Parameterized Compilability

MSc Thesis (Afstudeerscriptie)

written by

Noel Arteche Echeverria
(born December 22, 1998 in Donostia / San Sebastian, Spain)

under the supervision of Dr. Ronald de Haan and Dr. Hubie Chen, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
July 11, 2022 Dr. Malvin Gattinger

Dr. Ronald de Haan

Dr. Hubie Chen

Dr. Balder ten Cate

Dr. Florian Speelman

BTN
Euil

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Abstract

Compilability (also known as knowledge compilation) concerns the computational complexity of pre-
processing intractable problems. For some hard computational problems, under the assumption that
some part of the inputs will stay fixed over time, we allow this fixed part of the instances to be prepro-
cessed in advance through some expensive precomputation whose output must be succinct (at most
polynomially bigger than the input), hoping that this precomputation will help solve the complete
instances efficiently (in polynomial time). The systematic study of compilability from a complexity-
theoretic perspective was initiated by Cadoli, Donini, Liberatore and Schaerf (2002) and continued in
an alternative style with Chen (2015), who modelled efficient compilation as a particular case of fixed-
parameter tractability in his parameter compilation framework. Under such a complexity-theoretic
framework, one can prove conditional lower bounds on the hardness of compilation.

In an attempt to go beyond polynomial-size compilation, this thesis studies parameterized compi-
lability, where the compilation is allowed to be of fixed-parameter (fpt) size in the sense of parame-
terized complexity. This work introduces an extension of Chen’s parameter compilation framework
to account for doubly parameterized problems. These are problems having two parameters, where the
first one indicates what part of the input is available for precomputation and the second one imposes a
fixed-parameter bound on the size of that precomputation. The framework introduces new complexity
classes to model fpt-size compilation and gives a new notion of reduction to study the relations between
problems regarding their parameterized compilability.

Furthermore, we apply the new framework to computational problems around the parameterized
complexity classes W[1] and W|[2], showing hardness results in their compilability. Amongst other
problems, we study the parameterized compilability of completing a satisfying assignment for a Con-
straint Satisfaction Problem (CSP) as well as the complexity of different inference problems for CSP.

Acknowledgements

I want to thank Ronald and Hubie for supervising this project. Ronald, thanks for introducing me to
the topic and accepting to work on it at such an important moment in your life; congratulations again.
Hubie, thanks for the time and effort put into this; it was a pleasure to work with you again. Thank
you both for helping me learn a bit more about complexity theory.

I'am also grateful to everyone who, in some form or another, was by my side during this last couple
of years:

Many thanks go to my parents and sister for their unconditional support, despite my stubbornness
and even despite them not being entirely sure about what this whole logic thing in Amsterdam was
precisely.

Thank you, Raf, for the time spent together. You shaped me in many ways, and even if I never got
to tell you what the following pages are about, there is a lot of us left in here. From you I learnt the
aesthetics. Take care.

Many thanks to Bobby, for friendship, passion and eagerness to learn about the world. From you I
learnt the ethics: we are what we do.

To Wittgenstein, for philosophical and moral guidance: ethics and aesthetics should be one.

To Pablo, for being there all this time. You always showed me there could be life beyond what I
knew.

Thanks, Valentino, for your friendship and patience and for letting me share a bit of the warmth
that complexity theory brings me. Take it easy.

To Francesco and Gian Marco: thanks for letting me intrude into the Italian safe space for those
dinners.

Thanks to everyone at ASSV Esprit, for the fencing, the drinks and the people. I never thought
being stabbed could be so much fun.

And, above all, to my grandma. Amatxi, we did not get to see each other again, but from you I
learnt the most essential: “Il faut suivre la mode ou quitter le pays”. Thank you.

Muxu bat eta ondoloin. Bihar arte.

Contents

1 Introduction
1.1 Contributions e
1.2 Structure of thethesis
1.3 Preliminaries
1.4 Compilability: a tour d’horizon L L

2 A new framework for parameterized compilability
2.1 Thenew fpt-comp-Cclasses
2.2 Reductions
2.3 Methodology theorems for lower bounds
24 Thenew chopped-Cclasses

3 Compilability around W|1]
3.1 A simple hardness result: WEIGHTED ¢-SAT COMPLETION
3.2 Thecase of CSP COMPLETION oot v v tii ittt e e e
3.3 The problem CLIQUE COMPLETION . . . « « .t vt v vt vttt e e et

4 Compilability around W|2]
4.1 The problems HITTING SET and DOMINATING SET COMPLETION

42 Awebofreductions

5 Inference problems for CSP
5.1 Existing positive results for CLAUSE INFERENCE
5.2 Inference problemsfor CSP

6 Conclusion
Bibliography

Compendium of problems

N Gl N

17
17
21
24
25

29
29
31
35

38
38
41

47
438
50

56

60

62

Chapter 1

Introduction

Life is hard, and so is computation.

For the last sixty years, theoretical computer scientists have dealt with the ubiquitous phenomenon
of computational intractability. The tools of complexity theory have helped draw maps of how we
believe computational hardness to extend across different domains and computational models. These
are maps full of gaps and blurry regions, where exploration cannot be carried out but accompanied by
strong complexity-theoretic assumptions and conjectures. And, as enlightening as it can be, the task
of drawing, redrawing and exploring these maps is arguably daunting. Not only we must be equipped
with heavy backpacks full of assumptions about computation if we want to intuit the landscape around
us and see beyond the steepest peaks; ultimately, it is daunting because it requires a somewhat negative
mindset: it is a journey toward proving impossibility results.

And while life is hard, it is often not impossible. For the most part, we do just fine. While proving
the unconditional hardness of fundamental problems is a fascinating journey, some try to circumvent
worst-case hardness by making some concessions to the all-mighty deities of complexity in exchange
for algorithms that do just fine in practice. Naturally, the unstoppable success of SAT solving algorithms
comes to mind, performing at ever-increasing speeds in most relevant instances. But even in the realm
of theory, attempts at better understanding efficient computation have led to success stories. With its
fixed-parameter tractable algorithms, parameterized complexity shows that many problems are easy
if we can isolate the combinatorial blowups to some concealed part of the input. Another promising
approach, perhaps less known, is the subject of this thesis: compilability.

Compilation, sometimes referred to as knowledge compilation or preprocessing, suggests that, even if
aproblem is intractable in the worst case, some preprocessing might make it easier! Consider the simple
example of reachability in undirected graphs. Let G be a graph, and let s and ¢ be two distinguished
nodes in G. If we are asked whether s and ¢ are connected, the reader will jump quickly to the answer:
“Easy! Use breadth-first search!” Indeed, this problem is solvable in polynomial time and looks like a
boring example. But imagine for a moment that the graph G is big. Really big. And imagine that it
is always the same, such as, perhaps, the simplified representation of the streets of a city on Google
Maps. In such a case, where only the pair of nodes changes from instance to instance, traversing the
entire graph every time is like killing flies with a cannonball.

Try the following instead. Since G is fixed in advance and does not change, preprocess it as follows:
compute the connected components of G and store them in a table, such that for a given node v it is
easy to identify in which connected component v belongs. This table can be computed in polynomial
time and is not much bigger than the graph itself. Crucially, it only has to be computed once! The
advantage is that once we receive a pair (s, t) of vertices on which to check reachability, it now suffices
to check if they are in the same connected component by looking up our table! We say that the graph G
has been “compiled” into a more readable representation so that queries can be easily solved “online”.

Fairly enough, the previous algorithm is not that impressive: the problem was already solvable
in polynomial time, so this technique might look like nothing more than a smart optimization. Can
compilation help us with problems that are believed to be genuinely intractable? Are there NP-hard
problems where preprocessing part of the input can result in efficient algorithms?

The answer is positive —modulo some concessions to the deities of intractability. Naturally, the
preprocessing cannot be performed in polynomial time followed by other polynomial-time computa-
tions only, unless P = NP. The trade-off is to let the compilation be expensive. Let it run in exponential,
double exponential, triple exponential time even! It does not matter how long it takes since we will
only do it once. Then, store the result and use that to solve the complete instances in polynomial time.
Of course, to actually store the result of the compilation in memory (and to not make it too easy for
ourselves), we shall ask for the compilation to be succinct: at most polynomially bigger than the data
structure being preprocessed.

The good news is that some NP-hard problems admit such a form of efficient preprocessing. In
some other cases, the preprocessing can reduce complexity (say, from PSPACE to NP, in such a way
that expensive preprocessing of part of the input reduces the instances to something easily manageable
by a SAT solver [Cad+02]). However, as in most cases in complexity theory (and in life), not everything
is perfect. Compilation, as powerful as it may seem, cannot overcome all forms of intractability, and
many hard problems are bound to remain hard, even after the most expensive preprocessing.

Two questions arise regarding the limits of compilability. Firstly, assuming we have identified a
part of the input that we consider reasonable to compile, how can we prove that the problem is (likely)
not efficiently compilable? And secondly, why do structurally similar problems differ in compilability?
Why is compilability not always preserved under polynomial-time reductions, leading to some NP-
complete problems being compilable and others (likely) not?

Since the 1990s, some effort has been made to clarify issues related to the power of compilation.
Initial work showed positive compilation procedures, while some initial uncompilability results also
appeared around the same time —see [CDS96; Cad+97; Cad+99; Gog+95]. The latter tended to rely
on ad hoc proofs for the uncompilability of specific problems, though some common features underly
them all.

In 2002, Cadoli, Donini, Liberatore and Schaerf [Cad+02] observed the structural gaps created by
compilability and started classifying problems attending to their respective compilability hardness un-
der a unified framework. Their setting, which we refer to as the CDLS framework, presents complexity
classes capturing the phenomenon of compilability. These classes are equipped with a new notion of
reduction that, unlike the usual polynomial-time reduction, does preserve compilability dependencies.
These new classes are themselves tied to classical classes such as P, NP or PH. In this way, if we prove
hardness for a problem with respect to a compilability class, we can conjecture it to be uncompilable
unless some of the classical classes collapse.

Soon after, Chen [Che05] challenged the assumption that the size of compilations must be poly-
nomial and suggested looking at parameterized compilability. In this extended setting, compilation
problems are parameterized, just like in parameterized complexity, and the size of the compilation is
allowed to be of fixed-parameter size. That is, expensive in terms of the parameter in question. Chen
extended the CDLS framework with new parameterized compilability classes, which were used briefly
in some unpublished work by Bova et al. [Bov+16] regarding inference problems for propositional logic,
and later in De Haan’s doctoral dissertation [Haa19].

Ten years later, Chen [Chel5] observed that compilability can be framed as a particular case of
parameterized complexity, the idea being that the parameter of an instance can be seen as the com-
pilable part of the instance. He presented new parameterized complexity classes that model efficient
compilation and a unified framework for proving conditional lower bounds via hardness proofs for the
new classes. This is the parameter compilation framework.

What all this line of work has in common is a constant push against the limits of intractability. It is

a balance between showing that alternative notions of efficient computation exist beyond the classical
idea of polynomial time while acknowledging that intractability can never be totally defeated. This
thesis continues this line of work, further clarifying the limits of what can and cannot be efficiently
compiled.

1.1 Contributions

Let us clarify that, though the parameter compilation framework is embedded inside parameterized
complexity, it is an analogue of the original CDLS framework. That is, the parameter compilation
framework works under the assumption that the compilation must be polynomial in size, hence lacking
methods to deal with parameterized compilation.

The main contribution of this thesis is to present an extension of the parameter compilation frame-
work that can account for compilation of fixed-parameter size. This is a framework in which we deal
with doubly parameterized problems. The first parameter tells us what part of the input is available for
compilation, while the second one is there to give an fpt bound on the size of the compilation.

The new framework consists of a central complexity class, fpt-comp-FPT, capturing the notion of
efficient fpt compilation, analogous to Chen’s poly-comp-P class, which we review shortly. The new
classes we introduce are equipped with a new notion of reduction, known as the fpt-comp reductions,
which lets us relate the compilability of different doubly parameterized problems.

Though some of the ideas developed here were present in Chen’s original attempt at parameter-
ized compilability (in his 2005 paper), the chief difference is that while that work extended the CDLS
framework, our setup extends the parameter compilation framework. Though the hardness results one
can prove are quite similar, the parameter compilation framework unifies parameterized complexity
and compilation and makes combining concepts from both fields easier. In this way, while the CDLS
framework operates as an ad hoc extension of classical complexity, the parameter compilation frame-
work can model compilation as a particular case of the well-studied phenomenon of fixed-parameter
tractability, letting us import techniques and results from parameterized complexity. Furthermore, it is
notationally and technically simpler.

Apart from setting up this general scaffolding for parameterized compilation, this thesis applies the
new framework to various computational problems with new parameterizations. With the exception
of De Haan’s previous work [Haal9, Chapter 15], our study is the first to consistently approach the
parameterized compilability of problems around the classes W[1] and W|2].

Furthermore, our study points to new structural gaps in the map of compilablity. In particular, we
study the differences between efficient parameterizations of SAT and CSP, showing that while the prob-
lem of completing a satisfying assignment for SAT can be efficiently compiled under a simple (almost
trivial) parameterization, the same parameterization cannot help for Constraint Satisfaction Problems
(CSP). Moreover, we extend this study to a canonical example in compilability: inference problems. We
define three new inference problems for CSP and compare their parameterized compilability to that
of the canonical inference problems of propositional logic when parameterized by various treewidth
measures.

Under the new setting for parameterized compilability, most of our contributions follow the ap-
proach of Figure 1.1, where we often end up answering all of the questions negatively.

In short, our contributions are mainly two:

« developing a new framework for parameterized compilability, extending the existing parameter
compilation setup;

« researching various case studies where we apply our new framework to different computational
problems, showing hardness results and conditional uncompilability.

[Is Q C 3" solvable in polynomial time? }

\L No...
Yes!

Yes! Is Q fixed-parameter tractable
for some reasonable parameter?

¢/ No...

Is Q efficiently compilable for
some reasonable part of the input?

Yes!

Yes! Is Q compilable in fpt-size for

some reasonable parameter?

This problem

Great!
is hard...

Figure 1.1: Parameterized compilability against intractability.

1.2 Structure of the thesis

The remaining of this chapter is devoted to introducing the reader to the main concepts of compil-
ability. Section 1.3 briefly reviews some of the notation we use together with the central technical
concepts from complexity theory that appear in this work. Section 1.4 is a self-contained introduction
to compilability and the technicalities of the parameter compilation framework. The reader familiar
with Chen’s work might still want to read this before getting to Chapter 2, since the narrative and
examples presented there are the guiding thread of the rest of the thesis. In any case, the reader should
definitely look at the questions posed for CSP CoMPLETION at the very end of Section 1.4, since they
are the primary motivation articulating our research.

Chapter 2 is devoted to the technical work of extending the parameter compilation framework.
It introduces doubly parameterized problems and the classes fpt-comp-C, modelling fixed-parameter
size compilation. Though our study focuses on doubly parameterized problems, we also shed light on
some issues left uncovered in Chen’s original discussion of his framework. Crucially, we introduce the
methodology theorems, which we shall use through the rest of the work to relate reductions to condi-
tional lower bounds in the power of compilability. Moreover, we give an alternative characterization
of these methodology theorems in terms of hardness for a restricted class of fpt-comp-C, the so-called
chopped-C.

Chapter 3 applies the new setup to doubly parameterized problems imported from W[1]. We con-
sider the problems WEIGHTED ¢-SAT, CSP and CLIQUE, and introduce completion variants: variants
of the problems where there are side constraints that cannot be compiled. We show hardness results
for these completion variants under some reasonable parameterizations, showcasing the power of our
fpt-comp reductions and methodology theorems.

Chapter 4 continues with the type of research of Chapter 3, this time around problems coming
from W[2]. We define some constrained variants of the classical HITTING SET and DOMINATING SET
and study their compilability under additional parameterizations.

Finally, Chapter 5 goes back to CSP and compares the traditional inference problems of propo-
sitional logic (TERM INFERENCE, CLAUSE INFERENCE and FORMULA INFERENCE) to three newly defined

inference problems for CSP. While CLAUSE INFERENCE and FORMULA INFERENCE are uncompilable in
classical terms, there are some suitable parameterizations under which they become tractable. We
review these results, coming from the unpublished work of Bova et al. [Bov+16], and show that, un-
fortunately, the same treewidth measures they use for propositional logic cannot possibly help in the
case of CSP.

Chapter 6 concludes the thesis with some closing remarks and points at future lines of work. Fur-
thermore, it summarizes all of the complexity classifications derived throughout the thesis.

1.3 Preliminaries

We assume the reader to be familiar with the central concepts of computational complexity theory
and parameterized complexity, but we review some key definitions and notation below. For further
discussion on computational complexity, we refer the reader to the classic textbooks of Arora and Barak
[AB09] or Papadimitriou [Pap94]. For a comprehensive introduction to parameterized complexity, see
the textbooks by Downey and Fellows [DF13] or Flum and Grohe [FGO06]. Finally, we refer to the
exposition in [Cyg+15, Chapter 7] for issues related to tree decompositions and treewidth.

Propositional logic

Throughout this work, a propositional or Boolean formula ¢ is a formula made from propositional atoms
or variables and the connectives V, A and -, under the usual semantics for propositional logic. We
often also use ¢ — ¢ as a shorthand for —¢ V .

A literal is a variable or its negation. A Boolean formula ¢ is said to be in conjunctive normal form
(CNF) if it is of the form ¢ = C; A- - - ACp,, where each C; is a clause, a disjuction of literals. Furthermore,
we say that ¢ is in k-CNF if it is in CNF and every clause contains at most k literals. A Boolean formula
¢ in CNF is monotone if no literal occurs negated, while it is antimonotone if all literals occur negated.

For a formula ¢, we denote by Vars(¢) the set of variables on which it is defined. A (partial)
assignment or valuation a for a Boolean formula ¢ is a (possibly partial) function a : X — {0, 1}, where
Vars(¢) C X. We often see an assignment « as a term (a conjunction of literals), such that « is written
as /\a(x):l XA /\oc(x):O X,

When evaluating ¢ under « using the usual semantics for propositional logic, we write a |= ¢ if ¢
is satisfied under a, and « = ¢ otherwise.

Furthermore, the symbol [also represents semantic entailment. Given two propositional formulas
¢ and 1, we say that ¢ entails i, written ¢ | ¢/, if and only if every valuation « : Vars(¢) U Vars(y) —
{0, 1} satisfying ¢ also satisfies .

We assume the reader to be familiar with the usual NP-complete and coNP-complete problems SAT
and UNSAT, consisting, respectively, of all satisfiable and unsatisfiable formulas of propositional logic.
The problem ¢-SAT, for q € N, denotes the satisfiability problem over formulas in g-CNF.

Complexity theory

Throughout this thesis we work with some arbitrary but fixed finite set X as an alphabet with {0, 1} C 3.
A problem or language Q is a set of strings over X, Q C X*. A language of pairsis aset Q C ¥* X X*.
We assume that under a reasonable pairing function every language of pairs can be encoded as a usual
language made of single strings.

We assume the reader to be familiar with the notion of polynomial-time many-one reductions (here-
after polynomial-time reductions). Whenever A C X* reduces into B C X* via a polynomial-time reduc-
tion, we write A <, B.

We also assume the reader to be familiar with the basic complexity classes P, NP, coNP and PH, as
well as with the specific levels Z}i) and 1'[? of the polynomial hierarchy, for i € N. Though the work in
this thesis generalizes to classes higher than the ones mentioned above, those are the only ones with
which we deal explicitly.

For the purposes of this work, a classical complexity class C is a set of languages that contains P
and is closed under polynomial-time reductions. That is, P € C and for every A,B € ¥*,if A <, B and
B € C, then it holds that A € C.

For a given function f : ¥* — X*, we say that f is of polynomial size if there exists a polynomial
p : N — N such that for every x € 2%, |f(x)| < p(|x]).

For a every classical complexity class C, we also consider the class C/poly of problems solvable
within the resources of C with the aid of polynomial-size advice. That is, C/poly is the class of languages
Q ¢ ¥* for which there exists a (possibly non-computable) polynomial-size function « : ¥* — X* said
to provide advice and a language Q., € C such that for every x € X*,

x € Q if and only if (x, (1) € Qia-

Throughout this thesis we often invoke the classical Karp-Lipton theorem [KL80], a result relating
advice classes to the different levels of the polynomial hierarchy. The theorem states that if NP C
P/poly, then it holds that PH = X}. We shall also invoke the more general version, due to Yap [Yap83],
stating that for every i € N, if Zf 1 C HI; /poly, then PH = Z$+z~

Finally, the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [[P01; IPZ01] is the
conjecture that the infimum over all § € R such that 3SAT can be decided in time O(2%"), where n
denotes the number of variables, satisfies § > 0. Intuitively, one often thinks of ETH as stating that
there is no subexponential-time algorithm for 3SAT (that is, no algorithm deciding 3SAT in time 2°("),
If ETH holds, then in particular P # NP.

Parameterized complexity

Let Q C 3" be a language. A function k : ¥* — X* is said to be a parameterization if for every x € ¥*,
k(x) can be computed in time f(x(x)) - p(|x|), for some computable f : * — N and some polynomial
p : N — N. The pair (Q, x) is then called a parameterized language. For every x € X*, we say that
Kk(x) is the parameter of instance x. Often we abuse notation and denote the parameterization by the
object in the input of the problem. For example, in the problem CLIQUE getting as input a graph G and
a natural number k for the size of the potential clique, we denote by (CLIQUE, k) the parameterized
problem where the parameter is the function giving access to the value of k. More on this notation is
discussed on Remark 1.3. Throughout this work we frequently use three basic parameterizations with
specific notation:

« the i-th projection function r; is the function z; : ¥* — E* that returns the i-th component of a
tuple given as input;

« the empty parameterization is the function € : * — X* mapping every string to the empty string;

« the function len : ¥* — ¥* is the function giving a string with the length of the input; that is,
len : x > 1,

We say that a parameterized language (Q, k) is fixed-parameter tractable (fpt) if there exists a de-
terministic Turing machine, a computable function f : * — N and a polynomial p : N — N such that
on input x € X%, the machine decides whether x € Q in time f(k(x)) - p(|x|). We then say that such an
algorithm runs in x-fpt-time. In particular, a parameterization « is fpt-computable with respect to itself.

We denote by FPT the class of all parameterized languages that are fixed-parameter tractable. Fur-
thermore, every classical complexity class C induces a parameterized complexity class para-C, contain-
ing all parameterized languages (Q, x) for which there exists a computable function ¢ : * — X* and a
language of pairs Q.. € C such that for every x € ¥*, x € Q if and only if (x, c(x(x))) € Q4.. We often
say that c is compiling k(x). In particular, it holds that FPT = para-P [FG06, Theorem 1.37].

Given two parameterized languages (A, x) and (B, 1), we say that (A, k) fpt-reduces into (B, A), writ-
ten (A, k) <gy (B, 1), if there exists an k-fpt-time computable function f : ¥* — ¥* and a computable
function s : ¥* — Pg,(2*) such that for every x € X7,

(i) x € Aifand only if f(x) € B;
(ii) A(f(x)) € s(x(x)).

and where Pg, (2*) denotes the finite power set of X*, that is, the set of all finite subsets of >*.

