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Abstract

NNIL-formulas are propositional formulas that do not allow nest-
ing of implication to the left. These formulas were introduced in [16],
where it was shown that NNIL-formulas are (up to provable equiva-
lence) exactly the formulas that are preserved under taking submodels
of Kripke models. In this paper we show that NNIL-formulas are up to
frame equivalence the formulas that are preserved under taking sub-
frames of (descriptive and Kripke) frames. As a result we obtain that
NNIL-formulas are subframe formulas and that all subframe logics can
be axiomatized by NNIL-formulas.

We also introduce ONNILLI-formulas, only NNIL to the left of impli-
cations, and show that ONNILLI-formulas are (up to frame equivalence)
the formulas that are preserved in monotonic images of (descriptive and
Kripke) frames. As a result, we obtain that ONNILLI-formulas are sta-
ble formulas as introduced in [1] and that ONNILLI is a syntactically
defined set of formulas that axiomatize all stable logics. This resolves
an open problem of [1].

1 Introduction

Intermediate logics are logics situated between intuionistic propositional cal-
culus IPC and classical propositional calculus CPC. One of the central topics
in the study of intermediate logics is their axiomatization. Jankov [15], by
means of Heyting algebras, and de Jongh [13], via Kripke frames, devel-
oped an axiomatization method for intermediate logics using the so-called
splitting formulas. These formulas are also referred to as Jankov-de Jongh
formulas. In algebraic terminology, for each finite subdirectly irreducible
Heyting algebra A, its Jankov formula is refuted in an algebra B, if there
is a one-one Heyting homomorphism from A into a homomorphic image of
B. In other words, the Jankov formula of A axiomatizes the greatest variety
of Heyting algebras that does not contain A. In terms of Kripke frames,
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for each finite rooted frame F, the Jankov-de Jongh formula of F is refuted
in a frame G iff F is a p-morphic image of a generated subframe of G. In
fact, the Jankov-de Jongh formula of F axiomatizes the least intermediate
logic that does not have F as its frame. Large classes of intermediate logics
(splitting and join-splitting logics) are axiomatizable by Jankov-de Jongh
formulas. However, not every intermediate logic is axiomatizable by such
formulas, see e.g., [11, Sec 9.4].

Zakharyaschev [18, 19] introduced new classes of formulas called sub-
frame and cofinal subframe formulas that axiomatize large classes of inter-
mediate logics not axiomatizable by Jankov-de Jongh formulas. For each
finite rooted frame F the (cofinal) subframe formula of F is refuted in a
frame G iff F is a p-morphic image of a (cofinal) subframe of G. Logics ax-
iomatizable by subframe and cofinal subframe formulas are called subframe
and cofinal subframe logics, respectively. There is a continuum of such logics
and each of them enjoys the finite model property. Moreover, Zakharyaschev
showed that subframe logics are exactly those logics whose frames are closed
under taking subframes. He also showed that an intermediate logic L is a
subframe logic iff it is axiomatizable by (∧,→)-formulas, and L is a cofinal
subframe logic iff it is axiomatizable by (∧,→,⊥)-formulas. However, there
exist intermediate logics that are not axiomatizable by subframe and cofinal
subframe formulas, see e.g., [11, Sec 9.4]. Finally, Zakharyaschev [18] intro-
duced canonical formulas that generalize these three types of formulas and
showed that every intermediate logic is axiomatizable by these formulas.

Zakharyaschev’s method was model-theoretic. In [6] an algebraic ap-
proach to subframe and cofinal subframe logics was developed and in [2]
extended to a full algebraic treatment of canonical formulas. This approach
is based on identifying locally finite reducts of Heyting algebras. Recall that
a variety V of algebras is called locally finite if the finitely generated V-
algebras are finite. In logical terminology the corresponding notion is called
local tabularity. A logic L is called locally tabular if there exist only finitely
many non-L-equivalent formulas in finitely many variables. Note that ∨-free
reducts of Heyting algebras are locally finite.

Based on the above observation, for a finite subdirectly irreducible Heyt-
ing algebra A, [2] defined a formula that encodes fully the structure of the
∨-free reduct of A, and only partially the behavior of ∨. In other words, if B
is a Heyting algebra and h : A→ B is a map that preserves all Heyting oper-
ations except ∨, then h may still preserve ∨ for some elements of A. This can
be encoded in the formula by postulating that ∨ is preserved for only those
pairs of elements of A that belong to some designated subset D of A2. This
results in a formula that has properties similar to the Jankov formula of A,
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but captures the behavior of A not with respect to Heyting homomorphisms,
but rather morphisms that preserve the ∨-free reduct of A. This formula is
called the (∧,→)-canonical formula of A, and such (∧,→)-canonical formu-
las axiomatize all intermediate logics. When D = A2, the (∧,→)-canonical
formula of A is frame-equivalent to the Jankov formula of A. When D = ∅,
the (∧,→)-canonical formula of A is a subframe formula of A. In [2], it was
shown, via the Esakia duality for Heyting algebras, that (∧,→)-canonical
formulas are frame-equivalent to Zakharyaschev’s canonical formulas, and
that so defined subframe and cofinal subframe formulas are frame-equivalent
to Zakharyaschev’s subframe and cofinal subframe formulas.

However, Heyting algebras also have other locally finite reducts, namely
→-free reducts. Recently, [1] developed a theory of canonical formulas for
intermediate logics based on these reducts of Heyting algebras. For a finite
subdirectly irreducible Heyting algebra A and D ⊆ A2, [1] defined the (∧,∨)-
canonical formula of A that encodes fully the structure of the→-free reduct
of A, and only partially the behavior of →. It was shown that a Heyting
algebra B refutes the (∧,∨)-canonical formula of A iff there is a bounded
lattice embedding of A into a subdirectly irreducible homomorphic image of
B that preserves→ for the pairs of elements from D. One of the main results
of [1] is that each intermediate logic is axiomatizable by (∧,∨)-canonical
formulas, in parallel to the theory of (∧,→)-canonical formulas.

