
Constructing queries from data examples

MSc Thesis (Afstudeerscriptie)

written by

Valentino Filipetto
(born 24th February, 1998, in Varese, Italy)

under the supervision of Balder ten Cate, and submitted to the
Examinations Board in partial fulfillment of the requirements for the

degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
24th August 2022 Prof. Ekaterina Shutova (chair)

Prof. Balder ten Cate (supervisor)
Dr. Johannes Marti
Dr. Gregor Behnke

Abstract

The Query-by-Example problem (QBE) is about the existence of a fitting
query for a given database instance and positive/negative labelled data ex-
amples. The question is: given an input database instance and sets of user
examples, does there exist an explanatory querywhose answers to it include
the positive examples but not the negatives? Intuitively, what a fitting query
does it to generalize the data according to certain constraints given by the
user examples. From a complexity theoretical-standpoint, it was proven in
2010 that the Query-by-Example problem is coNExpTime-complete if we
consider conjunctive queries as query language [18].

While in the relevant literature it is sometimes assumed that the fitting
queries for the Query-by-Example problem cannot contain constants, in this
thesis we consider precisely what happens if constants can appear in them
and we check is there are changes in terms of computational complexity.
Throughout the thesis we show how natural it is to allow constants in the
queries and we present inputs for QBE where, if constants are now allowed
to appear in the queries, no fitting query exists. Our analysis shows that, in
most cases, constants do not really influence the computational complexity
of QBE.

Acknowledgments

In this space, I want to express feelings of gratitude to those who helped
me, in different ways, to write this thesis.

I would like to thank my supervisor Balder ten Cate for always welcom-
ingmewith a smile and teachingme patience and precision. Thanks should
also go to the members of the defense committee who took the time to read
this work.

I thank my family: mum, dad, brother, sister. You have always sup-
ported me in my choices and also when, among many doubts, I decided to
leave Italy.

I warmly thank all my friends of theMaster of Logic: I admire you all for
different reasons and I keepwithinme a space for each of you. I here include
all the singers of the Vocal band that I have had the pleasure of getting to
know since February 2022.

Two women deserve special thanks (and really these few lines are not
enough): Thanks Elena for helping me, from afar, to get off Novecento’s
ship. Your listening skills are unique and always surprising. Thank you
S. for being simply ”you”, that is, irresistible, delicate and free. If I was
able to do this it is also thanks to your constant support and your beautiful
personality.

Finally, I should say that writing this thesis, which alreadywas quite the
challenge for a series of unforeseen circumstances, would have been much
harder without the music I listened to in the process – especially Mahler’s
music; to the grandiose works of Mahler I owe much of the stimulus to my
actions, and a particular, intense way of feeling. To this day, I still think
that it is a gift of fate to be able to live in the same era in which Mahler was
discovered.

Contents

1 Introduction 2

2 Background 6
2.1 Background on database theory 6
2.2 Background on complexity theory 12

3 The Query-by-Example problem 15
3.1 Introduction to the problem 15
3.2 Query-by-Example for CQs and UCQs 18

3.2.1 Query-by-Example for CQs 18
3.2.2 Query-by-Example for UCQs 23

4 Introducing constants 27
4.1 High-level setting . 27
4.2 Definitions . 29
4.3 Upper bounds for CQs and UCQs 34
4.4 Lower bounds for CQs and UCQs 40

4.4.1 Lower bounds for CQs 40
4.4.2 Lower bounds for UCQs 46

5 Conclusion 49

Bibliography 52

1

1
Introduction

Managing and querying large volumes of data has become central to many
activities and jobs. Being able to ask queries to a database and, more gen-
erally, work with data in a relational database is growing in importance be-
yond the scientific community. For example, SQL, acronym for Structured
Query Language [13], which has already been a standard for many years, is
now recommended to users that don’t necessarily work in the IT field [15].
However, not everybody is an expert database user, and constructing suit-
able queries is, by itself, a challenging task. To deal with this, one possible
approach is to provide a repository for users to share their queries [16].
However, this service still requires a certain knowledge of SQL. But there
are also approaches that try not to presuppose any background knowledge
of this programming language, like [9]. In this case, the user is only re-
quired to be able to asses whether or not a given output table is the result of
their target query on a given input database. Given that, the system is able
to select the desired query among different possibilities.

We study a problem called Query-by-Example (QBE), which is a formal-
ization of an approach to solve the problems above and, in this thesis, it is
studied from a complexity-theoretical angle. Moreover, the QBE problem
shares with the problems above the ultimate goal of understanding how
to derive certain queries given a database. QBE is the problem – given a
database and sets of positive and negative labelled data examples – to de-
cide if there exists a query that fits the data examples, i.e. the answers to the
query should include the positive examples but not the negatives.

To better understand the problem, let us see an example. Take the fol-
lowing database instance (Figure 1.1):

2

CHAPTER 1. INTRODUCTION 3

WorksInDepartment
Name Department
John Literature
Ada Philosophy
Jane Philosophy
David Computer Science

Teaches
Name Course
Ada Political Philosophy
Jane Ethics
David Distributed Algorithms
David Distributed Systems

Figure 1.1: First example of a database instance.

In this case we only have two binary relations WorksInDepartment and
Teaches. Moreover, let us assume that our positive examples are Jane and
Ada, while John is the only negative one (note that these examples might
be provided by a user aswell as come fromother sources). A possible fitting
conjunctive query is then:

q(x) := ∃y∃z(WorksInDepartment(x, y) ∧ Teaches(x, z))

In recent years, researchers that studied QBE from a complexity theoret-
ical standpointmanaged to prove thatQBE is coNExpTime-complete if we
consider conjunctive queries as possible fitting queries [1, 8], and coNP-
complete if we consider union of conjunctive queries [12]. These complex-
ity boundswere obtained under the assumption that a possible fitting query
can only contain variables, either free or bounded by an existential quanti-
fier. However, it is easy to see how natural it is to consider the case in which
queries can also contain constants; this way wemight obtain queries that are
less general but it might be possible to find fitting queries for a certain input
while it was impossible in the previous setting. As an example, take again
the database instance in Figure 1.1. Furthermore take, as positive example,
David, and as negatives Jane, John and Ada. A possible fitting conjunctive
query containing a constant (i.e. ComputerScience) is the following:

q(x) := ∃y(WorksInDepartment(x,ComputerScience) ∧ Teaches(x, y))

However, as the reader will realize, without allowing constants in the
queries there is no fitting query in this case.

Note that we may also consider union of conjunctive queries q = q1 ∨ · · · ∨
qn, where each qi is a conjunctive query. In this case, an interesting phe-
nomenon happens: we can trivialize the problem by taking the positive ex-
amples in the input and creating a conjunctive query for each of them. In

CHAPTER 1. INTRODUCTION 4

each of these queries the positive example appears in the head of the query,
and so the query denotes it when it is evaluated against a database. As a re-
sult, the disjunction of all these conjunctive queries is a fitting query. In this
thesis we will also see how to deal with this aspect of union of conjunctive
queries.

Overall, the aim of this thesis is to try and fill a gap in the study of the
Query-by-Example problem by studying the same problem under the as-
sumption that constants can appear in queries.

Our original contribution is then twofold:

1. We provide a conceptual contribution, namely while we present a set-
ting in which constants are allowed in the queries, we also try to avoid
a trivialization of the problem. In fact, as we alreadymentioned above,
a possible trivialization happens if we consider union of conjunctive
queries and we can mention constants freely in the queries. One pos-
sible way to do so is to say that we can take advantage of the con-
stants but we cannot “overfit” the queries. In other words, we slightly
modify the Query-by-Example problem in such a way that there are
constraints on how constants can appear in the queries.

2. We provide a technical contribution, namely we prove some complexity
bounds for the QBE problem with constants. In particular, we prove
that the QBE problem is still coNExpTime-complete if constants can
appear (freely) in the queries and the input database contains only
constants. We also prove complexity bounds for the QBE problem
with constraints on how constants can appear in the queries.

In Chapter 2 we introduce the necessary background to understand the
content of this thesis; Section 2.1 introduces databases, queries and some
important operations between database instances. Moreover, Section 2.2
provides essential notions of computational complexity theory.

In Chapter 3 we present in detail the Query-by-Example problem. In
Section 3.1 we present the problem and we give examples and motivation.
Furthermore, in Section 3.2 we present the proofs for the known results that
QBE is coNExpTime-complete if we consider conjunctive queries as possi-
ble fitting queries and coNP-complete if we consider union of conjunctive
queries.

In Chapter 4 we turn to the main contributions of this thesis. In Section
4.1we discuss the high-level setting for introducing constants in the queries,
while in Section 4.2 we present definitions of the same notions we saw in

CHAPTER 1. INTRODUCTION 5

Section 2.1 but this time taking into account constants. Finally, in Section
4.3 we present upper bounds for different QBE problems with the addition
that now constants can appear in the queries. In 4.4 we present some lower
bounds for the same problems.

2
Background

In this chapterweprovide the necessary background in database theory and
computational complexity theory that is needed for the following chapters.
We first introduce the concepts of database and queries, then we see how
they interact via homomorphisms with the classic Chandra-Merlin theo-
rem. Moreover, we present two basic propositions about the direct product
operation that we will use later in the thesis. At the end, we discuss some
well-known complexity-theoretical notions.

2.1 Background on database theory

We introduce the notion of database in the context of the so-called relational
model, i.e. a model for organizing the data of database in tuples and rela-
tions. The relational model was introduced by Edgar F. Codd in 1970 and,
later, the same researcher proposed two query languages: relational alge-
bra and relational calculus [3, 4]. As it is clear from the name, the relational
model is based on the concept of relation. Formally, a relation is a subset
of a cartesian product of sets, while informally a relation can be thought
as just a “table” with rows and columns. This motivates the idea of a “rela-
tion schema”R(A1, . . . , Ak)where (A1, . . . , Ak) is a sequence of k attributes.
Here the attributes (A1, . . . , Ak) can get names standing for any propertywe
mightwant, such as name, surname, salary, BSNnumber and so on. In logic
though we do not usually refer to the attributes of a relation by name but
by position, and we just consider relation symbols of a certain associated arity
k.

We define:

6

CHAPTER 2. BACKGROUND 7

FatherOf
Father Son
Mark John
John Robert
Robert David

Figure 2.1: Example of a database instance.

Definition 2.1.1 (Database schema).
A database schema σ = {R1, . . . , Rn} is a set of relation symbols with

an associated arity arity(Ri).

We are now ready to define the concept of database instance:

Definition 2.1.2 (Database instance).
Fix some infinite set of values V . A database instance D over a database

schema σ = {R1, . . . , Rn} is a finite tuple of this form: (RD
1 , . . . , R

D
k), where

RD
i ⊆ Vk for k = arity(Ri). We further define the active domain adom(D) ⊆

V ofD as the set containing exactly the elements of V appearing in eachRD
i .

Definition 2.1.3 (Fact).
Fix some infinite set of valuesV and adatabase schemaσ = {R1, . . . , Rn}.

We say that Ri(ai) is a fact, where Ri ∈ σ and has arity n > 0, and ai =
a1, . . . , an are values coming from V .

We introduced the concept of database instance as a sequence (RD
1 , . . . , R

D
k),

but note that later we may also think of a database instance as a finite set of
facts of the form {R1(a1), . . . , Rn(an)}. See 2.1 for an example of a database
instance.

As mentioned earlier, Codd introduced two query languages for the re-
lational model, i.e. relational algebra and relational calculus. While rela-
tional algebra is an algebraic formalism, relational calculus is a logical one,
and queries are expressed as formulas of first-order logic. In this thesis we
only focus on the relational calculus and – even more specifically – on a
single type of query:

Definition 2.1.4 (Conjunctive query).
Given k ≥ 0, a k-ary conjunctive query (CQ) q over a schema σ is an

expression of the form

q(x) := ∃y1, . . . , ym(α1 ∧ · · · ∧ αn)

CHAPTER 2. BACKGROUND 8

with m ≥ 0 and n ≥ 1. Moreover, x = x1, . . . , xk is a sequence of vari-
ables, and eachαi is an atomic formula using a relation from σ and variables
from x1, . . . , xk, y1, . . . , ym. In addition, it is required that each variable in x
occurs in at least one conjunct αi (this requirement is called safety). Besides,
note that the tuple xmay contain repetitions. Lastly, a remark on terminol-
ogy: given the conjunctive query above, we sometimes call q(x) the “head”
of the querywhile we call ∃y1, . . . , ym(α1∧· · ·∧αn) the “body” of the query.

