𝔗(𝜑, 𝐸, 𝐸+, 𝐸− ∪ {⟨𝑦, 𝑦′⟩})[𝜎𝑦(′)∶=𝑣(′)]

The first equivalence holds directly by Definition 3.5. By the inductive hypothesis and the
definition of 𝑅−

𝐿, the second one holds. The last equivalence follows from the definition
of first-order translation. The proof is completed. ∎

With Lemma 3.1, we now can show the correctness of the translation:

Theorem 3.1: Let ⟨ℳ, 𝑆⟩ ∈ 𝔐 and 𝐸 an 𝑅𝐿-sequence of variables with the same size
as 𝑆. For any 𝜑 ∈ ℒ𝑠, ℳ, 𝑆 ⊨ 𝜑 iff ℳ ⊨ 𝔗(𝜑, 𝐸, ∅, ∅)[𝜎𝐸∶=𝑆].

Proof The proof is by induction on the structure of 𝜑 ∈ ℒ𝑠. Also, we only consider the
cases for propositional atoms and ⟨−⟩on.

(1). Formula 𝜑 is 𝑝 ∈ P. By the semantics, ℳ, 𝑆 ⊨ 𝜑 iff 𝑒(𝑆) ∈ 𝑉 (𝑝). On
the other hand, by Definition 3.5, 𝔗(𝜑, 𝐸, ∅, ∅) is 𝑃 𝑒(𝐸). So we have ℳ, 𝑆 ⊨ 𝜑 iff
ℳ ⊨ 𝔗(𝜑, 𝐸, ∅, ∅)[𝜎𝐸∶=𝑆].

(2). When 𝜑 is ⟨−⟩on𝜓 , the following equivalences hold:
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ℳ, 𝑆 ⊨ 𝜑
⇔ there exists ⟨𝑣, 𝑣′⟩ ∈ (𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇 ) s.t. ℳ ⊖ ⟨𝑣, 𝑣′⟩, 𝑆|⟨𝑣,𝑣′⟩ ⊨ 𝜓
⇔ there exists ⟨𝑣, 𝑣′⟩ ∈ (𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇 ) s.t.

ℳ ⊖ ⟨𝑣, 𝑣′⟩ ⊨ 𝔗(𝜓, 𝐸|⟨𝑦,𝑦′⟩, ∅, ∅)[𝜎𝐸∶=𝑆,𝑦(′)∶=𝑣(′)]
⇔ ℳ ⊨ ∃𝑦∃𝑦′( ⋁

⟨𝑣,𝑣′⟩∈𝑆𝑒𝑡(𝐸)
(𝑦 ≡ 𝑣 ∧ 𝑦′ ≡ 𝑣′) ∧ 𝑅𝐿𝑦𝑦′ ∧ ¬𝑅𝑇 𝑦𝑦′∧

𝔗(𝜓, 𝐸|⟨𝑦,𝑦′⟩, ∅, {⟨𝑦, 𝑦′⟩}))[𝜎𝐸∶=𝑆]
⇔ ℳ ⊨ 𝔗(𝜑, 𝐸, ∅, ∅)[𝜎𝐸∶=𝑆]

The first equivalence follows from our semantics immediately. By the inductive hypothe-
sis, the second one follows. With Lemma 3.1, we have the third one. The last one follows
directly from Definition 3.5. This completes the proof. ∎

In the result above, we have an extra requirement on the sequence 𝐸 used in the
translation, i.e., 𝑆𝑒𝑡(𝐸) ⊆ 𝑅𝐿. Intuitively, this restriction corresponds to the definition of
pointed models. When 𝑆 is a singleton, 𝐸 is also a singleton, and each extension of 𝐸
fulfils the requirement automatically by Definition 3.5.

So far, by the translation, we have shown that CLL is a fragment of FOL. Also, Def-
inition 3.5 gives us other information about our logic. For example, it includes immediate
transfer of the compactness property of FOL to CLL. Moreover, since the complexity of
the model checking problem for FOL is PSPACE-complete and the translation has only a
polynomial size increase, we can obtain an upper bound for that of CLL. We will return
to this below.

3.3.2 Bisimulation and characterization for CLL

In this part, we continue to study the expressive power of CLL. In particular, we
introduce a novel notion of ‘learning bisimulation (l-bisimulation)’ for our logic, which
finally leads to a van Benthem style characterization theorem.

Definition 3.6: For any ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩ and ℳ′ = ⟨𝑊 ′, 𝑅′
𝐿, 𝑅′

𝑇 , 𝑉 ′⟩, a non-
empty relation 𝑍𝑙 ⊆ U∗(⟨ℳ, 𝑆⟩) × U∗(⟨ℳ′, 𝑆′⟩) is an l-bisimulation between ⟨ℳ, 𝑆⟩
and ⟨ℳ′, 𝑆′⟩ (notation: ⟨ℳ, 𝑆⟩𝑍𝑙⟨ℳ′, 𝑆′⟩) if:
Atom: ℳ, 𝑆 ⊨ 𝑝 iff ℳ′, 𝑆′ ⊨ 𝑝, for each 𝑝 ∈ P.
Zig⟐: If there exists 𝑣 ∈ 𝑅𝐿(𝑒(𝑆)), then there exists 𝑣′ ∈ 𝑅′

𝐿(𝑒(𝑆′)) such that
⟨ℳ, 𝑆; 𝑣⟩𝑍𝑙⟨ℳ′, 𝑆′; 𝑣′⟩.

Zig⟨−⟩on
: If there is ⟨𝑢, 𝑣⟩ ∈ 𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇 , then there is ⟨𝑢′, 𝑣′⟩ ∈ 𝑆𝑒𝑡(𝑆′) ⧵ 𝑅′

𝑇 with
⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩⟩𝑍𝑙⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩⟩.
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Zig⟨−⟩off
: If there exists ⟨𝑢, 𝑣⟩ ∈ (𝑅𝐿 ⧵ 𝑅𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆), then there exists ⟨𝑢′, 𝑣′⟩ ∈ (𝑅′

𝐿 ⧵
𝑅′

𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆′) with ⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆⟩𝑍𝑙⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′⟩.
Zig⟨+⟩: If there exists ⟨𝑢, 𝑣⟩ ∈ 𝑅𝑇 ⧵ 𝑅𝐿, then there exists ⟨𝑢′, 𝑣′⟩ ∈ 𝑅′

𝑇 ⧵ 𝑅′
𝐿 with

⟨ℳ ⊕ ⟨𝑢, 𝑣⟩, 𝑆⟩𝑍𝑙⟨ℳ′ ⊕ ⟨𝑢′, 𝑣′⟩, 𝑆′⟩.
Zag⟐, Zag⟨−⟩on

, Zag⟨−⟩off
and Zag⟨+⟩: the analogous clauses in the converse direction of

Zig⟐, Zig⟨−⟩on
, Zig⟨−⟩off

and Zig⟨+⟩ respectively.
For brevity, we usually write ⟨ℳ, 𝑆⟩↔𝑙⟨ℳ′, 𝑆′⟩ if there is an l-bisimulation 𝑍𝑙 such that
⟨ℳ, 𝑆⟩𝑍𝑙⟨ℳ′, 𝑆′⟩.

The clauses for ⟐ is similar to those for3 in the standard bisimulation: they keep the
model fixed and extend the evaluation sequence with one of its 𝑅𝐿-successors. However,
all conditions for ⟨−⟩on, ⟨−⟩off and ⟨+⟩ change the model. In particular, clauses for ⟨−⟩off

and ⟨+⟩ do not modify the evaluation sequence, while those for ⟨−⟩on change both the
model and the current sequence. By a straightforward induction on 𝜑 ∈ ℒ, we have the
following result:

Theorem 3.2 (↔𝑙 ⊆↭𝑙): For any pointed models ⟨ℳ, 𝑆⟩ and ⟨ℳ′, 𝑆′⟩, it holds that:

⟨ℳ, 𝑆⟩↔𝑙⟨ℳ′, 𝑆′⟩ ⇒ ⟨ℳ, 𝑆⟩ ↭𝑙 ⟨ℳ′, 𝑆′⟩.

Proof It goes by induction on 𝜑. Assume that ⟨ℳ, 𝑆⟩↔𝑙⟨ℳ′, 𝑆′⟩. The Boolean cases
are straightforward.

(1). 𝜑 is ⟐𝜓 . If ℳ, 𝑆 ⊨ 𝜑, then there exists 𝑣 ∈ 𝑅𝐿(𝑆) such that ℳ, 𝑆; 𝑣 ⊨ 𝜓 .
By Zig⟐, there exists 𝑣′ ∈ 𝑅′

𝐿(𝑆′) such that ⟨ℳ, 𝑆; 𝑣⟩↔𝑙⟨ℳ′, 𝑆′; 𝑣′⟩. By the inductive
hypothesis, it holds that ⟨ℳ, 𝑆; 𝑣⟩ ↭𝑙 ⟨ℳ′, 𝑆′; 𝑣′⟩. Consequently, ℳ′, 𝑆′; 𝑣′ ⊨ 𝜓 ,
which is followed by ℳ′, 𝑆′ ⊨ 𝜑 immediately. Similarly, we can obtain ℳ, 𝑆 ⊨ 𝜑 from
ℳ′, 𝑆′ ⊨ 𝜑 by Zag⟐.

(2). Formula 𝜑 is ⟨−⟩on𝜓 . When ℳ, 𝑆 ⊨ 𝜑, there exists ⟨𝑢, 𝑣⟩ ∈ 𝑆𝑒𝑡(𝑆) ⧵ 𝑅𝑇

with ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩ ⊨ 𝜓 . By Zig⟨−⟩on
, there exists ⟨𝑢′, 𝑣′⟩ ∈ 𝑆𝑒𝑡(𝑆′) ⧵ 𝑅′

𝑇 such that
⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩⟩↔𝑙⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩⟩. By the inductive hypothesis, we have
⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩⟩ ↭𝑙 ⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩⟩. So, ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩ ⊨ 𝜓 .
Now it follows that ℳ′, 𝑆′ ⊨ 𝜑. In a similar way, when ℳ′, 𝑆′ ⊨ 𝜑, we can prove
ℳ, 𝑆 ⊨ 𝜑 by Zag⟨−⟩1 .

(3). Formula 𝜑 is ⟨−⟩off𝜓 . If ℳ, 𝑆 ⊨ 𝜑, then there is ⟨𝑢, 𝑣⟩ ∈ (𝑅𝐿 ⧵ 𝑅𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆)
with ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆 ⊨ 𝜑. By Zig⟨−⟩off

, there exists ⟨𝑢′, 𝑣′⟩ ∈ (𝑅′
𝐿 ⧵ 𝑅′

𝑇 ) ⧵ 𝑆𝑒𝑡(𝑆′) such
that ⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆⟩↔𝑙⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′⟩. By the inductive hypothesis, it follows that
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⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆⟩ ↭𝑙 ⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′⟩. Consequently, ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′ ⊨ 𝜑. So we
have ℳ′, 𝑆′ ⊨ 𝜑. Similarly, when ℳ′, 𝑆′ ⊨ 𝜑, we can prove ℳ, 𝑆 ⊨ 𝜑 by Zag⟨−⟩off

.
(4). Finally, let us consider the case that formula 𝜑 is ⟨+⟩𝜓 . When ℳ, 𝑆 ⊨ 𝜑, there

exists ⟨𝑢, 𝑣⟩ ∈ 𝑅𝑇 ⧵𝑅𝐿 with ℳ⊕⟨𝑢, 𝑣⟩, 𝑆 ⊨ 𝜓 . By Zig⟨+⟩, there exists ⟨𝑢′, 𝑣′⟩ ∈ 𝑅′
𝑇 ⧵𝑅′

𝐿
with ⟨ℳ ⊕ ⟨𝑢, 𝑣⟩, 𝑆⟩↔𝑙⟨ℳ′ ⊕ ⟨𝑢′, 𝑣′⟩, 𝑆′⟩. By the inductive hypothesis, it holds that
⟨ℳ ⊕ ⟨𝑢, 𝑣⟩, 𝑆⟩ ↭𝑙 ⟨ℳ′ ⊕ ⟨𝑢′, 𝑣′⟩, 𝑆′⟩. Therefore, we have ℳ′ ⊕ ⟨𝑢′, 𝑣′⟩, 𝑆′ ⊨ 𝜓 .
Consequently, ℳ′, 𝑆′ ⊨ 𝜑. Similarly, by Zag⟨+⟩, we know ℳ, 𝑆 ⊨ 𝜑 from ℳ′, 𝑆′ ⊨ 𝜑.
This completes the proof. ∎

Moreover, the converse direction of Theorem 3.2 holds for the models that are 𝜔-
saturated. For each finite set 𝑌 , we denote the expansion of ℒ†

1 with a set 𝑌 of constants
with ℒ†𝑌

1 , and denote the expansion of ℳ to ℒ†𝑌
1 with ℳ𝑌 . Let x be a finite tuple of

variables. In this setting, we say a model ℳ = ⟨𝑊 , 𝑅𝐿, 𝑅𝑇 , 𝑉 ⟩ of CLL is 𝜔-saturated if,
for every finite subset 𝑌 of 𝑊 , the expansion ℳ𝑌 realizes every set 𝛤 (x) of ℒ†𝑌

1 -formulas
whose finite subsets 𝛤 ′(x) are all realized in ℳ𝑌 .

Theorem 3.3 (↭𝑙⊆ ↔𝑙): For any pointed models ⟨ℳ, 𝑆⟩ and ⟨ℳ′, 𝑆′⟩ of CLL that
are 𝜔-saturated, it holds that:

⟨ℳ, 𝑆⟩ ↭𝑙 ⟨ℳ′, 𝑆′⟩ ⇒ ⟨ℳ, 𝑆⟩↔𝑙⟨ℳ′, 𝑆′⟩.

Proof To prove this, we show that ↭𝑙 itself is an l-bisimulation. Here we only prove the
cases involving clauses Zig⟐ and Zig⟨−⟩on

. Let 𝐸′ be a sequence of variables over 𝑅′
𝐿

with the same size as 𝑆′.
(1). Let 𝑣 ∈ 𝑅𝐿(𝑆). We are going to prove that there is some 𝑣′ ∈ 𝑅′

𝐿(𝑆′) such that
⟨ℳ, 𝑆; 𝑣⟩ ↭𝑙 ⟨ℳ′, 𝑆′; 𝑣′⟩. For any finite 𝛤 ⊆ 𝕋 𝑙(ℳ, 𝑆; 𝑣), we have:

ℳ, 𝑆 ⊨ ⟐ ⋀ 𝛤 ⇔ ℳ′, 𝑆′ ⊨ ⟐ ⋀ 𝛤
⇔ ℳ′ ⊨ 𝔗(⟐ ⋀ 𝛤 , 𝐸′, ∅, ∅)[𝜎𝐸′∶=𝑆′]
⇔ ℳ′ ⊨ ∃𝑦(𝑅′

𝐿𝑒(𝐸′)𝑦 ∧ 𝔗(⋀ 𝛤 , 𝐸′; 𝑦, ∅, ∅))[𝜎𝐸′∶=𝑆′]

As the pointed model ⟨ℳ′, 𝑆′⟩ is 𝜔-saturated, there exists 𝑦 ∈ 𝑅′
𝐿(𝐸′) such that ℳ′ ⊨

𝔗(𝕋 𝑙(ℳ, 𝑆; 𝑣), 𝐸′; 𝑦, ∅, ∅)[𝜎𝐸′∶=𝑆′]. By Theorem 3.1, there is 𝑣′ ∈ 𝑅′
𝐿(𝑆′) such that

⟨ℳ, 𝑆; 𝑣⟩ ↭𝑙 ⟨ℳ′, 𝑆′; 𝑣′⟩. The proof of the Zig⟐ clause is completed.
(2). Let ⟨𝑢, 𝑣⟩ ∈ 𝑆𝑒𝑡(𝑆)⧵𝑅𝑇 . We will show that there exists ⟨𝑢′, 𝑣′⟩ ∈ 𝑆𝑒𝑡(𝑆′)⧵𝑅′

𝑇
such that ⟨ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩⟩ ↭𝑙 ⟨ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩⟩. Let 𝛤 be a finite subset of
𝕋 𝑙(ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩), then the following equivalences hold:
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ℳ, 𝑆 ⊨ ⟨−⟩on ⋀ 𝛤 ⇔ ℳ′, 𝑆′ ⊨ ⟨−⟩on ⋀ 𝛤
⇔ ℳ′ ⊨ 𝔗(⟨−⟩on ⋀ 𝛤 , 𝐸′, ∅, ∅)[𝜎𝐸′∶=𝑆′]
⇔ ℳ′ ⊨ ∃𝑦∃𝑧( ⋁

⟨𝑥,𝑥′⟩∈𝑆𝑒𝑡(𝐸′)
(𝑦 ≡ 𝑥 ∧ 𝑧 ≡ 𝑥′) ∧ ¬𝑅′

𝑇 𝑦𝑧∧

𝔗(⋀ 𝛤 , 𝐸′|⟨𝑦,𝑧⟩, ∅, {⟨𝑦, 𝑧⟩}))[𝜎𝐸′∶=𝑆′]

Since ⟨ℳ′, 𝑆′⟩ is 𝜔-saturated, there are 𝑦, 𝑧 such that ⟨𝑦, 𝑧⟩ ∈ 𝑆𝑒𝑡(𝐸′) ⧵ 𝑅′
𝑇 and ℳ′ ⊨

𝔗(𝕋 𝑙(ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩), 𝐸′|⟨𝑦,𝑧⟩, ∅, {⟨𝑦, 𝑧⟩}))[𝜎𝐸′∶=𝑆′]. Without loss of generality, we
assume 𝜎(𝑦) = 𝑢′ and 𝜎(𝑧) = 𝑣′. As ⟨𝑢′, 𝑣′⟩ ∈ 𝑆𝑒𝑡(𝑆′) ⧵ 𝑅′

𝑇 , from Lemma 3.1 it
follows that ℳ′ ⊖ ⟨𝑢′, 𝑣′⟩ ⊨ 𝔗(𝕋 𝑙(ℳ ⊖ ⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩), 𝐸′|⟨𝑦,𝑧⟩, ∅, ∅))[𝜎𝐸′∶=𝑆′]. By
Theorem 3.1, we have ℳ′ ⊖⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩ ⊨ 𝕋 𝑙(ℳ⊖⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩). So, it holds that
⟨ℳ⊖⟨𝑢, 𝑣⟩, 𝑆|⟨𝑢,𝑣⟩⟩ ↭𝑙 ⟨ℳ′⊖⟨𝑢′, 𝑣′⟩, 𝑆′|⟨𝑢′,𝑣′⟩⟩. The proof of Zig⟨−⟩on

is completed.∎

Thus, we have established a precise match between learning modal equivalence and
learning bisimulation for the 𝜔-saturated models of CLL. Now, by a simple adaptation of
standard arguments (Aucher et al., 2018; Blackburn et al., 2001; Li, 2020), we can show
the following result:

Theorem 3.4: For any 𝛼(𝑥) ∈ ℒ†
1 with only one free variable, 𝛼(𝑥) is equivalent to the

translation of some formula 𝜑 ∈ ℒ𝑠 iff 𝛼(𝑥) is invariant under l-bisimulation.

Proof The direction from left to right holds by Theorem 3.2 directly. We now begin to
consider the other direction. Let 𝛼 ∈ ℒ†

1 with only one free variable. Suppose that 𝛼
is invariant under l-bisimulation. Define ℂ𝑙(𝛼) ∶= {𝔗(𝜑, 𝑥, ∅, ∅) ∣ 𝜑 ∈ ℒ𝑠 and 𝛼 ⊨
𝔗(𝜑, 𝑥, ∅, ∅)}. Each formula of ℂ𝑙(𝛼) has only one free variable, i.e., 𝑥. We now show
ℂ𝑙(𝛼) ⊨ 𝛼. Let ⟨ℳ, 𝑤⟩ ∈ 𝔐• such that ℳ ⊨ ℂ𝑙(𝛼)[𝜎𝑥∶=𝑤]. First, we prove that
𝛴 = 𝔗((𝕋 𝑙(ℳ, 𝑤), 𝑥, ∅, ∅)) ∪ {𝛼} is consistent.

Suppose that 𝛴 is not consistent. By the compactness of FOL, it holds that ⊨ 𝛼 →
¬ ⋀ 𝛤 for some finite 𝛤 ⊆ 𝔗(𝕋 𝑙(ℳ, 𝑤), 𝑥, ∅, ∅). Then, from the definition of ℂ𝑙(𝛼), we
know ¬ ⋀ 𝛤 ∈ ℂ𝑙(𝛼), which is followed by ¬ ⋀ 𝛤 ∈ 𝔗(𝕋 𝑙(ℳ, 𝑤), 𝑥, ∅, ∅). However, it
contradicts to 𝛤 ⊆ 𝔗(𝕋 𝑙(ℳ, 𝑤), 𝑥, ∅, ∅).

Now we show ℳ ⊨ 𝛼[𝜎𝑥∶=𝑤]. Since 𝛴 is consistent, there is some ⟨ℳ′, 𝑤′⟩ ∈ 𝔐•

such that ℳ′ ⊨ 𝛴[𝜎𝑥∶=𝑤′]. Consequently, it holds that ⟨ℳ, 𝑤⟩ ↭𝑙 ⟨ℳ′, 𝑤′⟩. Now take
two 𝜔-saturated elementary extensions ⟨ℳ𝜔, 𝑤⟩ and ⟨ℳ′

𝜔, 𝑤′⟩ of ⟨ℳ, 𝑤⟩ and ⟨ℳ′, 𝑤′⟩
respectively. By the invariance of FOL under elementary extensions, ℳ′ ⊨ 𝛼[𝜎𝑥∶=𝑤′]
entails ℳ′

𝜔 ⊨ 𝛼[𝜎𝑥∶=𝑤′]. Moreover, by Theorem 3.3 and the assumption that 𝛼 is invariant
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for l-bisimulation, we have ℳ𝜔 ⊨ 𝛼[𝜎𝑥∶=𝑤]. By the elementary extension, we obtain
ℳ ⊨ 𝛼[𝜎𝑥∶=𝑤]. Therefore, ℂ𝑙(𝛼) ⊨ 𝛼.

Finally, we show that formula 𝛼 is equivalent to the translation of an ℒ𝑠-formula.
Since ℂ𝑙(𝛼) ⊨ 𝛼, from the compactness and deduction theorems of FOL, it follows that
⊨ ⋀ 𝛤 → 𝛼 for some finite 𝛤 ⊆ ℂ𝑙(𝛼). Besides, by the definition of ℂ𝑙(𝛼), we have
⊨ 𝛼 → ⋀ 𝛤 . Thus, ⊨ 𝛼 ↔ ⋀ 𝛤 . Now the proof is completed. ∎

Therefore, in terms of the expressivity, CLL is as powerful as the one free variable
fragment of FOL that is invariant for l-bisimulation.

3.4 Model checking and satisfiability for CLL

In this section, we consider the model checking problem and satisfiability problem for
CLL. In particular, we show that the model checking problems for both CLL and ℒ⟐⟨+⟩

are PSPACE-complete. Also, both CLL and ℒ⟐⟨−⟩on
lack the finite model property, and

their satisfiability problems are undecidable.

Theorem 3.5: Model checking for logic CLL is PSPACE-complete.

Proof As mentioned, an upper bound can be established by Definition 3.5, which sug-
gests that model checking for CLL is in PSPACE. On the other hand, a lower bound
can be provided by a reduction 𝑓 from BML into ℒ⟐⟨+⟩. Precisely, 𝑓 is the reverse
of the translation used in Proposition 3.3. Clearly, 𝑓 has a polynomial size increase. Let
⟨𝑊 , 𝑅𝐿, 𝑉 ⟩ be a standard relational model and 𝑤 ∈ 𝑊 . It holds that ⟨𝑊 , 𝑅𝐿, 𝑉 ⟩, 𝑤 ⊨ 𝜑
iff ⟨𝑊 , 𝑅𝐿, 𝑊 × 𝑊 , 𝑉 ⟩, 𝑤 ⊨ 𝑓(𝜑). Since the model checking problem for BML is also
PSPACE-complete (Areces et al., 2015), the model checking for CLL is PSPACE-hard.
The proof is completed. ∎

By the same reasoning as in the proof of Theorem 3.5, but now focusing on ℒ⟐⟨+⟩

instead of the whole CLL, we can obtain the following result:

Theorem 3.6: Model checking for ℒ⟐⟨+⟩ is PSPACE-complete.

Given the form of formula (3-1) describing winning strategies in correct learning
games, it is also an interesting problem concerning the game to study the complexity of
the model checking for the fragment of ℒ𝑠 consisting only of operators ∧, ⊡, ⟨−⟩on, ⟨−⟩on

and ⟨+⟩ (without ¬). We leave this as an open problem.
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Now we move to considering the satisfiability problem. In particular, it will be shown
that CLL is undecidable. To achieve this, in what follows we will study ℒ⟐⟨−⟩on

instead of
CLL. We first show that the fragment does not enjoy the finite model property. To prove
this, our method is similar to that of Theorem 2.7, i.e., using the techniques of ‘spy point’,
but details are very different in this new setting.

Theorem 3.7: ℒ⟐⟨−⟩on
does not enjoy the finite model property.

Proof To prove this, we construct an ℒ⟐⟨−⟩on
-formula that can only be satisfied by some

infinite models. Let 𝜑∞ be the conjunction of the following formulas:

(𝐹1) 𝑝 ∧ 𝑞 ∧ ⟐𝑝 ∧ ⟐¬𝑝 ∧ ⊡¬𝑞

(𝐹2) ⊡ (𝑝 → ⟐𝑞 ∧ ⟐¬𝑞 ∧ ⊡𝑝)

(𝐹3) ⊡ (𝑝 → ⊡(𝑞 → ⊡¬𝑞 ∧ ⟐¬𝑝))

(𝐹4) ⟐(¬𝑝 ∧ ⟨−⟩on ⊡ (𝑝 ∧ ⊡(𝑞 → ⊡𝑝)))

(𝐹5) ⊡ (𝑝 → ⊡(¬𝑞 → ⟐𝑞 ∧ ⟐¬𝑞 ∧ ⊡𝑝))

(𝐹6) ⊡ (𝑝 → ⊡(¬𝑞 → ⊡(𝑞 → ⊡¬𝑞 ∧ ⟐¬𝑝)))

(𝐹7) ⟐(¬𝑝 ∧ ⟨−⟩on ⊡ ⊡(¬𝑞 → ⊡(𝑞 → ⊡𝑝)))

(Spy) ⊡ (𝑝 → ⊡(¬𝑞 → ⊡(𝑞 → ⟨−⟩on(¬𝑞 ∧ ⊡¬𝑞 ∧ ⟨−⟩on(𝑞 ∧ ⟐(𝑝 ∧ ⊡¬𝑞))))))

(Irr) ⊡ (𝑝 → ⊡(𝑞 → ⟨−⟩on(¬𝑞 ∧ ⊡¬𝑞 ∧ ⊡⟐𝑞)))

(No-3cyc) ¬⟐(𝑝 ∧ ⊡(𝑞 → ⟨−⟩on(¬𝑞 ∧ ⊡(¬𝑞 ∧ ⊡(𝑞 → ⟨−⟩on(¬𝑞 ∧ ⊡¬𝑞∧

⟨−⟩on(𝑞 ∧ ⟐(𝑝 ∧ ⊡¬𝑞)) ∧ ⟐⟐(𝑝 ∧ ⊡¬𝑞)))))))

(Trans) ⊡ (𝑝 → ⊡(𝑞 → ⟨−⟩on(¬𝑞 ∧ ⊡¬𝑞 ∧ ⊡ ⊡ (¬𝑞 → ⊡(𝑞 → ⟨−⟩on(¬𝑞∧

⊡ ¬𝑞 ∧ ⟨−⟩on(𝑝 ∧ ¬⟐𝑞 ∧ ⟐ ⊡ ¬𝑞)))))))

Formula 𝜑∞ is satisfiable (see Figure 3.4). Now we show that for any ⟨ℳ, 𝑤⟩ ∈ 𝔐•, if
ℳ, 𝑤 ⊨ 𝜑∞, then ℳ is infinite. Define 𝐵 ∶= {𝑣 ∈ 𝑊 ∣ 𝑣 ∈ 𝑅𝐿(𝑤) ∩ 𝑉 (𝑝)}. In what
follows, we assume that all previous conjuncts hold.

By (𝐹1), node 𝑤 is (𝑝∧𝑞), and 𝑅𝐿(𝑤)∩𝑉 (𝑞) = ∅. Consequently, ¬𝑅𝐿𝑤𝑤. Besides,
𝐵 ≠ ∅ and 𝑅𝐿(𝑤) ⧵ 𝐵 ≠ ∅. From (𝐹2), it follows that each element of 𝐵 can see some
(𝑞 ∧ 𝑝)-point(s) and (¬𝑞 ∧ 𝑝)-point(s) via 𝑅𝐿, but cannot see any ¬𝑝-points through 𝑅𝐿.
Hence each point in 𝐵 has at least one 𝑅𝐿-successor distinct from itself. By (𝐹3), for any
𝑤1 ∈ 𝐵, each of its 𝑅𝐿-successors that is 𝑞 can see some ¬𝑝-point(s) via 𝑅𝐿, but cannot
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𝑤 𝑝,𝑞𝑣0

𝑤0

𝑝
𝑤1

𝑝
𝑤2

𝑝
𝑤3

𝑝
⋯

Figure 3.4 A model of formula 𝜑∞ (every link in the model belongs to 𝑅𝐿, and 𝑅𝑇 = ∅). It can
be shown that the formula is true at 𝑤.

see any 𝑞-points by 𝑅𝐿. By (𝐹4), 𝑅𝐿(𝑤) ⧵ 𝐵 ≠ ∅ is a singleton. Moreover, each 𝑤1 ∈ 𝐵
can see point 𝑤 via 𝑅𝐿, and for each 𝑤2 ∈ 𝑉 (𝑞), 𝑅𝐿𝑤1𝑤2 entails 𝑤2 = 𝑤.

Formulas (𝐹2)-(𝐹4) show the properties of the (¬𝑞 ∧ 𝑝)-points accessible from 𝑤 in
one step by 𝑅𝐿. Similarly, formulas (𝐹5)-(𝐹7) play the same roles as (𝐹2)-(𝐹4) respec-
tively, but focusing on showing the properties of the (¬𝑞 ∧ 𝑝)-points accessible from 𝑤 in
2 steps via 𝑅𝐿. In particular, (𝐹7) guarantees that every (¬𝑞 ∧ 𝑝)-point 𝑤1 accessible from
𝑤 in 2 steps by 𝑅𝐿 can also see 𝑤 via 𝑅𝐿, and that for each 𝑞-point 𝑤2, 𝑅𝐿𝑤1𝑤2 entails
𝑤2 = 𝑤.

Formula (Spy) shows that, for any (¬𝑞 ∧ 𝑝)-points 𝑤1, 𝑤2 such that 𝑅𝐿𝑤𝑤1 and
𝑅𝐿𝑤1𝑤2, after removing some ⟨𝑣, 𝑣′⟩ ∈ {⟨𝑤, 𝑤1⟩, ⟨𝑤1, 𝑤2⟩, ⟨𝑤2, 𝑤⟩}, state 𝑣 is ¬𝑞 and
does not have any 𝑞-successors. As 𝑤 ∈ 𝑉 (𝑞), we have 𝑣 ≠ 𝑤. Besides, if ⟨𝑣, 𝑣′⟩ =
⟨𝑤1, 𝑤2⟩, after we cut ⟨𝑣, 𝑣′⟩, 𝑣 still can see 𝑤 ∈ 𝑉 (𝑞), so ⟨𝑣, 𝑣′⟩ = ⟨𝑤2, 𝑤⟩. Also, after
deleting ⟨𝑤, 𝑤1⟩, point 𝑤 can reach a 𝑝-point 𝑤3 via 𝑅𝐿 such that 𝑅𝐿(𝑤3) ∩ 𝑉 (𝑞) = ∅.
Therefore, 𝑤3 = 𝑤2. Thus, (Spy) ensures that each (¬𝑞 ∧ 𝑝)-point 𝑤1 accessible from 𝑤
in 2 steps via 𝑅𝐿 is also accessible from 𝑤 in one step via 𝑅𝐿.

By (Irr), for each 𝑤1 ∈ 𝐵, it holds ¬𝑅𝐿𝑤1𝑤1. Formula (No-3cyc) shows 𝑅𝐿-links
cannot be cycles of length 2 or 3 in 𝐵, and (Trans) forces 𝑅𝐿 to transitively order 𝐵.

Hence ⟨𝐵, 𝑅𝐿⟩ is an unbounded strict partial order, thus 𝐵 is infinite and so is 𝑊 .
This completes the proof. ∎

We now proceed to show the undecidability of ℒ⟐⟨−⟩on
, by encoding the ℕ × ℕ tiling

problem. In what follows, we will use three modalities ⟐𝑠, ⟐𝑢 and ⟐𝑟 to stand for ⟐.
Correspondingly, a model ℳ = {𝑊 , 𝑅𝑠, 𝑅𝑢, 𝑅𝑟, 𝑅𝑇 , 𝑉 } now includes four relations. We
are going to construct a spy point over 𝑅𝑠, and relations 𝑅𝑢, 𝑅𝑟 represent moving up and
to the right, respectively, from one tile to the other. Intuitively, the union of these three
relations can be treated as 𝑅𝐿 in the model. Moreover, as illustrated by the following
proof, they are disjoint from each other. So they are a partition of 𝑅𝐿. Thanks to this, we
do not need any extra modalities to represent ⟨−⟩on.
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Theorem 3.8: The satisfiability problem for ℒ⟐⟨−⟩on
is undecidable.1

Proof Let 𝑇 = {𝑇1, ⋯ , 𝑇𝑛} be a finite set of tile types. Again, for each 𝑇𝑖, we denote by
𝑢(𝑇𝑖), 𝑑(𝑇𝑖), 𝑙(𝑇𝑖) and 𝑟(𝑇𝑖) respectively the colors of its up, down, left and right edges.
Also, each 𝑇𝑖 is coded with a fixed proposition 𝑡𝑖. Now we show that 𝜑𝑇 , the conjunction
of the following formulas, is true iff 𝑇 tiles ℕ × ℕ.