When D = A2, the (∧,∨)-canonical formula of A is equivalent to the
Jankov formula of A. When D = ∅, the (∧,∨)-canonical formulas produce
a new class of formulas called stable formulas. It was shown in [1], via the
Esakia duality, that for each finite rooted frame F the stable formula of F
is refuted in a frame G iff F is an monotonic image of G. Stable logics are
intermediate logics axiomatizable by stable formulas. There is a continuum
of stable logics and all stable logics have the finite model property. Also
an intermediate logic is stable iff the class of its rooted frames is preserved
under monotonic images [1].

Thus, stable formulas play the same role for (∧,∨)-canonical formulas
that subframe formulas play for (∧,→)-canonical formulas. Also the role
that subframes play for subframe formulas are played by monotonic images
for stable formulas. A syntactic characterization of stable formulas was left
in [1] as an open problem. The goal of this paper is to resolve this problem.
This is done via the NNIL-formulas of [16].

NNIL-formulas are formulas with no nesting of implications to the left. It
was shown in [16] that these formulas are exactly the formulas that are closed
under taking submodels of Kripke models. This implies that these formulas
are also preserved under taking subframes. Moreover, for each finite rooted
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frame F, [7] constructs its subframe formula as a NNIL-formula. In Section
3 of this paper we recall this characterization and use it to show that the
class of NNIL-formulas is (up to frame equivalence) the same as the class of
subframe formulas. Hence, an intermediate logic is a subframe logic iff it is
axiomatized by NNIL-formulas. This also implies that each NNIL-formula is
frame-equivalent to a (∧,→)-formula. We refer to [17] for more details on
this.

In this paper we define a new class of ONNILLI-formulas. ONNILLI stands
for only NNIL to the left of implications. We show that each ONNILLI-
formula is closed under monotonic images of rooted frames. For each finite
rooted frame F we also construct an ONNILLI-formula as its stable formula.
This shows that the class of stable formulas (up to frame equivalence) is
the same as the class of ONNILLI-formulas. We deduce from this that an
intermediate logic is stable iff it is axiomatizable by ONNILLI-formulas. Ex-
amples of ONNILLI-formulas are the Dummet formula (p → q) ∨ (q → p),
the law of weak excluded middle ¬p ∨ ¬¬p, etc.

We work with both Kripke and descriptive frames. Maps between de-
scriptive frames need to satisfy an extra admissibility condition. Subframes
of descriptive frames also have an extra admissibility condition.

We finish by mentioning the connection to modal logic. Modal ana-
logues of subframe formulas were defined by Fine [14]. Analogues of (∧,→)
-canonical formulas for transitive modal logics were investigated by Za-
kharyaschev, see [11, Ch. 9] for an overview. An algebraic approach to
these formulas was developed in [3] and generalized to weak transitive log-
ics in [4]. Modal analogues of (∧,∨)-canonical formulas are studied in [5],
where modal analogues of stable logics are also defined. In [9] it is shown
that modal stable logics have nice proof-theoretic properties. In particular,
they have the bounded proof property bpp.

The paper is organized as follows. In Section 2 we recall Kripke and
descriptive models of intuitionistic logic and basic operations on them. In
Section 3 we discuss in detail the connection between NNIL-formulas and
subframe logics. In Section 4 we introduce ONNILLI formulas and prove
that they axiomatize stable logics.

2 Preliminaries

For the definition and basic facts about intuitionistic propositional calculus
IPC we refer to [11], [12] or [7]. Here we briefly recall the Kripke semantics
of intuitionistic logic.
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Let L denote a propositional language consisting of

• infinitely many propositional variables (letters) p0, p1, . . . ,

• propositional connectives ∧, ∨, →,

• a propositional constant ⊥.

We denote by Prop the set of all propositional variables. Formulas in L
are defined as usual. Denote by Form(L) (or simply by Form) the set
of all well-formed formulas in the language L. We assume that p, q, r, . . .
range over propositional variables and ϕ,ψ, χ, . . . range over arbitrary for-
mulas. For every formula ϕ and ψ we let ¬ϕ abbreviate ϕ→ ⊥ and ϕ↔ ψ
abbreviate (ϕ→ ψ) ∧ (ψ → ϕ). We also let > abbreviate ¬⊥.

We now quickly recall the Kripke semantics for intuitionistic logic. Let
R be a binary relation on a set W . For every w, v ∈ W we write wRv if
(w, v) ∈ R and we write ¬(wRv) if (w, v) /∈ R.

Definition 1.

1. An intuitionistic Kripke frame is a pair F = (W,R), where W 6= ∅ and
R is a partial order; that is, a reflexive, transitive and anti-symmetric
relation on W .

2. An intuitionistic Kripke model is a pair M = (F, V ) such that F is
an intuitionistic Kripke frame and V is an intuitionistic valuation,
i.e., a map V from Prop to the powerset P(W ) of W satisfying the
condition:

w ∈ V (p) and wRv implies v ∈ V (p).

The definition of the satisfaction relation M, w |= ϕ where M = (W,R, V )
is an intuitionistic Kripke model, w ∈ W and ϕ ∈ Form is given in the
usual manner (see e.g. [11]). We will write V (ϕ) for {w ∈ W |w |= ϕ}. The
notions M |= ϕ and F |= ϕ (where F is a Kripke frame) are also introduced
as usual.

Let F = (W,R) be a Kripke frame. F is called rooted if there exists
w ∈ W such that for every v ∈ W we have wRv. It is well known that IPC
is complete with respect to finite rooted frames; see, e.g., [11, Thm. 5.12].

Theorem 1. For every formula ϕ we have

IPC ` ϕ iff ϕ is valid in every finite rooted Kripke frame.
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Next we recall the main operations on Kripke frames and models. Let
F = (W,R) be a Kripke frame. For every w ∈W and U ⊆W let

R(w) = {v ∈W : wRv},

R−1(w) = {v ∈W : vRw},

R(U) =
⋃

w∈U R(w),

R−1(U) =
⋃

w∈U R
−1(w).

A subset U ⊆ W is called an upset of F if for every w, v ∈ W we have that
w ∈ U and wRv imply v ∈ U . A frame F′ = (U,R′) is called a generated
subframe of F if U ⊆W , U is an upset of F and R′ is the restriction of R to U ,
i.e., R′ = R∩U2. Let M = (F, V ) be a Kripke model. A model M′ = (F′, V ′)
is called a generated submodel of M if F′ is a generated subframe of F and
V ′ is the restriction of V to U , i.e., V ′(p) = V (p)∩U . We write Mw for the
submodel of M generated by w, i.e. with the domain R(w).

