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Universiteit van Amsterdam & Universität Hamburg

and

SOURAV TARAFDER

St. Xavier’s College & Calcutta University

Abstract. We generalize the construction of lattice-valued models of set theory due to
Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields
a model of a paraconsistent logic that validates all axioms of the negation-free fragment
of Zermelo-Fraenkel set theory.

§1. Introduction If B is any Boolean algebra and V a model of set theory,
we can construct by transfinite recursion the Boolean-valued model of set theory
VB consisting of names for sets, an extended language LB, and an interpretation
function J·K : LB → B assigning truth values in B to formulas of the extended
language. Using the notion of validity derived from J·K, all of the axioms of ZFC are
valid in VB. Boolean-valued models were introduced in the 1960s by Scott, Solovay,
and Vopěnka; an excellent exposition of the theory can be found in Bell (2005).

Replacing the Boolean algebra in the above construction by a Heyting algebra H,
one obtains a Heyting-valued model of set theory VH. The proofs of the Boolean case
transfer to the Heyting-valued case to yield that VH is a model of IZF, intuitionistic
ZF, where the logic of the Heyting algebra H determines the logic of the Heyting-
valued model of set theory (cf. Grayson, 1979 and Bell, 2005, Chapter 8). This idea
was further generalized by Takeuti & Titani (1992); Titani (1999); Titani & Kozawa
(2003); and Ozawa (2007, 2009), replacing the Heyting algebra H by appropriate
lattices that allow models of quantum set theory (where the algebra is an algebra
of truth-values in quantum logic) or fuzzy set theory.

In this paper, we shall generalize this model construction further to work on
algebras that we shall call reasonable implication algebras (§2.). These algebras do
not have a negation symbol, and hence we shall be focusing on the negation-free
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fragment of first-order logic: the closure under the propositional connectives ∧, ∨,
⊥, and→. Classically, of course, every formula is equivalent to one in the negation-
free fragment (since ¬ϕ is equivalent to ϕ → ⊥). In §3., we define the model
construction and prove that assuming a number of additional assumptions (among
them a property we call the bounded quantification property), we have constructed
a model of the negation-free fragment of ZF− (which is classically equivalent to
ZF−).

In §4. and §5., we apply the results of §3. to a particular three-valued algebra
where we prove the bounded quantification property (§4.) and the axiom scheme
of Foundation (§5.).

Finally, in §6., we add a negation symbol to our language. With the appropri-
ate negation, our example from §4. and §5. becomes a model of a paraconsistent
set theory that validates all formulas from the negation-free fragment of ZF. We
compare our paraconsistent set theory to other paraconsistent set theories from the
literature and observe that it is fundamentally different from them.

We should like to mention that Joel Hamkins independently investigated the
construction that is at the heart of this paper and proved a result equivalent to our
Theorem 15 (presented at the Workshop on Paraconsistent Set Theory in Storrs,
CT in October 2013).

§2. Reasonable implication algebras

Implication algebras and implication-negation algebras. In this paper,
all structures (A,∧,∨,0,1) will be complete distributive lattices with smallest
element 0 and largest element 1. As usual, we abbreviate x ∧ y = x as x ≤ y.
An expansion of this structure by an additional binary operation ⇒ is called an
implication algebra and an expansion with ⇒ and another unary operation ∗ is
called an implication-negation algebra. We emphasize that no requirements are made
for ⇒ and ∗ at this point.

Interpreting propositional logic in algebras. By LProp we denote the lan-
guage of propositional logic without negation (with connectives ∧, ∨,→, and ⊥ and
countably many variables Var); we write LProp,¬ for the expansion of this language
to include the negation symbol ¬. Let L be either LProp or LProp,¬, and let A
be either an implication algebra or an implication-negation algebra, respectively.
Any map ι from Var to A (called an assignment) allows us to interpret L-formulas
ϕ as elements ι(ϕ) of the algebra. Par abus de langage, for an L-formula ϕ and
some X ⊆ A, we write ϕ ∈ X for “for all assignments ι : Var → A, we have that
ι(ϕ) ∈ X”. As usual, we call a set D ⊆ A a filter if the following four conditions
hold: (i) 1 ∈ D, (ii) 0 /∈ D, (iii) if x, y ∈ D, then x ∧ y ∈ D, and (iv) if x ∈ D and
x ≤ y, then y ∈ D; in this context, we call filters designated sets of truth values,
since the algebra A and a filter D together determine a logic `A,D by defining for
every set Γ of LProp-formulas and every LProp-formula ϕ

Γ `A,D ϕ :⇐⇒ if for all ψ ∈ Γ, we have ψ ∈ D, then ϕ ∈ D.