The first condition in the definition of fpt reductions is known as correctness, while the second one
ensures that parameter dependencies are preserved. That is, it requires that the parameter of the reduced
instance is bounded by a function depending solely on the old parameter. Note that ours is somewhat
unusual notation, since most texts in parameterized complexity often consider parameters to be natural
numbers. The reason we use strings is that it lets us more naturally parameterize over different parts
of the inputs, without having to first encode objects as natural numbers.

For a given complexity class C (parameterized or otherwise) and a notion of reduction < under
which C is closed, we say that a problem is hard for C if every other problem in C reduces to it via <.
We say that the problem is C-complete if it is hard and it is in C. For a given problem Q (parameterized
or otherwise) and a suitable notion of reduction <, we denote by [Q]< the set of all problems that
reduce into Q via <. Like for classical complexity, when quantifying over an arbitrary parameterized
complexity class C, we assume FPT C C and C to be closed under fpt reductions.

Throughout this thesis, we work extensively with the Weft hierarchy (or W hierarchy). In particular,
we focus on the first two levels of the hierarchy, W[1] and W|[2]. We refer the reader to the expositions
by Downey and Fellows [DF13, Chapters 21-25] or Niedermeier [Nie06, Chapter 13] for the rather tech-
nical formal definition of these complexity classes. Here we just note some of the canonical problems
in these classes. For W[1], the problem (WEIGHTED ¢-SAT, k) for every q > 2 is W[1]-complete, and
so is the problem restricted to antimonotone formulas, (WEIGHTED ANTIMONOTONE ¢-SAT, k). The
well-known graph-theoretic problems (CLIQUE, k) and (INDEPENDENT SET, k) are also W[1]-complete.
For W|2], the canonical complete problem is (WEIGHTED CNF SAT, k), as well as (HITTING SET, k) and
(DOMINATING SET, k). For readers not familiar with these problems, see, again, Chapter 13 in [Nie06].

The central conjecture of parameterized complexity is that FPT # W|[1] —often regarded as the
parameterized analogue of P # NP. Interestingly, if the Exponential Time Hypothesis holds, then
FPT # W|[1] [DF13, Chapter 29.2]. Or, using the usual contrapositive phrasing of complexity theorists,
“FPT # W|1] unless ETH fails”.

We can also consider parameterized complexity classes with access to fpt-size advice. We refer the
reader to Definition 2.18 later in the main text for a formal definition of classes of the form C/fpt, for a
parameterized class C. Analogously to how FPT # W|[1] is regarded as the parameterized phrasing of
P # NP, we see W[1] C FPT/fpt as the unlikely analogue of the inclusion NP C P/poly. Unfortunately,
there is no immediate translation of the Karp-Lipton theorem to the W hierarchy. That is, we do not
know whether W[1] € FPT/fpt implies that the entire hierarchy collapses to W[2]. In fact, it is an open
question whether local collapses in the W hierarchy also imply a global collapse, as it happens for the
polynomial hierarchy. De Haan [Haa19, Chapter 15.4] has studied the issue of parameterized analogues
of the Karp-Lipton theorem, but the existing versions involve other more sophisticated complexity
classes that do not play a role in this thesis.

Constraint Satisfaction Problems (CSP)

A constraint satisfaction problem (CSP) is a triple (X, D, C) consisting of a finite set X of variables, a
finite domain D and a finite set C = {Cy,...,Cp} of constraints. A constraint C; € C is a pair (X;, R;)
consisting of a sequence X; = (xi, ..., x;) of variables in X together with a relation R; C D¥. We say
that k is the arity of the constraint C;.

Let X’ 2 X. A total function « : X’ — D is said to be a satisfying assignment for (X, D, C) if it holds
that for every C; = (X, R;) € C, with X; = (x1,...,xx), (@(x1),...,a(xx)) € R;. If a CSP instance has a
satisfying assignment, we say that the CSP instance is satisfiable. If « is not a total function, we say it
is a partial assignment.

The set CSP of all satisfiable constraint satisfaction problems is an NP-complete problem. Member-
ship in NP follows from the fact that a satisfying assignment is a certificate verifiable in polynomial
time. Hardness follows by reducing from 3SAT. Every 3-CNF formula ¢ can be mapped to a CSP
instance having as variables the atoms of ¢, as domain the set {0, 1} and where every constraint corre-
sponds to a clause, with the relation encoding the valuations that make the clause true. Since all clauses
contain at most three literals, the relation of each constraint is of size at most the constant 23 = 8, so the
reduction can be carried out in polynomial time. We refer back to this translation of Boolean formulas
into CSP a few times throughout this thesis.

Graphs and treewidth

We review some of the notation we use when dealing with graphs. A graph G is a pair (V, E), where
V is a finite set of vertices or nodes and E C V X V is a set of edges. We mostly work with undirected
graphs, meaning that if (u,v) € E, we also have (v, u) € E. We sometimes use |G| to refer to the number
|V| of vertices in G. For a given subset S € V, we denote by G[S] the subgraph induced by S, that is,
the subgraph G’ = (S,E’), where E’ = {(u,0) € E | u,v € S}. Finally, for a given graph G = (V, E) and
avertex v € V, we denote by Ng(v) the neighborhood of v, the set {u € V | (v,u) € E} U {v} of vertices
adjacent to v, together with v itself.

A tree is a connected undirected acyclic graph. A tree decomposition of a graph G = (V, E) is a pair
(T = (Vr,Er), {Bt}tevy) consisting of a tree T and a set of bags, one subset B; C V for each vertex
t € V7 in the tree, such that the following three properties hold:

(i) Vertex coverage: for every v € V, there is a t € V7 such that v € By;
(if) Edge coverage: for every (u,v) € E, there is a t € Vr such that {u,v} C By;

(iii) Connectivity: for every t,t’ € V, if a vertex v € V appears both in B; and By, when v also appears
in every By, for every s on the path from ¢ to t' in T.

The width w(T) of a tree decomposition T of G is defined as the maximum number of elements
appearing in any bag of the decomposition, minus one. That is,

w(T) := max |B;| — 1.
teVr

Finally, the treewidth of a graph G, denoted tw(G), is the minimum w such that there is a tree decom-
position of G of width w. It is useful to note that a complete graph of n nodes has treewidth n— 1, while
a tree has unit treewidth.

Deciding whether a graph G has treewidth w is NP-complete. However, it can be solved in fpt-time
when parameterized by the treewidth itself. See Chapter 7 in [Cyg+15] for more on treewidth and fpt
algorithms exploiting tree decompositions.

1.4 Compilability: a tour d’horizon

Let us consider three simple problems related to propositional logic that will motivate and guide our
exposition on compilability: TERM INFERENCE, CLAUSE INFERENCE and FORMULA INFERENCE. The first
one takes as input a propositional formula ¢ together with a term (a conjunction of literals £; A - - - A £)
and asks whether ¢ semantically entails #; A - - A . The second problem is identical but for clauses:
does ¢ = C, where C is a clause? The third problem, FORMULA INFERENCE, is a bit more general. It
consists of two propositional formulas ¢ and ¢, asking whether ¢ = . It is not difficult to show
that all three of these problems are quite hard: they are all coNP-complete and hence not solvable in
polynomial time unless P = NP.

Though seemingly toy puzzles in propositional logic, these inference problems are central to com-
puter science and artificial intelligence. Imagine a propositional knowledge base encoded into the
formula ¢ in such a way that the query ¢ = ¢ is an inference some Al needs to carry out. We would
like our AI to perform such an inference as rapidly as possible. Furthermore, we can probably assume
that ¢ is some big but fixed knowledge base that does not change over time, while we query it with
different formulas every time.

This is precisely the context in which compilation can be helpful! We might be willing to invest in
some expensive computation preprocessing ¢ into a friendlier format (say, some more readable formula
¢’) in such a way that ¢ |= ¢ if and only if ¢’ = ¢ and such that the latter entailment can be decided
in polynomial time! The only constraint we will impose in such a preprocessing is that the formula ¢’
should be at most polynomially bigger than ¢ so that we can efficiently store it in our machine.

Luckily for us, TERM INFERENCE admits such a form of preprocessing! The idea is simple. Recall
that the problem instances are of the form (¢, A - -+ A &), where we ask whether ¢ = & A -+ A 4,
and we allow ourselves unlimited computational power to preprocess ¢. We can do the following:

1. For every variable x occurring in ¢, check whether ¢ |= x and whether ¢ |= —x. Note down all
the literals for which entailment holds.

2. To decide whether ¢ |= #; A - - - A £, check whether all of the literals ¢, . . ., £ appear in the table
compiled in the previous step. If so, accept; else, reject.

Naturally, the first step will be expensive: on a formula ¢ over n variables, the brute-force approach
to check entailment is to verify each of the 2" valuations, and we must repeat such a check for each
of the 2n possible literals. However, the table we compile is of size O(n) and the second step can be
computed in polynomial time, so this is an efficient form of preprocessing. We say that TERM INFERENCE
is efficiently compilable.

After this initial success, one may try to extend this approach to the more general
FormuLA INFERENCE, where the query can be any propositional formula and not just a conjunc-
tion of literals. In this more general scenario, there does not seem to be any structure we can ex-
ploit... So much so that we do not think there is an efficient compilation procedure for this problem.
ForMuLA INFERENCE is very likely to be uncompilable.

Theorem (Cadoli et al. [Cad+02, Theorem 2.4]). FORMULA INFERENCE with compilation access to the
first formula is not efficiently compilable unless P = NP.

This result is not difficult to prove. What seems interesting from a complexity-theoretic point of
view is a form of structural gap that appears inside the class coNP. Recall that both TERM INFERENCE and
FormuLA INFERENCE are coNP-complete; hence, classical complexity theory sees these two problems
as almost identical in structural terms. Yet, as soon as we relax our notion of efficient computation to
one including compilation power, one problem stays intractable, while the other becomes easy!

Let us have a closer look at what is going on. One naive idea to compile instances of
FormuLra INFERENCE would be to simply reduce instances of FORMULA INFERENCE to instances of

10

TeErRM INFERENCE and then apply the compilation procedure described above. This should pro-
vide efficient compilation for FORMULA INFERENCE... but it does not. The issue is with what the
polynomial-time reductions between the two problems are actually doing. Essentially, on input (¢, /)
to FoRMULA INFERENCE, it holds that

pEyifandonlyif-(¢ = ¢) L

and (—(¢ — ¥), L) can be seen as an input to TERM INFERENCE. This is technically a polynomial-time
reduction, but the trick is that we moved ¢ to the left-hand side of the entailment, so our compilation
procedure is now preprocessing both ¢ and ! This is not a reasonable compilation since allowing
unlimited computation for the entire instance obviously solves every possible problem. We say that
the reduction does not preserve compilability dependencies.

In 2002, Cadoli, Donini, Liberatore and Schaerf [Cad+02] observed this structural gap and presented
a comprehensive complexity-theoretic framework to study these differences more closely, the already
mentioned CDLS framework. Though our contributions do not use the CDLS toolbox formally, the
underlying ideas are essentially theirs.

Cadoli et al. model compilation as a form of reduction. For them, problems amenable to compilation
must be languages of pairs, that is, problems where there are clearly two parts in the input: the offline
part and the online part, where we are only allowed to compile the former. The compilation is carried
out by some function whose output cannot be much longer than the input. The online part, together
with the compiled offline instance, must be solvable in polynomial time. Compilation is seen as a
form of reduction because one reduces to the language consisting of the instances padded with the
compilation. The class of problems amenable to such a form of efficient compilation is called ~»P: the
class of problems “compilable to P”.

1.4.1 The parameter compilation framework

In their original paper, Cadoli et al. already observed that compilation seems conceptually related to
another form of efficient computation: fixed-parameter tractability. The link with parameterized com-
plexity would be that, like in compilability, parameterized algorithms are allowed to be “expensive” in
some restricted part of the input (the parameter). Furthermore, the structural gap in compilation is
reminiscent of a well-known gap in the hardness theory of parameterized complexity. Namely, the fact
that the problems VERTEX COVER and CLIQUE are both NP-complete and hence interreducible under
polynomial-time reductions, yet (VERTEX COVER, k) € FPT, while (CLIQUE, k) ¢ FPT unless the Ex-
ponential Time Hypothesis fails [DF13, Chapter 29.2]. This is a similar type of separation to the one
between TERM INFERENCE and FORMULA INFERENCE.

Interestingly, one can give an account of fixed-parameter tractability in terms of compilation! Every
classical complexity class induces a parameterized class via compilation.

Definition 1.1 (para-C [FG03]). Let C be a classical complexity class. We denote by para-C the class
of parameterized languages (Q, k) for which there is a computable function ¢ : £* — X* and a language
Q4 € C such that for all x € 37,

x € Qif and only if (x, c(x(x))) € Q4.

It is not difficult to show that FPT = para-P [FG06, Theorem 1.37], and hence fixed-parameter
tractability can be characterized in terms of compilation. However, the existing characterization of
FPT as para-P only requires the compilation function to be computable, not polynomially bounded in
size. Hence, we cannot guarantee that the compilation is space-efficient.

In 2015, Chen devised a framework that makes such an assumption explicit: the parameter com-
pilation framework [Chel5]. He considers the class of parameterized problems having compilation in

11

the para-C sense, but where the compilation function is forced to be polynomial in size. The result-
ing framework is an alternative to CDLS, where efficient compilation can be effectively modelled as a
particular case of fixed-parameter tractability.

The restrictions imposed to get space-efficient compilation are two. First, we will work with param-
eterized problems (Q, k) where k : £ — X* is a polynomial-time function. Intuitively, x extracts from
the input the part of the instance that can be compiled. It should not do much more computation than
some simple “reading of the input”, hence the restriction that it works in polynomial time. Secondly,
we shall consider a subset of para-P, where compilations are of polynomial size.

Definition 1.2 (poly-comp-P [Che15]). We denote by poly-comp-P the class of parameterized prob-
lems (Q, k) where k is computable in polynomial time and for which there exists a polynomial-size
computable function ¢ : ¥* — ¥* and a language of pairs Q.. € P such that for all x € ¥*,

x € Qif and only if (x, c(x(x))) € Q4.

Of course, nothing in the previous definition is specific about P. For every complexity class C
closed under polynomial-time reductions, one can define the class poly-comp-C of problems that can
be solved within the resources of C after some possibly expensive precomputation. Observe that this
is indeed a restriction of the para-C classes. That is, for every C, poly-comp-C C para-C.

Under this setting, the class poly-comp-P accounts for efficient compilation and is the analogue of
~>P in the CDLS framework. As an example, we would say that (TERM INFERENCE, 7;) € poly-comp-P.
However, for the sake of readability, we shall use the following notation, (TERM INFERENCE, ¢), to refer
to that problem.

Remark 1.3 (Notation for parameterizations). For a given computational problem, we often abuse
notation and denote a parameterization directly by the symbols referring to the object in the prob-
lem’s input. For example, consider the problem TErRM INFERENCE. The input to TERM INFERENCE
is a pair (¢, T) consisting of a propositional formula ¢ together with a term T. Then, the problem
(TeErM INFERENCE, 771) would give us compilation access to ¢ but not to T. For the sake of readability,
we will be writing (TERM INFERENCE, ¢) instead.

Often we also use the bracket notation (-) to refer to parameterizations that give us access to mul-
tiple things simultaneously. For example, consider the problem CLAUSE INFERENCE, getting as input
pairs (¢, C) of propositional formulas and clauses. A possible parameterization for compilation may be
giving access to the size of the formula together with the size of the clause. We would denote such a
problem by (CLAUSE INFERENCE, {|¢|, |C|)). [

Chen’s parameter compilation framework is equipped with a new notion of reducibility: poly-comp
reductions. In the same way that poly-comp-P is a restriction of FPT, the so-called poly-comp reduction
is a particular case of the usual fpt reduction.

Definition 1.4 (poly-comp reductions [Che15]). We say that (A, k) poly-comp-reducesto (B, 1), written
(A x) si’;’}zp (B, A), if there is

« a polynomial-size computable function ¢ : £* — ¥*,
« apolynomial-time computable function f : * X ¥* — £~

such that for all x € X*,
x €A f(xc(k(x)) €B

and there is a polynomial-size function s : * — P4, (Z*) such that

A(f(x, ¢(k(x)))) € s(k(x)).

12

Recall that, as we saw, polynomial-time reductions do not necessarily preserve the dependencies
between the compilable parts of the inputs. Observe instead how poly-comp reductions do preserve
the dependencies between the online and the offline parts of the instances! This is precisely the goal of
the requirement that A(f(x, c(k(x)))) € s(x(x)). That is, s should be able to generate all the possible
needed compilations, which cannot be too many.

Clearly, the polynomial-time reduction we described earlier from FORMULA INFERENCE to
TERM INFERENCE does not fit in this definition! Naturally, the new poly-comp-C classes are closed un-
der this new notion of reduction [Che15, Theorem 12], and poly-comp reducibility is transitive [Che15,
Theorem 13]. Furthermore, it is easy to find complete problems for poly-comp-C under poly-comp
reductions. It turns out that if Q is C-complete, then the problem (Q, €), where we do not have compi-
lation power because we use the empty parameterization, is complete for poly-comp-C.

Proposition 1.5. If Q is C-complete (under polynomial-time reductions), then (Q, €) is poly-comp-C-
complete (under poly-comp reductions).

Proof. Membership is clear. For hardness, let (R, k) € poly-comp-C. By definition of poly-comp-C,
there is a computable ¢ and a language of pairs R, € C such that for every x € ¥*, x € R if and only if
(x,¢(x(x))) € Ryc. Under the perspective of compilation as reduction, we have that

I
(Rx) <comp (Ric,€)

and (Ry, €) Sgggp (Q, €), by the fact that R, € C and Q is C-complete. O

This lets us prove the theorem we stated earlier, using the tools of the parameter compilation frame-
work.

Theorem 1.6. FormuLA INFERENCE is poly-comp-coNP-complete (under poly-comp reductions) and
hence not in poly-comp-P unless P = NP.

Proof. We show that

I I
(UNSAT, €) <{omp (FORMULA INFERENCE, ¢) <tomp, (FORMULA INFERENCE, €).

The first reduction gives hardness, since by the previous proposition (UNSAT, €) is poly-comp-coNP-
complete. See that

¢ € UNSAT & T | ¢ & (T,-¢) € FORMULA INFERENCE.

The second reduction is immediate and gives membership (since (FORMULA INFERENCE,€) €
poly-comp-coNP and the class is closed under poly-comp reductions). Observe how compilability
dependencies are preserved now!

Now, suppose FORMULA INFERENCE € poly-comp-P. Then, poly-comp-P = poly-comp-coNP, and
since (UNSAT, ¢) € poly-comp-P that means there is a polynomial-time algorithm for UNSAT, since
having access to € does not help in compilation. Hence P = coNP = NP. O

The reader may feel suspicious of how easy the previous proof was. The suspicion is somewhat con-
firmed: while the previous technique gives a strong conditional lower bound for FORMULA INFERENCE,
most other problems cannot be dealt with in this way.

The chief example is CLAUSE INFERENCE. This time the input is a propositional formula ¢ together
with a clause C = #; V - - - V £, and the goal is to decide whether ¢ |= C. Although CLAUSE INFERENCE is
also coNP-complete, it cannot be poly-comp-coNP-complete unless P = NP [Cad+02, Theorem 2.5]. Is
it because CLAUSE INFERENCE is efficiently compilable? Not really. In [SK96], Selman and Kautz showed

13

that CLAUSE INFERENCE is not compilable unless the polynomial hierarchy collapses to its second level!
The idea is essentially the following: we allow compilation access to the size of the entire input, includ-
ing the online part. In this way, having polynomial-size compilation means having polynomial-size ad-
vice. If one can then show that SAT having compilation access to the length of the input reduces to, say,
CLAUSE INFERENCE, and CLAUSE INFERENCE is in poly-comp-P, then SAT can be solved in polynomial
time with polynomial-size advice. By the Karp-Lipton theorem, the polynomial hierarchy collapses.
The only issue is that such a reductiom needs to map every 3-CNF formula ¢ to an equisatisfiable pair
(¢, @), in such a way that i/ can somehow be computed just by knowing the length of ¢, which seems
impossible at first glance. The idea of Selman and Kautz is to build a “superinstance” that contains all
the components needed to represent any formula of a fixed length. Then, the partial assignment « can
assign values to some of the atoms so that the superinstance is “configured” to represent exactly ¢. We
call this the “superinstance technique”, or “carving technique”

Let us reproduce this proof inside the parameter compilation framework to showcase the superin-
stance technique. Observe that giving compilation access to the length of the input can be done
using the parameterization len : x +> 1%, The reduction in point is from 3SAT to the problem
SAT ComPLETION, defined as follows (and known as CONSTRAINED SAT in the paper by Cadoli et al.).

SAT COMPLETION

Instance A Boolean formula ¢ and a partial assignment a.

Question Is there a satisfying assignment for ¢ extending a?

The idea would be that on input (¢, @), we allow compilation access to ¢ but not to . That is, we
study the problem (SAT COMPLETION, ¢).

Theorem 1.7 (Selman and Kautz [SK96, Theorem 2.5.3.1], rephrased). (3SAT,len) reduces into
(SAT COMPLETION, @) via poly-comp reductions.

Proof. The key observation is that a 3-CNF formula over n variables cannot have more than O(n%)
clauses. Indeed, there are at most (23") € 0(n%) clauses over three literals. Thus, we can easily build the

set of all such possible clauses: C := {Cy,C; ..., } and consider the superinstance formula
Y= [\ (mei v C)
C;eC

where the lower case ¢; are fresh variables, one per clause C; € C.

The formula ¥/, can be computed just by knowing the number n of variables of ¢, which is in turn
bounded by its length! Then, consider the partial assignment « that configures the superinstance. For
each C; € C, if C; appears in ¢, then @ maps ¢; — 1; if, on the other hand, C; is not in ¢, it maps ¢; + 0.
The original n variables are then left unassigned. It is straightforward to see that ¢ is satisfiable if and
only if ¥, A « is satisfiable.

Besides, one can easiliy formalize this as a poly-comp reduction. The function ¢ does nothing, and
all the work is carried out by f, which is in charge of building ¢, and defining the partial assignment
a. Then, the function s simply builds all possible superinstances up to the length of the input: i, €
s(len(g)) = {¢; | i < |len(¢)|}, where s is clearly computable and polynomial-size. O

The following is an immediate consequence.
Theorem 1.8. (SAT COMPLETION, ¢) ¢ poly-comp-P unless NP C P/poly.
By the Karp-Lipton theorem, we get that (SAT COMPLETION, ¢) ¢ poly-comp-P unless PH = X}.

This in turn lets us prove the conditional lower bound for CLAUSE INFERENCE mentioned earlier.