Let F = (W,R) and F′ = (W ′, R′) be Kripke frames. A map f : W →W ′

is called a p-morphism1 between F and F′ if for every w, v ∈W and w′ ∈W ′:

1. wRv implies f(w)R′f(v),

2. f(w)R′w′ implies that there exists u ∈W such that wRu and f(u) =
w′.

We call the conditions (1) and (2) the “forth” and “back” conditions, re-
spectively. We say that f is monotonic if it satisfies the forth condition. If
f is a surjective p-morphism from F onto F′, then F′ is called a p-morphic
image of F. Let M = (F, V ) and M′ = (F′, V ′) be Kripke models. A map
f : W →W ′ is called a p-morphism between M and M′ if f is a p-morphism
between F and F′ and for every w ∈W and p ∈ Prop:

M, w |= p iff M′, f(w) |= p.

If a map between models satisfies the above condition, then we call it val-
uation preserving. If f is surjective, then M is called a p-morphic image of
M′; surjective p-morphisms are also called reductions; see, e.g., [11].

Next we recall the definition of general frames; see, e.g., [11, §8.1 and
8.4].

1Some authors call such maps bounded morphisms; see, e.g., [10].
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Definition 2. An intuitionistic general frame or simply a general frame is
a triple F = (W,R,P), where (W,R) is an intuitionistic Kripke frame and
P is a set of upsets such that ∅ and W belong to P, and P is closed under
∪, ∩ and ⇒ defined by

U1 ⇒ U2 := {w ∈W : ∀v(wRv ∧ v ∈ U1 → v ∈ U2)} = W −R−1(U1 − U2).

Note that every Kripke frame can be seen as a general frame where P is the
set of all upsets of F = (W,R,P). A valuation on a general frame is a map
V : Prop → P. The pair (F, V ) is called a general model. The validity of
formulas in general models is defined exactly the same way as for Kripke
models.

Definition 3. Let F = (W,R,P) be a general frame.

1. We call F refined if for every w, v ∈ W : ¬(wRv) implies that there is
U ∈ P such that w ∈ U and v /∈ U .

2. We call F compact if for every X ⊆ P ∪{W \U : U ∈ P}, if X has the
finite intersection property (that is, every intersection of finitely many
elements of X is nonempty), then

⋂
X 6= ∅.

3. We call F descriptive if it is refined and compact.

We call the elements of P admissible sets.

Definition 4. Let F = (W,R,P) be a descriptive frame. A descriptive
valuation is a map V : Prop → P. A pair (F, V ) where V is a descriptive
valuation is called a descriptive model.

Validity of formulas in a descriptive frame (model) is defined in exactly
the same way as for Kripke frames (models). It is well-known that every
intermediate logic L is complete with respect to descriptive frames, see e.g.,
[11, Thm. 8.36].

Next we recall the definitions of generated subframes and p-morphisms
of descriptive frames.

Definition 5.

1. A descriptive frame F′ = (W ′, R′,P ′) is called a generated subframe of
a descriptive frame F = (W,R,P) if (W ′, R′) is a generated subframe
of (W,R) and P ′ = {U ∩W ′ : U ∈ P}.

7



2. A map f : W →W ′ is called a p-morphism between F = (W,R,P) and
F′ = (W ′, R′,P ′) if f is a p-morphism between (W,R) and (W ′, R′)
and for every U ′ ∈ P ′ we have f−1(U ′) ∈ P and W \f−1(W \U ′) ∈ P.
If a map between descriptive models satisfies the latter condition it is
called admissible.

Generated submodels and p-morphisms between descriptive models are de-
fined as in the case of Kripke semantics. For convenience, we will sometimes
denote a descriptive frame, just as a pair (W,R), dropping the set P of
admissible sets from the signature.

3 Subframe logics and NNIL-formulas

Subframe formulas for modal logic were first introduced by Fine [14]. Sub-
frame formulas for intuitionistic logic were defined by Zakharyaschev [18].
For an overview of these results see [11, §9.4]. For an algebraic approach to
subframe formulas we refer to [6] and [2]. We will define subframe formu-
las differently and connect them to the NNIL-formulas of [16]. Most of the
results in this section have appeared in the PhD thesis [7].

We first recall from [16] and [17] some facts about NNIL-formulas. NNIL-
formulas are known to have the following normal form:

Definition 6. NNIL-formulas in normal form are defined by:

ϕ := ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | p→ ϕ

Definition 7.

1. Let F = (W,R) be a Kripke frame. A frame F′ = (W ′, R′) is called a
subframe of F if W ′ ⊆W and R′ is the restriction of R to W ′.

2. Let F = (W,R,P) be a descriptive frame. A descriptive frame F′ =
(W ′, R′,P ′) is called a subframe of F if (W ′, R′) is a subframe of (W,R),
P ′ = {U ∩W ′ : U ∈ P} and the following condition, which we call the
topo-subframe condition, is satisfied:

For every U ⊆W ′ such that W ′ \ U ∈ P ′ we have W \R−1(U) ∈ P .

For a detailed discussion about the topological motivation behind the notion
of subframes and its connection to nuclei of Heyting algebras we refer to [6]
(see also [7]). Here we just note how we are going to use this condition.
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Remark 1. The reason for adding the topo-subframe condition to the def-
inition of subframes of descriptive frames is explained by the next proposi-
tion. The topo-subframe condition allows us to extend a descriptive valu-
ation V ′ defined on a subframe F′ of a descriptive frame F to a descriptive
valuation V of F such that the restriction of V to F′ is equal to V ′.

Proposition 1. Let F = (W,R,P) and F′ = (W ′, R′,P ′) be descriptive
frames. If F′ is a subframe of F, then for every descriptive valuation V ′ on
F′ there exists a descriptive valuation V on F such that the restriction of V
to W ′ is V ′.

Proof. For every p ∈ Prop let V (p) = W \ R−1(W ′ \ V ′(p)). By the topo-
subframe condition, V (p) ∈ P. Now suppose x ∈ W ′. Then x /∈ V (p) iff
x ∈ R−1(W ′ \ V ′(p)) iff (there is y ∈ W ′ such that y /∈ V ′(p) and xRy) iff
x /∈ V ′(p), since V ′(p) is an upset of F′. Therefore, V (p) ∩W ′ = V ′(p).