Conjunctive queries are the core language for databases [17] and they
are, for instance, expressible in the structured query language SQL by an ex-
pression of this form:

SELECT <list of attributes>

FROM <list of relation names>

WHERE <conjunction of equalities>

Example 2.1.1. We now present some examples of conjunctive queries. The
first CQ asks for all the pairs (x, y) such that there is a path of length 3
between x and y.

q(x, y) := ∃z∃w(R(x, z) ∧R(z, w) ∧R(w, y))

This other CQ instead asks if there is cycle of length 3:

q() := ∃x∃y∃z(R(x, y) ∧R(y, z) ∧R(z, x))

Queries are used to ask questions to a database, and to really under-
stand what this means if we define their semantics. To this end, we also say
that, given a database instance D, we may consider certain elements of its
active domain as “distinguished”, andwewrite (D, a) to say that a is a tuple
of distinguished elements belonging to the active domain of D. Moreover,
now that we have the notion of distinguished element, we require that our
database instances with distinguished elements are always safe, i.e. each
distinguished element of the database instance occurs in at least one fact of
it,

We are now ready to present the semantics of CQs:

Definition 2.1.5 (Semantics of CQs).
Given a database instancewith distinguished elements (D, a) over σ, a k-

ary CQ q(x) := ∃y(R1(y1)∧· · ·∧Rn(yn)), a valuation v :Var(q) → adom(D),
then:

CHAPTER 2. BACKGROUND 9

q(D) = {v(x) | where ∀i = 1, . . . , n : v(yi) ∈ RD
i }

where Var(q) is the set of variables contained in q and v(x) stands for
(v(x1), . . . , v(xk)).

Intuitively what this means is that, when evaluated against D, the CQ
q returns a set q(D) that consists of all k-tuples (a1, . . . , ak) that make the
formula “true” in D. Note that we may deal with boolean CQs, i.e. CQs
without free variables; in that case, in the definition of the semantics of CQs,
v(x) is the empty tuple.
Example 2.1.2. The first CQ of example 2.1.1, rewritten as

q(x, y) := ∃z∃w(FatherOf(x, z) ∧ FatherOf(z, w) ∧ FatherOf(w, y))

and evaluated against the database of example 2.1 returns q(D) = {(Mark,David)}.
In the next chapters we will also work with union of conjunctive queries

(UCQs):

Definition 2.1.6 (Union of conjunctive queries).
A union of conjunctive queries q is an expression of the form q1 ∨ q2 ∨

· · · ∨ qn where each qi is a CQ and has the same arity k.

Example 2.1.3. For example, theUCQ q = q1∨q2 (where q1(x, y) := ∃z(R(x, z)∧
R(z, y)) and q2(x, y) := ∃w∃z(R(x,w)∧R(w, z)∧R(z, y))) returns the end-
points of each path of length exactly 2 or exactly 3.

There is a correspondence between conjunctive queries and database
instances that we are now going to explain. On the one hand, we can get
the canonical database instance of a CQ q(x):

Definition 2.1.7 (Canonical database instance).
Given a CQ q(x), we say that (Dq, x) is its canonical database instance,

where the facts of Dq are the conjuncts of q and the active domain of Dq

is the set of variables occurring in q

Example 2.1.4. Given aCQ q(x, y, z) := R(x, y)∧R(z, z), its canonical database
instance (Dq, (x, y, z)) is {R(x, y), R(z, z)}.

And the other way around:

CHAPTER 2. BACKGROUND 10

Definition 2.1.8 (Canonical query).
Given a database instance with distinguished elements (D, a), we can

associate to it a k-ary canonical conjunctive query qD(x), namely the query
that has a variable xa for every value a in the active domain of D occurring
in at least one fact, and a conjunct for every fact ofD. By construction, qD(x)
is safe, because each variable in x has to occur in at least one conjunct of the
query.

Example 2.1.5. Given adatabase instanceD = {R(a, b), R(b, a), R(c, c)}, where
D has the tuple a = (a, b) as distinguished elements, the canonical query of
D is q(xa, xb) := ∃xc(R(xa, xb) ∧R(xb, xa) ∧R(xc, xc)).

A concept that will be particularly important in this thesis in the concept
of homomorphism:

Definition 2.1.9 (Homomorphism).
Givendatabase instanceswith distinguished elements (D1, a) and (D2, b),

we say that a homomorphism h is a map from adom(D1) to adom(D2) such
that for all R ∈ D1 and every tuple a = (a1, . . . , an) belonging to RD1 , the
tuple h(a) = (h(a1), . . . , h(an)) belongs to RD2 . In addition, regarding the
distinguished elements, it must be the case that h(a) = b.

The notion of homomorphism allows us to give an alternative character-
ization of the semantics of CQs, which is expressed by the following, classic,
result:

Theorem 2.1.1 (Chandra-Merlin, [5, 2]).
Given a CQ q(x) and a database instance with distinguished elements (D, a),

the following holds:

a ∈ q(D) if and only if (Dq, x) → (D, a).

This theorem can also be generalized to UCQs in the following way:

Theorem 2.1.2 (Chandra-Merlin for UCQs, [5]).
Given a UCQ q = q1 ∨ · · · ∨ qn and a database instance with distinguished

elements (D, a), the following holds:

a ∈ q(D) if and only if (Dqi , x) → (D, a) for some 1 ≤ i ≤ n.

Twooperations betweendatabase instances thatwill come in handy later
are the operation of union and the operation of direct product:

CHAPTER 2. BACKGROUND 11

Definition 2.1.10 (Union of database instances).
Givendatabase instancesD1 andD1 such thatD2 = {R1(a1), . . . , Rn(an)}

and D2 = {R2(a1), . . . , Rm(am)}, the union of D1 and D2 is D1 ∪ D2. If
adom(D1) ∩ adom(D2) = ∅, we will call their union disjoint union and we
will denote it as D1 ⊎ D2.

Definition 2.1.11 (Direct product of database instances).
The direct product of n-ary tuples a = a1, . . . , an and b = b1, . . . , bn (i.e.

a ⊗ b) is the n-ary tuple ((a1, b1), . . . , (an, bn)). If D1 and D2 are database
instances, we defineD1⊗D2 to be the following database instance specified
as a set of facts:

{R(a⊗ b) | R ∈ σ,R(a) ∈ D1, R(b) ∈ D2}

We use (D1, a) ⊗ (D2, b) to denote the pair (D1 ⊗ D2, a ⊗ b), and write∏
1≤i≤m(Di, ai) as a shorthand for (D1, a1) ⊗ · · · ⊗ (Dm, am) (note that the

“⊗” operation is associative up to isomorphism).

Example 2.1.6. As an example, consider the following direct product: if we
have a database instance D = {R(a, b), R(b, c), S(c, d)}, a1 = (a, b) and a2 =
(c, d), then a1 ⊗ a2 = ((a, c), (b, d)) and, if we take the product of D with
itself, the resulting database instance is:

D ⊗D = {R((a, a), (b, b)), R((b, b), (c, c)),
R((a, b), (b, c)), R((b, a), (c, b)), S((c, c), (d, d))}

The direct product operation “⊗” defines the least upper bound in the
lattice of databases defined by the notion of homomorphism. This is testi-
fied by the following two propositions:

Proposition 2.1.3 ([1]). Given database instances (D1, a1), . . . , (Dn, an), the fol-
lowing holds: ∏

i≤n

(Di, ai) → (Di, ai)

Wewill prove amore general version of this in Proposition 4.2.3 inChap-
ter 4.

Proposition 2.1.4 ([1]). Given database instances (D1, a1), . . . , (Dn, an) and a
database instance (D, b), the following are equivalent:

CHAPTER 2. BACKGROUND 12

• (D, b) →
∏

i≤n(Di, ai).

• (D, b) → (Di, ai) for each i ≤ n.

Wewill prove amore general version of this in Proposition 4.2.4 inChap-
ter 4.

2.2 Background on complexity theory

We present some basic notions from computational complexity theory that
will soon become important. In this presentation, we closely follow the clas-
sic [11].

Definition 2.2.1 (Deterministic time).
Let T : N → N be some function. We write DTIME(T (n)) to mean the

set of all functions that are computable by a Turing machine in c ·T (n)-time
for a constant c > 0.

This allows us to introduce:

Definition 2.2.2 (The class P).
P = ∪c≥1DTIME(nc)

We then of course need to briefly introduce some concepts from the
heavy-handed theory ofNP-completeness.

Definition 2.2.3 (The class NP).
For every L ⊆ {0, 1}∗ we say that L ∈ NP if there is a polynomial p :

N → N and a function g ∈ P such that for all x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. g(x, u) = 1.

When, given a x ∈ L and a u ∈ {0, 1}p(|x|), we have thatM(x, u) = 1 then
we say that x is a certificate for the input x. Roughly speaking, a problem is
inNP if given a candidate solution to it, it is computationally easy to check
for its correctness.

For a further investigations of other useful complexity classes, and in or-
der to give an alternative definition of the classNP, we introduce nondeter-
ministic Turing machines. A nondeterministic Turing machinesM (NDTM
from now on) is different from the usual Turing machine in that the former
has two transitions functions δ0 and δ1; then, at each computational step,
the machine makes a choice as to which of its two transitions functions to

CHAPTER 2. BACKGROUND 13

apply. The machineM outputs 1 on a certain input x if there is a sequence of
choices that make the machine reach an accepting state. In other words, the
machine M accepts if it is able to “guess” a sequence of choices that make
it possible to reach the final accepting state. This new machine allows us to
define a new complexity class:

Definition 2.2.4 (NTIME).
For every functionT : N → N andL ⊆ {0, 1}∗we say thatL ∈ NTIME(T (n))

if there is a constant c > 0 and c(T (n))-time NDTM M such that for every
x ∈ {0, 1}∗, x ∈ L⇔ M(x) = 1.

In fact, the meaning of NP is non-deterministic polynomial time, and this
is motivated by the following alternative characterization of this class:

Theorem 2.2.1. NP = ∪c∈NNTIME(nc)

Finally, we introduce the basics of the theory ofNP-completeness. One
of the main concepts of this theory is the interesting idea of reducing a prob-
lem to another one.

Definition 2.2.5 (Polynomial-time reduction).
Given two languages A,B ⊆ {0, 1}∗ we say that A is polynomial-time

reducible (in symbols A ≤p B) if there is a polynomial-time computable
function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗, x ∈ A ⇔ f(x) ∈
B.

Definition 2.2.6 (C-Completeness).
Given a certain complexity classC, A languageA ⊆ {0, 1}∗ isC-complete

(under polynomial-time reductions) if:

• A is in C;

• For every problem A′ in C it is the case that A′ ≤p A (A is then “C-
hard”).

If we prove that a certain problem A is in a certain complexity class,
then we say that have established the upper bound of A, while determining
whether A is complete for that class can be seen as a lower bound, because it
establishes that A is at least as hard as all the other problems in that com-
plexity class, and thus it is among the hardest problems contained in it. In
other words,A cannot be less complex than any problem in that complexity
class, i.e. we have a lower bound for it.

For every complexity classC, we can define its complementary coC. This
was we can present:

CHAPTER 2. BACKGROUND 14

Definition 2.2.7 (The class coNP).
The class coNP is the class of all problems L ⊆ {0, 1}∗ whose comple-

ment is in NP.

To conclude, we introduce the exponential-time analogues ofP andNP:

Definition 2.2.8 (The classes ExpTime andNExpTime).

• ExpTime = ∪c≥0DTIME(2n
c
).

• NExpTime = ∪c≥0NTIME(2n
c
).

Finally, we define

Definition 2.2.9 (The class coNExpTime).
The class coNExpTime is the class of all problems L ⊆ {0, 1}∗ whose

complement is in NExpTime.

To sumup, the following picture gives an overall idea of the relationship
between the complexity classes presented:

coNP coNEXP

P EXP

NP NEXP

⊆⊆

⊆

⊆

⊆⊆

3
The Query-by-Example problem

In this chapter we will explain the problem we are going to tackle in this
thesis. We first introduce the Query-by-Example problem from a high-level
perspective and then, in the subsequent sections, we present results, already
known in the literature, about complexity bounds on this problem. These
bounds cover both the case in which we consider conjunctive queries as
fitting queries and the case of union of conjunctive queries.

3.1 Introduction to the problem

In this thesis we study the Query-by-Example (QBE) problem. Informally,
the idea is that we are given a database instance D and a certain query
language L, as well as positive examples S+, i.e. tuples of objects from
adom(D) that we want to be included in the denotation of our query once
it is evaluated against the database, and negative examples S−, i.e. tuples
from adom(D) that are undesirable. We then ask if there is away to reverse-
engineer this desired query given the examples.

More formally, we can present the QBE problem in this way:

Query-by-Example for CQs

Input: A database instance D and relations S+, S− over D.
Question: Is there a fitting CQ q for D, i.e. a CQ q such that S+ ⊆ q(D)

and S− ∩ q(D) = ∅?

We can also consider the same problem, but for UCQs:

15

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 16

Query-by-Example problem for UCQs

Input: A database instance D and relations S+, S− over D.
Question: Is there a fitting UCQ q forD, i.e. a UCQ q such that S+ ⊆ q(D)

and S− ∩ q(D) = ∅?

Example 3.1.1. Let us consider some examples to develop an intuition of
these problems. For QBE for CQs, take the following database instance (al-
ready introduced in Chapter 3 (Figure 2.1):

FatherOf
Father Son
Mark John
John Robert
Robert David

Say that the positive example is the pair (Mark, David) and the negative
example is the pair (John, Robert). Moreover, we just have the relation “Fa-
therOf”, of arity 2. A fitting CQ is then q(x, y) := ∃y,∃z(FatherOf(x,w) ∧
FatherOf(w, z) ∧ FatherOf(z, y)).