14

—yP
Theorem 1.9. (CLAUSE INFERENCE, ¢) ¢ poly-comp-P unless PH = X,

Proof. It suffices to present the reduction

(SAT COMPLETION, @) si’;’gp (CLAUSE INFERENCE, @)
since (SAT COMPLETION, ¢) is now known to us to be (conditionally) uncompilable. Simply observe that
a pair (¢,) ¢ SAT CompLETION if and only if ¢ |= —a. Every assignment that makes ¢ true disagrees
with @ at some variable. Since « can be seen as a conjunction of literals, -« is a clause, and so (¢, —a)
is a valid input to CLAUSE INFERENCE. Note how ¢ stays the same, and compilability dependencies are
preserved: the compilable part of the new input depends exclusively on the compilable part of the old
input. This completes the reduction.

Now, if (CLAUSE INFERENCE, ¢) € poly-comp-P, then so is (SAT COMPLETION, ¢). But then so is
(3SAT, len), which is to say NP € P/poly. By the Karp-Lipton theorem, PH = Zg .]

The previous approach to lower bounds can be phrased more generally as follows.

Theorem 1.10 (Methodology theorem [Chel5]). If (A, len) sff,’,l,?p (B, A) for some C-hard problem A
and (B, 1) € poly-comp-C’, then C C C’/poly.

Superinstance reductions and the methodology theorem are the central tools to show uncompil-
ability results. In order to rephrase such results in terms of hardness for some complexity class, Chen
defines the following subclasses of poly-comp-C.

Definition 1.11 (chopped-C classes for classical C [Che15]). Let C be a classical complexity class. We
define chopped-C as the class

chopped-C := U [(O, len)]si’;’%.
Qec

The name of the classes comes from the intuition that, if you are in chopped-C, you reduce to some
(Q,len) for Q € C and you can hence compile the length of the input; that is to say, each “chop” of the
language is mapped to the same instance. Hence, “chopped”-C.

It is not difficult to show that if A is C-hard, then (A, len) is chopped-C-hard. As a result, the
following classifications immediately follow from the previous reductions.

Corollary 1.12. (SAT CoMmPLETION, ¢) is chopped-NP-complete and (CLAUSE INFERENCE, ¢) is
chopped-coNP-complete.

1.4.2 Beyond polynomial-size compilation

Our discussion of compilation so far made an unchallenged assumption: the precomputation involved
in the compilation can be as expensive as desired, but its output must be succinct (at most polynomially
bigger). Interestingly, the parameter compilation framework is actually defined in greater generality to
allow the possibility of, say, exponential-size compilation. In fact, for every class ¥ of functions used
to bound the length of strings, we can imagine the class ¥ -comp-C of problems that can be solved
within the resources of C with compilation bounded by some function in ¥

In particular, one may imagine the class exp-comp-P of problems efficiently compilable with
exponential-size compilations. Many problems that are hard for classical compilation immediately
become easy under this new definition. For example, (SAT COMPLETION, ¢) € exp-comp-P: given the
formula ¢, write down all its possible valuations. This compilation is exponential in size, and with
it, one can easily check whether the partial assignment can be extended into a complete satisfying
assignment.

15

Fairly enough, calling this “efficient compilation” might be stretching the term a bit too much.
However, consider the following scenario, also around SAT ComPLETION. We justified expensive com-
putation on ¢ assuming that the formula stays fixed and is always the same. We could then further
assume that all the partial assignments also share a lot in common. Perhaps they are all almost com-
plete assignments, in the sense that the number of variables left unassigned is always very small. In
such a scenario, one may wonder whether we could take the number of variables left unassigned, u, as
a parameter, in the sense of parameterized complexity, and let the compilation be of fpt-size: of length
f(u) - poly(|p|), for some computable function f : N — N.

It is easy to see that SAT CoMmpPLETION with this additional parameter u is “fpt-compilable”: the
compilation contains all the possible 2 valuations to the variables left unassigned, and it is a matter
of trying them all! Since we assume u to be small, this might be a more reasonable notion of efficient
compilation beyond the traditional polynomial-size requirement.

The reader may be worried, however, that allowing this sort of parameterization trivializes the
theory. But this does not seem to be the case in general. Consider, instead of SAT, the more general
CSP, where variables are interpreted in a domain that could be bigger than binary. Analogously to
SAT ComPLETION, define CSP COMPLETION as the problem consisting of pairs (I, «) where I = (X, D, C)
is a CSP instance and a : X — D is a partial assignment to I, the goal being to provide a complete
satisfying assignment extending a.

Given that (SAT CoMPLETION, ¢) is chopped-NP-complete and that SAT is just a particular case
of CSP, it is evident that (CSP ComPLETION, I) is likely not efficiently compilable. In fact, it is also
chopped-NP-complete. What happens if we allow this extra power, adding the number u of variables
left unassigned by « as a parameter? The trick used for SAT CompLETION no longer works. There the
number of valuations was 2%, and we could just write them all. For CSP CoMPLETION, the number of
possible completions of the assignment is |D|", where D is the domain of the CSP instance! But we are
only allowed to be expensive in u, not in |D|, so the same strategy no longer works.

The natural question is whether we can show this formally. That is, can we formally show that
CSP CompLETION does not allow “fpt-size” compilation under this additional parameterization? The
parameter compilation framework cannot account for this, but it could be extended into a new frame-
work where such a form of doubly parameterized problems can be analyzed.

This is precisely the goal of the thesis: to provide a new framework for parameterized compilability,
extending Chen’s parameter compilation system. Under this new setting, we shall develop tools to
classify the complexity of CSP CoMPLETION parameterized by this additional parameter u and a variety
of other problems.

16

Chapter 2

A new framework for parameterized
compilability

We start by extending Chen’s parameter compilation framework, the goal being to provide a
complexity-theoretic account of compilation of fixed-parameter size, further extending the connection
between compilability and parameterized complexity.

Our motivating question is the one we posed for CSP COMPLETION: is it of any help to allow the
compilation to be slightly bigger? What happens if we add as a second parameter the number u of
variables left unassigned by the partial assignment in the input to CSP CompLETION? Does letting the
compilation be “expensive in u” provide any benefit? This additional power makes SAT COMPLETION
efficiently compilable, but at first glance it does not seem to do the same for CSP. We would like an
extension of the parameter compilation framework that can let us classify the compilation complexity
of problems consisting of two parameters: the first one indicating the part that can be compiled and
the second one indicating how much bigger the size of the compilation can get.

Recall that the original parameter compilation framework already contemplates the possibility of
compilations having different sizes. Although poly-comp-P is the central class, the framework also
consists of classes like exp-comp-P allowing exponential-size compilation. Intuitively, what we now
want is a class like fpt-comp-P.

Section 2.1 addresses this issue, defining the fpt-comp-C classes as the natural extension of
poly-comp-C. Section 2.2 presents an extended notion of reduction that can be used to show hardness
results around these classes. Section 2.3 discusses how our notion of reduction can be used to prove
conditional lower bounds on the hardness of our doubly parameterized problems. Unlike in the param-
eter compilation framework, where lower bounds rely on classical complexity-theoretic conjectures,
the extended framework will rely on conjectures about the parameterized world. As in the parameter
compilation framework, our notion of reduction will often achieve completeness with regards to some
restricted subclasses, the chopped- classes, defined in Section 2.4.

2.1 The new fpt-comp-C classes

Our primary motivation in extending Chen’s parameter compilation framework is to account for prob-
lems with two parameters. The first one should tell us what part of the input is available for precompu-
tation, while the second parameter should be there to let the compilation be fixed-parameter-size with
respect to it. When appending these two types of parameters to a problem, we will be talking about
doubly parameterized problems.

17

Definition 2.1 (Doubly parameterized languages). Let Q C X* be a language, x : £ — X a
polynomial-time function and A : ¥* — X* a parameterization (a function fpt-computable with re-
spect to itself). Such a triple (Q, k, 1) is called a doubly parameterized language.

Note how « is required to be polynomial-time computable, while A is fpt-computable with respect
to itself. The motivation behind this is that x indicates what part of the input we are allowed to compile,
and hence we should be able to access that information easily, while A is there to bound the size of the
compilation, so it does not matter if it is harder to compute.

In the remaining of this chapter, we will be dealing with the framework itself and not with any par-
ticular problems, so we will use lower case Greek letters to denote parameterizations. For convenience,
the later chapters adopt the more readable notation presented in Remark 1.3.

Our idea is then that, when looking at a doubly parameterized language, on input x we will perform
some expensive precomputation on k(x) whose outcome can be of size f(A(x)) - poly(|x(x)|) for some
computable function f : ¥* — N. We formalize this by saying that the compilation function is of
fixed-parameter size with respect to A, or simply “fpt-length in size”.

Definition 2.2 (fpt-length functions). Let y : * — X* be a computable function and let f : ¥* — X*
be a function. We say that f is of u-fpt-length, u-fpt-bounded in size or fpt-bounded in p(x) if there is a
polynomial p : N — N and a computable function h : £* — N such that for every x € X",

If ()] < h(u(x)) - p(Ix]).

Remark 2.3. We will often work with functions that take more than one input and where we allow
the output to be fpt-bounded by the i-th input. In these cases, for some f : (£*)" — X*, the previous
definition lets us say something like “f (x1, . . ., x,) is 7;-fpt-length”, meaning that the output of function
f is of size h(|x;|) - poly(|x1]| + - - - + |xn|), for some computable function h. [

With the concept of fpt-length functions in hand we are ready to define complexity classes of the
form fpt-comp-C, meaning that the compilation function is an fpt-length function. We are faced, how-
ever, with an important design question: Should C be a classical complexity class or a parameterized
one? In other words, when thinking of efficient fpt-compilations, is the online phase carried out in
polynomial time or can that running time be parameterized as well?

The first option, where the online computation is forced to remain “classical”, leads to the following
version of the fpt-comp- classes.

Definition 2.4 (fpt-comp-C classes for classical C). Let C be a classical complexity class. We say that a
problem (Q, x, A) fpt-compiles to C if there exists a m,-fpt-length computable function ¢ : ¥* X ¥* — ¥*
and a language of pairs Q,. € C such that for all x € ¥*,

x € Qifand only if (x, c(k(x),A(x))) € Q4.

We then say that (Q, x,) compiles to Q.. via c. We denote by fpt-comp-C the class of doubly parame-
terized problems fpt-compilable to C.

Intuitively, the previous definition is just extending the usual poly-comp-C in the natural way: the
compilation function ¢ acts on k(x) and the new parameter A(x) in such a way that x appended with
c(k(x), A(x)) can be computed within the resources of C.

If one is more permissive and lets the online phase run in fpt-time with respect to the second
parameter, the following classes appear.

Definition 2.5 (fpt-comp-C classes for parameterized C). Let C be a parameterized complexity class.
We say that a problem (Q, x, A) fpt-compiles to C if there exists a m,-fpt-length computable function
c:X* X ¥* — X" and a language of pairs (Q4., A 0 11) € C such that for all x € 7,

x € Qifand only if (x, c(k(x),A(x))) € Q4.

18

We then say that (Q, k, A) compiles to Q4. via c. We denote by fpt-comp-C the class of doubly parame-
terized problems fpt-compilable to C.

The notation Ao might result slightly confusing, but it is just making sure that the online phase of
the computation is fpt-time with respect to A(x): since Q.. is a language of pairs, with instances of the
form (x, c(k(x), A(x))), the parameter should be A(x), so we need to first project the first component
of the pair and then apply A.

Remark 2.6. The reader may argue that it might be desirable to consider the online phase of the com-
putation to run in fpt-time with respect to some third parameter, possibly different from A. Though
this might result in interesting insights, we focus here on the scenario where A is reused. The reason,
as we will now see, is that it greatly simplifies our design decisions. Furthermore, it makes sense to
just combine such a third parameter into A: if we are willing to let the online phase run in time longer
than polynomial, we are probably also willing to let the compilation be slightly bigger with respect to
this same parameter, and vice versa. []

Remark 2.7. Recall that throughout this work, when quantifying over complexity classes, we do so over
classical classes that are closed under polynomial-time many-one reductions (<p) or parameterized
classes closed under fixed-parameter tractable many-one reductions (<g,). Furthermore, we assume
that for every class C under consideration, C 2 P (or, alternatively, C 2 FPT).]

We now have two seemingly different notions of efficient fpt-compilation: fpt-comp-P and
fpt-comp-FPT. Interestingly, we already know of an member of both of these classes.

Example 2.8 (SAT ComPLETION). Recall the problem SAT CoMPLETION, taking as input a proposi-
tional formula ¢ and a partial assignment to it. Consider now the doubly parameterized problem
(SAT COMPLETION, ¢, u), where u : " — X" returns, given the partial assignment, the number of
variables left unassigned by it. The first parameter gives us compilation access to the formula ¢.

Observe that (SAT COMPLETION, ¢, u) € fpt-comp-P. As we argued, we can enumerate all possible
bit-strings of length u in the compilation, which will be of size roughly 2 - poly(|¢|). Then, when the
partial assignment arrives, we can iterate over all possible completions of it, which takes time linear in
the size of the compilation!

Interestingly, we also have that (SAT COMPLETION, ¢, u) € fpt-comp-FPT, simply because, without
any compilation, the online phase can iterate over all possible ways of completing the partial assign-
ment. u

Though in the case of SAT CoMPLETION both classes seem to capture the problem, at first sight
the second definition seems to provide a more general and powerful notion of computation, since the
online phase can be generally more expensive than in the classical setting. However, careful observation
shows that whatever additional power is used by the parameterized online computation, one can always
push this inside the compilation, so that the online phase can remain classical. More precisely, the two
variants of the fpt-comp- classes are related as follows.

Proposition 2.9. Let C be a classical complexity class. Then,
fpt-comp-C = fpt-comp-para-C.

Proof. The forward inclusion is immediate. For the backwards one, let (Q,x, 1) € fpt-comp-para-C.
Then, there is a m,-fpt-compilable function ¢ and a language (Q.., A 0 7r1) € para-C as in Definition 2.5.
The latter in turn means that there is a computable ¢’ : X* — X* such that there is some Q; , € C such
that for all x € X%, (x, c(x(x), A(x))) € Q4 if and only if ((x, c(x(x), A(x))), ¢’ (A(x))) € Q5 ..

It then suffices to argue that (Q, k, 1) can be fpt-compiled to Q; ,, which is in C. One needs to argue
that ¢(x(x), A(x)) and ¢’(A(x)) are both fpt-length in A(x). We know that c is fpt-length with respect
to A, which means there is a polynomial p : N — N and a computable function s, : * — N such that

le(k(x), A(0)))] < s0(A(x)) - p(lx(x)])

19

and, besides, let s; be a computable function bounding the size of ¢’. Then,
le(xe(x), ()] + [¢” (A(x))] < s0(A(x)) - p(IK(x)]) + 51(A(x))
< (s50(A(x)) +51(A(x))) - p(|xe(x)])
which is again fpt-bounded by A.]
In light of this previous result, our notion of efficient fpt-compilation is the same regardless of
whether the online phase of the computation is parameterized or not.
Corollary 2.10. fpt-comp-P = fpt-comp-FPT.

As a result, we are inclined to focus on the second version of the fpt-comp- classes. After all,
if at some point we become interested in some fpt-comp-C for a classical C, we can simply study
fpt-comp-para-C and transfer the results. Furthermore, classes like fpt-comp-W[1] dot not have a
classical analogue (unless FPT = W[1]), so the parameterized world offers a richer variety of classes.

Note that our definition of fpt-comp-C is simultaneously a natural generalization of the
poly-comp-C classes as well as of the usual parameterized classes, as demonstrated by the following
result.

Proposition 2.11. Let Q C X* be a language, let C be a classical complexity class and let D be a param-
eterized complexity class. Then,

(i) if (Q,k) € poly-comp-C, then (Q,k, A) € fpt-comp-C for every parameterization A;
(i) if (Q,k, A) € fpt-comp-C and A is constant, then (Q, x) € poly-comp-C;
(iii) if (Q,A) € D, then for every polynomial-time computable k, (Q, k,) € fpt-comp-D;
(iv) if (Q,k, A) € fpt-comp-D and k is constant, then (Q, 1) € D.
Proof.

(i) If (Q, k) admits a polynomial-size compilation, then it also admits fpt-size compilation, simply
by ignoring the additional parameter A.

(i) If A is constant, then (Q, k, A) compiles via some ¢ into some Q.. € C, with the size of ¢ bounded
by
le(x(x), A(x))| < h(A(x)) - p(|(k(x))]) < k- p(|(x(x))])
for some computable h, some constant k € N and some polynomial p. That means that ¢ depends
only on k and that c is polynomially bounded. Since, furthermore, Q.. € C, we have that (Q, x) €
poly-comp-C.

(iii) One can simply ignore the compilable part given by x and solve the entire instance within the
resources of D.

(iv) Ifkis constant, then there is no parameter to compile. Indeed, by definition, there is a compilation
function ¢ : * X X* — X¥* such that (Q, x, 1) compiles some (Qi, A © 1) € C and there is a
polynomial p and a computable function h : ¥* — N such that

le(k(x), A(x))] < h(A(x)) - p(k(x)]).
Since k is constant, p(|k(x)|) = k € N, for some constant k, and hence
le(k(x), A(x))] < k- h(A(x))

which depends only on A. Hence, 4 suffices to compute ¢ and solve every instance within the
resources of D.

20

2.2 Reductions

To carry out the type of structural research we are after, our new complexity classes must be equipped
with some notion of reduction that suits them. Recall that the poly-comp- classes are closed under
poly-comp reductions (nggp), a specific case of fpt reductions. Our approach is precisely to extend the
existing poly-comp reduction into a relation giving closure to the fpt-comp- classes.

Intuitively, the functions performing the reduction should then be computable in fpt-time, except
for some possible expensive computation depending only on the compilable part. We now define the

functions performing such reductions.

Definition 2.12 (fpt-compilable function). A function g : ¥* — X* is said to be fpt-compilable with
respect to k and A or simply (k, A)-fpt-compilable if there is a m,-fpt-length computable function ¢ :
3* X X* — ¥ and a (A o my)-fpt-time-computable f : ¥* X £* — X, such that for all x € X¥,

9(x) = f(x, c(k(x), A(x))).

Intuitively, a reduction g between two doubly parameterized problems (Q,x, 1) and (Q’,x’,1")
should satisfy three requirements, for every input x € ¥*:

« in the computation of g(x) one may carry out some expensive computation on the compilable
part of the input, k(x);

« the compilable part of the reduced instance, k’(g(x)), should be computable from the compilable
part of the original instance, k(x), and be of size fpt-bounded by A(x);

« like in fpt reductions, the new parameter A’ (g(x)) should be bounded by some function depend-
ing solely on A(x).
It is easy to see that this is in fact a natural generalization of the poly-comp reductions from Defi-
nition 1.4.

Using fpt-compilable functions, the following definition captures the new fpt-comp reductions.
Recall that Pg,(X*) denotes the set of all finite subsets of X*.

Definition 2.13 (fpt-comp reductions). We say that (Q, x, 1) fpt-comp-reduces to (Q’,x’,A"), written
(0,x, 1) s?;;lp (Q’,x’, 1), if there is a (k, 1)-fpt-compilable function g : ¥* — ¥* such that,

(i) forall x € X7,
x€Q e g(x) € Qs

(ii) there is a m,-fpt-length computable function t : * X ¥* — P4, (Z¥) such that for all x € 3%,
k’(g9(x)) € t(k(x), A(x));

(iii) there is a computable s : Z* — Pg,(2*) such that for all x € =%, 1'(g(x)) € s(A(x)).

If (Q,k,A) Sgﬁnp (Q’, k", ") and (Q’, k", 1") Sg);np (Q,k, 1), we say that the problems are fpt-comp-

interreducible and write (Q, x, 1) Eﬁ%tmp (Q, k", \).

Observe that one could have followed a more restrictive approach, defining instead a notion of
reduction where, apart from the compilation, the final wrapping function f runs in polynomial time
instead of fpt time. This would seem the natural notion of reduction for the classical variant of the
fpt-comp-C classes. However, in light of Proposition 2.9, once we prove that the fpt-comp-C classes
for parameterized C are closed under our new fpt-comp reductions, we will immediately get a working
notion of reduction for the classical variant of our classes.

Observe how this new notion of reduction is simultaneously a generalization of poly-comp reduc-
tions and fpt reductions.

21

Proposition 2.14. Let (Q,k, A) and (Q’,k’,A") be doubly parameterized languages. Then,
(i) if (Q,k, A) Sg))tmp (Q’,x",A") and x is constant, then (Q, 1) <g (Q',4");
(ii) if (Q, A) <gpt (Q’,A") and x’ is constant, then (Q,x, A) Sglgtmp (Q, k', A);
(iii) if (Q,x, A) Sgﬂ;p (Q’,x’, ") and A is constant, then (Q, k) sﬁg’},?p (Q%,x");
(iv) if (O, k) s,‘:’c‘,’fgp (Q’,x’) and A’ is constant, then (Q, k, A) sﬁ'ﬁ,ﬁnp (Q, k", A).
Proof.

(i) If k is constant, the compilation phase of the reduction becomes useless, and it is straightforward
to verify that the remaining conditions of fpt-comp reductions are precisely the conditions of fpt
reductions.

(if) The fpt-comp reduction is just the existing fpt reduction. Since k’ is constant, it can always be
obtained from «, which is the only additional requirement we need.

(iii) If Ais constant, that means the running time of the reduction as well as the size of the compilation
are polynomial and hence there is a poly-comp reduction.

(iv) The fpt-comp reduction is the existing poly-comp reduction. Since A’ is constant, we can ensure
that it is bounded by some constant value, which can be expressed as a function depending
exclusively on A. The rest of the requirements coincide.

Crucially, our new fpt-comp-C classes are closed under this new notion of reduction.

Proposition 2.15. For every parameterized complexity class C, the class fpt-comp-C is closed under
fpt-comp reductions.

Proof. Let (Q,k, A) sﬁ%ﬁnp (Q’,k’, ") and suppose (Q’,k’,A’) € fpt-comp-C. We need to show that
(Q,k,A) € fpt-comp-C. Let g(x) = f(x,c(k(x),A(x))), s and t be as in the definition of fpt-comp
reductions. Furthermore, since we assume that (Q’,x’, ") € fpt-comp-C, there is a m,-fpt-length ¢’ :
¥* X ¥* — ¥* such that (Q’, k', A") compiles into some (Q’ ,,A o m;) € C.

Given these components, we have that

x € Q & g(x) = f(x,c(x(x),A(x))) € Q'
& (9(x),¢"("(9(x)), ' (9(x)))) € Q-

The proof has two steps. First, we give a m,-fpt-length d : ¥* X ¥* — ¥* such that (Q, x, 1) fpt-
compiles into (Q44, 4 © 7). Second, we show that (Q.4,A o 1) <gx (Q},,A 0 m) € C. Since Cis a
parameterized class that is closed under fpt-reductions, it follows that (Q.4, A 0 1) € C, and hence we
have that (Q,k, 1) € fpt-comp-C.

