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Abstract

This thesis explores the processes an artificial agent needs to understand its environment.
It extends on the Apperception Engine and intensively applies insights from Kant’s
Critique of Pure Reason. Techniques from logic programming, topology, graph theory and
several other disciplines are harnessed to bring these two frameworks into further correspon-
dence with one another. The result consists of two computational systems. The first is a
direct extension of the Apperception Engine that uses geometric logic to express Kant’s
functions of judgement. The second is a Figurative Apperception Engine that im-
plements Kant’s spatio-temporal or figurative synthesis : input is taken up and combined in
a unifying process that builds both space and time as qualitative structures. By applying
program synthesis within a Kantian architecture, a step is made towards the development
of artificial agents that are both explainable and generally competent.
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Preface: Understanding Artificial Agents

When does an agent understand its environment?

This question, that has been a central topic from Greek epistemology to modern Neuro-
science and AI, has received a wide range of different answers. Leaving the term ‘agent’ now
vaguely defined as something with the ability to act, the answer primarily hinges on your
desired definition of understanding, and from it flow debates on subjects such as agency,
responsibility and consciousness. The Cartesian res cogitans has long been a central view
in which understanding fills its own realm, separated by an unbridgeable gap from mate-
rial reality, and only accessible to itself. This Cartesian division constituted a firm ground
for our freedom and autonomy as understanding agents in a world that is governed by the
deterministic laws of physics, and simultaneously restricted these remarkable qualities to
ourselves, barring non-human agents from the spectrum of understanding.

An almost opposite view on understanding is adhered to by some modern AI designers,
aiming to build agents with this quality from logical circuits and statistical systems. Shane
Legg and Marcus Hutter for instance, proposed in their influential article: “Universal in-
telligence” (2007) that intelligence is the measure of “an agent’s ability to achieve goals in
a wide range of environments” (p.12). From this perspective, in which intelligence is the
measurable result of capacities such as planning and reasoning, the question of whether or
not this result is accompanied by an internal understanding seems to become an irrelevant
complication:

“From our perspective, whether or not an agent understands what it is doing is only impor-
tant to the extent that it affects the measurable performance of the agent . . . indeed it is
not even clear to us how to define “understanding” if its presence has no measurable effects”.
(p.49).

Unfortunately, if one merely takes understanding to be an elusive source of behavior, it
seems to be a difficult concept to activate in a useful manner. Its common association with
subjective experience makes it a favored topic for AI critics under the flag of Searles Chinese
room: We clearly understand what we’re doing, but artificial agents just do. At the same
time, this subjective association strips understanding from any objectively measurable char-
acteristic, inducing designers to drop the subject altogether and simply build agents that
work. The question of who understands what and why is then reduced to a classical yes-no
debate, preventing any real progress on the topic.

Activating understanding

An interesting alternative for this view that will be taken as a central motivation for this
thesis is provided by Daniel Dennett, who claims that understanding is “not the source of
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competence or the active ingredient in competence” (2018). Instead, he argues, understand-
ing is composed of competences. The idea that our actions have an overseeing understanding
as their source is merely a consequence of the idealised view of ourselves and others as inten-
tional agents, i.e. as having reasons and arguments for what we do. While this intentional
perspective can be a useful tool for explaining and predicting behavior, it is also in many
cases blatantly misleading. How often do we act competently, for instance when calling a
bluff in poker or buying a profiting stock, without knowing exactly why we did such a thing?
And how easily do we explain such actions afterwards by an intelligent argument showing
that we ‘understood’ what we were doing all along? Because we, according to Dennett, so
often mistakenly take the successful intentional perspective to be a truthful explanation of
how our actions came to be, we come to believe that understanding is a modus of subjective
experience, and thus only available to things that have consciousness. Since consciousness
is, in turn, often considered to be an all-or-nothing quality, the same unfortunately follows
for understanding.

Dennett rejects this idea of understanding as a subjective experience that brings forth compe-
tence, and proposes a way out of the deadlock. If understanding is composed of competences
then we can, like competence, encounter it in endlessly many configurations and gradations.
All we have to do is provide adequate descriptions to categorize this field. He provides one
simple proposal of such a description using four distinct classes. Darwinian creatures are
gifted with a fixed set of competences, provided by some external source such as natural
selection or intelligent design. While these creatures might be extremely competent, they
do not seem to understand anything by any commonsense definition of the term, as can
for instance be shown by slightly changing their environment, which renders them helpless.
Skinnerian creatures additionally have the possibility to adjust their behavior based on pos-
itive and negative stimuli. They display some aspect of non-regularity in their behavior so
that positively rewarded actions are stimulated. Although these creatures have been supplied
with the means to adjust and adapt themselves to some extent, they are generally not con-
sidered to understand why they do this at all. Popperian creatures have some way of storing
information about their environment, so that they may simulate their actions before exe-
cuting them. As Popper expressed this: they let their hypotheses die instead of themselves.
Such creatures are often considered to have at least some form of understanding. Finally,
the Gregorian creatures are described by Dennett as using ”tools for thinking”, which can be
theories and words as well as calculators and telephones. They have the ability to actively
select those tools and solutions that are best suited to the problems that they encounter,
and to decide which tools are worth mental effort such as memory storage or communication.

Without further exploring here the interesting questions of which agents belong to which
class and how we can more precisely distinguish their competences, I pause here to note
that this view on understanding seems to constitute a more fruitful scientific perspective
then viewing it as a capacity that some simply do, and others simply do not have. Indeed,
I believe that characterising understanding as composed of competence, directly provides
more structure to the definition of intelligence provided by Legg and Hutter. The agents we
know that display the competences that satisfy their criterium of ”achieving goals in a wide
range of environments” seem to be precisely those agents of which we generally believe that
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they can bring forth some level of understanding. An essential aspect of Legg and Hutter’s
definition is the use of the word wide, which emphasizes generalizability as a core aspect
of intelligent behavior. The actively established qualities displayed by Dennett’s Popperian
and Gregorian creatures such as model constitution, simulation and active selection of solu-
tions all seem to represent essential (or at least useful) subsets of the totality of competences
that comprise, from a wider perspective, the activities that Legg & Hutter call ‘intelligent’.
We shift here from directly evaluating an agent’s behavior to evaluating which
active processes an agent needs to implement in order to constitute a mode of
operation (read: understanding) that brings forth the desired behavior.

As will be made clear in the upcoming chapters, analysis of the processes required to bring
forth understanding has been a central topic in Kant’s Critique of Pure Reason, and likewise
it is a central theme behind this thesis.

Artificial Agents

Now that we have a more thorough understanding of understanding, we can apply this to
evaluate artificial agents. Where do these systems stand on Dennett’s scale? Traditionally,
a crude distinction is made in AI between symbolic systems (good old-fashioned AI or GO-
FAI), and machine learning systems. If we momentarily forget about the many examples of
impressive improvements on and combinations of these two types of system, we can make a
caricature of both which might teach us more about their ‘artificial understanding’. Symbolic
systems then make use of formal descriptions, logical inferences and predefined rules. Typi-
cally, designers, with an extensive understanding of the task that their systems are meant to
perform, supply them with a predefined and unchanging set of sensors and rule structures
that allow them to act competently within their domain. These good old-fashioned systems
can thus be characterized as Darwinian creatures: a clear example of competence without
understanding. They have no ability to adapt, and small changes in their environment may
render them hopelessly incompetent.

Machine learning systems, on the other hand, make use of statistical learning to capture
regularities in data. Their designers provide them with optimization functions and expose
them to sufficiently many stimuli so that they may optimize their parameters and con-
sequently their behavior. These systems thus seem to fall in the category of Skinnerian
creatures: they can adapt, more so than GOFAI, but they do so by directly applying the
stimulus-responses that were provided to them beforehand. It would be terribly difficult to
argue that they formulate their own hypotheses or simulate their environment. We can now
stop forgetting about the crudeness of the made distinction, and nonetheless note how both
system types have complementary strengths and weaknesses. Symbolic systems are easy to
interpret. They typically do not require large datasets to train and can reason easily about
general concepts, as long as these concepts have been properly supplied to them by their
designers. Machine learning systems on the other hand are notoriously difficult to interpret
and explain. They require extensive and often expensive training, and are very difficult to
apply to general problems. However, they are very good at working with noisy input, a trait
that symbolic systems lack.
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Of course many novel systems have been developed that aim to combine the benefits of
both approaches. Providing agents with the ability to learn both statistical correlations and
general conceptual reasoning is seen as one of the most promising paths towards the next
breakthrough in artificial competence (e.g. (Marcus, 2018)). Supervised learning systems can
be supplied with smartly chosen (symbolic) labels and domain-specific learning architectures,
so that they may learn faster and better, and apply their Skinnerian optimized parameters
within the context of a competent Darwinian structure. However, one may doubt whether
such approaches bring artificial agents further on the scale of understanding, regardless of
the impressiveness of their competences and the understanding thereby displayed by their
designers. It is a whole different matter to provide agents with the capacity to actively
formulate and reject their own hypotheses, and to perform their own generalisations. If we
adopt the hypothesis that Dennett’s scale of understanding specifies the modi operandi that
come with acting ‘in a wide range of environments’, it might prove to be very difficult to
achieve this goal without taking understanding seriously. This thesis explores the processes
needed for understanding trough model construction, extending on a pioneering AI system,
and applying conceptual frameworks developed by Kant in his critique of metaphysics. I
hope the reader will enjoy the insights developed in this work, and I excuse its lengthy na-
ture using the same words of Jean Terasson that were harnessed by Kant:

”if the size of a book is measured not by the number of pages but by the time needed
to understand it, then it can be said of many a book that it would be much shorter if it were
not so short.” (Translation, (Kant, 1998))
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Introduction

This thesis builds upon two main sources of inspiration. The first is the Apperception
Engine (AE): a system that understands its environment through logical model construc-
tion (Evans, 2020). The second is Kant’s Critique of Pure reason (CPR): the redirection
and limitation of methaphysics that was written by Kant until 1787. The Apperception
Engine draws on the cognitive architecture expounded in the Critique, for its structure and
domain general inductive biases. The aim of this thesis is to bring these two frameworks
even further together, translating more of Kant’s heritage into mathematical formalisms and
computational systems.

The first chapter gives a general background of logic programming, the Apperception
Engine and the Critique. The second chapter compares the two main pillars that were just
introduced in a more intensive manner. The result is an enumeration of difference between
the AE and CPR. The rest of this thesis then aims to resolve a subset of these differences.
The third chapter addresses the structure of judgement, implementing geometric logic as
a more expressive language for model construction that fits the Kantian framework. The
fourth, fifth and sixth chapters aim at representing synthesis in space and time. The capac-
ity of an agent to understand what it is given in a spatio-temporal manner is then argued
to underlie the constitution of experiential unity. Throughout this thesis, all philosophical
and mathematical arguments are developed with the aim of computational implementation
in mind, so that many theoretically interesting cases such as continuous inputs and infi-
nite models are often not taken into consideration without any explicit justification. The
less experienced reader will hopefully find that all significant concepts have been properly
defined and introduced either in the first chapter, or where they are relevant. The more
critical reader will hopefully be content with the overview of bounds and limitations pro-
vided in the discussion. The reader or grader can find the source code for chapters 4, 5 and
6 at https://github.com/ariesoeteman/figurative apperception engine. The code is however
not yet properly structured and documented, so it is merely intended to provide a general
overview of what has been done. A proper application will be posted online in the near
future. Now let’s begin.
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Chapter 1

Background

1.1 Logic programming

Answer Set Programming (ASP) is a logic programming language based on the stable
model semantics. Its programs contain:

• Predicate symbols and function symbols with an associated arity, denoted by
strings starting with a lowercase letter (p, f, even, m OTHER).

• Constants, also denoted by strings starting with a lowercase letter (a, john, number3).

• Variables, denoted by strings starting with an uppercase letter (X, Node, ATOM).

In this thesis I usually denote, unless context demands otherwise, predicate symbols with
p, q, r . . . , function symbols with f, g, h . . . , constants with a, b, c, . . . and variables with
X, Y, Z . . . in ASP and x, y, z in mathematical reasoning.

A term is a constant or variable or of the form f(t1, . . . tn) where f is a function and the ti
are terms. An atom is of the form p(t1, . . . , tn) where p is a predicate and the ti are again
terms. We call variable-free terms, atoms and programs ground.

A normal logic program over a set of ground atoms is a finite set of rules of the form:

a0 : −a1, . . . , am, not am+1, . . . not an.

Where each ai is a ground atom. a0 is called the head, and {a1, . . . am, not am+1, not an} is
called the body of the rule. These are also denoted as head(r) and body(r). A rule of this
form expresses that if all literals in the body are true the head must also be true, where
not ai is true if ai has not been proven to be true. Thus, ’not’ expresses negation by default.
If the head of a rule is empty it is taken as ⊥, and we call the rule a constraint. If the
body of a rule is empty it is taken as ⊤, and we call the rule a fact. Associating each rule
r with sets body(r)+ = {a1 . . . am} and body(r)− = {am+1, . . . an}, a set of ground atoms X
satisfies the body of a rule r in P (X |= body(r) if body(r)+ ⊆ X and body(r)− ∩X = ∅. If
X |= body(r) implies head(r) ∈ X, we then say that X satisfies r, and if X satisfies all rules
in P we call it a model for P .

Given a (generally unground) normal logic program P , its Herbrand universe is the set
of all ground terms that can be formed from the constants and function symbols in P . Rules
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in unground programs must be safe, meaning that the variables in the head of a rule are a
subset of the variables in its body. The ground instance grd(r) of a rule in P is the set of
all ground rules obtained by substituting its variables with ground terms in the Herbrand
Universe. Ground programs grd(P ) are defined accordingly. The Herbrand Base is the set
of all atoms constructed from the predicates in P and the terms in its Herbrand Universe.
A Herbrand Model for P is then a subset of the Herbrand base that is a model of grd(P ).

Given a ground normal logic program P and a set of ground atoms M we can define the
single-step consequence operator:

TP (M) =M ∪ {head(r) : r ∈ P,M |= body(r)}

A positive logic program only contains rules where body(r)− = ∅. It can then be shown that
each positive logic program P has a unique ⊆ minimal Herbrand model as the least fixed
point T∞

grd(P )(∅).

Answer Set Programming makes use of the stable-model semantics. Given a ground normal
logic program P and a set of ground atoms X we define the reduct of P as:

PX = {head(r) : − body(r)+ : r ∈ P, body(r)− ∩X = ∅}

Intuitively, we remove all rules that contain a literal ’not ai’ in the body such that ai ∈ X,
and then remove all literals ’not ai’ from the bodies of the remaining rules. A stable model,
or answer set, for a ground normal logic program P is then a set of ground atoms X such
that T∞

PX (∅) = X. Accordingly, if P is unground its stable model satisfies T∞
grd(P )X (∅) = X.

Normal logic programs can have many stable models. Each stable model is however ⊆ min-
imal, in the sense that no stable of the same program can be a proper subset.

In Kant’s Cognitive Architecture (2020), ASP is used as an interpreter or meta language

for the object language datalog

⋔

, a simple extension of datalog that allows for con-
straints and causal implications. Rules in datalog are denoted as:

a0 ← a1, . . . , am.

Where the ai are function-free atoms. datalog programs thus correspond to function free
positive logic programs, and have a unique minimal model corresponding to a unique total
model (where the negation of untrue atoms is derived explicitly), that can be constructed
by the consequence operator T .

ASP allows for several additional syntactical structures such as choice rules and optimization
statements. Choice rules are of the form:

k {a1, . . . am} l : − am+1, . . . , an, not an+1, . . . not ao.

Where if the body of the rule is satisfied, now any subset S of the atoms in the head such
that k ≤ |S| ≤ l can be derived. Sets of atoms with an upper or lower bound can also be
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placed in the body of a rule, where they are satisfied if and only if the number of true atoms
in the set is between the specified bounds.

Optimization statements are of the form

maximize{l1 = w1@p1, . . . wn@pn}

Here the wi represent the weight assigned to each associated ground instance of li, and pi
represents a priority where higher priorities are maximized first. For a complete overview of
the syntactical possibilities of ASP one can read for example Answer Set Solving in Practice
(Gebser, Kaminski, Kaufmann, & Schaub, 2012).

The complexity of a logic program usually denotes the time-complexity for checking whether
P |= A as a function of the size of program P and set of ground atoms A (Dantsin, Eiter,
Gottlob, & Voronkov, 1997). The ground instantiation of a logic program is in general
exponential in its size, so that the logical consequence problem for datalog is exptime
complete. For ASP, function symbols can give rise to infinite models, so that model existence
is in general undecidable. If function symbols are not allowed, a distinction is made between
brave reasoning, where P |= A if P has a model containing A, and cautious reasoning, where
P |= A if all models of P contain A. Brave reasoning clearly corresponds to model existence.
Allowing unrestricted use of ’not’ and disjunctions in the head of function-free ASP programs
results in a brave complexity that is nexptimenp complete and cautious complexity that is
co-nexptimenp complete (Eiter, Leone, & Sacca, 1998) (Eiter, Faber, Fink, & Woltran,
2007).

Often, complexity is analysed with respect to ground programs. In this case, complexity
for datalog is P complete. The brave and cautious reasoning tasks for ASP without dis-
junctions are NP and co-NP complete respectively. If we further allow disjunctions in the
heads the reasoning tasks are ΣP

2 = NPNP and ΠP
2 = co-NPNP complete, and if we then

also include weak optimization statements this gives ΣP
3 = NPΣP

2 and ΠP
3 = co-NPΣP

2 com-
pleteness (Eiter et al., 2007). In this thesis, unless explicitly stated otherwise ’complexity’
refers to brave reasoning complexity with respect to ground programs.

1.2 The Apperception Engine

I here give a brief overview of the Apperception Engine, a system developped by Richard
Evans that uses ASP to construct theories that make sense of a sensory sequence (2020). I
briefly explain how Evans defines ‘sensory sequence’, ’theory’ and ‘making sense’.

The sensory sequences given to the Apperception Engine are sequences of sets of ground
atoms. More specifically, the atoms are of the form senses(αi, αj), where αi is a ground
atom representing the content, constructed from a binary or unary predicate and one or
two constants, and αj is a natural number representing the time of sensation. Equivalently,
Evans provides the following definition:
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Definition 1. A sensory sequence is a sequence of sets of ground atoms S = (S1, S2, . . . ),
where Si represents a partial description of the world at time i. Defining G as the set of all
ground atoms we have S ∈ (2G)∗.

A theory that can explain such a sequence is defined as follows:

Definition 2. A theory is a four-tuple θ = (ϕ, I, R, C) where:

• ϕ = (T,O, P, V ) is a type signature. T is a set of types for objects, predicates and
variables, and O,P, V are sets of objects, predicates and variables which are typed
according to T .

• I contains initial conditions; ground atoms representing the partial state of the world
at the initial time step.

• R is a set of unground rules in datalog
⋔

, meaning that all terms are variables.
Besides normal unground datalog rules R contains causal rules: α0 ⋔ α1∧, . . . , αn,
where the truth of the body at time t enforces the truth of the head at time t+ 1.

• C is a set of constraints grouped in three kinds. Unary constraints are of the
form ∀X p1(X) XOR . . . px(X), enforcing the truth of exactly one of the pi for
each ground term that can be substituted for X. Binary constraints are of the
form ∀X∀Y r1(X, Y ) XOR . . . , rn(X, Y ), again representing an exclusive disjunction.
Uniqueness constraints are of the form ∀X∃!Y r(X, Y ), meaning that all ground terms
that can be subsituted for X are related by r to exactly one ground term that can be
subsituted for Y .

Now each theory θ generates an infinite sequence of sensory atoms called its trace T (θ) =
(A1, An, . . . ). This is the minimal sequence of ground atoms such that I ⊆ A1 and all rules
in R are satisfied, along with one additional condition in the form of a frame axiom:

Definition 3. Frame axiom: if α ∈ Ai−1, where Ai−1 is an element in a sequence of sets
of ground atoms, and there is no atom β ∈ Ai such that the truth of α and β at a single time
is precluded by a constraint in C, then α ∈ Ai.

Explaining is defined as follows:

Definition 4. A theory θ with trace T (θ) = (θ1, . . . ) explains a (finite) sensory sequence
S = (S1 . . . Sn) if S ⊆ T (θ), meaning that Si ⊆ θi for 1 ≤ i ≤ n.

Now a theory is said to make sense if the following holds:

Definition 5. A theory θ makes sense of a sensory sequence S if θ explains S, and θ
satisfies the following unity conditions:

1. Objects are united via chains of binary relations.

2. Predicates feature in at least one constraint.

3. Every ’state’ θi is closed under non-causal rules in R and satisfies C.
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4. Every pair of successive states θi, θi+1 satisfies the causal rules in R.

Whether the final two conditions are in fact direct results of the definition of a trace is
perhaps a matter of interpretation. I further take up the content and significance of these
conditions in the following chapter. Now the apperception task to be executed is, given
sensory sequence S, type signature ϕ and input constraints C (where ϕ provides suitable
types for S and C), to find a lowest-cost theory θ = (ϕ′, I, R, C ′) explaining S, such that
C ⊆ C ′, ϕ ⊆ ϕ′. It can be shown that objects are permanent, in the sense that every
object occurring in T (θ) must occur at every time step. Furthermore, for every apperception
task there exists a solution. Now to solve an apperception task, the AE is often also given
a template of the form (ϕ,N→, N⋔ , NB), where ϕ is a type signature and the other three
arguments are natural numbers representing the number of static rules, causal rules, and
maximum body atoms. Templates are often provided as input for efficiency, but can also
be constructed by iterating over sets of types and iterating over templates for each typeset
(Evans, 2020, p.54). I now provide an example of an apperception task to highlight the
definitions above:

Example 1. Consider the following sensory sequence:

S1 = {}
S2 = {off(a), on(b)}
S3 = {on(a), off(b)}
S4 = {on(a), on(b)}
S5 = {on(b)}
S6 = {on(a), off(b)}
S7 = {on(a), on(b)}
S8 = {off(a), on(b)}
S9 = {on(a)}
S10 = {}

To incorporate this sequence in an apperception task, we have to provide a suitable type
signature and constraints. Now we let C = {} and Φ as follows:

Φ =



T = {s},

O = {a : s, b : s}

P = {on(s), off(s), p1(s), p2(s), p3(s), r(s, s)}

V = {X : s, Y : s}


This suffices to define the apperception task, but we often also provide a template with upper
bounds to speed up the computational process, e.g. N→ = 4, N⋔ = 4, NB = 2. An example
of a theory θ = (ϕ′, I, R, C) that satisfies definition 5 is then a theory whith ϕ′ = ϕ and the
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following initial conditions, rules and constraints:

I =



p1(b)

p2(a)

r(a, b)

r(b, a)


R =



p1(X)

⋔

p2(X)

p2(X)

⋔

p3(X)

p3(X)

⋔

p1(X)

p1(X)→ on(X)

p2(X)→ on(X)

p3(X)→ off(X)


C ′ =


∀X : s on(X) XOR off(X)

∀X : s p1(X) XOR p2(X) XOR p3(X)

∀X : s ∃Y : s r(X, Y )



The trace of this theory then includes all atoms from the sensory sequence, along with
missing values for the ’on’ and ’off’ predicates, and the atoms with predicates p1, p2, p3 that
define the underlying mechanism. △

Importantly, sensory sequences may also be given to the system as raw sensory data such
as light intensity or pixels. In this case, a binary neural network classifies the raw data into
disjunctions over ground atoms. This network is implemented within the ASP framework,
providing a complementary execution of the sub-symbolic and symbolic processes. I do not
make use of this full system in the current project, although it must be taken into account
in the comparison of the AE with CPR made in the following chapter.

1.3 The Critique of Pure Reason and its relevance for

Artificial Understanding

The Critique of Pure Reason (CPR) is a work of which the influence on modern philosophy
can hardly be overestimated. While it is difficult to summarize CPR without deriving it of
its subtle complexities, I here provide a brief overview of its structure and describe some
of its essential concepts. A clear picture of the central aims with which Kant wrote this
extensive book is helpful to guide the critical evaluation of the Apperception Engine in
the next chapter.

One central aim with which Kant wrote the Critique was to for once and for all set meta-
physics on the “secure path of science” (p.106); to provide it with a properly delineated
subject and method, so that it would finally be able to follow the natural sciences in the
reliable and progressive accumulation of insights. This required an explanation of how nec-
essary a priori concepts can pertain to a posteriori experience, as well as a restriction of
the applicability of such a priori concepts, preventing their unbounded dogmatic applica-
tion beyond the domain of experience. Achieving both objectives simultaneously comprised
a fundamental shift in perspective: to let go of the idea that our cognition must a priori
conform to objects, and instead suppose that the objects must conform to our cognition
(BXVi). If we accept that these objects, as objects of experience, are dependent on our
subjective constitution, it directly becomes clear how a priori knowledge of them is possible.
By studying the necessary preconditions for the possibility of experience in general, we can
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come to insights that are independent of experience yet necessarily true of anything that can
appear to us. As Kant puts it:

“For experience is itself a species of cognition which involves understanding; and under-
standing has rules which I must presuppose as being in me prior to objects being given to
me, and therefore as being a priori. They find expression in a priori concepts to which all
objects of experience necessarily conform, and with which they must agree” (BXVII-BXVIII)

This is then our central interest in the Critique and its relevance to AI: the resurrection
of metaphysics as a transcendental philosophy, meaning a science of the a priori conditions
for the possibility of experience (A12). Importantly, this does not so much concern an in-
vestigation of our specifically human constitution, although it is necessarily bound by our
own subjective reality. It is more an analysis of the necessary requirements for experiencing
a world as we do (B72). Among other things this means a unified experience in space and
time, that comprises discursive understanding as well as sensation (Longuenesse, p.12). The
larger part of the Critique is an extraordinarily thorough analysis of how such experience
is possible and can as such be regarded as a valuable source of inspiration for any designer
hoping to build an agent that generates experience in a similar manner; that does not merely
execute predefined competences or optimize parameters, but instead builds a unified world
that is both sensed in space and time and represented through discursive thought.

In the remainder of this section, I provide an overview of some of the central concepts
in Kant’s proposal of a transcendental philosophy, laying the foundations for an evalua-
tion of the computational implementation of this framework in Kant’s cognitive Architecture
(Evans, 2019), and paving the way for the proposal of an extended Apperception Engine;
one that captures more structure from Kant’s transcendental critique.

1.4 Kant’s cognitive architecture

Essential to Kant’s analysis of experience is the claim that it is constituted by continuous
activity, as is illustrated by the following:

“Reason, in order to be taught by nature, must approach nature with its principles in
one hand, according to which alone the agreement among appearances can count as laws,
and, in the other hand, the experiments thought out in accordance with these principles –
yet in order to be instructed by nature not like a pupil, who has recited to him whatever
the teacher wants to say, but like an appointed judge who compels witnesses to answer the
questions he puts to them” (BXIV)

Transcendental philosophy, as an analysis of that which necessarily pertains to the appli-
cation of cognition to objects, is thus also a study of the activity that constitutes experience.
An essential aspect of this activity is that it is aimed at intuition:

“In whatever way and through whatever means a cognition may relate to objects, that
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through which it relates immediately to them, and at which all thought as a means is di-
rected as an end, is intuition” (A19)

Kant distinguishes several structural components in the constitution of experience by means
of the faculties. A manifold of intuition is provided to us by sensibility, which is “the
capacity to acquire representations through the way we are affected by objects” (B33-B34).
Cognition or ‘thought’ is brought about through the understanding, which Kant charac-
terizes as the “capacity to judge” (B94). The activity of combining and binding intuition
pertains to the imagination. I now explain the role of each of these three faculties in more
detail.

Sensibility

Kant states that our cognition arises from two fundamental sources in the mind:

“the first of which is the reception of representations, . . . the second the faculty for cognizing
an object by means of these representations” (B75)

The first is the faculty of sensibility, through which objects can be given to us. Intuition
is acquired through sensibility as the way in which we are affected by objects, and hence is
that which provides cognition with its content so that:

“we have no concepts of the understanding and hence no elements for the cognition of things
except insofar as an intuition can be given corresponding to these concepts” (B XXVI)

The usage of phrases such as being ‘affected by object’ and objects being ‘given to us’ might
mislead one to believe that Kant considers objects to be external entities that causally inter-
act with sensibility. Such an application of causality beyond the domain of experience would
however be very un-Kantian. As Béatrice Longuenesse explains, Kant considers the object
of intuition as internal to its representation, not acting upon representation but making
representation possible (Longuenesse, 2020, p.23). The effect of this ‘object of intuition’ on
sensibility is sensation, and the modification of sensibility which has sensation as its matter
Kant calls appearances.

Besides matter, sensibility is also characterized by its form, which is also referred to by
Kant as ”pure intuition”. This form is that within which sensation can be ordered, so that
it cannot itself be sensation. While the latter is given to us a posteriori, the former must
in fact lie a priori in the mind. Without now further exploring Kant’s argument in the
Transcendental Aesthetic, I note that he finds two forms of sensibility: space, as the form
of outer sense, and time, as the form of inner sense. These forms of sensibility are then the
first example of Kant’s famous reversal from object to subject: space and time, as forms of
sensibility, are that which necessarily makes representation in intuition possible, and hence
a priori structures our experience (B35). Therefore, Kant claims, we can retain and support
the “apodictic certainty” of Euclidean geometry as a pure application of the spatial form
of sensibility, but only so within the domain of possible experience (B41). This is Kant’s
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distinction between empirical reality and transcendental ideality.

Understanding

The second fundamental source of cognition is understanding, which Kant describes as the
faculty of bringing intuition under concepts. While through sensibility objects are given to
us, through the understanding they are thought. This activity of conceptualization brings
forth the representation of an object as object corresponding to intuition, as opposed to
the indeterminate object given in intuition (Longuenesse, 2020, p.24). As with sensibility,
Kant seeks to single out the form of understanding, as the a priori structure by means of
which it is applied (A56). Since the understanding is the faculty of unity under concepts,
its applicatory structure must be found in the functions that represent such unity; these
are the Kantian judgements, hence the characterization of understanding as the ‘capacity to
judge’. The judgements are universal rules of discursive thought, the necessary mental activ-
ities that bring forth experience (Longuenesse, 2020, p.5). Importantly, the logical functions
expressed by judgements give rise to equally many Categories. These “pure concepts of the
understanding” (B105) are the unifying functions of the understanding in its application to
intuition. They generally represent the necessary unity that is the Kantian object, so that
Kant describes them as:

“concepts of an object in general, by means of which its intuition is regarded as determined
with regard to one of the logical functions for judgement” (B129)

Synthesis, Imagination & Unity

The act of combining representations into a unity Kant calls synthesis. Kant applies differ-
ent modes of explanation to approach this term, as is shown by the following two definitions
he places in direct succession:

“the spontaneity of our thought requires that this manifold first be gone through, taken
up, and combined in a certain way in order for a cognition to be made out of it. I call this
action synthesis” (A77/B102).

“By synthesis in the most general sense, however, I understand the action of putting dif-
ferent representations together with each other and comprehending their manifold in one
condition.” (B103)

In the Transcendental A Deduction Kant presents the role of synthesis as an act of the imag-
ination that combines representations, generating a sensible manifold that may be thought
under concepts. In the B-deduction however, he states that synthesis is an action of the un-
derstanding and associates it with representation (B130). The first explanation emphasizes
construction, while the second clarifies the relation of logical judgement to sensible synthe-
ses. In order to understand how both explanations are complementary, it is important to
analyse how Kant understands unity. In the Transcendental A Deduction he emphasizes the
notion of ‘unity of rule’ (A105). The unification of a manifold under a concept is simultane-
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ously a function of synthesis according to a necessary rule. For instance, our consciousness
of the composition of a triangle from three straight lines according to a necessary rule of
construction is what allows its representation as a unified object. For Kant, to cognize an
object is to represent such a unity of rule, a unity through the function of judgement, under
the concept of a category.

Now all a priori necessity must have a transcendental ground, hence there must also be
such a ground for the unconstitutingity that represents the necessary synthesis of intuition
that is expressed through the cognition of objects. This ground is the transcendental unity
of apperception: the unity of consciousness that grounds all conceptual thought just as space
and time ground the manifold of intuition for sensibility (A107). It is simultaneously the
consciousness of one’s own identity by virtue of which all experience is my experience and
one experience, and the necessary unity of rule that represents a “common function of the
mind” (A110) grounding all synthesis under concepts. In the same manner, the categories
are the representations of unity under the functions of judgements that have a priori ob-
jective validity by making the very cognition of objects possible. The possibility of unity
through the categories itself rests however on the transcendental unity of apperception, the
unity of self-consciousness which enables synthetic unity under concepts in general (A112).

This synthetic unity in turn presupposes the activity of synthesis, which is then the ef-
fect of the imagination. Through combination and reproduction the imagination synthesizes
the manifold of intuition, according to the rules represented in their conceptual unity, which
is in turn grounded by the transcendental unity of apperception. As Kant puts it:

“The unity of apperception in relation to the synthesis of the imagination is the under-
standing” (A119)

In this thesis I refrain myself from further stretching the application of the term ‘synthesis’
to the operations that the AE applies to its input data. I refer to the latter as operations of
combination, using synthesis in its Kantian sense as the general act of combining represen-
tations and constituting their unity.

We now have an overview of how these three faculties each play their part in constitut-
ing experience, and have seen how each comes with its own a priori structure. The form
of sensibility, or pure intuition, grounds the totality of perception as a manifold of intuition
in space and time. The pure imagination grounds the association of this manifold through
synthesis. The pure apperception grounds the representation of this synthesis and its recog-
nition as a unity in consciousness. To be bound in such necessary unity is to have objective
validity, i.e. to be true of an object (A125). This then explains how necessary structure such
as causality can a priori pertain to that objective reality that we call nature. It is the very
same transcendental unity that makes experience as a unified whole possible, that legislates
its necessary connection through the laws of the understanding, its objectivity.
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Chapter 2

Comparing the Critique of Pure Rea-
son with the Apperception Engine

We may now evaluate the Apperception Engine in light of what was said in the preface
about understanding. The AE formulates its theories symbolically, often rendering its be-
havior as easily explainable as that of GOFAI. Since it constructs its own symbolic structures
instead of being given them by design, it is however not as inflexible as these traditional sys-
tems. The inclusion of a neural network classifier within the ASP framework further allows
the AE to handle raw and noisy sensory input, and sub-symbolic and symbolic computation
are operated jointly, as is the case for Kant’s faculties of sensibility and understanding. We
might then say that the AE shows characteristics of Dennet’s Popperian creatures : it is sup-
plied with the competence to construct its own models and hypothesis using domain-general
inductive biases both on the sub-symbolic and symbolic level.

This might suffice to illustrate why the Apperception Engine represents a novel approach
towards AI and may serve as a starting point for an analysis of artificial understanding. In
this chapter I now assess the extent to which the AE is and is not an implementation of
Kantian architecture. I base my analysis on the model itself 1 as well as chapter 6 of Kant’s
cognitive architecture. The result is an overview of the essential differences between Kant’s
architecture and the AE, along with several proposed reinterpretations that explain the ex-
isting computational model in a manner that is closer to CPR. The intention of this analysis
is not to undermine the scientific value of the AE as an implementation of CPR or a unique
approach towards AI. Nor is this analysis an overview of all extensions that are feasible to
implement or that I aim to implement myself. Instead, its purpose is to be used as a starting
point and inspiration for anyone aiming to make the Apperception Engine more Kantian.

Let us first draw the structural similarities between Kant’s architecture and the Appercep-
tion Engine in overview. The Apperception Engine receives input ‘intuition’, either
as elementary atomic formulas relating objects to each other and to properties, or as raw
sensory information such as sound frequencies or light intensity values for sensor-objects.
This input is then taken up and combined into logical structures, resembling the unity under
the functions of judgements in the understanding. The available logical structures are causal

and non-causal rules in datalog

⋔

, and incompatibility constraints are modelled as exclusive
disjunctions. The predicates that feature in these structures are to a large extent inspired
by a set of “pure operations and relations” (Evans, 2020, p.150). They are to represent

1https://github.com/RichardEvans/apperception
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the synthesis performed by the imagination, and are identified with Kant’s transcendental
schemata (Evans, 2020, p.169). From the structure of these pure operations and relations
Evans derives Kant’s categories, thereby representing Kant’s thesis that the synthesis of the
imagination is structured under the unifying categorical concepts. Finally, the logical com-
bination performed by the AE is constrained by several ‘unity conditions’, which are largely
inspired by Kant’s principles of pure understanding.

I firstly compare the structure of space and time for the AE to the forms of sensibility
in CPR. Then, I compare the structure of objects in the two systems and consequently
analyse all implemented unity conditions.

2.1 Sensibility, Space and Time

While the general parallels between the AE and the Kantian structure described in the
previous chapter are clear, there are also significant differences between the two. I firstly
consider differences regarding the nature of sensibility and the corresponding structure of
pure and empirical intuition.

2.1.1 Intuition in space and time

For Kant space and time are, as pure intuitions, the a priori form of sensibility. Only through
their agreement with space and time can appearances be given in sensibility (A92/B125).
The Apperception Engine, on the other hand, does not seem to have an intuition of
space and time that is a priori. It is given atomic formula’s (or vectors from which atomic
formula’s are constructed) that relate objects and attributes using the pure operations and
that are ordered with natural numbers representing ‘subjective time’. This input is then
often, but not necessarily, provided with ‘objective’ spatial and temporal structure using the
relations of ‘inheritance’, ‘succession’ and ‘simultaneity’. The Kantian manifold of intuition
in space and time that is given in sensibility and taken up and combined by the imagination
has thus made place for an input that can, if needed, be provided with additional spatial and
temporal structure. Evans claims that this synthesis of space and time through imagination
after its reception in sensibility is in line with Kant’s critique:

“The job of sensibility is just to provide us with intuitions, but not to arrange them in
objective space/time. It is the function of synthesis, the job of the imagination, to connect
the intuitions together, using the pure operations and relations described above, so as to
construct the objective spatio-temporal form.” (Evans, 2020, p.150)

Indeed, Kant clearly states that both the existence of objects in space and time and the
pure intuition of space and time themselves are the result of synthesis. In the first Analogy
of Experience he writes that the existence of objects in time can only come about through
their combination in a priori concepts (B219), hence through synthesis, and in the three
syntheses of the A-deduction Kant explains how the ‘pure synthesis of apprehension in intu-
ition’ is necessary for the a priori representation of space and time. However, the fact that
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for Kant synthesis is involved in the construction of space and time, does not imply that the
representation of space and time as a posteriori relational constructs adequately represents
Kant’s architecture.