(𝑀1) 𝑝 ∧ 𝑞 ∧ ⟐𝑠𝑝 ∧ ⟐𝑠¬𝑝 ∧ ⊡𝑠¬𝑞 ∧ ⟐𝑠⟨−⟩on ⊡𝑠 𝑝

(𝑀2) ⊡𝑠 (𝑝 → ⟐𝑠⊤ ∧ ⊡𝑠(𝑞 ∧ ⟐𝑠¬𝑝))

(𝑀3) ⟐𝑠(¬𝑝 ∧ ⟨−⟩on ⊡𝑠 ⊡𝑠(𝑞 ∧ ¬⟐𝑠¬𝑝))

(𝑀4) ⊡𝑠 (𝑝 → ⟐𝑢⊤ ∧ ⊡𝑢(𝑝 ∧ ¬𝑞 ∧ ⟐𝑠⊤ ∧ ⊡𝑠(𝑞 ∧ ⟐𝑠¬𝑝)))

⊡𝑠 (𝑝 → ⟐𝑟⊤ ∧ ⊡𝑟(𝑝 ∧ ¬𝑞 ∧ ⟐𝑠⊤ ∧ ⊡𝑠(𝑞 ∧ ⟐𝑠¬𝑝)))

(𝑀5) ⟐𝑠(¬𝑝 ∧ ⟨−⟩on ⊡𝑠 ⊡𝑢 ⊡𝑠 ¬⟐𝑠¬𝑝)

⟐𝑠(¬𝑝 ∧ ⟨−⟩on ⊡𝑠 ⊡𝑟 ⊡𝑠 ¬⟐𝑠¬𝑝)

(𝑀6) ⊡𝑠 (𝑝 → ⊡𝑢(⟐𝑢⊤ ∧ ⟐𝑟⊤ ∧ ⊡𝑢(𝑝 ∧ ¬𝑞) ∧ ⊡𝑟(𝑝 ∧ ¬𝑞)))

⊡𝑠 (𝑝 → ⊡𝑟(⟐𝑢⊤ ∧ ⟐𝑟⊤ ∧ ⊡𝑢(𝑝 ∧ ¬𝑞) ∧ ⊡𝑟(𝑝 ∧ ¬𝑞)))

(𝑀7) ⊡𝑠 (𝑝 → ⊡𝑠(𝑞 ∧ ⟨−⟩on(¬𝑞 ∧ ⊡𝑢(⟐𝑠𝑞 ∧ ¬⟐𝑢¬⟐𝑠𝑞))))

⊡𝑠 (𝑝 → ⊡𝑠(𝑞 ∧ ⟨−⟩on(¬𝑞 ∧ ⊡𝑟(⟐𝑠𝑞 ∧ ¬⟐𝑟¬⟐𝑠𝑞))))

(Spy) ⊡𝑠 (𝑝 → ⊡𝑢 ⊡𝑠 ⟨−⟩on(⊡𝑠⊥ ∧ ⟨−⟩on(𝑝 ∧ 𝑞 ∧ ⟐𝑠(𝑝 ∧ ⊡𝑠⊥))))

⊡𝑠 (𝑝 → ⊡𝑟 ⊡𝑠 ⟨−⟩on(⊡𝑠⊥ ∧ ⟨−⟩on(𝑝 ∧ 𝑞 ∧ ⟐𝑠(𝑝 ∧ ⊡𝑠⊥))))

(Func) ⊡𝑠 (𝑝 → ⊡𝑠⟨−⟩on(⊡𝑠⊥ ∧ ⊡𝑢⟨−⟩on(⊡𝑠⊥ ∧ ⊡𝑢⊥))

⊡𝑠 (𝑝 → ⊡𝑠⟨−⟩on(⊡𝑠⊥ ∧ ⊡𝑟⟨−⟩on(⊡𝑠⊥ ∧ ⊡𝑟⊥))

(No-UR) ⊡𝑠 (𝑝 → ⊡𝑠⟨−⟩on(⊡𝑠⊥ ∧ ⊡𝑢 ⊡𝑟 ⟐𝑠𝑞 ∧ ⊡𝑟 ⊡𝑢 ⟐𝑠𝑞))

(No-URU) ⊡𝑠 (𝑝 → ⊡𝑠⟨−⟩on(⊡𝑠⊥ ∧ ⊡𝑢 ⊡𝑟 ⊡𝑢⟐𝑠𝑞))

(Conv) ⊡𝑠 (𝑝 → ⊡𝑠⟨−⟩on(⊡𝑠⊥ ∧ ⟐𝑢 ⊡𝑠 ⟨−⟩on(⊡𝑠⊥ ∧ ⟐𝑢⊤∧

⟐𝑟 ⊡𝑢 ⟨−⟩on(⊡𝑢⊥ ∧ ⟐𝑠⟐𝑠(𝑝 ∧ ⊡𝑠⊥ ∧ ⟐𝑟⟐𝑢(𝑝 ∧ ⊡𝑢⊥))))))

(Unique) ⊡𝑠 (𝑝 → ⋁
1⩽𝑖⩽𝑛

𝑡𝑖 ∧ ⋀
1⩽𝑖<𝑗⩽𝑛

(𝑡𝑖 → ¬𝑡𝑗))

(Vert) ⊡𝑠 (𝑝 → ⋀
1⩽𝑖⩽𝑛

(𝑡𝑖 → ⟐𝑢 ⋁
1⩽𝑗⩽𝑛, 𝑢(𝑇𝑖)=𝑑(𝑇𝑗 )

𝑡𝑗))

1 Similar to the case of Theorem 2.8, the four modalities used in its proof can be reduced to two by a standard
argument, but we will omit the details because of the syntactic cost involved in writing the formulas.
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(Horiz) ⊡𝑠 (𝑝 → ⋀
1⩽𝑖⩽𝑛

(𝑡𝑖 → ⟐𝑟 ⋁
1⩽𝑗⩽𝑛, 𝑟(𝑇𝑖)=𝑙(𝑇𝑗 )

𝑡𝑗))

Let ℳ = {𝑊 , 𝑅𝑠, 𝑅𝑢, 𝑅𝑟, 𝑅𝑇 , 𝑉 } be a model and 𝑤 ∈ 𝑊 such that ℳ, 𝑤 ⊨ 𝜑𝑇 . We
show that ℳ tiles ℕ × ℕ. Define 𝐺 ∶= {𝑣 ∈ 𝑊 ∣ 𝑣 ∈ 𝑅𝑠(𝑤) ∩ 𝑉 (𝑝)} where 𝑅𝑠(𝑤) ∶=
{𝑣 ∈ 𝑊 ∣ 𝑅𝑠𝑤𝑣}. We will use the elements of 𝐺 to represent tiles.

By formula (𝑀1), node 𝑤 is (𝑝∧𝑞), and 𝑅𝑠(𝑤)∩𝑉 (𝑞) = ∅. So, it holds that ¬𝑅𝑠𝑤𝑤.
Besides, 𝑅𝑠(𝑤) ⧵ 𝐺 is a singleton (e.g., {𝑣}) and 𝐺 ≠ ∅. By (𝑀2), each tile 𝑤1 has some
successor(s) via 𝑅𝑠, and each 𝑤2 ∈ 𝑅𝑠(𝑤1) is 𝑞 and has some ¬𝑝-successor(s) via 𝑅𝑠.
Formulas (𝑀1) and (𝑀2) illustrate that 𝑅𝑠 is irreflexive. Formula (𝑀3) ensures that each
tile 𝑤1 can see 𝑤 via 𝑅𝑠 and that for each 𝑤2 ∈ 𝑉 (𝑞), 𝑅𝑠𝑤1𝑤2 entails 𝑤2 = 𝑤. From
(𝑀4), we know that each tile has some successor(s) via 𝑅𝑢 and some successor(s) via
𝑅𝑟. Besides, each point accessible from a tile via 𝑅𝑢 or 𝑅𝑟 is (¬𝑞 ∧ 𝑝), and it has some
𝑞-successor(s) 𝑤1 via 𝑅𝑠 where each 𝑤1 can see some ¬𝑝-point(s) via 𝑅𝑠. By formula
(𝑀5), each 𝑤1 ∈ 𝑊 accessible from a tile via 𝑅𝑢 or 𝑅𝑟 can see 𝑤 by 𝑅𝑠. Also, for
each (𝑞 ∧ 𝑝)-point 𝑤2, if 𝑤2 ∈ 𝑅𝑠(𝑤1), then 𝑤2 = 𝑤. Formula (𝑀6) ensures that each
𝑤1 ∈ 𝑊 accessible from some tile via 𝑅𝑢 or 𝑅𝑟 also has some successor(s) via 𝑅𝑢 and
some successor(s) via 𝑅𝑟. Besides, each such successor via 𝑅𝑢 or 𝑅𝑟 is (¬𝑞 ∧ 𝑝). Formula
(𝑀7) shows that both the restrictions of 𝑅𝑢 and 𝑅𝑟 to 𝐺×𝐺 are irreflexive and asymmetric.
By (Spy), 𝑤 is a spy point via 𝑅𝑠. Note that formula (𝑀4) says that each tile has some
tile(s) above it and some tile(s) to its right. Now, from formula (Func), we know that each
tile has exactly one tile above it and exactly one tile to its right. By (No-UR), any tile cannot
be above/below as well as to the left/right of another tile. Formula (No-URU) disallows
cycles following successive steps of the 𝑅𝑢, 𝑅𝑟, and 𝑅𝑢 relations, in this order. Moreover,
(Conv) ensures that the tiles are arranged as a grid. Formula (Unique) guarantees that
each tile has a unique type. Finally, (Vert) and (Horiz) force the colors of tiles to match
properly. Thus, ℳ tiles ℕ × ℕ.

On the other hand, it is easy to see that any tiling of ℕ × ℕ induces a model for 𝜑𝑇 .
Now the proof is completed. ∎

From Theorem 3.7 and Theorem 3.8, it follows immediately that logic CLL lacks the
finite model property, and its satisfiability problem is undecidable.

Finally, it is worth noting that, besides ℒ⟐⟨−⟩on
, other fragments also deserve to be

studied, say, ℒ⟐⟨−⟩off
. It is already known that the satisfiable problem for SML is undecid-

able (Aucher et al., 2018) and its model checking problem is PSPACE-complete (Areces
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et al., 2015). Given the similarity between ⟨−⟩off and ⟨−⟩ (recall Proposition 3.2), is the
model checking for ℒ⟐⟨−⟩off

PSPACE-complete? And is its satisfiability problem unde-
cidable?

3.5 Summary and future work

Summary. Using graph games, the chapter investigated the interactions of agents in teach-
ing/learning scenarios. Of course, there is much more to learning and teaching than sim-
ple link deletion or addition. But our simple proposal of graph games was still powerful
enough to highlight a number of realistic features of learning/teaching processes. Com-
pared with sabotage games, the analysis presented in this chapter enabled us to capture
the following further aspects:

• In the process of learning, Learner may make mistakes and ignore the correct rela-
tion between different hypotheses, while Teacher could help her to correct mistakes
and point out facts ignored.

• We distinguished those potential mistakes from actual ones, which in turn helped
us to characterize the subtle differences between their eliminations.

• We placed the success condition of learning on a solid foundation: reaching the right
conclusion cannot be by chance, and the process itself should also be coherent. In
this way, our framework excluded Gettier cases from the success in learning.

After presenting the graph games, we also determined a logical system that was able
to characterize precisely players’ actions and winning positions. Moreover, we also ex-
plored many meta-properties of the logic, such as

• We provided some interesting observations and logical validities, which were useful
for us to understand some basics of the device.

• We studied basics of its expressivity, including its first-order translation, a novel
notion of bisimulation and a characterization theorem for CLL as a fragment of
FOL that is invariant under the bisimulation introduced.

• It was shown that model checking for CLL is PSPACE-complete, the logic did not
enjoy the finite model property, and its satisfiability problem was undecidable.

Relevant research. This work takes a small step towards studying the interaction between
graph games, logics and formal learning theory, a major tool in formal epistemology. As
mentioned, the success condition of learning used in this chapter is finite identification.
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Both Mukouchi (1992) and Lange et al. (1996) study this kind of learnability in the context
of indexed families of recursive languages. More generally, a relaxed (and more common)
notion of finite identification in the limit and its relation to logics of information update and
belief change is studied in (Dégremont and Gierasimczuk, 2011; Gierasimczuk, 2009a,b;
Gierasimczuk and de Jongh, 2013).

This chapter is also closely related to the existing work on graph games and logics.
We have already gave detailed discussion on this in Section 2.7. Moreover, another rele-
vant and congenial line of research is epistemic logics. As mentioned already, one goal of
our work in this chapter has been to offer a perhaps new game-theoretic angle on avoiding
the notorious Gettier problem in analyzing knowledge.1

Future work. This chapter just made a start, and many problems remain to be studied at
the interface of logic, games and learning theory.

Starting with logical issues, Section 3.2.2 showed that the system CLL can express
winning positions for players in finite learning/teaching games, but to capture those appro-
priate to infinite games of never-ending learning, can CLL be expanded, say, with fixpoint
operators? From the translation in Definition 5, we know that CLL is effectively axioma-
tizable (cf. van Benthem, 1984). However, is it possible to axiomatize the logic presented
above as a base theory of learning and teaching in a perspicuous Hilbert-style calculus?
Finally, Proposition 5 shows that the validities of CLL are not closed under substitution.
But are the schematic validities of CLL axiomatizable, perhaps even decidable?

In terms of games, we do not know the complexity of CLG, although we gave a basic
observation on the necessary conditions for winning. Besides, CLG includes exactly two
players, and it is meaningful to study (classroom-style) settings with more agents. Also,
CLG is a cooperative game, but there are also other scenarios closer to actual abilities
and attitudes of players. Say, Learner may be unwilling to learn, and Teacher can also
be unhelpful or not omniscient. What would be natural variants of CLG capturing these
features of actual teaching and learning?2

1 For another approach to this famous challenge, compare Baltag et al. (2019a) on a use of topological semantics to
analyze the notion of full belief.

2 Many further structures deserve investigation. E.g., consider the significance of cycles in CLG. Suppose that
Learner reaches the goal through a path ⟨𝑎0, 𝑎1, ..., 𝑎𝑖, ..., 𝑎𝑚, ..., 𝑎𝑛⟩ from the starting node 𝑎0 to the goal node 𝑎𝑛,
where 𝑆𝑒𝑡(⟨𝑎0, 𝑎1, ..., 𝑎𝑖⟩) ∪ 𝑆𝑒𝑡(⟨𝑎𝑚..., 𝑎𝑛⟩) ⊆ 𝑅𝑇 , 𝑆𝑒𝑡(⟨𝑎𝑖..., 𝑎𝑚⟩) ⊈ 𝑅𝑇 and 𝑎𝑖 = 𝑎𝑚. According to our theory,
Learner has not reached the goal through a correct path, so she has not learnt properly. However, it can be argued
that even if one learns some redundant circular argument in addition to a proper argument, one has still learned a
good deal. But our game now cannot capture these scenarios. A possible solution is to define learning such that it
could include ‘meaningless’ cycles.
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Finally, although Section 3.1 discusses some applications of CLG to learning, much
more needs to be done. As we have noted at several places already, the relations between,
or fruitful combinations of, our game-logical framework and standard formal learning
theory deserve to be studied more systematically.1

Even despite all these further issues emerging from our work and the many desiderata
yet to be fulfilled, we hope to have shown in this chapter that a game logic perspective on
learning and teaching is both feasible and attractive.

1 For more discussions on the applications of SG-style frameworks to paradigms of learning theory, we refer to
Gierasimczuk et al. (2009), whose arguments also apply to CLG after minor modifications.
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Chapter 4 Logical proposals for dynamic dependence

4.1 Motivation: dynamic dependence in graph games

The preceding two chapters showed how graph games provide a flexible approach
to different sorts of social interactions in various contexts. These games also had natural
matching logics that encode reasoning about players’ goals and strategic abilities. Even so,
reflecting the particular patterns of interaction that were studied, our logical frameworks
had surprisingly high complexity: their theories of modifying models turned out to be
undecidable. We now move away from such detailed tools for analysis to look at general
features of game-like social situations. Exploring fundamental aspects of interaction in
this abstract way may provide another form of insight into social interactions, which may
eventually also inspire new types of modeling with lower complexity.

In this chapter, we study one significant general feature of social interaction: dynamic
dependence, i.e., dependence between actions of social agents manifesting itself over time.
From the perspective of our earlier games, strategic dependence arises as follows:

Dependence between actions: How a player acts now depends on what the opponent has
or has not done previously (cf. e.g., Example 1.3).

Before introducing details of our work, it is important to be pointed out that although
the chapter is motivated by the interactions of agents in game-like scenarios, dependence
itself is a very basic notion in many areas, such as counterfactual reasoning, database
theory, dynamical systems theory, game theory, or social science. For instance, an agent
in a social network may adopt a given behavior or opinion in the next step depending on the
proportion of friends who currently have that behavior, and a global evolution of behaviors
for the whole group then unfolds in a dynamical system (cf. e.g., Baltag et al., 2019b).
So far, logicians have mostly studied static dependencies (as well as matching forms of
static independence) in various frameworks, (cf. e.g., Hintikka, 1998; Väänänen, 2007).
We now proceed to add temporal aspects.

Our analysis will focus on dynamical systems whose states are assignments of values
to variables, as in the semantics of first-order logic. Crucially, not all such functions need
occur as states as the system evolves over time, and this is what leads to dependencies: a
change in value for one variable may only be possible by also changing the value of some
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other variable.1 This correlating feature of ‘assignment gaps’ is well-known from logical
analyses of dependence (Andréka et al., 1998; Hodges, 1997).

To talk about dynamic dependencies that manifest themselves over time, we proceed
in two stages. Our first analysis combines two systems, (i) the modal logic LFD of in-
stantaneous functional dependence from Baltag and van Benthem (2021b), and (ii) basic
vocabulary from temporal logic. Here LFD gives us dependence atoms 𝐷𝑋𝑦 expressing
dependence of the current value of 𝑦 on the current values of the variables in 𝑋, plus
modalities D𝑋𝜑 that express which facts are forced to be true by the current values of the
variables in 𝑋. From temporal logic, we take the operator ○𝜑 stating that 𝜑 is true at the
next state produced by the transition function of the dynamical system. Connecting the
two components, we will use ‘dynamic dependence formulas’ 𝐷𝑛

𝑋𝑦 saying that the value
of 𝑦 in 𝑛 steps from now depends functionally on the current values of the variables 𝑋.

The resulting logical system DFD can express interesting facts about temporal depen-
dence, and as we shall show, it has a complete axiomatization. Our methods for proving
this resemble known ones for LFD and temporal logics, but the combination is surpris-
ingly challenging from a technical perspective, as will become clear in what follows. Yet
we feel that at least this much effort is needed to make good on the suggestion in Bal-
tag and van Benthem (2021b) that the analysis for the timeless case might carry over to
causality and games.

Next, dynamical systems usually come with a topology on the state space that plays
an essential role in evolution over time. Accordingly, the transition function driving the
system is often continuous w.r.t. this topology, and we must deal with forms of continuous
dependence. To access this further structure, we use a richer temporal-topological logic
of dynamical systems in the style of (Artemov et al., 1997; Kremer and Mints, 2007). In
particular, this language has a basic topological modality2𝜑 saying that 𝜑 is true through-
out some open neighborhood of the current state. The resulting system DCD can be seen
as a natural extension of dynamic topological logics with dependence structure, a topic
of interest in its own right. This time, in addition to the technical challenges occurring
with DFD, there are also conceptual challenges in finding the right notions. Continuous
dependence can mean various things, and though we settle on one particular proposal that
we consider general and useful, and for which we can prove results, we have only made a

1 From the perspective of our games, this intuitively can be taken as the effect of the rationality of players which
would stop them to take some ‘bad’ actions: when a player behaves in another way, the other player will also change
her actions.
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start.
The chapter is organized as follows. Section 4.2 lays out the basics of DFD, includ-

ing two equivalent but complementary versions of its semantics. Section 4.3 presents a
complete Hilbert-style proof system for the logic and shows the decidability of a signif-
icant fragment of our logic. Next, Section 4.4 moves towards a topological setting and
analyzes the basic logic DCD of dynamic continuous dependence. Section 4.6 concludes
and points at directions for further research.

4.2 The logic DFD: language and semantics

4.2.1 Language

Let us first fix the language for this chapter. Take a finite set of variables 𝕍 and a
vocabulary of predicate symbols 𝑃 𝑟𝑒𝑑 with arities given by 𝑎𝑟 ∶ 𝑃 𝑟𝑒𝑑 → ℕ.1

Definition 4.1: The language ℒD is given by the grammar

𝜑 ∶∶= 𝑃 x ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ ○𝜑 ∣ D𝑋𝜑 ∣ 𝐷𝑛
𝑋𝑦

where 𝑛 ∈ ℕ is a natural number, 𝑦 ∈ 𝕍 is a variable, 𝑃 is a predicate symbol, x =
⟨𝑥1, ⋯ , 𝑥𝑛⟩ is a sequence of variables of length 𝑛 = 𝑎𝑟(𝑃 ), and 𝑋 ⊆ 𝕍 . Moreover, ⊥,
⊤, ∨, → and ↔ are defined as usual, while 𝐷𝑛

𝑋𝑌 ∶= ⋀𝑦∈𝑌 𝐷𝑛
𝑋𝑦, and ○𝑛𝜑 is the 𝑛-th

iteration of ○. Finally, we write 𝐷𝑋𝑦 for 𝐷0
𝑋𝑦, 𝐷𝑥𝑦 for 𝐷{𝑥}𝑦, D𝑥𝜑 for D{𝑥}𝜑, and D̂𝑋𝜑

for ¬D𝑋¬𝜑.

This is like an enriched first-order language, now in a temporal setting where atomic
formulas 𝑃 x say that the current values of x satisfy the predicate 𝑃 .2

The semantics for ℒD comes in two flavors: in Section 4.2.2, we present a format
of generalized first-order models, which allows us to exploit a technical translation into
FOL presented in Section 4.2.3. However, in Section 4.2.4, we reformulate the semantics
in terms of relational models for modal logic, which allows us to also use techniques
from modal logic. As shown in Section 4.2.5, the two types of models are semantically
equivalent, but it is useful to think in both styles.

1 Finite sets of variables are common in practice. Dealing with an infinite set of variables leads to some complexities
in our system that we decided to leave aside here.

2 In line with notations ‘𝑥(𝑡), 𝑥(𝑡 + 1)’ in dynamical systems, one might also let ○ operate on variables to denote
their future values, and write dependence atoms 𝐷𝑛

𝑋𝑦 as 𝐷○𝑛 𝑦. This notation would give a slightly different guise
for the logic to follow.
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4.2.2 First-order semantics

Definition 4.2: A dynamic dependence model is a tuple 𝔐 = ⟨𝑀, 𝐴, 𝑔⟩, where
• 𝑀 = ⟨𝑂, 𝐼⟩ is a model of FOL with object domain 𝑂 and interpretation map 𝐼

assigning sets 𝐼(𝑃 ) of 𝑛-tuples of objects to 𝑛-ary predicate symbols 𝑃 .
• 𝐴 is a set of admissible assignments.
• 𝑔 ∶ 𝐴 → 𝐴 is a total function.

Here, unlike with standard FOL, not all assignments are available: we only consider
those in 𝐴. The function 𝑔 is the next-state map for the dynamical system, with finite
iterations written as 𝑔𝑛(𝑠). Finally, for 𝑋 ⊆ 𝕍 and 𝑠, 𝑡 ∈ 𝐴, we write 𝑠 =𝑋 𝑡 when
𝑠(𝑥) = 𝑡(𝑥) for all 𝑥 ∈ 𝑋. Here is our semantics.

Definition 4.3: Given a dynamic dependence model 𝔐 = ⟨𝑀, 𝐴, 𝑔⟩, truth of a formula
𝜑 ∈ ℒD in 𝔐 at 𝑠 ∈ 𝐴, written 𝔐, 𝑠 ⊨ 𝜑, is defined as follows:

𝔐, 𝑠 ⊨ 𝑃 𝑥1 ⋯ 𝑥𝑛 iff ⟨𝑠(𝑥1), 𝑠(𝑥2), ⋯ , 𝑠(𝑥𝑛)⟩ ∈ 𝐼(𝑃 )

𝔐, 𝑠 ⊨ ¬𝜑 iff not 𝔐, 𝑠 ⊨ 𝜑

𝔐, 𝑠 ⊨ (𝜑 ∧ 𝜓) iff 𝔐, 𝑠 ⊨ 𝜑 and 𝔐, 𝑠 ⊨ 𝜓

𝔐, 𝑠 ⊨ ○𝜑 iff 𝔐, 𝑔(𝑠) ⊨ 𝜑

𝔐, 𝑠 ⊨ 𝐷𝑛
𝑋𝑦 iff for each 𝑡 ∈ 𝐴, 𝑠 =𝑋 𝑡 implies 𝑔𝑛(𝑠) =𝑦 𝑔𝑛(𝑡)

𝔐, 𝑠 ⊨ D𝑋𝜑 iff for each 𝑡 ∈ 𝐴, 𝑠 =𝑋 𝑡 implies 𝔐, 𝑡 ⊨ 𝜑

The model 𝔐 is often omitted when it is clear from context. For brevity in formulations,
we will often write (𝑃 x)𝑠 for 𝑠 ⊨ 𝑃 x, and (𝐷𝑛

𝑋𝑦)𝑠 for 𝑠 ⊨ 𝐷𝑛
𝑋𝑦.

The special case D∅𝜑 is of importance in its own right, since it expresses the univer-
sal modality saying that 𝜑 is true at every assignment in the model.

Our dependence quantifiers D𝑋𝜑 work differently from FOL quantifiers ∀, ∃: they
‘free’ variables rather than bind them. This feature better fits basic reasoning about de-
pendencies, and the modalities D𝑋𝜑 can define the first-order quantifiers given that 𝔙 is
finite, Baltag and van Benthem (2021b). In this sense, the logic DFD generalizes standard
first-order logic and the models over which it is interpreted.

There is in fact a special kind of variables in formulas of DFD that play a central role
similar to that of the free variables in FOL.

Definition 4.4: Let 𝜑 be an ℒD-formula. The set of free variables occurring in 𝜑,
𝐹 𝑟𝑒𝑒(𝜑), is defined recursively as follows:
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• 𝐹 𝑟𝑒𝑒(𝑃 𝑥1 ⋯ 𝑥𝑛) = {𝑥1, ⋯ , 𝑥𝑛}
• 𝐹 𝑟𝑒𝑒(¬𝜑) = 𝐹 𝑟𝑒𝑒(○𝜑) = 𝐹 𝑟𝑒𝑒(𝜑)
• 𝐹 𝑟𝑒𝑒(𝜑 ∧ 𝜓) = 𝐹 𝑟𝑒𝑒(𝜑) ∪ 𝐹 𝑟𝑒𝑒(𝜓)
• 𝐹 𝑟𝑒𝑒(𝐷𝑛

𝑋𝑦) = 𝐹 𝑟𝑒𝑒(D𝑋𝜑) = 𝑋

The key property of this new notion is the following Locality Lemma, which can be
proved by formula induction using the recursive definition of 𝐹 𝑟𝑒𝑒(𝜑):

Proposition 4.1: Let 𝜑 be an ℒD-formula with nesting depth at most 𝑛 for the temporal
operator ○ and 𝐹 𝑟𝑒𝑒(𝜑) ⊆ 𝑋 for some set of variables 𝑋. For any dynamic dependence
model 𝔐 and any two admissible assignments 𝑠, 𝑡 with 𝑔𝑚(𝑠) =𝑋 𝑔𝑚(𝑡) for all 𝑚 with
0 ⩽ 𝑚 ⩽ 𝑛, it holds that 𝔐, 𝑠 ⊨ 𝜑 iff 𝔐, 𝑡 ⊨ 𝜑.

There is also a more technical connection of our logic with first-order logic. One
can translate the language of DFD over dynamic dependence models into FOL over its
standard models, in the style of Andréka et al. (1998); Baltag and van Benthem (2021b).
This translation establishes, e.g., compactness and recursive axiomatizability for DFD
via these properties for FOL. The translation needs care: details are in the following
subsection.

4.2.3 First-order translation for DFD

An effective first-order translation for the logic DFD needs some syntactic ingredi-
ents to encode the relevant structure of dynamic dependence models 𝔐 = ⟨𝑀, 𝐴, 𝑔⟩. We
enumerate the set 𝕍 of variables as v = ⟨𝑥1, ⋯ , 𝑥𝑘⟩. Now, take fresh copies {𝑥′

1, ⋯ , 𝑥′
𝑘}

and let v′ the corresponding enumeration, i.e., 𝑦 is the 𝑛-th variable of v iff 𝑦′ is the 𝑛-th
variable in v′. Also, extend the language with a new 𝑘-ary predicate symbol 𝐴, where
𝐴v states intuitively that the tuple of values assigned to v belongs to the admissible as-
signments of the relevant dynamic dependence model. Moreover, to encode the dynamic
transitions between assignments, we add 𝑘 new 𝑘-ary functions 𝑔𝑖 on variables. For a 𝑘-
tuple v∗ of variables, 𝑔𝑖(v∗) represents the value of the 𝑖-th element of v∗ at the next step.
For brevity, we write 𝑔(v∗) for the tuple ⟨𝑔1(v∗), ⋯ , 𝑔𝑘(v∗)⟩, 𝑔𝑛(v∗) for the 𝑛-th iteration
of 𝑔, and 𝑔𝑛

𝑖 (v∗) for the 𝑖-th element of 𝑔𝑛(v∗).
Finally, we denote by 𝒯 (𝔐) the FOL model for the new expanded language that is

naturally associated with a given dependence model 𝔐.
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Definition 4.5: Let v∗ a tuple obtained by replacing zero or more variables 𝑥𝑖 in v with
𝑔𝑗

𝑖 (v) or 𝑔𝑗
𝑖 (v′). The first-order translation ⟨𝒯 , 𝑔𝑚⟩ from ℒD to first-order formulas in the

finite vocabulary introduced above is defined as follows:
(1) ⟨𝒯 , 𝑔𝑚(v∗)⟩(𝑃 𝑥𝑖1 ⋯ 𝑥𝑖𝑗 ) = ∀z(𝐴v† → 𝑃 𝑔𝑚

𝑖1(v∗) ⋯ 𝑔𝑚
𝑖𝑗 (v∗), where z is the enu-

meration of variables in 𝕍 ⧵ {𝑥𝑖1 , ⋯ , 𝑥𝑖𝑗 } and v† is the result of replacing each
𝑥𝑖𝑛 ∈ {𝑥𝑖1 , ⋯ , 𝑥𝑖𝑗 } with 𝑔𝑚

𝑖𝑛(v∗) in the enumeration v.
(2) ⟨𝒯 , 𝑔𝑚(v∗)⟩(¬𝜑) = ¬⟨𝒯 , 𝑔𝑚(v∗)⟩(𝜑)
(3) ⟨𝒯 , 𝑔𝑚(v∗)⟩(𝜑 ∧ 𝜓) = ⟨𝒯 , 𝑔𝑚(v∗)⟩(𝜑) ∧ ⟨𝒯 , 𝑔𝑚(v∗)⟩(𝜓)
(4) ⟨𝒯 , 𝑔𝑚(v∗)⟩(○𝜑) = ⟨𝒯 , 𝑔𝑚+1(v∗)⟩(𝜑)
(5) ⟨𝒯 , 𝑔𝑚(v∗)⟩(D𝑋𝜑) = ∀z(𝐴v+ → ⟨𝒯 , 𝑔0(v+)⟩(𝜑)), where z is the enumeration of

variables in 𝕍 ⧵ 𝑋 and v+ is the result of replacing each 𝑥𝑖 ∈ 𝑋 with 𝑔𝑚
𝑖 (v∗) in the

enumeration v.
(6) ⟨𝒯 , 𝑔𝑚(v∗)⟩(𝐷𝑛

𝑋𝑥𝑖) = ∀z∀z′(𝐴v+ ∧𝐴v+[z′/z] → 𝑔𝑛
𝑖 (v+) = 𝑔𝑛

𝑖 (v+[z′/z])), where v+

and z are as in (5), and z′ is the corresponding 𝕍 ′-copies of z.

For each 𝜑 ∈ ℒD over the finite set 𝕍 , the free variables in the usual first-order sense
in its translation ⟨𝒯 , 𝑔0(v)⟩(𝜑) are exactly the above set 𝐹 𝑟𝑒𝑒(𝜑).1 Also, we can prove the
correctness of the translation, in the sense of the following:

Proposition 4.2: For all dynamic dependence models 𝔐 and ℒD-formulas 𝜑:

𝔐, 𝑠 ⊨ 𝜑 iff 𝒯 (𝔐), 𝑠 ⊨ ⟨𝒯 , 𝑔0(v)⟩(𝜑).