Sometimes it can be the case that, while there is nofittingCQ for a certain
input, there is a fitting UCQ. Take again the same database instance above
and now take, as positive examples, the following pairs: (Mark, David),
(Mark, Robert) and (John, David). Furthermore, assume we have no neg-
ative example. As before we just have the binary relation “FatherOf”. We
observe that a CQ alone is not enough, we need UCQs. A possible fitting
UCQ is then:

q1(x, y) := ∃y,∃z(FatherOf(x,w) ∧ FatherOf(w, z) ∧ FatherOf(z, y))
∨ q2(x, y) := ∃z(FatherOf(x, z) ∧ FatherOf(z, y))

As a last example, consider the database instance 3.1. We say that the
positive example is Mark while the negatives are John, Alice and Terence.
Furthermore, we only have the binary relation “WorksInDepartment”. As
the reader will realize, there is no fitting query in this case. Note though
that in Chapter 4 we will discuss this example again and see that, if we
allow constants to appear in the queries, we can actually find a fitting query
for this input.

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 17

WorksInDepartment
Name Department
Mark Sales
John Service
Alice IT

Terence Service

Figure 3.1: New database instance.

The Query-by-Example problem has been extensively studied, and in
some cases it has been slightly modified to adapt it to other, more specific,
settings. We will now review some of these approaches.

• In [7] the authors first propose a setting in which positive and neg-
ative examples are identified with a label and we want to find a se-
quence of features (i.e., in that case, conjunctive queries) such that
they separate the positive and negative examples according to a clas-
sifier. The use of a classifier makes this approach more similar to a
machine-learning problem than a logic one though, and it provides a
more fine-grained tool for classifying the examples. The relationship
between this setting and the Query-by-Example problem is that the
latter problem corresponds to the case of a single-feature classifier. In
other words, QBE can be seen as a more specific framework than the
one proposed in [7]. At the same time, the authors use QBE and its
multiple results (e.g. the fact that the Query-by-Example problem for
CQs is coNExpTime-complete) as a stepping stone to prove results
in their own setting.

• In [9] the authors propose a method, called “Query-from-Examples”
(QFE), that can help non-expert database users construct the SQL
queries they want. QFE takes as input a database instance and the
database instance that is the result of evaluating the target query against
the former database. Then, QFE can identify the target query by seek-
ing the user’s feedback on a sequence of modified versions of the orig-
inal pair database-resulting database. These additional pairs are gen-
erated by the system. By looking at the user’s feedback, QFE figures
out the query the user is looking for.

• In [10], yet another viewof theQBEproblem is presented. In this case,
the framework requires as input a database instance and a resulting

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 18

database instance T that we get whenwe evaluate a known or unknown
target queryQ against the former database. Then, through a data clas-
sification approach, the system tries to construct a new queryQ′ such
that – when we evaluate it against D – we get T . The most obvious
application of this framework is to discover alternative characteriza-
tions of the data, or even to uncover hidden relationships within a
complex database. As an example, consider a case in which we query
a movie database about the movies directed by James Cameron after
1997. The framework abovewill propose another queryQ′, i.e. “select
movies that have gross-revenue greater than $2 billion” that, once it is
evaluated against the same database, gives the same output.

3.2 Query-by-Example for CQs and UCQs

We now review the complexity of the Query-by-Example problem1 if we
consider conjunctive queries and union of conjunctive queries. Throughout
this chapter we will mostly refer to [8], which will guide our explanations.
Note that, in this section, we will present detailed proofs for results already
known in the literature because – in the remaining of the thesis – we will
build on these results.

3.2.1 Query-by-Example for CQs

Let us consider again the Query-by-Example problem:

Query-by-Example for CQs

Input: A database instance D and relations S+, S− over D.
Question: Is there a fitting CQ q for D, i.e. a CQ q such that S+ ⊆ q(D)

and S− ∩ q(D) = ∅?

As shown in [8], this problem is in coNExpTime. To see why, we can
think of a procedure to check if there is a fitting CQ which involves the
notion of direct product, already introduced in Chapter 2. This procedure
can be introduced in terms of a “test”, which we will call QBE test. Here is
how the QBE test works: the test takes as input a database instance D and
n-ary relations S+ and S− over D. It accepts if and only if:

1The name “Query-by-Example” might sound misleading due to the fact that the prob-
lem shares the name with a graphical database query language created at IBM during the
mid-1970s [19]. We decided to use the name “Query-by-Example” anyway because it was
introduced in [8] and, in the end, it was easier to stick to it.

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 19

1.
∏

a∈S+(D, a) is safe.

2.
∏

a∈S+(D, a) ↛ (D, b), for each b ∈ S−.

Then, in [8], the authors provide a “semantic” characterization of the
test via the following proposition:

Proposition 3.2.1 ([8]). Given a database instanceD as well as relations S+ and
S− over it, there is a fitting conjunctive query (i.e. a query q such that S+ ⊆ q(D)
and that S− ∩ q(D) = ∅) if and only if the QBE test accepts D and both S+ and
S−.

Proof.
Fix an arbitrary database instance D and relations S+ and S− over D.

For the forward direction, assume that there is a conjunctive query q(x)
such that S+ ⊆ q(D) and that S− ∩ q(D) = ∅. Assume for a contradic-
tion that there is a b ∈ S− such that

∏
a∈S+(D, a) → (D, b). We assumed

that S+ ⊆ q(D) and this, by the Chandra-Merlin theorem, implies that
(Dq, x) → (D, a) for all a ∈ S+. This in turns implies, by Proposition 2.1.4,
that (Dq, x) →

∏
a∈S+(D, a). Butwe also assumed that there is a b ∈ S− such

that
∏

a∈S+(D, a) → (D, b), so we can compose together these last twomaps
to claim that (Dq, x) → (D, b). Contradiction. It follows that

∏
a∈S+(D, a) ↛

(D, b) for all b ∈ S−. Furthermore, we need to show that
∏

a∈S+(D, a) is safe.
To do so, assume for a contradiction that it isn’t, i.e. there a distinguished
element (a1, . . . , ak) of the product such that (a1, . . . , ak) does not occur in
any fact in the product. We know that (Dq, x) →

∏
a∈S+(D, a), so there is

some xi in x that is mapped to (a1, . . . , ak) by an homomorphism. Besides,
by definition we know that Dq is safe, so there is a fact f in Dq where xi
occurs. But this is a contradiction, because the aforementioned homomor-
phismwould not be able tomap f to a fact in

∏
a∈S+(D, a). We can therefore

conclude that
∏

a∈S+(D, a) is safe. As a result, the QBE test accepts on input
(D, S+, S−).

For the backward direction, assume that the QBE test accepts on in-
put (D, S+, S−). This means that

∏
a∈S+(D, a) ↛ (D, b), for each b ∈ S−,

and that
∏

a∈S+(D, a) is safe. Now, for notational convenience we say that∏
a∈S+(D, a) = C and we take the canonical query of the product qC(x).
We want to show that qC(x) is a fitting CQ for (D, S+, S−). We can first

show thatS+ ⊆ qC(D) by noticing that, by Proposition 2.1.3, the direct prod-
uct of the positive examples (i.e.

∏
a∈S+(D, a)) can be homomorphically

mapped to all the positive examples themselves. Hence, it is easy to see that
(DqC , x) → (D, a) for all a ∈ S+. We then want to show that S− ∩ qC(D). To

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 20

do so, note that we assumed that
∏

a∈S+(D, a) ↛ (D, b), for each b ∈ S−.
Again, it is easy to check that this transfers to the canonical database of the
canonical query qC(D) of

∏
a∈S+(D, a) = C, that is to say, we can claim that

(DqC , a) ↛ (D, b), for each b ∈ S−. This was to show.
We can conclude that qC(x) is a fitting CQ for (D, S+, S−), as wanted.

Thanks to Proposition 3.2.1, we can obtain anupper bound coNExpTime
on the complexity of the Query-by-Example problem through the previ-
ously introduced QBE test. Assume that S+ and S− are, respectively, re-
lations of positive and negative examples over a database instance D. We
see that to check that there is not a fitting conjunctive query for S+ and S−

over D, either we check whether
∏

a∈S+(D, a) is unsafe, which takes ex-
ponential time because the direct product is an exponential construction,
or we try and guess a negative example b in S− and a homomorphism
h :

∏
a∈S+(D, a) → (D, b). This second task also takes exponential time,

because the homomorphism h (our certificate) is exponential in the size of
D (note that the domain of a direct product of a database instance D with
itself has cardinality |D||D|), and therefore it can be verified only in expo-
nential time by a deterministic machine. Since we showed that the comple-
ment of the problem runs inNExpTime, the upper bound for this problem
is coNExpTime. We can therefore claim that:

Theorem3.2.2 ([8]). TheQuery-by-Example problem for CQs is in coNExpTime.

Proving the lower bound for the same problem is a bit more involved. In
[1] it is proven that the so-called CQ-definability problem is coNExpTime-
hard already for unary queries over a fixed schema consisting of a single
binary relation. This is done through a reduction from the so-called Product
Homomorphism Problem (with a single binary relation):

Product Homomorphism Problem (with a single binary relation).

Input: A collection of database instances D1, . . . ,Dn,D over the same
schema σ, where σ only contains a single binary relation R.

Question: Is there a homomorphism from D1 ⊗ · · · ⊗ Dn to D?

In the same paper, it is shown that Product Homomorphism Problem
for databases with a single binary relation is coNExpTime-complete.

The CQ-definability problem takes as input a database instanceD and a
relationS over the active domain ofD, and ask if there is a conjunctive query

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 21

q such that q(D) = S. Clearly, this problem is a special case of the fitting
problem for CQs: simply take S = S+, and so if q(D) = S then S+ ⊆ q(D)
and given S−, because S = S+ ∩ S− = ∅, q(D) ∩ S− = ∅.

Wenowpresent a proof of the coNExpTime-hardness of theCQ-definability
problem; the proof is just a more detailed version of a proof contained in
[1] and it deserves a presentation here also because we build on it in the re-
maining of the thesis. As a last remark, we say that the original proof uses
first-order structures instead of database instances, which we will employ
in this presentation. The difference between the two notions is that – unlike
database instances – structures contain a domain. However, this difference
does not influence the proof that we are going to present.

Theorem 3.2.3. ([1]) The CQ-definability problem is coNExpTime-hard al-
ready for unary queries over a fixed schema consisting of a single binary relation.

Proof.
We give a reduction from the Product Homomorphism Problem with a

single binary relation. LetD1, . . . ,Dn,D be the input of the Product Homo-
morphismProblemwhere the schema contains only a binary relationR. We
can assume without loss of generality that D1, . . . ,Dn,D are disjoint from
each other, because we can consider isomorphic copies of these databases
without affecting the answer to the Product Homomorphism Problem. Let
C be the database instance consisting of the union of D1, . . . ,Dn and D, ex-
tended with the facts R(ai, x) for all i ≤ n and x ∈ adom(Di), and R(b, x)
for all x ∈ adom(D), where a1, . . . , an and b are fresh elements. Let S =
{a1, . . . , an}. Our claim is that D1 ⊗ · · · ⊗ Dn → D if and only if S is not
definable inside C by a conjunctive query.

For the forward direction, assume that there is h : D1 ⊗ · · · ⊗ Dn → D,
and assume for a contradiction that S is definable by a conjunctive query
q, i.e. S = q(C). By assumption, and by the Chandra-Merlin theorem,
(Dq, x) → (C, a) for all a ∈ S. Besides, by Proposition 2.1.4, this is equivalent
to (Dq, x) →

∏
a∈S(C, a). Now, we want to show that there is a homomor-

phism h′ :
∏

a∈S(C, a) → (C, b). For simplicity, assume that we only deal
with binary vectors, i.e. that all elements h′ has to deal with are pairs. We
define h′ in the following way:

h′((x1, . . . , xn)) = h((x1, . . . , xn)) if (x1, . . . , xn) belongs to adom(D1 ⊗ · · · ⊗ Dn)

h′((x1, . . . , xn)) = b if (x1, . . . , xn) = (a1, . . . , an).

h′((x1, . . . , xn)) = x1 if (x1, . . . , xn) is not of the above form.

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 22

This is a well-defined mapping. We now have to show that h′ is a ho-
momorphism, i.e. we have to show that h′ it preserves all facts. Take an
arbitrary factR((x1, . . . , xn), (y1, . . . , yn)) contained in (C, a1)⊗· · ·⊗ (C, an).
We have three cases:

1. Both (x1, . . . , xn) and (y1, . . . , yn) belong to adom(D1 ⊗ · · · ⊗ Dn). By
the way h′ is defined, we realize that R((x1, . . . , xn), (y1, . . . , yn)) is
mapped to R(h((x1, . . . , xn)), h((y1, . . . , yn))). Does the latter fact be-
long to (C, b)? Yes, as otherwise hwould be a wrong homomorphism
(recall that D ⊆ C).

2. (x1, . . . , xn) belongs to adom(C⊗· · ·⊗C\D1⊗· · ·⊗Dn)while (y1, . . . , yn)
belongs to adom(D1⊗· · ·⊗Dn). This implies thatx1, . . . , xn = a1, . . . , an.
Consequently, and by the way C is constructed, (y1, . . . , yn) cannot
be a distinguished element. As a result, we observe that h′ maps
R((x1, . . . , xn), (y1, . . . , yn)) toR(b, h((y1, . . . , yn))), which is contained
in (D, b).