Firstly, space and time for Kant are not only forms of intuition: structures that are ap-
plied to empirical intuition, but are also themselves objects as formal intuitions. In fact,
Kant claims that while space and time as forms of intuition provide a manifold, it is the
formal intuition that gives “unity of the representation” (B161). These representations of
space and time as objects require a pure synthesis, which is non-existent in the AE. Sec-
ondly, as forms of sensibility space and time necessarily structure how intuition is given in
sensibility. The AE does have a succession of impressions placing all intuitions in subjective
time, but this is given beforehand and not the result of an active process. The objective time
on the other hand can if needed be generated through search. The structure of space can
also be optionally added to intuition by the imagination after it has been given in sensibility.
For the AE all structure in intuition is thus either given as input or added after reception
in sensibility, so that the terms form of intuition and formal intuition do not really apply.
Both distinctions are made clear by the following sections in the Transcendental Aesthetic:

“Space is a necessary representation, a priori, that is the ground of all outer intuitions.
One can never represent that there is no space, though one can very well think that there
are no objects to be encountered in it. It is therefore to be regarded as the condition of the
possibility of appearances, not as a determination dependent on them” (B39)

“Time is a necessary representation that grounds all intuitions. In regard to appearances in
general one cannot remove time, though one can very well take the appearances away from
time. Time is therefore given a priori.” (B46)

A close reading of Kant’s explanation of the Synthesis of Apprehension in Intuition, more
concretely shows where the two models diverge:

“Every intuition contains a manifold in itself, which however would not be represented as
such if the mind did not distinguish the time in the succession of impressions on one an-
other ; for as contained in one moment no representation can ever be anything other than
absolute unity.” (A99)

Kant thus claims that synthesis in time is needed in order to represent intuition as mani-
fold, as opposed to an indeterminate unity that can (paradoxically enough) not be unified
to constitute experience:

“Now in order for unity of intuition to come from this manifold (as, say, in the representation
of space), it is necessary to run through and take together this manifoldness, which action I
call the synthesis of apprehension” (A99)

If we further note that the pure synthesis of apprehension constitutes space and time as
pure intuition (A100), it is clear that while space and time are subject to synthesis they are
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not adequately represented as relational structures added to a manifold of intuitions given
beforehand. The pure spatiotemporal synthesis that constitutes space and time also has a
non-pure use in its application to empirical intuition. This synthesis then places intuition in
space and time, thereby representing it as manifold and thus performing an essential step
in the constitution of experience. I summarize the above as the following distinctions:

1. For Kant space and time as formal intuitions are the result of pure synthesis, whereas
the Apperception Engine does not have a pure representation of space and time as
formal intuitions.

2. The pure synthesis of time grounds the manifold of intuition for Kant, whereas the
Apperception Engine is given a manifold of sensory atoms as input.

3. For Kant intuition as a manifold is necessarily represented in space and time, whereas
the Apperception Engine has time and space either as input or as optional struc-
ture.

2.1.2 The structure of space and time

Above I have described differences between CPR and the AE regarding the role of space and
time in the representation of intuition. I now draw attention to a related but distinct topic:
the structures of space and time themselves. Besides the extent to which space and time
are constitutive of the representation of a manifold as pure intuition, we can ask whether
the spatial and temporal structures produced by the imagination of the Apperception
Engine resemble the a priori intuitions that are their Kantian counterpart.

2.1.2.1 The structure of space

Space is constructed by the Apperception Engine as a set of binary ‘containment’ rela-
tions (‘in’), forming a strict partial order with a maximal container (Evans, 2020, p.152-154).
The binary relations are said to represent the transcendental schemata of the categories of
quantity (Evans, 2020, 169-170). This spatial structure seems quite far from the spatial
intuition Kant describes as “essentially single”, an “infinite given magnitude . . . boundless
in the progress of intuition” (A25) and containing an “infinite set of representations within
itself” (B40). Firstly, space for the AE is not a single structure within which the manifold
of spaces rests merely on limitation. To be fair, the unity of Kantian space is represented
in the containment hierarchy by the maximal container object that is, like Kantian space,
generated by the imagination in its synthesis. However, this maximal object is not itself
identifiable with the spatial structure. Secondly, the spatial structure constructed by the
Apperception Engine is not infinite or boundless, but specified by the objects that form
its relations. That Kantian space is more complex than a containment hierarchy is also clear
from the fact that it should support the three-dimensional structure of Euclidean geome-
try. Henkin, Suppes, and Tarski (1959) have shown that binary relations are not expressive
enough to adequately represent the positions of objects in Euclidean space.

Evans clearly acknowledges the differences between the two structures, and justifies his

22



representation by arguing that “space-qua-unifier-of-intuitions” is different from “space-qua-
form-of-human-outer-sense” (Evans, 2020, p.154), and that the first boils down to the con-
tainment hierarchy. I will now investigate this claim. In the B-deduction Kant explains that
the unity of space and time as pure intuitions, and hence also the agreement of intuition with
space and time as forms of sensibility, stands under the general synthesis of intuition “in an
original consciousness” (i.e. the transcendental unity of apperception), and thus under the
categories (B161). Consequently, if a manifold of outer intuition is given in the necessary
unity of space, this same unity is the category of quantity as “the category of synthesis of
the homogeneous in intuition in general” (B162). In the Schematism of pure Concepts of the
Understanding Kant then states that the image of the categories of quantity, as a “product
of productive imagination” is space for outer sense and time in general, whereas its schema
is number, “which is a representation that summarizes the successive addition of one (ho-
mogeneous) unit to another” (B182).

Since the containment hierarchy together with concept-determinations conveys “all the infor-
mation we need for counting” (Evans, 2020, p.153), namely counting the number of objects
within a container, Evans argues that this hierarchy adequately represents the schema of
number. He also notes that this representation is in line with Kant’s claim that space allows
us to represent something as outside me, or as in different places (A23/B38). Hence, he con-
cludes, space-qua-unifier-of-intuition is adequately modelled by the containment hierarchy

However, I argue that to separate space-qua-unifier-of-intuition from space-qua-form-of-
outer-sense and to reduce the former to the schema of number is a severe simplification
of the Kantian system. The sections referred to by Evans are part of Kant’s Transcendental
Deduction of the universal use of the Categories in Experience. Kant explains that the unity
of apprehension in intuition (i.e. the representation of intuition as a manifold) must be in
agreement with space and time as forms of sensibility. Since space and time themselves as
a priori intuitions contain a manifold, their unity a priori conditions all synthesis of appre-
hension. As we noted before these formal intuitions, i.e. space and time as objects, provide
unity to the manifold of intuition. Kant’s aim here is then not to expound the combinatory
operations made possible through space and time, but to argue that through space and time
all synthesis falls under the same fundamental unity:

“Consequently all synthesis, through which even perception itself becomes possible, stands
under the categories, and since experience is cognition through connected perceptions, the
categories are conditions of the possibility of experience” (B161).

This however does not imply that the role of space in the synthesis of intuition can be
reduced to counting. Space as form of sensibility stands under its unity as homogeneous
magnitude, which in turn follows the rule of successive addition under the schema of num-
ber. The spatiotemporal synthesis under this schema thus constitutes the Kantian a priori
intuition of space. Kant claims that synthetic unity under the category of magnitude renders
appearances extensive magnitudes, meaning that “the representation of the parts makes pos-
sible the representation of the whole” (B203). For Kant, ‘number’ as homogeneous addition
thus progressively produces space, with all the structure he ascribes to it in the transcen-
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dental aesthetic. This is not the same, and in fact the opposite, as claiming that space can
be reduced to a containment structure that enables counting.

How time and space as unified formal intuitions play an essential role in the constitution
of experience can be illustrated by an example. Consider a ball being thrown upwards.
How can one produce unified experience from a succession of ‘mental events’, i.e., recognise
a single object traversing through space and time? As a start there must be a manifold
(through the forms of intuition), distinguishing moments in succession (A99), as opposed to
a single absolute unity. The unified representation of such a manifold however, is dependent
on the structure of space and time as a whole. Different moments in the balls trajectory can
only be successive if they are understood as limitations of the same unique time. Similarly,
we cannot cognize the succession of the ball being in place A by the same ball being in a
higher place B, without these two spaces being distinguishable limitations of the same space.
Furthermore, these unified representations of space and time are necessarily dependent on
each other. When the ball is thrown upwards, the air it leaves below does not simply dis-
appear, so that its space must persist through time simultaneously with the space of the
ball. If we would not recognise temporal permanence in space, every spatial synthesis might
be represented as a new isolated space coming into existence, rendering movement through
space as a unified whole insensible. On the other hand, temporal succession as cognition of
the same thing at different times, presupposes identity of spatial locations. If space were
not represented as unity, but as a sequence of distinct spaces, there would be no ground for
the experience that the ball being in place A is succeeded by the ball not being in the same
place A at the next moment.

We thus see that unifying intuition requires the representation of space and time as for-
mal intuitions. No similar synthesis can be grounded by mere counting or a containment
hierarchy. One might, using a containment hierarchy, represent a ball as being in one space
A, and on another occasion represent a ball as being in a space B, but if these containers
both contain the same objects (a ball and air) they might in fact be two representations of
the same space. Even if we assume the containers are distinct, there is no representation
of their relative position as limitations of space as a whole, so that there is no structure to
represent continuous motion between them.

I have argued that space-qua-form-of-outer sense is not separable from space-qua-unifier-
of-intuition, since the same unifying synthesis that generates this form is presupposed in the
synthesis of empirical intuition. In fact, following Béatrice Longuenesse, we might consider
the synthesis of space to be even more deeply connected to the empirical synthesis of ex-
perience. She argues that all three syntheses of the A-deduction should be understood as
belonging to the same act with a threefold outcome (Longuenesse, 2020, p.35). The synthesis
of apprehension in intuition is “inseparably combined” (A102) with the synthesis of repro-
duction in imagination. Now the synthesis of recognition in the concept expresses the unity
of act that grounds the consciousness of the generic identity of representation. Kant states
that without this consciousness “all reproduction in the series of representation would be in
vain” (A103). We can thus understand the three acts of synthesis as inseparable. Following
Longuenesse we can interpret this description of a threefold act as exhibiting an appre-
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hension, a reproduction, and a recognition for each particular intuition. The form of this
threefold synthesis is then provided by the same pure spatiotemporal synthesis (Longuenesse,
2020, p.47). An interesting representation of this idea is provided by the Figurative Ap-
perception Engine introduced in chapter 4.

Whether or not one follows this interpretation all the way, I believe it is safe to conclude
that Kant considers the formal intuition of space to be essential for the synthesis of intuition.
Understood in this way, everything Kant states about space in the Transcendental Aesthetic
directly applies to space-qua-unifier-of-intuition, including his claim that “Space is not a . . .
general concept of relations of things in general” (A25), as is the case for the containment
hierarchy. I thus add the following two distinctions between the two models:

5 For Kant the same synthesis underlies space-qua-form-of-outer-sense and space-qua-
unifier-of-intuition, whereas the Apperception Engine only represents the latter.

6 For Kant space is essentially single, boundless, infinitely divisible and supportive of
Euclidean Geometry, while space for the Apperception Engine lacks all these traits.

2.1.2.2 The structure of time

The Apperception Engine is given a sequence of ‘subjective times’ as natural numbers as-
sociated with each sensory atom. This subjective time can be converted into natural numbers
of ‘objective time’ based on the relations of ‘simultaneity’ and ‘succession’, where successive
subjective times can be placed either in simultaneous or successive objective times, and the
atoms in objective time must be consistent with the constraints of causality and incom-
patibility the Apperception Engine produces. As was the case for space, the structure
of natural numbers is different from the “necessary representation that grounds all intu-
itions” (A31) Kant describes in the Transcendental Aesthetic. He emphasizes the essential
singularity of time, so that “every determinate magnitude of time is only possible through
limitations of a single time grounding it”(B48). Such an a priori structure representing time
as a whole is not found in the Apperception Engine, and its magnitudes of time are
hence not formed by limitation but through generation of individual times. This is clearly
not in line with how Kant considered the synthesis of time, since he claims that “from mere
places, that could be given prior to space or time, neither space nor time can be composed”
(A170). Kant also describes time, like space, as an infinitely divisible quantum continuum
(B211), which the natural numbers are not.

As is the case for space, the binary relations that generate time for the Apperception
Engine, namely ‘simultaneity’ and ‘succession’, are based on transcendental schemata, in
this case these are the schemas of cause and community (Evans, 2020, p.170). What Evans
does not note is that for Kant the generation of time, like that of space, falls under the
schema of quantity. While space is the image of all magnitudes for outer sense, time is the
image “for all objects of the senses in general” (B182). This correspondence between time
and quantity is in fact to some extent represented in the AE since it constructs time as
countable numbers (to the same extent that quantity in space is represented by a contain-
ment structure that enables counting). The matter becomes more complicated since Kant
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does state that time as form of intuition contains relations of succession and simultaneity
(B68). It thus seems that while the categories of quantity for Kant ground the synthesis
of time itself, the application of time as form in empirical synthesis is characterized by the
relations chosen by Evans. The apparent distinction between the relevant categories for
temporal synthesis is then a consequence from what was expounded in section 2.1.1: time
for the AE is only generated a posteriori from empirical intuition. As we have concluded
before, the synthesis of apprehension in intuition that generates time in its pure application
and that distinguishes “the succession of impressions” (A99) is not present in the structure
of the AE. Instead, the structure of space and time is either given beforehand or generated
as relational construct a posteriori. Given this distinction it is then sensible that the rela-
tion of ‘containment’ is not used in the AE for the generation of time, but that instead the
generation of time itself as homogeneous magnitude is modelled by a numerical structure
in the input. It must be noted again however that this is quite un-Kantian. For Kant the
succession in impressions is not given as an input-sequence, but instead generated by the act
of apprehension itself (Longuenesse, 2020, p.37).

I now briefly explain why, given that the AE does not have a synthesis of apprehension, its
relational representation of time through simultaneity and succession is in line with CPR.
In the same Transcendental Deduction of the universal use of the Categories where Kant
states that the synthesis of apprehension in outer intuition presupposes the spatial synthesis
under the categories of quantity, he also refers to an example of temporal succession, namely
the freezing of water. Kant claims this succession can only be determinately given if it is
grounded on the synthetic unity of time as inner intuition. However, Kant does not refer
to quantity here as the generation of time itself, but instead refers to the category of cause
through which “I determine everything that happens in time in general as far as its relation
is concerned” (B163). This example is in line with Kant’s introduction of the Transcendental
schemata, where he states that the schemata of relation, including the schema of cause and
that of community, contain “the relation of the perceptions among themselves to all time”
(B185). Since the Apperception Engine generates the structure of time from the tem-
poral relations between objects, and since these temporal relations for Kant fall under the
schemata of relation, the use of simultaneity and succession is quite reasonable. As was said
before, this a posteriori construction of time is however different from the Kantian system
where simultaneity and succession can only come into perception under the presupposition of
time as a priori intuition (A31). Furthermore, the activity of relating objects using causality
and simultaneity presupposes representations of objects. For Kant the construction of such
representations must itself be grounded in synthesis under the categories and, again, the
unity of formal intuitions. This is further explained in the following section. I summarize
the above in two distinctions:

7 For Kant the generation of time through a pure synthesis of apprehension is grounded
in the schema of number, while for the Apperception Engine succession in time is
given as input and all construction of objective time follows the schemata of cause and
community.

8 For Kant time is boundless, infinitely divisible and represented as a whole, while time
for the Apperception Engine lacks all these traits.
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2.2 Unity and Objects

An important representation of Kantian structure in the Apperception Engine is the
implementation of various ‘unity conditions’, which are largely inspired by the Synthetic
Principles of Pure Understanding that Kant introduces in the Doctrine of the Power of
Judgement. In this section Kant aims to systematically describe those a priori judgements
that the understanding brings about in the relation of the categories to sensibility, and that
ground all other cognitions (B188).

As we have noted before, all synthetic unity of intuition in experience rests on time as
form of inner sense, the imagination and the transcendental unity of apperception. These
are three conditions for the representation of objects as objects of experience. Now for a
cognition to have objective validity, Kant argues, is for it to be necessary for all objects of
experience, and hence for experience in general. “The possibility of experience is therefore
that which gives all of our cognitions a priori objective reality” (A156). The a priori judge-
ments grounding all cognition are to thus be found in the conditions that ground the unified
synthesis of intuition, so that the supreme principle of synthetic judgement is “Every object
stands under the necessary conditions of the synthetic unity of the manifold of intuition in a
possible experience” (A158). It is thus fitting that Evans has provided the Apperception
Engine with ‘unity conditions’. The principles of understanding are precisely this: a priori
principles conditioning the possibility of experience and hence the synthetic unity of intu-
ition. There is however a large difference in interpretation, since for Kant these principles
only have objective validity by virtue of their being necessary for objects of experience. For
the Apperception Engine on the other hand, objects are atomic entities, so that the
unity conditions ground the possibility of unified experience, but not that of unity in the
experienced objects themselves. Before I evaluate the various unity conditions, I must thus
explain the Kantian object in more detail.

2.2.1 Objects

In the introduction of the faculties we have already identified the cognition of objects with
the necessary synthesis of intuition, claiming that ‘objective reality’ is legislated through the
laws of the understanding and the unity of apperception. I distinguished, following Longue-
nesse’s interpretation, two aspects of the object as internalised within its representation: the
given object as appearance making its representation possible and the object as object of
experience made possible by its unified representation.

It is clear then that the Kantian object is very different from that of predicate logic, in
which a domain of atomic objects enables variable substitution. The Kantian object is both
given and thought, both internal in its representation and yet conditioning truth (B197).
Why does Kant hold such a complex conception of objects, and how can we understand this
conception within the computational framework of the Apperception Engine?

From our exposition of Kant’s central aims for the Critique in Chapter 1, it is clear that he
cannot take objects to be the atomic domain elements of predicate logic. Kant sought to
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provide an explanation of how a priori concepts can relate to the objects they represent. Any
dependency of cognition on external objects would however render it a posteriori and hence
rob it of its necessary character. Kant thus took the object to be internal to representation,
and consequently needed to explain how such an internally represented object can exist and
why it seems to present itself as distinct from its representation:

“What does one mean, then, if one speaks of an object corresponding to and therefore
also distinct from the cognition? It is easy to see that this object must be thought of only
as something in general = X, since outside of our cognition we have nothing that we could
set over against this cognition as corresponding to it” (A104)

The answer to the question that Kant provides is that this general X that seems to be
related to our cognition is precisely what determines this cognition as necessary. For a cog-
nition to relate to an object is for it to “have that unity that constitutes the concept of an
object” (A105). Since there cannot be an object outside cognition causing this unity, it must
be grounded in the formal unity of consciousness, i.e., the unity of apperception. We hence
again come to the notion of ‘unity of rule’, since the objectivity of cognition is its unity as syn-
thesized under the rules of the understanding. It is from this viewpoint that Kant can define
an object as “that in the concept of which the manifold of a given intuition is united (B137)”.

How then does Kant explain that this internally represented necessity presents itself as
an object outside or behind its representation? Why does Kant not only refer to the object
as object of experience, but also to the object that is given in intuition? One explanation
for this is given in the A-deduction. Appearances are themselves representations. Each rep-
resentation has an object, which is often another representation. Appearances however do
not represent other representations, but are “given to us immediately”, so that their object
“cannot be further intuited by us” (A109). This object represented as ‘outside us’ Kant
calls the non-empirical transcendental object. This transcendental object is what ultimately
provides our empirical concepts their relation to an object. It does not itself contain any
intuition, but is instead again the formal unity that characterizes all objectivity, i.e., the
necessary unity of apperception. It is the a priori function of synthesis that conditions the
object of experience. One might object that the object as appearance in intuition must stand
under the forms of sensibility, since Kant identifies these forms as the condition under which
objects can be intuited (A93). I believe however that the apparent distinction between the
two conditions is resolved by what was said in section 2.1.2 regarding the three syntheses of
the A-deduction. They can be considered modi of the same process, providing a threefold
outcome and all presupposing the general identity of act that is the transcendental unity of
apperception. Hence, while appearances are given in space and time as forms of sensibil-
ity, the synthesis of apprehension providing the object as appearance in space and time is
grounded in the unity of consciousness; the transcendental object.

Summing up, we see that the object of experience must be internal within its represen-
tation as a necessity or ‘stable coherence’ grounding its unity under concept. The object of
appearance is given immediately in sensibility, but this is in turn only possible by virtue of
the transcendental object as unity of consciousness under the rules of which all appearances
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in their relation to objects must stand. The distinction between this model and the nature of
objects in the Apperception Engine is then rather clear. The Apperception Engine
receives some objects as appearances such as sensors and numerical values in its input, and
assumes the existence of other objects in order to construct a unified model of experience.
The objects in the latter category are in a sense dependent on the unity of consciousness.
However, the assumption of entities to facilitate model construction is not the same as the
representation of intuition as objective by virtue of a unifying function of the mind. The
unifying conditions in the Apperception Engine can bring forth objects, but are not
themselves identified with a transcendental object. The Kantian object of experience also
does not seem to have a direct representation in the Apperception Engine. On the one
hand, the AE subsumes objects under types, associates types with predicates, and connects
predicates in xor constraints. In this sense, the objects of the AE are embedded in a nec-
essary structure. On the other hand, these objects are themselves represented by atomic
constants that can be given in the input directly. The AE must learn which xor constraints
are associated with predicates, and if the template is not given it must even learn which
types are associated with which objects in the input. However, the objects themselves are
still mainly a starting point for synthesis, instead of the achievements of synthesis under
necessary connection of judgement. This gives the following distinctions:

9 For Kant appearances can be considered objects as appearances under the forms of
space and time and the transcendental unity of apperception, while theApperception
Engine either hypothesises the existence of objects or is given objects as input.

10 For Kant the object of experience represents synthesis of intuition as necessary unity,
while the Apperception Engine starts synthesis from objects as atomic entities.

2.2.2 Unity conditions

From the above it is clear how the Unity Conditions, conditioning experience as the connec-
tion between atomic objects by means of relations, differ from the principles of understanding,
conditioning experience in general and equivalently the constitution of experienced objects.
Having made this distinction I now evaluate in turn each of the Unity Conditions in relation
to its associated principle. The differences regarding the nature of objects are a guiding
thread through the differences between the two systems, but can now often be treated suc-
cinctly.

Kant divides his principles of understanding into those that are mathematical and those
that are dynamical (B200). The first group directly follows from the application of the cat-
egories as conditions of intuition, while the second group follows from their application to
appearance in general. The first type of principles is thus ‘unconditionally necessary’ while
the second is only a priori necessary under the condition of empirical thinking in general,
i.e., the synthesis of intuition under empirical concepts. Evans applies this distinction to
the pure relations that represent the schemata and notes, following Kant’s distinction be-
tween composition and connection (B201), that “The mathematical relations control the
arbitrary synthesis of homogeneous elements, while the dynamical relations control the nec-
essary synthesis of heterogeneous elements” (Evans, 2020, p.152). The guiding principle
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for the unity conditions is thus that each principle of pure understanding, as condition of
experience springing from the application of a category, can be represented as a condition
on the relation that represents the schema of the associated category. The mathematical
relations are then ‘containment’ and ‘comparison’, as associated with the categories of quan-
tity and quality. The dynamical relations are ‘inherence’, ‘succession’, ‘simultaneity’ and
‘incompatibility’, as associated with the categories of relation and modality.

Mathematical conditions

The first and fundamental unity condition Evans introduces for all mathematical relations
is that the intuitions must form a fully connected graph. This seems to be based on the
earlier mentioned ‘supreme principle’ Kant phrases as “Every object stands under the nec-
essary conditions of the synthetic unity of the manifold of intuition in a possible experience”
(A158). Although which Kantian principle is used as inspiration for this condition is not
wholly clear to me.

I have explained above how the statement that objects stand under conditions of synthetic
unity is different from the statement that objects are united in a connected graph. Kant does
not identify unity of consciousness with a network of connection. Instead, it is described
as “identity of action” and “the necessary unity of the synthesis” (A108). This identity of
action can be associated with the function of judgement, grounding universally represented
combination under the categories and even the structure of general logic. From this per-

spective, the very fact that all data is structured in datalog

⋔

and can be combined in the
general logical structures of rules and incompatibilities represents the principle of transcen-
dental unity, by allowing the unified representation of the data under universally applicable
functions.

An additional issue with this condition of connectivity is that its implementation in the
AE does not match with the mathematical relations, as is stated in Kant’s Cognitive Ar-
chitecture. While the condition is implemented directly for the ‘containment’ relation, it is
also implemented for the ‘inherence’ of objects under concepts. Although ‘inherence’ is a
dynamical relation, connectivity thus enforces that all objects are connected by relational
predicates. Conversely, the ‘comparison’ relation is mathematical, but is encoded directly as
a set of mathematical axioms applied to number objects. Although this mathematical re-
lation forms a connected graph, it thus strictly speaking not constrained by a unity condition.

The second mathematical unity condition is that the spatial structure has a maximal con-
tainer. The extent to which this represents the unity of Kantian space has been expounded
in section 2.1.2. I note here however that Kant’s principle associated with the application
of magnitude in the Axioms of Intuition reads “All intuitions are extensive magnitudes”.
This implies that intuition in space and time is extensive in the sense that its parts make
possible and precede the representation of the whole. A representation of this principle is
not implemented in the Apperception Engine.

The third mathematical unity condition is that the pure relation of comparison (’<’) forms
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a strict partial order. Evans associates this relation with the categories of quality, so that
“X falls under the pure concept of reality if there exists an intuition Y such that Y < X”
(Evans, 2020, p.170). Kant on the other hand continues his exposition of mathematical
principles in the Anticipations of Perception with the following principle resulting from the
categories of quality: “In all appearance the real, which is an object of the sensation, has
intensive magnitude, i.e., a degree”. He argues that the ‘real’, can be raised from its negation
(= 0) to any degree, so that between reality in appearance and its absence there is always
an intermediate sensation. The associated schema for Kant is the “continuous and uniform
generation of ... quantity in time” (B183). It thus not in line with the Kantian system
that the unity condition for the relation of comparison merely restricts this relation to be
a strict partial order, and does not insist that this comparison relation is dense (meaning
that Rxy → ∃zRxz ∧ Rzy). This difference is again a consequence from the distinction be-
tween the two systems regarding the nature of objects: since the intuition that is ’compared’
with the < relation consits of objects and relations instead of appearances with sensation
as matter, a dense comparison relation would result in an infinite domain and intractable
computation. Evans argues that this structure is in line with CPR, since Kant intended finite
models. It is important to note however, that for Kant a continuum was not considered to be
built up from individual points. He was thus quite consistent in both insisting that one can-
not experience infinitely many objects, and that one can always find an intermediate quality
between two qualities ad infinitum (Pinosio, 2017, p.21). I add the following distinctions:

11 For Kant unity of consciousness is represented by identity of act, whereas the Ap-
perception Engine has an identity of act through its computational structure, but
represents unity as a connectivity constraint between objects.

12 For Kant the application of quantity to intuition renders appearances extensive magni-
tude, whereas the Apperception Engine does not represent extensive magnitudes.

13 For Kant the application of quality to intuition provides sensation with an intensive
magnitude, whereas the Apperception Engine represents intensity by a non-dense
strict partial ordering of objects.

Dynamical conditions

The guiding principle Evans uses for the dynamic unity conditions is that synthesis by the
imagination must be backed up by conceptual judgements. Positions of intuitions in deter-
minations (i.e., ‘containment’, ‘comparison’, and ‘inherence’) “can only be fixed by forming
a judgement that necessitates this particular positioning”. Similarly, the relative positions in
relations between determinations (i.e., ‘simultaneity’, ‘succession’ and ‘incompatibility’) can
only be fixed by complex judgements that themselves relate two judgements (Evans, 2020,
p.159). This principle then translates into several conditions that explain how the atomic
formulas in the trace of a theory must be ‘backed up’ by the logical structures in the theory
itself. The purpose of this structure is not fully clear to me. both from a computational
and a philosophical perspective. From a computational perspective it seems that since dat-
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theories generate a trace, the elements of this trace are by construction ‘backed up’
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by the corresponding logical structures in the theory, so that the formulation of multiple dy-
namic constraints is an unnecessarily complicating addition. One could equivalently merely
define the logical structures themselves. From a philosophical perspective it seems that the
principle that is used to justify the dynamical unity conditions is formulated in a manner
that is not wholly consistent with CPR. I now explain the latter and subsequently propose
a reformulation of this principle that merely points to the existence of logical functions in
the understanding.

On the one hand, the statement that the structure of judgement represents necessity in
synthesis is very much in line with the Critique. As I have discussed earlier, the Kantian
object of experience is identified with unity in cognition that is grounded in the unity of
apperception, and as Kant states in the B-deduction: “a judgment is nothing other than
the way to bring given cognitions to the objective unity of apperception” (B142). However,
the structure of judgement does not, as Evans claims, necessitate the specific positions of
intuitions and determinations within their relational structure. Kant emphasizes that judge-
ments cannot make empirical cognitions necessary, since these cognitions remain a posteriori
(B142). To use a Kantian example: it is not the case that a causal judgement teaches us that
a pillow is necessarily dented by a leaden ball instead of the other way around. However, the
structure of judgement does provide us with an objective relation, so that we can say that
the ‘the pillow is dented by the ball’ instead of merely associating perceptions. Again, the
constitution of objects as opposed to associations is not represented in the Apperception
Engine, so that the interaction between synthesis and the conceptual unity of the under-
standing had to be reformulated. However, there is another aspect where this principle of
dynamic unity seems to deviate from the structure of the Critique, prompting its reformu-
lation.

Evans presents the imagination as constructing a synthesis, which is then provided necessity
by being ‘backed up’ by an independent understanding:

“All the imagination can do is connect the intuitions using the pure relations – it can-
not impose necessity on those connections. In fact, the only element that can provide the
desired necessity is the judgement.” (Evans, 2020, p.156)

From this viewpoint, it seems sensible that the dependence of synthesis on judgement is
only formulated as a principle for dynamic relations. Kant distinguishes the dynamical
categories as having ’correlates’ (B110), which is not the case for mathematical categories.
However, it is also rather clear that in fact Kant thought that all synthesis under unity of
the understanding obtains its objectivity through the structure of judgement. This directly
follows form Kant’s exposition of the schematisms of pure concepts of the understanding,
which are pure syntheses in accordance with (all) the categories. This then shows that the
interaction between judgements and synthesis cannot be fully captured as relations being
backed up by judgements. In the previous chapter I emphasized that the imagination can
only perform its synthesis guided by the rules of unity. In fact, we saw that Kant stated
that “The unity of apperception in relation to the synthesis of the imagination is the under-
standing” (A119). All synthesis, as combination aiming towards objective unity is thus also
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an act of the faculty of understanding, so that this faculty is not merely one of discursive re-
lations between concepts: “all combination, . . . whether it is a combination of the manifold
of intuition or of several concepts, . . . is an action of the understanding, which we would
designate with the general title synthesis” (B130). Taking this aspect of understanding seri-
ously would imply that the synthesizing relations used by the Apperception Engine are
themselves brought forth by the understanding, whether they have ’correlates’ or not. I thus
propose the following principle as a substitution for the dependency of dynamic relations on
judgement:

P1: All unity of synthesis of intuition is represented under the logical functions of the un-
derstanding.

This principle has a bidirectional interpretation. The first is that the synthesis of intu-
ition is generated as the trace of a unified conceptual theory in the understanding. The
second is that all synthesis by the imagination structures the sensory atoms so as to allow
their unified representation in the theory. Given this principle all that is left is to specify
the logical functions. This removes the need for further dynamic unity conditions, and si-
multaneously applies to relations of mathematical as well as dynamical nature.

Interestingly enough, this interpretation is consistent with the computational implemen-
tation of the AE. The pure operations and relations used in the synthesis of intuition are
associated with the transcendental schemata. The conceptual judgements brought forth by
the understanding do not fix the positions within these relations, but rather generate them
as trace in their application to intuition. We can then with Kant say that the understanding
“is not merely a faculty for making rules through comparison of appearances; it is itself the
legislation for nature” (A127). In the remainder of this section I explain to what extent the
relations featuring in the dynamic unity conditions adhere to this principle. I do not analyse
the logical functions themselves, since this is the topic for the next chapter. I must also note
that the representation of logical atoms under the conceptual structures of a theory does
not represent Kant’s argumentation in the Analogies of experience, where he explains how
alteration of substance through causal interaction constitutes objectivity and the filling of
time. This has partially been covered before and will not be discussed for each condition of
dynamical unity.

Inherence

Evans formulates the first condition of dynamic unity as “inherence must be backed up by
categorical judgement” (Evans, 2020, p.158). Applying P1 instead, it is clear that every
determination of an object or pair of objects by a conceptual predicate is indeed represented
under a conceptual structure in the theory, containing a variable that has this object in its

domain (note that all variables in rule-heads are universally quantified in datalog
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) . The
relation of ‘inherence’ thus adheres to P1.
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Succession

The second condition of dynamic unity is that “Succession must be backed up by a causal
judgement” (Evans, 2020, p.159). I firstly argue that this unity condition is strictly speaking
not satisfied by the implementation of the AE. Secondly, I claim that this implementation is
not at odds with CPR, so that the relation of ‘succession’ can be explained as adhering to P1.

To see why it is not necessarily the case that all successions must be backed up by causal
judgements, we can read the following ASP rule that is used by the AE to generate succession
and simultaneity for any two sensed ‘intuitions’ in successive ‘subjective times’ (ST):

1 { sim ( (BV1, Obj1 , ST) , (BV2, Obj2 , ST+1) ) ;
succ ( (BV1, Obj1 , ST) , (BV2, Obj2 , ST+1) ) } 1 :−

bv at (BV1, Obj1 , ST) , bv at (BV2, Obj2 , ST+1)

For any two sensory inputs in successive ‘subjective times’ a nondeterministic choice is made
between simultaneity and succession in objective time. Other clauses then ensure that these
determinations are assigned to numbers of ’objective time’, and subsumed under the ground
atoms that are the trace of the theory. Some of the successions (either on the level of deter-
minations, or on the level of ground atoms) are directly fixed by the extension of causal rules.
However, other successions might just be generated in accordance with theory optimization
and the conceptual structure as a whole. This is due to the fact that the condition of sub-
sumption by the trace of the theory is not applied to the succession relations themselves, but
only to the resulting atoms in ‘objective time’. For instance, if the sequence in ’subjective
time’ P (a), R(a, b), P (b),¬P (a),¬P (b) is given, then P (x) and ¬P (x) for x ∈ {a, b} cannot
both be true at the same objective time. One might place the first three atoms at objective
time 1, and the latter two atoms at time 2, providing the initial conditions R(a, b), P (a), P (b)
and the following causal rule P (x)

⋔ ¬P (x). Note however that this judgement does not di-
rectly ’back up’ the succession of P (a) and R(a, b) by ¬P (B), or the succession of R(a, b) by
itself. These successions are instead generated in order to prevent the need for more complex
conceptual structures.

I now argue that this synthesis of succession by the imagination and its limited repre-
sentation under causal rules is in fact in line with Kant’s writing on consciousness. A
first interesting fact on this topic is that Kant distinguishes representation in general (rep-
resentatio) from representation with consciousness (perceptio) in the introduction to the
Transcendental Dialectic (A320). This is perhaps not very surprising, given that Kant uses
the term ‘representation’ widely, but insists that a synthesis of apprehension is necessary to
distinguish representations in intuition from ‘absolute unity’ (A99). What might be more
surprising is that Kant has also distinguished representations with consciousness in general
from representations that are thought. In the Jäsche Logic Kant claims that animals per-
ceive representations and identities and differences between them, but are not conscious of
their own acts, so that they may know, but not cognise, i.e., form concepts (Kant, 2001,
Logik introd. VIII, Ak. ID, 65-570). Longuenesse argues that this distinction can plausibly
be applied to our own representations, so that while all intuition can possibly be reflected
under the discursive unity of thought, this complete synthesis need not always be actualized
(Longuenesse, 2020, p.66).
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Applying this distinction to the mechanism of the Apperception Engine, we see that
it is quite Kantian that combinations are made by the imagination that are not directly
supported by conceptual structure. All succession can possibly be directly determined by
causal rules, but this is often not necessary. We can hence with a bit of free interpretation
associate the causal rules with those successions that the Apperception Engine thinks,
while those successions that are merely generated by the imagination but not represented
explicitly can be considered those of which the AE is only conscious. We can then still
consider all unity of the synthesis of intuition in ‘objective time’ as being represented under
the logical structure of the understanding, since the atomic formulas in successive objective
times are directly subsumed by the trace of the conceptual theory and since the synthesis
of succession by the imagination structures perception in a manner that presupposes its
conformity with universal causal rules. We can thus claim that ‘succession’ still adheres to
P1.

Simultaneity

The third condition of dynamic unity is “Simultaneity must be backed up by a pair of causal
judgements” (Evans, 2020, p.159). Since Evans explicitly notes that this condition is not
implemented in the AE, I do not dwell on it. I merely note that the simultaneity of sensory
atoms can be argued to be unified under representations in the understanding by means
of the same argument that was applied to succession, so that ‘simultaneity’ can be said
to adhere to P1. The correctness of the association of simultaneity with a ‘pair of causal
judgements’ is a topic that is not taken up here.

Incompatibility

The last condition of dynamic unity is “Incompatibility must be backed up by disjunctive
judgement” (Evans, 2020, p.160). As was the case for inherence, every incompatibility
between sensory atoms is directly represented by a conceptual incompatibility in the theory.
This relation thus also adheres to P1. Whether or not disjunctive judgements are adequately
represented as incompatibilities is again a topic that is not taken up here.

2.2.2.1 Making concepts sensible and Conceptual unity

The last two unity conditions are neither mathematical nor dynamical. They read: “judge-
ments are supported by corresponding determinations” and “every concept features in some
disjunctive judgement” (Evans, 2020, p.161-162). The first condition is not directly related
to the principles of understanding. It enforces that if the AE conceptually derives an atomic
formula applying a predicate P to an object o, it must also construct a corresponding ‘in-
herence’ relation on the level of synthesis by the imagination determining that an attribute
a holds of o, where a falls under P . This condition is supported by Kant’s claim that it is
necessary to “make the minds concepts sensible” and “add an object to them in intuition”.
We have seen that for Kant an object is acquired through necessary unity in the synthesis of
a manifold. These statements then mean that a concept as discursive unified representation
does not yield cognition if it does not represent a corresponding synthesis of a manifold in
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intuition, which is quite different from the invention of an atomic attribute as extension of a
conceptual predicate. Still, the general idea that intuition is reproduced by the imagination
to ground the discursive unity of the understanding is in line with the Critique.