We write PosA := {x ∈ A ; x 6= 0} for the set of positive elements in A. In all of
the examples considered in this paper, this set will be a filter.
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Fig. 1. Connectives for the algebra  L3.

The negation-free fragment. If L is any first-order language including the
connectives ∧, ∨, ⊥ and → and Λ any class of L-formulas, we denote closure of
Λ under ∧, ∨, ⊥, ∃, ∀, and → by Cl(Λ) and call it the negation-free closure of Λ.
A class Λ of formulas is negation-free closed if Cl(Λ) = Λ. By NFF we denote the
negation-free closure of the atomic formulas; its elements are called the negation-free
formulas.1

Obviously, if L does not contain any connectives beyond ∧, ∨, ⊥, and →, then
NFF = L. Similarly, if the logic we are working in allows to define negation in terms
of the other connectives (as is the case, e.g., in classical logic), then every formula
is equivalent to one in NFF.

Reasonable implication algebras. We call an implication algebra A =
(A,∧,∨,0,1,⇒) reasonable if the operation ⇒ satisfies the following axioms:

P1 (x ∧ y) ≤ z implies x ≤ (y ⇒ z),
P2 y ≤ z implies (x⇒ y) ≤ (x⇒ z), and
P3 y ≤ z implies (z ⇒ x) ≤ (y ⇒ x).

We say that a reasonable implication algebra is deductive if

((x ∧ y)⇒ z) = (x⇒ (y ⇒ z)).

It is easy to see that any reasonable implication algebra satisfies that x ≤ y implies
x⇒ y = 1. Similarly, it is easy to see that in reasonable and deductive implication
algebras, we have (x ⇒ y) = (x ⇒ (x ∧ y)). These facts are being used in the
calculations later in the paper. It is easy to check that all Boolean algebras and
Heyting algebras are reasonable and deductive implication algebras.

Recurring examples. The following two examples will be crucial during the
rest of the paper: The three-valued  Lukasiewicz algebra  L3 = ({0, 1/2, 1},∧,∨,
⇒, 0, 1) with operations defined as in Figure 1 is a reasonable, but non-deductive
implication algebra. The three-valued algebra PS3 = ({0, 1/2, 1},∧,∨,⇒, 0, 1) with
operations defined as in Figure 2 is a reasonable and deductive implication algebra
which is not a Heyting algebra. Let us emphasize that, contrary to usage in other
papers, we consider  L3 and PS3 as implication algebras without negation (cf. §6.
for adding negations to PS3).

1 In some contexts, our negation-free fragment is called the positive fragment ; in other
contexts, the positive closure is the closure under ∧, ∨, ⊥, ∃, and ∀ (not including →).
In order to avoid confusion with the latter contexts, we use the phrase “negation-free”
rather than “positive”.
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Fig. 2. Connectives for PS3.

§3. The model construction

3.1. Definitions and basic properties Our construction follows very closely
the Boolean-valued construction as it can be found in (Bell, 2005). We fix a model
of set theory V and an implication algebra A = (A,∧,∨,0,1,⇒) and construct a
universe of names by transfinite recursion:

VA
α = {x ; x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ VA
ξ )} and

VA = {x ; ∃α(x ∈ VA
α)}.

We note that this definition does not depend on the algebraic operations in A, but
only on the set A, so any expansion of A to a richer language will give the same class
of names VA. By L∈, we denote the first-order language of set theory using only
the propositional connectives ∧, ∨, ⊥, and→. We can now expand this language by
adding all of the elements of VA as constants; the expanded (class-sized) language
will be called LA. As in the Boolean case (Bell, 2005, Induction Principle 1.7), the
(meta-)induction principle for VA can be proved by a simple induction on the rank
function: for every property Φ of names, if for all x ∈ VA, we have

∀y ∈ dom(x)(Φ(y)) implies Φ(x),

then all names x ∈ VA have the property Φ.
As in the Boolean case, we can now define a map J·K assigning to each negation-

free formula in LA a truth value in A as follows. If u, v in VA and ϕ,ψ ∈ NFF, we
define

J⊥K = 0,

Ju ∈ vK =
∨

x∈dom(v)

(v(x) ∧ Jx = uK),

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK),

Jϕ ∧ ψK = JϕK ∧ JψK,
Jϕ ∨ ψK = JϕK ∨ JψK,

Jϕ→ ψK = JϕK⇒ JψK,

J∀xϕ(x)K =
∧
u∈VA

Jϕ(u)K, and

J∃xϕ(x)K =
∨
u∈VA

Jϕ(u)K.
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As usual, we abbreviate ∃x(x ∈ u ∧ ϕ(x)) by ∃x ∈ u ϕ(x) and ∀x(x ∈ u → ϕ(x))
by ∀x ∈ u ϕ(x) and call these bounded quantifiers. Bounded quantifiers will play a
crucial role in this paper.