3. Both (x1, . . . , xn) and (y1, . . . , yn) belong to adom(C⊗· · ·⊗C\D1⊗· · ·⊗
Dn). By the way h′ is defined, R((x1, . . . , xn), (y1, . . . , yn)) is mapped
to R(x1, y1). This latter fact indeed belongs to (C, b).

The case distinction above indeed covers all possible cases, as we cannot
have the following (remaining) scenario: (x1, . . . , xn) ∈ adom(D1⊗· · ·⊗Dn)
and (y1, . . . , yn) ∈ adom(C ⊗ · · · ⊗ C\D1 ⊗ · · · ⊗ Dn). In fact, because we
also have facts R(x1, x2), . . . , R(xn−1, xn) and R(y1, y2), . . . , R(yn−1, yn), we
would get a contradiction with our assumption that D1, . . . ,Dn and D are
disjoint. Take the first fact: it has to belong to one of the database instances
D1, . . . ,Dn or D (note that of course (x1, . . . , xn) cannot be a distinguished
element). But then this implies that two database instances in the above list
share an element.

After composing together the respective homomorphisms, we can claim
that (Dq, x) → (C, b), which implies that S ̸= q(C). Contradiction.

For the backward direction, assume that there is no map h such that
h : D1 ⊗ · · · ⊗Dn ↛ D. We claim that we can define a query q defining S as
follows: first of all we take q1 = ∃y1, . . . , ykψ(y1, . . . , yk) to be the canonical
Boolean CQ of D1 ⊗ · · · ⊗ Dn (where “Boolean” means that it contains no
free variables). Then, we define q(x) to be the unary CQ

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 23

∃y1 . . . yk∃x1 . . . xr+1(R(x, y1) ∧ · · · ∧R(x, yk) ∧ ψ(y1, . . . , yk)
∧R(x, x1) ∧ · · · ∧R(xr, xr+1))

By construction, q(C) contains all elements of S and does not contain b
(in fact, in q(x)we put the canonical query of D1 ⊗ · · · ⊗ Dn as a conjunct).
Furthermore, we need to show that q(C) contains exactly S. To see this, first
note that – by inspection of Theorem 1(3) in [1] –we can assume that in each
database instance D1, . . . ,Dn,D, the maximum length of a directed path is
precisely r, for some fixed r ∈ N. Moreover, observe that each ai and also
b have an outgoing path of length r + 1, while no other elements have an
outgoing path of length r + 1. It is then easy to see that, by the way q(x) is
constructed, q(C) only selects element with an outgoing path of length r+1,
i.e. precisely S. This was to show.

In light of this result, and having previously showed the upper bound,
we can claim that:

Corollary 3.2.4 ([8]). TheQuery-by-Example problem for CQs is coNExpTime-
complete.

3.2.2 Query-by-Example for UCQs

We now turn to the Query-by-Example problem for union of conjunctive
queries (UCQs).

Query-by-Example for UCQs

Input: A database instance D and relations S+, S− over D.
Question: Is there a fitting UCQ q of D, i.e. a UCQ q such that S+ ⊆ q(D)

and S− ∩ q(D) = ∅?

As shown in [8], this problem is in coNP. To see why, we first introduce
the “QBE test for UCQs.” This test takes as input a database instance D and
relations of positive and negative examples S+ and S− over D. It accepts if
and only if for all combinations of positive examples a ∈ S+ and negative
examples b ∈ S−, it happens that (D, a) ↛ (D, b).

In addition, as we have seen for CQs, we have:

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 24

Proposition 3.2.5 ([8]). Given a database instanceD as well as relations S+ and
S− over it, there is a fitting UCQ q = q1 ∨ · · · ∨ qn (i.e. a union of conjunctive
queries q such that S+ ⊆ q(D) and that S− ∩ q(D) = ∅) if and only if the QBE
test for UCQs accepts D, S+ and S−.

Proof.
Fix a database instance D as well as relations S+ and S− over it. For

the forward direction, assume towards a contradiction that there are tuples
a ∈ S+ and b ∈ S− such that there is a homomorphism h1 : (D, a) → (D, b).
Now, by assumption, q = q1 ∨ · · · ∨ qn is a fitting UCQ, so S+ ⊆ q(D). Take
the positive example a we previously considered: because a ∈ q(D), by the
Chandra-Merlin theorem for UCQs there must be a qi (for 1 ≤ i ≤ n) such
that there is a homomorphism h2 : (Dqi , x) → (D, a). It then suffices to
compose together h1 and h2 to get a contradiction with the assumption that
the UCQ q is a fitting UCQ for the given input.

For the backward direction, we can see (D, a) for all a ∈ S+ as canonical
databases of queries, and take the union of all these queries. This resulting
UCQ is then a fitting query because, aswe assumed that for all combinations
of positive examples a ∈ S+ and negative examples b ∈ S− it happens that
(D, a) ↛ (D, b), by the Chandra-Merlin theorem for UCQs, we achieve the
condition q(D) ∩ S− = ∅. Furthermore, it is easy to check that we can map
our UCQ to all the positive examples in S+, thus – again with the help of
the Chandra-Merlin theorem for UCQs – obtaining the other condition, i.e.
that q(D) ⊆ S+, as wanted.

Now, because we don’t need to check the safety of the direct product,
we avoid the exponential-time check from before. Furthermore, now the
guessed homomorphisms are polynomial in the size of D, so they can be
checked in polynomial time. Thus, we obtain a coNP upper bound on the
problem.

What about the lower bound for this problem? A proof that it is coNP-
hard was already provided in [12], however, because the proof uses the
formalism of graph query languages, which are not considered in this the-
sis, we decided to propose a new proof of the same result by reducing from
the complement of the following knownNP-complete problem ([14]):

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 25

Graph homomorphism problem (HOM)

Input: Two directed graphs G = (V (G), E(G)) and H =
(V (H), E(H)).

Question: Is there a homomorphism h from G to H , i.e. a map that pre-
serves all edges of G?

Theorem3.2.6 ([12]). TheQuery-by-Example problem forUCQs is coNP-hard.

Proof.
We reduce from the complement of the graph homomorphism problem

(HOM). Given a pair of graphs (G,H) we get an input for the fitting prob-
lem for UCQs in the followingway. We first get a database instanceDwhere
adom(D) = (V (G)∪V (H)∪{a, b}), where a and b are fresh elements. More-
over, we add facts R(x1, x2) for every (x1, x2) ∈ E(G) ∪ E(H). Finally, we
extend D with facts R(a, x) for all x ∈ V (G) and R(b, x) for all x ∈ V (H).
We need to show that (G,H) ∈ HOM if and only if (D, S+ = {a}, S− = {b})
has a fitting UCQ q.

For the forward direction, fix an arbitrary pair (G,H) and assume that
(G,H) ∈ HOM. Recall that, by Proposition 3.2.5, (D, S+ = {a}, S− = {b})
has a fitting UCQ q if and only if (D, a) ↛ (D, b). Assume for a contradic-
tion that there is a homomorphism h such that h : (D, a) → (D, b). We can
show that h is also amap fromG toH that preserves all edges. Take an arbi-
trary edge (x1, x2) ∈ E(G). It is not difficult to realize that (h(x1), h(x2)) ∈
E(H), as h will map (a, x1) to (b, h(x1)) and (a, x2) to (b, h(x2)), and so
(h(x1), h(x2)) must be an edge of H . Contradiction with the assumption
that (G,H) ∈ HOM. We can conclude that (D, S+ = {a}, S− = {b}) has a
fitting UCQ q.

For the backward direction, assume that (D, S+ = {a}, S− = {b}) has a
fitting UCQ q, which again by Proposition 3.2.5 implies that (D, a) ↛ (D, b).
Assume for a contradiction that (G,H) /∈ HOM, i.e. there is a homomor-
phism h such that h : G → H . We now present a new homomorphism h′

(constructed on the basis of h) such that h′ : (D, a) → (D, b):

h′(a) = b

h′(b) = b

h′(x) = h(x) if x ∈ V (G)

h′(x) = x if x ∈ V (H)

CHAPTER 3. THE QUERY-BY-EXAMPLE PROBLEM 26

It remains to show that h′ preserves all facts. First note that it suffices to
show that h′ : D → D because, by definition, h′ always maps a to b. Take an
arbitrary fact R(x1, x2) ∈ D. We have four cases:

1. Both x1 and x2 belong to V (G). Then h′ gives us R(h(x1), h(x2)),
which is of course in D because (h(x1), h(x2)) ∈ E(H).

2. Both x1 and x2 belong to V (H). Then h′ gives us the same relation
R(x1, x2), which is in D by assumption.

3. x1 = a and x2 ∈ V (G). In this case, h′ gives us R(b, h(x2)), which is in
D by construction (recall that h(x2) ∈ V (H)).

4. x1 = b and x2 ∈ V (H). In this case, h′ gives us R(b, x2), which is in D
by assumption.

Because we proved that h′ : (D, a) → (D, b) is a correct homomorphism
we get a contradiction. Hence, we can conclude that (G,H) ∈ HOM. This
completes the proof.

In light of this result, and having previously showed the upper bound
for the same problem, we can claim that:

Corollary 3.2.7 ([8]). TheQuery-by-Example problem forUCQs is coNP-complete.

4
Introducing constants

In this chapter we present the new results wewere able to obtain; in particu-
lar, we introduce a new setting for allowing constants in the queries and we
revisit some definitions already seen in Chapter 2. Besides, we revisit the
Query-by-Example problem for CQs and UCQs in different ways. Then, on
the technical side, we prove some complexity bounds of these problems.

4.1 High-level setting

In the literature on the Query-by-Example problem (for example in [8]) it
is sometimes assumed that the queries cannot contain constants. This is, we
believe, a shortcoming of prior work on the QBE problem that, in this thesis,
we try to address. In Chapter 3 we studied the following two problems:

1. Query-by-Example problem forConjunctiveQueries (coNExpTime-
complete).

2. Query-by-Example problem forUnion ofConjunctiveQueries (coNP-
complete).

Now, even before formally define what it means to “allow constants” in
the queries, there are some examples that may lead to think that constants
are interesting to study in the context of the Query-by-Example problems.
Consider the example 3.1 that we already introduced in Chapter 3:

27

CHAPTER 4. INTRODUCING CONSTANTS 28

WorksInDepartment
Name Department
Mark Sales
John Service
Alice IT

Terence Service

Assume that the positive example is Mark while the negatives are John,
Alice and Terence. Furthermore, assume that we only have the binary rela-
tion “WorksInDepartment”. Without the possibility of allowing constants
in the queries it is not possible to construct a fitting query for this input (a
way of formally proving this is via the QBE test, introduced in Chapter 3).
However, if we do allow constants, then a possible fitting CQ is:

q(x) :=WorksInDepartment(x, Sales)

Now, consider these three different ways of allowing constants in the
queries:

a) Given an input database instance D for the Query-By-Example prob-
lem as well as relations of positive and negative examples S+ and S−

over it, we ask if there is a fitting query q for D, where q is allowed to
contain constants.

b) Given an input database instance D for the Query-By-Example prob-
lem, a certain set K of constants as well as relations of positive and
negative examples S+ and S− overD, we ask if there is a fitting query
q for D, and q is allowed to contain constants belonging to the set of
constants K.

c) Given an input database instance D for the Query-By-Example, rela-
tions of positive andnegative examplesS+ andS− over it and a certain
k ∈ N, we ask if there is a fitting query q for D if we put a bound k on
the number of constants that can appear in q.

While in a) we put no constraints on how the constants could appear in
the queries, in b) and c) we have some. We can give examples to better un-
derstand the meaning of b) and c). Regarding b), let us think about feature
engineering in machine learning. In feature engineering we have to handle
a set of features to solve a certain problem and of course not all features are
relevant if we want to find a solution to it.

CHAPTER 4. INTRODUCING CONSTANTS 29

A possible motivation for c) is that, if we work with unions of conjunc-
tive queries and we don’t have a bound on the number of constants ap-
pearing in them, then the fitting problem trivializes because we can just
“mention” each positive example in our query (more on this at the end of
this chapter). To continue with the parallel of feature engineering, this case
would be the same as overfitting, i.e. allowing too many features to be used
and thus causing our model to be useful only in reference to its initial data
set.

4.2 Definitions

We now formally define the concepts we will need in the further sections,
in light of the ideas we introduced in the previous section.

As a first step to take, let us partition our infinite set of values V that we
introduced in Chapter 2 into two disjoint subsets: C andN . We say that C is
a set of constantswhileN is a set of labelled nulls. Of course, V = C ∪N (we
will say a bitmore about labelled nulls along theway and the end of this sec-
tion). Most importantly, from now on we will consider database instances
over V = C ∪ N . We use labelled nulls (conceptually akin to variables) be-
cause wewant to preserve the conceptual distinction between variables and
constants once we take the canonical database Dq of a query q, which may
contain both variables and constants.

We then need to give a precise definition of the a conjunctive query con-
taining constants:

Definition 4.2.1 (Conjunctive query containing constants).
Given k ≥ 0, a k-ary conjunctive query (CQ) q containing constants (over

a schema σ) is an expression of the form:

q(t) := ∃y1, . . . , ym(α1 ∧ · · · ∧ αn)

withm ≥ 0 and n ≥ 1. Moreover, t = t1, . . . , tk is a sequence of variables
and/or constants; each αi is an atomic formula using a relation from σ and
it may use variables from t as well as constants (and of course variables
from y1, . . . , ym). In addition, it is required that each variable/constant in t
occurs in at least one conjunct αi (this requirement is called safety). Lastly,
note that the tuple tmay contain repetitions.