Furthermore we have the following characterization theorem showing that
NNIL-formulas are exactly the ones that are preserved under submodels [16].

Theorem 2. Let M = (W,R, V ) and N = (W ′, R′, V ′) be (descriptive of
Kripke) frames.

1. If N is a submodel of M, then for each ϕ ∈ NNIL and w ∈W ′ we have
that M, w |= ϕ implies N, w |= ϕ.

2. If ϕ is such that, for all models M,N, if w is in the domain of N, and
N is a submodel of M, and M, w |= ϕ implies N, w |= ϕ, then there
exists ψ ∈ NNIL such that IPC ` ψ ↔ ϕ.

Corollary 1. NNIL-formulas are preserved under taking subframes of (Kripke
and descriptive) frames.

Proof. Assume that a NNIL-formula is not preserved under taking sub-
frames. Then there exists a NNIL-formula ϕ, frames G and F such that
F is a subframe of G, G |= ϕ and F 6|= ϕ. So there exists a valuation V on F
such that (F, V ) 6|= ϕ. Let V ′ be a valuation on G such that (F, V ) is a sub-
model of (G, V ′). By Proposition 1, such V ′ always exists. Then we obtain
that ϕ is not preserved under submodels, which contradicts Theorem 2.

A formula is called a subframe formula if it is preserved under subframes
of (Kripke and descriptive) frames. An intermediate logic is called a sub-
frame logic if it is axiomatizable by subframe formulas. It is proved by
Zakharyaschev (see e.g., [11, Thm. 11.25]) that an intermediate logic L is
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a subframe logic iff L is axiomatizable by (∧,→)-formulas iff descriptive
frames of L are closed under subframes. Also, every subframe logic has the
finite model property [11, Thm. 11.20].

Definition 8. Let M = (F, V ) be a descriptive model. We fix n proposi-
tional variables p1, . . . , pn. With every point w of M, we associate a sequence
i1 . . . in such that for k = 1, . . . , n:

ik =

{
1 if w |= pk,

0, if w 6|= pk.

We call the sequence i1 . . . in associated with w the color of w (or more
specifically the n-color of w) and denote it by col(w).

A finite model M=(W,R, V ) is colorful if the number of propositional
variables is |W | and, for each w ∈ W , there is a propositional variable pw
such that v |= pw iff wRv.

Definition 9. Let i1 . . . in and j1 . . . jn be two colors. We write

i1 . . . in ≤ j1 . . . jn iff ik ≤ jk for each k = 1, . . . , n.

We also write i1 . . . in < j1 . . . jn if i1 . . . in ≤ j1 . . . jn and i1 . . . in 6= j1 . . . jn.

Let F be a finite rooted frame. For every point w of F we introduce a
propositional letter pw and let V be such that V (pw) = R(w). We denote
the model (F, V ) by M. Then M is colorful.

Lemma 1. Let (F, V ) be a colorful model. Then, for every w, v ∈ W , we
have:

1. w 6= v and wRv iff col(w) < col(v),

2. w = v iff col(w) = col(v).

Proof. The proof is just spelling out the definitions.

Next we inductively define the subframe formula β(F) in the NNIL form.
For every v ∈W , let

prop(v) := {pk : v |= pk, k ≤ n}, notprop(v) := {pk : v 6|= pk, k ≤ n}.
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Definition 10. We define β(F) by induction. If v is a maximal point of M
then let

β(v) :=
∧
prop(v)→

∨
notprop(v)

Let w be a point in M and let w1, . . . , wm be all the immediate successors of
w. We assume that β(wi) is already defined, for every wi. We define β(w)
by

β(w) :=
∧
prop(w)→

∨
notprop(w) ∨

m∨
i=1

β(wi).

Let r be the root of F. We define β(F) by

β(F) := β(r).

We call β(F) the subframe formula of F.

We will need the next three lemmas for establishing the crucial property
of subframe formulas. We first recall the definition of depth of a frame and
of a point.

Definition 11. Let F be a (descriptive or Kripke) frame.

1. We say that F is of depth n < ω, denoted d(F) = n, if there is a chain
of n points in F and no other chain in F contains more than n points.
The frame F is of finite depth if d(F) < ω.

2. We say that F is of an infinite depth, denoted d(F) = ω, if for every
n ∈ ω, F contains a chain consisting of n points.

3. The depth of a point w ∈ W is the depth of Fw, i.e., the depth of the
subframe of F generated by w. We denote the depth of w by d(w).

Lemma 2. Let F = (W,R) be a finite rooted frame and let V be defined as
above. Let M′ = (W ′, R′, V ′) be an arbitrary (descriptive or Kripke) model.
For every w, v ∈W and x ∈W ′, if wRv, then

M′, x 6|= β(w) implies M′, x 6|= β(v).

Proof. The proof is a simple induction on the depth of v. If d(v) = d(w)−1
and wRv, then v is an immediate successor of w. Then M′, x 6|= β(w) implies
M′, x 6|= β(v), by the definition of β(w). Now suppose d(v) = d(w)− (k+ 1)
and the lemma is true for every u such that wRu and d(u) = d(w)− k, for
every k. Let u′ be an immediate predecessor of v such that wRu′. Such a
point clearly exists since we have wRv. Then d(u′) = d(w) − k and by the
induction hypothesis M, x 6|= β(u′). This, by definition of β(u′), means that
M′, x 6|= β(v).
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Lemma 3. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be descriptive
models. Let M2 be a submodel of M1. Then for every finite rooted frame
F = (W,R) we have M2 6|= β(F) implies M1 6|= β(F).

Proof. We prove the lemma by induction on the depth of F. If the depth of
F is 1, i.e., it is a reflexive point, then the lemma clearly holds. Now assume
that it holds for every rooted frame of depth less than the depth of F. Let
r be the root of F. Then M2 6|= β(F) means that there is a point t ∈ W2

such that M2, t |=
∧
prop(r), M2, t 6|=

∨
notprop(r) and M2, t 6|= β(r′), for

every immediate successor r′ of r. By the induction hypothesis, we get that
M1, t 6|= β(r′). Since V2(p) = V1(p)∩W2 we also have M1, t 6|=

∨
notprop(r)

and M1, t |=
∧
prop(r). Therefore, M1, t 6|= β(F).