If D is a filter on A and σ is a sentence of LA, we say that σ is D-valid in VA if
JσK ∈ D and write VA |=D σ.

In the Boolean-valued case, the names behave nicely with respect to their inter-
pretations as names for sets. For instance, if two names denote the same object,
then the properties of the object do not depend on the name you are using. In our
generalized setting, we have to be very careful since many of these reasonable rules
do not hold in general: cf. §4. for details.

Proposition 1 If A is a reasonable implication algebra and u ∈ VA, we have that
Ju = uK = 1 and u(x) ≤ Jx ∈ uK (for each x ∈ dom(u)).

Proof. This is an easy induction, using the fact that we have that in all reasonable
implication algebras, x ≤ y implies x⇒ y = 1. �

However, things break down rather quickly if you go beyond Proposition 1. The
inequality Ju = vK ∧ Jv = wK ≤ Ju = wK representing transitivity of equality of
names does not hold in general in the model constructed over  L3: consider the
functions

p0 = {〈∅,0〉},
p1/2 = {〈∅, 1/2〉}, and

p1 = {〈∅,1〉}.

Then it can be easily checked that Jp0 = p1/2K = 1/2 = Jp1/2 = p1K > Jp0 = p1K = 0.

Proposition 2 If A is a reasonable implication algebra, ϕ(x) an LA-formula with
one free variable x, and u ∈ VA, then

J∃x ∈ u ϕ(x)K ≥
∨

x∈dom(u)

(u(x) ∧ Jϕ(x)K).

Proof. Easy calculation using Proposition 1. �

In the Boolean case, the inequality proved in Proposition 2 is an equality (Bell,
2005, p. 23):

J∃x ∈ u ϕ(x)K =
∨

x∈dom(u)

(u(x) ∧ Jϕ(x)K) and

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

This once more breaks down for general reasonable implication algebras: in V L3 ,
we use the three names p0, p1/2, and p1 defined above and consider the formula
ϕ(x) := (x = p0) as well as the name u = {〈p1/2, 1/2〉}. We can calculate

1/2 = J∀x ∈ u ϕ(x)K <
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K) = 1.
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This means that in the setting of reasonable implication algebras, the following
equality

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K). (BQϕ)

becomes a new axiom, one whose validity depends on the choice of the formula
ϕ and on A (and conceivably on the model of set theory V). If Λ is any class
of formulas of the extended language, we say that the pair (V,A) satisfies the
Λ-bounded quantification property, if BQϕ holds for every ϕ ∈ Λ.

3.2. Set theory The axiom system ZF− consists of the axioms Extensionality,
Pairing, Infinity, Union, and Power Set and the axiom schemes of Separation and
Replacement. If add the axiom scheme of Foundation, we obtain ZF of Zermelo-
Fraenkel set theory. For reference, we list the forms of the axioms and axiom schemes
that we use in our proofs; the concrete formulations are all from (Bell, 2005):

∀x∀y[∀z(z ∈ x↔ z ∈ y)→ x = y] (Extensionality)

∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)) (Pairing)

∃x[∃y(∀z(z ∈ y → ⊥) ∧ y ∈ x) ∧ ∀w ∈ x∃u ∈ x(w ∈ u)] (Infinity)

∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ x)) (Union)

∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x)) (Power Set)

∀p0 · · · ∀pn∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z, p0, . . . , pn)) (Separationϕ)

∀p0 · · · ∀pn∀x[∀y ∈ x∃zϕ(y, z, p0, . . . , pn)→ ∃w∀v ∈ x∃u ∈ w ϕ(v, u, p0, . . . , pn)]
(Replacementϕ)

∀p0 · · · ∀pn∀x[∀y ∈ x ϕ(y, p0, . . . , pn)→ ϕ(x, p0, . . . , pn)]→ ∀zϕ(z, p0, . . . , pn)
(Foundationϕ)

We observe that all axioms and axiom schemes have natural forms that do not
include any negation symbols,2 so unless we instantiate one of the schemes with
a formula containing a negation symbol, we will always have formulas in NFF.
We write NFF-Separation and NFF-Replacement for the axiom schemes where we
only allow the instantiation by negation-free formulas, and we write NFF-ZF− and
NFF-ZF for negation-free set theory using these schemes. We emphasize once more
that in settings where negation can be defined in terms of negation-free formulas
(such as classical logic), this coincides (up to provable equivalence) with standard
Zermelo-Fraenkel set theory.