The second condition enforces that all concepts that are not provided in the input, and
thus invented by the AE itself, must be connected to other concepts by exclusive disjunc-
tions. This condition is inspired by the third analogy of experience, in which Kant explains
that community conditions simultaneous existence of objects, and also their existence as
objects of experience in general (B258). This principle of community however, applies to
all appearances, as standing together in experience, and comprises a reciprocal grounding
relation as well as exclusion. The unity condition on the other hand only applies to concepts,
instead of appearances in relation to their objective synthesis, and only specifies some sub-
groups of these concepts that form an exclusive disjunction. It is then clear that the unity
condition only partially captures Kant’s intended structure, but a more detailed analysis of
judgement must be made in the next chapter before this distinction can present itself in full
clarity. This analysis gives us one final distinction:

14 For Kant all appearances in experience stand in a community where the objects stand
in a reciprocal grounding relation, while the Appereption Engine represents this com-
munity by exclusive disjunctions between non-input concepts.

2.3 Conclusion

This then concludes my evaluation of theApperception Engine in comparison with Kant’s
framework with respect to the forms of sensibility, the nature of objects, the interaction
between imagination and understanding and the unity conditions. One major topic has been
intentionally left out: the structure of judgements as unifying functions of the categories. In
the next chapter I further analyse the logical structure of Kantian judgement, showing where

it digresses from that of the rules and constraints in datalog

⋔

, and proposing extensions of
the AE that bridge this gap. I further note that the provided comparison is by no means a
complete overview. Those who are interested in further development of the Apperception
Engine might consider taking up one of the many remaining topics such as the power
of judgement, the structure of modalities or the nature of reason as actively guiding the
understanding according to principles. For now I content myself with the following list
of distinctions between the two models, and proceed with a logical analysis of Kantian
judgement to substantiate my own implementation of Kant’s cognitive architecture.

1. For Kant space and time as pure intuitions are the result of pure synthesis, whereas
the Apperception Engine does not have a pure intuition of space and time.

2. The pure synthesis of time grounds the manifold of intuition for Kant, whereas the
Apperception Engine is given a manifold of sensory atoms.

3. For Kant intuition as a manifold is necessarily represented in space and time, whereas
the Apperception Engine has time and space either as input or as optional struc-
ture.
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4. For Kant the same synthesis underlies space-qua-form-of-outer-sense and space-qua-
unifier-of-intuition, whereas the Apperception Engine only represents the latter.

5. For Kant space is essentially single, boundless, infinitely divisible and supportive of
Euclidean Geometry, while space for the Apperception Engine lacks all these traits.

6. For Kant the generation of time through a pure synthesis of apprehension is grounded
in the schema of number, while for the Apperception Engine succession in time is
given as input and all construction of objective time follows the schemata of cause and
community.

7. For Kant time is boundless, infinitely divisible and represented as a whole, while time
for the Apperception Engine lacks all these traits.

8. For Kant appearances can be considered objects as appearances under the forms of
space and time and the transcendental unity of apperception, while theApperception
Engine either hypothesises the existence of objects or is given objects as input.

9. For Kant the object of experience represents synthesis of intuition as necessary unity,
while the Apperception Engine has objects as unstructured atomic entities.

10. For Kant unity of consciousness is represented by identity of act, whereas the Ap-
perception Engine has an identity of act through its computational structure, but
represents unity of consciousness as a connectivity constraint.

11. For Kant the application of quantity to intuition renders appearances extensive magni-
tude, whereas the Apperception Engine does not represent extensive magnitudes.

12. For Kant the application of quality to intuition provides sensation with an intensive
magnitude, whereas the Apperception Engine represents intensity by a non-dense
strict partial ordering of objects.

13. For Kant all appearances in experience stand in a community where the objects stand
in a reciprocal grounding relation, while the Appereption Engine represents this com-
munity by exclusive disjunctions between non-input concepts.
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Chapter 3

Judgement and Geometric Logic

3.1 Introduction: judgements as rules

In the previous chapter I have hinted at the structural differences between rules in data-

log

⋔

and Kantian judgements. The contents of this chapter are to a large extent separate
from that of the later chapters, so that the reader may choose to start with the analysis
of time in chapter 4 without losing his or her way. We have seen that Kant understands
judgements as functions of the mind; rules that bring representations under necessary unity.
Through the structure of judgement propositions obtain their ’objectivity’: their relation
to truth. This mostly considered transcendental logic as the science determining the origin
and objective validity of cognition. I now turn more towards the subject of general logic:
the science of the logical form of reasoning that abstracts away from content and truth. An
alternative definition of judgement, provided in the Prolegomena, is then of relevance:

”Judgements, when considered merely as the condition of unification of representations in a
consciousness, are rules.” (Kant, 1966, 23)

Kant has defined rules as ”assertions under a universal condition” (Logik, §58, Ak. IX,
121; 615), so that judgements can in turn be understood as assertions under a universal
condition. A second definition of importance is then that of inference:

”An inference of reason is the cognition of the necessity of a proposition through the sub-
sumption of its condition under a given universal rule.”

As an example, we can consider an instance of modus ponens where the proposition ’metal
is divisible’ is inferred from the more general rule ’bodies are divisible’. In this case, ’metal’
serves as a condition, subsumable under ’body’ so that ’metal is divisible’ obtains a necessary
character through the universal rule ’bodies are divisible’. ’Metal’ is a condition by virtue
of this very possibility of subsumption. However, also the term under which is subsumed
(’body’ ), must be considered as containing a condition since it enables the subsumption of
’metal’, and can in turn itself be subsumed (A322). We see then that assertion under con-
dition and inference are not distinct from one another. The possibility of inference allows
for the cognition of judgement, and judgements can in a way be understood as recipes for
inference (Achourioti, van Lambalgen, et al., 2017, p.856). Importantly, the concepts sub-
ordinated to each other in this manner must also have an object (x):
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When I say ’A body is divisible’, this means: ’some x, which I cognize through the pred-
icates that together constitute the concept of body, I also think through the predicate of
divisibility’. (Refl. 4634 (1772-76), Ak. XVII, 616.)

Thus, Kant also names judgement ”the mediate cognition of an object” (A68), relating
concepts to other representations (which are either other concepts or intuition) in a way
that allows the representation of some x. The logical form of judgement must thus facilitate
this cognition of objects under concepts trough subsumption of representations. In the next
section, I follow an argument given by Achourioti and Van Lambalgen (2017; 2011), who
argue that geometric logic adheres to this conception of judgement. Subsequently, I describe
an implementation of geometric logic using non-deterministic choice in ASP.

3.2 Geometric Logic

The term Geometric logic arose in algebraic geometry, where it includes higher-order logical
structure (Blass, 1993). In a first-order context the term usually refers to a logic of universally
quantified implications, where the antecedent and consequent only contain the connectives
∃,∨,∧, along with ⊥. Infinite disjunctions are often allowed, in which case the term coherent
logic is used for the restriction to finite disjunctions (Vickers, 1993). In a computational
context, geometric logic or geolog also applies to a structure of logical programming,
which naturally does not allow for infinite disjunctions (Fisher & Bezem, 2007). This is the
interpretation I hold here, which gives rise to the following definitions1:

Definition 6. Given a first-order language L with equality, a formula is geometric in L if
its is constructed from atomic formulas in L using ∧,∨,⊥ and ∃.

Definition 7. A formula in L is a geometric implication if it is of the form ∀x̄(ϕ(x̄)→ ψ(x̄)),
where ϕ, ψ are geometric formulas in L

Clearly, a geometric formula ϕ is a special case of a geometric implication, where the an-
tecedent is a conjunction of identity statements and the consequent is ϕ itself. Geometric
logic is then often taken to be the logic of geometric implications (Achourioti & van Lam-
balgen, 2011; Dyckhoff & Negri, 2015). Note that geometric implications can be rewritten
into a more manageable form by the following lemma:

Lemma 1. A geometric implication is equivalent to a conjunction of formulas ∀x̄(θ(x̄) →
ψ(x̄)), where θ is a conjunction of atomic formulas and ψ is geometric.

Proof. By basic logical manipulation. For example, we can first pull the existential quan-
tifiers in the antecedent out using ∃x̄ ϕ(x̄) ∨ ∃x̄ ψ(x̄)) ≡ ∃x̄ (ϕ(x̄) ∨ ψ(x̄)) and ∃x̄ ϕ(x̄) ∧
∃x̄ ψ(x̄)) ≡ ∃x̄ȳ (ϕ(x̄) ∧ ψ[ȳ/x̄](ȳ)). Subsequently, we can apply the distributive laws for
∨ and ∧ to transform the antecedent into a formula in disjunctive normal form with an
existential prefix. Since (∃xψ(x)) → ϕ ≡ ∀x̄(ψ(x) → ϕ), and since A ∨ B → C ≡ (A →
C) ∧ (B → C) we arrive at the desired form.

1When writing ϕ(x̄), The notation x̄ represents a vector containing all free variables in ϕ, although not
all variables in x̄ must necessarily occur in ϕ for ease of notation
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Achourioti and van Lambalgen argue that geometric implications allow for Kant’s ’mediate
cognition of objects’, by the subsumption of general objects (as logical types) under concepts
and the construction of transitive relations between concepts as conditions (2017). Interest-
ingly, the logic of geometric implications is also intuitionistic (Achourioti & van Lambalgen,
2011) (Palmgren, 2002):

Lemma 2. Let Γ ∪ {ϕ} be a finite set of geometric implications such that Γ ⊢ ϕ classically,
then there exists an intuitionistic proof of ϕ from Γ.

From a philosophical point of view, this shows that the logic of geometric implications can be
considered ’constructive’. Coquand (2010) has shown the completeness for geometric logic
of dynamical proofs, which bring out this constructive character nicely. Dynamical proofs
proceed by model construction, where existential quantification introduces a witness term
’x’ and implication corresponds to inference. This then shows how judgements as geometric
implications can be understood as Kantian licenses for inference. Furthermore, Achourioti
and van Lambalgen have shown that finite conjunctions of geometric implications correspond
to the class of formulas which are ’objectively valid’ with respect to inverse systems, meaning
that if a formula is satisfied on all models of an inverse system it must also be satisfied on
its inverse limit (2011). The latter semantics then represents Kant’s notion of judgement as
”the way to bring given cognitions to the objective unity of apperception” (B142).

Since geometric logic is intuitionistic it adheres to the disjunction property: ⊢ A∨B implies
that either ⊢ A or ⊢ B. Hence, given the dynamical proof associated with the geometric im-
plication ϕ→ (ψ ∨ ξ) (where again implication represents inference), there must exist either
an inference for ϕ → ψ or for ϕ → ξ. In this sense, we can refrain from using disjunctions
in the consequents without restricting the descriptive capacity. This brings us to the final
form of geometrical rules to be implemented:

Definition 8. Given a first-order language L, a formula is positive primitive in L if it is of
the form ∃x̄(ϕ1(x̄) ∧ · · · ∧ ϕn(x̄)), where the ϕi are atomic formulas in L.

Definition 9. A Geometric rule is a formula of the form ∀x̄(θ(x̄) → ψ(x̄)), where θ is a
conjunction of atomic formulas and ψ is positive primitive.

I then define geolog as the logic of geometric rules. Of course, disjunctions in the con-
sequents of implications might be quite useful for the construction of theories that explain
sensory sequences. For instance, the sensed atoms bird(a), f lies(a), bird(b), walks(b) can be
’explained’ by a rule the form ∀x(bird(x)→ (flies(x) ∨ walks(x)). However, it is not at all
clear that an explanation of this form is in agreement with Kant’s table of judgements. Dis-
junctive judgements for Kant take the form of reciprocal interaction that represents division
of a concept into mutually exclusive ’spheres’ under the category of community (A74/B99).
One may further ask whether the full complexity of geolog is needed to represent Kant’s
table of judgements, and if datalog is not already sufficient. Achourioti and van Lam-
balgen argue that the full complexity of geometric rules is indeed necessary, providing the
following interpretation of a hypothetical judgement distilled from the Prolegomena (29):

”If x is illuminated by y between time t and time s and s − t > d and the temperature
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of x at t is v, then there exists a w such that the temperature of x at s is v + w and
v + w > c.” (Achourioti & van Lambalgen, 2011, p.8)

Here, d is a criterion for ’long enough’ and c is some threshold value for ’warm’. The
objective for the rest of this chapter is then to provide a satisfying implementation for this
judgement; an implementation in which existential quantification allows for the subsump-
tion of representations with an intensive degree (i.e. a numerical value) under a universal
condition, allowing their embedding in a conceptual structure of rules.

3.3 Datalog with choice

In order to enable the Apperception Engine to construct rules in geometric logic, ex-

tending the universally quantified implications of datalog

⋔

, I add a ’choice’ predicate to
the object language. The predicate ’choice(X̄, Ȳ )’ represents a non-deterministic choice be-
tween the possible substitutions for Ȳ for each substitution for X̄. As a general example,
the following rule represents the implication ∀x̄w̄ (q(x̄, w̄)→ ∃ȳ(p(x̄, ȳ)):
P (X̄, Ȳ ) ← Q(X̄, W̄ ) , choose (X̄, Ȳ ) .

This rule can then be defined in a language with negation (datalog¬) as follows:

P(X̄, Ȳ )← Q(X̄, W̄ ) , cho i c e (X̄, Ȳ ) .

cho i c e (X̄, Ȳ )← p o s s i b l e c h o i c e (X̄, Ȳ ),¬ d i f f c h o i c e (X̄, Ȳ ).

d i f f c h o i c e (X̄, Ȳ )← cho i c e (X̄, Ȳ ′) , p o s s i b l e c h o i c e (X̄, Ȳ ) , Ȳ ′ ! = Ȳ .

Program 3.1: Definition of the choice predicate in Datalog¬

Here the ’possible choice’ predicate defines the domain of possible substitutions for Ȳ given
X̄. Note that existential quantification requires the system to find a witness term for ȳ,
analogous to the structure of dynamical proofs. In what follows, I will elaborate on the
representation of geometric rules more formally. The experienced reader will however have
noticed that this definition of choice makes use of non-stratified (i.e., recursively applied)
negation. Hence, before I explain how the choice predicate is applied, I must properly
delineate the intended semantics for a datalog¬ program.

3.3.1 Semantics for unstratified negation

Rules in datalog¬ have the following form:

a0 ← a1, . . . , am,¬am+1, . . .¬an.

where the ai are function-free atoms as before, and rules are still restricted to be safe: vari-
ables in the head also occur in the body. In general, a distinction is made between fixed-point
and model-based semantics for datalog¬ (Abiteboul, Hull, & Vianu, 1995). The first inter-
prets atoms as either true or false, while the latter often allows for the intermediate valuation
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1
2
. Fixed-point semantics correspond to the stable-model semantics in ASP. Given an inter-

pretation I as a set of positive atoms, the reduct P I is generated by substituting all negative
atoms ¬α in bodies with 0 if α ∈ I and 1 otherwise. The minimal model of the resulting
positive logic program can then be computed as the fixed point of the consequence operator
TP I (∅) as defined before, and I is a model for P if and only if it is equal to T∞

P I (∅).

Fixed point semantics display downwards monotonic behavior (if I ⊆ J then T∞
PJ (∅) ⊆

T∞
P I (∅)), which is considered to be a useful tool in the implementation of non-monotonic

reasoning. However, it also has properties that can be considered disadvantages. Programs
are not guaranteed to have a model (e.g., p ← ¬p.), but can also have several subset-
minimal models (e.g., p ← ¬q. q ← ¬p. has models {p}, {q}). The consequence operator
TP can no longer be guaranteed to reach a fixed point as was the case for positive logic
programs. One solution for these issues is the restriction to datalog¬s, which only allows
for stratified negation. Formally, this requires programs to be divisible into a partition of
programs P = {P 1, . . . , P n}, where all rules with the same predicate p in the head are in the
same element of the partition, provided by a function f(p) that maps predicates to numbers
1 ≤ i ≤ n and:

• If a predicate p occurs positively in the body of a head with predicate q, then f(p) ≤
f(q).

• If a predicate p occurs negatively in the body of a head with predicate q, then f(p) <
f(q).

Under this restriction one can find a sequence of models I1 . . . In where:

I1 = T∞
P 1(∅)

I i = I i−1 ∪ T∞
P Ii−1 |(∅)

Note that we now iterate over fixed points of the T operator, applying each fixed point I i

to redefine the reduced program for the next operator TP Ii . The intended model for P is
then equal to In. Clearly, an atom is only added to I i if it is true in every interpretation
satisfying the implications of P , and In is an interpretation for P . Hence In is a unique
minimal model, and in fact one that is computable in polynomial time with respect to P
(Abiteboul et al., 1995).

While an extension of the object language to datalog¬s can thus be implemented with rela-
tively little impact on the structure of the AE, it is not sufficient to define non-deterministic
choice. One may then wonder whether an alternative model-based semantics would allow the
use of unstratified negation while guaranteeing the existence of models for datalog¬ pro-
grams. Under model-based semantics, literals are generally valuated as a value in {0, 1

2
, 1},

so that partial models are allowed in which not all atoms are decided (Abiteboul et al.,
1995). Accordingly, the reduct of a program P with respect to a model M is computed by
substituting all negated atoms ¬α by 1−vM(α). Such a reduced program again has a unique
minimal model that can be computed using a consequence operator TPM , but now this is a
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three-valued model, where the valuation v(α) in model TP (M) is:

1 if there is a rule r with head(r) = α and ∀β ∈ body(r) : vM(β) = 1

0 if for all rules r with head(r) = α it holds that ∃β ∈ body(r) : vM(β) = 0

hence also if there are no rules with α as head

1

2
otherwise

Note that a valuation of 1
2
here then corresponds to Kleenee’s system in the sense that atoms

valuated at 1
2
may stay 1

2
or become 0 or 1 by applying the consequence operator T . Now

again, models of a program P are fixed-points, i.e. M = TPM (∅). Interestingly, under these
semantics every program P has a unique minimal model called the well-founded model Pwf

(Abiteboul et al., 1995, p.390-394). It is minimal in the sense that its positively and nega-
tively valuated atoms are a subset of the positive and negative atoms for all other models
of P . For stratified programs the minimal model is in fact a total model, no atoms are
interpreted as 1

2
. Furthermore, the well-founded model can be computed in polynomial time

with respect to P (Greco, 1998). As for stratified programs we can construct a sequence of
total models I0 . . . In, but now I0 = ⊥ (i.e. all atoms are false), and I i = T∞

P Ii−1 (∅). In this

sequence then I0 is an overestimation of the negative facts, so that I1 is an overestimation of
the positive facts, so that I2 is an overestimation of the negative facts etc.. The process either
oscillates towards a total model, or converges to an alternating sequence I∗, I∗∗, I∗, I∗∗ . . . .
In the latter case, atoms that are decided differently by I∗ and I∗∗ are valuated as 1

2
. The

reader may read (Abiteboul et al., 1995, p.390-392) for a more complete explanation.

Thus, if one applies model-based semantics and takes the well-founded model as the in-
tended interpretation this has some model-theoretic advantages. Programs can use negation
freely, while a unique minimal model can be computed in polynomial time. However, this
unfortunately does not fit our desiderata. One can easily see that if we include choice predi-
cates, then the atoms with predicates ’diff choice’ and ’choice’ are normally interpreted as 1

2

in the well-founded model. The choice predicate represents a non-deterministic choice, while
the well-founded model only includes those positive and negative valuations that are true in
every model. In fact, only if there is exactly one Ȳ for a given substitution of X̄ such that
’possible choice(X̄, Ȳ )’ holds will the well-founded model valuate diff choice(X̄, Ȳ ) as 0 and
choice(X̄, Ȳ ) as 1.

Since the only model of which the existence for datalog¬ programs is guaranteed is the
well-founded model, which does not fit our intended use, one may wonder whether we should
content ourselves with the occurrence of programs without a model, even before the introduc-
tion of constraints. If we however restrict our syntactical structure to provide just the needed
amount of expressivitiy, but no more, this need not be the case. Besides the well-founded
model other commonly used partial stable models are (Greco, 1998):

• Total stable models, which do not valuate any atom as 1
2
.

• Maximal stable models, for which there does not exist a distinct stable model which is
a strict superset.
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• Least-undefined stable models, for which the set of undefined atoms is minimal; there
does not exist a distinct stable model for which the set of undefined atoms is a strict
subset.

Now the following was shown by Giannotti, Pedreschi, Sacca, and Zaniolo (1991) for the
language datalog¬s,c, i.e. the language that includes choice predicates, but where all other
negations are stratified.

Lemma 3. Let P be a program in datalog¬s,c. If none of the rules in which a choice-
predicate occurs are recursive, then P has at least one total stable model. Furthermore, one
of these models can be computed in polynomial time.

Hence, in this case the maximal and least-undefined stable models must also be total stable
models. Clearly, total stable models are also ’choice models’, in the sense that they satisfy
a constraint of functional dependency X̄ → Ȳ for every choice predicate ’choice(X̄, Ȳ ).

Total stable model semantics (or equivalently maximal or least-undefined stable model se-
mantics) is thus a suitable choice of semantics for our system. It also fits with our desired
choice of implementation since it corresponds to fixed-point semantics and thus also to stable
model semantics in ASP in the following way:

Theorem 1. Given a program P in datalog¬, there exists a function-free ASP program
P ′, constructed from P by replacing each ← by : − and each ¬ by ’not’, so that there
exists a bijection f between total models M for P and interpretations I ′ for P ′, such that
for each total model M, f(M) = {α : vM(α) = 1} and for each interpretation I ′ for P ′,
vf(I′)(α) = 1 if α ∈ I ′ and vf(I′)(α) = 0 otherwise .

Proof. Clearly, P ′ is an ASP program and f is a bijection between total valuations and
interpretations. It remains to be shown that M is a model for P iff f(M) is a model for P ′.
The reducts PM and P ′

f(M) correspond to the same positive logic program, since M is total

and since in PM all literals ¬α are substituted with 1 if vM(α) = 0 and with 0 otherwise
and in P ′

f(M) all literals not α are substituted with 1 if α ̸∈ f(M) and with 0 otherwise.

Since vM(l) = 1 iff l ∈ f(M) for each positive litreal l, we thus have M = T∞
PM

(⊥) iff
f(M) = T∞

P ′
f(M)

(∅).

3.3.2 Constraints and Causality

Naturally, not all off the above results hold for datalog

⋔

,¬s,c, which includes the constraints
and causal rules introduced by Evans (2020). Causal rules give rise to infinite models, so
that these models can clearly no longer be computed in polynomial time. However, if we
restrict the interpretation to a predefined set of times {1, . . . , n}, as is sufficient to assess
whether an apperception task has been solved and as is done in the AE’s implementation,
we can substitute all causal rules of the form:

p(X̄) ⋔ q1(X̄), . . . qn(X̄).
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where the qi are positive or negative atomic formulas, with the equivalent set of function-free
rules for 1 ≤ t < n:

p(X̄, t+ 1)← q1(X̄, t), . . . qn(X̄, t).

Then given the maximum time n, every datalog

⋔

,¬s,c P program without constraints is
equivalent to a datalog¬s,c program Pn constructed by the procedure above, and thus by
lemma 3 has a model that can be computed in polynomial time if its choice rules are not
recursive. The same holds if we further include the ’frame axiom’ without yet making use of
constraints, since this axiom can then be translated into rules of the following form for each
variable atom p(X̄):

p(X̄, t+ 1)← p(X̄, t)

If we allow for constraints, there are clearly datalog

⋔

programs that do not have a model,
such as the following example, where a is in the domain of X:

p( a ) .
q (X) ← p(X) .
p(X) XOR (X) .

Furthermore, using XOR constraints we can easily construct a program P (ϕ) of size polyno-
mial in the size of propositional logic formula ϕ, such that the models of P (ϕ) are satisfying
assignments for ϕ, by iteratively splitting subformulas ψ = ψ1 ◦ ψ2 or ψ = ¬ψ1 of ϕ (start-
ing with ϕ itself) into smaller subformula(s) ψ1, ψ2 and adding the following rules to P (ϕ)
according to the main connective c of ψ, I assume ψ is in CNF since this is achievable in
polynomial time:

c = ∧ : ψ(1)← ψ1(1), ψ2(1).

ψ(0)← ψ1(0).

ψ(0)← ψ2(0).

c = ∨ : ψ(1)← ψ1(1).

ψ(1)← ψ2(1).

ψ(0)← ψ1(0), ψ2(0).

c = ¬ : ψ(1)← ψ1(0)

ψ(0)← ψ1(1)

We can then add the following constraint for all subformulas ψ of ϕ (polynomially many in
its size).

ψ(1) XOR ψ(0)

The models for P (ϕ) then clearly correspond to satisfying assignments for ϕ, showing that

finding a model for a datalog

⋔

,¬s,c program is in general NP hard. Since datalog

⋔

,¬s,c

restricted to a fixed set of times can be expressed in ASP without disjunctions in the head, for
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which model-existence is NP-complete, this shows that finding a model for a datalog
⋔

,¬s,c

program is also NP-complete.

Finally, datalog

⋔

,¬s,c programs are clearly equivalent to a subset of datalog¬ programs,

so that theorem 1 applies: programs in datalog

⋔

,¬s,c can be translated into equivalent
ASP programs under the total-model or fixed-point semantics.

3.4 Implementation

3.4.1 Choice

A complete overview of the datalog

⋔

interpreter developed by Evans is provided in Kant’s
Cognitive Architecture (Evans, 2020, p.58-63). I take this as given and do not repeat the
general structure here. Instead, I emphasize the changes made to represent rules in geometric
logic using choice predicates.

Recall that geometric rules are of the form ϕi = ∀x̄w̄ (θi(x̄, w̄) → ψi(x̄)) where θi is a
conjunction of atomic formulas and ψi is an existentially quantified conjunction of atomic
formulas ∃ȳ ξi(x̄, ȳ). The universally quantified variables that only occur in the antecedent
are identified with w̄. The variables in x̄ need not necessarily occur in θi. They might occur
in both the antecedent and the consequent or only in the consequent. Such a ϕi is then

represented by the following rule in datalog

⋔

,¬s,c, where r is a numerical index for the rule
and T is a variable with the domain of times. (X,T, r) represents the variables in X̄ and
T as well as the number r. Note that this is only for ease of notation however, since the
complex term (X,T, r) would itself not be allowed in function-free datalog:

ξi(X̄, Ȳ )← θi(X̄, W̄ ), choose((X,T, r), Ȳ ) .

Note that we enforce a non-deterministic choice over the domain of Ȳ for each pairing of a
substitution for X̄, time t and index r. Hence, for two distinct rules with the same variables
ϕ1 = ∀x̄(θ1(x̄) → ∃ȳξ1(x̄, ȳ)) and ϕ2 = ∀x̄(θ2(x̄) → ∃ȳξ2(x̄, ȳ)) the choice need not be the
same, nor need the choice be the same for two applications of the same rule at different
times. This then gives the following clause in datalog¬:

ξi(X̄, Ȳ )← θi(X̄, W̄ ), cho i c e ((X,T, r), Ȳ ) .

cho i c e (( ¯X,T, r), Ȳ )← p o s s i b l e c h o i c e ((X,T, r), Ȳ ),
¬ d i f f c h o i c e (( ¯X,T, r), Ȳ ).

d i f f c h o i c e ((X,T, r), Ȳ )← cho i c e ((X,T, r), Ȳ ′), p o s s i b l e c h o i c e ( (X,T, r), Ȳ ), Y ′! = Y.

Program 3.2: datalog¬ program corresponding to ϕi

In the interpreter in the meta-language ASP, I define a new type of rules, apart from the
’arrow rules’ and ’causal rules’ in the original system. I name them ’causal judgements’ since
I apply the structure of geometric logic for construction of causal judgements, but extensions
to other judgements can easily be made. Now in the original system, the consequent of causal
rules is derived by the following ASP clause:
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holds (GC, T+1) :−
ru l e h ead cau s e s (R, VC) ,
eva l body (R, Subs , T) ,
ground atom (VC, GC, Subs ) ,
i s t ime (T+1) .

Program 3.3: Derivation of the head of causal rules for the original AE

Here, ’GC’ is a representation of the ground atom in the head where the first argument
represents a predicate symbol in the object-language and the other arguments represent
constants (e.g., s(c p, obj a) or s2(c p, obj a, obj b)). R is a number referring to the rule, V C
is a representation of an unground atom (e.g., s(c p, var x) or s2(c p, var x, var y)), and
’Subs’ represents a substitution that substitutes the variables in V C with the corresponding
constants in GC. ’eval body’ is true if and only if the ground atoms produced by applying
’Subs’ to the body of ’R’ hold at time T . I substitute this clause with the following:

holds (GC, T+1) :−
causa l judgement head (R, VC) ,
eva l causa l judgement body (R, Subs , T) ,
ground atom (VC, GC, Subs ) ,
i s t ime (T+1) ,
r u l e c h o i c e (R, T, Subs ) ,
not i s var permanent (VC) .

Program 3.4: Derivation of the head of causal rules for the system with existential
quantification

The final line is prompted by a technical difference with the original system. In the original
AE, ’permanent’ atomic formulas (such as those determining relations of arithmetic) can
never be in the head of a rule by construction, since formulating rules with known informa-
tion in the consequent would be a waste of resources. However, since I allow for multiple
atoms in the head of a rule, it might often be sensible to construct rules in which some of
these atoms represent known information. This then restricts the domain of choice for the
consequent ∃ȳ ξi(ȳ), since only substitutions that satisfy the ’permanent’ atoms can possibly
satisfy ξi. However, these permanent atoms need not be derived themselves so that they are
excluded in the clause above for clarity and efficiency.

The second-to last line represents the choice predicate and is defined by the following clauses:

r u l e c h o i c e (R, T, Subs ) :−
po s s i b l e s ub s (R, Subs ) , i s t ime (T) ,
not d i f f c h o i c e (R, T, Subs ) .

d i f f c h o i c e (R, T, D i f f ) :−
r u l e c h o i c e (R, T, Subs ) , p o s s i b l e s ub s (R, D i f f ) ,
r u l e t o choo s e (R, V1) , subs ( Subs , V1 , O1) ,
subs ( Di f f , V1 , O2) , O1 != O2,
subs ( Di f f , V2 , O3) : ru l e ground (R, V2) , subs ( Subs , V2 , O3) .

p o s s i b l e s ub s (R, Subs ) :−
r u l e s ub s (R, Subs ) , i s c au sa l j udgement (R) , u s e r u l e (R) ,
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permanent (GH) : causa l judgement head (R, Head) ,
ground atom (Head , GH, Subs ) ,
i s var permanent (Head) .

:− eva l causa l judgement body (R, Subs , T) ,
not p o s s i b l e s ub s (R, D i f f ) : same ground (R, Subs , D i f f ) .

Program 3.5: Generation of choices for existential quantication

Here the ’rule tochoose’ and ’rule ground’ predicates identify the variables in ȳ and x̄ re-
spectively in the corresponding ϕi. The clauses defining the ’rule choice’ and ’diff choice’

predicates are direct analogues of the second and third datalog
⋔

,¬s,c rules in program 3.2.
Note that Y ̸= Y ′ (while X = X) here means that ’Subs’ and ’Diff’ are two different choices
for the ’to choose’ variables corresponding to the same choice for the ’ground’ variables. The
third clause defines the domain of possible choices, where possible choices are constrained
by the permanent conjuncts in the head of a rule, as explained above. The final constraint
ensures that if the body of a rule is satisfied for some substitution, there must be at least
one possible extension of this substitution to the variables in the head that does not conflict
with the permanent information, so that a choice must be made.

Note that these clauses indeed ensure that the formula ϕi = ∀x̄w̄ ∀1 ≤ t ≤ n (θi(x̄, w̄, t) →
∃ȳ ξi(x̄, ȳ, t + 1)) is satisfied on all models. If a model satisfies the clauses above, we can
partition all substitutions for R in equivalence classes so that substitutions in the same class
assign the same values to variables in ’rule ground’ (representing x̄), and so that at least
one chosen substitution in each equivalence class where ’eval causal judgement body’ is true
(i.e., θi(x̄) is satisfied) also makes ’holds(GC,T+1)’ true for all ground instances GC of un-
ground atoms in the head of R. The latter is ensured by the final constraint in Program 2.
Thus, whenever a substitution for x̄, w̄ makes θi true, it must be extendable to a substitution
that also makes ξi true. Conversely, if a model satisfies ϕi, then every substitution σ for the
variables in ϕi produces a true ground instance of ϕi. Hence, whenever a substitution for
x̄, w̄ makes θi true, it must be extendable to a substitution that also makes ξi true. Hence,
of all substitutions that make ’eval causal judgement body’ true for some T and the R cor-
responding to ϕi, there must be at least one that also makes ’holds(GC,T+1)’ true for all
’GC’ representing a ground conjunct of ξi.

It is of importance for efficiency that the variables in w̄, i.e. variables that only occur in the
antecedent of a ϕi, are omitted from the ground. If this were not the case, distinct choices
for ȳ would be generated for each suitable choice of w̄, while in fact the generation of a single
choice for some substitution of x̄ (that can be extended to satisfy θi) is sufficient to satisfy ϕi.
Note further that it is correct that the universally quantified variables occurring only in the
consequent are part of the ’ground’. ϕi enforces that for any substitution satisfying its an-
tecedent and all substitutions for the universally quantified variables in the consequent there
exists a suitable choice for ȳ. If we would not place such variables in the ground, some models
would not satisfy the constraint represented by a ϕi, but would satisfy the corresponding
ASP clauses. To see this, consider the formula ϕi = ∀x y (p(x) → ∃z r(x, y, z)). The model
M = {p(a), r(a, b, c)} then clearly does not satisfy ϕi, but does satisfy the constraint that
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for each substitution for x satisfying p(x) there is a suitable extension.

3.4.2 Rule generation

In the generation of rules from a template I make a few simple adjustments to the mechanism
of the AE. Firstly, the number of possible heads for a ’causal judgement’ is now allowed to
be larger than 1. Secondly, atoms representing ’permanent’ information are now allowed
to be in the head of rules. Thirdly, I generate a division of the variables in a rule in
three categories: ”ground’, to choose’, and ’independent’, representing x̄, ȳ and w̄ in the
corresponding formula. This is done by generating facts of the following form using Haskell:

1 { ru l e ground (R,V) , r u l e t o choo s e (R,V) , ru l e independent (R,V) } 1 :−
i s c au sa l j udgement (R) , u s e r u l e (R) ,
ru l e va r g roup (R,VG) , c on ta in s va r (VG,V) .

Program 3.6: Choice of variable distribution over a causal judgement

Now in order to ensure that the chosen division indeed corresponds to the variable groups
x̄, ȳ, w̄ in ϕi, I formulate several constraints: ’ground’ variables must occur in the head and
can occur in the body, ’tochoose’ variables must occur only in the head, and ’independent’
variables may not occur in the head and can occur in the body, but can also simply be a
redundant part of the variable group:

v i o l a t i o n ( ground not in head (R, V) ) :−
ru l e ground (R, V) ,
not va r i n cau s judg head (V, R) .

v i o l a t i o n ( tochoose not in head (R, V) ) :−
r u l e t o choo s e (R, V) ,
not va r i n cau s judg head (R, V) .

v i o l a t i o n ( tochoose in body (R, V) ) :−
r u l e t o choo s e (R, V) ,
va r in caus judg body (V, R) .

v i o l a t i o n ( independent in head (R, V) ) :−
ru l e independent (R, V) ,
va r i n cau s judg head (V, R) .

:− v i o l a t i o n ( ) .

Program 3.7: Constraints on the variable distributions for causal judgements

I further delete the ’safeness’ constraint applied in the original system, since geometric rules
can have both universally and existentially quantified variables that occur only in the head.

Formally, this does not imply that our object-language transcends datalog

⋔

,¬s,c, since all
variables have been assigned a predefined domain by the type-signature in the template.
Hence, we may simply add clauses of the form ’dom x(X) in the body of a rule for every of
its ’unsafe’ variables X to produce a safe program with the same interpretation. Practically,
I simply remove the safeness constraint for causal judgements from the program.
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3.4.3 Interlude: the trouble with trace multiplicity

We have noted in chapter 1 that the apperception task that is to be solved by the AE comes
down to the formulation of a conceptual theory that satisfies several unity conditions and of
which the trace covers the provided sensory sequence. We have also noted that positive logic

programs, such as the restrictions to finite time of constraint-free datalog
⋔

programs, have

a unique minimal model corresponding to a unique total model. Hence, if a datalog

⋔

pro-
gram with constraints has a model, it must also have unique minimal model. The relations
between conceptual structures and sensory sequences is then immediately clear: conceptual
structures generate a single trace and the apperception task is completed if and only if this
trace covers the input sequence.

With the introduction of existentially quantified variables in the head the situation be-
comes altogether different. A rule now ensures that the consequent is true for some choice of
substitution. Each choice generates a distinct ground consequent, so that each set of choices
generates its own trace and theories have multiple traces. In order to maintain the existential
interpretation of the choice predicate, I insist that at least one of these traces must explain the
input sensory sequence. For instance, the following initial conditions and rule explain (along
with a suitable domain for the variable Y , say {alice, bob, charlie}) every sensory sequence
in which each child has at most one parent such as {parent(bob, charlie), parent(bob, alice)}:
ch i l d ( a l i c e ) .
c h i l d ( c h a r l i e ) .
parent (Y,X) ← ch i l d (X) , choose (X,Y) .

We would not insist that all traces must cover the sensory sequence, or this theory would only
explain sequences without any parents. The extension of the ’parent’ relation in a sequence
explained by this theory would have to be subsumed by both {parent(alice, charlie),
parent(alice, alice)} and {parent(charlie, charlie), parent(charlie, alice)} so that it must
be empty.

This approach however also has some disadvantages. Firstly, checking whether a theory
explains a sequence in the worst case now requires computing all of its traces. While these
are exponentially many in the number of choices, this does not affect the complexity of the
underlying problem of finding a model in the meta-language. The general problem in the
meta language is still to find a model for an ASP program with disjunctions in the head
and optimization statements, which is ∆P

3 -complete (Gebser et al., 2012). Secondly, merely
requiring that some trace explains a sensory sequence might be an awfully easy thing to ask
of the AE. For example, consider the following sequence:

S = ({p(0)}, {p(1)}, {p(2)}, {p(3)}, {p(4)}, {p(5)}})

p(0) holds at time 1, after which the time steps produce a counting sequence. We would like
the AE to pick up on this structure. However, if we merely require subsumption for one of
the generated traces, the AE produces the following minimal theory:

R = {∃xp(x).}
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Here, the domain of x is the natural numbers. Our system thus proudly claims: ”there exists
a number that is p, Problem solved, and with a very parsimonious theory indeed!”. Clearly,
any sequences of numbers that are ’p’ is explained by this rule. We do not want to let the
AE off the hook so easily. In the remainder of this chapter I thus explain an implemented
solution for this issue that simultaneously addresses the issue of trace explosion: we require
the AE to find the model that fits the sensory sequence as closely as possible. Closeness here
refers to the number of different ground atoms generated by a theory: more precise theories
should always be preferred over more general theories, and the quality of explanation must
be maximized before the size of the theory is minimized.