Proof We use induction on formulas 𝜑. Here are the non-routine cases.
(1). 𝜑 = 𝑃 x. Then, by Definition 4.5, ⟨𝒯 , 𝑔0(v)⟩(𝜑) = ∀z(𝐴v → 𝑃 x), where z

enumerates all variables not in x. Now, by the truth definition, 𝔐, 𝑠 ⊨ 𝑃 x iff all admissible
assignments assigning the same values as 𝑠 to variables in x make 𝑃 x true. Thus, 𝔐, 𝑠 ⊨ 𝜑
iff 𝒯 (𝔐), 𝑠 ⊨ ⟨𝒯 , 𝑔0(v)⟩(𝜑).

(2). 𝜑 = ○𝜓 . Let 𝑡 be an admissible assignment s.t. 𝑡 = 𝑔(𝑠). Then we have
𝔐, 𝑠 ⊨ ○𝜓 iff 𝔐, 𝑡 ⊨ 𝜓 . By the inductive hypothesis, 𝔐, 𝑡 ⊨ 𝜓 iff 𝒯 (𝔐), 𝑡 ⊨
⟨𝒯 , 𝑔0(v)⟩(𝜓). Also, the values of variables in 𝑔0(v) at 𝑡 are those for the tuple 𝑔1(v)
at 𝑠. Hence, 𝒯 (𝔐), 𝑡 ⊨ ⟨𝒯 , 𝑔0(v)⟩(𝜓) iff 𝒯 (𝔐), 𝑠 ⊨ ⟨𝒯 , 𝑔1(v)⟩(𝜓).

(3). 𝜑 = D𝑋𝜓 . By our semantics, 𝔐, 𝑠 ⊨ D𝑋𝜓 iff for each admissible assignment
𝑡 assigning the same values to 𝑋 as 𝑠, 𝔐, 𝑡 ⊨ 𝜓 . By the inductive hypothesis, the latter

1 Readers may have wondered why we did not define ⟨𝒯 , 𝑔𝑚(v∗)⟩(𝑃 𝑥𝑖1 ⋯ 𝑥𝑖𝑗 ) directly as 𝑃 𝑔𝑚
𝑖1 (v∗) ⋯ 𝑔𝑚

𝑖𝑗 (v∗). How-
ever, if we define the translation in this way, the set of free variables in ⟨𝒯 , 𝑔0(v)⟩(𝑃 x) will be the whole set 𝔙
rather than those in x.
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says that 𝒯 (𝔐), 𝑠 ⊨ ∀z(𝐴v → ⟨𝒯 , 𝑔0(v)⟩(𝜓)), where z enumerates the variables in 𝕍 ⧵𝑋.
As formula ∀z(𝐴v → ⟨𝒯 , 𝑔0(v)⟩(𝜓)) is the translation ⟨𝒯 , 𝑔0(v)⟩(𝜑), we get 𝔐, 𝑠 ⊨ 𝜑 iff
𝒯 (𝔐), 𝑠 ⊨ ⟨𝒯 , 𝑔0(v)⟩(𝜑).

(4). 𝜑 = 𝐷𝑛
𝑋𝑥𝑖. Then, 𝔐, 𝑠 ⊨ 𝜑 iff for all admissible assignment 𝑡, 𝑠 =𝑋 𝑡 implies

𝑔𝑛(𝑠) =𝑥𝑖 𝑔𝑛(𝑡). In FOL terms, this says exactly that ∀z∀z′(𝐴v ∧ 𝐴v[z′/z] → 𝑔𝑛
𝑖 (v) =

𝑔𝑛
𝑖 (v[z′/z])), where z′ is the 𝕍 ′-copy corresponding to z. Again, it is easy to see that

𝔐, 𝑠 ⊨ 𝜑 iff 𝒯 (𝔐), 𝑠 ⊨ ⟨𝒯 , 𝑔0(v)⟩(𝜑). ∎

4.2.4 Changing to a modal semantics

Now we switch to a modal perspective on DFD and its models, which will be our
main vehicle in what follows. Our dependence quantifiers D𝑋 are essentially modalities
for equivalence relations, and this can be made precise as follows:

Definition 4.6: A standard relational model is a tuple ℳ = ⟨𝑊 , 𝑔, ∼, 𝑉 ⟩1 s.t.
• 𝑊 is a non-empty set of possible worlds or states.
• 𝑔 ∶ 𝑊 → 𝑊 is a total function.
• For each variable 𝑥 ∈ 𝕍 , ∼𝑥⊆ 𝑊 × 𝑊 is an equivalence relation. For sets of

variables 𝑋 ⊆ 𝕍 , we set ∼𝑋∶= ⋂𝑥∈𝑋 ∼𝑥.
• Function 𝑔 preserves ∼𝕍 , i.e., 𝑠 ∼𝕍 𝑡 implies 𝑔(𝑠) ∼𝕍 𝑔(𝑡).
• 𝑉 is a valuation map from atoms 𝑃 x to 𝒫(𝑊 ) such that, whenever 𝑠 ∼𝑋 𝑡 and

𝑠 ∈ 𝑉 (𝑃 𝑥1 ⋯ 𝑥𝑛) for some 𝑥1, ⋯ , 𝑥𝑛 ∈ 𝑋, then 𝑡 ∈ 𝑉 (𝑃 𝑥1 ⋯ 𝑥𝑛).
A pair of a model and world ⟨ℳ, 𝑠⟩ (for short, ℳ, 𝑠) is called a pointed model.

The set 𝑊 replaces assignments by abstract states, dropping concrete values assigned
to variables. States 𝑠, 𝑡 are called ‘𝑋-equivalent’ if 𝑠 ∼𝑋 𝑡. For any 𝑋 ⊆ 𝕍 , ∼𝑋 (𝑠) ∶=
{𝑡 ∈ 𝑊 ∣ 𝑠 ∼𝑋 𝑡}, where we write ∼𝑥 (𝑠) for ∼{𝑥} (𝑠). Also, for any sets 𝑊1, 𝑊2 of
states, we write 𝑊1 ∼𝑋 𝑊2 when 𝑠 ∼𝑋 𝑡 for all 𝑠 ∈ 𝑊1 and 𝑡 ∈ 𝑊2. Now we turn to our
semantics on standard relational models.

Definition 4.7: Given a pointed model ⟨ℳ, 𝑠⟩ and a formula 𝜑 ∈ ℒD, the following
recursion defines when 𝜑 is true in ℳ at 𝑠, written ℳ, 𝑠 ⊨ 𝜑 (where we suppress the
clauses that read exactly as in Definition 4.3):

ℳ, 𝑠 ⊨ 𝑃 x iff 𝑠 ∈ 𝑉 (𝑃 x)

ℳ, 𝑠 ⊨ 𝐷𝑛
𝑋𝑦 iff for each 𝑡 ∈ 𝑊 , 𝑠 ∼𝑋 𝑡 implies 𝑔𝑛(𝑠) ∼𝑦 𝑔𝑛(𝑡)

ℳ, 𝑠 ⊨ D𝑋𝜑 iff for each 𝑡 ∈ 𝑊 , 𝑠 ∼𝑋 𝑡 implies ℳ, 𝑡 ⊨ 𝜑
1 We use the same notation as for dynamic dependence models 𝔐 to stress the analogy.
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Given a model ℳ and a formula 𝜑, ⟦𝜑⟧ℳ ∶= {𝑡 ∈ 𝑊 ∣ ℳ, 𝑡 ⊨ 𝜑} is the ‘truth set’
of 𝜑 in ℳ, where the index ℳ is dropped when the model is understood.

4.2.5 Equivalence of the two semantics

We now relate the two semantics by two transformations.

Definition 4.8: For each dynamic dependence model 𝔐 = ⟨𝑂, 𝐼, 𝐴, 𝑔⟩, the induced
standard relational model is ℳ𝔐 = ⟨𝑊 𝔐, 𝑔𝔐, ∼𝔐, 𝑉 𝔐⟩ with

• 𝑊 𝔐 ∶= 𝐴
• 𝑔𝔐 ∶= 𝑔
• For all 𝑠, 𝑡 ∈ 𝑊 𝔐 and 𝑥 ∈ 𝕍 , 𝑠 ∼𝔐

𝑥 𝑡 iff 𝑠 =𝑥 𝑡
• For each 𝑃 x, 𝑉 𝔐(𝑃 x) ∶= {𝑠 ∈ 𝐴 ∣ 𝔐, 𝑠 ⊨ 𝑃 x}.

Here the function 𝑔𝔐 and the valuation function 𝑉 𝔐 satisfy the two special con-
ditions imposed in Definition 4.6. In particular, the transition function, being defined
on assignments, will give the same values on two ∼𝕍 -related assignments since these are
identical. Now, a simple induction on formulas 𝜑 suffices to show that the FOL semantics
agrees with the modal semantics:

Proposition 4.3: For each dynamic dependence model 𝔐 and 𝜑 ∈ ℒD,

𝔐, 𝑠 ⊨ 𝜑 ⇔ ℳ𝔐, 𝑠 ⊨ 𝜑.

Here is the, less obvious, transformation in the opposite direction.

Definition 4.9: For each standard relational model ℳ = ⟨𝑊 , 𝑔, ∼, 𝑉 ⟩ the induced dy-
namic dependence model 𝔐ℳ = ⟨𝑂ℳ, 𝐼ℳ, 𝐴ℳ, 𝑔ℳ⟩ has

• 𝑂ℳ ∶= {∼𝑥 (𝑠) ∣ 𝑠 ∈ 𝑊 , 𝑥 ∈ 𝕍 }.
• For each 𝑛-ary predicate symbol 𝑃 , 𝐼ℳ(𝑃 ) ∶= {⟨∼𝑥1 (𝑠), ⋯ , ∼𝑥𝑛 (𝑠)⟩ ∣ 𝑥1⩽𝑖⩽𝑛 ∈

𝕍 and 𝑠 ∈ 𝑊 with 𝑠 ∈ 𝑉 (𝑃 𝑥1 ⋯ 𝑥𝑛)}.
• 𝐴ℳ ∶= {𝑠∼ ∣ 𝑠 ∈ 𝑊 } with 𝑠∼(𝑥) =∼𝑥 (𝑠) for all variables 𝑥 ∈ 𝕍 .
• 𝑔ℳ(𝑠∼) = 𝑡∼ if there are 𝑠′, 𝑡′ ∈ 𝑊 such that 𝑠 ∼𝕍 𝑠′, 𝑡 ∼𝕍 𝑡′ and 𝑔(𝑠′) = 𝑡′.

Here the last clause makes sure that the transition function defined in this way does
not depend on the particular representative of the equivalence class.

Again the semantics are in harmony:
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Proposition 4.4: For each relational ℳ = ⟨𝑊 , 𝑔, ∼, 𝑉 ⟩ and 𝜑 ∈ ℒD, it holds that

ℳ, 𝑠 ⊨ 𝜑 ⇔ 𝔐ℳ, 𝑠∼ ⊨ 𝜑.

Proof We use induction on 𝜑. The cases for atoms and Boolean connectives are routine.
The equivalence for atoms 𝐷𝑛

𝑋𝑦 holds by the semantics and the following fact, for all
𝑠, 𝑡 ∈ 𝑊 , 𝑋 ⊆ 𝕍 and 𝑛 ∈ ℕ:

𝑔𝑛(𝑠) ∼𝑋 𝑔𝑛(𝑡) iff (𝑔ℳ)𝑛(𝑠∼) =𝑋 (𝑔ℳ)𝑛(𝑡∼)

The inductive cases for D𝑋𝜑 and ○𝜑 are straightforward. ∎

Propositions 4.3 and Proposition 4.4 immediately imply a validity reduction both
ways:

Proposition 4.5: The same ℒD-formulas are valid on dynamic dependence models and
on standard relational models.

Both perspectives on the logic DFD are interesting, but we will mainly work with the
modal view, which allows us to use notions such as generated submodels, bisimulations,
and 𝑝-morphisms, and techniques such as unraveling (see, e.g., Blackburn et al., 2001).

4.3 Axiomatizing DFD and consideration on its complexity

The first-order translation of Section 4.2.3 shows that the validities of DFD are ef-
fectively axiomatizable, since they are for FOL, van Benthem (1984). Now we present a
concrete complete Hilbert-style proof calculus. After that, we show some basic result on
the decidability of a significant fragment of DFD.

4.3.1 The proof system DFD

The proof system DFD for dynamic dependence logic is presented in Table 4.1. The
notions of syntactical derivation and provability are defined as usual.

Here, axioms ○-Distribution and D-Distribution are standard for normal modalities,
the Functionality axiom ensures that dynamic transitions between states are a function.
The dependence quantifiers are S5-modalities. Note also how Dyn-Trans combines de-
pendence formulas 𝐷𝑛

𝑋𝑌 with the temporal operator ○ to express dependencies over time.
Determinism says that fixing the current assignment fixes the values of each variable at
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Table 4.1 The proof system DFD

I Axioms and Rules of Classical Propositional Logic

II Axioms and Rules for ○
○-Distribution ○(𝜑 → 𝜓) → (○𝜑 → ○𝜓)
Functionality ○¬𝜑 ↔ ¬ ○ 𝜑
○-Necessitation From 𝜑, infer ○𝜑
III Axioms and Rules for D

D-Distribution D𝑋(𝜑 → 𝜓) → (D𝑋𝜑 → D𝑋𝜓)
D-Introduction1 𝑃 𝑥1 ⋯ 𝑥𝑛 → D{𝑥1,⋯,𝑥𝑛}𝑃 𝑥1 ⋯ 𝑥𝑛

D-Introduction2 𝐷𝑛
𝑋𝑦 → D𝑋𝐷𝑛

𝑋𝑦
D-T D𝑋𝜑 → 𝜑
D-4 D𝑋𝜑 → D𝑋D𝑋𝜑
D-5 ¬D𝑋𝜑 → D𝑋¬D𝑋𝜑
D-Necessitation From 𝜑, infer D𝑋𝜑
IV Axioms for 𝐷𝑛

𝑋𝑦
Dep-Ref 𝐷𝑋𝑥 for all 𝑥 ∈ 𝑋
Dyn-Trans 𝐷𝑛

𝑋𝑌 ∧ ○𝑛𝐷𝑚
𝑌 𝑍 → 𝐷𝑚+𝑛

𝑋 𝑍
Determinism 𝐷1

𝕍 𝑥 for all 𝑥 ∈ 𝕍
V Interaction Axioms
Transfer 𝐷𝑛

𝑋𝑌 ∧ ○𝑛D𝑌 𝜑 → D𝑋 ○𝑛 𝜑
D-○ D∅𝜑 → ○𝜑
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the next stage: i.e., transitions only depend on global system states, not on when these
states occur. Finally, D-○ says that universal truth implies what is true in the future.

The system DFD can prove some interesting theorems. For instance,
• 𝐷𝑛

𝑋𝑌 ∧ 𝐷𝑛
𝑍𝑈 → 𝐷𝑛

𝑋∪𝑍(𝑌 ∪ 𝑈) (Additivity of Dynamic Dependence)
• 𝐷𝑛

𝑋𝑦 → 𝐷𝑛
𝑍𝑦, for 𝑋 ⊆ 𝑍 (Monotonicity of Dynamic Dependence)

• D𝑋𝜑 → D𝑌 𝜑, for 𝑋 ⊆ 𝑌 (Monotonicity of Dependence Quantifiers)
• ○D𝕍 𝜑 → D𝕍 ○ 𝜑 (○-D𝕍 -Commutation)
All these derivable principles are valid.

Proposition 4.6: The calculus DFD is sound w.r.t. standard relational models.

Proof We only consider two not entirely routine cases. Let ℳ = ⟨𝑊 , 𝑔, ∼, 𝑉 ⟩ be a
standard relational model and 𝑠 ∈ 𝑊 . We show 𝐷𝑛

𝑋𝑌 ∧ ○𝑛𝐷𝑚
𝑌 𝑍 → 𝐷𝑚+𝑛

𝑋 𝑍 and 𝐷𝑛
𝑋𝑌 ∧

○𝑛D𝑌 𝜑 → D𝑋 ○𝑛 𝜑 are true.
Let ℳ, 𝑠 ⊨ 𝐷𝑛

𝑋𝑌 ∧ ○𝑛𝐷𝑚
𝑌 𝑍, and consider any 𝑡 ∈ 𝑊 with 𝑠 ∼𝑋 𝑡. From 𝐷𝑛

𝑋𝑌
at 𝑠, it follows that 𝑔𝑛(𝑠) ∼𝑌 𝑔𝑛(𝑡) (a), and since ○𝑛𝐷𝑚

𝑌 𝑍 at 𝑠, 𝐷𝑚
𝑌 𝑍 holds at 𝑔𝑛(𝑠) (b).

Combining (a) and (b), we get 𝑔𝑚+𝑛(𝑠) ∼𝑍 𝑔𝑚+𝑛(𝑡).
Next, let ℳ, 𝑠 ⊨ 𝐷𝑛

𝑋𝑌 ∧○𝑛D𝑌 𝜑, and consider 𝑡 with 𝑠 ∼𝑋 𝑡. Again by 𝐷𝑛
𝑋𝑌 at 𝑠, we

have 𝑔𝑛(𝑠) ∼𝑌 𝑔𝑛(𝑡) (a). Moreover, by ○𝑛D𝑌 𝜑 at 𝑠, D𝑌 𝜑 is true at 𝑔𝑛(𝑠) (b). Combining
(a) and (b), 𝜑 is true at 𝑔𝑛(𝑡), i.e., ○𝑛𝜑 is true at 𝑡. ∎

By Proposition 4.5 then, DFD is sound for dynamic dependence models too.

4.3.2 Completeness of DFD: introducing general relational models

Our eventual aim is to show that the system DFD is complete w.r.t. standard relational
models. To achieve this, we take three steps of separate interest:

Step 1. We introduce a new notion of ‘general relational models’ and interpret ℒD-
formulas in this broader setting.

Step 2. We prove completeness of the system DFD w.r.t. the new models.

Step 3. We prove a representation result for general relational models as 𝑝-morphic
images of standard relational models, which implies that DFD is also complete
w.r.t. standard relational models.

This subsection is concerned with Step 1.

Definition 4.10: A general relational model is a tuple ℳ𝑔 = ⟨𝐴, 𝑔, =𝑋 , 𝐷𝑛
𝑋𝑦, 𝑃 x⟩ with

the following components:
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• 𝐴 is a non-empty set of possible worlds or states.
• 𝑔 ∶ 𝐴 → 𝐴 is a total function.
• For each set 𝑋 ⊆ 𝕍 of variables, =𝑋⊆ 𝐴 × 𝐴 is a binary relation.
• For each 𝑛-ary predicate symbol 𝑃 and each world 𝑠 ∈ 𝐴, 𝑃 𝑠 is an 𝑛-ary relation

on variables.
• For each 𝑠 ∈ 𝐴, (𝐷𝑛

𝑋𝑦)𝑠 ⊆ 𝒫(𝕍 ) × 𝕍 is a relation between finite sets of variables 𝑋
and variables 𝑦.

These ingredients are required to satisfy the following conditions:
C1 All =𝑋 are equivalence relations on 𝐴, and =∅ is the universal relation
C2 All (𝐷𝑛

𝑋𝑦)𝑠 satisfy the following three properties:
• Dep-Reflexivity: For all 𝑥 ∈ 𝑋 ⊆ 𝕍 , it holds that (𝐷𝑋𝑥)𝑠.
• Dyn-Transitivity: If (𝐷𝑛

𝑋𝑌 )𝑠 and (𝐷𝑚
𝑌 𝑍)𝑔𝑛(𝑠), then (𝐷𝑛+𝑚

𝑋 𝑍)𝑠.
• Determinism: For all 𝑥 ∈ 𝕍 , (𝐷1

𝕍 𝑥)𝑠.
C3 If 𝑠 =𝑋 𝑡 and (𝐷𝑛

𝑋𝑌 )𝑠, then (𝐷𝑛
𝑋𝑌 )𝑡 and 𝑔𝑛(𝑠) =𝑌 𝑔𝑛(𝑡)

C4 If 𝑠 =𝑋 𝑡, (𝑃 y)𝑔𝑛(𝑠) and (𝐷𝑛
𝑋𝑌 )𝑠 (where 𝑌 is the set of variables occurring in the

sequence y), then (𝑃 y)𝑔𝑛(𝑡).

It is useful to compare this new notion with the standard relational models of Defini-
tion 4.6. Each =𝑋 for 𝑋 ⊆ 𝕍 is now a primitive relation, not necessarily the intersection
of the individual =𝑥∈𝑋 . Also, for each 𝑛 ∈ ℕ, formulas 𝐷𝑛

𝑋𝑦 are treated as atoms now,
with truth values given directly by valuation functions.

The resulting truth definition for ℒD-formulas in general relational models reads ex-
actly as that in Definition 4.7 for standard relational models, though with the new under-
standing of relations and atoms as just explained.

Proposition 4.7: The proof system DFD is sound for general relational models.

Proof Condition C1 guarantees the validity of the standard modal principles of the cal-
culus. Condition C2 gives us Dep-Ref, Dyn-Trans and Determinism. Finally, condition
C3 gives both D-Introduction2 and Transfer. ∎

General relational models are not just a stepping stone toward the completeness the-
orem for DFD. They also have an independent interest as modal semantic structures. To
illustrate this, we show how the standard notion of bisimulation applies, of which we will
use the special case of 𝑝-morphisms later on.
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Definition 4.11: Consider two general relational models ℳ𝑔 = ⟨𝐴, 𝑔, =𝑋 , 𝐷𝑛
𝑋𝑦, 𝑃 x⟩,

ℳ′
𝑔 = ⟨𝐴′, 𝑔′, =′

𝑋 , 𝐷𝑛
𝑋𝑦, 𝑃 x⟩ with 𝑠 ∈ 𝐴, 𝑠′ ∈ 𝐴′ and 𝑋∪{𝑦} ⊆ 𝕍 . A DFD-bisimulation

is a relation 𝑍D between pointed models s.t., if ⟨ℳ, 𝑠⟩𝑍D⟨ℳ′, 𝑠′⟩, then
Atom For both types of atoms 𝛼 (factual 𝑃 x and dependence-style 𝐷𝑛

𝑋𝑦), ℳ𝑔, 𝑠 ⊨ 𝛼
iff ℳ′

𝑔, 𝑠′ ⊨ 𝛼
Func ⟨ℳ𝑔, 𝑔(𝑠)⟩ 𝑍D ⟨ℳ′

𝑔, 𝑔′(𝑠′)⟩
ForthD If 𝑠 =𝑋 𝑡, then there is a 𝑡′ ∈ 𝑊 ′ s.t. 𝑠′ =′

𝑋 𝑡′ and ⟨ℳ𝑔, 𝑡⟩ 𝑍D ⟨ℳ′
𝑔, 𝑡′⟩

BackD If 𝑠′ =′
𝑋 𝑡′, then there is a 𝑡 ∈ 𝑊 s.t. 𝑠 =𝑋 𝑡 and ⟨ℳ𝑔, 𝑡⟩ 𝑍D ⟨ℳ′

𝑔, 𝑡′⟩.
For a set 𝐵 ⊆ 𝐴 of states, 𝑔𝑛(𝐵) ∶= {𝑔𝑛(𝑠) ∣ 𝑠 ∈ 𝐵}. Finally, we also write
⟨ℳ, 𝑠⟩ ↔D ⟨ℳ′, 𝑠′⟩ if ⟨ℳ, 𝑠⟩ 𝑍D ⟨ℳ′, 𝑠′⟩ for some DFD-bisimulation 𝑍D.

Here, Clauses Atom, ForthD and BackD are standard for bisimulation (Blackburn
et al., 2001). Func handles state transitions. Also, while we imposed just equivalence of
truth values for dynamic dependence atoms 𝐷𝑛

𝑋𝑦, this requirement unpacks into a more
complex constraint on accessibility relations in standard relational models.

We say that two pointed models ⟨ℳ𝑔, 𝑠⟩ and ⟨ℳ′
𝑔, 𝑠′⟩ are DFD-equivalent (written

as ⟨ℳ𝑔, 𝑠⟩ ↭D ⟨ℳ′
𝑔, 𝑠′⟩) if, for all formulas 𝜑 ∈ ℒD, ℳ𝑔, 𝑠 ⊨ 𝜑 iff ℳ′

𝑔, 𝑠′ ⊨ 𝜑.

Proposition 4.8: ⟨ℳ𝑔, 𝑠⟩ ↔D ⟨ℳ′
𝑔, 𝑠′⟩ implies ⟨ℳ𝑔, 𝑠⟩ ↭D ⟨ℳ𝑔, 𝑠′⟩.

The proof is a straightforward induction on formulas. Also easy to prove is a par-
tial converse, viz. a Hennessy-Milner Theorem for image-finite relational model ℳ𝑔 =
⟨𝐴, 𝑔, =𝑋 , 𝐷𝑛

𝑋𝑦, 𝑃 x⟩ where, for all 𝑠 ∈ 𝐴 and 𝑋 ⊆ 𝕍 , {𝑡 ∈ 𝐴 ∣ 𝑠 =𝑋 𝑡} is finite.

Proposition 4.9: For any two image-finite pointed general relational models, it holds
that ⟨ℳ𝑔, 𝑠⟩ ↭D ⟨ℳ′

𝑔, 𝑠′⟩ implies that ⟨ℳ𝑔, 𝑠⟩ ↔D ⟨ℳ′
𝑔, 𝑠′⟩.

These are just a few illustrations. A wide range of modal techniques (cf. Blackburn
et al., 2001) for the basic theory, applies to general relational models for DFD.

4.3.3 Canonical models for DFD

We now come to Step 2. Showing that the system DFD is complete w.r.t. general
relational models appeals to a standard construction in modal logic.

Definition 4.12: The canonical model for DFD is the structure ℳ𝑐 = ⟨𝑊 𝑐 , 𝑔𝑐 , =𝑐
𝑋 , 𝑉 𝑐⟩,

where
• 𝑊 𝑐 is the class of all maximal DFD-consistent sets

95



Chapter 4 Logical proposals for dynamic dependence

• For all 𝑠 ∈ 𝑊 𝑐 , 𝑔𝑐(𝑠) = {𝜑 ∈ ℒD ∣ ○𝜑 ∈ 𝑠}
• For all 𝑠, 𝑡 ∈ 𝑊 𝑐 and 𝑋 ⊆ 𝕍 , 𝑠 =𝑐

𝑋 𝑡 iff D𝑋𝑠 ⊆ 𝑡
• 𝑠 ∈ 𝑉 𝑐(𝐷𝑛

𝑋𝑦) iff 𝐷𝑛
𝑋𝑦 ∈ 𝑠, and 𝑠 ∈ 𝑉 𝑐(𝑃 x) iff 𝑃 x ∈ 𝑠.

For all states 𝑠 ∈ 𝑊 𝑐 , D𝑋𝑠 denotes the set of formulas {𝜑 ∣ D𝑋𝜑 ∈ 𝑠}.

That 𝑔𝑐 defines a function on 𝑊 𝑐 follows from this observation:

Proposition 4.10: In the canonical model ℳ𝑐 = ⟨𝑊 𝑐 , 𝑔𝑐 , =𝑐
𝑋 , 𝑉 𝑐⟩, 𝑔𝑐(𝑠) ∈ 𝑊 𝑐 .

Proof Since the Functionality axiom of DFD has syntactic Sahlqvist form, the canoni-
cal model will satisfy its corresponding semantic frame condition of functionality by a
standard argument about maximally consistent sets (Blackburn et al., 2001). ∎

So, the similarity type of the model fits. It remains to check the conditions on general
relational models listed in Definition 4.10.

Remark 4.1: Before proceeding, we must address a small problem first, viz. the fact
that the relation =𝑐

∅ as defined earlier in the canonical model for DFD need not be the real
universal relation in that model.

To get around this, we use a standard technique from completeness proofs for modal
logics containing a global universal modality (Goranko and Passy, 1992). Instead of taking
the whole canonical model introduced above, we start from any world 𝑢 ∈ 𝑊 𝑐 and restrict
the states to those in the generated submodel in the relation =𝑐

∅. Then, the proof principles
of the calculus DFD guarantee that the accessibility relations for the other dependence and
temporal modalities are contained in =𝑐

∅, and thus, we have all essential structure available
within the generated submodel.

With this understanding, when we talk about the canonical model in what follows,
we really mean any generated submodel of the sort described.

Proposition 4.11: The canonical model is a general relational model.

Proof (1). Given the S5-axioms for dependence quantifiers, all =𝑐
𝑋 are equivalence rela-

tions by a standard modal argument. Also, since we now talk about generated canonical
models, the relation =𝑐

∅ is the universal relation.
(2). The DFD axioms for 𝐷𝑛

𝑋𝑦 were precisely designed to ensure the truth of the
conditions of ‘Dep-Reflexivity’, ‘Dyn-Transitivity’ and ‘Determinism’.
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(3). Condition C3. Let 𝑠 =𝑐
𝑋 𝑡 and 𝐷𝑛

𝑋𝑌 ∈ 𝑠. Using the axiom 𝐷𝑛
𝑋𝑌 → D𝑋𝐷𝑛

𝑋𝑌 ,
we get D𝑋𝐷𝑛

𝑋𝑌 ∈ 𝑠. Since 𝑠 =𝑐
𝑋 𝑡, we have 𝐷𝑛

𝑋𝑌 ∈ 𝑡. Next, let D𝑦𝜑 ∈ (𝑔𝑐)𝑛(𝑠): we
show that 𝜑 ∈ (𝑔𝑐)𝑛(𝑡). By the definition of 𝑔𝑐 , D𝑌 𝜑 ∈ (𝑔𝑐)𝑛(𝑠) implies ○𝑛D𝑌 𝜑 ∈ 𝑠.
Then, using the axiom 𝐷𝑛

𝑋𝑌 ∧ ○𝑛D𝑌 𝜑 → D𝑋 ○𝑛 𝜑, we get D𝑋 ○𝑛 𝜑 ∈ 𝑠, and hence
○𝑛𝜑 ∈ 𝑡. Therefore, 𝜑 ∈ (𝑔𝑐)𝑛(𝑡).

(4). Condition C4. Let 𝑠 =𝑐
𝑋 𝑡, 𝑃 y ∈ 𝑔𝑐𝑛(𝑠) and 𝐷𝑛

𝑋𝑌 ∈ 𝑠 (where 𝑌 is the set
of all variables occurring in the tuple y). We show that 𝑃 y ∈ 𝑔𝑐𝑛(𝑡). Using the axiom
𝑃 𝑥1 ⋯ 𝑥𝑛 → D{𝑥1,⋯,𝑥𝑛}𝑃 𝑥1 ⋯ 𝑥𝑛, we have D𝑌 𝑃 y ∈ 𝑔𝑐𝑛(𝑠), and hence ○𝑛D𝑌 𝑃 y ∈ 𝑠.
Now, from 𝐷𝑛

𝑋𝑌 ∧ ○𝑛D𝑌 𝜑 → D𝑋 ○𝑛 𝜑, we have D𝑋 ○𝑛 𝑃 y ∈ 𝑠. Also, as 𝑠 =𝑐
𝑋 𝑡,

○𝑛𝑃 y ∈ 𝑡. Therefore, 𝑃 y ∈ 𝑔𝑐𝑛(𝑡). ∎

Next, a standard argument proves the following Existence Lemma:

Lemma 4.1: Let ℳ𝑐 be the canonical model and 𝑠 ∈ 𝑊 𝑐 . Then we have:

If D̂𝑋𝜑 ∈ 𝑠, then there exists 𝑡 ∈ 𝑊 𝑐 such that 𝑠 =𝑐
𝑋 𝑡 and 𝜑 ∈ 𝑡.

Now we are able to prove the following key Truth Lemma:

Lemma 4.2: Let ℳ𝑐 be the canonical model, 𝑠 ∈ 𝑊 𝑐 and 𝜑 ∈ ℒD. Then

ℳ𝑐 , 𝑠 ⊨ 𝜑 ⇔ 𝜑 ∈ 𝑠.

Proof The proof is by induction on 𝜑. We only show two cases.
(1). Formula 𝜑 is ○𝜓 . From the semantics, ℳ𝑐 , 𝑠 ⊨ 𝜑 iff ℳ𝑐 , 𝑔𝑐(𝑠) ⊨ 𝜓 . Then,

by the inductive hypothesis, ℳ𝑐 , 𝑔𝑐(𝑠) ⊨ 𝜓 iff 𝜓 ∈ 𝑔𝑐(𝑠). From the definition of 𝑔𝑐 , we
know that 𝜓 ∈ 𝑔𝑐(𝑠) iff 𝜑 ∈ 𝑠.

(2). Formula 𝜑 is D̂𝑋𝜓 . From left to right, assume that ℳ𝑐 , 𝑠 ⊨ D̂𝑋𝜓 . Then, there
exists 𝑡 ∈ 𝑊 𝑐 such that 𝑠 =𝑐

𝑋 𝑡 and ℳ𝑐 , 𝑡 ⊨ 𝜓 . By the inductive hypothesis, 𝜓 ∈ 𝑡. From
the definition of =𝑐

𝑋 , we have D̂𝑋𝜓 ∈ 𝑠. Conversely, suppose that D̂𝑋𝜓 ∈ 𝑠. Then, by
Lemma 4.1, there is a 𝑡 ∈ 𝑊 𝑐 such that 𝑠 =𝑐

𝑋 𝑡 and 𝜓 ∈ 𝑡. By the inductive hypothesis,
ℳ𝑐 , 𝑡 ⊨ 𝜓 . Therefore, ℳ𝑐 , 𝑠 ⊨ D̂𝑋𝜓 . ∎

Steps 1 and 2 are now completed, and together yield the following result.