Theorems 3 and 4 are the core of this paper, establishing validity of NFF-ZF− in
our A-valued model.

Theorem 3 Let A be a reasonable implication algebra such that (V,A) satisfies
the NFF-bounded quantification property, and let D be any filter on A. Then Exten-
sionality, Pairing, Infinity, Union and NFF-Replacement are D-valid in VA; in fact,
they all get the value 1.

2 Note that this is only the case because we formulated the occurrence of the empty set
in Infinity appropriately and because we used the axiom scheme of ∈-induction instead
of the usual formulation of Foundation; the latter is not negation-free.
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Theorem 4 Let A be a reasonable and deductive implication algebra such that
(V,A) satisfies the NFF-bounded quantification property, and let D be any filter on
A. Then Power Set and NFF-Separation are D-valid in VA; in fact, they get the
value 1.

Proof of Theorem 3. The proofs follow closely the proofs of the Boolean cases
and only use the axioms of complete distributive lattices and the additional axioms
P1, P2 and P3 of reasonable and deductive implication algebras (and their simple
consequences such as “if x ≤ y, then x ⇒ y = 1”, as mentioned above) and
Proposition 1. Note that all of the calculations involve arguments with bounded
quantifiers, relying on some equalities BQϕ. Inspection of the proofs shows that
the formulas in the scope of the bounded quantifiers are negation-free. All of the
axioms get value 1 in VA. �

Proof of Theorem 4. As in the proof of Theorem 3, we inspect the details of the
proofs in the Boolean case and observe that they only use the axioms of reasonable
implication algebras, their simple consequences and BQϕ for ϕ ∈ NFF. The proof
of Power Set uses x ⇒ y = x ⇒ (x ∧ y), as mentioned above. Again, all of the
axioms get value 1 in VA. �

§4. Application, Part 1: The bounded quantification property in VPS3 .
The original intuition of Boolean-valued models was that the names represent
objects and that the equivalence classes of names under the equivalence relation
defined by u ∼ v if and only if Ju = vK ∈ D can serve as the ontology of the
new model. In particular, this means that if two names represent the same object,
they should instantiate the same properties. This is known as “indiscernibility of
identicals”, one of the directions of Leibniz’s Law. In our setting, we can represent
this by a statement of the type

Ju = vK ∧ Jϕ(u)K ≤ Jϕ(v)K. (†)

Unfortunately, it will turn out that these statements are not in general true in
reasonable implication algebras and thus we have to be considerably more careful.

In this section (Theorem 9), we are going to prove the bounded quantification
property for (V,PS3). We start by making some algebraic observations about PS3:
Since the truth table for the connective ⇒ does not contain the value 1/2, we
immediately know that for any u, v ∈ VPS3 , the value of Ju = vK will be either 0 or
1. Similarly, any formula with→ as the outermost connective will be assigned value
either 0 or 1. Furthermore, since all of the axioms of set theory except for Infinity
are of the logical form QΨ where Q is a block of quantifiers and Ψ is a conjunction
of implications, axioms of set theory can only get the values 0 and 1 as well. Also,
we use that by the truth table for ∧, we have that any conjunction that gets the
value 0 must have one conjunct that gets value 0; similarly, every disjunction that
gets value 1 must have a disjunct that gets value 1.

Proposition 5 For any three elements u, v, w ∈ V(PS3), we have

1. Ju = vK ∧ Jv = wK ≤ Ju = wK and

2. Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK.
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Proof. (1) We will prove Ju = vK ∧ Jv = wK ≤ Ju = wK by induction on w: assume
that for all z ∈ dom(w), we have

Ju = vK ∧ Jv = xK ≤ Ju = zK.

By the above remark, we know that all of the values are 0 or 1. If Ju = wK = 1,
then we have nothing to prove. Therefore, suppose

Ju = wK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ wK) ∧
∧

z∈dom(w)

(w(z)⇒ Jz ∈ uK) = 0.

Case 1. Suppose
∧
x∈dom(u)(u(x) ⇒ Jx ∈ wK) = 0. So, there exists x0 ∈ dom(u)

such that

0 = [u(x0)⇒ Jx0 ∈ wK]

= [u(x0)⇒
∨

z∈dom(w)

(w(z) ∧ Jx0 = zK)].