The function d(x(x),A(x)) should output both c(x(x),A(x)) and well as the value
¢’ (k' (g(x)), A’ (g(x))). The issue is that g(x) = f(x, c(k(x), A(x))) depends on x, while d does not have
access to the entire x. However, we do know that x’(g(x)) € t(k(x),A(x)) and 1'(g(x)) € s(A(x)).
Hence, the idea is as follows: for each pair (k, £) € t(k(x), A(x)) X s(A(x)), compute ¢’(k, £), and store
it in a table together with (k, £). The output of d(x(x), A(x)) is this table, together with c(x(x), A(x)).

’
+c”

22

It now suffices to verify that d is m,-fpt-length. Since c is 7,-fpt-length, ¢’ is m2-fpt-length, and A’ og
is fpt-bounded by A(x), it suffices to check that the number of entries in the table is fpt-bounded by
A(x), which is indeed the case, since

|tk (x), A(x)) X s(A(x))| = |t (k(x), A(x))] - |s(A(x))]

and both ¢ and s are fpt-bounded by A(x), as desired.

We now have that (Q,k,A) compiles into (Q,q4,A © 7;). Consider now the fpt-reduction that
maps (x, d(k(x), A(x))) to (9(x),¢'(k'(g9(x))), A'(g(x))). Note that g(x) = f(x,c(x(x),A(x))) is fpt-
computable with respect to A(x), and c(x(x), A(x)) is part of the output of d. As for ¢’, we can check its
right value in the table computed by d. The relation between parameters A and A’ is correctly regulated
by the fpt-comp-reduction, so we have (Q.+g4, A © 771) Zfpt (erc,, Aom) € C,as desired. m]

Another positive indicator of the robustness of our notion of fpt-comp reducibility is that multiple
reductions can be chained together, preserving transitivity.

Proposition 2.16. The relation of fpt-comp reducibility is transitive.

Proof. Suppose that (Q1,k1,41) S(ff,inp (Q2, K2, A2) via some function g(x) = f(x,c(x1(x),A1(x)))
and bounding functions s and ¢ as in the definition of fpt-comp reductions. Similarly, suppose
(Q2, k2, A2) sﬁ*;tmp (Qs, k3, A3) via some g’ (x) = f’(x, ¢’ (k2(x), A2(x))) and bounding functions s’ and ¢’
as in the definition. We claim that the function g”’'(x) := m(x, g’(g(x))) = g’ (g(x)) works as a fpt-comp
reduction witnessing (Qy, k1, A1) sﬁﬂtmp (Q3, K3, A3).

Correctness of the reduction is clear: for every x € £*,

x€Q1 & g(x) €0 & g'(g(x)) € Qs.

As for the running time and the size of the function, 7, is computable in polynomial time, so that
presents no issue. We just have to make sure that g’(g(x)) is A;-fpt-length. This is justified by the
fact that A,(g(x)) € s(A1(x)), so every time something is A;(g(x))-fpt-bounded, it is also A; (x)-fpt-
bounded. It then suffices to see that to compute g’ (g(x)), one first computes g(x), which is by definition
fpt-bounded in A;(x). Then, g’(g(x)) is fpt-bounded in 1, (g(x)), but we just argued this is in turn fpt-
bounded in A, (x), so it is fine.

Finally, we need to make sure the parameterizations k3 and A5 are appropriately bounded by k; and
A1. For bounding A3, consider the function s” : * — Pg, (") defined as

() = J{5') 1y e s}

Indeed, we have that A3(¢’(g9(x))) € s”(A1(x)): simply recall that A3(g’(x)) € s’(A2(x)), so we get
A3(g’(g(x))) € s'(A2(g(x))) C s”(A1(x)), since Ay(g(x)) € s(A;(x)). Observe that s’ is computable,
since s and s” are computable, and that that is the only requirement it must fulfill.

As for bounding 3 in terms of k; and Ay, define

t (e y) = | Iy 1% €ty €s(y))
and note indeed that since k3(g’(x)) € t'(k2(x), A2(x)), we get that

k3(g'(9(x))) € t'(k2(g(x)), 22(g(x))) € " (k1(x), A1 (x))

since k2(g(x)) € t(x1(x)) and A2(g(x)) € A1 (x). Finally, note that ¢” is obviously computable and that
for any input (x, y) it is m,-fpt-length. This is because both #(x, y) and s(y) are fpt-bounded by |y|, so
t”” cannot be much bigger.]

23

We already mentioned that, in fact, compilation itself can be seen as a form of reduction: one
reduces a language Q to a language Q.. consisting of the input padded with a compilation. That is,
(Q,k, 1) fpt-comp reduces to (Qy, €, 4 o m1), where there is no need to compile anything, since the
compilation is already in the instance. It comes as no surprise that fpt-comp-C can be characterized in
terms of fpt-comp reductions in this sense.

Proposition 2.17. Let (A, k,A) be a doubly parameterized language and let C be a parameterized com-
plexity class. It holds that (A, k,A) € fpt-comp-C if and only if there is some (B,u) € C such that

(A, A) sﬁ?,tmp (B, €,), where recall that € denotes the empty parameterization.

Proof. The forward direction is a consequence of Definition 2.5: if (A, k, 1) € fpt-comp-C, then there is
a mp-fpt-size computable function ¢ : *X3¥* — ¥* and a language of pairs (Q.., Ao1) € C such that for
every x € X%, x € Q if and only if (x, c(k(x),A(x))) € Q4c. Then, the mapping x — (x, c(x(x), A(x)))
is an fpt-comp reduction witnessing

(A K1) <Eup (Qser€. A0 m)

where we have nothing to compile on the right-hand side.

For the backwards direction, if there exists some (B,) € C such that (A, 1) sﬁ‘;;p (B, €,),
then clearly (B, ¢, u) € fpt-comp-C, which is closed under fpt-comp reductions, and hence (A4, x, 1) €
fpt-comp-C. O

2.3 Methodology theorems for lower bounds

The new fpt-comp- classes, equipped with fpt-comp reductions, are going to be our basic tool to show
hardness results. The idea, once again, is to classify (parameterized) compilability problems by reduc-
ing to and from some canonical problem for each class. The canonical problems, analogous Chen’s
framework, are of the form (Q, len, 1), where the compilable part of the input is its length and (Q, 1) is
some hard parameterized problem. As we discussed in Section 1.4, this goes back to lower bounds via
advice classes as devised by Selman and Kautz and the |r»C classes of Cadoli et al. Having compilabil-
ity access to the length of the input is equivalent to having computable polynomial-size or fpt-sized
advice. So, if (Q, A) is a hard parameterized problem but (Q, len, A) is efficiently compilable, that should
provoke some collapse involving advice classes.

Parameterized advice is defined as follows!.

Definition 2.18 (fpt-size advice). Let C be a parameterized complexity class. We say that a parame-
terized problem (Q, A) is in the class C/fpt if there exists a m,-fpt-length function a : £* X 2* — £* and
a language of pairs (Q4q, A © 1) € C such that for all x € X*,

x € Q if and only if (x, (1], A1(x))) € Q4.

Intuitively, parameterized advice behaves just like the usual polynomial-size advice, with the cor-
responding upgrades: the advice can be slightly bigger (of fpt-size in A(x)) and the computation can
also be carried out in time fpt in A(x). The latter explains why the language of pairs Q.. takes as
parameterization A o 7y: we project to get x and then apply A.

The intuition for lower bounds is captured by the following methodology theorem, which lets us
prove conditional hardness for parameterized uncompilability via fpt-comp reductions.

IParameterized advice classes where first defined by Chen [Che05]. Here we follow the similar definition of De Haan [Haa19,
Definition 15.1].

24

Theorem 2.19 (General methodology theorem). Let C and C’ be parameterized complexity classes and
let (A, A) be a hard problem for C under fpt reductions. If (A,len, 1) S?E,tmp (B, x,) for some (B, x, 1) €
fpt-comp-C’, then C C C'/fpt.

Proof. By the closure of fpt-comp-C under fpt-comp reductions (Proposition 2.15), we have
(A, len, A) € fpt-comp-C’

which means there is a 7,-fpt-length computable ¢ : 3*X3* — ¥* and a language (A, Aomr;) € C’ such
thatforall x € =*, x € Aifand only if (x, c(1*], A(x))) € A,. Hence, (A, 1) € C’/fpt, since c is precisely
a function giving fpt-advice. Since (A, 4) is C-hard, it immediately follows that C C C’/fpt.]

Example 2.20. The methodology theorem implies that if one manages to show a reduction of the form
(CLIQUE, len, k) sﬁ?fmp (A K, 4), then we can claim that (A,x,A1) ¢ fpt-comp-FPT unless W[1] C

FPT/fpt, since (CLIQUE, k) is W|[1]-complete. [

Interestingly, in some cases we can prove an even stronger collapse, not involving advice classes.
This is reminiscent of the ~»C classes of Cadoli et al. and the reduction for FORMULA INFERENCE (Theo-
rem 1.6), where there is no compilation involved. In our parameterized framework, these extreme cases
can be phrased as follows.

Theorem 2.21 (Strong methodology theorem). If (A, 1) is C-hard for some parameterized class C,
(A e, 1) sﬁfﬁnp (B,k,) and (B, k, 1) € fpt-comp-C’, then C C C’.

Proof. By the closure of fpt-comp-C under sﬁ‘;tmp reductions, we have
(A e 1) € fpt-comp-C’

which means there is a m,-fpt-length computable ¢ : £* X X* — ¥* and a language (A, Ao my) € C’
such that for all x € 3%, x € A if and only if (x, c(e, A(x))) € A,.. Hence, (A, 1) € C’, since compiling
the empty string does not give any additonal power. Since (A, 1) is C-complete, it immediately follows
that C € C'. O

2.4 The new chopped-C classes

The methodology theorems in the previous section suggest that given a C-complete language (Q, 1)
for some class C (believed to be) beyond FPT, the problem (Q, len, 1) is a hard problem.

Unfortunately, even if (Q, A) is C-complete under fpt reductions, we cannot show that (Q,len, 1)
is hard for fpt-comp-C under fpt-comp reductions. The same happened in the parameter compila-
tion framework, where one could not show that (Q,len) is complete for poly-comp-C even if Q is
C-complete.

In an attempt to rephrase our methodology theorems in terms of hardness for some class, we take
the pragmatic approach of defining, for each fpt-comp-C, a subclass consisting of the closure around
the problems of C that get compilability access to the length of the input.

Definition 2.22 (chopped-C classes for parameterized C). Let C be a parameterized complexity class.
We define chopped-C as the closure under fpt-comp reductions of all languages of the form (Q, len, 1),
such that (Q, 1) € C. That is,

chopped-C = U [(Q,len,/l)]gginp.
(Q.A)eC

25

The following two propositions are immediate consequences of our definition.
Proposition 2.23. For every parameterized class C, chopped-C C fpt-comp-C.

Proof. Observe that if (Q,x,1) € chopped-C for some C, then there is some (Qy,len, ;) such that

(Qo, i) € Cand (Q,k, 1) sﬁ*;;lp (Qos len, p). Since clearly (Qo, len,) € fpt-comp-C and the class is
closed under fpt-comp reductions, (Q, x,A) € fpt-comp-C.]

Proposition 2.24. For every parameterized class C, the class chopped-C is closed under fpt-comp reduc-
tions.

Proof. If (Q1,k1,41) sﬁ?fmp (Q2,K2,42) € chopped-C, then by definition of chopped-C,
(Q2, K2, A2) sﬁ’;inp (Qos, len, Ag) for some (Qy, Ag) € C. Hence, by transitivity of fpt-comp reductions,

(01, k1, A1) Sgﬁnp (Qq,len, Ay), and so it is contained in the closure around (Qy,len, Ay), which is a
subset of chopped-C. o

As it happened for poly-comp-P, chopped-FPT coincides with the already known fpt-comp-FPT.
Proposition 2.25. chopped-FPT = fpt-comp-FPT.

Proof. The forward inclusion is a consequence of Proposition 2.23. For the other direction, let (A, x, 1) €
fpt-comp-FPT. Then, there is an m,-fpt-length computable ¢ such that for some (Q,., A o ;) € FPT,
x € Aif and only if (x, c(x(x), A(x))) € Qye-

Fix some problem (B,) € FPT and some instances y, ¢ B and y; € B. Then, consider the mapping
g such that g(x) = y; if x € A and g(x) = yo otherwise. Observe that g can be computed in fpt-time
after compiling ¢, since we can obtain (x, c(x(x), A(x))) and decide in fpt-time whether it is in Q...
Furthermore, note that for all x € X*, |g(x)| < max{yo, y1}, meaning that the size of g(x) is bounded
by a constant, and so we can always feasibly obtain len(g(x)). This means that

(A1) <y (B,len, p)

and since (B,) € FPT we have (B,len, u) € chopped-FPT and hence (A, k,A) € chopped-FPT, as
desired. O

Does this coincidence extend to other classes? The answer is no, at least not as long as they are
strictly beyond FPT. That is, it does not seem like we can do without the chopped- classes. In fact,
this also happens in the classical setting of the parameter compilation framework, though this was not
proven in Chen’s original paper.

Proposition 2.26. Let C be a classical complexity class. IfP C C, then chopped-C < poly-comp-C.

Proof. We already know that chopped-C C poly-comp-C, so we only need to prove that the inclusion is
strict. Recall the background assumption that C is closed under polynomial-time reductions, meaning
that P € C. Hence, we assume that chopped-C = poly-comp-C and derive C C P, concluding C = P,
which contradicts the assumption of the proposition.

Let A be some language in C. Clearly, (A, ¢) € poly-comp-C and we assumed poly-comp-C =
chopped-C, so we get that (A, €) must reduce to (B, len) for some B € C via some mapping g. Note that
this reduction must be computable in polynomial time, since the compilation function has only access
to €, so whatever it outputs it can be hardwired in the reduction. Furthermore, there is a polynomial-
size computable function ¢ : ¥* — Pg,(2*) such that len(g(x)) € t(€). But clearly t(¢€) is always some
finite fixed set of strings. This means that all the positive instances of A are mapped to some finite subset
of B in polynomial time. But this essentially means that we can solve A in polynomial time! Hence,
A € P, and since A was arbitrary, C C P. As we argued above, this gives C = P. Contradiction. m]

26

The same argument with minor modifications to account for fpt reductions yields an identical result
for parameterized classes.

Proposition 2.27. Let C be a parameterized complexity class. If FPT C C , then chopped-C <
fpt-comp-C.

Hence, in particular, unless P = NP, chopped-NP C poly-comp-NP. Similarly, unless FPT = W[1],
chopped-W|[1] C fpt-comp-W(1]. In short, we cannot do without the chopped- classes. We can,
however, phrase our methodology theorem (Theorem 2.19) in terms of hardness for these classes, as
we intended.

Theorem 2.28 (General methodology theorem, rephrased). Let C and C’ be parameterized complex-
ity classes. If (Q,k,A) is chopped-C-hard and (Q,x,A) € fpt-comp-C’ (that is, if chopped-C C
fpt-comp-C’), then C C C'/fpt.

Proof. Let (A,) € C. We then have that (A, len,) € chopped-C, and since (Q, x, 1) is chopped-C-
hard, we must have a reduction witnessing (A, len,) sﬁﬂfnp (Q,x,). But since (Q, k, A) € fpt-comp-C’
and fpt-comp- classes are closed under fpt-comp reductions, we have (A, len,) € fpt-comp-C’. As we
argued in Theorem 2.19, having compilation access to the length of the input is equivalent to having
fpt-size advice, so (A, p) € C’/fpt.]

Remark 2.29. The reformulation of the general methodology theorem in terms of the chopped- com-
plexity classes lets us observe that the lower bound provided by the methodology theorem is not tight,
in the following sense: if C € C’/fpt it does not necessarily follow that chopped-C C fpt-comp-C’.
This is because even if all problems in C allow for fpt-size advice, this advice need not be computable,
so the advice would not work as valid compilation. In other words, fpt-size compilation can be seen as
fpt-size advice, but the converse is not true.]

In this way, the chopped- classes capture the general methodology theorem (Theorem 2.19). Anal-
ogously, one could capture the strong methodology theorem (Theorem 2.21) with a simpler class, ob-
tained around the closure of problems where nothing is compiled.

Definition 2.30 (simple-C classes for parameterized C). Let C be a parameterized complexity class.
We define simple-C as the closure under fpt-comp reductions of all languages of the form (Q, ¢, 1), such
that (Q, 1) € C, and where recall that € denotes the empty parameterization. That is,

fpt
simple-C = U [(Q,e,/l)]scgmp,
(Q.)eC

The chopped-C classes would correspond to the parameterized variant of the |r»>C classes of Cadoli
et al., while simple-C would be the parameterized analogue of ~>C. So much so that, in fact, the
fpt-comp- and simple- classes coincide!

Proposition 2.31. For every parameterized complexity class C, simple-C = fpt-comp-C.

Proof. The forward inclusion is clear: if (A, k, 1) € simple-C, that means (A, k, A) sﬁ‘;tmp (B, €,) for

some (B, pt) € C, and so (B, ¢, i) € fpt-comp-C. Since fpt-comp-C is closed under fpt-comp reductions,
(A, k,) € fpt-comp-C.

For the backwards inclusion, it suffices to use the characterization of fpt-comp-C in terms of fpt-
comp reductions (Proposition 2.17): some (A, k, 1) being an element of fpt-comp-C means reducing to
some language (A4, A o m1) € C, where c is the compilation function. As a result,

fi
(A K, A) <omp (Are e Ao)

which entails (A, k, 1) € simple-C. O

27

Theorem 2.32 (Strong methodology theorem, rephrased). Let C and C’ be parameterized complex-
ity classes. If (Q,x,A) is fpt-comp-C-hard and (Q,x,A) € fpt-comp-C’ (that is, if fpt-comp-C C
fpt-comp-C’), then C C C’.

Proof. We use the fact that fpt-comp-C = simple-C. Let (A,) € C. We then have that (A, e, p) €
simple-C, and since (Q, x, 1) is simple-C-hard, we must have a reduction witnessing (A, €, p1) Sﬁ%inp
(Q,x,). Butsince (Q, kx, 1) € fpt-comp-C’ and fpt-comp- classes are closed under fpt-comp reductions,
we have (A, e, 1) € fpt-comp-C’. As we argued in Theorem 2.21, having compilation access to the
emtpy string is like having no compilation power, so the problem must be solved within the resourced
of C’. Hence, (A,) € C’. |

Remark 2.33. Unlike in the case of the general methodology theorem (see Remark 2.29), we called the
strong methodology theorem strong precisely because the lower bound is tight. That is, if C € C’, then
it also follows that fpt-comp-C C fpt-comp-C’.]

Finally, the following observation is key to prove hardness results around the chopped- classes. We
need this proposition to easily identify hard problems for the chopped- classes to that we can reduce
to and from some existing problem.

Proposition 2.34. If (A, A) is C-hard, then (A, len, A) is chopped-C-hard.

Proof. We need to show that every (B, k, 1) in chopped-C reduces to (A,len, 1). Since (B, k, i) is in
chopped-C, that means that (B, k,) sﬁﬂﬁnp (C,len,v) for some (C,v) € C. Since (A, A) is C-hard,
we have that (C,v) <g: (A, 1). Then, this same reduction achieves (C,len, v) Sﬁg‘inp (A, len,). By

transitivity, (B, , pt) Sgﬂ;p (A,len, 1), as desired. O
The same result holds for fpt-comp-C classes.
Proposition 2.35. If (A, A) is C-hard, then (A, e, A) is fpt-comp-C-hard.

Proof. We need to show that every (B, k, u) in simple-C reduces to (A, e A). Since (B,x,p) is in

simple-C, that means that (B, k, i) Sg));]p (C, e, v) for some (C,v) € C. Since (A, A) is C-hard, we
fpt

have that (C,v) <g: (A, A). Then, this same reduction achieves (C, €,V) <comp (4, €, 4). By transitivity,
(B, k, 1) Sﬁginp (A, € 1), as desired. |

28

Chapter 3
Compilability around W|1]

The framework presented in the previous chapter, consisting of the fpt-comp- and chopped- classes,
together with the notion of fpt-comp reducibility, is designed to prove hardness results on the param-
eterized compilability of computational problems. So far we only studied its general properties and
justified its robustness. We are now ready to put the framework to use. The goal is to answer the ques-
tion that sparked our interest in the first place: can CSP CoMPLETION be fpt-compiled when adding
as an extra parameter the number of variables left undefined by the partial assignment? As it turns
out, our brand new toolkit lets us show that this problem is chopped-W[1]-complete, and hence not
fpt-compilable unless W[1] C FPT/{pt.

As warm-up, Section 3.1 presents a simple fpt-comp reduction exploiting the “su-
perinstance technique” while preserving parameter dependencies for the W/[1]-complete
WEIGHTED ¢-SAT ComPLETION. The complexity of CSP CoMPLETION is discussed in Section 3.2,
where we first show that, when parameterized by the number of undefined variables in the partial
assignment, the problem is W[1]-complete. Section 3.2.2 finally addresses the opening question of
this thesis via a superinstance reduction from CLIQUE, showing that the problem is chopped-W[1]-
complete. Furthermore, we note that the existing reduction also preserves low primal treewidth,
meaning that CSP CoMPLETION remains chopped-W|[1]-hard when parameterized by that measure.
Finally, Section 3.3 applies our framework to a constrained form of CL1QUE, CLIQUE COMPLETION, previ-
ously studied by De Haan [Haa19]. His results immediately translate into chopped-W [1]-completeness
in our framework and present and alternative route to prove hardness for CSP COMPLETION.

3.1 A simple hardness result: WEIGHTED ¢q-SAT COMPLETION

To get familiar with hardness proofs in our new framework, we start thinking of fpt-comp reductions
for problems in W[1]. Of course, not every problem is amenable to compilation, simply because it
is unclear what part of the input we should preprocess. Usually, the instance must be made up of
more than one element; otherwise, compiling the entire input would trivially solve every problem. Our
approach is that given some W|1]-complete problem, we can define its “completion variant”, which
is just the same problem but adding some side constraints imposing that the solutions must include
certain elements and exclude certain others. In this way, one can naturally think of compiling the main
part of the instance but not the side constraints.

In this section we follow this approach for the canonical W[1]-complete problem WEIGHTED ¢-SAT.
In the classical setting, SAT CoMPLETION was the “completion variant” of SAT. In the parameterized
world we are instead interested in weighted versions of SAT.

29

WEIGHTED q-SAT COMPLETION

Instance A ¢-CNF formula ¢, a partial assignment « and a natural number k.

Question Is there a satisfying assignment extending « that only sets k more vari-
ables to true?

In parameterized complexity, we would study a problem like (WEIGHTED 3SAT COMPLETION, k),
where abusing notation k is referring to weight k of the remaining part of the assignment. For com-
pilability purposes, we will be interested in the problem (WEIGHTED 3SAT COMPLETION, ¢, k) instead,
meaning that we can compile ¢ but not the partial assignment. The compilation can then be of size
fpt-bounded by k.