An example of a CQ containing constant is q(x, c) := ∃zR(x, z, c).
We also need to update the notion of homomorphism:

CHAPTER 4. INTRODUCING CONSTANTS 30

Definition 4.2.2 (C-homomorphism).
Given databases (D1, a) and (D2, b), we say that a c-homomorphism h is

a map from adom(D1) to adom(D2) such that for all R ∈ D1 and every
tuple a = (a1, . . . , an) ∈ RD1 , the tuple h(a) = (h(a1), . . . , h(an)) ∈ RD2 .
Regarding the distinguished elements, it must be the case that h(a) = b.
Lastly, for a constant a ∈ adom(D1), it must be the case that h(a) = a ∈
adom(D2).

Note that we only added the final condition, about mapping constants
to constants, to the previous definition of homomorphism. Essentially, the
reason for this addition is that theChandra-Merlin theorem relies on the fact
that we can see homomorphisms as first-order valuations of variables, but a
valuation can now evaluate a constant, which should map to that constant
itself. As a result, if we do not add a further condition on homomorphisms,
the Chandra-Merlin theorem would fail.

But the Chandra-Merlin theorem requires some clarity for the notion of
canonical database and canonical query as well.

Definition 4.2.3 (C-canonical database).
Given aCQ q(t) containing constants, we say that (Dq, t) is itsC-canonical

database, where the facts of Dq are the conjuncts of q. Note though that we
replace the variables occurring in q with labelled nulls whenever we take
the canonical database of q.

As anticipated, we use labelled nulls to keep the distinction between
variables and constants once we take the canonical database Dq of a query
q, which may contain both variables and constants.

Definition 4.2.4 (C-canonical query).
Given a database instance (D, a), for a = a1, . . . , ak, we can associate to

it a k-ary c-canonical conjunctive query qDc (t). We can get this query in two
steps:

1. Regarding the head of q̂Dc (t), we obtain t1, . . . , tk, where each ti is ei-
ther a variable (if ai is a labelled null) or directly the constant ai (if ai
is a constant). The resulting tuple t1, . . . , tk is then our t in q̂c(t).

2. The body of q̂Dc (t) is just the conjunction of all the facts in (D, a). Ev-
ery labelled null that may occur in a fact of the database instance gets
replaced with a variable.

As explained, we are allowed to keep the Chandra-Merlin theorem for
both CQs and UCQs, even for the case with constants:

CHAPTER 4. INTRODUCING CONSTANTS 31

Theorem 4.2.1 (Chandra-Merlin, with constants).
Given a CQ q(t) and a database instance D, the following holds:

a ∈ q(D) if and only if (Dq, t) → (D, a).

Theorem 4.2.2 (Chandra-Merlin for UCQs, with constants).
Given a UCQ q = q1∨ · · ·∨ qn and a database instanceD, the following holds:

a ∈ q(D) if and only if (Dqi , t) → (D, a) for some 1 ≤ i ≤ n.

We also need to slightly update the notion of direct product of database
instances:

Definition 4.2.5 (C-direct product).
A c-direct product is entirely similar to a direct product, with the follow-

ing requirement: we replace each value of the form (c, . . . , c) in the active
domain of the product with a constant c and we regard all the other values
(i.e. all the values that are not of the form (c, . . . , c) for a fixed constant c)
as nulls.

Note that this way of defining the direct product operation when we
have both constants and labelled nulls is actually not new: it was already
used, for example, in [6] (see Proposition 5).

We now prove the same results about products we introduced in Chap-
ter 2. This is needed for further proofs and in order to show that indeed
the direct product operation “⊗” defines the least upper bound in the lat-
tice of databases defined by the notion of homomorphism. The following
two propositions are more general then their similar versions in Chapter 2
(i.e. Proposition 2.1.3 and Proposition 2.1.4, respectively), because we as-
sume that our database instances can now contain constants and labelled
nulls andmoreover we employ the notion of c-homomorphism, c-canonical
database and c-direct product. Being more general, the proofs we provide
for them are suitable for the case without constants, in that we can just re-
place all constants with nulls in those cases.

Proposition 4.2.3. Given database instances (D1, a1), . . . , (Dn, an), the following
holds: ∏

i≤n

(Di, ai) → (Di, ai) for each i ≤ n.

CHAPTER 4. INTRODUCING CONSTANTS 32

Proof.
Fix database instances (D1, a1), . . . , (Dn, an). To keep the proof simple

and intuitive we only consider the case when n = 2 and thus our direct
product has the shape

∏
i≤2(Di, ai) = (D1, a1) ⊗ (D2, a2). Consider the fol-

lowing c-homomorphisms h1 and h2, where h1 : (D1 ⊗ D2, a1 ⊗ a2) →
(D1, a1) and h2 : (D1 ⊗D2, a1 ⊗ a2) → (D2, a2):

h1((x1, x2)) = x1

h2((x1, x2)) = x2

´
where (x1, x2) is a labelled null.

h1(c) = c

h2(c) = c

´
where c is a constant.

The above map relies on the following (intuitive) observation: every
fact in (D1 ⊗D2, a1 ⊗ a2) has the shape R((x1, x′1), (x2, x′2), . . . , (xn, x′n)) for
facts R(x1, x2, . . . , xn) ∈ (D1, a1) and R(x′1, x′2, . . . , x′n) ∈ (D2, a2) and for a
relation R ∈ σ.

We now have to show that indeed h1 and h2 preserve all facts. We will
only look at h1, because the reasoning for h2 is entirely symmetric. For now,
assume that our arbitrary fact only contains labelled nulls, thus being of
the formR((x1, x

′
1), (x2, x

′
2), . . . , (xn, x

′
n)). Wewill deal with constants later.

Note that h1 mapsR((x1, x′1), (x2, x′2), . . . , (xn, x′n)) toR(x1, x2, . . . , xn), and
indeed the latter fact is contained in (D1, a1). Furthermore, it is easy to see
that, whenever we have a distinguished element from a1 ⊗ a2, it is mapped
to the correct distinguished element in a1. Simply take an arbitrary distin-
guished element (a1, a2) ∈ a1 ⊗ a2; see that a1 ∈ a1 while a2 ∈ a2. Besides,
h1 maps (a1, a2) to a1, and this is the correct distinguished element.

Note that if any element occurring in our arbitrary fact is instead a con-
stant, the facts is still correctly preserved. As an example, let us consider
the following fact R((x1, x2), c) where c is a constant. Besides, let’s assume
that we have to map it to (D1, a1). See that in the latter database instance
we must have a fact R(x1, c), which is the correct fact to which we have to
map R((x1, x2), c).

This completes the proof.

And then we take care of the second proposition:

Proposition 4.2.4. Given database instances (D1, a1), . . . , (Dn, an) and a database
instance (D, b), the following are equivalent:

• (D, b) →
∏

i≤n(Di, ai).

CHAPTER 4. INTRODUCING CONSTANTS 33

• (D, b) → (Di, ai) for each i ≤ n.

Proof.
Fix database instances D1,D2 and n-ary relations S1, S2 over D1 and D2

respectively; we also keep the same constraints on products of Proposition
4.2.3. We further assume, for reasons of clarity, that our schema σ only con-
tains relations of arity 2.

For the forwarddirection, assume that there is a homomorphismh1 such
that h1 : (D, a) → (D1, a1) ⊗ (D2, a2). By Proposition 4.2.3 it follows that
there are homomorphisms h2 and h3 such that h2 : (D1, a1) ⊗ (D2, a2) →
(D1, a1) and that h3 : (D1, a1) ⊗ (D2, a2) → (D2, a2). Hence, by first com-
posing h1 with h2 we can claim that (D, b) → (D1, a1) and by composing
h1 with h3 we can claim that (D, b) → (D2, a2). As a result, we get that
(D, b) → (Di, ai) for each i ≤ 2, as wanted.

For the backward direction, assume that (D, b) → (Di, ai) for each i ≤ 2.
We propose a c-homomorphism h3 from (D, b) to

∏
i≤2(Di, ai). By assump-

tion, we know that there must be c-homomorphisms h1 and h2 of the form:

h1 : (D, b) → (D1, a1)

h2 : (D, b) → (D2, a2)

In the following, we describe the map h3, given an arbitrary value x ∈
adom(D):

h3(x) = (h1(x), h2(x)) if x is a labelled null.
h3(x) = x if x is a constant.

We now show that h3 is indeed a correct c-homomorphism as it pre-
serves all facts. Take an arbitrary fact R(x1, x2) ∈ (D, b), for R ∈ σ. As
for Proposition 4.2.3, assume that our arbitrary fact only contains labelled
nulls; we will deal with constants later. By the way we defined h3,R(x1, x2)
gets mapped to R((h1(x1), h2(x1)), (h1(x2), h2(x2))). It is easy to check that
indeed R((h1(x1), h2(x1)), (h1(x2), h2(x2))) belongs to

∏
i≤2(Di, ai). As for

the distinguished elements, h3 correctly maps them. To see this, consider
an arbitrary element bi ∈ b. By the way we defined h3, (h1(a), h2(a)) must
be the correct distinguished element, as otherwise we would contradict our
assumption (i.e. the assumed homomorphisms h1 and h2 would be incor-
rect).

Note that if any element occurring in our arbitrary fact is instead a con-
stant, the fact is still correctly preserved. As an example, let us consider the

CHAPTER 4. INTRODUCING CONSTANTS 34

following fact R(x, c) where c is a constant. Now, by assumption we have
that

R(x, c) 7→ R(h1(x), h1(c) = c)

R(x, c) 7→ R(h2(x), h2(c) = c)

Thus, in the direct product we will have R((h1(x), h2(x)), c). It is then
easy to check that h3 correctlymapsR(x, c) to it, and that it works in general
for all four cases considered above.

This completes the proof.

As a last note before diving into the new results of this thesis, it may be
interesting to have a digression on the concept of labelled null. In this the-
sis, the distinction between constants and labelled nulls is used purely as
a theoretical construction used to define the notion of canonical instance for
queries with constants. However, labelled nulls arise in practice in some
settings like data exchange. In this setting we have a source schema S, a target
schema T, a set of source-to-target dependencies Σst and a set of target depen-
dencies Σt. The set Σst is essentially a set of constraints connecting S to T.
The aim is to see if it possible to construct a target instance J satisfying Σst.
Sometimes though the constraints are incomplete, meaning that we are free
to instantiate the constraint as we want. In that case, when constructing J ,
instead of those values, we put labelled nulls, that are – in this sense – very
similar to variables. More formally, suppose that Σst contains the following
constraint:

R(x, y) → ∃zS(x, y, z)

Then, we can get many different possible resulting databases J because
we can think of facts S(a, b, c1), S(a, b, c2), S(a, b, c3) and so on. But if, in-
stead of constants c1, c2 and c3, we put a labelled nullN , we can get a “min-
imal” solution that contains S(a, b,N).

4.3 Upper bounds for CQs and UCQs

With all these definitions and propositions in hand, we now want to find
the upper bound of some complexity problems. The following problems
are essentially based on the discussion of problems a), b) and c) that we
had in Section 4.1, plus a “general” version in which the database instance

CHAPTER 4. INTRODUCING CONSTANTS 35

may contain constants as well as labelled nulls; in the last three problems
wewill use the expression “ground database instance” to refer to a database
instance that only contains constants, and all these constants come from the
previously introduced set C. In this thesis we are primarily interested in
ground instances, but it is convenient to define a “general” problem as an
intermediate problem to reduce to.

We will first look at problems for conjunctive queries and, at the end of
this section, we will introduce similar problems but for unions of conjunc-
tive queries, and we will discuss them.

General Query-by-Example for CQs

Input: A database instance D with values from V = C ∪ N and rela-
tions S+, S− over D.

Question: Is there a fitting CQ q (possibly containing constants) forD, i.e.
a CQ q (possibly containing constants) such that S+ ⊆ q(D)
and S− ∩ q(D) = ∅?

Free Query-by-Example for CQs

Input: A ground database instance D and relations S+, S− over D.
Question: Is there a fitting CQ q (possibly containing constants) forD, i.e.

a CQ q (possibly containing constants) such that S+ ⊆ q(D)
and S− ∩ q(D) = ∅?

Limited Query-by-Example for CQs

Input: A ground database instance D and relations S+, S− over D,
and a subset C′ ⊆ C.

Question: Is there a fitting CQ q (possibly containing constants) for D,
i.e. a CQ q (possibly containing constants) such that S+ ⊆
q(D) and S−∩ q(D) = ∅, such that q can only contain constants
coming from a subset C′ ⊆ C?

Bounded Query-by-Example for CQs

Input: A ground database instance D and relations S+, S− over D,
and a certain k ∈ N.

Question: Is there a fitting CQ q (possibly containing constants) forD, i.e.
a CQ q (possibly containing constants) such that S+ ⊆ q(D)
and S−∩q(D) = ∅, such that q can contain at most k constant/s
from C, for a certain k ∈ N?