Theorem 4.1: DFD is sound and complete for general relational models.
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4.3.4 Representation and completeness for standard models

Now we take the final Step 3 in our proof plan, and represent general relational models
as standard relational models. We elaborate the tree-style representation sketched in the
Appendix to Baltag and van Benthem (2021b), adapted to our richer temporal setting.

Theorem 4.2: Each general relational model is a 𝑝-morphic image of some standard
relational model.

Proof Let ℳ𝑔 = ⟨𝐴, 𝑔, =𝑋 , 𝐷𝑛
𝑋𝑦, 𝑃 x⟩ be a general relational model. To construct a

standard relational model ℳ𝑠𝑡 linked to ℳ𝑔, we need worlds 𝑊 𝑠𝑡, a transition function
𝑔𝑠𝑡, accessibility relations ∼𝑠𝑡

𝑋 , and a suitable valuation 𝑉 𝑠𝑡.
For the worlds 𝑊 𝑠𝑡, we take the set of all histories, i.e., all finite sequences ℎ =

⟨𝑠0, △1, 𝑠1, ⋯ , △𝑛, 𝑠𝑛⟩ with states from the model ℳ𝑔 such that:
• For each 𝑖 ⩽ 𝑛, 𝑠𝑖 ∈ 𝐴, and △𝑖 equals 𝑋𝑖 ⊆ 𝕍 or 𝑔.
• For each 𝑘 s.t. 1 ⩽ 𝑘 ⩽ 𝑛, if △𝑘 is 𝑋𝑘, then 𝑠𝑘−1 =𝑋𝑘 𝑠𝑘; and if △𝑘 is 𝑔, then

𝑔(𝑠𝑘−1) = 𝑠𝑘.
These finite histories from a natural tree- or forest-like structure. In particular, any

two histories ℎ, ℎ′ that share the same initial state are connected by a unique path that can
be pictured in terms of first ‘going down’ from ℎ to the largest shared sub-history, and
then ‘going up’ again to the end of ℎ′. This visual picture may help in understanding the
arguments to follow.

Let 𝑙𝑎𝑠𝑡(ℎ) be the last state in history ℎ. For the transition function, we set:
• 𝑔𝑠𝑡(ℎ) = ⟨ℎ, 𝑔, 𝑔(𝑙𝑎𝑠𝑡(ℎ))⟩
Next, we define the valuation 𝑉 𝑠𝑡 for atoms 𝑃 x simply in terms of truth at the last

world in the history:
• ℎ ∈ 𝑉 𝑠𝑡(𝑃 x) iff ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝑃 x.
The final, and most delicate task is to define the accessibility relations in the model

ℳ𝑠𝑡. This has to be done in such a way that we ‘improve’ the given general relational
model in two respects: (i) relations ∼𝑋 become intersections of the ∼𝑥 for 𝑥 ∈ 𝑋, (ii)
atoms 𝐷𝑋𝑦 get their standard semantic interpretation at histories ℎ in a way that matches
with their truth in ℳ𝑔 at 𝑙𝑎𝑠𝑡(ℎ).

First, we introduce relations ℎ ⇝𝑋 ℎ′ between histories as follows:
• ℎ is of the form ⟨ℎ0, 𝑔, 𝑠1, 𝑔, 𝑠2, ⋯ , 𝑔, 𝑠𝑛⟩ and for some 𝑌 ⊆ 𝕍 with

ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ 𝐷𝑛
𝑌 𝑋, ℎ′ = ⟨ℎ0, 𝑌 , 𝑙𝑎𝑠𝑡(ℎ′

0), 𝑔, 𝑡1, 𝑔, 𝑡2, ⋯ , 𝑔, 𝑡𝑛⟩
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Here, we use the notation 𝑙𝑎𝑠𝑡(ℎ′
0) to highlight that it is the last state in the initial

segment of ℎ′ before the final 𝑛-step action of the transition function.
In the extreme case 𝑛 = 0, there are no transition steps, and ℎ ⇝𝑋 ℎ′ just says that

history ℎ′ is of the form ⟨ℎ, 𝑌 , 𝑙𝑎𝑠𝑡(ℎ′)⟩ with ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑌 𝑋. However, one should
note, for later reference, that the dependence atom 𝐷𝑛

𝑌 𝑋 present at the start ‘manifests’
itself as an 𝑋-dependence between longer histories that have a further tail of 𝑛 consecutive
transition steps.

The one-step relation ⇝𝑋 need not be an equivalence relation, as is needed, and
therefore, the actual accessibility relation of ℳ𝑠𝑡 is defined as follows:

• ↭𝑋 is the reflexive-transitive-symmetric closure of ⇝𝑋 .
This completes our definition of the model ℳ𝑠𝑡 that we are going to use.
Now we must prove two basic facts that, together, establish our theorem.

Lemma 4.3: ℳ𝑠𝑡 = ⟨𝑊 𝑠𝑡, 𝑔𝑠𝑡, ↭𝑋 , 𝑉 𝑠𝑡⟩ is a standard relational model.

The proofs to follow should be understood as concentrating on the essentials. The
accessibility relation in ℳ𝑠𝑡 is defined as being connected by some finite sequence of the
above basic steps (in either order). Proving facts about this notion can be done by natural
induction, but instead of going through this routine, wherever possible, we will explain
the case of the single steps, since usually, this behavior lifts automatically to the whole
sequence.

Proof The first condition in the surplus of standard relational models over general rela-
tional models is that the relation ↭𝑋 equals the intersection ⋂𝑥∈𝑋 ↭𝑥. This is a crucial
feature of the above tree construction, which cannot be enforced routinely by means of
the standard accessibility relations in canonical models (Gargov and Passy, 1990). We
therefore state it as a separate fact.

Claim 1. For any two histories ℎ and ℎ′, ℎ ↭𝑋 ℎ′ iff ℎ ↭𝑥 ℎ′ for all 𝑥 ∈ 𝑋.

Proof It suffices to show this property for single steps in the relation ℎ ↭𝑋 ℎ′ since
it will transfer automatically to longer sequences. The essential observations are these.
Suppose we have a transition with an initial 𝑌 -step in the history ℎ′ and 𝐷𝑛

𝑌 𝑋 true at
𝑙𝑎𝑠𝑡(ℎ0) in ℳ𝑔. By the Dep-Reflexivity assumption on general relational models, for any
𝑥 ∈ 𝑋, ○𝑛𝐷𝑋𝑥 is true at 𝑙𝑎𝑠𝑡(ℎ0). Then, by the Dyn-Transitivity, 𝐷𝑛

𝑌 𝑥 will be true at
𝑙𝑎𝑠𝑡(ℎ0), and so ℎ ↭𝑥 ℎ′. Conversely, if we have a single initial 𝑌 -step that qualifies for
all transitions for the variables 𝑥 ∈ 𝑋, then we have 𝐷𝑛

𝑌 𝑥 true at 𝑙𝑎𝑠𝑡(ℎ0) in ℳ𝑔, and by
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the convention in Definition 4.1, this means that 𝐷𝑛
𝑌 𝑋 is true there: so we also have an

↭𝑋 step. ∎

Next, we show that the transition function 𝑔𝑠𝑡 respects ↭𝕍 .
Claim 2. If ℎ ↭𝕍 ℎ′, then 𝑔𝑠𝑡(ℎ) ↭𝕍 𝑔𝑠𝑡(ℎ′).

Proof Again it suffices to analyze single steps for this type of assertion. We only consider
the case with ℎ ⇝𝕍 ℎ′, that of ℎ′ ⇝𝕍 ℎ is similar. We have ℎ′

0 = ⟨ℎ0, 𝑍, 𝑢⟩ with
𝑙𝑎𝑠𝑡(ℎ0) ∈ 𝑉 (𝐷𝑛

𝑍𝕍 ). Also, by the Determinism property in Definition 4.10, 𝑙𝑎𝑠𝑡(ℎ) ∈
𝑉 (𝐷1

𝕍 𝕍 ). Therefore, by our definition of histories and our semantics on general relational
models, ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ ○𝑛𝐷1

𝕍 𝕍 . Then, by the Dyn-Transitivity of Definition 4.10 in
ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ∈ 𝑉 (𝐷𝑛+1

𝑍 𝕍 ). It follows that 𝑔𝑠𝑡(ℎ) ⇝𝕍 𝑔𝑠𝑡(ℎ′), and therefore 𝑔𝑠𝑡(ℎ) ↭𝕍

𝑔𝑠𝑡(ℎ′). ∎

The third condition to be shown is that the truth values of non-dependence atoms are
invariant in the way required by Definition 4.6.

Claim 3. If ℎ ↭𝑋 ℎ′ and ℎ ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘) for some 𝑥1, ⋯ , 𝑥𝑘 ∈ 𝑋, then also
ℎ′ ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘).

Proof Once more, it suffices to prove the claim by analyzing a single step transition, and
this time, we illustrate both cases ℎ ⇝𝑋 ℎ′ and ℎ′ ⇝𝑋 ℎ.

Case 1: ℎ ⇝𝑋 ℎ′, i.e., ℎ′
0 = ⟨ℎ0, 𝑍, 𝑢⟩ for some 𝑍 and 𝑢, and 𝑙𝑎𝑠𝑡(ℎ0) ∈ 𝑉 (𝐷𝑘

𝑍𝑋).
From the assumption that ℎ ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘), reasoning as above for Claim 2, we have
that ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ ○𝑛𝑃 𝑥1 ⋯ 𝑥𝑘. Combining this with 𝑙𝑎𝑠𝑡(ℎ0) ∈ 𝑉 (𝐷𝑘

𝑍𝑋), and using
closure property C4 of general relational models, we conclude that 𝑔𝑛(𝑢) ⊨ 𝑃 𝑥1 ⋯ 𝑥𝑘,
i.e., ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝑃 𝑥1 ⋯ 𝑥𝑘.

Case 2: ℎ′ ⇝𝑋 ℎ. This time, ℎ0 = ⟨ℎ′
0, 𝑍, 𝑢⟩ for some 𝑍 and 𝑢 s.t. 𝑙𝑎𝑠𝑡(ℎ′

0) ∈
𝑉 𝑠𝑡(𝐷𝑘

𝑍𝑋) and 𝑔𝑘(𝑢) ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘). Now, from 𝑙𝑎𝑠𝑡(ℎ′
0) =𝑍 𝑢 and 𝑙𝑎𝑠𝑡(ℎ′

0) ∈
𝑉 𝑠𝑡(𝐷𝑘

𝑍𝑋) we get 𝑢 ∈ 𝑉 𝑠𝑡(𝐷𝑘
𝑍𝑋), by C3 in Definition 4.10. Finally, by clause C4

in Definition 4.10, 𝑙𝑎𝑠𝑡(ℎ′
0) =𝑍 𝑢, 𝑢 ∈ 𝑉 𝑠𝑡(𝐷𝑘

𝑍𝑋) and 𝑔𝑘(𝑢) ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘) imply
𝑔𝑘(𝑙𝑎𝑠𝑡(ℎ′

0)) ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘), i.e., ℎ′ ∈ 𝑉 𝑠𝑡(𝑃 𝑥1 ⋯ 𝑥𝑘). ∎

This completes the proof of Lemma 4.3. ∎

Finally, we define a map 𝐹 from our model ℳ𝑠𝑡 to the original general relational
model ℳ𝑔. We simply put, for all histories ℎ ∈ 𝑊 𝑠𝑡:
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• 𝐹 (ℎ) = 𝑙𝑎𝑠𝑡(ℎ)
What remains is to check that this map is a functional version of the bisimulations

introduced in Definition 4.11 (in modal terminology, it is a ‘𝑝-morphism’), which preserve
the truth values of formulas in the language of DFD.

Lemma 4.4: The function 𝐹 is a modal 𝑝-morphism from ℳ𝑠𝑡 onto ℳ𝑔.

Proof First, surjectivity is obvious, since each 𝑠 ∈ 𝐴 equals the function value 𝐹 (⟨𝑠⟩).
Next, and much less straightforwardly, we must check that the map 𝐹 satisfies the back-
and-forth clauses of modal 𝑝-morphisms for the dependence relations and for the transition
function, as well as the ‘harmony’ clause for the two kinds of atoms. We state these with
their reasons.

• If ℎ ↭𝑋 ℎ′, then 𝑙𝑎𝑠𝑡(ℎ) =𝑋 𝑙𝑎𝑠𝑡(ℎ′).
It suffices to look at single steps, and one case will show why the assertion is true.
Suppose that ℎ′ ⇝𝑋 ℎ. Then ℎ0 = ⟨ℎ′

0, 𝑍, 𝑢⟩ and 𝑙𝑎𝑠𝑡(ℎ′
0) ∈ 𝑉 (𝐷𝑛

𝑍𝑋). As
𝑙𝑎𝑠𝑡(ℎ′

0) =𝑍 𝑢, the condition C3 in Definition 4.10 for general models gives us that
𝑔𝑛(𝑙𝑎𝑠𝑡(ℎ′

0)) =𝑋 𝑔𝑛(𝑢), i.e., 𝑙𝑎𝑠𝑡(ℎ′) =𝑋 𝑙𝑎𝑠𝑡(ℎ).
• If 𝑙𝑎𝑠𝑡(ℎ) =𝑋 𝑠, then there is a history ℎ′ with ℎ ↭𝑋 ℎ′ and 𝑙𝑎𝑠𝑡(ℎ′) = 𝑠.

For ℎ′, we can just take the history ⟨ℎ, 𝑋, 𝑠⟩.
• If 𝑔𝑠𝑡(ℎ) = ℎ′, then 𝑔(𝑙𝑎𝑠𝑡(ℎ)) = 𝑙𝑎𝑠𝑡(ℎ′).

Since ℎ′ = ⟨ℎ, 𝑔, 𝑔(𝑙𝑎𝑠𝑡(ℎ)⟩, this is true by the definition of 𝑔𝑠𝑡.
• If 𝑔(𝑙𝑎𝑠𝑡(ℎ)) = 𝑠, then there is a history ℎ′ with 𝑔𝑠𝑡(ℎ) = ℎ′ and 𝑙𝑎𝑠𝑡(ℎ′) = 𝑠.

Here it suffices to let ℎ′ be the history ⟨ℎ, 𝑔, 𝑠⟩.
Next, we consider the valuation on atoms. For standard atoms 𝑃 x, histories ℎ in ℳ𝑠𝑡

agree with their 𝐹 -values 𝑙𝑎𝑠𝑡(ℎ) in ℳ𝑔 by the definition of 𝑉 𝑠𝑡.
The more challenging case is that of dependence atoms, since these get their meaning

through the semantics in the standard relational model ℳ𝑠𝑡 rather then being imposed by
the valuation. Thus, we need to show the following:

• ℳ𝑠𝑡, ℎ ⊨ 𝐷𝑛
𝑋𝑦 iff ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛

𝑋𝑦

Proof We first make the auxiliary observation that local dependence statements are pre-
served along sequences of single steps for the relation ↭𝑋 .

Claim 4. If ℎ ↭𝑋 ℎ′ and ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛
𝑋𝑦, then ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ′) ⊨ 𝐷𝑛

𝑋𝑦.
The proof is a simple application of Property C3 of general relational models, used

in the same way as in the proofs of Claims 2 and 3 above.
Next we spell out the fact about dependence atoms that was needed above.
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Claim 5. The following two assertions are equivalent for histories ℎ:
(a) ℎ ↭𝑋 ℎ′ implies (𝑔𝑠𝑡)𝑛(ℎ) ↭𝑦 (𝑔𝑠𝑡)𝑛(ℎ′) for all histories ℎ′

(b) ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛
𝑋𝑦.

Proof From (a) to (b). Let 𝑙𝑎𝑠𝑡(ℎ) ∶= 𝑠 and define ℎ′ to be the history ⟨ℎ, 𝑋, 𝑠⟩ which is
one step longer than ℎ. By our definitions, ℎ ↭𝑋 ℎ′, and therefore, by our assumption,
(𝑔𝑠𝑡)𝑛(ℎ) ↭𝑦 (𝑔𝑠𝑡)𝑛(ℎ′). Clearly, the length difference between ℎ and ℎ′ just persists
after the added 𝑛 transition steps toward their 𝑔𝑛-values. Given this, the ↭𝑦-connection
between (𝑔𝑠𝑡)𝑛(ℎ) and (𝑔𝑠𝑡)𝑛(ℎ′) can only have come about by one single ⇝𝑦-step, going
from the former to the latter history. Moreover, given the definition of these steps, it cannot
have occurred in the final parts of these histories, since these have transitions marked by
𝑔. The only possibility that remains is that the transition from ℎ to ℎ′ was itself a ⇝𝑦-step,
and by definition, this can only have been because ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛

𝑋𝑦.
From (b) to (a). Let ℎ ↭𝑋 ℎ′. Again we analyze a single transition step. Let

ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ 𝐷𝑘
𝑍𝑋 where 𝑘 is the number of final 𝑔-steps in ℎ, while ℎ′ starts with

⟨ℎ0, 𝑍, 𝑢⟩. Since ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛
𝑋𝑦, we also have ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ ○𝑘𝐷𝑛

𝑋𝑦. But then,
using the Dyn-Transitivity of general relational models, we have ℳ𝑔, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ 𝐷𝑛+𝑘

𝑍 𝑦,
and this implies by definition that (𝑔𝑠𝑡)𝑛(ℎ) ⇝𝑦 (𝑔𝑠𝑡)𝑛(ℎ′) and hence also that (𝑔𝑠𝑡)𝑛(ℎ) ↭𝑦

(𝑔𝑠𝑡)𝑛(ℎ′). ∎

Taking all this together, 𝐹 is a surjective 𝑝-morphism from ℳ𝑠𝑡 to ℳ𝑔. ∎

This completes the proof of Theorem 4.2. ∎

As truth of modal formulas is preserved under surjective 𝑝-morphisms, (Blackburn
et al., 2001), and standard relational models are general relational models, it follows that
the same ℒD-formulas are valid on general relational models and on standard relational
models. Combining this with the earlier representation results of Section 4.2.5, we have
shown completeness of our proof system in the following sense.

Theorem 4.3: The proof system DFD is sound and complete w.r.t. both standard rela-
tional models and dynamic dependence models.

4.3.5 Considerations on the decidability of DFD

The next obvious concern would be the complexity of the logic DFD. So far, we
have not been able to determine whether the logic DFD is decidable, although we strongly
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suspect that it is. However, some partial results exist. In the Appendix to this chapter, we
have included a proof that the more ‘local’ fragment of DFD without operators D∅𝜑 and
𝐷𝑛

∅𝑦 has the effective finite model property with regard to general relational models1, and
therefore, it is decidable.

4.4 Continuous dependence: the topological logic DCD

Dynamical systems usually come with a topology on their state space, and a continu-
ous transition function between states. We will now extend our basic logic DFD to a new
logic DCD that can deal with this richer setting.

4.4.1 Varieties of topological dependence

While the relevant topology on a set of system states can arise in many ways, we will
take a particular approach in what follows, and generate them from topologies on the sets
of values that the variables of the system can take. This is the proper setting for notions of
approximation of values, with open sets viewed as possible outcomes of measurements.
The topology on states can be derived from these value topologies. This allows for more
realistic epistemic scenarios where we do not know the function values analyzed in our
first dependence logic DFD, but can approximate them to any required degree of precision.

This topologization lays a bridge between dynamic dependence and existing dynamic
topological logics which encode reasoning about the stepwise action of continuous func-
tions on topological spaces, and in some richer versions, even asymptotic behavior of the
dynamical system. Dynamic temporal logics have a temporal next-state modality ○ in-
terpreted as we did in earlier sections, but also a standard topological interior modality
2𝜑 true at the interior of the truth set of 𝜑 (van Benthem and Bezhanishvili, 2007). This
language can express that the transition function is continuous by means of the axiom
○2𝜑 → 2 ○ 𝜑 cf. (Kremer and Mints, 2007) which has many more details on guiding
ideas and results in dynamic topological logic.

All these ideas return in our logic DCD of dynamic continuous dependence, which
can be seen as a combination of DTL with our dependence logic DFD.

What needs to happen for this to work is fixing a suitable notion of ‘dynamic con-
tinuous dependence’. As it happens, the rich topological setting offers different options

1 As the fragment does not contain formulas D∅𝜑 or 𝐷𝑛
∅𝑦, we need not consider the clause on the universal relation

=∅ in Definition 4.10.
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for this. The expression ‘the 𝑛-th step value of a variable 𝑦 depends continuously on the
values of 𝑋’ may mean at least the following things:

• Local Version. For the current state 𝑠, 𝑔𝑛(𝑠)(𝑦): the 𝑛-th step value of variable 𝑦 at
𝑠 is determined to any desired degree of accuracy by some degree of accuracy of
the values of the variables 𝑋 at 𝑠.

However, this notion is ‘sensitive’ in that it may fail at just slightly different states
𝑠 of a dynamical system. Here is a more stable version:

• Global Version. For all states 𝑠, 𝑔𝑛(𝑠)(𝑦) is determined to any desired degree of
accuracy by some degree of approximation of the values 𝑠(𝑋).

The stability obtained in this way seems too strong. In a setting of approximation,
it will often suffice to have dependence in a suitable zone around the current state.
This brings us to our preferred notion for what follows:

• Neighborhood Version. There is some desired degree of accuracy 𝑈 for the actual
values 𝑠(𝑋) such that for all states 𝑡 with 𝑡(𝑋) ∈ 𝑈 (i.e., the values 𝑡(𝑋) are close
enough to the actual ones at 𝑠), 𝑔𝑛(𝑡)(𝑦) is determined to any desired degree of
approximation by some degree of approximation of 𝑡(𝑋).

In epistemic terms, the local version is a dependency that might be unknowable to
the agent in an empirical setting with only approximate measurements. The global ver-
sion expresses a dependency that is actually known, whereas the neighborhood version
describes a dependency that is knowable: it might become known by learning enough
about the current state of the system.1

We will work with the knowability version of topological dependence in what fol-
lows, but there are other natural options, too: see Baltag and van Benthem (2021a) for a
broader landscape.

4.5 The logic DCD: language and semantics

We now start defining our logic DCD. Its language ℒ𝐷 is the same as the earlier
ℒD, except that all dynamic dependence formulas 𝐷𝑛

𝑋𝑌 are taken as primitive now, rather
than syntactical abbreviations. To interpret this language, we extend the earlier dynamic
dependence models by associating each variable 𝑥 with a topological space ⟨𝔇𝑥, 𝜏𝑥⟩ on
the set of values that 𝑥 can take.

1 For details, see Baltag and van Benthem (2021a), which explores precise static analogues in an epistemic setting.
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Definition 4.13: A tuple 𝔐 = ⟨𝑂, 𝐼, 𝐴, 𝑇 , 𝑔⟩ is a dynamic topological dependence
model (for short, ‘dyn-topo-dep model’) if

• 𝑂, 𝐼, 𝐴 satisfy the same conditions as in dynamic dependence models.
• 𝑇 = {⟨𝔇𝑥, 𝜏𝑥⟩ ∣ 𝑥 ∈ 𝕍 }, where 𝔇𝑥 = {𝑜 ∈ 𝑂 ∣ 𝑠(𝑥) = 𝑜 for some 𝑠 ∈ 𝐴} and 𝜏𝑥

is a topology on 𝔇𝑥.
• 𝑔 ∶ 𝐴 → 𝐴 is a continuous function, in the sense of condition (⋆) below.

To state the third condition more precisely, we need a further notion. Lifting from
single variables to sets, given a dyn-topo-dep model 𝔐, we associate each non-empty set
of variables 𝑋 with a finite topological product space ⟨𝔇𝑋 , 𝜏𝑋⟩:

• 𝔇𝑋 ∶= {⟨𝑠(𝑥𝑖)⟩𝑥𝑖∈𝑋 ∣ 𝑠 ∈ 𝐴} ⊆ ∏𝑥𝑖∈𝑋 𝔇𝑥𝑖

• 𝜏𝑋 is the restriction to 𝔇𝑋 of the product topology on ∏𝑥𝑖∈𝑋 𝔇𝑥𝑖 , generated by the
restriction to 𝔇𝑋 of all products ∏𝑥𝑖∈𝑋 𝜏𝑥𝑖 of open sets.

In the extreme case of 𝑋 = ∅, we get 𝔇𝑋 ∶= {𝜆}, where 𝜆 is the empty string, 𝜏𝑋 ∶=
{∅, 𝔇𝑋} is the discrete topology and, for any assignment 𝑠, 𝑠(∅) ∶= 𝜆.

Remark 4.2: Different orders of variables in 𝑋 definitely give rise to different product
topological spaces ⟨𝔇𝑋 , 𝜏𝑋⟩. In the reminder of the section, we always assume that there
is a fixed order of variables, e.g., the one given by the enumeration v presented in Section
4.2.3. So, for simplicity, we write ⟨𝔇𝑋 , 𝜏𝑋⟩ for the unique topological spaces in harmony
with the order. Also, with the order in mind, by slightly abuse of notations, for any sets of
variables 𝑋 and assignments 𝑠, we employ 𝑠(𝑋) for the tuple of values of variables in 𝑋,
i.e., 𝑠(𝑋) ∶= ⟨𝑠(𝑥𝑖)⟩𝑥𝑖∈𝑋 ∈ 𝔇𝑋 , which does not refer to the set of values of 𝑋.

Here is what we mean in Definition 4.13 by saying that the transition function 𝑔 is
‘continuous’:

For any open 𝑈 of the product space ⟨𝔇𝕍 , 𝜏𝕍 ⟩, the set of tuples of values
{𝑠(𝕍 ) ∣ 𝑔(𝑠)(𝕍 ) ∈ 𝑈 and 𝑠 ∈ 𝐴} is also an open in the space. (⋆)

The interior of a set 𝑂 ⊆ 𝔇𝑋 in ⟨𝔇𝑋 , 𝜏𝑋⟩ is denoted by Int𝑋(𝑂). Also, define
𝜏(𝑠(𝑋)) ∶= {𝑈 ∈ 𝜏𝑋 ∣ 𝑠(𝑋) ∈ 𝑈}, denoting the family of open neighborhoods of 𝑠(𝑋)
in topology 𝜏𝑋 .1

Now we can introduce the semantics for the logic DCD.

1 The version presented here stays close to dynamic dependence models. Baltag and van Benthem (2021a) switch
to models for DCD where variables are maps from abstract states to objects.

105



Chapter 4 Logical proposals for dynamic dependence

Definition 4.14: Let 𝔐 = ⟨𝑂, 𝐼, 𝐴, 𝑇 , 𝑔⟩ be a dyn-topo-dep model. The semantics for
the language of DCD is defined inductively by the following truth conditions. The clauses
for 𝑃 x, ¬, ∧ and ○ are the same as the earlier ones for DFD, and those for the modality
D𝑋𝜑 and the atoms 𝐷𝑛

𝑋𝑌 are as follows:

𝑠 ⊨ D𝑋𝜑 iff ∃𝑈 ∈ 𝜏(𝑠(𝑋)) ∀𝑡 ∈ 𝐴 (𝑡(𝑋) ∈ 𝑈 ⇒ 𝑡 ⊨ 𝜑)

𝑠 ⊨ 𝐷𝑛
𝑋𝑌 iff ∃𝑈 ∈ 𝜏(𝑠(𝑋)) ∀𝑡 ∈ 𝐴 ∶ (𝑡(𝑋) ∈ 𝑈 ⇒ ∀𝑈 ′ ∈ 𝜏(𝑔𝑛(𝑡)(𝑌 ))

∃𝑈 ″ ∈ 𝜏(𝑡(𝑋))∀𝑡′ ∈ 𝐴 (𝑡′(𝑋) ∈ 𝑈 ″ ⇒ 𝑔𝑛(𝑡′)(𝑌 ) ∈ 𝑈 ′))

The interpretation of 𝐷𝑛
𝑋𝑌 expresses dynamic continuous dependence in its neigh-

borhood version. Moreover, D𝑋𝜑 states that the truth of 𝜑 is determined by some degree
of approximation of the current values of 𝑋.

Here are a few useful notations. For any 𝜑 ∈ ℒ𝐷 and 𝑋 ⊆ 𝕍 , ⟦𝜑⟧𝑋 ∶= {𝑠(𝑋) ∈
𝔻𝑋 ∣ 𝑠 ∈ ⟦𝜑⟧}. It is easy to see that ⟦𝜑⟧𝕍 = ⟦𝜑⟧1. Also, by the truth condition for
D𝑋𝜑, we have that ⟦D𝑋𝜑⟧ = {𝑡 ∈ 𝐴 ∣ 𝑡(𝑋) ∈ Int𝑋(⟦𝜑⟧𝑋)}. In particular, when 𝑋 = 𝕍 ,
⟦D𝕍 𝜑⟧ = Int𝕍 ⟦𝜑⟧. Mirroring standard topological semantics, ⟦D𝑋𝜑⟧ is the interior of
⟦𝜑⟧𝑋 in the relevant topological space.

Important special case: Alexandroff models. Alexandroff spaces have topologies that
are closed under arbitrary intersections, or equivalently, every point has a smallest open
neighborhood. A dyn-topo-dep model 𝔐 is an Alexandroff model if for each 𝑥 ∈ 𝕍 ,
⟨𝔻𝑥, 𝜏𝑥⟩ is Alexandroff. Since the product of finitely many Alexandroff spaces is still
Alexandroff (Arenas, 1999), all topological spaces ⟨𝔻𝑋 , 𝜏𝑋⟩ used in our semantics on
Alexandroff models are Alexandroff.

It is well-known that the 𝜏𝑋 in an Alexandroff space ⟨𝔇𝑋 , 𝜏𝑋⟩ coincides with the
upset topology w.r.t. its specialization preorder ⩽𝑋⊆ 𝔇𝑋 × 𝔇𝑋 :

For any 𝑐, 𝑑 ∈ 𝔇𝑋 , 𝑐 ⩽𝑋 𝑑 iff for all 𝑈 ∈ 𝜏𝑋 , if 𝑐 ∈ 𝑈 then 𝑑 ∈ 𝑈 .

Accordingly, we obtain an equivalent relational semantics for our language.

Proposition 4.12: On Alexandroff models 𝔐, the truth conditions for D𝑋𝜑 and 𝐷𝑛
𝑋𝑌

in Definition 4.14 are equivalent to the following:

𝑠 ⊨ D𝑋𝜑 iff for all 𝑡 ∈ 𝐴, 𝑠 ⩽𝑋 𝑡 implies 𝑡 ⊨ 𝜑

1 More precisely, ⟦𝜑⟧𝕍 ⊆ 𝑂|𝕍 | is the class of tuples of values of all variables 𝕍 given by admissible assignments
satisfying 𝜑, while ⟦𝜑⟧ is the class of admissible assignments satisfying 𝜑. In the rest of the article, we will ignore
this small difference.
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𝑠 ⊨ 𝐷𝑛
𝑋𝑌 iff for all 𝑡1, 𝑡2 ∈ 𝐴, 𝑠 ⩽𝑋 𝑡1 ⩽𝑋 𝑡2 implies 𝑔𝑛(𝑡1) ⩽𝑌 𝑔𝑛(𝑡2)

Proof The equivalence with our earlier semantics turns on the fact that each point in an
Alexandroff space has a smallest open neighborhood. For then, truth throughout some
open 𝑋-neighborhood of 𝑠 amounts to truth in all points 𝑡 with 𝑠 ⩽𝑋 𝑡, and the earlier
clauses transcribe into the relational ones. ∎

4.5.1 Axiomatizing the logic of continuous dynamic dependence

We now proceed to axiomatizing the logic DCD by modifying our earlier proof cal-
culus DFD of Table 4.1. For a start, this system is too strong for validity on dyn-topo-dep
models. For instance, the topological operators D𝑋 are essentially S4-modalities. The
modal S5-principle ¬D𝑋𝜑 → D𝑋¬D𝑋𝜑 (D-5) only holds on special topologies, though
we do have this principle in general when 𝑋 = ∅, as D∅ is the universal modality. An-
other principle that fails is D-Introduction1: when a fact is true at some point, it need
not be true in an open neighborhood around that point. Finally, since formulas 𝐷𝑛

𝑋𝑌 are
primitive now, we also need modify the principles for dependence atoms in the system
DFD.

Despite these differences, the surprising fact is that the bulk of the system DFD rep-
resents valid insights under the topological reading. For instance, the axiom Determinism
𝐷1

𝕍 𝑥, and in particular, its consequence 𝐷1
𝕍 𝕍 , captures the continuity of the dynamic

transition function 𝑔 in a natural way.1 Finally, is there also a principle characterizing the
continuity aspect of dynamic dependence? Indeed, the calculus DFD does contain such
an axiom, viz. Transfer:

𝐷𝑛
𝑋𝑌 ∧ ○𝑛D𝑌 𝜑 → D𝑋 ○𝑛 𝜑

which is still valid on dyn-topo-dep models because of continuity considerations.

Table 4.2 displays a proof system DCD for the logic DCD. It is important to no-
tice here that, although many principles are syntactically the same as those in Table 4.1,
they have quite different meanings in the topological setting. A few more details of this
meaning shift will follow after we have stated the next result.

Proposition 4.13: The proof system DCD is sound w.r.t. dyn-topo-dep models.

1 It may be worth mentioning here that the topologically valid principles 𝐷1
𝕍 𝕍 and Dyn-Trans of DFD derive the

implication ○ D𝕍 𝜑 → D𝕍 ○ 𝜑, which is a direct analogue of the key continuity axiom of Dynamic Topological
Logic (Kremer and Mints, 2007).
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Table 4.2 The Proof System DCD.