It is not difficult to see that in terms of parameterized complexity, WEIGHTED q-SAT COMPLETION
is just as hard as WEIGHTED g-SAT.

Proposition 3.1. For every q > 2, (WEIGHTED q-SAT COMPLETION, k) is W[1]-complete.

Proof. Hardness is obvious. For membership, simply “plug in” the partial assignment, getting an input
to WEIGHTED g-SAT. O

Unfortunately, compilation does not seem to make things easier in this context.
Theorem 3.2. For every q > 2, (WEIGHTED q-SAT COMPLETION, ¢, k) is chopped-W [1]-complete.

Proof. For the moment, we focus on the case q > 3, since it is the one clearly showcasing the superin-
stance technique. We postpone the proof of g = 2 for later in this chapter, since it follows a different
strategy.

It suffices to show that (WEIGHTED 3SAT COMPLETION, ¢, k) is chopped-W|[1]-complete. For any
q > 3, hardness follows immediately from the trivial observation that a 3CNF formula is also a g-CNF
formula, since we only require that every clause contains at most q literals. For membership, note that
since we know from the previous proposition that each WEIGHTED ¢q-SAT COMPLETION is in W[1], we
have that (WEIGHTED ¢-SAT COMPLETION, len, k) € chopped-W (1], and clearly

(WEIGHTED ¢-SAT COMPLETION, ¢, k) Sgﬁnp (WEIGHTED ¢-SAT COMPLETION, len, k)
since the length of the full instance is at most O(|¢]).

We hence show that (WEIGHTED 3SAT COMPLETION, ¢, k) is chopped-W|[1]-hard. The idea is to
reduce from (INDEPENDENT SET, len, k), which is chopped-W|[1]-complete (an immediate consequence
of Proposition 2.34). This is going to be a superinstance reduction, since we are mapping all instances
of the same size to a single reduced instance that is then configured by the side constraints (in this case
the partial assignment).

The idea is that every graph of n nodes is sent to the following 3-CNF formula ¢,, consisting of
variables x, . .., x,, one per node in the original graph, plus some auxiliary variables c; ;, one per pair
(i, j) € [n)?, with i # j:

O = /\ (=eij V —x; V —xg)
i.j€[n]
i#j
The idea is then that each c; ; will be made true if and only if there is actually an edge from i to j in the
graph. This information is not visible to the compilation function, but it is accessible to the wrapping
function finishing the reduction and defining the partial assignment. Furthermore, since all the fresh
¢;j will be assigned some value, we can safely set weight k for the rest of the assignment.

Note that this can all be written into a (len, k)-fpt-compilable function such that g(x) =

f(x,¢(|G|, k)), for some computable ¢ and f as in the definition of fpt-comp reductions. Indeed, since

30

the formula is at most polynomially larger than ¢, we can simply forget about ¢ and let f do all the
work. Furthermore, the bounding functions are just s(k) = {k} and t(len(x), k) = {¢1,..., Qjlen(x)|}>
which make the construction fit into the definition of fpt-comp reductions. O

It is worth noting that in the proof of the previous result, the formula ¢ is an anti-
monotone 3-CNF formula: all the variables occur negated. This means the completeness re-
sult holds for also for WEIGHTED ANTIMONOTONE ¢-SAT CoMPLETION, which is defined just like
WEIGHTED ¢-SAT CoMPLETION but for antimonotone formulas.

Theorem 3.3. For every q > 2, the problem (WEIGHTED ANTIMONOTONE ¢-SAT COMPLETION, ¢, k) is
complete for chopped-W|[1].

3.2 The case of CSP COMPLETION

We now address the opening question of this thesis: the parameterized compilability of
CSP CompLETION. Recall that the problem is defined analogously to SAT COMPLETION, as a constrained
form of CSP.

CSP COMPLETION

Instance An instance I = (X, D, C) of CSP and a partial assignment a : X — D.

Question Is there an extension of « into a satisfying assignment for I?

We imagine the inputs to CSP COMPLETION coming in two phases: first the instance I, which we can
preprocess, and then the partial assignment o, which we cannot. We denote by (CSP COMPLETION,])
the paramterization where we have compilability access to the CSP instance but not to the partial
assignment.

Let us make some obvious observations regarding the classical complexity and classical compilabil-
ity of this problem.

Proposition 3.4. CSP COMPLETION is NP-complete.

Proof. Hardness is obvious from the fact that CSP is NP-complete. For membership, note that one can
always “plug in” the partial assignment to get a simplified instance to CSP.]

Proposition 3.5. (CSP CoMPLETION, I) is chopped-NP-complete.

Proof. For membership, note how obviously (CSP COMPLETION, I) Sgggp (CSP CoMPLETION, len). For

hardness, we can reduce (3SAT, len) to (CSP CoMpLETION, I). The idea is again the same superinstance
reduction from 3SAT (as in Theorem 1.7), where we build all the possible clauses over three literals
together with an additional flag that is assigned some value by the partial assignment, and then translate
into CSP. |

3.2.1 Parameterized complexity of CSP COMPLETION

Since CSP CoMPLETION is hard both in terms of classical complexity and compilability, we turn to
parameterized complexity. We consider the extra parameterization u, giving us the number of vari-
ables left undefined by the partial assignment. Clearly, (SAT CompLETION, u) € FPT. Unfortunately,
(CSP CoMPLETION, u) is likely not in FPT. We show this by noting that different parameterizations of
CSP and CSP CoMPLETION are all W[1]-complete. Notationally, for the following theorem, given a CSP
instance I = (X, D, C), we denote by |X| the parameterization giving us the number of variables and
by |C| the one giving us the number of constraints.

31

Theorem 3.6. The following sequence of reductions holds:

Proof.
o)

(ii)

(iif)

(iv)

(CSP CoMPLETION, u) <gx (CSP, |X])
<fpt (CSP, |C|) <fpt (CLIQUE, k) <gx (CSP COMPLETION, u1).

(CSP ComPLETION, u) <g (CSP,|X])

Given a CSP instance and a partial assignment, instantiate the partial assignment by reducing
the relation set of each constraint, getting an equivalent CSP instance. The reduced instance is
now defined over u variables, since the others already received some value, so the reduction is
correct and preserves parameter dependencies.

(CSP, [X]) <gp (CSP,|C])
Observe that, without loss of generality, a CSP instance over |X| variables can never have more
than 2X! constraints. To see this, note how all constraints can be normalized as follows:

« first, fix some ordering x, ..., x, of the variables in X and for every constraint (X;, R;) € C,
sort the variables in the tuple X; according to the order x1,. .., xp;

« if two constraints ¢; = (X1, Ry) and ¢; = (X5, Ry) are such that X; = X, and R; # R,, then
we can simply add the constraint (X;, Ry N R;) and remove ¢; and c;.

After this normalization, there can only be one constraint per possible subset of variables, and
there are only 2X1 of those. So, without loss of generality, |C| < 2IXI which keeps the new
parameter, |C|, bounded in terms of the old one, |X].

(CSP, |C|) <fpt (CLIQUE, k)

Consider an instance I = (X, D, C) to CSP. We build a graph G; = (V, E) for CLIQUE as follows.
Let C = {cy,...,cm} be the set of constraints, where each constraint is the form ¢; = (X;, R;)
for some X; C X and R; € DXil. The nodes of our graph are all the possible pairs between a
constraint and each of the tuples in its relation set. That is,

vi=) (X lteRrsy).
(Xi.Ri)eC

Then, the edge relation Ey is defined such that nodes (X;, t) and (X, t’) are connected if and only
if they are not conflicting. Two nodes are conflicting if the tuples ¢ and ¢’ disagree on the value
assigned to some shared variable. Finally, let k := |C|. It is easy to see that I is satisfiable if and
only if Gy has a clique of size |C|. Furthermore, it is also straightforward to check that the size of
the graph is at most quadratic in the size of the original CSP instance.

(CLIQUE, k) <g,x (CSP COMPLETION, u)

This is just the usual encoding of CLIQUE into CSP. Take a graph G = (V,E), and define a
CSP instance consisting of variables X := {xi,...,xx} and domain D := V, with the intended
meaning that x; is interpreted by the vertex that happens to be the i-th element of the clique.
Then, for every i # j, we add a constraint imposing (x;,x;) € E. Since G does not have self-
loops, we do not need to worry about x; and x; being assigned to the same vertex. There are
only k(k — 1)/2 constraints, so we can feasibly construct the graph. Though we are technically
reducing to CSP CoMPLETION, we will leave the partial assignment empty, meaning that the
undefined number of variables is u = |X| = k, which makes this a correct fpt reduction.

32

Since (CLIQUE, k) is W[1]-complete, the previous sequence of reductions immediately implies our
desired parameterized complexity classification.

Corollary 3.7. The parameterized problems (CSP, |X|), (CSP,|C|) and (CSP COMPLETION, u) are all
complete for W[1].

3.2.2 Parameterized compilability of CSP CompLETION

At this point, CSP ComPLETION has been proven intractable in terms of classical complexity (NP-
complete), classical compilability (chopped-NP-complete) and parameterized complexity (W[1]-
complete). Can it be of any help to combine both the compilation and the second parameterization?
Unfortunately, it seems like this is not the case. To prove hardness for (CSP CoMPLETION, [, 1), we give
a superinstance reduction from the chopped-W[1]-complete problem (CLIQUE, len, k).

Theorem 3.8. (CLIQUE, len, k) sﬁ%ﬁnp (CSP COMPLETION, I,).

Proof. Let (G, k) be an instance of CLIQUE of |G| = n vertices. We will build a “superinstance”, such
that all instances of CLIQUE over n vertices looking for cliques of size k get mapped to the same CSP
instance. Then, the partial assignment will “configure” the superinstance to represent the graph G at
hand.

We start by defining the CSP instance I,k = (X, Dnk, Cnk). First, define the set P := {(a,b) |
a,b € [n],a # b} of possible edges on a graph of n nodes.

For the set X, x of variables, define

X = {eq; 1i,j € [k # j} Udagje | i) € [k],i # j,e € P},

Intuitively, the variable e; ; will be the edge connecting the i-th vertex in the clique to the j-th vertex
in the clique. The variables a; j . will take binary values, indicating whether the edge e is really in the
graph received as input, and hence a possible option of the edge going from the i-th vertex to the j-th
vertex of the clique.

For the domain, consider the set D, := P U {0, 1}. The values in P will be the potential edges of
the graph, while the values 0 and 1 will be used to represent what edges are available.

Finally, define three types of constraints:

1. Vertices are forward-fixed: for all i, j,£ € [k], i # j,i # ¢, j # ¢,
(eij,eir) € {((a, D), (a,c)) | abce[n],a#ba#c}
2. Vertices are backwards-fixed: for all i, j € [k], i # J,
(eij. eji) € {((a,b), (b,a)) | a,b € [n],a # b}
3. Availability: for all i, j € [k],i # j,e € P,
(eij.aije) € {(e,1) | e € PYU{(e',0) | " € P\ {e}}

Now, on a specific input (G, k), with G = (V, E) and |V| = n, consider the partial variable assignment
ank that maps for all i, j € [k],i # jand e € P,

ai,j’e'—)l ifeeE
aije— 0 ife¢E

and take the CSP COMPLETION instance (I k, @n k), consisting of the CSP instance we just constructed
together with the partial assignment just defined.

Hence, on input x = (G, k), the reduction map g(x) = f(x,c(n, k)) simply ignores the function c
and uses f to build the CSP superinstance I, x as described above. As for the parameters,

33

« the second parameter u is the number of undefined variables, which in this case is k(k — 1)/2,
since after defining the partial assignment, the only variables left are the ones of the form e; j,
defining the edges of the clique, which is just a complete graph of size k. Hence, consider the
function s(k) := {k(k — 1)/2}, which is trivially computable and fpt-bounded in k;

« for the compilable parameter, that is the CSP superinstance, we just build all the superinstances
Ik, for m < |len(x)|. That is, define t(len(x), k) := {I;mx | m < |len(x)|} and note indeed that
since n < |len(x)|, Ik € t(len(x), k).

Observe that for every instance (G, k) of CLIQUE, (G,k) € CurIQuE if and only if (I, ank) €
CSP CompLETION. This completes the reduction.]

This shows our desired classification.
Theorem 3.9. (CSP ComPLETION, I, u) is chopped-W|[1]-complete.

Proof. For membership, Corollary 3.7 implies (CSP ComPLETION, u) € W|[1], and hence by definition
of the chopped- classes, (CSP COMPLETION, len, u) € chopped-W[1]. Since clearly
(CSP COMPLETION, I, u) Sg),;p (CSP CoMPLETION, len, u)

we have (CSP CompLETION, [, u) € chopped-W([1].
Hardness follows directly from the previous reduction (Theorem 3.8).]

3.2.3 Primal treewidth

Based on the previous result, our methodology theorem immediately implies that
(CSP CompLETION, ,u) ¢ fpt-comp-FPT unless W[1] C FPT/fpt. This suggests that u is not a
very good parameterization. What other parameters could prove useful?

The immediate one that comes to mind is primal treewidth. Given a CSP instance I = (X, D, C), the
primal graph of I, G; = (V, Ej), is a graph having as vertices the variables in I, Vi = X, such that two
nodes are connected if and only if the corresponding variables appear together in some constraint in I.
The primal treewidth of I, denoted ptw([), is the treewidth of the primal graph Gy of I.

It turns out that, if the domain of the CSP instance is bounded, CSP parameterized by primal
treewidth is in FPT! This is because there is an fpt-algorithm that processes each bag of the tree
decomposition of the CSP instance in time O(|D|P™!D), where |D| is the size of the domain [GSS02].

It is then natural to ask whether primal treewidth can be of any help for CSP CoMPLETION.
Perhaps by using the additional power of compilation, one may be able to have fpt compilation
without bounding the size of the domain. In other words, we would like to study the problem
(CSP CoMPLETION, [, ptw), meaning that we compile the CSP instance (and not the partial assignment),
and the size of the compilation can be fpt-bounded by ptw(I).

Unforturnately, not even such a powerful compilation can help. In fact, we do not need to go very far
to prove such a hardness result. The reduction from CLIQUE in Theorem 3.8 has its treewidth bounded
by k!

Theorem 3.10. (CLIQUE, len, k) S?:np (CSP COMPLETION, I, ptw).

Proof. Consider the same superinstance reduction as in Theorem 3.8. We just need to argue that the
primal treewidth of this superinstance is bounded by some function of k. To do this, we build a good
possible tree decomposition of the primal graph of the superinstance and reason about its width.

Consider the following labelled tree T. It consists of a root node, labelled by the bag E := {e;; |
i,j € [k],i # j}. Then, for every variable of the form a; j ., consider a leaf node that is reached from
the root node. Each such leaf node is labelled by the bag {a; .} UE.

34

Note how this labelled tree T is a tree decomposition of the primal graph of the superinstance. First,
it is a tree. Second, every variable appears in some bag: every e;; variable appears everywhere, and
every a; j. variable appears exactly once, in some leaf. Third, for every two variables connected in the
primal graph, they appear together in some node of the tree. Indeed, since in the primal graph two
variables are connected if they appear together in some constraint, we can easily see that all edges
of the primal graph are covered by our tree decomposition. Finally, for every variable x of the CSP
superinstance, the subgraph obtained form the nodes in which x is represented forms a subtree. Indeed,
if x is of the form e; ;, then the subtree is the entire tree itself. If x is of the form a; j ., then it is just a
leaf node, which is trivially a tree.

To complete the proof, note every node has at most k? — k + 1 variables in the bag. Hence, the width
of T is k% — k. We safely conclude that the primal treewidth of the superinstance is O(k?), which means
that the previous reduction is a valid fpt-comp reduction from (CLIQUE, len, k).]

Corollary 3.11. (CSP COMPLETION, [, ptw) is hard for chopped-W|[1].

The reader may notice that this time we only proved hardness and not completeness for
chopped-W[1]. The reason is simple: we cannot prove membership in chopped-W[1] because, in
fact, we do not even know if (CSP ComMPLETION, ptw) € W|[1]. This is also unknown for the original
unconstrained CSP. It is definitely the case that (CSP, ptw) is W[1]-hard, since

(CLIQUE, k) <fy (CSP, ptw) <gpr (CSP COMPLETION, ptw)

following the simple reduction described in Theorem 3.6.iv, but it is not known whether (CSP, ptw)
fpt-reduces into (CLIQUE, k).
We come back to the issue of treewidth measures in CSP in Chapter 5.

3.3 The problem CLiQUE COMPLETION

The other well-known W|[1]-complete problem is of course (CLIQUE, k). Its completion variant is de-
fined as follows.

CL1QUE COMPLETION

Instance An undirected graph G = (V, E), two subsets I, O C V and a value k € N.

Question Is there a (k + |I])-clique in G containing all the vertices in I and none of
the ones in O?

For our purposes, the problem of interest is (CLIQUE COMPLETION, (G, k), k), meaning that we can
compile the graph together with the size of the extension of the clique.
Firstly, we note that the parameterized complexity of CLIQUE COMPLETION stays the same.

Proposition 3.12. (CriQUE COMPLETION, k) is W [1]-complete.

Proof. Hardness is clear. For membership, note how one can “plug in the constraints”. If a vertex is
forced to be out of the clique then simply delete it, and if a vertex is enforced to be inside the clique,
then delete all the vertices that are not in its neighborhood. This yields a graph without side constraints
that has a k-clique if and only if the constrained instance had a clique of size k + |I|. O

Interestingly, the parameterized compilability of CLIQUE COMPLETION was already studied by De
Haan in his doctoral dissertation [Haa19], under the name of CONSTRAINED CLIQUE. His hardness result
was for the class |~>W/[1], one of the classes defined by Chen in his first framework for parameterized
compilation [Che05], extending the CDLS setting, but the reduction he provides from the problem
MuLticoLorED CLIQUE immediately gives us chopped-W|[1]-completeness in our framework.

35

Theorem 3.13 (De Haan [Haal9, Proposition 15.55]). The problem (CLIQUE COMPLETION, {G, k), k) is
chopped-W[1]-complete.

Though the problem CriQue COMPLETION is interesting in its own right, it is particularly use-
ful in that it lets us complete our picture of compilability around W[1]. Firstly, it can be
used to complete the proof of Theorem 3.2, where we showed chopped-W|[1]-completeness for
WEIGHTED ¢-SAT COMPLETION, since our proof strategy did not work for the case g = 2.

superinstance technique breaks for the case ¢ = 2. This is because every time we reduce from
WEIGHTED ¢-SAT COMPLETION parameterizing by the length of the input, we are forced to introduce
auxiliary variables to act as flags, but this yields a (q + 1)-CNF formula. For the case g = 2, we cannot
reduce from WEIGHTED 1-SAT because this problem is in FPT when parameterized by the weight of
the assignments.

Instead, we reduce from (CriQUE COMPLETION, (G, k), k), which we now know is chopped-W|[1]-
complete. Since we now have access to the actual graph, our reduction can be the usual fpt reduction:
on input G = (V, E), build the formula

/\ (—LX,' \Y —|Xj)

(i.j)2E
i#j

Proof of the case q = 2 in Theorem 3.2. The proof strategy presented for ¢ > 3 adapting the classic

over variables x1, . . ., x,, where n = |V/|. The constraints of CLIQUE COMPLETION can be plugged in into

a partial assignment, so that the remaining part of the assignment is required to have weight k.
Furthermore, note that the formula is still a 2-CNF antimonotone formula, so the result we had for

WEIGHTED ANTIMONOTONE ¢-SAT CoMPLETION (Theorem 3.3) also holds now for g = 2. |

Furthermore, the astute reader may have noticed that De Haan’s hardness result for
Crioue COMPLETION opens an alternative route to chopped-W|[1]-completeness for CSP COMPLETION.

Alternative proof of Theorem 3.9. Membership in chopped-W 1] is proved in the same way, but we in-
terchange the reduction from Theorem 3.8 showing

(CLIQUE, len, k) S(ff;np (CSP CoMPLETION, [, 1)

for a simpler reduction showing

(CriQue COMPLETION, (G, k), k) gﬁﬂhlp (CSP COMPLETION, I, u).
Crucially, because we can now have access to the actual graph G, we no longer need to build a superin-
stance. This means the the usual reduction from CLIQUE into CSP (as in Theorem 3.6.iv) almost does
the trick. The only issue is with the in/out constraints of CLIQUE CoMPLETION. The in constraints can
be modelled using the partial assignment, but the out constraints cannot. Instead, we do the following.
On input ({G = (V,E), k), I, O) with vertices V = {vy,...,v,} we consider as variables

X:i={xy,...,xU{ry,....,ra}

where we have the usual k variables interpreting the clique, together with n auxiliary variables to
indicate restrictions. The idea is that the r;-variables are binary and indicate whether vertex v; is in the
set O of out constraints. The domain is D := V U {0, 1}.

Hence, our CSP instance consists first of O(k?) constraints of the form

(xi,x;) € Eforeveryi,je [k],i# j

36

as usual, followed by constraints of the form

(xi,rj) € {(0,0) [0 € V}U{(v,1) [0 € V'\ {o;}}

for every i € [k] and every j € [n]. Observe that this CSP instance can be easily computed from (G, k),
and the partial assignment to the CSP can now easily encode the I and O sets: the elements in I can
be modeled by a partial assignment, and for every v; € V, r; — 1ifv; € O, and r; — 0 otherwise.
After the partial assignments, the only variables left unassigned are at most the k variables x, . .., xx,
meaning that the new parameter u fulfills that u < k, as desired.

It is easy to see that the instance of CriQUE CoMPLETION has a clique if and only if the
CSP CoMPLETION instance can be satisfied, giving correctness to the reduction.]

In fact, it is not difficult to see that the previous construction also preserves low primal treewidth,
as in Theorem 3.10, which means the previous redution can also be used to prove Corollary 3.11:
(CSP ComPLETION, [, ptw) is chopped-W|[1]-hard.

37

Chapter 4
Compilability around W| 2]

The previous chapter applied our new parameterized compilability framework to the completion
variants of three W[1]-complete problems: WEIGHTED q-SAT ComPLETION, CSP COMPLETION and
CrL1QUE CoMPLETION. Of course, our framework was defined in greater generality and can be applied
beyond W[1]. The natural candidate to continue our research is the next level of the Weft hierarchy:
W[2].

This chapter studies the compilability of completion variants of two classical W|[2]-complete
problems: DoMINATING SET and HITTING SET. Section 4.1 introduces the problems (four in total)
and the new types of constraints. We show that these completion variants of DOMINATING SET and
HITTING SET remain W [2]-complete and hence ask for the possibility of compiling the main part of
the input, but not the side constraints. Section 4.2 shows a web of fpt-comp reductions and poly-comp
reductions relating all four new problems to two canonical problems in W[2]: WEIGHTED CNF SAT and
WEIGHTED MONOTONE CNF SAT. Such a web of reductions gives chopped-NP-completeness for all of
the problems under consideration. Unfortunately, not all of the reductions can be made into proper fpt-
comp reductions and, for the parameterized setting, we can only show chopped-W[2]-completeness
for one problem (HITTING SET COMPLETION), while the other three remain chopped-W|1]-hard for the
moment.