3.4.4 Choice minimization

We want the AE to construct those theories that are generalizable, in the sense that omitted
sensory atoms (i.e., new data points) are predicted with high accuracy. In a machine learning
context, performance is usually based upon the prediction error on a test-set. Of course,
we cannot let the AE minimize the error on omitted atoms directly, since this would come
down to ’peeking’ at the test set. However, we also do not want to burden the system with
the task of minimizing the possibilities for its whole sensory sequence. This is not only com-
putationally inefficient, but it might even cause over-fitting: explaining the sensory sequence
so precisely that the theory becomes less generalizable. I thus provide the system with a
’validation set’, as is common in machine learning. Besides the sensed ’training’ atoms, and
the ’test’ atoms on which performance is evaluated, the atoms in the validation set have the
sole purpose of maximizing the generalizability of the constructed theory.

When a validation atom follows from a rule without existential quantification it is derived
with certainty. The number of choice possibilities for the predicted atom is thus 1:

p o s s i b l e p r e d i c t i o n s (GA, T, 1) :−
va l i d a t i o n (GA, T) ,
ru l e a r row head (R, VA) ,
ground atom (VA, GA, Subs ) ,
eva l body (R, Subs , T) .

p o s s i b l e p r e d i c t i o n s (GA, T, 1) :−
va l i d a t i o n (GA, T) ,
ru l e a r row head (R, VA) ,
ground atom (VA, GA, Subs ) ,
eva l body (R, Subs , T) ,
not head in body (R, Subs ) .

head in body (R, Subs ) :−
causa l judgement head (R, VC) ,
ru le body (R, VA) ,
ground atom (VC, GC, Subs ) ,
ground atom (VA, GC, Subs ) .

Program 3.8: Determining when an atom is derived with certainty

The ’head in body’ predicate ensures that a rule does not count as an explanation if it
already presupposes the truth of the head. This prevents the construction of theories with
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’fake generalizability’. For example, the series of numbers from the interlude might be
explained by the following theory, in which the first rule generates a trace, and all other
rules act to ’derive’ an atom with certainty, but can only do so under presupposition of its
truth:

R =



∃x p(x).
f irst number(x) ∧ p(x) ∧ first number(y) → p(y).

f irst number(x) ∧ succ(x, x 1) ∧ p(x 1)

∧ succ(x, y) → p(y).

. . .


this example then also shows why the ’head in body’ predicate is necessary, even though the
original system already prevents rules from having the same variable atom in the head and
body, since different variable atoms can produce the same ground atom.

Now for each validation atom that is one of several possibilities provided by a ’causal judge-
ment’, I identify the substitution that produces this atom and record the different choices
that could have been made for the same ’ground’:

d i f f e r e n t o p t i o n (R, Subs , Val , T, Notval ) :−
va l i d a t i o n exp l ana t i on (R, Subs , Val , T) ,
causa l judgement head (R, VC) ,
same ground (R, Subs , D i f f ) ,
eva l body (R, Di f f ,T−1) ,
ground atom (VC, Val , Subs ) ,
ground atom (VC, Notval , D i f f ) ,
Val != Notval .

v a l i d a t i o n exp l ana t i on (R, Subs , Val , T) :−
va l i d a t i o n (Val , T) ,
causa l judgement head (R, VC) ,
ground atom (VC, Val , Subs ) ,
eva l causa l judgement body (R, Subs , T−1) ,
p o s s i b l e s ub s (R, Subs ) .

same ground (R, Subs1 , Subs2 ) :−
i s c au sa l j udgement (R) ,
u s e r u l e (R) ,
p o s s i b l e s ub s (R, Subs1 ) ,
p o s s i b l e s ub s (R, Subs2 ) ,
subs ( Subs2 , V, O) :
ru l e ground (R, V) , subs ( Subs1 , V, O) .

p o s s i b l e p r e d i c t i o n s (Val , T, P) :−
va l i d a t i o n exp l ana t i on (R, Subs , Val , T) ,
P = #count {Notval : d i f f e r e n t o p t i o n (R, Subs , Val , T, Notval ) } .

Program 3.9: Counting alternative choices for validation atoms

Here the ’possible subs’ predicate ensures that only substitutions that agree with the ’per-
manent’ background knowledge are taken into considerations. For example, if the rule is
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of the form p(x) → ∃y(y > x ∧ r(x, y)), then if x = 2, substitutions that assign 0, 1 or 2
to y do not count as possible choices. This predicate was also used to delimit the domain
of possible choices in Program 3.5. Note that one ’validation atom’ can be predicted by
different rules, or even different substitutions for the same rule, so that there can be several
numbers of ’possible predictions’. I select the most precise explanation as the minimum over
all explanations in a theory, and then select the program that minimizes these minima:

minimum number of choices (GA, T, C) :−
va l i d a t i o n (GA, T) ,
C = #min { P : p o s s i b l e p r e d i c t i o n s (GA, T, P) } .

#minimize {C @ 3 , GA, T : minimum number of choices (GA, T, C) , C != #sup } .

:− va l i d a t i o n (GA, T) , not p o s s i b l e p r e d i c t i o n s (GA, T, ) .

Program 3.10: Minimizing the number of choices for validation atoms

Given the sensory sequence from the interlude, the AE now produces the following two
equivalent theories of equal cost:

θ1 :
I = {p(0)}
R = {p(x) ⋔ ∃y(succ(x, y) ∧ p(y))}

θ2 :
I = {p(0)}
R = {p(x) ∧ succ(x, y) ⋔ p(y)}

3.5 Example behavior

I provide the AE with a sensory sequence that can be explained using the example causal
judgement from section 2:

”If x is illuminated by y between time t and time s and s − t > d and the temperature
of x at t is v, then there exists a w such that the temperature of x at s is v + w and
v + w > c.” (Achourioti & van Lambalgen, 2011, p.8)

In the system that is described in this chapter, time is a sequence of natural numbers,
and causal rules operate from time t to time t + 1. Hence, s − t is always 1. In the next
chapter I put forward an approach to resolve this. Here, the main point of interest is however
the application of geometric logic to find structure in ’vague’ sequences that can be explained
by ’assertion under a universal condition’: the sequence of individual numbers is subsumed
universal rules through the condition of being larger than some threshold value.

Recall that for the original AE, templates are of the form (ϕ,N→, N⋔ , NB), where ϕ is a type
signature and the other three arguments are natural numbers representing the number of
static rules, causal rules, and maximum body atoms. In our extended setting, templates are
now instead defined as (ϕ,N→, N⋔ , NCJ , NB, NH), where the two added arguments represent
the maximum numbers of causal judgements and head atoms.
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Example 2. I provide the AE with the following sensory sequence:”

S1 = {temp(rock, 0), sunlight on(rock)}
S2 = {temp(rock, 5), not sunlight on(rock)}
S3 = {temp(rock, 2), not sunlight on(rock)}
S4 = {temp(rock, 1), sunlight on(rock)}
S5 = {temp(rock, 7), sunlight on(rock)}
S6 = {temp(rock, 8), not sunlight on(rock)}
S7 = {not sunlight on(rock)}
S8 = {sunlight on(rock)}
S9 = {sunlight on(rock)}
S10 = {not sunlight on(rock)}

The sensed atoms sunlight on(rock) and not sunlight on(rock) are ’exogenous’, meaning that
the AE is not asked to predict when the sun shines on the rock. Instead, the task for the AE
is to find a theory that explains the temperature of the rock, given the information of when
the sun shines on it. I provide the following validation atoms, where the i again represent
time steps:

V7 = {temp(rock, 3)}
V8 = {temp(rock, 2)}
V9 = {temp(rock, 7)}
V10 = {temp(rock, 9)}

The template from which theory construction is executed is the following:

Φ =



T = {rock, number},

O = {i : number; 0 ≤ i ≤ 9} ∪ {obj rock : rock}

P = {temp(rock, number), threshold(number),
less(number, number), first number(number)

succ(number, number)}

V = {X : rock, Y : number, Z : number}



N→ = 0

N⋔ = 0

NCJ = 4

NB = 2

NH = 2

As explained before, and as was the case in the original AE, the numerical relations ’succ’,
’less’ and ’first number’ are provided as permanent background knowledge, together with
input restrictions preventing an object from having multiple temperatures at the same time.
This is then the theory constructed by the AE:

I =
{
temp(rock, 0), threshold(4)

}
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R =



sunlight on(X) ∧ temp(X, Y )

⋔ ∃Z less(Y, Z) ∧ temp(X,Z),

sunlight on(X) ∧ threshold(Y )

⋔ ∃Z less(Y, Z) ∧ temp(X,Z),

not sunlight on(X) ∧ temp(X, Y )

⋔ ∃Z less(Z, Y ) ∧ temp(X,Z),

not sunlight on(X) ∧ threshold(Y )

⋔ ∃Z less(Z, Y ) ∧ temp(X,Z),


△

Together with the knowledge that objects cannot have two temperatures, these rules then
amount to the example causal judgement. The temperature at time 11 is predicted at 1, but
could have been any value below the threshold of 4. If the system would have been given
another template, containing an extra variable and allowing for the existence of rules with 3
atoms in both head and body, it could have constructed a single rule of the following form:

sunlight on(X) ∧ temp(X, Y ) ∧ treshold(Z) ⋔ ∃Wless(Y,W ) ∧ less(Z,W ) ∧ temp(X,W )

Unfortunately, the structure of the AE is such that working with templates of this form
requires a lot of memory. The AE finds the trace of a theory by generating all possible
substitutions for each group of variables. If the templates allows for the usage of 3 numerical
values in a single rule, of which the domain ranges over 10 numbers, this thus means that
103 substitutions have to be taken into account throughout the process of trace construction.
A smarter way of working with variable substitutions is needed to solve this issue, but this
is not in the scope of this thesis.
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Chapter 4

Figurative Synthesis and Time

4.1 Introduction

”Space, represented as an object ... contains more than the mere form of intuition, namely
the comprehension of the manifold given in accordance with the form of sensibility in an
intuitive representation, so that the form of intuition merely gives the manifold, but the
formal intuition gives unity to the representation. In the Aesthetic I ascribed this unity
merely to sensibility, only in order to note that it precedes all concepts, though to be sure
it presupposes a synthesis, which does not belong to the senses but through which all con-
cepts of space and time first become possible. For since through it (as the understanding
determines sensibility) space or time are first given as intuitions, the unity of this a priori
intuition belongs to space and time, and not to the concept of the understanding (B161n)

This notorious footnote at B161 of CPR is a much debated cornerstone of Kant’s con-
ception of space and time (e.g., (Falkenstein, 2018)). The Transcendental Aesthetic paints a
picture of space and time as (singular) forms. Here, space and time are instead themselves
considered objects, and associated with ”comprehension of the manifold”. There are two
apparent contradictions springing from this dichotomy that must be addressed before we
can try to implement Kantian space and time in a computational system. Firstly, it seems
contradictory that time and space are both objects and non-objects. Kant is quite explicit in
stating that ”form of intuition, ... is in itself not an object, but the mere formal condition of
one” (A291). Secondly, Kant’s claim that the unity of space and time ”precedes all concepts”
seems difficult to place in his general framework. We have seen that in the Kantian system
all synthesis is grounded in the understanding, as Kant clearly claims in B161: ”all synthesis,
through which even perception itself becomes possible, stands under the categories”. How
can synthesis simultaneously precede all concepts and be determined by the understanding?

The first paradox is addressed two sections earlier, although indirectly. After having identi-
fied figurative synthesis with the transcendental synthesis of the imagination, and associating
it with productive imagination Kant states the following:

”Apperception and its synthetic unity is so far from being the same as the inner sense that
the former, rather, as the source of all combination, applies, prior to all sensible intuition of
objects in general, to the manifold of intuitions in general, under the name of the categories;
inner sense, on the contrary, contains the mere form of intuition, but without combination
of the manifold in it, and thus it does not yet contain any determinate intuition at all, which
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is possible only through the consciousness of the determination of the manifold through the
transcendental action of the imagination (synthetic influence of the understanding on inner
sense)” (B154).

Formal intuitions are thus the source of combination, applying to a manifold of intuition
a priori, while the form of intuition does not yet contain any combination or even any
determinate intuition. While space and time as objects represent the spontaneity of the un-
derstanding, as ”condition under which all objects of our (human) intuition must necessarily
stand” (B151), space and time as forms thus represent the unactualized structure with which
all synthesis of apprehension must be in agreement. In this sense space and time affect our
experience both as unified objects and forms.

An answer to the second paradox requires a more thorough understanding of the figura-
tive synthesis or transcendental synthesis of the imagination; a process that was identified
as missing in the AE in chapter 2, and that brings forth space and time as formal intuitions.
In the A-deduction, Kant associates this process with the pure syntheses of apprehension
and reproduction, which are themselves inseparably combined. Both association and repro-
duction are necessary to ”draw a line in thought” or ”think of the time from one noon to the
next” (A102). In the B-deduction, he further defines the synthesis of apprehension as ”the
composition of the manifold in an empirical intuition, through which perception ... becomes
possible” (B160), and notes subsequently that it must be in agreement with the forms of
intuition, space and time, which as formal intuitions condition this apprehension (B161).
The pure figurative synthesis and the unity of space and time as objects thus underlie the
possibility of empirical apprehension. Now being unified objects, space and time must in
turn stand under the transcendental unity of apperception and hence the categories. We
thus see that sensibility as a capacity for representations that can be unified under concepts
(i.e., related to objects), must be receptive to affections from outside, as well as from inside
through the figurative synthesis as the ”source of all combination”. Following this interpre-
tation, space and time are then the ’most original’ effect of the understanding on sensibility,
grounding the apprehension of a manifold that is to be reflected under concepts through the
functions of judgement. They thus precede any determinate concepts, and hence also the
categories as the universal representations of synthesis under concepts, even though the figu-
rative synthesis is itself a ”determination of sensibility by the understanding” (Longuenesse,
2020, p.223).

It is then clear that a formal model of Kant’s cognitive architecture must assign a central role
to figurative synthesis. A pre-conceptual determination of sensibility by the understanding
must constitute space and time as pure objects and thereby structure intuition for it to be
represented under concepts. The aim of this chapter is to provide a computational implemen-
tation of this process. In the second, third and fourth sections, I introduce a mathematical
model of temporal synthesis through event structures, following work done by Riccardo
Pinosio (2017). The mathematical arguments in these sections are however written with the
aim of computational implementation in mind, so that mathematical analysis occasionally
makes way for evaluation of the proposed computational system within the mathematical
framework. In the fifth and sixth sections I then properly describe the mechanics of this
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system which I name the Figurative Apperception Engine (FAE): a domain-general
system that makes sense of perception in a manner that takes figurative synthesis and the
formal intuition of time seriously. In the next chapter I extend this approach to space.

4.2 Temporal event structures

4.2.1 Structure of the form of intuition

Before formally representing time as formal intuition and form of intuition, I recall the struc-
tural desiderata that follow from the Critique. In the second chapter, I emphasized that time
for Kant is infinitely divisible as well as essentially singular, so that ”every determinate mag-
nitude of time is only possible through limitation of a single time grounding it” (B48). I
also noted that time as a whole (formal intuition) grounds succession and simultaneity as
relations among perceptions in time. Now these relations can themselves be associated with
time as form of intuition, as Kant explains in the transcendental aesthetic:

”the time in which we place these representations, which itself precedes the consciousness
of them in experience and grounds the way in which we place them in mind as a formal
condition, already contains relation of succession and simultaneity, and of that which is si-
multaneous with succession (of that which persists). Now that which, as representation, can
precede any act of thinking something is intuition and, if it contains nothing but relations,
it is the form of intuition, which, since it does not represent anything except insofar as
something is posited in the mind, can be nothing other than the way in which the mind is
affected by its own activity” (B68).

Times in time

Associating time as form of intuition with relations of succession and simultaneity, one may
ask what the relata should be. In the AE, these are points of time represented by natural
numbers. This conflicts with Kant’s claim that time is infinitely divisible. If time is con-
structed bottom-up from its points, an infinite set of points must be represented to generate
an infinitely divisible time. Kant rather adhered to a top-down conception of potential in-
finity: times can always be divided into smaller times.

”The property of magnitudes on account of which no part of them is the smallest (no part
is simple) is called their continuity. Space and time are quanta continua because no part of
them can be given except as enclosed between boundaries (points and instants) thus only in
such a way that this part is again a space or a time. Space therefore consists only of spaces,
time of times. Points and instants are only boundaries, i.e., mere places of their limitation.”
(A169)

Since parts of time are then themselves times, the relata of time must be extended limi-
tations of time as a whole.
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Succession and moments

While the aim is then to move beyond a representation of times in terms of points, it seems
that there must still be some form of succession in the input to constrain the search space,
like the natural numbers of subjective time do for the original AE. The claim that succession
in intuition is essential for its synthesis is not at all opposed to Kant’s framework, in which
moments in time ground the representation of intuition as manifold:

”Every intuition contains a manifold in itself, which however would not be represented
as such if the mind did not distinguish the time in the succession of impressions from one
another; for as contained in one moment no representation can ever be anything other than
absolute unity” (A99).

We have to be careful however not to mistake this succession for a ’property of the in-
put’, independent of the faculty of sensibility. This would not at all fit with Kant’s aims
expounded in the first chapter. Instead, the succession must itself be grounded in the activ-
ity of the subject. The following explanation of Beatrice Longuenesse is clarifying:

“The time mentioned here is not that of a succession of impression we might suppose to
be given “in itself”, prior to even the act of apprehension. The temporality we are dealing
with here is generated by the very act of apprehending the manifold.” (Longuenesse, 2020,
p.37)

In the upcoming sections I explain how the Figurative Apperception Engine can
actively construct a temporal succession of moments in the process of apprehension and
reproduction. Still, the practical question of how we should structure the input to constrain
the search space remains difficult to answer conclusively. Ideally, we would like to provide the
FAE with a continuous stream of input, guided by motion, “as action of the subject”(B155),
but this is not feasible in the current setup. The system does not receive sensation as result
of its own motion, and since it is built in ASP we have to provide atomic facts (or atomic
sensory determinations as in (Evans, 2020, Ch.5)) as its input. One feasible approach is then
to maintain the numerical ordering that characterizes input for the original AE. Maintaining
the same input format allows sensible comparison between the old and new system. How-
ever, for the FAE this input ordering is then merely a starting point from which a small set
of logical relations is derived, and the system actively ”runs through and take together this
manifoldness” (B155) to construct its own independent representation of moments. Still, the
reader may rightfully argue that a numerical ordering is not at all a sensible representation
of an unprocessed continuous stream. How should we imagine our artificial agent to count
its sensation before its reception in sensibility? To address this concern I also allow input to
be given as partial event structure, a term that will be made clear in the next section. This
latter format shows more directly how the FAE can use partial temporal structure in the
input to construct its own temporal representation of sensation.
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4.2.2 A temporal axiom system

Having established that our temporal form of intuition should be a relational structure be-
tween times, one must decide which relations and axioms can be used to ensure that our time
adequately represents the form of inner sense from the Critique. Importantly, this form must
be a ’determination of sensibility by the understanding’, so that any a priori structure must
be in accordance with the categories, thereby grounding the applicability of the categories
to inner sense:

”the understanding, as spontaneity, can determine the manifold of given representations
in accord with the synthetic unity of apperception, and thus think a priori synthetic unity
of the appperception of the manifold of sensible inuition, as the condition under which all
objects of our (human) intuition must necessarily stand, through which then the categories,
as mere forms of thought, aquire objective reality” (B151)

I here use the system developed by Pinosio as the ’logic of Kant’s temporal continuum’
(2017). This system makes use of the primitive binary relations O,R+ and R−. Here, O
represents an overlap of temporal events, and is derived from Kant’s description of simul-
taneity as ”existence of the manifold at the same time” (B257). aR−b holds if and only if
event a ends before or simultaneously with event b, and aR+b holds if and only if a begins
after or simultaneously with b. Events are thus compared in terms of both their beginnings
and endings. This framework is then rich enough to capture Kant’s discussion of causality
at B248: a cause can begin before or simultaneous with its effect, but the arising of the
effect is always simultaneous with the causality of the cause. From the primitive relations
an additional covering relation ⪯ is defined. The axiom system is then as follows:

1. Definition of covering:
a ⪯ b↔ aR−b ∧ aR+b.

2. Reflexivity and symmetry of overlap:

a aOa

b aOb→ bOa

3. Conditions for overlap:
cOb ∧ cR+a ∧ bR−a→ aOb

4. Transitivity:
aR+b ∧ bR+c→ aR+c

5. Conditional transivitiy for O
aOc ∧ cOb ∧ cR+b ∧ cR+a→ aOb

6. Linearity
bR+a ∨ aR+b

7. Covering axiom
∃c(a ⪯ c ∧ b ⪯ c)
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8. Substitution principle
Any sentence obtained from the above axioms by replacing R− by R+ and R+ by R−.

An event structure is a tuple W = (W,R+, R−, O,⪯) satisfying the above axioms with W
finite. A first interesting property of these axioms in the light of the previous chapter is
that they are all geometric implications, and only axiom (6) makes use of a disjunction in
the consequent. It is also clear that time is ’potentially infinite’ in this formalism, since new
events can be added between two existing events in a structure ad infinitum, resulting in
more and more fine-grained temporal models. Importantly, the system can be explained as
a ”determination of sensibility by the understanding”. The first three axioms seem to follow
from any intuitive interpretation of ’covering’ and ’overlapping’, but the correspondence of
the latter 4 axioms with the Kantian system needs a bit more elaboration. Transitivity
can be defined as a composition of reproduction by the imagination: if a is reproduced in
the present during which b is produced (aR−b) and b is reproduced in the present during
which c is produced (bR−c), then these reproductions must necessarily be composed so that
aR−c. This necessity of composition is grounded by the category of causality, of which Kant
states that it determines succession in time, and which itself conveys transitivity in chains of
causation. The linearity axiom insists that any two events are comparable as existing in the
same time. No two temporal acts of synthesis could produce distinct timelines. This axiom
follows from the category of community, under which ”all appearances, as contained in a
possible experience, must stand” (A214/B261). This category is often considered as ground
for simultaneity through reciprocal influence, but can in the same manner determine the
community of all appearances in one-dimensional time (A189/B232). The covering axiom is
unique in positing the existence of additional events from a priori grounds. It is grounded
in the category of substance as ”that which persists, ..., the substratum of the empirical
representation of time itself” (A183/B226). This axiom turns the preorder ⪯ into a directed
preorder, which for finite structures is equivalent to the existence of a maximal element or
universal cover, i.e., a representation of unbounded time. The substitution axiom expresses
a symmetry between past and future, so that any event structure might also be interpreted
as a ’reversed’ event structure where past and future are switched. The choice for a specific
orientation is however determined by causal laws, as is clear from the example behavior
provided at the end of this chapter.

The construction provided by Pinosio further contains the binary operators ⊕ and ⊖ which
produce causal futures and causal pasts. Intuitively, a⊕ b is the unique maximal event that
begins after both a and b, and ends simultaneously with a, if such an event exists. It thus
represents the part of a that can be causally influenced by b. Since the introduction of
these operators results in a combinatorial explosion of events, they are not included in the
FAE. Instead, causal influence is expressed in terms of the temporal relation between events
directly.

The objective for the FAE is then to represent sensation in time by constructing event
structures. It will do so starting from either a sequence of atoms associated with natural
numbers, or a partial event structure, where the latter is a tuple W = (W,R+, R−, O,⪯)
which does not need to satisfy any of the temporal axioms. The missing atomic relations
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may then be decided either positively or negatively to produce a full event structure. One
may easily see that there always exists an event structure W ′ = (W ′, R′

+, R
′
−, O

′,⪯′) such
that the elements ofW are subsets of the elements ofW ′, since none of the axioms enforce the
negation of an atomic formula. I then call the latter an extension of W and write W ⊆W ′.
Whether there exists a sensible extending event structure, i.e. one where lamps are not on
and off at the same time, is however not at all certain, and must be determined by the FAE.
Before going through examples of input and sensible temporal structures, I must however
first say more about the structure of time and unification from a mathematical point of view.

Boundaries and intervals

An additional concept featuring in the temporal system introduced above is that of a bound-
ary (Pinosio, 2017, p.115). Boundaries are an important tool to represent moments as
separating connected limitations of time.

Definition 10. A boundary is a tuple (P,C, F ) of sets of events, where:

1. P,C, F ⊆ W

2. F ∪ C ∪ F = W

3. If P = ∅ or F = ∅ then C = ∅

4. P is closed under R−

5. F is closed under R+

6. No events in P and F overlap

7. Every event in C overlaps with an event in P and an event in F .

Intuitively, we can think of boundaries as dividing event structures in a past, current and
future. A boundary thus delimits past and future, but condition 7 ensures that it also links
the two. Furthermore, for every pair of temporally separated events, i.e., non-overlapping
events a, b such that aR−b, there exists a boundary (P,C, F ) with a ∈ P, b ∈ F (Pinosio,
2017, p.114). If the latter holds, we also say that a and b are separated by a boundary.
We can then interpret boundaries as the moments that Kant described as ”succession of
impressions”, following his claim that time consists of times and ”points and instants are
only boundaries, i.e., mere places of their limitation” (A170/B212). Now given an event
structure W , we can consider the set of all its boundaries B(W) and order them so that
(P,C, F ) ≤ (P ′, C ′, F ′) iff P ⊆ P ′. Pinosio has then shown that the ≤ relation is a total
linear order, i.e. a total relation that is reflexive, transitive and antisymmetric (Pinosio,
2017, p.116).

Given the representation of moments or ’places of limitation’ as boundaries, we may in-
vestigate the times that they delimit. Pinosio denotes these as intervals. Boundaries and
intervals are jointly referred to as instants :

Definition 11. An instant is a tuple (P,C, F ) of events where:
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1. P,C, F ⊆ W

2. P ∪ C ∪ F = W

3. P is closed under R−

4. F is closed under R+

5. No events in P and F overlap

6. Every two events in C overlap

7. P ∩ C = ∅ and F ∩ C = ∅

8. For any a ∈ C there is b such that aOb and ¬bOc for all c ∈ P

9. For any a ∈ C there is b such that aOb and ¬bOc for all c ∈ F

One can then check that all boundaries are instants. Furthermore, it can be shown that
an instant is not a boundary if and only if F ⊂ {w ∈ W : ¬∃p ∈ P wOp} (Pinosio, 2017,
p.120). If the latter condition holds, we instead name our instant an interval. We can define
a jump between boundaries as a pair of boundaries (x, y) ∈ B(W) such that x < y and there
exists no z such that x < z < y. Then importantly, the jumps between boundaries are in
one-to-one correspondence with the intervals:

Proposition 1. Given event structure W with boundaries B(W), there exists a bijection j
from the jumps to the set of intervals such that j(x, y) = (Px, C, Fy), where C = (Px ∪ Fy)

c.

Proof. In (Pinosio, 2017, p.122)

Hence, every interval is the fleeting time between two adjacent points. As is the case for
boundaries, there exists a complete linear ordering between the intervals I(W) where i ≤ i′

iff Pi ⊆ Pi′ . We can also find a complete linearly ordered lattice of the set of instants K(W)
where x ≤ y iff Px ⊆ Py∧Fy ⊆ Fx. Under this ordering then, for every two boundaries x < y
there exists an interval i such that x < i < y, and for every jump (x, y) there is exactly one
such i. In this sense the intervals then function as a ’glue’ between boundaries, preventing
the existence of the ’jumps’ or ’clefts’ in time that Kant rejected:

”There is nothing simple in appearance, hence no immediate transition from one determinate
state (not of its boundary) into another [...] a hiatus, a cleft, is a lack of interconnection
among appearances, where their transition is missing.” (R.4756, 17:699)

Now returning to our computational context, it is of importance that from an event structure
W , a numbered sequence of atoms can always be constructed by numbering the intervals in
I(W) according to their linear ordering. Hence, if we allow the FAE to construct sensory
sequences and traces as event structures, it can make sense of the input in a manner that
includes that of the original AE: time as event structure can be reduced to time as natural
numbers.
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4.3 Figurative synthesis and formal intuition

If temporal manifolds are represented as event structures, the synthesis of apprehension
and reproduction can be represented as a process of constructing, merging, refining and
reproducing these event structures. In the previous chapter, geometric logic was intro-
duced as the logic of objectively valid formulas on inverse systems, where the inverse limit
constitutes the transcendental object. This framework can also be applied to event struc-
tures. Pinosio constructs an inverse system of event structures using retractions : functions
f : W → W ′ from event structures to substructures such that f(a) = a and such that all
relations R+, R−, O,⊕,⊖ are preserved. Proving that any two event structures W ,W ′ are
subsumed by a third event structureW ′′ from which there exist retractions toW andW ′, he
shows that any collection of event structures can be unified into a single temporal structure
WU . The inverse limit of such a system can then be associated with the formal intuition of
time as transcendental object. Since the axioms given in the previous section are structured
in geometric logic this then gives a very satisfactory representation of objective temporal
structure through figurative synthesis. This approach hinges however on the result that re-
tractions always exist from event structures to substructures. Since I do not make use of the
operators ⊕ and ⊖, this is unfortunately no longer the case. This is shown by figure 4.1:

a

b c

W

a

b

W ′

Figure 4.1: W ′ is a substructure of W , but there exists no retraction from W to W ′.

Since aR−c and cR+b, there is no event in W ′ to which c can be mapped while preserving
the relational structure. I thus opt for an alternative approach. Instead of constructing
an inverse system I represent synthesis of apprehension and reproduction for the FAE as
a system of embeddings and associate time as formal intuition with the direct limit of
this system. Embeddings are then functions f : W ′ → W such that for every relation
R ∈ {R+, R−, O,⊕,⊖}: W ′ |= R(a1, a2) iff W |= R(f(a1), f(a2)). The ’Homomorphism
Preservation Theorem’ then applies (Rossman, 2008) :

Theorem 2. A first order formula is preserved under finite homomorphisms on all structures
if and only if it is equivalent to a geometric formula.

The truth of geometric formulas is thus preserved in the process of embedding event struc-
tures. Now to guarantee a form of global consistency, the embeddings must satisfy a condition
of amalgamation:

Definition 12. A system of event structures related by embeddings satisfies the amalgama-
tion condition if for any event structureW with embeddings f :W → V and g :W → U there
exist event structure K and embeddings f ′ : V → K, g′ : U → K so that f ′(f(a)) = g′(g(a))
for all a ∈ W .
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Let W |= □ϕ(d) if for all event structures W ′ such that embedding f :W →W ′ exists it is
the case thatW ′ |= ϕ(f(d)), and dually define ♢. Then note that if we assume the existence
of reflexive embeddings, by the preservation theorem ϕ↔ □ϕ holds for geometric formulas.
Amalgamation now ensures that ♢□ϕ → □♢ϕ holds for each event structure and formula
ϕ. I further insist that there exists a maximal element of the structure, which together with
the amalgamation condition ensures unification:

Definition 13. A set of event structures related by embeddings satisfies the unification con-
dition if and only if for each event structure and formula ϕ: □♢ϕ→ ♢□ϕ.

Note that I do not require ϕ to be geometric, since for geometric ϕ the formula □♢ϕ→ ♢□ϕ
directly follows from reflexivity and ϕ → □ϕ, without the need for amalgamation and a
maximal element. In what follows the maximal temporal structure is termed WU ; the result
of figurative synthesis, which is to be unified by conceptual judgement. It is again a finite
event structure, since it is constructed from merging finitely many finite event structures
and only adding finitely many additional events at each embedding.

Unification through embeddings for the FAE

I now more concretely address the system of embeddings constructed by the FAE, and
subsequently the construction of the direct limit, as alternative for the inverse limit. The
FAE starts with a set of ’initial’ partial event structures. The event structures are partial
because only some of the atomic relations in these event structures have been determined by
the input, and the complete event structured are produced later in the process of temporal
unification. The term ’initial’ here means that the event structures are the starting point of
the system of embeddings: each is embedded in another event structure, but none of them
is itself the image of a (non-reflexive) embedding. From these initial partial event struc-
tures a system of embedded event structures is constructed, with WU as maximal element.
Throughout this system, each non-initial event structure W is the image of two embeddings
f ′ : W ′ → W , f ′′ : W ′′ → W , where W ′,W ′′ are substructures of W . Furthermore, if input
is given with a sequence of natural numbers, W ′ and W ′′ are disjoint except for their cover
event, which must exist due to the 8th temporal axiom. This cover represents the whole
time-span of synthesis and is shared throughout all event structures in the system. If input
is given as partial event-structure,W ′ andW ′′′ might however share more events. The larger
system W must contains all events in W ′ and W ′′, but it typically also contains additional
’merged’ events that are added to unify the content of W ′ and W ′′ in a manner that allows
for conceptual interpretation. All embeddings are identity functions, i.e. f ′(e) = e for all
e ∈ W ′, which together with the property that all successors share a common successor and
the existence of a maximal element ensures satisfaction of the amalgamation and unification
conditions. The precise mechanism that constructs embeddings will be made more clear in
section 4.5. For now it is important however that we should not understand the FAE as con-
structing embeddings bottom-up from existing event structures as starting point. Instead,
the whole system of event structures is constructed in parallel. The search for a conceptual
theory has a top-down influence on the structure ofWU and hence on that of all event struc-
tures in the system, from which there must exist embeddings toWU . Conversely, the partial
structure of event structures that follows from the input has a bottom-up effect on WU and
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hence on the structure of the conceptual theory that makes sense of the input.

The reader might note that such a parallel construction of embeddings is opposed to the
successive nature of synthesis emphasized by Kant (A189). For example, one might con-
struct an event structure where an event a covers the whole duration of the synthesized
time, such as WU1 in figure 4.2. Now if one successively senses an event with a content that
cannot occur simultaneously with a, say ¬a, a problem occurs. Every embedding of WU1

and W2 into a merged event structure WU2 such that t1 is mapped onto the cover of WU2

must also have a as cover, contradicting that a does not overlap with ¬a. In words: if one
wants to add new senstations to the existing temporal structure by means of embeddings,
one might have to re-evaluate what was synthesized before.

t1

a

WU1

t2

¬a

?

W2

Figure 4.2: Issue with successive bottom-up embedding

In response to this issue, we must firstly be aware that the computational system currently
under consideration is still far off from the successive synthesis that Kant had in mind.
As noted before, the ASP framework requires us to provide a sensory sequence as a single
set. If we want to add an additional sensory atom, we have to begin the synthesis wholly
anew. Consequently, in the process of synthesis the FAE has the freedom to restrucure all
event structures so as to fit in WU , and it does not need to take some event structures as
’given’ starting points for a bottom-up construction. This then explains why this theoretical
tension with Kant’s conception of synthesis is not an issue for the functionality of the FAE.
Secondly, we can evaluate the mathematical framework by itself: does this issue imply
that the proposed system of embeddings can never represent Kant’s successive synthesis?
In this context we may note that the only event that prevents the embeddings from simply
performing a union operation is the temporal cover, that is shared across all event structures.
Hence, if one aims to embed new sensations in a temporal structure, while reproducing what
was synthesized before, the only necessary adjustment would concern the representation of
time as a whole. If the synthesis covers a larger time-span, the relation between time and
the manifold of sensation has to be adjusted accordingly, but the temporal orientation of
events corresponding to the reproduced sensations may remain the same. The adjustment
of structure that may be necessary in the process of reproduction thus seems to me to be
both sensible and manageable.

Direct limit and formal intuition

Now finally, I show how this system of embeddings can be intepreted as a partially ordered
set with a direct limit, following the general definition of direct limits on partially ordered

66



sets of structures (Hodges, 1993, Ch.2). Since the composition of two embeddings is an
embedding, and since all embeddings are identity functions, we can define an embedding
unambiguously between every two event structures W ,W ′ between which there exists a
sequence of embeddings as the composition of the sequence. If we then additionally add
the identity relations that embed each event structure in itself, the result is a partially
ordered set of event structures (E,≤) whereW ≤W ′ denotes the existence of an embedding
fWW ′ : W → W ′ in the system. Now following the structure of direct limits presented by
Hodges, we can write X for the union over the domain of all event structures, which is equal
to the domain of WU . Then, we define an equivalence relation ∼ as follows:

If a ∈ dom(W), b ∈ dom(W ′), then a ∼ b iff there exists W ′′ such that W ≤W ′′, W ′ ≤ W ′′

and fWW ′′(a) = fW ′W ′′(b)

In our context, this means a ∼ b holds if and only if a = b so that a∼ = {a}, since
all embeddings are identity functions. Now the direct limit B is defined over the set of
equivalence classes of ∼. Then for each system in the structure of embeddings W we define
an embedding hW : W → dom(B) by letting hW(e) = e∼. Now to ensure that the h maps
are embeddings we require:

b̄ ∈ RB iff there exists W ∈ E and ā ∈ W such that hW(ā) = b̄ and W |= R(ā)

This then in general gives the direct limit of a system of partially ordered structures, a
consistent representation of the structure of temporal structures as a whole, i.e., time as
formal intuition. Since, in the case of the FAE, each event structure in the system is
a substructure of WU , and since we have a∼ = {a} the equation above amounts to b̄ ∈
RB iff there exists ā ∈ WU such that hWU

(ā) = b̄ and WU |= R(ā) and b̄ consists of the
singleton sets of elements of ā. We can thus simply copy WU and replace all elements
in the domain of WU by their singleton sets to achieve the desired limit B: the unified
event structure representing formal intuition. Going back to what was said on form of
intuition and formal intuition in the introduction, we then have the form of intuition as
the temporal axioms that convey unactualized temporal structure with which all synthesis
in time must be in agreement. The system of reflexive embeddings under conditions of
amalgamation and unification can on the other hand be considered the source of combination
that applies to the manifolds of intuition. From its pure structure this system ensures the
existence of formal intuition as the unified whole WU , but in its empirical application the
same structure represents the manifold of intuition as manifold in time as do the syntheses
of apprehension and reproduction. Note that WU is a single structure that can be defined
by a single conjunction of atomic facts, highlighting the objective nature of formal intuition
as unity through necessary connection. We will further see thatWU is pre-conceptual in the
sense that it is only the starting point of conceptual unification, but is also determined by
this conceptual understanding, so that we may rightly name it the result of a pre-conceptual
synthesis.
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4.4 Topological interpretation

Before turning to the computational implementation, I discuss a topological interpretation
of event structures that sheds light on their correspondence with the Kantian system. First,
we need some definitions. As usual I denote with a topology τ on set X a family of subsets
of X (i.e., τ ⊆ P(X)) that is closed under finite intersections and arbitrary unions such
that ∅ ∈ τ,X ∈ τ . Sets in the topology are open, and complements of open sets are closed.
An Alexandroff topology is a topology that is additionally closed under infinite intersections.
Now let X be a preorder, i.e., the elements of X are related by a relation that is reflexive and
transitive, then the corresponding Alexandroff topology A≤ ⊆ P(X) is defined as follows:

Definition 14. The Alexandroff topology A≤ ⊆ P(X) is the set of all upsets of X, where
an upset is a set {x ∈ X : x ≥ s for some s ∈ S} generated by a set S ⊆ X.