I Axioms and Rules of Classical Propositional Logic
II Axioms and Rules for ○: Part II of Table 4.1

III Axioms and Rules for D

D-Distribution D𝑋(𝜑 → 𝜓) → (D𝑋𝜑 → D𝑋𝜓)
D-Introduction 𝐷𝑛

𝑋𝑌 → D𝑋𝐷𝑛
𝑋𝑌

D-T D𝑋𝜑 → 𝜑
D-4 D𝑋𝜑 → D𝑋D𝑋𝜑
D-w5 ¬D∅𝜑 → D∅¬D∅𝜑
D-Necessitation From 𝜑, infer D𝑋𝜑
IV Axioms for 𝐷𝑛

𝑋𝑌
Dep-Inclusion 𝐷𝑋𝑌 , for all 𝑌 ⊆ 𝑋
Dep-Additivity 𝐷𝑛

𝑋𝑌 ∧ 𝐷𝑛
𝑋𝑍 → 𝐷𝑛

𝑋(𝑌 ∪ 𝑍)
Dyn-Trans 𝐷𝑛

𝑋𝑌 ∧ ○𝑛𝐷𝑚
𝑌 𝑍 → 𝐷𝑛+𝑚

𝑋 𝑍
Cont-Determinism 𝐷1

𝕍 𝕍
V Interaction Axioms: Part V of Table 4.1

We will merely highlight the key reasons for the validity of the principles.

Proof Axioms D-T and D-4 hold by the fact that all D𝑋 are S4-modalities. Also, as D∅ is
the universal modality, we have D-w5 and D-○ (Group V) as well. D-Introduction holds
by the fact that 𝐷𝑛

𝑋𝑌 is true globally on some open of a point when it is true at that point
by its truth condition in Definition 4.14.

The validity of all other non-trivial principles stems from the continuity of the tran-
sition function 𝑔 and known properties of product topologies (cf. Armstrong, 1983):

• Cont-Determinism follows directly from the continuity of the function 𝑔.
• Dep-Inclusion holds by the fact that projections w.r.t. the product topology are

continuous.
• Dep-Additivity follows from the universality property for product topology.
• Both Dyn-Trans and Transfer follow from the fact that the composition of continu-

ous functions is continuous as well. ∎
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4.5.2 Completeness of DCD: introducing dynamic preorder models

Our main remaining task is to verify that the calculus DCD is complete w.r.t. the
class of dyn-topo-dep models. In what follows, Alexandroff topologies play a central role:
completeness holds immediately if we can show that DCD is complete w.r.t. Alexandroff
models. To show the latter, our strategy is similar to the completeness proof for DFD, but
the route is a bit different, and simpler.

First, we introduce modal-style dynamic preorder models (for short, preorder mod-
els), an analogue of the general relational models in Definition 4.10.

Definition 4.15: A preorder model is a tuple ℳ = ⟨𝑊 , ⩽𝑋 , 𝑔, 𝐷𝑛
𝑋𝑌 , 𝑃 x⟩,1 where

• 𝑊 is a non-empty set of possible worlds.
• For each set 𝑋 ⊆ 𝕍 , ⩽𝑋⊆ 𝑊 × 𝑊 is a binary relation.
• 𝑔 ∶ 𝑊 → 𝑊 is a total function.
• For each 𝑛-ary predicate symbol 𝑃 and each world 𝑠 ∈ 𝑊 , 𝑃 𝑠 is an 𝑛-ary relation

on objects.
• For each 𝑠 ∈ 𝑊 , (𝐷𝑛

𝑋𝑌 )𝑠 ⊆ 𝒫(𝕍 ) × 𝒫(𝕍 ) is a relation between sets of variables 𝑋
and 𝑌 .

These components are required to satisfy the following conditions:
P1 All ⩽𝑋 are preorders, i.e., reflexive and transitive relations.
P2 ⩽∅ is the universal relation.
P3 All relations (𝐷𝑛

𝑋𝑌 )𝑠 satisfy the above principles of Dep-Inclusion, Dep-Additivity,
Dyn-Transitivity and Cont-Determinism.

P4 For all 𝑠, 𝑡 ∈ 𝑊 , if 𝑠 ⩽𝑋 𝑡 and (𝐷𝑛
𝑋𝑌 )𝑠, then 𝑔𝑛(𝑠) ⩽𝑌 𝑔𝑛(𝑡) and (𝐷𝑛

𝑋𝑌 )𝑡.

It is useful to note the following consequences of properties P3 and P4:
• If 𝑌 ⊆ 𝑋, then ⩽𝑋⊆⩽𝑌 , i.e., 𝑠 ⩽𝑋 𝑡 implies 𝑠 ⩽𝑌 𝑡.
• The function 𝑔 preserves ⩽𝕍 , i.e., 𝑠 ⩽𝕍 𝑡 implies 𝑔(𝑠) ⩽𝕍 𝑔(𝑡).2

The semantics for the logic DCD on preorder models is as follows.

Definition 4.16: Let ℳ = ⟨𝑊 , ⩽𝑋 , 𝑔, 𝐷𝑛
𝑋𝑌 , 𝑃 x⟩ be a preorder model, and let 𝑠 ∈ 𝑊 .

The truth conditions for atoms 𝑃 x, 𝐷𝑛
𝑋𝑌 , Boolean connectives and ○ are straightforward,

and that for the modality D𝑋 is standard:

1 Strictly speaking, the tuple defining the model contains families of relations and of atoms, but we will stick with
this simpler notation.

2 As usual, monotonicity plays the role of continuity in a preorder setting.
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ℳ, 𝑠 ⊨ D𝑋𝜑 iff for each 𝑡 ∈ 𝑊 , 𝑠 ⩽𝑋 𝑡 implies ℳ, 𝑡 ⊨ 𝜑.

Given these truth conditions plus the fact that Definition 4.15 has just built in the
validity of many axioms, it is not hard to check the following:

Proposition 4.14: The system DCD is sound w.r.t. dynamic preorder models.

4.5.3 The canonical model for DCD

To show that the calculus DCD is complete w.r.t. dynamic preorder models, a stan-
dard modal argument suffices, similar to the one for DFD in Section 4.3.3.

Definition 4.17: The canonical preorder model of DCD is the tuple ℳ𝑐 = ⟨𝑊 𝑐 , 𝑔𝑐 , ⩽𝑐
𝑋

, 𝑉 𝑐⟩ satisfying the following four conditions:
• 𝑊 𝑐 is the set of all maximal DCD-consistent sets.
• For all 𝑠 ∈ 𝑊 𝑐 , 𝑔𝑐(𝑠) = {𝜑 ∈ ℒ𝐷 ∣ ○𝜑 ∈ 𝑠}.
• For all 𝑠, 𝑡 ∈ 𝑊 𝑐 and 𝑋 ⊆ 𝕍 , 𝑠 ⩽𝑐

𝑋 𝑡 iff D𝑋𝑠 ⊆ 𝑡.
• 𝑠 ∈ 𝑉 𝑐(𝐷𝑛

𝑋𝑌 ) iff 𝐷𝑛
𝑋𝑌 ∈ 𝑠, and 𝑠 ∈ 𝑉 𝑐(𝑃 x) iff 𝑃 x ∈ 𝑠.

Just as with DFD, we will focus on the generated canonical submodel w.r.t. the
relation ⩽𝑐

∅. Also just as before, it can be shown that 𝑔𝑐 is well-defined:

Proposition 4.15: In the canonical preorder model ℳ𝑐 , 𝑔𝑐(𝑠) ∈ 𝑊 𝑐 .

Now, reasoning as in the proof of Proposition 4.11, we can verify the following

Proposition 4.16: The canonical preorder model is a dynamic preorder model.

Next, an Existence Lemma and Truth Lemma can be shown in modal style:

Lemma 4.5: Let ℳ𝑐 be the canonical preorder model, and 𝑠 ∈ 𝑊 𝑐 . We have:

if D̂𝑋𝜑 ∈ 𝑠, then there exists 𝑡 ∈ 𝑊 𝑐 such that 𝑠 ⩽𝑐
𝑋 𝑡 and 𝜑 ∈ 𝑡.

Lemma 4.6: Let ℳ𝑐 be the canonical preorder model, and 𝑠 ∈ 𝑊 𝑐 . Then:

ℳ𝑐 , 𝑠 ⊨ 𝜑 iff 𝜑 ∈ 𝑠.

Together, these observations establish the following result.

Theorem 4.4: The system DCD is complete w.r.t. dynamic preorder models.

This part of the completeness proof was routine: now, the real work starts.
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4.5.4 Equivalence of Alexandroff models and preorder models

In this part, we aim to clarify the relation between the class of Alexandroff models
and dynamic preorder models. In particular, as we will see,

the logic of Alexandroff models is exactly the logic of preorder models,

from which completeness of DCD w.r.t. dyn-topo-dep models follows. The displayed fact
follows from two model constructions that we will consider separately.

First, we show how each Alexandroff model induces a preorder model.

Definition 4.18: For an Alexandroff model 𝔐 = ⟨𝑂, 𝐼, 𝐴, 𝑇 , 𝑔⟩, the induced dynamic
preorder model ℳ𝔐 = ⟨𝑊 𝔐, ⩽𝔐

𝑋 , 𝑔𝔐, 𝐷𝑛
𝑋𝑌 , 𝑃 x⟩ is given as follows:

• 𝑊 𝔐 ∶= 𝐴, and 𝑔𝔐 ∶= 𝑔.
• For each 𝑋 ⊆ 𝕍 , the relation ⩽𝔐

𝑋 is the specialization preorder of the topological
space ⟨𝔇𝑋 , 𝜏𝑋⟩.

• Truth values of atoms 𝑃 x are given by the valuation of the Alexandroff model.
• (𝐷𝑛

𝑋𝑌 )𝑠 iff for all 𝑡1, 𝑡2 ∈ 𝐴, 𝑠 ⩽𝔐
𝑋 𝑡1 ⩽𝔐

𝑋 𝑡2 implies 𝑔𝑛(𝑡1) ⩽𝔐
𝑌 𝑔𝑛(𝑡2).

The last clause of this definition is essentially the relational-style truth condition
stated in Proposition 4.12 for 𝐷𝑛

𝑋𝑌 in Alexandroff models.
To see that the induced model is a preorder model, it is crucial to note that 𝐷1

𝕍 𝕍 holds
globally.1 By induction on 𝜑 ∈ ℒ𝐷, the following can then be shown.

Proposition 4.17: For each Alexandroff model 𝔐 and 𝜑 ∈ ℒ𝐷,

𝔐, 𝑠 ⊨ 𝜑 iff ℳ𝔐, 𝑠 ⊨ 𝜑.

For the other direction, we have a less simple result requiring more care.

Theorem 4.5: Each preorder model is a 𝑝-morphic image of the preorder model induced
by some Alexandroff model.

Proof The proof strategy is similar to the unraveling found with Theorem 4.2, but details
of the route are different in the topological setting.

Let ℳ = ⟨𝑊 , ⩽𝑋 , 𝑔, 𝐷𝑛
𝑋𝑌 , 𝑃 x⟩ be an arbitrary preorder model. We will construct

a new special ‘tree-like’ preorder model

1 Suppose otherwise. Then there are 𝑠, 𝑡1, 𝑡2 ∈ 𝑊 𝔐 with 𝑠 ⩽𝔐
𝕍 𝑡1 ⩽𝔐

𝕍 𝑡2 and 𝑔(𝑡1) ≰𝕄
𝕍 𝑔(𝑡2): i.e., there is an open

𝑈 ∈ 𝜏𝕍 with 𝑔(𝑡1) ∈ 𝑈 and 𝑔(𝑡2) ∉ 𝑈 . As 𝑔 is continuous, 𝑔−1[𝑈] is also an open, which contains 𝑡1 but not 𝑡2.
So, 𝑡1 ≰𝔐

𝕍 𝑡2, a contradiction.
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ℳ′ = ⟨ℋ, ⩽′
𝑋 , 𝑔′, 𝐷𝑛

𝑋𝑌 , 𝑃 x⟩

that can be associated with a concrete topological Alexandroff model, and which is also
designed so that the given ℳ is a 𝑝-morphism image of ℳ′.

The set ℋ of states consists of all finite histories ℎ = ⟨𝑠0, △1, 𝑠1, ⋯ , △𝑛, 𝑠𝑛⟩ (for
arbitrary lengths 𝑛 ∈ ℕ) such that:

• For each 𝑖 ⩽ 𝑛, 𝑠𝑖 ∈ 𝑊 , and △𝑖 is 𝑋𝑖 ⊆ 𝕍 or 𝑔.
• (a) If △𝑖 is 𝑋𝑘, then 𝑠𝑘−1 ⩽𝑋𝑘 𝑠𝑘; (b) if △𝑘 is 𝑔, then 𝑔(𝑠𝑘−1) = 𝑠𝑘.
By 𝑙𝑎𝑠𝑡(ℎ) we denote the last state in the history ℎ. The dynamic transition function

𝑔′ on ℋ is now given by the following:
• 𝑔′(ℎ) = ⟨ℎ, 𝑔, 𝑙𝑎𝑠𝑡(ℎ′)⟩.

Next, in order to present ℳ′ completely, it remains to define suitable relations ⩽′
𝑋

as well as a valuation for atoms 𝑃 x and 𝐷𝑛
𝑋𝑌 . Having done that, we will show how there

is an Alexandroff space inducing this structure.

First, we supply ranges of values for variables. For each variable 𝑥 ∈ 𝔙, set

𝔇𝑥 ∶= {(ℎ, 𝑥) ∣ ℎ ∈ ℋ}

As in Definition 4.18, this allows us to also view histories as assignments by setting

ℎ(𝑥) ∶= (ℎ, 𝑥)

The interpretation map 𝐼 is as follows, for each 𝑛-ary predicate symbol 𝑃 :
• 𝐼(𝑃 ) ∶= {⟨(ℎ, 𝑥1), ⋯ , (ℎ, 𝑥𝑛)⟩ ∣ ℎ ∈ ℋ with ℳ, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝑃 𝑥1 ⋯ 𝑥𝑛}.
Next, we move to the relations ⩽′

𝑋 . First, for each variable 𝑥 ∈ 𝕍 , we define a
one-step relation ℎ𝑅𝑥ℎ′ between histories as follows:

• ℎ is of the form ⟨ℎ0, 𝑔, 𝑡1, 𝑔, 𝑡2, ⋯ , 𝑔, 𝑡𝑛⟩ and ℎ′ is ⟨ℎ′
0, 𝑔, 𝑠1, 𝑔, 𝑠2, ⋯ , 𝑔, 𝑠𝑛⟩ such

that ℎ′
0 = ⟨ℎ0, 𝑌 , 𝑙𝑎𝑠𝑡(ℎ′

0)⟩ for some 𝑌 ⊆ 𝕍 with 𝑙𝑎𝑠𝑡(ℎ0) ⊨ 𝐷𝑛
𝑌 𝑥.

Let 𝑅∗
𝑥 be the reflexive-transitive closure of 𝑅𝑥. We define ⩽′

𝑥 on 𝔇𝑥 as follows:

(ℎ, 𝑥) ⩽′
𝑥 (ℎ′, 𝑥) iff ℎ𝑅∗

𝑥ℎ′.

Finally, the interpretation of dependence atoms 𝐷𝑛
𝑋𝑌 in the model ℳ′ arises exactly

in the way described in Definition 4.18.1

Now we are in a position to supply an associated Alexandroff model. Note that the
relations ⩽′

𝑥 are clearly reflexive and transitive because 𝑅∗
𝑥 is. Moreover, it is simple to

1 Crucially, then, its interpretation is not as free as in preorder models in general.
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see that the relation is anti-symmetric as well: moving along the relation ℎ𝑥, sizes of
histories (i.e., the number of elements in histories) become larger and larger, so ℎ ⩽′

𝑥 ℎ′

and ℎ′ ⩽′
𝑥 ℎ are followed by ℎ = ℎ′. Therefore, the relational frame ⟨𝔇𝑥, ⩽′

𝑥⟩ induces an
Alexandroff T0-space ⟨𝔇𝑥, 𝜏𝑥⟩1 whose specialization preorder is exactly the relation ⩽′

𝑥

itself.

With the preceding observation, for the rest of the completeness proof, we can con-
centrate on the structure ℳ′ = ⟨ℋ, 𝑔′, ⩽′

𝑋 , 𝐷𝑛
𝑋𝑦, 𝑃 x⟩ defined here.

Lemma 4.7: The tuple ℳ′ = ⟨ℋ, 𝑔′, ⩽′
𝑋 , 𝐷𝑛

𝑋𝑦, 𝑃 x⟩ is a dynamic preorder model.

Proof We must check all the conditions in Definition 4.15.
Claim 1. All relations ⩽′

𝑋 are preorders, and ⩽′
∅ is the universal relation.

Proof By construction, it holds obviously that ⩽′
∅ is the universal relation. Let 𝑋 ⊆ 𝕍

be an arbitrary set of variables. Recall that all those ⟨𝔇𝑥, 𝜏𝑥⟩ are essentially Alexandroff
topological T0-spaces. As noted in (Mahdi, 2010), the specialization order of a product
topology of finite many Alexandroff topological T0-spaces is exactly the intersection of
the original specialization orders. Immediately, w.r.t. the specialization order ⩽′

𝑋 of the
resulting product topological space ⟨𝔇𝑋 , 𝜏𝑋⟩, it holds that:

(ℎ, 𝑋) ⩽′
𝑋 (ℎ′, 𝑋) iff (ℎ, 𝑥) ⩽′

𝑥 (ℎ′, 𝑥) for all 𝑥 ∈ 𝑋.

Since all ⩽′
𝑥 are preorders, it is easy to see that ⩽′

𝑋 is a preorder as well. ∎

Claim 2. If ℎ ⩽′
𝑋 ℎ′ and 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛

𝑋𝑌 , then 𝑔′𝑛(ℎ) ⩽′
𝑌 𝑔′𝑛(ℎ′) and 𝑙𝑎𝑠𝑡(ℎ′) ⊨ 𝐷𝑛

𝑋𝑌 .

Proof The case that ℎ = ℎ′ is trivial. For the more general situations, it suffice to analyze
a single step. Consider ℎ𝑅𝑥ℎ′ for all 𝑥 ∈ 𝑋. We now show 𝑔′𝑛(ℎ) ⩽′

𝑌 𝑔′𝑛(ℎ′) and
𝑙𝑎𝑠𝑡(ℎ′) ⊨ 𝐷𝑛

𝑋𝑌 . Notice that ℎ′
0 = ⟨ℎ0, 𝑍, 𝑙𝑎𝑠𝑡(ℎ′

0)⟩ for some 𝑍 ⊆ 𝔙 and 𝑙𝑎𝑠𝑡(ℎ0) ⊨
𝐷𝑖

𝑍𝑋. Also, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛
𝑋𝑌 indicates that 𝑙𝑎𝑠𝑡(ℎ0) ⊨ ○𝑖𝐷𝑛

𝑋𝑌 . Therefore, by P3 of
Definition 4.15, 𝑙𝑎𝑠𝑡(ℎ0) ⊨ 𝐷𝑖+𝑛

𝑍 𝑌 . So, 𝑔′𝑛(ℎ) ⩽′
𝑌 𝑔′𝑛(ℎ′). Moreover, as 𝑙𝑎𝑠𝑡(ℎ0) ⩽𝑍

𝑙𝑎𝑠𝑡(ℎ′
0), from P4 in Definition 4.15 and 𝑙𝑎𝑠𝑡(ℎ0) ⊨ 𝐷𝑖

𝑍𝑋 it follows 𝑙𝑎𝑠𝑡(ℎ) ⩽𝑋 𝑙𝑎𝑠𝑡(ℎ′).
Now, using P4 again, from 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛

𝑋𝑌 we have 𝑙𝑎𝑠𝑡(ℎ′) ⊨ 𝐷𝑛
𝑋𝑌 . ∎

Claim 3. (𝐷𝑛
𝑋𝑌 )ℎ satisfy the conditions ‘Dep-Inclusion’, ‘Dep-Additivity’, ‘Dyn-Trans’

and ‘Cont-Determinism’.

1 In a T0-space, any two different points in can be separated by an open set.
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Proof By Definition 4.18, (𝐷𝑛
𝑋𝑌 )ℎ iff ℎ ⩽′

𝑋 ℎ′ ⩽′
𝑋 ℎ″ entails 𝑔′𝑛(ℎ′) ⩽′

𝑌 𝑔′𝑛(ℎ″). Also,
as ℳ is a preorder model, all (𝐷𝑛

𝑋𝑌 )𝑠 satisfy these conditions. So, it suffices to show that
following assertions are equivalent for all histories ℎ:

(a) For all histories ℎ′, ℎ″ ∈ ℋ, ℎ ⩽′
𝑋 ℎ′ ⩽′

𝑋 ℎ″ ⇒ 𝑔′𝑛(ℎ′) ⩽′
𝑌 𝑔′𝑛(ℎ″)

(b) ℳ, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛
𝑋𝑌

From (a) to (b). Let 𝑙𝑎𝑠𝑡(ℎ) ∶= 𝑠 and ℎ′ ∶= ⟨ℎ, 𝑋, 𝑠⟩. We are going to prove
ℳ, 𝑠 ⊨ 𝐷𝑛

𝑋𝑦. As ⩽′
𝑋 is reflexive, ℎ ⩽′

𝑋 ℎ ⩽′
𝑋 ℎ′. So, 𝑔′𝑛(ℎ) ⩽′

𝑌 𝑔′𝑛(ℎ′). Similar to that
of Theorem 4.2, it holds that 𝑔′𝑛(ℎ)𝑅𝑦𝑔′𝑛(ℎ′) for all 𝑦 ∈ 𝑌 . So, by the definition of 𝑅𝑦,
we have ℳ, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛

𝑋𝑦 for all 𝑦 ∈ 𝑌 . Consequently, from property Dep-Additivity,
we have ℳ, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛

𝑋𝑌 .

From (b) to (a). For the other direction, suppose that ℳ, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝐷𝑛
𝑋𝑌 . Let

ℎ′, ℎ″ be two histories s.t. ℎ ⩽′
𝑋 ℎ′ ⩽′

𝑋 ℎ″. Using Claim 2 twice, it is easy to see that
𝑔′𝑛(ℎ′) ⩽′

𝑌 𝑔′𝑛(ℎ″). ∎

This completes the proof for Lemma 4.7. ∎

Lemma 4.8: The function 𝑙𝑎𝑠𝑡 ∶ ℋ → 𝑊 mapping a history to its last state is a surjec-
tive 𝑝-morphism from ℳ′ to ℳ.

Proof The surjectivity of function 𝑙𝑎𝑠𝑡 is straightforward: for any 𝑠 ∈ 𝑊 , we have ℎ =
⟨𝑠⟩ ∈ ℋ. Next, by similar reasoning to that of Lemma 4.4, we can show the following
forth and back conditions for ⩽′

𝑋 and 𝑔′:
• If ℎ ⩽′

𝑋 ℎ′, then 𝑙𝑎𝑠𝑡(ℎ) ⩽𝑋 𝑙𝑎𝑠𝑡(ℎ′).
• If 𝑙𝑎𝑠𝑡(ℎ) ⩽𝑋 𝑠, then there is a history ℎ′ such that ℎ ⩽′

𝑋 ℎ′ and 𝑙𝑎𝑠𝑡(ℎ′) = 𝑠.
• If 𝑔′(ℎ) = ℎ′, then 𝑔(𝑙𝑎𝑠𝑡(ℎ)) = 𝑙𝑎𝑠𝑡(ℎ′).
• If 𝑔(𝑙𝑎𝑠𝑡(ℎ)) = 𝑠, then there is a history ℎ′ with 𝑔′(ℎ) = ℎ′ and 𝑙𝑎𝑠𝑡(ℎ′) = 𝑠.
Finally, it remains to consider the valuation function. The case for 𝑃 𝑥1 ⋯ 𝑥𝑛 is sim-

ple, which holds directly by the definition of interpretation map 𝐼 : ℳ′, ℎ ⊨ 𝑃 𝑥1 ⋯ 𝑥𝑛

iff ⟨⟨ℎ, 𝑥1⟩, ⋯ , ⟨ℎ, 𝑥𝑛⟩⟩ ∈ 𝐼(𝑃 ) iff ℳ, 𝑙𝑎𝑠𝑡(ℎ) ⊨ 𝑃 𝑥1 ⋯ 𝑥𝑛. Moreover, the case for 𝐷𝑛
𝑋𝑦

essentially has already been proved in that of Claim 3.

This completes the proof for Lemma 4.8. ∎

Now the proof of Theorem 4.5 is complete. ∎

Combining Proposition 4.17 and Theorem 4.5, it follows immediately that:
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Proposition 4.18: The same ℒ𝐷-formulas are valid on arbitrary dynamic preorder mod-
els and on Alexandroff preorder models.

Therefore, using also Proposition 4.13 and Theorem 4.4, we obtain:

Theorem 4.6: The system DCD is sound and complete for Alexandroff models.

Finally, as DCD was sound for all dyn-topo-dep models, it follows that:

Theorem 4.7: The system DCD is complete w.r.t. dyn-topo-dep models.

4.6 Summary and future work

Summary. This chapter has developed two logical systems for modeling and reasoning
about dependence in dynamical systems. Our original motivation came from patterns
of social interactions in game-like situations, but our systems can also be viewed as more
general logics of dependence. In particular, our proposals took both the dependence quan-
tifiers D𝑋𝜑 and the dynamic dependence formulas 𝐷𝑛

𝑋𝑦 into account:
• Dependence quantifiers 𝐷𝑋𝜑 together with the temporal operator ○ captured de-

pendence across successive actions.
• Dynamic dependence formulas characterized dependencies between actions of

agents in social scenarios.
The two sorts of dependence also had various interactions captured by our logics which
could then in principle be used to analyze the graph games of our earlier chapters, though
we did not pursue this direction here.

Our first system DFD was concerned with dependence between variables and step-
by-step temporal progression. Axiomatizing this logic required the use of abstract modal
methods, and the proof patterns presented here may well have a much larger scope. As
an aside, we also presented some results on first-order translation and bisimulation that
clarify the expressive power of DFD. Also, we showed that its fragment not containing
D∅𝜑 or 𝐷𝑛

∅𝑦 is decidable.
Next, adding the topological structure found in many dynamical systems, we pre-

sented the system DCD with a language enriched with modalities for topological interior
that can also reason about continuous transition functions and continuous forms of dy-
namic dependence. This language has a proof system with new topological content, and
we showed its completeness making adjustments to the DFD case in order accommodate
the topological structure.
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In this way, we have connected several varieties of modal logic: topological log-
ics, modal dependence logic, and temporal logic, or stated differently, we have linked up
between modal dependence logic and dynamic temporal logic.

Further directions. Several open problems remain about the two systems presented here.
A striking one is the decidability and computational complexity of the whole logics. An-
other obvious issue is a proof-theoretic Gentzen-style treatment of the two systems, as has
already been given for basic modal dependence logic.

Next, our languages are relatively poor. One natural direction would be adding the
standard temporal future operator which allows us to reason about the eventual long-
term behavior of dynamical systems. This may well be a challenging direction, given
the experience in dynamic topological logic (Kremer and Mints, 2007). Another natural
language extension would move from the bare variables that we have employed to allow
function terms of various sorts: static and dynamic.

Also, our models are rather simple, in that they identify states with variable assign-
ments. This feature can be generalized in various ways, and one setting where more ab-
stract states naturally surface is in exploring the rich topological structure that we have
introduced. We have studied one particular form of continuous dynamic dependence, but
many alternatives make sense in empirical science, such as the ‘stable’ and ‘sensitive’
readings of dynamic continuous dependence introduced in Section 4.4.1.

Finally, dynamical systems remain highly abstract in this theoretical and foundational
chapter. Much more structure will come to light when we apply the logics presented here
to concrete settings such as dynamic Markov models for social processes over time.
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Appendix: Decidability of a fragment of DFD

We will show that the fragment of logic DFD without 𝐷𝑛
∅𝑦 and D∅𝜑 has the finite

model property, making its decidable. We begin with the following syntactic notion:

Definition 4.19: Let 𝜑 be an ℒD-formula. The temporal depth of 𝜑, td(𝜑), is recursively
defined as follows:

• td(𝑃 𝑥1 ⋯ 𝑥𝑛) = 0
• td(¬𝜑) = td(D𝑋𝜑) = td(𝜑)
• td(𝜑 ∧ 𝜓) = max{td(𝜑), td(𝜓)}
• td(○𝜑) = td(𝜑) + 1
• td(𝐷𝑛

𝑋𝑦) = 𝑛

Also, for a set 𝛷 ⊆ ℒD of formulas, td(𝛷) = max{td(𝜑) ∣ 𝜑 ∈ 𝛷}. Moreover, let us
introduce another notion of ‘strong closure’ for finite sets of ℒD-formulas:

Definition 4.20: Let 𝛷 be a finite set of ℒD-formulas with td(𝛷) = 𝑘. We denote by 𝕍𝛷

the set of all variables occurring in 𝛷. The set 𝛷 is strongly closed if:
(𝑆𝐶1). If ○𝑛+1𝜑 ∈ 𝛷, then ○𝑛𝜑 ∈ 𝛷.
(𝑆𝐶2). If ○𝑛D𝑋𝜑 ∈ 𝛷, then ○𝑛𝜑 ∈ 𝛷.
(𝑆𝐶3). If ○𝑛¬𝜑 ∈ 𝛷, then ○𝑛𝜑 ∈ 𝛷.
(𝑆𝐶4). If ○𝑛(𝜑1 ∧ 𝜑2) ∈ 𝛷, then ○𝑛𝜑1 ∈ 𝛷 and ○𝑛𝜑2 ∈ 𝛷.
(𝑆𝐶5). For all non-empty 𝑋 ⊆ 𝕍𝛷 and 𝑦 ∈ 𝕍𝛷, 𝐷𝑘

𝑋𝑦 ∈ 𝛷.
(𝑆𝐶6). If ○𝑛𝐷𝑚

𝑋𝑦 ∈ 𝛷, then ○𝑛′𝐷𝑚′
𝑋′𝑦′ ∈ 𝛷 for all 𝑛′ + 𝑚′ = 𝑛 + 𝑚, ∅ ≠ 𝑋′ ⊆ 𝕍𝛷

and 𝑦′ ∈ 𝕍𝛷.
(𝑆𝐶7). If 𝜑 ∈ 𝛷 includes no operator D𝑋 for any 𝑋 ⊆ 𝕍𝛷, then D𝑋𝜑 ∈ 𝛷 for all

non-empty 𝑋 ⊆ 𝕍𝛷.
(𝑆𝐶8). If ○𝑚D𝑋 ○𝑛 𝜑 ∈ 𝛷, then ○𝑚′D𝑌 ○𝑛′ 𝜑 ∈ 𝛷 for all non-empty 𝑌 ⊆ 𝕍𝛷 and

𝑚′ + 𝑛′ = 𝑚 + 𝑛.
For a finite set 𝛹 of formulas, 𝐶𝑙(𝛹) denotes its strong closure, i.e., the smallest closed
set of formulas containing 𝛹 . When 𝛹 is a singleton {𝜑}, we use 𝐶𝑙(𝜑) for 𝐶𝑙({𝜑}).

It is not hard to see that the strong closure of a finite set is also finite. Also, by a
simple induction on the structure of formulas, it holds that:

Proposition 4.19: For any 𝛹 ⊆ ℒD, if it satisfies conditions (𝑆𝐶1)-(𝑆𝐶4), then it is
closed under subformulas.
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Another simple observation is as follows:

Proposition 4.20: For any 𝛹 ⊆ ℒD satisfying (𝑆𝐶6)-(𝑆𝐶8), if ○𝑛𝐷𝑚
𝑋𝑦 ∈ 𝛹 , then

○𝑛′D𝑋′𝐷𝑚′
𝑋′𝑦′ ∈ 𝛹 for all 𝑛′ + 𝑚′ = 𝑛 + 𝑚, non-empty 𝑋′ ⊆ 𝕍𝛹 and 𝑦′ ∈ 𝕍𝛹 .

Additionally, it also holds that:

Proposition 4.21: For any 𝛹 ⊆ ℒD satisfying (𝑆𝐶1), (𝑆𝐶5) and (𝑆𝐶6), if td(𝛹) = 𝑘,
then for all 𝑗 ⩽ 𝑘, and non-empty 𝑋 ⊆ 𝕍𝛹 and 𝑦 ∈ 𝕍𝛹 , it holds that 𝐷𝑗

𝑋𝑦 ∈ 𝛹 .

We now introduce some useful notions. Let 𝜑 ∈ ℒD. We call ⟨+, 𝜑⟩ and ⟨−, 𝜑⟩
signed formulas. For brevity, we often write +𝜑 for ⟨+, 𝜑⟩, and −𝜑 for ⟨−, 𝜑⟩. A pseudo-
atom is a set of signed formulas. For any pseudo-atom 𝛼, define |𝛼| ∶= {𝜑 ∣ +𝜑 ∈ 𝛼 or −
𝜑 ∈ 𝛼}, and say that 𝛼 is strong closed if |𝛼| is strong closed. Also, set td(𝛼) ∶= td(|𝛼|).
Now we define a notion of ‘identification’ for pseudo-atoms 𝛼 (written I(𝛼)):

• When 𝛼 = ∅, I(𝛼) ∶= 𝐷𝑥𝑥; and
• When 𝛼 ≠ ∅, I(𝛼) ∶= ⋀+𝜑𝑖∈𝛼 𝜑𝑖 ∧ ⋀−𝜑𝑗∈𝛼 ¬𝜑𝑗 .