CHAPTER 4. INTRODUCING CONSTANTS 36

To settle an upper bound for the General Query-by-Example problem
we will try to follow the same path we took in Chapter 3, thus revisiting the
Query-by-Example test.

Considering CQs, the QBE test is: we have as input a ground database
instance D plus two relations S+ and S− over it. It accepts if and only if:

1.
∏

a∈S+(D, a) is safe.

2.
∏

a∈S+(D, a) ↛ (D, b), for each b ∈ S−

Of course, we have to keep in mind all the new definitions of Chapter 4,
that are used implicitly in the test and in the remaining of the thesis.

Proposition 4.3.1. Given a database instance D as well as relations S+ and S−,
there is a fitting conjunctive query possibly containing constants (i.e. a query q,
possibly containing constants, such that S+ ⊆ q(D) and that S− ∩ q(D) = ∅) if
and only if the QBE test accepts D and both S+ and S−.

Proof.
The proof of Proposition 3.2.1 applies here as well, for we still have the

propositions used there, this time considering constants (i.e. Proposition
4.2.3 and Proposition 4.2.4) and the Chandra-Merlin theorem for CQs also
holds if we allow constants in the queries, as explained.

Thanks to this last proposition, and following the same route we consid-
ered in Chapter 3, we can show that the upper bound of the General Query-
by-Example problem for CQs is again in coNExpTime. Besides, this al-
lows us to settle the upper bound for the Free Query-by-Example problem
as well:

Theorem 4.3.2. The Free and the General Query-by-Example problem for CQs are
in coNExpTime.

In fact, the Free Query-by-Example problem is a special case of the Gen-
eral problem, where the database instance only contains constants, i.e. the
input for the Free-Query-by-Example problem is a valid input for the gen-
eral problem as well.

We now prove that the upper bound for the Limited Query-by-Example
problem for CQs is coNExpTime. To this end, we will reduce it to the
General Query-by-Example problem.

Theorem4.3.3. The LimitedQuery-by-Example problem for CQs is in coNExpTime.

CHAPTER 4. INTRODUCING CONSTANTS 37

Proof.
We reduce the Limited Query-by-Example problem for CQs to the gen-

eral problem, whose upper bound is coNExpTime (Proposition 4.3.1).
Take an input of the former problem (D1, S

+
1 , S

−
1 , C′), where C′ ⊆ C. We

show how to reduce this input to an input (D2, S
+
2 , S

−
2) for the general prob-

lem. Firstly, we see D1 as set of facts {R1(t1), . . . , Rn(tn)}, and we define
D2 = {R′

1(t
′
1), . . . , R

′
n(t

′
n)}, where eachR′

i(t
′
i) ∈ D2 is obtained fromRi(ti) ∈

D1 in the following way:

1. Ri = R′
i.

2. Take ti = c1, . . . , ck. Note that either ci ∈ C′ or ci ∈ C \ C′. We show
how to obtain t′i = c′1, . . . , c

′
k. If ci ∈ C′, then c′i = ci and if ci ∈ C \ C′

then ci = ni ∈ N .

S+
2 and S−

2 are then obtained accordingly. It is also easy to check that
the so-obtained input (D2, S

+
2 , S

−
2) is a valid input for the general problem.

We now need to show that (D1, S
+
1 , S

−
1) has a fitting CQ q if and only if

(D2, S
+
2 , S

−
2) does.

For the forward direction, assume that (D1, S
+
1 , S

−
1) has a fitting CQ q(t),

i.e. S+
1 ⊆ q(D1) and S−

1 ∩ q(D1) = ∅. We want to show that S+
2 ⊆ q(D2)

and S−
2 ∩ q(D2) = ∅. For the positive examples S+

2 , by assumption we know
that (Dq, t) → (D1, a) for all a ∈ S+

1 . It follows that (Dq, t) → (D2, b) for all
b ∈ S+

2 , because, by construction, adom(D2) contains the constants from C’
that are present in adom(D1) and nulls for every constant in C appearing in
D1. Moreover, Dq only contains constants coming from C′.

For the negative examples, assume towards a contradiction that there is
b ∈ S−

2 such that (Dq, t) → (D2, b). It is easy to see that, by construction, we
can reuse the same homomorphism to claim that there is a ∈ S−

1 such that
(Dq, t) → (D1, a). Contradiction. We can conclude that S−

2 ∩ q(D2) = ∅.
For the backward direction, let us assume that (D2, S

+
2 , S

−
2) has a fitting

CQ q(t), i.e. S+
2 ⊆ q(D2) and S−

2 ∩ q(D2) = ∅. We want to show that S+
1 ⊆

q(D1) and S−
1 ∩ q(D1) = ∅. For the positive examples S+

2 , by assumption
we know that (Dq, t) → (D2, a) for all a ∈ S+

2 . Analogously to what we saw
for the forward direction, we can reuse the same homomorphisms to claim
that (Dq, t) → (D1, b) for all b ∈ S+

1 . The only difference is that of course
now the homomorphisms map nulls in Dq to constants (belonging to C) in
D1.

For the negative examples, assume for a contradiction that there is a ∈
S−
1 such that (Dq, t) → (D1, a). It is easy to see that, by construction, we

CHAPTER 4. INTRODUCING CONSTANTS 38

can reuse the same homomorphism to claim that there is b ∈ S−
2 such that

(Dq, t) → (D2, b). Contradiction. We can conclude that S−
1 ∩ q(D1) = ∅.

This completes the proof.

We now look at the same problems, but this time we consider UCQs.
Hence, now the problems are the following four:

General Query-by-Example for UCQs

Input: A database instance D with values from V = C ∪ N and rela-
tions S+, S− over D.

Question: Is there a fitting UCQ q (possibly containing constants) for D,
i.e. a UCQ q (possibly containing constants) such that S+ ⊆
q(D) and S− ∩ q(D) = ∅?

Free Query-by-Example for UCQs

Input: A ground database instance D and relations S+, S− over D.
Question: Is there a fitting UCQ q (possibly containing constants) for D,

i.e. a UCQ q (possibly containing constants) such that S+ ⊆
q(D) and S− ∩ q(D) = ∅?

Limited Query-by-Example for UCQs

Input: A ground database instance D and relations S+, S− over D.
Question: Is there a fitting UCQ q (possibly containing constants) for D,

i.e. a UCQ q such that S+ ⊆ q(D) and S−∩ q(D) = ∅, such that
q can only contain constants coming from a subset C′ ⊆ C?

Bounded Query-by-Example for UCQs

Input: A ground database instance D and relations S+, S− over D.
Question: Is there a fitting UCQ q (possibly containing constants) for D,

i.e. a UCQ q (possibly containing constants) such that S+ ⊆
q(D) and S− ∩ q(D) = ∅, and such that q can contain at most k
constant/s from C, for a certain k ∈ N?

Following the idea already presented in 3, we propose a new Query-by-
Example test for UCQs. This test takes as input a database instance D and
relations of positive and negative examples S+ and S− over D. It accepts if
and only if for all combinations of positive examples a ∈ S+ and negative
examples b ∈ S−, it happens that (D, a) ↛ (D, b).

In this case we just need to consider the following proposition:

CHAPTER 4. INTRODUCING CONSTANTS 39

Proposition 4.3.4. Given a database instance D as well as relations S+ and S−

over it, there is a fitting UCQ q = q1 ∨ · · · ∨ qn possibly containing constants
(i.e. a union of conjunctive queries q, whose CQs can contain constants, such that
S+ ⊆ q(D) and that S−∩ q(D) = ∅) if and only if the QBE test for UCQs accepts
D, S+ and S−.

Proof.
The proof of Proposition 3.2.5 applies here as well, for we still have the

Chandra-Merlin theorem for UCQs, as explained.

Thanks to this last proposition, and so following the same route we con-
sidered in Chapter 3, we can claim that the upper bound of the General
Query-by-Example problem for UCQs is again coNP.

Theorem 4.3.5. The General Query-by-Example problem for UCQs is in coNP.

If now we look at the upper bound of the Free Query-by-Example prob-
lem for UCQs, we see that the problem trivializes:

Theorem 4.3.6. The Free Query-by-Example problem for UCQs is in P.

Proof.
Fix an input database instance D = {R1(a1), . . . , Rk(ak)} and relations

of positive and negative examplesS+ andS− (respectively) over it. Because
D only contains constants, also the positive and negative examples S+ and
S− will only contain constants. We now present a procedure, running in
polynomial time, that decides the problem. First check if S+ and S− are
disjoint. If they are not, the input does not have a fitting UCQ. If however,
S+ ∩ S− = ∅, we show how to construct a fitting UCQ q. For simplicity,
consider the case of unary UCQs. Assume that we have positive examples
S+ = {a1, . . . , an} and negative examples S− = {b1, . . . , bm}. We first con-
struct CQs qi of the following form

qi(ai) := R1(a1) ∧ · · · ∧Rk(ak)

for 1 ≤ i ≤ n. We then say that a fitting UCQ for D is:

q = qi ∨ · · · ∨ qn
It is then trivial to check that indeed S+ ⊆ q(D) (actually, it is the case

that S+ = q(D)) and it also follows that S−∩q(D) ̸= ∅, becausewe assumed
that S+ and S− are disjoint. This was to show.

CHAPTER 4. INTRODUCING CONSTANTS 40

Regarding the Limited Query-by-Example problem for UCQs, we can
prove that:

Theorem 4.3.7. The Limited Query-by-Example problem for UCQs is in coNP.

Proof.
We reduce the LimitedQuery-by-Example problem forUCQs to the gen-

eral problem, whose upper bound is coNExpTime (Theorem 4.3.5). Take
an input of the former problem (D1, S

+
1 , S

−
1 , C′), where C′ ⊆ C. We will use

the same reduction we saw for Theorem 4.3.3. We now need to show that
(D1, S

+
1 , S

−
1) has a fitting UCQ q if and only if (D2, S

+
2 , S

−
2) does. We ob-

serve that the proof of Theorem 4.3.3 goes through in this case as well; the
only difference is that we have to exploit the Chandra-Merlin theorem for
UCQs instead of the one for CQs.

4.4 Lower bounds for CQs and UCQs

Having established the upper bounds for the fitting problems for CQs and
UCQs in the previous section, we turn now to the lower bounds for the
Free Query-by-Example problem, Limited Query-by-Example problem and
Bounded Query-by-Example problem, and then we will turn to UCQs.

4.4.1 Lower bounds for CQs

We will now provide a proof of the lower bound for the Free Query-by-
Example problem for CQs and we will see that, by the way the proof is con-
structed, it also applies to Limited Query-by-Example and Bounded Query-
by-Example.

We start by proving the following two lemmas:

Lemma 4.4.1. Given a database instance D and non-empty relations of positive
and negative examples S+ and S− (respectively) over it, ifD only contains labelled
nulls and q is a fitting CQ for (D, S+, S−), then q does not contain constants.

Proof.
Fix an arbitrary database instanceD and non-empty relations of positive

and negative examples S+ and S− (respectively) over it, and assume by
contraposition that q contains a constant a. Wewant to show thatD contains
the very same constants a, thus falsifying the claim that it contains only
labelled nulls. Observe that, because we assumed that q is a fitting CQ for
(D, S+, S−), and because our homomorphisms map constant to constants,
the constants amust in fact appear in D.

CHAPTER 4. INTRODUCING CONSTANTS 41

For the second lemmawe also need to introduce the notion of c-connected
CQs. Wewill first define c-connectedness of a database instance through the
notion of incidence graph, so we first need to introduce:

Definition 4.4.1 (Incidence graph).
Given a database instance (D, a), the incidence graph of D is the bipartite

multi-graph containing all elements of the active domain ofD as well as the
facts of D, and an edge (a, f)whenever the element a occurs in the fact f .

Definition 4.4.2 (Connected graph).
An graph G = (V (G), E(G)) is connected if every pair of elements in

V (G) are connected, i.e. there is a path between every pair of vertices.

Definition 4.4.3 (C-connected database instance).
We say that a database instance (D, a) is c-connected if every connected

component of its incidence graph contains at least one distinguished ele-
ment.

Note that this definition of c-connectedness is meaningful only if k >
0, i.e. there is at least one distinguished element in the active domain of
the database instance we are considering. Furthermore, c-connectedness
is weaker than connectedness as, in the case of c-connectedness, there is
no guarantee that the distinguished elements are connected to each other.
Finally, it is easy to see that, if we have only one distinguished element in
the active domain, c-connectedness is the same as connectedness.

Definition 4.4.4 (C-connected CQ).
We say that a CQ q(t) is c-connected if its canonical database (Dq, t) is.

With these notions in hand, we can finally prove the following lemma:

Lemma 4.4.2. Given a c-connected CQ q(t) and disjoint database instancesD1 and
D2, if there is a homomorphism h : (Dq, t) → (D1 ⊎ D2, a) (for a ∈ adom(D1 ⊎
D2)), then either h : (Dq, t) → (D1, a) or h : (Dq, t) → (D2, a).

Proof.
Fix a c-connected CQ q(t) and disjoint database instances D1 and D2.