Conversely, given an Alexandroff topology τ ⊆ P(X). One can define the specialization
ordering ⊑τ⊆ X ×X by letting x ⊑ y if U ∈ τ ∧ x ∈ U implies y ∈ U . Then the following
theorem was proven by Alexandroff (1937):

Theorem 3. For all preorders ≤ on a set X, ⊑A≤ =≤, and for all Alexandroff topologies
τ : A⊑τ = τ

Now note that the relations R+, R−,⪯ are preorders: reflexive and transitive relations, by
axioms (1) and (4). Hence, given an event structure, we can define Alexandroff topologies
A+ = AR+ ,A− = AR− ,A⪯, where the open sets are the sets closed under the relevant rela-
tion. Note that in the context of the previous section, the sets P,C, F of instants are open
sets of A−,A⪯ and A+ respectively.

We can make use of this topological interpretation to analyse our temporal structure with
respect to Kant’s claim that time is connected, i.e. parts of time, which are themselves
times (A32), ”can be distinguished, but not separated” (R.4425, 17:541) and ”every deter-
minate magnitude of time is only possible through limitations of a single time grounding
it”(B48). In topology, connectedness is usually defined as the condition that no two disjoint
non-empty open sets (or equivalently two disjoint closed sets) together form the whole space.
Now following Pinosio (2017), we may compare several topological connectedness conditions
on event structures with Kant’s notion of non-separable time. A first observation is then the
following:

Lemma 4. For any two open sets A,B of A+, either A ⊆ B or B ⊆ A, and the same holds
for open sets of A−.

This directly implies that the spaces A+ and A− are connected, but these are only the
distinct spaces of ’future’ sets and ’past’ sets. A more interesting result compares both
topologies:

Definition 15. Event structure W is biconnected if there are no non-empty sets U ∈
A+, V ∈ A− such that U ∩ V = ∅ and U ∪ V = W

Lemma 5. All finite event structures W are biconnected
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Proof. In (Pinosio, 2017), for event-structures with ⊕,⊖, but easily seen to hold here as
well. By the covering axiom, there exists a maximal event t such that e ⪯ t for all e ∈ W (a
universal cover for W). We have t ∈ U or t ∈ V , implying U = W or V = W so that V = ∅
or U = ∅, a contradiction.

An even stronger notion of connectedness however makes use of the join topology A+ ∨A−,
which is the topology that has A+ ∪ A− as subbase (i.e., A+ ∨ A− is the smallest topology
containing A+ ∪A−). The open sets of A+ ∨A− are the closed sets of A⪯. The closed sets
are conversely the upsets of ⪯. The existence of a universal cover then also directly implies
the following, since any two closed sets of the join topology contain the representation of
time as a whole:

Definition 16. A topological space is ultra-connected if any two non-empty closed sets have
non-empty intersection.

Lemma 6. Event structures with the A+ ∨ A− topology are ultra-connected.

This provides a formal correlate for Kant’s claim that time cannot be made up of its parts.
Given event structure W we can identify the ⪯ downset generated from event a ∈ W (↓⪯ a)
as a part of W . Note that this is an open set of the join topology, and is also itself an event
structure, representing Kant’s claim that parts of time are themselves times. The following
proposition then follows from the ultra-connectedness of A+ ∨ A−:

Proposition 2. Let W be an event structure with the τ = A+∨A− topology. Consider open
sets U, V ∈ τ such that W = U ∪ V . Then either U = W or V = W . Thus, time is not a
union of its proper parts.

Proof. Suppose U ̸= W,V ̸= W . Then the closed sets W \ U,W \ V are non-empty, so that
they must by ultra-connectedness have non-empty intersection, contradicting that U ∪ V =
W .

Note that ultra-connectedness hinges on the universal cover. This warrants an interpretation
of this universal cover as ”representation of time itself” (A183/B226), of which the parts are
only given by limitation (B48). It is then by virtue of time as a whole, as represented
within the formal intuition WU , that the structure of time is a unity that cannot be made
up of its parts. The covering axiom and the structure of embeddings introduced in section
4.3 ensure that this universal cover is indeed constructed as a pure object: the result of
synthesis a priori. We have now associated two mathematical entities with Kant’s times in
time. Intervals are minimal extended entities delimited by two boundaries. These fleeting
times between moments ensure the flowing of time and prevent the existence of clefts. The
downsets of A⪯ are instead parts of time with the same mathematical structure as time as
a whole (i.e. an event structure). They show how a temporal extension may be divided
into smaller extensions, but only so that the parts cannot make up the whole. Each of
the two mathematical notions thus highlights a distinct aspect of Kant’s views on temporal
connectedness.
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4.5 Implementation

The temporal structure introduced above is fundamentally different from that of the original
AE. The implementation thus takes the form of a wholly new system, rather than an exten-
sion. I hence provide a more coarse-grained overview than in the previous chapter, leaving
out the precise coding structure in some cases and in other cases providing code blocks with-
out an extensive explanation. For the reader experienced with ASP some of the programs
might seem unnecessarily complicated. In these cases, the coding structure was almost al-
ways prompted by reasons of computational efficiency: I have restricted the domain of choice
where possible to make the burden for the system lighter, thereby making the burden for the
reader heavier. Firstly, I explain how the unified event structureWU is constructed from the
input. Then, I turn to the notion of ’making sense’, which now corresponds to the covering
of WU by a conceptual event structure WT generated by theory T .

4.5.1 Events and Manifolds

Starting with input as a sequence of sensory atoms with natural numbers, each atom is
associated with an ’event’ representing an act of apprehension and reproduction. Events
occurring at the same position in the input ordering are placed in a ’manifold’, which is an
event structure. The system thus constructs a ’manifold of manifolds’ which ”distinguishes
the time in the sequence of one impression upon another” (A99). The event structures
constructed in this manner are then embedded or ’merged’ into larger event structures as
explained in section 4.3. Events are numbered and manifolds are represented as tuples (x, y),
where x represents the input ordering index and y represents the depth in the process of
combination. The events constructed from the input are thus initially placed in manifolds
(t, 0) where t represents the input index:

i n p u t s i z e (X) :− X = #count {C ,T : s en s e s (C, T) } .

max time (X) :− X = #max {T : s en s e s ( , T) } .

s ub j e c t i v e t ime (1 ) .
s ub j e c t i v e t ime ( I+1) :− s ub j e c t i v e t ime ( I ) , max time (X) , I<X.

po s i n t u i t e v e n t ( 1 . . 2 ∗X) :− i n p u t s i z e (X) .

s ensed atoms at t ime (T,C) :− s ub j e c t i v e t ime (T) ,
C = #count {X : s en s e s (X,T) } .

s ensed upto (1 , 0 ) .

sensed upto (T+1, C+X) :− sensed upto (T, C) ,
s ensed atoms at t ime (T,X) , s ub j e c t i v e t ime (T+1) .

% Assign ’ i n t u i t i o n ’ to events with the same content ,
% us ing ’ sensed upto ’ to r e s t r i c t the domain o f cho i c e .
s en s e i npu t ev en t (E, Content , T) : p o s i n t u i t e v e n t (E) , E > X, E <= X+Y :−

s en s e s ( Content , T) , sensed upto (T, X) ,
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s ensed atoms at t ime (T, Y) .

% Assign events to mani fo lds .
has event ( (T, 0 ) , E) :− s en s e i npu t ev en t (E, , T) .

i n t u i t e v e n t (E) :− has event (M, E) ,
p o s i n t u i t e v e n t (E) .

Program 4.1: Event construction and assignment to manifolds

Here, ’pos intuit event’ identifies the domain of events available to the system, which is set
at twice the size of the input, leaving room for the process of combination in which additional
events can be constructed.

4.5.2 Time for events

To place the events in a temporal structure, a sequence of choice rules and constraints imple-
ments the axioms introduced in section 4.2. The relations R+, R− and O are named ’r after’,
’r before’ and ’time overlap’ and are generated by means of choice rules:

1 { r a f t e r (E1 , E2) ; r a f t e r (E2 , E1) } :− event (E1) , event (E2) .

1 { r b e f o r e (E1 , E2) ; r b e f o r e (E2 , E1) } :− event (E1) , event (E2) .

{ t ime ove r l ap (E1 , E2) } :− event (E1) , event (E2) .

Program 4.2: Generation of temporal relations

The first two rules also implement the linearity axiom (6). Axioms (1) up to (5) and their
counterparts produced by substitution are straightforwardly represented by constraints on
the relations, which is not shown here. The covering axiom (7) is implemented by construc-
tion of a universal cover, the object representing time as a whole that covers all intuition in
time:

t ime ove r l ap (E1 , E2) :−
s en s e i npu t ev en t (E1 , , T) , s en s e i npu t ev en t (E2 , , T) .

t ime cove r event (2∗X+1) :− i n p u t s i z e (X) .

t ime cove r s (T,E) :− t ime cove r event (T) , i n t u i t e v e n t (E) .

Program 4.3: Construction of the temporal cover

I further define relations ’r strictly before’ as R−(a, b) ∧ ¬R−(b, a) and ’r strictly after’ like-
wise.

4.5.3 Contents

Events are given a content as well as a time. This results in an important distinction with
the system used by Pinosio, in which events with the same time are made identical by an
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’extensionality’ axiom:
a ⪯ b ∧ b ⪯ a→ a ≡ b

I instead allow events at the same time to be distinguished on the basis of their contents,
and insist that events can have at most one content. Since events are extended in time,
their content is however not a single formula in predicate logic, but an ’alteration’ in the
sense of Kant’s first analogy of experience. For the FAE, alterations are either changes in
properties represented by a unary predicate (for instance, on(light) changes to off(light),
represented by (light, (on, off))), changes represented by a binary predicate (for instance
close(agent, wall) changes to far(agent, wall), represented by (agent, wall, (close, far))), or
changes in a numerical value associated with a binary predicate (for instance temp(water, 2)
changes to temp(water, 5), represented by (temp,water, (2, 5))). Each content is character-
ized by the states at the beginning and end of the event, or its ’beginning content’ and
’ending content’. If the beginning and ending content are the same an event is called stable.
The events constructed directly from the atoms in the input are then always stable, since
alterations are only constructed in the process of combination:

has content (E, s (O, (C,C) ) ) :−
s en s e i npu t ev en t (E, s (C,O) , ) .

has content (E, s2 (O1,O2 , (C,C) ) ) :−
s en s e i npu t ev en t (E, s2 (O1,O2,C) , ) .

has content (E, s2v (C,O, (V,V) ) ) :−
s en s e i npu t ev en t (E, s2v (C,O,V) , ) .

Program 4.4: Derivation of contents from input

I provide a number of axioms to enforce consistency on events and their contents. For
instance, ’incompossible’ events that exclude each other cannot overlap in time, events that
start at the same time and refer to the same object and property must have the same
beginning content (where for instance ’on’ and ’off’ are different values for the same property),
and different directions in numerical alterations cannot overlap (e.g., temperature cannot rise
and fall at the same time). Since this requires quite a long program, a complete overview of
these constraints is given in the appendix:

4.5.4 Input as partial event structure

I now show how the FAE can take partial event structures as input, so that no counting of
times has to be done before the reception of sensation in sensibility. As explained before,
partial event structures do not yet need to satisfy all temporal axioms. I thus simply provide
a set of atomic relations between sensations as input such as:

R+ ((light, on), 1), ((light, off), 1)

O (light, on), 1), ((light, off), 1)

R− ((above, lamp, table), 1), ((light, off), 2)

. . .
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The numbers 1, 2 are here merely used to distinguish distinct tokens of the same type, i.e.
distinct sensations with the same content. We might just as well have used a, b, c or −100, 3.4
etc.. Given this partial event structure, the FAE must distinguish the sensory atoms and
produce a complete event structure to construct its own temporal succession:

input ( (C, I ) ) :− r b e f o r e ( (C, I ) , ) .
input ( (C, I ) ) :− r b e f o r e ( , (C, I ) ) .
input ( (C, I ) ) :− r a f t e r ( (C, I ) , ) .
input ( (C, I ) ) :− r a f t e r ( , (C, I ) ) .
input ( (C, I ) ) :− t ime ove r l ap ( (C, I ) , ) .
input ( (C, I ) ) :− t ime ove r l ap ( , (C, I ) ) .

1 { r b e f o r e ( I1 , I2 ) ; r b e f o r e ( I2 , I1 ) } :−
input ( I1 ) , input ( I2 ) .

1 { r a f t e r ( I1 , I2 ) ; r a f t e r ( I2 , I1 ) } :−
input ( I1 ) , input ( I2 ) .

{ t ime ove r l ap ( I1 , I2 ) } :− input ( I1 ) , input ( I2 ) .

Program 4.5: Construct an event structure from the partial structure in the input

Then, the FAE identifies boundaries in this event structure. Since definition 10 is quite
cumbersome as a whole I reduce the task to finding pairs of events that are arbitrarily close
in the following sense:

Proposition 3. Given event structure W and boundary b = (P,C, F ) such that P ̸= ∅, F ̸=
∅, there exists at least one event p ∈ P and f ∈ F such that ¬pOf , pR−f and no event
begins or ends in the space between p and f . I call such p, f arbitrarily close.

Proof. We may firstly note that R+ and R− form total preorders (i.e. relations that are
transitive and total) on finite domains. A total preorder ≲ on a finite domain X always has
at least one largest element x such that ∀y ∈ X : y ≲ x. To see this, we may simply take an
arbitrary element a ∈ X. If it is not a largest element, there must by totality exist b ∈ X
such that a ≲ b and by transitivity ∀a′ ∈ X such that a′ ≲ a we have a′ ≲ b. If b is not a
largest element we continue this process. Since X is finite the process must halt at a largest
element. In our context then, there must exist p ∈ P such that ∀x ∈ P : xR−p and f ∈ F
such that ∀y ∈ F : yR+f .

Now by properties 4 and 6 of definition 10 we have ¬pOF and ¬fR−p, so that by lin-
earity pR−f . Now finally, suppose that there exists an event e ending in the space between
p and f . Then since ¬eR+f , while f is a largest element of F we have e ̸∈ F . Since ¬eR−p,
while p is the largest element of P we have e ̸∈ P . Thus, e ∈ C. But then by property
7 of definition 10 there exists f ′ ∈ F such that eOf ′. Since f is a maximal element of F
then f ′R+f . Furthermore, since e ends before f we have eR−f . Now we can apply temporal
axiom 3 with a = f, b = e, c = f ′ to derive eOf , contradicting that e ends in the space
between p and f . Thus, no event can end in the space between p and f . By a symmetric
argument also no event can begin in this space.

The reader may easily check that furthermore any two arbitrarily close events are separated
by a unique boundary. This can be seen directly by defining C as the set of all events
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overlapping with both p and f . The system thus identifies pairs of arbitrarily close events
to find boundaries, and subsequently identifies jumps between pairs of successive boundaries
in the ordering of proposition 1

ex i s t s end be tween ( I1 , I2 ) :−
input ( I2 ) , input ( I2 ) , input ( I3 ) ,
r a f t e r ( I2 , I1 ) , not t ime ove r l ap ( I1 , I2 ) ,
r s t r i c t l y b e f o r e ( I1 , I3 ) , not r a f t e r ( I3 , I2 ) ,
not t ime ove r l ap ( I3 , I2 ) .

e x i s t s b eg i n be tween ( I1 , I2 ) :−
input ( I1 ) , input ( I2 ) , input ( I3 ) ,
r a f t e r ( I2 , I1 ) , not t ime ove r l ap ( I1 , I2 ) ,
r s t r i c t l y a f t e r ( I2 , I3 ) , not r b e f o r e ( I3 , I1 ) ,
not t ime ove r l ap ( I3 , I1 ) .

a r b i t r a r i l y c l o s e ( ( I1 , I2 ) ) :−
input ( I1 ) , input ( I2 ) , r a f t e r ( I2 , I1 ) ,
not t ime ove r l ap ( I1 , I2 ) , not ex i s t s b eg i n be tween ( I1 , I2 ) ,
not ex i s t s end be tween ( I1 , I2 ) , not b ound a f t e r a l r e a dy e x i s t s ( I1 ) ,
not bound be f o r e a l r e ady ex i s t s ( I2 ) .

b ound a f t e r a l r e a dy e x i s t s ( I1 ) :−
a r b i t r a r i l y c l o s e ( ( I3 , I4 ) ) , I3 != I1 ,
r b e f o r e ( I1 , I3 ) , r b e f o r e ( I3 , I1 ) .

b ound be f o r e a l r e ady ex i s t s ( I2 ) :−
a r b i t r a r i l y c l o s e ( ( I3 , I4 ) ) , I4 != I2 ,
r a f t e r ( I2 , I4 ) , r a f t e r ( I4 , I2 ) .

l e s s ( (A1 ,A2) , (B1 ,B2) ) :−
a r b i t r a r i l y c l o s e ( (A1 ,A2) ) , a r b i t r a r i l y c l o s e ( (B1 ,B2) ) ,
r b e f o r e (A1 ,B1) , not r b e f o r e (B1 ,A1) .

jump(A,B) :−
l e s s (A,B) ,
not l e s s (C,B) : a r b i t r a r i l y c l o s e (C) , l e s s (A,C) .

Program 4.6: Identify boundaries and jumps

From the jumps between boundaries a linear ordering is constructed and associated with
natural numbers. Then finally, given a jump between two pairs of arbitrarily close events
((p1, f1), (p2, f2)), any event e such that ¬eR−p1∧¬eR+f2 is placed in the associated interval.
The number of this interval is then the number of its upper bound. The starting and ending
interval are treated appropriately, so that interval 1 lies before the first pair of arbitrarily
close events. The intervals now have the same function as the input succession in the previous
sections: events are placed in one or multiple manifolds (x, 0) where x is the number of their
interval. Importantly, all temporal relations of the input event structure are maintained in
the manifolds (x, 0), and thus also in the unified temporal representation WU . We must
note again however that like the construction of embeddings described in section 4.3, this
process is not properly described bottom-up. The processes of sensibility and understanding
are executed jointly, so that the FAE also structures the event structure it builds from the
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input in a manner that fits with a conceptual theory.

4.5.5 Merging and alteration

Manifolds are combined by means of embeddings as explained in section 4.3. Given two
event structures (manifolds) W and W ′, the combined manifold W ′′ is constructed, where
W ∪W ′ ⊆ W ′′. The sequence of embeddings is such that every two event structures are
embedded in a common event structure, and their exists a maximal element, so that the
amalgamation and unification conditions from definitions 12 and 13 are satisfied. I have
chosen for the structure represented in figure 4.2 to minimize the number of embeddings, but
any alternative structure is possible that satisfies the conditions of global consistency. If a
succession with natural numbers is given in the input, this constrains the possible orientation
of events in the combined manifolds with the following relations:

If e and f are constructed from the same input position,

then eOf .

If e is constructed from an input position after that of f ,

then f starts before e ends: eOf ∨ fR−e.
1

Note that if the succession was constructed actively by the FAE as interval these relations
already follow directly. Any two events in the same interval overlap (6 of 11). Further,
if e is in an interval (P1, C1, F1) after (P2, C2, F2) containing f then either e, f must also
be in a shared interval so that eOf , or f ∈ P1 so that fR−e. These are then the only
logical ’constraints of the search space’ associated with the input succession. Note that
conversely these logical constraints do not at all determine the temporal succession in the
unified representation WU . Even if an input ordering is given, this is only the starting point
of the succession through moments and intervals that the FAE builds. For instance, if e is
associated with input position 4 while f is associated with input position 3, it might very
well still be the case that e and f cover each other in the final construction, or that e begins
before f so that e ∈ Ci f ∈ Cj for intervals i = (Pi, Ci, Fi) < (Pj, Cj, Fj) = j.

W1W2

W ′

W3
· · · Wn

Wu

W ′′

. . .

Figure 4.3: System of embeddings constructed by the FAE
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In this process of combining manifolds, alteration events are constructed as ’merged events’.
If two events in the embedded manifolds represent different states of the same object, an event
of alteration is assumed to exist between them. Suppose for example that manifold (x1, y1)
contains event e with content light(on, on) and manifold (x2, y2) where x1 < x2 contains event
f with content light(off, off). Note that by the constraints on incompossible contents, e
and f cannot overlap. By the above then eR−f since f is after e in the input ordering, i.e. e
must end before f starts. There must thus exist an event g with content light(on, off), that
starts after e ends, and ends before f begins. Of course, not all events with incompossible
contents must be connected in such a way. For example if (x1, y1) also has an event e′ with
content light(on, on) before e, we do not also want to construct an alteration between e′ and
f . The code that constructs merged manifolds and selects events to merge can be found in
the appendix. I only include the program here that constructs contents for merged events
and determines the temporal position of events in merged manifolds:

t ime ove r l ap (E1 , E2) :−
s en s e i npu t ev en t (E1 , , T) ,
s en s e i npu t ev en t (E2 , , T) , E1 != E2 .

% The f i r s t argument o f ’ merged manifold ’ and ’ merged event ’
% r ep r e s en t s the merged ob j e c t i t s e l f , whi l e the l a t t e r two
% rep r e s en t i t s source ob j e c t s .
t ime ove r l ap (E1 , E2) :−

merged manifold (A, B, C) , has event (B, E2) ,
has event (C, E2) , not r b e f o r e (E1 , E2) .

has content (E3 , s (O, ( C2 ,C3) ) ) :−
merged event (E3 , E1 , E2) ,
has content (E1 , s (O, ( ,C2) ) ) ,
has content (E2 , s (O, ( C3 , ) ) ) .

has content (E3 , s2 (O1,O2 , ( C2 ,C3) ) ) :−
merged event (E3 , E1 , E2) ,
has content (E1 , s2 (O1,O2 , ( ,C2) ) ) ,
has content (E2 , s2 (O1,O2 , ( C3 , ) ) ) .

has content (E3 , s2v (C,O, (V2 ,V3) ) ) :−
merged event (E3 , E1 , E2) ,
has content (E1 , s2v (C, O, ( , V2) ) ) ,
has content (E2 , s2v (C,O, (V3 , ) ) ) .

:− merged event (E3 , E1 , ) , t ime ove r l ap (E3 , E1) .

:− merged event (E3 , , E2) , t ime ove r l ap (E3 , E2) .

r s t r i c t l y a f t e r (E3 , E1) :−
merged event (E3 , E1 , ) .

r s t r i c t l y b e f o r e (E3 , E2) :−
merged event (E3 , , E2) .

Program 4.7: Assign content to merged events

76



When this process of merging manifolds has been completed, the sensory sequence has been
transformed into a single unified event structure Wu, the result of apprehension and repro-
duction in time; the representation of the manifold of intuition as manifold. Note that if the
system is not given an input, WU only contains the universal cover: time as a whole. In this
sense then, the formal intuition of time is the result of pure figurative synthesis.

4.5.6 Making sense of event structures: definitions

The next task at hand is now to provide unity under concepts to the pre-conceptual mani-
fold. Judgements must be constructed that explain the sensed input. Since time is however
no longer a sequence of natural numbers, we cannot define the extension of ’arrow rules’ and
’causal rules’ as was done for the original AE. In fact, the whole definition of ’making sense’
based on the covering of a sequence S = (S1, . . . , Sn) by a trace is no longer applicable.
To construct judgements that can explain event structures I define a new language con-
tentlog that replaces datalog. It contains two types of rules: causal rules and regular
successions. Causal rules determine a relation between events of cause (c) and effect (e). In
the intended use of contentlog, the latter is always an alteration event which is directly
followed by a stable event f so that e and f are arbitrarily close.

While Kant insists that a causal rule is ”this necessitation that first makes possible the
representation of a succession in the object” (A197), he also recognises that in many cases
cause and effect are simultaneous with one another:

”The majority of efficient causes in nature are simultaneous with their effects, and the
temporal sequence of the latter is occasioned only by the fact that the cause cannot achieve
its entire effect in one instant. But in the instant in which the effect first arises, it is always
simultaneous with the causality of its cause” (A203/B248)

I thus insist that e ⪯ c: the cause covers the alteration that is its direct effect, and in
the instant where e first arises, it is simultaneous with the causality of c. Since the state
resulting from the alteration event e is represented by the stable event f , we might also
name f the indirect effect of c. Note than that a causal rule indeed determines a succession
between c and f in the sense that f must begin strictly after e begins.

Causal rules in contentlog are intended to represent efficient causality in nature. They
relate causes with their simultaneous effects. The causal rules of the original AE on the
other hand determine that a state A is regularly succeeded by state B, but do not iden-
tify the cause of the transition between A and B. They identify a ’regular succession’, but
do not attempt to explain the underlying mechanism of change. This more parsimonious
representation of causation is however better suited to the tasks solved by the original AE,
which are generally of a logical or game-theoretic nature. The behavior of cellular automata
for instance, follows a system of regular succession between states, without any underlying
mechanism of causation. To allow the FAE to still solve problems of this kind, I also include
rules of ’regular succession’.
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Definition 17. An unground content is of the form (x, (p, q)), (x, y, (p, q)). (p, x, (v1, v2)),
(p, x, up), or (p, x, down) where x, y are variables, p, q are predicate symbols, v1, v2 are con-
stants representing numbers and ’up’ and ’down’ are constants with a fixed interpretation.

Definition 18. A rule in contentlog is of one of two forms:

α0 ←RS α1

α0 <<CR α1

Where α0, α1 are unground contents. A rule of the first form is a regular succession, and a
rule of the second form is a causal rule.

Programs are then sets of rules as usual. A strong limitation is of course that these rules
only allow for a single body atom. This significantly eases the application of the language to
event structures since events have a single content, but might very well be resolved in later
work. I now provide alternative definitions for theories, traces and ’making sense’:

Definition 19. A theory for the FAE is a three-tuple T = (ϕ, I, R) where:

1. ϕ is a type signature (T,O, P, V ) as for the original AE.

2. I contains ground atoms, representing the partial state of the world at the beginning of
time.

3. R is a set of rules in contentlog, where the heads of causal rules always represent
alterations, the heads of regular successions only have contents of the form (x, (p, q)),
(x, y, (p, q)) where x, y are variables, and no two causal rules have the same bodies.

The last few conditions in (3) are added to ensure that theories provide satisfying expla-
nations, although one might argue for different conditions in different applications. I insist
that changes in numerical values can never be explained by the regular successions that were
included to solve problems of a logical nature, so that the FAE must provide a causal mech-
anism to explain them. I further insist that no two causal rules may have the same body to
persuade the FAE to develop fine-grained explanations. For instance, if a boat passes under
a bridge, this causes the bridge to open, which causes traffic lights to switch to red, which
causes cars to stop etc.. If I allow the same body to occur in multiple causal rules the FAE
can explain all these effects from the single cause ’a boat passes under a bridge’, without
identifying the more fine-grained mechanism.

Definition 20. Given a theory T = (ϕ, I, R), its trace is an event structure WT where:

1. For each atom α in I, there exists an init event e ∈ WT with stable content correspond-
ing to α, such that ∀f ∈ WT : fR+e.

2. For each ground instance r of a regular succession in R, if there exists an event e ∈ WT

with the body of r as content, then there exists an alteration event f ∈ WT with the
head of r as content, unless the head of r is of the form (p, o, up) or (p, o, down), in
which case f has content (p, o, (v1, v2)) so that v1 < v2 or v2 > v2 respectively. Further,
fR+e and e and f are arbitrarily close.
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3. For each ground instance r of a causal rule in R, if there exists an event e ∈ WT with
the body of r as content, then there exists an event f ∈ WT with the head of r as
content, unless the head of r is of the form (p, o, up) or (p, o, down), in which case f
has content (p, o, (v1, v2)) so that v1 < v2 or v2 > v2 respectively. Further, f ⪯ e.

4. For each alteration event e ∈ WT , there exists a stable event f ∈ WT such that the
ending content of e is the beginning content of f , fR+e, and e and f are arbitrarily
close.

5. WT only contains events of which the existence is warranted by conditions (1) to (4),
under the constraint that every event has a single content.

6. For every event e ∈ WT that is not an init event, there exists a unique predecessor
event f ∈ WT such that the end of the content of f is the beginning of the content of
e, eR+f and f and e are arbitrarily close.

7. If event e ∈ WT with content ce = (o, (c1, c2)) overlaps with event f ∈ WT with content
(o, (c3, c4)) such that c3, c4 represent the same property as c1, c2, then eR+f implies
c1 = c3 ∨ c1 = c4 and eR−f implies c2 = c3 ∨ c2 = c4.

8. If event e ∈ WT with content ce = (o1, o2, (c1, c2)) overlaps with event f ∈ WT with
content (o1, o2, (c3, c4)) such that o1, o2 are objects and c3, c4 represent the same prop-
erty as c1, c2, then eR+f implies c1 = c3∨c1 = c4 and eR−f implies c2 = c3∨c2 = c4.

9. If event e ∈ WT causes event f ∈ Wt, then e does not cover any predecessor of f in
the sense of condition (6).

Condition (6) is the analogue of the frame axiom in the originalAE. It ensures that an event e
with content (color, (green, green)) continues until an event f with content (color, (green, x)
starts. Here x is then a concept that is incompatible with ’green’. In this manner the frame
axiom and constraints that are core for the original AE are still essential, although the
current system does not yet have the capacity to generate constraints itself as part of its
theories. Conditions (7) and (8) ensure thatWT is not ambiguous. During an alteration from
open(bridge) to half open(bridge), there is no overlap with a third value, say closed(bridge)
inWT . This does not constrain the overlap with events inWU though. An alteration event e
with content bridge(open, closed) inWU might very well be explained by a set of three events
with respective contents bridge(open, half), bridge(half, half) and bridge(half, closed) in
WT . Condition (9) ensures that a cause does not cover a sequence of alterations of which
only the last is its effect: if e causes the temperature to rise, it is generally not sensible that
when e starts the temperature falls, and the rising of the temperature only starts when e is
at its end. Clearly, theories have multiple traces, although the number of events and the set
of contents is always the same. As in the previous chapter, we require that at least one of
these traces explains the input.

Definition 21. Theory T makes sense of event structure WU if it has a trace WT such that:

1. For every event e ∈ WU with content (o, (p, q)) there exist events e1, e2 ∈ WT such
that e1 has content (o, (p, r)) for some predicate r, e2 has content (o, (s, q)) for some
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predicate s, O(e, e1), O(e, e2), R+(e, e1), R−(e, e2). Of course, e1 and e2 might be equal,
in which case p = s, r = q.

2. For every event e ∈ WU with content (o1, o2, (p, q)) there exist events e1, e2 ∈ WT such
that e1 has content (o1, o2, (p, r)) for some predicate r, e2 has content (o1, o2, (s, q))
for some predicate s, O(e, e1), O(e, e2), R+(e, e1), R−(e, e2). Of course, e1 and e2 might
be equal, in which case p = s, r = q.

3. For every event e ∈ WU with content (p, o, (v1, v2)) there exists an event e1 ∈ WT with
content (p, o, (v3, v4)) so that v1 <= v2 implies v3 <= v4. v1 >= v2 implies v3 >= v4,
the interval [v1, v2] is enclosed in the interval [v3, v4], and e ⪯ e1.

4.5.7 Making sense of event structures: code

The generation of terms, rules, variables and substitutions from a template ϕ is very similar
to that of the original AE and is thus not discussed in detail here. An important distinction

is of course that rules are now generated in contentlog instead of datalog

⋔

, which
requires rewriting of the whole backbone of the AE that facilitates language construction
and substitution. The interested reader may look at the code itself. I now however only
discuss a few interesting parts of the code that generates a traceWT following definition 20.
A more extensive overview of this process is given in the appendix. Firstly, generation of
events following conditions (1), (2), (3) and (4) is done by means of choice constructs:

1 { r e g u l a r s u c c e s s i o n (R, Subs , E1 , E2) : pos concept event (E2) , E1<E2}1:−
concept event (E1) ,
i s r e g s u c c r u l e (R) ,
r u l e s ub s (R, Subs ) ,
eva l body (R, Subs , E1) ,
not end ing concept event (E1) .

1 { causes (R, Subs , E1 , E2) : pos concept event (E2) , E1 < E2}1:−
concept event (E1) ,
i s c a u s a l r u l e (R) ,
r u l e s ub s (R, Subs ) ,
eva l body (R, Subs , E1) ,
not end ing concept event (E1) .

1 { s t a b i l i s e s ( s (O, ( C1 ,C2) ) ,E1 , E2) : pos concept event (E2) , E1 < E2}1 :−
concept event (E1) ,
has content (E1 , s (O, ( C1 ,C2) ) ) ,
C1 != C2 .

1 { s t a b i l i s e s ( s2 (O1,O2 , ( C1 ,C2) ) ,E1 , E2) : pos concept event (E2) , E1 < E2}1 :−
concept event (E1) ,
has content (E1 , s2 (O1,O2 , ( C1 ,C2) ) ) ,
C1 != C2 .

1 { s t a b i l i s e s ( s2v (C,O, (V1 ,V2) ) ,E1 , E2) : pos concept event (E2) , E1<E2}1 :−
concept event (E1) ,
has content (E1 , s2v (C,O, (V1 ,V2) ) ) ,
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V1 != V2 .

Program 4.8: Choosing event tokens for contents that follow from causation, regular
succession or stabilisation

Based on these choices, the events are then assigned the contents following from the relevant
rule and substitution or the event that is ’stabilised’. The following program then enforces
that events are arbitrarily close to their successors:

f u tu r e ev en t (E1 , E2) :−
r a f t e r (E1 , E2) , not t ime ove r l ap (E1 , E2) .

ex i s t end between (E1 , E2) :−
concept event (E2) , not i n i t e v e n t (E2) , concept event (E1) ,
concept event (E3) , f u tu r e ev en t (E2 , E1) , r s t r i c t l y b e f o r e (E1 , E3) ,
not r a f t e r (E3 , E2) , not t ime ove r l ap (E3 , E2) .

ex i s t b eg in be tween (E1 , E2) :−
concept event (E2) , not i n i t e v e n t (E2) , concept event (E1) ,
concept event (E3) , f u tu r e ev en t (E2 , E1) , r s t r i c t l y a f t e r (E2 , E3) ,
not r b e f o r e (E3 , E1) , not t ime ove r l ap (E3 , E1) .

boundary between (E1 , E2) :−
concept event (E2) , not i n i t e v e n t (E2) , concept event (E1) ,
f u tu r e ev en t (E2 , E1) , not ex i s t b eg in be tween (E1 , E2) ,
not ex i s t end between (E1 , E2) .

:− s t a b i l i s e s ( , E1 , E2) , not boundary between (E1 , E2) .
:− r e g u l a r s u c c e s s i o n ( , , E1 , E2) , not boundary between (E1 , E2) .

Program 4.9: Defining closeness

The remaining conditions from definition 20 mostly correspond to relatively simple con-
straints. Finally, it must be assured that T makes sense of WU . As an example, the first
condition of definition 21 is partly implemented by a clause of the following form:

:− i n t u i t e v e n t ( IE ) , not has cover ( IE ) .

has cover ( IE ) :− has concept cove r ( IE , ) .

% Content beg in covered and content end covered
% are t rue o f the beg inning or r e s p e c t i v e l y ending contents are equal .
ha s concept cove r ( IE , (CB,CE) ) :−

i n t u i t e v e n t ( IE ) , concept event (CB) ,
concept event (CE) ,
con t en t beg in cove r ed ( IE , CB) ,
content end covered ( IE , CE) ,
t ime ove r l ap ( IE , CB) ,
t ime ove lap ( IE , CE) ,
r a f t e r ( IE , CB) , r b e f o r e ( IE , CE) .

Program 4.10: Determining when an event with content of the form (o, (p, q)) is conceptually
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covered

I have also left out the translation from contents of the form (c, o, up) to contents of the form
(c, o, (v1, v2)), which is a guess over the domain of numerical constants.

4.6 Example behavior

Example 3. The FAE is given a template (ϕ,Ni, Ne, NRS, NCR), where ϕ is a type signature,
and the remaining arguments now determine the maximum numbers of init atoms, events in
the trace of a constructed theory, regular successions and causal rules. As a starter, I apply
the FAE to one of the simple example problems for the original AE:

S1 = {}
S2 = {off(sensor a), pa(sensor b)}
S3 = {on(sensor a), pa(sensor b)}
S4 = {off(sensor a), pa(sensor b)}
S5 = {}
S6 = {off(sensor a), pa(sensor b)}

But I add one additional sensation: S7 = {off(sensor a)}. The provided template is the
following:

Φ =



T = {sensor 1, sensor 2},

O = {sensor a : sensor 1, sensor b : sensor 2}

P = {off(s 1), on(s 1), pa(s 2),

pb(s 2), pc(s 2)}

V = {s 1 : sensor 1, s 2 : sensor 2}



Ni = 2

Ne = 16

NRS = 2

NCR = 0

And the constraints in the input:

C =

{
∀x : sensor 1 (on(x) XOR off(x))

∀y : sensor 2 (pa(y) XOR pb(y) XOR pc(y))

}

The originalAE solves the task without S7 with a theory where I = {on(sensor a), pa(sensor b)}
and R contains two causal rules: {on(sensor a) ⋔ off(sensor a)} and {off(sensor a) ⋔

on(sensor a)}. The FAE finds a similar theory, but now also constructs event structureWU

and trace WT :

I =
{
off(sensor a), p a(sensor b)

}
R =

(s 1, (on, on)→RS (s 1, (on, off))

(s 1, (off, off))→RS (s 1, (off, on))
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Figure 4.4: WT andWU for example 3, i denotes a minimal interval including two sensations
that are successive in the input ordering.

△

Note that WU and WT in fact together constitute a single event structure, in which every
intuition event in WU is covered or ’explained’ by an event in WT that follows from the
conceptual theory. WT also continues beyond the time of input inWU , providing predictions
of future sensations from the conceptual structure.