This can only be the case if

u(x0) 6= 0 and
∨

z∈dom(w)

(w(z) ∧ Jx0 = zK) = 0. (‡)

Claim 6 For any y0 ∈ dom(v) with v(y0) 6= 0, we have either Jy0 ∈ wK = 0 or
Jx0 = y0K = 0.

Proof of Claim 6. If Jy0 ∈ wK 6= 0, i.e.,
∨
z∈dom(w)(w(z) ∧ Jy0 = zK) 6= 0, then

there exists z0 ∈ dom(w), such that w(z0) 6= 0 and Jy0 = z0K 6= 0. Since w(z0) 6= 0,
equation (‡) yields Jx0 = z0K = 0. Now by induction hypothesis, Jx0 = y0K ∧ Jy0 =
z0K ≤ Jx0 = z0K. Hence we get Jx0 = y0K = 0. �

Using Claim 6, we either have that there is some y0 ∈ dom(v) with v(y0) 6= 0
and Jy0 ∈ wK = 0 or for all such y0, we have Jx0 = y0K = 0. In the first case, we
immediately calculate that Jv = wK = 0. In the second case

Jx0 ∈ vK =
∨

y∈dom(v)

(v(y) ∧ Jx0 = yK) = 0,

and therefore Ju = vK = 0.

Case 2. Suppose
∧
z∈dom(w)(w(z)⇒ Jz ∈ uK) = 0. This case is proved analogously.

Claim (2) in the statement of the proposition follows easily from (1):

Ju = vK ∧ Ju ∈ wK = Ju = vK ∧
∨

z∈dom(w)

(w(z) ∧ Ju = zK)

=
∨

z∈dom(w)

[w(z) ∧ (Ju = zK ∧ Ju = vK)]

≤
∨

z∈dom(w)

(w(z) ∧ Jv = zK)

= Jv ∈ wK.

�

Proposition 5 proves the instances of (†) where ϕ(x) is x = w or x ∈ w for some
fixed w, respectively. However, the case where ϕ(x) is w ∈ x is not valid in VPS3
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in general: let w ∈ VPS3 be arbitrary and u and v with dom(u) = dom(v) = {w}
defined by u(w) = 1 and v(w) = 1/2. Then Ju = vK = 1 = Jw ∈ uK, but Jw ∈ vK =
1/2.

Proposition 7 For any three elements u, v, w ∈ V(PS3), we have the following:

1. Ju = vK⇒ Ju = wK = Ju = vK⇒ Jv = wK.

2. Ju = vK⇒ Ju ∈ wK = Ju = vK⇒ Jv ∈ wK.

3. Ju = vK⇒ Jw ∈ uK = Ju = vK⇒ Jw ∈ vK.

Proof. Claims (1) and (2) are easy calculations using Proposition 5 and the axioms
for reasonable implication algebras. Claim (3) is different, since we do not have the
analogue of Proposition 5 for the formula w ∈ x (as seen above). As observed above,
Jx = yK will always take either the value 0 or the value 1. If Ju = vK = 0, then
both sides of the equation are 1, so we have nothing to prove. Thus, we can assume
that Ju = vK = 1. Checking the truth table for ⇒, we realize that (without loss of
generality) we only need to exclude the case that Jw ∈ uK = 0 and Jw ∈ vK 6= 0.

So, let us assume that

Jw ∈ uK =
∨

x∈dom(u)

(u(x) ∧ Jw = xK) = 0. (#)

We also assumed

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK) = 1. (§)

If for all y ∈ dom(v), we have v(y) = 0, then Jw ∈ vK = 0 and we are done, so we
can assume that there is some y0 such that v(y0) 6= 0. Therefore, (§) implies that

Jy0 ∈ uK =
∨

x∈dom(u)

(u(x) ∧ Jy0 = xK) 6= 0,

so there exists x0 ∈ dom(u) such that u(x0) 6= 0 6= Jy0 = x0K, from which we get
Jw = x0K = 0 via (#). Proposition 5 gives Jw = y0K ∧ Jy0 = x0K ≤ Jw = x0K, thus
Jw = y0K = 0. This, together with v(y0) 6= 0, gives Jw ∈ vK = 0, and we are done.

�

Theorem 8 If ϕ ∈ NFF, then for all u, v ∈ VPS3 , we have

Ju = vK⇒ Jϕ(u)K = Ju = vK⇒ Jϕ(v)K,

Proof. This is proved by induction on the formula complexity. Proposition 7
provides the atomic cases. As before, we know that Ju = vK is either 0 or 1. If
it is 0, then the claim is obvious, so we can assume that Ju = vK = 1. All cases are
simple calculations using this assumption and the truth tables of the algebra PS3.