For instance, when 𝛼 = {−𝜑1, +𝜑2, −𝜑3}, I(𝛼) = ¬𝜑1 ∧ 𝜑2 ∧ ¬𝜑3. Furthermore, we say
a pseudo-atom 𝛼 is consistent just in case its identification I(𝛼) is consistent.

Definition 4.21: Given a strong closed 𝛷 ⊆ ℒD, a 𝛷-atom is ∅ or any consistent strong
closed pseudo-atom 𝛼 with |𝛼| ⊆ 𝛷 and 𝕍|𝛼| = 𝕍𝛷.

For any strong closed 𝛷 ⊆ ℒD and non-empty 𝛷-atom 𝛼, condition 𝕍|𝛼| = 𝕍𝛷

together with the consistency of 𝛼 ensures +𝐷𝑋𝑥 ∈ 𝛼 for all 𝑥 ∈ 𝑋 ⊆ 𝕍𝛷.
In what follows, we also write +𝐷𝑛

𝑋𝑌 ∈ 𝛼 when +𝐷𝑛
𝑋𝑦 ∈ 𝛼 for all 𝑦 ∈ 𝑌 . Now, let

us introduce the following notion of ‘𝛷-model’ for strong closed 𝛷 ⊆ ℒD:

Definition 4.22: Let 𝛷 ⊆ ℒD be a strong closed set. The 𝛷-model is a tuple ℳ𝛷 =
{𝑊 𝛷, 𝑔𝛷, =𝛷

𝑋 , 𝑉 𝛷} defined as follows:
M1. 𝑊 𝛷 = {𝛼 ∣ 𝛼 is a 𝛷-atom}.
M2. 𝑔𝛷(𝛼) = {+𝜑 ∣ + ○ 𝜑 ∈ 𝛼} ∪ {−𝜑 ∣ − ○ 𝜑 ∈ 𝛼}.
M3. For all non-empty 𝑋 ⊆ 𝕍𝛷, 𝛼 =𝛷

𝑋 𝛽 iff
M3.1. For all 𝐷𝑛

𝑋𝑌 , +𝐷𝑛
𝑋𝑌 ∈ 𝛼 ⇔ +𝐷𝑛

𝑋𝑌 ∈ 𝛽, and
M3.2. When +𝐷𝑛

𝑋𝑌 ∈ 𝛼 (or equivalently, +𝐷𝑛
𝑋𝑌 ∈ 𝛽), for all ○𝑛D𝑌 𝜑 ∈ ℒD, it

holds + ○𝑛 D𝑌 𝜑 ∈ 𝛼 ⇔ + ○𝑛 D𝑌 𝜑 ∈ 𝛽.
M4. For all 𝑃 x, 𝑉 𝛷(𝑃 x) = {𝛼 ∣ +𝑃 x ∈ 𝛼}. For all dynamic dependence formulas 𝐷𝑛

𝑋𝑦,
𝑉 𝛷(𝐷𝑋𝑦) is defined as follows:
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M4.1. For all 𝑛 ∈ ℕ, 𝑉 𝛷(𝐷𝑛
𝕍𝛷

𝑥) = 𝑊 𝛷

M4.2. For all 𝑦 ∈ 𝑋 ⊆ 𝕍𝛷, 𝑉 𝛷(𝐷𝑋𝑦) = 𝑊 𝛷

M4.3. For all other 𝐷𝑛
𝑋𝑦, 𝑉 𝛷(𝐷𝑛

𝑋𝑦) is the smallest set satisfying the following:
M4.3.1. If +𝐷𝑛

𝑋𝑦 ∈ 𝛼, then 𝛼 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑦)

M4.3.2. If +𝐷𝑚
𝑋𝕍𝛷 ∈ 𝛼 for some 𝑚 ⩽ 𝑛, then 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑦).

Proposition 4.22: The valuation function in the definition above is well-defined.

Here are some observations and comments on 𝛷-models:
• Model ℳ𝛷 is finite whenever 𝛷 is so.
• For all 𝑋 ≠ ∅, if 𝛼 =𝛷

𝑋 𝛽, then 𝛼 = ∅ iff 𝛽 = ∅.
• Clauses M4.3.1 and M4.3.2 ensure that 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑦) for all valid 𝐷𝑛
𝑋𝑦.

• For all 𝐷𝑛
𝑋𝑦 with 𝑛 ⩽ td(𝛼), it holds 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑦) iff +𝐷𝑛
𝑋𝑦 ∈ 𝛼.

Here, it is crucial to point out that the function 𝑔𝛷 in the 𝛷-model is well-defined on
the domain 𝑊 𝛷, in the sense of the following:

Proposition 4.23: For a strong closed set 𝛷 ⊆ ℒD, if 𝛼 is a 𝛷-atom, then 𝑔𝛷(𝛼) is also
a 𝛷-atom. As a consequence, 𝑔𝛷(𝛼) ∈ 𝑊 𝛷.

Proof Assume that 𝛼 is a 𝛷-atom. The case that 𝑔𝛷(𝛼) = ∅ is trivial. We now consider
𝑔𝛷(𝛼) ≠ ∅. Then, obviously 𝕍𝛷 = 𝕍|𝛼| = 𝕍|𝑔𝛷(𝛼)|. Now it suffices to show that: (1).
𝑔𝛷(𝛼) is consistent; (2). |𝑔𝛷(𝛼)| ⊆ 𝛷; and (3). 𝑔𝛷(𝛼) is strong closed. Let us begin.

(1). As 𝛼 is consistent, ⋀+○𝜑𝑖∈𝛼 ○𝜑𝑖 ∧⋀−○𝜑𝑗∈𝛼 ¬○𝜑𝑗 is consistent as well. There-
fore, ⋀+○𝜑𝑖∈𝛼 𝜑𝑖 ∧ ⋀−○𝜑𝑗∈𝛼 ¬𝜑𝑗 is consistent. By the definition of 𝑔𝛷, it follows that
I(𝑔𝛷(𝛼)) = ⋀+𝜑𝑖∈𝑔𝛷(𝛼) 𝜑𝑖 ∧ ⋀−𝜑𝑗∈𝑔𝛷(𝛼) ¬𝜑𝑗 is consistent, as desired.

(2). Suppose that 𝜑 ∈ |𝑔𝛷(𝛼)|. Then, ○𝜑 ∈ |𝛼|. As 𝛼 is strong closed, |𝛼| is
closed under subformulas (recall Proposition 4.19). Thus, 𝜑 ∈ |𝛼|. Since 𝛼 is a 𝛷-atom,
|𝛼| ⊆ 𝛷. Consequently, 𝜑 ∈ 𝛷. Therefore, |𝑔𝛷(𝛼)| ⊆ 𝛷.

(3). We now prove that |𝑔𝛷(𝛼)| satisfies the closure conditions (𝑆𝐶1)-(𝑆𝐶8). To see
this, it is crucial to notice that |𝛼| satisfies them as well. For details, we merely show that
for (𝑆𝐶7)-(𝑆𝐶8), and all others are routine.

(𝑆𝐶7). Assume that 𝜑 ∈ |𝑔𝛷(𝛼)| includes no operator D𝑋 for any 𝑋 ⊆ 𝕍𝛷. Let
𝑌 ⊆ 𝕍𝛷 be non-empty. We now show D𝑌 𝜑 ∈ |𝑔𝛷(𝛼)|. From 𝜑 ∈ |𝑔𝛷(𝛼)|, it follows
that ○𝜑 ∈ |𝛼|. By clause (𝑆𝐶7), it holds that D𝑌 ○ 𝜑 ∈ |𝛼|. Then, as |𝛼| also satisfies
(𝑆𝐶7), ○D𝑌 𝜑 ∈ |𝛼|. Immediately, D𝑌 𝜑 ∈ |𝑔𝛷(𝛼)|.
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(𝑆𝐶8). Suppose that ○𝑚D𝑋 ○𝑛 𝜑 ∈ |𝑔𝛷(𝛼)|. Let 𝑌 ⊆ 𝕍𝛷 be non-empty, and
𝑚′, 𝑛′ ∈ ℕ such that 𝑚 + 𝑛 = 𝑚′ + 𝑛′. We are going to prove ○𝑚′D𝑌 ○𝑛′ 𝜑 ∈ |𝑔𝛷(𝛼)|. It
is easy to see that ○𝑚+1D𝑋 ○𝑛 𝜑 ∈ |𝛼|. Since 𝑚 + 1 + 𝑛 = 𝑚′ + 1 + 𝑛′ and |𝛼| satisfies
(𝑆𝐶8), ○𝑚′+1D𝑌 ○𝑛′ 𝜑 ∈ |𝛼|. Consequently, ○𝑚′D𝑌 ○𝑛′ 𝜑 ∈ |𝛼|, as expected. ∎

We now prove that ℳ𝛷 is a general relational model, i.e., its components satisfy the
conditions imposed in Definition 4.10. First of all, the following holds:

Proposition 4.24: Let 𝛷 ⊆ ℒD be strong closed and 𝑋 ⊆ 𝕍𝛷 be non-empty. The
relation =𝛷

𝑋 is an equivalence relation.

Proof It is easy to see that the relation =𝛷
𝑋 is reflexive and symmetric. Thus, it remains

to prove that it is transitive.
Let 𝛼 =𝛷

𝑋 𝛽 and 𝛽 =𝛷
𝑋 𝛾 . Note that 𝛼 = ∅ is trivial, as it implies 𝛽 = 𝛾 = ∅. We

now consider the case that 𝛼 ≠ ∅. Then, for any 𝐷𝑛
𝑋𝑌 , it is simple to see that:

+𝐷𝑛
𝑋𝑌 ∈ 𝛼 ⇔ +𝐷𝑛

𝑋𝑌 ∈ 𝛽 ⇔ +𝐷𝑛
𝑋𝑌 ∈ 𝛾.

Also, assume that +𝐷𝑛
𝑋𝑌 ∈ 𝛼, then it is a matter of direct checking that:

+ ○𝑛 D𝑌 𝜑 ∈ 𝛼 ⇔ + ○𝑛 D𝑌 𝜑 ∈ 𝛽 ⇔ + ○𝑛 D𝑌 𝜑 ∈ 𝛾.

This completes the proof. ∎

Next, we have the following:

Proposition 4.25: Let ℳ𝛷 be the 𝛷-model. For each 𝛷-atom 𝛼, (𝐷𝑛
𝑋𝑦)𝛼 satisfies ‘Dep-

Reflexivity’, ‘Dyn-Transitivity’ and ‘Determinism’.

Proof From Definition 4.22, it is easy to see that clauses M4.1 and M4.2 guarantee that
(𝐷𝑛

𝑋𝑦)𝛼 satisfies ‘Determinism’ and ‘Dep-Reflexivity’ respectively. We still need to prove
that (𝐷𝑛

𝑋𝑦)𝛼 has property ‘Dyn-Transitivity’ as well. Now assume that 𝛼 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑌 )

and (𝑔𝛷)𝑛(𝛼) ∈ 𝑉 𝛷(𝐷𝑚
𝑌 𝑍). There are different situations.

(1). Consider that (𝑔𝛷)𝑛(𝛼) = ∅. Then, there are still two cases: 𝛼 = ∅ and 𝛼 ≠ ∅.
(1.1). Consider that 𝛼 = ∅. When 𝑛 = 0, it holds that 𝑌 ⊆ 𝑋. So, from ∅ ∈

𝑉 𝛷(𝐷𝑚
𝑌 𝑍) it follows that (𝑔𝛷)𝑛(𝛼) ∈ 𝑉 𝛷(𝐷0+𝑚

𝑋 𝑍), i.e., 𝛼 ∈ 𝑉 𝛷(𝐷𝑛+𝑚
𝑋 𝑍). Also, the

case is similar when 𝑚 = 0. We now proceed to consider 𝑛, 𝑚 ≠ 0. Then, we have
𝑋 = 𝑌 = 𝕍𝛷. Therefore, it holds directly that 𝛼 ∈ 𝑉 𝛷(𝐷𝑛+𝑚

𝑋 𝑍).
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(1.2). The case is that 𝛼 ≠ ∅. As (𝑔𝛷)𝑛(𝛼) = ∅, 𝐷𝑛
𝑋𝑌 ∉ |𝛼|. So, from clause M4.3.2

we know that there is some 𝑖 < 𝑛 such that +𝐷𝑖
𝑋𝕍𝛷 ∈ 𝛼. Immediately, 𝛼 ∈ 𝑉 𝛷(𝐷𝑛+𝑚

𝑋 𝑍).

(2). Let us move to (𝑔𝛷)𝑛(𝛼) ≠ ∅. Thus, 𝛼 ≠ ∅. Again, there are two cases
+𝐷𝑚

𝑌 𝑍 ∈ (𝑔𝛷)𝑛(𝛼) and +𝐷𝑚
𝑌 𝑍 ∉ (𝑔𝛷)𝑛(𝛼).

(2.1). First, we consider +𝐷𝑚
𝑌 𝑍 ∈ (𝑔𝛷)𝑛(𝛼). Then, + ○𝑛 𝐷𝑚

𝑌 𝑍 ∈ 𝛼. So, from clause
(𝑆𝐶6), it follows 𝐷𝑚+𝑛

𝑋 𝑍 ∈ |𝛼|. As 𝛼 is consistent, we have +𝐷𝑚+𝑛
𝑋 𝑍 ∈ 𝛼. By M4.3.1,

𝛼 ∈ 𝑉 𝛷(𝐷𝑛+𝑚
𝑋 𝑍).

(2.2). Next, we proceed to show that for +𝐷𝑚
𝑌 𝑍 ∉ (𝑔𝛷)𝑛(𝛼). Then, by M4.3.2, we

have +𝐷𝑖
𝑌 𝕍𝛷 ∈ (𝑔𝛷)𝑛(𝛼) for some 𝑖 < 𝑚. By the same reasoning as in the proof of (2.1)

above, but using 𝑖 and 𝕍𝛷 in place of 𝑚 and 𝑍 respectively, we have +𝐷𝑖+𝑛
𝑋 𝕍𝛷 ∈ 𝛼. Now,

with M4.3.2 we have 𝛼 ∈ 𝑉 𝛷(𝐷𝑛+𝑚
𝑋 𝑍), as desired. ∎

Besides, we also need to prove that:

Proposition 4.26: Let ℳ𝛷 be the 𝛷-model. If 𝛼 =𝛷
𝑋 𝛽 and 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 ), then it
holds (𝑔𝛷)𝑛(𝛼) =𝛷

𝑌 (𝑔𝛷)𝑛(𝛽) and 𝛽 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑌 ).

Proof When 𝛼 = ∅, we have 𝛼 = 𝛽 = (𝑔𝛷)𝑛(𝛼) = (𝑔𝛷)𝑛(𝛽) = ∅. So, it follows that
(𝑔𝛷)𝑛(𝛼) =𝛷

𝑌 (𝑔𝛷)𝑛(𝛽) and 𝛽 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑌 ). We now proceed to show that for 𝛼 ≠ ∅.

There are also two different cases (𝑔𝛷)𝑛(𝛼) = ∅ and (𝑔𝛷)𝑛(𝛼) ≠ ∅.

(1). (𝑔𝛷)𝑛(𝛼) = ∅. First, we show that (𝑔𝛷)𝑛(𝛽) is ∅ as well. Suppose not. Then,
by Proposition 4.21 it is not hard to check that 𝐷𝕍𝛷𝑥 ∈ |(𝑔𝛷)𝑛(𝛽)|. So, ○𝑛𝐷𝕍𝛷𝑥 ∈ |𝛽|.
Therefore, from (𝑆𝐶6), it follows 𝐷𝑛

𝕍𝛷
𝑥 ∈ |𝛽|. As 𝛽 is consistent, +𝐷𝑛

𝕍𝛷
𝑥 ∈ 𝛽. So,

𝛼 =𝛷
𝑋 𝛽 is followed by +𝐷𝑛

𝕍𝛷
𝑥 ∈ 𝛼. Again, using (𝑆𝐶6), it is not hard to check that

(𝑔𝛷)𝑛(𝛼) ≠ ∅, a contradiction. Immediately, (𝑔𝛷)𝑛(𝛼) =𝛷
𝑌 (𝑔𝛷)𝑛(𝛽).

Next, we show that 𝛽 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑌 ). When 𝑋 = 𝕍𝛷, it holds directly 𝛽 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 )
by clause M4.1 of Definition 4.22. It remains to show that for 𝑋 ≠ 𝕍𝛷. From the reasoning
above, 𝑛 ⩽ 1. Also, it is easy to see that 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 ) comes from M4.3.2, i.e., there is
some 𝑚 < 𝑛 such that +𝐷𝑚

𝑋𝕍𝛷 ∈ 𝛼. As 𝛼 =𝛷
𝑋 𝛽, +𝐷𝑚

𝑋𝕍𝛷 ∈ 𝛽. So, using M4.3.2 once
more, we have 𝛽 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 ).

(2). Let us move to (𝑔𝛷)𝑛(𝛼) ≠ ∅.
(2.1). We first consider the case that 𝑋 = ∅. Then, by clause M3 it holds trivially

that (𝑔𝛷)𝑛(𝛼) =𝛷
∅ (𝑔𝛷)𝑛(𝛽). Also, it is worth noting that (𝑔𝛷)𝑛(𝛼) ≠ ∅ and 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 )
are followed by +𝐷𝑛

𝑋𝑌 ∈ 𝛼. So, from 𝛼 =𝛷
𝑋 𝛽 it follows that +𝐷𝑛

𝑋𝑌 ∈ 𝛽. Therefore,
𝛽 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 ).
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(2.2). We now consider the case that 𝑋 ≠ ∅. By similar reasoning to the case above,
we have +𝐷𝑛

𝑋𝑌 ∈ 𝛼 and 𝛽 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑌 ). It remains to show (𝑔𝛷)𝑛(𝛼) =𝛷

𝑌 (𝑔𝛷)𝑛(𝛽),
which can be achieved by two steps.

(2.2.1). Let +𝐷𝑚
𝑌 𝑍 ∈ (𝑔𝛷)𝑛(𝛼). We are going to show that +𝐷𝑚

𝑌 𝑍 ∈ (𝑔𝛷)𝑛(𝛽).
Obviously, + ○𝑛 𝐷𝑚

𝑌 𝑍 ∈ 𝛼. As ○𝑛𝐷𝑚
𝑌 𝑍 ∈ |𝛼|, from Proposition 4.20 we have

○𝑛D𝑌 𝐷𝑚
𝑌 𝑍 ∈ |𝛼|. Now, by the consistency of 𝛼, it is easy to see + ○𝑛 D𝑌 𝐷𝑚

𝑌 𝑍 ∈ 𝛼.
Also, as +𝐷𝑛

𝑋𝑌 ∈ 𝛼 and 𝛼 =𝛷
𝑋 𝛽, it holds + ○𝑛 D𝑌 𝐷𝑚

𝑌 𝑍 ∈ 𝛽. Then, from clause
(𝑆𝐶2) and the consistency of 𝛽, it follows that + ○𝑛 𝐷𝑚

𝑌 𝑍 ∈ 𝛽. By the definition of 𝑔𝛷,
+𝐷𝑚

𝑌 𝑍 ∈ 𝛽. The other direction is proved in a similar manner.
(2.2.2). Let +𝐷𝑚

𝑌 𝑍, + ○𝑚 D𝑍𝜑 ∈ (𝑔𝛷)𝑛(𝛼). We will prove + ○𝑚 D𝑍𝜑 ∈ (𝑔𝛷)𝑛(𝛼).
From (2.2.1) above, it holds that +𝐷𝑚

𝑌 𝑍 ∈ (𝑔𝛷)𝑛(𝛽). Moreover, + ○𝑚+𝑛 D𝑍𝜑 ∈ 𝛼 and
+ ○𝑛 𝐷𝑚

𝑌 𝑍 ∈ 𝛼. Then, by the clause (𝑆𝐶6), we have 𝐷𝑚+𝑛
𝑋 𝑍 ∈ |𝛼|. Recall +𝐷𝑛

𝑋𝑌 ∈ 𝛼.
By the consistency of 𝛼, it follows that +𝐷𝑚+𝑛

𝑋 𝑍 ∈ 𝛼. Hence, from 𝛼 =𝛷
𝑋 𝛽 we know

+ ○𝑚+𝑛 D𝑍𝜑 ∈ 𝛽. Immediately, we have + ○𝑚 D𝑍𝜑 ∈ (𝑔𝛷)𝑛(𝛽). Again, the other
direction is similar.

Now the proof is completed. ∎

Moreover, it holds that:

Proposition 4.27: Let ℳ𝛷 be the 𝛷-model. If 𝛼 =𝛷
𝑋 𝛽, (𝑔𝛷)𝑛(𝛼) ∈ 𝑉 𝛷(𝑃 y) and

𝛼 ∈ 𝑉 𝛷(𝐷𝑛
𝑋𝑌 ) (𝑌 is the set of variables occurring in y), then (𝑔𝛷)𝑛(𝛽) ∈ 𝑉 𝛷(𝑃 y).

Proof From (𝑔𝛷)𝑛(𝛼) ∈ 𝑉 𝛷(𝑃 y) it follows that +𝑃 y ∈ (𝑔𝛷)𝑛(𝛼) (recall clause M4 in
Definition 4.22). Hence, + ○𝑛 𝑃 y ∈ 𝛼. Consequently, td(𝛼) ⩾ 𝑛. By Proposition 4.21, it
is simple to see that 𝛼 ∈ 𝑉 𝛷(𝐷𝑛

𝑋𝑌 ) is followed by +𝐷𝑛
𝑋𝑌 ∈ 𝛼. Obviously, formula ○𝑛𝑃 y

includes no dependence quantifiers. So, by clause (𝑆𝐶7), it holds that D𝑌 ○𝑛 𝑃 y ∈ |𝛼|.
Then, by clause (𝑆𝐶8), it follows that ○𝑛D𝑌 𝑃 y ∈ |𝛼|. Note that 𝑌 is the set of variables
occurring in the tuple y. Thus, by the consistency of 𝛼, it holds + ○𝑛 D𝑌 𝑃 y ∈ 𝛼. Now,
as 𝛼 =𝛷

𝑋 𝛽, from +𝐷𝑛
𝑋𝑌 , + ○𝑛 D𝑌 𝑃 y ∈ 𝛼 we know that + ○𝑛 D𝑌 𝑃 y ∈ 𝛽. By clause

(𝑆𝐶2), it follows that ○𝑛𝑃 y ∈ |𝛽|. Since 𝛽 is consistent, + ○𝑛 𝑃 y ∈ 𝛽. Then, we have
+𝑃 y ∈ (𝑔𝛷)𝑛(𝛽). Immediately, 𝑔𝛷𝑛(𝛽) ∈ 𝑉 𝛷(𝑃 y). ∎

Then, from Proposition 4.24-4.27, it follows immediately that:

Proposition 4.28: For any strong closed 𝛷 ⊆ ℒD, the 𝛷-model ℳ𝛷 is a general rela-
tional model (without the clause on universal relation =∅).
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Furthermore, we have the following result:

Proposition 4.29: Given a strong closed 𝛷 ⊆ ℒD, let ℳ𝛷 be the 𝛷-model and 𝛼 ≠ ∅
a 𝛷-atom. If +𝜑 ∈ 𝛼 or −𝜑 ∈ 𝛼, then:

𝛼 ⊨ 𝜑 ⇔ +𝜑 ∈ 𝛼.

Proof The proof goes by induction on 𝜑 ∈ ℒD. Suppose that +𝜑 ∈ 𝛼 or −𝜑 ∈ 𝛼.
The case for atoms follows from the definition of 𝑉 𝛷 directly. The cases for Boolean
connectives ¬, ∧ are routine. We now consider ○𝜓 and D𝑋𝜓 .

(1). 𝜑 is ○𝜓 . 𝛼 ⊨ 𝜑 iff 𝑔𝛷(𝛼) ⊨ 𝜓 . As + ○ 𝜓 ∈ 𝛼 or − ○ 𝜓 ∈ 𝛼, 𝑔𝛷(𝛼) ≠ ∅.
Then, by the inductive hypothesis, 𝑔𝛷(𝛼) ⊨ 𝜓 iff +𝜓 ∈ 𝑔𝛷(𝛼). Now, by the definition of
𝑔𝛷, +𝜓 ∈ 𝑔𝛷(𝛼) iff + ○ 𝜓 ∈ 𝛼.

(2). 𝜑 is D𝑋𝜓 . Here we consider the two directions separately. Let us begin with
the easy part.

(2.1). Assume that +D𝑋𝜓 ∈ 𝛼. Let 𝛽 be a 𝛷-atom such that 𝛼 =𝛷
𝑋 𝛽. Clearly,

𝛽 ≠ ∅. Also, +𝐷𝑋𝑋 ∈ 𝛼. By the definition of =𝛷
𝑋 , it holds that +D𝑋𝜓 ∈ 𝛽. Also, as

𝛽 is consistent, we obtain +𝜓 ∈ 𝛽. By the inductive hypothesis, it follows that 𝛽 ⊨ 𝜓 .
Consequently, 𝛼 ⊨ D𝑋𝜓 .

(2.2). Suppose that +D𝑋𝜓 ∉ 𝛼. Let 𝛤 = {+𝐷𝑛
𝑋𝑌 ∣ +𝐷𝑛

𝑋𝑌 ∈ 𝛼} ∪ {+ ○𝑛 D𝑌 𝜑′ ∈
𝛼 ∣ +𝐷𝑛

𝑋𝑌 ∈ 𝛼} and 𝛤 ′ = 𝛤 ∪ {−𝜓}. It is easy to see that 𝕍𝛷 = 𝕍|𝛤 | = 𝕍|𝛤 ′|. To prove
𝛼 ⊭ D𝑋𝜓 , we are going to take 2 steps:

• First, we prove that 𝛤 ′ is consistent.
• Next, we construct a non-empty 𝛷-atom 𝛽 such that 𝛤 ′ ⊆ 𝛽 and 𝛼 =𝛷

𝑋 𝛽.
Given these, we have −𝜓 ∈ 𝛽. Then, by the inductive hypothesis, 𝛽 ⊭ 𝜓 . Thus, 𝛼 ⊭
D𝑋𝜓 . Now let us begin to prove them.

(2.2.1). We suppose for reductio that the pseudo-atom 𝛤 ′ is inconsistent. Then,
as 𝛤 is consistent, it follows that I(𝛤 ) → 𝜓 . Consequently, D𝑋I(𝛤 ) → D𝑋𝜓 . Note
that the identification I(𝛤 ) is a conjunction of formulas of the forms 𝐷𝑛

𝑋𝑌 and ○𝑛D𝑌 𝜑′.
Moreover, whenever ○𝑛D𝑌 𝜑′ is a conjunct of I(𝛤 ), 𝐷𝑛

𝑋𝑌 is also a conjunct of I(𝛤 ).
Thus, we have I(𝛤 ) ↔ D𝑋I(𝛤 ). So, I(𝛤 ) → D𝑋𝜓 . However, +D𝑋𝜓 ∉ 𝛼 is followed by
−D𝑋𝜓 ∈ 𝛼. Immediately, 𝛼 is inconsistent, a contradiction. The first step is completed.

(2.2.2). Next, we construct a 𝛷-atom 𝛽 such that 𝛤 ′ ⊆ 𝛽 and 𝛼 =𝛷
𝑋 𝛽. Note that it is

possible that 𝛤 ′ ⊆ 𝛼 (i.e., −𝜓 ∈ 𝛼), as 𝛤 ′ is consistent. If so, 𝛼 itself is exactly what we
need: by the inductive hypothesis, we have 𝛼 ⊭ 𝜓 . Consequently, we obtain 𝛼 ⊭ D𝑋𝜓 ,
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as 𝛼 =𝛷
𝑋 𝛼. In what follows, we consider the other case that −𝜓 ∉ 𝛼. Since −D𝑋𝜓 ∈ 𝛼,

we have 𝜓 ∈ |𝛼|. Therefore, from −𝜓 ∉ 𝛼 it follows that +𝜓 ∈ 𝛼.
Consider the following enumeration of formulas 𝐷𝑚

𝑋𝑌 for some 𝑚 ∈ ℕ and 𝑌 ⊆ 𝕍𝛷

such that 𝐷𝑚
𝑋𝑌 ∈ 𝐶𝑙(I(𝛤 ′)) and −𝐷𝑚

𝑋𝑌 ∈ 𝛼:

Enumeration 1: 𝐷𝑛1
𝑋 𝑌1, 𝐷𝑛2

𝑋 𝑌2, ⋯ , 𝐷𝑛𝑗
𝑋 𝑌𝑗

Note that this enumeration is finite, as 𝐶𝑙(I(𝛤 ′)) is finite. Also, formulas in the
enumeration cannot be of the form 𝜓 , since +𝜓 ∈ 𝛼.

We now construct 𝑗 pseudo-atoms as follows:

𝛤 ′
1 =

⎧⎪
⎨
⎪⎩

𝛤 ′ ∪ {+𝐷𝑛1
𝑋 𝑌1} if I(𝛤 ′) → 𝐷𝑛1

𝑋 𝑌1

𝛤 ′ ∪ {−𝐷𝑛1
𝑋 𝑌1} otherwise

⋮

𝛤 ′
𝑗 =

⎧⎪
⎨
⎪⎩

𝛤 ′
𝑗−1 ∪ {+𝐷𝑛𝑗

𝑋 𝑌𝑗} if I(𝛤 ′
𝑗−1) → 𝐷𝑛𝑗

𝑋 𝑌𝑗

𝛤 ′
𝑗−1 ∪ {−𝐷𝑛𝑗

𝑋 𝑌𝑗} otherwise

As 𝛤 ′ is consistent, from the construction it is easy to know that all these 𝑗 pseudo-
atoms are also consistent. Except the consistency of these pseudo-atoms, another impor-
tant reason that we construct them in such a way is: we aim to make the final 𝛤 ′

𝑗 to contain
as few formulas +𝐷𝑚

𝑋𝑌 with −𝐷𝑚
𝑋𝑌 ∈ 𝛼 as possible. Essentially, we have the following:

Claim 1. For all formulas 𝐷𝑛𝑗′
𝑋 𝑌𝑗′ in Enumeration 1, we have −𝐷𝑛𝑗′

𝑋 𝑌𝑗′ ∈ 𝛤 ′
𝑗 .

Proof Let us now prove the claim. We first consider 𝐷𝑛1
𝑋 𝑌1. Suppose that +𝐷𝑛1

𝑋 𝑌1 ∈ 𝛤 ′
1 .

Then, by the construction, it holds that I(𝛤 ) ∧ ¬𝜓 → 𝐷𝑛1
𝑋 𝑌1. So, I(𝛤 ) ∧ ¬𝐷𝑛1

𝑋 𝑌1 → 𝜓 .
Consequently, D𝑋I(𝛤 )∧D𝑋¬𝐷𝑛1

𝑋 𝑌1 → D𝑋𝜓 . Similar to that of (2.2.1), I(𝛤 ) ↔ D𝑋I(𝛤 ).
Also, as D𝑋¬𝐷𝑛1

𝑋 𝑌1 ↔ ¬𝐷𝑛1
𝑋 𝑌1, it holds I(𝛤 )∧¬𝐷𝑛1

𝑋 𝑌1 → D𝑋𝜓 . However, I(𝛤 )∧¬𝐷𝑛1
𝑋 𝑌1

is a conjunct of I(𝛼), which implies +D𝑋𝜓 ∈ 𝛼, a contradiction.
Afterwards, with the help of −𝐷𝑛1

𝑋 𝑌1 ∈ 𝛤 ′
1 , we can show −𝐷𝑛2

𝑋 𝑌2 ∈ 𝛤 ′
2 . Repeating

the reasoning, we can finally prove that −𝐷𝑛𝑗
𝑋 𝑌𝑗 ∈ 𝛤 ′

𝑗 . Therefore, for all formulas 𝐷𝑛𝑗′
𝑋 𝑌𝑗′

in Enumeration 1, it holds that −𝐷𝑛𝑗′
𝑋 𝑌𝑗′ ∈ 𝛤 ′

𝑗 . ∎

Now, it follows that for all 𝐷𝑛
𝑋𝑌 ,

+𝐷𝑛
𝑋𝑌 ∈ 𝛤 ′

𝑗 iff +𝐷𝑛
𝑋𝑦 ∈ 𝛼.
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Next, let the following be an enumeration of formulas ○𝑚D𝑍𝜓′ for some 𝑚 ∈ ℕ and
𝑍 ⊆ 𝕍𝛷 such that ○𝑚D𝑍𝜓′ ∈ 𝐶𝑙(I(𝛤 ′)), +𝐷𝑚

𝑋𝑍 ∈ 𝛤 ′
𝑗 and − ○𝑚 D𝑍𝜓′ ∈ 𝛼:

Enumeration 2: ○𝑚1D𝑍1𝜓′
1, ○𝑚2D𝑍2𝜓′

2, ⋯ , ○𝑚𝑖D𝑍𝑖𝜓
′
𝑖

Again, Enumeration 2 is finite, and all formulas occurring in it cannot be 𝜓 . Based
on the pseudo-atom 𝛤 ′

𝑗 , we now construct 𝑖 pseudo-atoms:

𝛤 ′
𝑗(1) =

⎧⎪
⎨
⎪⎩

𝛤 ′
𝑗 ∪ {+ ○𝑚1 D𝑍1𝜓′

1} if I(𝛤 ′
𝑗 ) → ○𝑚1D𝑍1𝜓′

1

𝛤 ′
𝑗 ∪ {− ○𝑚1 D𝑍1𝜓′

1} otherwise

⋮

𝛤 ′
𝑗(𝑖) =

⎧⎪
⎨
⎪⎩

𝛤 ′
𝑗(𝑖−1) ∪ {+ ○𝑚𝑖 D𝑍𝑖𝜓

′
𝑖 } if I(𝛤 ′

𝑗(𝑖−1)) → ○𝑚𝑖D𝑍𝑖𝜓
′
𝑖

𝛤 ′
𝑗(𝑖−1) ∪ {− ○𝑚𝑖 D𝑍𝑖𝜓

′
𝑖 } otherwise

By the construction, it is easy to see that 𝛤 ′
𝑗(𝑖) is consistent. Also, 𝐶𝑙(I(𝛤 ′)) may

contain other formulas not occurring in Enumeration 1 or Enumeration 2. Anyway, we
can always obtain a 𝛷-atom 𝛽 ⊇ 𝛤 ′

𝑗(𝑖) by adding to 𝛤 ′
𝑗(𝑖) suitable forms +𝜓′ or −𝜓′ of all

other formulas 𝜓′ ∈ 𝐶𝑙(I(𝛤 ′)). For pseudo-atom 𝛤 ′
𝑗(𝑖), we claim the following:

Claim 2. For all ○𝑚𝑖′ D𝑍𝑖′
𝜓′

𝑖′ in Enumeration 2, we have − ○𝑚𝑖′ D𝑍𝑖′
𝜓′

𝑖′ ∈ 𝛤 ′
𝑗(𝑖).