Let’s recall how WU and WT have been constructed. For reasons of clarity I use a slightly
procedural terminology to explain the program as if it operates step by step, but it is im-
portant to note that the whole system program is in fact solved as a single set of logical
constraints. The FAE constructs 6 manifolds from the input, each of which contains the sta-
ble events associated with the sensations in the corresponding input position. The events in
each of these manifolds must overlap with each other. Now a sequence of ’merged’ manifolds
is constructed to which there exist embeddings. For instance, manifolds (1, 0) and (2, 0) are
embedded into manifold (1, 1), which is a copy of (2, 0) since (1, 0) only contains the temporal
cover. Now (1, 1) and (3, 0) are embedded into a manifold (1, 2). Since the FAE then finds
that sensation off(sensora) is followed in the input ordering by on(sensora), and since it
knows by the constraints in C that an object cannot be both on and off at the same time,
it deduces that the stable event corresponding to on(sensora) must end strictly before the
stable event corresponding to off(sensora) starts. The space of possible temporal structures
is constrained by the contents of the constructed events. Furthermore, the FAE deduces
that there must exist an alteration event in WU with content (sensora, (off, on)) between
the two stable events, representing s change from off to on. Note that at this point, (1, 2)
also contains two events with content (sensorb, (pa, pa)), but the precise temporal structure
of these events, e.g. whether or they cover the alteration from off to on or each other, has
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not been determined. Iterating this process then produces the final manifold (1, 5) which
contains all events in WU and their contents. Again, the precise temporal structure of WU

has to a large extent not been determined at this point. For instance, whether the two last
sensations of off(sensora) should be represented as sensations of the same stable state, as
is done in WU , or as two distinct stable states between which other alterations might have
occurred, is decided in the process of making sense through WT .

Now for constructing the trace WT , the FAE must find suitable init atoms and rules that
can be constructed from ϕ, the resulting events must then cover all events in WU . The init
atoms mus correspond with the ’earliest’ events in WT . The FAE decides on off(sensora)
as an init atom, and uses it to cover the first event with content (sensora, (off, off)).
Other choices are also possible. For instance, if it had resulted in a simpler conceptual ex-
planation the FAE could have hypothesized that sensora was first on, and a sequence of
changes had happened before the first sensation off(sensora). Now the FAE hypothesis
that pa(sensorb) is true initially and does not change, producing a single conceptual event
with content (sensorb, (pa, pa)) that explains all corresponding sensations. The FAE also
finds two rules of regular succession, explaining how stable events are regularly succeeded by
alteration events. These alteration events must in turn always be followed by stable events
following definition 20. Note that each of the associated pairs of concept events are arbi-
trarily close and hence separated by unique boundaries; no event begins or ends in the space
between the pair. The concept events then ’explain’ the sensations through temporal cover-
ing. Note that the two last events in WU with content (sensora, (off, off)) are interpreted
as a single stable event, which allows their covering under a single stable concept event with
the same content. Furthermore, they also fall within the same interval i. The succession in
the input ordering is thus not translated into an objective succession via the covering inWT

nor in a succession of moments in the manifold of intuition WU).

I now provide a more complicated example, showing how the FAE can model processes
of efficient causation. The FAE is asked to derive the mechanics of a basic coffee maker.
The relevant objects are ’water’ and ’maker’. The intended interpretation of the sensory
sequence is that an agent switches the coffee maker from ’off’ to ’on’, after which the water
moves through different stages and different temperatures until coffee is produced. The ac-
tion of activating the coffee maker needs not be explained, so the FAE is given an ’exogenous
action’ (maker, (off, on)) between input positions 1 and 2, that gives rises to an event in
WT , without following from the theory. However, the precondition of this action (the maker
being off) does require an explanation.
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Example 4.

S1 = {}
S2 = {basin(water), temp(water, 2)}
S3 = {temp(water, 6)}
S4 = {temp(water, 10)}
S5 = {vape(water)}
S6 = {temp(water, 5)}
S7 = {temp(water, 2)}
S8 = {filter(water)}
S9 = {on(maker), coffee(water)}
S10 = {off(maker)}

The provided template is the following:

Φ =



T = {liquid,machine},

O = {water : liquid,maker : machine}

P = {basin(y), vape(y), filter(y),
coffee(y), on(x), off(x)}∪
{temp(y, i) : 0 ≤ i ≤ 10)}

V = {x : machine, y : liquid}



Ni = 3

Ne = 15

NRS = 1

NCR = 5

And the constraints in the input:

C =

{
∀x : liquid (basin(x) XOR vape(x) XOR filter(x) XOR coffee(x))

∀y : maker (on(y) XOR off(y))

}
The FAE finds the following theory and event structures WU ,WT :

I =
{
off(sensor a), basin(water), temp(water, 2)

}

R =



(y, (on, on) >>CR (temp, x, up)

(temp, x, up) >>CR (x, (basin, vape))

(temp, x, (10, 10)) >>CR (x, (vape, filter))

(x, (filter, filter)) >>CR (temp, x, down)

(temp, x, down)→RS (x, (filter, coffee))

(x, (coffee, coffee)) >>CR (y, (on, off))
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Figure 4.5: Event structures for example 4, where w and m represent the objects ’water’
and ’maker’ respectively. All boundaries in WT are denoted by dotted lines, between which
the intervals of WT are enclosed.
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△

Again let’s go trough how WU and WT have been constructed. All events in WU are ei-
ther direct results of sensations, or produced by the FAE as transitions between sensations.
Note that each sensed temperature brings forth a distinct stable event. Again, some tem-
poral relations have been determined by the input. For instance, the event with content
(water, (basin, basin)) must overlap with the first event with content (temp,water, (2, 2))
since both come from the same position in the input ordering. The event with content
(water, (basin, basin)) must also start before the event with content (temp,water, (6, 6))
ends, since the latter is sensed later in the input ordering, but the larger part of temporal
relations must be chosen by the FAE to allow for conceptual interpretation. The exogenous
action (maker, (off, on)) between positions 1 and 2 gives rise to three events in WU . If
the maker is changed ’exogenously’ from off to on, it must have been off before the action,
and it must be on after the action, which primes two stable events. Note that only the
exogenous action itself however exists both in WU and WT since it need not be explained
conceptually. The stable events before and after the exogenous action do need a conceptual
explanation, and are thus covered by distinct events in WT . The init event with content
(maker, (off, off)) is produced by an init atom in the theory, and the event with content
(maker, (on, on)) is the stable event resulting from the alteration (maker, (off, on)). Note
that in the trace WT , the intervals between boundaries are very different from the input
ordering. For instance, a single interval enclosing (temp,water, (2, 10)) also contains mul-
tiple successive sensations of temperature. Note also that the stable event with content
(maker, (on, on)) that results from the exogenous action in WT is protracted to cover two
sensations. This allows this event to function as cause for the rising of the temperature
following the first rule since it covers the event in WT with content (temp,water, (2, 10)).
Finally, we can see that every event in WT is arbitrarily close to and hence separated by a
unique boundary from a later event so that the ending content of the former is the starting
content of the latter, with the exception of the events in the last interval. This ensures that
WT produces a complete explanation, there are no ’clefts’ in time in which the WT does not
determine the state of one of the objects.

I have included one regular succession in this example to show how both types of rules
can be applied in a single theory, but the alteration from ’filter’ to ’coffee’ could also have
been explained by a causal rule, such as (temp, x, (1, 1)) >>CR (x, (filter, coffee)). The
reader might note that the rules do not specify any binary relation connecting x and y.
The first rule thus strictly speaking states universally that if any machine is on, this causes
the temperature of any liquid to rise, but the interpretation is sensible due to the domain
restrictions for x and y. I have not implemented the possibility for including multiple atoms
in a body, so that rules of the form (y, (on, on)) ∧ (x, y, (in, in)) >>CR (temp, x, up)) that
restrict their applicability using binary relations can not yet be constructed. The FAE does
have the capacity to reason about ’intensities’ (numerical values) both on the level of specific
values and on the level of general directions (up and down).

Now finally, I provide an example where input is given as partial event structure

Example 5. I provide a partial event structure as input. Unfortunately the representation
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of a partial event structure as a set of formulas is quite cumbersome, but a representation
in the usual manner would be incorrect since this would suggest complete knowledge of the
temporal relations.

O ((speed, cart a, 0), 1), ((push, bot, cart a), 1)

R+ ((speed, cart a, 0), 1), ((push, bot, cart a), 1)

R− ((speed, cart a, 0), 1), ((push, bot, cart a), 1)

R− ((speed, cart a, 0), 1), ((speed, cart a, 0), 2)

R+ ((push, bot, cart a), 1), ((speed, cart a, 0), 1)

R− ((push, bot, cart a), 1), ((speed, cart a, 5), 1)

R− ((push, bot, cart a), 1), ((release, bot, cart a), 1)

R− ((speed, cart a, 5), 1), ((push, bot, cart a), 1)

O ((speed, cart a, 5), 1), ((push, bot, cart a), 1)

R− ((speed, cart a, 5), 1), ((release, bot, cart a), 1)

R− ((speed, cart a, 5), 1), ((speed, cart a, 0), 2)

⪯ ((speed, cart a, 5), 1), ((release, bot, cart b), 1)

R+ ((release, bot, cart a), 1), ((push, bot, cart a), 1)

R− ((release, bot, cart a), 1), ((speed, cart a, 0), 2)

O ((speed, cart a, 0), 2), ((release, bot, cart a), 1)

⪯ ((speed, cart a, 0), 2), ((release, bot, cart a), 1)

R+ ((speed, cart a, 0), 2), ((release, bot, cart a), 1)

R+ ((speed, cart a, 0), 2), ((speed, cart a, 5), 1)

R+ ((speed, cart a, 0), 2), ((speed, cart a, 0), 1)

⪯ ((release, bot, cart b), 1), ((push, bot, cart a), 1)

⪯ ((release, bot, cart b), 1), ((speed, cart a, 0), 1)

⪯ ((release, bot, cart a), 1), ((release, bot, cart b), 1)

⪯ ((release, bot, cart b), 1), ((speed, cart a, 0), 2)

Table 4.1: Input for example 5, missing atomic relations are interpreted as undetermined:
the FAE may decide whether they are true or false.

Note that this only determines a set of positive atomic formulas. If an atomic formula
R+(a, b) is not part of the input, the FAE must decide whether R+(a, b) or ¬R+(a, b) is the
case. Note further that the input only specifies temporal relations between sensations and

88



not events. As in the previous examples, the system constructs events with a stable content
from these sensations, before introducing alteration events to explain changing sensations.
The system is further provided with the following template and input constraint:

Φ =



T = {agent, cart},

O = {bot : agent, carta : cart, cartb : cart}

P = {push(x, y), release(x, y)}∪
{speed(y, i) : 0 ≤ i ≤ 10)}

V = {x : agent, y : cart}



Ni = 4

Ne = 12

NRS = 2

NCR = 2

C =
{
∀x, y : agent, cart (push(x, y) XOR release(x, y))

}
The FAE now first constructs an event structure WI from the input sensations, extending
the partial event structure from the input to an event structure, and identifying intervals.

Time

(push(bot,a),1)

(speed(a,0),1) (speed(a,5),1)

(release(bot,b),1)

(release(bot,a),1)

(speed(a,0),2)

WI

Figure 4.6: Event structure that extends the input, a, b denote cart a, cart b. Boundaries
are represented as dotted lines.

Note that each event is now labelled by a sensation instead of a content, and note that there
are two distinct sensations (speed, cart a, 0), distinguished by the token-indices 1 and 2. The
FAE has added atomic formulas such as r+( ((speed (cart a, 5)), 1), ((push, (bot, cart a)), 1))
and r−( ((speed (cart a, 0)), 1), ((speed (cart a, 5)), 1)), but most missing atomic formulas in
the input have been decided negatively. The reader may note however that a rather large part
of WI has been specified in the input. Unfortunately, trimming the input further requires a
working memory above the 16GB of a standard laptop, since the FAE must choose between
all possible extensions of the input on grounds of optimality on the level of WT via WU .
Now finally, the figure above shows that the FAE distinguishes 3 ’times’ as intervals in the
input. The sensations now give rise to stable events that are placed in the manifolds (x, 0)
associated with the intervals, i.e. x ∈ {1, 2, 3}. The temporal relations between sensations
are exactly the temporal relations between the associated stable events inWU , but of course
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WU also contains the merged events. The resulting theory and event structures are then as
follows:

I =
{
push(bot, cart a), push(bot, cart b), speed(cart a, 0), speed(cart b, 2)

}

R =


(x, y, (push, push)) >>CR (speed, y, up)

(x, y, (push, release)) >>CR (speed, y, down)

(x, y, (push, push))→RS (x, y, (push, release))


△

Time

WU

push(bot,a) push(bot,a)

WT

speed(b,2) speed(b,7)

release(bot,b) release(bot,b)

push(bot,a) push(bot,a)

speed(a,0) speed(a,0)

speed(a,0)

speed(a,5)

speed(a,5)

speed(a,5)

release(bot,b) release(bot,b)

push(bot,a) release(bot,a) release(bot,a) release(bot,a)

speed(a,0) speed(a,0)

speed(a,0)

speed(a,0) speed(a,10)

speed(a,10) speed(a,10)

push(bot,a) release(bot,a)

release(bot,a) release(bot,a)

speed(a,0)

speed(a,10) speed(a,0)

speed(b,2)

push(bot,b) push(bot,b)

push(bot,b) release(bot,b)

speed(b,7) speed(b,7)

speed(b,7) speed(b,5)

speed(b,5) speed(b,5)

speed(a,0)

speed(a,5) speed(a,0)

Figure 4.7: Event structures for example 5, a, b represent cart a, cart b and boundaries are
denoted by dotted lines.

Here we now see many benefits of the expressive power of the FAE at work. Clearly the 3
intervals in the input ordering are only the starting point of the final temporal representation,
comprising a total of 10 intervals. Times have been added in the clefts between times. For
instance, the sensations corresponding with the second and third interval in WI are placed
in the 8th and 10th interval in WU ; an additional moment in time has been constructed
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in between. We can also see how causation has been separated from a succession in causal
moments. The same causal rule (x, y, (push, push) >>CR (speed, y, up) explains the rising
of the speed of cart a over the course of 6 temporal intervals and the rising of the speed of
cart b over the course of 1 interval. Finally, the FAE shows its predictive value by filling in
speeds for cart b matching the expected pushing and releasing by the ’bot’.

Conclusion

This then concludes the fourth chapter. The FAE structures intuition in time; a process
that is a determination of intuition by the understanding. Its construction of WU repre-
sents the syntheses of apprehension and reproduction, but in its pure application the same
construction represents the figurative synthesis that brings forth a unified formal intuition.
This formal intuition is a pre-conceptual unity, since it is only the manifold of intuition that
must be conceptually unified through WT . Still, WU is a determination of sensibility by the
understanding, since the conceptual theory structuresWU and since the relations from which
WU is built are functions under the categories. This is then quite a satisfying representa-
tion of the interpretation given by Beatrice Longuenesse and introduced in chapter 2 that
the figurative synthesis underlies the threefold synthesis of apprehension, reproduction and
representation that constitutes experience. I now turn towards the form of outer intuition:
space.
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Chapter 5

Space: Theory

5.1 Introduction

We now turn to the spatial component of figurative synthesis. Kant states that the succes-
sion of moments in time that generates a manifold of intuition is the result of ”motion, as
action of the subject”. This very motion Kant however also characterises as ”synthesis of
the manifold in space” (B155), so that we can only represent time ”under image of a line,
insofar as we draw it” (B156). Synthesis in space and time thus cannot be understood as
distinct processes, which explains the term spatiotemporal synthesis (i.e., figurative synthe-
sis). If we want to take figurative synthesis seriously, we must thus apply it to outer sense
as well as inner sense. Recalling our findings in chapter 2, the spatial structure must be
an ”infinite magnitude” (B40) (in the potential sense discussed in the previous chapter), as
well as ”essentially single”. As is the case for times, spaces can only be represented if the a
priori representation of space as a unique whole is their ground (A24). Furthermore, Kant
understood space as a priori ground for three-dimensional geometry.

In this chapter, I add a spatial construction to the implementation of figurative synthesis
introduced in the previous chapter. Since figurative synthesis is a determination of sensibility
by the understanding, this construction must again be qualitative: spaces are logical models
of the Regional Connection Calculus (Cohn, Bennett, Gooday, & Gotts, 1997). Again a
topological interpretation is of use to represent the Kantian desiderata in relation to space
as formal intuition. I introduce atomic regions as a representation of Kants ’extensive mag-
nitude’, provide them with a directional orientation and analyse space as connection graph.
This allows an analysis on the levels of dimensionality and global configuration. The imple-
mentation of this framework is then the topic of the next chapter.

5.2 Regional Connection Calculus

The Regional Connection Calculus is a qualitative spatial resoning structure that was orig-
inally developed at the University of Leeds in the 1990s. The pioneering book was written
by Randell, Cui and Cohn (1992), from which the acronym RCC originates. The authors
opted for the usage of regions instead of points as reasoning primitives on phenomenological
grounds: even if we talk about points in daily life (e.g., the point of a pencil), we usually
mean regions and not mathematical points. Furthermore, they argued that representation of
space as an infinite set of points is not phenomenologically feasible; an argument that shows
interesting similarities with Kant’s conception of potential infinity. The intended meaning
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of ’region’ in the calculus is a non-null spatially extended entity. All regions in a model
have the same dimension, and no regions have ’mixed’ dimension, i.e., a 2D plane with a 3D
bulb sticking out. This condition is defined as space being regular. Regions with holes or
disconnected parts are in general allowed. The primitive relation is that of a reflexive and
symmetric binary connection C between regions:

∀xC(x, x)
∀x, y C(x, y)→ C(y, x)

The calculus includes a constant u, representing the universal region. Hence we have

∀xC(x, u)

At this point it is important to note that both spatial and temporal axioms include universal
quantification, but not necessarily over the same domain. Universal quantification in the
temporal axioms ranges over a temporal domain and the universal quantification above
ranges over a spatial domain. However, for the FAE these two domains are almost identical.
The temporal domain is a strict subset of the spatial domain, and the only spatial elements
that do not feature in time are the sub-atomic regions that are introduced later in this
chapter. This then ensures that the same input sensations are structured in both space and
time. Now from the connection relation C, all other relations between regions are defined as
follows (Cohn et al., 1997):

1. Disconnected: DC(x, y) := ¬C(x, y)

2. Part P (x, y) := ∀z C(z, x)→ C(z, y)

3. Proper part PP (x, y) := P (x, y) ∧ ¬P (y, x)

4. Identity EQ(x, y) := P (x, y) ∧ P (y, x)

5. Spatial overlap SO(x, y) := ∃z (P (z, x) ∧ P (z, y))

6. Discrete from DR(x, y) := ¬SO(x, y)

7. Partial overlap
PO(x, y) := SO(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)

8. Externally connected:
EC(x, y) := C(x, y) ∧ ¬SO(x, y)

9. Tangenial proper part:
TPP (x, y) := PP (x, y) ∧ ∃z (EC(z, x) ∧ EC(z, y))

10. Nontangenial proper part:
NTPP (x, y) := PP (x, y) ∧ ¬∃z (EC(z, x) ∧ EC(z, y))

11. Tangenial proper part inverse:
TPPi(x, y) := TPP (y, x)
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12. Nontangenial proper part inverse:
NTPPi(x, y) := NTPP (y, x)

A spatial structure S = (S,C) now contains a finite set of regions S on which the con-
nection relation C is defined, so that all other RCC relations are also determined. Gen-
erally, RCC further contains the (partial) boolean functions sum, product (intersection)
and complement. As in the previous chapter, I do not use functions unrestrictedly, since
they result in a combinatorial explosion of regions. In the case of space the functions
even render the system undecidable (Dornheim, 1998). The downside of this restriction
is that it prevents us from expressing the connectedness of regions in the usual manner as
∀yz : (EQ(x, sum(y, z)) → C(y, z)), but a solution for this issue will be introduced later.
The relations {DC,EC, PO,EQ, TPP,NTPP, TPPi and NTPPi} are jointly exhaustive
and pairwise disjoint (JEPD), and RCC reduced to these 8 relations is named RCC-8. This
restriction of RCC has given rise to efficient reasoning methods by means composition tables
(see e.g., (Li & Ying, 2003)). It has been shown that any consistent set of RCC-8 relations
has a model in which the regions are self-connected subsets of a space Rn for n ≥ 3, while
an interpretation over self-connected regions in two-dimensional space might not be possi-
ble for sets of RCC-8 and hence RCC relations (Grigni, Papadias, & Papadimitriou, 1995).
Dropping the connectedness constraint, model existence has been shown for any of Rn with
n ≥ 1, although satisfibility for RCC-8 is in general an NP complete problem. Since our
aim here is model construction rather than reasoning, construction from C is more efficient
than reasoning by composition tables. I thus make use of full RCC. If extensionality holds
for an RCC model: EQ(x, y)→ x = y, it is termed strict. Strict RCC models are equivalent
to Boolean connection algebras (see e.g., (Ligozat, 2013, Ch.10)). In the strict case, it can
be shown that for any element a in the model except u, and any RCC relation R, there
exists an element x in the model such that R(a, x) holds. The following axiom that prevents
finite models then follows ∀x∃y : NTPP (y, x). As in the previous chapter, I do not apply
extensionality however, ’intuitions’ with different contents can be assigned the same space.
This allows the FAE to construct finite spatial structures, following Kant’s conception of
potential infinity as progression in intuition.

5.3 Topological interpretation

Although RCC was intended as a point-free approach towards spatial reasoning, it has in-
tuitive interpretations in point-set topology. Usually, for sets A,B ∈ P(X), C(A,B) holds
iff the closures of A and B have a non-empty intersection, where the closure cl(A) of A is
the smallest closed set containing A. The interior int(A) is conversely the largest open set
contained in A. Name a topological space regular if for any pair (x, Y ), where x is a point
and Y is a closed set such that x ̸∈ Y , there exist two disjoint open sets containing x and
Y, respectively. Further, let a regular closed set be a closed set such that cl(int(A)) = A,
and a regular open set A ∈ τ(X) such that int(cl(A)) = A. Then, it has been shown that
if X is a non-empty connected and regular topological space, an RCC model is formed by
either its non-empty regular closed sets or its non-empty regular open sets (Ligozat, 2013,
Ch.10). A difficulty is posed however by the functions that are generally included in RCC.
For instance, the complement of an open set is a closed set and the union of two regular open
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sets is not necessarily regular. One solution for this issue is to regard regions as equivalence
classes of sets with the same closures (Cohn et al., 1997).

In this project I however interpret RCC using point-free models, so that connectedness
of space cannot be evaluated as in standard topology. As said, I also do not make use of
the unrestricted sum function that is often applied to ensure connectedness. Still, we would
like to implement Kant’s claim that parts of space are spaces that can only be represented
as limitations of space as connected whole. This can be achieved by reasoning about sets
of regions and evaluating the topology of this higher-level structure. Once again, we can
apply the Alexandroff topology, noting that the inverse part relation P−1 forms a pre-order.
For spatial structure S consider the Alexandroff topology AP−1 as defined in the previous
chapter, where open sets are downsets of P . Then the following holds, since every non-empty
closed set of AP−1 contains the universal region u:

Proposition 4. For any spatial structure S, the topology AP−1 is ultra-connected.

Now identifying parts of space (i.e. spaces) with a P downset generated from region x ∈ S,
we can easily see that space as a whole cannot be generated from its parts, but spaces are
only limitations of the whole space .

Proposition 5. Let S be a spatial structure with the AP−1 topology. Take open sets U, V ∈
AP−1 such that U ∪ V = S. Then U = S or V = S.

Proof. Let A,B ∈ AP−1 such that A ∪ B = S. We have u ∈ A or u ∈ B. W.l.o.g.
suppose the former, then ∀x ∈ S : C(x, u) so that ∀x, z ∈ S : (C(x, z) → C(x, u)) so that
∀z ∈ S : P (z, u). Thus A = S.

This ultra-connectedness on the level of spaces does not however ensure that individual
regions make up a single connected whole. This is addressed in the next section.

5.4 Atomic regions and extensive magnitude

In the second chapter I noted that space and time are images of Quantity under the schema
of number: addition of the homogeneous. While this does not imply that space and time
can be reduced to mere counting structures, it does point towards fundamental parallels that
Kant saw between counting and sensing in space and time. Indeed, for Kant the represen-
tation of a number (unit) required both an apprehensive act which produces a multiplicity,
and a comprehensive act which synthesizes the multiplicity in a unified representation. The
latter requires simultaneous representation by ”placing them beside one another in space”
(R6314). This explains why Kant insisted that time can only be represented by ”drawing a
straight line” (B154), and points towards the importance of a metric or unit in all synthesis
in space and time, rendering appearances magnitudes. In fact, appearances in space and
time are extensive magnitudes ”in which the representation of the parts makes possible the
representation of the whole” (B203). Note the subtle tension of this bottom-up framework
with the dependency on formal intuition stressed before: synthesis operates by composition
of units, but can only do so by virtue of the unity that is its transcendental ground.
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I represent extensive nature of space by means of atomic regions A ⊂ S for which the
following holds:

Axiom 1. Let A1, A2 ∈ A ⊆ S. Then SO(A1, A2)→ EQ(A1, A2).

The FAE now assigns input ’intuitions’ to temporal events as well as atomic regions. I
further require that all non-atomic regions are sums over a path-connected set of atomic
regions, with the exception of sub-atomic regions which I introduce later. I define a new
function of ’generalized sum’ from path connected sets of atomic regions to regions:

Definition 22. Let A1 = {a1, . . . , an} ⊆ A ⊆ S with A1 ̸= ∅, and let C∗
A1

be the transitive
closure of the restriction of C to A1. Then, if for every a1, a2 ∈ A1 it holds that C∗

A1
(a1, a2)

we have sum(A1) = sum(a1, sum(a1, ...sum(an−1, an)..), where x = sum(a1, a2) iff ∀z ∈ S :
C(z, x)↔ C(z, a1) ∨ C(z, a2), as usual in full RCC.

Axiom 2. Let x ∈ S \A. If there does not exist a ∈ A such that PP (x, a), then there exists
A1 ⊆ A such that x = sum(A1).

This then resolves the undefinability of connected regions addressed in the previous section.
Regions are either atomic or sums over path-connected sets of atoms, so that they cannot
consist of unconnected parts. Note also how this represents the characterisation of appear-
ances in space as extensive magnitudes. All spaces are given by first generating their parts,
and subsequently representing these parts as unity trough the synthesising function of sum-
mation.

Now we would like to insist that in fact our whole space is connected, i.e., ∀a, b ∈ A : C∗
A(a, b).

However, taking space to be a path-connected structure of atomic regions can have some
very undesirable consequences. Let t = sum(A), suppose |A| > 1 and let a ∈ A such that
A \ {a} is still path-connected. We can easily see that such an atom exists, for choose ar-
bitrary b ∈ A and let l(c) for each c ∈ A denote the length of the shortest path from b to
c. Then we can choose any c for which l(c) is maximal, and note that none of the shortest
path from b to other nodes in A passes through c. Thus, A \ {c} is path-connected and we
can set a = c. Now, we would like to be able to define region x1 = sum(A \ {a}). Note
however that C(x1, a) so that ∀y ∈ A : C(x1, y) which implies P (x1, t) and thus EQ(t, x1)
and even P (a, x1). This is very undesirable indeed. I thus add a ’sub-atomic’ non-tangenial
proper part inside every atomic region, to which no content or temporal structure is assigned
and that is not intuited itself. The sub-atomic regions merely serve as representations of the
’inside’, which must always exist since space is potentially infinitely divisible.

Axiom 3. Given spatial structure S with atomic regions A, for every a ∈ A there exists an
a′ ∈ SA such that NTPP (a′, a).

Recall that a non-tangenial proper part of a can only be connected to regions that overlap
with a. Now we can properly distinguish larger regions so that the following holds:

Proposition 6. Let a1, a2 ∈ S, then C∗(a1, a2), where C
∗ transitively closes C.
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Proof. Since u ∈ S and ∀x ∈ S : C(x, u) we have ∀x ∈ S : P (x, u), hence ∀x : ¬PP (u, x).
By axiom 2 then u = sum(A1) for A1 = {b1, . . . , bn} ⊆ A. Suppose b ∈ A \ A1. Then
consider the sub-atomic region c such that NTTP (c, b). Since C(c, u) we have by definition
of the sum

∨
1≤i≤n(C(c, bi)). Consider the witness bi for which C(c, bi). Since P (c, b) we have

C(b, bi), so that either SO(b, bi) or EC(b, bi). In the first case, axiom 1 implies EQ(b, bi).
In the second case, it is prohibited that EC(c, bi) since NTTP (c, b). But then since C(c, bi)
we have SO(c, bi). Clearly however, SO(c, bi) implies SO(b, bi), which contradicts EC(b, bi).
Thus, it must be the case that EQ(b, bi).

Since then for every a, b ∈ A1 we have C∗(a, b) by definition of the sum, and for every
c ∈ A we have EQ(c, d) for some d ∈ A1, the proposition follows.

To ease computation, I further insist that for all a ∈ A : PP (a′, a)∧PP (a′′, a)→ EQ(a′, a′′):
every region has a single ’hypothetical inside’, although it may have multiple names.

5.5 Dimension

Since Kant adhered to the general conception of space as three-dimensional, we must ad-
dress the dimensionality of the RCC models constructed by the FAE. I have noted before
that consistent sets of RCC-8 relations have models of connected regions in R3, but also in
any higher dimension. For full RCC there is however no such guarantee. RCC allows for
definition of unconnected regions and ’holes’, conflicting with standard connected models of
RCC-8 (Ligozat, 2013, p.322). A restriction of the spatial construction is thus needed. For
reasons of computational efficiency I aim at representing two-dimensional space, but lay the
conceptual groundwork for extension to higher dimensions.

From the viewpoint of topological models for RCC, we would like our definition of dimen-
sionality to be a topological invariant (i.e., preserved under homeomorphisms) as well as
weakly decreasing when taking the subspace. Furthermore, defining the boundary of a set
x as Cl(x) \ int(x), we would like dim(boundary(x)) = dim(x) − 1. Conversely, we might
interpret spatial structures in terms of graphs. An overview of the correspondence between
topologies and graphs in a spatial context can be found in the ’Handbook of Spatial Logic’
(Aiello, Pratt-Hartmann, Van Benthem, et al., 2007). Both structures are subsumable under
the larger class of closure spaces, and graph theory provides discrete counterparts for key
topological notions. As a standard translation from topology τ on X to graph G = (V,E)
we can let V = X and E(x, y) iff ∃A ∈ τ : x ∈ A ∧ y ∈ A. Alternatively one might ap-
ply the specialization ordering introduced in the previous chapter. In our point-free setting
however, vertices represent regions (i.e., sets in the standard point-set interpretation). I
define the connection graph induced by a spatial structure S as G = (V,E), where V = S
and E(a, b) iff C(a, b). Since C is reflexive and symmetric, our graphs are tolerance spaces
1. Let N(x) = {y ∈ V : R(x, y)}, and define the punctured neighborhood of a vertex x as
N0(x) = N(x) \ {x}. It is suggested by Michael Smyth and Julian Webster (Aiello et al.,
2007, p.745) that at the level of closure spaces, the punctured neighborhood corresponds

1I use the term tolerance space for a reflexive and symmetric undirected graph, (Sossinsky, 1986)
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to the topological boundary for open sets. They then provide the following definition of
dimensionality:

Definition 23. For tolerance space G = (V,E), if G is empty, dim(G) = −1. Otherwise,
dim(G) = sup{dimG(x) : x ∈ V }, where for x ∈ V :

dimG(x) =

 dim(N0(x)) if ∃y ∈ N0(x) : N(x) ⊆ N(y)

dim(N0(x)) + 1 otherwise

For example, a single clique (a set of vertices of which each pair is connected) has dimension 0.
More generally, given a graph G we can consider the non-empty cliques that are intersections
of maximal cliques under the name cells. Ordering these cliques by set-inclusion gives a
partially ordered set cell(G), on which we can define the length of an element as the length
of the longest chain below it, and the length of a set as the maximal level over its elements,
where the length of an empty set is −1. The following then holds:

Theorem 4. Let G a non-empty tolerance space. Then dim(G) = length(cell(G))

Proof. In (Aiello et al., 2007), p.746.

Clearly, this measure is weakly decreasing under induced subgraphs as desired. Now we can
apply this definition of dimensionality to the graphs induced by connected atomic regions
in the two-dimensional plane. Since our regions are atomic, we do not allow overlaps. Still,
without any restrictions on the size or shape of the regions we can obtain dimensions larger
than 2, as is shown in figure 5.1. Both structures have dimension 3 from the perspective of
tolerance spaces, while existing on the 2D plane. The left is made up of squares of different
sizes, while the right is made up of triangles of the same shape and size.

Figure 5.1: Two figures of dimension 3. In both figures, 1, 2, 3, 4 form a maximal clique of
size 4 (length 0), 2, 3, 4 form an intersection of two maximal cliques (length 1), 3, 4 form an
intersection of two such intersections (length 2) and 4 is the intersection of two intersections
of length 2, giving a total length of 3.

1 2

3

4 4
3

1

2

Recalling that our atomic regions are to implement a magnitude following the schema of
”addition of the homogeneous”, I interpret them as regions of the same size and shape. The
example above then shows that the shape in question matters. I choose to interpret atomic
regions as squares, fix their orientation at the horizontal and vertical axis (i.e., I don’t allow
diamonds between the squares) and enforce that meeting squares have meeting corners (i.e.
two squares with non-empty intersections have at least two corners that touch each other).
The desired dimensionality of 2 then follows:
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Theorem 5. Let G be the connection graph induced by non-overlapping squares on the two-
dimensional plane with the same size, the same directional orientation and where meeting
squares have meeting corners. Then dim(G) ≤ 2.

Proof. Clearly, a clique of size 4 now only occurs if 4 squares meet with one corner in the
same point, and a clique of size 5 cannot occur. Suppose dim(G) > 2. Then two cliques of
size 4 must have an intersection of size 3, otherwise the length of cell(G) can never be 3.
Hence, 3 squares must meet in 2 distinct points with two distinct 4th squares. It is easy to
see however that if 4 non-overlapping squares of equal size meet in one point, there can be
no second point where 3 of these squares meet. The proof from geometric principles is left
to the reader, but a simple picture (figure 5.2) suffices.

Figure 5.2: 4 non-overlapping squares of same size meeting in one point must form a partition
of a single square; no 3 regions meet in a second point.

Moreover, if we draw a rectangular shape of at least 3 × 3 non-overlapping square atomic
regions of equal size then we reach this upper bound: dim(G) = 2. Figure 5.3 shows such a
shape of 3×3 and the induced connection graph, where vertices represent squares and edges
represent the connection relation. Clearly, there are cliques of size 4 with intersections of
size 2, all containing the same middle vertex. Thus cell(G) has length 2 and dim(G) = 2 by
theorem 4.

Figure 5.3: Left a 3 by 3 region of connected squares, right the induced connection graph G
of dimension 2.

Since I have defined larger regions as sums over sets of atomic regions which constitute
the magnitude of space, an analysis of the connection graphs induced by atomic regions is
sufficient to evaluate the dimensionality of our spatial extension. In the next section I provide
constraints to ensure that an interpretation of atomic regions in terms of non-overlapping
squares is possible, thereby guaranteeing a dimension of at most 2.

5.6 Properties of connection graphs

In this section I define three graph-theoretic properties that provide a form of global con-
sistency: the graph constructed by the FAE must be locally sub-King, symmetry consistent
and must not contain any inside corners. The rest of this section then builds towards a proof
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that these properties ensure the constructed graph is a King-, Turband-King- or Torus-King
graph, all of which have dimension ≤ 2. The reader who does not desire to plow through
the proof in full may suffice by reading the definitions of the three conditions and graph-
structures. The next chapter then continues by explaining how the three conditions are
implemented to bring forth spatial experience.

Local orientation and dimension

I define two standard graphs as a basis for induced connection graphs. To make reasoning
less convoluted, in what follows I analyse connection graphs only after removing all reflexive
relations, hence N0(x) = N(x). I use V (G), E(G) for edges and vertices of G. Since our con-
structed graph is induced by atomic regions, the axioms introduced above apply. Specifically,
G must be path-connected as was shown in proposition 6. Now firstly, a Grid provides ver-
tices with a two-dimensional interpretation, where only horizontally and vertically adjacent
vertices are connected:

Definition 24 (Grid). Given integers p, q, Grid graph Hp,q equals Pp × Pq, where Pp is a
path graph with p vertices labelled 0 to p−1. Label each vertex in Hp,q with the corresponding
element of {0, . . . , p− 1} × {0, . . . , q − 1}

Figure 5.3 shows that the connection graph induced by squares on a plane also contains
’diagonal’ edges, so that we rather obtain the following connection graph:

Definition 25. Given integers p, q, the King graph Kp,q is a graph containing Hp,q such
that V (Kp,q) = V (Hp,q) and:

E(Kp,q) = E(Hp,q),∪, {, ((ix, iy), (jx, jy)) : jx = ix + /− 1 ∧ jy = iy + /− 1∧
0 ≤ ix, jx ≤ p− 1 ∧ 0 ≤ iy, jy ≤ q − 1}

The graph in figure 5.3 is then a 3 by 3 king-graph. Since burdening the FAE with assigning
each atomic region to a label (ix, iy) on the grid would be very inefficient, we enforce locally
that each neighborhood N(x) must be a subgraph of K3,3. We would not insist that each
neighborhood is equal to K3,3, since this would prohibited the existence of edges (bounds).
Naturally, while space as form of outer intuition allows for progressive infinity, space as con-
cretely constructed in synthesis cannot be boundless, unless the ongoing process of successive
synthesis is finished (see the first antinomy (A426/B454-A427/B455)).

Definition 26. A graph G is locally sub-King if for each vertex a ∈ V (G), there exists
an injective assignment of N(a) to a subset of the variables x0 · · ·x7, where the remaining
variables are set to 0, such that:

∀ 0 ≤ i ≤ 7 : xi ̸= 0 ∧ xi+1 ̸= 0→ C(xi, xi+1)

∀ 0 ≤ i ≤ 7 : i mod 2 = 0 ∧ xi ̸= 0 ∧ xi+2 ̸= 0→ C(xi, xi+2)

∀ 0 ≤ i, j ≤ 7 : C(xi, xj)→ (xi = xj+/−1 ∨ (i mod 2 = 0 ∧ xi = xj+/−2))
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And, if for all a ∈ V (G) the assignments to neighbours are surjective (i.e. |N(a)| = 8), the
following further condition also holds for all a ∈ V (G):

∀ 0 ≤ i, j ≤ 7 : i mod 2 = 0→
((N(xi) ∪N(xi+2) ⊆ {a, xi+1}) ∧ (N(xi) ∪N(xi+4) ⊆ {a,N(xi+2), N(xi+6)}))

In the latter case, G is not only locally sub-King, but also locally King.