�

Theorem 8 is enough to establish the appropriate amount of the bounded quan-
tification property that we need:

Theorem 9 The pair (V,PS3) has the NFF-bounded quantification property.
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Proof. We have to prove BQϕ for any negation-free formula ϕ, i.e., for any u ∈ VPS3 ,
we need to show

J∀x(x ∈ u→ ϕ(x))K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

First of all, an easy calculation using the properties of reasonable implication
algebras and Theorem 8 shows that

J∀x(x ∈ u→ ϕ(x))K =
∧

y∈VPS3

∧
x∈dom(u)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K].

Furthermore,∧
x∈dom(u)

(u(x)⇒ Jϕ(x)K) =
∧

y∈VPS3

∧
x∈dom(u)

(u(x)⇒ Jϕ(x)K)

≤
∧

y∈VPS3

∧
x∈dom(u)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K].

For the other direction, take any x ∈ dom(u) and obtain∧
y∈VPS3

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K] ≤ (u(x) ∧ Jx = xK)⇒ Jϕ(x)K

= u(x)⇒ Jϕ(x)K (by Proposition 5),

and hence,

∧
x∈dom(u)

∧
y∈VPS3

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K] ≤
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

�

§5. Application, Part 2: Foundation in VPS3 In this section, we discuss
the axiom scheme of Foundation (for which we do not have a general theorem along
the lines of Theorems 3 and 4) and some related formulas such as ∃x(x ∈ x).

Theorem 10 For any filter D, the axiom scheme of NFF-Foundation is D-valid
in VPS3 .

Proof. We show Foundation in the form of ∈-induction: for every negation-free ϕ,
we have that

J∀x[∀y ∈ x ϕ(y)→ ϕ(x)]→ ∀xϕ(x)K = 1.

Case 1. Suppose Jϕ(x)K 6= 0 for every x ∈ VPS3 . Hence in this case J∀xϕ(x)K ∈
{1/2,1} and therefore by definition of ⇒,

J∀x[∀y ∈ x ϕ(y)→ ϕ(x)]→ ∀xϕ(x)K = 1.

Case 2. Now let x ∈ VPS3 with Jϕ(x)K = 0. Take a minimal u ∈ VPS3 satisfying this,
i.e., Jϕ(u)K = 0 but for any y ∈ dom(u); Jϕ(y)K 6= 0. Since there exist x ∈ VPS3 for
which Jϕ(x)K = 0, clearly J∀xϕ(x)K = 0. Once more, the definition of ⇒ gives us:

J∀x[(∀y ∈ x ϕ(y))→ ϕ(x)]K ≤ J(∀y ∈ u ϕ(y))→ ϕ(u)K
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=
∧

y∈dom(u)

(u(y)⇒ Jϕ(y)K)⇒ Jϕ(u)K

= 0

Hence we get

J∀x[∀y ∈ x ϕ(y)→ ϕ(x)]→ ∀xϕ(x)K = 1

�

Corollary 11 For any filter D, all axioms of NFF-ZF are D-valid in VPS3 .

Proof. The claim follows from Theorems 3, 4, 9, and 10. �

Theorem 12 For all u ∈ VPS3 , Ju ∈ uK = 0. So, in particular, J∃x(x ∈ x)K = 0.

Proof. By meta-induction, if there is a counterexample to the claim, there is a
minimal counterexample, i.e., a name u with Ju ∈ uK 6= 0, but for every x ∈ dom(u),
we have that Jx ∈ xK = 0. The first claim means that there is some x0 ∈ dom(u)
with u(x0) 6= 0 and Ju = x0K 6= 0. Since Ju = x0K is defined in terms of a conjunction
in which all expressions of the form u(x) ⇒ Jx ∈ x0K for x ∈ dom(u) occur, each
of these must be non-zero. Take one of these and let x = x0 in this expression; we
obtain u(x0) ⇒ Jx0 ∈ x0K. But we assumed that u(x0) 6= 0 and Jx0 ∈ x0K = 0.
Contradiction! �

§6. Adding negation: a model of paraconsistent set theory

The model construction. As mentioned in §3., the construction of the A-
names does not depend on the algebraic structure at all, so if A is an implication
algebra and A′ is an implication-negation algebra expanding it, they define the
same class of names VA = VA′ . The language LA′ is then the closure of LA under
negation, and we can now easily extend the map J·K to include all formulas in LA′

by adding the condition J¬ϕK := JϕK∗.