The next theorem states the crucial property of subframe formulas (see also
[7, Thm. 3.3.16]).

Theorem 3. Let G = (W ′, R′,P ′) be a descriptive frame and let F = (W,R)
be a finite rooted frame. Then

G 6|= β(F) iff F is a p-morphic image of a subframe of G.

Proof. Suppose G 6|= β(F). Then there exists a valuation V ′ on G such
that (G, V ′) 6|= β(F). For every w ∈ W , let {w1, . . . wm} denote the set of
all immediate successors of w. Let p1, . . . , pn be the propositional variables
occurring in β(F) (in fact n = |W |). Then, V ′ defines a coloring of G. Let

Pw := {x ∈W ′ : col(x) = col(w) and x 6|=
∨m

i=1 β(wi)}.

Take Y :=
⋃

w∈W Pw and H := (Y, S,Q), where S is the restriction of R′ to
Y , and Q = {U ′ ∩ Y : U ′ ∈ P ′}. We show that H is a subframe of G and F
is a p-morphic image of H.

For the proof that H is a subframe of G we just check the topo-subframe
condition. The other conditions are clear from the definition of H. So,
assume Y \ U ′ ∈ Q. We have to show that W ′ \R′−1(U ′) ∈ P ′.

Note that x ∈ W ′ \ R′−1(U ′) iff x 6∈ R′−1(U ′) iff ¬∃y(xRy ∧ y ∈ U ′) iff
∀y(xRy → y 6∈ U ′) iff ∀y(xRy → y 6∈ Y ∨ y ∈ Y \U ′) iff ∀y(xRy ∧ y ∈ Y →
y ∈ Y \ U ′) iff (for U ′′ ∈ P ′ such that Y \ U ′ = U ′′ ∩ Y ) ∀y(xRy ∧ y ∈ Y →
y ∈ U ′′). Since Y =

⋃
w∈W Pw, the latter is equivalent to the conjunction

of all the ∀y(xRy ∧ y ∈ Pw → y ∈ U ′′) for w∈W . Then ∀y(xRy ∧ y ∈
Pw → y ∈ U ′′) iff ∀y(xRy ∧ col(y) = col(w) ∧ y 6|=

∨m
i=1 β(wi) → y ∈ U ′′)

iff ∀y(xRy ∧ y |=
∧
prop(w) → y |=

∨
notprop(w) ∨ y |=

∨m
i=1 β(wi) ∨ y ∈

U ′′). The sets {x | ∀y(xRy ∧ y |=
∧
prop(w) → y |=

∨
notprop(w) ∨ y |=

12



∨m
i=1 β(wi) ∨ y ∈ U ′′)} are equal to V ′(

∧
prop(w))⇒ (V ′(

∨
notprop(w)) ∪

V ′(
∨m

i=1 β(wi)) ∪ U ′′) and therefore are in P ′, as P ′ is closed under ⇒ and
union. So their intersection (the conjunction of the corresponding formulas)
is also in P ′.

Define a map f : Y →W by

f(x) = w if x ∈ Pw.

We show that f is a well-defined onto p-morphism. By Proposition 1, dis-
tinct points of W have distinct colors. Therefore, Pw ∩ Pw′ = ∅ if w 6= w′.
This means that f is well-defined.

To prove that f is onto, by the definition of f , it is sufficient to show that
Pw 6= ∅ for every w ∈ W . If r is the root of F, then since (G, V ′) 6|= β(F),
there exists a point x ∈W ′ such that x |=

∧
prop(r) and x 6|=

∨
notprop(r)

and x 6|=
∨m

i=1 β(ri). This means that x ∈ Pr. If w is not the root of F then
we have rRw. Therefore, by Lemma 2, we have x 6|= β(w). This means that
there is a successor y of x such that y |=

∧
prop(w), y 6|=

∨
notprop(w) and

y 6|= β(wi), for every immediate successor wi of w. Therefore, y ∈ Pw and f
is surjective.

To show that f is admissible we first note that to show an onto p-
morphism to a finite frame to be admissible it is sufficient to show that for
every upset U of W we have f−1(U) ∈ P ′; the second condition then follows.
It is clear that U = R(u1)∪· · ·∪R(uk) for some u1, . . . , uk ∈W . This means
that f−1(U) = V ′(pu1) ∪ · · · ∪ V ′(puk

), which clearly is in P ′.
Next assume that x, y ∈ Y and xSy. Note that by the definition of f ,

for every t ∈ Y we have
col(t) = col(f(t)).

Obviously, xSy implies col(x) ≤ col(y). Therefore, col(f(x)) = col(x) ≤
col(y) = col(f(y)). By Lemma 1, this yields f(x)Rf(y). Now suppose
f(x)Rf(y). Then by the definition of f we have that x 6|= β(f(x)) and by
Lemma 2, x 6|= β(f(y)). This means that there is z ∈ W ′ such that xR′z,
col(z) = col(f(y)), and z 6|= β(u), for every immediate successor u of f(y).
Thus, z ∈ Pf(y) and f(z) = f(y). Therefore, F is a p-morphic image of H.

Conversely, suppose H is a subframe of a descriptive frame G and f :
H → F is a p-morphism. Clearly, F 6|= β(F) and since f is a p-morphism,
we have that H 6|= β(F). This means that there is a valuation V ′ on H such
that (H, V ′) 6|= β(F). By Lemma 1, V ′ can be extended to a valuation V on
G such that the restriction of V to G′ is equal to V ′. This, by Lemma 3,
implies that G 6|= β(F).
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Zakharyaschev [18] showed that every subframe logic is axiomatizable
by the formulas satisfying the condition of Theorem 3. We will now put this
result in the context of frame-based formulas of [7] and [8]. We will use the
same argument in the next section for stable logics and ONNILI-formulas.

For each intermediate logic L let DF(L) be the class of rooted descriptive
frames of L. Note that [7] and [8] work with finitely generated descriptive
frames. But for our purposes this restriction is not essential.

Definition 12. Call a reflexive and transitive relation E on DF(IPC) a frame
order if the following two conditions are satisfied:

1. For every F,G ∈ DF(L), G is finite and FCG imply |F| < |G|.

2. For every finite rooted frame F there exists a formula α(F) such that
for every G ∈ DF(IPC)

G 6|= α(F) iff FEG.