All indices are modulo 8. I denote variable xi for the neighborhood of a with xai . Note that
this definition ensures |N(x)| ≤ 8 by injectivity. Furthermore, the locally sub-King condition
is sufficient to ensure two-dimensionality:

Theorem 6. Let G a graph that is locally sub-King, then dim(G) ≤ 2.

Proof. Firstly note that the size of cliques in G is at most 4. To see this, suppose there exists
a clique of size 5, then a vertex a has 4 pairwise connected neighbors. Neighbors with odd
indices are connected to at most 2 other neighbors of a, so that each vertex in the clique
must be assigned to an xai with even i. But then xa0 and xa4 cannot be connected.

Hence, if dim(G) = 3 it must be the case by theorem 4 that two cliques of size 4 have
an intersection of size 3. Thus, some vertex a must have two neighbors b, c that are con-
nected to each other and are both connected to two distinct neighbors of a, d1 and d2. Again
since b, c are connected to 3 neighbors of a they must be assigned to even xai . Since b, c are
connected the difference between the indices of the two associated variables is 2. But then
the only other neighbor of a that can be connected to both is assigned to the odd index
between the indices for b and c. Since the assignment to variables is injective: d1 = d2, a
contradiction. Hence, dim(G) ≤ 2.

However, this condition is not yet sufficient for Kantian space. Specifically, locally sub-king
graphs might represent a space that contains gaps. We hence further constrain neighborhoods
so that they do not contain inside corners :

Definition 27. A graph G that is locally sub-King contains no inside corners if for
each vertex a ∈ V (G) there exists an injective assignment of N(a) to x1..x7 satisfying the
locally sub-king condition so that the following holds:

∀0 ≤ i ≤ 7 : i mod 2 = 1 ∧ xi ̸= 0→ xi−1 ̸= 0 ∧ xi+1 ̸= 0 (5.1)

∀0 ≤ i ≤ 7 : i mod 2 = 0 ∧ xi ̸= 0 ∧ xi+2 ̸= 0→ xi+1 ̸= 0 (5.2)

One may visualise this condition as only allowing one of the 6 neighborhoods below, although
any mirroring or rotation by k ∗ 90◦ works.

Figure 5.4: Neighborhoods of locally sub-King graphs without inside corners. In turn: empty,
single, line, corner, half and king.
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Consistency of direction

While the conditions above ensure that each neighborhood is locally structured as a ’unit’
of connected space, this is still not enough if we want to apply our intended directional
interpretation. The indices for different neighborhoods might not at all match. For instance,
we can have xa1 = b while xb6 = a so that a and b represent squares that are both connected
by a single point (1 is odd) and by an edge (6 is even). The final condition I enforce on the
constructed graph is thus that of symmetry in the neighborhood assignments:

Definition 28. ∀0 ≤ i ≤ 7 : let i−1 = i + 4. Then a locally sub-King graph without inside
corners G is symmetry consistent if there exists an assignment of neighborhoods to x0..x7
satisfying definitions 26 and 27 so that ∀a ∈ V (G) ∀b ∈ N(a) : xai = b→ xbi−1 = a.

This is then sufficient to ensure at least locally an interpretation of the variables x0..x7
in terms of directions on a two-dimensional plane as in figure 5.4. The directed relations
between neighbours of a vertex a match the directed relations of a to its neighbours. To see
this, I define compositions of indices according to their directional interpretation:

Definition 29. For 0 ≤ i ≤ 7 compositions are as follows:

i mod 2 = 0→ i ◦ i+ 2 = i+ 1

i mod 2 = 0→ i ◦ i− 2 = i− 1

i mod 2 = 0→ i ◦ i+ 3 = i+ 2

i mod 2 = 0→ i ◦ i− 3 = i− 2

i mod 2 = 1→ i ◦ i+ 3 = i+ 1

i mod 2 = 1→ i ◦ i− 3 = i− 1

Where for other pairs of directions the composition is undefined since it does not correspond
with a connection on the 2d plane.

Note the agreement of these compositions with the numbering of neighbors in figure 5.4.
We are now ready to prove the consistency of directions among neighbours. Unfortunately
the proof is a rather tedious exercise in comparing indices. I refer to symmetry consistency
(definition 28) as (SC) and to prohibition of inside corners (definition 27) as (¬IC):

Theorem 7. Let G a graph that is locally sub-King and satisfies (SC) and (¬IC), and
consider the assignment to indices satisfying all these properties. For all vertices a ∈ V (G),
b, c ∈ N(a) and directions i, j where i◦j is defined: xai = b∧xbj = c→ xai◦j = c. Furthermore,
if i ◦ j is undefined: xai = b ∧ xbj = c→ c ̸∈ N(a).

Proof. Suppose i mod 2 = 0. W.l.o.g. assume i = 0. Now suppose j = i + / − 2. Again
w.l.o.g. let j = 2. By (SC) xbi−1 = xb4 = a. Since xb2 = c then C(a, c). By (¬IC) there must
be a d such that xb3 = d and C(a, d), C(c, d), i.e. a, b, c, d form a clique. Since xd7 = b (again
by (SC)) we have either xd6 = a or xd0 = a. In the first case, we have xa2 = d so that, since
a, b, c, d is a clique, xa1 = xai◦j = c as desired. In the second case we have xa4 = d by (SC),
contradicting C(b, d).
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Suppose instead that i mod 2 = 0 and j = i+ /− 3 mod 8. Again w.l.o.g. let i = 0, j = 3.
By (SC) xb4 = a, and by (¬IC) and xb3 = c there must be a d such that xb2 = d, so that again
a, b, c, d form a clique. Since xc7 = b (by (SC)) we have xc6 = a or xc0 = a. In the first case,
xa2 = xai◦j = c by (SC) as desired. In the second case xa4 = c which contradicts C(a, b).

Now suppose i mod 2 = 1 and j = i + / − 3. W.l.o.g. let i = 1, j = 4. By (SC),
xb5 = a. By (¬IC) there must be a d such that xb6 = d and again a, b, c, d form a clique.
Since C(b, c) we have xa2 = c or xa0 = c. In the first case we are done since 1 ◦ 4 = 2. In
the second case we have xc4 = xc0−1 = a by (SC). Then by xa1 = b and the previous case
of compositionality proven above, it must be the case that xc4◦1 = xc2 = b. However, since
xb4 = c we have xc0 = b, a contradiction.

Finally suppose i ◦ j is undefined. I show by cases that c ̸∈ N(a). Firstly suppose i = j.
Then xbj−1 = xbj+4 = a. But then a and c cannot be connected neighbours of b. Similarly, if

i = j + / − 1 we have xbi−1 = xbj+/−3 so that a and c cannot be connected neighbours of b.

If i = j + / − 4 we have j = i−1. But then by injectivity of the assignment c = a so that
c ̸∈ N(a). The final remaining case is when i mod 2 = 1 and j = i+ /− 2. Suppose w.l.o.g.
that i = 1, j = 3. In this case by (SC) xb5 = a. By (¬ IC) there must exist a d such that
xb4 = d. Note that d ∈ N(a) ∩N(c). Now we can apply the proof of compositionality given
above. Since xa1 = b, xb4 = d we have xa1◦4 = xa2 = d. Similarly, since by (SC) xd0 = b and
since xb3 = c we have xd0◦3 = xd2 = c. Since then xa2 = d and xd2 = c we have c ̸∈ N(a) as was
shown above.

Theorem 8. Let G be locally sub-King so that (SC) and (¬IC) hold and consider the satisfy-
ing assignment of neighbors to indices. For all vertices a ∈ V (G), b, c ∈ N(a) and directions
i, j where i ◦ j is defined: xai = b ∧ xai◦j = c→ xbj = c.

Proof. Immediate from theorem 1. Note that i ◦ j is i + / − 1 if i is odd and i + / − 1 or
i+ /− 2 if i is even. In both cases C(b, c). Now suppose xbl = c for some l such that i ◦ l is
undefined, then by the second part of theorem 7 we have c ̸∈ N(a) which is a contradiction.
Conversely suppose xbl = c for some l ̸= j such that i ◦ l is defined. Then by the first part of
theorem 7, xai◦l = c. Thus we have c = xai◦j ̸= xai◦l = c, which is again a contradiction.

Theorems 7 and 8 together show that each neighborhood can be drawn on a 3 × 3 grid so
that the directional orientation of vertices corresponds to the intended interpretation of the
indices.

Global properties

Now that I have made sure that the local conditions work as intended, I turn towards the
global structure of the constructed graph. Ideally we do not merely want the assurance that
each neighborhood has a local model with a directional interpretation, but we also want to
know that our space as a whole can be interpreted as a two-dimensional spatial structure,
preferably one without ’screws’, ’wormholes’ and other complex curvatures. In this section
I show that this is indeed the case. Let’s first define several canonical graphs, indices ix, jx
are modulo p and indices iy, jy are modulo q:
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Definition 30. Given integers p, q, the Turband graph Tuδp,q is a graph containing Hp,q

(the p by q grid) so that V (T δ
p,q) = V (Hp,q) and:

E(Tuδp,q) = E(Hp,q) ∪ {((ix, 0), (ix + δ, q − 1)) : 0 ≤ ix ≤ p− 1}

Definition 31. Given integers p, q, the Turband-King graph TuKδ
p,q is a graph containing

Tuδp,q such that V (TuKδ
p,q) = V (Tuδp,q) = V (Hp,q) and:

E(TuKδ
p,q) = E(Tuδp,q) ∪ E(Kp,q) ∪ {((ix, 0), (ix + δ + /− 1, q − 1)) : 0 ≤ ix ≤ p− 1}

Intuitively, the Turband and Turband-King graphs are Grids or King-graphs of which the
top and bottom vertices have been connected, possibly with a rotation of δ.

Definition 32. Given integers p, q, the Torus graph Toδp,q is a graph containing Hp,q such
that V (Toδp,q) = V (Hp,q) and:

E(Toδp,q) = E(Hp,q) ∪ {((ix, 0), (ix + δ, q − 1)) : 0 ≤ ix ≤ p− 1}
∪ {((0, iy), (p− 1, iy)) : 0 ≤ iy ≤ q − 1}

Definition 33. Given integers p, q, the Torus-King graph ToKδ
p,q is a graph containing

Toδp,q such that V (ToKδ
p,q) = V (Toδp,q) = V (Hp,q) and:

E(ToKδ
p,q) = E(Toδp,q) ∪ E(Kp,q) ∪ {((ix, 0), (ix + δ + /− 1, q − 1)) : 0 ≤ ix ≤ p− 1}
∪ {((0, iy), (p− 1, iy + /− 1)) : 0 ≤ iy ≤ q − 1}

The torus is a graph-representation of a doughnut. It is a turband where also the left
and right boundaries have been connected, but without any rotation δ2 on this axis. The
turband and torus are examples of connection graphs induced by two-dimensional planes
that are folded without any ’screws’. An example of a graph where this is not the case is
the Klein bottle:

Definition 34. Given integers p, q and i ∈ {0, 1, 2}, where i = 1 ↔ p mod 2 = 1, the
Klein bottle KBi

p,q is a graph containing Hp,q such that V (KBi
p,q) = V (Hp,q), and:

if i ∈ {0, 1}:

E(KBi
p,q) = E(Tu0p,q) ∪ {((ix, 0), (p− ix − 1, q − 1)) : 0 ≤ ix ≤ p− 1}

While if i = 2:

E(KBi
p,q) = E(Tu0p,q) ∪ {((ix, 0), (p− ix, q − 1)) : 0 ≤ ix ≤ p− 1}

The torus and Klein bottle graphs are embeddable in the associated topological structures
shown in figure 5.5
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Figure 5.5: Topological torus and Klein bottle

In what follows, I show that the graphs constructed by the FAE are isomorphic to either
a King-, Turband-King or Torus-King graph. Screws like that of the Klein-bottle are not
allowed. This requires a rather long sequence of proofs. In these proofs I always take G
to be finite, locally-sub-King, symmetry-consistent, path-connected and without inside cor-
ners, and I analyse the assignment of neighborhoods to indices that satisfies these properties.

I associate each variable index i in a neighborhood with a change in x, y coordinates δxy(i),
in the intuitive manner that matches figure 5.4. Thus δxy(0) = (−1, 0), δxy(1) = (−1, 1) etc..
I write dir(e), for the index associated with edges, i.e., dir((a, b)) = i if xai = b. Define a
path p as a finite sequence of consecutive vertices and directed edges (v1e1v2 . . . , en−1vn),
such that ei is an edge from vi to vi+1 for 1 ≤ i < n and let δxy(p) =

∑
e∈p∩E(G) δxy(dir(e)).

I first prove that all paths have counterparts with the same traversal and without diagonals:

Lemma 7. For each path p = (v1 . . . vn) over edges of G, there exists a path p′ from v1 to
vn such that δxy(p) = δxy(p

′) and all edges in p′ have direction 0, 2, 4 or 6.

Proof. This is clear from the exclusion of inside corners. Let ei be the first edge in p such that
dir(ei) ̸∈ {0, 2, 4, 6}. By (¬IC), there also exists a vertex vj such that xvi(dir(ei)+1) = vj. By the

locally sub-King condition C(vj, vi+1). But then note that dir(ei) = dir(ei) + 1 ◦ dir(ei)− 1
(since for even directions d we have d◦d−2 = d−1). Thus, by theorem 8 there exists a path
of length two from vi to vj to vi+1 of which the two edges have directions dir(ei) + 1 and
dir(ei) − 1. Name these edges e′, e′′. It is then clear from the x, y changes associated with
the indices that δxy(ei) = δxy(vie

′vje
′′vi+1). If we substitute the latter path for the sub-path

(vieivi+1) in p, we obtain a path that has one less edge with direction 1, 3, 5 or 7 and the
same δx,y. By iterating this procedure we obtain p′.

Now we can show that paths with (0, 0) traversal are reflexive:

Lemma 8. For each path p = (v1 . . . vn) over edges of G, if δxy(p) = (0, 0) then v1 = vn.

Proof. I assume the negation and derive a contradiction. Suppose a path p = (v1 . . . vn)
exists such that δx,y(p) = (0, 0) but v1 ̸= vn. By the foregoing lemma there exists a path
p′ = (v1 . . . vn) such that δx,y(p

′) = (0, 0) and for all edges e in p′: dir(e) ∈ {0, 2, 4, 6}. Let
p′ be the shortest such path (if there are several shortest path of equal length, let p′ be an
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arbitrary one of them). We can assume p′ has no cycles, i.e. there are no strict sub-paths
q = (w1 . . . wm) of p

′ such that m < n and δxy(q) = (0, 0), for if w1 ̸= wm we can let p′ = q
and continue towards a contradiction, and if w1 = wm we can remove (w1 . . . wm−1em−1)
from p′ to obtain a shorter path with the same starting and end vertex of p and the same
δx,y. Furthermore, we can assume p′ is not a ’line’, i.e. a path where all edges e have direc-
tion dir(e) ∈ {0, 4} or all edges have direction dir(e) ∈ {2, 6}. For suppose that we have
ei, ei+1 ∈ p such that dir(ei+1) = dir(ei)+/−4. Then clearly q = (vieivi+1ei+1vi+2) is a cycle
with δx,y(q) = (0, 0). Thus, q cannot be a strict sub path of p′ which implies q = p′. But
then since ei and ei+1 have opposite directions it follows from constraint (SC) that vi = vi+2,
contradicting that the start and end of p′ are distinct.

Hence, if we draw p′ on the x, y plane we obtain the boundary of a single connected two-
dimensional region. Note that the start and end of this boundary on the x, y plane are the
same, and that no edges cross each other, for this would imply the existence of a cycle in
p′. Denote the surface of the region enclosed by this boundary by m. I now show that from
p′ we can iteratively construct paths q1, · · · qk where k ≤ m such that the following holds.
Here, l(p) denotes the number of edges in p, s(p) denotes the size of the surface enclosed by
p if it is indeed the boundary of a two-dimensional connected region, and I let p′ = q0 for
convenience:

∀1 ≤ i ≤ m : qi = (v1 . . . vn)

∧ δx,y(qi) = (0, 0).

∧ l(qi) ≤ l(qi−1)

∧ s(qi) < s(qi−1)

In words, the size of the surface enclosed by qi goes to 0 as the sequence progresses. Note
that the surface enclosed by p′ has rectangular corners, so that it must have at least 4 ’convex
corners’ i.e., corners of which the enclosed surface touches the 90 degree corner and not the
270 degree corner (see figure 5.6). At least 3 of these convex corners must be between two
successive edges in p′, since at most 1 of them is between e1 and en−1. Take one of these
corners and let ei, ei+1 be the associated edges. Clearly, dir(ei) = dir(ei+1)+ /− 2. Since all
edges in p′ have an even direction dir(ei) ◦ dir(ei+1) is defined, so that by theorem 7 there
also exists an edge ej from vi to vi+2 with dir(ej) = dir(ei)◦dir(ei+1). Suppose w.l.o.g. that
dir(ei) = 0, dir(ei+1) = 2. Then dir(ej) = 1. By (¬IC) there also exists a vertex w such
that vi is connected to w by an edge ew with direction 2. Then since 1 = 2 ◦ 0 there must
by theorem 8 also exists an edge ew′ from w to vi+2 such that dir(ew′) = 0.

Hence, we can ’cut’ the corner by replacing the sequence (vi ei vi+1 ei+1 vi+2) by the sequence
(vi ew w ew′ vi+2) in p

′. The resulting path q1 clearly has the same δx,y as p
′ and has the same

length. Furthermore, since the original ’cut’ corner was convex and our new path now goes
through the other shared neighbour of vi and vi+2 we have subtracted 1 from the enclosed
surface m. Since the q1 now runs through w instead of vi+1 one might ask whether it can
contain a cyclic sub-path r with δx,y(r) = (0, 0). However, as argued before, the existence of
such a cycle would imply that q1 is not a shortest path with distinct start and end vertices
such that δx,y(p

′) = (0, 0). Either r is a shorter path with a distinct start and end, or we can
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cut r from q1.

We iteratively continue this process, constructing paths with the same start and end as
p′ (or alternatively starting with a new shorter p′), the same δx,y = (0, 0), and enclosing
smaller and smaller surfaces. Now finally we reach a path qj with j ≤ m that encloses a
surface of size 0. Hence, qj must be a line from v1 to vn where v1 ̸= vn and δx,y(qj) = (0, 0).
However, as I have shown above, such a path cannot exist. We thus reach a contradiction,
proving the lemma.

Figure 5.6: Concave and convex corners, (Gao, Gu, & Zakhor, 2008)

Using this lemma we can see that if there exists a path from vertex a to itself, then every
path with the same traversal is reflexive.

Lemma 9. If for some vertex a ∈ V (G), there exists a path p = (a . . . a) with δx,y(p) =
(dx, dy), then for every path q = (b . . . c) with δxy(q) = (dx, dy), we have b = c.

Proof. Let the inverse of a path p from x to y denote the path from y to x traversing the
edges of p in reverse order. Since G is path-connected, there must exist a path r from b to a.
Thus, there exists a path s = (rp−1r−1) from b to b with δx,y(s) = (−dx,−dy). Thus, there
exists a path t = (sq) from b to c with δx,y(t) = (0, 0). By Lemma 8 then b = c.

From locally King to Torus

We are now ready for our first result on the global structure of G.

Theorem 9. If G is a locally King-graph of size |V (g)| = n, then it is isomorphic to a
Torus-King graph ToKδ

p,q where p · q = n.

The proof makes use of an analysis of locally Grid-graphs made by Marquez et. al (2003).
Locally Grid-graphs are graphs where for each vertex v there exists an injective assignment
from N(x) to x1, . . . x4 and we have four different vertices y1 . . . y4 such that:

N(xi) ∩N(xi+1) = {v, yi}
N(xi) ∪N(xi+2) = {x}

Clearly, if G is a locally King graph and we remove all edges of odd direction the result is a
locally Grid graph of which all edges have even labels, henceforth denoted as G′. Marques
et.al further make use of the concepts of opposite walks and opposite cycles:
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Definition 35. An opposite walk is a path (v1e1 . . . vn) such that ei is opposite to ei+1 for
1 ≤ i < n, meaning that there is no square of four edges containing both ei and ei+1, and
such that vn is the first vertex equal to an earlier vertex in the path.

Definition 36. An opposite cycle is a path (v1e1 . . . v1) such that ei is opposite to ei+1 for
1 ≤ i < n.

Lemma 10. A locally Grid graph G for which all opposite walks are opposite cycles is
isomorphic to either:

1. Torus Toδp,q with p ≥ 5, q ≥ 1, where δ ≥ 4 if q = 1, and δ + q ≥ 6 if q ∈ {2, 3}.

2. Klein bottle KBi
p,q with p ≥ 5, i = p mod 2 and q ≥ 4 + ⌈i/2⌉.

In both cases, p · q = |V (G)|.

Proof. In Marquez et.al. Note that we can assume δ ≤ p/2 by symmetry.

Now it follows from Lemma 9 that for our locally Grid graph G′ all opposite walks are
opposite cycles.

Proof. Note that in our directed setting an opposite walk equals a walk along edges with
the same direction. If dir(ei+1) = dir(ei) + / − 2 for some edge ei in opposite walk p, then
by (¬ IC) ei and ei+1 are part of the same square. If dir(ei+1) = dir(ei) + / − 4, then by
(SC) we have vi = vi+2 so that ei and ei+1 are also part of the same square, contradicting
the definition of opposite edges.

Whith this in mind, let p = (v1 . . . vn) be any opposite walk. Now δxy(p) = (n− 1) ∗ δx,y(e)
for any edge e ∈ p. By definition of opposite walks: vn = vi for some 1 ≤ i < n. Thus,
there exists a path q from vn to vn such that δxy(q) = (n − i) ∗ (δx,y(e)). By lemma 9,
every path with this δxy starts and ends in the same vertex. Thus, since the initial segment
r = (v1 · · · vn−i+1) of p is such a path, we have v1 = vn−i+1. Since vn is the first vertex in the
walk that is equal to an earlier vertex, by definition of opposite walks, it follows that i = 1.
Thus, p is an opposite cycle.

Applying Lemma 10 then G′ is a Torus or Klein bottle. Since definitions 32 or 34 thus apply,
V (G′) = Hp,q for some p, q. It remains to be shown that G′ must in fact be a Torus:

Firstly, I prove that the directions on the p, q grid must be isomorphic to the directional
indices 0, 2, 4, 6 of the edges of G′, in the sense that each of the four basis directions
δ ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)} maps to one of the 4 indices by injective function f so
that b− a = δ implies xaf(δ) = b

Proof. To see this, consider vertices (0, 0) and (1, 0), and suppose w.l.o.g. that the edge from
(0, 0) to (1, 0) is labelled 4. By (SC) there must be an edge from (1, 0) to (0, 0) labelled 0.
Note then that (0, 0) and (2, 0) do not share a neighbour apart from (1, 0) since p ≥ 5, if
G′ is a Torus and q = 1 then δ ≥ 4 (note that p ≥ 9 in this case), and if G′ is a Klein
bottle then q ≥ 4. Now if the edge ((1, 0), (2, 0)) would have an index other than 4, (¬ IC)
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along with compositionality (theorem 7) would require that (0, 0) and (2, 0) share at least
two neighbors. Thus ((1, 0), (2, 0)) is also labeled 4. We can repeat this argument to show
that all edges ((i, 0), (i + 1, 0)) are labelled 4 and all edges ((i, 0), (i − 1, 0) are labelled 0.
Now if q = 1 then we are done, all edged associated with a δ on the grid have been assigned
a suitable index.

Suppose then q > 1, it must be the case that (1, 0) and (0, 1) have two common neigh-
bors (0, 0) and (1, 1). By the last constraint of the locally sub-King condition, this implies
that since ((0, 0), (1, 0)) has label 4 it must be the case that ((0, 0), (1, 0)) has label l ∈ {2, 6}.
Suppose w.l.o.g. that l = 2. Since (0, 0) and (1, 1) share two common neighbors, it follows
then by compositionality that ((0, 1), (1, 1)) has label l′ ∈ {0, 4}. Suppose l′ = 0, then by
compositionality there exists edge ((0, 0), (1, 1)) with label 2 ◦ 0 = 1 in our original graph
G. But then ((0, 1), (1, 1)) has label l′′ such that 4 ◦ l′′ = 1, and such an l′′ does not exist.
Thus l′ = 4. Using a similar argument by diagonals in G, we can see ((0, 1), (1, 1)) has label
2. But then we can iterate this argument for edges ((2, 0), (2, 1)) and ((1, 1), (2, 1)). This
shows ((i, 0), (i, 1)) has label 2 for 0 ≤ i ≤ p and ((i, 1), (i + 1, 1) has label 4 for 0 ≤ i < p,
with the opposite δ directions labeled 6 and 0 respectively by (SC).

Suppose q = 3, then again since (0, 2) and (1, 1) share two neighbors (0, 1) and (1, 2), and
since ((0, 1), (1, 1) has label 4, ((0, 1), (0, 2) has label l ∈ {2, 6}. l = 6 gives (0, 0) = (0, 2)
contradicting q = 2. Thus, l = 2. Now we can apply the exact same argument as for the
row below to find ((i, 1), (i, 2)) has label 2 for 0 ≤ i ≤ p and ((i, 2), (i+ 1, 2) has label 4 for
0 ≤ i < p, with the opposite δ directions labeled 6 and 0 respectively by (SC). Iterating this
process per row shows that every edge (i, j), (i+1, j) has label 4, (i, j), (i− 1, j) has label 0,
(i, j), (i, j + 1) has label 2 and (i, j), (i, j − 1) has label 6. Note that we could have assigned
other labels to the δ, as long as the inverse operation is preserved.

Now I can show G′ ̸= KBi
p,q for p ≥ 5, i = p mod 2 and q ≥ 4 + ⌈i/2⌉

Proof. Suppose G′ = KBi
p,q with the parameters as specified above. Consider vertex (1, 0).

By the above it is connected to (0, 0) and (2, 0) by edges labelled l and l−1 (for l ∈ {0, 2, 4, 6}),
i.e., f((−1, 0)) = l−1, f((1, 0)) = l. Since q ≥ 4, (1, 0) is also connected to (1, 1) by an edge
labeled r, distinct from l and l−1. Now if i ∈ {0, 1}, then (1, 0) is connected to (p− 2, q− 1)
by an edge labeled r−1 (the only remaining index), while (2, 0) is connected to (p− 3, q− 1)

by an edge with the same label r−1. Note further that x
(p−3,q−1)
l = (p − 2, q − 1) by the

isomorphism of directions on the grid to indices proven above. Hence, in our original graph
G, by compositionality (theorem 7) there exists an edge ((1, 0), (p − 3, q − 1)) with label
r−1 ◦ l−1 and an edge with label l ◦ r−1. Since these are two distinct labels this contradicts
that G is a locally King graph. If i = 2 we can construct a similar argument. (1, 0) must
then be connected to (p− 2, q − 1) by two edges with distinct labels.

This proves that if G is a locally King graph, then G′ is a Torus graph. But then it is easy
to see by compositionality that G is a Torus-King graph. The only edges we have to add
to G′ to produce G are those between vertices a, c where for some b and even indices i, j:
xai = b, xbj = c and i ̸= j, i ̸= j−1. Using the locally King-condition, these are then only the
vertices such that |N(a)∪N(c)| = 2 in G′. We must thus only add the edges ((ix, iy), (jx, jy))
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such that jx = ix + /− 1, jy = iy + /− 1 and 0 ≤ ix, jx ≤ p− 1, 0 ≤ iy, jy ≤ q − 1, the edges
((ix, 0), (ix+ δ+ /− 1, q− 1)) where 0 ≤ ix ≤ p− 1, and the edges ((0, iy), (p− 1, iy + /− 1))
where 0 ≤ iy ≤ q−1. Clearly this matches definition 33. This concludes the proof of theorem
9.

From strictly locally sub-King to King graph or Turband

Now I continue by showing that if G is not locally King, it must be a King-graph or Turband-
King graph. In this case, there must be at least one vertex v of which the neighborhood
is not a 3 × 3 King graph. By constraint (¬ IC), this vertex can have one of 5 possible
neighborhood structures:

1 542 3

I proceed by cases over the neighborhood of v:

If v has neighborhood 1, path-connectedness ensures that our graph is a single vertex and
hence a 1 by 1 King-graph.

If v has neighborhood 2, it is connected to a single node w by an edge with label l. Note
then that by (¬IC), w must have neighborhood 2 or 3, as is the case for any vertex con-
nected to w. By simple induction, every vertex in G then has neighborhood structure 2 or
3. Moreover, there exists a path from v through all vertices in G such that each edge has
label l (all other labels are excluded by compositionality, (¬IC) and (SC)). Suppose that
a vertex s distinct from v has neighborhood 2. Then there must be path from v to s of
length x ≥ 1, such that all intermediate vertices have neighborhood 3. We thus have a King
graphK0,x. Note that it cannot be the case that more than two vertices have neighborhood 2.

Suppose conversely that only v has neighborhood 2, while all other vertices have neigh-
borhood 3. Then we have an infinite path from v in which no vertex occurs twice, i.e., there
are no cycles. This follows from lemma 9: if there exists a cycle in the path from v over
l-labelled edges of length x, then v must be equal to the xth vertex in this path, which is
impossible since v has neighborhood 2 while x has neighborhood 3. But then since G is
finite such an infinite cycle-free path cannot exist. Thus there must exist another vertex
with neighborhood 2.

If v has neighborhood 3, again all other vertices must have neighborhood 2 or 3. If one
vertex has neighborhood 2 we are in the same case as before. However, all vertices might
have neighborhood 3, forming a cycle over edges with the same label l. There then exists
a path from v to v over edges labelled l that visits all vertices in G since G is connected.
After at most V (G) edges the path must reach a vertex for the second time. But then note
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that by lemma 9, every path in the same direction of the same length must start and end
in the same vertex. Then it must be the case that after exactly V (G) edges labelled l the
same vertex is reached. We can thus place our vertices on a grid where p = 1, q = |V (G)| so
that (0, V (G)− 1) is connected to (0, 0). G is then a Turband-King graph Tu01,|V (G)|.

If v has neighborhood 4 we can apply a similar argument as when v has neighborhood
2, albeit a bit more complicated. We construct a Turband-King graph by drawing it directly
on a p by q grid. We place v on (0, 0). The vertices connected to v by edges with even labels
must themselves have neighborhood 4 or 5 by (¬IC). Take one of these vertices w and let l
the label of the edge from v to w. We place w on (1, 0). Using a similar argument as when v
has neighborhood 2, we can construct a path along the x axis of ≥ 1 edges labelled l. Note
that this path again cannot contain cycles, since by 9 the existence of a subcycle would
imply that every subpath of the same length would be a cycle, while v cannot occur twice
in this path since it has no outgoing edge with direction l−1. This then also implies that
our path is finite and ends in a corner with neighborhood 4. Using the same argument we
can construct a finite path from v in the other ’even’ direction (name the associated label r)
along the y axis. Note that no pair of vertices in the two paths have the same neighborhood:
vertices in the first path have edges labelled l, l−1, while vertices in the second path have
edges labelled r, r−1, so that all vertices in the two paths must be distinct (including the
three corners with edge indices r and l, l−1 and r, and r−1 and l respectively). But then,
compositionality requires us to fill in the whole p, q grid, where each edge is labelled as is re-
quired by compositionality. Note lemma 8 ensures that while filling in G on this rectangular
Grid using the directions of the labelled edges we do not place two distinct vertices on the
same coordinate, since this would imply the existence of a path p between these two vertices
with δx,y(p) = (0, 0). Also note that the drawn graph must in fact be of rectangular shape,
since from the two corners at the end of our constructed paths we can again follow two
more finite ’edge paths’. Clearly the resulting rectangular graph must include all vertices,
since G is connected. Finally, it cannot be the case that one vertex s is now placed on the
two distinct coordinates (x1, y1), (x2, y2) for there would then be a path from s to s with
δx,y(p) ̸= (0, 0), (i.e., δx,y(p) = (x2 − x1, y2 − y1) if l = 4, r = 0 but rotations are possible).
But then we can iterate this path |V (G) + 1| times to construct path p|V (G)|+1 of which the
absolute traversal in either the x or y direction must be larger than the size of G, i.e. s is
beyond one of the four borders of G which is impossible. Thus in this case G must be a King
graph.

Finally, suppose v has neighborhood 5. This case is analogous to the easier case where
v has neighborhood 3. There can be only one pair of mutually inverse edge-labels that are
used in the neighborhood of v, name these l and l−1. Note again that every vertex reached
from v by edges labelled l must have neighborhood 4 or 5, while the same holds for l−1. If
G has a vertex with neighborhood 4 we are in the previous case so that G is a King graph.
Otherwise, there must in fact be an infinite path in both directions. Note again that by
lemma 9 there exists some cycle-length c such that each path of c edges in direction l (or
l−1) is a cycle. We place w at coordinate (0, 0) and draw the y axis by following the path
from w in the l direction for c − 1 edges. Clearly (0, 0) and (0, c − 1) are connected. Now
let r be the other even direction in the neighborhood of v (i.e. l + / − 2). Note that each
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vertex reached following edges labelled r from v must have neighborhood 5 or a 3 by 3 King
graph (numbered 6 in 5.4). Since no vertex in this direction has the same neighborhood
as v there cannot be any cycles in this direction. Hence, there exists a finite path to ’the
other edge’. We draw this path with length d along the x axis. Now we can again fill our
rectangular grid as is required by compositionality. (¬IC) ensures that every path of length
d from a vertex on the y axis in the r direction reaches another ’edge vertex’. Lemma 8
again ensures that we do not fill in 2 vertices at the same coordinate. Furthermore, I have
already argued that there can be no cycle by a path along the y axis of length < c. Hence, if
compositionality would require us to place one vertex s at two coordinates there would be a
non-zero distance along the x axis between these two coordinates. Following this path more
than d times would then imply that s is ’beyond’ the border at x = d, which is impossible
due to prohibition of inside corners.

It remains to be shown that in the last case the bottom and top row of our grid are connected
in a manner that fits the definition of a King turband Graph. Note that (0, c−1) is connected
to (0, 0) by an l−edge. Since every path of c many l edges is a cycle (by lemma 9) this is
the case for every 0 ≤ x ≤ r. The associated diagonal edges follow by compositionality. G
is thus a Turband King graph with δ = 0.

Conclusion and Evaluation

This finishes the proof of the main theorem:

Theorem 10. Let G a finite path-connected irreflexive locally sub-King tolerance graph that
is symmetry consistent and contains no inside corners. Then G is isomorphic to a King-
graph, Turband-King graph or Torus-King graph.

We may now evaluate to what extent these spatial structures correspond to Kantian space.
Of course, space for Kant is three-dimensional. In the current implementation construction
of 3D graphs is however computationally very demanding, although the approach introduced
here may from a theoretical standpoint very well be extended to three-dimensional struc-
tures. Interpreting the FAE then as a computational agent that constructs two-dimensional
space it seems fitting that it may find loops such as that of the turband in its spacial struc-
ture. When moving round the surface of a house in a single direction for instance, one may at
some point find herself back at the place where she started. A downside of allowing torusses
and turbands is that the constructed space is bounded: no new vertices can be added to a
torus without changing it to a non-torus. We thus see that if an artificial agent builds spatial
structures of this form, it is not at all guaranteed that new sensations can be incorporated
without changing the existing spatial information. If the agent wants to extend a spatial
torus, for instance by making it wider, it must rebuild all edges along the bounds of the grid.
This problem is then in a way analogous to what was said in the previous chapter about em-
beddings: there exists a tension between global consistency and successive synthesis. Again
the issue is not critical for the FAE because it does not have a successive synthesis. Now
for time the tension was limited in the sense that only the representation of time as a whole
must be rebuilt if the scope of synthesis becomes wider. For space we see however that more
intensive adjustments may be necessary: if a region is added it must be joined by neighboring

112



regions to prevent gaps, and if cycles in space are elongated at a certain point this requires
similar elongation throughout the whole of space to maintain consistency. On the other
hand, one may if this is desirable easily restrict the currently developed spatial construction
to two-dimensional map-graphs (Chen, Grigni, & Papadimitriou, 2002), by simply insisting
that at least one vertex has neighborhood 4 from figure 5.4. From a topological point of
view one might finally insist that constructed space should not merely be connected, but also
simply connected : no holes pass all the way through it, such as the whole in the center of a
torus. However, in the interpretation of an agent exploring the surface of a house, it seems
sensible that one encounters impenetrable barriers around which space wraps itself.

This then concludes the theoretical analysis of space. In the next chapter this spatial struc-
ture is implemented in the Figurative Apperception Engine.
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Chapter 6

Space: Implementation

Without further ado, I turn towards the construction of spatial structures implemented
in the FAE. Importantly, the process operates in parallel with the temporal construction
expounded earlier. The same events that are provided with temporal structure are also
related by means of the connection relation C. Furthermore, the same embeddings of the
manifolds distinguished by moments into larger manifolds under the amalgamation condition
is still in effect. The important addition is that the input events are now assigned to atomic
regions, and manifolds are spatially represented as sums over the atomic regions they contain.
The spatial orientation among manifolds is constructed by means of motion in accordance
with what was said in the introduction: Kant associates synthesis in space with motion as
”action of the subject” (B155). In the example behavior at the end of this chapter, I show
how space can be applied to resolve the extent to which objects must be given as input
to the AE, alternatively constructing objects as covers over spatially coherent intuitions. I
also combine the spatial and temporal constructions in application to Kant’s example of the
freezing of water.

6.1 Content in space

I now include a third type of content to contentlog: (p, (v1, v2)) where p is a predicate and
v1, v2 are numerical values. Events with this content do not refer to objects, but represent
mere intensive magnitudes in the sense of Kant’s Anticipations of Perception. The aim of the
FAE will then be to construct objects on the conceptual level that explain the input manifold
under constraints of spatial coherence. While intuition is then that through which an object
is given (instead of merely thought), the object of experience only comes into existence as
the result of a unifying synthesis. This partly addresses the limitations of the AE regarding
objects that were explained in chapter 2. I name the extended language contentlogs, but
do not repeat the full definition here.