Negation and paraconsistency. Let A′ = (A,∧,∨,0,1,⇒,∗ ) be an implica-
tion-negation algebra and D a filter on A. We call the pair (A′, D) paraconsistent
if there are formulas ϕ and ψ such that

{ϕ,¬ϕ} 6`A′,D ψ.

In the Boolean and Heyting cases, as well as in the algebras considered by Takeuti
& Titani (1992), Titani (1999), Titani & Kozawa (2003), and Ozawa (2007, 2009),
negation is defined in terms of implication via a∗ := a⇒ 0. This definition, together
with minimal requirements, makes it impossible to have paraconsistency. E.g.,
Titani (1999) requires that negation is defined in terms of negation by a∗ := a⇒ 0
and, furthermore, (x ⇒ y) = 1 iff x ≤ y and that x ∧ (x ⇒ y) ≤ y. These three
conditions together immediately imply that any such lattice with any filter D of
designated truth values will not be paraconsistent in the above sense.

Adding a negation to PS3. If we expand PS3 with a negation ? defined by
1? = 1/2? = 0, and 0? = 1, then the results from §4. extend to give the bounded
quantification property for all formulas (including negations) and Theorems 3, 10
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and 4 extend to give full ZF in the resulting model. However, for none of the two
possible filters D on PS′3 is the pair (PS′3, D) paraconsistent, and the resulting logic
`(PS3,?),PosPS3

will just be classical logic.
If, however, we supplement PS3 with the negation ∗ defined by 1∗ = 0, 1/2∗ = 1/2,

and 0∗ = 1, then (PS3,
∗,PosPS3) is paraconsistent, since 1/2∗ = 1/2 ∈ D.3

The positive results of §4. cannot be extended to (PS3,
∗): consider the analogue

of Theorem 8 for the formula ϕ(x) := ¬(w ∈ x). Again, we let w ∈ VPS3 be an
arbitrary name and u and v with dom(u) = dom(v) = {w} defined by u(w) = 1
and v(w) = 1/2. We calculate Ju = vK = 1, Jϕ(u)K = 0, and Jϕ(v)K = 1/2. Therefore,

Ju = vK⇒ Jϕ(u)K = 0 6= 1 = Ju = vK⇒ Jϕ(v)K,

so the ϕ-instance of Theorem 8 is not valid in VPS3 . This gives us the following
result immediately:

Theorem 13 There is a formula ϕ ∈ L(PS3,∗) such that V(PS3,∗) does not have the
property BQϕ.

Proof. We use u, v, w ∈ VPS3 and ϕ(x) := ¬(w ∈ x) as in the above example.
Define a name z := {(v,1)}. We readily calculate J∀x(x ∈ z → ϕ(x))K = 0. But, on
the other hand,∧

x∈dom(z)

(z(x)⇒ Jϕ(x)K) = z(v)⇒ Jϕ(v)K = 1⇒ 1/2 = 1.

�

Paraconsistency in V(PS3,∗) and ontology of V(PS3,∗). Exactly this phe-
nomenon can now be used to show that the resulting set theory is paraconsistent:

Theorem 14 There is a sentence σ ∈ L∈ such that both σ and ¬σ are PosPS3-valid
in V(PS3,∗).

Proof. We use the three names u, v, and w from above: w ∈ VPS3 is arbitrary and
u and v with dom(u) = dom(v) = {w} defined by u(w) = 1 and v(w) = 1/2. These
three names witness that the sentence

σ := ∃u, v, w(u = v ∧ w ∈ u ∧ w /∈ v)

has value 1/2, and thus both σ and ¬σ are PosPS3 -valid. �

Corollary 11 and Theorem 14 together show that V(PS3,∗) is a model of set theory
with paraconsistent phenomena, in short, a model of paraconsistent set theory. As in
the Boolean-valued case, the algebra-valued construction does not produce a model
of a set theory in the standard sense of ordinary model theory. As discussed in §4.,
the natural approach here would be consider the ∼-equivalence classes of names as

3 This implication-negation algebra was introduced by Marcos (2000) as one of the 8,192
maximal paraconsistent three-valued logics mentioned in the title of the paper; it was
further studied in (Carnielli & Marcos, 2002, § 3.11), (Marcos, 2005), and (Coniglio &
da Cruz Silvestrini, 2014). It was recently independently rediscovered by Chakraborty
and the second author.
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objects where u ∼ v if and only if Ju = vK ∈ D.4 Due to the proof of Theorem 13,
we cannot expect that (the scheme of) Leibniz’s Law

∀x∀y(x = y ∧ ϕ(x)→ ϕ(y))

holds for arbitrary formulas (even though we proved the negation-free fragment of
Leibniz’s Law in Theorem 8).