Assume that there is a homomorphism h : (Dq, t) → (D1 ⊎ D2, a) (for a ∈
adom(D1 ⊎ D2)) and, for a contradiction, assume that h : (Dq, t) ↛ (D1, a)
and h : (Dq, t) ↛ (D2, a). See that the latter assumption, as well as the
assumption that h : (Dq, t) → (D1⊎D2, a), allow us to claim that adom(Dq)
can be partitioned into the following two (non-empty) sets:

CHAPTER 4. INTRODUCING CONSTANTS 42

adom(D′
q) = {a | a ∈ adom(Dq) and h(a) ∈ adom(D1)}

adom(D′′
q) = {a | a ∈ adom(Dq) and h(a) ∈ adom(D2)}

Note that all the distinguished variables t must either be in adom(D′
q)

or in adom(D′′
q), as otherwise we would have to mapDq entirely into one of

the two databases D1 and D2, contradicting our assumptions. Moreover, in
the subset without distinguished elements there must be at least one non-
distinguished element and, by c-connectedness of Dq, it must be connected
by a path in the incidence graph ofDq to at least one of the distinguished el-
ements in the other subset. Thismeans that there is a fact inDq that contains
an element from adom(D′

q) and an element from adom(D′′
q). However, this

implies thatD1 andD2 are not disjoint, because therewill be a fact inD1⊎D2

that contains an element from adom(D1) and an element from adom(D2).
Contradiction. We can conclude that either h : (Dq, x) → (D1, a) or h :
(Dq, x) → (D2, a).

We now prove the lower bound results. We first present a proof that
the Free Query-by-Example problem for c-connected CQs is coNExpTime-
hard, and then we show that in fact this result extends to any conjunctive
query. To this end, we also need to definewhat it means to be the c-connected
part of a CQ:

Definition 4.4.5 (C-connected part of a CQ).
Given a CQ q(t), we can obtain the c-connected part of q(t) (whichwewill

denote as q̂(t)) in the following way. Take the incidence graph of q(t) and
remove all facts in it that are not connected to any distinguished element by
a path. Finally, considering this modified incidence graph of q(t), we define
q̂(t) to be the same query as q(t) but without the facts that we removed from
its original incidence graph.

Lemma 4.4.3. Given a database instanceD as well as relations S+ and S− overD,
(D, S+, S−) has a fitting CQ if and only if (D, S+, S−) has a fitting c-connected
CQ.

Proof.
The right-to-left direction is trivial. For the forwarddirection, fix a database

instance D as well as relations S+ and S− over D. We want to show that if
(D, S+, S−) has a fitting query q(t) then q̂(t) (i.e. the c-connected part of q) fits
(D, S+, S−). Assume that (D, S+, S−) has a fitting query q(t). This means
that S+ ⊆ q(D) and that S− ∩ q(D) = ∅.

CHAPTER 4. INTRODUCING CONSTANTS 43

For the positive examples, from S+ ⊆ q(D) it follows that (Dq, t) →
(D, a) for all a ∈ S+, and it is trivial to see that we can exploit the same
homomorphism to preserve all facts of q̂(t), hence allowing us to claim that
(Dq̂, t) → (D, a) for all a ∈ S+.

For the negative examples, from S− ∩ q(D) = ∅ it follows that (Dq, t) ↛
(D, b) for all b ∈ S−. Assume for a contradiction that there is b ∈ S− and a
homomorphism h such that h : (Dq̂, t) → (D, b). Note thatwhenwe go from
a CQ q to its c-connected part q̂, if q isn’t already c-connected, we also get a
“remaining” CQ q̂′, which is what remains of q once we have removed the
c-connected part of it. Becausewe know that (Dq, x) → (D, a) for all a ∈ S+,
it is easy to see that there is a homomorphism h′ such that h′ : Dq̂′ → D.
Then, because we also assumed that h : (Dq̂, x) → (D, b), we can easily get
a new homomorphism h′′ such that h′′ : (Dq, x) → (D, b) in the following
way. Given x ∈ adom(Dq):

h′′(x) = h(x) if x ∈ adom(Dq̂).

h′′(x) = h′(x) if x ∈ adom(Dq̂′).

It is clear thath′′ is a correct homomorphismas adom(Dq)= adom(Dq̂)∪
adom(Dq̂′) and adom(Dq̂) ∩ adom(Dq̂′) = ∅. Moreover, by assumption, h
and h′ are correct homomorphisms. Lastly, note that Dq cannot contain a
fact like, say,R(a, b)where a ∈ adom(Dq̂) and b ∈ adom(Dq̂′), because if a ∈
adom(Dq̂) then b must also be in the c-connected part. But h′′ : (Dq, x) →
(D, b) is a contradiction. We can conclude that S− ∩ q̂(D) = ∅.

As a result, we can claim that q̂ is a fitting c-connectedCQ for (D, S+, S−).

Theorem 4.4.4. The Free Query-by-Example problem for CQs is coNExpTime-
hard.

Proof.
We give a reduction from the Query-by-Example problem for CQs. Take

a database instance D and non-empty relations of positive and negative ex-
amples S+ and S− (respectively) over it. In the following we present our
reduction. We create a database instance D1 in the following way: assum-
ing that D = {R1(a1), . . . , Rk(ak)}, D1 is {R′

1(c1), . . . , R
′
k(ck)}, where each

R′
i(ci) is obtained in the following way:

1. R′
i = Ri.

2. ci is obtained from ai be replacing each ai ∈ awith a fresh constant ci.

CHAPTER 4. INTRODUCING CONSTANTS 44

Then we create another database instanceD2 in an entirely similar fash-
ion. Note that, by the way our reduction works, D1 and D2 are disjoint.
Finally, sets of positive and negative examples fromD1 andD2 are obtained
accordingly. We say that D1 ∪ D2 = D′ and that S+

1 ∪ S+
2 = S′+ while S−

1 ∪
S−
2 = S′−. Now, by Lemma 4.4.3, we can restrict attention to c-connected

CQs, and thus we need to show that (D, S+, S−) has a fitting c-connected
CQ qwithout constants if and only if (D′, S′+, S′−) has a fitting CQ possibly
with constants.

For the forward direction, assume that there is a fitting c-connected CQ
q(t) for D, i.e. given relations S+ and S− over D, S+ ⊆ q(D) and S−∩
q(D) = ∅. Note that, becausewe assumed thatS+ is non-empty, sinceD only
contains labelled nulls, by Lemma 4.4.1, q does not contain any constant. By
assumption, and by the Chandra-Merlin theorem, we know that (Dq, t) →
(D, a) for all a ∈ S+. It is easy to see that, by construction, and using the
same query q(t), we get:

(Dq, t) → (D1, c) for all c ∈ S+
1

(Dq, t) → (D2, c) for all c ∈ S+
2

From this, we need to show the following:

(Dq, t) → (D′, c) for all c ∈ S′+

But this follows immediately: take an arbitrary c ∈ S+
1 ∪ S−

2 : it is clear
that either c ∈ S+

1 or c ∈ S+
2 . Assume that c ∈ S+

1 (the second case is
analogous): we know that (Dq, t) → (D1, c), so it is also true that (Dq, t) →
(D′, c), as D1 ⊆ D′. Hence, given the positive examples S′+, it follows that
S′+ ⊆ q(D′).

To show that S′− ∩ q(D′) = ∅, we first assume that S− ∩ q(D) = ∅.
Moreover, assume towards a contradiction that S′− ∩ q(D′) ̸= ∅, i.e. there is
c ∈ S′− such that (Dq, t) → (D′, c). Because we assumed that S−∩q(D) = ∅,
it follows that – for all b ∈ S− – (Dq, x) ↛ (D, b). Wewant to show that there
is a homomorphism h from (D′, c) to (D, b), for an arbitrary b ∈ S−. At first,
this seems impossible because, while c is a tuple of constants, b is a tuple of
labelled nulls, and we have to map constants to constants. However recall
that, by Lemma 4.4.1, q does not contain any constant, and so we replace
c with a tuple c′ of labelled nulls, therefore obtaining a new database D′′.
We are allowed to do this because, since there are no constants in q, we have
that q(D′) = q(D′′). It is then easy to design a homomorphism h : (D′′, c′) →
(D, b): D′′, by definition, contains two “copies” of each fact in D, so we can
map each pair of facts in D′′ to the original fact in D. It follows that

CHAPTER 4. INTRODUCING CONSTANTS 45

(Dq, t) → (D′′, c′) → (D, b)

Contradiction. We can therefore conclude thatS′−∩q(D′) = ∅, aswanted.
For the backward direction, assume that there is a c-connected fitting

CQ q(t) for D′, i.e. – given relations S′+ and S′− over D′ – S′+ ⊆ q(D′) and
S′− ∩ q(D′) = ∅.

Assume for a contradiction that S+ ⊈ q(D), i.e. there is a tuple a ∈ S+

such that (Dq, x) ↛ (D, a). We want to show that our CQ q(t) does not
contain any constant. Because q(t) is c-connected, and because D′ is the
union of two disjoint databases, we can apply Lemma 4.4.2: because, by
assumption, there is a homomorphism h such that h : (Dq, t) → (D′, c) for
all c ∈ S′+, then either h : (Dq, t) → (D1, c) for all c ∈ S+

1 or h : (Dq, t) →
(D2, c) for all c ∈ S+

2 . Note that both S+
1 and S+

2 are non-empty and, in
both cases, because we have to map constants to constants and because we
assumed that h : (Dq, t) → (D′, c) for all c ∈ S′+, if a constant was actually
present in q we would need to map it to two different constants. Therefore
no constant is actually present in q.

Now, recall that we assumed that there is a tuple a ∈ S+ such that
(Dq, x) ↛ (D, a). We also assumed that (Dq, t) → (D′, c) for all c ∈ S′+.
Note that, because we figured that q does not contain constants, we can ap-
ply the same strategy we saw before to claim that there is a homomorphism
from (D′, c) to (D, a), even if the distinguished tuple in D′ is a tuple of con-
stants while the distinguished tuple in D is a tuple of nulls. From this, we
derive (Dq, x) → (D, a). Contradiction. We can conclude that S+ ⊆ q(D).

Regarding the negative examples, by assumption we know that for all
c ∈ S′−, (Dq, t) ↛ (D′, c). Assume for a contradiction that there is b ∈ S−

such that (Dq, x) → (D, b). It is easy to see that there is a homomorphism
from (D, b) to (D′, c), for an arbitrary c ∈ S′−, as D only contains labelled
nulls. Therefore we have that

(Dq, x) → (D, b) → (D′, c)

which is a contradiction. We can conclude that for all b ∈ S−, (Dq, x) ↛
(D, b), as wanted. As a result, it is indeed the case that (D, S+, S−) has a
fitting c-connected CQ q.

As a corollary, we get the same lower bound for the other two problems:

Theorem4.4.5. The LimitedQuery-by-Example problem for CQs is coNExpTime-
hard.

CHAPTER 4. INTRODUCING CONSTANTS 46

Proof.
We reduce from the Query-by-Example problem for CQs. Take an input

(D1, S
+
1 , S

−
1) of the Query-by-Example problem for CQs. We use the same

reduction we saw for Theorem 4.4.4 and – in addition to the the resulting
tuple (D2, S

+
2 , S

−
2) – we consider ∅ as C′. It is clear that (D2, S

+
2 , S

−
2 , ∅) is a

correct input for the Limited Query-by-Example problem for CQs. We have
to show that (D1, S

+
1 , S

−
1) has a fitting query if and only if (D2, S

+
2 , S

−
2 , ∅)

does.
For the forwarddirection, we assume that (D1, S

+
1 , S

−
1)has a fitting query

q. By inspection of Theorem 4.4.4 we realize that q does not contain con-
stants and, moreover, it is a fitting CQ for (D2, S

+
2 , S

−
2 , ∅), as it is a fitting

CQ already for (D2, S
+
2 , S

−
2).

For the backward direction, we assume that (D2, S
+
2 , S

−
2 , ∅) has a fitting

query q. By inspection of Theorem 4.4.4 we realize that, again, q does not
contain constants and, in addition, it is a fitting CQ for (D1, S

+
1 , S

−
1).

Theorem4.4.6. The BoundedQuery-by-Example problems for CQs is coNExpTime-
hard.

Proof.
We reduce from the Query-by-Example problem for CQs. Take an in-

put (D1, S
+
1 , S

−
1) of the Query-by-Example problem for CQs. We use the

same reduction we saw for Theorem 4.4.4 and – in addition to the the re-
sulting tuple (D2, S

+
2 , S

−
2) – we consider k = 0 as our input k. It is clear

that (D2, S
+
2 , S

−
2 , 0) is a correct input for the Bounded Query-by-Example

problem for CQs. We have to show that (D1, S
+
1 , S

−
1) has a fitting query if

and only if (D2, S
+
2 , S

−
2 , 0) does.

For the forwarddirection, we assume that (D1, S
+
1 , S

−
1)has a fitting query

q. By inspection of Theorem 4.4.4 we realize that q does not contain con-
stants and, moreover, it is a fitting CQ for (D2, S

+
2 , S

−
2 , 0), as it is a fitting

CQ already for (D2, S
+
2 , S

−
2).

For the backward direction, we assume that (D2, S
+
2 , S

−
2 , 0) has a fitting

query q. We have that q contains no constants and, by Theorem 4.4.4 it fol-
lows that q is a fitting CQ for (D1, S

+
1 , S

−
1).