4.1 The problems HiTTING SET and DOMINATING SET COMPLETION

This chapter focuses on two canonical W[2]-complete problems: HITTING SET and DOMINATING SET
[DF13, Corollary 23.2.2]. The former is a simple set-theoretic puzzle consisting of some universe set
and some subsets of it, where the task is to find a subset of the universe that “hits” at least one element
in each subset. The formal statement is as follows.

HiTTING SET

Instance A universe U = {uy,...,u,},asetof setsS = {S1,...,S,} € P(U) and a
natural number k.

Question Is there a hitting set H C U of size |H| = k? That is, a subset H such that
for every i € [m],S;NH # 0.

When referring to the W[2]-completeness of HITTING SET we are referring to the problem
(HITTING SET, k), where we parameterize by the desired size of the hitting set.

38

Example 4.1. Consider the HITTING SET instance consisting of the universe U = {us, up, u3, u4} and sets
Sy ={ur, uz}, So = {u1, us, us} and Ss = {uy, us}, together with the value k = 2. It is easy to see that there
is no singleton hitting set, but {uy, u,}, {u1, u3} or {u,, us} are possible hitting sets of two elements. m

We now define two completion variants of HITTING SET, considering side constraints.

SimpLE HITTING SET COMPLETION (S-HS-C)

Instance An instance (U, S, k) of HITTING SET together with sets ,O C U.

Question Is there a hitting set H C U of size k + |I| such that] € H and HN O = 0?

The problem requires that some elements appear in the hitting set while others cannot. Observe
that this imposes no constraints on the elements of S. The following more general version of the
problem adds such a third type of constraint, specifying that even if a particular element appears in
some specific set, hitting it cannot suffice to hit the set.

Hitting SET CoMmPLETION (HS-C)

Instance An instance (U, S, k) of HITTING SET together with sets I, O C U and a set
ACSxU.

Question Is there a hitting set H C U of size k + |I| such that] C H,HN O = () and
foreveryie [m|,HN (S;\{u €U | (u,S;) € A}) # 0?

Observe how the third type of constraint is encoded: in the set A, a pair (u, S;) indicates that even
if u € S;, u is not available and something else must be hit.

It is not difficult to see that the parameterized complexity of these new versions of HITTING SET
remains the same.

Proposition 4.2. The problems
« (SmmpLE HITTING SET COMPLETION, k)
o (HirTiNG SET COMPLETION, k)

are both W |[2]-complete.

Proof. Hardness is clear since HITTING SET reduces into both of the completion variants by hav-
ing no constraints. For membership, note that SimpLE HiTTING SET COMPLETION reduces into
HritTiNG SET COMPLETION, again by having no constraints of the third type, and we can quickly re-
duce HrrTiNg SET COMPLETION to HITTING SET: on input ((U, S, k), I, O, A), we first delete, for each
(u,S;) € A, the occurrence of u in S;; then, delete all the elements in O and all its occurrences in sets
in S; finally, delete all sets hit by something in I and delete the elements in I. Since the hitting set had
to be of size k + |I|, the value of k can remain the same. It is straightforward to see that this way of
“plugging in” the constraints gives an equivalent instance. Membership then follows from the closure
of W[2] under fpt reductions. O

Note, of course, that the previous reductions are also polynomial-time reductions, and
hence NP-completeness of HITTING SET transfers to SimpPLE HITTING SET COMPLETION and
HiTtTING SET COMPLETION.

The other problem we are interested in is DOMINATING SET. Given a graph G = (V, E), a dominating
set D C V is a set of vertices such that for every v € V, either v € D or v is adjacent to some d € D.
That is, every vertex is either dominated or adjacent to a dominated vertex. This can be alternatively
formulated by requiring that for every v € V, Ng(v) N D # 0.

39

DOMINATING SET

Instance An undirected graph G = (V, E) and a natural number k.

Question Is there a dominating set D C V for G of size k?

Example 4.3. Consider the graph in Figure 4.1.a, which has a dominating set of two elements marked
in gray. The graph has no dominating set of smaller size.]

We now present two completion variants for DOMINATING SET. The first one is analogous to how
we defined CLioQueE COMPLETION: some vertices must be in, some must be out.

StMPLE DOMINATING SET COMPLETION (S-DS-C)

Instance An instance of DOMINATING SET consisting of a graph G = (V,E) and a
number k, together with sets ,O C V.

Question Is there a dominating set D C V in G of size k + |I| such that I € D while
DNnO =07

Observe that, by the way we defined the problem, the vertices in O cannot be in the dominating set
and hence they must be dominated by some adjacent node. We now extend this problem with a third
type of constraint: we add a third set S C V of vertices such that they also cannot be in the dominating
set, but unlike the vertices in O, these do not have to be dominated by anything else.

DoMINATING SET COMPLETION (DS-C)

Instance An instance of DOMINATING SET consisting of a graph G = (V,E) and a
number k, together with sets ,O,S C V.

Question Is there a dominating set D for the induced subgraph G[V \ S] such that D
isofsizek+|I,] CDand DN O = 0?

Example 4.4. In Figure 4.1.b we can see the same graph as in Example 4.3, but with added constraints
I={f}, O ={e} and S = {c}, meaning that the graph no longer has dominating sets of two elements.
The only possible dominating set of three elements has been marked in gray.]

Once again, these additional constraints do not increase the parameterized complexity of the prob-
lem.

Proposition 4.5. The problems
+ (SmmPLE DOMINATING SET COMPLETION, k)
+ (DOMINATING SET COMPLETION, k)

are both W [2]-complete.

Proof. Hardness is clear, since DOMINATING SET reduces into both of the completion variants by hav-
ing no constraints. For membership, note that SIMPLE DOMINATING SET COMPLETION reduces into
DoMINATING SET COMPLETION, again by having no constraints of the third type, so it suffices to
show that DoMINATING SET COMPLETION is in W[2]. However, unlike in the analogous proofs for
CrL1QUE CoMPLETION (Proposition 3.12) and HITTING SET COMPLETION (Proposition 4.2), it is not im-
mediately clear how one can “plug in” the constraints to get an instance of DOMINATING SET. This is
because if some vertex has to be included in the dominating set, we cannot erase its neighbourhood
since a vertex in such neighbourhood might be needed to dominate something else outside of it.

40

f f

g 9

(a) Graph without constraints. (b) Same graph with side constraints.

Figure 4.1: On the left-hand side, the graph has a dominating set of two elements, {c, e}, highlighted
in gray. On the right-hand side, the DOMINATING SET COMPLETION instance adds side constraints: the
vertices with a dot (©) must be included (they are in I), the ones crossed out (®) cannot be in the
dominating set but must be dominated (they are in O), and the ones with a single line (@) cannot
dominate and do not have to be dominated (they are the ones in S). The smallest possible dominating
set satisfying the constraints is {a, b, d, f}.

Instead, we reduce DOMINATING SET COMPLETION to SIMPLE HITTING SET COMPLETION, which we
just showed is W[2]-complete. On input ({(G = (V,E), k), I, 0, S) we construct the following instance
(U, S, k"), I’,0") for StmpLE HITTING SET COMPLETION. It consists of a universe U .=V U {s, | v € V}
such that the sets in S’ are just the neighborhoods of each vertex v, together with a corresponding flag
vertex s,. That is,

§"={Ng(v) U{ss} |v €V}

with the intention that for every v, you can hit either v or something in the neighborhood. The size
k' := k of the solution sets stays the same. The flags s, are there to encode the constraint set S of
vertices that cannot be dominated but do not have to be dominated anyway. That is, define

I'=1U{s,|veS} and O :=0U{s,|v¢S}

Observe how this has the intended effect and gives correctness to the reduction: if a vertex v is in S and
hence cannot be dominated but does not have to be, that means that the element s, is in the hitting set,
implying that the set Ng(v) U {s,} is automatically hit; if, on the other hand, v ¢ S, then we must hit
something in Ng(v), since hitting s, is no longer an option. Since the flag variables are all included in
I'U O, the number of elements we can additionally add to the hitting set is k’ = k, so the reduction is
correct and fits the problem statement.]

4.2 A web of reductions

We consider now the possibility of compiling the main part of the instance in the previous comple-
tion problems. That is, we are talking about problems like (HrrTing SET ComMPLETION, (U, S, k), k)
or (DoMINATING SET COMPLETION, (G, k), k), where we can compile the HITTING SET instance or the
graph, respectively, but not the side constraints. We will now show fpt-comp and poly-comp reduc-
tions between the newly defined completion problems, with the aim of obtaining new parameterized
compilability classifications. To establish such a web of reductions, we make explicit two new problems
that will help complete the picture.

41

WEIGHTED CNF SAT

Instance A CNF formula ¢ and a natural number k.

Question Is there a satisfying assignment for ¢ of weight k?

The problem (WEIGHTED CNF SAT, k) is in fact the canonical W[2]-complete problem [DF13, The-
orem 23.2.1]. We shall also use the following restricted version, concerning monotone formulas. Recall
that a Boolean formula in CNF is monotone if no literal occurs negated.

WEIGHTED MONOTONE CNF SAT

Instance A monotone CNF formula ¢ and a natural number k.

Question Is there a satisfying assignment for ¢ of weight k?

It is a classical result of parameterized complexity that (WEIGHTED MoNOTONE CNF SAT, k) is
also W[2]-complete [DF13, Corollary 23.2.2]. We define the completion variants of the previous two
problems, WEIGHTED CNF SAT ComPLETION and WEIGHTED MoNOTONE CNF SAT COMPLETION in the
usual way, by adding a partial assignment to the input, as we did for WEIGHTED q-SAT COMPLETION in
Section 3.1.

We are now ready to present fpt-comp and poly-comp reductions between all four new problems
and the previous two.

Theorem 4.6. The following web of reductions holds

(WEIGHTED 3SAT COMPLETION, ¢, k)

l(i)
(viii

(WEIGHTED CNF SAT COMPLETION, ¢, k) (—) (WEIGHTED MONOTONE CNF SAT COMPLETION, ¢, k)

l(ii) T(uii)

($-DS-C, (G, k), k) (S-HS-C, (U, S, k), k)

l(m‘)

(DS-C, (G, k), k) = (i) (i)

(v)

(HITTING SET, len, k) (HS-C, (U, S, k), k)

“«
(i)

where all arrows denote fpt-comp reductions that are also poly-comp reductions (by dropping the last
parameterzations), except for reduction (xii), which is only a poly-comp reduction.

Proof.

(i) (WEIGHTED 3SAT COMPLETION, ¢, k) Sginp (WEIGHTED CNF SAT COMPLETION, ¢, k)

Every 3-CNF formula is also a CNF formula, so the reduction trivially leaves the formula un-

changed.

" f
(if) (WEIGHTED CNF SAT COMPLETION, ¢, k) Sc}(ﬁnp (§-DS-C, (G, k), k)

We invoke here the fpt reduction from WEIGHTED CNF SAT to DOMINATING SET by Downey
and Fellows [DF13, Lemma 23.2.1]. As noted in their Remark 23.2.1, such a reduction has the

42

Figure 4.2: Incidence graph construction for the HirTiNG SET instance of Example 4.1 as described in
reduction (vi). Nodes with a dot (®) must be in the dominating set and nodes that are crossed out (®)
cannot in the set (but must me dominated by something else).

(iif)

(iv)

v)

(vi)

additional property that satisfying assignments are in one-to-one correspondence with the dom-
inating sets of the graph obtained in the reduction. This entails, in particular, that partial as-
signments to the Boolean formula can be turned into input/output constraints for the graph, in
such a way that we can get a valid input for SiMPLE DOMINATING SET COMPLETION. Since the
original reduction was from formulas to graphs, (G, k) can be computed from ¢, preserving the
required dependencies, and the usual parameter dependency of fpt reductions ensures that this
is an fpt-comp reduction.

($DS-C, (G, k), k) <dnp (DS-C, (G, k). k)
This is straightforward: every instance of SIMPLE DOMINATING SET COMPLETION is also an in-
stance of DOMINATING SET COMPLETION, simply by having no constraints of the third type.

(DS-C, (G, k). k) <&imp (S-HS-C. (U, S, k). k)

We can reuse the construction employed to reduce DoOMINATING SET COMPLETION to
SimpLE HITTING SET COMPLETION in Proposition 4.5. Note how the dependencies are clearly
respected and the value of k stays the same, making this a correct fpt-comp reduction.

($DS-C, (G, k), k) <y (S-HS-C, (U, S, k), k)
Again, we can reuse the construction from Proposition 4.5, except that we no longer need the
auxiliary s, variables, since there are no constraints of the third type.

(S-HS-C, (U, S, k), k) <Bt. (S-DS-C, (G, k), k)

We describe an incidence graph to represent the HrTTING SET instance. On input ((U =
{ut,...,un}, S ={S1,...,Sm}, k), I, O) consider a bipartite graph having as vertices uy, ..., u, on
one side and Sy, . . ., Sy, on the other side, such that u; is connected to S; if and only if u; € S;. All
the vertices in U are themselves connected to a single node ug. Then, as constraints, consider the
sets I’ :=TU{up} and O’ := OUS. That is, the vertices Sy, . . ., Sy, cannot be in the dominating set
and must hence be dominated by some vertex in U. Finally, set k' := k. As an example, Figure 4.2
represents the incidence graph construction for the HITTING SET instance of Example 4.1.

Note indeed how the graph and the value of k can be obtained from the main part of the instance,
in such a way that the side constraints depend solely on the previous side constraints. Hence,
dependencies are preserved and since the only available vertices to add to the dominating set are
Uy, ..., Uy, there is a one-to-one correspondence between hitting sets and dominating sets, giving
correctness to the reduction.

43

(vii) (S-HS-C, (U, S, k), k) sﬁ%ﬁnp (WEIGHTED MoNOTONE CNF SAT COMPLETION, ¢, k)

Oninput (U = {uy,...,un}, S = {S1,...,Sm}. k), I, O), consider a Boolean formula over variables
X1, ...,Xp and clauses Cy, . . ., C;, such that
Ci = \/ Xj
j€ln]
quSi

and ask for assignments of weight k” = k. The side constraints can be immediately turned into a
partial assignment, and correctness is straightforward to verify.

(viii) (W-MoNoTONE-CNF-SAT-C, ¢, k) sﬁ‘;;p (WEIGHTED CNF SAT COMPLETION, ¢, k)
This follows from the trivial observation that a monotone CNF formula is also a CNF formula,
so keeping the instance intact suffices for the reduction.

(ix) (S-HS-C.(U, S, k). k) <ormp (HS-C, (U, 8,k). k)
Once again, an instance of SiMPLE HITTING SET COMPLETION is also an instance of
HrrTinG SET CoMPLETION with no constraints of the third type.

(x) (HITTING SET, len, k) sﬁ%ﬁnp (Hrrting SET CoMPLETION, (U, S, k), k)

We map all the instances of HITTING SET having n = |U| elements and m = |S| sets to a superin-
stance consisting of m sets, each of them a copy of U. Then, the constraints of the third type
let us configure the superinstance, crossing out elements from the sets so that we get the actual
S in the input. Observe that the superinstance can be computed easily by knowing |U| and ||,
the value of k stays the same and this all makes an fpt-comp reduction. As usual, the bounding
function t(len(x), k) is simply generating all the possible superinstances up to size |len(x)|.

(xi) (HS-C, (U, S, k), k) Sgﬂﬁnp (HITTING SET, len, k)
We already saw in Proposition 4.2 how to reduce HITTING SET COMPLETION to HITTING SET, and,
clearly the size of such a reduced instance is at most polynomially larger than the original input
to HiTTING SET COMPLETION, so the parameter dependencies hold.

(xii) (HS-C,(U,S,k)) <bor, (WEIGHTED CNF SAT,)
Consider an input to HITTING SET COMPLETION consisting of an universe U = {us,...,u,}, sets
S ={Sy,...,Su} and constraint sets I, O, A. We build a CNF formula over n + m - n variables, as
follows. First, take n variables xi, . . ., x,, which will encode the hitting set, matching uy, . .., up,.
Then, consider variables y; ;, with i € [m], j € [n], and the clauses

Ci=(u1 V- Vyin)

Co=(y21 V- Vyan)

Cm=Ym1V -V Ymn)
together with clauses of the form
Yij = Xj

written as —y; ; V x;j, for every i € [m], j € [n]. Finally, the weight of the satisfying assignment
should be k + m and the partial assignment will do the following: for every u; € I, map x; — 1;
for every u; € O, map x; + 0, and for every (u;,S;) € A, map y;; +— 0. Everything else is

44

left unassigned. This partial assignment carves the specific instance of HITTING SET into the
formula. The idea is then that a hitting set becomes an assignment to the variables xy,. .., xp,
and additionally, for each clause C; (which corresponds to the set S;), we make true some y; ;
such that x; is made true, meaning that “set S; is hit by u;”.

Indeed, if there is a hitting set of size k, then mapping that into the variables xy, ..., x, plus
choosing some y; ; for every C; makes for a satisfying assignment of weight k + m. On the other
hand, suppose there is no hitting set of size k, but imagine for contradiction that there was a
satisfying assignment of weight k + m. Such an assignment makes true at least one variable y; ;
per clause C;, and there are m of them, so that leaves a budget of at most k for the variables
X1, ..., Xn. Clearly, the assignment to those variables is immediately an hitting set on uy, ..., up,
which means there is a hitting set of size at most k, and thus also exactly of size k. Contradiction.

It is straightforward to check that none of the reductions (i)-(xi) use the extra power of fpt-comp re-
ductions (that is, the parameters do not blow up and the computation can be carried out in polynomial
time), which means that they are all poly-comp reductions as well.]

Remark 4.7 (Why not an fpt-comp reduction?). We shall briefly address the elephant in the room: why
is reduction (xii) a poly-comp reduction and not an fpt-comp reduction like the rest? The reason is
that the weight of the satisfying assignments in the formula is k + m, where m is the number of sets
|S|. The issue is of course that we cannot bound k + m with some computable function f (k) depending
solely on k as the definition of fpt-comp reductions requires. Surprisingly, we could not come up with
an alternative reduction avoiding this issue!

What is more interesting, in all attempts to reduce from some (Q,len, 1) for some W|[2]-
hard (Q,1), we ran into the same issue: the new parameter tended to depend on some-
thing other than just A. The fact that this barrier appears in every attempt to prove
chopped-W|2]-hardness for SimMpLE DOMINATING SET COMPLETION, DOMINATING SET COMPLETION
and SiMpLE HITTING SET COMPLETION suggests that there is some form of structural gap present here
between the usual compilation problems coming from W{[1] and the ones coming from W|2].

We suspect that the solution may be found in the additional properties of fpt-comp reductions.
Observe that, in fact, none of the fpt reductions presented so far used any of the extra power given to
this type of reduction. None of them used the compilation power, none of them produced compilation
of fpt-size that were not also of polynomial size and none of them had a third parameter that blew up.
In other words, all the reductions we encountered so far are also poly-comp reductions! This leads to
the intuition that, in order to show chopped-W[2]-hardness for all of the new completion variants,
some of this extra power must be harnessed.]

At first glance, the web of reductions in Theorem 4.6 might be somewhat overwhelming, but it
neatly gives us our desired complexity classifications. Firstly, in classical terms.

Corollary 4.8. The problems
« (WEIGHTED CNF SAT COMPLETION, ¢)
+ (WEIGHTED MONOTONE CNF SAT COMPLETION, @)
« (Smvpre HrTTING SET COMPLETION, (U, S, k))
o (HitTinG SET COMPLETION, (U, S, k))
« (SiMPLE DOMINATING SET COMPLETION, {G, k))
+ (DOMINATING SET COMPLETION, {G, k))

are all chopped-NP-complete.

45

Proof. Look at the web of reductions on Theorem 4.6. All six of the problems are interreducible under
poly-comp reductions. Then, by reduction (x), (HITTING SET COMPLETION, (U, S, k)) is chopped-NP-
hard, and hence so are all the rest. By reduction (xi), (HrTTiNG SET COMPLETION, (U, S, k)) is in
chopped-NP, and thus so are all the rest. O

For the parameterized case, the results differ a bit, since we cannot prove chopped-W [2]-hardness
except for HITTING SET COMPLETION.

Corollary 4.9. The problems
+ (WEIGHTED CNF SAT COMPLETION, ¢, k)
+ (WEIGHTED MONOTONE CNF SAT COMPLETION, ¢, k)
« (SimpLE HITTING SET COMPLETION, (U, S, k), k)
o (HrtTING SET COMPLETION, (U, S, k), k)
o (S1MPLE DOMINATING SET COMPLETION, {G, k), k)
« (DOMINATING SET COMPLETION, (G, k), k)

are all interreducible under fpt-comp reductions, they are all in chopped-W[2] and they are all
chopped-W|1]-hard. Furthermore, (HITTING SET COMPLETION, (U, S, k)) is chopped-W|[2]-complete.

Proof. Look at the web of reductions on Theorem 4.6. All the problems (with the ex-
ception of HrTTING SET COMPLETION) are interreducible under fpt-comp reductions, and reduc-
tion (i) from WEIGHTED 3SAT CoMPLETION immediately gives chopped-W|[1]-hardness (since we
proved in Theorem 3.2 that WEIGHTED 3SAT CoMPLETION is chopped-W|[1]-complete). For mem-
bership in chopped-W|[2], observe that they all reduce into HitTinG SET COMPLETION, which
in turn reduces into (HITTING SET,len, k) via reduction (xi), giving membership. As for
(HrrTing SET COMPLETION, (U, S, k), k), reduction (x) gives hardness for chopped-W[2]. O

46

Chapter 5

Inference problems for CSP

In Chapter 1 (Section 1.4), we motivated compilability based on different inference problems for propo-
sitional logic. In these problems, one receives as input some large propositional formula together with
a query (another formula, often in some specific format) and is asked for logical entailment between the
two: does every valuation making the first formula true also satisfy the second one? The question was
then whether preprocessing the first formula could be of any use to handle the online queries faster.

We noted that inference problems immediately pointed at a structural gap in classical complex-
ity: the problems TErRM INFERENCE and FORMULA INFERENCE are both coNP-complete yet seem to be
fundamentally different in their structure. While TERM INFERENCE is efficiently compilable (a member
of poly-comp-P), FormuLA INFERENCE is not (unless P = NP). This difference invited us to survey
the CDLS framework and its reductions, preserving compilability dependencies between the different
parts of the instances. Furthermore, we concluded that CLAUSE INFERENCE, which sits naturally in be-
tween the constrained structure of TERM INFERENCE and the generality of FORMULA INFERENCE, is also
unlikely to be compiled efficiently (it is chopped-NP-complete, and hence not in poly-comp-P unless
PH =) —rather disappointing news overall.