Proof Let us first consider formula ○𝑚1D𝑍1𝜓′
1. If + ○𝑚1 D𝑍1𝜓′

1 ∈ 𝛤 ′
𝑗(1), then it holds

that I(𝛤 ′
𝑗 ⧵ {−𝜓}) ∧ ¬𝜓 → ○𝑚1D𝑍1𝜓′

1. Equivalently, I(𝛤 ′
𝑗 ⧵ {−𝜓}) ∧ ¬ ○𝑚1 D𝑍1𝜓′

1 → 𝜓 .
Consequently, D𝑋I(𝛤 ′

𝑗 ⧵ {−𝜓}) ∧ D𝑋¬ ○𝑚1 D𝑍1𝜓′
1 → D𝑋𝜓 . Similar to that of (2.2.1),

it holds that D𝑋I(𝛤 ′
𝑗 ⧵ {−𝜓}) ↔ I(𝛤 ′

𝑗 ⧵ {−𝜓}). Also, from +𝐷𝑚1
𝑋 𝑍1 ∈ 𝛤 ′

𝑗 (recall the
definition of Enumeration 2), it follows that ¬ ○𝑚1 D𝑍1𝜓′

1 ↔ D𝑋¬ ○𝑚1 D𝑍1𝜓′
1. Thus, we

obtain I(𝛤 ′
𝑗 ⧵ {−𝜓}) ∧ ¬ ○𝑚1 D𝑍1𝜓′

1 → D𝑋𝜓 . However, I(𝛤 ′
𝑗 ⧵ {−𝜓}) ∧ ¬ ○𝑚1 D𝑍1𝜓′

1
is a conjunct of I(𝛼), and so +D𝑋𝜓 ∈ 𝛼, a contradiction.

Next, suppose that for all 𝑖′ ⩽ 𝑖 − 1, − ○𝑚𝑖′ D𝑍𝑖′
𝜓′

𝑖′ ∈ 𝛤 ′
𝑗(𝑖). We now prove that

− ○𝑚𝑖 D𝑍𝑖𝜓
′
𝑖 ∈ 𝛤 ′

𝑖 . If not, then I(𝛤 ′
𝑗 ⧵ {−𝜓}) ∧ ¬𝜓 ∧ ¬ ○𝑚1 D𝑍1𝜓′

1 ∧ ⋯ ∧ ¬ ○𝑚𝑖−1

D𝑍𝑖−1𝜓′
𝑖−1 → ○𝑚𝑖D𝑍𝑖𝜓

′
𝑖 . Note that +𝐷𝑚𝑗′

𝑋 𝑍𝑗′ ∈ 𝛤 ′
𝑗 for all 1 ⩽ 𝑗′ ⩽ 𝑖. Similar to the

basic case above, we can also obtain +D𝑋𝜓 ∈ 𝛼, which contradicts to our assumption. ∎

With Claim 1 and Claim 2, it is easy to check that 𝛼 =𝛷
𝑋 𝛽. Since −𝜓 ∈ 𝛽, +𝜓 ∉ 𝛽.

By the inductive hypothesis, 𝛽 ⊭ 𝜓 . Therefore, 𝛼 ⊭ D𝑋𝜓 . ∎
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Now we proceed to show that the fragment of logic DFD without 𝐷𝑛
∅𝑦 and 𝐷∅𝜑

enjoys the finite model property w.r.t. general relational models:

Theorem 4.8: The fragment of logic DFD without 𝐷𝑛
∅𝑦 and 𝐷∅𝜑 has the finite model

property w.r.t. general relational models, i.e., if a formula 𝜑 ∈ ℒD is satisfiable, then it is
satisfied in a finite general relational model.

Proof Let 𝜑 ∈ ℒD be satisfiable. Consider the 𝐶𝑙(𝜑)-model ℳ𝐶𝑙(𝜑), which is a finite
general relational model. Since 𝜑 is satisfiable, there exists some 𝐶𝑙(𝜑)-atom 𝛼 such that
+𝜑 ∈ 𝛼. By Proposition 4.29, it follows that ℳ𝐶𝑙(𝜑), 𝛼 ⊨ 𝜑, as desired. ∎

As a consequence, it holds that:

Theorem 4.9: The fragment of the logic DFD without 𝐷𝑛
∅𝑦 and 𝐷∅𝜑 is decidable.
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Chapter 5 Information-sensitive diffusion in social networks

5.1 Introduction

So far, we have explored dynamic dependence in a very general sense. As stated in
Chapter 4, although our original motivation originated from social interactions in game
scenarios, dynamic dependence with a time delay is a basic notion that need not be re-
stricted to games. In this chapter, we consider one important concrete non-game like
scenario: diffusion of opinions (or behaviors, or products) in a community. For simplic-
ity, we drop the explicit temporal dimension, but we will add stepwise update modalities
instead.

Dynamic dependence in diffusion arises since behaviours or opinions are often in-
fluenced by others in social life. When considering to buy a Huawei phone, my decision
may depend on whether there is a large population around me using it. In such scenarios,
how a trend spreads through a population depends on two factors: (a) the structure of the
population, and (b) how easy it is for agents to get influenced by others.

From a logical perspective, almost all mentioned proposals restrict themselves to so-
cial networks with only a singular kind of social relation (representing, e.g., following or
friendships) and agents in these networks are influenced just by their direct neighbors.1

This makes sense, as direct neighbors intuitively stand for agents who are around us. How-
ever, there are also many exceptions. For instance, as suggested by Baltag et al. (2019b),
when deciding whether or not to support a revolution, a crucial factor is if a big enough
part of the total population, not only our neighbors, is supporting the revolution. Inspired
by these phenomena, in this chapter we develop a logical framework highlighting the dif-
ference between direct neighbors and sources of influence.

Moreover, in doing so, we are led to take on board another crucial aspect of realistic
social scenarios: namely, the epistemic fact that agents can only make use of the infor-
mation that is available to them. Taking this further, the agents studied in this chapter can
communicate with each other, and as we shall see, the neighborhood relation itself is then

1 Baltag et al. (2019b) discuss prediction updates which allow an agent to adopt the opinion or behavior in question
if she knows that a large enough proportion of her direct neighbors will adopt it (even if those neighbors have not
adopted it now). This enables agents to make the best use of their information, but the underlying assumption is
still that agents are influenced by their direct neighbors.
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exactly the communication channel.

Outline of the chapter. In Section 5.2, we introduce some preliminary notions, in-
cluding social networks, threshold models and updates of behaviors. Next, a basic logical
proposal is explored in Section 5.3 to reason about the diffusion of behaviors in networks.
Afterwards, we enrich the basic notion of threshold models with an epistemic dimension
in Section 5.4, which also discusses their updates induced by different types of operations
and provides us with a new logic, including its language and semantics. Then, Section
5.5 develops a complete Hilbert-style calculus for the dynamic-epistemic logic. Finally,
we end this chapter by Section 5.6 on conclusion and further directions.

5.2 Preliminary notions

In this section, let us introduce some preliminaries, mainly including the notions of
social networks, threshold models and the policy on the update of behaviors.

Roughly, a social network can be represented as a graph with many binary relations,
where nodes can be treated as agents and relations intuitively stand for different kinds of
social relationships among them. Depending on the features of relations to be modeled,
many further restrictions might be imposed. Say, ‘friendships’ are often assumed to be
symmetric. Thus, when an agent 𝑎 is a friend of another agent 𝑏, then 𝑏 is a friend of 𝑎
as well. Moreover, in our setting, the relation is also assumed to be reflexive. In contrast,
we do not have the same assumptions on the relation of ‘following’: for instance, when
buying medicines, we follow the suggestions of doctors, but not the other way around. In
this chapter, we consider the networks including these two kinds of relations, and restrict
ourselves to finite graphs. Sometimes we also employ neighbors and influence relation
respectively for friends and following. Formally, the definition of social networks is as
follows:

Definition 5.1: A social network is a tuple ⟨𝒜, 𝒩 , ℐ⟩ where 𝒜 ≠ ∅ is a finite set of
agents, the function 𝒩 ∶ 𝒜 → 𝒫(𝒜) assigns a set 𝒩 (𝑎) ⊆ 𝒜 to each 𝑎 ∈ 𝒜 such that

• 𝑎 ∈ 𝒩 (𝑎) (Reflexivity)
• 𝑎 ∈ 𝒩 (𝑏) if and only if 𝑏 ∈ 𝒩 (𝑎) (Symmetry)

and the function ℐ: 𝒜 → 𝒫(𝒜) assigns a set ℐ(𝑎) ⊆ 𝒜 to each 𝑎 ∈ 𝒜 such that
• ℐ(𝑎) ≠ ∅ (Seriality).

Intuitively, for an agent 𝑎 ∈ 𝒜, 𝒩 (𝑎) is the set of her direct neighbors or friends,
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and ℐ(𝑎) denotes those she follows. Generally, ℐ(𝑎) is different from 𝒩 (𝑎). Also, as
indicated by the clause ℐ(𝑎) ≠ ∅, we are only interested in the situations where every
agent does follow some agents, since otherwise agents never change their behaviors, which
is irrelevant to our current discussion on diffusion in chapter. Based on the notion of social
networks, we are able to introduce the following:

Definition 5.2: A threshold model is a tuple ℳ = ⟨𝒜, 𝒩 , ℐ, 𝐵, 𝜃⟩, where ⟨𝒜, 𝒩 , ℐ⟩ is
a social network, 𝐵 ⊆ 𝒜 is a behavior and 𝜃 ∈ [0, 1] is a uniform adoption threshold.

In the definition, we identify a behavior with its extension, i.e., those agents who have
already adopted it. Besides, the threshold 𝜃 intuitively represents how easy it is for the
agents in 𝒜 to be affected by others. For simplicity, in the chapter we just consider the
case that the threshold is uniform, i.e., all agents have the same threshold. However, it is
instructive to notice that this can be relaxed very easily. Given a threshold model, we can
also calculate the spread of the behavior in question as follows:

Definition 5.3: Let ℳ = ⟨𝒜, 𝒩 , ℐ, 𝐵, 𝜃⟩ be a threshold model. Its update is ℳ′ =
⟨𝒜, 𝒩 , ℐ, 𝐵′, 𝜃⟩, where 𝐵′ ∶= {𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|

|ℐ(𝑎)| ⩾ 𝜃} and for all sets 𝐴, |𝐴| refers to its
cardinality.

Therefore, the resulting model is the same as the original one, except that the behavior
now is 𝐵′ other than 𝐵, consisting of those agents whose influence sets includes a large
enough proportion of agents having adopted the behavior before the update. It is worth
noting that the way of updating has several distinguishing features. Some of them are as
follows:

• First, it is determined whether an agent should adopt or unadopt the behavior after
a round of updating.

• Next, the policy indicates that all agents are forced to adopt or unadopt the behavior
by the fact of others’ behavior. Thus, the underlying assumption is that the infor-
mation of agents is always available to each other.

• Finally, the neighbor relation 𝒩 among agents does not play any role in the process
of diffusion.

The first one does reflect the essence of the notion of threshold models. But the sec-
ond one looks too strong to be realistic, as it leaves no room for uncertainty. However, in
many real-life situations, we may only be able to act in accordance with the information
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available to us. Therefore, in the reminder of the chapter, one of our main goals is to con-
sider the process of diffusion in an epistemic setting, in which, as we will see, the neighbor
relation is not superfluous, but an important ingredient that has an explicit influence on
diffusion processes.

Remark 5.1: Our policy on update is in line with the spirit of the so-called Susceptible-
Infected-Susceptible models, in which agents are not only permitted to adopt the behavior
in question, but also to unadopt it. Moreover, there are also many other manners to give the
update. Say, a more restrictive way is to replace 𝐵 with {𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|

|ℐ(𝑎)| > 𝜃}. Compared
with the one given in Definition 5.3, it requires that an agent should adopt the behavior only
when the proportion of those having adopted it in her influence set is strictly larger than
the threshold 𝜃. Also, one can consider it as {𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|

|ℐ(𝑎)| > 𝜃}∪{𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|
|ℐ(𝑎)| =

𝜃, 𝑎 ∈ 𝐵}, as suggested by Baltag et al. (2019b). Then, in the new setting, when the
proportion of those having adopted the behavior in the influence set of an agent is exactly
the threshold, the agent need not change her current stance. More generally, it is also
interesting to explore policies fitting with the Susceptible-Infected models that only allow
agents to adopt the behavior in question, but not to unadopt it. In such a setting, the new
set of behavior can be defined as, e.g., {𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|

|ℐ(𝑎)| ⩾ 𝜃} or {𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|
|ℐ(𝑎)| > 𝜃}.

The former one was studied by Baltag et al. (2019b), and all others also deserve to be
studied in future.

5.3 A dynamic logic for updates of threshold models

Before moving to the more complicated setting, let us first introduce a dynamic logic
for modelling the notion of threshold models and their dynamics. Essentially, the logic is
just a simple adaptation of that of (Baltag et al., 2019b), but it still deserves to be intro-
duced a bit detailed: except giving us a formal tool to reason about diffusion processes,
the logic itself is also a foundation of our epistemic framework.

Definition 5.4: Let 𝒜 be a nonempty, finite set. Atomic propositions are given by {𝐼𝑎𝑏 ∣
𝑎, 𝑏 ∈ 𝒜} ∪ {𝑁𝑎𝑏 ∣ 𝑎, 𝑏 ∈ 𝒜} ∪ {𝛽𝑎 ∣ 𝑎 ∈ 𝒜}. Language ℒ𝑏 is given by the following
grammar:

𝜑 ∶∶= 𝐼𝑎𝑏 ∣ 𝑁𝑎𝑏 ∣ 𝛽𝑎 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ [A]𝜑

The abbreviations ⊤, ⊥, ∨, → and ↔ are defined as usual. For each natural number 𝑛 ∈ ℕ,
we denote by [A]𝑛𝜑 the 𝑛-th iteration of [A]. When 𝑛 = 0, [A]𝑛𝜑 is just 𝜑.
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Intuitively, formula 𝑁𝑎𝑏 states that agents 𝑎 and 𝑏 are neighbors/friends, 𝐼𝑎𝑏 reads 𝑎
is influenced by 𝑏, 𝛽𝑎 means agent 𝑎 has already adopted the behavior, and finally, formula
[A]𝜑 expresses that 𝜑 is the case after a round of adoption-update (or more precisely, 𝜑
holds after all agents update their behavior with the rule given in Definition 5.3 at the
same time). Their truth conditions are as follows:

Definition 5.5: Let ℳ = ⟨𝒜, 𝒩 , ℐ, 𝐵, 𝜃⟩ be a threshold model and 𝜑 ∈ ℒ𝑏. The se-
mantics for ℒ𝑑 is inductively defined in the following:

ℳ ⊨ 𝐼𝑎𝑏 ⇔ 𝑏 ∈ ℐ(𝑎)
ℳ ⊨ 𝑁𝑎𝑏 ⇔ 𝑏 ∈ 𝒩 (𝑎)

ℳ ⊨ 𝛽𝑎 ⇔ 𝑎 ∈ 𝐵
ℳ ⊨ ¬𝜑 ⇔ ℳ ⊭ 𝜑

ℳ ⊨ 𝜑 ∧ 𝜓 ⇔ ℳ ⊨ 𝜑 and ℳ ⊨ 𝜓
ℳ ⊨ [A]𝜑 ⇔ ℳ′ ⊨ 𝜑

where ℳ′ is the update of ℳ produced in the way given by Definition 5.3.

Thus, the resulting logic is essentially just a propositional logic. Although it is sim-
ple, perhaps surprisingly it is powerful enough to give us many useful characterizations
that looks much strong. One example is as follows:

𝛽𝐼(𝑎)⩾𝜃 ∶= ⋁
{𝒢⊆ℑ⊆𝒜∣ |𝒢|

|ℑ| ⩾𝜃}
( ⋀
𝑏∈ℑ

𝐼𝑎𝑏 ∧ ⋀
𝑏∉ℑ

¬𝐼𝑎𝑏 ∧ ⋀
𝑏∈𝒢

𝛽𝑏)

Intuitively, the set ℑ used in the formula aims to capture the influence set of agent 𝑎, and
𝒢 standards for the set of 𝛽-agents in ℐ(𝑎). Hence, 𝛽𝐼(𝑎)⩾𝜃 is true in ℳ if, and only if,
the proportion of agents who have adopted the behavior currently in 𝑎’s influence set is
equal or larger than the threshold 𝜃. Now, with the abbreviation, Table 5.1 presents a proof
system, written as LTM𝜃, for logic of the threshold models with threshold 𝜃.

The network axioms indicates the features of social networks, i.e., the influence re-
lation is serial and friendships are both reflexive and symmetric. Also, the second part is
the recursion axioms for the adoption operator [A], reducing dynamic formulas into static
ones. Maybe the most interesting principle is [A]-𝛽, which suggests that an agent 𝑎 would
adopt the behavior after a round of adoption-update if, and only if, before the update there
is already a subset 𝒢 of ℐ(𝑎) such that 𝒢 ⊆ 𝐵 and |𝒢|

|ℐ(𝑎)| ⩾ 𝜃.
Let 𝜃 ∈ [0, 1] and 𝔐𝜃 the class of threshold models with the threshold 𝜃. Now, let

us proceed to show the following:
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Table 5.1 Proof system LTM𝜃. Subscripts 𝑎, 𝑏 are arbitrary over 𝒜.

I The classical propositional logic
II Network axioms:
𝑁-Reflexivity 𝑁𝑎𝑎
𝑁-Symmetry 𝑁𝑎𝑏 ↔ 𝑁𝑏𝑎
𝐼-Seriality ⋁

𝑏∈𝒜
𝐼𝑎𝑏

III Recursion axioms for [A]:
[A]-𝑁 [A]𝑁𝑎𝑏 ↔ 𝑁𝑎𝑏
[A]-𝐼 [A]𝐼𝑎𝑏 ↔ 𝐼𝑎𝑏
[A]-𝛽 [A]𝛽𝑎 ↔ 𝛽𝐼(𝑎)⩾𝜃
[A]-¬ [A]¬𝜑 ↔ ¬[A]𝜑
[A]-∧ [A](𝜑 ∧ 𝜓) ↔ [A]𝜑 ∧ [A]𝜓
IV Inference rule:
Nec. [A] From 𝜑, infer [A]𝜑

Theorem 5.1: The calculus LTM𝜃 is sound and complete w.r.t. 𝔐𝜃.

Proof Soundness: We merely show that the axiom [A]-𝛽 is valid, and all others are rou-
tine. Let ℳ ∈ 𝔐𝜃. Then, we have the following sequence of equivalences: ℳ ⊨ [A]𝛽𝑎

iff ℳ′ ⊨ 𝛽𝑎 iff 𝑎 ∈ 𝐵′ = {𝑎 ∈ 𝒜 ∣ |ℐ(𝑎)∩𝐵|
|ℐ(𝑎)| ⩾ 𝜃}. It is worth noting that 𝑎 ∈ 𝐵′ iff

𝛽𝐼(𝑎)⩾𝜃 is true in ℳ. So, ℳ ⊨ [A]𝛽 ↔ 𝛽𝐼(𝑎)⩾𝜃.

Completeness: The static part of the logic is just a propositional logic, whose complete-
ness w.r.t. social networks is easy to prove. Furthermore, the completeness of the whole
logic can be established by making use of the recursion axioms. ∎

5.4 A dynamic-epistemic logic for diffusion

As suggested by Definition 5.3, whether an agent should adopt the behavior in ques-
tion depends on the fact that if her influence set contains a large enough population with
the behavior. However, in our real-life situations, if or not an agent knows the fact matters.
So, in this part we will augment our existing proposal with an epistemic dimension, to ex-
press the uncertainty about the facts. Moreover, based on the knowledge of agents, the
new setting enables them to communicate with their friends and update their relationships
with others and their behaviors. Before moving to the semantic part, let us first fix our
language, which is a straightforward extension of language ℒ𝑏:
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Definition 5.6: Let 𝒜 be a nonempty, finite set. Again, atoms are given by {𝐼𝑎𝑏 ∣ 𝑎, 𝑏 ∈
𝒜} ∪ {𝑁𝑎𝑏 ∣ 𝑎, 𝑏 ∈ 𝒜} ∪ {𝛽𝑎 ∣ 𝑎 ∈ 𝒜}. The language ℒ𝑒 is defined as follows:

𝜑 ∶∶= 𝐼𝑎𝑏 ∣ 𝑁𝑎𝑏 ∣ 𝛽𝑎 ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ 𝑃 𝑛
𝑎 𝜑 ∣ [A]𝜑 ∣ [𝐶]𝜑

where 𝑛 ∈ ℕ is a natural number. For brevity, by 𝐾𝑎𝜑 we denote 𝑃 0
𝑎 𝜑. Also,we employ

𝑃 𝑛
𝑎 𝜑 for ¬𝑃 𝑛

𝑎 ¬𝜑, and 𝐾𝑎𝜑 for ¬𝐾𝑎¬𝜑.

So, compared with language ℒ𝑏, now we have two additional components: 𝑃 𝑛
𝑎 𝜑 and

[𝐶]𝜑. For any 𝑛 ∈ ℕ, 𝑃 𝑛
𝑎 is called potential knowledge operator, and 𝑃 𝑛

𝑎 𝜑 reads agent
𝑎 potentially knows 𝜑 (from those agents that are 𝑛-reachable1 from 𝑎). Also, as we will
see, 𝐾 is exactly the usual knowledge operator: 𝐾𝑎𝜑 states 𝑎 knows 𝜑. Moreover, [A]𝜑
means that after a round of adoption update, 𝜑 is the case. Formula [𝐶]𝜑 shows that 𝜑
holds after communication. Moreover, for each 𝑛 ∈ ℕ, we define 𝑁𝑛 such that:

• 𝑁0
𝑎𝑏 ∶= ⊤ if 𝑎 = 𝑏, and 𝑁0

𝑎𝑏 ∶= ⊥ if 𝑎 ≠ 𝑏.
• 𝑁𝑛+1

𝑎𝑏 ∶= ⋁
𝑐∈𝒜

(𝑁1
𝑎𝑐 ∧ 𝑁𝑛

𝑐𝑏).

5.4.1 Epistemic threshold models and their updates

First of all, let us introduce the notion of ‘epistemic threshold models’:

Definition 5.7: An epistemic threshold model with threshold 𝜃 (ETM𝜃) ℳ is a tuple
⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ such that:

• 𝒲 is a finite, non-empty set of possible worlds or states.
• 𝒜 is a finite, non-empty set of agents.
• 𝒩 ∶ 𝒲 → (𝒜 → 𝒫(𝒜)) assigns a neighborhood 𝒩 (𝑤)(𝑎) to each 𝑎 ∈ 𝒜 in each

𝑤 ∈ 𝒲 s.t. 𝑎 ∈ 𝒩 (𝑤)(𝑎) and 𝑎 ∈ 𝒩 (𝑤)(𝑏) iff 𝑏 ∈ 𝒩 (𝑤)(𝑎).
• ℐ ∶ 𝒲 → (𝒜 → 𝒫(𝒜)) assigns a nonempty influence set ℐ(𝑤)(𝑎) to each 𝑎 ∈ 𝒜

in each 𝑤 ∈ 𝒲 s.t. ℐ(𝑤)(𝑎) ≠ ∅.
• 𝐵 ∶ 𝒲 → 𝒫(𝒜) assigns to each 𝑤 ∈ 𝒲 a set 𝐵(𝑤) of agents who have adopted

the behavior.
• 𝜃 ∈ [0, 1] is a uniform adoption threshold.
• ∼𝑎⊆ 𝒲 × 𝒲 is an equivalence relation for each agent 𝑎 ∈ 𝒜.

The definition may look complicated, but the underlying intuition is rather simple:
an ETM is just some threshold models (in the sense of Definition 5.2) with a fixed set 𝒜 of

1 For the meaning of ‘𝑛-reachable’, see Definition 5.8.
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𝑤 ∶

𝑎 𝑏 𝑐

𝑣 ∶

𝑏𝑎 𝑐𝑎, 𝑏

Figure 5.1 An ETM ℳ. The model consists of two possible worlds 𝒲 = {𝑤, 𝑣}. The dashed
line labelled with agents between possible worlds represents that the agents cannot
distinguish the situations (we omit reflexive and transitive links when representing
indistinguishability relations, and reflexive links when representing friendships). In
each possible world, the friendships are represented by the undirected links and a
dotted link from an agent to another indicates that the latter influences the former.
Also, 𝐵(𝑤) = {𝑐}, i.e., only agent 𝑐 adopted the behavior in world 𝑤, and 𝐵(𝑣) = ∅.
Now, let us assume that 𝜃 = 1 and the actual case is 𝑤. Then, with the policy given
by Definition 5.3, agent 𝑏 should adopt the behavior in one round of adoption-update,
and then 𝑎 will also adopt it finally. However, neither of them know that.

agents, which are connected by the equivalence relations ∼𝑎∈𝒜 expressing the uncertainty
of agents. For an example, see Figure 5.1.

Furthermore, we can also impose some natural restrictions on ETM𝜃. For instance,
in the chapter we always assume that:

Agents always know their own behaviors, and their friends and influence sets.

Precisely, the assumption is characterized by the clause that for all worlds 𝑤, 𝑣 ∈ 𝒲 and
agents 𝑎, 𝑏 ∈ 𝒜, if 𝑤 ∼𝑎 𝑣, then 𝑎 ∈ 𝐵(𝑤) iff 𝑎 ∈ 𝐵(𝑣), 𝑏 ∈ 𝒩 (𝑤)(𝑎) iff 𝑏 ∈ 𝒩 (𝑣)(𝑎),
and 𝑏 ∈ ℐ(𝑤)(𝑎) iff 𝑏 ∈ ℐ(𝑣)(𝑎).

Essentially, the restriction endows agents with the ‘ability’ to eliminate some uncer-
tainty about different situations. However, this by no means says that agents only know
these facts: some of them may know more by accident. For any 𝜃 ∈ [0, 1], we denote
by ℰ𝜃 the class of epistemic threshold models with threshold 𝜃 and satisfying the above
restriction.

Also, for any ETM, we introduce the following notion of ‘𝒩 -distance’ (for short,
distance) between agents:

Definition 5.8: Let ℳ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ be an ETM, 𝑤 ∈ 𝒲 and 𝑎 ∈ 𝒜.
For every natural number 1 ⩽ 𝑛 ∈ ℕ, define 𝒩 𝑛 ∶ 𝒲 → 𝒜 → 𝒫(𝒜) in the following:

• 𝒩 1(𝑤)(𝑎) = 𝒩 (𝑤)(𝑎)
• 𝒩 𝑛+1(𝑤)(𝑎) = 𝒩 𝑛(𝑤)(𝑎) ∪ {𝑏 ∈ 𝒜 ∣ ∃𝑐 ∈ 𝒩 𝑛(𝑤)(𝑎) and 𝑏 ∈ 𝒩 (𝑤)(𝑐)}

So, 𝑏 ∈ 𝒩 𝑛(𝑤)(𝑎) indicates that in possible world 𝑤, agent 𝑏 can be reached from agent
𝑎 at most in 𝑛-steps via relation 𝒩 . In this case, we say that agent 𝑏 is 𝑛-reachable from
agent 𝑎 in 𝑤.
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Let ℳ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ be an ETM, 𝑎 ∈ 𝒜 and 𝑤 ∈ 𝒲 . For any
𝑣 ∈ 𝒲 and 𝑛 ∈ ℕ, we define that 𝑤 ∼𝑛

⟨𝑎⟩ 𝑣 iff 𝑤 ∼𝑎 𝑣 and 𝑤 ∼𝑏 𝑣 for all 𝑏 ∈ 𝒩 𝑛(𝑤)(𝑎).
Here it is worth noting that each ∼𝑛

⟨𝑎⟩ is still an equivalence relation. In particular, when
𝑛 = 0, ∼𝑛

⟨𝑎⟩ is identical to ∼𝑎.
We now have enough background to introduce the truth conditions for the static part

of our language ℒ𝑒, and details are as follows:

ℳ, 𝑤 ⊨ 𝛽𝑎 ⇔ 𝑎 ∈ 𝐵(𝑤)
ℳ, 𝑤 ⊨ 𝑁𝑎𝑏 ⇔ 𝑏 ∈ 𝒩 (𝑤)(𝑎)
ℳ, 𝑤 ⊨ 𝐼𝑎𝑏 ⇔ 𝑏 ∈ ℐ(𝑤)(𝑎)
ℳ, 𝑤 ⊨ ¬𝜑 ⇔ ℳ, 𝑤 ⊭ 𝜑

ℳ, 𝑤 ⊨ 𝜑 ∧ 𝜓 ⇔ ℳ, 𝑤 ⊨ 𝜑 and ℳ, 𝑤 ⊨ 𝜓
ℳ, 𝑤 ⊨ 𝑃 𝑛

𝑎 𝜑 ⇔ for all 𝑣 ∈ 𝒲 , if 𝑤 ∼𝑛
⟨𝑎⟩ 𝑣 then ℳ, 𝑣 ⊨ 𝜑

By the truth condition for 𝑃 𝑛
𝑎 , it is easy to see:

ℳ, 𝑤 ⊨ 𝐾𝑎𝜑 ⇔ for all 𝑣 ∈ 𝒲 , if 𝑤 ∼𝑎 𝑣, then ℳ, 𝑣 ⊨ 𝜑

which illustrates that 𝐾𝑎 is an S5-operator characterized by the equivalence relation ∼𝑎

directly. Moreover, essentially all 𝑃 𝑛
𝑎 are S5. But compared with the notion of knowl-

edge, potential knowledge plays a more general role in our setting: knowledge is always a
kind of potential knowledge, but potential knowledge is not necessarily knowledge. More
generally, for any 𝜑 ∈ ℒ𝑒, 𝑎 ∈ 𝒜 and 𝑚, 𝑛 ∈ ℕ, formula 𝑃 𝑛

𝑎 𝜑 → 𝑃 𝑛+𝑚
𝑎 𝜑 is valid, but

𝑃 𝑛+𝑚
𝑎 𝜑 → 𝑃 𝑛

𝑎 𝜑 may fail. To see the latter, consider the following:

Example 5.1: Let us consider again the ETM depicted in Figure 5.1. We have
𝒩 1(𝑤)(𝑎) = {𝑎, 𝑏} and 𝒩 2(𝑤)(𝑎) = {𝑎, 𝑏, 𝑐}. Now, it is not hard to see that at state 𝑤
formula 𝑃 1

𝑎 𝛽𝑐 is false while 𝑃 2
𝑎 𝛽𝑐 is true. So, it holds immediately that ℳ, 𝑤 ⊭ 𝑃 2

𝑎 𝛽𝑐 →
𝑃 1

𝑎 𝛽𝑐 . Therefore, the schema 𝑃 𝑛+𝑚
𝑎 𝜑 → 𝑃 𝑛

𝑎 𝜑 is not valid.

Also, in terms of potential knowledge, the structure 𝒩 of friendships in a network is
crucial, and the knowledge of 𝑎’s friends definitely contributes to her potential knowledge.
For instance, for any 1 ⩽ 𝑚, 𝑛 ∈ ℕ, it holds that

𝑁𝑎𝑏 ∧ 𝐾𝑎𝜑 ∧ 𝐾𝑏𝜓 → 𝑃 𝑚
𝑎 (𝜑 ∧ 𝜓) ∧ 𝑃 𝑛

𝑏 (𝜑 ∧ 𝜓)

Now, we proceed to discuss the dynamic part of our framework. First of all, with the
richer devices ETM, an important question is: how do agents update their behavior now?
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As suggested by Baltag et al. (2019b), there are at least two natural ways to do so. One of
them is that:

Definition 5.9: Let ℳ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ be an ETM. Its adoption update
is ℳ′ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵′, 𝜃, {∼𝑎}𝑎∈𝒜⟩, where

𝐵′(𝑤) ∶= {𝑎 ∈ 𝒜 ∣ ∀𝑣 ∼𝑎 𝑤 ∶ |ℐ(𝑣)(𝑎)∩𝐵(𝑣)|
|ℐ(𝑣)(𝑎)| ⩾ 𝜃}.