The formula α(F) is called the frame-based formula for E.

Definition 13. Let L be an intermediate logic. We let

M(L,E) := minE(DF(IPC) \ DF(L))

Theorem 4. [7, 8] Let L be an intermediate logic and let E be a frame
order on DF(IPC). Then L is axiomatized by frame-based formulas for E iff
the following two conditions are satisfied.

1. DF(L) is aE-downset. That is, for every F,G ∈ DF(IPC), if G ∈ DF(L)
and FEG, then F ∈ DF(L).

2. For every G ∈ DF(IPC) \DF(L) there exists a finite F ∈M(L,E) such
that FEG.

The formula β(F) is a particular case of a frame-based formula for a relation
4, where F 4 G if F is a p-morphic image of a subframe of G. Condition
(2) of Theorem 4 is always satisfied by 4 [11, Thm. 9.36], for an algebraic
proof of this fact see [6] and [2]. So an intermediate logic L is a subframe
logic iff L is axiomatizable by these formulas iff DF(L) is a 4-downset. As
p-morphic images preserve the validity of formulas we obtain that DF(L) is a
4-downset iff DF(L) is closed under subframes. Thus, L is a subframe logic
iff L is axiomatizable by these formulas iff DF(L) is closed under subframes.

We say that formulas ϕ and ψ are frame-equivalent if for any (descriptive)
frame F we have F |= ϕ iff F |= ψ.

14



Corollary 2.

1. An intermediate logic L is a subframe logic iff L is axiomatizable by
NNIL-formulas.

2. The class of NNIL-formulas (up to frame equivalence) coincides with
the class of subframe formulas.

3. Each NNIL-formula is frame-equivalent to a (∧,→)-formula.

Proof. (1) As we showed above L is a subframe logic iff it is axiomatizable
by the formulas of type β(F). As each β(F) is NNIL, subframe logics are
axiomatizable by NNIL-formulas. Conversely, by Proposition 4, every NNIL-
formula is preserved under subframes. Therefore, if L is axiomatized by
NNIL-formulas, DF(L) is closed under subframes. Thus, L is a subframe
logic.

(2) By Proposition 4, every NNIL-formula is preserved under subframes.
So every NNIL-formula is a subframe formula. Now suppose that ϕ is pre-
served under subframes. Then IPC + ϕ (where IPC + ϕ is the least inter-
mediate logic containing formula ϕ) is a subframe logic. By (1) subframe
logics are axiomatizable by the formulas β(F). Then there exists F1, . . . ,Fn

such that IPC + ϕ = IPC +
∧n

i=1 β(Fi). Note that n ∈ ω, otherwise IPC + ϕ
is infinitely axiomatizable, a contradiction. Each β(Fi) is a NNIL-formula,
so

∧n
i=1 β(Fi) is also a NNIL-formula. Thus, ϕ is frame equivalent to a

NNIL-formula and NNIL is (up to frame equivalence) the class of formulas
preserved under subframes.

(3) also follows from (1) and the fact that subframe formulas are frame-
equivalent to (∧,→)-formulas [11, Thm 11.25]. A direct syntactic proof that
NNIL-formulas are frame equivalent to (∧,→)-formulas can be found in [17].

We do not treat cofinal subframe logics here as they are not axiomatized
by NNIL-formulas. We refer to [11, Sec 9.4] for a detailed treatment of these
logics, to [6] and [2] for their algebraic analysis and to [7, Sec. 3.3.3] for
the details on how to obtain cofinal subframe formulas from the subframe
formulas introduced in this paper.

4 Stable logics and ONNILLI-formulas

In this section we construct a new class of formulas, ONNILLI, that turns
out to be the class of formulas preserved by onto monotonic maps. This
class is defined using the class of NNIL-formulas.
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Proposition 2. Let M = (X,R, V ) and N = (Y,R′, V ′) be two intuition-
istic (Kripke or descriptive) models and f : X → Y a monotonic map on
these models. Then, for each x ∈ X and each ϕ ∈NNIL we have

f(x) |= ϕ⇒ x |= ϕ.

Proof. By induction on the normal form of ϕ. Only the last inductive step
is non-trivial. Assume f(x) |= ϕ ⇒ x |= ϕ for all x ∈ X (IH). Suppose
f(x) |= p → ϕ, and let xRy for y |= p. Then f(x)Rf(y) and f(y) |= p. So,
f(y) |= ϕ. By IH, y |= ϕ. So x |= p→ ϕ. �

Corollary 3. For each formula ψ there exists a NNIL-formula ϕ such that
IPC ` ϕ↔ ψ iff for any pair of intuitionistic (Kripke or descriptive) models
M = (X,R, V ) and N = (Y,R′, V ′) with a monotonic map f : X → Y and
x ∈ X, we have

f(x) |= ψ ⇒ x |= ψ. (1)

Proof. The left to right direction follows from Proposition 2. Conversely,
note that the identity function from a submodel into the larger model is
always a monotonic map. Thus, if ψ satisfies (1), then ψ is preserved in
submodels and, by Theorem 2, is equivalent to some NNIL-formula ϕ.

Definition 14.

1. BASIC is the closure of the set of the atoms plus > and ⊥ under
conjunctions and disjunctions.

2. The class ONNILLI (only NNIL to the left of implications) is defined
as the closure of {ϕ → ψ |ϕ ∈ NNIL, ψ ∈ BASIC} under conjunctions
and disjunctions.

Note that there are no iterations of implications in ONNILLI-formulas ex-
cept inside the NNIL-part. Note also that, if ψ ∈BASIC and f is valuation-
preserving, then y |= ψ ⇔ f(y) |= ψ. And finally, note that NNIL-formulas
have BASIC-formulas at their right and left ends.