Not all formulas defining a unique object in ordinary set theory do so in our
model: e.g., the formula N(x) := ∀z(z /∈ x) usually uniquely defines the empty
set, but in V(PS3,∗), the formula N(x) is valid if and only if x is a name such that
ran(x) ⊆ {0, 1/2}. Now let u be such a name with ran(u) ⊆ {0} and v be such a
name with 1/2 ∈ ran(u). Then

JN(u) ∧N(v) ∧ u 6= vK = 1/2.

In particular, the class of names x such that N(x) does not form a ∼-equivalence

class.5 We can modify the formula N to Ñ(x) := ∀y∀z(x = y → z /∈ y) which is
classically equivalent to N(x). Then it is easy to see that for a name x, the formula

Ñ(x) is valid if and only if ran(x) ⊆ {0}, and this class forms a ∼-equivalence class:
the class is thus is a good candidate for the ontology of the empty set in V(PS3,∗).

And yet, the failure of Leibniz’s Law affects these concrete mathematical objects
as well, as can be seen by applying the proof of Theorem 14: Define E(x) :=

∃e(Ñ(e) ∧ ∀z(z ∈ x ↔ z = e)); this is the canonical formula defining the von
Neumann ordinal one. We observe that the class of names x such that E(x) is
valid forms a ∼-equivalence class, and thus is a good candidate for the ontology of
the von Neumann ordinal one. However, this equivalence class contains names of
different nature: let w be any name such that Ñ(w) is valid, and let u = {(w,1)}
and v = {(w, 1/2)}. Then JE(u)K = 1 and JE(v)K = 1/2, so both u and v are names
for the von Neumann ordinal one. However,

J∃x(Ñ(x) ∧ E(u) ∧ x ∈ u ∧ x /∈ u)K = 0 and

J∃x(Ñ(x) ∧ E(v) ∧ x ∈ v ∧ x /∈ v)K = 1/2,

so the truth value of the statement “zero is both an element of one and not an
element of one” depends on which name for one is chosen. A first discussion of the
behaviour of von Neumann ordinals in V(PS3,∗) can be found in (Tarafder, 2015).

Comparison to other paraconsistent set theories. Paraconsistent set the-
ories have been studied by many authors (Brady, 1971; Brady & Routley, 1989;
Restall, 1992; Libert, 2005; Weber, 2010a,b, 2013); all of these accounts start from
the observation that ZF was created to avoid the contradiction that can be obtained
from the axiom scheme of Comprehension

∃x∀y(y ∈ x↔ ϕ(y))

via Russell’s paradox. Arguing that contradictions are not necessarily devastating in
a paraconsistent setting, these authors reinstate the axiom scheme of Comprehension

4 Note that by Proposition 5, the relation ∼ is an equivalence relation on V(PS3,∗).
5 This is not in conflict with the fact that Extensionality is valid in V(PS3,∗): in order to

apply Extensionality, we need ∀z(z ∈ u↔ z ∈ v), but N(u)∧N(v) is not strong enough
in our logic to conclude this.
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as acceptable, allow the formation of the Russell set R, and conclude that both
R ∈ R and R /∈ R are true.

Our paraconsistent set theory behaves very differently from the considerations of
paraconsistent set theory in the mentioned papers, as we can show that the axiom
scheme of Comprehension is not valid in our model:

Theorem 15 If (PS3,PosPS3), we have J∃x∀y(y ∈ x)K = 0. Since this formula is an
instance of Comprehension, the axiom scheme of Comprehension is not PosPS3-valid
in V(PS3,∗).

Proof. This follows immediately from Theorem 12: if J∃x∀y(y ∈ x)K 6= 0 and u is
a name witnessing this (i.e., J∀y(y ∈ u)K 6= 0), then Ju ∈ uK 6= 0 in contradiction
to Theorem 12. �

Theorem 16 In (PS3,
∗,PosPS3), we have J∃x∀y(y ∈ x↔ y /∈ y)K = 0. This means

that there is no Russell set.

Proof. Again, assume towards a contradiction that u satisfies J∀y(y ∈ u ↔ y /∈
y)K 6= 0. By Theorem 12, Jy /∈ yK = Jy ∈ yK∗ = 0∗ = 1 for all y and Ju ∈ uK = 0.
But then Ju /∈ u→ u ∈ uK = 0. Contradiction! �
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