4.4.2 Lower bounds for UCQs

We finally consider the lower bounds for the Limited Query-by-Example
problem for UCQs and for the Bounded Query-by-Example problem for
UCQs. We have that:

CHAPTER 4. INTRODUCING CONSTANTS 47

Theorem 4.4.7. The Limited Query-by-Example problem for UCQs is coNP-
hard.

Proof.
We reduce from the Query-by-Example problem for UCQs which, by

Theorem 3.2.6 in Chapter 3, we know to be coNP-hard. Take an input
(D, S+, S−) for the Query-by-Example problem for UCQs. We show how to
obtain an input tuple (D′, S′+, S′−, C′) for the Limited problem. Take an ar-
bitrary factR(v1, . . . , vk). We then say thatD′ is the set of factsR′(v′1, . . . , v

′
k)

obtained in the following way:

1. R′ = R;

2. We replace each vi in v1, . . . , vk with a constant v′i.

We then have that S′+ and S′− are obtained accordingly. In addition to
this, we say that C′ = ∅. We now have to show that (D, S+, S−) has a fitting
UCQ if and only if (D′, S′+, S′−, ∅) does.

For the forward direction, it is clear that – by construction – a fitting
UCQ q for (D, S+, S−) would fit (D′, S′+, S′−, ∅), as q does not contain any
constant. For the backwarddirection, a similar reasoning applies, as a fitting
UCQ q for (D′, S′+, S′−, ∅) could not contain any constant (as C′ = ∅), so –
by construction – it would be a fitting UCQ for (D, S+, S−) as well.

And we can finally prove hardness for the Bounded problem as well:

Theorem 4.4.8. The Bounded Query-by-Example problem for UCQs is coNP-
hard.

Proof.
We reduce from the Query-by-Example problem for UCQs which, by

Theorem 3.2.6 in 3, we know to be coNP-hard. Take an input (D, S+, S−)
for the Query-by-Example problem for UCQs. We show how to obtain an
input tuple (D′, S′+, S′−, k) for the Bounded problem. Take an arbitrary fact
R(v1, . . . , vk). We then say that D′ is the set of facts R′(v′1, . . . , v

′
k) obtained

in the following way:

1. R′ = R;

2. We replace each vi in v1, . . . , vk with a constant v′i.

CHAPTER 4. INTRODUCING CONSTANTS 48

We then have that S′+ and S′− are obtained accordingly. In addition to
this, we say that k = 0. We now have to show that (D, S+, S−) has a fitting
UCQ if and only if (D′, S′+, S′−, 0) does.

For the forward direction, it is clear that – by construction – a fitting
UCQ q for (D, S+, S−) would fit (D′, S′+, S′−, 0), as q does not contain any
constant. For the backwarddirection, a similar reasoning applies, as a fitting
UCQ q for (D′, S′+, S′−, 0) could not contain any constant (as k = 0), so –
by construction – it would be a fitting UCQ for (D, S+, S−) as well.

To conclude, we summarize the new results of this thesis in the follow-
ing table:

Problem Classification Results
Free Query-by-Example for CQs coNExpTime-complete Theorem 4.3.2 and

Theorem 4.4.4
Limited Query-by-Example for CQs coNExpTime-complete Theorem 4.3.3 and

Theorem 4.4.5
Bounded Query-by-Example for CQs coNExpTime-hard Theorem 4.4.6
Free Query-by-Example for UCQs in P Theorem 4.3.6

Limited Query-by-Example for UCQs coNP-complete Theorem 4.3.7 and
Theorem 4.4.7

Bounded Query-by-Example for UCQs coNP-hard Theorem 4.4.8

5
Conclusion

Inspired by how natural it seems to allow constants in the queries when we
consider the Query-by-Example problem, we proposed a setting in which
constants can be meaningfully taken into account without trivializing the
process of finding a fitting query for a given input database instance and
positive/negative labelled data examples. On this basis, we obtained com-
plexity bounds for some variations of the Query-by-Example problem, for
both conjunctive queries and union of conjunctive queries.

We started our presentation of the Query-by-Example problem in Chap-
ter 3, by introducing the standard setting and by showing complexity results
about it already known in the literature; in particular, we presented argu-
ments – coming from [8] and [1] – proving that the QBE problem for CQs is
coNExpTime-complete while the same problem, but for UCQs, is coNP-
complete. Then, in Chapter 4, we presented away of adding constants in the
queries and thus wemodified the QBE problem in various ways. In this set-
ting, we first partition our universe of values V into a set of constants C and
a set of labelled nulls N . Then, we obtained three different QBE problems:

1. Free QBE for CQs/UCQs: the input consists of a ground database in-
stance D and relations S+/S− over D, and we ask if there is a fitting
CQ/UCQ for the input.

2. Limited QBE for CQs/UCQs: the input consists of a ground database
instance D, relations S+/S− over D and a subset C′ ⊆ C, and we ask
if there is a fitting CQ/UCQ for the input containing only constants
from C′.

49

CHAPTER 5. CONCLUSION 50

3. Bounded QBE for CQs/UCQs: the input consists of a grounddatabase
instance D, relations S+/S− over D and a k ∈ N, and we ask if there
is a fitting CQ/UCQ for the input containing at most k constants from
C.

In this thesis, wewere firstly able to obtain a coNExpTimeupper bound
for the general problem for CQs by following a similar procedure to the one
presented in [8]. Then, by reduction to the very same general problem, we
obtained a coNExpTime upper bound for the free QBE for CQs and, in
turn, another coNExpTime upper bound for the limited problem for CQs
by reducing it to the free version. Turning to UCQs, we proved that the gen-
eral problem has a coNP upper bound but, when we allow the constants
to appear freely in the queries, the problem trivializes. We finally obtained
a coNP upper bound for the limited problem for UCQs by reducing it to
the general problem. For hardness, we provided a proof that the free prob-
lem for CQs is coNExpTime-hard. As a result, we realized that we can
use a very similar reduction to show that also the Limited problem and the
Bounded problem for CQs are coNExpTime-hard. For UCQs, we showed
coNP-hardness for the Limited problem and the Bounded problem.

These high complexity bounds suggest that the problems we are study-
ing are definitely interesting and non-trivial. Also, one might guess that
allowing constants in the queries should make the problem computation-
ally harder, while actually we learned that the complexity does not increase.
At the same time, it does not go down (except for the Free Query-by-Example
problem for UCQs where, as we have seen, the problem trivializes), and
this leads us to new reflections. In particular, it is interesting to think about
how we could apply this setting to more concrete tasks. About this, let us
consider again the Limited Query-by-Example problem. Since the prob-
lem allows the fitting query to contain only constants from a certain subset
C′ ⊆ C, this problem could be cast as an optimization problem (i.e. given an in-
put (D, S+, S−), produce a query with as few constants as possible). Then,
a possible further direction is to decide which values of adom(D) should
be mentioned, modulo the optimization idea just presented. We could say
that C′ should contain only the “meaningful” values of the database we are
considering, but an open question remains: is there any way/heuristics to
classify the meaningful values and the non-meaningful ones? Sometimes
we actually do have an intuition about what is “meaningful” for a query
to refer to, for example if a database lists the name of workers, their de-
partment and their phone number, it is probably more meaningful to allow
the presence of “categorical” values (e.g. department) and not values that

CHAPTER 5. CONCLUSION 51

change for every person (e.g. the phone number, or the name).
Continuing on this reflection on how “practical” our approach can be-

come, we must of course mention the fact that, before any implementation
of this framework, we should find a way of lower the complexity (more on
this in the next section on future research). Then, it would be important to
provide an evaluationmethod to asses how reliable and efficient our frame-
work is. A possible idea in this case is, given an input (D, S+, S−), provide
a fitting query q, and then take new relations S′+ and S′− from q(D) to see
what query q′ we get given (D, S′+, S′−) and how close it is to the original
query q.

Future Research. The developed framework can be further explored. In
particular, it would be interesting to prove an upper bound for the bounded
problems forCQs andUCQs; a possible idea for proving anupper bound for
the problemwithCQs is to reduce an input (D1, S

+
1 , S

−
1 , k) of it to exponentially-

many instances (D2, S
+
2 , S

−
2 , C′) of the limited problem, where each C′ has

cardinality k, i.e. we test all subsets C′ of size k. It is likely to be the case that
if we find such a reduction for the problem with CQs, the same reduction
could work for the problem with UCQs as well.

Another promising line of research comes again from [8], where the
authors identify the main sources of complexity of the QBE problem and
propose relaxations of them that reduce the complexity. As an example,
consider the QBE problem for CQs. Let us recall the QBE test explained in
Chapter 3: the twomain sources of complexity for theQBE problem for CQs
are then the construction of

∏
a∈S+(D, a) and the homomorphism check∏

a∈S+(D, a) ↛ (D, b), for each b ∈ S−. The authors propose relaxations
for these two components of the problem and, in the end, they are able to
show that the combinations of both relaxations yields tractability for the
QBE problem for CQs. It would be interesting to see if the same polynomial-
time result holds if we introduce the possibility of using constants in the
queries or if constants make the complexity grow. It is actually difficult to
foresee the consequences – from a complexity-theoretical standpoint – of
allowing constants in the queries when we consider these problems.

Bibliography

[1] ten Cate, Balder, and Vı́ctor Dalmau. “The product homomorphism
problem and applications.” In 18th International Conference on Database
Theory (ICDT 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2015.

[2] ten Cate, Balder, and Victor Dalmau. ”Conjunctive queries: Unique
characterizations and exact learnability.” In 24th International Con-
ference on Database Theory (ICDT 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

[3] Codd, Edgar F. ”A relational model of data for large shared data
banks.” In Software pioneers, pp. 263-294. Springer, Berlin, Heidelberg,
2002.

[4] Codd, Edgar F. Relational completeness of data base sublanguages. IBM
Corporation, 1972.

[5] Chandra, Ashok K., and Philip M. Merlin. ”Optimal implementation
of conjunctive queries in relational data bases.” In Proceedings of the
ninth annual ACM symposium on Theory of computing, pp. 77-90.
1977.

[6] Libkin, Leonid. ”Incomplete information and certain answers in
general data models.” In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 59-70.
2011.

52

BIBLIOGRAPHY 53

[7] Barceló, Pablo, Alexander Baumgartner, Victor Dalmau, and Benny
Kimelfeld. ”Regularizing conjunctive features for classification.” Jour-
nal of Computer and System Sciences 119 (2021): 97-124.

[8] Barceló, Pablo, and Miguel Romero. ”The complexity of re-
verse engineering problems for conjunctive queries.” arXiv preprint
arXiv:1606.01206 (2016).

[9] Li, Hao, Chee-Yong Chan, and David Maier. ”Query from examples:
An iterative, data-driven approach to query construction.” Proceedings
of the VLDB Endowment 8, no. 13 (2015): 2158-2169.

[10] Tran, Quoc Trung, Chee-Yong Chan, and Srinivasan Parthasarathy.
”Query reverse engineering.” The VLDB Journal 23, no. 5 (2014): 721-
746.

[11] Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[12] Antonopoulos, Timos, Frank Neven, and Frédéric Servais. ”Definabil-
ity problems for graph query languages.” In Proceedings of the 16th In-
ternational Conference on Database Theory, pp. 141-152. 2013.

[13] Hernandez, Michael J., and John L. Viescas. SQL queries for mere mor-
tals: a hands-on guide to data manipulation in SQL. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[14] Cygan,Marek, Fedor V. Fomin, Alexander Golovnev, Alexander S. Ku-
likov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socała. ”Tight
bounds for graph homomorphism and subgraph isomorphism.” In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 1643-1649. Society for Industrial and Applied
Mathematics, 2016.

[15] Kris Lachance, “Why You Should Learn SQL, Regardless of What Job
You Have Now.”, Linkedin, accessed July 28, 2022. Link.

[16] Khoussainova, Nodira, YongChul Kwon, Wei-Ting Liao, Magdalena
Balazinska, Wolfgang Gatterbauer, and Dan Suciu. ”Session-based
browsing for more effective query reuse.” In International Conference
on Scientific and Statistical Database Management, pp. 583-585. Springer,
Berlin, Heidelberg, 2011.

https://www.linkedin.com/pulse/why-you-should-learn-sql-regardless-what-job-have-now-kris-lachance/

BIBLIOGRAPHY 54

[17] ten Cate, Balder. “The homomorphism lattice of finite structures,
unique characterization, and exact learnability”. A|C seminar, Ams-
terdam, the Netherlands, Oct 6, 2021. Link.

[18] Willard, Ross. ”Testing expressibility is hard.” In International Con-
ference on Principles and Practice of Constraint Programming, pp. 9-23.
Springer, Berlin, Heidelberg, 2010.

[19] Zloof, Moshé M. ”Query by example.” In Proceedings of the May 19-22,
1975, national computer conference and exposition, pp. 431-438. 1975.

https://events.illc.uva.nl/alg-coalg/slides/tencate-2021.pdf

	Introduction
	Background
	Background on database theory
	Background on complexity theory

	The Query-by-Example problem
	Introduction to the problem
	Query-by-Example for CQs and UCQs
	Query-by-Example for CQs
	Query-by-Example for UCQs

	Introducing constants
	High-level setting
	Definitions
	Upper bounds for CQs and UCQs
	Lower bounds for CQs and UCQs
	Lower bounds for CQs
	Lower bounds for UCQs

	Conclusion
	Bibliography