Example 1. ¬p∨¬¬p is ONNILLI. To see this, write it as (p→ ⊥)∨ (¬p→
⊥), and note that ¬p is in NNIL. It is well-known that ¬p ∨ ¬¬p is not pre-
served under taking subframes. (Note however that ¬p ∨ ¬¬p is preserved
under taking cofinal subframes e.g., [11, Sec. 9.4].) So, by Corollary 2 it
cannot be equivalent to a NNIL-formula. Thus the class NNIL does not con-
tain ONNILLI. We will see later that ONNILLI also does not contain NNIL.�
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Proposition 3. Let M= (X,R, V ) and N = (Y,R′, V ′) be two rooted intu-
itionistic (Kripke or descriptive) models, f :X → Y a surjective monotonic
map and ϕ ∈ ONNILLI such that M |= ϕ. Then N |= ϕ

Proof. Let us first consider ϕ = ψ → χ with ψ ∈ NNIL and χ ∈ BASIC,
and let M |= ψ → χ, i.e. x |= ψ → χ for all x ∈ X. Note that because f
is surjective, all elements of Y are of the form f(x) for some x ∈ X. So,
assume f(x) |= ψ. By Proposition 2 we know that x |= ψ. But then, since
x |= ψ → χ we have x |= χ and also f(x) |= χ. Hence, f(x) |= ψ → χ.
Thus, N |= ψ → χ.

With regard to conjunctions and disjunctions of such simple ONNILLI-
formulas, conjunctions are as unproblematic as ever. But for the proposition
to apply to disjunctions it is necessary to require that the models are rooted.
Note that, if r and r′ are the respective roots of M and N, then M |= ϕ iff
r |= ϕ, N |= ϕ iff r′ |= ϕ, and f(r) = r′. These facts are of course sufficient
for the proof step for disjunction.

In general, this proposition holds definitely only for rooted models, and
not for truth in a node. Also surjectivity is an essential feature.

Proposition 4. Let F = (X,R) and G = (Y,R′) be two rooted intuitionistic
(Kripke or descriptive) frames and f : X → Y a monotonic map from F
onto G. Then, for each ϕ ∈ ONNILLI, if F |= ϕ, then G |= ϕ.

Proof. The proof is similar to the proof of Corollary 1 and follows immediate
from Proposition 3.

Definition 15.

1. If c is an n-color we write ψc for p1∧ · · ·∧pk → q1∨ · · ·∨ qm if p1 . . . pk
are the propositional variables that are 1 in c and q1 . . . qm the ones
that are 0 in c. We also write ψu for ψc if u has the color c.

2. If M is colorful and w∈W , we write Col(Mw) for the formula prop(w)∧∧
{ψc | c a color that is not in Mw}.

3. We write γ(M) for
∨
{Col(Mw)→ pw1 ∨ · · · ∨ pwm |w ∈W, w1, . . . wm

all the immediate successors of w}.

Definition 16. Let F be a finite rooted frame. We define a valuation V on
F such that M = (F, V ) is colorful and define γ(F) by

γ(F) := γ(M).

We call γ(F) the stable formula of F.
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Note that γ(F) is an ONNILLI-formula.

Lemma 4. Assume M= (W,R, V ) is colorful, with w ∈ W , and u′ and v′

are nodes in an arbitrary (Kripke or descriptive) model M′= (W ′, R′, V ′)
such that u′R′v′. Then

1. If col(u′) = col(u) and col(v′) = col(v) for u, v ∈W , then uRv.

2. If u′ |= Col(Mu), then u′ and v′ both have one of the colors available
in Mu, v′ |= Col(Mu), and, if col(v′) = col(v) for v ∈ W , then v′ |=
Col(Mv).

3. If u′ 6|= Col(Mw) → pw1 ∨ · · · ∨ pwm , where pw1 , . . . , pwm are the
immediate successors of w, then there is v′′ ∈ W ′ such that u′Rv′′,
v′′ |= Col(Mw) and col(v′′) = col(w).

Proof. (1) Obvious. The coloring of a colorful model M= (W,R, V ) is such
that two colors in the model are in the R-relation exactly when they can be.

(2) Let u′ |= p1, . . . , |= pk and u′ 6|= q1, . . . , 6|= qm. Suppose that u′ |=
Col(Mu) and that the color of u′ is not available in Mu. Then u′ |= p1∧· · ·∧
pk → q1 ∨ · · · ∨ qm, but that is clearly impossible. So, col(u′) is available in
Mu. Now suppose u′R′v′. Then also v′ |= Col(Mu), so col(v′) = col(v) for
some v ∈ W . Same again if v′R′w′; then col(w′) = col(w) for some w ∈ W .
By (1), vRw, so w′ has a color available in in Mv, and hence, since w′ is
arbitrary, v′ |= Col(Mv).

(3) Let u 6|= Col(Mw) → pw1 ∨ · · · ∨ pwm . Then there is v′′ ∈ W ′ such
that v′′ |= Col(Mw) and v′′ 6|= pw1 ∨ · · · ∨ pwm . By (2), col(v′′) should be
available in M. As v′′ 6|= pw1 ∨ · · · ∨ pwm , this color must be the color of
w.

Lemma 5. Let F be a finite rooted frame. Then F 6|= γ(F).

Proof. It is easy to see that if M is a finite rooted colorful model with a root
r, then r 6|= Col(Mw)→ pw1 ∨ · · · ∨ pwm for each w ∈W with w1, . . . wm all
its immediate successors. The result follows.

Corollary 4. Let F= (W,R) be a finite rooted frame and let G= (W ′, R′)
a rooted (Kripke or descriptive) frame. Then

G 6|= γ(F) iff there is a surjective monotonic map from G onto F.
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Proof. Let M be a colorful model on F. By Definition 15, γ(F) = γ(M). By
Lemma 5, F 6|= γ(F). Since γ(F) is an ONNILLI-formula, by Proposition 4,
it is preserved under monotonic images of rooted frames. Thus, G 6|= γ(F).

For the converse direction, let N= (W ′, R′, V ′) be a model on G such
that N, u 6|= γ(F) for some u ∈ W ′. Then u has, for each element w∈W , a
successor u′ that makes Col(Mw) true and pw1 , . . . , pwm false if pw1 , . . . , pwm

are the immediate successors of w. This means, by Lemma 4(2), that u′ has
the color of w and its successors have colors of successors of w. Let U be
the set of all u′s which are connected in this manner to some w ∈ W , i.e.
U = {u′ | ∃w ∈W (u |= Col(Mw) and col(u′) = col(w))}. By Lemma 4(2), U
is an upset of W ′.
Define a map f : W ′ →W by

f(u) =

{
w, if u ∈ U, u |= Col(Mw) and col(u) = col(w),

r, the root of F, otherwise.