It is then only natural to ask how these problems fit in our extension of the parameter compilation
framework. Are they fpt-compilable under some reasonable additional parameterization, hence avoid-
ing their classical uncompilability? Rather interestingly, this happens to be the case! In [Bov+16],
Bova, De Haan, Lodha and Szeider studied several parameterizations for fpt-sized compilations of
CLAUSE INFERENCE, achieving positive results for some treewidth-related measures that cannot, with-
out compilation power, give fpt algorithms!. They even showed that these treewidth-related parame-
terizations perform well in practical implementations.

The motivating question for this chapter is whether those positive parameterizations can be ex-
tended to the realm of CSP. The chapter defines several inference problems for CSP, reminiscent of
TERM INFERENCE, CLAUSE INFERENCE, and FORMULA INFERENCE in propositional logic, and looks at the
possibility of extending the existing positive parameterizations of CLAUSE INFERENCE to this setting.
Since CSP can be seen as a general case of SAT, there is no doubt that these new problems will be
intractable classically speaking. Nevertheless, it might be possible to transfer some of the positive
parameterizations of Bova et al. to these new problems.

Section 5.1 reviews the ideas behind the existing positive results for CLAUSE INFERENCE, focus-
ing on one particular parameterization: incidence treewidth modulo equivalence. Section 5.2 intro-
duces three new inference problems involving CSP (WEak CSP INFERENCE, STRONG CSP INFERENCE
and GENERAL CSP INFERENCE) and suggests the natural analogues of the treewidth parameterizations

IThough technically speaking these results were framed inside the parameterized extension of the CDLS framework defined
by Chen [Che05] prior to the parameter compilation framework, they immediately transfer to our new setting.

47

of Bova et al. for the context of CSP. Section 5.2.1 addresses the intractability of these problems in
terms of classical complexity and classical compilability, while Sections 5.2.2 and 5.2.3 finish by (unfor-
tunately) showing hardness for STRoNG CSP INFERENCE and GENERAL CSP INFERENCE when addition-
ally parameterized by the new treewidth measures.

5.1 Existing positive results for CLAUSE INFERENCE

The central insight of Bova et al. is that treewidth-related measures, which often yield fpt-time algo-
rithms for SAT, can be extended to CLAUSE INFERENCE in a very efficient way with the help of compi-
lation. It is worth noting that these are, to the best of our knowledge, the only existing positive results
for parameterized compilation! We really know very little about what makes for good parameterized
compilation algorithms and, in fact, as we will soon see, the techniques of Bova et al. are not genuinely
new parameterizations, but rather refinements on parameters that already yield efficient fpt algorithms.

Recall that the treewidth of a graph G, denoted tw(G), is a measure of how close G is from being
a tree. The intuition is that many intractable graph-theoretic problems become easy when the input
graph is a tree. Hence, a good strategy to solve these problems is often to compute a tree decomposition
of the graph and solve the problem via dynamic programming on that tree decomposition. This strategy
can be extended to problems that are not graph-theoretic in nature, as long as the instances induce some
good graph representation. This is the case of SAT, where one often works with the so-called incidence
graphs and primal graphs of CNF formulas.

Definition 5.1 (Incidence and primal graphs and treewidths). Let ¢ be a CNF formula consisting of
clauses Cy, ..., C,, over variables x, .. ., xp.

The incidence graph of ¢ is the bipartite graph having as nodes xy, . . ., x, on one side and Cy, ..., Cp,
on the other, such that x; is connected to C; if and only if x; occurs (possibly negated) in C;. We denote
by itw(¢) the incidence treewidth of ¢, which is defined as the treewidth of the incidence graph of ¢.

The primal graph of ¢ is the graph having as nodes xy, ..., x, such that x; is adjacent to x; if and
only if x; and x; occur together (negated or otherwise) in some clause of ¢. We denote by ptw(¢p) the
primal treewidth of ¢, which is defined as the treewidth of the primal graph of ¢.

The following simple relation between incidence treewidth and primal treewidth will prove helpful.
Lemma 5.2 ([Sze03, Lemma 4]). For every CNF formula ¢, itw(¢) < ptw(¢) + 1.

Interestingly, (SAT, itw) is in FPT [Sze03]. And, by the previous lemma, so is (SAT, ptw), since
we can guarantee that there is an fpt-reduction from (SAT, ptw) to (SAT, itw). In fact, the dynamic
programming technique on tree decompositions is so powerful that it extends to CLAUSE INFERENCE!
In particular, (CLAUSE INFERENCE, itw) € FPT [Sze03], meaning that we parameterize by the incidence
treewidth of the main formula, not that of the query.

If these parameterizations already give positive results for CLAUSE INFERENCE, why use compila-
tion? The idea of Bova et al. is that, with the power of compilation, one can use the same dynamic
programming techniques on some really efficient tree decomposition, generally not computable in fpt-
time. In their work, they define up to four different treewidth-related measures, showing positive
results for two of them and negative results for the other two. For our purposes, we focus solely on the
primary treewidth measure providing efficient compilation: incidence treewidth modulo equivalence.

Definition 5.3 (Incidence treewdith modulo equivalence [Bov+16]). Let ¢ be a CNF formula. The
incidence treewidth modulo equivalence of ¢, denoted itw,=(¢), is the minimum incidence treewidth
over all CNF formulas logically equivalent to ¢. That is, taking = to denote logical equivalence,

itw/=(¢) = minitw(y).
y=¢

48

The goal is then to study the complexity of the problem (CLAUSE INFERENCE, ¢, itw /=), meaning
that on input (¢, C) we compile ¢ and the size of the compilation can be of length fpt-bounded by
itw/=(¢). Intuitively, one needs compilation because computing the equivalent formula attaining min-
imal treewidth cannot be done in time fpt-bounded in itw,=(¢). However, it can be done by some
compilation function where the computation can be as expensive as desired!

This actually poses a small technical issue. In our framework (Definition 2.1), we define parameter-
izations to be functions that are fpt-time-computable with respect to themselves. This is precisely so
that one can use as a parameter measures like treewidth, which are expensive to compute in general,
but which can be obtained in fpt-time with respect to themselves. At the same time, letting param-
eterizations be computable instead of just fpt-time-computable with respect to themselves would be
too lose, since, in particular, one would not be able to show that FPT = para-P (since the compilation
function would not work in fpt-time if computing the parameter is very expensive). This all means
that, technically speaking, itw,= is not a legal parameterization in our framework, since it is not fpt-
time-computable with respect to itself.

For the purposes of this chapter, we let this small detail slide. The reasons are two. First, although
it is true that allowing just computable parameterizations would slightly break our framework, itw /=
has the nice property that it can be computed by the compilation function. That is, the parameter
can be computed from the compilable part of the instance, which is reasonable to a certain extent.
Furthermore, the negative results we will later show, which do use our framework, are for the usual
treewidth (without modulo equivalence), which is fpt-computable, so it does not pose that big of a
problem overall.

Applied to CLAUSE INFERENCE, the idea is then that on input (¢, C), where the question is whether
¢ | C, we can use the compilation phase to obtain the equivalent formula ¢y = ¢ attaining minimal
treewidth and then execute the usual dynamic programming procedure to decide whether ¢ |= C, with
the online phase running in fpt-time parameterized by itw,=(¢). This is summarized in the following
theorem, corresponding to Proposition 3, Corollary 1 and Theorem 1 of [Bov+16], which we rephrase
in terms of our framework.

Theorem 5.4 (Bova et al. [Bov+16]). The parameterized problem (CLAUSE INFERENCE, itw,=) ¢ FPT
unless P = NP. However, (CLAUSE INFERENCE, ¢, itw/=) € fpt-comp-FPT.

Further work shows that one can apply this technique to a simpler notion of treewidth, called inci-
dence treewidth modulo backbones, for which the same positive compilation applies. The main difference
is that this alternative parameter can be more easily measured in practice and is smaller than incidence
treewidth modulo equivalence. In fact, practical implementations using this parameterization perform
surprisingly well, as exhibited by the experimental results of Bova et al. themselves.

Observe that the idea behind incidence treewidth modulo equivalence also makes sense in the con-
text of CSP since the notions of incidence graph and primal graph can be defined analogously. Like in
Definition 5.1, we can consider the incidence treewidth of a CSP instance I, itw(I), to be the treewidth
of its incidence graph, which is the bipartite graph having variables on one side and constraints on
the other, such that a variable and a constraint are connected if the variable occurs in that constraint.
Similarly, the primal treewidth of a CSP instance I, ptw(I), can be defined as the treewidth of the primal
graph of I, which is the graph having as nodes the variables in I such that two variables are connected
if and only if they appear together in some constraint.

Unfortunately, treewidth measures do not yield efficient fpt-algorithms for CSP, or at least not
unconditionally. As we discussed in Section 3.2.3, an instance I of CSP can be solved in fpt-time, as-
suming that the domain size is bounded. That is, the problem (CSP|p|<4, ptw) is in FPT for every
fixed d € N, meaning that we consider the domain size to be bounded in advance. However, as part
of that discussion, we already saw that the additional power of compilation does not prove helpful in
avoiding the need to bound the domain size. Recall from Corollary 3.11 that (CSP COMPLETION, I, ptw)

49

is chopped-W[1]-hard and hence not in fpt-comp-FPT unless W[1] C FPT/fpt. The next section ex-
tends this hardness result to different inference problems for CSP, where we showcase that the hardness
pointed at in Corollary 3.11 extends to two of those inference problems as well.

5.2 Inference problems for CSP

We start by defining three inference problems involving CSP instances. Like in propositional logic, we
use the symbol |= to indicate semantic entailment: every assignment satisfying the left-hand side must
also satisfy the right-hand side.

Recall that we looked at three different problems in propositional logic: TERM INFERENCE,
CrAUSE INFERENCE, and FORMULA INFERENCE. For TERM INFERENCE, the translation into CSP is im-
mediate.

WEAK CSP INFERENCE

Instance A CSP instance I and a partial assignment «, written as a constraint con-
sisting of a single tuple in its relation space.

Question DoesI | a?

If entailing a partial assignment is the CSP equivalent of entailing a conjunction of literals, then the
following more general form of inference is in some sense analogous to CLAUSE INFERENCE.

STRONG CSP INFERENCE

Instance A CSP instance I and an additional constraint C, defined over the same
variables and domain as I.

Question DoesI = C?

Finally, one may think that following this pattern the CSP analogue for FORMULA INFERENCE
is the problem of deciding whether one CSP instance entails another. However, this turns out
to be not a very interesting problem since it can be reduced to solving multiple instances of
STRONG CSP INFERENCE, one per constraint in the second CSP instance. This is analogous to how the
problem of whether a Boolean formula entails another CNF formula can be decomposed into multiple
queries to CLAUSE INFERENCE. Instead, we need to introduce some form of disjunction that can achieve
greater expressive power. For convenience, given two CSP instances I and J defined over the same
variables and domain, we say that a partial assignment « satisfies I v J if it satisfies all the constraints
in I or all the constraints in J (or both).

GENERAL CSP INFERENCE

Instance CSP instances I, J;, ..., J,, defined over the same variables and domain.

Question DoesIfEJ;jV---V J,?

We can now define some suitable parameterizations to study these problems’ parameterized com-
plexity and compilability. We denote by (WEAK CSP INFERENCE, itw) the parameterized problem
where we do not have compilation power, and the running time can be fpt-bounded by itw, while
(WEAK CSP INFERENCE, [, itw) is the problem WEak CSP INFERENCE where we compile the instance I
on the left-hand side and the size of this compilation can be of fpt-size in ptw(I). Similarly, we extend
this notation to the other two inference problems.

We will be interested in a four-step analysis for each of the three previous problems (following the
flowchart in Figure 1.1). For example, for STRONG CSP INFERENCE, we shall ask:

50

1. What is the classical complexity of STRONG CSP INFERENCE?

2. What is the parameterized complexity of (STRONG CSP INFERENCE, itw)?

3. What is the classical compilability complexity of (STRoNG CSP INFERENCE, [)?

4. What is the parameterized compilability complexity of (STRONG CSP INFERENCE, I, itw)?

The first question can be quickly answered already: all three new problems are precisely as hard
under the lens of classical structural complexity.

Proposition 5.5. The problems WEAK, STRONG and GENERAL CSP INFERENCE are all coNP-complete.

Proof. Membership in coNP is immediate. For hardness, see that

CriQuE <, WEAK CSP INFERENCE
<p STRONG CSP INFERENCE

<p GENERAL CSP INFERENCE

and recall that CLIQUE is coNP-complete, by virtue of CLIQUE being NP-complete. Recall the usual
reduction from CLIQUE to CSP (as described, for example, in Theorem 3.6.iv), and add an empty con-
straint (an empty assignment) to complete the instance of the CSP inference problem. Indeed, the
graph does not have a k-clique if and only if the CSP instance entails the empty constraint. For
the other two problems, observe that an instance of WEAk CSP INFERENCE is already an instance
of STRONG CSP INFERENCE, and similarly, an instance of STRONG CSP INFERENCE is an instance of
GENERAL CSP INFERENCE. O

The previous hardness results are, of course, totally expected. It is then only natural to ask, analo-
gous to Bova et al., whether adding treewidth as a parameter can make things easier. Unfortunately, it
does not look like it —at least not without compilation power.

Proposition 5.6. The problems WEAK, STRONG and GENERAL CSP INFERENCE are all coW [1]-hard for
all four of the following parameterizations:

« incidence treewidth (itw);

« primal treewidth (ptw);

» incidence treewidth modulo equivalence (itw =);
« primal treewidth modulo equivalence (ptw=).

Proof. The proof is identical to the previous one showing coNP-hardness. It suffices to show that
(CLIQUE, k), which is coW[1]-complete, reduces to (WEAK CSP INFERENCE, ptw). Observe that the
primal graph of the CSP instance is just the complete graph of size k, so the primal treewidth is k — 1,
ensuring that the new parameter is bounded by the old one.

For hardness under the other three parameterizations, it suffices to note that for every CSP instance
Litw(I) < ptw(I)+1 (from Lemma 5.2), and obviously itw,=(I) < itw(I) and ptw,=(I) < ptw(I), which
gives coW[1]-hardness in all cases.

For the other two problems, we use again the fact that they are of ascending complexity. That is,

(WEAK CSP INFERENCE, ptw) <g,; (STRONG CSP INFERENCE, ptw)
<fpt (GENERAL CSP INFERENCE, ptw).

51

Fortunately, the one positive preliminary observation we can make is that WEAK CSP INFERENCE
is easy to compile, just as it happened for TERM INFERENCE.

Proposition 5.7. (WEAK CSP INFERENCE, I) € poly-comp-P.

Proof. The compilation uses the same technique as for TERM INFERENCE. Given a CSP instance I, list all
the satisfying assignments and check whether all of them send some variable always to the same value.
Store all such variables together with the values they are assigned to in the output of the compilation.
Now, when given a particular partial assignment, it suffices to check whether it matches part of the
one we compiled.]

The following sections continue the analysis of STRoNG CSP INFERENCE and
GENERAL CSP INFERENCE, which, rather naturally, turn out to be hard to compile. We shall show that
the two problems are hard to compile even if we allow the compilation to be parameterized by primal
treewidth. This implies that parameterized by primal or incidence treewidth modulo equivalence, like
for CLAUSE INFERENCE, cannot help since those measures are smaller than primal treewidth.

5.2.1 Classical compilability for STRONG and GENERAL CSP INFERENCE

Our next task is to study the problems (STRONG CSP INFERENCE, I) and (GENERAL CSP INFERENCE, I),
where we are allowed to compile the left-hand side of the instance. Naturally, since these problems can
be conceptualized as a general version of CLAUSE INFERENCE and FORMULA INFERENCE, it comes as no
surprise that they are not compilable.

We now show directly how these problems are indeed hard for classical compilation. First, we need
a simple technical lemma.

Lemma 5.8. Let ¢ be a Boolean formula, let C be a clause and let C' be the clause C after removing all
literals of variables not occurring in ¢. Then, ¢ |= C if and only if ¢ |= C'.

Proof. The backwards direction is immediate: if ¢ |= C’, then it must also entail C since C can only be
at most a larger clause.

For the forward direction, suppose for contradiction that there is a variable y occuring in C as literal
£, but not in ¢, such that C = Cy V ¢,. Now, suppose for contradiction that ¢ = C but ¢ [£ Co. Then,
there is a valuation & such that @ | ¢ but « ¢ Cy. This means that & | £,. But now consider the
valuation «’ that switches the value assigned to y. Since y does not occur in ¢, ¢’ | ¢, and since
¢ | C, it is also the case that &’ |= C. However, a’ [£ £,, so it must be that o’ |= Cy. But then a | ;.
Contradiction. O

Theorem 5.9. The following two poly-comp reductions hold:

(i) (CLAUSE INFERENCE, @) nggp (STRONG CSP INFERENCE, I);

(ii) (CLIQUE, €) sﬁ’;’fgp (GENERAL CSP INFERENCE,).
Proof.

(i) Given an instance (¢,C) of CLAUSE INFERENCE over variables xi,...,x,, we do the following:
convert ¢ to an equisatisfiable 3CNF formula in the usual way. It is easy to see that ¢ |= C if and
only if the translation entails the same clause. Now, convert the 3CNF encoding of ¢ into a CSP
instance in the usual way (include one constraint per clause). On top of this, we will add a new
variable x, and we will extend the domain of the CSP instance with the set of all possible literals,
{x1, ..., Xn, 9X1, . o, " Xn }.

52

This new variable x, will be interpreted with the literal that is made true in the entailed clause.
Hence, we need to add the following constraints:

(xex1) € {(x1,1), (=x1,0)} U {(x;,0), (=x,b) | £ # 1, b € {0,1}}
(xe, x2) € {(x2, 1), (=x2,0)} U {(xs,b), (=, b) | £ # 2,b € {0,1}}

(x6, %n) € {(xn, 1), (=%, 0)} U { (x4, D), (=x;,b) | i # n, b € {0,1}}
Now, if the clause being checkedis C = ¢ V - - V £,, we can add as the entailed constraint
Xr € {[1,...,[,”}

which completes the reduction. This is indeed a poly-comp reduction since the new CSP instance
can be obtained directly from the formula ¢. The only problem would be that C contained vari-
ables that did not appear in @, but these variables can be easily erased, as justified by the previous
lemma (Lemma 5.8).

(if) We give a reduction from the complement of CLiQUE. The idea is first to transform an instance
(G = (V,E), k) of CLIQUE into a CSP instance I in the usual way (like in Theorem 3.6.iv). Recall
that each constraint in I, will be of the form ((x;, x;), E). For each such constraint C, take its
complement, ((x;, x;), E). Then, consider the GENERAL CSP INFERENCE instance consisting of the
trivial CSP instance on the left-hand side, made true by every assignment, and the disjunction of
all the complements of each constraint in I5 on the other. The graph will not have a k-clique
if and only if the trivial CPS entails that one of the constraints is always violated. Observe that
the compilable part of the new instance is just some trivial CSP that is always true, so it can be
obtained from €, making this a correct poly-comp reduction.

O

Remark 5.10. It is interesting to note that instead of reducing (CLAUSE INFERENCE, ¢) into
(STrONG CSP INFERENCE, I), we could have also reduced directly from SAT CoMPLETION instead and
get the same hardness result. This is because, given an input (¢, @) to SAT COMPLETION, if we write
as a conjunction of literals, then (¢, @) ¢ SAT CompLETION if and only if ¢ | —a, since -« can be im-
mediately rewritten as a clause. Then, the idea is the same as in the reduction from CLAUSE INFERENCE:
introduce an extra variable that takes the value of the literal in the “assignment” clause that is made
false. [

The following corollary immediately follows.
Corollary 5.11.

(i) (STRONG CSP INFERENCE, I) is chopped-coNP-complete and hence not in poly-comp-P unless
PH=13};

(ii) (GENERAL CSP INFERENCE, I) is poly-comp-coNP-complete and hence not in poly-comp-P unless

P = NP.

Remark 5.12. Note that we can get a weaker lower bound for GENERAL CSP INFERENCE simply by the

fact that (STRONG CSP INFERENCE, I) sES}XP (GENERAL CSP INFERENCE,), just by seeing the extra con-
straint as a full CSP instance. However, this would only entail that (GENERAL CSP INFERENCE, [) ¢
poly-comp-P unless PH collapses at the second level, which may not imply P = NP.]

53

5.2.2 Parameterized compilability for STRONG CSP INFERENCE

At this point, we ruled out three possible routes towards the tractability of STRONG CSP INFERENCE:
the problem is coNP-complete (Proposition 5.5), compiling the left-hand side cannot help unless PH
collapses (Corollary 5.11) and the standard treewidth measures do not seem to yield fpt-time algorithms
(Proposition 5.6).

We now combine the parameterized complexity and compilation approaches, considering the prob-
lem (STRONG CSP INFERENCE, [, ptw), where we compile the CSP instance, and the compilation can be
of size fpt-bounded by its primal treewidth. Recall that this approach worked for CLAUSE INFERENCE.
Unfortunately, the following reduction showcases that the same approach is likely to fail for CSP.

Theorem 5.13. (CLIQUE, len, k) Sg’);qp (STrRONG CSP INFERENCE, I, ptw).

Proof. Observe that the existing reduction from CLAUSE INFERENCE used in Theorem 5.9.i does not
work anymore, since (CLAUSE INFERENCE, ptw) € FPT [Sze03], so it does not entail chopped-coW|[1]-
hardness.

The proof uses instead the reduction we already described in Theorem 3.10 showing that

(CLIQUE, len, k) Sgﬁnp (CSP CoMPLETION, I, ptw)

by taking complements. That is, the existing reduction also shows that

(CLIQUE, len, k) S?f,tmp (CSP COMPLETION, [, ptw)

so it would suffice to show that that
(CSP CoMPLETION, I, ptw) Sﬁginp (STRONG CSP INFERENCE, I, ptw).

Let (I, @) be an input of CSP CoMPLETION. We want to encode that “every complete assignment
satisfying I disagrees with « at some point”. The idea is to use an auxiliary variable x,, such that under
some complete assignment f satisfying I, x, is interpreted by a pair (x,v), such that f(x) = v # a(x),
hence pointing at a variable on which « and f disagree.

We now describe this reduction in more detail. Given the CSP instance I = (X, D, C), we define
a new instance I’ = (X', D’,C’) as follows. We add an extra variable, such that X’ := X U {x,} and
we expand the domain with all pairs of old variables and values: D’ := D U (X X D). Now, assuming
X ={x1,...,x,}, we add the following constraints:

(x> x1) € {((x1,0),0) | v € D} U {((x4,0),0") | i # 1,0,0" € D}

(x> %) € {((xp,0),0) | v € D} U {((x3,0),0") | i # n,0,0" € D}

and the entailed constraint
Xq € {(x,0) | x € dom(a),v € D\ {a(x)}}.