6.2 Spatial structures

Implementation of the RCC is done trough straightforward translation into ASP constraints.
Input events are now also called atomic spaces, and provided with sub-atomic spaces as
insides (represented by the negative of the event number). Both types of spaces are subsumed
under the more general term element. Now the C relation is guessed between elements, under
constraint of axioms 1 and 3 (atomic spaces do not overlap, and have one non-tangenial
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proper part):

atomic space (E) :−
s en s e i npu t ev en t (E, , ) .

sub atomic space (−E) :−
atomic space (E) .

has event (M,−E) :−
has event (M,E) , atomic space (E) .

prop part (−E, E) :−
atomic space (E) .

:− sub atomic space (A) , connected (E, A) ,
not sub atomic space (E) , not part (−A,E) .

space equa l (E1 , E2) :−
atomic space (E1) , atomic space (E2) , space ove r l ap (E1 , E2) .

space equa l (A1 ,A2) :−
sub atomic space (A1) , sub atomic space (A2) , connected (A1 ,A2) .

element (E) :− atomic space (E) .
element (E) :− sub atomic space (E) .

{ connected (E1 , E2) } :− element (E1) , element (E2) .

Program 6.1: Construction of atomic and sub-atomic spaces and the associated connection
relation

I assign an index 0 ≤ i ≤ 7 to each connection between atomic regions and ensure the locally
sub-king condition as well as symmetry consistency and prohibition of inside corners. The
program implementing this is rather technical and has been included in the appendix. Now
to each manifold I assign a ’space cover event’ that is the sum over its atomic events:

spac e cove r even t ( (T, 0 ) ,E+T) :−
has event ( (T, 0 ) , ) , t ime cove r event (E) .

% Sum d e f i n i t i o n : connect ion imp l i e s connect ion with part
:− has prop par t (E1) , has prop par t (E2) ,

not atomic space (E1) , not atomic space (E2) ,
connected (E1 , E2) , not connected (P1 , P2) :
prop part (P1 , E1) , prop part (P2 , E2) .

% Sum d e f i n i t i o n : connect ion with part imp l i e s connect ion with cover
part (E2 , E1) :− spac e cove r even t (M,E1) ,

has event (M,E2) .

Program 6.2: Construction of spatial cover event

Along with axiom 2 (all non-element regions are sums over path-connected sets) this then
implies that the atomic regions in a single manifold must be path-connected. The associated

115



program is not given here. As was the case for time, several conditions are needed to ensure
spatial coherence of contents. Importantly, two different objects cannot occupy the same
space at the same time:

Definition 37. Spatial structure S is coherent when:

1. If the contents of events e, f ∈ S represent distinct objects, then ¬(SO(e, f)∧O(e, f)).
(where O represents temporal overlap).

2. If e, f ∈ S have incompatible contents then ¬(SO(e, f) ∧O(e, f)).

Note that the spatial overlap is of relevance for the second condition: an object might be
both light and dark, or hot and cold at the same time at different regions (for instance if
a table is half in the shade). As a simple example I provide the FAE with a manifold of
25 input ’intuitions’ with content s(intensity, 1) without any distinction of moments. The
FAE is constrained so that distinct sensations of the same property (and without any object)
that are sensed at the same time must exist in different spaces. Thus, the result is a spatial
structure of 25 atomic spaces. Figure 6.1 shows 3 examples of the found spatial structures
SU . Note that 25 regions can be placed on a grid without inside corners only if the grid
is 5 × 5 or 1 × 25. All atomic regions contain a sub-atomic region as proper part, and are
covered by a region representing space as a whole.

40

1

2

3

3

0

1

0 1 2 3

0 1 2 3

2

4

4

4

0 1 2 3

0 1 2 3

4

4

. . .

Figure 6.1: 3 spatial structures of 25 atomic regions. Numbers represent horizontal and
vertical connections between the edges. The associated tolerance spaces are ToK2

5,5, TuK
0
5,5

and K25,1

.

6.3 Movement

Now to build a spatial structure encompassing different manifolds, the FAE is given ’motions’
or ’movements’ between positions ”as action of the subject”, associated with partial functions
f, g, up etc.. Movements can be interpreted as continuous functions on the topological space
of spaces defined in section 5.3: the inverse movement function applied to a space (open set)
returns a space. Computationally, I define movements from spatial covers to spatial covers
(i.e., sums over atomic regions). If there is no motion between two successive input positions,
we let the spatial region of the two associated manifolds be equal. If there is a movement
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between two successive input indices, the two associated spatial regions are connected. Note
that this ensures by the sum condition that at least two of the atomic regions contained in
the manifolds are connected. Of course, there might even be an overlap, if the two larger
spaces share atomic regions. I formulate coherence conditions for movements. The first four
conditions provide general coherence. The latter three implement a specific interpretation
of movement as traversal on a 2D plane:

1. Movements are not trivial: f(A,B)→ ¬EQ(A,B).

2. Movements are invariant under EQ: f(A,B) ∧ EQ(A,C) → f(C,B), and f(A,B) ∧
EQ(B,C)→ f(A,C).

3. Movements are injective functions: f(A,B) ∧ f(A,C) → EQ(B,C) and f(A,B) ∧
f(C,B)→ EQ(A,C).

4. If there exists a sequence of moves f = f1 ◦ f2.. ◦ fn such that f(A,B) and EQ(A,B),
then for all regions C,D: f(C,D) implies EQ(C,D).

5. Movements are isomorphisms with respect to the connection relation C: f(A,B) ∧
f(C,D) implies (C(A,C) iff C(B,D))

6. If f(A,B) and A,B share x atomic regions, then the same number of atomic regions
is shared between any C,D such that f(C,D).

7. If f(A,B) and there exist atomic regions a b such that P (a,A), P (b, B) and xai = b
(i.e., the connection from a to b has label i), then for all C,D such that f(C,D), there
exist c, d such that P (c, C), P (d,D) and xci = d

I do not claim that this list of conditions is in any way exclusive. A full restrictions of
movements to traversals on a 2D plane would require much more computationally expensive
conditions such as a transitive variant of condition 7. The FAE now constructs a single
spatial structure SU , using the same system of merging and embedding that was applied in
the previous chapter. But now additionally the spaces that cover manifolds are connected in
a manner that satisfies the conditions for movement given above, until at last the region u is
constructed that covers all regions in Su. Again, this is our representation of space as a whole,
resulting from the figurative synthesis in its pure form, and grounding the same synthesis
in its empirical application. Embeddings are again identity functions from substructures to
structures, so that the unified result equals the direct limit of the system. Importantly, all
cover events are permanent representations of space itself, in accordance with what was said
in chapter 2. A representation of the system of spatial embeddings is given in figure 6.2.
Note that spatial covers of individual manifolds might very well have ’inside corners’ or even
gaps, as long as SU satisfies the conditions of section 5.6.
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f g

Figure 6.2: Structure of spatial embeddings in apprehension and reproduction. All covers
are elements of SU , but this is not represented here to maintain simplicity in the diagram.

6.4 Making sense of spatial structures

Now again, I further complicate the definitions of traces and making sense:

Definition 38. Given event structure WT = (WT , R+, R−, O,⪯)) and spatial structure
ST = (ST , C), if WT = ST there exists the following spatio-temporal structure: WST =
(WST , R+, R−, O,⪯, C), where WST = WT = ST .

Definition 39. Given theory T = (ϕ, I, R), the spatio-temporal trace of T is a spatio-
temporal structure WST such that definitions 20 (WT is a temporal trace) and 37 (spatial
coherence) are satisfied and for e, f ∈ WST , if e, f represent the same object then O(e, f)→
EQ(e, f) (objects are spatially coherent).

Note that this final condition is not necessarily sensible for spatial structures in general
and thus not part of the spatial coherence condition: intuitions at different spaces might
represent the same object, as when a house is taken into view piece by piece. In the case of a
trace however, we construct spatial events for objects of experience, so that these events make
up the whole space of an object. A lot more may be done in specifying general conditions
for the spatial trace of theories. For instance, one may insist that causes and effects must
be connected (although this is not always sensible, e.g. magnetism). I however content
myself with these minimal conditions for the moment, which suffice to explain a ’manifold
of intuition’ as a conceptual structure of objects in space.

Definition 40. Theory T makes sense of spatiotemporal structure WSU , if it has a trace
WST such that definition 21 (making temporal sense) is satisfied and:
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1. For every event e ∈ WSU with objectless content (p, (v1, v2)), there exists event f ∈
WST with content (p, o, (v3, v4)) so that v1 <= v2 implies v3 <= v4, v1 >= v2 implies
v3 >= v4, the interval [v1, v2] is enclosed in [v3, v4] and P (e, f).

2. For every event e ∈ WSU with content of the form (o, (p, q)), (p, o, (v1, v2)), of (o1, o2, (p, q)
there must exist event f ∈ WST so that definition 21 is satisfied for e by f (i.e. f
covers e in content as well as time), and P (e, f).

Note that, as in the previous chapter, WSU and WST in fact constitute as single spatio-
temporal structure. Hence, axiom 2 also applies: events in WST are sums over path-
connected sets of atomic regions in WSU . This then ensures that the objects of experience
introduced in WST exist in connected regions of space. Additional code is of course needed
to implement these definitions. But this is a rather technical and perhaps unilluminating
sequence of constraints that analyses contents and part relations. The main point of interest
is that for atomic regions and events in WST , the P relations are guessed explicitly instead
of the connection relation C. This ensures that regions in WT are sums over atomic regions,
although additional constraints are implemented to implement path-connectedness.

nospace over lap (A,E) :− atomic space (A) , concept event (E) ,
i n compos s ib l e even t s (A,E) , t ime ove r l ap (A,E) .

{ part (A,E) } :− concept event (E) , atomic space (A) ,
not nospace over lap (A,E) .

Program 6.3: Construction of part relation between atomic spaces and conceptual covers

6.5 Example behavior

We would like our system to adequately represent Kant’s famous house example from the
second analogy of experience. Kant explains that a house can often not be taken into view
at once: ”the apprehension of the manifold in the appearance of a house that stands before
me is successive” (B236). However, the house itself is not perceived as a ”happening”. The
key is that there is ”no determinate order that made it necessary when I had to begin in
the apprehension in order to combine the manifold empirically”(A193/B238). One might
have started with the bottom of the house as well as its roof, since no rule determines an
objective sequence. The example is taken up by Evans, who represents the house as a grid of
cells with value 1 or 0. A computational agent can only view 2× 2 blocks of this grid, and
the AE is given a sequence of such blocks along with movements. The constructed theory
then finds the correct assignment of 0 and 1 to the cells in the grid, along with the traversal
associated with the movements. However, space itself is there to a large extent given. The
cells, as well as there orientation in binary relations ’right’ and ’below’ are part of the input.
Furthermore, the input specifies that all moves are distinct, and identifies the 2 × 2 input
window as a set of 4 objects. A more Kantian approach is to start from intuition as manifold,
which is apprehended in space. Only when synthesis produces unity in space and time can
the object of experience be produced as conceptual counterpart to the manifold in intuition.
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I apply the FAE to a simplified version of Evan’s house (Evans, 2020). The FAE is given a
sequence of inputs with value 0 or 1 as well as moves. I provide a simple template, without
conceptual rules. The task for the FAE is to build a spatio-temporal structure and find a
suitable interpretation for the moves. Note that inputs with the same content can be given
more than once in the same position of the input ordering. The FAE then distinguishes
the sensations in space, as when an agent receives light with the same intensity on different
visual sensors.

Example 6.

S1 = {intensity(0), intensity(0)}
move(right, (1, 2))

S2 = {intensity(0), intensity(1)}
move(right, (2, 3))

S3 = {intensity(0), intensity(1)}
move(left, (3, 4))

S4 = {intensity(0), intensity(1)}
move(left, (4, 5))

S5 = {intensity(0), intensity(0)}

Φ =



T = {cell, },

O = {cell1, cell2, cell3 : cell4}

P = {intensity(x, 0), intensity(x, 1)}

V = {x : cell}


Ni = 4

Ne = 0

NRS = 0

NCR = 0

Note that the atomic formulas in the input do not refer to any object. The unification of
the manifold of intuition into objects is the result of constructing the trace ST . I provide a
single constraint:

C =
{
∀x : cell intensity(x, 0) XOR intensity(x, 1)

}
The FAE finds the following theory and spatial structures Su, ST , I represent the process of
spatial synthesis through embeddings to show the underlying mechanism:

I =
{
intensity(cell1, 0), intensity(cell2, 1)

}
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Figure 6.3: Spatial structures for example 6.

The constructed temporal structure is then rather uninteresting. Any structure that satisfies
the overlap of events at the same input index and covering of the trace suffices” △

The FAE finds that the movements ’left’ and ’right’ are each others inverses. It also hy-
pothesizes that both movements are associated with a spatial overlap: after moving to the
right, a single atomic region that was perceived before is still in view. The spatial model
constructed is that of a Turband, which allows the FAE to explain the sensory sequence with
2 instead of 3 objects. I now turn to an example where the spatial and temporal components
of figurative synthesis are combined in a non-trivial manner. Kant discusses the example of
freezing water as counterpart to the perception of a house:

”If (in another example) I perceive the freezing of water, I apprehend two states (of flu-
idity and solidity) as ones standing in a relation of time to each other. But in time, on which
I ground the appearance as inner intuition, I represent necessary synthetic unity of the mani-
fold, without which that relation could not be determinately given ... But now this synthetic
unity, as the a priori condition under which I combine the manifold of an intuition in gen-
eral, if I abstract from the constant form of my inner intuition, time, is the category of cause”
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In this example the succession of perception thus corresponds to an objective sequence
through causal unity. In the terminology of the second analogy: the order between the
perception of water and that of ice is necessarily determined. One could not have perceived
ice before water, in the same way that one could have perceived the roof of a house before
its base by simply changing the direction of view. The change from water to ice happens in
accordance with a causal rule.

Example 7. I again provide the FAE with perceived ’intensities’ between which movements
are made, but now the intensities change throughout the sensory sequence. The intended
interpreatation is that the freezing of water results in higher light intensities. The task for
the FAE is to decide whether it is perceiving multiple simultaneous objects or a single object
changing through time in accordance with a causal rule.

S1 = {intensity(0)}
move(right, (1, 2))

S2 = {intensity(0), temp(sensor, 0)}
move(left, (2, 3))

S3 = {intensity(1)}
move(right, (3, 4))

S4 = {intensity(2)}
S5 = {intensity(3)}

Φ =



T = {cell, },

O = {cell1, cell2, cell3 : cell}

P = {intensity(x, 0), intensity(x, 1), intensity(x, 2)}

∪ {temp(y, i) : 0 ≤ i ≤ 10}
V = {x : cell, y : sensor}



Ni = 3

Ne = 6

NRS = 0

NCR = 1

I apply the same input constraint:

C =
{
∀x : cell intensity(x, 1) XOR intensity(x, 1)[1ex]

}
The FAE finds a theory with a single cell, of which the light intensity rises as effect of the
temperature being 0:

I =
{
intensity(cell1, 0), temp(sensor, 0)

}
R =

{
(temp, y, (on, on) >>CR (intensity, x, up)

}
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The found spatiotemporal structures are the following:

r l r l
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Figure 6.4: Spatial structure for example x. Comma’s have been used to denote that several
contents are associated with a single space throughout time. Numbering has been added to
the atomic regions in SU to signify the spatial component of events in the event structure
below
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Figure 6.5: Temporal structure for example x. Indices on the left denote the atomic spaces
in which events are placed

△

Here, the FAE learns that the movements ’right’ and ’left’ are each others inverses. Contrary
to the previous examples, the movements are now not associated with a spatial overlap. The
FAE hypothesizes that the two spaces between which the movements are made together
contain a single object changing through time following a causal rule. As in Kant’s example,
the rule of change provides objective truth to the subjective sequence of ’intensities’. Con-
trary to the previous example, where the FAE finds multiple non-changing objects existing
simultaneously, the sequence of appearances could not have been reversed by moving in the
other direction.
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Discussion and Future Research

In this thesis I have introduced several extensions of the AE. The implementation of geomet-
ric rules has been finished to a degree where application to non-trivial problems is possible.
The implementation of figurative synthesis in space on the other hand is more a proof of con-
cept: the conceptual and computational groundwork is laid for unification through synthesis
of apprehension. In all cases more work can be done to generalize the developed frameworks
and show their full potential. I have attempted to bridge the gap between the Critique
of Pure Reason and the Apperception Engine simulatenously from a philosophical, mathe-
matical and computational perspective. In this section I briefly go over the three previous
chapters, pointing towards limitations of the implemented systems and directions for future
research.

Geometric logic

In the third chapter I have introduced geometric logic as the logic of judgement and simul-
taneously the logic of objective validity on inverse systems. While both properties indicate
the potential of this formalism, neither of them has been fully represented in the current
implementation. On the one hand, I have only represented hypothetical judgement ; the coun-
terpart of causal rules in the AE. More functions from Kant’s table of judgements must be
cast in geolog and provided as learnable structures to the AE before the subtle interac-
tion of judgements that characterizes Kantian synthesis can take shape. On the other hand,
the learned geometric rules are not interpreted on an inverse system, so that their objective
validity remains implicit. Another limitation of the current approach is the restriction of
geometric implications to geometric rules that do not allow for disjunctions in the conse-
quents. Whether or not the full power of geometric implications is needed to adequately
represent Kantian judgement is perhaps open to discussion. Although it is clear that Kant’s
disjunctive judgement and logical disjunctions are distinct operations, disjunctions might be
useful in the subsumption of intuition under sets of intensions, see e.g. (Achourioti et al.,
2017).

From a more practical point of view, the choice minimization process that favors precise
theories over general theories must still be developed further. I have prevented ’fake’ pre-
cise explanations of the form number(y) ∧ equal(x, y) → number(x) by requiring that the
ground head of an explanatory rule may not be equal to one of its ground bodies, but this
mechanism may falter when sufficiently large templates are provided. For example, in a set
of rules {∃xp(x), p(x) → q(x), q(x) → p(x)}, the third rule can still constitute a ’fake’ pre-
cise explanation of p(a). To resolve this, one might analyse the transitive closure of ground
derivations within a single time, further constraining what counts as explaining a ground
atom.
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Making sense in time

I have shown how a sensory sequence can be represented as event structure through a process
of embedding and merging. Time is then both a priori structure, and the result of a unifying
process. Event structures represent the fundamental connectedness and potential infinity of
Kantian time, and temporal synthesis underlies the synthesis of representation under con-
cepts. While this extension then paves the way for a learning system that has fundamental
similarities with Kant’s architecture, the expressiveness of contentlog is still quite lim-
ited. I have not yet implemented the capacity to develop xor constraints. Furthermore, rules
in contentlog have a single atom in their body since they represent relations between
pairs of events and events have a single content. In order to generalize contentlog to
a language that wholly includes datalog, we must either allow events to have multiple
contents or define relations between more than two events. For instance, one might allow c1
and c2 to cause e together if and only if c1 ⪰ e ∧ c2 ⪰ e.

In relation to the objective validity of geometric logic, it seems that a more thorough model of
figurative synthesis would apply retractions between event structures, instead of embeddings,
and takeWU to be the inverse limit instead of the direct limit. In such a framework, geometric
sentences could be constructed based on their truth over all event structures in the system
of retractions. Their transcendental truth on the inverse limit would then be guaranteed by
objective validity. Whether or not such an approach would come with computational as well
as conceptual benefits will perhaps be made clear in the future. As discussed, constructing
an inverse system of retractions in the current framework requires explicitly representing all
causal pasts and futures, thereby cluttering the system. In the current approach we do have
preservation of geometric formulas over embeddings. Interpreting implications as dynamical
proofs (as discussed in chapter 3), we might then view geometric formulas as representations
of ’what is’ (objectively) that are built up throughout the embedding of event structures
and only explained as a single system by implications on the conceptual level WT . In any
case, more may be done to incorporate geometric logic and temporal construction in a single
system and show how both extensions can complement one another.

Making sense in space

The implementation of spatial synthesis explores new grounds, and the identification of do-
main general inductive biasses that sufficiently constrain spatial construction has proven to
be a hard nut to crack. More than the third and fourth chapter, the fifth and sixth chap-
ters display a proof of concept, laying the mathematical and computational foundations for
practical applications of spatio-temporal construction to be developed in future work. I have
shown how tolerance spaces can be applied as a bridge between topological interpretations
of the regional connection calculus and graph-theoretical dimensionality. Local conditions
have proven sufficient to ensure a degree of global consistency for the spatial structure. As
discussed, alternative topological structures might be applied in future research, potentially
even structures that are simply connected. The current structure might also be extended to
three-dimensional space, although the repercussions in terms of efficiency might be severe.
From a more philosophical point of view, it would be interesting to analyse to what extent
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RCC can be considered a determination of sensibility by the understanding as is the case for
the temporal axiom system developped by Pinosio.

In the implementation of unification and making sense in space, much more may still be
done. The same comments on geometric logic and embeddings that were given above apply
to spatial construction. On the topic of spatial construction itself, an interesting avenue to
pursue is to explore the relevance of motion to a higher degree. Pinpointing the topological
properties that most adequately place subjective motion in the center of spatial synthesis
might prove core in the development of a generalizable spatial synthesis system. Finally, the
critical reader might have noted that the example of spatial synthesis given in this thesis
display conceptual explanation, but no spatial prediction. Indeed, the interaction between
concept formation, space and prediction is a topic that requires more intensive thought.
Kant understood the empirical concept geometrically, stating that ”the empirical concept of
a plate has homogeneity with the pure geometrical concept of a circle” (B176). Future re-
search might thus take up the spatial system developed in this work, and provide predicates
with a geometric content in terms of the directed relations. Then, the unification of input
under the concept ’house’ by the FAE might result in predictions, as when one sees the
bottom of a house and predicts that there must be a top. Note that such empirical concepts
must be learned through experience. A proper implementation of making geometric sense
might thus require a sequential implementation of the Apperception Engine in which
achieved concepts can be stored and applied to later tasks.

Computational limitations

Throughout this project, a central theme and limitation has always been the limitations on
running time and memory usage. Noting that the original AE already takes more than two
days to perform some tasks, it is clear that computational bounds are of severe significance
for any attempt to make the system more expressive. Especially the spatial construction
introduced in chapters 5 and 6 provides a degree of freedom that renders application to
larger examples such as Evans’ house very difficult. Future approaches may abandon Clingo
and move towards potentially more powerful program synthesis frameworks. One promising
candidate is the ’Dream Coder’ (Ellis et al., 2020), a program synthesis system that discovers
explanatory symbolic structures in a machine learning framework. It would be very stimu-
lating to discover the potential of a system that combines statistical learning with Kantian
architecture.
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Conclusion

As counterpart to the sizeable body of text that this thesis applies to convey its message, its
concluding remarks contain no more words than are strictly necessary to repeat what has
been said.

The Apperception Engine is a pioneering AI system in terms of explainability and gener-
alizability. Still, Kant’s architecture provides concepts and inspiration for many extensions
of this system yet to come.

Non-deterministic choice over predefined domains can represent geometric logic and open
the door to Kantian judgements as unifying functions and rules.

Taking figurative synthesis seriously means recognizing both form of intuition and formal
intuition as determination of sensibility by the understanding.

By embedding qualitative structures, we may simultaneously unify intuition in time and
space, represent time and space as boundless, unique and potentially infinite structures,
provide conceptual reasoning with a spatio-temporal interpretation, and subsume intuition
under objects of experience.

This project has further explored the potential for general application of artificial intelli-
gence. The artificial agent that constructs his world as unity in space and time might one
day interact with it as if it experiences, as if it understands its environment.

I thank the reader for her or his time and attention.
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Appendix

This appendix contains a few interesting but relatively large programs. No explanation is
provided, but the related section in the thesis is given.

4.5.3: Constraints on the temporal consistency between events

:− i n compos s ib l e even t s (E1 , E2) ,
t ime ove r l ap (E1 , E2) .

C1 = C3 :−
t ime ove r l ap (E1 , E2) , has content (E1 , s ( , ( C1 , ) ) ) ,
has content (E2 , s ( , ( C3 , ) ) ) ,
same objec t and proper ty (E1 , E1) , r a f t e r (E1 , E2) ,
r a f t e r (E2 , E1) .

C2 = C4 :−
t ime ove r l ap (E1 , E2) , has content (E1 , s ( , ( ,C2) ) ) ,
has content (E2 , s ( , ( ,C4) ) ) ,
same objec t and proper ty (E1 , E1) , r b e f o r e (E1 , E2) , r b e f o r e (E2 , E1) .

C2 = C4 :−
t ime ove r l ap (E1 , E2) , has content (E1 , s2 ( , , ( C1 ,C2) ) ) ,
has content (E2 , s2 ( , , ( C3 ,C4) ) ) , event s same ob j and prop s2 (E1 , E2) ,
r b e f o r e (E1 , E2) , r b e f o r e (E2 , E1) .

C1 = C3 :−
t ime ove r l ap (E1 , E2) , has content (E1 , s2 ( , , ( C1 ,C2) ) ) ,
has content (E2 , s2 ( , , ( C3 ,C4) ) ) , event s same ob j and prop s2 (E1 , E2) ,
r a f t e r (E1 , E2) , r a f t e r (E2 , E1) .

V3 >= V1 :−
has content (E1 , s2v (C, O, (V1 ,V2) ) ) , V1 <= V2, has content (E2 , s2v (C, O, (

V3 ,V4) ) ) , t ime ove r l ap (E1 , E2) , r a f t e r (E2 , E1) .

V4 <= V2 :−
has content (E1 , s2v (C, O, (V1 ,V2) ) ) , V1 <= V2,
has content (E2 , s2v (C, O, (V3 ,V4) ) ) , t ime ove r l ap (E1 , E2) ,
r b e f o r e (E2 , E1) .

V3 <= V1 :−
has content (E1 , s2v (C, O, (V1 ,V2) ) ) , V1 >= V2,
has content (E2 , s2v (C, O, (V3 ,V4) ) ) , t ime ove r l ap (E1 , E2) ,
r a f t e r (E2 , E1) .

V4 >= V2 :−
has content (E1 , s2v (C,O, (V1 ,V2) ) ) , V1 >= V2,
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has content (E2 , s2v (C,O, (V3 ,V4) ) ) , t ime ove r l ap (E1 , E2) ,
r b e f o r e (E2 , E1) .

:− t ime ove r l ap (E1 , E2) , has content (E1 , s2v (C, O, (V1 ,V2) ) ) ,
has content (E2 , s2v (C, O, (V3 ,V4) ) ) , V1<V3 , V1<V4 ,
V2<V3 , V2<V4 .

:− t ime ove r l ap (E1 , E2) , has content (E1 , s2v (C, O, (V1 ,V2) ) ) ,
has content (E2 , s2v (C, O, (V3 ,V4) ) ) , V1<V2 , V3>V4 .

4.5.4: Merging manifolds and events

merged manifold ( ( 1 ,D) , (1 , D−1) , (D+1, 0) ) :−
manifo ld ( ( 1 , D−1) ) , mani fo ld ( (D+1, 0) ) .

has event (A, Event ) :−
merged manifold (A, B, ) , has event (B, Event ) .

has event (A, Event ) :−
merged manifold (A, , C) , has event (C, Event ) .

has event (A, E3) :−
merged manifold (A, B, C) , has event (B, E1) ,
has event (C, E2) ,
merged event (E3 , E1 , E2) .

1 { merged event (E1+X, E1 , E2) : p o s i n t u i t e v e n t (E1+X) } 1 :−
merged manifold (A,B,C) ,
event s same ob j e c t and prope r ty (E1 , E2) ,
i n p u t s i z e (X) ,
l a s t o f i t s k i n d (B, E1) ,
f i r s t o f i t s k i n d (C, E2) ,
not cha in same va lue (E1 , E2) .

l a s t o f i t s k i n d (M, E1) :−
has event (M, E1) , not ha s su c c e s s o r (M, E1) ,
not ha s more p r e c i s e s im end ing even t (M, E1) .

h a s su c c e s s o r (M, E1) :−
has event (M, E1) , has event (M, E2) ,
event s same ob j e c t and prope r ty (E1 , E2) ,
r s t r i c t l y b e f o r e (E1 , E2) .

ha s more p r e c i s e s im end ing even t (M, E1) :−
has event (M, E1) , has event (M, E2) ,
event s same ob j e c t and prope r ty (E1 , E2) ,
r b e f o r e (E1 , E2) , t ime cove r s (E1 , E2) ,
not t ime cove r s (E2 , E1) .

f i r s t o f i t s k i n d (M, E1) :−
has event (M, E1) , not ha s p r ede c e s s o r (M, E1) ,
not ha s mor e p r e c i s e s im beg inn ing even t (M, E1) .
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ha s p r ede c e s s o r (M, E1) :−
has event (M, E1) , has event (M, E2) ,
event s same ob j e c t and prope r ty (E1 , E2) ,
r s t r i c t l y a f t e r (E1 , E2) .

ha s mor e p r e c i s e s im beg inn ing even t (M, E1) :−
has event (M, E1) , has event (M, E2) ,
event s same ob j and prop s (E1 , E2) ,
r a f t e r (E1 , E2) , t ime cove r s (E1 , E2) ,
not t ime cove r s (E2 , E1) .

cha in same va lue (E1 , E2) :−
has content (E1 , s (O, ( ,C2) ) ) ,
has content (E2 , s (O, ( C2 , ) ) ) .

cha in same va lue (E1 , E2) :−
has content (E1 , s2v (C, O, ( ,V2) ) ) ,
has content (E2 , s2v (C, O, (V2 , ) ) ) .

4.5.6: implementation of trace definition:

concept event (X) :− pos concept event (X) , has content (X, ) .

%1 : I n i t events from I

1{ has content (E, s2v (Concept , Object , (V,V) ) ) : p o s i n i t e v e n t (E) }1 :−
i n i t ( s2v (Concept , Object , V) ) .

1{ has content (E, s ( Object , ( Concept , Concept ) ) ) : p o s i n i t e v e n t (E) }1 :−
i n i t ( s ( Concept , Object ) ) .

:− i n i t e v e n t (X) , concept event (Y) ,
not r a f t e r (Y,X) .

%2 : Regular s u c c e s s i o n s

1 { r e g u l a r s u c c e s s i o n (R, Subs , E1 , E2) : pos concept event (E2) , E1<E2}1:−
concept event (E1) ,
i s r e g s u c c r u l e (R) ,
r u l e s ub s (R, Subs ) ,
eva l body (R, Subs , E1) ,
not end ing concept event (E1) .

r s t r i c t l y a f t e r (E2 , E1) :− r e g u l a r s u c c e s s i o n ( , , E1 , E2) .

:− r e g u l a r s u c c e s s i o n ( , , E1 , E2) , t ime ove r l ap (E1 , E2) .

has content (E2 ,GH) :−
r e g u l a r s u c c e s s i o n (R, Subs , , E2) ,
ru l e h ead co (R,VH) ,
r u l e s ub s (R, Subs ) ,
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ground content (VH, GH, Subs ) .

h a s d i r c on t en t (E2 , s2v (C, Obj , up ) ) :−
r e g u l a r s u c c e s s i o n (R, Subs , E1 , E2) , ru l e h ead co (R, s2v (C, Var , up ) ) ,
r u l e s ub s (R, Subs ) ,
subs ( Subs , Var , Obj ) .

h a s d i r c on t en t (E2 , s2v (C, Obj , down) ) :−
r e g u l a r s u c c e s s i o n (R, Subs , E1 , E2) , ru l e h ead co (R, s2v (C, Var , down) ) ,
r u l e s ub s (R, Subs ) ,
subs ( Subs , Var , Obj ) .

:− r e g u l a r s u c c e s s i o n ( , , E1 , E2) , not boundary between (E1 , E2) .

%3 : Causal r u l e s
1 { causes (R, Subs , E1 , E2) : pos concept event (E2) , E1 < E2}1:−

concept event (E1) ,
i s c a u s a l r u l e (R) ,
r u l e s ub s (R, Subs ) ,
eva l body (R, Subs , E1) ,
not end ing concept event (E1) .

t ime cove r s (E1 , E2) :− causes ( , , E1 , E2) .

has content (E2 ,GH) :−
causes (R, Subs , , E2) ,
ru l e h ead co (R,VH) ,
r u l e s ub s (R, Subs ) ,
ground content (VH, GH, Subs ) .

h a s d i r c on t en t (E2 , s2v (C, Obj , up ) ) :−
causes (R, Subs , E1 , E2) , ru l e h ead co (R, s2v (C, Var , up ) ) ,
r u l e s ub s (R, Subs ) ,
subs ( Subs , Var , Obj ) .

h a s d i r c on t en t (E2 , s2v (C, Obj , down) ) :−
causes (R, Subs , E1 , E2) , ru l e h ead co (R, s2v (C, Var , down) ) ,
r u l e s ub s (R, Subs ) ,
subs ( Subs , Var , Obj ) .

%4 : S t a b i l i s a t i o n f o r a l t e r a t i o n events .
1 { s t a b i l i s e s ( s (O, ( C1 ,C2) ) ,E1 , E2) : pos concept event (E2) , E1 < E2}1 :−

concept event (E1) ,
has content (E1 , s (O, ( C1 ,C2) ) ) ,
C1 != C2 .

1 { s t a b i l i s e s ( s2v (C,O, (V1 ,V2) ) ,E1 , E2) : pos concept event (E2) , E1<E2}1 :−
concept event (E1) ,
has content (E1 , s2v (C,O, (V1 ,V2) ) ) ,
V1 != V2 .
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has content (E2 , s (O, ( C2 ,C2) ) ) :− s t a b i l i s e s ( s (O, ( C1 ,C2) ) , , E2) .
has content (E2 , s2v (C,O, (V2 ,V2) ) ) :− s t a b i l i s e s ( s2v (C,O, (V1 ,V2) ) , , E2) .

:− s t a b i l i s e s ( , , E1 , E2) , not boundary between (E1 , E2) .

:− s t a b i l i s e s ( , E1 , E2) , r b e f o r e (E2 , E1) .

:− s t a b i l i s e s ( , E1 , E2) , t ime ove r l ap (E1 , E2) .

%5 Minimal ity f o l l ow s from genera t i on o f events under 1−4

%6 : Every non− i n i t event has a unique pr edec e s so r as s t a r t i n g po int .
has prev (E2) :− boundary between (E1 , E2) , cha in same va lue (E1 , E2) .

:− concept event (E2) , not i n i t e v e n t (E2) , not has prev (E2) .

:− has prev (E1 , E2) , has prev (E3 , E2) , E1 != E3 .

:− has prev (E1 , E2) , has prev (E1 , E3) , E2 != E3 .

%7 No ambiguity

:− t ime ove r l ap (E1 , E2) , concept event (E1) , concept event (E2) ,
has content (E1 , s ( , ( C1 ,C2) ) ) , has content (E2 , s ( , ( C3 ,C4) ) ) ,
event s same ob j and prop s (E1 , E2) ,
r s t r i c t l y b e f o r e (E2 , E1) , C4 != C1 , C4 != C2 .

:− t ime ove r l ap (E1 , E2) , concept event (E1) , concept event (E2) ,
has content (E1 , s ( , ( C1 ,C2) ) ) , has content (E2 , s ( , ( C3 ,C4) ) ) ,
event s same ob j and prop s (E1 , E2) ,
r s t r i c t l y a f t e r (E2 , E1) , C3 != C1 , C3 != C2 .

% 8 No cover ing o f prev ious .

:− causes ( , , E1 , E2) , h a s d i r c on t en t (E2 , s2v (C,O,D1) ) ,
r b e f o r e (E3 , E2) , h a s d i r c on t en t (E3 , s2v (C,O,D2) ) ,
D1 != D2, t ime ove r l ap (E1 , E3) .

:− causes (R, , E1 , E2) , concept event (E3) ,
event s same ob j and prop s (E2 , E3) ,
E2 != E3 , r b e f o r e (E3 , E2) ,
t ime cove r s (E1 , E3) .

6.2; Implementation of locally sub-King and symmetry consistency conditions, as well as
prohibition of inside corners.

neighbour number ( 0 . . 7 ) .

even ( 0 ; 2 ; 4 ; 6 ) .
odd ( 1 ; 3 ; 5 ; 7 ) .
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nextto ( I , I+1) :− neighbour number ( I ) , neighbour number ( I+1) .
nextto (7 , 0 ) .
nextto ( I , I ) :− neighbour number ( I ) .
nextto ( I1 , I2 ) :− nextto ( I2 , I1 ) .
nextto (0 , 2 ) .
nextto (2 , 4 ) .
nextto (4 , 6 ) .
nextto (6 , 0 ) .

s pa c e de s i gna to r (E1) :− atomic space (E1) , E1 <= E2 : space equa l (E1 , E2) .

1{ neighbour (E1 , E2 , I ) : neighbour number ( I ) }1 :−
atomic space (E1) , atomic space (E2) , connected (E1 , E2) , not space equa l

(E1 , E2) , spa c e de s i gna to r (E1) , s pa c e de s i gna to r (E2) .

:− neighbour (N,E1 , I ) , neighbour (N,E2 , I ) , E1 != E2 .

:− neighbour (N, E1 , I1 ) , neighbour (N, E2 , I2 ) , nextto ( I1 , I2 ) , not connected (E1
, E2) .

:− neighbour (N, E1 , I1 ) , neighbour (N, E2 , I2 ) , not nextto ( I1 , I2 ) , connected (E1
, E2) .

:− l o c a l l y g r i d , neighbour (A,N1 , I1 ) ,
even ( I1 ) , neighbour (A,N2 , I2 ) , I2 = ( I1+2)\8 , neighbour (N1 , Third , ) ,
neighbour (N2 , Third , ) ,

A != Third , not neighbour (A, Third , I1+1) .

:− l o c a l l y g r i d , neighbour (A,N1 , I1 ) ,
even ( I1 ) , neighbour (A,N2 , I2 ) , I2 = ( I1+4)\8 ,
neighbour (N1 , Third , ) , neighbour (N2 , Third , ) ,

A != Third , not neighbour (A, Third , I3 ) , not neighbour (A, Third , I4 ) ,
I3 = ( I1+2)\8 , I4 = ( I1+6) \8 .

sa turated (A) :−
spa c e de s i gna to r (A) ,

neighbour (A, , I ) : neighbour number ( I ) .

l o c a l l y g r i d :−
sa turated (A) : spa c e de s i gna to r (A) .

% symmetry con s i s t ency
neighbour (E2 , E1 , I2 ) :− neighbour (E1 , E2 , I1 ) , I2 = ( I1+4) \8 .

% No i n s i d e co rne r s
:− neighbour (E, , I ) , odd ( I ) , J = ( I+1)\8 , not neighbour (E, , J ) .
:− neighbour (E, , I ) , odd ( I ) , J = ( I−1)\8 , not neighbour (E, , J ) .

:− neighbour (E, , I ) , even ( I ) , J = ( I+2)\8 , neighbour (E, , J ) ,
L = ( I+1)\8 , not neighbour (E, , L) .
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