Because each point of W has a distinct color, f is well-defined. If u′, v′ ∈ U
are such that u′Rv′, then by Lemma 4(2) again, there are u, v ∈ W such
that col(u′) = col(u) and col(v′) = col(v). By Lemma 4(1), we have uRv.
So f(u′)Rf(v′) and f is monotonic on U . Mapping the other nodes to the
root of F preserves this monotonicity. Finally, by Lemma 4(3), for each
w ∈ W , there exists u ∈ U such that u |= Col(Mw) and col(u) = col(w).
Thus, f(u) = w and f is also surjective. So, f is monotonic and surjective.
If N is a descriptive model it remains to prove that f is admissible. For that
it is sufficient to prove that, for each w ∈ W , f−1(R(w)) is definable, i.e.
V ′(ϕ) for some ϕ. But that is straightforward. If f(r′) = w for the root r′

of G it is trivial: f−1(R(w)) = W ′. Otherwise, f−1(R(w)) = V ′(Col(Mw)).
Namely, if f(u) = w, then u |= Col(Mw), and, if f(u) = w′ for some w′ with
wRw′, then u |= Col(Mw′), so u |= Col(Mw) as well. On the other hand,
if u |= Col(Mw), then, by Lemma 4(2) and 4(1), for some w′ with wRw′,
u |= Col(Mw′) and col(u) = col(w′), so that f(u) = w′.

If we define an order ≤ on (Kripke or descriptive) frames by putting F ≤
G if F is an monotonic image of G. Then the formula γ(F) becomes a frame-
based formula for ≤. Note that similarly to subframe formulas Condition
(2) of Theorem 4 is always satisfied by ≤ [1] . Thus, an intermediate logic L
is axiomatizable by these formulas iff DF(L) is a ≤-downset. Intermediate
logics axiomatizable by these formulas are called stable logics. Therefore, a
logic L is stable iff DF(L) is closed under monotonic images. Formulas closed
under monotonic images are called stable formulas. There are continuum
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many stable logics and all of them enjoy the finite model property [1]. Now
we are ready to prove our main theorem resolving an open problem of [1]
on syntactically characterizing formulas that axiomatize stable logics.

Theorem 5.

1. An intermediate logic L is stable iff L is axiomatized by ONNILLI-
formulas.

2. The class of ONNILLI-formulas is up to frame equivalence the class all
stable formulas.

Proof. (1) As each γ(F) is ONNILLI, all stable logics are axiomatized by
ONNILLI-formulas. By Proposition 4, every ONNILLI-formula is preserved
under monotonic images. Therefore, if L is axiomatized by ONNILLI-formulas,
DF(L) is closed under monotonic images. So L is stable.

(2) By Proposition 4, every ONNILLI-formula is preserved under mono-
tonic images. So ONNILLI-formulas are stable. Now suppose that ϕ is pre-
served under monotonic images. Then IPC+ϕ is a stable logic. Stable logics
are axiomatized by the formulas γ(F). So there exist F1, . . . ,Fn such that
IPC+ϕ = IPC+

∧n
i=1 γ(Fi). Note that n ∈ ω, otherwise IPC+ϕ is infinitely

axiomatizable, a contradiction. Each γ(Fi) is ONNILLI, so
∧n

i=1 γ(Fi) is also
ONNILLI. Thus, ϕ is frame-equivalent to an ONNILLI formula and ONNILLI
is (up to frame equivalence) the class of formulas closed under monotonic
images.

Example 2. It is now easy to construct NNIL-formulas that are not equiva-
lent to an ONNILLI-formula. Note that the logic BDn of all frames of depth
n for each n ∈ ω is closed under taking subframes. Thus, it is a subframe
logic and hence by Corollary 2 is axiomatizable by NNIL-formulas. On the
other hand it is easy to see that there are frames of depth n having frames
of depth m > n as monotonic images. So BDn is not a stable logic. There-
fore, it cannot be axiomatized by ONNILLI-formulas. Thus, the class of
ONNILLI-formulas does not contain the class of NNIL-formulas (up to frame
equivalence).

Example 3. We list some more examples of stable logics. Let LCn be the
logic of all linear rooted frames of depth ≤ n, BWn be the logic of all rooted
frames of width ≤ n and BTWn be the logic of all rooted descriptive frames
of cofinal width ≤ n. For the definition of width and cofinal width we refer
to [11]. Then, for each n ∈ ω, the logics LCn, BWn and BTWn are stable.
For the proofs we refer to [1].
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It remains an open problem whether ONNILLI-formulas are exactly the
ones that are preserved under monotonic maps of models in the sense of
Proposition 3.
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editors, Advances in Modal Logic (AiML 2014), pages 54 – 61, 2014.
An extended version available as ILLC Prepublication Series Report
PP-2014-05.

[10] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[11] A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford
Logic Guides. The Clarendon Press, New York, 1997.

21



[12] D. van Dalen. Intuitionistic Logic. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, volume 3, pages 225–339.
Kluwer, Reidel, Dordrecht, 1986.

[13] D. de Jongh. Investigations on the Intuitionistic Propositional Calculus.
PhD thesis, University of Wisconsin, 1968.

[14] K. Fine. Logics containing K4. II. J. Symbolic Logic, 50(3):619–651,
1985.

[15] V. Jankov. On the relation between deducibility in intuitionistic propo-
sitional calculus and finite implicative structures. Dokl. Akad. Nauk
SSSR, 151:1293–1294, 1963. (Russian).

[16] A. Visser, D. de Jongh, J. van Benthem, and G. Renardel de Lavalette.
NNIL a study in intuitionistic logic. In A. Ponse, M. de Rijke, and
Y. Venema, editors, Modal logics and Process Algebra: a bisimulation
perspective, pages 289–326, 1995.

[17] F. Yang. Intuitionistic subframe formulas, NNIL-formulas and n-
universal models. Master’sThesis, MoL-2008-12, ILLC, University of
Amsterdam, 2008.

[18] M. Zakharyaschev. Syntax and semantics of superintuitionistic logics.
Algebra and Logic, 28(4):262–282, 1989.

[19] M. Zakharyaschev. Canonical formulas for K4. II. Cofinal subframe
logics. J. Symbolic Logic, 61(2):421–449, 1996.

22