Therefore, whether an agent 𝑎 adopts or unadopts the behavior is based on her de
dicto knowledge on the behavior of agents in her influence set: she does not need to know
exactly who have already adopted the behavior, and what matters is that if or not in all
possible situations her influence set contains a large enough fraction of the agents with
the behavior. In the reminder of the chapter, we will focus on this clause of update. Let
us now introduce the interpretation of operator [A]:

ℳ, 𝑤 ⊨ [A]𝜑 ⇔ ℳ′, 𝑤 ⊨ 𝜑 where ℳ′ is given by Definition 5.9.

Other kinds of update. As stated already, with Definition 5.9, if or not an agent in
the network adopts the behavior depends on her de dicto knowledge on the actions of
the agents in her influence set. Different from this, we can also introduce other kinds of
update policies. For instance, Baltag et al. (2019b) also suggested the the policy involving
agents’ de re knowledge: 𝐵′(𝑤) = {𝑎 ∈ 𝒜 ∣ |{𝑏∈𝒜∣∀𝑣∼𝑎𝑤∶𝑏∈ℐ(𝑣)(𝑎)∩𝐵(𝑣)}|

|{𝑏∈𝒜∣∀𝑣∼𝑎𝑤∶𝑏∈ℐ(𝑣)(𝑎)}| ⩾ 𝜃}, which
requires proportion of agents in ℐ(𝑤)(𝑎) known by 𝑎 to be 𝛽 is large enough. This policy
is definitely stronger than that of Definition 5.9.

Finally, to show the semantics completely, it remains to present the truth condition
for the communication operator [𝐶]. For this, we need to specify how to update models
with the operator. To make the spread of the behavior in question as efficient as possible,
a desirable way is to share all their information with all friends. Usually, dynamic epis-
temic logics make use of explicit formulas to specify the contents being communicated.
However, this does not always work. As noted by Baltag and Smets (2020),

• Depending on the expressivity of the language, their might be no formula in the
language that can capture all knowledge of an agent.

• Even when there exists such a formula, the total sum of an agent’s knowledge can
only be expressed by a huge formula. Also, in a purely syntactic approach, the
order of announcements matter: previously expressible information may become
inexpressible after another announcement, which may prevent the full resolution of
distributed knowledge (cf. van Benthem, 2006).
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Therefore, we employ such a communication operator not specifying explicit con-
tents communicated, which aims to capture that all agents share all they know with their
friends simultaneously. Precisely, the communication update can be formally defined as
follows:

Definition 5.10: Let ℳ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ be an ETM. The resulting
model from the communication update is ℳ𝐶 = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼′

𝑎}𝑎∈𝒜⟩, where
∼′

𝑎∶=∼1
⟨𝑎⟩ for any agent 𝑎 ∈ 𝒜.

Thus, the relation 𝒩 among agents now is essentially the channel of their commu-
nication. For brevity, given an ETM ℳ, we write ℳ𝑛𝐶 for the resulting model after
1 ⩽ 𝑛 ∈ ℕ rounds of communication. Here it is worth spending a few words on the
peculiar features of the notion of communication given above.

• After a round of communication, what an agent knows essentially consists of the
distributed knowledge of herself and her friends before the communication.

• In terms of the information flow, agents’ ‘locations’ w.r.t. relation 𝒩 in a network
play a significant role (Carrington, 2013). For instance, given two agents 𝑎, 𝑏, if all
𝑎’s neighbors are also neighbors of 𝑏, i.e., ⋀

𝑐∈𝒜
(𝑁𝑎𝑐 → 𝑁𝑏𝑐), then what 𝑎 potentially

knows from one-reachable friends is also potentially known by 𝑏 from one-reachable
friends, i.e.,

⋀
𝑐∈𝒜

(𝑁𝑎𝑐 → 𝑁𝑏𝑐) → (𝑃𝑎𝜑 → 𝑃𝑏𝜑).

• Possible worlds and agents are finite in an ETM, so there exists a class of the
longest 𝒩 -sequences. Let SEQ be such a sequence. In terms of knowledge
flow, we can reach a fixed point at most |SEQ| rounds of communication, i.e.,
ℳ|SEQ|𝐶 = ℳ(|SEQ|+1)𝐶 .

With this definition, we now can define the truth condition for [𝐶]:

ℳ, 𝑤 ⊨ [𝐶]𝜑 ⇔ ℳ𝐶 , 𝑤 ⊨ 𝜑

Immediately, it is not hard to check that the following formula concerning the relation
of 𝐾𝑎, 𝑃𝑎 and [𝐶] is valid:

[𝐶]𝐾𝑎𝜑 ↔ 𝑃𝑎[𝐶]𝜑

which states that after communication agent 𝑎 knows 𝜑 if, and only if, agent 𝑎 potentially
knows 𝜑 after communication.
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𝑤 ∶
𝑎 𝑏

𝑣 ∶
𝑎 𝑏𝑎

ℳ
Figure 5.2 A case showing that communication influences the result of diffusion. Let ℳ be an

ETM such that the threshold 𝜃 = 1, ℐ(𝑤)(𝑎) = ℐ(𝑣)(𝑎) = {𝑏}, ℐ(𝑤)(𝑏) = ℐ(𝑣)(𝑏) =
{𝑎}. Agent 𝑏 knows the actual world is 𝑤, where both 𝑎 and 𝑏 have adopted the
behavior. However, agent 𝑎 cannot distinguish 𝑤 from 𝑣. In world 𝑣, 𝑎 has adopted
the behavior, but 𝑏 is not. In such a setting, 𝑎 would unadopt the behavior in the next
round of adoption update (and both 𝑎 and 𝑏 will unadopt the behavior in next two
rounds of update). But, if we let they communicate first, then 𝑎 will know the world
𝑤 is the actual case, and agents 𝑎, 𝑏 will keep the property forever.

It might be worth noting that, the communication between friends may change the
result of adoption update, which is determined by the behavior of those in agents’ influence
sets, especially when agents in the influence set of an agent can also be reached from the
agent through the her friends. That is, it may happen that some friends tell us useful
information on experts. For an example for this, see Figure 5.2.

Digression. Let ℳ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ be an ETM and 𝑎 ∈ 𝒜. As stated,
the communication update introduced in Definition 5.10 intuitively expresses that all
agents tell all they know to their neighbors at the same time. Different from this, we
can also define a version of stepwise communication [!𝑎]𝜑 expressing that 𝜑 is the case
after 𝑎 tell all she knows to her neighbors. The update induced by [!𝑎] is obtained by
replacing {∼𝑎}𝑎∈𝒜 with {∼′

𝑎}𝑎∈𝒜 defined as follows:
• For 𝑎: 𝑤 ∼′

𝑎 𝑣 iff 𝑤 ∼𝑎 𝑣
• For 𝑏 ∈ 𝒩 (𝑤)(𝑎): 𝑤 ∼′

𝑏 𝑣 iff 𝑤 ∼𝑎 𝑣 and 𝑤 ∼𝑏 𝑣
• For any 𝑏 ∉ 𝒩 (𝑤)(𝑎) ∪ {𝑎}: 𝑤 ∼′

𝑏 𝑣 iff 𝑤 ∼𝑏 𝑣.1

It is worth noting that [𝐶] is not the same as the case that every agents tell all they
know to their neighbors one by one: the structure of 𝒩 in our setting matters.

5.5 Axiomatization

At the final of this chapter, we show a complete Hilbert-style calculus LET𝜃 for the
logic. See Table 5.2 for its details.

1 The preliminary version of this operator, operating on the same models as those of the public announcement logic
PAL, is introduced in Dr. Alexandru Baltag’s course ‘Dynamic Epistemic Logics’ at the ILLC, who called it ‘Tell
All You Know’ modality.
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Table 5.2 Proof system LET𝜃, where 𝑛, 𝑚 ∈ ℕ and 𝑎, 𝑏 ∈ 𝒜.

I The classical propositional logic
II Network axioms: the part II of Table 5.1
III Knowledge-network axioms:
Known neighbors 𝑁𝑎𝑏 → 𝐾𝑎𝑁𝑎𝑏
Known influence 𝐼𝑎𝑏 → 𝐾𝑎𝐼𝑎𝑏
Known behavior 𝛽𝑎 → 𝐾𝑎𝛽𝑎
IV Potential knowledge axioms:
K-𝑃 𝑛

𝑎 𝑃 𝑛
𝑎 (𝜑 → 𝜓) → (𝑃 𝑛

𝑎 𝜑 → 𝑃 𝑛
𝑎 𝜓)

T-𝑃 𝑛
𝑎 𝑃 𝑛

𝑎 𝜑 → 𝜑
4-𝑃 𝑛

𝑎 𝑃 𝑛
𝑎 𝜑 → 𝑃 𝑛

𝑎 𝑃 𝑛
𝑎 𝜑

5-𝑃 𝑛
𝑎 𝑃 𝑛

𝑎 𝜑 → 𝑃 𝑛
𝑎 𝑃 𝑛

𝑎 𝜑
V Interaction axioms:
𝑁-𝑃 𝑛 𝑁𝑎𝑏 ∧ 𝑃 𝑛

𝑎 𝜑 → 𝑃 𝑛+1
𝑏 𝜑

𝑁𝑚-𝑃 𝑛 ⋀
𝑐∈𝒜

(𝑁𝑛
𝑎𝑐 → 𝑁𝑚

𝑏𝑐) → (𝑃 𝑛
𝑎 𝜑 → 𝑃 𝑚

𝑏 𝜑)

VI Recursion axioms for [A]:
[A]-𝑁 [A]𝑁𝑎𝑏 ↔ 𝑁𝑎𝑏
[A]-𝐼 [A]𝐼𝑎𝑏 ↔ 𝐼𝑎𝑏
[A]-𝛽 [A]𝛽𝑎 ↔ 𝐾𝑎𝛽𝐼(𝑎)⩾𝜃
[A]-¬ [A]¬𝜑 ↔ ¬[A]𝜑
[A]-∧ [A](𝜑 ∧ 𝜓) ↔ [A]𝜑 ∧ [A]𝜓
[A]-𝑃 𝑛 [A]𝑃 𝑛

𝑎 𝜑 ↔ 𝑃 𝑛
𝑎 [A]𝜑

VII Recursion axioms for [𝐶]:
[𝐶]-𝑁 [𝐶]𝑁𝑎𝑏 ↔ 𝑁𝑎𝑏
[𝐶]-𝐼 [𝐶]𝐼𝑎𝑏 ↔ 𝐼𝑎𝑏
[𝐶]-𝛽 [𝐶]𝛽𝑎 ↔ 𝛽𝑎
[𝐶]-¬ [𝐶]¬𝜑 ↔ ¬[𝐶]𝜑
[𝐶]-∧ [𝐶](𝜑 ∧ 𝜓) ↔ [𝐶]𝜑 ∧ [𝐶]𝜓
[𝐶]-𝑃 𝑛 [𝐶]𝑃 𝑛

𝑎 𝜑 ↔ 𝑃 𝑛+1
𝑎 [𝐶]𝜑

VIII Inference rules:
Nec.𝑃 𝑛 From 𝜑, infer 𝑃 𝑛

𝑎 𝜑, for any 𝑎 ∈ 𝒜
Nec.[A] From 𝜑, infer [A]𝜑
Nec.[𝐶] From 𝜑, infer [𝐶]𝜑
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The static part of LET𝜃 consists of the classical propositional logic, network ax-
ioms, knowledge-network axioms, potential knowledge axioms, interaction axioms and
inference rule Nec.𝑃 𝑛. The network axioms are the same as those in Table 5.1. The
knowledge-network axioms show agents know their own behaviors, their neighbors and
those agents who influence them. Moreover, potential knowledge axioms characterize the
fact that each ∼𝑛

⟨𝑎⟩ is an equivalence relation. Also, both axioms 𝑁-𝑃 𝑛 and 𝑁𝑚-𝑃 𝑛 are
principles illustrating the interactions between the relation 𝒩 and potential knowledge.
Intuitively, the former states that if 𝑎 and 𝑏 are friends and 𝑎 potentially knows 𝜑 from
those 𝑛-reachable from herself, then 𝑏 potentially knows 𝜑 from those who are (𝑛 + 1)-
reachable. Additionally, principles 𝑁𝑚-𝑃 𝑛 expresses that if all agents that are 𝑛-reachable
from 𝑎 are 𝑚-reachable from 𝑏, then all 𝑎 potentially knows from those that are 𝑛-reachable
is also potentially known by 𝑏 from those are 𝑚-reachable.

Let us now briefly comment on the principles of the dynamic part. Formulas [A]-𝑁
and [A]-𝐼 show that the adoption update does not affect the structure of the network cap-
tured by 𝒩 or ℐ. Principle [A]-𝛽 illustrates that one agent 𝑎 becomes 𝛽 after a round of
adoption update if, and only if, before the update, in each possible situation considered by
𝑎, the proportion of agents having adopted in her influence set is always above or equal to
the threshold. The principle [A]-𝑃 𝑛 shows that for any 𝑛 ∈ ℕ, [A] and 𝑃 𝑛

𝑎 are commuta-
tive. In terms of operator [𝐶], its recursion axioms involving Boolean cases are similar
to those of [A]. The principle [𝐶]-𝑃 𝑛 states that after a round of communication, agent
𝑎 potentially knows 𝜑 from those 𝑛-reachable from her if, and only if, agent 𝑎 potentially
knows from those (𝑛 + 1)-reachable from her that after a round of communication 𝜑 is the
case.

Theorem 5.2: Let 𝜃 ∈ [0, 1] and 𝑛 ∈ ℕ. For any 𝜑 ∈ ℒ𝑒, it holds that:

𝒞𝜃 ⊨ 𝜑 ⇔ LET𝜃 ⊢ 𝜑.

Proof Soundness. Let ℳ = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼𝑎}𝑎∈𝒜⟩ be an ETM of 𝒞𝜃, 𝑤 ∈ 𝑊 ,
𝑎, 𝑏 ∈ 𝒜 and 𝑛 ∈ ℕ. It is simple to see that all network axioms are valid. Also, the
knowledge-network axioms hold directly by the semantics and the assumption that all
agents know their neighbors and the agents who influence them. Besides, all ∼𝑛

⟨𝑎⟩ are still
equivalence relations, so it is not hard to see all the potential knowledge axioms are valid.
Furthermore, it can also be checked straightforward that the interaction axioms are valid.
Now we consider the validity of recursion axioms. It is not to see that all recursion axioms
involving ¬ and ∧ are obvious. Let us begin with those for [A].
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As illustrated by Definition 5.9, the operator [A] only affects the extension of 𝐵,
hence validity of formulas [A]-𝑁 and [A]-𝐼 are trivial. Let ℳ′ be the adoption update of
ℳ. We now prove [A]-𝛽 is valid:

ℳ, 𝑤 ⊨ [A]𝛽𝑎 ⇔ ℳ′, 𝑤 ⊨ 𝛽𝑎

⇔ 𝑎 ∈ {𝑎 ∈ 𝒜 ∣ ∀𝑣 ∼𝑎 𝑤 ∶ |ℐ(𝑣)(𝑎)∩𝐵(𝑣)|
|ℐ(𝑣)(𝑎)| ⩾ 𝜃}

⇔ for each 𝑣 ∈ 𝒲 , 𝑤 ∼𝑎 𝑣 entails |ℐ(𝑣)(𝑎)∩𝐵(𝑣)|
|ℐ(𝑣)(𝑎)| ⩾ 𝜃

⇔ for each 𝑣 ∈ 𝒲 , if 𝑤 ∼𝑎 𝑣, then there exist two sets
ℑ(= ℐ(𝑣)(𝑎)) and 𝒢(= 𝐵(𝑣) ∩ ℐ(𝑣)(𝑎)) s.t. |𝒢|

|ℑ| ⩾ 𝜃
⇔ for each 𝑣 ∈ 𝒲 , if 𝑤 ∼𝑎 𝑣, then ℳ, 𝑣 ⊨ 𝛽𝐼(𝑎)⩾𝜃

⇔ ℳ, 𝑤 ⊨ 𝐾𝑎𝛽𝐼(𝑎)⩾𝜃

Next, it is easy to see that [A]-𝑃 𝑛 is also valid:

ℳ, 𝑤 ⊨ [A]𝑃 𝑛
𝑎 𝜑 ⇔ ℳ′, 𝑤 ⊨ 𝑃 𝑛

𝑎 𝜑
⇔ for all 𝑣 ∈ 𝒲 s.t. 𝑤 ∼𝑛

⟨𝑎⟩ 𝑣, ℳ′, 𝑣 ⊨ 𝜑
⇔ for all 𝑣 ∈ 𝒲 s.t. 𝑤 ∼𝑛

⟨𝑎⟩ 𝑣, ℳ, 𝑣 ⊨ [A]𝜑
⇔ ℳ, 𝑣 ⊨ 𝑃 𝑛

𝑎 [A]𝜑

Now we move to considering those for [𝐶]. Since the communication update does
not affect the structures 𝒩 , ℐ of networks or behaviors of agents, the validity of [𝐶]-𝑁 ,
[𝐶]-𝐼 and [𝐶]-𝛽 holds immediately by the semantics. We prove the case for [𝐶]-𝑃 𝑛. Let
ℳ𝐶 = ⟨𝒲, 𝒜, 𝒩 , ℐ, 𝐵, 𝜃, {∼′

𝑎}𝑎∈𝒜⟩ be the communication update of ℳ. Then, we have
the following sequence of equivalences:

ℳ, 𝑤 ⊨ [𝐶]𝑃 𝑛
𝑎 𝜑 ⇔ ℳ𝐶 , 𝑤 ⊨ 𝑃 𝑛

𝑎 𝜑
⇔ for all 𝑣 ∈ 𝒲 s.t. 𝑤 ∼′𝑛

⟨𝑎⟩ 𝑣, ℳ𝐶 , 𝑣 ⊨ 𝜑
⇔ for all 𝑣 ∈ 𝒲 s.t. 𝑤 ∼𝑛+1

⟨𝑎⟩ 𝑣, ℳ𝐶 , 𝑣 ⊨ 𝜑
⇔ for all 𝑣 ∈ 𝒲 s.t. 𝑤 ∼𝑛+1

⟨𝑎⟩ 𝑣, ℳ, 𝑣 ⊨ [𝐶]𝜑
⇔ ℳ, 𝑤 ⊨ 𝑃 𝑛+1

𝑎 [𝐶]𝜑

Moreover, it is not hard to see that the validity of ℒ𝑒-formulas is invariant under the
inference rules. So, we conclude that LET𝜃 is sound.

Completeness. By the recursion axioms, it can be shown that for any 𝜑 ∈ ℒ𝑒, there exists
a static formula of 𝜓 ∈ ℒ𝑒 such that LET𝜃 ⊢ 𝜑 ↔ 𝜓 . Therefore, the completeness of
the logic follows if we can show the completeness of the static part. Essentially, the proof
is not trivial, but it can be shown by a simple adaptation of the techniques developed by
iterated access logic (Carrington, 2013). Therefore, we omit the details here. ∎
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5.6 Summary and future work

Summary. In the chapter, based on threshold models, we studied a specific form of dy-
namic dependence in social interactions, i.e., the diffusion of behaviors or opinions among
agents. Two formal frameworks were proposed to analyze the phenomena.

Our first proposal was built directly on the notions of threshold models and their
updates, and we provided a complete proof system and discussed interesting variants. The
approach was essentially motivated by Baltag et al. (2019b), though with some noteworthy
differences. For instance, the social networks we were interested in contained different
sorts of social relations. However, as indicated, not all relations played significant roles
in processes of diffusion, but this did not mean that distinguishing them made no sense:
in fact, it was the scenarios investigated that were still too simple.

Next, after we moved to realistic scenarios in which agents’ epistemic states mat-
tered, things became much more interesting: all social relations now made their own con-
tribution to the evolution of behaviors or opinions. To handle these scenarios precisely,
we enriched our models with a notion of potential knowledge and ways of communica-
tion, and analyzed their influence on the diffusion of behaviors. Technically, a complete
Hilbert-style calculus was presented for the resulting richer logic.

Further directions. The notions and results presented in this chapter suggest many open
problems. A number of these resemble the challenges identified in Baltag et al. (2019b).
For instance, it is meaningful to consider other kinds of policies to update behaviors,
and more general dynamic logics should accommodate these. Besides, there are other
directions to be explored. For instance, the social relationships we considered in this
chapter are static, but it is natural to also consider their dynamics. Say, agents might make
new friends (cf. e.g., Smets and Velázquez-Quesada, 2017) or remove agents from their
influence set, as suggested by our work in Chapter 2. Additionally, as agents in our setting
are allowed to unadopt behaviors, one natural empirical phenomenon to be explored is
oscillations of behaviors in dynamical systems (van Benthem, 2015). Finally, one could
also introduce agents’ beliefs instead of just their knowledge, and also, allow a wider range
of communicative acts affecting knowledge beliefs.

Yet further relevant research questions of a broader nature will be found in the con-
cluding chapter of this dissertation.
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Chapter 6 Conclusions and further directions

6.1 Conclusions

In this dissertation, we have explored social interactions between agents from a log-
ical point of view.

The first part, consisting of chapters 2 and 3, was concerned with multi-agent interac-
tions where agents are drastically at odds, to the extend that they change the environment in
which their interaction takes place. Our tool for modeling such settings were graph games,
which can be modified to fit various concrete scenarios. For describing winning strate-
gies and other notions relevant to these games, we introduced a natural logical formalism
which connects to standard modal and dynamic logics, now with additional modalities de-
scribing the effects of changing the models on which semantic interpretation takes place.
This logic can be seen as the core calculus of valid reasoning about social interactions
with environmental change. In chapter 2, we showed in particular that the logic of local-
ized agents shares many features and properties with standard modal logics, but that the
dynamics of environment change has a complexity which is reflected in the undecidability
of the logic. The system also generated further questions of independent interest beyond
the particular case of sabotage graph games.

Next, in Chapter 3, we studied what needs to happen when an abstract logic of graph
change is taken to the concrete setting of learning/teaching scenarios. Even the simple
example of guiding and correcting a student seeking to establish a mathematical proof
involved many additional features, such as the importance of a history and the existence
of different kinds of graph change for ‘correction’ verses ‘warning’. We gave a concrete
formal model for modeling such aspects, and determined the resulting logic, which can
be viewed as an extension of the system of reasoning in Chapter 2, allowing us to see
what additional reasoning principles govern such concrete scenarios. We believe that the
resulting framework would be a natural addition to existing models in formal learning
theory (Gierasimczuk, 2010; Kelly, 1996).

In a second part of the dissertation, we moved away from details of graph games
to just focus on the phenomenon of dependence between actions. This may be seen as
another face of logical analysis: identifying broad features of a phenomenon (in this case,
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the strategic bonds that arise in groups engaging in shared action), and determining their
core principles at a very abstract level.

In Chapter 4, we presented a logical analysis of dependence over time in dynamical
system, an abstraction out of specific games where we just study transitions in joint states
for all agents. Extending a recent decidable modal logic of abstract static (instantaneous)
dependence presented in (Baltag and van Benthem, 2021b), we added flow of time, and
showed that the resulting core logic of dynamic dependencies playing over time is still
axiomatizable, and indeed, a sizeable part of it was shown to be decidable. This system
may be considered as a sort of basic logic for temporal dependencies in social systems.

Going further, we also took into account the fact that dynamical systems, a widely
used tool in many settings, from physics to computer science and formal philosophy, usu-
ally come with a topology on their state space, allowing us to bring mathematical notions
like approximation and continuity to bear on epistemic and action structure. More gen-
erally, we also believe that this framework might be a natural extension of an existing
area of ‘dynamic topological logic’ (Kremer and Mints, 2007), developed originally for
analyzing the foundations of dynamical systems theory.1

The abstraction move toward dynamical systems also means that we now have a math-
ematical framework that is neutral toward the intuitive distinction between agents with
‘high rationality’ (Skyrms, 1990; van Benthem et al., 2021b), who deliberate, seek infor-
mation and decide consciously, and agents with ‘low rationality’ who merely follow some
hard-wired rule, perhaps biologically encoded, or as part of their software design. In our
final Chapter 5, we considered one instance of these, namely threshold models for opin-
ion formation, originally coming from sociology, but now also increasingly used in logical
studies of opinion formation in large groups. This move is natural because the method-
ology of modal and dynamic logics still applies here (Baltag et al., 2019b; Christoff and
Hansen, 2013, 2015; Liu et al., 2014; Seligman et al., 2011; Shi, 2021). We made a con-
crete case study of adding one crucial extra dimension in realistic social scenarios, that
manifests itself as knowledge in the high-rationality realm, and as information in the low-
rationality realm. We provided richer models capturing this, and found a logic showing
the resulting surplus in basic reasoning over and above the bare systems studied in Chapter
4.

1 Finding a base logic of dynamical systems need not have one unique answer. For a solution that is prima face
different from ours, using notions from Domain Theory, cf. the recent ILLC dissertation (Hornischer, 2021) which
can handle neural networks and similar structures.
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6.2 Further directions

This dissertation is an exploration of some new perspectives on interacting agents.
It provides some answers to the questions posed in the Introduction, but as always, more
questions came to light in our investigation. These come in different kinds. Some concern
obvious continuations of our results, and we start by summarizing these chapter by chapter.

Technical continuation and outreach opportunities by chapter.

In chapters 2 and 3 forming Part I, we introduced two kinds of graph games SdG
and CLG as well as their matching logics SdML and CLL. These logics can describe the
relevant winning positions for both players in given finite graphs, and we determined many
of their semantic and computational meta-properties. However, equally natural questions
remained open. We did not provide sound and complete Hilbert-style calculi, though
we believe this may be done using the techniques recently developed in (van Benthem
et al., 2021a). Also, since both logics are not closed under substitution, a feature found
with many dynamic-epistemic logics, one would also want to axiomatize the schematic
validities, and determine their complexity, cf. Holliday et al. (2013) on solving this for
public announcement logic. Next, our languages suggests a lot of syntactic fine-structure,
starting with the limited set of formulas needed for representing the basic properties of our
graph games: such fragments of our logics remain to be studied. On the other hand, there
is also an issue of extension. Our are not expressive enough to determine generic winning
conditions across models: for this, we need to extend our languages with fixpoint operators
(cf. e.g., Kozen, 1983). Finally, taking the broader perspective on social interaction in
(van Benthem and Liu, 2020), there is also the issue of how our logics interface with
more general logics of games that tend to have much more structure, down to defining
preferences, goals, equilibria and other game-theoretic features that we have left aside
(van Benthem, 2014).

Chapters 4 and 5 in Part II provided logics for dynamic dependence of actions in
social settings. The former chapter studied the notion at a very abstract level, in terms of
behavior of variables over time in dynamical systems, while the latter explored an embod-
iment in social reality, viz. diffusion of behaviors or opinions among agents. The results
in Chapter 4 included completeness and the decidability of a fragment of the logic, but one
major problem we left open was the decidability of the whole logical system. We believe
that the answer is positive, but had only an approach to offer that still needs to be validated
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in detail. Another obvious desideratum would be the addition of a true future operator al-
lowing us to reason about eventual behavior of a dynamical system, instead of just the
local step-by-step dynamics. A further set of issues has to do with the topological dimen-
sion of our results. Our logics can be seen as an extension of standard modal logic with
a topological semantics to include explicit reasoning about continuous functions (Baltag
and van Benthem, 2021a), but can this analogy be made precise and fruitful? Finally,
a junction between our approach and results with the existing body of work on dynamic
topological logic seems a natural step to take, but it remains to be made. And another
natural linkage would be with logical studies of causal reasoning (Halpern, 2016; Ibeling
and Icard, 2020; Xie, 2020).

As for the concrete case study in Chapter 4, an obvious task remaining is a systematic
comparison with other proposed modal logics for threshold models, (Baltag et al., 2019b;
Christoff, 2016; Christoff and Grossi, 2017; Christoff and Hansen, 2015; Christoff et al.,
2016; Rendsvig, 2014). Another natural issue is whether we should not add a component
of influence, and let behaviors have effects on changes in influence relations (Shi, 2021)?
But there are also interesting issues of comparison with the preceding chapter. One would
be to add an explicit temporal logic component to our analysis of opinion formation. But
on the other hand, threshold rules can also be seen as generalizing the very notion of
dependence in the earlier chapter. The behavior of a variable is no longer fixed by that of
a fixed set of other variables (its governing ‘authority’), but by a majority vote among the
other variables. What are the basic properties of this alternative notion, which seems to
considerably generalize standard functional dependence?

Filling the gaps between our chapters and general logical methodology.

Our chapters represent different case studies, published in different venues for differ-
ent purposes. But with them in place, a number of connection issues emerge. For instance,
how does the emphasis on extensive sequential games in Part I fit in more detail with the
emphasis on dependence, dynamical systems and simultaneous action in Part II? We have
made some observations here, but this would merit much more attention. For instance,
dynamical systems unfold one particular strategy profile for players, but the essence of
the strategic situation in graph games and their corresponding modal logics might be seen
as one of free choice. Also, while graph games naturally fit with classical game theory
(Osborne and Rubinstein, 1994), (where they are a very special case), dynamical systems
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fit best with evolutionary game theory (Hofbauer and Sigmund, 1998), and the relation
between these two perspectives merits more discussion.

Another significant issue is that dynamical systems do not attach special significance
to the two-agent case, arbitrary finite groups of agents are taken on board from the start.
But this raises issues of playing graph games with larger groups of agents, and the resulting
coalitional structure that have not been investigated at all.

Next, while we presented the step from games to dynamical systems as perhaps an
evident and preferred abstraction, this ignores existing attempts in this direction with a
very different slant. In particular, the logics of powers of players in games found in (van
Benthem, 2014; van Benthem et al., 2019; van Benthem and Klein, 2020) focus on abstract
powers of players for influencing results of the game, in the psirit of modal neighborhood
semantics (Pacuit, 2017). How do these relate to the approach taken here?

One connection issue that we have already noted is the pervasive role of knowledge in
realistic social scenarios. But we have only explored this in one case study, of dynamical
threshold systems for opinion formation. Adding epistemic aspects explicitly to all issues
studied in this thesis is something that remains to be done.

Connected to this, there is the role of rationality as a hidden assumption behind much
of our analysis. To be sure, our different topics suggested a contrast, or a meeting ground,
between high rationality and low rationality. But this philosophical dimension has not
been taken further in this dissertation, even though it is a natural issue to raise. For in-
stance, graph games might just as well be used, precisely because they are so simple and
basic, to study the behavior of agents that do not display classical rationality, or perhaps
more realistically, of studying the interplay of agents endowed with less or more features
of classical rationality.

Other, still broader, questions concern our logical methodology. On the whole, this
dissertation is semantic in nature, and the backdrop to our results is logical model the-
ory. It would be of interest to see whether there is a more purely proof-theoretic approach
to the core reasoning about the aspects of interactive agency studied here: environment
change and dependence, perhaps extending the dialogical approach (Keiff, 2011) or the
category-theoretic one of Abramsky (1995). Another desideratum would be a closer link-
age between the logical style of analyzing social scenarios, and those offered by game the-
ory: classical for high-rationality agents and evolutionary game theory for low-rationality
agents.
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Extending empirical coverage and questioning conceptual choices.

Finally, there is always the issue of taking on board more aspects of reality in our
models. We have mentioned several instances already in our concrete case studies. In
fact, about every concrete case study one can think of will bring in more notions. There
are also some general desiderata coming out of this, as we already noted. For instance, in
social settings, surely, in addition to looking at how individuals interact, there is the issue
of how to model the behavior of groups. Also, social life may be said to essentially involve
a mixture of dependence and independence, a notion we have ignored, even though the
modal framework that we have adopted in Part II has also been used for giving definitions
of independence and reasoning about it. We are not going to give more examples here,
since finding new aspects not covered by proposed logical models is an easy game to play
for which the reader does not need our guidance.

Our next observation is one of the potential impact of ideas from philosophy on stud-
ies like those in this dissertation. Here is one such issue, which might also lead us to
question some choices we have made. We believe that the (sometimes benign) tension
between individuals and groups is essential to understanding social life. But the way this
would show in our logics is rather crude. Groups are usually just treated as sets of indi-
viduals in standard epistemic and dynamic logics. But clearly, a group is much more than
a set. Now there have been many interesting attempts at formulating this surplus, making
groups ‘sets plus ...”: cf. Paterson (2018); Shi and Wang (2021). But one direction that we
see is more radical, namely dropping the use of sets altogether, and metaphysically recon-
ceptualizing the notion of a group. What we have in mind here are mereological theories
of extended entities with parthood relations, cf. (Varzi, 2019) for a brief introduction.
As it happens, in a line of research separate from this dissertation, we have recently pro-
posed new modal logics of mereological structure (Li and Wang, 2021), and we believe
that taking this mereological perspective to the topics of this dissertation might be highly
worthwhile follow-up project.

Finally, there is a general sort of tension in logical studies of real phenomena, which
is also quite visible in this dissertation. On the one hand, logical studies of social reality
tend to take on board more and more details, thereby creating two sorts of problems. One
is that these details have often been studied already in the separate behavioral sciences,
so a legitimate question arises of what does a logical analysis really adds. The art is to
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know where to stop. The other problem is the challenge, or even paradox, of complexity.
The more expressive and detailed we make our logics, the more complex, in general, their
systems of validities, so in order to get closer to reality, we make the logical tools more
and more complicated, endangering the motivation for using logic in the first place. Given
this, we have also emphasized the other virtue of logical analysis, namely going firmly in
the opposite direction, and abstracting from lost of realistic details to get at some high-
level essence that supports a perspicuous, and hopefully not too complex, base theory of
social features such as dependence of behavior.

We do not offer a fail-safe solution to the dilemma of the two directions of abstraction
and concretization here: what to do and where to go may remain essentially a matter
of good taste. Whether this dissertation has succeeded in striking the right balance is a
question we must leave to our readers.
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