See that (I, @) ¢ CSP CompPLETION if and only if I’ entails the extra constraint, so the reduction works.
It now suffices to argue that this is indeed an fpt-comp reduction. Indeed, the reduction is com-
putable in polynomial time, and the new CSP instance I’ can be directly obtained from the old I.
As for the primal treewidth, suppose I has primal treewidth k for some optimal tree decomposition
T. It suffices to add x,, to every bag of T to get a tree decomposition of the new instance, ensuring that
the new treewidth is at most k + 1, so it qualifies as an fpt-comp reduction. O

54

Hardness follows immediately.
Corollary 5.14. (STRONG CSP INFERENCE, I, ptw) is chopped-coW|[1]-hard.

Of course, the general methodology theorem then implies that if the problem is in fpt-comp-FPT,
then coW[1] C FPT/fpt. But since FPT/fpt is closed under complementation, we still get the usual
conditional lower bound: (STRONG CSP INFERENCE, I, ptw) ¢ fpt-comp-FPT unless W[1] C FPT/fpt.

The same comment as at the end of Section 3.2.3 applies here. We cannot show membership in
chopped-coW|[1] because we do not know whether (STRONG CSP INFERENCE, ptw) is itself a member
of coW[1], which eventually boils down to the problem of whether (CSP, ptw) is in W[1].

5.2.3 Parameterized compilability for GENERAL CSP INFERENCE

The reader must have noticed that our previous hardness result (Corollary 5.14) immediately implies
that (GENERAL CSP INFERENCE, [, ptw) is not in fpt-comp-FPT unless W[1] € FPT/fpt, simply be-
cause instances of STRONG CSP INFERENCE are also instances of GENERAL CSP INFERENCE, so hardness
is transferred. However, the problem GENERAL CSP INFERENCE is so general that having an efficient
fpt-compilation would have even greater consequences than for STRoNG CSP INFERENCE. This is anal-
ogous to how we can easily show that FORMULA INFERENCE is not in poly-comp-P unless P = NP, while
for CLAUSE INFERENCE we can only show the collapse of the polynomial hierarchy to the second level.

We can prove that GENERAL CSP INFERENCE is hard for fpt-comp-coW[1], reusing a reduction we
already presented. Recall that in light of Proposition 2.31 this is the same as showing simple-coW[1]-
hardness since fpt-comp-C = simple-C for every C.

Theorem 5.15. (CLIQUE, €, k) s?;tmp (GENERAL CSP INFERENCE, [, ptw).

Proof. Since we have nothing to compile, we will be mapping an instance (G, k) of CLIQUE to a sequence
of CSP instances Ji, ..., Jm in such a way that there is no k-clique if and only if T E 1 V- -+ V J.
Consider the graph (G, k) and take the usual CSP encoding. For each constraint, consider the same
constraint where the relation is its complement. The instances Ji, ..., Ji, are instances consisting of
individual relations. This is essentially the same reduction that we presented in Theorem 5.9.ii. Observe
that the reduction works and that it can be obtained in polynomial time. As for the primal treewidth,
note that the left-hand side of the instance is a trivially true CSP, and so its treewdith is constant, so
trivially bounded by k, as desired. O

Corollary 5.16. (GENERAL CSP INFERENCE, I, ptw) is fpt-comp-coW [1]-hard.

Therefore, if (GENERAL CSP INFERENCE, I, ptw) € fpt-comp-FPT, we get that coW|[1] C FPT, and
since FPT is closed under complementation, W[1] € FPT. This in turn entails that the Exponential
Time Hypothesis (ETH) fails, a stronger claim that the inclusion W[1] € FPT/fpt derived in previous
sections.

55

Chapter 6

Conclusion

We began this work wondering about what compilation looks like beyond polynomial size. We were
interested in whether combining compilability with parameterized tractability could become a pow-
erful tool for efficient precomputation. Although the approach seemed to work for a problem like
SAT CoMPLETION, we suspected the general case of CSP ComMPLETION was more difficult.

Our goal was to develop a hardness theory extending Chen’s parameter compilation framework
that could let us classify computational problems in terms of the complexity of their parameterized
compilability. This framework, presented in Chapter 2, studies doubly parameterized problems, ex-
tends the framework of parameterized complexity, and classifies problems around our newly defined
fpt-comp-C (Definition 2.5) and chopped-C (Definition 2.22) classes, proving hardness results with the
aid of fpt-comp reductions (Definition 2.13).

Our work not only developed the theoretical framework to establish hardness results for param-
eterized compilability but also applied it to specific problems. Chapter 3 and Chapter 4 both applied
our framework to different doubly parameterized problems coming from canonical problems from the
parameterized classes W[1] and W[2].

In Chapter 3 we looked at the problems WEIGHTED ¢q-SAT ComPLETION, CSP COMPLETION and
CL1QUE CoMPLETION. In all three cases, we concluded that while classical compilability cannot help,
parameterized compilability cannot do much either. In particular, we addressed the opening questions
of the thesis, regarding the difference between SAT CompLETION and CSP CompLETION. While the for-
mer is fpt-compilable when parameterized by the number of variables left unassigned by the partial
assignment, the same parameterization does not work for CSP CompLETION unless W[1] € FPT/fpt
(Theorem 3.9).

In Chapter 4 we applied the framework to problems in the class W[2]. We defined com-
pletion variants for the problems HITTING SET and DOMINATING SET and studied their compil-
ability. We concluded that the new SimpLE HITTING SET COMPLETION, HITTING SET COMPLETION,
S1MPLE DOMINATING SET COMPLETION and DOMINATING SET COMPLETION all remain W|2]-complete
when parameterized by the size of the hitting sets and dominating sets, respectively (Proposition 4.2
and Proposition 4.5) and that they are all chopped-NP-complete when compiling the main part of the
instance but not the side constraints (Corollary 4.8). For parameterized compilability, we were able to
show some hardness results in the form of chopped-W|[1]-hardness for these problems, and we were
able to show chopped-W|[2]-completeness for HITTING SET COMPLETION. We come back to this in the
discussion about future work.

Finally, Chapter 5 studied the power of treewidth for compilation of CSP instances in the context of
inference problems, where traditionally compilability has been well studied. Unlike for propositional
logic, unfortunately, these treewidth measures do not give positive compilability results (unless W[1] C
FPT/fpt or FPT = W[1], depending on the problem), as shown in Corollaries 5.14 and 5.16.

56

Tables 6.1, 6.2 and 6.3 below summarize all our complexity results for all of the problems covered
through this thesis. Note that some of the classifications are from the literature but have been never-
theless included for the sake of a more complete picture of what the complexity map looks like. See
the theorems in question for the appropriate references to the literature.

Future work

We believe the existing framework can be used to further study the power of parameterized compilabil-
ity. Beyond the application of this framework to higher and higher complexity classes, our summary
table points to two aspects in which our work is incomplete. Firstly, on the full power of the reduc-
tions employed. Secondly, on the lack of positive results. We believe further research in parameterized
compilability must tackle these issues sooner or later.

The power of fpt-comp reductions

We already noted in Remark 4.7 that essentially all of our fpt-comp reductions are also poly-comp
reductions, in the sense that we do not use any of the additional power available to us. In fact, we do
not use the additional compilation power even when they are poly-comp reductions.

Recall that fpt-comp reductions are more potent than polynomial-time reductions in that (i) the
reduction can be carried out in fpt-time, (ii) although the parameter dependencies must be preserved,
the new parameter can grow faster than polynomial, and (iii) the reduction can perform some expensive
computation on the compilable part of the input. However, we did not use any of these features.

We do not think these features should be removed from fpt-comp reductions, though. We believe
that our minds are just too used to thinking in terms of polynomial-time reductions that harnessing this
extra power is counterintuitive. However, as we discussed in the context of HITTING SET COMPLETION
and DOMINATING SET COMPLETION in Theorem 4.6, it seems like using this extra power is key to obtain-
ing reductions showing hardness results for problems beyond W[1]. At the time of writing, it remains
an open problem to show that (DOMINATING SET COMPLETION, (G, k), k) is chopped-W [2]-hard.

Positive results

Our focus on this thesis was to provide a hardness theory for parameterized compilability. It comes
as no surprise that if all you have is a hammer, everything looks like a nail. Indeed, due to scope and
time constraints, we could not focus on new parameterizations for positive results; instead, all of our
theorems are negative in that they show conditional hardness for the problems under inspection.

We can make a couple of remarks. First, finding positive results seems like an arduous task. As we
discussed in Chapter 1, parameterized compilability can be seen as a last resort against intractability
once other approaches have failed. In this sense, it is rare that after having a problem that is hard in clas-
sical terms, in terms of classical compilability and in terms of parameterized complexity, the problem
suddenly becomes tractable for some simple parameterization. In fact, the only positive parameterized
compilability results we are aware of are the ones by Bova et al. [Bov+16] for CLAUSE INFERENCE dis-
cussed in Section 5.1, and one could argue these are not genuinely “new” results. After all, they are
variations on existing parameterization that already yield fpt algorithms. Surely, they can perform well
in practice, but it does not seem like the full power of compilability is being exploited here.

Secondly, note that parameterizations that are “bad” in parameterized complexity tend to remain
“bad” in parameterized compilability. In all of the completion variants we defined from W[1]-complete
and W[2]-complete problems, we reused the existing parameters for which parameterized hardness
holds. In all cases, the extra power of compilation seems useless, suggesting that positive parameteri-
zations must look beyond the obvious.

57

‘¥ 191dey) WoIJ s)[NSar Jo Areuruung :z'9 JqeL,

(6’7 Are[o10)) (8% Arefjo1o)) . (5% uonytsodoiy)
prey-[1] m-paddorp A 9191dwros-gN-paddorp (10} aordwod-[z] m A NOILITANO LS ONILVNINOQ
(6’7 Are[o1o)) (8% Arefjo1o)) . (5% uorytsodoiy)
pre-[1] m-paddop b} s101dwoo-gN-poddogp (§D) S1o1dwoo-[2] A ¥ NOILLATdNO)) LIS DNILYNINO(ATdNIG
(6’7 Arer[o10)) (8% Arefjo1o)) . (z'y uonytsodoiy)
939rdwoa-[z] m-paddoypo A 9391dwros-gN-paddorp r's'm aordwod-[z] m A NOILITANOD L3S ONILLIH
(6’7 Arer[o10D) (8% Arefjo1o)) . (z'% uorysodoiy)
prey-[1] m-paddotp A 9191dwros-gN-paddoro Gr's'm aordwod-[z] m " NOILITAWOD L3S ONILLIH HTINIS
(6’7 Arer[o10D) (8% Arefjo1o)) e :)
prey-[1] m-paddoyp A 9391dwros-gN-paddoyp ¢ awpduwod-[z] m A J-LVS-ANO-INOLONON-M
(6’7 Are[o10D) (8% Arejo1o))
prey-[1] m-paddotp b} s10(dwoo-gN-poddogp 1) aardwod-[z] M ¥ NOILLITINOY)) IVS IND TILHOITA
A11xapdwio) Ad239wnavd DUIXT A11xapdwio) 14vd 31qvjiduio) Ap1xapdwio) A219UDID] waTqox
Aqenidurods pazirajourereg Anqeprdurod resrsse[) Axapduros pazrrsjowrere 1901d

‘¢ 191dey) woIg synsar Jo Arewruung :1°9 3[qeL

(¢1°¢ wa109Y) . (z1°¢ vonyisodoiy)
syorduton-[1] m-poddogo ¥ 93a1dwod-gN-paddorp (D) srorduwmoo-[1] m ¥ NOILLETIWOD) A0IT)
(11°¢ A1e[[010D) md (¢'2°¢ uonag) md
prey-[1] m-paddoyo prey-[1]m
(6'¢ wo109Y) n 9191dwos-gN-paddoyo I (9°¢ wa109YT) n NOLLATIWOD) JSD
9191dwoo-[1] m-paddoyp aordwod-[1] M
(¢'¢ wa109Y]) o . e)
syo1dwoo-[1] m-paddorp ¥ a1a1dwos-gN-paddorp [aordwod-[1] M ¥ D-LVS-b-INOLONOWILNY-M
(z'¢ wax09Yy]J) (1°¢ uonrsodoiy) g
s101dwios-[1 | m-poddoyo y 919rdwod-gN-paddoyp b s10dwoo-[1] b} NOLLATIWO)) IVS-b QALHODIT A
Anxapduio) A219wpdvd vAIXT Anxapduio) 14vd a1qvpiduio) Anxapduio) A21UDID woTqon
Aqertdurod pazrisjouwrere Aqeqidurod pesrsse) Ayixordurod pazrrajourered 1991d

58

(91°6 Are[[0I10D)

‘¢ 191dey) WoIj s3NsaI Jo Arewruung :

(11°6 Areqio10))

€9 99EL

(9°¢ uongrsodo1)

prey-[1] mpoo-durod-3dy ad 9391dwoo-g Nod-dwod-£jod I prey-[1] oo ad HONTUHIN] SO TVHANED
b monpoddom M| spduos g poddorp P |Gl o ago owowss
- | et e | s
i) Bw_mﬁmu.wﬂwwﬂmavﬁ-ﬁom ¢ B - IONTITIN] VINWIO]
WQWMHMMM,MW =y wzam_ww-wmmw.ﬁ%%ﬁ_oﬁ Y Idd mid AONTITIN] 4SAVT))
)) M%:W%MMMM Y 1dd myd FONTITIN] WHA],
Anxajdwo) L2192 vAvd DUXT Anxajdwo) 14vd a1qvj1dwo) Anxajdwio) A219WDIDJ

Anqerrduros pazirsjowrere

Aynqeqrduros pesrsser)

Axapduros pazriajourereJ

w[qoxd

59

Bibliography

[ADF95]

[AB09]

[BC19]

[BHMO09]

[Bov+16]

[CDS96]
[Cad+97]
[Cad+99]
[Cad+02]

[Che05]
[Che15]

[Che+21]
[Cyg+15]
[DF13]
[FG06]

[FGO3]

Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. “Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE analogues”. In:
Annals of pure and applied logic 73.3 (1995), pp. 235-276.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

Christoph Berkholz and Hubie Chen. “Compiling existential positive queries to bounded-
variable fragments”. In: Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems. 2019, pp. 353-364.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability. Vol. 185. I0S
press, 2009.

Simone Bova et al. Positive and Negative Results for Parameterized Compilability. Tech. rep.
AC-TR-16-003. Algorithms and Complexity Group, TU Wien, 2016. URL: http://www.ac.
tuwien.ac.at/files/tr/ac-tr-16-003.pdf.

Marco Cadoli, Francesco M. Donini, and Marco Schaerf. “Is intractability of nonmonotonic
reasoning a real drawback?” In: Artificial intelligence 88.1-2 (1996), pp. 215-251.

Marco Cadoli et al. “On compact representations of propositional circumscription”. In: The-
oretical Computer Science 182.1-2 (1997), pp. 183-202.

Marco Cadoli et al. “The size of a revised knowledge base”. In: Artificial Intelligence 115.1
(1999), pp. 25-64.

Marco Cadoli et al. “Preprocessing of Intractable Problems”. In: Information and computa-
tion 176.2 (2002), pp. 89-120. 1SsN: 0890-5401.

Hubie Chen. “Parameterized compilability”. In: IJCAI'05. 2005, pp. 412-417.

Hubie Chen. “Parameter Compilation”. In: 10th International Symposium on Parameterized
and Exact Computation. 2015, p. 127.

Hubie Chen et al. “Semantic width and the fixed-parameter tractability of constraint satis-
faction problems”. In: Proceedings of the Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence. 2021, pp. 1726—-1733.

Marek Cygan et al. Parameterized Algorithms. Springer, 2015.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer Berlin Heidelberg, 2006.
ISBN: 9783540299530.

Jorg Flum and Martin Grohe. “Describing parameterized complexity classes”. In: Informa-
tion and Computation 187.2 (2003), pp. 291-319.

60

http://www.ac.tuwien.ac.at/files/tr/ac-tr-16-003.pdf
http://www.ac.tuwien.ac.at/files/tr/ac-tr-16-003.pdf

[Gog+95]
[GSS02]
[GNRO08]

[Haa19]
[TPO1]

[IPZ01]

[KL8O]

[Kne+06]
[Mar07]

[Nie06]
[Pap94]

[SK96]
[Sze03]

[Yap83]

Goran Gogic et al. “The comparative linguistics of knowledge representation”. In: IJCAI (1).
1995, pp. 862-869.

Georg Gottlob, Francesco Scarcello, and Martha Sideri. “Fixed-parameter complexity in Al
and nonmonotonic reasoning”. In: Artificial Intelligence 138.1-2 (2002), pp. 55-86.

Jiong Guo, Rolf Niedermeier, and Daniel Raible. “Improved algorithms and complexity re-
sults for power domination in graphs”. In: Algorithmica 52.2 (2008), pp. 177-202.

Ronald de Haan. Parameterized Complexity in the Polynomial Hierarchy. Springer, 2019.

Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-SAT”. In: Journal of
Computer and System Sciences 62.2 (2001), pp. 367-375.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which problems have strongly
exponential complexity?” In: Journal of Computer and System Sciences 63.4 (2001), pp. 512—
530.

Richard M. Karp and Richard J. Lipton. “Some connections between nonuniform and uni-
form complexity classes”. In: Proceedings of the twelfth annual ACM symposium on Theory
of computing. 1980, pp. 302-309.

Joachim Kneis et al. “Parameterized power domination complexity”. In: Information Pro-
cessing Letters 98.4 (2006), pp. 145-149.

Déniel Marx. “Can you beat treewidth?” In: 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’07). IEEE. 2007, pp. 169-179.

Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press, 2006.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 1sBN:
0201530821.

Bart Selman and Henry Kautz. “Knowledge compilation and theory approximation”. In:
Journal of the ACM (FJACM) 43.2 (1996), pp. 193-224.

Stefan Szeider. “On fixed-parameter tractable parameterizations of SAT”. In: International
Conference on Theory and Applications of Satisfiability Testing. Springer. 2003, pp. 188-202.

Chee K. Yap. “Some consequences of non-uniform conditions on uniform classes”. In: The-
oretical computer science 26.3 (1983), pp. 287-300.

61

Compendium of problems

Satisfiability and CSP

WEIGHTED ¢-SAT

Instance A g-CNF formula ¢ and a natural number k.

Question Is there a satisfying assignment that only sets k variables to true?

WEIGHTED q-SAT COMPLETION

Instance A ¢-CNF formula ¢, a partial assignment « and a natural number k.

Question Is there a satisfying assignment extending « that only sets k more vari-
ables to true?

WEIGHTED ANTIMONOTONE g-SAT

Instance An antimontone g-CNF formula ¢ and a natural number k.

Question Is there a satisfying assignment that only sets k variables to true?

WEIGHTED ANTIMONOTONE q-SAT COMPLETION

Instance An antimonotone ¢g-CNF formula ¢, a partial assignment « and k € N.

Question Is there a satisfying assignment extending « that only sets k more vari-
ables to true?

WEIGHTED CNF SAT

Instance A CNF formula ¢ and a natural number k.

Question Is there a satisfying assignment that only sets k variables to true?

WEIGHTED CNF SAT COMPLETION

Instance A CNF formula ¢, a partial assignment « and a natural number k.

Question Is there a satisfying assignment extending « that only sets k more vari-
ables to true?

WEIGHTED MONOTONE CNF SAT

Instance A montone CNF formula ¢ and a natural number k.

Question Is there a satisfying assignment that only sets k variables to true?

62

WEIGHTED MONOTONE CNF SAT COMPLETION

Instance A monotone CNF formula ¢, a partial assignment « and a number k € N.
Question Is there a satisfying assignment extending « that only sets k more vari-
ables to true?

CSp
Instance An instance I = (X, D, C) to CSP.
Question Is there satisfying assignment for I?

CSP COMPLETION

Instance An instance I = (X, D, C) to CSP and a partial assignment a : X — D.
Question Is there an extension of « into a complete satisfying assignment for I?

Inference problems

TERM INFERENCE

Instance A propositional formula ¢ andaterm T =6 A -+ A &.
Question Does ¢ | T?
CLAUSE INFERENCE
Instance A propositional formula ¢ and a clause C =6, V -+ V {.
Question Does ¢ | C?
FOorRMULA INFERENCE
Instance Two propositional formulas ¢ and ¢.
Question Does ¢ | ¢?
WEAK CSP INFERENCE
Instance A CSP instance I and a partial assignment «, written as a constraint con-
sisting of a single tuple in its relation space.
Question DoesI | a?
STRONG CSP INFERENCE
Instance A CSP instance I and an additional constraint C, defined over the same
variables and domain as I.
Question DoesI = C?
GENERAL CSP INFERENCE
Instance CSP instances I, Ji,. .., J;, defined over the same variables and domain.
Question DoesIfEJiV---V J,;?

63

Graph problems and hitting sets

CLIQUE
Instance An undirected graph G = (V,E) and a value k € N.
Question Is there a k-clique in G?
CL1QUE COMPLETION
Instance An undirected graph G = (V, E), two subsets I, O C V and a value k € N.
Question Is there a (k + |I])-clique in G containing all the vertices in I and none of
the ones in O?
HITTING SET
Instance A universe U = {uy,...,u,},asetof setsS = {S1,...,S»} € P(U) and a
natural number k.
Question Is there a hitting set H C U of size |[U| = k? That is, a subset H such that
for every i € [m],S;NH # 0.
SimpLE HITTING SET COMPLETION (S-HS-C)
Instance An instance (U, S, k) of HITTING SET together with sets I, O C U.
Question Is there a hitting set H C U of size k + |I| such that] € H and HN O = 0?
HrtTING SET CoMPLETION (HS-C)
Instance An instance (U, S, k) of HITTING SET together with sets , O C U and a set
ACSxU.
Question Is there a hitting set H C U of size k + |I| such that] € H, HN O = 0 and
foreveryie [m],HN(S;\{u e U | (u,S;) € A}) # 0?
DOMINATING SET
Instance An undirected graph G = (V, E) and a natural number k.
Question Is there a dominating set D C V for G of size k?
SIMPLE DOMINATING SET COMPLETION (S-DS-C)
Instance An instance of DOMINATING SET consisting of a graph G = (V,E) and a
number k, together with sets ,O C V.
Question Is there a dominating set D C V in G of size k + |I| such that I € D while
DNO=0?
DoMINATING SET ComMPLETION (DS-C)
Instance An instance of DOMINATING SET consisting of a graph G = (V,E) and a
number k, together with sets ,O,S C V.
Question Is there a dominating set D for the induced subgraph G[V \ S] such that D

isofsizek+|I|,]C Dand DN O = 0?

64

	Introduction
	Contributions
	Structure of the thesis
	Preliminaries
	Compilability: a tour d'horizon

	A new framework for parameterized compilability
	The new fpt-comp-C classes
	Reductions
	Methodology theorems for lower bounds
	The new chopped-C classes

	Compilability around W[1]
	A simple hardness result: Weighted q-SAT Completion
	The case of CSP Completion
	The problem Clique Completion

	Compilability around W[2]
	The problems Hitting Set and Dominating Set Completion
	A web of reductions

	Inference problems for CSP
	Existing positive results for Clause Inference
	Inference problems for CSP

	Conclusion
	Bibliography
	Compendium of problems

